code
stringlengths
82
54.1k
code_codestyle
int64
0
699
style_context
stringlengths
111
35.6k
style_context_codestyle
int64
0
699
label
int64
0
1
import logging import os import random import sys from dataclasses import dataclass, field from typing import Optional import datasets import evaluate import numpy as np from datasets import load_dataset import transformers from transformers import ( AutoConfig, AutoModelForSequenceClassification, AutoTokenizer, DataCollatorWithPadding, EvalPrediction, HfArgumentParser, Trainer, TrainingArguments, default_data_collator, set_seed, ) from transformers.trainer_utils import get_last_checkpoint from transformers.utils import check_min_version, send_example_telemetry from transformers.utils.versions import require_version # Will error if the minimal version of Transformers is not installed. Remove at your own risks. check_min_version('4.31.0') require_version('datasets>=1.8.0', 'To fix: pip install -r examples/pytorch/text-classification/requirements.txt') UpperCamelCase = logging.getLogger(__name__) @dataclass class __lowerCamelCase : """simple docstring""" snake_case__ = field( default=1_2_8 , metadata={ "help": ( "The maximum total input sequence length after tokenization. Sequences longer " "than this will be truncated, sequences shorter will be padded." ) } , ) snake_case__ = field( default=UpperCamelCase__ , metadata={"help": "Overwrite the cached preprocessed datasets or not."} ) snake_case__ = field( default=UpperCamelCase__ , metadata={ "help": ( "Whether to pad all samples to `max_seq_length`. " "If False, will pad the samples dynamically when batching to the maximum length in the batch." ) } , ) snake_case__ = field( default=UpperCamelCase__ , metadata={ "help": ( "For debugging purposes or quicker training, truncate the number of training examples to this " "value if set." ) } , ) snake_case__ = field( default=UpperCamelCase__ , metadata={ "help": ( "For debugging purposes or quicker training, truncate the number of evaluation examples to this " "value if set." ) } , ) snake_case__ = field( default=UpperCamelCase__ , metadata={ "help": ( "For debugging purposes or quicker training, truncate the number of prediction examples to this " "value if set." ) } , ) @dataclass class __lowerCamelCase : """simple docstring""" snake_case__ = field( default=UpperCamelCase__ , metadata={"help": "Path to pretrained model or model identifier from huggingface.co/models"} ) snake_case__ = field( default=UpperCamelCase__ , metadata={"help": "Evaluation language. Also train language if `train_language` is set to None."} ) snake_case__ = field( default=UpperCamelCase__ , metadata={"help": "Train language if it is different from the evaluation language."} ) snake_case__ = field( default=UpperCamelCase__ , metadata={"help": "Pretrained config name or path if not the same as model_name"} ) snake_case__ = field( default=UpperCamelCase__ , metadata={"help": "Pretrained tokenizer name or path if not the same as model_name"} ) snake_case__ = field( default=UpperCamelCase__ , metadata={"help": "Where do you want to store the pretrained models downloaded from huggingface.co"} , ) snake_case__ = field( default=UpperCamelCase__ , metadata={"help": "arg to indicate if tokenizer should do lower case in AutoTokenizer.from_pretrained()"} , ) snake_case__ = field( default=UpperCamelCase__ , metadata={"help": "Whether to use one of the fast tokenizer (backed by the tokenizers library) or not."} , ) snake_case__ = field( default="main" , metadata={"help": "The specific model version to use (can be a branch name, tag name or commit id)."} , ) snake_case__ = field( default=UpperCamelCase__ , metadata={ "help": ( "Will use the token generated when running `huggingface-cli login` (necessary to use this script " "with private models)." ) } , ) snake_case__ = field( default=UpperCamelCase__ , metadata={"help": "Will enable to load a pretrained model whose head dimensions are different."} , ) def _A ( ): """simple docstring""" lowerCAmelCase__ = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ = parser.parse_args_into_dataclasses() # Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The # information sent is the one passed as arguments along with your Python/PyTorch versions. send_example_telemetry("run_xnli" , lowerCAmelCase_ ) # Setup logging logging.basicConfig( format="%(asctime)s - %(levelname)s - %(name)s - %(message)s" , datefmt="%m/%d/%Y %H:%M:%S" , handlers=[logging.StreamHandler(sys.stdout )] , ) if training_args.should_log: # The default of training_args.log_level is passive, so we set log level at info here to have that default. transformers.utils.logging.set_verbosity_info() lowerCAmelCase__ = training_args.get_process_log_level() logger.setLevel(lowerCAmelCase_ ) datasets.utils.logging.set_verbosity(lowerCAmelCase_ ) transformers.utils.logging.set_verbosity(lowerCAmelCase_ ) transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() # Log on each process the small summary: logger.warning( F'Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}' + F'distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}' ) logger.info(F'Training/evaluation parameters {training_args}' ) # Detecting last checkpoint. lowerCAmelCase__ = None if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir: lowerCAmelCase__ = get_last_checkpoint(training_args.output_dir ) if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0: raise ValueError( F'Output directory ({training_args.output_dir}) already exists and is not empty. ' "Use --overwrite_output_dir to overcome." ) elif last_checkpoint is not None: logger.info( F'Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change ' "the `--output_dir` or add `--overwrite_output_dir` to train from scratch." ) # Set seed before initializing model. set_seed(training_args.seed ) # In distributed training, the load_dataset function guarantees that only one local process can concurrently # download the dataset. # Downloading and loading xnli dataset from the hub. if training_args.do_train: if model_args.train_language is None: lowerCAmelCase__ = load_dataset( "xnli" , model_args.language , split="train" , cache_dir=model_args.cache_dir , use_auth_token=True if model_args.use_auth_token else None , ) else: lowerCAmelCase__ = load_dataset( "xnli" , model_args.train_language , split="train" , cache_dir=model_args.cache_dir , use_auth_token=True if model_args.use_auth_token else None , ) lowerCAmelCase__ = train_dataset.features["label"].names if training_args.do_eval: lowerCAmelCase__ = load_dataset( "xnli" , model_args.language , split="validation" , cache_dir=model_args.cache_dir , use_auth_token=True if model_args.use_auth_token else None , ) lowerCAmelCase__ = eval_dataset.features["label"].names if training_args.do_predict: lowerCAmelCase__ = load_dataset( "xnli" , model_args.language , split="test" , cache_dir=model_args.cache_dir , use_auth_token=True if model_args.use_auth_token else None , ) lowerCAmelCase__ = predict_dataset.features["label"].names # Labels lowerCAmelCase__ = len(lowerCAmelCase_ ) # Load pretrained model and tokenizer # In distributed training, the .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. lowerCAmelCase__ = AutoConfig.from_pretrained( model_args.config_name if model_args.config_name else model_args.model_name_or_path , num_labels=lowerCAmelCase_ , idalabel={str(lowerCAmelCase_ ): label for i, label in enumerate(lowerCAmelCase_ )} , labelaid={label: i for i, label in enumerate(lowerCAmelCase_ )} , finetuning_task="xnli" , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) lowerCAmelCase__ = AutoTokenizer.from_pretrained( model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path , do_lower_case=model_args.do_lower_case , cache_dir=model_args.cache_dir , use_fast=model_args.use_fast_tokenizer , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) lowerCAmelCase__ = AutoModelForSequenceClassification.from_pretrained( model_args.model_name_or_path , from_tf=bool(".ckpt" in model_args.model_name_or_path ) , config=lowerCAmelCase_ , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ignore_mismatched_sizes=model_args.ignore_mismatched_sizes , ) # Preprocessing the datasets # Padding strategy if data_args.pad_to_max_length: lowerCAmelCase__ = "max_length" else: # We will pad later, dynamically at batch creation, to the max sequence length in each batch lowerCAmelCase__ = False def preprocess_function(lowerCAmelCase_ : int ): # Tokenize the texts return tokenizer( examples["premise"] , examples["hypothesis"] , padding=lowerCAmelCase_ , max_length=data_args.max_seq_length , truncation=lowerCAmelCase_ , ) if training_args.do_train: if data_args.max_train_samples is not None: lowerCAmelCase__ = min(len(lowerCAmelCase_ ) , data_args.max_train_samples ) lowerCAmelCase__ = train_dataset.select(range(lowerCAmelCase_ ) ) with training_args.main_process_first(desc="train dataset map pre-processing" ): lowerCAmelCase__ = train_dataset.map( lowerCAmelCase_ , batched=lowerCAmelCase_ , load_from_cache_file=not data_args.overwrite_cache , desc="Running tokenizer on train dataset" , ) # Log a few random samples from the training set: for index in random.sample(range(len(lowerCAmelCase_ ) ) , 3 ): logger.info(F'Sample {index} of the training set: {train_dataset[index]}.' ) if training_args.do_eval: if data_args.max_eval_samples is not None: lowerCAmelCase__ = min(len(lowerCAmelCase_ ) , data_args.max_eval_samples ) lowerCAmelCase__ = eval_dataset.select(range(lowerCAmelCase_ ) ) with training_args.main_process_first(desc="validation dataset map pre-processing" ): lowerCAmelCase__ = eval_dataset.map( lowerCAmelCase_ , batched=lowerCAmelCase_ , load_from_cache_file=not data_args.overwrite_cache , desc="Running tokenizer on validation dataset" , ) if training_args.do_predict: if data_args.max_predict_samples is not None: lowerCAmelCase__ = min(len(lowerCAmelCase_ ) , data_args.max_predict_samples ) lowerCAmelCase__ = predict_dataset.select(range(lowerCAmelCase_ ) ) with training_args.main_process_first(desc="prediction dataset map pre-processing" ): lowerCAmelCase__ = predict_dataset.map( lowerCAmelCase_ , batched=lowerCAmelCase_ , load_from_cache_file=not data_args.overwrite_cache , desc="Running tokenizer on prediction dataset" , ) # Get the metric function lowerCAmelCase__ = evaluate.load("xnli" ) # You can define your custom compute_metrics function. It takes an `EvalPrediction` object (a namedtuple with a # predictions and label_ids field) and has to return a dictionary string to float. def compute_metrics(lowerCAmelCase_ : EvalPrediction ): lowerCAmelCase__ = p.predictions[0] if isinstance(p.predictions , lowerCAmelCase_ ) else p.predictions lowerCAmelCase__ = np.argmax(lowerCAmelCase_ , axis=1 ) return metric.compute(predictions=lowerCAmelCase_ , references=p.label_ids ) # Data collator will default to DataCollatorWithPadding, so we change it if we already did the padding. if data_args.pad_to_max_length: lowerCAmelCase__ = default_data_collator elif training_args.fpaa: lowerCAmelCase__ = DataCollatorWithPadding(lowerCAmelCase_ , pad_to_multiple_of=8 ) else: lowerCAmelCase__ = None # Initialize our Trainer lowerCAmelCase__ = Trainer( model=lowerCAmelCase_ , args=lowerCAmelCase_ , train_dataset=train_dataset if training_args.do_train else None , eval_dataset=eval_dataset if training_args.do_eval else None , compute_metrics=lowerCAmelCase_ , tokenizer=lowerCAmelCase_ , data_collator=lowerCAmelCase_ , ) # Training if training_args.do_train: lowerCAmelCase__ = None if training_args.resume_from_checkpoint is not None: lowerCAmelCase__ = training_args.resume_from_checkpoint elif last_checkpoint is not None: lowerCAmelCase__ = last_checkpoint lowerCAmelCase__ = trainer.train(resume_from_checkpoint=lowerCAmelCase_ ) lowerCAmelCase__ = train_result.metrics lowerCAmelCase__ = ( data_args.max_train_samples if data_args.max_train_samples is not None else len(lowerCAmelCase_ ) ) lowerCAmelCase__ = min(lowerCAmelCase_ , len(lowerCAmelCase_ ) ) trainer.save_model() # Saves the tokenizer too for easy upload trainer.log_metrics("train" , lowerCAmelCase_ ) trainer.save_metrics("train" , lowerCAmelCase_ ) trainer.save_state() # Evaluation if training_args.do_eval: logger.info("*** Evaluate ***" ) lowerCAmelCase__ = trainer.evaluate(eval_dataset=lowerCAmelCase_ ) lowerCAmelCase__ = data_args.max_eval_samples if data_args.max_eval_samples is not None else len(lowerCAmelCase_ ) lowerCAmelCase__ = min(lowerCAmelCase_ , len(lowerCAmelCase_ ) ) trainer.log_metrics("eval" , lowerCAmelCase_ ) trainer.save_metrics("eval" , lowerCAmelCase_ ) # Prediction if training_args.do_predict: logger.info("*** Predict ***" ) lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ = trainer.predict(lowerCAmelCase_ , metric_key_prefix="predict" ) lowerCAmelCase__ = ( data_args.max_predict_samples if data_args.max_predict_samples is not None else len(lowerCAmelCase_ ) ) lowerCAmelCase__ = min(lowerCAmelCase_ , len(lowerCAmelCase_ ) ) trainer.log_metrics("predict" , lowerCAmelCase_ ) trainer.save_metrics("predict" , lowerCAmelCase_ ) lowerCAmelCase__ = np.argmax(lowerCAmelCase_ , axis=1 ) lowerCAmelCase__ = os.path.join(training_args.output_dir , "predictions.txt" ) if trainer.is_world_process_zero(): with open(lowerCAmelCase_ , "w" ) as writer: writer.write("index\tprediction\n" ) for index, item in enumerate(lowerCAmelCase_ ): lowerCAmelCase__ = label_list[item] writer.write(F'{index}\t{item}\n' ) if __name__ == "__main__": main()
61
import os import tempfile from functools import partial from unittest import TestCase from unittest.mock import patch import datasets import datasets.config from .utils import require_beam class _a ( datasets.BeamBasedBuilder ): """simple docstring""" def _UpperCAmelCase ( self ) -> List[str]: return datasets.DatasetInfo( features=datasets.Features({'content': datasets.Value('string' )} ) , supervised_keys=_UpperCAmelCase , ) def _UpperCAmelCase ( self , _UpperCAmelCase , _UpperCAmelCase ) -> Optional[Any]: return [datasets.SplitGenerator(name=datasets.Split.TRAIN , gen_kwargs={'examples': get_test_dummy_examples()} )] def _UpperCAmelCase ( self , _UpperCAmelCase , _UpperCAmelCase ) -> Tuple: import apache_beam as beam return pipeline | "Load Examples" >> beam.Create(_UpperCAmelCase ) class _a ( datasets.BeamBasedBuilder ): """simple docstring""" def _UpperCAmelCase ( self ) -> Any: return datasets.DatasetInfo( features=datasets.Features({'a': datasets.Sequence({'b': datasets.Value('string' )} )} ) , supervised_keys=_UpperCAmelCase , ) def _UpperCAmelCase ( self , _UpperCAmelCase , _UpperCAmelCase ) -> Tuple: return [ datasets.SplitGenerator(name=datasets.Split.TRAIN , gen_kwargs={'examples': get_test_nested_examples()} ) ] def _UpperCAmelCase ( self , _UpperCAmelCase , _UpperCAmelCase ) -> Union[str, Any]: import apache_beam as beam return pipeline | "Load Examples" >> beam.Create(_UpperCAmelCase ) def _snake_case (): return [(i, {"content": content}) for i, content in enumerate(['foo', 'bar', 'foobar'])] def _snake_case (): return [(i, {"a": {"b": [content]}}) for i, content in enumerate(['foo', 'bar', 'foobar'])] class _a ( UpperCAmelCase__ ): """simple docstring""" @require_beam def _UpperCAmelCase ( self ) -> Dict: UpperCamelCase_ = len(get_test_dummy_examples() ) with tempfile.TemporaryDirectory() as tmp_cache_dir: UpperCamelCase_ = DummyBeamDataset(cache_dir=_UpperCAmelCase , beam_runner='DirectRunner' ) builder.download_and_prepare() self.assertTrue( os.path.exists( os.path.join(_UpperCAmelCase , builder.name , 'default' , '0.0.0' , f"""{builder.name}-train.arrow""" ) ) ) self.assertDictEqual(builder.info.features , datasets.Features({'content': datasets.Value('string' )} ) ) UpperCamelCase_ = builder.as_dataset() self.assertEqual(dset['train'].num_rows , _UpperCAmelCase ) self.assertEqual(dset['train'].info.splits['train'].num_examples , _UpperCAmelCase ) self.assertDictEqual(dset['train'][0] , get_test_dummy_examples()[0][1] ) self.assertDictEqual( dset['train'][expected_num_examples - 1] , get_test_dummy_examples()[expected_num_examples - 1][1] ) self.assertTrue( os.path.exists(os.path.join(_UpperCAmelCase , builder.name , 'default' , '0.0.0' , 'dataset_info.json' ) ) ) del dset @require_beam def _UpperCAmelCase ( self ) -> List[str]: import apache_beam as beam UpperCamelCase_ = beam.io.parquetio.WriteToParquet UpperCamelCase_ = len(get_test_dummy_examples() ) with tempfile.TemporaryDirectory() as tmp_cache_dir: UpperCamelCase_ = DummyBeamDataset(cache_dir=_UpperCAmelCase , beam_runner='DirectRunner' ) with patch('apache_beam.io.parquetio.WriteToParquet' ) as write_parquet_mock: UpperCamelCase_ = partial(_UpperCAmelCase , num_shards=2 ) builder.download_and_prepare() self.assertTrue( os.path.exists( os.path.join( _UpperCAmelCase , builder.name , 'default' , '0.0.0' , f"""{builder.name}-train-00000-of-00002.arrow""" ) ) ) self.assertTrue( os.path.exists( os.path.join( _UpperCAmelCase , builder.name , 'default' , '0.0.0' , f"""{builder.name}-train-00000-of-00002.arrow""" ) ) ) self.assertDictEqual(builder.info.features , datasets.Features({'content': datasets.Value('string' )} ) ) UpperCamelCase_ = builder.as_dataset() self.assertEqual(dset['train'].num_rows , _UpperCAmelCase ) self.assertEqual(dset['train'].info.splits['train'].num_examples , _UpperCAmelCase ) # Order is not preserved when sharding, so we just check that all the elements are there self.assertListEqual(sorted(dset['train']['content'] ) , sorted(['foo', 'bar', 'foobar'] ) ) self.assertTrue( os.path.exists(os.path.join(_UpperCAmelCase , builder.name , 'default' , '0.0.0' , 'dataset_info.json' ) ) ) del dset @require_beam def _UpperCAmelCase ( self ) -> Any: with tempfile.TemporaryDirectory() as tmp_cache_dir: UpperCamelCase_ = DummyBeamDataset(cache_dir=_UpperCAmelCase ) self.assertRaises(datasets.builder.MissingBeamOptions , builder.download_and_prepare ) @require_beam def _UpperCAmelCase ( self ) -> Union[str, Any]: UpperCamelCase_ = len(get_test_nested_examples() ) with tempfile.TemporaryDirectory() as tmp_cache_dir: UpperCamelCase_ = NestedBeamDataset(cache_dir=_UpperCAmelCase , beam_runner='DirectRunner' ) builder.download_and_prepare() self.assertTrue( os.path.exists( os.path.join(_UpperCAmelCase , builder.name , 'default' , '0.0.0' , f"""{builder.name}-train.arrow""" ) ) ) self.assertDictEqual( builder.info.features , datasets.Features({'a': datasets.Sequence({'b': datasets.Value('string' )} )} ) ) UpperCamelCase_ = builder.as_dataset() self.assertEqual(dset['train'].num_rows , _UpperCAmelCase ) self.assertEqual(dset['train'].info.splits['train'].num_examples , _UpperCAmelCase ) self.assertDictEqual(dset['train'][0] , get_test_nested_examples()[0][1] ) self.assertDictEqual( dset['train'][expected_num_examples - 1] , get_test_nested_examples()[expected_num_examples - 1][1] ) self.assertTrue( os.path.exists(os.path.join(_UpperCAmelCase , builder.name , 'default' , '0.0.0' , 'dataset_info.json' ) ) ) del dset
23
0
import argparse import json import math import os import time import traceback import zipfile from collections import Counter import requests def lowerCamelCase__ ( lowercase , lowercase=None ): """simple docstring""" SCREAMING_SNAKE_CASE : str = None if token is not None: SCREAMING_SNAKE_CASE : Any = {"Accept": "application/vnd.github+json", "Authorization": F'''Bearer {token}'''} SCREAMING_SNAKE_CASE : str = F'''https://api.github.com/repos/huggingface/transformers/actions/runs/{workflow_run_id}/jobs?per_page=100''' SCREAMING_SNAKE_CASE : Optional[int] = requests.get(lowercase , headers=lowercase ).json() SCREAMING_SNAKE_CASE : List[str] = {} try: job_links.update({job["name"]: job["html_url"] for job in result["jobs"]} ) SCREAMING_SNAKE_CASE : List[str] = math.ceil((result["total_count"] - 100) / 100 ) for i in range(lowercase ): SCREAMING_SNAKE_CASE : Dict = requests.get(url + F'''&page={i + 2}''' , headers=lowercase ).json() job_links.update({job["name"]: job["html_url"] for job in result["jobs"]} ) return job_links except Exception: print(F'''Unknown error, could not fetch links:\n{traceback.format_exc()}''' ) return {} def lowerCamelCase__ ( lowercase , lowercase=None ): """simple docstring""" SCREAMING_SNAKE_CASE : List[str] = None if token is not None: SCREAMING_SNAKE_CASE : str = {"Accept": "application/vnd.github+json", "Authorization": F'''Bearer {token}'''} SCREAMING_SNAKE_CASE : Optional[int] = F'''https://api.github.com/repos/huggingface/transformers/actions/runs/{worflow_run_id}/artifacts?per_page=100''' SCREAMING_SNAKE_CASE : str = requests.get(lowercase , headers=lowercase ).json() SCREAMING_SNAKE_CASE : Optional[Any] = {} try: artifacts.update({artifact["name"]: artifact["archive_download_url"] for artifact in result["artifacts"]} ) SCREAMING_SNAKE_CASE : Dict = math.ceil((result["total_count"] - 100) / 100 ) for i in range(lowercase ): SCREAMING_SNAKE_CASE : Dict = requests.get(url + F'''&page={i + 2}''' , headers=lowercase ).json() artifacts.update({artifact["name"]: artifact["archive_download_url"] for artifact in result["artifacts"]} ) return artifacts except Exception: print(F'''Unknown error, could not fetch links:\n{traceback.format_exc()}''' ) return {} def lowerCamelCase__ ( lowercase , lowercase , lowercase , lowercase ): """simple docstring""" SCREAMING_SNAKE_CASE : Optional[Any] = None if token is not None: SCREAMING_SNAKE_CASE : Union[str, Any] = {"Accept": "application/vnd.github+json", "Authorization": F'''Bearer {token}'''} SCREAMING_SNAKE_CASE : Optional[int] = requests.get(lowercase , headers=lowercase , allow_redirects=lowercase ) SCREAMING_SNAKE_CASE : Union[str, Any] = result.headers["Location"] SCREAMING_SNAKE_CASE : List[str] = requests.get(lowercase , allow_redirects=lowercase ) SCREAMING_SNAKE_CASE : List[str] = os.path.join(lowercase , F'''{artifact_name}.zip''' ) with open(lowercase , "wb" ) as fp: fp.write(response.content ) def lowerCamelCase__ ( lowercase , lowercase=None ): """simple docstring""" SCREAMING_SNAKE_CASE : List[Any] = [] SCREAMING_SNAKE_CASE : Any = [] SCREAMING_SNAKE_CASE : Any = None with zipfile.ZipFile(lowercase ) as z: for filename in z.namelist(): if not os.path.isdir(lowercase ): # read the file if filename in ["failures_line.txt", "summary_short.txt", "job_name.txt"]: with z.open(lowercase ) as f: for line in f: SCREAMING_SNAKE_CASE : List[str] = line.decode("UTF-8" ).strip() if filename == "failures_line.txt": try: # `error_line` is the place where `error` occurs SCREAMING_SNAKE_CASE : Optional[Any] = line[: line.index(": " )] SCREAMING_SNAKE_CASE : Any = line[line.index(": " ) + len(": " ) :] errors.append([error_line, error] ) except Exception: # skip un-related lines pass elif filename == "summary_short.txt" and line.startswith("FAILED " ): # `test` is the test method that failed SCREAMING_SNAKE_CASE : int = line[len("FAILED " ) :] failed_tests.append(lowercase ) elif filename == "job_name.txt": SCREAMING_SNAKE_CASE : Optional[Any] = line if len(lowercase ) != len(lowercase ): raise ValueError( F'''`errors` and `failed_tests` should have the same number of elements. Got {len(lowercase )} for `errors` ''' F'''and {len(lowercase )} for `failed_tests` instead. The test reports in {artifact_zip_path} have some''' " problem." ) SCREAMING_SNAKE_CASE : Union[str, Any] = None if job_name and job_links: SCREAMING_SNAKE_CASE : Tuple = job_links.get(lowercase , lowercase ) # A list with elements of the form (line of error, error, failed test) SCREAMING_SNAKE_CASE : List[Any] = [x + [y] + [job_link] for x, y in zip(lowercase , lowercase )] return result def lowerCamelCase__ ( lowercase , lowercase=None ): """simple docstring""" SCREAMING_SNAKE_CASE : List[Any] = [] SCREAMING_SNAKE_CASE : Optional[int] = [os.path.join(lowercase , lowercase ) for p in os.listdir(lowercase ) if p.endswith(".zip" )] for p in paths: errors.extend(get_errors_from_single_artifact(lowercase , job_links=lowercase ) ) return errors def lowerCamelCase__ ( lowercase , lowercase=None ): """simple docstring""" SCREAMING_SNAKE_CASE : str = Counter() counter.update([x[1] for x in logs] ) SCREAMING_SNAKE_CASE : str = counter.most_common() SCREAMING_SNAKE_CASE : str = {} for error, count in counts: if error_filter is None or error not in error_filter: SCREAMING_SNAKE_CASE : List[str] = {"count": count, "failed_tests": [(x[2], x[0]) for x in logs if x[1] == error]} SCREAMING_SNAKE_CASE : Union[str, Any] = dict(sorted(r.items() , key=lambda lowercase : item[1]["count"] , reverse=lowercase ) ) return r def lowerCamelCase__ ( lowercase ): """simple docstring""" SCREAMING_SNAKE_CASE : List[Any] = test.split("::" )[0] if test.startswith("tests/models/" ): SCREAMING_SNAKE_CASE : Dict = test.split("/" )[2] else: SCREAMING_SNAKE_CASE : Optional[int] = None return test def lowerCamelCase__ ( lowercase , lowercase=None ): """simple docstring""" SCREAMING_SNAKE_CASE : Dict = [(x[0], x[1], get_model(x[2] )) for x in logs] SCREAMING_SNAKE_CASE : Dict = [x for x in logs if x[2] is not None] SCREAMING_SNAKE_CASE : Optional[Any] = {x[2] for x in logs} SCREAMING_SNAKE_CASE : List[Any] = {} for test in tests: SCREAMING_SNAKE_CASE : str = Counter() # count by errors in `test` counter.update([x[1] for x in logs if x[2] == test] ) SCREAMING_SNAKE_CASE : Tuple = counter.most_common() SCREAMING_SNAKE_CASE : Optional[Any] = {error: count for error, count in counts if (error_filter is None or error not in error_filter)} SCREAMING_SNAKE_CASE : Dict = sum(error_counts.values() ) if n_errors > 0: SCREAMING_SNAKE_CASE : Dict = {"count": n_errors, "errors": error_counts} SCREAMING_SNAKE_CASE : List[Any] = dict(sorted(r.items() , key=lambda lowercase : item[1]["count"] , reverse=lowercase ) ) return r def lowerCamelCase__ ( lowercase ): """simple docstring""" SCREAMING_SNAKE_CASE : Dict = "| no. | error | status |" SCREAMING_SNAKE_CASE : Tuple = "|-:|:-|:-|" SCREAMING_SNAKE_CASE : int = [header, sep] for error in reduced_by_error: SCREAMING_SNAKE_CASE : Optional[int] = reduced_by_error[error]["count"] SCREAMING_SNAKE_CASE : str = F'''| {count} | {error[:100]} | |''' lines.append(lowercase ) return "\n".join(lowercase ) def lowerCamelCase__ ( lowercase ): """simple docstring""" SCREAMING_SNAKE_CASE : Dict = "| model | no. of errors | major error | count |" SCREAMING_SNAKE_CASE : Any = "|-:|-:|-:|-:|" SCREAMING_SNAKE_CASE : int = [header, sep] for model in reduced_by_model: SCREAMING_SNAKE_CASE : Optional[int] = reduced_by_model[model]["count"] SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Dict = list(reduced_by_model[model]["errors"].items() )[0] SCREAMING_SNAKE_CASE : List[str] = F'''| {model} | {count} | {error[:60]} | {_count} |''' lines.append(lowercase ) return "\n".join(lowercase ) if __name__ == "__main__": snake_case = argparse.ArgumentParser() # Required parameters parser.add_argument("""--workflow_run_id""", type=str, required=True, help="""A GitHub Actions workflow run id.""") parser.add_argument( """--output_dir""", type=str, required=True, help="""Where to store the downloaded artifacts and other result files.""", ) parser.add_argument("""--token""", default=None, type=str, help="""A token that has actions:read permission.""") snake_case = parser.parse_args() os.makedirs(args.output_dir, exist_ok=True) snake_case = get_job_links(args.workflow_run_id, token=args.token) snake_case = {} # To deal with `workflow_call` event, where a job name is the combination of the job names in the caller and callee. # For example, `PyTorch 1.11 / Model tests (models/albert, single-gpu)`. if _job_links: for k, v in _job_links.items(): # This is how GitHub actions combine job names. if " / " in k: snake_case = k.find(""" / """) snake_case = k[index + len(""" / """) :] snake_case = v with open(os.path.join(args.output_dir, """job_links.json"""), """w""", encoding="""UTF-8""") as fp: json.dump(job_links, fp, ensure_ascii=False, indent=4) snake_case = get_artifacts_links(args.workflow_run_id, token=args.token) with open(os.path.join(args.output_dir, """artifacts.json"""), """w""", encoding="""UTF-8""") as fp: json.dump(artifacts, fp, ensure_ascii=False, indent=4) for idx, (name, url) in enumerate(artifacts.items()): download_artifact(name, url, args.output_dir, args.token) # Be gentle to GitHub time.sleep(1) snake_case = get_all_errors(args.output_dir, job_links=job_links) # `e[1]` is the error snake_case = Counter() counter.update([e[1] for e in errors]) # print the top 30 most common test errors snake_case = counter.most_common(30) for item in most_common: print(item) with open(os.path.join(args.output_dir, """errors.json"""), """w""", encoding="""UTF-8""") as fp: json.dump(errors, fp, ensure_ascii=False, indent=4) snake_case = reduce_by_error(errors) snake_case = reduce_by_model(errors) snake_case = make_github_table(reduced_by_error) snake_case = make_github_table_per_model(reduced_by_model) with open(os.path.join(args.output_dir, """reduced_by_error.txt"""), """w""", encoding="""UTF-8""") as fp: fp.write(sa) with open(os.path.join(args.output_dir, """reduced_by_model.txt"""), """w""", encoding="""UTF-8""") as fp: fp.write(sa)
62
import argparse import torch from ...utils import logging from . import AlbertConfig, AlbertForPreTraining, load_tf_weights_in_albert logging.set_verbosity_info() def _snake_case (__lowercase , __lowercase , __lowercase): # Initialise PyTorch model UpperCamelCase_ = AlbertConfig.from_json_file(__lowercase) print(f"""Building PyTorch model from configuration: {config}""") UpperCamelCase_ = AlbertForPreTraining(__lowercase) # Load weights from tf checkpoint load_tf_weights_in_albert(__lowercase , __lowercase , __lowercase) # Save pytorch-model print(f"""Save PyTorch model to {pytorch_dump_path}""") torch.save(model.state_dict() , __lowercase) if __name__ == "__main__": snake_case__ : Tuple = argparse.ArgumentParser() # Required parameters parser.add_argument( """--tf_checkpoint_path""", default=None, type=str, required=True, help="""Path to the TensorFlow checkpoint path.""" ) parser.add_argument( """--albert_config_file""", default=None, type=str, required=True, help=( """The config json file corresponding to the pre-trained ALBERT model. \n""" """This specifies the model architecture.""" ), ) parser.add_argument( """--pytorch_dump_path""", default=None, type=str, required=True, help="""Path to the output PyTorch model.""" ) snake_case__ : str = parser.parse_args() convert_tf_checkpoint_to_pytorch(args.tf_checkpoint_path, args.albert_config_file, args.pytorch_dump_path)
23
0
def lowerCamelCase__ ( __lowerCamelCase : list ): if len(__lowerCamelCase ) <= 1: return lst __UpperCAmelCase : Optional[Any] = 1 while i < len(__lowerCamelCase ): if lst[i - 1] <= lst[i]: i += 1 else: __UpperCAmelCase , __UpperCAmelCase : Optional[Any] = lst[i], lst[i - 1] i -= 1 if i == 0: __UpperCAmelCase : Optional[int] = 1 return lst if __name__ == "__main__": a : Tuple = input("Enter numbers separated by a comma:\n").strip() a : Union[str, Any] = [int(item) for item in user_input.split(",")] print(gnome_sort(unsorted))
63
from transformers import BertTokenizer, EncoderDecoderModel, SeqaSeqTrainer, SeqaSeqTrainingArguments from transformers.testing_utils import TestCasePlus, require_torch, slow from transformers.utils import is_datasets_available if is_datasets_available(): import datasets class _a ( UpperCAmelCase__ ): """simple docstring""" @slow @require_torch def _UpperCAmelCase ( self ) -> List[Any]: UpperCamelCase_ = EncoderDecoderModel.from_encoder_decoder_pretrained('prajjwal1/bert-tiny' , 'prajjwal1/bert-tiny' ) UpperCamelCase_ = BertTokenizer.from_pretrained('bert-base-uncased' ) UpperCamelCase_ = bertabert.config.encoder.vocab_size UpperCamelCase_ = tokenizer.sep_token_id UpperCamelCase_ = tokenizer.cls_token_id UpperCamelCase_ = 128 UpperCamelCase_ = datasets.load_dataset('cnn_dailymail' , '3.0.0' , split='train[:1%]' ) UpperCamelCase_ = datasets.load_dataset('cnn_dailymail' , '3.0.0' , split='validation[:1%]' ) UpperCamelCase_ = train_dataset.select(range(32 ) ) UpperCamelCase_ = val_dataset.select(range(16 ) ) UpperCamelCase_ = 4 def _map_to_encoder_decoder_inputs(_UpperCAmelCase ): # Tokenizer will automatically set [BOS] <text> [EOS] UpperCamelCase_ = tokenizer(batch['article'] , padding='max_length' , truncation=_UpperCAmelCase , max_length=512 ) UpperCamelCase_ = tokenizer(batch['highlights'] , padding='max_length' , truncation=_UpperCAmelCase , max_length=128 ) UpperCamelCase_ = inputs.input_ids UpperCamelCase_ = inputs.attention_mask UpperCamelCase_ = outputs.input_ids UpperCamelCase_ = outputs.input_ids.copy() UpperCamelCase_ = [ [-100 if token == tokenizer.pad_token_id else token for token in labels] for labels in batch['labels'] ] UpperCamelCase_ = outputs.attention_mask assert all(len(_UpperCAmelCase ) == 512 for x in inputs.input_ids ) assert all(len(_UpperCAmelCase ) == 128 for x in outputs.input_ids ) return batch def _compute_metrics(_UpperCAmelCase ): UpperCamelCase_ = pred.label_ids UpperCamelCase_ = pred.predictions # all unnecessary tokens are removed UpperCamelCase_ = tokenizer.batch_decode(_UpperCAmelCase , skip_special_tokens=_UpperCAmelCase ) UpperCamelCase_ = tokenizer.batch_decode(_UpperCAmelCase , skip_special_tokens=_UpperCAmelCase ) UpperCamelCase_ = sum([int(pred_str[i] == label_str[i] ) for i in range(len(_UpperCAmelCase ) )] ) / len(_UpperCAmelCase ) return {"accuracy": accuracy} # map train dataset UpperCamelCase_ = train_dataset.map( _map_to_encoder_decoder_inputs , batched=_UpperCAmelCase , batch_size=_UpperCAmelCase , remove_columns=['article', 'highlights'] , ) train_dataset.set_format( type='torch' , columns=['input_ids', 'attention_mask', 'decoder_input_ids', 'decoder_attention_mask', 'labels'] , ) # same for validation dataset UpperCamelCase_ = val_dataset.map( _map_to_encoder_decoder_inputs , batched=_UpperCAmelCase , batch_size=_UpperCAmelCase , remove_columns=['article', 'highlights'] , ) val_dataset.set_format( type='torch' , columns=['input_ids', 'attention_mask', 'decoder_input_ids', 'decoder_attention_mask', 'labels'] , ) UpperCamelCase_ = self.get_auto_remove_tmp_dir() UpperCamelCase_ = SeqaSeqTrainingArguments( output_dir=_UpperCAmelCase , per_device_train_batch_size=_UpperCAmelCase , per_device_eval_batch_size=_UpperCAmelCase , predict_with_generate=_UpperCAmelCase , evaluation_strategy='steps' , do_train=_UpperCAmelCase , do_eval=_UpperCAmelCase , warmup_steps=0 , eval_steps=2 , logging_steps=2 , ) # instantiate trainer UpperCamelCase_ = SeqaSeqTrainer( model=_UpperCAmelCase , args=_UpperCAmelCase , compute_metrics=_compute_metrics , train_dataset=_UpperCAmelCase , eval_dataset=_UpperCAmelCase , tokenizer=_UpperCAmelCase , ) # start training trainer.train()
23
0
def A__ ( snake_case_ : int ): return str(snake_case_ ) == str(snake_case_ )[::-1] def A__ ( snake_case_ : int ): return int(snake_case_ ) + int(str(snake_case_ )[::-1] ) def A__ ( snake_case_ : int = 10_000 ): SCREAMING_SNAKE_CASE__: Dict= [] for num in range(1 , snake_case_ ): SCREAMING_SNAKE_CASE__: List[Any]= 0 SCREAMING_SNAKE_CASE__: Optional[Any]= num while iterations < 50: SCREAMING_SNAKE_CASE__: Optional[int]= sum_reverse(snake_case_ ) iterations += 1 if is_palindrome(snake_case_ ): break else: lychrel_nums.append(snake_case_ ) return len(snake_case_ ) if __name__ == "__main__": print(f'''{solution() = }''')
64
import argparse import os import evaluate import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType ######################################################################## # This is a fully working simple example to use Accelerate # and perform gradient accumulation # # This example trains a Bert base model on GLUE MRPC # in any of the following settings (with the same script): # - single CPU or single GPU # - multi GPUS (using PyTorch distributed mode) # - (multi) TPUs # - fp16 (mixed-precision) or fp32 (normal precision) # # To run it in each of these various modes, follow the instructions # in the readme for examples: # https://github.com/huggingface/accelerate/tree/main/examples # ######################################################################## snake_case__ : Dict = 1_6 snake_case__ : List[str] = 3_2 def _snake_case (__lowercase , __lowercase = 16): UpperCamelCase_ = AutoTokenizer.from_pretrained('bert-base-cased') UpperCamelCase_ = load_dataset('glue' , 'mrpc') def tokenize_function(__lowercase): # max_length=None => use the model max length (it's actually the default) UpperCamelCase_ = tokenizer(examples['sentence1'] , examples['sentence2'] , truncation=__lowercase , max_length=__lowercase) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset # starting with the main process first: with accelerator.main_process_first(): UpperCamelCase_ = datasets.map( __lowercase , batched=__lowercase , remove_columns=['idx', 'sentence1', 'sentence2'] , ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library UpperCamelCase_ = tokenized_datasets.rename_column('label' , 'labels') def collate_fn(__lowercase): # On TPU it's best to pad everything to the same length or training will be very slow. UpperCamelCase_ = 128 if accelerator.distributed_type == DistributedType.TPU else None # When using mixed precision we want round multiples of 8/16 if accelerator.mixed_precision == "fp8": UpperCamelCase_ = 16 elif accelerator.mixed_precision != "no": UpperCamelCase_ = 8 else: UpperCamelCase_ = None return tokenizer.pad( __lowercase , padding='longest' , max_length=__lowercase , pad_to_multiple_of=__lowercase , return_tensors='pt' , ) # Instantiate dataloaders. UpperCamelCase_ = DataLoader( tokenized_datasets['train'] , shuffle=__lowercase , collate_fn=__lowercase , batch_size=__lowercase) UpperCamelCase_ = DataLoader( tokenized_datasets['validation'] , shuffle=__lowercase , collate_fn=__lowercase , batch_size=__lowercase) return train_dataloader, eval_dataloader # For testing only if os.environ.get("""TESTING_MOCKED_DATALOADERS""", None) == "1": from accelerate.test_utils.training import mocked_dataloaders snake_case__ : List[str] = mocked_dataloaders # noqa: F811 def _snake_case (__lowercase , __lowercase): # For testing only if os.environ.get('TESTING_MOCKED_DATALOADERS' , __lowercase) == "1": UpperCamelCase_ = 2 # New Code # UpperCamelCase_ = int(args.gradient_accumulation_steps) # Initialize accelerator UpperCamelCase_ = Accelerator( cpu=args.cpu , mixed_precision=args.mixed_precision , gradient_accumulation_steps=__lowercase) if accelerator.distributed_type == DistributedType.TPU and gradient_accumulation_steps > 1: raise NotImplementedError( 'Gradient accumulation on TPUs is currently not supported. Pass `gradient_accumulation_steps=1`') # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs UpperCamelCase_ = config['lr'] UpperCamelCase_ = int(config['num_epochs']) UpperCamelCase_ = int(config['seed']) UpperCamelCase_ = int(config['batch_size']) UpperCamelCase_ = evaluate.load('glue' , 'mrpc') set_seed(__lowercase) UpperCamelCase_ , UpperCamelCase_ = get_dataloaders(__lowercase , __lowercase) # Instantiate the model (we build the model here so that the seed also control new weights initialization) UpperCamelCase_ = AutoModelForSequenceClassification.from_pretrained('bert-base-cased' , return_dict=__lowercase) # We could avoid this line since the accelerator is set with `device_placement=True` (default value). # Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer # creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that). UpperCamelCase_ = model.to(accelerator.device) # Instantiate optimizer UpperCamelCase_ = AdamW(params=model.parameters() , lr=__lowercase) # Instantiate scheduler UpperCamelCase_ = get_linear_schedule_with_warmup( optimizer=__lowercase , num_warmup_steps=100 , num_training_steps=(len(__lowercase) * num_epochs) , ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ = accelerator.prepare( __lowercase , __lowercase , __lowercase , __lowercase , __lowercase) # Now we train the model for epoch in range(__lowercase): model.train() for step, batch in enumerate(__lowercase): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device) # New code # # We use the new `accumulate` context manager to perform gradient accumulation # We also currently do not support TPUs nor advise it as bugs were found on the XLA side when running our tests. with accelerator.accumulate(__lowercase): UpperCamelCase_ = model(**__lowercase) UpperCamelCase_ = output.loss accelerator.backward(__lowercase) optimizer.step() lr_scheduler.step() optimizer.zero_grad() model.eval() for step, batch in enumerate(__lowercase): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device) with torch.no_grad(): UpperCamelCase_ = model(**__lowercase) UpperCamelCase_ = outputs.logits.argmax(dim=-1) UpperCamelCase_ , UpperCamelCase_ = accelerator.gather_for_metrics((predictions, batch['labels'])) metric.add_batch( predictions=__lowercase , references=__lowercase , ) UpperCamelCase_ = metric.compute() # Use accelerator.print to print only on the main process. accelerator.print(f"""epoch {epoch}:""" , __lowercase) def _snake_case (): UpperCamelCase_ = argparse.ArgumentParser(description='Simple example of training script.') parser.add_argument( '--mixed_precision' , type=__lowercase , default=__lowercase , choices=['no', 'fp16', 'bf16', 'fp8'] , help='Whether to use mixed precision. Choose' 'between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10.' 'and an Nvidia Ampere GPU.' , ) # New Code # parser.add_argument( '--gradient_accumulation_steps' , type=__lowercase , default=1 , help='The number of minibatches to be ran before gradients are accumulated.' , ) parser.add_argument('--cpu' , action='store_true' , help='If passed, will train on the CPU.') UpperCamelCase_ = parser.parse_args() UpperCamelCase_ = {'lr': 2e-5, 'num_epochs': 3, 'seed': 42, 'batch_size': 16} training_function(__lowercase , __lowercase) if __name__ == "__main__": main()
23
0
"""simple docstring""" from __future__ import annotations from collections import deque from collections.abc import Sequence from dataclasses import dataclass from typing import Any @dataclass class __lowercase : snake_case_ = 42 snake_case_ = None snake_case_ = None def lowerCAmelCase ( ): '''simple docstring''' UpperCAmelCase__ : Union[str, Any] = Node(1 ) UpperCAmelCase__ : int = Node(2 ) UpperCAmelCase__ : str = Node(3 ) UpperCAmelCase__ : List[str] = Node(4 ) UpperCAmelCase__ : int = Node(5 ) return tree def lowerCAmelCase ( __UpperCamelCase ): '''simple docstring''' return [root.data, *preorder(root.left ), *preorder(root.right )] if root else [] def lowerCAmelCase ( __UpperCamelCase ): '''simple docstring''' return postorder(root.left ) + postorder(root.right ) + [root.data] if root else [] def lowerCAmelCase ( __UpperCamelCase ): '''simple docstring''' return [*inorder(root.left ), root.data, *inorder(root.right )] if root else [] def lowerCAmelCase ( __UpperCamelCase ): '''simple docstring''' return (max(height(root.left ) , height(root.right ) ) + 1) if root else 0 def lowerCAmelCase ( __UpperCamelCase ): '''simple docstring''' UpperCAmelCase__ : list[Any] = [] if root is None: return output UpperCAmelCase__ : int = deque([root] ) while process_queue: UpperCAmelCase__ : Union[str, Any] = process_queue.popleft() output.append(node.data ) if node.left: process_queue.append(node.left ) if node.right: process_queue.append(node.right ) return output def lowerCAmelCase ( __UpperCamelCase , __UpperCamelCase ): '''simple docstring''' UpperCAmelCase__ : list[Any] = [] def populate_output(__UpperCamelCase , __UpperCamelCase ) -> None: if not root: return if level == 1: output.append(root.data ) elif level > 1: populate_output(root.left , level - 1 ) populate_output(root.right , level - 1 ) populate_output(__UpperCamelCase , __UpperCamelCase ) return output def lowerCAmelCase ( __UpperCamelCase , __UpperCamelCase ): '''simple docstring''' UpperCAmelCase__ : list[Any] = [] def populate_output(__UpperCamelCase , __UpperCamelCase ) -> None: if root is None: return if level == 1: output.append(root.data ) elif level > 1: populate_output(root.right , level - 1 ) populate_output(root.left , level - 1 ) populate_output(__UpperCamelCase , __UpperCamelCase ) return output def lowerCAmelCase ( __UpperCamelCase ): '''simple docstring''' if root is None: return [] UpperCAmelCase__ : list[Sequence[Node | None]] = [] UpperCAmelCase__ : Dict = 0 UpperCAmelCase__ : Union[str, Any] = height(__UpperCamelCase ) for h in range(1 , height_tree + 1 ): if not flag: output.append(get_nodes_from_left_to_right(__UpperCamelCase , __UpperCamelCase ) ) UpperCAmelCase__ : Tuple = 1 else: output.append(get_nodes_from_right_to_left(__UpperCamelCase , __UpperCamelCase ) ) UpperCAmelCase__ : Union[str, Any] = 0 return output def lowerCAmelCase ( ): # Main function for testing. '''simple docstring''' UpperCAmelCase__ : Tuple = make_tree() print(F"In-order Traversal: {inorder(__UpperCamelCase )}" ) print(F"Pre-order Traversal: {preorder(__UpperCamelCase )}" ) print(F"Post-order Traversal: {postorder(__UpperCamelCase )}" , """\n""" ) print(F"Height of Tree: {height(__UpperCamelCase )}" , """\n""" ) print("""Complete Level Order Traversal: """ ) print(level_order(__UpperCamelCase ) , """\n""" ) print("""Level-wise order Traversal: """ ) for level in range(1 , height(__UpperCamelCase ) + 1 ): print(F"Level {level}:" , get_nodes_from_left_to_right(__UpperCamelCase , level=__UpperCamelCase ) ) print("""\nZigZag order Traversal: """ ) print(zigzag(__UpperCamelCase ) ) if __name__ == "__main__": import doctest doctest.testmod() main()
65
import inspect import unittest import numpy as np from tests.test_modeling_common import floats_tensor from transformers import MaskaFormerConfig, is_torch_available, is_vision_available from transformers.testing_utils import require_torch, require_torch_multi_gpu, require_vision, slow, torch_device from transformers.utils import cached_property from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import MaskaFormerForUniversalSegmentation, MaskaFormerModel if is_vision_available(): from transformers import MaskaFormerImageProcessor if is_vision_available(): from PIL import Image class _a : """simple docstring""" def __init__( self , _UpperCAmelCase , _UpperCAmelCase=2 , _UpperCAmelCase=True , _UpperCAmelCase=False , _UpperCAmelCase=10 , _UpperCAmelCase=3 , _UpperCAmelCase=32 * 8 , _UpperCAmelCase=32 * 8 , _UpperCAmelCase=4 , _UpperCAmelCase=64 , ) -> List[Any]: UpperCamelCase_ = parent UpperCamelCase_ = batch_size UpperCamelCase_ = is_training UpperCamelCase_ = use_auxiliary_loss UpperCamelCase_ = num_queries UpperCamelCase_ = num_channels UpperCamelCase_ = min_size UpperCamelCase_ = max_size UpperCamelCase_ = num_labels UpperCamelCase_ = hidden_dim UpperCamelCase_ = hidden_dim def _UpperCAmelCase ( self ) -> List[str]: UpperCamelCase_ = floats_tensor([self.batch_size, self.num_channels, self.min_size, self.max_size] ).to( _UpperCAmelCase ) UpperCamelCase_ = torch.ones([self.batch_size, self.min_size, self.max_size] , device=_UpperCAmelCase ) UpperCamelCase_ = ( torch.rand([self.batch_size, self.num_labels, self.min_size, self.max_size] , device=_UpperCAmelCase ) > 0.5 ).float() UpperCamelCase_ = (torch.rand((self.batch_size, self.num_labels) , device=_UpperCAmelCase ) > 0.5).long() UpperCamelCase_ = self.get_config() return config, pixel_values, pixel_mask, mask_labels, class_labels def _UpperCAmelCase ( self ) -> Optional[int]: UpperCamelCase_ = MaskaFormerConfig( hidden_size=self.hidden_dim , ) UpperCamelCase_ = self.num_queries UpperCamelCase_ = self.num_labels UpperCamelCase_ = [1, 1, 1, 1] UpperCamelCase_ = self.num_channels UpperCamelCase_ = 64 UpperCamelCase_ = 128 UpperCamelCase_ = self.hidden_dim UpperCamelCase_ = self.hidden_dim UpperCamelCase_ = self.hidden_dim return config def _UpperCAmelCase ( self ) -> Dict: UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ = self.prepare_config_and_inputs() UpperCamelCase_ = {'pixel_values': pixel_values, 'pixel_mask': pixel_mask} return config, inputs_dict def _UpperCAmelCase ( self , _UpperCAmelCase , _UpperCAmelCase ) -> List[Any]: UpperCamelCase_ = output.encoder_hidden_states UpperCamelCase_ = output.pixel_decoder_hidden_states UpperCamelCase_ = output.transformer_decoder_hidden_states self.parent.assertTrue(len(_UpperCAmelCase ) , len(config.backbone_config.depths ) ) self.parent.assertTrue(len(_UpperCAmelCase ) , len(config.backbone_config.depths ) ) self.parent.assertTrue(len(_UpperCAmelCase ) , config.decoder_layers ) def _UpperCAmelCase ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase=False ) -> Any: with torch.no_grad(): UpperCamelCase_ = MaskaFormerModel(config=_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() UpperCamelCase_ = model(pixel_values=_UpperCAmelCase , pixel_mask=_UpperCAmelCase ) UpperCamelCase_ = model(_UpperCAmelCase , output_hidden_states=_UpperCAmelCase ) self.parent.assertEqual( output.transformer_decoder_last_hidden_state.shape , (self.batch_size, self.num_queries, self.hidden_dim) , ) # let's ensure the other two hidden state exists self.parent.assertTrue(output.pixel_decoder_last_hidden_state is not None ) self.parent.assertTrue(output.encoder_last_hidden_state is not None ) if output_hidden_states: self.check_output_hidden_state(_UpperCAmelCase , _UpperCAmelCase ) def _UpperCAmelCase ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) -> Union[str, Any]: UpperCamelCase_ = MaskaFormerForUniversalSegmentation(config=_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() def comm_check_on_output(_UpperCAmelCase ): # let's still check that all the required stuff is there self.parent.assertTrue(result.transformer_decoder_last_hidden_state is not None ) self.parent.assertTrue(result.pixel_decoder_last_hidden_state is not None ) self.parent.assertTrue(result.encoder_last_hidden_state is not None ) # okay, now we need to check the logits shape # due to the encoder compression, masks have a //4 spatial size self.parent.assertEqual( result.masks_queries_logits.shape , (self.batch_size, self.num_queries, self.min_size // 4, self.max_size // 4) , ) # + 1 for null class self.parent.assertEqual( result.class_queries_logits.shape , (self.batch_size, self.num_queries, self.num_labels + 1) ) with torch.no_grad(): UpperCamelCase_ = model(pixel_values=_UpperCAmelCase , pixel_mask=_UpperCAmelCase ) UpperCamelCase_ = model(_UpperCAmelCase ) comm_check_on_output(_UpperCAmelCase ) UpperCamelCase_ = model( pixel_values=_UpperCAmelCase , pixel_mask=_UpperCAmelCase , mask_labels=_UpperCAmelCase , class_labels=_UpperCAmelCase ) comm_check_on_output(_UpperCAmelCase ) self.parent.assertTrue(result.loss is not None ) self.parent.assertEqual(result.loss.shape , torch.Size([1] ) ) @require_torch class _a ( UpperCAmelCase__ , UpperCAmelCase__ , unittest.TestCase ): """simple docstring""" A_ = (MaskaFormerModel, MaskaFormerForUniversalSegmentation) if is_torch_available() else () A_ = {"""feature-extraction""": MaskaFormerModel} if is_torch_available() else {} A_ = False A_ = False A_ = False A_ = False def _UpperCAmelCase ( self ) -> Optional[Any]: UpperCamelCase_ = MaskaFormerModelTester(self ) UpperCamelCase_ = ConfigTester(self , config_class=_UpperCAmelCase , has_text_modality=_UpperCAmelCase ) def _UpperCAmelCase ( self ) -> Union[str, Any]: self.config_tester.run_common_tests() def _UpperCAmelCase ( self ) -> Union[str, Any]: UpperCamelCase_ , UpperCamelCase_ = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.create_and_check_maskaformer_model(_UpperCAmelCase , **_UpperCAmelCase , output_hidden_states=_UpperCAmelCase ) def _UpperCAmelCase ( self ) -> List[Any]: UpperCamelCase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_maskaformer_instance_segmentation_head_model(*_UpperCAmelCase ) @unittest.skip(reason='Mask2Former does not use inputs_embeds' ) def _UpperCAmelCase ( self ) -> Any: pass @unittest.skip(reason='Mask2Former does not have a get_input_embeddings method' ) def _UpperCAmelCase ( self ) -> Optional[int]: pass @unittest.skip(reason='Mask2Former is not a generative model' ) def _UpperCAmelCase ( self ) -> Any: pass @unittest.skip(reason='Mask2Former does not use token embeddings' ) def _UpperCAmelCase ( self ) -> Optional[Any]: pass @require_torch_multi_gpu @unittest.skip( reason='Mask2Former has some layers using `add_module` which doesn\'t work well with `nn.DataParallel`' ) def _UpperCAmelCase ( self ) -> int: pass @unittest.skip('Will be fixed soon by reducing the size of the model used for common tests.' ) def _UpperCAmelCase ( self ) -> str: pass def _UpperCAmelCase ( self ) -> Optional[int]: UpperCamelCase_ , UpperCamelCase_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCamelCase_ = model_class(_UpperCAmelCase ) UpperCamelCase_ = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic UpperCamelCase_ = [*signature.parameters.keys()] UpperCamelCase_ = ['pixel_values'] self.assertListEqual(arg_names[:1] , _UpperCAmelCase ) @slow def _UpperCAmelCase ( self ) -> Tuple: for model_name in ["facebook/mask2former-swin-small-coco-instance"]: UpperCamelCase_ = MaskaFormerModel.from_pretrained(_UpperCAmelCase ) self.assertIsNotNone(_UpperCAmelCase ) def _UpperCAmelCase ( self ) -> Dict: UpperCamelCase_ = (self.model_tester.min_size,) * 2 UpperCamelCase_ = { 'pixel_values': torch.randn((2, 3, *size) , device=_UpperCAmelCase ), 'mask_labels': torch.randn((2, 10, *size) , device=_UpperCAmelCase ), 'class_labels': torch.zeros(2 , 10 , device=_UpperCAmelCase ).long(), } UpperCamelCase_ = self.model_tester.get_config() UpperCamelCase_ = MaskaFormerForUniversalSegmentation(_UpperCAmelCase ).to(_UpperCAmelCase ) UpperCamelCase_ = model(**_UpperCAmelCase ) self.assertTrue(outputs.loss is not None ) def _UpperCAmelCase ( self ) -> str: UpperCamelCase_ , UpperCamelCase_ = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.create_and_check_maskaformer_model(_UpperCAmelCase , **_UpperCAmelCase , output_hidden_states=_UpperCAmelCase ) def _UpperCAmelCase ( self ) -> Optional[int]: UpperCamelCase_ , UpperCamelCase_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCamelCase_ = model_class(_UpperCAmelCase ).to(_UpperCAmelCase ) UpperCamelCase_ = model(**_UpperCAmelCase , output_attentions=_UpperCAmelCase ) self.assertTrue(outputs.attentions is not None ) def _UpperCAmelCase ( self ) -> List[Any]: if not self.model_tester.is_training: return UpperCamelCase_ = self.all_model_classes[1] UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ = self.model_tester.prepare_config_and_inputs() UpperCamelCase_ = model_class(_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.train() UpperCamelCase_ = model(_UpperCAmelCase , mask_labels=_UpperCAmelCase , class_labels=_UpperCAmelCase ).loss loss.backward() def _UpperCAmelCase ( self ) -> int: UpperCamelCase_ = self.all_model_classes[1] UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ = self.model_tester.prepare_config_and_inputs() UpperCamelCase_ = True UpperCamelCase_ = True UpperCamelCase_ = model_class(_UpperCAmelCase ).to(_UpperCAmelCase ) model.train() UpperCamelCase_ = model(_UpperCAmelCase , mask_labels=_UpperCAmelCase , class_labels=_UpperCAmelCase ) UpperCamelCase_ = outputs.encoder_hidden_states[0] encoder_hidden_states.retain_grad() UpperCamelCase_ = outputs.pixel_decoder_hidden_states[0] pixel_decoder_hidden_states.retain_grad() UpperCamelCase_ = outputs.transformer_decoder_hidden_states[0] transformer_decoder_hidden_states.retain_grad() UpperCamelCase_ = outputs.attentions[0] attentions.retain_grad() outputs.loss.backward(retain_graph=_UpperCAmelCase ) self.assertIsNotNone(encoder_hidden_states.grad ) self.assertIsNotNone(pixel_decoder_hidden_states.grad ) self.assertIsNotNone(transformer_decoder_hidden_states.grad ) self.assertIsNotNone(attentions.grad ) snake_case__ : List[Any] = 1E-4 def _snake_case (): UpperCamelCase_ = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png') return image @require_vision @slow class _a ( unittest.TestCase ): """simple docstring""" @cached_property def _UpperCAmelCase ( self ) -> Optional[int]: return "facebook/mask2former-swin-small-coco-instance" @cached_property def _UpperCAmelCase ( self ) -> List[str]: return MaskaFormerImageProcessor.from_pretrained(self.model_checkpoints ) if is_vision_available() else None def _UpperCAmelCase ( self ) -> str: UpperCamelCase_ = MaskaFormerModel.from_pretrained(self.model_checkpoints ).to(_UpperCAmelCase ) UpperCamelCase_ = self.default_image_processor UpperCamelCase_ = prepare_img() UpperCamelCase_ = image_processor(_UpperCAmelCase , return_tensors='pt' ).to(_UpperCAmelCase ) UpperCamelCase_ = inputs['pixel_values'].shape # check size is divisible by 32 self.assertTrue((inputs_shape[-1] % 32) == 0 and (inputs_shape[-2] % 32) == 0 ) # check size self.assertEqual(_UpperCAmelCase , (1, 3, 384, 384) ) with torch.no_grad(): UpperCamelCase_ = model(**_UpperCAmelCase ) UpperCamelCase_ = torch.tensor( [[-0.2_7_9_0, -1.0_7_1_7, -1.1_6_6_8], [-0.5_1_2_8, -0.3_1_2_8, -0.4_9_8_7], [-0.5_8_3_2, 0.1_9_7_1, -0.0_1_9_7]] ).to(_UpperCAmelCase ) self.assertTrue( torch.allclose( outputs.encoder_last_hidden_state[0, 0, :3, :3] , _UpperCAmelCase , atol=_UpperCAmelCase ) ) UpperCamelCase_ = torch.tensor( [[0.8_9_7_3, 1.1_8_4_7, 1.1_7_7_6], [1.1_9_3_4, 1.5_0_4_0, 1.5_1_2_8], [1.1_1_5_3, 1.4_4_8_6, 1.4_9_5_1]] ).to(_UpperCAmelCase ) self.assertTrue( torch.allclose( outputs.pixel_decoder_last_hidden_state[0, 0, :3, :3] , _UpperCAmelCase , atol=_UpperCAmelCase ) ) UpperCamelCase_ = torch.tensor( [[2.1_1_5_2, 1.7_0_0_0, -0.8_6_0_3], [1.5_8_0_8, 1.8_0_0_4, -0.9_3_5_3], [1.6_0_4_3, 1.7_4_9_5, -0.5_9_9_9]] ).to(_UpperCAmelCase ) self.assertTrue( torch.allclose( outputs.transformer_decoder_last_hidden_state[0, :3, :3] , _UpperCAmelCase , atol=_UpperCAmelCase ) ) def _UpperCAmelCase ( self ) -> Optional[Any]: UpperCamelCase_ = MaskaFormerForUniversalSegmentation.from_pretrained(self.model_checkpoints ).to(_UpperCAmelCase ).eval() UpperCamelCase_ = self.default_image_processor UpperCamelCase_ = prepare_img() UpperCamelCase_ = image_processor(_UpperCAmelCase , return_tensors='pt' ).to(_UpperCAmelCase ) UpperCamelCase_ = inputs['pixel_values'].shape # check size is divisible by 32 self.assertTrue((inputs_shape[-1] % 32) == 0 and (inputs_shape[-2] % 32) == 0 ) # check size self.assertEqual(_UpperCAmelCase , (1, 3, 384, 384) ) with torch.no_grad(): UpperCamelCase_ = model(**_UpperCAmelCase ) # masks_queries_logits UpperCamelCase_ = outputs.masks_queries_logits self.assertEqual( masks_queries_logits.shape , (1, model.config.num_queries, inputs_shape[-2] // 4, inputs_shape[-1] // 4) ) UpperCamelCase_ = [ [-8.7_8_3_9, -9.0_0_5_6, -8.8_1_2_1], [-7.4_1_0_4, -7.0_3_1_3, -6.5_4_0_1], [-6.6_1_0_5, -6.3_4_2_7, -6.4_6_7_5], ] UpperCamelCase_ = torch.tensor(_UpperCAmelCase ).to(_UpperCAmelCase ) self.assertTrue(torch.allclose(masks_queries_logits[0, 0, :3, :3] , _UpperCAmelCase , atol=_UpperCAmelCase ) ) # class_queries_logits UpperCamelCase_ = outputs.class_queries_logits self.assertEqual(class_queries_logits.shape , (1, model.config.num_queries, model.config.num_labels + 1) ) UpperCamelCase_ = torch.tensor( [ [1.8_3_2_4, -8.0_8_3_5, -4.1_9_2_2], [0.8_4_5_0, -9.0_0_5_0, -3.6_0_5_3], [0.3_0_4_5, -7.7_2_9_3, -3.0_2_7_5], ] ).to(_UpperCAmelCase ) self.assertTrue(torch.allclose(outputs.class_queries_logits[0, :3, :3] , _UpperCAmelCase , atol=_UpperCAmelCase ) ) def _UpperCAmelCase ( self ) -> Dict: UpperCamelCase_ = MaskaFormerForUniversalSegmentation.from_pretrained(self.model_checkpoints ).to(_UpperCAmelCase ).eval() UpperCamelCase_ = self.default_image_processor UpperCamelCase_ = image_processor( [np.zeros((3, 800, 1333) ), np.zeros((3, 800, 1333) )] , segmentation_maps=[np.zeros((384, 384) ).astype(np.floataa ), np.zeros((384, 384) ).astype(np.floataa )] , return_tensors='pt' , ) UpperCamelCase_ = inputs['pixel_values'].to(_UpperCAmelCase ) UpperCamelCase_ = [el.to(_UpperCAmelCase ) for el in inputs['mask_labels']] UpperCamelCase_ = [el.to(_UpperCAmelCase ) for el in inputs['class_labels']] with torch.no_grad(): UpperCamelCase_ = model(**_UpperCAmelCase ) self.assertTrue(outputs.loss is not None )
23
0
import warnings from ...utils import logging from .image_processing_beit import BeitImageProcessor UpperCamelCase = logging.get_logger(__name__) class lowerCAmelCase_ ( __snake_case ): def __init__( self , *_lowerCAmelCase , **_lowerCAmelCase ): warnings.warn( 'The class BeitFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please' ' use BeitImageProcessor instead.' , _lowerCAmelCase , ) super().__init__(*_lowerCAmelCase , **_lowerCAmelCase )
66
import copy from typing import TYPE_CHECKING, Any, Mapping, Optional, OrderedDict from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging from ..auto.configuration_auto import AutoConfig if TYPE_CHECKING: from ... import PreTrainedTokenizerBase, TensorType snake_case__ : List[str] = logging.get_logger(__name__) class _a ( UpperCAmelCase__ ): """simple docstring""" A_ = """vision-encoder-decoder""" A_ = True def __init__( self , **_UpperCAmelCase ) -> Dict: super().__init__(**_UpperCAmelCase ) if "encoder" not in kwargs or "decoder" not in kwargs: raise ValueError( f"""A configuraton of type {self.model_type} cannot be instantiated because """ f"""not both `encoder` and `decoder` sub-configurations are passed, but only {kwargs}""" ) UpperCamelCase_ = kwargs.pop('encoder' ) UpperCamelCase_ = encoder_config.pop('model_type' ) UpperCamelCase_ = kwargs.pop('decoder' ) UpperCamelCase_ = decoder_config.pop('model_type' ) UpperCamelCase_ = AutoConfig.for_model(_UpperCAmelCase , **_UpperCAmelCase ) UpperCamelCase_ = AutoConfig.for_model(_UpperCAmelCase , **_UpperCAmelCase ) UpperCamelCase_ = True @classmethod def _UpperCAmelCase ( cls , _UpperCAmelCase , _UpperCAmelCase , **_UpperCAmelCase ) -> PretrainedConfig: logger.info('Setting `config.is_decoder=True` and `config.add_cross_attention=True` for decoder_config' ) UpperCamelCase_ = True UpperCamelCase_ = True return cls(encoder=encoder_config.to_dict() , decoder=decoder_config.to_dict() , **_UpperCAmelCase ) def _UpperCAmelCase ( self ) -> int: UpperCamelCase_ = copy.deepcopy(self.__dict__ ) UpperCamelCase_ = self.encoder.to_dict() UpperCamelCase_ = self.decoder.to_dict() UpperCamelCase_ = self.__class__.model_type return output class _a ( UpperCAmelCase__ ): """simple docstring""" A_ = version.parse("""1.11""" ) @property def _UpperCAmelCase ( self ) -> Mapping[str, Mapping[int, str]]: return OrderedDict( [ ('pixel_values', {0: 'batch', 1: 'num_channels', 2: 'height', 3: 'width'}), ] ) @property def _UpperCAmelCase ( self ) -> float: return 1e-4 @property def _UpperCAmelCase ( self ) -> Mapping[str, Mapping[int, str]]: return OrderedDict({'last_hidden_state': {0: 'batch', 1: 'encoder_sequence'}} ) class _a ( UpperCAmelCase__ ): """simple docstring""" @property def _UpperCAmelCase ( self ) -> Mapping[str, Mapping[int, str]]: UpperCamelCase_ = OrderedDict() UpperCamelCase_ = {0: 'batch', 1: 'past_decoder_sequence + sequence'} UpperCamelCase_ = {0: 'batch', 1: 'past_decoder_sequence + sequence'} UpperCamelCase_ = {0: 'batch', 1: 'encoder_sequence'} return common_inputs def _UpperCAmelCase ( self , _UpperCAmelCase , _UpperCAmelCase = -1 , _UpperCAmelCase = -1 , _UpperCAmelCase = False , _UpperCAmelCase = None , ) -> Mapping[str, Any]: import torch UpperCamelCase_ = OrderedDict() UpperCamelCase_ = super().generate_dummy_inputs( _UpperCAmelCase , batch_size=_UpperCAmelCase , seq_length=_UpperCAmelCase , is_pair=_UpperCAmelCase , framework=_UpperCAmelCase ) UpperCamelCase_ , UpperCamelCase_ = dummy_input['input_ids'].shape UpperCamelCase_ = (batch, encoder_sequence, self._config.encoder_hidden_size) UpperCamelCase_ = dummy_input.pop('input_ids' ) UpperCamelCase_ = dummy_input.pop('attention_mask' ) UpperCamelCase_ = torch.zeros(_UpperCAmelCase ) return common_inputs class _a ( UpperCAmelCase__ ): """simple docstring""" @property def _UpperCAmelCase ( self ) -> None: pass def _UpperCAmelCase ( self , _UpperCAmelCase ) -> OnnxConfig: return VisionEncoderDecoderEncoderOnnxConfig(_UpperCAmelCase ) def _UpperCAmelCase ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase = "default" ) -> OnnxConfig: UpperCamelCase_ = encoder_config.hidden_size return VisionEncoderDecoderDecoderOnnxConfig(_UpperCAmelCase , _UpperCAmelCase )
23
0
import re def SCREAMING_SNAKE_CASE__ ( snake_case__ :str ) -> str: if len(re.findall('[ATCG]' , snake_case__ ) ) != len(snake_case__ ): raise ValueError('Invalid Strand' ) return dna.translate(dna.maketrans('ATCG' , 'TAGC' ) ) if __name__ == "__main__": import doctest doctest.testmod()
67
import argparse import torch from transformers import MobileBertConfig, MobileBertForPreTraining, load_tf_weights_in_mobilebert from transformers.utils import logging logging.set_verbosity_info() def _snake_case (__lowercase , __lowercase , __lowercase): # Initialise PyTorch model UpperCamelCase_ = MobileBertConfig.from_json_file(__lowercase) print(f"""Building PyTorch model from configuration: {config}""") UpperCamelCase_ = MobileBertForPreTraining(__lowercase) # Load weights from tf checkpoint UpperCamelCase_ = load_tf_weights_in_mobilebert(__lowercase , __lowercase , __lowercase) # Save pytorch-model print(f"""Save PyTorch model to {pytorch_dump_path}""") torch.save(model.state_dict() , __lowercase) if __name__ == "__main__": snake_case__ : int = argparse.ArgumentParser() # Required parameters parser.add_argument( """--tf_checkpoint_path""", default=None, type=str, required=True, help="""Path to the TensorFlow checkpoint path.""" ) parser.add_argument( """--mobilebert_config_file""", default=None, type=str, required=True, help=( """The config json file corresponding to the pre-trained MobileBERT model. \n""" """This specifies the model architecture.""" ), ) parser.add_argument( """--pytorch_dump_path""", default=None, type=str, required=True, help="""Path to the output PyTorch model.""" ) snake_case__ : Optional[Any] = parser.parse_args() convert_tf_checkpoint_to_pytorch(args.tf_checkpoint_path, args.mobilebert_config_file, args.pytorch_dump_path)
23
0
import argparse import torch from transformers import BlenderbotConfig, BlenderbotForConditionalGeneration from transformers.utils import logging logging.set_verbosity_info() __A = logging.get_logger(__name__) __A = [ ["attention", "attn"], ["encoder_attention", "encoder_attn"], ["q_lin", "q_proj"], ["k_lin", "k_proj"], ["v_lin", "v_proj"], ["out_lin", "out_proj"], ["norm_embeddings", "layernorm_embedding"], ["position_embeddings", "embed_positions"], ["embeddings", "embed_tokens"], ["ffn.lin", "fc"], ] def lowercase__ ( A_: Optional[Any] ) -> Union[str, Any]: """simple docstring""" if k == "embeddings.weight": return "shared.weight" for parlai_name, hf_name in PATTERNS: __UpperCAmelCase =k.replace(A_ , A_ ) if k.startswith("""encoder""" ): __UpperCAmelCase =k.replace(""".attn""" , """.self_attn""" ) __UpperCAmelCase =k.replace("""norm1""" , """self_attn_layer_norm""" ) __UpperCAmelCase =k.replace("""norm2""" , """final_layer_norm""" ) elif k.startswith("""decoder""" ): __UpperCAmelCase =k.replace("""norm1""" , """self_attn_layer_norm""" ) __UpperCAmelCase =k.replace("""norm2""" , """encoder_attn_layer_norm""" ) __UpperCAmelCase =k.replace("""norm3""" , """final_layer_norm""" ) return k def lowercase__ ( A_: Tuple ) -> str: """simple docstring""" __UpperCAmelCase =[ """model.encoder.layernorm_embedding.weight""", """model.encoder.layernorm_embedding.bias""", """model.decoder.layernorm_embedding.weight""", """model.decoder.layernorm_embedding.bias""", ] for k in keys: __UpperCAmelCase =sd.pop(A_ ) __UpperCAmelCase =k.replace("""layernorm_embedding""" , """layer_norm""" ) assert new_k not in sd __UpperCAmelCase =v __A = ["START"] @torch.no_grad() def lowercase__ ( A_: List[Any] , A_: str , A_: int ) -> Optional[int]: """simple docstring""" __UpperCAmelCase =torch.load(A_ , map_location="""cpu""" ) __UpperCAmelCase =model["""model"""] __UpperCAmelCase =BlenderbotConfig.from_json_file(A_ ) __UpperCAmelCase =BlenderbotForConditionalGeneration(A_ ) __UpperCAmelCase =m.model.state_dict().keys() __UpperCAmelCase =[] __UpperCAmelCase ={} for k, v in sd.items(): if k in IGNORE_KEYS: continue __UpperCAmelCase =rename_state_dict_key(A_ ) if new_k not in valid_keys: failures.append([k, new_k] ) else: __UpperCAmelCase =v if cfg.normalize_before: # Blenderbot-3B checkpoints. Rename layernorm_embedding -> layer_norm rename_layernorm_keys(A_ ) m.model.load_state_dict(A_ , strict=A_ ) m.half() m.save_pretrained(A_ ) if __name__ == "__main__": __A = argparse.ArgumentParser() # Required parameters parser.add_argument("--src_path", type=str, help="like blenderbot-model.bin") parser.add_argument("--save_dir", default="hf_blenderbot", type=str, help="Where to save converted model.") parser.add_argument( "--hf_config_json", default="blenderbot-3b-config.json", type=str, help="Path to config to use" ) __A = parser.parse_args() convert_parlai_checkpoint(args.src_path, args.save_dir, args.hf_config_json)
68
import gc import unittest from transformers import MODEL_FOR_MASKED_LM_MAPPING, TF_MODEL_FOR_MASKED_LM_MAPPING, FillMaskPipeline, pipeline from transformers.pipelines import PipelineException from transformers.testing_utils import ( is_pipeline_test, is_torch_available, nested_simplify, require_tf, require_torch, require_torch_gpu, slow, ) from .test_pipelines_common import ANY @is_pipeline_test class _a ( unittest.TestCase ): """simple docstring""" A_ = MODEL_FOR_MASKED_LM_MAPPING A_ = TF_MODEL_FOR_MASKED_LM_MAPPING def _UpperCAmelCase ( self ) -> List[str]: super().tearDown() # clean-up as much as possible GPU memory occupied by PyTorch gc.collect() if is_torch_available(): import torch torch.cuda.empty_cache() @require_tf def _UpperCAmelCase ( self ) -> str: UpperCamelCase_ = pipeline(task='fill-mask' , model='sshleifer/tiny-distilroberta-base' , top_k=2 , framework='tf' ) UpperCamelCase_ = unmasker('My name is <mask>' ) self.assertEqual( nested_simplify(_UpperCAmelCase , decimals=6 ) , [ {'sequence': 'My name is grouped', 'score': 2.1e-05, 'token': 38015, 'token_str': ' grouped'}, {'sequence': 'My name is accuser', 'score': 2.1e-05, 'token': 25506, 'token_str': ' accuser'}, ] , ) UpperCamelCase_ = unmasker('The largest city in France is <mask>' ) self.assertEqual( nested_simplify(_UpperCAmelCase , decimals=6 ) , [ { 'sequence': 'The largest city in France is grouped', 'score': 2.1e-05, 'token': 38015, 'token_str': ' grouped', }, { 'sequence': 'The largest city in France is accuser', 'score': 2.1e-05, 'token': 25506, 'token_str': ' accuser', }, ] , ) UpperCamelCase_ = unmasker('My name is <mask>' , targets=[' Patrick', ' Clara', ' Teven'] , top_k=3 ) self.assertEqual( nested_simplify(_UpperCAmelCase , decimals=6 ) , [ {'sequence': 'My name is Clara', 'score': 2e-05, 'token': 13606, 'token_str': ' Clara'}, {'sequence': 'My name is Patrick', 'score': 2e-05, 'token': 3499, 'token_str': ' Patrick'}, {'sequence': 'My name is Te', 'score': 1.9e-05, 'token': 2941, 'token_str': ' Te'}, ] , ) @require_torch def _UpperCAmelCase ( self ) -> Union[str, Any]: UpperCamelCase_ = pipeline(task='fill-mask' , model='sshleifer/tiny-distilroberta-base' , top_k=2 , framework='pt' ) UpperCamelCase_ = unmasker('My name is <mask>' ) self.assertEqual( nested_simplify(_UpperCAmelCase , decimals=6 ) , [ {'sequence': 'My name is Maul', 'score': 2.2e-05, 'token': 35676, 'token_str': ' Maul'}, {'sequence': 'My name isELS', 'score': 2.2e-05, 'token': 16416, 'token_str': 'ELS'}, ] , ) UpperCamelCase_ = unmasker('The largest city in France is <mask>' ) self.assertEqual( nested_simplify(_UpperCAmelCase , decimals=6 ) , [ { 'sequence': 'The largest city in France is Maul', 'score': 2.2e-05, 'token': 35676, 'token_str': ' Maul', }, {'sequence': 'The largest city in France isELS', 'score': 2.2e-05, 'token': 16416, 'token_str': 'ELS'}, ] , ) UpperCamelCase_ = unmasker('My name is <mask>' , targets=[' Patrick', ' Clara', ' Teven'] , top_k=3 ) self.assertEqual( nested_simplify(_UpperCAmelCase , decimals=6 ) , [ {'sequence': 'My name is Patrick', 'score': 2.1e-05, 'token': 3499, 'token_str': ' Patrick'}, {'sequence': 'My name is Te', 'score': 2e-05, 'token': 2941, 'token_str': ' Te'}, {'sequence': 'My name is Clara', 'score': 2e-05, 'token': 13606, 'token_str': ' Clara'}, ] , ) UpperCamelCase_ = unmasker('My name is <mask> <mask>' , top_k=2 ) self.assertEqual( nested_simplify(_UpperCAmelCase , decimals=6 ) , [ [ { 'score': 2.2e-05, 'token': 35676, 'token_str': ' Maul', 'sequence': '<s>My name is Maul<mask></s>', }, {'score': 2.2e-05, 'token': 16416, 'token_str': 'ELS', 'sequence': '<s>My name isELS<mask></s>'}, ], [ { 'score': 2.2e-05, 'token': 35676, 'token_str': ' Maul', 'sequence': '<s>My name is<mask> Maul</s>', }, {'score': 2.2e-05, 'token': 16416, 'token_str': 'ELS', 'sequence': '<s>My name is<mask>ELS</s>'}, ], ] , ) @require_torch_gpu def _UpperCAmelCase ( self ) -> Optional[Any]: UpperCamelCase_ = pipeline('fill-mask' , model='hf-internal-testing/tiny-random-distilbert' , device=0 , framework='pt' ) # convert model to fp16 pipe.model.half() UpperCamelCase_ = pipe('Paris is the [MASK] of France.' ) # We actually don't care about the result, we just want to make sure # it works, meaning the float16 tensor got casted back to float32 # for postprocessing. self.assertIsInstance(_UpperCAmelCase , _UpperCAmelCase ) @slow @require_torch def _UpperCAmelCase ( self ) -> List[Any]: UpperCamelCase_ = pipeline(task='fill-mask' , model='distilroberta-base' , top_k=2 , framework='pt' ) self.run_large_test(_UpperCAmelCase ) @slow @require_tf def _UpperCAmelCase ( self ) -> Union[str, Any]: UpperCamelCase_ = pipeline(task='fill-mask' , model='distilroberta-base' , top_k=2 , framework='tf' ) self.run_large_test(_UpperCAmelCase ) def _UpperCAmelCase ( self , _UpperCAmelCase ) -> Tuple: UpperCamelCase_ = unmasker('My name is <mask>' ) self.assertEqual( nested_simplify(_UpperCAmelCase ) , [ {'sequence': 'My name is John', 'score': 0.0_0_8, 'token': 610, 'token_str': ' John'}, {'sequence': 'My name is Chris', 'score': 0.0_0_7, 'token': 1573, 'token_str': ' Chris'}, ] , ) UpperCamelCase_ = unmasker('The largest city in France is <mask>' ) self.assertEqual( nested_simplify(_UpperCAmelCase ) , [ { 'sequence': 'The largest city in France is Paris', 'score': 0.2_5_1, 'token': 2201, 'token_str': ' Paris', }, { 'sequence': 'The largest city in France is Lyon', 'score': 0.2_1_4, 'token': 12790, 'token_str': ' Lyon', }, ] , ) UpperCamelCase_ = unmasker('My name is <mask>' , targets=[' Patrick', ' Clara', ' Teven'] , top_k=3 ) self.assertEqual( nested_simplify(_UpperCAmelCase ) , [ {'sequence': 'My name is Patrick', 'score': 0.0_0_5, 'token': 3499, 'token_str': ' Patrick'}, {'sequence': 'My name is Clara', 'score': 0.0_0_0, 'token': 13606, 'token_str': ' Clara'}, {'sequence': 'My name is Te', 'score': 0.0_0_0, 'token': 2941, 'token_str': ' Te'}, ] , ) @require_torch def _UpperCAmelCase ( self ) -> List[Any]: UpperCamelCase_ = pipeline(task='fill-mask' , model='sshleifer/tiny-distilroberta-base' , framework='pt' ) UpperCamelCase_ = None UpperCamelCase_ = None self.run_pipeline_test(_UpperCAmelCase , [] ) @require_tf def _UpperCAmelCase ( self ) -> Optional[int]: UpperCamelCase_ = pipeline(task='fill-mask' , model='sshleifer/tiny-distilroberta-base' , framework='tf' ) UpperCamelCase_ = None UpperCamelCase_ = None self.run_pipeline_test(_UpperCAmelCase , [] ) def _UpperCAmelCase ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) -> Optional[Any]: if tokenizer is None or tokenizer.mask_token_id is None: self.skipTest('The provided tokenizer has no mask token, (probably reformer or wav2vec2)' ) UpperCamelCase_ = FillMaskPipeline(model=_UpperCAmelCase , tokenizer=_UpperCAmelCase ) UpperCamelCase_ = [ f"""This is another {tokenizer.mask_token} test""", ] return fill_masker, examples def _UpperCAmelCase ( self , _UpperCAmelCase , _UpperCAmelCase ) -> Union[str, Any]: UpperCamelCase_ = fill_masker.tokenizer UpperCamelCase_ = fill_masker.model UpperCamelCase_ = fill_masker( f"""This is a {tokenizer.mask_token}""" , ) self.assertEqual( _UpperCAmelCase , [ {'sequence': ANY(_UpperCAmelCase ), 'score': ANY(_UpperCAmelCase ), 'token': ANY(_UpperCAmelCase ), 'token_str': ANY(_UpperCAmelCase )}, {'sequence': ANY(_UpperCAmelCase ), 'score': ANY(_UpperCAmelCase ), 'token': ANY(_UpperCAmelCase ), 'token_str': ANY(_UpperCAmelCase )}, {'sequence': ANY(_UpperCAmelCase ), 'score': ANY(_UpperCAmelCase ), 'token': ANY(_UpperCAmelCase ), 'token_str': ANY(_UpperCAmelCase )}, {'sequence': ANY(_UpperCAmelCase ), 'score': ANY(_UpperCAmelCase ), 'token': ANY(_UpperCAmelCase ), 'token_str': ANY(_UpperCAmelCase )}, {'sequence': ANY(_UpperCAmelCase ), 'score': ANY(_UpperCAmelCase ), 'token': ANY(_UpperCAmelCase ), 'token_str': ANY(_UpperCAmelCase )}, ] , ) UpperCamelCase_ = fill_masker([f"""This is a {tokenizer.mask_token}"""] ) self.assertEqual( _UpperCAmelCase , [ {'sequence': ANY(_UpperCAmelCase ), 'score': ANY(_UpperCAmelCase ), 'token': ANY(_UpperCAmelCase ), 'token_str': ANY(_UpperCAmelCase )}, {'sequence': ANY(_UpperCAmelCase ), 'score': ANY(_UpperCAmelCase ), 'token': ANY(_UpperCAmelCase ), 'token_str': ANY(_UpperCAmelCase )}, {'sequence': ANY(_UpperCAmelCase ), 'score': ANY(_UpperCAmelCase ), 'token': ANY(_UpperCAmelCase ), 'token_str': ANY(_UpperCAmelCase )}, {'sequence': ANY(_UpperCAmelCase ), 'score': ANY(_UpperCAmelCase ), 'token': ANY(_UpperCAmelCase ), 'token_str': ANY(_UpperCAmelCase )}, {'sequence': ANY(_UpperCAmelCase ), 'score': ANY(_UpperCAmelCase ), 'token': ANY(_UpperCAmelCase ), 'token_str': ANY(_UpperCAmelCase )}, ] , ) UpperCamelCase_ = fill_masker([f"""This is a {tokenizer.mask_token}""", f"""Another {tokenizer.mask_token} great test."""] ) self.assertEqual( _UpperCAmelCase , [ [ {'sequence': ANY(_UpperCAmelCase ), 'score': ANY(_UpperCAmelCase ), 'token': ANY(_UpperCAmelCase ), 'token_str': ANY(_UpperCAmelCase )}, {'sequence': ANY(_UpperCAmelCase ), 'score': ANY(_UpperCAmelCase ), 'token': ANY(_UpperCAmelCase ), 'token_str': ANY(_UpperCAmelCase )}, {'sequence': ANY(_UpperCAmelCase ), 'score': ANY(_UpperCAmelCase ), 'token': ANY(_UpperCAmelCase ), 'token_str': ANY(_UpperCAmelCase )}, {'sequence': ANY(_UpperCAmelCase ), 'score': ANY(_UpperCAmelCase ), 'token': ANY(_UpperCAmelCase ), 'token_str': ANY(_UpperCAmelCase )}, {'sequence': ANY(_UpperCAmelCase ), 'score': ANY(_UpperCAmelCase ), 'token': ANY(_UpperCAmelCase ), 'token_str': ANY(_UpperCAmelCase )}, ], [ {'sequence': ANY(_UpperCAmelCase ), 'score': ANY(_UpperCAmelCase ), 'token': ANY(_UpperCAmelCase ), 'token_str': ANY(_UpperCAmelCase )}, {'sequence': ANY(_UpperCAmelCase ), 'score': ANY(_UpperCAmelCase ), 'token': ANY(_UpperCAmelCase ), 'token_str': ANY(_UpperCAmelCase )}, {'sequence': ANY(_UpperCAmelCase ), 'score': ANY(_UpperCAmelCase ), 'token': ANY(_UpperCAmelCase ), 'token_str': ANY(_UpperCAmelCase )}, {'sequence': ANY(_UpperCAmelCase ), 'score': ANY(_UpperCAmelCase ), 'token': ANY(_UpperCAmelCase ), 'token_str': ANY(_UpperCAmelCase )}, {'sequence': ANY(_UpperCAmelCase ), 'score': ANY(_UpperCAmelCase ), 'token': ANY(_UpperCAmelCase ), 'token_str': ANY(_UpperCAmelCase )}, ], ] , ) with self.assertRaises(_UpperCAmelCase ): fill_masker([None] ) # No mask_token is not supported with self.assertRaises(_UpperCAmelCase ): fill_masker('This is' ) self.run_test_top_k(_UpperCAmelCase , _UpperCAmelCase ) self.run_test_targets(_UpperCAmelCase , _UpperCAmelCase ) self.run_test_top_k_targets(_UpperCAmelCase , _UpperCAmelCase ) self.fill_mask_with_duplicate_targets_and_top_k(_UpperCAmelCase , _UpperCAmelCase ) self.fill_mask_with_multiple_masks(_UpperCAmelCase , _UpperCAmelCase ) def _UpperCAmelCase ( self , _UpperCAmelCase , _UpperCAmelCase ) -> Optional[Any]: UpperCamelCase_ = tokenizer.get_vocab() UpperCamelCase_ = sorted(vocab.keys() )[:2] # Pipeline argument UpperCamelCase_ = FillMaskPipeline(model=_UpperCAmelCase , tokenizer=_UpperCAmelCase , targets=_UpperCAmelCase ) UpperCamelCase_ = fill_masker(f"""This is a {tokenizer.mask_token}""" ) self.assertEqual( _UpperCAmelCase , [ {'sequence': ANY(_UpperCAmelCase ), 'score': ANY(_UpperCAmelCase ), 'token': ANY(_UpperCAmelCase ), 'token_str': ANY(_UpperCAmelCase )}, {'sequence': ANY(_UpperCAmelCase ), 'score': ANY(_UpperCAmelCase ), 'token': ANY(_UpperCAmelCase ), 'token_str': ANY(_UpperCAmelCase )}, ] , ) UpperCamelCase_ = {vocab[el] for el in targets} self.assertEqual({el['token'] for el in outputs} , _UpperCAmelCase ) UpperCamelCase_ = [tokenizer.decode([x] ) for x in target_ids] self.assertEqual({el['token_str'] for el in outputs} , set(_UpperCAmelCase ) ) # Call argument UpperCamelCase_ = FillMaskPipeline(model=_UpperCAmelCase , tokenizer=_UpperCAmelCase ) UpperCamelCase_ = fill_masker(f"""This is a {tokenizer.mask_token}""" , targets=_UpperCAmelCase ) self.assertEqual( _UpperCAmelCase , [ {'sequence': ANY(_UpperCAmelCase ), 'score': ANY(_UpperCAmelCase ), 'token': ANY(_UpperCAmelCase ), 'token_str': ANY(_UpperCAmelCase )}, {'sequence': ANY(_UpperCAmelCase ), 'score': ANY(_UpperCAmelCase ), 'token': ANY(_UpperCAmelCase ), 'token_str': ANY(_UpperCAmelCase )}, ] , ) UpperCamelCase_ = {vocab[el] for el in targets} self.assertEqual({el['token'] for el in outputs} , _UpperCAmelCase ) UpperCamelCase_ = [tokenizer.decode([x] ) for x in target_ids] self.assertEqual({el['token_str'] for el in outputs} , set(_UpperCAmelCase ) ) # Score equivalence UpperCamelCase_ = fill_masker(f"""This is a {tokenizer.mask_token}""" , targets=_UpperCAmelCase ) UpperCamelCase_ = [top_mask['token_str'] for top_mask in outputs] UpperCamelCase_ = [top_mask['score'] for top_mask in outputs] # For some BPE tokenizers, `</w>` is removed during decoding, so `token_str` won't be the same as in `targets`. if set(_UpperCAmelCase ) == set(_UpperCAmelCase ): UpperCamelCase_ = fill_masker(f"""This is a {tokenizer.mask_token}""" , targets=_UpperCAmelCase ) UpperCamelCase_ = [top_mask['score'] for top_mask in unmasked_targets] self.assertEqual(nested_simplify(_UpperCAmelCase ) , nested_simplify(_UpperCAmelCase ) ) # Raises with invalid with self.assertRaises(_UpperCAmelCase ): UpperCamelCase_ = fill_masker(f"""This is a {tokenizer.mask_token}""" , targets=[] ) # For some tokenizers, `""` is actually in the vocabulary and the expected error won't raised if "" not in tokenizer.get_vocab(): with self.assertRaises(_UpperCAmelCase ): UpperCamelCase_ = fill_masker(f"""This is a {tokenizer.mask_token}""" , targets=[''] ) with self.assertRaises(_UpperCAmelCase ): UpperCamelCase_ = fill_masker(f"""This is a {tokenizer.mask_token}""" , targets='' ) def _UpperCAmelCase ( self , _UpperCAmelCase , _UpperCAmelCase ) -> Tuple: UpperCamelCase_ = FillMaskPipeline(model=_UpperCAmelCase , tokenizer=_UpperCAmelCase , top_k=2 ) UpperCamelCase_ = fill_masker(f"""This is a {tokenizer.mask_token}""" ) self.assertEqual( _UpperCAmelCase , [ {'sequence': ANY(_UpperCAmelCase ), 'score': ANY(_UpperCAmelCase ), 'token': ANY(_UpperCAmelCase ), 'token_str': ANY(_UpperCAmelCase )}, {'sequence': ANY(_UpperCAmelCase ), 'score': ANY(_UpperCAmelCase ), 'token': ANY(_UpperCAmelCase ), 'token_str': ANY(_UpperCAmelCase )}, ] , ) UpperCamelCase_ = FillMaskPipeline(model=_UpperCAmelCase , tokenizer=_UpperCAmelCase ) UpperCamelCase_ = fill_masker(f"""This is a {tokenizer.mask_token}""" , top_k=2 ) self.assertEqual( _UpperCAmelCase , [ {'sequence': ANY(_UpperCAmelCase ), 'score': ANY(_UpperCAmelCase ), 'token': ANY(_UpperCAmelCase ), 'token_str': ANY(_UpperCAmelCase )}, {'sequence': ANY(_UpperCAmelCase ), 'score': ANY(_UpperCAmelCase ), 'token': ANY(_UpperCAmelCase ), 'token_str': ANY(_UpperCAmelCase )}, ] , ) self.assertEqual(nested_simplify(_UpperCAmelCase ) , nested_simplify(_UpperCAmelCase ) ) def _UpperCAmelCase ( self , _UpperCAmelCase , _UpperCAmelCase ) -> List[Any]: UpperCamelCase_ = tokenizer.get_vocab() UpperCamelCase_ = FillMaskPipeline(model=_UpperCAmelCase , tokenizer=_UpperCAmelCase ) # top_k=2, ntargets=3 UpperCamelCase_ = sorted(vocab.keys() )[:3] UpperCamelCase_ = fill_masker(f"""This is a {tokenizer.mask_token}""" , top_k=2 , targets=_UpperCAmelCase ) # If we use the most probably targets, and filter differently, we should still # have the same results UpperCamelCase_ = [el['token_str'] for el in sorted(_UpperCAmelCase , key=lambda _UpperCAmelCase : x["score"] , reverse=_UpperCAmelCase )] # For some BPE tokenizers, `</w>` is removed during decoding, so `token_str` won't be the same as in `targets`. if set(_UpperCAmelCase ).issubset(_UpperCAmelCase ): UpperCamelCase_ = fill_masker(f"""This is a {tokenizer.mask_token}""" , top_k=3 , targets=_UpperCAmelCase ) # They should yield exactly the same result self.assertEqual(nested_simplify(_UpperCAmelCase ) , nested_simplify(_UpperCAmelCase ) ) def _UpperCAmelCase ( self , _UpperCAmelCase , _UpperCAmelCase ) -> Optional[int]: UpperCamelCase_ = FillMaskPipeline(model=_UpperCAmelCase , tokenizer=_UpperCAmelCase ) UpperCamelCase_ = tokenizer.get_vocab() # String duplicates + id duplicates UpperCamelCase_ = sorted(vocab.keys() )[:3] UpperCamelCase_ = [targets[0], targets[1], targets[0], targets[2], targets[1]] UpperCamelCase_ = fill_masker(f"""My name is {tokenizer.mask_token}""" , targets=_UpperCAmelCase , top_k=10 ) # The target list contains duplicates, so we can't output more # than them self.assertEqual(len(_UpperCAmelCase ) , 3 ) def _UpperCAmelCase ( self , _UpperCAmelCase , _UpperCAmelCase ) -> List[str]: UpperCamelCase_ = FillMaskPipeline(model=_UpperCAmelCase , tokenizer=_UpperCAmelCase ) UpperCamelCase_ = fill_masker( f"""This is a {tokenizer.mask_token} {tokenizer.mask_token} {tokenizer.mask_token}""" , top_k=2 ) self.assertEqual( _UpperCAmelCase , [ [ {'sequence': ANY(_UpperCAmelCase ), 'score': ANY(_UpperCAmelCase ), 'token': ANY(_UpperCAmelCase ), 'token_str': ANY(_UpperCAmelCase )}, {'sequence': ANY(_UpperCAmelCase ), 'score': ANY(_UpperCAmelCase ), 'token': ANY(_UpperCAmelCase ), 'token_str': ANY(_UpperCAmelCase )}, ], [ {'sequence': ANY(_UpperCAmelCase ), 'score': ANY(_UpperCAmelCase ), 'token': ANY(_UpperCAmelCase ), 'token_str': ANY(_UpperCAmelCase )}, {'sequence': ANY(_UpperCAmelCase ), 'score': ANY(_UpperCAmelCase ), 'token': ANY(_UpperCAmelCase ), 'token_str': ANY(_UpperCAmelCase )}, ], [ {'sequence': ANY(_UpperCAmelCase ), 'score': ANY(_UpperCAmelCase ), 'token': ANY(_UpperCAmelCase ), 'token_str': ANY(_UpperCAmelCase )}, {'sequence': ANY(_UpperCAmelCase ), 'score': ANY(_UpperCAmelCase ), 'token': ANY(_UpperCAmelCase ), 'token_str': ANY(_UpperCAmelCase )}, ], ] , )
23
0
'''simple docstring''' from typing import Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature from ...image_transforms import get_image_size, pad, rescale, to_channel_dimension_format from ...image_utils import ChannelDimension, ImageInput, make_list_of_images, to_numpy_array, valid_images from ...utils import TensorType, logging a : Any = logging.get_logger(__name__) class SCREAMING_SNAKE_CASE__ ( _UpperCamelCase ): __SCREAMING_SNAKE_CASE = ["""pixel_values"""] def __init__( self : str , a_ : bool = True , a_ : Union[int, float] = 1 / 255 , a_ : bool = True , a_ : int = 8 , **a_ : Any , ): """simple docstring""" super().__init__(**a_ ) __snake_case = do_rescale __snake_case = rescale_factor __snake_case = do_pad __snake_case = pad_size def A ( self : Optional[Any] , a_ : np.ndarray , a_ : float , a_ : Optional[Union[str, ChannelDimension]] = None , **a_ : Tuple ): """simple docstring""" return rescale(a_ , scale=a_ , data_format=a_ , **a_ ) def A ( self : Optional[int] , a_ : np.ndarray , a_ : int , a_ : Optional[Union[str, ChannelDimension]] = None ): """simple docstring""" __snake_case , __snake_case = get_image_size(a_ ) __snake_case = (old_height // size + 1) * size - old_height __snake_case = (old_width // size + 1) * size - old_width return pad(a_ , ((0, pad_height), (0, pad_width)) , mode="symmetric" , data_format=a_ ) def A ( self : int , a_ : ImageInput , a_ : Optional[bool] = None , a_ : Optional[float] = None , a_ : Optional[bool] = None , a_ : Optional[int] = None , a_ : Optional[Union[str, TensorType]] = None , a_ : Union[str, ChannelDimension] = ChannelDimension.FIRST , **a_ : str , ): """simple docstring""" __snake_case = do_rescale if do_rescale is not None else self.do_rescale __snake_case = rescale_factor if rescale_factor is not None else self.rescale_factor __snake_case = do_pad if do_pad is not None else self.do_pad __snake_case = pad_size if pad_size is not None else self.pad_size __snake_case = make_list_of_images(a_ ) if not valid_images(a_ ): raise ValueError( "Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, " "torch.Tensor, tf.Tensor or jax.ndarray." ) if do_rescale and rescale_factor is None: raise ValueError("Rescale factor must be specified if do_rescale is True." ) # All transformations expect numpy arrays. __snake_case = [to_numpy_array(a_ ) for image in images] if do_rescale: __snake_case = [self.rescale(image=a_ , scale=a_ ) for image in images] if do_pad: __snake_case = [self.pad(a_ , size=a_ ) for image in images] __snake_case = [to_channel_dimension_format(a_ , a_ ) for image in images] __snake_case = {"pixel_values": images} return BatchFeature(data=a_ , tensor_type=a_ )
69
import gc import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, StableDiffusionSAGPipeline, UNetaDConditionModel, ) from diffusers.utils import slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_IMAGE_PARAMS, TEXT_TO_IMAGE_PARAMS from ..test_pipelines_common import PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() class _a ( UpperCAmelCase__ , UpperCAmelCase__ , unittest.TestCase ): """simple docstring""" A_ = StableDiffusionSAGPipeline A_ = TEXT_TO_IMAGE_PARAMS A_ = TEXT_TO_IMAGE_BATCH_PARAMS A_ = TEXT_TO_IMAGE_IMAGE_PARAMS A_ = TEXT_TO_IMAGE_IMAGE_PARAMS A_ = False def _UpperCAmelCase ( self ) -> Optional[Any]: torch.manual_seed(0 ) UpperCamelCase_ = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=('DownBlock2D', 'CrossAttnDownBlock2D') , up_block_types=('CrossAttnUpBlock2D', 'UpBlock2D') , cross_attention_dim=32 , ) UpperCamelCase_ = DDIMScheduler( beta_start=0.0_0_0_8_5 , beta_end=0.0_1_2 , beta_schedule='scaled_linear' , clip_sample=_UpperCAmelCase , set_alpha_to_one=_UpperCAmelCase , ) torch.manual_seed(0 ) UpperCamelCase_ = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=['DownEncoderBlock2D', 'DownEncoderBlock2D'] , up_block_types=['UpDecoderBlock2D', 'UpDecoderBlock2D'] , latent_channels=4 , ) torch.manual_seed(0 ) UpperCamelCase_ = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , ) UpperCamelCase_ = CLIPTextModel(_UpperCAmelCase ) UpperCamelCase_ = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip' ) UpperCamelCase_ = { 'unet': unet, 'scheduler': scheduler, 'vae': vae, 'text_encoder': text_encoder, 'tokenizer': tokenizer, 'safety_checker': None, 'feature_extractor': None, } return components def _UpperCAmelCase ( self , _UpperCAmelCase , _UpperCAmelCase=0 ) -> List[Any]: if str(_UpperCAmelCase ).startswith('mps' ): UpperCamelCase_ = torch.manual_seed(_UpperCAmelCase ) else: UpperCamelCase_ = torch.Generator(device=_UpperCAmelCase ).manual_seed(_UpperCAmelCase ) UpperCamelCase_ = { 'prompt': '.', 'generator': generator, 'num_inference_steps': 2, 'guidance_scale': 1.0, 'sag_scale': 1.0, 'output_type': 'numpy', } return inputs def _UpperCAmelCase ( self ) -> Tuple: super().test_inference_batch_single_identical(expected_max_diff=3e-3 ) @slow @require_torch_gpu class _a ( unittest.TestCase ): """simple docstring""" def _UpperCAmelCase ( self ) -> Tuple: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def _UpperCAmelCase ( self ) -> str: UpperCamelCase_ = StableDiffusionSAGPipeline.from_pretrained('CompVis/stable-diffusion-v1-4' ) UpperCamelCase_ = sag_pipe.to(_UpperCAmelCase ) sag_pipe.set_progress_bar_config(disable=_UpperCAmelCase ) UpperCamelCase_ = '.' UpperCamelCase_ = torch.manual_seed(0 ) UpperCamelCase_ = sag_pipe( [prompt] , generator=_UpperCAmelCase , guidance_scale=7.5 , sag_scale=1.0 , num_inference_steps=20 , output_type='np' ) UpperCamelCase_ = output.images UpperCamelCase_ = image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) UpperCamelCase_ = np.array([0.1_5_6_8, 0.1_7_3_8, 0.1_6_9_5, 0.1_6_9_3, 0.1_5_0_7, 0.1_7_0_5, 0.1_5_4_7, 0.1_7_5_1, 0.1_9_4_9] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 5e-2 def _UpperCAmelCase ( self ) -> List[Any]: UpperCamelCase_ = StableDiffusionSAGPipeline.from_pretrained('stabilityai/stable-diffusion-2-1-base' ) UpperCamelCase_ = sag_pipe.to(_UpperCAmelCase ) sag_pipe.set_progress_bar_config(disable=_UpperCAmelCase ) UpperCamelCase_ = '.' UpperCamelCase_ = torch.manual_seed(0 ) UpperCamelCase_ = sag_pipe( [prompt] , generator=_UpperCAmelCase , guidance_scale=7.5 , sag_scale=1.0 , num_inference_steps=20 , output_type='np' ) UpperCamelCase_ = output.images UpperCamelCase_ = image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) UpperCamelCase_ = np.array([0.3_4_5_9, 0.2_8_7_6, 0.2_5_3_7, 0.3_0_0_2, 0.2_6_7_1, 0.2_1_6_0, 0.3_0_2_6, 0.2_2_6_2, 0.2_3_7_1] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 5e-2 def _UpperCAmelCase ( self ) -> Dict: UpperCamelCase_ = StableDiffusionSAGPipeline.from_pretrained('stabilityai/stable-diffusion-2-1-base' ) UpperCamelCase_ = sag_pipe.to(_UpperCAmelCase ) sag_pipe.set_progress_bar_config(disable=_UpperCAmelCase ) UpperCamelCase_ = '.' UpperCamelCase_ = torch.manual_seed(0 ) UpperCamelCase_ = sag_pipe( [prompt] , width=768 , height=512 , generator=_UpperCAmelCase , guidance_scale=7.5 , sag_scale=1.0 , num_inference_steps=20 , output_type='np' , ) UpperCamelCase_ = output.images assert image.shape == (1, 512, 768, 3)
23
0
# Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse import os from accelerate.utils import ComputeEnvironment from .cluster import get_cluster_input from .config_args import cache_dir, default_config_file, default_yaml_config_file, load_config_from_file # noqa: F401 from .config_utils import _ask_field, _ask_options, _convert_compute_environment # noqa: F401 from .sagemaker import get_sagemaker_input lowerCamelCase : Any = "Launches a series of prompts to create and save a `default_config.yaml` configuration file for your training system. Should always be ran first on your machine" def _SCREAMING_SNAKE_CASE ( ): '''simple docstring''' lowerCamelCase_ = _ask_options( 'In which compute environment are you running?' , ['This machine', 'AWS (Amazon SageMaker)'] , _convert_compute_environment , ) if compute_environment == ComputeEnvironment.AMAZON_SAGEMAKER: lowerCamelCase_ = get_sagemaker_input() else: lowerCamelCase_ = get_cluster_input() return config def _SCREAMING_SNAKE_CASE ( lowercase : Optional[Any]=None ): '''simple docstring''' if subparsers is not None: lowerCamelCase_ = subparsers.add_parser('config' , description=lowercase ) else: lowerCamelCase_ = argparse.ArgumentParser('Accelerate config command' , description=lowercase ) parser.add_argument( '--config_file' , default=lowercase , help=( 'The path to use to store the config file. Will default to a file named default_config.yaml in the cache ' 'location, which is the content of the environment `HF_HOME` suffixed with \'accelerate\', or if you don\'t have ' 'such an environment variable, your cache directory (\'~/.cache\' or the content of `XDG_CACHE_HOME`) suffixed ' 'with \'huggingface\'.' ) , ) if subparsers is not None: parser.set_defaults(func=lowercase ) return parser def _SCREAMING_SNAKE_CASE ( lowercase : Dict ): '''simple docstring''' lowerCamelCase_ = get_user_input() if args.config_file is not None: lowerCamelCase_ = args.config_file else: if not os.path.isdir(lowercase ): os.makedirs(lowercase ) lowerCamelCase_ = default_yaml_config_file if config_file.endswith('.json' ): config.to_json_file(lowercase ) else: config.to_yaml_file(lowercase ) print(f"""accelerate configuration saved at {config_file}""" ) def _SCREAMING_SNAKE_CASE ( ): '''simple docstring''' lowerCamelCase_ = config_command_parser() lowerCamelCase_ = parser.parse_args() config_command(lowercase ) if __name__ == "__main__": main()
70
from __future__ import annotations from sys import maxsize from typing import Generic, TypeVar snake_case__ : List[str] = TypeVar("""T""") def _snake_case (__lowercase): return (position - 1) // 2 def _snake_case (__lowercase): return (2 * position) + 1 def _snake_case (__lowercase): return (2 * position) + 2 class _a ( Generic[T] ): """simple docstring""" def __init__( self ) -> None: UpperCamelCase_ = [] UpperCamelCase_ = {} UpperCamelCase_ = 0 def __len__( self ) -> int: return self.elements def __repr__( self ) -> str: return str(self.heap ) def _UpperCAmelCase ( self ) -> bool: # Check if the priority queue is empty return self.elements == 0 def _UpperCAmelCase ( self , _UpperCAmelCase , _UpperCAmelCase ) -> None: # Add an element with given priority to the queue self.heap.append((elem, weight) ) UpperCamelCase_ = self.elements self.elements += 1 self._bubble_up(_UpperCAmelCase ) def _UpperCAmelCase ( self ) -> T: # Remove and return the element with lowest weight (highest priority) if self.elements > 1: self._swap_nodes(0 , self.elements - 1 ) UpperCamelCase_ , UpperCamelCase_ = self.heap.pop() del self.position_map[elem] self.elements -= 1 if self.elements > 0: UpperCamelCase_ , UpperCamelCase_ = self.heap[0] self._bubble_down(_UpperCAmelCase ) return elem def _UpperCAmelCase ( self , _UpperCAmelCase , _UpperCAmelCase ) -> None: # Update the weight of the given key UpperCamelCase_ = self.position_map[elem] UpperCamelCase_ = (elem, weight) if position > 0: UpperCamelCase_ = get_parent_position(_UpperCAmelCase ) UpperCamelCase_ , UpperCamelCase_ = self.heap[parent_position] if parent_weight > weight: self._bubble_up(_UpperCAmelCase ) else: self._bubble_down(_UpperCAmelCase ) else: self._bubble_down(_UpperCAmelCase ) def _UpperCAmelCase ( self , _UpperCAmelCase ) -> None: # Place a node at the proper position (upward movement) [to be used internally # only] UpperCamelCase_ = self.position_map[elem] if curr_pos == 0: return None UpperCamelCase_ = get_parent_position(_UpperCAmelCase ) UpperCamelCase_ , UpperCamelCase_ = self.heap[curr_pos] UpperCamelCase_ , UpperCamelCase_ = self.heap[parent_position] if parent_weight > weight: self._swap_nodes(_UpperCAmelCase , _UpperCAmelCase ) return self._bubble_up(_UpperCAmelCase ) return None def _UpperCAmelCase ( self , _UpperCAmelCase ) -> None: # Place a node at the proper position (downward movement) [to be used # internally only] UpperCamelCase_ = self.position_map[elem] UpperCamelCase_ , UpperCamelCase_ = self.heap[curr_pos] UpperCamelCase_ = get_child_left_position(_UpperCAmelCase ) UpperCamelCase_ = get_child_right_position(_UpperCAmelCase ) if child_left_position < self.elements and child_right_position < self.elements: UpperCamelCase_ , UpperCamelCase_ = self.heap[child_left_position] UpperCamelCase_ , UpperCamelCase_ = self.heap[child_right_position] if child_right_weight < child_left_weight and child_right_weight < weight: self._swap_nodes(_UpperCAmelCase , _UpperCAmelCase ) return self._bubble_down(_UpperCAmelCase ) if child_left_position < self.elements: UpperCamelCase_ , UpperCamelCase_ = self.heap[child_left_position] if child_left_weight < weight: self._swap_nodes(_UpperCAmelCase , _UpperCAmelCase ) return self._bubble_down(_UpperCAmelCase ) else: return None if child_right_position < self.elements: UpperCamelCase_ , UpperCamelCase_ = self.heap[child_right_position] if child_right_weight < weight: self._swap_nodes(_UpperCAmelCase , _UpperCAmelCase ) return self._bubble_down(_UpperCAmelCase ) return None def _UpperCAmelCase ( self , _UpperCAmelCase , _UpperCAmelCase ) -> None: # Swap the nodes at the given positions UpperCamelCase_ = self.heap[nodea_pos][0] UpperCamelCase_ = self.heap[nodea_pos][0] UpperCamelCase_ , UpperCamelCase_ = ( self.heap[nodea_pos], self.heap[nodea_pos], ) UpperCamelCase_ = nodea_pos UpperCamelCase_ = nodea_pos class _a ( Generic[T] ): """simple docstring""" def __init__( self ) -> None: UpperCamelCase_ = {} UpperCamelCase_ = 0 def __repr__( self ) -> str: return str(self.connections ) def __len__( self ) -> int: return self.nodes def _UpperCAmelCase ( self , _UpperCAmelCase ) -> None: # Add a node in the graph if it is not in the graph if node not in self.connections: UpperCamelCase_ = {} self.nodes += 1 def _UpperCAmelCase ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) -> None: # Add an edge between 2 nodes in the graph self.add_node(_UpperCAmelCase ) self.add_node(_UpperCAmelCase ) UpperCamelCase_ = weight UpperCamelCase_ = weight def _snake_case (__lowercase , ): UpperCamelCase_ = {node: maxsize for node in graph.connections} UpperCamelCase_ = {node: None for node in graph.connections} UpperCamelCase_ = MinPriorityQueue() for node, weight in dist.items(): priority_queue.push(__lowercase , __lowercase) if priority_queue.is_empty(): return dist, parent # initialization UpperCamelCase_ = priority_queue.extract_min() UpperCamelCase_ = 0 for neighbour in graph.connections[node]: if dist[neighbour] > dist[node] + graph.connections[node][neighbour]: UpperCamelCase_ = dist[node] + graph.connections[node][neighbour] priority_queue.update_key(__lowercase , dist[neighbour]) UpperCamelCase_ = node # running prim's algorithm while not priority_queue.is_empty(): UpperCamelCase_ = priority_queue.extract_min() for neighbour in graph.connections[node]: if dist[neighbour] > dist[node] + graph.connections[node][neighbour]: UpperCamelCase_ = dist[node] + graph.connections[node][neighbour] priority_queue.update_key(__lowercase , dist[neighbour]) UpperCamelCase_ = node return dist, parent
23
0
'''simple docstring''' from math import sqrt def a__ ( _SCREAMING_SNAKE_CASE : int = 1_00_00_00 ) -> int: """simple docstring""" UpperCAmelCase_ : int = 0 UpperCAmelCase_ : int = 0 UpperCAmelCase_ : int while num_cuboids <= limit: max_cuboid_size += 1 for sum_shortest_sides in range(2 , 2 * max_cuboid_size + 1 ): if sqrt(sum_shortest_sides**2 + max_cuboid_size**2 ).is_integer(): num_cuboids += ( min(_SCREAMING_SNAKE_CASE , sum_shortest_sides // 2 ) - max(1 , sum_shortest_sides - max_cuboid_size ) + 1 ) return max_cuboid_size if __name__ == "__main__": print(f"""{solution() = }""")
71
from __future__ import annotations import sys from collections import deque from typing import Generic, TypeVar snake_case__ : Dict = TypeVar("""T""") class _a ( Generic[T] ): """simple docstring""" A_ = 42 # Cache store of keys A_ = 42 # References of the keys in cache A_ = 10 # Maximum capacity of cache def __init__( self , _UpperCAmelCase ) -> None: UpperCamelCase_ = deque() UpperCamelCase_ = set() if not n: UpperCamelCase_ = sys.maxsize elif n < 0: raise ValueError('n should be an integer greater than 0.' ) else: UpperCamelCase_ = n def _UpperCAmelCase ( self , _UpperCAmelCase ) -> None: if x not in self.key_reference: if len(self.dq_store ) == LRUCache._MAX_CAPACITY: UpperCamelCase_ = self.dq_store.pop() self.key_reference.remove(_UpperCAmelCase ) else: self.dq_store.remove(_UpperCAmelCase ) self.dq_store.appendleft(_UpperCAmelCase ) self.key_reference.add(_UpperCAmelCase ) def _UpperCAmelCase ( self ) -> None: for k in self.dq_store: print(_UpperCAmelCase ) def __repr__( self ) -> str: return f"""LRUCache({self._MAX_CAPACITY}) => {list(self.dq_store )}""" if __name__ == "__main__": import doctest doctest.testmod() snake_case__ : LRUCache[str | int] = LRUCache(4) lru_cache.refer("""A""") lru_cache.refer(2) lru_cache.refer(3) lru_cache.refer("""A""") lru_cache.refer(4) lru_cache.refer(5) lru_cache.display() print(lru_cache) assert str(lru_cache) == "LRUCache(4) => [5, 4, 'A', 3]"
23
0
'''simple docstring''' import logging import os from dataclasses import dataclass, field from typing import Dict, Optional import datasets import numpy as np import tensorflow as tf from transformers import ( AutoConfig, AutoTokenizer, EvalPrediction, HfArgumentParser, PreTrainedTokenizer, TFAutoModelForSequenceClassification, TFTrainer, TFTrainingArguments, ) from transformers.utils import logging as hf_logging hf_logging.set_verbosity_info() hf_logging.enable_default_handler() hf_logging.enable_explicit_format() def UpperCamelCase ( lowercase_ : str , lowercase_ : str , lowercase_ : str , lowercase_ : PreTrainedTokenizer , lowercase_ : int , lowercase_ : Optional[int] = None , ) -> int: '''simple docstring''' lowercase ={} if train_file is not None: lowercase =[train_file] if eval_file is not None: lowercase =[eval_file] if test_file is not None: lowercase =[test_file] lowercase =datasets.load_dataset('''csv''' , data_files=lowercase_ ) lowercase =list(ds[list(files.keys() )[0]].features.keys() ) lowercase =features_name.pop(lowercase_ ) lowercase =list(set(ds[list(files.keys() )[0]][label_name] ) ) lowercase ={label: i for i, label in enumerate(lowercase_ )} lowercase =tokenizer.model_input_names lowercase ={} if len(lowercase_ ) == 1: for k in files.keys(): lowercase =ds[k].map( lambda lowercase_ : tokenizer.batch_encode_plus( example[features_name[0]] , truncation=lowercase_ , max_length=lowercase_ , padding='''max_length''' ) , batched=lowercase_ , ) elif len(lowercase_ ) == 2: for k in files.keys(): lowercase =ds[k].map( lambda lowercase_ : tokenizer.batch_encode_plus( (example[features_name[0]], example[features_name[1]]) , truncation=lowercase_ , max_length=lowercase_ , padding='''max_length''' , ) , batched=lowercase_ , ) def gen_train(): for ex in transformed_ds[datasets.Split.TRAIN]: lowercase ={k: v for k, v in ex.items() if k in input_names} lowercase =labelaid[ex[label_name]] yield (d, label) def gen_val(): for ex in transformed_ds[datasets.Split.VALIDATION]: lowercase ={k: v for k, v in ex.items() if k in input_names} lowercase =labelaid[ex[label_name]] yield (d, label) def gen_test(): for ex in transformed_ds[datasets.Split.TEST]: lowercase ={k: v for k, v in ex.items() if k in input_names} lowercase =labelaid[ex[label_name]] yield (d, label) lowercase =( tf.data.Dataset.from_generator( lowercase_ , ({k: tf.intaa for k in input_names}, tf.intaa) , ({k: tf.TensorShape([None] ) for k in input_names}, tf.TensorShape([] )) , ) if datasets.Split.TRAIN in transformed_ds else None ) if train_ds is not None: lowercase =train_ds.apply(tf.data.experimental.assert_cardinality(len(ds[datasets.Split.TRAIN] ) ) ) lowercase =( tf.data.Dataset.from_generator( lowercase_ , ({k: tf.intaa for k in input_names}, tf.intaa) , ({k: tf.TensorShape([None] ) for k in input_names}, tf.TensorShape([] )) , ) if datasets.Split.VALIDATION in transformed_ds else None ) if val_ds is not None: lowercase =val_ds.apply(tf.data.experimental.assert_cardinality(len(ds[datasets.Split.VALIDATION] ) ) ) lowercase =( tf.data.Dataset.from_generator( lowercase_ , ({k: tf.intaa for k in input_names}, tf.intaa) , ({k: tf.TensorShape([None] ) for k in input_names}, tf.TensorShape([] )) , ) if datasets.Split.TEST in transformed_ds else None ) if test_ds is not None: lowercase =test_ds.apply(tf.data.experimental.assert_cardinality(len(ds[datasets.Split.TEST] ) ) ) return train_ds, val_ds, test_ds, labelaid _UpperCAmelCase : List[Any] = logging.getLogger(__name__) @dataclass class __magic_name__ : UpperCamelCase__ = field(metadata={'help': 'Which column contains the label'} ) UpperCamelCase__ = field(default=__SCREAMING_SNAKE_CASE , metadata={'help': 'The path of the training file'} ) UpperCamelCase__ = field(default=__SCREAMING_SNAKE_CASE , metadata={'help': 'The path of the development file'} ) UpperCamelCase__ = field(default=__SCREAMING_SNAKE_CASE , metadata={'help': 'The path of the test file'} ) UpperCamelCase__ = field( default=1_28 , metadata={ 'help': ( 'The maximum total input sequence length after tokenization. Sequences longer ' 'than this will be truncated, sequences shorter will be padded.' ) } , ) UpperCamelCase__ = field( default=__SCREAMING_SNAKE_CASE , metadata={'help': 'Overwrite the cached training and evaluation sets'} ) @dataclass class __magic_name__ : UpperCamelCase__ = field( metadata={'help': 'Path to pretrained model or model identifier from huggingface.co/models'} ) UpperCamelCase__ = field( default=__SCREAMING_SNAKE_CASE , metadata={'help': 'Pretrained config name or path if not the same as model_name'} ) UpperCamelCase__ = field( default=__SCREAMING_SNAKE_CASE , metadata={'help': 'Pretrained tokenizer name or path if not the same as model_name'} ) UpperCamelCase__ = field(default=__SCREAMING_SNAKE_CASE , metadata={'help': 'Set this flag to use fast tokenization.'} ) # If you want to tweak more attributes on your tokenizer, you should do it in a distinct script, # or just modify its tokenizer_config.json. UpperCamelCase__ = field( default=__SCREAMING_SNAKE_CASE , metadata={'help': 'Where do you want to store the pretrained models downloaded from huggingface.co'} , ) def UpperCamelCase ( ) -> Optional[int]: '''simple docstring''' lowercase =HfArgumentParser((ModelArguments, DataTrainingArguments, TFTrainingArguments) ) lowercase , lowercase , lowercase =parser.parse_args_into_dataclasses() if ( os.path.exists(training_args.output_dir ) and os.listdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir ): raise ValueError( f'Output directory ({training_args.output_dir}) already exists and is not empty. Use' ''' --overwrite_output_dir to overcome.''' ) # Setup logging logging.basicConfig( format='''%(asctime)s - %(levelname)s - %(name)s - %(message)s''' , datefmt='''%m/%d/%Y %H:%M:%S''' , level=logging.INFO , ) logger.info( f'n_replicas: {training_args.n_replicas}, distributed training: {bool(training_args.n_replicas > 1 )}, ' f'16-bits training: {training_args.fpaa}' ) logger.info(f'Training/evaluation parameters {training_args}' ) # Load pretrained model and tokenizer # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. lowercase =AutoTokenizer.from_pretrained( model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , ) lowercase , lowercase , lowercase , lowercase =get_tfds( train_file=data_args.train_file , eval_file=data_args.dev_file , test_file=data_args.test_file , tokenizer=lowercase_ , label_column_id=data_args.label_column_id , max_seq_length=data_args.max_seq_length , ) lowercase =AutoConfig.from_pretrained( model_args.config_name if model_args.config_name else model_args.model_name_or_path , num_labels=len(lowercase_ ) , labelaid=lowercase_ , idalabel={id: label for label, id in labelaid.items()} , finetuning_task='''text-classification''' , cache_dir=model_args.cache_dir , ) with training_args.strategy.scope(): lowercase =TFAutoModelForSequenceClassification.from_pretrained( model_args.model_name_or_path , from_pt=bool('''.bin''' in model_args.model_name_or_path ) , config=lowercase_ , cache_dir=model_args.cache_dir , ) def compute_metrics(lowercase_ : EvalPrediction ) -> Dict: lowercase =np.argmax(p.predictions , axis=1 ) return {"acc": (preds == p.label_ids).mean()} # Initialize our Trainer lowercase =TFTrainer( model=lowercase_ , args=lowercase_ , train_dataset=lowercase_ , eval_dataset=lowercase_ , compute_metrics=lowercase_ , ) # Training if training_args.do_train: trainer.train() trainer.save_model() tokenizer.save_pretrained(training_args.output_dir ) # Evaluation lowercase ={} if training_args.do_eval: logger.info('''*** Evaluate ***''' ) lowercase =trainer.evaluate() lowercase =os.path.join(training_args.output_dir , '''eval_results.txt''' ) with open(lowercase_ , '''w''' ) as writer: logger.info('''***** Eval results *****''' ) for key, value in result.items(): logger.info(f' {key} = {value}' ) writer.write(f'{key} = {value}\n' ) results.update(lowercase_ ) return results if __name__ == "__main__": main()
72
import numpy as np def _snake_case (__lowercase): return 1 / (1 + np.exp(-vector)) def _snake_case (__lowercase): return vector * sigmoid(__lowercase) if __name__ == "__main__": import doctest doctest.testmod()
23
0
# Copyright 2023 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available a_ : Dict = {'configuration_mra': ['MRA_PRETRAINED_CONFIG_ARCHIVE_MAP', 'MraConfig']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a_ : Dict = [ 'MRA_PRETRAINED_MODEL_ARCHIVE_LIST', 'MraForMaskedLM', 'MraForMultipleChoice', 'MraForQuestionAnswering', 'MraForSequenceClassification', 'MraForTokenClassification', 'MraLayer', 'MraModel', 'MraPreTrainedModel', ] if TYPE_CHECKING: from .configuration_mra import MRA_PRETRAINED_CONFIG_ARCHIVE_MAP, MraConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mra import ( MRA_PRETRAINED_MODEL_ARCHIVE_LIST, MraForMaskedLM, MraForMultipleChoice, MraForQuestionAnswering, MraForSequenceClassification, MraForTokenClassification, MraLayer, MraModel, MraPreTrainedModel, ) else: import sys a_ : List[str] = _LazyModule(__name__, globals()['__file__'], _import_structure)
73
import math from datetime import datetime, timedelta def _snake_case (__lowercase): UpperCamelCase_ = year % 19 UpperCamelCase_ = year % 4 UpperCamelCase_ = year % 7 UpperCamelCase_ = math.floor(year / 100) UpperCamelCase_ = math.floor((13 + 8 * leap_day_inhibits) / 25) UpperCamelCase_ = leap_day_inhibits / 4 UpperCamelCase_ = ( 15 - lunar_orbit_correction + leap_day_inhibits - leap_day_reinstall_number ) % 30 UpperCamelCase_ = (4 + leap_day_inhibits - leap_day_reinstall_number) % 7 # days to be added to March 21 UpperCamelCase_ = (19 * metonic_cycle + secular_moon_shift) % 30 # PHM -> Paschal Full Moon UpperCamelCase_ = ( 2 * julian_leap_year + 4 * non_leap_year + 6 * days_to_add + century_starting_point ) % 7 if days_to_add == 29 and days_from_phm_to_sunday == 6: return datetime(__lowercase , 4 , 19) elif days_to_add == 28 and days_from_phm_to_sunday == 6: return datetime(__lowercase , 4 , 18) else: return datetime(__lowercase , 3 , 22) + timedelta( days=int(days_to_add + days_from_phm_to_sunday)) if __name__ == "__main__": for year in (1_9_9_4, 2_0_0_0, 2_0_1_0, 2_0_2_1, 2_0_2_3): snake_case__ : Dict = """will be""" if year > datetime.now().year else """was""" print(f'Easter in {year} {tense} {gauss_easter(year)}')
23
0
import json import os import re import shutil import tempfile import unittest from typing import Tuple from transformers import AddedToken, BatchEncoding, PerceiverTokenizer from transformers.utils import cached_property, is_tf_available, is_torch_available from ...test_tokenization_common import TokenizerTesterMixin if is_torch_available(): lowercase_ = """pt""" elif is_tf_available(): lowercase_ = """tf""" else: lowercase_ = """jax""" class __UpperCamelCase ( lowerCAmelCase__ , unittest.TestCase ): """simple docstring""" lowerCAmelCase_ = PerceiverTokenizer lowerCAmelCase_ = False def UpperCAmelCase__ ( self : List[str] ): """simple docstring""" super().setUp() __SCREAMING_SNAKE_CASE : Any = PerceiverTokenizer() tokenizer.save_pretrained(self.tmpdirname ) @cached_property def UpperCAmelCase__ ( self : str ): """simple docstring""" return PerceiverTokenizer.from_pretrained('''deepmind/language-perceiver''' ) def UpperCAmelCase__ ( self : int , **_A : Any ): """simple docstring""" return self.tokenizer_class.from_pretrained(self.tmpdirname , **_A ) def UpperCAmelCase__ ( self : Optional[Any] , _A : Any , _A : Union[str, Any]=False , _A : str=20 , _A : int=5 ): """simple docstring""" __SCREAMING_SNAKE_CASE : List[Any] = [] for i in range(len(_A ) ): try: __SCREAMING_SNAKE_CASE : Any = tokenizer.decode([i] , clean_up_tokenization_spaces=_A ) except UnicodeDecodeError: pass toks.append((i, tok) ) __SCREAMING_SNAKE_CASE : int = list(filter(lambda _A : re.match(r'''^[ a-zA-Z]+$''' , t[1] ) , _A ) ) __SCREAMING_SNAKE_CASE : List[str] = list(filter(lambda _A : [t[0]] == tokenizer.encode(t[1] , add_special_tokens=_A ) , _A ) ) if max_length is not None and len(_A ) > max_length: __SCREAMING_SNAKE_CASE : List[str] = toks[:max_length] if min_length is not None and len(_A ) < min_length and len(_A ) > 0: while len(_A ) < min_length: __SCREAMING_SNAKE_CASE : Optional[int] = toks + toks # toks_str = [t[1] for t in toks] __SCREAMING_SNAKE_CASE : List[str] = [t[0] for t in toks] # Ensure consistency __SCREAMING_SNAKE_CASE : List[str] = tokenizer.decode(_A , clean_up_tokenization_spaces=_A ) if " " not in output_txt and len(_A ) > 1: __SCREAMING_SNAKE_CASE : int = ( tokenizer.decode([toks_ids[0]] , clean_up_tokenization_spaces=_A ) + ''' ''' + tokenizer.decode(toks_ids[1:] , clean_up_tokenization_spaces=_A ) ) if with_prefix_space: __SCREAMING_SNAKE_CASE : Optional[int] = ''' ''' + output_txt __SCREAMING_SNAKE_CASE : Optional[int] = tokenizer.encode(_A , add_special_tokens=_A ) return output_txt, output_ids def UpperCAmelCase__ ( self : int ): """simple docstring""" __SCREAMING_SNAKE_CASE : Tuple = self.perceiver_tokenizer __SCREAMING_SNAKE_CASE : Optional[Any] = '''Unicode €.''' __SCREAMING_SNAKE_CASE : Optional[Any] = tokenizer(_A ) __SCREAMING_SNAKE_CASE : Tuple = [4, 91, 116, 111, 105, 117, 106, 107, 38, 232, 136, 178, 52, 5] self.assertEqual(encoded['''input_ids'''] , _A ) # decoding __SCREAMING_SNAKE_CASE : List[Any] = tokenizer.decode(_A ) self.assertEqual(_A , '''[CLS]Unicode €.[SEP]''' ) __SCREAMING_SNAKE_CASE : Optional[Any] = tokenizer('''e è é ê ë''' ) __SCREAMING_SNAKE_CASE : Union[str, Any] = [4, 107, 38, 201, 174, 38, 201, 175, 38, 201, 176, 38, 201, 177, 5] self.assertEqual(encoded['''input_ids'''] , _A ) # decoding __SCREAMING_SNAKE_CASE : Optional[Any] = tokenizer.decode(_A ) self.assertEqual(_A , '''[CLS]e è é ê ë[SEP]''' ) # encode/decode, but with `encode` instead of `__call__` self.assertEqual(tokenizer.decode(tokenizer.encode('''e è é ê ë''' ) ) , '''[CLS]e è é ê ë[SEP]''' ) def UpperCAmelCase__ ( self : Any ): """simple docstring""" __SCREAMING_SNAKE_CASE : List[Any] = self.perceiver_tokenizer __SCREAMING_SNAKE_CASE : Optional[Any] = ['''A long paragraph for summarization.''', '''Another paragraph for summarization.'''] # fmt: off __SCREAMING_SNAKE_CASE : List[str] = [4, 71, 38, 114, 117, 116, 109, 38, 118, 103, 120, 103, 109, 120, 103, 118, 110, 38, 108, 117, 120, 38, 121, 123, 115, 115, 103, 120, 111, 128, 103, 122, 111, 117, 116, 52, 5, 0] # fmt: on __SCREAMING_SNAKE_CASE : Tuple = tokenizer(_A , padding=_A , return_tensors=_A ) self.assertIsInstance(_A , _A ) if FRAMEWORK != "jax": __SCREAMING_SNAKE_CASE : List[str] = list(batch.input_ids.numpy()[0] ) else: __SCREAMING_SNAKE_CASE : Optional[int] = list(batch.input_ids.tolist()[0] ) self.assertListEqual(_A , _A ) self.assertEqual((2, 38) , batch.input_ids.shape ) self.assertEqual((2, 38) , batch.attention_mask.shape ) def UpperCAmelCase__ ( self : Optional[int] ): """simple docstring""" __SCREAMING_SNAKE_CASE : Optional[Any] = self.perceiver_tokenizer __SCREAMING_SNAKE_CASE : Tuple = ['''A long paragraph for summarization.''', '''Another paragraph for summarization.'''] __SCREAMING_SNAKE_CASE : Union[str, Any] = tokenizer(_A , padding=_A , return_tensors=_A ) # check if input_ids are returned and no decoder_input_ids self.assertIn('''input_ids''' , _A ) self.assertIn('''attention_mask''' , _A ) self.assertNotIn('''decoder_input_ids''' , _A ) self.assertNotIn('''decoder_attention_mask''' , _A ) def UpperCAmelCase__ ( self : int ): """simple docstring""" __SCREAMING_SNAKE_CASE : Union[str, Any] = self.perceiver_tokenizer __SCREAMING_SNAKE_CASE : Tuple = [ '''Summary of the text.''', '''Another summary.''', ] __SCREAMING_SNAKE_CASE : Any = tokenizer( text_target=_A , max_length=32 , padding='''max_length''' , truncation=_A , return_tensors=_A ) self.assertEqual(32 , targets['''input_ids'''].shape[1] ) def UpperCAmelCase__ ( self : int ): """simple docstring""" __SCREAMING_SNAKE_CASE : List[str] = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(F'''{tokenizer.__class__.__name__}''' ): self.assertNotEqual(tokenizer.model_max_length , 42 ) # Now let's start the test __SCREAMING_SNAKE_CASE : List[str] = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(F'''{tokenizer.__class__.__name__}''' ): # Isolate this from the other tests because we save additional tokens/etc __SCREAMING_SNAKE_CASE : Optional[Any] = tempfile.mkdtemp() __SCREAMING_SNAKE_CASE : Dict = ''' He is very happy, UNwant\u00E9d,running''' __SCREAMING_SNAKE_CASE : List[str] = tokenizer.encode(_A , add_special_tokens=_A ) tokenizer.save_pretrained(_A ) __SCREAMING_SNAKE_CASE : int = tokenizer.__class__.from_pretrained(_A ) __SCREAMING_SNAKE_CASE : List[Any] = after_tokenizer.encode(_A , add_special_tokens=_A ) self.assertListEqual(_A , _A ) shutil.rmtree(_A ) __SCREAMING_SNAKE_CASE : str = self.get_tokenizers(model_max_length=42 ) for tokenizer in tokenizers: with self.subTest(F'''{tokenizer.__class__.__name__}''' ): # Isolate this from the other tests because we save additional tokens/etc __SCREAMING_SNAKE_CASE : int = tempfile.mkdtemp() __SCREAMING_SNAKE_CASE : List[Any] = ''' He is very happy, UNwant\u00E9d,running''' tokenizer.add_tokens(['''bim''', '''bambam'''] ) __SCREAMING_SNAKE_CASE : Dict = tokenizer.additional_special_tokens additional_special_tokens.append('''new_additional_special_token''' ) tokenizer.add_special_tokens({'''additional_special_tokens''': additional_special_tokens} ) __SCREAMING_SNAKE_CASE : Any = tokenizer.encode(_A , add_special_tokens=_A ) tokenizer.save_pretrained(_A ) __SCREAMING_SNAKE_CASE : Optional[Any] = tokenizer.__class__.from_pretrained(_A ) __SCREAMING_SNAKE_CASE : List[Any] = after_tokenizer.encode(_A , add_special_tokens=_A ) self.assertListEqual(_A , _A ) self.assertIn('''new_additional_special_token''' , after_tokenizer.additional_special_tokens ) self.assertEqual(after_tokenizer.model_max_length , 42 ) __SCREAMING_SNAKE_CASE : Optional[int] = tokenizer.__class__.from_pretrained(_A , model_max_length=43 ) self.assertEqual(tokenizer.model_max_length , 43 ) shutil.rmtree(_A ) def UpperCAmelCase__ ( self : str ): """simple docstring""" __SCREAMING_SNAKE_CASE : Any = [] if self.test_slow_tokenizer: tokenizer_list.append((self.tokenizer_class, self.get_tokenizer()) ) if self.test_rust_tokenizer: tokenizer_list.append((self.rust_tokenizer_class, self.get_rust_tokenizer()) ) for tokenizer_class, tokenizer_utils in tokenizer_list: with tempfile.TemporaryDirectory() as tmp_dir: tokenizer_utils.save_pretrained(_A ) with open(os.path.join(_A , '''special_tokens_map.json''' ) , encoding='''utf-8''' ) as json_file: __SCREAMING_SNAKE_CASE : Any = json.load(_A ) with open(os.path.join(_A , '''tokenizer_config.json''' ) , encoding='''utf-8''' ) as json_file: __SCREAMING_SNAKE_CASE : Dict = json.load(_A ) __SCREAMING_SNAKE_CASE : Union[str, Any] = [F'''<extra_id_{i}>''' for i in range(125 )] __SCREAMING_SNAKE_CASE : Optional[Any] = added_tokens_extra_ids + [ '''an_additional_special_token''' ] __SCREAMING_SNAKE_CASE : Any = added_tokens_extra_ids + [ '''an_additional_special_token''' ] with open(os.path.join(_A , '''special_tokens_map.json''' ) , '''w''' , encoding='''utf-8''' ) as outfile: json.dump(_A , _A ) with open(os.path.join(_A , '''tokenizer_config.json''' ) , '''w''' , encoding='''utf-8''' ) as outfile: json.dump(_A , _A ) # the following checks allow us to verify that our test works as expected, i.e. that the tokenizer takes # into account the new value of additional_special_tokens given in the "tokenizer_config.json" and # "special_tokens_map.json" files __SCREAMING_SNAKE_CASE : Optional[Any] = tokenizer_class.from_pretrained( _A , ) self.assertIn( '''an_additional_special_token''' , tokenizer_without_change_in_init.additional_special_tokens ) self.assertEqual( ['''an_additional_special_token'''] , tokenizer_without_change_in_init.convert_ids_to_tokens( tokenizer_without_change_in_init.convert_tokens_to_ids(['''an_additional_special_token'''] ) ) , ) # Now we test that we can change the value of additional_special_tokens in the from_pretrained __SCREAMING_SNAKE_CASE : str = added_tokens_extra_ids + [AddedToken('''a_new_additional_special_token''' , lstrip=_A )] __SCREAMING_SNAKE_CASE : Optional[int] = tokenizer_class.from_pretrained( _A , additional_special_tokens=_A , ) self.assertIn('''a_new_additional_special_token''' , tokenizer.additional_special_tokens ) self.assertEqual( ['''a_new_additional_special_token'''] , tokenizer.convert_ids_to_tokens( tokenizer.convert_tokens_to_ids(['''a_new_additional_special_token'''] ) ) , ) def UpperCAmelCase__ ( self : Tuple ): """simple docstring""" __SCREAMING_SNAKE_CASE : Dict = self.perceiver_tokenizer self.assertEqual(tokenizer.decode([178] ) , '''�''' ) def UpperCAmelCase__ ( self : str ): """simple docstring""" pass def UpperCAmelCase__ ( self : Tuple ): """simple docstring""" pass def UpperCAmelCase__ ( self : Dict ): """simple docstring""" pass def UpperCAmelCase__ ( self : Union[str, Any] ): """simple docstring""" pass def UpperCAmelCase__ ( self : Union[str, Any] ): """simple docstring""" __SCREAMING_SNAKE_CASE : Optional[int] = self.get_tokenizers(fast=_A , do_lower_case=_A ) for tokenizer in tokenizers: with self.subTest(F'''{tokenizer.__class__.__name__}''' ): __SCREAMING_SNAKE_CASE : Union[str, Any] = ['''[CLS]''', '''t''', '''h''', '''i''', '''s''', ''' ''', '''i''', '''s''', ''' ''', '''a''', ''' ''', '''t''', '''e''', '''s''', '''t''', '''[SEP]'''] __SCREAMING_SNAKE_CASE : int = tokenizer.convert_tokens_to_string(_A ) self.assertIsInstance(_A , _A )
74
import requests def _snake_case (__lowercase , __lowercase): UpperCamelCase_ = {'Content-Type': 'application/json'} UpperCamelCase_ = requests.post(__lowercase , json={'text': message_body} , headers=__lowercase) if response.status_code != 200: UpperCamelCase_ = ( 'Request to slack returned an error ' f"""{response.status_code}, the response is:\n{response.text}""" ) raise ValueError(__lowercase) if __name__ == "__main__": # Set the slack url to the one provided by Slack when you create the webhook at # https://my.slack.com/services/new/incoming-webhook/ send_slack_message("""<YOUR MESSAGE BODY>""", """<SLACK CHANNEL URL>""")
23
0
'''simple docstring''' from math import loga def a__ ( lowerCAmelCase__ ) -> int: if a < 0: raise ValueError('''Input value must be a positive integer''' ) elif isinstance(lowerCAmelCase__ , lowerCAmelCase__ ): raise TypeError('''Input value must be a \'int\' type''' ) return 0 if (a == 0) else int(loga(a & -a ) ) if __name__ == "__main__": import doctest doctest.testmod()
75
import re from pathlib import Path from unittest import TestCase import pytest @pytest.mark.integration class _a ( UpperCAmelCase__ ): """simple docstring""" def _UpperCAmelCase ( self , _UpperCAmelCase ) -> Dict: with open(_UpperCAmelCase , encoding='utf-8' ) as input_file: UpperCamelCase_ = re.compile(R'(?!.*\b(?:encoding|rb|w|wb|w+|wb+|ab|ab+)\b)(?<=\s)(open)\((.*)\)' ) UpperCamelCase_ = input_file.read() UpperCamelCase_ = regexp.search(_UpperCAmelCase ) return match def _UpperCAmelCase ( self , _UpperCAmelCase ) -> Dict: with open(_UpperCAmelCase , encoding='utf-8' ) as input_file: UpperCamelCase_ = re.compile(R'#[^\r\n]*print\(|\"[^\r\n]*print\(|\"\"\".*?print\(.*?\"\"\"|(print\()' , re.DOTALL ) UpperCamelCase_ = input_file.read() # use `re.finditer` to handle the case where the ignored groups would be matched first by `re.search` UpperCamelCase_ = regexp.finditer(_UpperCAmelCase ) UpperCamelCase_ = [match for match in matches if match is not None and match.group(1 ) is not None] return matches[0] if matches else None def _UpperCAmelCase ( self ) -> List[str]: UpperCamelCase_ = Path('./datasets' ) UpperCamelCase_ = list(dataset_paths.absolute().glob('**/*.py' ) ) for dataset in dataset_files: if self._no_encoding_on_file_open(str(_UpperCAmelCase ) ): raise AssertionError(f"""open(...) must use utf-8 encoding in {dataset}""" ) def _UpperCAmelCase ( self ) -> Optional[int]: UpperCamelCase_ = Path('./datasets' ) UpperCamelCase_ = list(dataset_paths.absolute().glob('**/*.py' ) ) for dataset in dataset_files: if self._no_print_statements(str(_UpperCAmelCase ) ): raise AssertionError(f"""print statement found in {dataset}. Use datasets.logger/logging instead.""" )
23
0
"""simple docstring""" import math def __UpperCAmelCase ( __UpperCamelCase = 1_00 ): __lowercase : List[Any] = sum(i * i for i in range(1 , n + 1 ) ) __lowercase : Any = int(math.pow(sum(range(1 , n + 1 ) ) , 2 ) ) return square_of_sum - sum_of_squares if __name__ == "__main__": print(F"{solution() = }")
76
import argparse import random import joblib import numpy as np import torch from igf.igf import ( SecondaryLearner, collect_objective_set, compute_perplexity, generate_datasets, load_gpta, recopy_gpta, set_seed, train_secondary_learner, ) from torch.utils.data import DataLoader, RandomSampler from transformers import GPTaLMHeadModel def _snake_case (__lowercase=32 , __lowercase=10 , __lowercase=100 , __lowercase=1026 , __lowercase=True , __lowercase="data/tokenized_stories_train_wikitext103.jbl" , __lowercase="igf_context_pairs.jbl" , ): set_seed(3) # generate train_data and objective_set UpperCamelCase_ , UpperCamelCase_ = generate_datasets( __lowercase , __lowercase , number=__lowercase , min_len=1026 , trim=__lowercase) # keeps model same across runs set_seed(4) # model, lm_optimizer, lm_scheduler = recopy_gpt2(model, device, max_steps) # store original model weights # can we train on GPU? UpperCamelCase_ = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu') # load pretrained model UpperCamelCase_ = load_gpta('gpt2').to(__lowercase) print('computing perplexity on objective set') UpperCamelCase_ = compute_perplexity(__lowercase , __lowercase , __lowercase).item() print('perplexity on objective set:' , __lowercase) # collect igf pairs and save to file demo.jbl collect_objective_set(__lowercase , __lowercase , __lowercase , __lowercase , __lowercase , __lowercase , __lowercase , __lowercase) # clean up, delete model and data we don't need anymore del model, train_data, objective_set torch.cuda.empty_cache() def _snake_case (__lowercase , __lowercase=15 , __lowercase=128 , __lowercase=100 , __lowercase="igf_model.pt" , ): set_seed(42) # Load pre-trained model UpperCamelCase_ = GPTaLMHeadModel.from_pretrained('gpt2') # Initialize secondary learner to use embedding weights of model UpperCamelCase_ = SecondaryLearner(__lowercase) # Train secondary learner UpperCamelCase_ = train_secondary_learner( __lowercase , __lowercase , max_epochs=__lowercase , batch_size=__lowercase , eval_freq=100 , igf_model_path=__lowercase , ) del model, secondary_learner_train_data torch.cuda.empty_cache() return secondary_learner def _snake_case (__lowercase , __lowercase , __lowercase , __lowercase=32 , __lowercase=1000 , __lowercase=16 , __lowercase=1.0 , __lowercase=recopy_gpta , __lowercase=None , __lowercase=10 , __lowercase="gpt2_finetuned.pt" , ): UpperCamelCase_ = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu') UpperCamelCase_ = RandomSampler(__lowercase) UpperCamelCase_ = DataLoader(__lowercase , sampler=__lowercase) UpperCamelCase_ = max_steps // (len(__lowercase)) + 1 UpperCamelCase_ = 0 UpperCamelCase_ = torch.zeros((1, context_len) , dtype=torch.long , device=__lowercase) UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ = recopy_model(__lowercase , __lowercase , __lowercase) model.train() if secondary_learner is not None: secondary_learner.to(__lowercase) secondary_learner.eval() UpperCamelCase_ = [] UpperCamelCase_ = 0 UpperCamelCase_ = [] UpperCamelCase_ = [] # Compute the performance of the transformer model at the beginning UpperCamelCase_ = compute_perplexity(__lowercase , __lowercase , __lowercase) test_perps.append(__lowercase) print('Test perplexity, step' , __lowercase , ':' , __lowercase) for epoch in range(int(__lowercase)): for step, example in enumerate(__lowercase): torch.cuda.empty_cache() UpperCamelCase_ = random.randint(0 , example.size(2) - context_len - 1) UpperCamelCase_ = example[0, 0, start : start + context_len] lm_optimizer.zero_grad() UpperCamelCase_ = model(__lowercase , labels=__lowercase) UpperCamelCase_ = True if secondary_learner is not None: UpperCamelCase_ = secondary_learner.forward( torch.tensor(__lowercase , dtype=torch.long , device=__lowercase).unsqueeze(0))[0].item() observed_qs.append(float(__lowercase)) # Here we implement the simple non-constant threshold for the predicted IG(X) value # We will decay the selectivity of our secondary learner filter from # 1 standard deviation above average to 1 below average after 10 batches. if global_step == 10: UpperCamelCase_ = -1 if predicted_q < threshold: UpperCamelCase_ = False # If we passed the filter, add the context to the batch! if do_backprop: contexts.append(np.array(context.cpu())) UpperCamelCase_ = outputs[0] lm_loss.backward() examples += 1 del outputs # Once the batch is filled with enough contexts, backprop on the batch. if examples == batch_size: torch.cuda.empty_cache() UpperCamelCase_ = 0 # Do LM backprop torch.nn.utils.clip_grad_norm_(model.parameters() , 3.0) lm_optimizer.step() lm_scheduler.step() # Update learning rate schedule global_step += 1 # Compute the performance of the transformer model at this batch if global_step % eval_interval == 0: UpperCamelCase_ = compute_perplexity(__lowercase , __lowercase , __lowercase) test_perps.append(__lowercase) print('Test perplexity, step' , __lowercase , ':' , __lowercase) # Break out of the loop after 60 batches if max_steps > 0 and global_step > 60: break if max_steps > 0 and global_step > 60: break # save finetuned transformer model torch.save(model.state_dict() , __lowercase) torch.cuda.empty_cache() # Do some cleaning up so we can reinitialize for the next run of this function del lm_optimizer del lm_scheduler return model def _snake_case (): UpperCamelCase_ = argparse.ArgumentParser(description='Fine-tune a transformer model with IGF on a language modeling task') # Required parameters parser.add_argument( '--data_dir' , default=__lowercase , type=__lowercase , required=__lowercase , help='The input data dir. Should contain data files for WikiText.' , ) parser.add_argument( '--model_name_or_path' , default=__lowercase , type=__lowercase , required=__lowercase , help='Path to pretrained model or model identifier from huggingface.co/models' , ) parser.add_argument( '--data_file' , type=__lowercase , default=__lowercase , help=( 'A jbl file containing tokenized data which can be split as objective dataset, ' 'train_dataset and test_dataset.' ) , ) parser.add_argument( '--igf_data_file' , type=__lowercase , default=__lowercase , help='A jbl file containing the context and information gain pairs to train secondary learner.' , ) parser.add_argument( '--output_dir' , default=__lowercase , type=__lowercase , required=__lowercase , help='The output directory where the final fine-tuned model is stored.' , ) parser.add_argument( '--tokenizer_name' , default=__lowercase , type=__lowercase , help='Pretrained tokenizer name or path if not the same as model_name' , ) parser.add_argument('--seed' , type=__lowercase , default=__lowercase , help='A seed for reproducible training.') parser.add_argument( '--context_len' , default=32 , type=__lowercase , help=( 'The maximum total input sequence length after tokenization. Sequences longer ' 'than this will be truncated, sequences shorter will be padded.' ) , ) parser.add_argument( '--size_objective_set' , default=100 , type=__lowercase , help='number of articles that are long enough to be used as our objective set' , ) parser.add_argument( '--eval_freq' , default=100 , type=__lowercase , help='secondary model evaluation is triggered at eval_freq') parser.add_argument('--max_steps' , default=1000 , type=__lowercase , help='To calculate training epochs') parser.add_argument( '--secondary_learner_batch_size' , default=128 , type=__lowercase , help='batch size of training data for secondary learner' , ) parser.add_argument( '--batch_size' , default=16 , type=__lowercase , help='batch size of training data of language model(gpt2) ') parser.add_argument( '--eval_interval' , default=10 , type=__lowercase , help=( 'decay the selectivity of our secondary learner filter from' '1 standard deviation above average to 1 below average after 10 batches' ) , ) parser.add_argument( '--number' , default=100 , type=__lowercase , help='The number of examples split to be used as objective_set/test_data') parser.add_argument( '--min_len' , default=1026 , type=__lowercase , help='The minimum length of the article to be used as objective set') parser.add_argument( '--secondary_learner_max_epochs' , default=15 , type=__lowercase , help='number of epochs to train secondary learner') parser.add_argument('--trim' , default=__lowercase , type=__lowercase , help='truncate the example if it exceeds context length') parser.add_argument( '--threshold' , default=1.0 , type=__lowercase , help=( 'The threshold value used by secondary learner to filter the train_data and allow only' ' informative data as input to the model' ) , ) parser.add_argument('--finetuned_model_name' , default='gpt2_finetuned.pt' , type=__lowercase , help='finetuned_model_name') parser.add_argument( '--recopy_model' , default=__lowercase , type=__lowercase , help='Reset the model to the original pretrained GPT-2 weights after each iteration' , ) # function calls # Collecting *n* pairs of context and information gain(X, IG(X)) for training the secondary learner generate_n_pairs( context_len=32 , max_steps=10 , size_objective_set=100 , min_len=1026 , trim=__lowercase , data_file='data/tokenized_stories_train_wikitext103.jbl' , igf_data_file='igf_context_pairs.jbl' , ) # Load train data for secondary learner UpperCamelCase_ = joblib.load('data/IGF_values.jbl') # Train secondary learner UpperCamelCase_ = training_secondary_learner( __lowercase , secondary_learner_max_epochs=15 , secondary_learner_batch_size=128 , eval_freq=100 , igf_model_path='igf_model.pt' , ) # load pretrained gpt2 model UpperCamelCase_ = GPTaLMHeadModel.from_pretrained('gpt2') set_seed(42) # Generate train and test data to train and evaluate gpt2 model UpperCamelCase_ , UpperCamelCase_ = generate_datasets( context_len=32 , file='data/tokenized_stories_train_wikitext103.jbl' , number=100 , min_len=1026 , trim=__lowercase) # fine-tuning of the gpt2 model using igf (Information Gain Filtration) finetune( __lowercase , __lowercase , __lowercase , context_len=32 , max_steps=1000 , batch_size=16 , threshold=1.0 , recopy_model=__lowercase , secondary_learner=__lowercase , eval_interval=10 , finetuned_model_name='gpt2_finetuned.pt' , ) if __name__ == "__main__": main()
23
0
"""simple docstring""" def _UpperCamelCase ( UpperCamelCase , UpperCamelCase ) -> str: """simple docstring""" __UpperCAmelCase : Any = "" for word_or_phrase in separated: if not isinstance(UpperCamelCase , UpperCamelCase ): raise Exception("join() accepts only strings to be joined" ) joined += word_or_phrase + separator return joined.strip(UpperCamelCase ) if __name__ == "__main__": from doctest import testmod testmod()
77
from __future__ import annotations import unittest from transformers import AutoTokenizer, MBartConfig, is_tf_available from transformers.testing_utils import require_sentencepiece, require_tf, require_tokenizers, slow from transformers.utils import cached_property from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFAutoModelForSeqaSeqLM, TFMBartForConditionalGeneration, TFMBartModel @require_tf class _a : """simple docstring""" A_ = MBartConfig A_ = {} A_ = """gelu""" def __init__( self , _UpperCAmelCase , _UpperCAmelCase=13 , _UpperCAmelCase=7 , _UpperCAmelCase=True , _UpperCAmelCase=False , _UpperCAmelCase=99 , _UpperCAmelCase=32 , _UpperCAmelCase=2 , _UpperCAmelCase=4 , _UpperCAmelCase=37 , _UpperCAmelCase=0.1 , _UpperCAmelCase=0.1 , _UpperCAmelCase=20 , _UpperCAmelCase=2 , _UpperCAmelCase=1 , _UpperCAmelCase=0 , ) -> Union[str, Any]: UpperCamelCase_ = parent UpperCamelCase_ = batch_size UpperCamelCase_ = seq_length UpperCamelCase_ = is_training UpperCamelCase_ = use_labels UpperCamelCase_ = vocab_size UpperCamelCase_ = hidden_size UpperCamelCase_ = num_hidden_layers UpperCamelCase_ = num_attention_heads UpperCamelCase_ = intermediate_size UpperCamelCase_ = hidden_dropout_prob UpperCamelCase_ = attention_probs_dropout_prob UpperCamelCase_ = max_position_embeddings UpperCamelCase_ = eos_token_id UpperCamelCase_ = pad_token_id UpperCamelCase_ = bos_token_id def _UpperCAmelCase ( self ) -> List[Any]: UpperCamelCase_ = ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size ) UpperCamelCase_ = tf.expand_dims(tf.constant([self.eos_token_id] * self.batch_size ) , 1 ) UpperCamelCase_ = tf.concat([input_ids, eos_tensor] , axis=1 ) UpperCamelCase_ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) UpperCamelCase_ = self.config_cls( vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_ids=[2] , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.pad_token_id , **self.config_updates , ) UpperCamelCase_ = prepare_mbart_inputs_dict(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) return config, inputs_dict def _UpperCAmelCase ( self , _UpperCAmelCase , _UpperCAmelCase ) -> List[str]: UpperCamelCase_ = TFMBartModel(config=_UpperCAmelCase ).get_decoder() UpperCamelCase_ = inputs_dict['input_ids'] UpperCamelCase_ = input_ids[:1, :] UpperCamelCase_ = inputs_dict['attention_mask'][:1, :] UpperCamelCase_ = inputs_dict['head_mask'] UpperCamelCase_ = 1 # first forward pass UpperCamelCase_ = model(_UpperCAmelCase , attention_mask=_UpperCAmelCase , head_mask=_UpperCAmelCase , use_cache=_UpperCAmelCase ) UpperCamelCase_ , UpperCamelCase_ = outputs.to_tuple() UpperCamelCase_ = past_key_values[1] def _snake_case (__lowercase , __lowercase , __lowercase , __lowercase=None , __lowercase=None , __lowercase=None , __lowercase=None , __lowercase=None , ): if attention_mask is None: UpperCamelCase_ = tf.cast(tf.math.not_equal(__lowercase , config.pad_token_id) , tf.inta) if decoder_attention_mask is None: UpperCamelCase_ = tf.concat( [ tf.ones(decoder_input_ids[:, :1].shape , dtype=tf.inta), tf.cast(tf.math.not_equal(decoder_input_ids[:, 1:] , config.pad_token_id) , tf.inta), ] , axis=-1 , ) if head_mask is None: UpperCamelCase_ = tf.ones((config.encoder_layers, config.encoder_attention_heads)) if decoder_head_mask is None: UpperCamelCase_ = tf.ones((config.decoder_layers, config.decoder_attention_heads)) if cross_attn_head_mask is None: UpperCamelCase_ = tf.ones((config.decoder_layers, config.decoder_attention_heads)) return { "input_ids": input_ids, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "decoder_attention_mask": decoder_attention_mask, "head_mask": head_mask, "decoder_head_mask": decoder_head_mask, "cross_attn_head_mask": cross_attn_head_mask, } @require_tf class _a ( UpperCAmelCase__ , UpperCAmelCase__ , unittest.TestCase ): """simple docstring""" A_ = (TFMBartForConditionalGeneration, TFMBartModel) if is_tf_available() else () A_ = (TFMBartForConditionalGeneration,) if is_tf_available() else () A_ = ( { """conversational""": TFMBartForConditionalGeneration, """feature-extraction""": TFMBartModel, """summarization""": TFMBartForConditionalGeneration, """text2text-generation""": TFMBartForConditionalGeneration, """translation""": TFMBartForConditionalGeneration, } if is_tf_available() else {} ) A_ = True A_ = False A_ = False def _UpperCAmelCase ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) -> Tuple: if pipeline_test_casse_name != "FeatureExtractionPipelineTests": # Exception encountered when calling layer '...' return True return False def _UpperCAmelCase ( self ) -> Optional[int]: UpperCamelCase_ = TFMBartModelTester(self ) UpperCamelCase_ = ConfigTester(self , config_class=_UpperCAmelCase ) def _UpperCAmelCase ( self ) -> Optional[int]: self.config_tester.run_common_tests() def _UpperCAmelCase ( self ) -> List[Any]: UpperCamelCase_ = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.check_decoder_model_past_large_inputs(*_UpperCAmelCase ) @require_sentencepiece @require_tokenizers @require_tf class _a ( unittest.TestCase ): """simple docstring""" A_ = [ """ UN Chief Says There Is No Military Solution in Syria""", ] A_ = [ """Şeful ONU declară că nu există o soluţie militară în Siria""", ] A_ = """facebook/mbart-large-en-ro""" @cached_property def _UpperCAmelCase ( self ) -> Any: return AutoTokenizer.from_pretrained(self.model_name ) @cached_property def _UpperCAmelCase ( self ) -> List[str]: UpperCamelCase_ = TFAutoModelForSeqaSeqLM.from_pretrained(self.model_name ) return model def _UpperCAmelCase ( self , **_UpperCAmelCase ) -> int: UpperCamelCase_ = self.translate_src_text(**_UpperCAmelCase ) self.assertListEqual(self.expected_text , _UpperCAmelCase ) def _UpperCAmelCase ( self , **_UpperCAmelCase ) -> List[str]: UpperCamelCase_ = self.tokenizer(self.src_text , **_UpperCAmelCase , return_tensors='tf' ) UpperCamelCase_ = self.model.generate( model_inputs.input_ids , attention_mask=model_inputs.attention_mask , num_beams=2 ) UpperCamelCase_ = self.tokenizer.batch_decode(_UpperCAmelCase , skip_special_tokens=_UpperCAmelCase ) return generated_words @slow def _UpperCAmelCase ( self ) -> List[Any]: self._assert_generated_batch_equal_expected()
23
0
'''simple docstring''' def lowerCAmelCase_ ( snake_case_ : Dict ) -> Union[str, Any]: '''simple docstring''' stooge(snake_case_ , 0 , len(snake_case_ ) - 1 ) return arr def lowerCAmelCase_ ( snake_case_ : Optional[int] , snake_case_ : Dict , snake_case_ : str ) -> Tuple: '''simple docstring''' if i >= h: return # If first element is smaller than the last then swap them if arr[i] > arr[h]: UpperCAmelCase_ , UpperCAmelCase_ = arr[h], arr[i] # If there are more than 2 elements in the array if h - i + 1 > 2: UpperCAmelCase_ = (int)((h - i + 1) / 3 ) # Recursively sort first 2/3 elements stooge(snake_case_ , snake_case_ , (h - t) ) # Recursively sort last 2/3 elements stooge(snake_case_ , i + t , (snake_case_) ) # Recursively sort first 2/3 elements stooge(snake_case_ , snake_case_ , (h - t) ) if __name__ == "__main__": SCREAMING_SNAKE_CASE_: Dict =input('Enter numbers separated by a comma:\n').strip() SCREAMING_SNAKE_CASE_: Tuple =[int(item) for item in user_input.split(',')] print(stooge_sort(unsorted))
78
def _snake_case (__lowercase): UpperCamelCase_ = 1 for i in range(1 , num + 1): fact *= i return fact def _snake_case (__lowercase): UpperCamelCase_ = 0 while number > 0: UpperCamelCase_ = number % 10 sum_of_digits += last_digit UpperCamelCase_ = number // 10 # Removing the last_digit from the given number return sum_of_digits def _snake_case (__lowercase = 100): UpperCamelCase_ = factorial(__lowercase) UpperCamelCase_ = split_and_add(__lowercase) return result if __name__ == "__main__": print(solution(int(input("""Enter the Number: """).strip())))
23
0
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tokenizers_available, is_torch_available, ) SCREAMING_SNAKE_CASE__ : Any = {"""configuration_plbart""": ["""PLBART_PRETRAINED_CONFIG_ARCHIVE_MAP""", """PLBartConfig"""]} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE__ : Tuple = ["""PLBartTokenizer"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE__ : Tuple = [ """PLBART_PRETRAINED_MODEL_ARCHIVE_LIST""", """PLBartForCausalLM""", """PLBartForConditionalGeneration""", """PLBartForSequenceClassification""", """PLBartModel""", """PLBartPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_plbart import PLBART_PRETRAINED_CONFIG_ARCHIVE_MAP, PLBartConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_plbart import PLBartTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_plbart import ( PLBART_PRETRAINED_MODEL_ARCHIVE_LIST, PLBartForCausalLM, PLBartForConditionalGeneration, PLBartForSequenceClassification, PLBartModel, PLBartPreTrainedModel, ) else: import sys SCREAMING_SNAKE_CASE__ : Optional[int] = _LazyModule(__name__, globals()["""__file__"""], _import_structure)
79
from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, is_valid_image, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging if is_vision_available(): import PIL snake_case__ : str = logging.get_logger(__name__) def _snake_case (__lowercase): if isinstance(__lowercase , (list, tuple)) and isinstance(videos[0] , (list, tuple)) and is_valid_image(videos[0][0]): return videos elif isinstance(__lowercase , (list, tuple)) and is_valid_image(videos[0]): return [videos] elif is_valid_image(__lowercase): return [[videos]] raise ValueError(f"""Could not make batched video from {videos}""") class _a ( UpperCAmelCase__ ): """simple docstring""" A_ = ["""pixel_values"""] def __init__( self , _UpperCAmelCase = True , _UpperCAmelCase = None , _UpperCAmelCase = PILImageResampling.BILINEAR , _UpperCAmelCase = True , _UpperCAmelCase = None , _UpperCAmelCase = True , _UpperCAmelCase = 1 / 255 , _UpperCAmelCase = True , _UpperCAmelCase = None , _UpperCAmelCase = None , **_UpperCAmelCase , ) -> None: super().__init__(**_UpperCAmelCase ) UpperCamelCase_ = size if size is not None else {'shortest_edge': 224} UpperCamelCase_ = get_size_dict(_UpperCAmelCase , default_to_square=_UpperCAmelCase ) UpperCamelCase_ = crop_size if crop_size is not None else {'height': 224, 'width': 224} UpperCamelCase_ = get_size_dict(_UpperCAmelCase , param_name='crop_size' ) UpperCamelCase_ = do_resize UpperCamelCase_ = size UpperCamelCase_ = do_center_crop UpperCamelCase_ = crop_size UpperCamelCase_ = resample UpperCamelCase_ = do_rescale UpperCamelCase_ = rescale_factor UpperCamelCase_ = do_normalize UpperCamelCase_ = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN UpperCamelCase_ = image_std if image_std is not None else IMAGENET_STANDARD_STD def _UpperCAmelCase ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase = PILImageResampling.BILINEAR , _UpperCAmelCase = None , **_UpperCAmelCase , ) -> np.ndarray: UpperCamelCase_ = get_size_dict(_UpperCAmelCase , default_to_square=_UpperCAmelCase ) if "shortest_edge" in size: UpperCamelCase_ = get_resize_output_image_size(_UpperCAmelCase , size['shortest_edge'] , default_to_square=_UpperCAmelCase ) elif "height" in size and "width" in size: UpperCamelCase_ = (size['height'], size['width']) else: raise ValueError(f"""Size must have 'height' and 'width' or 'shortest_edge' as keys. Got {size.keys()}""" ) return resize(_UpperCAmelCase , size=_UpperCAmelCase , resample=_UpperCAmelCase , data_format=_UpperCAmelCase , **_UpperCAmelCase ) def _UpperCAmelCase ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase = None , **_UpperCAmelCase , ) -> np.ndarray: UpperCamelCase_ = get_size_dict(_UpperCAmelCase ) if "height" not in size or "width" not in size: raise ValueError(f"""Size must have 'height' and 'width' as keys. Got {size.keys()}""" ) return center_crop(_UpperCAmelCase , size=(size['height'], size['width']) , data_format=_UpperCAmelCase , **_UpperCAmelCase ) def _UpperCAmelCase ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase = None , **_UpperCAmelCase , ) -> int: return rescale(_UpperCAmelCase , scale=_UpperCAmelCase , data_format=_UpperCAmelCase , **_UpperCAmelCase ) def _UpperCAmelCase ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase = None , **_UpperCAmelCase , ) -> np.ndarray: return normalize(_UpperCAmelCase , mean=_UpperCAmelCase , std=_UpperCAmelCase , data_format=_UpperCAmelCase , **_UpperCAmelCase ) def _UpperCAmelCase ( self , _UpperCAmelCase , _UpperCAmelCase = None , _UpperCAmelCase = None , _UpperCAmelCase = None , _UpperCAmelCase = None , _UpperCAmelCase = None , _UpperCAmelCase = None , _UpperCAmelCase = None , _UpperCAmelCase = None , _UpperCAmelCase = None , _UpperCAmelCase = None , _UpperCAmelCase = ChannelDimension.FIRST , ) -> np.ndarray: if do_resize and size is None or resample is None: raise ValueError('Size and resample must be specified if do_resize is True.' ) if do_center_crop and crop_size is None: raise ValueError('Crop size must be specified if do_center_crop is True.' ) if do_rescale and rescale_factor is None: raise ValueError('Rescale factor must be specified if do_rescale is True.' ) if do_normalize and (image_mean is None or image_std is None): raise ValueError('Image mean and std must be specified if do_normalize is True.' ) # All transformations expect numpy arrays. UpperCamelCase_ = to_numpy_array(_UpperCAmelCase ) if do_resize: UpperCamelCase_ = self.resize(image=_UpperCAmelCase , size=_UpperCAmelCase , resample=_UpperCAmelCase ) if do_center_crop: UpperCamelCase_ = self.center_crop(_UpperCAmelCase , size=_UpperCAmelCase ) if do_rescale: UpperCamelCase_ = self.rescale(image=_UpperCAmelCase , scale=_UpperCAmelCase ) if do_normalize: UpperCamelCase_ = self.normalize(image=_UpperCAmelCase , mean=_UpperCAmelCase , std=_UpperCAmelCase ) UpperCamelCase_ = to_channel_dimension_format(_UpperCAmelCase , _UpperCAmelCase ) return image def _UpperCAmelCase ( self , _UpperCAmelCase , _UpperCAmelCase = None , _UpperCAmelCase = None , _UpperCAmelCase = None , _UpperCAmelCase = None , _UpperCAmelCase = None , _UpperCAmelCase = None , _UpperCAmelCase = None , _UpperCAmelCase = None , _UpperCAmelCase = None , _UpperCAmelCase = None , _UpperCAmelCase = None , _UpperCAmelCase = ChannelDimension.FIRST , **_UpperCAmelCase , ) -> PIL.Image.Image: UpperCamelCase_ = do_resize if do_resize is not None else self.do_resize UpperCamelCase_ = resample if resample is not None else self.resample UpperCamelCase_ = do_center_crop if do_center_crop is not None else self.do_center_crop UpperCamelCase_ = do_rescale if do_rescale is not None else self.do_rescale UpperCamelCase_ = rescale_factor if rescale_factor is not None else self.rescale_factor UpperCamelCase_ = do_normalize if do_normalize is not None else self.do_normalize UpperCamelCase_ = image_mean if image_mean is not None else self.image_mean UpperCamelCase_ = image_std if image_std is not None else self.image_std UpperCamelCase_ = size if size is not None else self.size UpperCamelCase_ = get_size_dict(_UpperCAmelCase , default_to_square=_UpperCAmelCase ) UpperCamelCase_ = crop_size if crop_size is not None else self.crop_size UpperCamelCase_ = get_size_dict(_UpperCAmelCase , param_name='crop_size' ) if not valid_images(_UpperCAmelCase ): raise ValueError( 'Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ' 'torch.Tensor, tf.Tensor or jax.ndarray.' ) UpperCamelCase_ = make_batched(_UpperCAmelCase ) UpperCamelCase_ = [ [ self._preprocess_image( image=_UpperCAmelCase , do_resize=_UpperCAmelCase , size=_UpperCAmelCase , resample=_UpperCAmelCase , do_center_crop=_UpperCAmelCase , crop_size=_UpperCAmelCase , do_rescale=_UpperCAmelCase , rescale_factor=_UpperCAmelCase , do_normalize=_UpperCAmelCase , image_mean=_UpperCAmelCase , image_std=_UpperCAmelCase , data_format=_UpperCAmelCase , ) for img in video ] for video in videos ] UpperCamelCase_ = {'pixel_values': videos} return BatchFeature(data=_UpperCAmelCase , tensor_type=_UpperCAmelCase )
23
0
from sklearn.metrics import matthews_corrcoef import datasets __UpperCamelCase : Union[str, Any] = """ Compute the Matthews correlation coefficient (MCC) The Matthews correlation coefficient is used in machine learning as a measure of the quality of binary and multiclass classifications. It takes into account true and false positives and negatives and is generally regarded as a balanced measure which can be used even if the classes are of very different sizes. The MCC is in essence a correlation coefficient value between -1 and +1. A coefficient of +1 represents a perfect prediction, 0 an average random prediction and -1 an inverse prediction. The statistic is also known as the phi coefficient. [source: Wikipedia] """ __UpperCamelCase : List[str] = """ Args: predictions (list of int): Predicted labels, as returned by a model. references (list of int): Ground truth labels. sample_weight (list of int, float, or bool): Sample weights. Defaults to `None`. Returns: matthews_correlation (dict containing float): Matthews correlation. Examples: Example 1, a basic example with only predictions and references as inputs: >>> matthews_metric = datasets.load_metric(\"matthews_correlation\") >>> results = matthews_metric.compute(references=[1, 3, 2, 0, 3, 2], ... predictions=[1, 2, 2, 0, 3, 3]) >>> print(round(results['matthews_correlation'], 2)) 0.54 Example 2, the same example as above, but also including sample weights: >>> matthews_metric = datasets.load_metric(\"matthews_correlation\") >>> results = matthews_metric.compute(references=[1, 3, 2, 0, 3, 2], ... predictions=[1, 2, 2, 0, 3, 3], ... sample_weight=[0.5, 3, 1, 1, 1, 2]) >>> print(round(results['matthews_correlation'], 2)) 0.1 Example 3, the same example as above, but with sample weights that cause a negative correlation: >>> matthews_metric = datasets.load_metric(\"matthews_correlation\") >>> results = matthews_metric.compute(references=[1, 3, 2, 0, 3, 2], ... predictions=[1, 2, 2, 0, 3, 3], ... sample_weight=[0.5, 1, 0, 0, 0, 1]) >>> print(round(results['matthews_correlation'], 2)) -0.25 """ __UpperCamelCase : Tuple = """\ @article{scikit-learn, title={Scikit-learn: Machine Learning in {P}ython}, author={Pedregosa, F. and Varoquaux, G. and Gramfort, A. and Michel, V. and Thirion, B. and Grisel, O. and Blondel, M. and Prettenhofer, P. and Weiss, R. and Dubourg, V. and Vanderplas, J. and Passos, A. and Cournapeau, D. and Brucher, M. and Perrot, M. and Duchesnay, E.}, journal={Journal of Machine Learning Research}, volume={12}, pages={2825--2830}, year={2011} } """ @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class __UpperCamelCase ( datasets.Metric ): def _a ( self : List[str] ) -> Optional[int]: """simple docstring""" return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { """predictions""": datasets.Value("""int32""" ), """references""": datasets.Value("""int32""" ), } ) , reference_urls=[ """https://scikit-learn.org/stable/modules/generated/sklearn.metrics.matthews_corrcoef.html""" ] , ) def _a ( self : Union[str, Any] , _lowerCAmelCase : str , _lowerCAmelCase : Optional[Any] , _lowerCAmelCase : Optional[Any]=None ) -> Optional[Any]: """simple docstring""" return { "matthews_correlation": float(matthews_corrcoef(_lowerCAmelCase , _lowerCAmelCase , sample_weight=_lowerCAmelCase ) ), }
80
# DISCLAIMER: This file is strongly influenced by https://github.com/yang-song/score_sde_pytorch import math from dataclasses import dataclass from typing import Optional, Tuple, Union import torch from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput, randn_tensor from .scheduling_utils import SchedulerMixin, SchedulerOutput @dataclass class _a ( UpperCAmelCase__ ): """simple docstring""" A_ = 42 A_ = 42 class _a ( UpperCAmelCase__ , UpperCAmelCase__ ): """simple docstring""" A_ = 1 @register_to_config def __init__( self , _UpperCAmelCase = 2000 , _UpperCAmelCase = 0.1_5 , _UpperCAmelCase = 0.0_1 , _UpperCAmelCase = 1_3_4_8.0 , _UpperCAmelCase = 1e-5 , _UpperCAmelCase = 1 , ) -> Tuple: # standard deviation of the initial noise distribution UpperCamelCase_ = sigma_max # setable values UpperCamelCase_ = None self.set_sigmas(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) def _UpperCAmelCase ( self , _UpperCAmelCase , _UpperCAmelCase = None ) -> torch.FloatTensor: return sample def _UpperCAmelCase ( self , _UpperCAmelCase , _UpperCAmelCase = None , _UpperCAmelCase = None ) -> str: UpperCamelCase_ = sampling_eps if sampling_eps is not None else self.config.sampling_eps UpperCamelCase_ = torch.linspace(1 , _UpperCAmelCase , _UpperCAmelCase , device=_UpperCAmelCase ) def _UpperCAmelCase ( self , _UpperCAmelCase , _UpperCAmelCase = None , _UpperCAmelCase = None , _UpperCAmelCase = None ) -> Any: UpperCamelCase_ = sigma_min if sigma_min is not None else self.config.sigma_min UpperCamelCase_ = sigma_max if sigma_max is not None else self.config.sigma_max UpperCamelCase_ = sampling_eps if sampling_eps is not None else self.config.sampling_eps if self.timesteps is None: self.set_timesteps(_UpperCAmelCase , _UpperCAmelCase ) UpperCamelCase_ = sigma_min * (sigma_max / sigma_min) ** (self.timesteps / sampling_eps) UpperCamelCase_ = torch.exp(torch.linspace(math.log(_UpperCAmelCase ) , math.log(_UpperCAmelCase ) , _UpperCAmelCase ) ) UpperCamelCase_ = torch.tensor([sigma_min * (sigma_max / sigma_min) ** t for t in self.timesteps] ) def _UpperCAmelCase ( self , _UpperCAmelCase , _UpperCAmelCase ) -> List[Any]: return torch.where( timesteps == 0 , torch.zeros_like(t.to(timesteps.device ) ) , self.discrete_sigmas[timesteps - 1].to(timesteps.device ) , ) def _UpperCAmelCase ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase = None , _UpperCAmelCase = True , ) -> Union[SdeVeOutput, Tuple]: if self.timesteps is None: raise ValueError( '`self.timesteps` is not set, you need to run \'set_timesteps\' after creating the scheduler' ) UpperCamelCase_ = timestep * torch.ones( sample.shape[0] , device=sample.device ) # torch.repeat_interleave(timestep, sample.shape[0]) UpperCamelCase_ = (timestep * (len(self.timesteps ) - 1)).long() # mps requires indices to be in the same device, so we use cpu as is the default with cuda UpperCamelCase_ = timesteps.to(self.discrete_sigmas.device ) UpperCamelCase_ = self.discrete_sigmas[timesteps].to(sample.device ) UpperCamelCase_ = self.get_adjacent_sigma(_UpperCAmelCase , _UpperCAmelCase ).to(sample.device ) UpperCamelCase_ = torch.zeros_like(_UpperCAmelCase ) UpperCamelCase_ = (sigma**2 - adjacent_sigma**2) ** 0.5 # equation 6 in the paper: the model_output modeled by the network is grad_x log pt(x) # also equation 47 shows the analog from SDE models to ancestral sampling methods UpperCamelCase_ = diffusion.flatten() while len(diffusion.shape ) < len(sample.shape ): UpperCamelCase_ = diffusion.unsqueeze(-1 ) UpperCamelCase_ = drift - diffusion**2 * model_output # equation 6: sample noise for the diffusion term of UpperCamelCase_ = randn_tensor( sample.shape , layout=sample.layout , generator=_UpperCAmelCase , device=sample.device , dtype=sample.dtype ) UpperCamelCase_ = sample - drift # subtract because `dt` is a small negative timestep # TODO is the variable diffusion the correct scaling term for the noise? UpperCamelCase_ = prev_sample_mean + diffusion * noise # add impact of diffusion field g if not return_dict: return (prev_sample, prev_sample_mean) return SdeVeOutput(prev_sample=_UpperCAmelCase , prev_sample_mean=_UpperCAmelCase ) def _UpperCAmelCase ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase = None , _UpperCAmelCase = True , ) -> Union[SchedulerOutput, Tuple]: if self.timesteps is None: raise ValueError( '`self.timesteps` is not set, you need to run \'set_timesteps\' after creating the scheduler' ) # For small batch sizes, the paper "suggest replacing norm(z) with sqrt(d), where d is the dim. of z" # sample noise for correction UpperCamelCase_ = randn_tensor(sample.shape , layout=sample.layout , generator=_UpperCAmelCase ).to(sample.device ) # compute step size from the model_output, the noise, and the snr UpperCamelCase_ = torch.norm(model_output.reshape(model_output.shape[0] , -1 ) , dim=-1 ).mean() UpperCamelCase_ = torch.norm(noise.reshape(noise.shape[0] , -1 ) , dim=-1 ).mean() UpperCamelCase_ = (self.config.snr * noise_norm / grad_norm) ** 2 * 2 UpperCamelCase_ = step_size * torch.ones(sample.shape[0] ).to(sample.device ) # self.repeat_scalar(step_size, sample.shape[0]) # compute corrected sample: model_output term and noise term UpperCamelCase_ = step_size.flatten() while len(step_size.shape ) < len(sample.shape ): UpperCamelCase_ = step_size.unsqueeze(-1 ) UpperCamelCase_ = sample + step_size * model_output UpperCamelCase_ = prev_sample_mean + ((step_size * 2) ** 0.5) * noise if not return_dict: return (prev_sample,) return SchedulerOutput(prev_sample=_UpperCAmelCase ) def _UpperCAmelCase ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , ) -> torch.FloatTensor: # Make sure sigmas and timesteps have the same device and dtype as original_samples UpperCamelCase_ = timesteps.to(original_samples.device ) UpperCamelCase_ = self.discrete_sigmas.to(original_samples.device )[timesteps] UpperCamelCase_ = ( noise * sigmas[:, None, None, None] if noise is not None else torch.randn_like(_UpperCAmelCase ) * sigmas[:, None, None, None] ) UpperCamelCase_ = noise + original_samples return noisy_samples def __len__( self ) -> Optional[int]: return self.config.num_train_timesteps
23
0
def lowerCAmelCase_ ( __lowerCamelCase , __lowerCamelCase ): while second != 0: __snake_case : List[str] = first & second first ^= second __snake_case : Tuple = c << 1 return first if __name__ == "__main__": import doctest doctest.testmod() _snake_case : List[Any] = int(input("Enter the first number: ").strip()) _snake_case : Optional[int] = int(input("Enter the second number: ").strip()) print(f'''{add(first, second) = }''')
81
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available snake_case__ : Optional[int] = { """configuration_pegasus_x""": ["""PEGASUS_X_PRETRAINED_CONFIG_ARCHIVE_MAP""", """PegasusXConfig"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case__ : Dict = [ """PEGASUS_X_PRETRAINED_MODEL_ARCHIVE_LIST""", """PegasusXForConditionalGeneration""", """PegasusXModel""", """PegasusXPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_pegasus_x import PEGASUS_X_PRETRAINED_CONFIG_ARCHIVE_MAP, PegasusXConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_pegasus_x import ( PEGASUS_X_PRETRAINED_MODEL_ARCHIVE_LIST, PegasusXForConditionalGeneration, PegasusXModel, PegasusXPreTrainedModel, ) else: import sys snake_case__ : Optional[Any] = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
23
0
"""simple docstring""" import os import sys import unittest lowerCamelCase = os.path.abspath(os.path.dirname(os.path.dirname(os.path.dirname(__file__)))) sys.path.append(os.path.join(git_repo_path, """utils""")) import get_test_info # noqa: E402 from get_test_info import ( # noqa: E402 get_model_to_test_mapping, get_model_to_tester_mapping, get_test_to_tester_mapping, ) lowerCamelCase = os.path.join("""tests""", """models""", """bert""", """test_modeling_bert.py""") lowerCamelCase = os.path.join("""tests""", """models""", """blip""", """test_modeling_blip.py""") class lowercase__ ( unittest.TestCase ): '''simple docstring''' def lowercase__ ( self : List[Any] ) -> Any: '''simple docstring''' UpperCAmelCase_ = get_test_to_tester_mapping(_UpperCAmelCase ) UpperCAmelCase_ = get_test_to_tester_mapping(_UpperCAmelCase ) UpperCAmelCase_ = {"BertModelTest": "BertModelTester"} UpperCAmelCase_ = { "BlipModelTest": "BlipModelTester", "BlipTextImageModelTest": "BlipTextImageModelsModelTester", "BlipTextModelTest": "BlipTextModelTester", "BlipTextRetrievalModelTest": "BlipTextRetrievalModelTester", "BlipVQAModelTest": "BlipVQAModelTester", "BlipVisionModelTest": "BlipVisionModelTester", } self.assertEqual(get_test_info.to_json(_UpperCAmelCase ) , _UpperCAmelCase ) self.assertEqual(get_test_info.to_json(_UpperCAmelCase ) , _UpperCAmelCase ) def lowercase__ ( self : Union[str, Any] ) -> Dict: '''simple docstring''' UpperCAmelCase_ = get_model_to_test_mapping(_UpperCAmelCase ) UpperCAmelCase_ = get_model_to_test_mapping(_UpperCAmelCase ) UpperCAmelCase_ = { "BertForMaskedLM": ["BertModelTest"], "BertForMultipleChoice": ["BertModelTest"], "BertForNextSentencePrediction": ["BertModelTest"], "BertForPreTraining": ["BertModelTest"], "BertForQuestionAnswering": ["BertModelTest"], "BertForSequenceClassification": ["BertModelTest"], "BertForTokenClassification": ["BertModelTest"], "BertLMHeadModel": ["BertModelTest"], "BertModel": ["BertModelTest"], } UpperCAmelCase_ = { "BlipForConditionalGeneration": ["BlipTextImageModelTest"], "BlipForImageTextRetrieval": ["BlipTextRetrievalModelTest"], "BlipForQuestionAnswering": ["BlipVQAModelTest"], "BlipModel": ["BlipModelTest"], "BlipTextModel": ["BlipTextModelTest"], "BlipVisionModel": ["BlipVisionModelTest"], } self.assertEqual(get_test_info.to_json(_UpperCAmelCase ) , _UpperCAmelCase ) self.assertEqual(get_test_info.to_json(_UpperCAmelCase ) , _UpperCAmelCase ) def lowercase__ ( self : List[Any] ) -> Union[str, Any]: '''simple docstring''' UpperCAmelCase_ = get_model_to_tester_mapping(_UpperCAmelCase ) UpperCAmelCase_ = get_model_to_tester_mapping(_UpperCAmelCase ) UpperCAmelCase_ = { "BertForMaskedLM": ["BertModelTester"], "BertForMultipleChoice": ["BertModelTester"], "BertForNextSentencePrediction": ["BertModelTester"], "BertForPreTraining": ["BertModelTester"], "BertForQuestionAnswering": ["BertModelTester"], "BertForSequenceClassification": ["BertModelTester"], "BertForTokenClassification": ["BertModelTester"], "BertLMHeadModel": ["BertModelTester"], "BertModel": ["BertModelTester"], } UpperCAmelCase_ = { "BlipForConditionalGeneration": ["BlipTextImageModelsModelTester"], "BlipForImageTextRetrieval": ["BlipTextRetrievalModelTester"], "BlipForQuestionAnswering": ["BlipVQAModelTester"], "BlipModel": ["BlipModelTester"], "BlipTextModel": ["BlipTextModelTester"], "BlipVisionModel": ["BlipVisionModelTester"], } self.assertEqual(get_test_info.to_json(_UpperCAmelCase ) , _UpperCAmelCase ) self.assertEqual(get_test_info.to_json(_UpperCAmelCase ) , _UpperCAmelCase )
82
import datasets from .evaluate import evaluate snake_case__ : int = """\ @article{hendrycks2021cuad, title={CUAD: An Expert-Annotated NLP Dataset for Legal Contract Review}, author={Dan Hendrycks and Collin Burns and Anya Chen and Spencer Ball}, journal={arXiv preprint arXiv:2103.06268}, year={2021} } """ snake_case__ : Union[str, Any] = """ This metric wrap the official scoring script for version 1 of the Contract Understanding Atticus Dataset (CUAD). Contract Understanding Atticus Dataset (CUAD) v1 is a corpus of more than 13,000 labels in 510 commercial legal contracts that have been manually labeled to identify 41 categories of important clauses that lawyers look for when reviewing contracts in connection with corporate transactions. """ snake_case__ : Any = """ Computes CUAD scores (EM, F1, AUPR, Precision@80%Recall, and Precision@90%Recall). Args: predictions: List of question-answers dictionaries with the following key-values: - 'id': id of the question-answer pair as given in the references (see below) - 'prediction_text': list of possible texts for the answer, as a list of strings depending on a threshold on the confidence probability of each prediction. references: List of question-answers dictionaries with the following key-values: - 'id': id of the question-answer pair (see above), - 'answers': a Dict in the CUAD dataset format { 'text': list of possible texts for the answer, as a list of strings 'answer_start': list of start positions for the answer, as a list of ints } Note that answer_start values are not taken into account to compute the metric. Returns: 'exact_match': Exact match (the normalized answer exactly match the gold answer) 'f1': The F-score of predicted tokens versus the gold answer 'aupr': Area Under the Precision-Recall curve 'prec_at_80_recall': Precision at 80% recall 'prec_at_90_recall': Precision at 90% recall Examples: >>> predictions = [{'prediction_text': ['The seller:', 'The buyer/End-User: Shenzhen LOHAS Supply Chain Management Co., Ltd.'], 'id': 'LohaCompanyltd_20191209_F-1_EX-10.16_11917878_EX-10.16_Supply Agreement__Parties'}] >>> references = [{'answers': {'answer_start': [143, 49], 'text': ['The seller:', 'The buyer/End-User: Shenzhen LOHAS Supply Chain Management Co., Ltd.']}, 'id': 'LohaCompanyltd_20191209_F-1_EX-10.16_11917878_EX-10.16_Supply Agreement__Parties'}] >>> cuad_metric = datasets.load_metric(\"cuad\") >>> results = cuad_metric.compute(predictions=predictions, references=references) >>> print(results) {'exact_match': 100.0, 'f1': 100.0, 'aupr': 0.0, 'prec_at_80_recall': 1.0, 'prec_at_90_recall': 1.0} """ @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class _a ( datasets.Metric ): """simple docstring""" def _UpperCAmelCase ( self ) -> Optional[int]: return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { 'predictions': { 'id': datasets.Value('string' ), 'prediction_text': datasets.features.Sequence(datasets.Value('string' ) ), }, 'references': { 'id': datasets.Value('string' ), 'answers': datasets.features.Sequence( { 'text': datasets.Value('string' ), 'answer_start': datasets.Value('int32' ), } ), }, } ) , codebase_urls=['https://www.atticusprojectai.org/cuad'] , reference_urls=['https://www.atticusprojectai.org/cuad'] , ) def _UpperCAmelCase ( self , _UpperCAmelCase , _UpperCAmelCase ) -> Dict: UpperCamelCase_ = {prediction['id']: prediction['prediction_text'] for prediction in predictions} UpperCamelCase_ = [ { 'paragraphs': [ { 'qas': [ { 'answers': [{'text': answer_text} for answer_text in ref['answers']['text']], 'id': ref['id'], } for ref in references ] } ] } ] UpperCamelCase_ = evaluate(dataset=_UpperCAmelCase , predictions=_UpperCAmelCase ) return score
23
0
"""simple docstring""" lowerCAmelCase__ = { '''A''': '''.-''', '''B''': '''-...''', '''C''': '''-.-.''', '''D''': '''-..''', '''E''': '''.''', '''F''': '''..-.''', '''G''': '''--.''', '''H''': '''....''', '''I''': '''..''', '''J''': '''.---''', '''K''': '''-.-''', '''L''': '''.-..''', '''M''': '''--''', '''N''': '''-.''', '''O''': '''---''', '''P''': '''.--.''', '''Q''': '''--.-''', '''R''': '''.-.''', '''S''': '''...''', '''T''': '''-''', '''U''': '''..-''', '''V''': '''...-''', '''W''': '''.--''', '''X''': '''-..-''', '''Y''': '''-.--''', '''Z''': '''--..''', '''1''': '''.----''', '''2''': '''..---''', '''3''': '''...--''', '''4''': '''....-''', '''5''': '''.....''', '''6''': '''-....''', '''7''': '''--...''', '''8''': '''---..''', '''9''': '''----.''', '''0''': '''-----''', '''&''': '''.-...''', '''@''': '''.--.-.''', ''':''': '''---...''', ''',''': '''--..--''', '''.''': '''.-.-.-''', '''\'''': '''.----.''', '''"''': '''.-..-.''', '''?''': '''..--..''', '''/''': '''-..-.''', '''=''': '''-...-''', '''+''': '''.-.-.''', '''-''': '''-....-''', '''(''': '''-.--.''', ''')''': '''-.--.-''', '''!''': '''-.-.--''', ''' ''': '''/''' } # Exclamation mark is not in ITU-R recommendation # fmt: on lowerCAmelCase__ = {value: key for key, value in MORSE_CODE_DICT.items()} def snake_case_ ( A_ : str ): '''simple docstring''' return " ".join(MORSE_CODE_DICT[char] for char in message.upper() ) def snake_case_ ( A_ : str ): '''simple docstring''' return "".join(REVERSE_DICT[char] for char in message.split() ) def snake_case_ ( ): '''simple docstring''' _lowerCamelCase : List[Any] = '''Morse code here!''' print(A_ ) _lowerCamelCase : Optional[Any] = encrypt(A_ ) print(A_ ) _lowerCamelCase : Optional[Any] = decrypt(A_ ) print(A_ ) if __name__ == "__main__": main()
83
import os import tempfile from functools import partial from unittest import TestCase from unittest.mock import patch import datasets import datasets.config from .utils import require_beam class _a ( datasets.BeamBasedBuilder ): """simple docstring""" def _UpperCAmelCase ( self ) -> List[str]: return datasets.DatasetInfo( features=datasets.Features({'content': datasets.Value('string' )} ) , supervised_keys=_UpperCAmelCase , ) def _UpperCAmelCase ( self , _UpperCAmelCase , _UpperCAmelCase ) -> Optional[Any]: return [datasets.SplitGenerator(name=datasets.Split.TRAIN , gen_kwargs={'examples': get_test_dummy_examples()} )] def _UpperCAmelCase ( self , _UpperCAmelCase , _UpperCAmelCase ) -> Tuple: import apache_beam as beam return pipeline | "Load Examples" >> beam.Create(_UpperCAmelCase ) class _a ( datasets.BeamBasedBuilder ): """simple docstring""" def _UpperCAmelCase ( self ) -> Any: return datasets.DatasetInfo( features=datasets.Features({'a': datasets.Sequence({'b': datasets.Value('string' )} )} ) , supervised_keys=_UpperCAmelCase , ) def _UpperCAmelCase ( self , _UpperCAmelCase , _UpperCAmelCase ) -> Tuple: return [ datasets.SplitGenerator(name=datasets.Split.TRAIN , gen_kwargs={'examples': get_test_nested_examples()} ) ] def _UpperCAmelCase ( self , _UpperCAmelCase , _UpperCAmelCase ) -> Union[str, Any]: import apache_beam as beam return pipeline | "Load Examples" >> beam.Create(_UpperCAmelCase ) def _snake_case (): return [(i, {"content": content}) for i, content in enumerate(['foo', 'bar', 'foobar'])] def _snake_case (): return [(i, {"a": {"b": [content]}}) for i, content in enumerate(['foo', 'bar', 'foobar'])] class _a ( UpperCAmelCase__ ): """simple docstring""" @require_beam def _UpperCAmelCase ( self ) -> Dict: UpperCamelCase_ = len(get_test_dummy_examples() ) with tempfile.TemporaryDirectory() as tmp_cache_dir: UpperCamelCase_ = DummyBeamDataset(cache_dir=_UpperCAmelCase , beam_runner='DirectRunner' ) builder.download_and_prepare() self.assertTrue( os.path.exists( os.path.join(_UpperCAmelCase , builder.name , 'default' , '0.0.0' , f"""{builder.name}-train.arrow""" ) ) ) self.assertDictEqual(builder.info.features , datasets.Features({'content': datasets.Value('string' )} ) ) UpperCamelCase_ = builder.as_dataset() self.assertEqual(dset['train'].num_rows , _UpperCAmelCase ) self.assertEqual(dset['train'].info.splits['train'].num_examples , _UpperCAmelCase ) self.assertDictEqual(dset['train'][0] , get_test_dummy_examples()[0][1] ) self.assertDictEqual( dset['train'][expected_num_examples - 1] , get_test_dummy_examples()[expected_num_examples - 1][1] ) self.assertTrue( os.path.exists(os.path.join(_UpperCAmelCase , builder.name , 'default' , '0.0.0' , 'dataset_info.json' ) ) ) del dset @require_beam def _UpperCAmelCase ( self ) -> List[str]: import apache_beam as beam UpperCamelCase_ = beam.io.parquetio.WriteToParquet UpperCamelCase_ = len(get_test_dummy_examples() ) with tempfile.TemporaryDirectory() as tmp_cache_dir: UpperCamelCase_ = DummyBeamDataset(cache_dir=_UpperCAmelCase , beam_runner='DirectRunner' ) with patch('apache_beam.io.parquetio.WriteToParquet' ) as write_parquet_mock: UpperCamelCase_ = partial(_UpperCAmelCase , num_shards=2 ) builder.download_and_prepare() self.assertTrue( os.path.exists( os.path.join( _UpperCAmelCase , builder.name , 'default' , '0.0.0' , f"""{builder.name}-train-00000-of-00002.arrow""" ) ) ) self.assertTrue( os.path.exists( os.path.join( _UpperCAmelCase , builder.name , 'default' , '0.0.0' , f"""{builder.name}-train-00000-of-00002.arrow""" ) ) ) self.assertDictEqual(builder.info.features , datasets.Features({'content': datasets.Value('string' )} ) ) UpperCamelCase_ = builder.as_dataset() self.assertEqual(dset['train'].num_rows , _UpperCAmelCase ) self.assertEqual(dset['train'].info.splits['train'].num_examples , _UpperCAmelCase ) # Order is not preserved when sharding, so we just check that all the elements are there self.assertListEqual(sorted(dset['train']['content'] ) , sorted(['foo', 'bar', 'foobar'] ) ) self.assertTrue( os.path.exists(os.path.join(_UpperCAmelCase , builder.name , 'default' , '0.0.0' , 'dataset_info.json' ) ) ) del dset @require_beam def _UpperCAmelCase ( self ) -> Any: with tempfile.TemporaryDirectory() as tmp_cache_dir: UpperCamelCase_ = DummyBeamDataset(cache_dir=_UpperCAmelCase ) self.assertRaises(datasets.builder.MissingBeamOptions , builder.download_and_prepare ) @require_beam def _UpperCAmelCase ( self ) -> Union[str, Any]: UpperCamelCase_ = len(get_test_nested_examples() ) with tempfile.TemporaryDirectory() as tmp_cache_dir: UpperCamelCase_ = NestedBeamDataset(cache_dir=_UpperCAmelCase , beam_runner='DirectRunner' ) builder.download_and_prepare() self.assertTrue( os.path.exists( os.path.join(_UpperCAmelCase , builder.name , 'default' , '0.0.0' , f"""{builder.name}-train.arrow""" ) ) ) self.assertDictEqual( builder.info.features , datasets.Features({'a': datasets.Sequence({'b': datasets.Value('string' )} )} ) ) UpperCamelCase_ = builder.as_dataset() self.assertEqual(dset['train'].num_rows , _UpperCAmelCase ) self.assertEqual(dset['train'].info.splits['train'].num_examples , _UpperCAmelCase ) self.assertDictEqual(dset['train'][0] , get_test_nested_examples()[0][1] ) self.assertDictEqual( dset['train'][expected_num_examples - 1] , get_test_nested_examples()[expected_num_examples - 1][1] ) self.assertTrue( os.path.exists(os.path.join(_UpperCAmelCase , builder.name , 'default' , '0.0.0' , 'dataset_info.json' ) ) ) del dset
23
0
from __future__ import annotations from collections.abc import Callable from typing import Generic, TypeVar UpperCAmelCase = TypeVar('''T''') UpperCAmelCase = TypeVar('''U''') class A_ ( Generic[T, U] ): '''simple docstring''' def __init__( self , snake_case , snake_case ): lowercase = key lowercase = val lowercase = None lowercase = None def __repr__( self ): return ( F'''Node: key: {self.key}, val: {self.val}, ''' F'''has next: {bool(self.next )}, has prev: {bool(self.prev )}''' ) class A_ ( Generic[T, U] ): '''simple docstring''' def __init__( self ): lowercase = DoubleLinkedListNode(snake_case , snake_case ) lowercase = DoubleLinkedListNode(snake_case , snake_case ) lowercase , lowercase = self.rear, self.head def __repr__( self ): lowercase = ['DoubleLinkedList'] lowercase = self.head while node.next is not None: rep.append(str(snake_case ) ) lowercase = node.next rep.append(str(self.rear ) ) return ",\n ".join(snake_case ) def SCREAMING_SNAKE_CASE__ ( self , snake_case ): lowercase = self.rear.prev # All nodes other than self.head are guaranteed to have non-None previous assert previous is not None lowercase = node lowercase = previous lowercase = node lowercase = self.rear def SCREAMING_SNAKE_CASE__ ( self , snake_case ): if node.prev is None or node.next is None: return None lowercase = node.next lowercase = node.prev lowercase = None lowercase = None return node class A_ ( Generic[T, U] ): '''simple docstring''' _UpperCamelCase : dict[Callable[[T], U], LRUCache[T, U]] = {} def __init__( self , snake_case ): lowercase = DoubleLinkedList() lowercase = capacity lowercase = 0 lowercase = 0 lowercase = 0 lowercase = {} def __repr__( self ): return ( F'''CacheInfo(hits={self.hits}, misses={self.miss}, ''' F'''capacity={self.capacity}, current size={self.num_keys})''' ) def __contains__( self , snake_case ): return key in self.cache def SCREAMING_SNAKE_CASE__ ( self , snake_case ): # Note: pythonic interface would throw KeyError rather than return None if key in self.cache: self.hits += 1 lowercase = self.cache[key] lowercase = self.list.remove(self.cache[key] ) assert node == value_node # node is guaranteed not None because it is in self.cache assert node is not None self.list.add(snake_case ) return node.val self.miss += 1 return None def SCREAMING_SNAKE_CASE__ ( self , snake_case , snake_case ): if key not in self.cache: if self.num_keys >= self.capacity: # delete first node (oldest) when over capacity lowercase = self.list.head.next # guaranteed to have a non-None first node when num_keys > 0 # explain to type checker via assertions assert first_node is not None assert first_node.key is not None assert ( self.list.remove(snake_case ) is not None ) # node guaranteed to be in list assert node.key is not None del self.cache[first_node.key] self.num_keys -= 1 lowercase = DoubleLinkedListNode(snake_case , snake_case ) self.list.add(self.cache[key] ) self.num_keys += 1 else: # bump node to the end of the list, update value lowercase = self.list.remove(self.cache[key] ) assert node is not None # node guaranteed to be in list lowercase = value self.list.add(snake_case ) @classmethod def SCREAMING_SNAKE_CASE__ ( cls , snake_case = 128 ): def cache_decorator_inner(snake_case ) -> Callable[..., U]: def cache_decorator_wrapper(*snake_case ) -> U: if func not in cls.decorator_function_to_instance_map: lowercase = LRUCache(snake_case ) lowercase = cls.decorator_function_to_instance_map[func].get(args[0] ) if result is None: lowercase = func(*snake_case ) cls.decorator_function_to_instance_map[func].put(args[0] , snake_case ) return result def cache_info() -> LRUCache[T, U]: return cls.decorator_function_to_instance_map[func] setattr(snake_case , 'cache_info' , snake_case ) # noqa: B010 return cache_decorator_wrapper return cache_decorator_inner if __name__ == "__main__": import doctest doctest.testmod()
84
import argparse import torch from ...utils import logging from . import AlbertConfig, AlbertForPreTraining, load_tf_weights_in_albert logging.set_verbosity_info() def _snake_case (__lowercase , __lowercase , __lowercase): # Initialise PyTorch model UpperCamelCase_ = AlbertConfig.from_json_file(__lowercase) print(f"""Building PyTorch model from configuration: {config}""") UpperCamelCase_ = AlbertForPreTraining(__lowercase) # Load weights from tf checkpoint load_tf_weights_in_albert(__lowercase , __lowercase , __lowercase) # Save pytorch-model print(f"""Save PyTorch model to {pytorch_dump_path}""") torch.save(model.state_dict() , __lowercase) if __name__ == "__main__": snake_case__ : Tuple = argparse.ArgumentParser() # Required parameters parser.add_argument( """--tf_checkpoint_path""", default=None, type=str, required=True, help="""Path to the TensorFlow checkpoint path.""" ) parser.add_argument( """--albert_config_file""", default=None, type=str, required=True, help=( """The config json file corresponding to the pre-trained ALBERT model. \n""" """This specifies the model architecture.""" ), ) parser.add_argument( """--pytorch_dump_path""", default=None, type=str, required=True, help="""Path to the output PyTorch model.""" ) snake_case__ : str = parser.parse_args() convert_tf_checkpoint_to_pytorch(args.tf_checkpoint_path, args.albert_config_file, args.pytorch_dump_path)
23
0
def _a ( lowercase__ : int ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : Optional[Any] = n ** (1 / 3) return (val * val * val) == n if __name__ == "__main__": print(perfect_cube(27)) print(perfect_cube(4))
85
from transformers import BertTokenizer, EncoderDecoderModel, SeqaSeqTrainer, SeqaSeqTrainingArguments from transformers.testing_utils import TestCasePlus, require_torch, slow from transformers.utils import is_datasets_available if is_datasets_available(): import datasets class _a ( UpperCAmelCase__ ): """simple docstring""" @slow @require_torch def _UpperCAmelCase ( self ) -> List[Any]: UpperCamelCase_ = EncoderDecoderModel.from_encoder_decoder_pretrained('prajjwal1/bert-tiny' , 'prajjwal1/bert-tiny' ) UpperCamelCase_ = BertTokenizer.from_pretrained('bert-base-uncased' ) UpperCamelCase_ = bertabert.config.encoder.vocab_size UpperCamelCase_ = tokenizer.sep_token_id UpperCamelCase_ = tokenizer.cls_token_id UpperCamelCase_ = 128 UpperCamelCase_ = datasets.load_dataset('cnn_dailymail' , '3.0.0' , split='train[:1%]' ) UpperCamelCase_ = datasets.load_dataset('cnn_dailymail' , '3.0.0' , split='validation[:1%]' ) UpperCamelCase_ = train_dataset.select(range(32 ) ) UpperCamelCase_ = val_dataset.select(range(16 ) ) UpperCamelCase_ = 4 def _map_to_encoder_decoder_inputs(_UpperCAmelCase ): # Tokenizer will automatically set [BOS] <text> [EOS] UpperCamelCase_ = tokenizer(batch['article'] , padding='max_length' , truncation=_UpperCAmelCase , max_length=512 ) UpperCamelCase_ = tokenizer(batch['highlights'] , padding='max_length' , truncation=_UpperCAmelCase , max_length=128 ) UpperCamelCase_ = inputs.input_ids UpperCamelCase_ = inputs.attention_mask UpperCamelCase_ = outputs.input_ids UpperCamelCase_ = outputs.input_ids.copy() UpperCamelCase_ = [ [-100 if token == tokenizer.pad_token_id else token for token in labels] for labels in batch['labels'] ] UpperCamelCase_ = outputs.attention_mask assert all(len(_UpperCAmelCase ) == 512 for x in inputs.input_ids ) assert all(len(_UpperCAmelCase ) == 128 for x in outputs.input_ids ) return batch def _compute_metrics(_UpperCAmelCase ): UpperCamelCase_ = pred.label_ids UpperCamelCase_ = pred.predictions # all unnecessary tokens are removed UpperCamelCase_ = tokenizer.batch_decode(_UpperCAmelCase , skip_special_tokens=_UpperCAmelCase ) UpperCamelCase_ = tokenizer.batch_decode(_UpperCAmelCase , skip_special_tokens=_UpperCAmelCase ) UpperCamelCase_ = sum([int(pred_str[i] == label_str[i] ) for i in range(len(_UpperCAmelCase ) )] ) / len(_UpperCAmelCase ) return {"accuracy": accuracy} # map train dataset UpperCamelCase_ = train_dataset.map( _map_to_encoder_decoder_inputs , batched=_UpperCAmelCase , batch_size=_UpperCAmelCase , remove_columns=['article', 'highlights'] , ) train_dataset.set_format( type='torch' , columns=['input_ids', 'attention_mask', 'decoder_input_ids', 'decoder_attention_mask', 'labels'] , ) # same for validation dataset UpperCamelCase_ = val_dataset.map( _map_to_encoder_decoder_inputs , batched=_UpperCAmelCase , batch_size=_UpperCAmelCase , remove_columns=['article', 'highlights'] , ) val_dataset.set_format( type='torch' , columns=['input_ids', 'attention_mask', 'decoder_input_ids', 'decoder_attention_mask', 'labels'] , ) UpperCamelCase_ = self.get_auto_remove_tmp_dir() UpperCamelCase_ = SeqaSeqTrainingArguments( output_dir=_UpperCAmelCase , per_device_train_batch_size=_UpperCAmelCase , per_device_eval_batch_size=_UpperCAmelCase , predict_with_generate=_UpperCAmelCase , evaluation_strategy='steps' , do_train=_UpperCAmelCase , do_eval=_UpperCAmelCase , warmup_steps=0 , eval_steps=2 , logging_steps=2 , ) # instantiate trainer UpperCamelCase_ = SeqaSeqTrainer( model=_UpperCAmelCase , args=_UpperCAmelCase , compute_metrics=_compute_metrics , train_dataset=_UpperCAmelCase , eval_dataset=_UpperCAmelCase , tokenizer=_UpperCAmelCase , ) # start training trainer.train()
23
0
import argparse import requests import torch from PIL import Image from transformers import CLIPProcessor, GroupViTConfig, GroupViTModel def __snake_case ( __UpperCamelCase : Optional[int] ): """simple docstring""" if "img_encoder.pos_embed" in name: A_ = name.replace("img_encoder.pos_embed" ,"vision_model.embeddings.position_embeddings" ) if "img_encoder.patch_embed.proj" in name: A_ = name.replace("img_encoder.patch_embed.proj" ,"vision_model.embeddings.patch_embeddings.projection" ) if "img_encoder.patch_embed.norm" in name: A_ = name.replace("img_encoder.patch_embed.norm" ,"vision_model.embeddings.layernorm" ) if "img_encoder.layers" in name: A_ = name.replace("img_encoder.layers" ,"vision_model.encoder.stages" ) if "blocks" in name and "res" not in name: A_ = name.replace("blocks" ,"layers" ) if "attn" in name and "pre_assign" not in name: A_ = name.replace("attn" ,"self_attn" ) if "proj" in name and "self_attn" in name and "text" not in name: A_ = name.replace("proj" ,"out_proj" ) if "pre_assign_attn.attn.proj" in name: A_ = name.replace("pre_assign_attn.attn.proj" ,"pre_assign_attn.attn.out_proj" ) if "norm1" in name: A_ = name.replace("norm1" ,"layer_norm1" ) if "norm2" in name and "pre_assign" not in name: A_ = name.replace("norm2" ,"layer_norm2" ) if "img_encoder.norm" in name: A_ = name.replace("img_encoder.norm" ,"vision_model.layernorm" ) # text encoder if "text_encoder.token_embedding" in name: A_ = name.replace("text_encoder.token_embedding" ,"text_model.embeddings.token_embedding" ) if "text_encoder.positional_embedding" in name: A_ = name.replace("text_encoder.positional_embedding" ,"text_model.embeddings.position_embedding.weight" ) if "text_encoder.transformer.resblocks." in name: A_ = name.replace("text_encoder.transformer.resblocks." ,"text_model.encoder.layers." ) if "ln_1" in name: A_ = name.replace("ln_1" ,"layer_norm1" ) if "ln_2" in name: A_ = name.replace("ln_2" ,"layer_norm2" ) if "c_fc" in name: A_ = name.replace("c_fc" ,"fc1" ) if "c_proj" in name: A_ = name.replace("c_proj" ,"fc2" ) if "text_encoder" in name: A_ = name.replace("text_encoder" ,"text_model" ) if "ln_final" in name: A_ = name.replace("ln_final" ,"final_layer_norm" ) # projection layers if "img_projector.linear_hidden." in name: A_ = name.replace("img_projector.linear_hidden." ,"visual_projection." ) if "img_projector.linear_out." in name: A_ = name.replace("img_projector.linear_out." ,"visual_projection.3." ) if "text_projector.linear_hidden" in name: A_ = name.replace("text_projector.linear_hidden" ,"text_projection" ) if "text_projector.linear_out" in name: A_ = name.replace("text_projector.linear_out" ,"text_projection.3" ) return name def __snake_case ( __UpperCamelCase : List[str] ,__UpperCamelCase : List[Any] ): """simple docstring""" for key in orig_state_dict.copy().keys(): A_ = orig_state_dict.pop(__UpperCamelCase ) if "qkv" in key: # weights and biases of the key, value and query projections of vision encoder's attention layers require special treatment: # we need to split them up into separate matrices/vectors A_ = key.split("." ) A_ , A_ = int(key_split[2] ), int(key_split[4] ) A_ = config.vision_config.hidden_size if "weight" in key: A_ = val[:dim, :] A_ = val[dim : dim * 2, :] A_ = val[-dim:, :] else: A_ = val[:dim] A_ = val[dim : dim * 2] A_ = val[-dim:] elif "in_proj" in key: # weights and biases of the key, value and query projections of text encoder's attention layers require special treatment: # we need to split them up into separate matrices/vectors A_ = key.split("." ) A_ = int(key_split[3] ) A_ = config.text_config.hidden_size if "weight" in key: A_ = val[:dim, :] A_ = val[ dim : dim * 2, : ] A_ = val[-dim:, :] else: A_ = val[:dim] A_ = val[dim : dim * 2] A_ = val[-dim:] else: A_ = rename_key(__UpperCamelCase ) # squeeze if necessary if ( "text_projection.0" in new_name or "text_projection.3" in new_name or "visual_projection.0" in new_name or "visual_projection.3" in new_name ): A_ = val.squeeze_() else: A_ = val return orig_state_dict def __snake_case ( ): """simple docstring""" A_ = "http://images.cocodataset.org/val2017/000000039769.jpg" A_ = Image.open(requests.get(__UpperCamelCase ,stream=__UpperCamelCase ).raw ) return im @torch.no_grad() def __snake_case ( __UpperCamelCase : Optional[int] ,__UpperCamelCase : Union[str, Any] ,__UpperCamelCase : Optional[int]="groupvit-gcc-yfcc" ,__UpperCamelCase : List[Any]=False ): """simple docstring""" A_ = GroupViTConfig() A_ = GroupViTModel(__UpperCamelCase ).eval() A_ = torch.load(__UpperCamelCase ,map_location="cpu" )["model"] A_ = convert_state_dict(__UpperCamelCase ,__UpperCamelCase ) A_ , A_ = model.load_state_dict(__UpperCamelCase ,strict=__UpperCamelCase ) assert missing_keys == ["text_model.embeddings.position_ids"] assert (unexpected_keys == ["multi_label_logit_scale"]) or (len(__UpperCamelCase ) == 0) # verify result A_ = CLIPProcessor.from_pretrained("openai/clip-vit-base-patch32" ) A_ = prepare_img() A_ = processor(text=["a photo of a cat", "a photo of a dog"] ,images=__UpperCamelCase ,padding=__UpperCamelCase ,return_tensors="pt" ) with torch.no_grad(): A_ = model(**__UpperCamelCase ) if model_name == "groupvit-gcc-yfcc": A_ = torch.tensor([[13.3523, 6.3629]] ) elif model_name == "groupvit-gcc-redcaps": A_ = torch.tensor([[16.1873, 8.6230]] ) else: raise ValueError(f'''Model name {model_name} not supported.''' ) assert torch.allclose(outputs.logits_per_image ,__UpperCamelCase ,atol=1E-3 ) processor.save_pretrained(__UpperCamelCase ) model.save_pretrained(__UpperCamelCase ) print("Successfully saved processor and model to" ,__UpperCamelCase ) if push_to_hub: print("Pushing to the hub..." ) processor.push_to_hub(__UpperCamelCase ,organization="nielsr" ) model.push_to_hub(__UpperCamelCase ,organization="nielsr" ) if __name__ == "__main__": __a :Tuple = argparse.ArgumentParser() parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to dump the processor and PyTorch model.' ) parser.add_argument('--checkpoint_path', default=None, type=str, help='Path to GroupViT checkpoint') parser.add_argument( '--model_name', default='groupvit-gccy-fcc', type=str, help='Name of the model. Expecting either \'groupvit-gcc-yfcc\' or \'groupvit-gcc-redcaps\'', ) parser.add_argument( '--push_to_hub', action='store_true', help='Whether or not to push the converted model and processor to the 🤗 hub using the provided `model_name`.', ) __a :int = parser.parse_args() convert_groupvit_checkpoint(args.checkpoint_path, args.pytorch_dump_folder_path, args.model_name, args.push_to_hub)
86
import argparse import os import evaluate import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType ######################################################################## # This is a fully working simple example to use Accelerate # and perform gradient accumulation # # This example trains a Bert base model on GLUE MRPC # in any of the following settings (with the same script): # - single CPU or single GPU # - multi GPUS (using PyTorch distributed mode) # - (multi) TPUs # - fp16 (mixed-precision) or fp32 (normal precision) # # To run it in each of these various modes, follow the instructions # in the readme for examples: # https://github.com/huggingface/accelerate/tree/main/examples # ######################################################################## snake_case__ : Dict = 1_6 snake_case__ : List[str] = 3_2 def _snake_case (__lowercase , __lowercase = 16): UpperCamelCase_ = AutoTokenizer.from_pretrained('bert-base-cased') UpperCamelCase_ = load_dataset('glue' , 'mrpc') def tokenize_function(__lowercase): # max_length=None => use the model max length (it's actually the default) UpperCamelCase_ = tokenizer(examples['sentence1'] , examples['sentence2'] , truncation=__lowercase , max_length=__lowercase) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset # starting with the main process first: with accelerator.main_process_first(): UpperCamelCase_ = datasets.map( __lowercase , batched=__lowercase , remove_columns=['idx', 'sentence1', 'sentence2'] , ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library UpperCamelCase_ = tokenized_datasets.rename_column('label' , 'labels') def collate_fn(__lowercase): # On TPU it's best to pad everything to the same length or training will be very slow. UpperCamelCase_ = 128 if accelerator.distributed_type == DistributedType.TPU else None # When using mixed precision we want round multiples of 8/16 if accelerator.mixed_precision == "fp8": UpperCamelCase_ = 16 elif accelerator.mixed_precision != "no": UpperCamelCase_ = 8 else: UpperCamelCase_ = None return tokenizer.pad( __lowercase , padding='longest' , max_length=__lowercase , pad_to_multiple_of=__lowercase , return_tensors='pt' , ) # Instantiate dataloaders. UpperCamelCase_ = DataLoader( tokenized_datasets['train'] , shuffle=__lowercase , collate_fn=__lowercase , batch_size=__lowercase) UpperCamelCase_ = DataLoader( tokenized_datasets['validation'] , shuffle=__lowercase , collate_fn=__lowercase , batch_size=__lowercase) return train_dataloader, eval_dataloader # For testing only if os.environ.get("""TESTING_MOCKED_DATALOADERS""", None) == "1": from accelerate.test_utils.training import mocked_dataloaders snake_case__ : List[str] = mocked_dataloaders # noqa: F811 def _snake_case (__lowercase , __lowercase): # For testing only if os.environ.get('TESTING_MOCKED_DATALOADERS' , __lowercase) == "1": UpperCamelCase_ = 2 # New Code # UpperCamelCase_ = int(args.gradient_accumulation_steps) # Initialize accelerator UpperCamelCase_ = Accelerator( cpu=args.cpu , mixed_precision=args.mixed_precision , gradient_accumulation_steps=__lowercase) if accelerator.distributed_type == DistributedType.TPU and gradient_accumulation_steps > 1: raise NotImplementedError( 'Gradient accumulation on TPUs is currently not supported. Pass `gradient_accumulation_steps=1`') # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs UpperCamelCase_ = config['lr'] UpperCamelCase_ = int(config['num_epochs']) UpperCamelCase_ = int(config['seed']) UpperCamelCase_ = int(config['batch_size']) UpperCamelCase_ = evaluate.load('glue' , 'mrpc') set_seed(__lowercase) UpperCamelCase_ , UpperCamelCase_ = get_dataloaders(__lowercase , __lowercase) # Instantiate the model (we build the model here so that the seed also control new weights initialization) UpperCamelCase_ = AutoModelForSequenceClassification.from_pretrained('bert-base-cased' , return_dict=__lowercase) # We could avoid this line since the accelerator is set with `device_placement=True` (default value). # Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer # creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that). UpperCamelCase_ = model.to(accelerator.device) # Instantiate optimizer UpperCamelCase_ = AdamW(params=model.parameters() , lr=__lowercase) # Instantiate scheduler UpperCamelCase_ = get_linear_schedule_with_warmup( optimizer=__lowercase , num_warmup_steps=100 , num_training_steps=(len(__lowercase) * num_epochs) , ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ = accelerator.prepare( __lowercase , __lowercase , __lowercase , __lowercase , __lowercase) # Now we train the model for epoch in range(__lowercase): model.train() for step, batch in enumerate(__lowercase): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device) # New code # # We use the new `accumulate` context manager to perform gradient accumulation # We also currently do not support TPUs nor advise it as bugs were found on the XLA side when running our tests. with accelerator.accumulate(__lowercase): UpperCamelCase_ = model(**__lowercase) UpperCamelCase_ = output.loss accelerator.backward(__lowercase) optimizer.step() lr_scheduler.step() optimizer.zero_grad() model.eval() for step, batch in enumerate(__lowercase): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device) with torch.no_grad(): UpperCamelCase_ = model(**__lowercase) UpperCamelCase_ = outputs.logits.argmax(dim=-1) UpperCamelCase_ , UpperCamelCase_ = accelerator.gather_for_metrics((predictions, batch['labels'])) metric.add_batch( predictions=__lowercase , references=__lowercase , ) UpperCamelCase_ = metric.compute() # Use accelerator.print to print only on the main process. accelerator.print(f"""epoch {epoch}:""" , __lowercase) def _snake_case (): UpperCamelCase_ = argparse.ArgumentParser(description='Simple example of training script.') parser.add_argument( '--mixed_precision' , type=__lowercase , default=__lowercase , choices=['no', 'fp16', 'bf16', 'fp8'] , help='Whether to use mixed precision. Choose' 'between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10.' 'and an Nvidia Ampere GPU.' , ) # New Code # parser.add_argument( '--gradient_accumulation_steps' , type=__lowercase , default=1 , help='The number of minibatches to be ran before gradients are accumulated.' , ) parser.add_argument('--cpu' , action='store_true' , help='If passed, will train on the CPU.') UpperCamelCase_ = parser.parse_args() UpperCamelCase_ = {'lr': 2e-5, 'num_epochs': 3, 'seed': 42, 'batch_size': 16} training_function(__lowercase , __lowercase) if __name__ == "__main__": main()
23
0
import warnings from typing import List, Optional, Union from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType class UpperCamelCase_ ( UpperCAmelCase__ ): '''simple docstring''' UpperCAmelCase__ = ['''image_processor''', '''tokenizer'''] UpperCAmelCase__ = '''LayoutLMv2ImageProcessor''' UpperCAmelCase__ = ('''LayoutXLMTokenizer''', '''LayoutXLMTokenizerFast''') def __init__( self : Any , UpperCAmelCase__ : Any=None , UpperCAmelCase__ : Optional[int]=None , **UpperCAmelCase__ : Optional[int]) ->Optional[Any]: '''simple docstring''' if "feature_extractor" in kwargs: warnings.warn( '''The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`''' ''' instead.''' , UpperCAmelCase__ , ) A__ = kwargs.pop('''feature_extractor''') A__ = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError('''You need to specify an `image_processor`.''') if tokenizer is None: raise ValueError('''You need to specify a `tokenizer`.''') super().__init__(UpperCAmelCase__ , UpperCAmelCase__) def __call__( self : Any , UpperCAmelCase__ : Union[str, Any] , UpperCAmelCase__ : Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]] = None , UpperCAmelCase__ : Optional[Union[PreTokenizedInput, List[PreTokenizedInput]]] = None , UpperCAmelCase__ : Union[List[List[int]], List[List[List[int]]]] = None , UpperCAmelCase__ : Optional[Union[List[int], List[List[int]]]] = None , UpperCAmelCase__ : bool = True , UpperCAmelCase__ : Union[bool, str, PaddingStrategy] = False , UpperCAmelCase__ : Union[bool, str, TruncationStrategy] = None , UpperCAmelCase__ : Optional[int] = None , UpperCAmelCase__ : int = 0 , UpperCAmelCase__ : Optional[int] = None , UpperCAmelCase__ : Optional[bool] = None , UpperCAmelCase__ : Optional[bool] = None , UpperCAmelCase__ : bool = False , UpperCAmelCase__ : bool = False , UpperCAmelCase__ : bool = False , UpperCAmelCase__ : bool = False , UpperCAmelCase__ : bool = True , UpperCAmelCase__ : Optional[Union[str, TensorType]] = None , **UpperCAmelCase__ : Union[str, Any] , ) ->BatchEncoding: '''simple docstring''' if self.image_processor.apply_ocr and (boxes is not None): raise ValueError( '''You cannot provide bounding boxes ''' '''if you initialized the image processor with apply_ocr set to True.''') if self.image_processor.apply_ocr and (word_labels is not None): raise ValueError( '''You cannot provide word labels if you initialized the image processor with apply_ocr set to True.''') if return_overflowing_tokens is True and return_offsets_mapping is False: raise ValueError('''You cannot return overflowing tokens without returning the offsets mapping.''') # first, apply the image processor A__ = self.image_processor(images=UpperCAmelCase__ , return_tensors=UpperCAmelCase__) # second, apply the tokenizer if text is not None and self.image_processor.apply_ocr and text_pair is None: if isinstance(UpperCAmelCase__ , UpperCAmelCase__): A__ = [text] # add batch dimension (as the image processor always adds a batch dimension) A__ = features['''words'''] A__ = self.tokenizer( text=text if text is not None else features['''words'''] , text_pair=text_pair if text_pair is not None else None , boxes=boxes if boxes is not None else features['''boxes'''] , word_labels=UpperCAmelCase__ , add_special_tokens=UpperCAmelCase__ , padding=UpperCAmelCase__ , truncation=UpperCAmelCase__ , max_length=UpperCAmelCase__ , stride=UpperCAmelCase__ , pad_to_multiple_of=UpperCAmelCase__ , return_token_type_ids=UpperCAmelCase__ , return_attention_mask=UpperCAmelCase__ , return_overflowing_tokens=UpperCAmelCase__ , return_special_tokens_mask=UpperCAmelCase__ , return_offsets_mapping=UpperCAmelCase__ , return_length=UpperCAmelCase__ , verbose=UpperCAmelCase__ , return_tensors=UpperCAmelCase__ , **UpperCAmelCase__ , ) # add pixel values A__ = features.pop('''pixel_values''') if return_overflowing_tokens is True: A__ = self.get_overflowing_images(UpperCAmelCase__ , encoded_inputs['''overflow_to_sample_mapping''']) A__ = images return encoded_inputs def SCREAMING_SNAKE_CASE ( self : Union[str, Any] , UpperCAmelCase__ : Optional[Any] , UpperCAmelCase__ : Tuple) ->Union[str, Any]: '''simple docstring''' A__ = [] for sample_idx in overflow_to_sample_mapping: images_with_overflow.append(images[sample_idx]) if len(UpperCAmelCase__) != len(UpperCAmelCase__): raise ValueError( '''Expected length of images to be the same as the length of `overflow_to_sample_mapping`, but got''' f""" {len(UpperCAmelCase__)} and {len(UpperCAmelCase__)}""") return images_with_overflow def SCREAMING_SNAKE_CASE ( self : Tuple , *UpperCAmelCase__ : List[Any] , **UpperCAmelCase__ : Optional[int]) ->int: '''simple docstring''' return self.tokenizer.batch_decode(*UpperCAmelCase__ , **UpperCAmelCase__) def SCREAMING_SNAKE_CASE ( self : str , *UpperCAmelCase__ : Tuple , **UpperCAmelCase__ : Dict) ->int: '''simple docstring''' return self.tokenizer.decode(*UpperCAmelCase__ , **UpperCAmelCase__) @property def SCREAMING_SNAKE_CASE ( self : List[Any]) ->str: '''simple docstring''' return ["input_ids", "bbox", "attention_mask", "image"] @property def SCREAMING_SNAKE_CASE ( self : int) ->Union[str, Any]: '''simple docstring''' warnings.warn( '''`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.''' , UpperCAmelCase__ , ) return self.image_processor_class @property def SCREAMING_SNAKE_CASE ( self : Optional[int]) ->Any: '''simple docstring''' warnings.warn( '''`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead.''' , UpperCAmelCase__ , ) return self.image_processor
87
import inspect import unittest import numpy as np from tests.test_modeling_common import floats_tensor from transformers import MaskaFormerConfig, is_torch_available, is_vision_available from transformers.testing_utils import require_torch, require_torch_multi_gpu, require_vision, slow, torch_device from transformers.utils import cached_property from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import MaskaFormerForUniversalSegmentation, MaskaFormerModel if is_vision_available(): from transformers import MaskaFormerImageProcessor if is_vision_available(): from PIL import Image class _a : """simple docstring""" def __init__( self , _UpperCAmelCase , _UpperCAmelCase=2 , _UpperCAmelCase=True , _UpperCAmelCase=False , _UpperCAmelCase=10 , _UpperCAmelCase=3 , _UpperCAmelCase=32 * 8 , _UpperCAmelCase=32 * 8 , _UpperCAmelCase=4 , _UpperCAmelCase=64 , ) -> List[Any]: UpperCamelCase_ = parent UpperCamelCase_ = batch_size UpperCamelCase_ = is_training UpperCamelCase_ = use_auxiliary_loss UpperCamelCase_ = num_queries UpperCamelCase_ = num_channels UpperCamelCase_ = min_size UpperCamelCase_ = max_size UpperCamelCase_ = num_labels UpperCamelCase_ = hidden_dim UpperCamelCase_ = hidden_dim def _UpperCAmelCase ( self ) -> List[str]: UpperCamelCase_ = floats_tensor([self.batch_size, self.num_channels, self.min_size, self.max_size] ).to( _UpperCAmelCase ) UpperCamelCase_ = torch.ones([self.batch_size, self.min_size, self.max_size] , device=_UpperCAmelCase ) UpperCamelCase_ = ( torch.rand([self.batch_size, self.num_labels, self.min_size, self.max_size] , device=_UpperCAmelCase ) > 0.5 ).float() UpperCamelCase_ = (torch.rand((self.batch_size, self.num_labels) , device=_UpperCAmelCase ) > 0.5).long() UpperCamelCase_ = self.get_config() return config, pixel_values, pixel_mask, mask_labels, class_labels def _UpperCAmelCase ( self ) -> Optional[int]: UpperCamelCase_ = MaskaFormerConfig( hidden_size=self.hidden_dim , ) UpperCamelCase_ = self.num_queries UpperCamelCase_ = self.num_labels UpperCamelCase_ = [1, 1, 1, 1] UpperCamelCase_ = self.num_channels UpperCamelCase_ = 64 UpperCamelCase_ = 128 UpperCamelCase_ = self.hidden_dim UpperCamelCase_ = self.hidden_dim UpperCamelCase_ = self.hidden_dim return config def _UpperCAmelCase ( self ) -> Dict: UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ = self.prepare_config_and_inputs() UpperCamelCase_ = {'pixel_values': pixel_values, 'pixel_mask': pixel_mask} return config, inputs_dict def _UpperCAmelCase ( self , _UpperCAmelCase , _UpperCAmelCase ) -> List[Any]: UpperCamelCase_ = output.encoder_hidden_states UpperCamelCase_ = output.pixel_decoder_hidden_states UpperCamelCase_ = output.transformer_decoder_hidden_states self.parent.assertTrue(len(_UpperCAmelCase ) , len(config.backbone_config.depths ) ) self.parent.assertTrue(len(_UpperCAmelCase ) , len(config.backbone_config.depths ) ) self.parent.assertTrue(len(_UpperCAmelCase ) , config.decoder_layers ) def _UpperCAmelCase ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase=False ) -> Any: with torch.no_grad(): UpperCamelCase_ = MaskaFormerModel(config=_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() UpperCamelCase_ = model(pixel_values=_UpperCAmelCase , pixel_mask=_UpperCAmelCase ) UpperCamelCase_ = model(_UpperCAmelCase , output_hidden_states=_UpperCAmelCase ) self.parent.assertEqual( output.transformer_decoder_last_hidden_state.shape , (self.batch_size, self.num_queries, self.hidden_dim) , ) # let's ensure the other two hidden state exists self.parent.assertTrue(output.pixel_decoder_last_hidden_state is not None ) self.parent.assertTrue(output.encoder_last_hidden_state is not None ) if output_hidden_states: self.check_output_hidden_state(_UpperCAmelCase , _UpperCAmelCase ) def _UpperCAmelCase ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) -> Union[str, Any]: UpperCamelCase_ = MaskaFormerForUniversalSegmentation(config=_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() def comm_check_on_output(_UpperCAmelCase ): # let's still check that all the required stuff is there self.parent.assertTrue(result.transformer_decoder_last_hidden_state is not None ) self.parent.assertTrue(result.pixel_decoder_last_hidden_state is not None ) self.parent.assertTrue(result.encoder_last_hidden_state is not None ) # okay, now we need to check the logits shape # due to the encoder compression, masks have a //4 spatial size self.parent.assertEqual( result.masks_queries_logits.shape , (self.batch_size, self.num_queries, self.min_size // 4, self.max_size // 4) , ) # + 1 for null class self.parent.assertEqual( result.class_queries_logits.shape , (self.batch_size, self.num_queries, self.num_labels + 1) ) with torch.no_grad(): UpperCamelCase_ = model(pixel_values=_UpperCAmelCase , pixel_mask=_UpperCAmelCase ) UpperCamelCase_ = model(_UpperCAmelCase ) comm_check_on_output(_UpperCAmelCase ) UpperCamelCase_ = model( pixel_values=_UpperCAmelCase , pixel_mask=_UpperCAmelCase , mask_labels=_UpperCAmelCase , class_labels=_UpperCAmelCase ) comm_check_on_output(_UpperCAmelCase ) self.parent.assertTrue(result.loss is not None ) self.parent.assertEqual(result.loss.shape , torch.Size([1] ) ) @require_torch class _a ( UpperCAmelCase__ , UpperCAmelCase__ , unittest.TestCase ): """simple docstring""" A_ = (MaskaFormerModel, MaskaFormerForUniversalSegmentation) if is_torch_available() else () A_ = {"""feature-extraction""": MaskaFormerModel} if is_torch_available() else {} A_ = False A_ = False A_ = False A_ = False def _UpperCAmelCase ( self ) -> Optional[Any]: UpperCamelCase_ = MaskaFormerModelTester(self ) UpperCamelCase_ = ConfigTester(self , config_class=_UpperCAmelCase , has_text_modality=_UpperCAmelCase ) def _UpperCAmelCase ( self ) -> Union[str, Any]: self.config_tester.run_common_tests() def _UpperCAmelCase ( self ) -> Union[str, Any]: UpperCamelCase_ , UpperCamelCase_ = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.create_and_check_maskaformer_model(_UpperCAmelCase , **_UpperCAmelCase , output_hidden_states=_UpperCAmelCase ) def _UpperCAmelCase ( self ) -> List[Any]: UpperCamelCase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_maskaformer_instance_segmentation_head_model(*_UpperCAmelCase ) @unittest.skip(reason='Mask2Former does not use inputs_embeds' ) def _UpperCAmelCase ( self ) -> Any: pass @unittest.skip(reason='Mask2Former does not have a get_input_embeddings method' ) def _UpperCAmelCase ( self ) -> Optional[int]: pass @unittest.skip(reason='Mask2Former is not a generative model' ) def _UpperCAmelCase ( self ) -> Any: pass @unittest.skip(reason='Mask2Former does not use token embeddings' ) def _UpperCAmelCase ( self ) -> Optional[Any]: pass @require_torch_multi_gpu @unittest.skip( reason='Mask2Former has some layers using `add_module` which doesn\'t work well with `nn.DataParallel`' ) def _UpperCAmelCase ( self ) -> int: pass @unittest.skip('Will be fixed soon by reducing the size of the model used for common tests.' ) def _UpperCAmelCase ( self ) -> str: pass def _UpperCAmelCase ( self ) -> Optional[int]: UpperCamelCase_ , UpperCamelCase_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCamelCase_ = model_class(_UpperCAmelCase ) UpperCamelCase_ = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic UpperCamelCase_ = [*signature.parameters.keys()] UpperCamelCase_ = ['pixel_values'] self.assertListEqual(arg_names[:1] , _UpperCAmelCase ) @slow def _UpperCAmelCase ( self ) -> Tuple: for model_name in ["facebook/mask2former-swin-small-coco-instance"]: UpperCamelCase_ = MaskaFormerModel.from_pretrained(_UpperCAmelCase ) self.assertIsNotNone(_UpperCAmelCase ) def _UpperCAmelCase ( self ) -> Dict: UpperCamelCase_ = (self.model_tester.min_size,) * 2 UpperCamelCase_ = { 'pixel_values': torch.randn((2, 3, *size) , device=_UpperCAmelCase ), 'mask_labels': torch.randn((2, 10, *size) , device=_UpperCAmelCase ), 'class_labels': torch.zeros(2 , 10 , device=_UpperCAmelCase ).long(), } UpperCamelCase_ = self.model_tester.get_config() UpperCamelCase_ = MaskaFormerForUniversalSegmentation(_UpperCAmelCase ).to(_UpperCAmelCase ) UpperCamelCase_ = model(**_UpperCAmelCase ) self.assertTrue(outputs.loss is not None ) def _UpperCAmelCase ( self ) -> str: UpperCamelCase_ , UpperCamelCase_ = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.create_and_check_maskaformer_model(_UpperCAmelCase , **_UpperCAmelCase , output_hidden_states=_UpperCAmelCase ) def _UpperCAmelCase ( self ) -> Optional[int]: UpperCamelCase_ , UpperCamelCase_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCamelCase_ = model_class(_UpperCAmelCase ).to(_UpperCAmelCase ) UpperCamelCase_ = model(**_UpperCAmelCase , output_attentions=_UpperCAmelCase ) self.assertTrue(outputs.attentions is not None ) def _UpperCAmelCase ( self ) -> List[Any]: if not self.model_tester.is_training: return UpperCamelCase_ = self.all_model_classes[1] UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ = self.model_tester.prepare_config_and_inputs() UpperCamelCase_ = model_class(_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.train() UpperCamelCase_ = model(_UpperCAmelCase , mask_labels=_UpperCAmelCase , class_labels=_UpperCAmelCase ).loss loss.backward() def _UpperCAmelCase ( self ) -> int: UpperCamelCase_ = self.all_model_classes[1] UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ = self.model_tester.prepare_config_and_inputs() UpperCamelCase_ = True UpperCamelCase_ = True UpperCamelCase_ = model_class(_UpperCAmelCase ).to(_UpperCAmelCase ) model.train() UpperCamelCase_ = model(_UpperCAmelCase , mask_labels=_UpperCAmelCase , class_labels=_UpperCAmelCase ) UpperCamelCase_ = outputs.encoder_hidden_states[0] encoder_hidden_states.retain_grad() UpperCamelCase_ = outputs.pixel_decoder_hidden_states[0] pixel_decoder_hidden_states.retain_grad() UpperCamelCase_ = outputs.transformer_decoder_hidden_states[0] transformer_decoder_hidden_states.retain_grad() UpperCamelCase_ = outputs.attentions[0] attentions.retain_grad() outputs.loss.backward(retain_graph=_UpperCAmelCase ) self.assertIsNotNone(encoder_hidden_states.grad ) self.assertIsNotNone(pixel_decoder_hidden_states.grad ) self.assertIsNotNone(transformer_decoder_hidden_states.grad ) self.assertIsNotNone(attentions.grad ) snake_case__ : List[Any] = 1E-4 def _snake_case (): UpperCamelCase_ = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png') return image @require_vision @slow class _a ( unittest.TestCase ): """simple docstring""" @cached_property def _UpperCAmelCase ( self ) -> Optional[int]: return "facebook/mask2former-swin-small-coco-instance" @cached_property def _UpperCAmelCase ( self ) -> List[str]: return MaskaFormerImageProcessor.from_pretrained(self.model_checkpoints ) if is_vision_available() else None def _UpperCAmelCase ( self ) -> str: UpperCamelCase_ = MaskaFormerModel.from_pretrained(self.model_checkpoints ).to(_UpperCAmelCase ) UpperCamelCase_ = self.default_image_processor UpperCamelCase_ = prepare_img() UpperCamelCase_ = image_processor(_UpperCAmelCase , return_tensors='pt' ).to(_UpperCAmelCase ) UpperCamelCase_ = inputs['pixel_values'].shape # check size is divisible by 32 self.assertTrue((inputs_shape[-1] % 32) == 0 and (inputs_shape[-2] % 32) == 0 ) # check size self.assertEqual(_UpperCAmelCase , (1, 3, 384, 384) ) with torch.no_grad(): UpperCamelCase_ = model(**_UpperCAmelCase ) UpperCamelCase_ = torch.tensor( [[-0.2_7_9_0, -1.0_7_1_7, -1.1_6_6_8], [-0.5_1_2_8, -0.3_1_2_8, -0.4_9_8_7], [-0.5_8_3_2, 0.1_9_7_1, -0.0_1_9_7]] ).to(_UpperCAmelCase ) self.assertTrue( torch.allclose( outputs.encoder_last_hidden_state[0, 0, :3, :3] , _UpperCAmelCase , atol=_UpperCAmelCase ) ) UpperCamelCase_ = torch.tensor( [[0.8_9_7_3, 1.1_8_4_7, 1.1_7_7_6], [1.1_9_3_4, 1.5_0_4_0, 1.5_1_2_8], [1.1_1_5_3, 1.4_4_8_6, 1.4_9_5_1]] ).to(_UpperCAmelCase ) self.assertTrue( torch.allclose( outputs.pixel_decoder_last_hidden_state[0, 0, :3, :3] , _UpperCAmelCase , atol=_UpperCAmelCase ) ) UpperCamelCase_ = torch.tensor( [[2.1_1_5_2, 1.7_0_0_0, -0.8_6_0_3], [1.5_8_0_8, 1.8_0_0_4, -0.9_3_5_3], [1.6_0_4_3, 1.7_4_9_5, -0.5_9_9_9]] ).to(_UpperCAmelCase ) self.assertTrue( torch.allclose( outputs.transformer_decoder_last_hidden_state[0, :3, :3] , _UpperCAmelCase , atol=_UpperCAmelCase ) ) def _UpperCAmelCase ( self ) -> Optional[Any]: UpperCamelCase_ = MaskaFormerForUniversalSegmentation.from_pretrained(self.model_checkpoints ).to(_UpperCAmelCase ).eval() UpperCamelCase_ = self.default_image_processor UpperCamelCase_ = prepare_img() UpperCamelCase_ = image_processor(_UpperCAmelCase , return_tensors='pt' ).to(_UpperCAmelCase ) UpperCamelCase_ = inputs['pixel_values'].shape # check size is divisible by 32 self.assertTrue((inputs_shape[-1] % 32) == 0 and (inputs_shape[-2] % 32) == 0 ) # check size self.assertEqual(_UpperCAmelCase , (1, 3, 384, 384) ) with torch.no_grad(): UpperCamelCase_ = model(**_UpperCAmelCase ) # masks_queries_logits UpperCamelCase_ = outputs.masks_queries_logits self.assertEqual( masks_queries_logits.shape , (1, model.config.num_queries, inputs_shape[-2] // 4, inputs_shape[-1] // 4) ) UpperCamelCase_ = [ [-8.7_8_3_9, -9.0_0_5_6, -8.8_1_2_1], [-7.4_1_0_4, -7.0_3_1_3, -6.5_4_0_1], [-6.6_1_0_5, -6.3_4_2_7, -6.4_6_7_5], ] UpperCamelCase_ = torch.tensor(_UpperCAmelCase ).to(_UpperCAmelCase ) self.assertTrue(torch.allclose(masks_queries_logits[0, 0, :3, :3] , _UpperCAmelCase , atol=_UpperCAmelCase ) ) # class_queries_logits UpperCamelCase_ = outputs.class_queries_logits self.assertEqual(class_queries_logits.shape , (1, model.config.num_queries, model.config.num_labels + 1) ) UpperCamelCase_ = torch.tensor( [ [1.8_3_2_4, -8.0_8_3_5, -4.1_9_2_2], [0.8_4_5_0, -9.0_0_5_0, -3.6_0_5_3], [0.3_0_4_5, -7.7_2_9_3, -3.0_2_7_5], ] ).to(_UpperCAmelCase ) self.assertTrue(torch.allclose(outputs.class_queries_logits[0, :3, :3] , _UpperCAmelCase , atol=_UpperCAmelCase ) ) def _UpperCAmelCase ( self ) -> Dict: UpperCamelCase_ = MaskaFormerForUniversalSegmentation.from_pretrained(self.model_checkpoints ).to(_UpperCAmelCase ).eval() UpperCamelCase_ = self.default_image_processor UpperCamelCase_ = image_processor( [np.zeros((3, 800, 1333) ), np.zeros((3, 800, 1333) )] , segmentation_maps=[np.zeros((384, 384) ).astype(np.floataa ), np.zeros((384, 384) ).astype(np.floataa )] , return_tensors='pt' , ) UpperCamelCase_ = inputs['pixel_values'].to(_UpperCAmelCase ) UpperCamelCase_ = [el.to(_UpperCAmelCase ) for el in inputs['mask_labels']] UpperCamelCase_ = [el.to(_UpperCAmelCase ) for el in inputs['class_labels']] with torch.no_grad(): UpperCamelCase_ = model(**_UpperCAmelCase ) self.assertTrue(outputs.loss is not None )
23
0
"""simple docstring""" import argparse import collections import json import os import re import string import sys import numpy as np UpperCAmelCase = re.compile(r"""\b(a|an|the)\b""", re.UNICODE) UpperCAmelCase = None def _snake_case ( ): """simple docstring""" _lowerCamelCase : List[Any] = argparse.ArgumentParser("""Official evaluation script for SQuAD version 2.0.""" ) parser.add_argument("""data_file""" , metavar="""data.json""" , help="""Input data JSON file.""" ) parser.add_argument("""pred_file""" , metavar="""pred.json""" , help="""Model predictions.""" ) parser.add_argument( """--out-file""" , """-o""" , metavar="""eval.json""" , help="""Write accuracy metrics to file (default is stdout).""" ) parser.add_argument( """--na-prob-file""" , """-n""" , metavar="""na_prob.json""" , help="""Model estimates of probability of no answer.""" ) parser.add_argument( """--na-prob-thresh""" , """-t""" , type=__snake_case , default=1.0 , help="""Predict \"\" if no-answer probability exceeds this (default = 1.0).""" , ) parser.add_argument( """--out-image-dir""" , """-p""" , metavar="""out_images""" , default=__snake_case , help="""Save precision-recall curves to directory.""" ) parser.add_argument("""--verbose""" , """-v""" , action="""store_true""" ) if len(sys.argv ) == 1: parser.print_help() sys.exit(1 ) return parser.parse_args() def _snake_case ( __snake_case : Dict ): """simple docstring""" _lowerCamelCase : Dict = {} for article in dataset: for p in article["paragraphs"]: for qa in p["qas"]: _lowerCamelCase : Optional[Any] = bool(qa["""answers"""]["""text"""] ) return qid_to_has_ans def _snake_case ( __snake_case : Union[str, Any] ): """simple docstring""" def remove_articles(__snake_case : List[str] ): return ARTICLES_REGEX.sub(""" """ , __snake_case ) def white_space_fix(__snake_case : Optional[int] ): return " ".join(text.split() ) def remove_punc(__snake_case : Optional[Any] ): _lowerCamelCase : str = set(string.punctuation ) return "".join(ch for ch in text if ch not in exclude ) def lower(__snake_case : Tuple ): return text.lower() return white_space_fix(remove_articles(remove_punc(lower(__snake_case ) ) ) ) def _snake_case ( __snake_case : Any ): """simple docstring""" if not s: return [] return normalize_answer(__snake_case ).split() def _snake_case ( __snake_case : Dict , __snake_case : int ): """simple docstring""" return int(normalize_answer(__snake_case ) == normalize_answer(__snake_case ) ) def _snake_case ( __snake_case : Tuple , __snake_case : Any ): """simple docstring""" _lowerCamelCase : Optional[int] = get_tokens(__snake_case ) _lowerCamelCase : int = get_tokens(__snake_case ) _lowerCamelCase : Optional[Any] = collections.Counter(__snake_case ) & collections.Counter(__snake_case ) _lowerCamelCase : int = sum(common.values() ) if len(__snake_case ) == 0 or len(__snake_case ) == 0: # If either is no-answer, then F1 is 1 if they agree, 0 otherwise return int(gold_toks == pred_toks ) if num_same == 0: return 0 _lowerCamelCase : List[str] = 1.0 * num_same / len(__snake_case ) _lowerCamelCase : Dict = 1.0 * num_same / len(__snake_case ) _lowerCamelCase : int = (2 * precision * recall) / (precision + recall) return fa def _snake_case ( __snake_case : Optional[Any] , __snake_case : str ): """simple docstring""" _lowerCamelCase : List[Any] = {} _lowerCamelCase : Optional[int] = {} for article in dataset: for p in article["paragraphs"]: for qa in p["qas"]: _lowerCamelCase : Tuple = qa["""id"""] _lowerCamelCase : Optional[int] = [t for t in qa["""answers"""]["""text"""] if normalize_answer(__snake_case )] if not gold_answers: # For unanswerable questions, only correct answer is empty string _lowerCamelCase : List[str] = [""""""] if qid not in preds: print(F'Missing prediction for {qid}' ) continue _lowerCamelCase : Any = preds[qid] # Take max over all gold answers _lowerCamelCase : Tuple = max(compute_exact(__snake_case , __snake_case ) for a in gold_answers ) _lowerCamelCase : List[str] = max(compute_fa(__snake_case , __snake_case ) for a in gold_answers ) return exact_scores, fa_scores def _snake_case ( __snake_case : List[Any] , __snake_case : Any , __snake_case : Union[str, Any] , __snake_case : str ): """simple docstring""" _lowerCamelCase : str = {} for qid, s in scores.items(): _lowerCamelCase : Optional[Any] = na_probs[qid] > na_prob_thresh if pred_na: _lowerCamelCase : Any = float(not qid_to_has_ans[qid] ) else: _lowerCamelCase : List[str] = s return new_scores def _snake_case ( __snake_case : Any , __snake_case : int , __snake_case : Any=None ): """simple docstring""" if not qid_list: _lowerCamelCase : int = len(__snake_case ) return collections.OrderedDict( [ ("""exact""", 100.0 * sum(exact_scores.values() ) / total), ("""f1""", 100.0 * sum(fa_scores.values() ) / total), ("""total""", total), ] ) else: _lowerCamelCase : List[str] = len(__snake_case ) return collections.OrderedDict( [ ("""exact""", 100.0 * sum(exact_scores[k] for k in qid_list ) / total), ("""f1""", 100.0 * sum(fa_scores[k] for k in qid_list ) / total), ("""total""", total), ] ) def _snake_case ( __snake_case : Optional[Any] , __snake_case : Optional[Any] , __snake_case : int ): """simple docstring""" for k in new_eval: _lowerCamelCase : Optional[int] = new_eval[k] def _snake_case ( __snake_case : Tuple , __snake_case : Any , __snake_case : Union[str, Any] , __snake_case : Tuple ): """simple docstring""" plt.step(__snake_case , __snake_case , color="""b""" , alpha=0.2 , where="""post""" ) plt.fill_between(__snake_case , __snake_case , step="""post""" , alpha=0.2 , color="""b""" ) plt.xlabel("""Recall""" ) plt.ylabel("""Precision""" ) plt.xlim([0.0, 1.05] ) plt.ylim([0.0, 1.05] ) plt.title(__snake_case ) plt.savefig(__snake_case ) plt.clf() def _snake_case ( __snake_case : int , __snake_case : Dict , __snake_case : int , __snake_case : Union[str, Any] , __snake_case : Union[str, Any]=None , __snake_case : List[Any]=None ): """simple docstring""" _lowerCamelCase : Any = sorted(__snake_case , key=lambda __snake_case : na_probs[k] ) _lowerCamelCase : List[Any] = 0.0 _lowerCamelCase : Optional[Any] = 1.0 _lowerCamelCase : Tuple = 0.0 _lowerCamelCase : Tuple = [1.0] _lowerCamelCase : List[Any] = [0.0] _lowerCamelCase : Optional[int] = 0.0 for i, qid in enumerate(__snake_case ): if qid_to_has_ans[qid]: true_pos += scores[qid] _lowerCamelCase : List[str] = true_pos / float(i + 1 ) _lowerCamelCase : Optional[int] = true_pos / float(__snake_case ) if i == len(__snake_case ) - 1 or na_probs[qid] != na_probs[qid_list[i + 1]]: # i.e., if we can put a threshold after this point avg_prec += cur_p * (cur_r - recalls[-1]) precisions.append(__snake_case ) recalls.append(__snake_case ) if out_image: plot_pr_curve(__snake_case , __snake_case , __snake_case , __snake_case ) return {"ap": 100.0 * avg_prec} def _snake_case ( __snake_case : Union[str, Any] , __snake_case : List[str] , __snake_case : Optional[int] , __snake_case : Optional[int] , __snake_case : Tuple , __snake_case : Optional[Any] ): """simple docstring""" if out_image_dir and not os.path.exists(__snake_case ): os.makedirs(__snake_case ) _lowerCamelCase : str = sum(1 for v in qid_to_has_ans.values() if v ) if num_true_pos == 0: return _lowerCamelCase : List[str] = make_precision_recall_eval( __snake_case , __snake_case , __snake_case , __snake_case , out_image=os.path.join(__snake_case , """pr_exact.png""" ) , title="""Precision-Recall curve for Exact Match score""" , ) _lowerCamelCase : int = make_precision_recall_eval( __snake_case , __snake_case , __snake_case , __snake_case , out_image=os.path.join(__snake_case , """pr_f1.png""" ) , title="""Precision-Recall curve for F1 score""" , ) _lowerCamelCase : Union[str, Any] = {k: float(__snake_case ) for k, v in qid_to_has_ans.items()} _lowerCamelCase : Optional[Any] = make_precision_recall_eval( __snake_case , __snake_case , __snake_case , __snake_case , out_image=os.path.join(__snake_case , """pr_oracle.png""" ) , title="""Oracle Precision-Recall curve (binary task of HasAns vs. NoAns)""" , ) merge_eval(__snake_case , __snake_case , """pr_exact""" ) merge_eval(__snake_case , __snake_case , """pr_f1""" ) merge_eval(__snake_case , __snake_case , """pr_oracle""" ) def _snake_case ( __snake_case : Union[str, Any] , __snake_case : Optional[int] , __snake_case : str , __snake_case : Optional[int] ): """simple docstring""" if not qid_list: return _lowerCamelCase : Tuple = [na_probs[k] for k in qid_list] _lowerCamelCase : int = np.ones_like(__snake_case ) / float(len(__snake_case ) ) plt.hist(__snake_case , weights=__snake_case , bins=20 , range=(0.0, 1.0) ) plt.xlabel("""Model probability of no-answer""" ) plt.ylabel("""Proportion of dataset""" ) plt.title(F'Histogram of no-answer probability: {name}' ) plt.savefig(os.path.join(__snake_case , F'na_prob_hist_{name}.png' ) ) plt.clf() def _snake_case ( __snake_case : Optional[Any] , __snake_case : List[Any] , __snake_case : List[str] , __snake_case : Any ): """simple docstring""" _lowerCamelCase : int = sum(1 for k in qid_to_has_ans if not qid_to_has_ans[k] ) _lowerCamelCase : Optional[Any] = num_no_ans _lowerCamelCase : str = cur_score _lowerCamelCase : Dict = 0.0 _lowerCamelCase : Optional[int] = sorted(__snake_case , key=lambda __snake_case : na_probs[k] ) for i, qid in enumerate(__snake_case ): if qid not in scores: continue if qid_to_has_ans[qid]: _lowerCamelCase : List[str] = scores[qid] else: if preds[qid]: _lowerCamelCase : str = -1 else: _lowerCamelCase : List[str] = 0 cur_score += diff if cur_score > best_score: _lowerCamelCase : Any = cur_score _lowerCamelCase : Dict = na_probs[qid] return 100.0 * best_score / len(__snake_case ), best_thresh def _snake_case ( __snake_case : Union[str, Any] , __snake_case : str , __snake_case : Union[str, Any] , __snake_case : List[Any] , __snake_case : str , __snake_case : Dict ): """simple docstring""" _lowerCamelCase , _lowerCamelCase : str = find_best_thresh(__snake_case , __snake_case , __snake_case , __snake_case ) _lowerCamelCase , _lowerCamelCase : List[Any] = find_best_thresh(__snake_case , __snake_case , __snake_case , __snake_case ) _lowerCamelCase : Dict = best_exact _lowerCamelCase : Optional[int] = exact_thresh _lowerCamelCase : Any = best_fa _lowerCamelCase : Any = fa_thresh def _snake_case ( ): """simple docstring""" with open(OPTS.data_file ) as f: _lowerCamelCase : Union[str, Any] = json.load(__snake_case ) _lowerCamelCase : Dict = dataset_json["""data"""] with open(OPTS.pred_file ) as f: _lowerCamelCase : Union[str, Any] = json.load(__snake_case ) if OPTS.na_prob_file: with open(OPTS.na_prob_file ) as f: _lowerCamelCase : Any = json.load(__snake_case ) else: _lowerCamelCase : Optional[Any] = {k: 0.0 for k in preds} _lowerCamelCase : List[Any] = make_qid_to_has_ans(__snake_case ) # maps qid to True/False _lowerCamelCase : Union[str, Any] = [k for k, v in qid_to_has_ans.items() if v] _lowerCamelCase : Optional[int] = [k for k, v in qid_to_has_ans.items() if not v] _lowerCamelCase , _lowerCamelCase : Union[str, Any] = get_raw_scores(__snake_case , __snake_case ) _lowerCamelCase : Dict = apply_no_ans_threshold(__snake_case , __snake_case , __snake_case , OPTS.na_prob_thresh ) _lowerCamelCase : List[str] = apply_no_ans_threshold(__snake_case , __snake_case , __snake_case , OPTS.na_prob_thresh ) _lowerCamelCase : Optional[Any] = make_eval_dict(__snake_case , __snake_case ) if has_ans_qids: _lowerCamelCase : Any = make_eval_dict(__snake_case , __snake_case , qid_list=__snake_case ) merge_eval(__snake_case , __snake_case , """HasAns""" ) if no_ans_qids: _lowerCamelCase : List[Any] = make_eval_dict(__snake_case , __snake_case , qid_list=__snake_case ) merge_eval(__snake_case , __snake_case , """NoAns""" ) if OPTS.na_prob_file: find_all_best_thresh(__snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case ) if OPTS.na_prob_file and OPTS.out_image_dir: run_precision_recall_analysis(__snake_case , __snake_case , __snake_case , __snake_case , __snake_case , OPTS.out_image_dir ) histogram_na_prob(__snake_case , __snake_case , OPTS.out_image_dir , """hasAns""" ) histogram_na_prob(__snake_case , __snake_case , OPTS.out_image_dir , """noAns""" ) if OPTS.out_file: with open(OPTS.out_file , """w""" ) as f: json.dump(__snake_case , __snake_case ) else: print(json.dumps(__snake_case , indent=2 ) ) if __name__ == "__main__": UpperCAmelCase = parse_args() if OPTS.out_image_dir: import matplotlib matplotlib.use("""Agg""") import matplotlib.pyplot as plt main()
88
import copy from typing import TYPE_CHECKING, Any, Mapping, Optional, OrderedDict from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging from ..auto.configuration_auto import AutoConfig if TYPE_CHECKING: from ... import PreTrainedTokenizerBase, TensorType snake_case__ : List[str] = logging.get_logger(__name__) class _a ( UpperCAmelCase__ ): """simple docstring""" A_ = """vision-encoder-decoder""" A_ = True def __init__( self , **_UpperCAmelCase ) -> Dict: super().__init__(**_UpperCAmelCase ) if "encoder" not in kwargs or "decoder" not in kwargs: raise ValueError( f"""A configuraton of type {self.model_type} cannot be instantiated because """ f"""not both `encoder` and `decoder` sub-configurations are passed, but only {kwargs}""" ) UpperCamelCase_ = kwargs.pop('encoder' ) UpperCamelCase_ = encoder_config.pop('model_type' ) UpperCamelCase_ = kwargs.pop('decoder' ) UpperCamelCase_ = decoder_config.pop('model_type' ) UpperCamelCase_ = AutoConfig.for_model(_UpperCAmelCase , **_UpperCAmelCase ) UpperCamelCase_ = AutoConfig.for_model(_UpperCAmelCase , **_UpperCAmelCase ) UpperCamelCase_ = True @classmethod def _UpperCAmelCase ( cls , _UpperCAmelCase , _UpperCAmelCase , **_UpperCAmelCase ) -> PretrainedConfig: logger.info('Setting `config.is_decoder=True` and `config.add_cross_attention=True` for decoder_config' ) UpperCamelCase_ = True UpperCamelCase_ = True return cls(encoder=encoder_config.to_dict() , decoder=decoder_config.to_dict() , **_UpperCAmelCase ) def _UpperCAmelCase ( self ) -> int: UpperCamelCase_ = copy.deepcopy(self.__dict__ ) UpperCamelCase_ = self.encoder.to_dict() UpperCamelCase_ = self.decoder.to_dict() UpperCamelCase_ = self.__class__.model_type return output class _a ( UpperCAmelCase__ ): """simple docstring""" A_ = version.parse("""1.11""" ) @property def _UpperCAmelCase ( self ) -> Mapping[str, Mapping[int, str]]: return OrderedDict( [ ('pixel_values', {0: 'batch', 1: 'num_channels', 2: 'height', 3: 'width'}), ] ) @property def _UpperCAmelCase ( self ) -> float: return 1e-4 @property def _UpperCAmelCase ( self ) -> Mapping[str, Mapping[int, str]]: return OrderedDict({'last_hidden_state': {0: 'batch', 1: 'encoder_sequence'}} ) class _a ( UpperCAmelCase__ ): """simple docstring""" @property def _UpperCAmelCase ( self ) -> Mapping[str, Mapping[int, str]]: UpperCamelCase_ = OrderedDict() UpperCamelCase_ = {0: 'batch', 1: 'past_decoder_sequence + sequence'} UpperCamelCase_ = {0: 'batch', 1: 'past_decoder_sequence + sequence'} UpperCamelCase_ = {0: 'batch', 1: 'encoder_sequence'} return common_inputs def _UpperCAmelCase ( self , _UpperCAmelCase , _UpperCAmelCase = -1 , _UpperCAmelCase = -1 , _UpperCAmelCase = False , _UpperCAmelCase = None , ) -> Mapping[str, Any]: import torch UpperCamelCase_ = OrderedDict() UpperCamelCase_ = super().generate_dummy_inputs( _UpperCAmelCase , batch_size=_UpperCAmelCase , seq_length=_UpperCAmelCase , is_pair=_UpperCAmelCase , framework=_UpperCAmelCase ) UpperCamelCase_ , UpperCamelCase_ = dummy_input['input_ids'].shape UpperCamelCase_ = (batch, encoder_sequence, self._config.encoder_hidden_size) UpperCamelCase_ = dummy_input.pop('input_ids' ) UpperCamelCase_ = dummy_input.pop('attention_mask' ) UpperCamelCase_ = torch.zeros(_UpperCAmelCase ) return common_inputs class _a ( UpperCAmelCase__ ): """simple docstring""" @property def _UpperCAmelCase ( self ) -> None: pass def _UpperCAmelCase ( self , _UpperCAmelCase ) -> OnnxConfig: return VisionEncoderDecoderEncoderOnnxConfig(_UpperCAmelCase ) def _UpperCAmelCase ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase = "default" ) -> OnnxConfig: UpperCamelCase_ = encoder_config.hidden_size return VisionEncoderDecoderDecoderOnnxConfig(_UpperCAmelCase , _UpperCAmelCase )
23
0
import unittest from transformers import ( MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, Pipeline, ZeroShotClassificationPipeline, pipeline, ) from transformers.testing_utils import is_pipeline_test, nested_simplify, require_tf, require_torch, slow from .test_pipelines_common import ANY # These 2 model types require different inputs than those of the usual text models. SCREAMING_SNAKE_CASE : Union[str, Any] = {"LayoutLMv2Config", "LayoutLMv3Config"} @is_pipeline_test class _lowerCamelCase( unittest.TestCase ): lowercase_ : Tuple = MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING lowercase_ : Union[str, Any] = TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING if model_mapping is not None: lowercase_ : Optional[Any] = {config: model for config, model in model_mapping.items() if config.__name__ not in _TO_SKIP} if tf_model_mapping is not None: lowercase_ : Optional[int] = { config: model for config, model in tf_model_mapping.items() if config.__name__ not in _TO_SKIP } def UpperCamelCase ( self, lowerCamelCase, lowerCamelCase, lowerCamelCase) -> Union[str, Any]: """simple docstring""" _lowercase : Optional[int] = ZeroShotClassificationPipeline( model=lowerCamelCase, tokenizer=lowerCamelCase, candidate_labels=['polics', 'health']) return classifier, ["Who are you voting for in 2020?", "My stomach hurts."] def UpperCamelCase ( self, lowerCamelCase, lowerCamelCase) -> str: """simple docstring""" _lowercase : List[Any] = classifier('Who are you voting for in 2020?', candidate_labels='politics') self.assertEqual(lowerCamelCase, {'sequence': ANY(lowerCamelCase), 'labels': [ANY(lowerCamelCase)], 'scores': [ANY(lowerCamelCase)]}) # No kwarg _lowercase : str = classifier('Who are you voting for in 2020?', ['politics']) self.assertEqual(lowerCamelCase, {'sequence': ANY(lowerCamelCase), 'labels': [ANY(lowerCamelCase)], 'scores': [ANY(lowerCamelCase)]}) _lowercase : int = classifier('Who are you voting for in 2020?', candidate_labels=['politics']) self.assertEqual(lowerCamelCase, {'sequence': ANY(lowerCamelCase), 'labels': [ANY(lowerCamelCase)], 'scores': [ANY(lowerCamelCase)]}) _lowercase : Dict = classifier('Who are you voting for in 2020?', candidate_labels='politics, public health') self.assertEqual( lowerCamelCase, {'sequence': ANY(lowerCamelCase), 'labels': [ANY(lowerCamelCase), ANY(lowerCamelCase)], 'scores': [ANY(lowerCamelCase), ANY(lowerCamelCase)]}) self.assertAlmostEqual(sum(nested_simplify(outputs['scores'])), 1.0) _lowercase : List[str] = classifier('Who are you voting for in 2020?', candidate_labels=['politics', 'public health']) self.assertEqual( lowerCamelCase, {'sequence': ANY(lowerCamelCase), 'labels': [ANY(lowerCamelCase), ANY(lowerCamelCase)], 'scores': [ANY(lowerCamelCase), ANY(lowerCamelCase)]}) self.assertAlmostEqual(sum(nested_simplify(outputs['scores'])), 1.0) _lowercase : List[str] = classifier( 'Who are you voting for in 2020?', candidate_labels='politics', hypothesis_template='This text is about {}') self.assertEqual(lowerCamelCase, {'sequence': ANY(lowerCamelCase), 'labels': [ANY(lowerCamelCase)], 'scores': [ANY(lowerCamelCase)]}) # https://github.com/huggingface/transformers/issues/13846 _lowercase : Dict = classifier(['I am happy'], ['positive', 'negative']) self.assertEqual( lowerCamelCase, [ {'sequence': ANY(lowerCamelCase), 'labels': [ANY(lowerCamelCase), ANY(lowerCamelCase)], 'scores': [ANY(lowerCamelCase), ANY(lowerCamelCase)]} for i in range(1) ], ) _lowercase : List[str] = classifier(['I am happy', 'I am sad'], ['positive', 'negative']) self.assertEqual( lowerCamelCase, [ {'sequence': ANY(lowerCamelCase), 'labels': [ANY(lowerCamelCase), ANY(lowerCamelCase)], 'scores': [ANY(lowerCamelCase), ANY(lowerCamelCase)]} for i in range(2) ], ) with self.assertRaises(lowerCamelCase): classifier('', candidate_labels='politics') with self.assertRaises(lowerCamelCase): classifier(lowerCamelCase, candidate_labels='politics') with self.assertRaises(lowerCamelCase): classifier('Who are you voting for in 2020?', candidate_labels='') with self.assertRaises(lowerCamelCase): classifier('Who are you voting for in 2020?', candidate_labels=lowerCamelCase) with self.assertRaises(lowerCamelCase): classifier( 'Who are you voting for in 2020?', candidate_labels='politics', hypothesis_template='Not formatting template', ) with self.assertRaises(lowerCamelCase): classifier( 'Who are you voting for in 2020?', candidate_labels='politics', hypothesis_template=lowerCamelCase, ) self.run_entailment_id(lowerCamelCase) def UpperCamelCase ( self, lowerCamelCase) -> Optional[int]: """simple docstring""" _lowercase : Tuple = zero_shot_classifier.model.config _lowercase : Tuple = config.labelaid _lowercase : int = zero_shot_classifier.entailment_id _lowercase : Any = {'LABEL_0': 0, 'LABEL_1': 1, 'LABEL_2': 2} self.assertEqual(zero_shot_classifier.entailment_id, -1) _lowercase : Optional[Any] = {'entailment': 0, 'neutral': 1, 'contradiction': 2} self.assertEqual(zero_shot_classifier.entailment_id, 0) _lowercase : Tuple = {'ENTAIL': 0, 'NON-ENTAIL': 1} self.assertEqual(zero_shot_classifier.entailment_id, 0) _lowercase : Optional[int] = {'ENTAIL': 2, 'NEUTRAL': 1, 'CONTR': 0} self.assertEqual(zero_shot_classifier.entailment_id, 2) _lowercase : Union[str, Any] = original_labelaid self.assertEqual(lowerCamelCase, zero_shot_classifier.entailment_id) @require_torch def UpperCamelCase ( self) -> Optional[int]: """simple docstring""" _lowercase : Optional[Any] = pipeline( 'zero-shot-classification', model='sshleifer/tiny-distilbert-base-cased-distilled-squad', framework='pt', ) # There was a regression in 4.10 for this # Adding a test so we don't make the mistake again. # https://github.com/huggingface/transformers/issues/13381#issuecomment-912343499 zero_shot_classifier( 'Who are you voting for in 2020?' * 1_00, candidate_labels=['politics', 'public health', 'science']) @require_torch def UpperCamelCase ( self) -> List[Any]: """simple docstring""" _lowercase : Union[str, Any] = pipeline( 'zero-shot-classification', model='sshleifer/tiny-distilbert-base-cased-distilled-squad', framework='pt', ) _lowercase : Tuple = zero_shot_classifier( 'Who are you voting for in 2020?', candidate_labels=['politics', 'public health', 'science']) self.assertEqual( nested_simplify(lowerCamelCase), { 'sequence': 'Who are you voting for in 2020?', 'labels': ['science', 'public health', 'politics'], 'scores': [0.3_3_3, 0.3_3_3, 0.3_3_3], }, ) @require_tf def UpperCamelCase ( self) -> Any: """simple docstring""" _lowercase : List[str] = pipeline( 'zero-shot-classification', model='sshleifer/tiny-distilbert-base-cased-distilled-squad', framework='tf', ) _lowercase : str = zero_shot_classifier( 'Who are you voting for in 2020?', candidate_labels=['politics', 'public health', 'science']) self.assertEqual( nested_simplify(lowerCamelCase), { 'sequence': 'Who are you voting for in 2020?', 'labels': ['science', 'public health', 'politics'], 'scores': [0.3_3_3, 0.3_3_3, 0.3_3_3], }, ) @slow @require_torch def UpperCamelCase ( self) -> List[Any]: """simple docstring""" _lowercase : str = pipeline('zero-shot-classification', model='roberta-large-mnli', framework='pt') _lowercase : Union[str, Any] = zero_shot_classifier( 'Who are you voting for in 2020?', candidate_labels=['politics', 'public health', 'science']) self.assertEqual( nested_simplify(lowerCamelCase), { 'sequence': 'Who are you voting for in 2020?', 'labels': ['politics', 'public health', 'science'], 'scores': [0.9_7_6, 0.0_1_5, 0.0_0_9], }, ) _lowercase : Optional[Any] = zero_shot_classifier( 'The dominant sequence transduction models are based on complex recurrent or convolutional neural networks' ' in an encoder-decoder configuration. The best performing models also connect the encoder and decoder' ' through an attention mechanism. We propose a new simple network architecture, the Transformer, based' ' solely on attention mechanisms, dispensing with recurrence and convolutions entirely. Experiments on two' ' machine translation tasks show these models to be superior in quality while being more parallelizable' ' and requiring significantly less time to train. Our model achieves 28.4 BLEU on the WMT 2014' ' English-to-German translation task, improving over the existing best results, including ensembles by' ' over 2 BLEU. On the WMT 2014 English-to-French translation task, our model establishes a new' ' single-model state-of-the-art BLEU score of 41.8 after training for 3.5 days on eight GPUs, a small' ' fraction of the training costs of the best models from the literature. We show that the Transformer' ' generalizes well to other tasks by applying it successfully to English constituency parsing both with' ' large and limited training data.', candidate_labels=['machine learning', 'statistics', 'translation', 'vision'], multi_label=lowerCamelCase, ) self.assertEqual( nested_simplify(lowerCamelCase), { 'sequence': ( 'The dominant sequence transduction models are based on complex recurrent or convolutional neural' ' networks in an encoder-decoder configuration. The best performing models also connect the' ' encoder and decoder through an attention mechanism. We propose a new simple network' ' architecture, the Transformer, based solely on attention mechanisms, dispensing with recurrence' ' and convolutions entirely. Experiments on two machine translation tasks show these models to be' ' superior in quality while being more parallelizable and requiring significantly less time to' ' train. Our model achieves 28.4 BLEU on the WMT 2014 English-to-German translation task,' ' improving over the existing best results, including ensembles by over 2 BLEU. On the WMT 2014' ' English-to-French translation task, our model establishes a new single-model state-of-the-art' ' BLEU score of 41.8 after training for 3.5 days on eight GPUs, a small fraction of the training' ' costs of the best models from the literature. We show that the Transformer generalizes well to' ' other tasks by applying it successfully to English constituency parsing both with large and' ' limited training data.' ), 'labels': ['translation', 'machine learning', 'vision', 'statistics'], 'scores': [0.8_1_7, 0.7_1_3, 0.0_1_8, 0.0_1_8], }, ) @slow @require_tf def UpperCamelCase ( self) -> Optional[int]: """simple docstring""" _lowercase : Optional[int] = pipeline('zero-shot-classification', model='roberta-large-mnli', framework='tf') _lowercase : Optional[Any] = zero_shot_classifier( 'Who are you voting for in 2020?', candidate_labels=['politics', 'public health', 'science']) self.assertEqual( nested_simplify(lowerCamelCase), { 'sequence': 'Who are you voting for in 2020?', 'labels': ['politics', 'public health', 'science'], 'scores': [0.9_7_6, 0.0_1_5, 0.0_0_9], }, ) _lowercase : int = zero_shot_classifier( 'The dominant sequence transduction models are based on complex recurrent or convolutional neural networks' ' in an encoder-decoder configuration. The best performing models also connect the encoder and decoder' ' through an attention mechanism. We propose a new simple network architecture, the Transformer, based' ' solely on attention mechanisms, dispensing with recurrence and convolutions entirely. Experiments on two' ' machine translation tasks show these models to be superior in quality while being more parallelizable' ' and requiring significantly less time to train. Our model achieves 28.4 BLEU on the WMT 2014' ' English-to-German translation task, improving over the existing best results, including ensembles by' ' over 2 BLEU. On the WMT 2014 English-to-French translation task, our model establishes a new' ' single-model state-of-the-art BLEU score of 41.8 after training for 3.5 days on eight GPUs, a small' ' fraction of the training costs of the best models from the literature. We show that the Transformer' ' generalizes well to other tasks by applying it successfully to English constituency parsing both with' ' large and limited training data.', candidate_labels=['machine learning', 'statistics', 'translation', 'vision'], multi_label=lowerCamelCase, ) self.assertEqual( nested_simplify(lowerCamelCase), { 'sequence': ( 'The dominant sequence transduction models are based on complex recurrent or convolutional neural' ' networks in an encoder-decoder configuration. The best performing models also connect the' ' encoder and decoder through an attention mechanism. We propose a new simple network' ' architecture, the Transformer, based solely on attention mechanisms, dispensing with recurrence' ' and convolutions entirely. Experiments on two machine translation tasks show these models to be' ' superior in quality while being more parallelizable and requiring significantly less time to' ' train. Our model achieves 28.4 BLEU on the WMT 2014 English-to-German translation task,' ' improving over the existing best results, including ensembles by over 2 BLEU. On the WMT 2014' ' English-to-French translation task, our model establishes a new single-model state-of-the-art' ' BLEU score of 41.8 after training for 3.5 days on eight GPUs, a small fraction of the training' ' costs of the best models from the literature. We show that the Transformer generalizes well to' ' other tasks by applying it successfully to English constituency parsing both with large and' ' limited training data.' ), 'labels': ['translation', 'machine learning', 'vision', 'statistics'], 'scores': [0.8_1_7, 0.7_1_3, 0.0_1_8, 0.0_1_8], }, )
89
import argparse import torch from transformers import MobileBertConfig, MobileBertForPreTraining, load_tf_weights_in_mobilebert from transformers.utils import logging logging.set_verbosity_info() def _snake_case (__lowercase , __lowercase , __lowercase): # Initialise PyTorch model UpperCamelCase_ = MobileBertConfig.from_json_file(__lowercase) print(f"""Building PyTorch model from configuration: {config}""") UpperCamelCase_ = MobileBertForPreTraining(__lowercase) # Load weights from tf checkpoint UpperCamelCase_ = load_tf_weights_in_mobilebert(__lowercase , __lowercase , __lowercase) # Save pytorch-model print(f"""Save PyTorch model to {pytorch_dump_path}""") torch.save(model.state_dict() , __lowercase) if __name__ == "__main__": snake_case__ : int = argparse.ArgumentParser() # Required parameters parser.add_argument( """--tf_checkpoint_path""", default=None, type=str, required=True, help="""Path to the TensorFlow checkpoint path.""" ) parser.add_argument( """--mobilebert_config_file""", default=None, type=str, required=True, help=( """The config json file corresponding to the pre-trained MobileBERT model. \n""" """This specifies the model architecture.""" ), ) parser.add_argument( """--pytorch_dump_path""", default=None, type=str, required=True, help="""Path to the output PyTorch model.""" ) snake_case__ : Optional[Any] = parser.parse_args() convert_tf_checkpoint_to_pytorch(args.tf_checkpoint_path, args.mobilebert_config_file, args.pytorch_dump_path)
23
0
'''simple docstring''' from typing import List, Union from ..utils import ( add_end_docstrings, is_tf_available, is_torch_available, is_vision_available, logging, requires_backends, ) from .base import PIPELINE_INIT_ARGS, Pipeline if is_vision_available(): from PIL import Image from ..image_utils import load_image if is_tf_available(): import tensorflow as tf from ..models.auto.modeling_tf_auto import TF_MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING from ..tf_utils import stable_softmax if is_torch_available(): from ..models.auto.modeling_auto import MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING __UpperCAmelCase = logging.get_logger(__name__) @add_end_docstrings(a__ ) class a__ ( a__ ): '''simple docstring''' def __init__( self , *lowerCamelCase_ , **lowerCamelCase_ ) -> Optional[Any]: super().__init__(*lowerCamelCase_ , **lowerCamelCase_ ) requires_backends(self , '''vision''' ) self.check_model_type( TF_MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING if self.framework == '''tf''' else MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING ) def __SCREAMING_SNAKE_CASE ( self , lowerCamelCase_=None ) -> Union[str, Any]: lowerCAmelCase__ = {} if top_k is not None: lowerCAmelCase__ = top_k return {}, {}, postprocess_params def __call__( self , lowerCamelCase_ , **lowerCamelCase_ ) -> Tuple: return super().__call__(lowerCamelCase_ , **lowerCamelCase_ ) def __SCREAMING_SNAKE_CASE ( self , lowerCamelCase_ ) -> Optional[int]: lowerCAmelCase__ = load_image(lowerCamelCase_ ) lowerCAmelCase__ = self.image_processor(images=lowerCamelCase_ , return_tensors=self.framework ) return model_inputs def __SCREAMING_SNAKE_CASE ( self , lowerCamelCase_ ) -> Dict: lowerCAmelCase__ = self.model(**lowerCamelCase_ ) return model_outputs def __SCREAMING_SNAKE_CASE ( self , lowerCamelCase_ , lowerCamelCase_=5 ) -> List[Any]: if top_k > self.model.config.num_labels: lowerCAmelCase__ = self.model.config.num_labels if self.framework == "pt": lowerCAmelCase__ = model_outputs.logits.softmax(-1 )[0] lowerCAmelCase__ , lowerCAmelCase__ = probs.topk(lowerCamelCase_ ) elif self.framework == "tf": lowerCAmelCase__ = stable_softmax(model_outputs.logits , axis=-1 )[0] lowerCAmelCase__ = tf.math.top_k(lowerCamelCase_ , k=lowerCamelCase_ ) lowerCAmelCase__ , lowerCAmelCase__ = topk.values.numpy(), topk.indices.numpy() else: raise ValueError(F"""Unsupported framework: {self.framework}""" ) lowerCAmelCase__ = scores.tolist() lowerCAmelCase__ = ids.tolist() return [{"score": score, "label": self.model.config.idalabel[_id]} for score, _id in zip(lowerCamelCase_ , lowerCamelCase_ )]
90
import gc import unittest from transformers import MODEL_FOR_MASKED_LM_MAPPING, TF_MODEL_FOR_MASKED_LM_MAPPING, FillMaskPipeline, pipeline from transformers.pipelines import PipelineException from transformers.testing_utils import ( is_pipeline_test, is_torch_available, nested_simplify, require_tf, require_torch, require_torch_gpu, slow, ) from .test_pipelines_common import ANY @is_pipeline_test class _a ( unittest.TestCase ): """simple docstring""" A_ = MODEL_FOR_MASKED_LM_MAPPING A_ = TF_MODEL_FOR_MASKED_LM_MAPPING def _UpperCAmelCase ( self ) -> List[str]: super().tearDown() # clean-up as much as possible GPU memory occupied by PyTorch gc.collect() if is_torch_available(): import torch torch.cuda.empty_cache() @require_tf def _UpperCAmelCase ( self ) -> str: UpperCamelCase_ = pipeline(task='fill-mask' , model='sshleifer/tiny-distilroberta-base' , top_k=2 , framework='tf' ) UpperCamelCase_ = unmasker('My name is <mask>' ) self.assertEqual( nested_simplify(_UpperCAmelCase , decimals=6 ) , [ {'sequence': 'My name is grouped', 'score': 2.1e-05, 'token': 38015, 'token_str': ' grouped'}, {'sequence': 'My name is accuser', 'score': 2.1e-05, 'token': 25506, 'token_str': ' accuser'}, ] , ) UpperCamelCase_ = unmasker('The largest city in France is <mask>' ) self.assertEqual( nested_simplify(_UpperCAmelCase , decimals=6 ) , [ { 'sequence': 'The largest city in France is grouped', 'score': 2.1e-05, 'token': 38015, 'token_str': ' grouped', }, { 'sequence': 'The largest city in France is accuser', 'score': 2.1e-05, 'token': 25506, 'token_str': ' accuser', }, ] , ) UpperCamelCase_ = unmasker('My name is <mask>' , targets=[' Patrick', ' Clara', ' Teven'] , top_k=3 ) self.assertEqual( nested_simplify(_UpperCAmelCase , decimals=6 ) , [ {'sequence': 'My name is Clara', 'score': 2e-05, 'token': 13606, 'token_str': ' Clara'}, {'sequence': 'My name is Patrick', 'score': 2e-05, 'token': 3499, 'token_str': ' Patrick'}, {'sequence': 'My name is Te', 'score': 1.9e-05, 'token': 2941, 'token_str': ' Te'}, ] , ) @require_torch def _UpperCAmelCase ( self ) -> Union[str, Any]: UpperCamelCase_ = pipeline(task='fill-mask' , model='sshleifer/tiny-distilroberta-base' , top_k=2 , framework='pt' ) UpperCamelCase_ = unmasker('My name is <mask>' ) self.assertEqual( nested_simplify(_UpperCAmelCase , decimals=6 ) , [ {'sequence': 'My name is Maul', 'score': 2.2e-05, 'token': 35676, 'token_str': ' Maul'}, {'sequence': 'My name isELS', 'score': 2.2e-05, 'token': 16416, 'token_str': 'ELS'}, ] , ) UpperCamelCase_ = unmasker('The largest city in France is <mask>' ) self.assertEqual( nested_simplify(_UpperCAmelCase , decimals=6 ) , [ { 'sequence': 'The largest city in France is Maul', 'score': 2.2e-05, 'token': 35676, 'token_str': ' Maul', }, {'sequence': 'The largest city in France isELS', 'score': 2.2e-05, 'token': 16416, 'token_str': 'ELS'}, ] , ) UpperCamelCase_ = unmasker('My name is <mask>' , targets=[' Patrick', ' Clara', ' Teven'] , top_k=3 ) self.assertEqual( nested_simplify(_UpperCAmelCase , decimals=6 ) , [ {'sequence': 'My name is Patrick', 'score': 2.1e-05, 'token': 3499, 'token_str': ' Patrick'}, {'sequence': 'My name is Te', 'score': 2e-05, 'token': 2941, 'token_str': ' Te'}, {'sequence': 'My name is Clara', 'score': 2e-05, 'token': 13606, 'token_str': ' Clara'}, ] , ) UpperCamelCase_ = unmasker('My name is <mask> <mask>' , top_k=2 ) self.assertEqual( nested_simplify(_UpperCAmelCase , decimals=6 ) , [ [ { 'score': 2.2e-05, 'token': 35676, 'token_str': ' Maul', 'sequence': '<s>My name is Maul<mask></s>', }, {'score': 2.2e-05, 'token': 16416, 'token_str': 'ELS', 'sequence': '<s>My name isELS<mask></s>'}, ], [ { 'score': 2.2e-05, 'token': 35676, 'token_str': ' Maul', 'sequence': '<s>My name is<mask> Maul</s>', }, {'score': 2.2e-05, 'token': 16416, 'token_str': 'ELS', 'sequence': '<s>My name is<mask>ELS</s>'}, ], ] , ) @require_torch_gpu def _UpperCAmelCase ( self ) -> Optional[Any]: UpperCamelCase_ = pipeline('fill-mask' , model='hf-internal-testing/tiny-random-distilbert' , device=0 , framework='pt' ) # convert model to fp16 pipe.model.half() UpperCamelCase_ = pipe('Paris is the [MASK] of France.' ) # We actually don't care about the result, we just want to make sure # it works, meaning the float16 tensor got casted back to float32 # for postprocessing. self.assertIsInstance(_UpperCAmelCase , _UpperCAmelCase ) @slow @require_torch def _UpperCAmelCase ( self ) -> List[Any]: UpperCamelCase_ = pipeline(task='fill-mask' , model='distilroberta-base' , top_k=2 , framework='pt' ) self.run_large_test(_UpperCAmelCase ) @slow @require_tf def _UpperCAmelCase ( self ) -> Union[str, Any]: UpperCamelCase_ = pipeline(task='fill-mask' , model='distilroberta-base' , top_k=2 , framework='tf' ) self.run_large_test(_UpperCAmelCase ) def _UpperCAmelCase ( self , _UpperCAmelCase ) -> Tuple: UpperCamelCase_ = unmasker('My name is <mask>' ) self.assertEqual( nested_simplify(_UpperCAmelCase ) , [ {'sequence': 'My name is John', 'score': 0.0_0_8, 'token': 610, 'token_str': ' John'}, {'sequence': 'My name is Chris', 'score': 0.0_0_7, 'token': 1573, 'token_str': ' Chris'}, ] , ) UpperCamelCase_ = unmasker('The largest city in France is <mask>' ) self.assertEqual( nested_simplify(_UpperCAmelCase ) , [ { 'sequence': 'The largest city in France is Paris', 'score': 0.2_5_1, 'token': 2201, 'token_str': ' Paris', }, { 'sequence': 'The largest city in France is Lyon', 'score': 0.2_1_4, 'token': 12790, 'token_str': ' Lyon', }, ] , ) UpperCamelCase_ = unmasker('My name is <mask>' , targets=[' Patrick', ' Clara', ' Teven'] , top_k=3 ) self.assertEqual( nested_simplify(_UpperCAmelCase ) , [ {'sequence': 'My name is Patrick', 'score': 0.0_0_5, 'token': 3499, 'token_str': ' Patrick'}, {'sequence': 'My name is Clara', 'score': 0.0_0_0, 'token': 13606, 'token_str': ' Clara'}, {'sequence': 'My name is Te', 'score': 0.0_0_0, 'token': 2941, 'token_str': ' Te'}, ] , ) @require_torch def _UpperCAmelCase ( self ) -> List[Any]: UpperCamelCase_ = pipeline(task='fill-mask' , model='sshleifer/tiny-distilroberta-base' , framework='pt' ) UpperCamelCase_ = None UpperCamelCase_ = None self.run_pipeline_test(_UpperCAmelCase , [] ) @require_tf def _UpperCAmelCase ( self ) -> Optional[int]: UpperCamelCase_ = pipeline(task='fill-mask' , model='sshleifer/tiny-distilroberta-base' , framework='tf' ) UpperCamelCase_ = None UpperCamelCase_ = None self.run_pipeline_test(_UpperCAmelCase , [] ) def _UpperCAmelCase ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) -> Optional[Any]: if tokenizer is None or tokenizer.mask_token_id is None: self.skipTest('The provided tokenizer has no mask token, (probably reformer or wav2vec2)' ) UpperCamelCase_ = FillMaskPipeline(model=_UpperCAmelCase , tokenizer=_UpperCAmelCase ) UpperCamelCase_ = [ f"""This is another {tokenizer.mask_token} test""", ] return fill_masker, examples def _UpperCAmelCase ( self , _UpperCAmelCase , _UpperCAmelCase ) -> Union[str, Any]: UpperCamelCase_ = fill_masker.tokenizer UpperCamelCase_ = fill_masker.model UpperCamelCase_ = fill_masker( f"""This is a {tokenizer.mask_token}""" , ) self.assertEqual( _UpperCAmelCase , [ {'sequence': ANY(_UpperCAmelCase ), 'score': ANY(_UpperCAmelCase ), 'token': ANY(_UpperCAmelCase ), 'token_str': ANY(_UpperCAmelCase )}, {'sequence': ANY(_UpperCAmelCase ), 'score': ANY(_UpperCAmelCase ), 'token': ANY(_UpperCAmelCase ), 'token_str': ANY(_UpperCAmelCase )}, {'sequence': ANY(_UpperCAmelCase ), 'score': ANY(_UpperCAmelCase ), 'token': ANY(_UpperCAmelCase ), 'token_str': ANY(_UpperCAmelCase )}, {'sequence': ANY(_UpperCAmelCase ), 'score': ANY(_UpperCAmelCase ), 'token': ANY(_UpperCAmelCase ), 'token_str': ANY(_UpperCAmelCase )}, {'sequence': ANY(_UpperCAmelCase ), 'score': ANY(_UpperCAmelCase ), 'token': ANY(_UpperCAmelCase ), 'token_str': ANY(_UpperCAmelCase )}, ] , ) UpperCamelCase_ = fill_masker([f"""This is a {tokenizer.mask_token}"""] ) self.assertEqual( _UpperCAmelCase , [ {'sequence': ANY(_UpperCAmelCase ), 'score': ANY(_UpperCAmelCase ), 'token': ANY(_UpperCAmelCase ), 'token_str': ANY(_UpperCAmelCase )}, {'sequence': ANY(_UpperCAmelCase ), 'score': ANY(_UpperCAmelCase ), 'token': ANY(_UpperCAmelCase ), 'token_str': ANY(_UpperCAmelCase )}, {'sequence': ANY(_UpperCAmelCase ), 'score': ANY(_UpperCAmelCase ), 'token': ANY(_UpperCAmelCase ), 'token_str': ANY(_UpperCAmelCase )}, {'sequence': ANY(_UpperCAmelCase ), 'score': ANY(_UpperCAmelCase ), 'token': ANY(_UpperCAmelCase ), 'token_str': ANY(_UpperCAmelCase )}, {'sequence': ANY(_UpperCAmelCase ), 'score': ANY(_UpperCAmelCase ), 'token': ANY(_UpperCAmelCase ), 'token_str': ANY(_UpperCAmelCase )}, ] , ) UpperCamelCase_ = fill_masker([f"""This is a {tokenizer.mask_token}""", f"""Another {tokenizer.mask_token} great test."""] ) self.assertEqual( _UpperCAmelCase , [ [ {'sequence': ANY(_UpperCAmelCase ), 'score': ANY(_UpperCAmelCase ), 'token': ANY(_UpperCAmelCase ), 'token_str': ANY(_UpperCAmelCase )}, {'sequence': ANY(_UpperCAmelCase ), 'score': ANY(_UpperCAmelCase ), 'token': ANY(_UpperCAmelCase ), 'token_str': ANY(_UpperCAmelCase )}, {'sequence': ANY(_UpperCAmelCase ), 'score': ANY(_UpperCAmelCase ), 'token': ANY(_UpperCAmelCase ), 'token_str': ANY(_UpperCAmelCase )}, {'sequence': ANY(_UpperCAmelCase ), 'score': ANY(_UpperCAmelCase ), 'token': ANY(_UpperCAmelCase ), 'token_str': ANY(_UpperCAmelCase )}, {'sequence': ANY(_UpperCAmelCase ), 'score': ANY(_UpperCAmelCase ), 'token': ANY(_UpperCAmelCase ), 'token_str': ANY(_UpperCAmelCase )}, ], [ {'sequence': ANY(_UpperCAmelCase ), 'score': ANY(_UpperCAmelCase ), 'token': ANY(_UpperCAmelCase ), 'token_str': ANY(_UpperCAmelCase )}, {'sequence': ANY(_UpperCAmelCase ), 'score': ANY(_UpperCAmelCase ), 'token': ANY(_UpperCAmelCase ), 'token_str': ANY(_UpperCAmelCase )}, {'sequence': ANY(_UpperCAmelCase ), 'score': ANY(_UpperCAmelCase ), 'token': ANY(_UpperCAmelCase ), 'token_str': ANY(_UpperCAmelCase )}, {'sequence': ANY(_UpperCAmelCase ), 'score': ANY(_UpperCAmelCase ), 'token': ANY(_UpperCAmelCase ), 'token_str': ANY(_UpperCAmelCase )}, {'sequence': ANY(_UpperCAmelCase ), 'score': ANY(_UpperCAmelCase ), 'token': ANY(_UpperCAmelCase ), 'token_str': ANY(_UpperCAmelCase )}, ], ] , ) with self.assertRaises(_UpperCAmelCase ): fill_masker([None] ) # No mask_token is not supported with self.assertRaises(_UpperCAmelCase ): fill_masker('This is' ) self.run_test_top_k(_UpperCAmelCase , _UpperCAmelCase ) self.run_test_targets(_UpperCAmelCase , _UpperCAmelCase ) self.run_test_top_k_targets(_UpperCAmelCase , _UpperCAmelCase ) self.fill_mask_with_duplicate_targets_and_top_k(_UpperCAmelCase , _UpperCAmelCase ) self.fill_mask_with_multiple_masks(_UpperCAmelCase , _UpperCAmelCase ) def _UpperCAmelCase ( self , _UpperCAmelCase , _UpperCAmelCase ) -> Optional[Any]: UpperCamelCase_ = tokenizer.get_vocab() UpperCamelCase_ = sorted(vocab.keys() )[:2] # Pipeline argument UpperCamelCase_ = FillMaskPipeline(model=_UpperCAmelCase , tokenizer=_UpperCAmelCase , targets=_UpperCAmelCase ) UpperCamelCase_ = fill_masker(f"""This is a {tokenizer.mask_token}""" ) self.assertEqual( _UpperCAmelCase , [ {'sequence': ANY(_UpperCAmelCase ), 'score': ANY(_UpperCAmelCase ), 'token': ANY(_UpperCAmelCase ), 'token_str': ANY(_UpperCAmelCase )}, {'sequence': ANY(_UpperCAmelCase ), 'score': ANY(_UpperCAmelCase ), 'token': ANY(_UpperCAmelCase ), 'token_str': ANY(_UpperCAmelCase )}, ] , ) UpperCamelCase_ = {vocab[el] for el in targets} self.assertEqual({el['token'] for el in outputs} , _UpperCAmelCase ) UpperCamelCase_ = [tokenizer.decode([x] ) for x in target_ids] self.assertEqual({el['token_str'] for el in outputs} , set(_UpperCAmelCase ) ) # Call argument UpperCamelCase_ = FillMaskPipeline(model=_UpperCAmelCase , tokenizer=_UpperCAmelCase ) UpperCamelCase_ = fill_masker(f"""This is a {tokenizer.mask_token}""" , targets=_UpperCAmelCase ) self.assertEqual( _UpperCAmelCase , [ {'sequence': ANY(_UpperCAmelCase ), 'score': ANY(_UpperCAmelCase ), 'token': ANY(_UpperCAmelCase ), 'token_str': ANY(_UpperCAmelCase )}, {'sequence': ANY(_UpperCAmelCase ), 'score': ANY(_UpperCAmelCase ), 'token': ANY(_UpperCAmelCase ), 'token_str': ANY(_UpperCAmelCase )}, ] , ) UpperCamelCase_ = {vocab[el] for el in targets} self.assertEqual({el['token'] for el in outputs} , _UpperCAmelCase ) UpperCamelCase_ = [tokenizer.decode([x] ) for x in target_ids] self.assertEqual({el['token_str'] for el in outputs} , set(_UpperCAmelCase ) ) # Score equivalence UpperCamelCase_ = fill_masker(f"""This is a {tokenizer.mask_token}""" , targets=_UpperCAmelCase ) UpperCamelCase_ = [top_mask['token_str'] for top_mask in outputs] UpperCamelCase_ = [top_mask['score'] for top_mask in outputs] # For some BPE tokenizers, `</w>` is removed during decoding, so `token_str` won't be the same as in `targets`. if set(_UpperCAmelCase ) == set(_UpperCAmelCase ): UpperCamelCase_ = fill_masker(f"""This is a {tokenizer.mask_token}""" , targets=_UpperCAmelCase ) UpperCamelCase_ = [top_mask['score'] for top_mask in unmasked_targets] self.assertEqual(nested_simplify(_UpperCAmelCase ) , nested_simplify(_UpperCAmelCase ) ) # Raises with invalid with self.assertRaises(_UpperCAmelCase ): UpperCamelCase_ = fill_masker(f"""This is a {tokenizer.mask_token}""" , targets=[] ) # For some tokenizers, `""` is actually in the vocabulary and the expected error won't raised if "" not in tokenizer.get_vocab(): with self.assertRaises(_UpperCAmelCase ): UpperCamelCase_ = fill_masker(f"""This is a {tokenizer.mask_token}""" , targets=[''] ) with self.assertRaises(_UpperCAmelCase ): UpperCamelCase_ = fill_masker(f"""This is a {tokenizer.mask_token}""" , targets='' ) def _UpperCAmelCase ( self , _UpperCAmelCase , _UpperCAmelCase ) -> Tuple: UpperCamelCase_ = FillMaskPipeline(model=_UpperCAmelCase , tokenizer=_UpperCAmelCase , top_k=2 ) UpperCamelCase_ = fill_masker(f"""This is a {tokenizer.mask_token}""" ) self.assertEqual( _UpperCAmelCase , [ {'sequence': ANY(_UpperCAmelCase ), 'score': ANY(_UpperCAmelCase ), 'token': ANY(_UpperCAmelCase ), 'token_str': ANY(_UpperCAmelCase )}, {'sequence': ANY(_UpperCAmelCase ), 'score': ANY(_UpperCAmelCase ), 'token': ANY(_UpperCAmelCase ), 'token_str': ANY(_UpperCAmelCase )}, ] , ) UpperCamelCase_ = FillMaskPipeline(model=_UpperCAmelCase , tokenizer=_UpperCAmelCase ) UpperCamelCase_ = fill_masker(f"""This is a {tokenizer.mask_token}""" , top_k=2 ) self.assertEqual( _UpperCAmelCase , [ {'sequence': ANY(_UpperCAmelCase ), 'score': ANY(_UpperCAmelCase ), 'token': ANY(_UpperCAmelCase ), 'token_str': ANY(_UpperCAmelCase )}, {'sequence': ANY(_UpperCAmelCase ), 'score': ANY(_UpperCAmelCase ), 'token': ANY(_UpperCAmelCase ), 'token_str': ANY(_UpperCAmelCase )}, ] , ) self.assertEqual(nested_simplify(_UpperCAmelCase ) , nested_simplify(_UpperCAmelCase ) ) def _UpperCAmelCase ( self , _UpperCAmelCase , _UpperCAmelCase ) -> List[Any]: UpperCamelCase_ = tokenizer.get_vocab() UpperCamelCase_ = FillMaskPipeline(model=_UpperCAmelCase , tokenizer=_UpperCAmelCase ) # top_k=2, ntargets=3 UpperCamelCase_ = sorted(vocab.keys() )[:3] UpperCamelCase_ = fill_masker(f"""This is a {tokenizer.mask_token}""" , top_k=2 , targets=_UpperCAmelCase ) # If we use the most probably targets, and filter differently, we should still # have the same results UpperCamelCase_ = [el['token_str'] for el in sorted(_UpperCAmelCase , key=lambda _UpperCAmelCase : x["score"] , reverse=_UpperCAmelCase )] # For some BPE tokenizers, `</w>` is removed during decoding, so `token_str` won't be the same as in `targets`. if set(_UpperCAmelCase ).issubset(_UpperCAmelCase ): UpperCamelCase_ = fill_masker(f"""This is a {tokenizer.mask_token}""" , top_k=3 , targets=_UpperCAmelCase ) # They should yield exactly the same result self.assertEqual(nested_simplify(_UpperCAmelCase ) , nested_simplify(_UpperCAmelCase ) ) def _UpperCAmelCase ( self , _UpperCAmelCase , _UpperCAmelCase ) -> Optional[int]: UpperCamelCase_ = FillMaskPipeline(model=_UpperCAmelCase , tokenizer=_UpperCAmelCase ) UpperCamelCase_ = tokenizer.get_vocab() # String duplicates + id duplicates UpperCamelCase_ = sorted(vocab.keys() )[:3] UpperCamelCase_ = [targets[0], targets[1], targets[0], targets[2], targets[1]] UpperCamelCase_ = fill_masker(f"""My name is {tokenizer.mask_token}""" , targets=_UpperCAmelCase , top_k=10 ) # The target list contains duplicates, so we can't output more # than them self.assertEqual(len(_UpperCAmelCase ) , 3 ) def _UpperCAmelCase ( self , _UpperCAmelCase , _UpperCAmelCase ) -> List[str]: UpperCamelCase_ = FillMaskPipeline(model=_UpperCAmelCase , tokenizer=_UpperCAmelCase ) UpperCamelCase_ = fill_masker( f"""This is a {tokenizer.mask_token} {tokenizer.mask_token} {tokenizer.mask_token}""" , top_k=2 ) self.assertEqual( _UpperCAmelCase , [ [ {'sequence': ANY(_UpperCAmelCase ), 'score': ANY(_UpperCAmelCase ), 'token': ANY(_UpperCAmelCase ), 'token_str': ANY(_UpperCAmelCase )}, {'sequence': ANY(_UpperCAmelCase ), 'score': ANY(_UpperCAmelCase ), 'token': ANY(_UpperCAmelCase ), 'token_str': ANY(_UpperCAmelCase )}, ], [ {'sequence': ANY(_UpperCAmelCase ), 'score': ANY(_UpperCAmelCase ), 'token': ANY(_UpperCAmelCase ), 'token_str': ANY(_UpperCAmelCase )}, {'sequence': ANY(_UpperCAmelCase ), 'score': ANY(_UpperCAmelCase ), 'token': ANY(_UpperCAmelCase ), 'token_str': ANY(_UpperCAmelCase )}, ], [ {'sequence': ANY(_UpperCAmelCase ), 'score': ANY(_UpperCAmelCase ), 'token': ANY(_UpperCAmelCase ), 'token_str': ANY(_UpperCAmelCase )}, {'sequence': ANY(_UpperCAmelCase ), 'score': ANY(_UpperCAmelCase ), 'token': ANY(_UpperCAmelCase ), 'token_str': ANY(_UpperCAmelCase )}, ], ] , )
23
0
"""simple docstring""" from __future__ import annotations def _snake_case ( snake_case__ : list[int] , snake_case__ : list[int] , snake_case__ : list[int] , snake_case__ : list[list[str]] , snake_case__ : int , ): A = len(snake_case__ ) # If row is equal to the size of the board it means there are a queen in each row in # the current board (possible_board) if row == n: # We convert the variable possible_board that looks like this: [1, 3, 0, 2] to # this: ['. Q . . ', '. . . Q ', 'Q . . . ', '. . Q . '] boards.append(['. ' * i + 'Q ' + '. ' * (n - 1 - i) for i in possible_board] ) return # We iterate each column in the row to find all possible results in each row for col in range(snake_case__ ): # We apply that we learned previously. First we check that in the current board # (possible_board) there are not other same value because if there is it means # that there are a collision in vertical. Then we apply the two formulas we # learned before: # # 45º: y - x = b or 45: row - col = b # 135º: y + x = b or row + col = b. # # And we verify if the results of this two formulas not exist in their variables # respectively. (diagonal_right_collisions, diagonal_left_collisions) # # If any or these are True it means there is a collision so we continue to the # next value in the for loop. if ( col in possible_board or row - col in diagonal_right_collisions or row + col in diagonal_left_collisions ): continue # If it is False we call dfs function again and we update the inputs depth_first_search( [*possible_board, col] , [*diagonal_right_collisions, row - col] , [*diagonal_left_collisions, row + col] , snake_case__ , snake_case__ , ) def _snake_case ( snake_case__ : int ): A = [] depth_first_search([] , [] , [] , snake_case__ , snake_case__ ) # Print all the boards for board in boards: for column in board: print(snake_case__ ) print('' ) print(len(snake_case__ ) , 'solutions were found.' ) if __name__ == "__main__": import doctest doctest.testmod() n_queens_solution(4)
91
import gc import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, StableDiffusionSAGPipeline, UNetaDConditionModel, ) from diffusers.utils import slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_IMAGE_PARAMS, TEXT_TO_IMAGE_PARAMS from ..test_pipelines_common import PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() class _a ( UpperCAmelCase__ , UpperCAmelCase__ , unittest.TestCase ): """simple docstring""" A_ = StableDiffusionSAGPipeline A_ = TEXT_TO_IMAGE_PARAMS A_ = TEXT_TO_IMAGE_BATCH_PARAMS A_ = TEXT_TO_IMAGE_IMAGE_PARAMS A_ = TEXT_TO_IMAGE_IMAGE_PARAMS A_ = False def _UpperCAmelCase ( self ) -> Optional[Any]: torch.manual_seed(0 ) UpperCamelCase_ = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=('DownBlock2D', 'CrossAttnDownBlock2D') , up_block_types=('CrossAttnUpBlock2D', 'UpBlock2D') , cross_attention_dim=32 , ) UpperCamelCase_ = DDIMScheduler( beta_start=0.0_0_0_8_5 , beta_end=0.0_1_2 , beta_schedule='scaled_linear' , clip_sample=_UpperCAmelCase , set_alpha_to_one=_UpperCAmelCase , ) torch.manual_seed(0 ) UpperCamelCase_ = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=['DownEncoderBlock2D', 'DownEncoderBlock2D'] , up_block_types=['UpDecoderBlock2D', 'UpDecoderBlock2D'] , latent_channels=4 , ) torch.manual_seed(0 ) UpperCamelCase_ = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , ) UpperCamelCase_ = CLIPTextModel(_UpperCAmelCase ) UpperCamelCase_ = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip' ) UpperCamelCase_ = { 'unet': unet, 'scheduler': scheduler, 'vae': vae, 'text_encoder': text_encoder, 'tokenizer': tokenizer, 'safety_checker': None, 'feature_extractor': None, } return components def _UpperCAmelCase ( self , _UpperCAmelCase , _UpperCAmelCase=0 ) -> List[Any]: if str(_UpperCAmelCase ).startswith('mps' ): UpperCamelCase_ = torch.manual_seed(_UpperCAmelCase ) else: UpperCamelCase_ = torch.Generator(device=_UpperCAmelCase ).manual_seed(_UpperCAmelCase ) UpperCamelCase_ = { 'prompt': '.', 'generator': generator, 'num_inference_steps': 2, 'guidance_scale': 1.0, 'sag_scale': 1.0, 'output_type': 'numpy', } return inputs def _UpperCAmelCase ( self ) -> Tuple: super().test_inference_batch_single_identical(expected_max_diff=3e-3 ) @slow @require_torch_gpu class _a ( unittest.TestCase ): """simple docstring""" def _UpperCAmelCase ( self ) -> Tuple: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def _UpperCAmelCase ( self ) -> str: UpperCamelCase_ = StableDiffusionSAGPipeline.from_pretrained('CompVis/stable-diffusion-v1-4' ) UpperCamelCase_ = sag_pipe.to(_UpperCAmelCase ) sag_pipe.set_progress_bar_config(disable=_UpperCAmelCase ) UpperCamelCase_ = '.' UpperCamelCase_ = torch.manual_seed(0 ) UpperCamelCase_ = sag_pipe( [prompt] , generator=_UpperCAmelCase , guidance_scale=7.5 , sag_scale=1.0 , num_inference_steps=20 , output_type='np' ) UpperCamelCase_ = output.images UpperCamelCase_ = image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) UpperCamelCase_ = np.array([0.1_5_6_8, 0.1_7_3_8, 0.1_6_9_5, 0.1_6_9_3, 0.1_5_0_7, 0.1_7_0_5, 0.1_5_4_7, 0.1_7_5_1, 0.1_9_4_9] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 5e-2 def _UpperCAmelCase ( self ) -> List[Any]: UpperCamelCase_ = StableDiffusionSAGPipeline.from_pretrained('stabilityai/stable-diffusion-2-1-base' ) UpperCamelCase_ = sag_pipe.to(_UpperCAmelCase ) sag_pipe.set_progress_bar_config(disable=_UpperCAmelCase ) UpperCamelCase_ = '.' UpperCamelCase_ = torch.manual_seed(0 ) UpperCamelCase_ = sag_pipe( [prompt] , generator=_UpperCAmelCase , guidance_scale=7.5 , sag_scale=1.0 , num_inference_steps=20 , output_type='np' ) UpperCamelCase_ = output.images UpperCamelCase_ = image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) UpperCamelCase_ = np.array([0.3_4_5_9, 0.2_8_7_6, 0.2_5_3_7, 0.3_0_0_2, 0.2_6_7_1, 0.2_1_6_0, 0.3_0_2_6, 0.2_2_6_2, 0.2_3_7_1] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 5e-2 def _UpperCAmelCase ( self ) -> Dict: UpperCamelCase_ = StableDiffusionSAGPipeline.from_pretrained('stabilityai/stable-diffusion-2-1-base' ) UpperCamelCase_ = sag_pipe.to(_UpperCAmelCase ) sag_pipe.set_progress_bar_config(disable=_UpperCAmelCase ) UpperCamelCase_ = '.' UpperCamelCase_ = torch.manual_seed(0 ) UpperCamelCase_ = sag_pipe( [prompt] , width=768 , height=512 , generator=_UpperCAmelCase , guidance_scale=7.5 , sag_scale=1.0 , num_inference_steps=20 , output_type='np' , ) UpperCamelCase_ = output.images assert image.shape == (1, 512, 768, 3)
23
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, is_vision_available, ) UpperCamelCase_ = { """configuration_clip""": [ """CLIP_PRETRAINED_CONFIG_ARCHIVE_MAP""", """CLIPConfig""", """CLIPOnnxConfig""", """CLIPTextConfig""", """CLIPVisionConfig""", ], """processing_clip""": ["""CLIPProcessor"""], """tokenization_clip""": ["""CLIPTokenizer"""], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase_ = ["""CLIPTokenizerFast"""] try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase_ = ["""CLIPFeatureExtractor"""] UpperCamelCase_ = ["""CLIPImageProcessor"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase_ = [ """CLIP_PRETRAINED_MODEL_ARCHIVE_LIST""", """CLIPModel""", """CLIPPreTrainedModel""", """CLIPTextModel""", """CLIPTextModelWithProjection""", """CLIPVisionModel""", """CLIPVisionModelWithProjection""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase_ = [ """TF_CLIP_PRETRAINED_MODEL_ARCHIVE_LIST""", """TFCLIPModel""", """TFCLIPPreTrainedModel""", """TFCLIPTextModel""", """TFCLIPVisionModel""", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase_ = [ """FlaxCLIPModel""", """FlaxCLIPPreTrainedModel""", """FlaxCLIPTextModel""", """FlaxCLIPTextPreTrainedModel""", """FlaxCLIPVisionModel""", """FlaxCLIPVisionPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_clip import ( CLIP_PRETRAINED_CONFIG_ARCHIVE_MAP, CLIPConfig, CLIPOnnxConfig, CLIPTextConfig, CLIPVisionConfig, ) from .processing_clip import CLIPProcessor from .tokenization_clip import CLIPTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_clip_fast import CLIPTokenizerFast try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_clip import CLIPFeatureExtractor from .image_processing_clip import CLIPImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_clip import ( CLIP_PRETRAINED_MODEL_ARCHIVE_LIST, CLIPModel, CLIPPreTrainedModel, CLIPTextModel, CLIPTextModelWithProjection, CLIPVisionModel, CLIPVisionModelWithProjection, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_clip import ( TF_CLIP_PRETRAINED_MODEL_ARCHIVE_LIST, TFCLIPModel, TFCLIPPreTrainedModel, TFCLIPTextModel, TFCLIPVisionModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_clip import ( FlaxCLIPModel, FlaxCLIPPreTrainedModel, FlaxCLIPTextModel, FlaxCLIPTextPreTrainedModel, FlaxCLIPVisionModel, FlaxCLIPVisionPreTrainedModel, ) else: import sys UpperCamelCase_ = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
92
from __future__ import annotations from sys import maxsize from typing import Generic, TypeVar snake_case__ : List[str] = TypeVar("""T""") def _snake_case (__lowercase): return (position - 1) // 2 def _snake_case (__lowercase): return (2 * position) + 1 def _snake_case (__lowercase): return (2 * position) + 2 class _a ( Generic[T] ): """simple docstring""" def __init__( self ) -> None: UpperCamelCase_ = [] UpperCamelCase_ = {} UpperCamelCase_ = 0 def __len__( self ) -> int: return self.elements def __repr__( self ) -> str: return str(self.heap ) def _UpperCAmelCase ( self ) -> bool: # Check if the priority queue is empty return self.elements == 0 def _UpperCAmelCase ( self , _UpperCAmelCase , _UpperCAmelCase ) -> None: # Add an element with given priority to the queue self.heap.append((elem, weight) ) UpperCamelCase_ = self.elements self.elements += 1 self._bubble_up(_UpperCAmelCase ) def _UpperCAmelCase ( self ) -> T: # Remove and return the element with lowest weight (highest priority) if self.elements > 1: self._swap_nodes(0 , self.elements - 1 ) UpperCamelCase_ , UpperCamelCase_ = self.heap.pop() del self.position_map[elem] self.elements -= 1 if self.elements > 0: UpperCamelCase_ , UpperCamelCase_ = self.heap[0] self._bubble_down(_UpperCAmelCase ) return elem def _UpperCAmelCase ( self , _UpperCAmelCase , _UpperCAmelCase ) -> None: # Update the weight of the given key UpperCamelCase_ = self.position_map[elem] UpperCamelCase_ = (elem, weight) if position > 0: UpperCamelCase_ = get_parent_position(_UpperCAmelCase ) UpperCamelCase_ , UpperCamelCase_ = self.heap[parent_position] if parent_weight > weight: self._bubble_up(_UpperCAmelCase ) else: self._bubble_down(_UpperCAmelCase ) else: self._bubble_down(_UpperCAmelCase ) def _UpperCAmelCase ( self , _UpperCAmelCase ) -> None: # Place a node at the proper position (upward movement) [to be used internally # only] UpperCamelCase_ = self.position_map[elem] if curr_pos == 0: return None UpperCamelCase_ = get_parent_position(_UpperCAmelCase ) UpperCamelCase_ , UpperCamelCase_ = self.heap[curr_pos] UpperCamelCase_ , UpperCamelCase_ = self.heap[parent_position] if parent_weight > weight: self._swap_nodes(_UpperCAmelCase , _UpperCAmelCase ) return self._bubble_up(_UpperCAmelCase ) return None def _UpperCAmelCase ( self , _UpperCAmelCase ) -> None: # Place a node at the proper position (downward movement) [to be used # internally only] UpperCamelCase_ = self.position_map[elem] UpperCamelCase_ , UpperCamelCase_ = self.heap[curr_pos] UpperCamelCase_ = get_child_left_position(_UpperCAmelCase ) UpperCamelCase_ = get_child_right_position(_UpperCAmelCase ) if child_left_position < self.elements and child_right_position < self.elements: UpperCamelCase_ , UpperCamelCase_ = self.heap[child_left_position] UpperCamelCase_ , UpperCamelCase_ = self.heap[child_right_position] if child_right_weight < child_left_weight and child_right_weight < weight: self._swap_nodes(_UpperCAmelCase , _UpperCAmelCase ) return self._bubble_down(_UpperCAmelCase ) if child_left_position < self.elements: UpperCamelCase_ , UpperCamelCase_ = self.heap[child_left_position] if child_left_weight < weight: self._swap_nodes(_UpperCAmelCase , _UpperCAmelCase ) return self._bubble_down(_UpperCAmelCase ) else: return None if child_right_position < self.elements: UpperCamelCase_ , UpperCamelCase_ = self.heap[child_right_position] if child_right_weight < weight: self._swap_nodes(_UpperCAmelCase , _UpperCAmelCase ) return self._bubble_down(_UpperCAmelCase ) return None def _UpperCAmelCase ( self , _UpperCAmelCase , _UpperCAmelCase ) -> None: # Swap the nodes at the given positions UpperCamelCase_ = self.heap[nodea_pos][0] UpperCamelCase_ = self.heap[nodea_pos][0] UpperCamelCase_ , UpperCamelCase_ = ( self.heap[nodea_pos], self.heap[nodea_pos], ) UpperCamelCase_ = nodea_pos UpperCamelCase_ = nodea_pos class _a ( Generic[T] ): """simple docstring""" def __init__( self ) -> None: UpperCamelCase_ = {} UpperCamelCase_ = 0 def __repr__( self ) -> str: return str(self.connections ) def __len__( self ) -> int: return self.nodes def _UpperCAmelCase ( self , _UpperCAmelCase ) -> None: # Add a node in the graph if it is not in the graph if node not in self.connections: UpperCamelCase_ = {} self.nodes += 1 def _UpperCAmelCase ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) -> None: # Add an edge between 2 nodes in the graph self.add_node(_UpperCAmelCase ) self.add_node(_UpperCAmelCase ) UpperCamelCase_ = weight UpperCamelCase_ = weight def _snake_case (__lowercase , ): UpperCamelCase_ = {node: maxsize for node in graph.connections} UpperCamelCase_ = {node: None for node in graph.connections} UpperCamelCase_ = MinPriorityQueue() for node, weight in dist.items(): priority_queue.push(__lowercase , __lowercase) if priority_queue.is_empty(): return dist, parent # initialization UpperCamelCase_ = priority_queue.extract_min() UpperCamelCase_ = 0 for neighbour in graph.connections[node]: if dist[neighbour] > dist[node] + graph.connections[node][neighbour]: UpperCamelCase_ = dist[node] + graph.connections[node][neighbour] priority_queue.update_key(__lowercase , dist[neighbour]) UpperCamelCase_ = node # running prim's algorithm while not priority_queue.is_empty(): UpperCamelCase_ = priority_queue.extract_min() for neighbour in graph.connections[node]: if dist[neighbour] > dist[node] + graph.connections[node][neighbour]: UpperCamelCase_ = dist[node] + graph.connections[node][neighbour] priority_queue.update_key(__lowercase , dist[neighbour]) UpperCamelCase_ = node return dist, parent
23
0
"""simple docstring""" import argparse from transformers import BigBirdConfig, BigBirdForPreTraining, BigBirdForQuestionAnswering, load_tf_weights_in_big_bird from transformers.utils import logging logging.set_verbosity_info() def __A (_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ->Any: """simple docstring""" lowerCAmelCase__ :str = BigBirdConfig.from_json_file(_SCREAMING_SNAKE_CASE ) print(F"Building PyTorch model from configuration: {config}" ) if is_trivia_qa: lowerCAmelCase__ :str = BigBirdForQuestionAnswering(_SCREAMING_SNAKE_CASE ) else: lowerCAmelCase__ :Optional[int] = BigBirdForPreTraining(_SCREAMING_SNAKE_CASE ) # Load weights from tf checkpoint load_tf_weights_in_big_bird(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , is_trivia_qa=_SCREAMING_SNAKE_CASE ) # Save pytorch-model print(F"Save PyTorch model to {pytorch_dump_path}" ) model.save_pretrained(_SCREAMING_SNAKE_CASE ) if __name__ == "__main__": __A = argparse.ArgumentParser() # Required parameters parser.add_argument( """--tf_checkpoint_path""", default=None, type=str, required=True, help="""Path to the TensorFlow checkpoint path.""" ) parser.add_argument( """--big_bird_config_file""", default=None, type=str, required=True, help=( """The config json file corresponding to the pre-trained BERT model. \n""" """This specifies the model architecture.""" ), ) parser.add_argument( """--pytorch_dump_path""", default=None, type=str, required=True, help="""Path to the output PyTorch model.""" ) parser.add_argument( """--is_trivia_qa""", action="""store_true""", help="""Whether to convert a model with a trivia_qa head.""" ) __A = parser.parse_args() convert_tf_checkpoint_to_pytorch( args.tf_checkpoint_path, args.big_bird_config_file, args.pytorch_dump_path, args.is_trivia_qa )
93
from __future__ import annotations import sys from collections import deque from typing import Generic, TypeVar snake_case__ : Dict = TypeVar("""T""") class _a ( Generic[T] ): """simple docstring""" A_ = 42 # Cache store of keys A_ = 42 # References of the keys in cache A_ = 10 # Maximum capacity of cache def __init__( self , _UpperCAmelCase ) -> None: UpperCamelCase_ = deque() UpperCamelCase_ = set() if not n: UpperCamelCase_ = sys.maxsize elif n < 0: raise ValueError('n should be an integer greater than 0.' ) else: UpperCamelCase_ = n def _UpperCAmelCase ( self , _UpperCAmelCase ) -> None: if x not in self.key_reference: if len(self.dq_store ) == LRUCache._MAX_CAPACITY: UpperCamelCase_ = self.dq_store.pop() self.key_reference.remove(_UpperCAmelCase ) else: self.dq_store.remove(_UpperCAmelCase ) self.dq_store.appendleft(_UpperCAmelCase ) self.key_reference.add(_UpperCAmelCase ) def _UpperCAmelCase ( self ) -> None: for k in self.dq_store: print(_UpperCAmelCase ) def __repr__( self ) -> str: return f"""LRUCache({self._MAX_CAPACITY}) => {list(self.dq_store )}""" if __name__ == "__main__": import doctest doctest.testmod() snake_case__ : LRUCache[str | int] = LRUCache(4) lru_cache.refer("""A""") lru_cache.refer(2) lru_cache.refer(3) lru_cache.refer("""A""") lru_cache.refer(4) lru_cache.refer(5) lru_cache.display() print(lru_cache) assert str(lru_cache) == "LRUCache(4) => [5, 4, 'A', 3]"
23
0
'''simple docstring''' from ..utils import DummyObject, requires_backends class UpperCAmelCase_ ( metaclass=__A ): """simple docstring""" UpperCamelCase_ = ['''transformers''', '''torch''', '''note_seq'''] def __init__( self : List[str] , *UpperCAmelCase : Tuple , **UpperCAmelCase : Optional[Any] ) -> Dict: '''simple docstring''' requires_backends(self , ['''transformers''', '''torch''', '''note_seq'''] ) @classmethod def A__ ( cls : Union[str, Any] , *UpperCAmelCase : Tuple , **UpperCAmelCase : Any ) -> Tuple: '''simple docstring''' requires_backends(cls , ['''transformers''', '''torch''', '''note_seq'''] ) @classmethod def A__ ( cls : Optional[int] , *UpperCAmelCase : Optional[int] , **UpperCAmelCase : Dict ) -> Dict: '''simple docstring''' requires_backends(cls , ['''transformers''', '''torch''', '''note_seq'''] )
94
import numpy as np def _snake_case (__lowercase): return 1 / (1 + np.exp(-vector)) def _snake_case (__lowercase): return vector * sigmoid(__lowercase) if __name__ == "__main__": import doctest doctest.testmod()
23
0
"""simple docstring""" import numpy as np lowerCamelCase_ = [ ['''a''', '''b''', '''c''', '''d''', '''e'''], ['''f''', '''g''', '''h''', '''i''', '''k'''], ['''l''', '''m''', '''n''', '''o''', '''p'''], ['''q''', '''r''', '''s''', '''t''', '''u'''], ['''v''', '''w''', '''x''', '''y''', '''z'''], ] class UpperCamelCase_ : def __init__( self : int ) -> None: UpperCAmelCase_ : Union[str, Any] = np.array(lowerCAmelCase_ ) def _SCREAMING_SNAKE_CASE ( self : Optional[int] , lowerCAmelCase_ : str ) -> np.ndarray: UpperCAmelCase_ , UpperCAmelCase_ : Tuple = np.where(letter == self.SQUARE ) UpperCAmelCase_ : int = np.concatenate([indexa + 1, indexa + 1] ) return indexes def _SCREAMING_SNAKE_CASE ( self : List[str] , lowerCAmelCase_ : int , lowerCAmelCase_ : int ) -> str: UpperCAmelCase_ : List[Any] = self.SQUARE[indexa - 1, indexa - 1] return letter def _SCREAMING_SNAKE_CASE ( self : Any , lowerCAmelCase_ : str ) -> str: UpperCAmelCase_ : Dict = message.lower() UpperCAmelCase_ : str = message.replace(" " , "" ) UpperCAmelCase_ : List[Any] = message.replace("j" , "i" ) UpperCAmelCase_ : List[str] = np.empty((2, len(lowerCAmelCase_ )) ) for letter_index in range(len(lowerCAmelCase_ ) ): UpperCAmelCase_ : Dict = self.letter_to_numbers(message[letter_index] ) UpperCAmelCase_ : Union[str, Any] = numbers[0] UpperCAmelCase_ : Tuple = numbers[1] UpperCAmelCase_ : Any = first_step.reshape(2 * len(lowerCAmelCase_ ) ) UpperCAmelCase_ : Tuple = "" for numbers_index in range(len(lowerCAmelCase_ ) ): UpperCAmelCase_ : Any = int(second_step[numbers_index * 2] ) UpperCAmelCase_ : List[Any] = int(second_step[(numbers_index * 2) + 1] ) UpperCAmelCase_ : Union[str, Any] = self.numbers_to_letter(lowerCAmelCase_ , lowerCAmelCase_ ) UpperCAmelCase_ : int = encoded_message + letter return encoded_message def _SCREAMING_SNAKE_CASE ( self : List[Any] , lowerCAmelCase_ : str ) -> str: UpperCAmelCase_ : Optional[int] = message.lower() message.replace(" " , "" ) UpperCAmelCase_ : str = np.empty(2 * len(lowerCAmelCase_ ) ) for letter_index in range(len(lowerCAmelCase_ ) ): UpperCAmelCase_ : str = self.letter_to_numbers(message[letter_index] ) UpperCAmelCase_ : List[Any] = numbers[0] UpperCAmelCase_ : Tuple = numbers[1] UpperCAmelCase_ : Any = first_step.reshape((2, len(lowerCAmelCase_ )) ) UpperCAmelCase_ : List[Any] = "" for numbers_index in range(len(lowerCAmelCase_ ) ): UpperCAmelCase_ : Optional[Any] = int(second_step[0, numbers_index] ) UpperCAmelCase_ : Tuple = int(second_step[1, numbers_index] ) UpperCAmelCase_ : str = self.numbers_to_letter(lowerCAmelCase_ , lowerCAmelCase_ ) UpperCAmelCase_ : List[Any] = decoded_message + letter return decoded_message
95
import math from datetime import datetime, timedelta def _snake_case (__lowercase): UpperCamelCase_ = year % 19 UpperCamelCase_ = year % 4 UpperCamelCase_ = year % 7 UpperCamelCase_ = math.floor(year / 100) UpperCamelCase_ = math.floor((13 + 8 * leap_day_inhibits) / 25) UpperCamelCase_ = leap_day_inhibits / 4 UpperCamelCase_ = ( 15 - lunar_orbit_correction + leap_day_inhibits - leap_day_reinstall_number ) % 30 UpperCamelCase_ = (4 + leap_day_inhibits - leap_day_reinstall_number) % 7 # days to be added to March 21 UpperCamelCase_ = (19 * metonic_cycle + secular_moon_shift) % 30 # PHM -> Paschal Full Moon UpperCamelCase_ = ( 2 * julian_leap_year + 4 * non_leap_year + 6 * days_to_add + century_starting_point ) % 7 if days_to_add == 29 and days_from_phm_to_sunday == 6: return datetime(__lowercase , 4 , 19) elif days_to_add == 28 and days_from_phm_to_sunday == 6: return datetime(__lowercase , 4 , 18) else: return datetime(__lowercase , 3 , 22) + timedelta( days=int(days_to_add + days_from_phm_to_sunday)) if __name__ == "__main__": for year in (1_9_9_4, 2_0_0_0, 2_0_1_0, 2_0_2_1, 2_0_2_3): snake_case__ : Dict = """will be""" if year > datetime.now().year else """was""" print(f'Easter in {year} {tense} {gauss_easter(year)}')
23
0
"""simple docstring""" def a ( __UpperCAmelCase : int = 1_0_0_0 ) -> int: __magic_name__: int = 2**power __magic_name__: Any = 0 while n: __magic_name__, __magic_name__: int = r + n % 1_0, n // 1_0 return r if __name__ == "__main__": print(solution(int(str(input()).strip())))
96
import requests def _snake_case (__lowercase , __lowercase): UpperCamelCase_ = {'Content-Type': 'application/json'} UpperCamelCase_ = requests.post(__lowercase , json={'text': message_body} , headers=__lowercase) if response.status_code != 200: UpperCamelCase_ = ( 'Request to slack returned an error ' f"""{response.status_code}, the response is:\n{response.text}""" ) raise ValueError(__lowercase) if __name__ == "__main__": # Set the slack url to the one provided by Slack when you create the webhook at # https://my.slack.com/services/new/incoming-webhook/ send_slack_message("""<YOUR MESSAGE BODY>""", """<SLACK CHANNEL URL>""")
23
0
def a ( snake_case__: int = 1_000_000 ): '''simple docstring''' lowercase_ = 1 lowercase_ = 1 lowercase_ = {1: 1} for inputa in range(2 , snake_case__ ): lowercase_ = 0 lowercase_ = inputa while True: if number in counters: counter += counters[number] break if number % 2 == 0: number //= 2 counter += 1 else: lowercase_ = (3 * number) + 1 counter += 1 if inputa not in counters: lowercase_ = counter if counter > pre_counter: lowercase_ = inputa lowercase_ = counter return largest_number if __name__ == "__main__": print(solution(int(input().strip())))
97
import re from pathlib import Path from unittest import TestCase import pytest @pytest.mark.integration class _a ( UpperCAmelCase__ ): """simple docstring""" def _UpperCAmelCase ( self , _UpperCAmelCase ) -> Dict: with open(_UpperCAmelCase , encoding='utf-8' ) as input_file: UpperCamelCase_ = re.compile(R'(?!.*\b(?:encoding|rb|w|wb|w+|wb+|ab|ab+)\b)(?<=\s)(open)\((.*)\)' ) UpperCamelCase_ = input_file.read() UpperCamelCase_ = regexp.search(_UpperCAmelCase ) return match def _UpperCAmelCase ( self , _UpperCAmelCase ) -> Dict: with open(_UpperCAmelCase , encoding='utf-8' ) as input_file: UpperCamelCase_ = re.compile(R'#[^\r\n]*print\(|\"[^\r\n]*print\(|\"\"\".*?print\(.*?\"\"\"|(print\()' , re.DOTALL ) UpperCamelCase_ = input_file.read() # use `re.finditer` to handle the case where the ignored groups would be matched first by `re.search` UpperCamelCase_ = regexp.finditer(_UpperCAmelCase ) UpperCamelCase_ = [match for match in matches if match is not None and match.group(1 ) is not None] return matches[0] if matches else None def _UpperCAmelCase ( self ) -> List[str]: UpperCamelCase_ = Path('./datasets' ) UpperCamelCase_ = list(dataset_paths.absolute().glob('**/*.py' ) ) for dataset in dataset_files: if self._no_encoding_on_file_open(str(_UpperCAmelCase ) ): raise AssertionError(f"""open(...) must use utf-8 encoding in {dataset}""" ) def _UpperCAmelCase ( self ) -> Optional[int]: UpperCamelCase_ = Path('./datasets' ) UpperCamelCase_ = list(dataset_paths.absolute().glob('**/*.py' ) ) for dataset in dataset_files: if self._no_print_statements(str(_UpperCAmelCase ) ): raise AssertionError(f"""print statement found in {dataset}. Use datasets.logger/logging instead.""" )
23
0
'''simple docstring''' def a__ ( lowercase : int, lowercase : int ) -> str: """simple docstring""" return "\n".join( F"""{number} * {i} = {number * i}""" for i in range(1, number_of_terms + 1 ) ) if __name__ == "__main__": print(multiplication_table(number=5, number_of_terms=10))
98
import argparse import random import joblib import numpy as np import torch from igf.igf import ( SecondaryLearner, collect_objective_set, compute_perplexity, generate_datasets, load_gpta, recopy_gpta, set_seed, train_secondary_learner, ) from torch.utils.data import DataLoader, RandomSampler from transformers import GPTaLMHeadModel def _snake_case (__lowercase=32 , __lowercase=10 , __lowercase=100 , __lowercase=1026 , __lowercase=True , __lowercase="data/tokenized_stories_train_wikitext103.jbl" , __lowercase="igf_context_pairs.jbl" , ): set_seed(3) # generate train_data and objective_set UpperCamelCase_ , UpperCamelCase_ = generate_datasets( __lowercase , __lowercase , number=__lowercase , min_len=1026 , trim=__lowercase) # keeps model same across runs set_seed(4) # model, lm_optimizer, lm_scheduler = recopy_gpt2(model, device, max_steps) # store original model weights # can we train on GPU? UpperCamelCase_ = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu') # load pretrained model UpperCamelCase_ = load_gpta('gpt2').to(__lowercase) print('computing perplexity on objective set') UpperCamelCase_ = compute_perplexity(__lowercase , __lowercase , __lowercase).item() print('perplexity on objective set:' , __lowercase) # collect igf pairs and save to file demo.jbl collect_objective_set(__lowercase , __lowercase , __lowercase , __lowercase , __lowercase , __lowercase , __lowercase , __lowercase) # clean up, delete model and data we don't need anymore del model, train_data, objective_set torch.cuda.empty_cache() def _snake_case (__lowercase , __lowercase=15 , __lowercase=128 , __lowercase=100 , __lowercase="igf_model.pt" , ): set_seed(42) # Load pre-trained model UpperCamelCase_ = GPTaLMHeadModel.from_pretrained('gpt2') # Initialize secondary learner to use embedding weights of model UpperCamelCase_ = SecondaryLearner(__lowercase) # Train secondary learner UpperCamelCase_ = train_secondary_learner( __lowercase , __lowercase , max_epochs=__lowercase , batch_size=__lowercase , eval_freq=100 , igf_model_path=__lowercase , ) del model, secondary_learner_train_data torch.cuda.empty_cache() return secondary_learner def _snake_case (__lowercase , __lowercase , __lowercase , __lowercase=32 , __lowercase=1000 , __lowercase=16 , __lowercase=1.0 , __lowercase=recopy_gpta , __lowercase=None , __lowercase=10 , __lowercase="gpt2_finetuned.pt" , ): UpperCamelCase_ = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu') UpperCamelCase_ = RandomSampler(__lowercase) UpperCamelCase_ = DataLoader(__lowercase , sampler=__lowercase) UpperCamelCase_ = max_steps // (len(__lowercase)) + 1 UpperCamelCase_ = 0 UpperCamelCase_ = torch.zeros((1, context_len) , dtype=torch.long , device=__lowercase) UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ = recopy_model(__lowercase , __lowercase , __lowercase) model.train() if secondary_learner is not None: secondary_learner.to(__lowercase) secondary_learner.eval() UpperCamelCase_ = [] UpperCamelCase_ = 0 UpperCamelCase_ = [] UpperCamelCase_ = [] # Compute the performance of the transformer model at the beginning UpperCamelCase_ = compute_perplexity(__lowercase , __lowercase , __lowercase) test_perps.append(__lowercase) print('Test perplexity, step' , __lowercase , ':' , __lowercase) for epoch in range(int(__lowercase)): for step, example in enumerate(__lowercase): torch.cuda.empty_cache() UpperCamelCase_ = random.randint(0 , example.size(2) - context_len - 1) UpperCamelCase_ = example[0, 0, start : start + context_len] lm_optimizer.zero_grad() UpperCamelCase_ = model(__lowercase , labels=__lowercase) UpperCamelCase_ = True if secondary_learner is not None: UpperCamelCase_ = secondary_learner.forward( torch.tensor(__lowercase , dtype=torch.long , device=__lowercase).unsqueeze(0))[0].item() observed_qs.append(float(__lowercase)) # Here we implement the simple non-constant threshold for the predicted IG(X) value # We will decay the selectivity of our secondary learner filter from # 1 standard deviation above average to 1 below average after 10 batches. if global_step == 10: UpperCamelCase_ = -1 if predicted_q < threshold: UpperCamelCase_ = False # If we passed the filter, add the context to the batch! if do_backprop: contexts.append(np.array(context.cpu())) UpperCamelCase_ = outputs[0] lm_loss.backward() examples += 1 del outputs # Once the batch is filled with enough contexts, backprop on the batch. if examples == batch_size: torch.cuda.empty_cache() UpperCamelCase_ = 0 # Do LM backprop torch.nn.utils.clip_grad_norm_(model.parameters() , 3.0) lm_optimizer.step() lm_scheduler.step() # Update learning rate schedule global_step += 1 # Compute the performance of the transformer model at this batch if global_step % eval_interval == 0: UpperCamelCase_ = compute_perplexity(__lowercase , __lowercase , __lowercase) test_perps.append(__lowercase) print('Test perplexity, step' , __lowercase , ':' , __lowercase) # Break out of the loop after 60 batches if max_steps > 0 and global_step > 60: break if max_steps > 0 and global_step > 60: break # save finetuned transformer model torch.save(model.state_dict() , __lowercase) torch.cuda.empty_cache() # Do some cleaning up so we can reinitialize for the next run of this function del lm_optimizer del lm_scheduler return model def _snake_case (): UpperCamelCase_ = argparse.ArgumentParser(description='Fine-tune a transformer model with IGF on a language modeling task') # Required parameters parser.add_argument( '--data_dir' , default=__lowercase , type=__lowercase , required=__lowercase , help='The input data dir. Should contain data files for WikiText.' , ) parser.add_argument( '--model_name_or_path' , default=__lowercase , type=__lowercase , required=__lowercase , help='Path to pretrained model or model identifier from huggingface.co/models' , ) parser.add_argument( '--data_file' , type=__lowercase , default=__lowercase , help=( 'A jbl file containing tokenized data which can be split as objective dataset, ' 'train_dataset and test_dataset.' ) , ) parser.add_argument( '--igf_data_file' , type=__lowercase , default=__lowercase , help='A jbl file containing the context and information gain pairs to train secondary learner.' , ) parser.add_argument( '--output_dir' , default=__lowercase , type=__lowercase , required=__lowercase , help='The output directory where the final fine-tuned model is stored.' , ) parser.add_argument( '--tokenizer_name' , default=__lowercase , type=__lowercase , help='Pretrained tokenizer name or path if not the same as model_name' , ) parser.add_argument('--seed' , type=__lowercase , default=__lowercase , help='A seed for reproducible training.') parser.add_argument( '--context_len' , default=32 , type=__lowercase , help=( 'The maximum total input sequence length after tokenization. Sequences longer ' 'than this will be truncated, sequences shorter will be padded.' ) , ) parser.add_argument( '--size_objective_set' , default=100 , type=__lowercase , help='number of articles that are long enough to be used as our objective set' , ) parser.add_argument( '--eval_freq' , default=100 , type=__lowercase , help='secondary model evaluation is triggered at eval_freq') parser.add_argument('--max_steps' , default=1000 , type=__lowercase , help='To calculate training epochs') parser.add_argument( '--secondary_learner_batch_size' , default=128 , type=__lowercase , help='batch size of training data for secondary learner' , ) parser.add_argument( '--batch_size' , default=16 , type=__lowercase , help='batch size of training data of language model(gpt2) ') parser.add_argument( '--eval_interval' , default=10 , type=__lowercase , help=( 'decay the selectivity of our secondary learner filter from' '1 standard deviation above average to 1 below average after 10 batches' ) , ) parser.add_argument( '--number' , default=100 , type=__lowercase , help='The number of examples split to be used as objective_set/test_data') parser.add_argument( '--min_len' , default=1026 , type=__lowercase , help='The minimum length of the article to be used as objective set') parser.add_argument( '--secondary_learner_max_epochs' , default=15 , type=__lowercase , help='number of epochs to train secondary learner') parser.add_argument('--trim' , default=__lowercase , type=__lowercase , help='truncate the example if it exceeds context length') parser.add_argument( '--threshold' , default=1.0 , type=__lowercase , help=( 'The threshold value used by secondary learner to filter the train_data and allow only' ' informative data as input to the model' ) , ) parser.add_argument('--finetuned_model_name' , default='gpt2_finetuned.pt' , type=__lowercase , help='finetuned_model_name') parser.add_argument( '--recopy_model' , default=__lowercase , type=__lowercase , help='Reset the model to the original pretrained GPT-2 weights after each iteration' , ) # function calls # Collecting *n* pairs of context and information gain(X, IG(X)) for training the secondary learner generate_n_pairs( context_len=32 , max_steps=10 , size_objective_set=100 , min_len=1026 , trim=__lowercase , data_file='data/tokenized_stories_train_wikitext103.jbl' , igf_data_file='igf_context_pairs.jbl' , ) # Load train data for secondary learner UpperCamelCase_ = joblib.load('data/IGF_values.jbl') # Train secondary learner UpperCamelCase_ = training_secondary_learner( __lowercase , secondary_learner_max_epochs=15 , secondary_learner_batch_size=128 , eval_freq=100 , igf_model_path='igf_model.pt' , ) # load pretrained gpt2 model UpperCamelCase_ = GPTaLMHeadModel.from_pretrained('gpt2') set_seed(42) # Generate train and test data to train and evaluate gpt2 model UpperCamelCase_ , UpperCamelCase_ = generate_datasets( context_len=32 , file='data/tokenized_stories_train_wikitext103.jbl' , number=100 , min_len=1026 , trim=__lowercase) # fine-tuning of the gpt2 model using igf (Information Gain Filtration) finetune( __lowercase , __lowercase , __lowercase , context_len=32 , max_steps=1000 , batch_size=16 , threshold=1.0 , recopy_model=__lowercase , secondary_learner=__lowercase , eval_interval=10 , finetuned_model_name='gpt2_finetuned.pt' , ) if __name__ == "__main__": main()
23
0
import warnings from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding class __UpperCAmelCase ( __A ): """simple docstring""" _lowerCamelCase = ["""image_processor""", """tokenizer"""] _lowerCamelCase = """ViTImageProcessor""" _lowerCamelCase = ("""CLIPTokenizer""", """CLIPTokenizerFast""") def __init__( self , __A=None , __A=None , **__A ): __a = None if "feature_extractor" in kwargs: warnings.warn( """The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`""" """ instead.""" , __A , ) __a = kwargs.pop("""feature_extractor""" ) __a = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError("""You need to specify an `image_processor`.""" ) if tokenizer is None: raise ValueError("""You need to specify a `tokenizer`.""" ) super().__init__(__A , __A ) def __call__( self , __A=None , __A=None , __A=None , __A=None , **__A ): if text is None and visual_prompt is None and images is None: raise ValueError("""You have to specify either text, visual prompt or images.""" ) if text is not None and visual_prompt is not None: raise ValueError("""You have to specify exactly one type of prompt. Either text or visual prompt.""" ) if text is not None: __a = self.tokenizer(__A , return_tensors=__A , **__A ) if visual_prompt is not None: __a = self.image_processor(__A , return_tensors=__A , **__A ) if images is not None: __a = self.image_processor(__A , return_tensors=__A , **__A ) if visual_prompt is not None and images is not None: __a = { """pixel_values""": image_features.pixel_values, """conditional_pixel_values""": prompt_features.pixel_values, } return encoding elif text is not None and images is not None: __a = image_features.pixel_values return encoding elif text is not None: return encoding elif visual_prompt is not None: __a = { """conditional_pixel_values""": prompt_features.pixel_values, } return encoding else: return BatchEncoding(data=dict(**__A ) , tensor_type=__A ) def snake_case_ ( self , *__A , **__A ): return self.tokenizer.batch_decode(*__A , **__A ) def snake_case_ ( self , *__A , **__A ): return self.tokenizer.decode(*__A , **__A ) @property def snake_case_ ( self ): warnings.warn( """`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.""" , __A , ) return self.image_processor_class @property def snake_case_ ( self ): warnings.warn( """`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead.""" , __A , ) return self.image_processor
99
from __future__ import annotations import unittest from transformers import AutoTokenizer, MBartConfig, is_tf_available from transformers.testing_utils import require_sentencepiece, require_tf, require_tokenizers, slow from transformers.utils import cached_property from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFAutoModelForSeqaSeqLM, TFMBartForConditionalGeneration, TFMBartModel @require_tf class _a : """simple docstring""" A_ = MBartConfig A_ = {} A_ = """gelu""" def __init__( self , _UpperCAmelCase , _UpperCAmelCase=13 , _UpperCAmelCase=7 , _UpperCAmelCase=True , _UpperCAmelCase=False , _UpperCAmelCase=99 , _UpperCAmelCase=32 , _UpperCAmelCase=2 , _UpperCAmelCase=4 , _UpperCAmelCase=37 , _UpperCAmelCase=0.1 , _UpperCAmelCase=0.1 , _UpperCAmelCase=20 , _UpperCAmelCase=2 , _UpperCAmelCase=1 , _UpperCAmelCase=0 , ) -> Union[str, Any]: UpperCamelCase_ = parent UpperCamelCase_ = batch_size UpperCamelCase_ = seq_length UpperCamelCase_ = is_training UpperCamelCase_ = use_labels UpperCamelCase_ = vocab_size UpperCamelCase_ = hidden_size UpperCamelCase_ = num_hidden_layers UpperCamelCase_ = num_attention_heads UpperCamelCase_ = intermediate_size UpperCamelCase_ = hidden_dropout_prob UpperCamelCase_ = attention_probs_dropout_prob UpperCamelCase_ = max_position_embeddings UpperCamelCase_ = eos_token_id UpperCamelCase_ = pad_token_id UpperCamelCase_ = bos_token_id def _UpperCAmelCase ( self ) -> List[Any]: UpperCamelCase_ = ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size ) UpperCamelCase_ = tf.expand_dims(tf.constant([self.eos_token_id] * self.batch_size ) , 1 ) UpperCamelCase_ = tf.concat([input_ids, eos_tensor] , axis=1 ) UpperCamelCase_ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) UpperCamelCase_ = self.config_cls( vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_ids=[2] , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.pad_token_id , **self.config_updates , ) UpperCamelCase_ = prepare_mbart_inputs_dict(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) return config, inputs_dict def _UpperCAmelCase ( self , _UpperCAmelCase , _UpperCAmelCase ) -> List[str]: UpperCamelCase_ = TFMBartModel(config=_UpperCAmelCase ).get_decoder() UpperCamelCase_ = inputs_dict['input_ids'] UpperCamelCase_ = input_ids[:1, :] UpperCamelCase_ = inputs_dict['attention_mask'][:1, :] UpperCamelCase_ = inputs_dict['head_mask'] UpperCamelCase_ = 1 # first forward pass UpperCamelCase_ = model(_UpperCAmelCase , attention_mask=_UpperCAmelCase , head_mask=_UpperCAmelCase , use_cache=_UpperCAmelCase ) UpperCamelCase_ , UpperCamelCase_ = outputs.to_tuple() UpperCamelCase_ = past_key_values[1] def _snake_case (__lowercase , __lowercase , __lowercase , __lowercase=None , __lowercase=None , __lowercase=None , __lowercase=None , __lowercase=None , ): if attention_mask is None: UpperCamelCase_ = tf.cast(tf.math.not_equal(__lowercase , config.pad_token_id) , tf.inta) if decoder_attention_mask is None: UpperCamelCase_ = tf.concat( [ tf.ones(decoder_input_ids[:, :1].shape , dtype=tf.inta), tf.cast(tf.math.not_equal(decoder_input_ids[:, 1:] , config.pad_token_id) , tf.inta), ] , axis=-1 , ) if head_mask is None: UpperCamelCase_ = tf.ones((config.encoder_layers, config.encoder_attention_heads)) if decoder_head_mask is None: UpperCamelCase_ = tf.ones((config.decoder_layers, config.decoder_attention_heads)) if cross_attn_head_mask is None: UpperCamelCase_ = tf.ones((config.decoder_layers, config.decoder_attention_heads)) return { "input_ids": input_ids, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "decoder_attention_mask": decoder_attention_mask, "head_mask": head_mask, "decoder_head_mask": decoder_head_mask, "cross_attn_head_mask": cross_attn_head_mask, } @require_tf class _a ( UpperCAmelCase__ , UpperCAmelCase__ , unittest.TestCase ): """simple docstring""" A_ = (TFMBartForConditionalGeneration, TFMBartModel) if is_tf_available() else () A_ = (TFMBartForConditionalGeneration,) if is_tf_available() else () A_ = ( { """conversational""": TFMBartForConditionalGeneration, """feature-extraction""": TFMBartModel, """summarization""": TFMBartForConditionalGeneration, """text2text-generation""": TFMBartForConditionalGeneration, """translation""": TFMBartForConditionalGeneration, } if is_tf_available() else {} ) A_ = True A_ = False A_ = False def _UpperCAmelCase ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) -> Tuple: if pipeline_test_casse_name != "FeatureExtractionPipelineTests": # Exception encountered when calling layer '...' return True return False def _UpperCAmelCase ( self ) -> Optional[int]: UpperCamelCase_ = TFMBartModelTester(self ) UpperCamelCase_ = ConfigTester(self , config_class=_UpperCAmelCase ) def _UpperCAmelCase ( self ) -> Optional[int]: self.config_tester.run_common_tests() def _UpperCAmelCase ( self ) -> List[Any]: UpperCamelCase_ = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.check_decoder_model_past_large_inputs(*_UpperCAmelCase ) @require_sentencepiece @require_tokenizers @require_tf class _a ( unittest.TestCase ): """simple docstring""" A_ = [ """ UN Chief Says There Is No Military Solution in Syria""", ] A_ = [ """Şeful ONU declară că nu există o soluţie militară în Siria""", ] A_ = """facebook/mbart-large-en-ro""" @cached_property def _UpperCAmelCase ( self ) -> Any: return AutoTokenizer.from_pretrained(self.model_name ) @cached_property def _UpperCAmelCase ( self ) -> List[str]: UpperCamelCase_ = TFAutoModelForSeqaSeqLM.from_pretrained(self.model_name ) return model def _UpperCAmelCase ( self , **_UpperCAmelCase ) -> int: UpperCamelCase_ = self.translate_src_text(**_UpperCAmelCase ) self.assertListEqual(self.expected_text , _UpperCAmelCase ) def _UpperCAmelCase ( self , **_UpperCAmelCase ) -> List[str]: UpperCamelCase_ = self.tokenizer(self.src_text , **_UpperCAmelCase , return_tensors='tf' ) UpperCamelCase_ = self.model.generate( model_inputs.input_ids , attention_mask=model_inputs.attention_mask , num_beams=2 ) UpperCamelCase_ = self.tokenizer.batch_decode(_UpperCAmelCase , skip_special_tokens=_UpperCAmelCase ) return generated_words @slow def _UpperCAmelCase ( self ) -> List[Any]: self._assert_generated_batch_equal_expected()
23
0
from ...configuration_utils import PretrainedConfig from ...utils import logging _A : List[str] = logging.get_logger(__name__) _A : List[Any] = { """MIT/ast-finetuned-audioset-10-10-0.4593""": ( """https://huggingface.co/MIT/ast-finetuned-audioset-10-10-0.4593/resolve/main/config.json""" ), } class __snake_case ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' lowerCamelCase__ : Dict = """audio-spectrogram-transformer""" def __init__( self , A_=7_68 , A_=12 , A_=12 , A_=30_72 , A_="gelu" , A_=0.0 , A_=0.0 , A_=0.02 , A_=1E-12 , A_=16 , A_=True , A_=10 , A_=10 , A_=10_24 , A_=1_28 , **A_ , ): '''simple docstring''' super().__init__(**A_ ) SCREAMING_SNAKE_CASE__ = hidden_size SCREAMING_SNAKE_CASE__ = num_hidden_layers SCREAMING_SNAKE_CASE__ = num_attention_heads SCREAMING_SNAKE_CASE__ = intermediate_size SCREAMING_SNAKE_CASE__ = hidden_act SCREAMING_SNAKE_CASE__ = hidden_dropout_prob SCREAMING_SNAKE_CASE__ = attention_probs_dropout_prob SCREAMING_SNAKE_CASE__ = initializer_range SCREAMING_SNAKE_CASE__ = layer_norm_eps SCREAMING_SNAKE_CASE__ = patch_size SCREAMING_SNAKE_CASE__ = qkv_bias SCREAMING_SNAKE_CASE__ = frequency_stride SCREAMING_SNAKE_CASE__ = time_stride SCREAMING_SNAKE_CASE__ = max_length SCREAMING_SNAKE_CASE__ = num_mel_bins
100
def _snake_case (__lowercase): UpperCamelCase_ = 1 for i in range(1 , num + 1): fact *= i return fact def _snake_case (__lowercase): UpperCamelCase_ = 0 while number > 0: UpperCamelCase_ = number % 10 sum_of_digits += last_digit UpperCamelCase_ = number // 10 # Removing the last_digit from the given number return sum_of_digits def _snake_case (__lowercase = 100): UpperCamelCase_ = factorial(__lowercase) UpperCamelCase_ = split_and_add(__lowercase) return result if __name__ == "__main__": print(solution(int(input("""Enter the Number: """).strip())))
23
0
from . import ( albert, align, altclip, audio_spectrogram_transformer, auto, autoformer, bark, bart, barthez, bartpho, beit, bert, bert_generation, bert_japanese, bertweet, big_bird, bigbird_pegasus, biogpt, bit, blenderbot, blenderbot_small, blip, blip_a, bloom, bridgetower, byta, camembert, canine, chinese_clip, clap, clip, clipseg, codegen, conditional_detr, convbert, convnext, convnextva, cpm, cpmant, ctrl, cvt, dataavec, deberta, deberta_va, decision_transformer, deformable_detr, deit, deprecated, deta, detr, dialogpt, dinat, distilbert, dit, donut, dpr, dpt, efficientformer, efficientnet, electra, encodec, encoder_decoder, ernie, ernie_m, esm, falcon, flaubert, flava, fnet, focalnet, fsmt, funnel, git, glpn, gpta, gpt_bigcode, gpt_neo, gpt_neox, gpt_neox_japanese, gpt_swa, gptj, gptsan_japanese, graphormer, groupvit, herbert, hubert, ibert, imagegpt, informer, instructblip, jukebox, layoutlm, layoutlmva, layoutlmva, layoutxlm, led, levit, lilt, llama, longformer, longta, luke, lxmert, mam_aaa, marian, markuplm, maskaformer, maskformer, mbart, mbartaa, mega, megatron_bert, megatron_gpta, mgp_str, mluke, mobilebert, mobilenet_va, mobilenet_va, mobilevit, mobilevitva, mpnet, mra, mta, musicgen, mvp, nat, nezha, nllb, nllb_moe, nystromformer, oneformer, open_llama, openai, opt, owlvit, pegasus, pegasus_x, perceiver, phobert, pixastruct, plbart, poolformer, prophetnet, qdqbert, rag, realm, reformer, regnet, rembert, resnet, roberta, roberta_prelayernorm, roc_bert, roformer, rwkv, sam, segformer, sew, sew_d, speech_encoder_decoder, speech_to_text, speech_to_text_a, speechta, splinter, squeezebert, swiftformer, swin, swinasr, swinva, switch_transformers, ta, table_transformer, tapas, time_series_transformer, timesformer, timm_backbone, transfo_xl, trocr, tvlt, umta, unispeech, unispeech_sat, upernet, videomae, vilt, vision_encoder_decoder, vision_text_dual_encoder, visual_bert, vit, vit_hybrid, vit_mae, vit_msn, vivit, wavaveca, wavaveca_conformer, wavaveca_phoneme, wavaveca_with_lm, wavlm, whisper, x_clip, xglm, xlm, xlm_prophetnet, xlm_roberta, xlm_roberta_xl, xlnet, xmod, yolos, yoso, )
101
from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, is_valid_image, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging if is_vision_available(): import PIL snake_case__ : str = logging.get_logger(__name__) def _snake_case (__lowercase): if isinstance(__lowercase , (list, tuple)) and isinstance(videos[0] , (list, tuple)) and is_valid_image(videos[0][0]): return videos elif isinstance(__lowercase , (list, tuple)) and is_valid_image(videos[0]): return [videos] elif is_valid_image(__lowercase): return [[videos]] raise ValueError(f"""Could not make batched video from {videos}""") class _a ( UpperCAmelCase__ ): """simple docstring""" A_ = ["""pixel_values"""] def __init__( self , _UpperCAmelCase = True , _UpperCAmelCase = None , _UpperCAmelCase = PILImageResampling.BILINEAR , _UpperCAmelCase = True , _UpperCAmelCase = None , _UpperCAmelCase = True , _UpperCAmelCase = 1 / 255 , _UpperCAmelCase = True , _UpperCAmelCase = None , _UpperCAmelCase = None , **_UpperCAmelCase , ) -> None: super().__init__(**_UpperCAmelCase ) UpperCamelCase_ = size if size is not None else {'shortest_edge': 224} UpperCamelCase_ = get_size_dict(_UpperCAmelCase , default_to_square=_UpperCAmelCase ) UpperCamelCase_ = crop_size if crop_size is not None else {'height': 224, 'width': 224} UpperCamelCase_ = get_size_dict(_UpperCAmelCase , param_name='crop_size' ) UpperCamelCase_ = do_resize UpperCamelCase_ = size UpperCamelCase_ = do_center_crop UpperCamelCase_ = crop_size UpperCamelCase_ = resample UpperCamelCase_ = do_rescale UpperCamelCase_ = rescale_factor UpperCamelCase_ = do_normalize UpperCamelCase_ = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN UpperCamelCase_ = image_std if image_std is not None else IMAGENET_STANDARD_STD def _UpperCAmelCase ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase = PILImageResampling.BILINEAR , _UpperCAmelCase = None , **_UpperCAmelCase , ) -> np.ndarray: UpperCamelCase_ = get_size_dict(_UpperCAmelCase , default_to_square=_UpperCAmelCase ) if "shortest_edge" in size: UpperCamelCase_ = get_resize_output_image_size(_UpperCAmelCase , size['shortest_edge'] , default_to_square=_UpperCAmelCase ) elif "height" in size and "width" in size: UpperCamelCase_ = (size['height'], size['width']) else: raise ValueError(f"""Size must have 'height' and 'width' or 'shortest_edge' as keys. Got {size.keys()}""" ) return resize(_UpperCAmelCase , size=_UpperCAmelCase , resample=_UpperCAmelCase , data_format=_UpperCAmelCase , **_UpperCAmelCase ) def _UpperCAmelCase ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase = None , **_UpperCAmelCase , ) -> np.ndarray: UpperCamelCase_ = get_size_dict(_UpperCAmelCase ) if "height" not in size or "width" not in size: raise ValueError(f"""Size must have 'height' and 'width' as keys. Got {size.keys()}""" ) return center_crop(_UpperCAmelCase , size=(size['height'], size['width']) , data_format=_UpperCAmelCase , **_UpperCAmelCase ) def _UpperCAmelCase ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase = None , **_UpperCAmelCase , ) -> int: return rescale(_UpperCAmelCase , scale=_UpperCAmelCase , data_format=_UpperCAmelCase , **_UpperCAmelCase ) def _UpperCAmelCase ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase = None , **_UpperCAmelCase , ) -> np.ndarray: return normalize(_UpperCAmelCase , mean=_UpperCAmelCase , std=_UpperCAmelCase , data_format=_UpperCAmelCase , **_UpperCAmelCase ) def _UpperCAmelCase ( self , _UpperCAmelCase , _UpperCAmelCase = None , _UpperCAmelCase = None , _UpperCAmelCase = None , _UpperCAmelCase = None , _UpperCAmelCase = None , _UpperCAmelCase = None , _UpperCAmelCase = None , _UpperCAmelCase = None , _UpperCAmelCase = None , _UpperCAmelCase = None , _UpperCAmelCase = ChannelDimension.FIRST , ) -> np.ndarray: if do_resize and size is None or resample is None: raise ValueError('Size and resample must be specified if do_resize is True.' ) if do_center_crop and crop_size is None: raise ValueError('Crop size must be specified if do_center_crop is True.' ) if do_rescale and rescale_factor is None: raise ValueError('Rescale factor must be specified if do_rescale is True.' ) if do_normalize and (image_mean is None or image_std is None): raise ValueError('Image mean and std must be specified if do_normalize is True.' ) # All transformations expect numpy arrays. UpperCamelCase_ = to_numpy_array(_UpperCAmelCase ) if do_resize: UpperCamelCase_ = self.resize(image=_UpperCAmelCase , size=_UpperCAmelCase , resample=_UpperCAmelCase ) if do_center_crop: UpperCamelCase_ = self.center_crop(_UpperCAmelCase , size=_UpperCAmelCase ) if do_rescale: UpperCamelCase_ = self.rescale(image=_UpperCAmelCase , scale=_UpperCAmelCase ) if do_normalize: UpperCamelCase_ = self.normalize(image=_UpperCAmelCase , mean=_UpperCAmelCase , std=_UpperCAmelCase ) UpperCamelCase_ = to_channel_dimension_format(_UpperCAmelCase , _UpperCAmelCase ) return image def _UpperCAmelCase ( self , _UpperCAmelCase , _UpperCAmelCase = None , _UpperCAmelCase = None , _UpperCAmelCase = None , _UpperCAmelCase = None , _UpperCAmelCase = None , _UpperCAmelCase = None , _UpperCAmelCase = None , _UpperCAmelCase = None , _UpperCAmelCase = None , _UpperCAmelCase = None , _UpperCAmelCase = None , _UpperCAmelCase = ChannelDimension.FIRST , **_UpperCAmelCase , ) -> PIL.Image.Image: UpperCamelCase_ = do_resize if do_resize is not None else self.do_resize UpperCamelCase_ = resample if resample is not None else self.resample UpperCamelCase_ = do_center_crop if do_center_crop is not None else self.do_center_crop UpperCamelCase_ = do_rescale if do_rescale is not None else self.do_rescale UpperCamelCase_ = rescale_factor if rescale_factor is not None else self.rescale_factor UpperCamelCase_ = do_normalize if do_normalize is not None else self.do_normalize UpperCamelCase_ = image_mean if image_mean is not None else self.image_mean UpperCamelCase_ = image_std if image_std is not None else self.image_std UpperCamelCase_ = size if size is not None else self.size UpperCamelCase_ = get_size_dict(_UpperCAmelCase , default_to_square=_UpperCAmelCase ) UpperCamelCase_ = crop_size if crop_size is not None else self.crop_size UpperCamelCase_ = get_size_dict(_UpperCAmelCase , param_name='crop_size' ) if not valid_images(_UpperCAmelCase ): raise ValueError( 'Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ' 'torch.Tensor, tf.Tensor or jax.ndarray.' ) UpperCamelCase_ = make_batched(_UpperCAmelCase ) UpperCamelCase_ = [ [ self._preprocess_image( image=_UpperCAmelCase , do_resize=_UpperCAmelCase , size=_UpperCAmelCase , resample=_UpperCAmelCase , do_center_crop=_UpperCAmelCase , crop_size=_UpperCAmelCase , do_rescale=_UpperCAmelCase , rescale_factor=_UpperCAmelCase , do_normalize=_UpperCAmelCase , image_mean=_UpperCAmelCase , image_std=_UpperCAmelCase , data_format=_UpperCAmelCase , ) for img in video ] for video in videos ] UpperCamelCase_ = {'pixel_values': videos} return BatchFeature(data=_UpperCAmelCase , tensor_type=_UpperCAmelCase )
23
0
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging __magic_name__ : Dict = logging.get_logger(__name__) __magic_name__ : List[Any] = { """google/canine-s""": """https://huggingface.co/google/canine-s/resolve/main/config.json""", # See all CANINE models at https://huggingface.co/models?filter=canine } class lowercase__ ( __SCREAMING_SNAKE_CASE ): """simple docstring""" __lowerCAmelCase : List[str] = """canine""" def __init__( self , _A=7_6_8 , _A=1_2 , _A=1_2 , _A=3_0_7_2 , _A="gelu" , _A=0.1 , _A=0.1 , _A=1_6_3_8_4 , _A=1_6 , _A=0.02 , _A=1e-1_2 , _A=0 , _A=0xE_000 , _A=0xE_001 , _A=4 , _A=4 , _A=8 , _A=1_6_3_8_4 , _A=1_2_8 , **_A , ): '''simple docstring''' super().__init__(pad_token_id=_A , bos_token_id=_A , eos_token_id=_A , **_A ) UpperCamelCase : Optional[Any] = max_position_embeddings UpperCamelCase : Optional[Any] = hidden_size UpperCamelCase : Dict = num_hidden_layers UpperCamelCase : List[str] = num_attention_heads UpperCamelCase : Optional[int] = intermediate_size UpperCamelCase : Optional[Any] = hidden_act UpperCamelCase : List[Any] = hidden_dropout_prob UpperCamelCase : Union[str, Any] = attention_probs_dropout_prob UpperCamelCase : Union[str, Any] = initializer_range UpperCamelCase : str = type_vocab_size UpperCamelCase : Optional[int] = layer_norm_eps # Character config: UpperCamelCase : Dict = downsampling_rate UpperCamelCase : List[Any] = upsampling_kernel_size UpperCamelCase : str = num_hash_functions UpperCamelCase : Dict = num_hash_buckets UpperCamelCase : str = local_transformer_stride
102
# DISCLAIMER: This file is strongly influenced by https://github.com/yang-song/score_sde_pytorch import math from dataclasses import dataclass from typing import Optional, Tuple, Union import torch from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput, randn_tensor from .scheduling_utils import SchedulerMixin, SchedulerOutput @dataclass class _a ( UpperCAmelCase__ ): """simple docstring""" A_ = 42 A_ = 42 class _a ( UpperCAmelCase__ , UpperCAmelCase__ ): """simple docstring""" A_ = 1 @register_to_config def __init__( self , _UpperCAmelCase = 2000 , _UpperCAmelCase = 0.1_5 , _UpperCAmelCase = 0.0_1 , _UpperCAmelCase = 1_3_4_8.0 , _UpperCAmelCase = 1e-5 , _UpperCAmelCase = 1 , ) -> Tuple: # standard deviation of the initial noise distribution UpperCamelCase_ = sigma_max # setable values UpperCamelCase_ = None self.set_sigmas(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) def _UpperCAmelCase ( self , _UpperCAmelCase , _UpperCAmelCase = None ) -> torch.FloatTensor: return sample def _UpperCAmelCase ( self , _UpperCAmelCase , _UpperCAmelCase = None , _UpperCAmelCase = None ) -> str: UpperCamelCase_ = sampling_eps if sampling_eps is not None else self.config.sampling_eps UpperCamelCase_ = torch.linspace(1 , _UpperCAmelCase , _UpperCAmelCase , device=_UpperCAmelCase ) def _UpperCAmelCase ( self , _UpperCAmelCase , _UpperCAmelCase = None , _UpperCAmelCase = None , _UpperCAmelCase = None ) -> Any: UpperCamelCase_ = sigma_min if sigma_min is not None else self.config.sigma_min UpperCamelCase_ = sigma_max if sigma_max is not None else self.config.sigma_max UpperCamelCase_ = sampling_eps if sampling_eps is not None else self.config.sampling_eps if self.timesteps is None: self.set_timesteps(_UpperCAmelCase , _UpperCAmelCase ) UpperCamelCase_ = sigma_min * (sigma_max / sigma_min) ** (self.timesteps / sampling_eps) UpperCamelCase_ = torch.exp(torch.linspace(math.log(_UpperCAmelCase ) , math.log(_UpperCAmelCase ) , _UpperCAmelCase ) ) UpperCamelCase_ = torch.tensor([sigma_min * (sigma_max / sigma_min) ** t for t in self.timesteps] ) def _UpperCAmelCase ( self , _UpperCAmelCase , _UpperCAmelCase ) -> List[Any]: return torch.where( timesteps == 0 , torch.zeros_like(t.to(timesteps.device ) ) , self.discrete_sigmas[timesteps - 1].to(timesteps.device ) , ) def _UpperCAmelCase ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase = None , _UpperCAmelCase = True , ) -> Union[SdeVeOutput, Tuple]: if self.timesteps is None: raise ValueError( '`self.timesteps` is not set, you need to run \'set_timesteps\' after creating the scheduler' ) UpperCamelCase_ = timestep * torch.ones( sample.shape[0] , device=sample.device ) # torch.repeat_interleave(timestep, sample.shape[0]) UpperCamelCase_ = (timestep * (len(self.timesteps ) - 1)).long() # mps requires indices to be in the same device, so we use cpu as is the default with cuda UpperCamelCase_ = timesteps.to(self.discrete_sigmas.device ) UpperCamelCase_ = self.discrete_sigmas[timesteps].to(sample.device ) UpperCamelCase_ = self.get_adjacent_sigma(_UpperCAmelCase , _UpperCAmelCase ).to(sample.device ) UpperCamelCase_ = torch.zeros_like(_UpperCAmelCase ) UpperCamelCase_ = (sigma**2 - adjacent_sigma**2) ** 0.5 # equation 6 in the paper: the model_output modeled by the network is grad_x log pt(x) # also equation 47 shows the analog from SDE models to ancestral sampling methods UpperCamelCase_ = diffusion.flatten() while len(diffusion.shape ) < len(sample.shape ): UpperCamelCase_ = diffusion.unsqueeze(-1 ) UpperCamelCase_ = drift - diffusion**2 * model_output # equation 6: sample noise for the diffusion term of UpperCamelCase_ = randn_tensor( sample.shape , layout=sample.layout , generator=_UpperCAmelCase , device=sample.device , dtype=sample.dtype ) UpperCamelCase_ = sample - drift # subtract because `dt` is a small negative timestep # TODO is the variable diffusion the correct scaling term for the noise? UpperCamelCase_ = prev_sample_mean + diffusion * noise # add impact of diffusion field g if not return_dict: return (prev_sample, prev_sample_mean) return SdeVeOutput(prev_sample=_UpperCAmelCase , prev_sample_mean=_UpperCAmelCase ) def _UpperCAmelCase ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase = None , _UpperCAmelCase = True , ) -> Union[SchedulerOutput, Tuple]: if self.timesteps is None: raise ValueError( '`self.timesteps` is not set, you need to run \'set_timesteps\' after creating the scheduler' ) # For small batch sizes, the paper "suggest replacing norm(z) with sqrt(d), where d is the dim. of z" # sample noise for correction UpperCamelCase_ = randn_tensor(sample.shape , layout=sample.layout , generator=_UpperCAmelCase ).to(sample.device ) # compute step size from the model_output, the noise, and the snr UpperCamelCase_ = torch.norm(model_output.reshape(model_output.shape[0] , -1 ) , dim=-1 ).mean() UpperCamelCase_ = torch.norm(noise.reshape(noise.shape[0] , -1 ) , dim=-1 ).mean() UpperCamelCase_ = (self.config.snr * noise_norm / grad_norm) ** 2 * 2 UpperCamelCase_ = step_size * torch.ones(sample.shape[0] ).to(sample.device ) # self.repeat_scalar(step_size, sample.shape[0]) # compute corrected sample: model_output term and noise term UpperCamelCase_ = step_size.flatten() while len(step_size.shape ) < len(sample.shape ): UpperCamelCase_ = step_size.unsqueeze(-1 ) UpperCamelCase_ = sample + step_size * model_output UpperCamelCase_ = prev_sample_mean + ((step_size * 2) ** 0.5) * noise if not return_dict: return (prev_sample,) return SchedulerOutput(prev_sample=_UpperCAmelCase ) def _UpperCAmelCase ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , ) -> torch.FloatTensor: # Make sure sigmas and timesteps have the same device and dtype as original_samples UpperCamelCase_ = timesteps.to(original_samples.device ) UpperCamelCase_ = self.discrete_sigmas.to(original_samples.device )[timesteps] UpperCamelCase_ = ( noise * sigmas[:, None, None, None] if noise is not None else torch.randn_like(_UpperCAmelCase ) * sigmas[:, None, None, None] ) UpperCamelCase_ = noise + original_samples return noisy_samples def __len__( self ) -> Optional[int]: return self.config.num_train_timesteps
23
0
"""simple docstring""" from typing import List, Optional, Tuple, Union import PIL import torch from torchvision import transforms from diffusers.pipeline_utils import DiffusionPipeline, ImagePipelineOutput from diffusers.schedulers import DDIMScheduler from diffusers.utils import randn_tensor snake_case = transforms.Compose( [ transforms.Resize((2_5_6, 2_5_6)), transforms.ToTensor(), transforms.Normalize([0.5], [0.5]), ] ) def snake_case ( lowerCAmelCase_ ) -> Tuple: if isinstance(lowerCAmelCase_ , torch.Tensor ): return image elif isinstance(lowerCAmelCase_ , PIL.Image.Image ): _snake_case = [image] _snake_case = [trans(img.convert('''RGB''' ) ) for img in image] _snake_case = torch.stack(lowerCAmelCase_ ) return image class UpperCAmelCase ( __SCREAMING_SNAKE_CASE ): def __init__( self : str , __lowerCamelCase : str , __lowerCamelCase : str ): """simple docstring""" super().__init__() # make sure scheduler can always be converted to DDIM _snake_case = DDIMScheduler.from_config(scheduler.config ) self.register_modules(unet=__lowerCamelCase , scheduler=__lowerCamelCase ) def __UpperCAmelCase ( self : List[Any] , __lowerCamelCase : Tuple ): """simple docstring""" if strength < 0 or strength > 1: raise ValueError(f"""The value of strength should in [0.0, 1.0] but is {strength}""" ) def __UpperCAmelCase ( self : List[str] , __lowerCamelCase : Union[str, Any] , __lowerCamelCase : Dict , __lowerCamelCase : Union[str, Any] ): """simple docstring""" # get the original timestep using init_timestep _snake_case = min(int(num_inference_steps * strength ) , __lowerCamelCase ) _snake_case = max(num_inference_steps - init_timestep , 0 ) _snake_case = self.scheduler.timesteps[t_start:] return timesteps, num_inference_steps - t_start def __UpperCAmelCase ( self : Any , __lowerCamelCase : Any , __lowerCamelCase : Dict , __lowerCamelCase : List[Any] , __lowerCamelCase : Optional[Any] , __lowerCamelCase : Optional[Any] , __lowerCamelCase : List[Any]=None ): """simple docstring""" if not isinstance(__lowerCamelCase , (torch.Tensor, PIL.Image.Image, list) ): raise ValueError( f"""`image` has to be of type `torch.Tensor`, `PIL.Image.Image` or list but is {type(__lowerCamelCase )}""" ) _snake_case = image.to(device=__lowerCamelCase , dtype=__lowerCamelCase ) if isinstance(__lowerCamelCase , __lowerCamelCase ) and len(__lowerCamelCase ) != batch_size: raise ValueError( f"""You have passed a list of generators of length {len(__lowerCamelCase )}, but requested an effective batch""" f""" size of {batch_size}. Make sure the batch size matches the length of the generators.""" ) _snake_case = init_latents.shape _snake_case = randn_tensor(__lowerCamelCase , generator=__lowerCamelCase , device=__lowerCamelCase , dtype=__lowerCamelCase ) # get latents print('''add noise to latents at timestep''' , __lowerCamelCase ) _snake_case = self.scheduler.add_noise(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) _snake_case = init_latents return latents @torch.no_grad() def __call__( self : int , __lowerCamelCase : Union[torch.FloatTensor, PIL.Image.Image] = None , __lowerCamelCase : float = 0.8 , __lowerCamelCase : int = 1 , __lowerCamelCase : Optional[Union[torch.Generator, List[torch.Generator]]] = None , __lowerCamelCase : float = 0.0 , __lowerCamelCase : int = 5_0 , __lowerCamelCase : Optional[bool] = None , __lowerCamelCase : Optional[str] = "pil" , __lowerCamelCase : bool = True , ): """simple docstring""" self.check_inputs(__lowerCamelCase ) # 2. Preprocess image _snake_case = preprocess(__lowerCamelCase ) # 3. set timesteps self.scheduler.set_timesteps(__lowerCamelCase , device=self.device ) _snake_case , _snake_case = self.get_timesteps(__lowerCamelCase , __lowerCamelCase , self.device ) _snake_case = timesteps[:1].repeat(__lowerCamelCase ) # 4. Prepare latent variables _snake_case = self.prepare_latents(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , self.unet.dtype , self.device , __lowerCamelCase ) _snake_case = latents # 5. Denoising loop for t in self.progress_bar(__lowerCamelCase ): # 1. predict noise model_output _snake_case = self.unet(__lowerCamelCase , __lowerCamelCase ).sample # 2. predict previous mean of image x_t-1 and add variance depending on eta # eta corresponds to η in paper and should be between [0, 1] # do x_t -> x_t-1 _snake_case = self.scheduler.step( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , eta=__lowerCamelCase , use_clipped_model_output=__lowerCamelCase , generator=__lowerCamelCase , ).prev_sample _snake_case = (image / 2 + 0.5).clamp(0 , 1 ) _snake_case = image.cpu().permute(0 , 2 , 3 , 1 ).numpy() if output_type == "pil": _snake_case = self.numpy_to_pil(__lowerCamelCase ) if not return_dict: return (image, latent_timestep.item()) return ImagePipelineOutput(images=__lowerCamelCase )
103
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available snake_case__ : Optional[int] = { """configuration_pegasus_x""": ["""PEGASUS_X_PRETRAINED_CONFIG_ARCHIVE_MAP""", """PegasusXConfig"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case__ : Dict = [ """PEGASUS_X_PRETRAINED_MODEL_ARCHIVE_LIST""", """PegasusXForConditionalGeneration""", """PegasusXModel""", """PegasusXPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_pegasus_x import PEGASUS_X_PRETRAINED_CONFIG_ARCHIVE_MAP, PegasusXConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_pegasus_x import ( PEGASUS_X_PRETRAINED_MODEL_ARCHIVE_LIST, PegasusXForConditionalGeneration, PegasusXModel, PegasusXPreTrainedModel, ) else: import sys snake_case__ : Optional[Any] = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
23
0
"""simple docstring""" import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging UpperCamelCase = logging.get_logger(__name__) UpperCamelCase = """▁""" UpperCamelCase = {"""vocab_file""": """sentencepiece.bpe.model""", """monolingual_vocab_file""": """dict.txt"""} UpperCamelCase = { """vocab_file""": { """vinai/bartpho-syllable""": """https://huggingface.co/vinai/bartpho-syllable/resolve/main/sentencepiece.bpe.model""", }, """monolingual_vocab_file""": { """vinai/bartpho-syllable""": """https://huggingface.co/vinai/bartpho-syllable/resolve/main/dict.txt""", }, } UpperCamelCase = {"""vinai/bartpho-syllable""": 1024} class UpperCamelCase__ ( _lowerCAmelCase ): """simple docstring""" A__ : List[str] = VOCAB_FILES_NAMES A__ : Tuple = PRETRAINED_VOCAB_FILES_MAP A__ : Union[str, Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES A__ : str = ["input_ids", "attention_mask"] def __init__( self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__="<s>" , SCREAMING_SNAKE_CASE__="</s>" , SCREAMING_SNAKE_CASE__="</s>" , SCREAMING_SNAKE_CASE__="<s>" , SCREAMING_SNAKE_CASE__="<unk>" , SCREAMING_SNAKE_CASE__="<pad>" , SCREAMING_SNAKE_CASE__="<mask>" , SCREAMING_SNAKE_CASE__ = None , **SCREAMING_SNAKE_CASE__ , ) -> None: # Mask token behave like a normal word, i.e. include the space before it A__ = AddedToken(SCREAMING_SNAKE_CASE__ , lstrip=SCREAMING_SNAKE_CASE__ , rstrip=SCREAMING_SNAKE_CASE__ ) if isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) else mask_token A__ = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( bos_token=SCREAMING_SNAKE_CASE__ , eos_token=SCREAMING_SNAKE_CASE__ , unk_token=SCREAMING_SNAKE_CASE__ , sep_token=SCREAMING_SNAKE_CASE__ , cls_token=SCREAMING_SNAKE_CASE__ , pad_token=SCREAMING_SNAKE_CASE__ , mask_token=SCREAMING_SNAKE_CASE__ , sp_model_kwargs=self.sp_model_kwargs , **SCREAMING_SNAKE_CASE__ , ) A__ = vocab_file A__ = monolingual_vocab_file A__ = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(str(SCREAMING_SNAKE_CASE__ ) ) # Load the reduced vocab # Keep order of special tokens for backward compatibility A__ = {} A__ = 0 for token in [bos_token, pad_token, eos_token, unk_token, sep_token, cls_token]: if str(SCREAMING_SNAKE_CASE__ ) not in self.fairseq_tokens_to_ids: A__ = cnt cnt += 1 with open(SCREAMING_SNAKE_CASE__ , "r" , encoding="utf-8" ) as f: for line in f.readlines(): A__ = line.strip().split()[0] A__ = len(self.fairseq_tokens_to_ids ) if str(SCREAMING_SNAKE_CASE__ ) not in self.fairseq_tokens_to_ids: A__ = len(self.fairseq_tokens_to_ids ) A__ = {v: k for k, v in self.fairseq_tokens_to_ids.items()} def __getstate__( self ) -> Dict: A__ = self.__dict__.copy() A__ = None A__ = self.sp_model.serialized_model_proto() return state def __setstate__( self , SCREAMING_SNAKE_CASE__ ) -> List[Any]: A__ = d # for backward compatibility if not hasattr(self , "sp_model_kwargs" ): A__ = {} A__ = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.LoadFromSerializedProto(self.sp_model_proto ) def snake_case__ ( self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = None ) -> List[int]: if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] A__ = [self.cls_token_id] A__ = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def snake_case__ ( self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = None , SCREAMING_SNAKE_CASE__ = False ) -> List[int]: if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=SCREAMING_SNAKE_CASE__ , token_ids_a=SCREAMING_SNAKE_CASE__ , already_has_special_tokens=SCREAMING_SNAKE_CASE__ ) if token_ids_a is None: return [1] + ([0] * len(SCREAMING_SNAKE_CASE__ )) + [1] return [1] + ([0] * len(SCREAMING_SNAKE_CASE__ )) + [1, 1] + ([0] * len(SCREAMING_SNAKE_CASE__ )) + [1] def snake_case__ ( self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = None ) -> List[int]: A__ = [self.sep_token_id] A__ = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] @property def snake_case__ ( self ) -> str: return len(self.fairseq_ids_to_tokens ) def snake_case__ ( self ) -> Dict: A__ = {self.convert_ids_to_tokens(SCREAMING_SNAKE_CASE__ ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def snake_case__ ( self , SCREAMING_SNAKE_CASE__ ) -> List[str]: return self.sp_model.encode(SCREAMING_SNAKE_CASE__ , out_type=SCREAMING_SNAKE_CASE__ ) def snake_case__ ( self , SCREAMING_SNAKE_CASE__ ) -> List[Any]: if token in self.fairseq_tokens_to_ids: return self.fairseq_tokens_to_ids[token] else: return self.unk_token_id def snake_case__ ( self , SCREAMING_SNAKE_CASE__ ) -> Optional[Any]: return self.fairseq_ids_to_tokens[index] def snake_case__ ( self , SCREAMING_SNAKE_CASE__ ) -> str: A__ = "".join(SCREAMING_SNAKE_CASE__ ).replace(SCREAMING_SNAKE_CASE__ , " " ).strip() return out_string def snake_case__ ( self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = None ) -> Tuple[str]: if not os.path.isdir(SCREAMING_SNAKE_CASE__ ): logger.error(f"""Vocabulary path ({save_directory}) should be a directory""" ) return A__ = os.path.join( SCREAMING_SNAKE_CASE__ , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) A__ = os.path.join( SCREAMING_SNAKE_CASE__ , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["monolingual_vocab_file"] , ) if os.path.abspath(self.vocab_file ) != os.path.abspath(SCREAMING_SNAKE_CASE__ ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , SCREAMING_SNAKE_CASE__ ) elif not os.path.isfile(self.vocab_file ): with open(SCREAMING_SNAKE_CASE__ , "wb" ) as fi: A__ = self.sp_model.serialized_model_proto() fi.write(SCREAMING_SNAKE_CASE__ ) if os.path.abspath(self.monolingual_vocab_file ) != os.path.abspath( SCREAMING_SNAKE_CASE__ ) and os.path.isfile(self.monolingual_vocab_file ): copyfile(self.monolingual_vocab_file , SCREAMING_SNAKE_CASE__ ) elif not os.path.isfile(self.monolingual_vocab_file ): with open(SCREAMING_SNAKE_CASE__ , "w" , encoding="utf-8" ) as fp: for token in self.fairseq_tokens_to_ids: if token not in self.all_special_tokens: fp.write(f"""{str(SCREAMING_SNAKE_CASE__ )} \n""" ) return out_vocab_file, out_monolingual_vocab_file
104
import datasets from .evaluate import evaluate snake_case__ : int = """\ @article{hendrycks2021cuad, title={CUAD: An Expert-Annotated NLP Dataset for Legal Contract Review}, author={Dan Hendrycks and Collin Burns and Anya Chen and Spencer Ball}, journal={arXiv preprint arXiv:2103.06268}, year={2021} } """ snake_case__ : Union[str, Any] = """ This metric wrap the official scoring script for version 1 of the Contract Understanding Atticus Dataset (CUAD). Contract Understanding Atticus Dataset (CUAD) v1 is a corpus of more than 13,000 labels in 510 commercial legal contracts that have been manually labeled to identify 41 categories of important clauses that lawyers look for when reviewing contracts in connection with corporate transactions. """ snake_case__ : Any = """ Computes CUAD scores (EM, F1, AUPR, Precision@80%Recall, and Precision@90%Recall). Args: predictions: List of question-answers dictionaries with the following key-values: - 'id': id of the question-answer pair as given in the references (see below) - 'prediction_text': list of possible texts for the answer, as a list of strings depending on a threshold on the confidence probability of each prediction. references: List of question-answers dictionaries with the following key-values: - 'id': id of the question-answer pair (see above), - 'answers': a Dict in the CUAD dataset format { 'text': list of possible texts for the answer, as a list of strings 'answer_start': list of start positions for the answer, as a list of ints } Note that answer_start values are not taken into account to compute the metric. Returns: 'exact_match': Exact match (the normalized answer exactly match the gold answer) 'f1': The F-score of predicted tokens versus the gold answer 'aupr': Area Under the Precision-Recall curve 'prec_at_80_recall': Precision at 80% recall 'prec_at_90_recall': Precision at 90% recall Examples: >>> predictions = [{'prediction_text': ['The seller:', 'The buyer/End-User: Shenzhen LOHAS Supply Chain Management Co., Ltd.'], 'id': 'LohaCompanyltd_20191209_F-1_EX-10.16_11917878_EX-10.16_Supply Agreement__Parties'}] >>> references = [{'answers': {'answer_start': [143, 49], 'text': ['The seller:', 'The buyer/End-User: Shenzhen LOHAS Supply Chain Management Co., Ltd.']}, 'id': 'LohaCompanyltd_20191209_F-1_EX-10.16_11917878_EX-10.16_Supply Agreement__Parties'}] >>> cuad_metric = datasets.load_metric(\"cuad\") >>> results = cuad_metric.compute(predictions=predictions, references=references) >>> print(results) {'exact_match': 100.0, 'f1': 100.0, 'aupr': 0.0, 'prec_at_80_recall': 1.0, 'prec_at_90_recall': 1.0} """ @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class _a ( datasets.Metric ): """simple docstring""" def _UpperCAmelCase ( self ) -> Optional[int]: return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { 'predictions': { 'id': datasets.Value('string' ), 'prediction_text': datasets.features.Sequence(datasets.Value('string' ) ), }, 'references': { 'id': datasets.Value('string' ), 'answers': datasets.features.Sequence( { 'text': datasets.Value('string' ), 'answer_start': datasets.Value('int32' ), } ), }, } ) , codebase_urls=['https://www.atticusprojectai.org/cuad'] , reference_urls=['https://www.atticusprojectai.org/cuad'] , ) def _UpperCAmelCase ( self , _UpperCAmelCase , _UpperCAmelCase ) -> Dict: UpperCamelCase_ = {prediction['id']: prediction['prediction_text'] for prediction in predictions} UpperCamelCase_ = [ { 'paragraphs': [ { 'qas': [ { 'answers': [{'text': answer_text} for answer_text in ref['answers']['text']], 'id': ref['id'], } for ref in references ] } ] } ] UpperCamelCase_ = evaluate(dataset=_UpperCAmelCase , predictions=_UpperCAmelCase ) return score
23
0
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, ) UpperCamelCase__ : Dict = {'''configuration_opt''': ['''OPT_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''OPTConfig''']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase__ : Any = [ '''OPT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''OPTForCausalLM''', '''OPTModel''', '''OPTPreTrainedModel''', '''OPTForSequenceClassification''', '''OPTForQuestionAnswering''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase__ : Dict = ['''TFOPTForCausalLM''', '''TFOPTModel''', '''TFOPTPreTrainedModel'''] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase__ : str = [ '''FlaxOPTForCausalLM''', '''FlaxOPTModel''', '''FlaxOPTPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_opt import OPT_PRETRAINED_CONFIG_ARCHIVE_MAP, OPTConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_opt import ( OPT_PRETRAINED_MODEL_ARCHIVE_LIST, OPTForCausalLM, OPTForQuestionAnswering, OPTForSequenceClassification, OPTModel, OPTPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_opt import TFOPTForCausalLM, TFOPTModel, TFOPTPreTrainedModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_opt import FlaxOPTForCausalLM, FlaxOPTModel, FlaxOPTPreTrainedModel else: import sys UpperCamelCase__ : Union[str, Any] = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
105
import os import tempfile from functools import partial from unittest import TestCase from unittest.mock import patch import datasets import datasets.config from .utils import require_beam class _a ( datasets.BeamBasedBuilder ): """simple docstring""" def _UpperCAmelCase ( self ) -> List[str]: return datasets.DatasetInfo( features=datasets.Features({'content': datasets.Value('string' )} ) , supervised_keys=_UpperCAmelCase , ) def _UpperCAmelCase ( self , _UpperCAmelCase , _UpperCAmelCase ) -> Optional[Any]: return [datasets.SplitGenerator(name=datasets.Split.TRAIN , gen_kwargs={'examples': get_test_dummy_examples()} )] def _UpperCAmelCase ( self , _UpperCAmelCase , _UpperCAmelCase ) -> Tuple: import apache_beam as beam return pipeline | "Load Examples" >> beam.Create(_UpperCAmelCase ) class _a ( datasets.BeamBasedBuilder ): """simple docstring""" def _UpperCAmelCase ( self ) -> Any: return datasets.DatasetInfo( features=datasets.Features({'a': datasets.Sequence({'b': datasets.Value('string' )} )} ) , supervised_keys=_UpperCAmelCase , ) def _UpperCAmelCase ( self , _UpperCAmelCase , _UpperCAmelCase ) -> Tuple: return [ datasets.SplitGenerator(name=datasets.Split.TRAIN , gen_kwargs={'examples': get_test_nested_examples()} ) ] def _UpperCAmelCase ( self , _UpperCAmelCase , _UpperCAmelCase ) -> Union[str, Any]: import apache_beam as beam return pipeline | "Load Examples" >> beam.Create(_UpperCAmelCase ) def _snake_case (): return [(i, {"content": content}) for i, content in enumerate(['foo', 'bar', 'foobar'])] def _snake_case (): return [(i, {"a": {"b": [content]}}) for i, content in enumerate(['foo', 'bar', 'foobar'])] class _a ( UpperCAmelCase__ ): """simple docstring""" @require_beam def _UpperCAmelCase ( self ) -> Dict: UpperCamelCase_ = len(get_test_dummy_examples() ) with tempfile.TemporaryDirectory() as tmp_cache_dir: UpperCamelCase_ = DummyBeamDataset(cache_dir=_UpperCAmelCase , beam_runner='DirectRunner' ) builder.download_and_prepare() self.assertTrue( os.path.exists( os.path.join(_UpperCAmelCase , builder.name , 'default' , '0.0.0' , f"""{builder.name}-train.arrow""" ) ) ) self.assertDictEqual(builder.info.features , datasets.Features({'content': datasets.Value('string' )} ) ) UpperCamelCase_ = builder.as_dataset() self.assertEqual(dset['train'].num_rows , _UpperCAmelCase ) self.assertEqual(dset['train'].info.splits['train'].num_examples , _UpperCAmelCase ) self.assertDictEqual(dset['train'][0] , get_test_dummy_examples()[0][1] ) self.assertDictEqual( dset['train'][expected_num_examples - 1] , get_test_dummy_examples()[expected_num_examples - 1][1] ) self.assertTrue( os.path.exists(os.path.join(_UpperCAmelCase , builder.name , 'default' , '0.0.0' , 'dataset_info.json' ) ) ) del dset @require_beam def _UpperCAmelCase ( self ) -> List[str]: import apache_beam as beam UpperCamelCase_ = beam.io.parquetio.WriteToParquet UpperCamelCase_ = len(get_test_dummy_examples() ) with tempfile.TemporaryDirectory() as tmp_cache_dir: UpperCamelCase_ = DummyBeamDataset(cache_dir=_UpperCAmelCase , beam_runner='DirectRunner' ) with patch('apache_beam.io.parquetio.WriteToParquet' ) as write_parquet_mock: UpperCamelCase_ = partial(_UpperCAmelCase , num_shards=2 ) builder.download_and_prepare() self.assertTrue( os.path.exists( os.path.join( _UpperCAmelCase , builder.name , 'default' , '0.0.0' , f"""{builder.name}-train-00000-of-00002.arrow""" ) ) ) self.assertTrue( os.path.exists( os.path.join( _UpperCAmelCase , builder.name , 'default' , '0.0.0' , f"""{builder.name}-train-00000-of-00002.arrow""" ) ) ) self.assertDictEqual(builder.info.features , datasets.Features({'content': datasets.Value('string' )} ) ) UpperCamelCase_ = builder.as_dataset() self.assertEqual(dset['train'].num_rows , _UpperCAmelCase ) self.assertEqual(dset['train'].info.splits['train'].num_examples , _UpperCAmelCase ) # Order is not preserved when sharding, so we just check that all the elements are there self.assertListEqual(sorted(dset['train']['content'] ) , sorted(['foo', 'bar', 'foobar'] ) ) self.assertTrue( os.path.exists(os.path.join(_UpperCAmelCase , builder.name , 'default' , '0.0.0' , 'dataset_info.json' ) ) ) del dset @require_beam def _UpperCAmelCase ( self ) -> Any: with tempfile.TemporaryDirectory() as tmp_cache_dir: UpperCamelCase_ = DummyBeamDataset(cache_dir=_UpperCAmelCase ) self.assertRaises(datasets.builder.MissingBeamOptions , builder.download_and_prepare ) @require_beam def _UpperCAmelCase ( self ) -> Union[str, Any]: UpperCamelCase_ = len(get_test_nested_examples() ) with tempfile.TemporaryDirectory() as tmp_cache_dir: UpperCamelCase_ = NestedBeamDataset(cache_dir=_UpperCAmelCase , beam_runner='DirectRunner' ) builder.download_and_prepare() self.assertTrue( os.path.exists( os.path.join(_UpperCAmelCase , builder.name , 'default' , '0.0.0' , f"""{builder.name}-train.arrow""" ) ) ) self.assertDictEqual( builder.info.features , datasets.Features({'a': datasets.Sequence({'b': datasets.Value('string' )} )} ) ) UpperCamelCase_ = builder.as_dataset() self.assertEqual(dset['train'].num_rows , _UpperCAmelCase ) self.assertEqual(dset['train'].info.splits['train'].num_examples , _UpperCAmelCase ) self.assertDictEqual(dset['train'][0] , get_test_nested_examples()[0][1] ) self.assertDictEqual( dset['train'][expected_num_examples - 1] , get_test_nested_examples()[expected_num_examples - 1][1] ) self.assertTrue( os.path.exists(os.path.join(_UpperCAmelCase , builder.name , 'default' , '0.0.0' , 'dataset_info.json' ) ) ) del dset
23
0
import argparse import os import gluonnlp as nlp import mxnet as mx import numpy as np import torch from gluonnlp.base import get_home_dir from gluonnlp.model.bert import BERTEncoder from gluonnlp.model.utils import _load_vocab from gluonnlp.vocab import Vocab from packaging import version from torch import nn from transformers import BertConfig, BertForMaskedLM, BertModel, RobertaTokenizer from transformers.models.bert.modeling_bert import ( BertIntermediate, BertLayer, BertOutput, BertSelfAttention, BertSelfOutput, ) from transformers.utils import logging if version.parse(nlp.__version__) != version.parse('0.8.3'): raise Exception('requires gluonnlp == 0.8.3') if version.parse(mx.__version__) != version.parse('1.5.0'): raise Exception('requires mxnet == 1.5.0') logging.set_verbosity_info() __snake_case :Union[str, Any] =logging.get_logger(__name__) __snake_case :Dict ='The Nymphenburg Palace is a beautiful palace in Munich!' def lowerCamelCase_ ( lowerCAmelCase__ : str , lowerCAmelCase__ : str ) -> List[Any]: '''simple docstring''' A = { 'attention_cell': 'multi_head', 'num_layers': 4, 'units': 1024, 'hidden_size': 768, 'max_length': 512, 'num_heads': 8, 'scaled': True, 'dropout': 0.1, 'use_residual': True, 'embed_size': 1024, 'embed_dropout': 0.1, 'word_embed': None, 'layer_norm_eps': 1E-5, 'token_type_vocab_size': 2, } A = bort_4_8_768_1024_hparams # Let's construct the original Bort model here # Taken from official BERT implementation, see: # https://github.com/alexa/bort/blob/master/bort/bort.py A = BERTEncoder( attention_cell=predefined_args['attention_cell'] , num_layers=predefined_args['num_layers'] , units=predefined_args['units'] , hidden_size=predefined_args['hidden_size'] , max_length=predefined_args['max_length'] , num_heads=predefined_args['num_heads'] , scaled=predefined_args['scaled'] , dropout=predefined_args['dropout'] , output_attention=lowerCAmelCase__ , output_all_encodings=lowerCAmelCase__ , use_residual=predefined_args['use_residual'] , activation=predefined_args.get('activation' , 'gelu' ) , layer_norm_eps=predefined_args.get('layer_norm_eps' , lowerCAmelCase__ ) , ) # Vocab information needs to be fetched first # It's the same as RoBERTa, so RobertaTokenizer can be used later A = 'openwebtext_ccnews_stories_books_cased' # Specify download folder to Gluonnlp's vocab A = os.path.join(get_home_dir() , 'models' ) A = _load_vocab(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , cls=lowerCAmelCase__ ) A = nlp.model.BERTModel( lowerCAmelCase__ , len(lowerCAmelCase__ ) , units=predefined_args['units'] , embed_size=predefined_args['embed_size'] , embed_dropout=predefined_args['embed_dropout'] , word_embed=predefined_args['word_embed'] , use_pooler=lowerCAmelCase__ , use_token_type_embed=lowerCAmelCase__ , token_type_vocab_size=predefined_args['token_type_vocab_size'] , use_classifier=lowerCAmelCase__ , use_decoder=lowerCAmelCase__ , ) original_bort.load_parameters(lowerCAmelCase__ , cast_dtype=lowerCAmelCase__ , ignore_extra=lowerCAmelCase__ ) A = original_bort._collect_params_with_prefix() # Build our config 🤗 A = { 'architectures': ['BertForMaskedLM'], 'attention_probs_dropout_prob': predefined_args['dropout'], 'hidden_act': 'gelu', 'hidden_dropout_prob': predefined_args['dropout'], 'hidden_size': predefined_args['embed_size'], 'initializer_range': 0.02, 'intermediate_size': predefined_args['hidden_size'], 'layer_norm_eps': predefined_args['layer_norm_eps'], 'max_position_embeddings': predefined_args['max_length'], 'model_type': 'bort', 'num_attention_heads': predefined_args['num_heads'], 'num_hidden_layers': predefined_args['num_layers'], 'pad_token_id': 1, # 2 = BERT, 1 = RoBERTa 'type_vocab_size': 1, # 2 = BERT, 1 = RoBERTa 'vocab_size': len(lowerCAmelCase__ ), } A = BertConfig.from_dict(lowerCAmelCase__ ) A = BertForMaskedLM(lowerCAmelCase__ ) hf_bort_model.eval() # Parameter mapping table (Gluonnlp to Transformers) # * denotes layer index # # | Gluon Parameter | Transformers Parameter # | -------------------------------------------------------------- | ---------------------- # | `encoder.layer_norm.beta` | `bert.embeddings.LayerNorm.bias` # | `encoder.layer_norm.gamma` | `bert.embeddings.LayerNorm.weight` # | `encoder.position_weight` | `bert.embeddings.position_embeddings.weight` # | `word_embed.0.weight` | `bert.embeddings.word_embeddings.weight` # | `encoder.transformer_cells.*.attention_cell.proj_key.bias` | `bert.encoder.layer.*.attention.self.key.bias` # | `encoder.transformer_cells.*.attention_cell.proj_key.weight` | `bert.encoder.layer.*.attention.self.key.weight` # | `encoder.transformer_cells.*.attention_cell.proj_query.bias` | `bert.encoder.layer.*.attention.self.query.bias` # | `encoder.transformer_cells.*.attention_cell.proj_query.weight` | `bert.encoder.layer.*.attention.self.query.weight` # | `encoder.transformer_cells.*.attention_cell.proj_value.bias` | `bert.encoder.layer.*.attention.self.value.bias` # | `encoder.transformer_cells.*.attention_cell.proj_value.weight` | `bert.encoder.layer.*.attention.self.value.weight` # | `encoder.transformer_cells.*.ffn.ffn_2.bias` | `bert.encoder.layer.*.attention.output.dense.bias` # | `encoder.transformer_cells.*.ffn.ffn_2.weight` | `bert.encoder.layer.*.attention.output.dense.weight` # | `encoder.transformer_cells.*.layer_norm.beta` | `bert.encoder.layer.*.attention.output.LayerNorm.bias` # | `encoder.transformer_cells.*.layer_norm.gamma` | `bert.encoder.layer.*.attention.output.LayerNorm.weight` # | `encoder.transformer_cells.*.ffn.ffn_1.bias` | `bert.encoder.layer.*.intermediate.dense.bias` # | `encoder.transformer_cells.*.ffn.ffn_1.weight` | `bert.encoder.layer.*.intermediate.dense.weight` # | `encoder.transformer_cells.*.ffn.layer_norm.beta` | `bert.encoder.layer.*.output.LayerNorm.bias` # | `encoder.transformer_cells.*.ffn.layer_norm.gamma` | `bert.encoder.layer.*.output.LayerNorm.weight` # | `encoder.transformer_cells.*.proj.bias` | `bert.encoder.layer.*.output.dense.bias` # | `encoder.transformer_cells.*.proj.weight` | `bert.encoder.layer.*.output.dense.weight` # Helper function to convert MXNET Arrays to PyTorch def to_torch(lowerCAmelCase__ : Optional[int] ) -> nn.Parameter: return nn.Parameter(torch.FloatTensor(mx_array.data().asnumpy() ) ) # Check param shapes and map new HF param back def check_and_map_params(lowerCAmelCase__ : Tuple , lowerCAmelCase__ : int ): A = hf_param.shape A = to_torch(params[gluon_param] ) A = gluon_param.shape assert ( shape_hf == shape_gluon ), F'''The gluon parameter {gluon_param} has shape {shape_gluon}, but expects shape {shape_hf} for Transformers''' return gluon_param A = check_and_map_params( hf_bort_model.bert.embeddings.word_embeddings.weight , 'word_embed.0.weight' ) A = check_and_map_params( hf_bort_model.bert.embeddings.position_embeddings.weight , 'encoder.position_weight' ) A = check_and_map_params( hf_bort_model.bert.embeddings.LayerNorm.bias , 'encoder.layer_norm.beta' ) A = check_and_map_params( hf_bort_model.bert.embeddings.LayerNorm.weight , 'encoder.layer_norm.gamma' ) # Inspired by RoBERTa conversion script, we just zero them out (Bort does not use them) A = torch.zeros_like( hf_bort_model.bert.embeddings.token_type_embeddings.weight.data ) for i in range(hf_bort_config.num_hidden_layers ): A = hf_bort_model.bert.encoder.layer[i] # self attention A = layer.attention.self A = check_and_map_params( self_attn.key.bias.data , F'''encoder.transformer_cells.{i}.attention_cell.proj_key.bias''' ) A = check_and_map_params( self_attn.key.weight.data , F'''encoder.transformer_cells.{i}.attention_cell.proj_key.weight''' ) A = check_and_map_params( self_attn.query.bias.data , F'''encoder.transformer_cells.{i}.attention_cell.proj_query.bias''' ) A = check_and_map_params( self_attn.query.weight.data , F'''encoder.transformer_cells.{i}.attention_cell.proj_query.weight''' ) A = check_and_map_params( self_attn.value.bias.data , F'''encoder.transformer_cells.{i}.attention_cell.proj_value.bias''' ) A = check_and_map_params( self_attn.value.weight.data , F'''encoder.transformer_cells.{i}.attention_cell.proj_value.weight''' ) # self attention output A = layer.attention.output A = check_and_map_params( self_output.dense.bias , F'''encoder.transformer_cells.{i}.proj.bias''' ) A = check_and_map_params( self_output.dense.weight , F'''encoder.transformer_cells.{i}.proj.weight''' ) A = check_and_map_params( self_output.LayerNorm.bias , F'''encoder.transformer_cells.{i}.layer_norm.beta''' ) A = check_and_map_params( self_output.LayerNorm.weight , F'''encoder.transformer_cells.{i}.layer_norm.gamma''' ) # intermediate A = layer.intermediate A = check_and_map_params( intermediate.dense.bias , F'''encoder.transformer_cells.{i}.ffn.ffn_1.bias''' ) A = check_and_map_params( intermediate.dense.weight , F'''encoder.transformer_cells.{i}.ffn.ffn_1.weight''' ) # output A = layer.output A = check_and_map_params( bert_output.dense.bias , F'''encoder.transformer_cells.{i}.ffn.ffn_2.bias''' ) A = check_and_map_params( bert_output.dense.weight , F'''encoder.transformer_cells.{i}.ffn.ffn_2.weight''' ) A = check_and_map_params( bert_output.LayerNorm.bias , F'''encoder.transformer_cells.{i}.ffn.layer_norm.beta''' ) A = check_and_map_params( bert_output.LayerNorm.weight , F'''encoder.transformer_cells.{i}.ffn.layer_norm.gamma''' ) # Save space and energy 🎄 hf_bort_model.half() # Compare output of both models A = RobertaTokenizer.from_pretrained('roberta-base' ) A = tokenizer.encode_plus(lowerCAmelCase__ )['input_ids'] # Get gluon output A = mx.nd.array([input_ids] ) A = original_bort(inputs=lowerCAmelCase__ , token_types=[] ) # Get Transformer output (save and reload model again) hf_bort_model.save_pretrained(lowerCAmelCase__ ) A = BertModel.from_pretrained(lowerCAmelCase__ ) hf_bort_model.eval() A = tokenizer.encode_plus(lowerCAmelCase__ , return_tensors='pt' ) A = hf_bort_model(**lowerCAmelCase__ )[0] A = output_gluon[0].asnumpy() A = output_hf[0].detach().numpy() A = np.max(np.abs(hf_layer - gluon_layer ) ).item() A = np.allclose(lowerCAmelCase__ , lowerCAmelCase__ , atol=1E-3 ) if success: print('✔️ Both model do output the same tensors' ) else: print('❌ Both model do **NOT** output the same tensors' ) print('Absolute difference is:' , lowerCAmelCase__ ) if __name__ == "__main__": __snake_case :str =argparse.ArgumentParser() # Required parameters parser.add_argument( '--bort_checkpoint_path', default=None, type=str, required=True, help='Path the official Bort params file.' ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, required=True, help='Path to the output PyTorch model.' ) __snake_case :Any =parser.parse_args() convert_bort_checkpoint_to_pytorch(args.bort_checkpoint_path, args.pytorch_dump_folder_path)
106
import argparse import torch from ...utils import logging from . import AlbertConfig, AlbertForPreTraining, load_tf_weights_in_albert logging.set_verbosity_info() def _snake_case (__lowercase , __lowercase , __lowercase): # Initialise PyTorch model UpperCamelCase_ = AlbertConfig.from_json_file(__lowercase) print(f"""Building PyTorch model from configuration: {config}""") UpperCamelCase_ = AlbertForPreTraining(__lowercase) # Load weights from tf checkpoint load_tf_weights_in_albert(__lowercase , __lowercase , __lowercase) # Save pytorch-model print(f"""Save PyTorch model to {pytorch_dump_path}""") torch.save(model.state_dict() , __lowercase) if __name__ == "__main__": snake_case__ : Tuple = argparse.ArgumentParser() # Required parameters parser.add_argument( """--tf_checkpoint_path""", default=None, type=str, required=True, help="""Path to the TensorFlow checkpoint path.""" ) parser.add_argument( """--albert_config_file""", default=None, type=str, required=True, help=( """The config json file corresponding to the pre-trained ALBERT model. \n""" """This specifies the model architecture.""" ), ) parser.add_argument( """--pytorch_dump_path""", default=None, type=str, required=True, help="""Path to the output PyTorch model.""" ) snake_case__ : str = parser.parse_args() convert_tf_checkpoint_to_pytorch(args.tf_checkpoint_path, args.albert_config_file, args.pytorch_dump_path)
23
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available _UpperCAmelCase : str = { '''configuration_nezha''': ['''NEZHA_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''NezhaConfig'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCAmelCase : List[str] = [ '''NEZHA_PRETRAINED_MODEL_ARCHIVE_LIST''', '''NezhaForNextSentencePrediction''', '''NezhaForMaskedLM''', '''NezhaForPreTraining''', '''NezhaForMultipleChoice''', '''NezhaForQuestionAnswering''', '''NezhaForSequenceClassification''', '''NezhaForTokenClassification''', '''NezhaModel''', '''NezhaPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_nezha import NEZHA_PRETRAINED_CONFIG_ARCHIVE_MAP, NezhaConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_nezha import ( NEZHA_PRETRAINED_MODEL_ARCHIVE_LIST, NezhaForMaskedLM, NezhaForMultipleChoice, NezhaForNextSentencePrediction, NezhaForPreTraining, NezhaForQuestionAnswering, NezhaForSequenceClassification, NezhaForTokenClassification, NezhaModel, NezhaPreTrainedModel, ) else: import sys _UpperCAmelCase : Dict = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
107
from transformers import BertTokenizer, EncoderDecoderModel, SeqaSeqTrainer, SeqaSeqTrainingArguments from transformers.testing_utils import TestCasePlus, require_torch, slow from transformers.utils import is_datasets_available if is_datasets_available(): import datasets class _a ( UpperCAmelCase__ ): """simple docstring""" @slow @require_torch def _UpperCAmelCase ( self ) -> List[Any]: UpperCamelCase_ = EncoderDecoderModel.from_encoder_decoder_pretrained('prajjwal1/bert-tiny' , 'prajjwal1/bert-tiny' ) UpperCamelCase_ = BertTokenizer.from_pretrained('bert-base-uncased' ) UpperCamelCase_ = bertabert.config.encoder.vocab_size UpperCamelCase_ = tokenizer.sep_token_id UpperCamelCase_ = tokenizer.cls_token_id UpperCamelCase_ = 128 UpperCamelCase_ = datasets.load_dataset('cnn_dailymail' , '3.0.0' , split='train[:1%]' ) UpperCamelCase_ = datasets.load_dataset('cnn_dailymail' , '3.0.0' , split='validation[:1%]' ) UpperCamelCase_ = train_dataset.select(range(32 ) ) UpperCamelCase_ = val_dataset.select(range(16 ) ) UpperCamelCase_ = 4 def _map_to_encoder_decoder_inputs(_UpperCAmelCase ): # Tokenizer will automatically set [BOS] <text> [EOS] UpperCamelCase_ = tokenizer(batch['article'] , padding='max_length' , truncation=_UpperCAmelCase , max_length=512 ) UpperCamelCase_ = tokenizer(batch['highlights'] , padding='max_length' , truncation=_UpperCAmelCase , max_length=128 ) UpperCamelCase_ = inputs.input_ids UpperCamelCase_ = inputs.attention_mask UpperCamelCase_ = outputs.input_ids UpperCamelCase_ = outputs.input_ids.copy() UpperCamelCase_ = [ [-100 if token == tokenizer.pad_token_id else token for token in labels] for labels in batch['labels'] ] UpperCamelCase_ = outputs.attention_mask assert all(len(_UpperCAmelCase ) == 512 for x in inputs.input_ids ) assert all(len(_UpperCAmelCase ) == 128 for x in outputs.input_ids ) return batch def _compute_metrics(_UpperCAmelCase ): UpperCamelCase_ = pred.label_ids UpperCamelCase_ = pred.predictions # all unnecessary tokens are removed UpperCamelCase_ = tokenizer.batch_decode(_UpperCAmelCase , skip_special_tokens=_UpperCAmelCase ) UpperCamelCase_ = tokenizer.batch_decode(_UpperCAmelCase , skip_special_tokens=_UpperCAmelCase ) UpperCamelCase_ = sum([int(pred_str[i] == label_str[i] ) for i in range(len(_UpperCAmelCase ) )] ) / len(_UpperCAmelCase ) return {"accuracy": accuracy} # map train dataset UpperCamelCase_ = train_dataset.map( _map_to_encoder_decoder_inputs , batched=_UpperCAmelCase , batch_size=_UpperCAmelCase , remove_columns=['article', 'highlights'] , ) train_dataset.set_format( type='torch' , columns=['input_ids', 'attention_mask', 'decoder_input_ids', 'decoder_attention_mask', 'labels'] , ) # same for validation dataset UpperCamelCase_ = val_dataset.map( _map_to_encoder_decoder_inputs , batched=_UpperCAmelCase , batch_size=_UpperCAmelCase , remove_columns=['article', 'highlights'] , ) val_dataset.set_format( type='torch' , columns=['input_ids', 'attention_mask', 'decoder_input_ids', 'decoder_attention_mask', 'labels'] , ) UpperCamelCase_ = self.get_auto_remove_tmp_dir() UpperCamelCase_ = SeqaSeqTrainingArguments( output_dir=_UpperCAmelCase , per_device_train_batch_size=_UpperCAmelCase , per_device_eval_batch_size=_UpperCAmelCase , predict_with_generate=_UpperCAmelCase , evaluation_strategy='steps' , do_train=_UpperCAmelCase , do_eval=_UpperCAmelCase , warmup_steps=0 , eval_steps=2 , logging_steps=2 , ) # instantiate trainer UpperCamelCase_ = SeqaSeqTrainer( model=_UpperCAmelCase , args=_UpperCAmelCase , compute_metrics=_compute_metrics , train_dataset=_UpperCAmelCase , eval_dataset=_UpperCAmelCase , tokenizer=_UpperCAmelCase , ) # start training trainer.train()
23
0
import inspect import unittest from transformers import ConvNextConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_backbone_common import BackboneTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ConvNextBackbone, ConvNextForImageClassification, ConvNextModel from transformers.models.convnext.modeling_convnext import CONVNEXT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class SCREAMING_SNAKE_CASE__ : '''simple docstring''' def __init__( self : Dict , lowerCamelCase : List[str] , lowerCamelCase : Optional[Any]=13 , lowerCamelCase : Dict=32 , lowerCamelCase : Optional[int]=3 , lowerCamelCase : List[Any]=4 , lowerCamelCase : Tuple=[10, 20, 30, 40] , lowerCamelCase : str=[2, 2, 3, 2] , lowerCamelCase : Optional[int]=True , lowerCamelCase : List[Any]=True , lowerCamelCase : Union[str, Any]=37 , lowerCamelCase : Any="gelu" , lowerCamelCase : Tuple=10 , lowerCamelCase : Optional[Any]=0.02 , lowerCamelCase : Union[str, Any]=["stage2", "stage3", "stage4"] , lowerCamelCase : Any=[2, 3, 4] , lowerCamelCase : Tuple=None , ) -> int: """simple docstring""" _UpperCAmelCase = parent _UpperCAmelCase = batch_size _UpperCAmelCase = image_size _UpperCAmelCase = num_channels _UpperCAmelCase = num_stages _UpperCAmelCase = hidden_sizes _UpperCAmelCase = depths _UpperCAmelCase = is_training _UpperCAmelCase = use_labels _UpperCAmelCase = intermediate_size _UpperCAmelCase = hidden_act _UpperCAmelCase = num_labels _UpperCAmelCase = initializer_range _UpperCAmelCase = out_features _UpperCAmelCase = out_indices _UpperCAmelCase = scope def lowerCamelCase ( self : Union[str, Any] ) -> Union[str, Any]: """simple docstring""" _UpperCAmelCase = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) _UpperCAmelCase = None if self.use_labels: _UpperCAmelCase = ids_tensor([self.batch_size] , self.num_labels ) _UpperCAmelCase = self.get_config() return config, pixel_values, labels def lowerCamelCase ( self : Optional[Any] ) -> Any: """simple docstring""" return ConvNextConfig( num_channels=self.num_channels , hidden_sizes=self.hidden_sizes , depths=self.depths , num_stages=self.num_stages , hidden_act=self.hidden_act , is_decoder=lowerCamelCase , initializer_range=self.initializer_range , out_features=self.out_features , out_indices=self.out_indices , num_labels=self.num_labels , ) def lowerCamelCase ( self : Union[str, Any] , lowerCamelCase : List[str] , lowerCamelCase : Optional[int] , lowerCamelCase : Any ) -> str: """simple docstring""" _UpperCAmelCase = ConvNextModel(config=lowerCamelCase ) model.to(lowerCamelCase ) model.eval() _UpperCAmelCase = model(lowerCamelCase ) # expected last hidden states: B, C, H // 32, W // 32 self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], self.image_size // 32, self.image_size // 32) , ) def lowerCamelCase ( self : Dict , lowerCamelCase : Tuple , lowerCamelCase : Tuple , lowerCamelCase : List[Any] ) -> int: """simple docstring""" _UpperCAmelCase = ConvNextForImageClassification(lowerCamelCase ) model.to(lowerCamelCase ) model.eval() _UpperCAmelCase = model(lowerCamelCase , labels=lowerCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def lowerCamelCase ( self : Dict , lowerCamelCase : List[Any] , lowerCamelCase : Tuple , lowerCamelCase : Dict ) -> Dict: """simple docstring""" _UpperCAmelCase = ConvNextBackbone(config=lowerCamelCase ) model.to(lowerCamelCase ) model.eval() _UpperCAmelCase = model(lowerCamelCase ) # verify hidden states self.parent.assertEqual(len(result.feature_maps ) , len(config.out_features ) ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.hidden_sizes[1], 4, 4] ) # verify channels self.parent.assertEqual(len(model.channels ) , len(config.out_features ) ) self.parent.assertListEqual(model.channels , config.hidden_sizes[1:] ) # verify backbone works with out_features=None _UpperCAmelCase = None _UpperCAmelCase = ConvNextBackbone(config=lowerCamelCase ) model.to(lowerCamelCase ) model.eval() _UpperCAmelCase = model(lowerCamelCase ) # verify feature maps self.parent.assertEqual(len(result.feature_maps ) , 1 ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.hidden_sizes[-1], 1, 1] ) # verify channels self.parent.assertEqual(len(model.channels ) , 1 ) self.parent.assertListEqual(model.channels , [config.hidden_sizes[-1]] ) def lowerCamelCase ( self : str ) -> Union[str, Any]: """simple docstring""" _UpperCAmelCase = self.prepare_config_and_inputs() _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase = config_and_inputs _UpperCAmelCase = {"""pixel_values""": pixel_values} return config, inputs_dict @require_torch class SCREAMING_SNAKE_CASE__ ( UpperCAmelCase , UpperCAmelCase , unittest.TestCase ): '''simple docstring''' _lowerCamelCase = ( ( ConvNextModel, ConvNextForImageClassification, ConvNextBackbone, ) if is_torch_available() else () ) _lowerCamelCase = ( {'''feature-extraction''': ConvNextModel, '''image-classification''': ConvNextForImageClassification} if is_torch_available() else {} ) _lowerCamelCase = True _lowerCamelCase = False _lowerCamelCase = False _lowerCamelCase = False _lowerCamelCase = False def lowerCamelCase ( self : Dict ) -> int: """simple docstring""" _UpperCAmelCase = ConvNextModelTester(self ) _UpperCAmelCase = ConfigTester(self , config_class=lowerCamelCase , has_text_modality=lowerCamelCase , hidden_size=37 ) def lowerCamelCase ( self : int ) -> int: """simple docstring""" self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def lowerCamelCase ( self : str ) -> Union[str, Any]: """simple docstring""" return @unittest.skip(reason="""ConvNext does not use inputs_embeds""" ) def lowerCamelCase ( self : List[Any] ) -> Any: """simple docstring""" pass @unittest.skip(reason="""ConvNext does not support input and output embeddings""" ) def lowerCamelCase ( self : int ) -> int: """simple docstring""" pass @unittest.skip(reason="""ConvNext does not use feedforward chunking""" ) def lowerCamelCase ( self : Optional[int] ) -> int: """simple docstring""" pass def lowerCamelCase ( self : List[Any] ) -> Optional[int]: """simple docstring""" _UpperCAmelCase , _UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _UpperCAmelCase = model_class(lowerCamelCase ) _UpperCAmelCase = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic _UpperCAmelCase = [*signature.parameters.keys()] _UpperCAmelCase = ["""pixel_values"""] self.assertListEqual(arg_names[:1] , lowerCamelCase ) def lowerCamelCase ( self : Tuple ) -> Any: """simple docstring""" _UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowerCamelCase ) def lowerCamelCase ( self : Union[str, Any] ) -> Optional[Any]: """simple docstring""" _UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_backbone(*lowerCamelCase ) def lowerCamelCase ( self : int ) -> Any: """simple docstring""" def check_hidden_states_output(lowerCamelCase : List[Any] , lowerCamelCase : Tuple , lowerCamelCase : Optional[int] ): _UpperCAmelCase = model_class(lowerCamelCase ) model.to(lowerCamelCase ) model.eval() with torch.no_grad(): _UpperCAmelCase = model(**self._prepare_for_class(lowerCamelCase , lowerCamelCase ) ) _UpperCAmelCase = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states _UpperCAmelCase = self.model_tester.num_stages self.assertEqual(len(lowerCamelCase ) , expected_num_stages + 1 ) # ConvNext's feature maps are of shape (batch_size, num_channels, height, width) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [self.model_tester.image_size // 4, self.model_tester.image_size // 4] , ) _UpperCAmelCase , _UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _UpperCAmelCase = True check_hidden_states_output(lowerCamelCase , lowerCamelCase , lowerCamelCase ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] _UpperCAmelCase = True check_hidden_states_output(lowerCamelCase , lowerCamelCase , lowerCamelCase ) def lowerCamelCase ( self : Any ) -> Optional[int]: """simple docstring""" _UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*lowerCamelCase ) @slow def lowerCamelCase ( self : Optional[int] ) -> List[Any]: """simple docstring""" for model_name in CONVNEXT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _UpperCAmelCase = ConvNextModel.from_pretrained(lowerCamelCase ) self.assertIsNotNone(lowerCamelCase ) def _SCREAMING_SNAKE_CASE ( ) -> Tuple: _UpperCAmelCase = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) return image @require_torch @require_vision class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): '''simple docstring''' @cached_property def lowerCamelCase ( self : Dict ) -> int: """simple docstring""" return AutoImageProcessor.from_pretrained("""facebook/convnext-tiny-224""" ) if is_vision_available() else None @slow def lowerCamelCase ( self : List[Any] ) -> int: """simple docstring""" _UpperCAmelCase = ConvNextForImageClassification.from_pretrained("""facebook/convnext-tiny-224""" ).to(lowerCamelCase ) _UpperCAmelCase = self.default_image_processor _UpperCAmelCase = prepare_img() _UpperCAmelCase = image_processor(images=lowerCamelCase , return_tensors="""pt""" ).to(lowerCamelCase ) # forward pass with torch.no_grad(): _UpperCAmelCase = model(**lowerCamelCase ) # verify the logits _UpperCAmelCase = torch.Size((1, 1000) ) self.assertEqual(outputs.logits.shape , lowerCamelCase ) _UpperCAmelCase = torch.tensor([-0.0260, -0.4739, 0.1911] ).to(lowerCamelCase ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , lowerCamelCase , atol=1E-4 ) ) @require_torch class SCREAMING_SNAKE_CASE__ ( unittest.TestCase , UpperCAmelCase ): '''simple docstring''' _lowerCamelCase = (ConvNextBackbone,) if is_torch_available() else () _lowerCamelCase = ConvNextConfig _lowerCamelCase = False def lowerCamelCase ( self : List[Any] ) -> Optional[int]: """simple docstring""" _UpperCAmelCase = ConvNextModelTester(self )
108
import argparse import os import evaluate import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType ######################################################################## # This is a fully working simple example to use Accelerate # and perform gradient accumulation # # This example trains a Bert base model on GLUE MRPC # in any of the following settings (with the same script): # - single CPU or single GPU # - multi GPUS (using PyTorch distributed mode) # - (multi) TPUs # - fp16 (mixed-precision) or fp32 (normal precision) # # To run it in each of these various modes, follow the instructions # in the readme for examples: # https://github.com/huggingface/accelerate/tree/main/examples # ######################################################################## snake_case__ : Dict = 1_6 snake_case__ : List[str] = 3_2 def _snake_case (__lowercase , __lowercase = 16): UpperCamelCase_ = AutoTokenizer.from_pretrained('bert-base-cased') UpperCamelCase_ = load_dataset('glue' , 'mrpc') def tokenize_function(__lowercase): # max_length=None => use the model max length (it's actually the default) UpperCamelCase_ = tokenizer(examples['sentence1'] , examples['sentence2'] , truncation=__lowercase , max_length=__lowercase) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset # starting with the main process first: with accelerator.main_process_first(): UpperCamelCase_ = datasets.map( __lowercase , batched=__lowercase , remove_columns=['idx', 'sentence1', 'sentence2'] , ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library UpperCamelCase_ = tokenized_datasets.rename_column('label' , 'labels') def collate_fn(__lowercase): # On TPU it's best to pad everything to the same length or training will be very slow. UpperCamelCase_ = 128 if accelerator.distributed_type == DistributedType.TPU else None # When using mixed precision we want round multiples of 8/16 if accelerator.mixed_precision == "fp8": UpperCamelCase_ = 16 elif accelerator.mixed_precision != "no": UpperCamelCase_ = 8 else: UpperCamelCase_ = None return tokenizer.pad( __lowercase , padding='longest' , max_length=__lowercase , pad_to_multiple_of=__lowercase , return_tensors='pt' , ) # Instantiate dataloaders. UpperCamelCase_ = DataLoader( tokenized_datasets['train'] , shuffle=__lowercase , collate_fn=__lowercase , batch_size=__lowercase) UpperCamelCase_ = DataLoader( tokenized_datasets['validation'] , shuffle=__lowercase , collate_fn=__lowercase , batch_size=__lowercase) return train_dataloader, eval_dataloader # For testing only if os.environ.get("""TESTING_MOCKED_DATALOADERS""", None) == "1": from accelerate.test_utils.training import mocked_dataloaders snake_case__ : List[str] = mocked_dataloaders # noqa: F811 def _snake_case (__lowercase , __lowercase): # For testing only if os.environ.get('TESTING_MOCKED_DATALOADERS' , __lowercase) == "1": UpperCamelCase_ = 2 # New Code # UpperCamelCase_ = int(args.gradient_accumulation_steps) # Initialize accelerator UpperCamelCase_ = Accelerator( cpu=args.cpu , mixed_precision=args.mixed_precision , gradient_accumulation_steps=__lowercase) if accelerator.distributed_type == DistributedType.TPU and gradient_accumulation_steps > 1: raise NotImplementedError( 'Gradient accumulation on TPUs is currently not supported. Pass `gradient_accumulation_steps=1`') # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs UpperCamelCase_ = config['lr'] UpperCamelCase_ = int(config['num_epochs']) UpperCamelCase_ = int(config['seed']) UpperCamelCase_ = int(config['batch_size']) UpperCamelCase_ = evaluate.load('glue' , 'mrpc') set_seed(__lowercase) UpperCamelCase_ , UpperCamelCase_ = get_dataloaders(__lowercase , __lowercase) # Instantiate the model (we build the model here so that the seed also control new weights initialization) UpperCamelCase_ = AutoModelForSequenceClassification.from_pretrained('bert-base-cased' , return_dict=__lowercase) # We could avoid this line since the accelerator is set with `device_placement=True` (default value). # Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer # creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that). UpperCamelCase_ = model.to(accelerator.device) # Instantiate optimizer UpperCamelCase_ = AdamW(params=model.parameters() , lr=__lowercase) # Instantiate scheduler UpperCamelCase_ = get_linear_schedule_with_warmup( optimizer=__lowercase , num_warmup_steps=100 , num_training_steps=(len(__lowercase) * num_epochs) , ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ = accelerator.prepare( __lowercase , __lowercase , __lowercase , __lowercase , __lowercase) # Now we train the model for epoch in range(__lowercase): model.train() for step, batch in enumerate(__lowercase): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device) # New code # # We use the new `accumulate` context manager to perform gradient accumulation # We also currently do not support TPUs nor advise it as bugs were found on the XLA side when running our tests. with accelerator.accumulate(__lowercase): UpperCamelCase_ = model(**__lowercase) UpperCamelCase_ = output.loss accelerator.backward(__lowercase) optimizer.step() lr_scheduler.step() optimizer.zero_grad() model.eval() for step, batch in enumerate(__lowercase): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device) with torch.no_grad(): UpperCamelCase_ = model(**__lowercase) UpperCamelCase_ = outputs.logits.argmax(dim=-1) UpperCamelCase_ , UpperCamelCase_ = accelerator.gather_for_metrics((predictions, batch['labels'])) metric.add_batch( predictions=__lowercase , references=__lowercase , ) UpperCamelCase_ = metric.compute() # Use accelerator.print to print only on the main process. accelerator.print(f"""epoch {epoch}:""" , __lowercase) def _snake_case (): UpperCamelCase_ = argparse.ArgumentParser(description='Simple example of training script.') parser.add_argument( '--mixed_precision' , type=__lowercase , default=__lowercase , choices=['no', 'fp16', 'bf16', 'fp8'] , help='Whether to use mixed precision. Choose' 'between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10.' 'and an Nvidia Ampere GPU.' , ) # New Code # parser.add_argument( '--gradient_accumulation_steps' , type=__lowercase , default=1 , help='The number of minibatches to be ran before gradients are accumulated.' , ) parser.add_argument('--cpu' , action='store_true' , help='If passed, will train on the CPU.') UpperCamelCase_ = parser.parse_args() UpperCamelCase_ = {'lr': 2e-5, 'num_epochs': 3, 'seed': 42, 'batch_size': 16} training_function(__lowercase , __lowercase) if __name__ == "__main__": main()
23
0
'''simple docstring''' # coding=utf-8 # Copyright 2020 The HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # this script dumps information about the environment import os import sys import transformers a = "3" print("Python version:", sys.version) print("transformers version:", transformers.__version__) try: import torch print("Torch version:", torch.__version__) print("Cuda available:", torch.cuda.is_available()) print("Cuda version:", torch.version.cuda) print("CuDNN version:", torch.backends.cudnn.version()) print("Number of GPUs available:", torch.cuda.device_count()) print("NCCL version:", torch.cuda.nccl.version()) except ImportError: print("Torch version:", None) try: import deepspeed print("DeepSpeed version:", deepspeed.__version__) except ImportError: print("DeepSpeed version:", None) try: import tensorflow as tf print("TensorFlow version:", tf.__version__) print("TF GPUs available:", bool(tf.config.list_physical_devices("GPU"))) print("Number of TF GPUs available:", len(tf.config.list_physical_devices("GPU"))) except ImportError: print("TensorFlow version:", None)
109
import inspect import unittest import numpy as np from tests.test_modeling_common import floats_tensor from transformers import MaskaFormerConfig, is_torch_available, is_vision_available from transformers.testing_utils import require_torch, require_torch_multi_gpu, require_vision, slow, torch_device from transformers.utils import cached_property from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import MaskaFormerForUniversalSegmentation, MaskaFormerModel if is_vision_available(): from transformers import MaskaFormerImageProcessor if is_vision_available(): from PIL import Image class _a : """simple docstring""" def __init__( self , _UpperCAmelCase , _UpperCAmelCase=2 , _UpperCAmelCase=True , _UpperCAmelCase=False , _UpperCAmelCase=10 , _UpperCAmelCase=3 , _UpperCAmelCase=32 * 8 , _UpperCAmelCase=32 * 8 , _UpperCAmelCase=4 , _UpperCAmelCase=64 , ) -> List[Any]: UpperCamelCase_ = parent UpperCamelCase_ = batch_size UpperCamelCase_ = is_training UpperCamelCase_ = use_auxiliary_loss UpperCamelCase_ = num_queries UpperCamelCase_ = num_channels UpperCamelCase_ = min_size UpperCamelCase_ = max_size UpperCamelCase_ = num_labels UpperCamelCase_ = hidden_dim UpperCamelCase_ = hidden_dim def _UpperCAmelCase ( self ) -> List[str]: UpperCamelCase_ = floats_tensor([self.batch_size, self.num_channels, self.min_size, self.max_size] ).to( _UpperCAmelCase ) UpperCamelCase_ = torch.ones([self.batch_size, self.min_size, self.max_size] , device=_UpperCAmelCase ) UpperCamelCase_ = ( torch.rand([self.batch_size, self.num_labels, self.min_size, self.max_size] , device=_UpperCAmelCase ) > 0.5 ).float() UpperCamelCase_ = (torch.rand((self.batch_size, self.num_labels) , device=_UpperCAmelCase ) > 0.5).long() UpperCamelCase_ = self.get_config() return config, pixel_values, pixel_mask, mask_labels, class_labels def _UpperCAmelCase ( self ) -> Optional[int]: UpperCamelCase_ = MaskaFormerConfig( hidden_size=self.hidden_dim , ) UpperCamelCase_ = self.num_queries UpperCamelCase_ = self.num_labels UpperCamelCase_ = [1, 1, 1, 1] UpperCamelCase_ = self.num_channels UpperCamelCase_ = 64 UpperCamelCase_ = 128 UpperCamelCase_ = self.hidden_dim UpperCamelCase_ = self.hidden_dim UpperCamelCase_ = self.hidden_dim return config def _UpperCAmelCase ( self ) -> Dict: UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ = self.prepare_config_and_inputs() UpperCamelCase_ = {'pixel_values': pixel_values, 'pixel_mask': pixel_mask} return config, inputs_dict def _UpperCAmelCase ( self , _UpperCAmelCase , _UpperCAmelCase ) -> List[Any]: UpperCamelCase_ = output.encoder_hidden_states UpperCamelCase_ = output.pixel_decoder_hidden_states UpperCamelCase_ = output.transformer_decoder_hidden_states self.parent.assertTrue(len(_UpperCAmelCase ) , len(config.backbone_config.depths ) ) self.parent.assertTrue(len(_UpperCAmelCase ) , len(config.backbone_config.depths ) ) self.parent.assertTrue(len(_UpperCAmelCase ) , config.decoder_layers ) def _UpperCAmelCase ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase=False ) -> Any: with torch.no_grad(): UpperCamelCase_ = MaskaFormerModel(config=_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() UpperCamelCase_ = model(pixel_values=_UpperCAmelCase , pixel_mask=_UpperCAmelCase ) UpperCamelCase_ = model(_UpperCAmelCase , output_hidden_states=_UpperCAmelCase ) self.parent.assertEqual( output.transformer_decoder_last_hidden_state.shape , (self.batch_size, self.num_queries, self.hidden_dim) , ) # let's ensure the other two hidden state exists self.parent.assertTrue(output.pixel_decoder_last_hidden_state is not None ) self.parent.assertTrue(output.encoder_last_hidden_state is not None ) if output_hidden_states: self.check_output_hidden_state(_UpperCAmelCase , _UpperCAmelCase ) def _UpperCAmelCase ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) -> Union[str, Any]: UpperCamelCase_ = MaskaFormerForUniversalSegmentation(config=_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() def comm_check_on_output(_UpperCAmelCase ): # let's still check that all the required stuff is there self.parent.assertTrue(result.transformer_decoder_last_hidden_state is not None ) self.parent.assertTrue(result.pixel_decoder_last_hidden_state is not None ) self.parent.assertTrue(result.encoder_last_hidden_state is not None ) # okay, now we need to check the logits shape # due to the encoder compression, masks have a //4 spatial size self.parent.assertEqual( result.masks_queries_logits.shape , (self.batch_size, self.num_queries, self.min_size // 4, self.max_size // 4) , ) # + 1 for null class self.parent.assertEqual( result.class_queries_logits.shape , (self.batch_size, self.num_queries, self.num_labels + 1) ) with torch.no_grad(): UpperCamelCase_ = model(pixel_values=_UpperCAmelCase , pixel_mask=_UpperCAmelCase ) UpperCamelCase_ = model(_UpperCAmelCase ) comm_check_on_output(_UpperCAmelCase ) UpperCamelCase_ = model( pixel_values=_UpperCAmelCase , pixel_mask=_UpperCAmelCase , mask_labels=_UpperCAmelCase , class_labels=_UpperCAmelCase ) comm_check_on_output(_UpperCAmelCase ) self.parent.assertTrue(result.loss is not None ) self.parent.assertEqual(result.loss.shape , torch.Size([1] ) ) @require_torch class _a ( UpperCAmelCase__ , UpperCAmelCase__ , unittest.TestCase ): """simple docstring""" A_ = (MaskaFormerModel, MaskaFormerForUniversalSegmentation) if is_torch_available() else () A_ = {"""feature-extraction""": MaskaFormerModel} if is_torch_available() else {} A_ = False A_ = False A_ = False A_ = False def _UpperCAmelCase ( self ) -> Optional[Any]: UpperCamelCase_ = MaskaFormerModelTester(self ) UpperCamelCase_ = ConfigTester(self , config_class=_UpperCAmelCase , has_text_modality=_UpperCAmelCase ) def _UpperCAmelCase ( self ) -> Union[str, Any]: self.config_tester.run_common_tests() def _UpperCAmelCase ( self ) -> Union[str, Any]: UpperCamelCase_ , UpperCamelCase_ = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.create_and_check_maskaformer_model(_UpperCAmelCase , **_UpperCAmelCase , output_hidden_states=_UpperCAmelCase ) def _UpperCAmelCase ( self ) -> List[Any]: UpperCamelCase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_maskaformer_instance_segmentation_head_model(*_UpperCAmelCase ) @unittest.skip(reason='Mask2Former does not use inputs_embeds' ) def _UpperCAmelCase ( self ) -> Any: pass @unittest.skip(reason='Mask2Former does not have a get_input_embeddings method' ) def _UpperCAmelCase ( self ) -> Optional[int]: pass @unittest.skip(reason='Mask2Former is not a generative model' ) def _UpperCAmelCase ( self ) -> Any: pass @unittest.skip(reason='Mask2Former does not use token embeddings' ) def _UpperCAmelCase ( self ) -> Optional[Any]: pass @require_torch_multi_gpu @unittest.skip( reason='Mask2Former has some layers using `add_module` which doesn\'t work well with `nn.DataParallel`' ) def _UpperCAmelCase ( self ) -> int: pass @unittest.skip('Will be fixed soon by reducing the size of the model used for common tests.' ) def _UpperCAmelCase ( self ) -> str: pass def _UpperCAmelCase ( self ) -> Optional[int]: UpperCamelCase_ , UpperCamelCase_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCamelCase_ = model_class(_UpperCAmelCase ) UpperCamelCase_ = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic UpperCamelCase_ = [*signature.parameters.keys()] UpperCamelCase_ = ['pixel_values'] self.assertListEqual(arg_names[:1] , _UpperCAmelCase ) @slow def _UpperCAmelCase ( self ) -> Tuple: for model_name in ["facebook/mask2former-swin-small-coco-instance"]: UpperCamelCase_ = MaskaFormerModel.from_pretrained(_UpperCAmelCase ) self.assertIsNotNone(_UpperCAmelCase ) def _UpperCAmelCase ( self ) -> Dict: UpperCamelCase_ = (self.model_tester.min_size,) * 2 UpperCamelCase_ = { 'pixel_values': torch.randn((2, 3, *size) , device=_UpperCAmelCase ), 'mask_labels': torch.randn((2, 10, *size) , device=_UpperCAmelCase ), 'class_labels': torch.zeros(2 , 10 , device=_UpperCAmelCase ).long(), } UpperCamelCase_ = self.model_tester.get_config() UpperCamelCase_ = MaskaFormerForUniversalSegmentation(_UpperCAmelCase ).to(_UpperCAmelCase ) UpperCamelCase_ = model(**_UpperCAmelCase ) self.assertTrue(outputs.loss is not None ) def _UpperCAmelCase ( self ) -> str: UpperCamelCase_ , UpperCamelCase_ = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.create_and_check_maskaformer_model(_UpperCAmelCase , **_UpperCAmelCase , output_hidden_states=_UpperCAmelCase ) def _UpperCAmelCase ( self ) -> Optional[int]: UpperCamelCase_ , UpperCamelCase_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCamelCase_ = model_class(_UpperCAmelCase ).to(_UpperCAmelCase ) UpperCamelCase_ = model(**_UpperCAmelCase , output_attentions=_UpperCAmelCase ) self.assertTrue(outputs.attentions is not None ) def _UpperCAmelCase ( self ) -> List[Any]: if not self.model_tester.is_training: return UpperCamelCase_ = self.all_model_classes[1] UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ = self.model_tester.prepare_config_and_inputs() UpperCamelCase_ = model_class(_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.train() UpperCamelCase_ = model(_UpperCAmelCase , mask_labels=_UpperCAmelCase , class_labels=_UpperCAmelCase ).loss loss.backward() def _UpperCAmelCase ( self ) -> int: UpperCamelCase_ = self.all_model_classes[1] UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ = self.model_tester.prepare_config_and_inputs() UpperCamelCase_ = True UpperCamelCase_ = True UpperCamelCase_ = model_class(_UpperCAmelCase ).to(_UpperCAmelCase ) model.train() UpperCamelCase_ = model(_UpperCAmelCase , mask_labels=_UpperCAmelCase , class_labels=_UpperCAmelCase ) UpperCamelCase_ = outputs.encoder_hidden_states[0] encoder_hidden_states.retain_grad() UpperCamelCase_ = outputs.pixel_decoder_hidden_states[0] pixel_decoder_hidden_states.retain_grad() UpperCamelCase_ = outputs.transformer_decoder_hidden_states[0] transformer_decoder_hidden_states.retain_grad() UpperCamelCase_ = outputs.attentions[0] attentions.retain_grad() outputs.loss.backward(retain_graph=_UpperCAmelCase ) self.assertIsNotNone(encoder_hidden_states.grad ) self.assertIsNotNone(pixel_decoder_hidden_states.grad ) self.assertIsNotNone(transformer_decoder_hidden_states.grad ) self.assertIsNotNone(attentions.grad ) snake_case__ : List[Any] = 1E-4 def _snake_case (): UpperCamelCase_ = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png') return image @require_vision @slow class _a ( unittest.TestCase ): """simple docstring""" @cached_property def _UpperCAmelCase ( self ) -> Optional[int]: return "facebook/mask2former-swin-small-coco-instance" @cached_property def _UpperCAmelCase ( self ) -> List[str]: return MaskaFormerImageProcessor.from_pretrained(self.model_checkpoints ) if is_vision_available() else None def _UpperCAmelCase ( self ) -> str: UpperCamelCase_ = MaskaFormerModel.from_pretrained(self.model_checkpoints ).to(_UpperCAmelCase ) UpperCamelCase_ = self.default_image_processor UpperCamelCase_ = prepare_img() UpperCamelCase_ = image_processor(_UpperCAmelCase , return_tensors='pt' ).to(_UpperCAmelCase ) UpperCamelCase_ = inputs['pixel_values'].shape # check size is divisible by 32 self.assertTrue((inputs_shape[-1] % 32) == 0 and (inputs_shape[-2] % 32) == 0 ) # check size self.assertEqual(_UpperCAmelCase , (1, 3, 384, 384) ) with torch.no_grad(): UpperCamelCase_ = model(**_UpperCAmelCase ) UpperCamelCase_ = torch.tensor( [[-0.2_7_9_0, -1.0_7_1_7, -1.1_6_6_8], [-0.5_1_2_8, -0.3_1_2_8, -0.4_9_8_7], [-0.5_8_3_2, 0.1_9_7_1, -0.0_1_9_7]] ).to(_UpperCAmelCase ) self.assertTrue( torch.allclose( outputs.encoder_last_hidden_state[0, 0, :3, :3] , _UpperCAmelCase , atol=_UpperCAmelCase ) ) UpperCamelCase_ = torch.tensor( [[0.8_9_7_3, 1.1_8_4_7, 1.1_7_7_6], [1.1_9_3_4, 1.5_0_4_0, 1.5_1_2_8], [1.1_1_5_3, 1.4_4_8_6, 1.4_9_5_1]] ).to(_UpperCAmelCase ) self.assertTrue( torch.allclose( outputs.pixel_decoder_last_hidden_state[0, 0, :3, :3] , _UpperCAmelCase , atol=_UpperCAmelCase ) ) UpperCamelCase_ = torch.tensor( [[2.1_1_5_2, 1.7_0_0_0, -0.8_6_0_3], [1.5_8_0_8, 1.8_0_0_4, -0.9_3_5_3], [1.6_0_4_3, 1.7_4_9_5, -0.5_9_9_9]] ).to(_UpperCAmelCase ) self.assertTrue( torch.allclose( outputs.transformer_decoder_last_hidden_state[0, :3, :3] , _UpperCAmelCase , atol=_UpperCAmelCase ) ) def _UpperCAmelCase ( self ) -> Optional[Any]: UpperCamelCase_ = MaskaFormerForUniversalSegmentation.from_pretrained(self.model_checkpoints ).to(_UpperCAmelCase ).eval() UpperCamelCase_ = self.default_image_processor UpperCamelCase_ = prepare_img() UpperCamelCase_ = image_processor(_UpperCAmelCase , return_tensors='pt' ).to(_UpperCAmelCase ) UpperCamelCase_ = inputs['pixel_values'].shape # check size is divisible by 32 self.assertTrue((inputs_shape[-1] % 32) == 0 and (inputs_shape[-2] % 32) == 0 ) # check size self.assertEqual(_UpperCAmelCase , (1, 3, 384, 384) ) with torch.no_grad(): UpperCamelCase_ = model(**_UpperCAmelCase ) # masks_queries_logits UpperCamelCase_ = outputs.masks_queries_logits self.assertEqual( masks_queries_logits.shape , (1, model.config.num_queries, inputs_shape[-2] // 4, inputs_shape[-1] // 4) ) UpperCamelCase_ = [ [-8.7_8_3_9, -9.0_0_5_6, -8.8_1_2_1], [-7.4_1_0_4, -7.0_3_1_3, -6.5_4_0_1], [-6.6_1_0_5, -6.3_4_2_7, -6.4_6_7_5], ] UpperCamelCase_ = torch.tensor(_UpperCAmelCase ).to(_UpperCAmelCase ) self.assertTrue(torch.allclose(masks_queries_logits[0, 0, :3, :3] , _UpperCAmelCase , atol=_UpperCAmelCase ) ) # class_queries_logits UpperCamelCase_ = outputs.class_queries_logits self.assertEqual(class_queries_logits.shape , (1, model.config.num_queries, model.config.num_labels + 1) ) UpperCamelCase_ = torch.tensor( [ [1.8_3_2_4, -8.0_8_3_5, -4.1_9_2_2], [0.8_4_5_0, -9.0_0_5_0, -3.6_0_5_3], [0.3_0_4_5, -7.7_2_9_3, -3.0_2_7_5], ] ).to(_UpperCAmelCase ) self.assertTrue(torch.allclose(outputs.class_queries_logits[0, :3, :3] , _UpperCAmelCase , atol=_UpperCAmelCase ) ) def _UpperCAmelCase ( self ) -> Dict: UpperCamelCase_ = MaskaFormerForUniversalSegmentation.from_pretrained(self.model_checkpoints ).to(_UpperCAmelCase ).eval() UpperCamelCase_ = self.default_image_processor UpperCamelCase_ = image_processor( [np.zeros((3, 800, 1333) ), np.zeros((3, 800, 1333) )] , segmentation_maps=[np.zeros((384, 384) ).astype(np.floataa ), np.zeros((384, 384) ).astype(np.floataa )] , return_tensors='pt' , ) UpperCamelCase_ = inputs['pixel_values'].to(_UpperCAmelCase ) UpperCamelCase_ = [el.to(_UpperCAmelCase ) for el in inputs['mask_labels']] UpperCamelCase_ = [el.to(_UpperCAmelCase ) for el in inputs['class_labels']] with torch.no_grad(): UpperCamelCase_ = model(**_UpperCAmelCase ) self.assertTrue(outputs.loss is not None )
23
0
"""simple docstring""" import argparse import json import math import os import time import traceback import zipfile from collections import Counter import requests def lowerCamelCase ( _snake_case ,_snake_case=None ): UpperCAmelCase__ : int = None if token is not None: UpperCAmelCase__ : Dict = {'Accept': 'application/vnd.github+json', 'Authorization': F'''Bearer {token}'''} UpperCAmelCase__ : Optional[Any] = F'''https://api.github.com/repos/huggingface/transformers/actions/runs/{workflow_run_id}/jobs?per_page=100''' UpperCAmelCase__ : Union[str, Any] = requests.get(_snake_case ,headers=_snake_case ).json() UpperCAmelCase__ : str = {} try: job_links.update({job['name']: job['html_url'] for job in result['jobs']} ) UpperCAmelCase__ : List[Any] = math.ceil((result['total_count'] - 100) / 100 ) for i in range(_snake_case ): UpperCAmelCase__ : Dict = requests.get(url + F'''&page={i + 2}''' ,headers=_snake_case ).json() job_links.update({job['name']: job['html_url'] for job in result['jobs']} ) return job_links except Exception: print(F'''Unknown error, could not fetch links:\n{traceback.format_exc()}''' ) return {} def lowerCamelCase ( _snake_case ,_snake_case=None ): UpperCAmelCase__ : Dict = None if token is not None: UpperCAmelCase__ : Optional[int] = {'Accept': 'application/vnd.github+json', 'Authorization': F'''Bearer {token}'''} UpperCAmelCase__ : Tuple = F'''https://api.github.com/repos/huggingface/transformers/actions/runs/{worflow_run_id}/artifacts?per_page=100''' UpperCAmelCase__ : Dict = requests.get(_snake_case ,headers=_snake_case ).json() UpperCAmelCase__ : Optional[int] = {} try: artifacts.update({artifact['name']: artifact['archive_download_url'] for artifact in result['artifacts']} ) UpperCAmelCase__ : Any = math.ceil((result['total_count'] - 100) / 100 ) for i in range(_snake_case ): UpperCAmelCase__ : str = requests.get(url + F'''&page={i + 2}''' ,headers=_snake_case ).json() artifacts.update({artifact['name']: artifact['archive_download_url'] for artifact in result['artifacts']} ) return artifacts except Exception: print(F'''Unknown error, could not fetch links:\n{traceback.format_exc()}''' ) return {} def lowerCamelCase ( _snake_case ,_snake_case ,_snake_case ,_snake_case ): UpperCAmelCase__ : Optional[int] = None if token is not None: UpperCAmelCase__ : str = {'Accept': 'application/vnd.github+json', 'Authorization': F'''Bearer {token}'''} UpperCAmelCase__ : Optional[Any] = requests.get(_snake_case ,headers=_snake_case ,allow_redirects=_snake_case ) UpperCAmelCase__ : str = result.headers['Location'] UpperCAmelCase__ : int = requests.get(_snake_case ,allow_redirects=_snake_case ) UpperCAmelCase__ : Tuple = os.path.join(_snake_case ,F'''{artifact_name}.zip''' ) with open(_snake_case ,'wb' ) as fp: fp.write(response.content ) def lowerCamelCase ( _snake_case ,_snake_case=None ): UpperCAmelCase__ : Dict = [] UpperCAmelCase__ : str = [] UpperCAmelCase__ : List[str] = None with zipfile.ZipFile(_snake_case ) as z: for filename in z.namelist(): if not os.path.isdir(_snake_case ): # read the file if filename in ["failures_line.txt", "summary_short.txt", "job_name.txt"]: with z.open(_snake_case ) as f: for line in f: UpperCAmelCase__ : List[Any] = line.decode('UTF-8' ).strip() if filename == "failures_line.txt": try: # `error_line` is the place where `error` occurs UpperCAmelCase__ : List[Any] = line[: line.index(': ' )] UpperCAmelCase__ : str = line[line.index(': ' ) + len(': ' ) :] errors.append([error_line, error] ) except Exception: # skip un-related lines pass elif filename == "summary_short.txt" and line.startswith('FAILED ' ): # `test` is the test method that failed UpperCAmelCase__ : Dict = line[len('FAILED ' ) :] failed_tests.append(_snake_case ) elif filename == "job_name.txt": UpperCAmelCase__ : int = line if len(_snake_case ) != len(_snake_case ): raise ValueError( F'''`errors` and `failed_tests` should have the same number of elements. Got {len(_snake_case )} for `errors` ''' F'''and {len(_snake_case )} for `failed_tests` instead. The test reports in {artifact_zip_path} have some''' ' problem.' ) UpperCAmelCase__ : int = None if job_name and job_links: UpperCAmelCase__ : str = job_links.get(_snake_case ,_snake_case ) # A list with elements of the form (line of error, error, failed test) UpperCAmelCase__ : List[str] = [x + [y] + [job_link] for x, y in zip(_snake_case ,_snake_case )] return result def lowerCamelCase ( _snake_case ,_snake_case=None ): UpperCAmelCase__ : Tuple = [] UpperCAmelCase__ : Any = [os.path.join(_snake_case ,_snake_case ) for p in os.listdir(_snake_case ) if p.endswith('.zip' )] for p in paths: errors.extend(get_errors_from_single_artifact(_snake_case ,job_links=_snake_case ) ) return errors def lowerCamelCase ( _snake_case ,_snake_case=None ): UpperCAmelCase__ : List[str] = Counter() counter.update([x[1] for x in logs] ) UpperCAmelCase__ : List[str] = counter.most_common() UpperCAmelCase__ : Tuple = {} for error, count in counts: if error_filter is None or error not in error_filter: UpperCAmelCase__ : int = {'count': count, 'failed_tests': [(x[2], x[0]) for x in logs if x[1] == error]} UpperCAmelCase__ : List[str] = dict(sorted(r.items() ,key=lambda _snake_case : item[1]["count"] ,reverse=_snake_case ) ) return r def lowerCamelCase ( _snake_case ): UpperCAmelCase__ : Optional[int] = test.split('::' )[0] if test.startswith('tests/models/' ): UpperCAmelCase__ : List[Any] = test.split('/' )[2] else: UpperCAmelCase__ : List[Any] = None return test def lowerCamelCase ( _snake_case ,_snake_case=None ): UpperCAmelCase__ : str = [(x[0], x[1], get_model(x[2] )) for x in logs] UpperCAmelCase__ : int = [x for x in logs if x[2] is not None] UpperCAmelCase__ : Optional[Any] = {x[2] for x in logs} UpperCAmelCase__ : Optional[Any] = {} for test in tests: UpperCAmelCase__ : str = Counter() # count by errors in `test` counter.update([x[1] for x in logs if x[2] == test] ) UpperCAmelCase__ : Any = counter.most_common() UpperCAmelCase__ : List[Any] = {error: count for error, count in counts if (error_filter is None or error not in error_filter)} UpperCAmelCase__ : str = sum(error_counts.values() ) if n_errors > 0: UpperCAmelCase__ : Union[str, Any] = {'count': n_errors, 'errors': error_counts} UpperCAmelCase__ : List[str] = dict(sorted(r.items() ,key=lambda _snake_case : item[1]["count"] ,reverse=_snake_case ) ) return r def lowerCamelCase ( _snake_case ): UpperCAmelCase__ : Tuple = '| no. | error | status |' UpperCAmelCase__ : int = '|-:|:-|:-|' UpperCAmelCase__ : Optional[Any] = [header, sep] for error in reduced_by_error: UpperCAmelCase__ : Optional[Any] = reduced_by_error[error]['count'] UpperCAmelCase__ : Union[str, Any] = F'''| {count} | {error[:100]} | |''' lines.append(_snake_case ) return "\n".join(_snake_case ) def lowerCamelCase ( _snake_case ): UpperCAmelCase__ : List[str] = '| model | no. of errors | major error | count |' UpperCAmelCase__ : Any = '|-:|-:|-:|-:|' UpperCAmelCase__ : Any = [header, sep] for model in reduced_by_model: UpperCAmelCase__ : Union[str, Any] = reduced_by_model[model]['count'] UpperCAmelCase__ , UpperCAmelCase__ : Tuple = list(reduced_by_model[model]['errors'].items() )[0] UpperCAmelCase__ : List[str] = F'''| {model} | {count} | {error[:60]} | {_count} |''' lines.append(_snake_case ) return "\n".join(_snake_case ) if __name__ == "__main__": UpperCamelCase__ = argparse.ArgumentParser() # Required parameters parser.add_argument('--workflow_run_id', type=str, required=True, help='A GitHub Actions workflow run id.') parser.add_argument( '--output_dir', type=str, required=True, help='Where to store the downloaded artifacts and other result files.', ) parser.add_argument('--token', default=None, type=str, help='A token that has actions:read permission.') UpperCamelCase__ = parser.parse_args() os.makedirs(args.output_dir, exist_ok=True) UpperCamelCase__ = get_job_links(args.workflow_run_id, token=args.token) UpperCamelCase__ = {} # To deal with `workflow_call` event, where a job name is the combination of the job names in the caller and callee. # For example, `PyTorch 1.11 / Model tests (models/albert, single-gpu)`. if _job_links: for k, v in _job_links.items(): # This is how GitHub actions combine job names. if " / " in k: UpperCamelCase__ = k.find(' / ') UpperCamelCase__ = k[index + len(' / ') :] UpperCamelCase__ = v with open(os.path.join(args.output_dir, 'job_links.json'), 'w', encoding='UTF-8') as fp: json.dump(job_links, fp, ensure_ascii=False, indent=4) UpperCamelCase__ = get_artifacts_links(args.workflow_run_id, token=args.token) with open(os.path.join(args.output_dir, 'artifacts.json'), 'w', encoding='UTF-8') as fp: json.dump(artifacts, fp, ensure_ascii=False, indent=4) for idx, (name, url) in enumerate(artifacts.items()): download_artifact(name, url, args.output_dir, args.token) # Be gentle to GitHub time.sleep(1) UpperCamelCase__ = get_all_errors(args.output_dir, job_links=job_links) # `e[1]` is the error UpperCamelCase__ = Counter() counter.update([e[1] for e in errors]) # print the top 30 most common test errors UpperCamelCase__ = counter.most_common(30) for item in most_common: print(item) with open(os.path.join(args.output_dir, 'errors.json'), 'w', encoding='UTF-8') as fp: json.dump(errors, fp, ensure_ascii=False, indent=4) UpperCamelCase__ = reduce_by_error(errors) UpperCamelCase__ = reduce_by_model(errors) UpperCamelCase__ = make_github_table(reduced_by_error) UpperCamelCase__ = make_github_table_per_model(reduced_by_model) with open(os.path.join(args.output_dir, 'reduced_by_error.txt'), 'w', encoding='UTF-8') as fp: fp.write(sa) with open(os.path.join(args.output_dir, 'reduced_by_model.txt'), 'w', encoding='UTF-8') as fp: fp.write(sa)
110
import copy from typing import TYPE_CHECKING, Any, Mapping, Optional, OrderedDict from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging from ..auto.configuration_auto import AutoConfig if TYPE_CHECKING: from ... import PreTrainedTokenizerBase, TensorType snake_case__ : List[str] = logging.get_logger(__name__) class _a ( UpperCAmelCase__ ): """simple docstring""" A_ = """vision-encoder-decoder""" A_ = True def __init__( self , **_UpperCAmelCase ) -> Dict: super().__init__(**_UpperCAmelCase ) if "encoder" not in kwargs or "decoder" not in kwargs: raise ValueError( f"""A configuraton of type {self.model_type} cannot be instantiated because """ f"""not both `encoder` and `decoder` sub-configurations are passed, but only {kwargs}""" ) UpperCamelCase_ = kwargs.pop('encoder' ) UpperCamelCase_ = encoder_config.pop('model_type' ) UpperCamelCase_ = kwargs.pop('decoder' ) UpperCamelCase_ = decoder_config.pop('model_type' ) UpperCamelCase_ = AutoConfig.for_model(_UpperCAmelCase , **_UpperCAmelCase ) UpperCamelCase_ = AutoConfig.for_model(_UpperCAmelCase , **_UpperCAmelCase ) UpperCamelCase_ = True @classmethod def _UpperCAmelCase ( cls , _UpperCAmelCase , _UpperCAmelCase , **_UpperCAmelCase ) -> PretrainedConfig: logger.info('Setting `config.is_decoder=True` and `config.add_cross_attention=True` for decoder_config' ) UpperCamelCase_ = True UpperCamelCase_ = True return cls(encoder=encoder_config.to_dict() , decoder=decoder_config.to_dict() , **_UpperCAmelCase ) def _UpperCAmelCase ( self ) -> int: UpperCamelCase_ = copy.deepcopy(self.__dict__ ) UpperCamelCase_ = self.encoder.to_dict() UpperCamelCase_ = self.decoder.to_dict() UpperCamelCase_ = self.__class__.model_type return output class _a ( UpperCAmelCase__ ): """simple docstring""" A_ = version.parse("""1.11""" ) @property def _UpperCAmelCase ( self ) -> Mapping[str, Mapping[int, str]]: return OrderedDict( [ ('pixel_values', {0: 'batch', 1: 'num_channels', 2: 'height', 3: 'width'}), ] ) @property def _UpperCAmelCase ( self ) -> float: return 1e-4 @property def _UpperCAmelCase ( self ) -> Mapping[str, Mapping[int, str]]: return OrderedDict({'last_hidden_state': {0: 'batch', 1: 'encoder_sequence'}} ) class _a ( UpperCAmelCase__ ): """simple docstring""" @property def _UpperCAmelCase ( self ) -> Mapping[str, Mapping[int, str]]: UpperCamelCase_ = OrderedDict() UpperCamelCase_ = {0: 'batch', 1: 'past_decoder_sequence + sequence'} UpperCamelCase_ = {0: 'batch', 1: 'past_decoder_sequence + sequence'} UpperCamelCase_ = {0: 'batch', 1: 'encoder_sequence'} return common_inputs def _UpperCAmelCase ( self , _UpperCAmelCase , _UpperCAmelCase = -1 , _UpperCAmelCase = -1 , _UpperCAmelCase = False , _UpperCAmelCase = None , ) -> Mapping[str, Any]: import torch UpperCamelCase_ = OrderedDict() UpperCamelCase_ = super().generate_dummy_inputs( _UpperCAmelCase , batch_size=_UpperCAmelCase , seq_length=_UpperCAmelCase , is_pair=_UpperCAmelCase , framework=_UpperCAmelCase ) UpperCamelCase_ , UpperCamelCase_ = dummy_input['input_ids'].shape UpperCamelCase_ = (batch, encoder_sequence, self._config.encoder_hidden_size) UpperCamelCase_ = dummy_input.pop('input_ids' ) UpperCamelCase_ = dummy_input.pop('attention_mask' ) UpperCamelCase_ = torch.zeros(_UpperCAmelCase ) return common_inputs class _a ( UpperCAmelCase__ ): """simple docstring""" @property def _UpperCAmelCase ( self ) -> None: pass def _UpperCAmelCase ( self , _UpperCAmelCase ) -> OnnxConfig: return VisionEncoderDecoderEncoderOnnxConfig(_UpperCAmelCase ) def _UpperCAmelCase ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase = "default" ) -> OnnxConfig: UpperCamelCase_ = encoder_config.hidden_size return VisionEncoderDecoderDecoderOnnxConfig(_UpperCAmelCase , _UpperCAmelCase )
23
0
'''simple docstring''' def A_( A : Optional[int]): UpperCamelCase = int(__lowercase) if decimal in (0, 1): # Exit cases for the recursion return str(__lowercase) UpperCamelCase , UpperCamelCase = divmod(__lowercase , 2) return binary_recursive(__lowercase) + str(__lowercase) def A_( A : List[Any]): UpperCamelCase = str(__lowercase).strip() if not number: raise ValueError('No input value was provided') UpperCamelCase = '-' if number.startswith('-') else '' UpperCamelCase = number.lstrip('-') if not number.isnumeric(): raise ValueError('Input value is not an integer') return f'''{negative}0b{binary_recursive(int(__lowercase))}''' if __name__ == "__main__": from doctest import testmod testmod()
3
import argparse import torch from transformers import MobileBertConfig, MobileBertForPreTraining, load_tf_weights_in_mobilebert from transformers.utils import logging logging.set_verbosity_info() def _snake_case (__lowercase , __lowercase , __lowercase): # Initialise PyTorch model UpperCamelCase_ = MobileBertConfig.from_json_file(__lowercase) print(f"""Building PyTorch model from configuration: {config}""") UpperCamelCase_ = MobileBertForPreTraining(__lowercase) # Load weights from tf checkpoint UpperCamelCase_ = load_tf_weights_in_mobilebert(__lowercase , __lowercase , __lowercase) # Save pytorch-model print(f"""Save PyTorch model to {pytorch_dump_path}""") torch.save(model.state_dict() , __lowercase) if __name__ == "__main__": snake_case__ : int = argparse.ArgumentParser() # Required parameters parser.add_argument( """--tf_checkpoint_path""", default=None, type=str, required=True, help="""Path to the TensorFlow checkpoint path.""" ) parser.add_argument( """--mobilebert_config_file""", default=None, type=str, required=True, help=( """The config json file corresponding to the pre-trained MobileBERT model. \n""" """This specifies the model architecture.""" ), ) parser.add_argument( """--pytorch_dump_path""", default=None, type=str, required=True, help="""Path to the output PyTorch model.""" ) snake_case__ : Optional[Any] = parser.parse_args() convert_tf_checkpoint_to_pytorch(args.tf_checkpoint_path, args.mobilebert_config_file, args.pytorch_dump_path)
23
0
'''simple docstring''' from __future__ import annotations import math import numpy as np from numpy.linalg import norm def __UpperCAmelCase ( _UpperCAmelCase : List[Any] , _UpperCAmelCase : Union[str, Any] ) -> List[str]: return math.sqrt(sum(pow(a - b , 2 ) for a, b in zip(__lowercase , __lowercase ) ) ) def __UpperCAmelCase ( _UpperCAmelCase : Tuple , _UpperCAmelCase : int ) -> Optional[Any]: if dataset.ndim != value_array.ndim: __snake_case = ( "Wrong input data\'s dimensions... " F'''dataset : {dataset.ndim}, value_array : {value_array.ndim}''' ) raise ValueError(__lowercase ) try: if dataset.shape[1] != value_array.shape[1]: __snake_case = ( "Wrong input data\'s shape... " F'''dataset : {dataset.shape[1]}, value_array : {value_array.shape[1]}''' ) raise ValueError(__lowercase ) except IndexError: if dataset.ndim != value_array.ndim: raise TypeError("Wrong shape" ) if dataset.dtype != value_array.dtype: __snake_case = ( "Input data have different datatype... " F'''dataset : {dataset.dtype}, value_array : {value_array.dtype}''' ) raise TypeError(__lowercase ) __snake_case = [] for value in value_array: __snake_case = euclidean(__lowercase , dataset[0] ) __snake_case = dataset[0].tolist() for dataset_value in dataset[1:]: __snake_case = euclidean(__lowercase , __lowercase ) if dist > temp_dist: __snake_case = temp_dist __snake_case = dataset_value.tolist() answer.append([vector, dist] ) return answer def __UpperCAmelCase ( _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : str ) -> Any: return np.dot(__lowercase , __lowercase ) / (norm(__lowercase ) * norm(__lowercase )) if __name__ == "__main__": import doctest doctest.testmod()
69
import gc import unittest from transformers import MODEL_FOR_MASKED_LM_MAPPING, TF_MODEL_FOR_MASKED_LM_MAPPING, FillMaskPipeline, pipeline from transformers.pipelines import PipelineException from transformers.testing_utils import ( is_pipeline_test, is_torch_available, nested_simplify, require_tf, require_torch, require_torch_gpu, slow, ) from .test_pipelines_common import ANY @is_pipeline_test class _a ( unittest.TestCase ): """simple docstring""" A_ = MODEL_FOR_MASKED_LM_MAPPING A_ = TF_MODEL_FOR_MASKED_LM_MAPPING def _UpperCAmelCase ( self ) -> List[str]: super().tearDown() # clean-up as much as possible GPU memory occupied by PyTorch gc.collect() if is_torch_available(): import torch torch.cuda.empty_cache() @require_tf def _UpperCAmelCase ( self ) -> str: UpperCamelCase_ = pipeline(task='fill-mask' , model='sshleifer/tiny-distilroberta-base' , top_k=2 , framework='tf' ) UpperCamelCase_ = unmasker('My name is <mask>' ) self.assertEqual( nested_simplify(_UpperCAmelCase , decimals=6 ) , [ {'sequence': 'My name is grouped', 'score': 2.1e-05, 'token': 38015, 'token_str': ' grouped'}, {'sequence': 'My name is accuser', 'score': 2.1e-05, 'token': 25506, 'token_str': ' accuser'}, ] , ) UpperCamelCase_ = unmasker('The largest city in France is <mask>' ) self.assertEqual( nested_simplify(_UpperCAmelCase , decimals=6 ) , [ { 'sequence': 'The largest city in France is grouped', 'score': 2.1e-05, 'token': 38015, 'token_str': ' grouped', }, { 'sequence': 'The largest city in France is accuser', 'score': 2.1e-05, 'token': 25506, 'token_str': ' accuser', }, ] , ) UpperCamelCase_ = unmasker('My name is <mask>' , targets=[' Patrick', ' Clara', ' Teven'] , top_k=3 ) self.assertEqual( nested_simplify(_UpperCAmelCase , decimals=6 ) , [ {'sequence': 'My name is Clara', 'score': 2e-05, 'token': 13606, 'token_str': ' Clara'}, {'sequence': 'My name is Patrick', 'score': 2e-05, 'token': 3499, 'token_str': ' Patrick'}, {'sequence': 'My name is Te', 'score': 1.9e-05, 'token': 2941, 'token_str': ' Te'}, ] , ) @require_torch def _UpperCAmelCase ( self ) -> Union[str, Any]: UpperCamelCase_ = pipeline(task='fill-mask' , model='sshleifer/tiny-distilroberta-base' , top_k=2 , framework='pt' ) UpperCamelCase_ = unmasker('My name is <mask>' ) self.assertEqual( nested_simplify(_UpperCAmelCase , decimals=6 ) , [ {'sequence': 'My name is Maul', 'score': 2.2e-05, 'token': 35676, 'token_str': ' Maul'}, {'sequence': 'My name isELS', 'score': 2.2e-05, 'token': 16416, 'token_str': 'ELS'}, ] , ) UpperCamelCase_ = unmasker('The largest city in France is <mask>' ) self.assertEqual( nested_simplify(_UpperCAmelCase , decimals=6 ) , [ { 'sequence': 'The largest city in France is Maul', 'score': 2.2e-05, 'token': 35676, 'token_str': ' Maul', }, {'sequence': 'The largest city in France isELS', 'score': 2.2e-05, 'token': 16416, 'token_str': 'ELS'}, ] , ) UpperCamelCase_ = unmasker('My name is <mask>' , targets=[' Patrick', ' Clara', ' Teven'] , top_k=3 ) self.assertEqual( nested_simplify(_UpperCAmelCase , decimals=6 ) , [ {'sequence': 'My name is Patrick', 'score': 2.1e-05, 'token': 3499, 'token_str': ' Patrick'}, {'sequence': 'My name is Te', 'score': 2e-05, 'token': 2941, 'token_str': ' Te'}, {'sequence': 'My name is Clara', 'score': 2e-05, 'token': 13606, 'token_str': ' Clara'}, ] , ) UpperCamelCase_ = unmasker('My name is <mask> <mask>' , top_k=2 ) self.assertEqual( nested_simplify(_UpperCAmelCase , decimals=6 ) , [ [ { 'score': 2.2e-05, 'token': 35676, 'token_str': ' Maul', 'sequence': '<s>My name is Maul<mask></s>', }, {'score': 2.2e-05, 'token': 16416, 'token_str': 'ELS', 'sequence': '<s>My name isELS<mask></s>'}, ], [ { 'score': 2.2e-05, 'token': 35676, 'token_str': ' Maul', 'sequence': '<s>My name is<mask> Maul</s>', }, {'score': 2.2e-05, 'token': 16416, 'token_str': 'ELS', 'sequence': '<s>My name is<mask>ELS</s>'}, ], ] , ) @require_torch_gpu def _UpperCAmelCase ( self ) -> Optional[Any]: UpperCamelCase_ = pipeline('fill-mask' , model='hf-internal-testing/tiny-random-distilbert' , device=0 , framework='pt' ) # convert model to fp16 pipe.model.half() UpperCamelCase_ = pipe('Paris is the [MASK] of France.' ) # We actually don't care about the result, we just want to make sure # it works, meaning the float16 tensor got casted back to float32 # for postprocessing. self.assertIsInstance(_UpperCAmelCase , _UpperCAmelCase ) @slow @require_torch def _UpperCAmelCase ( self ) -> List[Any]: UpperCamelCase_ = pipeline(task='fill-mask' , model='distilroberta-base' , top_k=2 , framework='pt' ) self.run_large_test(_UpperCAmelCase ) @slow @require_tf def _UpperCAmelCase ( self ) -> Union[str, Any]: UpperCamelCase_ = pipeline(task='fill-mask' , model='distilroberta-base' , top_k=2 , framework='tf' ) self.run_large_test(_UpperCAmelCase ) def _UpperCAmelCase ( self , _UpperCAmelCase ) -> Tuple: UpperCamelCase_ = unmasker('My name is <mask>' ) self.assertEqual( nested_simplify(_UpperCAmelCase ) , [ {'sequence': 'My name is John', 'score': 0.0_0_8, 'token': 610, 'token_str': ' John'}, {'sequence': 'My name is Chris', 'score': 0.0_0_7, 'token': 1573, 'token_str': ' Chris'}, ] , ) UpperCamelCase_ = unmasker('The largest city in France is <mask>' ) self.assertEqual( nested_simplify(_UpperCAmelCase ) , [ { 'sequence': 'The largest city in France is Paris', 'score': 0.2_5_1, 'token': 2201, 'token_str': ' Paris', }, { 'sequence': 'The largest city in France is Lyon', 'score': 0.2_1_4, 'token': 12790, 'token_str': ' Lyon', }, ] , ) UpperCamelCase_ = unmasker('My name is <mask>' , targets=[' Patrick', ' Clara', ' Teven'] , top_k=3 ) self.assertEqual( nested_simplify(_UpperCAmelCase ) , [ {'sequence': 'My name is Patrick', 'score': 0.0_0_5, 'token': 3499, 'token_str': ' Patrick'}, {'sequence': 'My name is Clara', 'score': 0.0_0_0, 'token': 13606, 'token_str': ' Clara'}, {'sequence': 'My name is Te', 'score': 0.0_0_0, 'token': 2941, 'token_str': ' Te'}, ] , ) @require_torch def _UpperCAmelCase ( self ) -> List[Any]: UpperCamelCase_ = pipeline(task='fill-mask' , model='sshleifer/tiny-distilroberta-base' , framework='pt' ) UpperCamelCase_ = None UpperCamelCase_ = None self.run_pipeline_test(_UpperCAmelCase , [] ) @require_tf def _UpperCAmelCase ( self ) -> Optional[int]: UpperCamelCase_ = pipeline(task='fill-mask' , model='sshleifer/tiny-distilroberta-base' , framework='tf' ) UpperCamelCase_ = None UpperCamelCase_ = None self.run_pipeline_test(_UpperCAmelCase , [] ) def _UpperCAmelCase ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) -> Optional[Any]: if tokenizer is None or tokenizer.mask_token_id is None: self.skipTest('The provided tokenizer has no mask token, (probably reformer or wav2vec2)' ) UpperCamelCase_ = FillMaskPipeline(model=_UpperCAmelCase , tokenizer=_UpperCAmelCase ) UpperCamelCase_ = [ f"""This is another {tokenizer.mask_token} test""", ] return fill_masker, examples def _UpperCAmelCase ( self , _UpperCAmelCase , _UpperCAmelCase ) -> Union[str, Any]: UpperCamelCase_ = fill_masker.tokenizer UpperCamelCase_ = fill_masker.model UpperCamelCase_ = fill_masker( f"""This is a {tokenizer.mask_token}""" , ) self.assertEqual( _UpperCAmelCase , [ {'sequence': ANY(_UpperCAmelCase ), 'score': ANY(_UpperCAmelCase ), 'token': ANY(_UpperCAmelCase ), 'token_str': ANY(_UpperCAmelCase )}, {'sequence': ANY(_UpperCAmelCase ), 'score': ANY(_UpperCAmelCase ), 'token': ANY(_UpperCAmelCase ), 'token_str': ANY(_UpperCAmelCase )}, {'sequence': ANY(_UpperCAmelCase ), 'score': ANY(_UpperCAmelCase ), 'token': ANY(_UpperCAmelCase ), 'token_str': ANY(_UpperCAmelCase )}, {'sequence': ANY(_UpperCAmelCase ), 'score': ANY(_UpperCAmelCase ), 'token': ANY(_UpperCAmelCase ), 'token_str': ANY(_UpperCAmelCase )}, {'sequence': ANY(_UpperCAmelCase ), 'score': ANY(_UpperCAmelCase ), 'token': ANY(_UpperCAmelCase ), 'token_str': ANY(_UpperCAmelCase )}, ] , ) UpperCamelCase_ = fill_masker([f"""This is a {tokenizer.mask_token}"""] ) self.assertEqual( _UpperCAmelCase , [ {'sequence': ANY(_UpperCAmelCase ), 'score': ANY(_UpperCAmelCase ), 'token': ANY(_UpperCAmelCase ), 'token_str': ANY(_UpperCAmelCase )}, {'sequence': ANY(_UpperCAmelCase ), 'score': ANY(_UpperCAmelCase ), 'token': ANY(_UpperCAmelCase ), 'token_str': ANY(_UpperCAmelCase )}, {'sequence': ANY(_UpperCAmelCase ), 'score': ANY(_UpperCAmelCase ), 'token': ANY(_UpperCAmelCase ), 'token_str': ANY(_UpperCAmelCase )}, {'sequence': ANY(_UpperCAmelCase ), 'score': ANY(_UpperCAmelCase ), 'token': ANY(_UpperCAmelCase ), 'token_str': ANY(_UpperCAmelCase )}, {'sequence': ANY(_UpperCAmelCase ), 'score': ANY(_UpperCAmelCase ), 'token': ANY(_UpperCAmelCase ), 'token_str': ANY(_UpperCAmelCase )}, ] , ) UpperCamelCase_ = fill_masker([f"""This is a {tokenizer.mask_token}""", f"""Another {tokenizer.mask_token} great test."""] ) self.assertEqual( _UpperCAmelCase , [ [ {'sequence': ANY(_UpperCAmelCase ), 'score': ANY(_UpperCAmelCase ), 'token': ANY(_UpperCAmelCase ), 'token_str': ANY(_UpperCAmelCase )}, {'sequence': ANY(_UpperCAmelCase ), 'score': ANY(_UpperCAmelCase ), 'token': ANY(_UpperCAmelCase ), 'token_str': ANY(_UpperCAmelCase )}, {'sequence': ANY(_UpperCAmelCase ), 'score': ANY(_UpperCAmelCase ), 'token': ANY(_UpperCAmelCase ), 'token_str': ANY(_UpperCAmelCase )}, {'sequence': ANY(_UpperCAmelCase ), 'score': ANY(_UpperCAmelCase ), 'token': ANY(_UpperCAmelCase ), 'token_str': ANY(_UpperCAmelCase )}, {'sequence': ANY(_UpperCAmelCase ), 'score': ANY(_UpperCAmelCase ), 'token': ANY(_UpperCAmelCase ), 'token_str': ANY(_UpperCAmelCase )}, ], [ {'sequence': ANY(_UpperCAmelCase ), 'score': ANY(_UpperCAmelCase ), 'token': ANY(_UpperCAmelCase ), 'token_str': ANY(_UpperCAmelCase )}, {'sequence': ANY(_UpperCAmelCase ), 'score': ANY(_UpperCAmelCase ), 'token': ANY(_UpperCAmelCase ), 'token_str': ANY(_UpperCAmelCase )}, {'sequence': ANY(_UpperCAmelCase ), 'score': ANY(_UpperCAmelCase ), 'token': ANY(_UpperCAmelCase ), 'token_str': ANY(_UpperCAmelCase )}, {'sequence': ANY(_UpperCAmelCase ), 'score': ANY(_UpperCAmelCase ), 'token': ANY(_UpperCAmelCase ), 'token_str': ANY(_UpperCAmelCase )}, {'sequence': ANY(_UpperCAmelCase ), 'score': ANY(_UpperCAmelCase ), 'token': ANY(_UpperCAmelCase ), 'token_str': ANY(_UpperCAmelCase )}, ], ] , ) with self.assertRaises(_UpperCAmelCase ): fill_masker([None] ) # No mask_token is not supported with self.assertRaises(_UpperCAmelCase ): fill_masker('This is' ) self.run_test_top_k(_UpperCAmelCase , _UpperCAmelCase ) self.run_test_targets(_UpperCAmelCase , _UpperCAmelCase ) self.run_test_top_k_targets(_UpperCAmelCase , _UpperCAmelCase ) self.fill_mask_with_duplicate_targets_and_top_k(_UpperCAmelCase , _UpperCAmelCase ) self.fill_mask_with_multiple_masks(_UpperCAmelCase , _UpperCAmelCase ) def _UpperCAmelCase ( self , _UpperCAmelCase , _UpperCAmelCase ) -> Optional[Any]: UpperCamelCase_ = tokenizer.get_vocab() UpperCamelCase_ = sorted(vocab.keys() )[:2] # Pipeline argument UpperCamelCase_ = FillMaskPipeline(model=_UpperCAmelCase , tokenizer=_UpperCAmelCase , targets=_UpperCAmelCase ) UpperCamelCase_ = fill_masker(f"""This is a {tokenizer.mask_token}""" ) self.assertEqual( _UpperCAmelCase , [ {'sequence': ANY(_UpperCAmelCase ), 'score': ANY(_UpperCAmelCase ), 'token': ANY(_UpperCAmelCase ), 'token_str': ANY(_UpperCAmelCase )}, {'sequence': ANY(_UpperCAmelCase ), 'score': ANY(_UpperCAmelCase ), 'token': ANY(_UpperCAmelCase ), 'token_str': ANY(_UpperCAmelCase )}, ] , ) UpperCamelCase_ = {vocab[el] for el in targets} self.assertEqual({el['token'] for el in outputs} , _UpperCAmelCase ) UpperCamelCase_ = [tokenizer.decode([x] ) for x in target_ids] self.assertEqual({el['token_str'] for el in outputs} , set(_UpperCAmelCase ) ) # Call argument UpperCamelCase_ = FillMaskPipeline(model=_UpperCAmelCase , tokenizer=_UpperCAmelCase ) UpperCamelCase_ = fill_masker(f"""This is a {tokenizer.mask_token}""" , targets=_UpperCAmelCase ) self.assertEqual( _UpperCAmelCase , [ {'sequence': ANY(_UpperCAmelCase ), 'score': ANY(_UpperCAmelCase ), 'token': ANY(_UpperCAmelCase ), 'token_str': ANY(_UpperCAmelCase )}, {'sequence': ANY(_UpperCAmelCase ), 'score': ANY(_UpperCAmelCase ), 'token': ANY(_UpperCAmelCase ), 'token_str': ANY(_UpperCAmelCase )}, ] , ) UpperCamelCase_ = {vocab[el] for el in targets} self.assertEqual({el['token'] for el in outputs} , _UpperCAmelCase ) UpperCamelCase_ = [tokenizer.decode([x] ) for x in target_ids] self.assertEqual({el['token_str'] for el in outputs} , set(_UpperCAmelCase ) ) # Score equivalence UpperCamelCase_ = fill_masker(f"""This is a {tokenizer.mask_token}""" , targets=_UpperCAmelCase ) UpperCamelCase_ = [top_mask['token_str'] for top_mask in outputs] UpperCamelCase_ = [top_mask['score'] for top_mask in outputs] # For some BPE tokenizers, `</w>` is removed during decoding, so `token_str` won't be the same as in `targets`. if set(_UpperCAmelCase ) == set(_UpperCAmelCase ): UpperCamelCase_ = fill_masker(f"""This is a {tokenizer.mask_token}""" , targets=_UpperCAmelCase ) UpperCamelCase_ = [top_mask['score'] for top_mask in unmasked_targets] self.assertEqual(nested_simplify(_UpperCAmelCase ) , nested_simplify(_UpperCAmelCase ) ) # Raises with invalid with self.assertRaises(_UpperCAmelCase ): UpperCamelCase_ = fill_masker(f"""This is a {tokenizer.mask_token}""" , targets=[] ) # For some tokenizers, `""` is actually in the vocabulary and the expected error won't raised if "" not in tokenizer.get_vocab(): with self.assertRaises(_UpperCAmelCase ): UpperCamelCase_ = fill_masker(f"""This is a {tokenizer.mask_token}""" , targets=[''] ) with self.assertRaises(_UpperCAmelCase ): UpperCamelCase_ = fill_masker(f"""This is a {tokenizer.mask_token}""" , targets='' ) def _UpperCAmelCase ( self , _UpperCAmelCase , _UpperCAmelCase ) -> Tuple: UpperCamelCase_ = FillMaskPipeline(model=_UpperCAmelCase , tokenizer=_UpperCAmelCase , top_k=2 ) UpperCamelCase_ = fill_masker(f"""This is a {tokenizer.mask_token}""" ) self.assertEqual( _UpperCAmelCase , [ {'sequence': ANY(_UpperCAmelCase ), 'score': ANY(_UpperCAmelCase ), 'token': ANY(_UpperCAmelCase ), 'token_str': ANY(_UpperCAmelCase )}, {'sequence': ANY(_UpperCAmelCase ), 'score': ANY(_UpperCAmelCase ), 'token': ANY(_UpperCAmelCase ), 'token_str': ANY(_UpperCAmelCase )}, ] , ) UpperCamelCase_ = FillMaskPipeline(model=_UpperCAmelCase , tokenizer=_UpperCAmelCase ) UpperCamelCase_ = fill_masker(f"""This is a {tokenizer.mask_token}""" , top_k=2 ) self.assertEqual( _UpperCAmelCase , [ {'sequence': ANY(_UpperCAmelCase ), 'score': ANY(_UpperCAmelCase ), 'token': ANY(_UpperCAmelCase ), 'token_str': ANY(_UpperCAmelCase )}, {'sequence': ANY(_UpperCAmelCase ), 'score': ANY(_UpperCAmelCase ), 'token': ANY(_UpperCAmelCase ), 'token_str': ANY(_UpperCAmelCase )}, ] , ) self.assertEqual(nested_simplify(_UpperCAmelCase ) , nested_simplify(_UpperCAmelCase ) ) def _UpperCAmelCase ( self , _UpperCAmelCase , _UpperCAmelCase ) -> List[Any]: UpperCamelCase_ = tokenizer.get_vocab() UpperCamelCase_ = FillMaskPipeline(model=_UpperCAmelCase , tokenizer=_UpperCAmelCase ) # top_k=2, ntargets=3 UpperCamelCase_ = sorted(vocab.keys() )[:3] UpperCamelCase_ = fill_masker(f"""This is a {tokenizer.mask_token}""" , top_k=2 , targets=_UpperCAmelCase ) # If we use the most probably targets, and filter differently, we should still # have the same results UpperCamelCase_ = [el['token_str'] for el in sorted(_UpperCAmelCase , key=lambda _UpperCAmelCase : x["score"] , reverse=_UpperCAmelCase )] # For some BPE tokenizers, `</w>` is removed during decoding, so `token_str` won't be the same as in `targets`. if set(_UpperCAmelCase ).issubset(_UpperCAmelCase ): UpperCamelCase_ = fill_masker(f"""This is a {tokenizer.mask_token}""" , top_k=3 , targets=_UpperCAmelCase ) # They should yield exactly the same result self.assertEqual(nested_simplify(_UpperCAmelCase ) , nested_simplify(_UpperCAmelCase ) ) def _UpperCAmelCase ( self , _UpperCAmelCase , _UpperCAmelCase ) -> Optional[int]: UpperCamelCase_ = FillMaskPipeline(model=_UpperCAmelCase , tokenizer=_UpperCAmelCase ) UpperCamelCase_ = tokenizer.get_vocab() # String duplicates + id duplicates UpperCamelCase_ = sorted(vocab.keys() )[:3] UpperCamelCase_ = [targets[0], targets[1], targets[0], targets[2], targets[1]] UpperCamelCase_ = fill_masker(f"""My name is {tokenizer.mask_token}""" , targets=_UpperCAmelCase , top_k=10 ) # The target list contains duplicates, so we can't output more # than them self.assertEqual(len(_UpperCAmelCase ) , 3 ) def _UpperCAmelCase ( self , _UpperCAmelCase , _UpperCAmelCase ) -> List[str]: UpperCamelCase_ = FillMaskPipeline(model=_UpperCAmelCase , tokenizer=_UpperCAmelCase ) UpperCamelCase_ = fill_masker( f"""This is a {tokenizer.mask_token} {tokenizer.mask_token} {tokenizer.mask_token}""" , top_k=2 ) self.assertEqual( _UpperCAmelCase , [ [ {'sequence': ANY(_UpperCAmelCase ), 'score': ANY(_UpperCAmelCase ), 'token': ANY(_UpperCAmelCase ), 'token_str': ANY(_UpperCAmelCase )}, {'sequence': ANY(_UpperCAmelCase ), 'score': ANY(_UpperCAmelCase ), 'token': ANY(_UpperCAmelCase ), 'token_str': ANY(_UpperCAmelCase )}, ], [ {'sequence': ANY(_UpperCAmelCase ), 'score': ANY(_UpperCAmelCase ), 'token': ANY(_UpperCAmelCase ), 'token_str': ANY(_UpperCAmelCase )}, {'sequence': ANY(_UpperCAmelCase ), 'score': ANY(_UpperCAmelCase ), 'token': ANY(_UpperCAmelCase ), 'token_str': ANY(_UpperCAmelCase )}, ], [ {'sequence': ANY(_UpperCAmelCase ), 'score': ANY(_UpperCAmelCase ), 'token': ANY(_UpperCAmelCase ), 'token_str': ANY(_UpperCAmelCase )}, {'sequence': ANY(_UpperCAmelCase ), 'score': ANY(_UpperCAmelCase ), 'token': ANY(_UpperCAmelCase ), 'token_str': ANY(_UpperCAmelCase )}, ], ] , )
23
0
import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_bert import BertTokenizer A__ : Optional[int] = logging.get_logger(__name__) A__ : Optional[Any] = {"""vocab_file""": """vocab.txt""", """tokenizer_file""": """tokenizer.json"""} A__ : Any = { """vocab_file""": { """bert-base-uncased""": """https://huggingface.co/bert-base-uncased/resolve/main/vocab.txt""", """bert-large-uncased""": """https://huggingface.co/bert-large-uncased/resolve/main/vocab.txt""", """bert-base-cased""": """https://huggingface.co/bert-base-cased/resolve/main/vocab.txt""", """bert-large-cased""": """https://huggingface.co/bert-large-cased/resolve/main/vocab.txt""", """bert-base-multilingual-uncased""": ( """https://huggingface.co/bert-base-multilingual-uncased/resolve/main/vocab.txt""" ), """bert-base-multilingual-cased""": """https://huggingface.co/bert-base-multilingual-cased/resolve/main/vocab.txt""", """bert-base-chinese""": """https://huggingface.co/bert-base-chinese/resolve/main/vocab.txt""", """bert-base-german-cased""": """https://huggingface.co/bert-base-german-cased/resolve/main/vocab.txt""", """bert-large-uncased-whole-word-masking""": ( """https://huggingface.co/bert-large-uncased-whole-word-masking/resolve/main/vocab.txt""" ), """bert-large-cased-whole-word-masking""": ( """https://huggingface.co/bert-large-cased-whole-word-masking/resolve/main/vocab.txt""" ), """bert-large-uncased-whole-word-masking-finetuned-squad""": ( """https://huggingface.co/bert-large-uncased-whole-word-masking-finetuned-squad/resolve/main/vocab.txt""" ), """bert-large-cased-whole-word-masking-finetuned-squad""": ( """https://huggingface.co/bert-large-cased-whole-word-masking-finetuned-squad/resolve/main/vocab.txt""" ), """bert-base-cased-finetuned-mrpc""": ( """https://huggingface.co/bert-base-cased-finetuned-mrpc/resolve/main/vocab.txt""" ), """bert-base-german-dbmdz-cased""": """https://huggingface.co/bert-base-german-dbmdz-cased/resolve/main/vocab.txt""", """bert-base-german-dbmdz-uncased""": ( """https://huggingface.co/bert-base-german-dbmdz-uncased/resolve/main/vocab.txt""" ), """TurkuNLP/bert-base-finnish-cased-v1""": ( """https://huggingface.co/TurkuNLP/bert-base-finnish-cased-v1/resolve/main/vocab.txt""" ), """TurkuNLP/bert-base-finnish-uncased-v1""": ( """https://huggingface.co/TurkuNLP/bert-base-finnish-uncased-v1/resolve/main/vocab.txt""" ), """wietsedv/bert-base-dutch-cased""": ( """https://huggingface.co/wietsedv/bert-base-dutch-cased/resolve/main/vocab.txt""" ), }, """tokenizer_file""": { """bert-base-uncased""": """https://huggingface.co/bert-base-uncased/resolve/main/tokenizer.json""", """bert-large-uncased""": """https://huggingface.co/bert-large-uncased/resolve/main/tokenizer.json""", """bert-base-cased""": """https://huggingface.co/bert-base-cased/resolve/main/tokenizer.json""", """bert-large-cased""": """https://huggingface.co/bert-large-cased/resolve/main/tokenizer.json""", """bert-base-multilingual-uncased""": ( """https://huggingface.co/bert-base-multilingual-uncased/resolve/main/tokenizer.json""" ), """bert-base-multilingual-cased""": ( """https://huggingface.co/bert-base-multilingual-cased/resolve/main/tokenizer.json""" ), """bert-base-chinese""": """https://huggingface.co/bert-base-chinese/resolve/main/tokenizer.json""", """bert-base-german-cased""": """https://huggingface.co/bert-base-german-cased/resolve/main/tokenizer.json""", """bert-large-uncased-whole-word-masking""": ( """https://huggingface.co/bert-large-uncased-whole-word-masking/resolve/main/tokenizer.json""" ), """bert-large-cased-whole-word-masking""": ( """https://huggingface.co/bert-large-cased-whole-word-masking/resolve/main/tokenizer.json""" ), """bert-large-uncased-whole-word-masking-finetuned-squad""": ( """https://huggingface.co/bert-large-uncased-whole-word-masking-finetuned-squad/resolve/main/tokenizer.json""" ), """bert-large-cased-whole-word-masking-finetuned-squad""": ( """https://huggingface.co/bert-large-cased-whole-word-masking-finetuned-squad/resolve/main/tokenizer.json""" ), """bert-base-cased-finetuned-mrpc""": ( """https://huggingface.co/bert-base-cased-finetuned-mrpc/resolve/main/tokenizer.json""" ), """bert-base-german-dbmdz-cased""": ( """https://huggingface.co/bert-base-german-dbmdz-cased/resolve/main/tokenizer.json""" ), """bert-base-german-dbmdz-uncased""": ( """https://huggingface.co/bert-base-german-dbmdz-uncased/resolve/main/tokenizer.json""" ), """TurkuNLP/bert-base-finnish-cased-v1""": ( """https://huggingface.co/TurkuNLP/bert-base-finnish-cased-v1/resolve/main/tokenizer.json""" ), """TurkuNLP/bert-base-finnish-uncased-v1""": ( """https://huggingface.co/TurkuNLP/bert-base-finnish-uncased-v1/resolve/main/tokenizer.json""" ), """wietsedv/bert-base-dutch-cased""": ( """https://huggingface.co/wietsedv/bert-base-dutch-cased/resolve/main/tokenizer.json""" ), }, } A__ : List[str] = { """bert-base-uncased""": 512, """bert-large-uncased""": 512, """bert-base-cased""": 512, """bert-large-cased""": 512, """bert-base-multilingual-uncased""": 512, """bert-base-multilingual-cased""": 512, """bert-base-chinese""": 512, """bert-base-german-cased""": 512, """bert-large-uncased-whole-word-masking""": 512, """bert-large-cased-whole-word-masking""": 512, """bert-large-uncased-whole-word-masking-finetuned-squad""": 512, """bert-large-cased-whole-word-masking-finetuned-squad""": 512, """bert-base-cased-finetuned-mrpc""": 512, """bert-base-german-dbmdz-cased""": 512, """bert-base-german-dbmdz-uncased""": 512, """TurkuNLP/bert-base-finnish-cased-v1""": 512, """TurkuNLP/bert-base-finnish-uncased-v1""": 512, """wietsedv/bert-base-dutch-cased""": 512, } A__ : Tuple = { """bert-base-uncased""": {"""do_lower_case""": True}, """bert-large-uncased""": {"""do_lower_case""": True}, """bert-base-cased""": {"""do_lower_case""": False}, """bert-large-cased""": {"""do_lower_case""": False}, """bert-base-multilingual-uncased""": {"""do_lower_case""": True}, """bert-base-multilingual-cased""": {"""do_lower_case""": False}, """bert-base-chinese""": {"""do_lower_case""": False}, """bert-base-german-cased""": {"""do_lower_case""": False}, """bert-large-uncased-whole-word-masking""": {"""do_lower_case""": True}, """bert-large-cased-whole-word-masking""": {"""do_lower_case""": False}, """bert-large-uncased-whole-word-masking-finetuned-squad""": {"""do_lower_case""": True}, """bert-large-cased-whole-word-masking-finetuned-squad""": {"""do_lower_case""": False}, """bert-base-cased-finetuned-mrpc""": {"""do_lower_case""": False}, """bert-base-german-dbmdz-cased""": {"""do_lower_case""": False}, """bert-base-german-dbmdz-uncased""": {"""do_lower_case""": True}, """TurkuNLP/bert-base-finnish-cased-v1""": {"""do_lower_case""": False}, """TurkuNLP/bert-base-finnish-uncased-v1""": {"""do_lower_case""": True}, """wietsedv/bert-base-dutch-cased""": {"""do_lower_case""": False}, } class __snake_case ( UpperCAmelCase__ ): _a = VOCAB_FILES_NAMES _a = PRETRAINED_VOCAB_FILES_MAP _a = PRETRAINED_INIT_CONFIGURATION _a = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _a = BertTokenizer def __init__( self : Optional[Any] , A_ : List[str]=None , A_ : str=None , A_ : Optional[int]=True , A_ : List[str]="[UNK]" , A_ : Union[str, Any]="[SEP]" , A_ : Optional[int]="[PAD]" , A_ : Dict="[CLS]" , A_ : Any="[MASK]" , A_ : Any=True , A_ : int=None , **A_ : Tuple , ): super().__init__( _UpperCAmelCase , tokenizer_file=_UpperCAmelCase , do_lower_case=_UpperCAmelCase , unk_token=_UpperCAmelCase , sep_token=_UpperCAmelCase , pad_token=_UpperCAmelCase , cls_token=_UpperCAmelCase , mask_token=_UpperCAmelCase , tokenize_chinese_chars=_UpperCAmelCase , strip_accents=_UpperCAmelCase , **_UpperCAmelCase , ) lowerCAmelCase_ : Optional[Any] = json.loads(self.backend_tokenizer.normalizer.__getstate__()) if ( normalizer_state.get('''lowercase''' , _UpperCAmelCase) != do_lower_case or normalizer_state.get('''strip_accents''' , _UpperCAmelCase) != strip_accents or normalizer_state.get('''handle_chinese_chars''' , _UpperCAmelCase) != tokenize_chinese_chars ): lowerCAmelCase_ : List[Any] = getattr(_UpperCAmelCase , normalizer_state.pop('''type''')) lowerCAmelCase_ : Any = do_lower_case lowerCAmelCase_ : Dict = strip_accents lowerCAmelCase_ : Any = tokenize_chinese_chars lowerCAmelCase_ : int = normalizer_class(**_UpperCAmelCase) lowerCAmelCase_ : Optional[int] = do_lower_case def UpperCAmelCase__ ( self : Optional[Any] , A_ : Union[str, Any] , A_ : List[str]=None): lowerCAmelCase_ : Union[str, Any] = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def UpperCAmelCase__ ( self : str , A_ : int , A_ : List[Any] = None): lowerCAmelCase_ : Optional[Any] = [self.sep_token_id] lowerCAmelCase_ : Union[str, Any] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep) * [0] return len(cls + token_ids_a + sep) * [0] + len(token_ids_a + sep) * [1] def UpperCAmelCase__ ( self : Optional[Any] , A_ : Optional[Any] , A_ : int = None): lowerCAmelCase_ : Tuple = self._tokenizer.model.save(_UpperCAmelCase , name=_UpperCAmelCase) return tuple(_UpperCAmelCase)
171
import gc import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, StableDiffusionSAGPipeline, UNetaDConditionModel, ) from diffusers.utils import slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_IMAGE_PARAMS, TEXT_TO_IMAGE_PARAMS from ..test_pipelines_common import PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() class _a ( UpperCAmelCase__ , UpperCAmelCase__ , unittest.TestCase ): """simple docstring""" A_ = StableDiffusionSAGPipeline A_ = TEXT_TO_IMAGE_PARAMS A_ = TEXT_TO_IMAGE_BATCH_PARAMS A_ = TEXT_TO_IMAGE_IMAGE_PARAMS A_ = TEXT_TO_IMAGE_IMAGE_PARAMS A_ = False def _UpperCAmelCase ( self ) -> Optional[Any]: torch.manual_seed(0 ) UpperCamelCase_ = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=('DownBlock2D', 'CrossAttnDownBlock2D') , up_block_types=('CrossAttnUpBlock2D', 'UpBlock2D') , cross_attention_dim=32 , ) UpperCamelCase_ = DDIMScheduler( beta_start=0.0_0_0_8_5 , beta_end=0.0_1_2 , beta_schedule='scaled_linear' , clip_sample=_UpperCAmelCase , set_alpha_to_one=_UpperCAmelCase , ) torch.manual_seed(0 ) UpperCamelCase_ = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=['DownEncoderBlock2D', 'DownEncoderBlock2D'] , up_block_types=['UpDecoderBlock2D', 'UpDecoderBlock2D'] , latent_channels=4 , ) torch.manual_seed(0 ) UpperCamelCase_ = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , ) UpperCamelCase_ = CLIPTextModel(_UpperCAmelCase ) UpperCamelCase_ = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip' ) UpperCamelCase_ = { 'unet': unet, 'scheduler': scheduler, 'vae': vae, 'text_encoder': text_encoder, 'tokenizer': tokenizer, 'safety_checker': None, 'feature_extractor': None, } return components def _UpperCAmelCase ( self , _UpperCAmelCase , _UpperCAmelCase=0 ) -> List[Any]: if str(_UpperCAmelCase ).startswith('mps' ): UpperCamelCase_ = torch.manual_seed(_UpperCAmelCase ) else: UpperCamelCase_ = torch.Generator(device=_UpperCAmelCase ).manual_seed(_UpperCAmelCase ) UpperCamelCase_ = { 'prompt': '.', 'generator': generator, 'num_inference_steps': 2, 'guidance_scale': 1.0, 'sag_scale': 1.0, 'output_type': 'numpy', } return inputs def _UpperCAmelCase ( self ) -> Tuple: super().test_inference_batch_single_identical(expected_max_diff=3e-3 ) @slow @require_torch_gpu class _a ( unittest.TestCase ): """simple docstring""" def _UpperCAmelCase ( self ) -> Tuple: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def _UpperCAmelCase ( self ) -> str: UpperCamelCase_ = StableDiffusionSAGPipeline.from_pretrained('CompVis/stable-diffusion-v1-4' ) UpperCamelCase_ = sag_pipe.to(_UpperCAmelCase ) sag_pipe.set_progress_bar_config(disable=_UpperCAmelCase ) UpperCamelCase_ = '.' UpperCamelCase_ = torch.manual_seed(0 ) UpperCamelCase_ = sag_pipe( [prompt] , generator=_UpperCAmelCase , guidance_scale=7.5 , sag_scale=1.0 , num_inference_steps=20 , output_type='np' ) UpperCamelCase_ = output.images UpperCamelCase_ = image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) UpperCamelCase_ = np.array([0.1_5_6_8, 0.1_7_3_8, 0.1_6_9_5, 0.1_6_9_3, 0.1_5_0_7, 0.1_7_0_5, 0.1_5_4_7, 0.1_7_5_1, 0.1_9_4_9] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 5e-2 def _UpperCAmelCase ( self ) -> List[Any]: UpperCamelCase_ = StableDiffusionSAGPipeline.from_pretrained('stabilityai/stable-diffusion-2-1-base' ) UpperCamelCase_ = sag_pipe.to(_UpperCAmelCase ) sag_pipe.set_progress_bar_config(disable=_UpperCAmelCase ) UpperCamelCase_ = '.' UpperCamelCase_ = torch.manual_seed(0 ) UpperCamelCase_ = sag_pipe( [prompt] , generator=_UpperCAmelCase , guidance_scale=7.5 , sag_scale=1.0 , num_inference_steps=20 , output_type='np' ) UpperCamelCase_ = output.images UpperCamelCase_ = image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) UpperCamelCase_ = np.array([0.3_4_5_9, 0.2_8_7_6, 0.2_5_3_7, 0.3_0_0_2, 0.2_6_7_1, 0.2_1_6_0, 0.3_0_2_6, 0.2_2_6_2, 0.2_3_7_1] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 5e-2 def _UpperCAmelCase ( self ) -> Dict: UpperCamelCase_ = StableDiffusionSAGPipeline.from_pretrained('stabilityai/stable-diffusion-2-1-base' ) UpperCamelCase_ = sag_pipe.to(_UpperCAmelCase ) sag_pipe.set_progress_bar_config(disable=_UpperCAmelCase ) UpperCamelCase_ = '.' UpperCamelCase_ = torch.manual_seed(0 ) UpperCamelCase_ = sag_pipe( [prompt] , width=768 , height=512 , generator=_UpperCAmelCase , guidance_scale=7.5 , sag_scale=1.0 , num_inference_steps=20 , output_type='np' , ) UpperCamelCase_ = output.images assert image.shape == (1, 512, 768, 3)
23
0
from typing import Optional, Union import torch from torch import nn from ...configuration_utils import ConfigMixin, register_to_config from ...models.modeling_utils import ModelMixin class _A ( UpperCAmelCase__ , UpperCAmelCase__ ): '''simple docstring''' @register_to_config def __init__( self ,SCREAMING_SNAKE_CASE_ = 768 ,): '''simple docstring''' super().__init__() snake_case : Tuple = nn.Parameter(torch.zeros(1 ,_UpperCAmelCase ) ) snake_case : Union[str, Any] = nn.Parameter(torch.ones(1 ,_UpperCAmelCase ) ) def snake_case_ ( self ,SCREAMING_SNAKE_CASE_ = None ,SCREAMING_SNAKE_CASE_ = None ,): '''simple docstring''' snake_case : int = nn.Parameter(self.mean.to(_UpperCAmelCase ).to(_UpperCAmelCase ) ) snake_case : Union[str, Any] = nn.Parameter(self.std.to(_UpperCAmelCase ).to(_UpperCAmelCase ) ) return self def snake_case_ ( self ,SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case : List[Any] = (embeds - self.mean) * 1.0 / self.std return embeds def snake_case_ ( self ,SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case : List[Any] = (embeds * self.std) + self.mean return embeds
36
from __future__ import annotations from sys import maxsize from typing import Generic, TypeVar snake_case__ : List[str] = TypeVar("""T""") def _snake_case (__lowercase): return (position - 1) // 2 def _snake_case (__lowercase): return (2 * position) + 1 def _snake_case (__lowercase): return (2 * position) + 2 class _a ( Generic[T] ): """simple docstring""" def __init__( self ) -> None: UpperCamelCase_ = [] UpperCamelCase_ = {} UpperCamelCase_ = 0 def __len__( self ) -> int: return self.elements def __repr__( self ) -> str: return str(self.heap ) def _UpperCAmelCase ( self ) -> bool: # Check if the priority queue is empty return self.elements == 0 def _UpperCAmelCase ( self , _UpperCAmelCase , _UpperCAmelCase ) -> None: # Add an element with given priority to the queue self.heap.append((elem, weight) ) UpperCamelCase_ = self.elements self.elements += 1 self._bubble_up(_UpperCAmelCase ) def _UpperCAmelCase ( self ) -> T: # Remove and return the element with lowest weight (highest priority) if self.elements > 1: self._swap_nodes(0 , self.elements - 1 ) UpperCamelCase_ , UpperCamelCase_ = self.heap.pop() del self.position_map[elem] self.elements -= 1 if self.elements > 0: UpperCamelCase_ , UpperCamelCase_ = self.heap[0] self._bubble_down(_UpperCAmelCase ) return elem def _UpperCAmelCase ( self , _UpperCAmelCase , _UpperCAmelCase ) -> None: # Update the weight of the given key UpperCamelCase_ = self.position_map[elem] UpperCamelCase_ = (elem, weight) if position > 0: UpperCamelCase_ = get_parent_position(_UpperCAmelCase ) UpperCamelCase_ , UpperCamelCase_ = self.heap[parent_position] if parent_weight > weight: self._bubble_up(_UpperCAmelCase ) else: self._bubble_down(_UpperCAmelCase ) else: self._bubble_down(_UpperCAmelCase ) def _UpperCAmelCase ( self , _UpperCAmelCase ) -> None: # Place a node at the proper position (upward movement) [to be used internally # only] UpperCamelCase_ = self.position_map[elem] if curr_pos == 0: return None UpperCamelCase_ = get_parent_position(_UpperCAmelCase ) UpperCamelCase_ , UpperCamelCase_ = self.heap[curr_pos] UpperCamelCase_ , UpperCamelCase_ = self.heap[parent_position] if parent_weight > weight: self._swap_nodes(_UpperCAmelCase , _UpperCAmelCase ) return self._bubble_up(_UpperCAmelCase ) return None def _UpperCAmelCase ( self , _UpperCAmelCase ) -> None: # Place a node at the proper position (downward movement) [to be used # internally only] UpperCamelCase_ = self.position_map[elem] UpperCamelCase_ , UpperCamelCase_ = self.heap[curr_pos] UpperCamelCase_ = get_child_left_position(_UpperCAmelCase ) UpperCamelCase_ = get_child_right_position(_UpperCAmelCase ) if child_left_position < self.elements and child_right_position < self.elements: UpperCamelCase_ , UpperCamelCase_ = self.heap[child_left_position] UpperCamelCase_ , UpperCamelCase_ = self.heap[child_right_position] if child_right_weight < child_left_weight and child_right_weight < weight: self._swap_nodes(_UpperCAmelCase , _UpperCAmelCase ) return self._bubble_down(_UpperCAmelCase ) if child_left_position < self.elements: UpperCamelCase_ , UpperCamelCase_ = self.heap[child_left_position] if child_left_weight < weight: self._swap_nodes(_UpperCAmelCase , _UpperCAmelCase ) return self._bubble_down(_UpperCAmelCase ) else: return None if child_right_position < self.elements: UpperCamelCase_ , UpperCamelCase_ = self.heap[child_right_position] if child_right_weight < weight: self._swap_nodes(_UpperCAmelCase , _UpperCAmelCase ) return self._bubble_down(_UpperCAmelCase ) return None def _UpperCAmelCase ( self , _UpperCAmelCase , _UpperCAmelCase ) -> None: # Swap the nodes at the given positions UpperCamelCase_ = self.heap[nodea_pos][0] UpperCamelCase_ = self.heap[nodea_pos][0] UpperCamelCase_ , UpperCamelCase_ = ( self.heap[nodea_pos], self.heap[nodea_pos], ) UpperCamelCase_ = nodea_pos UpperCamelCase_ = nodea_pos class _a ( Generic[T] ): """simple docstring""" def __init__( self ) -> None: UpperCamelCase_ = {} UpperCamelCase_ = 0 def __repr__( self ) -> str: return str(self.connections ) def __len__( self ) -> int: return self.nodes def _UpperCAmelCase ( self , _UpperCAmelCase ) -> None: # Add a node in the graph if it is not in the graph if node not in self.connections: UpperCamelCase_ = {} self.nodes += 1 def _UpperCAmelCase ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) -> None: # Add an edge between 2 nodes in the graph self.add_node(_UpperCAmelCase ) self.add_node(_UpperCAmelCase ) UpperCamelCase_ = weight UpperCamelCase_ = weight def _snake_case (__lowercase , ): UpperCamelCase_ = {node: maxsize for node in graph.connections} UpperCamelCase_ = {node: None for node in graph.connections} UpperCamelCase_ = MinPriorityQueue() for node, weight in dist.items(): priority_queue.push(__lowercase , __lowercase) if priority_queue.is_empty(): return dist, parent # initialization UpperCamelCase_ = priority_queue.extract_min() UpperCamelCase_ = 0 for neighbour in graph.connections[node]: if dist[neighbour] > dist[node] + graph.connections[node][neighbour]: UpperCamelCase_ = dist[node] + graph.connections[node][neighbour] priority_queue.update_key(__lowercase , dist[neighbour]) UpperCamelCase_ = node # running prim's algorithm while not priority_queue.is_empty(): UpperCamelCase_ = priority_queue.extract_min() for neighbour in graph.connections[node]: if dist[neighbour] > dist[node] + graph.connections[node][neighbour]: UpperCamelCase_ = dist[node] + graph.connections[node][neighbour] priority_queue.update_key(__lowercase , dist[neighbour]) UpperCamelCase_ = node return dist, parent
23
0
'''simple docstring''' import warnings from pathlib import Path from typing import List, Tuple, Union import fire from torch import nn from transformers import AutoModelForSeqaSeqLM, AutoTokenizer, PreTrainedModel from transformers.utils import logging UpperCamelCase_ : Optional[int] = logging.get_logger(__name__) def _lowerCAmelCase (_lowercase , _lowercase , _lowercase ): """simple docstring""" a__ = nn.ModuleList([src_layers[i] for i in layers_to_copy] ) assert len(__lowercase ) == len(__lowercase ), F'{len(__lowercase )} != {len(__lowercase )}' dest_layers.load_state_dict(layers_to_copy.state_dict() ) UpperCamelCase_ : Tuple = { # maps num layers in teacher -> num_layers in student -> which teacher layers to copy. # 12: bart, 16: pegasus, 6: marian/Helsinki-NLP 12: { 1: [0], # This says that if the teacher has 12 layers and the student has 1, copy layer 0 of the teacher 2: [0, 6], 3: [0, 6, 11], 4: [0, 4, 8, 11], 6: [0, 2, 4, 7, 9, 11], 9: [0, 1, 2, 4, 5, 7, 9, 10, 11], 12: list(range(12)), }, 16: { # maps num layers in student -> which teacher layers to copy 1: [0], 2: [0, 15], 3: [0, 8, 15], 4: [0, 5, 10, 15], 6: [0, 3, 6, 9, 12, 15], 8: [0, 2, 4, 6, 8, 10, 12, 15], 9: [0, 1, 3, 5, 7, 9, 11, 13, 15], 12: [0, 1, 2, 3, 4, 5, 6, 7, 9, 11, 13, 15], 16: list(range(16)), }, 6: {1: [0], 2: [0, 5], 3: [0, 2, 5], 4: [0, 1, 3, 5], 6: list(range(6))}, } UpperCamelCase_ : Any = { # maps num layers in student -> which teacher layers to copy. 6: {1: [5], 2: [3, 5], 3: [1, 4, 5], 4: [1, 2, 4, 5]}, 12: {1: [11], 2: [5, 11], 3: [3, 7, 11], 6: [1, 3, 5, 8, 10, 11]}, 16: {1: [15], 4: [4, 9, 12, 15], 8: [1, 3, 5, 7, 9, 11, 13, 15]}, } def _lowerCAmelCase (_lowercase , _lowercase ): """simple docstring""" try: a__ = LAYERS_TO_COPY[n_teacher][n_student] return val except KeyError: if n_student != n_teacher: warnings.warn( F'no hardcoded layers to copy for teacher {n_teacher} -> student {n_student}, defaulting to first' F' {n_student}' ) return list(range(__lowercase ) ) def _lowerCAmelCase (_lowercase , _lowercase ): """simple docstring""" if n_student > n_teacher: raise ValueError(F'Cannot perform intermediate supervision for student {n_student} > teacher {n_teacher}' ) elif n_teacher == n_student: return list(range(__lowercase ) ) elif n_student == 1: return [n_teacher - 1] else: return LAYERS_TO_SUPERVISE[n_teacher][n_student] def _lowerCAmelCase (_lowercase , _lowercase = "student" , _lowercase = None , _lowercase = None , _lowercase=False , _lowercase=None , _lowercase=None , **_lowercase , ): """simple docstring""" a__ = "encoder_layers and decoder_layers cannot be both None-- you would just have an identical teacher." assert (e is not None) or (d is not None), _msg if isinstance(__lowercase , __lowercase ): AutoTokenizer.from_pretrained(__lowercase ).save_pretrained(__lowercase ) # purely for convenience a__ = AutoModelForSeqaSeqLM.from_pretrained(__lowercase ).eval() else: assert isinstance(__lowercase , __lowercase ), F'teacher must be a model or string got type {type(__lowercase )}' a__ = teacher.config.to_diff_dict() try: a__ , a__ = teacher.config.encoder_layers, teacher.config.decoder_layers if e is None: a__ = teacher_e if d is None: a__ = teacher_d init_kwargs.update({"encoder_layers": e, "decoder_layers": d} ) except AttributeError: # T5 if hasattr(teacher.config , "num_encoder_layers" ): a__ , a__ = teacher.config.num_encoder_layers, teacher.config.num_decoder_layers else: a__ , a__ = teacher.config.num_layers, teacher.config.num_decoder_layers if e is None: a__ = teacher_e if d is None: a__ = teacher_d if hasattr(teacher.config , "num_encoder_layers" ): init_kwargs.update({"num_encoder_layers": e, "num_decoder_layers": d} ) else: init_kwargs.update({"num_layers": e, "num_decoder_layers": d} ) # Kwargs to instantiate student: teacher kwargs with updated layer numbers + **extra_config_kwargs init_kwargs.update(__lowercase ) # Copy weights a__ = teacher.config_class(**__lowercase ) a__ = AutoModelForSeqaSeqLM.from_config(__lowercase ) # Start by copying the full teacher state dict this will copy the first N teacher layers to the student. a__ = student.load_state_dict(teacher.state_dict() , strict=__lowercase ) assert info.missing_keys == [], info.missing_keys # every student key should have a teacher keys. if copy_first_teacher_layers: # Our copying is done. We just log and save a__ , a__ = list(range(__lowercase ) ), list(range(__lowercase ) ) logger.info( F'Copied encoder layers {e_layers_to_copy} and decoder layers {d_layers_to_copy}. Saving them to' F' {save_path}' ) student.save_pretrained(__lowercase ) return student, e_layers_to_copy, d_layers_to_copy # Decide which layers of the teacher to copy. Not exactly alternating -- we try to keep first and last layer. if e_layers_to_copy is None: a__ = pick_layers_to_copy(__lowercase , __lowercase ) if d_layers_to_copy is None: a__ = pick_layers_to_copy(__lowercase , __lowercase ) try: if hasattr( __lowercase , "prophetnet" ): # For ProphetNet, student.model.encoder.layers is called student.prophetnet.encoder.layers copy_layers(teacher.prophetnet.encoder.layers , student.prophetnet.encoder.layers , __lowercase ) copy_layers(teacher.prophetnet.decoder.layers , student.prophetnet.decoder.layers , __lowercase ) else: copy_layers(teacher.model.encoder.layers , student.model.encoder.layers , __lowercase ) copy_layers(teacher.model.decoder.layers , student.model.decoder.layers , __lowercase ) except AttributeError: # For t5, student.model.encoder.layers is called student.encoder.block copy_layers(teacher.encoder.block , student.encoder.block , __lowercase ) copy_layers(teacher.decoder.block , student.decoder.block , __lowercase ) logger.info( F'Copied encoder layers {e_layers_to_copy} and decoder layers {d_layers_to_copy}. Saving them to {save_path}' ) a__ = { "teacher_type": teacher.config.model_type, "copied_encoder_layers": e_layers_to_copy, "copied_decoder_layers": d_layers_to_copy, } student.save_pretrained(__lowercase ) # Save information about copying for easier reproducibility return student, e_layers_to_copy, d_layers_to_copy if __name__ == "__main__": fire.Fire(create_student_by_copying_alternating_layers)
331
from __future__ import annotations import sys from collections import deque from typing import Generic, TypeVar snake_case__ : Dict = TypeVar("""T""") class _a ( Generic[T] ): """simple docstring""" A_ = 42 # Cache store of keys A_ = 42 # References of the keys in cache A_ = 10 # Maximum capacity of cache def __init__( self , _UpperCAmelCase ) -> None: UpperCamelCase_ = deque() UpperCamelCase_ = set() if not n: UpperCamelCase_ = sys.maxsize elif n < 0: raise ValueError('n should be an integer greater than 0.' ) else: UpperCamelCase_ = n def _UpperCAmelCase ( self , _UpperCAmelCase ) -> None: if x not in self.key_reference: if len(self.dq_store ) == LRUCache._MAX_CAPACITY: UpperCamelCase_ = self.dq_store.pop() self.key_reference.remove(_UpperCAmelCase ) else: self.dq_store.remove(_UpperCAmelCase ) self.dq_store.appendleft(_UpperCAmelCase ) self.key_reference.add(_UpperCAmelCase ) def _UpperCAmelCase ( self ) -> None: for k in self.dq_store: print(_UpperCAmelCase ) def __repr__( self ) -> str: return f"""LRUCache({self._MAX_CAPACITY}) => {list(self.dq_store )}""" if __name__ == "__main__": import doctest doctest.testmod() snake_case__ : LRUCache[str | int] = LRUCache(4) lru_cache.refer("""A""") lru_cache.refer(2) lru_cache.refer(3) lru_cache.refer("""A""") lru_cache.refer(4) lru_cache.refer(5) lru_cache.display() print(lru_cache) assert str(lru_cache) == "LRUCache(4) => [5, 4, 'A', 3]"
23
0
from torch import nn def A_ ( lowercase_ ) -> List[str]: if act_fn in ["swish", "silu"]: return nn.SiLU() elif act_fn == "mish": return nn.Mish() elif act_fn == "gelu": return nn.GELU() else: raise ValueError(f'''Unsupported activation function: {act_fn}''' )
326
import numpy as np def _snake_case (__lowercase): return 1 / (1 + np.exp(-vector)) def _snake_case (__lowercase): return vector * sigmoid(__lowercase) if __name__ == "__main__": import doctest doctest.testmod()
23
0
"""simple docstring""" import unittest from transformers import AutoConfig, AutoTokenizer, BertConfig, TensorType, is_flax_available from transformers.testing_utils import DUMMY_UNKNOWN_IDENTIFIER, require_flax, slow if is_flax_available(): import jax from transformers.models.auto.modeling_flax_auto import FlaxAutoModel from transformers.models.bert.modeling_flax_bert import FlaxBertModel from transformers.models.roberta.modeling_flax_roberta import FlaxRobertaModel @require_flax class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): @slow def __lowercase ( self : List[str] ): for model_name in ["bert-base-cased", "bert-large-uncased"]: with self.subTest(_UpperCAmelCase ): lowerCAmelCase = AutoConfig.from_pretrained(_UpperCAmelCase ) self.assertIsNotNone(_UpperCAmelCase ) self.assertIsInstance(_UpperCAmelCase , _UpperCAmelCase ) lowerCAmelCase = FlaxAutoModel.from_pretrained(_UpperCAmelCase ) self.assertIsNotNone(_UpperCAmelCase ) self.assertIsInstance(_UpperCAmelCase , _UpperCAmelCase ) @slow def __lowercase ( self : Dict ): for model_name in ["roberta-base", "roberta-large"]: with self.subTest(_UpperCAmelCase ): lowerCAmelCase = AutoConfig.from_pretrained(_UpperCAmelCase ) self.assertIsNotNone(_UpperCAmelCase ) self.assertIsInstance(_UpperCAmelCase , _UpperCAmelCase ) lowerCAmelCase = FlaxAutoModel.from_pretrained(_UpperCAmelCase ) self.assertIsNotNone(_UpperCAmelCase ) self.assertIsInstance(_UpperCAmelCase , _UpperCAmelCase ) @slow def __lowercase ( self : Tuple ): for model_name in ["bert-base-cased", "bert-large-uncased"]: lowerCAmelCase = AutoTokenizer.from_pretrained(_UpperCAmelCase ) lowerCAmelCase = FlaxBertModel.from_pretrained(_UpperCAmelCase ) lowerCAmelCase = tokenizer("""Do you support jax jitted function?""" , return_tensors=TensorType.JAX ) @jax.jit def eval(**lowerCAmelCase : int ): return model(**_UpperCAmelCase ) eval(**_UpperCAmelCase ).block_until_ready() @slow def __lowercase ( self : Union[str, Any] ): for model_name in ["roberta-base", "roberta-large"]: lowerCAmelCase = AutoTokenizer.from_pretrained(_UpperCAmelCase ) lowerCAmelCase = FlaxRobertaModel.from_pretrained(_UpperCAmelCase ) lowerCAmelCase = tokenizer("""Do you support jax jitted function?""" , return_tensors=TensorType.JAX ) @jax.jit def eval(**lowerCAmelCase : Optional[Any] ): return model(**_UpperCAmelCase ) eval(**_UpperCAmelCase ).block_until_ready() def __lowercase ( self : Union[str, Any] ): with self.assertRaisesRegex( _UpperCAmelCase , """bert-base is not a local folder and is not a valid model identifier""" ): lowerCAmelCase = FlaxAutoModel.from_pretrained("""bert-base""" ) def __lowercase ( self : Tuple ): with self.assertRaisesRegex( _UpperCAmelCase , R"""aaaaaa is not a valid git identifier \(branch name, tag name or commit id\)""" ): lowerCAmelCase = FlaxAutoModel.from_pretrained(_UpperCAmelCase , revision="""aaaaaa""" ) def __lowercase ( self : Tuple ): with self.assertRaisesRegex( _UpperCAmelCase , """hf-internal-testing/config-no-model does not appear to have a file named flax_model.msgpack""" , ): lowerCAmelCase = FlaxAutoModel.from_pretrained("""hf-internal-testing/config-no-model""" ) def __lowercase ( self : Tuple ): with self.assertRaisesRegex(_UpperCAmelCase , """Use `from_pt=True` to load this model""" ): lowerCAmelCase = FlaxAutoModel.from_pretrained("""hf-internal-testing/tiny-bert-pt-only""" )
169
import math from datetime import datetime, timedelta def _snake_case (__lowercase): UpperCamelCase_ = year % 19 UpperCamelCase_ = year % 4 UpperCamelCase_ = year % 7 UpperCamelCase_ = math.floor(year / 100) UpperCamelCase_ = math.floor((13 + 8 * leap_day_inhibits) / 25) UpperCamelCase_ = leap_day_inhibits / 4 UpperCamelCase_ = ( 15 - lunar_orbit_correction + leap_day_inhibits - leap_day_reinstall_number ) % 30 UpperCamelCase_ = (4 + leap_day_inhibits - leap_day_reinstall_number) % 7 # days to be added to March 21 UpperCamelCase_ = (19 * metonic_cycle + secular_moon_shift) % 30 # PHM -> Paschal Full Moon UpperCamelCase_ = ( 2 * julian_leap_year + 4 * non_leap_year + 6 * days_to_add + century_starting_point ) % 7 if days_to_add == 29 and days_from_phm_to_sunday == 6: return datetime(__lowercase , 4 , 19) elif days_to_add == 28 and days_from_phm_to_sunday == 6: return datetime(__lowercase , 4 , 18) else: return datetime(__lowercase , 3 , 22) + timedelta( days=int(days_to_add + days_from_phm_to_sunday)) if __name__ == "__main__": for year in (1_9_9_4, 2_0_0_0, 2_0_1_0, 2_0_2_1, 2_0_2_3): snake_case__ : Dict = """will be""" if year > datetime.now().year else """was""" print(f'Easter in {year} {tense} {gauss_easter(year)}')
23
0
'''simple docstring''' def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE__ ): __a : Optional[Any] = False while is_sorted is False: # Until all the indices are traversed keep looping __a : Tuple = True for i in range(0 , len(__lowercase ) - 1 , 2 ): # iterating over all even indices if input_list[i] > input_list[i + 1]: __a , __a : List[Any] = input_list[i + 1], input_list[i] # swapping if elements not in order __a : Tuple = False for i in range(1 , len(__lowercase ) - 1 , 2 ): # iterating over all odd indices if input_list[i] > input_list[i + 1]: __a , __a : Optional[int] = input_list[i + 1], input_list[i] # swapping if elements not in order __a : Any = False return input_list if __name__ == "__main__": print("Enter list to be sorted") SCREAMING_SNAKE_CASE_ = [int(x) for x in input().split()] # inputing elements of the list in one line SCREAMING_SNAKE_CASE_ = odd_even_sort(input_list) print("The sorted list is") print(sorted_list)
597
import requests def _snake_case (__lowercase , __lowercase): UpperCamelCase_ = {'Content-Type': 'application/json'} UpperCamelCase_ = requests.post(__lowercase , json={'text': message_body} , headers=__lowercase) if response.status_code != 200: UpperCamelCase_ = ( 'Request to slack returned an error ' f"""{response.status_code}, the response is:\n{response.text}""" ) raise ValueError(__lowercase) if __name__ == "__main__": # Set the slack url to the one provided by Slack when you create the webhook at # https://my.slack.com/services/new/incoming-webhook/ send_slack_message("""<YOUR MESSAGE BODY>""", """<SLACK CHANNEL URL>""")
23
0
import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, DPMSolverMultistepScheduler, TextToVideoSDPipeline, UNetaDConditionModel, ) from diffusers.utils import is_xformers_available, load_numpy, skip_mps, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_PARAMS from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() @skip_mps class A_ ( UpperCAmelCase__ , unittest.TestCase ): _SCREAMING_SNAKE_CASE = TextToVideoSDPipeline _SCREAMING_SNAKE_CASE = TEXT_TO_IMAGE_PARAMS _SCREAMING_SNAKE_CASE = TEXT_TO_IMAGE_BATCH_PARAMS # No `output_type`. _SCREAMING_SNAKE_CASE = frozenset( [ """num_inference_steps""", """generator""", """latents""", """return_dict""", """callback""", """callback_steps""", ] ) def _UpperCAmelCase ( self : Any ): torch.manual_seed(0 ) __a = UNetaDConditionModel( block_out_channels=(32, 64, 64, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=("CrossAttnDownBlock3D", "CrossAttnDownBlock3D", "CrossAttnDownBlock3D", "DownBlock3D") , up_block_types=("UpBlock3D", "CrossAttnUpBlock3D", "CrossAttnUpBlock3D", "CrossAttnUpBlock3D") , cross_attention_dim=32 , attention_head_dim=4 , ) __a = DDIMScheduler( beta_start=0.0_00_85 , beta_end=0.0_12 , beta_schedule="scaled_linear" , clip_sample=_UpperCAmelCase , set_alpha_to_one=_UpperCAmelCase , ) torch.manual_seed(0 ) __a = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D"] , up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D"] , latent_channels=4 , sample_size=1_28 , ) torch.manual_seed(0 ) __a = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=10_00 , hidden_act="gelu" , projection_dim=5_12 , ) __a = CLIPTextModel(_UpperCAmelCase ) __a = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip" ) __a = { "unet": unet, "scheduler": scheduler, "vae": vae, "text_encoder": text_encoder, "tokenizer": tokenizer, } return components def _UpperCAmelCase ( self : Optional[Any] , __SCREAMING_SNAKE_CASE : Tuple , __SCREAMING_SNAKE_CASE : Tuple=0 ): if str(_UpperCAmelCase ).startswith("mps" ): __a = torch.manual_seed(_UpperCAmelCase ) else: __a = torch.Generator(device=_UpperCAmelCase ).manual_seed(_UpperCAmelCase ) __a = { "prompt": "A painting of a squirrel eating a burger", "generator": generator, "num_inference_steps": 2, "guidance_scale": 6.0, "output_type": "pt", } return inputs def _UpperCAmelCase ( self : Optional[Any] ): __a = "cpu" # ensure determinism for the device-dependent torch.Generator __a = self.get_dummy_components() __a = TextToVideoSDPipeline(**_UpperCAmelCase ) __a = sd_pipe.to(_UpperCAmelCase ) sd_pipe.set_progress_bar_config(disable=_UpperCAmelCase ) __a = self.get_dummy_inputs(_UpperCAmelCase ) __a = "np" __a = sd_pipe(**_UpperCAmelCase ).frames __a = frames[0][-3:, -3:, -1] assert frames[0].shape == (64, 64, 3) __a = np.array([1_58.0, 1_60.0, 1_53.0, 1_25.0, 1_00.0, 1_21.0, 1_11.0, 93.0, 1_13.0] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 def _UpperCAmelCase ( self : List[Any] ): self._test_attention_slicing_forward_pass(test_mean_pixel_difference=_UpperCAmelCase , expected_max_diff=3E-3 ) @unittest.skipIf( torch_device != "cuda" or not is_xformers_available() , reason="XFormers attention is only available with CUDA and `xformers` installed" , ) def _UpperCAmelCase ( self : Optional[Any] ): self._test_xformers_attention_forwardGenerator_pass(test_mean_pixel_difference=_UpperCAmelCase , expected_max_diff=1E-2 ) @unittest.skip(reason="Batching needs to be properly figured out first for this pipeline." ) def _UpperCAmelCase ( self : Optional[int] ): pass @unittest.skip(reason="Batching needs to be properly figured out first for this pipeline." ) def _UpperCAmelCase ( self : List[str] ): pass @unittest.skip(reason="`num_images_per_prompt` argument is not supported for this pipeline." ) def _UpperCAmelCase ( self : int ): pass def _UpperCAmelCase ( self : Tuple ): return super().test_progress_bar() @slow @skip_mps class A_ ( unittest.TestCase ): def _UpperCAmelCase ( self : str ): __a = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/text_to_video/video.npy" ) __a = TextToVideoSDPipeline.from_pretrained("damo-vilab/text-to-video-ms-1.7b" ) __a = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config ) __a = pipe.to("cuda" ) __a = "Spiderman is surfing" __a = torch.Generator(device="cpu" ).manual_seed(0 ) __a = pipe(_UpperCAmelCase , generator=_UpperCAmelCase , num_inference_steps=25 , output_type="pt" ).frames __a = video_frames.cpu().numpy() assert np.abs(expected_video - video ).mean() < 5E-2 def _UpperCAmelCase ( self : int ): __a = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/text_to_video/video_2step.npy" ) __a = TextToVideoSDPipeline.from_pretrained("damo-vilab/text-to-video-ms-1.7b" ) __a = pipe.to("cuda" ) __a = "Spiderman is surfing" __a = torch.Generator(device="cpu" ).manual_seed(0 ) __a = pipe(_UpperCAmelCase , generator=_UpperCAmelCase , num_inference_steps=2 , output_type="pt" ).frames __a = video_frames.cpu().numpy() assert np.abs(expected_video - video ).mean() < 5E-2
197
import re from pathlib import Path from unittest import TestCase import pytest @pytest.mark.integration class _a ( UpperCAmelCase__ ): """simple docstring""" def _UpperCAmelCase ( self , _UpperCAmelCase ) -> Dict: with open(_UpperCAmelCase , encoding='utf-8' ) as input_file: UpperCamelCase_ = re.compile(R'(?!.*\b(?:encoding|rb|w|wb|w+|wb+|ab|ab+)\b)(?<=\s)(open)\((.*)\)' ) UpperCamelCase_ = input_file.read() UpperCamelCase_ = regexp.search(_UpperCAmelCase ) return match def _UpperCAmelCase ( self , _UpperCAmelCase ) -> Dict: with open(_UpperCAmelCase , encoding='utf-8' ) as input_file: UpperCamelCase_ = re.compile(R'#[^\r\n]*print\(|\"[^\r\n]*print\(|\"\"\".*?print\(.*?\"\"\"|(print\()' , re.DOTALL ) UpperCamelCase_ = input_file.read() # use `re.finditer` to handle the case where the ignored groups would be matched first by `re.search` UpperCamelCase_ = regexp.finditer(_UpperCAmelCase ) UpperCamelCase_ = [match for match in matches if match is not None and match.group(1 ) is not None] return matches[0] if matches else None def _UpperCAmelCase ( self ) -> List[str]: UpperCamelCase_ = Path('./datasets' ) UpperCamelCase_ = list(dataset_paths.absolute().glob('**/*.py' ) ) for dataset in dataset_files: if self._no_encoding_on_file_open(str(_UpperCAmelCase ) ): raise AssertionError(f"""open(...) must use utf-8 encoding in {dataset}""" ) def _UpperCAmelCase ( self ) -> Optional[int]: UpperCamelCase_ = Path('./datasets' ) UpperCamelCase_ = list(dataset_paths.absolute().glob('**/*.py' ) ) for dataset in dataset_files: if self._no_print_statements(str(_UpperCAmelCase ) ): raise AssertionError(f"""print statement found in {dataset}. Use datasets.logger/logging instead.""" )
23
0
import pickle import numpy as np from matplotlib import pyplot as plt class SCREAMING_SNAKE_CASE_ : '''simple docstring''' def __init__( self : Optional[Any] , __a : Optional[int] , __a : Tuple , __a : Union[str, Any] , __a : str , __a : Union[str, Any] , __a : Tuple=0.2 , __a : List[str]=0.2 ) ->List[Any]: lowerCamelCase_ : str = bp_numa lowerCamelCase_ : Tuple = bp_numa lowerCamelCase_ : Optional[int] = bp_numa lowerCamelCase_ : Optional[Any] = conva_get[:2] lowerCamelCase_ : Dict = conva_get[2] lowerCamelCase_ : Union[str, Any] = size_pa lowerCamelCase_ : Optional[Any] = rate_w lowerCamelCase_ : Any = rate_t lowerCamelCase_ : Optional[Any] = [ np.mat(-1 * np.random.rand(self.conva[0] , self.conva[0] ) + 0.5 ) for i in range(self.conva[1] ) ] lowerCamelCase_ : int = np.mat(-1 * np.random.rand(self.num_bpa , self.num_bpa ) + 0.5 ) lowerCamelCase_ : List[Any] = np.mat(-1 * np.random.rand(self.num_bpa , self.num_bpa ) + 0.5 ) lowerCamelCase_ : str = -2 * np.random.rand(self.conva[1] ) + 1 lowerCamelCase_ : List[str] = -2 * np.random.rand(self.num_bpa ) + 1 lowerCamelCase_ : Union[str, Any] = -2 * np.random.rand(self.num_bpa ) + 1 def _lowerCAmelCase ( self : Optional[Any] , __a : Tuple ) ->int: # save model dict with pickle lowerCamelCase_ : Any = { """num_bp1""": self.num_bpa, """num_bp2""": self.num_bpa, """num_bp3""": self.num_bpa, """conv1""": self.conva, """step_conv1""": self.step_conva, """size_pooling1""": self.size_poolinga, """rate_weight""": self.rate_weight, """rate_thre""": self.rate_thre, """w_conv1""": self.w_conva, """wkj""": self.wkj, """vji""": self.vji, """thre_conv1""": self.thre_conva, """thre_bp2""": self.thre_bpa, """thre_bp3""": self.thre_bpa, } with open(_UpperCAmelCase , """wb""" ) as f: pickle.dump(_UpperCAmelCase , _UpperCAmelCase ) print(F'''Model saved: {save_path}''' ) @classmethod def _lowerCAmelCase ( cls : List[str] , __a : Union[str, Any] ) ->Optional[Any]: # read saved model with open(_UpperCAmelCase , """rb""" ) as f: lowerCamelCase_ : Optional[Any] = pickle.load(_UpperCAmelCase ) # noqa: S301 lowerCamelCase_ : Tuple = model_dic.get("""conv1""" ) conv_get.append(model_dic.get("""step_conv1""" ) ) lowerCamelCase_ : Union[str, Any] = model_dic.get("""size_pooling1""" ) lowerCamelCase_ : Optional[int] = model_dic.get("""num_bp1""" ) lowerCamelCase_ : str = model_dic.get("""num_bp2""" ) lowerCamelCase_ : Optional[Any] = model_dic.get("""num_bp3""" ) lowerCamelCase_ : Any = model_dic.get("""rate_weight""" ) lowerCamelCase_ : str = model_dic.get("""rate_thre""" ) # create model instance lowerCamelCase_ : str = CNN(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) # modify model parameter lowerCamelCase_ : str = model_dic.get("""w_conv1""" ) lowerCamelCase_ : Optional[Any] = model_dic.get("""wkj""" ) lowerCamelCase_ : int = model_dic.get("""vji""" ) lowerCamelCase_ : Any = model_dic.get("""thre_conv1""" ) lowerCamelCase_ : Tuple = model_dic.get("""thre_bp2""" ) lowerCamelCase_ : int = model_dic.get("""thre_bp3""" ) return conv_ins def _lowerCAmelCase ( self : Optional[Any] , __a : List[str] ) ->Tuple: return 1 / (1 + np.exp(-1 * x )) def _lowerCAmelCase ( self : str , __a : Optional[int] ) ->str: return round(_UpperCAmelCase , 3 ) def _lowerCAmelCase ( self : Dict , __a : Optional[Any] , __a : Any , __a : int , __a : List[str] , __a : int ) ->Optional[int]: # convolution process lowerCamelCase_ : Optional[Any] = convs[0] lowerCamelCase_ : List[str] = convs[1] lowerCamelCase_ : Any = np.shape(_UpperCAmelCase )[0] # get the data slice of original image data, data_focus lowerCamelCase_ : Union[str, Any] = [] for i_focus in range(0 , size_data - size_conv + 1 , _UpperCAmelCase ): for j_focus in range(0 , size_data - size_conv + 1 , _UpperCAmelCase ): lowerCamelCase_ : Any = data[ i_focus : i_focus + size_conv, j_focus : j_focus + size_conv ] data_focus.append(_UpperCAmelCase ) # calculate the feature map of every single kernel, and saved as list of matrix lowerCamelCase_ : Any = [] lowerCamelCase_ : Union[str, Any] = int((size_data - size_conv) / conv_step + 1 ) for i_map in range(_UpperCAmelCase ): lowerCamelCase_ : List[str] = [] for i_focus in range(len(_UpperCAmelCase ) ): lowerCamelCase_ : Union[str, Any] = ( np.sum(np.multiply(data_focus[i_focus] , w_convs[i_map] ) ) - thre_convs[i_map] ) featuremap.append(self.sig(_UpperCAmelCase ) ) lowerCamelCase_ : Union[str, Any] = np.asmatrix(_UpperCAmelCase ).reshape( _UpperCAmelCase , _UpperCAmelCase ) data_featuremap.append(_UpperCAmelCase ) # expanding the data slice to One dimenssion lowerCamelCase_ : Union[str, Any] = [] for each_focus in data_focus: focusa_list.extend(self.Expand_Mat(_UpperCAmelCase ) ) lowerCamelCase_ : Dict = np.asarray(_UpperCAmelCase ) return focus_list, data_featuremap def _lowerCAmelCase ( self : int , __a : Optional[int] , __a : Union[str, Any] , __a : List[str]="average_pool" ) ->Tuple: # pooling process lowerCamelCase_ : Optional[int] = len(featuremaps[0] ) lowerCamelCase_ : Union[str, Any] = int(size_map / size_pooling ) lowerCamelCase_ : Any = [] for i_map in range(len(_UpperCAmelCase ) ): lowerCamelCase_ : List[Any] = featuremaps[i_map] lowerCamelCase_ : int = [] for i_focus in range(0 , _UpperCAmelCase , _UpperCAmelCase ): for j_focus in range(0 , _UpperCAmelCase , _UpperCAmelCase ): lowerCamelCase_ : int = feature_map[ i_focus : i_focus + size_pooling, j_focus : j_focus + size_pooling, ] if pooling_type == "average_pool": # average pooling map_pooled.append(np.average(_UpperCAmelCase ) ) elif pooling_type == "max_pooling": # max pooling map_pooled.append(np.max(_UpperCAmelCase ) ) lowerCamelCase_ : List[str] = np.asmatrix(_UpperCAmelCase ).reshape(_UpperCAmelCase , _UpperCAmelCase ) featuremap_pooled.append(_UpperCAmelCase ) return featuremap_pooled def _lowerCAmelCase ( self : Optional[int] , __a : Tuple ) ->Union[str, Any]: # expanding three dimension data to one dimension list lowerCamelCase_ : Optional[int] = [] for i in range(len(_UpperCAmelCase ) ): lowerCamelCase_ : Dict = np.shape(data[i] ) lowerCamelCase_ : Any = data[i].reshape(1 , shapes[0] * shapes[1] ) lowerCamelCase_ : Union[str, Any] = data_listed.getA().tolist()[0] data_expanded.extend(_UpperCAmelCase ) lowerCamelCase_ : List[str] = np.asarray(_UpperCAmelCase ) return data_expanded def _lowerCAmelCase ( self : List[Any] , __a : str ) ->List[str]: # expanding matrix to one dimension list lowerCamelCase_ : List[Any] = np.asarray(_UpperCAmelCase ) lowerCamelCase_ : Dict = np.shape(_UpperCAmelCase ) lowerCamelCase_ : List[Any] = data_mat.reshape(1 , shapes[0] * shapes[1] ) return data_expanded def _lowerCAmelCase ( self : Optional[int] , __a : Optional[Any] , __a : str , __a : Dict , __a : Optional[Any] , __a : Any ) ->Union[str, Any]: lowerCamelCase_ : str = [] lowerCamelCase_ : Tuple = 0 for i_map in range(_UpperCAmelCase ): lowerCamelCase_ : Optional[int] = np.ones((size_map, size_map) ) for i in range(0 , _UpperCAmelCase , _UpperCAmelCase ): for j in range(0 , _UpperCAmelCase , _UpperCAmelCase ): lowerCamelCase_ : int = pd_pool[ i_pool ] lowerCamelCase_ : List[Any] = i_pool + 1 lowerCamelCase_ : Optional[Any] = np.multiply( _UpperCAmelCase , np.multiply(out_map[i_map] , (1 - out_map[i_map]) ) ) pd_all.append(_UpperCAmelCase ) return pd_all def _lowerCAmelCase ( self : Optional[int] , __a : Optional[int] , __a : str , __a : int , __a : Optional[Any] , __a : Any , __a : Tuple=bool ) ->Any: # model traning print("""----------------------Start Training-------------------------""" ) print((""" - - Shape: Train_Data """, np.shape(_UpperCAmelCase )) ) print((""" - - Shape: Teach_Data """, np.shape(_UpperCAmelCase )) ) lowerCamelCase_ : List[str] = 0 lowerCamelCase_ : Union[str, Any] = [] lowerCamelCase_ : Any = 10_000 while rp < n_repeat and mse >= error_accuracy: lowerCamelCase_ : List[str] = 0 print(F'''-------------Learning Time {rp}--------------''' ) for p in range(len(_UpperCAmelCase ) ): # print('------------Learning Image: %d--------------'%p) lowerCamelCase_ : str = np.asmatrix(datas_train[p] ) lowerCamelCase_ : Tuple = np.asarray(datas_teach[p] ) lowerCamelCase_, lowerCamelCase_ : int = self.convolute( _UpperCAmelCase , self.conva , self.w_conva , self.thre_conva , conv_step=self.step_conva , ) lowerCamelCase_ : str = self.pooling(_UpperCAmelCase , self.size_poolinga ) lowerCamelCase_ : int = np.shape(_UpperCAmelCase ) lowerCamelCase_ : List[Any] = self._expand(_UpperCAmelCase ) lowerCamelCase_ : Any = data_bp_input lowerCamelCase_ : Union[str, Any] = np.dot(_UpperCAmelCase , self.vji.T ) - self.thre_bpa lowerCamelCase_ : Union[str, Any] = self.sig(_UpperCAmelCase ) lowerCamelCase_ : Union[str, Any] = np.dot(_UpperCAmelCase , self.wkj.T ) - self.thre_bpa lowerCamelCase_ : str = self.sig(_UpperCAmelCase ) # --------------Model Leaning ------------------------ # calculate error and gradient--------------- lowerCamelCase_ : Optional[Any] = np.multiply( (data_teach - bp_outa) , np.multiply(_UpperCAmelCase , (1 - bp_outa) ) ) lowerCamelCase_ : str = np.multiply( np.dot(_UpperCAmelCase , self.wkj ) , np.multiply(_UpperCAmelCase , (1 - bp_outa) ) ) lowerCamelCase_ : Any = np.dot(_UpperCAmelCase , self.vji ) lowerCamelCase_ : Any = pd_i_all / (self.size_poolinga * self.size_poolinga) lowerCamelCase_ : Dict = pd_conva_pooled.T.getA().tolist() lowerCamelCase_ : int = self._calculate_gradient_from_pool( _UpperCAmelCase , _UpperCAmelCase , shape_featuremapa[0] , shape_featuremapa[1] , self.size_poolinga , ) # weight and threshold learning process--------- # convolution layer for k_conv in range(self.conva[1] ): lowerCamelCase_ : Tuple = self._expand_mat(pd_conva_all[k_conv] ) lowerCamelCase_ : Dict = self.rate_weight * np.dot(_UpperCAmelCase , _UpperCAmelCase ) lowerCamelCase_ : Optional[int] = self.w_conva[k_conv] + delta_w.reshape( (self.conva[0], self.conva[0]) ) lowerCamelCase_ : List[Any] = ( self.thre_conva[k_conv] - np.sum(pd_conva_all[k_conv] ) * self.rate_thre ) # all connected layer lowerCamelCase_ : Union[str, Any] = self.wkj + pd_k_all.T * bp_outa * self.rate_weight lowerCamelCase_ : Any = self.vji + pd_j_all.T * bp_outa * self.rate_weight lowerCamelCase_ : Dict = self.thre_bpa - pd_k_all * self.rate_thre lowerCamelCase_ : Any = self.thre_bpa - pd_j_all * self.rate_thre # calculate the sum error of all single image lowerCamelCase_ : Union[str, Any] = np.sum(abs(data_teach - bp_outa ) ) error_count += errors # print(' ----Teach ',data_teach) # print(' ----BP_output ',bp_out3) lowerCamelCase_ : Optional[int] = rp + 1 lowerCamelCase_ : List[Any] = error_count / patterns all_mse.append(_UpperCAmelCase ) def draw_error(): lowerCamelCase_ : Union[str, Any] = [error_accuracy for i in range(int(n_repeat * 1.2 ) )] plt.plot(_UpperCAmelCase , """+-""" ) plt.plot(_UpperCAmelCase , """r--""" ) plt.xlabel("""Learning Times""" ) plt.ylabel("""All_mse""" ) plt.grid(_UpperCAmelCase , alpha=0.5 ) plt.show() print("""------------------Training Complished---------------------""" ) print((""" - - Training epoch: """, rp, F''' - - Mse: {mse:.6f}''') ) if draw_e: draw_error() return mse def _lowerCAmelCase ( self : Any , __a : Any ) ->Optional[Any]: # model predict lowerCamelCase_ : int = [] print("""-------------------Start Testing-------------------------""" ) print((""" - - Shape: Test_Data """, np.shape(_UpperCAmelCase )) ) for p in range(len(_UpperCAmelCase ) ): lowerCamelCase_ : Any = np.asmatrix(datas_test[p] ) lowerCamelCase_, lowerCamelCase_ : Optional[Any] = self.convolute( _UpperCAmelCase , self.conva , self.w_conva , self.thre_conva , conv_step=self.step_conva , ) lowerCamelCase_ : Union[str, Any] = self.pooling(_UpperCAmelCase , self.size_poolinga ) lowerCamelCase_ : Optional[Any] = self._expand(_UpperCAmelCase ) lowerCamelCase_ : Union[str, Any] = data_bp_input lowerCamelCase_ : Tuple = bp_outa * self.vji.T - self.thre_bpa lowerCamelCase_ : Tuple = self.sig(_UpperCAmelCase ) lowerCamelCase_ : Dict = bp_outa * self.wkj.T - self.thre_bpa lowerCamelCase_ : Union[str, Any] = self.sig(_UpperCAmelCase ) produce_out.extend(bp_outa.getA().tolist() ) lowerCamelCase_ : str = [list(map(self.do_round , _UpperCAmelCase ) ) for each in produce_out] return np.asarray(_UpperCAmelCase ) def _lowerCAmelCase ( self : Optional[Any] , __a : Optional[int] ) ->Union[str, Any]: # return the data of image after convoluting process so we can check it out lowerCamelCase_ : Any = np.asmatrix(_UpperCAmelCase ) lowerCamelCase_, lowerCamelCase_ : List[Any] = self.convolute( _UpperCAmelCase , self.conva , self.w_conva , self.thre_conva , conv_step=self.step_conva , ) lowerCamelCase_ : int = self.pooling(_UpperCAmelCase , self.size_poolinga ) return data_conveda, data_pooleda if __name__ == "__main__": pass
278
import argparse import random import joblib import numpy as np import torch from igf.igf import ( SecondaryLearner, collect_objective_set, compute_perplexity, generate_datasets, load_gpta, recopy_gpta, set_seed, train_secondary_learner, ) from torch.utils.data import DataLoader, RandomSampler from transformers import GPTaLMHeadModel def _snake_case (__lowercase=32 , __lowercase=10 , __lowercase=100 , __lowercase=1026 , __lowercase=True , __lowercase="data/tokenized_stories_train_wikitext103.jbl" , __lowercase="igf_context_pairs.jbl" , ): set_seed(3) # generate train_data and objective_set UpperCamelCase_ , UpperCamelCase_ = generate_datasets( __lowercase , __lowercase , number=__lowercase , min_len=1026 , trim=__lowercase) # keeps model same across runs set_seed(4) # model, lm_optimizer, lm_scheduler = recopy_gpt2(model, device, max_steps) # store original model weights # can we train on GPU? UpperCamelCase_ = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu') # load pretrained model UpperCamelCase_ = load_gpta('gpt2').to(__lowercase) print('computing perplexity on objective set') UpperCamelCase_ = compute_perplexity(__lowercase , __lowercase , __lowercase).item() print('perplexity on objective set:' , __lowercase) # collect igf pairs and save to file demo.jbl collect_objective_set(__lowercase , __lowercase , __lowercase , __lowercase , __lowercase , __lowercase , __lowercase , __lowercase) # clean up, delete model and data we don't need anymore del model, train_data, objective_set torch.cuda.empty_cache() def _snake_case (__lowercase , __lowercase=15 , __lowercase=128 , __lowercase=100 , __lowercase="igf_model.pt" , ): set_seed(42) # Load pre-trained model UpperCamelCase_ = GPTaLMHeadModel.from_pretrained('gpt2') # Initialize secondary learner to use embedding weights of model UpperCamelCase_ = SecondaryLearner(__lowercase) # Train secondary learner UpperCamelCase_ = train_secondary_learner( __lowercase , __lowercase , max_epochs=__lowercase , batch_size=__lowercase , eval_freq=100 , igf_model_path=__lowercase , ) del model, secondary_learner_train_data torch.cuda.empty_cache() return secondary_learner def _snake_case (__lowercase , __lowercase , __lowercase , __lowercase=32 , __lowercase=1000 , __lowercase=16 , __lowercase=1.0 , __lowercase=recopy_gpta , __lowercase=None , __lowercase=10 , __lowercase="gpt2_finetuned.pt" , ): UpperCamelCase_ = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu') UpperCamelCase_ = RandomSampler(__lowercase) UpperCamelCase_ = DataLoader(__lowercase , sampler=__lowercase) UpperCamelCase_ = max_steps // (len(__lowercase)) + 1 UpperCamelCase_ = 0 UpperCamelCase_ = torch.zeros((1, context_len) , dtype=torch.long , device=__lowercase) UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ = recopy_model(__lowercase , __lowercase , __lowercase) model.train() if secondary_learner is not None: secondary_learner.to(__lowercase) secondary_learner.eval() UpperCamelCase_ = [] UpperCamelCase_ = 0 UpperCamelCase_ = [] UpperCamelCase_ = [] # Compute the performance of the transformer model at the beginning UpperCamelCase_ = compute_perplexity(__lowercase , __lowercase , __lowercase) test_perps.append(__lowercase) print('Test perplexity, step' , __lowercase , ':' , __lowercase) for epoch in range(int(__lowercase)): for step, example in enumerate(__lowercase): torch.cuda.empty_cache() UpperCamelCase_ = random.randint(0 , example.size(2) - context_len - 1) UpperCamelCase_ = example[0, 0, start : start + context_len] lm_optimizer.zero_grad() UpperCamelCase_ = model(__lowercase , labels=__lowercase) UpperCamelCase_ = True if secondary_learner is not None: UpperCamelCase_ = secondary_learner.forward( torch.tensor(__lowercase , dtype=torch.long , device=__lowercase).unsqueeze(0))[0].item() observed_qs.append(float(__lowercase)) # Here we implement the simple non-constant threshold for the predicted IG(X) value # We will decay the selectivity of our secondary learner filter from # 1 standard deviation above average to 1 below average after 10 batches. if global_step == 10: UpperCamelCase_ = -1 if predicted_q < threshold: UpperCamelCase_ = False # If we passed the filter, add the context to the batch! if do_backprop: contexts.append(np.array(context.cpu())) UpperCamelCase_ = outputs[0] lm_loss.backward() examples += 1 del outputs # Once the batch is filled with enough contexts, backprop on the batch. if examples == batch_size: torch.cuda.empty_cache() UpperCamelCase_ = 0 # Do LM backprop torch.nn.utils.clip_grad_norm_(model.parameters() , 3.0) lm_optimizer.step() lm_scheduler.step() # Update learning rate schedule global_step += 1 # Compute the performance of the transformer model at this batch if global_step % eval_interval == 0: UpperCamelCase_ = compute_perplexity(__lowercase , __lowercase , __lowercase) test_perps.append(__lowercase) print('Test perplexity, step' , __lowercase , ':' , __lowercase) # Break out of the loop after 60 batches if max_steps > 0 and global_step > 60: break if max_steps > 0 and global_step > 60: break # save finetuned transformer model torch.save(model.state_dict() , __lowercase) torch.cuda.empty_cache() # Do some cleaning up so we can reinitialize for the next run of this function del lm_optimizer del lm_scheduler return model def _snake_case (): UpperCamelCase_ = argparse.ArgumentParser(description='Fine-tune a transformer model with IGF on a language modeling task') # Required parameters parser.add_argument( '--data_dir' , default=__lowercase , type=__lowercase , required=__lowercase , help='The input data dir. Should contain data files for WikiText.' , ) parser.add_argument( '--model_name_or_path' , default=__lowercase , type=__lowercase , required=__lowercase , help='Path to pretrained model or model identifier from huggingface.co/models' , ) parser.add_argument( '--data_file' , type=__lowercase , default=__lowercase , help=( 'A jbl file containing tokenized data which can be split as objective dataset, ' 'train_dataset and test_dataset.' ) , ) parser.add_argument( '--igf_data_file' , type=__lowercase , default=__lowercase , help='A jbl file containing the context and information gain pairs to train secondary learner.' , ) parser.add_argument( '--output_dir' , default=__lowercase , type=__lowercase , required=__lowercase , help='The output directory where the final fine-tuned model is stored.' , ) parser.add_argument( '--tokenizer_name' , default=__lowercase , type=__lowercase , help='Pretrained tokenizer name or path if not the same as model_name' , ) parser.add_argument('--seed' , type=__lowercase , default=__lowercase , help='A seed for reproducible training.') parser.add_argument( '--context_len' , default=32 , type=__lowercase , help=( 'The maximum total input sequence length after tokenization. Sequences longer ' 'than this will be truncated, sequences shorter will be padded.' ) , ) parser.add_argument( '--size_objective_set' , default=100 , type=__lowercase , help='number of articles that are long enough to be used as our objective set' , ) parser.add_argument( '--eval_freq' , default=100 , type=__lowercase , help='secondary model evaluation is triggered at eval_freq') parser.add_argument('--max_steps' , default=1000 , type=__lowercase , help='To calculate training epochs') parser.add_argument( '--secondary_learner_batch_size' , default=128 , type=__lowercase , help='batch size of training data for secondary learner' , ) parser.add_argument( '--batch_size' , default=16 , type=__lowercase , help='batch size of training data of language model(gpt2) ') parser.add_argument( '--eval_interval' , default=10 , type=__lowercase , help=( 'decay the selectivity of our secondary learner filter from' '1 standard deviation above average to 1 below average after 10 batches' ) , ) parser.add_argument( '--number' , default=100 , type=__lowercase , help='The number of examples split to be used as objective_set/test_data') parser.add_argument( '--min_len' , default=1026 , type=__lowercase , help='The minimum length of the article to be used as objective set') parser.add_argument( '--secondary_learner_max_epochs' , default=15 , type=__lowercase , help='number of epochs to train secondary learner') parser.add_argument('--trim' , default=__lowercase , type=__lowercase , help='truncate the example if it exceeds context length') parser.add_argument( '--threshold' , default=1.0 , type=__lowercase , help=( 'The threshold value used by secondary learner to filter the train_data and allow only' ' informative data as input to the model' ) , ) parser.add_argument('--finetuned_model_name' , default='gpt2_finetuned.pt' , type=__lowercase , help='finetuned_model_name') parser.add_argument( '--recopy_model' , default=__lowercase , type=__lowercase , help='Reset the model to the original pretrained GPT-2 weights after each iteration' , ) # function calls # Collecting *n* pairs of context and information gain(X, IG(X)) for training the secondary learner generate_n_pairs( context_len=32 , max_steps=10 , size_objective_set=100 , min_len=1026 , trim=__lowercase , data_file='data/tokenized_stories_train_wikitext103.jbl' , igf_data_file='igf_context_pairs.jbl' , ) # Load train data for secondary learner UpperCamelCase_ = joblib.load('data/IGF_values.jbl') # Train secondary learner UpperCamelCase_ = training_secondary_learner( __lowercase , secondary_learner_max_epochs=15 , secondary_learner_batch_size=128 , eval_freq=100 , igf_model_path='igf_model.pt' , ) # load pretrained gpt2 model UpperCamelCase_ = GPTaLMHeadModel.from_pretrained('gpt2') set_seed(42) # Generate train and test data to train and evaluate gpt2 model UpperCamelCase_ , UpperCamelCase_ = generate_datasets( context_len=32 , file='data/tokenized_stories_train_wikitext103.jbl' , number=100 , min_len=1026 , trim=__lowercase) # fine-tuning of the gpt2 model using igf (Information Gain Filtration) finetune( __lowercase , __lowercase , __lowercase , context_len=32 , max_steps=1000 , batch_size=16 , threshold=1.0 , recopy_model=__lowercase , secondary_learner=__lowercase , eval_interval=10 , finetuned_model_name='gpt2_finetuned.pt' , ) if __name__ == "__main__": main()
23
0
'''simple docstring''' import os import torch from ..logging import get_logger from .constants import FSDP_PYTORCH_VERSION, MODEL_NAME, OPTIMIZER_NAME from .versions import is_torch_version if is_torch_version(""">=""", FSDP_PYTORCH_VERSION): import torch.distributed.checkpoint as dist_cp from torch.distributed.checkpoint.default_planner import DefaultLoadPlanner, DefaultSavePlanner from torch.distributed.checkpoint.optimizer import load_sharded_optimizer_state_dict from torch.distributed.fsdp.fully_sharded_data_parallel import FullyShardedDataParallel as FSDP from torch.distributed.fsdp.fully_sharded_data_parallel import StateDictType lowerCAmelCase_ : List[str] = get_logger(__name__) def __A ( UpperCAmelCase ,UpperCAmelCase ,UpperCAmelCase ,UpperCAmelCase ,UpperCAmelCase=0 ) -> Union[str, Any]: '''simple docstring''' os.makedirs(__lowercase ,exist_ok=__lowercase ) with FSDP.state_dict_type( __lowercase ,fsdp_plugin.state_dict_type ,fsdp_plugin.state_dict_config ,fsdp_plugin.optim_state_dict_config ): _UpperCamelCase : Tuple = model.state_dict() if fsdp_plugin.state_dict_type == StateDictType.FULL_STATE_DICT: _UpperCamelCase : Optional[int] = f'''{MODEL_NAME}.bin''' if model_index == 0 else f'''{MODEL_NAME}_{model_index}.bin''' _UpperCamelCase : Union[str, Any] = os.path.join(__lowercase ,__lowercase ) if accelerator.process_index == 0: logger.info(f'''Saving model to {output_model_file}''' ) torch.save(__lowercase ,__lowercase ) logger.info(f'''Model saved to {output_model_file}''' ) elif fsdp_plugin.state_dict_type == StateDictType.LOCAL_STATE_DICT: _UpperCamelCase : int = ( f'''{MODEL_NAME}_rank{accelerator.process_index}.bin''' if model_index == 0 else f'''{MODEL_NAME}_{model_index}_rank{accelerator.process_index}.bin''' ) _UpperCamelCase : Dict = os.path.join(__lowercase ,__lowercase ) logger.info(f'''Saving model to {output_model_file}''' ) torch.save(__lowercase ,__lowercase ) logger.info(f'''Model saved to {output_model_file}''' ) elif fsdp_plugin.state_dict_type == StateDictType.SHARDED_STATE_DICT: _UpperCamelCase : Optional[int] = os.path.join(__lowercase ,f'''{MODEL_NAME}_{model_index}''' ) os.makedirs(__lowercase ,exist_ok=__lowercase ) logger.info(f'''Saving model to {ckpt_dir}''' ) _UpperCamelCase : Tuple = {"model": state_dict} dist_cp.save_state_dict( state_dict=__lowercase ,storage_writer=dist_cp.FileSystemWriter(__lowercase ) ,planner=DefaultSavePlanner() ,) logger.info(f'''Model saved to {ckpt_dir}''' ) def __A ( UpperCAmelCase ,UpperCAmelCase ,UpperCAmelCase ,UpperCAmelCase ,UpperCAmelCase=0 ) -> Any: '''simple docstring''' accelerator.wait_for_everyone() with FSDP.state_dict_type( __lowercase ,fsdp_plugin.state_dict_type ,fsdp_plugin.state_dict_config ,fsdp_plugin.optim_state_dict_config ): if fsdp_plugin.state_dict_type == StateDictType.FULL_STATE_DICT: if type(__lowercase ) != FSDP and accelerator.process_index != 0: if not fsdp_plugin.sync_module_states: raise ValueError( "Set the `sync_module_states` flag to `True` so that model states are synced across processes when " "initializing FSDP object" ) return _UpperCamelCase : Any = f'''{MODEL_NAME}.bin''' if model_index == 0 else f'''{MODEL_NAME}_{model_index}.bin''' _UpperCamelCase : Any = os.path.join(__lowercase ,__lowercase ) logger.info(f'''Loading model from {input_model_file}''' ) _UpperCamelCase : Optional[int] = torch.load(__lowercase ) logger.info(f'''Model loaded from {input_model_file}''' ) elif fsdp_plugin.state_dict_type == StateDictType.LOCAL_STATE_DICT: _UpperCamelCase : List[Any] = ( f'''{MODEL_NAME}_rank{accelerator.process_index}.bin''' if model_index == 0 else f'''{MODEL_NAME}_{model_index}_rank{accelerator.process_index}.bin''' ) _UpperCamelCase : Union[str, Any] = os.path.join(__lowercase ,__lowercase ) logger.info(f'''Loading model from {input_model_file}''' ) _UpperCamelCase : Optional[Any] = torch.load(__lowercase ) logger.info(f'''Model loaded from {input_model_file}''' ) elif fsdp_plugin.state_dict_type == StateDictType.SHARDED_STATE_DICT: _UpperCamelCase : Tuple = ( os.path.join(__lowercase ,f'''{MODEL_NAME}_{model_index}''' ) if f'''{MODEL_NAME}''' not in input_dir else input_dir ) logger.info(f'''Loading model from {ckpt_dir}''' ) _UpperCamelCase : List[str] = {"model": model.state_dict()} dist_cp.load_state_dict( state_dict=__lowercase ,storage_reader=dist_cp.FileSystemReader(__lowercase ) ,planner=DefaultLoadPlanner() ,) _UpperCamelCase : int = state_dict["model"] logger.info(f'''Model loaded from {ckpt_dir}''' ) model.load_state_dict(__lowercase ) def __A ( UpperCAmelCase ,UpperCAmelCase ,UpperCAmelCase ,UpperCAmelCase ,UpperCAmelCase ,UpperCAmelCase=0 ) -> Any: '''simple docstring''' os.makedirs(__lowercase ,exist_ok=__lowercase ) with FSDP.state_dict_type( __lowercase ,fsdp_plugin.state_dict_type ,fsdp_plugin.state_dict_config ,fsdp_plugin.optim_state_dict_config ): _UpperCamelCase : List[Any] = FSDP.optim_state_dict(__lowercase ,__lowercase ) if fsdp_plugin.state_dict_type == StateDictType.FULL_STATE_DICT: if accelerator.process_index == 0: _UpperCamelCase : Any = ( f'''{OPTIMIZER_NAME}.bin''' if optimizer_index == 0 else f'''{OPTIMIZER_NAME}_{optimizer_index}.bin''' ) _UpperCamelCase : Any = os.path.join(__lowercase ,__lowercase ) logger.info(f'''Saving Optimizer state to {output_optimizer_file}''' ) torch.save(__lowercase ,__lowercase ) logger.info(f'''Optimizer state saved in {output_optimizer_file}''' ) else: _UpperCamelCase : List[Any] = os.path.join(__lowercase ,f'''{OPTIMIZER_NAME}_{optimizer_index}''' ) os.makedirs(__lowercase ,exist_ok=__lowercase ) logger.info(f'''Saving Optimizer state to {ckpt_dir}''' ) dist_cp.save_state_dict( state_dict={"optimizer": optim_state} ,storage_writer=dist_cp.FileSystemWriter(__lowercase ) ,planner=DefaultSavePlanner() ,) logger.info(f'''Optimizer state saved in {ckpt_dir}''' ) def __A ( UpperCAmelCase ,UpperCAmelCase ,UpperCAmelCase ,UpperCAmelCase ,UpperCAmelCase ,UpperCAmelCase=0 ) -> Optional[Any]: '''simple docstring''' accelerator.wait_for_everyone() with FSDP.state_dict_type( __lowercase ,fsdp_plugin.state_dict_type ,fsdp_plugin.state_dict_config ,fsdp_plugin.optim_state_dict_config ): if fsdp_plugin.state_dict_type == StateDictType.FULL_STATE_DICT: _UpperCamelCase : Tuple = None # below check should work but currently it isn't working (mostly opytorch issue), # in the meantime disabling it at the cost of excess memory usage # if accelerator.process_index == 0 or not fsdp_plugin.optim_state_dict_config.rank0_only: _UpperCamelCase : Optional[Any] = ( f'''{OPTIMIZER_NAME}.bin''' if optimizer_index == 0 else f'''{OPTIMIZER_NAME}_{optimizer_index}.bin''' ) _UpperCamelCase : Optional[Any] = os.path.join(__lowercase ,__lowercase ) logger.info(f'''Loading Optimizer state from {input_optimizer_file}''' ) _UpperCamelCase : int = torch.load(__lowercase ) logger.info(f'''Optimizer state loaded from {input_optimizer_file}''' ) else: _UpperCamelCase : Tuple = ( os.path.join(__lowercase ,f'''{OPTIMIZER_NAME}_{optimizer_index}''' ) if f'''{OPTIMIZER_NAME}''' not in input_dir else input_dir ) logger.info(f'''Loading Optimizer from {ckpt_dir}''' ) _UpperCamelCase : List[Any] = load_sharded_optimizer_state_dict( model_state_dict=model.state_dict() ,optimizer_key="optimizer" ,storage_reader=dist_cp.FileSystemReader(__lowercase ) ,) _UpperCamelCase : Optional[Any] = optim_state["optimizer"] logger.info(f'''Optimizer loaded from {ckpt_dir}''' ) _UpperCamelCase : Union[str, Any] = FSDP.optim_state_dict_to_load(__lowercase ,__lowercase ,__lowercase ) optimizer.load_state_dict(__lowercase )
435
from __future__ import annotations import unittest from transformers import AutoTokenizer, MBartConfig, is_tf_available from transformers.testing_utils import require_sentencepiece, require_tf, require_tokenizers, slow from transformers.utils import cached_property from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFAutoModelForSeqaSeqLM, TFMBartForConditionalGeneration, TFMBartModel @require_tf class _a : """simple docstring""" A_ = MBartConfig A_ = {} A_ = """gelu""" def __init__( self , _UpperCAmelCase , _UpperCAmelCase=13 , _UpperCAmelCase=7 , _UpperCAmelCase=True , _UpperCAmelCase=False , _UpperCAmelCase=99 , _UpperCAmelCase=32 , _UpperCAmelCase=2 , _UpperCAmelCase=4 , _UpperCAmelCase=37 , _UpperCAmelCase=0.1 , _UpperCAmelCase=0.1 , _UpperCAmelCase=20 , _UpperCAmelCase=2 , _UpperCAmelCase=1 , _UpperCAmelCase=0 , ) -> Union[str, Any]: UpperCamelCase_ = parent UpperCamelCase_ = batch_size UpperCamelCase_ = seq_length UpperCamelCase_ = is_training UpperCamelCase_ = use_labels UpperCamelCase_ = vocab_size UpperCamelCase_ = hidden_size UpperCamelCase_ = num_hidden_layers UpperCamelCase_ = num_attention_heads UpperCamelCase_ = intermediate_size UpperCamelCase_ = hidden_dropout_prob UpperCamelCase_ = attention_probs_dropout_prob UpperCamelCase_ = max_position_embeddings UpperCamelCase_ = eos_token_id UpperCamelCase_ = pad_token_id UpperCamelCase_ = bos_token_id def _UpperCAmelCase ( self ) -> List[Any]: UpperCamelCase_ = ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size ) UpperCamelCase_ = tf.expand_dims(tf.constant([self.eos_token_id] * self.batch_size ) , 1 ) UpperCamelCase_ = tf.concat([input_ids, eos_tensor] , axis=1 ) UpperCamelCase_ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) UpperCamelCase_ = self.config_cls( vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_ids=[2] , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.pad_token_id , **self.config_updates , ) UpperCamelCase_ = prepare_mbart_inputs_dict(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) return config, inputs_dict def _UpperCAmelCase ( self , _UpperCAmelCase , _UpperCAmelCase ) -> List[str]: UpperCamelCase_ = TFMBartModel(config=_UpperCAmelCase ).get_decoder() UpperCamelCase_ = inputs_dict['input_ids'] UpperCamelCase_ = input_ids[:1, :] UpperCamelCase_ = inputs_dict['attention_mask'][:1, :] UpperCamelCase_ = inputs_dict['head_mask'] UpperCamelCase_ = 1 # first forward pass UpperCamelCase_ = model(_UpperCAmelCase , attention_mask=_UpperCAmelCase , head_mask=_UpperCAmelCase , use_cache=_UpperCAmelCase ) UpperCamelCase_ , UpperCamelCase_ = outputs.to_tuple() UpperCamelCase_ = past_key_values[1] def _snake_case (__lowercase , __lowercase , __lowercase , __lowercase=None , __lowercase=None , __lowercase=None , __lowercase=None , __lowercase=None , ): if attention_mask is None: UpperCamelCase_ = tf.cast(tf.math.not_equal(__lowercase , config.pad_token_id) , tf.inta) if decoder_attention_mask is None: UpperCamelCase_ = tf.concat( [ tf.ones(decoder_input_ids[:, :1].shape , dtype=tf.inta), tf.cast(tf.math.not_equal(decoder_input_ids[:, 1:] , config.pad_token_id) , tf.inta), ] , axis=-1 , ) if head_mask is None: UpperCamelCase_ = tf.ones((config.encoder_layers, config.encoder_attention_heads)) if decoder_head_mask is None: UpperCamelCase_ = tf.ones((config.decoder_layers, config.decoder_attention_heads)) if cross_attn_head_mask is None: UpperCamelCase_ = tf.ones((config.decoder_layers, config.decoder_attention_heads)) return { "input_ids": input_ids, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "decoder_attention_mask": decoder_attention_mask, "head_mask": head_mask, "decoder_head_mask": decoder_head_mask, "cross_attn_head_mask": cross_attn_head_mask, } @require_tf class _a ( UpperCAmelCase__ , UpperCAmelCase__ , unittest.TestCase ): """simple docstring""" A_ = (TFMBartForConditionalGeneration, TFMBartModel) if is_tf_available() else () A_ = (TFMBartForConditionalGeneration,) if is_tf_available() else () A_ = ( { """conversational""": TFMBartForConditionalGeneration, """feature-extraction""": TFMBartModel, """summarization""": TFMBartForConditionalGeneration, """text2text-generation""": TFMBartForConditionalGeneration, """translation""": TFMBartForConditionalGeneration, } if is_tf_available() else {} ) A_ = True A_ = False A_ = False def _UpperCAmelCase ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) -> Tuple: if pipeline_test_casse_name != "FeatureExtractionPipelineTests": # Exception encountered when calling layer '...' return True return False def _UpperCAmelCase ( self ) -> Optional[int]: UpperCamelCase_ = TFMBartModelTester(self ) UpperCamelCase_ = ConfigTester(self , config_class=_UpperCAmelCase ) def _UpperCAmelCase ( self ) -> Optional[int]: self.config_tester.run_common_tests() def _UpperCAmelCase ( self ) -> List[Any]: UpperCamelCase_ = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.check_decoder_model_past_large_inputs(*_UpperCAmelCase ) @require_sentencepiece @require_tokenizers @require_tf class _a ( unittest.TestCase ): """simple docstring""" A_ = [ """ UN Chief Says There Is No Military Solution in Syria""", ] A_ = [ """Şeful ONU declară că nu există o soluţie militară în Siria""", ] A_ = """facebook/mbart-large-en-ro""" @cached_property def _UpperCAmelCase ( self ) -> Any: return AutoTokenizer.from_pretrained(self.model_name ) @cached_property def _UpperCAmelCase ( self ) -> List[str]: UpperCamelCase_ = TFAutoModelForSeqaSeqLM.from_pretrained(self.model_name ) return model def _UpperCAmelCase ( self , **_UpperCAmelCase ) -> int: UpperCamelCase_ = self.translate_src_text(**_UpperCAmelCase ) self.assertListEqual(self.expected_text , _UpperCAmelCase ) def _UpperCAmelCase ( self , **_UpperCAmelCase ) -> List[str]: UpperCamelCase_ = self.tokenizer(self.src_text , **_UpperCAmelCase , return_tensors='tf' ) UpperCamelCase_ = self.model.generate( model_inputs.input_ids , attention_mask=model_inputs.attention_mask , num_beams=2 ) UpperCamelCase_ = self.tokenizer.batch_decode(_UpperCAmelCase , skip_special_tokens=_UpperCAmelCase ) return generated_words @slow def _UpperCAmelCase ( self ) -> List[Any]: self._assert_generated_batch_equal_expected()
23
0
'''simple docstring''' import os import sys import tempfile import torch from .state import AcceleratorState from .utils import PrecisionType, PrepareForLaunch, is_mps_available, patch_environment def A_( A : Any , A : Optional[int]=() , A : int=None , A : Union[str, Any]="no" , A : Optional[Any]="29500"): UpperCamelCase = False UpperCamelCase = False if any(key.startswith('KAGGLE') for key in os.environ.keys()): UpperCamelCase = True elif "IPython" in sys.modules: UpperCamelCase = 'google.colab' in str(sys.modules['IPython'].get_ipython()) try: UpperCamelCase = PrecisionType(mixed_precision.lower()) except ValueError: raise ValueError( f'''Unknown mixed_precision mode: {args.mixed_precision.lower()}. Choose between {PrecisionType.list()}.''') if (in_colab or in_kaggle) and (os.environ.get('TPU_NAME' , __lowercase) is not None): # TPU launch import torch_xla.distributed.xla_multiprocessing as xmp if len(AcceleratorState._shared_state) > 0: raise ValueError( 'To train on TPU in Colab or Kaggle Kernel, the `Accelerator` should only be initialized inside ' 'your training function. Restart your notebook and make sure no cells initializes an ' '`Accelerator`.') if num_processes is None: UpperCamelCase = 8 UpperCamelCase = PrepareForLaunch(__lowercase , distributed_type='TPU') print(f'''Launching a training on {num_processes} TPU cores.''') xmp.spawn(__lowercase , args=__lowercase , nprocs=__lowercase , start_method='fork') elif in_colab: # No need for a distributed launch otherwise as it's either CPU or one GPU. if torch.cuda.is_available(): print('Launching training on one GPU.') else: print('Launching training on one CPU.') function(*__lowercase) else: if num_processes is None: raise ValueError( 'You have to specify the number of GPUs you would like to use, add `num_processes=...` to your call.') if num_processes > 1: # Multi-GPU launch from torch.multiprocessing import start_processes from torch.multiprocessing.spawn import ProcessRaisedException if len(AcceleratorState._shared_state) > 0: raise ValueError( 'To launch a multi-GPU training from your notebook, the `Accelerator` should only be initialized ' 'inside your training function. Restart your notebook and make sure no cells initializes an ' '`Accelerator`.') if torch.cuda.is_initialized(): raise ValueError( 'To launch a multi-GPU training from your notebook, you need to avoid running any instruction ' 'using `torch.cuda` in any cell. Restart your notebook and make sure no cells use any CUDA ' 'function.') # torch.distributed will expect a few environment variable to be here. We set the ones common to each # process here (the other ones will be set be the launcher). with patch_environment( world_size=__lowercase , master_addr='127.0.01' , master_port=__lowercase , mixed_precision=__lowercase): UpperCamelCase = PrepareForLaunch(__lowercase , distributed_type='MULTI_GPU') print(f'''Launching training on {num_processes} GPUs.''') try: start_processes(__lowercase , args=__lowercase , nprocs=__lowercase , start_method='fork') except ProcessRaisedException as e: if "Cannot re-initialize CUDA in forked subprocess" in e.args[0]: raise RuntimeError( 'CUDA has been initialized before the `notebook_launcher` could create a forked subprocess. ' 'This likely stems from an outside import causing issues once the `notebook_launcher()` is called. ' 'Please review your imports and test them when running the `notebook_launcher()` to identify ' 'which one is problematic.') from e else: # No need for a distributed launch otherwise as it's either CPU, GPU or MPS. if is_mps_available(): UpperCamelCase = '1' print('Launching training on MPS.') elif torch.cuda.is_available(): print('Launching training on one GPU.') else: print('Launching training on CPU.') function(*__lowercase) def A_( A : int , A : Union[str, Any]=() , A : List[str]=2): from torch.multiprocessing import start_processes with tempfile.NamedTemporaryFile() as tmp_file: # torch.distributed will expect a few environment variable to be here. We set the ones common to each # process here (the other ones will be set be the launcher). with patch_environment( world_size=__lowercase , master_addr='127.0.01' , master_port='29500' , accelerate_mixed_precision='no' , accelerate_debug_rdv_file=tmp_file.name , accelerate_use_cpu='yes' , ): UpperCamelCase = PrepareForLaunch(__lowercase , debug=__lowercase) start_processes(__lowercase , args=__lowercase , nprocs=__lowercase , start_method='fork')
3
def _snake_case (__lowercase): UpperCamelCase_ = 1 for i in range(1 , num + 1): fact *= i return fact def _snake_case (__lowercase): UpperCamelCase_ = 0 while number > 0: UpperCamelCase_ = number % 10 sum_of_digits += last_digit UpperCamelCase_ = number // 10 # Removing the last_digit from the given number return sum_of_digits def _snake_case (__lowercase = 100): UpperCamelCase_ = factorial(__lowercase) UpperCamelCase_ = split_and_add(__lowercase) return result if __name__ == "__main__": print(solution(int(input("""Enter the Number: """).strip())))
23
0
'''simple docstring''' import torch from torch import nn class SCREAMING_SNAKE_CASE__ ( nn.Module ): def __init__( self : Any , a_ : Dict , a_ : List[str] , a_ : List[str] , a_ : Any , a_ : Dict=1 , a_ : List[str]=False ): """simple docstring""" super().__init__() __snake_case = n_token __snake_case = d_embed __snake_case = d_proj __snake_case = cutoffs + [n_token] __snake_case = [0] + self.cutoffs __snake_case = div_val __snake_case = self.cutoffs[0] __snake_case = len(self.cutoffs ) - 1 __snake_case = self.shortlist_size + self.n_clusters if self.n_clusters > 0: __snake_case = nn.Parameter(torch.zeros(self.n_clusters , self.d_embed ) ) __snake_case = nn.Parameter(torch.zeros(self.n_clusters ) ) __snake_case = nn.ModuleList() __snake_case = nn.ParameterList() if div_val == 1: for i in range(len(self.cutoffs ) ): if d_proj != d_embed: self.out_projs.append(nn.Parameter(torch.FloatTensor(_UpperCAmelCase , _UpperCAmelCase ) ) ) else: self.out_projs.append(_UpperCAmelCase ) self.out_layers.append(nn.Linear(_UpperCAmelCase , _UpperCAmelCase ) ) else: for i in range(len(self.cutoffs ) ): __snake_case , __snake_case = self.cutoff_ends[i], self.cutoff_ends[i + 1] __snake_case = d_embed // (div_val**i) self.out_projs.append(nn.Parameter(torch.FloatTensor(_UpperCAmelCase , _UpperCAmelCase ) ) ) self.out_layers.append(nn.Linear(_UpperCAmelCase , r_idx - l_idx ) ) __snake_case = keep_order def A ( self : Tuple , a_ : str , a_ : Tuple , a_ : int , a_ : Union[str, Any] ): """simple docstring""" if proj is None: __snake_case = nn.functional.linear(_UpperCAmelCase , _UpperCAmelCase , bias=_UpperCAmelCase ) else: # if CUDA_MAJOR <= 9 and CUDA_MINOR <= 1: __snake_case = nn.functional.linear(_UpperCAmelCase , proj.t().contiguous() ) __snake_case = nn.functional.linear(_UpperCAmelCase , _UpperCAmelCase , bias=_UpperCAmelCase ) # else: # logit = torch.einsum('bd,de,ev->bv', (hidden, proj, weight.t())) # if bias is not None: # logit = logit + bias return logit def A ( self : Dict , a_ : Dict , a_ : int=None , a_ : List[str]=False ): """simple docstring""" if labels is not None: # Shift so that tokens < n predict n __snake_case = hidden[..., :-1, :].contiguous() __snake_case = labels[..., 1:].contiguous() __snake_case = hidden.view(-1 , hidden.size(-1 ) ) __snake_case = labels.view(-1 ) if hidden.size(0 ) != labels.size(0 ): raise RuntimeError("Input and labels should have the same size in the batch dimension." ) else: __snake_case = hidden.view(-1 , hidden.size(-1 ) ) if self.n_clusters == 0: __snake_case = self._compute_logit(_UpperCAmelCase , self.out_layers[0].weight , self.out_layers[0].bias , self.out_projs[0] ) if labels is not None: __snake_case = labels != -100 __snake_case = torch.zeros_like(_UpperCAmelCase , dtype=hidden.dtype , device=hidden.device ) __snake_case = ( -nn.functional.log_softmax(_UpperCAmelCase , dim=-1 )[mask].gather(1 , labels[mask].unsqueeze(1 ) ).squeeze(1 ) ) else: __snake_case = nn.functional.log_softmax(_UpperCAmelCase , dim=-1 ) else: # construct weights and biases __snake_case , __snake_case = [], [] for i in range(len(self.cutoffs ) ): if self.div_val == 1: __snake_case , __snake_case = self.cutoff_ends[i], self.cutoff_ends[i + 1] __snake_case = self.out_layers[0].weight[l_idx:r_idx] __snake_case = self.out_layers[0].bias[l_idx:r_idx] else: __snake_case = self.out_layers[i].weight __snake_case = self.out_layers[i].bias if i == 0: __snake_case = torch.cat([weight_i, self.cluster_weight] , dim=0 ) __snake_case = torch.cat([bias_i, self.cluster_bias] , dim=0 ) weights.append(_UpperCAmelCase ) biases.append(_UpperCAmelCase ) __snake_case , __snake_case , __snake_case = weights[0], biases[0], self.out_projs[0] __snake_case = self._compute_logit(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) __snake_case = nn.functional.log_softmax(_UpperCAmelCase , dim=1 ) if labels is None: __snake_case = hidden.new_empty((head_logit.size(0 ), self.n_token) ) else: __snake_case = torch.zeros_like(_UpperCAmelCase , dtype=hidden.dtype , device=hidden.device ) __snake_case = 0 __snake_case = [0] + self.cutoffs for i in range(len(_UpperCAmelCase ) - 1 ): __snake_case , __snake_case = cutoff_values[i], cutoff_values[i + 1] if labels is not None: __snake_case = (labels >= l_idx) & (labels < r_idx) __snake_case = mask_i.nonzero().squeeze() if indices_i.numel() == 0: continue __snake_case = labels.index_select(0 , _UpperCAmelCase ) - l_idx __snake_case = head_logprob.index_select(0 , _UpperCAmelCase ) __snake_case = hidden.index_select(0 , _UpperCAmelCase ) else: __snake_case = hidden if i == 0: if labels is not None: __snake_case = head_logprob_i.gather(1 , target_i[:, None] ).squeeze(1 ) else: __snake_case = head_logprob[:, : self.cutoffs[0]] else: __snake_case , __snake_case , __snake_case = weights[i], biases[i], self.out_projs[i] __snake_case = self._compute_logit(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) __snake_case = nn.functional.log_softmax(_UpperCAmelCase , dim=1 ) __snake_case = self.cutoffs[0] + i - 1 # No probability for the head cluster if labels is not None: __snake_case = head_logprob_i[:, cluster_prob_idx] + tail_logprob_i.gather( 1 , target_i[:, None] ).squeeze(1 ) else: __snake_case = head_logprob[:, cluster_prob_idx, None] + tail_logprob_i __snake_case = logprob_i if labels is not None: if (hasattr(self , "keep_order" ) and self.keep_order) or keep_order: out.index_copy_(0 , _UpperCAmelCase , -logprob_i ) else: out[offset : offset + logprob_i.size(0 )].copy_(-logprob_i ) offset += logprob_i.size(0 ) return out def A ( self : List[str] , a_ : Optional[Any] ): """simple docstring""" if self.n_clusters == 0: __snake_case = self._compute_logit(_UpperCAmelCase , self.out_layers[0].weight , self.out_layers[0].bias , self.out_projs[0] ) return nn.functional.log_softmax(_UpperCAmelCase , dim=-1 ) else: # construct weights and biases __snake_case , __snake_case = [], [] for i in range(len(self.cutoffs ) ): if self.div_val == 1: __snake_case , __snake_case = self.cutoff_ends[i], self.cutoff_ends[i + 1] __snake_case = self.out_layers[0].weight[l_idx:r_idx] __snake_case = self.out_layers[0].bias[l_idx:r_idx] else: __snake_case = self.out_layers[i].weight __snake_case = self.out_layers[i].bias if i == 0: __snake_case = torch.cat([weight_i, self.cluster_weight] , dim=0 ) __snake_case = torch.cat([bias_i, self.cluster_bias] , dim=0 ) weights.append(_UpperCAmelCase ) biases.append(_UpperCAmelCase ) __snake_case , __snake_case , __snake_case = weights[0], biases[0], self.out_projs[0] __snake_case = self._compute_logit(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) __snake_case = hidden.new_empty((head_logit.size(0 ), self.n_token) ) __snake_case = nn.functional.log_softmax(_UpperCAmelCase , dim=1 ) __snake_case = [0] + self.cutoffs for i in range(len(_UpperCAmelCase ) - 1 ): __snake_case , __snake_case = cutoff_values[i], cutoff_values[i + 1] if i == 0: __snake_case = head_logprob[:, : self.cutoffs[0]] else: __snake_case , __snake_case , __snake_case = weights[i], biases[i], self.out_projs[i] __snake_case = self._compute_logit(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) __snake_case = nn.functional.log_softmax(_UpperCAmelCase , dim=1 ) __snake_case = head_logprob[:, -i] + tail_logprob_i __snake_case = logprob_i return out
69
from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, is_valid_image, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging if is_vision_available(): import PIL snake_case__ : str = logging.get_logger(__name__) def _snake_case (__lowercase): if isinstance(__lowercase , (list, tuple)) and isinstance(videos[0] , (list, tuple)) and is_valid_image(videos[0][0]): return videos elif isinstance(__lowercase , (list, tuple)) and is_valid_image(videos[0]): return [videos] elif is_valid_image(__lowercase): return [[videos]] raise ValueError(f"""Could not make batched video from {videos}""") class _a ( UpperCAmelCase__ ): """simple docstring""" A_ = ["""pixel_values"""] def __init__( self , _UpperCAmelCase = True , _UpperCAmelCase = None , _UpperCAmelCase = PILImageResampling.BILINEAR , _UpperCAmelCase = True , _UpperCAmelCase = None , _UpperCAmelCase = True , _UpperCAmelCase = 1 / 255 , _UpperCAmelCase = True , _UpperCAmelCase = None , _UpperCAmelCase = None , **_UpperCAmelCase , ) -> None: super().__init__(**_UpperCAmelCase ) UpperCamelCase_ = size if size is not None else {'shortest_edge': 224} UpperCamelCase_ = get_size_dict(_UpperCAmelCase , default_to_square=_UpperCAmelCase ) UpperCamelCase_ = crop_size if crop_size is not None else {'height': 224, 'width': 224} UpperCamelCase_ = get_size_dict(_UpperCAmelCase , param_name='crop_size' ) UpperCamelCase_ = do_resize UpperCamelCase_ = size UpperCamelCase_ = do_center_crop UpperCamelCase_ = crop_size UpperCamelCase_ = resample UpperCamelCase_ = do_rescale UpperCamelCase_ = rescale_factor UpperCamelCase_ = do_normalize UpperCamelCase_ = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN UpperCamelCase_ = image_std if image_std is not None else IMAGENET_STANDARD_STD def _UpperCAmelCase ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase = PILImageResampling.BILINEAR , _UpperCAmelCase = None , **_UpperCAmelCase , ) -> np.ndarray: UpperCamelCase_ = get_size_dict(_UpperCAmelCase , default_to_square=_UpperCAmelCase ) if "shortest_edge" in size: UpperCamelCase_ = get_resize_output_image_size(_UpperCAmelCase , size['shortest_edge'] , default_to_square=_UpperCAmelCase ) elif "height" in size and "width" in size: UpperCamelCase_ = (size['height'], size['width']) else: raise ValueError(f"""Size must have 'height' and 'width' or 'shortest_edge' as keys. Got {size.keys()}""" ) return resize(_UpperCAmelCase , size=_UpperCAmelCase , resample=_UpperCAmelCase , data_format=_UpperCAmelCase , **_UpperCAmelCase ) def _UpperCAmelCase ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase = None , **_UpperCAmelCase , ) -> np.ndarray: UpperCamelCase_ = get_size_dict(_UpperCAmelCase ) if "height" not in size or "width" not in size: raise ValueError(f"""Size must have 'height' and 'width' as keys. Got {size.keys()}""" ) return center_crop(_UpperCAmelCase , size=(size['height'], size['width']) , data_format=_UpperCAmelCase , **_UpperCAmelCase ) def _UpperCAmelCase ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase = None , **_UpperCAmelCase , ) -> int: return rescale(_UpperCAmelCase , scale=_UpperCAmelCase , data_format=_UpperCAmelCase , **_UpperCAmelCase ) def _UpperCAmelCase ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase = None , **_UpperCAmelCase , ) -> np.ndarray: return normalize(_UpperCAmelCase , mean=_UpperCAmelCase , std=_UpperCAmelCase , data_format=_UpperCAmelCase , **_UpperCAmelCase ) def _UpperCAmelCase ( self , _UpperCAmelCase , _UpperCAmelCase = None , _UpperCAmelCase = None , _UpperCAmelCase = None , _UpperCAmelCase = None , _UpperCAmelCase = None , _UpperCAmelCase = None , _UpperCAmelCase = None , _UpperCAmelCase = None , _UpperCAmelCase = None , _UpperCAmelCase = None , _UpperCAmelCase = ChannelDimension.FIRST , ) -> np.ndarray: if do_resize and size is None or resample is None: raise ValueError('Size and resample must be specified if do_resize is True.' ) if do_center_crop and crop_size is None: raise ValueError('Crop size must be specified if do_center_crop is True.' ) if do_rescale and rescale_factor is None: raise ValueError('Rescale factor must be specified if do_rescale is True.' ) if do_normalize and (image_mean is None or image_std is None): raise ValueError('Image mean and std must be specified if do_normalize is True.' ) # All transformations expect numpy arrays. UpperCamelCase_ = to_numpy_array(_UpperCAmelCase ) if do_resize: UpperCamelCase_ = self.resize(image=_UpperCAmelCase , size=_UpperCAmelCase , resample=_UpperCAmelCase ) if do_center_crop: UpperCamelCase_ = self.center_crop(_UpperCAmelCase , size=_UpperCAmelCase ) if do_rescale: UpperCamelCase_ = self.rescale(image=_UpperCAmelCase , scale=_UpperCAmelCase ) if do_normalize: UpperCamelCase_ = self.normalize(image=_UpperCAmelCase , mean=_UpperCAmelCase , std=_UpperCAmelCase ) UpperCamelCase_ = to_channel_dimension_format(_UpperCAmelCase , _UpperCAmelCase ) return image def _UpperCAmelCase ( self , _UpperCAmelCase , _UpperCAmelCase = None , _UpperCAmelCase = None , _UpperCAmelCase = None , _UpperCAmelCase = None , _UpperCAmelCase = None , _UpperCAmelCase = None , _UpperCAmelCase = None , _UpperCAmelCase = None , _UpperCAmelCase = None , _UpperCAmelCase = None , _UpperCAmelCase = None , _UpperCAmelCase = ChannelDimension.FIRST , **_UpperCAmelCase , ) -> PIL.Image.Image: UpperCamelCase_ = do_resize if do_resize is not None else self.do_resize UpperCamelCase_ = resample if resample is not None else self.resample UpperCamelCase_ = do_center_crop if do_center_crop is not None else self.do_center_crop UpperCamelCase_ = do_rescale if do_rescale is not None else self.do_rescale UpperCamelCase_ = rescale_factor if rescale_factor is not None else self.rescale_factor UpperCamelCase_ = do_normalize if do_normalize is not None else self.do_normalize UpperCamelCase_ = image_mean if image_mean is not None else self.image_mean UpperCamelCase_ = image_std if image_std is not None else self.image_std UpperCamelCase_ = size if size is not None else self.size UpperCamelCase_ = get_size_dict(_UpperCAmelCase , default_to_square=_UpperCAmelCase ) UpperCamelCase_ = crop_size if crop_size is not None else self.crop_size UpperCamelCase_ = get_size_dict(_UpperCAmelCase , param_name='crop_size' ) if not valid_images(_UpperCAmelCase ): raise ValueError( 'Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ' 'torch.Tensor, tf.Tensor or jax.ndarray.' ) UpperCamelCase_ = make_batched(_UpperCAmelCase ) UpperCamelCase_ = [ [ self._preprocess_image( image=_UpperCAmelCase , do_resize=_UpperCAmelCase , size=_UpperCAmelCase , resample=_UpperCAmelCase , do_center_crop=_UpperCAmelCase , crop_size=_UpperCAmelCase , do_rescale=_UpperCAmelCase , rescale_factor=_UpperCAmelCase , do_normalize=_UpperCAmelCase , image_mean=_UpperCAmelCase , image_std=_UpperCAmelCase , data_format=_UpperCAmelCase , ) for img in video ] for video in videos ] UpperCamelCase_ = {'pixel_values': videos} return BatchFeature(data=_UpperCAmelCase , tensor_type=_UpperCAmelCase )
23
0
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available A__ : Dict = {"""configuration_sew""": ["""SEW_PRETRAINED_CONFIG_ARCHIVE_MAP""", """SEWConfig"""]} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A__ : List[str] = [ """SEW_PRETRAINED_MODEL_ARCHIVE_LIST""", """SEWForCTC""", """SEWForSequenceClassification""", """SEWModel""", """SEWPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_sew import SEW_PRETRAINED_CONFIG_ARCHIVE_MAP, SEWConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_sew import ( SEW_PRETRAINED_MODEL_ARCHIVE_LIST, SEWForCTC, SEWForSequenceClassification, SEWModel, SEWPreTrainedModel, ) else: import sys A__ : Dict = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
171
# DISCLAIMER: This file is strongly influenced by https://github.com/yang-song/score_sde_pytorch import math from dataclasses import dataclass from typing import Optional, Tuple, Union import torch from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput, randn_tensor from .scheduling_utils import SchedulerMixin, SchedulerOutput @dataclass class _a ( UpperCAmelCase__ ): """simple docstring""" A_ = 42 A_ = 42 class _a ( UpperCAmelCase__ , UpperCAmelCase__ ): """simple docstring""" A_ = 1 @register_to_config def __init__( self , _UpperCAmelCase = 2000 , _UpperCAmelCase = 0.1_5 , _UpperCAmelCase = 0.0_1 , _UpperCAmelCase = 1_3_4_8.0 , _UpperCAmelCase = 1e-5 , _UpperCAmelCase = 1 , ) -> Tuple: # standard deviation of the initial noise distribution UpperCamelCase_ = sigma_max # setable values UpperCamelCase_ = None self.set_sigmas(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) def _UpperCAmelCase ( self , _UpperCAmelCase , _UpperCAmelCase = None ) -> torch.FloatTensor: return sample def _UpperCAmelCase ( self , _UpperCAmelCase , _UpperCAmelCase = None , _UpperCAmelCase = None ) -> str: UpperCamelCase_ = sampling_eps if sampling_eps is not None else self.config.sampling_eps UpperCamelCase_ = torch.linspace(1 , _UpperCAmelCase , _UpperCAmelCase , device=_UpperCAmelCase ) def _UpperCAmelCase ( self , _UpperCAmelCase , _UpperCAmelCase = None , _UpperCAmelCase = None , _UpperCAmelCase = None ) -> Any: UpperCamelCase_ = sigma_min if sigma_min is not None else self.config.sigma_min UpperCamelCase_ = sigma_max if sigma_max is not None else self.config.sigma_max UpperCamelCase_ = sampling_eps if sampling_eps is not None else self.config.sampling_eps if self.timesteps is None: self.set_timesteps(_UpperCAmelCase , _UpperCAmelCase ) UpperCamelCase_ = sigma_min * (sigma_max / sigma_min) ** (self.timesteps / sampling_eps) UpperCamelCase_ = torch.exp(torch.linspace(math.log(_UpperCAmelCase ) , math.log(_UpperCAmelCase ) , _UpperCAmelCase ) ) UpperCamelCase_ = torch.tensor([sigma_min * (sigma_max / sigma_min) ** t for t in self.timesteps] ) def _UpperCAmelCase ( self , _UpperCAmelCase , _UpperCAmelCase ) -> List[Any]: return torch.where( timesteps == 0 , torch.zeros_like(t.to(timesteps.device ) ) , self.discrete_sigmas[timesteps - 1].to(timesteps.device ) , ) def _UpperCAmelCase ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase = None , _UpperCAmelCase = True , ) -> Union[SdeVeOutput, Tuple]: if self.timesteps is None: raise ValueError( '`self.timesteps` is not set, you need to run \'set_timesteps\' after creating the scheduler' ) UpperCamelCase_ = timestep * torch.ones( sample.shape[0] , device=sample.device ) # torch.repeat_interleave(timestep, sample.shape[0]) UpperCamelCase_ = (timestep * (len(self.timesteps ) - 1)).long() # mps requires indices to be in the same device, so we use cpu as is the default with cuda UpperCamelCase_ = timesteps.to(self.discrete_sigmas.device ) UpperCamelCase_ = self.discrete_sigmas[timesteps].to(sample.device ) UpperCamelCase_ = self.get_adjacent_sigma(_UpperCAmelCase , _UpperCAmelCase ).to(sample.device ) UpperCamelCase_ = torch.zeros_like(_UpperCAmelCase ) UpperCamelCase_ = (sigma**2 - adjacent_sigma**2) ** 0.5 # equation 6 in the paper: the model_output modeled by the network is grad_x log pt(x) # also equation 47 shows the analog from SDE models to ancestral sampling methods UpperCamelCase_ = diffusion.flatten() while len(diffusion.shape ) < len(sample.shape ): UpperCamelCase_ = diffusion.unsqueeze(-1 ) UpperCamelCase_ = drift - diffusion**2 * model_output # equation 6: sample noise for the diffusion term of UpperCamelCase_ = randn_tensor( sample.shape , layout=sample.layout , generator=_UpperCAmelCase , device=sample.device , dtype=sample.dtype ) UpperCamelCase_ = sample - drift # subtract because `dt` is a small negative timestep # TODO is the variable diffusion the correct scaling term for the noise? UpperCamelCase_ = prev_sample_mean + diffusion * noise # add impact of diffusion field g if not return_dict: return (prev_sample, prev_sample_mean) return SdeVeOutput(prev_sample=_UpperCAmelCase , prev_sample_mean=_UpperCAmelCase ) def _UpperCAmelCase ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase = None , _UpperCAmelCase = True , ) -> Union[SchedulerOutput, Tuple]: if self.timesteps is None: raise ValueError( '`self.timesteps` is not set, you need to run \'set_timesteps\' after creating the scheduler' ) # For small batch sizes, the paper "suggest replacing norm(z) with sqrt(d), where d is the dim. of z" # sample noise for correction UpperCamelCase_ = randn_tensor(sample.shape , layout=sample.layout , generator=_UpperCAmelCase ).to(sample.device ) # compute step size from the model_output, the noise, and the snr UpperCamelCase_ = torch.norm(model_output.reshape(model_output.shape[0] , -1 ) , dim=-1 ).mean() UpperCamelCase_ = torch.norm(noise.reshape(noise.shape[0] , -1 ) , dim=-1 ).mean() UpperCamelCase_ = (self.config.snr * noise_norm / grad_norm) ** 2 * 2 UpperCamelCase_ = step_size * torch.ones(sample.shape[0] ).to(sample.device ) # self.repeat_scalar(step_size, sample.shape[0]) # compute corrected sample: model_output term and noise term UpperCamelCase_ = step_size.flatten() while len(step_size.shape ) < len(sample.shape ): UpperCamelCase_ = step_size.unsqueeze(-1 ) UpperCamelCase_ = sample + step_size * model_output UpperCamelCase_ = prev_sample_mean + ((step_size * 2) ** 0.5) * noise if not return_dict: return (prev_sample,) return SchedulerOutput(prev_sample=_UpperCAmelCase ) def _UpperCAmelCase ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , ) -> torch.FloatTensor: # Make sure sigmas and timesteps have the same device and dtype as original_samples UpperCamelCase_ = timesteps.to(original_samples.device ) UpperCamelCase_ = self.discrete_sigmas.to(original_samples.device )[timesteps] UpperCamelCase_ = ( noise * sigmas[:, None, None, None] if noise is not None else torch.randn_like(_UpperCAmelCase ) * sigmas[:, None, None, None] ) UpperCamelCase_ = noise + original_samples return noisy_samples def __len__( self ) -> Optional[int]: return self.config.num_train_timesteps
23
0
import argparse import torch from transformers import MobileBertConfig, MobileBertForPreTraining, load_tf_weights_in_mobilebert from transformers.utils import logging logging.set_verbosity_info() def lowercase ( __A : Union[str, Any] , __A : Optional[Any] , __A : List[str] ) -> Dict: '''simple docstring''' snake_case : str = MobileBertConfig.from_json_file(__lowercase ) print(f"""Building PyTorch model from configuration: {config}""" ) snake_case : Any = MobileBertForPreTraining(__lowercase ) # Load weights from tf checkpoint snake_case : Optional[int] = load_tf_weights_in_mobilebert(__lowercase , __lowercase , __lowercase ) # Save pytorch-model print(f"""Save PyTorch model to {pytorch_dump_path}""" ) torch.save(model.state_dict() , __lowercase ) if __name__ == "__main__": __lowercase : int = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--tf_checkpoint_path''', default=None, type=str, required=True, help='''Path to the TensorFlow checkpoint path.''' ) parser.add_argument( '''--mobilebert_config_file''', default=None, type=str, required=True, help=( '''The config json file corresponding to the pre-trained MobileBERT model. \n''' '''This specifies the model architecture.''' ), ) parser.add_argument( '''--pytorch_dump_path''', default=None, type=str, required=True, help='''Path to the output PyTorch model.''' ) __lowercase : Optional[Any] = parser.parse_args() convert_tf_checkpoint_to_pytorch(args.tf_checkpoint_path, args.mobilebert_config_file, args.pytorch_dump_path)
36
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available snake_case__ : Optional[int] = { """configuration_pegasus_x""": ["""PEGASUS_X_PRETRAINED_CONFIG_ARCHIVE_MAP""", """PegasusXConfig"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case__ : Dict = [ """PEGASUS_X_PRETRAINED_MODEL_ARCHIVE_LIST""", """PegasusXForConditionalGeneration""", """PegasusXModel""", """PegasusXPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_pegasus_x import PEGASUS_X_PRETRAINED_CONFIG_ARCHIVE_MAP, PegasusXConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_pegasus_x import ( PEGASUS_X_PRETRAINED_MODEL_ARCHIVE_LIST, PegasusXForConditionalGeneration, PegasusXModel, PegasusXPreTrainedModel, ) else: import sys snake_case__ : Optional[Any] = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
23
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available UpperCamelCase_ : Dict = { """configuration_megatron_bert""": ["""MEGATRON_BERT_PRETRAINED_CONFIG_ARCHIVE_MAP""", """MegatronBertConfig"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase_ : str = [ """MEGATRON_BERT_PRETRAINED_MODEL_ARCHIVE_LIST""", """MegatronBertForCausalLM""", """MegatronBertForMaskedLM""", """MegatronBertForMultipleChoice""", """MegatronBertForNextSentencePrediction""", """MegatronBertForPreTraining""", """MegatronBertForQuestionAnswering""", """MegatronBertForSequenceClassification""", """MegatronBertForTokenClassification""", """MegatronBertModel""", """MegatronBertPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_megatron_bert import MEGATRON_BERT_PRETRAINED_CONFIG_ARCHIVE_MAP, MegatronBertConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_megatron_bert import ( MEGATRON_BERT_PRETRAINED_MODEL_ARCHIVE_LIST, MegatronBertForCausalLM, MegatronBertForMaskedLM, MegatronBertForMultipleChoice, MegatronBertForNextSentencePrediction, MegatronBertForPreTraining, MegatronBertForQuestionAnswering, MegatronBertForSequenceClassification, MegatronBertForTokenClassification, MegatronBertModel, MegatronBertPreTrainedModel, ) else: import sys UpperCamelCase_ : Optional[Any] = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
331
import datasets from .evaluate import evaluate snake_case__ : int = """\ @article{hendrycks2021cuad, title={CUAD: An Expert-Annotated NLP Dataset for Legal Contract Review}, author={Dan Hendrycks and Collin Burns and Anya Chen and Spencer Ball}, journal={arXiv preprint arXiv:2103.06268}, year={2021} } """ snake_case__ : Union[str, Any] = """ This metric wrap the official scoring script for version 1 of the Contract Understanding Atticus Dataset (CUAD). Contract Understanding Atticus Dataset (CUAD) v1 is a corpus of more than 13,000 labels in 510 commercial legal contracts that have been manually labeled to identify 41 categories of important clauses that lawyers look for when reviewing contracts in connection with corporate transactions. """ snake_case__ : Any = """ Computes CUAD scores (EM, F1, AUPR, Precision@80%Recall, and Precision@90%Recall). Args: predictions: List of question-answers dictionaries with the following key-values: - 'id': id of the question-answer pair as given in the references (see below) - 'prediction_text': list of possible texts for the answer, as a list of strings depending on a threshold on the confidence probability of each prediction. references: List of question-answers dictionaries with the following key-values: - 'id': id of the question-answer pair (see above), - 'answers': a Dict in the CUAD dataset format { 'text': list of possible texts for the answer, as a list of strings 'answer_start': list of start positions for the answer, as a list of ints } Note that answer_start values are not taken into account to compute the metric. Returns: 'exact_match': Exact match (the normalized answer exactly match the gold answer) 'f1': The F-score of predicted tokens versus the gold answer 'aupr': Area Under the Precision-Recall curve 'prec_at_80_recall': Precision at 80% recall 'prec_at_90_recall': Precision at 90% recall Examples: >>> predictions = [{'prediction_text': ['The seller:', 'The buyer/End-User: Shenzhen LOHAS Supply Chain Management Co., Ltd.'], 'id': 'LohaCompanyltd_20191209_F-1_EX-10.16_11917878_EX-10.16_Supply Agreement__Parties'}] >>> references = [{'answers': {'answer_start': [143, 49], 'text': ['The seller:', 'The buyer/End-User: Shenzhen LOHAS Supply Chain Management Co., Ltd.']}, 'id': 'LohaCompanyltd_20191209_F-1_EX-10.16_11917878_EX-10.16_Supply Agreement__Parties'}] >>> cuad_metric = datasets.load_metric(\"cuad\") >>> results = cuad_metric.compute(predictions=predictions, references=references) >>> print(results) {'exact_match': 100.0, 'f1': 100.0, 'aupr': 0.0, 'prec_at_80_recall': 1.0, 'prec_at_90_recall': 1.0} """ @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class _a ( datasets.Metric ): """simple docstring""" def _UpperCAmelCase ( self ) -> Optional[int]: return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { 'predictions': { 'id': datasets.Value('string' ), 'prediction_text': datasets.features.Sequence(datasets.Value('string' ) ), }, 'references': { 'id': datasets.Value('string' ), 'answers': datasets.features.Sequence( { 'text': datasets.Value('string' ), 'answer_start': datasets.Value('int32' ), } ), }, } ) , codebase_urls=['https://www.atticusprojectai.org/cuad'] , reference_urls=['https://www.atticusprojectai.org/cuad'] , ) def _UpperCAmelCase ( self , _UpperCAmelCase , _UpperCAmelCase ) -> Dict: UpperCamelCase_ = {prediction['id']: prediction['prediction_text'] for prediction in predictions} UpperCamelCase_ = [ { 'paragraphs': [ { 'qas': [ { 'answers': [{'text': answer_text} for answer_text in ref['answers']['text']], 'id': ref['id'], } for ref in references ] } ] } ] UpperCamelCase_ = evaluate(dataset=_UpperCAmelCase , predictions=_UpperCAmelCase ) return score
23
0
import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging lowerCAmelCase_ = logging.get_logger(__name__) lowerCAmelCase_ = {"""vocab_file""": """spiece.model"""} lowerCAmelCase_ = { """vocab_file""": { """bert_for_seq_generation""": ( """https://huggingface.co/google/bert_for_seq_generation_L-24_bbc_encoder/resolve/main/spiece.model""" ), } } lowerCAmelCase_ = {"""bert_for_seq_generation""": 5_1_2} class A (UpperCAmelCase__ ): _SCREAMING_SNAKE_CASE = VOCAB_FILES_NAMES _SCREAMING_SNAKE_CASE = PRETRAINED_VOCAB_FILES_MAP _SCREAMING_SNAKE_CASE = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _SCREAMING_SNAKE_CASE = [] _SCREAMING_SNAKE_CASE = ["""input_ids""", """attention_mask"""] def __init__( self , lowercase_ , lowercase_="<s>" , lowercase_="</s>" , lowercase_="<unk>" , lowercase_="<pad>" , lowercase_="<::::>" , lowercase_ = None , **lowercase_ , ) -> None: '''simple docstring''' _snake_case : Tuple = {} if sp_model_kwargs is None else sp_model_kwargs # Add extra_ids to the special token list super().__init__( bos_token=_UpperCAmelCase , eos_token=_UpperCAmelCase , unk_token=_UpperCAmelCase , pad_token=_UpperCAmelCase , sep_token=_UpperCAmelCase , sp_model_kwargs=self.sp_model_kwargs , **_UpperCAmelCase , ) _snake_case : Optional[int] = vocab_file _snake_case : Optional[Any] = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(_UpperCAmelCase ) @property def __a ( self ) -> Union[str, Any]: '''simple docstring''' return self.sp_model.get_piece_size() def __a ( self ) -> int: '''simple docstring''' _snake_case : Union[str, Any] = {self.convert_ids_to_tokens(_UpperCAmelCase ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self ) -> str: '''simple docstring''' _snake_case : Dict = self.__dict__.copy() _snake_case : List[Any] = None return state def __setstate__( self , lowercase_ ) -> List[str]: '''simple docstring''' _snake_case : List[Any] = d # for backward compatibility if not hasattr(self , '''sp_model_kwargs''' ): _snake_case : Any = {} _snake_case : List[str] = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def __a ( self , lowercase_ ) -> List[str]: '''simple docstring''' return self.sp_model.encode(_UpperCAmelCase , out_type=_UpperCAmelCase ) def __a ( self , lowercase_ ) -> Union[str, Any]: '''simple docstring''' return self.sp_model.piece_to_id(_UpperCAmelCase ) def __a ( self , lowercase_ ) -> Optional[int]: '''simple docstring''' _snake_case : str = self.sp_model.IdToPiece(_UpperCAmelCase ) return token def __a ( self , lowercase_ ) -> Union[str, Any]: '''simple docstring''' _snake_case : Optional[int] = [] _snake_case : Optional[int] = '''''' for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: out_string += self.sp_model.decode(_UpperCAmelCase ) + token _snake_case : Union[str, Any] = [] else: current_sub_tokens.append(_UpperCAmelCase ) out_string += self.sp_model.decode(_UpperCAmelCase ) return out_string.strip() def __a ( self , lowercase_ , lowercase_ = None ) -> Tuple[str]: '''simple docstring''' if not os.path.isdir(_UpperCAmelCase ): logger.error(F'''Vocabulary path ({save_directory}) should be a directory''' ) return _snake_case : List[Any] = os.path.join( _UpperCAmelCase , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(_UpperCAmelCase ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , _UpperCAmelCase ) elif not os.path.isfile(self.vocab_file ): with open(_UpperCAmelCase , '''wb''' ) as fi: _snake_case : str = self.sp_model.serialized_model_proto() fi.write(_UpperCAmelCase ) return (out_vocab_file,)
326
import os import tempfile from functools import partial from unittest import TestCase from unittest.mock import patch import datasets import datasets.config from .utils import require_beam class _a ( datasets.BeamBasedBuilder ): """simple docstring""" def _UpperCAmelCase ( self ) -> List[str]: return datasets.DatasetInfo( features=datasets.Features({'content': datasets.Value('string' )} ) , supervised_keys=_UpperCAmelCase , ) def _UpperCAmelCase ( self , _UpperCAmelCase , _UpperCAmelCase ) -> Optional[Any]: return [datasets.SplitGenerator(name=datasets.Split.TRAIN , gen_kwargs={'examples': get_test_dummy_examples()} )] def _UpperCAmelCase ( self , _UpperCAmelCase , _UpperCAmelCase ) -> Tuple: import apache_beam as beam return pipeline | "Load Examples" >> beam.Create(_UpperCAmelCase ) class _a ( datasets.BeamBasedBuilder ): """simple docstring""" def _UpperCAmelCase ( self ) -> Any: return datasets.DatasetInfo( features=datasets.Features({'a': datasets.Sequence({'b': datasets.Value('string' )} )} ) , supervised_keys=_UpperCAmelCase , ) def _UpperCAmelCase ( self , _UpperCAmelCase , _UpperCAmelCase ) -> Tuple: return [ datasets.SplitGenerator(name=datasets.Split.TRAIN , gen_kwargs={'examples': get_test_nested_examples()} ) ] def _UpperCAmelCase ( self , _UpperCAmelCase , _UpperCAmelCase ) -> Union[str, Any]: import apache_beam as beam return pipeline | "Load Examples" >> beam.Create(_UpperCAmelCase ) def _snake_case (): return [(i, {"content": content}) for i, content in enumerate(['foo', 'bar', 'foobar'])] def _snake_case (): return [(i, {"a": {"b": [content]}}) for i, content in enumerate(['foo', 'bar', 'foobar'])] class _a ( UpperCAmelCase__ ): """simple docstring""" @require_beam def _UpperCAmelCase ( self ) -> Dict: UpperCamelCase_ = len(get_test_dummy_examples() ) with tempfile.TemporaryDirectory() as tmp_cache_dir: UpperCamelCase_ = DummyBeamDataset(cache_dir=_UpperCAmelCase , beam_runner='DirectRunner' ) builder.download_and_prepare() self.assertTrue( os.path.exists( os.path.join(_UpperCAmelCase , builder.name , 'default' , '0.0.0' , f"""{builder.name}-train.arrow""" ) ) ) self.assertDictEqual(builder.info.features , datasets.Features({'content': datasets.Value('string' )} ) ) UpperCamelCase_ = builder.as_dataset() self.assertEqual(dset['train'].num_rows , _UpperCAmelCase ) self.assertEqual(dset['train'].info.splits['train'].num_examples , _UpperCAmelCase ) self.assertDictEqual(dset['train'][0] , get_test_dummy_examples()[0][1] ) self.assertDictEqual( dset['train'][expected_num_examples - 1] , get_test_dummy_examples()[expected_num_examples - 1][1] ) self.assertTrue( os.path.exists(os.path.join(_UpperCAmelCase , builder.name , 'default' , '0.0.0' , 'dataset_info.json' ) ) ) del dset @require_beam def _UpperCAmelCase ( self ) -> List[str]: import apache_beam as beam UpperCamelCase_ = beam.io.parquetio.WriteToParquet UpperCamelCase_ = len(get_test_dummy_examples() ) with tempfile.TemporaryDirectory() as tmp_cache_dir: UpperCamelCase_ = DummyBeamDataset(cache_dir=_UpperCAmelCase , beam_runner='DirectRunner' ) with patch('apache_beam.io.parquetio.WriteToParquet' ) as write_parquet_mock: UpperCamelCase_ = partial(_UpperCAmelCase , num_shards=2 ) builder.download_and_prepare() self.assertTrue( os.path.exists( os.path.join( _UpperCAmelCase , builder.name , 'default' , '0.0.0' , f"""{builder.name}-train-00000-of-00002.arrow""" ) ) ) self.assertTrue( os.path.exists( os.path.join( _UpperCAmelCase , builder.name , 'default' , '0.0.0' , f"""{builder.name}-train-00000-of-00002.arrow""" ) ) ) self.assertDictEqual(builder.info.features , datasets.Features({'content': datasets.Value('string' )} ) ) UpperCamelCase_ = builder.as_dataset() self.assertEqual(dset['train'].num_rows , _UpperCAmelCase ) self.assertEqual(dset['train'].info.splits['train'].num_examples , _UpperCAmelCase ) # Order is not preserved when sharding, so we just check that all the elements are there self.assertListEqual(sorted(dset['train']['content'] ) , sorted(['foo', 'bar', 'foobar'] ) ) self.assertTrue( os.path.exists(os.path.join(_UpperCAmelCase , builder.name , 'default' , '0.0.0' , 'dataset_info.json' ) ) ) del dset @require_beam def _UpperCAmelCase ( self ) -> Any: with tempfile.TemporaryDirectory() as tmp_cache_dir: UpperCamelCase_ = DummyBeamDataset(cache_dir=_UpperCAmelCase ) self.assertRaises(datasets.builder.MissingBeamOptions , builder.download_and_prepare ) @require_beam def _UpperCAmelCase ( self ) -> Union[str, Any]: UpperCamelCase_ = len(get_test_nested_examples() ) with tempfile.TemporaryDirectory() as tmp_cache_dir: UpperCamelCase_ = NestedBeamDataset(cache_dir=_UpperCAmelCase , beam_runner='DirectRunner' ) builder.download_and_prepare() self.assertTrue( os.path.exists( os.path.join(_UpperCAmelCase , builder.name , 'default' , '0.0.0' , f"""{builder.name}-train.arrow""" ) ) ) self.assertDictEqual( builder.info.features , datasets.Features({'a': datasets.Sequence({'b': datasets.Value('string' )} )} ) ) UpperCamelCase_ = builder.as_dataset() self.assertEqual(dset['train'].num_rows , _UpperCAmelCase ) self.assertEqual(dset['train'].info.splits['train'].num_examples , _UpperCAmelCase ) self.assertDictEqual(dset['train'][0] , get_test_nested_examples()[0][1] ) self.assertDictEqual( dset['train'][expected_num_examples - 1] , get_test_nested_examples()[expected_num_examples - 1][1] ) self.assertTrue( os.path.exists(os.path.join(_UpperCAmelCase , builder.name , 'default' , '0.0.0' , 'dataset_info.json' ) ) ) del dset
23
0
"""simple docstring""" import numpy as np def lowercase (snake_case__ : int ) -> Tuple: '''simple docstring''' return 1 / (1 + np.exp(-vector )) def lowercase (snake_case__ : int ) -> Optional[int]: '''simple docstring''' return vector * sigmoid(__lowercase ) if __name__ == "__main__": import doctest doctest.testmod()
169
import argparse import torch from ...utils import logging from . import AlbertConfig, AlbertForPreTraining, load_tf_weights_in_albert logging.set_verbosity_info() def _snake_case (__lowercase , __lowercase , __lowercase): # Initialise PyTorch model UpperCamelCase_ = AlbertConfig.from_json_file(__lowercase) print(f"""Building PyTorch model from configuration: {config}""") UpperCamelCase_ = AlbertForPreTraining(__lowercase) # Load weights from tf checkpoint load_tf_weights_in_albert(__lowercase , __lowercase , __lowercase) # Save pytorch-model print(f"""Save PyTorch model to {pytorch_dump_path}""") torch.save(model.state_dict() , __lowercase) if __name__ == "__main__": snake_case__ : Tuple = argparse.ArgumentParser() # Required parameters parser.add_argument( """--tf_checkpoint_path""", default=None, type=str, required=True, help="""Path to the TensorFlow checkpoint path.""" ) parser.add_argument( """--albert_config_file""", default=None, type=str, required=True, help=( """The config json file corresponding to the pre-trained ALBERT model. \n""" """This specifies the model architecture.""" ), ) parser.add_argument( """--pytorch_dump_path""", default=None, type=str, required=True, help="""Path to the output PyTorch model.""" ) snake_case__ : str = parser.parse_args() convert_tf_checkpoint_to_pytorch(args.tf_checkpoint_path, args.albert_config_file, args.pytorch_dump_path)
23
0
'''simple docstring''' from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging SCREAMING_SNAKE_CASE_ = logging.get_logger(__name__) SCREAMING_SNAKE_CASE_ = { """xlm-roberta-base""": """https://huggingface.co/xlm-roberta-base/resolve/main/config.json""", """xlm-roberta-large""": """https://huggingface.co/xlm-roberta-large/resolve/main/config.json""", """xlm-roberta-large-finetuned-conll02-dutch""": ( """https://huggingface.co/xlm-roberta-large-finetuned-conll02-dutch/resolve/main/config.json""" ), """xlm-roberta-large-finetuned-conll02-spanish""": ( """https://huggingface.co/xlm-roberta-large-finetuned-conll02-spanish/resolve/main/config.json""" ), """xlm-roberta-large-finetuned-conll03-english""": ( """https://huggingface.co/xlm-roberta-large-finetuned-conll03-english/resolve/main/config.json""" ), """xlm-roberta-large-finetuned-conll03-german""": ( """https://huggingface.co/xlm-roberta-large-finetuned-conll03-german/resolve/main/config.json""" ), } class lowerCAmelCase ( UpperCAmelCase__ ): """simple docstring""" _A = 'xlm-roberta' def __init__( self , _A=30522 , _A=768 , _A=12 , _A=12 , _A=3072 , _A="gelu" , _A=0.1 , _A=0.1 , _A=512 , _A=2 , _A=0.02 , _A=1E-1_2 , _A=1 , _A=0 , _A=2 , _A="absolute" , _A=True , _A=None , **_A , ) -> List[str]: super().__init__(pad_token_id=_UpperCAmelCase , bos_token_id=_UpperCAmelCase , eos_token_id=_UpperCAmelCase , **_UpperCAmelCase ) __a : Optional[int] = vocab_size __a : Any = hidden_size __a : str = num_hidden_layers __a : List[str] = num_attention_heads __a : int = hidden_act __a : int = intermediate_size __a : Tuple = hidden_dropout_prob __a : Any = attention_probs_dropout_prob __a : Union[str, Any] = max_position_embeddings __a : Dict = type_vocab_size __a : Tuple = initializer_range __a : Dict = layer_norm_eps __a : Dict = position_embedding_type __a : Optional[Any] = use_cache __a : Tuple = classifier_dropout class lowerCAmelCase ( UpperCAmelCase__ ): """simple docstring""" @property def __magic_name__ ( self ) -> Mapping[str, Mapping[int, str]]: if self.task == "multiple-choice": __a : Optional[int] = {0: 'batch', 1: 'choice', 2: 'sequence'} else: __a : Tuple = {0: 'batch', 1: 'sequence'} return OrderedDict( [ ('input_ids', dynamic_axis), ('attention_mask', dynamic_axis), ] )
597
from transformers import BertTokenizer, EncoderDecoderModel, SeqaSeqTrainer, SeqaSeqTrainingArguments from transformers.testing_utils import TestCasePlus, require_torch, slow from transformers.utils import is_datasets_available if is_datasets_available(): import datasets class _a ( UpperCAmelCase__ ): """simple docstring""" @slow @require_torch def _UpperCAmelCase ( self ) -> List[Any]: UpperCamelCase_ = EncoderDecoderModel.from_encoder_decoder_pretrained('prajjwal1/bert-tiny' , 'prajjwal1/bert-tiny' ) UpperCamelCase_ = BertTokenizer.from_pretrained('bert-base-uncased' ) UpperCamelCase_ = bertabert.config.encoder.vocab_size UpperCamelCase_ = tokenizer.sep_token_id UpperCamelCase_ = tokenizer.cls_token_id UpperCamelCase_ = 128 UpperCamelCase_ = datasets.load_dataset('cnn_dailymail' , '3.0.0' , split='train[:1%]' ) UpperCamelCase_ = datasets.load_dataset('cnn_dailymail' , '3.0.0' , split='validation[:1%]' ) UpperCamelCase_ = train_dataset.select(range(32 ) ) UpperCamelCase_ = val_dataset.select(range(16 ) ) UpperCamelCase_ = 4 def _map_to_encoder_decoder_inputs(_UpperCAmelCase ): # Tokenizer will automatically set [BOS] <text> [EOS] UpperCamelCase_ = tokenizer(batch['article'] , padding='max_length' , truncation=_UpperCAmelCase , max_length=512 ) UpperCamelCase_ = tokenizer(batch['highlights'] , padding='max_length' , truncation=_UpperCAmelCase , max_length=128 ) UpperCamelCase_ = inputs.input_ids UpperCamelCase_ = inputs.attention_mask UpperCamelCase_ = outputs.input_ids UpperCamelCase_ = outputs.input_ids.copy() UpperCamelCase_ = [ [-100 if token == tokenizer.pad_token_id else token for token in labels] for labels in batch['labels'] ] UpperCamelCase_ = outputs.attention_mask assert all(len(_UpperCAmelCase ) == 512 for x in inputs.input_ids ) assert all(len(_UpperCAmelCase ) == 128 for x in outputs.input_ids ) return batch def _compute_metrics(_UpperCAmelCase ): UpperCamelCase_ = pred.label_ids UpperCamelCase_ = pred.predictions # all unnecessary tokens are removed UpperCamelCase_ = tokenizer.batch_decode(_UpperCAmelCase , skip_special_tokens=_UpperCAmelCase ) UpperCamelCase_ = tokenizer.batch_decode(_UpperCAmelCase , skip_special_tokens=_UpperCAmelCase ) UpperCamelCase_ = sum([int(pred_str[i] == label_str[i] ) for i in range(len(_UpperCAmelCase ) )] ) / len(_UpperCAmelCase ) return {"accuracy": accuracy} # map train dataset UpperCamelCase_ = train_dataset.map( _map_to_encoder_decoder_inputs , batched=_UpperCAmelCase , batch_size=_UpperCAmelCase , remove_columns=['article', 'highlights'] , ) train_dataset.set_format( type='torch' , columns=['input_ids', 'attention_mask', 'decoder_input_ids', 'decoder_attention_mask', 'labels'] , ) # same for validation dataset UpperCamelCase_ = val_dataset.map( _map_to_encoder_decoder_inputs , batched=_UpperCAmelCase , batch_size=_UpperCAmelCase , remove_columns=['article', 'highlights'] , ) val_dataset.set_format( type='torch' , columns=['input_ids', 'attention_mask', 'decoder_input_ids', 'decoder_attention_mask', 'labels'] , ) UpperCamelCase_ = self.get_auto_remove_tmp_dir() UpperCamelCase_ = SeqaSeqTrainingArguments( output_dir=_UpperCAmelCase , per_device_train_batch_size=_UpperCAmelCase , per_device_eval_batch_size=_UpperCAmelCase , predict_with_generate=_UpperCAmelCase , evaluation_strategy='steps' , do_train=_UpperCAmelCase , do_eval=_UpperCAmelCase , warmup_steps=0 , eval_steps=2 , logging_steps=2 , ) # instantiate trainer UpperCamelCase_ = SeqaSeqTrainer( model=_UpperCAmelCase , args=_UpperCAmelCase , compute_metrics=_compute_metrics , train_dataset=_UpperCAmelCase , eval_dataset=_UpperCAmelCase , tokenizer=_UpperCAmelCase , ) # start training trainer.train()
23
0
import argparse import requests import torch from PIL import Image from transformers import SwinConfig, SwinForMaskedImageModeling, ViTImageProcessor def __A ( _A ): """simple docstring""" __a = SwinConfig(image_size=192 ) if "base" in model_name: __a = 6 __a = 128 __a = (2, 2, 18, 2) __a = (4, 8, 16, 32) elif "large" in model_name: __a = 12 __a = 192 __a = (2, 2, 18, 2) __a = (6, 12, 24, 48) else: raise ValueError("Model not supported, only supports base and large variants" ) __a = window_size __a = embed_dim __a = depths __a = num_heads return config def __A ( _A ): """simple docstring""" if "encoder.mask_token" in name: __a = name.replace("encoder.mask_token" , "embeddings.mask_token" ) if "encoder.patch_embed.proj" in name: __a = name.replace("encoder.patch_embed.proj" , "embeddings.patch_embeddings.projection" ) if "encoder.patch_embed.norm" in name: __a = name.replace("encoder.patch_embed.norm" , "embeddings.norm" ) if "attn.proj" in name: __a = name.replace("attn.proj" , "attention.output.dense" ) if "attn" in name: __a = name.replace("attn" , "attention.self" ) if "norm1" in name: __a = name.replace("norm1" , "layernorm_before" ) if "norm2" in name: __a = name.replace("norm2" , "layernorm_after" ) if "mlp.fc1" in name: __a = name.replace("mlp.fc1" , "intermediate.dense" ) if "mlp.fc2" in name: __a = name.replace("mlp.fc2" , "output.dense" ) if name == "encoder.norm.weight": __a = "layernorm.weight" if name == "encoder.norm.bias": __a = "layernorm.bias" if "decoder" in name: pass else: __a = "swin." + name return name def __A ( _A , _A ): """simple docstring""" for key in orig_state_dict.copy().keys(): __a = orig_state_dict.pop(__lowercase ) if "attn_mask" in key: pass elif "qkv" in key: __a = key.split("." ) __a = int(key_split[2] ) __a = int(key_split[4] ) __a = model.swin.encoder.layers[layer_num].blocks[block_num].attention.self.all_head_size if "weight" in key: __a = val[:dim, :] __a = val[ dim : dim * 2, : ] __a = val[-dim:, :] else: __a = val[ :dim ] __a = val[ dim : dim * 2 ] __a = val[ -dim: ] else: __a = val return orig_state_dict def __A ( _A , _A , _A , _A ): """simple docstring""" __a = torch.load(__lowercase , map_location="cpu" )["model"] __a = get_swin_config(__lowercase ) __a = SwinForMaskedImageModeling(__lowercase ) model.eval() __a = convert_state_dict(__lowercase , __lowercase ) model.load_state_dict(__lowercase ) __a = "http://images.cocodataset.org/val2017/000000039769.jpg" __a = ViTImageProcessor(size={"height": 192, "width": 192} ) __a = Image.open(requests.get(__lowercase , stream=__lowercase ).raw ) __a = image_processor(images=__lowercase , return_tensors="pt" ) with torch.no_grad(): __a = model(**__lowercase ).logits print(outputs.keys() ) print("Looks ok!" ) if pytorch_dump_folder_path is not None: print(f"""Saving model {model_name} to {pytorch_dump_folder_path}""" ) model.save_pretrained(__lowercase ) print(f"""Saving image processor to {pytorch_dump_folder_path}""" ) image_processor.save_pretrained(__lowercase ) if push_to_hub: print(f"""Pushing model and image processor for {model_name} to hub""" ) model.push_to_hub(f"""microsoft/{model_name}""" ) image_processor.push_to_hub(f"""microsoft/{model_name}""" ) if __name__ == "__main__": SCREAMING_SNAKE_CASE : List[Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( """--model_name""", default="""swin-base-simmim-window6-192""", type=str, choices=["""swin-base-simmim-window6-192""", """swin-large-simmim-window12-192"""], help="""Name of the Swin SimMIM model you'd like to convert.""", ) parser.add_argument( """--checkpoint_path""", default="""/Users/nielsrogge/Documents/SwinSimMIM/simmim_pretrain__swin_base__img192_window6__100ep.pth""", type=str, help="""Path to the original PyTorch checkpoint (.pth file).""", ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model directory.""" ) parser.add_argument( """--push_to_hub""", action="""store_true""", help="""Whether or not to push the converted model to the 🤗 hub.""" ) SCREAMING_SNAKE_CASE : Tuple = parser.parse_args() convert_swin_checkpoint(args.model_name, args.checkpoint_path, args.pytorch_dump_folder_path, args.push_to_hub)
197
import argparse import os import evaluate import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType ######################################################################## # This is a fully working simple example to use Accelerate # and perform gradient accumulation # # This example trains a Bert base model on GLUE MRPC # in any of the following settings (with the same script): # - single CPU or single GPU # - multi GPUS (using PyTorch distributed mode) # - (multi) TPUs # - fp16 (mixed-precision) or fp32 (normal precision) # # To run it in each of these various modes, follow the instructions # in the readme for examples: # https://github.com/huggingface/accelerate/tree/main/examples # ######################################################################## snake_case__ : Dict = 1_6 snake_case__ : List[str] = 3_2 def _snake_case (__lowercase , __lowercase = 16): UpperCamelCase_ = AutoTokenizer.from_pretrained('bert-base-cased') UpperCamelCase_ = load_dataset('glue' , 'mrpc') def tokenize_function(__lowercase): # max_length=None => use the model max length (it's actually the default) UpperCamelCase_ = tokenizer(examples['sentence1'] , examples['sentence2'] , truncation=__lowercase , max_length=__lowercase) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset # starting with the main process first: with accelerator.main_process_first(): UpperCamelCase_ = datasets.map( __lowercase , batched=__lowercase , remove_columns=['idx', 'sentence1', 'sentence2'] , ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library UpperCamelCase_ = tokenized_datasets.rename_column('label' , 'labels') def collate_fn(__lowercase): # On TPU it's best to pad everything to the same length or training will be very slow. UpperCamelCase_ = 128 if accelerator.distributed_type == DistributedType.TPU else None # When using mixed precision we want round multiples of 8/16 if accelerator.mixed_precision == "fp8": UpperCamelCase_ = 16 elif accelerator.mixed_precision != "no": UpperCamelCase_ = 8 else: UpperCamelCase_ = None return tokenizer.pad( __lowercase , padding='longest' , max_length=__lowercase , pad_to_multiple_of=__lowercase , return_tensors='pt' , ) # Instantiate dataloaders. UpperCamelCase_ = DataLoader( tokenized_datasets['train'] , shuffle=__lowercase , collate_fn=__lowercase , batch_size=__lowercase) UpperCamelCase_ = DataLoader( tokenized_datasets['validation'] , shuffle=__lowercase , collate_fn=__lowercase , batch_size=__lowercase) return train_dataloader, eval_dataloader # For testing only if os.environ.get("""TESTING_MOCKED_DATALOADERS""", None) == "1": from accelerate.test_utils.training import mocked_dataloaders snake_case__ : List[str] = mocked_dataloaders # noqa: F811 def _snake_case (__lowercase , __lowercase): # For testing only if os.environ.get('TESTING_MOCKED_DATALOADERS' , __lowercase) == "1": UpperCamelCase_ = 2 # New Code # UpperCamelCase_ = int(args.gradient_accumulation_steps) # Initialize accelerator UpperCamelCase_ = Accelerator( cpu=args.cpu , mixed_precision=args.mixed_precision , gradient_accumulation_steps=__lowercase) if accelerator.distributed_type == DistributedType.TPU and gradient_accumulation_steps > 1: raise NotImplementedError( 'Gradient accumulation on TPUs is currently not supported. Pass `gradient_accumulation_steps=1`') # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs UpperCamelCase_ = config['lr'] UpperCamelCase_ = int(config['num_epochs']) UpperCamelCase_ = int(config['seed']) UpperCamelCase_ = int(config['batch_size']) UpperCamelCase_ = evaluate.load('glue' , 'mrpc') set_seed(__lowercase) UpperCamelCase_ , UpperCamelCase_ = get_dataloaders(__lowercase , __lowercase) # Instantiate the model (we build the model here so that the seed also control new weights initialization) UpperCamelCase_ = AutoModelForSequenceClassification.from_pretrained('bert-base-cased' , return_dict=__lowercase) # We could avoid this line since the accelerator is set with `device_placement=True` (default value). # Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer # creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that). UpperCamelCase_ = model.to(accelerator.device) # Instantiate optimizer UpperCamelCase_ = AdamW(params=model.parameters() , lr=__lowercase) # Instantiate scheduler UpperCamelCase_ = get_linear_schedule_with_warmup( optimizer=__lowercase , num_warmup_steps=100 , num_training_steps=(len(__lowercase) * num_epochs) , ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ = accelerator.prepare( __lowercase , __lowercase , __lowercase , __lowercase , __lowercase) # Now we train the model for epoch in range(__lowercase): model.train() for step, batch in enumerate(__lowercase): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device) # New code # # We use the new `accumulate` context manager to perform gradient accumulation # We also currently do not support TPUs nor advise it as bugs were found on the XLA side when running our tests. with accelerator.accumulate(__lowercase): UpperCamelCase_ = model(**__lowercase) UpperCamelCase_ = output.loss accelerator.backward(__lowercase) optimizer.step() lr_scheduler.step() optimizer.zero_grad() model.eval() for step, batch in enumerate(__lowercase): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device) with torch.no_grad(): UpperCamelCase_ = model(**__lowercase) UpperCamelCase_ = outputs.logits.argmax(dim=-1) UpperCamelCase_ , UpperCamelCase_ = accelerator.gather_for_metrics((predictions, batch['labels'])) metric.add_batch( predictions=__lowercase , references=__lowercase , ) UpperCamelCase_ = metric.compute() # Use accelerator.print to print only on the main process. accelerator.print(f"""epoch {epoch}:""" , __lowercase) def _snake_case (): UpperCamelCase_ = argparse.ArgumentParser(description='Simple example of training script.') parser.add_argument( '--mixed_precision' , type=__lowercase , default=__lowercase , choices=['no', 'fp16', 'bf16', 'fp8'] , help='Whether to use mixed precision. Choose' 'between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10.' 'and an Nvidia Ampere GPU.' , ) # New Code # parser.add_argument( '--gradient_accumulation_steps' , type=__lowercase , default=1 , help='The number of minibatches to be ran before gradients are accumulated.' , ) parser.add_argument('--cpu' , action='store_true' , help='If passed, will train on the CPU.') UpperCamelCase_ = parser.parse_args() UpperCamelCase_ = {'lr': 2e-5, 'num_epochs': 3, 'seed': 42, 'batch_size': 16} training_function(__lowercase , __lowercase) if __name__ == "__main__": main()
23
0
from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging snake_case__ : List[str] = logging.get_logger(__name__) snake_case__ : Any = { """kssteven/ibert-roberta-base""": """https://huggingface.co/kssteven/ibert-roberta-base/resolve/main/config.json""", """kssteven/ibert-roberta-large""": """https://huggingface.co/kssteven/ibert-roberta-large/resolve/main/config.json""", """kssteven/ibert-roberta-large-mnli""": ( """https://huggingface.co/kssteven/ibert-roberta-large-mnli/resolve/main/config.json""" ), } class SCREAMING_SNAKE_CASE_ (UpperCAmelCase__ ): '''simple docstring''' _a = "ibert" def __init__( self : Tuple , __a : Tuple=30_522 , __a : Tuple=768 , __a : int=12 , __a : List[Any]=12 , __a : str=3_072 , __a : str="gelu" , __a : List[str]=0.1 , __a : List[str]=0.1 , __a : List[str]=512 , __a : List[str]=2 , __a : Optional[int]=0.02 , __a : Any=1e-12 , __a : List[Any]=1 , __a : Tuple=0 , __a : Tuple=2 , __a : Union[str, Any]="absolute" , __a : str=False , __a : Tuple="none" , **__a : Union[str, Any] , ) ->Tuple: super().__init__(pad_token_id=_UpperCAmelCase , bos_token_id=_UpperCAmelCase , eos_token_id=_UpperCAmelCase , **_UpperCAmelCase ) lowerCamelCase_ : Optional[int] = vocab_size lowerCamelCase_ : int = hidden_size lowerCamelCase_ : Any = num_hidden_layers lowerCamelCase_ : List[str] = num_attention_heads lowerCamelCase_ : Tuple = hidden_act lowerCamelCase_ : Any = intermediate_size lowerCamelCase_ : Any = hidden_dropout_prob lowerCamelCase_ : Dict = attention_probs_dropout_prob lowerCamelCase_ : Union[str, Any] = max_position_embeddings lowerCamelCase_ : Any = type_vocab_size lowerCamelCase_ : Optional[Any] = initializer_range lowerCamelCase_ : Union[str, Any] = layer_norm_eps lowerCamelCase_ : str = position_embedding_type lowerCamelCase_ : Tuple = quant_mode lowerCamelCase_ : Any = force_dequant class SCREAMING_SNAKE_CASE_ (UpperCAmelCase__ ): '''simple docstring''' @property def _lowerCAmelCase ( self : Dict ) ->Mapping[str, Mapping[int, str]]: if self.task == "multiple-choice": lowerCamelCase_ : int = {0: """batch""", 1: """choice""", 2: """sequence"""} else: lowerCamelCase_ : List[str] = {0: """batch""", 1: """sequence"""} return OrderedDict( [ ("""input_ids""", dynamic_axis), ("""attention_mask""", dynamic_axis), ] )
278
import inspect import unittest import numpy as np from tests.test_modeling_common import floats_tensor from transformers import MaskaFormerConfig, is_torch_available, is_vision_available from transformers.testing_utils import require_torch, require_torch_multi_gpu, require_vision, slow, torch_device from transformers.utils import cached_property from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import MaskaFormerForUniversalSegmentation, MaskaFormerModel if is_vision_available(): from transformers import MaskaFormerImageProcessor if is_vision_available(): from PIL import Image class _a : """simple docstring""" def __init__( self , _UpperCAmelCase , _UpperCAmelCase=2 , _UpperCAmelCase=True , _UpperCAmelCase=False , _UpperCAmelCase=10 , _UpperCAmelCase=3 , _UpperCAmelCase=32 * 8 , _UpperCAmelCase=32 * 8 , _UpperCAmelCase=4 , _UpperCAmelCase=64 , ) -> List[Any]: UpperCamelCase_ = parent UpperCamelCase_ = batch_size UpperCamelCase_ = is_training UpperCamelCase_ = use_auxiliary_loss UpperCamelCase_ = num_queries UpperCamelCase_ = num_channels UpperCamelCase_ = min_size UpperCamelCase_ = max_size UpperCamelCase_ = num_labels UpperCamelCase_ = hidden_dim UpperCamelCase_ = hidden_dim def _UpperCAmelCase ( self ) -> List[str]: UpperCamelCase_ = floats_tensor([self.batch_size, self.num_channels, self.min_size, self.max_size] ).to( _UpperCAmelCase ) UpperCamelCase_ = torch.ones([self.batch_size, self.min_size, self.max_size] , device=_UpperCAmelCase ) UpperCamelCase_ = ( torch.rand([self.batch_size, self.num_labels, self.min_size, self.max_size] , device=_UpperCAmelCase ) > 0.5 ).float() UpperCamelCase_ = (torch.rand((self.batch_size, self.num_labels) , device=_UpperCAmelCase ) > 0.5).long() UpperCamelCase_ = self.get_config() return config, pixel_values, pixel_mask, mask_labels, class_labels def _UpperCAmelCase ( self ) -> Optional[int]: UpperCamelCase_ = MaskaFormerConfig( hidden_size=self.hidden_dim , ) UpperCamelCase_ = self.num_queries UpperCamelCase_ = self.num_labels UpperCamelCase_ = [1, 1, 1, 1] UpperCamelCase_ = self.num_channels UpperCamelCase_ = 64 UpperCamelCase_ = 128 UpperCamelCase_ = self.hidden_dim UpperCamelCase_ = self.hidden_dim UpperCamelCase_ = self.hidden_dim return config def _UpperCAmelCase ( self ) -> Dict: UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ = self.prepare_config_and_inputs() UpperCamelCase_ = {'pixel_values': pixel_values, 'pixel_mask': pixel_mask} return config, inputs_dict def _UpperCAmelCase ( self , _UpperCAmelCase , _UpperCAmelCase ) -> List[Any]: UpperCamelCase_ = output.encoder_hidden_states UpperCamelCase_ = output.pixel_decoder_hidden_states UpperCamelCase_ = output.transformer_decoder_hidden_states self.parent.assertTrue(len(_UpperCAmelCase ) , len(config.backbone_config.depths ) ) self.parent.assertTrue(len(_UpperCAmelCase ) , len(config.backbone_config.depths ) ) self.parent.assertTrue(len(_UpperCAmelCase ) , config.decoder_layers ) def _UpperCAmelCase ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase=False ) -> Any: with torch.no_grad(): UpperCamelCase_ = MaskaFormerModel(config=_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() UpperCamelCase_ = model(pixel_values=_UpperCAmelCase , pixel_mask=_UpperCAmelCase ) UpperCamelCase_ = model(_UpperCAmelCase , output_hidden_states=_UpperCAmelCase ) self.parent.assertEqual( output.transformer_decoder_last_hidden_state.shape , (self.batch_size, self.num_queries, self.hidden_dim) , ) # let's ensure the other two hidden state exists self.parent.assertTrue(output.pixel_decoder_last_hidden_state is not None ) self.parent.assertTrue(output.encoder_last_hidden_state is not None ) if output_hidden_states: self.check_output_hidden_state(_UpperCAmelCase , _UpperCAmelCase ) def _UpperCAmelCase ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) -> Union[str, Any]: UpperCamelCase_ = MaskaFormerForUniversalSegmentation(config=_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() def comm_check_on_output(_UpperCAmelCase ): # let's still check that all the required stuff is there self.parent.assertTrue(result.transformer_decoder_last_hidden_state is not None ) self.parent.assertTrue(result.pixel_decoder_last_hidden_state is not None ) self.parent.assertTrue(result.encoder_last_hidden_state is not None ) # okay, now we need to check the logits shape # due to the encoder compression, masks have a //4 spatial size self.parent.assertEqual( result.masks_queries_logits.shape , (self.batch_size, self.num_queries, self.min_size // 4, self.max_size // 4) , ) # + 1 for null class self.parent.assertEqual( result.class_queries_logits.shape , (self.batch_size, self.num_queries, self.num_labels + 1) ) with torch.no_grad(): UpperCamelCase_ = model(pixel_values=_UpperCAmelCase , pixel_mask=_UpperCAmelCase ) UpperCamelCase_ = model(_UpperCAmelCase ) comm_check_on_output(_UpperCAmelCase ) UpperCamelCase_ = model( pixel_values=_UpperCAmelCase , pixel_mask=_UpperCAmelCase , mask_labels=_UpperCAmelCase , class_labels=_UpperCAmelCase ) comm_check_on_output(_UpperCAmelCase ) self.parent.assertTrue(result.loss is not None ) self.parent.assertEqual(result.loss.shape , torch.Size([1] ) ) @require_torch class _a ( UpperCAmelCase__ , UpperCAmelCase__ , unittest.TestCase ): """simple docstring""" A_ = (MaskaFormerModel, MaskaFormerForUniversalSegmentation) if is_torch_available() else () A_ = {"""feature-extraction""": MaskaFormerModel} if is_torch_available() else {} A_ = False A_ = False A_ = False A_ = False def _UpperCAmelCase ( self ) -> Optional[Any]: UpperCamelCase_ = MaskaFormerModelTester(self ) UpperCamelCase_ = ConfigTester(self , config_class=_UpperCAmelCase , has_text_modality=_UpperCAmelCase ) def _UpperCAmelCase ( self ) -> Union[str, Any]: self.config_tester.run_common_tests() def _UpperCAmelCase ( self ) -> Union[str, Any]: UpperCamelCase_ , UpperCamelCase_ = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.create_and_check_maskaformer_model(_UpperCAmelCase , **_UpperCAmelCase , output_hidden_states=_UpperCAmelCase ) def _UpperCAmelCase ( self ) -> List[Any]: UpperCamelCase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_maskaformer_instance_segmentation_head_model(*_UpperCAmelCase ) @unittest.skip(reason='Mask2Former does not use inputs_embeds' ) def _UpperCAmelCase ( self ) -> Any: pass @unittest.skip(reason='Mask2Former does not have a get_input_embeddings method' ) def _UpperCAmelCase ( self ) -> Optional[int]: pass @unittest.skip(reason='Mask2Former is not a generative model' ) def _UpperCAmelCase ( self ) -> Any: pass @unittest.skip(reason='Mask2Former does not use token embeddings' ) def _UpperCAmelCase ( self ) -> Optional[Any]: pass @require_torch_multi_gpu @unittest.skip( reason='Mask2Former has some layers using `add_module` which doesn\'t work well with `nn.DataParallel`' ) def _UpperCAmelCase ( self ) -> int: pass @unittest.skip('Will be fixed soon by reducing the size of the model used for common tests.' ) def _UpperCAmelCase ( self ) -> str: pass def _UpperCAmelCase ( self ) -> Optional[int]: UpperCamelCase_ , UpperCamelCase_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCamelCase_ = model_class(_UpperCAmelCase ) UpperCamelCase_ = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic UpperCamelCase_ = [*signature.parameters.keys()] UpperCamelCase_ = ['pixel_values'] self.assertListEqual(arg_names[:1] , _UpperCAmelCase ) @slow def _UpperCAmelCase ( self ) -> Tuple: for model_name in ["facebook/mask2former-swin-small-coco-instance"]: UpperCamelCase_ = MaskaFormerModel.from_pretrained(_UpperCAmelCase ) self.assertIsNotNone(_UpperCAmelCase ) def _UpperCAmelCase ( self ) -> Dict: UpperCamelCase_ = (self.model_tester.min_size,) * 2 UpperCamelCase_ = { 'pixel_values': torch.randn((2, 3, *size) , device=_UpperCAmelCase ), 'mask_labels': torch.randn((2, 10, *size) , device=_UpperCAmelCase ), 'class_labels': torch.zeros(2 , 10 , device=_UpperCAmelCase ).long(), } UpperCamelCase_ = self.model_tester.get_config() UpperCamelCase_ = MaskaFormerForUniversalSegmentation(_UpperCAmelCase ).to(_UpperCAmelCase ) UpperCamelCase_ = model(**_UpperCAmelCase ) self.assertTrue(outputs.loss is not None ) def _UpperCAmelCase ( self ) -> str: UpperCamelCase_ , UpperCamelCase_ = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.create_and_check_maskaformer_model(_UpperCAmelCase , **_UpperCAmelCase , output_hidden_states=_UpperCAmelCase ) def _UpperCAmelCase ( self ) -> Optional[int]: UpperCamelCase_ , UpperCamelCase_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCamelCase_ = model_class(_UpperCAmelCase ).to(_UpperCAmelCase ) UpperCamelCase_ = model(**_UpperCAmelCase , output_attentions=_UpperCAmelCase ) self.assertTrue(outputs.attentions is not None ) def _UpperCAmelCase ( self ) -> List[Any]: if not self.model_tester.is_training: return UpperCamelCase_ = self.all_model_classes[1] UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ = self.model_tester.prepare_config_and_inputs() UpperCamelCase_ = model_class(_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.train() UpperCamelCase_ = model(_UpperCAmelCase , mask_labels=_UpperCAmelCase , class_labels=_UpperCAmelCase ).loss loss.backward() def _UpperCAmelCase ( self ) -> int: UpperCamelCase_ = self.all_model_classes[1] UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ = self.model_tester.prepare_config_and_inputs() UpperCamelCase_ = True UpperCamelCase_ = True UpperCamelCase_ = model_class(_UpperCAmelCase ).to(_UpperCAmelCase ) model.train() UpperCamelCase_ = model(_UpperCAmelCase , mask_labels=_UpperCAmelCase , class_labels=_UpperCAmelCase ) UpperCamelCase_ = outputs.encoder_hidden_states[0] encoder_hidden_states.retain_grad() UpperCamelCase_ = outputs.pixel_decoder_hidden_states[0] pixel_decoder_hidden_states.retain_grad() UpperCamelCase_ = outputs.transformer_decoder_hidden_states[0] transformer_decoder_hidden_states.retain_grad() UpperCamelCase_ = outputs.attentions[0] attentions.retain_grad() outputs.loss.backward(retain_graph=_UpperCAmelCase ) self.assertIsNotNone(encoder_hidden_states.grad ) self.assertIsNotNone(pixel_decoder_hidden_states.grad ) self.assertIsNotNone(transformer_decoder_hidden_states.grad ) self.assertIsNotNone(attentions.grad ) snake_case__ : List[Any] = 1E-4 def _snake_case (): UpperCamelCase_ = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png') return image @require_vision @slow class _a ( unittest.TestCase ): """simple docstring""" @cached_property def _UpperCAmelCase ( self ) -> Optional[int]: return "facebook/mask2former-swin-small-coco-instance" @cached_property def _UpperCAmelCase ( self ) -> List[str]: return MaskaFormerImageProcessor.from_pretrained(self.model_checkpoints ) if is_vision_available() else None def _UpperCAmelCase ( self ) -> str: UpperCamelCase_ = MaskaFormerModel.from_pretrained(self.model_checkpoints ).to(_UpperCAmelCase ) UpperCamelCase_ = self.default_image_processor UpperCamelCase_ = prepare_img() UpperCamelCase_ = image_processor(_UpperCAmelCase , return_tensors='pt' ).to(_UpperCAmelCase ) UpperCamelCase_ = inputs['pixel_values'].shape # check size is divisible by 32 self.assertTrue((inputs_shape[-1] % 32) == 0 and (inputs_shape[-2] % 32) == 0 ) # check size self.assertEqual(_UpperCAmelCase , (1, 3, 384, 384) ) with torch.no_grad(): UpperCamelCase_ = model(**_UpperCAmelCase ) UpperCamelCase_ = torch.tensor( [[-0.2_7_9_0, -1.0_7_1_7, -1.1_6_6_8], [-0.5_1_2_8, -0.3_1_2_8, -0.4_9_8_7], [-0.5_8_3_2, 0.1_9_7_1, -0.0_1_9_7]] ).to(_UpperCAmelCase ) self.assertTrue( torch.allclose( outputs.encoder_last_hidden_state[0, 0, :3, :3] , _UpperCAmelCase , atol=_UpperCAmelCase ) ) UpperCamelCase_ = torch.tensor( [[0.8_9_7_3, 1.1_8_4_7, 1.1_7_7_6], [1.1_9_3_4, 1.5_0_4_0, 1.5_1_2_8], [1.1_1_5_3, 1.4_4_8_6, 1.4_9_5_1]] ).to(_UpperCAmelCase ) self.assertTrue( torch.allclose( outputs.pixel_decoder_last_hidden_state[0, 0, :3, :3] , _UpperCAmelCase , atol=_UpperCAmelCase ) ) UpperCamelCase_ = torch.tensor( [[2.1_1_5_2, 1.7_0_0_0, -0.8_6_0_3], [1.5_8_0_8, 1.8_0_0_4, -0.9_3_5_3], [1.6_0_4_3, 1.7_4_9_5, -0.5_9_9_9]] ).to(_UpperCAmelCase ) self.assertTrue( torch.allclose( outputs.transformer_decoder_last_hidden_state[0, :3, :3] , _UpperCAmelCase , atol=_UpperCAmelCase ) ) def _UpperCAmelCase ( self ) -> Optional[Any]: UpperCamelCase_ = MaskaFormerForUniversalSegmentation.from_pretrained(self.model_checkpoints ).to(_UpperCAmelCase ).eval() UpperCamelCase_ = self.default_image_processor UpperCamelCase_ = prepare_img() UpperCamelCase_ = image_processor(_UpperCAmelCase , return_tensors='pt' ).to(_UpperCAmelCase ) UpperCamelCase_ = inputs['pixel_values'].shape # check size is divisible by 32 self.assertTrue((inputs_shape[-1] % 32) == 0 and (inputs_shape[-2] % 32) == 0 ) # check size self.assertEqual(_UpperCAmelCase , (1, 3, 384, 384) ) with torch.no_grad(): UpperCamelCase_ = model(**_UpperCAmelCase ) # masks_queries_logits UpperCamelCase_ = outputs.masks_queries_logits self.assertEqual( masks_queries_logits.shape , (1, model.config.num_queries, inputs_shape[-2] // 4, inputs_shape[-1] // 4) ) UpperCamelCase_ = [ [-8.7_8_3_9, -9.0_0_5_6, -8.8_1_2_1], [-7.4_1_0_4, -7.0_3_1_3, -6.5_4_0_1], [-6.6_1_0_5, -6.3_4_2_7, -6.4_6_7_5], ] UpperCamelCase_ = torch.tensor(_UpperCAmelCase ).to(_UpperCAmelCase ) self.assertTrue(torch.allclose(masks_queries_logits[0, 0, :3, :3] , _UpperCAmelCase , atol=_UpperCAmelCase ) ) # class_queries_logits UpperCamelCase_ = outputs.class_queries_logits self.assertEqual(class_queries_logits.shape , (1, model.config.num_queries, model.config.num_labels + 1) ) UpperCamelCase_ = torch.tensor( [ [1.8_3_2_4, -8.0_8_3_5, -4.1_9_2_2], [0.8_4_5_0, -9.0_0_5_0, -3.6_0_5_3], [0.3_0_4_5, -7.7_2_9_3, -3.0_2_7_5], ] ).to(_UpperCAmelCase ) self.assertTrue(torch.allclose(outputs.class_queries_logits[0, :3, :3] , _UpperCAmelCase , atol=_UpperCAmelCase ) ) def _UpperCAmelCase ( self ) -> Dict: UpperCamelCase_ = MaskaFormerForUniversalSegmentation.from_pretrained(self.model_checkpoints ).to(_UpperCAmelCase ).eval() UpperCamelCase_ = self.default_image_processor UpperCamelCase_ = image_processor( [np.zeros((3, 800, 1333) ), np.zeros((3, 800, 1333) )] , segmentation_maps=[np.zeros((384, 384) ).astype(np.floataa ), np.zeros((384, 384) ).astype(np.floataa )] , return_tensors='pt' , ) UpperCamelCase_ = inputs['pixel_values'].to(_UpperCAmelCase ) UpperCamelCase_ = [el.to(_UpperCAmelCase ) for el in inputs['mask_labels']] UpperCamelCase_ = [el.to(_UpperCAmelCase ) for el in inputs['class_labels']] with torch.no_grad(): UpperCamelCase_ = model(**_UpperCAmelCase ) self.assertTrue(outputs.loss is not None )
23
0
'''simple docstring''' from ...utils import ( OptionalDependencyNotAvailable, is_torch_available, is_transformers_available, is_transformers_version, ) try: if not (is_transformers_available() and is_torch_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import KandinskyPipeline, KandinskyPriorPipeline else: from .pipeline_kandinsky import KandinskyPipeline from .pipeline_kandinsky_imgaimg import KandinskyImgaImgPipeline from .pipeline_kandinsky_inpaint import KandinskyInpaintPipeline from .pipeline_kandinsky_prior import KandinskyPriorPipeline, KandinskyPriorPipelineOutput from .text_encoder import MultilingualCLIP
435
import copy from typing import TYPE_CHECKING, Any, Mapping, Optional, OrderedDict from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging from ..auto.configuration_auto import AutoConfig if TYPE_CHECKING: from ... import PreTrainedTokenizerBase, TensorType snake_case__ : List[str] = logging.get_logger(__name__) class _a ( UpperCAmelCase__ ): """simple docstring""" A_ = """vision-encoder-decoder""" A_ = True def __init__( self , **_UpperCAmelCase ) -> Dict: super().__init__(**_UpperCAmelCase ) if "encoder" not in kwargs or "decoder" not in kwargs: raise ValueError( f"""A configuraton of type {self.model_type} cannot be instantiated because """ f"""not both `encoder` and `decoder` sub-configurations are passed, but only {kwargs}""" ) UpperCamelCase_ = kwargs.pop('encoder' ) UpperCamelCase_ = encoder_config.pop('model_type' ) UpperCamelCase_ = kwargs.pop('decoder' ) UpperCamelCase_ = decoder_config.pop('model_type' ) UpperCamelCase_ = AutoConfig.for_model(_UpperCAmelCase , **_UpperCAmelCase ) UpperCamelCase_ = AutoConfig.for_model(_UpperCAmelCase , **_UpperCAmelCase ) UpperCamelCase_ = True @classmethod def _UpperCAmelCase ( cls , _UpperCAmelCase , _UpperCAmelCase , **_UpperCAmelCase ) -> PretrainedConfig: logger.info('Setting `config.is_decoder=True` and `config.add_cross_attention=True` for decoder_config' ) UpperCamelCase_ = True UpperCamelCase_ = True return cls(encoder=encoder_config.to_dict() , decoder=decoder_config.to_dict() , **_UpperCAmelCase ) def _UpperCAmelCase ( self ) -> int: UpperCamelCase_ = copy.deepcopy(self.__dict__ ) UpperCamelCase_ = self.encoder.to_dict() UpperCamelCase_ = self.decoder.to_dict() UpperCamelCase_ = self.__class__.model_type return output class _a ( UpperCAmelCase__ ): """simple docstring""" A_ = version.parse("""1.11""" ) @property def _UpperCAmelCase ( self ) -> Mapping[str, Mapping[int, str]]: return OrderedDict( [ ('pixel_values', {0: 'batch', 1: 'num_channels', 2: 'height', 3: 'width'}), ] ) @property def _UpperCAmelCase ( self ) -> float: return 1e-4 @property def _UpperCAmelCase ( self ) -> Mapping[str, Mapping[int, str]]: return OrderedDict({'last_hidden_state': {0: 'batch', 1: 'encoder_sequence'}} ) class _a ( UpperCAmelCase__ ): """simple docstring""" @property def _UpperCAmelCase ( self ) -> Mapping[str, Mapping[int, str]]: UpperCamelCase_ = OrderedDict() UpperCamelCase_ = {0: 'batch', 1: 'past_decoder_sequence + sequence'} UpperCamelCase_ = {0: 'batch', 1: 'past_decoder_sequence + sequence'} UpperCamelCase_ = {0: 'batch', 1: 'encoder_sequence'} return common_inputs def _UpperCAmelCase ( self , _UpperCAmelCase , _UpperCAmelCase = -1 , _UpperCAmelCase = -1 , _UpperCAmelCase = False , _UpperCAmelCase = None , ) -> Mapping[str, Any]: import torch UpperCamelCase_ = OrderedDict() UpperCamelCase_ = super().generate_dummy_inputs( _UpperCAmelCase , batch_size=_UpperCAmelCase , seq_length=_UpperCAmelCase , is_pair=_UpperCAmelCase , framework=_UpperCAmelCase ) UpperCamelCase_ , UpperCamelCase_ = dummy_input['input_ids'].shape UpperCamelCase_ = (batch, encoder_sequence, self._config.encoder_hidden_size) UpperCamelCase_ = dummy_input.pop('input_ids' ) UpperCamelCase_ = dummy_input.pop('attention_mask' ) UpperCamelCase_ = torch.zeros(_UpperCAmelCase ) return common_inputs class _a ( UpperCAmelCase__ ): """simple docstring""" @property def _UpperCAmelCase ( self ) -> None: pass def _UpperCAmelCase ( self , _UpperCAmelCase ) -> OnnxConfig: return VisionEncoderDecoderEncoderOnnxConfig(_UpperCAmelCase ) def _UpperCAmelCase ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase = "default" ) -> OnnxConfig: UpperCamelCase_ = encoder_config.hidden_size return VisionEncoderDecoderDecoderOnnxConfig(_UpperCAmelCase , _UpperCAmelCase )
23
0
'''simple docstring''' def A_( A : List[Any] , A : int , A : Any , A : Dict , A : str): if index == number_of_items: return 0 UpperCamelCase = 0 UpperCamelCase = 0 UpperCamelCase = knapsack(__lowercase , __lowercase , __lowercase , __lowercase , index + 1) if weights[index] <= max_weight: UpperCamelCase = values[index] + knapsack( __lowercase , __lowercase , __lowercase , max_weight - weights[index] , index + 1) return max(__lowercase , __lowercase) if __name__ == "__main__": import doctest doctest.testmod()
3
import argparse import torch from transformers import MobileBertConfig, MobileBertForPreTraining, load_tf_weights_in_mobilebert from transformers.utils import logging logging.set_verbosity_info() def _snake_case (__lowercase , __lowercase , __lowercase): # Initialise PyTorch model UpperCamelCase_ = MobileBertConfig.from_json_file(__lowercase) print(f"""Building PyTorch model from configuration: {config}""") UpperCamelCase_ = MobileBertForPreTraining(__lowercase) # Load weights from tf checkpoint UpperCamelCase_ = load_tf_weights_in_mobilebert(__lowercase , __lowercase , __lowercase) # Save pytorch-model print(f"""Save PyTorch model to {pytorch_dump_path}""") torch.save(model.state_dict() , __lowercase) if __name__ == "__main__": snake_case__ : int = argparse.ArgumentParser() # Required parameters parser.add_argument( """--tf_checkpoint_path""", default=None, type=str, required=True, help="""Path to the TensorFlow checkpoint path.""" ) parser.add_argument( """--mobilebert_config_file""", default=None, type=str, required=True, help=( """The config json file corresponding to the pre-trained MobileBERT model. \n""" """This specifies the model architecture.""" ), ) parser.add_argument( """--pytorch_dump_path""", default=None, type=str, required=True, help="""Path to the output PyTorch model.""" ) snake_case__ : Optional[Any] = parser.parse_args() convert_tf_checkpoint_to_pytorch(args.tf_checkpoint_path, args.mobilebert_config_file, args.pytorch_dump_path)
23
0
'''simple docstring''' import argparse import glob import logging import os import sys import time from collections import defaultdict from pathlib import Path from typing import Dict, List, Tuple import numpy as np import pytorch_lightning as pl import torch from callbacks import SeqaSeqLoggingCallback, get_checkpoint_callback, get_early_stopping_callback from torch import nn from torch.utils.data import DataLoader from transformers import MBartTokenizer, TaForConditionalGeneration from transformers.models.bart.modeling_bart import shift_tokens_right from utils import ( ROUGE_KEYS, LegacySeqaSeqDataset, SeqaSeqDataset, assert_all_frozen, calculate_bleu, calculate_rouge, check_output_dir, flatten_list, freeze_embeds, freeze_params, get_git_info, label_smoothed_nll_loss, lmap, pickle_save, save_git_info, save_json, use_task_specific_params, ) # need the parent dir module sys.path.insert(2, str(Path(__file__).resolve().parents[1])) from lightning_base import BaseTransformer, add_generic_args, generic_train # noqa a : str = logging.getLogger(__name__) class SCREAMING_SNAKE_CASE__ ( UpperCAmelCase__ ): __SCREAMING_SNAKE_CASE = """summarization""" __SCREAMING_SNAKE_CASE = ["""loss"""] __SCREAMING_SNAKE_CASE = ROUGE_KEYS __SCREAMING_SNAKE_CASE = """rouge2""" def __init__( self : Any , a_ : List[Any] , **a_ : Union[str, Any] ): """simple docstring""" if hparams.sortish_sampler and hparams.gpus > 1: __snake_case = False elif hparams.max_tokens_per_batch is not None: if hparams.gpus > 1: raise NotImplementedError("Dynamic Batch size does not work for multi-gpu training" ) if hparams.sortish_sampler: raise ValueError("--sortish_sampler and --max_tokens_per_batch may not be used simultaneously" ) super().__init__(_UpperCAmelCase , num_labels=_UpperCAmelCase , mode=self.mode , **_UpperCAmelCase ) use_task_specific_params(self.model , "summarization" ) save_git_info(self.hparams.output_dir ) __snake_case = Path(self.output_dir ) / "metrics.json" __snake_case = Path(self.output_dir ) / "hparams.pkl" pickle_save(self.hparams , self.hparams_save_path ) __snake_case = 0 __snake_case = defaultdict(_UpperCAmelCase ) __snake_case = self.config.model_type __snake_case = self.config.tgt_vocab_size if self.model_type == "fsmt" else self.config.vocab_size __snake_case = { "data_dir": self.hparams.data_dir, "max_source_length": self.hparams.max_source_length, "prefix": self.model.config.prefix or "", } __snake_case = { "train": self.hparams.n_train, "val": self.hparams.n_val, "test": self.hparams.n_test, } __snake_case = {k: v if v >= 0 else None for k, v in n_observations_per_split.items()} __snake_case = { "train": self.hparams.max_target_length, "val": self.hparams.val_max_target_length, "test": self.hparams.test_max_target_length, } assert self.target_lens["train"] <= self.target_lens["val"], f'''target_lens: {self.target_lens}''' assert self.target_lens["train"] <= self.target_lens["test"], f'''target_lens: {self.target_lens}''' if self.hparams.freeze_embeds: freeze_embeds(self.model ) if self.hparams.freeze_encoder: freeze_params(self.model.get_encoder() ) assert_all_frozen(self.model.get_encoder() ) __snake_case = get_git_info()["repo_sha"] __snake_case = hparams.num_workers __snake_case = None # default to config if self.model.config.decoder_start_token_id is None and isinstance(self.tokenizer , _UpperCAmelCase ): __snake_case = self.tokenizer.lang_code_to_id[hparams.tgt_lang] __snake_case = self.decoder_start_token_id __snake_case = ( SeqaSeqDataset if hasattr(self.tokenizer , "prepare_seq2seq_batch" ) else LegacySeqaSeqDataset ) __snake_case = False __snake_case = self.model.config.num_beams if self.hparams.eval_beams is None else self.hparams.eval_beams if self.hparams.eval_max_gen_length is not None: __snake_case = self.hparams.eval_max_gen_length else: __snake_case = self.model.config.max_length __snake_case = self.default_val_metric if self.hparams.val_metric is None else self.hparams.val_metric def A ( self : Dict , a_ : Tuple ): """simple docstring""" __snake_case = { k: self.tokenizer.batch_decode(v.tolist() ) if "mask" not in k else v.shape for k, v in batch.items() } save_json(_UpperCAmelCase , Path(self.output_dir ) / "text_batch.json" ) save_json({k: v.tolist() for k, v in batch.items()} , Path(self.output_dir ) / "tok_batch.json" ) __snake_case = True return readable_batch def A ( self : Optional[Any] , a_ : Optional[Any] , **a_ : int ): """simple docstring""" return self.model(_UpperCAmelCase , **_UpperCAmelCase ) def A ( self : Union[str, Any] , a_ : Any ): """simple docstring""" __snake_case = self.tokenizer.batch_decode( _UpperCAmelCase , skip_special_tokens=_UpperCAmelCase , clean_up_tokenization_spaces=_UpperCAmelCase ) return lmap(str.strip , _UpperCAmelCase ) def A ( self : Tuple , a_ : str ): """simple docstring""" __snake_case = self.tokenizer.pad_token_id __snake_case , __snake_case = batch["input_ids"], batch["attention_mask"] __snake_case = batch["labels"] if isinstance(self.model , _UpperCAmelCase ): __snake_case = self.model._shift_right(_UpperCAmelCase ) else: __snake_case = shift_tokens_right(_UpperCAmelCase , _UpperCAmelCase ) if not self.already_saved_batch: # This would be slightly better if it only happened on rank zero __snake_case = decoder_input_ids self.save_readable_batch(_UpperCAmelCase ) __snake_case = self(_UpperCAmelCase , attention_mask=_UpperCAmelCase , decoder_input_ids=_UpperCAmelCase , use_cache=_UpperCAmelCase ) __snake_case = outputs["logits"] if self.hparams.label_smoothing == 0: # Same behavior as modeling_bart.py, besides ignoring pad_token_id __snake_case = nn.CrossEntropyLoss(ignore_index=_UpperCAmelCase ) assert lm_logits.shape[-1] == self.vocab_size __snake_case = ce_loss_fct(lm_logits.view(-1 , lm_logits.shape[-1] ) , tgt_ids.view(-1 ) ) else: __snake_case = nn.functional.log_softmax(_UpperCAmelCase , dim=-1 ) __snake_case , __snake_case = label_smoothed_nll_loss( _UpperCAmelCase , _UpperCAmelCase , self.hparams.label_smoothing , ignore_index=_UpperCAmelCase ) return (loss,) @property def A ( self : Union[str, Any] ): """simple docstring""" return self.tokenizer.pad_token_id def A ( self : Optional[int] , a_ : str , a_ : Any ): """simple docstring""" __snake_case = self._step(_UpperCAmelCase ) __snake_case = dict(zip(self.loss_names , _UpperCAmelCase ) ) # tokens per batch __snake_case = batch["input_ids"].ne(self.pad ).sum() + batch["labels"].ne(self.pad ).sum() __snake_case = batch["input_ids"].shape[0] __snake_case = batch["input_ids"].eq(self.pad ).sum() __snake_case = batch["input_ids"].eq(self.pad ).float().mean() # TODO(SS): make a wandb summary metric for this return {"loss": loss_tensors[0], "log": logs} def A ( self : List[str] , a_ : Optional[Any] , a_ : str ): """simple docstring""" return self._generative_step(_UpperCAmelCase ) def A ( self : int , a_ : Tuple , a_ : List[Any]="val" ): """simple docstring""" self.step_count += 1 __snake_case = {k: torch.stack([x[k] for x in outputs] ).mean() for k in self.loss_names} __snake_case = losses["loss"] __snake_case = { k: np.array([x[k] for x in outputs] ).mean() for k in self.metric_names + ["gen_time", "gen_len"] } __snake_case = ( generative_metrics[self.val_metric] if self.val_metric in generative_metrics else losses[self.val_metric] ) __snake_case = torch.tensor(_UpperCAmelCase ).type_as(_UpperCAmelCase ) generative_metrics.update({k: v.item() for k, v in losses.items()} ) losses.update(_UpperCAmelCase ) __snake_case = {f'''{prefix}_avg_{k}''': x for k, x in losses.items()} __snake_case = self.step_count self.metrics[prefix].append(_UpperCAmelCase ) # callback writes this to self.metrics_save_path __snake_case = flatten_list([x["preds"] for x in outputs] ) return { "log": all_metrics, "preds": preds, f'''{prefix}_loss''': loss, f'''{prefix}_{self.val_metric}''': metric_tensor, } def A ( self : Union[str, Any] , a_ : int , a_ : int ): """simple docstring""" return calculate_rouge(_UpperCAmelCase , _UpperCAmelCase ) def A ( self : Any , a_ : Optional[int] ): """simple docstring""" __snake_case = time.time() # parser.add_argument('--eval_max_gen_length', type=int, default=None, help='never generate more than n tokens') __snake_case = self.model.generate( batch["input_ids"] , attention_mask=batch["attention_mask"] , use_cache=_UpperCAmelCase , decoder_start_token_id=self.decoder_start_token_id , num_beams=self.eval_beams , max_length=self.eval_max_length , ) __snake_case = (time.time() - ta) / batch["input_ids"].shape[0] __snake_case = self.ids_to_clean_text(_UpperCAmelCase ) __snake_case = self.ids_to_clean_text(batch["labels"] ) __snake_case = self._step(_UpperCAmelCase ) __snake_case = dict(zip(self.loss_names , _UpperCAmelCase ) ) __snake_case = self.calc_generative_metrics(_UpperCAmelCase , _UpperCAmelCase ) __snake_case = np.mean(lmap(_UpperCAmelCase , _UpperCAmelCase ) ) base_metrics.update(gen_time=_UpperCAmelCase , gen_len=_UpperCAmelCase , preds=_UpperCAmelCase , target=_UpperCAmelCase , **_UpperCAmelCase ) return base_metrics def A ( self : List[str] , a_ : Optional[Any] , a_ : Any ): """simple docstring""" return self._generative_step(_UpperCAmelCase ) def A ( self : Dict , a_ : str ): """simple docstring""" return self.validation_epoch_end(_UpperCAmelCase , prefix="test" ) def A ( self : int , a_ : str ): """simple docstring""" __snake_case = self.n_obs[type_path] __snake_case = self.target_lens[type_path] __snake_case = self.dataset_class( self.tokenizer , type_path=_UpperCAmelCase , n_obs=_UpperCAmelCase , max_target_length=_UpperCAmelCase , **self.dataset_kwargs , ) return dataset def A ( self : List[str] , a_ : Tuple , a_ : List[Any] , a_ : Tuple = False ): """simple docstring""" __snake_case = self.get_dataset(_UpperCAmelCase ) if self.hparams.sortish_sampler and type_path != "test" and type_path != "val": __snake_case = dataset.make_sortish_sampler(_UpperCAmelCase , distributed=self.hparams.gpus > 1 ) return DataLoader( _UpperCAmelCase , batch_size=_UpperCAmelCase , collate_fn=dataset.collate_fn , shuffle=_UpperCAmelCase , num_workers=self.num_workers , sampler=_UpperCAmelCase , ) elif self.hparams.max_tokens_per_batch is not None and type_path != "test" and type_path != "val": __snake_case = dataset.make_dynamic_sampler( self.hparams.max_tokens_per_batch , distributed=self.hparams.gpus > 1 ) return DataLoader( _UpperCAmelCase , batch_sampler=_UpperCAmelCase , collate_fn=dataset.collate_fn , num_workers=self.num_workers , ) else: return DataLoader( _UpperCAmelCase , batch_size=_UpperCAmelCase , collate_fn=dataset.collate_fn , shuffle=_UpperCAmelCase , num_workers=self.num_workers , sampler=_UpperCAmelCase , ) def A ( self : Optional[Any] ): """simple docstring""" __snake_case = self.get_dataloader("train" , batch_size=self.hparams.train_batch_size , shuffle=_UpperCAmelCase ) return dataloader def A ( self : Optional[int] ): """simple docstring""" return self.get_dataloader("val" , batch_size=self.hparams.eval_batch_size ) def A ( self : int ): """simple docstring""" return self.get_dataloader("test" , batch_size=self.hparams.eval_batch_size ) @staticmethod def A ( a_ : int , a_ : Optional[int] ): """simple docstring""" BaseTransformer.add_model_specific_args(_UpperCAmelCase , _UpperCAmelCase ) add_generic_args(_UpperCAmelCase , _UpperCAmelCase ) parser.add_argument( "--max_source_length" , default=1_024 , type=_UpperCAmelCase , help=( "The maximum total input sequence length after tokenization. Sequences longer " "than this will be truncated, sequences shorter will be padded." ) , ) parser.add_argument( "--max_target_length" , default=56 , type=_UpperCAmelCase , help=( "The maximum total input sequence length after tokenization. Sequences longer " "than this will be truncated, sequences shorter will be padded." ) , ) parser.add_argument( "--val_max_target_length" , default=142 , type=_UpperCAmelCase , help=( "The maximum total input sequence length after tokenization. Sequences longer " "than this will be truncated, sequences shorter will be padded." ) , ) parser.add_argument( "--test_max_target_length" , default=142 , type=_UpperCAmelCase , help=( "The maximum total input sequence length after tokenization. Sequences longer " "than this will be truncated, sequences shorter will be padded." ) , ) parser.add_argument("--freeze_encoder" , action="store_true" ) parser.add_argument("--freeze_embeds" , action="store_true" ) parser.add_argument("--sortish_sampler" , action="store_true" , default=_UpperCAmelCase ) parser.add_argument("--overwrite_output_dir" , action="store_true" , default=_UpperCAmelCase ) parser.add_argument("--max_tokens_per_batch" , type=_UpperCAmelCase , default=_UpperCAmelCase ) parser.add_argument("--logger_name" , type=_UpperCAmelCase , choices=["default", "wandb", "wandb_shared"] , default="default" ) parser.add_argument("--n_train" , type=_UpperCAmelCase , default=-1 , required=_UpperCAmelCase , help="# examples. -1 means use all." ) parser.add_argument("--n_val" , type=_UpperCAmelCase , default=500 , required=_UpperCAmelCase , help="# examples. -1 means use all." ) parser.add_argument("--n_test" , type=_UpperCAmelCase , default=-1 , required=_UpperCAmelCase , help="# examples. -1 means use all." ) parser.add_argument( "--task" , type=_UpperCAmelCase , default="summarization" , required=_UpperCAmelCase , help="# examples. -1 means use all." ) parser.add_argument("--label_smoothing" , type=_UpperCAmelCase , default=0.0 , required=_UpperCAmelCase ) parser.add_argument("--src_lang" , type=_UpperCAmelCase , default="" , required=_UpperCAmelCase ) parser.add_argument("--tgt_lang" , type=_UpperCAmelCase , default="" , required=_UpperCAmelCase ) parser.add_argument("--eval_beams" , type=_UpperCAmelCase , default=_UpperCAmelCase , required=_UpperCAmelCase ) parser.add_argument( "--val_metric" , type=_UpperCAmelCase , default=_UpperCAmelCase , required=_UpperCAmelCase , choices=["bleu", "rouge2", "loss", None] ) parser.add_argument("--eval_max_gen_length" , type=_UpperCAmelCase , default=_UpperCAmelCase , help="never generate more than n tokens" ) parser.add_argument("--save_top_k" , type=_UpperCAmelCase , default=1 , required=_UpperCAmelCase , help="How many checkpoints to save" ) parser.add_argument( "--early_stopping_patience" , type=_UpperCAmelCase , default=-1 , required=_UpperCAmelCase , help=( "-1 means never early stop. early_stopping_patience is measured in validation checks, not epochs. So" " val_check_interval will effect it." ) , ) return parser class SCREAMING_SNAKE_CASE__ ( UpperCAmelCase__ ): __SCREAMING_SNAKE_CASE = """translation""" __SCREAMING_SNAKE_CASE = ["""loss"""] __SCREAMING_SNAKE_CASE = ["""bleu"""] __SCREAMING_SNAKE_CASE = """bleu""" def __init__( self : str , a_ : Tuple , **a_ : Union[str, Any] ): """simple docstring""" super().__init__(_UpperCAmelCase , **_UpperCAmelCase ) __snake_case = hparams.src_lang __snake_case = hparams.tgt_lang def A ( self : Tuple , a_ : Union[str, Any] , a_ : int ): """simple docstring""" return calculate_bleu(_UpperCAmelCase , _UpperCAmelCase ) def __UpperCAmelCase ( _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : Tuple=None ) -> Dict: Path(args.output_dir ).mkdir(exist_ok=__lowercase ) check_output_dir(__lowercase , expected_items=3 ) if model is None: if "summarization" in args.task: __snake_case = SummarizationModule(__lowercase ) else: __snake_case = TranslationModule(__lowercase ) __snake_case = Path(args.data_dir ).name if ( args.logger_name == "default" or args.fast_dev_run or str(args.output_dir ).startswith("/tmp" ) or str(args.output_dir ).startswith("/var" ) ): __snake_case = True # don't pollute wandb logs unnecessarily elif args.logger_name == "wandb": from pytorch_lightning.loggers import WandbLogger __snake_case = os.environ.get("WANDB_PROJECT" , __lowercase ) __snake_case = WandbLogger(name=model.output_dir.name , project=__lowercase ) elif args.logger_name == "wandb_shared": from pytorch_lightning.loggers import WandbLogger __snake_case = WandbLogger(name=model.output_dir.name , project=F'''hf_{dataset}''' ) if args.early_stopping_patience >= 0: __snake_case = get_early_stopping_callback(model.val_metric , args.early_stopping_patience ) else: __snake_case = False __snake_case = args.val_metric == "loss" __snake_case = generic_train( __lowercase , __lowercase , logging_callback=SeqaSeqLoggingCallback() , checkpoint_callback=get_checkpoint_callback( args.output_dir , model.val_metric , args.save_top_k , __lowercase ) , early_stopping_callback=__lowercase , logger=__lowercase , ) pickle_save(model.hparams , model.output_dir / "hparams.pkl" ) if not args.do_predict: return model __snake_case = "" __snake_case = sorted(glob.glob(os.path.join(args.output_dir , "*.ckpt" ) , recursive=__lowercase ) ) if checkpoints: __snake_case = checkpoints[-1] __snake_case = checkpoints[-1] trainer.logger.log_hyperparams(model.hparams ) # test() without a model tests using the best checkpoint automatically trainer.test() return model if __name__ == "__main__": a : Union[str, Any] = argparse.ArgumentParser() a : Dict = pl.Trainer.add_argparse_args(parser) a : List[str] = SummarizationModule.add_model_specific_args(parser, os.getcwd()) a : Optional[Any] = parser.parse_args() main(args)
69
import gc import unittest from transformers import MODEL_FOR_MASKED_LM_MAPPING, TF_MODEL_FOR_MASKED_LM_MAPPING, FillMaskPipeline, pipeline from transformers.pipelines import PipelineException from transformers.testing_utils import ( is_pipeline_test, is_torch_available, nested_simplify, require_tf, require_torch, require_torch_gpu, slow, ) from .test_pipelines_common import ANY @is_pipeline_test class _a ( unittest.TestCase ): """simple docstring""" A_ = MODEL_FOR_MASKED_LM_MAPPING A_ = TF_MODEL_FOR_MASKED_LM_MAPPING def _UpperCAmelCase ( self ) -> List[str]: super().tearDown() # clean-up as much as possible GPU memory occupied by PyTorch gc.collect() if is_torch_available(): import torch torch.cuda.empty_cache() @require_tf def _UpperCAmelCase ( self ) -> str: UpperCamelCase_ = pipeline(task='fill-mask' , model='sshleifer/tiny-distilroberta-base' , top_k=2 , framework='tf' ) UpperCamelCase_ = unmasker('My name is <mask>' ) self.assertEqual( nested_simplify(_UpperCAmelCase , decimals=6 ) , [ {'sequence': 'My name is grouped', 'score': 2.1e-05, 'token': 38015, 'token_str': ' grouped'}, {'sequence': 'My name is accuser', 'score': 2.1e-05, 'token': 25506, 'token_str': ' accuser'}, ] , ) UpperCamelCase_ = unmasker('The largest city in France is <mask>' ) self.assertEqual( nested_simplify(_UpperCAmelCase , decimals=6 ) , [ { 'sequence': 'The largest city in France is grouped', 'score': 2.1e-05, 'token': 38015, 'token_str': ' grouped', }, { 'sequence': 'The largest city in France is accuser', 'score': 2.1e-05, 'token': 25506, 'token_str': ' accuser', }, ] , ) UpperCamelCase_ = unmasker('My name is <mask>' , targets=[' Patrick', ' Clara', ' Teven'] , top_k=3 ) self.assertEqual( nested_simplify(_UpperCAmelCase , decimals=6 ) , [ {'sequence': 'My name is Clara', 'score': 2e-05, 'token': 13606, 'token_str': ' Clara'}, {'sequence': 'My name is Patrick', 'score': 2e-05, 'token': 3499, 'token_str': ' Patrick'}, {'sequence': 'My name is Te', 'score': 1.9e-05, 'token': 2941, 'token_str': ' Te'}, ] , ) @require_torch def _UpperCAmelCase ( self ) -> Union[str, Any]: UpperCamelCase_ = pipeline(task='fill-mask' , model='sshleifer/tiny-distilroberta-base' , top_k=2 , framework='pt' ) UpperCamelCase_ = unmasker('My name is <mask>' ) self.assertEqual( nested_simplify(_UpperCAmelCase , decimals=6 ) , [ {'sequence': 'My name is Maul', 'score': 2.2e-05, 'token': 35676, 'token_str': ' Maul'}, {'sequence': 'My name isELS', 'score': 2.2e-05, 'token': 16416, 'token_str': 'ELS'}, ] , ) UpperCamelCase_ = unmasker('The largest city in France is <mask>' ) self.assertEqual( nested_simplify(_UpperCAmelCase , decimals=6 ) , [ { 'sequence': 'The largest city in France is Maul', 'score': 2.2e-05, 'token': 35676, 'token_str': ' Maul', }, {'sequence': 'The largest city in France isELS', 'score': 2.2e-05, 'token': 16416, 'token_str': 'ELS'}, ] , ) UpperCamelCase_ = unmasker('My name is <mask>' , targets=[' Patrick', ' Clara', ' Teven'] , top_k=3 ) self.assertEqual( nested_simplify(_UpperCAmelCase , decimals=6 ) , [ {'sequence': 'My name is Patrick', 'score': 2.1e-05, 'token': 3499, 'token_str': ' Patrick'}, {'sequence': 'My name is Te', 'score': 2e-05, 'token': 2941, 'token_str': ' Te'}, {'sequence': 'My name is Clara', 'score': 2e-05, 'token': 13606, 'token_str': ' Clara'}, ] , ) UpperCamelCase_ = unmasker('My name is <mask> <mask>' , top_k=2 ) self.assertEqual( nested_simplify(_UpperCAmelCase , decimals=6 ) , [ [ { 'score': 2.2e-05, 'token': 35676, 'token_str': ' Maul', 'sequence': '<s>My name is Maul<mask></s>', }, {'score': 2.2e-05, 'token': 16416, 'token_str': 'ELS', 'sequence': '<s>My name isELS<mask></s>'}, ], [ { 'score': 2.2e-05, 'token': 35676, 'token_str': ' Maul', 'sequence': '<s>My name is<mask> Maul</s>', }, {'score': 2.2e-05, 'token': 16416, 'token_str': 'ELS', 'sequence': '<s>My name is<mask>ELS</s>'}, ], ] , ) @require_torch_gpu def _UpperCAmelCase ( self ) -> Optional[Any]: UpperCamelCase_ = pipeline('fill-mask' , model='hf-internal-testing/tiny-random-distilbert' , device=0 , framework='pt' ) # convert model to fp16 pipe.model.half() UpperCamelCase_ = pipe('Paris is the [MASK] of France.' ) # We actually don't care about the result, we just want to make sure # it works, meaning the float16 tensor got casted back to float32 # for postprocessing. self.assertIsInstance(_UpperCAmelCase , _UpperCAmelCase ) @slow @require_torch def _UpperCAmelCase ( self ) -> List[Any]: UpperCamelCase_ = pipeline(task='fill-mask' , model='distilroberta-base' , top_k=2 , framework='pt' ) self.run_large_test(_UpperCAmelCase ) @slow @require_tf def _UpperCAmelCase ( self ) -> Union[str, Any]: UpperCamelCase_ = pipeline(task='fill-mask' , model='distilroberta-base' , top_k=2 , framework='tf' ) self.run_large_test(_UpperCAmelCase ) def _UpperCAmelCase ( self , _UpperCAmelCase ) -> Tuple: UpperCamelCase_ = unmasker('My name is <mask>' ) self.assertEqual( nested_simplify(_UpperCAmelCase ) , [ {'sequence': 'My name is John', 'score': 0.0_0_8, 'token': 610, 'token_str': ' John'}, {'sequence': 'My name is Chris', 'score': 0.0_0_7, 'token': 1573, 'token_str': ' Chris'}, ] , ) UpperCamelCase_ = unmasker('The largest city in France is <mask>' ) self.assertEqual( nested_simplify(_UpperCAmelCase ) , [ { 'sequence': 'The largest city in France is Paris', 'score': 0.2_5_1, 'token': 2201, 'token_str': ' Paris', }, { 'sequence': 'The largest city in France is Lyon', 'score': 0.2_1_4, 'token': 12790, 'token_str': ' Lyon', }, ] , ) UpperCamelCase_ = unmasker('My name is <mask>' , targets=[' Patrick', ' Clara', ' Teven'] , top_k=3 ) self.assertEqual( nested_simplify(_UpperCAmelCase ) , [ {'sequence': 'My name is Patrick', 'score': 0.0_0_5, 'token': 3499, 'token_str': ' Patrick'}, {'sequence': 'My name is Clara', 'score': 0.0_0_0, 'token': 13606, 'token_str': ' Clara'}, {'sequence': 'My name is Te', 'score': 0.0_0_0, 'token': 2941, 'token_str': ' Te'}, ] , ) @require_torch def _UpperCAmelCase ( self ) -> List[Any]: UpperCamelCase_ = pipeline(task='fill-mask' , model='sshleifer/tiny-distilroberta-base' , framework='pt' ) UpperCamelCase_ = None UpperCamelCase_ = None self.run_pipeline_test(_UpperCAmelCase , [] ) @require_tf def _UpperCAmelCase ( self ) -> Optional[int]: UpperCamelCase_ = pipeline(task='fill-mask' , model='sshleifer/tiny-distilroberta-base' , framework='tf' ) UpperCamelCase_ = None UpperCamelCase_ = None self.run_pipeline_test(_UpperCAmelCase , [] ) def _UpperCAmelCase ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) -> Optional[Any]: if tokenizer is None or tokenizer.mask_token_id is None: self.skipTest('The provided tokenizer has no mask token, (probably reformer or wav2vec2)' ) UpperCamelCase_ = FillMaskPipeline(model=_UpperCAmelCase , tokenizer=_UpperCAmelCase ) UpperCamelCase_ = [ f"""This is another {tokenizer.mask_token} test""", ] return fill_masker, examples def _UpperCAmelCase ( self , _UpperCAmelCase , _UpperCAmelCase ) -> Union[str, Any]: UpperCamelCase_ = fill_masker.tokenizer UpperCamelCase_ = fill_masker.model UpperCamelCase_ = fill_masker( f"""This is a {tokenizer.mask_token}""" , ) self.assertEqual( _UpperCAmelCase , [ {'sequence': ANY(_UpperCAmelCase ), 'score': ANY(_UpperCAmelCase ), 'token': ANY(_UpperCAmelCase ), 'token_str': ANY(_UpperCAmelCase )}, {'sequence': ANY(_UpperCAmelCase ), 'score': ANY(_UpperCAmelCase ), 'token': ANY(_UpperCAmelCase ), 'token_str': ANY(_UpperCAmelCase )}, {'sequence': ANY(_UpperCAmelCase ), 'score': ANY(_UpperCAmelCase ), 'token': ANY(_UpperCAmelCase ), 'token_str': ANY(_UpperCAmelCase )}, {'sequence': ANY(_UpperCAmelCase ), 'score': ANY(_UpperCAmelCase ), 'token': ANY(_UpperCAmelCase ), 'token_str': ANY(_UpperCAmelCase )}, {'sequence': ANY(_UpperCAmelCase ), 'score': ANY(_UpperCAmelCase ), 'token': ANY(_UpperCAmelCase ), 'token_str': ANY(_UpperCAmelCase )}, ] , ) UpperCamelCase_ = fill_masker([f"""This is a {tokenizer.mask_token}"""] ) self.assertEqual( _UpperCAmelCase , [ {'sequence': ANY(_UpperCAmelCase ), 'score': ANY(_UpperCAmelCase ), 'token': ANY(_UpperCAmelCase ), 'token_str': ANY(_UpperCAmelCase )}, {'sequence': ANY(_UpperCAmelCase ), 'score': ANY(_UpperCAmelCase ), 'token': ANY(_UpperCAmelCase ), 'token_str': ANY(_UpperCAmelCase )}, {'sequence': ANY(_UpperCAmelCase ), 'score': ANY(_UpperCAmelCase ), 'token': ANY(_UpperCAmelCase ), 'token_str': ANY(_UpperCAmelCase )}, {'sequence': ANY(_UpperCAmelCase ), 'score': ANY(_UpperCAmelCase ), 'token': ANY(_UpperCAmelCase ), 'token_str': ANY(_UpperCAmelCase )}, {'sequence': ANY(_UpperCAmelCase ), 'score': ANY(_UpperCAmelCase ), 'token': ANY(_UpperCAmelCase ), 'token_str': ANY(_UpperCAmelCase )}, ] , ) UpperCamelCase_ = fill_masker([f"""This is a {tokenizer.mask_token}""", f"""Another {tokenizer.mask_token} great test."""] ) self.assertEqual( _UpperCAmelCase , [ [ {'sequence': ANY(_UpperCAmelCase ), 'score': ANY(_UpperCAmelCase ), 'token': ANY(_UpperCAmelCase ), 'token_str': ANY(_UpperCAmelCase )}, {'sequence': ANY(_UpperCAmelCase ), 'score': ANY(_UpperCAmelCase ), 'token': ANY(_UpperCAmelCase ), 'token_str': ANY(_UpperCAmelCase )}, {'sequence': ANY(_UpperCAmelCase ), 'score': ANY(_UpperCAmelCase ), 'token': ANY(_UpperCAmelCase ), 'token_str': ANY(_UpperCAmelCase )}, {'sequence': ANY(_UpperCAmelCase ), 'score': ANY(_UpperCAmelCase ), 'token': ANY(_UpperCAmelCase ), 'token_str': ANY(_UpperCAmelCase )}, {'sequence': ANY(_UpperCAmelCase ), 'score': ANY(_UpperCAmelCase ), 'token': ANY(_UpperCAmelCase ), 'token_str': ANY(_UpperCAmelCase )}, ], [ {'sequence': ANY(_UpperCAmelCase ), 'score': ANY(_UpperCAmelCase ), 'token': ANY(_UpperCAmelCase ), 'token_str': ANY(_UpperCAmelCase )}, {'sequence': ANY(_UpperCAmelCase ), 'score': ANY(_UpperCAmelCase ), 'token': ANY(_UpperCAmelCase ), 'token_str': ANY(_UpperCAmelCase )}, {'sequence': ANY(_UpperCAmelCase ), 'score': ANY(_UpperCAmelCase ), 'token': ANY(_UpperCAmelCase ), 'token_str': ANY(_UpperCAmelCase )}, {'sequence': ANY(_UpperCAmelCase ), 'score': ANY(_UpperCAmelCase ), 'token': ANY(_UpperCAmelCase ), 'token_str': ANY(_UpperCAmelCase )}, {'sequence': ANY(_UpperCAmelCase ), 'score': ANY(_UpperCAmelCase ), 'token': ANY(_UpperCAmelCase ), 'token_str': ANY(_UpperCAmelCase )}, ], ] , ) with self.assertRaises(_UpperCAmelCase ): fill_masker([None] ) # No mask_token is not supported with self.assertRaises(_UpperCAmelCase ): fill_masker('This is' ) self.run_test_top_k(_UpperCAmelCase , _UpperCAmelCase ) self.run_test_targets(_UpperCAmelCase , _UpperCAmelCase ) self.run_test_top_k_targets(_UpperCAmelCase , _UpperCAmelCase ) self.fill_mask_with_duplicate_targets_and_top_k(_UpperCAmelCase , _UpperCAmelCase ) self.fill_mask_with_multiple_masks(_UpperCAmelCase , _UpperCAmelCase ) def _UpperCAmelCase ( self , _UpperCAmelCase , _UpperCAmelCase ) -> Optional[Any]: UpperCamelCase_ = tokenizer.get_vocab() UpperCamelCase_ = sorted(vocab.keys() )[:2] # Pipeline argument UpperCamelCase_ = FillMaskPipeline(model=_UpperCAmelCase , tokenizer=_UpperCAmelCase , targets=_UpperCAmelCase ) UpperCamelCase_ = fill_masker(f"""This is a {tokenizer.mask_token}""" ) self.assertEqual( _UpperCAmelCase , [ {'sequence': ANY(_UpperCAmelCase ), 'score': ANY(_UpperCAmelCase ), 'token': ANY(_UpperCAmelCase ), 'token_str': ANY(_UpperCAmelCase )}, {'sequence': ANY(_UpperCAmelCase ), 'score': ANY(_UpperCAmelCase ), 'token': ANY(_UpperCAmelCase ), 'token_str': ANY(_UpperCAmelCase )}, ] , ) UpperCamelCase_ = {vocab[el] for el in targets} self.assertEqual({el['token'] for el in outputs} , _UpperCAmelCase ) UpperCamelCase_ = [tokenizer.decode([x] ) for x in target_ids] self.assertEqual({el['token_str'] for el in outputs} , set(_UpperCAmelCase ) ) # Call argument UpperCamelCase_ = FillMaskPipeline(model=_UpperCAmelCase , tokenizer=_UpperCAmelCase ) UpperCamelCase_ = fill_masker(f"""This is a {tokenizer.mask_token}""" , targets=_UpperCAmelCase ) self.assertEqual( _UpperCAmelCase , [ {'sequence': ANY(_UpperCAmelCase ), 'score': ANY(_UpperCAmelCase ), 'token': ANY(_UpperCAmelCase ), 'token_str': ANY(_UpperCAmelCase )}, {'sequence': ANY(_UpperCAmelCase ), 'score': ANY(_UpperCAmelCase ), 'token': ANY(_UpperCAmelCase ), 'token_str': ANY(_UpperCAmelCase )}, ] , ) UpperCamelCase_ = {vocab[el] for el in targets} self.assertEqual({el['token'] for el in outputs} , _UpperCAmelCase ) UpperCamelCase_ = [tokenizer.decode([x] ) for x in target_ids] self.assertEqual({el['token_str'] for el in outputs} , set(_UpperCAmelCase ) ) # Score equivalence UpperCamelCase_ = fill_masker(f"""This is a {tokenizer.mask_token}""" , targets=_UpperCAmelCase ) UpperCamelCase_ = [top_mask['token_str'] for top_mask in outputs] UpperCamelCase_ = [top_mask['score'] for top_mask in outputs] # For some BPE tokenizers, `</w>` is removed during decoding, so `token_str` won't be the same as in `targets`. if set(_UpperCAmelCase ) == set(_UpperCAmelCase ): UpperCamelCase_ = fill_masker(f"""This is a {tokenizer.mask_token}""" , targets=_UpperCAmelCase ) UpperCamelCase_ = [top_mask['score'] for top_mask in unmasked_targets] self.assertEqual(nested_simplify(_UpperCAmelCase ) , nested_simplify(_UpperCAmelCase ) ) # Raises with invalid with self.assertRaises(_UpperCAmelCase ): UpperCamelCase_ = fill_masker(f"""This is a {tokenizer.mask_token}""" , targets=[] ) # For some tokenizers, `""` is actually in the vocabulary and the expected error won't raised if "" not in tokenizer.get_vocab(): with self.assertRaises(_UpperCAmelCase ): UpperCamelCase_ = fill_masker(f"""This is a {tokenizer.mask_token}""" , targets=[''] ) with self.assertRaises(_UpperCAmelCase ): UpperCamelCase_ = fill_masker(f"""This is a {tokenizer.mask_token}""" , targets='' ) def _UpperCAmelCase ( self , _UpperCAmelCase , _UpperCAmelCase ) -> Tuple: UpperCamelCase_ = FillMaskPipeline(model=_UpperCAmelCase , tokenizer=_UpperCAmelCase , top_k=2 ) UpperCamelCase_ = fill_masker(f"""This is a {tokenizer.mask_token}""" ) self.assertEqual( _UpperCAmelCase , [ {'sequence': ANY(_UpperCAmelCase ), 'score': ANY(_UpperCAmelCase ), 'token': ANY(_UpperCAmelCase ), 'token_str': ANY(_UpperCAmelCase )}, {'sequence': ANY(_UpperCAmelCase ), 'score': ANY(_UpperCAmelCase ), 'token': ANY(_UpperCAmelCase ), 'token_str': ANY(_UpperCAmelCase )}, ] , ) UpperCamelCase_ = FillMaskPipeline(model=_UpperCAmelCase , tokenizer=_UpperCAmelCase ) UpperCamelCase_ = fill_masker(f"""This is a {tokenizer.mask_token}""" , top_k=2 ) self.assertEqual( _UpperCAmelCase , [ {'sequence': ANY(_UpperCAmelCase ), 'score': ANY(_UpperCAmelCase ), 'token': ANY(_UpperCAmelCase ), 'token_str': ANY(_UpperCAmelCase )}, {'sequence': ANY(_UpperCAmelCase ), 'score': ANY(_UpperCAmelCase ), 'token': ANY(_UpperCAmelCase ), 'token_str': ANY(_UpperCAmelCase )}, ] , ) self.assertEqual(nested_simplify(_UpperCAmelCase ) , nested_simplify(_UpperCAmelCase ) ) def _UpperCAmelCase ( self , _UpperCAmelCase , _UpperCAmelCase ) -> List[Any]: UpperCamelCase_ = tokenizer.get_vocab() UpperCamelCase_ = FillMaskPipeline(model=_UpperCAmelCase , tokenizer=_UpperCAmelCase ) # top_k=2, ntargets=3 UpperCamelCase_ = sorted(vocab.keys() )[:3] UpperCamelCase_ = fill_masker(f"""This is a {tokenizer.mask_token}""" , top_k=2 , targets=_UpperCAmelCase ) # If we use the most probably targets, and filter differently, we should still # have the same results UpperCamelCase_ = [el['token_str'] for el in sorted(_UpperCAmelCase , key=lambda _UpperCAmelCase : x["score"] , reverse=_UpperCAmelCase )] # For some BPE tokenizers, `</w>` is removed during decoding, so `token_str` won't be the same as in `targets`. if set(_UpperCAmelCase ).issubset(_UpperCAmelCase ): UpperCamelCase_ = fill_masker(f"""This is a {tokenizer.mask_token}""" , top_k=3 , targets=_UpperCAmelCase ) # They should yield exactly the same result self.assertEqual(nested_simplify(_UpperCAmelCase ) , nested_simplify(_UpperCAmelCase ) ) def _UpperCAmelCase ( self , _UpperCAmelCase , _UpperCAmelCase ) -> Optional[int]: UpperCamelCase_ = FillMaskPipeline(model=_UpperCAmelCase , tokenizer=_UpperCAmelCase ) UpperCamelCase_ = tokenizer.get_vocab() # String duplicates + id duplicates UpperCamelCase_ = sorted(vocab.keys() )[:3] UpperCamelCase_ = [targets[0], targets[1], targets[0], targets[2], targets[1]] UpperCamelCase_ = fill_masker(f"""My name is {tokenizer.mask_token}""" , targets=_UpperCAmelCase , top_k=10 ) # The target list contains duplicates, so we can't output more # than them self.assertEqual(len(_UpperCAmelCase ) , 3 ) def _UpperCAmelCase ( self , _UpperCAmelCase , _UpperCAmelCase ) -> List[str]: UpperCamelCase_ = FillMaskPipeline(model=_UpperCAmelCase , tokenizer=_UpperCAmelCase ) UpperCamelCase_ = fill_masker( f"""This is a {tokenizer.mask_token} {tokenizer.mask_token} {tokenizer.mask_token}""" , top_k=2 ) self.assertEqual( _UpperCAmelCase , [ [ {'sequence': ANY(_UpperCAmelCase ), 'score': ANY(_UpperCAmelCase ), 'token': ANY(_UpperCAmelCase ), 'token_str': ANY(_UpperCAmelCase )}, {'sequence': ANY(_UpperCAmelCase ), 'score': ANY(_UpperCAmelCase ), 'token': ANY(_UpperCAmelCase ), 'token_str': ANY(_UpperCAmelCase )}, ], [ {'sequence': ANY(_UpperCAmelCase ), 'score': ANY(_UpperCAmelCase ), 'token': ANY(_UpperCAmelCase ), 'token_str': ANY(_UpperCAmelCase )}, {'sequence': ANY(_UpperCAmelCase ), 'score': ANY(_UpperCAmelCase ), 'token': ANY(_UpperCAmelCase ), 'token_str': ANY(_UpperCAmelCase )}, ], [ {'sequence': ANY(_UpperCAmelCase ), 'score': ANY(_UpperCAmelCase ), 'token': ANY(_UpperCAmelCase ), 'token_str': ANY(_UpperCAmelCase )}, {'sequence': ANY(_UpperCAmelCase ), 'score': ANY(_UpperCAmelCase ), 'token': ANY(_UpperCAmelCase ), 'token_str': ANY(_UpperCAmelCase )}, ], ] , )
23
0
import logging import os import sys from dataclasses import dataclass, field from itertools import chain from typing import Optional, Union import datasets import numpy as np import torch from datasets import load_dataset import transformers from transformers import ( AutoConfig, AutoModelForMultipleChoice, AutoTokenizer, HfArgumentParser, Trainer, TrainingArguments, default_data_collator, set_seed, ) from transformers.tokenization_utils_base import PreTrainedTokenizerBase from transformers.trainer_utils import get_last_checkpoint from transformers.utils import PaddingStrategy, check_min_version, send_example_telemetry # Will error if the minimal version of Transformers is not installed. Remove at your own risks. check_min_version('''4.31.0''') A__ : List[str] = logging.getLogger(__name__) @dataclass class __snake_case : _a = field( metadata={'''help''': '''Path to pretrained model or model identifier from huggingface.co/models'''} ) _a = field( default=UpperCAmelCase__ ,metadata={'''help''': '''Pretrained config name or path if not the same as model_name'''} ) _a = field( default=UpperCAmelCase__ ,metadata={'''help''': '''Pretrained tokenizer name or path if not the same as model_name'''} ) _a = field( default=UpperCAmelCase__ ,metadata={'''help''': '''Where do you want to store the pretrained models downloaded from huggingface.co'''} ,) _a = field( default=UpperCAmelCase__ ,metadata={'''help''': '''Whether to use one of the fast tokenizer (backed by the tokenizers library) or not.'''} ,) _a = field( default='''main''' ,metadata={'''help''': '''The specific model version to use (can be a branch name, tag name or commit id).'''} ,) _a = field( default=UpperCAmelCase__ ,metadata={ '''help''': ( '''Will use the token generated when running `huggingface-cli login` (necessary to use this script ''' '''with private models).''' ) } ,) @dataclass class __snake_case : _a = field(default=UpperCAmelCase__ ,metadata={'''help''': '''The input training data file (a text file).'''} ) _a = field( default=UpperCAmelCase__ ,metadata={'''help''': '''An optional input evaluation data file to evaluate the perplexity on (a text file).'''} ,) _a = field( default=UpperCAmelCase__ ,metadata={'''help''': '''Overwrite the cached training and evaluation sets'''} ) _a = field( default=UpperCAmelCase__ ,metadata={'''help''': '''The number of processes to use for the preprocessing.'''} ,) _a = field( default=UpperCAmelCase__ ,metadata={ '''help''': ( '''The maximum total input sequence length after tokenization. If passed, sequences longer ''' '''than this will be truncated, sequences shorter will be padded.''' ) } ,) _a = field( default=UpperCAmelCase__ ,metadata={ '''help''': ( '''Whether to pad all samples to the maximum sentence length. ''' '''If False, will pad the samples dynamically when batching to the maximum length in the batch. More ''' '''efficient on GPU but very bad for TPU.''' ) } ,) _a = field( default=UpperCAmelCase__ ,metadata={ '''help''': ( '''For debugging purposes or quicker training, truncate the number of training examples to this ''' '''value if set.''' ) } ,) _a = field( default=UpperCAmelCase__ ,metadata={ '''help''': ( '''For debugging purposes or quicker training, truncate the number of evaluation examples to this ''' '''value if set.''' ) } ,) def UpperCAmelCase__ ( self : Dict): if self.train_file is not None: lowerCAmelCase_ : Optional[Any] = self.train_file.split('''.''')[-1] assert extension in ["csv", "json"], "`train_file` should be a csv or a json file." if self.validation_file is not None: lowerCAmelCase_ : Dict = self.validation_file.split('''.''')[-1] assert extension in ["csv", "json"], "`validation_file` should be a csv or a json file." @dataclass class __snake_case : _a = 42 _a = True _a = None _a = None def __call__( self : List[Any] , A_ : Optional[int]): lowerCAmelCase_ : str = '''label''' if '''label''' in features[0].keys() else '''labels''' lowerCAmelCase_ : List[Any] = [feature.pop(_UpperCAmelCase) for feature in features] lowerCAmelCase_ : List[str] = len(_UpperCAmelCase) lowerCAmelCase_ : Tuple = len(features[0]['''input_ids''']) lowerCAmelCase_ : Any = [ [{k: v[i] for k, v in feature.items()} for i in range(_UpperCAmelCase)] for feature in features ] lowerCAmelCase_ : Optional[Any] = list(chain(*_UpperCAmelCase)) lowerCAmelCase_ : List[Any] = self.tokenizer.pad( _UpperCAmelCase , padding=self.padding , max_length=self.max_length , pad_to_multiple_of=self.pad_to_multiple_of , return_tensors='''pt''' , ) # Un-flatten lowerCAmelCase_ : Any = {k: v.view(_UpperCAmelCase , _UpperCAmelCase , -1) for k, v in batch.items()} # Add back labels lowerCAmelCase_ : int = torch.tensor(_UpperCAmelCase , dtype=torch.intaa) return batch def UpperCamelCase( ): # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. lowerCAmelCase_ : Dict = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith('''.json''' ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ : Dict = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ : Union[str, Any] = parser.parse_args_into_dataclasses() # Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The # information sent is the one passed as arguments along with your Python/PyTorch versions. send_example_telemetry('''run_swag''' ,__lowercase ,__lowercase ) # Setup logging logging.basicConfig( format='''%(asctime)s - %(levelname)s - %(name)s - %(message)s''' ,datefmt='''%m/%d/%Y %H:%M:%S''' ,handlers=[logging.StreamHandler(sys.stdout )] ,) if training_args.should_log: # The default of training_args.log_level is passive, so we set log level at info here to have that default. transformers.utils.logging.set_verbosity_info() lowerCAmelCase_ : Optional[int] = training_args.get_process_log_level() logger.setLevel(__lowercase ) datasets.utils.logging.set_verbosity(__lowercase ) transformers.utils.logging.set_verbosity(__lowercase ) transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() # Log on each process the small summary: logger.warning( f"""Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}""" + f"""distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}""" ) logger.info(f"""Training/evaluation parameters {training_args}""" ) # Detecting last checkpoint. lowerCAmelCase_ : List[Any] = None if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir: lowerCAmelCase_ : Any = get_last_checkpoint(training_args.output_dir ) if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0: raise ValueError( f"""Output directory ({training_args.output_dir}) already exists and is not empty. """ '''Use --overwrite_output_dir to overcome.''' ) elif last_checkpoint is not None and training_args.resume_from_checkpoint is None: logger.info( f"""Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change """ '''the `--output_dir` or add `--overwrite_output_dir` to train from scratch.''' ) # Set seed before initializing model. set_seed(training_args.seed ) # Get the datasets: you can either provide your own CSV/JSON/TXT training and evaluation files (see below) # or just provide the name of one of the public datasets available on the hub at https://huggingface.co/datasets/ # (the dataset will be downloaded automatically from the datasets Hub). # For CSV/JSON files, this script will use the column called 'text' or the first column if no column called # 'text' is found. You can easily tweak this behavior (see below). # In distributed training, the load_dataset function guarantee that only one local process can concurrently # download the dataset. if data_args.train_file is not None or data_args.validation_file is not None: lowerCAmelCase_ : Optional[int] = {} if data_args.train_file is not None: lowerCAmelCase_ : Tuple = data_args.train_file if data_args.validation_file is not None: lowerCAmelCase_ : Dict = data_args.validation_file lowerCAmelCase_ : Any = data_args.train_file.split('''.''' )[-1] lowerCAmelCase_ : Optional[int] = load_dataset( __lowercase ,data_files=__lowercase ,cache_dir=model_args.cache_dir ,use_auth_token=True if model_args.use_auth_token else None ,) else: # Downloading and loading the swag dataset from the hub. lowerCAmelCase_ : Optional[int] = load_dataset( '''swag''' ,'''regular''' ,cache_dir=model_args.cache_dir ,use_auth_token=True if model_args.use_auth_token else None ,) # See more about loading any type of standard or custom dataset (from files, python dict, pandas DataFrame, etc) at # https://huggingface.co/docs/datasets/loading_datasets.html. # Load pretrained model and tokenizer # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. lowerCAmelCase_ : Optional[Any] = AutoConfig.from_pretrained( model_args.config_name if model_args.config_name else model_args.model_name_or_path ,cache_dir=model_args.cache_dir ,revision=model_args.model_revision ,use_auth_token=True if model_args.use_auth_token else None ,) lowerCAmelCase_ : int = AutoTokenizer.from_pretrained( model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path ,cache_dir=model_args.cache_dir ,use_fast=model_args.use_fast_tokenizer ,revision=model_args.model_revision ,use_auth_token=True if model_args.use_auth_token else None ,) lowerCAmelCase_ : List[str] = AutoModelForMultipleChoice.from_pretrained( model_args.model_name_or_path ,from_tf=bool('''.ckpt''' in model_args.model_name_or_path ) ,config=__lowercase ,cache_dir=model_args.cache_dir ,revision=model_args.model_revision ,use_auth_token=True if model_args.use_auth_token else None ,) # When using your own dataset or a different dataset from swag, you will probably need to change this. lowerCAmelCase_ : List[str] = [f"""ending{i}""" for i in range(4 )] lowerCAmelCase_ : Optional[Any] = '''sent1''' lowerCAmelCase_ : List[Any] = '''sent2''' if data_args.max_seq_length is None: lowerCAmelCase_ : Tuple = tokenizer.model_max_length if max_seq_length > 1024: logger.warning( '''The chosen tokenizer supports a `model_max_length` that is longer than the default `block_size` value''' ''' of 1024. If you would like to use a longer `block_size` up to `tokenizer.model_max_length` you can''' ''' override this default with `--block_size xxx`.''' ) lowerCAmelCase_ : int = 1024 else: if data_args.max_seq_length > tokenizer.model_max_length: logger.warning( f"""The max_seq_length passed ({data_args.max_seq_length}) is larger than the maximum length for the""" f"""model ({tokenizer.model_max_length}). Using max_seq_length={tokenizer.model_max_length}.""" ) lowerCAmelCase_ : int = min(data_args.max_seq_length ,tokenizer.model_max_length ) # Preprocessing the datasets. def preprocess_function(__UpperCamelCase : List[str] ): lowerCAmelCase_ : List[str] = [[context] * 4 for context in examples[context_name]] lowerCAmelCase_ : Optional[int] = examples[question_header_name] lowerCAmelCase_ : Union[str, Any] = [ [f"""{header} {examples[end][i]}""" for end in ending_names] for i, header in enumerate(__lowercase ) ] # Flatten out lowerCAmelCase_ : int = list(chain(*__lowercase ) ) lowerCAmelCase_ : Any = list(chain(*__lowercase ) ) # Tokenize lowerCAmelCase_ : str = tokenizer( __lowercase ,__lowercase ,truncation=__lowercase ,max_length=__lowercase ,padding='''max_length''' if data_args.pad_to_max_length else False ,) # Un-flatten return {k: [v[i : i + 4] for i in range(0 ,len(__lowercase ) ,4 )] for k, v in tokenized_examples.items()} if training_args.do_train: if "train" not in raw_datasets: raise ValueError('''--do_train requires a train dataset''' ) lowerCAmelCase_ : Tuple = raw_datasets['''train'''] if data_args.max_train_samples is not None: lowerCAmelCase_ : Dict = min(len(__lowercase ) ,data_args.max_train_samples ) lowerCAmelCase_ : Dict = train_dataset.select(range(__lowercase ) ) with training_args.main_process_first(desc='''train dataset map pre-processing''' ): lowerCAmelCase_ : List[Any] = train_dataset.map( __lowercase ,batched=__lowercase ,num_proc=data_args.preprocessing_num_workers ,load_from_cache_file=not data_args.overwrite_cache ,) if training_args.do_eval: if "validation" not in raw_datasets: raise ValueError('''--do_eval requires a validation dataset''' ) lowerCAmelCase_ : Dict = raw_datasets['''validation'''] if data_args.max_eval_samples is not None: lowerCAmelCase_ : int = min(len(__lowercase ) ,data_args.max_eval_samples ) lowerCAmelCase_ : List[Any] = eval_dataset.select(range(__lowercase ) ) with training_args.main_process_first(desc='''validation dataset map pre-processing''' ): lowerCAmelCase_ : str = eval_dataset.map( __lowercase ,batched=__lowercase ,num_proc=data_args.preprocessing_num_workers ,load_from_cache_file=not data_args.overwrite_cache ,) # Data collator lowerCAmelCase_ : str = ( default_data_collator if data_args.pad_to_max_length else DataCollatorForMultipleChoice(tokenizer=__lowercase ,pad_to_multiple_of=8 if training_args.fpaa else None ) ) # Metric def compute_metrics(__UpperCamelCase : Union[str, Any] ): lowerCAmelCase_ , lowerCAmelCase_ : Dict = eval_predictions lowerCAmelCase_ : Optional[int] = np.argmax(__lowercase ,axis=1 ) return {"accuracy": (preds == label_ids).astype(np.floataa ).mean().item()} # Initialize our Trainer lowerCAmelCase_ : Optional[Any] = Trainer( model=__lowercase ,args=__lowercase ,train_dataset=train_dataset if training_args.do_train else None ,eval_dataset=eval_dataset if training_args.do_eval else None ,tokenizer=__lowercase ,data_collator=__lowercase ,compute_metrics=__lowercase ,) # Training if training_args.do_train: lowerCAmelCase_ : int = None if training_args.resume_from_checkpoint is not None: lowerCAmelCase_ : Optional[int] = training_args.resume_from_checkpoint elif last_checkpoint is not None: lowerCAmelCase_ : Dict = last_checkpoint lowerCAmelCase_ : List[str] = trainer.train(resume_from_checkpoint=__lowercase ) trainer.save_model() # Saves the tokenizer too for easy upload lowerCAmelCase_ : List[Any] = train_result.metrics lowerCAmelCase_ : Tuple = ( data_args.max_train_samples if data_args.max_train_samples is not None else len(__lowercase ) ) lowerCAmelCase_ : List[Any] = min(__lowercase ,len(__lowercase ) ) trainer.log_metrics('''train''' ,__lowercase ) trainer.save_metrics('''train''' ,__lowercase ) trainer.save_state() # Evaluation if training_args.do_eval: logger.info('''*** Evaluate ***''' ) lowerCAmelCase_ : List[Any] = trainer.evaluate() lowerCAmelCase_ : Any = data_args.max_eval_samples if data_args.max_eval_samples is not None else len(__lowercase ) lowerCAmelCase_ : Optional[int] = min(__lowercase ,len(__lowercase ) ) trainer.log_metrics('''eval''' ,__lowercase ) trainer.save_metrics('''eval''' ,__lowercase ) lowerCAmelCase_ : Optional[int] = { '''finetuned_from''': model_args.model_name_or_path, '''tasks''': '''multiple-choice''', '''dataset_tags''': '''swag''', '''dataset_args''': '''regular''', '''dataset''': '''SWAG''', '''language''': '''en''', } if training_args.push_to_hub: trainer.push_to_hub(**__lowercase ) else: trainer.create_model_card(**__lowercase ) def UpperCamelCase( __UpperCamelCase : Tuple ): # For xla_spawn (TPUs) main() if __name__ == "__main__": main()
171
import gc import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, StableDiffusionSAGPipeline, UNetaDConditionModel, ) from diffusers.utils import slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_IMAGE_PARAMS, TEXT_TO_IMAGE_PARAMS from ..test_pipelines_common import PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() class _a ( UpperCAmelCase__ , UpperCAmelCase__ , unittest.TestCase ): """simple docstring""" A_ = StableDiffusionSAGPipeline A_ = TEXT_TO_IMAGE_PARAMS A_ = TEXT_TO_IMAGE_BATCH_PARAMS A_ = TEXT_TO_IMAGE_IMAGE_PARAMS A_ = TEXT_TO_IMAGE_IMAGE_PARAMS A_ = False def _UpperCAmelCase ( self ) -> Optional[Any]: torch.manual_seed(0 ) UpperCamelCase_ = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=('DownBlock2D', 'CrossAttnDownBlock2D') , up_block_types=('CrossAttnUpBlock2D', 'UpBlock2D') , cross_attention_dim=32 , ) UpperCamelCase_ = DDIMScheduler( beta_start=0.0_0_0_8_5 , beta_end=0.0_1_2 , beta_schedule='scaled_linear' , clip_sample=_UpperCAmelCase , set_alpha_to_one=_UpperCAmelCase , ) torch.manual_seed(0 ) UpperCamelCase_ = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=['DownEncoderBlock2D', 'DownEncoderBlock2D'] , up_block_types=['UpDecoderBlock2D', 'UpDecoderBlock2D'] , latent_channels=4 , ) torch.manual_seed(0 ) UpperCamelCase_ = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , ) UpperCamelCase_ = CLIPTextModel(_UpperCAmelCase ) UpperCamelCase_ = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip' ) UpperCamelCase_ = { 'unet': unet, 'scheduler': scheduler, 'vae': vae, 'text_encoder': text_encoder, 'tokenizer': tokenizer, 'safety_checker': None, 'feature_extractor': None, } return components def _UpperCAmelCase ( self , _UpperCAmelCase , _UpperCAmelCase=0 ) -> List[Any]: if str(_UpperCAmelCase ).startswith('mps' ): UpperCamelCase_ = torch.manual_seed(_UpperCAmelCase ) else: UpperCamelCase_ = torch.Generator(device=_UpperCAmelCase ).manual_seed(_UpperCAmelCase ) UpperCamelCase_ = { 'prompt': '.', 'generator': generator, 'num_inference_steps': 2, 'guidance_scale': 1.0, 'sag_scale': 1.0, 'output_type': 'numpy', } return inputs def _UpperCAmelCase ( self ) -> Tuple: super().test_inference_batch_single_identical(expected_max_diff=3e-3 ) @slow @require_torch_gpu class _a ( unittest.TestCase ): """simple docstring""" def _UpperCAmelCase ( self ) -> Tuple: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def _UpperCAmelCase ( self ) -> str: UpperCamelCase_ = StableDiffusionSAGPipeline.from_pretrained('CompVis/stable-diffusion-v1-4' ) UpperCamelCase_ = sag_pipe.to(_UpperCAmelCase ) sag_pipe.set_progress_bar_config(disable=_UpperCAmelCase ) UpperCamelCase_ = '.' UpperCamelCase_ = torch.manual_seed(0 ) UpperCamelCase_ = sag_pipe( [prompt] , generator=_UpperCAmelCase , guidance_scale=7.5 , sag_scale=1.0 , num_inference_steps=20 , output_type='np' ) UpperCamelCase_ = output.images UpperCamelCase_ = image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) UpperCamelCase_ = np.array([0.1_5_6_8, 0.1_7_3_8, 0.1_6_9_5, 0.1_6_9_3, 0.1_5_0_7, 0.1_7_0_5, 0.1_5_4_7, 0.1_7_5_1, 0.1_9_4_9] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 5e-2 def _UpperCAmelCase ( self ) -> List[Any]: UpperCamelCase_ = StableDiffusionSAGPipeline.from_pretrained('stabilityai/stable-diffusion-2-1-base' ) UpperCamelCase_ = sag_pipe.to(_UpperCAmelCase ) sag_pipe.set_progress_bar_config(disable=_UpperCAmelCase ) UpperCamelCase_ = '.' UpperCamelCase_ = torch.manual_seed(0 ) UpperCamelCase_ = sag_pipe( [prompt] , generator=_UpperCAmelCase , guidance_scale=7.5 , sag_scale=1.0 , num_inference_steps=20 , output_type='np' ) UpperCamelCase_ = output.images UpperCamelCase_ = image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) UpperCamelCase_ = np.array([0.3_4_5_9, 0.2_8_7_6, 0.2_5_3_7, 0.3_0_0_2, 0.2_6_7_1, 0.2_1_6_0, 0.3_0_2_6, 0.2_2_6_2, 0.2_3_7_1] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 5e-2 def _UpperCAmelCase ( self ) -> Dict: UpperCamelCase_ = StableDiffusionSAGPipeline.from_pretrained('stabilityai/stable-diffusion-2-1-base' ) UpperCamelCase_ = sag_pipe.to(_UpperCAmelCase ) sag_pipe.set_progress_bar_config(disable=_UpperCAmelCase ) UpperCamelCase_ = '.' UpperCamelCase_ = torch.manual_seed(0 ) UpperCamelCase_ = sag_pipe( [prompt] , width=768 , height=512 , generator=_UpperCAmelCase , guidance_scale=7.5 , sag_scale=1.0 , num_inference_steps=20 , output_type='np' , ) UpperCamelCase_ = output.images assert image.shape == (1, 512, 768, 3)
23
0
from __future__ import annotations import unittest import numpy as np from transformers import BlipTextConfig from transformers.testing_utils import require_tf, slow from transformers.utils import is_tf_available from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask if is_tf_available(): import tensorflow as tf from transformers import TFBlipTextModel from transformers.models.blip.modeling_tf_blip import TF_BLIP_PRETRAINED_MODEL_ARCHIVE_LIST class _A : '''simple docstring''' def __init__( self ,SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_=12 ,SCREAMING_SNAKE_CASE_=7 ,SCREAMING_SNAKE_CASE_=True ,SCREAMING_SNAKE_CASE_=True ,SCREAMING_SNAKE_CASE_=True ,SCREAMING_SNAKE_CASE_=99 ,SCREAMING_SNAKE_CASE_=32 ,SCREAMING_SNAKE_CASE_=32 ,SCREAMING_SNAKE_CASE_=2 ,SCREAMING_SNAKE_CASE_=4 ,SCREAMING_SNAKE_CASE_=37 ,SCREAMING_SNAKE_CASE_=0.1 ,SCREAMING_SNAKE_CASE_=0.1 ,SCREAMING_SNAKE_CASE_=512 ,SCREAMING_SNAKE_CASE_=0.02 ,SCREAMING_SNAKE_CASE_=0 ,SCREAMING_SNAKE_CASE_=None ,): '''simple docstring''' snake_case : List[Any] = parent snake_case : int = batch_size snake_case : Union[str, Any] = seq_length snake_case : Any = is_training snake_case : int = use_input_mask snake_case : Tuple = use_labels snake_case : List[Any] = vocab_size snake_case : Optional[Any] = hidden_size snake_case : Union[str, Any] = projection_dim snake_case : int = num_hidden_layers snake_case : str = num_attention_heads snake_case : List[str] = intermediate_size snake_case : str = dropout snake_case : Tuple = attention_dropout snake_case : Tuple = max_position_embeddings snake_case : List[Any] = initializer_range snake_case : Optional[Any] = scope snake_case : Tuple = bos_token_id def snake_case_ ( self ): '''simple docstring''' snake_case : int = ids_tensor([self.batch_size, self.seq_length] ,self.vocab_size ) snake_case : List[str] = None if self.use_input_mask: snake_case : List[Any] = random_attention_mask([self.batch_size, self.seq_length] ) if input_mask is not None: snake_case : Optional[int] = input_mask.numpy() snake_case , snake_case : Tuple = input_mask.shape snake_case : Optional[int] = np.random.randint(1 ,seq_length - 1 ,size=(batch_size,) ) for batch_idx, start_index in enumerate(_UpperCAmelCase ): snake_case : Optional[Any] = 1 snake_case : Dict = 0 snake_case : Tuple = self.get_config() return config, input_ids, tf.convert_to_tensor(_UpperCAmelCase ) def snake_case_ ( self ): '''simple docstring''' return BlipTextConfig( vocab_size=self.vocab_size ,hidden_size=self.hidden_size ,projection_dim=self.projection_dim ,num_hidden_layers=self.num_hidden_layers ,num_attention_heads=self.num_attention_heads ,intermediate_size=self.intermediate_size ,dropout=self.dropout ,attention_dropout=self.attention_dropout ,max_position_embeddings=self.max_position_embeddings ,initializer_range=self.initializer_range ,bos_token_id=self.bos_token_id ,) def snake_case_ ( self ,SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case : str = TFBlipTextModel(config=_UpperCAmelCase ) snake_case : Optional[int] = model(_UpperCAmelCase ,attention_mask=_UpperCAmelCase ,training=_UpperCAmelCase ) snake_case : List[Any] = model(_UpperCAmelCase ,training=_UpperCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape ,(self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape ,(self.batch_size, self.hidden_size) ) def snake_case_ ( self ): '''simple docstring''' snake_case : List[str] = self.prepare_config_and_inputs() snake_case , snake_case , snake_case : Optional[int] = config_and_inputs snake_case : Union[str, Any] = {"""input_ids""": input_ids, """attention_mask""": input_mask} return config, inputs_dict @require_tf class _A ( UpperCAmelCase__ , unittest.TestCase ): '''simple docstring''' __lowerCamelCase : Any = (TFBlipTextModel,) if is_tf_available() else () __lowerCamelCase : Tuple = False __lowerCamelCase : Optional[int] = False __lowerCamelCase : List[Any] = False def snake_case_ ( self ): '''simple docstring''' snake_case : List[Any] = BlipTextModelTester(self ) snake_case : Optional[int] = ConfigTester(self ,config_class=_UpperCAmelCase ,hidden_size=37 ) def snake_case_ ( self ): '''simple docstring''' self.config_tester.run_common_tests() def snake_case_ ( self ): '''simple docstring''' snake_case : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_UpperCAmelCase ) def snake_case_ ( self ): '''simple docstring''' pass def snake_case_ ( self ): '''simple docstring''' pass @unittest.skip(reason="""Blip does not use inputs_embeds""" ) def snake_case_ ( self ): '''simple docstring''' pass @unittest.skip(reason="""BlipTextModel has no base class and is not available in MODEL_MAPPING""" ) def snake_case_ ( self ): '''simple docstring''' pass @unittest.skip(reason="""BlipTextModel has no base class and is not available in MODEL_MAPPING""" ) def snake_case_ ( self ): '''simple docstring''' pass @slow def snake_case_ ( self ): '''simple docstring''' for model_name in TF_BLIP_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: snake_case : int = TFBlipTextModel.from_pretrained(_UpperCAmelCase ) self.assertIsNotNone(_UpperCAmelCase ) def snake_case_ ( self ,SCREAMING_SNAKE_CASE_=True ): '''simple docstring''' super().test_pt_tf_model_equivalence(allow_missing_keys=_UpperCAmelCase )
36
from __future__ import annotations from sys import maxsize from typing import Generic, TypeVar snake_case__ : List[str] = TypeVar("""T""") def _snake_case (__lowercase): return (position - 1) // 2 def _snake_case (__lowercase): return (2 * position) + 1 def _snake_case (__lowercase): return (2 * position) + 2 class _a ( Generic[T] ): """simple docstring""" def __init__( self ) -> None: UpperCamelCase_ = [] UpperCamelCase_ = {} UpperCamelCase_ = 0 def __len__( self ) -> int: return self.elements def __repr__( self ) -> str: return str(self.heap ) def _UpperCAmelCase ( self ) -> bool: # Check if the priority queue is empty return self.elements == 0 def _UpperCAmelCase ( self , _UpperCAmelCase , _UpperCAmelCase ) -> None: # Add an element with given priority to the queue self.heap.append((elem, weight) ) UpperCamelCase_ = self.elements self.elements += 1 self._bubble_up(_UpperCAmelCase ) def _UpperCAmelCase ( self ) -> T: # Remove and return the element with lowest weight (highest priority) if self.elements > 1: self._swap_nodes(0 , self.elements - 1 ) UpperCamelCase_ , UpperCamelCase_ = self.heap.pop() del self.position_map[elem] self.elements -= 1 if self.elements > 0: UpperCamelCase_ , UpperCamelCase_ = self.heap[0] self._bubble_down(_UpperCAmelCase ) return elem def _UpperCAmelCase ( self , _UpperCAmelCase , _UpperCAmelCase ) -> None: # Update the weight of the given key UpperCamelCase_ = self.position_map[elem] UpperCamelCase_ = (elem, weight) if position > 0: UpperCamelCase_ = get_parent_position(_UpperCAmelCase ) UpperCamelCase_ , UpperCamelCase_ = self.heap[parent_position] if parent_weight > weight: self._bubble_up(_UpperCAmelCase ) else: self._bubble_down(_UpperCAmelCase ) else: self._bubble_down(_UpperCAmelCase ) def _UpperCAmelCase ( self , _UpperCAmelCase ) -> None: # Place a node at the proper position (upward movement) [to be used internally # only] UpperCamelCase_ = self.position_map[elem] if curr_pos == 0: return None UpperCamelCase_ = get_parent_position(_UpperCAmelCase ) UpperCamelCase_ , UpperCamelCase_ = self.heap[curr_pos] UpperCamelCase_ , UpperCamelCase_ = self.heap[parent_position] if parent_weight > weight: self._swap_nodes(_UpperCAmelCase , _UpperCAmelCase ) return self._bubble_up(_UpperCAmelCase ) return None def _UpperCAmelCase ( self , _UpperCAmelCase ) -> None: # Place a node at the proper position (downward movement) [to be used # internally only] UpperCamelCase_ = self.position_map[elem] UpperCamelCase_ , UpperCamelCase_ = self.heap[curr_pos] UpperCamelCase_ = get_child_left_position(_UpperCAmelCase ) UpperCamelCase_ = get_child_right_position(_UpperCAmelCase ) if child_left_position < self.elements and child_right_position < self.elements: UpperCamelCase_ , UpperCamelCase_ = self.heap[child_left_position] UpperCamelCase_ , UpperCamelCase_ = self.heap[child_right_position] if child_right_weight < child_left_weight and child_right_weight < weight: self._swap_nodes(_UpperCAmelCase , _UpperCAmelCase ) return self._bubble_down(_UpperCAmelCase ) if child_left_position < self.elements: UpperCamelCase_ , UpperCamelCase_ = self.heap[child_left_position] if child_left_weight < weight: self._swap_nodes(_UpperCAmelCase , _UpperCAmelCase ) return self._bubble_down(_UpperCAmelCase ) else: return None if child_right_position < self.elements: UpperCamelCase_ , UpperCamelCase_ = self.heap[child_right_position] if child_right_weight < weight: self._swap_nodes(_UpperCAmelCase , _UpperCAmelCase ) return self._bubble_down(_UpperCAmelCase ) return None def _UpperCAmelCase ( self , _UpperCAmelCase , _UpperCAmelCase ) -> None: # Swap the nodes at the given positions UpperCamelCase_ = self.heap[nodea_pos][0] UpperCamelCase_ = self.heap[nodea_pos][0] UpperCamelCase_ , UpperCamelCase_ = ( self.heap[nodea_pos], self.heap[nodea_pos], ) UpperCamelCase_ = nodea_pos UpperCamelCase_ = nodea_pos class _a ( Generic[T] ): """simple docstring""" def __init__( self ) -> None: UpperCamelCase_ = {} UpperCamelCase_ = 0 def __repr__( self ) -> str: return str(self.connections ) def __len__( self ) -> int: return self.nodes def _UpperCAmelCase ( self , _UpperCAmelCase ) -> None: # Add a node in the graph if it is not in the graph if node not in self.connections: UpperCamelCase_ = {} self.nodes += 1 def _UpperCAmelCase ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) -> None: # Add an edge between 2 nodes in the graph self.add_node(_UpperCAmelCase ) self.add_node(_UpperCAmelCase ) UpperCamelCase_ = weight UpperCamelCase_ = weight def _snake_case (__lowercase , ): UpperCamelCase_ = {node: maxsize for node in graph.connections} UpperCamelCase_ = {node: None for node in graph.connections} UpperCamelCase_ = MinPriorityQueue() for node, weight in dist.items(): priority_queue.push(__lowercase , __lowercase) if priority_queue.is_empty(): return dist, parent # initialization UpperCamelCase_ = priority_queue.extract_min() UpperCamelCase_ = 0 for neighbour in graph.connections[node]: if dist[neighbour] > dist[node] + graph.connections[node][neighbour]: UpperCamelCase_ = dist[node] + graph.connections[node][neighbour] priority_queue.update_key(__lowercase , dist[neighbour]) UpperCamelCase_ = node # running prim's algorithm while not priority_queue.is_empty(): UpperCamelCase_ = priority_queue.extract_min() for neighbour in graph.connections[node]: if dist[neighbour] > dist[node] + graph.connections[node][neighbour]: UpperCamelCase_ = dist[node] + graph.connections[node][neighbour] priority_queue.update_key(__lowercase , dist[neighbour]) UpperCamelCase_ = node return dist, parent
23
0
'''simple docstring''' from transformers import HfArgumentParser, TensorFlowBenchmark, TensorFlowBenchmarkArguments def _lowerCAmelCase (): """simple docstring""" a__ = HfArgumentParser(__lowercase ) a__ = parser.parse_args_into_dataclasses()[0] a__ = TensorFlowBenchmark(args=__lowercase ) try: a__ = parser.parse_args_into_dataclasses()[0] except ValueError as e: a__ = "Arg --no_{0} is no longer used, please use --no-{0} instead." a__ = " ".join(str(__lowercase ).split(" " )[:-1] ) a__ = "" a__ = eval(str(__lowercase ).split(" " )[-1] ) a__ = [] for arg in depreciated_args: # arg[2:] removes '--' if arg[2:] in TensorFlowBenchmark.deprecated_args: # arg[5:] removes '--no_' full_error_msg += arg_error_msg.format(arg[5:] ) else: wrong_args.append(__lowercase ) if len(__lowercase ) > 0: a__ = full_error_msg + begin_error_msg + str(__lowercase ) raise ValueError(__lowercase ) benchmark.run() if __name__ == "__main__": main()
331
from __future__ import annotations import sys from collections import deque from typing import Generic, TypeVar snake_case__ : Dict = TypeVar("""T""") class _a ( Generic[T] ): """simple docstring""" A_ = 42 # Cache store of keys A_ = 42 # References of the keys in cache A_ = 10 # Maximum capacity of cache def __init__( self , _UpperCAmelCase ) -> None: UpperCamelCase_ = deque() UpperCamelCase_ = set() if not n: UpperCamelCase_ = sys.maxsize elif n < 0: raise ValueError('n should be an integer greater than 0.' ) else: UpperCamelCase_ = n def _UpperCAmelCase ( self , _UpperCAmelCase ) -> None: if x not in self.key_reference: if len(self.dq_store ) == LRUCache._MAX_CAPACITY: UpperCamelCase_ = self.dq_store.pop() self.key_reference.remove(_UpperCAmelCase ) else: self.dq_store.remove(_UpperCAmelCase ) self.dq_store.appendleft(_UpperCAmelCase ) self.key_reference.add(_UpperCAmelCase ) def _UpperCAmelCase ( self ) -> None: for k in self.dq_store: print(_UpperCAmelCase ) def __repr__( self ) -> str: return f"""LRUCache({self._MAX_CAPACITY}) => {list(self.dq_store )}""" if __name__ == "__main__": import doctest doctest.testmod() snake_case__ : LRUCache[str | int] = LRUCache(4) lru_cache.refer("""A""") lru_cache.refer(2) lru_cache.refer(3) lru_cache.refer("""A""") lru_cache.refer(4) lru_cache.refer(5) lru_cache.display() print(lru_cache) assert str(lru_cache) == "LRUCache(4) => [5, 4, 'A', 3]"
23
0
lowerCAmelCase_ = """Input must be a string of 8 numbers plus letter""" lowerCAmelCase_ = """TRWAGMYFPDXBNJZSQVHLCKE""" def A_ ( lowercase_ ) -> Optional[Any]: if not isinstance(__lowercase , __lowercase ): _snake_case : Dict = f'''Expected string as input, found {type(__lowercase ).__name__}''' raise TypeError(__lowercase ) _snake_case : Optional[Any] = spanish_id.replace('''-''' , '''''' ).upper() if len(__lowercase ) != 9: raise ValueError(__lowercase ) try: _snake_case : str = int(spanish_id_clean[0:8] ) _snake_case : str = spanish_id_clean[8] except ValueError as ex: raise ValueError(__lowercase ) from ex if letter.isdigit(): raise ValueError(__lowercase ) return letter == LOOKUP_LETTERS[number % 23] if __name__ == "__main__": import doctest doctest.testmod()
326
import numpy as np def _snake_case (__lowercase): return 1 / (1 + np.exp(-vector)) def _snake_case (__lowercase): return vector * sigmoid(__lowercase) if __name__ == "__main__": import doctest doctest.testmod()
23
0
"""simple docstring""" def lowercase (snake_case__ : Dict ) -> Optional[Any]: '''simple docstring''' lowerCAmelCase = [1] lowerCAmelCase , lowerCAmelCase , lowerCAmelCase = 0, 0, 0 lowerCAmelCase = ugly_nums[ia] * 2 lowerCAmelCase = ugly_nums[ia] * 3 lowerCAmelCase = ugly_nums[ia] * 5 for _ in range(1 , __lowercase ): lowerCAmelCase = min(__lowercase , __lowercase , __lowercase ) ugly_nums.append(__lowercase ) if next_num == next_a: ia += 1 lowerCAmelCase = ugly_nums[ia] * 2 if next_num == next_a: ia += 1 lowerCAmelCase = ugly_nums[ia] * 3 if next_num == next_a: ia += 1 lowerCAmelCase = ugly_nums[ia] * 5 return ugly_nums[-1] if __name__ == "__main__": from doctest import testmod testmod(verbose=True) print(f"""{ugly_numbers(2_0_0) = }""")
169
import math from datetime import datetime, timedelta def _snake_case (__lowercase): UpperCamelCase_ = year % 19 UpperCamelCase_ = year % 4 UpperCamelCase_ = year % 7 UpperCamelCase_ = math.floor(year / 100) UpperCamelCase_ = math.floor((13 + 8 * leap_day_inhibits) / 25) UpperCamelCase_ = leap_day_inhibits / 4 UpperCamelCase_ = ( 15 - lunar_orbit_correction + leap_day_inhibits - leap_day_reinstall_number ) % 30 UpperCamelCase_ = (4 + leap_day_inhibits - leap_day_reinstall_number) % 7 # days to be added to March 21 UpperCamelCase_ = (19 * metonic_cycle + secular_moon_shift) % 30 # PHM -> Paschal Full Moon UpperCamelCase_ = ( 2 * julian_leap_year + 4 * non_leap_year + 6 * days_to_add + century_starting_point ) % 7 if days_to_add == 29 and days_from_phm_to_sunday == 6: return datetime(__lowercase , 4 , 19) elif days_to_add == 28 and days_from_phm_to_sunday == 6: return datetime(__lowercase , 4 , 18) else: return datetime(__lowercase , 3 , 22) + timedelta( days=int(days_to_add + days_from_phm_to_sunday)) if __name__ == "__main__": for year in (1_9_9_4, 2_0_0_0, 2_0_1_0, 2_0_2_1, 2_0_2_3): snake_case__ : Dict = """will be""" if year > datetime.now().year else """was""" print(f'Easter in {year} {tense} {gauss_easter(year)}')
23
0
'''simple docstring''' SCREAMING_SNAKE_CASE_ = tuple[float, float, float] SCREAMING_SNAKE_CASE_ = tuple[float, float, float] def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): __a : Union[str, Any] = end_pointa[0] - end_pointa[0] __a : List[Any] = end_pointa[1] - end_pointa[1] __a : Optional[Any] = end_pointa[2] - end_pointa[2] return (x, y, z) def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): __a : int = ab[1] * ac[2] - ab[2] * ac[1] # *i __a : str = (ab[0] * ac[2] - ab[2] * ac[0]) * -1 # *j __a : Tuple = ab[0] * ac[1] - ab[1] * ac[0] # *k return (x, y, z) def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): return tuple(round(__lowercase , __lowercase ) for x in vector ) == (0, 0, 0) def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = 10 ): __a : Optional[Any] = create_vector(__lowercase , __lowercase ) __a : List[Any] = create_vector(__lowercase , __lowercase ) return is_zero_vector(get_ad_vectors_cross(__lowercase , __lowercase ) , __lowercase )
597
import requests def _snake_case (__lowercase , __lowercase): UpperCamelCase_ = {'Content-Type': 'application/json'} UpperCamelCase_ = requests.post(__lowercase , json={'text': message_body} , headers=__lowercase) if response.status_code != 200: UpperCamelCase_ = ( 'Request to slack returned an error ' f"""{response.status_code}, the response is:\n{response.text}""" ) raise ValueError(__lowercase) if __name__ == "__main__": # Set the slack url to the one provided by Slack when you create the webhook at # https://my.slack.com/services/new/incoming-webhook/ send_slack_message("""<YOUR MESSAGE BODY>""", """<SLACK CHANNEL URL>""")
23
0
import gc import random import unittest import numpy as np import torch from transformers import ( CLIPImageProcessor, CLIPTextConfig, CLIPTextModel, CLIPTokenizer, CLIPVisionConfig, CLIPVisionModelWithProjection, ) from diffusers import AutoencoderKL, DDIMScheduler, DDPMScheduler, StableUnCLIPImgaImgPipeline, UNetaDConditionModel from diffusers.pipelines.pipeline_utils import DiffusionPipeline from diffusers.pipelines.stable_diffusion.stable_unclip_image_normalizer import StableUnCLIPImageNormalizer from diffusers.utils.import_utils import is_xformers_available from diffusers.utils.testing_utils import ( enable_full_determinism, floats_tensor, load_image, load_numpy, require_torch_gpu, skip_mps, slow, torch_device, ) from ..pipeline_params import TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_PARAMS from ..test_pipelines_common import ( PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin, assert_mean_pixel_difference, ) enable_full_determinism() class A_ ( UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , unittest.TestCase ): _SCREAMING_SNAKE_CASE = StableUnCLIPImgaImgPipeline _SCREAMING_SNAKE_CASE = TEXT_GUIDED_IMAGE_VARIATION_PARAMS _SCREAMING_SNAKE_CASE = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS _SCREAMING_SNAKE_CASE = frozenset( [] ) # TO-DO: update image_params once pipeline is refactored with VaeImageProcessor.preprocess _SCREAMING_SNAKE_CASE = frozenset([] ) def _UpperCAmelCase ( self : str ): __a = 32 __a = embedder_hidden_size # image encoding components __a = CLIPImageProcessor(crop_size=32 , size=32 ) torch.manual_seed(0 ) __a = CLIPVisionModelWithProjection( CLIPVisionConfig( hidden_size=_UpperCAmelCase , projection_dim=_UpperCAmelCase , num_hidden_layers=5 , num_attention_heads=4 , image_size=32 , intermediate_size=37 , patch_size=1 , ) ) # regular denoising components torch.manual_seed(0 ) __a = StableUnCLIPImageNormalizer(embedding_dim=_UpperCAmelCase ) __a = DDPMScheduler(beta_schedule="squaredcos_cap_v2" ) torch.manual_seed(0 ) __a = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip" ) torch.manual_seed(0 ) __a = CLIPTextModel( CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=_UpperCAmelCase , projection_dim=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=10_00 , ) ) torch.manual_seed(0 ) __a = UNetaDConditionModel( sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=("CrossAttnDownBlock2D", "DownBlock2D") , up_block_types=("UpBlock2D", "CrossAttnUpBlock2D") , block_out_channels=(32, 64) , attention_head_dim=(2, 4) , class_embed_type="projection" , projection_class_embeddings_input_dim=embedder_projection_dim * 2 , cross_attention_dim=_UpperCAmelCase , layers_per_block=1 , upcast_attention=_UpperCAmelCase , use_linear_projection=_UpperCAmelCase , ) torch.manual_seed(0 ) __a = DDIMScheduler( beta_schedule="scaled_linear" , beta_start=0.0_00_85 , beta_end=0.0_12 , prediction_type="v_prediction" , set_alpha_to_one=_UpperCAmelCase , steps_offset=1 , ) torch.manual_seed(0 ) __a = AutoencoderKL() __a = { # image encoding components "feature_extractor": feature_extractor, "image_encoder": image_encoder.eval(), # image noising components "image_normalizer": image_normalizer.eval(), "image_noising_scheduler": image_noising_scheduler, # regular denoising components "tokenizer": tokenizer, "text_encoder": text_encoder.eval(), "unet": unet.eval(), "scheduler": scheduler, "vae": vae.eval(), } return components def _UpperCAmelCase ( self : Dict , __SCREAMING_SNAKE_CASE : Tuple , __SCREAMING_SNAKE_CASE : Tuple=0 , __SCREAMING_SNAKE_CASE : Tuple=True ): if str(_UpperCAmelCase ).startswith("mps" ): __a = torch.manual_seed(_UpperCAmelCase ) else: __a = torch.Generator(device=_UpperCAmelCase ).manual_seed(_UpperCAmelCase ) __a = floats_tensor((1, 3, 32, 32) , rng=random.Random(_UpperCAmelCase ) ).to(_UpperCAmelCase ) if pil_image: __a = input_image * 0.5 + 0.5 __a = input_image.clamp(0 , 1 ) __a = input_image.cpu().permute(0 , 2 , 3 , 1 ).float().numpy() __a = DiffusionPipeline.numpy_to_pil(_UpperCAmelCase )[0] return { "prompt": "An anime racoon running a marathon", "image": input_image, "generator": generator, "num_inference_steps": 2, "output_type": "np", } @skip_mps def _UpperCAmelCase ( self : Union[str, Any] ): __a = "cpu" # ensure determinism for the device-dependent torch.Generator __a = self.get_dummy_components() __a = StableUnCLIPImgaImgPipeline(**_UpperCAmelCase ) __a = sd_pipe.to(_UpperCAmelCase ) sd_pipe.set_progress_bar_config(disable=_UpperCAmelCase ) __a = self.get_dummy_inputs(_UpperCAmelCase ) inputs.update({"image_embeds": None} ) __a = sd_pipe(**_UpperCAmelCase ).images __a = image[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) __a = np.array([0.38_72, 0.72_24, 0.56_01, 0.47_41, 0.68_72, 0.58_14, 0.46_36, 0.38_67, 0.50_78] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-3 def _UpperCAmelCase ( self : Optional[Any] ): __a = torch_device in ["cpu", "mps"] self._test_attention_slicing_forward_pass(test_max_difference=_UpperCAmelCase ) def _UpperCAmelCase ( self : str ): __a = torch_device in ["cpu", "mps"] self._test_inference_batch_single_identical(test_max_difference=_UpperCAmelCase ) @unittest.skipIf( torch_device != "cuda" or not is_xformers_available() , reason="XFormers attention is only available with CUDA and `xformers` installed" , ) def _UpperCAmelCase ( self : List[Any] ): self._test_xformers_attention_forwardGenerator_pass(test_max_difference=_UpperCAmelCase ) @slow @require_torch_gpu class A_ ( unittest.TestCase ): def _UpperCAmelCase ( self : List[Any] ): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def _UpperCAmelCase ( self : Union[str, Any] ): __a = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/stable_unclip/turtle.png" ) __a = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/stable_unclip/stable_unclip_2_1_l_img2img_anime_turtle_fp16.npy" ) __a = StableUnCLIPImgaImgPipeline.from_pretrained( "fusing/stable-unclip-2-1-l-img2img" , torch_dtype=torch.floataa ) pipe.to(_UpperCAmelCase ) pipe.set_progress_bar_config(disable=_UpperCAmelCase ) # stable unclip will oom when integration tests are run on a V100, # so turn on memory savings pipe.enable_attention_slicing() pipe.enable_sequential_cpu_offload() __a = torch.Generator(device="cpu" ).manual_seed(0 ) __a = pipe(_UpperCAmelCase , "anime turle" , generator=_UpperCAmelCase , output_type="np" ) __a = output.images[0] assert image.shape == (7_68, 7_68, 3) assert_mean_pixel_difference(_UpperCAmelCase , _UpperCAmelCase ) def _UpperCAmelCase ( self : Union[str, Any] ): __a = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/stable_unclip/turtle.png" ) __a = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/stable_unclip/stable_unclip_2_1_h_img2img_anime_turtle_fp16.npy" ) __a = StableUnCLIPImgaImgPipeline.from_pretrained( "fusing/stable-unclip-2-1-h-img2img" , torch_dtype=torch.floataa ) pipe.to(_UpperCAmelCase ) pipe.set_progress_bar_config(disable=_UpperCAmelCase ) # stable unclip will oom when integration tests are run on a V100, # so turn on memory savings pipe.enable_attention_slicing() pipe.enable_sequential_cpu_offload() __a = torch.Generator(device="cpu" ).manual_seed(0 ) __a = pipe(_UpperCAmelCase , "anime turle" , generator=_UpperCAmelCase , output_type="np" ) __a = output.images[0] assert image.shape == (7_68, 7_68, 3) assert_mean_pixel_difference(_UpperCAmelCase , _UpperCAmelCase ) def _UpperCAmelCase ( self : Tuple ): __a = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/stable_unclip/turtle.png" ) torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() torch.cuda.reset_peak_memory_stats() __a = StableUnCLIPImgaImgPipeline.from_pretrained( "fusing/stable-unclip-2-1-h-img2img" , torch_dtype=torch.floataa ) __a = pipe.to(_UpperCAmelCase ) pipe.set_progress_bar_config(disable=_UpperCAmelCase ) pipe.enable_attention_slicing() pipe.enable_sequential_cpu_offload() __a = pipe( _UpperCAmelCase , "anime turtle" , num_inference_steps=2 , output_type="np" , ) __a = torch.cuda.max_memory_allocated() # make sure that less than 7 GB is allocated assert mem_bytes < 7 * 10**9
197
import re from pathlib import Path from unittest import TestCase import pytest @pytest.mark.integration class _a ( UpperCAmelCase__ ): """simple docstring""" def _UpperCAmelCase ( self , _UpperCAmelCase ) -> Dict: with open(_UpperCAmelCase , encoding='utf-8' ) as input_file: UpperCamelCase_ = re.compile(R'(?!.*\b(?:encoding|rb|w|wb|w+|wb+|ab|ab+)\b)(?<=\s)(open)\((.*)\)' ) UpperCamelCase_ = input_file.read() UpperCamelCase_ = regexp.search(_UpperCAmelCase ) return match def _UpperCAmelCase ( self , _UpperCAmelCase ) -> Dict: with open(_UpperCAmelCase , encoding='utf-8' ) as input_file: UpperCamelCase_ = re.compile(R'#[^\r\n]*print\(|\"[^\r\n]*print\(|\"\"\".*?print\(.*?\"\"\"|(print\()' , re.DOTALL ) UpperCamelCase_ = input_file.read() # use `re.finditer` to handle the case where the ignored groups would be matched first by `re.search` UpperCamelCase_ = regexp.finditer(_UpperCAmelCase ) UpperCamelCase_ = [match for match in matches if match is not None and match.group(1 ) is not None] return matches[0] if matches else None def _UpperCAmelCase ( self ) -> List[str]: UpperCamelCase_ = Path('./datasets' ) UpperCamelCase_ = list(dataset_paths.absolute().glob('**/*.py' ) ) for dataset in dataset_files: if self._no_encoding_on_file_open(str(_UpperCAmelCase ) ): raise AssertionError(f"""open(...) must use utf-8 encoding in {dataset}""" ) def _UpperCAmelCase ( self ) -> Optional[int]: UpperCamelCase_ = Path('./datasets' ) UpperCamelCase_ = list(dataset_paths.absolute().glob('**/*.py' ) ) for dataset in dataset_files: if self._no_print_statements(str(_UpperCAmelCase ) ): raise AssertionError(f"""print statement found in {dataset}. Use datasets.logger/logging instead.""" )
23
0
import unittest from transformers import DonutProcessor snake_case__ : Union[str, Any] = """naver-clova-ix/donut-base""" class SCREAMING_SNAKE_CASE_ (unittest.TestCase ): '''simple docstring''' def _lowerCAmelCase ( self : Union[str, Any] ) ->Any: lowerCamelCase_ : Optional[Any] = DonutProcessor.from_pretrained(_UpperCAmelCase ) def _lowerCAmelCase ( self : Tuple ) ->List[Any]: lowerCamelCase_ : Any = { """name""": """John Doe""", """age""": """99""", """city""": """Atlanta""", """state""": """GA""", """zip""": """30301""", """phone""": """123-4567""", """nicknames""": [{"""nickname""": """Johnny"""}, {"""nickname""": """JD"""}], } lowerCamelCase_ : Union[str, Any] = ( """<s_name>John Doe</s_name><s_age>99</s_age><s_city>Atlanta</s_city>""" """<s_state>GA</s_state><s_zip>30301</s_zip><s_phone>123-4567</s_phone>""" """<s_nicknames><s_nickname>Johnny</s_nickname>""" """<sep/><s_nickname>JD</s_nickname></s_nicknames>""" ) lowerCamelCase_ : List[str] = self.processor.tokenajson(_UpperCAmelCase ) self.assertDictEqual(_UpperCAmelCase , _UpperCAmelCase )
278
import argparse import random import joblib import numpy as np import torch from igf.igf import ( SecondaryLearner, collect_objective_set, compute_perplexity, generate_datasets, load_gpta, recopy_gpta, set_seed, train_secondary_learner, ) from torch.utils.data import DataLoader, RandomSampler from transformers import GPTaLMHeadModel def _snake_case (__lowercase=32 , __lowercase=10 , __lowercase=100 , __lowercase=1026 , __lowercase=True , __lowercase="data/tokenized_stories_train_wikitext103.jbl" , __lowercase="igf_context_pairs.jbl" , ): set_seed(3) # generate train_data and objective_set UpperCamelCase_ , UpperCamelCase_ = generate_datasets( __lowercase , __lowercase , number=__lowercase , min_len=1026 , trim=__lowercase) # keeps model same across runs set_seed(4) # model, lm_optimizer, lm_scheduler = recopy_gpt2(model, device, max_steps) # store original model weights # can we train on GPU? UpperCamelCase_ = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu') # load pretrained model UpperCamelCase_ = load_gpta('gpt2').to(__lowercase) print('computing perplexity on objective set') UpperCamelCase_ = compute_perplexity(__lowercase , __lowercase , __lowercase).item() print('perplexity on objective set:' , __lowercase) # collect igf pairs and save to file demo.jbl collect_objective_set(__lowercase , __lowercase , __lowercase , __lowercase , __lowercase , __lowercase , __lowercase , __lowercase) # clean up, delete model and data we don't need anymore del model, train_data, objective_set torch.cuda.empty_cache() def _snake_case (__lowercase , __lowercase=15 , __lowercase=128 , __lowercase=100 , __lowercase="igf_model.pt" , ): set_seed(42) # Load pre-trained model UpperCamelCase_ = GPTaLMHeadModel.from_pretrained('gpt2') # Initialize secondary learner to use embedding weights of model UpperCamelCase_ = SecondaryLearner(__lowercase) # Train secondary learner UpperCamelCase_ = train_secondary_learner( __lowercase , __lowercase , max_epochs=__lowercase , batch_size=__lowercase , eval_freq=100 , igf_model_path=__lowercase , ) del model, secondary_learner_train_data torch.cuda.empty_cache() return secondary_learner def _snake_case (__lowercase , __lowercase , __lowercase , __lowercase=32 , __lowercase=1000 , __lowercase=16 , __lowercase=1.0 , __lowercase=recopy_gpta , __lowercase=None , __lowercase=10 , __lowercase="gpt2_finetuned.pt" , ): UpperCamelCase_ = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu') UpperCamelCase_ = RandomSampler(__lowercase) UpperCamelCase_ = DataLoader(__lowercase , sampler=__lowercase) UpperCamelCase_ = max_steps // (len(__lowercase)) + 1 UpperCamelCase_ = 0 UpperCamelCase_ = torch.zeros((1, context_len) , dtype=torch.long , device=__lowercase) UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ = recopy_model(__lowercase , __lowercase , __lowercase) model.train() if secondary_learner is not None: secondary_learner.to(__lowercase) secondary_learner.eval() UpperCamelCase_ = [] UpperCamelCase_ = 0 UpperCamelCase_ = [] UpperCamelCase_ = [] # Compute the performance of the transformer model at the beginning UpperCamelCase_ = compute_perplexity(__lowercase , __lowercase , __lowercase) test_perps.append(__lowercase) print('Test perplexity, step' , __lowercase , ':' , __lowercase) for epoch in range(int(__lowercase)): for step, example in enumerate(__lowercase): torch.cuda.empty_cache() UpperCamelCase_ = random.randint(0 , example.size(2) - context_len - 1) UpperCamelCase_ = example[0, 0, start : start + context_len] lm_optimizer.zero_grad() UpperCamelCase_ = model(__lowercase , labels=__lowercase) UpperCamelCase_ = True if secondary_learner is not None: UpperCamelCase_ = secondary_learner.forward( torch.tensor(__lowercase , dtype=torch.long , device=__lowercase).unsqueeze(0))[0].item() observed_qs.append(float(__lowercase)) # Here we implement the simple non-constant threshold for the predicted IG(X) value # We will decay the selectivity of our secondary learner filter from # 1 standard deviation above average to 1 below average after 10 batches. if global_step == 10: UpperCamelCase_ = -1 if predicted_q < threshold: UpperCamelCase_ = False # If we passed the filter, add the context to the batch! if do_backprop: contexts.append(np.array(context.cpu())) UpperCamelCase_ = outputs[0] lm_loss.backward() examples += 1 del outputs # Once the batch is filled with enough contexts, backprop on the batch. if examples == batch_size: torch.cuda.empty_cache() UpperCamelCase_ = 0 # Do LM backprop torch.nn.utils.clip_grad_norm_(model.parameters() , 3.0) lm_optimizer.step() lm_scheduler.step() # Update learning rate schedule global_step += 1 # Compute the performance of the transformer model at this batch if global_step % eval_interval == 0: UpperCamelCase_ = compute_perplexity(__lowercase , __lowercase , __lowercase) test_perps.append(__lowercase) print('Test perplexity, step' , __lowercase , ':' , __lowercase) # Break out of the loop after 60 batches if max_steps > 0 and global_step > 60: break if max_steps > 0 and global_step > 60: break # save finetuned transformer model torch.save(model.state_dict() , __lowercase) torch.cuda.empty_cache() # Do some cleaning up so we can reinitialize for the next run of this function del lm_optimizer del lm_scheduler return model def _snake_case (): UpperCamelCase_ = argparse.ArgumentParser(description='Fine-tune a transformer model with IGF on a language modeling task') # Required parameters parser.add_argument( '--data_dir' , default=__lowercase , type=__lowercase , required=__lowercase , help='The input data dir. Should contain data files for WikiText.' , ) parser.add_argument( '--model_name_or_path' , default=__lowercase , type=__lowercase , required=__lowercase , help='Path to pretrained model or model identifier from huggingface.co/models' , ) parser.add_argument( '--data_file' , type=__lowercase , default=__lowercase , help=( 'A jbl file containing tokenized data which can be split as objective dataset, ' 'train_dataset and test_dataset.' ) , ) parser.add_argument( '--igf_data_file' , type=__lowercase , default=__lowercase , help='A jbl file containing the context and information gain pairs to train secondary learner.' , ) parser.add_argument( '--output_dir' , default=__lowercase , type=__lowercase , required=__lowercase , help='The output directory where the final fine-tuned model is stored.' , ) parser.add_argument( '--tokenizer_name' , default=__lowercase , type=__lowercase , help='Pretrained tokenizer name or path if not the same as model_name' , ) parser.add_argument('--seed' , type=__lowercase , default=__lowercase , help='A seed for reproducible training.') parser.add_argument( '--context_len' , default=32 , type=__lowercase , help=( 'The maximum total input sequence length after tokenization. Sequences longer ' 'than this will be truncated, sequences shorter will be padded.' ) , ) parser.add_argument( '--size_objective_set' , default=100 , type=__lowercase , help='number of articles that are long enough to be used as our objective set' , ) parser.add_argument( '--eval_freq' , default=100 , type=__lowercase , help='secondary model evaluation is triggered at eval_freq') parser.add_argument('--max_steps' , default=1000 , type=__lowercase , help='To calculate training epochs') parser.add_argument( '--secondary_learner_batch_size' , default=128 , type=__lowercase , help='batch size of training data for secondary learner' , ) parser.add_argument( '--batch_size' , default=16 , type=__lowercase , help='batch size of training data of language model(gpt2) ') parser.add_argument( '--eval_interval' , default=10 , type=__lowercase , help=( 'decay the selectivity of our secondary learner filter from' '1 standard deviation above average to 1 below average after 10 batches' ) , ) parser.add_argument( '--number' , default=100 , type=__lowercase , help='The number of examples split to be used as objective_set/test_data') parser.add_argument( '--min_len' , default=1026 , type=__lowercase , help='The minimum length of the article to be used as objective set') parser.add_argument( '--secondary_learner_max_epochs' , default=15 , type=__lowercase , help='number of epochs to train secondary learner') parser.add_argument('--trim' , default=__lowercase , type=__lowercase , help='truncate the example if it exceeds context length') parser.add_argument( '--threshold' , default=1.0 , type=__lowercase , help=( 'The threshold value used by secondary learner to filter the train_data and allow only' ' informative data as input to the model' ) , ) parser.add_argument('--finetuned_model_name' , default='gpt2_finetuned.pt' , type=__lowercase , help='finetuned_model_name') parser.add_argument( '--recopy_model' , default=__lowercase , type=__lowercase , help='Reset the model to the original pretrained GPT-2 weights after each iteration' , ) # function calls # Collecting *n* pairs of context and information gain(X, IG(X)) for training the secondary learner generate_n_pairs( context_len=32 , max_steps=10 , size_objective_set=100 , min_len=1026 , trim=__lowercase , data_file='data/tokenized_stories_train_wikitext103.jbl' , igf_data_file='igf_context_pairs.jbl' , ) # Load train data for secondary learner UpperCamelCase_ = joblib.load('data/IGF_values.jbl') # Train secondary learner UpperCamelCase_ = training_secondary_learner( __lowercase , secondary_learner_max_epochs=15 , secondary_learner_batch_size=128 , eval_freq=100 , igf_model_path='igf_model.pt' , ) # load pretrained gpt2 model UpperCamelCase_ = GPTaLMHeadModel.from_pretrained('gpt2') set_seed(42) # Generate train and test data to train and evaluate gpt2 model UpperCamelCase_ , UpperCamelCase_ = generate_datasets( context_len=32 , file='data/tokenized_stories_train_wikitext103.jbl' , number=100 , min_len=1026 , trim=__lowercase) # fine-tuning of the gpt2 model using igf (Information Gain Filtration) finetune( __lowercase , __lowercase , __lowercase , context_len=32 , max_steps=1000 , batch_size=16 , threshold=1.0 , recopy_model=__lowercase , secondary_learner=__lowercase , eval_interval=10 , finetuned_model_name='gpt2_finetuned.pt' , ) if __name__ == "__main__": main()
23
0
'''simple docstring''' def __A ( UpperCAmelCase ,UpperCAmelCase ) -> Dict: '''simple docstring''' _UpperCamelCase : Optional[Any] = len(__lowercase ) _UpperCamelCase : Tuple = [[False] * (required_sum + 1) for _ in range(arr_len + 1 )] # for each arr value, a sum of zero(0) can be formed by not taking any element # hence True/1 for i in range(arr_len + 1 ): _UpperCamelCase : int = True # sum is not zero and set is empty then false for i in range(1 ,required_sum + 1 ): _UpperCamelCase : Tuple = False for i in range(1 ,arr_len + 1 ): for j in range(1 ,required_sum + 1 ): if arr[i - 1] > j: _UpperCamelCase : Optional[int] = subset[i - 1][j] if arr[i - 1] <= j: _UpperCamelCase : List[str] = subset[i - 1][j] or subset[i - 1][j - arr[i - 1]] return subset[arr_len][required_sum] if __name__ == "__main__": import doctest doctest.testmod()
435
from __future__ import annotations import unittest from transformers import AutoTokenizer, MBartConfig, is_tf_available from transformers.testing_utils import require_sentencepiece, require_tf, require_tokenizers, slow from transformers.utils import cached_property from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFAutoModelForSeqaSeqLM, TFMBartForConditionalGeneration, TFMBartModel @require_tf class _a : """simple docstring""" A_ = MBartConfig A_ = {} A_ = """gelu""" def __init__( self , _UpperCAmelCase , _UpperCAmelCase=13 , _UpperCAmelCase=7 , _UpperCAmelCase=True , _UpperCAmelCase=False , _UpperCAmelCase=99 , _UpperCAmelCase=32 , _UpperCAmelCase=2 , _UpperCAmelCase=4 , _UpperCAmelCase=37 , _UpperCAmelCase=0.1 , _UpperCAmelCase=0.1 , _UpperCAmelCase=20 , _UpperCAmelCase=2 , _UpperCAmelCase=1 , _UpperCAmelCase=0 , ) -> Union[str, Any]: UpperCamelCase_ = parent UpperCamelCase_ = batch_size UpperCamelCase_ = seq_length UpperCamelCase_ = is_training UpperCamelCase_ = use_labels UpperCamelCase_ = vocab_size UpperCamelCase_ = hidden_size UpperCamelCase_ = num_hidden_layers UpperCamelCase_ = num_attention_heads UpperCamelCase_ = intermediate_size UpperCamelCase_ = hidden_dropout_prob UpperCamelCase_ = attention_probs_dropout_prob UpperCamelCase_ = max_position_embeddings UpperCamelCase_ = eos_token_id UpperCamelCase_ = pad_token_id UpperCamelCase_ = bos_token_id def _UpperCAmelCase ( self ) -> List[Any]: UpperCamelCase_ = ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size ) UpperCamelCase_ = tf.expand_dims(tf.constant([self.eos_token_id] * self.batch_size ) , 1 ) UpperCamelCase_ = tf.concat([input_ids, eos_tensor] , axis=1 ) UpperCamelCase_ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) UpperCamelCase_ = self.config_cls( vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_ids=[2] , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.pad_token_id , **self.config_updates , ) UpperCamelCase_ = prepare_mbart_inputs_dict(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) return config, inputs_dict def _UpperCAmelCase ( self , _UpperCAmelCase , _UpperCAmelCase ) -> List[str]: UpperCamelCase_ = TFMBartModel(config=_UpperCAmelCase ).get_decoder() UpperCamelCase_ = inputs_dict['input_ids'] UpperCamelCase_ = input_ids[:1, :] UpperCamelCase_ = inputs_dict['attention_mask'][:1, :] UpperCamelCase_ = inputs_dict['head_mask'] UpperCamelCase_ = 1 # first forward pass UpperCamelCase_ = model(_UpperCAmelCase , attention_mask=_UpperCAmelCase , head_mask=_UpperCAmelCase , use_cache=_UpperCAmelCase ) UpperCamelCase_ , UpperCamelCase_ = outputs.to_tuple() UpperCamelCase_ = past_key_values[1] def _snake_case (__lowercase , __lowercase , __lowercase , __lowercase=None , __lowercase=None , __lowercase=None , __lowercase=None , __lowercase=None , ): if attention_mask is None: UpperCamelCase_ = tf.cast(tf.math.not_equal(__lowercase , config.pad_token_id) , tf.inta) if decoder_attention_mask is None: UpperCamelCase_ = tf.concat( [ tf.ones(decoder_input_ids[:, :1].shape , dtype=tf.inta), tf.cast(tf.math.not_equal(decoder_input_ids[:, 1:] , config.pad_token_id) , tf.inta), ] , axis=-1 , ) if head_mask is None: UpperCamelCase_ = tf.ones((config.encoder_layers, config.encoder_attention_heads)) if decoder_head_mask is None: UpperCamelCase_ = tf.ones((config.decoder_layers, config.decoder_attention_heads)) if cross_attn_head_mask is None: UpperCamelCase_ = tf.ones((config.decoder_layers, config.decoder_attention_heads)) return { "input_ids": input_ids, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "decoder_attention_mask": decoder_attention_mask, "head_mask": head_mask, "decoder_head_mask": decoder_head_mask, "cross_attn_head_mask": cross_attn_head_mask, } @require_tf class _a ( UpperCAmelCase__ , UpperCAmelCase__ , unittest.TestCase ): """simple docstring""" A_ = (TFMBartForConditionalGeneration, TFMBartModel) if is_tf_available() else () A_ = (TFMBartForConditionalGeneration,) if is_tf_available() else () A_ = ( { """conversational""": TFMBartForConditionalGeneration, """feature-extraction""": TFMBartModel, """summarization""": TFMBartForConditionalGeneration, """text2text-generation""": TFMBartForConditionalGeneration, """translation""": TFMBartForConditionalGeneration, } if is_tf_available() else {} ) A_ = True A_ = False A_ = False def _UpperCAmelCase ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) -> Tuple: if pipeline_test_casse_name != "FeatureExtractionPipelineTests": # Exception encountered when calling layer '...' return True return False def _UpperCAmelCase ( self ) -> Optional[int]: UpperCamelCase_ = TFMBartModelTester(self ) UpperCamelCase_ = ConfigTester(self , config_class=_UpperCAmelCase ) def _UpperCAmelCase ( self ) -> Optional[int]: self.config_tester.run_common_tests() def _UpperCAmelCase ( self ) -> List[Any]: UpperCamelCase_ = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.check_decoder_model_past_large_inputs(*_UpperCAmelCase ) @require_sentencepiece @require_tokenizers @require_tf class _a ( unittest.TestCase ): """simple docstring""" A_ = [ """ UN Chief Says There Is No Military Solution in Syria""", ] A_ = [ """Şeful ONU declară că nu există o soluţie militară în Siria""", ] A_ = """facebook/mbart-large-en-ro""" @cached_property def _UpperCAmelCase ( self ) -> Any: return AutoTokenizer.from_pretrained(self.model_name ) @cached_property def _UpperCAmelCase ( self ) -> List[str]: UpperCamelCase_ = TFAutoModelForSeqaSeqLM.from_pretrained(self.model_name ) return model def _UpperCAmelCase ( self , **_UpperCAmelCase ) -> int: UpperCamelCase_ = self.translate_src_text(**_UpperCAmelCase ) self.assertListEqual(self.expected_text , _UpperCAmelCase ) def _UpperCAmelCase ( self , **_UpperCAmelCase ) -> List[str]: UpperCamelCase_ = self.tokenizer(self.src_text , **_UpperCAmelCase , return_tensors='tf' ) UpperCamelCase_ = self.model.generate( model_inputs.input_ids , attention_mask=model_inputs.attention_mask , num_beams=2 ) UpperCamelCase_ = self.tokenizer.batch_decode(_UpperCAmelCase , skip_special_tokens=_UpperCAmelCase ) return generated_words @slow def _UpperCAmelCase ( self ) -> List[Any]: self._assert_generated_batch_equal_expected()
23
0
'''simple docstring''' from __future__ import annotations import unittest import numpy as np from transformers import OPTConfig, is_tf_available from transformers.testing_utils import require_sentencepiece, require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import GPTaTokenizer, TFOPTForCausalLM, TFOPTModel def A_( A : List[str] , A : Union[str, Any] , A : Union[str, Any]=None , A : str=None): if attention_mask is None: UpperCamelCase = tf.cast(tf.math.not_equal(__lowercase , config.pad_token_id) , tf.inta) return {"input_ids": input_ids, "attention_mask": attention_mask} @require_tf class SCREAMING_SNAKE_CASE__ : lowerCAmelCase_ = OPTConfig lowerCAmelCase_ = {} lowerCAmelCase_ = """gelu""" def __init__( self , A_ , A_=13 , A_=7 , A_=True , A_=False , A_=99 , A_=16 , A_=2 , A_=4 , A_=4 , A_="gelu" , A_=0.1 , A_=0.1 , A_=20 , A_=2 , A_=1 , A_=0 , A_=16 , A_=16 , )-> Optional[int]: '''simple docstring''' UpperCamelCase = parent UpperCamelCase = batch_size UpperCamelCase = seq_length UpperCamelCase = is_training UpperCamelCase = use_labels UpperCamelCase = vocab_size UpperCamelCase = hidden_size UpperCamelCase = num_hidden_layers UpperCamelCase = num_attention_heads UpperCamelCase = intermediate_size UpperCamelCase = hidden_act UpperCamelCase = hidden_dropout_prob UpperCamelCase = attention_probs_dropout_prob UpperCamelCase = max_position_embeddings UpperCamelCase = eos_token_id UpperCamelCase = pad_token_id UpperCamelCase = bos_token_id UpperCamelCase = embed_dim UpperCamelCase = word_embed_proj_dim UpperCamelCase = False def UpperCAmelCase_ ( self )-> Optional[Any]: '''simple docstring''' UpperCamelCase = ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size ) UpperCamelCase = tf.expand_dims(tf.constant([self.eos_token_id] * self.batch_size ) , 1 ) UpperCamelCase = tf.concat([input_ids, eos_tensor] , axis=1 ) UpperCamelCase = self.config_cls( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_id=self.eos_token_id , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , embed_dim=self.embed_dim , word_embed_proj_dim=self.word_embed_proj_dim , is_encoder_decoder=_UpperCAmelCase , **self.config_updates , ) UpperCamelCase = prepare_opt_inputs_dict(_UpperCAmelCase , _UpperCAmelCase ) return config, inputs_dict def UpperCAmelCase_ ( self , A_ , A_ )-> List[str]: '''simple docstring''' UpperCamelCase = TFOPTModel(config=_UpperCAmelCase ) UpperCamelCase = inputs_dict['input_ids'] UpperCamelCase = input_ids[:1, :] UpperCamelCase = inputs_dict['attention_mask'][:1, :] UpperCamelCase = 1 # first forward pass UpperCamelCase = model(_UpperCAmelCase , attention_mask=_UpperCAmelCase , use_cache=_UpperCAmelCase ) UpperCamelCase , UpperCamelCase = outputs.to_tuple() # create hypothetical next token and extent to next_input_ids UpperCamelCase = ids_tensor((self.batch_size, 3) , config.vocab_size ) UpperCamelCase = tf.cast(ids_tensor((self.batch_size, 3) , 2 ) , tf.inta ) # append to next input_ids and UpperCamelCase = tf.concat([input_ids, next_tokens] , axis=-1 ) UpperCamelCase = tf.concat([attention_mask, next_attn_mask] , axis=-1 ) UpperCamelCase = model(_UpperCAmelCase , attention_mask=_UpperCAmelCase )[0] UpperCamelCase = model(_UpperCAmelCase , attention_mask=_UpperCAmelCase , past_key_values=_UpperCAmelCase )[0] self.parent.assertEqual(next_tokens.shape[1] , output_from_past.shape[1] ) # select random slice UpperCamelCase = int(ids_tensor((1,) , output_from_past.shape[-1] ) ) UpperCamelCase = output_from_no_past[:, -3:, random_slice_idx] UpperCamelCase = output_from_past[:, :, random_slice_idx] # test that outputs are equal for slice tf.debugging.assert_near(_UpperCAmelCase , _UpperCAmelCase , rtol=1e-3 ) @require_tf class SCREAMING_SNAKE_CASE__ ( UpperCAmelCase__ , UpperCAmelCase__ , unittest.TestCase): lowerCAmelCase_ = (TFOPTModel, TFOPTForCausalLM) if is_tf_available() else () lowerCAmelCase_ = (TFOPTForCausalLM,) if is_tf_available() else () lowerCAmelCase_ = ( {"""feature-extraction""": TFOPTModel, """text-generation""": TFOPTForCausalLM} if is_tf_available() else {} ) lowerCAmelCase_ = False lowerCAmelCase_ = False lowerCAmelCase_ = False lowerCAmelCase_ = 10 def UpperCAmelCase_ ( self )-> Optional[Any]: '''simple docstring''' UpperCamelCase = TFOPTModelTester(self ) UpperCamelCase = ConfigTester(self , config_class=_UpperCAmelCase ) def UpperCAmelCase_ ( self )-> Dict: '''simple docstring''' self.config_tester.run_common_tests() def UpperCAmelCase_ ( self )-> Union[str, Any]: '''simple docstring''' UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.check_decoder_model_past_large_inputs(*_UpperCAmelCase ) def UpperCAmelCase_ ( self )-> Dict: '''simple docstring''' UpperCamelCase , UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common() def _get_word_embedding_weight(A_ , A_ ): if hasattr(_UpperCAmelCase , 'weight' ): return embedding_layer.weight else: # Here we build the word embeddings weights if not exists. # And then we retry to get the attribute once built. model.build() if hasattr(_UpperCAmelCase , 'weight' ): return embedding_layer.weight else: return None for model_class in self.all_model_classes: for size in [config.vocab_size - 10, config.vocab_size + 10]: # build the embeddings UpperCamelCase = model_class(config=_UpperCAmelCase ) UpperCamelCase = _get_word_embedding_weight(_UpperCAmelCase , model.get_input_embeddings() ) UpperCamelCase = _get_word_embedding_weight(_UpperCAmelCase , model.get_output_embeddings() ) # reshape the embeddings model.resize_token_embeddings(_UpperCAmelCase ) UpperCamelCase = _get_word_embedding_weight(_UpperCAmelCase , model.get_input_embeddings() ) UpperCamelCase = _get_word_embedding_weight(_UpperCAmelCase , model.get_output_embeddings() ) # check that the resized embeddings size matches the desired size. UpperCamelCase = size if size is not None else config.vocab_size self.assertEqual(new_input_embeddings.shape[0] , _UpperCAmelCase ) # check that weights remain the same after resizing UpperCamelCase = True for pa, pa in zip(old_input_embeddings.value() , new_input_embeddings.value() ): if tf.math.reduce_sum(tf.math.abs(pa - pa ) ) > 0: UpperCamelCase = False self.assertTrue(_UpperCAmelCase ) if old_output_embeddings is not None and new_output_embeddings is not None: self.assertEqual(new_output_embeddings.shape[0] , _UpperCAmelCase ) UpperCamelCase = True for pa, pa in zip(old_output_embeddings.value() , new_output_embeddings.value() ): if tf.math.reduce_sum(tf.math.abs(pa - pa ) ) > 0: UpperCamelCase = False self.assertTrue(_UpperCAmelCase ) def A_( A : Optional[int]): return tf.constant(__lowercase , dtype=tf.intaa) @require_tf class SCREAMING_SNAKE_CASE__ ( unittest.TestCase): lowerCAmelCase_ = 99 def UpperCAmelCase_ ( self )-> List[str]: '''simple docstring''' UpperCamelCase = tf.ones((4, 1) , dtype=tf.intaa ) * 2 UpperCamelCase = tf.concat([ids_tensor((4, 6) , self.vocab_size - 3 ) + 3, eos_column_vector] , axis=1 ) UpperCamelCase = input_ids.shape[0] UpperCamelCase = OPTConfig( vocab_size=self.vocab_size , hidden_size=24 , num_hidden_layers=2 , num_attention_heads=2 , ffn_dim=32 , max_position_embeddings=48 , eos_token_id=2 , pad_token_id=1 , bos_token_id=0 , ) return config, input_ids, batch_size @require_sentencepiece @require_tf class SCREAMING_SNAKE_CASE__ ( unittest.TestCase): @slow def UpperCAmelCase_ ( self )-> Dict: '''simple docstring''' UpperCamelCase = TFOPTModel.from_pretrained('facebook/opt-350m' ) UpperCamelCase = _long_tensor([[0, 31414, 232, 328, 740, 1140, 12695, 69, 46078, 1588, 2]] ) UpperCamelCase = tf.not_equal(_UpperCAmelCase , model.config.pad_token_id ) with tf.GradientTape(): UpperCamelCase = model(input_ids=_UpperCAmelCase , attention_mask=_UpperCAmelCase ).last_hidden_state UpperCamelCase = (1, 11, 512) self.assertEqual(output.shape , _UpperCAmelCase ) UpperCamelCase = tf.constant( [[-0.2_873, -1.9_218, -0.3_033], [-1.2_710, -0.1_338, -0.1_902], [0.4_095, 0.1_214, -1.3_121]] ) self.assertTrue(np.allclose(output[:, :3, :3] , _UpperCAmelCase , atol=4e-3 ) ) UpperCamelCase = tf.function(_UpperCAmelCase , jit_compile=_UpperCAmelCase ) UpperCamelCase = xla_generate(_UpperCAmelCase , _UpperCAmelCase )[0] self.assertTrue(np.allclose(output[:, :3, :3] , _UpperCAmelCase , atol=4e-2 ) ) @require_tf @slow class SCREAMING_SNAKE_CASE__ ( unittest.TestCase): def UpperCAmelCase_ ( self )-> Tuple: '''simple docstring''' super().setUp() UpperCamelCase = 'facebook/opt-350m' def UpperCAmelCase_ ( self )-> Optional[int]: '''simple docstring''' UpperCamelCase = TFOPTForCausalLM.from_pretrained(self.path_model ) UpperCamelCase = GPTaTokenizer.from_pretrained(self.path_model ) UpperCamelCase = [ 'Today is a beautiful day and I want to', 'In the city of', 'Paris is the capital of France and', 'Computers and mobile phones have taken', ] # verify that prompt without BOS token is identical to Metaseq -> add_special_tokens=False UpperCamelCase = tokenizer(_UpperCAmelCase , return_tensors='tf' , padding=_UpperCAmelCase , add_special_tokens=_UpperCAmelCase ) UpperCamelCase = tf.math.reduce_mean(model(inputs.input_ids , attention_mask=inputs.attention_mask )[0] , axis=-1 ) UpperCamelCase = tf.constant( [ [1.3_851, -13.8923, -10.5229, -10.7533, -0.2_309, -10.2384, -0.5_365, -9.0_947, -5.1_670], [-4.7_073, -10.6276, -3.9_415, -21.5242, -0.2_822, -0.2_822, -0.2_822, -0.2_822, -0.2_822], [0.6_247, -3.4_229, -8.9_179, -1.4_297, -14.1650, 1.4_146, -9.0_218, -0.2_703, -0.2_703], [6.4_783, -1.9_913, -10.7926, -2.3_336, 1.5_092, -0.9_974, -6.8_213, 1.3_477, 1.3_477], ] ) self.assertTrue(np.allclose(_UpperCAmelCase , _UpperCAmelCase , atol=1e-4 ) ) UpperCamelCase = tf.function(_UpperCAmelCase , jit_compile=_UpperCAmelCase ) UpperCamelCase = tf.math.reduce_mean(xla_generate(inputs.input_ids , attention_mask=inputs.attention_mask )[0] , axis=-1 ) self.assertTrue(np.allclose(_UpperCAmelCase , _UpperCAmelCase , atol=1e-4 ) ) @require_tf @slow class SCREAMING_SNAKE_CASE__ ( unittest.TestCase): @property def UpperCAmelCase_ ( self )-> Any: '''simple docstring''' return [ "Today is a beautiful day and I want", "In the city of", "Paris is the capital of France and", "Computers and mobile phones have taken", ] def UpperCAmelCase_ ( self )-> Any: '''simple docstring''' UpperCamelCase = 'facebook/opt-125m' UpperCamelCase = [ 'Today is a beautiful day and I want to', 'In the city of New York, the city', 'Paris is the capital of France and the capital', 'Computers and mobile phones have taken over the', ] UpperCamelCase = [] UpperCamelCase = GPTaTokenizer.from_pretrained(_UpperCAmelCase ) UpperCamelCase = TFOPTForCausalLM.from_pretrained(_UpperCAmelCase ) for prompt in self.prompts: UpperCamelCase = tokenizer(_UpperCAmelCase , return_tensors='tf' ).input_ids UpperCamelCase = model.generate(_UpperCAmelCase , max_length=10 ) UpperCamelCase = tokenizer.batch_decode(_UpperCAmelCase , skip_special_tokens=_UpperCAmelCase ) predicted_outputs += generated_string self.assertListEqual(_UpperCAmelCase , _UpperCAmelCase ) def UpperCAmelCase_ ( self )-> Union[str, Any]: '''simple docstring''' UpperCamelCase = 'facebook/opt-350m' UpperCamelCase = GPTaTokenizer.from_pretrained(_UpperCAmelCase ) UpperCamelCase = TFOPTForCausalLM.from_pretrained(_UpperCAmelCase ) UpperCamelCase = 'left' # use different length sentences to test batching UpperCamelCase = [ 'Hello, my dog is a little', 'Today, I', ] UpperCamelCase = tokenizer(_UpperCAmelCase , return_tensors='tf' , padding=_UpperCAmelCase ) UpperCamelCase = inputs['input_ids'] UpperCamelCase = model.generate(input_ids=_UpperCAmelCase , attention_mask=inputs['attention_mask'] ) UpperCamelCase = tokenizer(sentences[0] , return_tensors='tf' ).input_ids UpperCamelCase = model.generate(input_ids=_UpperCAmelCase ) UpperCamelCase = inputs_non_padded.shape[-1] - tf.math.reduce_sum( tf.cast(inputs['attention_mask'][-1] , tf.intaa ) ) UpperCamelCase = tokenizer(sentences[1] , return_tensors='tf' ).input_ids UpperCamelCase = model.generate(input_ids=_UpperCAmelCase , max_length=model.config.max_length - num_paddings ) UpperCamelCase = tokenizer.batch_decode(_UpperCAmelCase , skip_special_tokens=_UpperCAmelCase ) UpperCamelCase = tokenizer.decode(output_non_padded[0] , skip_special_tokens=_UpperCAmelCase ) UpperCamelCase = tokenizer.decode(output_padded[0] , skip_special_tokens=_UpperCAmelCase ) UpperCamelCase = [ 'Hello, my dog is a little bit of a dork.\nI\'m a little bit', 'Today, I was in the middle of a conversation with a friend about the', ] self.assertListEqual(_UpperCAmelCase , _UpperCAmelCase ) self.assertListEqual(_UpperCAmelCase , [non_padded_sentence, padded_sentence] ) def UpperCAmelCase_ ( self )-> int: '''simple docstring''' UpperCamelCase = 'facebook/opt-350m' UpperCamelCase = [ 'Today is a beautiful day and I want to', 'In the city of San Francisco, the city', 'Paris is the capital of France and the capital', 'Computers and mobile phones have taken over the', ] UpperCamelCase = [] UpperCamelCase = GPTaTokenizer.from_pretrained(_UpperCAmelCase ) UpperCamelCase = TFOPTForCausalLM.from_pretrained(_UpperCAmelCase ) for prompt in self.prompts: UpperCamelCase = tokenizer(_UpperCAmelCase , return_tensors='tf' ).input_ids UpperCamelCase = model.generate(_UpperCAmelCase , max_length=10 ) UpperCamelCase = tokenizer.batch_decode(_UpperCAmelCase , skip_special_tokens=_UpperCAmelCase ) predicted_outputs += generated_string self.assertListEqual(_UpperCAmelCase , _UpperCAmelCase )
3
def _snake_case (__lowercase): UpperCamelCase_ = 1 for i in range(1 , num + 1): fact *= i return fact def _snake_case (__lowercase): UpperCamelCase_ = 0 while number > 0: UpperCamelCase_ = number % 10 sum_of_digits += last_digit UpperCamelCase_ = number // 10 # Removing the last_digit from the given number return sum_of_digits def _snake_case (__lowercase = 100): UpperCamelCase_ = factorial(__lowercase) UpperCamelCase_ = split_and_add(__lowercase) return result if __name__ == "__main__": print(solution(int(input("""Enter the Number: """).strip())))
23
0
'''simple docstring''' import unittest from transformers import CamembertTokenizer, CamembertTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow from transformers.utils import is_torch_available from ...test_tokenization_common import TokenizerTesterMixin a : Optional[int] = get_tests_dir('''fixtures/test_sentencepiece.model''') a : Dict = get_tests_dir('''fixtures/test_sentencepiece_bpe.model''') a : Tuple = """pt""" if is_torch_available() else """tf""" @require_sentencepiece @require_tokenizers class SCREAMING_SNAKE_CASE__ ( UpperCAmelCase__ , unittest.TestCase ): __SCREAMING_SNAKE_CASE = CamembertTokenizer __SCREAMING_SNAKE_CASE = CamembertTokenizerFast __SCREAMING_SNAKE_CASE = True __SCREAMING_SNAKE_CASE = True def A ( self : Tuple ): """simple docstring""" super().setUp() # We have a SentencePiece fixture for testing __snake_case = CamembertTokenizer(_UpperCAmelCase ) tokenizer.save_pretrained(self.tmpdirname ) def A ( self : List[str] ): """simple docstring""" __snake_case = "<pad>" __snake_case = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(_UpperCAmelCase ) , _UpperCAmelCase ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(_UpperCAmelCase ) , _UpperCAmelCase ) def A ( self : int ): """simple docstring""" __snake_case = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , "<s>NOTUSED" ) self.assertEqual(vocab_keys[1] , "<pad>" ) self.assertEqual(vocab_keys[-1] , "<mask>" ) self.assertEqual(len(_UpperCAmelCase ) , 1_004 ) def A ( self : Dict ): """simple docstring""" self.assertEqual(self.get_tokenizer().vocab_size , 1_005 ) def A ( self : str ): """simple docstring""" __snake_case = CamembertTokenizer(_UpperCAmelCase ) tokenizer.save_pretrained(self.tmpdirname ) __snake_case = CamembertTokenizerFast.from_pretrained(self.tmpdirname ) __snake_case = "I was born in 92000, and this is falsé." __snake_case = tokenizer.encode(_UpperCAmelCase ) __snake_case = rust_tokenizer.encode(_UpperCAmelCase ) self.assertListEqual(_UpperCAmelCase , _UpperCAmelCase ) __snake_case = tokenizer.encode(_UpperCAmelCase , add_special_tokens=_UpperCAmelCase ) __snake_case = rust_tokenizer.encode(_UpperCAmelCase , add_special_tokens=_UpperCAmelCase ) self.assertListEqual(_UpperCAmelCase , _UpperCAmelCase ) # <unk> tokens are not the same for `rust` than for `slow`. # Because spm gives back raw token instead of `unk` in EncodeAsPieces # tokens = tokenizer.tokenize(sequence) __snake_case = tokenizer.convert_ids_to_tokens(_UpperCAmelCase ) __snake_case = rust_tokenizer.tokenize(_UpperCAmelCase ) self.assertListEqual(_UpperCAmelCase , _UpperCAmelCase ) def A ( self : Union[str, Any] ): """simple docstring""" if not self.test_rust_tokenizer: return __snake_case = self.get_tokenizer() __snake_case = self.get_rust_tokenizer() __snake_case = "I was born in 92000, and this is falsé." __snake_case = tokenizer.tokenize(_UpperCAmelCase ) __snake_case = rust_tokenizer.tokenize(_UpperCAmelCase ) self.assertListEqual(_UpperCAmelCase , _UpperCAmelCase ) __snake_case = tokenizer.encode(_UpperCAmelCase , add_special_tokens=_UpperCAmelCase ) __snake_case = rust_tokenizer.encode(_UpperCAmelCase , add_special_tokens=_UpperCAmelCase ) self.assertListEqual(_UpperCAmelCase , _UpperCAmelCase ) __snake_case = self.get_rust_tokenizer() __snake_case = tokenizer.encode(_UpperCAmelCase ) __snake_case = rust_tokenizer.encode(_UpperCAmelCase ) self.assertListEqual(_UpperCAmelCase , _UpperCAmelCase ) @slow def A ( self : Union[str, Any] ): """simple docstring""" __snake_case = {"input_ids": [[5, 54, 7_196, 297, 30, 23, 776, 18, 11, 3_215, 3_705, 8_252, 22, 3_164, 1_181, 2_116, 29, 16, 813, 25, 791, 3_314, 20, 3_446, 38, 27_575, 120, 6, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [5, 468, 17, 11, 9_088, 20, 1_517, 8, 22_804, 18_818, 10, 38, 629, 607, 607, 142, 19, 7_196, 867, 56, 10_326, 24, 2_267, 20, 416, 5_072, 15_612, 233, 734, 7, 2_399, 27, 16, 3_015, 1_649, 7, 24, 20, 4_338, 2_399, 27, 13, 3_400, 14, 13, 6_189, 8, 930, 9, 6]], "attention_mask": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]]} # noqa: E501 # fmt: on # camembert is a french model. So we also use french texts. __snake_case = [ "Le transformeur est un modèle d\'apprentissage profond introduit en 2017, " "utilisé principalement dans le domaine du traitement automatique des langues (TAL).", "À l\'instar des réseaux de neurones récurrents (RNN), les transformeurs sont conçus " "pour gérer des données séquentielles, telles que le langage naturel, pour des tâches " "telles que la traduction et la synthèse de texte.", ] self.tokenizer_integration_test_util( expected_encoding=_UpperCAmelCase , model_name="camembert-base" , revision="3a0641d9a1aeb7e848a74299e7e4c4bca216b4cf" , sequences=_UpperCAmelCase , )
69
from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, is_valid_image, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging if is_vision_available(): import PIL snake_case__ : str = logging.get_logger(__name__) def _snake_case (__lowercase): if isinstance(__lowercase , (list, tuple)) and isinstance(videos[0] , (list, tuple)) and is_valid_image(videos[0][0]): return videos elif isinstance(__lowercase , (list, tuple)) and is_valid_image(videos[0]): return [videos] elif is_valid_image(__lowercase): return [[videos]] raise ValueError(f"""Could not make batched video from {videos}""") class _a ( UpperCAmelCase__ ): """simple docstring""" A_ = ["""pixel_values"""] def __init__( self , _UpperCAmelCase = True , _UpperCAmelCase = None , _UpperCAmelCase = PILImageResampling.BILINEAR , _UpperCAmelCase = True , _UpperCAmelCase = None , _UpperCAmelCase = True , _UpperCAmelCase = 1 / 255 , _UpperCAmelCase = True , _UpperCAmelCase = None , _UpperCAmelCase = None , **_UpperCAmelCase , ) -> None: super().__init__(**_UpperCAmelCase ) UpperCamelCase_ = size if size is not None else {'shortest_edge': 224} UpperCamelCase_ = get_size_dict(_UpperCAmelCase , default_to_square=_UpperCAmelCase ) UpperCamelCase_ = crop_size if crop_size is not None else {'height': 224, 'width': 224} UpperCamelCase_ = get_size_dict(_UpperCAmelCase , param_name='crop_size' ) UpperCamelCase_ = do_resize UpperCamelCase_ = size UpperCamelCase_ = do_center_crop UpperCamelCase_ = crop_size UpperCamelCase_ = resample UpperCamelCase_ = do_rescale UpperCamelCase_ = rescale_factor UpperCamelCase_ = do_normalize UpperCamelCase_ = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN UpperCamelCase_ = image_std if image_std is not None else IMAGENET_STANDARD_STD def _UpperCAmelCase ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase = PILImageResampling.BILINEAR , _UpperCAmelCase = None , **_UpperCAmelCase , ) -> np.ndarray: UpperCamelCase_ = get_size_dict(_UpperCAmelCase , default_to_square=_UpperCAmelCase ) if "shortest_edge" in size: UpperCamelCase_ = get_resize_output_image_size(_UpperCAmelCase , size['shortest_edge'] , default_to_square=_UpperCAmelCase ) elif "height" in size and "width" in size: UpperCamelCase_ = (size['height'], size['width']) else: raise ValueError(f"""Size must have 'height' and 'width' or 'shortest_edge' as keys. Got {size.keys()}""" ) return resize(_UpperCAmelCase , size=_UpperCAmelCase , resample=_UpperCAmelCase , data_format=_UpperCAmelCase , **_UpperCAmelCase ) def _UpperCAmelCase ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase = None , **_UpperCAmelCase , ) -> np.ndarray: UpperCamelCase_ = get_size_dict(_UpperCAmelCase ) if "height" not in size or "width" not in size: raise ValueError(f"""Size must have 'height' and 'width' as keys. Got {size.keys()}""" ) return center_crop(_UpperCAmelCase , size=(size['height'], size['width']) , data_format=_UpperCAmelCase , **_UpperCAmelCase ) def _UpperCAmelCase ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase = None , **_UpperCAmelCase , ) -> int: return rescale(_UpperCAmelCase , scale=_UpperCAmelCase , data_format=_UpperCAmelCase , **_UpperCAmelCase ) def _UpperCAmelCase ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase = None , **_UpperCAmelCase , ) -> np.ndarray: return normalize(_UpperCAmelCase , mean=_UpperCAmelCase , std=_UpperCAmelCase , data_format=_UpperCAmelCase , **_UpperCAmelCase ) def _UpperCAmelCase ( self , _UpperCAmelCase , _UpperCAmelCase = None , _UpperCAmelCase = None , _UpperCAmelCase = None , _UpperCAmelCase = None , _UpperCAmelCase = None , _UpperCAmelCase = None , _UpperCAmelCase = None , _UpperCAmelCase = None , _UpperCAmelCase = None , _UpperCAmelCase = None , _UpperCAmelCase = ChannelDimension.FIRST , ) -> np.ndarray: if do_resize and size is None or resample is None: raise ValueError('Size and resample must be specified if do_resize is True.' ) if do_center_crop and crop_size is None: raise ValueError('Crop size must be specified if do_center_crop is True.' ) if do_rescale and rescale_factor is None: raise ValueError('Rescale factor must be specified if do_rescale is True.' ) if do_normalize and (image_mean is None or image_std is None): raise ValueError('Image mean and std must be specified if do_normalize is True.' ) # All transformations expect numpy arrays. UpperCamelCase_ = to_numpy_array(_UpperCAmelCase ) if do_resize: UpperCamelCase_ = self.resize(image=_UpperCAmelCase , size=_UpperCAmelCase , resample=_UpperCAmelCase ) if do_center_crop: UpperCamelCase_ = self.center_crop(_UpperCAmelCase , size=_UpperCAmelCase ) if do_rescale: UpperCamelCase_ = self.rescale(image=_UpperCAmelCase , scale=_UpperCAmelCase ) if do_normalize: UpperCamelCase_ = self.normalize(image=_UpperCAmelCase , mean=_UpperCAmelCase , std=_UpperCAmelCase ) UpperCamelCase_ = to_channel_dimension_format(_UpperCAmelCase , _UpperCAmelCase ) return image def _UpperCAmelCase ( self , _UpperCAmelCase , _UpperCAmelCase = None , _UpperCAmelCase = None , _UpperCAmelCase = None , _UpperCAmelCase = None , _UpperCAmelCase = None , _UpperCAmelCase = None , _UpperCAmelCase = None , _UpperCAmelCase = None , _UpperCAmelCase = None , _UpperCAmelCase = None , _UpperCAmelCase = None , _UpperCAmelCase = ChannelDimension.FIRST , **_UpperCAmelCase , ) -> PIL.Image.Image: UpperCamelCase_ = do_resize if do_resize is not None else self.do_resize UpperCamelCase_ = resample if resample is not None else self.resample UpperCamelCase_ = do_center_crop if do_center_crop is not None else self.do_center_crop UpperCamelCase_ = do_rescale if do_rescale is not None else self.do_rescale UpperCamelCase_ = rescale_factor if rescale_factor is not None else self.rescale_factor UpperCamelCase_ = do_normalize if do_normalize is not None else self.do_normalize UpperCamelCase_ = image_mean if image_mean is not None else self.image_mean UpperCamelCase_ = image_std if image_std is not None else self.image_std UpperCamelCase_ = size if size is not None else self.size UpperCamelCase_ = get_size_dict(_UpperCAmelCase , default_to_square=_UpperCAmelCase ) UpperCamelCase_ = crop_size if crop_size is not None else self.crop_size UpperCamelCase_ = get_size_dict(_UpperCAmelCase , param_name='crop_size' ) if not valid_images(_UpperCAmelCase ): raise ValueError( 'Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ' 'torch.Tensor, tf.Tensor or jax.ndarray.' ) UpperCamelCase_ = make_batched(_UpperCAmelCase ) UpperCamelCase_ = [ [ self._preprocess_image( image=_UpperCAmelCase , do_resize=_UpperCAmelCase , size=_UpperCAmelCase , resample=_UpperCAmelCase , do_center_crop=_UpperCAmelCase , crop_size=_UpperCAmelCase , do_rescale=_UpperCAmelCase , rescale_factor=_UpperCAmelCase , do_normalize=_UpperCAmelCase , image_mean=_UpperCAmelCase , image_std=_UpperCAmelCase , data_format=_UpperCAmelCase , ) for img in video ] for video in videos ] UpperCamelCase_ = {'pixel_values': videos} return BatchFeature(data=_UpperCAmelCase , tensor_type=_UpperCAmelCase )
23
0
import os import tempfile from functools import partial from unittest import TestCase from unittest.mock import patch import datasets import datasets.config from .utils import require_beam class __snake_case ( datasets.BeamBasedBuilder ): def UpperCAmelCase__ ( self : Optional[int]): return datasets.DatasetInfo( features=datasets.Features({'''content''': datasets.Value('''string''')}) , supervised_keys=_UpperCAmelCase , ) def UpperCAmelCase__ ( self : Union[str, Any] , A_ : Optional[int] , A_ : Dict): return [datasets.SplitGenerator(name=datasets.Split.TRAIN , gen_kwargs={'''examples''': get_test_dummy_examples()})] def UpperCAmelCase__ ( self : Any , A_ : Dict , A_ : int): import apache_beam as beam return pipeline | "Load Examples" >> beam.Create(_UpperCAmelCase) class __snake_case ( datasets.BeamBasedBuilder ): def UpperCAmelCase__ ( self : int): return datasets.DatasetInfo( features=datasets.Features({'''a''': datasets.Sequence({'''b''': datasets.Value('''string''')})}) , supervised_keys=_UpperCAmelCase , ) def UpperCAmelCase__ ( self : int , A_ : Tuple , A_ : Union[str, Any]): return [ datasets.SplitGenerator(name=datasets.Split.TRAIN , gen_kwargs={'''examples''': get_test_nested_examples()}) ] def UpperCAmelCase__ ( self : Any , A_ : int , A_ : Union[str, Any]): import apache_beam as beam return pipeline | "Load Examples" >> beam.Create(_UpperCAmelCase) def UpperCamelCase( ): return [(i, {"content": content}) for i, content in enumerate(['''foo''', '''bar''', '''foobar'''] )] def UpperCamelCase( ): return [(i, {"a": {"b": [content]}}) for i, content in enumerate(['''foo''', '''bar''', '''foobar'''] )] class __snake_case ( UpperCAmelCase__ ): @require_beam def UpperCAmelCase__ ( self : Dict): lowerCAmelCase_ : List[str] = len(get_test_dummy_examples()) with tempfile.TemporaryDirectory() as tmp_cache_dir: lowerCAmelCase_ : Dict = DummyBeamDataset(cache_dir=_UpperCAmelCase , beam_runner='''DirectRunner''') builder.download_and_prepare() self.assertTrue( os.path.exists( os.path.join(_UpperCAmelCase , builder.name , '''default''' , '''0.0.0''' , F"""{builder.name}-train.arrow"""))) self.assertDictEqual(builder.info.features , datasets.Features({'''content''': datasets.Value('''string''')})) lowerCAmelCase_ : Tuple = builder.as_dataset() self.assertEqual(dset['''train'''].num_rows , _UpperCAmelCase) self.assertEqual(dset['''train'''].info.splits['''train'''].num_examples , _UpperCAmelCase) self.assertDictEqual(dset['''train'''][0] , get_test_dummy_examples()[0][1]) self.assertDictEqual( dset['''train'''][expected_num_examples - 1] , get_test_dummy_examples()[expected_num_examples - 1][1]) self.assertTrue( os.path.exists(os.path.join(_UpperCAmelCase , builder.name , '''default''' , '''0.0.0''' , '''dataset_info.json'''))) del dset @require_beam def UpperCAmelCase__ ( self : int): import apache_beam as beam lowerCAmelCase_ : str = beam.io.parquetio.WriteToParquet lowerCAmelCase_ : Optional[Any] = len(get_test_dummy_examples()) with tempfile.TemporaryDirectory() as tmp_cache_dir: lowerCAmelCase_ : List[Any] = DummyBeamDataset(cache_dir=_UpperCAmelCase , beam_runner='''DirectRunner''') with patch('''apache_beam.io.parquetio.WriteToParquet''') as write_parquet_mock: lowerCAmelCase_ : Union[str, Any] = partial(_UpperCAmelCase , num_shards=2) builder.download_and_prepare() self.assertTrue( os.path.exists( os.path.join( _UpperCAmelCase , builder.name , '''default''' , '''0.0.0''' , F"""{builder.name}-train-00000-of-00002.arrow"""))) self.assertTrue( os.path.exists( os.path.join( _UpperCAmelCase , builder.name , '''default''' , '''0.0.0''' , F"""{builder.name}-train-00000-of-00002.arrow"""))) self.assertDictEqual(builder.info.features , datasets.Features({'''content''': datasets.Value('''string''')})) lowerCAmelCase_ : Optional[int] = builder.as_dataset() self.assertEqual(dset['''train'''].num_rows , _UpperCAmelCase) self.assertEqual(dset['''train'''].info.splits['''train'''].num_examples , _UpperCAmelCase) # Order is not preserved when sharding, so we just check that all the elements are there self.assertListEqual(sorted(dset['''train''']['''content''']) , sorted(['''foo''', '''bar''', '''foobar'''])) self.assertTrue( os.path.exists(os.path.join(_UpperCAmelCase , builder.name , '''default''' , '''0.0.0''' , '''dataset_info.json'''))) del dset @require_beam def UpperCAmelCase__ ( self : List[Any]): with tempfile.TemporaryDirectory() as tmp_cache_dir: lowerCAmelCase_ : List[Any] = DummyBeamDataset(cache_dir=_UpperCAmelCase) self.assertRaises(datasets.builder.MissingBeamOptions , builder.download_and_prepare) @require_beam def UpperCAmelCase__ ( self : Tuple): lowerCAmelCase_ : Any = len(get_test_nested_examples()) with tempfile.TemporaryDirectory() as tmp_cache_dir: lowerCAmelCase_ : List[str] = NestedBeamDataset(cache_dir=_UpperCAmelCase , beam_runner='''DirectRunner''') builder.download_and_prepare() self.assertTrue( os.path.exists( os.path.join(_UpperCAmelCase , builder.name , '''default''' , '''0.0.0''' , F"""{builder.name}-train.arrow"""))) self.assertDictEqual( builder.info.features , datasets.Features({'''a''': datasets.Sequence({'''b''': datasets.Value('''string''')})})) lowerCAmelCase_ : Any = builder.as_dataset() self.assertEqual(dset['''train'''].num_rows , _UpperCAmelCase) self.assertEqual(dset['''train'''].info.splits['''train'''].num_examples , _UpperCAmelCase) self.assertDictEqual(dset['''train'''][0] , get_test_nested_examples()[0][1]) self.assertDictEqual( dset['''train'''][expected_num_examples - 1] , get_test_nested_examples()[expected_num_examples - 1][1]) self.assertTrue( os.path.exists(os.path.join(_UpperCAmelCase , builder.name , '''default''' , '''0.0.0''' , '''dataset_info.json'''))) del dset
171
# DISCLAIMER: This file is strongly influenced by https://github.com/yang-song/score_sde_pytorch import math from dataclasses import dataclass from typing import Optional, Tuple, Union import torch from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput, randn_tensor from .scheduling_utils import SchedulerMixin, SchedulerOutput @dataclass class _a ( UpperCAmelCase__ ): """simple docstring""" A_ = 42 A_ = 42 class _a ( UpperCAmelCase__ , UpperCAmelCase__ ): """simple docstring""" A_ = 1 @register_to_config def __init__( self , _UpperCAmelCase = 2000 , _UpperCAmelCase = 0.1_5 , _UpperCAmelCase = 0.0_1 , _UpperCAmelCase = 1_3_4_8.0 , _UpperCAmelCase = 1e-5 , _UpperCAmelCase = 1 , ) -> Tuple: # standard deviation of the initial noise distribution UpperCamelCase_ = sigma_max # setable values UpperCamelCase_ = None self.set_sigmas(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) def _UpperCAmelCase ( self , _UpperCAmelCase , _UpperCAmelCase = None ) -> torch.FloatTensor: return sample def _UpperCAmelCase ( self , _UpperCAmelCase , _UpperCAmelCase = None , _UpperCAmelCase = None ) -> str: UpperCamelCase_ = sampling_eps if sampling_eps is not None else self.config.sampling_eps UpperCamelCase_ = torch.linspace(1 , _UpperCAmelCase , _UpperCAmelCase , device=_UpperCAmelCase ) def _UpperCAmelCase ( self , _UpperCAmelCase , _UpperCAmelCase = None , _UpperCAmelCase = None , _UpperCAmelCase = None ) -> Any: UpperCamelCase_ = sigma_min if sigma_min is not None else self.config.sigma_min UpperCamelCase_ = sigma_max if sigma_max is not None else self.config.sigma_max UpperCamelCase_ = sampling_eps if sampling_eps is not None else self.config.sampling_eps if self.timesteps is None: self.set_timesteps(_UpperCAmelCase , _UpperCAmelCase ) UpperCamelCase_ = sigma_min * (sigma_max / sigma_min) ** (self.timesteps / sampling_eps) UpperCamelCase_ = torch.exp(torch.linspace(math.log(_UpperCAmelCase ) , math.log(_UpperCAmelCase ) , _UpperCAmelCase ) ) UpperCamelCase_ = torch.tensor([sigma_min * (sigma_max / sigma_min) ** t for t in self.timesteps] ) def _UpperCAmelCase ( self , _UpperCAmelCase , _UpperCAmelCase ) -> List[Any]: return torch.where( timesteps == 0 , torch.zeros_like(t.to(timesteps.device ) ) , self.discrete_sigmas[timesteps - 1].to(timesteps.device ) , ) def _UpperCAmelCase ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase = None , _UpperCAmelCase = True , ) -> Union[SdeVeOutput, Tuple]: if self.timesteps is None: raise ValueError( '`self.timesteps` is not set, you need to run \'set_timesteps\' after creating the scheduler' ) UpperCamelCase_ = timestep * torch.ones( sample.shape[0] , device=sample.device ) # torch.repeat_interleave(timestep, sample.shape[0]) UpperCamelCase_ = (timestep * (len(self.timesteps ) - 1)).long() # mps requires indices to be in the same device, so we use cpu as is the default with cuda UpperCamelCase_ = timesteps.to(self.discrete_sigmas.device ) UpperCamelCase_ = self.discrete_sigmas[timesteps].to(sample.device ) UpperCamelCase_ = self.get_adjacent_sigma(_UpperCAmelCase , _UpperCAmelCase ).to(sample.device ) UpperCamelCase_ = torch.zeros_like(_UpperCAmelCase ) UpperCamelCase_ = (sigma**2 - adjacent_sigma**2) ** 0.5 # equation 6 in the paper: the model_output modeled by the network is grad_x log pt(x) # also equation 47 shows the analog from SDE models to ancestral sampling methods UpperCamelCase_ = diffusion.flatten() while len(diffusion.shape ) < len(sample.shape ): UpperCamelCase_ = diffusion.unsqueeze(-1 ) UpperCamelCase_ = drift - diffusion**2 * model_output # equation 6: sample noise for the diffusion term of UpperCamelCase_ = randn_tensor( sample.shape , layout=sample.layout , generator=_UpperCAmelCase , device=sample.device , dtype=sample.dtype ) UpperCamelCase_ = sample - drift # subtract because `dt` is a small negative timestep # TODO is the variable diffusion the correct scaling term for the noise? UpperCamelCase_ = prev_sample_mean + diffusion * noise # add impact of diffusion field g if not return_dict: return (prev_sample, prev_sample_mean) return SdeVeOutput(prev_sample=_UpperCAmelCase , prev_sample_mean=_UpperCAmelCase ) def _UpperCAmelCase ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase = None , _UpperCAmelCase = True , ) -> Union[SchedulerOutput, Tuple]: if self.timesteps is None: raise ValueError( '`self.timesteps` is not set, you need to run \'set_timesteps\' after creating the scheduler' ) # For small batch sizes, the paper "suggest replacing norm(z) with sqrt(d), where d is the dim. of z" # sample noise for correction UpperCamelCase_ = randn_tensor(sample.shape , layout=sample.layout , generator=_UpperCAmelCase ).to(sample.device ) # compute step size from the model_output, the noise, and the snr UpperCamelCase_ = torch.norm(model_output.reshape(model_output.shape[0] , -1 ) , dim=-1 ).mean() UpperCamelCase_ = torch.norm(noise.reshape(noise.shape[0] , -1 ) , dim=-1 ).mean() UpperCamelCase_ = (self.config.snr * noise_norm / grad_norm) ** 2 * 2 UpperCamelCase_ = step_size * torch.ones(sample.shape[0] ).to(sample.device ) # self.repeat_scalar(step_size, sample.shape[0]) # compute corrected sample: model_output term and noise term UpperCamelCase_ = step_size.flatten() while len(step_size.shape ) < len(sample.shape ): UpperCamelCase_ = step_size.unsqueeze(-1 ) UpperCamelCase_ = sample + step_size * model_output UpperCamelCase_ = prev_sample_mean + ((step_size * 2) ** 0.5) * noise if not return_dict: return (prev_sample,) return SchedulerOutput(prev_sample=_UpperCAmelCase ) def _UpperCAmelCase ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , ) -> torch.FloatTensor: # Make sure sigmas and timesteps have the same device and dtype as original_samples UpperCamelCase_ = timesteps.to(original_samples.device ) UpperCamelCase_ = self.discrete_sigmas.to(original_samples.device )[timesteps] UpperCamelCase_ = ( noise * sigmas[:, None, None, None] if noise is not None else torch.randn_like(_UpperCAmelCase ) * sigmas[:, None, None, None] ) UpperCamelCase_ = noise + original_samples return noisy_samples def __len__( self ) -> Optional[int]: return self.config.num_train_timesteps
23
0
from __future__ import annotations import sys from collections import deque from typing import Generic, TypeVar __lowercase : Dict = TypeVar('''T''') class _A ( Generic[T] ): '''simple docstring''' __lowerCamelCase : Union[str, Any] = 4_2 # Cache store of keys __lowerCamelCase : Tuple = 4_2 # References of the keys in cache __lowerCamelCase : Dict = 1_0 # Maximum capacity of cache def __init__( self ,SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case : List[str] = deque() snake_case : List[Any] = set() if not n: snake_case : Optional[Any] = sys.maxsize elif n < 0: raise ValueError("""n should be an integer greater than 0.""" ) else: snake_case : Optional[Any] = n def snake_case_ ( self ,SCREAMING_SNAKE_CASE_ ): '''simple docstring''' if x not in self.key_reference: if len(self.dq_store ) == LRUCache._MAX_CAPACITY: snake_case : int = self.dq_store.pop() self.key_reference.remove(_UpperCAmelCase ) else: self.dq_store.remove(_UpperCAmelCase ) self.dq_store.appendleft(_UpperCAmelCase ) self.key_reference.add(_UpperCAmelCase ) def snake_case_ ( self ): '''simple docstring''' for k in self.dq_store: print(_UpperCAmelCase ) def __repr__( self ): '''simple docstring''' return F"""LRUCache({self._MAX_CAPACITY}) => {list(self.dq_store )}""" if __name__ == "__main__": import doctest doctest.testmod() __lowercase : LRUCache[str | int] = LRUCache(4) lru_cache.refer('''A''') lru_cache.refer(2) lru_cache.refer(3) lru_cache.refer('''A''') lru_cache.refer(4) lru_cache.refer(5) lru_cache.display() print(lru_cache) assert str(lru_cache) == "LRUCache(4) => [5, 4, 'A', 3]"
36
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available snake_case__ : Optional[int] = { """configuration_pegasus_x""": ["""PEGASUS_X_PRETRAINED_CONFIG_ARCHIVE_MAP""", """PegasusXConfig"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case__ : Dict = [ """PEGASUS_X_PRETRAINED_MODEL_ARCHIVE_LIST""", """PegasusXForConditionalGeneration""", """PegasusXModel""", """PegasusXPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_pegasus_x import PEGASUS_X_PRETRAINED_CONFIG_ARCHIVE_MAP, PegasusXConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_pegasus_x import ( PEGASUS_X_PRETRAINED_MODEL_ARCHIVE_LIST, PegasusXForConditionalGeneration, PegasusXModel, PegasusXPreTrainedModel, ) else: import sys snake_case__ : Optional[Any] = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
23
0
'''simple docstring''' def _lowerCAmelCase (_lowercase ): """simple docstring""" a__ = [0] * len(__lowercase ) a__ = [] a__ = [1] * len(__lowercase ) for values in graph.values(): for i in values: indegree[i] += 1 for i in range(len(__lowercase ) ): if indegree[i] == 0: queue.append(__lowercase ) while queue: a__ = queue.pop(0 ) for x in graph[vertex]: indegree[x] -= 1 if long_dist[vertex] + 1 > long_dist[x]: a__ = long_dist[vertex] + 1 if indegree[x] == 0: queue.append(__lowercase ) print(max(__lowercase ) ) # Adjacency list of Graph UpperCamelCase_ : Union[str, Any] = {0: [2, 3, 4], 1: [2, 7], 2: [5], 3: [5, 7], 4: [7], 5: [6], 6: [7], 7: []} longest_distance(graph)
331
import datasets from .evaluate import evaluate snake_case__ : int = """\ @article{hendrycks2021cuad, title={CUAD: An Expert-Annotated NLP Dataset for Legal Contract Review}, author={Dan Hendrycks and Collin Burns and Anya Chen and Spencer Ball}, journal={arXiv preprint arXiv:2103.06268}, year={2021} } """ snake_case__ : Union[str, Any] = """ This metric wrap the official scoring script for version 1 of the Contract Understanding Atticus Dataset (CUAD). Contract Understanding Atticus Dataset (CUAD) v1 is a corpus of more than 13,000 labels in 510 commercial legal contracts that have been manually labeled to identify 41 categories of important clauses that lawyers look for when reviewing contracts in connection with corporate transactions. """ snake_case__ : Any = """ Computes CUAD scores (EM, F1, AUPR, Precision@80%Recall, and Precision@90%Recall). Args: predictions: List of question-answers dictionaries with the following key-values: - 'id': id of the question-answer pair as given in the references (see below) - 'prediction_text': list of possible texts for the answer, as a list of strings depending on a threshold on the confidence probability of each prediction. references: List of question-answers dictionaries with the following key-values: - 'id': id of the question-answer pair (see above), - 'answers': a Dict in the CUAD dataset format { 'text': list of possible texts for the answer, as a list of strings 'answer_start': list of start positions for the answer, as a list of ints } Note that answer_start values are not taken into account to compute the metric. Returns: 'exact_match': Exact match (the normalized answer exactly match the gold answer) 'f1': The F-score of predicted tokens versus the gold answer 'aupr': Area Under the Precision-Recall curve 'prec_at_80_recall': Precision at 80% recall 'prec_at_90_recall': Precision at 90% recall Examples: >>> predictions = [{'prediction_text': ['The seller:', 'The buyer/End-User: Shenzhen LOHAS Supply Chain Management Co., Ltd.'], 'id': 'LohaCompanyltd_20191209_F-1_EX-10.16_11917878_EX-10.16_Supply Agreement__Parties'}] >>> references = [{'answers': {'answer_start': [143, 49], 'text': ['The seller:', 'The buyer/End-User: Shenzhen LOHAS Supply Chain Management Co., Ltd.']}, 'id': 'LohaCompanyltd_20191209_F-1_EX-10.16_11917878_EX-10.16_Supply Agreement__Parties'}] >>> cuad_metric = datasets.load_metric(\"cuad\") >>> results = cuad_metric.compute(predictions=predictions, references=references) >>> print(results) {'exact_match': 100.0, 'f1': 100.0, 'aupr': 0.0, 'prec_at_80_recall': 1.0, 'prec_at_90_recall': 1.0} """ @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class _a ( datasets.Metric ): """simple docstring""" def _UpperCAmelCase ( self ) -> Optional[int]: return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { 'predictions': { 'id': datasets.Value('string' ), 'prediction_text': datasets.features.Sequence(datasets.Value('string' ) ), }, 'references': { 'id': datasets.Value('string' ), 'answers': datasets.features.Sequence( { 'text': datasets.Value('string' ), 'answer_start': datasets.Value('int32' ), } ), }, } ) , codebase_urls=['https://www.atticusprojectai.org/cuad'] , reference_urls=['https://www.atticusprojectai.org/cuad'] , ) def _UpperCAmelCase ( self , _UpperCAmelCase , _UpperCAmelCase ) -> Dict: UpperCamelCase_ = {prediction['id']: prediction['prediction_text'] for prediction in predictions} UpperCamelCase_ = [ { 'paragraphs': [ { 'qas': [ { 'answers': [{'text': answer_text} for answer_text in ref['answers']['text']], 'id': ref['id'], } for ref in references ] } ] } ] UpperCamelCase_ = evaluate(dataset=_UpperCAmelCase , predictions=_UpperCAmelCase ) return score
23
0
from typing import TYPE_CHECKING from ....utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available lowerCAmelCase_ = { """configuration_mctct""": ["""MCTCT_PRETRAINED_CONFIG_ARCHIVE_MAP""", """MCTCTConfig"""], """feature_extraction_mctct""": ["""MCTCTFeatureExtractor"""], """processing_mctct""": ["""MCTCTProcessor"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_ = [ """MCTCT_PRETRAINED_MODEL_ARCHIVE_LIST""", """MCTCTForCTC""", """MCTCTModel""", """MCTCTPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_mctct import MCTCT_PRETRAINED_CONFIG_ARCHIVE_MAP, MCTCTConfig from .feature_extraction_mctct import MCTCTFeatureExtractor from .processing_mctct import MCTCTProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mctct import MCTCT_PRETRAINED_MODEL_ARCHIVE_LIST, MCTCTForCTC, MCTCTModel, MCTCTPreTrainedModel else: import sys lowerCAmelCase_ = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
326
import os import tempfile from functools import partial from unittest import TestCase from unittest.mock import patch import datasets import datasets.config from .utils import require_beam class _a ( datasets.BeamBasedBuilder ): """simple docstring""" def _UpperCAmelCase ( self ) -> List[str]: return datasets.DatasetInfo( features=datasets.Features({'content': datasets.Value('string' )} ) , supervised_keys=_UpperCAmelCase , ) def _UpperCAmelCase ( self , _UpperCAmelCase , _UpperCAmelCase ) -> Optional[Any]: return [datasets.SplitGenerator(name=datasets.Split.TRAIN , gen_kwargs={'examples': get_test_dummy_examples()} )] def _UpperCAmelCase ( self , _UpperCAmelCase , _UpperCAmelCase ) -> Tuple: import apache_beam as beam return pipeline | "Load Examples" >> beam.Create(_UpperCAmelCase ) class _a ( datasets.BeamBasedBuilder ): """simple docstring""" def _UpperCAmelCase ( self ) -> Any: return datasets.DatasetInfo( features=datasets.Features({'a': datasets.Sequence({'b': datasets.Value('string' )} )} ) , supervised_keys=_UpperCAmelCase , ) def _UpperCAmelCase ( self , _UpperCAmelCase , _UpperCAmelCase ) -> Tuple: return [ datasets.SplitGenerator(name=datasets.Split.TRAIN , gen_kwargs={'examples': get_test_nested_examples()} ) ] def _UpperCAmelCase ( self , _UpperCAmelCase , _UpperCAmelCase ) -> Union[str, Any]: import apache_beam as beam return pipeline | "Load Examples" >> beam.Create(_UpperCAmelCase ) def _snake_case (): return [(i, {"content": content}) for i, content in enumerate(['foo', 'bar', 'foobar'])] def _snake_case (): return [(i, {"a": {"b": [content]}}) for i, content in enumerate(['foo', 'bar', 'foobar'])] class _a ( UpperCAmelCase__ ): """simple docstring""" @require_beam def _UpperCAmelCase ( self ) -> Dict: UpperCamelCase_ = len(get_test_dummy_examples() ) with tempfile.TemporaryDirectory() as tmp_cache_dir: UpperCamelCase_ = DummyBeamDataset(cache_dir=_UpperCAmelCase , beam_runner='DirectRunner' ) builder.download_and_prepare() self.assertTrue( os.path.exists( os.path.join(_UpperCAmelCase , builder.name , 'default' , '0.0.0' , f"""{builder.name}-train.arrow""" ) ) ) self.assertDictEqual(builder.info.features , datasets.Features({'content': datasets.Value('string' )} ) ) UpperCamelCase_ = builder.as_dataset() self.assertEqual(dset['train'].num_rows , _UpperCAmelCase ) self.assertEqual(dset['train'].info.splits['train'].num_examples , _UpperCAmelCase ) self.assertDictEqual(dset['train'][0] , get_test_dummy_examples()[0][1] ) self.assertDictEqual( dset['train'][expected_num_examples - 1] , get_test_dummy_examples()[expected_num_examples - 1][1] ) self.assertTrue( os.path.exists(os.path.join(_UpperCAmelCase , builder.name , 'default' , '0.0.0' , 'dataset_info.json' ) ) ) del dset @require_beam def _UpperCAmelCase ( self ) -> List[str]: import apache_beam as beam UpperCamelCase_ = beam.io.parquetio.WriteToParquet UpperCamelCase_ = len(get_test_dummy_examples() ) with tempfile.TemporaryDirectory() as tmp_cache_dir: UpperCamelCase_ = DummyBeamDataset(cache_dir=_UpperCAmelCase , beam_runner='DirectRunner' ) with patch('apache_beam.io.parquetio.WriteToParquet' ) as write_parquet_mock: UpperCamelCase_ = partial(_UpperCAmelCase , num_shards=2 ) builder.download_and_prepare() self.assertTrue( os.path.exists( os.path.join( _UpperCAmelCase , builder.name , 'default' , '0.0.0' , f"""{builder.name}-train-00000-of-00002.arrow""" ) ) ) self.assertTrue( os.path.exists( os.path.join( _UpperCAmelCase , builder.name , 'default' , '0.0.0' , f"""{builder.name}-train-00000-of-00002.arrow""" ) ) ) self.assertDictEqual(builder.info.features , datasets.Features({'content': datasets.Value('string' )} ) ) UpperCamelCase_ = builder.as_dataset() self.assertEqual(dset['train'].num_rows , _UpperCAmelCase ) self.assertEqual(dset['train'].info.splits['train'].num_examples , _UpperCAmelCase ) # Order is not preserved when sharding, so we just check that all the elements are there self.assertListEqual(sorted(dset['train']['content'] ) , sorted(['foo', 'bar', 'foobar'] ) ) self.assertTrue( os.path.exists(os.path.join(_UpperCAmelCase , builder.name , 'default' , '0.0.0' , 'dataset_info.json' ) ) ) del dset @require_beam def _UpperCAmelCase ( self ) -> Any: with tempfile.TemporaryDirectory() as tmp_cache_dir: UpperCamelCase_ = DummyBeamDataset(cache_dir=_UpperCAmelCase ) self.assertRaises(datasets.builder.MissingBeamOptions , builder.download_and_prepare ) @require_beam def _UpperCAmelCase ( self ) -> Union[str, Any]: UpperCamelCase_ = len(get_test_nested_examples() ) with tempfile.TemporaryDirectory() as tmp_cache_dir: UpperCamelCase_ = NestedBeamDataset(cache_dir=_UpperCAmelCase , beam_runner='DirectRunner' ) builder.download_and_prepare() self.assertTrue( os.path.exists( os.path.join(_UpperCAmelCase , builder.name , 'default' , '0.0.0' , f"""{builder.name}-train.arrow""" ) ) ) self.assertDictEqual( builder.info.features , datasets.Features({'a': datasets.Sequence({'b': datasets.Value('string' )} )} ) ) UpperCamelCase_ = builder.as_dataset() self.assertEqual(dset['train'].num_rows , _UpperCAmelCase ) self.assertEqual(dset['train'].info.splits['train'].num_examples , _UpperCAmelCase ) self.assertDictEqual(dset['train'][0] , get_test_nested_examples()[0][1] ) self.assertDictEqual( dset['train'][expected_num_examples - 1] , get_test_nested_examples()[expected_num_examples - 1][1] ) self.assertTrue( os.path.exists(os.path.join(_UpperCAmelCase , builder.name , 'default' , '0.0.0' , 'dataset_info.json' ) ) ) del dset
23
0
"""simple docstring""" from typing import List from .keymap import KEYMAP, get_character def lowercase (snake_case__ : Union[str, Any] ) -> Union[str, Any]: '''simple docstring''' def decorator(snake_case__ : Tuple ): lowerCAmelCase = getattr(__lowercase , """handle_key""" , [] ) handle += [key] setattr(__lowercase , """handle_key""" , __lowercase ) return func return decorator def lowercase (*snake_case__ : Dict ) -> Any: '''simple docstring''' def decorator(snake_case__ : Tuple ): lowerCAmelCase = getattr(__lowercase , """handle_key""" , [] ) handle += keys setattr(__lowercase , """handle_key""" , __lowercase ) return func return decorator class SCREAMING_SNAKE_CASE__ ( UpperCAmelCase__ ): def __new__( cls : int , lowerCAmelCase : List[str] , lowerCAmelCase : List[Any] , lowerCAmelCase : List[Any] ): lowerCAmelCase = super().__new__(cls , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) if not hasattr(_UpperCAmelCase , """key_handler""" ): setattr(_UpperCAmelCase , """key_handler""" , {} ) setattr(_UpperCAmelCase , """handle_input""" , KeyHandler.handle_input ) for value in attrs.values(): lowerCAmelCase = getattr(_UpperCAmelCase , """handle_key""" , [] ) for key in handled_keys: lowerCAmelCase = value return new_cls @staticmethod def __lowercase ( cls : Tuple ): lowerCAmelCase = get_character() if char != KEYMAP["undefined"]: lowerCAmelCase = ord(_UpperCAmelCase ) lowerCAmelCase = cls.key_handler.get(_UpperCAmelCase ) if handler: lowerCAmelCase = char return handler(cls ) else: return None def lowercase (cls : Optional[Any] ) -> Dict: '''simple docstring''' return KeyHandler(cls.__name__ , cls.__bases__ , cls.__dict__.copy() )
169
import argparse import torch from ...utils import logging from . import AlbertConfig, AlbertForPreTraining, load_tf_weights_in_albert logging.set_verbosity_info() def _snake_case (__lowercase , __lowercase , __lowercase): # Initialise PyTorch model UpperCamelCase_ = AlbertConfig.from_json_file(__lowercase) print(f"""Building PyTorch model from configuration: {config}""") UpperCamelCase_ = AlbertForPreTraining(__lowercase) # Load weights from tf checkpoint load_tf_weights_in_albert(__lowercase , __lowercase , __lowercase) # Save pytorch-model print(f"""Save PyTorch model to {pytorch_dump_path}""") torch.save(model.state_dict() , __lowercase) if __name__ == "__main__": snake_case__ : Tuple = argparse.ArgumentParser() # Required parameters parser.add_argument( """--tf_checkpoint_path""", default=None, type=str, required=True, help="""Path to the TensorFlow checkpoint path.""" ) parser.add_argument( """--albert_config_file""", default=None, type=str, required=True, help=( """The config json file corresponding to the pre-trained ALBERT model. \n""" """This specifies the model architecture.""" ), ) parser.add_argument( """--pytorch_dump_path""", default=None, type=str, required=True, help="""Path to the output PyTorch model.""" ) snake_case__ : str = parser.parse_args() convert_tf_checkpoint_to_pytorch(args.tf_checkpoint_path, args.albert_config_file, args.pytorch_dump_path)
23
0
'''simple docstring''' import jax.numpy as jnp from ...utils import logging from ..ta.modeling_flax_ta import FlaxTaEncoderModel, FlaxTaForConditionalGeneration, FlaxTaModel from .configuration_mta import MTaConfig SCREAMING_SNAKE_CASE_ = logging.get_logger(__name__) SCREAMING_SNAKE_CASE_ = """T5Config""" def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): __a : Tuple = jnp.zeros_like(__lowercase ) __a : Optional[Any] = shifted_input_ids.at[:, 1:].set(input_ids[:, :-1] ) __a : Optional[Any] = shifted_input_ids.at[:, 0].set(__lowercase ) __a : List[str] = jnp.where(shifted_input_ids == -100 , __lowercase , __lowercase ) return shifted_input_ids class lowerCAmelCase ( UpperCAmelCase__ ): """simple docstring""" _A = 'mt5' _A = MTaConfig class lowerCAmelCase ( UpperCAmelCase__ ): """simple docstring""" _A = 'mt5' _A = MTaConfig class lowerCAmelCase ( UpperCAmelCase__ ): """simple docstring""" _A = 'mt5' _A = MTaConfig
597
from transformers import BertTokenizer, EncoderDecoderModel, SeqaSeqTrainer, SeqaSeqTrainingArguments from transformers.testing_utils import TestCasePlus, require_torch, slow from transformers.utils import is_datasets_available if is_datasets_available(): import datasets class _a ( UpperCAmelCase__ ): """simple docstring""" @slow @require_torch def _UpperCAmelCase ( self ) -> List[Any]: UpperCamelCase_ = EncoderDecoderModel.from_encoder_decoder_pretrained('prajjwal1/bert-tiny' , 'prajjwal1/bert-tiny' ) UpperCamelCase_ = BertTokenizer.from_pretrained('bert-base-uncased' ) UpperCamelCase_ = bertabert.config.encoder.vocab_size UpperCamelCase_ = tokenizer.sep_token_id UpperCamelCase_ = tokenizer.cls_token_id UpperCamelCase_ = 128 UpperCamelCase_ = datasets.load_dataset('cnn_dailymail' , '3.0.0' , split='train[:1%]' ) UpperCamelCase_ = datasets.load_dataset('cnn_dailymail' , '3.0.0' , split='validation[:1%]' ) UpperCamelCase_ = train_dataset.select(range(32 ) ) UpperCamelCase_ = val_dataset.select(range(16 ) ) UpperCamelCase_ = 4 def _map_to_encoder_decoder_inputs(_UpperCAmelCase ): # Tokenizer will automatically set [BOS] <text> [EOS] UpperCamelCase_ = tokenizer(batch['article'] , padding='max_length' , truncation=_UpperCAmelCase , max_length=512 ) UpperCamelCase_ = tokenizer(batch['highlights'] , padding='max_length' , truncation=_UpperCAmelCase , max_length=128 ) UpperCamelCase_ = inputs.input_ids UpperCamelCase_ = inputs.attention_mask UpperCamelCase_ = outputs.input_ids UpperCamelCase_ = outputs.input_ids.copy() UpperCamelCase_ = [ [-100 if token == tokenizer.pad_token_id else token for token in labels] for labels in batch['labels'] ] UpperCamelCase_ = outputs.attention_mask assert all(len(_UpperCAmelCase ) == 512 for x in inputs.input_ids ) assert all(len(_UpperCAmelCase ) == 128 for x in outputs.input_ids ) return batch def _compute_metrics(_UpperCAmelCase ): UpperCamelCase_ = pred.label_ids UpperCamelCase_ = pred.predictions # all unnecessary tokens are removed UpperCamelCase_ = tokenizer.batch_decode(_UpperCAmelCase , skip_special_tokens=_UpperCAmelCase ) UpperCamelCase_ = tokenizer.batch_decode(_UpperCAmelCase , skip_special_tokens=_UpperCAmelCase ) UpperCamelCase_ = sum([int(pred_str[i] == label_str[i] ) for i in range(len(_UpperCAmelCase ) )] ) / len(_UpperCAmelCase ) return {"accuracy": accuracy} # map train dataset UpperCamelCase_ = train_dataset.map( _map_to_encoder_decoder_inputs , batched=_UpperCAmelCase , batch_size=_UpperCAmelCase , remove_columns=['article', 'highlights'] , ) train_dataset.set_format( type='torch' , columns=['input_ids', 'attention_mask', 'decoder_input_ids', 'decoder_attention_mask', 'labels'] , ) # same for validation dataset UpperCamelCase_ = val_dataset.map( _map_to_encoder_decoder_inputs , batched=_UpperCAmelCase , batch_size=_UpperCAmelCase , remove_columns=['article', 'highlights'] , ) val_dataset.set_format( type='torch' , columns=['input_ids', 'attention_mask', 'decoder_input_ids', 'decoder_attention_mask', 'labels'] , ) UpperCamelCase_ = self.get_auto_remove_tmp_dir() UpperCamelCase_ = SeqaSeqTrainingArguments( output_dir=_UpperCAmelCase , per_device_train_batch_size=_UpperCAmelCase , per_device_eval_batch_size=_UpperCAmelCase , predict_with_generate=_UpperCAmelCase , evaluation_strategy='steps' , do_train=_UpperCAmelCase , do_eval=_UpperCAmelCase , warmup_steps=0 , eval_steps=2 , logging_steps=2 , ) # instantiate trainer UpperCamelCase_ = SeqaSeqTrainer( model=_UpperCAmelCase , args=_UpperCAmelCase , compute_metrics=_compute_metrics , train_dataset=_UpperCAmelCase , eval_dataset=_UpperCAmelCase , tokenizer=_UpperCAmelCase , ) # start training trainer.train()
23
0
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tf_available, is_tokenizers_available, is_torch_available, ) SCREAMING_SNAKE_CASE : Dict = {"""configuration_xlnet""": ["""XLNET_PRETRAINED_CONFIG_ARCHIVE_MAP""", """XLNetConfig"""]} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE : Dict = ["""XLNetTokenizer"""] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE : int = ["""XLNetTokenizerFast"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE : Any = [ """XLNET_PRETRAINED_MODEL_ARCHIVE_LIST""", """XLNetForMultipleChoice""", """XLNetForQuestionAnswering""", """XLNetForQuestionAnsweringSimple""", """XLNetForSequenceClassification""", """XLNetForTokenClassification""", """XLNetLMHeadModel""", """XLNetModel""", """XLNetPreTrainedModel""", """load_tf_weights_in_xlnet""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE : Optional[Any] = [ """TF_XLNET_PRETRAINED_MODEL_ARCHIVE_LIST""", """TFXLNetForMultipleChoice""", """TFXLNetForQuestionAnsweringSimple""", """TFXLNetForSequenceClassification""", """TFXLNetForTokenClassification""", """TFXLNetLMHeadModel""", """TFXLNetMainLayer""", """TFXLNetModel""", """TFXLNetPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_xlnet import XLNET_PRETRAINED_CONFIG_ARCHIVE_MAP, XLNetConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_xlnet import XLNetTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_xlnet_fast import XLNetTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_xlnet import ( XLNET_PRETRAINED_MODEL_ARCHIVE_LIST, XLNetForMultipleChoice, XLNetForQuestionAnswering, XLNetForQuestionAnsweringSimple, XLNetForSequenceClassification, XLNetForTokenClassification, XLNetLMHeadModel, XLNetModel, XLNetPreTrainedModel, load_tf_weights_in_xlnet, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_xlnet import ( TF_XLNET_PRETRAINED_MODEL_ARCHIVE_LIST, TFXLNetForMultipleChoice, TFXLNetForQuestionAnsweringSimple, TFXLNetForSequenceClassification, TFXLNetForTokenClassification, TFXLNetLMHeadModel, TFXLNetMainLayer, TFXLNetModel, TFXLNetPreTrainedModel, ) else: import sys SCREAMING_SNAKE_CASE : Optional[int] = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
197
import argparse import os import evaluate import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType ######################################################################## # This is a fully working simple example to use Accelerate # and perform gradient accumulation # # This example trains a Bert base model on GLUE MRPC # in any of the following settings (with the same script): # - single CPU or single GPU # - multi GPUS (using PyTorch distributed mode) # - (multi) TPUs # - fp16 (mixed-precision) or fp32 (normal precision) # # To run it in each of these various modes, follow the instructions # in the readme for examples: # https://github.com/huggingface/accelerate/tree/main/examples # ######################################################################## snake_case__ : Dict = 1_6 snake_case__ : List[str] = 3_2 def _snake_case (__lowercase , __lowercase = 16): UpperCamelCase_ = AutoTokenizer.from_pretrained('bert-base-cased') UpperCamelCase_ = load_dataset('glue' , 'mrpc') def tokenize_function(__lowercase): # max_length=None => use the model max length (it's actually the default) UpperCamelCase_ = tokenizer(examples['sentence1'] , examples['sentence2'] , truncation=__lowercase , max_length=__lowercase) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset # starting with the main process first: with accelerator.main_process_first(): UpperCamelCase_ = datasets.map( __lowercase , batched=__lowercase , remove_columns=['idx', 'sentence1', 'sentence2'] , ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library UpperCamelCase_ = tokenized_datasets.rename_column('label' , 'labels') def collate_fn(__lowercase): # On TPU it's best to pad everything to the same length or training will be very slow. UpperCamelCase_ = 128 if accelerator.distributed_type == DistributedType.TPU else None # When using mixed precision we want round multiples of 8/16 if accelerator.mixed_precision == "fp8": UpperCamelCase_ = 16 elif accelerator.mixed_precision != "no": UpperCamelCase_ = 8 else: UpperCamelCase_ = None return tokenizer.pad( __lowercase , padding='longest' , max_length=__lowercase , pad_to_multiple_of=__lowercase , return_tensors='pt' , ) # Instantiate dataloaders. UpperCamelCase_ = DataLoader( tokenized_datasets['train'] , shuffle=__lowercase , collate_fn=__lowercase , batch_size=__lowercase) UpperCamelCase_ = DataLoader( tokenized_datasets['validation'] , shuffle=__lowercase , collate_fn=__lowercase , batch_size=__lowercase) return train_dataloader, eval_dataloader # For testing only if os.environ.get("""TESTING_MOCKED_DATALOADERS""", None) == "1": from accelerate.test_utils.training import mocked_dataloaders snake_case__ : List[str] = mocked_dataloaders # noqa: F811 def _snake_case (__lowercase , __lowercase): # For testing only if os.environ.get('TESTING_MOCKED_DATALOADERS' , __lowercase) == "1": UpperCamelCase_ = 2 # New Code # UpperCamelCase_ = int(args.gradient_accumulation_steps) # Initialize accelerator UpperCamelCase_ = Accelerator( cpu=args.cpu , mixed_precision=args.mixed_precision , gradient_accumulation_steps=__lowercase) if accelerator.distributed_type == DistributedType.TPU and gradient_accumulation_steps > 1: raise NotImplementedError( 'Gradient accumulation on TPUs is currently not supported. Pass `gradient_accumulation_steps=1`') # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs UpperCamelCase_ = config['lr'] UpperCamelCase_ = int(config['num_epochs']) UpperCamelCase_ = int(config['seed']) UpperCamelCase_ = int(config['batch_size']) UpperCamelCase_ = evaluate.load('glue' , 'mrpc') set_seed(__lowercase) UpperCamelCase_ , UpperCamelCase_ = get_dataloaders(__lowercase , __lowercase) # Instantiate the model (we build the model here so that the seed also control new weights initialization) UpperCamelCase_ = AutoModelForSequenceClassification.from_pretrained('bert-base-cased' , return_dict=__lowercase) # We could avoid this line since the accelerator is set with `device_placement=True` (default value). # Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer # creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that). UpperCamelCase_ = model.to(accelerator.device) # Instantiate optimizer UpperCamelCase_ = AdamW(params=model.parameters() , lr=__lowercase) # Instantiate scheduler UpperCamelCase_ = get_linear_schedule_with_warmup( optimizer=__lowercase , num_warmup_steps=100 , num_training_steps=(len(__lowercase) * num_epochs) , ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ = accelerator.prepare( __lowercase , __lowercase , __lowercase , __lowercase , __lowercase) # Now we train the model for epoch in range(__lowercase): model.train() for step, batch in enumerate(__lowercase): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device) # New code # # We use the new `accumulate` context manager to perform gradient accumulation # We also currently do not support TPUs nor advise it as bugs were found on the XLA side when running our tests. with accelerator.accumulate(__lowercase): UpperCamelCase_ = model(**__lowercase) UpperCamelCase_ = output.loss accelerator.backward(__lowercase) optimizer.step() lr_scheduler.step() optimizer.zero_grad() model.eval() for step, batch in enumerate(__lowercase): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device) with torch.no_grad(): UpperCamelCase_ = model(**__lowercase) UpperCamelCase_ = outputs.logits.argmax(dim=-1) UpperCamelCase_ , UpperCamelCase_ = accelerator.gather_for_metrics((predictions, batch['labels'])) metric.add_batch( predictions=__lowercase , references=__lowercase , ) UpperCamelCase_ = metric.compute() # Use accelerator.print to print only on the main process. accelerator.print(f"""epoch {epoch}:""" , __lowercase) def _snake_case (): UpperCamelCase_ = argparse.ArgumentParser(description='Simple example of training script.') parser.add_argument( '--mixed_precision' , type=__lowercase , default=__lowercase , choices=['no', 'fp16', 'bf16', 'fp8'] , help='Whether to use mixed precision. Choose' 'between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10.' 'and an Nvidia Ampere GPU.' , ) # New Code # parser.add_argument( '--gradient_accumulation_steps' , type=__lowercase , default=1 , help='The number of minibatches to be ran before gradients are accumulated.' , ) parser.add_argument('--cpu' , action='store_true' , help='If passed, will train on the CPU.') UpperCamelCase_ = parser.parse_args() UpperCamelCase_ = {'lr': 2e-5, 'num_epochs': 3, 'seed': 42, 'batch_size': 16} training_function(__lowercase , __lowercase) if __name__ == "__main__": main()
23
0
from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging snake_case__ : Tuple = logging.get_logger(__name__) snake_case__ : List[str] = { """hustvl/yolos-small""": """https://huggingface.co/hustvl/yolos-small/resolve/main/config.json""", # See all YOLOS models at https://huggingface.co/models?filter=yolos } class SCREAMING_SNAKE_CASE_ (UpperCAmelCase__ ): '''simple docstring''' _a = "yolos" def __init__( self : Tuple , __a : str=768 , __a : Union[str, Any]=12 , __a : List[str]=12 , __a : Dict=3_072 , __a : str="gelu" , __a : List[Any]=0.0 , __a : List[str]=0.0 , __a : Union[str, Any]=0.02 , __a : Optional[int]=1e-12 , __a : str=[512, 864] , __a : int=16 , __a : Dict=3 , __a : List[Any]=True , __a : Union[str, Any]=100 , __a : Union[str, Any]=True , __a : Tuple=False , __a : str=1 , __a : str=5 , __a : Optional[Any]=2 , __a : Dict=5 , __a : Optional[Any]=2 , __a : int=0.1 , **__a : int , ) ->List[str]: super().__init__(**_UpperCAmelCase ) lowerCamelCase_ : Union[str, Any] = hidden_size lowerCamelCase_ : Dict = num_hidden_layers lowerCamelCase_ : Union[str, Any] = num_attention_heads lowerCamelCase_ : Dict = intermediate_size lowerCamelCase_ : Any = hidden_act lowerCamelCase_ : List[Any] = hidden_dropout_prob lowerCamelCase_ : str = attention_probs_dropout_prob lowerCamelCase_ : int = initializer_range lowerCamelCase_ : Tuple = layer_norm_eps lowerCamelCase_ : int = image_size lowerCamelCase_ : Dict = patch_size lowerCamelCase_ : int = num_channels lowerCamelCase_ : Any = qkv_bias lowerCamelCase_ : List[Any] = num_detection_tokens lowerCamelCase_ : Optional[Any] = use_mid_position_embeddings lowerCamelCase_ : Union[str, Any] = auxiliary_loss # Hungarian matcher lowerCamelCase_ : Any = class_cost lowerCamelCase_ : Tuple = bbox_cost lowerCamelCase_ : Tuple = giou_cost # Loss coefficients lowerCamelCase_ : Optional[int] = bbox_loss_coefficient lowerCamelCase_ : str = giou_loss_coefficient lowerCamelCase_ : Union[str, Any] = eos_coefficient class SCREAMING_SNAKE_CASE_ (UpperCAmelCase__ ): '''simple docstring''' _a = version.parse("1.11" ) @property def _lowerCAmelCase ( self : List[Any] ) ->Mapping[str, Mapping[int, str]]: return OrderedDict( [ ("""pixel_values""", {0: """batch""", 1: """num_channels""", 2: """height""", 3: """width"""}), ] ) @property def _lowerCAmelCase ( self : List[Any] ) ->float: return 1e-4 @property def _lowerCAmelCase ( self : Tuple ) ->int: return 12
278
import inspect import unittest import numpy as np from tests.test_modeling_common import floats_tensor from transformers import MaskaFormerConfig, is_torch_available, is_vision_available from transformers.testing_utils import require_torch, require_torch_multi_gpu, require_vision, slow, torch_device from transformers.utils import cached_property from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import MaskaFormerForUniversalSegmentation, MaskaFormerModel if is_vision_available(): from transformers import MaskaFormerImageProcessor if is_vision_available(): from PIL import Image class _a : """simple docstring""" def __init__( self , _UpperCAmelCase , _UpperCAmelCase=2 , _UpperCAmelCase=True , _UpperCAmelCase=False , _UpperCAmelCase=10 , _UpperCAmelCase=3 , _UpperCAmelCase=32 * 8 , _UpperCAmelCase=32 * 8 , _UpperCAmelCase=4 , _UpperCAmelCase=64 , ) -> List[Any]: UpperCamelCase_ = parent UpperCamelCase_ = batch_size UpperCamelCase_ = is_training UpperCamelCase_ = use_auxiliary_loss UpperCamelCase_ = num_queries UpperCamelCase_ = num_channels UpperCamelCase_ = min_size UpperCamelCase_ = max_size UpperCamelCase_ = num_labels UpperCamelCase_ = hidden_dim UpperCamelCase_ = hidden_dim def _UpperCAmelCase ( self ) -> List[str]: UpperCamelCase_ = floats_tensor([self.batch_size, self.num_channels, self.min_size, self.max_size] ).to( _UpperCAmelCase ) UpperCamelCase_ = torch.ones([self.batch_size, self.min_size, self.max_size] , device=_UpperCAmelCase ) UpperCamelCase_ = ( torch.rand([self.batch_size, self.num_labels, self.min_size, self.max_size] , device=_UpperCAmelCase ) > 0.5 ).float() UpperCamelCase_ = (torch.rand((self.batch_size, self.num_labels) , device=_UpperCAmelCase ) > 0.5).long() UpperCamelCase_ = self.get_config() return config, pixel_values, pixel_mask, mask_labels, class_labels def _UpperCAmelCase ( self ) -> Optional[int]: UpperCamelCase_ = MaskaFormerConfig( hidden_size=self.hidden_dim , ) UpperCamelCase_ = self.num_queries UpperCamelCase_ = self.num_labels UpperCamelCase_ = [1, 1, 1, 1] UpperCamelCase_ = self.num_channels UpperCamelCase_ = 64 UpperCamelCase_ = 128 UpperCamelCase_ = self.hidden_dim UpperCamelCase_ = self.hidden_dim UpperCamelCase_ = self.hidden_dim return config def _UpperCAmelCase ( self ) -> Dict: UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ = self.prepare_config_and_inputs() UpperCamelCase_ = {'pixel_values': pixel_values, 'pixel_mask': pixel_mask} return config, inputs_dict def _UpperCAmelCase ( self , _UpperCAmelCase , _UpperCAmelCase ) -> List[Any]: UpperCamelCase_ = output.encoder_hidden_states UpperCamelCase_ = output.pixel_decoder_hidden_states UpperCamelCase_ = output.transformer_decoder_hidden_states self.parent.assertTrue(len(_UpperCAmelCase ) , len(config.backbone_config.depths ) ) self.parent.assertTrue(len(_UpperCAmelCase ) , len(config.backbone_config.depths ) ) self.parent.assertTrue(len(_UpperCAmelCase ) , config.decoder_layers ) def _UpperCAmelCase ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase=False ) -> Any: with torch.no_grad(): UpperCamelCase_ = MaskaFormerModel(config=_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() UpperCamelCase_ = model(pixel_values=_UpperCAmelCase , pixel_mask=_UpperCAmelCase ) UpperCamelCase_ = model(_UpperCAmelCase , output_hidden_states=_UpperCAmelCase ) self.parent.assertEqual( output.transformer_decoder_last_hidden_state.shape , (self.batch_size, self.num_queries, self.hidden_dim) , ) # let's ensure the other two hidden state exists self.parent.assertTrue(output.pixel_decoder_last_hidden_state is not None ) self.parent.assertTrue(output.encoder_last_hidden_state is not None ) if output_hidden_states: self.check_output_hidden_state(_UpperCAmelCase , _UpperCAmelCase ) def _UpperCAmelCase ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) -> Union[str, Any]: UpperCamelCase_ = MaskaFormerForUniversalSegmentation(config=_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() def comm_check_on_output(_UpperCAmelCase ): # let's still check that all the required stuff is there self.parent.assertTrue(result.transformer_decoder_last_hidden_state is not None ) self.parent.assertTrue(result.pixel_decoder_last_hidden_state is not None ) self.parent.assertTrue(result.encoder_last_hidden_state is not None ) # okay, now we need to check the logits shape # due to the encoder compression, masks have a //4 spatial size self.parent.assertEqual( result.masks_queries_logits.shape , (self.batch_size, self.num_queries, self.min_size // 4, self.max_size // 4) , ) # + 1 for null class self.parent.assertEqual( result.class_queries_logits.shape , (self.batch_size, self.num_queries, self.num_labels + 1) ) with torch.no_grad(): UpperCamelCase_ = model(pixel_values=_UpperCAmelCase , pixel_mask=_UpperCAmelCase ) UpperCamelCase_ = model(_UpperCAmelCase ) comm_check_on_output(_UpperCAmelCase ) UpperCamelCase_ = model( pixel_values=_UpperCAmelCase , pixel_mask=_UpperCAmelCase , mask_labels=_UpperCAmelCase , class_labels=_UpperCAmelCase ) comm_check_on_output(_UpperCAmelCase ) self.parent.assertTrue(result.loss is not None ) self.parent.assertEqual(result.loss.shape , torch.Size([1] ) ) @require_torch class _a ( UpperCAmelCase__ , UpperCAmelCase__ , unittest.TestCase ): """simple docstring""" A_ = (MaskaFormerModel, MaskaFormerForUniversalSegmentation) if is_torch_available() else () A_ = {"""feature-extraction""": MaskaFormerModel} if is_torch_available() else {} A_ = False A_ = False A_ = False A_ = False def _UpperCAmelCase ( self ) -> Optional[Any]: UpperCamelCase_ = MaskaFormerModelTester(self ) UpperCamelCase_ = ConfigTester(self , config_class=_UpperCAmelCase , has_text_modality=_UpperCAmelCase ) def _UpperCAmelCase ( self ) -> Union[str, Any]: self.config_tester.run_common_tests() def _UpperCAmelCase ( self ) -> Union[str, Any]: UpperCamelCase_ , UpperCamelCase_ = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.create_and_check_maskaformer_model(_UpperCAmelCase , **_UpperCAmelCase , output_hidden_states=_UpperCAmelCase ) def _UpperCAmelCase ( self ) -> List[Any]: UpperCamelCase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_maskaformer_instance_segmentation_head_model(*_UpperCAmelCase ) @unittest.skip(reason='Mask2Former does not use inputs_embeds' ) def _UpperCAmelCase ( self ) -> Any: pass @unittest.skip(reason='Mask2Former does not have a get_input_embeddings method' ) def _UpperCAmelCase ( self ) -> Optional[int]: pass @unittest.skip(reason='Mask2Former is not a generative model' ) def _UpperCAmelCase ( self ) -> Any: pass @unittest.skip(reason='Mask2Former does not use token embeddings' ) def _UpperCAmelCase ( self ) -> Optional[Any]: pass @require_torch_multi_gpu @unittest.skip( reason='Mask2Former has some layers using `add_module` which doesn\'t work well with `nn.DataParallel`' ) def _UpperCAmelCase ( self ) -> int: pass @unittest.skip('Will be fixed soon by reducing the size of the model used for common tests.' ) def _UpperCAmelCase ( self ) -> str: pass def _UpperCAmelCase ( self ) -> Optional[int]: UpperCamelCase_ , UpperCamelCase_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCamelCase_ = model_class(_UpperCAmelCase ) UpperCamelCase_ = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic UpperCamelCase_ = [*signature.parameters.keys()] UpperCamelCase_ = ['pixel_values'] self.assertListEqual(arg_names[:1] , _UpperCAmelCase ) @slow def _UpperCAmelCase ( self ) -> Tuple: for model_name in ["facebook/mask2former-swin-small-coco-instance"]: UpperCamelCase_ = MaskaFormerModel.from_pretrained(_UpperCAmelCase ) self.assertIsNotNone(_UpperCAmelCase ) def _UpperCAmelCase ( self ) -> Dict: UpperCamelCase_ = (self.model_tester.min_size,) * 2 UpperCamelCase_ = { 'pixel_values': torch.randn((2, 3, *size) , device=_UpperCAmelCase ), 'mask_labels': torch.randn((2, 10, *size) , device=_UpperCAmelCase ), 'class_labels': torch.zeros(2 , 10 , device=_UpperCAmelCase ).long(), } UpperCamelCase_ = self.model_tester.get_config() UpperCamelCase_ = MaskaFormerForUniversalSegmentation(_UpperCAmelCase ).to(_UpperCAmelCase ) UpperCamelCase_ = model(**_UpperCAmelCase ) self.assertTrue(outputs.loss is not None ) def _UpperCAmelCase ( self ) -> str: UpperCamelCase_ , UpperCamelCase_ = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.create_and_check_maskaformer_model(_UpperCAmelCase , **_UpperCAmelCase , output_hidden_states=_UpperCAmelCase ) def _UpperCAmelCase ( self ) -> Optional[int]: UpperCamelCase_ , UpperCamelCase_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCamelCase_ = model_class(_UpperCAmelCase ).to(_UpperCAmelCase ) UpperCamelCase_ = model(**_UpperCAmelCase , output_attentions=_UpperCAmelCase ) self.assertTrue(outputs.attentions is not None ) def _UpperCAmelCase ( self ) -> List[Any]: if not self.model_tester.is_training: return UpperCamelCase_ = self.all_model_classes[1] UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ = self.model_tester.prepare_config_and_inputs() UpperCamelCase_ = model_class(_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.train() UpperCamelCase_ = model(_UpperCAmelCase , mask_labels=_UpperCAmelCase , class_labels=_UpperCAmelCase ).loss loss.backward() def _UpperCAmelCase ( self ) -> int: UpperCamelCase_ = self.all_model_classes[1] UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ = self.model_tester.prepare_config_and_inputs() UpperCamelCase_ = True UpperCamelCase_ = True UpperCamelCase_ = model_class(_UpperCAmelCase ).to(_UpperCAmelCase ) model.train() UpperCamelCase_ = model(_UpperCAmelCase , mask_labels=_UpperCAmelCase , class_labels=_UpperCAmelCase ) UpperCamelCase_ = outputs.encoder_hidden_states[0] encoder_hidden_states.retain_grad() UpperCamelCase_ = outputs.pixel_decoder_hidden_states[0] pixel_decoder_hidden_states.retain_grad() UpperCamelCase_ = outputs.transformer_decoder_hidden_states[0] transformer_decoder_hidden_states.retain_grad() UpperCamelCase_ = outputs.attentions[0] attentions.retain_grad() outputs.loss.backward(retain_graph=_UpperCAmelCase ) self.assertIsNotNone(encoder_hidden_states.grad ) self.assertIsNotNone(pixel_decoder_hidden_states.grad ) self.assertIsNotNone(transformer_decoder_hidden_states.grad ) self.assertIsNotNone(attentions.grad ) snake_case__ : List[Any] = 1E-4 def _snake_case (): UpperCamelCase_ = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png') return image @require_vision @slow class _a ( unittest.TestCase ): """simple docstring""" @cached_property def _UpperCAmelCase ( self ) -> Optional[int]: return "facebook/mask2former-swin-small-coco-instance" @cached_property def _UpperCAmelCase ( self ) -> List[str]: return MaskaFormerImageProcessor.from_pretrained(self.model_checkpoints ) if is_vision_available() else None def _UpperCAmelCase ( self ) -> str: UpperCamelCase_ = MaskaFormerModel.from_pretrained(self.model_checkpoints ).to(_UpperCAmelCase ) UpperCamelCase_ = self.default_image_processor UpperCamelCase_ = prepare_img() UpperCamelCase_ = image_processor(_UpperCAmelCase , return_tensors='pt' ).to(_UpperCAmelCase ) UpperCamelCase_ = inputs['pixel_values'].shape # check size is divisible by 32 self.assertTrue((inputs_shape[-1] % 32) == 0 and (inputs_shape[-2] % 32) == 0 ) # check size self.assertEqual(_UpperCAmelCase , (1, 3, 384, 384) ) with torch.no_grad(): UpperCamelCase_ = model(**_UpperCAmelCase ) UpperCamelCase_ = torch.tensor( [[-0.2_7_9_0, -1.0_7_1_7, -1.1_6_6_8], [-0.5_1_2_8, -0.3_1_2_8, -0.4_9_8_7], [-0.5_8_3_2, 0.1_9_7_1, -0.0_1_9_7]] ).to(_UpperCAmelCase ) self.assertTrue( torch.allclose( outputs.encoder_last_hidden_state[0, 0, :3, :3] , _UpperCAmelCase , atol=_UpperCAmelCase ) ) UpperCamelCase_ = torch.tensor( [[0.8_9_7_3, 1.1_8_4_7, 1.1_7_7_6], [1.1_9_3_4, 1.5_0_4_0, 1.5_1_2_8], [1.1_1_5_3, 1.4_4_8_6, 1.4_9_5_1]] ).to(_UpperCAmelCase ) self.assertTrue( torch.allclose( outputs.pixel_decoder_last_hidden_state[0, 0, :3, :3] , _UpperCAmelCase , atol=_UpperCAmelCase ) ) UpperCamelCase_ = torch.tensor( [[2.1_1_5_2, 1.7_0_0_0, -0.8_6_0_3], [1.5_8_0_8, 1.8_0_0_4, -0.9_3_5_3], [1.6_0_4_3, 1.7_4_9_5, -0.5_9_9_9]] ).to(_UpperCAmelCase ) self.assertTrue( torch.allclose( outputs.transformer_decoder_last_hidden_state[0, :3, :3] , _UpperCAmelCase , atol=_UpperCAmelCase ) ) def _UpperCAmelCase ( self ) -> Optional[Any]: UpperCamelCase_ = MaskaFormerForUniversalSegmentation.from_pretrained(self.model_checkpoints ).to(_UpperCAmelCase ).eval() UpperCamelCase_ = self.default_image_processor UpperCamelCase_ = prepare_img() UpperCamelCase_ = image_processor(_UpperCAmelCase , return_tensors='pt' ).to(_UpperCAmelCase ) UpperCamelCase_ = inputs['pixel_values'].shape # check size is divisible by 32 self.assertTrue((inputs_shape[-1] % 32) == 0 and (inputs_shape[-2] % 32) == 0 ) # check size self.assertEqual(_UpperCAmelCase , (1, 3, 384, 384) ) with torch.no_grad(): UpperCamelCase_ = model(**_UpperCAmelCase ) # masks_queries_logits UpperCamelCase_ = outputs.masks_queries_logits self.assertEqual( masks_queries_logits.shape , (1, model.config.num_queries, inputs_shape[-2] // 4, inputs_shape[-1] // 4) ) UpperCamelCase_ = [ [-8.7_8_3_9, -9.0_0_5_6, -8.8_1_2_1], [-7.4_1_0_4, -7.0_3_1_3, -6.5_4_0_1], [-6.6_1_0_5, -6.3_4_2_7, -6.4_6_7_5], ] UpperCamelCase_ = torch.tensor(_UpperCAmelCase ).to(_UpperCAmelCase ) self.assertTrue(torch.allclose(masks_queries_logits[0, 0, :3, :3] , _UpperCAmelCase , atol=_UpperCAmelCase ) ) # class_queries_logits UpperCamelCase_ = outputs.class_queries_logits self.assertEqual(class_queries_logits.shape , (1, model.config.num_queries, model.config.num_labels + 1) ) UpperCamelCase_ = torch.tensor( [ [1.8_3_2_4, -8.0_8_3_5, -4.1_9_2_2], [0.8_4_5_0, -9.0_0_5_0, -3.6_0_5_3], [0.3_0_4_5, -7.7_2_9_3, -3.0_2_7_5], ] ).to(_UpperCAmelCase ) self.assertTrue(torch.allclose(outputs.class_queries_logits[0, :3, :3] , _UpperCAmelCase , atol=_UpperCAmelCase ) ) def _UpperCAmelCase ( self ) -> Dict: UpperCamelCase_ = MaskaFormerForUniversalSegmentation.from_pretrained(self.model_checkpoints ).to(_UpperCAmelCase ).eval() UpperCamelCase_ = self.default_image_processor UpperCamelCase_ = image_processor( [np.zeros((3, 800, 1333) ), np.zeros((3, 800, 1333) )] , segmentation_maps=[np.zeros((384, 384) ).astype(np.floataa ), np.zeros((384, 384) ).astype(np.floataa )] , return_tensors='pt' , ) UpperCamelCase_ = inputs['pixel_values'].to(_UpperCAmelCase ) UpperCamelCase_ = [el.to(_UpperCAmelCase ) for el in inputs['mask_labels']] UpperCamelCase_ = [el.to(_UpperCAmelCase ) for el in inputs['class_labels']] with torch.no_grad(): UpperCamelCase_ = model(**_UpperCAmelCase ) self.assertTrue(outputs.loss is not None )
23
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_speech_available, is_torch_available, ) lowerCAmelCase_ : Tuple = { """configuration_trocr""": ["""TROCR_PRETRAINED_CONFIG_ARCHIVE_MAP""", """TrOCRConfig"""], """processing_trocr""": ["""TrOCRProcessor"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_ : Tuple = [ """TROCR_PRETRAINED_MODEL_ARCHIVE_LIST""", """TrOCRForCausalLM""", """TrOCRPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_trocr import TROCR_PRETRAINED_CONFIG_ARCHIVE_MAP, TrOCRConfig from .processing_trocr import TrOCRProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_trocr import TROCR_PRETRAINED_MODEL_ARCHIVE_LIST, TrOCRForCausalLM, TrOCRPreTrainedModel else: import sys lowerCAmelCase_ : Dict = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
435
import copy from typing import TYPE_CHECKING, Any, Mapping, Optional, OrderedDict from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging from ..auto.configuration_auto import AutoConfig if TYPE_CHECKING: from ... import PreTrainedTokenizerBase, TensorType snake_case__ : List[str] = logging.get_logger(__name__) class _a ( UpperCAmelCase__ ): """simple docstring""" A_ = """vision-encoder-decoder""" A_ = True def __init__( self , **_UpperCAmelCase ) -> Dict: super().__init__(**_UpperCAmelCase ) if "encoder" not in kwargs or "decoder" not in kwargs: raise ValueError( f"""A configuraton of type {self.model_type} cannot be instantiated because """ f"""not both `encoder` and `decoder` sub-configurations are passed, but only {kwargs}""" ) UpperCamelCase_ = kwargs.pop('encoder' ) UpperCamelCase_ = encoder_config.pop('model_type' ) UpperCamelCase_ = kwargs.pop('decoder' ) UpperCamelCase_ = decoder_config.pop('model_type' ) UpperCamelCase_ = AutoConfig.for_model(_UpperCAmelCase , **_UpperCAmelCase ) UpperCamelCase_ = AutoConfig.for_model(_UpperCAmelCase , **_UpperCAmelCase ) UpperCamelCase_ = True @classmethod def _UpperCAmelCase ( cls , _UpperCAmelCase , _UpperCAmelCase , **_UpperCAmelCase ) -> PretrainedConfig: logger.info('Setting `config.is_decoder=True` and `config.add_cross_attention=True` for decoder_config' ) UpperCamelCase_ = True UpperCamelCase_ = True return cls(encoder=encoder_config.to_dict() , decoder=decoder_config.to_dict() , **_UpperCAmelCase ) def _UpperCAmelCase ( self ) -> int: UpperCamelCase_ = copy.deepcopy(self.__dict__ ) UpperCamelCase_ = self.encoder.to_dict() UpperCamelCase_ = self.decoder.to_dict() UpperCamelCase_ = self.__class__.model_type return output class _a ( UpperCAmelCase__ ): """simple docstring""" A_ = version.parse("""1.11""" ) @property def _UpperCAmelCase ( self ) -> Mapping[str, Mapping[int, str]]: return OrderedDict( [ ('pixel_values', {0: 'batch', 1: 'num_channels', 2: 'height', 3: 'width'}), ] ) @property def _UpperCAmelCase ( self ) -> float: return 1e-4 @property def _UpperCAmelCase ( self ) -> Mapping[str, Mapping[int, str]]: return OrderedDict({'last_hidden_state': {0: 'batch', 1: 'encoder_sequence'}} ) class _a ( UpperCAmelCase__ ): """simple docstring""" @property def _UpperCAmelCase ( self ) -> Mapping[str, Mapping[int, str]]: UpperCamelCase_ = OrderedDict() UpperCamelCase_ = {0: 'batch', 1: 'past_decoder_sequence + sequence'} UpperCamelCase_ = {0: 'batch', 1: 'past_decoder_sequence + sequence'} UpperCamelCase_ = {0: 'batch', 1: 'encoder_sequence'} return common_inputs def _UpperCAmelCase ( self , _UpperCAmelCase , _UpperCAmelCase = -1 , _UpperCAmelCase = -1 , _UpperCAmelCase = False , _UpperCAmelCase = None , ) -> Mapping[str, Any]: import torch UpperCamelCase_ = OrderedDict() UpperCamelCase_ = super().generate_dummy_inputs( _UpperCAmelCase , batch_size=_UpperCAmelCase , seq_length=_UpperCAmelCase , is_pair=_UpperCAmelCase , framework=_UpperCAmelCase ) UpperCamelCase_ , UpperCamelCase_ = dummy_input['input_ids'].shape UpperCamelCase_ = (batch, encoder_sequence, self._config.encoder_hidden_size) UpperCamelCase_ = dummy_input.pop('input_ids' ) UpperCamelCase_ = dummy_input.pop('attention_mask' ) UpperCamelCase_ = torch.zeros(_UpperCAmelCase ) return common_inputs class _a ( UpperCAmelCase__ ): """simple docstring""" @property def _UpperCAmelCase ( self ) -> None: pass def _UpperCAmelCase ( self , _UpperCAmelCase ) -> OnnxConfig: return VisionEncoderDecoderEncoderOnnxConfig(_UpperCAmelCase ) def _UpperCAmelCase ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase = "default" ) -> OnnxConfig: UpperCamelCase_ = encoder_config.hidden_size return VisionEncoderDecoderDecoderOnnxConfig(_UpperCAmelCase , _UpperCAmelCase )
23
0
'''simple docstring''' import os def A_( ): UpperCamelCase = os.path.dirname(os.path.realpath(__lowercase)) UpperCamelCase = os.path.join(__lowercase , 'triangle.txt') with open(__lowercase) as f: UpperCamelCase = f.readlines() UpperCamelCase = [] for line in triangle: UpperCamelCase = [] for number in line.strip().split(' '): numbers_from_line.append(int(__lowercase)) a.append(__lowercase) for i in range(1 , len(__lowercase)): for j in range(len(a[i])): UpperCamelCase = a[i - 1][j] if j != len(a[i - 1]) else 0 UpperCamelCase = a[i - 1][j - 1] if j > 0 else 0 a[i][j] += max(__lowercase , __lowercase) return max(a[-1]) if __name__ == "__main__": print(solution())
3
import argparse import torch from transformers import MobileBertConfig, MobileBertForPreTraining, load_tf_weights_in_mobilebert from transformers.utils import logging logging.set_verbosity_info() def _snake_case (__lowercase , __lowercase , __lowercase): # Initialise PyTorch model UpperCamelCase_ = MobileBertConfig.from_json_file(__lowercase) print(f"""Building PyTorch model from configuration: {config}""") UpperCamelCase_ = MobileBertForPreTraining(__lowercase) # Load weights from tf checkpoint UpperCamelCase_ = load_tf_weights_in_mobilebert(__lowercase , __lowercase , __lowercase) # Save pytorch-model print(f"""Save PyTorch model to {pytorch_dump_path}""") torch.save(model.state_dict() , __lowercase) if __name__ == "__main__": snake_case__ : int = argparse.ArgumentParser() # Required parameters parser.add_argument( """--tf_checkpoint_path""", default=None, type=str, required=True, help="""Path to the TensorFlow checkpoint path.""" ) parser.add_argument( """--mobilebert_config_file""", default=None, type=str, required=True, help=( """The config json file corresponding to the pre-trained MobileBERT model. \n""" """This specifies the model architecture.""" ), ) parser.add_argument( """--pytorch_dump_path""", default=None, type=str, required=True, help="""Path to the output PyTorch model.""" ) snake_case__ : Optional[Any] = parser.parse_args() convert_tf_checkpoint_to_pytorch(args.tf_checkpoint_path, args.mobilebert_config_file, args.pytorch_dump_path)
23
0
'''simple docstring''' def __UpperCAmelCase ( _UpperCAmelCase : int , _UpperCAmelCase : Any ) -> Tuple: if density <= 0: raise ValueError("Impossible fluid density" ) if bulk_modulus <= 0: raise ValueError("Impossible bulk modulus" ) return (bulk_modulus / density) ** 0.5 if __name__ == "__main__": import doctest doctest.testmod()
69
import gc import unittest from transformers import MODEL_FOR_MASKED_LM_MAPPING, TF_MODEL_FOR_MASKED_LM_MAPPING, FillMaskPipeline, pipeline from transformers.pipelines import PipelineException from transformers.testing_utils import ( is_pipeline_test, is_torch_available, nested_simplify, require_tf, require_torch, require_torch_gpu, slow, ) from .test_pipelines_common import ANY @is_pipeline_test class _a ( unittest.TestCase ): """simple docstring""" A_ = MODEL_FOR_MASKED_LM_MAPPING A_ = TF_MODEL_FOR_MASKED_LM_MAPPING def _UpperCAmelCase ( self ) -> List[str]: super().tearDown() # clean-up as much as possible GPU memory occupied by PyTorch gc.collect() if is_torch_available(): import torch torch.cuda.empty_cache() @require_tf def _UpperCAmelCase ( self ) -> str: UpperCamelCase_ = pipeline(task='fill-mask' , model='sshleifer/tiny-distilroberta-base' , top_k=2 , framework='tf' ) UpperCamelCase_ = unmasker('My name is <mask>' ) self.assertEqual( nested_simplify(_UpperCAmelCase , decimals=6 ) , [ {'sequence': 'My name is grouped', 'score': 2.1e-05, 'token': 38015, 'token_str': ' grouped'}, {'sequence': 'My name is accuser', 'score': 2.1e-05, 'token': 25506, 'token_str': ' accuser'}, ] , ) UpperCamelCase_ = unmasker('The largest city in France is <mask>' ) self.assertEqual( nested_simplify(_UpperCAmelCase , decimals=6 ) , [ { 'sequence': 'The largest city in France is grouped', 'score': 2.1e-05, 'token': 38015, 'token_str': ' grouped', }, { 'sequence': 'The largest city in France is accuser', 'score': 2.1e-05, 'token': 25506, 'token_str': ' accuser', }, ] , ) UpperCamelCase_ = unmasker('My name is <mask>' , targets=[' Patrick', ' Clara', ' Teven'] , top_k=3 ) self.assertEqual( nested_simplify(_UpperCAmelCase , decimals=6 ) , [ {'sequence': 'My name is Clara', 'score': 2e-05, 'token': 13606, 'token_str': ' Clara'}, {'sequence': 'My name is Patrick', 'score': 2e-05, 'token': 3499, 'token_str': ' Patrick'}, {'sequence': 'My name is Te', 'score': 1.9e-05, 'token': 2941, 'token_str': ' Te'}, ] , ) @require_torch def _UpperCAmelCase ( self ) -> Union[str, Any]: UpperCamelCase_ = pipeline(task='fill-mask' , model='sshleifer/tiny-distilroberta-base' , top_k=2 , framework='pt' ) UpperCamelCase_ = unmasker('My name is <mask>' ) self.assertEqual( nested_simplify(_UpperCAmelCase , decimals=6 ) , [ {'sequence': 'My name is Maul', 'score': 2.2e-05, 'token': 35676, 'token_str': ' Maul'}, {'sequence': 'My name isELS', 'score': 2.2e-05, 'token': 16416, 'token_str': 'ELS'}, ] , ) UpperCamelCase_ = unmasker('The largest city in France is <mask>' ) self.assertEqual( nested_simplify(_UpperCAmelCase , decimals=6 ) , [ { 'sequence': 'The largest city in France is Maul', 'score': 2.2e-05, 'token': 35676, 'token_str': ' Maul', }, {'sequence': 'The largest city in France isELS', 'score': 2.2e-05, 'token': 16416, 'token_str': 'ELS'}, ] , ) UpperCamelCase_ = unmasker('My name is <mask>' , targets=[' Patrick', ' Clara', ' Teven'] , top_k=3 ) self.assertEqual( nested_simplify(_UpperCAmelCase , decimals=6 ) , [ {'sequence': 'My name is Patrick', 'score': 2.1e-05, 'token': 3499, 'token_str': ' Patrick'}, {'sequence': 'My name is Te', 'score': 2e-05, 'token': 2941, 'token_str': ' Te'}, {'sequence': 'My name is Clara', 'score': 2e-05, 'token': 13606, 'token_str': ' Clara'}, ] , ) UpperCamelCase_ = unmasker('My name is <mask> <mask>' , top_k=2 ) self.assertEqual( nested_simplify(_UpperCAmelCase , decimals=6 ) , [ [ { 'score': 2.2e-05, 'token': 35676, 'token_str': ' Maul', 'sequence': '<s>My name is Maul<mask></s>', }, {'score': 2.2e-05, 'token': 16416, 'token_str': 'ELS', 'sequence': '<s>My name isELS<mask></s>'}, ], [ { 'score': 2.2e-05, 'token': 35676, 'token_str': ' Maul', 'sequence': '<s>My name is<mask> Maul</s>', }, {'score': 2.2e-05, 'token': 16416, 'token_str': 'ELS', 'sequence': '<s>My name is<mask>ELS</s>'}, ], ] , ) @require_torch_gpu def _UpperCAmelCase ( self ) -> Optional[Any]: UpperCamelCase_ = pipeline('fill-mask' , model='hf-internal-testing/tiny-random-distilbert' , device=0 , framework='pt' ) # convert model to fp16 pipe.model.half() UpperCamelCase_ = pipe('Paris is the [MASK] of France.' ) # We actually don't care about the result, we just want to make sure # it works, meaning the float16 tensor got casted back to float32 # for postprocessing. self.assertIsInstance(_UpperCAmelCase , _UpperCAmelCase ) @slow @require_torch def _UpperCAmelCase ( self ) -> List[Any]: UpperCamelCase_ = pipeline(task='fill-mask' , model='distilroberta-base' , top_k=2 , framework='pt' ) self.run_large_test(_UpperCAmelCase ) @slow @require_tf def _UpperCAmelCase ( self ) -> Union[str, Any]: UpperCamelCase_ = pipeline(task='fill-mask' , model='distilroberta-base' , top_k=2 , framework='tf' ) self.run_large_test(_UpperCAmelCase ) def _UpperCAmelCase ( self , _UpperCAmelCase ) -> Tuple: UpperCamelCase_ = unmasker('My name is <mask>' ) self.assertEqual( nested_simplify(_UpperCAmelCase ) , [ {'sequence': 'My name is John', 'score': 0.0_0_8, 'token': 610, 'token_str': ' John'}, {'sequence': 'My name is Chris', 'score': 0.0_0_7, 'token': 1573, 'token_str': ' Chris'}, ] , ) UpperCamelCase_ = unmasker('The largest city in France is <mask>' ) self.assertEqual( nested_simplify(_UpperCAmelCase ) , [ { 'sequence': 'The largest city in France is Paris', 'score': 0.2_5_1, 'token': 2201, 'token_str': ' Paris', }, { 'sequence': 'The largest city in France is Lyon', 'score': 0.2_1_4, 'token': 12790, 'token_str': ' Lyon', }, ] , ) UpperCamelCase_ = unmasker('My name is <mask>' , targets=[' Patrick', ' Clara', ' Teven'] , top_k=3 ) self.assertEqual( nested_simplify(_UpperCAmelCase ) , [ {'sequence': 'My name is Patrick', 'score': 0.0_0_5, 'token': 3499, 'token_str': ' Patrick'}, {'sequence': 'My name is Clara', 'score': 0.0_0_0, 'token': 13606, 'token_str': ' Clara'}, {'sequence': 'My name is Te', 'score': 0.0_0_0, 'token': 2941, 'token_str': ' Te'}, ] , ) @require_torch def _UpperCAmelCase ( self ) -> List[Any]: UpperCamelCase_ = pipeline(task='fill-mask' , model='sshleifer/tiny-distilroberta-base' , framework='pt' ) UpperCamelCase_ = None UpperCamelCase_ = None self.run_pipeline_test(_UpperCAmelCase , [] ) @require_tf def _UpperCAmelCase ( self ) -> Optional[int]: UpperCamelCase_ = pipeline(task='fill-mask' , model='sshleifer/tiny-distilroberta-base' , framework='tf' ) UpperCamelCase_ = None UpperCamelCase_ = None self.run_pipeline_test(_UpperCAmelCase , [] ) def _UpperCAmelCase ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) -> Optional[Any]: if tokenizer is None or tokenizer.mask_token_id is None: self.skipTest('The provided tokenizer has no mask token, (probably reformer or wav2vec2)' ) UpperCamelCase_ = FillMaskPipeline(model=_UpperCAmelCase , tokenizer=_UpperCAmelCase ) UpperCamelCase_ = [ f"""This is another {tokenizer.mask_token} test""", ] return fill_masker, examples def _UpperCAmelCase ( self , _UpperCAmelCase , _UpperCAmelCase ) -> Union[str, Any]: UpperCamelCase_ = fill_masker.tokenizer UpperCamelCase_ = fill_masker.model UpperCamelCase_ = fill_masker( f"""This is a {tokenizer.mask_token}""" , ) self.assertEqual( _UpperCAmelCase , [ {'sequence': ANY(_UpperCAmelCase ), 'score': ANY(_UpperCAmelCase ), 'token': ANY(_UpperCAmelCase ), 'token_str': ANY(_UpperCAmelCase )}, {'sequence': ANY(_UpperCAmelCase ), 'score': ANY(_UpperCAmelCase ), 'token': ANY(_UpperCAmelCase ), 'token_str': ANY(_UpperCAmelCase )}, {'sequence': ANY(_UpperCAmelCase ), 'score': ANY(_UpperCAmelCase ), 'token': ANY(_UpperCAmelCase ), 'token_str': ANY(_UpperCAmelCase )}, {'sequence': ANY(_UpperCAmelCase ), 'score': ANY(_UpperCAmelCase ), 'token': ANY(_UpperCAmelCase ), 'token_str': ANY(_UpperCAmelCase )}, {'sequence': ANY(_UpperCAmelCase ), 'score': ANY(_UpperCAmelCase ), 'token': ANY(_UpperCAmelCase ), 'token_str': ANY(_UpperCAmelCase )}, ] , ) UpperCamelCase_ = fill_masker([f"""This is a {tokenizer.mask_token}"""] ) self.assertEqual( _UpperCAmelCase , [ {'sequence': ANY(_UpperCAmelCase ), 'score': ANY(_UpperCAmelCase ), 'token': ANY(_UpperCAmelCase ), 'token_str': ANY(_UpperCAmelCase )}, {'sequence': ANY(_UpperCAmelCase ), 'score': ANY(_UpperCAmelCase ), 'token': ANY(_UpperCAmelCase ), 'token_str': ANY(_UpperCAmelCase )}, {'sequence': ANY(_UpperCAmelCase ), 'score': ANY(_UpperCAmelCase ), 'token': ANY(_UpperCAmelCase ), 'token_str': ANY(_UpperCAmelCase )}, {'sequence': ANY(_UpperCAmelCase ), 'score': ANY(_UpperCAmelCase ), 'token': ANY(_UpperCAmelCase ), 'token_str': ANY(_UpperCAmelCase )}, {'sequence': ANY(_UpperCAmelCase ), 'score': ANY(_UpperCAmelCase ), 'token': ANY(_UpperCAmelCase ), 'token_str': ANY(_UpperCAmelCase )}, ] , ) UpperCamelCase_ = fill_masker([f"""This is a {tokenizer.mask_token}""", f"""Another {tokenizer.mask_token} great test."""] ) self.assertEqual( _UpperCAmelCase , [ [ {'sequence': ANY(_UpperCAmelCase ), 'score': ANY(_UpperCAmelCase ), 'token': ANY(_UpperCAmelCase ), 'token_str': ANY(_UpperCAmelCase )}, {'sequence': ANY(_UpperCAmelCase ), 'score': ANY(_UpperCAmelCase ), 'token': ANY(_UpperCAmelCase ), 'token_str': ANY(_UpperCAmelCase )}, {'sequence': ANY(_UpperCAmelCase ), 'score': ANY(_UpperCAmelCase ), 'token': ANY(_UpperCAmelCase ), 'token_str': ANY(_UpperCAmelCase )}, {'sequence': ANY(_UpperCAmelCase ), 'score': ANY(_UpperCAmelCase ), 'token': ANY(_UpperCAmelCase ), 'token_str': ANY(_UpperCAmelCase )}, {'sequence': ANY(_UpperCAmelCase ), 'score': ANY(_UpperCAmelCase ), 'token': ANY(_UpperCAmelCase ), 'token_str': ANY(_UpperCAmelCase )}, ], [ {'sequence': ANY(_UpperCAmelCase ), 'score': ANY(_UpperCAmelCase ), 'token': ANY(_UpperCAmelCase ), 'token_str': ANY(_UpperCAmelCase )}, {'sequence': ANY(_UpperCAmelCase ), 'score': ANY(_UpperCAmelCase ), 'token': ANY(_UpperCAmelCase ), 'token_str': ANY(_UpperCAmelCase )}, {'sequence': ANY(_UpperCAmelCase ), 'score': ANY(_UpperCAmelCase ), 'token': ANY(_UpperCAmelCase ), 'token_str': ANY(_UpperCAmelCase )}, {'sequence': ANY(_UpperCAmelCase ), 'score': ANY(_UpperCAmelCase ), 'token': ANY(_UpperCAmelCase ), 'token_str': ANY(_UpperCAmelCase )}, {'sequence': ANY(_UpperCAmelCase ), 'score': ANY(_UpperCAmelCase ), 'token': ANY(_UpperCAmelCase ), 'token_str': ANY(_UpperCAmelCase )}, ], ] , ) with self.assertRaises(_UpperCAmelCase ): fill_masker([None] ) # No mask_token is not supported with self.assertRaises(_UpperCAmelCase ): fill_masker('This is' ) self.run_test_top_k(_UpperCAmelCase , _UpperCAmelCase ) self.run_test_targets(_UpperCAmelCase , _UpperCAmelCase ) self.run_test_top_k_targets(_UpperCAmelCase , _UpperCAmelCase ) self.fill_mask_with_duplicate_targets_and_top_k(_UpperCAmelCase , _UpperCAmelCase ) self.fill_mask_with_multiple_masks(_UpperCAmelCase , _UpperCAmelCase ) def _UpperCAmelCase ( self , _UpperCAmelCase , _UpperCAmelCase ) -> Optional[Any]: UpperCamelCase_ = tokenizer.get_vocab() UpperCamelCase_ = sorted(vocab.keys() )[:2] # Pipeline argument UpperCamelCase_ = FillMaskPipeline(model=_UpperCAmelCase , tokenizer=_UpperCAmelCase , targets=_UpperCAmelCase ) UpperCamelCase_ = fill_masker(f"""This is a {tokenizer.mask_token}""" ) self.assertEqual( _UpperCAmelCase , [ {'sequence': ANY(_UpperCAmelCase ), 'score': ANY(_UpperCAmelCase ), 'token': ANY(_UpperCAmelCase ), 'token_str': ANY(_UpperCAmelCase )}, {'sequence': ANY(_UpperCAmelCase ), 'score': ANY(_UpperCAmelCase ), 'token': ANY(_UpperCAmelCase ), 'token_str': ANY(_UpperCAmelCase )}, ] , ) UpperCamelCase_ = {vocab[el] for el in targets} self.assertEqual({el['token'] for el in outputs} , _UpperCAmelCase ) UpperCamelCase_ = [tokenizer.decode([x] ) for x in target_ids] self.assertEqual({el['token_str'] for el in outputs} , set(_UpperCAmelCase ) ) # Call argument UpperCamelCase_ = FillMaskPipeline(model=_UpperCAmelCase , tokenizer=_UpperCAmelCase ) UpperCamelCase_ = fill_masker(f"""This is a {tokenizer.mask_token}""" , targets=_UpperCAmelCase ) self.assertEqual( _UpperCAmelCase , [ {'sequence': ANY(_UpperCAmelCase ), 'score': ANY(_UpperCAmelCase ), 'token': ANY(_UpperCAmelCase ), 'token_str': ANY(_UpperCAmelCase )}, {'sequence': ANY(_UpperCAmelCase ), 'score': ANY(_UpperCAmelCase ), 'token': ANY(_UpperCAmelCase ), 'token_str': ANY(_UpperCAmelCase )}, ] , ) UpperCamelCase_ = {vocab[el] for el in targets} self.assertEqual({el['token'] for el in outputs} , _UpperCAmelCase ) UpperCamelCase_ = [tokenizer.decode([x] ) for x in target_ids] self.assertEqual({el['token_str'] for el in outputs} , set(_UpperCAmelCase ) ) # Score equivalence UpperCamelCase_ = fill_masker(f"""This is a {tokenizer.mask_token}""" , targets=_UpperCAmelCase ) UpperCamelCase_ = [top_mask['token_str'] for top_mask in outputs] UpperCamelCase_ = [top_mask['score'] for top_mask in outputs] # For some BPE tokenizers, `</w>` is removed during decoding, so `token_str` won't be the same as in `targets`. if set(_UpperCAmelCase ) == set(_UpperCAmelCase ): UpperCamelCase_ = fill_masker(f"""This is a {tokenizer.mask_token}""" , targets=_UpperCAmelCase ) UpperCamelCase_ = [top_mask['score'] for top_mask in unmasked_targets] self.assertEqual(nested_simplify(_UpperCAmelCase ) , nested_simplify(_UpperCAmelCase ) ) # Raises with invalid with self.assertRaises(_UpperCAmelCase ): UpperCamelCase_ = fill_masker(f"""This is a {tokenizer.mask_token}""" , targets=[] ) # For some tokenizers, `""` is actually in the vocabulary and the expected error won't raised if "" not in tokenizer.get_vocab(): with self.assertRaises(_UpperCAmelCase ): UpperCamelCase_ = fill_masker(f"""This is a {tokenizer.mask_token}""" , targets=[''] ) with self.assertRaises(_UpperCAmelCase ): UpperCamelCase_ = fill_masker(f"""This is a {tokenizer.mask_token}""" , targets='' ) def _UpperCAmelCase ( self , _UpperCAmelCase , _UpperCAmelCase ) -> Tuple: UpperCamelCase_ = FillMaskPipeline(model=_UpperCAmelCase , tokenizer=_UpperCAmelCase , top_k=2 ) UpperCamelCase_ = fill_masker(f"""This is a {tokenizer.mask_token}""" ) self.assertEqual( _UpperCAmelCase , [ {'sequence': ANY(_UpperCAmelCase ), 'score': ANY(_UpperCAmelCase ), 'token': ANY(_UpperCAmelCase ), 'token_str': ANY(_UpperCAmelCase )}, {'sequence': ANY(_UpperCAmelCase ), 'score': ANY(_UpperCAmelCase ), 'token': ANY(_UpperCAmelCase ), 'token_str': ANY(_UpperCAmelCase )}, ] , ) UpperCamelCase_ = FillMaskPipeline(model=_UpperCAmelCase , tokenizer=_UpperCAmelCase ) UpperCamelCase_ = fill_masker(f"""This is a {tokenizer.mask_token}""" , top_k=2 ) self.assertEqual( _UpperCAmelCase , [ {'sequence': ANY(_UpperCAmelCase ), 'score': ANY(_UpperCAmelCase ), 'token': ANY(_UpperCAmelCase ), 'token_str': ANY(_UpperCAmelCase )}, {'sequence': ANY(_UpperCAmelCase ), 'score': ANY(_UpperCAmelCase ), 'token': ANY(_UpperCAmelCase ), 'token_str': ANY(_UpperCAmelCase )}, ] , ) self.assertEqual(nested_simplify(_UpperCAmelCase ) , nested_simplify(_UpperCAmelCase ) ) def _UpperCAmelCase ( self , _UpperCAmelCase , _UpperCAmelCase ) -> List[Any]: UpperCamelCase_ = tokenizer.get_vocab() UpperCamelCase_ = FillMaskPipeline(model=_UpperCAmelCase , tokenizer=_UpperCAmelCase ) # top_k=2, ntargets=3 UpperCamelCase_ = sorted(vocab.keys() )[:3] UpperCamelCase_ = fill_masker(f"""This is a {tokenizer.mask_token}""" , top_k=2 , targets=_UpperCAmelCase ) # If we use the most probably targets, and filter differently, we should still # have the same results UpperCamelCase_ = [el['token_str'] for el in sorted(_UpperCAmelCase , key=lambda _UpperCAmelCase : x["score"] , reverse=_UpperCAmelCase )] # For some BPE tokenizers, `</w>` is removed during decoding, so `token_str` won't be the same as in `targets`. if set(_UpperCAmelCase ).issubset(_UpperCAmelCase ): UpperCamelCase_ = fill_masker(f"""This is a {tokenizer.mask_token}""" , top_k=3 , targets=_UpperCAmelCase ) # They should yield exactly the same result self.assertEqual(nested_simplify(_UpperCAmelCase ) , nested_simplify(_UpperCAmelCase ) ) def _UpperCAmelCase ( self , _UpperCAmelCase , _UpperCAmelCase ) -> Optional[int]: UpperCamelCase_ = FillMaskPipeline(model=_UpperCAmelCase , tokenizer=_UpperCAmelCase ) UpperCamelCase_ = tokenizer.get_vocab() # String duplicates + id duplicates UpperCamelCase_ = sorted(vocab.keys() )[:3] UpperCamelCase_ = [targets[0], targets[1], targets[0], targets[2], targets[1]] UpperCamelCase_ = fill_masker(f"""My name is {tokenizer.mask_token}""" , targets=_UpperCAmelCase , top_k=10 ) # The target list contains duplicates, so we can't output more # than them self.assertEqual(len(_UpperCAmelCase ) , 3 ) def _UpperCAmelCase ( self , _UpperCAmelCase , _UpperCAmelCase ) -> List[str]: UpperCamelCase_ = FillMaskPipeline(model=_UpperCAmelCase , tokenizer=_UpperCAmelCase ) UpperCamelCase_ = fill_masker( f"""This is a {tokenizer.mask_token} {tokenizer.mask_token} {tokenizer.mask_token}""" , top_k=2 ) self.assertEqual( _UpperCAmelCase , [ [ {'sequence': ANY(_UpperCAmelCase ), 'score': ANY(_UpperCAmelCase ), 'token': ANY(_UpperCAmelCase ), 'token_str': ANY(_UpperCAmelCase )}, {'sequence': ANY(_UpperCAmelCase ), 'score': ANY(_UpperCAmelCase ), 'token': ANY(_UpperCAmelCase ), 'token_str': ANY(_UpperCAmelCase )}, ], [ {'sequence': ANY(_UpperCAmelCase ), 'score': ANY(_UpperCAmelCase ), 'token': ANY(_UpperCAmelCase ), 'token_str': ANY(_UpperCAmelCase )}, {'sequence': ANY(_UpperCAmelCase ), 'score': ANY(_UpperCAmelCase ), 'token': ANY(_UpperCAmelCase ), 'token_str': ANY(_UpperCAmelCase )}, ], [ {'sequence': ANY(_UpperCAmelCase ), 'score': ANY(_UpperCAmelCase ), 'token': ANY(_UpperCAmelCase ), 'token_str': ANY(_UpperCAmelCase )}, {'sequence': ANY(_UpperCAmelCase ), 'score': ANY(_UpperCAmelCase ), 'token': ANY(_UpperCAmelCase ), 'token_str': ANY(_UpperCAmelCase )}, ], ] , )
23
0
import secrets from random import shuffle from string import ascii_letters, ascii_lowercase, ascii_uppercase, digits, punctuation def UpperCamelCase( __UpperCamelCase : int = 8 ): lowerCAmelCase_ : Dict = ascii_letters + digits + punctuation return "".join(secrets.choice(__lowercase ) for _ in range(__lowercase ) ) def UpperCamelCase( __UpperCamelCase : Dict ,__UpperCamelCase : Union[str, Any] ): # Password Generator = full boot with random_number, random_letters, and # random_character FUNCTIONS # Put your code here... i -= len(__lowercase ) lowerCAmelCase_ : List[str] = i // 3 lowerCAmelCase_ : int = i % 3 # chars = chars_incl + random_letters(ascii_letters, i / 3 + remainder) + # random_number(digits, i / 3) + random_characters(punctuation, i / 3) lowerCAmelCase_ : str = ( chars_incl + random(__lowercase ,quotient + remainder ) + random(__lowercase ,__lowercase ) + random(__lowercase ,__lowercase ) ) lowerCAmelCase_ : Tuple = list(__lowercase ) shuffle(__lowercase ) return "".join(__lowercase ) # random is a generalised function for letters, characters and numbers def UpperCamelCase( __UpperCamelCase : int ,__UpperCamelCase : List[str] ): return "".join(secrets.choice(__lowercase ) for _ in range(__lowercase ) ) def UpperCamelCase( __UpperCamelCase : int ,__UpperCamelCase : List[Any] ): pass # Put your code here... def UpperCamelCase( __UpperCamelCase : Union[str, Any] ,__UpperCamelCase : Tuple ): pass # Put your code here... def UpperCamelCase( __UpperCamelCase : Union[str, Any] ,__UpperCamelCase : Tuple ): pass # Put your code here... def UpperCamelCase( __UpperCamelCase : Optional[Any] ,__UpperCamelCase : Any = 8 ): if len(__lowercase ) < min_length: # Your Password must be at least 8 characters long return False lowerCAmelCase_ : Dict = any(char in ascii_uppercase for char in password ) lowerCAmelCase_ : Tuple = any(char in ascii_lowercase for char in password ) lowerCAmelCase_ : Optional[Any] = any(char in digits for char in password ) lowerCAmelCase_ : Union[str, Any] = any(char in punctuation for char in password ) return upper and lower and num and spec_char # Passwords should contain UPPERCASE, lowerase # numbers, and special characters def UpperCamelCase( ): lowerCAmelCase_ : Union[str, Any] = int(input('''Please indicate the max length of your password: ''' ).strip() ) lowerCAmelCase_ : str = input( '''Please indicate the characters that must be in your password: ''' ).strip() print('''Password generated:''' ,password_generator(__lowercase ) ) print( '''Alternative Password generated:''' ,alternative_password_generator(__lowercase ,__lowercase ) ,) print('''[If you are thinking of using this passsword, You better save it.]''' ) if __name__ == "__main__": main()
171
import gc import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, StableDiffusionSAGPipeline, UNetaDConditionModel, ) from diffusers.utils import slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_IMAGE_PARAMS, TEXT_TO_IMAGE_PARAMS from ..test_pipelines_common import PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() class _a ( UpperCAmelCase__ , UpperCAmelCase__ , unittest.TestCase ): """simple docstring""" A_ = StableDiffusionSAGPipeline A_ = TEXT_TO_IMAGE_PARAMS A_ = TEXT_TO_IMAGE_BATCH_PARAMS A_ = TEXT_TO_IMAGE_IMAGE_PARAMS A_ = TEXT_TO_IMAGE_IMAGE_PARAMS A_ = False def _UpperCAmelCase ( self ) -> Optional[Any]: torch.manual_seed(0 ) UpperCamelCase_ = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=('DownBlock2D', 'CrossAttnDownBlock2D') , up_block_types=('CrossAttnUpBlock2D', 'UpBlock2D') , cross_attention_dim=32 , ) UpperCamelCase_ = DDIMScheduler( beta_start=0.0_0_0_8_5 , beta_end=0.0_1_2 , beta_schedule='scaled_linear' , clip_sample=_UpperCAmelCase , set_alpha_to_one=_UpperCAmelCase , ) torch.manual_seed(0 ) UpperCamelCase_ = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=['DownEncoderBlock2D', 'DownEncoderBlock2D'] , up_block_types=['UpDecoderBlock2D', 'UpDecoderBlock2D'] , latent_channels=4 , ) torch.manual_seed(0 ) UpperCamelCase_ = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , ) UpperCamelCase_ = CLIPTextModel(_UpperCAmelCase ) UpperCamelCase_ = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip' ) UpperCamelCase_ = { 'unet': unet, 'scheduler': scheduler, 'vae': vae, 'text_encoder': text_encoder, 'tokenizer': tokenizer, 'safety_checker': None, 'feature_extractor': None, } return components def _UpperCAmelCase ( self , _UpperCAmelCase , _UpperCAmelCase=0 ) -> List[Any]: if str(_UpperCAmelCase ).startswith('mps' ): UpperCamelCase_ = torch.manual_seed(_UpperCAmelCase ) else: UpperCamelCase_ = torch.Generator(device=_UpperCAmelCase ).manual_seed(_UpperCAmelCase ) UpperCamelCase_ = { 'prompt': '.', 'generator': generator, 'num_inference_steps': 2, 'guidance_scale': 1.0, 'sag_scale': 1.0, 'output_type': 'numpy', } return inputs def _UpperCAmelCase ( self ) -> Tuple: super().test_inference_batch_single_identical(expected_max_diff=3e-3 ) @slow @require_torch_gpu class _a ( unittest.TestCase ): """simple docstring""" def _UpperCAmelCase ( self ) -> Tuple: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def _UpperCAmelCase ( self ) -> str: UpperCamelCase_ = StableDiffusionSAGPipeline.from_pretrained('CompVis/stable-diffusion-v1-4' ) UpperCamelCase_ = sag_pipe.to(_UpperCAmelCase ) sag_pipe.set_progress_bar_config(disable=_UpperCAmelCase ) UpperCamelCase_ = '.' UpperCamelCase_ = torch.manual_seed(0 ) UpperCamelCase_ = sag_pipe( [prompt] , generator=_UpperCAmelCase , guidance_scale=7.5 , sag_scale=1.0 , num_inference_steps=20 , output_type='np' ) UpperCamelCase_ = output.images UpperCamelCase_ = image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) UpperCamelCase_ = np.array([0.1_5_6_8, 0.1_7_3_8, 0.1_6_9_5, 0.1_6_9_3, 0.1_5_0_7, 0.1_7_0_5, 0.1_5_4_7, 0.1_7_5_1, 0.1_9_4_9] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 5e-2 def _UpperCAmelCase ( self ) -> List[Any]: UpperCamelCase_ = StableDiffusionSAGPipeline.from_pretrained('stabilityai/stable-diffusion-2-1-base' ) UpperCamelCase_ = sag_pipe.to(_UpperCAmelCase ) sag_pipe.set_progress_bar_config(disable=_UpperCAmelCase ) UpperCamelCase_ = '.' UpperCamelCase_ = torch.manual_seed(0 ) UpperCamelCase_ = sag_pipe( [prompt] , generator=_UpperCAmelCase , guidance_scale=7.5 , sag_scale=1.0 , num_inference_steps=20 , output_type='np' ) UpperCamelCase_ = output.images UpperCamelCase_ = image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) UpperCamelCase_ = np.array([0.3_4_5_9, 0.2_8_7_6, 0.2_5_3_7, 0.3_0_0_2, 0.2_6_7_1, 0.2_1_6_0, 0.3_0_2_6, 0.2_2_6_2, 0.2_3_7_1] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 5e-2 def _UpperCAmelCase ( self ) -> Dict: UpperCamelCase_ = StableDiffusionSAGPipeline.from_pretrained('stabilityai/stable-diffusion-2-1-base' ) UpperCamelCase_ = sag_pipe.to(_UpperCAmelCase ) sag_pipe.set_progress_bar_config(disable=_UpperCAmelCase ) UpperCamelCase_ = '.' UpperCamelCase_ = torch.manual_seed(0 ) UpperCamelCase_ = sag_pipe( [prompt] , width=768 , height=512 , generator=_UpperCAmelCase , guidance_scale=7.5 , sag_scale=1.0 , num_inference_steps=20 , output_type='np' , ) UpperCamelCase_ = output.images assert image.shape == (1, 512, 768, 3)
23
0
import unittest from parameterized import parameterized from transformers import AutoTokenizer, GPTNeoXConfig, is_torch_available, set_seed from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( GPTNeoXForCausalLM, GPTNeoXForQuestionAnswering, GPTNeoXForSequenceClassification, GPTNeoXForTokenClassification, GPTNeoXModel, ) class _A : '''simple docstring''' def __init__( self ,SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_=13 ,SCREAMING_SNAKE_CASE_=7 ,SCREAMING_SNAKE_CASE_=True ,SCREAMING_SNAKE_CASE_=True ,SCREAMING_SNAKE_CASE_=True ,SCREAMING_SNAKE_CASE_=True ,SCREAMING_SNAKE_CASE_=99 ,SCREAMING_SNAKE_CASE_=64 ,SCREAMING_SNAKE_CASE_=5 ,SCREAMING_SNAKE_CASE_=4 ,SCREAMING_SNAKE_CASE_=37 ,SCREAMING_SNAKE_CASE_="gelu" ,SCREAMING_SNAKE_CASE_=0.1 ,SCREAMING_SNAKE_CASE_=0.1 ,SCREAMING_SNAKE_CASE_=512 ,SCREAMING_SNAKE_CASE_=16 ,SCREAMING_SNAKE_CASE_=2 ,SCREAMING_SNAKE_CASE_=0.02 ,SCREAMING_SNAKE_CASE_=3 ,SCREAMING_SNAKE_CASE_=4 ,SCREAMING_SNAKE_CASE_=None ,): '''simple docstring''' snake_case : Dict = parent snake_case : Dict = batch_size snake_case : List[str] = seq_length snake_case : Dict = is_training snake_case : int = use_input_mask snake_case : Any = use_token_type_ids snake_case : str = use_labels snake_case : List[str] = vocab_size snake_case : int = hidden_size snake_case : List[str] = num_hidden_layers snake_case : Optional[Any] = num_attention_heads snake_case : Optional[int] = intermediate_size snake_case : Optional[int] = hidden_act snake_case : Union[str, Any] = hidden_dropout_prob snake_case : List[str] = attention_probs_dropout_prob snake_case : Union[str, Any] = max_position_embeddings snake_case : Dict = type_vocab_size snake_case : str = type_sequence_label_size snake_case : Dict = initializer_range snake_case : Optional[int] = num_labels snake_case : List[str] = num_choices snake_case : Tuple = scope snake_case : Union[str, Any] = vocab_size - 1 def snake_case_ ( self ): '''simple docstring''' snake_case : Dict = ids_tensor([self.batch_size, self.seq_length] ,self.vocab_size ) snake_case : Tuple = None if self.use_input_mask: snake_case : Optional[Any] = random_attention_mask([self.batch_size, self.seq_length] ) snake_case : int = None if self.use_labels: snake_case : Tuple = ids_tensor([self.batch_size, self.seq_length] ,self.num_labels ) snake_case : Dict = self.get_config() return config, input_ids, input_mask, token_labels def snake_case_ ( self ): '''simple docstring''' return GPTNeoXConfig( vocab_size=self.vocab_size ,hidden_size=self.hidden_size ,num_hidden_layers=self.num_hidden_layers ,num_attention_heads=self.num_attention_heads ,intermediate_size=self.intermediate_size ,hidden_act=self.hidden_act ,hidden_dropout_prob=self.hidden_dropout_prob ,attention_probs_dropout_prob=self.attention_probs_dropout_prob ,max_position_embeddings=self.max_position_embeddings ,type_vocab_size=self.type_vocab_size ,is_decoder=_UpperCAmelCase ,initializer_range=self.initializer_range ,pad_token_id=self.pad_token_id ,) def snake_case_ ( self ): '''simple docstring''' snake_case , snake_case , snake_case , snake_case : List[str] = self.prepare_config_and_inputs() snake_case : Dict = True return config, input_ids, input_mask, token_labels def snake_case_ ( self ,SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case : Dict = GPTNeoXModel(config=_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() snake_case : str = model(_UpperCAmelCase ,attention_mask=_UpperCAmelCase ) snake_case : str = model(_UpperCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape ,(self.batch_size, self.seq_length, self.hidden_size) ) def snake_case_ ( self ,SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case : Union[str, Any] = True snake_case : Optional[Any] = GPTNeoXModel(_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() snake_case : Union[str, Any] = model(_UpperCAmelCase ,attention_mask=_UpperCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape ,(self.batch_size, self.seq_length, self.hidden_size) ) def snake_case_ ( self ,SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case : Dict = GPTNeoXForCausalLM(config=_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() snake_case : List[Any] = model(_UpperCAmelCase ,attention_mask=_UpperCAmelCase ,labels=_UpperCAmelCase ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.seq_length, self.vocab_size) ) def snake_case_ ( self ,SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case : Dict = self.num_labels snake_case : Dict = GPTNeoXForQuestionAnswering(_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() snake_case : Optional[int] = model(_UpperCAmelCase ,attention_mask=_UpperCAmelCase ) self.parent.assertEqual(result.start_logits.shape ,(self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape ,(self.batch_size, self.seq_length) ) def snake_case_ ( self ,SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case : Any = self.num_labels snake_case : int = GPTNeoXForSequenceClassification(_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() snake_case : int = ids_tensor([self.batch_size] ,self.type_sequence_label_size ) snake_case : Optional[Any] = model(_UpperCAmelCase ,attention_mask=_UpperCAmelCase ,labels=_UpperCAmelCase ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.num_labels) ) def snake_case_ ( self ,SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case : Any = self.num_labels snake_case : Optional[int] = GPTNeoXForTokenClassification(_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() snake_case : List[str] = model(_UpperCAmelCase ,attention_mask=_UpperCAmelCase ,labels=_UpperCAmelCase ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.seq_length, self.num_labels) ) def snake_case_ ( self ,SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case : Optional[int] = True snake_case : Optional[int] = GPTNeoXForCausalLM(config=_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() # first forward pass snake_case : List[str] = model(_UpperCAmelCase ,attention_mask=_UpperCAmelCase ,use_cache=_UpperCAmelCase ) snake_case : str = outputs.past_key_values # create hypothetical multiple next token and extent to next_input_ids snake_case : Optional[int] = ids_tensor((self.batch_size, 3) ,config.vocab_size ) snake_case : Optional[int] = ids_tensor((self.batch_size, 3) ,vocab_size=2 ) # append to next input_ids and snake_case : Union[str, Any] = torch.cat([input_ids, next_tokens] ,dim=-1 ) snake_case : str = torch.cat([input_mask, next_mask] ,dim=-1 ) snake_case : List[str] = model(_UpperCAmelCase ,attention_mask=_UpperCAmelCase ,output_hidden_states=_UpperCAmelCase ) snake_case : Union[str, Any] = output_from_no_past["""hidden_states"""][0] snake_case : Tuple = model( _UpperCAmelCase ,attention_mask=_UpperCAmelCase ,past_key_values=_UpperCAmelCase ,output_hidden_states=_UpperCAmelCase ,)["""hidden_states"""][0] # select random slice snake_case : Dict = ids_tensor((1,) ,output_from_past.shape[-1] ).item() snake_case : int = output_from_no_past[:, -3:, random_slice_idx].detach() snake_case : Union[str, Any] = output_from_past[:, :, random_slice_idx].detach() self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1] ) # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(_UpperCAmelCase ,_UpperCAmelCase ,atol=1E-3 ) ) def snake_case_ ( self ): '''simple docstring''' snake_case : Optional[int] = self.prepare_config_and_inputs() snake_case , snake_case , snake_case , snake_case : List[str] = config_and_inputs snake_case : Optional[Any] = {"""input_ids""": input_ids, """attention_mask""": input_mask} return config, inputs_dict @require_torch class _A ( UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , unittest.TestCase ): '''simple docstring''' __lowerCamelCase : Tuple = ( ( GPTNeoXModel, GPTNeoXForCausalLM, GPTNeoXForQuestionAnswering, GPTNeoXForSequenceClassification, GPTNeoXForTokenClassification, ) if is_torch_available() else () ) __lowerCamelCase : str = (GPTNeoXForCausalLM,) if is_torch_available() else () __lowerCamelCase : Optional[Any] = ( { '''feature-extraction''': GPTNeoXModel, '''question-answering''': GPTNeoXForQuestionAnswering, '''text-classification''': GPTNeoXForSequenceClassification, '''text-generation''': GPTNeoXForCausalLM, '''token-classification''': GPTNeoXForTokenClassification, '''zero-shot''': GPTNeoXForSequenceClassification, } if is_torch_available() else {} ) __lowerCamelCase : str = False __lowerCamelCase : Tuple = False __lowerCamelCase : Any = False __lowerCamelCase : int = False def snake_case_ ( self ): '''simple docstring''' snake_case : Tuple = GPTNeoXModelTester(self ) snake_case : Optional[int] = ConfigTester(self ,config_class=_UpperCAmelCase ,hidden_size=64 ,num_attention_heads=8 ) def snake_case_ ( self ): '''simple docstring''' self.config_tester.run_common_tests() def snake_case_ ( self ): '''simple docstring''' snake_case , snake_case , snake_case , snake_case : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(_UpperCAmelCase ,_UpperCAmelCase ,_UpperCAmelCase ) def snake_case_ ( self ): '''simple docstring''' snake_case , snake_case , snake_case , snake_case : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_decoder() self.model_tester.create_and_check_model_as_decoder(_UpperCAmelCase ,_UpperCAmelCase ,_UpperCAmelCase ) def snake_case_ ( self ): '''simple docstring''' # This regression test was failing with PyTorch < 1.3 snake_case , snake_case , snake_case , snake_case : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_decoder() snake_case : Dict = None self.model_tester.create_and_check_model_as_decoder(_UpperCAmelCase ,_UpperCAmelCase ,_UpperCAmelCase ) def snake_case_ ( self ): '''simple docstring''' snake_case , snake_case , snake_case , snake_case : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_decoder_model_past_large_inputs(_UpperCAmelCase ,_UpperCAmelCase ,_UpperCAmelCase ) def snake_case_ ( self ): '''simple docstring''' snake_case : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_causal_lm(*_UpperCAmelCase ) def snake_case_ ( self ): '''simple docstring''' snake_case : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*_UpperCAmelCase ) def snake_case_ ( self ): '''simple docstring''' snake_case : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*_UpperCAmelCase ) def snake_case_ ( self ): '''simple docstring''' snake_case : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*_UpperCAmelCase ) @unittest.skip(reason="""Feed forward chunking is not implemented""" ) def snake_case_ ( self ): '''simple docstring''' pass @parameterized.expand([("""linear""",), ("""dynamic""",)] ) def snake_case_ ( self ,SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case , snake_case : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() snake_case : Optional[Any] = ids_tensor([1, 10] ,config.vocab_size ) snake_case : Optional[Any] = ids_tensor([1, int(config.max_position_embeddings * 1.5 )] ,config.vocab_size ) set_seed(42 ) # Fixed seed at init time so the two models get the same random weights snake_case : Optional[Any] = GPTNeoXModel(_UpperCAmelCase ) original_model.to(_UpperCAmelCase ) original_model.eval() snake_case : Optional[Any] = original_model(_UpperCAmelCase ).last_hidden_state snake_case : str = original_model(_UpperCAmelCase ).last_hidden_state set_seed(42 ) # Fixed seed at init time so the two models get the same random weights snake_case : str = {"""type""": scaling_type, """factor""": 10.0} snake_case : Optional[Any] = GPTNeoXModel(_UpperCAmelCase ) scaled_model.to(_UpperCAmelCase ) scaled_model.eval() snake_case : List[str] = scaled_model(_UpperCAmelCase ).last_hidden_state snake_case : Union[str, Any] = scaled_model(_UpperCAmelCase ).last_hidden_state # Dynamic scaling does not change the RoPE embeddings until it receives an input longer than the original # maximum sequence length, so the outputs for the short input should match. if scaling_type == "dynamic": self.assertTrue(torch.allclose(_UpperCAmelCase ,_UpperCAmelCase ,atol=1E-5 ) ) else: self.assertFalse(torch.allclose(_UpperCAmelCase ,_UpperCAmelCase ,atol=1E-5 ) ) # The output should be different for long inputs self.assertFalse(torch.allclose(_UpperCAmelCase ,_UpperCAmelCase ,atol=1E-5 ) ) @require_torch class _A ( unittest.TestCase ): '''simple docstring''' @slow def snake_case_ ( self ): '''simple docstring''' snake_case : int = AutoTokenizer.from_pretrained("""EleutherAI/pythia-410m-deduped""" ) for checkpointing in [True, False]: snake_case : Any = GPTNeoXForCausalLM.from_pretrained("""EleutherAI/pythia-410m-deduped""" ) if checkpointing: model.gradient_checkpointing_enable() else: model.gradient_checkpointing_disable() model.to(_UpperCAmelCase ) snake_case : Tuple = tokenizer("""My favorite food is""" ,return_tensors="""pt""" ).to(_UpperCAmelCase ) # The hub repo. is updated on 2023-04-04, resulting in poor outputs. # See: https://github.com/huggingface/transformers/pull/24193 snake_case : Union[str, Any] = """My favorite food is a good old-fashioned, old-fashioned, old-fashioned.\n\nI\'m not sure""" snake_case : str = model.generate(**_UpperCAmelCase ,do_sample=_UpperCAmelCase ,max_new_tokens=20 ) snake_case : Tuple = tokenizer.batch_decode(_UpperCAmelCase )[0] self.assertEqual(_UpperCAmelCase ,_UpperCAmelCase )
36
from __future__ import annotations from sys import maxsize from typing import Generic, TypeVar snake_case__ : List[str] = TypeVar("""T""") def _snake_case (__lowercase): return (position - 1) // 2 def _snake_case (__lowercase): return (2 * position) + 1 def _snake_case (__lowercase): return (2 * position) + 2 class _a ( Generic[T] ): """simple docstring""" def __init__( self ) -> None: UpperCamelCase_ = [] UpperCamelCase_ = {} UpperCamelCase_ = 0 def __len__( self ) -> int: return self.elements def __repr__( self ) -> str: return str(self.heap ) def _UpperCAmelCase ( self ) -> bool: # Check if the priority queue is empty return self.elements == 0 def _UpperCAmelCase ( self , _UpperCAmelCase , _UpperCAmelCase ) -> None: # Add an element with given priority to the queue self.heap.append((elem, weight) ) UpperCamelCase_ = self.elements self.elements += 1 self._bubble_up(_UpperCAmelCase ) def _UpperCAmelCase ( self ) -> T: # Remove and return the element with lowest weight (highest priority) if self.elements > 1: self._swap_nodes(0 , self.elements - 1 ) UpperCamelCase_ , UpperCamelCase_ = self.heap.pop() del self.position_map[elem] self.elements -= 1 if self.elements > 0: UpperCamelCase_ , UpperCamelCase_ = self.heap[0] self._bubble_down(_UpperCAmelCase ) return elem def _UpperCAmelCase ( self , _UpperCAmelCase , _UpperCAmelCase ) -> None: # Update the weight of the given key UpperCamelCase_ = self.position_map[elem] UpperCamelCase_ = (elem, weight) if position > 0: UpperCamelCase_ = get_parent_position(_UpperCAmelCase ) UpperCamelCase_ , UpperCamelCase_ = self.heap[parent_position] if parent_weight > weight: self._bubble_up(_UpperCAmelCase ) else: self._bubble_down(_UpperCAmelCase ) else: self._bubble_down(_UpperCAmelCase ) def _UpperCAmelCase ( self , _UpperCAmelCase ) -> None: # Place a node at the proper position (upward movement) [to be used internally # only] UpperCamelCase_ = self.position_map[elem] if curr_pos == 0: return None UpperCamelCase_ = get_parent_position(_UpperCAmelCase ) UpperCamelCase_ , UpperCamelCase_ = self.heap[curr_pos] UpperCamelCase_ , UpperCamelCase_ = self.heap[parent_position] if parent_weight > weight: self._swap_nodes(_UpperCAmelCase , _UpperCAmelCase ) return self._bubble_up(_UpperCAmelCase ) return None def _UpperCAmelCase ( self , _UpperCAmelCase ) -> None: # Place a node at the proper position (downward movement) [to be used # internally only] UpperCamelCase_ = self.position_map[elem] UpperCamelCase_ , UpperCamelCase_ = self.heap[curr_pos] UpperCamelCase_ = get_child_left_position(_UpperCAmelCase ) UpperCamelCase_ = get_child_right_position(_UpperCAmelCase ) if child_left_position < self.elements and child_right_position < self.elements: UpperCamelCase_ , UpperCamelCase_ = self.heap[child_left_position] UpperCamelCase_ , UpperCamelCase_ = self.heap[child_right_position] if child_right_weight < child_left_weight and child_right_weight < weight: self._swap_nodes(_UpperCAmelCase , _UpperCAmelCase ) return self._bubble_down(_UpperCAmelCase ) if child_left_position < self.elements: UpperCamelCase_ , UpperCamelCase_ = self.heap[child_left_position] if child_left_weight < weight: self._swap_nodes(_UpperCAmelCase , _UpperCAmelCase ) return self._bubble_down(_UpperCAmelCase ) else: return None if child_right_position < self.elements: UpperCamelCase_ , UpperCamelCase_ = self.heap[child_right_position] if child_right_weight < weight: self._swap_nodes(_UpperCAmelCase , _UpperCAmelCase ) return self._bubble_down(_UpperCAmelCase ) return None def _UpperCAmelCase ( self , _UpperCAmelCase , _UpperCAmelCase ) -> None: # Swap the nodes at the given positions UpperCamelCase_ = self.heap[nodea_pos][0] UpperCamelCase_ = self.heap[nodea_pos][0] UpperCamelCase_ , UpperCamelCase_ = ( self.heap[nodea_pos], self.heap[nodea_pos], ) UpperCamelCase_ = nodea_pos UpperCamelCase_ = nodea_pos class _a ( Generic[T] ): """simple docstring""" def __init__( self ) -> None: UpperCamelCase_ = {} UpperCamelCase_ = 0 def __repr__( self ) -> str: return str(self.connections ) def __len__( self ) -> int: return self.nodes def _UpperCAmelCase ( self , _UpperCAmelCase ) -> None: # Add a node in the graph if it is not in the graph if node not in self.connections: UpperCamelCase_ = {} self.nodes += 1 def _UpperCAmelCase ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) -> None: # Add an edge between 2 nodes in the graph self.add_node(_UpperCAmelCase ) self.add_node(_UpperCAmelCase ) UpperCamelCase_ = weight UpperCamelCase_ = weight def _snake_case (__lowercase , ): UpperCamelCase_ = {node: maxsize for node in graph.connections} UpperCamelCase_ = {node: None for node in graph.connections} UpperCamelCase_ = MinPriorityQueue() for node, weight in dist.items(): priority_queue.push(__lowercase , __lowercase) if priority_queue.is_empty(): return dist, parent # initialization UpperCamelCase_ = priority_queue.extract_min() UpperCamelCase_ = 0 for neighbour in graph.connections[node]: if dist[neighbour] > dist[node] + graph.connections[node][neighbour]: UpperCamelCase_ = dist[node] + graph.connections[node][neighbour] priority_queue.update_key(__lowercase , dist[neighbour]) UpperCamelCase_ = node # running prim's algorithm while not priority_queue.is_empty(): UpperCamelCase_ = priority_queue.extract_min() for neighbour in graph.connections[node]: if dist[neighbour] > dist[node] + graph.connections[node][neighbour]: UpperCamelCase_ = dist[node] + graph.connections[node][neighbour] priority_queue.update_key(__lowercase , dist[neighbour]) UpperCamelCase_ = node return dist, parent
23
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_torch_available, ) UpperCamelCase_ : Optional[int] = { """configuration_gpt_bigcode""": ["""GPT_BIGCODE_PRETRAINED_CONFIG_ARCHIVE_MAP""", """GPTBigCodeConfig"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase_ : List[Any] = [ """GPT_BIGCODE_PRETRAINED_MODEL_ARCHIVE_LIST""", """GPTBigCodeForSequenceClassification""", """GPTBigCodeForTokenClassification""", """GPTBigCodeForCausalLM""", """GPTBigCodeModel""", """GPTBigCodePreTrainedModel""", ] if TYPE_CHECKING: from .configuration_gpt_bigcode import GPT_BIGCODE_PRETRAINED_CONFIG_ARCHIVE_MAP, GPTBigCodeConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_gpt_bigcode import ( GPT_BIGCODE_PRETRAINED_MODEL_ARCHIVE_LIST, GPTBigCodeForCausalLM, GPTBigCodeForSequenceClassification, GPTBigCodeForTokenClassification, GPTBigCodeModel, GPTBigCodePreTrainedModel, ) else: import sys UpperCamelCase_ : Any = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
331
from __future__ import annotations import sys from collections import deque from typing import Generic, TypeVar snake_case__ : Dict = TypeVar("""T""") class _a ( Generic[T] ): """simple docstring""" A_ = 42 # Cache store of keys A_ = 42 # References of the keys in cache A_ = 10 # Maximum capacity of cache def __init__( self , _UpperCAmelCase ) -> None: UpperCamelCase_ = deque() UpperCamelCase_ = set() if not n: UpperCamelCase_ = sys.maxsize elif n < 0: raise ValueError('n should be an integer greater than 0.' ) else: UpperCamelCase_ = n def _UpperCAmelCase ( self , _UpperCAmelCase ) -> None: if x not in self.key_reference: if len(self.dq_store ) == LRUCache._MAX_CAPACITY: UpperCamelCase_ = self.dq_store.pop() self.key_reference.remove(_UpperCAmelCase ) else: self.dq_store.remove(_UpperCAmelCase ) self.dq_store.appendleft(_UpperCAmelCase ) self.key_reference.add(_UpperCAmelCase ) def _UpperCAmelCase ( self ) -> None: for k in self.dq_store: print(_UpperCAmelCase ) def __repr__( self ) -> str: return f"""LRUCache({self._MAX_CAPACITY}) => {list(self.dq_store )}""" if __name__ == "__main__": import doctest doctest.testmod() snake_case__ : LRUCache[str | int] = LRUCache(4) lru_cache.refer("""A""") lru_cache.refer(2) lru_cache.refer(3) lru_cache.refer("""A""") lru_cache.refer(4) lru_cache.refer(5) lru_cache.display() print(lru_cache) assert str(lru_cache) == "LRUCache(4) => [5, 4, 'A', 3]"
23
0
from math import factorial def A_ ( lowercase_ = 20 ) -> Union[str, Any]: _snake_case : List[Any] = 2 * n # middle entry of odd rows starting at row 3 is the solution for n = 1, # 2, 3,... _snake_case : Dict = n // 2 return int(factorial(__lowercase ) / (factorial(__lowercase ) * factorial(n - k )) ) if __name__ == "__main__": import sys if len(sys.argv) == 1: print(solution(2_0)) else: try: lowerCAmelCase_ = int(sys.argv[1]) print(solution(n)) except ValueError: print("Invalid entry - please enter a number.")
326
import numpy as np def _snake_case (__lowercase): return 1 / (1 + np.exp(-vector)) def _snake_case (__lowercase): return vector * sigmoid(__lowercase) if __name__ == "__main__": import doctest doctest.testmod()
23
0