code
stringlengths
82
54.1k
code_codestyle
int64
0
699
style_context
stringlengths
111
35.6k
style_context_codestyle
int64
0
699
label
int64
0
1
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available a_ = { 'configuration_lilt': ['LILT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'LiltConfig'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a_ = [ 'LILT_PRETRAINED_MODEL_ARCHIVE_LIST', 'LiltForQuestionAnswering', 'LiltForSequenceClassification', 'LiltForTokenClassification', 'LiltModel', 'LiltPreTrainedModel', ] if TYPE_CHECKING: from .configuration_lilt import LILT_PRETRAINED_CONFIG_ARCHIVE_MAP, LiltConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_lilt import ( LILT_PRETRAINED_MODEL_ARCHIVE_LIST, LiltForQuestionAnswering, LiltForSequenceClassification, LiltForTokenClassification, LiltModel, LiltPreTrainedModel, ) else: import sys a_ = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
25
import unittest import numpy as np import torch from diffusers import KarrasVePipeline, KarrasVeScheduler, UNetaDModel from diffusers.utils.testing_utils import enable_full_determinism, require_torch, slow, torch_device enable_full_determinism() class _UpperCamelCase ( unittest.TestCase ): '''simple docstring''' @property def __UpperCamelCase ( self : List[str] ) -> Union[str, Any]: """simple docstring""" torch.manual_seed(0 ) SCREAMING_SNAKE_CASE : str = UNetaDModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=3 , out_channels=3 , down_block_types=("DownBlock2D", "AttnDownBlock2D") , up_block_types=("AttnUpBlock2D", "UpBlock2D") , ) return model def __UpperCamelCase ( self : Union[str, Any] ) -> Dict: """simple docstring""" SCREAMING_SNAKE_CASE : Union[str, Any] = self.dummy_uncond_unet SCREAMING_SNAKE_CASE : Union[str, Any] = KarrasVeScheduler() SCREAMING_SNAKE_CASE : Any = KarrasVePipeline(unet=a , scheduler=a ) pipe.to(a ) pipe.set_progress_bar_config(disable=a ) SCREAMING_SNAKE_CASE : Any = torch.manual_seed(0 ) SCREAMING_SNAKE_CASE : Optional[Any] = pipe(num_inference_steps=2 , generator=a , output_type="numpy" ).images SCREAMING_SNAKE_CASE : List[str] = torch.manual_seed(0 ) SCREAMING_SNAKE_CASE : List[Any] = pipe(num_inference_steps=2 , generator=a , output_type="numpy" , return_dict=a )[0] SCREAMING_SNAKE_CASE : List[Any] = image[0, -3:, -3:, -1] SCREAMING_SNAKE_CASE : Any = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) SCREAMING_SNAKE_CASE : str = np.array([0.0, 1.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2 @slow @require_torch class _UpperCamelCase ( unittest.TestCase ): '''simple docstring''' def __UpperCamelCase ( self : int ) -> Tuple: """simple docstring""" SCREAMING_SNAKE_CASE : Dict = "google/ncsnpp-celebahq-256" SCREAMING_SNAKE_CASE : List[Any] = UNetaDModel.from_pretrained(a ) SCREAMING_SNAKE_CASE : Any = KarrasVeScheduler() SCREAMING_SNAKE_CASE : Optional[Any] = KarrasVePipeline(unet=a , scheduler=a ) pipe.to(a ) pipe.set_progress_bar_config(disable=a ) SCREAMING_SNAKE_CASE : Union[str, Any] = torch.manual_seed(0 ) SCREAMING_SNAKE_CASE : Any = pipe(num_inference_steps=20 , generator=a , output_type="numpy" ).images SCREAMING_SNAKE_CASE : List[str] = image[0, -3:, -3:, -1] assert image.shape == (1, 256, 256, 3) SCREAMING_SNAKE_CASE : str = np.array([0.578, 0.5811, 0.5924, 0.5809, 0.587, 0.5886, 0.5861, 0.5802, 0.586] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
25
1
# tests directory-specific settings - this file is run automatically # by pytest before any tests are run import sys import warnings from os.path import abspath, dirname, join # allow having multiple repository checkouts and not needing to remember to rerun # 'pip install -e .[dev]' when switching between checkouts and running tests. a_ = abspath(join(dirname(dirname(__file__)), 'src')) sys.path.insert(1, git_repo_path) # silence FutureWarning warnings in tests since often we can't act on them until # they become normal warnings - i.e. the tests still need to test the current functionality warnings.simplefilter(action='ignore', category=FutureWarning) def lowerCamelCase__ ( _a): from diffusers.utils.testing_utils import pytest_addoption_shared pytest_addoption_shared(_a) def lowerCamelCase__ ( _a): from diffusers.utils.testing_utils import pytest_terminal_summary_main SCREAMING_SNAKE_CASE : Optional[Any] = terminalreporter.config.getoption("--make-reports") if make_reports: pytest_terminal_summary_main(_a , id=_a)
25
def lowerCamelCase__ ( _a , _a): SCREAMING_SNAKE_CASE : Optional[int] = 0 while b > 0: if b & 1: res += a a += a b >>= 1 return res def lowerCamelCase__ ( _a , _a , _a): SCREAMING_SNAKE_CASE : Optional[int] = 0 while b > 0: if b & 1: SCREAMING_SNAKE_CASE : Optional[Any] = ((res % c) + (a % c)) % c a += a b >>= 1 return res
25
1
import unittest import numpy as np from diffusers import OnnxStableDiffusionInpaintPipelineLegacy from diffusers.utils.testing_utils import ( is_onnx_available, load_image, load_numpy, nightly, require_onnxruntime, require_torch_gpu, ) if is_onnx_available(): import onnxruntime as ort @nightly @require_onnxruntime @require_torch_gpu class _UpperCamelCase ( unittest.TestCase ): '''simple docstring''' @property def __UpperCamelCase ( self : List[str] ) -> str: """simple docstring""" return ( "CUDAExecutionProvider", { "gpu_mem_limit": "15000000000", # 15GB "arena_extend_strategy": "kSameAsRequested", }, ) @property def __UpperCamelCase ( self : Union[str, Any] ) -> Dict: """simple docstring""" SCREAMING_SNAKE_CASE : Dict = ort.SessionOptions() SCREAMING_SNAKE_CASE : Optional[Any] = False return options def __UpperCamelCase ( self : Tuple ) -> List[Any]: """simple docstring""" SCREAMING_SNAKE_CASE : Dict = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/in_paint/overture-creations-5sI6fQgYIuo.png" ) SCREAMING_SNAKE_CASE : str = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/in_paint/overture-creations-5sI6fQgYIuo_mask.png" ) SCREAMING_SNAKE_CASE : List[str] = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/in_paint/red_cat_sitting_on_a_park_bench_onnx.npy" ) # using the PNDM scheduler by default SCREAMING_SNAKE_CASE : Dict = OnnxStableDiffusionInpaintPipelineLegacy.from_pretrained( "CompVis/stable-diffusion-v1-4" , revision="onnx" , safety_checker=a , feature_extractor=a , provider=self.gpu_provider , sess_options=self.gpu_options , ) pipe.set_progress_bar_config(disable=a ) SCREAMING_SNAKE_CASE : Tuple = "A red cat sitting on a park bench" SCREAMING_SNAKE_CASE : Optional[Any] = np.random.RandomState(0 ) SCREAMING_SNAKE_CASE : Union[str, Any] = pipe( prompt=a , image=a , mask_image=a , strength=0.75 , guidance_scale=7.5 , num_inference_steps=15 , generator=a , output_type="np" , ) SCREAMING_SNAKE_CASE : Optional[int] = output.images[0] assert image.shape == (512, 512, 3) assert np.abs(expected_image - image ).max() < 1e-2
25
from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging a_ = logging.get_logger(__name__) a_ = { 'junnyu/roformer_chinese_small': 'https://huggingface.co/junnyu/roformer_chinese_small/resolve/main/config.json', 'junnyu/roformer_chinese_base': 'https://huggingface.co/junnyu/roformer_chinese_base/resolve/main/config.json', 'junnyu/roformer_chinese_char_small': ( 'https://huggingface.co/junnyu/roformer_chinese_char_small/resolve/main/config.json' ), 'junnyu/roformer_chinese_char_base': ( 'https://huggingface.co/junnyu/roformer_chinese_char_base/resolve/main/config.json' ), 'junnyu/roformer_small_discriminator': ( 'https://huggingface.co/junnyu/roformer_small_discriminator/resolve/main/config.json' ), 'junnyu/roformer_small_generator': ( 'https://huggingface.co/junnyu/roformer_small_generator/resolve/main/config.json' ), # See all RoFormer models at https://huggingface.co/models?filter=roformer } class _UpperCamelCase ( __A ): '''simple docstring''' lowerCamelCase__ ='roformer' def __init__( self : Dict , a : Any=5_0000 , a : List[Any]=None , a : str=768 , a : str=12 , a : Tuple=12 , a : Optional[Any]=3072 , a : List[str]="gelu" , a : List[Any]=0.1 , a : Union[str, Any]=0.1 , a : Tuple=1536 , a : List[str]=2 , a : Tuple=0.02 , a : Any=1e-12 , a : Optional[int]=0 , a : Union[str, Any]=False , a : int=True , **a : str , ) -> int: """simple docstring""" super().__init__(pad_token_id=a , **a ) SCREAMING_SNAKE_CASE : str = vocab_size SCREAMING_SNAKE_CASE : int = hidden_size if embedding_size is None else embedding_size SCREAMING_SNAKE_CASE : List[str] = hidden_size SCREAMING_SNAKE_CASE : Union[str, Any] = num_hidden_layers SCREAMING_SNAKE_CASE : int = num_attention_heads SCREAMING_SNAKE_CASE : Tuple = hidden_act SCREAMING_SNAKE_CASE : int = intermediate_size SCREAMING_SNAKE_CASE : Tuple = hidden_dropout_prob SCREAMING_SNAKE_CASE : int = attention_probs_dropout_prob SCREAMING_SNAKE_CASE : Optional[int] = max_position_embeddings SCREAMING_SNAKE_CASE : Any = type_vocab_size SCREAMING_SNAKE_CASE : Union[str, Any] = initializer_range SCREAMING_SNAKE_CASE : List[str] = layer_norm_eps SCREAMING_SNAKE_CASE : List[str] = rotary_value SCREAMING_SNAKE_CASE : int = use_cache class _UpperCamelCase ( __A ): '''simple docstring''' @property def __UpperCamelCase ( self : Tuple ) -> Mapping[str, Mapping[int, str]]: """simple docstring""" if self.task == "multiple-choice": SCREAMING_SNAKE_CASE : Optional[Any] = {0: "batch", 1: "choice", 2: "sequence"} else: SCREAMING_SNAKE_CASE : str = {0: "batch", 1: "sequence"} SCREAMING_SNAKE_CASE : List[Any] = {0: "batch", 1: "sequence"} return OrderedDict( [ ("input_ids", dynamic_axis), ("attention_mask", dynamic_axis), ("token_type_ids", dynamic_axis), ] )
25
1
import tempfile import unittest from transformers import SPIECE_UNDERLINE, BatchEncoding, PLBartTokenizer, is_torch_available from transformers.testing_utils import ( get_tests_dir, nested_simplify, require_sentencepiece, require_tokenizers, require_torch, ) from ...test_tokenization_common import TokenizerTesterMixin a_ = get_tests_dir('fixtures/test_sentencepiece.model') if is_torch_available(): from transformers.models.plbart.modeling_plbart import shift_tokens_right a_ = 5_0003 a_ = 5_0002 @require_sentencepiece @require_tokenizers class _UpperCamelCase ( __A , unittest.TestCase ): '''simple docstring''' lowerCamelCase__ =PLBartTokenizer lowerCamelCase__ =None lowerCamelCase__ =False def __UpperCamelCase ( self : Optional[int] ) -> Dict: """simple docstring""" super().setUp() # We have a SentencePiece fixture for testing SCREAMING_SNAKE_CASE : int = PLBartTokenizer(a , language_codes="base" , keep_accents=a ) tokenizer.save_pretrained(self.tmpdirname ) def __UpperCamelCase ( self : List[Any] ) -> str: """simple docstring""" SCREAMING_SNAKE_CASE : Dict = PLBartTokenizer(a , language_codes="base" , keep_accents=a ) SCREAMING_SNAKE_CASE : Union[str, Any] = tokenizer.tokenize("This is a test" ) self.assertListEqual(a , ["▁This", "▁is", "▁a", "▁t", "est"] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(a ) , [value + tokenizer.fairseq_offset for value in [285, 46, 10, 170, 382]] , ) SCREAMING_SNAKE_CASE : int = tokenizer.tokenize("I was born in 92000, and this is falsé." ) self.assertListEqual( a , [ SPIECE_UNDERLINE + "I", SPIECE_UNDERLINE + "was", SPIECE_UNDERLINE + "b", "or", "n", SPIECE_UNDERLINE + "in", SPIECE_UNDERLINE + "", "9", "2", "0", "0", "0", ",", SPIECE_UNDERLINE + "and", SPIECE_UNDERLINE + "this", SPIECE_UNDERLINE + "is", SPIECE_UNDERLINE + "f", "al", "s", "é", ".", ] , ) SCREAMING_SNAKE_CASE : Optional[int] = tokenizer.convert_tokens_to_ids(a ) self.assertListEqual( a , [ value + tokenizer.fairseq_offset for value in [8, 21, 84, 55, 24, 19, 7, 2, 602, 347, 347, 347, 3, 12, 66, 46, 72, 80, 6, 2, 4] ] , ) SCREAMING_SNAKE_CASE : int = tokenizer.convert_ids_to_tokens(a ) self.assertListEqual( a , [ SPIECE_UNDERLINE + "I", SPIECE_UNDERLINE + "was", SPIECE_UNDERLINE + "b", "or", "n", SPIECE_UNDERLINE + "in", SPIECE_UNDERLINE + "", "<unk>", "2", "0", "0", "0", ",", SPIECE_UNDERLINE + "and", SPIECE_UNDERLINE + "this", SPIECE_UNDERLINE + "is", SPIECE_UNDERLINE + "f", "al", "s", "<unk>", ".", ] , ) SCREAMING_SNAKE_CASE : List[str] = tokenizer.vocab_size SCREAMING_SNAKE_CASE : Optional[int] = [tokenizer.convert_ids_to_tokens(a ) for x in range(end - 4 , a )] self.assertListEqual(a , ["__java__", "__python__", "__en_XX__", "<mask>"] ) SCREAMING_SNAKE_CASE : Tuple = "java.lang.Exception, python.lang.Exception, javascript, php, ruby, go" SCREAMING_SNAKE_CASE : Any = tokenizer(a ).input_ids self.assertEqual( tokenizer.decode(a , skip_special_tokens=a , clean_up_tokenization_spaces=a ) , a , ) def __UpperCamelCase ( self : List[str] ) -> int: """simple docstring""" SCREAMING_SNAKE_CASE : Dict = PLBartTokenizer(a , language_codes="multi" , keep_accents=a ) SCREAMING_SNAKE_CASE : Tuple = tokenizer.tokenize("This is a test" ) self.assertListEqual(a , ["▁This", "▁is", "▁a", "▁t", "est"] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(a ) , [value + tokenizer.fairseq_offset for value in [285, 46, 10, 170, 382]] , ) SCREAMING_SNAKE_CASE : Tuple = tokenizer.tokenize("I was born in 92000, and this is falsé." ) self.assertListEqual( a , [ SPIECE_UNDERLINE + "I", SPIECE_UNDERLINE + "was", SPIECE_UNDERLINE + "b", "or", "n", SPIECE_UNDERLINE + "in", SPIECE_UNDERLINE + "", "9", "2", "0", "0", "0", ",", SPIECE_UNDERLINE + "and", SPIECE_UNDERLINE + "this", SPIECE_UNDERLINE + "is", SPIECE_UNDERLINE + "f", "al", "s", "é", ".", ] , ) SCREAMING_SNAKE_CASE : int = tokenizer.convert_tokens_to_ids(a ) self.assertListEqual( a , [ value + tokenizer.fairseq_offset for value in [8, 21, 84, 55, 24, 19, 7, 2, 602, 347, 347, 347, 3, 12, 66, 46, 72, 80, 6, 2, 4] ] , ) SCREAMING_SNAKE_CASE : Optional[Any] = tokenizer.convert_ids_to_tokens(a ) self.assertListEqual( a , [ SPIECE_UNDERLINE + "I", SPIECE_UNDERLINE + "was", SPIECE_UNDERLINE + "b", "or", "n", SPIECE_UNDERLINE + "in", SPIECE_UNDERLINE + "", "<unk>", "2", "0", "0", "0", ",", SPIECE_UNDERLINE + "and", SPIECE_UNDERLINE + "this", SPIECE_UNDERLINE + "is", SPIECE_UNDERLINE + "f", "al", "s", "<unk>", ".", ] , ) SCREAMING_SNAKE_CASE : List[Any] = tokenizer.vocab_size SCREAMING_SNAKE_CASE : Dict = [tokenizer.convert_ids_to_tokens(a ) for x in range(end - 7 , a )] self.assertListEqual( a , ["__java__", "__python__", "__en_XX__", "__javascript__", "__php__", "__ruby__", "__go__"] ) SCREAMING_SNAKE_CASE : List[Any] = "java.lang.Exception, python.lang.Exception, javascript, php, ruby, go" SCREAMING_SNAKE_CASE : Union[str, Any] = tokenizer(a ).input_ids self.assertEqual( tokenizer.decode(a , skip_special_tokens=a , clean_up_tokenization_spaces=a ) , a , ) @require_torch @require_sentencepiece @require_tokenizers class _UpperCamelCase ( unittest.TestCase ): '''simple docstring''' lowerCamelCase__ ='uclanlp/plbart-python-en_XX' lowerCamelCase__ =[ 'def maximum(a,b,c):NEW_LINE_INDENTreturn max([a,b,c])', 'def sum(a,b,c):NEW_LINE_INDENTreturn sum([a,b,c])', ] lowerCamelCase__ =[ 'Returns the maximum value of a b c.', 'Sums the values of a b c.', ] lowerCamelCase__ =[ 134, 5452, 33460, 33441, 33463, 33465, 33463, 33449, 988, 20, 33456, 19, 33456, 771, 39, 4258, 889, 3318, 33441, 33463, 33465, 33463, 33449, 2471, 2, PYTHON_CODE, ] @classmethod def __UpperCamelCase ( cls : int ) -> Tuple: """simple docstring""" SCREAMING_SNAKE_CASE : PLBartTokenizer = PLBartTokenizer.from_pretrained( cls.checkpoint_name , language_codes="base" , src_lang="python" , tgt_lang="en_XX" ) SCREAMING_SNAKE_CASE : Optional[int] = 1 return cls def __UpperCamelCase ( self : Any ) -> Optional[int]: """simple docstring""" self.assertEqual(self.tokenizer.fairseq_tokens_to_ids["__java__"] , 5_0001 ) self.assertEqual(self.tokenizer.fairseq_tokens_to_ids["__python__"] , 5_0002 ) self.assertEqual(self.tokenizer.fairseq_tokens_to_ids["__en_XX__"] , 5_0003 ) def __UpperCamelCase ( self : int ) -> Optional[int]: """simple docstring""" SCREAMING_SNAKE_CASE : str = self.tokenizer.batch_encode_plus(self.src_text ).input_ids[0] self.assertListEqual(self.expected_src_tokens , a ) def __UpperCamelCase ( self : Optional[Any] ) -> Optional[Any]: """simple docstring""" self.assertIn(a , self.tokenizer.all_special_ids ) SCREAMING_SNAKE_CASE : Dict = [EN_CODE, 9037, 3_3442, 57, 752, 153, 14, 56, 18, 9, 2] SCREAMING_SNAKE_CASE : str = self.tokenizer.decode(a , skip_special_tokens=a ) SCREAMING_SNAKE_CASE : List[str] = self.tokenizer.decode(generated_ids[1:] , skip_special_tokens=a ) self.assertEqual(a , a ) self.assertNotIn(self.tokenizer.eos_token , a ) def __UpperCamelCase ( self : Optional[Any] ) -> Union[str, Any]: """simple docstring""" SCREAMING_SNAKE_CASE : Dict = ["def sum(a,b,c):NEW_LINE_INDENTreturn sum([a,b,c])" * 20] self.assertIsInstance(src_text[0] , a ) SCREAMING_SNAKE_CASE : Optional[int] = 10 SCREAMING_SNAKE_CASE : Dict = self.tokenizer(a , max_length=a , truncation=a ).input_ids[0] self.assertEqual(ids[-2] , 2 ) self.assertEqual(ids[-1] , a ) self.assertEqual(len(a ) , a ) def __UpperCamelCase ( self : str ) -> str: """simple docstring""" self.assertListEqual(self.tokenizer.convert_tokens_to_ids(["<mask>", "__java__"] ) , [5_0004, 5_0001] ) def __UpperCamelCase ( self : List[str] ) -> int: """simple docstring""" SCREAMING_SNAKE_CASE : List[Any] = tempfile.mkdtemp() SCREAMING_SNAKE_CASE : Any = self.tokenizer.fairseq_tokens_to_ids self.tokenizer.save_pretrained(a ) SCREAMING_SNAKE_CASE : Dict = PLBartTokenizer.from_pretrained(a ) self.assertDictEqual(new_tok.fairseq_tokens_to_ids , a ) @require_torch def __UpperCamelCase ( self : Tuple ) -> List[Any]: """simple docstring""" SCREAMING_SNAKE_CASE : List[str] = self.tokenizer(self.src_text , text_target=self.tgt_text , padding=a , return_tensors="pt" ) SCREAMING_SNAKE_CASE : Optional[Any] = shift_tokens_right(batch["labels"] , self.tokenizer.pad_token_id ) # fairseq batch: https://gist.github.com/sshleifer/cba08bc2109361a74ac3760a7e30e4f4 self.assertEqual(batch.input_ids[1][-2:].tolist() , [2, PYTHON_CODE] ) self.assertEqual(batch.decoder_input_ids[1][0] , a ) self.assertEqual(batch.decoder_input_ids[1][-1] , 2 ) self.assertEqual(batch.labels[1][-2:].tolist() , [2, EN_CODE] ) @require_torch def __UpperCamelCase ( self : Union[str, Any] ) -> Any: """simple docstring""" SCREAMING_SNAKE_CASE : Any = self.tokenizer( self.src_text , text_target=self.tgt_text , padding=a , truncation=a , max_length=len(self.expected_src_tokens ) , return_tensors="pt" , ) SCREAMING_SNAKE_CASE : Tuple = shift_tokens_right(batch["labels"] , self.tokenizer.pad_token_id ) self.assertIsInstance(a , a ) self.assertEqual((2, 26) , batch.input_ids.shape ) self.assertEqual((2, 26) , batch.attention_mask.shape ) SCREAMING_SNAKE_CASE : Union[str, Any] = batch.input_ids.tolist()[0] self.assertListEqual(self.expected_src_tokens , a ) self.assertEqual(2 , batch.decoder_input_ids[0, -1] ) # EOS # Test that special tokens are reset self.assertEqual(self.tokenizer.prefix_tokens , [] ) self.assertEqual(self.tokenizer.suffix_tokens , [self.tokenizer.eos_token_id, PYTHON_CODE] ) def __UpperCamelCase ( self : Dict ) -> str: """simple docstring""" SCREAMING_SNAKE_CASE : Optional[int] = self.tokenizer(self.src_text , padding=a , truncation=a , max_length=3 , return_tensors="pt" ) SCREAMING_SNAKE_CASE : List[str] = self.tokenizer( text_target=self.tgt_text , padding=a , truncation=a , max_length=10 , return_tensors="pt" ) SCREAMING_SNAKE_CASE : Union[str, Any] = targets["input_ids"] SCREAMING_SNAKE_CASE : Dict = shift_tokens_right(a , self.tokenizer.pad_token_id ) self.assertEqual(batch.input_ids.shape[1] , 3 ) self.assertEqual(batch.decoder_input_ids.shape[1] , 10 ) @require_torch def __UpperCamelCase ( self : Optional[int] ) -> Any: """simple docstring""" SCREAMING_SNAKE_CASE : Dict = self.tokenizer._build_translation_inputs( "A test" , return_tensors="pt" , src_lang="en_XX" , tgt_lang="java" ) self.assertEqual( nested_simplify(a ) , { # A, test, EOS, en_XX "input_ids": [[150, 242, 2, 5_0003]], "attention_mask": [[1, 1, 1, 1]], # java "forced_bos_token_id": 5_0001, } , )
25
import argparse import logging from collections import namedtuple import torch from model_bertabs import BertAbsSummarizer from models.model_builder import AbsSummarizer # The authors' implementation from transformers import BertTokenizer logging.basicConfig(level=logging.INFO) a_ = logging.getLogger(__name__) a_ = 'Hello world! cécé herlolip' a_ = namedtuple( 'BertAbsConfig', [ 'temp_dir', 'large', 'use_bert_emb', 'finetune_bert', 'encoder', 'share_emb', 'max_pos', 'enc_layers', 'enc_hidden_size', 'enc_heads', 'enc_ff_size', 'enc_dropout', 'dec_layers', 'dec_hidden_size', 'dec_heads', 'dec_ff_size', 'dec_dropout', ], ) def lowerCamelCase__ ( _a , _a): SCREAMING_SNAKE_CASE : List[Any] = BertAbsConfig( temp_dir="." , finetune_bert=_a , large=_a , share_emb=_a , use_bert_emb=_a , encoder="bert" , max_pos=512 , enc_layers=6 , enc_hidden_size=512 , enc_heads=8 , enc_ff_size=512 , enc_dropout=0.2 , dec_layers=6 , dec_hidden_size=768 , dec_heads=8 , dec_ff_size=2048 , dec_dropout=0.2 , ) SCREAMING_SNAKE_CASE : Dict = torch.load(_a , lambda _a , _a: storage) SCREAMING_SNAKE_CASE : str = AbsSummarizer(_a , torch.device("cpu") , _a) original.eval() SCREAMING_SNAKE_CASE : List[str] = BertAbsSummarizer(_a , torch.device("cpu")) new_model.eval() # ------------------- # Convert the weights # ------------------- logging.info("convert the model") new_model.bert.load_state_dict(original.bert.state_dict()) new_model.decoder.load_state_dict(original.decoder.state_dict()) new_model.generator.load_state_dict(original.generator.state_dict()) # ---------------------------------- # Make sure the outpus are identical # ---------------------------------- logging.info("Make sure that the models' outputs are identical") SCREAMING_SNAKE_CASE : List[str] = BertTokenizer.from_pretrained("bert-base-uncased") # prepare the model inputs SCREAMING_SNAKE_CASE : List[str] = tokenizer.encode("This is sample éàalj'-.") encoder_input_ids.extend([tokenizer.pad_token_id] * (512 - len(_a))) SCREAMING_SNAKE_CASE : int = torch.tensor(_a).unsqueeze(0) SCREAMING_SNAKE_CASE : List[Any] = tokenizer.encode("This is sample 3 éàalj'-.") decoder_input_ids.extend([tokenizer.pad_token_id] * (512 - len(_a))) SCREAMING_SNAKE_CASE : int = torch.tensor(_a).unsqueeze(0) # failsafe to make sure the weights reset does not affect the # loaded weights. assert torch.max(torch.abs(original.generator[0].weight - new_model.generator[0].weight)) == 0 # forward pass SCREAMING_SNAKE_CASE : List[Any] = encoder_input_ids SCREAMING_SNAKE_CASE : List[Any] = decoder_input_ids SCREAMING_SNAKE_CASE : Dict = None SCREAMING_SNAKE_CASE : Optional[Any] = None SCREAMING_SNAKE_CASE : List[Any] = None SCREAMING_SNAKE_CASE : Optional[int] = None SCREAMING_SNAKE_CASE : Dict = None # The original model does not apply the geneator layer immediatly but rather in # the beam search (where it combines softmax + linear layer). Since we already # apply the softmax in our generation process we only apply the linear layer here. # We make sure that the outputs of the full stack are identical SCREAMING_SNAKE_CASE : Optional[int] = original(_a , _a , _a , _a , _a , _a , _a)[0] SCREAMING_SNAKE_CASE : Dict = original.generator(_a) SCREAMING_SNAKE_CASE : Any = new_model( _a , _a , _a , _a , _a)[0] SCREAMING_SNAKE_CASE : Tuple = new_model.generator(_a) SCREAMING_SNAKE_CASE : List[Any] = torch.max(torch.abs(output_converted_model - output_original_model)).item() print("Maximum absolute difference beween weights: {:.2f}".format(_a)) SCREAMING_SNAKE_CASE : Union[str, Any] = torch.max(torch.abs(output_converted_generator - output_original_generator)).item() print("Maximum absolute difference beween weights: {:.2f}".format(_a)) SCREAMING_SNAKE_CASE : int = torch.allclose(_a , _a , atol=1E-3) if are_identical: logging.info("all weights are equal up to 1e-3") else: raise ValueError("the weights are different. The new model is likely different from the original one.") # The model has been saved with torch.save(model) and this is bound to the exact # directory structure. We save the state_dict instead. logging.info("saving the model's state dictionary") torch.save( new_model.state_dict() , "./bertabs-finetuned-cnndm-extractive-abstractive-summarization/pytorch_model.bin") if __name__ == "__main__": a_ = argparse.ArgumentParser() parser.add_argument( '--bertabs_checkpoint_path', default=None, type=str, required=True, help='Path the official PyTorch dump.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, required=True, help='Path to the output PyTorch model.', ) a_ = parser.parse_args() convert_bertabs_checkpoints( args.bertabs_checkpoint_path, args.pytorch_dump_folder_path, )
25
1
from __future__ import annotations import inspect import unittest from typing import List, Tuple from transformers import RegNetConfig from transformers.testing_utils import require_tf, require_vision, slow from transformers.utils import cached_property, is_tf_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TF_REGNET_PRETRAINED_MODEL_ARCHIVE_LIST, TFRegNetForImageClassification, TFRegNetModel if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class _UpperCamelCase : '''simple docstring''' def __init__( self : Optional[Any] , a : Optional[Any] , a : Dict=3 , a : Optional[int]=32 , a : Any=3 , a : Optional[Any]=10 , a : List[str]=[10, 20, 30, 40] , a : Dict=[1, 1, 2, 1] , a : Dict=True , a : int=True , a : List[Any]="relu" , a : List[str]=3 , a : List[Any]=None , ) -> Dict: """simple docstring""" SCREAMING_SNAKE_CASE : int = parent SCREAMING_SNAKE_CASE : int = batch_size SCREAMING_SNAKE_CASE : Optional[Any] = image_size SCREAMING_SNAKE_CASE : Optional[int] = num_channels SCREAMING_SNAKE_CASE : str = embeddings_size SCREAMING_SNAKE_CASE : Optional[Any] = hidden_sizes SCREAMING_SNAKE_CASE : Optional[Any] = depths SCREAMING_SNAKE_CASE : int = is_training SCREAMING_SNAKE_CASE : Dict = use_labels SCREAMING_SNAKE_CASE : Any = hidden_act SCREAMING_SNAKE_CASE : str = num_labels SCREAMING_SNAKE_CASE : int = scope SCREAMING_SNAKE_CASE : str = len(a ) def __UpperCamelCase ( self : int ) -> Union[str, Any]: """simple docstring""" SCREAMING_SNAKE_CASE : str = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) SCREAMING_SNAKE_CASE : Dict = None if self.use_labels: SCREAMING_SNAKE_CASE : int = ids_tensor([self.batch_size] , self.num_labels ) SCREAMING_SNAKE_CASE : str = self.get_config() return config, pixel_values, labels def __UpperCamelCase ( self : Union[str, Any] ) -> str: """simple docstring""" return RegNetConfig( num_channels=self.num_channels , embeddings_size=self.embeddings_size , hidden_sizes=self.hidden_sizes , depths=self.depths , hidden_act=self.hidden_act , num_labels=self.num_labels , ) def __UpperCamelCase ( self : Optional[int] , a : Optional[int] , a : Optional[int] , a : Tuple ) -> Union[str, Any]: """simple docstring""" SCREAMING_SNAKE_CASE : Union[str, Any] = TFRegNetModel(config=a ) SCREAMING_SNAKE_CASE : int = model(a , training=a ) # expected last hidden states: B, C, H // 32, W // 32 self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], self.image_size // 32, self.image_size // 32) , ) def __UpperCamelCase ( self : Dict , a : Any , a : List[str] , a : Optional[Any] ) -> List[str]: """simple docstring""" SCREAMING_SNAKE_CASE : Union[str, Any] = self.num_labels SCREAMING_SNAKE_CASE : Tuple = TFRegNetForImageClassification(a ) SCREAMING_SNAKE_CASE : Union[str, Any] = model(a , labels=a , training=a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def __UpperCamelCase ( self : str ) -> Union[str, Any]: """simple docstring""" SCREAMING_SNAKE_CASE : Any = self.prepare_config_and_inputs() SCREAMING_SNAKE_CASE ,SCREAMING_SNAKE_CASE ,SCREAMING_SNAKE_CASE : Tuple = config_and_inputs SCREAMING_SNAKE_CASE : Dict = {"pixel_values": pixel_values} return config, inputs_dict @require_tf class _UpperCamelCase ( __A , __A , unittest.TestCase ): '''simple docstring''' lowerCamelCase__ =(TFRegNetModel, TFRegNetForImageClassification) if is_tf_available() else () lowerCamelCase__ =( {'feature-extraction': TFRegNetModel, 'image-classification': TFRegNetForImageClassification} if is_tf_available() else {} ) lowerCamelCase__ =False lowerCamelCase__ =False lowerCamelCase__ =False lowerCamelCase__ =False lowerCamelCase__ =False def __UpperCamelCase ( self : int ) -> int: """simple docstring""" SCREAMING_SNAKE_CASE : Optional[int] = TFRegNetModelTester(self ) SCREAMING_SNAKE_CASE : List[str] = ConfigTester(self , config_class=a , has_text_modality=a ) def __UpperCamelCase ( self : Tuple ) -> List[str]: """simple docstring""" return @unittest.skip(reason="RegNet does not use inputs_embeds" ) def __UpperCamelCase ( self : str ) -> int: """simple docstring""" pass @unittest.skipIf( not is_tf_available() or len(tf.config.list_physical_devices("GPU" ) ) == 0 , reason="TF does not support backprop for grouped convolutions on CPU." , ) @slow def __UpperCamelCase ( self : Dict ) -> List[str]: """simple docstring""" super().test_keras_fit() @unittest.skip(reason="RegNet does not support input and output embeddings" ) def __UpperCamelCase ( self : Optional[Any] ) -> Optional[Any]: """simple docstring""" pass def __UpperCamelCase ( self : List[Any] ) -> Optional[int]: """simple docstring""" SCREAMING_SNAKE_CASE ,SCREAMING_SNAKE_CASE : Dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: SCREAMING_SNAKE_CASE : Optional[Any] = model_class(a ) SCREAMING_SNAKE_CASE : Optional[int] = inspect.signature(model.call ) # signature.parameters is an OrderedDict => so arg_names order is deterministic SCREAMING_SNAKE_CASE : Any = [*signature.parameters.keys()] SCREAMING_SNAKE_CASE : Union[str, Any] = ["pixel_values"] self.assertListEqual(arg_names[:1] , a ) def __UpperCamelCase ( self : List[str] ) -> Union[str, Any]: """simple docstring""" SCREAMING_SNAKE_CASE : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*a ) def __UpperCamelCase ( self : Union[str, Any] ) -> Union[str, Any]: """simple docstring""" def check_hidden_states_output(a : Dict , a : Optional[int] , a : Any ): SCREAMING_SNAKE_CASE : str = model_class(a ) SCREAMING_SNAKE_CASE : str = model(**self._prepare_for_class(a , a ) , training=a ) SCREAMING_SNAKE_CASE : Optional[Any] = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states SCREAMING_SNAKE_CASE : List[str] = self.model_tester.num_stages self.assertEqual(len(a ) , expected_num_stages + 1 ) # RegNet's feature maps are of shape (batch_size, num_channels, height, width) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [self.model_tester.image_size // 2, self.model_tester.image_size // 2] , ) SCREAMING_SNAKE_CASE ,SCREAMING_SNAKE_CASE : List[str] = self.model_tester.prepare_config_and_inputs_for_common() SCREAMING_SNAKE_CASE : int = ["basic", "bottleneck"] for model_class in self.all_model_classes: for layer_type in layers_type: SCREAMING_SNAKE_CASE : int = layer_type SCREAMING_SNAKE_CASE : Optional[Any] = True check_hidden_states_output(a , a , a ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] SCREAMING_SNAKE_CASE : List[Any] = True check_hidden_states_output(a , a , a ) def __UpperCamelCase ( self : str ) -> str: """simple docstring""" SCREAMING_SNAKE_CASE ,SCREAMING_SNAKE_CASE : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() def check_equivalence(a : int , a : Union[str, Any] , a : int , a : Dict={} ): SCREAMING_SNAKE_CASE : Optional[Any] = model(a , return_dict=a , **a ) SCREAMING_SNAKE_CASE : Any = model(a , return_dict=a , **a ).to_tuple() def recursive_check(a : Optional[Any] , a : Tuple ): if isinstance(a , (List, Tuple) ): for tuple_iterable_value, dict_iterable_value in zip(a , a ): recursive_check(a , a ) elif tuple_object is None: return else: self.assertTrue( all(tf.equal(a , a ) ) , msg=( "Tuple and dict output are not equal. Difference:" F" {tf.math.reduce_max(tf.abs(tuple_object - dict_object ) )}" ) , ) recursive_check(a , a ) for model_class in self.all_model_classes: SCREAMING_SNAKE_CASE : int = model_class(a ) SCREAMING_SNAKE_CASE : List[str] = self._prepare_for_class(a , a ) SCREAMING_SNAKE_CASE : int = self._prepare_for_class(a , a ) check_equivalence(a , a , a ) SCREAMING_SNAKE_CASE : Dict = self._prepare_for_class(a , a , return_labels=a ) SCREAMING_SNAKE_CASE : List[Any] = self._prepare_for_class(a , a , return_labels=a ) check_equivalence(a , a , a ) SCREAMING_SNAKE_CASE : str = self._prepare_for_class(a , a ) SCREAMING_SNAKE_CASE : List[str] = self._prepare_for_class(a , a ) check_equivalence(a , a , a , {"output_hidden_states": True} ) SCREAMING_SNAKE_CASE : int = self._prepare_for_class(a , a , return_labels=a ) SCREAMING_SNAKE_CASE : Dict = self._prepare_for_class(a , a , return_labels=a ) check_equivalence(a , a , a , {"output_hidden_states": True} ) def __UpperCamelCase ( self : int ) -> Optional[Any]: """simple docstring""" SCREAMING_SNAKE_CASE : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*a ) @slow def __UpperCamelCase ( self : List[Any] ) -> str: """simple docstring""" for model_name in TF_REGNET_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: SCREAMING_SNAKE_CASE : str = TFRegNetModel.from_pretrained(a ) self.assertIsNotNone(a ) def lowerCamelCase__ ( ): SCREAMING_SNAKE_CASE : List[str] = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png") return image @require_tf @require_vision class _UpperCamelCase ( unittest.TestCase ): '''simple docstring''' @cached_property def __UpperCamelCase ( self : Optional[Any] ) -> List[Any]: """simple docstring""" return ( AutoImageProcessor.from_pretrained(TF_REGNET_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) if is_vision_available() else None ) @slow def __UpperCamelCase ( self : Tuple ) -> Optional[Any]: """simple docstring""" SCREAMING_SNAKE_CASE : Optional[int] = TFRegNetForImageClassification.from_pretrained(TF_REGNET_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) SCREAMING_SNAKE_CASE : List[str] = self.default_image_processor SCREAMING_SNAKE_CASE : List[str] = prepare_img() SCREAMING_SNAKE_CASE : Any = image_processor(images=a , return_tensors="tf" ) # forward pass SCREAMING_SNAKE_CASE : Tuple = model(**a , training=a ) # verify the logits SCREAMING_SNAKE_CASE : int = tf.TensorShape((1, 1000) ) self.assertEqual(outputs.logits.shape , a ) SCREAMING_SNAKE_CASE : Optional[Any] = tf.constant([-0.4180, -1.5051, -3.4836] ) tf.debugging.assert_near(outputs.logits[0, :3] , a , atol=1e-4 )
25
import argparse from transformers import CLIPImageProcessor, CLIPVisionModelWithProjection from diffusers import UnCLIPImageVariationPipeline, UnCLIPPipeline if __name__ == "__main__": a_ = argparse.ArgumentParser() parser.add_argument('--dump_path', default=None, type=str, required=True, help='Path to the output model.') parser.add_argument( '--txt2img_unclip', default='kakaobrain/karlo-v1-alpha', type=str, required=False, help='The pretrained txt2img unclip.', ) a_ = parser.parse_args() a_ = UnCLIPPipeline.from_pretrained(args.txtaimg_unclip) a_ = CLIPImageProcessor() a_ = CLIPVisionModelWithProjection.from_pretrained('openai/clip-vit-large-patch14') a_ = UnCLIPImageVariationPipeline( decoder=txtaimg.decoder, text_encoder=txtaimg.text_encoder, tokenizer=txtaimg.tokenizer, text_proj=txtaimg.text_proj, feature_extractor=feature_extractor, image_encoder=image_encoder, super_res_first=txtaimg.super_res_first, super_res_last=txtaimg.super_res_last, decoder_scheduler=txtaimg.decoder_scheduler, super_res_scheduler=txtaimg.super_res_scheduler, ) imgaimg.save_pretrained(args.dump_path)
25
1
def lowerCamelCase__ ( _a): return [ { 0: [1, 2], 1: [0, 2], 2: [0, 1, 3, 5], 3: [2, 4], 4: [3], 5: [2, 6, 8], 6: [5, 7], 7: [6, 8], 8: [5, 7], }, { 0: [6], 1: [9], 2: [4, 5], 3: [4], 4: [2, 3], 5: [2], 6: [0, 7], 7: [6], 8: [], 9: [1], }, { 0: [4], 1: [6], 2: [], 3: [5, 6, 7], 4: [0, 6], 5: [3, 8, 9], 6: [1, 3, 4, 7], 7: [3, 6, 8, 9], 8: [5, 7], 9: [5, 7], }, { 0: [1, 3], 1: [0, 2, 4], 2: [1, 3, 4], 3: [0, 2, 4], 4: [1, 2, 3], }, ][index] def lowerCamelCase__ ( _a): SCREAMING_SNAKE_CASE : List[Any] = 0 SCREAMING_SNAKE_CASE : Union[str, Any] = len(_a) # No of vertices in graph SCREAMING_SNAKE_CASE : str = [0] * n SCREAMING_SNAKE_CASE : str = [False] * n def dfs(_a , _a , _a , _a): SCREAMING_SNAKE_CASE : Union[str, Any] = True SCREAMING_SNAKE_CASE : str = id_ id_ += 1 for to in graph[at]: if to == parent: pass elif not visited[to]: dfs(_a , _a , _a , id_) SCREAMING_SNAKE_CASE : List[Any] = min(low[at] , low[to]) if id_ <= low[to]: bridges.append((at, to) if at < to else (to, at)) else: # This edge is a back edge and cannot be a bridge SCREAMING_SNAKE_CASE : Tuple = min(low[at] , low[to]) SCREAMING_SNAKE_CASE : list[tuple[int, int]] = [] for i in range(_a): if not visited[i]: dfs(_a , -1 , _a , id_) return bridges if __name__ == "__main__": import doctest doctest.testmod()
25
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available a_ = { 'configuration_swinv2': ['SWINV2_PRETRAINED_CONFIG_ARCHIVE_MAP', 'Swinv2Config'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a_ = [ 'SWINV2_PRETRAINED_MODEL_ARCHIVE_LIST', 'Swinv2ForImageClassification', 'Swinv2ForMaskedImageModeling', 'Swinv2Model', 'Swinv2PreTrainedModel', ] if TYPE_CHECKING: from .configuration_swinva import SWINV2_PRETRAINED_CONFIG_ARCHIVE_MAP, SwinvaConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_swinva import ( SWINV2_PRETRAINED_MODEL_ARCHIVE_LIST, SwinvaForImageClassification, SwinvaForMaskedImageModeling, SwinvaModel, SwinvaPreTrainedModel, ) else: import sys a_ = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
25
1
from __future__ import annotations import os import tempfile import unittest import numpy as np from huggingface_hub import hf_hub_download from transformers import is_tensorflow_text_available, is_tf_available from transformers.testing_utils import require_tensorflow_text, require_tf, slow from ..test_modeling_tf_common import floats_tensor from .test_framework_agnostic import GenerationIntegrationTestsMixin if is_tf_available(): import tensorflow as tf from transformers import ( AutoTokenizer, TFAutoModelForCausalLM, TFAutoModelForSeqaSeqLM, TFAutoModelForSpeechSeqaSeq, TFAutoModelForVisionaSeq, TFBartForConditionalGeneration, TFLogitsProcessorList, TFMinLengthLogitsProcessor, tf_top_k_top_p_filtering, ) if is_tensorflow_text_available(): import tensorflow_text as text @require_tf class _UpperCamelCase ( unittest.TestCase ): '''simple docstring''' def __UpperCamelCase ( self : Dict ) -> Optional[Any]: """simple docstring""" SCREAMING_SNAKE_CASE : List[str] = tf.convert_to_tensor( [ [ 8.222_0991, # 3rd highest value; idx. 0 -0.562_0044, 5.2322_9752, 4.038_6393, -6.879_8378, -0.5478_5802, -3.201_2153, 2.9277_7176, 1.8817_1953, 7.3534_1276, # 5th highest value; idx. 9 8.4320_7833, # 2nd highest value; idx. 10 -9.8571_1836, -5.9620_9236, -1.1303_9161, -7.111_5294, -0.836_9633, -5.318_6408, 7.0642_7407, 0.8136_9344, -0.8202_3817, -5.917_9796, 0.5881_3443, -6.9977_8438, 4.7155_1189, -0.1877_1637, 7.4402_0759, # 4th highest value; idx. 25 9.3845_0987, # 1st highest value; idx. 26 2.1266_2941, -9.3256_2038, 2.3565_2522, ], # cummulative prob of 5 highest values <= 0.6 [ 0.5842_5518, 4.5313_9238, -5.5751_0464, -6.2803_0699, -7.1952_9503, -4.0212_2551, 1.3933_7037, -6.0670_7057, 1.5948_0517, -9.64_3119, 0.0390_7799, 0.6723_1762, -8.8820_6726, 6.2711_5922, # 4th highest value; idx. 13 2.2852_0723, 4.8276_7506, 4.3042_1368, 8.827_5313, # 2nd highest value; idx. 17 5.4402_9958, # 5th highest value; idx. 18 -4.473_5794, 7.3857_9536, # 3rd highest value; idx. 20 -2.9105_1663, 2.6194_6077, -2.567_4762, -9.4895_9302, -4.0292_2645, -1.3541_6918, 9.6770_2323, # 1st highest value; idx. 27 -5.8947_8553, 1.8537_0467, ], # cummulative prob of 5 highest values <= 0.6 ] , dtype=tf.floataa , ) SCREAMING_SNAKE_CASE : Optional[int] = tf.convert_to_tensor( [[0, 0], [0, 9], [0, 10], [0, 25], [0, 26], [1, 13], [1, 17], [1, 18], [1, 20], [1, 27]] , dtype=tf.intaa , ) # expected non filtered idx as noted above SCREAMING_SNAKE_CASE : List[Any] = tf.convert_to_tensor( [8.22_2099, 7.353_4126, 8.43_2078, 7.440_2075, 9.3_8451, 6.27_1159, 8.82_7531, 5.440_2995, 7.385_7956, 9.67_7023] , dtype=tf.floataa , ) # expected non filtered values as noted above SCREAMING_SNAKE_CASE : Union[str, Any] = tf_top_k_top_p_filtering(a , top_k=10 , top_p=0.6 , min_tokens_to_keep=4 ) SCREAMING_SNAKE_CASE : List[Any] = output[output != -float("inf" )] SCREAMING_SNAKE_CASE : Tuple = tf.cast( tf.where(tf.not_equal(a , tf.constant(-float("inf" ) , dtype=tf.floataa ) ) ) , dtype=tf.intaa , ) tf.debugging.assert_near(a , a , rtol=1e-12 ) tf.debugging.assert_equal(a , a ) @require_tf class _UpperCamelCase ( unittest.TestCase , __A ): '''simple docstring''' if is_tf_available(): lowerCamelCase__ ={ 'AutoModelForCausalLM': TFAutoModelForCausalLM, 'AutoModelForSpeechSeq2Seq': TFAutoModelForSpeechSeqaSeq, 'AutoModelForSeq2SeqLM': TFAutoModelForSeqaSeqLM, 'AutoModelForVision2Seq': TFAutoModelForVisionaSeq, 'LogitsProcessorList': TFLogitsProcessorList, 'MinLengthLogitsProcessor': TFMinLengthLogitsProcessor, 'create_tensor_fn': tf.convert_to_tensor, 'floats_tensor': floats_tensor, 'return_tensors': 'tf', } @slow def __UpperCamelCase ( self : Optional[int] ) -> Dict: """simple docstring""" SCREAMING_SNAKE_CASE : Tuple = TFAutoModelForCausalLM.from_pretrained("hf-internal-testing/tiny-random-gpt2" ) SCREAMING_SNAKE_CASE : str = 2 SCREAMING_SNAKE_CASE : List[str] = 2 class _UpperCamelCase ( tf.Module ): '''simple docstring''' def __init__( self : List[str] , a : Optional[int] ) -> str: """simple docstring""" super(a , self ).__init__() SCREAMING_SNAKE_CASE : Dict = model @tf.function( input_signature=( tf.TensorSpec((None, input_length) , tf.intaa , name="input_ids" ), tf.TensorSpec((None, input_length) , tf.intaa , name="attention_mask" ), ) , jit_compile=a , ) def __UpperCamelCase ( self : Union[str, Any] , a : List[str] , a : Any ) -> Tuple: """simple docstring""" SCREAMING_SNAKE_CASE : List[Any] = self.model.generate( input_ids=a , attention_mask=a , max_new_tokens=a , return_dict_in_generate=a , ) return {"sequences": outputs["sequences"]} SCREAMING_SNAKE_CASE : Dict = [[2, 0], [102, 103]] SCREAMING_SNAKE_CASE : Optional[int] = [[1, 0], [1, 1]] SCREAMING_SNAKE_CASE : Any = DummyModel(model=a ) with tempfile.TemporaryDirectory() as tmp_dir: tf.saved_model.save(a , a , signatures={"serving_default": dummy_model.serving} ) SCREAMING_SNAKE_CASE : Tuple = tf.saved_model.load(a ).signatures["serving_default"] for batch_size in range(1 , len(a ) + 1 ): SCREAMING_SNAKE_CASE : Optional[int] = { "input_ids": tf.constant(dummy_input_ids[:batch_size] ), "attention_mask": tf.constant(dummy_attention_masks[:batch_size] ), } SCREAMING_SNAKE_CASE : Dict = serving_func(**a )["sequences"] SCREAMING_SNAKE_CASE : Union[str, Any] = test_model.generate(**a , max_new_tokens=a ) tf.debugging.assert_equal(a , a ) @slow def __UpperCamelCase ( self : Any ) -> List[str]: """simple docstring""" SCREAMING_SNAKE_CASE : List[Any] = TFAutoModelForCausalLM.from_pretrained("hf-internal-testing/tiny-random-gpt2" ) SCREAMING_SNAKE_CASE : int = 1 SCREAMING_SNAKE_CASE : Union[str, Any] = 2 class _UpperCamelCase ( tf.Module ): '''simple docstring''' def __init__( self : List[str] , a : List[Any] ) -> Optional[int]: """simple docstring""" super(a , self ).__init__() SCREAMING_SNAKE_CASE : List[Any] = model @tf.function( input_signature=( tf.TensorSpec((batch_size, None) , tf.intaa , name="input_ids" ), tf.TensorSpec((batch_size, None) , tf.intaa , name="attention_mask" ), ) , jit_compile=a , ) def __UpperCamelCase ( self : str , a : List[str] , a : str ) -> Any: """simple docstring""" SCREAMING_SNAKE_CASE : Any = self.model.generate( input_ids=a , attention_mask=a , max_new_tokens=a , return_dict_in_generate=a , ) return {"sequences": outputs["sequences"]} SCREAMING_SNAKE_CASE : str = [[2], [102, 103]] SCREAMING_SNAKE_CASE : str = [[1], [1, 1]] SCREAMING_SNAKE_CASE : Optional[Any] = DummyModel(model=a ) with tempfile.TemporaryDirectory() as tmp_dir: tf.saved_model.save(a , a , signatures={"serving_default": dummy_model.serving} ) SCREAMING_SNAKE_CASE : List[Any] = tf.saved_model.load(a ).signatures["serving_default"] for input_row in range(len(a ) ): SCREAMING_SNAKE_CASE : List[str] = { "input_ids": tf.constant([dummy_input_ids[input_row]] ), "attention_mask": tf.constant([dummy_attention_masks[input_row]] ), } SCREAMING_SNAKE_CASE : Union[str, Any] = serving_func(**a )["sequences"] SCREAMING_SNAKE_CASE : str = test_model.generate(**a , max_new_tokens=a ) tf.debugging.assert_equal(a , a ) @slow @require_tensorflow_text def __UpperCamelCase ( self : Tuple ) -> str: """simple docstring""" with tempfile.TemporaryDirectory() as tmp_dir: # file needed to load the TF tokenizer hf_hub_download(repo_id="google/flan-t5-small" , filename="spiece.model" , local_dir=a ) class _UpperCamelCase ( tf.keras.layers.Layer ): '''simple docstring''' def __init__( self : Tuple ) -> Optional[Any]: """simple docstring""" super().__init__() SCREAMING_SNAKE_CASE : List[str] = text.SentencepieceTokenizer( model=tf.io.gfile.GFile(os.path.join(a , "spiece.model" ) , "rb" ).read() ) SCREAMING_SNAKE_CASE : str = TFAutoModelForSeqaSeqLM.from_pretrained("hf-internal-testing/tiny-random-t5" ) def __UpperCamelCase ( self : Union[str, Any] , a : Optional[Any] , *a : Union[str, Any] , **a : int ) -> List[str]: """simple docstring""" SCREAMING_SNAKE_CASE : List[Any] = self.tokenizer.tokenize(a ) SCREAMING_SNAKE_CASE ,SCREAMING_SNAKE_CASE : Optional[int] = text.pad_model_inputs( a , max_seq_length=64 , pad_value=self.model.config.pad_token_id ) SCREAMING_SNAKE_CASE : str = self.model.generate(input_ids=a , attention_mask=a ) return self.tokenizer.detokenize(a ) SCREAMING_SNAKE_CASE : Union[str, Any] = CompleteSentenceTransformer() SCREAMING_SNAKE_CASE : Optional[Any] = tf.keras.layers.Input(shape=(1,) , dtype=tf.string , name="inputs" ) SCREAMING_SNAKE_CASE : Dict = complete_model(a ) SCREAMING_SNAKE_CASE : Union[str, Any] = tf.keras.Model(a , a ) keras_model.save(a ) def __UpperCamelCase ( self : int ) -> Dict: """simple docstring""" SCREAMING_SNAKE_CASE : List[str] = { "do_sample": True, "num_beams": 1, "top_p": 0.7, "top_k": 10, "temperature": 0.7, } SCREAMING_SNAKE_CASE : Dict = 14 SCREAMING_SNAKE_CASE : int = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-gpt2" ) SCREAMING_SNAKE_CASE : int = "Hello, my dog is cute and" SCREAMING_SNAKE_CASE : Optional[Any] = tokenizer(a , return_tensors="tf" ) SCREAMING_SNAKE_CASE : str = TFAutoModelForCausalLM.from_pretrained("hf-internal-testing/tiny-random-gpt2" ) SCREAMING_SNAKE_CASE : Dict = 638 # forces the generation to happen on CPU, to avoid GPU-related quirks with tf.device(":/CPU:0" ): tf.random.set_seed(0 ) SCREAMING_SNAKE_CASE : Union[str, Any] = model.generate(**a , eos_token_id=a , **a ) self.assertTrue(expectation == len(generated_tokens[0] ) ) SCREAMING_SNAKE_CASE : Union[str, Any] = [638, 198] with tf.device(":/CPU:0" ): tf.random.set_seed(0 ) SCREAMING_SNAKE_CASE : Optional[Any] = model.generate(**a , eos_token_id=a , **a ) self.assertTrue(expectation == len(generated_tokens[0] ) ) def __UpperCamelCase ( self : Tuple ) -> str: """simple docstring""" SCREAMING_SNAKE_CASE : Tuple = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-bart" ) SCREAMING_SNAKE_CASE : Optional[int] = "Hugging Face is a technology company based in New York and Paris." SCREAMING_SNAKE_CASE : List[Any] = bart_tokenizer(a , return_tensors="tf" ).input_ids SCREAMING_SNAKE_CASE : Dict = TFBartForConditionalGeneration.from_pretrained("hf-internal-testing/tiny-random-bart" ) SCREAMING_SNAKE_CASE : Dict = bart_model.generate(a ).numpy() class _UpperCamelCase ( __A ): '''simple docstring''' def __UpperCamelCase ( self : Optional[int] , a : int , a : List[str]=None , **a : List[str] ) -> Optional[int]: """simple docstring""" return super().call(a , **a ) SCREAMING_SNAKE_CASE : Optional[int] = FakeBart.from_pretrained("hf-internal-testing/tiny-random-bart" ) SCREAMING_SNAKE_CASE : Union[str, Any] = bart_model.generate(a , foo="bar" ).numpy() self.assertTrue(np.array_equal(a , a ) ) class _UpperCamelCase ( bart_model.model.encoder.__class__ ): '''simple docstring''' def __UpperCamelCase ( self : Tuple , a : Any , **a : List[Any] ) -> Optional[Any]: """simple docstring""" return super().call(a , **a ) SCREAMING_SNAKE_CASE : int = FakeEncoder(bart_model.config , bart_model.model.shared ) SCREAMING_SNAKE_CASE : List[str] = fake_encoder # Normal generation still works (the output will be different because the encoder weights are different) SCREAMING_SNAKE_CASE : Union[str, Any] = bart_model.generate(a ).numpy() with self.assertRaises(a ): # FakeEncoder.call() accepts **kwargs -> no filtering -> value error due to unexpected input "foo" bart_model.generate(a , foo="bar" )
25
from math import pi, sqrt, tan def lowerCamelCase__ ( _a): if side_length < 0: raise ValueError("surface_area_cube() only accepts non-negative values") return 6 * side_length**2 def lowerCamelCase__ ( _a , _a , _a): if length < 0 or breadth < 0 or height < 0: raise ValueError("surface_area_cuboid() only accepts non-negative values") return 2 * ((length * breadth) + (breadth * height) + (length * height)) def lowerCamelCase__ ( _a): if radius < 0: raise ValueError("surface_area_sphere() only accepts non-negative values") return 4 * pi * radius**2 def lowerCamelCase__ ( _a): if radius < 0: raise ValueError("surface_area_hemisphere() only accepts non-negative values") return 3 * pi * radius**2 def lowerCamelCase__ ( _a , _a): if radius < 0 or height < 0: raise ValueError("surface_area_cone() only accepts non-negative values") return pi * radius * (radius + (height**2 + radius**2) ** 0.5) def lowerCamelCase__ ( _a , _a , _a): if radius_a < 0 or radius_a < 0 or height < 0: raise ValueError( "surface_area_conical_frustum() only accepts non-negative values") SCREAMING_SNAKE_CASE : Any = (height**2 + (radius_a - radius_a) ** 2) ** 0.5 return pi * ((slant_height * (radius_a + radius_a)) + radius_a**2 + radius_a**2) def lowerCamelCase__ ( _a , _a): if radius < 0 or height < 0: raise ValueError("surface_area_cylinder() only accepts non-negative values") return 2 * pi * radius * (height + radius) def lowerCamelCase__ ( _a , _a): if torus_radius < 0 or tube_radius < 0: raise ValueError("surface_area_torus() only accepts non-negative values") if torus_radius < tube_radius: raise ValueError( "surface_area_torus() does not support spindle or self intersecting tori") return 4 * pow(_a , 2) * torus_radius * tube_radius def lowerCamelCase__ ( _a , _a): if length < 0 or width < 0: raise ValueError("area_rectangle() only accepts non-negative values") return length * width def lowerCamelCase__ ( _a): if side_length < 0: raise ValueError("area_square() only accepts non-negative values") return side_length**2 def lowerCamelCase__ ( _a , _a): if base < 0 or height < 0: raise ValueError("area_triangle() only accepts non-negative values") return (base * height) / 2 def lowerCamelCase__ ( _a , _a , _a): if sidea < 0 or sidea < 0 or sidea < 0: raise ValueError("area_triangle_three_sides() only accepts non-negative values") elif sidea + sidea < sidea or sidea + sidea < sidea or sidea + sidea < sidea: raise ValueError("Given three sides do not form a triangle") SCREAMING_SNAKE_CASE : List[str] = (sidea + sidea + sidea) / 2 SCREAMING_SNAKE_CASE : Optional[int] = sqrt( semi_perimeter * (semi_perimeter - sidea) * (semi_perimeter - sidea) * (semi_perimeter - sidea)) return area def lowerCamelCase__ ( _a , _a): if base < 0 or height < 0: raise ValueError("area_parallelogram() only accepts non-negative values") return base * height def lowerCamelCase__ ( _a , _a , _a): if basea < 0 or basea < 0 or height < 0: raise ValueError("area_trapezium() only accepts non-negative values") return 1 / 2 * (basea + basea) * height def lowerCamelCase__ ( _a): if radius < 0: raise ValueError("area_circle() only accepts non-negative values") return pi * radius**2 def lowerCamelCase__ ( _a , _a): if radius_x < 0 or radius_y < 0: raise ValueError("area_ellipse() only accepts non-negative values") return pi * radius_x * radius_y def lowerCamelCase__ ( _a , _a): if diagonal_a < 0 or diagonal_a < 0: raise ValueError("area_rhombus() only accepts non-negative values") return 1 / 2 * diagonal_a * diagonal_a def lowerCamelCase__ ( _a , _a): if not isinstance(_a , _a) or sides < 3: raise ValueError( "area_reg_polygon() only accepts integers greater than or \ equal to three as number of sides") elif length < 0: raise ValueError( "area_reg_polygon() only accepts non-negative values as \ length of a side") return (sides * length**2) / (4 * tan(pi / sides)) return (sides * length**2) / (4 * tan(pi / sides)) if __name__ == "__main__": import doctest doctest.testmod(verbose=True) # verbose so we can see methods missing tests print('[DEMO] Areas of various geometric shapes: \n') print(F'''Rectangle: {area_rectangle(10, 20) = }''') print(F'''Square: {area_square(10) = }''') print(F'''Triangle: {area_triangle(10, 10) = }''') print(F'''Triangle: {area_triangle_three_sides(5, 12, 13) = }''') print(F'''Parallelogram: {area_parallelogram(10, 20) = }''') print(F'''Rhombus: {area_rhombus(10, 20) = }''') print(F'''Trapezium: {area_trapezium(10, 20, 30) = }''') print(F'''Circle: {area_circle(20) = }''') print(F'''Ellipse: {area_ellipse(10, 20) = }''') print('\nSurface Areas of various geometric shapes: \n') print(F'''Cube: {surface_area_cube(20) = }''') print(F'''Cuboid: {surface_area_cuboid(10, 20, 30) = }''') print(F'''Sphere: {surface_area_sphere(20) = }''') print(F'''Hemisphere: {surface_area_hemisphere(20) = }''') print(F'''Cone: {surface_area_cone(10, 20) = }''') print(F'''Conical Frustum: {surface_area_conical_frustum(10, 20, 30) = }''') print(F'''Cylinder: {surface_area_cylinder(10, 20) = }''') print(F'''Torus: {surface_area_torus(20, 10) = }''') print(F'''Equilateral Triangle: {area_reg_polygon(3, 10) = }''') print(F'''Square: {area_reg_polygon(4, 10) = }''') print(F'''Reqular Pentagon: {area_reg_polygon(5, 10) = }''')
25
1
from __future__ import annotations import math import random from collections.abc import Collection from typing import overload class _UpperCamelCase : '''simple docstring''' def __init__( self : int , a : Collection[float] | None = None ) -> None: """simple docstring""" if components is None: SCREAMING_SNAKE_CASE : str = [] SCREAMING_SNAKE_CASE : Tuple = list(a ) def __len__( self : Optional[int] ) -> int: """simple docstring""" return len(self.__components ) def __str__( self : str ) -> str: """simple docstring""" return "(" + ",".join(map(a , self.__components ) ) + ")" def __add__( self : Union[str, Any] , a : Vector ) -> Vector: """simple docstring""" SCREAMING_SNAKE_CASE : Any = len(self ) if size == len(a ): SCREAMING_SNAKE_CASE : int = [self.__components[i] + other.component(a ) for i in range(a )] return Vector(a ) else: raise Exception("must have the same size" ) def __sub__( self : List[str] , a : Vector ) -> Vector: """simple docstring""" SCREAMING_SNAKE_CASE : Optional[Any] = len(self ) if size == len(a ): SCREAMING_SNAKE_CASE : str = [self.__components[i] - other.component(a ) for i in range(a )] return Vector(a ) else: # error case raise Exception("must have the same size" ) @overload def __mul__( self : List[str] , a : float ) -> Vector: """simple docstring""" ... @overload def __mul__( self : List[Any] , a : Vector ) -> float: """simple docstring""" ... def __mul__( self : Optional[int] , a : float | Vector ) -> float | Vector: """simple docstring""" if isinstance(a , (float, int) ): SCREAMING_SNAKE_CASE : Union[str, Any] = [c * other for c in self.__components] return Vector(a ) elif isinstance(a , a ) and len(self ) == len(a ): SCREAMING_SNAKE_CASE : List[Any] = len(self ) SCREAMING_SNAKE_CASE : str = [self.__components[i] * other.component(a ) for i in range(a )] return sum(a ) else: # error case raise Exception("invalid operand!" ) def __UpperCamelCase ( self : Tuple ) -> Vector: """simple docstring""" return Vector(self.__components ) def __UpperCamelCase ( self : Union[str, Any] , a : int ) -> float: """simple docstring""" if isinstance(a , a ) and -len(self.__components ) <= i < len(self.__components ): return self.__components[i] else: raise Exception("index out of range" ) def __UpperCamelCase ( self : str , a : int , a : float ) -> None: """simple docstring""" assert -len(self.__components ) <= pos < len(self.__components ) SCREAMING_SNAKE_CASE : Union[str, Any] = value def __UpperCamelCase ( self : str ) -> float: """simple docstring""" if len(self.__components ) == 0: raise Exception("Vector is empty" ) SCREAMING_SNAKE_CASE : Optional[int] = [c**2 for c in self.__components] return math.sqrt(sum(a ) ) def __UpperCamelCase ( self : int , a : Vector , a : bool = False ) -> float: """simple docstring""" SCREAMING_SNAKE_CASE : Union[str, Any] = self * other SCREAMING_SNAKE_CASE : Tuple = self.euclidean_length() * other.euclidean_length() if deg: return math.degrees(math.acos(num / den ) ) else: return math.acos(num / den ) def lowerCamelCase__ ( _a): assert isinstance(_a , _a) return Vector([0] * dimension) def lowerCamelCase__ ( _a , _a): assert isinstance(_a , _a) and (isinstance(_a , _a)) SCREAMING_SNAKE_CASE : Union[str, Any] = [0] * dimension SCREAMING_SNAKE_CASE : Any = 1 return Vector(_a) def lowerCamelCase__ ( _a , _a , _a): assert ( isinstance(_a , _a) and isinstance(_a , _a) and (isinstance(_a , (int, float))) ) return x * scalar + y def lowerCamelCase__ ( _a , _a , _a): random.seed(_a) SCREAMING_SNAKE_CASE : Union[str, Any] = [random.randint(_a , _a) for _ in range(_a)] return Vector(_a) class _UpperCamelCase : '''simple docstring''' def __init__( self : int , a : list[list[float]] , a : int , a : int ) -> None: """simple docstring""" SCREAMING_SNAKE_CASE : List[str] = matrix SCREAMING_SNAKE_CASE : Optional[int] = w SCREAMING_SNAKE_CASE : Optional[Any] = h def __str__( self : Any ) -> str: """simple docstring""" SCREAMING_SNAKE_CASE : Dict = "" for i in range(self.__height ): ans += "|" for j in range(self.__width ): if j < self.__width - 1: ans += str(self.__matrix[i][j] ) + "," else: ans += str(self.__matrix[i][j] ) + "|\n" return ans def __add__( self : List[Any] , a : Matrix ) -> Matrix: """simple docstring""" if self.__width == other.width() and self.__height == other.height(): SCREAMING_SNAKE_CASE : Dict = [] for i in range(self.__height ): SCREAMING_SNAKE_CASE : Any = [ self.__matrix[i][j] + other.component(a , a ) for j in range(self.__width ) ] matrix.append(a ) return Matrix(a , self.__width , self.__height ) else: raise Exception("matrix must have the same dimension!" ) def __sub__( self : Optional[Any] , a : Matrix ) -> Matrix: """simple docstring""" if self.__width == other.width() and self.__height == other.height(): SCREAMING_SNAKE_CASE : Union[str, Any] = [] for i in range(self.__height ): SCREAMING_SNAKE_CASE : Union[str, Any] = [ self.__matrix[i][j] - other.component(a , a ) for j in range(self.__width ) ] matrix.append(a ) return Matrix(a , self.__width , self.__height ) else: raise Exception("matrices must have the same dimension!" ) @overload def __mul__( self : List[str] , a : float ) -> Matrix: """simple docstring""" ... @overload def __mul__( self : Any , a : Vector ) -> Vector: """simple docstring""" ... def __mul__( self : str , a : float | Vector ) -> Vector | Matrix: """simple docstring""" if isinstance(a , a ): # matrix-vector if len(a ) == self.__width: SCREAMING_SNAKE_CASE : Union[str, Any] = zero_vector(self.__height ) for i in range(self.__height ): SCREAMING_SNAKE_CASE : Optional[int] = [ self.__matrix[i][j] * other.component(a ) for j in range(self.__width ) ] ans.change_component(a , sum(a ) ) return ans else: raise Exception( "vector must have the same size as the " "number of columns of the matrix!" ) elif isinstance(a , (int, float) ): # matrix-scalar SCREAMING_SNAKE_CASE : str = [ [self.__matrix[i][j] * other for j in range(self.__width )] for i in range(self.__height ) ] return Matrix(a , self.__width , self.__height ) return None def __UpperCamelCase ( self : Optional[int] ) -> int: """simple docstring""" return self.__height def __UpperCamelCase ( self : Tuple ) -> int: """simple docstring""" return self.__width def __UpperCamelCase ( self : Any , a : int , a : int ) -> float: """simple docstring""" if 0 <= x < self.__height and 0 <= y < self.__width: return self.__matrix[x][y] else: raise Exception("change_component: indices out of bounds" ) def __UpperCamelCase ( self : Tuple , a : int , a : int , a : float ) -> None: """simple docstring""" if 0 <= x < self.__height and 0 <= y < self.__width: SCREAMING_SNAKE_CASE : str = value else: raise Exception("change_component: indices out of bounds" ) def __UpperCamelCase ( self : int , a : int , a : int ) -> float: """simple docstring""" if self.__height != self.__width: raise Exception("Matrix is not square" ) SCREAMING_SNAKE_CASE : List[str] = self.__matrix[:x] + self.__matrix[x + 1 :] for i in range(len(a ) ): SCREAMING_SNAKE_CASE : Optional[int] = minor[i][:y] + minor[i][y + 1 :] return Matrix(a , self.__width - 1 , self.__height - 1 ).determinant() def __UpperCamelCase ( self : int , a : int , a : int ) -> float: """simple docstring""" if self.__height != self.__width: raise Exception("Matrix is not square" ) if 0 <= x < self.__height and 0 <= y < self.__width: return (-1) ** (x + y) * self.minor(a , a ) else: raise Exception("Indices out of bounds" ) def __UpperCamelCase ( self : Dict ) -> float: """simple docstring""" if self.__height != self.__width: raise Exception("Matrix is not square" ) if self.__height < 1: raise Exception("Matrix has no element" ) elif self.__height == 1: return self.__matrix[0][0] elif self.__height == 2: return ( self.__matrix[0][0] * self.__matrix[1][1] - self.__matrix[0][1] * self.__matrix[1][0] ) else: SCREAMING_SNAKE_CASE : List[Any] = [ self.__matrix[0][y] * self.cofactor(0 , a ) for y in range(self.__width ) ] return sum(a ) def lowerCamelCase__ ( _a): SCREAMING_SNAKE_CASE : list[list[float]] = [[0] * n for _ in range(_a)] return Matrix(_a , _a , _a) def lowerCamelCase__ ( _a , _a , _a , _a): random.seed(_a) SCREAMING_SNAKE_CASE : list[list[float]] = [ [random.randint(_a , _a) for _ in range(_a)] for _ in range(_a) ] return Matrix(_a , _a , _a)
25
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available a_ = { 'configuration_instructblip': [ 'INSTRUCTBLIP_PRETRAINED_CONFIG_ARCHIVE_MAP', 'InstructBlipConfig', 'InstructBlipQFormerConfig', 'InstructBlipVisionConfig', ], 'processing_instructblip': ['InstructBlipProcessor'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a_ = [ 'INSTRUCTBLIP_PRETRAINED_MODEL_ARCHIVE_LIST', 'InstructBlipQFormerModel', 'InstructBlipPreTrainedModel', 'InstructBlipForConditionalGeneration', 'InstructBlipVisionModel', ] if TYPE_CHECKING: from .configuration_instructblip import ( INSTRUCTBLIP_PRETRAINED_CONFIG_ARCHIVE_MAP, InstructBlipConfig, InstructBlipQFormerConfig, InstructBlipVisionConfig, ) from .processing_instructblip import InstructBlipProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_instructblip import ( INSTRUCTBLIP_PRETRAINED_MODEL_ARCHIVE_LIST, InstructBlipForConditionalGeneration, InstructBlipPreTrainedModel, InstructBlipQFormerModel, InstructBlipVisionModel, ) else: import sys a_ = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
25
1
import copy import os from typing import TYPE_CHECKING, List, Union if TYPE_CHECKING: pass from ...configuration_utils import PretrainedConfig from ...utils import logging a_ = logging.get_logger(__name__) a_ = { 'kakaobrain/align-base': 'https://huggingface.co/kakaobrain/align-base/resolve/main/config.json', } class _UpperCamelCase ( __A ): '''simple docstring''' lowerCamelCase__ ='align_text_model' def __init__( self : Tuple , a : int=3_0522 , a : int=768 , a : Optional[int]=12 , a : Union[str, Any]=12 , a : List[str]=3072 , a : str="gelu" , a : int=0.1 , a : Tuple=0.1 , a : str=512 , a : List[str]=2 , a : Dict=0.02 , a : Optional[int]=1e-12 , a : List[Any]=0 , a : str="absolute" , a : Optional[int]=True , **a : Optional[int] , ) -> Any: """simple docstring""" super().__init__(**a ) SCREAMING_SNAKE_CASE : Union[str, Any] = vocab_size SCREAMING_SNAKE_CASE : str = hidden_size SCREAMING_SNAKE_CASE : Tuple = num_hidden_layers SCREAMING_SNAKE_CASE : List[Any] = num_attention_heads SCREAMING_SNAKE_CASE : str = hidden_act SCREAMING_SNAKE_CASE : Dict = intermediate_size SCREAMING_SNAKE_CASE : str = hidden_dropout_prob SCREAMING_SNAKE_CASE : Optional[int] = attention_probs_dropout_prob SCREAMING_SNAKE_CASE : Tuple = max_position_embeddings SCREAMING_SNAKE_CASE : Tuple = type_vocab_size SCREAMING_SNAKE_CASE : Optional[int] = initializer_range SCREAMING_SNAKE_CASE : str = layer_norm_eps SCREAMING_SNAKE_CASE : Optional[int] = position_embedding_type SCREAMING_SNAKE_CASE : Optional[int] = use_cache SCREAMING_SNAKE_CASE : Any = pad_token_id @classmethod def __UpperCamelCase ( cls : int , a : Union[str, os.PathLike] , **a : List[str] ) -> "PretrainedConfig": """simple docstring""" cls._set_token_in_kwargs(a ) SCREAMING_SNAKE_CASE ,SCREAMING_SNAKE_CASE : int = cls.get_config_dict(a , **a ) # get the text config dict if we are loading from AlignConfig if config_dict.get("model_type" ) == "align": SCREAMING_SNAKE_CASE : Dict = config_dict["text_config"] if "model_type" in config_dict and hasattr(cls , "model_type" ) and config_dict["model_type"] != cls.model_type: logger.warning( F"You are using a model of type {config_dict['model_type']} to instantiate a model of type " F"{cls.model_type}. This is not supported for all configurations of models and can yield errors." ) return cls.from_dict(a , **a ) class _UpperCamelCase ( __A ): '''simple docstring''' lowerCamelCase__ ='align_vision_model' def __init__( self : int , a : int = 3 , a : int = 600 , a : float = 2.0 , a : float = 3.1 , a : int = 8 , a : List[int] = [3, 3, 5, 3, 5, 5, 3] , a : List[int] = [32, 16, 24, 40, 80, 112, 192] , a : List[int] = [16, 24, 40, 80, 112, 192, 320] , a : List[int] = [] , a : List[int] = [1, 2, 2, 2, 1, 2, 1] , a : List[int] = [1, 2, 2, 3, 3, 4, 1] , a : List[int] = [1, 6, 6, 6, 6, 6, 6] , a : float = 0.25 , a : str = "swish" , a : int = 2560 , a : str = "mean" , a : float = 0.02 , a : float = 0.001 , a : float = 0.99 , a : float = 0.2 , **a : List[Any] , ) -> Optional[Any]: """simple docstring""" super().__init__(**a ) SCREAMING_SNAKE_CASE : Dict = num_channels SCREAMING_SNAKE_CASE : List[str] = image_size SCREAMING_SNAKE_CASE : Dict = width_coefficient SCREAMING_SNAKE_CASE : List[Any] = depth_coefficient SCREAMING_SNAKE_CASE : Union[str, Any] = depth_divisor SCREAMING_SNAKE_CASE : Tuple = kernel_sizes SCREAMING_SNAKE_CASE : List[str] = in_channels SCREAMING_SNAKE_CASE : Any = out_channels SCREAMING_SNAKE_CASE : str = depthwise_padding SCREAMING_SNAKE_CASE : Optional[int] = strides SCREAMING_SNAKE_CASE : str = num_block_repeats SCREAMING_SNAKE_CASE : int = expand_ratios SCREAMING_SNAKE_CASE : Optional[int] = squeeze_expansion_ratio SCREAMING_SNAKE_CASE : int = hidden_act SCREAMING_SNAKE_CASE : Tuple = hidden_dim SCREAMING_SNAKE_CASE : Union[str, Any] = pooling_type SCREAMING_SNAKE_CASE : Dict = initializer_range SCREAMING_SNAKE_CASE : List[str] = batch_norm_eps SCREAMING_SNAKE_CASE : Tuple = batch_norm_momentum SCREAMING_SNAKE_CASE : Tuple = drop_connect_rate SCREAMING_SNAKE_CASE : List[Any] = sum(a ) * 4 @classmethod def __UpperCamelCase ( cls : int , a : Union[str, os.PathLike] , **a : Dict ) -> "PretrainedConfig": """simple docstring""" cls._set_token_in_kwargs(a ) SCREAMING_SNAKE_CASE ,SCREAMING_SNAKE_CASE : str = cls.get_config_dict(a , **a ) # get the vision config dict if we are loading from AlignConfig if config_dict.get("model_type" ) == "align": SCREAMING_SNAKE_CASE : List[Any] = config_dict["vision_config"] if "model_type" in config_dict and hasattr(cls , "model_type" ) and config_dict["model_type"] != cls.model_type: logger.warning( F"You are using a model of type {config_dict['model_type']} to instantiate a model of type " F"{cls.model_type}. This is not supported for all configurations of models and can yield errors." ) return cls.from_dict(a , **a ) class _UpperCamelCase ( __A ): '''simple docstring''' lowerCamelCase__ ='align' lowerCamelCase__ =True def __init__( self : Dict , a : Optional[Any]=None , a : List[str]=None , a : List[str]=640 , a : Optional[Any]=1.0 , a : int=0.02 , **a : Optional[Any] , ) -> Optional[Any]: """simple docstring""" super().__init__(**a ) if text_config is None: SCREAMING_SNAKE_CASE : int = {} logger.info("text_config is None. Initializing the AlignTextConfig with default values." ) if vision_config is None: SCREAMING_SNAKE_CASE : List[str] = {} logger.info("vision_config is None. Initializing the AlignVisionConfig with default values." ) SCREAMING_SNAKE_CASE : List[Any] = AlignTextConfig(**a ) SCREAMING_SNAKE_CASE : Optional[int] = AlignVisionConfig(**a ) SCREAMING_SNAKE_CASE : int = projection_dim SCREAMING_SNAKE_CASE : Dict = temperature_init_value SCREAMING_SNAKE_CASE : str = initializer_range @classmethod def __UpperCamelCase ( cls : Union[str, Any] , a : AlignTextConfig , a : AlignVisionConfig , **a : Tuple ) -> Any: """simple docstring""" return cls(text_config=text_config.to_dict() , vision_config=vision_config.to_dict() , **a ) def __UpperCamelCase ( self : Any ) -> Union[str, Any]: """simple docstring""" SCREAMING_SNAKE_CASE : str = copy.deepcopy(self.__dict__ ) SCREAMING_SNAKE_CASE : Any = self.text_config.to_dict() SCREAMING_SNAKE_CASE : Optional[Any] = self.vision_config.to_dict() SCREAMING_SNAKE_CASE : str = self.__class__.model_type return output
25
from __future__ import annotations def lowerCamelCase__ ( _a): SCREAMING_SNAKE_CASE : Optional[Any] = 2 SCREAMING_SNAKE_CASE : Optional[int] = [] while i * i <= n: if n % i: i += 1 else: n //= i factors.append(_a) if n > 1: factors.append(_a) return factors if __name__ == "__main__": import doctest doctest.testmod()
25
1
import copy from typing import Dict, List, Optional from ...configuration_utils import PretrainedConfig from ...utils import logging from ..auto import CONFIG_MAPPING a_ = { 'facebook/mask2former-swin-small-coco-instance': ( 'https://huggingface.co/facebook/mask2former-swin-small-coco-instance/blob/main/config.json' ) # See all Mask2Former models at https://huggingface.co/models?filter=mask2former } a_ = logging.get_logger(__name__) class _UpperCamelCase ( __A ): '''simple docstring''' lowerCamelCase__ ='mask2former' lowerCamelCase__ =['swin'] lowerCamelCase__ ={'hidden_size': 'hidden_dim'} def __init__( self : Dict , a : Optional[Dict] = None , a : int = 256 , a : int = 256 , a : int = 256 , a : int = 1024 , a : str = "relu" , a : int = 6 , a : int = 10 , a : int = 8 , a : float = 0.0 , a : int = 2048 , a : bool = False , a : bool = False , a : int = 4 , a : int = 255 , a : int = 100 , a : float = 0.1 , a : float = 2.0 , a : float = 5.0 , a : float = 5.0 , a : int = 1_2544 , a : float = 3.0 , a : float = 0.75 , a : float = 0.02 , a : float = 1.0 , a : bool = True , a : List[int] = [4, 8, 16, 32] , a : bool = None , **a : Optional[int] , ) -> List[Any]: """simple docstring""" if backbone_config is None: logger.info("`backbone_config` is `None`. Initializing the config with the default `Swin` backbone." ) SCREAMING_SNAKE_CASE : Tuple = CONFIG_MAPPING["swin"]( image_size=224 , in_channels=3 , patch_size=4 , embed_dim=96 , depths=[2, 2, 18, 2] , num_heads=[3, 6, 12, 24] , window_size=7 , drop_path_rate=0.3 , use_absolute_embeddings=a , out_features=["stage1", "stage2", "stage3", "stage4"] , ) if isinstance(a , a ): SCREAMING_SNAKE_CASE : int = backbone_config.pop("model_type" ) SCREAMING_SNAKE_CASE : List[Any] = CONFIG_MAPPING[backbone_model_type] SCREAMING_SNAKE_CASE : Tuple = config_class.from_dict(a ) # verify that the backbone is supported if backbone_config.model_type not in self.backbones_supported: logger.warning_once( F"Backbone {backbone_config.model_type} is not a supported model and may not be compatible with Mask2Former. " F"Supported model types: {','.join(self.backbones_supported )}" ) SCREAMING_SNAKE_CASE : Optional[Any] = backbone_config SCREAMING_SNAKE_CASE : int = feature_size SCREAMING_SNAKE_CASE : Dict = mask_feature_size SCREAMING_SNAKE_CASE : Any = hidden_dim SCREAMING_SNAKE_CASE : Any = encoder_feedforward_dim SCREAMING_SNAKE_CASE : Tuple = activation_function SCREAMING_SNAKE_CASE : Tuple = encoder_layers SCREAMING_SNAKE_CASE : Dict = decoder_layers SCREAMING_SNAKE_CASE : List[Any] = num_attention_heads SCREAMING_SNAKE_CASE : List[Any] = dropout SCREAMING_SNAKE_CASE : int = dim_feedforward SCREAMING_SNAKE_CASE : int = pre_norm SCREAMING_SNAKE_CASE : Union[str, Any] = enforce_input_projection SCREAMING_SNAKE_CASE : int = common_stride SCREAMING_SNAKE_CASE : Optional[Any] = ignore_value SCREAMING_SNAKE_CASE : Tuple = num_queries SCREAMING_SNAKE_CASE : List[str] = no_object_weight SCREAMING_SNAKE_CASE : Optional[int] = class_weight SCREAMING_SNAKE_CASE : int = mask_weight SCREAMING_SNAKE_CASE : Tuple = dice_weight SCREAMING_SNAKE_CASE : Union[str, Any] = train_num_points SCREAMING_SNAKE_CASE : Tuple = oversample_ratio SCREAMING_SNAKE_CASE : int = importance_sample_ratio SCREAMING_SNAKE_CASE : Any = init_std SCREAMING_SNAKE_CASE : Union[str, Any] = init_xavier_std SCREAMING_SNAKE_CASE : List[Any] = use_auxiliary_loss SCREAMING_SNAKE_CASE : Optional[int] = feature_strides SCREAMING_SNAKE_CASE : Tuple = output_auxiliary_logits SCREAMING_SNAKE_CASE : str = decoder_layers super().__init__(**a ) @classmethod def __UpperCamelCase ( cls : Any , a : PretrainedConfig , **a : str ) -> Optional[int]: """simple docstring""" return cls( backbone_config=a , **a , ) def __UpperCamelCase ( self : Optional[Any] ) -> Dict[str, any]: """simple docstring""" SCREAMING_SNAKE_CASE : Any = copy.deepcopy(self.__dict__ ) SCREAMING_SNAKE_CASE : int = self.backbone_config.to_dict() SCREAMING_SNAKE_CASE : str = self.__class__.model_type return output
25
from math import factorial, pi def lowerCamelCase__ ( _a , _a = 30): if not isinstance(_a , (int, float)): raise ValueError("maclaurin_sin() requires either an int or float for theta") if not isinstance(_a , _a) or accuracy <= 0: raise ValueError("maclaurin_sin() requires a positive int for accuracy") SCREAMING_SNAKE_CASE : int = float(_a) SCREAMING_SNAKE_CASE : Dict = theta // (2 * pi) theta -= 2 * div * pi return sum( (-1) ** r * theta ** (2 * r + 1) / factorial(2 * r + 1) for r in range(_a)) def lowerCamelCase__ ( _a , _a = 30): if not isinstance(_a , (int, float)): raise ValueError("maclaurin_cos() requires either an int or float for theta") if not isinstance(_a , _a) or accuracy <= 0: raise ValueError("maclaurin_cos() requires a positive int for accuracy") SCREAMING_SNAKE_CASE : str = float(_a) SCREAMING_SNAKE_CASE : Any = theta // (2 * pi) theta -= 2 * div * pi return sum((-1) ** r * theta ** (2 * r) / factorial(2 * r) for r in range(_a)) if __name__ == "__main__": import doctest doctest.testmod() print(maclaurin_sin(10)) print(maclaurin_sin(-10)) print(maclaurin_sin(10, 15)) print(maclaurin_sin(-10, 15)) print(maclaurin_cos(5)) print(maclaurin_cos(-5)) print(maclaurin_cos(10, 15)) print(maclaurin_cos(-10, 15))
25
1
from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging a_ = logging.get_logger(__name__) a_ = { 'google/bigbird-roberta-base': 'https://huggingface.co/google/bigbird-roberta-base/resolve/main/config.json', 'google/bigbird-roberta-large': 'https://huggingface.co/google/bigbird-roberta-large/resolve/main/config.json', 'google/bigbird-base-trivia-itc': 'https://huggingface.co/google/bigbird-base-trivia-itc/resolve/main/config.json', # See all BigBird models at https://huggingface.co/models?filter=big_bird } class _UpperCamelCase ( __A ): '''simple docstring''' lowerCamelCase__ ='big_bird' def __init__( self : Optional[Any] , a : List[Any]=5_0358 , a : Tuple=768 , a : List[str]=12 , a : Any=12 , a : Dict=3072 , a : int="gelu_new" , a : List[Any]=0.1 , a : int=0.1 , a : Union[str, Any]=4096 , a : Tuple=2 , a : List[Any]=0.02 , a : Any=1e-12 , a : Tuple=True , a : Tuple=0 , a : Optional[int]=1 , a : int=2 , a : Dict=66 , a : str="block_sparse" , a : List[str]=True , a : Dict=False , a : List[str]=64 , a : int=3 , a : List[Any]=None , **a : int , ) -> Tuple: """simple docstring""" super().__init__( pad_token_id=a , bos_token_id=a , eos_token_id=a , sep_token_id=a , **a , ) SCREAMING_SNAKE_CASE : List[str] = vocab_size SCREAMING_SNAKE_CASE : int = max_position_embeddings SCREAMING_SNAKE_CASE : Union[str, Any] = hidden_size SCREAMING_SNAKE_CASE : List[str] = num_hidden_layers SCREAMING_SNAKE_CASE : Optional[Any] = num_attention_heads SCREAMING_SNAKE_CASE : Dict = intermediate_size SCREAMING_SNAKE_CASE : Any = hidden_act SCREAMING_SNAKE_CASE : Any = hidden_dropout_prob SCREAMING_SNAKE_CASE : str = attention_probs_dropout_prob SCREAMING_SNAKE_CASE : Union[str, Any] = initializer_range SCREAMING_SNAKE_CASE : Union[str, Any] = type_vocab_size SCREAMING_SNAKE_CASE : Dict = layer_norm_eps SCREAMING_SNAKE_CASE : Optional[int] = use_cache SCREAMING_SNAKE_CASE : Tuple = rescale_embeddings SCREAMING_SNAKE_CASE : Optional[int] = attention_type SCREAMING_SNAKE_CASE : Optional[Any] = use_bias SCREAMING_SNAKE_CASE : Any = block_size SCREAMING_SNAKE_CASE : Optional[Any] = num_random_blocks SCREAMING_SNAKE_CASE : str = classifier_dropout class _UpperCamelCase ( __A ): '''simple docstring''' @property def __UpperCamelCase ( self : List[Any] ) -> Mapping[str, Mapping[int, str]]: """simple docstring""" if self.task == "multiple-choice": SCREAMING_SNAKE_CASE : str = {0: "batch", 1: "choice", 2: "sequence"} else: SCREAMING_SNAKE_CASE : Optional[Any] = {0: "batch", 1: "sequence"} return OrderedDict( [ ("input_ids", dynamic_axis), ("attention_mask", dynamic_axis), ] )
25
from __future__ import annotations import math class _UpperCamelCase : '''simple docstring''' def __init__( self : Dict , a : int ) -> None: """simple docstring""" SCREAMING_SNAKE_CASE : Dict = size # approximate the overall size of segment tree with given value SCREAMING_SNAKE_CASE : Any = [0 for i in range(0 , 4 * size )] # create array to store lazy update SCREAMING_SNAKE_CASE : Union[str, Any] = [0 for i in range(0 , 4 * size )] SCREAMING_SNAKE_CASE : Any = [0 for i in range(0 , 4 * size )] # flag for lazy update def __UpperCamelCase ( self : Tuple , a : int ) -> int: """simple docstring""" return idx * 2 def __UpperCamelCase ( self : str , a : int ) -> int: """simple docstring""" return idx * 2 + 1 def __UpperCamelCase ( self : int , a : int , a : int , a : int , a : list[int] ) -> None: """simple docstring""" if left_element == right_element: SCREAMING_SNAKE_CASE : int = a[left_element - 1] else: SCREAMING_SNAKE_CASE : Optional[int] = (left_element + right_element) // 2 self.build(self.left(a ) , a , a , a ) self.build(self.right(a ) , mid + 1 , a , a ) SCREAMING_SNAKE_CASE : List[Any] = max( self.segment_tree[self.left(a )] , self.segment_tree[self.right(a )] ) def __UpperCamelCase ( self : Optional[Any] , a : int , a : int , a : int , a : int , a : int , a : int ) -> bool: """simple docstring""" if self.flag[idx] is True: SCREAMING_SNAKE_CASE : Any = self.lazy[idx] SCREAMING_SNAKE_CASE : List[str] = False if left_element != right_element: SCREAMING_SNAKE_CASE : Optional[Any] = self.lazy[idx] SCREAMING_SNAKE_CASE : int = self.lazy[idx] SCREAMING_SNAKE_CASE : Any = True SCREAMING_SNAKE_CASE : List[Any] = True if right_element < a or left_element > b: return True if left_element >= a and right_element <= b: SCREAMING_SNAKE_CASE : Optional[Any] = val if left_element != right_element: SCREAMING_SNAKE_CASE : str = val SCREAMING_SNAKE_CASE : str = val SCREAMING_SNAKE_CASE : Tuple = True SCREAMING_SNAKE_CASE : Optional[Any] = True return True SCREAMING_SNAKE_CASE : int = (left_element + right_element) // 2 self.update(self.left(a ) , a , a , a , a , a ) self.update(self.right(a ) , mid + 1 , a , a , a , a ) SCREAMING_SNAKE_CASE : Optional[int] = max( self.segment_tree[self.left(a )] , self.segment_tree[self.right(a )] ) return True def __UpperCamelCase ( self : Dict , a : int , a : int , a : int , a : int , a : int ) -> int | float: """simple docstring""" if self.flag[idx] is True: SCREAMING_SNAKE_CASE : int = self.lazy[idx] SCREAMING_SNAKE_CASE : List[Any] = False if left_element != right_element: SCREAMING_SNAKE_CASE : Optional[Any] = self.lazy[idx] SCREAMING_SNAKE_CASE : Optional[Any] = self.lazy[idx] SCREAMING_SNAKE_CASE : Optional[Any] = True SCREAMING_SNAKE_CASE : Union[str, Any] = True if right_element < a or left_element > b: return -math.inf if left_element >= a and right_element <= b: return self.segment_tree[idx] SCREAMING_SNAKE_CASE : Dict = (left_element + right_element) // 2 SCREAMING_SNAKE_CASE : Tuple = self.query(self.left(a ) , a , a , a , a ) SCREAMING_SNAKE_CASE : Tuple = self.query(self.right(a ) , mid + 1 , a , a , a ) return max(a , a ) def __str__( self : str ) -> str: """simple docstring""" return str([self.query(1 , 1 , self.size , a , a ) for i in range(1 , self.size + 1 )] ) if __name__ == "__main__": a_ = [1, 2, -4, 7, 3, -5, 6, 11, -20, 9, 14, 15, 5, 2, -8] a_ = 15 a_ = SegmentTree(size) segt.build(1, 1, size, A) print(segt.query(1, 1, size, 4, 6)) print(segt.query(1, 1, size, 7, 11)) print(segt.query(1, 1, size, 7, 12)) segt.update(1, 1, size, 1, 3, 111) print(segt.query(1, 1, size, 1, 15)) segt.update(1, 1, size, 7, 8, 235) print(segt)
25
1
import unittest import numpy as np import torch from diffusers import DDIMPipeline, DDIMScheduler, UNetaDModel from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu, slow, torch_device from ..pipeline_params import UNCONDITIONAL_IMAGE_GENERATION_BATCH_PARAMS, UNCONDITIONAL_IMAGE_GENERATION_PARAMS from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() class _UpperCamelCase ( __A , unittest.TestCase ): '''simple docstring''' lowerCamelCase__ =DDIMPipeline lowerCamelCase__ =UNCONDITIONAL_IMAGE_GENERATION_PARAMS lowerCamelCase__ =PipelineTesterMixin.required_optional_params - { 'num_images_per_prompt', 'latents', 'callback', 'callback_steps', } lowerCamelCase__ =UNCONDITIONAL_IMAGE_GENERATION_BATCH_PARAMS lowerCamelCase__ =False def __UpperCamelCase ( self : Union[str, Any] ) -> List[str]: """simple docstring""" torch.manual_seed(0 ) SCREAMING_SNAKE_CASE : int = UNetaDModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=3 , out_channels=3 , down_block_types=("DownBlock2D", "AttnDownBlock2D") , up_block_types=("AttnUpBlock2D", "UpBlock2D") , ) SCREAMING_SNAKE_CASE : Optional[int] = DDIMScheduler() SCREAMING_SNAKE_CASE : Union[str, Any] = {"unet": unet, "scheduler": scheduler} return components def __UpperCamelCase ( self : Tuple , a : Tuple , a : List[Any]=0 ) -> Union[str, Any]: """simple docstring""" if str(a ).startswith("mps" ): SCREAMING_SNAKE_CASE : Optional[int] = torch.manual_seed(a ) else: SCREAMING_SNAKE_CASE : Optional[int] = torch.Generator(device=a ).manual_seed(a ) SCREAMING_SNAKE_CASE : List[str] = { "batch_size": 1, "generator": generator, "num_inference_steps": 2, "output_type": "numpy", } return inputs def __UpperCamelCase ( self : Union[str, Any] ) -> int: """simple docstring""" SCREAMING_SNAKE_CASE : Any = "cpu" SCREAMING_SNAKE_CASE : Any = self.get_dummy_components() SCREAMING_SNAKE_CASE : Dict = self.pipeline_class(**a ) pipe.to(a ) pipe.set_progress_bar_config(disable=a ) SCREAMING_SNAKE_CASE : Union[str, Any] = self.get_dummy_inputs(a ) SCREAMING_SNAKE_CASE : Any = pipe(**a ).images SCREAMING_SNAKE_CASE : Tuple = image[0, -3:, -3:, -1] self.assertEqual(image.shape , (1, 32, 32, 3) ) SCREAMING_SNAKE_CASE : Tuple = np.array( [1.0_00e00, 5.7_17e-01, 4.7_17e-01, 1.0_00e00, 0.0_00e00, 1.0_00e00, 3.0_00e-04, 0.0_00e00, 9.0_00e-04] ) SCREAMING_SNAKE_CASE : List[Any] = np.abs(image_slice.flatten() - expected_slice ).max() self.assertLessEqual(a , 1e-3 ) def __UpperCamelCase ( self : List[str] ) -> Union[str, Any]: """simple docstring""" super().test_dict_tuple_outputs_equivalent(expected_max_difference=3e-3 ) def __UpperCamelCase ( self : int ) -> Optional[Any]: """simple docstring""" super().test_save_load_local(expected_max_difference=3e-3 ) def __UpperCamelCase ( self : Any ) -> Optional[int]: """simple docstring""" super().test_save_load_optional_components(expected_max_difference=3e-3 ) def __UpperCamelCase ( self : Tuple ) -> List[Any]: """simple docstring""" super().test_inference_batch_single_identical(expected_max_diff=3e-3 ) @slow @require_torch_gpu class _UpperCamelCase ( unittest.TestCase ): '''simple docstring''' def __UpperCamelCase ( self : Dict ) -> Any: """simple docstring""" SCREAMING_SNAKE_CASE : List[Any] = "google/ddpm-cifar10-32" SCREAMING_SNAKE_CASE : Union[str, Any] = UNetaDModel.from_pretrained(a ) SCREAMING_SNAKE_CASE : Optional[int] = DDIMScheduler() SCREAMING_SNAKE_CASE : Dict = DDIMPipeline(unet=a , scheduler=a ) ddim.to(a ) ddim.set_progress_bar_config(disable=a ) SCREAMING_SNAKE_CASE : Optional[int] = torch.manual_seed(0 ) SCREAMING_SNAKE_CASE : Any = ddim(generator=a , eta=0.0 , output_type="numpy" ).images SCREAMING_SNAKE_CASE : Optional[int] = image[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) SCREAMING_SNAKE_CASE : Union[str, Any] = np.array([0.1723, 0.1617, 0.1600, 0.1626, 0.1497, 0.1513, 0.1505, 0.1442, 0.1453] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def __UpperCamelCase ( self : Dict ) -> Dict: """simple docstring""" SCREAMING_SNAKE_CASE : List[str] = "google/ddpm-ema-bedroom-256" SCREAMING_SNAKE_CASE : Any = UNetaDModel.from_pretrained(a ) SCREAMING_SNAKE_CASE : List[Any] = DDIMScheduler.from_pretrained(a ) SCREAMING_SNAKE_CASE : int = DDIMPipeline(unet=a , scheduler=a ) ddpm.to(a ) ddpm.set_progress_bar_config(disable=a ) SCREAMING_SNAKE_CASE : List[str] = torch.manual_seed(0 ) SCREAMING_SNAKE_CASE : List[Any] = ddpm(generator=a , output_type="numpy" ).images SCREAMING_SNAKE_CASE : str = image[0, -3:, -3:, -1] assert image.shape == (1, 256, 256, 3) SCREAMING_SNAKE_CASE : Any = np.array([0.0060, 0.0201, 0.0344, 0.0024, 0.0018, 0.0002, 0.0022, 0.0000, 0.0069] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
25
import gc import unittest import numpy as np import torch from diffusers import StableDiffusionKDiffusionPipeline from diffusers.utils import slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu enable_full_determinism() @slow @require_torch_gpu class _UpperCamelCase ( unittest.TestCase ): '''simple docstring''' def __UpperCamelCase ( self : Dict ) -> Tuple: """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() def __UpperCamelCase ( self : Optional[int] ) -> int: """simple docstring""" SCREAMING_SNAKE_CASE : Optional[Any] = StableDiffusionKDiffusionPipeline.from_pretrained("CompVis/stable-diffusion-v1-4" ) SCREAMING_SNAKE_CASE : str = sd_pipe.to(a ) sd_pipe.set_progress_bar_config(disable=a ) sd_pipe.set_scheduler("sample_euler" ) SCREAMING_SNAKE_CASE : Optional[int] = "A painting of a squirrel eating a burger" SCREAMING_SNAKE_CASE : Any = torch.manual_seed(0 ) SCREAMING_SNAKE_CASE : List[Any] = sd_pipe([prompt] , generator=a , guidance_scale=9.0 , num_inference_steps=20 , output_type="np" ) SCREAMING_SNAKE_CASE : Tuple = output.images SCREAMING_SNAKE_CASE : Any = image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) SCREAMING_SNAKE_CASE : Union[str, Any] = np.array([0.0447, 0.0492, 0.0468, 0.0408, 0.0383, 0.0408, 0.0354, 0.0380, 0.0339] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def __UpperCamelCase ( self : List[Any] ) -> Optional[int]: """simple docstring""" SCREAMING_SNAKE_CASE : int = StableDiffusionKDiffusionPipeline.from_pretrained("stabilityai/stable-diffusion-2-1-base" ) SCREAMING_SNAKE_CASE : Tuple = sd_pipe.to(a ) sd_pipe.set_progress_bar_config(disable=a ) sd_pipe.set_scheduler("sample_euler" ) SCREAMING_SNAKE_CASE : List[str] = "A painting of a squirrel eating a burger" SCREAMING_SNAKE_CASE : List[str] = torch.manual_seed(0 ) SCREAMING_SNAKE_CASE : Union[str, Any] = sd_pipe([prompt] , generator=a , guidance_scale=9.0 , num_inference_steps=20 , output_type="np" ) SCREAMING_SNAKE_CASE : List[Any] = output.images SCREAMING_SNAKE_CASE : Tuple = image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) SCREAMING_SNAKE_CASE : int = np.array([0.1237, 0.1320, 0.1438, 0.1359, 0.1390, 0.1132, 0.1277, 0.1175, 0.1112] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 5e-1 def __UpperCamelCase ( self : Tuple ) -> List[Any]: """simple docstring""" SCREAMING_SNAKE_CASE : Dict = StableDiffusionKDiffusionPipeline.from_pretrained("stabilityai/stable-diffusion-2-1-base" ) SCREAMING_SNAKE_CASE : Union[str, Any] = sd_pipe.to(a ) sd_pipe.set_progress_bar_config(disable=a ) sd_pipe.set_scheduler("sample_dpmpp_2m" ) SCREAMING_SNAKE_CASE : str = "A painting of a squirrel eating a burger" SCREAMING_SNAKE_CASE : Any = torch.manual_seed(0 ) SCREAMING_SNAKE_CASE : str = sd_pipe( [prompt] , generator=a , guidance_scale=7.5 , num_inference_steps=15 , output_type="np" , use_karras_sigmas=a , ) SCREAMING_SNAKE_CASE : str = output.images SCREAMING_SNAKE_CASE : Optional[int] = image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) SCREAMING_SNAKE_CASE : int = np.array( [0.1138_1689, 0.1211_2921, 0.138_9457, 0.1254_9606, 0.124_4964, 0.1083_1517, 0.1156_2866, 0.1086_7816, 0.1049_9048] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
25
1
import os from typing import BinaryIO, Optional, Union import numpy as np import pyarrow.parquet as pq from .. import Audio, Dataset, Features, Image, NamedSplit, Value, config from ..features.features import FeatureType, _visit from ..formatting import query_table from ..packaged_modules import _PACKAGED_DATASETS_MODULES from ..packaged_modules.parquet.parquet import Parquet from ..utils import logging from ..utils.typing import NestedDataStructureLike, PathLike from .abc import AbstractDatasetReader def lowerCamelCase__ ( _a): SCREAMING_SNAKE_CASE : List[str] = np.inf def set_batch_size(_a) -> None: nonlocal batch_size if isinstance(_a , _a): SCREAMING_SNAKE_CASE : Union[str, Any] = min(_a , config.PARQUET_ROW_GROUP_SIZE_FOR_IMAGE_DATASETS) elif isinstance(_a , _a): SCREAMING_SNAKE_CASE : Dict = min(_a , config.PARQUET_ROW_GROUP_SIZE_FOR_AUDIO_DATASETS) elif isinstance(_a , _a) and feature.dtype == "binary": SCREAMING_SNAKE_CASE : Optional[int] = min(_a , config.PARQUET_ROW_GROUP_SIZE_FOR_BINARY_DATASETS) _visit(_a , _a) return None if batch_size is np.inf else batch_size class _UpperCamelCase ( __A ): '''simple docstring''' def __init__( self : Union[str, Any] , a : NestedDataStructureLike[PathLike] , a : Optional[NamedSplit] = None , a : Optional[Features] = None , a : str = None , a : bool = False , a : bool = False , a : Optional[int] = None , **a : str , ) -> int: """simple docstring""" super().__init__( a , split=a , features=a , cache_dir=a , keep_in_memory=a , streaming=a , num_proc=a , **a , ) SCREAMING_SNAKE_CASE : Optional[int] = path_or_paths if isinstance(a , a ) else {self.split: path_or_paths} SCREAMING_SNAKE_CASE : Any = _PACKAGED_DATASETS_MODULES["parquet"][1] SCREAMING_SNAKE_CASE : Optional[Any] = Parquet( cache_dir=a , data_files=a , features=a , hash=a , **a , ) def __UpperCamelCase ( self : int ) -> int: """simple docstring""" if self.streaming: SCREAMING_SNAKE_CASE : List[str] = self.builder.as_streaming_dataset(split=self.split ) # Build regular (map-style) dataset else: SCREAMING_SNAKE_CASE : int = None SCREAMING_SNAKE_CASE : Any = None SCREAMING_SNAKE_CASE : Dict = None SCREAMING_SNAKE_CASE : Optional[int] = None self.builder.download_and_prepare( download_config=a , download_mode=a , verification_mode=a , base_path=a , num_proc=self.num_proc , ) SCREAMING_SNAKE_CASE : Optional[int] = self.builder.as_dataset( split=self.split , verification_mode=a , in_memory=self.keep_in_memory ) return dataset class _UpperCamelCase : '''simple docstring''' def __init__( self : Union[str, Any] , a : Dataset , a : Union[PathLike, BinaryIO] , a : Optional[int] = None , **a : Optional[Any] , ) -> str: """simple docstring""" SCREAMING_SNAKE_CASE : int = dataset SCREAMING_SNAKE_CASE : Union[str, Any] = path_or_buf SCREAMING_SNAKE_CASE : str = batch_size or get_writer_batch_size(dataset.features ) SCREAMING_SNAKE_CASE : List[Any] = parquet_writer_kwargs def __UpperCamelCase ( self : Optional[int] ) -> int: """simple docstring""" SCREAMING_SNAKE_CASE : int = self.batch_size if self.batch_size else config.DEFAULT_MAX_BATCH_SIZE if isinstance(self.path_or_buf , (str, bytes, os.PathLike) ): with open(self.path_or_buf , "wb+" ) as buffer: SCREAMING_SNAKE_CASE : Optional[int] = self._write(file_obj=a , batch_size=a , **self.parquet_writer_kwargs ) else: SCREAMING_SNAKE_CASE : Dict = self._write(file_obj=self.path_or_buf , batch_size=a , **self.parquet_writer_kwargs ) return written def __UpperCamelCase ( self : Optional[Any] , a : BinaryIO , a : int , **a : str ) -> int: """simple docstring""" SCREAMING_SNAKE_CASE : List[str] = 0 SCREAMING_SNAKE_CASE : Tuple = parquet_writer_kwargs.pop("path_or_buf" , a ) SCREAMING_SNAKE_CASE : Union[str, Any] = self.dataset.features.arrow_schema SCREAMING_SNAKE_CASE : Optional[Any] = pq.ParquetWriter(a , schema=a , **a ) for offset in logging.tqdm( range(0 , len(self.dataset ) , a ) , unit="ba" , disable=not logging.is_progress_bar_enabled() , desc="Creating parquet from Arrow format" , ): SCREAMING_SNAKE_CASE : Dict = query_table( table=self.dataset._data , key=slice(a , offset + batch_size ) , indices=self.dataset._indices if self.dataset._indices is not None else None , ) writer.write_table(a ) written += batch.nbytes writer.close() return written
25
import unittest import numpy as np from diffusers import LMSDiscreteScheduler, OnnxStableDiffusionInpaintPipeline from diffusers.utils.testing_utils import ( is_onnx_available, load_image, nightly, require_onnxruntime, require_torch_gpu, ) from ..test_pipelines_onnx_common import OnnxPipelineTesterMixin if is_onnx_available(): import onnxruntime as ort class _UpperCamelCase ( __A , unittest.TestCase ): '''simple docstring''' pass @nightly @require_onnxruntime @require_torch_gpu class _UpperCamelCase ( unittest.TestCase ): '''simple docstring''' @property def __UpperCamelCase ( self : List[Any] ) -> List[str]: """simple docstring""" return ( "CUDAExecutionProvider", { "gpu_mem_limit": "15000000000", # 15GB "arena_extend_strategy": "kSameAsRequested", }, ) @property def __UpperCamelCase ( self : int ) -> Optional[Any]: """simple docstring""" SCREAMING_SNAKE_CASE : Optional[Any] = ort.SessionOptions() SCREAMING_SNAKE_CASE : Union[str, Any] = False return options def __UpperCamelCase ( self : List[Any] ) -> List[Any]: """simple docstring""" SCREAMING_SNAKE_CASE : Any = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/in_paint/overture-creations-5sI6fQgYIuo.png" ) SCREAMING_SNAKE_CASE : Optional[Any] = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/in_paint/overture-creations-5sI6fQgYIuo_mask.png" ) SCREAMING_SNAKE_CASE : int = OnnxStableDiffusionInpaintPipeline.from_pretrained( "runwayml/stable-diffusion-inpainting" , revision="onnx" , safety_checker=a , feature_extractor=a , provider=self.gpu_provider , sess_options=self.gpu_options , ) pipe.set_progress_bar_config(disable=a ) SCREAMING_SNAKE_CASE : Optional[Any] = "A red cat sitting on a park bench" SCREAMING_SNAKE_CASE : Tuple = np.random.RandomState(0 ) SCREAMING_SNAKE_CASE : Optional[int] = pipe( prompt=a , image=a , mask_image=a , guidance_scale=7.5 , num_inference_steps=10 , generator=a , output_type="np" , ) SCREAMING_SNAKE_CASE : List[Any] = output.images SCREAMING_SNAKE_CASE : Union[str, Any] = images[0, 255:258, 255:258, -1] assert images.shape == (1, 512, 512, 3) SCREAMING_SNAKE_CASE : int = np.array([0.2514, 0.3007, 0.3517, 0.1790, 0.2382, 0.3167, 0.1944, 0.2273, 0.2464] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3 def __UpperCamelCase ( self : List[Any] ) -> Tuple: """simple docstring""" SCREAMING_SNAKE_CASE : int = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/in_paint/overture-creations-5sI6fQgYIuo.png" ) SCREAMING_SNAKE_CASE : Optional[Any] = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/in_paint/overture-creations-5sI6fQgYIuo_mask.png" ) SCREAMING_SNAKE_CASE : Optional[Any] = LMSDiscreteScheduler.from_pretrained( "runwayml/stable-diffusion-inpainting" , subfolder="scheduler" , revision="onnx" ) SCREAMING_SNAKE_CASE : Union[str, Any] = OnnxStableDiffusionInpaintPipeline.from_pretrained( "runwayml/stable-diffusion-inpainting" , revision="onnx" , scheduler=a , safety_checker=a , feature_extractor=a , provider=self.gpu_provider , sess_options=self.gpu_options , ) pipe.set_progress_bar_config(disable=a ) SCREAMING_SNAKE_CASE : List[Any] = "A red cat sitting on a park bench" SCREAMING_SNAKE_CASE : Dict = np.random.RandomState(0 ) SCREAMING_SNAKE_CASE : Tuple = pipe( prompt=a , image=a , mask_image=a , guidance_scale=7.5 , num_inference_steps=20 , generator=a , output_type="np" , ) SCREAMING_SNAKE_CASE : List[str] = output.images SCREAMING_SNAKE_CASE : Optional[int] = images[0, 255:258, 255:258, -1] assert images.shape == (1, 512, 512, 3) SCREAMING_SNAKE_CASE : Any = np.array([0.0086, 0.0077, 0.0083, 0.0093, 0.0107, 0.0139, 0.0094, 0.0097, 0.0125] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3
25
1
from ...processing_utils import ProcessorMixin class _UpperCamelCase ( __A ): '''simple docstring''' lowerCamelCase__ ='SpeechT5FeatureExtractor' lowerCamelCase__ ='SpeechT5Tokenizer' def __init__( self : Optional[Any] , a : str , a : List[str] ) -> Optional[Any]: """simple docstring""" super().__init__(a , a ) def __call__( self : Optional[int] , *a : Optional[Any] , **a : List[Any] ) -> str: """simple docstring""" SCREAMING_SNAKE_CASE : List[Any] = kwargs.pop("audio" , a ) SCREAMING_SNAKE_CASE : Any = kwargs.pop("text" , a ) SCREAMING_SNAKE_CASE : List[Any] = kwargs.pop("text_target" , a ) SCREAMING_SNAKE_CASE : str = kwargs.pop("audio_target" , a ) SCREAMING_SNAKE_CASE : List[str] = kwargs.pop("sampling_rate" , a ) if audio is not None and text is not None: raise ValueError( "Cannot process both `audio` and `text` inputs. Did you mean `audio_target` or `text_target`?" ) if audio_target is not None and text_target is not None: raise ValueError( "Cannot process both `audio_target` and `text_target` inputs. Did you mean `audio` or `text`?" ) if audio is None and audio_target is None and text is None and text_target is None: raise ValueError( "You need to specify either an `audio`, `audio_target`, `text`, or `text_target` input to process." ) if audio is not None: SCREAMING_SNAKE_CASE : Tuple = self.feature_extractor(a , *a , sampling_rate=a , **a ) elif text is not None: SCREAMING_SNAKE_CASE : Optional[int] = self.tokenizer(a , **a ) else: SCREAMING_SNAKE_CASE : Any = None if audio_target is not None: SCREAMING_SNAKE_CASE : Dict = self.feature_extractor(audio_target=a , *a , sampling_rate=a , **a ) SCREAMING_SNAKE_CASE : str = targets["input_values"] elif text_target is not None: SCREAMING_SNAKE_CASE : List[Any] = self.tokenizer(a , **a ) SCREAMING_SNAKE_CASE : Optional[Any] = targets["input_ids"] else: SCREAMING_SNAKE_CASE : List[str] = None if inputs is None: return targets if targets is not None: SCREAMING_SNAKE_CASE : str = labels SCREAMING_SNAKE_CASE : List[Any] = targets.get("attention_mask" ) if decoder_attention_mask is not None: SCREAMING_SNAKE_CASE : Optional[int] = decoder_attention_mask return inputs def __UpperCamelCase ( self : Tuple , *a : int , **a : int ) -> Any: """simple docstring""" SCREAMING_SNAKE_CASE : List[str] = kwargs.pop("input_values" , a ) SCREAMING_SNAKE_CASE : Tuple = kwargs.pop("input_ids" , a ) SCREAMING_SNAKE_CASE : List[str] = kwargs.pop("labels" , a ) if input_values is not None and input_ids is not None: raise ValueError("Cannot process both `input_values` and `input_ids` inputs." ) if input_values is None and input_ids is None and labels is None: raise ValueError( "You need to specify either an `input_values`, `input_ids`, or `labels` input to be padded." ) if input_values is not None: SCREAMING_SNAKE_CASE : Optional[int] = self.feature_extractor.pad(a , *a , **a ) elif input_ids is not None: SCREAMING_SNAKE_CASE : str = self.tokenizer.pad(a , **a ) else: SCREAMING_SNAKE_CASE : Tuple = None if labels is not None: if "input_ids" in labels or (isinstance(a , a ) and "input_ids" in labels[0]): SCREAMING_SNAKE_CASE : Optional[Any] = self.tokenizer.pad(a , **a ) SCREAMING_SNAKE_CASE : List[str] = targets["input_ids"] else: SCREAMING_SNAKE_CASE : Dict = self.feature_extractor.feature_size SCREAMING_SNAKE_CASE : List[Any] = self.feature_extractor.num_mel_bins SCREAMING_SNAKE_CASE : str = self.feature_extractor.pad(a , *a , **a ) SCREAMING_SNAKE_CASE : Dict = feature_size_hack SCREAMING_SNAKE_CASE : Tuple = targets["input_values"] else: SCREAMING_SNAKE_CASE : List[str] = None if inputs is None: return targets if targets is not None: SCREAMING_SNAKE_CASE : int = labels SCREAMING_SNAKE_CASE : Dict = targets.get("attention_mask" ) if decoder_attention_mask is not None: SCREAMING_SNAKE_CASE : Dict = decoder_attention_mask return inputs def __UpperCamelCase ( self : List[Any] , *a : int , **a : List[Any] ) -> Optional[Any]: """simple docstring""" return self.tokenizer.batch_decode(*a , **a ) def __UpperCamelCase ( self : Optional[int] , *a : Any , **a : Dict ) -> List[str]: """simple docstring""" return self.tokenizer.decode(*a , **a )
25
from operator import delitem, getitem, setitem import pytest from data_structures.hashing.hash_map import HashMap def lowerCamelCase__ ( _a): return getitem, k def lowerCamelCase__ ( _a , _a): return setitem, k, v def lowerCamelCase__ ( _a): return delitem, k def lowerCamelCase__ ( _a , _a , *_a): try: return fun(_a , *_a), None except Exception as e: return None, e a_ = ( _set('key_a', 'val_a'), _set('key_b', 'val_b'), ) a_ = [ _set('key_a', 'val_a'), _set('key_a', 'val_b'), ] a_ = [ _set('key_a', 'val_a'), _set('key_b', 'val_b'), _del('key_a'), _del('key_b'), _set('key_a', 'val_a'), _del('key_a'), ] a_ = [ _get('key_a'), _del('key_a'), _set('key_a', 'val_a'), _del('key_a'), _del('key_a'), _get('key_a'), ] a_ = [ *[_set(x, x) for x in range(5)], # guaranteed upsize ] a_ = [ *[_set(x, x) for x in range(5)], # guaranteed upsize *[_del(x) for x in range(5)], _set('key_a', 'val_b'), ] @pytest.mark.parametrize( "operations" , ( pytest.param(_add_items , id="add items"), pytest.param(_overwrite_items , id="overwrite items"), pytest.param(_delete_items , id="delete items"), pytest.param(_access_absent_items , id="access absent items"), pytest.param(_add_with_resize_up , id="add with resize up"), pytest.param(_add_with_resize_down , id="add with resize down"), ) , ) def lowerCamelCase__ ( _a): SCREAMING_SNAKE_CASE : Dict = HashMap(initial_block_size=4) SCREAMING_SNAKE_CASE : List[str] = {} for _, (fun, *args) in enumerate(_a): SCREAMING_SNAKE_CASE ,SCREAMING_SNAKE_CASE : Union[str, Any] = _run_operation(_a , _a , *_a) SCREAMING_SNAKE_CASE ,SCREAMING_SNAKE_CASE : List[Any] = _run_operation(_a , _a , *_a) assert my_res == py_res assert str(_a) == str(_a) assert set(_a) == set(_a) assert len(_a) == len(_a) assert set(my.items()) == set(py.items()) def lowerCamelCase__ ( ): def is_public(_a) -> bool: return not name.startswith("_") SCREAMING_SNAKE_CASE : List[str] = {name for name in dir({}) if is_public(_a)} SCREAMING_SNAKE_CASE : Union[str, Any] = {name for name in dir(HashMap()) if is_public(_a)} assert dict_public_names > hash_public_names
25
1
import warnings from transformers import AutoTokenizer from transformers.utils import is_torch_available from transformers.utils.generic import ExplicitEnum from ...processing_utils import ProcessorMixin if is_torch_available(): import torch class _UpperCamelCase ( __A ): '''simple docstring''' lowerCamelCase__ ='char' lowerCamelCase__ ='bpe' lowerCamelCase__ ='wp' a_ = (DecodeType.CHARACTER, DecodeType.BPE, DecodeType.WORDPIECE) class _UpperCamelCase ( __A ): '''simple docstring''' lowerCamelCase__ =['image_processor', 'char_tokenizer'] lowerCamelCase__ ='ViTImageProcessor' lowerCamelCase__ ='MgpstrTokenizer' def __init__( self : Any , a : Any=None , a : str=None , **a : List[Any] ) -> List[str]: """simple docstring""" SCREAMING_SNAKE_CASE : str = None if "feature_extractor" in kwargs: warnings.warn( "The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`" " instead." , a , ) SCREAMING_SNAKE_CASE : Dict = kwargs.pop("feature_extractor" ) SCREAMING_SNAKE_CASE : int = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError("You need to specify an `image_processor`." ) if tokenizer is None: raise ValueError("You need to specify a `tokenizer`." ) SCREAMING_SNAKE_CASE : str = tokenizer SCREAMING_SNAKE_CASE : List[str] = AutoTokenizer.from_pretrained("gpt2" ) SCREAMING_SNAKE_CASE : List[Any] = AutoTokenizer.from_pretrained("bert-base-uncased" ) super().__init__(a , a ) def __call__( self : Optional[Any] , a : List[Any]=None , a : List[Any]=None , a : Union[str, Any]=None , **a : int ) -> List[Any]: """simple docstring""" if images is None and text is None: raise ValueError("You need to specify either an `images` or `text` input to process." ) if images is not None: SCREAMING_SNAKE_CASE : Tuple = self.image_processor(a , return_tensors=a , **a ) if text is not None: SCREAMING_SNAKE_CASE : List[str] = self.char_tokenizer(a , return_tensors=a , **a ) if text is None: return inputs elif images is None: return encodings else: SCREAMING_SNAKE_CASE : Tuple = encodings["input_ids"] return inputs def __UpperCamelCase ( self : Union[str, Any] , a : List[Any] ) -> List[Any]: """simple docstring""" SCREAMING_SNAKE_CASE ,SCREAMING_SNAKE_CASE ,SCREAMING_SNAKE_CASE : List[str] = sequences SCREAMING_SNAKE_CASE : Optional[int] = char_preds.size(0 ) SCREAMING_SNAKE_CASE ,SCREAMING_SNAKE_CASE : Tuple = self._decode_helper(a , "char" ) SCREAMING_SNAKE_CASE ,SCREAMING_SNAKE_CASE : Optional[int] = self._decode_helper(a , "bpe" ) SCREAMING_SNAKE_CASE ,SCREAMING_SNAKE_CASE : Union[str, Any] = self._decode_helper(a , "wp" ) SCREAMING_SNAKE_CASE : Tuple = [] SCREAMING_SNAKE_CASE : List[str] = [] for i in range(a ): SCREAMING_SNAKE_CASE : Dict = [char_scores[i], bpe_scores[i], wp_scores[i]] SCREAMING_SNAKE_CASE : int = [char_strs[i], bpe_strs[i], wp_strs[i]] SCREAMING_SNAKE_CASE : Optional[Any] = scores.index(max(a ) ) final_strs.append(strs[max_score_index] ) final_scores.append(scores[max_score_index] ) SCREAMING_SNAKE_CASE : int = {} SCREAMING_SNAKE_CASE : List[str] = final_strs SCREAMING_SNAKE_CASE : Union[str, Any] = final_scores SCREAMING_SNAKE_CASE : Any = char_strs SCREAMING_SNAKE_CASE : Tuple = bpe_strs SCREAMING_SNAKE_CASE : Union[str, Any] = wp_strs return out def __UpperCamelCase ( self : Dict , a : str , a : Optional[Any] ) -> Dict: """simple docstring""" if format == DecodeType.CHARACTER: SCREAMING_SNAKE_CASE : Union[str, Any] = self.char_decode SCREAMING_SNAKE_CASE : int = 1 SCREAMING_SNAKE_CASE : Tuple = "[s]" elif format == DecodeType.BPE: SCREAMING_SNAKE_CASE : Any = self.bpe_decode SCREAMING_SNAKE_CASE : Union[str, Any] = 2 SCREAMING_SNAKE_CASE : Optional[Any] = "#" elif format == DecodeType.WORDPIECE: SCREAMING_SNAKE_CASE : Any = self.wp_decode SCREAMING_SNAKE_CASE : Tuple = 102 SCREAMING_SNAKE_CASE : List[str] = "[SEP]" else: raise ValueError(F"Format {format} is not supported." ) SCREAMING_SNAKE_CASE ,SCREAMING_SNAKE_CASE : Dict = [], [] SCREAMING_SNAKE_CASE : Union[str, Any] = pred_logits.size(0 ) SCREAMING_SNAKE_CASE : Optional[Any] = pred_logits.size(1 ) SCREAMING_SNAKE_CASE ,SCREAMING_SNAKE_CASE : Union[str, Any] = pred_logits.topk(1 , dim=-1 , largest=a , sorted=a ) SCREAMING_SNAKE_CASE : Dict = preds_index.view(-1 , a )[:, 1:] SCREAMING_SNAKE_CASE : Any = decoder(a ) SCREAMING_SNAKE_CASE ,SCREAMING_SNAKE_CASE : Any = torch.nn.functional.softmax(a , dim=2 ).max(dim=2 ) SCREAMING_SNAKE_CASE : Tuple = preds_max_prob[:, 1:] for index in range(a ): SCREAMING_SNAKE_CASE : List[Any] = preds_str[index].find(a ) SCREAMING_SNAKE_CASE : Tuple = preds_str[index][:pred_eos] SCREAMING_SNAKE_CASE : int = preds_index[index].cpu().tolist() SCREAMING_SNAKE_CASE : Union[str, Any] = pred_index.index(a ) if eos_token in pred_index else -1 SCREAMING_SNAKE_CASE : int = preds_max_prob[index][: pred_eos_index + 1] SCREAMING_SNAKE_CASE : List[Any] = pred_max_prob.cumprod(dim=0 )[-1] if pred_max_prob.nelement() != 0 else 0.0 dec_strs.append(a ) conf_scores.append(a ) return dec_strs, conf_scores def __UpperCamelCase ( self : int , a : str ) -> List[Any]: """simple docstring""" SCREAMING_SNAKE_CASE : Union[str, Any] = [seq.replace(" " , "" ) for seq in self.char_tokenizer.batch_decode(a )] return decode_strs def __UpperCamelCase ( self : Dict , a : List[str] ) -> Union[str, Any]: """simple docstring""" return self.bpe_tokenizer.batch_decode(a ) def __UpperCamelCase ( self : Union[str, Any] , a : str ) -> Optional[Any]: """simple docstring""" SCREAMING_SNAKE_CASE : Optional[Any] = [seq.replace(" " , "" ) for seq in self.wp_tokenizer.batch_decode(a )] return decode_strs
25
from typing import TYPE_CHECKING from ....utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available a_ = {'configuration_van': ['VAN_PRETRAINED_CONFIG_ARCHIVE_MAP', 'VanConfig']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a_ = [ 'VAN_PRETRAINED_MODEL_ARCHIVE_LIST', 'VanForImageClassification', 'VanModel', 'VanPreTrainedModel', ] if TYPE_CHECKING: from .configuration_van import VAN_PRETRAINED_CONFIG_ARCHIVE_MAP, VanConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_van import ( VAN_PRETRAINED_MODEL_ARCHIVE_LIST, VanForImageClassification, VanModel, VanPreTrainedModel, ) else: import sys a_ = _LazyModule(__name__, globals()['__file__'], _import_structure)
25
1
from __future__ import annotations from statistics import mean def lowerCamelCase__ ( _a , _a , _a): SCREAMING_SNAKE_CASE : List[Any] = [0] * no_of_processes SCREAMING_SNAKE_CASE : Tuple = [0] * no_of_processes # Initialize remaining_time to waiting_time. for i in range(_a): SCREAMING_SNAKE_CASE : Tuple = burst_time[i] SCREAMING_SNAKE_CASE : list[int] = [] SCREAMING_SNAKE_CASE : List[str] = 0 SCREAMING_SNAKE_CASE : Dict = 0 # When processes are not completed, # A process whose arrival time has passed \ # and has remaining execution time is put into the ready_process. # The shortest process in the ready_process, target_process is executed. while completed != no_of_processes: SCREAMING_SNAKE_CASE : Optional[Any] = [] SCREAMING_SNAKE_CASE : List[str] = -1 for i in range(_a): if (arrival_time[i] <= total_time) and (remaining_time[i] > 0): ready_process.append(_a) if len(_a) > 0: SCREAMING_SNAKE_CASE : Optional[int] = ready_process[0] for i in ready_process: if remaining_time[i] < remaining_time[target_process]: SCREAMING_SNAKE_CASE : List[str] = i total_time += burst_time[target_process] completed += 1 SCREAMING_SNAKE_CASE : List[Any] = 0 SCREAMING_SNAKE_CASE : Union[str, Any] = ( total_time - arrival_time[target_process] - burst_time[target_process] ) else: total_time += 1 return waiting_time def lowerCamelCase__ ( _a , _a , _a): SCREAMING_SNAKE_CASE : Any = [0] * no_of_processes for i in range(_a): SCREAMING_SNAKE_CASE : Tuple = burst_time[i] + waiting_time[i] return turn_around_time if __name__ == "__main__": print('[TEST CASE 01]') a_ = 4 a_ = [2, 5, 3, 7] a_ = [0, 0, 0, 0] a_ = calculate_waitingtime(arrival_time, burst_time, no_of_processes) a_ = calculate_turnaroundtime( burst_time, no_of_processes, waiting_time ) # Printing the Result print('PID\tBurst Time\tArrival Time\tWaiting Time\tTurnaround Time') for i, process_id in enumerate(list(range(1, 5))): print( F'''{process_id}\t{burst_time[i]}\t\t\t{arrival_time[i]}\t\t\t\t''' F'''{waiting_time[i]}\t\t\t\t{turn_around_time[i]}''' ) print(F'''\nAverage waiting time = {mean(waiting_time):.5f}''') print(F'''Average turnaround time = {mean(turn_around_time):.5f}''')
25
from __future__ import annotations def lowerCamelCase__ ( _a): if len(_a) == 0: return [] SCREAMING_SNAKE_CASE ,SCREAMING_SNAKE_CASE : Tuple = min(_a), max(_a) SCREAMING_SNAKE_CASE : Dict = int(max_value - min_value) + 1 SCREAMING_SNAKE_CASE : list[list] = [[] for _ in range(_a)] for i in my_list: buckets[int(i - min_value)].append(_a) return [v for bucket in buckets for v in sorted(_a)] if __name__ == "__main__": from doctest import testmod testmod() assert bucket_sort([4, 5, 3, 2, 1]) == [1, 2, 3, 4, 5] assert bucket_sort([0, 1, -10, 15, 2, -2]) == [-10, -2, 0, 1, 2, 15]
25
1
import warnings from ...utils import logging from .image_processing_layoutlmva import LayoutLMvaImageProcessor a_ = logging.get_logger(__name__) class _UpperCamelCase ( __A ): '''simple docstring''' def __init__( self : List[str] , *a : Optional[int] , **a : Dict ) -> None: """simple docstring""" warnings.warn( "The class LayoutLMv2FeatureExtractor is deprecated and will be removed in version 5 of Transformers." " Please use LayoutLMv2ImageProcessor instead." , a , ) super().__init__(*a , **a )
25
a_ = frozenset( [ 'prompt', 'height', 'width', 'guidance_scale', 'negative_prompt', 'prompt_embeds', 'negative_prompt_embeds', 'cross_attention_kwargs', ] ) a_ = frozenset(['prompt', 'negative_prompt']) a_ = frozenset([]) a_ = frozenset(['image']) a_ = frozenset( [ 'image', 'height', 'width', 'guidance_scale', ] ) a_ = frozenset(['image']) a_ = frozenset( [ 'prompt', 'image', 'height', 'width', 'guidance_scale', 'negative_prompt', 'prompt_embeds', 'negative_prompt_embeds', ] ) a_ = frozenset(['prompt', 'image', 'negative_prompt']) a_ = frozenset( [ # Text guided image variation with an image mask 'prompt', 'image', 'mask_image', 'height', 'width', 'guidance_scale', 'negative_prompt', 'prompt_embeds', 'negative_prompt_embeds', ] ) a_ = frozenset(['prompt', 'image', 'mask_image', 'negative_prompt']) a_ = frozenset( [ # image variation with an image mask 'image', 'mask_image', 'height', 'width', 'guidance_scale', ] ) a_ = frozenset(['image', 'mask_image']) a_ = frozenset( [ 'example_image', 'image', 'mask_image', 'height', 'width', 'guidance_scale', ] ) a_ = frozenset(['example_image', 'image', 'mask_image']) a_ = frozenset(['class_labels']) a_ = frozenset(['class_labels']) a_ = frozenset(['batch_size']) a_ = frozenset([]) a_ = frozenset(['batch_size']) a_ = frozenset([]) a_ = frozenset( [ 'prompt', 'audio_length_in_s', 'guidance_scale', 'negative_prompt', 'prompt_embeds', 'negative_prompt_embeds', 'cross_attention_kwargs', ] ) a_ = frozenset(['prompt', 'negative_prompt']) a_ = frozenset(['input_tokens']) a_ = frozenset(['input_tokens'])
25
1
from typing import Callable, Optional from .. import Features from ..packaged_modules.generator.generator import Generator from .abc import AbstractDatasetInputStream class _UpperCamelCase ( __A ): '''simple docstring''' def __init__( self : int , a : Callable , a : Optional[Features] = None , a : str = None , a : bool = False , a : bool = False , a : Optional[dict] = None , a : Optional[int] = None , **a : Union[str, Any] , ) -> int: """simple docstring""" super().__init__( features=a , cache_dir=a , keep_in_memory=a , streaming=a , num_proc=a , **a , ) SCREAMING_SNAKE_CASE : Tuple = Generator( cache_dir=a , features=a , generator=a , gen_kwargs=a , **a , ) def __UpperCamelCase ( self : Any ) -> Union[str, Any]: """simple docstring""" if self.streaming: SCREAMING_SNAKE_CASE : Dict = self.builder.as_streaming_dataset(split="train" ) # Build regular (map-style) dataset else: SCREAMING_SNAKE_CASE : Optional[Any] = None SCREAMING_SNAKE_CASE : Optional[Any] = None SCREAMING_SNAKE_CASE : Optional[Any] = None SCREAMING_SNAKE_CASE : Any = None self.builder.download_and_prepare( download_config=a , download_mode=a , verification_mode=a , base_path=a , num_proc=self.num_proc , ) SCREAMING_SNAKE_CASE : int = self.builder.as_dataset( split="train" , verification_mode=a , in_memory=self.keep_in_memory ) return dataset
25
# Lint as: python3 import sys from collections.abc import Mapping from typing import TYPE_CHECKING, Dict, Optional import numpy as np import pyarrow as pa from .. import config from ..utils.logging import get_logger from ..utils.py_utils import map_nested from .formatting import TensorFormatter if TYPE_CHECKING: import jax import jaxlib a_ = get_logger() a_ = None class _UpperCamelCase ( TensorFormatter[Mapping, 'jax.Array', Mapping] ): '''simple docstring''' def __init__( self : Optional[Any] , a : str=None , a : List[Any]=None , **a : Any ) -> Optional[Any]: """simple docstring""" super().__init__(features=a ) import jax from jaxlib.xla_client import Device if isinstance(a , a ): raise ValueError( F"Expected {device} to be a `str` not {type(a )}, as `jaxlib.xla_extension.Device` " "is not serializable neither with `pickle` nor with `dill`. Instead you can surround " "the device with `str()` to get its string identifier that will be internally mapped " "to the actual `jaxlib.xla_extension.Device`." ) SCREAMING_SNAKE_CASE : List[str] = device if isinstance(a , a ) else str(jax.devices()[0] ) # using global variable since `jaxlib.xla_extension.Device` is not serializable neither # with `pickle` nor with `dill`, so we need to use a global variable instead global DEVICE_MAPPING if DEVICE_MAPPING is None: SCREAMING_SNAKE_CASE : str = self._map_devices_to_str() if self.device not in list(DEVICE_MAPPING.keys() ): logger.warning( F"Device with string identifier {self.device} not listed among the available " F"devices: {list(DEVICE_MAPPING.keys() )}, so falling back to the default " F"device: {str(jax.devices()[0] )}." ) SCREAMING_SNAKE_CASE : Any = str(jax.devices()[0] ) SCREAMING_SNAKE_CASE : Any = jnp_array_kwargs @staticmethod def __UpperCamelCase ( ) -> Dict[str, "jaxlib.xla_extension.Device"]: """simple docstring""" import jax return {str(a ): device for device in jax.devices()} def __UpperCamelCase ( self : Dict , a : Tuple ) -> str: """simple docstring""" import jax import jax.numpy as jnp if isinstance(a , a ) and column: if all( isinstance(a , jax.Array ) and x.shape == column[0].shape and x.dtype == column[0].dtype for x in column ): return jnp.stack(a , axis=0 ) return column def __UpperCamelCase ( self : Dict , a : str ) -> str: """simple docstring""" import jax import jax.numpy as jnp if isinstance(a , (str, bytes, type(a )) ): return value elif isinstance(a , (np.character, np.ndarray) ) and np.issubdtype(value.dtype , np.character ): return value.tolist() SCREAMING_SNAKE_CASE : Union[str, Any] = {} if isinstance(a , (np.number, np.ndarray) ) and np.issubdtype(value.dtype , np.integer ): # the default int precision depends on the jax config # see https://jax.readthedocs.io/en/latest/notebooks/Common_Gotchas_in_JAX.html#double-64bit-precision if jax.config.jax_enable_xaa: SCREAMING_SNAKE_CASE : Dict = {"dtype": jnp.intaa} else: SCREAMING_SNAKE_CASE : str = {"dtype": jnp.intaa} elif isinstance(a , (np.number, np.ndarray) ) and np.issubdtype(value.dtype , np.floating ): SCREAMING_SNAKE_CASE : int = {"dtype": jnp.floataa} elif config.PIL_AVAILABLE and "PIL" in sys.modules: import PIL.Image if isinstance(a , PIL.Image.Image ): SCREAMING_SNAKE_CASE : Dict = np.asarray(a ) # using global variable since `jaxlib.xla_extension.Device` is not serializable neither # with `pickle` nor with `dill`, so we need to use a global variable instead global DEVICE_MAPPING if DEVICE_MAPPING is None: SCREAMING_SNAKE_CASE : Optional[Any] = self._map_devices_to_str() with jax.default_device(DEVICE_MAPPING[self.device] ): # calling jnp.array on a np.ndarray does copy the data # see https://github.com/google/jax/issues/4486 return jnp.array(a , **{**default_dtype, **self.jnp_array_kwargs} ) def __UpperCamelCase ( self : Any , a : List[str] ) -> Dict: """simple docstring""" import jax # support for torch, tf, jax etc. if config.TORCH_AVAILABLE and "torch" in sys.modules: import torch if isinstance(a , torch.Tensor ): return self._tensorize(data_struct.detach().cpu().numpy()[()] ) if hasattr(a , "__array__" ) and not isinstance(a , jax.Array ): SCREAMING_SNAKE_CASE : Optional[int] = data_struct.__array__() # support for nested types like struct of list of struct if isinstance(a , np.ndarray ): if data_struct.dtype == object: # jax arrays cannot be instantied from an array of objects return self._consolidate([self.recursive_tensorize(a ) for substruct in data_struct] ) elif isinstance(a , (list, tuple) ): return self._consolidate([self.recursive_tensorize(a ) for substruct in data_struct] ) return self._tensorize(a ) def __UpperCamelCase ( self : Optional[Any] , a : dict ) -> Dict: """simple docstring""" return map_nested(self._recursive_tensorize , a , map_list=a ) def __UpperCamelCase ( self : Dict , a : pa.Table ) -> Mapping: """simple docstring""" SCREAMING_SNAKE_CASE : Optional[Any] = self.numpy_arrow_extractor().extract_row(a ) SCREAMING_SNAKE_CASE : List[Any] = self.python_features_decoder.decode_row(a ) return self.recursive_tensorize(a ) def __UpperCamelCase ( self : Optional[int] , a : pa.Table ) -> "jax.Array": """simple docstring""" SCREAMING_SNAKE_CASE : Optional[int] = self.numpy_arrow_extractor().extract_column(a ) SCREAMING_SNAKE_CASE : Optional[Any] = self.python_features_decoder.decode_column(a , pa_table.column_names[0] ) SCREAMING_SNAKE_CASE : Tuple = self.recursive_tensorize(a ) SCREAMING_SNAKE_CASE : Optional[int] = self._consolidate(a ) return column def __UpperCamelCase ( self : List[Any] , a : pa.Table ) -> Mapping: """simple docstring""" SCREAMING_SNAKE_CASE : str = self.numpy_arrow_extractor().extract_batch(a ) SCREAMING_SNAKE_CASE : str = self.python_features_decoder.decode_batch(a ) SCREAMING_SNAKE_CASE : List[Any] = self.recursive_tensorize(a ) for column_name in batch: SCREAMING_SNAKE_CASE : List[Any] = self._consolidate(batch[column_name] ) return batch
25
1
import itertools import os import random import tempfile import unittest import numpy as np from transformers import TvltFeatureExtractor, is_datasets_available from transformers.testing_utils import check_json_file_has_correct_format, require_torch, require_torchaudio from transformers.utils.import_utils import is_torch_available from ...test_sequence_feature_extraction_common import SequenceFeatureExtractionTestMixin if is_torch_available(): import torch if is_datasets_available(): from datasets import load_dataset a_ = random.Random() def lowerCamelCase__ ( _a , _a=1.0 , _a=None , _a=None): if rng is None: SCREAMING_SNAKE_CASE : List[str] = global_rng SCREAMING_SNAKE_CASE : Optional[int] = [] for batch_idx in range(shape[0]): values.append([]) for _ in range(shape[1]): values[-1].append(rng.random() * scale) return values class _UpperCamelCase ( unittest.TestCase ): '''simple docstring''' def __init__( self : str , a : Any , a : Union[str, Any]=7 , a : List[Any]=400 , a : str=2000 , a : Dict=2048 , a : List[Any]=128 , a : Tuple=1 , a : Union[str, Any]=512 , a : List[str]=30 , a : Tuple=4_4100 , ) -> Dict: """simple docstring""" SCREAMING_SNAKE_CASE : List[str] = parent SCREAMING_SNAKE_CASE : List[str] = batch_size SCREAMING_SNAKE_CASE : List[str] = min_seq_length SCREAMING_SNAKE_CASE : List[str] = max_seq_length SCREAMING_SNAKE_CASE : Optional[Any] = (self.max_seq_length - self.min_seq_length) // (self.batch_size - 1) SCREAMING_SNAKE_CASE : Dict = spectrogram_length SCREAMING_SNAKE_CASE : Optional[int] = feature_size SCREAMING_SNAKE_CASE : List[Any] = num_audio_channels SCREAMING_SNAKE_CASE : Optional[Any] = hop_length SCREAMING_SNAKE_CASE : List[Any] = chunk_length SCREAMING_SNAKE_CASE : List[str] = sampling_rate def __UpperCamelCase ( self : Optional[Any] ) -> Optional[int]: """simple docstring""" return { "spectrogram_length": self.spectrogram_length, "feature_size": self.feature_size, "num_audio_channels": self.num_audio_channels, "hop_length": self.hop_length, "chunk_length": self.chunk_length, "sampling_rate": self.sampling_rate, } def __UpperCamelCase ( self : Optional[int] , a : int=False , a : Tuple=False ) -> Union[str, Any]: """simple docstring""" def _flatten(a : Any ): return list(itertools.chain(*a ) ) if equal_length: SCREAMING_SNAKE_CASE : Optional[int] = [floats_list((self.max_seq_length, self.feature_size) ) for _ in range(self.batch_size )] else: # make sure that inputs increase in size SCREAMING_SNAKE_CASE : Optional[int] = [ floats_list((x, self.feature_size) ) for x in range(self.min_seq_length , self.max_seq_length , self.seq_length_diff ) ] if numpify: SCREAMING_SNAKE_CASE : Any = [np.asarray(a ) for x in speech_inputs] return speech_inputs @require_torch @require_torchaudio class _UpperCamelCase ( __A , unittest.TestCase ): '''simple docstring''' lowerCamelCase__ =TvltFeatureExtractor def __UpperCamelCase ( self : int ) -> int: """simple docstring""" SCREAMING_SNAKE_CASE : int = TvltFeatureExtractionTester(self ) def __UpperCamelCase ( self : List[Any] ) -> Optional[Any]: """simple docstring""" SCREAMING_SNAKE_CASE : str = self.feature_extraction_class(**self.feat_extract_dict ) self.assertTrue(hasattr(a , "spectrogram_length" ) ) self.assertTrue(hasattr(a , "feature_size" ) ) self.assertTrue(hasattr(a , "num_audio_channels" ) ) self.assertTrue(hasattr(a , "hop_length" ) ) self.assertTrue(hasattr(a , "chunk_length" ) ) self.assertTrue(hasattr(a , "sampling_rate" ) ) def __UpperCamelCase ( self : List[str] ) -> Optional[int]: """simple docstring""" SCREAMING_SNAKE_CASE : str = self.feature_extraction_class(**self.feat_extract_dict ) with tempfile.TemporaryDirectory() as tmpdirname: SCREAMING_SNAKE_CASE : List[Any] = feat_extract_first.save_pretrained(a )[0] check_json_file_has_correct_format(a ) SCREAMING_SNAKE_CASE : Any = self.feature_extraction_class.from_pretrained(a ) SCREAMING_SNAKE_CASE : Optional[Any] = feat_extract_first.to_dict() SCREAMING_SNAKE_CASE : int = feat_extract_second.to_dict() SCREAMING_SNAKE_CASE : str = dict_first.pop("mel_filters" ) SCREAMING_SNAKE_CASE : str = dict_second.pop("mel_filters" ) self.assertTrue(np.allclose(a , a ) ) self.assertEqual(a , a ) def __UpperCamelCase ( self : Any ) -> Optional[Any]: """simple docstring""" SCREAMING_SNAKE_CASE : Union[str, Any] = self.feature_extraction_class(**self.feat_extract_dict ) with tempfile.TemporaryDirectory() as tmpdirname: SCREAMING_SNAKE_CASE : Optional[Any] = os.path.join(a , "feat_extract.json" ) feat_extract_first.to_json_file(a ) SCREAMING_SNAKE_CASE : Optional[Any] = self.feature_extraction_class.from_json_file(a ) SCREAMING_SNAKE_CASE : Optional[Any] = feat_extract_first.to_dict() SCREAMING_SNAKE_CASE : Tuple = feat_extract_second.to_dict() SCREAMING_SNAKE_CASE : str = dict_first.pop("mel_filters" ) SCREAMING_SNAKE_CASE : Optional[Any] = dict_second.pop("mel_filters" ) self.assertTrue(np.allclose(a , a ) ) self.assertEqual(a , a ) def __UpperCamelCase ( self : Dict ) -> Tuple: """simple docstring""" SCREAMING_SNAKE_CASE : int = self.feature_extraction_class(**self.feat_extract_dict ) # create three inputs of length 800, 1000, and 1200 SCREAMING_SNAKE_CASE : str = [floats_list((1, x) )[0] for x in range(800 , 1400 , 200 )] SCREAMING_SNAKE_CASE : str = [np.asarray(a ) for speech_input in speech_inputs] # Test not batched input SCREAMING_SNAKE_CASE : str = feature_extractor(np_speech_inputs[0] , return_tensors="np" , sampling_rate=4_4100 ).audio_values self.assertTrue(encoded_audios.ndim == 4 ) self.assertTrue(encoded_audios.shape[-1] == feature_extractor.feature_size ) self.assertTrue(encoded_audios.shape[-2] <= feature_extractor.spectrogram_length ) self.assertTrue(encoded_audios.shape[-3] == feature_extractor.num_channels ) # Test batched SCREAMING_SNAKE_CASE : Tuple = feature_extractor(a , return_tensors="np" , sampling_rate=4_4100 ).audio_values self.assertTrue(encoded_audios.ndim == 4 ) self.assertTrue(encoded_audios.shape[-1] == feature_extractor.feature_size ) self.assertTrue(encoded_audios.shape[-2] <= feature_extractor.spectrogram_length ) self.assertTrue(encoded_audios.shape[-3] == feature_extractor.num_channels ) # Test audio masking SCREAMING_SNAKE_CASE : Union[str, Any] = feature_extractor( a , return_tensors="np" , sampling_rate=4_4100 , mask_audio=a ).audio_values self.assertTrue(encoded_audios.ndim == 4 ) self.assertTrue(encoded_audios.shape[-1] == feature_extractor.feature_size ) self.assertTrue(encoded_audios.shape[-2] <= feature_extractor.spectrogram_length ) self.assertTrue(encoded_audios.shape[-3] == feature_extractor.num_channels ) # Test 2-D numpy arrays are batched. SCREAMING_SNAKE_CASE : Any = [floats_list((1, x) )[0] for x in (800, 800, 800)] SCREAMING_SNAKE_CASE : Optional[Any] = np.asarray(a ) SCREAMING_SNAKE_CASE : Optional[int] = feature_extractor(a , return_tensors="np" , sampling_rate=4_4100 ).audio_values self.assertTrue(encoded_audios.ndim == 4 ) self.assertTrue(encoded_audios.shape[-1] == feature_extractor.feature_size ) self.assertTrue(encoded_audios.shape[-2] <= feature_extractor.spectrogram_length ) self.assertTrue(encoded_audios.shape[-3] == feature_extractor.num_channels ) def __UpperCamelCase ( self : List[Any] , a : str ) -> str: """simple docstring""" SCREAMING_SNAKE_CASE : Tuple = load_dataset("hf-internal-testing/librispeech_asr_dummy" , "clean" , split="validation" ) # automatic decoding with librispeech SCREAMING_SNAKE_CASE : Dict = ds.sort("id" ).select(range(a ) )[:num_samples]["audio"] return [x["array"] for x in speech_samples] def __UpperCamelCase ( self : List[Any] ) -> Optional[Any]: """simple docstring""" SCREAMING_SNAKE_CASE : Dict = self._load_datasamples(1 ) SCREAMING_SNAKE_CASE : Tuple = TvltFeatureExtractor() SCREAMING_SNAKE_CASE : Any = feature_extractor(a , return_tensors="pt" ).audio_values self.assertEquals(audio_values.shape , (1, 1, 192, 128) ) SCREAMING_SNAKE_CASE : List[str] = torch.tensor([[-0.3032, -0.2708], [-0.4434, -0.4007]] ) self.assertTrue(torch.allclose(audio_values[0, 0, :2, :2] , a , atol=1e-4 ) )
25
import unittest from transformers import ( MODEL_FOR_OBJECT_DETECTION_MAPPING, AutoFeatureExtractor, AutoModelForObjectDetection, ObjectDetectionPipeline, is_vision_available, pipeline, ) from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_pytesseract, require_tf, require_timm, require_torch, require_vision, slow, ) from .test_pipelines_common import ANY if is_vision_available(): from PIL import Image else: class _UpperCamelCase : '''simple docstring''' @staticmethod def __UpperCamelCase ( *a : str , **a : int ) -> str: """simple docstring""" pass @is_pipeline_test @require_vision @require_timm @require_torch class _UpperCamelCase ( unittest.TestCase ): '''simple docstring''' lowerCamelCase__ =MODEL_FOR_OBJECT_DETECTION_MAPPING def __UpperCamelCase ( self : Optional[Any] , a : str , a : Optional[Any] , a : Union[str, Any] ) -> List[Any]: """simple docstring""" SCREAMING_SNAKE_CASE : Dict = ObjectDetectionPipeline(model=a , image_processor=a ) return object_detector, ["./tests/fixtures/tests_samples/COCO/000000039769.png"] def __UpperCamelCase ( self : List[Any] , a : Optional[int] , a : Optional[int] ) -> int: """simple docstring""" SCREAMING_SNAKE_CASE : Union[str, Any] = object_detector("./tests/fixtures/tests_samples/COCO/000000039769.png" , threshold=0.0 ) self.assertGreater(len(a ) , 0 ) for detected_object in outputs: self.assertEqual( a , { "score": ANY(a ), "label": ANY(a ), "box": {"xmin": ANY(a ), "ymin": ANY(a ), "xmax": ANY(a ), "ymax": ANY(a )}, } , ) import datasets SCREAMING_SNAKE_CASE : Any = datasets.load_dataset("hf-internal-testing/fixtures_image_utils" , "image" , split="test" ) SCREAMING_SNAKE_CASE : Dict = [ Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ), "http://images.cocodataset.org/val2017/000000039769.jpg", # RGBA dataset[0]["file"], # LA dataset[1]["file"], # L dataset[2]["file"], ] SCREAMING_SNAKE_CASE : Tuple = object_detector(a , threshold=0.0 ) self.assertEqual(len(a ) , len(a ) ) for outputs in batch_outputs: self.assertGreater(len(a ) , 0 ) for detected_object in outputs: self.assertEqual( a , { "score": ANY(a ), "label": ANY(a ), "box": {"xmin": ANY(a ), "ymin": ANY(a ), "xmax": ANY(a ), "ymax": ANY(a )}, } , ) @require_tf @unittest.skip("Object detection not implemented in TF" ) def __UpperCamelCase ( self : Optional[int] ) -> str: """simple docstring""" pass @require_torch def __UpperCamelCase ( self : Tuple ) -> List[Any]: """simple docstring""" SCREAMING_SNAKE_CASE : str = "hf-internal-testing/tiny-detr-mobilenetsv3" SCREAMING_SNAKE_CASE : Dict = AutoModelForObjectDetection.from_pretrained(a ) SCREAMING_SNAKE_CASE : Any = AutoFeatureExtractor.from_pretrained(a ) SCREAMING_SNAKE_CASE : Tuple = ObjectDetectionPipeline(model=a , feature_extractor=a ) SCREAMING_SNAKE_CASE : int = object_detector("http://images.cocodataset.org/val2017/000000039769.jpg" , threshold=0.0 ) self.assertEqual( nested_simplify(a , decimals=4 ) , [ {"score": 0.3376, "label": "LABEL_0", "box": {"xmin": 159, "ymin": 120, "xmax": 480, "ymax": 359}}, {"score": 0.3376, "label": "LABEL_0", "box": {"xmin": 159, "ymin": 120, "xmax": 480, "ymax": 359}}, ] , ) SCREAMING_SNAKE_CASE : Dict = object_detector( [ "http://images.cocodataset.org/val2017/000000039769.jpg", "http://images.cocodataset.org/val2017/000000039769.jpg", ] , threshold=0.0 , ) self.assertEqual( nested_simplify(a , decimals=4 ) , [ [ {"score": 0.3376, "label": "LABEL_0", "box": {"xmin": 159, "ymin": 120, "xmax": 480, "ymax": 359}}, {"score": 0.3376, "label": "LABEL_0", "box": {"xmin": 159, "ymin": 120, "xmax": 480, "ymax": 359}}, ], [ {"score": 0.3376, "label": "LABEL_0", "box": {"xmin": 159, "ymin": 120, "xmax": 480, "ymax": 359}}, {"score": 0.3376, "label": "LABEL_0", "box": {"xmin": 159, "ymin": 120, "xmax": 480, "ymax": 359}}, ], ] , ) @require_torch @slow def __UpperCamelCase ( self : str ) -> List[Any]: """simple docstring""" SCREAMING_SNAKE_CASE : Dict = "facebook/detr-resnet-50" SCREAMING_SNAKE_CASE : Union[str, Any] = AutoModelForObjectDetection.from_pretrained(a ) SCREAMING_SNAKE_CASE : List[str] = AutoFeatureExtractor.from_pretrained(a ) SCREAMING_SNAKE_CASE : int = ObjectDetectionPipeline(model=a , feature_extractor=a ) SCREAMING_SNAKE_CASE : Union[str, Any] = object_detector("http://images.cocodataset.org/val2017/000000039769.jpg" ) self.assertEqual( nested_simplify(a , decimals=4 ) , [ {"score": 0.9982, "label": "remote", "box": {"xmin": 40, "ymin": 70, "xmax": 175, "ymax": 117}}, {"score": 0.9960, "label": "remote", "box": {"xmin": 333, "ymin": 72, "xmax": 368, "ymax": 187}}, {"score": 0.9955, "label": "couch", "box": {"xmin": 0, "ymin": 1, "xmax": 639, "ymax": 473}}, {"score": 0.9988, "label": "cat", "box": {"xmin": 13, "ymin": 52, "xmax": 314, "ymax": 470}}, {"score": 0.9987, "label": "cat", "box": {"xmin": 345, "ymin": 23, "xmax": 640, "ymax": 368}}, ] , ) SCREAMING_SNAKE_CASE : int = object_detector( [ "http://images.cocodataset.org/val2017/000000039769.jpg", "http://images.cocodataset.org/val2017/000000039769.jpg", ] ) self.assertEqual( nested_simplify(a , decimals=4 ) , [ [ {"score": 0.9982, "label": "remote", "box": {"xmin": 40, "ymin": 70, "xmax": 175, "ymax": 117}}, {"score": 0.9960, "label": "remote", "box": {"xmin": 333, "ymin": 72, "xmax": 368, "ymax": 187}}, {"score": 0.9955, "label": "couch", "box": {"xmin": 0, "ymin": 1, "xmax": 639, "ymax": 473}}, {"score": 0.9988, "label": "cat", "box": {"xmin": 13, "ymin": 52, "xmax": 314, "ymax": 470}}, {"score": 0.9987, "label": "cat", "box": {"xmin": 345, "ymin": 23, "xmax": 640, "ymax": 368}}, ], [ {"score": 0.9982, "label": "remote", "box": {"xmin": 40, "ymin": 70, "xmax": 175, "ymax": 117}}, {"score": 0.9960, "label": "remote", "box": {"xmin": 333, "ymin": 72, "xmax": 368, "ymax": 187}}, {"score": 0.9955, "label": "couch", "box": {"xmin": 0, "ymin": 1, "xmax": 639, "ymax": 473}}, {"score": 0.9988, "label": "cat", "box": {"xmin": 13, "ymin": 52, "xmax": 314, "ymax": 470}}, {"score": 0.9987, "label": "cat", "box": {"xmin": 345, "ymin": 23, "xmax": 640, "ymax": 368}}, ], ] , ) @require_torch @slow def __UpperCamelCase ( self : str ) -> str: """simple docstring""" SCREAMING_SNAKE_CASE : Tuple = "facebook/detr-resnet-50" SCREAMING_SNAKE_CASE : Tuple = pipeline("object-detection" , model=a ) SCREAMING_SNAKE_CASE : Tuple = object_detector("http://images.cocodataset.org/val2017/000000039769.jpg" ) self.assertEqual( nested_simplify(a , decimals=4 ) , [ {"score": 0.9982, "label": "remote", "box": {"xmin": 40, "ymin": 70, "xmax": 175, "ymax": 117}}, {"score": 0.9960, "label": "remote", "box": {"xmin": 333, "ymin": 72, "xmax": 368, "ymax": 187}}, {"score": 0.9955, "label": "couch", "box": {"xmin": 0, "ymin": 1, "xmax": 639, "ymax": 473}}, {"score": 0.9988, "label": "cat", "box": {"xmin": 13, "ymin": 52, "xmax": 314, "ymax": 470}}, {"score": 0.9987, "label": "cat", "box": {"xmin": 345, "ymin": 23, "xmax": 640, "ymax": 368}}, ] , ) SCREAMING_SNAKE_CASE : str = object_detector( [ "http://images.cocodataset.org/val2017/000000039769.jpg", "http://images.cocodataset.org/val2017/000000039769.jpg", ] ) self.assertEqual( nested_simplify(a , decimals=4 ) , [ [ {"score": 0.9982, "label": "remote", "box": {"xmin": 40, "ymin": 70, "xmax": 175, "ymax": 117}}, {"score": 0.9960, "label": "remote", "box": {"xmin": 333, "ymin": 72, "xmax": 368, "ymax": 187}}, {"score": 0.9955, "label": "couch", "box": {"xmin": 0, "ymin": 1, "xmax": 639, "ymax": 473}}, {"score": 0.9988, "label": "cat", "box": {"xmin": 13, "ymin": 52, "xmax": 314, "ymax": 470}}, {"score": 0.9987, "label": "cat", "box": {"xmin": 345, "ymin": 23, "xmax": 640, "ymax": 368}}, ], [ {"score": 0.9982, "label": "remote", "box": {"xmin": 40, "ymin": 70, "xmax": 175, "ymax": 117}}, {"score": 0.9960, "label": "remote", "box": {"xmin": 333, "ymin": 72, "xmax": 368, "ymax": 187}}, {"score": 0.9955, "label": "couch", "box": {"xmin": 0, "ymin": 1, "xmax": 639, "ymax": 473}}, {"score": 0.9988, "label": "cat", "box": {"xmin": 13, "ymin": 52, "xmax": 314, "ymax": 470}}, {"score": 0.9987, "label": "cat", "box": {"xmin": 345, "ymin": 23, "xmax": 640, "ymax": 368}}, ], ] , ) @require_torch @slow def __UpperCamelCase ( self : str ) -> str: """simple docstring""" SCREAMING_SNAKE_CASE : Optional[int] = 0.9985 SCREAMING_SNAKE_CASE : int = "facebook/detr-resnet-50" SCREAMING_SNAKE_CASE : List[str] = pipeline("object-detection" , model=a ) SCREAMING_SNAKE_CASE : str = object_detector("http://images.cocodataset.org/val2017/000000039769.jpg" , threshold=a ) self.assertEqual( nested_simplify(a , decimals=4 ) , [ {"score": 0.9988, "label": "cat", "box": {"xmin": 13, "ymin": 52, "xmax": 314, "ymax": 470}}, {"score": 0.9987, "label": "cat", "box": {"xmin": 345, "ymin": 23, "xmax": 640, "ymax": 368}}, ] , ) @require_torch @require_pytesseract @slow def __UpperCamelCase ( self : str ) -> Tuple: """simple docstring""" SCREAMING_SNAKE_CASE : Any = "Narsil/layoutlmv3-finetuned-funsd" SCREAMING_SNAKE_CASE : Dict = 0.9993 SCREAMING_SNAKE_CASE : str = pipeline("object-detection" , model=a , threshold=a ) SCREAMING_SNAKE_CASE : List[Any] = object_detector( "https://huggingface.co/spaces/impira/docquery/resolve/2359223c1837a7587402bda0f2643382a6eefeab/invoice.png" ) self.assertEqual( nested_simplify(a , decimals=4 ) , [ {"score": 0.9993, "label": "I-ANSWER", "box": {"xmin": 294, "ymin": 254, "xmax": 343, "ymax": 264}}, {"score": 0.9993, "label": "I-ANSWER", "box": {"xmin": 294, "ymin": 254, "xmax": 343, "ymax": 264}}, ] , )
25
1
import contextlib import copy import random from typing import Any, Dict, Iterable, Optional, Union import numpy as np import torch from .utils import deprecate, is_transformers_available if is_transformers_available(): import transformers def lowerCamelCase__ ( _a): random.seed(_a) np.random.seed(_a) torch.manual_seed(_a) torch.cuda.manual_seed_all(_a) # ^^ safe to call this function even if cuda is not available class _UpperCamelCase : '''simple docstring''' def __init__( self : List[str] , a : Iterable[torch.nn.Parameter] , a : float = 0.9999 , a : float = 0.0 , a : int = 0 , a : bool = False , a : Union[float, int] = 1.0 , a : Union[float, int] = 2 / 3 , a : Optional[Any] = None , a : Dict[str, Any] = None , **a : Dict , ) -> Tuple: """simple docstring""" if isinstance(a , torch.nn.Module ): SCREAMING_SNAKE_CASE : Optional[Any] = ( "Passing a `torch.nn.Module` to `ExponentialMovingAverage` is deprecated. " "Please pass the parameters of the module instead." ) deprecate( "passing a `torch.nn.Module` to `ExponentialMovingAverage`" , "1.0.0" , a , standard_warn=a , ) SCREAMING_SNAKE_CASE : Optional[Any] = parameters.parameters() # set use_ema_warmup to True if a torch.nn.Module is passed for backwards compatibility SCREAMING_SNAKE_CASE : Tuple = True if kwargs.get("max_value" , a ) is not None: SCREAMING_SNAKE_CASE : List[Any] = "The `max_value` argument is deprecated. Please use `decay` instead." deprecate("max_value" , "1.0.0" , a , standard_warn=a ) SCREAMING_SNAKE_CASE : str = kwargs["max_value"] if kwargs.get("min_value" , a ) is not None: SCREAMING_SNAKE_CASE : Union[str, Any] = "The `min_value` argument is deprecated. Please use `min_decay` instead." deprecate("min_value" , "1.0.0" , a , standard_warn=a ) SCREAMING_SNAKE_CASE : List[Any] = kwargs["min_value"] SCREAMING_SNAKE_CASE : Optional[int] = list(a ) SCREAMING_SNAKE_CASE : str = [p.clone().detach() for p in parameters] if kwargs.get("device" , a ) is not None: SCREAMING_SNAKE_CASE : int = "The `device` argument is deprecated. Please use `to` instead." deprecate("device" , "1.0.0" , a , standard_warn=a ) self.to(device=kwargs["device"] ) SCREAMING_SNAKE_CASE : Union[str, Any] = None SCREAMING_SNAKE_CASE : Optional[int] = decay SCREAMING_SNAKE_CASE : Tuple = min_decay SCREAMING_SNAKE_CASE : Tuple = update_after_step SCREAMING_SNAKE_CASE : Tuple = use_ema_warmup SCREAMING_SNAKE_CASE : List[Any] = inv_gamma SCREAMING_SNAKE_CASE : int = power SCREAMING_SNAKE_CASE : Optional[int] = 0 SCREAMING_SNAKE_CASE : List[Any] = None # set in `step()` SCREAMING_SNAKE_CASE : Union[str, Any] = model_cls SCREAMING_SNAKE_CASE : Dict = model_config @classmethod def __UpperCamelCase ( cls : Optional[Any] , a : Optional[int] , a : Tuple ) -> "EMAModel": """simple docstring""" SCREAMING_SNAKE_CASE ,SCREAMING_SNAKE_CASE : Tuple = model_cls.load_config(a , return_unused_kwargs=a ) SCREAMING_SNAKE_CASE : Any = model_cls.from_pretrained(a ) SCREAMING_SNAKE_CASE : Tuple = cls(model.parameters() , model_cls=a , model_config=model.config ) ema_model.load_state_dict(a ) return ema_model def __UpperCamelCase ( self : List[str] , a : Any ) -> List[Any]: """simple docstring""" if self.model_cls is None: raise ValueError("`save_pretrained` can only be used if `model_cls` was defined at __init__." ) if self.model_config is None: raise ValueError("`save_pretrained` can only be used if `model_config` was defined at __init__." ) SCREAMING_SNAKE_CASE : List[Any] = self.model_cls.from_config(self.model_config ) SCREAMING_SNAKE_CASE : List[str] = self.state_dict() state_dict.pop("shadow_params" , a ) model.register_to_config(**a ) self.copy_to(model.parameters() ) model.save_pretrained(a ) def __UpperCamelCase ( self : List[str] , a : int ) -> float: """simple docstring""" SCREAMING_SNAKE_CASE : int = max(0 , optimization_step - self.update_after_step - 1 ) if step <= 0: return 0.0 if self.use_ema_warmup: SCREAMING_SNAKE_CASE : Any = 1 - (1 + step / self.inv_gamma) ** -self.power else: SCREAMING_SNAKE_CASE : List[str] = (1 + step) / (10 + step) SCREAMING_SNAKE_CASE : Optional[Any] = min(a , self.decay ) # make sure decay is not smaller than min_decay SCREAMING_SNAKE_CASE : str = max(a , self.min_decay ) return cur_decay_value @torch.no_grad() def __UpperCamelCase ( self : Optional[int] , a : Iterable[torch.nn.Parameter] ) -> int: """simple docstring""" if isinstance(a , torch.nn.Module ): SCREAMING_SNAKE_CASE : Tuple = ( "Passing a `torch.nn.Module` to `ExponentialMovingAverage.step` is deprecated. " "Please pass the parameters of the module instead." ) deprecate( "passing a `torch.nn.Module` to `ExponentialMovingAverage.step`" , "1.0.0" , a , standard_warn=a , ) SCREAMING_SNAKE_CASE : List[Any] = parameters.parameters() SCREAMING_SNAKE_CASE : List[str] = list(a ) self.optimization_step += 1 # Compute the decay factor for the exponential moving average. SCREAMING_SNAKE_CASE : Union[str, Any] = self.get_decay(self.optimization_step ) SCREAMING_SNAKE_CASE : Any = decay SCREAMING_SNAKE_CASE : Union[str, Any] = 1 - decay SCREAMING_SNAKE_CASE : Union[str, Any] = contextlib.nullcontext if is_transformers_available() and transformers.deepspeed.is_deepspeed_zeroa_enabled(): import deepspeed for s_param, param in zip(self.shadow_params , a ): if is_transformers_available() and transformers.deepspeed.is_deepspeed_zeroa_enabled(): SCREAMING_SNAKE_CASE : List[str] = deepspeed.zero.GatheredParameters(a , modifier_rank=a ) with context_manager(): if param.requires_grad: s_param.sub_(one_minus_decay * (s_param - param) ) else: s_param.copy_(a ) def __UpperCamelCase ( self : Optional[Any] , a : Iterable[torch.nn.Parameter] ) -> None: """simple docstring""" SCREAMING_SNAKE_CASE : Any = list(a ) for s_param, param in zip(self.shadow_params , a ): param.data.copy_(s_param.to(param.device ).data ) def __UpperCamelCase ( self : List[str] , a : int=None , a : Union[str, Any]=None ) -> None: """simple docstring""" SCREAMING_SNAKE_CASE : int = [ p.to(device=a , dtype=a ) if p.is_floating_point() else p.to(device=a ) for p in self.shadow_params ] def __UpperCamelCase ( self : Dict ) -> dict: """simple docstring""" return { "decay": self.decay, "min_decay": self.min_decay, "optimization_step": self.optimization_step, "update_after_step": self.update_after_step, "use_ema_warmup": self.use_ema_warmup, "inv_gamma": self.inv_gamma, "power": self.power, "shadow_params": self.shadow_params, } def __UpperCamelCase ( self : Tuple , a : Iterable[torch.nn.Parameter] ) -> None: """simple docstring""" SCREAMING_SNAKE_CASE : Optional[int] = [param.detach().cpu().clone() for param in parameters] def __UpperCamelCase ( self : Tuple , a : Iterable[torch.nn.Parameter] ) -> None: """simple docstring""" if self.temp_stored_params is None: raise RuntimeError("This ExponentialMovingAverage has no `store()`ed weights " "to `restore()`" ) for c_param, param in zip(self.temp_stored_params , a ): param.data.copy_(c_param.data ) # Better memory-wise. SCREAMING_SNAKE_CASE : Tuple = None def __UpperCamelCase ( self : Optional[int] , a : dict ) -> None: """simple docstring""" SCREAMING_SNAKE_CASE : int = copy.deepcopy(a ) SCREAMING_SNAKE_CASE : Union[str, Any] = state_dict.get("decay" , self.decay ) if self.decay < 0.0 or self.decay > 1.0: raise ValueError("Decay must be between 0 and 1" ) SCREAMING_SNAKE_CASE : Optional[int] = state_dict.get("min_decay" , self.min_decay ) if not isinstance(self.min_decay , a ): raise ValueError("Invalid min_decay" ) SCREAMING_SNAKE_CASE : List[str] = state_dict.get("optimization_step" , self.optimization_step ) if not isinstance(self.optimization_step , a ): raise ValueError("Invalid optimization_step" ) SCREAMING_SNAKE_CASE : Dict = state_dict.get("update_after_step" , self.update_after_step ) if not isinstance(self.update_after_step , a ): raise ValueError("Invalid update_after_step" ) SCREAMING_SNAKE_CASE : List[Any] = state_dict.get("use_ema_warmup" , self.use_ema_warmup ) if not isinstance(self.use_ema_warmup , a ): raise ValueError("Invalid use_ema_warmup" ) SCREAMING_SNAKE_CASE : Union[str, Any] = state_dict.get("inv_gamma" , self.inv_gamma ) if not isinstance(self.inv_gamma , (float, int) ): raise ValueError("Invalid inv_gamma" ) SCREAMING_SNAKE_CASE : List[Any] = state_dict.get("power" , self.power ) if not isinstance(self.power , (float, int) ): raise ValueError("Invalid power" ) SCREAMING_SNAKE_CASE : Tuple = state_dict.get("shadow_params" , a ) if shadow_params is not None: SCREAMING_SNAKE_CASE : List[Any] = shadow_params if not isinstance(self.shadow_params , a ): raise ValueError("shadow_params must be a list" ) if not all(isinstance(a , torch.Tensor ) for p in self.shadow_params ): raise ValueError("shadow_params must all be Tensors" )
25
def lowerCamelCase__ ( _a): if not isinstance(_a , _a): SCREAMING_SNAKE_CASE : Tuple = f"Input value of [number={number}] must be an integer" raise TypeError(_a) if number < 0: return False SCREAMING_SNAKE_CASE : Union[str, Any] = number * number while number > 0: if number % 10 != number_square % 10: return False number //= 10 number_square //= 10 return True if __name__ == "__main__": import doctest doctest.testmod()
25
1
from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging a_ = logging.get_logger(__name__) a_ = { 'junnyu/roformer_chinese_small': 'https://huggingface.co/junnyu/roformer_chinese_small/resolve/main/config.json', 'junnyu/roformer_chinese_base': 'https://huggingface.co/junnyu/roformer_chinese_base/resolve/main/config.json', 'junnyu/roformer_chinese_char_small': ( 'https://huggingface.co/junnyu/roformer_chinese_char_small/resolve/main/config.json' ), 'junnyu/roformer_chinese_char_base': ( 'https://huggingface.co/junnyu/roformer_chinese_char_base/resolve/main/config.json' ), 'junnyu/roformer_small_discriminator': ( 'https://huggingface.co/junnyu/roformer_small_discriminator/resolve/main/config.json' ), 'junnyu/roformer_small_generator': ( 'https://huggingface.co/junnyu/roformer_small_generator/resolve/main/config.json' ), # See all RoFormer models at https://huggingface.co/models?filter=roformer } class _UpperCamelCase ( __A ): '''simple docstring''' lowerCamelCase__ ='roformer' def __init__( self : Dict , a : Any=5_0000 , a : List[Any]=None , a : str=768 , a : str=12 , a : Tuple=12 , a : Optional[Any]=3072 , a : List[str]="gelu" , a : List[Any]=0.1 , a : Union[str, Any]=0.1 , a : Tuple=1536 , a : List[str]=2 , a : Tuple=0.02 , a : Any=1e-12 , a : Optional[int]=0 , a : Union[str, Any]=False , a : int=True , **a : str , ) -> int: """simple docstring""" super().__init__(pad_token_id=a , **a ) SCREAMING_SNAKE_CASE : str = vocab_size SCREAMING_SNAKE_CASE : int = hidden_size if embedding_size is None else embedding_size SCREAMING_SNAKE_CASE : List[str] = hidden_size SCREAMING_SNAKE_CASE : Union[str, Any] = num_hidden_layers SCREAMING_SNAKE_CASE : int = num_attention_heads SCREAMING_SNAKE_CASE : Tuple = hidden_act SCREAMING_SNAKE_CASE : int = intermediate_size SCREAMING_SNAKE_CASE : Tuple = hidden_dropout_prob SCREAMING_SNAKE_CASE : int = attention_probs_dropout_prob SCREAMING_SNAKE_CASE : Optional[int] = max_position_embeddings SCREAMING_SNAKE_CASE : Any = type_vocab_size SCREAMING_SNAKE_CASE : Union[str, Any] = initializer_range SCREAMING_SNAKE_CASE : List[str] = layer_norm_eps SCREAMING_SNAKE_CASE : List[str] = rotary_value SCREAMING_SNAKE_CASE : int = use_cache class _UpperCamelCase ( __A ): '''simple docstring''' @property def __UpperCamelCase ( self : Tuple ) -> Mapping[str, Mapping[int, str]]: """simple docstring""" if self.task == "multiple-choice": SCREAMING_SNAKE_CASE : Optional[Any] = {0: "batch", 1: "choice", 2: "sequence"} else: SCREAMING_SNAKE_CASE : str = {0: "batch", 1: "sequence"} SCREAMING_SNAKE_CASE : List[Any] = {0: "batch", 1: "sequence"} return OrderedDict( [ ("input_ids", dynamic_axis), ("attention_mask", dynamic_axis), ("token_type_ids", dynamic_axis), ] )
25
import os import tempfile import unittest from transformers import DistilBertConfig, is_torch_available from transformers.testing_utils import require_torch, require_torch_gpu, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST, DistilBertForMaskedLM, DistilBertForMultipleChoice, DistilBertForQuestionAnswering, DistilBertForSequenceClassification, DistilBertForTokenClassification, DistilBertModel, ) class _UpperCamelCase ( __A ): '''simple docstring''' def __init__( self : Dict , a : Tuple , a : Any=13 , a : Any=7 , a : Union[str, Any]=True , a : List[Any]=True , a : List[str]=False , a : List[str]=True , a : Any=99 , a : str=32 , a : Any=5 , a : Optional[int]=4 , a : Union[str, Any]=37 , a : Dict="gelu" , a : List[Any]=0.1 , a : Optional[Any]=0.1 , a : List[str]=512 , a : Union[str, Any]=16 , a : str=2 , a : Dict=0.02 , a : Optional[int]=3 , a : Union[str, Any]=4 , a : int=None , ) -> Tuple: """simple docstring""" SCREAMING_SNAKE_CASE : Dict = parent SCREAMING_SNAKE_CASE : Any = batch_size SCREAMING_SNAKE_CASE : Optional[int] = seq_length SCREAMING_SNAKE_CASE : List[Any] = is_training SCREAMING_SNAKE_CASE : int = use_input_mask SCREAMING_SNAKE_CASE : Tuple = use_token_type_ids SCREAMING_SNAKE_CASE : str = use_labels SCREAMING_SNAKE_CASE : Any = vocab_size SCREAMING_SNAKE_CASE : List[Any] = hidden_size SCREAMING_SNAKE_CASE : str = num_hidden_layers SCREAMING_SNAKE_CASE : Optional[Any] = num_attention_heads SCREAMING_SNAKE_CASE : Tuple = intermediate_size SCREAMING_SNAKE_CASE : Optional[int] = hidden_act SCREAMING_SNAKE_CASE : Dict = hidden_dropout_prob SCREAMING_SNAKE_CASE : str = attention_probs_dropout_prob SCREAMING_SNAKE_CASE : Tuple = max_position_embeddings SCREAMING_SNAKE_CASE : List[str] = type_vocab_size SCREAMING_SNAKE_CASE : List[str] = type_sequence_label_size SCREAMING_SNAKE_CASE : Optional[Any] = initializer_range SCREAMING_SNAKE_CASE : Tuple = num_labels SCREAMING_SNAKE_CASE : Tuple = num_choices SCREAMING_SNAKE_CASE : Optional[Any] = scope def __UpperCamelCase ( self : Union[str, Any] ) -> List[str]: """simple docstring""" SCREAMING_SNAKE_CASE : Dict = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) SCREAMING_SNAKE_CASE : Union[str, Any] = None if self.use_input_mask: SCREAMING_SNAKE_CASE : str = random_attention_mask([self.batch_size, self.seq_length] ) SCREAMING_SNAKE_CASE : int = None SCREAMING_SNAKE_CASE : List[Any] = None SCREAMING_SNAKE_CASE : List[str] = None if self.use_labels: SCREAMING_SNAKE_CASE : Tuple = ids_tensor([self.batch_size] , self.type_sequence_label_size ) SCREAMING_SNAKE_CASE : str = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) SCREAMING_SNAKE_CASE : Optional[Any] = ids_tensor([self.batch_size] , self.num_choices ) SCREAMING_SNAKE_CASE : int = self.get_config() return config, input_ids, input_mask, sequence_labels, token_labels, choice_labels def __UpperCamelCase ( self : Dict ) -> str: """simple docstring""" return DistilBertConfig( vocab_size=self.vocab_size , dim=self.hidden_size , n_layers=self.num_hidden_layers , n_heads=self.num_attention_heads , hidden_dim=self.intermediate_size , hidden_act=self.hidden_act , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , ) def __UpperCamelCase ( self : Optional[Any] , a : int , a : Optional[int] , a : Optional[int] , a : Dict , a : str , a : str ) -> int: """simple docstring""" SCREAMING_SNAKE_CASE : int = DistilBertModel(config=a ) model.to(a ) model.eval() SCREAMING_SNAKE_CASE : Optional[Any] = model(a , a ) SCREAMING_SNAKE_CASE : Optional[Any] = model(a ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def __UpperCamelCase ( self : Tuple , a : Optional[int] , a : Dict , a : Tuple , a : int , a : int , a : Any ) -> Dict: """simple docstring""" SCREAMING_SNAKE_CASE : Optional[int] = DistilBertForMaskedLM(config=a ) model.to(a ) model.eval() SCREAMING_SNAKE_CASE : str = model(a , attention_mask=a , labels=a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def __UpperCamelCase ( self : List[Any] , a : int , a : Optional[Any] , a : Optional[Any] , a : str , a : str , a : Tuple ) -> List[Any]: """simple docstring""" SCREAMING_SNAKE_CASE : Optional[Any] = DistilBertForQuestionAnswering(config=a ) model.to(a ) model.eval() SCREAMING_SNAKE_CASE : List[str] = model( a , attention_mask=a , start_positions=a , end_positions=a ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def __UpperCamelCase ( self : Optional[int] , a : str , a : Any , a : int , a : Optional[Any] , a : int , a : str ) -> Optional[int]: """simple docstring""" SCREAMING_SNAKE_CASE : Dict = self.num_labels SCREAMING_SNAKE_CASE : Union[str, Any] = DistilBertForSequenceClassification(a ) model.to(a ) model.eval() SCREAMING_SNAKE_CASE : Optional[int] = model(a , attention_mask=a , labels=a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def __UpperCamelCase ( self : Optional[Any] , a : List[Any] , a : Optional[int] , a : Union[str, Any] , a : Dict , a : Any , a : Optional[Any] ) -> Any: """simple docstring""" SCREAMING_SNAKE_CASE : str = self.num_labels SCREAMING_SNAKE_CASE : List[str] = DistilBertForTokenClassification(config=a ) model.to(a ) model.eval() SCREAMING_SNAKE_CASE : List[str] = model(a , attention_mask=a , labels=a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def __UpperCamelCase ( self : int , a : Any , a : Optional[int] , a : Union[str, Any] , a : Tuple , a : Optional[int] , a : Tuple ) -> Dict: """simple docstring""" SCREAMING_SNAKE_CASE : List[str] = self.num_choices SCREAMING_SNAKE_CASE : Any = DistilBertForMultipleChoice(config=a ) model.to(a ) model.eval() SCREAMING_SNAKE_CASE : Optional[int] = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() SCREAMING_SNAKE_CASE : Dict = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() SCREAMING_SNAKE_CASE : Optional[Any] = model( a , attention_mask=a , labels=a , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def __UpperCamelCase ( self : Union[str, Any] ) -> Optional[int]: """simple docstring""" SCREAMING_SNAKE_CASE : Optional[Any] = self.prepare_config_and_inputs() ((SCREAMING_SNAKE_CASE) ,(SCREAMING_SNAKE_CASE) ,(SCREAMING_SNAKE_CASE) ,(SCREAMING_SNAKE_CASE) ,(SCREAMING_SNAKE_CASE) ,(SCREAMING_SNAKE_CASE)) : Tuple = config_and_inputs SCREAMING_SNAKE_CASE : int = {"input_ids": input_ids, "attention_mask": input_mask} return config, inputs_dict @require_torch class _UpperCamelCase ( __A , __A , unittest.TestCase ): '''simple docstring''' lowerCamelCase__ =( ( DistilBertModel, DistilBertForMaskedLM, DistilBertForMultipleChoice, DistilBertForQuestionAnswering, DistilBertForSequenceClassification, DistilBertForTokenClassification, ) if is_torch_available() else None ) lowerCamelCase__ =( { 'feature-extraction': DistilBertModel, 'fill-mask': DistilBertForMaskedLM, 'question-answering': DistilBertForQuestionAnswering, 'text-classification': DistilBertForSequenceClassification, 'token-classification': DistilBertForTokenClassification, 'zero-shot': DistilBertForSequenceClassification, } if is_torch_available() else {} ) lowerCamelCase__ =True lowerCamelCase__ =True lowerCamelCase__ =True lowerCamelCase__ =True def __UpperCamelCase ( self : Optional[Any] ) -> Tuple: """simple docstring""" SCREAMING_SNAKE_CASE : Dict = DistilBertModelTester(self ) SCREAMING_SNAKE_CASE : List[str] = ConfigTester(self , config_class=a , dim=37 ) def __UpperCamelCase ( self : List[Any] ) -> Tuple: """simple docstring""" self.config_tester.run_common_tests() def __UpperCamelCase ( self : Union[str, Any] ) -> List[Any]: """simple docstring""" SCREAMING_SNAKE_CASE : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_model(*a ) def __UpperCamelCase ( self : Tuple ) -> Dict: """simple docstring""" SCREAMING_SNAKE_CASE : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_masked_lm(*a ) def __UpperCamelCase ( self : List[Any] ) -> Optional[int]: """simple docstring""" SCREAMING_SNAKE_CASE : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_question_answering(*a ) def __UpperCamelCase ( self : Union[str, Any] ) -> Any: """simple docstring""" SCREAMING_SNAKE_CASE : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_sequence_classification(*a ) def __UpperCamelCase ( self : str ) -> List[Any]: """simple docstring""" SCREAMING_SNAKE_CASE : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_token_classification(*a ) def __UpperCamelCase ( self : List[Any] ) -> str: """simple docstring""" SCREAMING_SNAKE_CASE : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_multiple_choice(*a ) @slow def __UpperCamelCase ( self : int ) -> Any: """simple docstring""" for model_name in DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: SCREAMING_SNAKE_CASE : Optional[Any] = DistilBertModel.from_pretrained(a ) self.assertIsNotNone(a ) @slow @require_torch_gpu def __UpperCamelCase ( self : List[Any] ) -> Optional[Any]: """simple docstring""" SCREAMING_SNAKE_CASE ,SCREAMING_SNAKE_CASE : Dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: # BertForMultipleChoice behaves incorrectly in JIT environments. if model_class == DistilBertForMultipleChoice: return SCREAMING_SNAKE_CASE : Union[str, Any] = True SCREAMING_SNAKE_CASE : Any = model_class(config=a ) SCREAMING_SNAKE_CASE : List[Any] = self._prepare_for_class(a , a ) SCREAMING_SNAKE_CASE : Union[str, Any] = torch.jit.trace( a , (inputs_dict["input_ids"].to("cpu" ), inputs_dict["attention_mask"].to("cpu" )) ) with tempfile.TemporaryDirectory() as tmp: torch.jit.save(a , os.path.join(a , "traced_model.pt" ) ) SCREAMING_SNAKE_CASE : Tuple = torch.jit.load(os.path.join(a , "traced_model.pt" ) , map_location=a ) loaded(inputs_dict["input_ids"].to(a ) , inputs_dict["attention_mask"].to(a ) ) @require_torch class _UpperCamelCase ( unittest.TestCase ): '''simple docstring''' @slow def __UpperCamelCase ( self : int ) -> Dict: """simple docstring""" SCREAMING_SNAKE_CASE : Union[str, Any] = DistilBertModel.from_pretrained("distilbert-base-uncased" ) SCREAMING_SNAKE_CASE : List[str] = torch.tensor([[0, 345, 232, 328, 740, 140, 1695, 69, 6078, 1588, 2]] ) SCREAMING_SNAKE_CASE : Optional[int] = torch.tensor([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] ) with torch.no_grad(): SCREAMING_SNAKE_CASE : Optional[Any] = model(a , attention_mask=a )[0] SCREAMING_SNAKE_CASE : List[str] = torch.Size((1, 11, 768) ) self.assertEqual(output.shape , a ) SCREAMING_SNAKE_CASE : Union[str, Any] = torch.tensor( [[[-0.1639, 0.3299, 0.1648], [-0.1746, 0.3289, 0.1710], [-0.1884, 0.3357, 0.1810]]] ) self.assertTrue(torch.allclose(output[:, 1:4, 1:4] , a , atol=1e-4 ) )
25
1
import collections from typing import List, Optional, Union from ...tokenization_utils_base import BatchEncoding from ...utils import TensorType, add_end_docstrings, add_start_docstrings, logging from ..bert.tokenization_bert import BertTokenizer a_ = logging.get_logger(__name__) a_ = {'vocab_file': 'vocab.txt', 'tokenizer_file': 'tokenizer.json'} a_ = { 'vocab_file': { 'facebook/dpr-ctx_encoder-single-nq-base': ( 'https://huggingface.co/facebook/dpr-ctx_encoder-single-nq-base/resolve/main/vocab.txt' ), 'facebook/dpr-ctx_encoder-multiset-base': ( 'https://huggingface.co/facebook/dpr-ctx_encoder-multiset-base/resolve/main/vocab.txt' ), }, 'tokenizer_file': { 'facebook/dpr-ctx_encoder-single-nq-base': ( 'https://huggingface.co/facebook/dpr-ctx_encoder-single-nq-base/resolve/main/tokenizer.json' ), 'facebook/dpr-ctx_encoder-multiset-base': ( 'https://huggingface.co/facebook/dpr-ctx_encoder-multiset-base/resolve/main/tokenizer.json' ), }, } a_ = { 'vocab_file': { 'facebook/dpr-question_encoder-single-nq-base': ( 'https://huggingface.co/facebook/dpr-question_encoder-single-nq-base/resolve/main/vocab.txt' ), 'facebook/dpr-question_encoder-multiset-base': ( 'https://huggingface.co/facebook/dpr-question_encoder-multiset-base/resolve/main/vocab.txt' ), }, 'tokenizer_file': { 'facebook/dpr-question_encoder-single-nq-base': ( 'https://huggingface.co/facebook/dpr-question_encoder-single-nq-base/resolve/main/tokenizer.json' ), 'facebook/dpr-question_encoder-multiset-base': ( 'https://huggingface.co/facebook/dpr-question_encoder-multiset-base/resolve/main/tokenizer.json' ), }, } a_ = { 'vocab_file': { 'facebook/dpr-reader-single-nq-base': ( 'https://huggingface.co/facebook/dpr-reader-single-nq-base/resolve/main/vocab.txt' ), 'facebook/dpr-reader-multiset-base': ( 'https://huggingface.co/facebook/dpr-reader-multiset-base/resolve/main/vocab.txt' ), }, 'tokenizer_file': { 'facebook/dpr-reader-single-nq-base': ( 'https://huggingface.co/facebook/dpr-reader-single-nq-base/resolve/main/tokenizer.json' ), 'facebook/dpr-reader-multiset-base': ( 'https://huggingface.co/facebook/dpr-reader-multiset-base/resolve/main/tokenizer.json' ), }, } a_ = { 'facebook/dpr-ctx_encoder-single-nq-base': 512, 'facebook/dpr-ctx_encoder-multiset-base': 512, } a_ = { 'facebook/dpr-question_encoder-single-nq-base': 512, 'facebook/dpr-question_encoder-multiset-base': 512, } a_ = { 'facebook/dpr-reader-single-nq-base': 512, 'facebook/dpr-reader-multiset-base': 512, } a_ = { 'facebook/dpr-ctx_encoder-single-nq-base': {'do_lower_case': True}, 'facebook/dpr-ctx_encoder-multiset-base': {'do_lower_case': True}, } a_ = { 'facebook/dpr-question_encoder-single-nq-base': {'do_lower_case': True}, 'facebook/dpr-question_encoder-multiset-base': {'do_lower_case': True}, } a_ = { 'facebook/dpr-reader-single-nq-base': {'do_lower_case': True}, 'facebook/dpr-reader-multiset-base': {'do_lower_case': True}, } class _UpperCamelCase ( __A ): '''simple docstring''' lowerCamelCase__ =VOCAB_FILES_NAMES lowerCamelCase__ =CONTEXT_ENCODER_PRETRAINED_VOCAB_FILES_MAP lowerCamelCase__ =CONTEXT_ENCODER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCamelCase__ =CONTEXT_ENCODER_PRETRAINED_INIT_CONFIGURATION class _UpperCamelCase ( __A ): '''simple docstring''' lowerCamelCase__ =VOCAB_FILES_NAMES lowerCamelCase__ =QUESTION_ENCODER_PRETRAINED_VOCAB_FILES_MAP lowerCamelCase__ =QUESTION_ENCODER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCamelCase__ =QUESTION_ENCODER_PRETRAINED_INIT_CONFIGURATION a_ = collections.namedtuple( 'DPRSpanPrediction', ['span_score', 'relevance_score', 'doc_id', 'start_index', 'end_index', 'text'] ) a_ = collections.namedtuple('DPRReaderOutput', ['start_logits', 'end_logits', 'relevance_logits']) a_ = r'\n Return a dictionary with the token ids of the input strings and other information to give to `.decode_best_spans`.\n It converts the strings of a question and different passages (title and text) in a sequence of IDs (integers),\n using the tokenizer and vocabulary. The resulting `input_ids` is a matrix of size `(n_passages, sequence_length)`\n with the format:\n\n ```\n [CLS] <question token ids> [SEP] <titles ids> [SEP] <texts ids>\n ```\n\n Args:\n questions (`str` or `List[str]`):\n The questions to be encoded. You can specify one question for many passages. In this case, the question\n will be duplicated like `[questions] * n_passages`. Otherwise you have to specify as many questions as in\n `titles` or `texts`.\n titles (`str` or `List[str]`):\n The passages titles to be encoded. This can be a string or a list of strings if there are several passages.\n texts (`str` or `List[str]`):\n The passages texts to be encoded. This can be a string or a list of strings if there are several passages.\n padding (`bool`, `str` or [`~utils.PaddingStrategy`], *optional*, defaults to `False`):\n Activates and controls padding. Accepts the following values:\n\n - `True` or `\'longest\'`: Pad to the longest sequence in the batch (or no padding if only a single sequence\n if provided).\n - `\'max_length\'`: Pad to a maximum length specified with the argument `max_length` or to the maximum\n acceptable input length for the model if that argument is not provided.\n - `False` or `\'do_not_pad\'` (default): No padding (i.e., can output a batch with sequences of different\n lengths).\n truncation (`bool`, `str` or [`~tokenization_utils_base.TruncationStrategy`], *optional*, defaults to `False`):\n Activates and controls truncation. Accepts the following values:\n\n - `True` or `\'longest_first\'`: Truncate to a maximum length specified with the argument `max_length` or to\n the maximum acceptable input length for the model if that argument is not provided. This will truncate\n token by token, removing a token from the longest sequence in the pair if a pair of sequences (or a batch\n of pairs) is provided.\n - `\'only_first\'`: Truncate to a maximum length specified with the argument `max_length` or to the maximum\n acceptable input length for the model if that argument is not provided. This will only truncate the first\n sequence of a pair if a pair of sequences (or a batch of pairs) is provided.\n - `\'only_second\'`: Truncate to a maximum length specified with the argument `max_length` or to the maximum\n acceptable input length for the model if that argument is not provided. This will only truncate the\n second sequence of a pair if a pair of sequences (or a batch of pairs) is provided.\n - `False` or `\'do_not_truncate\'` (default): No truncation (i.e., can output batch with sequence lengths\n greater than the model maximum admissible input size).\n max_length (`int`, *optional*):\n Controls the maximum length to use by one of the truncation/padding parameters.\n\n If left unset or set to `None`, this will use the predefined model maximum length if a maximum length\n is required by one of the truncation/padding parameters. If the model has no specific maximum input\n length (like XLNet) truncation/padding to a maximum length will be deactivated.\n return_tensors (`str` or [`~utils.TensorType`], *optional*):\n If set, will return tensors instead of list of python integers. Acceptable values are:\n\n - `\'tf\'`: Return TensorFlow `tf.constant` objects.\n - `\'pt\'`: Return PyTorch `torch.Tensor` objects.\n - `\'np\'`: Return Numpy `np.ndarray` objects.\n return_attention_mask (`bool`, *optional*):\n Whether or not to return the attention mask. If not set, will return the attention mask according to the\n specific tokenizer\'s default, defined by the `return_outputs` attribute.\n\n [What are attention masks?](../glossary#attention-mask)\n\n Returns:\n `Dict[str, List[List[int]]]`: A dictionary with the following keys:\n\n - `input_ids`: List of token ids to be fed to a model.\n - `attention_mask`: List of indices specifying which tokens should be attended to by the model.\n ' @add_start_docstrings(__A ) class _UpperCamelCase : '''simple docstring''' def __call__( self : Union[str, Any] , a : str , a : Optional[str] = None , a : Optional[str] = None , a : Union[bool, str] = False , a : Union[bool, str] = False , a : Optional[int] = None , a : Optional[Union[str, TensorType]] = None , a : Optional[bool] = None , **a : Any , ) -> BatchEncoding: """simple docstring""" if titles is None and texts is None: return super().__call__( a , padding=a , truncation=a , max_length=a , return_tensors=a , return_attention_mask=a , **a , ) elif titles is None or texts is None: SCREAMING_SNAKE_CASE : Tuple = titles if texts is None else texts return super().__call__( a , a , padding=a , truncation=a , max_length=a , return_tensors=a , return_attention_mask=a , **a , ) SCREAMING_SNAKE_CASE : Dict = titles if not isinstance(a , a ) else [titles] SCREAMING_SNAKE_CASE : Optional[int] = texts if not isinstance(a , a ) else [texts] SCREAMING_SNAKE_CASE : str = len(a ) SCREAMING_SNAKE_CASE : Optional[Any] = questions if not isinstance(a , a ) else [questions] * n_passages if len(a ) != len(a ): raise ValueError( F"There should be as many titles than texts but got {len(a )} titles and {len(a )} texts." ) SCREAMING_SNAKE_CASE : Tuple = super().__call__(a , a , padding=a , truncation=a )["input_ids"] SCREAMING_SNAKE_CASE : Optional[int] = super().__call__(a , add_special_tokens=a , padding=a , truncation=a )["input_ids"] SCREAMING_SNAKE_CASE : int = { "input_ids": [ (encoded_question_and_title + encoded_text)[:max_length] if max_length is not None and truncation else encoded_question_and_title + encoded_text for encoded_question_and_title, encoded_text in zip(a , a ) ] } if return_attention_mask is not False: SCREAMING_SNAKE_CASE : Optional[Any] = [] for input_ids in encoded_inputs["input_ids"]: attention_mask.append([int(input_id != self.pad_token_id ) for input_id in input_ids] ) SCREAMING_SNAKE_CASE : Dict = attention_mask return self.pad(a , padding=a , max_length=a , return_tensors=a ) def __UpperCamelCase ( self : List[str] , a : BatchEncoding , a : DPRReaderOutput , a : int = 16 , a : int = 64 , a : int = 4 , ) -> List[DPRSpanPrediction]: """simple docstring""" SCREAMING_SNAKE_CASE : Union[str, Any] = reader_input["input_ids"] SCREAMING_SNAKE_CASE ,SCREAMING_SNAKE_CASE ,SCREAMING_SNAKE_CASE : List[Any] = reader_output[:3] SCREAMING_SNAKE_CASE : Any = len(a ) SCREAMING_SNAKE_CASE : Any = sorted(range(a ) , reverse=a , key=relevance_logits.__getitem__ ) SCREAMING_SNAKE_CASE : List[DPRReaderOutput] = [] for doc_id in sorted_docs: SCREAMING_SNAKE_CASE : Union[str, Any] = list(input_ids[doc_id] ) # assuming question & title information is at the beginning of the sequence SCREAMING_SNAKE_CASE : Tuple = sequence_ids.index(self.sep_token_id , 2 ) + 1 # second sep id if sequence_ids[-1] == self.pad_token_id: SCREAMING_SNAKE_CASE : Union[str, Any] = sequence_ids.index(self.pad_token_id ) else: SCREAMING_SNAKE_CASE : Optional[int] = len(a ) SCREAMING_SNAKE_CASE : Union[str, Any] = self._get_best_spans( start_logits=start_logits[doc_id][passage_offset:sequence_len] , end_logits=end_logits[doc_id][passage_offset:sequence_len] , max_answer_length=a , top_spans=a , ) for start_index, end_index in best_spans: start_index += passage_offset end_index += passage_offset nbest_spans_predictions.append( DPRSpanPrediction( span_score=start_logits[doc_id][start_index] + end_logits[doc_id][end_index] , relevance_score=relevance_logits[doc_id] , doc_id=a , start_index=a , end_index=a , text=self.decode(sequence_ids[start_index : end_index + 1] ) , ) ) if len(a ) >= num_spans: break return nbest_spans_predictions[:num_spans] def __UpperCamelCase ( self : str , a : List[int] , a : List[int] , a : int , a : int , ) -> List[DPRSpanPrediction]: """simple docstring""" SCREAMING_SNAKE_CASE : Tuple = [] for start_index, start_score in enumerate(a ): for answer_length, end_score in enumerate(end_logits[start_index : start_index + max_answer_length] ): scores.append(((start_index, start_index + answer_length), start_score + end_score) ) SCREAMING_SNAKE_CASE : Tuple = sorted(a , key=lambda a : x[1] , reverse=a ) SCREAMING_SNAKE_CASE : str = [] for (start_index, end_index), score in scores: if start_index > end_index: raise ValueError(F"Wrong span indices: [{start_index}:{end_index}]" ) SCREAMING_SNAKE_CASE : int = end_index - start_index + 1 if length > max_answer_length: raise ValueError(F"Span is too long: {length} > {max_answer_length}" ) if any( start_index <= prev_start_index <= prev_end_index <= end_index or prev_start_index <= start_index <= end_index <= prev_end_index for (prev_start_index, prev_end_index) in chosen_span_intervals ): continue chosen_span_intervals.append((start_index, end_index) ) if len(a ) == top_spans: break return chosen_span_intervals @add_end_docstrings(__A ) class _UpperCamelCase ( __A , __A ): '''simple docstring''' lowerCamelCase__ =VOCAB_FILES_NAMES lowerCamelCase__ =READER_PRETRAINED_VOCAB_FILES_MAP lowerCamelCase__ =READER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCamelCase__ =READER_PRETRAINED_INIT_CONFIGURATION lowerCamelCase__ =['input_ids', 'attention_mask']
25
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tokenizers_available, is_torch_available, ) a_ = {'configuration_plbart': ['PLBART_PRETRAINED_CONFIG_ARCHIVE_MAP', 'PLBartConfig']} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a_ = ['PLBartTokenizer'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a_ = [ 'PLBART_PRETRAINED_MODEL_ARCHIVE_LIST', 'PLBartForCausalLM', 'PLBartForConditionalGeneration', 'PLBartForSequenceClassification', 'PLBartModel', 'PLBartPreTrainedModel', ] if TYPE_CHECKING: from .configuration_plbart import PLBART_PRETRAINED_CONFIG_ARCHIVE_MAP, PLBartConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_plbart import PLBartTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_plbart import ( PLBART_PRETRAINED_MODEL_ARCHIVE_LIST, PLBartForCausalLM, PLBartForConditionalGeneration, PLBartForSequenceClassification, PLBartModel, PLBartPreTrainedModel, ) else: import sys a_ = _LazyModule(__name__, globals()['__file__'], _import_structure)
25
1
import math import sys def lowerCamelCase__ ( _a): if number != int(_a): raise ValueError("the value of input must be a natural number") if number < 0: raise ValueError("the value of input must not be a negative number") if number == 0: return 1 SCREAMING_SNAKE_CASE : List[str] = [-1] * (number + 1) SCREAMING_SNAKE_CASE : Optional[int] = 0 for i in range(1 , number + 1): SCREAMING_SNAKE_CASE : str = sys.maxsize SCREAMING_SNAKE_CASE : Dict = int(math.sqrt(_a)) for j in range(1 , root + 1): SCREAMING_SNAKE_CASE : Tuple = 1 + answers[i - (j**2)] SCREAMING_SNAKE_CASE : int = min(_a , _a) SCREAMING_SNAKE_CASE : List[str] = answer return answers[number] if __name__ == "__main__": import doctest doctest.testmod()
25
import unittest import numpy as np import torch from diffusers import KarrasVePipeline, KarrasVeScheduler, UNetaDModel from diffusers.utils.testing_utils import enable_full_determinism, require_torch, slow, torch_device enable_full_determinism() class _UpperCamelCase ( unittest.TestCase ): '''simple docstring''' @property def __UpperCamelCase ( self : List[str] ) -> Union[str, Any]: """simple docstring""" torch.manual_seed(0 ) SCREAMING_SNAKE_CASE : str = UNetaDModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=3 , out_channels=3 , down_block_types=("DownBlock2D", "AttnDownBlock2D") , up_block_types=("AttnUpBlock2D", "UpBlock2D") , ) return model def __UpperCamelCase ( self : Union[str, Any] ) -> Dict: """simple docstring""" SCREAMING_SNAKE_CASE : Union[str, Any] = self.dummy_uncond_unet SCREAMING_SNAKE_CASE : Union[str, Any] = KarrasVeScheduler() SCREAMING_SNAKE_CASE : Any = KarrasVePipeline(unet=a , scheduler=a ) pipe.to(a ) pipe.set_progress_bar_config(disable=a ) SCREAMING_SNAKE_CASE : Any = torch.manual_seed(0 ) SCREAMING_SNAKE_CASE : Optional[Any] = pipe(num_inference_steps=2 , generator=a , output_type="numpy" ).images SCREAMING_SNAKE_CASE : List[str] = torch.manual_seed(0 ) SCREAMING_SNAKE_CASE : List[Any] = pipe(num_inference_steps=2 , generator=a , output_type="numpy" , return_dict=a )[0] SCREAMING_SNAKE_CASE : List[Any] = image[0, -3:, -3:, -1] SCREAMING_SNAKE_CASE : Any = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) SCREAMING_SNAKE_CASE : str = np.array([0.0, 1.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2 @slow @require_torch class _UpperCamelCase ( unittest.TestCase ): '''simple docstring''' def __UpperCamelCase ( self : int ) -> Tuple: """simple docstring""" SCREAMING_SNAKE_CASE : Dict = "google/ncsnpp-celebahq-256" SCREAMING_SNAKE_CASE : List[Any] = UNetaDModel.from_pretrained(a ) SCREAMING_SNAKE_CASE : Any = KarrasVeScheduler() SCREAMING_SNAKE_CASE : Optional[Any] = KarrasVePipeline(unet=a , scheduler=a ) pipe.to(a ) pipe.set_progress_bar_config(disable=a ) SCREAMING_SNAKE_CASE : Union[str, Any] = torch.manual_seed(0 ) SCREAMING_SNAKE_CASE : Any = pipe(num_inference_steps=20 , generator=a , output_type="numpy" ).images SCREAMING_SNAKE_CASE : List[str] = image[0, -3:, -3:, -1] assert image.shape == (1, 256, 256, 3) SCREAMING_SNAKE_CASE : str = np.array([0.578, 0.5811, 0.5924, 0.5809, 0.587, 0.5886, 0.5861, 0.5802, 0.586] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
25
1
import inspect import unittest from transformers import MobileViTConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import MobileViTForImageClassification, MobileViTForSemanticSegmentation, MobileViTModel from transformers.models.mobilevit.modeling_mobilevit import MOBILEVIT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import MobileViTImageProcessor class _UpperCamelCase ( __A ): '''simple docstring''' def __UpperCamelCase ( self : List[str] ) -> Dict: """simple docstring""" SCREAMING_SNAKE_CASE : Optional[int] = self.config_class(**self.inputs_dict ) self.parent.assertTrue(hasattr(a , "hidden_sizes" ) ) self.parent.assertTrue(hasattr(a , "neck_hidden_sizes" ) ) self.parent.assertTrue(hasattr(a , "num_attention_heads" ) ) class _UpperCamelCase : '''simple docstring''' def __init__( self : int , a : str , a : Union[str, Any]=13 , a : Dict=32 , a : Optional[Any]=2 , a : str=3 , a : Optional[Any]=640 , a : List[str]=4 , a : Optional[int]="silu" , a : Optional[int]=3 , a : str=32 , a : List[Any]=0.1 , a : Optional[Any]=0.1 , a : Optional[int]=0.1 , a : Any=0.02 , a : int=True , a : Dict=True , a : Dict=10 , a : Optional[int]=None , ) -> Dict: """simple docstring""" SCREAMING_SNAKE_CASE : Dict = parent SCREAMING_SNAKE_CASE : Union[str, Any] = batch_size SCREAMING_SNAKE_CASE : Any = image_size SCREAMING_SNAKE_CASE : Dict = patch_size SCREAMING_SNAKE_CASE : Optional[Any] = num_channels SCREAMING_SNAKE_CASE : int = last_hidden_size SCREAMING_SNAKE_CASE : str = num_attention_heads SCREAMING_SNAKE_CASE : Tuple = hidden_act SCREAMING_SNAKE_CASE : Tuple = conv_kernel_size SCREAMING_SNAKE_CASE : List[Any] = output_stride SCREAMING_SNAKE_CASE : List[str] = hidden_dropout_prob SCREAMING_SNAKE_CASE : List[str] = attention_probs_dropout_prob SCREAMING_SNAKE_CASE : List[Any] = classifier_dropout_prob SCREAMING_SNAKE_CASE : Optional[int] = use_labels SCREAMING_SNAKE_CASE : Optional[int] = is_training SCREAMING_SNAKE_CASE : Any = num_labels SCREAMING_SNAKE_CASE : Dict = initializer_range SCREAMING_SNAKE_CASE : List[Any] = scope def __UpperCamelCase ( self : Dict ) -> Optional[Any]: """simple docstring""" SCREAMING_SNAKE_CASE : Optional[Any] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) SCREAMING_SNAKE_CASE : Any = None SCREAMING_SNAKE_CASE : Any = None if self.use_labels: SCREAMING_SNAKE_CASE : Dict = ids_tensor([self.batch_size] , self.num_labels ) SCREAMING_SNAKE_CASE : Optional[int] = ids_tensor([self.batch_size, self.image_size, self.image_size] , self.num_labels ) SCREAMING_SNAKE_CASE : List[str] = self.get_config() return config, pixel_values, labels, pixel_labels def __UpperCamelCase ( self : Optional[Any] ) -> Optional[Any]: """simple docstring""" return MobileViTConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , num_attention_heads=self.num_attention_heads , hidden_act=self.hidden_act , conv_kernel_size=self.conv_kernel_size , output_stride=self.output_stride , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , classifier_dropout_prob=self.classifier_dropout_prob , initializer_range=self.initializer_range , ) def __UpperCamelCase ( self : Optional[Any] , a : Optional[Any] , a : Optional[int] , a : Optional[int] , a : Tuple ) -> Any: """simple docstring""" SCREAMING_SNAKE_CASE : Optional[int] = MobileViTModel(config=a ) model.to(a ) model.eval() SCREAMING_SNAKE_CASE : Optional[Any] = model(a ) self.parent.assertEqual( result.last_hidden_state.shape , ( self.batch_size, self.last_hidden_size, self.image_size // self.output_stride, self.image_size // self.output_stride, ) , ) def __UpperCamelCase ( self : Any , a : Tuple , a : Any , a : List[Any] , a : Union[str, Any] ) -> Tuple: """simple docstring""" SCREAMING_SNAKE_CASE : str = self.num_labels SCREAMING_SNAKE_CASE : Union[str, Any] = MobileViTForImageClassification(a ) model.to(a ) model.eval() SCREAMING_SNAKE_CASE : Optional[int] = model(a , labels=a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def __UpperCamelCase ( self : Optional[int] , a : List[str] , a : Tuple , a : Optional[int] , a : Dict ) -> int: """simple docstring""" SCREAMING_SNAKE_CASE : Union[str, Any] = self.num_labels SCREAMING_SNAKE_CASE : Union[str, Any] = MobileViTForSemanticSegmentation(a ) model.to(a ) model.eval() SCREAMING_SNAKE_CASE : Tuple = model(a ) self.parent.assertEqual( result.logits.shape , ( self.batch_size, self.num_labels, self.image_size // self.output_stride, self.image_size // self.output_stride, ) , ) SCREAMING_SNAKE_CASE : Tuple = model(a , labels=a ) self.parent.assertEqual( result.logits.shape , ( self.batch_size, self.num_labels, self.image_size // self.output_stride, self.image_size // self.output_stride, ) , ) def __UpperCamelCase ( self : Union[str, Any] ) -> Optional[Any]: """simple docstring""" SCREAMING_SNAKE_CASE : int = self.prepare_config_and_inputs() SCREAMING_SNAKE_CASE ,SCREAMING_SNAKE_CASE ,SCREAMING_SNAKE_CASE ,SCREAMING_SNAKE_CASE : List[str] = config_and_inputs SCREAMING_SNAKE_CASE : Any = {"pixel_values": pixel_values} return config, inputs_dict @require_torch class _UpperCamelCase ( __A , __A , unittest.TestCase ): '''simple docstring''' lowerCamelCase__ =( (MobileViTModel, MobileViTForImageClassification, MobileViTForSemanticSegmentation) if is_torch_available() else () ) lowerCamelCase__ =( { 'feature-extraction': MobileViTModel, 'image-classification': MobileViTForImageClassification, 'image-segmentation': MobileViTForSemanticSegmentation, } if is_torch_available() else {} ) lowerCamelCase__ =False lowerCamelCase__ =False lowerCamelCase__ =False lowerCamelCase__ =False def __UpperCamelCase ( self : str ) -> List[Any]: """simple docstring""" SCREAMING_SNAKE_CASE : Optional[int] = MobileViTModelTester(self ) SCREAMING_SNAKE_CASE : Tuple = MobileViTConfigTester(self , config_class=a , has_text_modality=a ) def __UpperCamelCase ( self : Tuple ) -> Dict: """simple docstring""" self.config_tester.run_common_tests() @unittest.skip(reason="MobileViT does not use inputs_embeds" ) def __UpperCamelCase ( self : List[Any] ) -> int: """simple docstring""" pass @unittest.skip(reason="MobileViT does not support input and output embeddings" ) def __UpperCamelCase ( self : Any ) -> Tuple: """simple docstring""" pass @unittest.skip(reason="MobileViT does not output attentions" ) def __UpperCamelCase ( self : Union[str, Any] ) -> str: """simple docstring""" pass def __UpperCamelCase ( self : Any ) -> List[Any]: """simple docstring""" SCREAMING_SNAKE_CASE ,SCREAMING_SNAKE_CASE : Dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: SCREAMING_SNAKE_CASE : Tuple = model_class(a ) SCREAMING_SNAKE_CASE : str = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic SCREAMING_SNAKE_CASE : Dict = [*signature.parameters.keys()] SCREAMING_SNAKE_CASE : Union[str, Any] = ["pixel_values"] self.assertListEqual(arg_names[:1] , a ) @unittest.skip("Will be fixed soon by reducing the size of the model used for common tests." ) def __UpperCamelCase ( self : Optional[Any] ) -> str: """simple docstring""" pass def __UpperCamelCase ( self : Tuple ) -> List[str]: """simple docstring""" SCREAMING_SNAKE_CASE : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*a ) def __UpperCamelCase ( self : str ) -> Tuple: """simple docstring""" def check_hidden_states_output(a : Tuple , a : Tuple , a : Optional[Any] ): SCREAMING_SNAKE_CASE : str = model_class(a ) model.to(a ) model.eval() with torch.no_grad(): SCREAMING_SNAKE_CASE : List[Any] = model(**self._prepare_for_class(a , a ) ) SCREAMING_SNAKE_CASE : List[str] = outputs.hidden_states SCREAMING_SNAKE_CASE : Optional[Any] = 5 self.assertEqual(len(a ) , a ) # MobileViT's feature maps are of shape (batch_size, num_channels, height, width) # with the width and height being successively divided by 2. SCREAMING_SNAKE_CASE : Union[str, Any] = 2 for i in range(len(a ) ): self.assertListEqual( list(hidden_states[i].shape[-2:] ) , [self.model_tester.image_size // divisor, self.model_tester.image_size // divisor] , ) divisor *= 2 self.assertEqual(self.model_tester.output_stride , divisor // 2 ) SCREAMING_SNAKE_CASE ,SCREAMING_SNAKE_CASE : Tuple = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: SCREAMING_SNAKE_CASE : Dict = True check_hidden_states_output(a , a , a ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] SCREAMING_SNAKE_CASE : List[Any] = True check_hidden_states_output(a , a , a ) def __UpperCamelCase ( self : Tuple ) -> int: """simple docstring""" SCREAMING_SNAKE_CASE : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*a ) def __UpperCamelCase ( self : str ) -> Tuple: """simple docstring""" SCREAMING_SNAKE_CASE : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_semantic_segmentation(*a ) @slow def __UpperCamelCase ( self : Optional[Any] ) -> List[Any]: """simple docstring""" for model_name in MOBILEVIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: SCREAMING_SNAKE_CASE : List[Any] = MobileViTModel.from_pretrained(a ) self.assertIsNotNone(a ) def lowerCamelCase__ ( ): SCREAMING_SNAKE_CASE : Tuple = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png") return image @require_torch @require_vision class _UpperCamelCase ( unittest.TestCase ): '''simple docstring''' @cached_property def __UpperCamelCase ( self : str ) -> List[Any]: """simple docstring""" return MobileViTImageProcessor.from_pretrained("apple/mobilevit-xx-small" ) if is_vision_available() else None @slow def __UpperCamelCase ( self : Dict ) -> Tuple: """simple docstring""" SCREAMING_SNAKE_CASE : int = MobileViTForImageClassification.from_pretrained("apple/mobilevit-xx-small" ).to(a ) SCREAMING_SNAKE_CASE : Dict = self.default_image_processor SCREAMING_SNAKE_CASE : List[Any] = prepare_img() SCREAMING_SNAKE_CASE : str = image_processor(images=a , return_tensors="pt" ).to(a ) # forward pass with torch.no_grad(): SCREAMING_SNAKE_CASE : List[str] = model(**a ) # verify the logits SCREAMING_SNAKE_CASE : Tuple = torch.Size((1, 1000) ) self.assertEqual(outputs.logits.shape , a ) SCREAMING_SNAKE_CASE : Union[str, Any] = torch.tensor([-1.9364, -1.2327, -0.4653] ).to(a ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , a , atol=1e-4 ) ) @slow def __UpperCamelCase ( self : int ) -> Dict: """simple docstring""" SCREAMING_SNAKE_CASE : List[Any] = MobileViTForSemanticSegmentation.from_pretrained("apple/deeplabv3-mobilevit-xx-small" ) SCREAMING_SNAKE_CASE : Optional[int] = model.to(a ) SCREAMING_SNAKE_CASE : Union[str, Any] = MobileViTImageProcessor.from_pretrained("apple/deeplabv3-mobilevit-xx-small" ) SCREAMING_SNAKE_CASE : Tuple = prepare_img() SCREAMING_SNAKE_CASE : Tuple = image_processor(images=a , return_tensors="pt" ).to(a ) # forward pass with torch.no_grad(): SCREAMING_SNAKE_CASE : Optional[int] = model(**a ) SCREAMING_SNAKE_CASE : Optional[int] = outputs.logits # verify the logits SCREAMING_SNAKE_CASE : List[Any] = torch.Size((1, 21, 32, 32) ) self.assertEqual(logits.shape , a ) SCREAMING_SNAKE_CASE : Any = torch.tensor( [ [[6.9713, 6.9786, 7.2422], [7.2893, 7.2825, 7.4446], [7.6580, 7.8797, 7.9420]], [[-10.6869, -10.3250, -10.3471], [-10.4228, -9.9868, -9.7132], [-11.0405, -11.0221, -10.7318]], [[-3.3089, -2.8539, -2.6740], [-3.2706, -2.5621, -2.5108], [-3.2534, -2.6615, -2.6651]], ] , device=a , ) self.assertTrue(torch.allclose(logits[0, :3, :3, :3] , a , atol=1e-4 ) ) @slow def __UpperCamelCase ( self : Dict ) -> List[str]: """simple docstring""" SCREAMING_SNAKE_CASE : Optional[int] = MobileViTForSemanticSegmentation.from_pretrained("apple/deeplabv3-mobilevit-xx-small" ) SCREAMING_SNAKE_CASE : List[str] = model.to(a ) SCREAMING_SNAKE_CASE : Dict = MobileViTImageProcessor.from_pretrained("apple/deeplabv3-mobilevit-xx-small" ) SCREAMING_SNAKE_CASE : Optional[int] = prepare_img() SCREAMING_SNAKE_CASE : List[str] = image_processor(images=a , return_tensors="pt" ).to(a ) # forward pass with torch.no_grad(): SCREAMING_SNAKE_CASE : Optional[int] = model(**a ) SCREAMING_SNAKE_CASE : int = outputs.logits.detach().cpu() SCREAMING_SNAKE_CASE : int = image_processor.post_process_semantic_segmentation(outputs=a , target_sizes=[(50, 60)] ) SCREAMING_SNAKE_CASE : List[str] = torch.Size((50, 60) ) self.assertEqual(segmentation[0].shape , a ) SCREAMING_SNAKE_CASE : int = image_processor.post_process_semantic_segmentation(outputs=a ) SCREAMING_SNAKE_CASE : Tuple = torch.Size((32, 32) ) self.assertEqual(segmentation[0].shape , a )
25
def lowerCamelCase__ ( _a , _a): SCREAMING_SNAKE_CASE : Optional[int] = 0 while b > 0: if b & 1: res += a a += a b >>= 1 return res def lowerCamelCase__ ( _a , _a , _a): SCREAMING_SNAKE_CASE : Optional[int] = 0 while b > 0: if b & 1: SCREAMING_SNAKE_CASE : Optional[Any] = ((res % c) + (a % c)) % c a += a b >>= 1 return res
25
1
import json import os from functools import lru_cache from typing import List, Optional, Tuple import regex as re from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging a_ = logging.get_logger(__name__) a_ = {'vocab_file': 'vocab.json', 'merges_file': 'merges.txt'} # See all BART models at https://huggingface.co/models?filter=bart a_ = { 'vocab_file': { 'facebook/bart-base': 'https://huggingface.co/facebook/bart-base/resolve/main/vocab.json', 'facebook/bart-large': 'https://huggingface.co/facebook/bart-large/resolve/main/vocab.json', 'facebook/bart-large-mnli': 'https://huggingface.co/facebook/bart-large-mnli/resolve/main/vocab.json', 'facebook/bart-large-cnn': 'https://huggingface.co/facebook/bart-large-cnn/resolve/main/vocab.json', 'facebook/bart-large-xsum': 'https://huggingface.co/facebook/bart-large-xsum/resolve/main/vocab.json', 'yjernite/bart_eli5': 'https://huggingface.co/yjernite/bart_eli5/resolve/main/vocab.json', }, 'merges_file': { 'facebook/bart-base': 'https://huggingface.co/facebook/bart-base/resolve/main/merges.txt', 'facebook/bart-large': 'https://huggingface.co/facebook/bart-large/resolve/main/merges.txt', 'facebook/bart-large-mnli': 'https://huggingface.co/facebook/bart-large-mnli/resolve/main/merges.txt', 'facebook/bart-large-cnn': 'https://huggingface.co/facebook/bart-large-cnn/resolve/main/merges.txt', 'facebook/bart-large-xsum': 'https://huggingface.co/facebook/bart-large-xsum/resolve/main/merges.txt', 'yjernite/bart_eli5': 'https://huggingface.co/yjernite/bart_eli5/resolve/main/merges.txt', }, } a_ = { 'facebook/bart-base': 1024, 'facebook/bart-large': 1024, 'facebook/bart-large-mnli': 1024, 'facebook/bart-large-cnn': 1024, 'facebook/bart-large-xsum': 1024, 'yjernite/bart_eli5': 1024, } @lru_cache() def lowerCamelCase__ ( ): SCREAMING_SNAKE_CASE : int = ( list(range(ord("!") , ord("~") + 1)) + list(range(ord("¡") , ord("¬") + 1)) + list(range(ord("®") , ord("ÿ") + 1)) ) SCREAMING_SNAKE_CASE : Union[str, Any] = bs[:] SCREAMING_SNAKE_CASE : List[str] = 0 for b in range(2**8): if b not in bs: bs.append(_a) cs.append(2**8 + n) n += 1 SCREAMING_SNAKE_CASE : Any = [chr(_a) for n in cs] return dict(zip(_a , _a)) def lowerCamelCase__ ( _a): SCREAMING_SNAKE_CASE : str = set() SCREAMING_SNAKE_CASE : str = word[0] for char in word[1:]: pairs.add((prev_char, char)) SCREAMING_SNAKE_CASE : Any = char return pairs class _UpperCamelCase ( __A ): '''simple docstring''' lowerCamelCase__ =VOCAB_FILES_NAMES lowerCamelCase__ =PRETRAINED_VOCAB_FILES_MAP lowerCamelCase__ =PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCamelCase__ =['input_ids', 'attention_mask'] def __init__( self : List[str] , a : int , a : str , a : str="replace" , a : Tuple="<s>" , a : int="</s>" , a : Any="</s>" , a : Any="<s>" , a : List[str]="<unk>" , a : List[Any]="<pad>" , a : List[str]="<mask>" , a : Union[str, Any]=False , **a : Any , ) -> int: """simple docstring""" SCREAMING_SNAKE_CASE : List[str] = AddedToken(a , lstrip=a , rstrip=a ) if isinstance(a , a ) else bos_token SCREAMING_SNAKE_CASE : Tuple = AddedToken(a , lstrip=a , rstrip=a ) if isinstance(a , a ) else eos_token SCREAMING_SNAKE_CASE : Union[str, Any] = AddedToken(a , lstrip=a , rstrip=a ) if isinstance(a , a ) else sep_token SCREAMING_SNAKE_CASE : Optional[Any] = AddedToken(a , lstrip=a , rstrip=a ) if isinstance(a , a ) else cls_token SCREAMING_SNAKE_CASE : str = AddedToken(a , lstrip=a , rstrip=a ) if isinstance(a , a ) else unk_token SCREAMING_SNAKE_CASE : Optional[Any] = AddedToken(a , lstrip=a , rstrip=a ) if isinstance(a , a ) else pad_token # Mask token behave like a normal word, i.e. include the space before it SCREAMING_SNAKE_CASE : Union[str, Any] = AddedToken(a , lstrip=a , rstrip=a ) if isinstance(a , a ) else mask_token super().__init__( errors=a , bos_token=a , eos_token=a , unk_token=a , sep_token=a , cls_token=a , pad_token=a , mask_token=a , add_prefix_space=a , **a , ) with open(a , encoding="utf-8" ) as vocab_handle: SCREAMING_SNAKE_CASE : int = json.load(a ) SCREAMING_SNAKE_CASE : str = {v: k for k, v in self.encoder.items()} SCREAMING_SNAKE_CASE : Optional[Any] = errors # how to handle errors in decoding SCREAMING_SNAKE_CASE : Optional[int] = bytes_to_unicode() SCREAMING_SNAKE_CASE : str = {v: k for k, v in self.byte_encoder.items()} with open(a , encoding="utf-8" ) as merges_handle: SCREAMING_SNAKE_CASE : Tuple = merges_handle.read().split("\n" )[1:-1] SCREAMING_SNAKE_CASE : Optional[Any] = [tuple(merge.split() ) for merge in bpe_merges] SCREAMING_SNAKE_CASE : Union[str, Any] = dict(zip(a , range(len(a ) ) ) ) SCREAMING_SNAKE_CASE : Optional[int] = {} SCREAMING_SNAKE_CASE : Dict = add_prefix_space # Should have added re.IGNORECASE so BPE merges can happen for capitalized versions of contractions SCREAMING_SNAKE_CASE : Tuple = re.compile(R"'s|'t|'re|'ve|'m|'ll|'d| ?\p{L}+| ?\p{N}+| ?[^\s\p{L}\p{N}]+|\s+(?!\S)|\s+" ) @property def __UpperCamelCase ( self : int ) -> List[Any]: """simple docstring""" return len(self.encoder ) def __UpperCamelCase ( self : str ) -> Optional[Any]: """simple docstring""" return dict(self.encoder , **self.added_tokens_encoder ) def __UpperCamelCase ( self : Dict , a : Optional[Any] ) -> Optional[Any]: """simple docstring""" if token in self.cache: return self.cache[token] SCREAMING_SNAKE_CASE : int = tuple(a ) SCREAMING_SNAKE_CASE : Optional[Any] = get_pairs(a ) if not pairs: return token while True: SCREAMING_SNAKE_CASE : Optional[Any] = min(a , key=lambda a : self.bpe_ranks.get(a , float("inf" ) ) ) if bigram not in self.bpe_ranks: break SCREAMING_SNAKE_CASE ,SCREAMING_SNAKE_CASE : Optional[int] = bigram SCREAMING_SNAKE_CASE : Optional[Any] = [] SCREAMING_SNAKE_CASE : Any = 0 while i < len(a ): try: SCREAMING_SNAKE_CASE : List[Any] = word.index(a , a ) except ValueError: new_word.extend(word[i:] ) break else: new_word.extend(word[i:j] ) SCREAMING_SNAKE_CASE : Tuple = j if word[i] == first and i < len(a ) - 1 and word[i + 1] == second: new_word.append(first + second ) i += 2 else: new_word.append(word[i] ) i += 1 SCREAMING_SNAKE_CASE : Optional[Any] = tuple(a ) SCREAMING_SNAKE_CASE : Tuple = new_word if len(a ) == 1: break else: SCREAMING_SNAKE_CASE : str = get_pairs(a ) SCREAMING_SNAKE_CASE : str = " ".join(a ) SCREAMING_SNAKE_CASE : List[str] = word return word def __UpperCamelCase ( self : Any , a : Tuple ) -> Union[str, Any]: """simple docstring""" SCREAMING_SNAKE_CASE : List[Any] = [] for token in re.findall(self.pat , a ): SCREAMING_SNAKE_CASE : int = "".join( self.byte_encoder[b] for b in token.encode("utf-8" ) ) # Maps all our bytes to unicode strings, avoiding control tokens of the BPE (spaces in our case) bpe_tokens.extend(bpe_token for bpe_token in self.bpe(a ).split(" " ) ) return bpe_tokens def __UpperCamelCase ( self : Tuple , a : Any ) -> str: """simple docstring""" return self.encoder.get(a , self.encoder.get(self.unk_token ) ) def __UpperCamelCase ( self : List[str] , a : List[str] ) -> Union[str, Any]: """simple docstring""" return self.decoder.get(a ) def __UpperCamelCase ( self : List[str] , a : List[Any] ) -> Optional[int]: """simple docstring""" SCREAMING_SNAKE_CASE : Dict = "".join(a ) SCREAMING_SNAKE_CASE : Union[str, Any] = bytearray([self.byte_decoder[c] for c in text] ).decode("utf-8" , errors=self.errors ) return text def __UpperCamelCase ( self : Union[str, Any] , a : str , a : Optional[str] = None ) -> Tuple[str]: """simple docstring""" if not os.path.isdir(a ): logger.error(F"Vocabulary path ({save_directory}) should be a directory" ) return SCREAMING_SNAKE_CASE : Tuple = os.path.join( a , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) SCREAMING_SNAKE_CASE : List[Any] = os.path.join( a , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["merges_file"] ) with open(a , "w" , encoding="utf-8" ) as f: f.write(json.dumps(self.encoder , indent=2 , sort_keys=a , ensure_ascii=a ) + "\n" ) SCREAMING_SNAKE_CASE : List[Any] = 0 with open(a , "w" , encoding="utf-8" ) as writer: writer.write("#version: 0.2\n" ) for bpe_tokens, token_index in sorted(self.bpe_ranks.items() , key=lambda a : kv[1] ): if index != token_index: logger.warning( F"Saving vocabulary to {merge_file}: BPE merge indices are not consecutive." " Please check that the tokenizer is not corrupted!" ) SCREAMING_SNAKE_CASE : Any = token_index writer.write(" ".join(a ) + "\n" ) index += 1 return vocab_file, merge_file def __UpperCamelCase ( self : List[str] , a : List[int] , a : Optional[List[int]] = None ) -> List[int]: """simple docstring""" if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] SCREAMING_SNAKE_CASE : Any = [self.cls_token_id] SCREAMING_SNAKE_CASE : Union[str, Any] = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def __UpperCamelCase ( self : Tuple , a : List[int] , a : Optional[List[int]] = None , a : bool = False ) -> List[int]: """simple docstring""" if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=a , token_ids_a=a , already_has_special_tokens=a ) if token_ids_a is None: return [1] + ([0] * len(a )) + [1] return [1] + ([0] * len(a )) + [1, 1] + ([0] * len(a )) + [1] def __UpperCamelCase ( self : List[Any] , a : List[int] , a : Optional[List[int]] = None ) -> List[int]: """simple docstring""" SCREAMING_SNAKE_CASE : Union[str, Any] = [self.sep_token_id] SCREAMING_SNAKE_CASE : Optional[Any] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def __UpperCamelCase ( self : int , a : Tuple , a : List[str]=False , **a : List[Any] ) -> str: """simple docstring""" SCREAMING_SNAKE_CASE : Optional[int] = kwargs.pop("add_prefix_space" , self.add_prefix_space ) if (is_split_into_words or add_prefix_space) and (len(a ) > 0 and not text[0].isspace()): SCREAMING_SNAKE_CASE : Tuple = " " + text return (text, kwargs)
25
from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging a_ = logging.get_logger(__name__) a_ = { 'junnyu/roformer_chinese_small': 'https://huggingface.co/junnyu/roformer_chinese_small/resolve/main/config.json', 'junnyu/roformer_chinese_base': 'https://huggingface.co/junnyu/roformer_chinese_base/resolve/main/config.json', 'junnyu/roformer_chinese_char_small': ( 'https://huggingface.co/junnyu/roformer_chinese_char_small/resolve/main/config.json' ), 'junnyu/roformer_chinese_char_base': ( 'https://huggingface.co/junnyu/roformer_chinese_char_base/resolve/main/config.json' ), 'junnyu/roformer_small_discriminator': ( 'https://huggingface.co/junnyu/roformer_small_discriminator/resolve/main/config.json' ), 'junnyu/roformer_small_generator': ( 'https://huggingface.co/junnyu/roformer_small_generator/resolve/main/config.json' ), # See all RoFormer models at https://huggingface.co/models?filter=roformer } class _UpperCamelCase ( __A ): '''simple docstring''' lowerCamelCase__ ='roformer' def __init__( self : Dict , a : Any=5_0000 , a : List[Any]=None , a : str=768 , a : str=12 , a : Tuple=12 , a : Optional[Any]=3072 , a : List[str]="gelu" , a : List[Any]=0.1 , a : Union[str, Any]=0.1 , a : Tuple=1536 , a : List[str]=2 , a : Tuple=0.02 , a : Any=1e-12 , a : Optional[int]=0 , a : Union[str, Any]=False , a : int=True , **a : str , ) -> int: """simple docstring""" super().__init__(pad_token_id=a , **a ) SCREAMING_SNAKE_CASE : str = vocab_size SCREAMING_SNAKE_CASE : int = hidden_size if embedding_size is None else embedding_size SCREAMING_SNAKE_CASE : List[str] = hidden_size SCREAMING_SNAKE_CASE : Union[str, Any] = num_hidden_layers SCREAMING_SNAKE_CASE : int = num_attention_heads SCREAMING_SNAKE_CASE : Tuple = hidden_act SCREAMING_SNAKE_CASE : int = intermediate_size SCREAMING_SNAKE_CASE : Tuple = hidden_dropout_prob SCREAMING_SNAKE_CASE : int = attention_probs_dropout_prob SCREAMING_SNAKE_CASE : Optional[int] = max_position_embeddings SCREAMING_SNAKE_CASE : Any = type_vocab_size SCREAMING_SNAKE_CASE : Union[str, Any] = initializer_range SCREAMING_SNAKE_CASE : List[str] = layer_norm_eps SCREAMING_SNAKE_CASE : List[str] = rotary_value SCREAMING_SNAKE_CASE : int = use_cache class _UpperCamelCase ( __A ): '''simple docstring''' @property def __UpperCamelCase ( self : Tuple ) -> Mapping[str, Mapping[int, str]]: """simple docstring""" if self.task == "multiple-choice": SCREAMING_SNAKE_CASE : Optional[Any] = {0: "batch", 1: "choice", 2: "sequence"} else: SCREAMING_SNAKE_CASE : str = {0: "batch", 1: "sequence"} SCREAMING_SNAKE_CASE : List[Any] = {0: "batch", 1: "sequence"} return OrderedDict( [ ("input_ids", dynamic_axis), ("attention_mask", dynamic_axis), ("token_type_ids", dynamic_axis), ] )
25
1
import faiss # noqa: F401 # Here to have a nice missing dependency error message early on import numpy # noqa: F401 # Here to have a nice missing dependency error message early on import requests # noqa: F401 # Here to have a nice missing dependency error message early on import sklearn # noqa: F401 # Here to have a nice missing dependency error message early on import tqdm # noqa: F401 # Here to have a nice missing dependency error message early on from mauve import compute_mauve # From: mauve-text import datasets a_ = '\\n@inproceedings{pillutla-etal:mauve:neurips2021,\n title={MAUVE: Measuring the Gap Between Neural Text and Human Text using Divergence Frontiers},\n author={Pillutla, Krishna and Swayamdipta, Swabha and Zellers, Rowan and Thickstun, John and Welleck, Sean and Choi, Yejin and Harchaoui, Zaid},\n booktitle = {NeurIPS},\n year = {2021}\n}\n\n' a_ = '\\nMAUVE is a library built on PyTorch and HuggingFace Transformers to measure the gap between neural text and human text with the eponymous MAUVE measure.\n\nMAUVE summarizes both Type I and Type II errors measured softly using Kullback–Leibler (KL) divergences.\n\nFor details, see the MAUVE paper: https://arxiv.org/abs/2102.01454 (Neurips, 2021).\n\nThis metrics is a wrapper around the official implementation of MAUVE:\nhttps://github.com/krishnap25/mauve\n' a_ = '\nCalculates MAUVE scores between two lists of generated text and reference text.\nArgs:\n predictions: list of generated text to score. Each predictions\n should be a string with tokens separated by spaces.\n references: list of reference for each prediction. Each\n reference should be a string with tokens separated by spaces.\nOptional Args:\n num_buckets: the size of the histogram to quantize P and Q. Options: \'auto\' (default) or an integer\n pca_max_data: the number data points to use for PCA dimensionality reduction prior to clustering. If -1, use all the data. Default -1\n kmeans_explained_var: amount of variance of the data to keep in dimensionality reduction by PCA. Default 0.9\n kmeans_num_redo: number of times to redo k-means clustering (the best objective is kept). Default 5\n kmeans_max_iter: maximum number of k-means iterations. Default 500\n featurize_model_name: name of the model from which features are obtained. Default \'gpt2-large\' Use one of [\'gpt2\', \'gpt2-medium\', \'gpt2-large\', \'gpt2-xl\'].\n device_id: Device for featurization. Supply a GPU id (e.g. 0 or 3) to use GPU. If no GPU with this id is found, use CPU\n max_text_length: maximum number of tokens to consider. Default 1024\n divergence_curve_discretization_size: Number of points to consider on the divergence curve. Default 25\n mauve_scaling_factor: "c" from the paper. Default 5.\n verbose: If True (default), print running time updates\n seed: random seed to initialize k-means cluster assignments.\nReturns:\n mauve: MAUVE score, a number between 0 and 1. Larger values indicate that P and Q are closer,\n frontier_integral: Frontier Integral, a number between 0 and 1. Smaller values indicate that P and Q are closer,\n divergence_curve: a numpy.ndarray of shape (m, 2); plot it with matplotlib to view the divergence curve,\n p_hist: a discrete distribution, which is a quantized version of the text distribution p_text,\n q_hist: same as above, but with q_text.\nExamples:\n\n >>> # faiss segfaults in doctest for some reason, so the .compute call is not tested with doctest\n >>> import datasets\n >>> mauve = datasets.load_metric(\'mauve\')\n >>> predictions = ["hello there", "general kenobi"]\n >>> references = ["hello there", "general kenobi"]\n >>> out = mauve.compute(predictions=predictions, references=references) # doctest: +SKIP\n >>> print(out.mauve) # doctest: +SKIP\n 1.0\n' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class _UpperCamelCase ( datasets.Metric ): '''simple docstring''' def __UpperCamelCase ( self : Union[str, Any] ) -> Tuple: """simple docstring""" return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , homepage="https://github.com/krishnap25/mauve" , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { "predictions": datasets.Value("string" , id="sequence" ), "references": datasets.Value("string" , id="sequence" ), } ) , codebase_urls=["https://github.com/krishnap25/mauve"] , reference_urls=[ "https://arxiv.org/abs/2102.01454", "https://github.com/krishnap25/mauve", ] , ) def __UpperCamelCase ( self : Tuple , a : Union[str, Any] , a : Dict , a : Optional[int]=None , a : int=None , a : str=None , a : str=None , a : int="auto" , a : str=-1 , a : Union[str, Any]=0.9 , a : Optional[Any]=5 , a : Dict=500 , a : int="gpt2-large" , a : List[Any]=-1 , a : Union[str, Any]=1024 , a : Union[str, Any]=25 , a : Any=5 , a : str=True , a : Any=25 , ) -> Dict: """simple docstring""" SCREAMING_SNAKE_CASE : Union[str, Any] = compute_mauve( p_text=a , q_text=a , p_features=a , q_features=a , p_tokens=a , q_tokens=a , num_buckets=a , pca_max_data=a , kmeans_explained_var=a , kmeans_num_redo=a , kmeans_max_iter=a , featurize_model_name=a , device_id=a , max_text_length=a , divergence_curve_discretization_size=a , mauve_scaling_factor=a , verbose=a , seed=a , ) return out
25
import argparse import logging from collections import namedtuple import torch from model_bertabs import BertAbsSummarizer from models.model_builder import AbsSummarizer # The authors' implementation from transformers import BertTokenizer logging.basicConfig(level=logging.INFO) a_ = logging.getLogger(__name__) a_ = 'Hello world! cécé herlolip' a_ = namedtuple( 'BertAbsConfig', [ 'temp_dir', 'large', 'use_bert_emb', 'finetune_bert', 'encoder', 'share_emb', 'max_pos', 'enc_layers', 'enc_hidden_size', 'enc_heads', 'enc_ff_size', 'enc_dropout', 'dec_layers', 'dec_hidden_size', 'dec_heads', 'dec_ff_size', 'dec_dropout', ], ) def lowerCamelCase__ ( _a , _a): SCREAMING_SNAKE_CASE : List[Any] = BertAbsConfig( temp_dir="." , finetune_bert=_a , large=_a , share_emb=_a , use_bert_emb=_a , encoder="bert" , max_pos=512 , enc_layers=6 , enc_hidden_size=512 , enc_heads=8 , enc_ff_size=512 , enc_dropout=0.2 , dec_layers=6 , dec_hidden_size=768 , dec_heads=8 , dec_ff_size=2048 , dec_dropout=0.2 , ) SCREAMING_SNAKE_CASE : Dict = torch.load(_a , lambda _a , _a: storage) SCREAMING_SNAKE_CASE : str = AbsSummarizer(_a , torch.device("cpu") , _a) original.eval() SCREAMING_SNAKE_CASE : List[str] = BertAbsSummarizer(_a , torch.device("cpu")) new_model.eval() # ------------------- # Convert the weights # ------------------- logging.info("convert the model") new_model.bert.load_state_dict(original.bert.state_dict()) new_model.decoder.load_state_dict(original.decoder.state_dict()) new_model.generator.load_state_dict(original.generator.state_dict()) # ---------------------------------- # Make sure the outpus are identical # ---------------------------------- logging.info("Make sure that the models' outputs are identical") SCREAMING_SNAKE_CASE : List[str] = BertTokenizer.from_pretrained("bert-base-uncased") # prepare the model inputs SCREAMING_SNAKE_CASE : List[str] = tokenizer.encode("This is sample éàalj'-.") encoder_input_ids.extend([tokenizer.pad_token_id] * (512 - len(_a))) SCREAMING_SNAKE_CASE : int = torch.tensor(_a).unsqueeze(0) SCREAMING_SNAKE_CASE : List[Any] = tokenizer.encode("This is sample 3 éàalj'-.") decoder_input_ids.extend([tokenizer.pad_token_id] * (512 - len(_a))) SCREAMING_SNAKE_CASE : int = torch.tensor(_a).unsqueeze(0) # failsafe to make sure the weights reset does not affect the # loaded weights. assert torch.max(torch.abs(original.generator[0].weight - new_model.generator[0].weight)) == 0 # forward pass SCREAMING_SNAKE_CASE : List[Any] = encoder_input_ids SCREAMING_SNAKE_CASE : List[Any] = decoder_input_ids SCREAMING_SNAKE_CASE : Dict = None SCREAMING_SNAKE_CASE : Optional[Any] = None SCREAMING_SNAKE_CASE : List[Any] = None SCREAMING_SNAKE_CASE : Optional[int] = None SCREAMING_SNAKE_CASE : Dict = None # The original model does not apply the geneator layer immediatly but rather in # the beam search (where it combines softmax + linear layer). Since we already # apply the softmax in our generation process we only apply the linear layer here. # We make sure that the outputs of the full stack are identical SCREAMING_SNAKE_CASE : Optional[int] = original(_a , _a , _a , _a , _a , _a , _a)[0] SCREAMING_SNAKE_CASE : Dict = original.generator(_a) SCREAMING_SNAKE_CASE : Any = new_model( _a , _a , _a , _a , _a)[0] SCREAMING_SNAKE_CASE : Tuple = new_model.generator(_a) SCREAMING_SNAKE_CASE : List[Any] = torch.max(torch.abs(output_converted_model - output_original_model)).item() print("Maximum absolute difference beween weights: {:.2f}".format(_a)) SCREAMING_SNAKE_CASE : Union[str, Any] = torch.max(torch.abs(output_converted_generator - output_original_generator)).item() print("Maximum absolute difference beween weights: {:.2f}".format(_a)) SCREAMING_SNAKE_CASE : int = torch.allclose(_a , _a , atol=1E-3) if are_identical: logging.info("all weights are equal up to 1e-3") else: raise ValueError("the weights are different. The new model is likely different from the original one.") # The model has been saved with torch.save(model) and this is bound to the exact # directory structure. We save the state_dict instead. logging.info("saving the model's state dictionary") torch.save( new_model.state_dict() , "./bertabs-finetuned-cnndm-extractive-abstractive-summarization/pytorch_model.bin") if __name__ == "__main__": a_ = argparse.ArgumentParser() parser.add_argument( '--bertabs_checkpoint_path', default=None, type=str, required=True, help='Path the official PyTorch dump.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, required=True, help='Path to the output PyTorch model.', ) a_ = parser.parse_args() convert_bertabs_checkpoints( args.bertabs_checkpoint_path, args.pytorch_dump_folder_path, )
25
1
from math import factorial, pi def lowerCamelCase__ ( _a , _a = 30): if not isinstance(_a , (int, float)): raise ValueError("maclaurin_sin() requires either an int or float for theta") if not isinstance(_a , _a) or accuracy <= 0: raise ValueError("maclaurin_sin() requires a positive int for accuracy") SCREAMING_SNAKE_CASE : int = float(_a) SCREAMING_SNAKE_CASE : Dict = theta // (2 * pi) theta -= 2 * div * pi return sum( (-1) ** r * theta ** (2 * r + 1) / factorial(2 * r + 1) for r in range(_a)) def lowerCamelCase__ ( _a , _a = 30): if not isinstance(_a , (int, float)): raise ValueError("maclaurin_cos() requires either an int or float for theta") if not isinstance(_a , _a) or accuracy <= 0: raise ValueError("maclaurin_cos() requires a positive int for accuracy") SCREAMING_SNAKE_CASE : str = float(_a) SCREAMING_SNAKE_CASE : Any = theta // (2 * pi) theta -= 2 * div * pi return sum((-1) ** r * theta ** (2 * r) / factorial(2 * r) for r in range(_a)) if __name__ == "__main__": import doctest doctest.testmod() print(maclaurin_sin(10)) print(maclaurin_sin(-10)) print(maclaurin_sin(10, 15)) print(maclaurin_sin(-10, 15)) print(maclaurin_cos(5)) print(maclaurin_cos(-5)) print(maclaurin_cos(10, 15)) print(maclaurin_cos(-10, 15))
25
import argparse from transformers import CLIPImageProcessor, CLIPVisionModelWithProjection from diffusers import UnCLIPImageVariationPipeline, UnCLIPPipeline if __name__ == "__main__": a_ = argparse.ArgumentParser() parser.add_argument('--dump_path', default=None, type=str, required=True, help='Path to the output model.') parser.add_argument( '--txt2img_unclip', default='kakaobrain/karlo-v1-alpha', type=str, required=False, help='The pretrained txt2img unclip.', ) a_ = parser.parse_args() a_ = UnCLIPPipeline.from_pretrained(args.txtaimg_unclip) a_ = CLIPImageProcessor() a_ = CLIPVisionModelWithProjection.from_pretrained('openai/clip-vit-large-patch14') a_ = UnCLIPImageVariationPipeline( decoder=txtaimg.decoder, text_encoder=txtaimg.text_encoder, tokenizer=txtaimg.tokenizer, text_proj=txtaimg.text_proj, feature_extractor=feature_extractor, image_encoder=image_encoder, super_res_first=txtaimg.super_res_first, super_res_last=txtaimg.super_res_last, decoder_scheduler=txtaimg.decoder_scheduler, super_res_scheduler=txtaimg.super_res_scheduler, ) imgaimg.save_pretrained(args.dump_path)
25
1
import importlib.metadata from typing import Union from packaging.version import Version, parse from .constants import STR_OPERATION_TO_FUNC a_ = parse(importlib.metadata.version('torch')) def lowerCamelCase__ ( _a , _a , _a): if operation not in STR_OPERATION_TO_FUNC.keys(): raise ValueError(f"`operation` must be one of {list(STR_OPERATION_TO_FUNC.keys())}, received {operation}") SCREAMING_SNAKE_CASE : Union[str, Any] = STR_OPERATION_TO_FUNC[operation] if isinstance(_a , _a): SCREAMING_SNAKE_CASE : Any = parse(importlib.metadata.version(_a)) return operation(_a , parse(_a)) def lowerCamelCase__ ( _a , _a): return compare_versions(_a , _a , _a)
25
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available a_ = { 'configuration_swinv2': ['SWINV2_PRETRAINED_CONFIG_ARCHIVE_MAP', 'Swinv2Config'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a_ = [ 'SWINV2_PRETRAINED_MODEL_ARCHIVE_LIST', 'Swinv2ForImageClassification', 'Swinv2ForMaskedImageModeling', 'Swinv2Model', 'Swinv2PreTrainedModel', ] if TYPE_CHECKING: from .configuration_swinva import SWINV2_PRETRAINED_CONFIG_ARCHIVE_MAP, SwinvaConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_swinva import ( SWINV2_PRETRAINED_MODEL_ARCHIVE_LIST, SwinvaForImageClassification, SwinvaForMaskedImageModeling, SwinvaModel, SwinvaPreTrainedModel, ) else: import sys a_ = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
25
1
import argparse import pathlib import fairseq import torch from fairseq.models.roberta import RobertaModel as FairseqRobertaModel from fairseq.modules import TransformerSentenceEncoderLayer from packaging import version from transformers import XLMRobertaConfig, XLMRobertaXLForMaskedLM, XLMRobertaXLForSequenceClassification from transformers.models.bert.modeling_bert import ( BertIntermediate, BertLayer, BertOutput, BertSelfAttention, BertSelfOutput, ) from transformers.models.roberta.modeling_roberta import RobertaAttention from transformers.utils import logging if version.parse(fairseq.__version__) < version.parse('1.0.0a'): raise Exception('requires fairseq >= 1.0.0a') logging.set_verbosity_info() a_ = logging.get_logger(__name__) a_ = 'Hello world! cécé herlolip' def lowerCamelCase__ ( _a , _a , _a): SCREAMING_SNAKE_CASE : Union[str, Any] = FairseqRobertaModel.from_pretrained(_a) roberta.eval() # disable dropout SCREAMING_SNAKE_CASE : int = roberta.model.encoder.sentence_encoder SCREAMING_SNAKE_CASE : List[str] = XLMRobertaConfig( vocab_size=roberta_sent_encoder.embed_tokens.num_embeddings , hidden_size=roberta.cfg.model.encoder_embed_dim , num_hidden_layers=roberta.cfg.model.encoder_layers , num_attention_heads=roberta.cfg.model.encoder_attention_heads , intermediate_size=roberta.cfg.model.encoder_ffn_embed_dim , max_position_embeddings=514 , type_vocab_size=1 , layer_norm_eps=1E-5 , ) if classification_head: SCREAMING_SNAKE_CASE : List[str] = roberta.model.classification_heads["mnli"].out_proj.weight.shape[0] print("Our RoBERTa config:" , _a) SCREAMING_SNAKE_CASE : Any = XLMRobertaXLForSequenceClassification(_a) if classification_head else XLMRobertaXLForMaskedLM(_a) model.eval() # Now let's copy all the weights. # Embeddings SCREAMING_SNAKE_CASE : Tuple = roberta_sent_encoder.embed_tokens.weight SCREAMING_SNAKE_CASE : Tuple = roberta_sent_encoder.embed_positions.weight SCREAMING_SNAKE_CASE : Any = torch.zeros_like( model.roberta.embeddings.token_type_embeddings.weight) # just zero them out b/c RoBERTa doesn't use them. SCREAMING_SNAKE_CASE : Any = roberta_sent_encoder.layer_norm.weight SCREAMING_SNAKE_CASE : Union[str, Any] = roberta_sent_encoder.layer_norm.bias for i in range(config.num_hidden_layers): # Encoder: start of layer SCREAMING_SNAKE_CASE : BertLayer = model.roberta.encoder.layer[i] SCREAMING_SNAKE_CASE : TransformerSentenceEncoderLayer = roberta_sent_encoder.layers[i] SCREAMING_SNAKE_CASE : RobertaAttention = layer.attention SCREAMING_SNAKE_CASE : Dict = roberta_layer.self_attn_layer_norm.weight SCREAMING_SNAKE_CASE : str = roberta_layer.self_attn_layer_norm.bias # self attention SCREAMING_SNAKE_CASE : BertSelfAttention = layer.attention.self assert ( roberta_layer.self_attn.k_proj.weight.data.shape == roberta_layer.self_attn.q_proj.weight.data.shape == roberta_layer.self_attn.v_proj.weight.data.shape == torch.Size((config.hidden_size, config.hidden_size)) ) SCREAMING_SNAKE_CASE : Tuple = roberta_layer.self_attn.q_proj.weight SCREAMING_SNAKE_CASE : Optional[int] = roberta_layer.self_attn.q_proj.bias SCREAMING_SNAKE_CASE : Dict = roberta_layer.self_attn.k_proj.weight SCREAMING_SNAKE_CASE : str = roberta_layer.self_attn.k_proj.bias SCREAMING_SNAKE_CASE : Union[str, Any] = roberta_layer.self_attn.v_proj.weight SCREAMING_SNAKE_CASE : Optional[Any] = roberta_layer.self_attn.v_proj.bias # self-attention output SCREAMING_SNAKE_CASE : BertSelfOutput = layer.attention.output assert self_output.dense.weight.shape == roberta_layer.self_attn.out_proj.weight.shape SCREAMING_SNAKE_CASE : Dict = roberta_layer.self_attn.out_proj.weight SCREAMING_SNAKE_CASE : List[Any] = roberta_layer.self_attn.out_proj.bias # this one is final layer norm SCREAMING_SNAKE_CASE : Optional[int] = roberta_layer.final_layer_norm.weight SCREAMING_SNAKE_CASE : Dict = roberta_layer.final_layer_norm.bias # intermediate SCREAMING_SNAKE_CASE : BertIntermediate = layer.intermediate assert intermediate.dense.weight.shape == roberta_layer.fca.weight.shape SCREAMING_SNAKE_CASE : Optional[int] = roberta_layer.fca.weight SCREAMING_SNAKE_CASE : str = roberta_layer.fca.bias # output SCREAMING_SNAKE_CASE : BertOutput = layer.output assert bert_output.dense.weight.shape == roberta_layer.fca.weight.shape SCREAMING_SNAKE_CASE : Tuple = roberta_layer.fca.weight SCREAMING_SNAKE_CASE : int = roberta_layer.fca.bias # end of layer if classification_head: SCREAMING_SNAKE_CASE : Optional[Any] = roberta.model.classification_heads["mnli"].dense.weight SCREAMING_SNAKE_CASE : Optional[Any] = roberta.model.classification_heads["mnli"].dense.bias SCREAMING_SNAKE_CASE : List[Any] = roberta.model.classification_heads["mnli"].out_proj.weight SCREAMING_SNAKE_CASE : Tuple = roberta.model.classification_heads["mnli"].out_proj.bias else: # LM Head SCREAMING_SNAKE_CASE : Union[str, Any] = roberta.model.encoder.lm_head.dense.weight SCREAMING_SNAKE_CASE : int = roberta.model.encoder.lm_head.dense.bias SCREAMING_SNAKE_CASE : Dict = roberta.model.encoder.lm_head.layer_norm.weight SCREAMING_SNAKE_CASE : Union[str, Any] = roberta.model.encoder.lm_head.layer_norm.bias SCREAMING_SNAKE_CASE : Dict = roberta.model.encoder.lm_head.weight SCREAMING_SNAKE_CASE : Tuple = roberta.model.encoder.lm_head.bias # Let's check that we get the same results. SCREAMING_SNAKE_CASE : torch.Tensor = roberta.encode(_a).unsqueeze(0) # batch of size 1 SCREAMING_SNAKE_CASE : List[str] = model(_a)[0] if classification_head: SCREAMING_SNAKE_CASE : Optional[int] = roberta.model.classification_heads["mnli"](roberta.extract_features(_a)) else: SCREAMING_SNAKE_CASE : Optional[int] = roberta.model(_a)[0] print(our_output.shape , their_output.shape) SCREAMING_SNAKE_CASE : str = torch.max(torch.abs(our_output - their_output)).item() print(f"max_absolute_diff = {max_absolute_diff}") # ~ 1e-7 SCREAMING_SNAKE_CASE : Optional[Any] = torch.allclose(_a , _a , atol=1E-3) print("Do both models output the same tensors?" , "🔥" if success else "💩") if not success: raise Exception("Something went wRoNg") pathlib.Path(_a).mkdir(parents=_a , exist_ok=_a) print(f"Saving model to {pytorch_dump_folder_path}") model.save_pretrained(_a) if __name__ == "__main__": a_ = argparse.ArgumentParser() # Required parameters parser.add_argument( '--roberta_checkpoint_path', default=None, type=str, required=True, help='Path the official PyTorch dump.' ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, required=True, help='Path to the output PyTorch model.' ) parser.add_argument( '--classification_head', action='store_true', help='Whether to convert a final classification head.' ) a_ = parser.parse_args() convert_xlm_roberta_xl_checkpoint_to_pytorch( args.roberta_checkpoint_path, args.pytorch_dump_folder_path, args.classification_head )
25
from math import pi, sqrt, tan def lowerCamelCase__ ( _a): if side_length < 0: raise ValueError("surface_area_cube() only accepts non-negative values") return 6 * side_length**2 def lowerCamelCase__ ( _a , _a , _a): if length < 0 or breadth < 0 or height < 0: raise ValueError("surface_area_cuboid() only accepts non-negative values") return 2 * ((length * breadth) + (breadth * height) + (length * height)) def lowerCamelCase__ ( _a): if radius < 0: raise ValueError("surface_area_sphere() only accepts non-negative values") return 4 * pi * radius**2 def lowerCamelCase__ ( _a): if radius < 0: raise ValueError("surface_area_hemisphere() only accepts non-negative values") return 3 * pi * radius**2 def lowerCamelCase__ ( _a , _a): if radius < 0 or height < 0: raise ValueError("surface_area_cone() only accepts non-negative values") return pi * radius * (radius + (height**2 + radius**2) ** 0.5) def lowerCamelCase__ ( _a , _a , _a): if radius_a < 0 or radius_a < 0 or height < 0: raise ValueError( "surface_area_conical_frustum() only accepts non-negative values") SCREAMING_SNAKE_CASE : Any = (height**2 + (radius_a - radius_a) ** 2) ** 0.5 return pi * ((slant_height * (radius_a + radius_a)) + radius_a**2 + radius_a**2) def lowerCamelCase__ ( _a , _a): if radius < 0 or height < 0: raise ValueError("surface_area_cylinder() only accepts non-negative values") return 2 * pi * radius * (height + radius) def lowerCamelCase__ ( _a , _a): if torus_radius < 0 or tube_radius < 0: raise ValueError("surface_area_torus() only accepts non-negative values") if torus_radius < tube_radius: raise ValueError( "surface_area_torus() does not support spindle or self intersecting tori") return 4 * pow(_a , 2) * torus_radius * tube_radius def lowerCamelCase__ ( _a , _a): if length < 0 or width < 0: raise ValueError("area_rectangle() only accepts non-negative values") return length * width def lowerCamelCase__ ( _a): if side_length < 0: raise ValueError("area_square() only accepts non-negative values") return side_length**2 def lowerCamelCase__ ( _a , _a): if base < 0 or height < 0: raise ValueError("area_triangle() only accepts non-negative values") return (base * height) / 2 def lowerCamelCase__ ( _a , _a , _a): if sidea < 0 or sidea < 0 or sidea < 0: raise ValueError("area_triangle_three_sides() only accepts non-negative values") elif sidea + sidea < sidea or sidea + sidea < sidea or sidea + sidea < sidea: raise ValueError("Given three sides do not form a triangle") SCREAMING_SNAKE_CASE : List[str] = (sidea + sidea + sidea) / 2 SCREAMING_SNAKE_CASE : Optional[int] = sqrt( semi_perimeter * (semi_perimeter - sidea) * (semi_perimeter - sidea) * (semi_perimeter - sidea)) return area def lowerCamelCase__ ( _a , _a): if base < 0 or height < 0: raise ValueError("area_parallelogram() only accepts non-negative values") return base * height def lowerCamelCase__ ( _a , _a , _a): if basea < 0 or basea < 0 or height < 0: raise ValueError("area_trapezium() only accepts non-negative values") return 1 / 2 * (basea + basea) * height def lowerCamelCase__ ( _a): if radius < 0: raise ValueError("area_circle() only accepts non-negative values") return pi * radius**2 def lowerCamelCase__ ( _a , _a): if radius_x < 0 or radius_y < 0: raise ValueError("area_ellipse() only accepts non-negative values") return pi * radius_x * radius_y def lowerCamelCase__ ( _a , _a): if diagonal_a < 0 or diagonal_a < 0: raise ValueError("area_rhombus() only accepts non-negative values") return 1 / 2 * diagonal_a * diagonal_a def lowerCamelCase__ ( _a , _a): if not isinstance(_a , _a) or sides < 3: raise ValueError( "area_reg_polygon() only accepts integers greater than or \ equal to three as number of sides") elif length < 0: raise ValueError( "area_reg_polygon() only accepts non-negative values as \ length of a side") return (sides * length**2) / (4 * tan(pi / sides)) return (sides * length**2) / (4 * tan(pi / sides)) if __name__ == "__main__": import doctest doctest.testmod(verbose=True) # verbose so we can see methods missing tests print('[DEMO] Areas of various geometric shapes: \n') print(F'''Rectangle: {area_rectangle(10, 20) = }''') print(F'''Square: {area_square(10) = }''') print(F'''Triangle: {area_triangle(10, 10) = }''') print(F'''Triangle: {area_triangle_three_sides(5, 12, 13) = }''') print(F'''Parallelogram: {area_parallelogram(10, 20) = }''') print(F'''Rhombus: {area_rhombus(10, 20) = }''') print(F'''Trapezium: {area_trapezium(10, 20, 30) = }''') print(F'''Circle: {area_circle(20) = }''') print(F'''Ellipse: {area_ellipse(10, 20) = }''') print('\nSurface Areas of various geometric shapes: \n') print(F'''Cube: {surface_area_cube(20) = }''') print(F'''Cuboid: {surface_area_cuboid(10, 20, 30) = }''') print(F'''Sphere: {surface_area_sphere(20) = }''') print(F'''Hemisphere: {surface_area_hemisphere(20) = }''') print(F'''Cone: {surface_area_cone(10, 20) = }''') print(F'''Conical Frustum: {surface_area_conical_frustum(10, 20, 30) = }''') print(F'''Cylinder: {surface_area_cylinder(10, 20) = }''') print(F'''Torus: {surface_area_torus(20, 10) = }''') print(F'''Equilateral Triangle: {area_reg_polygon(3, 10) = }''') print(F'''Square: {area_reg_polygon(4, 10) = }''') print(F'''Reqular Pentagon: {area_reg_polygon(5, 10) = }''')
25
1
from math import sqrt def lowerCamelCase__ ( _a): if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5 , int(sqrt(_a) + 1) , 6): if number % i == 0 or number % (i + 2) == 0: return False return True def lowerCamelCase__ ( _a = 10001): SCREAMING_SNAKE_CASE : Union[str, Any] = 0 SCREAMING_SNAKE_CASE : List[Any] = 1 while count != nth and number < 3: number += 1 if is_prime(_a): count += 1 while count != nth: number += 2 if is_prime(_a): count += 1 return number if __name__ == "__main__": print(F'''{solution() = }''')
25
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available a_ = { 'configuration_instructblip': [ 'INSTRUCTBLIP_PRETRAINED_CONFIG_ARCHIVE_MAP', 'InstructBlipConfig', 'InstructBlipQFormerConfig', 'InstructBlipVisionConfig', ], 'processing_instructblip': ['InstructBlipProcessor'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a_ = [ 'INSTRUCTBLIP_PRETRAINED_MODEL_ARCHIVE_LIST', 'InstructBlipQFormerModel', 'InstructBlipPreTrainedModel', 'InstructBlipForConditionalGeneration', 'InstructBlipVisionModel', ] if TYPE_CHECKING: from .configuration_instructblip import ( INSTRUCTBLIP_PRETRAINED_CONFIG_ARCHIVE_MAP, InstructBlipConfig, InstructBlipQFormerConfig, InstructBlipVisionConfig, ) from .processing_instructblip import InstructBlipProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_instructblip import ( INSTRUCTBLIP_PRETRAINED_MODEL_ARCHIVE_LIST, InstructBlipForConditionalGeneration, InstructBlipPreTrainedModel, InstructBlipQFormerModel, InstructBlipVisionModel, ) else: import sys a_ = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
25
1
from __future__ import annotations import math class _UpperCamelCase : '''simple docstring''' def __init__( self : Dict , a : int ) -> None: """simple docstring""" SCREAMING_SNAKE_CASE : Dict = size # approximate the overall size of segment tree with given value SCREAMING_SNAKE_CASE : Any = [0 for i in range(0 , 4 * size )] # create array to store lazy update SCREAMING_SNAKE_CASE : Union[str, Any] = [0 for i in range(0 , 4 * size )] SCREAMING_SNAKE_CASE : Any = [0 for i in range(0 , 4 * size )] # flag for lazy update def __UpperCamelCase ( self : Tuple , a : int ) -> int: """simple docstring""" return idx * 2 def __UpperCamelCase ( self : str , a : int ) -> int: """simple docstring""" return idx * 2 + 1 def __UpperCamelCase ( self : int , a : int , a : int , a : int , a : list[int] ) -> None: """simple docstring""" if left_element == right_element: SCREAMING_SNAKE_CASE : int = a[left_element - 1] else: SCREAMING_SNAKE_CASE : Optional[int] = (left_element + right_element) // 2 self.build(self.left(a ) , a , a , a ) self.build(self.right(a ) , mid + 1 , a , a ) SCREAMING_SNAKE_CASE : List[Any] = max( self.segment_tree[self.left(a )] , self.segment_tree[self.right(a )] ) def __UpperCamelCase ( self : Optional[Any] , a : int , a : int , a : int , a : int , a : int , a : int ) -> bool: """simple docstring""" if self.flag[idx] is True: SCREAMING_SNAKE_CASE : Any = self.lazy[idx] SCREAMING_SNAKE_CASE : List[str] = False if left_element != right_element: SCREAMING_SNAKE_CASE : Optional[Any] = self.lazy[idx] SCREAMING_SNAKE_CASE : int = self.lazy[idx] SCREAMING_SNAKE_CASE : Any = True SCREAMING_SNAKE_CASE : List[Any] = True if right_element < a or left_element > b: return True if left_element >= a and right_element <= b: SCREAMING_SNAKE_CASE : Optional[Any] = val if left_element != right_element: SCREAMING_SNAKE_CASE : str = val SCREAMING_SNAKE_CASE : str = val SCREAMING_SNAKE_CASE : Tuple = True SCREAMING_SNAKE_CASE : Optional[Any] = True return True SCREAMING_SNAKE_CASE : int = (left_element + right_element) // 2 self.update(self.left(a ) , a , a , a , a , a ) self.update(self.right(a ) , mid + 1 , a , a , a , a ) SCREAMING_SNAKE_CASE : Optional[int] = max( self.segment_tree[self.left(a )] , self.segment_tree[self.right(a )] ) return True def __UpperCamelCase ( self : Dict , a : int , a : int , a : int , a : int , a : int ) -> int | float: """simple docstring""" if self.flag[idx] is True: SCREAMING_SNAKE_CASE : int = self.lazy[idx] SCREAMING_SNAKE_CASE : List[Any] = False if left_element != right_element: SCREAMING_SNAKE_CASE : Optional[Any] = self.lazy[idx] SCREAMING_SNAKE_CASE : Optional[Any] = self.lazy[idx] SCREAMING_SNAKE_CASE : Optional[Any] = True SCREAMING_SNAKE_CASE : Union[str, Any] = True if right_element < a or left_element > b: return -math.inf if left_element >= a and right_element <= b: return self.segment_tree[idx] SCREAMING_SNAKE_CASE : Dict = (left_element + right_element) // 2 SCREAMING_SNAKE_CASE : Tuple = self.query(self.left(a ) , a , a , a , a ) SCREAMING_SNAKE_CASE : Tuple = self.query(self.right(a ) , mid + 1 , a , a , a ) return max(a , a ) def __str__( self : str ) -> str: """simple docstring""" return str([self.query(1 , 1 , self.size , a , a ) for i in range(1 , self.size + 1 )] ) if __name__ == "__main__": a_ = [1, 2, -4, 7, 3, -5, 6, 11, -20, 9, 14, 15, 5, 2, -8] a_ = 15 a_ = SegmentTree(size) segt.build(1, 1, size, A) print(segt.query(1, 1, size, 4, 6)) print(segt.query(1, 1, size, 7, 11)) print(segt.query(1, 1, size, 7, 12)) segt.update(1, 1, size, 1, 3, 111) print(segt.query(1, 1, size, 1, 15)) segt.update(1, 1, size, 7, 8, 235) print(segt)
25
from __future__ import annotations def lowerCamelCase__ ( _a): SCREAMING_SNAKE_CASE : Optional[Any] = 2 SCREAMING_SNAKE_CASE : Optional[int] = [] while i * i <= n: if n % i: i += 1 else: n //= i factors.append(_a) if n > 1: factors.append(_a) return factors if __name__ == "__main__": import doctest doctest.testmod()
25
1
from ...utils import ( OptionalDependencyNotAvailable, is_torch_available, is_transformers_available, is_transformers_version, ) try: if not (is_transformers_available() and is_torch_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import KandinskyPipeline, KandinskyPriorPipeline else: from .pipeline_kandinsky import KandinskyPipeline from .pipeline_kandinsky_imgaimg import KandinskyImgaImgPipeline from .pipeline_kandinsky_inpaint import KandinskyInpaintPipeline from .pipeline_kandinsky_prior import KandinskyPriorPipeline, KandinskyPriorPipelineOutput from .text_encoder import MultilingualCLIP
25
from math import factorial, pi def lowerCamelCase__ ( _a , _a = 30): if not isinstance(_a , (int, float)): raise ValueError("maclaurin_sin() requires either an int or float for theta") if not isinstance(_a , _a) or accuracy <= 0: raise ValueError("maclaurin_sin() requires a positive int for accuracy") SCREAMING_SNAKE_CASE : int = float(_a) SCREAMING_SNAKE_CASE : Dict = theta // (2 * pi) theta -= 2 * div * pi return sum( (-1) ** r * theta ** (2 * r + 1) / factorial(2 * r + 1) for r in range(_a)) def lowerCamelCase__ ( _a , _a = 30): if not isinstance(_a , (int, float)): raise ValueError("maclaurin_cos() requires either an int or float for theta") if not isinstance(_a , _a) or accuracy <= 0: raise ValueError("maclaurin_cos() requires a positive int for accuracy") SCREAMING_SNAKE_CASE : str = float(_a) SCREAMING_SNAKE_CASE : Any = theta // (2 * pi) theta -= 2 * div * pi return sum((-1) ** r * theta ** (2 * r) / factorial(2 * r) for r in range(_a)) if __name__ == "__main__": import doctest doctest.testmod() print(maclaurin_sin(10)) print(maclaurin_sin(-10)) print(maclaurin_sin(10, 15)) print(maclaurin_sin(-10, 15)) print(maclaurin_cos(5)) print(maclaurin_cos(-5)) print(maclaurin_cos(10, 15)) print(maclaurin_cos(-10, 15))
25
1
def lowerCamelCase__ ( _a): SCREAMING_SNAKE_CASE : List[str] = 0 for ch in input_str: SCREAMING_SNAKE_CASE : Optional[int] = ord(_a) SCREAMING_SNAKE_CASE : str = pow(2 , _a) # If we already turned on bit for current character's unicode if bitmap >> ch_unicode & 1 == 1: return False bitmap |= ch_bit_index_on return True if __name__ == "__main__": import doctest doctest.testmod()
25
from __future__ import annotations import math class _UpperCamelCase : '''simple docstring''' def __init__( self : Dict , a : int ) -> None: """simple docstring""" SCREAMING_SNAKE_CASE : Dict = size # approximate the overall size of segment tree with given value SCREAMING_SNAKE_CASE : Any = [0 for i in range(0 , 4 * size )] # create array to store lazy update SCREAMING_SNAKE_CASE : Union[str, Any] = [0 for i in range(0 , 4 * size )] SCREAMING_SNAKE_CASE : Any = [0 for i in range(0 , 4 * size )] # flag for lazy update def __UpperCamelCase ( self : Tuple , a : int ) -> int: """simple docstring""" return idx * 2 def __UpperCamelCase ( self : str , a : int ) -> int: """simple docstring""" return idx * 2 + 1 def __UpperCamelCase ( self : int , a : int , a : int , a : int , a : list[int] ) -> None: """simple docstring""" if left_element == right_element: SCREAMING_SNAKE_CASE : int = a[left_element - 1] else: SCREAMING_SNAKE_CASE : Optional[int] = (left_element + right_element) // 2 self.build(self.left(a ) , a , a , a ) self.build(self.right(a ) , mid + 1 , a , a ) SCREAMING_SNAKE_CASE : List[Any] = max( self.segment_tree[self.left(a )] , self.segment_tree[self.right(a )] ) def __UpperCamelCase ( self : Optional[Any] , a : int , a : int , a : int , a : int , a : int , a : int ) -> bool: """simple docstring""" if self.flag[idx] is True: SCREAMING_SNAKE_CASE : Any = self.lazy[idx] SCREAMING_SNAKE_CASE : List[str] = False if left_element != right_element: SCREAMING_SNAKE_CASE : Optional[Any] = self.lazy[idx] SCREAMING_SNAKE_CASE : int = self.lazy[idx] SCREAMING_SNAKE_CASE : Any = True SCREAMING_SNAKE_CASE : List[Any] = True if right_element < a or left_element > b: return True if left_element >= a and right_element <= b: SCREAMING_SNAKE_CASE : Optional[Any] = val if left_element != right_element: SCREAMING_SNAKE_CASE : str = val SCREAMING_SNAKE_CASE : str = val SCREAMING_SNAKE_CASE : Tuple = True SCREAMING_SNAKE_CASE : Optional[Any] = True return True SCREAMING_SNAKE_CASE : int = (left_element + right_element) // 2 self.update(self.left(a ) , a , a , a , a , a ) self.update(self.right(a ) , mid + 1 , a , a , a , a ) SCREAMING_SNAKE_CASE : Optional[int] = max( self.segment_tree[self.left(a )] , self.segment_tree[self.right(a )] ) return True def __UpperCamelCase ( self : Dict , a : int , a : int , a : int , a : int , a : int ) -> int | float: """simple docstring""" if self.flag[idx] is True: SCREAMING_SNAKE_CASE : int = self.lazy[idx] SCREAMING_SNAKE_CASE : List[Any] = False if left_element != right_element: SCREAMING_SNAKE_CASE : Optional[Any] = self.lazy[idx] SCREAMING_SNAKE_CASE : Optional[Any] = self.lazy[idx] SCREAMING_SNAKE_CASE : Optional[Any] = True SCREAMING_SNAKE_CASE : Union[str, Any] = True if right_element < a or left_element > b: return -math.inf if left_element >= a and right_element <= b: return self.segment_tree[idx] SCREAMING_SNAKE_CASE : Dict = (left_element + right_element) // 2 SCREAMING_SNAKE_CASE : Tuple = self.query(self.left(a ) , a , a , a , a ) SCREAMING_SNAKE_CASE : Tuple = self.query(self.right(a ) , mid + 1 , a , a , a ) return max(a , a ) def __str__( self : str ) -> str: """simple docstring""" return str([self.query(1 , 1 , self.size , a , a ) for i in range(1 , self.size + 1 )] ) if __name__ == "__main__": a_ = [1, 2, -4, 7, 3, -5, 6, 11, -20, 9, 14, 15, 5, 2, -8] a_ = 15 a_ = SegmentTree(size) segt.build(1, 1, size, A) print(segt.query(1, 1, size, 4, 6)) print(segt.query(1, 1, size, 7, 11)) print(segt.query(1, 1, size, 7, 12)) segt.update(1, 1, size, 1, 3, 111) print(segt.query(1, 1, size, 1, 15)) segt.update(1, 1, size, 7, 8, 235) print(segt)
25
1
import os import posixpath import uuid from dataclasses import dataclass from typing import TYPE_CHECKING, Iterable, List, Optional, Tuple, Union import numpy as np import pyarrow as pa import datasets from datasets.arrow_writer import ArrowWriter, ParquetWriter from datasets.config import MAX_SHARD_SIZE from datasets.filesystems import ( is_remote_filesystem, rename, ) from datasets.iterable_dataset import _BaseExamplesIterable from datasets.utils.py_utils import convert_file_size_to_int a_ = datasets.utils.logging.get_logger(__name__) if TYPE_CHECKING: import pyspark @dataclass class _UpperCamelCase ( datasets.BuilderConfig ): '''simple docstring''' lowerCamelCase__ =None def lowerCamelCase__ ( _a , _a , ): import pyspark def generate_fn(): SCREAMING_SNAKE_CASE : str = df.select("*" , pyspark.sql.functions.spark_partition_id().alias("part_id")) for partition_id in partition_order: SCREAMING_SNAKE_CASE : int = df_with_partition_id.select("*").where(f"part_id = {partition_id}").drop("part_id") SCREAMING_SNAKE_CASE : Tuple = partition_df.collect() SCREAMING_SNAKE_CASE : int = 0 for row in rows: yield f"{partition_id}_{row_id}", row.asDict() row_id += 1 return generate_fn class _UpperCamelCase ( _BaseExamplesIterable ): '''simple docstring''' def __init__( self : Dict , a : "pyspark.sql.DataFrame" , a : str=None , ) -> List[str]: """simple docstring""" SCREAMING_SNAKE_CASE : List[str] = df SCREAMING_SNAKE_CASE : Any = partition_order or range(self.df.rdd.getNumPartitions() ) SCREAMING_SNAKE_CASE : List[str] = _generate_iterable_examples(self.df , self.partition_order ) def __iter__( self : Optional[Any] ) -> List[Any]: """simple docstring""" yield from self.generate_examples_fn() def __UpperCamelCase ( self : Optional[int] , a : np.random.Generator ) -> "SparkExamplesIterable": """simple docstring""" SCREAMING_SNAKE_CASE : str = list(range(self.df.rdd.getNumPartitions() ) ) generator.shuffle(a ) return SparkExamplesIterable(self.df , partition_order=a ) def __UpperCamelCase ( self : List[Any] , a : int , a : int ) -> "SparkExamplesIterable": """simple docstring""" SCREAMING_SNAKE_CASE : Tuple = self.split_shard_indices_by_worker(a , a ) return SparkExamplesIterable(self.df , partition_order=a ) @property def __UpperCamelCase ( self : Optional[int] ) -> int: """simple docstring""" return len(self.partition_order ) class _UpperCamelCase ( datasets.DatasetBuilder ): '''simple docstring''' lowerCamelCase__ =SparkConfig def __init__( self : Tuple , a : "pyspark.sql.DataFrame" , a : str = None , a : str = None , **a : Optional[int] , ) -> Tuple: """simple docstring""" import pyspark SCREAMING_SNAKE_CASE : Tuple = pyspark.sql.SparkSession.builder.getOrCreate() SCREAMING_SNAKE_CASE : int = df SCREAMING_SNAKE_CASE : Optional[Any] = working_dir super().__init__( cache_dir=a , config_name=str(self.df.semanticHash() ) , **a , ) def __UpperCamelCase ( self : str ) -> Tuple: """simple docstring""" def create_cache_and_write_probe(a : Optional[int] ): # makedirs with exist_ok will recursively create the directory. It will not throw an error if directories # already exist. os.makedirs(self._cache_dir , exist_ok=a ) SCREAMING_SNAKE_CASE : Tuple = os.path.join(self._cache_dir , "fs_test" + uuid.uuida().hex ) # Opening the file in append mode will create a new file unless it already exists, in which case it will not # change the file contents. open(a , "a" ) return [probe_file] if self._spark.conf.get("spark.master" , "" ).startswith("local" ): return # If the cluster is multi-node, make sure that the user provided a cache_dir and that it is on an NFS # accessible to the driver. # TODO: Stream batches to the driver using ArrowCollectSerializer instead of throwing an error. if self._cache_dir: SCREAMING_SNAKE_CASE : Optional[Any] = ( self._spark.sparkContext.parallelize(range(1 ) , 1 ).mapPartitions(a ).collect() ) if os.path.isfile(probe[0] ): return raise ValueError( "When using Dataset.from_spark on a multi-node cluster, the driver and all workers should be able to access cache_dir" ) def __UpperCamelCase ( self : Any ) -> Dict: """simple docstring""" return datasets.DatasetInfo(features=self.config.features ) def __UpperCamelCase ( self : Optional[Any] , a : datasets.download.download_manager.DownloadManager ) -> Any: """simple docstring""" return [datasets.SplitGenerator(name=datasets.Split.TRAIN )] def __UpperCamelCase ( self : int , a : Union[str, Any] ) -> Optional[Any]: """simple docstring""" import pyspark def get_arrow_batch_size(a : Dict ): for batch in it: yield pa.RecordBatch.from_pydict({"batch_bytes": [batch.nbytes]} ) SCREAMING_SNAKE_CASE : Tuple = self.df.count() SCREAMING_SNAKE_CASE : int = df_num_rows if df_num_rows <= 100 else 100 # Approximate the size of each row (in Arrow format) by averaging over a max-100-row sample. SCREAMING_SNAKE_CASE : str = ( self.df.limit(a ) .repartition(1 ) .mapInArrow(a , "batch_bytes: long" ) .agg(pyspark.sql.functions.sum("batch_bytes" ).alias("sample_bytes" ) ) .collect()[0] .sample_bytes / sample_num_rows ) SCREAMING_SNAKE_CASE : Dict = approx_bytes_per_row * df_num_rows if approx_total_size > max_shard_size: # Make sure there is at least one row per partition. SCREAMING_SNAKE_CASE : Tuple = min(a , int(approx_total_size / max_shard_size ) ) SCREAMING_SNAKE_CASE : Tuple = self.df.repartition(a ) def __UpperCamelCase ( self : Any , a : str , a : str , a : int , ) -> Iterable[Tuple[int, bool, Union[int, tuple]]]: """simple docstring""" import pyspark SCREAMING_SNAKE_CASE : Dict = ParquetWriter if file_format == "parquet" else ArrowWriter SCREAMING_SNAKE_CASE : Union[str, Any] = os.path.join(self._working_dir , os.path.basename(a ) ) if self._working_dir else fpath SCREAMING_SNAKE_CASE : List[Any] = file_format == "parquet" # Define these so that we don't reference self in write_arrow, which will result in a pickling error due to # pickling the SparkContext. SCREAMING_SNAKE_CASE : List[Any] = self.config.features SCREAMING_SNAKE_CASE : Dict = self._writer_batch_size SCREAMING_SNAKE_CASE : int = self._fs.storage_options def write_arrow(a : List[Any] ): # Within the same SparkContext, no two task attempts will share the same attempt ID. SCREAMING_SNAKE_CASE : List[str] = pyspark.TaskContext().taskAttemptId() SCREAMING_SNAKE_CASE : List[str] = next(a , a ) if first_batch is None: # Some partitions might not receive any data. return pa.RecordBatch.from_arrays( [[task_id], [0], [0]] , names=["task_id", "num_examples", "num_bytes"] , ) SCREAMING_SNAKE_CASE : Tuple = 0 SCREAMING_SNAKE_CASE : Union[str, Any] = writer_class( features=a , path=working_fpath.replace("SSSSS" , F"{shard_id:05d}" ).replace("TTTTT" , F"{task_id:05d}" ) , writer_batch_size=a , storage_options=a , embed_local_files=a , ) SCREAMING_SNAKE_CASE : Dict = pa.Table.from_batches([first_batch] ) writer.write_table(a ) for batch in it: if max_shard_size is not None and writer._num_bytes >= max_shard_size: SCREAMING_SNAKE_CASE ,SCREAMING_SNAKE_CASE : str = writer.finalize() writer.close() yield pa.RecordBatch.from_arrays( [[task_id], [num_examples], [num_bytes]] , names=["task_id", "num_examples", "num_bytes"] , ) shard_id += 1 SCREAMING_SNAKE_CASE : Any = writer_class( features=writer._features , path=working_fpath.replace("SSSSS" , F"{shard_id:05d}" ).replace("TTTTT" , F"{task_id:05d}" ) , writer_batch_size=a , storage_options=a , embed_local_files=a , ) SCREAMING_SNAKE_CASE : str = pa.Table.from_batches([batch] ) writer.write_table(a ) if writer._num_bytes > 0: SCREAMING_SNAKE_CASE ,SCREAMING_SNAKE_CASE : List[Any] = writer.finalize() writer.close() yield pa.RecordBatch.from_arrays( [[task_id], [num_examples], [num_bytes]] , names=["task_id", "num_examples", "num_bytes"] , ) if working_fpath != fpath: for file in os.listdir(os.path.dirname(a ) ): SCREAMING_SNAKE_CASE : Union[str, Any] = os.path.join(os.path.dirname(a ) , os.path.basename(a ) ) shutil.move(a , a ) SCREAMING_SNAKE_CASE : Optional[int] = ( self.df.mapInArrow(a , "task_id: long, num_examples: long, num_bytes: long" ) .groupBy("task_id" ) .agg( pyspark.sql.functions.sum("num_examples" ).alias("total_num_examples" ) , pyspark.sql.functions.sum("num_bytes" ).alias("total_num_bytes" ) , pyspark.sql.functions.count("num_bytes" ).alias("num_shards" ) , pyspark.sql.functions.collect_list("num_examples" ).alias("shard_lengths" ) , ) .collect() ) for row in stats: yield row.task_id, (row.total_num_examples, row.total_num_bytes, row.num_shards, row.shard_lengths) def __UpperCamelCase ( self : Optional[Any] , a : "datasets.SplitGenerator" , a : str = "arrow" , a : Optional[Union[str, int]] = None , a : Optional[int] = None , **a : str , ) -> str: """simple docstring""" self._validate_cache_dir() SCREAMING_SNAKE_CASE : int = convert_file_size_to_int(max_shard_size or MAX_SHARD_SIZE ) self._repartition_df_if_needed(a ) SCREAMING_SNAKE_CASE : Dict = not is_remote_filesystem(self._fs ) SCREAMING_SNAKE_CASE : Optional[Any] = os.path.join if is_local else posixpath.join SCREAMING_SNAKE_CASE : Optional[int] = "-TTTTT-SSSSS-of-NNNNN" SCREAMING_SNAKE_CASE : Dict = F"{self.name}-{split_generator.name}{SUFFIX}.{file_format}" SCREAMING_SNAKE_CASE : Dict = path_join(self._output_dir , a ) SCREAMING_SNAKE_CASE : int = 0 SCREAMING_SNAKE_CASE : str = 0 SCREAMING_SNAKE_CASE : List[Any] = 0 SCREAMING_SNAKE_CASE : Union[str, Any] = [] SCREAMING_SNAKE_CASE : List[Any] = [] for task_id, content in self._prepare_split_single(a , a , a ): ( ( SCREAMING_SNAKE_CASE ) ,( SCREAMING_SNAKE_CASE ) ,( SCREAMING_SNAKE_CASE ) ,( SCREAMING_SNAKE_CASE ) , ) : Optional[Any] = content if num_bytes > 0: total_num_examples += num_examples total_num_bytes += num_bytes total_shards += num_shards task_id_and_num_shards.append((task_id, num_shards) ) all_shard_lengths.extend(a ) SCREAMING_SNAKE_CASE : List[str] = total_num_examples SCREAMING_SNAKE_CASE : str = total_num_bytes # should rename everything at the end logger.debug(F"Renaming {total_shards} shards." ) if total_shards > 1: SCREAMING_SNAKE_CASE : List[Any] = all_shard_lengths # Define fs outside of _rename_shard so that we don't reference self in the function, which will result in a # pickling error due to pickling the SparkContext. SCREAMING_SNAKE_CASE : Optional[Any] = self._fs # use the -SSSSS-of-NNNNN pattern def _rename_shard( a : int , a : int , a : int , ): rename( a , fpath.replace("SSSSS" , F"{shard_id:05d}" ).replace("TTTTT" , F"{task_id:05d}" ) , fpath.replace("TTTTT-SSSSS" , F"{global_shard_id:05d}" ).replace("NNNNN" , F"{total_shards:05d}" ) , ) SCREAMING_SNAKE_CASE : Tuple = [] SCREAMING_SNAKE_CASE : str = 0 for i in range(len(a ) ): SCREAMING_SNAKE_CASE ,SCREAMING_SNAKE_CASE : Optional[int] = task_id_and_num_shards[i] for shard_id in range(a ): args.append([task_id, shard_id, global_shard_id] ) global_shard_id += 1 self._spark.sparkContext.parallelize(a , len(a ) ).map(lambda a : _rename_shard(*a ) ).collect() else: # don't use any pattern SCREAMING_SNAKE_CASE : Optional[int] = 0 SCREAMING_SNAKE_CASE : Optional[Any] = task_id_and_num_shards[0][0] self._rename( fpath.replace("SSSSS" , F"{shard_id:05d}" ).replace("TTTTT" , F"{task_id:05d}" ) , fpath.replace(a , "" ) , ) def __UpperCamelCase ( self : int , a : "datasets.SplitGenerator" , ) -> SparkExamplesIterable: """simple docstring""" return SparkExamplesIterable(self.df )
25
import gc import unittest import numpy as np import torch from diffusers import StableDiffusionKDiffusionPipeline from diffusers.utils import slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu enable_full_determinism() @slow @require_torch_gpu class _UpperCamelCase ( unittest.TestCase ): '''simple docstring''' def __UpperCamelCase ( self : Dict ) -> Tuple: """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() def __UpperCamelCase ( self : Optional[int] ) -> int: """simple docstring""" SCREAMING_SNAKE_CASE : Optional[Any] = StableDiffusionKDiffusionPipeline.from_pretrained("CompVis/stable-diffusion-v1-4" ) SCREAMING_SNAKE_CASE : str = sd_pipe.to(a ) sd_pipe.set_progress_bar_config(disable=a ) sd_pipe.set_scheduler("sample_euler" ) SCREAMING_SNAKE_CASE : Optional[int] = "A painting of a squirrel eating a burger" SCREAMING_SNAKE_CASE : Any = torch.manual_seed(0 ) SCREAMING_SNAKE_CASE : List[Any] = sd_pipe([prompt] , generator=a , guidance_scale=9.0 , num_inference_steps=20 , output_type="np" ) SCREAMING_SNAKE_CASE : Tuple = output.images SCREAMING_SNAKE_CASE : Any = image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) SCREAMING_SNAKE_CASE : Union[str, Any] = np.array([0.0447, 0.0492, 0.0468, 0.0408, 0.0383, 0.0408, 0.0354, 0.0380, 0.0339] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def __UpperCamelCase ( self : List[Any] ) -> Optional[int]: """simple docstring""" SCREAMING_SNAKE_CASE : int = StableDiffusionKDiffusionPipeline.from_pretrained("stabilityai/stable-diffusion-2-1-base" ) SCREAMING_SNAKE_CASE : Tuple = sd_pipe.to(a ) sd_pipe.set_progress_bar_config(disable=a ) sd_pipe.set_scheduler("sample_euler" ) SCREAMING_SNAKE_CASE : List[str] = "A painting of a squirrel eating a burger" SCREAMING_SNAKE_CASE : List[str] = torch.manual_seed(0 ) SCREAMING_SNAKE_CASE : Union[str, Any] = sd_pipe([prompt] , generator=a , guidance_scale=9.0 , num_inference_steps=20 , output_type="np" ) SCREAMING_SNAKE_CASE : List[Any] = output.images SCREAMING_SNAKE_CASE : Tuple = image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) SCREAMING_SNAKE_CASE : int = np.array([0.1237, 0.1320, 0.1438, 0.1359, 0.1390, 0.1132, 0.1277, 0.1175, 0.1112] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 5e-1 def __UpperCamelCase ( self : Tuple ) -> List[Any]: """simple docstring""" SCREAMING_SNAKE_CASE : Dict = StableDiffusionKDiffusionPipeline.from_pretrained("stabilityai/stable-diffusion-2-1-base" ) SCREAMING_SNAKE_CASE : Union[str, Any] = sd_pipe.to(a ) sd_pipe.set_progress_bar_config(disable=a ) sd_pipe.set_scheduler("sample_dpmpp_2m" ) SCREAMING_SNAKE_CASE : str = "A painting of a squirrel eating a burger" SCREAMING_SNAKE_CASE : Any = torch.manual_seed(0 ) SCREAMING_SNAKE_CASE : str = sd_pipe( [prompt] , generator=a , guidance_scale=7.5 , num_inference_steps=15 , output_type="np" , use_karras_sigmas=a , ) SCREAMING_SNAKE_CASE : str = output.images SCREAMING_SNAKE_CASE : Optional[int] = image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) SCREAMING_SNAKE_CASE : int = np.array( [0.1138_1689, 0.1211_2921, 0.138_9457, 0.1254_9606, 0.124_4964, 0.1083_1517, 0.1156_2866, 0.1086_7816, 0.1049_9048] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
25
1
import datasets from .evaluate import evaluate a_ = '\\n@article{hendrycks2021cuad,\n title={CUAD: An Expert-Annotated NLP Dataset for Legal Contract Review},\n author={Dan Hendrycks and Collin Burns and Anya Chen and Spencer Ball},\n journal={arXiv preprint arXiv:2103.06268},\n year={2021}\n}\n' a_ = '\nThis metric wrap the official scoring script for version 1 of the Contract\nUnderstanding Atticus Dataset (CUAD).\nContract Understanding Atticus Dataset (CUAD) v1 is a corpus of more than 13,000 labels in 510\ncommercial legal contracts that have been manually labeled to identify 41 categories of important\nclauses that lawyers look for when reviewing contracts in connection with corporate transactions.\n' a_ = '\nComputes CUAD scores (EM, F1, AUPR, Precision@80%Recall, and Precision@90%Recall).\nArgs:\n predictions: List of question-answers dictionaries with the following key-values:\n - \'id\': id of the question-answer pair as given in the references (see below)\n - \'prediction_text\': list of possible texts for the answer, as a list of strings\n depending on a threshold on the confidence probability of each prediction.\n references: List of question-answers dictionaries with the following key-values:\n - \'id\': id of the question-answer pair (see above),\n - \'answers\': a Dict in the CUAD dataset format\n {\n \'text\': list of possible texts for the answer, as a list of strings\n \'answer_start\': list of start positions for the answer, as a list of ints\n }\n Note that answer_start values are not taken into account to compute the metric.\nReturns:\n \'exact_match\': Exact match (the normalized answer exactly match the gold answer)\n \'f1\': The F-score of predicted tokens versus the gold answer\n \'aupr\': Area Under the Precision-Recall curve\n \'prec_at_80_recall\': Precision at 80% recall\n \'prec_at_90_recall\': Precision at 90% recall\nExamples:\n >>> predictions = [{\'prediction_text\': [\'The seller:\', \'The buyer/End-User: Shenzhen LOHAS Supply Chain Management Co., Ltd.\'], \'id\': \'LohaCompanyltd_20191209_F-1_EX-10.16_11917878_EX-10.16_Supply Agreement__Parties\'}]\n >>> references = [{\'answers\': {\'answer_start\': [143, 49], \'text\': [\'The seller:\', \'The buyer/End-User: Shenzhen LOHAS Supply Chain Management Co., Ltd.\']}, \'id\': \'LohaCompanyltd_20191209_F-1_EX-10.16_11917878_EX-10.16_Supply Agreement__Parties\'}]\n >>> cuad_metric = datasets.load_metric("cuad")\n >>> results = cuad_metric.compute(predictions=predictions, references=references)\n >>> print(results)\n {\'exact_match\': 100.0, \'f1\': 100.0, \'aupr\': 0.0, \'prec_at_80_recall\': 1.0, \'prec_at_90_recall\': 1.0}\n' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class _UpperCamelCase ( datasets.Metric ): '''simple docstring''' def __UpperCamelCase ( self : Any ) -> Optional[int]: """simple docstring""" return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { "predictions": { "id": datasets.Value("string" ), "prediction_text": datasets.features.Sequence(datasets.Value("string" ) ), }, "references": { "id": datasets.Value("string" ), "answers": datasets.features.Sequence( { "text": datasets.Value("string" ), "answer_start": datasets.Value("int32" ), } ), }, } ) , codebase_urls=["https://www.atticusprojectai.org/cuad"] , reference_urls=["https://www.atticusprojectai.org/cuad"] , ) def __UpperCamelCase ( self : int , a : Any , a : Any ) -> List[Any]: """simple docstring""" SCREAMING_SNAKE_CASE : Any = {prediction["id"]: prediction["prediction_text"] for prediction in predictions} SCREAMING_SNAKE_CASE : List[str] = [ { "paragraphs": [ { "qas": [ { "answers": [{"text": answer_text} for answer_text in ref["answers"]["text"]], "id": ref["id"], } for ref in references ] } ] } ] SCREAMING_SNAKE_CASE : Tuple = evaluate(dataset=a , predictions=a ) return score
25
import unittest import numpy as np from diffusers import LMSDiscreteScheduler, OnnxStableDiffusionInpaintPipeline from diffusers.utils.testing_utils import ( is_onnx_available, load_image, nightly, require_onnxruntime, require_torch_gpu, ) from ..test_pipelines_onnx_common import OnnxPipelineTesterMixin if is_onnx_available(): import onnxruntime as ort class _UpperCamelCase ( __A , unittest.TestCase ): '''simple docstring''' pass @nightly @require_onnxruntime @require_torch_gpu class _UpperCamelCase ( unittest.TestCase ): '''simple docstring''' @property def __UpperCamelCase ( self : List[Any] ) -> List[str]: """simple docstring""" return ( "CUDAExecutionProvider", { "gpu_mem_limit": "15000000000", # 15GB "arena_extend_strategy": "kSameAsRequested", }, ) @property def __UpperCamelCase ( self : int ) -> Optional[Any]: """simple docstring""" SCREAMING_SNAKE_CASE : Optional[Any] = ort.SessionOptions() SCREAMING_SNAKE_CASE : Union[str, Any] = False return options def __UpperCamelCase ( self : List[Any] ) -> List[Any]: """simple docstring""" SCREAMING_SNAKE_CASE : Any = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/in_paint/overture-creations-5sI6fQgYIuo.png" ) SCREAMING_SNAKE_CASE : Optional[Any] = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/in_paint/overture-creations-5sI6fQgYIuo_mask.png" ) SCREAMING_SNAKE_CASE : int = OnnxStableDiffusionInpaintPipeline.from_pretrained( "runwayml/stable-diffusion-inpainting" , revision="onnx" , safety_checker=a , feature_extractor=a , provider=self.gpu_provider , sess_options=self.gpu_options , ) pipe.set_progress_bar_config(disable=a ) SCREAMING_SNAKE_CASE : Optional[Any] = "A red cat sitting on a park bench" SCREAMING_SNAKE_CASE : Tuple = np.random.RandomState(0 ) SCREAMING_SNAKE_CASE : Optional[int] = pipe( prompt=a , image=a , mask_image=a , guidance_scale=7.5 , num_inference_steps=10 , generator=a , output_type="np" , ) SCREAMING_SNAKE_CASE : List[Any] = output.images SCREAMING_SNAKE_CASE : Union[str, Any] = images[0, 255:258, 255:258, -1] assert images.shape == (1, 512, 512, 3) SCREAMING_SNAKE_CASE : int = np.array([0.2514, 0.3007, 0.3517, 0.1790, 0.2382, 0.3167, 0.1944, 0.2273, 0.2464] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3 def __UpperCamelCase ( self : List[Any] ) -> Tuple: """simple docstring""" SCREAMING_SNAKE_CASE : int = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/in_paint/overture-creations-5sI6fQgYIuo.png" ) SCREAMING_SNAKE_CASE : Optional[Any] = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/in_paint/overture-creations-5sI6fQgYIuo_mask.png" ) SCREAMING_SNAKE_CASE : Optional[Any] = LMSDiscreteScheduler.from_pretrained( "runwayml/stable-diffusion-inpainting" , subfolder="scheduler" , revision="onnx" ) SCREAMING_SNAKE_CASE : Union[str, Any] = OnnxStableDiffusionInpaintPipeline.from_pretrained( "runwayml/stable-diffusion-inpainting" , revision="onnx" , scheduler=a , safety_checker=a , feature_extractor=a , provider=self.gpu_provider , sess_options=self.gpu_options , ) pipe.set_progress_bar_config(disable=a ) SCREAMING_SNAKE_CASE : List[Any] = "A red cat sitting on a park bench" SCREAMING_SNAKE_CASE : Dict = np.random.RandomState(0 ) SCREAMING_SNAKE_CASE : Tuple = pipe( prompt=a , image=a , mask_image=a , guidance_scale=7.5 , num_inference_steps=20 , generator=a , output_type="np" , ) SCREAMING_SNAKE_CASE : List[str] = output.images SCREAMING_SNAKE_CASE : Optional[int] = images[0, 255:258, 255:258, -1] assert images.shape == (1, 512, 512, 3) SCREAMING_SNAKE_CASE : Any = np.array([0.0086, 0.0077, 0.0083, 0.0093, 0.0107, 0.0139, 0.0094, 0.0097, 0.0125] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3
25
1
import os from datetime import datetime as dt from github import Github a_ = [ 'good first issue', 'good second issue', 'good difficult issue', 'enhancement', 'new pipeline/model', 'new scheduler', 'wip', ] def lowerCamelCase__ ( ): SCREAMING_SNAKE_CASE : Union[str, Any] = Github(os.environ["GITHUB_TOKEN"]) SCREAMING_SNAKE_CASE : Tuple = g.get_repo("huggingface/diffusers") SCREAMING_SNAKE_CASE : Tuple = repo.get_issues(state="open") for issue in open_issues: SCREAMING_SNAKE_CASE : Optional[Any] = sorted(issue.get_comments() , key=lambda _a: i.created_at , reverse=_a) SCREAMING_SNAKE_CASE : Tuple = comments[0] if len(_a) > 0 else None if ( last_comment is not None and last_comment.user.login == "github-actions[bot]" and (dt.utcnow() - issue.updated_at).days > 7 and (dt.utcnow() - issue.created_at).days >= 30 and not any(label.name.lower() in LABELS_TO_EXEMPT for label in issue.get_labels()) ): # Closes the issue after 7 days of inactivity since the Stalebot notification. issue.edit(state="closed") elif ( "stale" in issue.get_labels() and last_comment is not None and last_comment.user.login != "github-actions[bot]" ): # Opens the issue if someone other than Stalebot commented. issue.edit(state="open") issue.remove_from_labels("stale") elif ( (dt.utcnow() - issue.updated_at).days > 23 and (dt.utcnow() - issue.created_at).days >= 30 and not any(label.name.lower() in LABELS_TO_EXEMPT for label in issue.get_labels()) ): # Post a Stalebot notification after 23 days of inactivity. issue.create_comment( "This issue has been automatically marked as stale because it has not had " "recent activity. If you think this still needs to be addressed " "please comment on this thread.\n\nPlease note that issues that do not follow the " "[contributing guidelines](https://github.com/huggingface/diffusers/blob/main/CONTRIBUTING.md) " "are likely to be ignored.") issue.add_to_labels("stale") if __name__ == "__main__": main()
25
from operator import delitem, getitem, setitem import pytest from data_structures.hashing.hash_map import HashMap def lowerCamelCase__ ( _a): return getitem, k def lowerCamelCase__ ( _a , _a): return setitem, k, v def lowerCamelCase__ ( _a): return delitem, k def lowerCamelCase__ ( _a , _a , *_a): try: return fun(_a , *_a), None except Exception as e: return None, e a_ = ( _set('key_a', 'val_a'), _set('key_b', 'val_b'), ) a_ = [ _set('key_a', 'val_a'), _set('key_a', 'val_b'), ] a_ = [ _set('key_a', 'val_a'), _set('key_b', 'val_b'), _del('key_a'), _del('key_b'), _set('key_a', 'val_a'), _del('key_a'), ] a_ = [ _get('key_a'), _del('key_a'), _set('key_a', 'val_a'), _del('key_a'), _del('key_a'), _get('key_a'), ] a_ = [ *[_set(x, x) for x in range(5)], # guaranteed upsize ] a_ = [ *[_set(x, x) for x in range(5)], # guaranteed upsize *[_del(x) for x in range(5)], _set('key_a', 'val_b'), ] @pytest.mark.parametrize( "operations" , ( pytest.param(_add_items , id="add items"), pytest.param(_overwrite_items , id="overwrite items"), pytest.param(_delete_items , id="delete items"), pytest.param(_access_absent_items , id="access absent items"), pytest.param(_add_with_resize_up , id="add with resize up"), pytest.param(_add_with_resize_down , id="add with resize down"), ) , ) def lowerCamelCase__ ( _a): SCREAMING_SNAKE_CASE : Dict = HashMap(initial_block_size=4) SCREAMING_SNAKE_CASE : List[str] = {} for _, (fun, *args) in enumerate(_a): SCREAMING_SNAKE_CASE ,SCREAMING_SNAKE_CASE : Union[str, Any] = _run_operation(_a , _a , *_a) SCREAMING_SNAKE_CASE ,SCREAMING_SNAKE_CASE : List[Any] = _run_operation(_a , _a , *_a) assert my_res == py_res assert str(_a) == str(_a) assert set(_a) == set(_a) assert len(_a) == len(_a) assert set(my.items()) == set(py.items()) def lowerCamelCase__ ( ): def is_public(_a) -> bool: return not name.startswith("_") SCREAMING_SNAKE_CASE : List[str] = {name for name in dir({}) if is_public(_a)} SCREAMING_SNAKE_CASE : Union[str, Any] = {name for name in dir(HashMap()) if is_public(_a)} assert dict_public_names > hash_public_names
25
1
from __future__ import annotations import math from collections import Counter from string import ascii_lowercase def lowerCamelCase__ ( _a): SCREAMING_SNAKE_CASE ,SCREAMING_SNAKE_CASE : List[str] = analyze_text(_a) SCREAMING_SNAKE_CASE : Tuple = list(" " + ascii_lowercase) # what is our total sum of probabilities. SCREAMING_SNAKE_CASE : List[Any] = sum(single_char_strings.values()) # one length string SCREAMING_SNAKE_CASE : Optional[Any] = 0 # for each alpha we go in our dict and if it is in it we calculate entropy for ch in my_alphas: if ch in single_char_strings: SCREAMING_SNAKE_CASE : Tuple = single_char_strings[ch] SCREAMING_SNAKE_CASE : List[str] = my_str / all_sum my_fir_sum += prob * math.loga(_a) # entropy formula. # print entropy print(f"{round(-1 * my_fir_sum):.1f}") # two len string SCREAMING_SNAKE_CASE : Dict = sum(two_char_strings.values()) SCREAMING_SNAKE_CASE : Optional[int] = 0 # for each alpha (two in size) calculate entropy. for cha in my_alphas: for cha in my_alphas: SCREAMING_SNAKE_CASE : List[Any] = cha + cha if sequence in two_char_strings: SCREAMING_SNAKE_CASE : List[Any] = two_char_strings[sequence] SCREAMING_SNAKE_CASE : List[str] = int(_a) / all_sum my_sec_sum += prob * math.loga(_a) # print second entropy print(f"{round(-1 * my_sec_sum):.1f}") # print the difference between them print(f"{round((-1 * my_sec_sum) - (-1 * my_fir_sum)):.1f}") def lowerCamelCase__ ( _a): SCREAMING_SNAKE_CASE : Tuple = Counter() # type: ignore SCREAMING_SNAKE_CASE : Tuple = Counter() # type: ignore single_char_strings[text[-1]] += 1 # first case when we have space at start. two_char_strings[" " + text[0]] += 1 for i in range(0 , len(_a) - 1): single_char_strings[text[i]] += 1 two_char_strings[text[i : i + 2]] += 1 return single_char_strings, two_char_strings def lowerCamelCase__ ( ): import doctest doctest.testmod() # text = ( # "Had repulsive dashwoods suspicion sincerity but advantage now him. Remark " # "easily garret nor nay. Civil those mrs enjoy shy fat merry. You greatest " # "jointure saw horrible. He private he on be imagine suppose. Fertile " # "beloved evident through no service elderly is. Blind there if every no so " # "at. Own neglected you preferred way sincerity delivered his attempted. To " # "of message cottage windows do besides against uncivil. Delightful " # "unreserved impossible few estimating men favourable see entreaties. She " # "propriety immediate was improving. He or entrance humoured likewise " # "moderate. Much nor game son say feel. Fat make met can must form into " # "gate. Me we offending prevailed discovery. " # ) # calculate_prob(text) if __name__ == "__main__": main()
25
from typing import TYPE_CHECKING from ....utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available a_ = {'configuration_van': ['VAN_PRETRAINED_CONFIG_ARCHIVE_MAP', 'VanConfig']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a_ = [ 'VAN_PRETRAINED_MODEL_ARCHIVE_LIST', 'VanForImageClassification', 'VanModel', 'VanPreTrainedModel', ] if TYPE_CHECKING: from .configuration_van import VAN_PRETRAINED_CONFIG_ARCHIVE_MAP, VanConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_van import ( VAN_PRETRAINED_MODEL_ARCHIVE_LIST, VanForImageClassification, VanModel, VanPreTrainedModel, ) else: import sys a_ = _LazyModule(__name__, globals()['__file__'], _import_structure)
25
1
from typing import TYPE_CHECKING from ....utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available a_ = {'configuration_van': ['VAN_PRETRAINED_CONFIG_ARCHIVE_MAP', 'VanConfig']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a_ = [ 'VAN_PRETRAINED_MODEL_ARCHIVE_LIST', 'VanForImageClassification', 'VanModel', 'VanPreTrainedModel', ] if TYPE_CHECKING: from .configuration_van import VAN_PRETRAINED_CONFIG_ARCHIVE_MAP, VanConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_van import ( VAN_PRETRAINED_MODEL_ARCHIVE_LIST, VanForImageClassification, VanModel, VanPreTrainedModel, ) else: import sys a_ = _LazyModule(__name__, globals()['__file__'], _import_structure)
25
from __future__ import annotations def lowerCamelCase__ ( _a): if len(_a) == 0: return [] SCREAMING_SNAKE_CASE ,SCREAMING_SNAKE_CASE : Tuple = min(_a), max(_a) SCREAMING_SNAKE_CASE : Dict = int(max_value - min_value) + 1 SCREAMING_SNAKE_CASE : list[list] = [[] for _ in range(_a)] for i in my_list: buckets[int(i - min_value)].append(_a) return [v for bucket in buckets for v in sorted(_a)] if __name__ == "__main__": from doctest import testmod testmod() assert bucket_sort([4, 5, 3, 2, 1]) == [1, 2, 3, 4, 5] assert bucket_sort([0, 1, -10, 15, 2, -2]) == [-10, -2, 0, 1, 2, 15]
25
1
import sys a_ = ( '73167176531330624919225119674426574742355349194934' '96983520312774506326239578318016984801869478851843' '85861560789112949495459501737958331952853208805511' '12540698747158523863050715693290963295227443043557' '66896648950445244523161731856403098711121722383113' '62229893423380308135336276614282806444486645238749' '30358907296290491560440772390713810515859307960866' '70172427121883998797908792274921901699720888093776' '65727333001053367881220235421809751254540594752243' '52584907711670556013604839586446706324415722155397' '53697817977846174064955149290862569321978468622482' '83972241375657056057490261407972968652414535100474' '82166370484403199890008895243450658541227588666881' '16427171479924442928230863465674813919123162824586' '17866458359124566529476545682848912883142607690042' '24219022671055626321111109370544217506941658960408' '07198403850962455444362981230987879927244284909188' '84580156166097919133875499200524063689912560717606' '05886116467109405077541002256983155200055935729725' '71636269561882670428252483600823257530420752963450' ) def lowerCamelCase__ ( _a = N): SCREAMING_SNAKE_CASE : Optional[Any] = -sys.maxsize - 1 for i in range(len(_a) - 12): SCREAMING_SNAKE_CASE : List[Any] = 1 for j in range(13): product *= int(n[i + j]) if product > largest_product: SCREAMING_SNAKE_CASE : Union[str, Any] = product return largest_product if __name__ == "__main__": print(F'''{solution() = }''')
25
a_ = frozenset( [ 'prompt', 'height', 'width', 'guidance_scale', 'negative_prompt', 'prompt_embeds', 'negative_prompt_embeds', 'cross_attention_kwargs', ] ) a_ = frozenset(['prompt', 'negative_prompt']) a_ = frozenset([]) a_ = frozenset(['image']) a_ = frozenset( [ 'image', 'height', 'width', 'guidance_scale', ] ) a_ = frozenset(['image']) a_ = frozenset( [ 'prompt', 'image', 'height', 'width', 'guidance_scale', 'negative_prompt', 'prompt_embeds', 'negative_prompt_embeds', ] ) a_ = frozenset(['prompt', 'image', 'negative_prompt']) a_ = frozenset( [ # Text guided image variation with an image mask 'prompt', 'image', 'mask_image', 'height', 'width', 'guidance_scale', 'negative_prompt', 'prompt_embeds', 'negative_prompt_embeds', ] ) a_ = frozenset(['prompt', 'image', 'mask_image', 'negative_prompt']) a_ = frozenset( [ # image variation with an image mask 'image', 'mask_image', 'height', 'width', 'guidance_scale', ] ) a_ = frozenset(['image', 'mask_image']) a_ = frozenset( [ 'example_image', 'image', 'mask_image', 'height', 'width', 'guidance_scale', ] ) a_ = frozenset(['example_image', 'image', 'mask_image']) a_ = frozenset(['class_labels']) a_ = frozenset(['class_labels']) a_ = frozenset(['batch_size']) a_ = frozenset([]) a_ = frozenset(['batch_size']) a_ = frozenset([]) a_ = frozenset( [ 'prompt', 'audio_length_in_s', 'guidance_scale', 'negative_prompt', 'prompt_embeds', 'negative_prompt_embeds', 'cross_attention_kwargs', ] ) a_ = frozenset(['prompt', 'negative_prompt']) a_ = frozenset(['input_tokens']) a_ = frozenset(['input_tokens'])
25
1
# DISCLAIMER: This file is strongly influenced by https://github.com/yang-song/score_sde_pytorch import math from dataclasses import dataclass from typing import Optional, Tuple, Union import torch from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput, randn_tensor from .scheduling_utils import SchedulerMixin, SchedulerOutput @dataclass class _UpperCamelCase ( __A ): '''simple docstring''' lowerCamelCase__ =42 lowerCamelCase__ =42 class _UpperCamelCase ( __A , __A ): '''simple docstring''' lowerCamelCase__ =1 @register_to_config def __init__( self : Dict , a : int = 2000 , a : float = 0.15 , a : float = 0.01 , a : float = 1348.0 , a : float = 1e-5 , a : int = 1 , ) -> Optional[Any]: """simple docstring""" SCREAMING_SNAKE_CASE : Tuple = sigma_max # setable values SCREAMING_SNAKE_CASE : str = None self.set_sigmas(a , a , a , a ) def __UpperCamelCase ( self : Optional[int] , a : torch.FloatTensor , a : Optional[int] = None ) -> torch.FloatTensor: """simple docstring""" return sample def __UpperCamelCase ( self : Optional[int] , a : int , a : float = None , a : Union[str, torch.device] = None ) -> List[str]: """simple docstring""" SCREAMING_SNAKE_CASE : Tuple = sampling_eps if sampling_eps is not None else self.config.sampling_eps SCREAMING_SNAKE_CASE : List[Any] = torch.linspace(1 , a , a , device=a ) def __UpperCamelCase ( self : str , a : int , a : float = None , a : float = None , a : float = None ) -> int: """simple docstring""" SCREAMING_SNAKE_CASE : Dict = sigma_min if sigma_min is not None else self.config.sigma_min SCREAMING_SNAKE_CASE : List[str] = sigma_max if sigma_max is not None else self.config.sigma_max SCREAMING_SNAKE_CASE : Tuple = sampling_eps if sampling_eps is not None else self.config.sampling_eps if self.timesteps is None: self.set_timesteps(a , a ) SCREAMING_SNAKE_CASE : Tuple = sigma_min * (sigma_max / sigma_min) ** (self.timesteps / sampling_eps) SCREAMING_SNAKE_CASE : Optional[Any] = torch.exp(torch.linspace(math.log(a ) , math.log(a ) , a ) ) SCREAMING_SNAKE_CASE : List[str] = torch.tensor([sigma_min * (sigma_max / sigma_min) ** t for t in self.timesteps] ) def __UpperCamelCase ( self : Dict , a : int , a : Dict ) -> str: """simple docstring""" return torch.where( timesteps == 0 , torch.zeros_like(t.to(timesteps.device ) ) , self.discrete_sigmas[timesteps - 1].to(timesteps.device ) , ) def __UpperCamelCase ( self : str , a : torch.FloatTensor , a : int , a : torch.FloatTensor , a : Optional[torch.Generator] = None , a : bool = True , ) -> Union[SdeVeOutput, Tuple]: """simple docstring""" if self.timesteps is None: raise ValueError( "`self.timesteps` is not set, you need to run 'set_timesteps' after creating the scheduler" ) SCREAMING_SNAKE_CASE : int = timestep * torch.ones( sample.shape[0] , device=sample.device ) # torch.repeat_interleave(timestep, sample.shape[0]) SCREAMING_SNAKE_CASE : Tuple = (timestep * (len(self.timesteps ) - 1)).long() # mps requires indices to be in the same device, so we use cpu as is the default with cuda SCREAMING_SNAKE_CASE : int = timesteps.to(self.discrete_sigmas.device ) SCREAMING_SNAKE_CASE : Optional[Any] = self.discrete_sigmas[timesteps].to(sample.device ) SCREAMING_SNAKE_CASE : Optional[Any] = self.get_adjacent_sigma(a , a ).to(sample.device ) SCREAMING_SNAKE_CASE : Tuple = torch.zeros_like(a ) SCREAMING_SNAKE_CASE : List[Any] = (sigma**2 - adjacent_sigma**2) ** 0.5 # equation 6 in the paper: the model_output modeled by the network is grad_x log pt(x) # also equation 47 shows the analog from SDE models to ancestral sampling methods SCREAMING_SNAKE_CASE : int = diffusion.flatten() while len(diffusion.shape ) < len(sample.shape ): SCREAMING_SNAKE_CASE : List[Any] = diffusion.unsqueeze(-1 ) SCREAMING_SNAKE_CASE : List[str] = drift - diffusion**2 * model_output # equation 6: sample noise for the diffusion term of SCREAMING_SNAKE_CASE : Optional[Any] = randn_tensor( sample.shape , layout=sample.layout , generator=a , device=sample.device , dtype=sample.dtype ) SCREAMING_SNAKE_CASE : Optional[Any] = sample - drift # subtract because `dt` is a small negative timestep # TODO is the variable diffusion the correct scaling term for the noise? SCREAMING_SNAKE_CASE : Any = prev_sample_mean + diffusion * noise # add impact of diffusion field g if not return_dict: return (prev_sample, prev_sample_mean) return SdeVeOutput(prev_sample=a , prev_sample_mean=a ) def __UpperCamelCase ( self : str , a : torch.FloatTensor , a : torch.FloatTensor , a : Optional[torch.Generator] = None , a : bool = True , ) -> Union[SchedulerOutput, Tuple]: """simple docstring""" if self.timesteps is None: raise ValueError( "`self.timesteps` is not set, you need to run 'set_timesteps' after creating the scheduler" ) # For small batch sizes, the paper "suggest replacing norm(z) with sqrt(d), where d is the dim. of z" # sample noise for correction SCREAMING_SNAKE_CASE : List[str] = randn_tensor(sample.shape , layout=sample.layout , generator=a ).to(sample.device ) # compute step size from the model_output, the noise, and the snr SCREAMING_SNAKE_CASE : Dict = torch.norm(model_output.reshape(model_output.shape[0] , -1 ) , dim=-1 ).mean() SCREAMING_SNAKE_CASE : str = torch.norm(noise.reshape(noise.shape[0] , -1 ) , dim=-1 ).mean() SCREAMING_SNAKE_CASE : int = (self.config.snr * noise_norm / grad_norm) ** 2 * 2 SCREAMING_SNAKE_CASE : Dict = step_size * torch.ones(sample.shape[0] ).to(sample.device ) # self.repeat_scalar(step_size, sample.shape[0]) # compute corrected sample: model_output term and noise term SCREAMING_SNAKE_CASE : Optional[int] = step_size.flatten() while len(step_size.shape ) < len(sample.shape ): SCREAMING_SNAKE_CASE : Union[str, Any] = step_size.unsqueeze(-1 ) SCREAMING_SNAKE_CASE : str = sample + step_size * model_output SCREAMING_SNAKE_CASE : List[Any] = prev_sample_mean + ((step_size * 2) ** 0.5) * noise if not return_dict: return (prev_sample,) return SchedulerOutput(prev_sample=a ) def __UpperCamelCase ( self : int , a : torch.FloatTensor , a : torch.FloatTensor , a : torch.FloatTensor , ) -> torch.FloatTensor: """simple docstring""" SCREAMING_SNAKE_CASE : str = timesteps.to(original_samples.device ) SCREAMING_SNAKE_CASE : Optional[int] = self.discrete_sigmas.to(original_samples.device )[timesteps] SCREAMING_SNAKE_CASE : str = ( noise * sigmas[:, None, None, None] if noise is not None else torch.randn_like(a ) * sigmas[:, None, None, None] ) SCREAMING_SNAKE_CASE : Optional[Any] = noise + original_samples return noisy_samples def __len__( self : Optional[Any] ) -> int: """simple docstring""" return self.config.num_train_timesteps
25
# Lint as: python3 import sys from collections.abc import Mapping from typing import TYPE_CHECKING, Dict, Optional import numpy as np import pyarrow as pa from .. import config from ..utils.logging import get_logger from ..utils.py_utils import map_nested from .formatting import TensorFormatter if TYPE_CHECKING: import jax import jaxlib a_ = get_logger() a_ = None class _UpperCamelCase ( TensorFormatter[Mapping, 'jax.Array', Mapping] ): '''simple docstring''' def __init__( self : Optional[Any] , a : str=None , a : List[Any]=None , **a : Any ) -> Optional[Any]: """simple docstring""" super().__init__(features=a ) import jax from jaxlib.xla_client import Device if isinstance(a , a ): raise ValueError( F"Expected {device} to be a `str` not {type(a )}, as `jaxlib.xla_extension.Device` " "is not serializable neither with `pickle` nor with `dill`. Instead you can surround " "the device with `str()` to get its string identifier that will be internally mapped " "to the actual `jaxlib.xla_extension.Device`." ) SCREAMING_SNAKE_CASE : List[str] = device if isinstance(a , a ) else str(jax.devices()[0] ) # using global variable since `jaxlib.xla_extension.Device` is not serializable neither # with `pickle` nor with `dill`, so we need to use a global variable instead global DEVICE_MAPPING if DEVICE_MAPPING is None: SCREAMING_SNAKE_CASE : str = self._map_devices_to_str() if self.device not in list(DEVICE_MAPPING.keys() ): logger.warning( F"Device with string identifier {self.device} not listed among the available " F"devices: {list(DEVICE_MAPPING.keys() )}, so falling back to the default " F"device: {str(jax.devices()[0] )}." ) SCREAMING_SNAKE_CASE : Any = str(jax.devices()[0] ) SCREAMING_SNAKE_CASE : Any = jnp_array_kwargs @staticmethod def __UpperCamelCase ( ) -> Dict[str, "jaxlib.xla_extension.Device"]: """simple docstring""" import jax return {str(a ): device for device in jax.devices()} def __UpperCamelCase ( self : Dict , a : Tuple ) -> str: """simple docstring""" import jax import jax.numpy as jnp if isinstance(a , a ) and column: if all( isinstance(a , jax.Array ) and x.shape == column[0].shape and x.dtype == column[0].dtype for x in column ): return jnp.stack(a , axis=0 ) return column def __UpperCamelCase ( self : Dict , a : str ) -> str: """simple docstring""" import jax import jax.numpy as jnp if isinstance(a , (str, bytes, type(a )) ): return value elif isinstance(a , (np.character, np.ndarray) ) and np.issubdtype(value.dtype , np.character ): return value.tolist() SCREAMING_SNAKE_CASE : Union[str, Any] = {} if isinstance(a , (np.number, np.ndarray) ) and np.issubdtype(value.dtype , np.integer ): # the default int precision depends on the jax config # see https://jax.readthedocs.io/en/latest/notebooks/Common_Gotchas_in_JAX.html#double-64bit-precision if jax.config.jax_enable_xaa: SCREAMING_SNAKE_CASE : Dict = {"dtype": jnp.intaa} else: SCREAMING_SNAKE_CASE : str = {"dtype": jnp.intaa} elif isinstance(a , (np.number, np.ndarray) ) and np.issubdtype(value.dtype , np.floating ): SCREAMING_SNAKE_CASE : int = {"dtype": jnp.floataa} elif config.PIL_AVAILABLE and "PIL" in sys.modules: import PIL.Image if isinstance(a , PIL.Image.Image ): SCREAMING_SNAKE_CASE : Dict = np.asarray(a ) # using global variable since `jaxlib.xla_extension.Device` is not serializable neither # with `pickle` nor with `dill`, so we need to use a global variable instead global DEVICE_MAPPING if DEVICE_MAPPING is None: SCREAMING_SNAKE_CASE : Optional[Any] = self._map_devices_to_str() with jax.default_device(DEVICE_MAPPING[self.device] ): # calling jnp.array on a np.ndarray does copy the data # see https://github.com/google/jax/issues/4486 return jnp.array(a , **{**default_dtype, **self.jnp_array_kwargs} ) def __UpperCamelCase ( self : Any , a : List[str] ) -> Dict: """simple docstring""" import jax # support for torch, tf, jax etc. if config.TORCH_AVAILABLE and "torch" in sys.modules: import torch if isinstance(a , torch.Tensor ): return self._tensorize(data_struct.detach().cpu().numpy()[()] ) if hasattr(a , "__array__" ) and not isinstance(a , jax.Array ): SCREAMING_SNAKE_CASE : Optional[int] = data_struct.__array__() # support for nested types like struct of list of struct if isinstance(a , np.ndarray ): if data_struct.dtype == object: # jax arrays cannot be instantied from an array of objects return self._consolidate([self.recursive_tensorize(a ) for substruct in data_struct] ) elif isinstance(a , (list, tuple) ): return self._consolidate([self.recursive_tensorize(a ) for substruct in data_struct] ) return self._tensorize(a ) def __UpperCamelCase ( self : Optional[Any] , a : dict ) -> Dict: """simple docstring""" return map_nested(self._recursive_tensorize , a , map_list=a ) def __UpperCamelCase ( self : Dict , a : pa.Table ) -> Mapping: """simple docstring""" SCREAMING_SNAKE_CASE : Optional[Any] = self.numpy_arrow_extractor().extract_row(a ) SCREAMING_SNAKE_CASE : List[Any] = self.python_features_decoder.decode_row(a ) return self.recursive_tensorize(a ) def __UpperCamelCase ( self : Optional[int] , a : pa.Table ) -> "jax.Array": """simple docstring""" SCREAMING_SNAKE_CASE : Optional[int] = self.numpy_arrow_extractor().extract_column(a ) SCREAMING_SNAKE_CASE : Optional[Any] = self.python_features_decoder.decode_column(a , pa_table.column_names[0] ) SCREAMING_SNAKE_CASE : Tuple = self.recursive_tensorize(a ) SCREAMING_SNAKE_CASE : Optional[int] = self._consolidate(a ) return column def __UpperCamelCase ( self : List[Any] , a : pa.Table ) -> Mapping: """simple docstring""" SCREAMING_SNAKE_CASE : str = self.numpy_arrow_extractor().extract_batch(a ) SCREAMING_SNAKE_CASE : str = self.python_features_decoder.decode_batch(a ) SCREAMING_SNAKE_CASE : List[Any] = self.recursive_tensorize(a ) for column_name in batch: SCREAMING_SNAKE_CASE : List[Any] = self._consolidate(batch[column_name] ) return batch
25
1
import warnings from pathlib import Path from typing import List, Tuple, Union import fire from torch import nn from transformers import AutoModelForSeqaSeqLM, AutoTokenizer, PreTrainedModel from transformers.utils import logging a_ = logging.get_logger(__name__) def lowerCamelCase__ ( _a , _a , _a): SCREAMING_SNAKE_CASE : Dict = nn.ModuleList([src_layers[i] for i in layers_to_copy]) assert len(_a) == len(_a), f"{len(_a)} != {len(_a)}" dest_layers.load_state_dict(layers_to_copy.state_dict()) a_ = { # maps num layers in teacher -> num_layers in student -> which teacher layers to copy. # 12: bart, 16: pegasus, 6: marian/Helsinki-NLP 12: { 1: [0], # This says that if the teacher has 12 layers and the student has 1, copy layer 0 of the teacher 2: [0, 6], 3: [0, 6, 11], 4: [0, 4, 8, 11], 6: [0, 2, 4, 7, 9, 11], 9: [0, 1, 2, 4, 5, 7, 9, 10, 11], 12: list(range(12)), }, 16: { # maps num layers in student -> which teacher layers to copy 1: [0], 2: [0, 15], 3: [0, 8, 15], 4: [0, 5, 10, 15], 6: [0, 3, 6, 9, 12, 15], 8: [0, 2, 4, 6, 8, 10, 12, 15], 9: [0, 1, 3, 5, 7, 9, 11, 13, 15], 12: [0, 1, 2, 3, 4, 5, 6, 7, 9, 11, 13, 15], 16: list(range(16)), }, 6: {1: [0], 2: [0, 5], 3: [0, 2, 5], 4: [0, 1, 3, 5], 6: list(range(6))}, } a_ = { # maps num layers in student -> which teacher layers to copy. 6: {1: [5], 2: [3, 5], 3: [1, 4, 5], 4: [1, 2, 4, 5]}, 12: {1: [11], 2: [5, 11], 3: [3, 7, 11], 6: [1, 3, 5, 8, 10, 11]}, 16: {1: [15], 4: [4, 9, 12, 15], 8: [1, 3, 5, 7, 9, 11, 13, 15]}, } def lowerCamelCase__ ( _a , _a): try: SCREAMING_SNAKE_CASE : Any = LAYERS_TO_COPY[n_teacher][n_student] return val except KeyError: if n_student != n_teacher: warnings.warn( f"no hardcoded layers to copy for teacher {n_teacher} -> student {n_student}, defaulting to first" f" {n_student}") return list(range(_a)) def lowerCamelCase__ ( _a , _a): if n_student > n_teacher: raise ValueError(f"Cannot perform intermediate supervision for student {n_student} > teacher {n_teacher}") elif n_teacher == n_student: return list(range(_a)) elif n_student == 1: return [n_teacher - 1] else: return LAYERS_TO_SUPERVISE[n_teacher][n_student] def lowerCamelCase__ ( _a , _a = "student" , _a = None , _a = None , _a=False , _a=None , _a=None , **_a , ): SCREAMING_SNAKE_CASE : Dict = "encoder_layers and decoder_layers cannot be both None-- you would just have an identical teacher." assert (e is not None) or (d is not None), _msg if isinstance(_a , _a): AutoTokenizer.from_pretrained(_a).save_pretrained(_a) # purely for convenience SCREAMING_SNAKE_CASE : str = AutoModelForSeqaSeqLM.from_pretrained(_a).eval() else: assert isinstance(_a , _a), f"teacher must be a model or string got type {type(_a)}" SCREAMING_SNAKE_CASE : Optional[int] = teacher.config.to_diff_dict() try: SCREAMING_SNAKE_CASE ,SCREAMING_SNAKE_CASE : str = teacher.config.encoder_layers, teacher.config.decoder_layers if e is None: SCREAMING_SNAKE_CASE : List[str] = teacher_e if d is None: SCREAMING_SNAKE_CASE : Optional[Any] = teacher_d init_kwargs.update({"encoder_layers": e, "decoder_layers": d}) except AttributeError: # T5 if hasattr(teacher.config , "num_encoder_layers"): SCREAMING_SNAKE_CASE ,SCREAMING_SNAKE_CASE : str = teacher.config.num_encoder_layers, teacher.config.num_decoder_layers else: SCREAMING_SNAKE_CASE ,SCREAMING_SNAKE_CASE : Tuple = teacher.config.num_layers, teacher.config.num_decoder_layers if e is None: SCREAMING_SNAKE_CASE : Optional[Any] = teacher_e if d is None: SCREAMING_SNAKE_CASE : List[Any] = teacher_d if hasattr(teacher.config , "num_encoder_layers"): init_kwargs.update({"num_encoder_layers": e, "num_decoder_layers": d}) else: init_kwargs.update({"num_layers": e, "num_decoder_layers": d}) # Kwargs to instantiate student: teacher kwargs with updated layer numbers + **extra_config_kwargs init_kwargs.update(_a) # Copy weights SCREAMING_SNAKE_CASE : Tuple = teacher.config_class(**_a) SCREAMING_SNAKE_CASE : Any = AutoModelForSeqaSeqLM.from_config(_a) # Start by copying the full teacher state dict this will copy the first N teacher layers to the student. SCREAMING_SNAKE_CASE : List[str] = student.load_state_dict(teacher.state_dict() , strict=_a) assert info.missing_keys == [], info.missing_keys # every student key should have a teacher keys. if copy_first_teacher_layers: # Our copying is done. We just log and save SCREAMING_SNAKE_CASE ,SCREAMING_SNAKE_CASE : Optional[int] = list(range(_a)), list(range(_a)) logger.info( f"Copied encoder layers {e_layers_to_copy} and decoder layers {d_layers_to_copy}. Saving them to" f" {save_path}") student.save_pretrained(_a) return student, e_layers_to_copy, d_layers_to_copy # Decide which layers of the teacher to copy. Not exactly alternating -- we try to keep first and last layer. if e_layers_to_copy is None: SCREAMING_SNAKE_CASE : List[int] = pick_layers_to_copy(_a , _a) if d_layers_to_copy is None: SCREAMING_SNAKE_CASE : List[int] = pick_layers_to_copy(_a , _a) try: if hasattr( _a , "prophetnet"): # For ProphetNet, student.model.encoder.layers is called student.prophetnet.encoder.layers copy_layers(teacher.prophetnet.encoder.layers , student.prophetnet.encoder.layers , _a) copy_layers(teacher.prophetnet.decoder.layers , student.prophetnet.decoder.layers , _a) else: copy_layers(teacher.model.encoder.layers , student.model.encoder.layers , _a) copy_layers(teacher.model.decoder.layers , student.model.decoder.layers , _a) except AttributeError: # For t5, student.model.encoder.layers is called student.encoder.block copy_layers(teacher.encoder.block , student.encoder.block , _a) copy_layers(teacher.decoder.block , student.decoder.block , _a) logger.info( f"Copied encoder layers {e_layers_to_copy} and decoder layers {d_layers_to_copy}. Saving them to {save_path}") SCREAMING_SNAKE_CASE : Optional[int] = { "teacher_type": teacher.config.model_type, "copied_encoder_layers": e_layers_to_copy, "copied_decoder_layers": d_layers_to_copy, } student.save_pretrained(_a) # Save information about copying for easier reproducibility return student, e_layers_to_copy, d_layers_to_copy if __name__ == "__main__": fire.Fire(create_student_by_copying_alternating_layers)
25
import unittest from transformers import ( MODEL_FOR_OBJECT_DETECTION_MAPPING, AutoFeatureExtractor, AutoModelForObjectDetection, ObjectDetectionPipeline, is_vision_available, pipeline, ) from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_pytesseract, require_tf, require_timm, require_torch, require_vision, slow, ) from .test_pipelines_common import ANY if is_vision_available(): from PIL import Image else: class _UpperCamelCase : '''simple docstring''' @staticmethod def __UpperCamelCase ( *a : str , **a : int ) -> str: """simple docstring""" pass @is_pipeline_test @require_vision @require_timm @require_torch class _UpperCamelCase ( unittest.TestCase ): '''simple docstring''' lowerCamelCase__ =MODEL_FOR_OBJECT_DETECTION_MAPPING def __UpperCamelCase ( self : Optional[Any] , a : str , a : Optional[Any] , a : Union[str, Any] ) -> List[Any]: """simple docstring""" SCREAMING_SNAKE_CASE : Dict = ObjectDetectionPipeline(model=a , image_processor=a ) return object_detector, ["./tests/fixtures/tests_samples/COCO/000000039769.png"] def __UpperCamelCase ( self : List[Any] , a : Optional[int] , a : Optional[int] ) -> int: """simple docstring""" SCREAMING_SNAKE_CASE : Union[str, Any] = object_detector("./tests/fixtures/tests_samples/COCO/000000039769.png" , threshold=0.0 ) self.assertGreater(len(a ) , 0 ) for detected_object in outputs: self.assertEqual( a , { "score": ANY(a ), "label": ANY(a ), "box": {"xmin": ANY(a ), "ymin": ANY(a ), "xmax": ANY(a ), "ymax": ANY(a )}, } , ) import datasets SCREAMING_SNAKE_CASE : Any = datasets.load_dataset("hf-internal-testing/fixtures_image_utils" , "image" , split="test" ) SCREAMING_SNAKE_CASE : Dict = [ Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ), "http://images.cocodataset.org/val2017/000000039769.jpg", # RGBA dataset[0]["file"], # LA dataset[1]["file"], # L dataset[2]["file"], ] SCREAMING_SNAKE_CASE : Tuple = object_detector(a , threshold=0.0 ) self.assertEqual(len(a ) , len(a ) ) for outputs in batch_outputs: self.assertGreater(len(a ) , 0 ) for detected_object in outputs: self.assertEqual( a , { "score": ANY(a ), "label": ANY(a ), "box": {"xmin": ANY(a ), "ymin": ANY(a ), "xmax": ANY(a ), "ymax": ANY(a )}, } , ) @require_tf @unittest.skip("Object detection not implemented in TF" ) def __UpperCamelCase ( self : Optional[int] ) -> str: """simple docstring""" pass @require_torch def __UpperCamelCase ( self : Tuple ) -> List[Any]: """simple docstring""" SCREAMING_SNAKE_CASE : str = "hf-internal-testing/tiny-detr-mobilenetsv3" SCREAMING_SNAKE_CASE : Dict = AutoModelForObjectDetection.from_pretrained(a ) SCREAMING_SNAKE_CASE : Any = AutoFeatureExtractor.from_pretrained(a ) SCREAMING_SNAKE_CASE : Tuple = ObjectDetectionPipeline(model=a , feature_extractor=a ) SCREAMING_SNAKE_CASE : int = object_detector("http://images.cocodataset.org/val2017/000000039769.jpg" , threshold=0.0 ) self.assertEqual( nested_simplify(a , decimals=4 ) , [ {"score": 0.3376, "label": "LABEL_0", "box": {"xmin": 159, "ymin": 120, "xmax": 480, "ymax": 359}}, {"score": 0.3376, "label": "LABEL_0", "box": {"xmin": 159, "ymin": 120, "xmax": 480, "ymax": 359}}, ] , ) SCREAMING_SNAKE_CASE : Dict = object_detector( [ "http://images.cocodataset.org/val2017/000000039769.jpg", "http://images.cocodataset.org/val2017/000000039769.jpg", ] , threshold=0.0 , ) self.assertEqual( nested_simplify(a , decimals=4 ) , [ [ {"score": 0.3376, "label": "LABEL_0", "box": {"xmin": 159, "ymin": 120, "xmax": 480, "ymax": 359}}, {"score": 0.3376, "label": "LABEL_0", "box": {"xmin": 159, "ymin": 120, "xmax": 480, "ymax": 359}}, ], [ {"score": 0.3376, "label": "LABEL_0", "box": {"xmin": 159, "ymin": 120, "xmax": 480, "ymax": 359}}, {"score": 0.3376, "label": "LABEL_0", "box": {"xmin": 159, "ymin": 120, "xmax": 480, "ymax": 359}}, ], ] , ) @require_torch @slow def __UpperCamelCase ( self : str ) -> List[Any]: """simple docstring""" SCREAMING_SNAKE_CASE : Dict = "facebook/detr-resnet-50" SCREAMING_SNAKE_CASE : Union[str, Any] = AutoModelForObjectDetection.from_pretrained(a ) SCREAMING_SNAKE_CASE : List[str] = AutoFeatureExtractor.from_pretrained(a ) SCREAMING_SNAKE_CASE : int = ObjectDetectionPipeline(model=a , feature_extractor=a ) SCREAMING_SNAKE_CASE : Union[str, Any] = object_detector("http://images.cocodataset.org/val2017/000000039769.jpg" ) self.assertEqual( nested_simplify(a , decimals=4 ) , [ {"score": 0.9982, "label": "remote", "box": {"xmin": 40, "ymin": 70, "xmax": 175, "ymax": 117}}, {"score": 0.9960, "label": "remote", "box": {"xmin": 333, "ymin": 72, "xmax": 368, "ymax": 187}}, {"score": 0.9955, "label": "couch", "box": {"xmin": 0, "ymin": 1, "xmax": 639, "ymax": 473}}, {"score": 0.9988, "label": "cat", "box": {"xmin": 13, "ymin": 52, "xmax": 314, "ymax": 470}}, {"score": 0.9987, "label": "cat", "box": {"xmin": 345, "ymin": 23, "xmax": 640, "ymax": 368}}, ] , ) SCREAMING_SNAKE_CASE : int = object_detector( [ "http://images.cocodataset.org/val2017/000000039769.jpg", "http://images.cocodataset.org/val2017/000000039769.jpg", ] ) self.assertEqual( nested_simplify(a , decimals=4 ) , [ [ {"score": 0.9982, "label": "remote", "box": {"xmin": 40, "ymin": 70, "xmax": 175, "ymax": 117}}, {"score": 0.9960, "label": "remote", "box": {"xmin": 333, "ymin": 72, "xmax": 368, "ymax": 187}}, {"score": 0.9955, "label": "couch", "box": {"xmin": 0, "ymin": 1, "xmax": 639, "ymax": 473}}, {"score": 0.9988, "label": "cat", "box": {"xmin": 13, "ymin": 52, "xmax": 314, "ymax": 470}}, {"score": 0.9987, "label": "cat", "box": {"xmin": 345, "ymin": 23, "xmax": 640, "ymax": 368}}, ], [ {"score": 0.9982, "label": "remote", "box": {"xmin": 40, "ymin": 70, "xmax": 175, "ymax": 117}}, {"score": 0.9960, "label": "remote", "box": {"xmin": 333, "ymin": 72, "xmax": 368, "ymax": 187}}, {"score": 0.9955, "label": "couch", "box": {"xmin": 0, "ymin": 1, "xmax": 639, "ymax": 473}}, {"score": 0.9988, "label": "cat", "box": {"xmin": 13, "ymin": 52, "xmax": 314, "ymax": 470}}, {"score": 0.9987, "label": "cat", "box": {"xmin": 345, "ymin": 23, "xmax": 640, "ymax": 368}}, ], ] , ) @require_torch @slow def __UpperCamelCase ( self : str ) -> str: """simple docstring""" SCREAMING_SNAKE_CASE : Tuple = "facebook/detr-resnet-50" SCREAMING_SNAKE_CASE : Tuple = pipeline("object-detection" , model=a ) SCREAMING_SNAKE_CASE : Tuple = object_detector("http://images.cocodataset.org/val2017/000000039769.jpg" ) self.assertEqual( nested_simplify(a , decimals=4 ) , [ {"score": 0.9982, "label": "remote", "box": {"xmin": 40, "ymin": 70, "xmax": 175, "ymax": 117}}, {"score": 0.9960, "label": "remote", "box": {"xmin": 333, "ymin": 72, "xmax": 368, "ymax": 187}}, {"score": 0.9955, "label": "couch", "box": {"xmin": 0, "ymin": 1, "xmax": 639, "ymax": 473}}, {"score": 0.9988, "label": "cat", "box": {"xmin": 13, "ymin": 52, "xmax": 314, "ymax": 470}}, {"score": 0.9987, "label": "cat", "box": {"xmin": 345, "ymin": 23, "xmax": 640, "ymax": 368}}, ] , ) SCREAMING_SNAKE_CASE : str = object_detector( [ "http://images.cocodataset.org/val2017/000000039769.jpg", "http://images.cocodataset.org/val2017/000000039769.jpg", ] ) self.assertEqual( nested_simplify(a , decimals=4 ) , [ [ {"score": 0.9982, "label": "remote", "box": {"xmin": 40, "ymin": 70, "xmax": 175, "ymax": 117}}, {"score": 0.9960, "label": "remote", "box": {"xmin": 333, "ymin": 72, "xmax": 368, "ymax": 187}}, {"score": 0.9955, "label": "couch", "box": {"xmin": 0, "ymin": 1, "xmax": 639, "ymax": 473}}, {"score": 0.9988, "label": "cat", "box": {"xmin": 13, "ymin": 52, "xmax": 314, "ymax": 470}}, {"score": 0.9987, "label": "cat", "box": {"xmin": 345, "ymin": 23, "xmax": 640, "ymax": 368}}, ], [ {"score": 0.9982, "label": "remote", "box": {"xmin": 40, "ymin": 70, "xmax": 175, "ymax": 117}}, {"score": 0.9960, "label": "remote", "box": {"xmin": 333, "ymin": 72, "xmax": 368, "ymax": 187}}, {"score": 0.9955, "label": "couch", "box": {"xmin": 0, "ymin": 1, "xmax": 639, "ymax": 473}}, {"score": 0.9988, "label": "cat", "box": {"xmin": 13, "ymin": 52, "xmax": 314, "ymax": 470}}, {"score": 0.9987, "label": "cat", "box": {"xmin": 345, "ymin": 23, "xmax": 640, "ymax": 368}}, ], ] , ) @require_torch @slow def __UpperCamelCase ( self : str ) -> str: """simple docstring""" SCREAMING_SNAKE_CASE : Optional[int] = 0.9985 SCREAMING_SNAKE_CASE : int = "facebook/detr-resnet-50" SCREAMING_SNAKE_CASE : List[str] = pipeline("object-detection" , model=a ) SCREAMING_SNAKE_CASE : str = object_detector("http://images.cocodataset.org/val2017/000000039769.jpg" , threshold=a ) self.assertEqual( nested_simplify(a , decimals=4 ) , [ {"score": 0.9988, "label": "cat", "box": {"xmin": 13, "ymin": 52, "xmax": 314, "ymax": 470}}, {"score": 0.9987, "label": "cat", "box": {"xmin": 345, "ymin": 23, "xmax": 640, "ymax": 368}}, ] , ) @require_torch @require_pytesseract @slow def __UpperCamelCase ( self : str ) -> Tuple: """simple docstring""" SCREAMING_SNAKE_CASE : Any = "Narsil/layoutlmv3-finetuned-funsd" SCREAMING_SNAKE_CASE : Dict = 0.9993 SCREAMING_SNAKE_CASE : str = pipeline("object-detection" , model=a , threshold=a ) SCREAMING_SNAKE_CASE : List[Any] = object_detector( "https://huggingface.co/spaces/impira/docquery/resolve/2359223c1837a7587402bda0f2643382a6eefeab/invoice.png" ) self.assertEqual( nested_simplify(a , decimals=4 ) , [ {"score": 0.9993, "label": "I-ANSWER", "box": {"xmin": 294, "ymin": 254, "xmax": 343, "ymax": 264}}, {"score": 0.9993, "label": "I-ANSWER", "box": {"xmin": 294, "ymin": 254, "xmax": 343, "ymax": 264}}, ] , )
25
1
import gc import random import unittest import numpy as np import torch from PIL import Image from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import AutoencoderKL, PNDMScheduler, StableDiffusionInpaintPipeline, UNetaDConditionModel from diffusers.utils import floats_tensor, load_image, load_numpy, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu, slow from ..pipeline_params import TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS, TEXT_GUIDED_IMAGE_INPAINTING_PARAMS from ..test_pipelines_common import PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() class _UpperCamelCase ( __A , __A , __A , unittest.TestCase ): '''simple docstring''' lowerCamelCase__ =StableDiffusionInpaintPipeline lowerCamelCase__ =TEXT_GUIDED_IMAGE_INPAINTING_PARAMS lowerCamelCase__ =TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS lowerCamelCase__ =frozenset( [] ) # TO-DO: update image_params once pipeline is refactored with VaeImageProcessor.preprocess lowerCamelCase__ =frozenset([] ) def __UpperCamelCase ( self : Optional[int] ) -> List[str]: """simple docstring""" torch.manual_seed(0 ) SCREAMING_SNAKE_CASE : Dict = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=9 , out_channels=4 , down_block_types=("DownBlock2D", "CrossAttnDownBlock2D") , up_block_types=("CrossAttnUpBlock2D", "UpBlock2D") , cross_attention_dim=32 , attention_head_dim=(2, 4) , use_linear_projection=a , ) SCREAMING_SNAKE_CASE : List[str] = PNDMScheduler(skip_prk_steps=a ) torch.manual_seed(0 ) SCREAMING_SNAKE_CASE : Optional[Any] = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D"] , up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D"] , latent_channels=4 , sample_size=128 , ) torch.manual_seed(0 ) SCREAMING_SNAKE_CASE : Dict = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , hidden_act="gelu" , projection_dim=512 , ) SCREAMING_SNAKE_CASE : Union[str, Any] = CLIPTextModel(a ) SCREAMING_SNAKE_CASE : Tuple = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip" ) SCREAMING_SNAKE_CASE : List[str] = { "unet": unet, "scheduler": scheduler, "vae": vae, "text_encoder": text_encoder, "tokenizer": tokenizer, "safety_checker": None, "feature_extractor": None, } return components def __UpperCamelCase ( self : List[Any] , a : Tuple , a : List[Any]=0 ) -> Dict: """simple docstring""" SCREAMING_SNAKE_CASE : Optional[Any] = floats_tensor((1, 3, 32, 32) , rng=random.Random(a ) ).to(a ) SCREAMING_SNAKE_CASE : str = image.cpu().permute(0 , 2 , 3 , 1 )[0] SCREAMING_SNAKE_CASE : Optional[int] = Image.fromarray(np.uinta(a ) ).convert("RGB" ).resize((64, 64) ) SCREAMING_SNAKE_CASE : Any = Image.fromarray(np.uinta(image + 4 ) ).convert("RGB" ).resize((64, 64) ) if str(a ).startswith("mps" ): SCREAMING_SNAKE_CASE : Dict = torch.manual_seed(a ) else: SCREAMING_SNAKE_CASE : Dict = torch.Generator(device=a ).manual_seed(a ) SCREAMING_SNAKE_CASE : Optional[Any] = { "prompt": "A painting of a squirrel eating a burger", "image": init_image, "mask_image": mask_image, "generator": generator, "num_inference_steps": 2, "guidance_scale": 6.0, "output_type": "numpy", } return inputs def __UpperCamelCase ( self : int ) -> Dict: """simple docstring""" SCREAMING_SNAKE_CASE : Optional[int] = "cpu" # ensure determinism for the device-dependent torch.Generator SCREAMING_SNAKE_CASE : Tuple = self.get_dummy_components() SCREAMING_SNAKE_CASE : Tuple = StableDiffusionInpaintPipeline(**a ) SCREAMING_SNAKE_CASE : int = sd_pipe.to(a ) sd_pipe.set_progress_bar_config(disable=a ) SCREAMING_SNAKE_CASE : List[Any] = self.get_dummy_inputs(a ) SCREAMING_SNAKE_CASE : Dict = sd_pipe(**a ).images SCREAMING_SNAKE_CASE : Optional[int] = image[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) SCREAMING_SNAKE_CASE : Dict = np.array([0.4727, 0.5735, 0.3941, 0.5446, 0.5926, 0.4394, 0.5062, 0.4654, 0.4476] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def __UpperCamelCase ( self : Dict ) -> List[str]: """simple docstring""" super().test_inference_batch_single_identical(expected_max_diff=3e-3 ) @slow @require_torch_gpu class _UpperCamelCase ( unittest.TestCase ): '''simple docstring''' def __UpperCamelCase ( self : Optional[int] ) -> Optional[int]: """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() def __UpperCamelCase ( self : str ) -> List[Any]: """simple docstring""" SCREAMING_SNAKE_CASE : Any = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/sd2-inpaint/init_image.png" ) SCREAMING_SNAKE_CASE : str = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint/mask.png" ) SCREAMING_SNAKE_CASE : List[Any] = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint" "/yellow_cat_sitting_on_a_park_bench.npy" ) SCREAMING_SNAKE_CASE : Tuple = "stabilityai/stable-diffusion-2-inpainting" SCREAMING_SNAKE_CASE : Union[str, Any] = StableDiffusionInpaintPipeline.from_pretrained(a , safety_checker=a ) pipe.to(a ) pipe.set_progress_bar_config(disable=a ) pipe.enable_attention_slicing() SCREAMING_SNAKE_CASE : Union[str, Any] = "Face of a yellow cat, high resolution, sitting on a park bench" SCREAMING_SNAKE_CASE : List[str] = torch.manual_seed(0 ) SCREAMING_SNAKE_CASE : int = pipe( prompt=a , image=a , mask_image=a , generator=a , output_type="np" , ) SCREAMING_SNAKE_CASE : Optional[int] = output.images[0] assert image.shape == (512, 512, 3) assert np.abs(expected_image - image ).max() < 9e-3 def __UpperCamelCase ( self : Optional[Any] ) -> Optional[Any]: """simple docstring""" SCREAMING_SNAKE_CASE : Optional[int] = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/sd2-inpaint/init_image.png" ) SCREAMING_SNAKE_CASE : Dict = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint/mask.png" ) SCREAMING_SNAKE_CASE : Tuple = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint" "/yellow_cat_sitting_on_a_park_bench_fp16.npy" ) SCREAMING_SNAKE_CASE : Any = "stabilityai/stable-diffusion-2-inpainting" SCREAMING_SNAKE_CASE : Optional[int] = StableDiffusionInpaintPipeline.from_pretrained( a , torch_dtype=torch.floataa , safety_checker=a , ) pipe.to(a ) pipe.set_progress_bar_config(disable=a ) pipe.enable_attention_slicing() SCREAMING_SNAKE_CASE : Dict = "Face of a yellow cat, high resolution, sitting on a park bench" SCREAMING_SNAKE_CASE : List[Any] = torch.manual_seed(0 ) SCREAMING_SNAKE_CASE : Any = pipe( prompt=a , image=a , mask_image=a , generator=a , output_type="np" , ) SCREAMING_SNAKE_CASE : List[str] = output.images[0] assert image.shape == (512, 512, 3) assert np.abs(expected_image - image ).max() < 5e-1 def __UpperCamelCase ( self : Dict ) -> Tuple: """simple docstring""" torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() torch.cuda.reset_peak_memory_stats() SCREAMING_SNAKE_CASE : Any = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/sd2-inpaint/init_image.png" ) SCREAMING_SNAKE_CASE : str = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint/mask.png" ) SCREAMING_SNAKE_CASE : Dict = "stabilityai/stable-diffusion-2-inpainting" SCREAMING_SNAKE_CASE : Any = PNDMScheduler.from_pretrained(a , subfolder="scheduler" ) SCREAMING_SNAKE_CASE : str = StableDiffusionInpaintPipeline.from_pretrained( a , safety_checker=a , scheduler=a , torch_dtype=torch.floataa , ) pipe.to(a ) pipe.set_progress_bar_config(disable=a ) pipe.enable_attention_slicing(1 ) pipe.enable_sequential_cpu_offload() SCREAMING_SNAKE_CASE : Optional[int] = "Face of a yellow cat, high resolution, sitting on a park bench" SCREAMING_SNAKE_CASE : Dict = torch.manual_seed(0 ) SCREAMING_SNAKE_CASE : Optional[Any] = pipe( prompt=a , image=a , mask_image=a , generator=a , num_inference_steps=2 , output_type="np" , ) SCREAMING_SNAKE_CASE : Dict = torch.cuda.max_memory_allocated() # make sure that less than 2.65 GB is allocated assert mem_bytes < 2.65 * 10**9
25
def lowerCamelCase__ ( _a): if not isinstance(_a , _a): SCREAMING_SNAKE_CASE : Tuple = f"Input value of [number={number}] must be an integer" raise TypeError(_a) if number < 0: return False SCREAMING_SNAKE_CASE : Union[str, Any] = number * number while number > 0: if number % 10 != number_square % 10: return False number //= 10 number_square //= 10 return True if __name__ == "__main__": import doctest doctest.testmod()
25
1
import numpy as np from matplotlib import pyplot as plt from sklearn.datasets import load_iris from sklearn.metrics import ConfusionMatrixDisplay from sklearn.model_selection import train_test_split from xgboost import XGBClassifier def lowerCamelCase__ ( _a): return (data["data"], data["target"]) def lowerCamelCase__ ( _a , _a): SCREAMING_SNAKE_CASE : Tuple = XGBClassifier() classifier.fit(_a , _a) return classifier def lowerCamelCase__ ( ): SCREAMING_SNAKE_CASE : str = load_iris() SCREAMING_SNAKE_CASE ,SCREAMING_SNAKE_CASE : Any = data_handling(_a) SCREAMING_SNAKE_CASE ,SCREAMING_SNAKE_CASE ,SCREAMING_SNAKE_CASE ,SCREAMING_SNAKE_CASE : int = train_test_split( _a , _a , test_size=0.25) SCREAMING_SNAKE_CASE : str = iris["target_names"] # Create an XGBoost Classifier from the training data SCREAMING_SNAKE_CASE : Any = xgboost(_a , _a) # Display the confusion matrix of the classifier with both training and test sets ConfusionMatrixDisplay.from_estimator( _a , _a , _a , display_labels=_a , cmap="Blues" , normalize="true" , ) plt.title("Normalized Confusion Matrix - IRIS Dataset") plt.show() if __name__ == "__main__": import doctest doctest.testmod(verbose=True) main()
25
import os import tempfile import unittest from transformers import DistilBertConfig, is_torch_available from transformers.testing_utils import require_torch, require_torch_gpu, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST, DistilBertForMaskedLM, DistilBertForMultipleChoice, DistilBertForQuestionAnswering, DistilBertForSequenceClassification, DistilBertForTokenClassification, DistilBertModel, ) class _UpperCamelCase ( __A ): '''simple docstring''' def __init__( self : Dict , a : Tuple , a : Any=13 , a : Any=7 , a : Union[str, Any]=True , a : List[Any]=True , a : List[str]=False , a : List[str]=True , a : Any=99 , a : str=32 , a : Any=5 , a : Optional[int]=4 , a : Union[str, Any]=37 , a : Dict="gelu" , a : List[Any]=0.1 , a : Optional[Any]=0.1 , a : List[str]=512 , a : Union[str, Any]=16 , a : str=2 , a : Dict=0.02 , a : Optional[int]=3 , a : Union[str, Any]=4 , a : int=None , ) -> Tuple: """simple docstring""" SCREAMING_SNAKE_CASE : Dict = parent SCREAMING_SNAKE_CASE : Any = batch_size SCREAMING_SNAKE_CASE : Optional[int] = seq_length SCREAMING_SNAKE_CASE : List[Any] = is_training SCREAMING_SNAKE_CASE : int = use_input_mask SCREAMING_SNAKE_CASE : Tuple = use_token_type_ids SCREAMING_SNAKE_CASE : str = use_labels SCREAMING_SNAKE_CASE : Any = vocab_size SCREAMING_SNAKE_CASE : List[Any] = hidden_size SCREAMING_SNAKE_CASE : str = num_hidden_layers SCREAMING_SNAKE_CASE : Optional[Any] = num_attention_heads SCREAMING_SNAKE_CASE : Tuple = intermediate_size SCREAMING_SNAKE_CASE : Optional[int] = hidden_act SCREAMING_SNAKE_CASE : Dict = hidden_dropout_prob SCREAMING_SNAKE_CASE : str = attention_probs_dropout_prob SCREAMING_SNAKE_CASE : Tuple = max_position_embeddings SCREAMING_SNAKE_CASE : List[str] = type_vocab_size SCREAMING_SNAKE_CASE : List[str] = type_sequence_label_size SCREAMING_SNAKE_CASE : Optional[Any] = initializer_range SCREAMING_SNAKE_CASE : Tuple = num_labels SCREAMING_SNAKE_CASE : Tuple = num_choices SCREAMING_SNAKE_CASE : Optional[Any] = scope def __UpperCamelCase ( self : Union[str, Any] ) -> List[str]: """simple docstring""" SCREAMING_SNAKE_CASE : Dict = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) SCREAMING_SNAKE_CASE : Union[str, Any] = None if self.use_input_mask: SCREAMING_SNAKE_CASE : str = random_attention_mask([self.batch_size, self.seq_length] ) SCREAMING_SNAKE_CASE : int = None SCREAMING_SNAKE_CASE : List[Any] = None SCREAMING_SNAKE_CASE : List[str] = None if self.use_labels: SCREAMING_SNAKE_CASE : Tuple = ids_tensor([self.batch_size] , self.type_sequence_label_size ) SCREAMING_SNAKE_CASE : str = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) SCREAMING_SNAKE_CASE : Optional[Any] = ids_tensor([self.batch_size] , self.num_choices ) SCREAMING_SNAKE_CASE : int = self.get_config() return config, input_ids, input_mask, sequence_labels, token_labels, choice_labels def __UpperCamelCase ( self : Dict ) -> str: """simple docstring""" return DistilBertConfig( vocab_size=self.vocab_size , dim=self.hidden_size , n_layers=self.num_hidden_layers , n_heads=self.num_attention_heads , hidden_dim=self.intermediate_size , hidden_act=self.hidden_act , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , ) def __UpperCamelCase ( self : Optional[Any] , a : int , a : Optional[int] , a : Optional[int] , a : Dict , a : str , a : str ) -> int: """simple docstring""" SCREAMING_SNAKE_CASE : int = DistilBertModel(config=a ) model.to(a ) model.eval() SCREAMING_SNAKE_CASE : Optional[Any] = model(a , a ) SCREAMING_SNAKE_CASE : Optional[Any] = model(a ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def __UpperCamelCase ( self : Tuple , a : Optional[int] , a : Dict , a : Tuple , a : int , a : int , a : Any ) -> Dict: """simple docstring""" SCREAMING_SNAKE_CASE : Optional[int] = DistilBertForMaskedLM(config=a ) model.to(a ) model.eval() SCREAMING_SNAKE_CASE : str = model(a , attention_mask=a , labels=a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def __UpperCamelCase ( self : List[Any] , a : int , a : Optional[Any] , a : Optional[Any] , a : str , a : str , a : Tuple ) -> List[Any]: """simple docstring""" SCREAMING_SNAKE_CASE : Optional[Any] = DistilBertForQuestionAnswering(config=a ) model.to(a ) model.eval() SCREAMING_SNAKE_CASE : List[str] = model( a , attention_mask=a , start_positions=a , end_positions=a ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def __UpperCamelCase ( self : Optional[int] , a : str , a : Any , a : int , a : Optional[Any] , a : int , a : str ) -> Optional[int]: """simple docstring""" SCREAMING_SNAKE_CASE : Dict = self.num_labels SCREAMING_SNAKE_CASE : Union[str, Any] = DistilBertForSequenceClassification(a ) model.to(a ) model.eval() SCREAMING_SNAKE_CASE : Optional[int] = model(a , attention_mask=a , labels=a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def __UpperCamelCase ( self : Optional[Any] , a : List[Any] , a : Optional[int] , a : Union[str, Any] , a : Dict , a : Any , a : Optional[Any] ) -> Any: """simple docstring""" SCREAMING_SNAKE_CASE : str = self.num_labels SCREAMING_SNAKE_CASE : List[str] = DistilBertForTokenClassification(config=a ) model.to(a ) model.eval() SCREAMING_SNAKE_CASE : List[str] = model(a , attention_mask=a , labels=a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def __UpperCamelCase ( self : int , a : Any , a : Optional[int] , a : Union[str, Any] , a : Tuple , a : Optional[int] , a : Tuple ) -> Dict: """simple docstring""" SCREAMING_SNAKE_CASE : List[str] = self.num_choices SCREAMING_SNAKE_CASE : Any = DistilBertForMultipleChoice(config=a ) model.to(a ) model.eval() SCREAMING_SNAKE_CASE : Optional[int] = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() SCREAMING_SNAKE_CASE : Dict = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() SCREAMING_SNAKE_CASE : Optional[Any] = model( a , attention_mask=a , labels=a , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def __UpperCamelCase ( self : Union[str, Any] ) -> Optional[int]: """simple docstring""" SCREAMING_SNAKE_CASE : Optional[Any] = self.prepare_config_and_inputs() ((SCREAMING_SNAKE_CASE) ,(SCREAMING_SNAKE_CASE) ,(SCREAMING_SNAKE_CASE) ,(SCREAMING_SNAKE_CASE) ,(SCREAMING_SNAKE_CASE) ,(SCREAMING_SNAKE_CASE)) : Tuple = config_and_inputs SCREAMING_SNAKE_CASE : int = {"input_ids": input_ids, "attention_mask": input_mask} return config, inputs_dict @require_torch class _UpperCamelCase ( __A , __A , unittest.TestCase ): '''simple docstring''' lowerCamelCase__ =( ( DistilBertModel, DistilBertForMaskedLM, DistilBertForMultipleChoice, DistilBertForQuestionAnswering, DistilBertForSequenceClassification, DistilBertForTokenClassification, ) if is_torch_available() else None ) lowerCamelCase__ =( { 'feature-extraction': DistilBertModel, 'fill-mask': DistilBertForMaskedLM, 'question-answering': DistilBertForQuestionAnswering, 'text-classification': DistilBertForSequenceClassification, 'token-classification': DistilBertForTokenClassification, 'zero-shot': DistilBertForSequenceClassification, } if is_torch_available() else {} ) lowerCamelCase__ =True lowerCamelCase__ =True lowerCamelCase__ =True lowerCamelCase__ =True def __UpperCamelCase ( self : Optional[Any] ) -> Tuple: """simple docstring""" SCREAMING_SNAKE_CASE : Dict = DistilBertModelTester(self ) SCREAMING_SNAKE_CASE : List[str] = ConfigTester(self , config_class=a , dim=37 ) def __UpperCamelCase ( self : List[Any] ) -> Tuple: """simple docstring""" self.config_tester.run_common_tests() def __UpperCamelCase ( self : Union[str, Any] ) -> List[Any]: """simple docstring""" SCREAMING_SNAKE_CASE : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_model(*a ) def __UpperCamelCase ( self : Tuple ) -> Dict: """simple docstring""" SCREAMING_SNAKE_CASE : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_masked_lm(*a ) def __UpperCamelCase ( self : List[Any] ) -> Optional[int]: """simple docstring""" SCREAMING_SNAKE_CASE : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_question_answering(*a ) def __UpperCamelCase ( self : Union[str, Any] ) -> Any: """simple docstring""" SCREAMING_SNAKE_CASE : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_sequence_classification(*a ) def __UpperCamelCase ( self : str ) -> List[Any]: """simple docstring""" SCREAMING_SNAKE_CASE : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_token_classification(*a ) def __UpperCamelCase ( self : List[Any] ) -> str: """simple docstring""" SCREAMING_SNAKE_CASE : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_multiple_choice(*a ) @slow def __UpperCamelCase ( self : int ) -> Any: """simple docstring""" for model_name in DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: SCREAMING_SNAKE_CASE : Optional[Any] = DistilBertModel.from_pretrained(a ) self.assertIsNotNone(a ) @slow @require_torch_gpu def __UpperCamelCase ( self : List[Any] ) -> Optional[Any]: """simple docstring""" SCREAMING_SNAKE_CASE ,SCREAMING_SNAKE_CASE : Dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: # BertForMultipleChoice behaves incorrectly in JIT environments. if model_class == DistilBertForMultipleChoice: return SCREAMING_SNAKE_CASE : Union[str, Any] = True SCREAMING_SNAKE_CASE : Any = model_class(config=a ) SCREAMING_SNAKE_CASE : List[Any] = self._prepare_for_class(a , a ) SCREAMING_SNAKE_CASE : Union[str, Any] = torch.jit.trace( a , (inputs_dict["input_ids"].to("cpu" ), inputs_dict["attention_mask"].to("cpu" )) ) with tempfile.TemporaryDirectory() as tmp: torch.jit.save(a , os.path.join(a , "traced_model.pt" ) ) SCREAMING_SNAKE_CASE : Tuple = torch.jit.load(os.path.join(a , "traced_model.pt" ) , map_location=a ) loaded(inputs_dict["input_ids"].to(a ) , inputs_dict["attention_mask"].to(a ) ) @require_torch class _UpperCamelCase ( unittest.TestCase ): '''simple docstring''' @slow def __UpperCamelCase ( self : int ) -> Dict: """simple docstring""" SCREAMING_SNAKE_CASE : Union[str, Any] = DistilBertModel.from_pretrained("distilbert-base-uncased" ) SCREAMING_SNAKE_CASE : List[str] = torch.tensor([[0, 345, 232, 328, 740, 140, 1695, 69, 6078, 1588, 2]] ) SCREAMING_SNAKE_CASE : Optional[int] = torch.tensor([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] ) with torch.no_grad(): SCREAMING_SNAKE_CASE : Optional[Any] = model(a , attention_mask=a )[0] SCREAMING_SNAKE_CASE : List[str] = torch.Size((1, 11, 768) ) self.assertEqual(output.shape , a ) SCREAMING_SNAKE_CASE : Union[str, Any] = torch.tensor( [[[-0.1639, 0.3299, 0.1648], [-0.1746, 0.3289, 0.1710], [-0.1884, 0.3357, 0.1810]]] ) self.assertTrue(torch.allclose(output[:, 1:4, 1:4] , a , atol=1e-4 ) )
25
1
import argparse import os import jax as jnp import numpy as onp import torch import torch.nn as nn from music_spectrogram_diffusion import inference from tax import checkpoints from diffusers import DDPMScheduler, OnnxRuntimeModel, SpectrogramDiffusionPipeline from diffusers.pipelines.spectrogram_diffusion import SpectrogramContEncoder, SpectrogramNotesEncoder, TaFilmDecoder a_ = 'base_with_context' def lowerCamelCase__ ( _a , _a): SCREAMING_SNAKE_CASE : Optional[int] = nn.Parameter(torch.FloatTensor(weights["token_embedder"]["embedding"])) SCREAMING_SNAKE_CASE : int = nn.Parameter( torch.FloatTensor(weights["Embed_0"]["embedding"]) , requires_grad=_a) for lyr_num, lyr in enumerate(model.encoders): SCREAMING_SNAKE_CASE : List[Any] = weights[f"layers_{lyr_num}"] SCREAMING_SNAKE_CASE : Dict = nn.Parameter( torch.FloatTensor(ly_weight["pre_attention_layer_norm"]["scale"])) SCREAMING_SNAKE_CASE : int = ly_weight["attention"] SCREAMING_SNAKE_CASE : List[str] = nn.Parameter(torch.FloatTensor(attention_weights["query"]["kernel"].T)) SCREAMING_SNAKE_CASE : List[str] = nn.Parameter(torch.FloatTensor(attention_weights["key"]["kernel"].T)) SCREAMING_SNAKE_CASE : Union[str, Any] = nn.Parameter(torch.FloatTensor(attention_weights["value"]["kernel"].T)) SCREAMING_SNAKE_CASE : Any = nn.Parameter(torch.FloatTensor(attention_weights["out"]["kernel"].T)) SCREAMING_SNAKE_CASE : Dict = nn.Parameter(torch.FloatTensor(ly_weight["pre_mlp_layer_norm"]["scale"])) SCREAMING_SNAKE_CASE : Union[str, Any] = nn.Parameter(torch.FloatTensor(ly_weight["mlp"]["wi_0"]["kernel"].T)) SCREAMING_SNAKE_CASE : Optional[Any] = nn.Parameter(torch.FloatTensor(ly_weight["mlp"]["wi_1"]["kernel"].T)) SCREAMING_SNAKE_CASE : int = nn.Parameter(torch.FloatTensor(ly_weight["mlp"]["wo"]["kernel"].T)) SCREAMING_SNAKE_CASE : List[Any] = nn.Parameter(torch.FloatTensor(weights["encoder_norm"]["scale"])) return model def lowerCamelCase__ ( _a , _a): SCREAMING_SNAKE_CASE : Optional[int] = nn.Parameter(torch.FloatTensor(weights["input_proj"]["kernel"].T)) SCREAMING_SNAKE_CASE : Tuple = nn.Parameter( torch.FloatTensor(weights["Embed_0"]["embedding"]) , requires_grad=_a) for lyr_num, lyr in enumerate(model.encoders): SCREAMING_SNAKE_CASE : List[Any] = weights[f"layers_{lyr_num}"] SCREAMING_SNAKE_CASE : int = ly_weight["attention"] SCREAMING_SNAKE_CASE : int = nn.Parameter(torch.FloatTensor(attention_weights["query"]["kernel"].T)) SCREAMING_SNAKE_CASE : int = nn.Parameter(torch.FloatTensor(attention_weights["key"]["kernel"].T)) SCREAMING_SNAKE_CASE : Dict = nn.Parameter(torch.FloatTensor(attention_weights["value"]["kernel"].T)) SCREAMING_SNAKE_CASE : Any = nn.Parameter(torch.FloatTensor(attention_weights["out"]["kernel"].T)) SCREAMING_SNAKE_CASE : Union[str, Any] = nn.Parameter( torch.FloatTensor(ly_weight["pre_attention_layer_norm"]["scale"])) SCREAMING_SNAKE_CASE : Dict = nn.Parameter(torch.FloatTensor(ly_weight["mlp"]["wi_0"]["kernel"].T)) SCREAMING_SNAKE_CASE : List[Any] = nn.Parameter(torch.FloatTensor(ly_weight["mlp"]["wi_1"]["kernel"].T)) SCREAMING_SNAKE_CASE : int = nn.Parameter(torch.FloatTensor(ly_weight["mlp"]["wo"]["kernel"].T)) SCREAMING_SNAKE_CASE : str = nn.Parameter(torch.FloatTensor(ly_weight["pre_mlp_layer_norm"]["scale"])) SCREAMING_SNAKE_CASE : Tuple = nn.Parameter(torch.FloatTensor(weights["encoder_norm"]["scale"])) return model def lowerCamelCase__ ( _a , _a): SCREAMING_SNAKE_CASE : Any = nn.Parameter(torch.FloatTensor(weights["time_emb_dense0"]["kernel"].T)) SCREAMING_SNAKE_CASE : Dict = nn.Parameter(torch.FloatTensor(weights["time_emb_dense1"]["kernel"].T)) SCREAMING_SNAKE_CASE : Union[str, Any] = nn.Parameter( torch.FloatTensor(weights["Embed_0"]["embedding"]) , requires_grad=_a) SCREAMING_SNAKE_CASE : int = nn.Parameter( torch.FloatTensor(weights["continuous_inputs_projection"]["kernel"].T)) for lyr_num, lyr in enumerate(model.decoders): SCREAMING_SNAKE_CASE : Tuple = weights[f"layers_{lyr_num}"] SCREAMING_SNAKE_CASE : Tuple = nn.Parameter( torch.FloatTensor(ly_weight["pre_self_attention_layer_norm"]["scale"])) SCREAMING_SNAKE_CASE : List[Any] = nn.Parameter( torch.FloatTensor(ly_weight["FiLMLayer_0"]["DenseGeneral_0"]["kernel"].T)) SCREAMING_SNAKE_CASE : List[Any] = ly_weight["self_attention"] SCREAMING_SNAKE_CASE : Any = nn.Parameter(torch.FloatTensor(attention_weights["query"]["kernel"].T)) SCREAMING_SNAKE_CASE : Optional[Any] = nn.Parameter(torch.FloatTensor(attention_weights["key"]["kernel"].T)) SCREAMING_SNAKE_CASE : str = nn.Parameter(torch.FloatTensor(attention_weights["value"]["kernel"].T)) SCREAMING_SNAKE_CASE : Optional[int] = nn.Parameter(torch.FloatTensor(attention_weights["out"]["kernel"].T)) SCREAMING_SNAKE_CASE : Dict = ly_weight["MultiHeadDotProductAttention_0"] SCREAMING_SNAKE_CASE : List[str] = nn.Parameter(torch.FloatTensor(attention_weights["query"]["kernel"].T)) SCREAMING_SNAKE_CASE : Dict = nn.Parameter(torch.FloatTensor(attention_weights["key"]["kernel"].T)) SCREAMING_SNAKE_CASE : Optional[Any] = nn.Parameter(torch.FloatTensor(attention_weights["value"]["kernel"].T)) SCREAMING_SNAKE_CASE : Tuple = nn.Parameter(torch.FloatTensor(attention_weights["out"]["kernel"].T)) SCREAMING_SNAKE_CASE : Union[str, Any] = nn.Parameter( torch.FloatTensor(ly_weight["pre_cross_attention_layer_norm"]["scale"])) SCREAMING_SNAKE_CASE : List[str] = nn.Parameter(torch.FloatTensor(ly_weight["pre_mlp_layer_norm"]["scale"])) SCREAMING_SNAKE_CASE : List[str] = nn.Parameter( torch.FloatTensor(ly_weight["FiLMLayer_1"]["DenseGeneral_0"]["kernel"].T)) SCREAMING_SNAKE_CASE : Dict = nn.Parameter(torch.FloatTensor(ly_weight["mlp"]["wi_0"]["kernel"].T)) SCREAMING_SNAKE_CASE : List[str] = nn.Parameter(torch.FloatTensor(ly_weight["mlp"]["wi_1"]["kernel"].T)) SCREAMING_SNAKE_CASE : str = nn.Parameter(torch.FloatTensor(ly_weight["mlp"]["wo"]["kernel"].T)) SCREAMING_SNAKE_CASE : Any = nn.Parameter(torch.FloatTensor(weights["decoder_norm"]["scale"])) SCREAMING_SNAKE_CASE : Optional[Any] = nn.Parameter(torch.FloatTensor(weights["spec_out_dense"]["kernel"].T)) return model def lowerCamelCase__ ( _a): SCREAMING_SNAKE_CASE : Optional[Any] = checkpoints.load_tax_checkpoint(args.checkpoint_path) SCREAMING_SNAKE_CASE : int = jnp.tree_util.tree_map(onp.array , _a) SCREAMING_SNAKE_CASE : Union[str, Any] = [ "from __gin__ import dynamic_registration", "from music_spectrogram_diffusion.models.diffusion import diffusion_utils", "diffusion_utils.ClassifierFreeGuidanceConfig.eval_condition_weight = 2.0", "diffusion_utils.DiffusionConfig.classifier_free_guidance = @diffusion_utils.ClassifierFreeGuidanceConfig()", ] SCREAMING_SNAKE_CASE : List[str] = os.path.join(args.checkpoint_path , ".." , "config.gin") SCREAMING_SNAKE_CASE : Optional[Any] = inference.parse_training_gin_file(_a , _a) SCREAMING_SNAKE_CASE : List[str] = inference.InferenceModel(args.checkpoint_path , _a) SCREAMING_SNAKE_CASE : str = DDPMScheduler(beta_schedule="squaredcos_cap_v2" , variance_type="fixed_large") SCREAMING_SNAKE_CASE : Optional[Any] = SpectrogramNotesEncoder( max_length=synth_model.sequence_length["inputs"] , vocab_size=synth_model.model.module.config.vocab_size , d_model=synth_model.model.module.config.emb_dim , dropout_rate=synth_model.model.module.config.dropout_rate , num_layers=synth_model.model.module.config.num_encoder_layers , num_heads=synth_model.model.module.config.num_heads , d_kv=synth_model.model.module.config.head_dim , d_ff=synth_model.model.module.config.mlp_dim , feed_forward_proj="gated-gelu" , ) SCREAMING_SNAKE_CASE : Any = SpectrogramContEncoder( input_dims=synth_model.audio_codec.n_dims , targets_context_length=synth_model.sequence_length["targets_context"] , d_model=synth_model.model.module.config.emb_dim , dropout_rate=synth_model.model.module.config.dropout_rate , num_layers=synth_model.model.module.config.num_encoder_layers , num_heads=synth_model.model.module.config.num_heads , d_kv=synth_model.model.module.config.head_dim , d_ff=synth_model.model.module.config.mlp_dim , feed_forward_proj="gated-gelu" , ) SCREAMING_SNAKE_CASE : Any = TaFilmDecoder( input_dims=synth_model.audio_codec.n_dims , targets_length=synth_model.sequence_length["targets_context"] , max_decoder_noise_time=synth_model.model.module.config.max_decoder_noise_time , d_model=synth_model.model.module.config.emb_dim , num_layers=synth_model.model.module.config.num_decoder_layers , num_heads=synth_model.model.module.config.num_heads , d_kv=synth_model.model.module.config.head_dim , d_ff=synth_model.model.module.config.mlp_dim , dropout_rate=synth_model.model.module.config.dropout_rate , ) SCREAMING_SNAKE_CASE : int = load_notes_encoder(ta_checkpoint["target"]["token_encoder"] , _a) SCREAMING_SNAKE_CASE : Optional[Any] = load_continuous_encoder(ta_checkpoint["target"]["continuous_encoder"] , _a) SCREAMING_SNAKE_CASE : List[str] = load_decoder(ta_checkpoint["target"]["decoder"] , _a) SCREAMING_SNAKE_CASE : Tuple = OnnxRuntimeModel.from_pretrained("kashif/soundstream_mel_decoder") SCREAMING_SNAKE_CASE : List[Any] = SpectrogramDiffusionPipeline( notes_encoder=_a , continuous_encoder=_a , decoder=_a , scheduler=_a , melgan=_a , ) if args.save: pipe.save_pretrained(args.output_path) if __name__ == "__main__": a_ = argparse.ArgumentParser() parser.add_argument('--output_path', default=None, type=str, required=True, help='Path to the converted model.') parser.add_argument( '--save', default=True, type=bool, required=False, help='Whether to save the converted model or not.' ) parser.add_argument( '--checkpoint_path', default=F'''{MODEL}/checkpoint_500000''', type=str, required=False, help='Path to the original jax model checkpoint.', ) a_ = parser.parse_args() main(args)
25
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tokenizers_available, is_torch_available, ) a_ = {'configuration_plbart': ['PLBART_PRETRAINED_CONFIG_ARCHIVE_MAP', 'PLBartConfig']} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a_ = ['PLBartTokenizer'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a_ = [ 'PLBART_PRETRAINED_MODEL_ARCHIVE_LIST', 'PLBartForCausalLM', 'PLBartForConditionalGeneration', 'PLBartForSequenceClassification', 'PLBartModel', 'PLBartPreTrainedModel', ] if TYPE_CHECKING: from .configuration_plbart import PLBART_PRETRAINED_CONFIG_ARCHIVE_MAP, PLBartConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_plbart import PLBartTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_plbart import ( PLBART_PRETRAINED_MODEL_ARCHIVE_LIST, PLBartForCausalLM, PLBartForConditionalGeneration, PLBartForSequenceClassification, PLBartModel, PLBartPreTrainedModel, ) else: import sys a_ = _LazyModule(__name__, globals()['__file__'], _import_structure)
25
1
import hashlib import unittest from transformers import MODEL_FOR_DEPTH_ESTIMATION_MAPPING, is_torch_available, is_vision_available from transformers.pipelines import DepthEstimationPipeline, pipeline from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_tf, require_timm, require_torch, require_vision, slow, ) from .test_pipelines_common import ANY if is_torch_available(): import torch if is_vision_available(): from PIL import Image else: class _UpperCamelCase : '''simple docstring''' @staticmethod def __UpperCamelCase ( *a : Any , **a : str ) -> Any: """simple docstring""" pass def lowerCamelCase__ ( _a): SCREAMING_SNAKE_CASE : str = hashlib.mda(image.tobytes()) return m.hexdigest() @is_pipeline_test @require_vision @require_timm @require_torch class _UpperCamelCase ( unittest.TestCase ): '''simple docstring''' lowerCamelCase__ =MODEL_FOR_DEPTH_ESTIMATION_MAPPING def __UpperCamelCase ( self : Tuple , a : int , a : Any , a : Any ) -> Union[str, Any]: """simple docstring""" SCREAMING_SNAKE_CASE : List[Any] = DepthEstimationPipeline(model=a , image_processor=a ) return depth_estimator, [ "./tests/fixtures/tests_samples/COCO/000000039769.png", "./tests/fixtures/tests_samples/COCO/000000039769.png", ] def __UpperCamelCase ( self : int , a : List[str] , a : List[Any] ) -> str: """simple docstring""" SCREAMING_SNAKE_CASE : Tuple = depth_estimator("./tests/fixtures/tests_samples/COCO/000000039769.png" ) self.assertEqual({"predicted_depth": ANY(torch.Tensor ), "depth": ANY(Image.Image )} , a ) import datasets SCREAMING_SNAKE_CASE : Tuple = datasets.load_dataset("hf-internal-testing/fixtures_image_utils" , "image" , split="test" ) SCREAMING_SNAKE_CASE : List[Any] = depth_estimator( [ Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ), "http://images.cocodataset.org/val2017/000000039769.jpg", # RGBA dataset[0]["file"], # LA dataset[1]["file"], # L dataset[2]["file"], ] ) self.assertEqual( [ {"predicted_depth": ANY(torch.Tensor ), "depth": ANY(Image.Image )}, {"predicted_depth": ANY(torch.Tensor ), "depth": ANY(Image.Image )}, {"predicted_depth": ANY(torch.Tensor ), "depth": ANY(Image.Image )}, {"predicted_depth": ANY(torch.Tensor ), "depth": ANY(Image.Image )}, {"predicted_depth": ANY(torch.Tensor ), "depth": ANY(Image.Image )}, ] , a , ) @require_tf @unittest.skip("Depth estimation is not implemented in TF" ) def __UpperCamelCase ( self : List[Any] ) -> Optional[int]: """simple docstring""" pass @slow @require_torch def __UpperCamelCase ( self : Optional[Any] ) -> Tuple: """simple docstring""" SCREAMING_SNAKE_CASE : Tuple = "Intel/dpt-large" SCREAMING_SNAKE_CASE : Optional[int] = pipeline("depth-estimation" , model=a ) SCREAMING_SNAKE_CASE : str = depth_estimator("http://images.cocodataset.org/val2017/000000039769.jpg" ) SCREAMING_SNAKE_CASE : Union[str, Any] = hashimage(outputs["depth"] ) # This seems flaky. # self.assertEqual(outputs["depth"], "1a39394e282e9f3b0741a90b9f108977") self.assertEqual(nested_simplify(outputs["predicted_depth"].max().item() ) , 29.304 ) self.assertEqual(nested_simplify(outputs["predicted_depth"].min().item() ) , 2.662 ) @require_torch def __UpperCamelCase ( self : Tuple ) -> Union[str, Any]: """simple docstring""" self.skipTest("There is not hf-internal-testing tiny model for either GLPN nor DPT" )
25
import unittest import numpy as np import torch from diffusers import KarrasVePipeline, KarrasVeScheduler, UNetaDModel from diffusers.utils.testing_utils import enable_full_determinism, require_torch, slow, torch_device enable_full_determinism() class _UpperCamelCase ( unittest.TestCase ): '''simple docstring''' @property def __UpperCamelCase ( self : List[str] ) -> Union[str, Any]: """simple docstring""" torch.manual_seed(0 ) SCREAMING_SNAKE_CASE : str = UNetaDModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=3 , out_channels=3 , down_block_types=("DownBlock2D", "AttnDownBlock2D") , up_block_types=("AttnUpBlock2D", "UpBlock2D") , ) return model def __UpperCamelCase ( self : Union[str, Any] ) -> Dict: """simple docstring""" SCREAMING_SNAKE_CASE : Union[str, Any] = self.dummy_uncond_unet SCREAMING_SNAKE_CASE : Union[str, Any] = KarrasVeScheduler() SCREAMING_SNAKE_CASE : Any = KarrasVePipeline(unet=a , scheduler=a ) pipe.to(a ) pipe.set_progress_bar_config(disable=a ) SCREAMING_SNAKE_CASE : Any = torch.manual_seed(0 ) SCREAMING_SNAKE_CASE : Optional[Any] = pipe(num_inference_steps=2 , generator=a , output_type="numpy" ).images SCREAMING_SNAKE_CASE : List[str] = torch.manual_seed(0 ) SCREAMING_SNAKE_CASE : List[Any] = pipe(num_inference_steps=2 , generator=a , output_type="numpy" , return_dict=a )[0] SCREAMING_SNAKE_CASE : List[Any] = image[0, -3:, -3:, -1] SCREAMING_SNAKE_CASE : Any = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) SCREAMING_SNAKE_CASE : str = np.array([0.0, 1.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2 @slow @require_torch class _UpperCamelCase ( unittest.TestCase ): '''simple docstring''' def __UpperCamelCase ( self : int ) -> Tuple: """simple docstring""" SCREAMING_SNAKE_CASE : Dict = "google/ncsnpp-celebahq-256" SCREAMING_SNAKE_CASE : List[Any] = UNetaDModel.from_pretrained(a ) SCREAMING_SNAKE_CASE : Any = KarrasVeScheduler() SCREAMING_SNAKE_CASE : Optional[Any] = KarrasVePipeline(unet=a , scheduler=a ) pipe.to(a ) pipe.set_progress_bar_config(disable=a ) SCREAMING_SNAKE_CASE : Union[str, Any] = torch.manual_seed(0 ) SCREAMING_SNAKE_CASE : Any = pipe(num_inference_steps=20 , generator=a , output_type="numpy" ).images SCREAMING_SNAKE_CASE : List[str] = image[0, -3:, -3:, -1] assert image.shape == (1, 256, 256, 3) SCREAMING_SNAKE_CASE : str = np.array([0.578, 0.5811, 0.5924, 0.5809, 0.587, 0.5886, 0.5861, 0.5802, 0.586] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
25
1
import gc import importlib.metadata import tempfile import unittest from packaging import version from transformers import ( AutoModel, AutoModelForCausalLM, AutoModelForSeqaSeqLM, AutoModelForSequenceClassification, AutoTokenizer, BitsAndBytesConfig, pipeline, ) from transformers.testing_utils import ( is_torch_available, require_accelerate, require_bitsandbytes, require_torch, require_torch_gpu, require_torch_multi_gpu, slow, ) def lowerCamelCase__ ( _a): if model.config.model_type == "gpt2": return model.transformer.h[0].mlp.c_fc return model.transformer.h[0].mlp.dense_ah_to_h if is_torch_available(): import torch import torch.nn as nn class _UpperCamelCase ( nn.Module ): '''simple docstring''' def __init__( self : Union[str, Any] , a : nn.Module , a : int ) -> Dict: """simple docstring""" super().__init__() SCREAMING_SNAKE_CASE : str = module SCREAMING_SNAKE_CASE : List[Any] = nn.Sequential( nn.Linear(module.in_features , a , bias=a ) , nn.Linear(a , module.out_features , bias=a ) , ) SCREAMING_SNAKE_CASE : Optional[Any] = (2.0 / (5 * min(module.in_features , module.out_features ))) ** 0.5 nn.init.normal_(self.adapter[0].weight , std=a ) nn.init.zeros_(self.adapter[1].weight ) self.adapter.to(module.weight.device ) def __UpperCamelCase ( self : str , a : Optional[Any] , *a : str , **a : List[str] ) -> Optional[int]: """simple docstring""" return self.module(a , *a , **a ) + self.adapter(a ) @require_bitsandbytes @require_accelerate @require_torch @require_torch_gpu @slow class _UpperCamelCase ( unittest.TestCase ): '''simple docstring''' lowerCamelCase__ ='bigscience/bloom-1b7' # Constant values lowerCamelCase__ =2.109659552692574 lowerCamelCase__ ='Hello my name is' lowerCamelCase__ =set() EXPECTED_OUTPUTS.add('Hello my name is John and I am a professional photographer. I' ) EXPECTED_OUTPUTS.add('Hello my name is John.\nI am a friend of your father.\n' ) EXPECTED_OUTPUTS.add('Hello my name is John Doe, I am a student at the University' ) lowerCamelCase__ =10 def __UpperCamelCase ( self : Dict ) -> Optional[Any]: """simple docstring""" SCREAMING_SNAKE_CASE : List[str] = AutoTokenizer.from_pretrained(self.model_name ) class _UpperCamelCase ( __A ): '''simple docstring''' def __UpperCamelCase ( self : Dict ) -> int: """simple docstring""" super().setUp() # Models and tokenizer SCREAMING_SNAKE_CASE : Dict = AutoModelForCausalLM.from_pretrained( self.model_name , torch_dtype=torch.floataa , device_map="auto" ) SCREAMING_SNAKE_CASE : int = AutoModelForCausalLM.from_pretrained(self.model_name , load_in_abit=a , device_map="auto" ) def __UpperCamelCase ( self : List[str] ) -> Dict: """simple docstring""" del self.model_fpaa del self.model_abit gc.collect() torch.cuda.empty_cache() def __UpperCamelCase ( self : Tuple ) -> Tuple: """simple docstring""" SCREAMING_SNAKE_CASE : Optional[int] = self.model_abit.config self.assertTrue(hasattr(a , "quantization_config" ) ) SCREAMING_SNAKE_CASE : Union[str, Any] = config.to_dict() SCREAMING_SNAKE_CASE : str = config.to_diff_dict() SCREAMING_SNAKE_CASE : Union[str, Any] = config.to_json_string() def __UpperCamelCase ( self : Dict ) -> Optional[int]: """simple docstring""" from bitsandbytes.nn import Paramsabit SCREAMING_SNAKE_CASE : int = self.model_fpaa.get_memory_footprint() SCREAMING_SNAKE_CASE : int = self.model_abit.get_memory_footprint() self.assertAlmostEqual(mem_fpaa / mem_abit , self.EXPECTED_RELATIVE_DIFFERENCE ) SCREAMING_SNAKE_CASE : Union[str, Any] = get_some_linear_layer(self.model_abit ) self.assertTrue(linear.weight.__class__ == Paramsabit ) def __UpperCamelCase ( self : Optional[Any] ) -> Optional[int]: """simple docstring""" from transformers import TaPreTrainedModel self.model_fpaa.get_memory_footprint() self.model_abit.get_memory_footprint() for name, module in self.model_abit.named_modules(): if isinstance(a , torch.nn.Linear ): if name not in ["lm_head"] + TaPreTrainedModel._keep_in_fpaa_modules: # 4-bit parameters are packed in uint8 variables self.assertTrue(module.weight.dtype == torch.uinta ) def __UpperCamelCase ( self : Dict ) -> Union[str, Any]: """simple docstring""" SCREAMING_SNAKE_CASE : Optional[int] = self.tokenizer(self.input_text , return_tensors="pt" ) SCREAMING_SNAKE_CASE : Tuple = self.model_abit.generate(input_ids=encoded_input["input_ids"].to(0 ) , max_new_tokens=10 ) self.assertIn(self.tokenizer.decode(output_sequences[0] , skip_special_tokens=a ) , self.EXPECTED_OUTPUTS ) def __UpperCamelCase ( self : Optional[int] ) -> int: """simple docstring""" SCREAMING_SNAKE_CASE : Tuple = BitsAndBytesConfig() SCREAMING_SNAKE_CASE : Optional[int] = True SCREAMING_SNAKE_CASE : int = AutoModelForCausalLM.from_pretrained( self.model_name , quantization_config=a , device_map="auto" ) SCREAMING_SNAKE_CASE : int = self.tokenizer(self.input_text , return_tensors="pt" ) SCREAMING_SNAKE_CASE : Tuple = model_abit_from_config.generate( input_ids=encoded_input["input_ids"].to(0 ) , max_new_tokens=10 ) self.assertIn(self.tokenizer.decode(output_sequences[0] , skip_special_tokens=a ) , self.EXPECTED_OUTPUTS ) def __UpperCamelCase ( self : Any ) -> str: """simple docstring""" with self.assertRaises(a ), tempfile.TemporaryDirectory() as tmpdirname: self.model_abit.save_pretrained(a ) def __UpperCamelCase ( self : List[str] ) -> Tuple: """simple docstring""" SCREAMING_SNAKE_CASE : int = BitsAndBytesConfig() with self.assertRaises(a ): SCREAMING_SNAKE_CASE : List[str] = AutoModelForCausalLM.from_pretrained( self.model_name , quantization_config=a , load_in_abit=a , device_map="auto" , bnb_abit_quant_type="nf4" , ) def __UpperCamelCase ( self : Any ) -> Tuple: """simple docstring""" with self.assertRaises(a ): # Tries with `str` self.model_abit.to("cpu" ) with self.assertRaises(a ): # Tries with a `dtype`` self.model_abit.to(torch.floataa ) with self.assertRaises(a ): # Tries with a `device` self.model_abit.to(torch.device("cuda:0" ) ) with self.assertRaises(a ): # Tries with a `device` self.model_abit.float() with self.assertRaises(a ): # Tries with a `device` self.model_abit.half() # Test if we did not break anything SCREAMING_SNAKE_CASE : List[str] = self.tokenizer(self.input_text , return_tensors="pt" ) SCREAMING_SNAKE_CASE : Optional[Any] = self.model_fpaa.to(torch.floataa ) SCREAMING_SNAKE_CASE : Optional[Any] = self.model_fpaa.generate(input_ids=encoded_input["input_ids"].to(0 ) , max_new_tokens=10 ) # Check this does not throw an error SCREAMING_SNAKE_CASE : Tuple = self.model_fpaa.to("cpu" ) # Check this does not throw an error SCREAMING_SNAKE_CASE : Dict = self.model_fpaa.half() # Check this does not throw an error SCREAMING_SNAKE_CASE : str = self.model_fpaa.float() def __UpperCamelCase ( self : Dict ) -> Union[str, Any]: """simple docstring""" SCREAMING_SNAKE_CASE : int = AutoModelForSeqaSeqLM.from_pretrained("t5-small" , load_in_abit=a , device_map="auto" ) self.assertTrue(model.decoder.block[0].layer[2].DenseReluDense.wo.weight.dtype == torch.floataa ) @require_bitsandbytes @require_accelerate @require_torch @require_torch_gpu @slow class _UpperCamelCase ( unittest.TestCase ): '''simple docstring''' @classmethod def __UpperCamelCase ( cls : str ) -> str: """simple docstring""" SCREAMING_SNAKE_CASE : List[str] = "t5-small" SCREAMING_SNAKE_CASE : Optional[Any] = "google/flan-t5-small" # flan-t5 uses dense-act instead of dense-relu-dense SCREAMING_SNAKE_CASE : Any = AutoTokenizer.from_pretrained(cls.model_name ) SCREAMING_SNAKE_CASE : Optional[Any] = "Translate in German: Hello, my dog is cute" def __UpperCamelCase ( self : Union[str, Any] ) -> Any: """simple docstring""" gc.collect() torch.cuda.empty_cache() def __UpperCamelCase ( self : List[str] ) -> Union[str, Any]: """simple docstring""" from transformers import TaForConditionalGeneration SCREAMING_SNAKE_CASE : Any = TaForConditionalGeneration._keep_in_fpaa_modules SCREAMING_SNAKE_CASE : Dict = None # test with `t5-small` SCREAMING_SNAKE_CASE : List[Any] = TaForConditionalGeneration.from_pretrained(self.model_name , load_in_abit=a , device_map="auto" ) SCREAMING_SNAKE_CASE : int = self.tokenizer(self.input_text , return_tensors="pt" ).to(0 ) SCREAMING_SNAKE_CASE : Any = model.generate(**a ) # test with `flan-t5-small` SCREAMING_SNAKE_CASE : Dict = TaForConditionalGeneration.from_pretrained( self.dense_act_model_name , load_in_abit=a , device_map="auto" ) SCREAMING_SNAKE_CASE : int = self.tokenizer(self.input_text , return_tensors="pt" ).to(0 ) SCREAMING_SNAKE_CASE : Optional[int] = model.generate(**a ) SCREAMING_SNAKE_CASE : Tuple = modules def __UpperCamelCase ( self : int ) -> Dict: """simple docstring""" import bitsandbytes as bnb from transformers import TaForConditionalGeneration # test with `t5-small` SCREAMING_SNAKE_CASE : Optional[Any] = TaForConditionalGeneration.from_pretrained(self.model_name , load_in_abit=a , device_map="auto" ) # there was a bug with decoders - this test checks that it is fixed self.assertTrue(isinstance(model.decoder.block[0].layer[0].SelfAttention.q , bnb.nn.Linearabit ) ) SCREAMING_SNAKE_CASE : List[Any] = self.tokenizer(self.input_text , return_tensors="pt" ).to(0 ) SCREAMING_SNAKE_CASE : Optional[Any] = model.generate(**a ) # test with `flan-t5-small` SCREAMING_SNAKE_CASE : List[str] = TaForConditionalGeneration.from_pretrained( self.dense_act_model_name , load_in_abit=a , device_map="auto" ) SCREAMING_SNAKE_CASE : Dict = self.tokenizer(self.input_text , return_tensors="pt" ).to(0 ) SCREAMING_SNAKE_CASE : Tuple = model.generate(**a ) class _UpperCamelCase ( __A ): '''simple docstring''' def __UpperCamelCase ( self : Any ) -> Tuple: """simple docstring""" super().setUp() # model_name SCREAMING_SNAKE_CASE : Optional[int] = "bigscience/bloom-560m" SCREAMING_SNAKE_CASE : List[str] = "t5-small" # Different types of model SCREAMING_SNAKE_CASE : str = AutoModel.from_pretrained(self.model_name , load_in_abit=a , device_map="auto" ) # Sequence classification model SCREAMING_SNAKE_CASE : Union[str, Any] = AutoModelForSequenceClassification.from_pretrained( self.model_name , load_in_abit=a , device_map="auto" ) # CausalLM model SCREAMING_SNAKE_CASE : List[Any] = AutoModelForCausalLM.from_pretrained(self.model_name , load_in_abit=a , device_map="auto" ) # Seq2seq model SCREAMING_SNAKE_CASE : List[str] = AutoModelForSeqaSeqLM.from_pretrained( self.seq_to_seq_name , load_in_abit=a , device_map="auto" ) def __UpperCamelCase ( self : Optional[int] ) -> Dict: """simple docstring""" del self.base_model del self.sequence_model del self.model_abit del self.seq_to_seq_model gc.collect() torch.cuda.empty_cache() def __UpperCamelCase ( self : List[Any] ) -> List[str]: """simple docstring""" from bitsandbytes.nn import Paramsabit self.assertTrue(self.base_model.h[-1].mlp.dense_ah_to_h.weight.__class__ == Paramsabit ) # Other heads should be nn.Parameter self.assertTrue(self.model_abit.lm_head.weight.__class__ == torch.nn.Parameter ) self.assertTrue(self.sequence_model.score.weight.__class__ == torch.nn.Parameter ) self.assertTrue(self.seq_to_seq_model.lm_head.weight.__class__ == torch.nn.Parameter ) class _UpperCamelCase ( __A ): '''simple docstring''' def __UpperCamelCase ( self : Dict ) -> Dict: """simple docstring""" super().setUp() def __UpperCamelCase ( self : List[Any] ) -> Optional[int]: """simple docstring""" del self.pipe gc.collect() torch.cuda.empty_cache() def __UpperCamelCase ( self : Dict ) -> Dict: """simple docstring""" SCREAMING_SNAKE_CASE : Optional[Any] = pipeline( "text-generation" , model=self.model_name , model_kwargs={"device_map": "auto", "load_in_4bit": True, "torch_dtype": torch.floataa} , max_new_tokens=self.MAX_NEW_TOKENS , ) # Real second forward pass SCREAMING_SNAKE_CASE : Any = self.pipe(self.input_text ) self.assertIn(pipeline_output[0]["generated_text"] , self.EXPECTED_OUTPUTS ) @require_torch_multi_gpu class _UpperCamelCase ( __A ): '''simple docstring''' def __UpperCamelCase ( self : List[Any] ) -> List[str]: """simple docstring""" super().setUp() def __UpperCamelCase ( self : List[Any] ) -> Any: """simple docstring""" SCREAMING_SNAKE_CASE : List[Any] = AutoModelForCausalLM.from_pretrained( self.model_name , load_in_abit=a , device_map="balanced" ) # Check correct device map self.assertEqual(set(model_parallel.hf_device_map.values() ) , {0, 1} ) # Check that inference pass works on the model SCREAMING_SNAKE_CASE : Tuple = self.tokenizer(self.input_text , return_tensors="pt" ) # Second real batch SCREAMING_SNAKE_CASE : Tuple = model_parallel.generate(input_ids=encoded_input["input_ids"].to(0 ) , max_new_tokens=10 ) self.assertIn(self.tokenizer.decode(output_parallel[0] , skip_special_tokens=a ) , self.EXPECTED_OUTPUTS ) class _UpperCamelCase ( __A ): '''simple docstring''' def __UpperCamelCase ( self : List[str] ) -> Dict: """simple docstring""" SCREAMING_SNAKE_CASE : str = "facebook/opt-350m" super().setUp() def __UpperCamelCase ( self : int ) -> List[Any]: """simple docstring""" if version.parse(importlib.metadata.version("bitsandbytes" ) ) < version.parse("0.37.0" ): return # Step 1: freeze all parameters SCREAMING_SNAKE_CASE : Dict = AutoModelForCausalLM.from_pretrained(self.model_name , load_in_abit=a ) self.assertEqual(set(model.hf_device_map.values() ) , {torch.cuda.current_device()} ) for param in model.parameters(): SCREAMING_SNAKE_CASE : Any = False # freeze the model - train adapters later if param.ndim == 1: # cast the small parameters (e.g. layernorm) to fp32 for stability SCREAMING_SNAKE_CASE : Union[str, Any] = param.data.to(torch.floataa ) # Step 2: add adapters for _, module in model.named_modules(): if "OPTAttention" in repr(type(a ) ): SCREAMING_SNAKE_CASE : Optional[Any] = LoRALayer(module.q_proj , rank=16 ) SCREAMING_SNAKE_CASE : Optional[int] = LoRALayer(module.k_proj , rank=16 ) SCREAMING_SNAKE_CASE : Optional[int] = LoRALayer(module.v_proj , rank=16 ) # Step 3: dummy batch SCREAMING_SNAKE_CASE : Dict = self.tokenizer("Test batch " , return_tensors="pt" ).to(0 ) # Step 4: Check if the gradient is not None with torch.cuda.amp.autocast(): SCREAMING_SNAKE_CASE : str = model.forward(**a ) out.logits.norm().backward() for module in model.modules(): if isinstance(a , a ): self.assertTrue(module.adapter[1].weight.grad is not None ) self.assertTrue(module.adapter[1].weight.grad.norm().item() > 0 ) elif isinstance(a , nn.Embedding ): self.assertTrue(module.weight.grad is None ) class _UpperCamelCase ( __A ): '''simple docstring''' lowerCamelCase__ ='gpt2-xl' lowerCamelCase__ =3.3191854854152187
25
def lowerCamelCase__ ( _a , _a): SCREAMING_SNAKE_CASE : Optional[int] = 0 while b > 0: if b & 1: res += a a += a b >>= 1 return res def lowerCamelCase__ ( _a , _a , _a): SCREAMING_SNAKE_CASE : Optional[int] = 0 while b > 0: if b & 1: SCREAMING_SNAKE_CASE : Optional[Any] = ((res % c) + (a % c)) % c a += a b >>= 1 return res
25
1
from typing import Optional from urllib.parse import quote import huggingface_hub as hfh from packaging import version def lowerCamelCase__ ( _a , _a , _a = None): if version.parse(hfh.__version__).release < version.parse("0.11.0").release: # old versions of hfh don't url-encode the file path SCREAMING_SNAKE_CASE : Dict = quote(_a) return hfh.hf_hub_url(_a , _a , repo_type="dataset" , revision=_a)
25
from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging a_ = logging.get_logger(__name__) a_ = { 'junnyu/roformer_chinese_small': 'https://huggingface.co/junnyu/roformer_chinese_small/resolve/main/config.json', 'junnyu/roformer_chinese_base': 'https://huggingface.co/junnyu/roformer_chinese_base/resolve/main/config.json', 'junnyu/roformer_chinese_char_small': ( 'https://huggingface.co/junnyu/roformer_chinese_char_small/resolve/main/config.json' ), 'junnyu/roformer_chinese_char_base': ( 'https://huggingface.co/junnyu/roformer_chinese_char_base/resolve/main/config.json' ), 'junnyu/roformer_small_discriminator': ( 'https://huggingface.co/junnyu/roformer_small_discriminator/resolve/main/config.json' ), 'junnyu/roformer_small_generator': ( 'https://huggingface.co/junnyu/roformer_small_generator/resolve/main/config.json' ), # See all RoFormer models at https://huggingface.co/models?filter=roformer } class _UpperCamelCase ( __A ): '''simple docstring''' lowerCamelCase__ ='roformer' def __init__( self : Dict , a : Any=5_0000 , a : List[Any]=None , a : str=768 , a : str=12 , a : Tuple=12 , a : Optional[Any]=3072 , a : List[str]="gelu" , a : List[Any]=0.1 , a : Union[str, Any]=0.1 , a : Tuple=1536 , a : List[str]=2 , a : Tuple=0.02 , a : Any=1e-12 , a : Optional[int]=0 , a : Union[str, Any]=False , a : int=True , **a : str , ) -> int: """simple docstring""" super().__init__(pad_token_id=a , **a ) SCREAMING_SNAKE_CASE : str = vocab_size SCREAMING_SNAKE_CASE : int = hidden_size if embedding_size is None else embedding_size SCREAMING_SNAKE_CASE : List[str] = hidden_size SCREAMING_SNAKE_CASE : Union[str, Any] = num_hidden_layers SCREAMING_SNAKE_CASE : int = num_attention_heads SCREAMING_SNAKE_CASE : Tuple = hidden_act SCREAMING_SNAKE_CASE : int = intermediate_size SCREAMING_SNAKE_CASE : Tuple = hidden_dropout_prob SCREAMING_SNAKE_CASE : int = attention_probs_dropout_prob SCREAMING_SNAKE_CASE : Optional[int] = max_position_embeddings SCREAMING_SNAKE_CASE : Any = type_vocab_size SCREAMING_SNAKE_CASE : Union[str, Any] = initializer_range SCREAMING_SNAKE_CASE : List[str] = layer_norm_eps SCREAMING_SNAKE_CASE : List[str] = rotary_value SCREAMING_SNAKE_CASE : int = use_cache class _UpperCamelCase ( __A ): '''simple docstring''' @property def __UpperCamelCase ( self : Tuple ) -> Mapping[str, Mapping[int, str]]: """simple docstring""" if self.task == "multiple-choice": SCREAMING_SNAKE_CASE : Optional[Any] = {0: "batch", 1: "choice", 2: "sequence"} else: SCREAMING_SNAKE_CASE : str = {0: "batch", 1: "sequence"} SCREAMING_SNAKE_CASE : List[Any] = {0: "batch", 1: "sequence"} return OrderedDict( [ ("input_ids", dynamic_axis), ("attention_mask", dynamic_axis), ("token_type_ids", dynamic_axis), ] )
25
1
import copy import os from typing import Union from ...configuration_utils import PretrainedConfig from ...models.auto.modeling_auto import MODEL_FOR_CAUSAL_LM_MAPPING_NAMES from ...utils import logging from ..auto import CONFIG_MAPPING a_ = logging.get_logger(__name__) a_ = { 'Salesforce/instruct-blip-flan-t5': 'https://huggingface.co/Salesforce/instruct-blip-flan-t5/resolve/main/config.json', } class _UpperCamelCase ( __A ): '''simple docstring''' lowerCamelCase__ ='instructblip_vision_model' def __init__( self : List[str] , a : Optional[int]=1408 , a : List[str]=6144 , a : str=39 , a : Optional[int]=16 , a : List[Any]=224 , a : Dict=14 , a : Union[str, Any]="gelu" , a : Tuple=1e-6 , a : Any=0.0 , a : str=1e-10 , a : Tuple=True , **a : Dict , ) -> Union[str, Any]: """simple docstring""" super().__init__(**a ) SCREAMING_SNAKE_CASE : List[Any] = hidden_size SCREAMING_SNAKE_CASE : Union[str, Any] = intermediate_size SCREAMING_SNAKE_CASE : Optional[int] = num_hidden_layers SCREAMING_SNAKE_CASE : List[str] = num_attention_heads SCREAMING_SNAKE_CASE : Dict = patch_size SCREAMING_SNAKE_CASE : List[str] = image_size SCREAMING_SNAKE_CASE : Dict = initializer_range SCREAMING_SNAKE_CASE : str = attention_dropout SCREAMING_SNAKE_CASE : str = layer_norm_eps SCREAMING_SNAKE_CASE : str = hidden_act SCREAMING_SNAKE_CASE : Tuple = qkv_bias @classmethod def __UpperCamelCase ( cls : int , a : Union[str, os.PathLike] , **a : Tuple ) -> "PretrainedConfig": """simple docstring""" cls._set_token_in_kwargs(a ) SCREAMING_SNAKE_CASE ,SCREAMING_SNAKE_CASE : Union[str, Any] = cls.get_config_dict(a , **a ) # get the vision config dict if we are loading from InstructBlipConfig if config_dict.get("model_type" ) == "instructblip": SCREAMING_SNAKE_CASE : List[str] = config_dict["vision_config"] if "model_type" in config_dict and hasattr(cls , "model_type" ) and config_dict["model_type"] != cls.model_type: logger.warning( F"You are using a model of type {config_dict['model_type']} to instantiate a model of type " F"{cls.model_type}. This is not supported for all configurations of models and can yield errors." ) return cls.from_dict(a , **a ) class _UpperCamelCase ( __A ): '''simple docstring''' lowerCamelCase__ ='instructblip_qformer' def __init__( self : List[Any] , a : str=3_0522 , a : List[Any]=768 , a : Tuple=12 , a : Dict=12 , a : List[Any]=3072 , a : List[Any]="gelu" , a : Optional[Any]=0.1 , a : List[str]=0.1 , a : List[Any]=512 , a : List[str]=0.02 , a : List[str]=1e-12 , a : Optional[Any]=0 , a : Union[str, Any]="absolute" , a : Any=2 , a : Union[str, Any]=1408 , **a : Tuple , ) -> str: """simple docstring""" super().__init__(pad_token_id=a , **a ) SCREAMING_SNAKE_CASE : Any = vocab_size SCREAMING_SNAKE_CASE : Any = hidden_size SCREAMING_SNAKE_CASE : Dict = num_hidden_layers SCREAMING_SNAKE_CASE : Tuple = num_attention_heads SCREAMING_SNAKE_CASE : str = hidden_act SCREAMING_SNAKE_CASE : List[Any] = intermediate_size SCREAMING_SNAKE_CASE : Tuple = hidden_dropout_prob SCREAMING_SNAKE_CASE : Optional[Any] = attention_probs_dropout_prob SCREAMING_SNAKE_CASE : List[str] = max_position_embeddings SCREAMING_SNAKE_CASE : Tuple = initializer_range SCREAMING_SNAKE_CASE : List[Any] = layer_norm_eps SCREAMING_SNAKE_CASE : Optional[int] = position_embedding_type SCREAMING_SNAKE_CASE : Dict = cross_attention_frequency SCREAMING_SNAKE_CASE : int = encoder_hidden_size @classmethod def __UpperCamelCase ( cls : Dict , a : Union[str, os.PathLike] , **a : Optional[int] ) -> "PretrainedConfig": """simple docstring""" cls._set_token_in_kwargs(a ) SCREAMING_SNAKE_CASE ,SCREAMING_SNAKE_CASE : Optional[Any] = cls.get_config_dict(a , **a ) # get the qformer config dict if we are loading from InstructBlipConfig if config_dict.get("model_type" ) == "instructblip": SCREAMING_SNAKE_CASE : int = config_dict["qformer_config"] if "model_type" in config_dict and hasattr(cls , "model_type" ) and config_dict["model_type"] != cls.model_type: logger.warning( F"You are using a model of type {config_dict['model_type']} to instantiate a model of type " F"{cls.model_type}. This is not supported for all configurations of models and can yield errors." ) return cls.from_dict(a , **a ) class _UpperCamelCase ( __A ): '''simple docstring''' lowerCamelCase__ ='instructblip' lowerCamelCase__ =True def __init__( self : int , a : Optional[Any]=None , a : str=None , a : List[Any]=None , a : Optional[int]=32 , **a : List[Any] ) -> List[str]: """simple docstring""" super().__init__(**a ) if vision_config is None: SCREAMING_SNAKE_CASE : Optional[int] = {} logger.info("vision_config is None. initializing the InstructBlipVisionConfig with default values." ) if qformer_config is None: SCREAMING_SNAKE_CASE : Union[str, Any] = {} logger.info("qformer_config is None. Initializing the InstructBlipQFormerConfig with default values." ) if text_config is None: SCREAMING_SNAKE_CASE : Tuple = {} logger.info("text_config is None. Initializing the text config with default values (`OPTConfig`)." ) SCREAMING_SNAKE_CASE : int = InstructBlipVisionConfig(**a ) SCREAMING_SNAKE_CASE : Union[str, Any] = InstructBlipQFormerConfig(**a ) SCREAMING_SNAKE_CASE : Union[str, Any] = text_config["model_type"] if "model_type" in text_config else "opt" SCREAMING_SNAKE_CASE : Optional[Any] = CONFIG_MAPPING[text_model_type](**a ) SCREAMING_SNAKE_CASE : Union[str, Any] = self.text_config.tie_word_embeddings SCREAMING_SNAKE_CASE : Union[str, Any] = self.text_config.is_encoder_decoder SCREAMING_SNAKE_CASE : str = num_query_tokens SCREAMING_SNAKE_CASE : Optional[Any] = self.vision_config.hidden_size SCREAMING_SNAKE_CASE : Optional[Any] = self.text_config.model_type in MODEL_FOR_CAUSAL_LM_MAPPING_NAMES SCREAMING_SNAKE_CASE : Optional[Any] = 1.0 SCREAMING_SNAKE_CASE : Tuple = 0.02 @classmethod def __UpperCamelCase ( cls : int , a : InstructBlipVisionConfig , a : InstructBlipQFormerConfig , a : PretrainedConfig , **a : int , ) -> List[str]: """simple docstring""" return cls( vision_config=vision_config.to_dict() , qformer_config=qformer_config.to_dict() , text_config=text_config.to_dict() , **a , ) def __UpperCamelCase ( self : List[str] ) -> Tuple: """simple docstring""" SCREAMING_SNAKE_CASE : Union[str, Any] = copy.deepcopy(self.__dict__ ) SCREAMING_SNAKE_CASE : Any = self.vision_config.to_dict() SCREAMING_SNAKE_CASE : Union[str, Any] = self.qformer_config.to_dict() SCREAMING_SNAKE_CASE : Tuple = self.text_config.to_dict() SCREAMING_SNAKE_CASE : int = self.__class__.model_type return output
25
import argparse import logging from collections import namedtuple import torch from model_bertabs import BertAbsSummarizer from models.model_builder import AbsSummarizer # The authors' implementation from transformers import BertTokenizer logging.basicConfig(level=logging.INFO) a_ = logging.getLogger(__name__) a_ = 'Hello world! cécé herlolip' a_ = namedtuple( 'BertAbsConfig', [ 'temp_dir', 'large', 'use_bert_emb', 'finetune_bert', 'encoder', 'share_emb', 'max_pos', 'enc_layers', 'enc_hidden_size', 'enc_heads', 'enc_ff_size', 'enc_dropout', 'dec_layers', 'dec_hidden_size', 'dec_heads', 'dec_ff_size', 'dec_dropout', ], ) def lowerCamelCase__ ( _a , _a): SCREAMING_SNAKE_CASE : List[Any] = BertAbsConfig( temp_dir="." , finetune_bert=_a , large=_a , share_emb=_a , use_bert_emb=_a , encoder="bert" , max_pos=512 , enc_layers=6 , enc_hidden_size=512 , enc_heads=8 , enc_ff_size=512 , enc_dropout=0.2 , dec_layers=6 , dec_hidden_size=768 , dec_heads=8 , dec_ff_size=2048 , dec_dropout=0.2 , ) SCREAMING_SNAKE_CASE : Dict = torch.load(_a , lambda _a , _a: storage) SCREAMING_SNAKE_CASE : str = AbsSummarizer(_a , torch.device("cpu") , _a) original.eval() SCREAMING_SNAKE_CASE : List[str] = BertAbsSummarizer(_a , torch.device("cpu")) new_model.eval() # ------------------- # Convert the weights # ------------------- logging.info("convert the model") new_model.bert.load_state_dict(original.bert.state_dict()) new_model.decoder.load_state_dict(original.decoder.state_dict()) new_model.generator.load_state_dict(original.generator.state_dict()) # ---------------------------------- # Make sure the outpus are identical # ---------------------------------- logging.info("Make sure that the models' outputs are identical") SCREAMING_SNAKE_CASE : List[str] = BertTokenizer.from_pretrained("bert-base-uncased") # prepare the model inputs SCREAMING_SNAKE_CASE : List[str] = tokenizer.encode("This is sample éàalj'-.") encoder_input_ids.extend([tokenizer.pad_token_id] * (512 - len(_a))) SCREAMING_SNAKE_CASE : int = torch.tensor(_a).unsqueeze(0) SCREAMING_SNAKE_CASE : List[Any] = tokenizer.encode("This is sample 3 éàalj'-.") decoder_input_ids.extend([tokenizer.pad_token_id] * (512 - len(_a))) SCREAMING_SNAKE_CASE : int = torch.tensor(_a).unsqueeze(0) # failsafe to make sure the weights reset does not affect the # loaded weights. assert torch.max(torch.abs(original.generator[0].weight - new_model.generator[0].weight)) == 0 # forward pass SCREAMING_SNAKE_CASE : List[Any] = encoder_input_ids SCREAMING_SNAKE_CASE : List[Any] = decoder_input_ids SCREAMING_SNAKE_CASE : Dict = None SCREAMING_SNAKE_CASE : Optional[Any] = None SCREAMING_SNAKE_CASE : List[Any] = None SCREAMING_SNAKE_CASE : Optional[int] = None SCREAMING_SNAKE_CASE : Dict = None # The original model does not apply the geneator layer immediatly but rather in # the beam search (where it combines softmax + linear layer). Since we already # apply the softmax in our generation process we only apply the linear layer here. # We make sure that the outputs of the full stack are identical SCREAMING_SNAKE_CASE : Optional[int] = original(_a , _a , _a , _a , _a , _a , _a)[0] SCREAMING_SNAKE_CASE : Dict = original.generator(_a) SCREAMING_SNAKE_CASE : Any = new_model( _a , _a , _a , _a , _a)[0] SCREAMING_SNAKE_CASE : Tuple = new_model.generator(_a) SCREAMING_SNAKE_CASE : List[Any] = torch.max(torch.abs(output_converted_model - output_original_model)).item() print("Maximum absolute difference beween weights: {:.2f}".format(_a)) SCREAMING_SNAKE_CASE : Union[str, Any] = torch.max(torch.abs(output_converted_generator - output_original_generator)).item() print("Maximum absolute difference beween weights: {:.2f}".format(_a)) SCREAMING_SNAKE_CASE : int = torch.allclose(_a , _a , atol=1E-3) if are_identical: logging.info("all weights are equal up to 1e-3") else: raise ValueError("the weights are different. The new model is likely different from the original one.") # The model has been saved with torch.save(model) and this is bound to the exact # directory structure. We save the state_dict instead. logging.info("saving the model's state dictionary") torch.save( new_model.state_dict() , "./bertabs-finetuned-cnndm-extractive-abstractive-summarization/pytorch_model.bin") if __name__ == "__main__": a_ = argparse.ArgumentParser() parser.add_argument( '--bertabs_checkpoint_path', default=None, type=str, required=True, help='Path the official PyTorch dump.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, required=True, help='Path to the output PyTorch model.', ) a_ = parser.parse_args() convert_bertabs_checkpoints( args.bertabs_checkpoint_path, args.pytorch_dump_folder_path, )
25
1
import pytest from datasets import inspect_metric, list_metrics, load_metric @pytest.fixture def lowerCamelCase__ ( _a): monkeypatch.setattr("datasets.utils.deprecation_utils._emitted_deprecation_warnings" , set()) @pytest.fixture def lowerCamelCase__ ( _a): class _UpperCamelCase : '''simple docstring''' def __init__( self : int , a : Union[str, Any] ) -> Optional[int]: """simple docstring""" SCREAMING_SNAKE_CASE : Optional[int] = metric_id class _UpperCamelCase : '''simple docstring''' lowerCamelCase__ =[MetricMock(__A ) for metric_id in ['accuracy', 'mse', 'precision', 'codeparrot/apps_metric']] def __UpperCamelCase ( self : Union[str, Any] ) -> int: """simple docstring""" return self._metrics monkeypatch.setattr("datasets.inspect.huggingface_hub" , HfhMock()) @pytest.mark.parametrize( "func, args" , [(load_metric, ("metrics/mse",)), (list_metrics, ()), (inspect_metric, ("metrics/mse", "tmp_path"))]) def lowerCamelCase__ ( _a , _a , _a , _a , _a): if "tmp_path" in args: SCREAMING_SNAKE_CASE : int = tuple(arg if arg != "tmp_path" else tmp_path for arg in args) with pytest.warns(_a , match="https://huggingface.co/docs/evaluate"): func(*_a)
25
import argparse from transformers import CLIPImageProcessor, CLIPVisionModelWithProjection from diffusers import UnCLIPImageVariationPipeline, UnCLIPPipeline if __name__ == "__main__": a_ = argparse.ArgumentParser() parser.add_argument('--dump_path', default=None, type=str, required=True, help='Path to the output model.') parser.add_argument( '--txt2img_unclip', default='kakaobrain/karlo-v1-alpha', type=str, required=False, help='The pretrained txt2img unclip.', ) a_ = parser.parse_args() a_ = UnCLIPPipeline.from_pretrained(args.txtaimg_unclip) a_ = CLIPImageProcessor() a_ = CLIPVisionModelWithProjection.from_pretrained('openai/clip-vit-large-patch14') a_ = UnCLIPImageVariationPipeline( decoder=txtaimg.decoder, text_encoder=txtaimg.text_encoder, tokenizer=txtaimg.tokenizer, text_proj=txtaimg.text_proj, feature_extractor=feature_extractor, image_encoder=image_encoder, super_res_first=txtaimg.super_res_first, super_res_last=txtaimg.super_res_last, decoder_scheduler=txtaimg.decoder_scheduler, super_res_scheduler=txtaimg.super_res_scheduler, ) imgaimg.save_pretrained(args.dump_path)
25
1
def lowerCamelCase__ ( _a): return credit_card_number.startswith(("34", "35", "37", "4", "5", "6")) def lowerCamelCase__ ( _a): SCREAMING_SNAKE_CASE : int = credit_card_number SCREAMING_SNAKE_CASE : str = 0 SCREAMING_SNAKE_CASE : Dict = len(_a) - 2 for i in range(_a , -1 , -2): # double the value of every second digit SCREAMING_SNAKE_CASE : int = int(cc_number[i]) digit *= 2 # If doubling of a number results in a two digit number # i.e greater than 9(e.g., 6 × 2 = 12), # then add the digits of the product (e.g., 12: 1 + 2 = 3, 15: 1 + 5 = 6), # to get a single digit number. if digit > 9: digit %= 10 digit += 1 SCREAMING_SNAKE_CASE : int = cc_number[:i] + str(_a) + cc_number[i + 1 :] total += digit # Sum up the remaining digits for i in range(len(_a) - 1 , -1 , -2): total += int(cc_number[i]) return total % 10 == 0 def lowerCamelCase__ ( _a): SCREAMING_SNAKE_CASE : str = f"{credit_card_number} is an invalid credit card number because" if not credit_card_number.isdigit(): print(f"{error_message} it has nonnumerical characters.") return False if not 13 <= len(_a) <= 16: print(f"{error_message} of its length.") return False if not validate_initial_digits(_a): print(f"{error_message} of its first two digits.") return False if not luhn_validation(_a): print(f"{error_message} it fails the Luhn check.") return False print(f"{credit_card_number} is a valid credit card number.") return True if __name__ == "__main__": import doctest doctest.testmod() validate_credit_card_number('4111111111111111') validate_credit_card_number('32323')
25
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available a_ = { 'configuration_swinv2': ['SWINV2_PRETRAINED_CONFIG_ARCHIVE_MAP', 'Swinv2Config'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a_ = [ 'SWINV2_PRETRAINED_MODEL_ARCHIVE_LIST', 'Swinv2ForImageClassification', 'Swinv2ForMaskedImageModeling', 'Swinv2Model', 'Swinv2PreTrainedModel', ] if TYPE_CHECKING: from .configuration_swinva import SWINV2_PRETRAINED_CONFIG_ARCHIVE_MAP, SwinvaConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_swinva import ( SWINV2_PRETRAINED_MODEL_ARCHIVE_LIST, SwinvaForImageClassification, SwinvaForMaskedImageModeling, SwinvaModel, SwinvaPreTrainedModel, ) else: import sys a_ = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
25
1
from math import pi, sqrt, tan def lowerCamelCase__ ( _a): if side_length < 0: raise ValueError("surface_area_cube() only accepts non-negative values") return 6 * side_length**2 def lowerCamelCase__ ( _a , _a , _a): if length < 0 or breadth < 0 or height < 0: raise ValueError("surface_area_cuboid() only accepts non-negative values") return 2 * ((length * breadth) + (breadth * height) + (length * height)) def lowerCamelCase__ ( _a): if radius < 0: raise ValueError("surface_area_sphere() only accepts non-negative values") return 4 * pi * radius**2 def lowerCamelCase__ ( _a): if radius < 0: raise ValueError("surface_area_hemisphere() only accepts non-negative values") return 3 * pi * radius**2 def lowerCamelCase__ ( _a , _a): if radius < 0 or height < 0: raise ValueError("surface_area_cone() only accepts non-negative values") return pi * radius * (radius + (height**2 + radius**2) ** 0.5) def lowerCamelCase__ ( _a , _a , _a): if radius_a < 0 or radius_a < 0 or height < 0: raise ValueError( "surface_area_conical_frustum() only accepts non-negative values") SCREAMING_SNAKE_CASE : Any = (height**2 + (radius_a - radius_a) ** 2) ** 0.5 return pi * ((slant_height * (radius_a + radius_a)) + radius_a**2 + radius_a**2) def lowerCamelCase__ ( _a , _a): if radius < 0 or height < 0: raise ValueError("surface_area_cylinder() only accepts non-negative values") return 2 * pi * radius * (height + radius) def lowerCamelCase__ ( _a , _a): if torus_radius < 0 or tube_radius < 0: raise ValueError("surface_area_torus() only accepts non-negative values") if torus_radius < tube_radius: raise ValueError( "surface_area_torus() does not support spindle or self intersecting tori") return 4 * pow(_a , 2) * torus_radius * tube_radius def lowerCamelCase__ ( _a , _a): if length < 0 or width < 0: raise ValueError("area_rectangle() only accepts non-negative values") return length * width def lowerCamelCase__ ( _a): if side_length < 0: raise ValueError("area_square() only accepts non-negative values") return side_length**2 def lowerCamelCase__ ( _a , _a): if base < 0 or height < 0: raise ValueError("area_triangle() only accepts non-negative values") return (base * height) / 2 def lowerCamelCase__ ( _a , _a , _a): if sidea < 0 or sidea < 0 or sidea < 0: raise ValueError("area_triangle_three_sides() only accepts non-negative values") elif sidea + sidea < sidea or sidea + sidea < sidea or sidea + sidea < sidea: raise ValueError("Given three sides do not form a triangle") SCREAMING_SNAKE_CASE : List[str] = (sidea + sidea + sidea) / 2 SCREAMING_SNAKE_CASE : Optional[int] = sqrt( semi_perimeter * (semi_perimeter - sidea) * (semi_perimeter - sidea) * (semi_perimeter - sidea)) return area def lowerCamelCase__ ( _a , _a): if base < 0 or height < 0: raise ValueError("area_parallelogram() only accepts non-negative values") return base * height def lowerCamelCase__ ( _a , _a , _a): if basea < 0 or basea < 0 or height < 0: raise ValueError("area_trapezium() only accepts non-negative values") return 1 / 2 * (basea + basea) * height def lowerCamelCase__ ( _a): if radius < 0: raise ValueError("area_circle() only accepts non-negative values") return pi * radius**2 def lowerCamelCase__ ( _a , _a): if radius_x < 0 or radius_y < 0: raise ValueError("area_ellipse() only accepts non-negative values") return pi * radius_x * radius_y def lowerCamelCase__ ( _a , _a): if diagonal_a < 0 or diagonal_a < 0: raise ValueError("area_rhombus() only accepts non-negative values") return 1 / 2 * diagonal_a * diagonal_a def lowerCamelCase__ ( _a , _a): if not isinstance(_a , _a) or sides < 3: raise ValueError( "area_reg_polygon() only accepts integers greater than or \ equal to three as number of sides") elif length < 0: raise ValueError( "area_reg_polygon() only accepts non-negative values as \ length of a side") return (sides * length**2) / (4 * tan(pi / sides)) return (sides * length**2) / (4 * tan(pi / sides)) if __name__ == "__main__": import doctest doctest.testmod(verbose=True) # verbose so we can see methods missing tests print('[DEMO] Areas of various geometric shapes: \n') print(F'''Rectangle: {area_rectangle(10, 20) = }''') print(F'''Square: {area_square(10) = }''') print(F'''Triangle: {area_triangle(10, 10) = }''') print(F'''Triangle: {area_triangle_three_sides(5, 12, 13) = }''') print(F'''Parallelogram: {area_parallelogram(10, 20) = }''') print(F'''Rhombus: {area_rhombus(10, 20) = }''') print(F'''Trapezium: {area_trapezium(10, 20, 30) = }''') print(F'''Circle: {area_circle(20) = }''') print(F'''Ellipse: {area_ellipse(10, 20) = }''') print('\nSurface Areas of various geometric shapes: \n') print(F'''Cube: {surface_area_cube(20) = }''') print(F'''Cuboid: {surface_area_cuboid(10, 20, 30) = }''') print(F'''Sphere: {surface_area_sphere(20) = }''') print(F'''Hemisphere: {surface_area_hemisphere(20) = }''') print(F'''Cone: {surface_area_cone(10, 20) = }''') print(F'''Conical Frustum: {surface_area_conical_frustum(10, 20, 30) = }''') print(F'''Cylinder: {surface_area_cylinder(10, 20) = }''') print(F'''Torus: {surface_area_torus(20, 10) = }''') print(F'''Equilateral Triangle: {area_reg_polygon(3, 10) = }''') print(F'''Square: {area_reg_polygon(4, 10) = }''') print(F'''Reqular Pentagon: {area_reg_polygon(5, 10) = }''')
25
from math import pi, sqrt, tan def lowerCamelCase__ ( _a): if side_length < 0: raise ValueError("surface_area_cube() only accepts non-negative values") return 6 * side_length**2 def lowerCamelCase__ ( _a , _a , _a): if length < 0 or breadth < 0 or height < 0: raise ValueError("surface_area_cuboid() only accepts non-negative values") return 2 * ((length * breadth) + (breadth * height) + (length * height)) def lowerCamelCase__ ( _a): if radius < 0: raise ValueError("surface_area_sphere() only accepts non-negative values") return 4 * pi * radius**2 def lowerCamelCase__ ( _a): if radius < 0: raise ValueError("surface_area_hemisphere() only accepts non-negative values") return 3 * pi * radius**2 def lowerCamelCase__ ( _a , _a): if radius < 0 or height < 0: raise ValueError("surface_area_cone() only accepts non-negative values") return pi * radius * (radius + (height**2 + radius**2) ** 0.5) def lowerCamelCase__ ( _a , _a , _a): if radius_a < 0 or radius_a < 0 or height < 0: raise ValueError( "surface_area_conical_frustum() only accepts non-negative values") SCREAMING_SNAKE_CASE : Any = (height**2 + (radius_a - radius_a) ** 2) ** 0.5 return pi * ((slant_height * (radius_a + radius_a)) + radius_a**2 + radius_a**2) def lowerCamelCase__ ( _a , _a): if radius < 0 or height < 0: raise ValueError("surface_area_cylinder() only accepts non-negative values") return 2 * pi * radius * (height + radius) def lowerCamelCase__ ( _a , _a): if torus_radius < 0 or tube_radius < 0: raise ValueError("surface_area_torus() only accepts non-negative values") if torus_radius < tube_radius: raise ValueError( "surface_area_torus() does not support spindle or self intersecting tori") return 4 * pow(_a , 2) * torus_radius * tube_radius def lowerCamelCase__ ( _a , _a): if length < 0 or width < 0: raise ValueError("area_rectangle() only accepts non-negative values") return length * width def lowerCamelCase__ ( _a): if side_length < 0: raise ValueError("area_square() only accepts non-negative values") return side_length**2 def lowerCamelCase__ ( _a , _a): if base < 0 or height < 0: raise ValueError("area_triangle() only accepts non-negative values") return (base * height) / 2 def lowerCamelCase__ ( _a , _a , _a): if sidea < 0 or sidea < 0 or sidea < 0: raise ValueError("area_triangle_three_sides() only accepts non-negative values") elif sidea + sidea < sidea or sidea + sidea < sidea or sidea + sidea < sidea: raise ValueError("Given three sides do not form a triangle") SCREAMING_SNAKE_CASE : List[str] = (sidea + sidea + sidea) / 2 SCREAMING_SNAKE_CASE : Optional[int] = sqrt( semi_perimeter * (semi_perimeter - sidea) * (semi_perimeter - sidea) * (semi_perimeter - sidea)) return area def lowerCamelCase__ ( _a , _a): if base < 0 or height < 0: raise ValueError("area_parallelogram() only accepts non-negative values") return base * height def lowerCamelCase__ ( _a , _a , _a): if basea < 0 or basea < 0 or height < 0: raise ValueError("area_trapezium() only accepts non-negative values") return 1 / 2 * (basea + basea) * height def lowerCamelCase__ ( _a): if radius < 0: raise ValueError("area_circle() only accepts non-negative values") return pi * radius**2 def lowerCamelCase__ ( _a , _a): if radius_x < 0 or radius_y < 0: raise ValueError("area_ellipse() only accepts non-negative values") return pi * radius_x * radius_y def lowerCamelCase__ ( _a , _a): if diagonal_a < 0 or diagonal_a < 0: raise ValueError("area_rhombus() only accepts non-negative values") return 1 / 2 * diagonal_a * diagonal_a def lowerCamelCase__ ( _a , _a): if not isinstance(_a , _a) or sides < 3: raise ValueError( "area_reg_polygon() only accepts integers greater than or \ equal to three as number of sides") elif length < 0: raise ValueError( "area_reg_polygon() only accepts non-negative values as \ length of a side") return (sides * length**2) / (4 * tan(pi / sides)) return (sides * length**2) / (4 * tan(pi / sides)) if __name__ == "__main__": import doctest doctest.testmod(verbose=True) # verbose so we can see methods missing tests print('[DEMO] Areas of various geometric shapes: \n') print(F'''Rectangle: {area_rectangle(10, 20) = }''') print(F'''Square: {area_square(10) = }''') print(F'''Triangle: {area_triangle(10, 10) = }''') print(F'''Triangle: {area_triangle_three_sides(5, 12, 13) = }''') print(F'''Parallelogram: {area_parallelogram(10, 20) = }''') print(F'''Rhombus: {area_rhombus(10, 20) = }''') print(F'''Trapezium: {area_trapezium(10, 20, 30) = }''') print(F'''Circle: {area_circle(20) = }''') print(F'''Ellipse: {area_ellipse(10, 20) = }''') print('\nSurface Areas of various geometric shapes: \n') print(F'''Cube: {surface_area_cube(20) = }''') print(F'''Cuboid: {surface_area_cuboid(10, 20, 30) = }''') print(F'''Sphere: {surface_area_sphere(20) = }''') print(F'''Hemisphere: {surface_area_hemisphere(20) = }''') print(F'''Cone: {surface_area_cone(10, 20) = }''') print(F'''Conical Frustum: {surface_area_conical_frustum(10, 20, 30) = }''') print(F'''Cylinder: {surface_area_cylinder(10, 20) = }''') print(F'''Torus: {surface_area_torus(20, 10) = }''') print(F'''Equilateral Triangle: {area_reg_polygon(3, 10) = }''') print(F'''Square: {area_reg_polygon(4, 10) = }''') print(F'''Reqular Pentagon: {area_reg_polygon(5, 10) = }''')
25
1
import math def lowerCamelCase__ ( _a , _a): if 0 not in (x, y): # We use the relation x^y = y*log10(x), where 10 is the base. return y * math.logaa(_a) else: if x == 0: # 0 raised to any number is 0 return 0 elif y == 0: return 1 # any number raised to 0 is 1 raise AssertionError("This should never happen") if __name__ == "__main__": # Main function # Read two numbers from input and typecast them to int using map function. # Here x is the base and y is the power. a_ = 'Enter the base and the power separated by a comma: ' a_ , a_ = map(int, input(prompt).split(',')) a_ , a_ = map(int, input(prompt).split(',')) # We find the log of each number, using the function res(), which takes two # arguments. a_ = res(xa, ya) a_ = res(xa, ya) # We check for the largest number if resa > resa: print('Largest number is', xa, '^', ya) elif resa > resa: print('Largest number is', xa, '^', ya) else: print('Both are equal')
25
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available a_ = { 'configuration_instructblip': [ 'INSTRUCTBLIP_PRETRAINED_CONFIG_ARCHIVE_MAP', 'InstructBlipConfig', 'InstructBlipQFormerConfig', 'InstructBlipVisionConfig', ], 'processing_instructblip': ['InstructBlipProcessor'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a_ = [ 'INSTRUCTBLIP_PRETRAINED_MODEL_ARCHIVE_LIST', 'InstructBlipQFormerModel', 'InstructBlipPreTrainedModel', 'InstructBlipForConditionalGeneration', 'InstructBlipVisionModel', ] if TYPE_CHECKING: from .configuration_instructblip import ( INSTRUCTBLIP_PRETRAINED_CONFIG_ARCHIVE_MAP, InstructBlipConfig, InstructBlipQFormerConfig, InstructBlipVisionConfig, ) from .processing_instructblip import InstructBlipProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_instructblip import ( INSTRUCTBLIP_PRETRAINED_MODEL_ARCHIVE_LIST, InstructBlipForConditionalGeneration, InstructBlipPreTrainedModel, InstructBlipQFormerModel, InstructBlipVisionModel, ) else: import sys a_ = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
25
1
import json import os from typing import Optional, Tuple from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging a_ = logging.get_logger(__name__) a_ = {'vocab_file': 'vocab.json'} a_ = { 'vocab_file': { 'mgp-str': 'https://huggingface.co/alibaba-damo/mgp-str-base/blob/main/vocab.json', } } a_ = {'mgp-str': 27} class _UpperCamelCase ( __A ): '''simple docstring''' lowerCamelCase__ =VOCAB_FILES_NAMES lowerCamelCase__ =PRETRAINED_VOCAB_FILES_MAP lowerCamelCase__ =PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES def __init__( self : str , a : Tuple , a : Any="[GO]" , a : Dict="[GO]" , a : List[Any]="[s]" , a : Tuple="[GO]" , **a : Any ) -> Optional[Any]: """simple docstring""" super().__init__( unk_token=a , bos_token=a , eos_token=a , pad_token=a , **a , ) with open(a , encoding="utf-8" ) as vocab_handle: SCREAMING_SNAKE_CASE : Any = json.load(a ) SCREAMING_SNAKE_CASE : Dict = {v: k for k, v in self.vocab.items()} @property def __UpperCamelCase ( self : str ) -> List[Any]: """simple docstring""" return len(self.vocab ) def __UpperCamelCase ( self : Optional[Any] ) -> Any: """simple docstring""" return dict(self.vocab , **self.added_tokens_encoder ) def __UpperCamelCase ( self : Union[str, Any] , a : Optional[Any] ) -> List[Any]: """simple docstring""" SCREAMING_SNAKE_CASE : Any = [] for s in text: char_tokens.extend(a ) return char_tokens def __UpperCamelCase ( self : Optional[Any] , a : Optional[int] ) -> int: """simple docstring""" return self.vocab.get(a , self.vocab.get(self.unk_token ) ) def __UpperCamelCase ( self : List[str] , a : List[Any] ) -> List[str]: """simple docstring""" return self.decoder.get(a ) def __UpperCamelCase ( self : Union[str, Any] , a : str , a : Optional[str] = None ) -> Tuple[str]: """simple docstring""" if not os.path.isdir(a ): logger.error("Vocabulary path ({}) should be a directory".format(a ) ) return SCREAMING_SNAKE_CASE : List[str] = os.path.join( a , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) with open(a , "w" , encoding="utf-8" ) as f: f.write(json.dumps(self.vocab , indent=2 , sort_keys=a , ensure_ascii=a ) + "\n" ) return (vocab_file,)
25
from __future__ import annotations def lowerCamelCase__ ( _a): SCREAMING_SNAKE_CASE : Optional[Any] = 2 SCREAMING_SNAKE_CASE : Optional[int] = [] while i * i <= n: if n % i: i += 1 else: n //= i factors.append(_a) if n > 1: factors.append(_a) return factors if __name__ == "__main__": import doctest doctest.testmod()
25
1
from __future__ import annotations def lowerCamelCase__ ( _a , _a): if len(_a) == 0: return False SCREAMING_SNAKE_CASE : Optional[Any] = len(_a) // 2 if a_list[midpoint] == item: return True if item < a_list[midpoint]: return binary_search(a_list[:midpoint] , _a) else: return binary_search(a_list[midpoint + 1 :] , _a) if __name__ == "__main__": a_ = input('Enter numbers separated by comma:\n').strip() a_ = [int(item.strip()) for item in user_input.split(',')] a_ = int(input('Enter the number to be found in the list:\n').strip()) a_ = '' if binary_search(sequence, target) else 'not ' print(F'''{target} was {not_str}found in {sequence}''')
25
from math import factorial, pi def lowerCamelCase__ ( _a , _a = 30): if not isinstance(_a , (int, float)): raise ValueError("maclaurin_sin() requires either an int or float for theta") if not isinstance(_a , _a) or accuracy <= 0: raise ValueError("maclaurin_sin() requires a positive int for accuracy") SCREAMING_SNAKE_CASE : int = float(_a) SCREAMING_SNAKE_CASE : Dict = theta // (2 * pi) theta -= 2 * div * pi return sum( (-1) ** r * theta ** (2 * r + 1) / factorial(2 * r + 1) for r in range(_a)) def lowerCamelCase__ ( _a , _a = 30): if not isinstance(_a , (int, float)): raise ValueError("maclaurin_cos() requires either an int or float for theta") if not isinstance(_a , _a) or accuracy <= 0: raise ValueError("maclaurin_cos() requires a positive int for accuracy") SCREAMING_SNAKE_CASE : str = float(_a) SCREAMING_SNAKE_CASE : Any = theta // (2 * pi) theta -= 2 * div * pi return sum((-1) ** r * theta ** (2 * r) / factorial(2 * r) for r in range(_a)) if __name__ == "__main__": import doctest doctest.testmod() print(maclaurin_sin(10)) print(maclaurin_sin(-10)) print(maclaurin_sin(10, 15)) print(maclaurin_sin(-10, 15)) print(maclaurin_cos(5)) print(maclaurin_cos(-5)) print(maclaurin_cos(10, 15)) print(maclaurin_cos(-10, 15))
25
1
import numpy as np def lowerCamelCase__ ( _a): return 1 / (1 + np.exp(-vector)) def lowerCamelCase__ ( _a): return vector * sigmoid(_a) if __name__ == "__main__": import doctest doctest.testmod()
25
from __future__ import annotations import math class _UpperCamelCase : '''simple docstring''' def __init__( self : Dict , a : int ) -> None: """simple docstring""" SCREAMING_SNAKE_CASE : Dict = size # approximate the overall size of segment tree with given value SCREAMING_SNAKE_CASE : Any = [0 for i in range(0 , 4 * size )] # create array to store lazy update SCREAMING_SNAKE_CASE : Union[str, Any] = [0 for i in range(0 , 4 * size )] SCREAMING_SNAKE_CASE : Any = [0 for i in range(0 , 4 * size )] # flag for lazy update def __UpperCamelCase ( self : Tuple , a : int ) -> int: """simple docstring""" return idx * 2 def __UpperCamelCase ( self : str , a : int ) -> int: """simple docstring""" return idx * 2 + 1 def __UpperCamelCase ( self : int , a : int , a : int , a : int , a : list[int] ) -> None: """simple docstring""" if left_element == right_element: SCREAMING_SNAKE_CASE : int = a[left_element - 1] else: SCREAMING_SNAKE_CASE : Optional[int] = (left_element + right_element) // 2 self.build(self.left(a ) , a , a , a ) self.build(self.right(a ) , mid + 1 , a , a ) SCREAMING_SNAKE_CASE : List[Any] = max( self.segment_tree[self.left(a )] , self.segment_tree[self.right(a )] ) def __UpperCamelCase ( self : Optional[Any] , a : int , a : int , a : int , a : int , a : int , a : int ) -> bool: """simple docstring""" if self.flag[idx] is True: SCREAMING_SNAKE_CASE : Any = self.lazy[idx] SCREAMING_SNAKE_CASE : List[str] = False if left_element != right_element: SCREAMING_SNAKE_CASE : Optional[Any] = self.lazy[idx] SCREAMING_SNAKE_CASE : int = self.lazy[idx] SCREAMING_SNAKE_CASE : Any = True SCREAMING_SNAKE_CASE : List[Any] = True if right_element < a or left_element > b: return True if left_element >= a and right_element <= b: SCREAMING_SNAKE_CASE : Optional[Any] = val if left_element != right_element: SCREAMING_SNAKE_CASE : str = val SCREAMING_SNAKE_CASE : str = val SCREAMING_SNAKE_CASE : Tuple = True SCREAMING_SNAKE_CASE : Optional[Any] = True return True SCREAMING_SNAKE_CASE : int = (left_element + right_element) // 2 self.update(self.left(a ) , a , a , a , a , a ) self.update(self.right(a ) , mid + 1 , a , a , a , a ) SCREAMING_SNAKE_CASE : Optional[int] = max( self.segment_tree[self.left(a )] , self.segment_tree[self.right(a )] ) return True def __UpperCamelCase ( self : Dict , a : int , a : int , a : int , a : int , a : int ) -> int | float: """simple docstring""" if self.flag[idx] is True: SCREAMING_SNAKE_CASE : int = self.lazy[idx] SCREAMING_SNAKE_CASE : List[Any] = False if left_element != right_element: SCREAMING_SNAKE_CASE : Optional[Any] = self.lazy[idx] SCREAMING_SNAKE_CASE : Optional[Any] = self.lazy[idx] SCREAMING_SNAKE_CASE : Optional[Any] = True SCREAMING_SNAKE_CASE : Union[str, Any] = True if right_element < a or left_element > b: return -math.inf if left_element >= a and right_element <= b: return self.segment_tree[idx] SCREAMING_SNAKE_CASE : Dict = (left_element + right_element) // 2 SCREAMING_SNAKE_CASE : Tuple = self.query(self.left(a ) , a , a , a , a ) SCREAMING_SNAKE_CASE : Tuple = self.query(self.right(a ) , mid + 1 , a , a , a ) return max(a , a ) def __str__( self : str ) -> str: """simple docstring""" return str([self.query(1 , 1 , self.size , a , a ) for i in range(1 , self.size + 1 )] ) if __name__ == "__main__": a_ = [1, 2, -4, 7, 3, -5, 6, 11, -20, 9, 14, 15, 5, 2, -8] a_ = 15 a_ = SegmentTree(size) segt.build(1, 1, size, A) print(segt.query(1, 1, size, 4, 6)) print(segt.query(1, 1, size, 7, 11)) print(segt.query(1, 1, size, 7, 12)) segt.update(1, 1, size, 1, 3, 111) print(segt.query(1, 1, size, 1, 15)) segt.update(1, 1, size, 7, 8, 235) print(segt)
25
1
import importlib import inspect import os import re # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_config_docstrings.py a_ = 'src/transformers' # This is to make sure the transformers module imported is the one in the repo. a_ = importlib.util.spec_from_file_location( 'transformers', os.path.join(PATH_TO_TRANSFORMERS, '__init__.py'), submodule_search_locations=[PATH_TO_TRANSFORMERS], ) a_ = spec.loader.load_module() a_ = transformers.models.auto.configuration_auto.CONFIG_MAPPING # Regex pattern used to find the checkpoint mentioned in the docstring of `config_class`. # For example, `[bert-base-uncased](https://huggingface.co/bert-base-uncased)` a_ = re.compile('\[(.+?)\]\((https://huggingface\.co/.+?)\)') a_ = { 'CLIPConfigMixin', 'DecisionTransformerConfigMixin', 'EncoderDecoderConfigMixin', 'RagConfigMixin', 'SpeechEncoderDecoderConfigMixin', 'VisionEncoderDecoderConfigMixin', 'VisionTextDualEncoderConfigMixin', } def lowerCamelCase__ ( ): SCREAMING_SNAKE_CASE : int = [] for config_class in list(CONFIG_MAPPING.values()): SCREAMING_SNAKE_CASE : int = False # source code of `config_class` SCREAMING_SNAKE_CASE : Any = inspect.getsource(_a) SCREAMING_SNAKE_CASE : List[Any] = _re_checkpoint.findall(_a) for checkpoint in checkpoints: # Each `checkpoint` is a tuple of a checkpoint name and a checkpoint link. # For example, `('bert-base-uncased', 'https://huggingface.co/bert-base-uncased')` SCREAMING_SNAKE_CASE ,SCREAMING_SNAKE_CASE : int = checkpoint # verify the checkpoint name corresponds to the checkpoint link SCREAMING_SNAKE_CASE : Optional[int] = f"https://huggingface.co/{ckpt_name}" if ckpt_link == ckpt_link_from_name: SCREAMING_SNAKE_CASE : int = True break SCREAMING_SNAKE_CASE : str = config_class.__name__ if not checkpoint_found and name not in CONFIG_CLASSES_TO_IGNORE_FOR_DOCSTRING_CHECKPOINT_CHECK: configs_without_checkpoint.append(_a) if len(_a) > 0: SCREAMING_SNAKE_CASE : List[Any] = "\n".join(sorted(_a)) raise ValueError(f"The following configurations don't contain any valid checkpoint:\n{message}") if __name__ == "__main__": check_config_docstrings_have_checkpoints()
25
import gc import unittest import numpy as np import torch from diffusers import StableDiffusionKDiffusionPipeline from diffusers.utils import slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu enable_full_determinism() @slow @require_torch_gpu class _UpperCamelCase ( unittest.TestCase ): '''simple docstring''' def __UpperCamelCase ( self : Dict ) -> Tuple: """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() def __UpperCamelCase ( self : Optional[int] ) -> int: """simple docstring""" SCREAMING_SNAKE_CASE : Optional[Any] = StableDiffusionKDiffusionPipeline.from_pretrained("CompVis/stable-diffusion-v1-4" ) SCREAMING_SNAKE_CASE : str = sd_pipe.to(a ) sd_pipe.set_progress_bar_config(disable=a ) sd_pipe.set_scheduler("sample_euler" ) SCREAMING_SNAKE_CASE : Optional[int] = "A painting of a squirrel eating a burger" SCREAMING_SNAKE_CASE : Any = torch.manual_seed(0 ) SCREAMING_SNAKE_CASE : List[Any] = sd_pipe([prompt] , generator=a , guidance_scale=9.0 , num_inference_steps=20 , output_type="np" ) SCREAMING_SNAKE_CASE : Tuple = output.images SCREAMING_SNAKE_CASE : Any = image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) SCREAMING_SNAKE_CASE : Union[str, Any] = np.array([0.0447, 0.0492, 0.0468, 0.0408, 0.0383, 0.0408, 0.0354, 0.0380, 0.0339] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def __UpperCamelCase ( self : List[Any] ) -> Optional[int]: """simple docstring""" SCREAMING_SNAKE_CASE : int = StableDiffusionKDiffusionPipeline.from_pretrained("stabilityai/stable-diffusion-2-1-base" ) SCREAMING_SNAKE_CASE : Tuple = sd_pipe.to(a ) sd_pipe.set_progress_bar_config(disable=a ) sd_pipe.set_scheduler("sample_euler" ) SCREAMING_SNAKE_CASE : List[str] = "A painting of a squirrel eating a burger" SCREAMING_SNAKE_CASE : List[str] = torch.manual_seed(0 ) SCREAMING_SNAKE_CASE : Union[str, Any] = sd_pipe([prompt] , generator=a , guidance_scale=9.0 , num_inference_steps=20 , output_type="np" ) SCREAMING_SNAKE_CASE : List[Any] = output.images SCREAMING_SNAKE_CASE : Tuple = image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) SCREAMING_SNAKE_CASE : int = np.array([0.1237, 0.1320, 0.1438, 0.1359, 0.1390, 0.1132, 0.1277, 0.1175, 0.1112] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 5e-1 def __UpperCamelCase ( self : Tuple ) -> List[Any]: """simple docstring""" SCREAMING_SNAKE_CASE : Dict = StableDiffusionKDiffusionPipeline.from_pretrained("stabilityai/stable-diffusion-2-1-base" ) SCREAMING_SNAKE_CASE : Union[str, Any] = sd_pipe.to(a ) sd_pipe.set_progress_bar_config(disable=a ) sd_pipe.set_scheduler("sample_dpmpp_2m" ) SCREAMING_SNAKE_CASE : str = "A painting of a squirrel eating a burger" SCREAMING_SNAKE_CASE : Any = torch.manual_seed(0 ) SCREAMING_SNAKE_CASE : str = sd_pipe( [prompt] , generator=a , guidance_scale=7.5 , num_inference_steps=15 , output_type="np" , use_karras_sigmas=a , ) SCREAMING_SNAKE_CASE : str = output.images SCREAMING_SNAKE_CASE : Optional[int] = image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) SCREAMING_SNAKE_CASE : int = np.array( [0.1138_1689, 0.1211_2921, 0.138_9457, 0.1254_9606, 0.124_4964, 0.1083_1517, 0.1156_2866, 0.1086_7816, 0.1049_9048] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
25
1
from ...configuration_utils import PretrainedConfig from ...utils import logging a_ = logging.get_logger(__name__) a_ = { 'caidas/swin2sr-classicalsr-x2-64': ( 'https://huggingface.co/caidas/swin2sr-classicalsr-x2-64/resolve/main/config.json' ), } class _UpperCamelCase ( __A ): '''simple docstring''' lowerCamelCase__ ='swin2sr' lowerCamelCase__ ={ 'hidden_size': 'embed_dim', 'num_attention_heads': 'num_heads', 'num_hidden_layers': 'num_layers', } def __init__( self : Any , a : List[Any]=64 , a : List[str]=1 , a : int=3 , a : Union[str, Any]=180 , a : Union[str, Any]=[6, 6, 6, 6, 6, 6] , a : Union[str, Any]=[6, 6, 6, 6, 6, 6] , a : Any=8 , a : List[Any]=2.0 , a : List[Any]=True , a : Optional[Any]=0.0 , a : Union[str, Any]=0.0 , a : Union[str, Any]=0.1 , a : List[Any]="gelu" , a : Any=False , a : Any=0.02 , a : Tuple=1e-5 , a : Optional[int]=2 , a : List[str]=1.0 , a : int="1conv" , a : Dict="pixelshuffle" , **a : str , ) -> Optional[Any]: """simple docstring""" super().__init__(**a ) SCREAMING_SNAKE_CASE : Tuple = image_size SCREAMING_SNAKE_CASE : int = patch_size SCREAMING_SNAKE_CASE : Optional[Any] = num_channels SCREAMING_SNAKE_CASE : Tuple = embed_dim SCREAMING_SNAKE_CASE : Dict = depths SCREAMING_SNAKE_CASE : Tuple = len(a ) SCREAMING_SNAKE_CASE : Tuple = num_heads SCREAMING_SNAKE_CASE : Dict = window_size SCREAMING_SNAKE_CASE : Optional[int] = mlp_ratio SCREAMING_SNAKE_CASE : str = qkv_bias SCREAMING_SNAKE_CASE : Optional[Any] = hidden_dropout_prob SCREAMING_SNAKE_CASE : List[Any] = attention_probs_dropout_prob SCREAMING_SNAKE_CASE : Optional[Any] = drop_path_rate SCREAMING_SNAKE_CASE : str = hidden_act SCREAMING_SNAKE_CASE : Optional[int] = use_absolute_embeddings SCREAMING_SNAKE_CASE : Tuple = layer_norm_eps SCREAMING_SNAKE_CASE : Optional[Any] = initializer_range SCREAMING_SNAKE_CASE : Any = upscale SCREAMING_SNAKE_CASE : int = img_range SCREAMING_SNAKE_CASE : List[Any] = resi_connection SCREAMING_SNAKE_CASE : List[str] = upsampler
25
import unittest import numpy as np from diffusers import LMSDiscreteScheduler, OnnxStableDiffusionInpaintPipeline from diffusers.utils.testing_utils import ( is_onnx_available, load_image, nightly, require_onnxruntime, require_torch_gpu, ) from ..test_pipelines_onnx_common import OnnxPipelineTesterMixin if is_onnx_available(): import onnxruntime as ort class _UpperCamelCase ( __A , unittest.TestCase ): '''simple docstring''' pass @nightly @require_onnxruntime @require_torch_gpu class _UpperCamelCase ( unittest.TestCase ): '''simple docstring''' @property def __UpperCamelCase ( self : List[Any] ) -> List[str]: """simple docstring""" return ( "CUDAExecutionProvider", { "gpu_mem_limit": "15000000000", # 15GB "arena_extend_strategy": "kSameAsRequested", }, ) @property def __UpperCamelCase ( self : int ) -> Optional[Any]: """simple docstring""" SCREAMING_SNAKE_CASE : Optional[Any] = ort.SessionOptions() SCREAMING_SNAKE_CASE : Union[str, Any] = False return options def __UpperCamelCase ( self : List[Any] ) -> List[Any]: """simple docstring""" SCREAMING_SNAKE_CASE : Any = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/in_paint/overture-creations-5sI6fQgYIuo.png" ) SCREAMING_SNAKE_CASE : Optional[Any] = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/in_paint/overture-creations-5sI6fQgYIuo_mask.png" ) SCREAMING_SNAKE_CASE : int = OnnxStableDiffusionInpaintPipeline.from_pretrained( "runwayml/stable-diffusion-inpainting" , revision="onnx" , safety_checker=a , feature_extractor=a , provider=self.gpu_provider , sess_options=self.gpu_options , ) pipe.set_progress_bar_config(disable=a ) SCREAMING_SNAKE_CASE : Optional[Any] = "A red cat sitting on a park bench" SCREAMING_SNAKE_CASE : Tuple = np.random.RandomState(0 ) SCREAMING_SNAKE_CASE : Optional[int] = pipe( prompt=a , image=a , mask_image=a , guidance_scale=7.5 , num_inference_steps=10 , generator=a , output_type="np" , ) SCREAMING_SNAKE_CASE : List[Any] = output.images SCREAMING_SNAKE_CASE : Union[str, Any] = images[0, 255:258, 255:258, -1] assert images.shape == (1, 512, 512, 3) SCREAMING_SNAKE_CASE : int = np.array([0.2514, 0.3007, 0.3517, 0.1790, 0.2382, 0.3167, 0.1944, 0.2273, 0.2464] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3 def __UpperCamelCase ( self : List[Any] ) -> Tuple: """simple docstring""" SCREAMING_SNAKE_CASE : int = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/in_paint/overture-creations-5sI6fQgYIuo.png" ) SCREAMING_SNAKE_CASE : Optional[Any] = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/in_paint/overture-creations-5sI6fQgYIuo_mask.png" ) SCREAMING_SNAKE_CASE : Optional[Any] = LMSDiscreteScheduler.from_pretrained( "runwayml/stable-diffusion-inpainting" , subfolder="scheduler" , revision="onnx" ) SCREAMING_SNAKE_CASE : Union[str, Any] = OnnxStableDiffusionInpaintPipeline.from_pretrained( "runwayml/stable-diffusion-inpainting" , revision="onnx" , scheduler=a , safety_checker=a , feature_extractor=a , provider=self.gpu_provider , sess_options=self.gpu_options , ) pipe.set_progress_bar_config(disable=a ) SCREAMING_SNAKE_CASE : List[Any] = "A red cat sitting on a park bench" SCREAMING_SNAKE_CASE : Dict = np.random.RandomState(0 ) SCREAMING_SNAKE_CASE : Tuple = pipe( prompt=a , image=a , mask_image=a , guidance_scale=7.5 , num_inference_steps=20 , generator=a , output_type="np" , ) SCREAMING_SNAKE_CASE : List[str] = output.images SCREAMING_SNAKE_CASE : Optional[int] = images[0, 255:258, 255:258, -1] assert images.shape == (1, 512, 512, 3) SCREAMING_SNAKE_CASE : Any = np.array([0.0086, 0.0077, 0.0083, 0.0093, 0.0107, 0.0139, 0.0094, 0.0097, 0.0125] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3
25
1
import unittest from diffusers.pipelines.pipeline_utils import is_safetensors_compatible class _UpperCamelCase ( unittest.TestCase ): '''simple docstring''' def __UpperCamelCase ( self : Any ) -> int: """simple docstring""" SCREAMING_SNAKE_CASE : str = [ "safety_checker/pytorch_model.bin", "safety_checker/model.safetensors", "vae/diffusion_pytorch_model.bin", "vae/diffusion_pytorch_model.safetensors", "text_encoder/pytorch_model.bin", "text_encoder/model.safetensors", "unet/diffusion_pytorch_model.bin", "unet/diffusion_pytorch_model.safetensors", ] self.assertTrue(is_safetensors_compatible(a ) ) def __UpperCamelCase ( self : List[Any] ) -> Tuple: """simple docstring""" SCREAMING_SNAKE_CASE : Tuple = [ "unet/diffusion_pytorch_model.bin", "unet/diffusion_pytorch_model.safetensors", ] self.assertTrue(is_safetensors_compatible(a ) ) def __UpperCamelCase ( self : Tuple ) -> List[str]: """simple docstring""" SCREAMING_SNAKE_CASE : Optional[Any] = [ "safety_checker/pytorch_model.bin", "safety_checker/model.safetensors", "vae/diffusion_pytorch_model.bin", "vae/diffusion_pytorch_model.safetensors", "text_encoder/pytorch_model.bin", "text_encoder/model.safetensors", "unet/diffusion_pytorch_model.bin", # Removed: 'unet/diffusion_pytorch_model.safetensors', ] self.assertFalse(is_safetensors_compatible(a ) ) def __UpperCamelCase ( self : List[Any] ) -> Dict: """simple docstring""" SCREAMING_SNAKE_CASE : Optional[int] = [ "text_encoder/pytorch_model.bin", "text_encoder/model.safetensors", ] self.assertTrue(is_safetensors_compatible(a ) ) def __UpperCamelCase ( self : List[Any] ) -> Optional[int]: """simple docstring""" SCREAMING_SNAKE_CASE : Optional[int] = [ "safety_checker/pytorch_model.bin", "safety_checker/model.safetensors", "vae/diffusion_pytorch_model.bin", "vae/diffusion_pytorch_model.safetensors", "text_encoder/pytorch_model.bin", # Removed: 'text_encoder/model.safetensors', "unet/diffusion_pytorch_model.bin", "unet/diffusion_pytorch_model.safetensors", ] self.assertFalse(is_safetensors_compatible(a ) ) def __UpperCamelCase ( self : Any ) -> int: """simple docstring""" SCREAMING_SNAKE_CASE : str = [ "safety_checker/pytorch_model.fp16.bin", "safety_checker/model.fp16.safetensors", "vae/diffusion_pytorch_model.fp16.bin", "vae/diffusion_pytorch_model.fp16.safetensors", "text_encoder/pytorch_model.fp16.bin", "text_encoder/model.fp16.safetensors", "unet/diffusion_pytorch_model.fp16.bin", "unet/diffusion_pytorch_model.fp16.safetensors", ] SCREAMING_SNAKE_CASE : str = "fp16" self.assertTrue(is_safetensors_compatible(a , variant=a ) ) def __UpperCamelCase ( self : Tuple ) -> Dict: """simple docstring""" SCREAMING_SNAKE_CASE : str = [ "unet/diffusion_pytorch_model.fp16.bin", "unet/diffusion_pytorch_model.fp16.safetensors", ] SCREAMING_SNAKE_CASE : int = "fp16" self.assertTrue(is_safetensors_compatible(a , variant=a ) ) def __UpperCamelCase ( self : Dict ) -> Union[str, Any]: """simple docstring""" SCREAMING_SNAKE_CASE : Any = [ "unet/diffusion_pytorch_model.bin", "unet/diffusion_pytorch_model.safetensors", ] SCREAMING_SNAKE_CASE : Tuple = "fp16" self.assertTrue(is_safetensors_compatible(a , variant=a ) ) def __UpperCamelCase ( self : str ) -> List[str]: """simple docstring""" SCREAMING_SNAKE_CASE : int = [ "safety_checker/pytorch_model.fp16.bin", "safety_checker/model.fp16.safetensors", "vae/diffusion_pytorch_model.fp16.bin", "vae/diffusion_pytorch_model.fp16.safetensors", "text_encoder/pytorch_model.fp16.bin", "text_encoder/model.fp16.safetensors", "unet/diffusion_pytorch_model.fp16.bin", # Removed: 'unet/diffusion_pytorch_model.fp16.safetensors', ] SCREAMING_SNAKE_CASE : List[Any] = "fp16" self.assertFalse(is_safetensors_compatible(a , variant=a ) ) def __UpperCamelCase ( self : List[str] ) -> Any: """simple docstring""" SCREAMING_SNAKE_CASE : Optional[int] = [ "text_encoder/pytorch_model.fp16.bin", "text_encoder/model.fp16.safetensors", ] SCREAMING_SNAKE_CASE : Optional[int] = "fp16" self.assertTrue(is_safetensors_compatible(a , variant=a ) ) def __UpperCamelCase ( self : Union[str, Any] ) -> Optional[Any]: """simple docstring""" SCREAMING_SNAKE_CASE : Union[str, Any] = [ "text_encoder/pytorch_model.bin", "text_encoder/model.safetensors", ] SCREAMING_SNAKE_CASE : int = "fp16" self.assertTrue(is_safetensors_compatible(a , variant=a ) ) def __UpperCamelCase ( self : Union[str, Any] ) -> Tuple: """simple docstring""" SCREAMING_SNAKE_CASE : Optional[int] = [ "safety_checker/pytorch_model.fp16.bin", "safety_checker/model.fp16.safetensors", "vae/diffusion_pytorch_model.fp16.bin", "vae/diffusion_pytorch_model.fp16.safetensors", "text_encoder/pytorch_model.fp16.bin", # 'text_encoder/model.fp16.safetensors', "unet/diffusion_pytorch_model.fp16.bin", "unet/diffusion_pytorch_model.fp16.safetensors", ] SCREAMING_SNAKE_CASE : List[str] = "fp16" self.assertFalse(is_safetensors_compatible(a , variant=a ) )
25
from operator import delitem, getitem, setitem import pytest from data_structures.hashing.hash_map import HashMap def lowerCamelCase__ ( _a): return getitem, k def lowerCamelCase__ ( _a , _a): return setitem, k, v def lowerCamelCase__ ( _a): return delitem, k def lowerCamelCase__ ( _a , _a , *_a): try: return fun(_a , *_a), None except Exception as e: return None, e a_ = ( _set('key_a', 'val_a'), _set('key_b', 'val_b'), ) a_ = [ _set('key_a', 'val_a'), _set('key_a', 'val_b'), ] a_ = [ _set('key_a', 'val_a'), _set('key_b', 'val_b'), _del('key_a'), _del('key_b'), _set('key_a', 'val_a'), _del('key_a'), ] a_ = [ _get('key_a'), _del('key_a'), _set('key_a', 'val_a'), _del('key_a'), _del('key_a'), _get('key_a'), ] a_ = [ *[_set(x, x) for x in range(5)], # guaranteed upsize ] a_ = [ *[_set(x, x) for x in range(5)], # guaranteed upsize *[_del(x) for x in range(5)], _set('key_a', 'val_b'), ] @pytest.mark.parametrize( "operations" , ( pytest.param(_add_items , id="add items"), pytest.param(_overwrite_items , id="overwrite items"), pytest.param(_delete_items , id="delete items"), pytest.param(_access_absent_items , id="access absent items"), pytest.param(_add_with_resize_up , id="add with resize up"), pytest.param(_add_with_resize_down , id="add with resize down"), ) , ) def lowerCamelCase__ ( _a): SCREAMING_SNAKE_CASE : Dict = HashMap(initial_block_size=4) SCREAMING_SNAKE_CASE : List[str] = {} for _, (fun, *args) in enumerate(_a): SCREAMING_SNAKE_CASE ,SCREAMING_SNAKE_CASE : Union[str, Any] = _run_operation(_a , _a , *_a) SCREAMING_SNAKE_CASE ,SCREAMING_SNAKE_CASE : List[Any] = _run_operation(_a , _a , *_a) assert my_res == py_res assert str(_a) == str(_a) assert set(_a) == set(_a) assert len(_a) == len(_a) assert set(my.items()) == set(py.items()) def lowerCamelCase__ ( ): def is_public(_a) -> bool: return not name.startswith("_") SCREAMING_SNAKE_CASE : List[str] = {name for name in dir({}) if is_public(_a)} SCREAMING_SNAKE_CASE : Union[str, Any] = {name for name in dir(HashMap()) if is_public(_a)} assert dict_public_names > hash_public_names
25
1
from .integrations import ( is_optuna_available, is_ray_available, is_sigopt_available, is_wandb_available, run_hp_search_optuna, run_hp_search_ray, run_hp_search_sigopt, run_hp_search_wandb, ) from .trainer_utils import ( HPSearchBackend, default_hp_space_optuna, default_hp_space_ray, default_hp_space_sigopt, default_hp_space_wandb, ) from .utils import logging a_ = logging.get_logger(__name__) class _UpperCamelCase : '''simple docstring''' lowerCamelCase__ =42 lowerCamelCase__ =None @staticmethod def __UpperCamelCase ( ) -> Any: """simple docstring""" raise NotImplementedError def __UpperCamelCase ( self : str , a : Optional[Any] , a : int , a : str , **a : int ) -> Union[str, Any]: """simple docstring""" raise NotImplementedError def __UpperCamelCase ( self : Any , a : List[Any] ) -> Union[str, Any]: """simple docstring""" raise NotImplementedError def __UpperCamelCase ( self : Tuple ) -> Union[str, Any]: """simple docstring""" if not self.is_available(): raise RuntimeError( F"You picked the {self.name} backend, but it is not installed. Run {self.pip_install()}." ) @classmethod def __UpperCamelCase ( cls : str ) -> Optional[Any]: """simple docstring""" return F"`pip install {cls.pip_package or cls.name}`" class _UpperCamelCase ( __A ): '''simple docstring''' lowerCamelCase__ ='optuna' @staticmethod def __UpperCamelCase ( ) -> Tuple: """simple docstring""" return is_optuna_available() def __UpperCamelCase ( self : List[str] , a : Tuple , a : int , a : str , **a : Optional[Any] ) -> Union[str, Any]: """simple docstring""" return run_hp_search_optuna(a , a , a , **a ) def __UpperCamelCase ( self : Optional[int] , a : Optional[Any] ) -> Tuple: """simple docstring""" return default_hp_space_optuna(a ) class _UpperCamelCase ( __A ): '''simple docstring''' lowerCamelCase__ ='ray' lowerCamelCase__ ='\'ray[tune]\'' @staticmethod def __UpperCamelCase ( ) -> List[Any]: """simple docstring""" return is_ray_available() def __UpperCamelCase ( self : Tuple , a : str , a : int , a : str , **a : str ) -> Tuple: """simple docstring""" return run_hp_search_ray(a , a , a , **a ) def __UpperCamelCase ( self : int , a : Optional[int] ) -> List[Any]: """simple docstring""" return default_hp_space_ray(a ) class _UpperCamelCase ( __A ): '''simple docstring''' lowerCamelCase__ ='sigopt' @staticmethod def __UpperCamelCase ( ) -> int: """simple docstring""" return is_sigopt_available() def __UpperCamelCase ( self : List[Any] , a : Any , a : int , a : str , **a : int ) -> Optional[int]: """simple docstring""" return run_hp_search_sigopt(a , a , a , **a ) def __UpperCamelCase ( self : Optional[Any] , a : Dict ) -> str: """simple docstring""" return default_hp_space_sigopt(a ) class _UpperCamelCase ( __A ): '''simple docstring''' lowerCamelCase__ ='wandb' @staticmethod def __UpperCamelCase ( ) -> Dict: """simple docstring""" return is_wandb_available() def __UpperCamelCase ( self : List[str] , a : Optional[Any] , a : int , a : str , **a : List[Any] ) -> List[str]: """simple docstring""" return run_hp_search_wandb(a , a , a , **a ) def __UpperCamelCase ( self : Tuple , a : Optional[int] ) -> int: """simple docstring""" return default_hp_space_wandb(a ) a_ = { HPSearchBackend(backend.name): backend for backend in [OptunaBackend, RayTuneBackend, SigOptBackend, WandbBackend] } def lowerCamelCase__ ( ): SCREAMING_SNAKE_CASE : int = [backend for backend in ALL_HYPERPARAMETER_SEARCH_BACKENDS.values() if backend.is_available()] if len(_a) > 0: SCREAMING_SNAKE_CASE : Tuple = available_backends[0].name if len(_a) > 1: logger.info( f"{len(_a)} hyperparameter search backends available. Using {name} as the default.") return name raise RuntimeError( "No hyperparameter search backend available.\n" + "\n".join( f" - To install {backend.name} run {backend.pip_install()}" for backend in ALL_HYPERPARAMETER_SEARCH_BACKENDS.values()))
25
from typing import TYPE_CHECKING from ....utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available a_ = {'configuration_van': ['VAN_PRETRAINED_CONFIG_ARCHIVE_MAP', 'VanConfig']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a_ = [ 'VAN_PRETRAINED_MODEL_ARCHIVE_LIST', 'VanForImageClassification', 'VanModel', 'VanPreTrainedModel', ] if TYPE_CHECKING: from .configuration_van import VAN_PRETRAINED_CONFIG_ARCHIVE_MAP, VanConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_van import ( VAN_PRETRAINED_MODEL_ARCHIVE_LIST, VanForImageClassification, VanModel, VanPreTrainedModel, ) else: import sys a_ = _LazyModule(__name__, globals()['__file__'], _import_structure)
25
1
from __future__ import annotations class _UpperCamelCase : '''simple docstring''' def __init__( self : Optional[int] , a : int ) -> None: """simple docstring""" SCREAMING_SNAKE_CASE : Dict = order # a_{0} ... a_{k} SCREAMING_SNAKE_CASE : List[Any] = [1.0] + [0.0] * order # b_{0} ... b_{k} SCREAMING_SNAKE_CASE : List[str] = [1.0] + [0.0] * order # x[n-1] ... x[n-k] SCREAMING_SNAKE_CASE : Dict = [0.0] * self.order # y[n-1] ... y[n-k] SCREAMING_SNAKE_CASE : Tuple = [0.0] * self.order def __UpperCamelCase ( self : List[str] , a : list[float] , a : list[float] ) -> None: """simple docstring""" if len(a ) < self.order: SCREAMING_SNAKE_CASE : int = [1.0, *a_coeffs] if len(a ) != self.order + 1: SCREAMING_SNAKE_CASE : List[Any] = ( F"Expected a_coeffs to have {self.order + 1} elements " F"for {self.order}-order filter, got {len(a )}" ) raise ValueError(a ) if len(a ) != self.order + 1: SCREAMING_SNAKE_CASE : str = ( F"Expected b_coeffs to have {self.order + 1} elements " F"for {self.order}-order filter, got {len(a )}" ) raise ValueError(a ) SCREAMING_SNAKE_CASE : Union[str, Any] = a_coeffs SCREAMING_SNAKE_CASE : List[Any] = b_coeffs def __UpperCamelCase ( self : Optional[int] , a : float ) -> float: """simple docstring""" SCREAMING_SNAKE_CASE : int = 0.0 # Start at index 1 and do index 0 at the end. for i in range(1 , self.order + 1 ): result += ( self.b_coeffs[i] * self.input_history[i - 1] - self.a_coeffs[i] * self.output_history[i - 1] ) SCREAMING_SNAKE_CASE : int = (result + self.b_coeffs[0] * sample) / self.a_coeffs[0] SCREAMING_SNAKE_CASE : List[Any] = self.input_history[:-1] SCREAMING_SNAKE_CASE : List[str] = self.output_history[:-1] SCREAMING_SNAKE_CASE : Any = sample SCREAMING_SNAKE_CASE : List[str] = result return result
25
from __future__ import annotations def lowerCamelCase__ ( _a): if len(_a) == 0: return [] SCREAMING_SNAKE_CASE ,SCREAMING_SNAKE_CASE : Tuple = min(_a), max(_a) SCREAMING_SNAKE_CASE : Dict = int(max_value - min_value) + 1 SCREAMING_SNAKE_CASE : list[list] = [[] for _ in range(_a)] for i in my_list: buckets[int(i - min_value)].append(_a) return [v for bucket in buckets for v in sorted(_a)] if __name__ == "__main__": from doctest import testmod testmod() assert bucket_sort([4, 5, 3, 2, 1]) == [1, 2, 3, 4, 5] assert bucket_sort([0, 1, -10, 15, 2, -2]) == [-10, -2, 0, 1, 2, 15]
25
1
# Lint as: python3 import os import re import urllib.parse from pathlib import Path from typing import Callable, List, Optional, Union from zipfile import ZipFile from ..utils.file_utils import cached_path, hf_github_url from ..utils.logging import get_logger from ..utils.version import Version a_ = get_logger(__name__) class _UpperCamelCase : '''simple docstring''' lowerCamelCase__ ='dummy_data' lowerCamelCase__ ='datasets' lowerCamelCase__ =False def __init__( self : Tuple , a : str , a : str , a : Union[Version, str] , a : Optional[str] = None , a : bool = False , a : bool = True , a : Optional[List[Callable]] = None , ) -> Optional[Any]: """simple docstring""" SCREAMING_SNAKE_CASE : Optional[int] = 0 SCREAMING_SNAKE_CASE : Union[str, Any] = dataset_name SCREAMING_SNAKE_CASE : int = cache_dir SCREAMING_SNAKE_CASE : Optional[Any] = use_local_dummy_data SCREAMING_SNAKE_CASE : str = config # download_callbacks take a single url as input SCREAMING_SNAKE_CASE : List[Callable] = download_callbacks or [] # if False, it doesn't load existing files and it returns the paths of the dummy files relative # to the dummy_data zip file root SCREAMING_SNAKE_CASE : Optional[Any] = load_existing_dummy_data # TODO(PVP, QL) might need to make this more general SCREAMING_SNAKE_CASE : List[str] = str(a ) # to be downloaded SCREAMING_SNAKE_CASE : List[Any] = None SCREAMING_SNAKE_CASE : Dict = None @property def __UpperCamelCase ( self : Dict ) -> Union[str, Any]: """simple docstring""" if self._dummy_file is None: SCREAMING_SNAKE_CASE : Optional[int] = self.download_dummy_data() return self._dummy_file @property def __UpperCamelCase ( self : Optional[int] ) -> Optional[Any]: """simple docstring""" if self.config is not None: # structure is dummy / config_name / version_name return os.path.join("dummy" , self.config.name , self.version_name ) # structure is dummy / version_name return os.path.join("dummy" , self.version_name ) @property def __UpperCamelCase ( self : List[str] ) -> Union[str, Any]: """simple docstring""" return os.path.join(self.dummy_data_folder , "dummy_data.zip" ) def __UpperCamelCase ( self : Any ) -> List[str]: """simple docstring""" SCREAMING_SNAKE_CASE : Tuple = ( self.local_path_to_dummy_data if self.use_local_dummy_data is True else self.github_path_to_dummy_data ) SCREAMING_SNAKE_CASE : str = cached_path( a , cache_dir=self.cache_dir , extract_compressed_file=a , force_extract=a ) return os.path.join(a , self.dummy_file_name ) @property def __UpperCamelCase ( self : Optional[Any] ) -> Union[str, Any]: """simple docstring""" return os.path.join(self.datasets_scripts_dir , self.dataset_name , self.dummy_zip_file ) @property def __UpperCamelCase ( self : Any ) -> Optional[int]: """simple docstring""" if self._bucket_url is None: SCREAMING_SNAKE_CASE : Dict = hf_github_url(self.dataset_name , self.dummy_zip_file.replace(os.sep , "/" ) ) return self._bucket_url @property def __UpperCamelCase ( self : Tuple ) -> Tuple: """simple docstring""" if os.path.isdir(self.dummy_file ): return self.dummy_file # else cut off path to file -> example `xsum`. return "/".join(self.dummy_file.replace(os.sep , "/" ).split("/" )[:-1] ) def __UpperCamelCase ( self : Any , a : Union[str, Any] , *a : str ) -> Dict: """simple docstring""" if self.load_existing_dummy_data: # dummy data is downloaded and tested SCREAMING_SNAKE_CASE : Tuple = self.dummy_file else: # dummy data cannot be downloaded and only the path to dummy file is returned SCREAMING_SNAKE_CASE : Dict = self.dummy_file_name # special case when data_url is a dict if isinstance(a , a ): return self.create_dummy_data_dict(a , a ) elif isinstance(a , (list, tuple) ): return self.create_dummy_data_list(a , a ) else: return self.create_dummy_data_single(a , a ) def __UpperCamelCase ( self : Tuple , a : List[str] , *a : List[str] ) -> Optional[Any]: """simple docstring""" return self.download_and_extract(a ) def __UpperCamelCase ( self : str , a : str , a : List[Any] ) -> List[Any]: """simple docstring""" return self.download_and_extract(a ) def __UpperCamelCase ( self : str , a : Any , *a : str , **a : int ) -> Optional[int]: """simple docstring""" return path def __UpperCamelCase ( self : Tuple ) -> Optional[int]: """simple docstring""" return {} def __UpperCamelCase ( self : int , a : str , a : List[Any] ) -> Dict: """simple docstring""" SCREAMING_SNAKE_CASE : Optional[int] = {} for key, single_urls in data_url.items(): for download_callback in self.download_callbacks: if isinstance(a , a ): for single_url in single_urls: download_callback(a ) else: SCREAMING_SNAKE_CASE : str = single_urls download_callback(a ) # we force the name of each key to be the last file / folder name of the url path # if the url has arguments, we need to encode them with urllib.parse.quote_plus if isinstance(a , a ): SCREAMING_SNAKE_CASE : Union[str, Any] = [os.path.join(a , urllib.parse.quote_plus(Path(a ).name ) ) for x in single_urls] else: SCREAMING_SNAKE_CASE : Optional[int] = single_urls SCREAMING_SNAKE_CASE : List[str] = os.path.join(a , urllib.parse.quote_plus(Path(a ).name ) ) SCREAMING_SNAKE_CASE : Optional[int] = value # make sure that values are unique if all(isinstance(a , a ) for i in dummy_data_dict.values() ) and len(set(dummy_data_dict.values() ) ) < len( dummy_data_dict.values() ): # append key to value to make its name unique SCREAMING_SNAKE_CASE : List[str] = {key: value + key for key, value in dummy_data_dict.items()} return dummy_data_dict def __UpperCamelCase ( self : Dict , a : Tuple , a : int ) -> Tuple: """simple docstring""" SCREAMING_SNAKE_CASE : str = [] # trick: if there are many shards named like `data.txt-000001-of-00300`, only use the first one SCREAMING_SNAKE_CASE : Union[str, Any] = all(bool(re.findall("[0-9]{3,}-of-[0-9]{3,}" , a ) ) for url in data_url ) SCREAMING_SNAKE_CASE : Union[str, Any] = all( url.startswith("https://ftp.ncbi.nlm.nih.gov/pubmed/baseline/pubmed" ) for url in data_url ) if data_url and (is_tf_records or is_pubmed_records): SCREAMING_SNAKE_CASE : List[str] = [data_url[0]] * len(a ) for single_url in data_url: for download_callback in self.download_callbacks: download_callback(a ) # we force the name of each key to be the last file / folder name of the url path # if the url has arguments, we need to encode them with urllib.parse.quote_plus SCREAMING_SNAKE_CASE : Dict = os.path.join(a , urllib.parse.quote_plus(single_url.split("/" )[-1] ) ) dummy_data_list.append(a ) return dummy_data_list def __UpperCamelCase ( self : Dict , a : Optional[Any] , a : Optional[int] ) -> int: """simple docstring""" for download_callback in self.download_callbacks: download_callback(a ) # we force the name of each key to be the last file / folder name of the url path # if the url has arguments, we need to encode them with urllib.parse.quote_plus SCREAMING_SNAKE_CASE : int = os.path.join(a , urllib.parse.quote_plus(data_url.split("/" )[-1] ) ) if os.path.exists(a ) or not self.load_existing_dummy_data: return value else: # Backward compatibility, maybe deprecate at one point. # For many datasets with single url calls to dl_manager.download_and_extract, # the dummy_data.zip file is actually the zipped downloaded file # while now we expected the dummy_data.zip file to be a directory containing # the downloaded file. return path_to_dummy_data def __UpperCamelCase ( self : Union[str, Any] ) -> Union[str, Any]: """simple docstring""" pass def __UpperCamelCase ( self : List[str] ) -> Optional[Any]: """simple docstring""" pass def __UpperCamelCase ( self : List[str] , a : str ) -> List[Any]: """simple docstring""" def _iter_archive_members(a : Union[str, Any] ): # this preserves the order of the members inside the ZIP archive SCREAMING_SNAKE_CASE : Optional[int] = Path(self.dummy_file ).parent SCREAMING_SNAKE_CASE : Union[str, Any] = path.relative_to(a ) with ZipFile(self.local_path_to_dummy_data ) as zip_file: SCREAMING_SNAKE_CASE : Optional[Any] = zip_file.namelist() for member in members: if member.startswith(relative_path.as_posix() ): yield dummy_parent_path.joinpath(a ) SCREAMING_SNAKE_CASE : Optional[Any] = Path(a ) SCREAMING_SNAKE_CASE : Dict = _iter_archive_members(a ) if self.use_local_dummy_data else path.rglob("*" ) for file_path in file_paths: if file_path.is_file() and not file_path.name.startswith((".", "__") ): yield file_path.relative_to(a ).as_posix(), file_path.open("rb" ) def __UpperCamelCase ( self : Dict , a : Optional[Any] ) -> List[str]: """simple docstring""" if not isinstance(a , a ): SCREAMING_SNAKE_CASE : List[str] = [paths] for path in paths: if os.path.isfile(a ): if os.path.basename(a ).startswith((".", "__") ): return yield path else: for dirpath, dirnames, filenames in os.walk(a ): if os.path.basename(a ).startswith((".", "__") ): continue dirnames.sort() for filename in sorted(a ): if filename.startswith((".", "__") ): continue yield os.path.join(a , a )
25
a_ = frozenset( [ 'prompt', 'height', 'width', 'guidance_scale', 'negative_prompt', 'prompt_embeds', 'negative_prompt_embeds', 'cross_attention_kwargs', ] ) a_ = frozenset(['prompt', 'negative_prompt']) a_ = frozenset([]) a_ = frozenset(['image']) a_ = frozenset( [ 'image', 'height', 'width', 'guidance_scale', ] ) a_ = frozenset(['image']) a_ = frozenset( [ 'prompt', 'image', 'height', 'width', 'guidance_scale', 'negative_prompt', 'prompt_embeds', 'negative_prompt_embeds', ] ) a_ = frozenset(['prompt', 'image', 'negative_prompt']) a_ = frozenset( [ # Text guided image variation with an image mask 'prompt', 'image', 'mask_image', 'height', 'width', 'guidance_scale', 'negative_prompt', 'prompt_embeds', 'negative_prompt_embeds', ] ) a_ = frozenset(['prompt', 'image', 'mask_image', 'negative_prompt']) a_ = frozenset( [ # image variation with an image mask 'image', 'mask_image', 'height', 'width', 'guidance_scale', ] ) a_ = frozenset(['image', 'mask_image']) a_ = frozenset( [ 'example_image', 'image', 'mask_image', 'height', 'width', 'guidance_scale', ] ) a_ = frozenset(['example_image', 'image', 'mask_image']) a_ = frozenset(['class_labels']) a_ = frozenset(['class_labels']) a_ = frozenset(['batch_size']) a_ = frozenset([]) a_ = frozenset(['batch_size']) a_ = frozenset([]) a_ = frozenset( [ 'prompt', 'audio_length_in_s', 'guidance_scale', 'negative_prompt', 'prompt_embeds', 'negative_prompt_embeds', 'cross_attention_kwargs', ] ) a_ = frozenset(['prompt', 'negative_prompt']) a_ = frozenset(['input_tokens']) a_ = frozenset(['input_tokens'])
25
1
from ...configuration_utils import PretrainedConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices a_ = logging.get_logger(__name__) a_ = { 'facebook/convnextv2-tiny-1k-224': 'https://huggingface.co/facebook/convnextv2-tiny-1k-224/resolve/main/config.json', } class _UpperCamelCase ( __A , __A ): '''simple docstring''' lowerCamelCase__ ='convnextv2' def __init__( self : List[Any] , a : List[str]=3 , a : List[str]=4 , a : Union[str, Any]=4 , a : Optional[Any]=None , a : Tuple=None , a : Optional[int]="gelu" , a : int=0.02 , a : Optional[int]=1e-12 , a : int=0.0 , a : Optional[Any]=224 , a : Union[str, Any]=None , a : Union[str, Any]=None , **a : List[Any] , ) -> Optional[Any]: """simple docstring""" super().__init__(**a ) SCREAMING_SNAKE_CASE : List[str] = num_channels SCREAMING_SNAKE_CASE : Dict = patch_size SCREAMING_SNAKE_CASE : List[Any] = num_stages SCREAMING_SNAKE_CASE : Tuple = [96, 192, 384, 768] if hidden_sizes is None else hidden_sizes SCREAMING_SNAKE_CASE : Any = [3, 3, 9, 3] if depths is None else depths SCREAMING_SNAKE_CASE : str = hidden_act SCREAMING_SNAKE_CASE : Any = initializer_range SCREAMING_SNAKE_CASE : int = layer_norm_eps SCREAMING_SNAKE_CASE : Any = drop_path_rate SCREAMING_SNAKE_CASE : List[str] = image_size SCREAMING_SNAKE_CASE : List[str] = ["stem"] + [F"stage{idx}" for idx in range(1 , len(self.depths ) + 1 )] SCREAMING_SNAKE_CASE ,SCREAMING_SNAKE_CASE : Dict = get_aligned_output_features_output_indices( out_features=a , out_indices=a , stage_names=self.stage_names )
25
# Lint as: python3 import sys from collections.abc import Mapping from typing import TYPE_CHECKING, Dict, Optional import numpy as np import pyarrow as pa from .. import config from ..utils.logging import get_logger from ..utils.py_utils import map_nested from .formatting import TensorFormatter if TYPE_CHECKING: import jax import jaxlib a_ = get_logger() a_ = None class _UpperCamelCase ( TensorFormatter[Mapping, 'jax.Array', Mapping] ): '''simple docstring''' def __init__( self : Optional[Any] , a : str=None , a : List[Any]=None , **a : Any ) -> Optional[Any]: """simple docstring""" super().__init__(features=a ) import jax from jaxlib.xla_client import Device if isinstance(a , a ): raise ValueError( F"Expected {device} to be a `str` not {type(a )}, as `jaxlib.xla_extension.Device` " "is not serializable neither with `pickle` nor with `dill`. Instead you can surround " "the device with `str()` to get its string identifier that will be internally mapped " "to the actual `jaxlib.xla_extension.Device`." ) SCREAMING_SNAKE_CASE : List[str] = device if isinstance(a , a ) else str(jax.devices()[0] ) # using global variable since `jaxlib.xla_extension.Device` is not serializable neither # with `pickle` nor with `dill`, so we need to use a global variable instead global DEVICE_MAPPING if DEVICE_MAPPING is None: SCREAMING_SNAKE_CASE : str = self._map_devices_to_str() if self.device not in list(DEVICE_MAPPING.keys() ): logger.warning( F"Device with string identifier {self.device} not listed among the available " F"devices: {list(DEVICE_MAPPING.keys() )}, so falling back to the default " F"device: {str(jax.devices()[0] )}." ) SCREAMING_SNAKE_CASE : Any = str(jax.devices()[0] ) SCREAMING_SNAKE_CASE : Any = jnp_array_kwargs @staticmethod def __UpperCamelCase ( ) -> Dict[str, "jaxlib.xla_extension.Device"]: """simple docstring""" import jax return {str(a ): device for device in jax.devices()} def __UpperCamelCase ( self : Dict , a : Tuple ) -> str: """simple docstring""" import jax import jax.numpy as jnp if isinstance(a , a ) and column: if all( isinstance(a , jax.Array ) and x.shape == column[0].shape and x.dtype == column[0].dtype for x in column ): return jnp.stack(a , axis=0 ) return column def __UpperCamelCase ( self : Dict , a : str ) -> str: """simple docstring""" import jax import jax.numpy as jnp if isinstance(a , (str, bytes, type(a )) ): return value elif isinstance(a , (np.character, np.ndarray) ) and np.issubdtype(value.dtype , np.character ): return value.tolist() SCREAMING_SNAKE_CASE : Union[str, Any] = {} if isinstance(a , (np.number, np.ndarray) ) and np.issubdtype(value.dtype , np.integer ): # the default int precision depends on the jax config # see https://jax.readthedocs.io/en/latest/notebooks/Common_Gotchas_in_JAX.html#double-64bit-precision if jax.config.jax_enable_xaa: SCREAMING_SNAKE_CASE : Dict = {"dtype": jnp.intaa} else: SCREAMING_SNAKE_CASE : str = {"dtype": jnp.intaa} elif isinstance(a , (np.number, np.ndarray) ) and np.issubdtype(value.dtype , np.floating ): SCREAMING_SNAKE_CASE : int = {"dtype": jnp.floataa} elif config.PIL_AVAILABLE and "PIL" in sys.modules: import PIL.Image if isinstance(a , PIL.Image.Image ): SCREAMING_SNAKE_CASE : Dict = np.asarray(a ) # using global variable since `jaxlib.xla_extension.Device` is not serializable neither # with `pickle` nor with `dill`, so we need to use a global variable instead global DEVICE_MAPPING if DEVICE_MAPPING is None: SCREAMING_SNAKE_CASE : Optional[Any] = self._map_devices_to_str() with jax.default_device(DEVICE_MAPPING[self.device] ): # calling jnp.array on a np.ndarray does copy the data # see https://github.com/google/jax/issues/4486 return jnp.array(a , **{**default_dtype, **self.jnp_array_kwargs} ) def __UpperCamelCase ( self : Any , a : List[str] ) -> Dict: """simple docstring""" import jax # support for torch, tf, jax etc. if config.TORCH_AVAILABLE and "torch" in sys.modules: import torch if isinstance(a , torch.Tensor ): return self._tensorize(data_struct.detach().cpu().numpy()[()] ) if hasattr(a , "__array__" ) and not isinstance(a , jax.Array ): SCREAMING_SNAKE_CASE : Optional[int] = data_struct.__array__() # support for nested types like struct of list of struct if isinstance(a , np.ndarray ): if data_struct.dtype == object: # jax arrays cannot be instantied from an array of objects return self._consolidate([self.recursive_tensorize(a ) for substruct in data_struct] ) elif isinstance(a , (list, tuple) ): return self._consolidate([self.recursive_tensorize(a ) for substruct in data_struct] ) return self._tensorize(a ) def __UpperCamelCase ( self : Optional[Any] , a : dict ) -> Dict: """simple docstring""" return map_nested(self._recursive_tensorize , a , map_list=a ) def __UpperCamelCase ( self : Dict , a : pa.Table ) -> Mapping: """simple docstring""" SCREAMING_SNAKE_CASE : Optional[Any] = self.numpy_arrow_extractor().extract_row(a ) SCREAMING_SNAKE_CASE : List[Any] = self.python_features_decoder.decode_row(a ) return self.recursive_tensorize(a ) def __UpperCamelCase ( self : Optional[int] , a : pa.Table ) -> "jax.Array": """simple docstring""" SCREAMING_SNAKE_CASE : Optional[int] = self.numpy_arrow_extractor().extract_column(a ) SCREAMING_SNAKE_CASE : Optional[Any] = self.python_features_decoder.decode_column(a , pa_table.column_names[0] ) SCREAMING_SNAKE_CASE : Tuple = self.recursive_tensorize(a ) SCREAMING_SNAKE_CASE : Optional[int] = self._consolidate(a ) return column def __UpperCamelCase ( self : List[Any] , a : pa.Table ) -> Mapping: """simple docstring""" SCREAMING_SNAKE_CASE : str = self.numpy_arrow_extractor().extract_batch(a ) SCREAMING_SNAKE_CASE : str = self.python_features_decoder.decode_batch(a ) SCREAMING_SNAKE_CASE : List[Any] = self.recursive_tensorize(a ) for column_name in batch: SCREAMING_SNAKE_CASE : List[Any] = self._consolidate(batch[column_name] ) return batch
25
1
import inspect import unittest import numpy as np from transformers import ViTConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_configuration_common import ConfigTester from ...test_modeling_flax_common import FlaxModelTesterMixin, floats_tensor if is_flax_available(): import jax from transformers.models.vit.modeling_flax_vit import FlaxViTForImageClassification, FlaxViTModel class _UpperCamelCase ( unittest.TestCase ): '''simple docstring''' def __init__( self : Tuple , a : int , a : Optional[int]=13 , a : Dict=30 , a : Optional[int]=2 , a : Dict=3 , a : str=True , a : Tuple=True , a : int=32 , a : List[Any]=5 , a : Tuple=4 , a : Tuple=37 , a : Optional[Any]="gelu" , a : int=0.1 , a : Optional[int]=0.1 , a : Optional[int]=10 , a : List[str]=0.02 , ) -> List[Any]: """simple docstring""" SCREAMING_SNAKE_CASE : int = parent SCREAMING_SNAKE_CASE : Tuple = batch_size SCREAMING_SNAKE_CASE : int = image_size SCREAMING_SNAKE_CASE : Union[str, Any] = patch_size SCREAMING_SNAKE_CASE : Dict = num_channels SCREAMING_SNAKE_CASE : str = is_training SCREAMING_SNAKE_CASE : List[str] = use_labels SCREAMING_SNAKE_CASE : Tuple = hidden_size SCREAMING_SNAKE_CASE : Any = num_hidden_layers SCREAMING_SNAKE_CASE : Any = num_attention_heads SCREAMING_SNAKE_CASE : str = intermediate_size SCREAMING_SNAKE_CASE : Any = hidden_act SCREAMING_SNAKE_CASE : Any = hidden_dropout_prob SCREAMING_SNAKE_CASE : Tuple = attention_probs_dropout_prob SCREAMING_SNAKE_CASE : Optional[int] = type_sequence_label_size SCREAMING_SNAKE_CASE : Tuple = initializer_range # in ViT, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token) SCREAMING_SNAKE_CASE : List[str] = (image_size // patch_size) ** 2 SCREAMING_SNAKE_CASE : int = num_patches + 1 def __UpperCamelCase ( self : Optional[Any] ) -> Optional[Any]: """simple docstring""" SCREAMING_SNAKE_CASE : Optional[Any] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) SCREAMING_SNAKE_CASE : Optional[int] = ViTConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=a , initializer_range=self.initializer_range , ) return config, pixel_values def __UpperCamelCase ( self : Optional[Any] , a : str , a : Union[str, Any] ) -> List[str]: """simple docstring""" SCREAMING_SNAKE_CASE : int = FlaxViTModel(config=a ) SCREAMING_SNAKE_CASE : Optional[int] = model(a ) # expected sequence length = num_patches + 1 (we add 1 for the [CLS] token) SCREAMING_SNAKE_CASE : Dict = (self.image_size, self.image_size) SCREAMING_SNAKE_CASE : int = (self.patch_size, self.patch_size) SCREAMING_SNAKE_CASE : int = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, num_patches + 1, self.hidden_size) ) def __UpperCamelCase ( self : Union[str, Any] , a : Union[str, Any] , a : Any ) -> Tuple: """simple docstring""" SCREAMING_SNAKE_CASE : int = self.type_sequence_label_size SCREAMING_SNAKE_CASE : Optional[Any] = FlaxViTForImageClassification(config=a ) SCREAMING_SNAKE_CASE : Any = model(a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) # test greyscale images SCREAMING_SNAKE_CASE : str = 1 SCREAMING_SNAKE_CASE : Union[str, Any] = FlaxViTForImageClassification(a ) SCREAMING_SNAKE_CASE : List[Any] = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) SCREAMING_SNAKE_CASE : Dict = model(a ) def __UpperCamelCase ( self : Any ) -> Optional[int]: """simple docstring""" SCREAMING_SNAKE_CASE : List[Any] = self.prepare_config_and_inputs() ( ( SCREAMING_SNAKE_CASE ) ,( SCREAMING_SNAKE_CASE ) , ) : Any = config_and_inputs SCREAMING_SNAKE_CASE : Optional[Any] = {"pixel_values": pixel_values} return config, inputs_dict @require_flax class _UpperCamelCase ( __A , unittest.TestCase ): '''simple docstring''' lowerCamelCase__ =(FlaxViTModel, FlaxViTForImageClassification) if is_flax_available() else () def __UpperCamelCase ( self : Tuple ) -> None: """simple docstring""" SCREAMING_SNAKE_CASE : Union[str, Any] = FlaxViTModelTester(self ) SCREAMING_SNAKE_CASE : Union[str, Any] = ConfigTester(self , config_class=a , has_text_modality=a , hidden_size=37 ) def __UpperCamelCase ( self : List[Any] ) -> List[str]: """simple docstring""" self.config_tester.run_common_tests() def __UpperCamelCase ( self : str ) -> Dict: """simple docstring""" SCREAMING_SNAKE_CASE : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*a ) def __UpperCamelCase ( self : Tuple ) -> Dict: """simple docstring""" SCREAMING_SNAKE_CASE : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*a ) def __UpperCamelCase ( self : List[str] ) -> str: """simple docstring""" SCREAMING_SNAKE_CASE ,SCREAMING_SNAKE_CASE : str = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: SCREAMING_SNAKE_CASE : Optional[int] = model_class(a ) SCREAMING_SNAKE_CASE : Optional[int] = inspect.signature(model.__call__ ) # signature.parameters is an OrderedDict => so arg_names order is deterministic SCREAMING_SNAKE_CASE : Tuple = [*signature.parameters.keys()] SCREAMING_SNAKE_CASE : List[Any] = ["pixel_values"] self.assertListEqual(arg_names[:1] , a ) def __UpperCamelCase ( self : Dict ) -> Any: """simple docstring""" SCREAMING_SNAKE_CASE ,SCREAMING_SNAKE_CASE : Dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): SCREAMING_SNAKE_CASE : List[Any] = self._prepare_for_class(a , a ) SCREAMING_SNAKE_CASE : Union[str, Any] = model_class(a ) @jax.jit def model_jitted(a : Any , **a : Any ): return model(pixel_values=a , **a ) with self.subTest("JIT Enabled" ): SCREAMING_SNAKE_CASE : Union[str, Any] = model_jitted(**a ).to_tuple() with self.subTest("JIT Disabled" ): with jax.disable_jit(): SCREAMING_SNAKE_CASE : Any = model_jitted(**a ).to_tuple() self.assertEqual(len(a ) , len(a ) ) for jitted_output, output in zip(a , a ): self.assertEqual(jitted_output.shape , output.shape ) @slow def __UpperCamelCase ( self : Optional[Any] ) -> List[Any]: """simple docstring""" for model_class_name in self.all_model_classes: SCREAMING_SNAKE_CASE : Optional[int] = model_class_name.from_pretrained("google/vit-base-patch16-224" ) SCREAMING_SNAKE_CASE : Optional[int] = model(np.ones((1, 3, 224, 224) ) ) self.assertIsNotNone(a )
25
import unittest from transformers import ( MODEL_FOR_OBJECT_DETECTION_MAPPING, AutoFeatureExtractor, AutoModelForObjectDetection, ObjectDetectionPipeline, is_vision_available, pipeline, ) from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_pytesseract, require_tf, require_timm, require_torch, require_vision, slow, ) from .test_pipelines_common import ANY if is_vision_available(): from PIL import Image else: class _UpperCamelCase : '''simple docstring''' @staticmethod def __UpperCamelCase ( *a : str , **a : int ) -> str: """simple docstring""" pass @is_pipeline_test @require_vision @require_timm @require_torch class _UpperCamelCase ( unittest.TestCase ): '''simple docstring''' lowerCamelCase__ =MODEL_FOR_OBJECT_DETECTION_MAPPING def __UpperCamelCase ( self : Optional[Any] , a : str , a : Optional[Any] , a : Union[str, Any] ) -> List[Any]: """simple docstring""" SCREAMING_SNAKE_CASE : Dict = ObjectDetectionPipeline(model=a , image_processor=a ) return object_detector, ["./tests/fixtures/tests_samples/COCO/000000039769.png"] def __UpperCamelCase ( self : List[Any] , a : Optional[int] , a : Optional[int] ) -> int: """simple docstring""" SCREAMING_SNAKE_CASE : Union[str, Any] = object_detector("./tests/fixtures/tests_samples/COCO/000000039769.png" , threshold=0.0 ) self.assertGreater(len(a ) , 0 ) for detected_object in outputs: self.assertEqual( a , { "score": ANY(a ), "label": ANY(a ), "box": {"xmin": ANY(a ), "ymin": ANY(a ), "xmax": ANY(a ), "ymax": ANY(a )}, } , ) import datasets SCREAMING_SNAKE_CASE : Any = datasets.load_dataset("hf-internal-testing/fixtures_image_utils" , "image" , split="test" ) SCREAMING_SNAKE_CASE : Dict = [ Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ), "http://images.cocodataset.org/val2017/000000039769.jpg", # RGBA dataset[0]["file"], # LA dataset[1]["file"], # L dataset[2]["file"], ] SCREAMING_SNAKE_CASE : Tuple = object_detector(a , threshold=0.0 ) self.assertEqual(len(a ) , len(a ) ) for outputs in batch_outputs: self.assertGreater(len(a ) , 0 ) for detected_object in outputs: self.assertEqual( a , { "score": ANY(a ), "label": ANY(a ), "box": {"xmin": ANY(a ), "ymin": ANY(a ), "xmax": ANY(a ), "ymax": ANY(a )}, } , ) @require_tf @unittest.skip("Object detection not implemented in TF" ) def __UpperCamelCase ( self : Optional[int] ) -> str: """simple docstring""" pass @require_torch def __UpperCamelCase ( self : Tuple ) -> List[Any]: """simple docstring""" SCREAMING_SNAKE_CASE : str = "hf-internal-testing/tiny-detr-mobilenetsv3" SCREAMING_SNAKE_CASE : Dict = AutoModelForObjectDetection.from_pretrained(a ) SCREAMING_SNAKE_CASE : Any = AutoFeatureExtractor.from_pretrained(a ) SCREAMING_SNAKE_CASE : Tuple = ObjectDetectionPipeline(model=a , feature_extractor=a ) SCREAMING_SNAKE_CASE : int = object_detector("http://images.cocodataset.org/val2017/000000039769.jpg" , threshold=0.0 ) self.assertEqual( nested_simplify(a , decimals=4 ) , [ {"score": 0.3376, "label": "LABEL_0", "box": {"xmin": 159, "ymin": 120, "xmax": 480, "ymax": 359}}, {"score": 0.3376, "label": "LABEL_0", "box": {"xmin": 159, "ymin": 120, "xmax": 480, "ymax": 359}}, ] , ) SCREAMING_SNAKE_CASE : Dict = object_detector( [ "http://images.cocodataset.org/val2017/000000039769.jpg", "http://images.cocodataset.org/val2017/000000039769.jpg", ] , threshold=0.0 , ) self.assertEqual( nested_simplify(a , decimals=4 ) , [ [ {"score": 0.3376, "label": "LABEL_0", "box": {"xmin": 159, "ymin": 120, "xmax": 480, "ymax": 359}}, {"score": 0.3376, "label": "LABEL_0", "box": {"xmin": 159, "ymin": 120, "xmax": 480, "ymax": 359}}, ], [ {"score": 0.3376, "label": "LABEL_0", "box": {"xmin": 159, "ymin": 120, "xmax": 480, "ymax": 359}}, {"score": 0.3376, "label": "LABEL_0", "box": {"xmin": 159, "ymin": 120, "xmax": 480, "ymax": 359}}, ], ] , ) @require_torch @slow def __UpperCamelCase ( self : str ) -> List[Any]: """simple docstring""" SCREAMING_SNAKE_CASE : Dict = "facebook/detr-resnet-50" SCREAMING_SNAKE_CASE : Union[str, Any] = AutoModelForObjectDetection.from_pretrained(a ) SCREAMING_SNAKE_CASE : List[str] = AutoFeatureExtractor.from_pretrained(a ) SCREAMING_SNAKE_CASE : int = ObjectDetectionPipeline(model=a , feature_extractor=a ) SCREAMING_SNAKE_CASE : Union[str, Any] = object_detector("http://images.cocodataset.org/val2017/000000039769.jpg" ) self.assertEqual( nested_simplify(a , decimals=4 ) , [ {"score": 0.9982, "label": "remote", "box": {"xmin": 40, "ymin": 70, "xmax": 175, "ymax": 117}}, {"score": 0.9960, "label": "remote", "box": {"xmin": 333, "ymin": 72, "xmax": 368, "ymax": 187}}, {"score": 0.9955, "label": "couch", "box": {"xmin": 0, "ymin": 1, "xmax": 639, "ymax": 473}}, {"score": 0.9988, "label": "cat", "box": {"xmin": 13, "ymin": 52, "xmax": 314, "ymax": 470}}, {"score": 0.9987, "label": "cat", "box": {"xmin": 345, "ymin": 23, "xmax": 640, "ymax": 368}}, ] , ) SCREAMING_SNAKE_CASE : int = object_detector( [ "http://images.cocodataset.org/val2017/000000039769.jpg", "http://images.cocodataset.org/val2017/000000039769.jpg", ] ) self.assertEqual( nested_simplify(a , decimals=4 ) , [ [ {"score": 0.9982, "label": "remote", "box": {"xmin": 40, "ymin": 70, "xmax": 175, "ymax": 117}}, {"score": 0.9960, "label": "remote", "box": {"xmin": 333, "ymin": 72, "xmax": 368, "ymax": 187}}, {"score": 0.9955, "label": "couch", "box": {"xmin": 0, "ymin": 1, "xmax": 639, "ymax": 473}}, {"score": 0.9988, "label": "cat", "box": {"xmin": 13, "ymin": 52, "xmax": 314, "ymax": 470}}, {"score": 0.9987, "label": "cat", "box": {"xmin": 345, "ymin": 23, "xmax": 640, "ymax": 368}}, ], [ {"score": 0.9982, "label": "remote", "box": {"xmin": 40, "ymin": 70, "xmax": 175, "ymax": 117}}, {"score": 0.9960, "label": "remote", "box": {"xmin": 333, "ymin": 72, "xmax": 368, "ymax": 187}}, {"score": 0.9955, "label": "couch", "box": {"xmin": 0, "ymin": 1, "xmax": 639, "ymax": 473}}, {"score": 0.9988, "label": "cat", "box": {"xmin": 13, "ymin": 52, "xmax": 314, "ymax": 470}}, {"score": 0.9987, "label": "cat", "box": {"xmin": 345, "ymin": 23, "xmax": 640, "ymax": 368}}, ], ] , ) @require_torch @slow def __UpperCamelCase ( self : str ) -> str: """simple docstring""" SCREAMING_SNAKE_CASE : Tuple = "facebook/detr-resnet-50" SCREAMING_SNAKE_CASE : Tuple = pipeline("object-detection" , model=a ) SCREAMING_SNAKE_CASE : Tuple = object_detector("http://images.cocodataset.org/val2017/000000039769.jpg" ) self.assertEqual( nested_simplify(a , decimals=4 ) , [ {"score": 0.9982, "label": "remote", "box": {"xmin": 40, "ymin": 70, "xmax": 175, "ymax": 117}}, {"score": 0.9960, "label": "remote", "box": {"xmin": 333, "ymin": 72, "xmax": 368, "ymax": 187}}, {"score": 0.9955, "label": "couch", "box": {"xmin": 0, "ymin": 1, "xmax": 639, "ymax": 473}}, {"score": 0.9988, "label": "cat", "box": {"xmin": 13, "ymin": 52, "xmax": 314, "ymax": 470}}, {"score": 0.9987, "label": "cat", "box": {"xmin": 345, "ymin": 23, "xmax": 640, "ymax": 368}}, ] , ) SCREAMING_SNAKE_CASE : str = object_detector( [ "http://images.cocodataset.org/val2017/000000039769.jpg", "http://images.cocodataset.org/val2017/000000039769.jpg", ] ) self.assertEqual( nested_simplify(a , decimals=4 ) , [ [ {"score": 0.9982, "label": "remote", "box": {"xmin": 40, "ymin": 70, "xmax": 175, "ymax": 117}}, {"score": 0.9960, "label": "remote", "box": {"xmin": 333, "ymin": 72, "xmax": 368, "ymax": 187}}, {"score": 0.9955, "label": "couch", "box": {"xmin": 0, "ymin": 1, "xmax": 639, "ymax": 473}}, {"score": 0.9988, "label": "cat", "box": {"xmin": 13, "ymin": 52, "xmax": 314, "ymax": 470}}, {"score": 0.9987, "label": "cat", "box": {"xmin": 345, "ymin": 23, "xmax": 640, "ymax": 368}}, ], [ {"score": 0.9982, "label": "remote", "box": {"xmin": 40, "ymin": 70, "xmax": 175, "ymax": 117}}, {"score": 0.9960, "label": "remote", "box": {"xmin": 333, "ymin": 72, "xmax": 368, "ymax": 187}}, {"score": 0.9955, "label": "couch", "box": {"xmin": 0, "ymin": 1, "xmax": 639, "ymax": 473}}, {"score": 0.9988, "label": "cat", "box": {"xmin": 13, "ymin": 52, "xmax": 314, "ymax": 470}}, {"score": 0.9987, "label": "cat", "box": {"xmin": 345, "ymin": 23, "xmax": 640, "ymax": 368}}, ], ] , ) @require_torch @slow def __UpperCamelCase ( self : str ) -> str: """simple docstring""" SCREAMING_SNAKE_CASE : Optional[int] = 0.9985 SCREAMING_SNAKE_CASE : int = "facebook/detr-resnet-50" SCREAMING_SNAKE_CASE : List[str] = pipeline("object-detection" , model=a ) SCREAMING_SNAKE_CASE : str = object_detector("http://images.cocodataset.org/val2017/000000039769.jpg" , threshold=a ) self.assertEqual( nested_simplify(a , decimals=4 ) , [ {"score": 0.9988, "label": "cat", "box": {"xmin": 13, "ymin": 52, "xmax": 314, "ymax": 470}}, {"score": 0.9987, "label": "cat", "box": {"xmin": 345, "ymin": 23, "xmax": 640, "ymax": 368}}, ] , ) @require_torch @require_pytesseract @slow def __UpperCamelCase ( self : str ) -> Tuple: """simple docstring""" SCREAMING_SNAKE_CASE : Any = "Narsil/layoutlmv3-finetuned-funsd" SCREAMING_SNAKE_CASE : Dict = 0.9993 SCREAMING_SNAKE_CASE : str = pipeline("object-detection" , model=a , threshold=a ) SCREAMING_SNAKE_CASE : List[Any] = object_detector( "https://huggingface.co/spaces/impira/docquery/resolve/2359223c1837a7587402bda0f2643382a6eefeab/invoice.png" ) self.assertEqual( nested_simplify(a , decimals=4 ) , [ {"score": 0.9993, "label": "I-ANSWER", "box": {"xmin": 294, "ymin": 254, "xmax": 343, "ymax": 264}}, {"score": 0.9993, "label": "I-ANSWER", "box": {"xmin": 294, "ymin": 254, "xmax": 343, "ymax": 264}}, ] , )
25
1
def lowerCamelCase__ ( _a , _a , _a): def update_area_of_max_square(_a , _a) -> int: # BASE CASE if row >= rows or col >= cols: return 0 SCREAMING_SNAKE_CASE : Tuple = update_area_of_max_square(_a , col + 1) SCREAMING_SNAKE_CASE : str = update_area_of_max_square(row + 1 , col + 1) SCREAMING_SNAKE_CASE : Dict = update_area_of_max_square(row + 1 , _a) if mat[row][col]: SCREAMING_SNAKE_CASE : Optional[int] = 1 + min([right, diagonal, down]) SCREAMING_SNAKE_CASE : Optional[Any] = max(largest_square_area[0] , _a) return sub_problem_sol else: return 0 SCREAMING_SNAKE_CASE : Dict = [0] update_area_of_max_square(0 , 0) return largest_square_area[0] def lowerCamelCase__ ( _a , _a , _a): def update_area_of_max_square_using_dp_array( _a , _a , _a) -> int: if row >= rows or col >= cols: return 0 if dp_array[row][col] != -1: return dp_array[row][col] SCREAMING_SNAKE_CASE : List[Any] = update_area_of_max_square_using_dp_array(_a , col + 1 , _a) SCREAMING_SNAKE_CASE : Dict = update_area_of_max_square_using_dp_array(row + 1 , col + 1 , _a) SCREAMING_SNAKE_CASE : Optional[Any] = update_area_of_max_square_using_dp_array(row + 1 , _a , _a) if mat[row][col]: SCREAMING_SNAKE_CASE : str = 1 + min([right, diagonal, down]) SCREAMING_SNAKE_CASE : Any = max(largest_square_area[0] , _a) SCREAMING_SNAKE_CASE : str = sub_problem_sol return sub_problem_sol else: return 0 SCREAMING_SNAKE_CASE : Dict = [0] SCREAMING_SNAKE_CASE : Optional[Any] = [[-1] * cols for _ in range(_a)] update_area_of_max_square_using_dp_array(0 , 0 , _a) return largest_square_area[0] def lowerCamelCase__ ( _a , _a , _a): SCREAMING_SNAKE_CASE : str = [[0] * (cols + 1) for _ in range(rows + 1)] SCREAMING_SNAKE_CASE : Any = 0 for row in range(rows - 1 , -1 , -1): for col in range(cols - 1 , -1 , -1): SCREAMING_SNAKE_CASE : int = dp_array[row][col + 1] SCREAMING_SNAKE_CASE : str = dp_array[row + 1][col + 1] SCREAMING_SNAKE_CASE : Optional[int] = dp_array[row + 1][col] if mat[row][col] == 1: SCREAMING_SNAKE_CASE : Optional[int] = 1 + min(_a , _a , _a) SCREAMING_SNAKE_CASE : int = max(dp_array[row][col] , _a) else: SCREAMING_SNAKE_CASE : Optional[int] = 0 return largest_square_area def lowerCamelCase__ ( _a , _a , _a): SCREAMING_SNAKE_CASE : int = [0] * (cols + 1) SCREAMING_SNAKE_CASE : Dict = [0] * (cols + 1) SCREAMING_SNAKE_CASE : List[str] = 0 for row in range(rows - 1 , -1 , -1): for col in range(cols - 1 , -1 , -1): SCREAMING_SNAKE_CASE : str = current_row[col + 1] SCREAMING_SNAKE_CASE : Union[str, Any] = next_row[col + 1] SCREAMING_SNAKE_CASE : Dict = next_row[col] if mat[row][col] == 1: SCREAMING_SNAKE_CASE : List[str] = 1 + min(_a , _a , _a) SCREAMING_SNAKE_CASE : int = max(current_row[col] , _a) else: SCREAMING_SNAKE_CASE : List[str] = 0 SCREAMING_SNAKE_CASE : int = current_row return largest_square_area if __name__ == "__main__": import doctest doctest.testmod() print(largest_square_area_in_matrix_bottom_up(2, 2, [[1, 1], [1, 1]]))
25
def lowerCamelCase__ ( _a): if not isinstance(_a , _a): SCREAMING_SNAKE_CASE : Tuple = f"Input value of [number={number}] must be an integer" raise TypeError(_a) if number < 0: return False SCREAMING_SNAKE_CASE : Union[str, Any] = number * number while number > 0: if number % 10 != number_square % 10: return False number //= 10 number_square //= 10 return True if __name__ == "__main__": import doctest doctest.testmod()
25
1
def lowerCamelCase__ ( _a , _a , _a=False): if isinstance(_a , _a) and isinstance(_a , _a): SCREAMING_SNAKE_CASE : Tuple = len(set_a.intersection(_a)) if alternative_union: SCREAMING_SNAKE_CASE : Dict = len(_a) + len(_a) else: SCREAMING_SNAKE_CASE : str = len(set_a.union(_a)) return intersection / union if isinstance(_a , (list, tuple)) and isinstance(_a , (list, tuple)): SCREAMING_SNAKE_CASE : Dict = [element for element in set_a if element in set_b] if alternative_union: SCREAMING_SNAKE_CASE : List[Any] = len(_a) + len(_a) return len(_a) / union else: SCREAMING_SNAKE_CASE : Optional[Any] = set_a + [element for element in set_b if element not in set_a] return len(_a) / len(_a) return len(_a) / len(_a) return None if __name__ == "__main__": a_ = {'a', 'b', 'c', 'd', 'e'} a_ = {'c', 'd', 'e', 'f', 'h', 'i'} print(jaccard_similarity(set_a, set_b))
25
import os import tempfile import unittest from transformers import DistilBertConfig, is_torch_available from transformers.testing_utils import require_torch, require_torch_gpu, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST, DistilBertForMaskedLM, DistilBertForMultipleChoice, DistilBertForQuestionAnswering, DistilBertForSequenceClassification, DistilBertForTokenClassification, DistilBertModel, ) class _UpperCamelCase ( __A ): '''simple docstring''' def __init__( self : Dict , a : Tuple , a : Any=13 , a : Any=7 , a : Union[str, Any]=True , a : List[Any]=True , a : List[str]=False , a : List[str]=True , a : Any=99 , a : str=32 , a : Any=5 , a : Optional[int]=4 , a : Union[str, Any]=37 , a : Dict="gelu" , a : List[Any]=0.1 , a : Optional[Any]=0.1 , a : List[str]=512 , a : Union[str, Any]=16 , a : str=2 , a : Dict=0.02 , a : Optional[int]=3 , a : Union[str, Any]=4 , a : int=None , ) -> Tuple: """simple docstring""" SCREAMING_SNAKE_CASE : Dict = parent SCREAMING_SNAKE_CASE : Any = batch_size SCREAMING_SNAKE_CASE : Optional[int] = seq_length SCREAMING_SNAKE_CASE : List[Any] = is_training SCREAMING_SNAKE_CASE : int = use_input_mask SCREAMING_SNAKE_CASE : Tuple = use_token_type_ids SCREAMING_SNAKE_CASE : str = use_labels SCREAMING_SNAKE_CASE : Any = vocab_size SCREAMING_SNAKE_CASE : List[Any] = hidden_size SCREAMING_SNAKE_CASE : str = num_hidden_layers SCREAMING_SNAKE_CASE : Optional[Any] = num_attention_heads SCREAMING_SNAKE_CASE : Tuple = intermediate_size SCREAMING_SNAKE_CASE : Optional[int] = hidden_act SCREAMING_SNAKE_CASE : Dict = hidden_dropout_prob SCREAMING_SNAKE_CASE : str = attention_probs_dropout_prob SCREAMING_SNAKE_CASE : Tuple = max_position_embeddings SCREAMING_SNAKE_CASE : List[str] = type_vocab_size SCREAMING_SNAKE_CASE : List[str] = type_sequence_label_size SCREAMING_SNAKE_CASE : Optional[Any] = initializer_range SCREAMING_SNAKE_CASE : Tuple = num_labels SCREAMING_SNAKE_CASE : Tuple = num_choices SCREAMING_SNAKE_CASE : Optional[Any] = scope def __UpperCamelCase ( self : Union[str, Any] ) -> List[str]: """simple docstring""" SCREAMING_SNAKE_CASE : Dict = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) SCREAMING_SNAKE_CASE : Union[str, Any] = None if self.use_input_mask: SCREAMING_SNAKE_CASE : str = random_attention_mask([self.batch_size, self.seq_length] ) SCREAMING_SNAKE_CASE : int = None SCREAMING_SNAKE_CASE : List[Any] = None SCREAMING_SNAKE_CASE : List[str] = None if self.use_labels: SCREAMING_SNAKE_CASE : Tuple = ids_tensor([self.batch_size] , self.type_sequence_label_size ) SCREAMING_SNAKE_CASE : str = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) SCREAMING_SNAKE_CASE : Optional[Any] = ids_tensor([self.batch_size] , self.num_choices ) SCREAMING_SNAKE_CASE : int = self.get_config() return config, input_ids, input_mask, sequence_labels, token_labels, choice_labels def __UpperCamelCase ( self : Dict ) -> str: """simple docstring""" return DistilBertConfig( vocab_size=self.vocab_size , dim=self.hidden_size , n_layers=self.num_hidden_layers , n_heads=self.num_attention_heads , hidden_dim=self.intermediate_size , hidden_act=self.hidden_act , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , ) def __UpperCamelCase ( self : Optional[Any] , a : int , a : Optional[int] , a : Optional[int] , a : Dict , a : str , a : str ) -> int: """simple docstring""" SCREAMING_SNAKE_CASE : int = DistilBertModel(config=a ) model.to(a ) model.eval() SCREAMING_SNAKE_CASE : Optional[Any] = model(a , a ) SCREAMING_SNAKE_CASE : Optional[Any] = model(a ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def __UpperCamelCase ( self : Tuple , a : Optional[int] , a : Dict , a : Tuple , a : int , a : int , a : Any ) -> Dict: """simple docstring""" SCREAMING_SNAKE_CASE : Optional[int] = DistilBertForMaskedLM(config=a ) model.to(a ) model.eval() SCREAMING_SNAKE_CASE : str = model(a , attention_mask=a , labels=a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def __UpperCamelCase ( self : List[Any] , a : int , a : Optional[Any] , a : Optional[Any] , a : str , a : str , a : Tuple ) -> List[Any]: """simple docstring""" SCREAMING_SNAKE_CASE : Optional[Any] = DistilBertForQuestionAnswering(config=a ) model.to(a ) model.eval() SCREAMING_SNAKE_CASE : List[str] = model( a , attention_mask=a , start_positions=a , end_positions=a ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def __UpperCamelCase ( self : Optional[int] , a : str , a : Any , a : int , a : Optional[Any] , a : int , a : str ) -> Optional[int]: """simple docstring""" SCREAMING_SNAKE_CASE : Dict = self.num_labels SCREAMING_SNAKE_CASE : Union[str, Any] = DistilBertForSequenceClassification(a ) model.to(a ) model.eval() SCREAMING_SNAKE_CASE : Optional[int] = model(a , attention_mask=a , labels=a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def __UpperCamelCase ( self : Optional[Any] , a : List[Any] , a : Optional[int] , a : Union[str, Any] , a : Dict , a : Any , a : Optional[Any] ) -> Any: """simple docstring""" SCREAMING_SNAKE_CASE : str = self.num_labels SCREAMING_SNAKE_CASE : List[str] = DistilBertForTokenClassification(config=a ) model.to(a ) model.eval() SCREAMING_SNAKE_CASE : List[str] = model(a , attention_mask=a , labels=a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def __UpperCamelCase ( self : int , a : Any , a : Optional[int] , a : Union[str, Any] , a : Tuple , a : Optional[int] , a : Tuple ) -> Dict: """simple docstring""" SCREAMING_SNAKE_CASE : List[str] = self.num_choices SCREAMING_SNAKE_CASE : Any = DistilBertForMultipleChoice(config=a ) model.to(a ) model.eval() SCREAMING_SNAKE_CASE : Optional[int] = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() SCREAMING_SNAKE_CASE : Dict = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() SCREAMING_SNAKE_CASE : Optional[Any] = model( a , attention_mask=a , labels=a , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def __UpperCamelCase ( self : Union[str, Any] ) -> Optional[int]: """simple docstring""" SCREAMING_SNAKE_CASE : Optional[Any] = self.prepare_config_and_inputs() ((SCREAMING_SNAKE_CASE) ,(SCREAMING_SNAKE_CASE) ,(SCREAMING_SNAKE_CASE) ,(SCREAMING_SNAKE_CASE) ,(SCREAMING_SNAKE_CASE) ,(SCREAMING_SNAKE_CASE)) : Tuple = config_and_inputs SCREAMING_SNAKE_CASE : int = {"input_ids": input_ids, "attention_mask": input_mask} return config, inputs_dict @require_torch class _UpperCamelCase ( __A , __A , unittest.TestCase ): '''simple docstring''' lowerCamelCase__ =( ( DistilBertModel, DistilBertForMaskedLM, DistilBertForMultipleChoice, DistilBertForQuestionAnswering, DistilBertForSequenceClassification, DistilBertForTokenClassification, ) if is_torch_available() else None ) lowerCamelCase__ =( { 'feature-extraction': DistilBertModel, 'fill-mask': DistilBertForMaskedLM, 'question-answering': DistilBertForQuestionAnswering, 'text-classification': DistilBertForSequenceClassification, 'token-classification': DistilBertForTokenClassification, 'zero-shot': DistilBertForSequenceClassification, } if is_torch_available() else {} ) lowerCamelCase__ =True lowerCamelCase__ =True lowerCamelCase__ =True lowerCamelCase__ =True def __UpperCamelCase ( self : Optional[Any] ) -> Tuple: """simple docstring""" SCREAMING_SNAKE_CASE : Dict = DistilBertModelTester(self ) SCREAMING_SNAKE_CASE : List[str] = ConfigTester(self , config_class=a , dim=37 ) def __UpperCamelCase ( self : List[Any] ) -> Tuple: """simple docstring""" self.config_tester.run_common_tests() def __UpperCamelCase ( self : Union[str, Any] ) -> List[Any]: """simple docstring""" SCREAMING_SNAKE_CASE : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_model(*a ) def __UpperCamelCase ( self : Tuple ) -> Dict: """simple docstring""" SCREAMING_SNAKE_CASE : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_masked_lm(*a ) def __UpperCamelCase ( self : List[Any] ) -> Optional[int]: """simple docstring""" SCREAMING_SNAKE_CASE : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_question_answering(*a ) def __UpperCamelCase ( self : Union[str, Any] ) -> Any: """simple docstring""" SCREAMING_SNAKE_CASE : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_sequence_classification(*a ) def __UpperCamelCase ( self : str ) -> List[Any]: """simple docstring""" SCREAMING_SNAKE_CASE : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_token_classification(*a ) def __UpperCamelCase ( self : List[Any] ) -> str: """simple docstring""" SCREAMING_SNAKE_CASE : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_multiple_choice(*a ) @slow def __UpperCamelCase ( self : int ) -> Any: """simple docstring""" for model_name in DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: SCREAMING_SNAKE_CASE : Optional[Any] = DistilBertModel.from_pretrained(a ) self.assertIsNotNone(a ) @slow @require_torch_gpu def __UpperCamelCase ( self : List[Any] ) -> Optional[Any]: """simple docstring""" SCREAMING_SNAKE_CASE ,SCREAMING_SNAKE_CASE : Dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: # BertForMultipleChoice behaves incorrectly in JIT environments. if model_class == DistilBertForMultipleChoice: return SCREAMING_SNAKE_CASE : Union[str, Any] = True SCREAMING_SNAKE_CASE : Any = model_class(config=a ) SCREAMING_SNAKE_CASE : List[Any] = self._prepare_for_class(a , a ) SCREAMING_SNAKE_CASE : Union[str, Any] = torch.jit.trace( a , (inputs_dict["input_ids"].to("cpu" ), inputs_dict["attention_mask"].to("cpu" )) ) with tempfile.TemporaryDirectory() as tmp: torch.jit.save(a , os.path.join(a , "traced_model.pt" ) ) SCREAMING_SNAKE_CASE : Tuple = torch.jit.load(os.path.join(a , "traced_model.pt" ) , map_location=a ) loaded(inputs_dict["input_ids"].to(a ) , inputs_dict["attention_mask"].to(a ) ) @require_torch class _UpperCamelCase ( unittest.TestCase ): '''simple docstring''' @slow def __UpperCamelCase ( self : int ) -> Dict: """simple docstring""" SCREAMING_SNAKE_CASE : Union[str, Any] = DistilBertModel.from_pretrained("distilbert-base-uncased" ) SCREAMING_SNAKE_CASE : List[str] = torch.tensor([[0, 345, 232, 328, 740, 140, 1695, 69, 6078, 1588, 2]] ) SCREAMING_SNAKE_CASE : Optional[int] = torch.tensor([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] ) with torch.no_grad(): SCREAMING_SNAKE_CASE : Optional[Any] = model(a , attention_mask=a )[0] SCREAMING_SNAKE_CASE : List[str] = torch.Size((1, 11, 768) ) self.assertEqual(output.shape , a ) SCREAMING_SNAKE_CASE : Union[str, Any] = torch.tensor( [[[-0.1639, 0.3299, 0.1648], [-0.1746, 0.3289, 0.1710], [-0.1884, 0.3357, 0.1810]]] ) self.assertTrue(torch.allclose(output[:, 1:4, 1:4] , a , atol=1e-4 ) )
25
1
from __future__ import annotations import time a_ = list[tuple[int, int]] a_ = [ [0, 0, 0, 0, 0, 0, 0], [0, 1, 0, 0, 0, 0, 0], # 0 are free path whereas 1's are obstacles [0, 0, 0, 0, 0, 0, 0], [0, 0, 1, 0, 0, 0, 0], [1, 0, 1, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 1, 0, 0], ] a_ = [[-1, 0], [0, -1], [1, 0], [0, 1]] # up, left, down, right class _UpperCamelCase : '''simple docstring''' def __init__( self : Optional[Any] , a : int , a : int , a : int , a : int , a : Node | None ) -> Any: """simple docstring""" SCREAMING_SNAKE_CASE : List[Any] = pos_x SCREAMING_SNAKE_CASE : Dict = pos_y SCREAMING_SNAKE_CASE : int = (pos_y, pos_x) SCREAMING_SNAKE_CASE : Any = goal_x SCREAMING_SNAKE_CASE : Dict = goal_y SCREAMING_SNAKE_CASE : str = parent class _UpperCamelCase : '''simple docstring''' def __init__( self : Dict , a : tuple[int, int] , a : tuple[int, int] ) -> Optional[int]: """simple docstring""" SCREAMING_SNAKE_CASE : int = Node(start[1] , start[0] , goal[1] , goal[0] , a ) SCREAMING_SNAKE_CASE : Tuple = Node(goal[1] , goal[0] , goal[1] , goal[0] , a ) SCREAMING_SNAKE_CASE : str = [self.start] SCREAMING_SNAKE_CASE : Any = False def __UpperCamelCase ( self : str ) -> Path | None: """simple docstring""" while self.node_queue: SCREAMING_SNAKE_CASE : List[str] = self.node_queue.pop(0 ) if current_node.pos == self.target.pos: SCREAMING_SNAKE_CASE : Tuple = True return self.retrace_path(a ) SCREAMING_SNAKE_CASE : str = self.get_successors(a ) for node in successors: self.node_queue.append(a ) if not self.reached: return [self.start.pos] return None def __UpperCamelCase ( self : Dict , a : Node ) -> list[Node]: """simple docstring""" SCREAMING_SNAKE_CASE : Any = [] for action in delta: SCREAMING_SNAKE_CASE : int = parent.pos_x + action[1] SCREAMING_SNAKE_CASE : Dict = parent.pos_y + action[0] if not (0 <= pos_x <= len(grid[0] ) - 1 and 0 <= pos_y <= len(a ) - 1): continue if grid[pos_y][pos_x] != 0: continue successors.append( Node(a , a , self.target.pos_y , self.target.pos_x , a ) ) return successors def __UpperCamelCase ( self : Union[str, Any] , a : Node | None ) -> Path: """simple docstring""" SCREAMING_SNAKE_CASE : Tuple = node SCREAMING_SNAKE_CASE : List[Any] = [] while current_node is not None: path.append((current_node.pos_y, current_node.pos_x) ) SCREAMING_SNAKE_CASE : Dict = current_node.parent path.reverse() return path class _UpperCamelCase : '''simple docstring''' def __init__( self : str , a : Optional[int] , a : Optional[Any] ) -> Union[str, Any]: """simple docstring""" SCREAMING_SNAKE_CASE : Optional[int] = BreadthFirstSearch(a , a ) SCREAMING_SNAKE_CASE : Any = BreadthFirstSearch(a , a ) SCREAMING_SNAKE_CASE : Dict = False def __UpperCamelCase ( self : List[Any] ) -> Path | None: """simple docstring""" while self.fwd_bfs.node_queue or self.bwd_bfs.node_queue: SCREAMING_SNAKE_CASE : Optional[Any] = self.fwd_bfs.node_queue.pop(0 ) SCREAMING_SNAKE_CASE : Any = self.bwd_bfs.node_queue.pop(0 ) if current_bwd_node.pos == current_fwd_node.pos: SCREAMING_SNAKE_CASE : int = True return self.retrace_bidirectional_path( a , a ) SCREAMING_SNAKE_CASE : Union[str, Any] = current_bwd_node SCREAMING_SNAKE_CASE : str = current_fwd_node SCREAMING_SNAKE_CASE : Union[str, Any] = { self.fwd_bfs: self.fwd_bfs.get_successors(a ), self.bwd_bfs: self.bwd_bfs.get_successors(a ), } for bfs in [self.fwd_bfs, self.bwd_bfs]: for node in successors[bfs]: bfs.node_queue.append(a ) if not self.reached: return [self.fwd_bfs.start.pos] return None def __UpperCamelCase ( self : int , a : Node , a : Node ) -> Path: """simple docstring""" SCREAMING_SNAKE_CASE : Tuple = self.fwd_bfs.retrace_path(a ) SCREAMING_SNAKE_CASE : str = self.bwd_bfs.retrace_path(a ) bwd_path.pop() bwd_path.reverse() SCREAMING_SNAKE_CASE : Any = fwd_path + bwd_path return path if __name__ == "__main__": # all coordinates are given in format [y,x] import doctest doctest.testmod() a_ = (0, 0) a_ = (len(grid) - 1, len(grid[0]) - 1) for elem in grid: print(elem) a_ = time.time() a_ = BreadthFirstSearch(init, goal) a_ = bfs.search() a_ = time.time() - start_bfs_time print('Unidirectional BFS computation time : ', bfs_time) a_ = time.time() a_ = BidirectionalBreadthFirstSearch(init, goal) a_ = bd_bfs.search() a_ = time.time() - start_bd_bfs_time print('Bidirectional BFS computation time : ', bd_bfs_time)
25
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tokenizers_available, is_torch_available, ) a_ = {'configuration_plbart': ['PLBART_PRETRAINED_CONFIG_ARCHIVE_MAP', 'PLBartConfig']} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a_ = ['PLBartTokenizer'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a_ = [ 'PLBART_PRETRAINED_MODEL_ARCHIVE_LIST', 'PLBartForCausalLM', 'PLBartForConditionalGeneration', 'PLBartForSequenceClassification', 'PLBartModel', 'PLBartPreTrainedModel', ] if TYPE_CHECKING: from .configuration_plbart import PLBART_PRETRAINED_CONFIG_ARCHIVE_MAP, PLBartConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_plbart import PLBartTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_plbart import ( PLBART_PRETRAINED_MODEL_ARCHIVE_LIST, PLBartForCausalLM, PLBartForConditionalGeneration, PLBartForSequenceClassification, PLBartModel, PLBartPreTrainedModel, ) else: import sys a_ = _LazyModule(__name__, globals()['__file__'], _import_structure)
25
1
def lowerCamelCase__ ( _a): SCREAMING_SNAKE_CASE : Optional[int] = [0] * len(_a) for i in range(1 , len(_a)): # use last results for better performance - dynamic programming SCREAMING_SNAKE_CASE : Dict = prefix_result[i - 1] while j > 0 and input_string[i] != input_string[j]: SCREAMING_SNAKE_CASE : List[str] = prefix_result[j - 1] if input_string[i] == input_string[j]: j += 1 SCREAMING_SNAKE_CASE : List[Any] = j return prefix_result def lowerCamelCase__ ( _a): return max(prefix_function(_a)) if __name__ == "__main__": import doctest doctest.testmod()
25
import unittest import numpy as np import torch from diffusers import KarrasVePipeline, KarrasVeScheduler, UNetaDModel from diffusers.utils.testing_utils import enable_full_determinism, require_torch, slow, torch_device enable_full_determinism() class _UpperCamelCase ( unittest.TestCase ): '''simple docstring''' @property def __UpperCamelCase ( self : List[str] ) -> Union[str, Any]: """simple docstring""" torch.manual_seed(0 ) SCREAMING_SNAKE_CASE : str = UNetaDModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=3 , out_channels=3 , down_block_types=("DownBlock2D", "AttnDownBlock2D") , up_block_types=("AttnUpBlock2D", "UpBlock2D") , ) return model def __UpperCamelCase ( self : Union[str, Any] ) -> Dict: """simple docstring""" SCREAMING_SNAKE_CASE : Union[str, Any] = self.dummy_uncond_unet SCREAMING_SNAKE_CASE : Union[str, Any] = KarrasVeScheduler() SCREAMING_SNAKE_CASE : Any = KarrasVePipeline(unet=a , scheduler=a ) pipe.to(a ) pipe.set_progress_bar_config(disable=a ) SCREAMING_SNAKE_CASE : Any = torch.manual_seed(0 ) SCREAMING_SNAKE_CASE : Optional[Any] = pipe(num_inference_steps=2 , generator=a , output_type="numpy" ).images SCREAMING_SNAKE_CASE : List[str] = torch.manual_seed(0 ) SCREAMING_SNAKE_CASE : List[Any] = pipe(num_inference_steps=2 , generator=a , output_type="numpy" , return_dict=a )[0] SCREAMING_SNAKE_CASE : List[Any] = image[0, -3:, -3:, -1] SCREAMING_SNAKE_CASE : Any = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) SCREAMING_SNAKE_CASE : str = np.array([0.0, 1.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2 @slow @require_torch class _UpperCamelCase ( unittest.TestCase ): '''simple docstring''' def __UpperCamelCase ( self : int ) -> Tuple: """simple docstring""" SCREAMING_SNAKE_CASE : Dict = "google/ncsnpp-celebahq-256" SCREAMING_SNAKE_CASE : List[Any] = UNetaDModel.from_pretrained(a ) SCREAMING_SNAKE_CASE : Any = KarrasVeScheduler() SCREAMING_SNAKE_CASE : Optional[Any] = KarrasVePipeline(unet=a , scheduler=a ) pipe.to(a ) pipe.set_progress_bar_config(disable=a ) SCREAMING_SNAKE_CASE : Union[str, Any] = torch.manual_seed(0 ) SCREAMING_SNAKE_CASE : Any = pipe(num_inference_steps=20 , generator=a , output_type="numpy" ).images SCREAMING_SNAKE_CASE : List[str] = image[0, -3:, -3:, -1] assert image.shape == (1, 256, 256, 3) SCREAMING_SNAKE_CASE : str = np.array([0.578, 0.5811, 0.5924, 0.5809, 0.587, 0.5886, 0.5861, 0.5802, 0.586] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
25
1
import os from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils import AddedToken from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_big_bird import BigBirdTokenizer else: a_ = None a_ = logging.get_logger(__name__) a_ = {'vocab_file': 'spiece.model', 'tokenizer_file': 'tokenizer.json'} a_ = { 'vocab_file': { 'google/bigbird-roberta-base': 'https://huggingface.co/google/bigbird-roberta-base/resolve/main/spiece.model', 'google/bigbird-roberta-large': ( 'https://huggingface.co/google/bigbird-roberta-large/resolve/main/spiece.model' ), 'google/bigbird-base-trivia-itc': ( 'https://huggingface.co/google/bigbird-base-trivia-itc/resolve/main/spiece.model' ), }, 'tokenizer_file': { 'google/bigbird-roberta-base': ( 'https://huggingface.co/google/bigbird-roberta-base/resolve/main/tokenizer.json' ), 'google/bigbird-roberta-large': ( 'https://huggingface.co/google/bigbird-roberta-large/resolve/main/tokenizer.json' ), 'google/bigbird-base-trivia-itc': ( 'https://huggingface.co/google/bigbird-base-trivia-itc/resolve/main/tokenizer.json' ), }, } a_ = { 'google/bigbird-roberta-base': 4096, 'google/bigbird-roberta-large': 4096, 'google/bigbird-base-trivia-itc': 4096, } a_ = '▁' class _UpperCamelCase ( __A ): '''simple docstring''' lowerCamelCase__ =VOCAB_FILES_NAMES lowerCamelCase__ =PRETRAINED_VOCAB_FILES_MAP lowerCamelCase__ =PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCamelCase__ =BigBirdTokenizer lowerCamelCase__ =['input_ids', 'attention_mask'] lowerCamelCase__ =[] def __init__( self : str , a : int=None , a : Optional[int]=None , a : Union[str, Any]="<unk>" , a : int="<s>" , a : Any="</s>" , a : List[str]="<pad>" , a : List[Any]="[SEP]" , a : Optional[Any]="[MASK]" , a : Optional[int]="[CLS]" , **a : List[str] , ) -> List[Any]: """simple docstring""" SCREAMING_SNAKE_CASE : str = AddedToken(a , lstrip=a , rstrip=a ) if isinstance(a , a ) else bos_token SCREAMING_SNAKE_CASE : Tuple = AddedToken(a , lstrip=a , rstrip=a ) if isinstance(a , a ) else eos_token SCREAMING_SNAKE_CASE : List[Any] = AddedToken(a , lstrip=a , rstrip=a ) if isinstance(a , a ) else unk_token SCREAMING_SNAKE_CASE : Optional[int] = AddedToken(a , lstrip=a , rstrip=a ) if isinstance(a , a ) else pad_token SCREAMING_SNAKE_CASE : Optional[Any] = AddedToken(a , lstrip=a , rstrip=a ) if isinstance(a , a ) else cls_token SCREAMING_SNAKE_CASE : int = AddedToken(a , lstrip=a , rstrip=a ) if isinstance(a , a ) else sep_token # Mask token behave like a normal word, i.e. include the space before it SCREAMING_SNAKE_CASE : Tuple = AddedToken(a , lstrip=a , rstrip=a ) if isinstance(a , a ) else mask_token super().__init__( a , tokenizer_file=a , bos_token=a , eos_token=a , unk_token=a , sep_token=a , pad_token=a , cls_token=a , mask_token=a , **a , ) SCREAMING_SNAKE_CASE : Tuple = vocab_file SCREAMING_SNAKE_CASE : Tuple = False if not self.vocab_file else True def __UpperCamelCase ( self : Dict , a : List[int] , a : Optional[List[int]] = None ) -> List[int]: """simple docstring""" SCREAMING_SNAKE_CASE : Optional[Any] = [self.sep_token_id] SCREAMING_SNAKE_CASE : Optional[Any] = [self.cls_token_id] if token_ids_a is None: return cls + token_ids_a + sep return cls + token_ids_a + sep + token_ids_a + sep def __UpperCamelCase ( self : List[Any] , a : List[int] , a : Optional[List[int]] = None , a : bool = False ) -> List[int]: """simple docstring""" if already_has_special_tokens: if token_ids_a is not None: raise ValueError( "You should not supply a second sequence if the provided sequence of " "ids is already formatted with special tokens for the model." ) return [1 if x in [self.sep_token_id, self.cls_token_id] else 0 for x in token_ids_a] if token_ids_a is None: return [1] + ([0] * len(a )) + [1] return [1] + ([0] * len(a )) + [1] + ([0] * len(a )) + [1] def __UpperCamelCase ( self : List[str] , a : List[int] , a : Optional[List[int]] = None ) -> List[int]: """simple docstring""" SCREAMING_SNAKE_CASE : Optional[Any] = [self.sep_token_id] SCREAMING_SNAKE_CASE : str = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def __UpperCamelCase ( self : Optional[Any] , a : str , a : Optional[str] = None ) -> Tuple[str]: """simple docstring""" if not self.can_save_slow_tokenizer: raise ValueError( "Your fast tokenizer does not have the necessary information to save the vocabulary for a slow " "tokenizer." ) if not os.path.isdir(a ): logger.error(F"Vocabulary path ({save_directory}) should be a directory" ) return SCREAMING_SNAKE_CASE : Optional[int] = os.path.join( a , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(a ): copyfile(self.vocab_file , a ) return (out_vocab_file,)
25
def lowerCamelCase__ ( _a , _a): SCREAMING_SNAKE_CASE : Optional[int] = 0 while b > 0: if b & 1: res += a a += a b >>= 1 return res def lowerCamelCase__ ( _a , _a , _a): SCREAMING_SNAKE_CASE : Optional[int] = 0 while b > 0: if b & 1: SCREAMING_SNAKE_CASE : Optional[Any] = ((res % c) + (a % c)) % c a += a b >>= 1 return res
25
1
import unittest import numpy as np from diffusers import LMSDiscreteScheduler, OnnxStableDiffusionInpaintPipeline from diffusers.utils.testing_utils import ( is_onnx_available, load_image, nightly, require_onnxruntime, require_torch_gpu, ) from ..test_pipelines_onnx_common import OnnxPipelineTesterMixin if is_onnx_available(): import onnxruntime as ort class _UpperCamelCase ( __A , unittest.TestCase ): '''simple docstring''' pass @nightly @require_onnxruntime @require_torch_gpu class _UpperCamelCase ( unittest.TestCase ): '''simple docstring''' @property def __UpperCamelCase ( self : List[Any] ) -> List[str]: """simple docstring""" return ( "CUDAExecutionProvider", { "gpu_mem_limit": "15000000000", # 15GB "arena_extend_strategy": "kSameAsRequested", }, ) @property def __UpperCamelCase ( self : int ) -> Optional[Any]: """simple docstring""" SCREAMING_SNAKE_CASE : Optional[Any] = ort.SessionOptions() SCREAMING_SNAKE_CASE : Union[str, Any] = False return options def __UpperCamelCase ( self : List[Any] ) -> List[Any]: """simple docstring""" SCREAMING_SNAKE_CASE : Any = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/in_paint/overture-creations-5sI6fQgYIuo.png" ) SCREAMING_SNAKE_CASE : Optional[Any] = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/in_paint/overture-creations-5sI6fQgYIuo_mask.png" ) SCREAMING_SNAKE_CASE : int = OnnxStableDiffusionInpaintPipeline.from_pretrained( "runwayml/stable-diffusion-inpainting" , revision="onnx" , safety_checker=a , feature_extractor=a , provider=self.gpu_provider , sess_options=self.gpu_options , ) pipe.set_progress_bar_config(disable=a ) SCREAMING_SNAKE_CASE : Optional[Any] = "A red cat sitting on a park bench" SCREAMING_SNAKE_CASE : Tuple = np.random.RandomState(0 ) SCREAMING_SNAKE_CASE : Optional[int] = pipe( prompt=a , image=a , mask_image=a , guidance_scale=7.5 , num_inference_steps=10 , generator=a , output_type="np" , ) SCREAMING_SNAKE_CASE : List[Any] = output.images SCREAMING_SNAKE_CASE : Union[str, Any] = images[0, 255:258, 255:258, -1] assert images.shape == (1, 512, 512, 3) SCREAMING_SNAKE_CASE : int = np.array([0.2514, 0.3007, 0.3517, 0.1790, 0.2382, 0.3167, 0.1944, 0.2273, 0.2464] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3 def __UpperCamelCase ( self : List[Any] ) -> Tuple: """simple docstring""" SCREAMING_SNAKE_CASE : int = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/in_paint/overture-creations-5sI6fQgYIuo.png" ) SCREAMING_SNAKE_CASE : Optional[Any] = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/in_paint/overture-creations-5sI6fQgYIuo_mask.png" ) SCREAMING_SNAKE_CASE : Optional[Any] = LMSDiscreteScheduler.from_pretrained( "runwayml/stable-diffusion-inpainting" , subfolder="scheduler" , revision="onnx" ) SCREAMING_SNAKE_CASE : Union[str, Any] = OnnxStableDiffusionInpaintPipeline.from_pretrained( "runwayml/stable-diffusion-inpainting" , revision="onnx" , scheduler=a , safety_checker=a , feature_extractor=a , provider=self.gpu_provider , sess_options=self.gpu_options , ) pipe.set_progress_bar_config(disable=a ) SCREAMING_SNAKE_CASE : List[Any] = "A red cat sitting on a park bench" SCREAMING_SNAKE_CASE : Dict = np.random.RandomState(0 ) SCREAMING_SNAKE_CASE : Tuple = pipe( prompt=a , image=a , mask_image=a , guidance_scale=7.5 , num_inference_steps=20 , generator=a , output_type="np" , ) SCREAMING_SNAKE_CASE : List[str] = output.images SCREAMING_SNAKE_CASE : Optional[int] = images[0, 255:258, 255:258, -1] assert images.shape == (1, 512, 512, 3) SCREAMING_SNAKE_CASE : Any = np.array([0.0086, 0.0077, 0.0083, 0.0093, 0.0107, 0.0139, 0.0094, 0.0097, 0.0125] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3
25
from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging a_ = logging.get_logger(__name__) a_ = { 'junnyu/roformer_chinese_small': 'https://huggingface.co/junnyu/roformer_chinese_small/resolve/main/config.json', 'junnyu/roformer_chinese_base': 'https://huggingface.co/junnyu/roformer_chinese_base/resolve/main/config.json', 'junnyu/roformer_chinese_char_small': ( 'https://huggingface.co/junnyu/roformer_chinese_char_small/resolve/main/config.json' ), 'junnyu/roformer_chinese_char_base': ( 'https://huggingface.co/junnyu/roformer_chinese_char_base/resolve/main/config.json' ), 'junnyu/roformer_small_discriminator': ( 'https://huggingface.co/junnyu/roformer_small_discriminator/resolve/main/config.json' ), 'junnyu/roformer_small_generator': ( 'https://huggingface.co/junnyu/roformer_small_generator/resolve/main/config.json' ), # See all RoFormer models at https://huggingface.co/models?filter=roformer } class _UpperCamelCase ( __A ): '''simple docstring''' lowerCamelCase__ ='roformer' def __init__( self : Dict , a : Any=5_0000 , a : List[Any]=None , a : str=768 , a : str=12 , a : Tuple=12 , a : Optional[Any]=3072 , a : List[str]="gelu" , a : List[Any]=0.1 , a : Union[str, Any]=0.1 , a : Tuple=1536 , a : List[str]=2 , a : Tuple=0.02 , a : Any=1e-12 , a : Optional[int]=0 , a : Union[str, Any]=False , a : int=True , **a : str , ) -> int: """simple docstring""" super().__init__(pad_token_id=a , **a ) SCREAMING_SNAKE_CASE : str = vocab_size SCREAMING_SNAKE_CASE : int = hidden_size if embedding_size is None else embedding_size SCREAMING_SNAKE_CASE : List[str] = hidden_size SCREAMING_SNAKE_CASE : Union[str, Any] = num_hidden_layers SCREAMING_SNAKE_CASE : int = num_attention_heads SCREAMING_SNAKE_CASE : Tuple = hidden_act SCREAMING_SNAKE_CASE : int = intermediate_size SCREAMING_SNAKE_CASE : Tuple = hidden_dropout_prob SCREAMING_SNAKE_CASE : int = attention_probs_dropout_prob SCREAMING_SNAKE_CASE : Optional[int] = max_position_embeddings SCREAMING_SNAKE_CASE : Any = type_vocab_size SCREAMING_SNAKE_CASE : Union[str, Any] = initializer_range SCREAMING_SNAKE_CASE : List[str] = layer_norm_eps SCREAMING_SNAKE_CASE : List[str] = rotary_value SCREAMING_SNAKE_CASE : int = use_cache class _UpperCamelCase ( __A ): '''simple docstring''' @property def __UpperCamelCase ( self : Tuple ) -> Mapping[str, Mapping[int, str]]: """simple docstring""" if self.task == "multiple-choice": SCREAMING_SNAKE_CASE : Optional[Any] = {0: "batch", 1: "choice", 2: "sequence"} else: SCREAMING_SNAKE_CASE : str = {0: "batch", 1: "sequence"} SCREAMING_SNAKE_CASE : List[Any] = {0: "batch", 1: "sequence"} return OrderedDict( [ ("input_ids", dynamic_axis), ("attention_mask", dynamic_axis), ("token_type_ids", dynamic_axis), ] )
25
1
import copy import os from typing import Union from ...configuration_utils import PretrainedConfig from ...utils import logging a_ = logging.get_logger(__name__) a_ = { 'BridgeTower/bridgetower-base': 'https://huggingface.co/BridgeTower/bridgetower-base/blob/main/config.json', 'BridgeTower/bridgetower-base-itm-mlm': ( 'https://huggingface.co/BridgeTower/bridgetower-base-itm-mlm/blob/main/config.json' ), } class _UpperCamelCase ( __A ): '''simple docstring''' lowerCamelCase__ ='bridgetower_vision_model' def __init__( self : Tuple , a : Any=768 , a : Optional[Any]=12 , a : Dict=3 , a : Dict=16 , a : Optional[Any]=288 , a : List[Any]=1 , a : Tuple=1e-05 , a : Union[str, Any]=False , a : Any=True , a : Optional[int]=False , **a : Optional[Any] , ) -> Optional[int]: """simple docstring""" super().__init__(**a ) SCREAMING_SNAKE_CASE : Optional[Any] = hidden_size SCREAMING_SNAKE_CASE : Dict = num_hidden_layers SCREAMING_SNAKE_CASE : Any = num_channels SCREAMING_SNAKE_CASE : int = patch_size SCREAMING_SNAKE_CASE : Tuple = image_size SCREAMING_SNAKE_CASE : Dict = initializer_factor SCREAMING_SNAKE_CASE : Any = layer_norm_eps SCREAMING_SNAKE_CASE : Union[str, Any] = stop_gradient SCREAMING_SNAKE_CASE : Tuple = share_layernorm SCREAMING_SNAKE_CASE : Any = remove_last_layer @classmethod def __UpperCamelCase ( cls : str , a : Union[str, os.PathLike] , **a : Dict ) -> "PretrainedConfig": """simple docstring""" SCREAMING_SNAKE_CASE ,SCREAMING_SNAKE_CASE : Any = cls.get_config_dict(a , **a ) if config_dict.get("model_type" ) == "bridgetower": SCREAMING_SNAKE_CASE : Dict = config_dict["text_config"] if "model_type" in config_dict and hasattr(cls , "model_type" ) and config_dict["model_type"] != cls.model_type: logger.warning( F"You are using a model of type {config_dict['model_type']} to instantiate a model of type " F"{cls.model_type}. This is not supported for all configurations of models and can yield errors." ) return cls.from_dict(a , **a ) class _UpperCamelCase ( __A ): '''simple docstring''' lowerCamelCase__ ='bridgetower_text_model' def __init__( self : str , a : int=5_0265 , a : List[Any]=768 , a : int=12 , a : Optional[Any]=12 , a : Union[str, Any]=1 , a : str=3072 , a : List[Any]="gelu" , a : Any=0.1 , a : List[str]=0.1 , a : Tuple=514 , a : Optional[int]=1 , a : Tuple=1e-05 , a : Union[str, Any]=1 , a : Any=0 , a : str=2 , a : str="absolute" , a : Any=True , **a : Dict , ) -> Optional[int]: """simple docstring""" super().__init__(**a ) SCREAMING_SNAKE_CASE : Optional[Any] = vocab_size SCREAMING_SNAKE_CASE : Any = hidden_size SCREAMING_SNAKE_CASE : Optional[int] = num_hidden_layers SCREAMING_SNAKE_CASE : List[Any] = num_attention_heads SCREAMING_SNAKE_CASE : int = hidden_act SCREAMING_SNAKE_CASE : Union[str, Any] = initializer_factor SCREAMING_SNAKE_CASE : List[str] = intermediate_size SCREAMING_SNAKE_CASE : Dict = hidden_dropout_prob SCREAMING_SNAKE_CASE : Tuple = attention_probs_dropout_prob SCREAMING_SNAKE_CASE : Any = max_position_embeddings SCREAMING_SNAKE_CASE : List[Any] = type_vocab_size SCREAMING_SNAKE_CASE : List[Any] = layer_norm_eps SCREAMING_SNAKE_CASE : Union[str, Any] = position_embedding_type SCREAMING_SNAKE_CASE : List[str] = use_cache SCREAMING_SNAKE_CASE : List[str] = pad_token_id SCREAMING_SNAKE_CASE : Tuple = bos_token_id SCREAMING_SNAKE_CASE : Optional[int] = eos_token_id @classmethod def __UpperCamelCase ( cls : Tuple , a : Union[str, os.PathLike] , **a : List[str] ) -> "PretrainedConfig": """simple docstring""" SCREAMING_SNAKE_CASE ,SCREAMING_SNAKE_CASE : Tuple = cls.get_config_dict(a , **a ) if config_dict.get("model_type" ) == "bridgetower": SCREAMING_SNAKE_CASE : str = config_dict["text_config"] if "model_type" in config_dict and hasattr(cls , "model_type" ) and config_dict["model_type"] != cls.model_type: logger.warning( F"You are using a model of type {config_dict['model_type']} to instantiate a model of type " F"{cls.model_type}. This is not supported for all configurations of models and can yield errors." ) return cls.from_dict(a , **a ) class _UpperCamelCase ( __A ): '''simple docstring''' lowerCamelCase__ ='bridgetower' def __init__( self : List[str] , a : List[Any]=True , a : List[Any]="gelu" , a : Union[str, Any]=768 , a : Tuple=1 , a : List[Any]=1e-05 , a : Dict=False , a : Optional[int]="add" , a : Any=12 , a : Optional[int]=6 , a : int=False , a : Optional[int]=False , a : Dict=None , a : Tuple=None , **a : Union[str, Any] , ) -> Tuple: """simple docstring""" SCREAMING_SNAKE_CASE : str = kwargs.pop("text_config_dict" , a ) SCREAMING_SNAKE_CASE : Optional[Any] = kwargs.pop("vision_config_dict" , a ) super().__init__(**a ) SCREAMING_SNAKE_CASE : Any = share_cross_modal_transformer_layers SCREAMING_SNAKE_CASE : Any = hidden_act SCREAMING_SNAKE_CASE : Any = hidden_size SCREAMING_SNAKE_CASE : Tuple = initializer_factor SCREAMING_SNAKE_CASE : Union[str, Any] = layer_norm_eps SCREAMING_SNAKE_CASE : int = share_link_tower_layers SCREAMING_SNAKE_CASE : str = link_tower_type SCREAMING_SNAKE_CASE : Tuple = num_attention_heads SCREAMING_SNAKE_CASE : Dict = num_hidden_layers SCREAMING_SNAKE_CASE : Optional[Any] = tie_word_embeddings SCREAMING_SNAKE_CASE : Any = init_layernorm_from_vision_encoder if text_config is None: SCREAMING_SNAKE_CASE : Any = {} logger.info("`text_config` is `None`. Initializing the `BridgeTowerTextConfig` with default values." ) if vision_config is None: SCREAMING_SNAKE_CASE : Optional[Any] = {} logger.info("`vision_config` is `None`. Initializing the `BridgeTowerVisionConfig` with default values." ) SCREAMING_SNAKE_CASE : Union[str, Any] = BridgeTowerTextConfig(**a ) SCREAMING_SNAKE_CASE : Optional[Any] = BridgeTowerVisionConfig(**a ) @classmethod def __UpperCamelCase ( cls : List[Any] , a : BridgeTowerTextConfig , a : BridgeTowerVisionConfig , **a : List[str] ) -> Optional[int]: """simple docstring""" return cls(text_config=text_config.to_dict() , vision_config=vision_config.to_dict() , **a ) def __UpperCamelCase ( self : Optional[Any] ) -> List[Any]: """simple docstring""" SCREAMING_SNAKE_CASE : Optional[Any] = copy.deepcopy(self.__dict__ ) SCREAMING_SNAKE_CASE : str = self.text_config.to_dict() SCREAMING_SNAKE_CASE : Optional[int] = self.vision_config.to_dict() SCREAMING_SNAKE_CASE : Dict = self.__class__.model_type return output
25
import argparse import logging from collections import namedtuple import torch from model_bertabs import BertAbsSummarizer from models.model_builder import AbsSummarizer # The authors' implementation from transformers import BertTokenizer logging.basicConfig(level=logging.INFO) a_ = logging.getLogger(__name__) a_ = 'Hello world! cécé herlolip' a_ = namedtuple( 'BertAbsConfig', [ 'temp_dir', 'large', 'use_bert_emb', 'finetune_bert', 'encoder', 'share_emb', 'max_pos', 'enc_layers', 'enc_hidden_size', 'enc_heads', 'enc_ff_size', 'enc_dropout', 'dec_layers', 'dec_hidden_size', 'dec_heads', 'dec_ff_size', 'dec_dropout', ], ) def lowerCamelCase__ ( _a , _a): SCREAMING_SNAKE_CASE : List[Any] = BertAbsConfig( temp_dir="." , finetune_bert=_a , large=_a , share_emb=_a , use_bert_emb=_a , encoder="bert" , max_pos=512 , enc_layers=6 , enc_hidden_size=512 , enc_heads=8 , enc_ff_size=512 , enc_dropout=0.2 , dec_layers=6 , dec_hidden_size=768 , dec_heads=8 , dec_ff_size=2048 , dec_dropout=0.2 , ) SCREAMING_SNAKE_CASE : Dict = torch.load(_a , lambda _a , _a: storage) SCREAMING_SNAKE_CASE : str = AbsSummarizer(_a , torch.device("cpu") , _a) original.eval() SCREAMING_SNAKE_CASE : List[str] = BertAbsSummarizer(_a , torch.device("cpu")) new_model.eval() # ------------------- # Convert the weights # ------------------- logging.info("convert the model") new_model.bert.load_state_dict(original.bert.state_dict()) new_model.decoder.load_state_dict(original.decoder.state_dict()) new_model.generator.load_state_dict(original.generator.state_dict()) # ---------------------------------- # Make sure the outpus are identical # ---------------------------------- logging.info("Make sure that the models' outputs are identical") SCREAMING_SNAKE_CASE : List[str] = BertTokenizer.from_pretrained("bert-base-uncased") # prepare the model inputs SCREAMING_SNAKE_CASE : List[str] = tokenizer.encode("This is sample éàalj'-.") encoder_input_ids.extend([tokenizer.pad_token_id] * (512 - len(_a))) SCREAMING_SNAKE_CASE : int = torch.tensor(_a).unsqueeze(0) SCREAMING_SNAKE_CASE : List[Any] = tokenizer.encode("This is sample 3 éàalj'-.") decoder_input_ids.extend([tokenizer.pad_token_id] * (512 - len(_a))) SCREAMING_SNAKE_CASE : int = torch.tensor(_a).unsqueeze(0) # failsafe to make sure the weights reset does not affect the # loaded weights. assert torch.max(torch.abs(original.generator[0].weight - new_model.generator[0].weight)) == 0 # forward pass SCREAMING_SNAKE_CASE : List[Any] = encoder_input_ids SCREAMING_SNAKE_CASE : List[Any] = decoder_input_ids SCREAMING_SNAKE_CASE : Dict = None SCREAMING_SNAKE_CASE : Optional[Any] = None SCREAMING_SNAKE_CASE : List[Any] = None SCREAMING_SNAKE_CASE : Optional[int] = None SCREAMING_SNAKE_CASE : Dict = None # The original model does not apply the geneator layer immediatly but rather in # the beam search (where it combines softmax + linear layer). Since we already # apply the softmax in our generation process we only apply the linear layer here. # We make sure that the outputs of the full stack are identical SCREAMING_SNAKE_CASE : Optional[int] = original(_a , _a , _a , _a , _a , _a , _a)[0] SCREAMING_SNAKE_CASE : Dict = original.generator(_a) SCREAMING_SNAKE_CASE : Any = new_model( _a , _a , _a , _a , _a)[0] SCREAMING_SNAKE_CASE : Tuple = new_model.generator(_a) SCREAMING_SNAKE_CASE : List[Any] = torch.max(torch.abs(output_converted_model - output_original_model)).item() print("Maximum absolute difference beween weights: {:.2f}".format(_a)) SCREAMING_SNAKE_CASE : Union[str, Any] = torch.max(torch.abs(output_converted_generator - output_original_generator)).item() print("Maximum absolute difference beween weights: {:.2f}".format(_a)) SCREAMING_SNAKE_CASE : int = torch.allclose(_a , _a , atol=1E-3) if are_identical: logging.info("all weights are equal up to 1e-3") else: raise ValueError("the weights are different. The new model is likely different from the original one.") # The model has been saved with torch.save(model) and this is bound to the exact # directory structure. We save the state_dict instead. logging.info("saving the model's state dictionary") torch.save( new_model.state_dict() , "./bertabs-finetuned-cnndm-extractive-abstractive-summarization/pytorch_model.bin") if __name__ == "__main__": a_ = argparse.ArgumentParser() parser.add_argument( '--bertabs_checkpoint_path', default=None, type=str, required=True, help='Path the official PyTorch dump.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, required=True, help='Path to the output PyTorch model.', ) a_ = parser.parse_args() convert_bertabs_checkpoints( args.bertabs_checkpoint_path, args.pytorch_dump_folder_path, )
25
1
from math import ceil, sqrt def lowerCamelCase__ ( _a = 1000000): SCREAMING_SNAKE_CASE : List[Any] = 0 for outer_width in range(3 , (limit // 4) + 2): if outer_width**2 > limit: SCREAMING_SNAKE_CASE : str = max(ceil(sqrt(outer_width**2 - limit)) , 1) else: SCREAMING_SNAKE_CASE : str = 1 if (outer_width - hole_width_lower_bound) % 2: hole_width_lower_bound += 1 answer += (outer_width - hole_width_lower_bound - 2) // 2 + 1 return answer if __name__ == "__main__": print(F'''{solution() = }''')
25
import argparse from transformers import CLIPImageProcessor, CLIPVisionModelWithProjection from diffusers import UnCLIPImageVariationPipeline, UnCLIPPipeline if __name__ == "__main__": a_ = argparse.ArgumentParser() parser.add_argument('--dump_path', default=None, type=str, required=True, help='Path to the output model.') parser.add_argument( '--txt2img_unclip', default='kakaobrain/karlo-v1-alpha', type=str, required=False, help='The pretrained txt2img unclip.', ) a_ = parser.parse_args() a_ = UnCLIPPipeline.from_pretrained(args.txtaimg_unclip) a_ = CLIPImageProcessor() a_ = CLIPVisionModelWithProjection.from_pretrained('openai/clip-vit-large-patch14') a_ = UnCLIPImageVariationPipeline( decoder=txtaimg.decoder, text_encoder=txtaimg.text_encoder, tokenizer=txtaimg.tokenizer, text_proj=txtaimg.text_proj, feature_extractor=feature_extractor, image_encoder=image_encoder, super_res_first=txtaimg.super_res_first, super_res_last=txtaimg.super_res_last, decoder_scheduler=txtaimg.decoder_scheduler, super_res_scheduler=txtaimg.super_res_scheduler, ) imgaimg.save_pretrained(args.dump_path)
25
1
from collections.abc import Callable import numpy as np def lowerCamelCase__ ( _a , _a , _a , _a , _a): SCREAMING_SNAKE_CASE : List[Any] = int(np.ceil((x_end - xa) / step_size)) SCREAMING_SNAKE_CASE : Tuple = np.zeros((n + 1,)) SCREAMING_SNAKE_CASE : List[Any] = ya SCREAMING_SNAKE_CASE : str = xa for k in range(_a): SCREAMING_SNAKE_CASE : Optional[int] = y[k] + step_size * ode_func(_a , y[k]) SCREAMING_SNAKE_CASE : Union[str, Any] = y[k] + ( (step_size / 2) * (ode_func(_a , y[k]) + ode_func(x + step_size , _a)) ) x += step_size return y if __name__ == "__main__": import doctest doctest.testmod()
25
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available a_ = { 'configuration_swinv2': ['SWINV2_PRETRAINED_CONFIG_ARCHIVE_MAP', 'Swinv2Config'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a_ = [ 'SWINV2_PRETRAINED_MODEL_ARCHIVE_LIST', 'Swinv2ForImageClassification', 'Swinv2ForMaskedImageModeling', 'Swinv2Model', 'Swinv2PreTrainedModel', ] if TYPE_CHECKING: from .configuration_swinva import SWINV2_PRETRAINED_CONFIG_ARCHIVE_MAP, SwinvaConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_swinva import ( SWINV2_PRETRAINED_MODEL_ARCHIVE_LIST, SwinvaForImageClassification, SwinvaForMaskedImageModeling, SwinvaModel, SwinvaPreTrainedModel, ) else: import sys a_ = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
25
1
def lowerCamelCase__ ( _a): if a < 0: raise ValueError("Input value must be a positive integer") elif isinstance(_a , _a): raise TypeError("Input value must be a 'int' type") return bin(_a).count("1") if __name__ == "__main__": import doctest doctest.testmod()
25
from math import pi, sqrt, tan def lowerCamelCase__ ( _a): if side_length < 0: raise ValueError("surface_area_cube() only accepts non-negative values") return 6 * side_length**2 def lowerCamelCase__ ( _a , _a , _a): if length < 0 or breadth < 0 or height < 0: raise ValueError("surface_area_cuboid() only accepts non-negative values") return 2 * ((length * breadth) + (breadth * height) + (length * height)) def lowerCamelCase__ ( _a): if radius < 0: raise ValueError("surface_area_sphere() only accepts non-negative values") return 4 * pi * radius**2 def lowerCamelCase__ ( _a): if radius < 0: raise ValueError("surface_area_hemisphere() only accepts non-negative values") return 3 * pi * radius**2 def lowerCamelCase__ ( _a , _a): if radius < 0 or height < 0: raise ValueError("surface_area_cone() only accepts non-negative values") return pi * radius * (radius + (height**2 + radius**2) ** 0.5) def lowerCamelCase__ ( _a , _a , _a): if radius_a < 0 or radius_a < 0 or height < 0: raise ValueError( "surface_area_conical_frustum() only accepts non-negative values") SCREAMING_SNAKE_CASE : Any = (height**2 + (radius_a - radius_a) ** 2) ** 0.5 return pi * ((slant_height * (radius_a + radius_a)) + radius_a**2 + radius_a**2) def lowerCamelCase__ ( _a , _a): if radius < 0 or height < 0: raise ValueError("surface_area_cylinder() only accepts non-negative values") return 2 * pi * radius * (height + radius) def lowerCamelCase__ ( _a , _a): if torus_radius < 0 or tube_radius < 0: raise ValueError("surface_area_torus() only accepts non-negative values") if torus_radius < tube_radius: raise ValueError( "surface_area_torus() does not support spindle or self intersecting tori") return 4 * pow(_a , 2) * torus_radius * tube_radius def lowerCamelCase__ ( _a , _a): if length < 0 or width < 0: raise ValueError("area_rectangle() only accepts non-negative values") return length * width def lowerCamelCase__ ( _a): if side_length < 0: raise ValueError("area_square() only accepts non-negative values") return side_length**2 def lowerCamelCase__ ( _a , _a): if base < 0 or height < 0: raise ValueError("area_triangle() only accepts non-negative values") return (base * height) / 2 def lowerCamelCase__ ( _a , _a , _a): if sidea < 0 or sidea < 0 or sidea < 0: raise ValueError("area_triangle_three_sides() only accepts non-negative values") elif sidea + sidea < sidea or sidea + sidea < sidea or sidea + sidea < sidea: raise ValueError("Given three sides do not form a triangle") SCREAMING_SNAKE_CASE : List[str] = (sidea + sidea + sidea) / 2 SCREAMING_SNAKE_CASE : Optional[int] = sqrt( semi_perimeter * (semi_perimeter - sidea) * (semi_perimeter - sidea) * (semi_perimeter - sidea)) return area def lowerCamelCase__ ( _a , _a): if base < 0 or height < 0: raise ValueError("area_parallelogram() only accepts non-negative values") return base * height def lowerCamelCase__ ( _a , _a , _a): if basea < 0 or basea < 0 or height < 0: raise ValueError("area_trapezium() only accepts non-negative values") return 1 / 2 * (basea + basea) * height def lowerCamelCase__ ( _a): if radius < 0: raise ValueError("area_circle() only accepts non-negative values") return pi * radius**2 def lowerCamelCase__ ( _a , _a): if radius_x < 0 or radius_y < 0: raise ValueError("area_ellipse() only accepts non-negative values") return pi * radius_x * radius_y def lowerCamelCase__ ( _a , _a): if diagonal_a < 0 or diagonal_a < 0: raise ValueError("area_rhombus() only accepts non-negative values") return 1 / 2 * diagonal_a * diagonal_a def lowerCamelCase__ ( _a , _a): if not isinstance(_a , _a) or sides < 3: raise ValueError( "area_reg_polygon() only accepts integers greater than or \ equal to three as number of sides") elif length < 0: raise ValueError( "area_reg_polygon() only accepts non-negative values as \ length of a side") return (sides * length**2) / (4 * tan(pi / sides)) return (sides * length**2) / (4 * tan(pi / sides)) if __name__ == "__main__": import doctest doctest.testmod(verbose=True) # verbose so we can see methods missing tests print('[DEMO] Areas of various geometric shapes: \n') print(F'''Rectangle: {area_rectangle(10, 20) = }''') print(F'''Square: {area_square(10) = }''') print(F'''Triangle: {area_triangle(10, 10) = }''') print(F'''Triangle: {area_triangle_three_sides(5, 12, 13) = }''') print(F'''Parallelogram: {area_parallelogram(10, 20) = }''') print(F'''Rhombus: {area_rhombus(10, 20) = }''') print(F'''Trapezium: {area_trapezium(10, 20, 30) = }''') print(F'''Circle: {area_circle(20) = }''') print(F'''Ellipse: {area_ellipse(10, 20) = }''') print('\nSurface Areas of various geometric shapes: \n') print(F'''Cube: {surface_area_cube(20) = }''') print(F'''Cuboid: {surface_area_cuboid(10, 20, 30) = }''') print(F'''Sphere: {surface_area_sphere(20) = }''') print(F'''Hemisphere: {surface_area_hemisphere(20) = }''') print(F'''Cone: {surface_area_cone(10, 20) = }''') print(F'''Conical Frustum: {surface_area_conical_frustum(10, 20, 30) = }''') print(F'''Cylinder: {surface_area_cylinder(10, 20) = }''') print(F'''Torus: {surface_area_torus(20, 10) = }''') print(F'''Equilateral Triangle: {area_reg_polygon(3, 10) = }''') print(F'''Square: {area_reg_polygon(4, 10) = }''') print(F'''Reqular Pentagon: {area_reg_polygon(5, 10) = }''')
25
1
import argparse from transformers import CLIPImageProcessor, CLIPVisionModelWithProjection from diffusers import UnCLIPImageVariationPipeline, UnCLIPPipeline if __name__ == "__main__": a_ = argparse.ArgumentParser() parser.add_argument('--dump_path', default=None, type=str, required=True, help='Path to the output model.') parser.add_argument( '--txt2img_unclip', default='kakaobrain/karlo-v1-alpha', type=str, required=False, help='The pretrained txt2img unclip.', ) a_ = parser.parse_args() a_ = UnCLIPPipeline.from_pretrained(args.txtaimg_unclip) a_ = CLIPImageProcessor() a_ = CLIPVisionModelWithProjection.from_pretrained('openai/clip-vit-large-patch14') a_ = UnCLIPImageVariationPipeline( decoder=txtaimg.decoder, text_encoder=txtaimg.text_encoder, tokenizer=txtaimg.tokenizer, text_proj=txtaimg.text_proj, feature_extractor=feature_extractor, image_encoder=image_encoder, super_res_first=txtaimg.super_res_first, super_res_last=txtaimg.super_res_last, decoder_scheduler=txtaimg.decoder_scheduler, super_res_scheduler=txtaimg.super_res_scheduler, ) imgaimg.save_pretrained(args.dump_path)
25
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available a_ = { 'configuration_instructblip': [ 'INSTRUCTBLIP_PRETRAINED_CONFIG_ARCHIVE_MAP', 'InstructBlipConfig', 'InstructBlipQFormerConfig', 'InstructBlipVisionConfig', ], 'processing_instructblip': ['InstructBlipProcessor'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a_ = [ 'INSTRUCTBLIP_PRETRAINED_MODEL_ARCHIVE_LIST', 'InstructBlipQFormerModel', 'InstructBlipPreTrainedModel', 'InstructBlipForConditionalGeneration', 'InstructBlipVisionModel', ] if TYPE_CHECKING: from .configuration_instructblip import ( INSTRUCTBLIP_PRETRAINED_CONFIG_ARCHIVE_MAP, InstructBlipConfig, InstructBlipQFormerConfig, InstructBlipVisionConfig, ) from .processing_instructblip import InstructBlipProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_instructblip import ( INSTRUCTBLIP_PRETRAINED_MODEL_ARCHIVE_LIST, InstructBlipForConditionalGeneration, InstructBlipPreTrainedModel, InstructBlipQFormerModel, InstructBlipVisionModel, ) else: import sys a_ = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
25
1
from ..utils import DummyObject, requires_backends class _UpperCamelCase ( metaclass=__A ): '''simple docstring''' lowerCamelCase__ =['torch', 'torchsde'] def __init__( self : Optional[int] , *a : Optional[Any] , **a : Any ) -> List[Any]: """simple docstring""" requires_backends(self , ["torch", "torchsde"] ) @classmethod def __UpperCamelCase ( cls : List[str] , *a : int , **a : Tuple ) -> int: """simple docstring""" requires_backends(cls , ["torch", "torchsde"] ) @classmethod def __UpperCamelCase ( cls : Optional[Any] , *a : Dict , **a : Optional[int] ) -> Tuple: """simple docstring""" requires_backends(cls , ["torch", "torchsde"] )
25
from __future__ import annotations def lowerCamelCase__ ( _a): SCREAMING_SNAKE_CASE : Optional[Any] = 2 SCREAMING_SNAKE_CASE : Optional[int] = [] while i * i <= n: if n % i: i += 1 else: n //= i factors.append(_a) if n > 1: factors.append(_a) return factors if __name__ == "__main__": import doctest doctest.testmod()
25
1
import contextlib from multiprocessing import Pool, RLock from tqdm.auto import tqdm from ..utils import experimental, logging a_ = logging.get_logger(__name__) class _UpperCamelCase : '''simple docstring''' lowerCamelCase__ =None @experimental def lowerCamelCase__ ( _a , _a , _a , _a , _a , _a , _a): if ParallelBackendConfig.backend_name is None: return _map_with_multiprocessing_pool( _a , _a , _a , _a , _a , _a , _a) return _map_with_joblib(_a , _a , _a , _a , _a , _a , _a) def lowerCamelCase__ ( _a , _a , _a , _a , _a , _a , _a): SCREAMING_SNAKE_CASE : Dict = num_proc if num_proc <= len(_a) else len(_a) SCREAMING_SNAKE_CASE : Optional[int] = [] # We organize the splits ourselve (contiguous splits) for index in range(_a): SCREAMING_SNAKE_CASE : Any = len(_a) // num_proc SCREAMING_SNAKE_CASE : int = len(_a) % num_proc SCREAMING_SNAKE_CASE : List[Any] = div * index + min(_a , _a) SCREAMING_SNAKE_CASE : List[str] = start + div + (1 if index < mod else 0) split_kwds.append((function, iterable[start:end], types, index, disable_tqdm, desc)) if len(_a) != sum(len(i[1]) for i in split_kwds): raise ValueError( f"Error dividing inputs iterable among processes. " f"Total number of objects {len(_a)}, " f"length: {sum(len(i[1]) for i in split_kwds)}") logger.info( f"Spawning {num_proc} processes for {len(_a)} objects in slices of {[len(i[1]) for i in split_kwds]}") SCREAMING_SNAKE_CASE ,SCREAMING_SNAKE_CASE : Union[str, Any] = None, None if not disable_tqdm: SCREAMING_SNAKE_CASE ,SCREAMING_SNAKE_CASE : Optional[int] = (RLock(),), tqdm.set_lock with Pool(_a , initargs=_a , initializer=_a) as pool: SCREAMING_SNAKE_CASE : List[str] = pool.map(_a , _a) logger.info(f"Finished {num_proc} processes") SCREAMING_SNAKE_CASE : str = [obj for proc_res in mapped for obj in proc_res] logger.info(f"Unpacked {len(_a)} objects") return mapped def lowerCamelCase__ ( _a , _a , _a , _a , _a , _a , _a): # progress bar is not yet supported for _map_with_joblib, because tqdm couldn't accurately be applied to joblib, # and it requires monkey-patching joblib internal classes which is subject to change import joblib with joblib.parallel_backend(ParallelBackendConfig.backend_name , n_jobs=_a): return joblib.Parallel()( joblib.delayed(_a)((function, obj, types, None, True, None)) for obj in iterable) @experimental @contextlib.contextmanager def lowerCamelCase__ ( _a): SCREAMING_SNAKE_CASE : int = backend_name if backend_name == "spark": from joblibspark import register_spark register_spark() # TODO: call create_cache_and_write_probe if "download" in steps # TODO: raise NotImplementedError when Dataset.map etc is called try: yield finally: SCREAMING_SNAKE_CASE : Optional[int] = None
25
from math import factorial, pi def lowerCamelCase__ ( _a , _a = 30): if not isinstance(_a , (int, float)): raise ValueError("maclaurin_sin() requires either an int or float for theta") if not isinstance(_a , _a) or accuracy <= 0: raise ValueError("maclaurin_sin() requires a positive int for accuracy") SCREAMING_SNAKE_CASE : int = float(_a) SCREAMING_SNAKE_CASE : Dict = theta // (2 * pi) theta -= 2 * div * pi return sum( (-1) ** r * theta ** (2 * r + 1) / factorial(2 * r + 1) for r in range(_a)) def lowerCamelCase__ ( _a , _a = 30): if not isinstance(_a , (int, float)): raise ValueError("maclaurin_cos() requires either an int or float for theta") if not isinstance(_a , _a) or accuracy <= 0: raise ValueError("maclaurin_cos() requires a positive int for accuracy") SCREAMING_SNAKE_CASE : str = float(_a) SCREAMING_SNAKE_CASE : Any = theta // (2 * pi) theta -= 2 * div * pi return sum((-1) ** r * theta ** (2 * r) / factorial(2 * r) for r in range(_a)) if __name__ == "__main__": import doctest doctest.testmod() print(maclaurin_sin(10)) print(maclaurin_sin(-10)) print(maclaurin_sin(10, 15)) print(maclaurin_sin(-10, 15)) print(maclaurin_cos(5)) print(maclaurin_cos(-5)) print(maclaurin_cos(10, 15)) print(maclaurin_cos(-10, 15))
25
1
from __future__ import annotations def lowerCamelCase__ ( _a): if len(_a) == 0: return [] SCREAMING_SNAKE_CASE ,SCREAMING_SNAKE_CASE : Tuple = min(_a), max(_a) SCREAMING_SNAKE_CASE : Dict = int(max_value - min_value) + 1 SCREAMING_SNAKE_CASE : list[list] = [[] for _ in range(_a)] for i in my_list: buckets[int(i - min_value)].append(_a) return [v for bucket in buckets for v in sorted(_a)] if __name__ == "__main__": from doctest import testmod testmod() assert bucket_sort([4, 5, 3, 2, 1]) == [1, 2, 3, 4, 5] assert bucket_sort([0, 1, -10, 15, 2, -2]) == [-10, -2, 0, 1, 2, 15]
25
from __future__ import annotations import math class _UpperCamelCase : '''simple docstring''' def __init__( self : Dict , a : int ) -> None: """simple docstring""" SCREAMING_SNAKE_CASE : Dict = size # approximate the overall size of segment tree with given value SCREAMING_SNAKE_CASE : Any = [0 for i in range(0 , 4 * size )] # create array to store lazy update SCREAMING_SNAKE_CASE : Union[str, Any] = [0 for i in range(0 , 4 * size )] SCREAMING_SNAKE_CASE : Any = [0 for i in range(0 , 4 * size )] # flag for lazy update def __UpperCamelCase ( self : Tuple , a : int ) -> int: """simple docstring""" return idx * 2 def __UpperCamelCase ( self : str , a : int ) -> int: """simple docstring""" return idx * 2 + 1 def __UpperCamelCase ( self : int , a : int , a : int , a : int , a : list[int] ) -> None: """simple docstring""" if left_element == right_element: SCREAMING_SNAKE_CASE : int = a[left_element - 1] else: SCREAMING_SNAKE_CASE : Optional[int] = (left_element + right_element) // 2 self.build(self.left(a ) , a , a , a ) self.build(self.right(a ) , mid + 1 , a , a ) SCREAMING_SNAKE_CASE : List[Any] = max( self.segment_tree[self.left(a )] , self.segment_tree[self.right(a )] ) def __UpperCamelCase ( self : Optional[Any] , a : int , a : int , a : int , a : int , a : int , a : int ) -> bool: """simple docstring""" if self.flag[idx] is True: SCREAMING_SNAKE_CASE : Any = self.lazy[idx] SCREAMING_SNAKE_CASE : List[str] = False if left_element != right_element: SCREAMING_SNAKE_CASE : Optional[Any] = self.lazy[idx] SCREAMING_SNAKE_CASE : int = self.lazy[idx] SCREAMING_SNAKE_CASE : Any = True SCREAMING_SNAKE_CASE : List[Any] = True if right_element < a or left_element > b: return True if left_element >= a and right_element <= b: SCREAMING_SNAKE_CASE : Optional[Any] = val if left_element != right_element: SCREAMING_SNAKE_CASE : str = val SCREAMING_SNAKE_CASE : str = val SCREAMING_SNAKE_CASE : Tuple = True SCREAMING_SNAKE_CASE : Optional[Any] = True return True SCREAMING_SNAKE_CASE : int = (left_element + right_element) // 2 self.update(self.left(a ) , a , a , a , a , a ) self.update(self.right(a ) , mid + 1 , a , a , a , a ) SCREAMING_SNAKE_CASE : Optional[int] = max( self.segment_tree[self.left(a )] , self.segment_tree[self.right(a )] ) return True def __UpperCamelCase ( self : Dict , a : int , a : int , a : int , a : int , a : int ) -> int | float: """simple docstring""" if self.flag[idx] is True: SCREAMING_SNAKE_CASE : int = self.lazy[idx] SCREAMING_SNAKE_CASE : List[Any] = False if left_element != right_element: SCREAMING_SNAKE_CASE : Optional[Any] = self.lazy[idx] SCREAMING_SNAKE_CASE : Optional[Any] = self.lazy[idx] SCREAMING_SNAKE_CASE : Optional[Any] = True SCREAMING_SNAKE_CASE : Union[str, Any] = True if right_element < a or left_element > b: return -math.inf if left_element >= a and right_element <= b: return self.segment_tree[idx] SCREAMING_SNAKE_CASE : Dict = (left_element + right_element) // 2 SCREAMING_SNAKE_CASE : Tuple = self.query(self.left(a ) , a , a , a , a ) SCREAMING_SNAKE_CASE : Tuple = self.query(self.right(a ) , mid + 1 , a , a , a ) return max(a , a ) def __str__( self : str ) -> str: """simple docstring""" return str([self.query(1 , 1 , self.size , a , a ) for i in range(1 , self.size + 1 )] ) if __name__ == "__main__": a_ = [1, 2, -4, 7, 3, -5, 6, 11, -20, 9, 14, 15, 5, 2, -8] a_ = 15 a_ = SegmentTree(size) segt.build(1, 1, size, A) print(segt.query(1, 1, size, 4, 6)) print(segt.query(1, 1, size, 7, 11)) print(segt.query(1, 1, size, 7, 12)) segt.update(1, 1, size, 1, 3, 111) print(segt.query(1, 1, size, 1, 15)) segt.update(1, 1, size, 7, 8, 235) print(segt)
25
1
class _UpperCamelCase : '''simple docstring''' def __init__( self : Union[str, Any] , a : int ) -> Dict: """simple docstring""" SCREAMING_SNAKE_CASE : Optional[Any] = n SCREAMING_SNAKE_CASE : str = [None] * self.n SCREAMING_SNAKE_CASE : List[str] = 0 # index of the first element SCREAMING_SNAKE_CASE : Tuple = 0 SCREAMING_SNAKE_CASE : str = 0 def __len__( self : Union[str, Any] ) -> int: """simple docstring""" return self.size def __UpperCamelCase ( self : Any ) -> bool: """simple docstring""" return self.size == 0 def __UpperCamelCase ( self : Union[str, Any] ) -> Dict: """simple docstring""" return False if self.is_empty() else self.array[self.front] def __UpperCamelCase ( self : Tuple , a : Union[str, Any] ) -> Union[str, Any]: """simple docstring""" if self.size >= self.n: raise Exception("QUEUE IS FULL" ) SCREAMING_SNAKE_CASE : Union[str, Any] = data SCREAMING_SNAKE_CASE : Optional[Any] = (self.rear + 1) % self.n self.size += 1 return self def __UpperCamelCase ( self : Union[str, Any] ) -> Dict: """simple docstring""" if self.size == 0: raise Exception("UNDERFLOW" ) SCREAMING_SNAKE_CASE : Tuple = self.array[self.front] SCREAMING_SNAKE_CASE : List[str] = None SCREAMING_SNAKE_CASE : Any = (self.front + 1) % self.n self.size -= 1 return temp
25
import gc import unittest import numpy as np import torch from diffusers import StableDiffusionKDiffusionPipeline from diffusers.utils import slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu enable_full_determinism() @slow @require_torch_gpu class _UpperCamelCase ( unittest.TestCase ): '''simple docstring''' def __UpperCamelCase ( self : Dict ) -> Tuple: """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() def __UpperCamelCase ( self : Optional[int] ) -> int: """simple docstring""" SCREAMING_SNAKE_CASE : Optional[Any] = StableDiffusionKDiffusionPipeline.from_pretrained("CompVis/stable-diffusion-v1-4" ) SCREAMING_SNAKE_CASE : str = sd_pipe.to(a ) sd_pipe.set_progress_bar_config(disable=a ) sd_pipe.set_scheduler("sample_euler" ) SCREAMING_SNAKE_CASE : Optional[int] = "A painting of a squirrel eating a burger" SCREAMING_SNAKE_CASE : Any = torch.manual_seed(0 ) SCREAMING_SNAKE_CASE : List[Any] = sd_pipe([prompt] , generator=a , guidance_scale=9.0 , num_inference_steps=20 , output_type="np" ) SCREAMING_SNAKE_CASE : Tuple = output.images SCREAMING_SNAKE_CASE : Any = image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) SCREAMING_SNAKE_CASE : Union[str, Any] = np.array([0.0447, 0.0492, 0.0468, 0.0408, 0.0383, 0.0408, 0.0354, 0.0380, 0.0339] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def __UpperCamelCase ( self : List[Any] ) -> Optional[int]: """simple docstring""" SCREAMING_SNAKE_CASE : int = StableDiffusionKDiffusionPipeline.from_pretrained("stabilityai/stable-diffusion-2-1-base" ) SCREAMING_SNAKE_CASE : Tuple = sd_pipe.to(a ) sd_pipe.set_progress_bar_config(disable=a ) sd_pipe.set_scheduler("sample_euler" ) SCREAMING_SNAKE_CASE : List[str] = "A painting of a squirrel eating a burger" SCREAMING_SNAKE_CASE : List[str] = torch.manual_seed(0 ) SCREAMING_SNAKE_CASE : Union[str, Any] = sd_pipe([prompt] , generator=a , guidance_scale=9.0 , num_inference_steps=20 , output_type="np" ) SCREAMING_SNAKE_CASE : List[Any] = output.images SCREAMING_SNAKE_CASE : Tuple = image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) SCREAMING_SNAKE_CASE : int = np.array([0.1237, 0.1320, 0.1438, 0.1359, 0.1390, 0.1132, 0.1277, 0.1175, 0.1112] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 5e-1 def __UpperCamelCase ( self : Tuple ) -> List[Any]: """simple docstring""" SCREAMING_SNAKE_CASE : Dict = StableDiffusionKDiffusionPipeline.from_pretrained("stabilityai/stable-diffusion-2-1-base" ) SCREAMING_SNAKE_CASE : Union[str, Any] = sd_pipe.to(a ) sd_pipe.set_progress_bar_config(disable=a ) sd_pipe.set_scheduler("sample_dpmpp_2m" ) SCREAMING_SNAKE_CASE : str = "A painting of a squirrel eating a burger" SCREAMING_SNAKE_CASE : Any = torch.manual_seed(0 ) SCREAMING_SNAKE_CASE : str = sd_pipe( [prompt] , generator=a , guidance_scale=7.5 , num_inference_steps=15 , output_type="np" , use_karras_sigmas=a , ) SCREAMING_SNAKE_CASE : str = output.images SCREAMING_SNAKE_CASE : Optional[int] = image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) SCREAMING_SNAKE_CASE : int = np.array( [0.1138_1689, 0.1211_2921, 0.138_9457, 0.1254_9606, 0.124_4964, 0.1083_1517, 0.1156_2866, 0.1086_7816, 0.1049_9048] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
25
1
def lowerCamelCase__ ( _a): if len(_a) <= 1: return lst SCREAMING_SNAKE_CASE : List[str] = 1 while i < len(_a): if lst[i - 1] <= lst[i]: i += 1 else: SCREAMING_SNAKE_CASE ,SCREAMING_SNAKE_CASE : List[str] = lst[i], lst[i - 1] i -= 1 if i == 0: SCREAMING_SNAKE_CASE : Optional[Any] = 1 return lst if __name__ == "__main__": a_ = input('Enter numbers separated by a comma:\n').strip() a_ = [int(item) for item in user_input.split(',')] print(gnome_sort(unsorted))
25
import unittest import numpy as np from diffusers import LMSDiscreteScheduler, OnnxStableDiffusionInpaintPipeline from diffusers.utils.testing_utils import ( is_onnx_available, load_image, nightly, require_onnxruntime, require_torch_gpu, ) from ..test_pipelines_onnx_common import OnnxPipelineTesterMixin if is_onnx_available(): import onnxruntime as ort class _UpperCamelCase ( __A , unittest.TestCase ): '''simple docstring''' pass @nightly @require_onnxruntime @require_torch_gpu class _UpperCamelCase ( unittest.TestCase ): '''simple docstring''' @property def __UpperCamelCase ( self : List[Any] ) -> List[str]: """simple docstring""" return ( "CUDAExecutionProvider", { "gpu_mem_limit": "15000000000", # 15GB "arena_extend_strategy": "kSameAsRequested", }, ) @property def __UpperCamelCase ( self : int ) -> Optional[Any]: """simple docstring""" SCREAMING_SNAKE_CASE : Optional[Any] = ort.SessionOptions() SCREAMING_SNAKE_CASE : Union[str, Any] = False return options def __UpperCamelCase ( self : List[Any] ) -> List[Any]: """simple docstring""" SCREAMING_SNAKE_CASE : Any = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/in_paint/overture-creations-5sI6fQgYIuo.png" ) SCREAMING_SNAKE_CASE : Optional[Any] = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/in_paint/overture-creations-5sI6fQgYIuo_mask.png" ) SCREAMING_SNAKE_CASE : int = OnnxStableDiffusionInpaintPipeline.from_pretrained( "runwayml/stable-diffusion-inpainting" , revision="onnx" , safety_checker=a , feature_extractor=a , provider=self.gpu_provider , sess_options=self.gpu_options , ) pipe.set_progress_bar_config(disable=a ) SCREAMING_SNAKE_CASE : Optional[Any] = "A red cat sitting on a park bench" SCREAMING_SNAKE_CASE : Tuple = np.random.RandomState(0 ) SCREAMING_SNAKE_CASE : Optional[int] = pipe( prompt=a , image=a , mask_image=a , guidance_scale=7.5 , num_inference_steps=10 , generator=a , output_type="np" , ) SCREAMING_SNAKE_CASE : List[Any] = output.images SCREAMING_SNAKE_CASE : Union[str, Any] = images[0, 255:258, 255:258, -1] assert images.shape == (1, 512, 512, 3) SCREAMING_SNAKE_CASE : int = np.array([0.2514, 0.3007, 0.3517, 0.1790, 0.2382, 0.3167, 0.1944, 0.2273, 0.2464] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3 def __UpperCamelCase ( self : List[Any] ) -> Tuple: """simple docstring""" SCREAMING_SNAKE_CASE : int = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/in_paint/overture-creations-5sI6fQgYIuo.png" ) SCREAMING_SNAKE_CASE : Optional[Any] = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/in_paint/overture-creations-5sI6fQgYIuo_mask.png" ) SCREAMING_SNAKE_CASE : Optional[Any] = LMSDiscreteScheduler.from_pretrained( "runwayml/stable-diffusion-inpainting" , subfolder="scheduler" , revision="onnx" ) SCREAMING_SNAKE_CASE : Union[str, Any] = OnnxStableDiffusionInpaintPipeline.from_pretrained( "runwayml/stable-diffusion-inpainting" , revision="onnx" , scheduler=a , safety_checker=a , feature_extractor=a , provider=self.gpu_provider , sess_options=self.gpu_options , ) pipe.set_progress_bar_config(disable=a ) SCREAMING_SNAKE_CASE : List[Any] = "A red cat sitting on a park bench" SCREAMING_SNAKE_CASE : Dict = np.random.RandomState(0 ) SCREAMING_SNAKE_CASE : Tuple = pipe( prompt=a , image=a , mask_image=a , guidance_scale=7.5 , num_inference_steps=20 , generator=a , output_type="np" , ) SCREAMING_SNAKE_CASE : List[str] = output.images SCREAMING_SNAKE_CASE : Optional[int] = images[0, 255:258, 255:258, -1] assert images.shape == (1, 512, 512, 3) SCREAMING_SNAKE_CASE : Any = np.array([0.0086, 0.0077, 0.0083, 0.0093, 0.0107, 0.0139, 0.0094, 0.0097, 0.0125] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3
25
1
from pathlib import Path from typing import List from transformers import is_torch_available, is_vision_available from transformers.testing_utils import get_tests_dir, is_tool_test from transformers.tools.agent_types import AGENT_TYPE_MAPPING, AgentAudio, AgentImage, AgentText if is_torch_available(): import torch if is_vision_available(): from PIL import Image a_ = ['text', 'image', 'audio'] def lowerCamelCase__ ( _a): SCREAMING_SNAKE_CASE : List[str] = [] for input_type in input_types: if input_type == "text": inputs.append("Text input") elif input_type == "image": inputs.append( Image.open(Path(get_tests_dir("fixtures/tests_samples/COCO")) / "000000039769.png").resize((512, 512))) elif input_type == "audio": inputs.append(torch.ones(3000)) elif isinstance(_a , _a): inputs.append(create_inputs(_a)) else: raise ValueError(f"Invalid type requested: {input_type}") return inputs def lowerCamelCase__ ( _a): SCREAMING_SNAKE_CASE : List[Any] = [] for output in outputs: if isinstance(_a , (str, AgentText)): output_types.append("text") elif isinstance(_a , (Image.Image, AgentImage)): output_types.append("image") elif isinstance(_a , (torch.Tensor, AgentAudio)): output_types.append("audio") else: raise ValueError(f"Invalid output: {output}") return output_types @is_tool_test class _UpperCamelCase : '''simple docstring''' def __UpperCamelCase ( self : Dict ) -> List[Any]: """simple docstring""" self.assertTrue(hasattr(self.tool , "inputs" ) ) self.assertTrue(hasattr(self.tool , "outputs" ) ) SCREAMING_SNAKE_CASE : List[str] = self.tool.inputs for _input in inputs: if isinstance(_input , a ): for __input in _input: self.assertTrue(__input in authorized_types ) else: self.assertTrue(_input in authorized_types ) SCREAMING_SNAKE_CASE : Optional[Any] = self.tool.outputs for _output in outputs: self.assertTrue(_output in authorized_types ) def __UpperCamelCase ( self : List[str] ) -> List[str]: """simple docstring""" SCREAMING_SNAKE_CASE : List[str] = create_inputs(self.tool.inputs ) SCREAMING_SNAKE_CASE : Dict = self.tool(*a ) # There is a single output if len(self.tool.outputs ) == 1: SCREAMING_SNAKE_CASE : Union[str, Any] = [outputs] self.assertListEqual(output_types(a ) , self.tool.outputs ) def __UpperCamelCase ( self : List[str] ) -> int: """simple docstring""" self.assertTrue(hasattr(self.tool , "description" ) ) self.assertTrue(hasattr(self.tool , "default_checkpoint" ) ) self.assertTrue(self.tool.description.startswith("This is a tool that" ) ) def __UpperCamelCase ( self : str ) -> Dict: """simple docstring""" SCREAMING_SNAKE_CASE : Optional[int] = create_inputs(self.tool.inputs ) SCREAMING_SNAKE_CASE : Any = self.tool(*a ) if not isinstance(a , a ): SCREAMING_SNAKE_CASE : Dict = [outputs] self.assertEqual(len(a ) , len(self.tool.outputs ) ) for output, output_type in zip(a , self.tool.outputs ): SCREAMING_SNAKE_CASE : Any = AGENT_TYPE_MAPPING[output_type] self.assertTrue(isinstance(a , a ) ) def __UpperCamelCase ( self : List[str] ) -> List[Any]: """simple docstring""" SCREAMING_SNAKE_CASE : List[str] = create_inputs(self.tool.inputs ) SCREAMING_SNAKE_CASE : List[Any] = [] for _input, input_type in zip(a , self.tool.inputs ): if isinstance(a , a ): _inputs.append([AGENT_TYPE_MAPPING[_input_type](_input ) for _input_type in input_type] ) else: _inputs.append(AGENT_TYPE_MAPPING[input_type](_input ) ) # Should not raise an error SCREAMING_SNAKE_CASE : Tuple = self.tool(*a ) if not isinstance(a , a ): SCREAMING_SNAKE_CASE : List[str] = [outputs] self.assertEqual(len(a ) , len(self.tool.outputs ) )
25
from operator import delitem, getitem, setitem import pytest from data_structures.hashing.hash_map import HashMap def lowerCamelCase__ ( _a): return getitem, k def lowerCamelCase__ ( _a , _a): return setitem, k, v def lowerCamelCase__ ( _a): return delitem, k def lowerCamelCase__ ( _a , _a , *_a): try: return fun(_a , *_a), None except Exception as e: return None, e a_ = ( _set('key_a', 'val_a'), _set('key_b', 'val_b'), ) a_ = [ _set('key_a', 'val_a'), _set('key_a', 'val_b'), ] a_ = [ _set('key_a', 'val_a'), _set('key_b', 'val_b'), _del('key_a'), _del('key_b'), _set('key_a', 'val_a'), _del('key_a'), ] a_ = [ _get('key_a'), _del('key_a'), _set('key_a', 'val_a'), _del('key_a'), _del('key_a'), _get('key_a'), ] a_ = [ *[_set(x, x) for x in range(5)], # guaranteed upsize ] a_ = [ *[_set(x, x) for x in range(5)], # guaranteed upsize *[_del(x) for x in range(5)], _set('key_a', 'val_b'), ] @pytest.mark.parametrize( "operations" , ( pytest.param(_add_items , id="add items"), pytest.param(_overwrite_items , id="overwrite items"), pytest.param(_delete_items , id="delete items"), pytest.param(_access_absent_items , id="access absent items"), pytest.param(_add_with_resize_up , id="add with resize up"), pytest.param(_add_with_resize_down , id="add with resize down"), ) , ) def lowerCamelCase__ ( _a): SCREAMING_SNAKE_CASE : Dict = HashMap(initial_block_size=4) SCREAMING_SNAKE_CASE : List[str] = {} for _, (fun, *args) in enumerate(_a): SCREAMING_SNAKE_CASE ,SCREAMING_SNAKE_CASE : Union[str, Any] = _run_operation(_a , _a , *_a) SCREAMING_SNAKE_CASE ,SCREAMING_SNAKE_CASE : List[Any] = _run_operation(_a , _a , *_a) assert my_res == py_res assert str(_a) == str(_a) assert set(_a) == set(_a) assert len(_a) == len(_a) assert set(my.items()) == set(py.items()) def lowerCamelCase__ ( ): def is_public(_a) -> bool: return not name.startswith("_") SCREAMING_SNAKE_CASE : List[str] = {name for name in dir({}) if is_public(_a)} SCREAMING_SNAKE_CASE : Union[str, Any] = {name for name in dir(HashMap()) if is_public(_a)} assert dict_public_names > hash_public_names
25
1
def lowerCamelCase__ ( _a = 10**12): SCREAMING_SNAKE_CASE : Tuple = 1 SCREAMING_SNAKE_CASE : Dict = 0 SCREAMING_SNAKE_CASE : Optional[int] = 1 SCREAMING_SNAKE_CASE : Optional[Any] = 1 while numerator <= 2 * min_total - 1: prev_numerator += 2 * numerator numerator += 2 * prev_numerator prev_denominator += 2 * denominator denominator += 2 * prev_denominator return (denominator + 1) // 2 if __name__ == "__main__": print(F'''{solution() = }''')
25
from typing import TYPE_CHECKING from ....utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available a_ = {'configuration_van': ['VAN_PRETRAINED_CONFIG_ARCHIVE_MAP', 'VanConfig']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a_ = [ 'VAN_PRETRAINED_MODEL_ARCHIVE_LIST', 'VanForImageClassification', 'VanModel', 'VanPreTrainedModel', ] if TYPE_CHECKING: from .configuration_van import VAN_PRETRAINED_CONFIG_ARCHIVE_MAP, VanConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_van import ( VAN_PRETRAINED_MODEL_ARCHIVE_LIST, VanForImageClassification, VanModel, VanPreTrainedModel, ) else: import sys a_ = _LazyModule(__name__, globals()['__file__'], _import_structure)
25
1
from PIL import Image def lowerCamelCase__ ( _a , _a): SCREAMING_SNAKE_CASE : List[Any] = (259 * (level + 255)) / (255 * (259 - level)) def contrast(_a) -> int: return int(128 + factor * (c - 128)) return img.point(_a) if __name__ == "__main__": # Load image with Image.open('image_data/lena.jpg') as img: # Change contrast to 170 a_ = change_contrast(img, 170) cont_img.save('image_data/lena_high_contrast.png', format='png')
25
from __future__ import annotations def lowerCamelCase__ ( _a): if len(_a) == 0: return [] SCREAMING_SNAKE_CASE ,SCREAMING_SNAKE_CASE : Tuple = min(_a), max(_a) SCREAMING_SNAKE_CASE : Dict = int(max_value - min_value) + 1 SCREAMING_SNAKE_CASE : list[list] = [[] for _ in range(_a)] for i in my_list: buckets[int(i - min_value)].append(_a) return [v for bucket in buckets for v in sorted(_a)] if __name__ == "__main__": from doctest import testmod testmod() assert bucket_sort([4, 5, 3, 2, 1]) == [1, 2, 3, 4, 5] assert bucket_sort([0, 1, -10, 15, 2, -2]) == [-10, -2, 0, 1, 2, 15]
25
1
import unittest from transformers import is_torch_available from transformers.testing_utils import require_torch if is_torch_available(): import torch from transformers.activations import gelu_new, gelu_python, get_activation @require_torch class _UpperCamelCase ( unittest.TestCase ): '''simple docstring''' def __UpperCamelCase ( self : Union[str, Any] ) -> Any: """simple docstring""" SCREAMING_SNAKE_CASE : Dict = torch.tensor([-100, -1, -0.1, 0, 0.1, 1.0, 100] ) SCREAMING_SNAKE_CASE : Dict = get_activation("gelu" ) self.assertTrue(torch.allclose(gelu_python(a ) , torch_builtin(a ) ) ) self.assertFalse(torch.allclose(gelu_python(a ) , gelu_new(a ) ) ) def __UpperCamelCase ( self : List[Any] ) -> List[Any]: """simple docstring""" SCREAMING_SNAKE_CASE : List[Any] = torch.tensor([-100, -1, -0.1, 0, 0.1, 1.0, 100] ) SCREAMING_SNAKE_CASE : int = get_activation("gelu" ) SCREAMING_SNAKE_CASE : str = get_activation("gelu_10" ) SCREAMING_SNAKE_CASE : Optional[Any] = torch_builtin(a ) SCREAMING_SNAKE_CASE : Union[str, Any] = geluaa(a ) SCREAMING_SNAKE_CASE : Optional[int] = torch.where(y_gelu_aa < 10.0 , 1 , 0 ) self.assertTrue(torch.max(a ).item() == 10.0 ) self.assertTrue(torch.allclose(y_gelu * clipped_mask , y_gelu_aa * clipped_mask ) ) def __UpperCamelCase ( self : Optional[int] ) -> Union[str, Any]: """simple docstring""" get_activation("gelu" ) get_activation("gelu_10" ) get_activation("gelu_fast" ) get_activation("gelu_new" ) get_activation("gelu_python" ) get_activation("gelu_pytorch_tanh" ) get_activation("linear" ) get_activation("mish" ) get_activation("quick_gelu" ) get_activation("relu" ) get_activation("sigmoid" ) get_activation("silu" ) get_activation("swish" ) get_activation("tanh" ) with self.assertRaises(a ): get_activation("bogus" ) with self.assertRaises(a ): get_activation(a ) def __UpperCamelCase ( self : Optional[Any] ) -> Optional[int]: """simple docstring""" SCREAMING_SNAKE_CASE : str = get_activation("gelu" ) SCREAMING_SNAKE_CASE : Dict = 1 SCREAMING_SNAKE_CASE : Optional[Any] = get_activation("gelu" ) self.assertEqual(acta.a , 1 ) with self.assertRaises(a ): SCREAMING_SNAKE_CASE : Union[str, Any] = acta.a
25
a_ = frozenset( [ 'prompt', 'height', 'width', 'guidance_scale', 'negative_prompt', 'prompt_embeds', 'negative_prompt_embeds', 'cross_attention_kwargs', ] ) a_ = frozenset(['prompt', 'negative_prompt']) a_ = frozenset([]) a_ = frozenset(['image']) a_ = frozenset( [ 'image', 'height', 'width', 'guidance_scale', ] ) a_ = frozenset(['image']) a_ = frozenset( [ 'prompt', 'image', 'height', 'width', 'guidance_scale', 'negative_prompt', 'prompt_embeds', 'negative_prompt_embeds', ] ) a_ = frozenset(['prompt', 'image', 'negative_prompt']) a_ = frozenset( [ # Text guided image variation with an image mask 'prompt', 'image', 'mask_image', 'height', 'width', 'guidance_scale', 'negative_prompt', 'prompt_embeds', 'negative_prompt_embeds', ] ) a_ = frozenset(['prompt', 'image', 'mask_image', 'negative_prompt']) a_ = frozenset( [ # image variation with an image mask 'image', 'mask_image', 'height', 'width', 'guidance_scale', ] ) a_ = frozenset(['image', 'mask_image']) a_ = frozenset( [ 'example_image', 'image', 'mask_image', 'height', 'width', 'guidance_scale', ] ) a_ = frozenset(['example_image', 'image', 'mask_image']) a_ = frozenset(['class_labels']) a_ = frozenset(['class_labels']) a_ = frozenset(['batch_size']) a_ = frozenset([]) a_ = frozenset(['batch_size']) a_ = frozenset([]) a_ = frozenset( [ 'prompt', 'audio_length_in_s', 'guidance_scale', 'negative_prompt', 'prompt_embeds', 'negative_prompt_embeds', 'cross_attention_kwargs', ] ) a_ = frozenset(['prompt', 'negative_prompt']) a_ = frozenset(['input_tokens']) a_ = frozenset(['input_tokens'])
25
1
from unittest.mock import patch import pyspark from datasets.packaged_modules.spark.spark import ( Spark, SparkExamplesIterable, _generate_iterable_examples, ) from ..utils import ( require_dill_gt_0_3_2, require_not_windows, ) def lowerCamelCase__ ( _a , _a): SCREAMING_SNAKE_CASE : Optional[int] = [] for part_id in partition_order: SCREAMING_SNAKE_CASE : str = df.where(f"SPARK_PARTITION_ID() = {part_id}").collect() for row_idx, row in enumerate(_a): expected_row_ids_and_row_dicts.append((f"{part_id}_{row_idx}", row.asDict())) return expected_row_ids_and_row_dicts @require_not_windows @require_dill_gt_0_3_2 def lowerCamelCase__ ( ): SCREAMING_SNAKE_CASE : str = pyspark.sql.SparkSession.builder.master("local[*]").appName("pyspark").getOrCreate() SCREAMING_SNAKE_CASE : Union[str, Any] = spark.range(100).repartition(1) SCREAMING_SNAKE_CASE : Dict = Spark(_a) # The id ints will be converted to Pyarrow int64s, so each row will be 8 bytes. Setting a max_shard_size of 16 means # that each partition can hold 2 rows. spark_builder._repartition_df_if_needed(max_shard_size=16) # Given that the dataframe has 100 rows and each partition has 2 rows, we expect 50 partitions. assert spark_builder.df.rdd.getNumPartitions() == 50 @require_not_windows @require_dill_gt_0_3_2 def lowerCamelCase__ ( ): SCREAMING_SNAKE_CASE : Tuple = pyspark.sql.SparkSession.builder.master("local[*]").appName("pyspark").getOrCreate() SCREAMING_SNAKE_CASE : Any = spark.range(10).repartition(2) SCREAMING_SNAKE_CASE : Tuple = [1, 0] SCREAMING_SNAKE_CASE : Union[str, Any] = _generate_iterable_examples(_a , _a) # Reverse the partitions. SCREAMING_SNAKE_CASE : Optional[Any] = _get_expected_row_ids_and_row_dicts_for_partition_order(_a , _a) for i, (row_id, row_dict) in enumerate(generate_fn()): SCREAMING_SNAKE_CASE ,SCREAMING_SNAKE_CASE : Optional[Any] = expected_row_ids_and_row_dicts[i] assert row_id == expected_row_id assert row_dict == expected_row_dict @require_not_windows @require_dill_gt_0_3_2 def lowerCamelCase__ ( ): SCREAMING_SNAKE_CASE : Optional[int] = pyspark.sql.SparkSession.builder.master("local[*]").appName("pyspark").getOrCreate() SCREAMING_SNAKE_CASE : List[Any] = spark.range(10).repartition(1) SCREAMING_SNAKE_CASE : Tuple = SparkExamplesIterable(_a) assert it.n_shards == 1 for i, (row_id, row_dict) in enumerate(_a): assert row_id == f"0_{i}" assert row_dict == {"id": i} @require_not_windows @require_dill_gt_0_3_2 def lowerCamelCase__ ( ): SCREAMING_SNAKE_CASE : int = pyspark.sql.SparkSession.builder.master("local[*]").appName("pyspark").getOrCreate() SCREAMING_SNAKE_CASE : int = spark.range(30).repartition(3) # Mock the generator so that shuffle reverses the partition indices. with patch("numpy.random.Generator") as generator_mock: SCREAMING_SNAKE_CASE : int = lambda _a: x.reverse() SCREAMING_SNAKE_CASE : List[Any] = _get_expected_row_ids_and_row_dicts_for_partition_order(_a , [2, 1, 0]) SCREAMING_SNAKE_CASE : str = SparkExamplesIterable(_a).shuffle_data_sources(_a) assert shuffled_it.n_shards == 3 for i, (row_id, row_dict) in enumerate(_a): SCREAMING_SNAKE_CASE ,SCREAMING_SNAKE_CASE : Optional[int] = expected_row_ids_and_row_dicts[i] assert row_id == expected_row_id assert row_dict == expected_row_dict @require_not_windows @require_dill_gt_0_3_2 def lowerCamelCase__ ( ): SCREAMING_SNAKE_CASE : Optional[int] = pyspark.sql.SparkSession.builder.master("local[*]").appName("pyspark").getOrCreate() SCREAMING_SNAKE_CASE : Optional[Any] = spark.range(20).repartition(4) # Partitions 0 and 2 SCREAMING_SNAKE_CASE : int = SparkExamplesIterable(_a).shard_data_sources(worker_id=0 , num_workers=2) assert shard_it_a.n_shards == 2 SCREAMING_SNAKE_CASE : str = _get_expected_row_ids_and_row_dicts_for_partition_order(_a , [0, 2]) for i, (row_id, row_dict) in enumerate(_a): SCREAMING_SNAKE_CASE ,SCREAMING_SNAKE_CASE : Optional[Any] = expected_row_ids_and_row_dicts_a[i] assert row_id == expected_row_id assert row_dict == expected_row_dict # Partitions 1 and 3 SCREAMING_SNAKE_CASE : Any = SparkExamplesIterable(_a).shard_data_sources(worker_id=1 , num_workers=2) assert shard_it_a.n_shards == 2 SCREAMING_SNAKE_CASE : List[Any] = _get_expected_row_ids_and_row_dicts_for_partition_order(_a , [1, 3]) for i, (row_id, row_dict) in enumerate(_a): SCREAMING_SNAKE_CASE ,SCREAMING_SNAKE_CASE : Union[str, Any] = expected_row_ids_and_row_dicts_a[i] assert row_id == expected_row_id assert row_dict == expected_row_dict @require_not_windows @require_dill_gt_0_3_2 def lowerCamelCase__ ( ): SCREAMING_SNAKE_CASE : str = pyspark.sql.SparkSession.builder.master("local[*]").appName("pyspark").getOrCreate() SCREAMING_SNAKE_CASE : List[str] = spark.range(100).repartition(1) SCREAMING_SNAKE_CASE : int = Spark(_a) # Choose a small max_shard_size for maximum partitioning. spark_builder._repartition_df_if_needed(max_shard_size=1) # The new number of partitions should not be greater than the number of rows. assert spark_builder.df.rdd.getNumPartitions() == 100
25
# Lint as: python3 import sys from collections.abc import Mapping from typing import TYPE_CHECKING, Dict, Optional import numpy as np import pyarrow as pa from .. import config from ..utils.logging import get_logger from ..utils.py_utils import map_nested from .formatting import TensorFormatter if TYPE_CHECKING: import jax import jaxlib a_ = get_logger() a_ = None class _UpperCamelCase ( TensorFormatter[Mapping, 'jax.Array', Mapping] ): '''simple docstring''' def __init__( self : Optional[Any] , a : str=None , a : List[Any]=None , **a : Any ) -> Optional[Any]: """simple docstring""" super().__init__(features=a ) import jax from jaxlib.xla_client import Device if isinstance(a , a ): raise ValueError( F"Expected {device} to be a `str` not {type(a )}, as `jaxlib.xla_extension.Device` " "is not serializable neither with `pickle` nor with `dill`. Instead you can surround " "the device with `str()` to get its string identifier that will be internally mapped " "to the actual `jaxlib.xla_extension.Device`." ) SCREAMING_SNAKE_CASE : List[str] = device if isinstance(a , a ) else str(jax.devices()[0] ) # using global variable since `jaxlib.xla_extension.Device` is not serializable neither # with `pickle` nor with `dill`, so we need to use a global variable instead global DEVICE_MAPPING if DEVICE_MAPPING is None: SCREAMING_SNAKE_CASE : str = self._map_devices_to_str() if self.device not in list(DEVICE_MAPPING.keys() ): logger.warning( F"Device with string identifier {self.device} not listed among the available " F"devices: {list(DEVICE_MAPPING.keys() )}, so falling back to the default " F"device: {str(jax.devices()[0] )}." ) SCREAMING_SNAKE_CASE : Any = str(jax.devices()[0] ) SCREAMING_SNAKE_CASE : Any = jnp_array_kwargs @staticmethod def __UpperCamelCase ( ) -> Dict[str, "jaxlib.xla_extension.Device"]: """simple docstring""" import jax return {str(a ): device for device in jax.devices()} def __UpperCamelCase ( self : Dict , a : Tuple ) -> str: """simple docstring""" import jax import jax.numpy as jnp if isinstance(a , a ) and column: if all( isinstance(a , jax.Array ) and x.shape == column[0].shape and x.dtype == column[0].dtype for x in column ): return jnp.stack(a , axis=0 ) return column def __UpperCamelCase ( self : Dict , a : str ) -> str: """simple docstring""" import jax import jax.numpy as jnp if isinstance(a , (str, bytes, type(a )) ): return value elif isinstance(a , (np.character, np.ndarray) ) and np.issubdtype(value.dtype , np.character ): return value.tolist() SCREAMING_SNAKE_CASE : Union[str, Any] = {} if isinstance(a , (np.number, np.ndarray) ) and np.issubdtype(value.dtype , np.integer ): # the default int precision depends on the jax config # see https://jax.readthedocs.io/en/latest/notebooks/Common_Gotchas_in_JAX.html#double-64bit-precision if jax.config.jax_enable_xaa: SCREAMING_SNAKE_CASE : Dict = {"dtype": jnp.intaa} else: SCREAMING_SNAKE_CASE : str = {"dtype": jnp.intaa} elif isinstance(a , (np.number, np.ndarray) ) and np.issubdtype(value.dtype , np.floating ): SCREAMING_SNAKE_CASE : int = {"dtype": jnp.floataa} elif config.PIL_AVAILABLE and "PIL" in sys.modules: import PIL.Image if isinstance(a , PIL.Image.Image ): SCREAMING_SNAKE_CASE : Dict = np.asarray(a ) # using global variable since `jaxlib.xla_extension.Device` is not serializable neither # with `pickle` nor with `dill`, so we need to use a global variable instead global DEVICE_MAPPING if DEVICE_MAPPING is None: SCREAMING_SNAKE_CASE : Optional[Any] = self._map_devices_to_str() with jax.default_device(DEVICE_MAPPING[self.device] ): # calling jnp.array on a np.ndarray does copy the data # see https://github.com/google/jax/issues/4486 return jnp.array(a , **{**default_dtype, **self.jnp_array_kwargs} ) def __UpperCamelCase ( self : Any , a : List[str] ) -> Dict: """simple docstring""" import jax # support for torch, tf, jax etc. if config.TORCH_AVAILABLE and "torch" in sys.modules: import torch if isinstance(a , torch.Tensor ): return self._tensorize(data_struct.detach().cpu().numpy()[()] ) if hasattr(a , "__array__" ) and not isinstance(a , jax.Array ): SCREAMING_SNAKE_CASE : Optional[int] = data_struct.__array__() # support for nested types like struct of list of struct if isinstance(a , np.ndarray ): if data_struct.dtype == object: # jax arrays cannot be instantied from an array of objects return self._consolidate([self.recursive_tensorize(a ) for substruct in data_struct] ) elif isinstance(a , (list, tuple) ): return self._consolidate([self.recursive_tensorize(a ) for substruct in data_struct] ) return self._tensorize(a ) def __UpperCamelCase ( self : Optional[Any] , a : dict ) -> Dict: """simple docstring""" return map_nested(self._recursive_tensorize , a , map_list=a ) def __UpperCamelCase ( self : Dict , a : pa.Table ) -> Mapping: """simple docstring""" SCREAMING_SNAKE_CASE : Optional[Any] = self.numpy_arrow_extractor().extract_row(a ) SCREAMING_SNAKE_CASE : List[Any] = self.python_features_decoder.decode_row(a ) return self.recursive_tensorize(a ) def __UpperCamelCase ( self : Optional[int] , a : pa.Table ) -> "jax.Array": """simple docstring""" SCREAMING_SNAKE_CASE : Optional[int] = self.numpy_arrow_extractor().extract_column(a ) SCREAMING_SNAKE_CASE : Optional[Any] = self.python_features_decoder.decode_column(a , pa_table.column_names[0] ) SCREAMING_SNAKE_CASE : Tuple = self.recursive_tensorize(a ) SCREAMING_SNAKE_CASE : Optional[int] = self._consolidate(a ) return column def __UpperCamelCase ( self : List[Any] , a : pa.Table ) -> Mapping: """simple docstring""" SCREAMING_SNAKE_CASE : str = self.numpy_arrow_extractor().extract_batch(a ) SCREAMING_SNAKE_CASE : str = self.python_features_decoder.decode_batch(a ) SCREAMING_SNAKE_CASE : List[Any] = self.recursive_tensorize(a ) for column_name in batch: SCREAMING_SNAKE_CASE : List[Any] = self._consolidate(batch[column_name] ) return batch
25
1
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tokenizers_available, is_torch_available, ) a_ = {'configuration_plbart': ['PLBART_PRETRAINED_CONFIG_ARCHIVE_MAP', 'PLBartConfig']} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a_ = ['PLBartTokenizer'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a_ = [ 'PLBART_PRETRAINED_MODEL_ARCHIVE_LIST', 'PLBartForCausalLM', 'PLBartForConditionalGeneration', 'PLBartForSequenceClassification', 'PLBartModel', 'PLBartPreTrainedModel', ] if TYPE_CHECKING: from .configuration_plbart import PLBART_PRETRAINED_CONFIG_ARCHIVE_MAP, PLBartConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_plbart import PLBartTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_plbart import ( PLBART_PRETRAINED_MODEL_ARCHIVE_LIST, PLBartForCausalLM, PLBartForConditionalGeneration, PLBartForSequenceClassification, PLBartModel, PLBartPreTrainedModel, ) else: import sys a_ = _LazyModule(__name__, globals()['__file__'], _import_structure)
25
import unittest from transformers import ( MODEL_FOR_OBJECT_DETECTION_MAPPING, AutoFeatureExtractor, AutoModelForObjectDetection, ObjectDetectionPipeline, is_vision_available, pipeline, ) from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_pytesseract, require_tf, require_timm, require_torch, require_vision, slow, ) from .test_pipelines_common import ANY if is_vision_available(): from PIL import Image else: class _UpperCamelCase : '''simple docstring''' @staticmethod def __UpperCamelCase ( *a : str , **a : int ) -> str: """simple docstring""" pass @is_pipeline_test @require_vision @require_timm @require_torch class _UpperCamelCase ( unittest.TestCase ): '''simple docstring''' lowerCamelCase__ =MODEL_FOR_OBJECT_DETECTION_MAPPING def __UpperCamelCase ( self : Optional[Any] , a : str , a : Optional[Any] , a : Union[str, Any] ) -> List[Any]: """simple docstring""" SCREAMING_SNAKE_CASE : Dict = ObjectDetectionPipeline(model=a , image_processor=a ) return object_detector, ["./tests/fixtures/tests_samples/COCO/000000039769.png"] def __UpperCamelCase ( self : List[Any] , a : Optional[int] , a : Optional[int] ) -> int: """simple docstring""" SCREAMING_SNAKE_CASE : Union[str, Any] = object_detector("./tests/fixtures/tests_samples/COCO/000000039769.png" , threshold=0.0 ) self.assertGreater(len(a ) , 0 ) for detected_object in outputs: self.assertEqual( a , { "score": ANY(a ), "label": ANY(a ), "box": {"xmin": ANY(a ), "ymin": ANY(a ), "xmax": ANY(a ), "ymax": ANY(a )}, } , ) import datasets SCREAMING_SNAKE_CASE : Any = datasets.load_dataset("hf-internal-testing/fixtures_image_utils" , "image" , split="test" ) SCREAMING_SNAKE_CASE : Dict = [ Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ), "http://images.cocodataset.org/val2017/000000039769.jpg", # RGBA dataset[0]["file"], # LA dataset[1]["file"], # L dataset[2]["file"], ] SCREAMING_SNAKE_CASE : Tuple = object_detector(a , threshold=0.0 ) self.assertEqual(len(a ) , len(a ) ) for outputs in batch_outputs: self.assertGreater(len(a ) , 0 ) for detected_object in outputs: self.assertEqual( a , { "score": ANY(a ), "label": ANY(a ), "box": {"xmin": ANY(a ), "ymin": ANY(a ), "xmax": ANY(a ), "ymax": ANY(a )}, } , ) @require_tf @unittest.skip("Object detection not implemented in TF" ) def __UpperCamelCase ( self : Optional[int] ) -> str: """simple docstring""" pass @require_torch def __UpperCamelCase ( self : Tuple ) -> List[Any]: """simple docstring""" SCREAMING_SNAKE_CASE : str = "hf-internal-testing/tiny-detr-mobilenetsv3" SCREAMING_SNAKE_CASE : Dict = AutoModelForObjectDetection.from_pretrained(a ) SCREAMING_SNAKE_CASE : Any = AutoFeatureExtractor.from_pretrained(a ) SCREAMING_SNAKE_CASE : Tuple = ObjectDetectionPipeline(model=a , feature_extractor=a ) SCREAMING_SNAKE_CASE : int = object_detector("http://images.cocodataset.org/val2017/000000039769.jpg" , threshold=0.0 ) self.assertEqual( nested_simplify(a , decimals=4 ) , [ {"score": 0.3376, "label": "LABEL_0", "box": {"xmin": 159, "ymin": 120, "xmax": 480, "ymax": 359}}, {"score": 0.3376, "label": "LABEL_0", "box": {"xmin": 159, "ymin": 120, "xmax": 480, "ymax": 359}}, ] , ) SCREAMING_SNAKE_CASE : Dict = object_detector( [ "http://images.cocodataset.org/val2017/000000039769.jpg", "http://images.cocodataset.org/val2017/000000039769.jpg", ] , threshold=0.0 , ) self.assertEqual( nested_simplify(a , decimals=4 ) , [ [ {"score": 0.3376, "label": "LABEL_0", "box": {"xmin": 159, "ymin": 120, "xmax": 480, "ymax": 359}}, {"score": 0.3376, "label": "LABEL_0", "box": {"xmin": 159, "ymin": 120, "xmax": 480, "ymax": 359}}, ], [ {"score": 0.3376, "label": "LABEL_0", "box": {"xmin": 159, "ymin": 120, "xmax": 480, "ymax": 359}}, {"score": 0.3376, "label": "LABEL_0", "box": {"xmin": 159, "ymin": 120, "xmax": 480, "ymax": 359}}, ], ] , ) @require_torch @slow def __UpperCamelCase ( self : str ) -> List[Any]: """simple docstring""" SCREAMING_SNAKE_CASE : Dict = "facebook/detr-resnet-50" SCREAMING_SNAKE_CASE : Union[str, Any] = AutoModelForObjectDetection.from_pretrained(a ) SCREAMING_SNAKE_CASE : List[str] = AutoFeatureExtractor.from_pretrained(a ) SCREAMING_SNAKE_CASE : int = ObjectDetectionPipeline(model=a , feature_extractor=a ) SCREAMING_SNAKE_CASE : Union[str, Any] = object_detector("http://images.cocodataset.org/val2017/000000039769.jpg" ) self.assertEqual( nested_simplify(a , decimals=4 ) , [ {"score": 0.9982, "label": "remote", "box": {"xmin": 40, "ymin": 70, "xmax": 175, "ymax": 117}}, {"score": 0.9960, "label": "remote", "box": {"xmin": 333, "ymin": 72, "xmax": 368, "ymax": 187}}, {"score": 0.9955, "label": "couch", "box": {"xmin": 0, "ymin": 1, "xmax": 639, "ymax": 473}}, {"score": 0.9988, "label": "cat", "box": {"xmin": 13, "ymin": 52, "xmax": 314, "ymax": 470}}, {"score": 0.9987, "label": "cat", "box": {"xmin": 345, "ymin": 23, "xmax": 640, "ymax": 368}}, ] , ) SCREAMING_SNAKE_CASE : int = object_detector( [ "http://images.cocodataset.org/val2017/000000039769.jpg", "http://images.cocodataset.org/val2017/000000039769.jpg", ] ) self.assertEqual( nested_simplify(a , decimals=4 ) , [ [ {"score": 0.9982, "label": "remote", "box": {"xmin": 40, "ymin": 70, "xmax": 175, "ymax": 117}}, {"score": 0.9960, "label": "remote", "box": {"xmin": 333, "ymin": 72, "xmax": 368, "ymax": 187}}, {"score": 0.9955, "label": "couch", "box": {"xmin": 0, "ymin": 1, "xmax": 639, "ymax": 473}}, {"score": 0.9988, "label": "cat", "box": {"xmin": 13, "ymin": 52, "xmax": 314, "ymax": 470}}, {"score": 0.9987, "label": "cat", "box": {"xmin": 345, "ymin": 23, "xmax": 640, "ymax": 368}}, ], [ {"score": 0.9982, "label": "remote", "box": {"xmin": 40, "ymin": 70, "xmax": 175, "ymax": 117}}, {"score": 0.9960, "label": "remote", "box": {"xmin": 333, "ymin": 72, "xmax": 368, "ymax": 187}}, {"score": 0.9955, "label": "couch", "box": {"xmin": 0, "ymin": 1, "xmax": 639, "ymax": 473}}, {"score": 0.9988, "label": "cat", "box": {"xmin": 13, "ymin": 52, "xmax": 314, "ymax": 470}}, {"score": 0.9987, "label": "cat", "box": {"xmin": 345, "ymin": 23, "xmax": 640, "ymax": 368}}, ], ] , ) @require_torch @slow def __UpperCamelCase ( self : str ) -> str: """simple docstring""" SCREAMING_SNAKE_CASE : Tuple = "facebook/detr-resnet-50" SCREAMING_SNAKE_CASE : Tuple = pipeline("object-detection" , model=a ) SCREAMING_SNAKE_CASE : Tuple = object_detector("http://images.cocodataset.org/val2017/000000039769.jpg" ) self.assertEqual( nested_simplify(a , decimals=4 ) , [ {"score": 0.9982, "label": "remote", "box": {"xmin": 40, "ymin": 70, "xmax": 175, "ymax": 117}}, {"score": 0.9960, "label": "remote", "box": {"xmin": 333, "ymin": 72, "xmax": 368, "ymax": 187}}, {"score": 0.9955, "label": "couch", "box": {"xmin": 0, "ymin": 1, "xmax": 639, "ymax": 473}}, {"score": 0.9988, "label": "cat", "box": {"xmin": 13, "ymin": 52, "xmax": 314, "ymax": 470}}, {"score": 0.9987, "label": "cat", "box": {"xmin": 345, "ymin": 23, "xmax": 640, "ymax": 368}}, ] , ) SCREAMING_SNAKE_CASE : str = object_detector( [ "http://images.cocodataset.org/val2017/000000039769.jpg", "http://images.cocodataset.org/val2017/000000039769.jpg", ] ) self.assertEqual( nested_simplify(a , decimals=4 ) , [ [ {"score": 0.9982, "label": "remote", "box": {"xmin": 40, "ymin": 70, "xmax": 175, "ymax": 117}}, {"score": 0.9960, "label": "remote", "box": {"xmin": 333, "ymin": 72, "xmax": 368, "ymax": 187}}, {"score": 0.9955, "label": "couch", "box": {"xmin": 0, "ymin": 1, "xmax": 639, "ymax": 473}}, {"score": 0.9988, "label": "cat", "box": {"xmin": 13, "ymin": 52, "xmax": 314, "ymax": 470}}, {"score": 0.9987, "label": "cat", "box": {"xmin": 345, "ymin": 23, "xmax": 640, "ymax": 368}}, ], [ {"score": 0.9982, "label": "remote", "box": {"xmin": 40, "ymin": 70, "xmax": 175, "ymax": 117}}, {"score": 0.9960, "label": "remote", "box": {"xmin": 333, "ymin": 72, "xmax": 368, "ymax": 187}}, {"score": 0.9955, "label": "couch", "box": {"xmin": 0, "ymin": 1, "xmax": 639, "ymax": 473}}, {"score": 0.9988, "label": "cat", "box": {"xmin": 13, "ymin": 52, "xmax": 314, "ymax": 470}}, {"score": 0.9987, "label": "cat", "box": {"xmin": 345, "ymin": 23, "xmax": 640, "ymax": 368}}, ], ] , ) @require_torch @slow def __UpperCamelCase ( self : str ) -> str: """simple docstring""" SCREAMING_SNAKE_CASE : Optional[int] = 0.9985 SCREAMING_SNAKE_CASE : int = "facebook/detr-resnet-50" SCREAMING_SNAKE_CASE : List[str] = pipeline("object-detection" , model=a ) SCREAMING_SNAKE_CASE : str = object_detector("http://images.cocodataset.org/val2017/000000039769.jpg" , threshold=a ) self.assertEqual( nested_simplify(a , decimals=4 ) , [ {"score": 0.9988, "label": "cat", "box": {"xmin": 13, "ymin": 52, "xmax": 314, "ymax": 470}}, {"score": 0.9987, "label": "cat", "box": {"xmin": 345, "ymin": 23, "xmax": 640, "ymax": 368}}, ] , ) @require_torch @require_pytesseract @slow def __UpperCamelCase ( self : str ) -> Tuple: """simple docstring""" SCREAMING_SNAKE_CASE : Any = "Narsil/layoutlmv3-finetuned-funsd" SCREAMING_SNAKE_CASE : Dict = 0.9993 SCREAMING_SNAKE_CASE : str = pipeline("object-detection" , model=a , threshold=a ) SCREAMING_SNAKE_CASE : List[Any] = object_detector( "https://huggingface.co/spaces/impira/docquery/resolve/2359223c1837a7587402bda0f2643382a6eefeab/invoice.png" ) self.assertEqual( nested_simplify(a , decimals=4 ) , [ {"score": 0.9993, "label": "I-ANSWER", "box": {"xmin": 294, "ymin": 254, "xmax": 343, "ymax": 264}}, {"score": 0.9993, "label": "I-ANSWER", "box": {"xmin": 294, "ymin": 254, "xmax": 343, "ymax": 264}}, ] , )
25
1
import json from typing import List, Optional, Tuple from tokenizers import pre_tokenizers, processors from ...tokenization_utils_base import AddedToken, BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_mvp import MvpTokenizer a_ = logging.get_logger(__name__) a_ = {'vocab_file': 'vocab.json', 'merges_file': 'merges.txt', 'tokenizer_file': 'tokenizer.json'} # See all MVP models at https://huggingface.co/models?filter=mvp a_ = { 'vocab_file': { 'RUCAIBox/mvp': 'https://huggingface.co/RUCAIBox/mvp/resolve/main/vocab.json', }, 'added_tokens.json': { 'RUCAIBox/mvp': 'https://huggingface.co/RUCAIBox/mvp/resolve/main/added_tokens.json', }, 'merges_file': { 'RUCAIBox/mvp': 'https://huggingface.co/RUCAIBox/mvp/resolve/main/merges.txt', }, 'tokenizer_file': { 'RUCAIBox/mvp': 'https://huggingface.co/RUCAIBox/mvp/resolve/main/tokenizer.json', }, } a_ = { 'RUCAIBox/mvp': 1024, } class _UpperCamelCase ( __A ): '''simple docstring''' lowerCamelCase__ =VOCAB_FILES_NAMES lowerCamelCase__ =PRETRAINED_VOCAB_FILES_MAP lowerCamelCase__ =PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCamelCase__ =['input_ids', 'attention_mask'] lowerCamelCase__ =MvpTokenizer def __init__( self : int , a : List[str]=None , a : List[str]=None , a : List[str]=None , a : int="replace" , a : Tuple="<s>" , a : List[Any]="</s>" , a : int="</s>" , a : Optional[Any]="<s>" , a : int="<unk>" , a : int="<pad>" , a : List[Any]="<mask>" , a : Union[str, Any]=False , a : str=True , **a : Optional[int] , ) -> int: """simple docstring""" super().__init__( a , a , tokenizer_file=a , errors=a , bos_token=a , eos_token=a , sep_token=a , cls_token=a , unk_token=a , pad_token=a , mask_token=a , add_prefix_space=a , trim_offsets=a , **a , ) SCREAMING_SNAKE_CASE : Optional[Any] = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() ) if pre_tok_state.get("add_prefix_space" , a ) != add_prefix_space: SCREAMING_SNAKE_CASE : Dict = getattr(a , pre_tok_state.pop("type" ) ) SCREAMING_SNAKE_CASE : str = add_prefix_space SCREAMING_SNAKE_CASE : List[str] = pre_tok_class(**a ) SCREAMING_SNAKE_CASE : Optional[int] = add_prefix_space # the pre_tokenizer is already updated in the GPT2TokenizerFast `__init__` SCREAMING_SNAKE_CASE : List[str] = "post_processor" SCREAMING_SNAKE_CASE : Optional[Any] = getattr(self.backend_tokenizer , a , a ) if tokenizer_component_instance: SCREAMING_SNAKE_CASE : Any = json.loads(tokenizer_component_instance.__getstate__() ) # The lists 'sep' and 'cls' must be cased in tuples for the object `post_processor_class` if "sep" in state: SCREAMING_SNAKE_CASE : str = tuple(state["sep"] ) if "cls" in state: SCREAMING_SNAKE_CASE : Optional[int] = tuple(state["cls"] ) SCREAMING_SNAKE_CASE : Optional[Any] = False if state.get("add_prefix_space" , a ) != add_prefix_space: SCREAMING_SNAKE_CASE : List[str] = add_prefix_space SCREAMING_SNAKE_CASE : Optional[int] = True if state.get("trim_offsets" , a ) != trim_offsets: SCREAMING_SNAKE_CASE : str = trim_offsets SCREAMING_SNAKE_CASE : Union[str, Any] = True if changes_to_apply: SCREAMING_SNAKE_CASE : Tuple = getattr(a , state.pop("type" ) ) SCREAMING_SNAKE_CASE : Tuple = component_class(**a ) setattr(self.backend_tokenizer , a , a ) @property def __UpperCamelCase ( self : Tuple ) -> str: """simple docstring""" if self._mask_token is None: if self.verbose: logger.error("Using mask_token, but it is not set yet." ) return None return str(self._mask_token ) @mask_token.setter def __UpperCamelCase ( self : str , a : Tuple ) -> Optional[Any]: """simple docstring""" SCREAMING_SNAKE_CASE : int = AddedToken(a , lstrip=a , rstrip=a ) if isinstance(a , a ) else value SCREAMING_SNAKE_CASE : str = value def __UpperCamelCase ( self : Tuple , *a : List[Any] , **a : List[str] ) -> BatchEncoding: """simple docstring""" SCREAMING_SNAKE_CASE : Dict = kwargs.get("is_split_into_words" , a ) if is_split_into_words and not self.add_prefix_space: raise ValueError( F"You need to instantiate {self.__class__.__name__} with add_prefix_space=True " "to use it with pretokenized inputs." ) return super()._batch_encode_plus(*a , **a ) def __UpperCamelCase ( self : List[Any] , *a : Union[str, Any] , **a : Dict ) -> BatchEncoding: """simple docstring""" SCREAMING_SNAKE_CASE : Tuple = kwargs.get("is_split_into_words" , a ) if is_split_into_words and not self.add_prefix_space: raise ValueError( F"You need to instantiate {self.__class__.__name__} with add_prefix_space=True " "to use it with pretokenized inputs." ) return super()._encode_plus(*a , **a ) def __UpperCamelCase ( self : int , a : str , a : Optional[str] = None ) -> Tuple[str]: """simple docstring""" SCREAMING_SNAKE_CASE : List[str] = self._tokenizer.model.save(a , name=a ) return tuple(a ) def __UpperCamelCase ( self : str , a : str , a : Optional[Any]=None ) -> Optional[int]: """simple docstring""" SCREAMING_SNAKE_CASE : List[Any] = [self.bos_token_id] + token_ids_a + [self.eos_token_id] if token_ids_a is None: return output return output + [self.eos_token_id] + token_ids_a + [self.eos_token_id] def __UpperCamelCase ( self : Optional[int] , a : List[int] , a : Optional[List[int]] = None ) -> List[int]: """simple docstring""" SCREAMING_SNAKE_CASE : str = [self.sep_token_id] SCREAMING_SNAKE_CASE : Union[str, Any] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0]
25
def lowerCamelCase__ ( _a): if not isinstance(_a , _a): SCREAMING_SNAKE_CASE : Tuple = f"Input value of [number={number}] must be an integer" raise TypeError(_a) if number < 0: return False SCREAMING_SNAKE_CASE : Union[str, Any] = number * number while number > 0: if number % 10 != number_square % 10: return False number //= 10 number_square //= 10 return True if __name__ == "__main__": import doctest doctest.testmod()
25
1
from arguments import InitializationArguments from transformers import AutoConfig, AutoModelForCausalLM, AutoTokenizer, HfArgumentParser # Configuration a_ = HfArgumentParser(InitializationArguments) a_ = parser.parse_args() # Load codeparrot tokenizer trained for Python code tokenization a_ = AutoTokenizer.from_pretrained(args.tokenizer_name) # Config: "scale_attn_by_layer_idx" and "reorder_and_upcast_attn" are Mistral stability tweaks a_ = { 'vocab_size': len(tokenizer), 'scale_attn_by_inverse_layer_idx': True, 'reorder_and_upcast_attn': True, } # Load model config (GPT-2 large in this case) a_ = AutoConfig.from_pretrained(args.config_name, **config_kwargs) # Initialize new model with config a_ = AutoModelForCausalLM.from_config(config) # Save model to the hub model.save_pretrained(args.model_name, push_to_hub=args.push_to_hub)
25
import os import tempfile import unittest from transformers import DistilBertConfig, is_torch_available from transformers.testing_utils import require_torch, require_torch_gpu, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST, DistilBertForMaskedLM, DistilBertForMultipleChoice, DistilBertForQuestionAnswering, DistilBertForSequenceClassification, DistilBertForTokenClassification, DistilBertModel, ) class _UpperCamelCase ( __A ): '''simple docstring''' def __init__( self : Dict , a : Tuple , a : Any=13 , a : Any=7 , a : Union[str, Any]=True , a : List[Any]=True , a : List[str]=False , a : List[str]=True , a : Any=99 , a : str=32 , a : Any=5 , a : Optional[int]=4 , a : Union[str, Any]=37 , a : Dict="gelu" , a : List[Any]=0.1 , a : Optional[Any]=0.1 , a : List[str]=512 , a : Union[str, Any]=16 , a : str=2 , a : Dict=0.02 , a : Optional[int]=3 , a : Union[str, Any]=4 , a : int=None , ) -> Tuple: """simple docstring""" SCREAMING_SNAKE_CASE : Dict = parent SCREAMING_SNAKE_CASE : Any = batch_size SCREAMING_SNAKE_CASE : Optional[int] = seq_length SCREAMING_SNAKE_CASE : List[Any] = is_training SCREAMING_SNAKE_CASE : int = use_input_mask SCREAMING_SNAKE_CASE : Tuple = use_token_type_ids SCREAMING_SNAKE_CASE : str = use_labels SCREAMING_SNAKE_CASE : Any = vocab_size SCREAMING_SNAKE_CASE : List[Any] = hidden_size SCREAMING_SNAKE_CASE : str = num_hidden_layers SCREAMING_SNAKE_CASE : Optional[Any] = num_attention_heads SCREAMING_SNAKE_CASE : Tuple = intermediate_size SCREAMING_SNAKE_CASE : Optional[int] = hidden_act SCREAMING_SNAKE_CASE : Dict = hidden_dropout_prob SCREAMING_SNAKE_CASE : str = attention_probs_dropout_prob SCREAMING_SNAKE_CASE : Tuple = max_position_embeddings SCREAMING_SNAKE_CASE : List[str] = type_vocab_size SCREAMING_SNAKE_CASE : List[str] = type_sequence_label_size SCREAMING_SNAKE_CASE : Optional[Any] = initializer_range SCREAMING_SNAKE_CASE : Tuple = num_labels SCREAMING_SNAKE_CASE : Tuple = num_choices SCREAMING_SNAKE_CASE : Optional[Any] = scope def __UpperCamelCase ( self : Union[str, Any] ) -> List[str]: """simple docstring""" SCREAMING_SNAKE_CASE : Dict = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) SCREAMING_SNAKE_CASE : Union[str, Any] = None if self.use_input_mask: SCREAMING_SNAKE_CASE : str = random_attention_mask([self.batch_size, self.seq_length] ) SCREAMING_SNAKE_CASE : int = None SCREAMING_SNAKE_CASE : List[Any] = None SCREAMING_SNAKE_CASE : List[str] = None if self.use_labels: SCREAMING_SNAKE_CASE : Tuple = ids_tensor([self.batch_size] , self.type_sequence_label_size ) SCREAMING_SNAKE_CASE : str = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) SCREAMING_SNAKE_CASE : Optional[Any] = ids_tensor([self.batch_size] , self.num_choices ) SCREAMING_SNAKE_CASE : int = self.get_config() return config, input_ids, input_mask, sequence_labels, token_labels, choice_labels def __UpperCamelCase ( self : Dict ) -> str: """simple docstring""" return DistilBertConfig( vocab_size=self.vocab_size , dim=self.hidden_size , n_layers=self.num_hidden_layers , n_heads=self.num_attention_heads , hidden_dim=self.intermediate_size , hidden_act=self.hidden_act , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , ) def __UpperCamelCase ( self : Optional[Any] , a : int , a : Optional[int] , a : Optional[int] , a : Dict , a : str , a : str ) -> int: """simple docstring""" SCREAMING_SNAKE_CASE : int = DistilBertModel(config=a ) model.to(a ) model.eval() SCREAMING_SNAKE_CASE : Optional[Any] = model(a , a ) SCREAMING_SNAKE_CASE : Optional[Any] = model(a ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def __UpperCamelCase ( self : Tuple , a : Optional[int] , a : Dict , a : Tuple , a : int , a : int , a : Any ) -> Dict: """simple docstring""" SCREAMING_SNAKE_CASE : Optional[int] = DistilBertForMaskedLM(config=a ) model.to(a ) model.eval() SCREAMING_SNAKE_CASE : str = model(a , attention_mask=a , labels=a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def __UpperCamelCase ( self : List[Any] , a : int , a : Optional[Any] , a : Optional[Any] , a : str , a : str , a : Tuple ) -> List[Any]: """simple docstring""" SCREAMING_SNAKE_CASE : Optional[Any] = DistilBertForQuestionAnswering(config=a ) model.to(a ) model.eval() SCREAMING_SNAKE_CASE : List[str] = model( a , attention_mask=a , start_positions=a , end_positions=a ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def __UpperCamelCase ( self : Optional[int] , a : str , a : Any , a : int , a : Optional[Any] , a : int , a : str ) -> Optional[int]: """simple docstring""" SCREAMING_SNAKE_CASE : Dict = self.num_labels SCREAMING_SNAKE_CASE : Union[str, Any] = DistilBertForSequenceClassification(a ) model.to(a ) model.eval() SCREAMING_SNAKE_CASE : Optional[int] = model(a , attention_mask=a , labels=a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def __UpperCamelCase ( self : Optional[Any] , a : List[Any] , a : Optional[int] , a : Union[str, Any] , a : Dict , a : Any , a : Optional[Any] ) -> Any: """simple docstring""" SCREAMING_SNAKE_CASE : str = self.num_labels SCREAMING_SNAKE_CASE : List[str] = DistilBertForTokenClassification(config=a ) model.to(a ) model.eval() SCREAMING_SNAKE_CASE : List[str] = model(a , attention_mask=a , labels=a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def __UpperCamelCase ( self : int , a : Any , a : Optional[int] , a : Union[str, Any] , a : Tuple , a : Optional[int] , a : Tuple ) -> Dict: """simple docstring""" SCREAMING_SNAKE_CASE : List[str] = self.num_choices SCREAMING_SNAKE_CASE : Any = DistilBertForMultipleChoice(config=a ) model.to(a ) model.eval() SCREAMING_SNAKE_CASE : Optional[int] = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() SCREAMING_SNAKE_CASE : Dict = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() SCREAMING_SNAKE_CASE : Optional[Any] = model( a , attention_mask=a , labels=a , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def __UpperCamelCase ( self : Union[str, Any] ) -> Optional[int]: """simple docstring""" SCREAMING_SNAKE_CASE : Optional[Any] = self.prepare_config_and_inputs() ((SCREAMING_SNAKE_CASE) ,(SCREAMING_SNAKE_CASE) ,(SCREAMING_SNAKE_CASE) ,(SCREAMING_SNAKE_CASE) ,(SCREAMING_SNAKE_CASE) ,(SCREAMING_SNAKE_CASE)) : Tuple = config_and_inputs SCREAMING_SNAKE_CASE : int = {"input_ids": input_ids, "attention_mask": input_mask} return config, inputs_dict @require_torch class _UpperCamelCase ( __A , __A , unittest.TestCase ): '''simple docstring''' lowerCamelCase__ =( ( DistilBertModel, DistilBertForMaskedLM, DistilBertForMultipleChoice, DistilBertForQuestionAnswering, DistilBertForSequenceClassification, DistilBertForTokenClassification, ) if is_torch_available() else None ) lowerCamelCase__ =( { 'feature-extraction': DistilBertModel, 'fill-mask': DistilBertForMaskedLM, 'question-answering': DistilBertForQuestionAnswering, 'text-classification': DistilBertForSequenceClassification, 'token-classification': DistilBertForTokenClassification, 'zero-shot': DistilBertForSequenceClassification, } if is_torch_available() else {} ) lowerCamelCase__ =True lowerCamelCase__ =True lowerCamelCase__ =True lowerCamelCase__ =True def __UpperCamelCase ( self : Optional[Any] ) -> Tuple: """simple docstring""" SCREAMING_SNAKE_CASE : Dict = DistilBertModelTester(self ) SCREAMING_SNAKE_CASE : List[str] = ConfigTester(self , config_class=a , dim=37 ) def __UpperCamelCase ( self : List[Any] ) -> Tuple: """simple docstring""" self.config_tester.run_common_tests() def __UpperCamelCase ( self : Union[str, Any] ) -> List[Any]: """simple docstring""" SCREAMING_SNAKE_CASE : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_model(*a ) def __UpperCamelCase ( self : Tuple ) -> Dict: """simple docstring""" SCREAMING_SNAKE_CASE : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_masked_lm(*a ) def __UpperCamelCase ( self : List[Any] ) -> Optional[int]: """simple docstring""" SCREAMING_SNAKE_CASE : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_question_answering(*a ) def __UpperCamelCase ( self : Union[str, Any] ) -> Any: """simple docstring""" SCREAMING_SNAKE_CASE : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_sequence_classification(*a ) def __UpperCamelCase ( self : str ) -> List[Any]: """simple docstring""" SCREAMING_SNAKE_CASE : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_token_classification(*a ) def __UpperCamelCase ( self : List[Any] ) -> str: """simple docstring""" SCREAMING_SNAKE_CASE : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_multiple_choice(*a ) @slow def __UpperCamelCase ( self : int ) -> Any: """simple docstring""" for model_name in DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: SCREAMING_SNAKE_CASE : Optional[Any] = DistilBertModel.from_pretrained(a ) self.assertIsNotNone(a ) @slow @require_torch_gpu def __UpperCamelCase ( self : List[Any] ) -> Optional[Any]: """simple docstring""" SCREAMING_SNAKE_CASE ,SCREAMING_SNAKE_CASE : Dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: # BertForMultipleChoice behaves incorrectly in JIT environments. if model_class == DistilBertForMultipleChoice: return SCREAMING_SNAKE_CASE : Union[str, Any] = True SCREAMING_SNAKE_CASE : Any = model_class(config=a ) SCREAMING_SNAKE_CASE : List[Any] = self._prepare_for_class(a , a ) SCREAMING_SNAKE_CASE : Union[str, Any] = torch.jit.trace( a , (inputs_dict["input_ids"].to("cpu" ), inputs_dict["attention_mask"].to("cpu" )) ) with tempfile.TemporaryDirectory() as tmp: torch.jit.save(a , os.path.join(a , "traced_model.pt" ) ) SCREAMING_SNAKE_CASE : Tuple = torch.jit.load(os.path.join(a , "traced_model.pt" ) , map_location=a ) loaded(inputs_dict["input_ids"].to(a ) , inputs_dict["attention_mask"].to(a ) ) @require_torch class _UpperCamelCase ( unittest.TestCase ): '''simple docstring''' @slow def __UpperCamelCase ( self : int ) -> Dict: """simple docstring""" SCREAMING_SNAKE_CASE : Union[str, Any] = DistilBertModel.from_pretrained("distilbert-base-uncased" ) SCREAMING_SNAKE_CASE : List[str] = torch.tensor([[0, 345, 232, 328, 740, 140, 1695, 69, 6078, 1588, 2]] ) SCREAMING_SNAKE_CASE : Optional[int] = torch.tensor([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] ) with torch.no_grad(): SCREAMING_SNAKE_CASE : Optional[Any] = model(a , attention_mask=a )[0] SCREAMING_SNAKE_CASE : List[str] = torch.Size((1, 11, 768) ) self.assertEqual(output.shape , a ) SCREAMING_SNAKE_CASE : Union[str, Any] = torch.tensor( [[[-0.1639, 0.3299, 0.1648], [-0.1746, 0.3289, 0.1710], [-0.1884, 0.3357, 0.1810]]] ) self.assertTrue(torch.allclose(output[:, 1:4, 1:4] , a , atol=1e-4 ) )
25
1
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available a_ = { 'configuration_instructblip': [ 'INSTRUCTBLIP_PRETRAINED_CONFIG_ARCHIVE_MAP', 'InstructBlipConfig', 'InstructBlipQFormerConfig', 'InstructBlipVisionConfig', ], 'processing_instructblip': ['InstructBlipProcessor'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a_ = [ 'INSTRUCTBLIP_PRETRAINED_MODEL_ARCHIVE_LIST', 'InstructBlipQFormerModel', 'InstructBlipPreTrainedModel', 'InstructBlipForConditionalGeneration', 'InstructBlipVisionModel', ] if TYPE_CHECKING: from .configuration_instructblip import ( INSTRUCTBLIP_PRETRAINED_CONFIG_ARCHIVE_MAP, InstructBlipConfig, InstructBlipQFormerConfig, InstructBlipVisionConfig, ) from .processing_instructblip import InstructBlipProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_instructblip import ( INSTRUCTBLIP_PRETRAINED_MODEL_ARCHIVE_LIST, InstructBlipForConditionalGeneration, InstructBlipPreTrainedModel, InstructBlipQFormerModel, InstructBlipVisionModel, ) else: import sys a_ = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
25
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tokenizers_available, is_torch_available, ) a_ = {'configuration_plbart': ['PLBART_PRETRAINED_CONFIG_ARCHIVE_MAP', 'PLBartConfig']} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a_ = ['PLBartTokenizer'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a_ = [ 'PLBART_PRETRAINED_MODEL_ARCHIVE_LIST', 'PLBartForCausalLM', 'PLBartForConditionalGeneration', 'PLBartForSequenceClassification', 'PLBartModel', 'PLBartPreTrainedModel', ] if TYPE_CHECKING: from .configuration_plbart import PLBART_PRETRAINED_CONFIG_ARCHIVE_MAP, PLBartConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_plbart import PLBartTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_plbart import ( PLBART_PRETRAINED_MODEL_ARCHIVE_LIST, PLBartForCausalLM, PLBartForConditionalGeneration, PLBartForSequenceClassification, PLBartModel, PLBartPreTrainedModel, ) else: import sys a_ = _LazyModule(__name__, globals()['__file__'], _import_structure)
25
1
import argparse import logging from collections import namedtuple import torch from model_bertabs import BertAbsSummarizer from models.model_builder import AbsSummarizer # The authors' implementation from transformers import BertTokenizer logging.basicConfig(level=logging.INFO) a_ = logging.getLogger(__name__) a_ = 'Hello world! cécé herlolip' a_ = namedtuple( 'BertAbsConfig', [ 'temp_dir', 'large', 'use_bert_emb', 'finetune_bert', 'encoder', 'share_emb', 'max_pos', 'enc_layers', 'enc_hidden_size', 'enc_heads', 'enc_ff_size', 'enc_dropout', 'dec_layers', 'dec_hidden_size', 'dec_heads', 'dec_ff_size', 'dec_dropout', ], ) def lowerCamelCase__ ( _a , _a): SCREAMING_SNAKE_CASE : List[Any] = BertAbsConfig( temp_dir="." , finetune_bert=_a , large=_a , share_emb=_a , use_bert_emb=_a , encoder="bert" , max_pos=512 , enc_layers=6 , enc_hidden_size=512 , enc_heads=8 , enc_ff_size=512 , enc_dropout=0.2 , dec_layers=6 , dec_hidden_size=768 , dec_heads=8 , dec_ff_size=2048 , dec_dropout=0.2 , ) SCREAMING_SNAKE_CASE : Dict = torch.load(_a , lambda _a , _a: storage) SCREAMING_SNAKE_CASE : str = AbsSummarizer(_a , torch.device("cpu") , _a) original.eval() SCREAMING_SNAKE_CASE : List[str] = BertAbsSummarizer(_a , torch.device("cpu")) new_model.eval() # ------------------- # Convert the weights # ------------------- logging.info("convert the model") new_model.bert.load_state_dict(original.bert.state_dict()) new_model.decoder.load_state_dict(original.decoder.state_dict()) new_model.generator.load_state_dict(original.generator.state_dict()) # ---------------------------------- # Make sure the outpus are identical # ---------------------------------- logging.info("Make sure that the models' outputs are identical") SCREAMING_SNAKE_CASE : List[str] = BertTokenizer.from_pretrained("bert-base-uncased") # prepare the model inputs SCREAMING_SNAKE_CASE : List[str] = tokenizer.encode("This is sample éàalj'-.") encoder_input_ids.extend([tokenizer.pad_token_id] * (512 - len(_a))) SCREAMING_SNAKE_CASE : int = torch.tensor(_a).unsqueeze(0) SCREAMING_SNAKE_CASE : List[Any] = tokenizer.encode("This is sample 3 éàalj'-.") decoder_input_ids.extend([tokenizer.pad_token_id] * (512 - len(_a))) SCREAMING_SNAKE_CASE : int = torch.tensor(_a).unsqueeze(0) # failsafe to make sure the weights reset does not affect the # loaded weights. assert torch.max(torch.abs(original.generator[0].weight - new_model.generator[0].weight)) == 0 # forward pass SCREAMING_SNAKE_CASE : List[Any] = encoder_input_ids SCREAMING_SNAKE_CASE : List[Any] = decoder_input_ids SCREAMING_SNAKE_CASE : Dict = None SCREAMING_SNAKE_CASE : Optional[Any] = None SCREAMING_SNAKE_CASE : List[Any] = None SCREAMING_SNAKE_CASE : Optional[int] = None SCREAMING_SNAKE_CASE : Dict = None # The original model does not apply the geneator layer immediatly but rather in # the beam search (where it combines softmax + linear layer). Since we already # apply the softmax in our generation process we only apply the linear layer here. # We make sure that the outputs of the full stack are identical SCREAMING_SNAKE_CASE : Optional[int] = original(_a , _a , _a , _a , _a , _a , _a)[0] SCREAMING_SNAKE_CASE : Dict = original.generator(_a) SCREAMING_SNAKE_CASE : Any = new_model( _a , _a , _a , _a , _a)[0] SCREAMING_SNAKE_CASE : Tuple = new_model.generator(_a) SCREAMING_SNAKE_CASE : List[Any] = torch.max(torch.abs(output_converted_model - output_original_model)).item() print("Maximum absolute difference beween weights: {:.2f}".format(_a)) SCREAMING_SNAKE_CASE : Union[str, Any] = torch.max(torch.abs(output_converted_generator - output_original_generator)).item() print("Maximum absolute difference beween weights: {:.2f}".format(_a)) SCREAMING_SNAKE_CASE : int = torch.allclose(_a , _a , atol=1E-3) if are_identical: logging.info("all weights are equal up to 1e-3") else: raise ValueError("the weights are different. The new model is likely different from the original one.") # The model has been saved with torch.save(model) and this is bound to the exact # directory structure. We save the state_dict instead. logging.info("saving the model's state dictionary") torch.save( new_model.state_dict() , "./bertabs-finetuned-cnndm-extractive-abstractive-summarization/pytorch_model.bin") if __name__ == "__main__": a_ = argparse.ArgumentParser() parser.add_argument( '--bertabs_checkpoint_path', default=None, type=str, required=True, help='Path the official PyTorch dump.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, required=True, help='Path to the output PyTorch model.', ) a_ = parser.parse_args() convert_bertabs_checkpoints( args.bertabs_checkpoint_path, args.pytorch_dump_folder_path, )
25
import unittest import numpy as np import torch from diffusers import KarrasVePipeline, KarrasVeScheduler, UNetaDModel from diffusers.utils.testing_utils import enable_full_determinism, require_torch, slow, torch_device enable_full_determinism() class _UpperCamelCase ( unittest.TestCase ): '''simple docstring''' @property def __UpperCamelCase ( self : List[str] ) -> Union[str, Any]: """simple docstring""" torch.manual_seed(0 ) SCREAMING_SNAKE_CASE : str = UNetaDModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=3 , out_channels=3 , down_block_types=("DownBlock2D", "AttnDownBlock2D") , up_block_types=("AttnUpBlock2D", "UpBlock2D") , ) return model def __UpperCamelCase ( self : Union[str, Any] ) -> Dict: """simple docstring""" SCREAMING_SNAKE_CASE : Union[str, Any] = self.dummy_uncond_unet SCREAMING_SNAKE_CASE : Union[str, Any] = KarrasVeScheduler() SCREAMING_SNAKE_CASE : Any = KarrasVePipeline(unet=a , scheduler=a ) pipe.to(a ) pipe.set_progress_bar_config(disable=a ) SCREAMING_SNAKE_CASE : Any = torch.manual_seed(0 ) SCREAMING_SNAKE_CASE : Optional[Any] = pipe(num_inference_steps=2 , generator=a , output_type="numpy" ).images SCREAMING_SNAKE_CASE : List[str] = torch.manual_seed(0 ) SCREAMING_SNAKE_CASE : List[Any] = pipe(num_inference_steps=2 , generator=a , output_type="numpy" , return_dict=a )[0] SCREAMING_SNAKE_CASE : List[Any] = image[0, -3:, -3:, -1] SCREAMING_SNAKE_CASE : Any = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) SCREAMING_SNAKE_CASE : str = np.array([0.0, 1.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2 @slow @require_torch class _UpperCamelCase ( unittest.TestCase ): '''simple docstring''' def __UpperCamelCase ( self : int ) -> Tuple: """simple docstring""" SCREAMING_SNAKE_CASE : Dict = "google/ncsnpp-celebahq-256" SCREAMING_SNAKE_CASE : List[Any] = UNetaDModel.from_pretrained(a ) SCREAMING_SNAKE_CASE : Any = KarrasVeScheduler() SCREAMING_SNAKE_CASE : Optional[Any] = KarrasVePipeline(unet=a , scheduler=a ) pipe.to(a ) pipe.set_progress_bar_config(disable=a ) SCREAMING_SNAKE_CASE : Union[str, Any] = torch.manual_seed(0 ) SCREAMING_SNAKE_CASE : Any = pipe(num_inference_steps=20 , generator=a , output_type="numpy" ).images SCREAMING_SNAKE_CASE : List[str] = image[0, -3:, -3:, -1] assert image.shape == (1, 256, 256, 3) SCREAMING_SNAKE_CASE : str = np.array([0.578, 0.5811, 0.5924, 0.5809, 0.587, 0.5886, 0.5861, 0.5802, 0.586] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
25
1
from .imports import is_tqdm_available if is_tqdm_available(): from tqdm.auto import tqdm as _tqdm from ..state import PartialState def lowerCamelCase__ ( _a = True , *_a , **_a): if not is_tqdm_available(): raise ImportError("Accelerate's `tqdm` module requires `tqdm` to be installed. Please run `pip install tqdm`.") SCREAMING_SNAKE_CASE : List[Any] = False if main_process_only: SCREAMING_SNAKE_CASE : Optional[int] = PartialState().local_process_index == 0 return _tqdm(*_a , **_a , disable=_a)
25
def lowerCamelCase__ ( _a , _a): SCREAMING_SNAKE_CASE : Optional[int] = 0 while b > 0: if b & 1: res += a a += a b >>= 1 return res def lowerCamelCase__ ( _a , _a , _a): SCREAMING_SNAKE_CASE : Optional[int] = 0 while b > 0: if b & 1: SCREAMING_SNAKE_CASE : Optional[Any] = ((res % c) + (a % c)) % c a += a b >>= 1 return res
25
1
from unittest.mock import Mock, patch from file_transfer.send_file import send_file @patch("socket.socket") @patch("builtins.open") def lowerCamelCase__ ( _a , _a): # ===== initialization ===== SCREAMING_SNAKE_CASE : int = Mock() SCREAMING_SNAKE_CASE : List[str] = conn, Mock() SCREAMING_SNAKE_CASE : str = iter([1, None]) SCREAMING_SNAKE_CASE : str = lambda _a: next(_a) # ===== invoke ===== send_file(filename="mytext.txt" , testing=_a) # ===== ensurance ===== sock.assert_called_once() sock.return_value.bind.assert_called_once() sock.return_value.listen.assert_called_once() sock.return_value.accept.assert_called_once() conn.recv.assert_called_once() file.return_value.__enter__.assert_called_once() file.return_value.__enter__.return_value.read.assert_called() conn.send.assert_called_once() conn.close.assert_called_once() sock.return_value.shutdown.assert_called_once() sock.return_value.close.assert_called_once()
25
from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging a_ = logging.get_logger(__name__) a_ = { 'junnyu/roformer_chinese_small': 'https://huggingface.co/junnyu/roformer_chinese_small/resolve/main/config.json', 'junnyu/roformer_chinese_base': 'https://huggingface.co/junnyu/roformer_chinese_base/resolve/main/config.json', 'junnyu/roformer_chinese_char_small': ( 'https://huggingface.co/junnyu/roformer_chinese_char_small/resolve/main/config.json' ), 'junnyu/roformer_chinese_char_base': ( 'https://huggingface.co/junnyu/roformer_chinese_char_base/resolve/main/config.json' ), 'junnyu/roformer_small_discriminator': ( 'https://huggingface.co/junnyu/roformer_small_discriminator/resolve/main/config.json' ), 'junnyu/roformer_small_generator': ( 'https://huggingface.co/junnyu/roformer_small_generator/resolve/main/config.json' ), # See all RoFormer models at https://huggingface.co/models?filter=roformer } class _UpperCamelCase ( __A ): '''simple docstring''' lowerCamelCase__ ='roformer' def __init__( self : Dict , a : Any=5_0000 , a : List[Any]=None , a : str=768 , a : str=12 , a : Tuple=12 , a : Optional[Any]=3072 , a : List[str]="gelu" , a : List[Any]=0.1 , a : Union[str, Any]=0.1 , a : Tuple=1536 , a : List[str]=2 , a : Tuple=0.02 , a : Any=1e-12 , a : Optional[int]=0 , a : Union[str, Any]=False , a : int=True , **a : str , ) -> int: """simple docstring""" super().__init__(pad_token_id=a , **a ) SCREAMING_SNAKE_CASE : str = vocab_size SCREAMING_SNAKE_CASE : int = hidden_size if embedding_size is None else embedding_size SCREAMING_SNAKE_CASE : List[str] = hidden_size SCREAMING_SNAKE_CASE : Union[str, Any] = num_hidden_layers SCREAMING_SNAKE_CASE : int = num_attention_heads SCREAMING_SNAKE_CASE : Tuple = hidden_act SCREAMING_SNAKE_CASE : int = intermediate_size SCREAMING_SNAKE_CASE : Tuple = hidden_dropout_prob SCREAMING_SNAKE_CASE : int = attention_probs_dropout_prob SCREAMING_SNAKE_CASE : Optional[int] = max_position_embeddings SCREAMING_SNAKE_CASE : Any = type_vocab_size SCREAMING_SNAKE_CASE : Union[str, Any] = initializer_range SCREAMING_SNAKE_CASE : List[str] = layer_norm_eps SCREAMING_SNAKE_CASE : List[str] = rotary_value SCREAMING_SNAKE_CASE : int = use_cache class _UpperCamelCase ( __A ): '''simple docstring''' @property def __UpperCamelCase ( self : Tuple ) -> Mapping[str, Mapping[int, str]]: """simple docstring""" if self.task == "multiple-choice": SCREAMING_SNAKE_CASE : Optional[Any] = {0: "batch", 1: "choice", 2: "sequence"} else: SCREAMING_SNAKE_CASE : str = {0: "batch", 1: "sequence"} SCREAMING_SNAKE_CASE : List[Any] = {0: "batch", 1: "sequence"} return OrderedDict( [ ("input_ids", dynamic_axis), ("attention_mask", dynamic_axis), ("token_type_ids", dynamic_axis), ] )
25
1
from dataclasses import dataclass from typing import Optional import numpy as np import torch import torch.nn as nn from ..utils import BaseOutput, is_torch_version, randn_tensor from .attention_processor import SpatialNorm from .unet_ad_blocks import UNetMidBlockaD, get_down_block, get_up_block @dataclass class _UpperCamelCase ( __A ): '''simple docstring''' lowerCamelCase__ =42 class _UpperCamelCase ( nn.Module ): '''simple docstring''' def __init__( self : int , a : List[Any]=3 , a : Optional[int]=3 , a : Dict=("DownEncoderBlock2D",) , a : Any=(64,) , a : List[Any]=2 , a : Dict=32 , a : str="silu" , a : Optional[Any]=True , ) -> int: """simple docstring""" super().__init__() SCREAMING_SNAKE_CASE : Optional[int] = layers_per_block SCREAMING_SNAKE_CASE : Tuple = torch.nn.Convad( a , block_out_channels[0] , kernel_size=3 , stride=1 , padding=1 , ) SCREAMING_SNAKE_CASE : Optional[Any] = None SCREAMING_SNAKE_CASE : Any = nn.ModuleList([] ) # down SCREAMING_SNAKE_CASE : Optional[int] = block_out_channels[0] for i, down_block_type in enumerate(a ): SCREAMING_SNAKE_CASE : str = output_channel SCREAMING_SNAKE_CASE : int = block_out_channels[i] SCREAMING_SNAKE_CASE : Union[str, Any] = i == len(a ) - 1 SCREAMING_SNAKE_CASE : Optional[int] = get_down_block( a , num_layers=self.layers_per_block , in_channels=a , out_channels=a , add_downsample=not is_final_block , resnet_eps=1e-6 , downsample_padding=0 , resnet_act_fn=a , resnet_groups=a , attention_head_dim=a , temb_channels=a , ) self.down_blocks.append(a ) # mid SCREAMING_SNAKE_CASE : str = UNetMidBlockaD( in_channels=block_out_channels[-1] , resnet_eps=1e-6 , resnet_act_fn=a , output_scale_factor=1 , resnet_time_scale_shift="default" , attention_head_dim=block_out_channels[-1] , resnet_groups=a , temb_channels=a , ) # out SCREAMING_SNAKE_CASE : str = nn.GroupNorm(num_channels=block_out_channels[-1] , num_groups=a , eps=1e-6 ) SCREAMING_SNAKE_CASE : Dict = nn.SiLU() SCREAMING_SNAKE_CASE : Union[str, Any] = 2 * out_channels if double_z else out_channels SCREAMING_SNAKE_CASE : Tuple = nn.Convad(block_out_channels[-1] , a , 3 , padding=1 ) SCREAMING_SNAKE_CASE : Any = False def __UpperCamelCase ( self : List[Any] , a : str ) -> Any: """simple docstring""" SCREAMING_SNAKE_CASE : List[str] = x SCREAMING_SNAKE_CASE : List[str] = self.conv_in(a ) if self.training and self.gradient_checkpointing: def create_custom_forward(a : Any ): def custom_forward(*a : Optional[int] ): return module(*a ) return custom_forward # down if is_torch_version(">=" , "1.11.0" ): for down_block in self.down_blocks: SCREAMING_SNAKE_CASE : str = torch.utils.checkpoint.checkpoint( create_custom_forward(a ) , a , use_reentrant=a ) # middle SCREAMING_SNAKE_CASE : Tuple = torch.utils.checkpoint.checkpoint( create_custom_forward(self.mid_block ) , a , use_reentrant=a ) else: for down_block in self.down_blocks: SCREAMING_SNAKE_CASE : Any = torch.utils.checkpoint.checkpoint(create_custom_forward(a ) , a ) # middle SCREAMING_SNAKE_CASE : Union[str, Any] = torch.utils.checkpoint.checkpoint(create_custom_forward(self.mid_block ) , a ) else: # down for down_block in self.down_blocks: SCREAMING_SNAKE_CASE : List[Any] = down_block(a ) # middle SCREAMING_SNAKE_CASE : Optional[Any] = self.mid_block(a ) # post-process SCREAMING_SNAKE_CASE : Optional[int] = self.conv_norm_out(a ) SCREAMING_SNAKE_CASE : Union[str, Any] = self.conv_act(a ) SCREAMING_SNAKE_CASE : str = self.conv_out(a ) return sample class _UpperCamelCase ( nn.Module ): '''simple docstring''' def __init__( self : List[Any] , a : Dict=3 , a : int=3 , a : Optional[Any]=("UpDecoderBlock2D",) , a : Tuple=(64,) , a : int=2 , a : Any=32 , a : Optional[int]="silu" , a : int="group" , ) -> int: """simple docstring""" super().__init__() SCREAMING_SNAKE_CASE : Optional[Any] = layers_per_block SCREAMING_SNAKE_CASE : Any = nn.Convad( a , block_out_channels[-1] , kernel_size=3 , stride=1 , padding=1 , ) SCREAMING_SNAKE_CASE : List[Any] = None SCREAMING_SNAKE_CASE : Union[str, Any] = nn.ModuleList([] ) SCREAMING_SNAKE_CASE : Optional[Any] = in_channels if norm_type == "spatial" else None # mid SCREAMING_SNAKE_CASE : Optional[Any] = UNetMidBlockaD( in_channels=block_out_channels[-1] , resnet_eps=1e-6 , resnet_act_fn=a , output_scale_factor=1 , resnet_time_scale_shift="default" if norm_type == "group" else norm_type , attention_head_dim=block_out_channels[-1] , resnet_groups=a , temb_channels=a , ) # up SCREAMING_SNAKE_CASE : Any = list(reversed(a ) ) SCREAMING_SNAKE_CASE : Optional[Any] = reversed_block_out_channels[0] for i, up_block_type in enumerate(a ): SCREAMING_SNAKE_CASE : Tuple = output_channel SCREAMING_SNAKE_CASE : List[str] = reversed_block_out_channels[i] SCREAMING_SNAKE_CASE : int = i == len(a ) - 1 SCREAMING_SNAKE_CASE : List[str] = get_up_block( a , num_layers=self.layers_per_block + 1 , in_channels=a , out_channels=a , prev_output_channel=a , add_upsample=not is_final_block , resnet_eps=1e-6 , resnet_act_fn=a , resnet_groups=a , attention_head_dim=a , temb_channels=a , resnet_time_scale_shift=a , ) self.up_blocks.append(a ) SCREAMING_SNAKE_CASE : Any = output_channel # out if norm_type == "spatial": SCREAMING_SNAKE_CASE : Optional[int] = SpatialNorm(block_out_channels[0] , a ) else: SCREAMING_SNAKE_CASE : List[str] = nn.GroupNorm(num_channels=block_out_channels[0] , num_groups=a , eps=1e-6 ) SCREAMING_SNAKE_CASE : Optional[int] = nn.SiLU() SCREAMING_SNAKE_CASE : Any = nn.Convad(block_out_channels[0] , a , 3 , padding=1 ) SCREAMING_SNAKE_CASE : int = False def __UpperCamelCase ( self : Tuple , a : Union[str, Any] , a : List[Any]=None ) -> Optional[Any]: """simple docstring""" SCREAMING_SNAKE_CASE : List[Any] = z SCREAMING_SNAKE_CASE : int = self.conv_in(a ) SCREAMING_SNAKE_CASE : str = next(iter(self.up_blocks.parameters() ) ).dtype if self.training and self.gradient_checkpointing: def create_custom_forward(a : Dict ): def custom_forward(*a : List[Any] ): return module(*a ) return custom_forward if is_torch_version(">=" , "1.11.0" ): # middle SCREAMING_SNAKE_CASE : str = torch.utils.checkpoint.checkpoint( create_custom_forward(self.mid_block ) , a , a , use_reentrant=a ) SCREAMING_SNAKE_CASE : List[Any] = sample.to(a ) # up for up_block in self.up_blocks: SCREAMING_SNAKE_CASE : Optional[int] = torch.utils.checkpoint.checkpoint( create_custom_forward(a ) , a , a , use_reentrant=a ) else: # middle SCREAMING_SNAKE_CASE : Any = torch.utils.checkpoint.checkpoint( create_custom_forward(self.mid_block ) , a , a ) SCREAMING_SNAKE_CASE : Dict = sample.to(a ) # up for up_block in self.up_blocks: SCREAMING_SNAKE_CASE : int = torch.utils.checkpoint.checkpoint(create_custom_forward(a ) , a , a ) else: # middle SCREAMING_SNAKE_CASE : Optional[int] = self.mid_block(a , a ) SCREAMING_SNAKE_CASE : List[Any] = sample.to(a ) # up for up_block in self.up_blocks: SCREAMING_SNAKE_CASE : Dict = up_block(a , a ) # post-process if latent_embeds is None: SCREAMING_SNAKE_CASE : Optional[int] = self.conv_norm_out(a ) else: SCREAMING_SNAKE_CASE : Union[str, Any] = self.conv_norm_out(a , a ) SCREAMING_SNAKE_CASE : List[Any] = self.conv_act(a ) SCREAMING_SNAKE_CASE : Optional[int] = self.conv_out(a ) return sample class _UpperCamelCase ( nn.Module ): '''simple docstring''' def __init__( self : Tuple , a : str , a : Optional[int] , a : Optional[int] , a : Tuple=None , a : Optional[Any]="random" , a : Any=False , a : List[str]=True ) -> Union[str, Any]: """simple docstring""" super().__init__() SCREAMING_SNAKE_CASE : List[Any] = n_e SCREAMING_SNAKE_CASE : str = vq_embed_dim SCREAMING_SNAKE_CASE : Optional[int] = beta SCREAMING_SNAKE_CASE : Any = legacy SCREAMING_SNAKE_CASE : List[Any] = nn.Embedding(self.n_e , self.vq_embed_dim ) self.embedding.weight.data.uniform_(-1.0 / self.n_e , 1.0 / self.n_e ) SCREAMING_SNAKE_CASE : List[Any] = remap if self.remap is not None: self.register_buffer("used" , torch.tensor(np.load(self.remap ) ) ) SCREAMING_SNAKE_CASE : Dict = self.used.shape[0] SCREAMING_SNAKE_CASE : Union[str, Any] = unknown_index # "random" or "extra" or integer if self.unknown_index == "extra": SCREAMING_SNAKE_CASE : Union[str, Any] = self.re_embed SCREAMING_SNAKE_CASE : List[Any] = self.re_embed + 1 print( F"Remapping {self.n_e} indices to {self.re_embed} indices. " F"Using {self.unknown_index} for unknown indices." ) else: SCREAMING_SNAKE_CASE : List[str] = n_e SCREAMING_SNAKE_CASE : Any = sane_index_shape def __UpperCamelCase ( self : Tuple , a : Any ) -> List[str]: """simple docstring""" SCREAMING_SNAKE_CASE : Optional[Any] = inds.shape assert len(a ) > 1 SCREAMING_SNAKE_CASE : Dict = inds.reshape(ishape[0] , -1 ) SCREAMING_SNAKE_CASE : List[str] = self.used.to(a ) SCREAMING_SNAKE_CASE : List[str] = (inds[:, :, None] == used[None, None, ...]).long() SCREAMING_SNAKE_CASE : Tuple = match.argmax(-1 ) SCREAMING_SNAKE_CASE : Dict = match.sum(2 ) < 1 if self.unknown_index == "random": SCREAMING_SNAKE_CASE : Tuple = torch.randint(0 , self.re_embed , size=new[unknown].shape ).to(device=new.device ) else: SCREAMING_SNAKE_CASE : Optional[int] = self.unknown_index return new.reshape(a ) def __UpperCamelCase ( self : str , a : List[Any] ) -> Dict: """simple docstring""" SCREAMING_SNAKE_CASE : Optional[int] = inds.shape assert len(a ) > 1 SCREAMING_SNAKE_CASE : List[str] = inds.reshape(ishape[0] , -1 ) SCREAMING_SNAKE_CASE : List[str] = self.used.to(a ) if self.re_embed > self.used.shape[0]: # extra token SCREAMING_SNAKE_CASE : Dict = 0 # simply set to zero SCREAMING_SNAKE_CASE : Any = torch.gather(used[None, :][inds.shape[0] * [0], :] , 1 , a ) return back.reshape(a ) def __UpperCamelCase ( self : Union[str, Any] , a : Tuple ) -> Any: """simple docstring""" SCREAMING_SNAKE_CASE : Any = z.permute(0 , 2 , 3 , 1 ).contiguous() SCREAMING_SNAKE_CASE : str = z.view(-1 , self.vq_embed_dim ) # distances from z to embeddings e_j (z - e)^2 = z^2 + e^2 - 2 e * z SCREAMING_SNAKE_CASE : str = torch.argmin(torch.cdist(a , self.embedding.weight ) , dim=1 ) SCREAMING_SNAKE_CASE : Optional[Any] = self.embedding(a ).view(z.shape ) SCREAMING_SNAKE_CASE : Union[str, Any] = None SCREAMING_SNAKE_CASE : Union[str, Any] = None # compute loss for embedding if not self.legacy: SCREAMING_SNAKE_CASE : Optional[Any] = self.beta * torch.mean((z_q.detach() - z) ** 2 ) + torch.mean((z_q - z.detach()) ** 2 ) else: SCREAMING_SNAKE_CASE : Any = torch.mean((z_q.detach() - z) ** 2 ) + self.beta * torch.mean((z_q - z.detach()) ** 2 ) # preserve gradients SCREAMING_SNAKE_CASE : Union[str, Any] = z + (z_q - z).detach() # reshape back to match original input shape SCREAMING_SNAKE_CASE : str = z_q.permute(0 , 3 , 1 , 2 ).contiguous() if self.remap is not None: SCREAMING_SNAKE_CASE : Union[str, Any] = min_encoding_indices.reshape(z.shape[0] , -1 ) # add batch axis SCREAMING_SNAKE_CASE : Optional[Any] = self.remap_to_used(a ) SCREAMING_SNAKE_CASE : Optional[int] = min_encoding_indices.reshape(-1 , 1 ) # flatten if self.sane_index_shape: SCREAMING_SNAKE_CASE : int = min_encoding_indices.reshape(z_q.shape[0] , z_q.shape[2] , z_q.shape[3] ) return z_q, loss, (perplexity, min_encodings, min_encoding_indices) def __UpperCamelCase ( self : Any , a : Dict , a : str ) -> List[str]: """simple docstring""" if self.remap is not None: SCREAMING_SNAKE_CASE : Any = indices.reshape(shape[0] , -1 ) # add batch axis SCREAMING_SNAKE_CASE : int = self.unmap_to_all(a ) SCREAMING_SNAKE_CASE : str = indices.reshape(-1 ) # flatten again # get quantized latent vectors SCREAMING_SNAKE_CASE : List[Any] = self.embedding(a ) if shape is not None: SCREAMING_SNAKE_CASE : Any = z_q.view(a ) # reshape back to match original input shape SCREAMING_SNAKE_CASE : int = z_q.permute(0 , 3 , 1 , 2 ).contiguous() return z_q class _UpperCamelCase ( __A ): '''simple docstring''' def __init__( self : List[str] , a : List[str] , a : Dict=False ) -> int: """simple docstring""" SCREAMING_SNAKE_CASE : Union[str, Any] = parameters SCREAMING_SNAKE_CASE ,SCREAMING_SNAKE_CASE : Any = torch.chunk(a , 2 , dim=1 ) SCREAMING_SNAKE_CASE : Any = torch.clamp(self.logvar , -30.0 , 20.0 ) SCREAMING_SNAKE_CASE : str = deterministic SCREAMING_SNAKE_CASE : int = torch.exp(0.5 * self.logvar ) SCREAMING_SNAKE_CASE : Tuple = torch.exp(self.logvar ) if self.deterministic: SCREAMING_SNAKE_CASE : Tuple = torch.zeros_like( self.mean , device=self.parameters.device , dtype=self.parameters.dtype ) def __UpperCamelCase ( self : Optional[int] , a : Optional[torch.Generator] = None ) -> torch.FloatTensor: """simple docstring""" SCREAMING_SNAKE_CASE : Any = randn_tensor( self.mean.shape , generator=a , device=self.parameters.device , dtype=self.parameters.dtype ) SCREAMING_SNAKE_CASE : int = self.mean + self.std * sample return x def __UpperCamelCase ( self : Optional[Any] , a : str=None ) -> Any: """simple docstring""" if self.deterministic: return torch.Tensor([0.0] ) else: if other is None: return 0.5 * torch.sum(torch.pow(self.mean , 2 ) + self.var - 1.0 - self.logvar , dim=[1, 2, 3] ) else: return 0.5 * torch.sum( torch.pow(self.mean - other.mean , 2 ) / other.var + self.var / other.var - 1.0 - self.logvar + other.logvar , dim=[1, 2, 3] , ) def __UpperCamelCase ( self : List[Any] , a : Union[str, Any] , a : Dict=[1, 2, 3] ) -> int: """simple docstring""" if self.deterministic: return torch.Tensor([0.0] ) SCREAMING_SNAKE_CASE : List[str] = np.log(2.0 * np.pi ) return 0.5 * torch.sum(logtwopi + self.logvar + torch.pow(sample - self.mean , 2 ) / self.var , dim=a ) def __UpperCamelCase ( self : Optional[Any] ) -> Dict: """simple docstring""" return self.mean
25
import argparse import logging from collections import namedtuple import torch from model_bertabs import BertAbsSummarizer from models.model_builder import AbsSummarizer # The authors' implementation from transformers import BertTokenizer logging.basicConfig(level=logging.INFO) a_ = logging.getLogger(__name__) a_ = 'Hello world! cécé herlolip' a_ = namedtuple( 'BertAbsConfig', [ 'temp_dir', 'large', 'use_bert_emb', 'finetune_bert', 'encoder', 'share_emb', 'max_pos', 'enc_layers', 'enc_hidden_size', 'enc_heads', 'enc_ff_size', 'enc_dropout', 'dec_layers', 'dec_hidden_size', 'dec_heads', 'dec_ff_size', 'dec_dropout', ], ) def lowerCamelCase__ ( _a , _a): SCREAMING_SNAKE_CASE : List[Any] = BertAbsConfig( temp_dir="." , finetune_bert=_a , large=_a , share_emb=_a , use_bert_emb=_a , encoder="bert" , max_pos=512 , enc_layers=6 , enc_hidden_size=512 , enc_heads=8 , enc_ff_size=512 , enc_dropout=0.2 , dec_layers=6 , dec_hidden_size=768 , dec_heads=8 , dec_ff_size=2048 , dec_dropout=0.2 , ) SCREAMING_SNAKE_CASE : Dict = torch.load(_a , lambda _a , _a: storage) SCREAMING_SNAKE_CASE : str = AbsSummarizer(_a , torch.device("cpu") , _a) original.eval() SCREAMING_SNAKE_CASE : List[str] = BertAbsSummarizer(_a , torch.device("cpu")) new_model.eval() # ------------------- # Convert the weights # ------------------- logging.info("convert the model") new_model.bert.load_state_dict(original.bert.state_dict()) new_model.decoder.load_state_dict(original.decoder.state_dict()) new_model.generator.load_state_dict(original.generator.state_dict()) # ---------------------------------- # Make sure the outpus are identical # ---------------------------------- logging.info("Make sure that the models' outputs are identical") SCREAMING_SNAKE_CASE : List[str] = BertTokenizer.from_pretrained("bert-base-uncased") # prepare the model inputs SCREAMING_SNAKE_CASE : List[str] = tokenizer.encode("This is sample éàalj'-.") encoder_input_ids.extend([tokenizer.pad_token_id] * (512 - len(_a))) SCREAMING_SNAKE_CASE : int = torch.tensor(_a).unsqueeze(0) SCREAMING_SNAKE_CASE : List[Any] = tokenizer.encode("This is sample 3 éàalj'-.") decoder_input_ids.extend([tokenizer.pad_token_id] * (512 - len(_a))) SCREAMING_SNAKE_CASE : int = torch.tensor(_a).unsqueeze(0) # failsafe to make sure the weights reset does not affect the # loaded weights. assert torch.max(torch.abs(original.generator[0].weight - new_model.generator[0].weight)) == 0 # forward pass SCREAMING_SNAKE_CASE : List[Any] = encoder_input_ids SCREAMING_SNAKE_CASE : List[Any] = decoder_input_ids SCREAMING_SNAKE_CASE : Dict = None SCREAMING_SNAKE_CASE : Optional[Any] = None SCREAMING_SNAKE_CASE : List[Any] = None SCREAMING_SNAKE_CASE : Optional[int] = None SCREAMING_SNAKE_CASE : Dict = None # The original model does not apply the geneator layer immediatly but rather in # the beam search (where it combines softmax + linear layer). Since we already # apply the softmax in our generation process we only apply the linear layer here. # We make sure that the outputs of the full stack are identical SCREAMING_SNAKE_CASE : Optional[int] = original(_a , _a , _a , _a , _a , _a , _a)[0] SCREAMING_SNAKE_CASE : Dict = original.generator(_a) SCREAMING_SNAKE_CASE : Any = new_model( _a , _a , _a , _a , _a)[0] SCREAMING_SNAKE_CASE : Tuple = new_model.generator(_a) SCREAMING_SNAKE_CASE : List[Any] = torch.max(torch.abs(output_converted_model - output_original_model)).item() print("Maximum absolute difference beween weights: {:.2f}".format(_a)) SCREAMING_SNAKE_CASE : Union[str, Any] = torch.max(torch.abs(output_converted_generator - output_original_generator)).item() print("Maximum absolute difference beween weights: {:.2f}".format(_a)) SCREAMING_SNAKE_CASE : int = torch.allclose(_a , _a , atol=1E-3) if are_identical: logging.info("all weights are equal up to 1e-3") else: raise ValueError("the weights are different. The new model is likely different from the original one.") # The model has been saved with torch.save(model) and this is bound to the exact # directory structure. We save the state_dict instead. logging.info("saving the model's state dictionary") torch.save( new_model.state_dict() , "./bertabs-finetuned-cnndm-extractive-abstractive-summarization/pytorch_model.bin") if __name__ == "__main__": a_ = argparse.ArgumentParser() parser.add_argument( '--bertabs_checkpoint_path', default=None, type=str, required=True, help='Path the official PyTorch dump.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, required=True, help='Path to the output PyTorch model.', ) a_ = parser.parse_args() convert_bertabs_checkpoints( args.bertabs_checkpoint_path, args.pytorch_dump_folder_path, )
25
1
def lowerCamelCase__ ( _a): SCREAMING_SNAKE_CASE : str = 1 SCREAMING_SNAKE_CASE : str = 2 while i * i <= n: SCREAMING_SNAKE_CASE : Union[str, Any] = 0 while n % i == 0: n //= i multiplicity += 1 n_divisors *= multiplicity + 1 i += 1 if n > 1: n_divisors *= 2 return n_divisors def lowerCamelCase__ ( ): SCREAMING_SNAKE_CASE : str = 1 SCREAMING_SNAKE_CASE : List[Any] = 1 while True: i += 1 t_num += i if count_divisors(_a) > 500: break return t_num if __name__ == "__main__": print(solution())
25
import argparse from transformers import CLIPImageProcessor, CLIPVisionModelWithProjection from diffusers import UnCLIPImageVariationPipeline, UnCLIPPipeline if __name__ == "__main__": a_ = argparse.ArgumentParser() parser.add_argument('--dump_path', default=None, type=str, required=True, help='Path to the output model.') parser.add_argument( '--txt2img_unclip', default='kakaobrain/karlo-v1-alpha', type=str, required=False, help='The pretrained txt2img unclip.', ) a_ = parser.parse_args() a_ = UnCLIPPipeline.from_pretrained(args.txtaimg_unclip) a_ = CLIPImageProcessor() a_ = CLIPVisionModelWithProjection.from_pretrained('openai/clip-vit-large-patch14') a_ = UnCLIPImageVariationPipeline( decoder=txtaimg.decoder, text_encoder=txtaimg.text_encoder, tokenizer=txtaimg.tokenizer, text_proj=txtaimg.text_proj, feature_extractor=feature_extractor, image_encoder=image_encoder, super_res_first=txtaimg.super_res_first, super_res_last=txtaimg.super_res_last, decoder_scheduler=txtaimg.decoder_scheduler, super_res_scheduler=txtaimg.super_res_scheduler, ) imgaimg.save_pretrained(args.dump_path)
25
1
import unittest from transformers import GPTNeoXJapaneseConfig, is_torch_available from transformers.models.gpt_neox_japanese.tokenization_gpt_neox_japanese import GPTNeoXJapaneseTokenizer from transformers.testing_utils import require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import GPTNeoXJapaneseForCausalLM, GPTNeoXJapaneseModel class _UpperCamelCase : '''simple docstring''' def __init__( self : List[Any] , a : List[Any] , a : List[Any]=13 , a : Union[str, Any]=7 , a : Optional[int]=True , a : Optional[int]=True , a : int=True , a : Any=True , a : Dict=99 , a : Tuple=32 , a : Optional[int]=5 , a : List[Any]=4 , a : Optional[int]=4 , a : List[str]="gelu" , a : Optional[int]=0.0 , a : int=0.1 , a : List[Any]=True , a : Union[str, Any]=512 , a : Tuple=16 , a : Union[str, Any]=2 , a : List[str]=0.02 , a : Any=3 , a : int=4 , a : int=None , ) -> Tuple: """simple docstring""" SCREAMING_SNAKE_CASE : Tuple = parent SCREAMING_SNAKE_CASE : Any = batch_size SCREAMING_SNAKE_CASE : Dict = seq_length SCREAMING_SNAKE_CASE : str = is_training SCREAMING_SNAKE_CASE : Optional[int] = use_input_mask SCREAMING_SNAKE_CASE : Optional[Any] = use_token_type_ids SCREAMING_SNAKE_CASE : List[str] = use_labels SCREAMING_SNAKE_CASE : Optional[Any] = vocab_size SCREAMING_SNAKE_CASE : Tuple = hidden_size SCREAMING_SNAKE_CASE : Union[str, Any] = num_hidden_layers SCREAMING_SNAKE_CASE : str = num_attention_heads SCREAMING_SNAKE_CASE : List[str] = intermediate_multiple_size SCREAMING_SNAKE_CASE : List[Any] = hidden_act SCREAMING_SNAKE_CASE : Union[str, Any] = hidden_dropout SCREAMING_SNAKE_CASE : Any = attention_dropout SCREAMING_SNAKE_CASE : str = weight_tying SCREAMING_SNAKE_CASE : Any = max_position_embeddings SCREAMING_SNAKE_CASE : int = type_vocab_size SCREAMING_SNAKE_CASE : Any = type_sequence_label_size SCREAMING_SNAKE_CASE : Union[str, Any] = initializer_range SCREAMING_SNAKE_CASE : Any = num_labels SCREAMING_SNAKE_CASE : List[Any] = num_choices SCREAMING_SNAKE_CASE : List[str] = scope def __UpperCamelCase ( self : Optional[Any] ) -> Optional[Any]: """simple docstring""" SCREAMING_SNAKE_CASE : int = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) SCREAMING_SNAKE_CASE : Optional[Any] = None if self.use_input_mask: SCREAMING_SNAKE_CASE : List[str] = random_attention_mask([self.batch_size, self.seq_length] ) SCREAMING_SNAKE_CASE : Optional[int] = None if self.use_labels: SCREAMING_SNAKE_CASE : Dict = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) SCREAMING_SNAKE_CASE : List[Any] = self.get_config() return config, input_ids, input_mask, token_labels def __UpperCamelCase ( self : str ) -> List[Any]: """simple docstring""" return GPTNeoXJapaneseConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_multiple_size=self.intermediate_multiple_size , hidden_act=self.hidden_act , hidden_dropout=self.hidden_dropout , attention_dropout=self.attention_dropout , weight_tying=self.weight_tying , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=a , initializer_range=self.initializer_range , ) def __UpperCamelCase ( self : Union[str, Any] ) -> Any: """simple docstring""" SCREAMING_SNAKE_CASE ,SCREAMING_SNAKE_CASE ,SCREAMING_SNAKE_CASE ,SCREAMING_SNAKE_CASE : Optional[Any] = self.prepare_config_and_inputs() SCREAMING_SNAKE_CASE : Optional[int] = True return config, input_ids, input_mask, token_labels def __UpperCamelCase ( self : List[str] , a : Union[str, Any] , a : Optional[Any] , a : int ) -> Optional[Any]: """simple docstring""" SCREAMING_SNAKE_CASE : List[str] = GPTNeoXJapaneseModel(config=a ) model.to(a ) model.eval() SCREAMING_SNAKE_CASE : str = model(a , attention_mask=a ) SCREAMING_SNAKE_CASE : Union[str, Any] = model(a ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def __UpperCamelCase ( self : Tuple , a : Optional[int] , a : List[str] , a : str ) -> List[Any]: """simple docstring""" SCREAMING_SNAKE_CASE : int = True SCREAMING_SNAKE_CASE : Dict = GPTNeoXJapaneseModel(a ) model.to(a ) model.eval() SCREAMING_SNAKE_CASE : List[Any] = model(a , attention_mask=a ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def __UpperCamelCase ( self : Optional[Any] , a : Tuple , a : Union[str, Any] , a : Union[str, Any] , a : List[Any] ) -> Tuple: """simple docstring""" SCREAMING_SNAKE_CASE : int = GPTNeoXJapaneseForCausalLM(config=a ) model.to(a ) model.eval() SCREAMING_SNAKE_CASE : Optional[int] = model(a , attention_mask=a , labels=a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def __UpperCamelCase ( self : Optional[int] , a : Tuple , a : Tuple , a : Dict ) -> Optional[int]: """simple docstring""" SCREAMING_SNAKE_CASE : Optional[Any] = True SCREAMING_SNAKE_CASE : str = GPTNeoXJapaneseForCausalLM(config=a ) model.to(a ) model.eval() # first forward pass SCREAMING_SNAKE_CASE : List[str] = model(a , attention_mask=a , use_cache=a ) SCREAMING_SNAKE_CASE : Any = outputs.past_key_values # create hypothetical multiple next token and extent to next_input_ids SCREAMING_SNAKE_CASE : Dict = ids_tensor((self.batch_size, 3) , config.vocab_size ) SCREAMING_SNAKE_CASE : str = ids_tensor((self.batch_size, 3) , vocab_size=2 ) # append to next input_ids and SCREAMING_SNAKE_CASE : Any = torch.cat([input_ids, next_tokens] , dim=-1 ) SCREAMING_SNAKE_CASE : Union[str, Any] = torch.cat([input_mask, next_mask] , dim=-1 ) SCREAMING_SNAKE_CASE : List[Any] = model(a , attention_mask=a , output_hidden_states=a ) SCREAMING_SNAKE_CASE : Any = output_from_no_past["hidden_states"][0] SCREAMING_SNAKE_CASE : Dict = model( a , attention_mask=a , past_key_values=a , output_hidden_states=a , )["hidden_states"][0] # select random slice SCREAMING_SNAKE_CASE : Optional[int] = ids_tensor((1,) , output_from_past.shape[-1] ).item() SCREAMING_SNAKE_CASE : List[Any] = output_from_no_past[:, -3:, random_slice_idx].detach() SCREAMING_SNAKE_CASE : List[Any] = output_from_past[:, :, random_slice_idx].detach() self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1] ) # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(a , a , atol=1e-3 ) ) def __UpperCamelCase ( self : Tuple ) -> Union[str, Any]: """simple docstring""" SCREAMING_SNAKE_CASE : Any = self.prepare_config_and_inputs() SCREAMING_SNAKE_CASE ,SCREAMING_SNAKE_CASE ,SCREAMING_SNAKE_CASE ,SCREAMING_SNAKE_CASE : Optional[int] = config_and_inputs SCREAMING_SNAKE_CASE : Any = {"input_ids": input_ids, "attention_mask": input_mask} return config, inputs_dict @require_torch class _UpperCamelCase ( __A , __A , unittest.TestCase ): '''simple docstring''' lowerCamelCase__ =(GPTNeoXJapaneseModel, GPTNeoXJapaneseForCausalLM) if is_torch_available() else () lowerCamelCase__ =(GPTNeoXJapaneseForCausalLM,) if is_torch_available() else () lowerCamelCase__ =( {'feature-extraction': GPTNeoXJapaneseModel, 'text-generation': GPTNeoXJapaneseForCausalLM} if is_torch_available() else {} ) lowerCamelCase__ =False lowerCamelCase__ =False lowerCamelCase__ =False lowerCamelCase__ =False def __UpperCamelCase ( self : List[Any] ) -> Any: """simple docstring""" SCREAMING_SNAKE_CASE : Union[str, Any] = GPTNeoXJapaneseModelTester(self ) SCREAMING_SNAKE_CASE : List[str] = ConfigTester(self , config_class=a , hidden_size=37 ) def __UpperCamelCase ( self : str ) -> Optional[Any]: """simple docstring""" self.config_tester.run_common_tests() def __UpperCamelCase ( self : Optional[Any] ) -> int: """simple docstring""" SCREAMING_SNAKE_CASE ,SCREAMING_SNAKE_CASE ,SCREAMING_SNAKE_CASE ,SCREAMING_SNAKE_CASE : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(a , a , a ) def __UpperCamelCase ( self : List[Any] ) -> Dict: """simple docstring""" SCREAMING_SNAKE_CASE ,SCREAMING_SNAKE_CASE ,SCREAMING_SNAKE_CASE ,SCREAMING_SNAKE_CASE : str = self.model_tester.prepare_config_and_inputs_for_decoder() self.model_tester.create_and_check_model_as_decoder(a , a , a ) def __UpperCamelCase ( self : str ) -> Optional[Any]: """simple docstring""" SCREAMING_SNAKE_CASE ,SCREAMING_SNAKE_CASE ,SCREAMING_SNAKE_CASE ,SCREAMING_SNAKE_CASE : List[str] = self.model_tester.prepare_config_and_inputs_for_decoder() SCREAMING_SNAKE_CASE : Dict = None self.model_tester.create_and_check_model_as_decoder(a , a , a ) def __UpperCamelCase ( self : Optional[Any] ) -> str: """simple docstring""" SCREAMING_SNAKE_CASE ,SCREAMING_SNAKE_CASE ,SCREAMING_SNAKE_CASE ,SCREAMING_SNAKE_CASE : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_decoder_model_past_large_inputs(a , a , a ) def __UpperCamelCase ( self : str ) -> List[Any]: """simple docstring""" SCREAMING_SNAKE_CASE : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_causal_lm(*a ) @slow def __UpperCamelCase ( self : Optional[Any] ) -> Dict: """simple docstring""" SCREAMING_SNAKE_CASE : List[Any] = "abeja/gpt-neox-japanese-2.7b" SCREAMING_SNAKE_CASE : Optional[int] = ["データサイエンティストとは、", "100年後に必要とされる会社は、", "フルリモートの環境で働くために必要なことは、", "国境の長いトンネルを抜けると", "美味しい日本食といえば、"] SCREAMING_SNAKE_CASE : List[Any] = [ "データサイエンティストとは、データを分析し、ビジネスに役立つ知見を導き出す専門家のことです。", "100年後に必要とされる会社は、「人」が中心の会社です。", "フルリモートの環境で働くために必要なことは、「自分の時間をコントロールする」ことです。", "国境の長いトンネルを抜けると、そこは雪国だった。", "美味しい日本食といえば、やっぱりお寿司ですよね。", ] SCREAMING_SNAKE_CASE : List[str] = GPTNeoXJapaneseTokenizer.from_pretrained(a ) SCREAMING_SNAKE_CASE : Tuple = GPTNeoXJapaneseForCausalLM.from_pretrained(a ) SCREAMING_SNAKE_CASE : Optional[Any] = [] for prompt in prompts: SCREAMING_SNAKE_CASE : str = tokenizer(a , return_tensors="pt" ).input_ids SCREAMING_SNAKE_CASE : Any = model.generate(a , max_length=50 ) SCREAMING_SNAKE_CASE : Tuple = tokenizer.batch_decode(a , skip_special_tokens=a ) predicted_outputs += generated_string self.assertListEqual(a , a )
25
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available a_ = { 'configuration_swinv2': ['SWINV2_PRETRAINED_CONFIG_ARCHIVE_MAP', 'Swinv2Config'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a_ = [ 'SWINV2_PRETRAINED_MODEL_ARCHIVE_LIST', 'Swinv2ForImageClassification', 'Swinv2ForMaskedImageModeling', 'Swinv2Model', 'Swinv2PreTrainedModel', ] if TYPE_CHECKING: from .configuration_swinva import SWINV2_PRETRAINED_CONFIG_ARCHIVE_MAP, SwinvaConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_swinva import ( SWINV2_PRETRAINED_MODEL_ARCHIVE_LIST, SwinvaForImageClassification, SwinvaForMaskedImageModeling, SwinvaModel, SwinvaPreTrainedModel, ) else: import sys a_ = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
25
1
from collections.abc import Iterator, MutableMapping from dataclasses import dataclass from typing import Generic, TypeVar a_ = TypeVar('KEY') a_ = TypeVar('VAL') @dataclass(frozen=__A , slots=__A ) class _UpperCamelCase ( Generic[KEY, VAL] ): '''simple docstring''' lowerCamelCase__ =42 lowerCamelCase__ =42 class _UpperCamelCase ( _Item ): '''simple docstring''' def __init__( self : Dict ) -> None: """simple docstring""" super().__init__(a , a ) def __bool__( self : str ) -> bool: """simple docstring""" return False a_ = _DeletedItem() class _UpperCamelCase ( MutableMapping[KEY, VAL] ): '''simple docstring''' def __init__( self : Union[str, Any] , a : int = 8 , a : float = 0.75 ) -> None: """simple docstring""" SCREAMING_SNAKE_CASE : int = initial_block_size SCREAMING_SNAKE_CASE : list[_Item | None] = [None] * initial_block_size assert 0.0 < capacity_factor < 1.0 SCREAMING_SNAKE_CASE : List[str] = capacity_factor SCREAMING_SNAKE_CASE : List[Any] = 0 def __UpperCamelCase ( self : str , a : KEY ) -> int: """simple docstring""" return hash(a ) % len(self._buckets ) def __UpperCamelCase ( self : Optional[Any] , a : int ) -> int: """simple docstring""" return (ind + 1) % len(self._buckets ) def __UpperCamelCase ( self : List[Any] , a : int , a : KEY , a : VAL ) -> bool: """simple docstring""" SCREAMING_SNAKE_CASE : Tuple = self._buckets[ind] if not stored: SCREAMING_SNAKE_CASE : int = _Item(a , a ) self._len += 1 return True elif stored.key == key: SCREAMING_SNAKE_CASE : Dict = _Item(a , a ) return True else: return False def __UpperCamelCase ( self : Union[str, Any] ) -> bool: """simple docstring""" SCREAMING_SNAKE_CASE : int = len(self._buckets ) * self._capacity_factor return len(self ) >= int(a ) def __UpperCamelCase ( self : Tuple ) -> bool: """simple docstring""" if len(self._buckets ) <= self._initial_block_size: return False SCREAMING_SNAKE_CASE : Optional[int] = len(self._buckets ) * self._capacity_factor / 2 return len(self ) < limit def __UpperCamelCase ( self : Any , a : int ) -> None: """simple docstring""" SCREAMING_SNAKE_CASE : Tuple = self._buckets SCREAMING_SNAKE_CASE : Optional[int] = [None] * new_size SCREAMING_SNAKE_CASE : Dict = 0 for item in old_buckets: if item: self._add_item(item.key , item.val ) def __UpperCamelCase ( self : Tuple ) -> None: """simple docstring""" self._resize(len(self._buckets ) * 2 ) def __UpperCamelCase ( self : List[str] ) -> None: """simple docstring""" self._resize(len(self._buckets ) // 2 ) def __UpperCamelCase ( self : List[str] , a : KEY ) -> Iterator[int]: """simple docstring""" SCREAMING_SNAKE_CASE : Dict = self._get_bucket_index(a ) for _ in range(len(self._buckets ) ): yield ind SCREAMING_SNAKE_CASE : int = self._get_next_ind(a ) def __UpperCamelCase ( self : List[Any] , a : KEY , a : VAL ) -> None: """simple docstring""" for ind in self._iterate_buckets(a ): if self._try_set(a , a , a ): break def __setitem__( self : List[str] , a : KEY , a : VAL ) -> None: """simple docstring""" if self._is_full(): self._size_up() self._add_item(a , a ) def __delitem__( self : int , a : KEY ) -> None: """simple docstring""" for ind in self._iterate_buckets(a ): SCREAMING_SNAKE_CASE : List[str] = self._buckets[ind] if item is None: raise KeyError(a ) if item is _deleted: continue if item.key == key: SCREAMING_SNAKE_CASE : int = _deleted self._len -= 1 break if self._is_sparse(): self._size_down() def __getitem__( self : List[str] , a : KEY ) -> VAL: """simple docstring""" for ind in self._iterate_buckets(a ): SCREAMING_SNAKE_CASE : List[Any] = self._buckets[ind] if item is None: break if item is _deleted: continue if item.key == key: return item.val raise KeyError(a ) def __len__( self : Optional[Any] ) -> int: """simple docstring""" return self._len def __iter__( self : Any ) -> Iterator[KEY]: """simple docstring""" yield from (item.key for item in self._buckets if item) def __repr__( self : Optional[int] ) -> str: """simple docstring""" SCREAMING_SNAKE_CASE : int = " ,".join( F"{item.key}: {item.val}" for item in self._buckets if item ) return F"HashMap({val_string})"
25
from math import pi, sqrt, tan def lowerCamelCase__ ( _a): if side_length < 0: raise ValueError("surface_area_cube() only accepts non-negative values") return 6 * side_length**2 def lowerCamelCase__ ( _a , _a , _a): if length < 0 or breadth < 0 or height < 0: raise ValueError("surface_area_cuboid() only accepts non-negative values") return 2 * ((length * breadth) + (breadth * height) + (length * height)) def lowerCamelCase__ ( _a): if radius < 0: raise ValueError("surface_area_sphere() only accepts non-negative values") return 4 * pi * radius**2 def lowerCamelCase__ ( _a): if radius < 0: raise ValueError("surface_area_hemisphere() only accepts non-negative values") return 3 * pi * radius**2 def lowerCamelCase__ ( _a , _a): if radius < 0 or height < 0: raise ValueError("surface_area_cone() only accepts non-negative values") return pi * radius * (radius + (height**2 + radius**2) ** 0.5) def lowerCamelCase__ ( _a , _a , _a): if radius_a < 0 or radius_a < 0 or height < 0: raise ValueError( "surface_area_conical_frustum() only accepts non-negative values") SCREAMING_SNAKE_CASE : Any = (height**2 + (radius_a - radius_a) ** 2) ** 0.5 return pi * ((slant_height * (radius_a + radius_a)) + radius_a**2 + radius_a**2) def lowerCamelCase__ ( _a , _a): if radius < 0 or height < 0: raise ValueError("surface_area_cylinder() only accepts non-negative values") return 2 * pi * radius * (height + radius) def lowerCamelCase__ ( _a , _a): if torus_radius < 0 or tube_radius < 0: raise ValueError("surface_area_torus() only accepts non-negative values") if torus_radius < tube_radius: raise ValueError( "surface_area_torus() does not support spindle or self intersecting tori") return 4 * pow(_a , 2) * torus_radius * tube_radius def lowerCamelCase__ ( _a , _a): if length < 0 or width < 0: raise ValueError("area_rectangle() only accepts non-negative values") return length * width def lowerCamelCase__ ( _a): if side_length < 0: raise ValueError("area_square() only accepts non-negative values") return side_length**2 def lowerCamelCase__ ( _a , _a): if base < 0 or height < 0: raise ValueError("area_triangle() only accepts non-negative values") return (base * height) / 2 def lowerCamelCase__ ( _a , _a , _a): if sidea < 0 or sidea < 0 or sidea < 0: raise ValueError("area_triangle_three_sides() only accepts non-negative values") elif sidea + sidea < sidea or sidea + sidea < sidea or sidea + sidea < sidea: raise ValueError("Given three sides do not form a triangle") SCREAMING_SNAKE_CASE : List[str] = (sidea + sidea + sidea) / 2 SCREAMING_SNAKE_CASE : Optional[int] = sqrt( semi_perimeter * (semi_perimeter - sidea) * (semi_perimeter - sidea) * (semi_perimeter - sidea)) return area def lowerCamelCase__ ( _a , _a): if base < 0 or height < 0: raise ValueError("area_parallelogram() only accepts non-negative values") return base * height def lowerCamelCase__ ( _a , _a , _a): if basea < 0 or basea < 0 or height < 0: raise ValueError("area_trapezium() only accepts non-negative values") return 1 / 2 * (basea + basea) * height def lowerCamelCase__ ( _a): if radius < 0: raise ValueError("area_circle() only accepts non-negative values") return pi * radius**2 def lowerCamelCase__ ( _a , _a): if radius_x < 0 or radius_y < 0: raise ValueError("area_ellipse() only accepts non-negative values") return pi * radius_x * radius_y def lowerCamelCase__ ( _a , _a): if diagonal_a < 0 or diagonal_a < 0: raise ValueError("area_rhombus() only accepts non-negative values") return 1 / 2 * diagonal_a * diagonal_a def lowerCamelCase__ ( _a , _a): if not isinstance(_a , _a) or sides < 3: raise ValueError( "area_reg_polygon() only accepts integers greater than or \ equal to three as number of sides") elif length < 0: raise ValueError( "area_reg_polygon() only accepts non-negative values as \ length of a side") return (sides * length**2) / (4 * tan(pi / sides)) return (sides * length**2) / (4 * tan(pi / sides)) if __name__ == "__main__": import doctest doctest.testmod(verbose=True) # verbose so we can see methods missing tests print('[DEMO] Areas of various geometric shapes: \n') print(F'''Rectangle: {area_rectangle(10, 20) = }''') print(F'''Square: {area_square(10) = }''') print(F'''Triangle: {area_triangle(10, 10) = }''') print(F'''Triangle: {area_triangle_three_sides(5, 12, 13) = }''') print(F'''Parallelogram: {area_parallelogram(10, 20) = }''') print(F'''Rhombus: {area_rhombus(10, 20) = }''') print(F'''Trapezium: {area_trapezium(10, 20, 30) = }''') print(F'''Circle: {area_circle(20) = }''') print(F'''Ellipse: {area_ellipse(10, 20) = }''') print('\nSurface Areas of various geometric shapes: \n') print(F'''Cube: {surface_area_cube(20) = }''') print(F'''Cuboid: {surface_area_cuboid(10, 20, 30) = }''') print(F'''Sphere: {surface_area_sphere(20) = }''') print(F'''Hemisphere: {surface_area_hemisphere(20) = }''') print(F'''Cone: {surface_area_cone(10, 20) = }''') print(F'''Conical Frustum: {surface_area_conical_frustum(10, 20, 30) = }''') print(F'''Cylinder: {surface_area_cylinder(10, 20) = }''') print(F'''Torus: {surface_area_torus(20, 10) = }''') print(F'''Equilateral Triangle: {area_reg_polygon(3, 10) = }''') print(F'''Square: {area_reg_polygon(4, 10) = }''') print(F'''Reqular Pentagon: {area_reg_polygon(5, 10) = }''')
25
1
import math import os from copy import deepcopy import datasets import evaluate import torch import transformers from datasets import load_dataset from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer from accelerate import Accelerator from accelerate.test_utils import RegressionDataset, RegressionModel from accelerate.utils import is_tpu_available, set_seed a_ = 'true' def lowerCamelCase__ ( _a , _a=82 , _a=16): set_seed(42) SCREAMING_SNAKE_CASE : List[Any] = RegressionModel() SCREAMING_SNAKE_CASE : Optional[Any] = deepcopy(_a) SCREAMING_SNAKE_CASE : Any = RegressionDataset(length=_a) SCREAMING_SNAKE_CASE : List[Any] = DataLoader(_a , batch_size=_a) model.to(accelerator.device) SCREAMING_SNAKE_CASE ,SCREAMING_SNAKE_CASE : Optional[int] = accelerator.prepare(_a , _a) return model, ddp_model, dataloader def lowerCamelCase__ ( _a , _a=False): SCREAMING_SNAKE_CASE : Optional[Any] = AutoTokenizer.from_pretrained("hf-internal-testing/mrpc-bert-base-cased") SCREAMING_SNAKE_CASE : Optional[int] = load_dataset("glue" , "mrpc" , split="validation") def tokenize_function(_a): SCREAMING_SNAKE_CASE : str = tokenizer(examples["sentence1"] , examples["sentence2"] , truncation=_a , max_length=_a) return outputs with accelerator.main_process_first(): SCREAMING_SNAKE_CASE : Union[str, Any] = dataset.map( _a , batched=_a , remove_columns=["idx", "sentence1", "sentence2"] , ) SCREAMING_SNAKE_CASE : Any = tokenized_datasets.rename_column("label" , "labels") def collate_fn(_a): if use_longest: return tokenizer.pad(_a , padding="longest" , return_tensors="pt") return tokenizer.pad(_a , padding="max_length" , max_length=128 , return_tensors="pt") return DataLoader(_a , shuffle=_a , collate_fn=_a , batch_size=16) def lowerCamelCase__ ( _a , _a): SCREAMING_SNAKE_CASE : Any = Accelerator(dispatch_batches=_a , split_batches=_a) SCREAMING_SNAKE_CASE : str = get_dataloader(_a , not dispatch_batches) SCREAMING_SNAKE_CASE : Any = AutoModelForSequenceClassification.from_pretrained( "hf-internal-testing/mrpc-bert-base-cased" , return_dict=_a) SCREAMING_SNAKE_CASE ,SCREAMING_SNAKE_CASE : Dict = accelerator.prepare(_a , _a) return {"ddp": [ddp_model, ddp_dataloader, "cuda:0"], "no": [model, dataloader, accelerator.device]}, accelerator def lowerCamelCase__ ( _a , _a , _a): SCREAMING_SNAKE_CASE : int = [] for batch in dataloader: SCREAMING_SNAKE_CASE ,SCREAMING_SNAKE_CASE : List[Any] = batch.values() with torch.no_grad(): SCREAMING_SNAKE_CASE : str = model(_a) SCREAMING_SNAKE_CASE ,SCREAMING_SNAKE_CASE : Any = accelerator.gather_for_metrics((logit, target)) logits_and_targets.append((logit, target)) SCREAMING_SNAKE_CASE ,SCREAMING_SNAKE_CASE : List[Any] = [], [] for logit, targ in logits_and_targets: logits.append(_a) targs.append(_a) SCREAMING_SNAKE_CASE ,SCREAMING_SNAKE_CASE : List[str] = torch.cat(_a), torch.cat(_a) return logits, targs def lowerCamelCase__ ( _a , _a=82 , _a=False , _a=False , _a=16): SCREAMING_SNAKE_CASE ,SCREAMING_SNAKE_CASE ,SCREAMING_SNAKE_CASE : int = get_basic_setup(_a , _a , _a) SCREAMING_SNAKE_CASE ,SCREAMING_SNAKE_CASE : Optional[int] = generate_predictions(_a , _a , _a) assert ( len(_a) == num_samples ), f"Unexpected number of inputs:\n Expected: {num_samples}\n Actual: {len(_a)}" def lowerCamelCase__ ( _a = False , _a = False): SCREAMING_SNAKE_CASE : List[str] = evaluate.load("glue" , "mrpc") SCREAMING_SNAKE_CASE ,SCREAMING_SNAKE_CASE : int = get_mrpc_setup(_a , _a) # First do baseline SCREAMING_SNAKE_CASE ,SCREAMING_SNAKE_CASE ,SCREAMING_SNAKE_CASE : int = setup["no"] model.to(_a) model.eval() for batch in dataloader: batch.to(_a) with torch.inference_mode(): SCREAMING_SNAKE_CASE : Union[str, Any] = model(**_a) SCREAMING_SNAKE_CASE : Union[str, Any] = outputs.logits.argmax(dim=-1) metric.add_batch(predictions=_a , references=batch["labels"]) SCREAMING_SNAKE_CASE : Dict = metric.compute() # Then do distributed SCREAMING_SNAKE_CASE ,SCREAMING_SNAKE_CASE ,SCREAMING_SNAKE_CASE : Optional[Any] = setup["ddp"] model.eval() for batch in dataloader: with torch.inference_mode(): SCREAMING_SNAKE_CASE : Optional[int] = model(**_a) SCREAMING_SNAKE_CASE : Tuple = outputs.logits.argmax(dim=-1) SCREAMING_SNAKE_CASE : Union[str, Any] = batch["labels"] SCREAMING_SNAKE_CASE ,SCREAMING_SNAKE_CASE : List[Any] = accelerator.gather_for_metrics((preds, references)) metric.add_batch(predictions=_a , references=_a) SCREAMING_SNAKE_CASE : Dict = metric.compute() for key in "accuracy f1".split(): assert math.isclose( baseline[key] , distributed[key]), f"Baseline and Distributed are not the same for key {key}:\n\tBaseline: {baseline[key]}\n\tDistributed: {distributed[key]}\n" def lowerCamelCase__ ( ): SCREAMING_SNAKE_CASE : Tuple = Accelerator(split_batches=_a , dispatch_batches=_a) if accelerator.is_local_main_process: datasets.utils.logging.set_verbosity_warning() transformers.utils.logging.set_verbosity_warning() else: datasets.utils.logging.set_verbosity_error() transformers.utils.logging.set_verbosity_error() # These are a bit slower so they should only be ran on the GPU or TPU if torch.cuda.is_available() or is_tpu_available(): if accelerator.is_local_main_process: print("**Testing gather_for_metrics**") for split_batches in [True, False]: for dispatch_batches in [True, False]: if accelerator.is_local_main_process: print(f"With: `split_batches={split_batches}`, `dispatch_batches={dispatch_batches}`") test_mrpc(_a , _a) accelerator.state._reset_state() if accelerator.is_local_main_process: print("**Test torch metrics**") for split_batches in [True, False]: for dispatch_batches in [True, False]: SCREAMING_SNAKE_CASE : Tuple = Accelerator(split_batches=_a , dispatch_batches=_a) if accelerator.is_local_main_process: print(f"With: `split_batches={split_batches}`, `dispatch_batches={dispatch_batches}`, length=99") test_torch_metrics(_a , 99) accelerator.state._reset_state() if accelerator.is_local_main_process: print("**Test last batch is not dropped when perfectly divisible**") SCREAMING_SNAKE_CASE : str = Accelerator() test_torch_metrics(_a , 512) accelerator.state._reset_state() def lowerCamelCase__ ( _a): # For xla_spawn (TPUs) main() if __name__ == "__main__": main()
25
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available a_ = { 'configuration_instructblip': [ 'INSTRUCTBLIP_PRETRAINED_CONFIG_ARCHIVE_MAP', 'InstructBlipConfig', 'InstructBlipQFormerConfig', 'InstructBlipVisionConfig', ], 'processing_instructblip': ['InstructBlipProcessor'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a_ = [ 'INSTRUCTBLIP_PRETRAINED_MODEL_ARCHIVE_LIST', 'InstructBlipQFormerModel', 'InstructBlipPreTrainedModel', 'InstructBlipForConditionalGeneration', 'InstructBlipVisionModel', ] if TYPE_CHECKING: from .configuration_instructblip import ( INSTRUCTBLIP_PRETRAINED_CONFIG_ARCHIVE_MAP, InstructBlipConfig, InstructBlipQFormerConfig, InstructBlipVisionConfig, ) from .processing_instructblip import InstructBlipProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_instructblip import ( INSTRUCTBLIP_PRETRAINED_MODEL_ARCHIVE_LIST, InstructBlipForConditionalGeneration, InstructBlipPreTrainedModel, InstructBlipQFormerModel, InstructBlipVisionModel, ) else: import sys a_ = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
25
1
from __future__ import annotations from math import pi def lowerCamelCase__ ( _a , _a , _a): if (inductance, frequency, reactance).count(0) != 1: raise ValueError("One and only one argument must be 0") if inductance < 0: raise ValueError("Inductance cannot be negative") if frequency < 0: raise ValueError("Frequency cannot be negative") if reactance < 0: raise ValueError("Inductive reactance cannot be negative") if inductance == 0: return {"inductance": reactance / (2 * pi * frequency)} elif frequency == 0: return {"frequency": reactance / (2 * pi * inductance)} elif reactance == 0: return {"reactance": 2 * pi * frequency * inductance} else: raise ValueError("Exactly one argument must be 0") if __name__ == "__main__": import doctest doctest.testmod()
25
from __future__ import annotations def lowerCamelCase__ ( _a): SCREAMING_SNAKE_CASE : Optional[Any] = 2 SCREAMING_SNAKE_CASE : Optional[int] = [] while i * i <= n: if n % i: i += 1 else: n //= i factors.append(_a) if n > 1: factors.append(_a) return factors if __name__ == "__main__": import doctest doctest.testmod()
25
1
from typing import List, Union import numpy as np from ..utils import add_end_docstrings, is_torch_available, is_vision_available, logging, requires_backends from .base import PIPELINE_INIT_ARGS, Pipeline if is_vision_available(): from PIL import Image from ..image_utils import load_image if is_torch_available(): import torch from ..models.auto.modeling_auto import MODEL_FOR_DEPTH_ESTIMATION_MAPPING a_ = logging.get_logger(__name__) @add_end_docstrings(__A ) class _UpperCamelCase ( __A ): '''simple docstring''' def __init__( self : List[Any] , *a : Optional[Any] , **a : Optional[Any] ) -> List[Any]: """simple docstring""" super().__init__(*a , **a ) requires_backends(self , "vision" ) self.check_model_type(a ) def __call__( self : int , a : Union[str, List[str], "Image.Image", List["Image.Image"]] , **a : Optional[int] ) -> List[Any]: """simple docstring""" return super().__call__(a , **a ) def __UpperCamelCase ( self : Tuple , **a : Any ) -> Optional[Any]: """simple docstring""" return {}, {}, {} def __UpperCamelCase ( self : int , a : List[Any] ) -> Tuple: """simple docstring""" SCREAMING_SNAKE_CASE : str = load_image(a ) SCREAMING_SNAKE_CASE : Union[str, Any] = image.size SCREAMING_SNAKE_CASE : List[str] = self.image_processor(images=a , return_tensors=self.framework ) return model_inputs def __UpperCamelCase ( self : Optional[int] , a : Any ) -> Tuple: """simple docstring""" SCREAMING_SNAKE_CASE : Dict = self.model(**a ) return model_outputs def __UpperCamelCase ( self : List[str] , a : Tuple ) -> List[Any]: """simple docstring""" SCREAMING_SNAKE_CASE : List[str] = model_outputs.predicted_depth SCREAMING_SNAKE_CASE : List[str] = torch.nn.functional.interpolate( predicted_depth.unsqueeze(1 ) , size=self.image_size[::-1] , mode="bicubic" , align_corners=a ) SCREAMING_SNAKE_CASE : List[Any] = prediction.squeeze().cpu().numpy() SCREAMING_SNAKE_CASE : List[Any] = (output * 255 / np.max(a )).astype("uint8" ) SCREAMING_SNAKE_CASE : Any = Image.fromarray(a ) SCREAMING_SNAKE_CASE : Optional[int] = {} SCREAMING_SNAKE_CASE : Optional[int] = predicted_depth SCREAMING_SNAKE_CASE : Optional[int] = depth return output_dict
25
from math import factorial, pi def lowerCamelCase__ ( _a , _a = 30): if not isinstance(_a , (int, float)): raise ValueError("maclaurin_sin() requires either an int or float for theta") if not isinstance(_a , _a) or accuracy <= 0: raise ValueError("maclaurin_sin() requires a positive int for accuracy") SCREAMING_SNAKE_CASE : int = float(_a) SCREAMING_SNAKE_CASE : Dict = theta // (2 * pi) theta -= 2 * div * pi return sum( (-1) ** r * theta ** (2 * r + 1) / factorial(2 * r + 1) for r in range(_a)) def lowerCamelCase__ ( _a , _a = 30): if not isinstance(_a , (int, float)): raise ValueError("maclaurin_cos() requires either an int or float for theta") if not isinstance(_a , _a) or accuracy <= 0: raise ValueError("maclaurin_cos() requires a positive int for accuracy") SCREAMING_SNAKE_CASE : str = float(_a) SCREAMING_SNAKE_CASE : Any = theta // (2 * pi) theta -= 2 * div * pi return sum((-1) ** r * theta ** (2 * r) / factorial(2 * r) for r in range(_a)) if __name__ == "__main__": import doctest doctest.testmod() print(maclaurin_sin(10)) print(maclaurin_sin(-10)) print(maclaurin_sin(10, 15)) print(maclaurin_sin(-10, 15)) print(maclaurin_cos(5)) print(maclaurin_cos(-5)) print(maclaurin_cos(10, 15)) print(maclaurin_cos(-10, 15))
25
1
class _UpperCamelCase : '''simple docstring''' def __init__( self : Tuple , a : Union[str, Any] ) -> Dict: """simple docstring""" SCREAMING_SNAKE_CASE : List[Any] = arr.split("," ) def __UpperCamelCase ( self : Any ) -> Any: """simple docstring""" SCREAMING_SNAKE_CASE : Dict = [int(self.array[0] )] * len(self.array ) SCREAMING_SNAKE_CASE : Dict = [int(self.array[0] )] * len(self.array ) for i in range(1 , len(self.array ) ): SCREAMING_SNAKE_CASE : Dict = max( int(self.array[i] ) + sum_value[i - 1] , int(self.array[i] ) ) SCREAMING_SNAKE_CASE : List[Any] = max(sum_value[i] , rear[i - 1] ) return rear[len(self.array ) - 1] if __name__ == "__main__": a_ = input('please input some numbers:') a_ = SubArray(whole_array) a_ = array.solve_sub_array() print(('the results is:', re))
25
from __future__ import annotations import math class _UpperCamelCase : '''simple docstring''' def __init__( self : Dict , a : int ) -> None: """simple docstring""" SCREAMING_SNAKE_CASE : Dict = size # approximate the overall size of segment tree with given value SCREAMING_SNAKE_CASE : Any = [0 for i in range(0 , 4 * size )] # create array to store lazy update SCREAMING_SNAKE_CASE : Union[str, Any] = [0 for i in range(0 , 4 * size )] SCREAMING_SNAKE_CASE : Any = [0 for i in range(0 , 4 * size )] # flag for lazy update def __UpperCamelCase ( self : Tuple , a : int ) -> int: """simple docstring""" return idx * 2 def __UpperCamelCase ( self : str , a : int ) -> int: """simple docstring""" return idx * 2 + 1 def __UpperCamelCase ( self : int , a : int , a : int , a : int , a : list[int] ) -> None: """simple docstring""" if left_element == right_element: SCREAMING_SNAKE_CASE : int = a[left_element - 1] else: SCREAMING_SNAKE_CASE : Optional[int] = (left_element + right_element) // 2 self.build(self.left(a ) , a , a , a ) self.build(self.right(a ) , mid + 1 , a , a ) SCREAMING_SNAKE_CASE : List[Any] = max( self.segment_tree[self.left(a )] , self.segment_tree[self.right(a )] ) def __UpperCamelCase ( self : Optional[Any] , a : int , a : int , a : int , a : int , a : int , a : int ) -> bool: """simple docstring""" if self.flag[idx] is True: SCREAMING_SNAKE_CASE : Any = self.lazy[idx] SCREAMING_SNAKE_CASE : List[str] = False if left_element != right_element: SCREAMING_SNAKE_CASE : Optional[Any] = self.lazy[idx] SCREAMING_SNAKE_CASE : int = self.lazy[idx] SCREAMING_SNAKE_CASE : Any = True SCREAMING_SNAKE_CASE : List[Any] = True if right_element < a or left_element > b: return True if left_element >= a and right_element <= b: SCREAMING_SNAKE_CASE : Optional[Any] = val if left_element != right_element: SCREAMING_SNAKE_CASE : str = val SCREAMING_SNAKE_CASE : str = val SCREAMING_SNAKE_CASE : Tuple = True SCREAMING_SNAKE_CASE : Optional[Any] = True return True SCREAMING_SNAKE_CASE : int = (left_element + right_element) // 2 self.update(self.left(a ) , a , a , a , a , a ) self.update(self.right(a ) , mid + 1 , a , a , a , a ) SCREAMING_SNAKE_CASE : Optional[int] = max( self.segment_tree[self.left(a )] , self.segment_tree[self.right(a )] ) return True def __UpperCamelCase ( self : Dict , a : int , a : int , a : int , a : int , a : int ) -> int | float: """simple docstring""" if self.flag[idx] is True: SCREAMING_SNAKE_CASE : int = self.lazy[idx] SCREAMING_SNAKE_CASE : List[Any] = False if left_element != right_element: SCREAMING_SNAKE_CASE : Optional[Any] = self.lazy[idx] SCREAMING_SNAKE_CASE : Optional[Any] = self.lazy[idx] SCREAMING_SNAKE_CASE : Optional[Any] = True SCREAMING_SNAKE_CASE : Union[str, Any] = True if right_element < a or left_element > b: return -math.inf if left_element >= a and right_element <= b: return self.segment_tree[idx] SCREAMING_SNAKE_CASE : Dict = (left_element + right_element) // 2 SCREAMING_SNAKE_CASE : Tuple = self.query(self.left(a ) , a , a , a , a ) SCREAMING_SNAKE_CASE : Tuple = self.query(self.right(a ) , mid + 1 , a , a , a ) return max(a , a ) def __str__( self : str ) -> str: """simple docstring""" return str([self.query(1 , 1 , self.size , a , a ) for i in range(1 , self.size + 1 )] ) if __name__ == "__main__": a_ = [1, 2, -4, 7, 3, -5, 6, 11, -20, 9, 14, 15, 5, 2, -8] a_ = 15 a_ = SegmentTree(size) segt.build(1, 1, size, A) print(segt.query(1, 1, size, 4, 6)) print(segt.query(1, 1, size, 7, 11)) print(segt.query(1, 1, size, 7, 12)) segt.update(1, 1, size, 1, 3, 111) print(segt.query(1, 1, size, 1, 15)) segt.update(1, 1, size, 7, 8, 235) print(segt)
25
1
import random import unittest import numpy as np from diffusers import ( DPMSolverMultistepScheduler, EulerAncestralDiscreteScheduler, EulerDiscreteScheduler, LMSDiscreteScheduler, OnnxStableDiffusionImgaImgPipeline, PNDMScheduler, ) from diffusers.utils import floats_tensor from diffusers.utils.testing_utils import ( is_onnx_available, load_image, nightly, require_onnxruntime, require_torch_gpu, ) from ..test_pipelines_onnx_common import OnnxPipelineTesterMixin if is_onnx_available(): import onnxruntime as ort class _UpperCamelCase ( __A , unittest.TestCase ): '''simple docstring''' lowerCamelCase__ ='hf-internal-testing/tiny-random-OnnxStableDiffusionPipeline' def __UpperCamelCase ( self : Any , a : Optional[int]=0 ) -> Dict: """simple docstring""" SCREAMING_SNAKE_CASE : Union[str, Any] = floats_tensor((1, 3, 128, 128) , rng=random.Random(a ) ) SCREAMING_SNAKE_CASE : str = np.random.RandomState(a ) SCREAMING_SNAKE_CASE : int = { "prompt": "A painting of a squirrel eating a burger", "image": image, "generator": generator, "num_inference_steps": 3, "strength": 0.75, "guidance_scale": 7.5, "output_type": "numpy", } return inputs def __UpperCamelCase ( self : Optional[Any] ) -> Any: """simple docstring""" SCREAMING_SNAKE_CASE : List[str] = OnnxStableDiffusionImgaImgPipeline.from_pretrained(self.hub_checkpoint , provider="CPUExecutionProvider" ) pipe.set_progress_bar_config(disable=a ) SCREAMING_SNAKE_CASE : List[str] = self.get_dummy_inputs() SCREAMING_SNAKE_CASE : Tuple = pipe(**a ).images SCREAMING_SNAKE_CASE : List[Any] = image[0, -3:, -3:, -1].flatten() assert image.shape == (1, 128, 128, 3) SCREAMING_SNAKE_CASE : str = np.array([0.6_9643, 0.5_8484, 0.5_0314, 0.5_8760, 0.5_5368, 0.5_9643, 0.5_1529, 0.4_1217, 0.4_9087] ) assert np.abs(image_slice - expected_slice ).max() < 1e-1 def __UpperCamelCase ( self : Tuple ) -> List[Any]: """simple docstring""" SCREAMING_SNAKE_CASE : str = OnnxStableDiffusionImgaImgPipeline.from_pretrained(self.hub_checkpoint , provider="CPUExecutionProvider" ) SCREAMING_SNAKE_CASE : Optional[Any] = PNDMScheduler.from_config(pipe.scheduler.config , skip_prk_steps=a ) pipe.set_progress_bar_config(disable=a ) SCREAMING_SNAKE_CASE : Optional[Any] = self.get_dummy_inputs() SCREAMING_SNAKE_CASE : List[Any] = pipe(**a ).images SCREAMING_SNAKE_CASE : Dict = image[0, -3:, -3:, -1] assert image.shape == (1, 128, 128, 3) SCREAMING_SNAKE_CASE : List[str] = np.array([0.6_1737, 0.5_4642, 0.5_3183, 0.5_4465, 0.5_2742, 0.6_0525, 0.4_9969, 0.4_0655, 0.4_8154] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-1 def __UpperCamelCase ( self : List[Any] ) -> Union[str, Any]: """simple docstring""" SCREAMING_SNAKE_CASE : Optional[int] = OnnxStableDiffusionImgaImgPipeline.from_pretrained(self.hub_checkpoint , provider="CPUExecutionProvider" ) SCREAMING_SNAKE_CASE : Dict = LMSDiscreteScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=a ) # warmup pass to apply optimizations SCREAMING_SNAKE_CASE : Optional[Any] = pipe(**self.get_dummy_inputs() ) SCREAMING_SNAKE_CASE : Union[str, Any] = self.get_dummy_inputs() SCREAMING_SNAKE_CASE : List[Any] = pipe(**a ).images SCREAMING_SNAKE_CASE : List[str] = image[0, -3:, -3:, -1] assert image.shape == (1, 128, 128, 3) SCREAMING_SNAKE_CASE : Any = np.array([0.5_2761, 0.5_9977, 0.4_9033, 0.4_9619, 0.5_4282, 0.5_0311, 0.4_7600, 0.4_0918, 0.4_5203] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-1 def __UpperCamelCase ( self : Any ) -> List[Any]: """simple docstring""" SCREAMING_SNAKE_CASE : Optional[int] = OnnxStableDiffusionImgaImgPipeline.from_pretrained(self.hub_checkpoint , provider="CPUExecutionProvider" ) SCREAMING_SNAKE_CASE : List[str] = EulerDiscreteScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=a ) SCREAMING_SNAKE_CASE : List[str] = self.get_dummy_inputs() SCREAMING_SNAKE_CASE : Optional[Any] = pipe(**a ).images SCREAMING_SNAKE_CASE : str = image[0, -3:, -3:, -1] assert image.shape == (1, 128, 128, 3) SCREAMING_SNAKE_CASE : Dict = np.array([0.5_2911, 0.6_0004, 0.4_9229, 0.4_9805, 0.5_4502, 0.5_0680, 0.4_7777, 0.4_1028, 0.4_5304] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-1 def __UpperCamelCase ( self : str ) -> Dict: """simple docstring""" SCREAMING_SNAKE_CASE : Tuple = OnnxStableDiffusionImgaImgPipeline.from_pretrained(self.hub_checkpoint , provider="CPUExecutionProvider" ) SCREAMING_SNAKE_CASE : Optional[int] = EulerAncestralDiscreteScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=a ) SCREAMING_SNAKE_CASE : Optional[Any] = self.get_dummy_inputs() SCREAMING_SNAKE_CASE : Optional[Any] = pipe(**a ).images SCREAMING_SNAKE_CASE : Tuple = image[0, -3:, -3:, -1] assert image.shape == (1, 128, 128, 3) SCREAMING_SNAKE_CASE : Tuple = np.array([0.5_2911, 0.6_0004, 0.4_9229, 0.4_9805, 0.5_4502, 0.5_0680, 0.4_7777, 0.4_1028, 0.4_5304] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-1 def __UpperCamelCase ( self : Tuple ) -> List[str]: """simple docstring""" SCREAMING_SNAKE_CASE : int = OnnxStableDiffusionImgaImgPipeline.from_pretrained(self.hub_checkpoint , provider="CPUExecutionProvider" ) SCREAMING_SNAKE_CASE : str = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=a ) SCREAMING_SNAKE_CASE : Union[str, Any] = self.get_dummy_inputs() SCREAMING_SNAKE_CASE : List[str] = pipe(**a ).images SCREAMING_SNAKE_CASE : Union[str, Any] = image[0, -3:, -3:, -1] assert image.shape == (1, 128, 128, 3) SCREAMING_SNAKE_CASE : Optional[int] = np.array([0.6_5331, 0.5_8277, 0.4_8204, 0.5_6059, 0.5_3665, 0.5_6235, 0.5_0969, 0.4_0009, 0.4_6552] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-1 @nightly @require_onnxruntime @require_torch_gpu class _UpperCamelCase ( unittest.TestCase ): '''simple docstring''' @property def __UpperCamelCase ( self : Tuple ) -> Optional[int]: """simple docstring""" return ( "CUDAExecutionProvider", { "gpu_mem_limit": "15000000000", # 15GB "arena_extend_strategy": "kSameAsRequested", }, ) @property def __UpperCamelCase ( self : Any ) -> Dict: """simple docstring""" SCREAMING_SNAKE_CASE : Any = ort.SessionOptions() SCREAMING_SNAKE_CASE : str = False return options def __UpperCamelCase ( self : List[Any] ) -> Dict: """simple docstring""" SCREAMING_SNAKE_CASE : str = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/img2img/sketch-mountains-input.jpg" ) SCREAMING_SNAKE_CASE : Optional[int] = init_image.resize((768, 512) ) # using the PNDM scheduler by default SCREAMING_SNAKE_CASE : str = OnnxStableDiffusionImgaImgPipeline.from_pretrained( "CompVis/stable-diffusion-v1-4" , revision="onnx" , safety_checker=a , feature_extractor=a , provider=self.gpu_provider , sess_options=self.gpu_options , ) pipe.set_progress_bar_config(disable=a ) SCREAMING_SNAKE_CASE : Tuple = "A fantasy landscape, trending on artstation" SCREAMING_SNAKE_CASE : Optional[int] = np.random.RandomState(0 ) SCREAMING_SNAKE_CASE : Dict = pipe( prompt=a , image=a , strength=0.75 , guidance_scale=7.5 , num_inference_steps=10 , generator=a , output_type="np" , ) SCREAMING_SNAKE_CASE : Any = output.images SCREAMING_SNAKE_CASE : str = images[0, 255:258, 383:386, -1] assert images.shape == (1, 512, 768, 3) SCREAMING_SNAKE_CASE : Tuple = np.array([0.4909, 0.5059, 0.5372, 0.4623, 0.4876, 0.5049, 0.4820, 0.4956, 0.5019] ) # TODO: lower the tolerance after finding the cause of onnxruntime reproducibility issues assert np.abs(image_slice.flatten() - expected_slice ).max() < 2e-2 def __UpperCamelCase ( self : Optional[int] ) -> List[str]: """simple docstring""" SCREAMING_SNAKE_CASE : Union[str, Any] = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/img2img/sketch-mountains-input.jpg" ) SCREAMING_SNAKE_CASE : Dict = init_image.resize((768, 512) ) SCREAMING_SNAKE_CASE : Any = LMSDiscreteScheduler.from_pretrained( "runwayml/stable-diffusion-v1-5" , subfolder="scheduler" , revision="onnx" ) SCREAMING_SNAKE_CASE : List[str] = OnnxStableDiffusionImgaImgPipeline.from_pretrained( "runwayml/stable-diffusion-v1-5" , revision="onnx" , scheduler=a , safety_checker=a , feature_extractor=a , provider=self.gpu_provider , sess_options=self.gpu_options , ) pipe.set_progress_bar_config(disable=a ) SCREAMING_SNAKE_CASE : List[str] = "A fantasy landscape, trending on artstation" SCREAMING_SNAKE_CASE : List[Any] = np.random.RandomState(0 ) SCREAMING_SNAKE_CASE : Dict = pipe( prompt=a , image=a , strength=0.75 , guidance_scale=7.5 , num_inference_steps=20 , generator=a , output_type="np" , ) SCREAMING_SNAKE_CASE : Union[str, Any] = output.images SCREAMING_SNAKE_CASE : Any = images[0, 255:258, 383:386, -1] assert images.shape == (1, 512, 768, 3) SCREAMING_SNAKE_CASE : Union[str, Any] = np.array([0.8043, 0.926, 0.9581, 0.8119, 0.8954, 0.913, 0.7209, 0.7463, 0.7431] ) # TODO: lower the tolerance after finding the cause of onnxruntime reproducibility issues assert np.abs(image_slice.flatten() - expected_slice ).max() < 2e-2
25
import gc import unittest import numpy as np import torch from diffusers import StableDiffusionKDiffusionPipeline from diffusers.utils import slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu enable_full_determinism() @slow @require_torch_gpu class _UpperCamelCase ( unittest.TestCase ): '''simple docstring''' def __UpperCamelCase ( self : Dict ) -> Tuple: """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() def __UpperCamelCase ( self : Optional[int] ) -> int: """simple docstring""" SCREAMING_SNAKE_CASE : Optional[Any] = StableDiffusionKDiffusionPipeline.from_pretrained("CompVis/stable-diffusion-v1-4" ) SCREAMING_SNAKE_CASE : str = sd_pipe.to(a ) sd_pipe.set_progress_bar_config(disable=a ) sd_pipe.set_scheduler("sample_euler" ) SCREAMING_SNAKE_CASE : Optional[int] = "A painting of a squirrel eating a burger" SCREAMING_SNAKE_CASE : Any = torch.manual_seed(0 ) SCREAMING_SNAKE_CASE : List[Any] = sd_pipe([prompt] , generator=a , guidance_scale=9.0 , num_inference_steps=20 , output_type="np" ) SCREAMING_SNAKE_CASE : Tuple = output.images SCREAMING_SNAKE_CASE : Any = image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) SCREAMING_SNAKE_CASE : Union[str, Any] = np.array([0.0447, 0.0492, 0.0468, 0.0408, 0.0383, 0.0408, 0.0354, 0.0380, 0.0339] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def __UpperCamelCase ( self : List[Any] ) -> Optional[int]: """simple docstring""" SCREAMING_SNAKE_CASE : int = StableDiffusionKDiffusionPipeline.from_pretrained("stabilityai/stable-diffusion-2-1-base" ) SCREAMING_SNAKE_CASE : Tuple = sd_pipe.to(a ) sd_pipe.set_progress_bar_config(disable=a ) sd_pipe.set_scheduler("sample_euler" ) SCREAMING_SNAKE_CASE : List[str] = "A painting of a squirrel eating a burger" SCREAMING_SNAKE_CASE : List[str] = torch.manual_seed(0 ) SCREAMING_SNAKE_CASE : Union[str, Any] = sd_pipe([prompt] , generator=a , guidance_scale=9.0 , num_inference_steps=20 , output_type="np" ) SCREAMING_SNAKE_CASE : List[Any] = output.images SCREAMING_SNAKE_CASE : Tuple = image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) SCREAMING_SNAKE_CASE : int = np.array([0.1237, 0.1320, 0.1438, 0.1359, 0.1390, 0.1132, 0.1277, 0.1175, 0.1112] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 5e-1 def __UpperCamelCase ( self : Tuple ) -> List[Any]: """simple docstring""" SCREAMING_SNAKE_CASE : Dict = StableDiffusionKDiffusionPipeline.from_pretrained("stabilityai/stable-diffusion-2-1-base" ) SCREAMING_SNAKE_CASE : Union[str, Any] = sd_pipe.to(a ) sd_pipe.set_progress_bar_config(disable=a ) sd_pipe.set_scheduler("sample_dpmpp_2m" ) SCREAMING_SNAKE_CASE : str = "A painting of a squirrel eating a burger" SCREAMING_SNAKE_CASE : Any = torch.manual_seed(0 ) SCREAMING_SNAKE_CASE : str = sd_pipe( [prompt] , generator=a , guidance_scale=7.5 , num_inference_steps=15 , output_type="np" , use_karras_sigmas=a , ) SCREAMING_SNAKE_CASE : str = output.images SCREAMING_SNAKE_CASE : Optional[int] = image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) SCREAMING_SNAKE_CASE : int = np.array( [0.1138_1689, 0.1211_2921, 0.138_9457, 0.1254_9606, 0.124_4964, 0.1083_1517, 0.1156_2866, 0.1086_7816, 0.1049_9048] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
25
1