code
stringlengths
82
54.1k
code_codestyle
int64
0
699
style_context
stringlengths
111
35.6k
style_context_codestyle
int64
0
699
label
int64
0
1
import torch from diffusers import DDIMParallelScheduler from .test_schedulers import SchedulerCommonTest class a (_lowerCAmelCase ): """simple docstring""" __UpperCAmelCase : List[str] = (DDIMParallelScheduler,) __UpperCAmelCase : Tuple = (("eta", 0.0), ("num_inference_steps", 50)) def __snake_case ( self : int , **lowerCamelCase : Optional[Any] ) -> Optional[Any]: __snake_case : Any = { "num_train_timesteps": 1000, "beta_start": 0.00_01, "beta_end": 0.02, "beta_schedule": "linear", "clip_sample": True, } config.update(**lowerCamelCase ) return config def __snake_case ( self : Optional[Any] , **lowerCamelCase : List[str] ) -> Any: __snake_case : Optional[int] = self.scheduler_classes[0] __snake_case : Optional[int] = self.get_scheduler_config(**lowerCamelCase ) __snake_case : Optional[int] = scheduler_class(**lowerCamelCase ) __snake_case , __snake_case : List[Any] = 10, 0.0 __snake_case : Union[str, Any] = self.dummy_model() __snake_case : Union[str, Any] = self.dummy_sample_deter scheduler.set_timesteps(lowerCamelCase ) for t in scheduler.timesteps: __snake_case : List[Any] = model(lowerCamelCase , lowerCamelCase ) __snake_case : List[str] = scheduler.step(lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase ).prev_sample return sample def __snake_case ( self : Tuple ) -> Dict: for timesteps in [100, 500, 1000]: self.check_over_configs(num_train_timesteps=lowerCamelCase ) def __snake_case ( self : Dict ) -> int: for steps_offset in [0, 1]: self.check_over_configs(steps_offset=lowerCamelCase ) __snake_case : Optional[int] = self.scheduler_classes[0] __snake_case : Optional[Any] = self.get_scheduler_config(steps_offset=1 ) __snake_case : List[str] = scheduler_class(**lowerCamelCase ) scheduler.set_timesteps(5 ) assert torch.equal(scheduler.timesteps , torch.LongTensor([801, 601, 401, 201, 1] ) ) def __snake_case ( self : List[Any] ) -> int: for beta_start, beta_end in zip([0.00_01, 0.0_01, 0.01, 0.1] , [0.0_02, 0.02, 0.2, 2] ): self.check_over_configs(beta_start=lowerCamelCase , beta_end=lowerCamelCase ) def __snake_case ( self : List[Any] ) -> str: for schedule in ["linear", "squaredcos_cap_v2"]: self.check_over_configs(beta_schedule=lowerCamelCase ) def __snake_case ( self : Tuple ) -> List[str]: for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs(prediction_type=lowerCamelCase ) def __snake_case ( self : Optional[Any] ) -> List[Any]: for clip_sample in [True, False]: self.check_over_configs(clip_sample=lowerCamelCase ) def __snake_case ( self : Tuple ) -> List[Any]: for timestep_spacing in ["trailing", "leading"]: self.check_over_configs(timestep_spacing=lowerCamelCase ) def __snake_case ( self : Tuple ) -> Any: for rescale_betas_zero_snr in [True, False]: self.check_over_configs(rescale_betas_zero_snr=lowerCamelCase ) def __snake_case ( self : Dict ) -> List[str]: self.check_over_configs(thresholding=lowerCamelCase ) for threshold in [0.5, 1.0, 2.0]: for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs( thresholding=lowerCamelCase , prediction_type=lowerCamelCase , sample_max_value=lowerCamelCase , ) def __snake_case ( self : int ) -> Union[str, Any]: for t in [1, 10, 49]: self.check_over_forward(time_step=lowerCamelCase ) def __snake_case ( self : int ) -> List[Any]: for t, num_inference_steps in zip([1, 10, 50] , [10, 50, 500] ): self.check_over_forward(time_step=lowerCamelCase , num_inference_steps=lowerCamelCase ) def __snake_case ( self : Dict ) -> str: for t, eta in zip([1, 10, 49] , [0.0, 0.5, 1.0] ): self.check_over_forward(time_step=lowerCamelCase , eta=lowerCamelCase ) def __snake_case ( self : Any ) -> Any: __snake_case : Any = self.scheduler_classes[0] __snake_case : Dict = self.get_scheduler_config() __snake_case : Optional[int] = scheduler_class(**lowerCamelCase ) assert torch.sum(torch.abs(scheduler._get_variance(0 , 0 ) - 0.0 ) ) < 1E-5 assert torch.sum(torch.abs(scheduler._get_variance(420 , 400 ) - 0.1_47_71 ) ) < 1E-5 assert torch.sum(torch.abs(scheduler._get_variance(980 , 960 ) - 0.3_24_60 ) ) < 1E-5 assert torch.sum(torch.abs(scheduler._get_variance(0 , 0 ) - 0.0 ) ) < 1E-5 assert torch.sum(torch.abs(scheduler._get_variance(487 , 486 ) - 0.0_09_79 ) ) < 1E-5 assert torch.sum(torch.abs(scheduler._get_variance(999 , 998 ) - 0.02 ) ) < 1E-5 def __snake_case ( self : Dict ) -> List[Any]: __snake_case : Any = self.scheduler_classes[0] __snake_case : Dict = self.get_scheduler_config() __snake_case : Optional[int] = scheduler_class(**lowerCamelCase ) __snake_case , __snake_case : str = 10, 0.0 scheduler.set_timesteps(lowerCamelCase ) __snake_case : Dict = self.dummy_model() __snake_case : List[Any] = self.dummy_sample_deter __snake_case : int = self.dummy_sample_deter + 0.1 __snake_case : str = self.dummy_sample_deter - 0.1 __snake_case : Dict = samplea.shape[0] __snake_case : str = torch.stack([samplea, samplea, samplea] , dim=0 ) __snake_case : int = torch.arange(lowerCamelCase )[0:3, None].repeat(1 , lowerCamelCase ) __snake_case : Union[str, Any] = model(samples.flatten(0 , 1 ) , timesteps.flatten(0 , 1 ) ) __snake_case : Any = scheduler.batch_step_no_noise(lowerCamelCase , timesteps.flatten(0 , 1 ) , samples.flatten(0 , 1 ) , lowerCamelCase ) __snake_case : Optional[Any] = torch.sum(torch.abs(lowerCamelCase ) ) __snake_case : List[Any] = torch.mean(torch.abs(lowerCamelCase ) ) assert abs(result_sum.item() - 11_47.79_04 ) < 1E-2 assert abs(result_mean.item() - 0.49_82 ) < 1E-3 def __snake_case ( self : str ) -> Optional[int]: __snake_case : Union[str, Any] = self.full_loop() __snake_case : Dict = torch.sum(torch.abs(lowerCamelCase ) ) __snake_case : Dict = torch.mean(torch.abs(lowerCamelCase ) ) assert abs(result_sum.item() - 1_72.00_67 ) < 1E-2 assert abs(result_mean.item() - 0.22_39_67 ) < 1E-3 def __snake_case ( self : str ) -> Dict: __snake_case : Any = self.full_loop(prediction_type="v_prediction" ) __snake_case : Optional[int] = torch.sum(torch.abs(lowerCamelCase ) ) __snake_case : int = torch.mean(torch.abs(lowerCamelCase ) ) assert abs(result_sum.item() - 52.53_02 ) < 1E-2 assert abs(result_mean.item() - 0.06_84 ) < 1E-3 def __snake_case ( self : Dict ) -> Tuple: # We specify different beta, so that the first alpha is 0.99 __snake_case : str = self.full_loop(set_alpha_to_one=lowerCamelCase , beta_start=0.01 ) __snake_case : Dict = torch.sum(torch.abs(lowerCamelCase ) ) __snake_case : Dict = torch.mean(torch.abs(lowerCamelCase ) ) assert abs(result_sum.item() - 1_49.82_95 ) < 1E-2 assert abs(result_mean.item() - 0.19_51 ) < 1E-3 def __snake_case ( self : Optional[Any] ) -> List[Any]: # We specify different beta, so that the first alpha is 0.99 __snake_case : Union[str, Any] = self.full_loop(set_alpha_to_one=lowerCamelCase , beta_start=0.01 ) __snake_case : Optional[Any] = torch.sum(torch.abs(lowerCamelCase ) ) __snake_case : Dict = torch.mean(torch.abs(lowerCamelCase ) ) assert abs(result_sum.item() - 1_49.07_84 ) < 1E-2 assert abs(result_mean.item() - 0.19_41 ) < 1E-3
81
from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging a_ = logging.get_logger(__name__) a_ = { 'junnyu/roformer_chinese_small': 'https://huggingface.co/junnyu/roformer_chinese_small/resolve/main/config.json', 'junnyu/roformer_chinese_base': 'https://huggingface.co/junnyu/roformer_chinese_base/resolve/main/config.json', 'junnyu/roformer_chinese_char_small': ( 'https://huggingface.co/junnyu/roformer_chinese_char_small/resolve/main/config.json' ), 'junnyu/roformer_chinese_char_base': ( 'https://huggingface.co/junnyu/roformer_chinese_char_base/resolve/main/config.json' ), 'junnyu/roformer_small_discriminator': ( 'https://huggingface.co/junnyu/roformer_small_discriminator/resolve/main/config.json' ), 'junnyu/roformer_small_generator': ( 'https://huggingface.co/junnyu/roformer_small_generator/resolve/main/config.json' ), # See all RoFormer models at https://huggingface.co/models?filter=roformer } class _UpperCamelCase ( __A ): '''simple docstring''' lowerCamelCase__ ='roformer' def __init__( self : Dict , a : Any=5_0000 , a : List[Any]=None , a : str=768 , a : str=12 , a : Tuple=12 , a : Optional[Any]=3072 , a : List[str]="gelu" , a : List[Any]=0.1 , a : Union[str, Any]=0.1 , a : Tuple=1536 , a : List[str]=2 , a : Tuple=0.02 , a : Any=1e-12 , a : Optional[int]=0 , a : Union[str, Any]=False , a : int=True , **a : str , ) -> int: """simple docstring""" super().__init__(pad_token_id=a , **a ) SCREAMING_SNAKE_CASE : str = vocab_size SCREAMING_SNAKE_CASE : int = hidden_size if embedding_size is None else embedding_size SCREAMING_SNAKE_CASE : List[str] = hidden_size SCREAMING_SNAKE_CASE : Union[str, Any] = num_hidden_layers SCREAMING_SNAKE_CASE : int = num_attention_heads SCREAMING_SNAKE_CASE : Tuple = hidden_act SCREAMING_SNAKE_CASE : int = intermediate_size SCREAMING_SNAKE_CASE : Tuple = hidden_dropout_prob SCREAMING_SNAKE_CASE : int = attention_probs_dropout_prob SCREAMING_SNAKE_CASE : Optional[int] = max_position_embeddings SCREAMING_SNAKE_CASE : Any = type_vocab_size SCREAMING_SNAKE_CASE : Union[str, Any] = initializer_range SCREAMING_SNAKE_CASE : List[str] = layer_norm_eps SCREAMING_SNAKE_CASE : List[str] = rotary_value SCREAMING_SNAKE_CASE : int = use_cache class _UpperCamelCase ( __A ): '''simple docstring''' @property def __UpperCamelCase ( self : Tuple ) -> Mapping[str, Mapping[int, str]]: """simple docstring""" if self.task == "multiple-choice": SCREAMING_SNAKE_CASE : Optional[Any] = {0: "batch", 1: "choice", 2: "sequence"} else: SCREAMING_SNAKE_CASE : str = {0: "batch", 1: "sequence"} SCREAMING_SNAKE_CASE : List[Any] = {0: "batch", 1: "sequence"} return OrderedDict( [ ("input_ids", dynamic_axis), ("attention_mask", dynamic_axis), ("token_type_ids", dynamic_axis), ] )
25
0
"""simple docstring""" def a__ ( lowerCAmelCase__ ): if number > 0: raise ValueError("input must be a negative integer" ) UpperCAmelCase_ = len(bin(lowerCAmelCase__ )[3:] ) UpperCAmelCase_ = bin(abs(lowerCAmelCase__ ) - (1 << binary_number_length) )[3:] UpperCAmelCase_ = ( ( "1" + "0" * (binary_number_length - len(lowerCAmelCase__ )) + twos_complement_number ) if number < 0 else "0" ) return "0b" + twos_complement_number if __name__ == "__main__": import doctest doctest.testmod()
82
import argparse import logging from collections import namedtuple import torch from model_bertabs import BertAbsSummarizer from models.model_builder import AbsSummarizer # The authors' implementation from transformers import BertTokenizer logging.basicConfig(level=logging.INFO) a_ = logging.getLogger(__name__) a_ = 'Hello world! cécé herlolip' a_ = namedtuple( 'BertAbsConfig', [ 'temp_dir', 'large', 'use_bert_emb', 'finetune_bert', 'encoder', 'share_emb', 'max_pos', 'enc_layers', 'enc_hidden_size', 'enc_heads', 'enc_ff_size', 'enc_dropout', 'dec_layers', 'dec_hidden_size', 'dec_heads', 'dec_ff_size', 'dec_dropout', ], ) def lowerCamelCase__ ( _a , _a): SCREAMING_SNAKE_CASE : List[Any] = BertAbsConfig( temp_dir="." , finetune_bert=_a , large=_a , share_emb=_a , use_bert_emb=_a , encoder="bert" , max_pos=512 , enc_layers=6 , enc_hidden_size=512 , enc_heads=8 , enc_ff_size=512 , enc_dropout=0.2 , dec_layers=6 , dec_hidden_size=768 , dec_heads=8 , dec_ff_size=2048 , dec_dropout=0.2 , ) SCREAMING_SNAKE_CASE : Dict = torch.load(_a , lambda _a , _a: storage) SCREAMING_SNAKE_CASE : str = AbsSummarizer(_a , torch.device("cpu") , _a) original.eval() SCREAMING_SNAKE_CASE : List[str] = BertAbsSummarizer(_a , torch.device("cpu")) new_model.eval() # ------------------- # Convert the weights # ------------------- logging.info("convert the model") new_model.bert.load_state_dict(original.bert.state_dict()) new_model.decoder.load_state_dict(original.decoder.state_dict()) new_model.generator.load_state_dict(original.generator.state_dict()) # ---------------------------------- # Make sure the outpus are identical # ---------------------------------- logging.info("Make sure that the models' outputs are identical") SCREAMING_SNAKE_CASE : List[str] = BertTokenizer.from_pretrained("bert-base-uncased") # prepare the model inputs SCREAMING_SNAKE_CASE : List[str] = tokenizer.encode("This is sample éàalj'-.") encoder_input_ids.extend([tokenizer.pad_token_id] * (512 - len(_a))) SCREAMING_SNAKE_CASE : int = torch.tensor(_a).unsqueeze(0) SCREAMING_SNAKE_CASE : List[Any] = tokenizer.encode("This is sample 3 éàalj'-.") decoder_input_ids.extend([tokenizer.pad_token_id] * (512 - len(_a))) SCREAMING_SNAKE_CASE : int = torch.tensor(_a).unsqueeze(0) # failsafe to make sure the weights reset does not affect the # loaded weights. assert torch.max(torch.abs(original.generator[0].weight - new_model.generator[0].weight)) == 0 # forward pass SCREAMING_SNAKE_CASE : List[Any] = encoder_input_ids SCREAMING_SNAKE_CASE : List[Any] = decoder_input_ids SCREAMING_SNAKE_CASE : Dict = None SCREAMING_SNAKE_CASE : Optional[Any] = None SCREAMING_SNAKE_CASE : List[Any] = None SCREAMING_SNAKE_CASE : Optional[int] = None SCREAMING_SNAKE_CASE : Dict = None # The original model does not apply the geneator layer immediatly but rather in # the beam search (where it combines softmax + linear layer). Since we already # apply the softmax in our generation process we only apply the linear layer here. # We make sure that the outputs of the full stack are identical SCREAMING_SNAKE_CASE : Optional[int] = original(_a , _a , _a , _a , _a , _a , _a)[0] SCREAMING_SNAKE_CASE : Dict = original.generator(_a) SCREAMING_SNAKE_CASE : Any = new_model( _a , _a , _a , _a , _a)[0] SCREAMING_SNAKE_CASE : Tuple = new_model.generator(_a) SCREAMING_SNAKE_CASE : List[Any] = torch.max(torch.abs(output_converted_model - output_original_model)).item() print("Maximum absolute difference beween weights: {:.2f}".format(_a)) SCREAMING_SNAKE_CASE : Union[str, Any] = torch.max(torch.abs(output_converted_generator - output_original_generator)).item() print("Maximum absolute difference beween weights: {:.2f}".format(_a)) SCREAMING_SNAKE_CASE : int = torch.allclose(_a , _a , atol=1E-3) if are_identical: logging.info("all weights are equal up to 1e-3") else: raise ValueError("the weights are different. The new model is likely different from the original one.") # The model has been saved with torch.save(model) and this is bound to the exact # directory structure. We save the state_dict instead. logging.info("saving the model's state dictionary") torch.save( new_model.state_dict() , "./bertabs-finetuned-cnndm-extractive-abstractive-summarization/pytorch_model.bin") if __name__ == "__main__": a_ = argparse.ArgumentParser() parser.add_argument( '--bertabs_checkpoint_path', default=None, type=str, required=True, help='Path the official PyTorch dump.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, required=True, help='Path to the output PyTorch model.', ) a_ = parser.parse_args() convert_bertabs_checkpoints( args.bertabs_checkpoint_path, args.pytorch_dump_folder_path, )
25
0
"""simple docstring""" import coval # From: git+https://github.com/ns-moosavi/coval.git # noqa: F401 from coval.conll import reader, util from coval.eval import evaluator import datasets lowerCAmelCase__ = datasets.logging.get_logger(__name__) lowerCAmelCase__ = '''\ @InProceedings{moosavi2019minimum, author = { Nafise Sadat Moosavi, Leo Born, Massimo Poesio and Michael Strube}, title = {Using Automatically Extracted Minimum Spans to Disentangle Coreference Evaluation from Boundary Detection}, year = {2019}, booktitle = {Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)}, publisher = {Association for Computational Linguistics}, address = {Florence, Italy}, } @inproceedings{10.3115/1072399.1072405, author = {Vilain, Marc and Burger, John and Aberdeen, John and Connolly, Dennis and Hirschman, Lynette}, title = {A Model-Theoretic Coreference Scoring Scheme}, year = {1995}, isbn = {1558604022}, publisher = {Association for Computational Linguistics}, address = {USA}, url = {https://doi.org/10.3115/1072399.1072405}, doi = {10.3115/1072399.1072405}, booktitle = {Proceedings of the 6th Conference on Message Understanding}, pages = {45–52}, numpages = {8}, location = {Columbia, Maryland}, series = {MUC6 ’95} } @INPROCEEDINGS{Bagga98algorithmsfor, author = {Amit Bagga and Breck Baldwin}, title = {Algorithms for Scoring Coreference Chains}, booktitle = {In The First International Conference on Language Resources and Evaluation Workshop on Linguistics Coreference}, year = {1998}, pages = {563--566} } @INPROCEEDINGS{Luo05oncoreference, author = {Xiaoqiang Luo}, title = {On coreference resolution performance metrics}, booktitle = {In Proc. of HLT/EMNLP}, year = {2005}, pages = {25--32}, publisher = {URL} } @inproceedings{moosavi-strube-2016-coreference, title = "Which Coreference Evaluation Metric Do You Trust? A Proposal for a Link-based Entity Aware Metric", author = "Moosavi, Nafise Sadat and Strube, Michael", booktitle = "Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)", month = aug, year = "2016", address = "Berlin, Germany", publisher = "Association for Computational Linguistics", url = "https://www.aclweb.org/anthology/P16-1060", doi = "10.18653/v1/P16-1060", pages = "632--642", } ''' lowerCAmelCase__ = '''\ CoVal is a coreference evaluation tool for the CoNLL and ARRAU datasets which implements of the common evaluation metrics including MUC [Vilain et al, 1995], B-cubed [Bagga and Baldwin, 1998], CEAFe [Luo et al., 2005], LEA [Moosavi and Strube, 2016] and the averaged CoNLL score (the average of the F1 values of MUC, B-cubed and CEAFe) [Denis and Baldridge, 2009a; Pradhan et al., 2011]. This wrapper of CoVal currently only work with CoNLL line format: The CoNLL format has one word per line with all the annotation for this word in column separated by spaces: Column Type Description 1 Document ID This is a variation on the document filename 2 Part number Some files are divided into multiple parts numbered as 000, 001, 002, ... etc. 3 Word number 4 Word itself This is the token as segmented/tokenized in the Treebank. Initially the *_skel file contain the placeholder [WORD] which gets replaced by the actual token from the Treebank which is part of the OntoNotes release. 5 Part-of-Speech 6 Parse bit This is the bracketed structure broken before the first open parenthesis in the parse, and the word/part-of-speech leaf replaced with a *. The full parse can be created by substituting the asterix with the "([pos] [word])" string (or leaf) and concatenating the items in the rows of that column. 7 Predicate lemma The predicate lemma is mentioned for the rows for which we have semantic role information. All other rows are marked with a "-" 8 Predicate Frameset ID This is the PropBank frameset ID of the predicate in Column 7. 9 Word sense This is the word sense of the word in Column 3. 10 Speaker/Author This is the speaker or author name where available. Mostly in Broadcast Conversation and Web Log data. 11 Named Entities These columns identifies the spans representing various named entities. 12:N Predicate Arguments There is one column each of predicate argument structure information for the predicate mentioned in Column 7. N Coreference Coreference chain information encoded in a parenthesis structure. More informations on the format can be found here (section "*_conll File Format"): http://www.conll.cemantix.org/2012/data.html Details on the evaluation on CoNLL can be found here: https://github.com/ns-moosavi/coval/blob/master/conll/README.md CoVal code was written by @ns-moosavi. Some parts are borrowed from https://github.com/clarkkev/deep-coref/blob/master/evaluation.py The test suite is taken from https://github.com/conll/reference-coreference-scorers/ Mention evaluation and the test suite are added by @andreasvc. Parsing CoNLL files is developed by Leo Born. ''' lowerCAmelCase__ = ''' Calculates coreference evaluation metrics. Args: predictions: list of sentences. Each sentence is a list of word predictions to score in the CoNLL format. Each prediction is a word with its annotations as a string made of columns joined with spaces. Only columns 4, 5, 6 and the last column are used (word, POS, Pars and coreference annotation) See the details on the format in the description of the metric. references: list of sentences. Each sentence is a list of word reference to score in the CoNLL format. Each reference is a word with its annotations as a string made of columns joined with spaces. Only columns 4, 5, 6 and the last column are used (word, POS, Pars and coreference annotation) See the details on the format in the description of the metric. keep_singletons: After extracting all mentions of key or system files, mentions whose corresponding coreference chain is of size one, are considered as singletons. The default evaluation mode will include singletons in evaluations if they are included in the key or the system files. By setting \'keep_singletons=False\', all singletons in the key and system files will be excluded from the evaluation. NP_only: Most of the recent coreference resolvers only resolve NP mentions and leave out the resolution of VPs. By setting the \'NP_only\' option, the scorer will only evaluate the resolution of NPs. min_span: By setting \'min_span\', the scorer reports the results based on automatically detected minimum spans. Minimum spans are determined using the MINA algorithm. Returns: \'mentions\': mentions \'muc\': MUC metric [Vilain et al, 1995] \'bcub\': B-cubed [Bagga and Baldwin, 1998] \'ceafe\': CEAFe [Luo et al., 2005] \'lea\': LEA [Moosavi and Strube, 2016] \'conll_score\': averaged CoNLL score (the average of the F1 values of MUC, B-cubed and CEAFe) Examples: >>> coval = datasets.load_metric(\'coval\') >>> words = [\'bc/cctv/00/cctv_0005 0 0 Thank VBP (TOP(S(VP* thank 01 1 Xu_li * (V*) * -\', ... \'bc/cctv/00/cctv_0005 0 1 you PRP (NP*) - - - Xu_li * (ARG1*) (ARG0*) (116)\', ... \'bc/cctv/00/cctv_0005 0 2 everyone NN (NP*) - - - Xu_li * (ARGM-DIS*) * (116)\', ... \'bc/cctv/00/cctv_0005 0 3 for IN (PP* - - - Xu_li * (ARG2* * -\', ... \'bc/cctv/00/cctv_0005 0 4 watching VBG (S(VP*)))) watch 01 1 Xu_li * *) (V*) -\', ... \'bc/cctv/00/cctv_0005 0 5 . . *)) - - - Xu_li * * * -\'] >>> references = [words] >>> predictions = [words] >>> results = coval.compute(predictions=predictions, references=references) >>> print(results) # doctest:+ELLIPSIS {\'mentions/recall\': 1.0,[...] \'conll_score\': 100.0} ''' def snake_case_ ( A_ : Any, A_ : str, A_ : Optional[int]=False, A_ : str=False, A_ : Dict=True, A_ : Any=False, A_ : int="dummy_doc" ): '''simple docstring''' _lowerCamelCase : Optional[int] = {doc: key_lines} _lowerCamelCase : Any = {doc: sys_lines} _lowerCamelCase : str = {} _lowerCamelCase : Any = 0 _lowerCamelCase : List[str] = 0 _lowerCamelCase : str = 0 _lowerCamelCase : Optional[int] = 0 _lowerCamelCase : Union[str, Any] = 0 _lowerCamelCase : Optional[Any] = 0 _lowerCamelCase , _lowerCamelCase : Dict = reader.get_doc_mentions(A_, key_doc_lines[doc], A_ ) key_singletons_num += singletons_num if NP_only or min_span: _lowerCamelCase : Optional[int] = reader.set_annotated_parse_trees(A_, key_doc_lines[doc], A_, A_ ) _lowerCamelCase , _lowerCamelCase : Dict = reader.get_doc_mentions(A_, sys_doc_lines[doc], A_ ) sys_singletons_num += singletons_num if NP_only or min_span: _lowerCamelCase : Union[str, Any] = reader.set_annotated_parse_trees(A_, key_doc_lines[doc], A_, A_ ) if remove_nested: _lowerCamelCase , _lowerCamelCase : Any = reader.remove_nested_coref_mentions(A_, A_ ) key_nested_coref_num += nested_mentions key_removed_nested_clusters += removed_clusters _lowerCamelCase , _lowerCamelCase : Tuple = reader.remove_nested_coref_mentions(A_, A_ ) sys_nested_coref_num += nested_mentions sys_removed_nested_clusters += removed_clusters _lowerCamelCase : Optional[int] = reader.get_mention_assignments(A_, A_ ) _lowerCamelCase : List[Any] = reader.get_mention_assignments(A_, A_ ) _lowerCamelCase : Tuple = (key_clusters, sys_clusters, key_mention_sys_cluster, sys_mention_key_cluster) if remove_nested: logger.info( '''Number of removed nested coreferring mentions in the key ''' F'''annotation: {key_nested_coref_num}; and system annotation: {sys_nested_coref_num}''' ) logger.info( '''Number of resulting singleton clusters in the key ''' F'''annotation: {key_removed_nested_clusters}; and system annotation: {sys_removed_nested_clusters}''' ) if not keep_singletons: logger.info( F'''{key_singletons_num:d} and {sys_singletons_num:d} singletons are removed from the key and system ''' '''files, respectively''' ) return doc_coref_infos def snake_case_ ( A_ : Any, A_ : Any, A_ : Any, A_ : List[str], A_ : int, A_ : Dict, A_ : Union[str, Any] ): '''simple docstring''' _lowerCamelCase : str = get_coref_infos(A_, A_, A_, A_, A_, A_ ) _lowerCamelCase : List[str] = {} _lowerCamelCase : Any = 0 _lowerCamelCase : str = 0 for name, metric in metrics: _lowerCamelCase , _lowerCamelCase , _lowerCamelCase : Dict = evaluator.evaluate_documents(A_, A_, beta=1 ) if name in ["muc", "bcub", "ceafe"]: conll += fa conll_subparts_num += 1 output_scores.update({F'''{name}/recall''': recall, F'''{name}/precision''': precision, F'''{name}/f1''': fa} ) logger.info( name.ljust(10 ), F'''Recall: {recall * 1_00:.2f}''', F''' Precision: {precision * 1_00:.2f}''', F''' F1: {fa * 1_00:.2f}''', ) if conll_subparts_num == 3: _lowerCamelCase : Any = (conll / 3) * 1_00 logger.info(F'''CoNLL score: {conll:.2f}''' ) output_scores.update({'''conll_score''': conll} ) return output_scores def snake_case_ ( A_ : Optional[int] ): '''simple docstring''' _lowerCamelCase : int = False for line in key_lines: if not line.startswith('''#''' ): if len(line.split() ) > 6: _lowerCamelCase : int = line.split()[5] if not parse_col == "-": _lowerCamelCase : Optional[int] = True break else: break return has_gold_parse @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION) class __snake_case ( datasets.Metric): def SCREAMING_SNAKE_CASE ( self : Union[str, Any] ): """simple docstring""" return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { '''predictions''': datasets.Sequence(datasets.Value('''string''' ) ), '''references''': datasets.Sequence(datasets.Value('''string''' ) ), } ) , codebase_urls=['''https://github.com/ns-moosavi/coval'''] , reference_urls=[ '''https://github.com/ns-moosavi/coval''', '''https://www.aclweb.org/anthology/P16-1060''', '''http://www.conll.cemantix.org/2012/data.html''', ] , ) def SCREAMING_SNAKE_CASE ( self : Any , __lowerCAmelCase : Any , __lowerCAmelCase : str , __lowerCAmelCase : List[str]=True , __lowerCAmelCase : List[str]=False , __lowerCAmelCase : Optional[Any]=False , __lowerCAmelCase : int=False ): """simple docstring""" _lowerCamelCase : str = [ ('''mentions''', evaluator.mentions), ('''muc''', evaluator.muc), ('''bcub''', evaluator.b_cubed), ('''ceafe''', evaluator.ceafe), ('''lea''', evaluator.lea), ] if min_span: _lowerCamelCase : Tuple = util.check_gold_parse_annotation(__lowerCAmelCase ) if not has_gold_parse: raise NotImplementedError('''References should have gold parse annotation to use \'min_span\'.''' ) # util.parse_key_file(key_file) # key_file = key_file + ".parsed" _lowerCamelCase : Dict = evaluate( key_lines=__lowerCAmelCase , sys_lines=__lowerCAmelCase , metrics=__lowerCAmelCase , NP_only=__lowerCAmelCase , remove_nested=__lowerCAmelCase , keep_singletons=__lowerCAmelCase , min_span=__lowerCAmelCase , ) return score
83
import argparse from transformers import CLIPImageProcessor, CLIPVisionModelWithProjection from diffusers import UnCLIPImageVariationPipeline, UnCLIPPipeline if __name__ == "__main__": a_ = argparse.ArgumentParser() parser.add_argument('--dump_path', default=None, type=str, required=True, help='Path to the output model.') parser.add_argument( '--txt2img_unclip', default='kakaobrain/karlo-v1-alpha', type=str, required=False, help='The pretrained txt2img unclip.', ) a_ = parser.parse_args() a_ = UnCLIPPipeline.from_pretrained(args.txtaimg_unclip) a_ = CLIPImageProcessor() a_ = CLIPVisionModelWithProjection.from_pretrained('openai/clip-vit-large-patch14') a_ = UnCLIPImageVariationPipeline( decoder=txtaimg.decoder, text_encoder=txtaimg.text_encoder, tokenizer=txtaimg.tokenizer, text_proj=txtaimg.text_proj, feature_extractor=feature_extractor, image_encoder=image_encoder, super_res_first=txtaimg.super_res_first, super_res_last=txtaimg.super_res_last, decoder_scheduler=txtaimg.decoder_scheduler, super_res_scheduler=txtaimg.super_res_scheduler, ) imgaimg.save_pretrained(args.dump_path)
25
0
import inspect import os import unittest import torch import accelerate from accelerate import Accelerator from accelerate.test_utils import execute_subprocess_async, require_multi_gpu from accelerate.utils import patch_environment class A_ ( unittest.TestCase ): '''simple docstring''' def SCREAMING_SNAKE_CASE__ ( self ): lowercase = inspect.getfile(accelerate.test_utils ) lowercase = os.path.sep.join(mod_file.split(os.path.sep )[:-1] + ['scripts', 'test_script.py'] ) lowercase = os.path.sep.join( mod_file.split(os.path.sep )[:-1] + ['scripts', 'test_distributed_data_loop.py'] ) lowercase = os.path.sep.join(mod_file.split(os.path.sep )[:-1] + ['scripts', 'test_ops.py'] ) @require_multi_gpu def SCREAMING_SNAKE_CASE__ ( self ): print(F'''Found {torch.cuda.device_count()} devices.''' ) lowercase = ['torchrun', F'''--nproc_per_node={torch.cuda.device_count()}''', self.test_file_path] with patch_environment(omp_num_threads=1 ): execute_subprocess_async(snake_case , env=os.environ.copy() ) @require_multi_gpu def SCREAMING_SNAKE_CASE__ ( self ): print(F'''Found {torch.cuda.device_count()} devices.''' ) lowercase = ['torchrun', F'''--nproc_per_node={torch.cuda.device_count()}''', self.operation_file_path] print(F'''Command: {cmd}''' ) with patch_environment(omp_num_threads=1 ): execute_subprocess_async(snake_case , env=os.environ.copy() ) @require_multi_gpu def SCREAMING_SNAKE_CASE__ ( self ): lowercase = ['torchrun', F'''--nproc_per_node={torch.cuda.device_count()}''', inspect.getfile(self.__class__ )] with patch_environment(omp_num_threads=1 ): execute_subprocess_async(snake_case , env=os.environ.copy() ) @require_multi_gpu def SCREAMING_SNAKE_CASE__ ( self ): print(F'''Found {torch.cuda.device_count()} devices, using 2 devices only''' ) lowercase = ['torchrun', F'''--nproc_per_node={torch.cuda.device_count()}''', self.data_loop_file_path] with patch_environment(omp_num_threads=1 , cuda_visible_devices='0,1' ): execute_subprocess_async(snake_case , env=os.environ.copy() ) if __name__ == "__main__": UpperCAmelCase = Accelerator() UpperCAmelCase = (accelerator.state.process_index + 2, 10) UpperCAmelCase = torch.randint(0, 10, shape).to(accelerator.device) UpperCAmelCase = '''''' UpperCAmelCase = accelerator.pad_across_processes(tensor) if tensora.shape[0] != accelerator.state.num_processes + 1: error_msg += F"Found shape {tensora.shape} but should have {accelerator.state.num_processes + 1} at dim 0." if not torch.equal(tensora[: accelerator.state.process_index + 2], tensor): error_msg += "Tensors have different values." if not torch.all(tensora[accelerator.state.process_index + 2 :] == 0): error_msg += "Padding was not done with the right value (0)." UpperCAmelCase = accelerator.pad_across_processes(tensor, pad_first=True) if tensora.shape[0] != accelerator.state.num_processes + 1: error_msg += F"Found shape {tensora.shape} but should have {accelerator.state.num_processes + 1} at dim 0." UpperCAmelCase = accelerator.state.num_processes - accelerator.state.process_index - 1 if not torch.equal(tensora[index:], tensor): error_msg += "Tensors have different values." if not torch.all(tensora[:index] == 0): error_msg += "Padding was not done with the right value (0)." # Raise error at the end to make sure we don't stop at the first failure. if len(error_msg) > 0: raise ValueError(error_msg)
84
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available a_ = { 'configuration_swinv2': ['SWINV2_PRETRAINED_CONFIG_ARCHIVE_MAP', 'Swinv2Config'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a_ = [ 'SWINV2_PRETRAINED_MODEL_ARCHIVE_LIST', 'Swinv2ForImageClassification', 'Swinv2ForMaskedImageModeling', 'Swinv2Model', 'Swinv2PreTrainedModel', ] if TYPE_CHECKING: from .configuration_swinva import SWINV2_PRETRAINED_CONFIG_ARCHIVE_MAP, SwinvaConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_swinva import ( SWINV2_PRETRAINED_MODEL_ARCHIVE_LIST, SwinvaForImageClassification, SwinvaForMaskedImageModeling, SwinvaModel, SwinvaPreTrainedModel, ) else: import sys a_ = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
25
0
from heapq import heappop, heappush import numpy as np def _a ( lowercase__ : np.ndarray , lowercase__ : tuple[int, int] , lowercase__ : tuple[int, int] , lowercase__ : bool , ): '''simple docstring''' SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : Union[str, Any] = grid.shape SCREAMING_SNAKE_CASE__ : Optional[Any] = [-1, 1, 0, 0] SCREAMING_SNAKE_CASE__ : Tuple = [0, 0, -1, 1] if allow_diagonal: dx += [-1, -1, 1, 1] dy += [-1, 1, -1, 1] SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : List[Any] = [(0, source)], set() SCREAMING_SNAKE_CASE__ : str = np.full((rows, cols) , np.inf ) SCREAMING_SNAKE_CASE__ : List[Any] = 0 SCREAMING_SNAKE_CASE__ : Dict = np.empty((rows, cols) , dtype=lowercase__ ) SCREAMING_SNAKE_CASE__ : List[Any] = None while queue: ((SCREAMING_SNAKE_CASE__) , (SCREAMING_SNAKE_CASE__)) : Optional[Any] = heappop(lowercase__ ) if (x, y) in visited: continue visited.add((x, y) ) if (x, y) == destination: SCREAMING_SNAKE_CASE__ : Any = [] while (x, y) != source: path.append((x, y) ) SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : Tuple = predecessors[x, y] path.append(lowercase__ ) # add the source manually path.reverse() return matrix[destination], path for i in range(len(lowercase__ ) ): SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : Union[str, Any] = x + dx[i], y + dy[i] if 0 <= nx < rows and 0 <= ny < cols: SCREAMING_SNAKE_CASE__ : Optional[Any] = grid[nx][ny] if next_node == 1 and matrix[nx, ny] > dist + 1: heappush(lowercase__ , (dist + 1, (nx, ny)) ) SCREAMING_SNAKE_CASE__ : List[str] = dist + 1 SCREAMING_SNAKE_CASE__ : Any = (x, y) return np.inf, [] if __name__ == "__main__": import doctest doctest.testmod()
85
from math import pi, sqrt, tan def lowerCamelCase__ ( _a): if side_length < 0: raise ValueError("surface_area_cube() only accepts non-negative values") return 6 * side_length**2 def lowerCamelCase__ ( _a , _a , _a): if length < 0 or breadth < 0 or height < 0: raise ValueError("surface_area_cuboid() only accepts non-negative values") return 2 * ((length * breadth) + (breadth * height) + (length * height)) def lowerCamelCase__ ( _a): if radius < 0: raise ValueError("surface_area_sphere() only accepts non-negative values") return 4 * pi * radius**2 def lowerCamelCase__ ( _a): if radius < 0: raise ValueError("surface_area_hemisphere() only accepts non-negative values") return 3 * pi * radius**2 def lowerCamelCase__ ( _a , _a): if radius < 0 or height < 0: raise ValueError("surface_area_cone() only accepts non-negative values") return pi * radius * (radius + (height**2 + radius**2) ** 0.5) def lowerCamelCase__ ( _a , _a , _a): if radius_a < 0 or radius_a < 0 or height < 0: raise ValueError( "surface_area_conical_frustum() only accepts non-negative values") SCREAMING_SNAKE_CASE : Any = (height**2 + (radius_a - radius_a) ** 2) ** 0.5 return pi * ((slant_height * (radius_a + radius_a)) + radius_a**2 + radius_a**2) def lowerCamelCase__ ( _a , _a): if radius < 0 or height < 0: raise ValueError("surface_area_cylinder() only accepts non-negative values") return 2 * pi * radius * (height + radius) def lowerCamelCase__ ( _a , _a): if torus_radius < 0 or tube_radius < 0: raise ValueError("surface_area_torus() only accepts non-negative values") if torus_radius < tube_radius: raise ValueError( "surface_area_torus() does not support spindle or self intersecting tori") return 4 * pow(_a , 2) * torus_radius * tube_radius def lowerCamelCase__ ( _a , _a): if length < 0 or width < 0: raise ValueError("area_rectangle() only accepts non-negative values") return length * width def lowerCamelCase__ ( _a): if side_length < 0: raise ValueError("area_square() only accepts non-negative values") return side_length**2 def lowerCamelCase__ ( _a , _a): if base < 0 or height < 0: raise ValueError("area_triangle() only accepts non-negative values") return (base * height) / 2 def lowerCamelCase__ ( _a , _a , _a): if sidea < 0 or sidea < 0 or sidea < 0: raise ValueError("area_triangle_three_sides() only accepts non-negative values") elif sidea + sidea < sidea or sidea + sidea < sidea or sidea + sidea < sidea: raise ValueError("Given three sides do not form a triangle") SCREAMING_SNAKE_CASE : List[str] = (sidea + sidea + sidea) / 2 SCREAMING_SNAKE_CASE : Optional[int] = sqrt( semi_perimeter * (semi_perimeter - sidea) * (semi_perimeter - sidea) * (semi_perimeter - sidea)) return area def lowerCamelCase__ ( _a , _a): if base < 0 or height < 0: raise ValueError("area_parallelogram() only accepts non-negative values") return base * height def lowerCamelCase__ ( _a , _a , _a): if basea < 0 or basea < 0 or height < 0: raise ValueError("area_trapezium() only accepts non-negative values") return 1 / 2 * (basea + basea) * height def lowerCamelCase__ ( _a): if radius < 0: raise ValueError("area_circle() only accepts non-negative values") return pi * radius**2 def lowerCamelCase__ ( _a , _a): if radius_x < 0 or radius_y < 0: raise ValueError("area_ellipse() only accepts non-negative values") return pi * radius_x * radius_y def lowerCamelCase__ ( _a , _a): if diagonal_a < 0 or diagonal_a < 0: raise ValueError("area_rhombus() only accepts non-negative values") return 1 / 2 * diagonal_a * diagonal_a def lowerCamelCase__ ( _a , _a): if not isinstance(_a , _a) or sides < 3: raise ValueError( "area_reg_polygon() only accepts integers greater than or \ equal to three as number of sides") elif length < 0: raise ValueError( "area_reg_polygon() only accepts non-negative values as \ length of a side") return (sides * length**2) / (4 * tan(pi / sides)) return (sides * length**2) / (4 * tan(pi / sides)) if __name__ == "__main__": import doctest doctest.testmod(verbose=True) # verbose so we can see methods missing tests print('[DEMO] Areas of various geometric shapes: \n') print(F'''Rectangle: {area_rectangle(10, 20) = }''') print(F'''Square: {area_square(10) = }''') print(F'''Triangle: {area_triangle(10, 10) = }''') print(F'''Triangle: {area_triangle_three_sides(5, 12, 13) = }''') print(F'''Parallelogram: {area_parallelogram(10, 20) = }''') print(F'''Rhombus: {area_rhombus(10, 20) = }''') print(F'''Trapezium: {area_trapezium(10, 20, 30) = }''') print(F'''Circle: {area_circle(20) = }''') print(F'''Ellipse: {area_ellipse(10, 20) = }''') print('\nSurface Areas of various geometric shapes: \n') print(F'''Cube: {surface_area_cube(20) = }''') print(F'''Cuboid: {surface_area_cuboid(10, 20, 30) = }''') print(F'''Sphere: {surface_area_sphere(20) = }''') print(F'''Hemisphere: {surface_area_hemisphere(20) = }''') print(F'''Cone: {surface_area_cone(10, 20) = }''') print(F'''Conical Frustum: {surface_area_conical_frustum(10, 20, 30) = }''') print(F'''Cylinder: {surface_area_cylinder(10, 20) = }''') print(F'''Torus: {surface_area_torus(20, 10) = }''') print(F'''Equilateral Triangle: {area_reg_polygon(3, 10) = }''') print(F'''Square: {area_reg_polygon(4, 10) = }''') print(F'''Reqular Pentagon: {area_reg_polygon(5, 10) = }''')
25
0
import unittest import numpy as np import torch from diffusers import DDIMPipeline, DDIMScheduler, UNetaDModel from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu, slow, torch_device from ..pipeline_params import UNCONDITIONAL_IMAGE_GENERATION_BATCH_PARAMS, UNCONDITIONAL_IMAGE_GENERATION_PARAMS from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() class _a ( snake_case_ , unittest.TestCase ): """simple docstring""" _lowerCamelCase : int = DDIMPipeline _lowerCamelCase : Union[str, Any] = UNCONDITIONAL_IMAGE_GENERATION_PARAMS _lowerCamelCase : Any = PipelineTesterMixin.required_optional_params - { 'num_images_per_prompt', 'latents', 'callback', 'callback_steps', } _lowerCamelCase : List[Any] = UNCONDITIONAL_IMAGE_GENERATION_BATCH_PARAMS _lowerCamelCase : Optional[int] = False def __A ( self : Any ): torch.manual_seed(0 ) A_ = UNetaDModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=3 , out_channels=3 , down_block_types=("DownBlock2D", "AttnDownBlock2D") , up_block_types=("AttnUpBlock2D", "UpBlock2D") , ) A_ = DDIMScheduler() A_ = {"unet": unet, "scheduler": scheduler} return components def __A ( self : Optional[Any] , UpperCAmelCase : Optional[int] , UpperCAmelCase : Optional[int]=0 ): if str(UpperCAmelCase ).startswith("mps" ): A_ = torch.manual_seed(UpperCAmelCase ) else: A_ = torch.Generator(device=UpperCAmelCase ).manual_seed(UpperCAmelCase ) A_ = { "batch_size": 1, "generator": generator, "num_inference_steps": 2, "output_type": "numpy", } return inputs def __A ( self : str ): A_ = "cpu" A_ = self.get_dummy_components() A_ = self.pipeline_class(**UpperCAmelCase ) pipe.to(UpperCAmelCase ) pipe.set_progress_bar_config(disable=UpperCAmelCase ) A_ = self.get_dummy_inputs(UpperCAmelCase ) A_ = pipe(**UpperCAmelCase ).images A_ = image[0, -3:, -3:, -1] self.assertEqual(image.shape , (1, 32, 32, 3) ) A_ = np.array( [1.000E00, 5.717E-01, 4.717E-01, 1.000E00, 0.000E00, 1.000E00, 3.000E-04, 0.000E00, 9.000E-04] ) A_ = np.abs(image_slice.flatten() - expected_slice ).max() self.assertLessEqual(UpperCAmelCase , 1E-3 ) def __A ( self : Any ): super().test_dict_tuple_outputs_equivalent(expected_max_difference=3E-3 ) def __A ( self : Optional[int] ): super().test_save_load_local(expected_max_difference=3E-3 ) def __A ( self : Optional[int] ): super().test_save_load_optional_components(expected_max_difference=3E-3 ) def __A ( self : Any ): super().test_inference_batch_single_identical(expected_max_diff=3E-3 ) @slow @require_torch_gpu class _a ( unittest.TestCase ): """simple docstring""" def __A ( self : Any ): A_ = "google/ddpm-cifar10-32" A_ = UNetaDModel.from_pretrained(UpperCAmelCase ) A_ = DDIMScheduler() A_ = DDIMPipeline(unet=UpperCAmelCase , scheduler=UpperCAmelCase ) ddim.to(UpperCAmelCase ) ddim.set_progress_bar_config(disable=UpperCAmelCase ) A_ = torch.manual_seed(0 ) A_ = ddim(generator=UpperCAmelCase , eta=0.0 , output_type="numpy" ).images A_ = image[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) A_ = np.array([0.1_723, 0.1_617, 0.1_600, 0.1_626, 0.1_497, 0.1_513, 0.1_505, 0.1_442, 0.1_453] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 def __A ( self : Optional[Any] ): A_ = "google/ddpm-ema-bedroom-256" A_ = UNetaDModel.from_pretrained(UpperCAmelCase ) A_ = DDIMScheduler.from_pretrained(UpperCAmelCase ) A_ = DDIMPipeline(unet=UpperCAmelCase , scheduler=UpperCAmelCase ) ddpm.to(UpperCAmelCase ) ddpm.set_progress_bar_config(disable=UpperCAmelCase ) A_ = torch.manual_seed(0 ) A_ = ddpm(generator=UpperCAmelCase , output_type="numpy" ).images A_ = image[0, -3:, -3:, -1] assert image.shape == (1, 256, 256, 3) A_ = np.array([0.0_060, 0.0_201, 0.0_344, 0.0_024, 0.0_018, 0.0_002, 0.0_022, 0.0_000, 0.0_069] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
86
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available a_ = { 'configuration_instructblip': [ 'INSTRUCTBLIP_PRETRAINED_CONFIG_ARCHIVE_MAP', 'InstructBlipConfig', 'InstructBlipQFormerConfig', 'InstructBlipVisionConfig', ], 'processing_instructblip': ['InstructBlipProcessor'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a_ = [ 'INSTRUCTBLIP_PRETRAINED_MODEL_ARCHIVE_LIST', 'InstructBlipQFormerModel', 'InstructBlipPreTrainedModel', 'InstructBlipForConditionalGeneration', 'InstructBlipVisionModel', ] if TYPE_CHECKING: from .configuration_instructblip import ( INSTRUCTBLIP_PRETRAINED_CONFIG_ARCHIVE_MAP, InstructBlipConfig, InstructBlipQFormerConfig, InstructBlipVisionConfig, ) from .processing_instructblip import InstructBlipProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_instructblip import ( INSTRUCTBLIP_PRETRAINED_MODEL_ARCHIVE_LIST, InstructBlipForConditionalGeneration, InstructBlipPreTrainedModel, InstructBlipQFormerModel, InstructBlipVisionModel, ) else: import sys a_ = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
25
0
import enum import warnings from .. import MODEL_FOR_CAUSAL_LM_MAPPING, TF_MODEL_FOR_CAUSAL_LM_MAPPING from ..utils import add_end_docstrings, is_tf_available from .base import PIPELINE_INIT_ARGS, Pipeline if is_tf_available(): import tensorflow as tf class UpperCamelCase_ ( enum.Enum ): '''simple docstring''' UpperCAmelCase__ = 0 UpperCAmelCase__ = 1 UpperCAmelCase__ = 2 @add_end_docstrings(UpperCAmelCase__ ) class UpperCamelCase_ ( UpperCAmelCase__ ): '''simple docstring''' UpperCAmelCase__ = ''' In 1991, the remains of Russian Tsar Nicholas II and his family (except for Alexei and Maria) are discovered. The voice of Nicholas\'s young son, Tsarevich Alexei Nikolaevich, narrates the remainder of the story. 1883 Western Siberia, a young Grigori Rasputin is asked by his father and a group of men to perform magic. Rasputin has a vision and denounces one of the men as a horse thief. Although his father initially slaps him for making such an accusation, Rasputin watches as the man is chased outside and beaten. Twenty years later, Rasputin sees a vision of the Virgin Mary, prompting him to become a priest. Rasputin quickly becomes famous, with people, even a bishop, begging for his blessing. <eod> </s> <eos> ''' def __init__( self : int , *UpperCAmelCase__ : Any , **UpperCAmelCase__ : Dict) ->Dict: '''simple docstring''' super().__init__(*UpperCAmelCase__ , **UpperCAmelCase__) self.check_model_type( TF_MODEL_FOR_CAUSAL_LM_MAPPING if self.framework == '''tf''' else MODEL_FOR_CAUSAL_LM_MAPPING) if "prefix" not in self._preprocess_params: # This is very specific. The logic is quite complex and needs to be done # as a "default". # It also defines both some preprocess_kwargs and generate_kwargs # which is why we cannot put them in their respective methods. A__ = None if self.model.config.prefix is not None: A__ = self.model.config.prefix if prefix is None and self.model.__class__.__name__ in [ "XLNetLMHeadModel", "TransfoXLLMHeadModel", "TFXLNetLMHeadModel", "TFTransfoXLLMHeadModel", ]: # For XLNet and TransformerXL we add an article to the prompt to give more state to the model. A__ = self.XL_PREFIX if prefix is not None: # Recalculate some generate_kwargs linked to prefix. A__ , A__ , A__ = self._sanitize_parameters(prefix=UpperCAmelCase__ , **self._forward_params) A__ = {**self._preprocess_params, **preprocess_params} A__ = {**self._forward_params, **forward_params} def SCREAMING_SNAKE_CASE ( self : Tuple , UpperCAmelCase__ : Optional[int]=None , UpperCAmelCase__ : Dict=None , UpperCAmelCase__ : Tuple=None , UpperCAmelCase__ : List[Any]=None , UpperCAmelCase__ : Optional[int]=None , UpperCAmelCase__ : str=None , UpperCAmelCase__ : List[Any]=None , UpperCAmelCase__ : Dict=None , **UpperCAmelCase__ : Union[str, Any] , ) ->Dict: '''simple docstring''' A__ = {} if prefix is not None: A__ = prefix if prefix: A__ = self.tokenizer( UpperCAmelCase__ , padding=UpperCAmelCase__ , add_special_tokens=UpperCAmelCase__ , return_tensors=self.framework) A__ = prefix_inputs['''input_ids'''].shape[-1] if handle_long_generation is not None: if handle_long_generation not in {"hole"}: raise ValueError( f"""{handle_long_generation} is not a valid value for `handle_long_generation` parameter expected""" ''' [None, \'hole\']''') A__ = handle_long_generation preprocess_params.update(UpperCAmelCase__) A__ = generate_kwargs A__ = {} if return_full_text is not None and return_type is None: if return_text is not None: raise ValueError('''`return_text` is mutually exclusive with `return_full_text`''') if return_tensors is not None: raise ValueError('''`return_full_text` is mutually exclusive with `return_tensors`''') A__ = ReturnType.FULL_TEXT if return_full_text else ReturnType.NEW_TEXT if return_tensors is not None and return_type is None: if return_text is not None: raise ValueError('''`return_text` is mutually exclusive with `return_tensors`''') A__ = ReturnType.TENSORS if return_type is not None: A__ = return_type if clean_up_tokenization_spaces is not None: A__ = clean_up_tokenization_spaces if stop_sequence is not None: A__ = self.tokenizer.encode(UpperCAmelCase__ , add_special_tokens=UpperCAmelCase__) if len(UpperCAmelCase__) > 1: warnings.warn( '''Stopping on a multiple token sequence is not yet supported on transformers. The first token of''' ''' the stop sequence will be used as the stop sequence string in the interim.''') A__ = stop_sequence_ids[0] return preprocess_params, forward_params, postprocess_params def SCREAMING_SNAKE_CASE ( self : Optional[Any] , *UpperCAmelCase__ : Optional[Any] , **UpperCAmelCase__ : Optional[Any]) ->Optional[int]: '''simple docstring''' if self.model.__class__.__name__ in ["TransfoXLLMHeadModel"]: kwargs.update({'''add_space_before_punct_symbol''': True}) return super()._parse_and_tokenize(*UpperCAmelCase__ , **UpperCAmelCase__) def __call__( self : Optional[int] , UpperCAmelCase__ : Any , **UpperCAmelCase__ : Dict) ->str: '''simple docstring''' return super().__call__(UpperCAmelCase__ , **UpperCAmelCase__) def SCREAMING_SNAKE_CASE ( self : int , UpperCAmelCase__ : List[str] , UpperCAmelCase__ : str="" , UpperCAmelCase__ : List[str]=None , **UpperCAmelCase__ : Any) ->Tuple: '''simple docstring''' A__ = self.tokenizer( prefix + prompt_text , padding=UpperCAmelCase__ , add_special_tokens=UpperCAmelCase__ , return_tensors=self.framework) A__ = prompt_text if handle_long_generation == "hole": A__ = inputs['''input_ids'''].shape[-1] if "max_new_tokens" in generate_kwargs: A__ = generate_kwargs['''max_new_tokens'''] else: A__ = generate_kwargs.get('''max_length''' , self.model.config.max_length) - cur_len if new_tokens < 0: raise ValueError('''We cannot infer how many new tokens are expected''') if cur_len + new_tokens > self.tokenizer.model_max_length: A__ = self.tokenizer.model_max_length - new_tokens if keep_length <= 0: raise ValueError( '''We cannot use `hole` to handle this generation the number of desired tokens exceeds the''' ''' models max length''') A__ = inputs['''input_ids'''][:, -keep_length:] if "attention_mask" in inputs: A__ = inputs['''attention_mask'''][:, -keep_length:] return inputs def SCREAMING_SNAKE_CASE ( self : str , UpperCAmelCase__ : Dict , **UpperCAmelCase__ : Tuple) ->str: '''simple docstring''' A__ = model_inputs['''input_ids'''] A__ = model_inputs.get('''attention_mask''' , UpperCAmelCase__) # Allow empty prompts if input_ids.shape[1] == 0: A__ = None A__ = None A__ = 1 else: A__ = input_ids.shape[0] A__ = model_inputs.pop('''prompt_text''') # If there is a prefix, we may need to adjust the generation length. Do so without permanently modifying # generate_kwargs, as some of the parameterization may come from the initialization of the pipeline. A__ = generate_kwargs.pop('''prefix_length''' , 0) if prefix_length > 0: A__ = '''max_new_tokens''' in generate_kwargs or ( '''generation_config''' in generate_kwargs and generate_kwargs['''generation_config'''].max_new_tokens is not None ) if not has_max_new_tokens: A__ = generate_kwargs.get('''max_length''') or self.model.config.max_length generate_kwargs["max_length"] += prefix_length A__ = '''min_new_tokens''' in generate_kwargs or ( '''generation_config''' in generate_kwargs and generate_kwargs['''generation_config'''].min_new_tokens is not None ) if not has_min_new_tokens and "min_length" in generate_kwargs: generate_kwargs["min_length"] += prefix_length # BS x SL A__ = self.model.generate(input_ids=UpperCAmelCase__ , attention_mask=UpperCAmelCase__ , **UpperCAmelCase__) A__ = generated_sequence.shape[0] if self.framework == "pt": A__ = generated_sequence.reshape(UpperCAmelCase__ , out_b // in_b , *generated_sequence.shape[1:]) elif self.framework == "tf": A__ = tf.reshape(UpperCAmelCase__ , (in_b, out_b // in_b, *generated_sequence.shape[1:])) return {"generated_sequence": generated_sequence, "input_ids": input_ids, "prompt_text": prompt_text} def SCREAMING_SNAKE_CASE ( self : Dict , UpperCAmelCase__ : Optional[int] , UpperCAmelCase__ : str=ReturnType.FULL_TEXT , UpperCAmelCase__ : Union[str, Any]=True) ->str: '''simple docstring''' A__ = model_outputs['''generated_sequence'''][0] A__ = model_outputs['''input_ids'''] A__ = model_outputs['''prompt_text'''] A__ = generated_sequence.numpy().tolist() A__ = [] for sequence in generated_sequence: if return_type == ReturnType.TENSORS: A__ = {'''generated_token_ids''': sequence} elif return_type in {ReturnType.NEW_TEXT, ReturnType.FULL_TEXT}: # Decode text A__ = self.tokenizer.decode( UpperCAmelCase__ , skip_special_tokens=UpperCAmelCase__ , clean_up_tokenization_spaces=UpperCAmelCase__ , ) # Remove PADDING prompt of the sequence if XLNet or Transfo-XL model is used if input_ids is None: A__ = 0 else: A__ = len( self.tokenizer.decode( input_ids[0] , skip_special_tokens=UpperCAmelCase__ , clean_up_tokenization_spaces=UpperCAmelCase__ , )) if return_type == ReturnType.FULL_TEXT: A__ = prompt_text + text[prompt_length:] else: A__ = text[prompt_length:] A__ = {'''generated_text''': all_text} records.append(UpperCAmelCase__) return records
87
from __future__ import annotations def lowerCamelCase__ ( _a): SCREAMING_SNAKE_CASE : Optional[Any] = 2 SCREAMING_SNAKE_CASE : Optional[int] = [] while i * i <= n: if n % i: i += 1 else: n //= i factors.append(_a) if n > 1: factors.append(_a) return factors if __name__ == "__main__": import doctest doctest.testmod()
25
0
"""simple docstring""" from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding class lowercase__ ( A_ ): __UpperCAmelCase = ['''image_processor''', '''tokenizer'''] __UpperCAmelCase = '''AutoImageProcessor''' __UpperCAmelCase = '''AutoTokenizer''' def __init__( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE) -> str: super().__init__(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE) _lowerCamelCase : Optional[int] = self.image_processor def __call__( self , SCREAMING_SNAKE_CASE=None , SCREAMING_SNAKE_CASE=None , SCREAMING_SNAKE_CASE=None , **SCREAMING_SNAKE_CASE) -> str: if text is None and images is None: raise ValueError("""You have to specify either text or images. Both cannot be none.""") if text is not None: _lowerCamelCase : str = self.tokenizer(SCREAMING_SNAKE_CASE , return_tensors=SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE) if images is not None: _lowerCamelCase : Dict = self.image_processor(SCREAMING_SNAKE_CASE , return_tensors=SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE) if text is not None and images is not None: _lowerCamelCase : str = image_features.pixel_values return encoding elif text is not None: return encoding else: return BatchEncoding(data=dict(**SCREAMING_SNAKE_CASE) , tensor_type=SCREAMING_SNAKE_CASE) def UpperCamelCase_ ( self , *SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE) -> List[str]: return self.tokenizer.batch_decode(*SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE) def UpperCamelCase_ ( self , *SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE) -> Tuple: return self.tokenizer.decode(*SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE) @property def UpperCamelCase_ ( self) -> int: return ["input_ids", "attention_mask", "pixel_values"]
88
from math import factorial, pi def lowerCamelCase__ ( _a , _a = 30): if not isinstance(_a , (int, float)): raise ValueError("maclaurin_sin() requires either an int or float for theta") if not isinstance(_a , _a) or accuracy <= 0: raise ValueError("maclaurin_sin() requires a positive int for accuracy") SCREAMING_SNAKE_CASE : int = float(_a) SCREAMING_SNAKE_CASE : Dict = theta // (2 * pi) theta -= 2 * div * pi return sum( (-1) ** r * theta ** (2 * r + 1) / factorial(2 * r + 1) for r in range(_a)) def lowerCamelCase__ ( _a , _a = 30): if not isinstance(_a , (int, float)): raise ValueError("maclaurin_cos() requires either an int or float for theta") if not isinstance(_a , _a) or accuracy <= 0: raise ValueError("maclaurin_cos() requires a positive int for accuracy") SCREAMING_SNAKE_CASE : str = float(_a) SCREAMING_SNAKE_CASE : Any = theta // (2 * pi) theta -= 2 * div * pi return sum((-1) ** r * theta ** (2 * r) / factorial(2 * r) for r in range(_a)) if __name__ == "__main__": import doctest doctest.testmod() print(maclaurin_sin(10)) print(maclaurin_sin(-10)) print(maclaurin_sin(10, 15)) print(maclaurin_sin(-10, 15)) print(maclaurin_cos(5)) print(maclaurin_cos(-5)) print(maclaurin_cos(10, 15)) print(maclaurin_cos(-10, 15))
25
0
from ...configuration_utils import PretrainedConfig from ...utils import logging SCREAMING_SNAKE_CASE : Any = logging.get_logger(__name__) SCREAMING_SNAKE_CASE : Any = {"ctrl": "https://huggingface.co/ctrl/resolve/main/config.json"} class _lowerCamelCase( _a ): lowercase_ : int = """ctrl""" lowercase_ : List[Any] = ["""past_key_values"""] lowercase_ : Any = { """max_position_embeddings""": """n_positions""", """hidden_size""": """n_embd""", """num_attention_heads""": """n_head""", """num_hidden_layers""": """n_layer""", } def __init__( self, lowerCamelCase=24_65_34, lowerCamelCase=2_56, lowerCamelCase=12_80, lowerCamelCase=81_92, lowerCamelCase=48, lowerCamelCase=16, lowerCamelCase=0.1, lowerCamelCase=0.1, lowerCamelCase=1E-6, lowerCamelCase=0.0_2, lowerCamelCase=True, **lowerCamelCase, ) -> Dict: """simple docstring""" _lowercase : Optional[int] = vocab_size _lowercase : Optional[Any] = n_positions _lowercase : int = n_embd _lowercase : Union[str, Any] = n_layer _lowercase : Tuple = n_head _lowercase : Any = dff _lowercase : Tuple = resid_pdrop _lowercase : List[str] = embd_pdrop _lowercase : Dict = layer_norm_epsilon _lowercase : Optional[int] = initializer_range _lowercase : Tuple = use_cache super().__init__(**lowerCamelCase)
89
from __future__ import annotations import math class _UpperCamelCase : '''simple docstring''' def __init__( self : Dict , a : int ) -> None: """simple docstring""" SCREAMING_SNAKE_CASE : Dict = size # approximate the overall size of segment tree with given value SCREAMING_SNAKE_CASE : Any = [0 for i in range(0 , 4 * size )] # create array to store lazy update SCREAMING_SNAKE_CASE : Union[str, Any] = [0 for i in range(0 , 4 * size )] SCREAMING_SNAKE_CASE : Any = [0 for i in range(0 , 4 * size )] # flag for lazy update def __UpperCamelCase ( self : Tuple , a : int ) -> int: """simple docstring""" return idx * 2 def __UpperCamelCase ( self : str , a : int ) -> int: """simple docstring""" return idx * 2 + 1 def __UpperCamelCase ( self : int , a : int , a : int , a : int , a : list[int] ) -> None: """simple docstring""" if left_element == right_element: SCREAMING_SNAKE_CASE : int = a[left_element - 1] else: SCREAMING_SNAKE_CASE : Optional[int] = (left_element + right_element) // 2 self.build(self.left(a ) , a , a , a ) self.build(self.right(a ) , mid + 1 , a , a ) SCREAMING_SNAKE_CASE : List[Any] = max( self.segment_tree[self.left(a )] , self.segment_tree[self.right(a )] ) def __UpperCamelCase ( self : Optional[Any] , a : int , a : int , a : int , a : int , a : int , a : int ) -> bool: """simple docstring""" if self.flag[idx] is True: SCREAMING_SNAKE_CASE : Any = self.lazy[idx] SCREAMING_SNAKE_CASE : List[str] = False if left_element != right_element: SCREAMING_SNAKE_CASE : Optional[Any] = self.lazy[idx] SCREAMING_SNAKE_CASE : int = self.lazy[idx] SCREAMING_SNAKE_CASE : Any = True SCREAMING_SNAKE_CASE : List[Any] = True if right_element < a or left_element > b: return True if left_element >= a and right_element <= b: SCREAMING_SNAKE_CASE : Optional[Any] = val if left_element != right_element: SCREAMING_SNAKE_CASE : str = val SCREAMING_SNAKE_CASE : str = val SCREAMING_SNAKE_CASE : Tuple = True SCREAMING_SNAKE_CASE : Optional[Any] = True return True SCREAMING_SNAKE_CASE : int = (left_element + right_element) // 2 self.update(self.left(a ) , a , a , a , a , a ) self.update(self.right(a ) , mid + 1 , a , a , a , a ) SCREAMING_SNAKE_CASE : Optional[int] = max( self.segment_tree[self.left(a )] , self.segment_tree[self.right(a )] ) return True def __UpperCamelCase ( self : Dict , a : int , a : int , a : int , a : int , a : int ) -> int | float: """simple docstring""" if self.flag[idx] is True: SCREAMING_SNAKE_CASE : int = self.lazy[idx] SCREAMING_SNAKE_CASE : List[Any] = False if left_element != right_element: SCREAMING_SNAKE_CASE : Optional[Any] = self.lazy[idx] SCREAMING_SNAKE_CASE : Optional[Any] = self.lazy[idx] SCREAMING_SNAKE_CASE : Optional[Any] = True SCREAMING_SNAKE_CASE : Union[str, Any] = True if right_element < a or left_element > b: return -math.inf if left_element >= a and right_element <= b: return self.segment_tree[idx] SCREAMING_SNAKE_CASE : Dict = (left_element + right_element) // 2 SCREAMING_SNAKE_CASE : Tuple = self.query(self.left(a ) , a , a , a , a ) SCREAMING_SNAKE_CASE : Tuple = self.query(self.right(a ) , mid + 1 , a , a , a ) return max(a , a ) def __str__( self : str ) -> str: """simple docstring""" return str([self.query(1 , 1 , self.size , a , a ) for i in range(1 , self.size + 1 )] ) if __name__ == "__main__": a_ = [1, 2, -4, 7, 3, -5, 6, 11, -20, 9, 14, 15, 5, 2, -8] a_ = 15 a_ = SegmentTree(size) segt.build(1, 1, size, A) print(segt.query(1, 1, size, 4, 6)) print(segt.query(1, 1, size, 7, 11)) print(segt.query(1, 1, size, 7, 12)) segt.update(1, 1, size, 1, 3, 111) print(segt.query(1, 1, size, 1, 15)) segt.update(1, 1, size, 7, 8, 235) print(segt)
25
0
'''simple docstring''' import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_convbert import ConvBertTokenizer __UpperCAmelCase = logging.get_logger(__name__) __UpperCAmelCase = {'''vocab_file''': '''vocab.txt'''} __UpperCAmelCase = { '''vocab_file''': { '''YituTech/conv-bert-base''': '''https://huggingface.co/YituTech/conv-bert-base/resolve/main/vocab.txt''', '''YituTech/conv-bert-medium-small''': ( '''https://huggingface.co/YituTech/conv-bert-medium-small/resolve/main/vocab.txt''' ), '''YituTech/conv-bert-small''': '''https://huggingface.co/YituTech/conv-bert-small/resolve/main/vocab.txt''', } } __UpperCAmelCase = { '''YituTech/conv-bert-base''': 512, '''YituTech/conv-bert-medium-small''': 512, '''YituTech/conv-bert-small''': 512, } __UpperCAmelCase = { '''YituTech/conv-bert-base''': {'''do_lower_case''': True}, '''YituTech/conv-bert-medium-small''': {'''do_lower_case''': True}, '''YituTech/conv-bert-small''': {'''do_lower_case''': True}, } class a__ ( a__ ): '''simple docstring''' lowercase__ : List[Any] = VOCAB_FILES_NAMES lowercase__ : Optional[Any] = PRETRAINED_VOCAB_FILES_MAP lowercase__ : Optional[int] = PRETRAINED_INIT_CONFIGURATION lowercase__ : List[str] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowercase__ : Union[str, Any] = ConvBertTokenizer def __init__( self , lowerCamelCase_=None , lowerCamelCase_=None , lowerCamelCase_=True , lowerCamelCase_="[UNK]" , lowerCamelCase_="[SEP]" , lowerCamelCase_="[PAD]" , lowerCamelCase_="[CLS]" , lowerCamelCase_="[MASK]" , lowerCamelCase_=True , lowerCamelCase_=None , **lowerCamelCase_ , ) -> Dict: super().__init__( lowerCamelCase_ , tokenizer_file=lowerCamelCase_ , do_lower_case=lowerCamelCase_ , unk_token=lowerCamelCase_ , sep_token=lowerCamelCase_ , pad_token=lowerCamelCase_ , cls_token=lowerCamelCase_ , mask_token=lowerCamelCase_ , tokenize_chinese_chars=lowerCamelCase_ , strip_accents=lowerCamelCase_ , **lowerCamelCase_ , ) lowerCAmelCase__ = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get('''lowercase''' , lowerCamelCase_ ) != do_lower_case or normalizer_state.get('''strip_accents''' , lowerCamelCase_ ) != strip_accents or normalizer_state.get('''handle_chinese_chars''' , lowerCamelCase_ ) != tokenize_chinese_chars ): lowerCAmelCase__ = getattr(lowerCamelCase_ , normalizer_state.pop('''type''' ) ) lowerCAmelCase__ = do_lower_case lowerCAmelCase__ = strip_accents lowerCAmelCase__ = tokenize_chinese_chars lowerCAmelCase__ = normalizer_class(**lowerCamelCase_ ) lowerCAmelCase__ = do_lower_case def __SCREAMING_SNAKE_CASE ( self , lowerCamelCase_ , lowerCamelCase_=None ) -> Optional[Any]: lowerCAmelCase__ = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def __SCREAMING_SNAKE_CASE ( self , lowerCamelCase_ , lowerCamelCase_ = None ) -> List[int]: lowerCAmelCase__ = [self.sep_token_id] lowerCAmelCase__ = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def __SCREAMING_SNAKE_CASE ( self , lowerCamelCase_ , lowerCamelCase_ = None ) -> Tuple[str]: lowerCAmelCase__ = self._tokenizer.model.save(lowerCamelCase_ , name=lowerCamelCase_ ) return tuple(lowerCamelCase_ )
90
import gc import unittest import numpy as np import torch from diffusers import StableDiffusionKDiffusionPipeline from diffusers.utils import slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu enable_full_determinism() @slow @require_torch_gpu class _UpperCamelCase ( unittest.TestCase ): '''simple docstring''' def __UpperCamelCase ( self : Dict ) -> Tuple: """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() def __UpperCamelCase ( self : Optional[int] ) -> int: """simple docstring""" SCREAMING_SNAKE_CASE : Optional[Any] = StableDiffusionKDiffusionPipeline.from_pretrained("CompVis/stable-diffusion-v1-4" ) SCREAMING_SNAKE_CASE : str = sd_pipe.to(a ) sd_pipe.set_progress_bar_config(disable=a ) sd_pipe.set_scheduler("sample_euler" ) SCREAMING_SNAKE_CASE : Optional[int] = "A painting of a squirrel eating a burger" SCREAMING_SNAKE_CASE : Any = torch.manual_seed(0 ) SCREAMING_SNAKE_CASE : List[Any] = sd_pipe([prompt] , generator=a , guidance_scale=9.0 , num_inference_steps=20 , output_type="np" ) SCREAMING_SNAKE_CASE : Tuple = output.images SCREAMING_SNAKE_CASE : Any = image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) SCREAMING_SNAKE_CASE : Union[str, Any] = np.array([0.0447, 0.0492, 0.0468, 0.0408, 0.0383, 0.0408, 0.0354, 0.0380, 0.0339] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def __UpperCamelCase ( self : List[Any] ) -> Optional[int]: """simple docstring""" SCREAMING_SNAKE_CASE : int = StableDiffusionKDiffusionPipeline.from_pretrained("stabilityai/stable-diffusion-2-1-base" ) SCREAMING_SNAKE_CASE : Tuple = sd_pipe.to(a ) sd_pipe.set_progress_bar_config(disable=a ) sd_pipe.set_scheduler("sample_euler" ) SCREAMING_SNAKE_CASE : List[str] = "A painting of a squirrel eating a burger" SCREAMING_SNAKE_CASE : List[str] = torch.manual_seed(0 ) SCREAMING_SNAKE_CASE : Union[str, Any] = sd_pipe([prompt] , generator=a , guidance_scale=9.0 , num_inference_steps=20 , output_type="np" ) SCREAMING_SNAKE_CASE : List[Any] = output.images SCREAMING_SNAKE_CASE : Tuple = image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) SCREAMING_SNAKE_CASE : int = np.array([0.1237, 0.1320, 0.1438, 0.1359, 0.1390, 0.1132, 0.1277, 0.1175, 0.1112] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 5e-1 def __UpperCamelCase ( self : Tuple ) -> List[Any]: """simple docstring""" SCREAMING_SNAKE_CASE : Dict = StableDiffusionKDiffusionPipeline.from_pretrained("stabilityai/stable-diffusion-2-1-base" ) SCREAMING_SNAKE_CASE : Union[str, Any] = sd_pipe.to(a ) sd_pipe.set_progress_bar_config(disable=a ) sd_pipe.set_scheduler("sample_dpmpp_2m" ) SCREAMING_SNAKE_CASE : str = "A painting of a squirrel eating a burger" SCREAMING_SNAKE_CASE : Any = torch.manual_seed(0 ) SCREAMING_SNAKE_CASE : str = sd_pipe( [prompt] , generator=a , guidance_scale=7.5 , num_inference_steps=15 , output_type="np" , use_karras_sigmas=a , ) SCREAMING_SNAKE_CASE : str = output.images SCREAMING_SNAKE_CASE : Optional[int] = image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) SCREAMING_SNAKE_CASE : int = np.array( [0.1138_1689, 0.1211_2921, 0.138_9457, 0.1254_9606, 0.124_4964, 0.1083_1517, 0.1156_2866, 0.1086_7816, 0.1049_9048] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
25
0
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available, is_vision_available, ) _lowercase = { '''configuration_convnext''': ['''CONVNEXT_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''ConvNextConfig''', '''ConvNextOnnxConfig'''] } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase = ['''ConvNextFeatureExtractor'''] _lowercase = ['''ConvNextImageProcessor'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase = [ '''CONVNEXT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''ConvNextForImageClassification''', '''ConvNextModel''', '''ConvNextPreTrainedModel''', '''ConvNextBackbone''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase = [ '''TFConvNextForImageClassification''', '''TFConvNextModel''', '''TFConvNextPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_convnext import CONVNEXT_PRETRAINED_CONFIG_ARCHIVE_MAP, ConvNextConfig, ConvNextOnnxConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_convnext import ConvNextFeatureExtractor from .image_processing_convnext import ConvNextImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_convnext import ( CONVNEXT_PRETRAINED_MODEL_ARCHIVE_LIST, ConvNextBackbone, ConvNextForImageClassification, ConvNextModel, ConvNextPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_convnext import TFConvNextForImageClassification, TFConvNextModel, TFConvNextPreTrainedModel else: import sys _lowercase = _LazyModule(__name__, globals()['''__file__'''], _import_structure)
91
import unittest import numpy as np from diffusers import LMSDiscreteScheduler, OnnxStableDiffusionInpaintPipeline from diffusers.utils.testing_utils import ( is_onnx_available, load_image, nightly, require_onnxruntime, require_torch_gpu, ) from ..test_pipelines_onnx_common import OnnxPipelineTesterMixin if is_onnx_available(): import onnxruntime as ort class _UpperCamelCase ( __A , unittest.TestCase ): '''simple docstring''' pass @nightly @require_onnxruntime @require_torch_gpu class _UpperCamelCase ( unittest.TestCase ): '''simple docstring''' @property def __UpperCamelCase ( self : List[Any] ) -> List[str]: """simple docstring""" return ( "CUDAExecutionProvider", { "gpu_mem_limit": "15000000000", # 15GB "arena_extend_strategy": "kSameAsRequested", }, ) @property def __UpperCamelCase ( self : int ) -> Optional[Any]: """simple docstring""" SCREAMING_SNAKE_CASE : Optional[Any] = ort.SessionOptions() SCREAMING_SNAKE_CASE : Union[str, Any] = False return options def __UpperCamelCase ( self : List[Any] ) -> List[Any]: """simple docstring""" SCREAMING_SNAKE_CASE : Any = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/in_paint/overture-creations-5sI6fQgYIuo.png" ) SCREAMING_SNAKE_CASE : Optional[Any] = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/in_paint/overture-creations-5sI6fQgYIuo_mask.png" ) SCREAMING_SNAKE_CASE : int = OnnxStableDiffusionInpaintPipeline.from_pretrained( "runwayml/stable-diffusion-inpainting" , revision="onnx" , safety_checker=a , feature_extractor=a , provider=self.gpu_provider , sess_options=self.gpu_options , ) pipe.set_progress_bar_config(disable=a ) SCREAMING_SNAKE_CASE : Optional[Any] = "A red cat sitting on a park bench" SCREAMING_SNAKE_CASE : Tuple = np.random.RandomState(0 ) SCREAMING_SNAKE_CASE : Optional[int] = pipe( prompt=a , image=a , mask_image=a , guidance_scale=7.5 , num_inference_steps=10 , generator=a , output_type="np" , ) SCREAMING_SNAKE_CASE : List[Any] = output.images SCREAMING_SNAKE_CASE : Union[str, Any] = images[0, 255:258, 255:258, -1] assert images.shape == (1, 512, 512, 3) SCREAMING_SNAKE_CASE : int = np.array([0.2514, 0.3007, 0.3517, 0.1790, 0.2382, 0.3167, 0.1944, 0.2273, 0.2464] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3 def __UpperCamelCase ( self : List[Any] ) -> Tuple: """simple docstring""" SCREAMING_SNAKE_CASE : int = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/in_paint/overture-creations-5sI6fQgYIuo.png" ) SCREAMING_SNAKE_CASE : Optional[Any] = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/in_paint/overture-creations-5sI6fQgYIuo_mask.png" ) SCREAMING_SNAKE_CASE : Optional[Any] = LMSDiscreteScheduler.from_pretrained( "runwayml/stable-diffusion-inpainting" , subfolder="scheduler" , revision="onnx" ) SCREAMING_SNAKE_CASE : Union[str, Any] = OnnxStableDiffusionInpaintPipeline.from_pretrained( "runwayml/stable-diffusion-inpainting" , revision="onnx" , scheduler=a , safety_checker=a , feature_extractor=a , provider=self.gpu_provider , sess_options=self.gpu_options , ) pipe.set_progress_bar_config(disable=a ) SCREAMING_SNAKE_CASE : List[Any] = "A red cat sitting on a park bench" SCREAMING_SNAKE_CASE : Dict = np.random.RandomState(0 ) SCREAMING_SNAKE_CASE : Tuple = pipe( prompt=a , image=a , mask_image=a , guidance_scale=7.5 , num_inference_steps=20 , generator=a , output_type="np" , ) SCREAMING_SNAKE_CASE : List[str] = output.images SCREAMING_SNAKE_CASE : Optional[int] = images[0, 255:258, 255:258, -1] assert images.shape == (1, 512, 512, 3) SCREAMING_SNAKE_CASE : Any = np.array([0.0086, 0.0077, 0.0083, 0.0093, 0.0107, 0.0139, 0.0094, 0.0097, 0.0125] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3
25
0
'''simple docstring''' import numpy as np import pandas as pd from sklearn.preprocessing import MinMaxScaler from tensorflow.keras.layers import LSTM, Dense from tensorflow.keras.models import Sequential if __name__ == "__main__": UpperCamelCase_ = pd.read_csv("""sample_data.csv""", header=None) UpperCamelCase_ = df.shape[:1][0] # If you're using some other dataset input the target column UpperCamelCase_ = df.iloc[:, 1:2] UpperCamelCase_ = actual_data.values.reshape(len_data, 1) UpperCamelCase_ = MinMaxScaler().fit_transform(actual_data) UpperCamelCase_ = 10 UpperCamelCase_ = 5 UpperCamelCase_ = 20 UpperCamelCase_ = len_data - periods * look_back UpperCamelCase_ = actual_data[:division] UpperCamelCase_ = actual_data[division - look_back :] UpperCamelCase_ , UpperCamelCase_ = [], [] UpperCamelCase_ , UpperCamelCase_ = [], [] for i in range(0, len(train_data) - forward_days - look_back + 1): train_x.append(train_data[i : i + look_back]) train_y.append(train_data[i + look_back : i + look_back + forward_days]) for i in range(0, len(test_data) - forward_days - look_back + 1): test_x.append(test_data[i : i + look_back]) test_y.append(test_data[i + look_back : i + look_back + forward_days]) UpperCamelCase_ = np.array(train_x) UpperCamelCase_ = np.array(test_x) UpperCamelCase_ = np.array([list(i.ravel()) for i in train_y]) UpperCamelCase_ = np.array([list(i.ravel()) for i in test_y]) UpperCamelCase_ = Sequential() model.add(LSTM(128, input_shape=(look_back, 1), return_sequences=True)) model.add(LSTM(64, input_shape=(128, 1))) model.add(Dense(forward_days)) model.compile(loss="""mean_squared_error""", optimizer="""adam""") UpperCamelCase_ = model.fit( x_train, y_train, epochs=150, verbose=1, shuffle=True, batch_size=4 ) UpperCamelCase_ = model.predict(x_test)
92
from operator import delitem, getitem, setitem import pytest from data_structures.hashing.hash_map import HashMap def lowerCamelCase__ ( _a): return getitem, k def lowerCamelCase__ ( _a , _a): return setitem, k, v def lowerCamelCase__ ( _a): return delitem, k def lowerCamelCase__ ( _a , _a , *_a): try: return fun(_a , *_a), None except Exception as e: return None, e a_ = ( _set('key_a', 'val_a'), _set('key_b', 'val_b'), ) a_ = [ _set('key_a', 'val_a'), _set('key_a', 'val_b'), ] a_ = [ _set('key_a', 'val_a'), _set('key_b', 'val_b'), _del('key_a'), _del('key_b'), _set('key_a', 'val_a'), _del('key_a'), ] a_ = [ _get('key_a'), _del('key_a'), _set('key_a', 'val_a'), _del('key_a'), _del('key_a'), _get('key_a'), ] a_ = [ *[_set(x, x) for x in range(5)], # guaranteed upsize ] a_ = [ *[_set(x, x) for x in range(5)], # guaranteed upsize *[_del(x) for x in range(5)], _set('key_a', 'val_b'), ] @pytest.mark.parametrize( "operations" , ( pytest.param(_add_items , id="add items"), pytest.param(_overwrite_items , id="overwrite items"), pytest.param(_delete_items , id="delete items"), pytest.param(_access_absent_items , id="access absent items"), pytest.param(_add_with_resize_up , id="add with resize up"), pytest.param(_add_with_resize_down , id="add with resize down"), ) , ) def lowerCamelCase__ ( _a): SCREAMING_SNAKE_CASE : Dict = HashMap(initial_block_size=4) SCREAMING_SNAKE_CASE : List[str] = {} for _, (fun, *args) in enumerate(_a): SCREAMING_SNAKE_CASE ,SCREAMING_SNAKE_CASE : Union[str, Any] = _run_operation(_a , _a , *_a) SCREAMING_SNAKE_CASE ,SCREAMING_SNAKE_CASE : List[Any] = _run_operation(_a , _a , *_a) assert my_res == py_res assert str(_a) == str(_a) assert set(_a) == set(_a) assert len(_a) == len(_a) assert set(my.items()) == set(py.items()) def lowerCamelCase__ ( ): def is_public(_a) -> bool: return not name.startswith("_") SCREAMING_SNAKE_CASE : List[str] = {name for name in dir({}) if is_public(_a)} SCREAMING_SNAKE_CASE : Union[str, Any] = {name for name in dir(HashMap()) if is_public(_a)} assert dict_public_names > hash_public_names
25
0
"""simple docstring""" from ..utils import DummyObject, requires_backends class _lowerCAmelCase ( metaclass=a ): """simple docstring""" __magic_name__ :Optional[int] = ["""flax""", """transformers"""] def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ): '''simple docstring''' requires_backends(self , ['flax', 'transformers'] ) @classmethod def snake_case ( cls , *__UpperCAmelCase , **__UpperCAmelCase ): '''simple docstring''' requires_backends(cls , ['flax', 'transformers'] ) @classmethod def snake_case ( cls , *__UpperCAmelCase , **__UpperCAmelCase ): '''simple docstring''' requires_backends(cls , ['flax', 'transformers'] ) class _lowerCAmelCase ( metaclass=a ): """simple docstring""" __magic_name__ :Optional[int] = ["""flax""", """transformers"""] def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ): '''simple docstring''' requires_backends(self , ['flax', 'transformers'] ) @classmethod def snake_case ( cls , *__UpperCAmelCase , **__UpperCAmelCase ): '''simple docstring''' requires_backends(cls , ['flax', 'transformers'] ) @classmethod def snake_case ( cls , *__UpperCAmelCase , **__UpperCAmelCase ): '''simple docstring''' requires_backends(cls , ['flax', 'transformers'] ) class _lowerCAmelCase ( metaclass=a ): """simple docstring""" __magic_name__ :List[Any] = ["""flax""", """transformers"""] def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ): '''simple docstring''' requires_backends(self , ['flax', 'transformers'] ) @classmethod def snake_case ( cls , *__UpperCAmelCase , **__UpperCAmelCase ): '''simple docstring''' requires_backends(cls , ['flax', 'transformers'] ) @classmethod def snake_case ( cls , *__UpperCAmelCase , **__UpperCAmelCase ): '''simple docstring''' requires_backends(cls , ['flax', 'transformers'] ) class _lowerCAmelCase ( metaclass=a ): """simple docstring""" __magic_name__ :Union[str, Any] = ["""flax""", """transformers"""] def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ): '''simple docstring''' requires_backends(self , ['flax', 'transformers'] ) @classmethod def snake_case ( cls , *__UpperCAmelCase , **__UpperCAmelCase ): '''simple docstring''' requires_backends(cls , ['flax', 'transformers'] ) @classmethod def snake_case ( cls , *__UpperCAmelCase , **__UpperCAmelCase ): '''simple docstring''' requires_backends(cls , ['flax', 'transformers'] )
93
from typing import TYPE_CHECKING from ....utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available a_ = {'configuration_van': ['VAN_PRETRAINED_CONFIG_ARCHIVE_MAP', 'VanConfig']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a_ = [ 'VAN_PRETRAINED_MODEL_ARCHIVE_LIST', 'VanForImageClassification', 'VanModel', 'VanPreTrainedModel', ] if TYPE_CHECKING: from .configuration_van import VAN_PRETRAINED_CONFIG_ARCHIVE_MAP, VanConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_van import ( VAN_PRETRAINED_MODEL_ARCHIVE_LIST, VanForImageClassification, VanModel, VanPreTrainedModel, ) else: import sys a_ = _LazyModule(__name__, globals()['__file__'], _import_structure)
25
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available SCREAMING_SNAKE_CASE = { 'configuration_biogpt': ['BIOGPT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'BioGptConfig'], 'tokenization_biogpt': ['BioGptTokenizer'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE = [ 'BIOGPT_PRETRAINED_MODEL_ARCHIVE_LIST', 'BioGptForCausalLM', 'BioGptForTokenClassification', 'BioGptForSequenceClassification', 'BioGptModel', 'BioGptPreTrainedModel', ] if TYPE_CHECKING: from .configuration_biogpt import BIOGPT_PRETRAINED_CONFIG_ARCHIVE_MAP, BioGptConfig from .tokenization_biogpt import BioGptTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_biogpt import ( BIOGPT_PRETRAINED_MODEL_ARCHIVE_LIST, BioGptForCausalLM, BioGptForSequenceClassification, BioGptForTokenClassification, BioGptModel, BioGptPreTrainedModel, ) else: import sys SCREAMING_SNAKE_CASE = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
94
from __future__ import annotations def lowerCamelCase__ ( _a): if len(_a) == 0: return [] SCREAMING_SNAKE_CASE ,SCREAMING_SNAKE_CASE : Tuple = min(_a), max(_a) SCREAMING_SNAKE_CASE : Dict = int(max_value - min_value) + 1 SCREAMING_SNAKE_CASE : list[list] = [[] for _ in range(_a)] for i in my_list: buckets[int(i - min_value)].append(_a) return [v for bucket in buckets for v in sorted(_a)] if __name__ == "__main__": from doctest import testmod testmod() assert bucket_sort([4, 5, 3, 2, 1]) == [1, 2, 3, 4, 5] assert bucket_sort([0, 1, -10, 15, 2, -2]) == [-10, -2, 0, 1, 2, 15]
25
0
"""simple docstring""" import random def snake_case ( A__ ,A__ ): UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ : List[str] = [], [], [] for element in data: if element < pivot: less.append(A__ ) elif element > pivot: greater.append(A__ ) else: equal.append(A__ ) return less, equal, greater def snake_case ( A__ ,A__ ): # index = len(items) // 2 when trying to find the median # (value of index when items is sorted) # invalid input if index >= len(A__ ) or index < 0: return None UpperCAmelCase_ : str = items[random.randint(0 ,len(A__ ) - 1 )] UpperCAmelCase_ : Dict = 0 UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ : List[Any] = _partition(A__ ,A__ ) UpperCAmelCase_ : Tuple = len(A__ ) UpperCAmelCase_ : List[str] = len(A__ ) # index is the pivot if m <= index < m + count: return pivot # must be in smaller elif m > index: return quick_select(A__ ,A__ ) # must be in larger else: return quick_select(A__ ,index - (m + count) )
95
a_ = frozenset( [ 'prompt', 'height', 'width', 'guidance_scale', 'negative_prompt', 'prompt_embeds', 'negative_prompt_embeds', 'cross_attention_kwargs', ] ) a_ = frozenset(['prompt', 'negative_prompt']) a_ = frozenset([]) a_ = frozenset(['image']) a_ = frozenset( [ 'image', 'height', 'width', 'guidance_scale', ] ) a_ = frozenset(['image']) a_ = frozenset( [ 'prompt', 'image', 'height', 'width', 'guidance_scale', 'negative_prompt', 'prompt_embeds', 'negative_prompt_embeds', ] ) a_ = frozenset(['prompt', 'image', 'negative_prompt']) a_ = frozenset( [ # Text guided image variation with an image mask 'prompt', 'image', 'mask_image', 'height', 'width', 'guidance_scale', 'negative_prompt', 'prompt_embeds', 'negative_prompt_embeds', ] ) a_ = frozenset(['prompt', 'image', 'mask_image', 'negative_prompt']) a_ = frozenset( [ # image variation with an image mask 'image', 'mask_image', 'height', 'width', 'guidance_scale', ] ) a_ = frozenset(['image', 'mask_image']) a_ = frozenset( [ 'example_image', 'image', 'mask_image', 'height', 'width', 'guidance_scale', ] ) a_ = frozenset(['example_image', 'image', 'mask_image']) a_ = frozenset(['class_labels']) a_ = frozenset(['class_labels']) a_ = frozenset(['batch_size']) a_ = frozenset([]) a_ = frozenset(['batch_size']) a_ = frozenset([]) a_ = frozenset( [ 'prompt', 'audio_length_in_s', 'guidance_scale', 'negative_prompt', 'prompt_embeds', 'negative_prompt_embeds', 'cross_attention_kwargs', ] ) a_ = frozenset(['prompt', 'negative_prompt']) a_ = frozenset(['input_tokens']) a_ = frozenset(['input_tokens'])
25
0
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging __lowerCamelCase = logging.get_logger(__name__) __lowerCamelCase = { 'sayakpaul/vit-msn-base': 'https://huggingface.co/sayakpaul/vit-msn-base/resolve/main/config.json', # See all ViT MSN models at https://huggingface.co/models?filter=vit_msn } class __A ( SCREAMING_SNAKE_CASE_ ): UpperCAmelCase__ = "vit_msn" def __init__( self : Optional[int] , __snake_case : Optional[Any]=7_6_8 , __snake_case : Dict=1_2 , __snake_case : int=1_2 , __snake_case : Optional[int]=3_0_7_2 , __snake_case : Any="gelu" , __snake_case : str=0.0 , __snake_case : List[Any]=0.0 , __snake_case : str=0.02 , __snake_case : Optional[int]=1E-06 , __snake_case : List[Any]=2_2_4 , __snake_case : int=1_6 , __snake_case : List[Any]=3 , __snake_case : List[Any]=True , **__snake_case : Optional[int] , ) -> List[Any]: super().__init__(**__snake_case ) __magic_name__: int = hidden_size __magic_name__: int = num_hidden_layers __magic_name__: Tuple = num_attention_heads __magic_name__: List[str] = intermediate_size __magic_name__: List[Any] = hidden_act __magic_name__: Optional[int] = hidden_dropout_prob __magic_name__: List[Any] = attention_probs_dropout_prob __magic_name__: Optional[int] = initializer_range __magic_name__: Tuple = layer_norm_eps __magic_name__: Dict = image_size __magic_name__: Union[str, Any] = patch_size __magic_name__: Optional[Any] = num_channels __magic_name__: str = qkv_bias
96
# Lint as: python3 import sys from collections.abc import Mapping from typing import TYPE_CHECKING, Dict, Optional import numpy as np import pyarrow as pa from .. import config from ..utils.logging import get_logger from ..utils.py_utils import map_nested from .formatting import TensorFormatter if TYPE_CHECKING: import jax import jaxlib a_ = get_logger() a_ = None class _UpperCamelCase ( TensorFormatter[Mapping, 'jax.Array', Mapping] ): '''simple docstring''' def __init__( self : Optional[Any] , a : str=None , a : List[Any]=None , **a : Any ) -> Optional[Any]: """simple docstring""" super().__init__(features=a ) import jax from jaxlib.xla_client import Device if isinstance(a , a ): raise ValueError( F"Expected {device} to be a `str` not {type(a )}, as `jaxlib.xla_extension.Device` " "is not serializable neither with `pickle` nor with `dill`. Instead you can surround " "the device with `str()` to get its string identifier that will be internally mapped " "to the actual `jaxlib.xla_extension.Device`." ) SCREAMING_SNAKE_CASE : List[str] = device if isinstance(a , a ) else str(jax.devices()[0] ) # using global variable since `jaxlib.xla_extension.Device` is not serializable neither # with `pickle` nor with `dill`, so we need to use a global variable instead global DEVICE_MAPPING if DEVICE_MAPPING is None: SCREAMING_SNAKE_CASE : str = self._map_devices_to_str() if self.device not in list(DEVICE_MAPPING.keys() ): logger.warning( F"Device with string identifier {self.device} not listed among the available " F"devices: {list(DEVICE_MAPPING.keys() )}, so falling back to the default " F"device: {str(jax.devices()[0] )}." ) SCREAMING_SNAKE_CASE : Any = str(jax.devices()[0] ) SCREAMING_SNAKE_CASE : Any = jnp_array_kwargs @staticmethod def __UpperCamelCase ( ) -> Dict[str, "jaxlib.xla_extension.Device"]: """simple docstring""" import jax return {str(a ): device for device in jax.devices()} def __UpperCamelCase ( self : Dict , a : Tuple ) -> str: """simple docstring""" import jax import jax.numpy as jnp if isinstance(a , a ) and column: if all( isinstance(a , jax.Array ) and x.shape == column[0].shape and x.dtype == column[0].dtype for x in column ): return jnp.stack(a , axis=0 ) return column def __UpperCamelCase ( self : Dict , a : str ) -> str: """simple docstring""" import jax import jax.numpy as jnp if isinstance(a , (str, bytes, type(a )) ): return value elif isinstance(a , (np.character, np.ndarray) ) and np.issubdtype(value.dtype , np.character ): return value.tolist() SCREAMING_SNAKE_CASE : Union[str, Any] = {} if isinstance(a , (np.number, np.ndarray) ) and np.issubdtype(value.dtype , np.integer ): # the default int precision depends on the jax config # see https://jax.readthedocs.io/en/latest/notebooks/Common_Gotchas_in_JAX.html#double-64bit-precision if jax.config.jax_enable_xaa: SCREAMING_SNAKE_CASE : Dict = {"dtype": jnp.intaa} else: SCREAMING_SNAKE_CASE : str = {"dtype": jnp.intaa} elif isinstance(a , (np.number, np.ndarray) ) and np.issubdtype(value.dtype , np.floating ): SCREAMING_SNAKE_CASE : int = {"dtype": jnp.floataa} elif config.PIL_AVAILABLE and "PIL" in sys.modules: import PIL.Image if isinstance(a , PIL.Image.Image ): SCREAMING_SNAKE_CASE : Dict = np.asarray(a ) # using global variable since `jaxlib.xla_extension.Device` is not serializable neither # with `pickle` nor with `dill`, so we need to use a global variable instead global DEVICE_MAPPING if DEVICE_MAPPING is None: SCREAMING_SNAKE_CASE : Optional[Any] = self._map_devices_to_str() with jax.default_device(DEVICE_MAPPING[self.device] ): # calling jnp.array on a np.ndarray does copy the data # see https://github.com/google/jax/issues/4486 return jnp.array(a , **{**default_dtype, **self.jnp_array_kwargs} ) def __UpperCamelCase ( self : Any , a : List[str] ) -> Dict: """simple docstring""" import jax # support for torch, tf, jax etc. if config.TORCH_AVAILABLE and "torch" in sys.modules: import torch if isinstance(a , torch.Tensor ): return self._tensorize(data_struct.detach().cpu().numpy()[()] ) if hasattr(a , "__array__" ) and not isinstance(a , jax.Array ): SCREAMING_SNAKE_CASE : Optional[int] = data_struct.__array__() # support for nested types like struct of list of struct if isinstance(a , np.ndarray ): if data_struct.dtype == object: # jax arrays cannot be instantied from an array of objects return self._consolidate([self.recursive_tensorize(a ) for substruct in data_struct] ) elif isinstance(a , (list, tuple) ): return self._consolidate([self.recursive_tensorize(a ) for substruct in data_struct] ) return self._tensorize(a ) def __UpperCamelCase ( self : Optional[Any] , a : dict ) -> Dict: """simple docstring""" return map_nested(self._recursive_tensorize , a , map_list=a ) def __UpperCamelCase ( self : Dict , a : pa.Table ) -> Mapping: """simple docstring""" SCREAMING_SNAKE_CASE : Optional[Any] = self.numpy_arrow_extractor().extract_row(a ) SCREAMING_SNAKE_CASE : List[Any] = self.python_features_decoder.decode_row(a ) return self.recursive_tensorize(a ) def __UpperCamelCase ( self : Optional[int] , a : pa.Table ) -> "jax.Array": """simple docstring""" SCREAMING_SNAKE_CASE : Optional[int] = self.numpy_arrow_extractor().extract_column(a ) SCREAMING_SNAKE_CASE : Optional[Any] = self.python_features_decoder.decode_column(a , pa_table.column_names[0] ) SCREAMING_SNAKE_CASE : Tuple = self.recursive_tensorize(a ) SCREAMING_SNAKE_CASE : Optional[int] = self._consolidate(a ) return column def __UpperCamelCase ( self : List[Any] , a : pa.Table ) -> Mapping: """simple docstring""" SCREAMING_SNAKE_CASE : str = self.numpy_arrow_extractor().extract_batch(a ) SCREAMING_SNAKE_CASE : str = self.python_features_decoder.decode_batch(a ) SCREAMING_SNAKE_CASE : List[Any] = self.recursive_tensorize(a ) for column_name in batch: SCREAMING_SNAKE_CASE : List[Any] = self._consolidate(batch[column_name] ) return batch
25
0
import unittest from transformers.models.xlm_prophetnet.tokenization_xlm_prophetnet import SPIECE_UNDERLINE, XLMProphetNetTokenizer from transformers.testing_utils import get_tests_dir, require_sentencepiece, slow from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin __a = get_tests_dir('fixtures/test_sentencepiece.model') @require_sentencepiece class lowercase__( UpperCAmelCase , unittest.TestCase ): """simple docstring""" a :Optional[int] = XLMProphetNetTokenizer a :Any = False a :Optional[int] = True def _lowercase ( self : Optional[int] ) -> List[str]: super().setUp() # We have a SentencePiece fixture for testing lowercase_ = XLMProphetNetTokenizer(SCREAMING_SNAKE_CASE_ , keep_accents=SCREAMING_SNAKE_CASE_ ) tokenizer.save_pretrained(self.tmpdirname ) def _lowercase ( self : Any ) -> Optional[Any]: lowercase_ = '''[PAD]''' lowercase_ = 0 self.assertEqual(self.get_tokenizer()._convert_token_to_id(SCREAMING_SNAKE_CASE_ ) , SCREAMING_SNAKE_CASE_ ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(SCREAMING_SNAKE_CASE_ ) , SCREAMING_SNAKE_CASE_ ) def _lowercase ( self : Optional[Any] ) -> int: lowercase_ = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , '''[PAD]''' ) self.assertEqual(vocab_keys[1] , '''[CLS]''' ) self.assertEqual(vocab_keys[-1] , '''j''' ) self.assertEqual(len(SCREAMING_SNAKE_CASE_ ) , 1_0_1_2 ) def _lowercase ( self : int ) -> int: self.assertEqual(self.get_tokenizer().vocab_size , 1_0_1_2 ) def _lowercase ( self : Union[str, Any] ) -> Union[str, Any]: lowercase_ = XLMProphetNetTokenizer(SCREAMING_SNAKE_CASE_ , keep_accents=SCREAMING_SNAKE_CASE_ ) lowercase_ = tokenizer.tokenize('''This is a test''' ) self.assertListEqual(SCREAMING_SNAKE_CASE_ , ['''▁This''', '''▁is''', '''▁a''', '''▁t''', '''est'''] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(SCREAMING_SNAKE_CASE_ ) , [value + tokenizer.fairseq_offset for value in [2_8_5, 4_6, 1_0, 1_7_0, 3_8_2]] , ) lowercase_ = tokenizer.tokenize('''I was born in 92000, and this is falsé.''' ) self.assertListEqual( SCREAMING_SNAKE_CASE_ , [ SPIECE_UNDERLINE + '''I''', SPIECE_UNDERLINE + '''was''', SPIECE_UNDERLINE + '''b''', '''or''', '''n''', SPIECE_UNDERLINE + '''in''', SPIECE_UNDERLINE + '''''', '''9''', '''2''', '''0''', '''0''', '''0''', ''',''', SPIECE_UNDERLINE + '''and''', SPIECE_UNDERLINE + '''this''', SPIECE_UNDERLINE + '''is''', SPIECE_UNDERLINE + '''f''', '''al''', '''s''', '''é''', '''.''', ] , ) lowercase_ = tokenizer.convert_tokens_to_ids(SCREAMING_SNAKE_CASE_ ) self.assertListEqual( SCREAMING_SNAKE_CASE_ , [ value + tokenizer.fairseq_offset for value in [8, 2_1, 8_4, 5_5, 2_4, 1_9, 7, -9, 6_0_2, 3_4_7, 3_4_7, 3_4_7, 3, 1_2, 6_6, 4_6, 7_2, 8_0, 6, -9, 4] ] , ) lowercase_ = tokenizer.convert_ids_to_tokens(SCREAMING_SNAKE_CASE_ ) self.assertListEqual( SCREAMING_SNAKE_CASE_ , [ SPIECE_UNDERLINE + '''I''', SPIECE_UNDERLINE + '''was''', SPIECE_UNDERLINE + '''b''', '''or''', '''n''', SPIECE_UNDERLINE + '''in''', SPIECE_UNDERLINE + '''''', '''[UNK]''', '''2''', '''0''', '''0''', '''0''', ''',''', SPIECE_UNDERLINE + '''and''', SPIECE_UNDERLINE + '''this''', SPIECE_UNDERLINE + '''is''', SPIECE_UNDERLINE + '''f''', '''al''', '''s''', '''[UNK]''', '''.''', ] , ) @cached_property def _lowercase ( self : Tuple ) -> List[Any]: return XLMProphetNetTokenizer.from_pretrained('''microsoft/xprophetnet-large-wiki100-cased''' ) @slow def _lowercase ( self : Optional[int] ) -> Union[str, Any]: lowercase_ = '''Hello World!''' lowercase_ = [3_5_3_8_9, 6_6_7_2, 4_9, 2] self.assertListEqual(SCREAMING_SNAKE_CASE_ , self.big_tokenizer.encode(SCREAMING_SNAKE_CASE_ ) ) @slow def _lowercase ( self : Any ) -> List[Any]: # fmt: off lowercase_ = {'''input_ids''': [[1_1_0_7_3, 8_2_7_8_3, 1_8, 2_6, 8_2_7_8_3, 5_4_9, 5_1_5_4_0, 2_4_8, 1_7_2_0_9, 1_3_0_1, 2_1_7, 2_0, 2_1_5_1_8_6, 1_3_2_5, 1_4_7, 1_7_2_0_9, 1_3_0_1, 2_1_7, 2_0, 5_6_3_7_0, 5_3, 1_2_2_0_2_0, 2_0, 1_6_4_7_7, 2_7, 8_7_3_5_5, 4_5_4_8, 2_0, 4_7_2_8, 7_8_3_9_2, 1_7, 1_5_9_9_6_9, 1_8, 2_6, 2_4_4_9_1, 6_2_9, 1_5, 5_3_8, 2_2_7_0_4, 5_4_3_9, 1_5, 2_7_8_8, 2_4_4_9_1, 9_8_8_5, 1_5, 4_3_5_3_4, 6_0_5, 1_5, 8_1_4, 1_8_4_0_3, 3_3_2_0_0, 2_9, 1_5, 4_3_5_3_4, 2_4_4_5_8, 1_2_4_1_0, 1_1_1, 2_4_9_6_6, 8_3_6_6_9, 9_6_3_7, 1_4_4_0_6_8, 2_6, 8_5_0, 2_2_3_4_6, 2_7, 1_4_7, 2_4_9_6_6, 8_3_6_6_9, 8_3_4_9_0, 2_6, 3_9_1_1_3, 7_3_5, 2_7, 6_8_9, 6_5_6, 2_8_0_0, 1_3_3_9, 4_6_0_0, 5_3, 1_2_2_0_2_0, 1_1_5_7_8_5, 3_4, 8_1_6, 1_3_3_9, 4_6_8_8_7, 1_8, 1_4_7, 5_3_9_0_5, 1_9_5_1, 4_2_2_3_8, 4_1_1_7_0, 1_7_7_3_2, 8_3_4, 4_3_6, 1_5, 2_7_5_2_3, 9_8_7_3_3, 2_1_7, 1_4_7, 5_5_4_2, 4_9_8_1, 9_3_0, 1_7_3_4_7, 1_6, 2], [2_0_0_9_1, 6_2_9, 9_4, 8_2_7_8_6, 5_8, 4_9_0, 2_0, 1_5_2_8, 8_4, 5_3_9_0_5, 3_4_4, 8_0_5_9_2, 1_1_0_1_2_8, 1_8_8_2_2, 5_2_6_7, 1_3_0_6, 6_2, 1_5_2_5_3_7, 3_0_8, 7_9_9_7, 4_0_1, 1_2_4_4_2_7, 5_4_9, 3_5_4_4_2, 2_2_5, 1_0_9, 1_5_0_5_5, 2_5_7_4_8, 1_4_7, 7_1_1_9, 4_3_7_1_2, 3_4, 7_6_7, 1_3_5_3_6_6, 1_8, 1_6, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [5_9_2, 6_3_7_8_4, 1_1_9_4_6_6, 1_7, 1_4_7_8_0_8, 8_8_2_1_4, 1_8, 6_5_6, 8_1, 3_2, 3_2_9_6, 1_0_2_8_0, 1_6, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], '''attention_mask''': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=SCREAMING_SNAKE_CASE_ , model_name='''microsoft/xprophetnet-large-wiki100-cased''' , revision='''1acad1643ddd54a44df6a1b797ada8373685d90e''' , )
97
import unittest from transformers import ( MODEL_FOR_OBJECT_DETECTION_MAPPING, AutoFeatureExtractor, AutoModelForObjectDetection, ObjectDetectionPipeline, is_vision_available, pipeline, ) from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_pytesseract, require_tf, require_timm, require_torch, require_vision, slow, ) from .test_pipelines_common import ANY if is_vision_available(): from PIL import Image else: class _UpperCamelCase : '''simple docstring''' @staticmethod def __UpperCamelCase ( *a : str , **a : int ) -> str: """simple docstring""" pass @is_pipeline_test @require_vision @require_timm @require_torch class _UpperCamelCase ( unittest.TestCase ): '''simple docstring''' lowerCamelCase__ =MODEL_FOR_OBJECT_DETECTION_MAPPING def __UpperCamelCase ( self : Optional[Any] , a : str , a : Optional[Any] , a : Union[str, Any] ) -> List[Any]: """simple docstring""" SCREAMING_SNAKE_CASE : Dict = ObjectDetectionPipeline(model=a , image_processor=a ) return object_detector, ["./tests/fixtures/tests_samples/COCO/000000039769.png"] def __UpperCamelCase ( self : List[Any] , a : Optional[int] , a : Optional[int] ) -> int: """simple docstring""" SCREAMING_SNAKE_CASE : Union[str, Any] = object_detector("./tests/fixtures/tests_samples/COCO/000000039769.png" , threshold=0.0 ) self.assertGreater(len(a ) , 0 ) for detected_object in outputs: self.assertEqual( a , { "score": ANY(a ), "label": ANY(a ), "box": {"xmin": ANY(a ), "ymin": ANY(a ), "xmax": ANY(a ), "ymax": ANY(a )}, } , ) import datasets SCREAMING_SNAKE_CASE : Any = datasets.load_dataset("hf-internal-testing/fixtures_image_utils" , "image" , split="test" ) SCREAMING_SNAKE_CASE : Dict = [ Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ), "http://images.cocodataset.org/val2017/000000039769.jpg", # RGBA dataset[0]["file"], # LA dataset[1]["file"], # L dataset[2]["file"], ] SCREAMING_SNAKE_CASE : Tuple = object_detector(a , threshold=0.0 ) self.assertEqual(len(a ) , len(a ) ) for outputs in batch_outputs: self.assertGreater(len(a ) , 0 ) for detected_object in outputs: self.assertEqual( a , { "score": ANY(a ), "label": ANY(a ), "box": {"xmin": ANY(a ), "ymin": ANY(a ), "xmax": ANY(a ), "ymax": ANY(a )}, } , ) @require_tf @unittest.skip("Object detection not implemented in TF" ) def __UpperCamelCase ( self : Optional[int] ) -> str: """simple docstring""" pass @require_torch def __UpperCamelCase ( self : Tuple ) -> List[Any]: """simple docstring""" SCREAMING_SNAKE_CASE : str = "hf-internal-testing/tiny-detr-mobilenetsv3" SCREAMING_SNAKE_CASE : Dict = AutoModelForObjectDetection.from_pretrained(a ) SCREAMING_SNAKE_CASE : Any = AutoFeatureExtractor.from_pretrained(a ) SCREAMING_SNAKE_CASE : Tuple = ObjectDetectionPipeline(model=a , feature_extractor=a ) SCREAMING_SNAKE_CASE : int = object_detector("http://images.cocodataset.org/val2017/000000039769.jpg" , threshold=0.0 ) self.assertEqual( nested_simplify(a , decimals=4 ) , [ {"score": 0.3376, "label": "LABEL_0", "box": {"xmin": 159, "ymin": 120, "xmax": 480, "ymax": 359}}, {"score": 0.3376, "label": "LABEL_0", "box": {"xmin": 159, "ymin": 120, "xmax": 480, "ymax": 359}}, ] , ) SCREAMING_SNAKE_CASE : Dict = object_detector( [ "http://images.cocodataset.org/val2017/000000039769.jpg", "http://images.cocodataset.org/val2017/000000039769.jpg", ] , threshold=0.0 , ) self.assertEqual( nested_simplify(a , decimals=4 ) , [ [ {"score": 0.3376, "label": "LABEL_0", "box": {"xmin": 159, "ymin": 120, "xmax": 480, "ymax": 359}}, {"score": 0.3376, "label": "LABEL_0", "box": {"xmin": 159, "ymin": 120, "xmax": 480, "ymax": 359}}, ], [ {"score": 0.3376, "label": "LABEL_0", "box": {"xmin": 159, "ymin": 120, "xmax": 480, "ymax": 359}}, {"score": 0.3376, "label": "LABEL_0", "box": {"xmin": 159, "ymin": 120, "xmax": 480, "ymax": 359}}, ], ] , ) @require_torch @slow def __UpperCamelCase ( self : str ) -> List[Any]: """simple docstring""" SCREAMING_SNAKE_CASE : Dict = "facebook/detr-resnet-50" SCREAMING_SNAKE_CASE : Union[str, Any] = AutoModelForObjectDetection.from_pretrained(a ) SCREAMING_SNAKE_CASE : List[str] = AutoFeatureExtractor.from_pretrained(a ) SCREAMING_SNAKE_CASE : int = ObjectDetectionPipeline(model=a , feature_extractor=a ) SCREAMING_SNAKE_CASE : Union[str, Any] = object_detector("http://images.cocodataset.org/val2017/000000039769.jpg" ) self.assertEqual( nested_simplify(a , decimals=4 ) , [ {"score": 0.9982, "label": "remote", "box": {"xmin": 40, "ymin": 70, "xmax": 175, "ymax": 117}}, {"score": 0.9960, "label": "remote", "box": {"xmin": 333, "ymin": 72, "xmax": 368, "ymax": 187}}, {"score": 0.9955, "label": "couch", "box": {"xmin": 0, "ymin": 1, "xmax": 639, "ymax": 473}}, {"score": 0.9988, "label": "cat", "box": {"xmin": 13, "ymin": 52, "xmax": 314, "ymax": 470}}, {"score": 0.9987, "label": "cat", "box": {"xmin": 345, "ymin": 23, "xmax": 640, "ymax": 368}}, ] , ) SCREAMING_SNAKE_CASE : int = object_detector( [ "http://images.cocodataset.org/val2017/000000039769.jpg", "http://images.cocodataset.org/val2017/000000039769.jpg", ] ) self.assertEqual( nested_simplify(a , decimals=4 ) , [ [ {"score": 0.9982, "label": "remote", "box": {"xmin": 40, "ymin": 70, "xmax": 175, "ymax": 117}}, {"score": 0.9960, "label": "remote", "box": {"xmin": 333, "ymin": 72, "xmax": 368, "ymax": 187}}, {"score": 0.9955, "label": "couch", "box": {"xmin": 0, "ymin": 1, "xmax": 639, "ymax": 473}}, {"score": 0.9988, "label": "cat", "box": {"xmin": 13, "ymin": 52, "xmax": 314, "ymax": 470}}, {"score": 0.9987, "label": "cat", "box": {"xmin": 345, "ymin": 23, "xmax": 640, "ymax": 368}}, ], [ {"score": 0.9982, "label": "remote", "box": {"xmin": 40, "ymin": 70, "xmax": 175, "ymax": 117}}, {"score": 0.9960, "label": "remote", "box": {"xmin": 333, "ymin": 72, "xmax": 368, "ymax": 187}}, {"score": 0.9955, "label": "couch", "box": {"xmin": 0, "ymin": 1, "xmax": 639, "ymax": 473}}, {"score": 0.9988, "label": "cat", "box": {"xmin": 13, "ymin": 52, "xmax": 314, "ymax": 470}}, {"score": 0.9987, "label": "cat", "box": {"xmin": 345, "ymin": 23, "xmax": 640, "ymax": 368}}, ], ] , ) @require_torch @slow def __UpperCamelCase ( self : str ) -> str: """simple docstring""" SCREAMING_SNAKE_CASE : Tuple = "facebook/detr-resnet-50" SCREAMING_SNAKE_CASE : Tuple = pipeline("object-detection" , model=a ) SCREAMING_SNAKE_CASE : Tuple = object_detector("http://images.cocodataset.org/val2017/000000039769.jpg" ) self.assertEqual( nested_simplify(a , decimals=4 ) , [ {"score": 0.9982, "label": "remote", "box": {"xmin": 40, "ymin": 70, "xmax": 175, "ymax": 117}}, {"score": 0.9960, "label": "remote", "box": {"xmin": 333, "ymin": 72, "xmax": 368, "ymax": 187}}, {"score": 0.9955, "label": "couch", "box": {"xmin": 0, "ymin": 1, "xmax": 639, "ymax": 473}}, {"score": 0.9988, "label": "cat", "box": {"xmin": 13, "ymin": 52, "xmax": 314, "ymax": 470}}, {"score": 0.9987, "label": "cat", "box": {"xmin": 345, "ymin": 23, "xmax": 640, "ymax": 368}}, ] , ) SCREAMING_SNAKE_CASE : str = object_detector( [ "http://images.cocodataset.org/val2017/000000039769.jpg", "http://images.cocodataset.org/val2017/000000039769.jpg", ] ) self.assertEqual( nested_simplify(a , decimals=4 ) , [ [ {"score": 0.9982, "label": "remote", "box": {"xmin": 40, "ymin": 70, "xmax": 175, "ymax": 117}}, {"score": 0.9960, "label": "remote", "box": {"xmin": 333, "ymin": 72, "xmax": 368, "ymax": 187}}, {"score": 0.9955, "label": "couch", "box": {"xmin": 0, "ymin": 1, "xmax": 639, "ymax": 473}}, {"score": 0.9988, "label": "cat", "box": {"xmin": 13, "ymin": 52, "xmax": 314, "ymax": 470}}, {"score": 0.9987, "label": "cat", "box": {"xmin": 345, "ymin": 23, "xmax": 640, "ymax": 368}}, ], [ {"score": 0.9982, "label": "remote", "box": {"xmin": 40, "ymin": 70, "xmax": 175, "ymax": 117}}, {"score": 0.9960, "label": "remote", "box": {"xmin": 333, "ymin": 72, "xmax": 368, "ymax": 187}}, {"score": 0.9955, "label": "couch", "box": {"xmin": 0, "ymin": 1, "xmax": 639, "ymax": 473}}, {"score": 0.9988, "label": "cat", "box": {"xmin": 13, "ymin": 52, "xmax": 314, "ymax": 470}}, {"score": 0.9987, "label": "cat", "box": {"xmin": 345, "ymin": 23, "xmax": 640, "ymax": 368}}, ], ] , ) @require_torch @slow def __UpperCamelCase ( self : str ) -> str: """simple docstring""" SCREAMING_SNAKE_CASE : Optional[int] = 0.9985 SCREAMING_SNAKE_CASE : int = "facebook/detr-resnet-50" SCREAMING_SNAKE_CASE : List[str] = pipeline("object-detection" , model=a ) SCREAMING_SNAKE_CASE : str = object_detector("http://images.cocodataset.org/val2017/000000039769.jpg" , threshold=a ) self.assertEqual( nested_simplify(a , decimals=4 ) , [ {"score": 0.9988, "label": "cat", "box": {"xmin": 13, "ymin": 52, "xmax": 314, "ymax": 470}}, {"score": 0.9987, "label": "cat", "box": {"xmin": 345, "ymin": 23, "xmax": 640, "ymax": 368}}, ] , ) @require_torch @require_pytesseract @slow def __UpperCamelCase ( self : str ) -> Tuple: """simple docstring""" SCREAMING_SNAKE_CASE : Any = "Narsil/layoutlmv3-finetuned-funsd" SCREAMING_SNAKE_CASE : Dict = 0.9993 SCREAMING_SNAKE_CASE : str = pipeline("object-detection" , model=a , threshold=a ) SCREAMING_SNAKE_CASE : List[Any] = object_detector( "https://huggingface.co/spaces/impira/docquery/resolve/2359223c1837a7587402bda0f2643382a6eefeab/invoice.png" ) self.assertEqual( nested_simplify(a , decimals=4 ) , [ {"score": 0.9993, "label": "I-ANSWER", "box": {"xmin": 294, "ymin": 254, "xmax": 343, "ymax": 264}}, {"score": 0.9993, "label": "I-ANSWER", "box": {"xmin": 294, "ymin": 254, "xmax": 343, "ymax": 264}}, ] , )
25
0
'''simple docstring''' import math import time from transformers import Trainer, is_torch_tpu_available from transformers.trainer_utils import PredictionOutput, speed_metrics if is_torch_tpu_available(check_device=False): import torch_xla.core.xla_model as xm import torch_xla.debug.metrics as met class __lowerCAmelCase ( __magic_name__ ): """simple docstring""" def __init__( self : Optional[Any] , *lowerCAmelCase__ : Union[str, Any] , lowerCAmelCase__ : Any=None , lowerCAmelCase__ : Tuple=None , **lowerCAmelCase__ : Any ) -> List[str]: '''simple docstring''' super().__init__(*lowerCAmelCase__ , **lowerCAmelCase__ ) _UpperCamelCase = eval_examples _UpperCamelCase = post_process_function def snake_case__ ( self : List[Any] , lowerCAmelCase__ : Tuple=None , lowerCAmelCase__ : Any=None , lowerCAmelCase__ : str=None , lowerCAmelCase__ : str = "eval" ) -> Union[str, Any]: '''simple docstring''' _UpperCamelCase = self.eval_dataset if eval_dataset is None else eval_dataset _UpperCamelCase = self.get_eval_dataloader(lowerCAmelCase__ ) _UpperCamelCase = self.eval_examples if eval_examples is None else eval_examples # Temporarily disable metric computation, we will do it in the loop here. _UpperCamelCase = self.compute_metrics _UpperCamelCase = None _UpperCamelCase = self.prediction_loop if self.args.use_legacy_prediction_loop else self.evaluation_loop _UpperCamelCase = time.time() try: _UpperCamelCase = eval_loop( lowerCAmelCase__ , description='''Evaluation''' , prediction_loss_only=True if compute_metrics is None else None , ignore_keys=lowerCAmelCase__ , metric_key_prefix=lowerCAmelCase__ , ) finally: _UpperCamelCase = compute_metrics _UpperCamelCase = self.args.eval_batch_size * self.args.world_size if f"""{metric_key_prefix}_jit_compilation_time""" in output.metrics: start_time += output.metrics[f"""{metric_key_prefix}_jit_compilation_time"""] output.metrics.update( speed_metrics( lowerCAmelCase__ , lowerCAmelCase__ , num_samples=output.num_samples , num_steps=math.ceil(output.num_samples / total_batch_size ) , ) ) if self.post_process_function is not None and self.compute_metrics is not None and self.args.should_save: # Only the main node write the results by default _UpperCamelCase = self.post_process_function(lowerCAmelCase__ , lowerCAmelCase__ , output.predictions ) _UpperCamelCase = self.compute_metrics(lowerCAmelCase__ ) # Prefix all keys with metric_key_prefix + '_' for key in list(metrics.keys() ): if not key.startswith(f"""{metric_key_prefix}_""" ): _UpperCamelCase = metrics.pop(lowerCAmelCase__ ) metrics.update(output.metrics ) else: _UpperCamelCase = output.metrics if self.args.should_log: # Only the main node log the results by default self.log(lowerCAmelCase__ ) if self.args.tpu_metrics_debug or self.args.debug: # tpu-comment: Logging debug metrics for PyTorch/XLA (compile, execute times, ops, etc.) xm.master_print(met.metrics_report() ) _UpperCamelCase = self.callback_handler.on_evaluate(self.args , self.state , self.control , lowerCAmelCase__ ) return metrics def snake_case__ ( self : Dict , lowerCAmelCase__ : Optional[Any] , lowerCAmelCase__ : Optional[int] , lowerCAmelCase__ : int=None , lowerCAmelCase__ : str = "test" ) -> str: '''simple docstring''' _UpperCamelCase = self.get_test_dataloader(lowerCAmelCase__ ) # Temporarily disable metric computation, we will do it in the loop here. _UpperCamelCase = self.compute_metrics _UpperCamelCase = None _UpperCamelCase = self.prediction_loop if self.args.use_legacy_prediction_loop else self.evaluation_loop _UpperCamelCase = time.time() try: _UpperCamelCase = eval_loop( lowerCAmelCase__ , description='''Prediction''' , prediction_loss_only=True if compute_metrics is None else None , ignore_keys=lowerCAmelCase__ , metric_key_prefix=lowerCAmelCase__ , ) finally: _UpperCamelCase = compute_metrics _UpperCamelCase = self.args.eval_batch_size * self.args.world_size if f"""{metric_key_prefix}_jit_compilation_time""" in output.metrics: start_time += output.metrics[f"""{metric_key_prefix}_jit_compilation_time"""] output.metrics.update( speed_metrics( lowerCAmelCase__ , lowerCAmelCase__ , num_samples=output.num_samples , num_steps=math.ceil(output.num_samples / total_batch_size ) , ) ) if self.post_process_function is None or self.compute_metrics is None: return output _UpperCamelCase = self.post_process_function(lowerCAmelCase__ , lowerCAmelCase__ , output.predictions , '''predict''' ) _UpperCamelCase = self.compute_metrics(lowerCAmelCase__ ) # Prefix all keys with metric_key_prefix + '_' for key in list(metrics.keys() ): if not key.startswith(f"""{metric_key_prefix}_""" ): _UpperCamelCase = metrics.pop(lowerCAmelCase__ ) metrics.update(output.metrics ) return PredictionOutput(predictions=predictions.predictions , label_ids=predictions.label_ids , metrics=lowerCAmelCase__ )
98
def lowerCamelCase__ ( _a): if not isinstance(_a , _a): SCREAMING_SNAKE_CASE : Tuple = f"Input value of [number={number}] must be an integer" raise TypeError(_a) if number < 0: return False SCREAMING_SNAKE_CASE : Union[str, Any] = number * number while number > 0: if number % 10 != number_square % 10: return False number //= 10 number_square //= 10 return True if __name__ == "__main__": import doctest doctest.testmod()
25
0
def a (lowerCAmelCase__ , lowerCAmelCase__ ): if b == 0: return 1 if (b % 2) == 0: return actual_power(lowerCAmelCase__ , int(b / 2 ) ) * actual_power(lowerCAmelCase__ , int(b / 2 ) ) else: return a * actual_power(lowerCAmelCase__ , int(b / 2 ) ) * actual_power(lowerCAmelCase__ , int(b / 2 ) ) def a (lowerCAmelCase__ , lowerCAmelCase__ ): if b < 0: return 1 / actual_power(lowerCAmelCase__ , lowerCAmelCase__ ) return actual_power(lowerCAmelCase__ , lowerCAmelCase__ ) if __name__ == "__main__": print(power(-2, -3))
99
import os import tempfile import unittest from transformers import DistilBertConfig, is_torch_available from transformers.testing_utils import require_torch, require_torch_gpu, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST, DistilBertForMaskedLM, DistilBertForMultipleChoice, DistilBertForQuestionAnswering, DistilBertForSequenceClassification, DistilBertForTokenClassification, DistilBertModel, ) class _UpperCamelCase ( __A ): '''simple docstring''' def __init__( self : Dict , a : Tuple , a : Any=13 , a : Any=7 , a : Union[str, Any]=True , a : List[Any]=True , a : List[str]=False , a : List[str]=True , a : Any=99 , a : str=32 , a : Any=5 , a : Optional[int]=4 , a : Union[str, Any]=37 , a : Dict="gelu" , a : List[Any]=0.1 , a : Optional[Any]=0.1 , a : List[str]=512 , a : Union[str, Any]=16 , a : str=2 , a : Dict=0.02 , a : Optional[int]=3 , a : Union[str, Any]=4 , a : int=None , ) -> Tuple: """simple docstring""" SCREAMING_SNAKE_CASE : Dict = parent SCREAMING_SNAKE_CASE : Any = batch_size SCREAMING_SNAKE_CASE : Optional[int] = seq_length SCREAMING_SNAKE_CASE : List[Any] = is_training SCREAMING_SNAKE_CASE : int = use_input_mask SCREAMING_SNAKE_CASE : Tuple = use_token_type_ids SCREAMING_SNAKE_CASE : str = use_labels SCREAMING_SNAKE_CASE : Any = vocab_size SCREAMING_SNAKE_CASE : List[Any] = hidden_size SCREAMING_SNAKE_CASE : str = num_hidden_layers SCREAMING_SNAKE_CASE : Optional[Any] = num_attention_heads SCREAMING_SNAKE_CASE : Tuple = intermediate_size SCREAMING_SNAKE_CASE : Optional[int] = hidden_act SCREAMING_SNAKE_CASE : Dict = hidden_dropout_prob SCREAMING_SNAKE_CASE : str = attention_probs_dropout_prob SCREAMING_SNAKE_CASE : Tuple = max_position_embeddings SCREAMING_SNAKE_CASE : List[str] = type_vocab_size SCREAMING_SNAKE_CASE : List[str] = type_sequence_label_size SCREAMING_SNAKE_CASE : Optional[Any] = initializer_range SCREAMING_SNAKE_CASE : Tuple = num_labels SCREAMING_SNAKE_CASE : Tuple = num_choices SCREAMING_SNAKE_CASE : Optional[Any] = scope def __UpperCamelCase ( self : Union[str, Any] ) -> List[str]: """simple docstring""" SCREAMING_SNAKE_CASE : Dict = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) SCREAMING_SNAKE_CASE : Union[str, Any] = None if self.use_input_mask: SCREAMING_SNAKE_CASE : str = random_attention_mask([self.batch_size, self.seq_length] ) SCREAMING_SNAKE_CASE : int = None SCREAMING_SNAKE_CASE : List[Any] = None SCREAMING_SNAKE_CASE : List[str] = None if self.use_labels: SCREAMING_SNAKE_CASE : Tuple = ids_tensor([self.batch_size] , self.type_sequence_label_size ) SCREAMING_SNAKE_CASE : str = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) SCREAMING_SNAKE_CASE : Optional[Any] = ids_tensor([self.batch_size] , self.num_choices ) SCREAMING_SNAKE_CASE : int = self.get_config() return config, input_ids, input_mask, sequence_labels, token_labels, choice_labels def __UpperCamelCase ( self : Dict ) -> str: """simple docstring""" return DistilBertConfig( vocab_size=self.vocab_size , dim=self.hidden_size , n_layers=self.num_hidden_layers , n_heads=self.num_attention_heads , hidden_dim=self.intermediate_size , hidden_act=self.hidden_act , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , ) def __UpperCamelCase ( self : Optional[Any] , a : int , a : Optional[int] , a : Optional[int] , a : Dict , a : str , a : str ) -> int: """simple docstring""" SCREAMING_SNAKE_CASE : int = DistilBertModel(config=a ) model.to(a ) model.eval() SCREAMING_SNAKE_CASE : Optional[Any] = model(a , a ) SCREAMING_SNAKE_CASE : Optional[Any] = model(a ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def __UpperCamelCase ( self : Tuple , a : Optional[int] , a : Dict , a : Tuple , a : int , a : int , a : Any ) -> Dict: """simple docstring""" SCREAMING_SNAKE_CASE : Optional[int] = DistilBertForMaskedLM(config=a ) model.to(a ) model.eval() SCREAMING_SNAKE_CASE : str = model(a , attention_mask=a , labels=a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def __UpperCamelCase ( self : List[Any] , a : int , a : Optional[Any] , a : Optional[Any] , a : str , a : str , a : Tuple ) -> List[Any]: """simple docstring""" SCREAMING_SNAKE_CASE : Optional[Any] = DistilBertForQuestionAnswering(config=a ) model.to(a ) model.eval() SCREAMING_SNAKE_CASE : List[str] = model( a , attention_mask=a , start_positions=a , end_positions=a ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def __UpperCamelCase ( self : Optional[int] , a : str , a : Any , a : int , a : Optional[Any] , a : int , a : str ) -> Optional[int]: """simple docstring""" SCREAMING_SNAKE_CASE : Dict = self.num_labels SCREAMING_SNAKE_CASE : Union[str, Any] = DistilBertForSequenceClassification(a ) model.to(a ) model.eval() SCREAMING_SNAKE_CASE : Optional[int] = model(a , attention_mask=a , labels=a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def __UpperCamelCase ( self : Optional[Any] , a : List[Any] , a : Optional[int] , a : Union[str, Any] , a : Dict , a : Any , a : Optional[Any] ) -> Any: """simple docstring""" SCREAMING_SNAKE_CASE : str = self.num_labels SCREAMING_SNAKE_CASE : List[str] = DistilBertForTokenClassification(config=a ) model.to(a ) model.eval() SCREAMING_SNAKE_CASE : List[str] = model(a , attention_mask=a , labels=a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def __UpperCamelCase ( self : int , a : Any , a : Optional[int] , a : Union[str, Any] , a : Tuple , a : Optional[int] , a : Tuple ) -> Dict: """simple docstring""" SCREAMING_SNAKE_CASE : List[str] = self.num_choices SCREAMING_SNAKE_CASE : Any = DistilBertForMultipleChoice(config=a ) model.to(a ) model.eval() SCREAMING_SNAKE_CASE : Optional[int] = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() SCREAMING_SNAKE_CASE : Dict = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() SCREAMING_SNAKE_CASE : Optional[Any] = model( a , attention_mask=a , labels=a , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def __UpperCamelCase ( self : Union[str, Any] ) -> Optional[int]: """simple docstring""" SCREAMING_SNAKE_CASE : Optional[Any] = self.prepare_config_and_inputs() ((SCREAMING_SNAKE_CASE) ,(SCREAMING_SNAKE_CASE) ,(SCREAMING_SNAKE_CASE) ,(SCREAMING_SNAKE_CASE) ,(SCREAMING_SNAKE_CASE) ,(SCREAMING_SNAKE_CASE)) : Tuple = config_and_inputs SCREAMING_SNAKE_CASE : int = {"input_ids": input_ids, "attention_mask": input_mask} return config, inputs_dict @require_torch class _UpperCamelCase ( __A , __A , unittest.TestCase ): '''simple docstring''' lowerCamelCase__ =( ( DistilBertModel, DistilBertForMaskedLM, DistilBertForMultipleChoice, DistilBertForQuestionAnswering, DistilBertForSequenceClassification, DistilBertForTokenClassification, ) if is_torch_available() else None ) lowerCamelCase__ =( { 'feature-extraction': DistilBertModel, 'fill-mask': DistilBertForMaskedLM, 'question-answering': DistilBertForQuestionAnswering, 'text-classification': DistilBertForSequenceClassification, 'token-classification': DistilBertForTokenClassification, 'zero-shot': DistilBertForSequenceClassification, } if is_torch_available() else {} ) lowerCamelCase__ =True lowerCamelCase__ =True lowerCamelCase__ =True lowerCamelCase__ =True def __UpperCamelCase ( self : Optional[Any] ) -> Tuple: """simple docstring""" SCREAMING_SNAKE_CASE : Dict = DistilBertModelTester(self ) SCREAMING_SNAKE_CASE : List[str] = ConfigTester(self , config_class=a , dim=37 ) def __UpperCamelCase ( self : List[Any] ) -> Tuple: """simple docstring""" self.config_tester.run_common_tests() def __UpperCamelCase ( self : Union[str, Any] ) -> List[Any]: """simple docstring""" SCREAMING_SNAKE_CASE : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_model(*a ) def __UpperCamelCase ( self : Tuple ) -> Dict: """simple docstring""" SCREAMING_SNAKE_CASE : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_masked_lm(*a ) def __UpperCamelCase ( self : List[Any] ) -> Optional[int]: """simple docstring""" SCREAMING_SNAKE_CASE : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_question_answering(*a ) def __UpperCamelCase ( self : Union[str, Any] ) -> Any: """simple docstring""" SCREAMING_SNAKE_CASE : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_sequence_classification(*a ) def __UpperCamelCase ( self : str ) -> List[Any]: """simple docstring""" SCREAMING_SNAKE_CASE : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_token_classification(*a ) def __UpperCamelCase ( self : List[Any] ) -> str: """simple docstring""" SCREAMING_SNAKE_CASE : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_multiple_choice(*a ) @slow def __UpperCamelCase ( self : int ) -> Any: """simple docstring""" for model_name in DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: SCREAMING_SNAKE_CASE : Optional[Any] = DistilBertModel.from_pretrained(a ) self.assertIsNotNone(a ) @slow @require_torch_gpu def __UpperCamelCase ( self : List[Any] ) -> Optional[Any]: """simple docstring""" SCREAMING_SNAKE_CASE ,SCREAMING_SNAKE_CASE : Dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: # BertForMultipleChoice behaves incorrectly in JIT environments. if model_class == DistilBertForMultipleChoice: return SCREAMING_SNAKE_CASE : Union[str, Any] = True SCREAMING_SNAKE_CASE : Any = model_class(config=a ) SCREAMING_SNAKE_CASE : List[Any] = self._prepare_for_class(a , a ) SCREAMING_SNAKE_CASE : Union[str, Any] = torch.jit.trace( a , (inputs_dict["input_ids"].to("cpu" ), inputs_dict["attention_mask"].to("cpu" )) ) with tempfile.TemporaryDirectory() as tmp: torch.jit.save(a , os.path.join(a , "traced_model.pt" ) ) SCREAMING_SNAKE_CASE : Tuple = torch.jit.load(os.path.join(a , "traced_model.pt" ) , map_location=a ) loaded(inputs_dict["input_ids"].to(a ) , inputs_dict["attention_mask"].to(a ) ) @require_torch class _UpperCamelCase ( unittest.TestCase ): '''simple docstring''' @slow def __UpperCamelCase ( self : int ) -> Dict: """simple docstring""" SCREAMING_SNAKE_CASE : Union[str, Any] = DistilBertModel.from_pretrained("distilbert-base-uncased" ) SCREAMING_SNAKE_CASE : List[str] = torch.tensor([[0, 345, 232, 328, 740, 140, 1695, 69, 6078, 1588, 2]] ) SCREAMING_SNAKE_CASE : Optional[int] = torch.tensor([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] ) with torch.no_grad(): SCREAMING_SNAKE_CASE : Optional[Any] = model(a , attention_mask=a )[0] SCREAMING_SNAKE_CASE : List[str] = torch.Size((1, 11, 768) ) self.assertEqual(output.shape , a ) SCREAMING_SNAKE_CASE : Union[str, Any] = torch.tensor( [[[-0.1639, 0.3299, 0.1648], [-0.1746, 0.3289, 0.1710], [-0.1884, 0.3357, 0.1810]]] ) self.assertTrue(torch.allclose(output[:, 1:4, 1:4] , a , atol=1e-4 ) )
25
0
# Copyright 2023 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available _A : Dict = { """configuration_efficientnet""": [ """EFFICIENTNET_PRETRAINED_CONFIG_ARCHIVE_MAP""", """EfficientNetConfig""", """EfficientNetOnnxConfig""", ] } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _A : Any = ["""EfficientNetImageProcessor"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _A : Optional[int] = [ """EFFICIENTNET_PRETRAINED_MODEL_ARCHIVE_LIST""", """EfficientNetForImageClassification""", """EfficientNetModel""", """EfficientNetPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_efficientnet import ( EFFICIENTNET_PRETRAINED_CONFIG_ARCHIVE_MAP, EfficientNetConfig, EfficientNetOnnxConfig, ) try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .image_processing_efficientnet import EfficientNetImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_efficientnet import ( EFFICIENTNET_PRETRAINED_MODEL_ARCHIVE_LIST, EfficientNetForImageClassification, EfficientNetModel, EfficientNetPreTrainedModel, ) else: import sys _A : Dict = _LazyModule(__name__, globals()["""__file__"""], _import_structure)
100
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tokenizers_available, is_torch_available, ) a_ = {'configuration_plbart': ['PLBART_PRETRAINED_CONFIG_ARCHIVE_MAP', 'PLBartConfig']} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a_ = ['PLBartTokenizer'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a_ = [ 'PLBART_PRETRAINED_MODEL_ARCHIVE_LIST', 'PLBartForCausalLM', 'PLBartForConditionalGeneration', 'PLBartForSequenceClassification', 'PLBartModel', 'PLBartPreTrainedModel', ] if TYPE_CHECKING: from .configuration_plbart import PLBART_PRETRAINED_CONFIG_ARCHIVE_MAP, PLBartConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_plbart import PLBartTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_plbart import ( PLBART_PRETRAINED_MODEL_ARCHIVE_LIST, PLBartForCausalLM, PLBartForConditionalGeneration, PLBartForSequenceClassification, PLBartModel, PLBartPreTrainedModel, ) else: import sys a_ = _LazyModule(__name__, globals()['__file__'], _import_structure)
25
0
def a__ ( A__, A__ ): SCREAMING_SNAKE_CASE_ : Dict = len(A__ ) + 1 SCREAMING_SNAKE_CASE_ : List[str] = len(A__ ) + 1 # dp is a 2d matrix where dp[i][j] denotes whether prefix string of # length i of input_string matches with prefix string of length j of # given pattern. # "dp" stands for dynamic programming. SCREAMING_SNAKE_CASE_ : Any = [[0 for i in range(A__ )] for j in range(A__ )] # since string of zero length match pattern of zero length SCREAMING_SNAKE_CASE_ : Union[str, Any] = 1 # since pattern of zero length will never match with string of non-zero length for i in range(1, A__ ): SCREAMING_SNAKE_CASE_ : List[Any] = 0 # since string of zero length will match with pattern where there # is at least one * alternatively for j in range(1, A__ ): SCREAMING_SNAKE_CASE_ : List[str] = dp[0][j - 2] if pattern[j - 1] == '*' else 0 # now using bottom-up approach to find for all remaining lengths for i in range(1, A__ ): for j in range(1, A__ ): if input_string[i - 1] == pattern[j - 1] or pattern[j - 1] == ".": SCREAMING_SNAKE_CASE_ : Any = dp[i - 1][j - 1] elif pattern[j - 1] == "*": if dp[i][j - 2] == 1: SCREAMING_SNAKE_CASE_ : List[str] = 1 elif pattern[j - 2] in (input_string[i - 1], "."): SCREAMING_SNAKE_CASE_ : List[Any] = dp[i - 1][j] else: SCREAMING_SNAKE_CASE_ : List[str] = 0 else: SCREAMING_SNAKE_CASE_ : int = 0 return bool(dp[-1][-1] ) if __name__ == "__main__": import doctest doctest.testmod() # inputing the strings # input_string = input("input a string :") # pattern = input("input a pattern :") lowerCAmelCase__ : List[Any] ='aab' lowerCAmelCase__ : Dict ='c*a*b' # using function to check whether given string matches the given pattern if match_pattern(input_string, pattern): print(F"""{input_string} matches the given pattern {pattern}""") else: print(F"""{input_string} does not match with the given pattern {pattern}""")
101
import unittest import numpy as np import torch from diffusers import KarrasVePipeline, KarrasVeScheduler, UNetaDModel from diffusers.utils.testing_utils import enable_full_determinism, require_torch, slow, torch_device enable_full_determinism() class _UpperCamelCase ( unittest.TestCase ): '''simple docstring''' @property def __UpperCamelCase ( self : List[str] ) -> Union[str, Any]: """simple docstring""" torch.manual_seed(0 ) SCREAMING_SNAKE_CASE : str = UNetaDModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=3 , out_channels=3 , down_block_types=("DownBlock2D", "AttnDownBlock2D") , up_block_types=("AttnUpBlock2D", "UpBlock2D") , ) return model def __UpperCamelCase ( self : Union[str, Any] ) -> Dict: """simple docstring""" SCREAMING_SNAKE_CASE : Union[str, Any] = self.dummy_uncond_unet SCREAMING_SNAKE_CASE : Union[str, Any] = KarrasVeScheduler() SCREAMING_SNAKE_CASE : Any = KarrasVePipeline(unet=a , scheduler=a ) pipe.to(a ) pipe.set_progress_bar_config(disable=a ) SCREAMING_SNAKE_CASE : Any = torch.manual_seed(0 ) SCREAMING_SNAKE_CASE : Optional[Any] = pipe(num_inference_steps=2 , generator=a , output_type="numpy" ).images SCREAMING_SNAKE_CASE : List[str] = torch.manual_seed(0 ) SCREAMING_SNAKE_CASE : List[Any] = pipe(num_inference_steps=2 , generator=a , output_type="numpy" , return_dict=a )[0] SCREAMING_SNAKE_CASE : List[Any] = image[0, -3:, -3:, -1] SCREAMING_SNAKE_CASE : Any = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) SCREAMING_SNAKE_CASE : str = np.array([0.0, 1.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2 @slow @require_torch class _UpperCamelCase ( unittest.TestCase ): '''simple docstring''' def __UpperCamelCase ( self : int ) -> Tuple: """simple docstring""" SCREAMING_SNAKE_CASE : Dict = "google/ncsnpp-celebahq-256" SCREAMING_SNAKE_CASE : List[Any] = UNetaDModel.from_pretrained(a ) SCREAMING_SNAKE_CASE : Any = KarrasVeScheduler() SCREAMING_SNAKE_CASE : Optional[Any] = KarrasVePipeline(unet=a , scheduler=a ) pipe.to(a ) pipe.set_progress_bar_config(disable=a ) SCREAMING_SNAKE_CASE : Union[str, Any] = torch.manual_seed(0 ) SCREAMING_SNAKE_CASE : Any = pipe(num_inference_steps=20 , generator=a , output_type="numpy" ).images SCREAMING_SNAKE_CASE : List[str] = image[0, -3:, -3:, -1] assert image.shape == (1, 256, 256, 3) SCREAMING_SNAKE_CASE : str = np.array([0.578, 0.5811, 0.5924, 0.5809, 0.587, 0.5886, 0.5861, 0.5802, 0.586] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
25
0
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging __magic_name__ : str = logging.get_logger(__name__) __magic_name__ : Union[str, Any] = { """RWKV/rwkv-4-169m-pile""": """https://huggingface.co/RWKV/rwkv-4-169m-pile/resolve/main/config.json""", """RWKV/rwkv-4-430m-pile""": """https://huggingface.co/RWKV/rwkv-4-430m-pile/resolve/main/config.json""", """RWKV/rwkv-4-1b5-pile""": """https://huggingface.co/RWKV/rwkv-4-1b5-pile/resolve/main/config.json""", """RWKV/rwkv-4-3b-pile""": """https://huggingface.co/RWKV/rwkv-4-3b-pile/resolve/main/config.json""", """RWKV/rwkv-4-7b-pile""": """https://huggingface.co/RWKV/rwkv-4-7b-pile/resolve/main/config.json""", """RWKV/rwkv-4-14b-pile""": """https://huggingface.co/RWKV/rwkv-4-14b-pile/resolve/main/config.json""", """RWKV/rwkv-raven-1b5""": """https://huggingface.co/RWKV/rwkv-raven-1b5/resolve/main/config.json""", """RWKV/rwkv-raven-3b""": """https://huggingface.co/RWKV/rwkv-raven-3b/resolve/main/config.json""", """RWKV/rwkv-raven-7b""": """https://huggingface.co/RWKV/rwkv-raven-7b/resolve/main/config.json""", """RWKV/rwkv-raven-14b""": """https://huggingface.co/RWKV/rwkv-raven-14b/resolve/main/config.json""", } class lowercase__ ( __SCREAMING_SNAKE_CASE ): """simple docstring""" __lowerCAmelCase : Any = """rwkv""" __lowerCAmelCase : List[str] = {"""max_position_embeddings""": """context_length"""} def __init__( self , _A=5_0_2_7_7 , _A=1_0_2_4 , _A=4_0_9_6 , _A=3_2 , _A=None , _A=None , _A=1e-5 , _A=0 , _A=0 , _A=6 , _A=False , _A=True , **_A , ): '''simple docstring''' UpperCamelCase : Any = vocab_size UpperCamelCase : Optional[Any] = context_length UpperCamelCase : str = hidden_size UpperCamelCase : int = num_hidden_layers UpperCamelCase : Dict = attention_hidden_size if attention_hidden_size is not None else hidden_size UpperCamelCase : Any = intermediate_size if intermediate_size is not None else 4 * hidden_size UpperCamelCase : Any = layer_norm_epsilon UpperCamelCase : Optional[int] = rescale_every UpperCamelCase : Optional[int] = use_cache UpperCamelCase : Union[str, Any] = bos_token_id UpperCamelCase : Any = eos_token_id super().__init__( tie_word_embeddings=_A , bos_token_id=_A , eos_token_id=_A , **_A )
102
def lowerCamelCase__ ( _a , _a): SCREAMING_SNAKE_CASE : Optional[int] = 0 while b > 0: if b & 1: res += a a += a b >>= 1 return res def lowerCamelCase__ ( _a , _a , _a): SCREAMING_SNAKE_CASE : Optional[int] = 0 while b > 0: if b & 1: SCREAMING_SNAKE_CASE : Optional[Any] = ((res % c) + (a % c)) % c a += a b >>= 1 return res
25
0
"""simple docstring""" import itertools import os import random import tempfile import unittest import numpy as np from transformers import TvltFeatureExtractor, is_datasets_available from transformers.testing_utils import check_json_file_has_correct_format, require_torch, require_torchaudio from transformers.utils.import_utils import is_torch_available from ...test_sequence_feature_extraction_common import SequenceFeatureExtractionTestMixin if is_torch_available(): import torch if is_datasets_available(): from datasets import load_dataset snake_case = random.Random() def snake_case ( lowerCAmelCase_ , lowerCAmelCase_=1.0 , lowerCAmelCase_=None , lowerCAmelCase_=None ) -> List[str]: if rng is None: _snake_case = global_rng _snake_case = [] for batch_idx in range(shape[0] ): values.append([] ) for _ in range(shape[1] ): values[-1].append(rng.random() * scale ) return values class UpperCAmelCase ( unittest.TestCase ): def __init__( self : Tuple , __lowerCamelCase : List[str] , __lowerCamelCase : Optional[Any]=7 , __lowerCamelCase : List[Any]=4_0_0 , __lowerCamelCase : Any=2_0_0_0 , __lowerCamelCase : Any=2_0_4_8 , __lowerCamelCase : Any=1_2_8 , __lowerCamelCase : Any=1 , __lowerCamelCase : Optional[int]=5_1_2 , __lowerCamelCase : Tuple=3_0 , __lowerCamelCase : List[Any]=4_4_1_0_0 , ): """simple docstring""" _snake_case = parent _snake_case = batch_size _snake_case = min_seq_length _snake_case = max_seq_length _snake_case = (self.max_seq_length - self.min_seq_length) // (self.batch_size - 1) _snake_case = spectrogram_length _snake_case = feature_size _snake_case = num_audio_channels _snake_case = hop_length _snake_case = chunk_length _snake_case = sampling_rate def __UpperCAmelCase ( self : List[Any] ): """simple docstring""" return { "spectrogram_length": self.spectrogram_length, "feature_size": self.feature_size, "num_audio_channels": self.num_audio_channels, "hop_length": self.hop_length, "chunk_length": self.chunk_length, "sampling_rate": self.sampling_rate, } def __UpperCAmelCase ( self : Union[str, Any] , __lowerCamelCase : Any=False , __lowerCamelCase : int=False ): """simple docstring""" def _flatten(__lowerCamelCase : List[str] ): return list(itertools.chain(*__lowerCamelCase ) ) if equal_length: _snake_case = [floats_list((self.max_seq_length, self.feature_size) ) for _ in range(self.batch_size )] else: # make sure that inputs increase in size _snake_case = [ floats_list((x, self.feature_size) ) for x in range(self.min_seq_length , self.max_seq_length , self.seq_length_diff ) ] if numpify: _snake_case = [np.asarray(__lowerCamelCase ) for x in speech_inputs] return speech_inputs @require_torch @require_torchaudio class UpperCAmelCase ( __SCREAMING_SNAKE_CASE,unittest.TestCase ): A__ : Tuple = TvltFeatureExtractor def __UpperCAmelCase ( self : int ): """simple docstring""" _snake_case = TvltFeatureExtractionTester(self ) def __UpperCAmelCase ( self : Any ): """simple docstring""" _snake_case = self.feature_extraction_class(**self.feat_extract_dict ) self.assertTrue(hasattr(__lowerCamelCase , '''spectrogram_length''' ) ) self.assertTrue(hasattr(__lowerCamelCase , '''feature_size''' ) ) self.assertTrue(hasattr(__lowerCamelCase , '''num_audio_channels''' ) ) self.assertTrue(hasattr(__lowerCamelCase , '''hop_length''' ) ) self.assertTrue(hasattr(__lowerCamelCase , '''chunk_length''' ) ) self.assertTrue(hasattr(__lowerCamelCase , '''sampling_rate''' ) ) def __UpperCAmelCase ( self : int ): """simple docstring""" _snake_case = self.feature_extraction_class(**self.feat_extract_dict ) with tempfile.TemporaryDirectory() as tmpdirname: _snake_case = feat_extract_first.save_pretrained(__lowerCamelCase )[0] check_json_file_has_correct_format(__lowerCamelCase ) _snake_case = self.feature_extraction_class.from_pretrained(__lowerCamelCase ) _snake_case = feat_extract_first.to_dict() _snake_case = feat_extract_second.to_dict() _snake_case = dict_first.pop('''mel_filters''' ) _snake_case = dict_second.pop('''mel_filters''' ) self.assertTrue(np.allclose(__lowerCamelCase , __lowerCamelCase ) ) self.assertEqual(__lowerCamelCase , __lowerCamelCase ) def __UpperCAmelCase ( self : int ): """simple docstring""" _snake_case = self.feature_extraction_class(**self.feat_extract_dict ) with tempfile.TemporaryDirectory() as tmpdirname: _snake_case = os.path.join(__lowerCamelCase , '''feat_extract.json''' ) feat_extract_first.to_json_file(__lowerCamelCase ) _snake_case = self.feature_extraction_class.from_json_file(__lowerCamelCase ) _snake_case = feat_extract_first.to_dict() _snake_case = feat_extract_second.to_dict() _snake_case = dict_first.pop('''mel_filters''' ) _snake_case = dict_second.pop('''mel_filters''' ) self.assertTrue(np.allclose(__lowerCamelCase , __lowerCamelCase ) ) self.assertEqual(__lowerCamelCase , __lowerCamelCase ) def __UpperCAmelCase ( self : Dict ): """simple docstring""" # Initialize feature_extractor _snake_case = self.feature_extraction_class(**self.feat_extract_dict ) # create three inputs of length 800, 1000, and 1200 _snake_case = [floats_list((1, x) )[0] for x in range(8_0_0 , 1_4_0_0 , 2_0_0 )] _snake_case = [np.asarray(__lowerCamelCase ) for speech_input in speech_inputs] # Test not batched input _snake_case = feature_extractor(np_speech_inputs[0] , return_tensors='''np''' , sampling_rate=4_4_1_0_0 ).audio_values self.assertTrue(encoded_audios.ndim == 4 ) self.assertTrue(encoded_audios.shape[-1] == feature_extractor.feature_size ) self.assertTrue(encoded_audios.shape[-2] <= feature_extractor.spectrogram_length ) self.assertTrue(encoded_audios.shape[-3] == feature_extractor.num_channels ) # Test batched _snake_case = feature_extractor(__lowerCamelCase , return_tensors='''np''' , sampling_rate=4_4_1_0_0 ).audio_values self.assertTrue(encoded_audios.ndim == 4 ) self.assertTrue(encoded_audios.shape[-1] == feature_extractor.feature_size ) self.assertTrue(encoded_audios.shape[-2] <= feature_extractor.spectrogram_length ) self.assertTrue(encoded_audios.shape[-3] == feature_extractor.num_channels ) # Test audio masking _snake_case = feature_extractor( __lowerCamelCase , return_tensors='''np''' , sampling_rate=4_4_1_0_0 , mask_audio=__lowerCamelCase ).audio_values self.assertTrue(encoded_audios.ndim == 4 ) self.assertTrue(encoded_audios.shape[-1] == feature_extractor.feature_size ) self.assertTrue(encoded_audios.shape[-2] <= feature_extractor.spectrogram_length ) self.assertTrue(encoded_audios.shape[-3] == feature_extractor.num_channels ) # Test 2-D numpy arrays are batched. _snake_case = [floats_list((1, x) )[0] for x in (8_0_0, 8_0_0, 8_0_0)] _snake_case = np.asarray(__lowerCamelCase ) _snake_case = feature_extractor(__lowerCamelCase , return_tensors='''np''' , sampling_rate=4_4_1_0_0 ).audio_values self.assertTrue(encoded_audios.ndim == 4 ) self.assertTrue(encoded_audios.shape[-1] == feature_extractor.feature_size ) self.assertTrue(encoded_audios.shape[-2] <= feature_extractor.spectrogram_length ) self.assertTrue(encoded_audios.shape[-3] == feature_extractor.num_channels ) def __UpperCAmelCase ( self : Union[str, Any] , __lowerCamelCase : Optional[int] ): """simple docstring""" _snake_case = load_dataset('''hf-internal-testing/librispeech_asr_dummy''' , '''clean''' , split='''validation''' ) # automatic decoding with librispeech _snake_case = ds.sort('''id''' ).select(range(__lowerCamelCase ) )[:num_samples]['''audio'''] return [x["array"] for x in speech_samples] def __UpperCAmelCase ( self : Dict ): """simple docstring""" _snake_case = self._load_datasamples(1 ) _snake_case = TvltFeatureExtractor() _snake_case = feature_extractor(__lowerCamelCase , return_tensors='''pt''' ).audio_values self.assertEquals(audio_values.shape , (1, 1, 1_9_2, 1_2_8) ) _snake_case = torch.tensor([[-0.3_0_3_2, -0.2_7_0_8], [-0.4_4_3_4, -0.4_0_0_7]] ) self.assertTrue(torch.allclose(audio_values[0, 0, :2, :2] , __lowerCamelCase , atol=1E-4 ) )
103
from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging a_ = logging.get_logger(__name__) a_ = { 'junnyu/roformer_chinese_small': 'https://huggingface.co/junnyu/roformer_chinese_small/resolve/main/config.json', 'junnyu/roformer_chinese_base': 'https://huggingface.co/junnyu/roformer_chinese_base/resolve/main/config.json', 'junnyu/roformer_chinese_char_small': ( 'https://huggingface.co/junnyu/roformer_chinese_char_small/resolve/main/config.json' ), 'junnyu/roformer_chinese_char_base': ( 'https://huggingface.co/junnyu/roformer_chinese_char_base/resolve/main/config.json' ), 'junnyu/roformer_small_discriminator': ( 'https://huggingface.co/junnyu/roformer_small_discriminator/resolve/main/config.json' ), 'junnyu/roformer_small_generator': ( 'https://huggingface.co/junnyu/roformer_small_generator/resolve/main/config.json' ), # See all RoFormer models at https://huggingface.co/models?filter=roformer } class _UpperCamelCase ( __A ): '''simple docstring''' lowerCamelCase__ ='roformer' def __init__( self : Dict , a : Any=5_0000 , a : List[Any]=None , a : str=768 , a : str=12 , a : Tuple=12 , a : Optional[Any]=3072 , a : List[str]="gelu" , a : List[Any]=0.1 , a : Union[str, Any]=0.1 , a : Tuple=1536 , a : List[str]=2 , a : Tuple=0.02 , a : Any=1e-12 , a : Optional[int]=0 , a : Union[str, Any]=False , a : int=True , **a : str , ) -> int: """simple docstring""" super().__init__(pad_token_id=a , **a ) SCREAMING_SNAKE_CASE : str = vocab_size SCREAMING_SNAKE_CASE : int = hidden_size if embedding_size is None else embedding_size SCREAMING_SNAKE_CASE : List[str] = hidden_size SCREAMING_SNAKE_CASE : Union[str, Any] = num_hidden_layers SCREAMING_SNAKE_CASE : int = num_attention_heads SCREAMING_SNAKE_CASE : Tuple = hidden_act SCREAMING_SNAKE_CASE : int = intermediate_size SCREAMING_SNAKE_CASE : Tuple = hidden_dropout_prob SCREAMING_SNAKE_CASE : int = attention_probs_dropout_prob SCREAMING_SNAKE_CASE : Optional[int] = max_position_embeddings SCREAMING_SNAKE_CASE : Any = type_vocab_size SCREAMING_SNAKE_CASE : Union[str, Any] = initializer_range SCREAMING_SNAKE_CASE : List[str] = layer_norm_eps SCREAMING_SNAKE_CASE : List[str] = rotary_value SCREAMING_SNAKE_CASE : int = use_cache class _UpperCamelCase ( __A ): '''simple docstring''' @property def __UpperCamelCase ( self : Tuple ) -> Mapping[str, Mapping[int, str]]: """simple docstring""" if self.task == "multiple-choice": SCREAMING_SNAKE_CASE : Optional[Any] = {0: "batch", 1: "choice", 2: "sequence"} else: SCREAMING_SNAKE_CASE : str = {0: "batch", 1: "sequence"} SCREAMING_SNAKE_CASE : List[Any] = {0: "batch", 1: "sequence"} return OrderedDict( [ ("input_ids", dynamic_axis), ("attention_mask", dynamic_axis), ("token_type_ids", dynamic_axis), ] )
25
0
"""simple docstring""" def _lowerCamelCase ( UpperCAmelCase_ : int = 200 ) -> int: """simple docstring""" A__ = [1, 2, 5, 10, 20, 50, 100, 200] A__ = [0] * (pence + 1) A__ = 1 # base case: 1 way to make 0 pence for coin in coins: for i in range(UpperCAmelCase_, pence + 1, 1 ): number_of_ways[i] += number_of_ways[i - coin] return number_of_ways[pence] if __name__ == "__main__": assert solution(200) == 7_3682
104
import argparse import logging from collections import namedtuple import torch from model_bertabs import BertAbsSummarizer from models.model_builder import AbsSummarizer # The authors' implementation from transformers import BertTokenizer logging.basicConfig(level=logging.INFO) a_ = logging.getLogger(__name__) a_ = 'Hello world! cécé herlolip' a_ = namedtuple( 'BertAbsConfig', [ 'temp_dir', 'large', 'use_bert_emb', 'finetune_bert', 'encoder', 'share_emb', 'max_pos', 'enc_layers', 'enc_hidden_size', 'enc_heads', 'enc_ff_size', 'enc_dropout', 'dec_layers', 'dec_hidden_size', 'dec_heads', 'dec_ff_size', 'dec_dropout', ], ) def lowerCamelCase__ ( _a , _a): SCREAMING_SNAKE_CASE : List[Any] = BertAbsConfig( temp_dir="." , finetune_bert=_a , large=_a , share_emb=_a , use_bert_emb=_a , encoder="bert" , max_pos=512 , enc_layers=6 , enc_hidden_size=512 , enc_heads=8 , enc_ff_size=512 , enc_dropout=0.2 , dec_layers=6 , dec_hidden_size=768 , dec_heads=8 , dec_ff_size=2048 , dec_dropout=0.2 , ) SCREAMING_SNAKE_CASE : Dict = torch.load(_a , lambda _a , _a: storage) SCREAMING_SNAKE_CASE : str = AbsSummarizer(_a , torch.device("cpu") , _a) original.eval() SCREAMING_SNAKE_CASE : List[str] = BertAbsSummarizer(_a , torch.device("cpu")) new_model.eval() # ------------------- # Convert the weights # ------------------- logging.info("convert the model") new_model.bert.load_state_dict(original.bert.state_dict()) new_model.decoder.load_state_dict(original.decoder.state_dict()) new_model.generator.load_state_dict(original.generator.state_dict()) # ---------------------------------- # Make sure the outpus are identical # ---------------------------------- logging.info("Make sure that the models' outputs are identical") SCREAMING_SNAKE_CASE : List[str] = BertTokenizer.from_pretrained("bert-base-uncased") # prepare the model inputs SCREAMING_SNAKE_CASE : List[str] = tokenizer.encode("This is sample éàalj'-.") encoder_input_ids.extend([tokenizer.pad_token_id] * (512 - len(_a))) SCREAMING_SNAKE_CASE : int = torch.tensor(_a).unsqueeze(0) SCREAMING_SNAKE_CASE : List[Any] = tokenizer.encode("This is sample 3 éàalj'-.") decoder_input_ids.extend([tokenizer.pad_token_id] * (512 - len(_a))) SCREAMING_SNAKE_CASE : int = torch.tensor(_a).unsqueeze(0) # failsafe to make sure the weights reset does not affect the # loaded weights. assert torch.max(torch.abs(original.generator[0].weight - new_model.generator[0].weight)) == 0 # forward pass SCREAMING_SNAKE_CASE : List[Any] = encoder_input_ids SCREAMING_SNAKE_CASE : List[Any] = decoder_input_ids SCREAMING_SNAKE_CASE : Dict = None SCREAMING_SNAKE_CASE : Optional[Any] = None SCREAMING_SNAKE_CASE : List[Any] = None SCREAMING_SNAKE_CASE : Optional[int] = None SCREAMING_SNAKE_CASE : Dict = None # The original model does not apply the geneator layer immediatly but rather in # the beam search (where it combines softmax + linear layer). Since we already # apply the softmax in our generation process we only apply the linear layer here. # We make sure that the outputs of the full stack are identical SCREAMING_SNAKE_CASE : Optional[int] = original(_a , _a , _a , _a , _a , _a , _a)[0] SCREAMING_SNAKE_CASE : Dict = original.generator(_a) SCREAMING_SNAKE_CASE : Any = new_model( _a , _a , _a , _a , _a)[0] SCREAMING_SNAKE_CASE : Tuple = new_model.generator(_a) SCREAMING_SNAKE_CASE : List[Any] = torch.max(torch.abs(output_converted_model - output_original_model)).item() print("Maximum absolute difference beween weights: {:.2f}".format(_a)) SCREAMING_SNAKE_CASE : Union[str, Any] = torch.max(torch.abs(output_converted_generator - output_original_generator)).item() print("Maximum absolute difference beween weights: {:.2f}".format(_a)) SCREAMING_SNAKE_CASE : int = torch.allclose(_a , _a , atol=1E-3) if are_identical: logging.info("all weights are equal up to 1e-3") else: raise ValueError("the weights are different. The new model is likely different from the original one.") # The model has been saved with torch.save(model) and this is bound to the exact # directory structure. We save the state_dict instead. logging.info("saving the model's state dictionary") torch.save( new_model.state_dict() , "./bertabs-finetuned-cnndm-extractive-abstractive-summarization/pytorch_model.bin") if __name__ == "__main__": a_ = argparse.ArgumentParser() parser.add_argument( '--bertabs_checkpoint_path', default=None, type=str, required=True, help='Path the official PyTorch dump.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, required=True, help='Path to the output PyTorch model.', ) a_ = parser.parse_args() convert_bertabs_checkpoints( args.bertabs_checkpoint_path, args.pytorch_dump_folder_path, )
25
0
import fire from transformers import AutoConfig, AutoModelForSeqaSeqLM, AutoTokenizer def __UpperCAmelCase ( lowerCamelCase_ : str , lowerCamelCase_ : str , **lowerCamelCase_ : List[str] ) -> List[Any]: """simple docstring""" SCREAMING_SNAKE_CASE_ : str = AutoConfig.from_pretrained(lowerCamelCase_ , **lowerCamelCase_ ) SCREAMING_SNAKE_CASE_ : Optional[int] = AutoModelForSeqaSeqLM.from_config(lowerCamelCase_ ) model.save_pretrained(lowerCamelCase_ ) AutoTokenizer.from_pretrained(lowerCamelCase_ ).save_pretrained(lowerCamelCase_ ) return model if __name__ == "__main__": fire.Fire(save_randomly_initialized_version)
105
import argparse from transformers import CLIPImageProcessor, CLIPVisionModelWithProjection from diffusers import UnCLIPImageVariationPipeline, UnCLIPPipeline if __name__ == "__main__": a_ = argparse.ArgumentParser() parser.add_argument('--dump_path', default=None, type=str, required=True, help='Path to the output model.') parser.add_argument( '--txt2img_unclip', default='kakaobrain/karlo-v1-alpha', type=str, required=False, help='The pretrained txt2img unclip.', ) a_ = parser.parse_args() a_ = UnCLIPPipeline.from_pretrained(args.txtaimg_unclip) a_ = CLIPImageProcessor() a_ = CLIPVisionModelWithProjection.from_pretrained('openai/clip-vit-large-patch14') a_ = UnCLIPImageVariationPipeline( decoder=txtaimg.decoder, text_encoder=txtaimg.text_encoder, tokenizer=txtaimg.tokenizer, text_proj=txtaimg.text_proj, feature_extractor=feature_extractor, image_encoder=image_encoder, super_res_first=txtaimg.super_res_first, super_res_last=txtaimg.super_res_last, decoder_scheduler=txtaimg.decoder_scheduler, super_res_scheduler=txtaimg.super_res_scheduler, ) imgaimg.save_pretrained(args.dump_path)
25
0
from __future__ import annotations __snake_case :Union[str, Any] =tuple[int, int, int] __snake_case :Tuple =tuple[str, str, str] # used alphabet -------------------------- # from string.ascii_uppercase __snake_case :Tuple ='ABCDEFGHIJKLMNOPQRSTUVWXYZ' # -------------------------- default selection -------------------------- # rotors -------------------------- __snake_case :List[str] ='EGZWVONAHDCLFQMSIPJBYUKXTR' __snake_case :Any ='FOBHMDKEXQNRAULPGSJVTYICZW' __snake_case :Union[str, Any] ='ZJXESIUQLHAVRMDOYGTNFWPBKC' # reflector -------------------------- __snake_case :List[str] ={ 'A': 'N', 'N': 'A', 'B': 'O', 'O': 'B', 'C': 'P', 'P': 'C', 'D': 'Q', 'Q': 'D', 'E': 'R', 'R': 'E', 'F': 'S', 'S': 'F', 'G': 'T', 'T': 'G', 'H': 'U', 'U': 'H', 'I': 'V', 'V': 'I', 'J': 'W', 'W': 'J', 'K': 'X', 'X': 'K', 'L': 'Y', 'Y': 'L', 'M': 'Z', 'Z': 'M', } # -------------------------- extra rotors -------------------------- __snake_case :List[Any] ='RMDJXFUWGISLHVTCQNKYPBEZOA' __snake_case :Tuple ='SGLCPQWZHKXAREONTFBVIYJUDM' __snake_case :str ='HVSICLTYKQUBXDWAJZOMFGPREN' __snake_case :int ='RZWQHFMVDBKICJLNTUXAGYPSOE' __snake_case :Dict ='LFKIJODBEGAMQPXVUHYSTCZRWN' __snake_case :Any ='KOAEGVDHXPQZMLFTYWJNBRCIUS' def lowerCamelCase_ ( lowerCAmelCase__ : RotorPositionT , lowerCAmelCase__ : RotorSelectionT , lowerCAmelCase__ : str ) -> tuple[RotorPositionT, RotorSelectionT, dict[str, str]]: '''simple docstring''' if (unique_rotsel := len(set(lowerCAmelCase__ ) )) < 3: A = F'''Please use 3 unique rotors (not {unique_rotsel})''' raise Exception(lowerCAmelCase__ ) # Checks if rotor positions are valid A , A , A = rotpos if not 0 < rotorposa <= len(lowerCAmelCase__ ): A = F'''First rotor position is not within range of 1..26 ({rotorposa}''' raise ValueError(lowerCAmelCase__ ) if not 0 < rotorposa <= len(lowerCAmelCase__ ): A = F'''Second rotor position is not within range of 1..26 ({rotorposa})''' raise ValueError(lowerCAmelCase__ ) if not 0 < rotorposa <= len(lowerCAmelCase__ ): A = F'''Third rotor position is not within range of 1..26 ({rotorposa})''' raise ValueError(lowerCAmelCase__ ) # Validates string and returns dict A = _plugboard(lowerCAmelCase__ ) return rotpos, rotsel, pbdict def lowerCamelCase_ ( lowerCAmelCase__ : str ) -> dict[str, str]: '''simple docstring''' if not isinstance(lowerCAmelCase__ , lowerCAmelCase__ ): A = F'''Plugboard setting isn\'t type string ({type(lowerCAmelCase__ )})''' raise TypeError(lowerCAmelCase__ ) elif len(lowerCAmelCase__ ) % 2 != 0: A = F'''Odd number of symbols ({len(lowerCAmelCase__ )})''' raise Exception(lowerCAmelCase__ ) elif pbstring == "": return {} pbstring.replace(' ' , '' ) # Checks if all characters are unique A = set() for i in pbstring: if i not in abc: A = F'''\'{i}\' not in list of symbols''' raise Exception(lowerCAmelCase__ ) elif i in tmppbl: A = F'''Duplicate symbol ({i})''' raise Exception(lowerCAmelCase__ ) else: tmppbl.add(lowerCAmelCase__ ) del tmppbl # Created the dictionary A = {} for j in range(0 , len(lowerCAmelCase__ ) - 1 , 2 ): A = pbstring[j + 1] A = pbstring[j] return pb def lowerCamelCase_ ( lowerCAmelCase__ : str , lowerCAmelCase__ : RotorPositionT , lowerCAmelCase__ : RotorSelectionT = (rotora, rotora, rotora) , lowerCAmelCase__ : str = "" , ) -> str: '''simple docstring''' A = text.upper() A , A , A = _validator( lowerCAmelCase__ , lowerCAmelCase__ , plugb.upper() ) A , A , A = rotor_position A , A , A = rotor_selection rotorposa -= 1 rotorposa -= 1 rotorposa -= 1 A = [] # encryption/decryption process -------------------------- for symbol in text: if symbol in abc: # 1st plugboard -------------------------- if symbol in plugboard: A = plugboard[symbol] # rotor ra -------------------------- A = abc.index(lowerCAmelCase__ ) + rotorposa A = rotora[index % len(lowerCAmelCase__ )] # rotor rb -------------------------- A = abc.index(lowerCAmelCase__ ) + rotorposa A = rotora[index % len(lowerCAmelCase__ )] # rotor rc -------------------------- A = abc.index(lowerCAmelCase__ ) + rotorposa A = rotora[index % len(lowerCAmelCase__ )] # reflector -------------------------- # this is the reason you don't need another machine to decipher A = reflector[symbol] # 2nd rotors A = abc[rotora.index(lowerCAmelCase__ ) - rotorposa] A = abc[rotora.index(lowerCAmelCase__ ) - rotorposa] A = abc[rotora.index(lowerCAmelCase__ ) - rotorposa] # 2nd plugboard if symbol in plugboard: A = plugboard[symbol] # moves/resets rotor positions rotorposa += 1 if rotorposa >= len(lowerCAmelCase__ ): A = 0 rotorposa += 1 if rotorposa >= len(lowerCAmelCase__ ): A = 0 rotorposa += 1 if rotorposa >= len(lowerCAmelCase__ ): A = 0 # else: # pass # Error could be also raised # raise ValueError( # 'Invalid symbol('+repr(symbol)+')') result.append(lowerCAmelCase__ ) return "".join(lowerCAmelCase__ ) if __name__ == "__main__": __snake_case :Optional[Any] ='This is my Python script that emulates the Enigma machine from WWII.' __snake_case :Any =(1, 1, 1) __snake_case :Optional[int] ='pictures' __snake_case :Dict =(rotora, rotora, rotora) __snake_case :Union[str, Any] =enigma(message, rotor_pos, rotor_sel, pb) print('Encrypted message:', en) print('Decrypted message:', enigma(en, rotor_pos, rotor_sel, pb))
106
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available a_ = { 'configuration_swinv2': ['SWINV2_PRETRAINED_CONFIG_ARCHIVE_MAP', 'Swinv2Config'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a_ = [ 'SWINV2_PRETRAINED_MODEL_ARCHIVE_LIST', 'Swinv2ForImageClassification', 'Swinv2ForMaskedImageModeling', 'Swinv2Model', 'Swinv2PreTrainedModel', ] if TYPE_CHECKING: from .configuration_swinva import SWINV2_PRETRAINED_CONFIG_ARCHIVE_MAP, SwinvaConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_swinva import ( SWINV2_PRETRAINED_MODEL_ARCHIVE_LIST, SwinvaForImageClassification, SwinvaForMaskedImageModeling, SwinvaModel, SwinvaPreTrainedModel, ) else: import sys a_ = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
25
0
'''simple docstring''' from typing import Dict, List from nltk.translate import gleu_score import datasets from datasets import MetricInfo _UpperCAmelCase : Any = '''\ @misc{wu2016googles, title={Google\'s Neural Machine Translation System: Bridging the Gap between Human and Machine Translation}, author={Yonghui Wu and Mike Schuster and Zhifeng Chen and Quoc V. Le and Mohammad Norouzi and Wolfgang Macherey and Maxim Krikun and Yuan Cao and Qin Gao and Klaus Macherey and Jeff Klingner and Apurva Shah and Melvin Johnson and Xiaobing Liu and Łukasz Kaiser and Stephan Gouws and Yoshikiyo Kato and Taku Kudo and Hideto Kazawa and Keith Stevens and George Kurian and Nishant Patil and Wei Wang and Cliff Young and Jason Smith and Jason Riesa and Alex Rudnick and Oriol Vinyals and Greg Corrado and Macduff Hughes and Jeffrey Dean}, year={2016}, eprint={1609.08144}, archivePrefix={arXiv}, primaryClass={cs.CL} } ''' _UpperCAmelCase : str = '''\ The BLEU score has some undesirable properties when used for single sentences, as it was designed to be a corpus measure. We therefore use a slightly different score for our RL experiments which we call the \'GLEU score\'. For the GLEU score, we record all sub-sequences of 1, 2, 3 or 4 tokens in output and target sequence (n-grams). We then compute a recall, which is the ratio of the number of matching n-grams to the number of total n-grams in the target (ground truth) sequence, and a precision, which is the ratio of the number of matching n-grams to the number of total n-grams in the generated output sequence. Then GLEU score is simply the minimum of recall and precision. This GLEU score\'s range is always between 0 (no matches) and 1 (all match) and it is symmetrical when switching output and target. According to our experiments, GLEU score correlates quite well with the BLEU metric on a corpus level but does not have its drawbacks for our per sentence reward objective. ''' _UpperCAmelCase : Union[str, Any] = '''\ Computes corpus-level Google BLEU (GLEU) score of translated segments against one or more references. Instead of averaging the sentence level GLEU scores (i.e. macro-average precision), Wu et al. (2016) sum up the matching tokens and the max of hypothesis and reference tokens for each sentence, then compute using the aggregate values. Args: predictions (list of str): list of translations to score. Each translation should be tokenized into a list of tokens. references (list of list of str): list of lists of references for each translation. Each reference should be tokenized into a list of tokens. min_len (int): The minimum order of n-gram this function should extract. Defaults to 1. max_len (int): The maximum order of n-gram this function should extract. Defaults to 4. Returns: \'google_bleu\': google_bleu score Examples: Example 1: >>> hyp1 = [\'It\', \'is\', \'a\', \'guide\', \'to\', \'action\', \'which\', ... \'ensures\', \'that\', \'the\', \'rubber\', \'duck\', \'always\', ... \'disobeys\', \'the\', \'commands\', \'of\', \'the\', \'cat\'] >>> ref1a = [\'It\', \'is\', \'the\', \'guiding\', \'principle\', \'which\', ... \'guarantees\', \'the\', \'rubber\', \'duck\', \'forces\', \'never\', ... \'being\', \'under\', \'the\', \'command\', \'of\', \'the\', \'cat\'] >>> hyp2 = [\'he\', \'read\', \'the\', \'book\', \'because\', \'he\', \'was\', ... \'interested\', \'in\', \'world\', \'history\'] >>> ref2a = [\'he\', \'was\', \'interested\', \'in\', \'world\', \'history\', ... \'because\', \'he\', \'read\', \'the\', \'book\'] >>> list_of_references = [[ref1a], [ref2a]] >>> hypotheses = [hyp1, hyp2] >>> google_bleu = datasets.load_metric("google_bleu") >>> results = google_bleu.compute(predictions=hypotheses, references=list_of_references) >>> print(round(results["google_bleu"], 2)) 0.44 Example 2: >>> hyp1 = [\'It\', \'is\', \'a\', \'guide\', \'to\', \'action\', \'which\', ... \'ensures\', \'that\', \'the\', \'rubber\', \'duck\', \'always\', ... \'disobeys\', \'the\', \'commands\', \'of\', \'the\', \'cat\'] >>> ref1a = [\'It\', \'is\', \'the\', \'guiding\', \'principle\', \'which\', ... \'guarantees\', \'the\', \'rubber\', \'duck\', \'forces\', \'never\', ... \'being\', \'under\', \'the\', \'command\', \'of\', \'the\', \'cat\'] >>> ref1b = [\'It\', \'is\', \'a\', \'guide\', \'to\', \'action\', \'that\', ... \'ensures\', \'that\', \'the\', \'rubber\', \'duck\', \'will\', \'never\', ... \'heed\', \'the\', \'cat\', \'commands\'] >>> ref1c = [\'It\', \'is\', \'the\', \'practical\', \'guide\', \'for\', \'the\', ... \'rubber\', \'duck\', \'army\', \'never\', \'to\', \'heed\', \'the\', \'directions\', ... \'of\', \'the\', \'cat\'] >>> hyp2 = [\'he\', \'read\', \'the\', \'book\', \'because\', \'he\', \'was\', ... \'interested\', \'in\', \'world\', \'history\'] >>> ref2a = [\'he\', \'was\', \'interested\', \'in\', \'world\', \'history\', ... \'because\', \'he\', \'read\', \'the\', \'book\'] >>> list_of_references = [[ref1a, ref1b, ref1c], [ref2a]] >>> hypotheses = [hyp1, hyp2] >>> google_bleu = datasets.load_metric("google_bleu") >>> results = google_bleu.compute(predictions=hypotheses, references=list_of_references) >>> print(round(results["google_bleu"], 2)) 0.61 Example 3: >>> hyp1 = [\'It\', \'is\', \'a\', \'guide\', \'to\', \'action\', \'which\', ... \'ensures\', \'that\', \'the\', \'rubber\', \'duck\', \'always\', ... \'disobeys\', \'the\', \'commands\', \'of\', \'the\', \'cat\'] >>> ref1a = [\'It\', \'is\', \'the\', \'guiding\', \'principle\', \'which\', ... \'guarantees\', \'the\', \'rubber\', \'duck\', \'forces\', \'never\', ... \'being\', \'under\', \'the\', \'command\', \'of\', \'the\', \'cat\'] >>> ref1b = [\'It\', \'is\', \'a\', \'guide\', \'to\', \'action\', \'that\', ... \'ensures\', \'that\', \'the\', \'rubber\', \'duck\', \'will\', \'never\', ... \'heed\', \'the\', \'cat\', \'commands\'] >>> ref1c = [\'It\', \'is\', \'the\', \'practical\', \'guide\', \'for\', \'the\', ... \'rubber\', \'duck\', \'army\', \'never\', \'to\', \'heed\', \'the\', \'directions\', ... \'of\', \'the\', \'cat\'] >>> hyp2 = [\'he\', \'read\', \'the\', \'book\', \'because\', \'he\', \'was\', ... \'interested\', \'in\', \'world\', \'history\'] >>> ref2a = [\'he\', \'was\', \'interested\', \'in\', \'world\', \'history\', ... \'because\', \'he\', \'read\', \'the\', \'book\'] >>> list_of_references = [[ref1a, ref1b, ref1c], [ref2a]] >>> hypotheses = [hyp1, hyp2] >>> google_bleu = datasets.load_metric("google_bleu") >>> results = google_bleu.compute(predictions=hypotheses, references=list_of_references, min_len=2) >>> print(round(results["google_bleu"], 2)) 0.53 Example 4: >>> hyp1 = [\'It\', \'is\', \'a\', \'guide\', \'to\', \'action\', \'which\', ... \'ensures\', \'that\', \'the\', \'rubber\', \'duck\', \'always\', ... \'disobeys\', \'the\', \'commands\', \'of\', \'the\', \'cat\'] >>> ref1a = [\'It\', \'is\', \'the\', \'guiding\', \'principle\', \'which\', ... \'guarantees\', \'the\', \'rubber\', \'duck\', \'forces\', \'never\', ... \'being\', \'under\', \'the\', \'command\', \'of\', \'the\', \'cat\'] >>> ref1b = [\'It\', \'is\', \'a\', \'guide\', \'to\', \'action\', \'that\', ... \'ensures\', \'that\', \'the\', \'rubber\', \'duck\', \'will\', \'never\', ... \'heed\', \'the\', \'cat\', \'commands\'] >>> ref1c = [\'It\', \'is\', \'the\', \'practical\', \'guide\', \'for\', \'the\', ... \'rubber\', \'duck\', \'army\', \'never\', \'to\', \'heed\', \'the\', \'directions\', ... \'of\', \'the\', \'cat\'] >>> hyp2 = [\'he\', \'read\', \'the\', \'book\', \'because\', \'he\', \'was\', ... \'interested\', \'in\', \'world\', \'history\'] >>> ref2a = [\'he\', \'was\', \'interested\', \'in\', \'world\', \'history\', ... \'because\', \'he\', \'read\', \'the\', \'book\'] >>> list_of_references = [[ref1a, ref1b, ref1c], [ref2a]] >>> hypotheses = [hyp1, hyp2] >>> google_bleu = datasets.load_metric("google_bleu") >>> results = google_bleu.compute(predictions=hypotheses,references=list_of_references, min_len=2, max_len=6) >>> print(round(results["google_bleu"], 2)) 0.4 ''' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class lowercase_ ( datasets.Metric ): """simple docstring""" def __UpperCAmelCase ( self : List[Any] ) -> MetricInfo: return datasets.MetricInfo( description=_DESCRIPTION, citation=_CITATION, inputs_description=_KWARGS_DESCRIPTION, features=datasets.Features( { 'predictions': datasets.Sequence(datasets.Value('string', id='token' ), id='sequence' ), 'references': datasets.Sequence( datasets.Sequence(datasets.Value('string', id='token' ), id='sequence' ), id='references' ), } ), ) def __UpperCAmelCase ( self : Dict, UpperCamelCase__ : List[List[List[str]]], UpperCamelCase__ : List[List[str]], UpperCamelCase__ : int = 1, UpperCamelCase__ : int = 4, ) -> Dict[str, float]: return { "google_bleu": gleu_score.corpus_gleu( list_of_references=UpperCamelCase__, hypotheses=UpperCamelCase__, min_len=UpperCamelCase__, max_len=UpperCamelCase__ ) }
107
from math import pi, sqrt, tan def lowerCamelCase__ ( _a): if side_length < 0: raise ValueError("surface_area_cube() only accepts non-negative values") return 6 * side_length**2 def lowerCamelCase__ ( _a , _a , _a): if length < 0 or breadth < 0 or height < 0: raise ValueError("surface_area_cuboid() only accepts non-negative values") return 2 * ((length * breadth) + (breadth * height) + (length * height)) def lowerCamelCase__ ( _a): if radius < 0: raise ValueError("surface_area_sphere() only accepts non-negative values") return 4 * pi * radius**2 def lowerCamelCase__ ( _a): if radius < 0: raise ValueError("surface_area_hemisphere() only accepts non-negative values") return 3 * pi * radius**2 def lowerCamelCase__ ( _a , _a): if radius < 0 or height < 0: raise ValueError("surface_area_cone() only accepts non-negative values") return pi * radius * (radius + (height**2 + radius**2) ** 0.5) def lowerCamelCase__ ( _a , _a , _a): if radius_a < 0 or radius_a < 0 or height < 0: raise ValueError( "surface_area_conical_frustum() only accepts non-negative values") SCREAMING_SNAKE_CASE : Any = (height**2 + (radius_a - radius_a) ** 2) ** 0.5 return pi * ((slant_height * (radius_a + radius_a)) + radius_a**2 + radius_a**2) def lowerCamelCase__ ( _a , _a): if radius < 0 or height < 0: raise ValueError("surface_area_cylinder() only accepts non-negative values") return 2 * pi * radius * (height + radius) def lowerCamelCase__ ( _a , _a): if torus_radius < 0 or tube_radius < 0: raise ValueError("surface_area_torus() only accepts non-negative values") if torus_radius < tube_radius: raise ValueError( "surface_area_torus() does not support spindle or self intersecting tori") return 4 * pow(_a , 2) * torus_radius * tube_radius def lowerCamelCase__ ( _a , _a): if length < 0 or width < 0: raise ValueError("area_rectangle() only accepts non-negative values") return length * width def lowerCamelCase__ ( _a): if side_length < 0: raise ValueError("area_square() only accepts non-negative values") return side_length**2 def lowerCamelCase__ ( _a , _a): if base < 0 or height < 0: raise ValueError("area_triangle() only accepts non-negative values") return (base * height) / 2 def lowerCamelCase__ ( _a , _a , _a): if sidea < 0 or sidea < 0 or sidea < 0: raise ValueError("area_triangle_three_sides() only accepts non-negative values") elif sidea + sidea < sidea or sidea + sidea < sidea or sidea + sidea < sidea: raise ValueError("Given three sides do not form a triangle") SCREAMING_SNAKE_CASE : List[str] = (sidea + sidea + sidea) / 2 SCREAMING_SNAKE_CASE : Optional[int] = sqrt( semi_perimeter * (semi_perimeter - sidea) * (semi_perimeter - sidea) * (semi_perimeter - sidea)) return area def lowerCamelCase__ ( _a , _a): if base < 0 or height < 0: raise ValueError("area_parallelogram() only accepts non-negative values") return base * height def lowerCamelCase__ ( _a , _a , _a): if basea < 0 or basea < 0 or height < 0: raise ValueError("area_trapezium() only accepts non-negative values") return 1 / 2 * (basea + basea) * height def lowerCamelCase__ ( _a): if radius < 0: raise ValueError("area_circle() only accepts non-negative values") return pi * radius**2 def lowerCamelCase__ ( _a , _a): if radius_x < 0 or radius_y < 0: raise ValueError("area_ellipse() only accepts non-negative values") return pi * radius_x * radius_y def lowerCamelCase__ ( _a , _a): if diagonal_a < 0 or diagonal_a < 0: raise ValueError("area_rhombus() only accepts non-negative values") return 1 / 2 * diagonal_a * diagonal_a def lowerCamelCase__ ( _a , _a): if not isinstance(_a , _a) or sides < 3: raise ValueError( "area_reg_polygon() only accepts integers greater than or \ equal to three as number of sides") elif length < 0: raise ValueError( "area_reg_polygon() only accepts non-negative values as \ length of a side") return (sides * length**2) / (4 * tan(pi / sides)) return (sides * length**2) / (4 * tan(pi / sides)) if __name__ == "__main__": import doctest doctest.testmod(verbose=True) # verbose so we can see methods missing tests print('[DEMO] Areas of various geometric shapes: \n') print(F'''Rectangle: {area_rectangle(10, 20) = }''') print(F'''Square: {area_square(10) = }''') print(F'''Triangle: {area_triangle(10, 10) = }''') print(F'''Triangle: {area_triangle_three_sides(5, 12, 13) = }''') print(F'''Parallelogram: {area_parallelogram(10, 20) = }''') print(F'''Rhombus: {area_rhombus(10, 20) = }''') print(F'''Trapezium: {area_trapezium(10, 20, 30) = }''') print(F'''Circle: {area_circle(20) = }''') print(F'''Ellipse: {area_ellipse(10, 20) = }''') print('\nSurface Areas of various geometric shapes: \n') print(F'''Cube: {surface_area_cube(20) = }''') print(F'''Cuboid: {surface_area_cuboid(10, 20, 30) = }''') print(F'''Sphere: {surface_area_sphere(20) = }''') print(F'''Hemisphere: {surface_area_hemisphere(20) = }''') print(F'''Cone: {surface_area_cone(10, 20) = }''') print(F'''Conical Frustum: {surface_area_conical_frustum(10, 20, 30) = }''') print(F'''Cylinder: {surface_area_cylinder(10, 20) = }''') print(F'''Torus: {surface_area_torus(20, 10) = }''') print(F'''Equilateral Triangle: {area_reg_polygon(3, 10) = }''') print(F'''Square: {area_reg_polygon(4, 10) = }''') print(F'''Reqular Pentagon: {area_reg_polygon(5, 10) = }''')
25
0
import gc import threading import time import psutil import torch class SCREAMING_SNAKE_CASE__ : '''simple docstring''' def __init__( self : Union[str, Any] ) -> str: """simple docstring""" _UpperCAmelCase = psutil.Process() _UpperCAmelCase = False def lowerCamelCase ( self : List[Any] ) -> int: """simple docstring""" _UpperCAmelCase = -1 while True: _UpperCAmelCase = max(self.process.memory_info().rss , self.cpu_memory_peak ) # can't sleep or will not catch the peak right (this comment is here on purpose) if not self.peak_monitoring: break def lowerCamelCase ( self : Optional[Any] ) -> List[Any]: """simple docstring""" _UpperCAmelCase = True _UpperCAmelCase = threading.Thread(target=self.peak_monitor ) _UpperCAmelCase = True self.thread.start() def lowerCamelCase ( self : Optional[int] ) -> List[str]: """simple docstring""" _UpperCAmelCase = False self.thread.join() return self.cpu_memory_peak __a: Union[str, Any] = PeakCPUMemory() def _SCREAMING_SNAKE_CASE ( ) -> List[Any]: # Time _UpperCAmelCase = {"""time""": time.time()} gc.collect() torch.cuda.empty_cache() # CPU mem _UpperCAmelCase = psutil.Process().memory_info().rss cpu_peak_tracker.start() # GPU mem for i in range(torch.cuda.device_count() ): _UpperCAmelCase = torch.cuda.memory_allocated(__snake_case ) torch.cuda.reset_peak_memory_stats() return measures def _SCREAMING_SNAKE_CASE ( __snake_case ) -> Union[str, Any]: # Time _UpperCAmelCase = {"""time""": time.time() - start_measures["""time"""]} gc.collect() torch.cuda.empty_cache() # CPU mem _UpperCAmelCase = (psutil.Process().memory_info().rss - start_measures["""cpu"""]) / 2**2_0 _UpperCAmelCase = (cpu_peak_tracker.stop() - start_measures["""cpu"""]) / 2**2_0 # GPU mem for i in range(torch.cuda.device_count() ): _UpperCAmelCase = (torch.cuda.memory_allocated(__snake_case ) - start_measures[str(__snake_case )]) / 2**2_0 _UpperCAmelCase = (torch.cuda.max_memory_allocated(__snake_case ) - start_measures[str(__snake_case )]) / 2**2_0 return measures def _SCREAMING_SNAKE_CASE ( __snake_case , __snake_case ) -> str: print(f"""{description}:""" ) print(f"""- Time: {measures["time"]:.2f}s""" ) for i in range(torch.cuda.device_count() ): print(f"""- GPU {i} allocated: {measures[str(__snake_case )]:.2f}MiB""" ) _UpperCAmelCase = measures[f"""{i}-peak"""] print(f"""- GPU {i} peak: {peak:.2f}MiB""" ) print(f"""- CPU RAM allocated: {measures["cpu"]:.2f}MiB""" ) print(f"""- CPU RAM peak: {measures["cpu-peak"]:.2f}MiB""" )
108
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available a_ = { 'configuration_instructblip': [ 'INSTRUCTBLIP_PRETRAINED_CONFIG_ARCHIVE_MAP', 'InstructBlipConfig', 'InstructBlipQFormerConfig', 'InstructBlipVisionConfig', ], 'processing_instructblip': ['InstructBlipProcessor'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a_ = [ 'INSTRUCTBLIP_PRETRAINED_MODEL_ARCHIVE_LIST', 'InstructBlipQFormerModel', 'InstructBlipPreTrainedModel', 'InstructBlipForConditionalGeneration', 'InstructBlipVisionModel', ] if TYPE_CHECKING: from .configuration_instructblip import ( INSTRUCTBLIP_PRETRAINED_CONFIG_ARCHIVE_MAP, InstructBlipConfig, InstructBlipQFormerConfig, InstructBlipVisionConfig, ) from .processing_instructblip import InstructBlipProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_instructblip import ( INSTRUCTBLIP_PRETRAINED_MODEL_ARCHIVE_LIST, InstructBlipForConditionalGeneration, InstructBlipPreTrainedModel, InstructBlipQFormerModel, InstructBlipVisionModel, ) else: import sys a_ = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
25
0
'''simple docstring''' import unittest from transformers.testing_utils import require_bsa from transformers.utils import is_bsa_available from ...test_feature_extraction_common import FeatureExtractionSavingTestMixin if is_bsa_available(): from transformers import MarkupLMFeatureExtractor class __a ( unittest.TestCase ): def __init__( self : Any ,lowerCamelCase : Optional[int] ): '''simple docstring''' __SCREAMING_SNAKE_CASE = parent def UpperCAmelCase__ ( self : Dict ): '''simple docstring''' return {} def __magic_name__ ( ) -> Optional[Any]: '''simple docstring''' __SCREAMING_SNAKE_CASE = """<HTML> <HEAD> <TITLE>sample document</TITLE> </HEAD> <BODY BGCOLOR=\"FFFFFF\"> <HR> <a href=\"http://google.com\">Goog</a> <H1>This is one header</H1> <H2>This is a another Header</H2> <P>Travel from <P> <B>SFO to JFK</B> <BR> <B><I>on May 2, 2015 at 2:00 pm. For details go to confirm.com </I></B> <HR> <div style=\"color:#0000FF\"> <h3>Traveler <b> name </b> is <p> John Doe </p> </div>""" __SCREAMING_SNAKE_CASE = """ <!DOCTYPE html> <html> <body> <h1>My First Heading</h1> <p>My first paragraph.</p> </body> </html> """ return [html_string_a, html_string_a] @require_bsa class __a ( _snake_case, unittest.TestCase ): __UpperCamelCase : Any = MarkupLMFeatureExtractor if is_bsa_available() else None def UpperCAmelCase__ ( self : Optional[int] ): '''simple docstring''' __SCREAMING_SNAKE_CASE = MarkupLMFeatureExtractionTester(self ) @property def UpperCAmelCase__ ( self : Dict ): '''simple docstring''' return self.feature_extract_tester.prepare_feat_extract_dict() def UpperCAmelCase__ ( self : Tuple ): '''simple docstring''' __SCREAMING_SNAKE_CASE = self.feature_extraction_class() # Test not batched input __SCREAMING_SNAKE_CASE = get_html_strings()[0] __SCREAMING_SNAKE_CASE = feature_extractor(lowerCamelCase ) # fmt: off __SCREAMING_SNAKE_CASE = [["""sample document""", """Goog""", """This is one header""", """This is a another Header""", """Travel from""", """SFO to JFK""", """on May 2, 2015 at 2:00 pm. For details go to confirm.com""", """Traveler""", """name""", """is""", """John Doe"""]] __SCREAMING_SNAKE_CASE = [["""/html/head/title""", """/html/body/a""", """/html/body/h1""", """/html/body/h2""", """/html/body/p""", """/html/body/p/p/b[1]""", """/html/body/p/p/b[2]/i""", """/html/body/p/p/div/h3""", """/html/body/p/p/div/h3/b""", """/html/body/p/p/div/h3""", """/html/body/p/p/div/h3/p"""]] # fmt: on self.assertEqual(encoding.nodes ,lowerCamelCase ) self.assertEqual(encoding.xpaths ,lowerCamelCase ) # Test batched __SCREAMING_SNAKE_CASE = get_html_strings() __SCREAMING_SNAKE_CASE = feature_extractor(lowerCamelCase ) # fmt: off __SCREAMING_SNAKE_CASE = expected_nodes + [["""My First Heading""", """My first paragraph."""]] __SCREAMING_SNAKE_CASE = expected_xpaths + [["""/html/body/h1""", """/html/body/p"""]] self.assertEqual(len(encoding.nodes ) ,2 ) self.assertEqual(len(encoding.xpaths ) ,2 ) self.assertEqual(encoding.nodes ,lowerCamelCase ) self.assertEqual(encoding.xpaths ,lowerCamelCase )
109
from __future__ import annotations def lowerCamelCase__ ( _a): SCREAMING_SNAKE_CASE : Optional[Any] = 2 SCREAMING_SNAKE_CASE : Optional[int] = [] while i * i <= n: if n % i: i += 1 else: n //= i factors.append(_a) if n > 1: factors.append(_a) return factors if __name__ == "__main__": import doctest doctest.testmod()
25
0
"""simple docstring""" import unittest from transformers.testing_utils import require_bsa from transformers.utils import is_bsa_available from ...test_feature_extraction_common import FeatureExtractionSavingTestMixin if is_bsa_available(): from transformers import MarkupLMFeatureExtractor class a ( unittest.TestCase ): def __init__( self , UpperCamelCase_ ): UpperCAmelCase__ : Union[str, Any] = parent def __snake_case ( self ): return {} def lowerCamelCase ( ): UpperCAmelCase__ : Dict = '<HTML>\n\n <HEAD>\n <TITLE>sample document</TITLE>\n </HEAD>\n\n <BODY BGCOLOR="FFFFFF">\n <HR>\n <a href="http://google.com">Goog</a>\n <H1>This is one header</H1>\n <H2>This is a another Header</H2>\n <P>Travel from\n <P>\n <B>SFO to JFK</B>\n <BR>\n <B><I>on May 2, 2015 at 2:00 pm. For details go to confirm.com </I></B>\n <HR>\n <div style="color:#0000FF">\n <h3>Traveler <b> name </b> is\n <p> John Doe </p>\n </div>' UpperCAmelCase__ : Optional[int] = '\n <!DOCTYPE html>\n <html>\n <body>\n\n <h1>My First Heading</h1>\n <p>My first paragraph.</p>\n\n </body>\n </html>\n ' return [html_string_a, html_string_a] @require_bsa class a ( lowercase , unittest.TestCase ): UpperCamelCase : str = MarkupLMFeatureExtractor if is_bsa_available() else None def __snake_case ( self ): UpperCAmelCase__ : Optional[int] = MarkupLMFeatureExtractionTester(self ) @property def __snake_case ( self ): return self.feature_extract_tester.prepare_feat_extract_dict() def __snake_case ( self ): # Initialize feature_extractor UpperCAmelCase__ : Any = self.feature_extraction_class() # Test not batched input UpperCAmelCase__ : Tuple = get_html_strings()[0] UpperCAmelCase__ : Optional[Any] = feature_extractor(UpperCamelCase_ ) # fmt: off UpperCAmelCase__ : Union[str, Any] = [['sample document', 'Goog', 'This is one header', 'This is a another Header', 'Travel from', 'SFO to JFK', 'on May 2, 2015 at 2:00 pm. For details go to confirm.com', 'Traveler', 'name', 'is', 'John Doe']] UpperCAmelCase__ : int = [['/html/head/title', '/html/body/a', '/html/body/h1', '/html/body/h2', '/html/body/p', '/html/body/p/p/b[1]', '/html/body/p/p/b[2]/i', '/html/body/p/p/div/h3', '/html/body/p/p/div/h3/b', '/html/body/p/p/div/h3', '/html/body/p/p/div/h3/p']] # fmt: on self.assertEqual(encoding.nodes , UpperCamelCase_ ) self.assertEqual(encoding.xpaths , UpperCamelCase_ ) # Test batched UpperCAmelCase__ : List[str] = get_html_strings() UpperCAmelCase__ : List[Any] = feature_extractor(UpperCamelCase_ ) # fmt: off UpperCAmelCase__ : Union[str, Any] = expected_nodes + [['My First Heading', 'My first paragraph.']] UpperCAmelCase__ : Dict = expected_xpaths + [['/html/body/h1', '/html/body/p']] self.assertEqual(len(encoding.nodes ) , 2 ) self.assertEqual(len(encoding.xpaths ) , 2 ) self.assertEqual(encoding.nodes , UpperCamelCase_ ) self.assertEqual(encoding.xpaths , UpperCamelCase_ )
110
from math import factorial, pi def lowerCamelCase__ ( _a , _a = 30): if not isinstance(_a , (int, float)): raise ValueError("maclaurin_sin() requires either an int or float for theta") if not isinstance(_a , _a) or accuracy <= 0: raise ValueError("maclaurin_sin() requires a positive int for accuracy") SCREAMING_SNAKE_CASE : int = float(_a) SCREAMING_SNAKE_CASE : Dict = theta // (2 * pi) theta -= 2 * div * pi return sum( (-1) ** r * theta ** (2 * r + 1) / factorial(2 * r + 1) for r in range(_a)) def lowerCamelCase__ ( _a , _a = 30): if not isinstance(_a , (int, float)): raise ValueError("maclaurin_cos() requires either an int or float for theta") if not isinstance(_a , _a) or accuracy <= 0: raise ValueError("maclaurin_cos() requires a positive int for accuracy") SCREAMING_SNAKE_CASE : str = float(_a) SCREAMING_SNAKE_CASE : Any = theta // (2 * pi) theta -= 2 * div * pi return sum((-1) ** r * theta ** (2 * r) / factorial(2 * r) for r in range(_a)) if __name__ == "__main__": import doctest doctest.testmod() print(maclaurin_sin(10)) print(maclaurin_sin(-10)) print(maclaurin_sin(10, 15)) print(maclaurin_sin(-10, 15)) print(maclaurin_cos(5)) print(maclaurin_cos(-5)) print(maclaurin_cos(10, 15)) print(maclaurin_cos(-10, 15))
25
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, ) __SCREAMING_SNAKE_CASE :Union[str, Any] = { '''configuration_roberta_prelayernorm''': [ '''ROBERTA_PRELAYERNORM_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''RobertaPreLayerNormConfig''', '''RobertaPreLayerNormOnnxConfig''', ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __SCREAMING_SNAKE_CASE :Optional[int] = [ '''ROBERTA_PRELAYERNORM_PRETRAINED_MODEL_ARCHIVE_LIST''', '''RobertaPreLayerNormForCausalLM''', '''RobertaPreLayerNormForMaskedLM''', '''RobertaPreLayerNormForMultipleChoice''', '''RobertaPreLayerNormForQuestionAnswering''', '''RobertaPreLayerNormForSequenceClassification''', '''RobertaPreLayerNormForTokenClassification''', '''RobertaPreLayerNormModel''', '''RobertaPreLayerNormPreTrainedModel''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __SCREAMING_SNAKE_CASE :Optional[Any] = [ '''TF_ROBERTA_PRELAYERNORM_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFRobertaPreLayerNormForCausalLM''', '''TFRobertaPreLayerNormForMaskedLM''', '''TFRobertaPreLayerNormForMultipleChoice''', '''TFRobertaPreLayerNormForQuestionAnswering''', '''TFRobertaPreLayerNormForSequenceClassification''', '''TFRobertaPreLayerNormForTokenClassification''', '''TFRobertaPreLayerNormMainLayer''', '''TFRobertaPreLayerNormModel''', '''TFRobertaPreLayerNormPreTrainedModel''', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __SCREAMING_SNAKE_CASE :Any = [ '''FlaxRobertaPreLayerNormForCausalLM''', '''FlaxRobertaPreLayerNormForMaskedLM''', '''FlaxRobertaPreLayerNormForMultipleChoice''', '''FlaxRobertaPreLayerNormForQuestionAnswering''', '''FlaxRobertaPreLayerNormForSequenceClassification''', '''FlaxRobertaPreLayerNormForTokenClassification''', '''FlaxRobertaPreLayerNormModel''', '''FlaxRobertaPreLayerNormPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_roberta_prelayernorm import ( ROBERTA_PRELAYERNORM_PRETRAINED_CONFIG_ARCHIVE_MAP, RobertaPreLayerNormConfig, RobertaPreLayerNormOnnxConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_roberta_prelayernorm import ( ROBERTA_PRELAYERNORM_PRETRAINED_MODEL_ARCHIVE_LIST, RobertaPreLayerNormForCausalLM, RobertaPreLayerNormForMaskedLM, RobertaPreLayerNormForMultipleChoice, RobertaPreLayerNormForQuestionAnswering, RobertaPreLayerNormForSequenceClassification, RobertaPreLayerNormForTokenClassification, RobertaPreLayerNormModel, RobertaPreLayerNormPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_roberta_prelayernorm import ( TF_ROBERTA_PRELAYERNORM_PRETRAINED_MODEL_ARCHIVE_LIST, TFRobertaPreLayerNormForCausalLM, TFRobertaPreLayerNormForMaskedLM, TFRobertaPreLayerNormForMultipleChoice, TFRobertaPreLayerNormForQuestionAnswering, TFRobertaPreLayerNormForSequenceClassification, TFRobertaPreLayerNormForTokenClassification, TFRobertaPreLayerNormMainLayer, TFRobertaPreLayerNormModel, TFRobertaPreLayerNormPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_roberta_prelayernorm import ( FlaxRobertaPreLayerNormForCausalLM, FlaxRobertaPreLayerNormForMaskedLM, FlaxRobertaPreLayerNormForMultipleChoice, FlaxRobertaPreLayerNormForQuestionAnswering, FlaxRobertaPreLayerNormForSequenceClassification, FlaxRobertaPreLayerNormForTokenClassification, FlaxRobertaPreLayerNormModel, FlaxRobertaPreLayerNormPreTrainedModel, ) else: import sys __SCREAMING_SNAKE_CASE :Optional[int] = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
236
from __future__ import annotations import math class _UpperCamelCase : '''simple docstring''' def __init__( self : Dict , a : int ) -> None: """simple docstring""" SCREAMING_SNAKE_CASE : Dict = size # approximate the overall size of segment tree with given value SCREAMING_SNAKE_CASE : Any = [0 for i in range(0 , 4 * size )] # create array to store lazy update SCREAMING_SNAKE_CASE : Union[str, Any] = [0 for i in range(0 , 4 * size )] SCREAMING_SNAKE_CASE : Any = [0 for i in range(0 , 4 * size )] # flag for lazy update def __UpperCamelCase ( self : Tuple , a : int ) -> int: """simple docstring""" return idx * 2 def __UpperCamelCase ( self : str , a : int ) -> int: """simple docstring""" return idx * 2 + 1 def __UpperCamelCase ( self : int , a : int , a : int , a : int , a : list[int] ) -> None: """simple docstring""" if left_element == right_element: SCREAMING_SNAKE_CASE : int = a[left_element - 1] else: SCREAMING_SNAKE_CASE : Optional[int] = (left_element + right_element) // 2 self.build(self.left(a ) , a , a , a ) self.build(self.right(a ) , mid + 1 , a , a ) SCREAMING_SNAKE_CASE : List[Any] = max( self.segment_tree[self.left(a )] , self.segment_tree[self.right(a )] ) def __UpperCamelCase ( self : Optional[Any] , a : int , a : int , a : int , a : int , a : int , a : int ) -> bool: """simple docstring""" if self.flag[idx] is True: SCREAMING_SNAKE_CASE : Any = self.lazy[idx] SCREAMING_SNAKE_CASE : List[str] = False if left_element != right_element: SCREAMING_SNAKE_CASE : Optional[Any] = self.lazy[idx] SCREAMING_SNAKE_CASE : int = self.lazy[idx] SCREAMING_SNAKE_CASE : Any = True SCREAMING_SNAKE_CASE : List[Any] = True if right_element < a or left_element > b: return True if left_element >= a and right_element <= b: SCREAMING_SNAKE_CASE : Optional[Any] = val if left_element != right_element: SCREAMING_SNAKE_CASE : str = val SCREAMING_SNAKE_CASE : str = val SCREAMING_SNAKE_CASE : Tuple = True SCREAMING_SNAKE_CASE : Optional[Any] = True return True SCREAMING_SNAKE_CASE : int = (left_element + right_element) // 2 self.update(self.left(a ) , a , a , a , a , a ) self.update(self.right(a ) , mid + 1 , a , a , a , a ) SCREAMING_SNAKE_CASE : Optional[int] = max( self.segment_tree[self.left(a )] , self.segment_tree[self.right(a )] ) return True def __UpperCamelCase ( self : Dict , a : int , a : int , a : int , a : int , a : int ) -> int | float: """simple docstring""" if self.flag[idx] is True: SCREAMING_SNAKE_CASE : int = self.lazy[idx] SCREAMING_SNAKE_CASE : List[Any] = False if left_element != right_element: SCREAMING_SNAKE_CASE : Optional[Any] = self.lazy[idx] SCREAMING_SNAKE_CASE : Optional[Any] = self.lazy[idx] SCREAMING_SNAKE_CASE : Optional[Any] = True SCREAMING_SNAKE_CASE : Union[str, Any] = True if right_element < a or left_element > b: return -math.inf if left_element >= a and right_element <= b: return self.segment_tree[idx] SCREAMING_SNAKE_CASE : Dict = (left_element + right_element) // 2 SCREAMING_SNAKE_CASE : Tuple = self.query(self.left(a ) , a , a , a , a ) SCREAMING_SNAKE_CASE : Tuple = self.query(self.right(a ) , mid + 1 , a , a , a ) return max(a , a ) def __str__( self : str ) -> str: """simple docstring""" return str([self.query(1 , 1 , self.size , a , a ) for i in range(1 , self.size + 1 )] ) if __name__ == "__main__": a_ = [1, 2, -4, 7, 3, -5, 6, 11, -20, 9, 14, 15, 5, 2, -8] a_ = 15 a_ = SegmentTree(size) segt.build(1, 1, size, A) print(segt.query(1, 1, size, 4, 6)) print(segt.query(1, 1, size, 7, 11)) print(segt.query(1, 1, size, 7, 12)) segt.update(1, 1, size, 1, 3, 111) print(segt.query(1, 1, size, 1, 15)) segt.update(1, 1, size, 7, 8, 235) print(segt)
25
0
import faiss # noqa: F401 # Here to have a nice missing dependency error message early on import numpy # noqa: F401 # Here to have a nice missing dependency error message early on import requests # noqa: F401 # Here to have a nice missing dependency error message early on import sklearn # noqa: F401 # Here to have a nice missing dependency error message early on import tqdm # noqa: F401 # Here to have a nice missing dependency error message early on from mauve import compute_mauve # From: mauve-text import datasets UpperCamelCase__ : Tuple = '''\\n@inproceedings{pillutla-etal:mauve:neurips2021,\n title={MAUVE: Measuring the Gap Between Neural Text and Human Text using Divergence Frontiers},\n author={Pillutla, Krishna and Swayamdipta, Swabha and Zellers, Rowan and Thickstun, John and Welleck, Sean and Choi, Yejin and Harchaoui, Zaid},\n booktitle = {NeurIPS},\n year = {2021}\n}\n\n''' UpperCamelCase__ : List[Any] = '''\\nMAUVE is a library built on PyTorch and HuggingFace Transformers to measure the gap between neural text and human text with the eponymous MAUVE measure.\n\nMAUVE summarizes both Type I and Type II errors measured softly using Kullback–Leibler (KL) divergences.\n\nFor details, see the MAUVE paper: https://arxiv.org/abs/2102.01454 (Neurips, 2021).\n\nThis metrics is a wrapper around the official implementation of MAUVE:\nhttps://github.com/krishnap25/mauve\n''' UpperCamelCase__ : Optional[Any] = '''\nCalculates MAUVE scores between two lists of generated text and reference text.\nArgs:\n predictions: list of generated text to score. Each predictions\n should be a string with tokens separated by spaces.\n references: list of reference for each prediction. Each\n reference should be a string with tokens separated by spaces.\nOptional Args:\n num_buckets: the size of the histogram to quantize P and Q. Options: \'auto\' (default) or an integer\n pca_max_data: the number data points to use for PCA dimensionality reduction prior to clustering. If -1, use all the data. Default -1\n kmeans_explained_var: amount of variance of the data to keep in dimensionality reduction by PCA. Default 0.9\n kmeans_num_redo: number of times to redo k-means clustering (the best objective is kept). Default 5\n kmeans_max_iter: maximum number of k-means iterations. Default 500\n featurize_model_name: name of the model from which features are obtained. Default \'gpt2-large\' Use one of [\'gpt2\', \'gpt2-medium\', \'gpt2-large\', \'gpt2-xl\'].\n device_id: Device for featurization. Supply a GPU id (e.g. 0 or 3) to use GPU. If no GPU with this id is found, use CPU\n max_text_length: maximum number of tokens to consider. Default 1024\n divergence_curve_discretization_size: Number of points to consider on the divergence curve. Default 25\n mauve_scaling_factor: "c" from the paper. Default 5.\n verbose: If True (default), print running time updates\n seed: random seed to initialize k-means cluster assignments.\nReturns:\n mauve: MAUVE score, a number between 0 and 1. Larger values indicate that P and Q are closer,\n frontier_integral: Frontier Integral, a number between 0 and 1. Smaller values indicate that P and Q are closer,\n divergence_curve: a numpy.ndarray of shape (m, 2); plot it with matplotlib to view the divergence curve,\n p_hist: a discrete distribution, which is a quantized version of the text distribution p_text,\n q_hist: same as above, but with q_text.\nExamples:\n\n >>> # faiss segfaults in doctest for some reason, so the .compute call is not tested with doctest\n >>> import datasets\n >>> mauve = datasets.load_metric(\'mauve\')\n >>> predictions = ["hello there", "general kenobi"]\n >>> references = ["hello there", "general kenobi"]\n >>> out = mauve.compute(predictions=predictions, references=references) # doctest: +SKIP\n >>> print(out.mauve) # doctest: +SKIP\n 1.0\n''' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class lowerCAmelCase_ ( datasets.Metric ): def snake_case ( self ): return datasets.MetricInfo( description=_DESCRIPTION ,citation=_CITATION ,homepage='https://github.com/krishnap25/mauve' ,inputs_description=_KWARGS_DESCRIPTION ,features=datasets.Features( { 'predictions': datasets.Value('string' ,id='sequence' ), 'references': datasets.Value('string' ,id='sequence' ), } ) ,codebase_urls=['https://github.com/krishnap25/mauve'] ,reference_urls=[ 'https://arxiv.org/abs/2102.01454', 'https://github.com/krishnap25/mauve', ] ,) def snake_case ( self ,snake_case__ ,snake_case__ ,snake_case__=None ,snake_case__=None ,snake_case__=None ,snake_case__=None ,snake_case__="auto" ,snake_case__=-1 ,snake_case__=0.9 ,snake_case__=5 ,snake_case__=500 ,snake_case__="gpt2-large" ,snake_case__=-1 ,snake_case__=1024 ,snake_case__=25 ,snake_case__=5 ,snake_case__=True ,snake_case__=25 ,): SCREAMING_SNAKE_CASE_ : Union[str, Any] = compute_mauve( p_text=snake_case__ ,q_text=snake_case__ ,p_features=snake_case__ ,q_features=snake_case__ ,p_tokens=snake_case__ ,q_tokens=snake_case__ ,num_buckets=snake_case__ ,pca_max_data=snake_case__ ,kmeans_explained_var=snake_case__ ,kmeans_num_redo=snake_case__ ,kmeans_max_iter=snake_case__ ,featurize_model_name=snake_case__ ,device_id=snake_case__ ,max_text_length=snake_case__ ,divergence_curve_discretization_size=snake_case__ ,mauve_scaling_factor=snake_case__ ,verbose=snake_case__ ,seed=snake_case__ ,) return out
105
import gc import unittest import numpy as np import torch from diffusers import StableDiffusionKDiffusionPipeline from diffusers.utils import slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu enable_full_determinism() @slow @require_torch_gpu class _UpperCamelCase ( unittest.TestCase ): '''simple docstring''' def __UpperCamelCase ( self : Dict ) -> Tuple: """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() def __UpperCamelCase ( self : Optional[int] ) -> int: """simple docstring""" SCREAMING_SNAKE_CASE : Optional[Any] = StableDiffusionKDiffusionPipeline.from_pretrained("CompVis/stable-diffusion-v1-4" ) SCREAMING_SNAKE_CASE : str = sd_pipe.to(a ) sd_pipe.set_progress_bar_config(disable=a ) sd_pipe.set_scheduler("sample_euler" ) SCREAMING_SNAKE_CASE : Optional[int] = "A painting of a squirrel eating a burger" SCREAMING_SNAKE_CASE : Any = torch.manual_seed(0 ) SCREAMING_SNAKE_CASE : List[Any] = sd_pipe([prompt] , generator=a , guidance_scale=9.0 , num_inference_steps=20 , output_type="np" ) SCREAMING_SNAKE_CASE : Tuple = output.images SCREAMING_SNAKE_CASE : Any = image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) SCREAMING_SNAKE_CASE : Union[str, Any] = np.array([0.0447, 0.0492, 0.0468, 0.0408, 0.0383, 0.0408, 0.0354, 0.0380, 0.0339] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def __UpperCamelCase ( self : List[Any] ) -> Optional[int]: """simple docstring""" SCREAMING_SNAKE_CASE : int = StableDiffusionKDiffusionPipeline.from_pretrained("stabilityai/stable-diffusion-2-1-base" ) SCREAMING_SNAKE_CASE : Tuple = sd_pipe.to(a ) sd_pipe.set_progress_bar_config(disable=a ) sd_pipe.set_scheduler("sample_euler" ) SCREAMING_SNAKE_CASE : List[str] = "A painting of a squirrel eating a burger" SCREAMING_SNAKE_CASE : List[str] = torch.manual_seed(0 ) SCREAMING_SNAKE_CASE : Union[str, Any] = sd_pipe([prompt] , generator=a , guidance_scale=9.0 , num_inference_steps=20 , output_type="np" ) SCREAMING_SNAKE_CASE : List[Any] = output.images SCREAMING_SNAKE_CASE : Tuple = image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) SCREAMING_SNAKE_CASE : int = np.array([0.1237, 0.1320, 0.1438, 0.1359, 0.1390, 0.1132, 0.1277, 0.1175, 0.1112] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 5e-1 def __UpperCamelCase ( self : Tuple ) -> List[Any]: """simple docstring""" SCREAMING_SNAKE_CASE : Dict = StableDiffusionKDiffusionPipeline.from_pretrained("stabilityai/stable-diffusion-2-1-base" ) SCREAMING_SNAKE_CASE : Union[str, Any] = sd_pipe.to(a ) sd_pipe.set_progress_bar_config(disable=a ) sd_pipe.set_scheduler("sample_dpmpp_2m" ) SCREAMING_SNAKE_CASE : str = "A painting of a squirrel eating a burger" SCREAMING_SNAKE_CASE : Any = torch.manual_seed(0 ) SCREAMING_SNAKE_CASE : str = sd_pipe( [prompt] , generator=a , guidance_scale=7.5 , num_inference_steps=15 , output_type="np" , use_karras_sigmas=a , ) SCREAMING_SNAKE_CASE : str = output.images SCREAMING_SNAKE_CASE : Optional[int] = image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) SCREAMING_SNAKE_CASE : int = np.array( [0.1138_1689, 0.1211_2921, 0.138_9457, 0.1254_9606, 0.124_4964, 0.1083_1517, 0.1156_2866, 0.1086_7816, 0.1049_9048] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
25
0
'''simple docstring''' import argparse import json import os import evaluate import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType from accelerate.utils.deepspeed import DummyOptim, DummyScheduler lowerCAmelCase_ : int = 16 lowerCAmelCase_ : Optional[Any] = 32 def UpperCAmelCase ( A : Tuple , A : Optional[int] = 16 , A : int = "bert-base-cased" ): SCREAMING_SNAKE_CASE : List[Any] = AutoTokenizer.from_pretrained(_a ) SCREAMING_SNAKE_CASE : str = load_dataset('''glue''' , '''mrpc''' ) def tokenize_function(A : str ): # max_length=None => use the model max length (it's actually the default) SCREAMING_SNAKE_CASE : Any = tokenizer(examples['''sentence1'''] , examples['''sentence2'''] , truncation=_a , max_length=_a ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset SCREAMING_SNAKE_CASE : Optional[int] = datasets.map( _a , batched=_a , remove_columns=['''idx''', '''sentence1''', '''sentence2'''] , load_from_cache_file=_a ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library SCREAMING_SNAKE_CASE : Union[str, Any] = tokenized_datasets.rename_column('''label''' , '''labels''' ) def collate_fn(A : Tuple ): # On TPU it's best to pad everything to the same length or training will be very slow. if accelerator.distributed_type == DistributedType.TPU: return tokenizer.pad(_a , padding='''max_length''' , max_length=128 , return_tensors='''pt''' ) return tokenizer.pad(_a , padding='''longest''' , return_tensors='''pt''' ) # Instantiate dataloaders. SCREAMING_SNAKE_CASE : Any = DataLoader( tokenized_datasets['''train'''] , shuffle=_a , collate_fn=_a , batch_size=_a ) SCREAMING_SNAKE_CASE : Optional[Any] = DataLoader( tokenized_datasets['''validation'''] , shuffle=_a , collate_fn=_a , batch_size=_a ) return train_dataloader, eval_dataloader def UpperCAmelCase ( A : Dict , A : int ): # Initialize accelerator SCREAMING_SNAKE_CASE : Dict = Accelerator() # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs SCREAMING_SNAKE_CASE : int = config["lr"] SCREAMING_SNAKE_CASE : Any = int(config['''num_epochs'''] ) SCREAMING_SNAKE_CASE : Tuple = int(config['''seed'''] ) SCREAMING_SNAKE_CASE : Tuple = int(config['''batch_size'''] ) SCREAMING_SNAKE_CASE : Dict = args.model_name_or_path set_seed(_a ) SCREAMING_SNAKE_CASE : str = get_dataloaders(_a , _a , _a ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) SCREAMING_SNAKE_CASE : Any = AutoModelForSequenceClassification.from_pretrained(_a , return_dict=_a ) # Instantiate optimizer SCREAMING_SNAKE_CASE : Optional[Any] = ( AdamW if accelerator.state.deepspeed_plugin is None or "optimizer" not in accelerator.state.deepspeed_plugin.deepspeed_config else DummyOptim ) SCREAMING_SNAKE_CASE : Dict = optimizer_cls(params=model.parameters() , lr=_a ) if accelerator.state.deepspeed_plugin is not None: SCREAMING_SNAKE_CASE : Tuple = accelerator.state.deepspeed_plugin.deepspeed_config[ "gradient_accumulation_steps" ] else: SCREAMING_SNAKE_CASE : Union[str, Any] = 1 SCREAMING_SNAKE_CASE : Optional[Any] = (len(_a ) * num_epochs) // gradient_accumulation_steps # Instantiate scheduler if ( accelerator.state.deepspeed_plugin is None or "scheduler" not in accelerator.state.deepspeed_plugin.deepspeed_config ): SCREAMING_SNAKE_CASE : Optional[int] = get_linear_schedule_with_warmup( optimizer=_a , num_warmup_steps=0 , num_training_steps=_a , ) else: SCREAMING_SNAKE_CASE : Dict = DummyScheduler(_a , total_num_steps=_a , warmup_num_steps=0 ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. SCREAMING_SNAKE_CASE : Dict = accelerator.prepare( _a , _a , _a , _a , _a ) # We need to keep track of how many total steps we have iterated over SCREAMING_SNAKE_CASE : Dict = 0 # We also need to keep track of the stating epoch so files are named properly SCREAMING_SNAKE_CASE : Any = 0 # Now we train the model SCREAMING_SNAKE_CASE : Optional[int] = evaluate.load('''glue''' , '''mrpc''' ) SCREAMING_SNAKE_CASE : Optional[Any] = 0 SCREAMING_SNAKE_CASE : str = {} for epoch in range(_a , _a ): model.train() for step, batch in enumerate(_a ): SCREAMING_SNAKE_CASE : Dict = model(**_a ) SCREAMING_SNAKE_CASE : int = outputs.loss SCREAMING_SNAKE_CASE : Tuple = loss / gradient_accumulation_steps accelerator.backward(_a ) if step % gradient_accumulation_steps == 0: optimizer.step() lr_scheduler.step() optimizer.zero_grad() overall_step += 1 model.eval() SCREAMING_SNAKE_CASE : Union[str, Any] = 0 for step, batch in enumerate(_a ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) with torch.no_grad(): SCREAMING_SNAKE_CASE : List[str] = model(**_a ) SCREAMING_SNAKE_CASE : Optional[int] = outputs.logits.argmax(dim=-1 ) # It is slightly faster to call this once, than multiple times SCREAMING_SNAKE_CASE : List[str] = accelerator.gather( (predictions, batch['''labels''']) ) # If we are in a multiprocess environment, the last batch has duplicates if accelerator.use_distributed: if step == len(_a ) - 1: SCREAMING_SNAKE_CASE : str = predictions[: len(eval_dataloader.dataset ) - samples_seen] SCREAMING_SNAKE_CASE : Tuple = references[: len(eval_dataloader.dataset ) - samples_seen] else: samples_seen += references.shape[0] metric.add_batch( predictions=_a , references=_a , ) SCREAMING_SNAKE_CASE : Tuple = metric.compute() # Use accelerator.print to print only on the main process. accelerator.print(F"""epoch {epoch}:""" , _a ) SCREAMING_SNAKE_CASE : Tuple = eval_metric["accuracy"] if best_performance < eval_metric["accuracy"]: SCREAMING_SNAKE_CASE : str = eval_metric["accuracy"] if args.performance_lower_bound is not None: assert ( args.performance_lower_bound <= best_performance ), F"""Best performance metric {best_performance} is lower than the lower bound {args.performance_lower_bound}""" accelerator.wait_for_everyone() if accelerator.is_main_process: with open(os.path.join(args.output_dir , '''all_results.json''' ) , '''w''' ) as f: json.dump(_a , _a ) def UpperCAmelCase ( ): SCREAMING_SNAKE_CASE : Optional[Any] = argparse.ArgumentParser(description='''Simple example of training script tracking peak GPU memory usage.''' ) parser.add_argument( '''--model_name_or_path''' , type=_a , default='''bert-base-cased''' , help='''Path to pretrained model or model identifier from huggingface.co/models.''' , required=_a , ) parser.add_argument( '''--output_dir''' , type=_a , default='''.''' , help='''Optional save directory where all checkpoint folders will be stored. Default is the current working directory.''' , ) parser.add_argument( '''--performance_lower_bound''' , type=_a , default=_a , help='''Optional lower bound for the performance metric. If set, the training will throw error when the performance metric drops below this value.''' , ) parser.add_argument( '''--num_epochs''' , type=_a , default=3 , help='''Number of train epochs.''' , ) SCREAMING_SNAKE_CASE : str = parser.parse_args() SCREAMING_SNAKE_CASE : List[Any] = {"lr": 2e-5, "num_epochs": args.num_epochs, "seed": 42, "batch_size": 16} training_function(_a , _a ) if __name__ == "__main__": main()
527
import unittest import numpy as np from diffusers import LMSDiscreteScheduler, OnnxStableDiffusionInpaintPipeline from diffusers.utils.testing_utils import ( is_onnx_available, load_image, nightly, require_onnxruntime, require_torch_gpu, ) from ..test_pipelines_onnx_common import OnnxPipelineTesterMixin if is_onnx_available(): import onnxruntime as ort class _UpperCamelCase ( __A , unittest.TestCase ): '''simple docstring''' pass @nightly @require_onnxruntime @require_torch_gpu class _UpperCamelCase ( unittest.TestCase ): '''simple docstring''' @property def __UpperCamelCase ( self : List[Any] ) -> List[str]: """simple docstring""" return ( "CUDAExecutionProvider", { "gpu_mem_limit": "15000000000", # 15GB "arena_extend_strategy": "kSameAsRequested", }, ) @property def __UpperCamelCase ( self : int ) -> Optional[Any]: """simple docstring""" SCREAMING_SNAKE_CASE : Optional[Any] = ort.SessionOptions() SCREAMING_SNAKE_CASE : Union[str, Any] = False return options def __UpperCamelCase ( self : List[Any] ) -> List[Any]: """simple docstring""" SCREAMING_SNAKE_CASE : Any = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/in_paint/overture-creations-5sI6fQgYIuo.png" ) SCREAMING_SNAKE_CASE : Optional[Any] = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/in_paint/overture-creations-5sI6fQgYIuo_mask.png" ) SCREAMING_SNAKE_CASE : int = OnnxStableDiffusionInpaintPipeline.from_pretrained( "runwayml/stable-diffusion-inpainting" , revision="onnx" , safety_checker=a , feature_extractor=a , provider=self.gpu_provider , sess_options=self.gpu_options , ) pipe.set_progress_bar_config(disable=a ) SCREAMING_SNAKE_CASE : Optional[Any] = "A red cat sitting on a park bench" SCREAMING_SNAKE_CASE : Tuple = np.random.RandomState(0 ) SCREAMING_SNAKE_CASE : Optional[int] = pipe( prompt=a , image=a , mask_image=a , guidance_scale=7.5 , num_inference_steps=10 , generator=a , output_type="np" , ) SCREAMING_SNAKE_CASE : List[Any] = output.images SCREAMING_SNAKE_CASE : Union[str, Any] = images[0, 255:258, 255:258, -1] assert images.shape == (1, 512, 512, 3) SCREAMING_SNAKE_CASE : int = np.array([0.2514, 0.3007, 0.3517, 0.1790, 0.2382, 0.3167, 0.1944, 0.2273, 0.2464] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3 def __UpperCamelCase ( self : List[Any] ) -> Tuple: """simple docstring""" SCREAMING_SNAKE_CASE : int = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/in_paint/overture-creations-5sI6fQgYIuo.png" ) SCREAMING_SNAKE_CASE : Optional[Any] = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/in_paint/overture-creations-5sI6fQgYIuo_mask.png" ) SCREAMING_SNAKE_CASE : Optional[Any] = LMSDiscreteScheduler.from_pretrained( "runwayml/stable-diffusion-inpainting" , subfolder="scheduler" , revision="onnx" ) SCREAMING_SNAKE_CASE : Union[str, Any] = OnnxStableDiffusionInpaintPipeline.from_pretrained( "runwayml/stable-diffusion-inpainting" , revision="onnx" , scheduler=a , safety_checker=a , feature_extractor=a , provider=self.gpu_provider , sess_options=self.gpu_options , ) pipe.set_progress_bar_config(disable=a ) SCREAMING_SNAKE_CASE : List[Any] = "A red cat sitting on a park bench" SCREAMING_SNAKE_CASE : Dict = np.random.RandomState(0 ) SCREAMING_SNAKE_CASE : Tuple = pipe( prompt=a , image=a , mask_image=a , guidance_scale=7.5 , num_inference_steps=20 , generator=a , output_type="np" , ) SCREAMING_SNAKE_CASE : List[str] = output.images SCREAMING_SNAKE_CASE : Optional[int] = images[0, 255:258, 255:258, -1] assert images.shape == (1, 512, 512, 3) SCREAMING_SNAKE_CASE : Any = np.array([0.0086, 0.0077, 0.0083, 0.0093, 0.0107, 0.0139, 0.0094, 0.0097, 0.0125] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3
25
0
from typing import List, Union import numpy as np from ..utils import add_end_docstrings, is_torch_available, is_vision_available, logging, requires_backends from .base import PIPELINE_INIT_ARGS, Pipeline if is_vision_available(): from PIL import Image from ..image_utils import load_image if is_torch_available(): import torch from ..models.auto.modeling_auto import MODEL_FOR_DEPTH_ESTIMATION_MAPPING __UpperCAmelCase = logging.get_logger(__name__) @add_end_docstrings(__A ) class SCREAMING_SNAKE_CASE ( __A ): """simple docstring""" def __init__( self : List[Any] , *lowerCAmelCase : Optional[Any] , **lowerCAmelCase : Optional[Any] ) -> List[Any]: """simple docstring""" super().__init__(*lowerCAmelCase , **lowerCAmelCase ) requires_backends(self , """vision""" ) self.check_model_type(lowerCAmelCase ) def __call__( self : int , lowerCAmelCase : Union[str, List[str], "Image.Image", List["Image.Image"]] , **lowerCAmelCase : Optional[int] ) -> List[Any]: """simple docstring""" return super().__call__(lowerCAmelCase , **lowerCAmelCase ) def SCREAMING_SNAKE_CASE ( self : Tuple , **lowerCAmelCase : Any ) -> Optional[Any]: """simple docstring""" return {}, {}, {} def SCREAMING_SNAKE_CASE ( self : int , lowerCAmelCase : List[Any] ) -> Tuple: """simple docstring""" __lowerCAmelCase : str = load_image(lowerCAmelCase ) __lowerCAmelCase : Union[str, Any] = image.size __lowerCAmelCase : List[str] = self.image_processor(images=lowerCAmelCase , return_tensors=self.framework ) return model_inputs def SCREAMING_SNAKE_CASE ( self : Optional[int] , lowerCAmelCase : Any ) -> Tuple: """simple docstring""" __lowerCAmelCase : Dict = self.model(**lowerCAmelCase ) return model_outputs def SCREAMING_SNAKE_CASE ( self : List[str] , lowerCAmelCase : Tuple ) -> List[Any]: """simple docstring""" __lowerCAmelCase : List[str] = model_outputs.predicted_depth __lowerCAmelCase : List[str] = torch.nn.functional.interpolate( predicted_depth.unsqueeze(1 ) , size=self.image_size[::-1] , mode="""bicubic""" , align_corners=lowerCAmelCase ) __lowerCAmelCase : List[Any] = prediction.squeeze().cpu().numpy() __lowerCAmelCase : List[Any] = (output * 2_55 / np.max(lowerCAmelCase )).astype("""uint8""" ) __lowerCAmelCase : Any = Image.fromarray(lowerCAmelCase ) __lowerCAmelCase : Optional[int] = {} __lowerCAmelCase : Optional[int] = predicted_depth __lowerCAmelCase : Optional[int] = depth return output_dict
651
from operator import delitem, getitem, setitem import pytest from data_structures.hashing.hash_map import HashMap def lowerCamelCase__ ( _a): return getitem, k def lowerCamelCase__ ( _a , _a): return setitem, k, v def lowerCamelCase__ ( _a): return delitem, k def lowerCamelCase__ ( _a , _a , *_a): try: return fun(_a , *_a), None except Exception as e: return None, e a_ = ( _set('key_a', 'val_a'), _set('key_b', 'val_b'), ) a_ = [ _set('key_a', 'val_a'), _set('key_a', 'val_b'), ] a_ = [ _set('key_a', 'val_a'), _set('key_b', 'val_b'), _del('key_a'), _del('key_b'), _set('key_a', 'val_a'), _del('key_a'), ] a_ = [ _get('key_a'), _del('key_a'), _set('key_a', 'val_a'), _del('key_a'), _del('key_a'), _get('key_a'), ] a_ = [ *[_set(x, x) for x in range(5)], # guaranteed upsize ] a_ = [ *[_set(x, x) for x in range(5)], # guaranteed upsize *[_del(x) for x in range(5)], _set('key_a', 'val_b'), ] @pytest.mark.parametrize( "operations" , ( pytest.param(_add_items , id="add items"), pytest.param(_overwrite_items , id="overwrite items"), pytest.param(_delete_items , id="delete items"), pytest.param(_access_absent_items , id="access absent items"), pytest.param(_add_with_resize_up , id="add with resize up"), pytest.param(_add_with_resize_down , id="add with resize down"), ) , ) def lowerCamelCase__ ( _a): SCREAMING_SNAKE_CASE : Dict = HashMap(initial_block_size=4) SCREAMING_SNAKE_CASE : List[str] = {} for _, (fun, *args) in enumerate(_a): SCREAMING_SNAKE_CASE ,SCREAMING_SNAKE_CASE : Union[str, Any] = _run_operation(_a , _a , *_a) SCREAMING_SNAKE_CASE ,SCREAMING_SNAKE_CASE : List[Any] = _run_operation(_a , _a , *_a) assert my_res == py_res assert str(_a) == str(_a) assert set(_a) == set(_a) assert len(_a) == len(_a) assert set(my.items()) == set(py.items()) def lowerCamelCase__ ( ): def is_public(_a) -> bool: return not name.startswith("_") SCREAMING_SNAKE_CASE : List[str] = {name for name in dir({}) if is_public(_a)} SCREAMING_SNAKE_CASE : Union[str, Any] = {name for name in dir(HashMap()) if is_public(_a)} assert dict_public_names > hash_public_names
25
0
from .imports import is_tqdm_available if is_tqdm_available(): from tqdm.auto import tqdm as _tqdm from ..state import PartialState def snake_case( __magic_name__ = True , *__magic_name__ , **__magic_name__ ) -> Dict: '''simple docstring''' if not is_tqdm_available(): raise ImportError('''Accelerate\'s `tqdm` module requires `tqdm` to be installed. Please run `pip install tqdm`.''' ) lowercase : List[Any] = False if main_process_only: lowercase : Optional[int] = PartialState().local_process_index == 0 return _tqdm(*_a , **_a , disable=_a )
217
from typing import TYPE_CHECKING from ....utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available a_ = {'configuration_van': ['VAN_PRETRAINED_CONFIG_ARCHIVE_MAP', 'VanConfig']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a_ = [ 'VAN_PRETRAINED_MODEL_ARCHIVE_LIST', 'VanForImageClassification', 'VanModel', 'VanPreTrainedModel', ] if TYPE_CHECKING: from .configuration_van import VAN_PRETRAINED_CONFIG_ARCHIVE_MAP, VanConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_van import ( VAN_PRETRAINED_MODEL_ARCHIVE_LIST, VanForImageClassification, VanModel, VanPreTrainedModel, ) else: import sys a_ = _LazyModule(__name__, globals()['__file__'], _import_structure)
25
0
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tokenizers_available, is_torch_available, ) SCREAMING_SNAKE_CASE_ = {'configuration_reformer': ['REFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP', 'ReformerConfig']} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE_ = ['ReformerTokenizer'] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE_ = ['ReformerTokenizerFast'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE_ = [ 'REFORMER_PRETRAINED_MODEL_ARCHIVE_LIST', 'ReformerAttention', 'ReformerForMaskedLM', 'ReformerForQuestionAnswering', 'ReformerForSequenceClassification', 'ReformerLayer', 'ReformerModel', 'ReformerModelWithLMHead', 'ReformerPreTrainedModel', ] if TYPE_CHECKING: from .configuration_reformer import REFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, ReformerConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_reformer import ReformerTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_reformer_fast import ReformerTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_reformer import ( REFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, ReformerAttention, ReformerForMaskedLM, ReformerForQuestionAnswering, ReformerForSequenceClassification, ReformerLayer, ReformerModel, ReformerModelWithLMHead, ReformerPreTrainedModel, ) else: import sys SCREAMING_SNAKE_CASE_ = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
300
from __future__ import annotations def lowerCamelCase__ ( _a): if len(_a) == 0: return [] SCREAMING_SNAKE_CASE ,SCREAMING_SNAKE_CASE : Tuple = min(_a), max(_a) SCREAMING_SNAKE_CASE : Dict = int(max_value - min_value) + 1 SCREAMING_SNAKE_CASE : list[list] = [[] for _ in range(_a)] for i in my_list: buckets[int(i - min_value)].append(_a) return [v for bucket in buckets for v in sorted(_a)] if __name__ == "__main__": from doctest import testmod testmod() assert bucket_sort([4, 5, 3, 2, 1]) == [1, 2, 3, 4, 5] assert bucket_sort([0, 1, -10, 15, 2, -2]) == [-10, -2, 0, 1, 2, 15]
25
0
'''simple docstring''' import gc import unittest import numpy as np import torch from diffusers import StableDiffusionKDiffusionPipeline from diffusers.utils import slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu enable_full_determinism() @slow @require_torch_gpu class __snake_case( unittest.TestCase ): '''simple docstring''' def __snake_case ( self ) -> Tuple: super().tearDown() gc.collect() torch.cuda.empty_cache() def __snake_case ( self ) -> int: lowerCAmelCase = StableDiffusionKDiffusionPipeline.from_pretrained("""CompVis/stable-diffusion-v1-4""" ) lowerCAmelCase = sd_pipe.to(A_ ) sd_pipe.set_progress_bar_config(disable=A_ ) sd_pipe.set_scheduler("""sample_euler""" ) lowerCAmelCase = "A painting of a squirrel eating a burger" lowerCAmelCase = torch.manual_seed(0 ) lowerCAmelCase = sd_pipe([prompt] , generator=A_ , guidance_scale=9.0 , num_inference_steps=20 , output_type="""np""" ) lowerCAmelCase = output.images lowerCAmelCase = image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) lowerCAmelCase = np.array([0.0_4_4_7, 0.0_4_9_2, 0.0_4_6_8, 0.0_4_0_8, 0.0_3_8_3, 0.0_4_0_8, 0.0_3_5_4, 0.0_3_8_0, 0.0_3_3_9] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def __snake_case ( self ) -> Optional[int]: lowerCAmelCase = StableDiffusionKDiffusionPipeline.from_pretrained("""stabilityai/stable-diffusion-2-1-base""" ) lowerCAmelCase = sd_pipe.to(A_ ) sd_pipe.set_progress_bar_config(disable=A_ ) sd_pipe.set_scheduler("""sample_euler""" ) lowerCAmelCase = "A painting of a squirrel eating a burger" lowerCAmelCase = torch.manual_seed(0 ) lowerCAmelCase = sd_pipe([prompt] , generator=A_ , guidance_scale=9.0 , num_inference_steps=20 , output_type="""np""" ) lowerCAmelCase = output.images lowerCAmelCase = image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) lowerCAmelCase = np.array([0.1_2_3_7, 0.1_3_2_0, 0.1_4_3_8, 0.1_3_5_9, 0.1_3_9_0, 0.1_1_3_2, 0.1_2_7_7, 0.1_1_7_5, 0.1_1_1_2] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 5e-1 def __snake_case ( self ) -> List[Any]: lowerCAmelCase = StableDiffusionKDiffusionPipeline.from_pretrained("""stabilityai/stable-diffusion-2-1-base""" ) lowerCAmelCase = sd_pipe.to(A_ ) sd_pipe.set_progress_bar_config(disable=A_ ) sd_pipe.set_scheduler("""sample_dpmpp_2m""" ) lowerCAmelCase = "A painting of a squirrel eating a burger" lowerCAmelCase = torch.manual_seed(0 ) lowerCAmelCase = sd_pipe( [prompt] , generator=A_ , guidance_scale=7.5 , num_inference_steps=15 , output_type="""np""" , use_karras_sigmas=A_ , ) lowerCAmelCase = output.images lowerCAmelCase = image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) lowerCAmelCase = np.array( [0.1_1_3_8_1_6_8_9, 0.1_2_1_1_2_9_2_1, 0.1_3_8_9_4_5_7, 0.1_2_5_4_9_6_0_6, 0.1_2_4_4_9_6_4, 0.1_0_8_3_1_5_1_7, 0.1_1_5_6_2_8_6_6, 0.1_0_8_6_7_8_1_6, 0.1_0_4_9_9_0_4_8] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
433
a_ = frozenset( [ 'prompt', 'height', 'width', 'guidance_scale', 'negative_prompt', 'prompt_embeds', 'negative_prompt_embeds', 'cross_attention_kwargs', ] ) a_ = frozenset(['prompt', 'negative_prompt']) a_ = frozenset([]) a_ = frozenset(['image']) a_ = frozenset( [ 'image', 'height', 'width', 'guidance_scale', ] ) a_ = frozenset(['image']) a_ = frozenset( [ 'prompt', 'image', 'height', 'width', 'guidance_scale', 'negative_prompt', 'prompt_embeds', 'negative_prompt_embeds', ] ) a_ = frozenset(['prompt', 'image', 'negative_prompt']) a_ = frozenset( [ # Text guided image variation with an image mask 'prompt', 'image', 'mask_image', 'height', 'width', 'guidance_scale', 'negative_prompt', 'prompt_embeds', 'negative_prompt_embeds', ] ) a_ = frozenset(['prompt', 'image', 'mask_image', 'negative_prompt']) a_ = frozenset( [ # image variation with an image mask 'image', 'mask_image', 'height', 'width', 'guidance_scale', ] ) a_ = frozenset(['image', 'mask_image']) a_ = frozenset( [ 'example_image', 'image', 'mask_image', 'height', 'width', 'guidance_scale', ] ) a_ = frozenset(['example_image', 'image', 'mask_image']) a_ = frozenset(['class_labels']) a_ = frozenset(['class_labels']) a_ = frozenset(['batch_size']) a_ = frozenset([]) a_ = frozenset(['batch_size']) a_ = frozenset([]) a_ = frozenset( [ 'prompt', 'audio_length_in_s', 'guidance_scale', 'negative_prompt', 'prompt_embeds', 'negative_prompt_embeds', 'cross_attention_kwargs', ] ) a_ = frozenset(['prompt', 'negative_prompt']) a_ = frozenset(['input_tokens']) a_ = frozenset(['input_tokens'])
25
0
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available snake_case = {} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case = ['''BartphoTokenizer'''] if TYPE_CHECKING: try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_bartpho import BartphoTokenizer else: import sys snake_case = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
103
# Lint as: python3 import sys from collections.abc import Mapping from typing import TYPE_CHECKING, Dict, Optional import numpy as np import pyarrow as pa from .. import config from ..utils.logging import get_logger from ..utils.py_utils import map_nested from .formatting import TensorFormatter if TYPE_CHECKING: import jax import jaxlib a_ = get_logger() a_ = None class _UpperCamelCase ( TensorFormatter[Mapping, 'jax.Array', Mapping] ): '''simple docstring''' def __init__( self : Optional[Any] , a : str=None , a : List[Any]=None , **a : Any ) -> Optional[Any]: """simple docstring""" super().__init__(features=a ) import jax from jaxlib.xla_client import Device if isinstance(a , a ): raise ValueError( F"Expected {device} to be a `str` not {type(a )}, as `jaxlib.xla_extension.Device` " "is not serializable neither with `pickle` nor with `dill`. Instead you can surround " "the device with `str()` to get its string identifier that will be internally mapped " "to the actual `jaxlib.xla_extension.Device`." ) SCREAMING_SNAKE_CASE : List[str] = device if isinstance(a , a ) else str(jax.devices()[0] ) # using global variable since `jaxlib.xla_extension.Device` is not serializable neither # with `pickle` nor with `dill`, so we need to use a global variable instead global DEVICE_MAPPING if DEVICE_MAPPING is None: SCREAMING_SNAKE_CASE : str = self._map_devices_to_str() if self.device not in list(DEVICE_MAPPING.keys() ): logger.warning( F"Device with string identifier {self.device} not listed among the available " F"devices: {list(DEVICE_MAPPING.keys() )}, so falling back to the default " F"device: {str(jax.devices()[0] )}." ) SCREAMING_SNAKE_CASE : Any = str(jax.devices()[0] ) SCREAMING_SNAKE_CASE : Any = jnp_array_kwargs @staticmethod def __UpperCamelCase ( ) -> Dict[str, "jaxlib.xla_extension.Device"]: """simple docstring""" import jax return {str(a ): device for device in jax.devices()} def __UpperCamelCase ( self : Dict , a : Tuple ) -> str: """simple docstring""" import jax import jax.numpy as jnp if isinstance(a , a ) and column: if all( isinstance(a , jax.Array ) and x.shape == column[0].shape and x.dtype == column[0].dtype for x in column ): return jnp.stack(a , axis=0 ) return column def __UpperCamelCase ( self : Dict , a : str ) -> str: """simple docstring""" import jax import jax.numpy as jnp if isinstance(a , (str, bytes, type(a )) ): return value elif isinstance(a , (np.character, np.ndarray) ) and np.issubdtype(value.dtype , np.character ): return value.tolist() SCREAMING_SNAKE_CASE : Union[str, Any] = {} if isinstance(a , (np.number, np.ndarray) ) and np.issubdtype(value.dtype , np.integer ): # the default int precision depends on the jax config # see https://jax.readthedocs.io/en/latest/notebooks/Common_Gotchas_in_JAX.html#double-64bit-precision if jax.config.jax_enable_xaa: SCREAMING_SNAKE_CASE : Dict = {"dtype": jnp.intaa} else: SCREAMING_SNAKE_CASE : str = {"dtype": jnp.intaa} elif isinstance(a , (np.number, np.ndarray) ) and np.issubdtype(value.dtype , np.floating ): SCREAMING_SNAKE_CASE : int = {"dtype": jnp.floataa} elif config.PIL_AVAILABLE and "PIL" in sys.modules: import PIL.Image if isinstance(a , PIL.Image.Image ): SCREAMING_SNAKE_CASE : Dict = np.asarray(a ) # using global variable since `jaxlib.xla_extension.Device` is not serializable neither # with `pickle` nor with `dill`, so we need to use a global variable instead global DEVICE_MAPPING if DEVICE_MAPPING is None: SCREAMING_SNAKE_CASE : Optional[Any] = self._map_devices_to_str() with jax.default_device(DEVICE_MAPPING[self.device] ): # calling jnp.array on a np.ndarray does copy the data # see https://github.com/google/jax/issues/4486 return jnp.array(a , **{**default_dtype, **self.jnp_array_kwargs} ) def __UpperCamelCase ( self : Any , a : List[str] ) -> Dict: """simple docstring""" import jax # support for torch, tf, jax etc. if config.TORCH_AVAILABLE and "torch" in sys.modules: import torch if isinstance(a , torch.Tensor ): return self._tensorize(data_struct.detach().cpu().numpy()[()] ) if hasattr(a , "__array__" ) and not isinstance(a , jax.Array ): SCREAMING_SNAKE_CASE : Optional[int] = data_struct.__array__() # support for nested types like struct of list of struct if isinstance(a , np.ndarray ): if data_struct.dtype == object: # jax arrays cannot be instantied from an array of objects return self._consolidate([self.recursive_tensorize(a ) for substruct in data_struct] ) elif isinstance(a , (list, tuple) ): return self._consolidate([self.recursive_tensorize(a ) for substruct in data_struct] ) return self._tensorize(a ) def __UpperCamelCase ( self : Optional[Any] , a : dict ) -> Dict: """simple docstring""" return map_nested(self._recursive_tensorize , a , map_list=a ) def __UpperCamelCase ( self : Dict , a : pa.Table ) -> Mapping: """simple docstring""" SCREAMING_SNAKE_CASE : Optional[Any] = self.numpy_arrow_extractor().extract_row(a ) SCREAMING_SNAKE_CASE : List[Any] = self.python_features_decoder.decode_row(a ) return self.recursive_tensorize(a ) def __UpperCamelCase ( self : Optional[int] , a : pa.Table ) -> "jax.Array": """simple docstring""" SCREAMING_SNAKE_CASE : Optional[int] = self.numpy_arrow_extractor().extract_column(a ) SCREAMING_SNAKE_CASE : Optional[Any] = self.python_features_decoder.decode_column(a , pa_table.column_names[0] ) SCREAMING_SNAKE_CASE : Tuple = self.recursive_tensorize(a ) SCREAMING_SNAKE_CASE : Optional[int] = self._consolidate(a ) return column def __UpperCamelCase ( self : List[Any] , a : pa.Table ) -> Mapping: """simple docstring""" SCREAMING_SNAKE_CASE : str = self.numpy_arrow_extractor().extract_batch(a ) SCREAMING_SNAKE_CASE : str = self.python_features_decoder.decode_batch(a ) SCREAMING_SNAKE_CASE : List[Any] = self.recursive_tensorize(a ) for column_name in batch: SCREAMING_SNAKE_CASE : List[Any] = self._consolidate(batch[column_name] ) return batch
25
0
import string def UpperCAmelCase ( a_ ) -> Optional[Any]: """simple docstring""" __A = "" for i in sequence: __A = ord(_a ) if 6_5 <= extract <= 9_0: output += chr(1_5_5 - extract ) elif 9_7 <= extract <= 1_2_2: output += chr(2_1_9 - extract ) else: output += i return output def UpperCAmelCase ( a_ ) -> Tuple: """simple docstring""" __A = string.ascii_letters __A = string.ascii_lowercase[::-1] + string.ascii_uppercase[::-1] return "".join( letters_reversed[letters.index(_a )] if c in letters else c for c in sequence ) def UpperCAmelCase ( ) -> Union[str, Any]: """simple docstring""" from timeit import timeit print("Running performance benchmarks..." ) __A = "from string import printable ; from __main__ import atbash, atbash_slow" print(F'''> atbash_slow(): {timeit('atbash_slow(printable)' , setup=_a )} seconds''' ) print(F'''> atbash(): {timeit('atbash(printable)' , setup=_a )} seconds''' ) if __name__ == "__main__": for example in ("ABCDEFGH", "123GGjj", "testStringtest", "with space"): print(f'''{example} encrypted in atbash: {atbash(example)}''') benchmark()
55
import unittest from transformers import ( MODEL_FOR_OBJECT_DETECTION_MAPPING, AutoFeatureExtractor, AutoModelForObjectDetection, ObjectDetectionPipeline, is_vision_available, pipeline, ) from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_pytesseract, require_tf, require_timm, require_torch, require_vision, slow, ) from .test_pipelines_common import ANY if is_vision_available(): from PIL import Image else: class _UpperCamelCase : '''simple docstring''' @staticmethod def __UpperCamelCase ( *a : str , **a : int ) -> str: """simple docstring""" pass @is_pipeline_test @require_vision @require_timm @require_torch class _UpperCamelCase ( unittest.TestCase ): '''simple docstring''' lowerCamelCase__ =MODEL_FOR_OBJECT_DETECTION_MAPPING def __UpperCamelCase ( self : Optional[Any] , a : str , a : Optional[Any] , a : Union[str, Any] ) -> List[Any]: """simple docstring""" SCREAMING_SNAKE_CASE : Dict = ObjectDetectionPipeline(model=a , image_processor=a ) return object_detector, ["./tests/fixtures/tests_samples/COCO/000000039769.png"] def __UpperCamelCase ( self : List[Any] , a : Optional[int] , a : Optional[int] ) -> int: """simple docstring""" SCREAMING_SNAKE_CASE : Union[str, Any] = object_detector("./tests/fixtures/tests_samples/COCO/000000039769.png" , threshold=0.0 ) self.assertGreater(len(a ) , 0 ) for detected_object in outputs: self.assertEqual( a , { "score": ANY(a ), "label": ANY(a ), "box": {"xmin": ANY(a ), "ymin": ANY(a ), "xmax": ANY(a ), "ymax": ANY(a )}, } , ) import datasets SCREAMING_SNAKE_CASE : Any = datasets.load_dataset("hf-internal-testing/fixtures_image_utils" , "image" , split="test" ) SCREAMING_SNAKE_CASE : Dict = [ Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ), "http://images.cocodataset.org/val2017/000000039769.jpg", # RGBA dataset[0]["file"], # LA dataset[1]["file"], # L dataset[2]["file"], ] SCREAMING_SNAKE_CASE : Tuple = object_detector(a , threshold=0.0 ) self.assertEqual(len(a ) , len(a ) ) for outputs in batch_outputs: self.assertGreater(len(a ) , 0 ) for detected_object in outputs: self.assertEqual( a , { "score": ANY(a ), "label": ANY(a ), "box": {"xmin": ANY(a ), "ymin": ANY(a ), "xmax": ANY(a ), "ymax": ANY(a )}, } , ) @require_tf @unittest.skip("Object detection not implemented in TF" ) def __UpperCamelCase ( self : Optional[int] ) -> str: """simple docstring""" pass @require_torch def __UpperCamelCase ( self : Tuple ) -> List[Any]: """simple docstring""" SCREAMING_SNAKE_CASE : str = "hf-internal-testing/tiny-detr-mobilenetsv3" SCREAMING_SNAKE_CASE : Dict = AutoModelForObjectDetection.from_pretrained(a ) SCREAMING_SNAKE_CASE : Any = AutoFeatureExtractor.from_pretrained(a ) SCREAMING_SNAKE_CASE : Tuple = ObjectDetectionPipeline(model=a , feature_extractor=a ) SCREAMING_SNAKE_CASE : int = object_detector("http://images.cocodataset.org/val2017/000000039769.jpg" , threshold=0.0 ) self.assertEqual( nested_simplify(a , decimals=4 ) , [ {"score": 0.3376, "label": "LABEL_0", "box": {"xmin": 159, "ymin": 120, "xmax": 480, "ymax": 359}}, {"score": 0.3376, "label": "LABEL_0", "box": {"xmin": 159, "ymin": 120, "xmax": 480, "ymax": 359}}, ] , ) SCREAMING_SNAKE_CASE : Dict = object_detector( [ "http://images.cocodataset.org/val2017/000000039769.jpg", "http://images.cocodataset.org/val2017/000000039769.jpg", ] , threshold=0.0 , ) self.assertEqual( nested_simplify(a , decimals=4 ) , [ [ {"score": 0.3376, "label": "LABEL_0", "box": {"xmin": 159, "ymin": 120, "xmax": 480, "ymax": 359}}, {"score": 0.3376, "label": "LABEL_0", "box": {"xmin": 159, "ymin": 120, "xmax": 480, "ymax": 359}}, ], [ {"score": 0.3376, "label": "LABEL_0", "box": {"xmin": 159, "ymin": 120, "xmax": 480, "ymax": 359}}, {"score": 0.3376, "label": "LABEL_0", "box": {"xmin": 159, "ymin": 120, "xmax": 480, "ymax": 359}}, ], ] , ) @require_torch @slow def __UpperCamelCase ( self : str ) -> List[Any]: """simple docstring""" SCREAMING_SNAKE_CASE : Dict = "facebook/detr-resnet-50" SCREAMING_SNAKE_CASE : Union[str, Any] = AutoModelForObjectDetection.from_pretrained(a ) SCREAMING_SNAKE_CASE : List[str] = AutoFeatureExtractor.from_pretrained(a ) SCREAMING_SNAKE_CASE : int = ObjectDetectionPipeline(model=a , feature_extractor=a ) SCREAMING_SNAKE_CASE : Union[str, Any] = object_detector("http://images.cocodataset.org/val2017/000000039769.jpg" ) self.assertEqual( nested_simplify(a , decimals=4 ) , [ {"score": 0.9982, "label": "remote", "box": {"xmin": 40, "ymin": 70, "xmax": 175, "ymax": 117}}, {"score": 0.9960, "label": "remote", "box": {"xmin": 333, "ymin": 72, "xmax": 368, "ymax": 187}}, {"score": 0.9955, "label": "couch", "box": {"xmin": 0, "ymin": 1, "xmax": 639, "ymax": 473}}, {"score": 0.9988, "label": "cat", "box": {"xmin": 13, "ymin": 52, "xmax": 314, "ymax": 470}}, {"score": 0.9987, "label": "cat", "box": {"xmin": 345, "ymin": 23, "xmax": 640, "ymax": 368}}, ] , ) SCREAMING_SNAKE_CASE : int = object_detector( [ "http://images.cocodataset.org/val2017/000000039769.jpg", "http://images.cocodataset.org/val2017/000000039769.jpg", ] ) self.assertEqual( nested_simplify(a , decimals=4 ) , [ [ {"score": 0.9982, "label": "remote", "box": {"xmin": 40, "ymin": 70, "xmax": 175, "ymax": 117}}, {"score": 0.9960, "label": "remote", "box": {"xmin": 333, "ymin": 72, "xmax": 368, "ymax": 187}}, {"score": 0.9955, "label": "couch", "box": {"xmin": 0, "ymin": 1, "xmax": 639, "ymax": 473}}, {"score": 0.9988, "label": "cat", "box": {"xmin": 13, "ymin": 52, "xmax": 314, "ymax": 470}}, {"score": 0.9987, "label": "cat", "box": {"xmin": 345, "ymin": 23, "xmax": 640, "ymax": 368}}, ], [ {"score": 0.9982, "label": "remote", "box": {"xmin": 40, "ymin": 70, "xmax": 175, "ymax": 117}}, {"score": 0.9960, "label": "remote", "box": {"xmin": 333, "ymin": 72, "xmax": 368, "ymax": 187}}, {"score": 0.9955, "label": "couch", "box": {"xmin": 0, "ymin": 1, "xmax": 639, "ymax": 473}}, {"score": 0.9988, "label": "cat", "box": {"xmin": 13, "ymin": 52, "xmax": 314, "ymax": 470}}, {"score": 0.9987, "label": "cat", "box": {"xmin": 345, "ymin": 23, "xmax": 640, "ymax": 368}}, ], ] , ) @require_torch @slow def __UpperCamelCase ( self : str ) -> str: """simple docstring""" SCREAMING_SNAKE_CASE : Tuple = "facebook/detr-resnet-50" SCREAMING_SNAKE_CASE : Tuple = pipeline("object-detection" , model=a ) SCREAMING_SNAKE_CASE : Tuple = object_detector("http://images.cocodataset.org/val2017/000000039769.jpg" ) self.assertEqual( nested_simplify(a , decimals=4 ) , [ {"score": 0.9982, "label": "remote", "box": {"xmin": 40, "ymin": 70, "xmax": 175, "ymax": 117}}, {"score": 0.9960, "label": "remote", "box": {"xmin": 333, "ymin": 72, "xmax": 368, "ymax": 187}}, {"score": 0.9955, "label": "couch", "box": {"xmin": 0, "ymin": 1, "xmax": 639, "ymax": 473}}, {"score": 0.9988, "label": "cat", "box": {"xmin": 13, "ymin": 52, "xmax": 314, "ymax": 470}}, {"score": 0.9987, "label": "cat", "box": {"xmin": 345, "ymin": 23, "xmax": 640, "ymax": 368}}, ] , ) SCREAMING_SNAKE_CASE : str = object_detector( [ "http://images.cocodataset.org/val2017/000000039769.jpg", "http://images.cocodataset.org/val2017/000000039769.jpg", ] ) self.assertEqual( nested_simplify(a , decimals=4 ) , [ [ {"score": 0.9982, "label": "remote", "box": {"xmin": 40, "ymin": 70, "xmax": 175, "ymax": 117}}, {"score": 0.9960, "label": "remote", "box": {"xmin": 333, "ymin": 72, "xmax": 368, "ymax": 187}}, {"score": 0.9955, "label": "couch", "box": {"xmin": 0, "ymin": 1, "xmax": 639, "ymax": 473}}, {"score": 0.9988, "label": "cat", "box": {"xmin": 13, "ymin": 52, "xmax": 314, "ymax": 470}}, {"score": 0.9987, "label": "cat", "box": {"xmin": 345, "ymin": 23, "xmax": 640, "ymax": 368}}, ], [ {"score": 0.9982, "label": "remote", "box": {"xmin": 40, "ymin": 70, "xmax": 175, "ymax": 117}}, {"score": 0.9960, "label": "remote", "box": {"xmin": 333, "ymin": 72, "xmax": 368, "ymax": 187}}, {"score": 0.9955, "label": "couch", "box": {"xmin": 0, "ymin": 1, "xmax": 639, "ymax": 473}}, {"score": 0.9988, "label": "cat", "box": {"xmin": 13, "ymin": 52, "xmax": 314, "ymax": 470}}, {"score": 0.9987, "label": "cat", "box": {"xmin": 345, "ymin": 23, "xmax": 640, "ymax": 368}}, ], ] , ) @require_torch @slow def __UpperCamelCase ( self : str ) -> str: """simple docstring""" SCREAMING_SNAKE_CASE : Optional[int] = 0.9985 SCREAMING_SNAKE_CASE : int = "facebook/detr-resnet-50" SCREAMING_SNAKE_CASE : List[str] = pipeline("object-detection" , model=a ) SCREAMING_SNAKE_CASE : str = object_detector("http://images.cocodataset.org/val2017/000000039769.jpg" , threshold=a ) self.assertEqual( nested_simplify(a , decimals=4 ) , [ {"score": 0.9988, "label": "cat", "box": {"xmin": 13, "ymin": 52, "xmax": 314, "ymax": 470}}, {"score": 0.9987, "label": "cat", "box": {"xmin": 345, "ymin": 23, "xmax": 640, "ymax": 368}}, ] , ) @require_torch @require_pytesseract @slow def __UpperCamelCase ( self : str ) -> Tuple: """simple docstring""" SCREAMING_SNAKE_CASE : Any = "Narsil/layoutlmv3-finetuned-funsd" SCREAMING_SNAKE_CASE : Dict = 0.9993 SCREAMING_SNAKE_CASE : str = pipeline("object-detection" , model=a , threshold=a ) SCREAMING_SNAKE_CASE : List[Any] = object_detector( "https://huggingface.co/spaces/impira/docquery/resolve/2359223c1837a7587402bda0f2643382a6eefeab/invoice.png" ) self.assertEqual( nested_simplify(a , decimals=4 ) , [ {"score": 0.9993, "label": "I-ANSWER", "box": {"xmin": 294, "ymin": 254, "xmax": 343, "ymax": 264}}, {"score": 0.9993, "label": "I-ANSWER", "box": {"xmin": 294, "ymin": 254, "xmax": 343, "ymax": 264}}, ] , )
25
0
"""simple docstring""" import json import os from typing import Optional, Tuple from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging _UpperCamelCase : Tuple = logging.get_logger(__name__) _UpperCamelCase : Dict = {"vocab_file": "vocab.json"} _UpperCamelCase : Union[str, Any] = { "vocab_file": { "mgp-str": "https://huggingface.co/alibaba-damo/mgp-str-base/blob/main/vocab.json", } } _UpperCamelCase : Optional[Any] = {"mgp-str": 27} class UpperCAmelCase_ ( __A): lowerCamelCase__ : Optional[int] = VOCAB_FILES_NAMES lowerCamelCase__ : List[Any] = PRETRAINED_VOCAB_FILES_MAP lowerCamelCase__ : Union[str, Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES def __init__( self , a , a="[GO]" , a="[GO]" , a="[s]" , a="[GO]" , **a ) -> Optional[Any]: super().__init__( unk_token=a , bos_token=a , eos_token=a , pad_token=a , **a , ) with open(a , encoding='utf-8' ) as vocab_handle: lowercase__ : Any = json.load(a ) lowercase__ : Dict = {v: k for k, v in self.vocab.items()} @property def _UpperCAmelCase ( self ) -> List[Any]: return len(self.vocab ) def _UpperCAmelCase ( self ) -> Any: return dict(self.vocab , **self.added_tokens_encoder ) def _UpperCAmelCase ( self , a ) -> List[Any]: lowercase__ : Any = [] for s in text: char_tokens.extend(a ) return char_tokens def _UpperCAmelCase ( self , a ) -> int: return self.vocab.get(a , self.vocab.get(self.unk_token ) ) def _UpperCAmelCase ( self , a ) -> List[str]: return self.decoder.get(a ) def _UpperCAmelCase ( self , a , a = None ) -> Tuple[str]: if not os.path.isdir(a ): logger.error('Vocabulary path ({}) should be a directory'.format(a ) ) return lowercase__ : List[str] = os.path.join( a , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) with open(a , 'w' , encoding='utf-8' ) as f: f.write(json.dumps(self.vocab , indent=2 , sort_keys=a , ensure_ascii=a ) + '\n' ) return (vocab_file,)
599
def lowerCamelCase__ ( _a): if not isinstance(_a , _a): SCREAMING_SNAKE_CASE : Tuple = f"Input value of [number={number}] must be an integer" raise TypeError(_a) if number < 0: return False SCREAMING_SNAKE_CASE : Union[str, Any] = number * number while number > 0: if number % 10 != number_square % 10: return False number //= 10 number_square //= 10 return True if __name__ == "__main__": import doctest doctest.testmod()
25
0
"""simple docstring""" import argparse import torch from torch import nn from transformers import MBartConfig, MBartForConditionalGeneration def __SCREAMING_SNAKE_CASE ( lowerCamelCase_: Optional[Any] ): """simple docstring""" snake_case : Optional[Any] = [ "encoder.version", "decoder.version", "model.encoder.version", "model.decoder.version", "_float_tensor", "decoder.output_projection.weight", ] for k in ignore_keys: state_dict.pop(_a , _a ) def __SCREAMING_SNAKE_CASE ( lowerCamelCase_: str ): """simple docstring""" snake_case : Union[str, Any] = emb.weight.shape snake_case : int = nn.Linear(_a , _a , bias=_a ) snake_case : str = emb.weight.data return lin_layer def __SCREAMING_SNAKE_CASE ( lowerCamelCase_: Optional[Any] , lowerCamelCase_: str="facebook/mbart-large-en-ro" , lowerCamelCase_: Union[str, Any]=False , lowerCamelCase_: str=False ): """simple docstring""" snake_case : List[str] = torch.load(_a , map_location="cpu" )["model"] remove_ignore_keys_(_a ) snake_case : List[Any] = state_dict["encoder.embed_tokens.weight"].shape[0] snake_case : Optional[int] = MBartConfig.from_pretrained(_a , vocab_size=_a ) if mbart_aa and finetuned: snake_case : int = "relu" snake_case : Optional[Any] = state_dict["decoder.embed_tokens.weight"] snake_case : Optional[Any] = MBartForConditionalGeneration(_a ) model.model.load_state_dict(_a ) if finetuned: snake_case : str = make_linear_from_emb(model.model.shared ) return model if __name__ == "__main__": A = argparse.ArgumentParser() # Required parameters parser.add_argument( 'fairseq_path', type=str, help='bart.large, bart.large.cnn or a path to a model.pt on local filesystem.' ) parser.add_argument('pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model.') parser.add_argument( '--hf_config', default='facebook/mbart-large-cc25', type=str, help='Which huggingface architecture to use: mbart-large', ) parser.add_argument('--mbart_50', action='store_true', help='whether the model is mMART-50 checkpoint') parser.add_argument('--finetuned', action='store_true', help='whether the model is a fine-tuned checkpoint') A = parser.parse_args() A = convert_fairseq_mbart_checkpoint_from_disk( args.fairseq_path, hf_config_path=args.hf_config, finetuned=args.finetuned, mbart_aa=args.mbart_aa ) model.save_pretrained(args.pytorch_dump_folder_path)
449
import os import tempfile import unittest from transformers import DistilBertConfig, is_torch_available from transformers.testing_utils import require_torch, require_torch_gpu, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST, DistilBertForMaskedLM, DistilBertForMultipleChoice, DistilBertForQuestionAnswering, DistilBertForSequenceClassification, DistilBertForTokenClassification, DistilBertModel, ) class _UpperCamelCase ( __A ): '''simple docstring''' def __init__( self : Dict , a : Tuple , a : Any=13 , a : Any=7 , a : Union[str, Any]=True , a : List[Any]=True , a : List[str]=False , a : List[str]=True , a : Any=99 , a : str=32 , a : Any=5 , a : Optional[int]=4 , a : Union[str, Any]=37 , a : Dict="gelu" , a : List[Any]=0.1 , a : Optional[Any]=0.1 , a : List[str]=512 , a : Union[str, Any]=16 , a : str=2 , a : Dict=0.02 , a : Optional[int]=3 , a : Union[str, Any]=4 , a : int=None , ) -> Tuple: """simple docstring""" SCREAMING_SNAKE_CASE : Dict = parent SCREAMING_SNAKE_CASE : Any = batch_size SCREAMING_SNAKE_CASE : Optional[int] = seq_length SCREAMING_SNAKE_CASE : List[Any] = is_training SCREAMING_SNAKE_CASE : int = use_input_mask SCREAMING_SNAKE_CASE : Tuple = use_token_type_ids SCREAMING_SNAKE_CASE : str = use_labels SCREAMING_SNAKE_CASE : Any = vocab_size SCREAMING_SNAKE_CASE : List[Any] = hidden_size SCREAMING_SNAKE_CASE : str = num_hidden_layers SCREAMING_SNAKE_CASE : Optional[Any] = num_attention_heads SCREAMING_SNAKE_CASE : Tuple = intermediate_size SCREAMING_SNAKE_CASE : Optional[int] = hidden_act SCREAMING_SNAKE_CASE : Dict = hidden_dropout_prob SCREAMING_SNAKE_CASE : str = attention_probs_dropout_prob SCREAMING_SNAKE_CASE : Tuple = max_position_embeddings SCREAMING_SNAKE_CASE : List[str] = type_vocab_size SCREAMING_SNAKE_CASE : List[str] = type_sequence_label_size SCREAMING_SNAKE_CASE : Optional[Any] = initializer_range SCREAMING_SNAKE_CASE : Tuple = num_labels SCREAMING_SNAKE_CASE : Tuple = num_choices SCREAMING_SNAKE_CASE : Optional[Any] = scope def __UpperCamelCase ( self : Union[str, Any] ) -> List[str]: """simple docstring""" SCREAMING_SNAKE_CASE : Dict = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) SCREAMING_SNAKE_CASE : Union[str, Any] = None if self.use_input_mask: SCREAMING_SNAKE_CASE : str = random_attention_mask([self.batch_size, self.seq_length] ) SCREAMING_SNAKE_CASE : int = None SCREAMING_SNAKE_CASE : List[Any] = None SCREAMING_SNAKE_CASE : List[str] = None if self.use_labels: SCREAMING_SNAKE_CASE : Tuple = ids_tensor([self.batch_size] , self.type_sequence_label_size ) SCREAMING_SNAKE_CASE : str = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) SCREAMING_SNAKE_CASE : Optional[Any] = ids_tensor([self.batch_size] , self.num_choices ) SCREAMING_SNAKE_CASE : int = self.get_config() return config, input_ids, input_mask, sequence_labels, token_labels, choice_labels def __UpperCamelCase ( self : Dict ) -> str: """simple docstring""" return DistilBertConfig( vocab_size=self.vocab_size , dim=self.hidden_size , n_layers=self.num_hidden_layers , n_heads=self.num_attention_heads , hidden_dim=self.intermediate_size , hidden_act=self.hidden_act , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , ) def __UpperCamelCase ( self : Optional[Any] , a : int , a : Optional[int] , a : Optional[int] , a : Dict , a : str , a : str ) -> int: """simple docstring""" SCREAMING_SNAKE_CASE : int = DistilBertModel(config=a ) model.to(a ) model.eval() SCREAMING_SNAKE_CASE : Optional[Any] = model(a , a ) SCREAMING_SNAKE_CASE : Optional[Any] = model(a ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def __UpperCamelCase ( self : Tuple , a : Optional[int] , a : Dict , a : Tuple , a : int , a : int , a : Any ) -> Dict: """simple docstring""" SCREAMING_SNAKE_CASE : Optional[int] = DistilBertForMaskedLM(config=a ) model.to(a ) model.eval() SCREAMING_SNAKE_CASE : str = model(a , attention_mask=a , labels=a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def __UpperCamelCase ( self : List[Any] , a : int , a : Optional[Any] , a : Optional[Any] , a : str , a : str , a : Tuple ) -> List[Any]: """simple docstring""" SCREAMING_SNAKE_CASE : Optional[Any] = DistilBertForQuestionAnswering(config=a ) model.to(a ) model.eval() SCREAMING_SNAKE_CASE : List[str] = model( a , attention_mask=a , start_positions=a , end_positions=a ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def __UpperCamelCase ( self : Optional[int] , a : str , a : Any , a : int , a : Optional[Any] , a : int , a : str ) -> Optional[int]: """simple docstring""" SCREAMING_SNAKE_CASE : Dict = self.num_labels SCREAMING_SNAKE_CASE : Union[str, Any] = DistilBertForSequenceClassification(a ) model.to(a ) model.eval() SCREAMING_SNAKE_CASE : Optional[int] = model(a , attention_mask=a , labels=a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def __UpperCamelCase ( self : Optional[Any] , a : List[Any] , a : Optional[int] , a : Union[str, Any] , a : Dict , a : Any , a : Optional[Any] ) -> Any: """simple docstring""" SCREAMING_SNAKE_CASE : str = self.num_labels SCREAMING_SNAKE_CASE : List[str] = DistilBertForTokenClassification(config=a ) model.to(a ) model.eval() SCREAMING_SNAKE_CASE : List[str] = model(a , attention_mask=a , labels=a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def __UpperCamelCase ( self : int , a : Any , a : Optional[int] , a : Union[str, Any] , a : Tuple , a : Optional[int] , a : Tuple ) -> Dict: """simple docstring""" SCREAMING_SNAKE_CASE : List[str] = self.num_choices SCREAMING_SNAKE_CASE : Any = DistilBertForMultipleChoice(config=a ) model.to(a ) model.eval() SCREAMING_SNAKE_CASE : Optional[int] = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() SCREAMING_SNAKE_CASE : Dict = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() SCREAMING_SNAKE_CASE : Optional[Any] = model( a , attention_mask=a , labels=a , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def __UpperCamelCase ( self : Union[str, Any] ) -> Optional[int]: """simple docstring""" SCREAMING_SNAKE_CASE : Optional[Any] = self.prepare_config_and_inputs() ((SCREAMING_SNAKE_CASE) ,(SCREAMING_SNAKE_CASE) ,(SCREAMING_SNAKE_CASE) ,(SCREAMING_SNAKE_CASE) ,(SCREAMING_SNAKE_CASE) ,(SCREAMING_SNAKE_CASE)) : Tuple = config_and_inputs SCREAMING_SNAKE_CASE : int = {"input_ids": input_ids, "attention_mask": input_mask} return config, inputs_dict @require_torch class _UpperCamelCase ( __A , __A , unittest.TestCase ): '''simple docstring''' lowerCamelCase__ =( ( DistilBertModel, DistilBertForMaskedLM, DistilBertForMultipleChoice, DistilBertForQuestionAnswering, DistilBertForSequenceClassification, DistilBertForTokenClassification, ) if is_torch_available() else None ) lowerCamelCase__ =( { 'feature-extraction': DistilBertModel, 'fill-mask': DistilBertForMaskedLM, 'question-answering': DistilBertForQuestionAnswering, 'text-classification': DistilBertForSequenceClassification, 'token-classification': DistilBertForTokenClassification, 'zero-shot': DistilBertForSequenceClassification, } if is_torch_available() else {} ) lowerCamelCase__ =True lowerCamelCase__ =True lowerCamelCase__ =True lowerCamelCase__ =True def __UpperCamelCase ( self : Optional[Any] ) -> Tuple: """simple docstring""" SCREAMING_SNAKE_CASE : Dict = DistilBertModelTester(self ) SCREAMING_SNAKE_CASE : List[str] = ConfigTester(self , config_class=a , dim=37 ) def __UpperCamelCase ( self : List[Any] ) -> Tuple: """simple docstring""" self.config_tester.run_common_tests() def __UpperCamelCase ( self : Union[str, Any] ) -> List[Any]: """simple docstring""" SCREAMING_SNAKE_CASE : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_model(*a ) def __UpperCamelCase ( self : Tuple ) -> Dict: """simple docstring""" SCREAMING_SNAKE_CASE : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_masked_lm(*a ) def __UpperCamelCase ( self : List[Any] ) -> Optional[int]: """simple docstring""" SCREAMING_SNAKE_CASE : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_question_answering(*a ) def __UpperCamelCase ( self : Union[str, Any] ) -> Any: """simple docstring""" SCREAMING_SNAKE_CASE : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_sequence_classification(*a ) def __UpperCamelCase ( self : str ) -> List[Any]: """simple docstring""" SCREAMING_SNAKE_CASE : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_token_classification(*a ) def __UpperCamelCase ( self : List[Any] ) -> str: """simple docstring""" SCREAMING_SNAKE_CASE : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_multiple_choice(*a ) @slow def __UpperCamelCase ( self : int ) -> Any: """simple docstring""" for model_name in DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: SCREAMING_SNAKE_CASE : Optional[Any] = DistilBertModel.from_pretrained(a ) self.assertIsNotNone(a ) @slow @require_torch_gpu def __UpperCamelCase ( self : List[Any] ) -> Optional[Any]: """simple docstring""" SCREAMING_SNAKE_CASE ,SCREAMING_SNAKE_CASE : Dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: # BertForMultipleChoice behaves incorrectly in JIT environments. if model_class == DistilBertForMultipleChoice: return SCREAMING_SNAKE_CASE : Union[str, Any] = True SCREAMING_SNAKE_CASE : Any = model_class(config=a ) SCREAMING_SNAKE_CASE : List[Any] = self._prepare_for_class(a , a ) SCREAMING_SNAKE_CASE : Union[str, Any] = torch.jit.trace( a , (inputs_dict["input_ids"].to("cpu" ), inputs_dict["attention_mask"].to("cpu" )) ) with tempfile.TemporaryDirectory() as tmp: torch.jit.save(a , os.path.join(a , "traced_model.pt" ) ) SCREAMING_SNAKE_CASE : Tuple = torch.jit.load(os.path.join(a , "traced_model.pt" ) , map_location=a ) loaded(inputs_dict["input_ids"].to(a ) , inputs_dict["attention_mask"].to(a ) ) @require_torch class _UpperCamelCase ( unittest.TestCase ): '''simple docstring''' @slow def __UpperCamelCase ( self : int ) -> Dict: """simple docstring""" SCREAMING_SNAKE_CASE : Union[str, Any] = DistilBertModel.from_pretrained("distilbert-base-uncased" ) SCREAMING_SNAKE_CASE : List[str] = torch.tensor([[0, 345, 232, 328, 740, 140, 1695, 69, 6078, 1588, 2]] ) SCREAMING_SNAKE_CASE : Optional[int] = torch.tensor([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] ) with torch.no_grad(): SCREAMING_SNAKE_CASE : Optional[Any] = model(a , attention_mask=a )[0] SCREAMING_SNAKE_CASE : List[str] = torch.Size((1, 11, 768) ) self.assertEqual(output.shape , a ) SCREAMING_SNAKE_CASE : Union[str, Any] = torch.tensor( [[[-0.1639, 0.3299, 0.1648], [-0.1746, 0.3289, 0.1710], [-0.1884, 0.3357, 0.1810]]] ) self.assertTrue(torch.allclose(output[:, 1:4, 1:4] , a , atol=1e-4 ) )
25
0
'''simple docstring''' from math import factorial class A_ : def __init__( self : Dict , snake_case_ : Optional[int] , snake_case_ : Dict ): _UpperCAmelCase = real if isinstance(snake_case_ , snake_case_ ): _UpperCAmelCase = [1] * rank else: _UpperCAmelCase = rank def __repr__( self : List[Any] ): return ( f'{self.real}+' f'{"+".join(str(snake_case_ )+"E"+str(n+1 )for n,dual in enumerate(self.duals ) )}' ) def lowercase ( self : List[Any] ): _UpperCAmelCase = self.duals.copy() while cur[-1] == 0: cur.pop(-1 ) return Dual(self.real , snake_case_ ) def __add__( self : Tuple , snake_case_ : List[str] ): if not isinstance(snake_case_ , snake_case_ ): return Dual(self.real + other , self.duals ) _UpperCAmelCase = self.duals.copy() _UpperCAmelCase = other.duals.copy() if len(snake_case_ ) > len(snake_case_ ): o_dual.extend([1] * (len(snake_case_ ) - len(snake_case_ )) ) elif len(snake_case_ ) < len(snake_case_ ): s_dual.extend([1] * (len(snake_case_ ) - len(snake_case_ )) ) _UpperCAmelCase = [] for i in range(len(snake_case_ ) ): new_duals.append(s_dual[i] + o_dual[i] ) return Dual(self.real + other.real , snake_case_ ) _lowerCamelCase : Any = __add__ def __sub__( self : Optional[int] , snake_case_ : int ): return self + other * -1 def __mul__( self : Union[str, Any] , snake_case_ : int ): if not isinstance(snake_case_ , snake_case_ ): _UpperCAmelCase = [] for i in self.duals: new_duals.append(i * other ) return Dual(self.real * other , snake_case_ ) _UpperCAmelCase = [0] * (len(self.duals ) + len(other.duals ) + 1) for i, item in enumerate(self.duals ): for j, jtem in enumerate(other.duals ): new_duals[i + j + 1] += item * jtem for k in range(len(self.duals ) ): new_duals[k] += self.duals[k] * other.real for index in range(len(other.duals ) ): new_duals[index] += other.duals[index] * self.real return Dual(self.real * other.real , snake_case_ ) _lowerCamelCase : Tuple = __mul__ def __truediv__( self : int , snake_case_ : int ): if not isinstance(snake_case_ , snake_case_ ): _UpperCAmelCase = [] for i in self.duals: new_duals.append(i / other ) return Dual(self.real / other , snake_case_ ) raise ValueError def __floordiv__( self : List[Any] , snake_case_ : Optional[int] ): if not isinstance(snake_case_ , snake_case_ ): _UpperCAmelCase = [] for i in self.duals: new_duals.append(i // other ) return Dual(self.real // other , snake_case_ ) raise ValueError def __pow__( self : Optional[Any] , snake_case_ : Dict ): if n < 0 or isinstance(snake_case_ , snake_case_ ): raise ValueError("power must be a positive integer" ) if n == 0: return 1 if n == 1: return self _UpperCAmelCase = self for _ in range(n - 1 ): x *= self return x def UpperCAmelCase_ ( __lowercase : Optional[Any] , __lowercase : str , __lowercase : List[str] ) -> Union[str, Any]: '''simple docstring''' if not callable(_a ): raise ValueError("differentiate() requires a function as input for func" ) if not isinstance(_a , (float, int) ): raise ValueError("differentiate() requires a float as input for position" ) if not isinstance(_a , _a ): raise ValueError("differentiate() requires an int as input for order" ) _UpperCAmelCase = Dual(_a , 1 ) _UpperCAmelCase = func(_a ) if order == 0: return result.real return result.duals[order - 1] * factorial(_a ) if __name__ == "__main__": import doctest doctest.testmod() def UpperCAmelCase_ ( __lowercase : int ) -> Tuple: '''simple docstring''' return y**2 * y**4 print(differentiate(f, 9, 2))
236
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tokenizers_available, is_torch_available, ) a_ = {'configuration_plbart': ['PLBART_PRETRAINED_CONFIG_ARCHIVE_MAP', 'PLBartConfig']} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a_ = ['PLBartTokenizer'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a_ = [ 'PLBART_PRETRAINED_MODEL_ARCHIVE_LIST', 'PLBartForCausalLM', 'PLBartForConditionalGeneration', 'PLBartForSequenceClassification', 'PLBartModel', 'PLBartPreTrainedModel', ] if TYPE_CHECKING: from .configuration_plbart import PLBART_PRETRAINED_CONFIG_ARCHIVE_MAP, PLBartConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_plbart import PLBartTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_plbart import ( PLBART_PRETRAINED_MODEL_ARCHIVE_LIST, PLBartForCausalLM, PLBartForConditionalGeneration, PLBartForSequenceClassification, PLBartModel, PLBartPreTrainedModel, ) else: import sys a_ = _LazyModule(__name__, globals()['__file__'], _import_structure)
25
0
import argparse import pathlib import fairseq import torch from fairseq.models.roberta import RobertaModel as FairseqRobertaModel from fairseq.modules import TransformerSentenceEncoderLayer from packaging import version from transformers import XLMRobertaConfig, XLMRobertaXLForMaskedLM, XLMRobertaXLForSequenceClassification from transformers.models.bert.modeling_bert import ( BertIntermediate, BertLayer, BertOutput, BertSelfAttention, BertSelfOutput, ) from transformers.models.roberta.modeling_roberta import RobertaAttention from transformers.utils import logging if version.parse(fairseq.__version__) < version.parse('''1.0.0a'''): raise Exception('''requires fairseq >= 1.0.0a''') logging.set_verbosity_info() UpperCamelCase__ : Union[str, Any] = logging.get_logger(__name__) UpperCamelCase__ : Any = '''Hello world! cécé herlolip''' def __UpperCAmelCase ( lowerCamelCase_ : List[Any] , lowerCamelCase_ : List[Any] , lowerCamelCase_ : List[Any] ) -> List[str]: """simple docstring""" SCREAMING_SNAKE_CASE_ : Union[str, Any] = FairseqRobertaModel.from_pretrained(_a ) roberta.eval() # disable dropout SCREAMING_SNAKE_CASE_ : int = roberta.model.encoder.sentence_encoder SCREAMING_SNAKE_CASE_ : List[str] = XLMRobertaConfig( vocab_size=roberta_sent_encoder.embed_tokens.num_embeddings , hidden_size=roberta.cfg.model.encoder_embed_dim , num_hidden_layers=roberta.cfg.model.encoder_layers , num_attention_heads=roberta.cfg.model.encoder_attention_heads , intermediate_size=roberta.cfg.model.encoder_ffn_embed_dim , max_position_embeddings=5_14 , type_vocab_size=1 , layer_norm_eps=1E-5 , ) if classification_head: SCREAMING_SNAKE_CASE_ : List[str] = roberta.model.classification_heads["mnli"].out_proj.weight.shape[0] print('Our RoBERTa config:' , _a ) SCREAMING_SNAKE_CASE_ : Any = XLMRobertaXLForSequenceClassification(_a ) if classification_head else XLMRobertaXLForMaskedLM(_a ) model.eval() # Now let's copy all the weights. # Embeddings SCREAMING_SNAKE_CASE_ : Tuple = roberta_sent_encoder.embed_tokens.weight SCREAMING_SNAKE_CASE_ : Tuple = roberta_sent_encoder.embed_positions.weight SCREAMING_SNAKE_CASE_ : Any = torch.zeros_like( model.roberta.embeddings.token_type_embeddings.weight ) # just zero them out b/c RoBERTa doesn't use them. SCREAMING_SNAKE_CASE_ : Any = roberta_sent_encoder.layer_norm.weight SCREAMING_SNAKE_CASE_ : Union[str, Any] = roberta_sent_encoder.layer_norm.bias for i in range(config.num_hidden_layers ): # Encoder: start of layer SCREAMING_SNAKE_CASE_ : BertLayer = model.roberta.encoder.layer[i] SCREAMING_SNAKE_CASE_ : TransformerSentenceEncoderLayer = roberta_sent_encoder.layers[i] SCREAMING_SNAKE_CASE_ : RobertaAttention = layer.attention SCREAMING_SNAKE_CASE_ : Dict = roberta_layer.self_attn_layer_norm.weight SCREAMING_SNAKE_CASE_ : str = roberta_layer.self_attn_layer_norm.bias # self attention SCREAMING_SNAKE_CASE_ : BertSelfAttention = layer.attention.self assert ( roberta_layer.self_attn.k_proj.weight.data.shape == roberta_layer.self_attn.q_proj.weight.data.shape == roberta_layer.self_attn.v_proj.weight.data.shape == torch.Size((config.hidden_size, config.hidden_size) ) ) SCREAMING_SNAKE_CASE_ : Tuple = roberta_layer.self_attn.q_proj.weight SCREAMING_SNAKE_CASE_ : Optional[int] = roberta_layer.self_attn.q_proj.bias SCREAMING_SNAKE_CASE_ : Dict = roberta_layer.self_attn.k_proj.weight SCREAMING_SNAKE_CASE_ : str = roberta_layer.self_attn.k_proj.bias SCREAMING_SNAKE_CASE_ : Union[str, Any] = roberta_layer.self_attn.v_proj.weight SCREAMING_SNAKE_CASE_ : Optional[Any] = roberta_layer.self_attn.v_proj.bias # self-attention output SCREAMING_SNAKE_CASE_ : BertSelfOutput = layer.attention.output assert self_output.dense.weight.shape == roberta_layer.self_attn.out_proj.weight.shape SCREAMING_SNAKE_CASE_ : Dict = roberta_layer.self_attn.out_proj.weight SCREAMING_SNAKE_CASE_ : List[Any] = roberta_layer.self_attn.out_proj.bias # this one is final layer norm SCREAMING_SNAKE_CASE_ : Optional[int] = roberta_layer.final_layer_norm.weight SCREAMING_SNAKE_CASE_ : Dict = roberta_layer.final_layer_norm.bias # intermediate SCREAMING_SNAKE_CASE_ : BertIntermediate = layer.intermediate assert intermediate.dense.weight.shape == roberta_layer.fca.weight.shape SCREAMING_SNAKE_CASE_ : Optional[int] = roberta_layer.fca.weight SCREAMING_SNAKE_CASE_ : str = roberta_layer.fca.bias # output SCREAMING_SNAKE_CASE_ : BertOutput = layer.output assert bert_output.dense.weight.shape == roberta_layer.fca.weight.shape SCREAMING_SNAKE_CASE_ : Tuple = roberta_layer.fca.weight SCREAMING_SNAKE_CASE_ : int = roberta_layer.fca.bias # end of layer if classification_head: SCREAMING_SNAKE_CASE_ : Optional[Any] = roberta.model.classification_heads["mnli"].dense.weight SCREAMING_SNAKE_CASE_ : Optional[Any] = roberta.model.classification_heads["mnli"].dense.bias SCREAMING_SNAKE_CASE_ : List[Any] = roberta.model.classification_heads["mnli"].out_proj.weight SCREAMING_SNAKE_CASE_ : Tuple = roberta.model.classification_heads["mnli"].out_proj.bias else: # LM Head SCREAMING_SNAKE_CASE_ : Union[str, Any] = roberta.model.encoder.lm_head.dense.weight SCREAMING_SNAKE_CASE_ : int = roberta.model.encoder.lm_head.dense.bias SCREAMING_SNAKE_CASE_ : Dict = roberta.model.encoder.lm_head.layer_norm.weight SCREAMING_SNAKE_CASE_ : Union[str, Any] = roberta.model.encoder.lm_head.layer_norm.bias SCREAMING_SNAKE_CASE_ : Dict = roberta.model.encoder.lm_head.weight SCREAMING_SNAKE_CASE_ : Tuple = roberta.model.encoder.lm_head.bias # Let's check that we get the same results. SCREAMING_SNAKE_CASE_ : torch.Tensor = roberta.encode(_a ).unsqueeze(0 ) # batch of size 1 SCREAMING_SNAKE_CASE_ : List[str] = model(_a )[0] if classification_head: SCREAMING_SNAKE_CASE_ : Optional[int] = roberta.model.classification_heads["mnli"](roberta.extract_features(_a ) ) else: SCREAMING_SNAKE_CASE_ : Optional[int] = roberta.model(_a )[0] print(our_output.shape , their_output.shape ) SCREAMING_SNAKE_CASE_ : str = torch.max(torch.abs(our_output - their_output ) ).item() print(F'max_absolute_diff = {max_absolute_diff}' ) # ~ 1e-7 SCREAMING_SNAKE_CASE_ : Optional[Any] = torch.allclose(_a , _a , atol=1E-3 ) print('Do both models output the same tensors?' , '🔥' if success else '💩' ) if not success: raise Exception('Something went wRoNg' ) pathlib.Path(_a ).mkdir(parents=_a , exist_ok=_a ) print(F'Saving model to {pytorch_dump_folder_path}' ) model.save_pretrained(_a ) if __name__ == "__main__": UpperCamelCase__ : List[str] = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--roberta_checkpoint_path''', default=None, type=str, required=True, help='''Path the official PyTorch dump.''' ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, required=True, help='''Path to the output PyTorch model.''' ) parser.add_argument( '''--classification_head''', action='''store_true''', help='''Whether to convert a final classification head.''' ) UpperCamelCase__ : Optional[Any] = parser.parse_args() convert_xlm_roberta_xl_checkpoint_to_pytorch( args.roberta_checkpoint_path, args.pytorch_dump_folder_path, args.classification_head )
105
import unittest import numpy as np import torch from diffusers import KarrasVePipeline, KarrasVeScheduler, UNetaDModel from diffusers.utils.testing_utils import enable_full_determinism, require_torch, slow, torch_device enable_full_determinism() class _UpperCamelCase ( unittest.TestCase ): '''simple docstring''' @property def __UpperCamelCase ( self : List[str] ) -> Union[str, Any]: """simple docstring""" torch.manual_seed(0 ) SCREAMING_SNAKE_CASE : str = UNetaDModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=3 , out_channels=3 , down_block_types=("DownBlock2D", "AttnDownBlock2D") , up_block_types=("AttnUpBlock2D", "UpBlock2D") , ) return model def __UpperCamelCase ( self : Union[str, Any] ) -> Dict: """simple docstring""" SCREAMING_SNAKE_CASE : Union[str, Any] = self.dummy_uncond_unet SCREAMING_SNAKE_CASE : Union[str, Any] = KarrasVeScheduler() SCREAMING_SNAKE_CASE : Any = KarrasVePipeline(unet=a , scheduler=a ) pipe.to(a ) pipe.set_progress_bar_config(disable=a ) SCREAMING_SNAKE_CASE : Any = torch.manual_seed(0 ) SCREAMING_SNAKE_CASE : Optional[Any] = pipe(num_inference_steps=2 , generator=a , output_type="numpy" ).images SCREAMING_SNAKE_CASE : List[str] = torch.manual_seed(0 ) SCREAMING_SNAKE_CASE : List[Any] = pipe(num_inference_steps=2 , generator=a , output_type="numpy" , return_dict=a )[0] SCREAMING_SNAKE_CASE : List[Any] = image[0, -3:, -3:, -1] SCREAMING_SNAKE_CASE : Any = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) SCREAMING_SNAKE_CASE : str = np.array([0.0, 1.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2 @slow @require_torch class _UpperCamelCase ( unittest.TestCase ): '''simple docstring''' def __UpperCamelCase ( self : int ) -> Tuple: """simple docstring""" SCREAMING_SNAKE_CASE : Dict = "google/ncsnpp-celebahq-256" SCREAMING_SNAKE_CASE : List[Any] = UNetaDModel.from_pretrained(a ) SCREAMING_SNAKE_CASE : Any = KarrasVeScheduler() SCREAMING_SNAKE_CASE : Optional[Any] = KarrasVePipeline(unet=a , scheduler=a ) pipe.to(a ) pipe.set_progress_bar_config(disable=a ) SCREAMING_SNAKE_CASE : Union[str, Any] = torch.manual_seed(0 ) SCREAMING_SNAKE_CASE : Any = pipe(num_inference_steps=20 , generator=a , output_type="numpy" ).images SCREAMING_SNAKE_CASE : List[str] = image[0, -3:, -3:, -1] assert image.shape == (1, 256, 256, 3) SCREAMING_SNAKE_CASE : str = np.array([0.578, 0.5811, 0.5924, 0.5809, 0.587, 0.5886, 0.5861, 0.5802, 0.586] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
25
0
'''simple docstring''' def UpperCAmelCase ( A : Optional[int] ): if n == 1 or not isinstance(_a , _a ): return 0 elif n == 2: return 1 else: SCREAMING_SNAKE_CASE : Optional[int] = [0, 1] for i in range(2 , n + 1 ): sequence.append(sequence[i - 1] + sequence[i - 2] ) return sequence[n] def UpperCAmelCase ( A : List[str] ): SCREAMING_SNAKE_CASE : str = 0 SCREAMING_SNAKE_CASE : List[str] = 2 while digits < n: index += 1 SCREAMING_SNAKE_CASE : Dict = len(str(fibonacci(_a ) ) ) return index def UpperCAmelCase ( A : List[Any] = 1000 ): return fibonacci_digits_index(_a ) if __name__ == "__main__": print(solution(int(str(input()).strip())))
527
def lowerCamelCase__ ( _a , _a): SCREAMING_SNAKE_CASE : Optional[int] = 0 while b > 0: if b & 1: res += a a += a b >>= 1 return res def lowerCamelCase__ ( _a , _a , _a): SCREAMING_SNAKE_CASE : Optional[int] = 0 while b > 0: if b & 1: SCREAMING_SNAKE_CASE : Optional[Any] = ((res % c) + (a % c)) % c a += a b >>= 1 return res
25
0
import hashlib import unittest from transformers import MODEL_FOR_DEPTH_ESTIMATION_MAPPING, is_torch_available, is_vision_available from transformers.pipelines import DepthEstimationPipeline, pipeline from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_tf, require_timm, require_torch, require_vision, slow, ) from .test_pipelines_common import ANY if is_torch_available(): import torch if is_vision_available(): from PIL import Image else: class SCREAMING_SNAKE_CASE : """simple docstring""" @staticmethod def SCREAMING_SNAKE_CASE ( *lowerCAmelCase : Any , **lowerCAmelCase : str ) -> Any: """simple docstring""" pass def snake_case_ (__A : Tuple ) -> Optional[int]: __lowerCAmelCase : str = hashlib.mda(image.tobytes() ) return m.hexdigest() @is_pipeline_test @require_vision @require_timm @require_torch class SCREAMING_SNAKE_CASE ( unittest.TestCase ): """simple docstring""" lowerCamelCase : int =MODEL_FOR_DEPTH_ESTIMATION_MAPPING def SCREAMING_SNAKE_CASE ( self : Tuple , lowerCAmelCase : int , lowerCAmelCase : Any , lowerCAmelCase : Any ) -> Union[str, Any]: """simple docstring""" __lowerCAmelCase : List[Any] = DepthEstimationPipeline(model=lowerCAmelCase , image_processor=lowerCAmelCase ) return depth_estimator, [ "./tests/fixtures/tests_samples/COCO/000000039769.png", "./tests/fixtures/tests_samples/COCO/000000039769.png", ] def SCREAMING_SNAKE_CASE ( self : int , lowerCAmelCase : List[str] , lowerCAmelCase : List[Any] ) -> str: """simple docstring""" __lowerCAmelCase : Tuple = depth_estimator("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) self.assertEqual({"""predicted_depth""": ANY(torch.Tensor ), """depth""": ANY(Image.Image )} , lowerCAmelCase ) import datasets __lowerCAmelCase : Tuple = datasets.load_dataset("""hf-internal-testing/fixtures_image_utils""" , """image""" , split="""test""" ) __lowerCAmelCase : List[Any] = depth_estimator( [ Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ), """http://images.cocodataset.org/val2017/000000039769.jpg""", # RGBA dataset[0]["""file"""], # LA dataset[1]["""file"""], # L dataset[2]["""file"""], ] ) self.assertEqual( [ {"""predicted_depth""": ANY(torch.Tensor ), """depth""": ANY(Image.Image )}, {"""predicted_depth""": ANY(torch.Tensor ), """depth""": ANY(Image.Image )}, {"""predicted_depth""": ANY(torch.Tensor ), """depth""": ANY(Image.Image )}, {"""predicted_depth""": ANY(torch.Tensor ), """depth""": ANY(Image.Image )}, {"""predicted_depth""": ANY(torch.Tensor ), """depth""": ANY(Image.Image )}, ] , lowerCAmelCase , ) @require_tf @unittest.skip("""Depth estimation is not implemented in TF""" ) def SCREAMING_SNAKE_CASE ( self : List[Any] ) -> Optional[int]: """simple docstring""" pass @slow @require_torch def SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> Tuple: """simple docstring""" __lowerCAmelCase : Tuple = "Intel/dpt-large" __lowerCAmelCase : Optional[int] = pipeline("""depth-estimation""" , model=lowerCAmelCase ) __lowerCAmelCase : str = depth_estimator("""http://images.cocodataset.org/val2017/000000039769.jpg""" ) __lowerCAmelCase : Union[str, Any] = hashimage(outputs["""depth"""] ) # This seems flaky. # self.assertEqual(outputs["depth"], "1a39394e282e9f3b0741a90b9f108977") self.assertEqual(nested_simplify(outputs["""predicted_depth"""].max().item() ) , 29.304 ) self.assertEqual(nested_simplify(outputs["""predicted_depth"""].min().item() ) , 2.662 ) @require_torch def SCREAMING_SNAKE_CASE ( self : Tuple ) -> Union[str, Any]: """simple docstring""" self.skipTest("""There is not hf-internal-testing tiny model for either GLPN nor DPT""" )
651
from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging a_ = logging.get_logger(__name__) a_ = { 'junnyu/roformer_chinese_small': 'https://huggingface.co/junnyu/roformer_chinese_small/resolve/main/config.json', 'junnyu/roformer_chinese_base': 'https://huggingface.co/junnyu/roformer_chinese_base/resolve/main/config.json', 'junnyu/roformer_chinese_char_small': ( 'https://huggingface.co/junnyu/roformer_chinese_char_small/resolve/main/config.json' ), 'junnyu/roformer_chinese_char_base': ( 'https://huggingface.co/junnyu/roformer_chinese_char_base/resolve/main/config.json' ), 'junnyu/roformer_small_discriminator': ( 'https://huggingface.co/junnyu/roformer_small_discriminator/resolve/main/config.json' ), 'junnyu/roformer_small_generator': ( 'https://huggingface.co/junnyu/roformer_small_generator/resolve/main/config.json' ), # See all RoFormer models at https://huggingface.co/models?filter=roformer } class _UpperCamelCase ( __A ): '''simple docstring''' lowerCamelCase__ ='roformer' def __init__( self : Dict , a : Any=5_0000 , a : List[Any]=None , a : str=768 , a : str=12 , a : Tuple=12 , a : Optional[Any]=3072 , a : List[str]="gelu" , a : List[Any]=0.1 , a : Union[str, Any]=0.1 , a : Tuple=1536 , a : List[str]=2 , a : Tuple=0.02 , a : Any=1e-12 , a : Optional[int]=0 , a : Union[str, Any]=False , a : int=True , **a : str , ) -> int: """simple docstring""" super().__init__(pad_token_id=a , **a ) SCREAMING_SNAKE_CASE : str = vocab_size SCREAMING_SNAKE_CASE : int = hidden_size if embedding_size is None else embedding_size SCREAMING_SNAKE_CASE : List[str] = hidden_size SCREAMING_SNAKE_CASE : Union[str, Any] = num_hidden_layers SCREAMING_SNAKE_CASE : int = num_attention_heads SCREAMING_SNAKE_CASE : Tuple = hidden_act SCREAMING_SNAKE_CASE : int = intermediate_size SCREAMING_SNAKE_CASE : Tuple = hidden_dropout_prob SCREAMING_SNAKE_CASE : int = attention_probs_dropout_prob SCREAMING_SNAKE_CASE : Optional[int] = max_position_embeddings SCREAMING_SNAKE_CASE : Any = type_vocab_size SCREAMING_SNAKE_CASE : Union[str, Any] = initializer_range SCREAMING_SNAKE_CASE : List[str] = layer_norm_eps SCREAMING_SNAKE_CASE : List[str] = rotary_value SCREAMING_SNAKE_CASE : int = use_cache class _UpperCamelCase ( __A ): '''simple docstring''' @property def __UpperCamelCase ( self : Tuple ) -> Mapping[str, Mapping[int, str]]: """simple docstring""" if self.task == "multiple-choice": SCREAMING_SNAKE_CASE : Optional[Any] = {0: "batch", 1: "choice", 2: "sequence"} else: SCREAMING_SNAKE_CASE : str = {0: "batch", 1: "sequence"} SCREAMING_SNAKE_CASE : List[Any] = {0: "batch", 1: "sequence"} return OrderedDict( [ ("input_ids", dynamic_axis), ("attention_mask", dynamic_axis), ("token_type_ids", dynamic_axis), ] )
25
0
import gc import importlib.metadata import tempfile import unittest from packaging import version from transformers import ( AutoModel, AutoModelForCausalLM, AutoModelForSeqaSeqLM, AutoModelForSequenceClassification, AutoTokenizer, BitsAndBytesConfig, pipeline, ) from transformers.testing_utils import ( is_torch_available, require_accelerate, require_bitsandbytes, require_torch, require_torch_gpu, require_torch_multi_gpu, slow, ) def snake_case( __magic_name__ ) -> Optional[int]: '''simple docstring''' if model.config.model_type == "gpt2": return model.transformer.h[0].mlp.c_fc return model.transformer.h[0].mlp.dense_ah_to_h if is_torch_available(): import torch import torch.nn as nn class _A ( nn.Module ): def __init__( self : Union[str, Any] , _A : nn.Module , _A : int ) -> Dict: """simple docstring""" super().__init__() lowercase : str = module lowercase : List[Any] = nn.Sequential( nn.Linear(module.in_features , _A , bias=_A ) , nn.Linear(_A , module.out_features , bias=_A ) , ) lowercase : Optional[Any] = (2.0 / (5 * min(module.in_features , module.out_features ))) ** 0.5 nn.init.normal_(self.adapter[0].weight , std=_A ) nn.init.zeros_(self.adapter[1].weight ) self.adapter.to(module.weight.device ) def __a ( self : str , _A : Optional[Any] , *_A : str , **_A : List[str] ) -> Optional[int]: """simple docstring""" return self.module(_A , *_A , **_A ) + self.adapter(_A ) @require_bitsandbytes @require_accelerate @require_torch @require_torch_gpu @slow class _A ( unittest.TestCase ): _UpperCamelCase : List[str] = '''bigscience/bloom-1b7''' # Constant values _UpperCamelCase : List[Any] = 2.1_09_65_95_52_69_25_74 _UpperCamelCase : Dict = '''Hello my name is''' _UpperCamelCase : Dict = set() EXPECTED_OUTPUTS.add('''Hello my name is John and I am a professional photographer. I''' ) EXPECTED_OUTPUTS.add('''Hello my name is John.\nI am a friend of your father.\n''' ) EXPECTED_OUTPUTS.add('''Hello my name is John Doe, I am a student at the University''' ) _UpperCamelCase : int = 1_0 def __a ( self : Dict ) -> Optional[Any]: """simple docstring""" lowercase : List[str] = AutoTokenizer.from_pretrained(self.model_name ) class _A ( __A ): def __a ( self : Dict ) -> int: """simple docstring""" super().setUp() # Models and tokenizer lowercase : Dict = AutoModelForCausalLM.from_pretrained( self.model_name , torch_dtype=torch.floataa , device_map='''auto''' ) lowercase : int = AutoModelForCausalLM.from_pretrained(self.model_name , load_in_abit=_A , device_map='''auto''' ) def __a ( self : List[str] ) -> Dict: """simple docstring""" del self.model_fpaa del self.model_abit gc.collect() torch.cuda.empty_cache() def __a ( self : Tuple ) -> Tuple: """simple docstring""" lowercase : Optional[int] = self.model_abit.config self.assertTrue(hasattr(_A , '''quantization_config''' ) ) lowercase : Union[str, Any] = config.to_dict() lowercase : str = config.to_diff_dict() lowercase : Union[str, Any] = config.to_json_string() def __a ( self : Dict ) -> Optional[int]: """simple docstring""" from bitsandbytes.nn import Paramsabit lowercase : int = self.model_fpaa.get_memory_footprint() lowercase : int = self.model_abit.get_memory_footprint() self.assertAlmostEqual(mem_fpaa / mem_abit , self.EXPECTED_RELATIVE_DIFFERENCE ) lowercase : Union[str, Any] = get_some_linear_layer(self.model_abit ) self.assertTrue(linear.weight.__class__ == Paramsabit ) def __a ( self : Optional[Any] ) -> Optional[int]: """simple docstring""" from transformers import TaPreTrainedModel self.model_fpaa.get_memory_footprint() self.model_abit.get_memory_footprint() for name, module in self.model_abit.named_modules(): if isinstance(_A , torch.nn.Linear ): if name not in ["lm_head"] + TaPreTrainedModel._keep_in_fpaa_modules: # 4-bit parameters are packed in uint8 variables self.assertTrue(module.weight.dtype == torch.uinta ) def __a ( self : Dict ) -> Union[str, Any]: """simple docstring""" lowercase : Optional[int] = self.tokenizer(self.input_text , return_tensors='''pt''' ) lowercase : Tuple = self.model_abit.generate(input_ids=encoded_input['''input_ids'''].to(0 ) , max_new_tokens=10 ) self.assertIn(self.tokenizer.decode(output_sequences[0] , skip_special_tokens=_A ) , self.EXPECTED_OUTPUTS ) def __a ( self : Optional[int] ) -> int: """simple docstring""" lowercase : Tuple = BitsAndBytesConfig() lowercase : Optional[int] = True lowercase : int = AutoModelForCausalLM.from_pretrained( self.model_name , quantization_config=_A , device_map='''auto''' ) lowercase : int = self.tokenizer(self.input_text , return_tensors='''pt''' ) lowercase : Tuple = model_abit_from_config.generate( input_ids=encoded_input['''input_ids'''].to(0 ) , max_new_tokens=10 ) self.assertIn(self.tokenizer.decode(output_sequences[0] , skip_special_tokens=_A ) , self.EXPECTED_OUTPUTS ) def __a ( self : Any ) -> str: """simple docstring""" with self.assertRaises(_A ), tempfile.TemporaryDirectory() as tmpdirname: self.model_abit.save_pretrained(_A ) def __a ( self : List[str] ) -> Tuple: """simple docstring""" lowercase : int = BitsAndBytesConfig() with self.assertRaises(_A ): lowercase : List[str] = AutoModelForCausalLM.from_pretrained( self.model_name , quantization_config=_A , load_in_abit=_A , device_map='''auto''' , bnb_abit_quant_type='''nf4''' , ) def __a ( self : Any ) -> Tuple: """simple docstring""" with self.assertRaises(_A ): # Tries with `str` self.model_abit.to('''cpu''' ) with self.assertRaises(_A ): # Tries with a `dtype`` self.model_abit.to(torch.floataa ) with self.assertRaises(_A ): # Tries with a `device` self.model_abit.to(torch.device('''cuda:0''' ) ) with self.assertRaises(_A ): # Tries with a `device` self.model_abit.float() with self.assertRaises(_A ): # Tries with a `device` self.model_abit.half() # Test if we did not break anything lowercase : List[str] = self.tokenizer(self.input_text , return_tensors='''pt''' ) lowercase : Optional[Any] = self.model_fpaa.to(torch.floataa ) lowercase : Optional[Any] = self.model_fpaa.generate(input_ids=encoded_input['''input_ids'''].to(0 ) , max_new_tokens=10 ) # Check this does not throw an error lowercase : Tuple = self.model_fpaa.to('''cpu''' ) # Check this does not throw an error lowercase : Dict = self.model_fpaa.half() # Check this does not throw an error lowercase : str = self.model_fpaa.float() def __a ( self : Dict ) -> Union[str, Any]: """simple docstring""" lowercase : int = AutoModelForSeqaSeqLM.from_pretrained('''t5-small''' , load_in_abit=_A , device_map='''auto''' ) self.assertTrue(model.decoder.block[0].layer[2].DenseReluDense.wo.weight.dtype == torch.floataa ) @require_bitsandbytes @require_accelerate @require_torch @require_torch_gpu @slow class _A ( unittest.TestCase ): @classmethod def __a ( cls : str ) -> str: """simple docstring""" lowercase : List[str] = "t5-small" lowercase : Optional[Any] = "google/flan-t5-small" # flan-t5 uses dense-act instead of dense-relu-dense lowercase : Any = AutoTokenizer.from_pretrained(cls.model_name ) lowercase : Optional[Any] = "Translate in German: Hello, my dog is cute" def __a ( self : Union[str, Any] ) -> Any: """simple docstring""" gc.collect() torch.cuda.empty_cache() def __a ( self : List[str] ) -> Union[str, Any]: """simple docstring""" from transformers import TaForConditionalGeneration lowercase : Any = TaForConditionalGeneration._keep_in_fpaa_modules lowercase : Dict = None # test with `t5-small` lowercase : List[Any] = TaForConditionalGeneration.from_pretrained(self.model_name , load_in_abit=_A , device_map='''auto''' ) lowercase : int = self.tokenizer(self.input_text , return_tensors='''pt''' ).to(0 ) lowercase : Any = model.generate(**_A ) # test with `flan-t5-small` lowercase : Dict = TaForConditionalGeneration.from_pretrained( self.dense_act_model_name , load_in_abit=_A , device_map='''auto''' ) lowercase : int = self.tokenizer(self.input_text , return_tensors='''pt''' ).to(0 ) lowercase : Optional[int] = model.generate(**_A ) lowercase : Tuple = modules def __a ( self : int ) -> Dict: """simple docstring""" import bitsandbytes as bnb from transformers import TaForConditionalGeneration # test with `t5-small` lowercase : Optional[Any] = TaForConditionalGeneration.from_pretrained(self.model_name , load_in_abit=_A , device_map='''auto''' ) # there was a bug with decoders - this test checks that it is fixed self.assertTrue(isinstance(model.decoder.block[0].layer[0].SelfAttention.q , bnb.nn.Linearabit ) ) lowercase : List[Any] = self.tokenizer(self.input_text , return_tensors='''pt''' ).to(0 ) lowercase : Optional[Any] = model.generate(**_A ) # test with `flan-t5-small` lowercase : List[str] = TaForConditionalGeneration.from_pretrained( self.dense_act_model_name , load_in_abit=_A , device_map='''auto''' ) lowercase : Dict = self.tokenizer(self.input_text , return_tensors='''pt''' ).to(0 ) lowercase : Tuple = model.generate(**_A ) class _A ( __A ): def __a ( self : Any ) -> Tuple: """simple docstring""" super().setUp() # model_name lowercase : Optional[int] = "bigscience/bloom-560m" lowercase : List[str] = "t5-small" # Different types of model lowercase : str = AutoModel.from_pretrained(self.model_name , load_in_abit=_A , device_map='''auto''' ) # Sequence classification model lowercase : Union[str, Any] = AutoModelForSequenceClassification.from_pretrained( self.model_name , load_in_abit=_A , device_map='''auto''' ) # CausalLM model lowercase : List[Any] = AutoModelForCausalLM.from_pretrained(self.model_name , load_in_abit=_A , device_map='''auto''' ) # Seq2seq model lowercase : List[str] = AutoModelForSeqaSeqLM.from_pretrained( self.seq_to_seq_name , load_in_abit=_A , device_map='''auto''' ) def __a ( self : Optional[int] ) -> Dict: """simple docstring""" del self.base_model del self.sequence_model del self.model_abit del self.seq_to_seq_model gc.collect() torch.cuda.empty_cache() def __a ( self : List[Any] ) -> List[str]: """simple docstring""" from bitsandbytes.nn import Paramsabit self.assertTrue(self.base_model.h[-1].mlp.dense_ah_to_h.weight.__class__ == Paramsabit ) # Other heads should be nn.Parameter self.assertTrue(self.model_abit.lm_head.weight.__class__ == torch.nn.Parameter ) self.assertTrue(self.sequence_model.score.weight.__class__ == torch.nn.Parameter ) self.assertTrue(self.seq_to_seq_model.lm_head.weight.__class__ == torch.nn.Parameter ) class _A ( __A ): def __a ( self : Dict ) -> Dict: """simple docstring""" super().setUp() def __a ( self : List[Any] ) -> Optional[int]: """simple docstring""" del self.pipe gc.collect() torch.cuda.empty_cache() def __a ( self : Dict ) -> Dict: """simple docstring""" lowercase : Optional[Any] = pipeline( '''text-generation''' , model=self.model_name , model_kwargs={'''device_map''': '''auto''', '''load_in_4bit''': True, '''torch_dtype''': torch.floataa} , max_new_tokens=self.MAX_NEW_TOKENS , ) # Real second forward pass lowercase : Any = self.pipe(self.input_text ) self.assertIn(pipeline_output[0]['''generated_text'''] , self.EXPECTED_OUTPUTS ) @require_torch_multi_gpu class _A ( __A ): def __a ( self : List[Any] ) -> List[str]: """simple docstring""" super().setUp() def __a ( self : List[Any] ) -> Any: """simple docstring""" lowercase : List[Any] = AutoModelForCausalLM.from_pretrained( self.model_name , load_in_abit=_A , device_map='''balanced''' ) # Check correct device map self.assertEqual(set(model_parallel.hf_device_map.values() ) , {0, 1} ) # Check that inference pass works on the model lowercase : Tuple = self.tokenizer(self.input_text , return_tensors='''pt''' ) # Second real batch lowercase : Tuple = model_parallel.generate(input_ids=encoded_input['''input_ids'''].to(0 ) , max_new_tokens=10 ) self.assertIn(self.tokenizer.decode(output_parallel[0] , skip_special_tokens=_A ) , self.EXPECTED_OUTPUTS ) class _A ( __A ): def __a ( self : List[str] ) -> Dict: """simple docstring""" lowercase : str = "facebook/opt-350m" super().setUp() def __a ( self : int ) -> List[Any]: """simple docstring""" if version.parse(importlib.metadata.version('''bitsandbytes''' ) ) < version.parse('''0.37.0''' ): return # Step 1: freeze all parameters lowercase : Dict = AutoModelForCausalLM.from_pretrained(self.model_name , load_in_abit=_A ) self.assertEqual(set(model.hf_device_map.values() ) , {torch.cuda.current_device()} ) for param in model.parameters(): lowercase : Any = False # freeze the model - train adapters later if param.ndim == 1: # cast the small parameters (e.g. layernorm) to fp32 for stability lowercase : Union[str, Any] = param.data.to(torch.floataa ) # Step 2: add adapters for _, module in model.named_modules(): if "OPTAttention" in repr(type(_A ) ): lowercase : Optional[Any] = LoRALayer(module.q_proj , rank=16 ) lowercase : Optional[int] = LoRALayer(module.k_proj , rank=16 ) lowercase : Optional[int] = LoRALayer(module.v_proj , rank=16 ) # Step 3: dummy batch lowercase : Dict = self.tokenizer('''Test batch ''' , return_tensors='''pt''' ).to(0 ) # Step 4: Check if the gradient is not None with torch.cuda.amp.autocast(): lowercase : str = model.forward(**_A ) out.logits.norm().backward() for module in model.modules(): if isinstance(_A , _A ): self.assertTrue(module.adapter[1].weight.grad is not None ) self.assertTrue(module.adapter[1].weight.grad.norm().item() > 0 ) elif isinstance(_A , nn.Embedding ): self.assertTrue(module.weight.grad is None ) class _A ( __A ): _UpperCamelCase : int = '''gpt2-xl''' _UpperCamelCase : Optional[Any] = 3.31_91_85_48_54_15_21_87
217
import argparse import logging from collections import namedtuple import torch from model_bertabs import BertAbsSummarizer from models.model_builder import AbsSummarizer # The authors' implementation from transformers import BertTokenizer logging.basicConfig(level=logging.INFO) a_ = logging.getLogger(__name__) a_ = 'Hello world! cécé herlolip' a_ = namedtuple( 'BertAbsConfig', [ 'temp_dir', 'large', 'use_bert_emb', 'finetune_bert', 'encoder', 'share_emb', 'max_pos', 'enc_layers', 'enc_hidden_size', 'enc_heads', 'enc_ff_size', 'enc_dropout', 'dec_layers', 'dec_hidden_size', 'dec_heads', 'dec_ff_size', 'dec_dropout', ], ) def lowerCamelCase__ ( _a , _a): SCREAMING_SNAKE_CASE : List[Any] = BertAbsConfig( temp_dir="." , finetune_bert=_a , large=_a , share_emb=_a , use_bert_emb=_a , encoder="bert" , max_pos=512 , enc_layers=6 , enc_hidden_size=512 , enc_heads=8 , enc_ff_size=512 , enc_dropout=0.2 , dec_layers=6 , dec_hidden_size=768 , dec_heads=8 , dec_ff_size=2048 , dec_dropout=0.2 , ) SCREAMING_SNAKE_CASE : Dict = torch.load(_a , lambda _a , _a: storage) SCREAMING_SNAKE_CASE : str = AbsSummarizer(_a , torch.device("cpu") , _a) original.eval() SCREAMING_SNAKE_CASE : List[str] = BertAbsSummarizer(_a , torch.device("cpu")) new_model.eval() # ------------------- # Convert the weights # ------------------- logging.info("convert the model") new_model.bert.load_state_dict(original.bert.state_dict()) new_model.decoder.load_state_dict(original.decoder.state_dict()) new_model.generator.load_state_dict(original.generator.state_dict()) # ---------------------------------- # Make sure the outpus are identical # ---------------------------------- logging.info("Make sure that the models' outputs are identical") SCREAMING_SNAKE_CASE : List[str] = BertTokenizer.from_pretrained("bert-base-uncased") # prepare the model inputs SCREAMING_SNAKE_CASE : List[str] = tokenizer.encode("This is sample éàalj'-.") encoder_input_ids.extend([tokenizer.pad_token_id] * (512 - len(_a))) SCREAMING_SNAKE_CASE : int = torch.tensor(_a).unsqueeze(0) SCREAMING_SNAKE_CASE : List[Any] = tokenizer.encode("This is sample 3 éàalj'-.") decoder_input_ids.extend([tokenizer.pad_token_id] * (512 - len(_a))) SCREAMING_SNAKE_CASE : int = torch.tensor(_a).unsqueeze(0) # failsafe to make sure the weights reset does not affect the # loaded weights. assert torch.max(torch.abs(original.generator[0].weight - new_model.generator[0].weight)) == 0 # forward pass SCREAMING_SNAKE_CASE : List[Any] = encoder_input_ids SCREAMING_SNAKE_CASE : List[Any] = decoder_input_ids SCREAMING_SNAKE_CASE : Dict = None SCREAMING_SNAKE_CASE : Optional[Any] = None SCREAMING_SNAKE_CASE : List[Any] = None SCREAMING_SNAKE_CASE : Optional[int] = None SCREAMING_SNAKE_CASE : Dict = None # The original model does not apply the geneator layer immediatly but rather in # the beam search (where it combines softmax + linear layer). Since we already # apply the softmax in our generation process we only apply the linear layer here. # We make sure that the outputs of the full stack are identical SCREAMING_SNAKE_CASE : Optional[int] = original(_a , _a , _a , _a , _a , _a , _a)[0] SCREAMING_SNAKE_CASE : Dict = original.generator(_a) SCREAMING_SNAKE_CASE : Any = new_model( _a , _a , _a , _a , _a)[0] SCREAMING_SNAKE_CASE : Tuple = new_model.generator(_a) SCREAMING_SNAKE_CASE : List[Any] = torch.max(torch.abs(output_converted_model - output_original_model)).item() print("Maximum absolute difference beween weights: {:.2f}".format(_a)) SCREAMING_SNAKE_CASE : Union[str, Any] = torch.max(torch.abs(output_converted_generator - output_original_generator)).item() print("Maximum absolute difference beween weights: {:.2f}".format(_a)) SCREAMING_SNAKE_CASE : int = torch.allclose(_a , _a , atol=1E-3) if are_identical: logging.info("all weights are equal up to 1e-3") else: raise ValueError("the weights are different. The new model is likely different from the original one.") # The model has been saved with torch.save(model) and this is bound to the exact # directory structure. We save the state_dict instead. logging.info("saving the model's state dictionary") torch.save( new_model.state_dict() , "./bertabs-finetuned-cnndm-extractive-abstractive-summarization/pytorch_model.bin") if __name__ == "__main__": a_ = argparse.ArgumentParser() parser.add_argument( '--bertabs_checkpoint_path', default=None, type=str, required=True, help='Path the official PyTorch dump.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, required=True, help='Path to the output PyTorch model.', ) a_ = parser.parse_args() convert_bertabs_checkpoints( args.bertabs_checkpoint_path, args.pytorch_dump_folder_path, )
25
0
SCREAMING_SNAKE_CASE_ = 'ABCDEFGHIJKLMNOPQRSTUVWXYZ' def __SCREAMING_SNAKE_CASE ( ) -> List[Any]: _UpperCAmelCase : Union[str, Any] = input("Enter message: " ) _UpperCAmelCase : Dict = input("Enter key [alphanumeric]: " ) _UpperCAmelCase : str = input("Encrypt/Decrypt [e/d]: " ) if mode.lower().startswith("e" ): _UpperCAmelCase : Union[str, Any] = "encrypt" _UpperCAmelCase : Dict = encrypt_message(_a , _a ) elif mode.lower().startswith("d" ): _UpperCAmelCase : Dict = "decrypt" _UpperCAmelCase : Dict = decrypt_message(_a , _a ) print(F'\n{mode.title()}ed message:' ) print(_a ) def __SCREAMING_SNAKE_CASE ( lowerCAmelCase: List[Any] , lowerCAmelCase: int ) -> str: return translate_message(_a , _a , "encrypt" ) def __SCREAMING_SNAKE_CASE ( lowerCAmelCase: List[str] , lowerCAmelCase: str ) -> Any: return translate_message(_a , _a , "decrypt" ) def __SCREAMING_SNAKE_CASE ( lowerCAmelCase: List[str] , lowerCAmelCase: int , lowerCAmelCase: Optional[int] ) -> Any: _UpperCAmelCase : Tuple = [] _UpperCAmelCase : int = 0 _UpperCAmelCase : Tuple = key.upper() for symbol in message: _UpperCAmelCase : int = LETTERS.find(symbol.upper() ) if num != -1: if mode == "encrypt": num += LETTERS.find(key[key_index] ) elif mode == "decrypt": num -= LETTERS.find(key[key_index] ) num %= len(_a ) if symbol.isupper(): translated.append(LETTERS[num] ) elif symbol.islower(): translated.append(LETTERS[num].lower() ) key_index += 1 if key_index == len(_a ): _UpperCAmelCase : str = 0 else: translated.append(_a ) return "".join(_a ) if __name__ == "__main__": main()
300
import argparse from transformers import CLIPImageProcessor, CLIPVisionModelWithProjection from diffusers import UnCLIPImageVariationPipeline, UnCLIPPipeline if __name__ == "__main__": a_ = argparse.ArgumentParser() parser.add_argument('--dump_path', default=None, type=str, required=True, help='Path to the output model.') parser.add_argument( '--txt2img_unclip', default='kakaobrain/karlo-v1-alpha', type=str, required=False, help='The pretrained txt2img unclip.', ) a_ = parser.parse_args() a_ = UnCLIPPipeline.from_pretrained(args.txtaimg_unclip) a_ = CLIPImageProcessor() a_ = CLIPVisionModelWithProjection.from_pretrained('openai/clip-vit-large-patch14') a_ = UnCLIPImageVariationPipeline( decoder=txtaimg.decoder, text_encoder=txtaimg.text_encoder, tokenizer=txtaimg.tokenizer, text_proj=txtaimg.text_proj, feature_extractor=feature_extractor, image_encoder=image_encoder, super_res_first=txtaimg.super_res_first, super_res_last=txtaimg.super_res_last, decoder_scheduler=txtaimg.decoder_scheduler, super_res_scheduler=txtaimg.super_res_scheduler, ) imgaimg.save_pretrained(args.dump_path)
25
0
'''simple docstring''' import inspect import unittest import numpy as np from transformers import ViTConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_configuration_common import ConfigTester from ...test_modeling_flax_common import FlaxModelTesterMixin, floats_tensor if is_flax_available(): import jax from transformers.models.vit.modeling_flax_vit import FlaxViTForImageClassification, FlaxViTModel class __snake_case( unittest.TestCase ): '''simple docstring''' def __init__( self , A_ , A_=13 , A_=30 , A_=2 , A_=3 , A_=True , A_=True , A_=32 , A_=5 , A_=4 , A_=37 , A_="gelu" , A_=0.1 , A_=0.1 , A_=10 , A_=0.0_2 , ) -> List[Any]: lowerCAmelCase = parent lowerCAmelCase = batch_size lowerCAmelCase = image_size lowerCAmelCase = patch_size lowerCAmelCase = num_channels lowerCAmelCase = is_training lowerCAmelCase = use_labels lowerCAmelCase = hidden_size lowerCAmelCase = num_hidden_layers lowerCAmelCase = num_attention_heads lowerCAmelCase = intermediate_size lowerCAmelCase = hidden_act lowerCAmelCase = hidden_dropout_prob lowerCAmelCase = attention_probs_dropout_prob lowerCAmelCase = type_sequence_label_size lowerCAmelCase = initializer_range # in ViT, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token) lowerCAmelCase = (image_size // patch_size) ** 2 lowerCAmelCase = num_patches + 1 def __snake_case ( self ) -> Optional[Any]: lowerCAmelCase = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) lowerCAmelCase = ViTConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=A_ , initializer_range=self.initializer_range , ) return config, pixel_values def __snake_case ( self , A_ , A_ ) -> List[str]: lowerCAmelCase = FlaxViTModel(config=A_ ) lowerCAmelCase = model(A_ ) # expected sequence length = num_patches + 1 (we add 1 for the [CLS] token) lowerCAmelCase = (self.image_size, self.image_size) lowerCAmelCase = (self.patch_size, self.patch_size) lowerCAmelCase = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, num_patches + 1, self.hidden_size) ) def __snake_case ( self , A_ , A_ ) -> Tuple: lowerCAmelCase = self.type_sequence_label_size lowerCAmelCase = FlaxViTForImageClassification(config=A_ ) lowerCAmelCase = model(A_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) # test greyscale images lowerCAmelCase = 1 lowerCAmelCase = FlaxViTForImageClassification(A_ ) lowerCAmelCase = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) lowerCAmelCase = model(A_ ) def __snake_case ( self ) -> Optional[int]: lowerCAmelCase = self.prepare_config_and_inputs() ( lowerCAmelCase ) = config_and_inputs lowerCAmelCase = {"pixel_values": pixel_values} return config, inputs_dict @require_flax class __snake_case( __A , unittest.TestCase ): '''simple docstring''' UpperCAmelCase : str = (FlaxViTModel, FlaxViTForImageClassification) if is_flax_available() else () def __snake_case ( self ) -> None: lowerCAmelCase = FlaxViTModelTester(self ) lowerCAmelCase = ConfigTester(self , config_class=A_ , has_text_modality=A_ , hidden_size=37 ) def __snake_case ( self ) -> List[str]: self.config_tester.run_common_tests() def __snake_case ( self ) -> Dict: lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*A_ ) def __snake_case ( self ) -> Dict: lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*A_ ) def __snake_case ( self ) -> str: lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCAmelCase = model_class(A_ ) lowerCAmelCase = inspect.signature(model.__call__ ) # signature.parameters is an OrderedDict => so arg_names order is deterministic lowerCAmelCase = [*signature.parameters.keys()] lowerCAmelCase = ["pixel_values"] self.assertListEqual(arg_names[:1] , A_ ) def __snake_case ( self ) -> Any: lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): lowerCAmelCase = self._prepare_for_class(A_ , A_ ) lowerCAmelCase = model_class(A_ ) @jax.jit def model_jitted(A_ , **A_ ): return model(pixel_values=A_ , **A_ ) with self.subTest("""JIT Enabled""" ): lowerCAmelCase = model_jitted(**A_ ).to_tuple() with self.subTest("""JIT Disabled""" ): with jax.disable_jit(): lowerCAmelCase = model_jitted(**A_ ).to_tuple() self.assertEqual(len(A_ ) , len(A_ ) ) for jitted_output, output in zip(A_ , A_ ): self.assertEqual(jitted_output.shape , output.shape ) @slow def __snake_case ( self ) -> List[Any]: for model_class_name in self.all_model_classes: lowerCAmelCase = model_class_name.from_pretrained("""google/vit-base-patch16-224""" ) lowerCAmelCase = model(np.ones((1, 3, 224, 224) ) ) self.assertIsNotNone(A_ )
433
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available a_ = { 'configuration_swinv2': ['SWINV2_PRETRAINED_CONFIG_ARCHIVE_MAP', 'Swinv2Config'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a_ = [ 'SWINV2_PRETRAINED_MODEL_ARCHIVE_LIST', 'Swinv2ForImageClassification', 'Swinv2ForMaskedImageModeling', 'Swinv2Model', 'Swinv2PreTrainedModel', ] if TYPE_CHECKING: from .configuration_swinva import SWINV2_PRETRAINED_CONFIG_ARCHIVE_MAP, SwinvaConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_swinva import ( SWINV2_PRETRAINED_MODEL_ARCHIVE_LIST, SwinvaForImageClassification, SwinvaForMaskedImageModeling, SwinvaModel, SwinvaPreTrainedModel, ) else: import sys a_ = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
25
0
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_torch_available, ) snake_case = { '''configuration_falcon''': ['''FALCON_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''FalconConfig'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case = [ '''FALCON_PRETRAINED_MODEL_ARCHIVE_LIST''', '''FalconForCausalLM''', '''FalconModel''', '''FalconPreTrainedModel''', '''FalconForSequenceClassification''', '''FalconForTokenClassification''', '''FalconForQuestionAnswering''', ] if TYPE_CHECKING: from .configuration_falcon import FALCON_PRETRAINED_CONFIG_ARCHIVE_MAP, FalconConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_falcon import ( FALCON_PRETRAINED_MODEL_ARCHIVE_LIST, FalconForCausalLM, FalconForQuestionAnswering, FalconForSequenceClassification, FalconForTokenClassification, FalconModel, FalconPreTrainedModel, ) else: import sys snake_case = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
103
from math import pi, sqrt, tan def lowerCamelCase__ ( _a): if side_length < 0: raise ValueError("surface_area_cube() only accepts non-negative values") return 6 * side_length**2 def lowerCamelCase__ ( _a , _a , _a): if length < 0 or breadth < 0 or height < 0: raise ValueError("surface_area_cuboid() only accepts non-negative values") return 2 * ((length * breadth) + (breadth * height) + (length * height)) def lowerCamelCase__ ( _a): if radius < 0: raise ValueError("surface_area_sphere() only accepts non-negative values") return 4 * pi * radius**2 def lowerCamelCase__ ( _a): if radius < 0: raise ValueError("surface_area_hemisphere() only accepts non-negative values") return 3 * pi * radius**2 def lowerCamelCase__ ( _a , _a): if radius < 0 or height < 0: raise ValueError("surface_area_cone() only accepts non-negative values") return pi * radius * (radius + (height**2 + radius**2) ** 0.5) def lowerCamelCase__ ( _a , _a , _a): if radius_a < 0 or radius_a < 0 or height < 0: raise ValueError( "surface_area_conical_frustum() only accepts non-negative values") SCREAMING_SNAKE_CASE : Any = (height**2 + (radius_a - radius_a) ** 2) ** 0.5 return pi * ((slant_height * (radius_a + radius_a)) + radius_a**2 + radius_a**2) def lowerCamelCase__ ( _a , _a): if radius < 0 or height < 0: raise ValueError("surface_area_cylinder() only accepts non-negative values") return 2 * pi * radius * (height + radius) def lowerCamelCase__ ( _a , _a): if torus_radius < 0 or tube_radius < 0: raise ValueError("surface_area_torus() only accepts non-negative values") if torus_radius < tube_radius: raise ValueError( "surface_area_torus() does not support spindle or self intersecting tori") return 4 * pow(_a , 2) * torus_radius * tube_radius def lowerCamelCase__ ( _a , _a): if length < 0 or width < 0: raise ValueError("area_rectangle() only accepts non-negative values") return length * width def lowerCamelCase__ ( _a): if side_length < 0: raise ValueError("area_square() only accepts non-negative values") return side_length**2 def lowerCamelCase__ ( _a , _a): if base < 0 or height < 0: raise ValueError("area_triangle() only accepts non-negative values") return (base * height) / 2 def lowerCamelCase__ ( _a , _a , _a): if sidea < 0 or sidea < 0 or sidea < 0: raise ValueError("area_triangle_three_sides() only accepts non-negative values") elif sidea + sidea < sidea or sidea + sidea < sidea or sidea + sidea < sidea: raise ValueError("Given three sides do not form a triangle") SCREAMING_SNAKE_CASE : List[str] = (sidea + sidea + sidea) / 2 SCREAMING_SNAKE_CASE : Optional[int] = sqrt( semi_perimeter * (semi_perimeter - sidea) * (semi_perimeter - sidea) * (semi_perimeter - sidea)) return area def lowerCamelCase__ ( _a , _a): if base < 0 or height < 0: raise ValueError("area_parallelogram() only accepts non-negative values") return base * height def lowerCamelCase__ ( _a , _a , _a): if basea < 0 or basea < 0 or height < 0: raise ValueError("area_trapezium() only accepts non-negative values") return 1 / 2 * (basea + basea) * height def lowerCamelCase__ ( _a): if radius < 0: raise ValueError("area_circle() only accepts non-negative values") return pi * radius**2 def lowerCamelCase__ ( _a , _a): if radius_x < 0 or radius_y < 0: raise ValueError("area_ellipse() only accepts non-negative values") return pi * radius_x * radius_y def lowerCamelCase__ ( _a , _a): if diagonal_a < 0 or diagonal_a < 0: raise ValueError("area_rhombus() only accepts non-negative values") return 1 / 2 * diagonal_a * diagonal_a def lowerCamelCase__ ( _a , _a): if not isinstance(_a , _a) or sides < 3: raise ValueError( "area_reg_polygon() only accepts integers greater than or \ equal to three as number of sides") elif length < 0: raise ValueError( "area_reg_polygon() only accepts non-negative values as \ length of a side") return (sides * length**2) / (4 * tan(pi / sides)) return (sides * length**2) / (4 * tan(pi / sides)) if __name__ == "__main__": import doctest doctest.testmod(verbose=True) # verbose so we can see methods missing tests print('[DEMO] Areas of various geometric shapes: \n') print(F'''Rectangle: {area_rectangle(10, 20) = }''') print(F'''Square: {area_square(10) = }''') print(F'''Triangle: {area_triangle(10, 10) = }''') print(F'''Triangle: {area_triangle_three_sides(5, 12, 13) = }''') print(F'''Parallelogram: {area_parallelogram(10, 20) = }''') print(F'''Rhombus: {area_rhombus(10, 20) = }''') print(F'''Trapezium: {area_trapezium(10, 20, 30) = }''') print(F'''Circle: {area_circle(20) = }''') print(F'''Ellipse: {area_ellipse(10, 20) = }''') print('\nSurface Areas of various geometric shapes: \n') print(F'''Cube: {surface_area_cube(20) = }''') print(F'''Cuboid: {surface_area_cuboid(10, 20, 30) = }''') print(F'''Sphere: {surface_area_sphere(20) = }''') print(F'''Hemisphere: {surface_area_hemisphere(20) = }''') print(F'''Cone: {surface_area_cone(10, 20) = }''') print(F'''Conical Frustum: {surface_area_conical_frustum(10, 20, 30) = }''') print(F'''Cylinder: {surface_area_cylinder(10, 20) = }''') print(F'''Torus: {surface_area_torus(20, 10) = }''') print(F'''Equilateral Triangle: {area_reg_polygon(3, 10) = }''') print(F'''Square: {area_reg_polygon(4, 10) = }''') print(F'''Reqular Pentagon: {area_reg_polygon(5, 10) = }''')
25
0
import pytest from datasets.splits import SplitDict, SplitInfo from datasets.utils.py_utils import asdict @pytest.mark.parametrize( "split_dict" , [ SplitDict(), SplitDict({"train": SplitInfo(name="train" , num_bytes=1_3_3_7 , num_examples=4_2 , dataset_name="my_dataset" )} ), SplitDict({"train": SplitInfo(name="train" , num_bytes=1_3_3_7 , num_examples=4_2 )} ), SplitDict({"train": SplitInfo()} ), ] , ) def UpperCAmelCase ( a_ ) -> List[str]: """simple docstring""" __A = split_dict._to_yaml_list() assert len(_a ) == len(_a ) __A = SplitDict._from_yaml_list(_a ) for split_name, split_info in split_dict.items(): # dataset_name field is deprecated, and is therefore not part of the YAML dump __A = None # the split name of split_dict takes over the name of the split info object __A = split_name assert split_dict == reloaded @pytest.mark.parametrize( "split_info" , [SplitInfo(), SplitInfo(dataset_name=_a ), SplitInfo(dataset_name="my_dataset" )] ) def UpperCAmelCase ( a_ ) -> Tuple: """simple docstring""" __A = asdict(SplitDict({"train": split_info} ) ) assert "dataset_name" in split_dict_asdict["train"] assert split_dict_asdict["train"]["dataset_name"] == split_info.dataset_name
55
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available a_ = { 'configuration_instructblip': [ 'INSTRUCTBLIP_PRETRAINED_CONFIG_ARCHIVE_MAP', 'InstructBlipConfig', 'InstructBlipQFormerConfig', 'InstructBlipVisionConfig', ], 'processing_instructblip': ['InstructBlipProcessor'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a_ = [ 'INSTRUCTBLIP_PRETRAINED_MODEL_ARCHIVE_LIST', 'InstructBlipQFormerModel', 'InstructBlipPreTrainedModel', 'InstructBlipForConditionalGeneration', 'InstructBlipVisionModel', ] if TYPE_CHECKING: from .configuration_instructblip import ( INSTRUCTBLIP_PRETRAINED_CONFIG_ARCHIVE_MAP, InstructBlipConfig, InstructBlipQFormerConfig, InstructBlipVisionConfig, ) from .processing_instructblip import InstructBlipProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_instructblip import ( INSTRUCTBLIP_PRETRAINED_MODEL_ARCHIVE_LIST, InstructBlipForConditionalGeneration, InstructBlipPreTrainedModel, InstructBlipQFormerModel, InstructBlipVisionModel, ) else: import sys a_ = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
25
0
"""simple docstring""" import importlib.metadata from typing import Union from packaging.version import Version, parse from .constants import STR_OPERATION_TO_FUNC _UpperCamelCase : List[Any] = parse(importlib.metadata.version("torch")) def a_ ( _lowerCAmelCase : Any , _lowerCAmelCase : Union[str, Any] , _lowerCAmelCase : Tuple ): '''simple docstring''' if operation not in STR_OPERATION_TO_FUNC.keys(): raise ValueError(f"""`operation` must be one of {list(STR_OPERATION_TO_FUNC.keys() )}, received {operation}""" ) lowercase__ : Union[str, Any] = STR_OPERATION_TO_FUNC[operation] if isinstance(_a , _a ): lowercase__ : Any = parse(importlib.metadata.version(_a ) ) return operation(_a , parse(_a ) ) def a_ ( _lowerCAmelCase : List[Any] , _lowerCAmelCase : Tuple ): '''simple docstring''' return compare_versions(_a , _a , _a )
599
from __future__ import annotations def lowerCamelCase__ ( _a): SCREAMING_SNAKE_CASE : Optional[Any] = 2 SCREAMING_SNAKE_CASE : Optional[int] = [] while i * i <= n: if n % i: i += 1 else: n //= i factors.append(_a) if n > 1: factors.append(_a) return factors if __name__ == "__main__": import doctest doctest.testmod()
25
0
"""simple docstring""" import tempfile import unittest from transformers import TaConfig, is_torch_available from transformers.testing_utils import ( require_sentencepiece, require_tokenizers, require_torch, slow, torch_device, ) from ...generation.test_utils import GenerationTesterMixin from ...test_modeling_common import ModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import AutoTokenizer, UMTaForConditionalGeneration, UMTaForQuestionAnswering, UMTaModel class _a : def __init__( self : List[str] , _lowercase : Optional[int] , _lowercase : str=99 , _lowercase : str=13 , _lowercase : List[Any]=7 , _lowercase : Optional[int]=9 , _lowercase : Optional[int]=True , _lowercase : Union[str, Any]=True , _lowercase : Any=False , _lowercase : Tuple=32 , _lowercase : List[str]=5 , _lowercase : Union[str, Any]=4 , _lowercase : Union[str, Any]=37 , _lowercase : str=8 , _lowercase : int=0.1 , _lowercase : Optional[int]=0.002 , _lowercase : Union[str, Any]=1 , _lowercase : Optional[int]=0 , _lowercase : Tuple=0 , _lowercase : Any=None , _lowercase : Optional[Any]=None , ) -> Tuple: snake_case : Optional[Any] = parent snake_case : int = batch_size snake_case : Optional[int] = encoder_seq_length snake_case : Tuple = decoder_seq_length # For common tests snake_case : int = self.decoder_seq_length snake_case : int = is_training snake_case : Any = use_attention_mask snake_case : List[str] = use_labels snake_case : Optional[Any] = vocab_size snake_case : Union[str, Any] = hidden_size snake_case : Tuple = num_hidden_layers snake_case : Any = num_attention_heads snake_case : Optional[int] = d_ff snake_case : Tuple = relative_attention_num_buckets snake_case : List[Any] = dropout_rate snake_case : int = initializer_factor snake_case : List[Any] = eos_token_id snake_case : int = pad_token_id snake_case : Union[str, Any] = decoder_start_token_id snake_case : Union[str, Any] = None snake_case : Tuple = decoder_layers def __lowercase ( self : Tuple ) -> Optional[Any]: return TaConfig.from_pretrained("google/umt5-base" ) def __lowercase ( self : Optional[int] , _lowercase : List[str] , _lowercase : Optional[Any] , _lowercase : Optional[int] , _lowercase : Tuple=None , _lowercase : List[Any]=None , _lowercase : int=None , _lowercase : Any=None , _lowercase : Dict=None , ) -> List[str]: if attention_mask is None: snake_case : int = input_ids.ne(config.pad_token_id ) if decoder_attention_mask is None: snake_case : Any = decoder_input_ids.ne(config.pad_token_id ) if head_mask is None: snake_case : Tuple = torch.ones(config.num_hidden_layers , config.num_attention_heads , device=_lowercase ) if decoder_head_mask is None: snake_case : Union[str, Any] = torch.ones(config.num_decoder_layers , config.num_attention_heads , device=_lowercase ) if cross_attn_head_mask is None: snake_case : Optional[Any] = torch.ones( config.num_decoder_layers , config.num_attention_heads , device=_lowercase ) return { "input_ids": input_ids, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "decoder_attention_mask": decoder_attention_mask, "head_mask": head_mask, "decoder_head_mask": decoder_head_mask, "cross_attn_head_mask": cross_attn_head_mask, } def __lowercase ( self : List[Any] ) -> Union[str, Any]: snake_case : int = ids_tensor([self.batch_size, self.encoder_seq_length] , self.vocab_size ) snake_case : Any = ids_tensor([self.batch_size, self.decoder_seq_length] , self.vocab_size ) # we need to clamp the input ids here to avoid having pad token in between # this is because for NllbMoe the position_ids are prepared such that # all pad tokens have pos id = 2 and rest are between 2..seq_length # and the seq_length here is seq_length - num_pad_tokens # but when using past, there is no way of knowing if the past input ids had # pad tokens in them, which results in incorrect seq_lenth and which in turn results in # position_ids being off by num_pad_tokens in past input snake_case : int = input_ids.clamp(self.pad_token_id + 1 ) snake_case : Tuple = decoder_input_ids.clamp(self.pad_token_id + 1 ) snake_case : Any = self.get_config() snake_case : Union[str, Any] = config.num_attention_heads snake_case : Dict = self.prepare_inputs_dict(_lowercase , _lowercase , _lowercase ) return config, input_dict def __lowercase ( self : Union[str, Any] ) -> int: snake_case : Tuple = self.prepare_config_and_inputs() return config, inputs_dict def __lowercase ( self : int ) -> List[Any]: return TaConfig( vocab_size=166 , d_model=self.hidden_size , d_ff=self.d_ff , d_kv=self.hidden_size // self.num_attention_heads , num_layers=self.num_hidden_layers , num_decoder_layers=self.decoder_layers , num_heads=self.num_attention_heads , relative_attention_num_buckets=self.relative_attention_num_buckets , dropout_rate=self.dropout_rate , initializer_factor=self.initializer_factor , eos_token_id=self.eos_token_id , bos_token_id=self.pad_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.decoder_start_token_id , ) def __lowercase ( self : List[Any] ) -> int: return TaConfig( vocab_size=self.vocab_size , d_model=self.hidden_size , d_ff=self.d_ff , d_kv=self.hidden_size // self.num_attention_heads , num_layers=self.num_hidden_layers , num_decoder_layers=self.decoder_layers , num_heads=self.num_attention_heads , relative_attention_num_buckets=self.relative_attention_num_buckets , dropout_rate=self.dropout_rate , initializer_factor=self.initializer_factor , eos_token_id=self.eos_token_id , bos_token_id=self.pad_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.decoder_start_token_id , ) def __lowercase ( self : Dict , _lowercase : List[str] , _lowercase : Dict , _lowercase : int , _lowercase : Tuple , _lowercase : List[str] , _lowercase : Union[str, Any] , ) -> Union[str, Any]: snake_case : int = UMTaModel(config=_lowercase ) model.to(_lowercase ) model.eval() snake_case : List[str] = model( input_ids=_lowercase , decoder_input_ids=_lowercase , attention_mask=_lowercase , decoder_attention_mask=_lowercase , ) snake_case : Any = model(input_ids=_lowercase , decoder_input_ids=_lowercase ) snake_case : Optional[Any] = result.last_hidden_state snake_case : List[str] = result.past_key_values snake_case : List[str] = result.encoder_last_hidden_state self.parent.assertEqual(encoder_output.size() , (self.batch_size, self.encoder_seq_length, self.hidden_size) ) self.parent.assertEqual(decoder_output.size() , (self.batch_size, self.decoder_seq_length, self.hidden_size) ) # There should be `num_layers` key value embeddings stored in decoder_past self.parent.assertEqual(len(_lowercase ) , config.num_layers ) # There should be a self attn key, a self attn value, a cross attn key and a cross attn value stored in each decoder_past tuple self.parent.assertEqual(len(decoder_past[0] ) , 4 ) def __lowercase ( self : List[str] , _lowercase : Optional[int] , _lowercase : Tuple , _lowercase : Tuple , _lowercase : List[Any] , _lowercase : List[Any] , _lowercase : Optional[int] , ) -> Union[str, Any]: snake_case : int = UMTaModel(config=_lowercase ).get_decoder().to(_lowercase ).eval() # first forward pass snake_case : int = model(_lowercase , use_cache=_lowercase ) snake_case : Dict = model(_lowercase ) snake_case : str = model(_lowercase , use_cache=_lowercase ) self.parent.assertTrue(len(_lowercase ) == len(_lowercase ) ) self.parent.assertTrue(len(_lowercase ) == len(_lowercase ) + 1 ) snake_case : Dict = outputs.to_tuple() # create hypothetical next token and extent to next_input_ids snake_case : Optional[Any] = ids_tensor((self.batch_size, 1) , config.vocab_size ) # append to next input_ids and snake_case : List[str] = torch.cat([input_ids, next_tokens] , dim=-1 ) snake_case : str = model(_lowercase )["last_hidden_state"] snake_case : List[str] = model(_lowercase , past_key_values=_lowercase )["last_hidden_state"] # select random slice snake_case : Tuple = ids_tensor((1,) , output_from_past.shape[-1] ).item() snake_case : List[Any] = output_from_no_past[:, -1, random_slice_idx].detach() snake_case : Any = output_from_past[:, 0, random_slice_idx].detach() # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(_lowercase , _lowercase , atol=1E-3 ) ) def __lowercase ( self : Tuple , _lowercase : Union[str, Any] , _lowercase : int , ) -> int: snake_case : str = UMTaModel(config=_lowercase ).to(_lowercase ).half().eval() snake_case : Union[str, Any] = model(**_lowercase )["last_hidden_state"] self.parent.assertFalse(torch.isnan(_lowercase ).any().item() ) @require_torch class _a ( __A , __A , __A , unittest.TestCase): __magic_name__ = ( (UMTaModel, UMTaForConditionalGeneration, UMTaForQuestionAnswering) if is_torch_available() else () ) __magic_name__ = (UMTaForConditionalGeneration,) if is_torch_available() else () __magic_name__ = ( { """conversational""": UMTaForConditionalGeneration, """feature-extraction""": UMTaModel, """summarization""": UMTaForConditionalGeneration, """text2text-generation""": UMTaForConditionalGeneration, """translation""": UMTaForConditionalGeneration, """question-answering""": UMTaForQuestionAnswering, } if is_torch_available() else {} ) __magic_name__ = True __magic_name__ = False __magic_name__ = False __magic_name__ = True __magic_name__ = True # The small UMT5 model needs higher percentages for CPU/MP tests __magic_name__ = [0.8, 0.9] def __lowercase ( self : Tuple ) -> Tuple: snake_case : Dict = UMTaModelTester(self ) @unittest.skip("Test has a segmentation fault on torch 1.8.0" ) def __lowercase ( self : int ) -> Optional[int]: snake_case : str = self.model_tester.prepare_config_and_inputs() snake_case : int = UMTaModel(config_and_inputs[0] ).to(_lowercase ) with tempfile.TemporaryDirectory() as tmpdirname: torch.onnx.export( _lowercase , (config_and_inputs[1], config_and_inputs[3], config_and_inputs[2]) , F'''{tmpdirname}/t5_test.onnx''' , export_params=_lowercase , opset_version=9 , input_names=["input_ids", "decoder_input_ids"] , ) @unittest.skipIf(torch_device == "cpu" , "Cant do half precision" ) def __lowercase ( self : Dict ) -> int: snake_case : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model_fpaa_forward(*_lowercase ) def __lowercase ( self : Tuple ) -> str: snake_case : int = ["encoder_attentions", "decoder_attentions", "cross_attentions"] snake_case : int = self.model_tester.prepare_config_and_inputs() snake_case : Union[str, Any] = config_and_inputs[0] snake_case : Any = UMTaForConditionalGeneration(_lowercase ).eval() model.to(_lowercase ) snake_case : List[Any] = { "head_mask": torch.zeros(config.num_layers , config.num_heads , device=_lowercase ), "decoder_head_mask": torch.zeros(config.num_decoder_layers , config.num_heads , device=_lowercase ), "cross_attn_head_mask": torch.zeros(config.num_decoder_layers , config.num_heads , device=_lowercase ), } for attn_name, (name, mask) in zip(_lowercase , head_masking.items() ): snake_case : Optional[int] = {name: mask} # Explicitly pass decoder_head_mask as it is required from T5 model when head_mask specified if name == "head_mask": snake_case : List[Any] = torch.ones( config.num_decoder_layers , config.num_heads , device=_lowercase ) snake_case : Optional[Any] = model.generate( config_and_inputs[1]["input_ids"] , num_beams=1 , max_length=3 , output_attentions=_lowercase , return_dict_in_generate=_lowercase , **_lowercase , ) # We check the state of decoder_attentions and cross_attentions just from the last step snake_case : int = out[attn_name] if attn_name == attention_names[0] else out[attn_name][-1] self.assertEqual(sum([w.sum().item() for w in attn_weights] ) , 0.0 ) @unittest.skip("Does not work on the tiny model as we keep hitting edge cases." ) def __lowercase ( self : Optional[int] ) -> int: pass @require_torch @require_sentencepiece @require_tokenizers class _a ( unittest.TestCase): @slow @unittest.skip( "Unless we stop stripping left and right by default for all special tokens, the expected ids obtained here will not match the original ones. Wait for https://github.com/huggingface/transformers/pull/23909 to be merged" ) def __lowercase ( self : List[str] ) -> str: snake_case : str = UMTaForConditionalGeneration.from_pretrained("google/umt5-small" , return_dict=_lowercase ).to(_lowercase ) snake_case : int = AutoTokenizer.from_pretrained("google/umt5-small" , use_fast=_lowercase , legacy=_lowercase ) snake_case : int = [ "Bonjour monsieur <extra_id_0> bien <extra_id_1>.", "No se como puedo <extra_id_0>.", "This is the reason why we <extra_id_0> them.", "The <extra_id_0> walks in <extra_id_1>, seats", "A <extra_id_0> walks into a bar and orders a <extra_id_1> with <extra_id_2> pinch of <extra_id_3>.", ] snake_case : Dict = tokenizer(_lowercase , return_tensors="pt" , padding=_lowercase ).input_ids # fmt: off snake_case : int = torch.tensor( [ [ 38530, 210703, 256299, 1410, 256298, 274, 1, 0,0, 0, 0, 0, 0, 0, 0, 0,0, 0], [ 826, 321, 671, 25922, 256299, 274, 1, 0,0, 0, 0, 0, 0, 0, 0, 0,0, 0], [ 1460, 339, 312, 19014, 10620, 758, 256299, 2355,274, 1, 0, 0, 0, 0, 0, 0,0, 0], [ 517, 256299, 14869, 281, 301, 256298, 275, 119983,1, 0, 0, 0, 0, 0, 0, 0,0, 0], [ 320, 256299, 14869, 281, 2234, 289, 2275, 333,61391, 289, 256298, 543, 256297, 168714, 329, 256296,274, 1], ] ) # fmt: on torch.testing.assert_allclose(_lowercase , _lowercase ) snake_case : Dict = model.generate(input_ids.to(_lowercase ) ) snake_case : List[Any] = [ "<pad><extra_id_0> et<extra_id_1> [eod] <extra_id_2><extra_id_55>.. [eod] 💐 💐 💐 💐 💐 💐 💐 💐 💐 💐 💐 <extra_id_56>ajšietosto<extra_id_56>lleux<extra_id_19><extra_id_6>ajšie</s>", "<pad><extra_id_0>.<extra_id_1>.,<0x0A>...spech <0x0A><extra_id_20> <extra_id_21></s><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad>", "<pad><extra_id_0> are not going to be a part of the world. We are not going to be a part of<extra_id_1> and<extra_id_2><0x0A><extra_id_48>.<extra_id_48></s><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad>", "<pad><extra_id_0> door<extra_id_1>, the door<extra_id_2> 피해[/</s><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad>", "<pad><extra_id_0>nyone who<extra_id_1> drink<extra_id_2> a<extra_id_3> alcohol<extra_id_4> A<extra_id_5> A. This<extra_id_6> I<extra_id_7><extra_id_52><extra_id_53></s><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad>", ] snake_case : Dict = tokenizer.batch_decode(_lowercase ) self.assertEqual(_lowercase , _lowercase )
449
from math import factorial, pi def lowerCamelCase__ ( _a , _a = 30): if not isinstance(_a , (int, float)): raise ValueError("maclaurin_sin() requires either an int or float for theta") if not isinstance(_a , _a) or accuracy <= 0: raise ValueError("maclaurin_sin() requires a positive int for accuracy") SCREAMING_SNAKE_CASE : int = float(_a) SCREAMING_SNAKE_CASE : Dict = theta // (2 * pi) theta -= 2 * div * pi return sum( (-1) ** r * theta ** (2 * r + 1) / factorial(2 * r + 1) for r in range(_a)) def lowerCamelCase__ ( _a , _a = 30): if not isinstance(_a , (int, float)): raise ValueError("maclaurin_cos() requires either an int or float for theta") if not isinstance(_a , _a) or accuracy <= 0: raise ValueError("maclaurin_cos() requires a positive int for accuracy") SCREAMING_SNAKE_CASE : str = float(_a) SCREAMING_SNAKE_CASE : Any = theta // (2 * pi) theta -= 2 * div * pi return sum((-1) ** r * theta ** (2 * r) / factorial(2 * r) for r in range(_a)) if __name__ == "__main__": import doctest doctest.testmod() print(maclaurin_sin(10)) print(maclaurin_sin(-10)) print(maclaurin_sin(10, 15)) print(maclaurin_sin(-10, 15)) print(maclaurin_cos(5)) print(maclaurin_cos(-5)) print(maclaurin_cos(10, 15)) print(maclaurin_cos(-10, 15))
25
0
'''simple docstring''' import copy import inspect import unittest import numpy as np from huggingface_hub import hf_hub_download from transformers import TimesformerConfig from transformers.models.auto import get_values from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ( MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING, TimesformerForVideoClassification, TimesformerModel, ) from transformers.models.timesformer.modeling_timesformer import TIMESFORMER_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from transformers import VideoMAEImageProcessor class A_ : def __init__( self : Union[str, Any] , snake_case_ : Optional[int] , snake_case_ : List[str]=1_3 , snake_case_ : Optional[int]=1_0 , snake_case_ : str=3 , snake_case_ : int=2 , snake_case_ : Optional[Any]=2 , snake_case_ : Any=True , snake_case_ : Optional[int]=True , snake_case_ : List[Any]=3_2 , snake_case_ : Optional[Any]=5 , snake_case_ : str=4 , snake_case_ : Optional[int]=3_7 , snake_case_ : int="gelu" , snake_case_ : Dict=0.1 , snake_case_ : Optional[Any]=0.1 , snake_case_ : Dict=1_0 , snake_case_ : List[Any]=0.0_2 , snake_case_ : Dict="divided_space_time" , snake_case_ : Any=None , ): _UpperCAmelCase = parent _UpperCAmelCase = batch_size _UpperCAmelCase = image_size _UpperCAmelCase = num_channels _UpperCAmelCase = patch_size _UpperCAmelCase = num_frames _UpperCAmelCase = is_training _UpperCAmelCase = use_labels _UpperCAmelCase = hidden_size _UpperCAmelCase = num_hidden_layers _UpperCAmelCase = num_attention_heads _UpperCAmelCase = intermediate_size _UpperCAmelCase = hidden_act _UpperCAmelCase = hidden_dropout_prob _UpperCAmelCase = attention_probs_dropout_prob _UpperCAmelCase = attention_type _UpperCAmelCase = initializer_range _UpperCAmelCase = scope _UpperCAmelCase = num_labels # in TimeSformer, the number of spatial tokens equals num_frames * num_patches per frame + 1 CLS token _UpperCAmelCase = (image_size // patch_size) ** 2 _UpperCAmelCase = (num_frames) * self.num_patches_per_frame + 1 def lowercase ( self : Tuple ): _UpperCAmelCase = floats_tensor( [self.batch_size, self.num_frames, self.num_channels, self.image_size, self.image_size] ) _UpperCAmelCase = None if self.use_labels: _UpperCAmelCase = ids_tensor([self.batch_size] , self.num_labels ) _UpperCAmelCase = self.get_config() return config, pixel_values, labels def lowercase ( self : Union[str, Any] ): _UpperCAmelCase = TimesformerConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , num_frames=self.num_frames , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , initializer_range=self.initializer_range , attention_type=self.attention_type , ) _UpperCAmelCase = self.num_labels return config def lowercase ( self : int , snake_case_ : Tuple , snake_case_ : List[Any] , snake_case_ : int ): _UpperCAmelCase = TimesformerModel(config=snake_case_ ) model.to(snake_case_ ) model.eval() _UpperCAmelCase = model(snake_case_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def lowercase ( self : Optional[Any] , snake_case_ : Tuple , snake_case_ : Dict , snake_case_ : Any ): _UpperCAmelCase = TimesformerForVideoClassification(snake_case_ ) model.to(snake_case_ ) model.eval() _UpperCAmelCase = model(snake_case_ ) # verify the logits shape _UpperCAmelCase = torch.Size((self.batch_size, self.num_labels) ) self.parent.assertEqual(result.logits.shape , snake_case_ ) def lowercase ( self : Optional[int] ): _UpperCAmelCase = self.prepare_config_and_inputs() _UpperCAmelCase = config_and_inputs _UpperCAmelCase = {"pixel_values": pixel_values} return config, inputs_dict @require_torch class A_ ( __A , __A , unittest.TestCase ): _lowerCamelCase : Optional[int] = (TimesformerModel, TimesformerForVideoClassification) if is_torch_available() else () _lowerCamelCase : List[Any] = ( {"""feature-extraction""": TimesformerModel, """video-classification""": TimesformerForVideoClassification} if is_torch_available() else {} ) _lowerCamelCase : Dict = False _lowerCamelCase : Any = False _lowerCamelCase : List[Any] = False _lowerCamelCase : List[str] = False def lowercase ( self : int ): _UpperCAmelCase = TimesformerModelTester(self ) _UpperCAmelCase = ConfigTester( self , config_class=snake_case_ , has_text_modality=snake_case_ , hidden_size=3_7 ) def lowercase ( self : Union[str, Any] , snake_case_ : Union[str, Any] , snake_case_ : Dict , snake_case_ : Optional[Any]=False ): _UpperCAmelCase = copy.deepcopy(snake_case_ ) if return_labels: if model_class in get_values(snake_case_ ): _UpperCAmelCase = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=snake_case_ ) return inputs_dict def lowercase ( self : List[str] ): self.config_tester.run_common_tests() @unittest.skip(reason="TimeSformer does not use inputs_embeds" ) def lowercase ( self : Dict ): pass def lowercase ( self : Tuple ): _UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _UpperCAmelCase = model_class(snake_case_ ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) _UpperCAmelCase = model.get_output_embeddings() self.assertTrue(x is None or isinstance(snake_case_ , nn.Linear ) ) def lowercase ( self : List[str] ): _UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _UpperCAmelCase = model_class(snake_case_ ) _UpperCAmelCase = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic _UpperCAmelCase = [*signature.parameters.keys()] _UpperCAmelCase = ["pixel_values"] self.assertListEqual(arg_names[:1] , snake_case_ ) def lowercase ( self : Union[str, Any] ): _UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*snake_case_ ) def lowercase ( self : Optional[int] ): _UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_video_classification(*snake_case_ ) @slow def lowercase ( self : Any ): for model_name in TIMESFORMER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _UpperCAmelCase = TimesformerModel.from_pretrained(snake_case_ ) self.assertIsNotNone(snake_case_ ) def lowercase ( self : str ): if not self.has_attentions: pass else: _UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() _UpperCAmelCase = True for model_class in self.all_model_classes: _UpperCAmelCase = self.model_tester.seq_length _UpperCAmelCase = self.model_tester.num_frames _UpperCAmelCase = True _UpperCAmelCase = False _UpperCAmelCase = True _UpperCAmelCase = model_class(snake_case_ ) model.to(snake_case_ ) model.eval() with torch.no_grad(): _UpperCAmelCase = model(**self._prepare_for_class(snake_case_ , snake_case_ ) ) _UpperCAmelCase = outputs.attentions self.assertEqual(len(snake_case_ ) , self.model_tester.num_hidden_layers ) # check that output_attentions also work using config del inputs_dict["output_attentions"] _UpperCAmelCase = True _UpperCAmelCase = model_class(snake_case_ ) model.to(snake_case_ ) model.eval() with torch.no_grad(): _UpperCAmelCase = model(**self._prepare_for_class(snake_case_ , snake_case_ ) ) _UpperCAmelCase = outputs.attentions self.assertEqual(len(snake_case_ ) , self.model_tester.num_hidden_layers ) # attentions has shape (batch_size x num_frames) x num_heads x (num_patches per frame + 1) x (num_patches per frame + 1) self.assertListEqual( list(attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, seq_len // num_frames + 1, seq_len // num_frames + 1] , ) _UpperCAmelCase = len(snake_case_ ) # Check attention is always last and order is fine _UpperCAmelCase = True _UpperCAmelCase = True _UpperCAmelCase = model_class(snake_case_ ) model.to(snake_case_ ) model.eval() with torch.no_grad(): _UpperCAmelCase = model(**self._prepare_for_class(snake_case_ , snake_case_ ) ) self.assertEqual(out_len + 1 , len(snake_case_ ) ) _UpperCAmelCase = outputs.attentions self.assertEqual(len(snake_case_ ) , self.model_tester.num_hidden_layers ) # attentions has shape (batch_size x num_frames) x num_heads x (num_patches per frame + 1) x (num_patches per frame + 1) self.assertListEqual( list(self_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, seq_len // num_frames + 1, seq_len // num_frames + 1] , ) def lowercase ( self : List[str] ): def check_hidden_states_output(snake_case_ : Tuple , snake_case_ : Dict , snake_case_ : Tuple ): _UpperCAmelCase = model_class(snake_case_ ) model.to(snake_case_ ) model.eval() with torch.no_grad(): _UpperCAmelCase = model(**self._prepare_for_class(snake_case_ , snake_case_ ) ) _UpperCAmelCase = outputs.hidden_states _UpperCAmelCase = self.model_tester.num_hidden_layers + 1 self.assertEqual(len(snake_case_ ) , snake_case_ ) _UpperCAmelCase = self.model_tester.seq_length self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [seq_length, self.model_tester.hidden_size] , ) _UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _UpperCAmelCase = True check_hidden_states_output(snake_case_ , snake_case_ , snake_case_ ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] _UpperCAmelCase = True check_hidden_states_output(snake_case_ , snake_case_ , snake_case_ ) def UpperCAmelCase_ ( ) -> Tuple: '''simple docstring''' _UpperCAmelCase = hf_hub_download( repo_id="hf-internal-testing/spaghetti-video" , filename="eating_spaghetti.npy" , repo_type="dataset" ) _UpperCAmelCase = np.load(_a ) return list(_a ) @require_torch @require_vision class A_ ( unittest.TestCase ): @cached_property def lowercase ( self : int ): return ( VideoMAEImageProcessor(image_mean=[0.5, 0.5, 0.5] , image_std=[0.5, 0.5, 0.5] ) if is_vision_available() else None ) @slow def lowercase ( self : Dict ): _UpperCAmelCase = TimesformerForVideoClassification.from_pretrained("facebook/timesformer-base-finetuned-k400" ).to( snake_case_ ) _UpperCAmelCase = self.default_image_processor _UpperCAmelCase = prepare_video() _UpperCAmelCase = image_processor(video[:8] , return_tensors="pt" ).to(snake_case_ ) # forward pass with torch.no_grad(): _UpperCAmelCase = model(**snake_case_ ) # verify the logits _UpperCAmelCase = torch.Size((1, 4_0_0) ) self.assertEqual(outputs.logits.shape , snake_case_ ) _UpperCAmelCase = torch.tensor([-0.3_0_1_6, -0.7_7_1_3, -0.4_2_0_5] ).to(snake_case_ ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , snake_case_ , atol=1e-4 ) )
236
from __future__ import annotations import math class _UpperCamelCase : '''simple docstring''' def __init__( self : Dict , a : int ) -> None: """simple docstring""" SCREAMING_SNAKE_CASE : Dict = size # approximate the overall size of segment tree with given value SCREAMING_SNAKE_CASE : Any = [0 for i in range(0 , 4 * size )] # create array to store lazy update SCREAMING_SNAKE_CASE : Union[str, Any] = [0 for i in range(0 , 4 * size )] SCREAMING_SNAKE_CASE : Any = [0 for i in range(0 , 4 * size )] # flag for lazy update def __UpperCamelCase ( self : Tuple , a : int ) -> int: """simple docstring""" return idx * 2 def __UpperCamelCase ( self : str , a : int ) -> int: """simple docstring""" return idx * 2 + 1 def __UpperCamelCase ( self : int , a : int , a : int , a : int , a : list[int] ) -> None: """simple docstring""" if left_element == right_element: SCREAMING_SNAKE_CASE : int = a[left_element - 1] else: SCREAMING_SNAKE_CASE : Optional[int] = (left_element + right_element) // 2 self.build(self.left(a ) , a , a , a ) self.build(self.right(a ) , mid + 1 , a , a ) SCREAMING_SNAKE_CASE : List[Any] = max( self.segment_tree[self.left(a )] , self.segment_tree[self.right(a )] ) def __UpperCamelCase ( self : Optional[Any] , a : int , a : int , a : int , a : int , a : int , a : int ) -> bool: """simple docstring""" if self.flag[idx] is True: SCREAMING_SNAKE_CASE : Any = self.lazy[idx] SCREAMING_SNAKE_CASE : List[str] = False if left_element != right_element: SCREAMING_SNAKE_CASE : Optional[Any] = self.lazy[idx] SCREAMING_SNAKE_CASE : int = self.lazy[idx] SCREAMING_SNAKE_CASE : Any = True SCREAMING_SNAKE_CASE : List[Any] = True if right_element < a or left_element > b: return True if left_element >= a and right_element <= b: SCREAMING_SNAKE_CASE : Optional[Any] = val if left_element != right_element: SCREAMING_SNAKE_CASE : str = val SCREAMING_SNAKE_CASE : str = val SCREAMING_SNAKE_CASE : Tuple = True SCREAMING_SNAKE_CASE : Optional[Any] = True return True SCREAMING_SNAKE_CASE : int = (left_element + right_element) // 2 self.update(self.left(a ) , a , a , a , a , a ) self.update(self.right(a ) , mid + 1 , a , a , a , a ) SCREAMING_SNAKE_CASE : Optional[int] = max( self.segment_tree[self.left(a )] , self.segment_tree[self.right(a )] ) return True def __UpperCamelCase ( self : Dict , a : int , a : int , a : int , a : int , a : int ) -> int | float: """simple docstring""" if self.flag[idx] is True: SCREAMING_SNAKE_CASE : int = self.lazy[idx] SCREAMING_SNAKE_CASE : List[Any] = False if left_element != right_element: SCREAMING_SNAKE_CASE : Optional[Any] = self.lazy[idx] SCREAMING_SNAKE_CASE : Optional[Any] = self.lazy[idx] SCREAMING_SNAKE_CASE : Optional[Any] = True SCREAMING_SNAKE_CASE : Union[str, Any] = True if right_element < a or left_element > b: return -math.inf if left_element >= a and right_element <= b: return self.segment_tree[idx] SCREAMING_SNAKE_CASE : Dict = (left_element + right_element) // 2 SCREAMING_SNAKE_CASE : Tuple = self.query(self.left(a ) , a , a , a , a ) SCREAMING_SNAKE_CASE : Tuple = self.query(self.right(a ) , mid + 1 , a , a , a ) return max(a , a ) def __str__( self : str ) -> str: """simple docstring""" return str([self.query(1 , 1 , self.size , a , a ) for i in range(1 , self.size + 1 )] ) if __name__ == "__main__": a_ = [1, 2, -4, 7, 3, -5, 6, 11, -20, 9, 14, 15, 5, 2, -8] a_ = 15 a_ = SegmentTree(size) segt.build(1, 1, size, A) print(segt.query(1, 1, size, 4, 6)) print(segt.query(1, 1, size, 7, 11)) print(segt.query(1, 1, size, 7, 12)) segt.update(1, 1, size, 1, 3, 111) print(segt.query(1, 1, size, 1, 15)) segt.update(1, 1, size, 7, 8, 235) print(segt)
25
0
# Lint as: python3 # pylint: enable=line-too-long # pylint: disable=g-import-not-at-top,g-bad-import-order,wrong-import-position UpperCamelCase__ : Union[str, Any] = '''2.13.1''' import platform import pyarrow from packaging import version if version.parse(platform.python_version()) < version.parse('''3.7'''): raise ImportWarning( '''To use `datasets`, Python>=3.7 is required, and the current version of Python doesn\'t match this condition.''' ) if version.parse(pyarrow.__version__).major < 8: raise ImportWarning( '''To use `datasets`, the module `pyarrow>=8.0.0` is required, and the current version of `pyarrow` doesn\'t match this condition.\n''' '''If you are running this in a Google Colab, you should probably just restart the runtime to use the right version of `pyarrow`.''' ) del platform del pyarrow del version from .arrow_dataset import Dataset from .arrow_reader import ReadInstruction from .builder import ArrowBasedBuilder, BeamBasedBuilder, BuilderConfig, DatasetBuilder, GeneratorBasedBuilder from .combine import concatenate_datasets, interleave_datasets from .dataset_dict import DatasetDict, IterableDatasetDict from .download import * from .features import * from .fingerprint import disable_caching, enable_caching, is_caching_enabled, set_caching_enabled from .info import DatasetInfo, MetricInfo from .inspect import ( get_dataset_config_info, get_dataset_config_names, get_dataset_infos, get_dataset_split_names, inspect_dataset, inspect_metric, list_datasets, list_metrics, ) from .iterable_dataset import IterableDataset from .load import load_dataset, load_dataset_builder, load_from_disk, load_metric from .metric import Metric from .splits import ( NamedSplit, NamedSplitAll, Split, SplitBase, SplitDict, SplitGenerator, SplitInfo, SubSplitInfo, percent, ) from .tasks import * from .utils import * from .utils import logging # deprecated modules from datasets import arrow_dataset as _arrow_dataset # isort:skip from datasets import utils as _utils # isort:skip from datasets.utils import download_manager as _deprecated_download_manager # isort:skip UpperCamelCase__ : str = concatenate_datasets UpperCamelCase__ : List[str] = DownloadConfig UpperCamelCase__ : Optional[int] = DownloadManager UpperCamelCase__ : Union[str, Any] = DownloadMode UpperCamelCase__ : Optional[int] = DownloadConfig UpperCamelCase__ : Any = DownloadMode UpperCamelCase__ : str = DownloadManager del _arrow_dataset, _utils, _deprecated_download_manager
105
import gc import unittest import numpy as np import torch from diffusers import StableDiffusionKDiffusionPipeline from diffusers.utils import slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu enable_full_determinism() @slow @require_torch_gpu class _UpperCamelCase ( unittest.TestCase ): '''simple docstring''' def __UpperCamelCase ( self : Dict ) -> Tuple: """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() def __UpperCamelCase ( self : Optional[int] ) -> int: """simple docstring""" SCREAMING_SNAKE_CASE : Optional[Any] = StableDiffusionKDiffusionPipeline.from_pretrained("CompVis/stable-diffusion-v1-4" ) SCREAMING_SNAKE_CASE : str = sd_pipe.to(a ) sd_pipe.set_progress_bar_config(disable=a ) sd_pipe.set_scheduler("sample_euler" ) SCREAMING_SNAKE_CASE : Optional[int] = "A painting of a squirrel eating a burger" SCREAMING_SNAKE_CASE : Any = torch.manual_seed(0 ) SCREAMING_SNAKE_CASE : List[Any] = sd_pipe([prompt] , generator=a , guidance_scale=9.0 , num_inference_steps=20 , output_type="np" ) SCREAMING_SNAKE_CASE : Tuple = output.images SCREAMING_SNAKE_CASE : Any = image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) SCREAMING_SNAKE_CASE : Union[str, Any] = np.array([0.0447, 0.0492, 0.0468, 0.0408, 0.0383, 0.0408, 0.0354, 0.0380, 0.0339] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def __UpperCamelCase ( self : List[Any] ) -> Optional[int]: """simple docstring""" SCREAMING_SNAKE_CASE : int = StableDiffusionKDiffusionPipeline.from_pretrained("stabilityai/stable-diffusion-2-1-base" ) SCREAMING_SNAKE_CASE : Tuple = sd_pipe.to(a ) sd_pipe.set_progress_bar_config(disable=a ) sd_pipe.set_scheduler("sample_euler" ) SCREAMING_SNAKE_CASE : List[str] = "A painting of a squirrel eating a burger" SCREAMING_SNAKE_CASE : List[str] = torch.manual_seed(0 ) SCREAMING_SNAKE_CASE : Union[str, Any] = sd_pipe([prompt] , generator=a , guidance_scale=9.0 , num_inference_steps=20 , output_type="np" ) SCREAMING_SNAKE_CASE : List[Any] = output.images SCREAMING_SNAKE_CASE : Tuple = image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) SCREAMING_SNAKE_CASE : int = np.array([0.1237, 0.1320, 0.1438, 0.1359, 0.1390, 0.1132, 0.1277, 0.1175, 0.1112] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 5e-1 def __UpperCamelCase ( self : Tuple ) -> List[Any]: """simple docstring""" SCREAMING_SNAKE_CASE : Dict = StableDiffusionKDiffusionPipeline.from_pretrained("stabilityai/stable-diffusion-2-1-base" ) SCREAMING_SNAKE_CASE : Union[str, Any] = sd_pipe.to(a ) sd_pipe.set_progress_bar_config(disable=a ) sd_pipe.set_scheduler("sample_dpmpp_2m" ) SCREAMING_SNAKE_CASE : str = "A painting of a squirrel eating a burger" SCREAMING_SNAKE_CASE : Any = torch.manual_seed(0 ) SCREAMING_SNAKE_CASE : str = sd_pipe( [prompt] , generator=a , guidance_scale=7.5 , num_inference_steps=15 , output_type="np" , use_karras_sigmas=a , ) SCREAMING_SNAKE_CASE : str = output.images SCREAMING_SNAKE_CASE : Optional[int] = image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) SCREAMING_SNAKE_CASE : int = np.array( [0.1138_1689, 0.1211_2921, 0.138_9457, 0.1254_9606, 0.124_4964, 0.1083_1517, 0.1156_2866, 0.1086_7816, 0.1049_9048] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
25
0
'''simple docstring''' from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices lowerCAmelCase_ : Optional[Any] = logging.get_logger(__name__) lowerCAmelCase_ : Tuple = { 'microsoft/swin-tiny-patch4-window7-224': ( 'https://huggingface.co/microsoft/swin-tiny-patch4-window7-224/resolve/main/config.json' ), # See all Swin models at https://huggingface.co/models?filter=swin } class lowerCamelCase_ ( __A , __A ): _lowerCAmelCase : Tuple = 'swin' _lowerCAmelCase : str = { 'num_attention_heads': 'num_heads', 'num_hidden_layers': 'num_layers', } def __init__( self : Union[str, Any] , lowerCAmelCase__ : Tuple=2_24 , lowerCAmelCase__ : Optional[Any]=4 , lowerCAmelCase__ : Optional[Any]=3 , lowerCAmelCase__ : Optional[Any]=96 , lowerCAmelCase__ : Union[str, Any]=[2, 2, 6, 2] , lowerCAmelCase__ : Tuple=[3, 6, 12, 24] , lowerCAmelCase__ : Union[str, Any]=7 , lowerCAmelCase__ : List[str]=4.0 , lowerCAmelCase__ : Optional[Any]=True , lowerCAmelCase__ : Union[str, Any]=0.0 , lowerCAmelCase__ : Optional[int]=0.0 , lowerCAmelCase__ : Union[str, Any]=0.1 , lowerCAmelCase__ : List[Any]="gelu" , lowerCAmelCase__ : Union[str, Any]=False , lowerCAmelCase__ : Any=0.02 , lowerCAmelCase__ : str=1e-5 , lowerCAmelCase__ : Any=32 , lowerCAmelCase__ : Optional[int]=None , lowerCAmelCase__ : str=None , **lowerCAmelCase__ : Dict , ): """simple docstring""" super().__init__(**lowerCAmelCase__ ) SCREAMING_SNAKE_CASE : int = image_size SCREAMING_SNAKE_CASE : Any = patch_size SCREAMING_SNAKE_CASE : Optional[Any] = num_channels SCREAMING_SNAKE_CASE : Any = embed_dim SCREAMING_SNAKE_CASE : List[str] = depths SCREAMING_SNAKE_CASE : Union[str, Any] = len(lowerCAmelCase__ ) SCREAMING_SNAKE_CASE : Dict = num_heads SCREAMING_SNAKE_CASE : Optional[int] = window_size SCREAMING_SNAKE_CASE : List[Any] = mlp_ratio SCREAMING_SNAKE_CASE : int = qkv_bias SCREAMING_SNAKE_CASE : List[Any] = hidden_dropout_prob SCREAMING_SNAKE_CASE : Optional[Any] = attention_probs_dropout_prob SCREAMING_SNAKE_CASE : List[Any] = drop_path_rate SCREAMING_SNAKE_CASE : int = hidden_act SCREAMING_SNAKE_CASE : int = use_absolute_embeddings SCREAMING_SNAKE_CASE : Tuple = layer_norm_eps SCREAMING_SNAKE_CASE : Optional[Any] = initializer_range SCREAMING_SNAKE_CASE : Tuple = encoder_stride # we set the hidden_size attribute in order to make Swin work with VisionEncoderDecoderModel # this indicates the channel dimension after the last stage of the model SCREAMING_SNAKE_CASE : int = int(embed_dim * 2 ** (len(lowerCAmelCase__ ) - 1) ) SCREAMING_SNAKE_CASE : Union[str, Any] = ["stem"] + [F"""stage{idx}""" for idx in range(1 , len(lowerCAmelCase__ ) + 1 )] SCREAMING_SNAKE_CASE : Any = get_aligned_output_features_output_indices( out_features=lowerCAmelCase__ , out_indices=lowerCAmelCase__ , stage_names=self.stage_names ) class lowerCamelCase_ ( __A ): _lowerCAmelCase : Optional[Any] = version.parse('1.11' ) @property def __lowercase ( self : Optional[Any] ): """simple docstring""" return OrderedDict( [ ('''pixel_values''', {0: '''batch''', 1: '''num_channels''', 2: '''height''', 3: '''width'''}), ] ) @property def __lowercase ( self : Optional[int] ): """simple docstring""" return 1e-4
527
import unittest import numpy as np from diffusers import LMSDiscreteScheduler, OnnxStableDiffusionInpaintPipeline from diffusers.utils.testing_utils import ( is_onnx_available, load_image, nightly, require_onnxruntime, require_torch_gpu, ) from ..test_pipelines_onnx_common import OnnxPipelineTesterMixin if is_onnx_available(): import onnxruntime as ort class _UpperCamelCase ( __A , unittest.TestCase ): '''simple docstring''' pass @nightly @require_onnxruntime @require_torch_gpu class _UpperCamelCase ( unittest.TestCase ): '''simple docstring''' @property def __UpperCamelCase ( self : List[Any] ) -> List[str]: """simple docstring""" return ( "CUDAExecutionProvider", { "gpu_mem_limit": "15000000000", # 15GB "arena_extend_strategy": "kSameAsRequested", }, ) @property def __UpperCamelCase ( self : int ) -> Optional[Any]: """simple docstring""" SCREAMING_SNAKE_CASE : Optional[Any] = ort.SessionOptions() SCREAMING_SNAKE_CASE : Union[str, Any] = False return options def __UpperCamelCase ( self : List[Any] ) -> List[Any]: """simple docstring""" SCREAMING_SNAKE_CASE : Any = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/in_paint/overture-creations-5sI6fQgYIuo.png" ) SCREAMING_SNAKE_CASE : Optional[Any] = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/in_paint/overture-creations-5sI6fQgYIuo_mask.png" ) SCREAMING_SNAKE_CASE : int = OnnxStableDiffusionInpaintPipeline.from_pretrained( "runwayml/stable-diffusion-inpainting" , revision="onnx" , safety_checker=a , feature_extractor=a , provider=self.gpu_provider , sess_options=self.gpu_options , ) pipe.set_progress_bar_config(disable=a ) SCREAMING_SNAKE_CASE : Optional[Any] = "A red cat sitting on a park bench" SCREAMING_SNAKE_CASE : Tuple = np.random.RandomState(0 ) SCREAMING_SNAKE_CASE : Optional[int] = pipe( prompt=a , image=a , mask_image=a , guidance_scale=7.5 , num_inference_steps=10 , generator=a , output_type="np" , ) SCREAMING_SNAKE_CASE : List[Any] = output.images SCREAMING_SNAKE_CASE : Union[str, Any] = images[0, 255:258, 255:258, -1] assert images.shape == (1, 512, 512, 3) SCREAMING_SNAKE_CASE : int = np.array([0.2514, 0.3007, 0.3517, 0.1790, 0.2382, 0.3167, 0.1944, 0.2273, 0.2464] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3 def __UpperCamelCase ( self : List[Any] ) -> Tuple: """simple docstring""" SCREAMING_SNAKE_CASE : int = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/in_paint/overture-creations-5sI6fQgYIuo.png" ) SCREAMING_SNAKE_CASE : Optional[Any] = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/in_paint/overture-creations-5sI6fQgYIuo_mask.png" ) SCREAMING_SNAKE_CASE : Optional[Any] = LMSDiscreteScheduler.from_pretrained( "runwayml/stable-diffusion-inpainting" , subfolder="scheduler" , revision="onnx" ) SCREAMING_SNAKE_CASE : Union[str, Any] = OnnxStableDiffusionInpaintPipeline.from_pretrained( "runwayml/stable-diffusion-inpainting" , revision="onnx" , scheduler=a , safety_checker=a , feature_extractor=a , provider=self.gpu_provider , sess_options=self.gpu_options , ) pipe.set_progress_bar_config(disable=a ) SCREAMING_SNAKE_CASE : List[Any] = "A red cat sitting on a park bench" SCREAMING_SNAKE_CASE : Dict = np.random.RandomState(0 ) SCREAMING_SNAKE_CASE : Tuple = pipe( prompt=a , image=a , mask_image=a , guidance_scale=7.5 , num_inference_steps=20 , generator=a , output_type="np" , ) SCREAMING_SNAKE_CASE : List[str] = output.images SCREAMING_SNAKE_CASE : Optional[int] = images[0, 255:258, 255:258, -1] assert images.shape == (1, 512, 512, 3) SCREAMING_SNAKE_CASE : Any = np.array([0.0086, 0.0077, 0.0083, 0.0093, 0.0107, 0.0139, 0.0094, 0.0097, 0.0125] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3
25
0
def snake_case_ (__A : List[Any] ) -> Optional[Any]: if a < 0: raise ValueError("""Input value must be a positive integer""" ) elif isinstance(_a , _a ): raise TypeError("""Input value must be a 'int' type""" ) return bin(_a ).count("""1""" ) if __name__ == "__main__": import doctest doctest.testmod()
651
from operator import delitem, getitem, setitem import pytest from data_structures.hashing.hash_map import HashMap def lowerCamelCase__ ( _a): return getitem, k def lowerCamelCase__ ( _a , _a): return setitem, k, v def lowerCamelCase__ ( _a): return delitem, k def lowerCamelCase__ ( _a , _a , *_a): try: return fun(_a , *_a), None except Exception as e: return None, e a_ = ( _set('key_a', 'val_a'), _set('key_b', 'val_b'), ) a_ = [ _set('key_a', 'val_a'), _set('key_a', 'val_b'), ] a_ = [ _set('key_a', 'val_a'), _set('key_b', 'val_b'), _del('key_a'), _del('key_b'), _set('key_a', 'val_a'), _del('key_a'), ] a_ = [ _get('key_a'), _del('key_a'), _set('key_a', 'val_a'), _del('key_a'), _del('key_a'), _get('key_a'), ] a_ = [ *[_set(x, x) for x in range(5)], # guaranteed upsize ] a_ = [ *[_set(x, x) for x in range(5)], # guaranteed upsize *[_del(x) for x in range(5)], _set('key_a', 'val_b'), ] @pytest.mark.parametrize( "operations" , ( pytest.param(_add_items , id="add items"), pytest.param(_overwrite_items , id="overwrite items"), pytest.param(_delete_items , id="delete items"), pytest.param(_access_absent_items , id="access absent items"), pytest.param(_add_with_resize_up , id="add with resize up"), pytest.param(_add_with_resize_down , id="add with resize down"), ) , ) def lowerCamelCase__ ( _a): SCREAMING_SNAKE_CASE : Dict = HashMap(initial_block_size=4) SCREAMING_SNAKE_CASE : List[str] = {} for _, (fun, *args) in enumerate(_a): SCREAMING_SNAKE_CASE ,SCREAMING_SNAKE_CASE : Union[str, Any] = _run_operation(_a , _a , *_a) SCREAMING_SNAKE_CASE ,SCREAMING_SNAKE_CASE : List[Any] = _run_operation(_a , _a , *_a) assert my_res == py_res assert str(_a) == str(_a) assert set(_a) == set(_a) assert len(_a) == len(_a) assert set(my.items()) == set(py.items()) def lowerCamelCase__ ( ): def is_public(_a) -> bool: return not name.startswith("_") SCREAMING_SNAKE_CASE : List[str] = {name for name in dir({}) if is_public(_a)} SCREAMING_SNAKE_CASE : Union[str, Any] = {name for name in dir(HashMap()) if is_public(_a)} assert dict_public_names > hash_public_names
25
0
import os import posixpath import uuid from dataclasses import dataclass from typing import TYPE_CHECKING, Iterable, List, Optional, Tuple, Union import numpy as np import pyarrow as pa import datasets from datasets.arrow_writer import ArrowWriter, ParquetWriter from datasets.config import MAX_SHARD_SIZE from datasets.filesystems import ( is_remote_filesystem, rename, ) from datasets.iterable_dataset import _BaseExamplesIterable from datasets.utils.py_utils import convert_file_size_to_int lowerCAmelCase_ = datasets.utils.logging.get_logger(__name__) if TYPE_CHECKING: import pyspark @dataclass class _A ( datasets.BuilderConfig ): _UpperCamelCase : Optional[Any] = None def snake_case( __magic_name__ , __magic_name__ , ) -> Optional[int]: '''simple docstring''' import pyspark def generate_fn(): lowercase : str = df.select('''*''' , pyspark.sql.functions.spark_partition_id().alias('''part_id''' ) ) for partition_id in partition_order: lowercase : int = df_with_partition_id.select('''*''' ).where(F"""part_id = {partition_id}""" ).drop('''part_id''' ) lowercase : Tuple = partition_df.collect() lowercase : int = 0 for row in rows: yield F"""{partition_id}_{row_id}""", row.asDict() row_id += 1 return generate_fn class _A ( _BaseExamplesIterable ): def __init__( self : Dict , _A : "pyspark.sql.DataFrame" , _A : str=None , ) -> List[str]: """simple docstring""" lowercase : List[str] = df lowercase : Any = partition_order or range(self.df.rdd.getNumPartitions() ) lowercase : List[str] = _generate_iterable_examples(self.df , self.partition_order ) def __iter__( self : Optional[Any] ) -> List[Any]: """simple docstring""" yield from self.generate_examples_fn() def __a ( self : Optional[int] , _A : np.random.Generator ) -> "SparkExamplesIterable": """simple docstring""" lowercase : str = list(range(self.df.rdd.getNumPartitions() ) ) generator.shuffle(_A ) return SparkExamplesIterable(self.df , partition_order=_A ) def __a ( self : List[Any] , _A : int , _A : int ) -> "SparkExamplesIterable": """simple docstring""" lowercase : Tuple = self.split_shard_indices_by_worker(_A , _A ) return SparkExamplesIterable(self.df , partition_order=_A ) @property def __a ( self : Optional[int] ) -> int: """simple docstring""" return len(self.partition_order ) class _A ( datasets.DatasetBuilder ): _UpperCamelCase : List[str] = SparkConfig def __init__( self : Tuple , _A : "pyspark.sql.DataFrame" , _A : str = None , _A : str = None , **_A : Optional[int] , ) -> Tuple: """simple docstring""" import pyspark lowercase : Tuple = pyspark.sql.SparkSession.builder.getOrCreate() lowercase : int = df lowercase : Optional[Any] = working_dir super().__init__( cache_dir=_A , config_name=str(self.df.semanticHash() ) , **_A , ) def __a ( self : str ) -> Tuple: """simple docstring""" def create_cache_and_write_probe(_A : Optional[int] ): # makedirs with exist_ok will recursively create the directory. It will not throw an error if directories # already exist. os.makedirs(self._cache_dir , exist_ok=_A ) lowercase : Tuple = os.path.join(self._cache_dir , '''fs_test''' + uuid.uuida().hex ) # Opening the file in append mode will create a new file unless it already exists, in which case it will not # change the file contents. open(_A , '''a''' ) return [probe_file] if self._spark.conf.get('''spark.master''' , '''''' ).startswith('''local''' ): return # If the cluster is multi-node, make sure that the user provided a cache_dir and that it is on an NFS # accessible to the driver. # TODO: Stream batches to the driver using ArrowCollectSerializer instead of throwing an error. if self._cache_dir: lowercase : Optional[Any] = ( self._spark.sparkContext.parallelize(range(1 ) , 1 ).mapPartitions(_A ).collect() ) if os.path.isfile(probe[0] ): return raise ValueError( '''When using Dataset.from_spark on a multi-node cluster, the driver and all workers should be able to access cache_dir''' ) def __a ( self : Any ) -> Dict: """simple docstring""" return datasets.DatasetInfo(features=self.config.features ) def __a ( self : Optional[Any] , _A : datasets.download.download_manager.DownloadManager ) -> Any: """simple docstring""" return [datasets.SplitGenerator(name=datasets.Split.TRAIN )] def __a ( self : int , _A : Union[str, Any] ) -> Optional[Any]: """simple docstring""" import pyspark def get_arrow_batch_size(_A : Dict ): for batch in it: yield pa.RecordBatch.from_pydict({'''batch_bytes''': [batch.nbytes]} ) lowercase : Tuple = self.df.count() lowercase : int = df_num_rows if df_num_rows <= 100 else 100 # Approximate the size of each row (in Arrow format) by averaging over a max-100-row sample. lowercase : str = ( self.df.limit(_A ) .repartition(1 ) .mapInArrow(_A , '''batch_bytes: long''' ) .agg(pyspark.sql.functions.sum('''batch_bytes''' ).alias('''sample_bytes''' ) ) .collect()[0] .sample_bytes / sample_num_rows ) lowercase : Dict = approx_bytes_per_row * df_num_rows if approx_total_size > max_shard_size: # Make sure there is at least one row per partition. lowercase : Tuple = min(_A , int(approx_total_size / max_shard_size ) ) lowercase : Tuple = self.df.repartition(_A ) def __a ( self : Any , _A : str , _A : str , _A : int , ) -> Iterable[Tuple[int, bool, Union[int, tuple]]]: """simple docstring""" import pyspark lowercase : Dict = ParquetWriter if file_format == "parquet" else ArrowWriter lowercase : Union[str, Any] = os.path.join(self._working_dir , os.path.basename(_A ) ) if self._working_dir else fpath lowercase : List[Any] = file_format == "parquet" # Define these so that we don't reference self in write_arrow, which will result in a pickling error due to # pickling the SparkContext. lowercase : List[Any] = self.config.features lowercase : Dict = self._writer_batch_size lowercase : int = self._fs.storage_options def write_arrow(_A : List[Any] ): # Within the same SparkContext, no two task attempts will share the same attempt ID. lowercase : List[str] = pyspark.TaskContext().taskAttemptId() lowercase : List[str] = next(_A , _A ) if first_batch is None: # Some partitions might not receive any data. return pa.RecordBatch.from_arrays( [[task_id], [0], [0]] , names=['''task_id''', '''num_examples''', '''num_bytes'''] , ) lowercase : Tuple = 0 lowercase : Union[str, Any] = writer_class( features=_A , path=working_fpath.replace('''SSSSS''' , f"""{shard_id:05d}""" ).replace('''TTTTT''' , f"""{task_id:05d}""" ) , writer_batch_size=_A , storage_options=_A , embed_local_files=_A , ) lowercase : Dict = pa.Table.from_batches([first_batch] ) writer.write_table(_A ) for batch in it: if max_shard_size is not None and writer._num_bytes >= max_shard_size: lowercase : str = writer.finalize() writer.close() yield pa.RecordBatch.from_arrays( [[task_id], [num_examples], [num_bytes]] , names=['''task_id''', '''num_examples''', '''num_bytes'''] , ) shard_id += 1 lowercase : Any = writer_class( features=writer._features , path=working_fpath.replace('''SSSSS''' , f"""{shard_id:05d}""" ).replace('''TTTTT''' , f"""{task_id:05d}""" ) , writer_batch_size=_A , storage_options=_A , embed_local_files=_A , ) lowercase : str = pa.Table.from_batches([batch] ) writer.write_table(_A ) if writer._num_bytes > 0: lowercase : List[Any] = writer.finalize() writer.close() yield pa.RecordBatch.from_arrays( [[task_id], [num_examples], [num_bytes]] , names=['''task_id''', '''num_examples''', '''num_bytes'''] , ) if working_fpath != fpath: for file in os.listdir(os.path.dirname(_A ) ): lowercase : Union[str, Any] = os.path.join(os.path.dirname(_A ) , os.path.basename(_A ) ) shutil.move(_A , _A ) lowercase : Optional[int] = ( self.df.mapInArrow(_A , '''task_id: long, num_examples: long, num_bytes: long''' ) .groupBy('''task_id''' ) .agg( pyspark.sql.functions.sum('''num_examples''' ).alias('''total_num_examples''' ) , pyspark.sql.functions.sum('''num_bytes''' ).alias('''total_num_bytes''' ) , pyspark.sql.functions.count('''num_bytes''' ).alias('''num_shards''' ) , pyspark.sql.functions.collect_list('''num_examples''' ).alias('''shard_lengths''' ) , ) .collect() ) for row in stats: yield row.task_id, (row.total_num_examples, row.total_num_bytes, row.num_shards, row.shard_lengths) def __a ( self : Optional[Any] , _A : "datasets.SplitGenerator" , _A : str = "arrow" , _A : Optional[Union[str, int]] = None , _A : Optional[int] = None , **_A : str , ) -> str: """simple docstring""" self._validate_cache_dir() lowercase : int = convert_file_size_to_int(max_shard_size or MAX_SHARD_SIZE ) self._repartition_df_if_needed(_A ) lowercase : Dict = not is_remote_filesystem(self._fs ) lowercase : Optional[Any] = os.path.join if is_local else posixpath.join lowercase : Optional[int] = "-TTTTT-SSSSS-of-NNNNN" lowercase : Dict = f"""{self.name}-{split_generator.name}{SUFFIX}.{file_format}""" lowercase : Dict = path_join(self._output_dir , _A ) lowercase : int = 0 lowercase : str = 0 lowercase : List[Any] = 0 lowercase : Union[str, Any] = [] lowercase : List[Any] = [] for task_id, content in self._prepare_split_single(_A , _A , _A ): ( lowercase ) : Optional[Any] = content if num_bytes > 0: total_num_examples += num_examples total_num_bytes += num_bytes total_shards += num_shards task_id_and_num_shards.append((task_id, num_shards) ) all_shard_lengths.extend(_A ) lowercase : List[str] = total_num_examples lowercase : str = total_num_bytes # should rename everything at the end logger.debug(f"""Renaming {total_shards} shards.""" ) if total_shards > 1: lowercase : List[Any] = all_shard_lengths # Define fs outside of _rename_shard so that we don't reference self in the function, which will result in a # pickling error due to pickling the SparkContext. lowercase : Optional[Any] = self._fs # use the -SSSSS-of-NNNNN pattern def _rename_shard( _A : int , _A : int , _A : int , ): rename( _A , fpath.replace('''SSSSS''' , f"""{shard_id:05d}""" ).replace('''TTTTT''' , f"""{task_id:05d}""" ) , fpath.replace('''TTTTT-SSSSS''' , f"""{global_shard_id:05d}""" ).replace('''NNNNN''' , f"""{total_shards:05d}""" ) , ) lowercase : Tuple = [] lowercase : str = 0 for i in range(len(_A ) ): lowercase : Optional[int] = task_id_and_num_shards[i] for shard_id in range(_A ): args.append([task_id, shard_id, global_shard_id] ) global_shard_id += 1 self._spark.sparkContext.parallelize(_A , len(_A ) ).map(lambda _A : _rename_shard(*_A ) ).collect() else: # don't use any pattern lowercase : Optional[int] = 0 lowercase : Optional[Any] = task_id_and_num_shards[0][0] self._rename( fpath.replace('''SSSSS''' , f"""{shard_id:05d}""" ).replace('''TTTTT''' , f"""{task_id:05d}""" ) , fpath.replace(_A , '''''' ) , ) def __a ( self : int , _A : "datasets.SplitGenerator" , ) -> SparkExamplesIterable: """simple docstring""" return SparkExamplesIterable(self.df )
217
from typing import TYPE_CHECKING from ....utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available a_ = {'configuration_van': ['VAN_PRETRAINED_CONFIG_ARCHIVE_MAP', 'VanConfig']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a_ = [ 'VAN_PRETRAINED_MODEL_ARCHIVE_LIST', 'VanForImageClassification', 'VanModel', 'VanPreTrainedModel', ] if TYPE_CHECKING: from .configuration_van import VAN_PRETRAINED_CONFIG_ARCHIVE_MAP, VanConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_van import ( VAN_PRETRAINED_MODEL_ARCHIVE_LIST, VanForImageClassification, VanModel, VanPreTrainedModel, ) else: import sys a_ = _LazyModule(__name__, globals()['__file__'], _import_structure)
25
0
# DISCLAIMER: This file is strongly influenced by https://github.com/ermongroup/ddim from dataclasses import dataclass from typing import Optional, Tuple, Union import flax import jax import jax.numpy as jnp from ..configuration_utils import ConfigMixin, register_to_config from .scheduling_utils_flax import ( CommonSchedulerState, FlaxKarrasDiffusionSchedulers, FlaxSchedulerMixin, FlaxSchedulerOutput, add_noise_common, get_velocity_common, ) @flax.struct.dataclass class a : _lowercase = 4_2 # setable values _lowercase = 4_2 _lowercase = 4_2 _lowercase = None @classmethod def _UpperCAmelCase ( cls , A_ , A_ , A_ ): '''simple docstring''' return cls(common=A_ , init_noise_sigma=A_ , timesteps=A_ ) @dataclass class a ( __A ): _lowercase = 4_2 class a ( __A , __A ): _lowercase = [e.name for e in FlaxKarrasDiffusionSchedulers] _lowercase = 4_2 @property def _UpperCAmelCase ( self ): '''simple docstring''' return True @register_to_config def __init__( self , A_ = 1000 , A_ = 0.00_01 , A_ = 0.02 , A_ = "linear" , A_ = None , A_ = "fixed_small" , A_ = True , A_ = "epsilon" , A_ = jnp.floataa , ): '''simple docstring''' _UpperCAmelCase : Tuple = dtype def _UpperCAmelCase ( self , A_ = None ): '''simple docstring''' if common is None: _UpperCAmelCase : Optional[int] = CommonSchedulerState.create(self ) # standard deviation of the initial noise distribution _UpperCAmelCase : Tuple = jnp.array(1.0 , dtype=self.dtype ) _UpperCAmelCase : List[Any] = jnp.arange(0 , self.config.num_train_timesteps ).round()[::-1] return DDPMSchedulerState.create( common=A_ , init_noise_sigma=A_ , timesteps=A_ , ) def _UpperCAmelCase ( self , A_ , A_ , A_ = None ): '''simple docstring''' return sample def _UpperCAmelCase ( self , A_ , A_ , A_ = () ): '''simple docstring''' _UpperCAmelCase : Optional[int] = self.config.num_train_timesteps // num_inference_steps # creates integer timesteps by multiplying by ratio # rounding to avoid issues when num_inference_step is power of 3 _UpperCAmelCase : Dict = (jnp.arange(0 , A_ ) * step_ratio).round()[::-1] return state.replace( num_inference_steps=A_ , timesteps=A_ , ) def _UpperCAmelCase ( self , A_ , A_ , A_=None , A_=None ): '''simple docstring''' _UpperCAmelCase : Union[str, Any] = state.common.alphas_cumprod[t] _UpperCAmelCase : Union[str, Any] = jnp.where(t > 0 , state.common.alphas_cumprod[t - 1] , jnp.array(1.0 , dtype=self.dtype ) ) # For t > 0, compute predicted variance βt (see formula (6) and (7) from https://arxiv.org/pdf/2006.11239.pdf) # and sample from it to get previous sample # x_{t-1} ~ N(pred_prev_sample, variance) == add variance to pred_sample _UpperCAmelCase : List[str] = (1 - alpha_prod_t_prev) / (1 - alpha_prod_t) * state.common.betas[t] if variance_type is None: _UpperCAmelCase : int = self.config.variance_type # hacks - were probably added for training stability if variance_type == "fixed_small": _UpperCAmelCase : str = jnp.clip(A_ , a_min=1e-20 ) # for rl-diffuser https://arxiv.org/abs/2205.09991 elif variance_type == "fixed_small_log": _UpperCAmelCase : Any = jnp.log(jnp.clip(A_ , a_min=1e-20 ) ) elif variance_type == "fixed_large": _UpperCAmelCase : int = state.common.betas[t] elif variance_type == "fixed_large_log": # Glide max_log _UpperCAmelCase : str = jnp.log(state.common.betas[t] ) elif variance_type == "learned": return predicted_variance elif variance_type == "learned_range": _UpperCAmelCase : Any = variance _UpperCAmelCase : int = state.common.betas[t] _UpperCAmelCase : Dict = (predicted_variance + 1) / 2 _UpperCAmelCase : List[Any] = frac * max_log + (1 - frac) * min_log return variance def _UpperCAmelCase ( self , A_ , A_ , A_ , A_ , A_ = None , A_ = True , ): '''simple docstring''' _UpperCAmelCase : Optional[Any] = timestep if key is None: _UpperCAmelCase : str = jax.random.PRNGKey(0 ) if model_output.shape[1] == sample.shape[1] * 2 and self.config.variance_type in ["learned", "learned_range"]: _UpperCAmelCase : Union[str, Any] = jnp.split(A_ , sample.shape[1] , axis=1 ) else: _UpperCAmelCase : int = None # 1. compute alphas, betas _UpperCAmelCase : Tuple = state.common.alphas_cumprod[t] _UpperCAmelCase : Optional[Any] = jnp.where(t > 0 , state.common.alphas_cumprod[t - 1] , jnp.array(1.0 , dtype=self.dtype ) ) _UpperCAmelCase : str = 1 - alpha_prod_t _UpperCAmelCase : str = 1 - alpha_prod_t_prev # 2. compute predicted original sample from predicted noise also called # "predicted x_0" of formula (15) from https://arxiv.org/pdf/2006.11239.pdf if self.config.prediction_type == "epsilon": _UpperCAmelCase : int = (sample - beta_prod_t ** 0.5 * model_output) / alpha_prod_t ** 0.5 elif self.config.prediction_type == "sample": _UpperCAmelCase : Union[str, Any] = model_output elif self.config.prediction_type == "v_prediction": _UpperCAmelCase : List[Any] = (alpha_prod_t**0.5) * sample - (beta_prod_t**0.5) * model_output else: raise ValueError( f'prediction_type given as {self.config.prediction_type} must be one of `epsilon`, `sample` ' " for the FlaxDDPMScheduler." ) # 3. Clip "predicted x_0" if self.config.clip_sample: _UpperCAmelCase : Tuple = jnp.clip(A_ , -1 , 1 ) # 4. Compute coefficients for pred_original_sample x_0 and current sample x_t # See formula (7) from https://arxiv.org/pdf/2006.11239.pdf _UpperCAmelCase : Optional[int] = (alpha_prod_t_prev ** 0.5 * state.common.betas[t]) / beta_prod_t _UpperCAmelCase : int = state.common.alphas[t] ** 0.5 * beta_prod_t_prev / beta_prod_t # 5. Compute predicted previous sample µ_t # See formula (7) from https://arxiv.org/pdf/2006.11239.pdf _UpperCAmelCase : Dict = pred_original_sample_coeff * pred_original_sample + current_sample_coeff * sample # 6. Add noise def random_variance(): _UpperCAmelCase : Optional[int] = jax.random.split(A_ , num=1 ) _UpperCAmelCase : Dict = jax.random.normal(A_ , shape=model_output.shape , dtype=self.dtype ) return (self._get_variance(A_ , A_ , predicted_variance=A_ ) ** 0.5) * noise _UpperCAmelCase : str = jnp.where(t > 0 , random_variance() , jnp.zeros(model_output.shape , dtype=self.dtype ) ) _UpperCAmelCase : List[str] = pred_prev_sample + variance if not return_dict: return (pred_prev_sample, state) return FlaxDDPMSchedulerOutput(prev_sample=A_ , state=A_ ) def _UpperCAmelCase ( self , A_ , A_ , A_ , A_ , ): '''simple docstring''' return add_noise_common(state.common , A_ , A_ , A_ ) def _UpperCAmelCase ( self , A_ , A_ , A_ , A_ , ): '''simple docstring''' return get_velocity_common(state.common , A_ , A_ , A_ ) def __len__( self ): '''simple docstring''' return self.config.num_train_timesteps
300
from __future__ import annotations def lowerCamelCase__ ( _a): if len(_a) == 0: return [] SCREAMING_SNAKE_CASE ,SCREAMING_SNAKE_CASE : Tuple = min(_a), max(_a) SCREAMING_SNAKE_CASE : Dict = int(max_value - min_value) + 1 SCREAMING_SNAKE_CASE : list[list] = [[] for _ in range(_a)] for i in my_list: buckets[int(i - min_value)].append(_a) return [v for bucket in buckets for v in sorted(_a)] if __name__ == "__main__": from doctest import testmod testmod() assert bucket_sort([4, 5, 3, 2, 1]) == [1, 2, 3, 4, 5] assert bucket_sort([0, 1, -10, 15, 2, -2]) == [-10, -2, 0, 1, 2, 15]
25
0
'''simple docstring''' def _snake_case ( _SCREAMING_SNAKE_CASE : str , _SCREAMING_SNAKE_CASE : Union[str, Any] ) -> str: """simple docstring""" return numa ^ numa < 0 if __name__ == "__main__": import doctest doctest.testmod()
433
a_ = frozenset( [ 'prompt', 'height', 'width', 'guidance_scale', 'negative_prompt', 'prompt_embeds', 'negative_prompt_embeds', 'cross_attention_kwargs', ] ) a_ = frozenset(['prompt', 'negative_prompt']) a_ = frozenset([]) a_ = frozenset(['image']) a_ = frozenset( [ 'image', 'height', 'width', 'guidance_scale', ] ) a_ = frozenset(['image']) a_ = frozenset( [ 'prompt', 'image', 'height', 'width', 'guidance_scale', 'negative_prompt', 'prompt_embeds', 'negative_prompt_embeds', ] ) a_ = frozenset(['prompt', 'image', 'negative_prompt']) a_ = frozenset( [ # Text guided image variation with an image mask 'prompt', 'image', 'mask_image', 'height', 'width', 'guidance_scale', 'negative_prompt', 'prompt_embeds', 'negative_prompt_embeds', ] ) a_ = frozenset(['prompt', 'image', 'mask_image', 'negative_prompt']) a_ = frozenset( [ # image variation with an image mask 'image', 'mask_image', 'height', 'width', 'guidance_scale', ] ) a_ = frozenset(['image', 'mask_image']) a_ = frozenset( [ 'example_image', 'image', 'mask_image', 'height', 'width', 'guidance_scale', ] ) a_ = frozenset(['example_image', 'image', 'mask_image']) a_ = frozenset(['class_labels']) a_ = frozenset(['class_labels']) a_ = frozenset(['batch_size']) a_ = frozenset([]) a_ = frozenset(['batch_size']) a_ = frozenset([]) a_ = frozenset( [ 'prompt', 'audio_length_in_s', 'guidance_scale', 'negative_prompt', 'prompt_embeds', 'negative_prompt_embeds', 'cross_attention_kwargs', ] ) a_ = frozenset(['prompt', 'negative_prompt']) a_ = frozenset(['input_tokens']) a_ = frozenset(['input_tokens'])
25
0
"""simple docstring""" import os import unicodedata from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging snake_case = logging.get_logger(__name__) snake_case = {'''vocab_file''': '''spiece.model'''} snake_case = { '''vocab_file''': { '''albert-base-v1''': '''https://huggingface.co/albert-base-v1/resolve/main/spiece.model''', '''albert-large-v1''': '''https://huggingface.co/albert-large-v1/resolve/main/spiece.model''', '''albert-xlarge-v1''': '''https://huggingface.co/albert-xlarge-v1/resolve/main/spiece.model''', '''albert-xxlarge-v1''': '''https://huggingface.co/albert-xxlarge-v1/resolve/main/spiece.model''', '''albert-base-v2''': '''https://huggingface.co/albert-base-v2/resolve/main/spiece.model''', '''albert-large-v2''': '''https://huggingface.co/albert-large-v2/resolve/main/spiece.model''', '''albert-xlarge-v2''': '''https://huggingface.co/albert-xlarge-v2/resolve/main/spiece.model''', '''albert-xxlarge-v2''': '''https://huggingface.co/albert-xxlarge-v2/resolve/main/spiece.model''', } } snake_case = { '''albert-base-v1''': 5_1_2, '''albert-large-v1''': 5_1_2, '''albert-xlarge-v1''': 5_1_2, '''albert-xxlarge-v1''': 5_1_2, '''albert-base-v2''': 5_1_2, '''albert-large-v2''': 5_1_2, '''albert-xlarge-v2''': 5_1_2, '''albert-xxlarge-v2''': 5_1_2, } snake_case = '''▁''' class UpperCAmelCase ( __A ): A__ : int = VOCAB_FILES_NAMES A__ : Any = PRETRAINED_VOCAB_FILES_MAP A__ : Dict = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES def __init__( self : Any , __lowerCamelCase : List[str] , __lowerCamelCase : List[str]=True , __lowerCamelCase : str=True , __lowerCamelCase : int=False , __lowerCamelCase : List[Any]="[CLS]" , __lowerCamelCase : str="[SEP]" , __lowerCamelCase : Tuple="<unk>" , __lowerCamelCase : Any="[SEP]" , __lowerCamelCase : List[str]="<pad>" , __lowerCamelCase : str="[CLS]" , __lowerCamelCase : Optional[int]="[MASK]" , __lowerCamelCase : Optional[Dict[str, Any]] = None , **__lowerCamelCase : Optional[int] , ): """simple docstring""" _snake_case = ( AddedToken(__lowerCamelCase , lstrip=__lowerCamelCase , rstrip=__lowerCamelCase , normalized=__lowerCamelCase ) if isinstance(__lowerCamelCase , __lowerCamelCase ) else mask_token ) _snake_case = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( do_lower_case=__lowerCamelCase , remove_space=__lowerCamelCase , keep_accents=__lowerCamelCase , bos_token=__lowerCamelCase , eos_token=__lowerCamelCase , unk_token=__lowerCamelCase , sep_token=__lowerCamelCase , pad_token=__lowerCamelCase , cls_token=__lowerCamelCase , mask_token=__lowerCamelCase , sp_model_kwargs=self.sp_model_kwargs , **__lowerCamelCase , ) _snake_case = do_lower_case _snake_case = remove_space _snake_case = keep_accents _snake_case = vocab_file _snake_case = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(__lowerCamelCase ) @property def __UpperCAmelCase ( self : Optional[Any] ): """simple docstring""" return len(self.sp_model ) def __UpperCAmelCase ( self : Union[str, Any] ): """simple docstring""" _snake_case = {self.convert_ids_to_tokens(__lowerCamelCase ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self : Optional[int] ): """simple docstring""" _snake_case = self.__dict__.copy() _snake_case = None return state def __setstate__( self : Any , __lowerCamelCase : Tuple ): """simple docstring""" _snake_case = d # for backward compatibility if not hasattr(self , '''sp_model_kwargs''' ): _snake_case = {} _snake_case = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def __UpperCAmelCase ( self : Dict , __lowerCamelCase : List[Any] ): """simple docstring""" if self.remove_space: _snake_case = " ".join(inputs.strip().split() ) else: _snake_case = inputs _snake_case = outputs.replace('''``''' , '''\"''' ).replace('''\'\'''' , '''\"''' ) if not self.keep_accents: _snake_case = unicodedata.normalize('''NFKD''' , __lowerCamelCase ) _snake_case = "".join([c for c in outputs if not unicodedata.combining(__lowerCamelCase )] ) if self.do_lower_case: _snake_case = outputs.lower() return outputs def __UpperCAmelCase ( self : str , __lowerCamelCase : str ): """simple docstring""" _snake_case = self.preprocess_text(__lowerCamelCase ) _snake_case = self.sp_model.encode(__lowerCamelCase , out_type=__lowerCamelCase ) _snake_case = [] for piece in pieces: if len(__lowerCamelCase ) > 1 and piece[-1] == str(''',''' ) and piece[-2].isdigit(): _snake_case = self.sp_model.EncodeAsPieces(piece[:-1].replace(__lowerCamelCase , '''''' ) ) if piece[0] != SPIECE_UNDERLINE and cur_pieces[0][0] == SPIECE_UNDERLINE: if len(cur_pieces[0] ) == 1: _snake_case = cur_pieces[1:] else: _snake_case = cur_pieces[0][1:] cur_pieces.append(piece[-1] ) new_pieces.extend(__lowerCamelCase ) else: new_pieces.append(__lowerCamelCase ) return new_pieces def __UpperCAmelCase ( self : str , __lowerCamelCase : List[str] ): """simple docstring""" return self.sp_model.PieceToId(__lowerCamelCase ) def __UpperCAmelCase ( self : Union[str, Any] , __lowerCamelCase : Optional[Any] ): """simple docstring""" return self.sp_model.IdToPiece(__lowerCamelCase ) def __UpperCAmelCase ( self : List[str] , __lowerCamelCase : Union[str, Any] ): """simple docstring""" _snake_case = [] _snake_case = "" _snake_case = False for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: if not prev_is_special: out_string += " " out_string += self.sp_model.decode(__lowerCamelCase ) + token _snake_case = True _snake_case = [] else: current_sub_tokens.append(__lowerCamelCase ) _snake_case = False out_string += self.sp_model.decode(__lowerCamelCase ) return out_string.strip() def __UpperCAmelCase ( self : List[Any] , __lowerCamelCase : List[int] , __lowerCamelCase : Optional[List[int]] = None ): """simple docstring""" _snake_case = [self.sep_token_id] _snake_case = [self.cls_token_id] if token_ids_a is None: return cls + token_ids_a + sep return cls + token_ids_a + sep + token_ids_a + sep def __UpperCAmelCase ( self : str , __lowerCamelCase : List[int] , __lowerCamelCase : Optional[List[int]] = None , __lowerCamelCase : bool = False ): """simple docstring""" if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=__lowerCamelCase , token_ids_a=__lowerCamelCase , already_has_special_tokens=__lowerCamelCase ) if token_ids_a is not None: return [1] + ([0] * len(__lowerCamelCase )) + [1] + ([0] * len(__lowerCamelCase )) + [1] return [1] + ([0] * len(__lowerCamelCase )) + [1] def __UpperCAmelCase ( self : Any , __lowerCamelCase : List[int] , __lowerCamelCase : Optional[List[int]] = None ): """simple docstring""" _snake_case = [self.sep_token_id] _snake_case = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def __UpperCAmelCase ( self : Optional[int] , __lowerCamelCase : str , __lowerCamelCase : Optional[str] = None ): """simple docstring""" if not os.path.isdir(__lowerCamelCase ): logger.error(f"""Vocabulary path ({save_directory}) should be a directory""" ) return _snake_case = os.path.join( __lowerCamelCase , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(__lowerCamelCase ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , __lowerCamelCase ) elif not os.path.isfile(self.vocab_file ): with open(__lowerCamelCase , '''wb''' ) as fi: _snake_case = self.sp_model.serialized_model_proto() fi.write(__lowerCamelCase ) return (out_vocab_file,)
103
# Lint as: python3 import sys from collections.abc import Mapping from typing import TYPE_CHECKING, Dict, Optional import numpy as np import pyarrow as pa from .. import config from ..utils.logging import get_logger from ..utils.py_utils import map_nested from .formatting import TensorFormatter if TYPE_CHECKING: import jax import jaxlib a_ = get_logger() a_ = None class _UpperCamelCase ( TensorFormatter[Mapping, 'jax.Array', Mapping] ): '''simple docstring''' def __init__( self : Optional[Any] , a : str=None , a : List[Any]=None , **a : Any ) -> Optional[Any]: """simple docstring""" super().__init__(features=a ) import jax from jaxlib.xla_client import Device if isinstance(a , a ): raise ValueError( F"Expected {device} to be a `str` not {type(a )}, as `jaxlib.xla_extension.Device` " "is not serializable neither with `pickle` nor with `dill`. Instead you can surround " "the device with `str()` to get its string identifier that will be internally mapped " "to the actual `jaxlib.xla_extension.Device`." ) SCREAMING_SNAKE_CASE : List[str] = device if isinstance(a , a ) else str(jax.devices()[0] ) # using global variable since `jaxlib.xla_extension.Device` is not serializable neither # with `pickle` nor with `dill`, so we need to use a global variable instead global DEVICE_MAPPING if DEVICE_MAPPING is None: SCREAMING_SNAKE_CASE : str = self._map_devices_to_str() if self.device not in list(DEVICE_MAPPING.keys() ): logger.warning( F"Device with string identifier {self.device} not listed among the available " F"devices: {list(DEVICE_MAPPING.keys() )}, so falling back to the default " F"device: {str(jax.devices()[0] )}." ) SCREAMING_SNAKE_CASE : Any = str(jax.devices()[0] ) SCREAMING_SNAKE_CASE : Any = jnp_array_kwargs @staticmethod def __UpperCamelCase ( ) -> Dict[str, "jaxlib.xla_extension.Device"]: """simple docstring""" import jax return {str(a ): device for device in jax.devices()} def __UpperCamelCase ( self : Dict , a : Tuple ) -> str: """simple docstring""" import jax import jax.numpy as jnp if isinstance(a , a ) and column: if all( isinstance(a , jax.Array ) and x.shape == column[0].shape and x.dtype == column[0].dtype for x in column ): return jnp.stack(a , axis=0 ) return column def __UpperCamelCase ( self : Dict , a : str ) -> str: """simple docstring""" import jax import jax.numpy as jnp if isinstance(a , (str, bytes, type(a )) ): return value elif isinstance(a , (np.character, np.ndarray) ) and np.issubdtype(value.dtype , np.character ): return value.tolist() SCREAMING_SNAKE_CASE : Union[str, Any] = {} if isinstance(a , (np.number, np.ndarray) ) and np.issubdtype(value.dtype , np.integer ): # the default int precision depends on the jax config # see https://jax.readthedocs.io/en/latest/notebooks/Common_Gotchas_in_JAX.html#double-64bit-precision if jax.config.jax_enable_xaa: SCREAMING_SNAKE_CASE : Dict = {"dtype": jnp.intaa} else: SCREAMING_SNAKE_CASE : str = {"dtype": jnp.intaa} elif isinstance(a , (np.number, np.ndarray) ) and np.issubdtype(value.dtype , np.floating ): SCREAMING_SNAKE_CASE : int = {"dtype": jnp.floataa} elif config.PIL_AVAILABLE and "PIL" in sys.modules: import PIL.Image if isinstance(a , PIL.Image.Image ): SCREAMING_SNAKE_CASE : Dict = np.asarray(a ) # using global variable since `jaxlib.xla_extension.Device` is not serializable neither # with `pickle` nor with `dill`, so we need to use a global variable instead global DEVICE_MAPPING if DEVICE_MAPPING is None: SCREAMING_SNAKE_CASE : Optional[Any] = self._map_devices_to_str() with jax.default_device(DEVICE_MAPPING[self.device] ): # calling jnp.array on a np.ndarray does copy the data # see https://github.com/google/jax/issues/4486 return jnp.array(a , **{**default_dtype, **self.jnp_array_kwargs} ) def __UpperCamelCase ( self : Any , a : List[str] ) -> Dict: """simple docstring""" import jax # support for torch, tf, jax etc. if config.TORCH_AVAILABLE and "torch" in sys.modules: import torch if isinstance(a , torch.Tensor ): return self._tensorize(data_struct.detach().cpu().numpy()[()] ) if hasattr(a , "__array__" ) and not isinstance(a , jax.Array ): SCREAMING_SNAKE_CASE : Optional[int] = data_struct.__array__() # support for nested types like struct of list of struct if isinstance(a , np.ndarray ): if data_struct.dtype == object: # jax arrays cannot be instantied from an array of objects return self._consolidate([self.recursive_tensorize(a ) for substruct in data_struct] ) elif isinstance(a , (list, tuple) ): return self._consolidate([self.recursive_tensorize(a ) for substruct in data_struct] ) return self._tensorize(a ) def __UpperCamelCase ( self : Optional[Any] , a : dict ) -> Dict: """simple docstring""" return map_nested(self._recursive_tensorize , a , map_list=a ) def __UpperCamelCase ( self : Dict , a : pa.Table ) -> Mapping: """simple docstring""" SCREAMING_SNAKE_CASE : Optional[Any] = self.numpy_arrow_extractor().extract_row(a ) SCREAMING_SNAKE_CASE : List[Any] = self.python_features_decoder.decode_row(a ) return self.recursive_tensorize(a ) def __UpperCamelCase ( self : Optional[int] , a : pa.Table ) -> "jax.Array": """simple docstring""" SCREAMING_SNAKE_CASE : Optional[int] = self.numpy_arrow_extractor().extract_column(a ) SCREAMING_SNAKE_CASE : Optional[Any] = self.python_features_decoder.decode_column(a , pa_table.column_names[0] ) SCREAMING_SNAKE_CASE : Tuple = self.recursive_tensorize(a ) SCREAMING_SNAKE_CASE : Optional[int] = self._consolidate(a ) return column def __UpperCamelCase ( self : List[Any] , a : pa.Table ) -> Mapping: """simple docstring""" SCREAMING_SNAKE_CASE : str = self.numpy_arrow_extractor().extract_batch(a ) SCREAMING_SNAKE_CASE : str = self.python_features_decoder.decode_batch(a ) SCREAMING_SNAKE_CASE : List[Any] = self.recursive_tensorize(a ) for column_name in batch: SCREAMING_SNAKE_CASE : List[Any] = self._consolidate(batch[column_name] ) return batch
25
0
import unittest from diffusers.pipelines.pipeline_utils import is_safetensors_compatible class UpperCAmelCase ( unittest.TestCase ): '''simple docstring''' def UpperCamelCase_ ( self : Any ): __A = [ "safety_checker/pytorch_model.bin", "safety_checker/model.safetensors", "vae/diffusion_pytorch_model.bin", "vae/diffusion_pytorch_model.safetensors", "text_encoder/pytorch_model.bin", "text_encoder/model.safetensors", "unet/diffusion_pytorch_model.bin", "unet/diffusion_pytorch_model.safetensors", ] self.assertTrue(is_safetensors_compatible(A ) ) def UpperCamelCase_ ( self : List[Any] ): __A = [ "unet/diffusion_pytorch_model.bin", "unet/diffusion_pytorch_model.safetensors", ] self.assertTrue(is_safetensors_compatible(A ) ) def UpperCamelCase_ ( self : Tuple ): __A = [ "safety_checker/pytorch_model.bin", "safety_checker/model.safetensors", "vae/diffusion_pytorch_model.bin", "vae/diffusion_pytorch_model.safetensors", "text_encoder/pytorch_model.bin", "text_encoder/model.safetensors", "unet/diffusion_pytorch_model.bin", # Removed: 'unet/diffusion_pytorch_model.safetensors', ] self.assertFalse(is_safetensors_compatible(A ) ) def UpperCamelCase_ ( self : List[Any] ): __A = [ "text_encoder/pytorch_model.bin", "text_encoder/model.safetensors", ] self.assertTrue(is_safetensors_compatible(A ) ) def UpperCamelCase_ ( self : List[Any] ): __A = [ "safety_checker/pytorch_model.bin", "safety_checker/model.safetensors", "vae/diffusion_pytorch_model.bin", "vae/diffusion_pytorch_model.safetensors", "text_encoder/pytorch_model.bin", # Removed: 'text_encoder/model.safetensors', "unet/diffusion_pytorch_model.bin", "unet/diffusion_pytorch_model.safetensors", ] self.assertFalse(is_safetensors_compatible(A ) ) def UpperCamelCase_ ( self : Any ): __A = [ "safety_checker/pytorch_model.fp16.bin", "safety_checker/model.fp16.safetensors", "vae/diffusion_pytorch_model.fp16.bin", "vae/diffusion_pytorch_model.fp16.safetensors", "text_encoder/pytorch_model.fp16.bin", "text_encoder/model.fp16.safetensors", "unet/diffusion_pytorch_model.fp16.bin", "unet/diffusion_pytorch_model.fp16.safetensors", ] __A = "fp16" self.assertTrue(is_safetensors_compatible(A ,variant=A ) ) def UpperCamelCase_ ( self : Tuple ): __A = [ "unet/diffusion_pytorch_model.fp16.bin", "unet/diffusion_pytorch_model.fp16.safetensors", ] __A = "fp16" self.assertTrue(is_safetensors_compatible(A ,variant=A ) ) def UpperCamelCase_ ( self : Dict ): __A = [ "unet/diffusion_pytorch_model.bin", "unet/diffusion_pytorch_model.safetensors", ] __A = "fp16" self.assertTrue(is_safetensors_compatible(A ,variant=A ) ) def UpperCamelCase_ ( self : str ): __A = [ "safety_checker/pytorch_model.fp16.bin", "safety_checker/model.fp16.safetensors", "vae/diffusion_pytorch_model.fp16.bin", "vae/diffusion_pytorch_model.fp16.safetensors", "text_encoder/pytorch_model.fp16.bin", "text_encoder/model.fp16.safetensors", "unet/diffusion_pytorch_model.fp16.bin", # Removed: 'unet/diffusion_pytorch_model.fp16.safetensors', ] __A = "fp16" self.assertFalse(is_safetensors_compatible(A ,variant=A ) ) def UpperCamelCase_ ( self : List[str] ): __A = [ "text_encoder/pytorch_model.fp16.bin", "text_encoder/model.fp16.safetensors", ] __A = "fp16" self.assertTrue(is_safetensors_compatible(A ,variant=A ) ) def UpperCamelCase_ ( self : Union[str, Any] ): __A = [ "text_encoder/pytorch_model.bin", "text_encoder/model.safetensors", ] __A = "fp16" self.assertTrue(is_safetensors_compatible(A ,variant=A ) ) def UpperCamelCase_ ( self : Union[str, Any] ): __A = [ "safety_checker/pytorch_model.fp16.bin", "safety_checker/model.fp16.safetensors", "vae/diffusion_pytorch_model.fp16.bin", "vae/diffusion_pytorch_model.fp16.safetensors", "text_encoder/pytorch_model.fp16.bin", # 'text_encoder/model.fp16.safetensors', "unet/diffusion_pytorch_model.fp16.bin", "unet/diffusion_pytorch_model.fp16.safetensors", ] __A = "fp16" self.assertFalse(is_safetensors_compatible(A ,variant=A ) )
55
import unittest from transformers import ( MODEL_FOR_OBJECT_DETECTION_MAPPING, AutoFeatureExtractor, AutoModelForObjectDetection, ObjectDetectionPipeline, is_vision_available, pipeline, ) from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_pytesseract, require_tf, require_timm, require_torch, require_vision, slow, ) from .test_pipelines_common import ANY if is_vision_available(): from PIL import Image else: class _UpperCamelCase : '''simple docstring''' @staticmethod def __UpperCamelCase ( *a : str , **a : int ) -> str: """simple docstring""" pass @is_pipeline_test @require_vision @require_timm @require_torch class _UpperCamelCase ( unittest.TestCase ): '''simple docstring''' lowerCamelCase__ =MODEL_FOR_OBJECT_DETECTION_MAPPING def __UpperCamelCase ( self : Optional[Any] , a : str , a : Optional[Any] , a : Union[str, Any] ) -> List[Any]: """simple docstring""" SCREAMING_SNAKE_CASE : Dict = ObjectDetectionPipeline(model=a , image_processor=a ) return object_detector, ["./tests/fixtures/tests_samples/COCO/000000039769.png"] def __UpperCamelCase ( self : List[Any] , a : Optional[int] , a : Optional[int] ) -> int: """simple docstring""" SCREAMING_SNAKE_CASE : Union[str, Any] = object_detector("./tests/fixtures/tests_samples/COCO/000000039769.png" , threshold=0.0 ) self.assertGreater(len(a ) , 0 ) for detected_object in outputs: self.assertEqual( a , { "score": ANY(a ), "label": ANY(a ), "box": {"xmin": ANY(a ), "ymin": ANY(a ), "xmax": ANY(a ), "ymax": ANY(a )}, } , ) import datasets SCREAMING_SNAKE_CASE : Any = datasets.load_dataset("hf-internal-testing/fixtures_image_utils" , "image" , split="test" ) SCREAMING_SNAKE_CASE : Dict = [ Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ), "http://images.cocodataset.org/val2017/000000039769.jpg", # RGBA dataset[0]["file"], # LA dataset[1]["file"], # L dataset[2]["file"], ] SCREAMING_SNAKE_CASE : Tuple = object_detector(a , threshold=0.0 ) self.assertEqual(len(a ) , len(a ) ) for outputs in batch_outputs: self.assertGreater(len(a ) , 0 ) for detected_object in outputs: self.assertEqual( a , { "score": ANY(a ), "label": ANY(a ), "box": {"xmin": ANY(a ), "ymin": ANY(a ), "xmax": ANY(a ), "ymax": ANY(a )}, } , ) @require_tf @unittest.skip("Object detection not implemented in TF" ) def __UpperCamelCase ( self : Optional[int] ) -> str: """simple docstring""" pass @require_torch def __UpperCamelCase ( self : Tuple ) -> List[Any]: """simple docstring""" SCREAMING_SNAKE_CASE : str = "hf-internal-testing/tiny-detr-mobilenetsv3" SCREAMING_SNAKE_CASE : Dict = AutoModelForObjectDetection.from_pretrained(a ) SCREAMING_SNAKE_CASE : Any = AutoFeatureExtractor.from_pretrained(a ) SCREAMING_SNAKE_CASE : Tuple = ObjectDetectionPipeline(model=a , feature_extractor=a ) SCREAMING_SNAKE_CASE : int = object_detector("http://images.cocodataset.org/val2017/000000039769.jpg" , threshold=0.0 ) self.assertEqual( nested_simplify(a , decimals=4 ) , [ {"score": 0.3376, "label": "LABEL_0", "box": {"xmin": 159, "ymin": 120, "xmax": 480, "ymax": 359}}, {"score": 0.3376, "label": "LABEL_0", "box": {"xmin": 159, "ymin": 120, "xmax": 480, "ymax": 359}}, ] , ) SCREAMING_SNAKE_CASE : Dict = object_detector( [ "http://images.cocodataset.org/val2017/000000039769.jpg", "http://images.cocodataset.org/val2017/000000039769.jpg", ] , threshold=0.0 , ) self.assertEqual( nested_simplify(a , decimals=4 ) , [ [ {"score": 0.3376, "label": "LABEL_0", "box": {"xmin": 159, "ymin": 120, "xmax": 480, "ymax": 359}}, {"score": 0.3376, "label": "LABEL_0", "box": {"xmin": 159, "ymin": 120, "xmax": 480, "ymax": 359}}, ], [ {"score": 0.3376, "label": "LABEL_0", "box": {"xmin": 159, "ymin": 120, "xmax": 480, "ymax": 359}}, {"score": 0.3376, "label": "LABEL_0", "box": {"xmin": 159, "ymin": 120, "xmax": 480, "ymax": 359}}, ], ] , ) @require_torch @slow def __UpperCamelCase ( self : str ) -> List[Any]: """simple docstring""" SCREAMING_SNAKE_CASE : Dict = "facebook/detr-resnet-50" SCREAMING_SNAKE_CASE : Union[str, Any] = AutoModelForObjectDetection.from_pretrained(a ) SCREAMING_SNAKE_CASE : List[str] = AutoFeatureExtractor.from_pretrained(a ) SCREAMING_SNAKE_CASE : int = ObjectDetectionPipeline(model=a , feature_extractor=a ) SCREAMING_SNAKE_CASE : Union[str, Any] = object_detector("http://images.cocodataset.org/val2017/000000039769.jpg" ) self.assertEqual( nested_simplify(a , decimals=4 ) , [ {"score": 0.9982, "label": "remote", "box": {"xmin": 40, "ymin": 70, "xmax": 175, "ymax": 117}}, {"score": 0.9960, "label": "remote", "box": {"xmin": 333, "ymin": 72, "xmax": 368, "ymax": 187}}, {"score": 0.9955, "label": "couch", "box": {"xmin": 0, "ymin": 1, "xmax": 639, "ymax": 473}}, {"score": 0.9988, "label": "cat", "box": {"xmin": 13, "ymin": 52, "xmax": 314, "ymax": 470}}, {"score": 0.9987, "label": "cat", "box": {"xmin": 345, "ymin": 23, "xmax": 640, "ymax": 368}}, ] , ) SCREAMING_SNAKE_CASE : int = object_detector( [ "http://images.cocodataset.org/val2017/000000039769.jpg", "http://images.cocodataset.org/val2017/000000039769.jpg", ] ) self.assertEqual( nested_simplify(a , decimals=4 ) , [ [ {"score": 0.9982, "label": "remote", "box": {"xmin": 40, "ymin": 70, "xmax": 175, "ymax": 117}}, {"score": 0.9960, "label": "remote", "box": {"xmin": 333, "ymin": 72, "xmax": 368, "ymax": 187}}, {"score": 0.9955, "label": "couch", "box": {"xmin": 0, "ymin": 1, "xmax": 639, "ymax": 473}}, {"score": 0.9988, "label": "cat", "box": {"xmin": 13, "ymin": 52, "xmax": 314, "ymax": 470}}, {"score": 0.9987, "label": "cat", "box": {"xmin": 345, "ymin": 23, "xmax": 640, "ymax": 368}}, ], [ {"score": 0.9982, "label": "remote", "box": {"xmin": 40, "ymin": 70, "xmax": 175, "ymax": 117}}, {"score": 0.9960, "label": "remote", "box": {"xmin": 333, "ymin": 72, "xmax": 368, "ymax": 187}}, {"score": 0.9955, "label": "couch", "box": {"xmin": 0, "ymin": 1, "xmax": 639, "ymax": 473}}, {"score": 0.9988, "label": "cat", "box": {"xmin": 13, "ymin": 52, "xmax": 314, "ymax": 470}}, {"score": 0.9987, "label": "cat", "box": {"xmin": 345, "ymin": 23, "xmax": 640, "ymax": 368}}, ], ] , ) @require_torch @slow def __UpperCamelCase ( self : str ) -> str: """simple docstring""" SCREAMING_SNAKE_CASE : Tuple = "facebook/detr-resnet-50" SCREAMING_SNAKE_CASE : Tuple = pipeline("object-detection" , model=a ) SCREAMING_SNAKE_CASE : Tuple = object_detector("http://images.cocodataset.org/val2017/000000039769.jpg" ) self.assertEqual( nested_simplify(a , decimals=4 ) , [ {"score": 0.9982, "label": "remote", "box": {"xmin": 40, "ymin": 70, "xmax": 175, "ymax": 117}}, {"score": 0.9960, "label": "remote", "box": {"xmin": 333, "ymin": 72, "xmax": 368, "ymax": 187}}, {"score": 0.9955, "label": "couch", "box": {"xmin": 0, "ymin": 1, "xmax": 639, "ymax": 473}}, {"score": 0.9988, "label": "cat", "box": {"xmin": 13, "ymin": 52, "xmax": 314, "ymax": 470}}, {"score": 0.9987, "label": "cat", "box": {"xmin": 345, "ymin": 23, "xmax": 640, "ymax": 368}}, ] , ) SCREAMING_SNAKE_CASE : str = object_detector( [ "http://images.cocodataset.org/val2017/000000039769.jpg", "http://images.cocodataset.org/val2017/000000039769.jpg", ] ) self.assertEqual( nested_simplify(a , decimals=4 ) , [ [ {"score": 0.9982, "label": "remote", "box": {"xmin": 40, "ymin": 70, "xmax": 175, "ymax": 117}}, {"score": 0.9960, "label": "remote", "box": {"xmin": 333, "ymin": 72, "xmax": 368, "ymax": 187}}, {"score": 0.9955, "label": "couch", "box": {"xmin": 0, "ymin": 1, "xmax": 639, "ymax": 473}}, {"score": 0.9988, "label": "cat", "box": {"xmin": 13, "ymin": 52, "xmax": 314, "ymax": 470}}, {"score": 0.9987, "label": "cat", "box": {"xmin": 345, "ymin": 23, "xmax": 640, "ymax": 368}}, ], [ {"score": 0.9982, "label": "remote", "box": {"xmin": 40, "ymin": 70, "xmax": 175, "ymax": 117}}, {"score": 0.9960, "label": "remote", "box": {"xmin": 333, "ymin": 72, "xmax": 368, "ymax": 187}}, {"score": 0.9955, "label": "couch", "box": {"xmin": 0, "ymin": 1, "xmax": 639, "ymax": 473}}, {"score": 0.9988, "label": "cat", "box": {"xmin": 13, "ymin": 52, "xmax": 314, "ymax": 470}}, {"score": 0.9987, "label": "cat", "box": {"xmin": 345, "ymin": 23, "xmax": 640, "ymax": 368}}, ], ] , ) @require_torch @slow def __UpperCamelCase ( self : str ) -> str: """simple docstring""" SCREAMING_SNAKE_CASE : Optional[int] = 0.9985 SCREAMING_SNAKE_CASE : int = "facebook/detr-resnet-50" SCREAMING_SNAKE_CASE : List[str] = pipeline("object-detection" , model=a ) SCREAMING_SNAKE_CASE : str = object_detector("http://images.cocodataset.org/val2017/000000039769.jpg" , threshold=a ) self.assertEqual( nested_simplify(a , decimals=4 ) , [ {"score": 0.9988, "label": "cat", "box": {"xmin": 13, "ymin": 52, "xmax": 314, "ymax": 470}}, {"score": 0.9987, "label": "cat", "box": {"xmin": 345, "ymin": 23, "xmax": 640, "ymax": 368}}, ] , ) @require_torch @require_pytesseract @slow def __UpperCamelCase ( self : str ) -> Tuple: """simple docstring""" SCREAMING_SNAKE_CASE : Any = "Narsil/layoutlmv3-finetuned-funsd" SCREAMING_SNAKE_CASE : Dict = 0.9993 SCREAMING_SNAKE_CASE : str = pipeline("object-detection" , model=a , threshold=a ) SCREAMING_SNAKE_CASE : List[Any] = object_detector( "https://huggingface.co/spaces/impira/docquery/resolve/2359223c1837a7587402bda0f2643382a6eefeab/invoice.png" ) self.assertEqual( nested_simplify(a , decimals=4 ) , [ {"score": 0.9993, "label": "I-ANSWER", "box": {"xmin": 294, "ymin": 254, "xmax": 343, "ymax": 264}}, {"score": 0.9993, "label": "I-ANSWER", "box": {"xmin": 294, "ymin": 254, "xmax": 343, "ymax": 264}}, ] , )
25
0
"""simple docstring""" import logging import math import os from dataclasses import dataclass, field from glob import glob from typing import Optional from torch.utils.data import ConcatDataset import transformers from transformers import ( CONFIG_MAPPING, MODEL_WITH_LM_HEAD_MAPPING, AutoConfig, AutoModelWithLMHead, AutoTokenizer, DataCollatorForLanguageModeling, DataCollatorForPermutationLanguageModeling, DataCollatorForWholeWordMask, HfArgumentParser, LineByLineTextDataset, LineByLineWithRefDataset, PreTrainedTokenizer, TextDataset, Trainer, TrainingArguments, set_seed, ) from transformers.trainer_utils import is_main_process _UpperCamelCase : List[Any] = logging.getLogger(__name__) _UpperCamelCase : Union[str, Any] = list(MODEL_WITH_LM_HEAD_MAPPING.keys()) _UpperCamelCase : Optional[Any] = tuple(conf.model_type for conf in MODEL_CONFIG_CLASSES) @dataclass class UpperCAmelCase_ : lowerCamelCase__ : Optional[Any] = field( default=__A , metadata={ "help": ( "The model checkpoint for weights initialization. Leave None if you want to train a model from" " scratch." ) } , ) lowerCamelCase__ : Optional[int] = field( default=__A , metadata={"help": "If training from scratch, pass a model type from the list: " + ", ".join(__A)} , ) lowerCamelCase__ : List[Any] = field( default=__A , metadata={"help": "Pretrained config name or path if not the same as model_name"}) lowerCamelCase__ : Any = field( default=__A , metadata={"help": "Pretrained tokenizer name or path if not the same as model_name"}) lowerCamelCase__ : Any = field( default=__A , metadata={"help": "Where do you want to store the pretrained models downloaded from huggingface.co"} , ) @dataclass class UpperCAmelCase_ : lowerCamelCase__ : Optional[Any] = field( default=__A , metadata={"help": "The input training data file (a text file)."}) lowerCamelCase__ : Union[str, Any] = field( default=__A , metadata={ "help": ( "The input training data files (multiple files in glob format). " "Very often splitting large files to smaller files can prevent tokenizer going out of memory" ) } , ) lowerCamelCase__ : Optional[Any] = field( default=__A , metadata={"help": "An optional input evaluation data file to evaluate the perplexity on (a text file)."} , ) lowerCamelCase__ : List[str] = field( default=__A , metadata={"help": "An optional input train ref data file for whole word mask in Chinese."} , ) lowerCamelCase__ : Tuple = field( default=__A , metadata={"help": "An optional input eval ref data file for whole word mask in Chinese."} , ) lowerCamelCase__ : Dict = field( default=__A , metadata={"help": "Whether distinct lines of text in the dataset are to be handled as distinct sequences."} , ) lowerCamelCase__ : Union[str, Any] = field( default=__A , metadata={"help": "Train with masked-language modeling loss instead of language modeling."}) lowerCamelCase__ : str = field(default=__A , metadata={"help": "Whether ot not to use whole word mask."}) lowerCamelCase__ : List[str] = field( default=0.15 , metadata={"help": "Ratio of tokens to mask for masked language modeling loss"}) lowerCamelCase__ : Optional[int] = field( default=1 / 6 , metadata={ "help": ( "Ratio of length of a span of masked tokens to surrounding context length for permutation language" " modeling." ) } , ) lowerCamelCase__ : Optional[int] = field( default=5 , metadata={"help": "Maximum length of a span of masked tokens for permutation language modeling."}) lowerCamelCase__ : int = field( default=-1 , metadata={ "help": ( "Optional input sequence length after tokenization." "The training dataset will be truncated in block of this size for training." "Default to the model max input length for single sentence inputs (take into account special tokens)." ) } , ) lowerCamelCase__ : Union[str, Any] = field( default=__A , metadata={"help": "Overwrite the cached training and evaluation sets"}) def a_ ( _lowerCAmelCase : List[Any] , _lowerCAmelCase : Union[str, Any] , _lowerCAmelCase : Tuple = False , _lowerCAmelCase : Tuple = None , ): '''simple docstring''' def _dataset(_lowerCAmelCase : List[Any] , _lowerCAmelCase : Optional[int]=None ): if args.line_by_line: if ref_path is not None: if not args.whole_word_mask or not args.mlm: raise ValueError('You need to set world whole masking and mlm to True for Chinese Whole Word Mask' ) return LineByLineWithRefDataset( tokenizer=_a , file_path=_a , block_size=args.block_size , ref_path=_a , ) return LineByLineTextDataset(tokenizer=_a , file_path=_a , block_size=args.block_size ) else: return TextDataset( tokenizer=_a , file_path=_a , block_size=args.block_size , overwrite_cache=args.overwrite_cache , cache_dir=_a , ) if evaluate: return _dataset(args.eval_data_file , args.eval_ref_file ) elif args.train_data_files: return ConcatDataset([_dataset(_a ) for f in glob(args.train_data_files )] ) else: return _dataset(args.train_data_file , args.train_ref_file ) def a_ ( ): '''simple docstring''' lowercase__ : Dict = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) lowercase__ : str = parser.parse_args_into_dataclasses() if data_args.eval_data_file is None and training_args.do_eval: raise ValueError( 'Cannot do evaluation without an evaluation data file. Either supply a file to --eval_data_file ' 'or remove the --do_eval argument.' ) if ( os.path.exists(training_args.output_dir ) and os.listdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir ): raise ValueError( f"""Output directory ({training_args.output_dir}) already exists and is not empty. Use""" ' --overwrite_output_dir to overcome.' ) # Setup logging logging.basicConfig( format='%(asctime)s - %(levelname)s - %(name)s - %(message)s' , datefmt='%m/%d/%Y %H:%M:%S' , level=logging.INFO if training_args.local_rank in [-1, 0] else logging.WARN , ) logger.warning( 'Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s' , training_args.local_rank , training_args.device , training_args.n_gpu , bool(training_args.local_rank != -1 ) , training_args.fpaa , ) # Set the verbosity to info of the Transformers logger (on main process only): if is_main_process(training_args.local_rank ): transformers.utils.logging.set_verbosity_info() transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() logger.info('Training/evaluation parameters %s' , _a ) # Set seed set_seed(training_args.seed ) # Load pretrained model and tokenizer # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. if model_args.config_name: lowercase__ : Optional[Any] = AutoConfig.from_pretrained(model_args.config_name , cache_dir=model_args.cache_dir ) elif model_args.model_name_or_path: lowercase__ : List[str] = AutoConfig.from_pretrained(model_args.model_name_or_path , cache_dir=model_args.cache_dir ) else: lowercase__ : Dict = CONFIG_MAPPING[model_args.model_type]() logger.warning('You are instantiating a new config instance from scratch.' ) if model_args.tokenizer_name: lowercase__ : Optional[int] = AutoTokenizer.from_pretrained(model_args.tokenizer_name , cache_dir=model_args.cache_dir ) elif model_args.model_name_or_path: lowercase__ : List[Any] = AutoTokenizer.from_pretrained(model_args.model_name_or_path , cache_dir=model_args.cache_dir ) else: raise ValueError( 'You are instantiating a new tokenizer from scratch. This is not supported, but you can do it from another' ' script, save it,and load it from here, using --tokenizer_name' ) if model_args.model_name_or_path: lowercase__ : Tuple = AutoModelWithLMHead.from_pretrained( model_args.model_name_or_path , from_tf=bool('.ckpt' in model_args.model_name_or_path ) , config=_a , cache_dir=model_args.cache_dir , ) else: logger.info('Training new model from scratch' ) lowercase__ : Optional[Any] = AutoModelWithLMHead.from_config(_a ) model.resize_token_embeddings(len(_a ) ) if config.model_type in ["bert", "roberta", "distilbert", "camembert"] and not data_args.mlm: raise ValueError( 'BERT and RoBERTa-like models do not have LM heads but masked LM heads. They must be run using the' '--mlm flag (masked language modeling).' ) if data_args.block_size <= 0: lowercase__ : str = tokenizer.max_len # Our input block size will be the max possible for the model else: lowercase__ : List[str] = min(data_args.block_size , tokenizer.max_len ) # Get datasets lowercase__ : List[Any] = ( get_dataset(_a , tokenizer=_a , cache_dir=model_args.cache_dir ) if training_args.do_train else None ) lowercase__ : Optional[Any] = ( get_dataset(_a , tokenizer=_a , evaluate=_a , cache_dir=model_args.cache_dir ) if training_args.do_eval else None ) if config.model_type == "xlnet": lowercase__ : Any = DataCollatorForPermutationLanguageModeling( tokenizer=_a , plm_probability=data_args.plm_probability , max_span_length=data_args.max_span_length , ) else: if data_args.mlm and data_args.whole_word_mask: lowercase__ : Optional[int] = DataCollatorForWholeWordMask( tokenizer=_a , mlm_probability=data_args.mlm_probability ) else: lowercase__ : Any = DataCollatorForLanguageModeling( tokenizer=_a , mlm=data_args.mlm , mlm_probability=data_args.mlm_probability ) # Initialize our Trainer lowercase__ : str = Trainer( model=_a , args=_a , data_collator=_a , train_dataset=_a , eval_dataset=_a , prediction_loss_only=_a , ) # Training if training_args.do_train: lowercase__ : Optional[int] = ( model_args.model_name_or_path if model_args.model_name_or_path is not None and os.path.isdir(model_args.model_name_or_path ) else None ) trainer.train(model_path=_a ) trainer.save_model() # For convenience, we also re-save the tokenizer to the same directory, # so that you can share your model easily on huggingface.co/models =) if trainer.is_world_master(): tokenizer.save_pretrained(training_args.output_dir ) # Evaluation lowercase__ : int = {} if training_args.do_eval: logger.info('*** Evaluate ***' ) lowercase__ : Union[str, Any] = trainer.evaluate() lowercase__ : Any = math.exp(eval_output['eval_loss'] ) lowercase__ : Any = {"perplexity": perplexity} lowercase__ : Dict = os.path.join(training_args.output_dir , 'eval_results_lm.txt' ) if trainer.is_world_master(): with open(_a , 'w' ) as writer: logger.info('***** Eval results *****' ) for key in sorted(result.keys() ): logger.info(' %s = %s' , _a , str(result[key] ) ) writer.write('%s = %s\n' % (key, str(result[key] )) ) results.update(_a ) return results def a_ ( _lowerCAmelCase : Optional[Any] ): '''simple docstring''' main() if __name__ == "__main__": main()
599
def lowerCamelCase__ ( _a): if not isinstance(_a , _a): SCREAMING_SNAKE_CASE : Tuple = f"Input value of [number={number}] must be an integer" raise TypeError(_a) if number < 0: return False SCREAMING_SNAKE_CASE : Union[str, Any] = number * number while number > 0: if number % 10 != number_square % 10: return False number //= 10 number_square //= 10 return True if __name__ == "__main__": import doctest doctest.testmod()
25
0
"""simple docstring""" import warnings from pathlib import Path from typing import List, Tuple, Union import fire from torch import nn from transformers import AutoModelForSeqaSeqLM, AutoTokenizer, PreTrainedModel from transformers.utils import logging A = logging.get_logger(__name__) def __SCREAMING_SNAKE_CASE ( lowerCamelCase_: str , lowerCamelCase_: List[str] , lowerCamelCase_: int ): """simple docstring""" snake_case : Dict = nn.ModuleList([src_layers[i] for i in layers_to_copy] ) assert len(_a ) == len(_a ), f'''{len(_a )} != {len(_a )}''' dest_layers.load_state_dict(layers_to_copy.state_dict() ) A = { # maps num layers in teacher -> num_layers in student -> which teacher layers to copy. # 12: bart, 16: pegasus, 6: marian/Helsinki-NLP 1_2: { 1: [0], # This says that if the teacher has 12 layers and the student has 1, copy layer 0 of the teacher 2: [0, 6], 3: [0, 6, 1_1], 4: [0, 4, 8, 1_1], 6: [0, 2, 4, 7, 9, 1_1], 9: [0, 1, 2, 4, 5, 7, 9, 1_0, 1_1], 1_2: list(range(1_2)), }, 1_6: { # maps num layers in student -> which teacher layers to copy 1: [0], 2: [0, 1_5], 3: [0, 8, 1_5], 4: [0, 5, 1_0, 1_5], 6: [0, 3, 6, 9, 1_2, 1_5], 8: [0, 2, 4, 6, 8, 1_0, 1_2, 1_5], 9: [0, 1, 3, 5, 7, 9, 1_1, 1_3, 1_5], 1_2: [0, 1, 2, 3, 4, 5, 6, 7, 9, 1_1, 1_3, 1_5], 1_6: list(range(1_6)), }, 6: {1: [0], 2: [0, 5], 3: [0, 2, 5], 4: [0, 1, 3, 5], 6: list(range(6))}, } A = { # maps num layers in student -> which teacher layers to copy. 6: {1: [5], 2: [3, 5], 3: [1, 4, 5], 4: [1, 2, 4, 5]}, 1_2: {1: [1_1], 2: [5, 1_1], 3: [3, 7, 1_1], 6: [1, 3, 5, 8, 1_0, 1_1]}, 1_6: {1: [1_5], 4: [4, 9, 1_2, 1_5], 8: [1, 3, 5, 7, 9, 1_1, 1_3, 1_5]}, } def __SCREAMING_SNAKE_CASE ( lowerCamelCase_: str , lowerCamelCase_: Union[str, Any] ): """simple docstring""" try: snake_case : Any = LAYERS_TO_COPY[n_teacher][n_student] return val except KeyError: if n_student != n_teacher: warnings.warn( f'''no hardcoded layers to copy for teacher {n_teacher} -> student {n_student}, defaulting to first''' f''' {n_student}''' ) return list(range(_a ) ) def __SCREAMING_SNAKE_CASE ( lowerCamelCase_: Optional[Any] , lowerCamelCase_: Optional[int] ): """simple docstring""" if n_student > n_teacher: raise ValueError(f'''Cannot perform intermediate supervision for student {n_student} > teacher {n_teacher}''' ) elif n_teacher == n_student: return list(range(_a ) ) elif n_student == 1: return [n_teacher - 1] else: return LAYERS_TO_SUPERVISE[n_teacher][n_student] def __SCREAMING_SNAKE_CASE ( lowerCamelCase_: Dict , lowerCamelCase_: Union[str, Any] = "student" , lowerCamelCase_: Dict = None , lowerCamelCase_: Dict = None , lowerCamelCase_: List[Any]=False , lowerCamelCase_: Any=None , lowerCamelCase_: int=None , **lowerCamelCase_: str , ): """simple docstring""" snake_case : Dict = "encoder_layers and decoder_layers cannot be both None-- you would just have an identical teacher." assert (e is not None) or (d is not None), _msg if isinstance(_a , _a ): AutoTokenizer.from_pretrained(_a ).save_pretrained(_a ) # purely for convenience snake_case : str = AutoModelForSeqaSeqLM.from_pretrained(_a ).eval() else: assert isinstance(_a , _a ), f'''teacher must be a model or string got type {type(_a )}''' snake_case : Optional[int] = teacher.config.to_diff_dict() try: snake_case : str = teacher.config.encoder_layers, teacher.config.decoder_layers if e is None: snake_case : List[str] = teacher_e if d is None: snake_case : Optional[Any] = teacher_d init_kwargs.update({"encoder_layers": e, "decoder_layers": d} ) except AttributeError: # T5 if hasattr(teacher.config , "num_encoder_layers" ): snake_case : str = teacher.config.num_encoder_layers, teacher.config.num_decoder_layers else: snake_case : Tuple = teacher.config.num_layers, teacher.config.num_decoder_layers if e is None: snake_case : Optional[Any] = teacher_e if d is None: snake_case : List[Any] = teacher_d if hasattr(teacher.config , "num_encoder_layers" ): init_kwargs.update({"num_encoder_layers": e, "num_decoder_layers": d} ) else: init_kwargs.update({"num_layers": e, "num_decoder_layers": d} ) # Kwargs to instantiate student: teacher kwargs with updated layer numbers + **extra_config_kwargs init_kwargs.update(_a ) # Copy weights snake_case : Tuple = teacher.config_class(**_a ) snake_case : Any = AutoModelForSeqaSeqLM.from_config(_a ) # Start by copying the full teacher state dict this will copy the first N teacher layers to the student. snake_case : List[str] = student.load_state_dict(teacher.state_dict() , strict=_a ) assert info.missing_keys == [], info.missing_keys # every student key should have a teacher keys. if copy_first_teacher_layers: # Our copying is done. We just log and save snake_case : Optional[int] = list(range(_a ) ), list(range(_a ) ) logger.info( f'''Copied encoder layers {e_layers_to_copy} and decoder layers {d_layers_to_copy}. Saving them to''' f''' {save_path}''' ) student.save_pretrained(_a ) return student, e_layers_to_copy, d_layers_to_copy # Decide which layers of the teacher to copy. Not exactly alternating -- we try to keep first and last layer. if e_layers_to_copy is None: snake_case : List[int] = pick_layers_to_copy(_a , _a ) if d_layers_to_copy is None: snake_case : List[int] = pick_layers_to_copy(_a , _a ) try: if hasattr( _a , "prophetnet" ): # For ProphetNet, student.model.encoder.layers is called student.prophetnet.encoder.layers copy_layers(teacher.prophetnet.encoder.layers , student.prophetnet.encoder.layers , _a ) copy_layers(teacher.prophetnet.decoder.layers , student.prophetnet.decoder.layers , _a ) else: copy_layers(teacher.model.encoder.layers , student.model.encoder.layers , _a ) copy_layers(teacher.model.decoder.layers , student.model.decoder.layers , _a ) except AttributeError: # For t5, student.model.encoder.layers is called student.encoder.block copy_layers(teacher.encoder.block , student.encoder.block , _a ) copy_layers(teacher.decoder.block , student.decoder.block , _a ) logger.info( f'''Copied encoder layers {e_layers_to_copy} and decoder layers {d_layers_to_copy}. Saving them to {save_path}''' ) snake_case : Optional[int] = { "teacher_type": teacher.config.model_type, "copied_encoder_layers": e_layers_to_copy, "copied_decoder_layers": d_layers_to_copy, } student.save_pretrained(_a ) # Save information about copying for easier reproducibility return student, e_layers_to_copy, d_layers_to_copy if __name__ == "__main__": fire.Fire(create_student_by_copying_alternating_layers)
449
import os import tempfile import unittest from transformers import DistilBertConfig, is_torch_available from transformers.testing_utils import require_torch, require_torch_gpu, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST, DistilBertForMaskedLM, DistilBertForMultipleChoice, DistilBertForQuestionAnswering, DistilBertForSequenceClassification, DistilBertForTokenClassification, DistilBertModel, ) class _UpperCamelCase ( __A ): '''simple docstring''' def __init__( self : Dict , a : Tuple , a : Any=13 , a : Any=7 , a : Union[str, Any]=True , a : List[Any]=True , a : List[str]=False , a : List[str]=True , a : Any=99 , a : str=32 , a : Any=5 , a : Optional[int]=4 , a : Union[str, Any]=37 , a : Dict="gelu" , a : List[Any]=0.1 , a : Optional[Any]=0.1 , a : List[str]=512 , a : Union[str, Any]=16 , a : str=2 , a : Dict=0.02 , a : Optional[int]=3 , a : Union[str, Any]=4 , a : int=None , ) -> Tuple: """simple docstring""" SCREAMING_SNAKE_CASE : Dict = parent SCREAMING_SNAKE_CASE : Any = batch_size SCREAMING_SNAKE_CASE : Optional[int] = seq_length SCREAMING_SNAKE_CASE : List[Any] = is_training SCREAMING_SNAKE_CASE : int = use_input_mask SCREAMING_SNAKE_CASE : Tuple = use_token_type_ids SCREAMING_SNAKE_CASE : str = use_labels SCREAMING_SNAKE_CASE : Any = vocab_size SCREAMING_SNAKE_CASE : List[Any] = hidden_size SCREAMING_SNAKE_CASE : str = num_hidden_layers SCREAMING_SNAKE_CASE : Optional[Any] = num_attention_heads SCREAMING_SNAKE_CASE : Tuple = intermediate_size SCREAMING_SNAKE_CASE : Optional[int] = hidden_act SCREAMING_SNAKE_CASE : Dict = hidden_dropout_prob SCREAMING_SNAKE_CASE : str = attention_probs_dropout_prob SCREAMING_SNAKE_CASE : Tuple = max_position_embeddings SCREAMING_SNAKE_CASE : List[str] = type_vocab_size SCREAMING_SNAKE_CASE : List[str] = type_sequence_label_size SCREAMING_SNAKE_CASE : Optional[Any] = initializer_range SCREAMING_SNAKE_CASE : Tuple = num_labels SCREAMING_SNAKE_CASE : Tuple = num_choices SCREAMING_SNAKE_CASE : Optional[Any] = scope def __UpperCamelCase ( self : Union[str, Any] ) -> List[str]: """simple docstring""" SCREAMING_SNAKE_CASE : Dict = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) SCREAMING_SNAKE_CASE : Union[str, Any] = None if self.use_input_mask: SCREAMING_SNAKE_CASE : str = random_attention_mask([self.batch_size, self.seq_length] ) SCREAMING_SNAKE_CASE : int = None SCREAMING_SNAKE_CASE : List[Any] = None SCREAMING_SNAKE_CASE : List[str] = None if self.use_labels: SCREAMING_SNAKE_CASE : Tuple = ids_tensor([self.batch_size] , self.type_sequence_label_size ) SCREAMING_SNAKE_CASE : str = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) SCREAMING_SNAKE_CASE : Optional[Any] = ids_tensor([self.batch_size] , self.num_choices ) SCREAMING_SNAKE_CASE : int = self.get_config() return config, input_ids, input_mask, sequence_labels, token_labels, choice_labels def __UpperCamelCase ( self : Dict ) -> str: """simple docstring""" return DistilBertConfig( vocab_size=self.vocab_size , dim=self.hidden_size , n_layers=self.num_hidden_layers , n_heads=self.num_attention_heads , hidden_dim=self.intermediate_size , hidden_act=self.hidden_act , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , ) def __UpperCamelCase ( self : Optional[Any] , a : int , a : Optional[int] , a : Optional[int] , a : Dict , a : str , a : str ) -> int: """simple docstring""" SCREAMING_SNAKE_CASE : int = DistilBertModel(config=a ) model.to(a ) model.eval() SCREAMING_SNAKE_CASE : Optional[Any] = model(a , a ) SCREAMING_SNAKE_CASE : Optional[Any] = model(a ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def __UpperCamelCase ( self : Tuple , a : Optional[int] , a : Dict , a : Tuple , a : int , a : int , a : Any ) -> Dict: """simple docstring""" SCREAMING_SNAKE_CASE : Optional[int] = DistilBertForMaskedLM(config=a ) model.to(a ) model.eval() SCREAMING_SNAKE_CASE : str = model(a , attention_mask=a , labels=a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def __UpperCamelCase ( self : List[Any] , a : int , a : Optional[Any] , a : Optional[Any] , a : str , a : str , a : Tuple ) -> List[Any]: """simple docstring""" SCREAMING_SNAKE_CASE : Optional[Any] = DistilBertForQuestionAnswering(config=a ) model.to(a ) model.eval() SCREAMING_SNAKE_CASE : List[str] = model( a , attention_mask=a , start_positions=a , end_positions=a ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def __UpperCamelCase ( self : Optional[int] , a : str , a : Any , a : int , a : Optional[Any] , a : int , a : str ) -> Optional[int]: """simple docstring""" SCREAMING_SNAKE_CASE : Dict = self.num_labels SCREAMING_SNAKE_CASE : Union[str, Any] = DistilBertForSequenceClassification(a ) model.to(a ) model.eval() SCREAMING_SNAKE_CASE : Optional[int] = model(a , attention_mask=a , labels=a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def __UpperCamelCase ( self : Optional[Any] , a : List[Any] , a : Optional[int] , a : Union[str, Any] , a : Dict , a : Any , a : Optional[Any] ) -> Any: """simple docstring""" SCREAMING_SNAKE_CASE : str = self.num_labels SCREAMING_SNAKE_CASE : List[str] = DistilBertForTokenClassification(config=a ) model.to(a ) model.eval() SCREAMING_SNAKE_CASE : List[str] = model(a , attention_mask=a , labels=a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def __UpperCamelCase ( self : int , a : Any , a : Optional[int] , a : Union[str, Any] , a : Tuple , a : Optional[int] , a : Tuple ) -> Dict: """simple docstring""" SCREAMING_SNAKE_CASE : List[str] = self.num_choices SCREAMING_SNAKE_CASE : Any = DistilBertForMultipleChoice(config=a ) model.to(a ) model.eval() SCREAMING_SNAKE_CASE : Optional[int] = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() SCREAMING_SNAKE_CASE : Dict = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() SCREAMING_SNAKE_CASE : Optional[Any] = model( a , attention_mask=a , labels=a , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def __UpperCamelCase ( self : Union[str, Any] ) -> Optional[int]: """simple docstring""" SCREAMING_SNAKE_CASE : Optional[Any] = self.prepare_config_and_inputs() ((SCREAMING_SNAKE_CASE) ,(SCREAMING_SNAKE_CASE) ,(SCREAMING_SNAKE_CASE) ,(SCREAMING_SNAKE_CASE) ,(SCREAMING_SNAKE_CASE) ,(SCREAMING_SNAKE_CASE)) : Tuple = config_and_inputs SCREAMING_SNAKE_CASE : int = {"input_ids": input_ids, "attention_mask": input_mask} return config, inputs_dict @require_torch class _UpperCamelCase ( __A , __A , unittest.TestCase ): '''simple docstring''' lowerCamelCase__ =( ( DistilBertModel, DistilBertForMaskedLM, DistilBertForMultipleChoice, DistilBertForQuestionAnswering, DistilBertForSequenceClassification, DistilBertForTokenClassification, ) if is_torch_available() else None ) lowerCamelCase__ =( { 'feature-extraction': DistilBertModel, 'fill-mask': DistilBertForMaskedLM, 'question-answering': DistilBertForQuestionAnswering, 'text-classification': DistilBertForSequenceClassification, 'token-classification': DistilBertForTokenClassification, 'zero-shot': DistilBertForSequenceClassification, } if is_torch_available() else {} ) lowerCamelCase__ =True lowerCamelCase__ =True lowerCamelCase__ =True lowerCamelCase__ =True def __UpperCamelCase ( self : Optional[Any] ) -> Tuple: """simple docstring""" SCREAMING_SNAKE_CASE : Dict = DistilBertModelTester(self ) SCREAMING_SNAKE_CASE : List[str] = ConfigTester(self , config_class=a , dim=37 ) def __UpperCamelCase ( self : List[Any] ) -> Tuple: """simple docstring""" self.config_tester.run_common_tests() def __UpperCamelCase ( self : Union[str, Any] ) -> List[Any]: """simple docstring""" SCREAMING_SNAKE_CASE : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_model(*a ) def __UpperCamelCase ( self : Tuple ) -> Dict: """simple docstring""" SCREAMING_SNAKE_CASE : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_masked_lm(*a ) def __UpperCamelCase ( self : List[Any] ) -> Optional[int]: """simple docstring""" SCREAMING_SNAKE_CASE : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_question_answering(*a ) def __UpperCamelCase ( self : Union[str, Any] ) -> Any: """simple docstring""" SCREAMING_SNAKE_CASE : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_sequence_classification(*a ) def __UpperCamelCase ( self : str ) -> List[Any]: """simple docstring""" SCREAMING_SNAKE_CASE : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_token_classification(*a ) def __UpperCamelCase ( self : List[Any] ) -> str: """simple docstring""" SCREAMING_SNAKE_CASE : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_multiple_choice(*a ) @slow def __UpperCamelCase ( self : int ) -> Any: """simple docstring""" for model_name in DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: SCREAMING_SNAKE_CASE : Optional[Any] = DistilBertModel.from_pretrained(a ) self.assertIsNotNone(a ) @slow @require_torch_gpu def __UpperCamelCase ( self : List[Any] ) -> Optional[Any]: """simple docstring""" SCREAMING_SNAKE_CASE ,SCREAMING_SNAKE_CASE : Dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: # BertForMultipleChoice behaves incorrectly in JIT environments. if model_class == DistilBertForMultipleChoice: return SCREAMING_SNAKE_CASE : Union[str, Any] = True SCREAMING_SNAKE_CASE : Any = model_class(config=a ) SCREAMING_SNAKE_CASE : List[Any] = self._prepare_for_class(a , a ) SCREAMING_SNAKE_CASE : Union[str, Any] = torch.jit.trace( a , (inputs_dict["input_ids"].to("cpu" ), inputs_dict["attention_mask"].to("cpu" )) ) with tempfile.TemporaryDirectory() as tmp: torch.jit.save(a , os.path.join(a , "traced_model.pt" ) ) SCREAMING_SNAKE_CASE : Tuple = torch.jit.load(os.path.join(a , "traced_model.pt" ) , map_location=a ) loaded(inputs_dict["input_ids"].to(a ) , inputs_dict["attention_mask"].to(a ) ) @require_torch class _UpperCamelCase ( unittest.TestCase ): '''simple docstring''' @slow def __UpperCamelCase ( self : int ) -> Dict: """simple docstring""" SCREAMING_SNAKE_CASE : Union[str, Any] = DistilBertModel.from_pretrained("distilbert-base-uncased" ) SCREAMING_SNAKE_CASE : List[str] = torch.tensor([[0, 345, 232, 328, 740, 140, 1695, 69, 6078, 1588, 2]] ) SCREAMING_SNAKE_CASE : Optional[int] = torch.tensor([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] ) with torch.no_grad(): SCREAMING_SNAKE_CASE : Optional[Any] = model(a , attention_mask=a )[0] SCREAMING_SNAKE_CASE : List[str] = torch.Size((1, 11, 768) ) self.assertEqual(output.shape , a ) SCREAMING_SNAKE_CASE : Union[str, Any] = torch.tensor( [[[-0.1639, 0.3299, 0.1648], [-0.1746, 0.3289, 0.1710], [-0.1884, 0.3357, 0.1810]]] ) self.assertTrue(torch.allclose(output[:, 1:4, 1:4] , a , atol=1e-4 ) )
25
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available __SCREAMING_SNAKE_CASE :Optional[int] = { '''configuration_lilt''': ['''LILT_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''LiltConfig'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __SCREAMING_SNAKE_CASE :int = [ '''LILT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''LiltForQuestionAnswering''', '''LiltForSequenceClassification''', '''LiltForTokenClassification''', '''LiltModel''', '''LiltPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_lilt import LILT_PRETRAINED_CONFIG_ARCHIVE_MAP, LiltConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_lilt import ( LILT_PRETRAINED_MODEL_ARCHIVE_LIST, LiltForQuestionAnswering, LiltForSequenceClassification, LiltForTokenClassification, LiltModel, LiltPreTrainedModel, ) else: import sys __SCREAMING_SNAKE_CASE :Union[str, Any] = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
236
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tokenizers_available, is_torch_available, ) a_ = {'configuration_plbart': ['PLBART_PRETRAINED_CONFIG_ARCHIVE_MAP', 'PLBartConfig']} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a_ = ['PLBartTokenizer'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a_ = [ 'PLBART_PRETRAINED_MODEL_ARCHIVE_LIST', 'PLBartForCausalLM', 'PLBartForConditionalGeneration', 'PLBartForSequenceClassification', 'PLBartModel', 'PLBartPreTrainedModel', ] if TYPE_CHECKING: from .configuration_plbart import PLBART_PRETRAINED_CONFIG_ARCHIVE_MAP, PLBartConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_plbart import PLBartTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_plbart import ( PLBART_PRETRAINED_MODEL_ARCHIVE_LIST, PLBartForCausalLM, PLBartForConditionalGeneration, PLBartForSequenceClassification, PLBartModel, PLBartPreTrainedModel, ) else: import sys a_ = _LazyModule(__name__, globals()['__file__'], _import_structure)
25
0
from __future__ import annotations import unittest from transformers import FunnelConfig, is_tf_available from transformers.testing_utils import require_tf from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TFFunnelBaseModel, TFFunnelForMaskedLM, TFFunnelForMultipleChoice, TFFunnelForPreTraining, TFFunnelForQuestionAnswering, TFFunnelForSequenceClassification, TFFunnelForTokenClassification, TFFunnelModel, ) class lowerCAmelCase_ : def __init__( self ,snake_case__ ,snake_case__=13 ,snake_case__=7 ,snake_case__=True ,snake_case__=True ,snake_case__=True ,snake_case__=True ,snake_case__=99 ,snake_case__=[1, 1, 2] ,snake_case__=1 ,snake_case__=32 ,snake_case__=4 ,snake_case__=8 ,snake_case__=37 ,snake_case__="gelu_new" ,snake_case__=0.1 ,snake_case__=0.1 ,snake_case__=0.0 ,snake_case__=512 ,snake_case__=3 ,snake_case__=0.02 ,snake_case__=3 ,snake_case__=4 ,snake_case__=None ,snake_case__=False ,): SCREAMING_SNAKE_CASE_ : Any = parent SCREAMING_SNAKE_CASE_ : Union[str, Any] = batch_size SCREAMING_SNAKE_CASE_ : Tuple = seq_length SCREAMING_SNAKE_CASE_ : Optional[Any] = is_training SCREAMING_SNAKE_CASE_ : List[Any] = use_input_mask SCREAMING_SNAKE_CASE_ : Dict = use_token_type_ids SCREAMING_SNAKE_CASE_ : Union[str, Any] = use_labels SCREAMING_SNAKE_CASE_ : int = vocab_size SCREAMING_SNAKE_CASE_ : List[str] = block_sizes SCREAMING_SNAKE_CASE_ : List[Any] = num_decoder_layers SCREAMING_SNAKE_CASE_ : Optional[Any] = d_model SCREAMING_SNAKE_CASE_ : Any = n_head SCREAMING_SNAKE_CASE_ : Tuple = d_head SCREAMING_SNAKE_CASE_ : Dict = d_inner SCREAMING_SNAKE_CASE_ : List[Any] = hidden_act SCREAMING_SNAKE_CASE_ : str = hidden_dropout SCREAMING_SNAKE_CASE_ : List[Any] = attention_dropout SCREAMING_SNAKE_CASE_ : Optional[Any] = activation_dropout SCREAMING_SNAKE_CASE_ : int = max_position_embeddings SCREAMING_SNAKE_CASE_ : Optional[Any] = type_vocab_size SCREAMING_SNAKE_CASE_ : int = 2 SCREAMING_SNAKE_CASE_ : List[Any] = num_labels SCREAMING_SNAKE_CASE_ : Optional[int] = num_choices SCREAMING_SNAKE_CASE_ : Dict = scope SCREAMING_SNAKE_CASE_ : Optional[int] = initializer_std # Used in the tests to check the size of the first attention layer SCREAMING_SNAKE_CASE_ : Tuple = n_head # Used in the tests to check the size of the first hidden state SCREAMING_SNAKE_CASE_ : Any = self.d_model # Used in the tests to check the number of output hidden states/attentions SCREAMING_SNAKE_CASE_ : int = sum(self.block_sizes ) + (0 if base else self.num_decoder_layers) # FunnelModel adds two hidden layers: input embeddings and the sum of the upsampled encoder hidden state with # the last hidden state of the first block (which is the first hidden state of the decoder). if not base: SCREAMING_SNAKE_CASE_ : List[Any] = self.num_hidden_layers + 2 def snake_case ( self ): SCREAMING_SNAKE_CASE_ : str = ids_tensor([self.batch_size, self.seq_length] ,self.vocab_size ) SCREAMING_SNAKE_CASE_ : List[str] = None if self.use_input_mask: SCREAMING_SNAKE_CASE_ : List[str] = random_attention_mask([self.batch_size, self.seq_length] ) SCREAMING_SNAKE_CASE_ : str = None if self.use_token_type_ids: SCREAMING_SNAKE_CASE_ : Union[str, Any] = ids_tensor([self.batch_size, self.seq_length] ,self.type_vocab_size ) SCREAMING_SNAKE_CASE_ : int = None SCREAMING_SNAKE_CASE_ : Optional[int] = None SCREAMING_SNAKE_CASE_ : Optional[int] = None if self.use_labels: SCREAMING_SNAKE_CASE_ : List[str] = ids_tensor([self.batch_size] ,self.type_sequence_label_size ) SCREAMING_SNAKE_CASE_ : List[str] = ids_tensor([self.batch_size, self.seq_length] ,self.num_labels ) SCREAMING_SNAKE_CASE_ : int = ids_tensor([self.batch_size] ,self.num_choices ) SCREAMING_SNAKE_CASE_ : int = FunnelConfig( vocab_size=self.vocab_size ,block_sizes=self.block_sizes ,num_decoder_layers=self.num_decoder_layers ,d_model=self.d_model ,n_head=self.n_head ,d_head=self.d_head ,d_inner=self.d_inner ,hidden_act=self.hidden_act ,hidden_dropout=self.hidden_dropout ,attention_dropout=self.attention_dropout ,activation_dropout=self.activation_dropout ,max_position_embeddings=self.max_position_embeddings ,type_vocab_size=self.type_vocab_size ,initializer_std=self.initializer_std ,) return ( config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels, ) def snake_case ( self ,snake_case__ ,snake_case__ ,snake_case__ ,snake_case__ ,snake_case__ ,snake_case__ ,snake_case__ ,): SCREAMING_SNAKE_CASE_ : Dict = TFFunnelModel(config=snake_case__ ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = {"input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids} SCREAMING_SNAKE_CASE_ : int = model(snake_case__ ) SCREAMING_SNAKE_CASE_ : List[str] = [input_ids, input_mask] SCREAMING_SNAKE_CASE_ : Optional[int] = model(snake_case__ ) SCREAMING_SNAKE_CASE_ : Optional[Any] = model(snake_case__ ) self.parent.assertEqual(result.last_hidden_state.shape ,(self.batch_size, self.seq_length, self.d_model) ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = False SCREAMING_SNAKE_CASE_ : int = TFFunnelModel(config=snake_case__ ) SCREAMING_SNAKE_CASE_ : Tuple = model(snake_case__ ) self.parent.assertEqual(result.last_hidden_state.shape ,(self.batch_size, self.seq_length, self.d_model) ) SCREAMING_SNAKE_CASE_ : Optional[int] = False SCREAMING_SNAKE_CASE_ : List[str] = TFFunnelModel(config=snake_case__ ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = model(snake_case__ ) self.parent.assertEqual(result.last_hidden_state.shape ,(self.batch_size, self.seq_length, self.d_model) ) def snake_case ( self ,snake_case__ ,snake_case__ ,snake_case__ ,snake_case__ ,snake_case__ ,snake_case__ ,snake_case__ ,): SCREAMING_SNAKE_CASE_ : Dict = TFFunnelBaseModel(config=snake_case__ ) SCREAMING_SNAKE_CASE_ : Dict = {"input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids} SCREAMING_SNAKE_CASE_ : List[Any] = model(snake_case__ ) SCREAMING_SNAKE_CASE_ : int = [input_ids, input_mask] SCREAMING_SNAKE_CASE_ : str = model(snake_case__ ) SCREAMING_SNAKE_CASE_ : Tuple = model(snake_case__ ) self.parent.assertEqual(result.last_hidden_state.shape ,(self.batch_size, 2, self.d_model) ) SCREAMING_SNAKE_CASE_ : Optional[int] = False SCREAMING_SNAKE_CASE_ : List[Any] = TFFunnelBaseModel(config=snake_case__ ) SCREAMING_SNAKE_CASE_ : int = model(snake_case__ ) self.parent.assertEqual(result.last_hidden_state.shape ,(self.batch_size, 3, self.d_model) ) SCREAMING_SNAKE_CASE_ : Any = False SCREAMING_SNAKE_CASE_ : List[Any] = TFFunnelBaseModel(config=snake_case__ ) SCREAMING_SNAKE_CASE_ : List[str] = model(snake_case__ ) self.parent.assertEqual(result.last_hidden_state.shape ,(self.batch_size, 2, self.d_model) ) def snake_case ( self ,snake_case__ ,snake_case__ ,snake_case__ ,snake_case__ ,snake_case__ ,snake_case__ ,snake_case__ ,): SCREAMING_SNAKE_CASE_ : int = TFFunnelForPreTraining(config=snake_case__ ) SCREAMING_SNAKE_CASE_ : List[Any] = {"input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids} SCREAMING_SNAKE_CASE_ : Dict = model(snake_case__ ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.seq_length) ) def snake_case ( self ,snake_case__ ,snake_case__ ,snake_case__ ,snake_case__ ,snake_case__ ,snake_case__ ,snake_case__ ,): SCREAMING_SNAKE_CASE_ : int = TFFunnelForMaskedLM(config=snake_case__ ) SCREAMING_SNAKE_CASE_ : List[Any] = {"input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids} SCREAMING_SNAKE_CASE_ : str = model(snake_case__ ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.seq_length, self.vocab_size) ) def snake_case ( self ,snake_case__ ,snake_case__ ,snake_case__ ,snake_case__ ,snake_case__ ,snake_case__ ,snake_case__ ,): SCREAMING_SNAKE_CASE_ : Optional[Any] = self.num_labels SCREAMING_SNAKE_CASE_ : Dict = TFFunnelForSequenceClassification(config=snake_case__ ) SCREAMING_SNAKE_CASE_ : int = {"input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids} SCREAMING_SNAKE_CASE_ : Union[str, Any] = model(snake_case__ ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.num_labels) ) def snake_case ( self ,snake_case__ ,snake_case__ ,snake_case__ ,snake_case__ ,snake_case__ ,snake_case__ ,snake_case__ ,): SCREAMING_SNAKE_CASE_ : Optional[Any] = self.num_choices SCREAMING_SNAKE_CASE_ : List[str] = TFFunnelForMultipleChoice(config=snake_case__ ) SCREAMING_SNAKE_CASE_ : Optional[Any] = tf.tile(tf.expand_dims(snake_case__ ,1 ) ,(1, self.num_choices, 1) ) SCREAMING_SNAKE_CASE_ : Any = tf.tile(tf.expand_dims(snake_case__ ,1 ) ,(1, self.num_choices, 1) ) SCREAMING_SNAKE_CASE_ : int = tf.tile(tf.expand_dims(snake_case__ ,1 ) ,(1, self.num_choices, 1) ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = { "input_ids": multiple_choice_inputs_ids, "attention_mask": multiple_choice_input_mask, "token_type_ids": multiple_choice_token_type_ids, } SCREAMING_SNAKE_CASE_ : List[str] = model(snake_case__ ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.num_choices) ) def snake_case ( self ,snake_case__ ,snake_case__ ,snake_case__ ,snake_case__ ,snake_case__ ,snake_case__ ,snake_case__ ,): SCREAMING_SNAKE_CASE_ : Dict = self.num_labels SCREAMING_SNAKE_CASE_ : Optional[Any] = TFFunnelForTokenClassification(config=snake_case__ ) SCREAMING_SNAKE_CASE_ : int = {"input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids} SCREAMING_SNAKE_CASE_ : Optional[Any] = model(snake_case__ ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.seq_length, self.num_labels) ) def snake_case ( self ,snake_case__ ,snake_case__ ,snake_case__ ,snake_case__ ,snake_case__ ,snake_case__ ,snake_case__ ,): SCREAMING_SNAKE_CASE_ : Optional[Any] = TFFunnelForQuestionAnswering(config=snake_case__ ) SCREAMING_SNAKE_CASE_ : int = {"input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids} SCREAMING_SNAKE_CASE_ : List[str] = model(snake_case__ ) self.parent.assertEqual(result.start_logits.shape ,(self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape ,(self.batch_size, self.seq_length) ) def snake_case ( self ): SCREAMING_SNAKE_CASE_ : List[str] = self.prepare_config_and_inputs() ( SCREAMING_SNAKE_CASE_ ) : Dict = config_and_inputs SCREAMING_SNAKE_CASE_ : List[Any] = {"input_ids": input_ids, "token_type_ids": token_type_ids, "attention_mask": input_mask} return config, inputs_dict @require_tf class lowerCAmelCase_ ( __A , __A , unittest.TestCase ): __a : Dict = ( ( TFFunnelModel, TFFunnelForMaskedLM, TFFunnelForPreTraining, TFFunnelForQuestionAnswering, TFFunnelForTokenClassification, ) if is_tf_available() else () ) __a : Any = ( { "feature-extraction": (TFFunnelBaseModel, TFFunnelModel), "fill-mask": TFFunnelForMaskedLM, "question-answering": TFFunnelForQuestionAnswering, "text-classification": TFFunnelForSequenceClassification, "token-classification": TFFunnelForTokenClassification, "zero-shot": TFFunnelForSequenceClassification, } if is_tf_available() else {} ) __a : Optional[Any] = False __a : Optional[Any] = False def snake_case ( self ): SCREAMING_SNAKE_CASE_ : Union[str, Any] = TFFunnelModelTester(self ) SCREAMING_SNAKE_CASE_ : Any = ConfigTester(self ,config_class=snake_case__ ) def snake_case ( self ): self.config_tester.run_common_tests() def snake_case ( self ): SCREAMING_SNAKE_CASE_ : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*snake_case__ ) def snake_case ( self ): SCREAMING_SNAKE_CASE_ : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_pretraining(*snake_case__ ) def snake_case ( self ): SCREAMING_SNAKE_CASE_ : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*snake_case__ ) def snake_case ( self ): SCREAMING_SNAKE_CASE_ : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*snake_case__ ) def snake_case ( self ): SCREAMING_SNAKE_CASE_ : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*snake_case__ ) @require_tf class lowerCAmelCase_ ( __A , unittest.TestCase ): __a : Dict = ( (TFFunnelBaseModel, TFFunnelForMultipleChoice, TFFunnelForSequenceClassification) if is_tf_available() else () ) __a : List[str] = False __a : Union[str, Any] = False def snake_case ( self ): SCREAMING_SNAKE_CASE_ : Union[str, Any] = TFFunnelModelTester(self ,base=snake_case__ ) SCREAMING_SNAKE_CASE_ : int = ConfigTester(self ,config_class=snake_case__ ) def snake_case ( self ): self.config_tester.run_common_tests() def snake_case ( self ): SCREAMING_SNAKE_CASE_ : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_base_model(*snake_case__ ) def snake_case ( self ): SCREAMING_SNAKE_CASE_ : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*snake_case__ ) def snake_case ( self ): SCREAMING_SNAKE_CASE_ : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_multiple_choice(*snake_case__ )
105
import unittest import numpy as np import torch from diffusers import KarrasVePipeline, KarrasVeScheduler, UNetaDModel from diffusers.utils.testing_utils import enable_full_determinism, require_torch, slow, torch_device enable_full_determinism() class _UpperCamelCase ( unittest.TestCase ): '''simple docstring''' @property def __UpperCamelCase ( self : List[str] ) -> Union[str, Any]: """simple docstring""" torch.manual_seed(0 ) SCREAMING_SNAKE_CASE : str = UNetaDModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=3 , out_channels=3 , down_block_types=("DownBlock2D", "AttnDownBlock2D") , up_block_types=("AttnUpBlock2D", "UpBlock2D") , ) return model def __UpperCamelCase ( self : Union[str, Any] ) -> Dict: """simple docstring""" SCREAMING_SNAKE_CASE : Union[str, Any] = self.dummy_uncond_unet SCREAMING_SNAKE_CASE : Union[str, Any] = KarrasVeScheduler() SCREAMING_SNAKE_CASE : Any = KarrasVePipeline(unet=a , scheduler=a ) pipe.to(a ) pipe.set_progress_bar_config(disable=a ) SCREAMING_SNAKE_CASE : Any = torch.manual_seed(0 ) SCREAMING_SNAKE_CASE : Optional[Any] = pipe(num_inference_steps=2 , generator=a , output_type="numpy" ).images SCREAMING_SNAKE_CASE : List[str] = torch.manual_seed(0 ) SCREAMING_SNAKE_CASE : List[Any] = pipe(num_inference_steps=2 , generator=a , output_type="numpy" , return_dict=a )[0] SCREAMING_SNAKE_CASE : List[Any] = image[0, -3:, -3:, -1] SCREAMING_SNAKE_CASE : Any = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) SCREAMING_SNAKE_CASE : str = np.array([0.0, 1.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2 @slow @require_torch class _UpperCamelCase ( unittest.TestCase ): '''simple docstring''' def __UpperCamelCase ( self : int ) -> Tuple: """simple docstring""" SCREAMING_SNAKE_CASE : Dict = "google/ncsnpp-celebahq-256" SCREAMING_SNAKE_CASE : List[Any] = UNetaDModel.from_pretrained(a ) SCREAMING_SNAKE_CASE : Any = KarrasVeScheduler() SCREAMING_SNAKE_CASE : Optional[Any] = KarrasVePipeline(unet=a , scheduler=a ) pipe.to(a ) pipe.set_progress_bar_config(disable=a ) SCREAMING_SNAKE_CASE : Union[str, Any] = torch.manual_seed(0 ) SCREAMING_SNAKE_CASE : Any = pipe(num_inference_steps=20 , generator=a , output_type="numpy" ).images SCREAMING_SNAKE_CASE : List[str] = image[0, -3:, -3:, -1] assert image.shape == (1, 256, 256, 3) SCREAMING_SNAKE_CASE : str = np.array([0.578, 0.5811, 0.5924, 0.5809, 0.587, 0.5886, 0.5861, 0.5802, 0.586] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
25
0
'''simple docstring''' def UpperCAmelCase ( A : str , A : Dict ): SCREAMING_SNAKE_CASE : list[list[str]] = [[] for _ in range(_a )] SCREAMING_SNAKE_CASE : Optional[Any] = key - 1 if key <= 0: raise ValueError('''Height of grid can\'t be 0 or negative''' ) if key == 1 or len(_a ) <= key: return input_string for position, character in enumerate(_a ): SCREAMING_SNAKE_CASE : Tuple = position % (lowest * 2) # puts it in bounds SCREAMING_SNAKE_CASE : str = min(_a , lowest * 2 - num ) # creates zigzag pattern temp_grid[num].append(_a ) SCREAMING_SNAKE_CASE : Optional[int] = ["".join(_a ) for row in temp_grid] SCREAMING_SNAKE_CASE : Union[str, Any] = "".join(_a ) return output_string def UpperCAmelCase ( A : List[Any] , A : List[str] ): SCREAMING_SNAKE_CASE : Optional[int] = [] SCREAMING_SNAKE_CASE : int = key - 1 if key <= 0: raise ValueError('''Height of grid can\'t be 0 or negative''' ) if key == 1: return input_string SCREAMING_SNAKE_CASE : list[list[str]] = [[] for _ in range(_a )] # generates template for position in range(len(_a ) ): SCREAMING_SNAKE_CASE : Dict = position % (lowest * 2) # puts it in bounds SCREAMING_SNAKE_CASE : int = min(_a , lowest * 2 - num ) # creates zigzag pattern temp_grid[num].append('''*''' ) SCREAMING_SNAKE_CASE : Any = 0 for row in temp_grid: # fills in the characters SCREAMING_SNAKE_CASE : Tuple = input_string[counter : counter + len(_a )] grid.append(list(_a ) ) counter += len(_a ) SCREAMING_SNAKE_CASE : Optional[int] = "" # reads as zigzag for position in range(len(_a ) ): SCREAMING_SNAKE_CASE : int = position % (lowest * 2) # puts it in bounds SCREAMING_SNAKE_CASE : Union[str, Any] = min(_a , lowest * 2 - num ) # creates zigzag pattern output_string += grid[num][0] grid[num].pop(0 ) return output_string def UpperCAmelCase ( A : List[Any] ): SCREAMING_SNAKE_CASE : List[str] = {} for key_guess in range(1 , len(_a ) ): # tries every key SCREAMING_SNAKE_CASE : Tuple = decrypt(_a , _a ) return results if __name__ == "__main__": import doctest doctest.testmod()
527
def lowerCamelCase__ ( _a , _a): SCREAMING_SNAKE_CASE : Optional[int] = 0 while b > 0: if b & 1: res += a a += a b >>= 1 return res def lowerCamelCase__ ( _a , _a , _a): SCREAMING_SNAKE_CASE : Optional[int] = 0 while b > 0: if b & 1: SCREAMING_SNAKE_CASE : Optional[Any] = ((res % c) + (a % c)) % c a += a b >>= 1 return res
25
0
import collections from typing import List, Optional, Union from ...tokenization_utils_base import BatchEncoding from ...utils import TensorType, add_end_docstrings, add_start_docstrings, logging from ..bert.tokenization_bert import BertTokenizer __UpperCAmelCase = logging.get_logger(__name__) __UpperCAmelCase = {"""vocab_file""": """vocab.txt""", """tokenizer_file""": """tokenizer.json"""} __UpperCAmelCase = { """vocab_file""": { """facebook/dpr-ctx_encoder-single-nq-base""": ( """https://huggingface.co/facebook/dpr-ctx_encoder-single-nq-base/resolve/main/vocab.txt""" ), """facebook/dpr-ctx_encoder-multiset-base""": ( """https://huggingface.co/facebook/dpr-ctx_encoder-multiset-base/resolve/main/vocab.txt""" ), }, """tokenizer_file""": { """facebook/dpr-ctx_encoder-single-nq-base""": ( """https://huggingface.co/facebook/dpr-ctx_encoder-single-nq-base/resolve/main/tokenizer.json""" ), """facebook/dpr-ctx_encoder-multiset-base""": ( """https://huggingface.co/facebook/dpr-ctx_encoder-multiset-base/resolve/main/tokenizer.json""" ), }, } __UpperCAmelCase = { """vocab_file""": { """facebook/dpr-question_encoder-single-nq-base""": ( """https://huggingface.co/facebook/dpr-question_encoder-single-nq-base/resolve/main/vocab.txt""" ), """facebook/dpr-question_encoder-multiset-base""": ( """https://huggingface.co/facebook/dpr-question_encoder-multiset-base/resolve/main/vocab.txt""" ), }, """tokenizer_file""": { """facebook/dpr-question_encoder-single-nq-base""": ( """https://huggingface.co/facebook/dpr-question_encoder-single-nq-base/resolve/main/tokenizer.json""" ), """facebook/dpr-question_encoder-multiset-base""": ( """https://huggingface.co/facebook/dpr-question_encoder-multiset-base/resolve/main/tokenizer.json""" ), }, } __UpperCAmelCase = { """vocab_file""": { """facebook/dpr-reader-single-nq-base""": ( """https://huggingface.co/facebook/dpr-reader-single-nq-base/resolve/main/vocab.txt""" ), """facebook/dpr-reader-multiset-base""": ( """https://huggingface.co/facebook/dpr-reader-multiset-base/resolve/main/vocab.txt""" ), }, """tokenizer_file""": { """facebook/dpr-reader-single-nq-base""": ( """https://huggingface.co/facebook/dpr-reader-single-nq-base/resolve/main/tokenizer.json""" ), """facebook/dpr-reader-multiset-base""": ( """https://huggingface.co/facebook/dpr-reader-multiset-base/resolve/main/tokenizer.json""" ), }, } __UpperCAmelCase = { """facebook/dpr-ctx_encoder-single-nq-base""": 512, """facebook/dpr-ctx_encoder-multiset-base""": 512, } __UpperCAmelCase = { """facebook/dpr-question_encoder-single-nq-base""": 512, """facebook/dpr-question_encoder-multiset-base""": 512, } __UpperCAmelCase = { """facebook/dpr-reader-single-nq-base""": 512, """facebook/dpr-reader-multiset-base""": 512, } __UpperCAmelCase = { """facebook/dpr-ctx_encoder-single-nq-base""": {"""do_lower_case""": True}, """facebook/dpr-ctx_encoder-multiset-base""": {"""do_lower_case""": True}, } __UpperCAmelCase = { """facebook/dpr-question_encoder-single-nq-base""": {"""do_lower_case""": True}, """facebook/dpr-question_encoder-multiset-base""": {"""do_lower_case""": True}, } __UpperCAmelCase = { """facebook/dpr-reader-single-nq-base""": {"""do_lower_case""": True}, """facebook/dpr-reader-multiset-base""": {"""do_lower_case""": True}, } class SCREAMING_SNAKE_CASE ( __A ): """simple docstring""" lowerCamelCase : str =VOCAB_FILES_NAMES lowerCamelCase : Union[str, Any] =CONTEXT_ENCODER_PRETRAINED_VOCAB_FILES_MAP lowerCamelCase : Optional[int] =CONTEXT_ENCODER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCamelCase : str =CONTEXT_ENCODER_PRETRAINED_INIT_CONFIGURATION class SCREAMING_SNAKE_CASE ( __A ): """simple docstring""" lowerCamelCase : str =VOCAB_FILES_NAMES lowerCamelCase : List[str] =QUESTION_ENCODER_PRETRAINED_VOCAB_FILES_MAP lowerCamelCase : Union[str, Any] =QUESTION_ENCODER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCamelCase : Any =QUESTION_ENCODER_PRETRAINED_INIT_CONFIGURATION __UpperCAmelCase = collections.namedtuple( """DPRSpanPrediction""", ["""span_score""", """relevance_score""", """doc_id""", """start_index""", """end_index""", """text"""] ) __UpperCAmelCase = collections.namedtuple("""DPRReaderOutput""", ["""start_logits""", """end_logits""", """relevance_logits"""]) __UpperCAmelCase = R"""\n Return a dictionary with the token ids of the input strings and other information to give to `.decode_best_spans`.\n It converts the strings of a question and different passages (title and text) in a sequence of IDs (integers),\n using the tokenizer and vocabulary. The resulting `input_ids` is a matrix of size `(n_passages, sequence_length)`\n with the format:\n\n ```\n [CLS] <question token ids> [SEP] <titles ids> [SEP] <texts ids>\n ```\n\n Args:\n questions (`str` or `List[str]`):\n The questions to be encoded. You can specify one question for many passages. In this case, the question\n will be duplicated like `[questions] * n_passages`. Otherwise you have to specify as many questions as in\n `titles` or `texts`.\n titles (`str` or `List[str]`):\n The passages titles to be encoded. This can be a string or a list of strings if there are several passages.\n texts (`str` or `List[str]`):\n The passages texts to be encoded. This can be a string or a list of strings if there are several passages.\n padding (`bool`, `str` or [`~utils.PaddingStrategy`], *optional*, defaults to `False`):\n Activates and controls padding. Accepts the following values:\n\n - `True` or `\'longest\'`: Pad to the longest sequence in the batch (or no padding if only a single sequence\n if provided).\n - `\'max_length\'`: Pad to a maximum length specified with the argument `max_length` or to the maximum\n acceptable input length for the model if that argument is not provided.\n - `False` or `\'do_not_pad\'` (default): No padding (i.e., can output a batch with sequences of different\n lengths).\n truncation (`bool`, `str` or [`~tokenization_utils_base.TruncationStrategy`], *optional*, defaults to `False`):\n Activates and controls truncation. Accepts the following values:\n\n - `True` or `\'longest_first\'`: Truncate to a maximum length specified with the argument `max_length` or to\n the maximum acceptable input length for the model if that argument is not provided. This will truncate\n token by token, removing a token from the longest sequence in the pair if a pair of sequences (or a batch\n of pairs) is provided.\n - `\'only_first\'`: Truncate to a maximum length specified with the argument `max_length` or to the maximum\n acceptable input length for the model if that argument is not provided. This will only truncate the first\n sequence of a pair if a pair of sequences (or a batch of pairs) is provided.\n - `\'only_second\'`: Truncate to a maximum length specified with the argument `max_length` or to the maximum\n acceptable input length for the model if that argument is not provided. This will only truncate the\n second sequence of a pair if a pair of sequences (or a batch of pairs) is provided.\n - `False` or `\'do_not_truncate\'` (default): No truncation (i.e., can output batch with sequence lengths\n greater than the model maximum admissible input size).\n max_length (`int`, *optional*):\n Controls the maximum length to use by one of the truncation/padding parameters.\n\n If left unset or set to `None`, this will use the predefined model maximum length if a maximum length\n is required by one of the truncation/padding parameters. If the model has no specific maximum input\n length (like XLNet) truncation/padding to a maximum length will be deactivated.\n return_tensors (`str` or [`~utils.TensorType`], *optional*):\n If set, will return tensors instead of list of python integers. Acceptable values are:\n\n - `\'tf\'`: Return TensorFlow `tf.constant` objects.\n - `\'pt\'`: Return PyTorch `torch.Tensor` objects.\n - `\'np\'`: Return Numpy `np.ndarray` objects.\n return_attention_mask (`bool`, *optional*):\n Whether or not to return the attention mask. If not set, will return the attention mask according to the\n specific tokenizer\'s default, defined by the `return_outputs` attribute.\n\n [What are attention masks?](../glossary#attention-mask)\n\n Returns:\n `Dict[str, List[List[int]]]`: A dictionary with the following keys:\n\n - `input_ids`: List of token ids to be fed to a model.\n - `attention_mask`: List of indices specifying which tokens should be attended to by the model.\n """ @add_start_docstrings(__A ) class SCREAMING_SNAKE_CASE : """simple docstring""" def __call__( self : Union[str, Any] , lowerCAmelCase : str , lowerCAmelCase : Optional[str] = None , lowerCAmelCase : Optional[str] = None , lowerCAmelCase : Union[bool, str] = False , lowerCAmelCase : Union[bool, str] = False , lowerCAmelCase : Optional[int] = None , lowerCAmelCase : Optional[Union[str, TensorType]] = None , lowerCAmelCase : Optional[bool] = None , **lowerCAmelCase : Any , ) -> BatchEncoding: """simple docstring""" if titles is None and texts is None: return super().__call__( lowerCAmelCase , padding=lowerCAmelCase , truncation=lowerCAmelCase , max_length=lowerCAmelCase , return_tensors=lowerCAmelCase , return_attention_mask=lowerCAmelCase , **lowerCAmelCase , ) elif titles is None or texts is None: __lowerCAmelCase : Tuple = titles if texts is None else texts return super().__call__( lowerCAmelCase , lowerCAmelCase , padding=lowerCAmelCase , truncation=lowerCAmelCase , max_length=lowerCAmelCase , return_tensors=lowerCAmelCase , return_attention_mask=lowerCAmelCase , **lowerCAmelCase , ) __lowerCAmelCase : Dict = titles if not isinstance(lowerCAmelCase , lowerCAmelCase ) else [titles] __lowerCAmelCase : Optional[int] = texts if not isinstance(lowerCAmelCase , lowerCAmelCase ) else [texts] __lowerCAmelCase : str = len(lowerCAmelCase ) __lowerCAmelCase : Optional[Any] = questions if not isinstance(lowerCAmelCase , lowerCAmelCase ) else [questions] * n_passages if len(lowerCAmelCase ) != len(lowerCAmelCase ): raise ValueError( f'''There should be as many titles than texts but got {len(lowerCAmelCase )} titles and {len(lowerCAmelCase )} texts.''' ) __lowerCAmelCase : Tuple = super().__call__(lowerCAmelCase , lowerCAmelCase , padding=lowerCAmelCase , truncation=lowerCAmelCase )["input_ids"] __lowerCAmelCase : Optional[int] = super().__call__(lowerCAmelCase , add_special_tokens=lowerCAmelCase , padding=lowerCAmelCase , truncation=lowerCAmelCase )["input_ids"] __lowerCAmelCase : int = { "input_ids": [ (encoded_question_and_title + encoded_text)[:max_length] if max_length is not None and truncation else encoded_question_and_title + encoded_text for encoded_question_and_title, encoded_text in zip(lowerCAmelCase , lowerCAmelCase ) ] } if return_attention_mask is not False: __lowerCAmelCase : Optional[Any] = [] for input_ids in encoded_inputs["input_ids"]: attention_mask.append([int(input_id != self.pad_token_id ) for input_id in input_ids] ) __lowerCAmelCase : Dict = attention_mask return self.pad(lowerCAmelCase , padding=lowerCAmelCase , max_length=lowerCAmelCase , return_tensors=lowerCAmelCase ) def SCREAMING_SNAKE_CASE ( self : List[str] , lowerCAmelCase : BatchEncoding , lowerCAmelCase : DPRReaderOutput , lowerCAmelCase : int = 16 , lowerCAmelCase : int = 64 , lowerCAmelCase : int = 4 , ) -> List[DPRSpanPrediction]: """simple docstring""" __lowerCAmelCase : Union[str, Any] = reader_input["input_ids"] __lowerCAmelCase : List[Any] = reader_output[:3] __lowerCAmelCase : Any = len(lowerCAmelCase ) __lowerCAmelCase : Any = sorted(range(lowerCAmelCase ) , reverse=lowerCAmelCase , key=relevance_logits.__getitem__ ) __lowerCAmelCase : List[DPRReaderOutput] = [] for doc_id in sorted_docs: __lowerCAmelCase : Union[str, Any] = list(input_ids[doc_id] ) # assuming question & title information is at the beginning of the sequence __lowerCAmelCase : Tuple = sequence_ids.index(self.sep_token_id , 2 ) + 1 # second sep id if sequence_ids[-1] == self.pad_token_id: __lowerCAmelCase : Union[str, Any] = sequence_ids.index(self.pad_token_id ) else: __lowerCAmelCase : Optional[int] = len(lowerCAmelCase ) __lowerCAmelCase : Union[str, Any] = self._get_best_spans( start_logits=start_logits[doc_id][passage_offset:sequence_len] , end_logits=end_logits[doc_id][passage_offset:sequence_len] , max_answer_length=lowerCAmelCase , top_spans=lowerCAmelCase , ) for start_index, end_index in best_spans: start_index += passage_offset end_index += passage_offset nbest_spans_predictions.append( DPRSpanPrediction( span_score=start_logits[doc_id][start_index] + end_logits[doc_id][end_index] , relevance_score=relevance_logits[doc_id] , doc_id=lowerCAmelCase , start_index=lowerCAmelCase , end_index=lowerCAmelCase , text=self.decode(sequence_ids[start_index : end_index + 1] ) , ) ) if len(lowerCAmelCase ) >= num_spans: break return nbest_spans_predictions[:num_spans] def SCREAMING_SNAKE_CASE ( self : str , lowerCAmelCase : List[int] , lowerCAmelCase : List[int] , lowerCAmelCase : int , lowerCAmelCase : int , ) -> List[DPRSpanPrediction]: """simple docstring""" __lowerCAmelCase : Tuple = [] for start_index, start_score in enumerate(lowerCAmelCase ): for answer_length, end_score in enumerate(end_logits[start_index : start_index + max_answer_length] ): scores.append(((start_index, start_index + answer_length), start_score + end_score) ) __lowerCAmelCase : Tuple = sorted(lowerCAmelCase , key=lambda lowerCAmelCase : x[1] , reverse=lowerCAmelCase ) __lowerCAmelCase : str = [] for (start_index, end_index), score in scores: if start_index > end_index: raise ValueError(f'''Wrong span indices: [{start_index}:{end_index}]''' ) __lowerCAmelCase : int = end_index - start_index + 1 if length > max_answer_length: raise ValueError(f'''Span is too long: {length} > {max_answer_length}''' ) if any( start_index <= prev_start_index <= prev_end_index <= end_index or prev_start_index <= start_index <= end_index <= prev_end_index for (prev_start_index, prev_end_index) in chosen_span_intervals ): continue chosen_span_intervals.append((start_index, end_index) ) if len(lowerCAmelCase ) == top_spans: break return chosen_span_intervals @add_end_docstrings(__A ) class SCREAMING_SNAKE_CASE ( __A , __A ): """simple docstring""" lowerCamelCase : Any =VOCAB_FILES_NAMES lowerCamelCase : int =READER_PRETRAINED_VOCAB_FILES_MAP lowerCamelCase : Optional[int] =READER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCamelCase : Union[str, Any] =READER_PRETRAINED_INIT_CONFIGURATION lowerCamelCase : Union[str, Any] =["input_ids", "attention_mask"]
651
from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging a_ = logging.get_logger(__name__) a_ = { 'junnyu/roformer_chinese_small': 'https://huggingface.co/junnyu/roformer_chinese_small/resolve/main/config.json', 'junnyu/roformer_chinese_base': 'https://huggingface.co/junnyu/roformer_chinese_base/resolve/main/config.json', 'junnyu/roformer_chinese_char_small': ( 'https://huggingface.co/junnyu/roformer_chinese_char_small/resolve/main/config.json' ), 'junnyu/roformer_chinese_char_base': ( 'https://huggingface.co/junnyu/roformer_chinese_char_base/resolve/main/config.json' ), 'junnyu/roformer_small_discriminator': ( 'https://huggingface.co/junnyu/roformer_small_discriminator/resolve/main/config.json' ), 'junnyu/roformer_small_generator': ( 'https://huggingface.co/junnyu/roformer_small_generator/resolve/main/config.json' ), # See all RoFormer models at https://huggingface.co/models?filter=roformer } class _UpperCamelCase ( __A ): '''simple docstring''' lowerCamelCase__ ='roformer' def __init__( self : Dict , a : Any=5_0000 , a : List[Any]=None , a : str=768 , a : str=12 , a : Tuple=12 , a : Optional[Any]=3072 , a : List[str]="gelu" , a : List[Any]=0.1 , a : Union[str, Any]=0.1 , a : Tuple=1536 , a : List[str]=2 , a : Tuple=0.02 , a : Any=1e-12 , a : Optional[int]=0 , a : Union[str, Any]=False , a : int=True , **a : str , ) -> int: """simple docstring""" super().__init__(pad_token_id=a , **a ) SCREAMING_SNAKE_CASE : str = vocab_size SCREAMING_SNAKE_CASE : int = hidden_size if embedding_size is None else embedding_size SCREAMING_SNAKE_CASE : List[str] = hidden_size SCREAMING_SNAKE_CASE : Union[str, Any] = num_hidden_layers SCREAMING_SNAKE_CASE : int = num_attention_heads SCREAMING_SNAKE_CASE : Tuple = hidden_act SCREAMING_SNAKE_CASE : int = intermediate_size SCREAMING_SNAKE_CASE : Tuple = hidden_dropout_prob SCREAMING_SNAKE_CASE : int = attention_probs_dropout_prob SCREAMING_SNAKE_CASE : Optional[int] = max_position_embeddings SCREAMING_SNAKE_CASE : Any = type_vocab_size SCREAMING_SNAKE_CASE : Union[str, Any] = initializer_range SCREAMING_SNAKE_CASE : List[str] = layer_norm_eps SCREAMING_SNAKE_CASE : List[str] = rotary_value SCREAMING_SNAKE_CASE : int = use_cache class _UpperCamelCase ( __A ): '''simple docstring''' @property def __UpperCamelCase ( self : Tuple ) -> Mapping[str, Mapping[int, str]]: """simple docstring""" if self.task == "multiple-choice": SCREAMING_SNAKE_CASE : Optional[Any] = {0: "batch", 1: "choice", 2: "sequence"} else: SCREAMING_SNAKE_CASE : str = {0: "batch", 1: "sequence"} SCREAMING_SNAKE_CASE : List[Any] = {0: "batch", 1: "sequence"} return OrderedDict( [ ("input_ids", dynamic_axis), ("attention_mask", dynamic_axis), ("token_type_ids", dynamic_axis), ] )
25
0
from __future__ import annotations import math import random from collections.abc import Collection from typing import overload class _A : def __init__( self : int , _A : Collection[float] | None = None ) -> None: """simple docstring""" if components is None: lowercase : str = [] lowercase : Tuple = list(_A ) def __len__( self : Optional[int] ) -> int: """simple docstring""" return len(self.__components ) def __str__( self : str ) -> str: """simple docstring""" return "(" + ",".join(map(_A , self.__components ) ) + ")" def __add__( self : Union[str, Any] , _A : Vector ) -> Vector: """simple docstring""" lowercase : Any = len(self ) if size == len(_A ): lowercase : int = [self.__components[i] + other.component(_A ) for i in range(_A )] return Vector(_A ) else: raise Exception('''must have the same size''' ) def __sub__( self : List[str] , _A : Vector ) -> Vector: """simple docstring""" lowercase : Optional[Any] = len(self ) if size == len(_A ): lowercase : str = [self.__components[i] - other.component(_A ) for i in range(_A )] return Vector(_A ) else: # error case raise Exception('''must have the same size''' ) @overload def __mul__( self : List[str] , _A : float ) -> Vector: """simple docstring""" ... @overload def __mul__( self : List[Any] , _A : Vector ) -> float: """simple docstring""" ... def __mul__( self : Optional[int] , _A : float | Vector ) -> float | Vector: """simple docstring""" if isinstance(_A , (float, int) ): lowercase : Union[str, Any] = [c * other for c in self.__components] return Vector(_A ) elif isinstance(_A , _A ) and len(self ) == len(_A ): lowercase : List[Any] = len(self ) lowercase : str = [self.__components[i] * other.component(_A ) for i in range(_A )] return sum(_A ) else: # error case raise Exception('''invalid operand!''' ) def __a ( self : Tuple ) -> Vector: """simple docstring""" return Vector(self.__components ) def __a ( self : Union[str, Any] , _A : int ) -> float: """simple docstring""" if isinstance(_A , _A ) and -len(self.__components ) <= i < len(self.__components ): return self.__components[i] else: raise Exception('''index out of range''' ) def __a ( self : str , _A : int , _A : float ) -> None: """simple docstring""" assert -len(self.__components ) <= pos < len(self.__components ) lowercase : Union[str, Any] = value def __a ( self : str ) -> float: """simple docstring""" if len(self.__components ) == 0: raise Exception('''Vector is empty''' ) lowercase : Optional[int] = [c**2 for c in self.__components] return math.sqrt(sum(_A ) ) def __a ( self : int , _A : Vector , _A : bool = False ) -> float: """simple docstring""" lowercase : Union[str, Any] = self * other lowercase : Tuple = self.euclidean_length() * other.euclidean_length() if deg: return math.degrees(math.acos(num / den ) ) else: return math.acos(num / den ) def snake_case( __magic_name__ ) -> str: '''simple docstring''' assert isinstance(_a , _a ) return Vector([0] * dimension ) def snake_case( __magic_name__ , __magic_name__ ) -> Optional[int]: '''simple docstring''' assert isinstance(_a , _a ) and (isinstance(_a , _a )) lowercase : Union[str, Any] = [0] * dimension lowercase : Any = 1 return Vector(_a ) def snake_case( __magic_name__ , __magic_name__ , __magic_name__ ) -> int: '''simple docstring''' assert ( isinstance(_a , _a ) and isinstance(_a , _a ) and (isinstance(_a , (int, float) )) ) return x * scalar + y def snake_case( __magic_name__ , __magic_name__ , __magic_name__ ) -> Dict: '''simple docstring''' random.seed(_a ) lowercase : Union[str, Any] = [random.randint(_a , _a ) for _ in range(_a )] return Vector(_a ) class _A : def __init__( self : int , _A : list[list[float]] , _A : int , _A : int ) -> None: """simple docstring""" lowercase : List[str] = matrix lowercase : Optional[int] = w lowercase : Optional[Any] = h def __str__( self : Any ) -> str: """simple docstring""" lowercase : Dict = "" for i in range(self.__height ): ans += "|" for j in range(self.__width ): if j < self.__width - 1: ans += str(self.__matrix[i][j] ) + "," else: ans += str(self.__matrix[i][j] ) + "|\n" return ans def __add__( self : List[Any] , _A : Matrix ) -> Matrix: """simple docstring""" if self.__width == other.width() and self.__height == other.height(): lowercase : Dict = [] for i in range(self.__height ): lowercase : Any = [ self.__matrix[i][j] + other.component(_A , _A ) for j in range(self.__width ) ] matrix.append(_A ) return Matrix(_A , self.__width , self.__height ) else: raise Exception('''matrix must have the same dimension!''' ) def __sub__( self : Optional[Any] , _A : Matrix ) -> Matrix: """simple docstring""" if self.__width == other.width() and self.__height == other.height(): lowercase : Union[str, Any] = [] for i in range(self.__height ): lowercase : Union[str, Any] = [ self.__matrix[i][j] - other.component(_A , _A ) for j in range(self.__width ) ] matrix.append(_A ) return Matrix(_A , self.__width , self.__height ) else: raise Exception('''matrices must have the same dimension!''' ) @overload def __mul__( self : List[str] , _A : float ) -> Matrix: """simple docstring""" ... @overload def __mul__( self : Any , _A : Vector ) -> Vector: """simple docstring""" ... def __mul__( self : str , _A : float | Vector ) -> Vector | Matrix: """simple docstring""" if isinstance(_A , _A ): # matrix-vector if len(_A ) == self.__width: lowercase : Union[str, Any] = zero_vector(self.__height ) for i in range(self.__height ): lowercase : Optional[int] = [ self.__matrix[i][j] * other.component(_A ) for j in range(self.__width ) ] ans.change_component(_A , sum(_A ) ) return ans else: raise Exception( '''vector must have the same size as the ''' '''number of columns of the matrix!''' ) elif isinstance(_A , (int, float) ): # matrix-scalar lowercase : str = [ [self.__matrix[i][j] * other for j in range(self.__width )] for i in range(self.__height ) ] return Matrix(_A , self.__width , self.__height ) return None def __a ( self : Optional[int] ) -> int: """simple docstring""" return self.__height def __a ( self : Tuple ) -> int: """simple docstring""" return self.__width def __a ( self : Any , _A : int , _A : int ) -> float: """simple docstring""" if 0 <= x < self.__height and 0 <= y < self.__width: return self.__matrix[x][y] else: raise Exception('''change_component: indices out of bounds''' ) def __a ( self : Tuple , _A : int , _A : int , _A : float ) -> None: """simple docstring""" if 0 <= x < self.__height and 0 <= y < self.__width: lowercase : str = value else: raise Exception('''change_component: indices out of bounds''' ) def __a ( self : int , _A : int , _A : int ) -> float: """simple docstring""" if self.__height != self.__width: raise Exception('''Matrix is not square''' ) lowercase : List[str] = self.__matrix[:x] + self.__matrix[x + 1 :] for i in range(len(_A ) ): lowercase : Optional[int] = minor[i][:y] + minor[i][y + 1 :] return Matrix(_A , self.__width - 1 , self.__height - 1 ).determinant() def __a ( self : int , _A : int , _A : int ) -> float: """simple docstring""" if self.__height != self.__width: raise Exception('''Matrix is not square''' ) if 0 <= x < self.__height and 0 <= y < self.__width: return (-1) ** (x + y) * self.minor(_A , _A ) else: raise Exception('''Indices out of bounds''' ) def __a ( self : Dict ) -> float: """simple docstring""" if self.__height != self.__width: raise Exception('''Matrix is not square''' ) if self.__height < 1: raise Exception('''Matrix has no element''' ) elif self.__height == 1: return self.__matrix[0][0] elif self.__height == 2: return ( self.__matrix[0][0] * self.__matrix[1][1] - self.__matrix[0][1] * self.__matrix[1][0] ) else: lowercase : List[Any] = [ self.__matrix[0][y] * self.cofactor(0 , _A ) for y in range(self.__width ) ] return sum(_A ) def snake_case( __magic_name__ ) -> str: '''simple docstring''' lowercase : list[list[float]] = [[0] * n for _ in range(_a )] return Matrix(_a , _a , _a ) def snake_case( __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ ) -> List[str]: '''simple docstring''' random.seed(_a ) lowercase : list[list[float]] = [ [random.randint(_a , _a ) for _ in range(_a )] for _ in range(_a ) ] return Matrix(_a , _a , _a )
217
import argparse import logging from collections import namedtuple import torch from model_bertabs import BertAbsSummarizer from models.model_builder import AbsSummarizer # The authors' implementation from transformers import BertTokenizer logging.basicConfig(level=logging.INFO) a_ = logging.getLogger(__name__) a_ = 'Hello world! cécé herlolip' a_ = namedtuple( 'BertAbsConfig', [ 'temp_dir', 'large', 'use_bert_emb', 'finetune_bert', 'encoder', 'share_emb', 'max_pos', 'enc_layers', 'enc_hidden_size', 'enc_heads', 'enc_ff_size', 'enc_dropout', 'dec_layers', 'dec_hidden_size', 'dec_heads', 'dec_ff_size', 'dec_dropout', ], ) def lowerCamelCase__ ( _a , _a): SCREAMING_SNAKE_CASE : List[Any] = BertAbsConfig( temp_dir="." , finetune_bert=_a , large=_a , share_emb=_a , use_bert_emb=_a , encoder="bert" , max_pos=512 , enc_layers=6 , enc_hidden_size=512 , enc_heads=8 , enc_ff_size=512 , enc_dropout=0.2 , dec_layers=6 , dec_hidden_size=768 , dec_heads=8 , dec_ff_size=2048 , dec_dropout=0.2 , ) SCREAMING_SNAKE_CASE : Dict = torch.load(_a , lambda _a , _a: storage) SCREAMING_SNAKE_CASE : str = AbsSummarizer(_a , torch.device("cpu") , _a) original.eval() SCREAMING_SNAKE_CASE : List[str] = BertAbsSummarizer(_a , torch.device("cpu")) new_model.eval() # ------------------- # Convert the weights # ------------------- logging.info("convert the model") new_model.bert.load_state_dict(original.bert.state_dict()) new_model.decoder.load_state_dict(original.decoder.state_dict()) new_model.generator.load_state_dict(original.generator.state_dict()) # ---------------------------------- # Make sure the outpus are identical # ---------------------------------- logging.info("Make sure that the models' outputs are identical") SCREAMING_SNAKE_CASE : List[str] = BertTokenizer.from_pretrained("bert-base-uncased") # prepare the model inputs SCREAMING_SNAKE_CASE : List[str] = tokenizer.encode("This is sample éàalj'-.") encoder_input_ids.extend([tokenizer.pad_token_id] * (512 - len(_a))) SCREAMING_SNAKE_CASE : int = torch.tensor(_a).unsqueeze(0) SCREAMING_SNAKE_CASE : List[Any] = tokenizer.encode("This is sample 3 éàalj'-.") decoder_input_ids.extend([tokenizer.pad_token_id] * (512 - len(_a))) SCREAMING_SNAKE_CASE : int = torch.tensor(_a).unsqueeze(0) # failsafe to make sure the weights reset does not affect the # loaded weights. assert torch.max(torch.abs(original.generator[0].weight - new_model.generator[0].weight)) == 0 # forward pass SCREAMING_SNAKE_CASE : List[Any] = encoder_input_ids SCREAMING_SNAKE_CASE : List[Any] = decoder_input_ids SCREAMING_SNAKE_CASE : Dict = None SCREAMING_SNAKE_CASE : Optional[Any] = None SCREAMING_SNAKE_CASE : List[Any] = None SCREAMING_SNAKE_CASE : Optional[int] = None SCREAMING_SNAKE_CASE : Dict = None # The original model does not apply the geneator layer immediatly but rather in # the beam search (where it combines softmax + linear layer). Since we already # apply the softmax in our generation process we only apply the linear layer here. # We make sure that the outputs of the full stack are identical SCREAMING_SNAKE_CASE : Optional[int] = original(_a , _a , _a , _a , _a , _a , _a)[0] SCREAMING_SNAKE_CASE : Dict = original.generator(_a) SCREAMING_SNAKE_CASE : Any = new_model( _a , _a , _a , _a , _a)[0] SCREAMING_SNAKE_CASE : Tuple = new_model.generator(_a) SCREAMING_SNAKE_CASE : List[Any] = torch.max(torch.abs(output_converted_model - output_original_model)).item() print("Maximum absolute difference beween weights: {:.2f}".format(_a)) SCREAMING_SNAKE_CASE : Union[str, Any] = torch.max(torch.abs(output_converted_generator - output_original_generator)).item() print("Maximum absolute difference beween weights: {:.2f}".format(_a)) SCREAMING_SNAKE_CASE : int = torch.allclose(_a , _a , atol=1E-3) if are_identical: logging.info("all weights are equal up to 1e-3") else: raise ValueError("the weights are different. The new model is likely different from the original one.") # The model has been saved with torch.save(model) and this is bound to the exact # directory structure. We save the state_dict instead. logging.info("saving the model's state dictionary") torch.save( new_model.state_dict() , "./bertabs-finetuned-cnndm-extractive-abstractive-summarization/pytorch_model.bin") if __name__ == "__main__": a_ = argparse.ArgumentParser() parser.add_argument( '--bertabs_checkpoint_path', default=None, type=str, required=True, help='Path the official PyTorch dump.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, required=True, help='Path to the output PyTorch model.', ) a_ = parser.parse_args() convert_bertabs_checkpoints( args.bertabs_checkpoint_path, args.pytorch_dump_folder_path, )
25
0
from __future__ import annotations from cmath import sqrt def __SCREAMING_SNAKE_CASE ( lowerCAmelCase: List[Any] , lowerCAmelCase: Tuple , lowerCAmelCase: List[str] ) -> Tuple: if a == 0: raise ValueError("Coefficient 'a' must not be zero." ) _UpperCAmelCase : Tuple = b * b - 4 * a * c _UpperCAmelCase : Dict = (-b + sqrt(_a )) / (2 * a) _UpperCAmelCase : List[Any] = (-b - sqrt(_a )) / (2 * a) return ( root_a.real if not root_a.imag else root_a, root_a.real if not root_a.imag else root_a, ) def __SCREAMING_SNAKE_CASE ( ) -> int: _UpperCAmelCase : Optional[int] = quadratic_roots(a=5 , b=6 , c=1 ) print(F'The solutions are: {solutiona} and {solutiona}' ) if __name__ == "__main__": main()
300
import argparse from transformers import CLIPImageProcessor, CLIPVisionModelWithProjection from diffusers import UnCLIPImageVariationPipeline, UnCLIPPipeline if __name__ == "__main__": a_ = argparse.ArgumentParser() parser.add_argument('--dump_path', default=None, type=str, required=True, help='Path to the output model.') parser.add_argument( '--txt2img_unclip', default='kakaobrain/karlo-v1-alpha', type=str, required=False, help='The pretrained txt2img unclip.', ) a_ = parser.parse_args() a_ = UnCLIPPipeline.from_pretrained(args.txtaimg_unclip) a_ = CLIPImageProcessor() a_ = CLIPVisionModelWithProjection.from_pretrained('openai/clip-vit-large-patch14') a_ = UnCLIPImageVariationPipeline( decoder=txtaimg.decoder, text_encoder=txtaimg.text_encoder, tokenizer=txtaimg.tokenizer, text_proj=txtaimg.text_proj, feature_extractor=feature_extractor, image_encoder=image_encoder, super_res_first=txtaimg.super_res_first, super_res_last=txtaimg.super_res_last, decoder_scheduler=txtaimg.decoder_scheduler, super_res_scheduler=txtaimg.super_res_scheduler, ) imgaimg.save_pretrained(args.dump_path)
25
0
'''simple docstring''' from __future__ import annotations from math import pi def _snake_case ( _SCREAMING_SNAKE_CASE : Any , _SCREAMING_SNAKE_CASE : Union[str, Any] , _SCREAMING_SNAKE_CASE : Optional[int] ) -> Union[str, Any]: """simple docstring""" if (inductance, frequency, reactance).count(0 ) != 1: raise ValueError("""One and only one argument must be 0""" ) if inductance < 0: raise ValueError("""Inductance cannot be negative""" ) if frequency < 0: raise ValueError("""Frequency cannot be negative""" ) if reactance < 0: raise ValueError("""Inductive reactance cannot be negative""" ) if inductance == 0: return {"inductance": reactance / (2 * pi * frequency)} elif frequency == 0: return {"frequency": reactance / (2 * pi * inductance)} elif reactance == 0: return {"reactance": 2 * pi * frequency * inductance} else: raise ValueError("""Exactly one argument must be 0""" ) if __name__ == "__main__": import doctest doctest.testmod()
433
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available a_ = { 'configuration_swinv2': ['SWINV2_PRETRAINED_CONFIG_ARCHIVE_MAP', 'Swinv2Config'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a_ = [ 'SWINV2_PRETRAINED_MODEL_ARCHIVE_LIST', 'Swinv2ForImageClassification', 'Swinv2ForMaskedImageModeling', 'Swinv2Model', 'Swinv2PreTrainedModel', ] if TYPE_CHECKING: from .configuration_swinva import SWINV2_PRETRAINED_CONFIG_ARCHIVE_MAP, SwinvaConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_swinva import ( SWINV2_PRETRAINED_MODEL_ARCHIVE_LIST, SwinvaForImageClassification, SwinvaForMaskedImageModeling, SwinvaModel, SwinvaPreTrainedModel, ) else: import sys a_ = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
25
0
"""simple docstring""" import contextlib from multiprocessing import Pool, RLock from tqdm.auto import tqdm from ..utils import experimental, logging snake_case = logging.get_logger(__name__) class UpperCAmelCase : A__ : List[Any] = None @experimental def snake_case ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) -> int: if ParallelBackendConfig.backend_name is None: return _map_with_multiprocessing_pool( _a , _a , _a , _a , _a , _a , _a ) return _map_with_joblib(_a , _a , _a , _a , _a , _a , _a ) def snake_case ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) -> Optional[Any]: _snake_case = num_proc if num_proc <= len(_a ) else len(_a ) _snake_case = [] # We organize the splits ourselve (contiguous splits) for index in range(_a ): _snake_case = len(_a ) // num_proc _snake_case = len(_a ) % num_proc _snake_case = div * index + min(_a , _a ) _snake_case = start + div + (1 if index < mod else 0) split_kwds.append((function, iterable[start:end], types, index, disable_tqdm, desc) ) if len(_a ) != sum(len(i[1] ) for i in split_kwds ): raise ValueError( f"""Error dividing inputs iterable among processes. """ f"""Total number of objects {len(_a )}, """ f"""length: {sum(len(i[1] ) for i in split_kwds )}""" ) logger.info( f"""Spawning {num_proc} processes for {len(_a )} objects in slices of {[len(i[1] ) for i in split_kwds]}""" ) _snake_case = None, None if not disable_tqdm: _snake_case = (RLock(),), tqdm.set_lock with Pool(_a , initargs=_a , initializer=_a ) as pool: _snake_case = pool.map(_a , _a ) logger.info(f"""Finished {num_proc} processes""" ) _snake_case = [obj for proc_res in mapped for obj in proc_res] logger.info(f"""Unpacked {len(_a )} objects""" ) return mapped def snake_case ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) -> List[Any]: # progress bar is not yet supported for _map_with_joblib, because tqdm couldn't accurately be applied to joblib, # and it requires monkey-patching joblib internal classes which is subject to change import joblib with joblib.parallel_backend(ParallelBackendConfig.backend_name , n_jobs=_a ): return joblib.Parallel()( joblib.delayed(_a )((function, obj, types, None, True, None) ) for obj in iterable ) @experimental @contextlib.contextmanager def snake_case ( lowerCAmelCase_ ) -> List[Any]: _snake_case = backend_name if backend_name == "spark": from joblibspark import register_spark register_spark() # TODO: call create_cache_and_write_probe if "download" in steps # TODO: raise NotImplementedError when Dataset.map etc is called try: yield finally: _snake_case = None
103
from math import pi, sqrt, tan def lowerCamelCase__ ( _a): if side_length < 0: raise ValueError("surface_area_cube() only accepts non-negative values") return 6 * side_length**2 def lowerCamelCase__ ( _a , _a , _a): if length < 0 or breadth < 0 or height < 0: raise ValueError("surface_area_cuboid() only accepts non-negative values") return 2 * ((length * breadth) + (breadth * height) + (length * height)) def lowerCamelCase__ ( _a): if radius < 0: raise ValueError("surface_area_sphere() only accepts non-negative values") return 4 * pi * radius**2 def lowerCamelCase__ ( _a): if radius < 0: raise ValueError("surface_area_hemisphere() only accepts non-negative values") return 3 * pi * radius**2 def lowerCamelCase__ ( _a , _a): if radius < 0 or height < 0: raise ValueError("surface_area_cone() only accepts non-negative values") return pi * radius * (radius + (height**2 + radius**2) ** 0.5) def lowerCamelCase__ ( _a , _a , _a): if radius_a < 0 or radius_a < 0 or height < 0: raise ValueError( "surface_area_conical_frustum() only accepts non-negative values") SCREAMING_SNAKE_CASE : Any = (height**2 + (radius_a - radius_a) ** 2) ** 0.5 return pi * ((slant_height * (radius_a + radius_a)) + radius_a**2 + radius_a**2) def lowerCamelCase__ ( _a , _a): if radius < 0 or height < 0: raise ValueError("surface_area_cylinder() only accepts non-negative values") return 2 * pi * radius * (height + radius) def lowerCamelCase__ ( _a , _a): if torus_radius < 0 or tube_radius < 0: raise ValueError("surface_area_torus() only accepts non-negative values") if torus_radius < tube_radius: raise ValueError( "surface_area_torus() does not support spindle or self intersecting tori") return 4 * pow(_a , 2) * torus_radius * tube_radius def lowerCamelCase__ ( _a , _a): if length < 0 or width < 0: raise ValueError("area_rectangle() only accepts non-negative values") return length * width def lowerCamelCase__ ( _a): if side_length < 0: raise ValueError("area_square() only accepts non-negative values") return side_length**2 def lowerCamelCase__ ( _a , _a): if base < 0 or height < 0: raise ValueError("area_triangle() only accepts non-negative values") return (base * height) / 2 def lowerCamelCase__ ( _a , _a , _a): if sidea < 0 or sidea < 0 or sidea < 0: raise ValueError("area_triangle_three_sides() only accepts non-negative values") elif sidea + sidea < sidea or sidea + sidea < sidea or sidea + sidea < sidea: raise ValueError("Given three sides do not form a triangle") SCREAMING_SNAKE_CASE : List[str] = (sidea + sidea + sidea) / 2 SCREAMING_SNAKE_CASE : Optional[int] = sqrt( semi_perimeter * (semi_perimeter - sidea) * (semi_perimeter - sidea) * (semi_perimeter - sidea)) return area def lowerCamelCase__ ( _a , _a): if base < 0 or height < 0: raise ValueError("area_parallelogram() only accepts non-negative values") return base * height def lowerCamelCase__ ( _a , _a , _a): if basea < 0 or basea < 0 or height < 0: raise ValueError("area_trapezium() only accepts non-negative values") return 1 / 2 * (basea + basea) * height def lowerCamelCase__ ( _a): if radius < 0: raise ValueError("area_circle() only accepts non-negative values") return pi * radius**2 def lowerCamelCase__ ( _a , _a): if radius_x < 0 or radius_y < 0: raise ValueError("area_ellipse() only accepts non-negative values") return pi * radius_x * radius_y def lowerCamelCase__ ( _a , _a): if diagonal_a < 0 or diagonal_a < 0: raise ValueError("area_rhombus() only accepts non-negative values") return 1 / 2 * diagonal_a * diagonal_a def lowerCamelCase__ ( _a , _a): if not isinstance(_a , _a) or sides < 3: raise ValueError( "area_reg_polygon() only accepts integers greater than or \ equal to three as number of sides") elif length < 0: raise ValueError( "area_reg_polygon() only accepts non-negative values as \ length of a side") return (sides * length**2) / (4 * tan(pi / sides)) return (sides * length**2) / (4 * tan(pi / sides)) if __name__ == "__main__": import doctest doctest.testmod(verbose=True) # verbose so we can see methods missing tests print('[DEMO] Areas of various geometric shapes: \n') print(F'''Rectangle: {area_rectangle(10, 20) = }''') print(F'''Square: {area_square(10) = }''') print(F'''Triangle: {area_triangle(10, 10) = }''') print(F'''Triangle: {area_triangle_three_sides(5, 12, 13) = }''') print(F'''Parallelogram: {area_parallelogram(10, 20) = }''') print(F'''Rhombus: {area_rhombus(10, 20) = }''') print(F'''Trapezium: {area_trapezium(10, 20, 30) = }''') print(F'''Circle: {area_circle(20) = }''') print(F'''Ellipse: {area_ellipse(10, 20) = }''') print('\nSurface Areas of various geometric shapes: \n') print(F'''Cube: {surface_area_cube(20) = }''') print(F'''Cuboid: {surface_area_cuboid(10, 20, 30) = }''') print(F'''Sphere: {surface_area_sphere(20) = }''') print(F'''Hemisphere: {surface_area_hemisphere(20) = }''') print(F'''Cone: {surface_area_cone(10, 20) = }''') print(F'''Conical Frustum: {surface_area_conical_frustum(10, 20, 30) = }''') print(F'''Cylinder: {surface_area_cylinder(10, 20) = }''') print(F'''Torus: {surface_area_torus(20, 10) = }''') print(F'''Equilateral Triangle: {area_reg_polygon(3, 10) = }''') print(F'''Square: {area_reg_polygon(4, 10) = }''') print(F'''Reqular Pentagon: {area_reg_polygon(5, 10) = }''')
25
0
from cva import destroyAllWindows, imread, imshow, waitKey def UpperCAmelCase ( a_ ) -> Optional[int]: """simple docstring""" __A = img.shape[0], img.shape[1] # converting each pixel's color to its negative for i in range(_a ): for j in range(_a ): __A = [2_5_5, 2_5_5, 2_5_5] - img[i][j] return img if __name__ == "__main__": # read original image SCREAMING_SNAKE_CASE :List[str] = imread('image_data/lena.jpg', 1) # convert to its negative SCREAMING_SNAKE_CASE :Dict = convert_to_negative(img) # show result image imshow('negative of original image', img) waitKey(0) destroyAllWindows()
55
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available a_ = { 'configuration_instructblip': [ 'INSTRUCTBLIP_PRETRAINED_CONFIG_ARCHIVE_MAP', 'InstructBlipConfig', 'InstructBlipQFormerConfig', 'InstructBlipVisionConfig', ], 'processing_instructblip': ['InstructBlipProcessor'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a_ = [ 'INSTRUCTBLIP_PRETRAINED_MODEL_ARCHIVE_LIST', 'InstructBlipQFormerModel', 'InstructBlipPreTrainedModel', 'InstructBlipForConditionalGeneration', 'InstructBlipVisionModel', ] if TYPE_CHECKING: from .configuration_instructblip import ( INSTRUCTBLIP_PRETRAINED_CONFIG_ARCHIVE_MAP, InstructBlipConfig, InstructBlipQFormerConfig, InstructBlipVisionConfig, ) from .processing_instructblip import InstructBlipProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_instructblip import ( INSTRUCTBLIP_PRETRAINED_MODEL_ARCHIVE_LIST, InstructBlipForConditionalGeneration, InstructBlipPreTrainedModel, InstructBlipQFormerModel, InstructBlipVisionModel, ) else: import sys a_ = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
25
0
"""simple docstring""" from __future__ import annotations def a_ ( _lowerCAmelCase : Optional[Any] , _lowerCAmelCase : Dict ): '''simple docstring''' lowercase__ : str = 0 lowercase__ : Tuple = len(_a ) - 1 while i < j: if nums[i] + nums[j] == target: return [i, j] elif nums[i] + nums[j] < target: lowercase__ : Optional[int] = i + 1 else: lowercase__ : List[str] = j - 1 return [] if __name__ == "__main__": import doctest doctest.testmod() print(f'''{two_pointer([2, 7, 11, 15], 9) = }''')
599
from __future__ import annotations def lowerCamelCase__ ( _a): SCREAMING_SNAKE_CASE : Optional[Any] = 2 SCREAMING_SNAKE_CASE : Optional[int] = [] while i * i <= n: if n % i: i += 1 else: n //= i factors.append(_a) if n > 1: factors.append(_a) return factors if __name__ == "__main__": import doctest doctest.testmod()
25
0
"""simple docstring""" class _a : def __init__( self : Union[str, Any] , _lowercase : int ) -> Dict: snake_case : Optional[Any] = n snake_case : str = [None] * self.n snake_case : List[str] = 0 # index of the first element snake_case : Tuple = 0 snake_case : str = 0 def __len__( self : Union[str, Any] ) -> int: return self.size def __lowercase ( self : Any ) -> bool: return self.size == 0 def __lowercase ( self : Union[str, Any] ) -> Dict: return False if self.is_empty() else self.array[self.front] def __lowercase ( self : Tuple , _lowercase : Union[str, Any] ) -> Union[str, Any]: if self.size >= self.n: raise Exception("QUEUE IS FULL" ) snake_case : Union[str, Any] = data snake_case : Optional[Any] = (self.rear + 1) % self.n self.size += 1 return self def __lowercase ( self : Union[str, Any] ) -> Dict: if self.size == 0: raise Exception("UNDERFLOW" ) snake_case : Tuple = self.array[self.front] snake_case : List[str] = None snake_case : Any = (self.front + 1) % self.n self.size -= 1 return temp
449
from math import factorial, pi def lowerCamelCase__ ( _a , _a = 30): if not isinstance(_a , (int, float)): raise ValueError("maclaurin_sin() requires either an int or float for theta") if not isinstance(_a , _a) or accuracy <= 0: raise ValueError("maclaurin_sin() requires a positive int for accuracy") SCREAMING_SNAKE_CASE : int = float(_a) SCREAMING_SNAKE_CASE : Dict = theta // (2 * pi) theta -= 2 * div * pi return sum( (-1) ** r * theta ** (2 * r + 1) / factorial(2 * r + 1) for r in range(_a)) def lowerCamelCase__ ( _a , _a = 30): if not isinstance(_a , (int, float)): raise ValueError("maclaurin_cos() requires either an int or float for theta") if not isinstance(_a , _a) or accuracy <= 0: raise ValueError("maclaurin_cos() requires a positive int for accuracy") SCREAMING_SNAKE_CASE : str = float(_a) SCREAMING_SNAKE_CASE : Any = theta // (2 * pi) theta -= 2 * div * pi return sum((-1) ** r * theta ** (2 * r) / factorial(2 * r) for r in range(_a)) if __name__ == "__main__": import doctest doctest.testmod() print(maclaurin_sin(10)) print(maclaurin_sin(-10)) print(maclaurin_sin(10, 15)) print(maclaurin_sin(-10, 15)) print(maclaurin_cos(5)) print(maclaurin_cos(-5)) print(maclaurin_cos(10, 15)) print(maclaurin_cos(-10, 15))
25
0
'''simple docstring''' import copy from dataclasses import dataclass, field from typing import ClassVar, Dict from ..features import ClassLabel, Features, Value from .base import TaskTemplate @dataclass(frozen=__A ) class A_ ( __A ): _lowerCamelCase : List[str] = field(default="""text-classification""" , metadata={"""include_in_asdict_even_if_is_default""": True} ) _lowerCamelCase : Optional[int] = Features({"""text""": Value("""string""" )} ) _lowerCamelCase : Optional[Any] = Features({"""labels""": ClassLabel} ) _lowerCamelCase : Union[str, Any] = """text""" _lowerCamelCase : str = """labels""" def lowercase ( self : List[Any] , snake_case_ : Optional[Any] ): if self.label_column not in features: raise ValueError(f'Column {self.label_column} is not present in features.' ) if not isinstance(features[self.label_column] , snake_case_ ): raise ValueError(f'Column {self.label_column} is not a ClassLabel.' ) _UpperCAmelCase = copy.deepcopy(self ) _UpperCAmelCase = self.label_schema.copy() _UpperCAmelCase = features[self.label_column] _UpperCAmelCase = label_schema return task_template @property def lowercase ( self : Optional[int] ): return { self.text_column: "text", self.label_column: "labels", }
236
from __future__ import annotations import math class _UpperCamelCase : '''simple docstring''' def __init__( self : Dict , a : int ) -> None: """simple docstring""" SCREAMING_SNAKE_CASE : Dict = size # approximate the overall size of segment tree with given value SCREAMING_SNAKE_CASE : Any = [0 for i in range(0 , 4 * size )] # create array to store lazy update SCREAMING_SNAKE_CASE : Union[str, Any] = [0 for i in range(0 , 4 * size )] SCREAMING_SNAKE_CASE : Any = [0 for i in range(0 , 4 * size )] # flag for lazy update def __UpperCamelCase ( self : Tuple , a : int ) -> int: """simple docstring""" return idx * 2 def __UpperCamelCase ( self : str , a : int ) -> int: """simple docstring""" return idx * 2 + 1 def __UpperCamelCase ( self : int , a : int , a : int , a : int , a : list[int] ) -> None: """simple docstring""" if left_element == right_element: SCREAMING_SNAKE_CASE : int = a[left_element - 1] else: SCREAMING_SNAKE_CASE : Optional[int] = (left_element + right_element) // 2 self.build(self.left(a ) , a , a , a ) self.build(self.right(a ) , mid + 1 , a , a ) SCREAMING_SNAKE_CASE : List[Any] = max( self.segment_tree[self.left(a )] , self.segment_tree[self.right(a )] ) def __UpperCamelCase ( self : Optional[Any] , a : int , a : int , a : int , a : int , a : int , a : int ) -> bool: """simple docstring""" if self.flag[idx] is True: SCREAMING_SNAKE_CASE : Any = self.lazy[idx] SCREAMING_SNAKE_CASE : List[str] = False if left_element != right_element: SCREAMING_SNAKE_CASE : Optional[Any] = self.lazy[idx] SCREAMING_SNAKE_CASE : int = self.lazy[idx] SCREAMING_SNAKE_CASE : Any = True SCREAMING_SNAKE_CASE : List[Any] = True if right_element < a or left_element > b: return True if left_element >= a and right_element <= b: SCREAMING_SNAKE_CASE : Optional[Any] = val if left_element != right_element: SCREAMING_SNAKE_CASE : str = val SCREAMING_SNAKE_CASE : str = val SCREAMING_SNAKE_CASE : Tuple = True SCREAMING_SNAKE_CASE : Optional[Any] = True return True SCREAMING_SNAKE_CASE : int = (left_element + right_element) // 2 self.update(self.left(a ) , a , a , a , a , a ) self.update(self.right(a ) , mid + 1 , a , a , a , a ) SCREAMING_SNAKE_CASE : Optional[int] = max( self.segment_tree[self.left(a )] , self.segment_tree[self.right(a )] ) return True def __UpperCamelCase ( self : Dict , a : int , a : int , a : int , a : int , a : int ) -> int | float: """simple docstring""" if self.flag[idx] is True: SCREAMING_SNAKE_CASE : int = self.lazy[idx] SCREAMING_SNAKE_CASE : List[Any] = False if left_element != right_element: SCREAMING_SNAKE_CASE : Optional[Any] = self.lazy[idx] SCREAMING_SNAKE_CASE : Optional[Any] = self.lazy[idx] SCREAMING_SNAKE_CASE : Optional[Any] = True SCREAMING_SNAKE_CASE : Union[str, Any] = True if right_element < a or left_element > b: return -math.inf if left_element >= a and right_element <= b: return self.segment_tree[idx] SCREAMING_SNAKE_CASE : Dict = (left_element + right_element) // 2 SCREAMING_SNAKE_CASE : Tuple = self.query(self.left(a ) , a , a , a , a ) SCREAMING_SNAKE_CASE : Tuple = self.query(self.right(a ) , mid + 1 , a , a , a ) return max(a , a ) def __str__( self : str ) -> str: """simple docstring""" return str([self.query(1 , 1 , self.size , a , a ) for i in range(1 , self.size + 1 )] ) if __name__ == "__main__": a_ = [1, 2, -4, 7, 3, -5, 6, 11, -20, 9, 14, 15, 5, 2, -8] a_ = 15 a_ = SegmentTree(size) segt.build(1, 1, size, A) print(segt.query(1, 1, size, 4, 6)) print(segt.query(1, 1, size, 7, 11)) print(segt.query(1, 1, size, 7, 12)) segt.update(1, 1, size, 1, 3, 111) print(segt.query(1, 1, size, 1, 15)) segt.update(1, 1, size, 7, 8, 235) print(segt)
25
0
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tokenizers_available, is_torch_available, ) UpperCamelCase__ : Optional[Any] = {'''configuration_plbart''': ['''PLBART_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''PLBartConfig''']} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase__ : Tuple = ['''PLBartTokenizer'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase__ : int = [ '''PLBART_PRETRAINED_MODEL_ARCHIVE_LIST''', '''PLBartForCausalLM''', '''PLBartForConditionalGeneration''', '''PLBartForSequenceClassification''', '''PLBartModel''', '''PLBartPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_plbart import PLBART_PRETRAINED_CONFIG_ARCHIVE_MAP, PLBartConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_plbart import PLBartTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_plbart import ( PLBART_PRETRAINED_MODEL_ARCHIVE_LIST, PLBartForCausalLM, PLBartForConditionalGeneration, PLBartForSequenceClassification, PLBartModel, PLBartPreTrainedModel, ) else: import sys UpperCamelCase__ : Optional[Any] = _LazyModule(__name__, globals()['''__file__'''], _import_structure)
105
import gc import unittest import numpy as np import torch from diffusers import StableDiffusionKDiffusionPipeline from diffusers.utils import slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu enable_full_determinism() @slow @require_torch_gpu class _UpperCamelCase ( unittest.TestCase ): '''simple docstring''' def __UpperCamelCase ( self : Dict ) -> Tuple: """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() def __UpperCamelCase ( self : Optional[int] ) -> int: """simple docstring""" SCREAMING_SNAKE_CASE : Optional[Any] = StableDiffusionKDiffusionPipeline.from_pretrained("CompVis/stable-diffusion-v1-4" ) SCREAMING_SNAKE_CASE : str = sd_pipe.to(a ) sd_pipe.set_progress_bar_config(disable=a ) sd_pipe.set_scheduler("sample_euler" ) SCREAMING_SNAKE_CASE : Optional[int] = "A painting of a squirrel eating a burger" SCREAMING_SNAKE_CASE : Any = torch.manual_seed(0 ) SCREAMING_SNAKE_CASE : List[Any] = sd_pipe([prompt] , generator=a , guidance_scale=9.0 , num_inference_steps=20 , output_type="np" ) SCREAMING_SNAKE_CASE : Tuple = output.images SCREAMING_SNAKE_CASE : Any = image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) SCREAMING_SNAKE_CASE : Union[str, Any] = np.array([0.0447, 0.0492, 0.0468, 0.0408, 0.0383, 0.0408, 0.0354, 0.0380, 0.0339] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def __UpperCamelCase ( self : List[Any] ) -> Optional[int]: """simple docstring""" SCREAMING_SNAKE_CASE : int = StableDiffusionKDiffusionPipeline.from_pretrained("stabilityai/stable-diffusion-2-1-base" ) SCREAMING_SNAKE_CASE : Tuple = sd_pipe.to(a ) sd_pipe.set_progress_bar_config(disable=a ) sd_pipe.set_scheduler("sample_euler" ) SCREAMING_SNAKE_CASE : List[str] = "A painting of a squirrel eating a burger" SCREAMING_SNAKE_CASE : List[str] = torch.manual_seed(0 ) SCREAMING_SNAKE_CASE : Union[str, Any] = sd_pipe([prompt] , generator=a , guidance_scale=9.0 , num_inference_steps=20 , output_type="np" ) SCREAMING_SNAKE_CASE : List[Any] = output.images SCREAMING_SNAKE_CASE : Tuple = image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) SCREAMING_SNAKE_CASE : int = np.array([0.1237, 0.1320, 0.1438, 0.1359, 0.1390, 0.1132, 0.1277, 0.1175, 0.1112] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 5e-1 def __UpperCamelCase ( self : Tuple ) -> List[Any]: """simple docstring""" SCREAMING_SNAKE_CASE : Dict = StableDiffusionKDiffusionPipeline.from_pretrained("stabilityai/stable-diffusion-2-1-base" ) SCREAMING_SNAKE_CASE : Union[str, Any] = sd_pipe.to(a ) sd_pipe.set_progress_bar_config(disable=a ) sd_pipe.set_scheduler("sample_dpmpp_2m" ) SCREAMING_SNAKE_CASE : str = "A painting of a squirrel eating a burger" SCREAMING_SNAKE_CASE : Any = torch.manual_seed(0 ) SCREAMING_SNAKE_CASE : str = sd_pipe( [prompt] , generator=a , guidance_scale=7.5 , num_inference_steps=15 , output_type="np" , use_karras_sigmas=a , ) SCREAMING_SNAKE_CASE : str = output.images SCREAMING_SNAKE_CASE : Optional[int] = image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) SCREAMING_SNAKE_CASE : int = np.array( [0.1138_1689, 0.1211_2921, 0.138_9457, 0.1254_9606, 0.124_4964, 0.1083_1517, 0.1156_2866, 0.1086_7816, 0.1049_9048] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
25
0
'''simple docstring''' from ..utils import DummyObject, requires_backends class lowerCamelCase_ ( metaclass=__A ): _lowerCAmelCase : Union[str, Any] = ['torch', 'torchsde'] def __init__( self : Optional[int] , *lowerCAmelCase__ : Optional[Any] , **lowerCAmelCase__ : Any ): """simple docstring""" requires_backends(self , ['''torch''', '''torchsde'''] ) @classmethod def __lowercase ( cls : List[str] , *lowerCAmelCase__ : int , **lowerCAmelCase__ : Tuple ): """simple docstring""" requires_backends(cls , ['''torch''', '''torchsde'''] ) @classmethod def __lowercase ( cls : Optional[Any] , *lowerCAmelCase__ : Dict , **lowerCAmelCase__ : Optional[int] ): """simple docstring""" requires_backends(cls , ['''torch''', '''torchsde'''] )
527
import unittest import numpy as np from diffusers import LMSDiscreteScheduler, OnnxStableDiffusionInpaintPipeline from diffusers.utils.testing_utils import ( is_onnx_available, load_image, nightly, require_onnxruntime, require_torch_gpu, ) from ..test_pipelines_onnx_common import OnnxPipelineTesterMixin if is_onnx_available(): import onnxruntime as ort class _UpperCamelCase ( __A , unittest.TestCase ): '''simple docstring''' pass @nightly @require_onnxruntime @require_torch_gpu class _UpperCamelCase ( unittest.TestCase ): '''simple docstring''' @property def __UpperCamelCase ( self : List[Any] ) -> List[str]: """simple docstring""" return ( "CUDAExecutionProvider", { "gpu_mem_limit": "15000000000", # 15GB "arena_extend_strategy": "kSameAsRequested", }, ) @property def __UpperCamelCase ( self : int ) -> Optional[Any]: """simple docstring""" SCREAMING_SNAKE_CASE : Optional[Any] = ort.SessionOptions() SCREAMING_SNAKE_CASE : Union[str, Any] = False return options def __UpperCamelCase ( self : List[Any] ) -> List[Any]: """simple docstring""" SCREAMING_SNAKE_CASE : Any = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/in_paint/overture-creations-5sI6fQgYIuo.png" ) SCREAMING_SNAKE_CASE : Optional[Any] = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/in_paint/overture-creations-5sI6fQgYIuo_mask.png" ) SCREAMING_SNAKE_CASE : int = OnnxStableDiffusionInpaintPipeline.from_pretrained( "runwayml/stable-diffusion-inpainting" , revision="onnx" , safety_checker=a , feature_extractor=a , provider=self.gpu_provider , sess_options=self.gpu_options , ) pipe.set_progress_bar_config(disable=a ) SCREAMING_SNAKE_CASE : Optional[Any] = "A red cat sitting on a park bench" SCREAMING_SNAKE_CASE : Tuple = np.random.RandomState(0 ) SCREAMING_SNAKE_CASE : Optional[int] = pipe( prompt=a , image=a , mask_image=a , guidance_scale=7.5 , num_inference_steps=10 , generator=a , output_type="np" , ) SCREAMING_SNAKE_CASE : List[Any] = output.images SCREAMING_SNAKE_CASE : Union[str, Any] = images[0, 255:258, 255:258, -1] assert images.shape == (1, 512, 512, 3) SCREAMING_SNAKE_CASE : int = np.array([0.2514, 0.3007, 0.3517, 0.1790, 0.2382, 0.3167, 0.1944, 0.2273, 0.2464] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3 def __UpperCamelCase ( self : List[Any] ) -> Tuple: """simple docstring""" SCREAMING_SNAKE_CASE : int = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/in_paint/overture-creations-5sI6fQgYIuo.png" ) SCREAMING_SNAKE_CASE : Optional[Any] = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/in_paint/overture-creations-5sI6fQgYIuo_mask.png" ) SCREAMING_SNAKE_CASE : Optional[Any] = LMSDiscreteScheduler.from_pretrained( "runwayml/stable-diffusion-inpainting" , subfolder="scheduler" , revision="onnx" ) SCREAMING_SNAKE_CASE : Union[str, Any] = OnnxStableDiffusionInpaintPipeline.from_pretrained( "runwayml/stable-diffusion-inpainting" , revision="onnx" , scheduler=a , safety_checker=a , feature_extractor=a , provider=self.gpu_provider , sess_options=self.gpu_options , ) pipe.set_progress_bar_config(disable=a ) SCREAMING_SNAKE_CASE : List[Any] = "A red cat sitting on a park bench" SCREAMING_SNAKE_CASE : Dict = np.random.RandomState(0 ) SCREAMING_SNAKE_CASE : Tuple = pipe( prompt=a , image=a , mask_image=a , guidance_scale=7.5 , num_inference_steps=20 , generator=a , output_type="np" , ) SCREAMING_SNAKE_CASE : List[str] = output.images SCREAMING_SNAKE_CASE : Optional[int] = images[0, 255:258, 255:258, -1] assert images.shape == (1, 512, 512, 3) SCREAMING_SNAKE_CASE : Any = np.array([0.0086, 0.0077, 0.0083, 0.0093, 0.0107, 0.0139, 0.0094, 0.0097, 0.0125] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3
25
0
from __future__ import annotations import os import tempfile import unittest import numpy as np from huggingface_hub import hf_hub_download from transformers import is_tensorflow_text_available, is_tf_available from transformers.testing_utils import require_tensorflow_text, require_tf, slow from ..test_modeling_tf_common import floats_tensor from .test_framework_agnostic import GenerationIntegrationTestsMixin if is_tf_available(): import tensorflow as tf from transformers import ( AutoTokenizer, TFAutoModelForCausalLM, TFAutoModelForSeqaSeqLM, TFAutoModelForSpeechSeqaSeq, TFAutoModelForVisionaSeq, TFBartForConditionalGeneration, TFLogitsProcessorList, TFMinLengthLogitsProcessor, tf_top_k_top_p_filtering, ) if is_tensorflow_text_available(): import tensorflow_text as text @require_tf class SCREAMING_SNAKE_CASE ( unittest.TestCase ): """simple docstring""" def SCREAMING_SNAKE_CASE ( self : Dict ) -> Optional[Any]: """simple docstring""" __lowerCAmelCase : List[str] = tf.convert_to_tensor( [ [ 8.222_0991, # 3rd highest value; idx. 0 -0.562_0044, 5.2322_9752, 4.038_6393, -6.879_8378, -0.5478_5802, -3.201_2153, 2.9277_7176, 1.8817_1953, 7.3534_1276, # 5th highest value; idx. 9 8.4320_7833, # 2nd highest value; idx. 10 -9.8571_1836, -5.9620_9236, -1.1303_9161, -7.111_5294, -0.836_9633, -5.318_6408, 7.0642_7407, 0.8136_9344, -0.8202_3817, -5.917_9796, 0.5881_3443, -6.9977_8438, 4.7155_1189, -0.1877_1637, 7.4402_0759, # 4th highest value; idx. 25 9.3845_0987, # 1st highest value; idx. 26 2.1266_2941, -9.3256_2038, 2.3565_2522, ], # cummulative prob of 5 highest values <= 0.6 [ 0.5842_5518, 4.5313_9238, -5.5751_0464, -6.2803_0699, -7.1952_9503, -4.0212_2551, 1.3933_7037, -6.0670_7057, 1.5948_0517, -9.64_3119, 0.0390_7799, 0.6723_1762, -8.8820_6726, 6.2711_5922, # 4th highest value; idx. 13 2.2852_0723, 4.8276_7506, 4.3042_1368, 8.827_5313, # 2nd highest value; idx. 17 5.4402_9958, # 5th highest value; idx. 18 -4.473_5794, 7.3857_9536, # 3rd highest value; idx. 20 -2.9105_1663, 2.6194_6077, -2.567_4762, -9.4895_9302, -4.0292_2645, -1.3541_6918, 9.6770_2323, # 1st highest value; idx. 27 -5.8947_8553, 1.8537_0467, ], # cummulative prob of 5 highest values <= 0.6 ] , dtype=tf.floataa , ) __lowerCAmelCase : Optional[int] = tf.convert_to_tensor( [[0, 0], [0, 9], [0, 10], [0, 25], [0, 26], [1, 13], [1, 17], [1, 18], [1, 20], [1, 27]] , dtype=tf.intaa , ) # expected non filtered idx as noted above __lowerCAmelCase : List[Any] = tf.convert_to_tensor( [8.22_2099, 7.353_4126, 8.43_2078, 7.440_2075, 9.3_8451, 6.27_1159, 8.82_7531, 5.440_2995, 7.385_7956, 9.67_7023] , dtype=tf.floataa , ) # expected non filtered values as noted above __lowerCAmelCase : Union[str, Any] = tf_top_k_top_p_filtering(lowerCAmelCase , top_k=10 , top_p=0.6 , min_tokens_to_keep=4 ) __lowerCAmelCase : List[Any] = output[output != -float("""inf""" )] __lowerCAmelCase : Tuple = tf.cast( tf.where(tf.not_equal(lowerCAmelCase , tf.constant(-float("""inf""" ) , dtype=tf.floataa ) ) ) , dtype=tf.intaa , ) tf.debugging.assert_near(lowerCAmelCase , lowerCAmelCase , rtol=1e-12 ) tf.debugging.assert_equal(lowerCAmelCase , lowerCAmelCase ) @require_tf class SCREAMING_SNAKE_CASE ( unittest.TestCase , __A ): """simple docstring""" if is_tf_available(): lowerCamelCase : List[Any] ={ "AutoModelForCausalLM": TFAutoModelForCausalLM, "AutoModelForSpeechSeq2Seq": TFAutoModelForSpeechSeqaSeq, "AutoModelForSeq2SeqLM": TFAutoModelForSeqaSeqLM, "AutoModelForVision2Seq": TFAutoModelForVisionaSeq, "LogitsProcessorList": TFLogitsProcessorList, "MinLengthLogitsProcessor": TFMinLengthLogitsProcessor, "create_tensor_fn": tf.convert_to_tensor, "floats_tensor": floats_tensor, "return_tensors": "tf", } @slow def SCREAMING_SNAKE_CASE ( self : Optional[int] ) -> Dict: """simple docstring""" __lowerCAmelCase : Tuple = TFAutoModelForCausalLM.from_pretrained("""hf-internal-testing/tiny-random-gpt2""" ) __lowerCAmelCase : str = 2 __lowerCAmelCase : List[str] = 2 class SCREAMING_SNAKE_CASE ( tf.Module ): """simple docstring""" def __init__( self : List[str] , lowerCAmelCase : Optional[int] ) -> str: """simple docstring""" super(lowerCAmelCase , self ).__init__() __lowerCAmelCase : Dict = model @tf.function( input_signature=( tf.TensorSpec((None, input_length) , tf.intaa , name="""input_ids""" ), tf.TensorSpec((None, input_length) , tf.intaa , name="""attention_mask""" ), ) , jit_compile=lowerCAmelCase , ) def SCREAMING_SNAKE_CASE ( self : Union[str, Any] , lowerCAmelCase : List[str] , lowerCAmelCase : Any ) -> Tuple: """simple docstring""" __lowerCAmelCase : List[Any] = self.model.generate( input_ids=lowerCAmelCase , attention_mask=lowerCAmelCase , max_new_tokens=lowerCAmelCase , return_dict_in_generate=lowerCAmelCase , ) return {"sequences": outputs["sequences"]} __lowerCAmelCase : Dict = [[2, 0], [1_02, 1_03]] __lowerCAmelCase : Optional[int] = [[1, 0], [1, 1]] __lowerCAmelCase : Any = DummyModel(model=lowerCAmelCase ) with tempfile.TemporaryDirectory() as tmp_dir: tf.saved_model.save(lowerCAmelCase , lowerCAmelCase , signatures={"""serving_default""": dummy_model.serving} ) __lowerCAmelCase : Tuple = tf.saved_model.load(lowerCAmelCase ).signatures["serving_default"] for batch_size in range(1 , len(lowerCAmelCase ) + 1 ): __lowerCAmelCase : Optional[int] = { "input_ids": tf.constant(dummy_input_ids[:batch_size] ), "attention_mask": tf.constant(dummy_attention_masks[:batch_size] ), } __lowerCAmelCase : Dict = serving_func(**lowerCAmelCase )["sequences"] __lowerCAmelCase : Union[str, Any] = test_model.generate(**lowerCAmelCase , max_new_tokens=lowerCAmelCase ) tf.debugging.assert_equal(lowerCAmelCase , lowerCAmelCase ) @slow def SCREAMING_SNAKE_CASE ( self : Any ) -> List[str]: """simple docstring""" __lowerCAmelCase : List[Any] = TFAutoModelForCausalLM.from_pretrained("""hf-internal-testing/tiny-random-gpt2""" ) __lowerCAmelCase : int = 1 __lowerCAmelCase : Union[str, Any] = 2 class SCREAMING_SNAKE_CASE ( tf.Module ): """simple docstring""" def __init__( self : List[str] , lowerCAmelCase : List[Any] ) -> Optional[int]: """simple docstring""" super(lowerCAmelCase , self ).__init__() __lowerCAmelCase : List[Any] = model @tf.function( input_signature=( tf.TensorSpec((batch_size, None) , tf.intaa , name="""input_ids""" ), tf.TensorSpec((batch_size, None) , tf.intaa , name="""attention_mask""" ), ) , jit_compile=lowerCAmelCase , ) def SCREAMING_SNAKE_CASE ( self : str , lowerCAmelCase : List[str] , lowerCAmelCase : str ) -> Any: """simple docstring""" __lowerCAmelCase : Any = self.model.generate( input_ids=lowerCAmelCase , attention_mask=lowerCAmelCase , max_new_tokens=lowerCAmelCase , return_dict_in_generate=lowerCAmelCase , ) return {"sequences": outputs["sequences"]} __lowerCAmelCase : str = [[2], [1_02, 1_03]] __lowerCAmelCase : str = [[1], [1, 1]] __lowerCAmelCase : Optional[Any] = DummyModel(model=lowerCAmelCase ) with tempfile.TemporaryDirectory() as tmp_dir: tf.saved_model.save(lowerCAmelCase , lowerCAmelCase , signatures={"""serving_default""": dummy_model.serving} ) __lowerCAmelCase : List[Any] = tf.saved_model.load(lowerCAmelCase ).signatures["serving_default"] for input_row in range(len(lowerCAmelCase ) ): __lowerCAmelCase : List[str] = { "input_ids": tf.constant([dummy_input_ids[input_row]] ), "attention_mask": tf.constant([dummy_attention_masks[input_row]] ), } __lowerCAmelCase : Union[str, Any] = serving_func(**lowerCAmelCase )["sequences"] __lowerCAmelCase : str = test_model.generate(**lowerCAmelCase , max_new_tokens=lowerCAmelCase ) tf.debugging.assert_equal(lowerCAmelCase , lowerCAmelCase ) @slow @require_tensorflow_text def SCREAMING_SNAKE_CASE ( self : Tuple ) -> str: """simple docstring""" with tempfile.TemporaryDirectory() as tmp_dir: # file needed to load the TF tokenizer hf_hub_download(repo_id="""google/flan-t5-small""" , filename="""spiece.model""" , local_dir=lowerCAmelCase ) class SCREAMING_SNAKE_CASE ( tf.keras.layers.Layer ): """simple docstring""" def __init__( self : Tuple ) -> Optional[Any]: """simple docstring""" super().__init__() __lowerCAmelCase : List[str] = text.SentencepieceTokenizer( model=tf.io.gfile.GFile(os.path.join(lowerCAmelCase , """spiece.model""" ) , """rb""" ).read() ) __lowerCAmelCase : str = TFAutoModelForSeqaSeqLM.from_pretrained("""hf-internal-testing/tiny-random-t5""" ) def SCREAMING_SNAKE_CASE ( self : Union[str, Any] , lowerCAmelCase : Optional[Any] , *lowerCAmelCase : Union[str, Any] , **lowerCAmelCase : int ) -> List[str]: """simple docstring""" __lowerCAmelCase : List[Any] = self.tokenizer.tokenize(lowerCAmelCase ) __lowerCAmelCase : Optional[int] = text.pad_model_inputs( lowerCAmelCase , max_seq_length=64 , pad_value=self.model.config.pad_token_id ) __lowerCAmelCase : str = self.model.generate(input_ids=lowerCAmelCase , attention_mask=lowerCAmelCase ) return self.tokenizer.detokenize(lowerCAmelCase ) __lowerCAmelCase : Union[str, Any] = CompleteSentenceTransformer() __lowerCAmelCase : Optional[Any] = tf.keras.layers.Input(shape=(1,) , dtype=tf.string , name="""inputs""" ) __lowerCAmelCase : Dict = complete_model(lowerCAmelCase ) __lowerCAmelCase : Union[str, Any] = tf.keras.Model(lowerCAmelCase , lowerCAmelCase ) keras_model.save(lowerCAmelCase ) def SCREAMING_SNAKE_CASE ( self : int ) -> Dict: """simple docstring""" __lowerCAmelCase : List[str] = { "do_sample": True, "num_beams": 1, "top_p": 0.7, "top_k": 10, "temperature": 0.7, } __lowerCAmelCase : Dict = 14 __lowerCAmelCase : int = AutoTokenizer.from_pretrained("""hf-internal-testing/tiny-random-gpt2""" ) __lowerCAmelCase : int = "Hello, my dog is cute and" __lowerCAmelCase : Optional[Any] = tokenizer(lowerCAmelCase , return_tensors="""tf""" ) __lowerCAmelCase : str = TFAutoModelForCausalLM.from_pretrained("""hf-internal-testing/tiny-random-gpt2""" ) __lowerCAmelCase : Dict = 6_38 # forces the generation to happen on CPU, to avoid GPU-related quirks with tf.device(""":/CPU:0""" ): tf.random.set_seed(0 ) __lowerCAmelCase : Union[str, Any] = model.generate(**lowerCAmelCase , eos_token_id=lowerCAmelCase , **lowerCAmelCase ) self.assertTrue(expectation == len(generated_tokens[0] ) ) __lowerCAmelCase : Union[str, Any] = [6_38, 1_98] with tf.device(""":/CPU:0""" ): tf.random.set_seed(0 ) __lowerCAmelCase : Optional[Any] = model.generate(**lowerCAmelCase , eos_token_id=lowerCAmelCase , **lowerCAmelCase ) self.assertTrue(expectation == len(generated_tokens[0] ) ) def SCREAMING_SNAKE_CASE ( self : Tuple ) -> str: """simple docstring""" __lowerCAmelCase : Tuple = AutoTokenizer.from_pretrained("""hf-internal-testing/tiny-random-bart""" ) __lowerCAmelCase : Optional[int] = "Hugging Face is a technology company based in New York and Paris." __lowerCAmelCase : List[Any] = bart_tokenizer(lowerCAmelCase , return_tensors="""tf""" ).input_ids __lowerCAmelCase : Dict = TFBartForConditionalGeneration.from_pretrained("""hf-internal-testing/tiny-random-bart""" ) __lowerCAmelCase : Dict = bart_model.generate(lowerCAmelCase ).numpy() class SCREAMING_SNAKE_CASE ( __A ): """simple docstring""" def SCREAMING_SNAKE_CASE ( self : Optional[int] , lowerCAmelCase : int , lowerCAmelCase : List[str]=None , **lowerCAmelCase : List[str] ) -> Optional[int]: """simple docstring""" return super().call(lowerCAmelCase , **lowerCAmelCase ) __lowerCAmelCase : Optional[int] = FakeBart.from_pretrained("""hf-internal-testing/tiny-random-bart""" ) __lowerCAmelCase : Union[str, Any] = bart_model.generate(lowerCAmelCase , foo="""bar""" ).numpy() self.assertTrue(np.array_equal(lowerCAmelCase , lowerCAmelCase ) ) class SCREAMING_SNAKE_CASE ( bart_model.model.encoder.__class__ ): """simple docstring""" def SCREAMING_SNAKE_CASE ( self : Tuple , lowerCAmelCase : Any , **lowerCAmelCase : List[Any] ) -> Optional[Any]: """simple docstring""" return super().call(lowerCAmelCase , **lowerCAmelCase ) __lowerCAmelCase : int = FakeEncoder(bart_model.config , bart_model.model.shared ) __lowerCAmelCase : List[str] = fake_encoder # Normal generation still works (the output will be different because the encoder weights are different) __lowerCAmelCase : Union[str, Any] = bart_model.generate(lowerCAmelCase ).numpy() with self.assertRaises(lowerCAmelCase ): # FakeEncoder.call() accepts **kwargs -> no filtering -> value error due to unexpected input "foo" bart_model.generate(lowerCAmelCase , foo="""bar""" )
651
from operator import delitem, getitem, setitem import pytest from data_structures.hashing.hash_map import HashMap def lowerCamelCase__ ( _a): return getitem, k def lowerCamelCase__ ( _a , _a): return setitem, k, v def lowerCamelCase__ ( _a): return delitem, k def lowerCamelCase__ ( _a , _a , *_a): try: return fun(_a , *_a), None except Exception as e: return None, e a_ = ( _set('key_a', 'val_a'), _set('key_b', 'val_b'), ) a_ = [ _set('key_a', 'val_a'), _set('key_a', 'val_b'), ] a_ = [ _set('key_a', 'val_a'), _set('key_b', 'val_b'), _del('key_a'), _del('key_b'), _set('key_a', 'val_a'), _del('key_a'), ] a_ = [ _get('key_a'), _del('key_a'), _set('key_a', 'val_a'), _del('key_a'), _del('key_a'), _get('key_a'), ] a_ = [ *[_set(x, x) for x in range(5)], # guaranteed upsize ] a_ = [ *[_set(x, x) for x in range(5)], # guaranteed upsize *[_del(x) for x in range(5)], _set('key_a', 'val_b'), ] @pytest.mark.parametrize( "operations" , ( pytest.param(_add_items , id="add items"), pytest.param(_overwrite_items , id="overwrite items"), pytest.param(_delete_items , id="delete items"), pytest.param(_access_absent_items , id="access absent items"), pytest.param(_add_with_resize_up , id="add with resize up"), pytest.param(_add_with_resize_down , id="add with resize down"), ) , ) def lowerCamelCase__ ( _a): SCREAMING_SNAKE_CASE : Dict = HashMap(initial_block_size=4) SCREAMING_SNAKE_CASE : List[str] = {} for _, (fun, *args) in enumerate(_a): SCREAMING_SNAKE_CASE ,SCREAMING_SNAKE_CASE : Union[str, Any] = _run_operation(_a , _a , *_a) SCREAMING_SNAKE_CASE ,SCREAMING_SNAKE_CASE : List[Any] = _run_operation(_a , _a , *_a) assert my_res == py_res assert str(_a) == str(_a) assert set(_a) == set(_a) assert len(_a) == len(_a) assert set(my.items()) == set(py.items()) def lowerCamelCase__ ( ): def is_public(_a) -> bool: return not name.startswith("_") SCREAMING_SNAKE_CASE : List[str] = {name for name in dir({}) if is_public(_a)} SCREAMING_SNAKE_CASE : Union[str, Any] = {name for name in dir(HashMap()) if is_public(_a)} assert dict_public_names > hash_public_names
25
0
from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, logging lowerCAmelCase_ = logging.get_logger(__name__) class _A ( __A ): _UpperCamelCase : Optional[Any] = ['''pixel_values'''] def __init__( self : Tuple , _A : bool = True , _A : Optional[Dict[str, int]] = None , _A : PILImageResampling = PILImageResampling.BILINEAR , _A : bool = True , _A : Dict[str, int] = None , _A : bool = True , _A : Union[int, float] = 1 / 255 , _A : bool = True , _A : Optional[Union[float, List[float]]] = None , _A : Optional[Union[float, List[float]]] = None , **_A : List[str] , ) -> None: """simple docstring""" super().__init__(**_A ) lowercase : Union[str, Any] = size if size is not None else {"shortest_edge": 256} lowercase : Tuple = get_size_dict(_A , default_to_square=_A ) lowercase : Any = crop_size if crop_size is not None else {"height": 224, "width": 224} lowercase : Optional[Any] = get_size_dict(_A ) lowercase : str = do_resize lowercase : List[str] = size lowercase : List[str] = resample lowercase : Union[str, Any] = do_center_crop lowercase : int = crop_size lowercase : Tuple = do_rescale lowercase : str = rescale_factor lowercase : List[str] = do_normalize lowercase : Union[str, Any] = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN lowercase : int = image_std if image_std is not None else IMAGENET_STANDARD_STD def __a ( self : int , _A : np.ndarray , _A : Dict[str, int] , _A : PILImageResampling = PILImageResampling.BICUBIC , _A : Optional[Union[str, ChannelDimension]] = None , **_A : str , ) -> np.ndarray: """simple docstring""" lowercase : Optional[int] = get_size_dict(_A , default_to_square=_A ) if "shortest_edge" not in size: raise ValueError(f"""The `size` parameter must contain the key `shortest_edge`. Got {size.keys()}""" ) lowercase : str = get_resize_output_image_size(_A , size=size['''shortest_edge'''] , default_to_square=_A ) return resize(_A , size=_A , resample=_A , data_format=_A , **_A ) def __a ( self : Tuple , _A : np.ndarray , _A : Dict[str, int] , _A : Optional[Union[str, ChannelDimension]] = None , **_A : str , ) -> np.ndarray: """simple docstring""" lowercase : str = get_size_dict(_A ) return center_crop(_A , size=(size['''height'''], size['''width''']) , data_format=_A , **_A ) def __a ( self : Optional[int] , _A : np.ndarray , _A : float , _A : Optional[Union[str, ChannelDimension]] = None , **_A : List[str] ) -> np.ndarray: """simple docstring""" return rescale(_A , scale=_A , data_format=_A , **_A ) def __a ( self : Optional[int] , _A : np.ndarray , _A : Union[float, List[float]] , _A : Union[float, List[float]] , _A : Optional[Union[str, ChannelDimension]] = None , **_A : int , ) -> np.ndarray: """simple docstring""" return normalize(_A , mean=_A , std=_A , data_format=_A , **_A ) def __a ( self : Any , _A : ImageInput , _A : Optional[bool] = None , _A : Dict[str, int] = None , _A : PILImageResampling = None , _A : bool = None , _A : Dict[str, int] = None , _A : Optional[bool] = None , _A : Optional[float] = None , _A : Optional[bool] = None , _A : Optional[Union[float, List[float]]] = None , _A : Optional[Union[float, List[float]]] = None , _A : Optional[Union[str, TensorType]] = None , _A : Union[str, ChannelDimension] = ChannelDimension.FIRST , **_A : Any , ) -> Union[str, Any]: """simple docstring""" lowercase : List[Any] = do_resize if do_resize is not None else self.do_resize lowercase : Any = size if size is not None else self.size lowercase : Union[str, Any] = get_size_dict(_A , default_to_square=_A ) lowercase : Tuple = resample if resample is not None else self.resample lowercase : Optional[Any] = do_center_crop if do_center_crop is not None else self.do_center_crop lowercase : Optional[Any] = crop_size if crop_size is not None else self.crop_size lowercase : Union[str, Any] = get_size_dict(_A ) lowercase : List[str] = do_rescale if do_rescale is not None else self.do_rescale lowercase : Dict = rescale_factor if rescale_factor is not None else self.rescale_factor lowercase : List[Any] = do_normalize if do_normalize is not None else self.do_normalize lowercase : Optional[Any] = image_mean if image_mean is not None else self.image_mean lowercase : Optional[Any] = image_std if image_std is not None else self.image_std lowercase : Union[str, Any] = make_list_of_images(_A ) if not valid_images(_A ): raise ValueError( '''Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ''' '''torch.Tensor, tf.Tensor or jax.ndarray.''' ) if do_resize and size is None: raise ValueError('''Size must be specified if do_resize is True.''' ) if do_center_crop and crop_size is None: raise ValueError('''Crop size must be specified if do_center_crop is True.''' ) if do_rescale and rescale_factor is None: raise ValueError('''Rescale factor must be specified if do_rescale is True.''' ) if do_normalize and (image_mean is None or image_std is None): raise ValueError('''Image mean and std must be specified if do_normalize is True.''' ) # All transformations expect numpy arrays. lowercase : Dict = [to_numpy_array(_A ) for image in images] if do_resize: lowercase : Dict = [self.resize(image=_A , size=_A , resample=_A ) for image in images] if do_center_crop: lowercase : List[Any] = [self.center_crop(image=_A , size=_A ) for image in images] if do_rescale: lowercase : List[str] = [self.rescale(image=_A , scale=_A ) for image in images] if do_normalize: lowercase : str = [self.normalize(image=_A , mean=_A , std=_A ) for image in images] lowercase : Union[str, Any] = [to_channel_dimension_format(_A , _A ) for image in images] lowercase : Tuple = {"pixel_values": images} return BatchFeature(data=_A , tensor_type=_A )
217
from typing import TYPE_CHECKING from ....utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available a_ = {'configuration_van': ['VAN_PRETRAINED_CONFIG_ARCHIVE_MAP', 'VanConfig']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a_ = [ 'VAN_PRETRAINED_MODEL_ARCHIVE_LIST', 'VanForImageClassification', 'VanModel', 'VanPreTrainedModel', ] if TYPE_CHECKING: from .configuration_van import VAN_PRETRAINED_CONFIG_ARCHIVE_MAP, VanConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_van import ( VAN_PRETRAINED_MODEL_ARCHIVE_LIST, VanForImageClassification, VanModel, VanPreTrainedModel, ) else: import sys a_ = _LazyModule(__name__, globals()['__file__'], _import_structure)
25
0
import warnings from transformers import AutoTokenizer from transformers.utils import is_torch_available from transformers.utils.generic import ExplicitEnum from ...processing_utils import ProcessorMixin if is_torch_available(): import torch class a ( __A ): _lowercase = "char" _lowercase = "bpe" _lowercase = "wp" SCREAMING_SNAKE_CASE_ = (DecodeType.CHARACTER, DecodeType.BPE, DecodeType.WORDPIECE) class a ( __A ): _lowercase = ["image_processor", "char_tokenizer"] _lowercase = "ViTImageProcessor" _lowercase = "MgpstrTokenizer" def __init__( self , A_=None , A_=None , **A_ ): '''simple docstring''' _UpperCAmelCase : str = None if "feature_extractor" in kwargs: warnings.warn( "The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`" " instead." , A_ , ) _UpperCAmelCase : Dict = kwargs.pop("feature_extractor" ) _UpperCAmelCase : int = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError("You need to specify an `image_processor`." ) if tokenizer is None: raise ValueError("You need to specify a `tokenizer`." ) _UpperCAmelCase : str = tokenizer _UpperCAmelCase : List[str] = AutoTokenizer.from_pretrained("gpt2" ) _UpperCAmelCase : List[Any] = AutoTokenizer.from_pretrained("bert-base-uncased" ) super().__init__(A_ , A_ ) def __call__( self , A_=None , A_=None , A_=None , **A_ ): '''simple docstring''' if images is None and text is None: raise ValueError("You need to specify either an `images` or `text` input to process." ) if images is not None: _UpperCAmelCase : Tuple = self.image_processor(A_ , return_tensors=A_ , **A_ ) if text is not None: _UpperCAmelCase : List[str] = self.char_tokenizer(A_ , return_tensors=A_ , **A_ ) if text is None: return inputs elif images is None: return encodings else: _UpperCAmelCase : Tuple = encodings["input_ids"] return inputs def _UpperCAmelCase ( self , A_ ): '''simple docstring''' _UpperCAmelCase : List[str] = sequences _UpperCAmelCase : Optional[int] = char_preds.size(0 ) _UpperCAmelCase : Tuple = self._decode_helper(A_ , "char" ) _UpperCAmelCase : Optional[int] = self._decode_helper(A_ , "bpe" ) _UpperCAmelCase : Union[str, Any] = self._decode_helper(A_ , "wp" ) _UpperCAmelCase : Tuple = [] _UpperCAmelCase : List[str] = [] for i in range(A_ ): _UpperCAmelCase : Dict = [char_scores[i], bpe_scores[i], wp_scores[i]] _UpperCAmelCase : int = [char_strs[i], bpe_strs[i], wp_strs[i]] _UpperCAmelCase : Optional[Any] = scores.index(max(A_ ) ) final_strs.append(strs[max_score_index] ) final_scores.append(scores[max_score_index] ) _UpperCAmelCase : int = {} _UpperCAmelCase : List[str] = final_strs _UpperCAmelCase : Union[str, Any] = final_scores _UpperCAmelCase : Any = char_strs _UpperCAmelCase : Tuple = bpe_strs _UpperCAmelCase : Union[str, Any] = wp_strs return out def _UpperCAmelCase ( self , A_ , A_ ): '''simple docstring''' if format == DecodeType.CHARACTER: _UpperCAmelCase : Union[str, Any] = self.char_decode _UpperCAmelCase : int = 1 _UpperCAmelCase : Tuple = "[s]" elif format == DecodeType.BPE: _UpperCAmelCase : Any = self.bpe_decode _UpperCAmelCase : Union[str, Any] = 2 _UpperCAmelCase : Optional[Any] = "#" elif format == DecodeType.WORDPIECE: _UpperCAmelCase : Any = self.wp_decode _UpperCAmelCase : Tuple = 102 _UpperCAmelCase : List[str] = "[SEP]" else: raise ValueError(f'Format {format} is not supported.' ) _UpperCAmelCase : Dict = [], [] _UpperCAmelCase : Union[str, Any] = pred_logits.size(0 ) _UpperCAmelCase : Optional[Any] = pred_logits.size(1 ) _UpperCAmelCase : Union[str, Any] = pred_logits.topk(1 , dim=-1 , largest=A_ , sorted=A_ ) _UpperCAmelCase : Dict = preds_index.view(-1 , A_ )[:, 1:] _UpperCAmelCase : Any = decoder(A_ ) _UpperCAmelCase : Any = torch.nn.functional.softmax(A_ , dim=2 ).max(dim=2 ) _UpperCAmelCase : Tuple = preds_max_prob[:, 1:] for index in range(A_ ): _UpperCAmelCase : List[Any] = preds_str[index].find(A_ ) _UpperCAmelCase : Tuple = preds_str[index][:pred_eos] _UpperCAmelCase : int = preds_index[index].cpu().tolist() _UpperCAmelCase : Union[str, Any] = pred_index.index(A_ ) if eos_token in pred_index else -1 _UpperCAmelCase : int = preds_max_prob[index][: pred_eos_index + 1] _UpperCAmelCase : List[Any] = pred_max_prob.cumprod(dim=0 )[-1] if pred_max_prob.nelement() != 0 else 0.0 dec_strs.append(A_ ) conf_scores.append(A_ ) return dec_strs, conf_scores def _UpperCAmelCase ( self , A_ ): '''simple docstring''' _UpperCAmelCase : Union[str, Any] = [seq.replace(" " , "" ) for seq in self.char_tokenizer.batch_decode(A_ )] return decode_strs def _UpperCAmelCase ( self , A_ ): '''simple docstring''' return self.bpe_tokenizer.batch_decode(A_ ) def _UpperCAmelCase ( self , A_ ): '''simple docstring''' _UpperCAmelCase : Optional[Any] = [seq.replace(" " , "" ) for seq in self.wp_tokenizer.batch_decode(A_ )] return decode_strs
300
from __future__ import annotations def lowerCamelCase__ ( _a): if len(_a) == 0: return [] SCREAMING_SNAKE_CASE ,SCREAMING_SNAKE_CASE : Tuple = min(_a), max(_a) SCREAMING_SNAKE_CASE : Dict = int(max_value - min_value) + 1 SCREAMING_SNAKE_CASE : list[list] = [[] for _ in range(_a)] for i in my_list: buckets[int(i - min_value)].append(_a) return [v for bucket in buckets for v in sorted(_a)] if __name__ == "__main__": from doctest import testmod testmod() assert bucket_sort([4, 5, 3, 2, 1]) == [1, 2, 3, 4, 5] assert bucket_sort([0, 1, -10, 15, 2, -2]) == [-10, -2, 0, 1, 2, 15]
25
0
'''simple docstring''' # Lint as: python3 import os import re import urllib.parse from pathlib import Path from typing import Callable, List, Optional, Union from zipfile import ZipFile from ..utils.file_utils import cached_path, hf_github_url from ..utils.logging import get_logger from ..utils.version import Version UpperCAmelCase = get_logger(__name__) class __snake_case: '''simple docstring''' UpperCAmelCase : Optional[Any] = "dummy_data" UpperCAmelCase : Optional[int] = "datasets" UpperCAmelCase : int = False def __init__( self , A_ , A_ , A_ , A_ = None , A_ = False , A_ = True , A_ = None , ) -> Optional[Any]: lowerCAmelCase = 0 lowerCAmelCase = dataset_name lowerCAmelCase = cache_dir lowerCAmelCase = use_local_dummy_data lowerCAmelCase = config # download_callbacks take a single url as input lowerCAmelCase = download_callbacks or [] # if False, it doesn't load existing files and it returns the paths of the dummy files relative # to the dummy_data zip file root lowerCAmelCase = load_existing_dummy_data # TODO(PVP, QL) might need to make this more general lowerCAmelCase = str(A_ ) # to be downloaded lowerCAmelCase = None lowerCAmelCase = None @property def __snake_case ( self ) -> Union[str, Any]: if self._dummy_file is None: lowerCAmelCase = self.download_dummy_data() return self._dummy_file @property def __snake_case ( self ) -> Optional[Any]: if self.config is not None: # structure is dummy / config_name / version_name return os.path.join("""dummy""" , self.config.name , self.version_name ) # structure is dummy / version_name return os.path.join("""dummy""" , self.version_name ) @property def __snake_case ( self ) -> Union[str, Any]: return os.path.join(self.dummy_data_folder , """dummy_data.zip""" ) def __snake_case ( self ) -> List[str]: lowerCAmelCase = ( self.local_path_to_dummy_data if self.use_local_dummy_data is True else self.github_path_to_dummy_data ) lowerCAmelCase = cached_path( A_ , cache_dir=self.cache_dir , extract_compressed_file=A_ , force_extract=A_ ) return os.path.join(A_ , self.dummy_file_name ) @property def __snake_case ( self ) -> Union[str, Any]: return os.path.join(self.datasets_scripts_dir , self.dataset_name , self.dummy_zip_file ) @property def __snake_case ( self ) -> Optional[int]: if self._bucket_url is None: lowerCAmelCase = hf_github_url(self.dataset_name , self.dummy_zip_file.replace(os.sep , """/""" ) ) return self._bucket_url @property def __snake_case ( self ) -> Tuple: if os.path.isdir(self.dummy_file ): return self.dummy_file # else cut off path to file -> example `xsum`. return "/".join(self.dummy_file.replace(os.sep , """/""" ).split("""/""" )[:-1] ) def __snake_case ( self , A_ , *A_ ) -> Dict: if self.load_existing_dummy_data: # dummy data is downloaded and tested lowerCAmelCase = self.dummy_file else: # dummy data cannot be downloaded and only the path to dummy file is returned lowerCAmelCase = self.dummy_file_name # special case when data_url is a dict if isinstance(A_ , A_ ): return self.create_dummy_data_dict(A_ , A_ ) elif isinstance(A_ , (list, tuple) ): return self.create_dummy_data_list(A_ , A_ ) else: return self.create_dummy_data_single(A_ , A_ ) def __snake_case ( self , A_ , *A_ ) -> Optional[Any]: return self.download_and_extract(A_ ) def __snake_case ( self , A_ , A_ ) -> List[Any]: return self.download_and_extract(A_ ) def __snake_case ( self , A_ , *A_ , **A_ ) -> Optional[int]: return path def __snake_case ( self ) -> Optional[int]: return {} def __snake_case ( self , A_ , A_ ) -> Dict: lowerCAmelCase = {} for key, single_urls in data_url.items(): for download_callback in self.download_callbacks: if isinstance(A_ , A_ ): for single_url in single_urls: download_callback(A_ ) else: lowerCAmelCase = single_urls download_callback(A_ ) # we force the name of each key to be the last file / folder name of the url path # if the url has arguments, we need to encode them with urllib.parse.quote_plus if isinstance(A_ , A_ ): lowerCAmelCase = [os.path.join(A_ , urllib.parse.quote_plus(Path(A_ ).name ) ) for x in single_urls] else: lowerCAmelCase = single_urls lowerCAmelCase = os.path.join(A_ , urllib.parse.quote_plus(Path(A_ ).name ) ) lowerCAmelCase = value # make sure that values are unique if all(isinstance(A_ , A_ ) for i in dummy_data_dict.values() ) and len(set(dummy_data_dict.values() ) ) < len( dummy_data_dict.values() ): # append key to value to make its name unique lowerCAmelCase = {key: value + key for key, value in dummy_data_dict.items()} return dummy_data_dict def __snake_case ( self , A_ , A_ ) -> Tuple: lowerCAmelCase = [] # trick: if there are many shards named like `data.txt-000001-of-00300`, only use the first one lowerCAmelCase = all(bool(re.findall("""[0-9]{3,}-of-[0-9]{3,}""" , A_ ) ) for url in data_url ) lowerCAmelCase = all( url.startswith("""https://ftp.ncbi.nlm.nih.gov/pubmed/baseline/pubmed""" ) for url in data_url ) if data_url and (is_tf_records or is_pubmed_records): lowerCAmelCase = [data_url[0]] * len(A_ ) for single_url in data_url: for download_callback in self.download_callbacks: download_callback(A_ ) # we force the name of each key to be the last file / folder name of the url path # if the url has arguments, we need to encode them with urllib.parse.quote_plus lowerCAmelCase = os.path.join(A_ , urllib.parse.quote_plus(single_url.split("""/""" )[-1] ) ) dummy_data_list.append(A_ ) return dummy_data_list def __snake_case ( self , A_ , A_ ) -> int: for download_callback in self.download_callbacks: download_callback(A_ ) # we force the name of each key to be the last file / folder name of the url path # if the url has arguments, we need to encode them with urllib.parse.quote_plus lowerCAmelCase = os.path.join(A_ , urllib.parse.quote_plus(data_url.split("""/""" )[-1] ) ) if os.path.exists(A_ ) or not self.load_existing_dummy_data: return value else: # Backward compatibility, maybe deprecate at one point. # For many datasets with single url calls to dl_manager.download_and_extract, # the dummy_data.zip file is actually the zipped downloaded file # while now we expected the dummy_data.zip file to be a directory containing # the downloaded file. return path_to_dummy_data def __snake_case ( self ) -> Union[str, Any]: pass def __snake_case ( self ) -> Optional[Any]: pass def __snake_case ( self , A_ ) -> List[Any]: def _iter_archive_members(A_ ): # this preserves the order of the members inside the ZIP archive lowerCAmelCase = Path(self.dummy_file ).parent lowerCAmelCase = path.relative_to(A_ ) with ZipFile(self.local_path_to_dummy_data ) as zip_file: lowerCAmelCase = zip_file.namelist() for member in members: if member.startswith(relative_path.as_posix() ): yield dummy_parent_path.joinpath(A_ ) lowerCAmelCase = Path(A_ ) lowerCAmelCase = _iter_archive_members(A_ ) if self.use_local_dummy_data else path.rglob("""*""" ) for file_path in file_paths: if file_path.is_file() and not file_path.name.startswith((""".""", """__""") ): yield file_path.relative_to(A_ ).as_posix(), file_path.open("""rb""" ) def __snake_case ( self , A_ ) -> List[str]: if not isinstance(A_ , A_ ): lowerCAmelCase = [paths] for path in paths: if os.path.isfile(A_ ): if os.path.basename(A_ ).startswith((""".""", """__""") ): return yield path else: for dirpath, dirnames, filenames in os.walk(A_ ): if os.path.basename(A_ ).startswith((""".""", """__""") ): continue dirnames.sort() for filename in sorted(A_ ): if filename.startswith((""".""", """__""") ): continue yield os.path.join(A_ , A_ )
433
a_ = frozenset( [ 'prompt', 'height', 'width', 'guidance_scale', 'negative_prompt', 'prompt_embeds', 'negative_prompt_embeds', 'cross_attention_kwargs', ] ) a_ = frozenset(['prompt', 'negative_prompt']) a_ = frozenset([]) a_ = frozenset(['image']) a_ = frozenset( [ 'image', 'height', 'width', 'guidance_scale', ] ) a_ = frozenset(['image']) a_ = frozenset( [ 'prompt', 'image', 'height', 'width', 'guidance_scale', 'negative_prompt', 'prompt_embeds', 'negative_prompt_embeds', ] ) a_ = frozenset(['prompt', 'image', 'negative_prompt']) a_ = frozenset( [ # Text guided image variation with an image mask 'prompt', 'image', 'mask_image', 'height', 'width', 'guidance_scale', 'negative_prompt', 'prompt_embeds', 'negative_prompt_embeds', ] ) a_ = frozenset(['prompt', 'image', 'mask_image', 'negative_prompt']) a_ = frozenset( [ # image variation with an image mask 'image', 'mask_image', 'height', 'width', 'guidance_scale', ] ) a_ = frozenset(['image', 'mask_image']) a_ = frozenset( [ 'example_image', 'image', 'mask_image', 'height', 'width', 'guidance_scale', ] ) a_ = frozenset(['example_image', 'image', 'mask_image']) a_ = frozenset(['class_labels']) a_ = frozenset(['class_labels']) a_ = frozenset(['batch_size']) a_ = frozenset([]) a_ = frozenset(['batch_size']) a_ = frozenset([]) a_ = frozenset( [ 'prompt', 'audio_length_in_s', 'guidance_scale', 'negative_prompt', 'prompt_embeds', 'negative_prompt_embeds', 'cross_attention_kwargs', ] ) a_ = frozenset(['prompt', 'negative_prompt']) a_ = frozenset(['input_tokens']) a_ = frozenset(['input_tokens'])
25
0
"""simple docstring""" from .integrations import ( is_optuna_available, is_ray_available, is_sigopt_available, is_wandb_available, run_hp_search_optuna, run_hp_search_ray, run_hp_search_sigopt, run_hp_search_wandb, ) from .trainer_utils import ( HPSearchBackend, default_hp_space_optuna, default_hp_space_ray, default_hp_space_sigopt, default_hp_space_wandb, ) from .utils import logging snake_case = logging.get_logger(__name__) class UpperCAmelCase : A__ : int = 42 A__ : Tuple = None @staticmethod def __UpperCAmelCase ( ): """simple docstring""" raise NotImplementedError def __UpperCAmelCase ( self : str , __lowerCamelCase : Optional[Any] , __lowerCamelCase : int , __lowerCamelCase : str , **__lowerCamelCase : int ): """simple docstring""" raise NotImplementedError def __UpperCAmelCase ( self : Any , __lowerCamelCase : List[Any] ): """simple docstring""" raise NotImplementedError def __UpperCAmelCase ( self : Tuple ): """simple docstring""" if not self.is_available(): raise RuntimeError( f"""You picked the {self.name} backend, but it is not installed. Run {self.pip_install()}.""" ) @classmethod def __UpperCAmelCase ( cls : str ): """simple docstring""" return f"""`pip install {cls.pip_package or cls.name}`""" class UpperCAmelCase ( __A ): A__ : List[str] = '''optuna''' @staticmethod def __UpperCAmelCase ( ): """simple docstring""" return is_optuna_available() def __UpperCAmelCase ( self : List[str] , __lowerCamelCase : Tuple , __lowerCamelCase : int , __lowerCamelCase : str , **__lowerCamelCase : Optional[Any] ): """simple docstring""" return run_hp_search_optuna(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , **__lowerCamelCase ) def __UpperCAmelCase ( self : Optional[int] , __lowerCamelCase : Optional[Any] ): """simple docstring""" return default_hp_space_optuna(__lowerCamelCase ) class UpperCAmelCase ( __A ): A__ : Tuple = '''ray''' A__ : int = '''\'ray[tune]\'''' @staticmethod def __UpperCAmelCase ( ): """simple docstring""" return is_ray_available() def __UpperCAmelCase ( self : Tuple , __lowerCamelCase : str , __lowerCamelCase : int , __lowerCamelCase : str , **__lowerCamelCase : str ): """simple docstring""" return run_hp_search_ray(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , **__lowerCamelCase ) def __UpperCAmelCase ( self : int , __lowerCamelCase : Optional[int] ): """simple docstring""" return default_hp_space_ray(__lowerCamelCase ) class UpperCAmelCase ( __A ): A__ : Tuple = '''sigopt''' @staticmethod def __UpperCAmelCase ( ): """simple docstring""" return is_sigopt_available() def __UpperCAmelCase ( self : List[Any] , __lowerCamelCase : Any , __lowerCamelCase : int , __lowerCamelCase : str , **__lowerCamelCase : int ): """simple docstring""" return run_hp_search_sigopt(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , **__lowerCamelCase ) def __UpperCAmelCase ( self : Optional[Any] , __lowerCamelCase : Dict ): """simple docstring""" return default_hp_space_sigopt(__lowerCamelCase ) class UpperCAmelCase ( __A ): A__ : Optional[int] = '''wandb''' @staticmethod def __UpperCAmelCase ( ): """simple docstring""" return is_wandb_available() def __UpperCAmelCase ( self : List[str] , __lowerCamelCase : Optional[Any] , __lowerCamelCase : int , __lowerCamelCase : str , **__lowerCamelCase : List[Any] ): """simple docstring""" return run_hp_search_wandb(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , **__lowerCamelCase ) def __UpperCAmelCase ( self : Tuple , __lowerCamelCase : Optional[int] ): """simple docstring""" return default_hp_space_wandb(__lowerCamelCase ) snake_case = { HPSearchBackend(backend.name): backend for backend in [OptunaBackend, RayTuneBackend, SigOptBackend, WandbBackend] } def snake_case ( ) -> int: _snake_case = [backend for backend in ALL_HYPERPARAMETER_SEARCH_BACKENDS.values() if backend.is_available()] if len(_a ) > 0: _snake_case = available_backends[0].name if len(_a ) > 1: logger.info( f"""{len(_a )} hyperparameter search backends available. Using {name} as the default.""" ) return name raise RuntimeError( '''No hyperparameter search backend available.\n''' + '''\n'''.join( f""" - To install {backend.name} run {backend.pip_install()}""" for backend in ALL_HYPERPARAMETER_SEARCH_BACKENDS.values() ) )
103
# Lint as: python3 import sys from collections.abc import Mapping from typing import TYPE_CHECKING, Dict, Optional import numpy as np import pyarrow as pa from .. import config from ..utils.logging import get_logger from ..utils.py_utils import map_nested from .formatting import TensorFormatter if TYPE_CHECKING: import jax import jaxlib a_ = get_logger() a_ = None class _UpperCamelCase ( TensorFormatter[Mapping, 'jax.Array', Mapping] ): '''simple docstring''' def __init__( self : Optional[Any] , a : str=None , a : List[Any]=None , **a : Any ) -> Optional[Any]: """simple docstring""" super().__init__(features=a ) import jax from jaxlib.xla_client import Device if isinstance(a , a ): raise ValueError( F"Expected {device} to be a `str` not {type(a )}, as `jaxlib.xla_extension.Device` " "is not serializable neither with `pickle` nor with `dill`. Instead you can surround " "the device with `str()` to get its string identifier that will be internally mapped " "to the actual `jaxlib.xla_extension.Device`." ) SCREAMING_SNAKE_CASE : List[str] = device if isinstance(a , a ) else str(jax.devices()[0] ) # using global variable since `jaxlib.xla_extension.Device` is not serializable neither # with `pickle` nor with `dill`, so we need to use a global variable instead global DEVICE_MAPPING if DEVICE_MAPPING is None: SCREAMING_SNAKE_CASE : str = self._map_devices_to_str() if self.device not in list(DEVICE_MAPPING.keys() ): logger.warning( F"Device with string identifier {self.device} not listed among the available " F"devices: {list(DEVICE_MAPPING.keys() )}, so falling back to the default " F"device: {str(jax.devices()[0] )}." ) SCREAMING_SNAKE_CASE : Any = str(jax.devices()[0] ) SCREAMING_SNAKE_CASE : Any = jnp_array_kwargs @staticmethod def __UpperCamelCase ( ) -> Dict[str, "jaxlib.xla_extension.Device"]: """simple docstring""" import jax return {str(a ): device for device in jax.devices()} def __UpperCamelCase ( self : Dict , a : Tuple ) -> str: """simple docstring""" import jax import jax.numpy as jnp if isinstance(a , a ) and column: if all( isinstance(a , jax.Array ) and x.shape == column[0].shape and x.dtype == column[0].dtype for x in column ): return jnp.stack(a , axis=0 ) return column def __UpperCamelCase ( self : Dict , a : str ) -> str: """simple docstring""" import jax import jax.numpy as jnp if isinstance(a , (str, bytes, type(a )) ): return value elif isinstance(a , (np.character, np.ndarray) ) and np.issubdtype(value.dtype , np.character ): return value.tolist() SCREAMING_SNAKE_CASE : Union[str, Any] = {} if isinstance(a , (np.number, np.ndarray) ) and np.issubdtype(value.dtype , np.integer ): # the default int precision depends on the jax config # see https://jax.readthedocs.io/en/latest/notebooks/Common_Gotchas_in_JAX.html#double-64bit-precision if jax.config.jax_enable_xaa: SCREAMING_SNAKE_CASE : Dict = {"dtype": jnp.intaa} else: SCREAMING_SNAKE_CASE : str = {"dtype": jnp.intaa} elif isinstance(a , (np.number, np.ndarray) ) and np.issubdtype(value.dtype , np.floating ): SCREAMING_SNAKE_CASE : int = {"dtype": jnp.floataa} elif config.PIL_AVAILABLE and "PIL" in sys.modules: import PIL.Image if isinstance(a , PIL.Image.Image ): SCREAMING_SNAKE_CASE : Dict = np.asarray(a ) # using global variable since `jaxlib.xla_extension.Device` is not serializable neither # with `pickle` nor with `dill`, so we need to use a global variable instead global DEVICE_MAPPING if DEVICE_MAPPING is None: SCREAMING_SNAKE_CASE : Optional[Any] = self._map_devices_to_str() with jax.default_device(DEVICE_MAPPING[self.device] ): # calling jnp.array on a np.ndarray does copy the data # see https://github.com/google/jax/issues/4486 return jnp.array(a , **{**default_dtype, **self.jnp_array_kwargs} ) def __UpperCamelCase ( self : Any , a : List[str] ) -> Dict: """simple docstring""" import jax # support for torch, tf, jax etc. if config.TORCH_AVAILABLE and "torch" in sys.modules: import torch if isinstance(a , torch.Tensor ): return self._tensorize(data_struct.detach().cpu().numpy()[()] ) if hasattr(a , "__array__" ) and not isinstance(a , jax.Array ): SCREAMING_SNAKE_CASE : Optional[int] = data_struct.__array__() # support for nested types like struct of list of struct if isinstance(a , np.ndarray ): if data_struct.dtype == object: # jax arrays cannot be instantied from an array of objects return self._consolidate([self.recursive_tensorize(a ) for substruct in data_struct] ) elif isinstance(a , (list, tuple) ): return self._consolidate([self.recursive_tensorize(a ) for substruct in data_struct] ) return self._tensorize(a ) def __UpperCamelCase ( self : Optional[Any] , a : dict ) -> Dict: """simple docstring""" return map_nested(self._recursive_tensorize , a , map_list=a ) def __UpperCamelCase ( self : Dict , a : pa.Table ) -> Mapping: """simple docstring""" SCREAMING_SNAKE_CASE : Optional[Any] = self.numpy_arrow_extractor().extract_row(a ) SCREAMING_SNAKE_CASE : List[Any] = self.python_features_decoder.decode_row(a ) return self.recursive_tensorize(a ) def __UpperCamelCase ( self : Optional[int] , a : pa.Table ) -> "jax.Array": """simple docstring""" SCREAMING_SNAKE_CASE : Optional[int] = self.numpy_arrow_extractor().extract_column(a ) SCREAMING_SNAKE_CASE : Optional[Any] = self.python_features_decoder.decode_column(a , pa_table.column_names[0] ) SCREAMING_SNAKE_CASE : Tuple = self.recursive_tensorize(a ) SCREAMING_SNAKE_CASE : Optional[int] = self._consolidate(a ) return column def __UpperCamelCase ( self : List[Any] , a : pa.Table ) -> Mapping: """simple docstring""" SCREAMING_SNAKE_CASE : str = self.numpy_arrow_extractor().extract_batch(a ) SCREAMING_SNAKE_CASE : str = self.python_features_decoder.decode_batch(a ) SCREAMING_SNAKE_CASE : List[Any] = self.recursive_tensorize(a ) for column_name in batch: SCREAMING_SNAKE_CASE : List[Any] = self._consolidate(batch[column_name] ) return batch
25
0
from math import pi, sqrt, tan def UpperCAmelCase ( a_ ) -> Optional[Any]: """simple docstring""" if side_length < 0: raise ValueError("surface_area_cube() only accepts non-negative values" ) return 6 * side_length**2 def UpperCAmelCase ( a_ , a_ , a_ ) -> Any: """simple docstring""" if length < 0 or breadth < 0 or height < 0: raise ValueError("surface_area_cuboid() only accepts non-negative values" ) return 2 * ((length * breadth) + (breadth * height) + (length * height)) def UpperCAmelCase ( a_ ) -> Optional[Any]: """simple docstring""" if radius < 0: raise ValueError("surface_area_sphere() only accepts non-negative values" ) return 4 * pi * radius**2 def UpperCAmelCase ( a_ ) -> Tuple: """simple docstring""" if radius < 0: raise ValueError("surface_area_hemisphere() only accepts non-negative values" ) return 3 * pi * radius**2 def UpperCAmelCase ( a_ , a_ ) -> Tuple: """simple docstring""" if radius < 0 or height < 0: raise ValueError("surface_area_cone() only accepts non-negative values" ) return pi * radius * (radius + (height**2 + radius**2) ** 0.5) def UpperCAmelCase ( a_ , a_ , a_ ) -> Optional[int]: """simple docstring""" if radius_a < 0 or radius_a < 0 or height < 0: raise ValueError( "surface_area_conical_frustum() only accepts non-negative values" ) __A = (height**2 + (radius_a - radius_a) ** 2) ** 0.5 return pi * ((slant_height * (radius_a + radius_a)) + radius_a**2 + radius_a**2) def UpperCAmelCase ( a_ , a_ ) -> Optional[int]: """simple docstring""" if radius < 0 or height < 0: raise ValueError("surface_area_cylinder() only accepts non-negative values" ) return 2 * pi * radius * (height + radius) def UpperCAmelCase ( a_ , a_ ) -> int: """simple docstring""" if torus_radius < 0 or tube_radius < 0: raise ValueError("surface_area_torus() only accepts non-negative values" ) if torus_radius < tube_radius: raise ValueError( "surface_area_torus() does not support spindle or self intersecting tori" ) return 4 * pow(_a , 2 ) * torus_radius * tube_radius def UpperCAmelCase ( a_ , a_ ) -> Dict: """simple docstring""" if length < 0 or width < 0: raise ValueError("area_rectangle() only accepts non-negative values" ) return length * width def UpperCAmelCase ( a_ ) -> List[Any]: """simple docstring""" if side_length < 0: raise ValueError("area_square() only accepts non-negative values" ) return side_length**2 def UpperCAmelCase ( a_ , a_ ) -> Union[str, Any]: """simple docstring""" if base < 0 or height < 0: raise ValueError("area_triangle() only accepts non-negative values" ) return (base * height) / 2 def UpperCAmelCase ( a_ , a_ , a_ ) -> str: """simple docstring""" if sidea < 0 or sidea < 0 or sidea < 0: raise ValueError("area_triangle_three_sides() only accepts non-negative values" ) elif sidea + sidea < sidea or sidea + sidea < sidea or sidea + sidea < sidea: raise ValueError("Given three sides do not form a triangle" ) __A = (sidea + sidea + sidea) / 2 __A = sqrt( semi_perimeter * (semi_perimeter - sidea) * (semi_perimeter - sidea) * (semi_perimeter - sidea) ) return area def UpperCAmelCase ( a_ , a_ ) -> int: """simple docstring""" if base < 0 or height < 0: raise ValueError("area_parallelogram() only accepts non-negative values" ) return base * height def UpperCAmelCase ( a_ , a_ , a_ ) -> Union[str, Any]: """simple docstring""" if basea < 0 or basea < 0 or height < 0: raise ValueError("area_trapezium() only accepts non-negative values" ) return 1 / 2 * (basea + basea) * height def UpperCAmelCase ( a_ ) -> Union[str, Any]: """simple docstring""" if radius < 0: raise ValueError("area_circle() only accepts non-negative values" ) return pi * radius**2 def UpperCAmelCase ( a_ , a_ ) -> int: """simple docstring""" if radius_x < 0 or radius_y < 0: raise ValueError("area_ellipse() only accepts non-negative values" ) return pi * radius_x * radius_y def UpperCAmelCase ( a_ , a_ ) -> Dict: """simple docstring""" if diagonal_a < 0 or diagonal_a < 0: raise ValueError("area_rhombus() only accepts non-negative values" ) return 1 / 2 * diagonal_a * diagonal_a def UpperCAmelCase ( a_ , a_ ) -> Dict: """simple docstring""" if not isinstance(_a , _a ) or sides < 3: raise ValueError( "area_reg_polygon() only accepts integers greater than or \ equal to three as number of sides" ) elif length < 0: raise ValueError( "area_reg_polygon() only accepts non-negative values as \ length of a side" ) return (sides * length**2) / (4 * tan(pi / sides )) return (sides * length**2) / (4 * tan(pi / sides )) if __name__ == "__main__": import doctest doctest.testmod(verbose=True) # verbose so we can see methods missing tests print('[DEMO] Areas of various geometric shapes: \n') print(f'''Rectangle: {area_rectangle(10, 20) = }''') print(f'''Square: {area_square(10) = }''') print(f'''Triangle: {area_triangle(10, 10) = }''') print(f'''Triangle: {area_triangle_three_sides(5, 12, 13) = }''') print(f'''Parallelogram: {area_parallelogram(10, 20) = }''') print(f'''Rhombus: {area_rhombus(10, 20) = }''') print(f'''Trapezium: {area_trapezium(10, 20, 30) = }''') print(f'''Circle: {area_circle(20) = }''') print(f'''Ellipse: {area_ellipse(10, 20) = }''') print('\nSurface Areas of various geometric shapes: \n') print(f'''Cube: {surface_area_cube(20) = }''') print(f'''Cuboid: {surface_area_cuboid(10, 20, 30) = }''') print(f'''Sphere: {surface_area_sphere(20) = }''') print(f'''Hemisphere: {surface_area_hemisphere(20) = }''') print(f'''Cone: {surface_area_cone(10, 20) = }''') print(f'''Conical Frustum: {surface_area_conical_frustum(10, 20, 30) = }''') print(f'''Cylinder: {surface_area_cylinder(10, 20) = }''') print(f'''Torus: {surface_area_torus(20, 10) = }''') print(f'''Equilateral Triangle: {area_reg_polygon(3, 10) = }''') print(f'''Square: {area_reg_polygon(4, 10) = }''') print(f'''Reqular Pentagon: {area_reg_polygon(5, 10) = }''')
55
import unittest from transformers import ( MODEL_FOR_OBJECT_DETECTION_MAPPING, AutoFeatureExtractor, AutoModelForObjectDetection, ObjectDetectionPipeline, is_vision_available, pipeline, ) from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_pytesseract, require_tf, require_timm, require_torch, require_vision, slow, ) from .test_pipelines_common import ANY if is_vision_available(): from PIL import Image else: class _UpperCamelCase : '''simple docstring''' @staticmethod def __UpperCamelCase ( *a : str , **a : int ) -> str: """simple docstring""" pass @is_pipeline_test @require_vision @require_timm @require_torch class _UpperCamelCase ( unittest.TestCase ): '''simple docstring''' lowerCamelCase__ =MODEL_FOR_OBJECT_DETECTION_MAPPING def __UpperCamelCase ( self : Optional[Any] , a : str , a : Optional[Any] , a : Union[str, Any] ) -> List[Any]: """simple docstring""" SCREAMING_SNAKE_CASE : Dict = ObjectDetectionPipeline(model=a , image_processor=a ) return object_detector, ["./tests/fixtures/tests_samples/COCO/000000039769.png"] def __UpperCamelCase ( self : List[Any] , a : Optional[int] , a : Optional[int] ) -> int: """simple docstring""" SCREAMING_SNAKE_CASE : Union[str, Any] = object_detector("./tests/fixtures/tests_samples/COCO/000000039769.png" , threshold=0.0 ) self.assertGreater(len(a ) , 0 ) for detected_object in outputs: self.assertEqual( a , { "score": ANY(a ), "label": ANY(a ), "box": {"xmin": ANY(a ), "ymin": ANY(a ), "xmax": ANY(a ), "ymax": ANY(a )}, } , ) import datasets SCREAMING_SNAKE_CASE : Any = datasets.load_dataset("hf-internal-testing/fixtures_image_utils" , "image" , split="test" ) SCREAMING_SNAKE_CASE : Dict = [ Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ), "http://images.cocodataset.org/val2017/000000039769.jpg", # RGBA dataset[0]["file"], # LA dataset[1]["file"], # L dataset[2]["file"], ] SCREAMING_SNAKE_CASE : Tuple = object_detector(a , threshold=0.0 ) self.assertEqual(len(a ) , len(a ) ) for outputs in batch_outputs: self.assertGreater(len(a ) , 0 ) for detected_object in outputs: self.assertEqual( a , { "score": ANY(a ), "label": ANY(a ), "box": {"xmin": ANY(a ), "ymin": ANY(a ), "xmax": ANY(a ), "ymax": ANY(a )}, } , ) @require_tf @unittest.skip("Object detection not implemented in TF" ) def __UpperCamelCase ( self : Optional[int] ) -> str: """simple docstring""" pass @require_torch def __UpperCamelCase ( self : Tuple ) -> List[Any]: """simple docstring""" SCREAMING_SNAKE_CASE : str = "hf-internal-testing/tiny-detr-mobilenetsv3" SCREAMING_SNAKE_CASE : Dict = AutoModelForObjectDetection.from_pretrained(a ) SCREAMING_SNAKE_CASE : Any = AutoFeatureExtractor.from_pretrained(a ) SCREAMING_SNAKE_CASE : Tuple = ObjectDetectionPipeline(model=a , feature_extractor=a ) SCREAMING_SNAKE_CASE : int = object_detector("http://images.cocodataset.org/val2017/000000039769.jpg" , threshold=0.0 ) self.assertEqual( nested_simplify(a , decimals=4 ) , [ {"score": 0.3376, "label": "LABEL_0", "box": {"xmin": 159, "ymin": 120, "xmax": 480, "ymax": 359}}, {"score": 0.3376, "label": "LABEL_0", "box": {"xmin": 159, "ymin": 120, "xmax": 480, "ymax": 359}}, ] , ) SCREAMING_SNAKE_CASE : Dict = object_detector( [ "http://images.cocodataset.org/val2017/000000039769.jpg", "http://images.cocodataset.org/val2017/000000039769.jpg", ] , threshold=0.0 , ) self.assertEqual( nested_simplify(a , decimals=4 ) , [ [ {"score": 0.3376, "label": "LABEL_0", "box": {"xmin": 159, "ymin": 120, "xmax": 480, "ymax": 359}}, {"score": 0.3376, "label": "LABEL_0", "box": {"xmin": 159, "ymin": 120, "xmax": 480, "ymax": 359}}, ], [ {"score": 0.3376, "label": "LABEL_0", "box": {"xmin": 159, "ymin": 120, "xmax": 480, "ymax": 359}}, {"score": 0.3376, "label": "LABEL_0", "box": {"xmin": 159, "ymin": 120, "xmax": 480, "ymax": 359}}, ], ] , ) @require_torch @slow def __UpperCamelCase ( self : str ) -> List[Any]: """simple docstring""" SCREAMING_SNAKE_CASE : Dict = "facebook/detr-resnet-50" SCREAMING_SNAKE_CASE : Union[str, Any] = AutoModelForObjectDetection.from_pretrained(a ) SCREAMING_SNAKE_CASE : List[str] = AutoFeatureExtractor.from_pretrained(a ) SCREAMING_SNAKE_CASE : int = ObjectDetectionPipeline(model=a , feature_extractor=a ) SCREAMING_SNAKE_CASE : Union[str, Any] = object_detector("http://images.cocodataset.org/val2017/000000039769.jpg" ) self.assertEqual( nested_simplify(a , decimals=4 ) , [ {"score": 0.9982, "label": "remote", "box": {"xmin": 40, "ymin": 70, "xmax": 175, "ymax": 117}}, {"score": 0.9960, "label": "remote", "box": {"xmin": 333, "ymin": 72, "xmax": 368, "ymax": 187}}, {"score": 0.9955, "label": "couch", "box": {"xmin": 0, "ymin": 1, "xmax": 639, "ymax": 473}}, {"score": 0.9988, "label": "cat", "box": {"xmin": 13, "ymin": 52, "xmax": 314, "ymax": 470}}, {"score": 0.9987, "label": "cat", "box": {"xmin": 345, "ymin": 23, "xmax": 640, "ymax": 368}}, ] , ) SCREAMING_SNAKE_CASE : int = object_detector( [ "http://images.cocodataset.org/val2017/000000039769.jpg", "http://images.cocodataset.org/val2017/000000039769.jpg", ] ) self.assertEqual( nested_simplify(a , decimals=4 ) , [ [ {"score": 0.9982, "label": "remote", "box": {"xmin": 40, "ymin": 70, "xmax": 175, "ymax": 117}}, {"score": 0.9960, "label": "remote", "box": {"xmin": 333, "ymin": 72, "xmax": 368, "ymax": 187}}, {"score": 0.9955, "label": "couch", "box": {"xmin": 0, "ymin": 1, "xmax": 639, "ymax": 473}}, {"score": 0.9988, "label": "cat", "box": {"xmin": 13, "ymin": 52, "xmax": 314, "ymax": 470}}, {"score": 0.9987, "label": "cat", "box": {"xmin": 345, "ymin": 23, "xmax": 640, "ymax": 368}}, ], [ {"score": 0.9982, "label": "remote", "box": {"xmin": 40, "ymin": 70, "xmax": 175, "ymax": 117}}, {"score": 0.9960, "label": "remote", "box": {"xmin": 333, "ymin": 72, "xmax": 368, "ymax": 187}}, {"score": 0.9955, "label": "couch", "box": {"xmin": 0, "ymin": 1, "xmax": 639, "ymax": 473}}, {"score": 0.9988, "label": "cat", "box": {"xmin": 13, "ymin": 52, "xmax": 314, "ymax": 470}}, {"score": 0.9987, "label": "cat", "box": {"xmin": 345, "ymin": 23, "xmax": 640, "ymax": 368}}, ], ] , ) @require_torch @slow def __UpperCamelCase ( self : str ) -> str: """simple docstring""" SCREAMING_SNAKE_CASE : Tuple = "facebook/detr-resnet-50" SCREAMING_SNAKE_CASE : Tuple = pipeline("object-detection" , model=a ) SCREAMING_SNAKE_CASE : Tuple = object_detector("http://images.cocodataset.org/val2017/000000039769.jpg" ) self.assertEqual( nested_simplify(a , decimals=4 ) , [ {"score": 0.9982, "label": "remote", "box": {"xmin": 40, "ymin": 70, "xmax": 175, "ymax": 117}}, {"score": 0.9960, "label": "remote", "box": {"xmin": 333, "ymin": 72, "xmax": 368, "ymax": 187}}, {"score": 0.9955, "label": "couch", "box": {"xmin": 0, "ymin": 1, "xmax": 639, "ymax": 473}}, {"score": 0.9988, "label": "cat", "box": {"xmin": 13, "ymin": 52, "xmax": 314, "ymax": 470}}, {"score": 0.9987, "label": "cat", "box": {"xmin": 345, "ymin": 23, "xmax": 640, "ymax": 368}}, ] , ) SCREAMING_SNAKE_CASE : str = object_detector( [ "http://images.cocodataset.org/val2017/000000039769.jpg", "http://images.cocodataset.org/val2017/000000039769.jpg", ] ) self.assertEqual( nested_simplify(a , decimals=4 ) , [ [ {"score": 0.9982, "label": "remote", "box": {"xmin": 40, "ymin": 70, "xmax": 175, "ymax": 117}}, {"score": 0.9960, "label": "remote", "box": {"xmin": 333, "ymin": 72, "xmax": 368, "ymax": 187}}, {"score": 0.9955, "label": "couch", "box": {"xmin": 0, "ymin": 1, "xmax": 639, "ymax": 473}}, {"score": 0.9988, "label": "cat", "box": {"xmin": 13, "ymin": 52, "xmax": 314, "ymax": 470}}, {"score": 0.9987, "label": "cat", "box": {"xmin": 345, "ymin": 23, "xmax": 640, "ymax": 368}}, ], [ {"score": 0.9982, "label": "remote", "box": {"xmin": 40, "ymin": 70, "xmax": 175, "ymax": 117}}, {"score": 0.9960, "label": "remote", "box": {"xmin": 333, "ymin": 72, "xmax": 368, "ymax": 187}}, {"score": 0.9955, "label": "couch", "box": {"xmin": 0, "ymin": 1, "xmax": 639, "ymax": 473}}, {"score": 0.9988, "label": "cat", "box": {"xmin": 13, "ymin": 52, "xmax": 314, "ymax": 470}}, {"score": 0.9987, "label": "cat", "box": {"xmin": 345, "ymin": 23, "xmax": 640, "ymax": 368}}, ], ] , ) @require_torch @slow def __UpperCamelCase ( self : str ) -> str: """simple docstring""" SCREAMING_SNAKE_CASE : Optional[int] = 0.9985 SCREAMING_SNAKE_CASE : int = "facebook/detr-resnet-50" SCREAMING_SNAKE_CASE : List[str] = pipeline("object-detection" , model=a ) SCREAMING_SNAKE_CASE : str = object_detector("http://images.cocodataset.org/val2017/000000039769.jpg" , threshold=a ) self.assertEqual( nested_simplify(a , decimals=4 ) , [ {"score": 0.9988, "label": "cat", "box": {"xmin": 13, "ymin": 52, "xmax": 314, "ymax": 470}}, {"score": 0.9987, "label": "cat", "box": {"xmin": 345, "ymin": 23, "xmax": 640, "ymax": 368}}, ] , ) @require_torch @require_pytesseract @slow def __UpperCamelCase ( self : str ) -> Tuple: """simple docstring""" SCREAMING_SNAKE_CASE : Any = "Narsil/layoutlmv3-finetuned-funsd" SCREAMING_SNAKE_CASE : Dict = 0.9993 SCREAMING_SNAKE_CASE : str = pipeline("object-detection" , model=a , threshold=a ) SCREAMING_SNAKE_CASE : List[Any] = object_detector( "https://huggingface.co/spaces/impira/docquery/resolve/2359223c1837a7587402bda0f2643382a6eefeab/invoice.png" ) self.assertEqual( nested_simplify(a , decimals=4 ) , [ {"score": 0.9993, "label": "I-ANSWER", "box": {"xmin": 294, "ymin": 254, "xmax": 343, "ymax": 264}}, {"score": 0.9993, "label": "I-ANSWER", "box": {"xmin": 294, "ymin": 254, "xmax": 343, "ymax": 264}}, ] , )
25
0
"""simple docstring""" import unittest from transformers import MPNetConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( MPNetForMaskedLM, MPNetForMultipleChoice, MPNetForQuestionAnswering, MPNetForSequenceClassification, MPNetForTokenClassification, MPNetModel, ) class UpperCAmelCase_ : def __init__( self , a , a=1_3 , a=7 , a=True , a=True , a=False , a=True , a=9_9 , a=6_4 , a=5 , a=4 , a=6_4 , a="gelu" , a=0.1 , a=0.1 , a=5_1_2 , a=1_6 , a=2 , a=0.02 , a=3 , a=4 , a=None , ) -> Optional[Any]: lowercase__ : Dict = parent lowercase__ : List[Any] = batch_size lowercase__ : Any = seq_length lowercase__ : Tuple = is_training lowercase__ : List[Any] = use_input_mask lowercase__ : Union[str, Any] = use_token_type_ids lowercase__ : Union[str, Any] = use_labels lowercase__ : str = vocab_size lowercase__ : int = hidden_size lowercase__ : Tuple = num_hidden_layers lowercase__ : List[Any] = num_attention_heads lowercase__ : Union[str, Any] = intermediate_size lowercase__ : Optional[Any] = hidden_act lowercase__ : Dict = hidden_dropout_prob lowercase__ : Union[str, Any] = attention_probs_dropout_prob lowercase__ : Dict = max_position_embeddings lowercase__ : List[str] = type_vocab_size lowercase__ : str = type_sequence_label_size lowercase__ : List[Any] = initializer_range lowercase__ : Dict = num_labels lowercase__ : Optional[int] = num_choices lowercase__ : Optional[int] = scope def _UpperCAmelCase ( self ) -> List[str]: return MPNetConfig.from_pretrained('microsoft/mpnet-base' ) def _UpperCAmelCase ( self ) -> int: lowercase__ : Optional[Any] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) lowercase__ : Union[str, Any] = None if self.use_input_mask: lowercase__ : List[Any] = random_attention_mask([self.batch_size, self.seq_length] ) lowercase__ : Tuple = None lowercase__ : Any = None lowercase__ : Tuple = None if self.use_labels: lowercase__ : List[str] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowercase__ : Tuple = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) lowercase__ : Optional[int] = ids_tensor([self.batch_size] , self.num_choices ) lowercase__ : Union[str, Any] = self.get_config() return config, input_ids, input_mask, sequence_labels, token_labels, choice_labels def _UpperCAmelCase ( self ) -> Dict: return MPNetConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , ) def _UpperCAmelCase ( self , a , a , a , a , a , a ) -> Optional[int]: lowercase__ : Optional[int] = MPNetModel(config=a ) model.to(a ) model.eval() lowercase__ : Tuple = model(a , a ) lowercase__ : int = model(a ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) ) def _UpperCAmelCase ( self , a , a , a , a , a , a ) -> int: lowercase__ : Optional[Any] = MPNetForQuestionAnswering(config=a ) model.to(a ) model.eval() lowercase__ : Optional[int] = model( a , attention_mask=a , start_positions=a , end_positions=a , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def _UpperCAmelCase ( self , a , a , a , a , a , a ) -> int: lowercase__ : Optional[Any] = self.num_labels lowercase__ : Dict = MPNetForSequenceClassification(a ) model.to(a ) model.eval() lowercase__ : List[Any] = model(a , attention_mask=a , labels=a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def _UpperCAmelCase ( self , a , a , a , a , a , a ) -> List[str]: lowercase__ : Optional[Any] = self.num_choices lowercase__ : Optional[int] = MPNetForMultipleChoice(config=a ) model.to(a ) model.eval() lowercase__ : Optional[Any] = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() lowercase__ : Tuple = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() lowercase__ : List[Any] = model( a , attention_mask=a , labels=a , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def _UpperCAmelCase ( self , a , a , a , a , a , a ) -> List[str]: lowercase__ : Tuple = self.num_labels lowercase__ : List[str] = MPNetForTokenClassification(config=a ) model.to(a ) model.eval() lowercase__ : List[Any] = model(a , attention_mask=a , labels=a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def _UpperCAmelCase ( self ) -> Optional[Any]: lowercase__ : Any = self.prepare_config_and_inputs() (lowercase__) : Optional[Any] = config_and_inputs lowercase__ : List[str] = {"input_ids": input_ids, "attention_mask": input_mask} return config, inputs_dict @require_torch class UpperCAmelCase_ ( __A , __A , unittest.TestCase): lowerCamelCase__ : Tuple = ( ( MPNetForMaskedLM, MPNetForMultipleChoice, MPNetForQuestionAnswering, MPNetForSequenceClassification, MPNetForTokenClassification, MPNetModel, ) if is_torch_available() else () ) lowerCamelCase__ : Tuple = ( { "feature-extraction": MPNetModel, "fill-mask": MPNetForMaskedLM, "question-answering": MPNetForQuestionAnswering, "text-classification": MPNetForSequenceClassification, "token-classification": MPNetForTokenClassification, "zero-shot": MPNetForSequenceClassification, } if is_torch_available() else {} ) lowerCamelCase__ : List[Any] = False lowerCamelCase__ : Optional[int] = True def _UpperCAmelCase ( self ) -> Tuple: lowercase__ : List[str] = MPNetModelTester(self ) lowercase__ : str = ConfigTester(self , config_class=a , hidden_size=3_7 ) def _UpperCAmelCase ( self ) -> List[str]: self.config_tester.run_common_tests() def _UpperCAmelCase ( self ) -> Optional[int]: lowercase__ : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mpnet_model(*a ) def _UpperCAmelCase ( self ) -> str: lowercase__ : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mpnet_for_sequence_classification(*a ) def _UpperCAmelCase ( self ) -> List[Any]: lowercase__ : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mpnet_for_multiple_choice(*a ) def _UpperCAmelCase ( self ) -> int: lowercase__ : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mpnet_for_token_classification(*a ) def _UpperCAmelCase ( self ) -> List[str]: lowercase__ : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mpnet_for_question_answering(*a ) @require_torch class UpperCAmelCase_ ( unittest.TestCase): @slow def _UpperCAmelCase ( self ) -> Optional[Any]: lowercase__ : List[str] = MPNetModel.from_pretrained('microsoft/mpnet-base' ) lowercase__ : Optional[int] = torch.tensor([[0, 3_4_5, 2_3_2, 3_2_8, 7_4_0, 1_4_0, 1_6_9_5, 6_9, 6_0_7_8, 1_5_8_8, 2]] ) lowercase__ : List[str] = model(a )[0] lowercase__ : Tuple = torch.Size((1, 1_1, 7_6_8) ) self.assertEqual(output.shape , a ) lowercase__ : List[Any] = torch.tensor( [[[-0.0_550, 0.1_943, -0.0_740], [-0.0_562, 0.2_211, -0.0_579], [-0.0_437, 0.3_337, -0.0_641]]] ) # compare the actual values for a slice. self.assertTrue(torch.allclose(output[:, :3, :3] , a , atol=1e-4 ) )
599
def lowerCamelCase__ ( _a): if not isinstance(_a , _a): SCREAMING_SNAKE_CASE : Tuple = f"Input value of [number={number}] must be an integer" raise TypeError(_a) if number < 0: return False SCREAMING_SNAKE_CASE : Union[str, Any] = number * number while number > 0: if number % 10 != number_square % 10: return False number //= 10 number_square //= 10 return True if __name__ == "__main__": import doctest doctest.testmod()
25
0
"""simple docstring""" def __SCREAMING_SNAKE_CASE ( lowerCamelCase_: Any , lowerCamelCase_: str , lowerCamelCase_: List[str]=False ): """simple docstring""" if isinstance(_a , _a ) and isinstance(_a , _a ): snake_case : Tuple = len(set_a.intersection(_a ) ) if alternative_union: snake_case : Dict = len(_a ) + len(_a ) else: snake_case : str = len(set_a.union(_a ) ) return intersection / union if isinstance(_a , (list, tuple) ) and isinstance(_a , (list, tuple) ): snake_case : Dict = [element for element in set_a if element in set_b] if alternative_union: snake_case : List[Any] = len(_a ) + len(_a ) return len(_a ) / union else: snake_case : Optional[Any] = set_a + [element for element in set_b if element not in set_a] return len(_a ) / len(_a ) return len(_a ) / len(_a ) return None if __name__ == "__main__": A = {'a', 'b', 'c', 'd', 'e'} A = {'c', 'd', 'e', 'f', 'h', 'i'} print(jaccard_similarity(set_a, set_b))
449
import os import tempfile import unittest from transformers import DistilBertConfig, is_torch_available from transformers.testing_utils import require_torch, require_torch_gpu, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST, DistilBertForMaskedLM, DistilBertForMultipleChoice, DistilBertForQuestionAnswering, DistilBertForSequenceClassification, DistilBertForTokenClassification, DistilBertModel, ) class _UpperCamelCase ( __A ): '''simple docstring''' def __init__( self : Dict , a : Tuple , a : Any=13 , a : Any=7 , a : Union[str, Any]=True , a : List[Any]=True , a : List[str]=False , a : List[str]=True , a : Any=99 , a : str=32 , a : Any=5 , a : Optional[int]=4 , a : Union[str, Any]=37 , a : Dict="gelu" , a : List[Any]=0.1 , a : Optional[Any]=0.1 , a : List[str]=512 , a : Union[str, Any]=16 , a : str=2 , a : Dict=0.02 , a : Optional[int]=3 , a : Union[str, Any]=4 , a : int=None , ) -> Tuple: """simple docstring""" SCREAMING_SNAKE_CASE : Dict = parent SCREAMING_SNAKE_CASE : Any = batch_size SCREAMING_SNAKE_CASE : Optional[int] = seq_length SCREAMING_SNAKE_CASE : List[Any] = is_training SCREAMING_SNAKE_CASE : int = use_input_mask SCREAMING_SNAKE_CASE : Tuple = use_token_type_ids SCREAMING_SNAKE_CASE : str = use_labels SCREAMING_SNAKE_CASE : Any = vocab_size SCREAMING_SNAKE_CASE : List[Any] = hidden_size SCREAMING_SNAKE_CASE : str = num_hidden_layers SCREAMING_SNAKE_CASE : Optional[Any] = num_attention_heads SCREAMING_SNAKE_CASE : Tuple = intermediate_size SCREAMING_SNAKE_CASE : Optional[int] = hidden_act SCREAMING_SNAKE_CASE : Dict = hidden_dropout_prob SCREAMING_SNAKE_CASE : str = attention_probs_dropout_prob SCREAMING_SNAKE_CASE : Tuple = max_position_embeddings SCREAMING_SNAKE_CASE : List[str] = type_vocab_size SCREAMING_SNAKE_CASE : List[str] = type_sequence_label_size SCREAMING_SNAKE_CASE : Optional[Any] = initializer_range SCREAMING_SNAKE_CASE : Tuple = num_labels SCREAMING_SNAKE_CASE : Tuple = num_choices SCREAMING_SNAKE_CASE : Optional[Any] = scope def __UpperCamelCase ( self : Union[str, Any] ) -> List[str]: """simple docstring""" SCREAMING_SNAKE_CASE : Dict = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) SCREAMING_SNAKE_CASE : Union[str, Any] = None if self.use_input_mask: SCREAMING_SNAKE_CASE : str = random_attention_mask([self.batch_size, self.seq_length] ) SCREAMING_SNAKE_CASE : int = None SCREAMING_SNAKE_CASE : List[Any] = None SCREAMING_SNAKE_CASE : List[str] = None if self.use_labels: SCREAMING_SNAKE_CASE : Tuple = ids_tensor([self.batch_size] , self.type_sequence_label_size ) SCREAMING_SNAKE_CASE : str = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) SCREAMING_SNAKE_CASE : Optional[Any] = ids_tensor([self.batch_size] , self.num_choices ) SCREAMING_SNAKE_CASE : int = self.get_config() return config, input_ids, input_mask, sequence_labels, token_labels, choice_labels def __UpperCamelCase ( self : Dict ) -> str: """simple docstring""" return DistilBertConfig( vocab_size=self.vocab_size , dim=self.hidden_size , n_layers=self.num_hidden_layers , n_heads=self.num_attention_heads , hidden_dim=self.intermediate_size , hidden_act=self.hidden_act , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , ) def __UpperCamelCase ( self : Optional[Any] , a : int , a : Optional[int] , a : Optional[int] , a : Dict , a : str , a : str ) -> int: """simple docstring""" SCREAMING_SNAKE_CASE : int = DistilBertModel(config=a ) model.to(a ) model.eval() SCREAMING_SNAKE_CASE : Optional[Any] = model(a , a ) SCREAMING_SNAKE_CASE : Optional[Any] = model(a ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def __UpperCamelCase ( self : Tuple , a : Optional[int] , a : Dict , a : Tuple , a : int , a : int , a : Any ) -> Dict: """simple docstring""" SCREAMING_SNAKE_CASE : Optional[int] = DistilBertForMaskedLM(config=a ) model.to(a ) model.eval() SCREAMING_SNAKE_CASE : str = model(a , attention_mask=a , labels=a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def __UpperCamelCase ( self : List[Any] , a : int , a : Optional[Any] , a : Optional[Any] , a : str , a : str , a : Tuple ) -> List[Any]: """simple docstring""" SCREAMING_SNAKE_CASE : Optional[Any] = DistilBertForQuestionAnswering(config=a ) model.to(a ) model.eval() SCREAMING_SNAKE_CASE : List[str] = model( a , attention_mask=a , start_positions=a , end_positions=a ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def __UpperCamelCase ( self : Optional[int] , a : str , a : Any , a : int , a : Optional[Any] , a : int , a : str ) -> Optional[int]: """simple docstring""" SCREAMING_SNAKE_CASE : Dict = self.num_labels SCREAMING_SNAKE_CASE : Union[str, Any] = DistilBertForSequenceClassification(a ) model.to(a ) model.eval() SCREAMING_SNAKE_CASE : Optional[int] = model(a , attention_mask=a , labels=a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def __UpperCamelCase ( self : Optional[Any] , a : List[Any] , a : Optional[int] , a : Union[str, Any] , a : Dict , a : Any , a : Optional[Any] ) -> Any: """simple docstring""" SCREAMING_SNAKE_CASE : str = self.num_labels SCREAMING_SNAKE_CASE : List[str] = DistilBertForTokenClassification(config=a ) model.to(a ) model.eval() SCREAMING_SNAKE_CASE : List[str] = model(a , attention_mask=a , labels=a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def __UpperCamelCase ( self : int , a : Any , a : Optional[int] , a : Union[str, Any] , a : Tuple , a : Optional[int] , a : Tuple ) -> Dict: """simple docstring""" SCREAMING_SNAKE_CASE : List[str] = self.num_choices SCREAMING_SNAKE_CASE : Any = DistilBertForMultipleChoice(config=a ) model.to(a ) model.eval() SCREAMING_SNAKE_CASE : Optional[int] = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() SCREAMING_SNAKE_CASE : Dict = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() SCREAMING_SNAKE_CASE : Optional[Any] = model( a , attention_mask=a , labels=a , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def __UpperCamelCase ( self : Union[str, Any] ) -> Optional[int]: """simple docstring""" SCREAMING_SNAKE_CASE : Optional[Any] = self.prepare_config_and_inputs() ((SCREAMING_SNAKE_CASE) ,(SCREAMING_SNAKE_CASE) ,(SCREAMING_SNAKE_CASE) ,(SCREAMING_SNAKE_CASE) ,(SCREAMING_SNAKE_CASE) ,(SCREAMING_SNAKE_CASE)) : Tuple = config_and_inputs SCREAMING_SNAKE_CASE : int = {"input_ids": input_ids, "attention_mask": input_mask} return config, inputs_dict @require_torch class _UpperCamelCase ( __A , __A , unittest.TestCase ): '''simple docstring''' lowerCamelCase__ =( ( DistilBertModel, DistilBertForMaskedLM, DistilBertForMultipleChoice, DistilBertForQuestionAnswering, DistilBertForSequenceClassification, DistilBertForTokenClassification, ) if is_torch_available() else None ) lowerCamelCase__ =( { 'feature-extraction': DistilBertModel, 'fill-mask': DistilBertForMaskedLM, 'question-answering': DistilBertForQuestionAnswering, 'text-classification': DistilBertForSequenceClassification, 'token-classification': DistilBertForTokenClassification, 'zero-shot': DistilBertForSequenceClassification, } if is_torch_available() else {} ) lowerCamelCase__ =True lowerCamelCase__ =True lowerCamelCase__ =True lowerCamelCase__ =True def __UpperCamelCase ( self : Optional[Any] ) -> Tuple: """simple docstring""" SCREAMING_SNAKE_CASE : Dict = DistilBertModelTester(self ) SCREAMING_SNAKE_CASE : List[str] = ConfigTester(self , config_class=a , dim=37 ) def __UpperCamelCase ( self : List[Any] ) -> Tuple: """simple docstring""" self.config_tester.run_common_tests() def __UpperCamelCase ( self : Union[str, Any] ) -> List[Any]: """simple docstring""" SCREAMING_SNAKE_CASE : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_model(*a ) def __UpperCamelCase ( self : Tuple ) -> Dict: """simple docstring""" SCREAMING_SNAKE_CASE : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_masked_lm(*a ) def __UpperCamelCase ( self : List[Any] ) -> Optional[int]: """simple docstring""" SCREAMING_SNAKE_CASE : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_question_answering(*a ) def __UpperCamelCase ( self : Union[str, Any] ) -> Any: """simple docstring""" SCREAMING_SNAKE_CASE : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_sequence_classification(*a ) def __UpperCamelCase ( self : str ) -> List[Any]: """simple docstring""" SCREAMING_SNAKE_CASE : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_token_classification(*a ) def __UpperCamelCase ( self : List[Any] ) -> str: """simple docstring""" SCREAMING_SNAKE_CASE : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_multiple_choice(*a ) @slow def __UpperCamelCase ( self : int ) -> Any: """simple docstring""" for model_name in DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: SCREAMING_SNAKE_CASE : Optional[Any] = DistilBertModel.from_pretrained(a ) self.assertIsNotNone(a ) @slow @require_torch_gpu def __UpperCamelCase ( self : List[Any] ) -> Optional[Any]: """simple docstring""" SCREAMING_SNAKE_CASE ,SCREAMING_SNAKE_CASE : Dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: # BertForMultipleChoice behaves incorrectly in JIT environments. if model_class == DistilBertForMultipleChoice: return SCREAMING_SNAKE_CASE : Union[str, Any] = True SCREAMING_SNAKE_CASE : Any = model_class(config=a ) SCREAMING_SNAKE_CASE : List[Any] = self._prepare_for_class(a , a ) SCREAMING_SNAKE_CASE : Union[str, Any] = torch.jit.trace( a , (inputs_dict["input_ids"].to("cpu" ), inputs_dict["attention_mask"].to("cpu" )) ) with tempfile.TemporaryDirectory() as tmp: torch.jit.save(a , os.path.join(a , "traced_model.pt" ) ) SCREAMING_SNAKE_CASE : Tuple = torch.jit.load(os.path.join(a , "traced_model.pt" ) , map_location=a ) loaded(inputs_dict["input_ids"].to(a ) , inputs_dict["attention_mask"].to(a ) ) @require_torch class _UpperCamelCase ( unittest.TestCase ): '''simple docstring''' @slow def __UpperCamelCase ( self : int ) -> Dict: """simple docstring""" SCREAMING_SNAKE_CASE : Union[str, Any] = DistilBertModel.from_pretrained("distilbert-base-uncased" ) SCREAMING_SNAKE_CASE : List[str] = torch.tensor([[0, 345, 232, 328, 740, 140, 1695, 69, 6078, 1588, 2]] ) SCREAMING_SNAKE_CASE : Optional[int] = torch.tensor([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] ) with torch.no_grad(): SCREAMING_SNAKE_CASE : Optional[Any] = model(a , attention_mask=a )[0] SCREAMING_SNAKE_CASE : List[str] = torch.Size((1, 11, 768) ) self.assertEqual(output.shape , a ) SCREAMING_SNAKE_CASE : Union[str, Any] = torch.tensor( [[[-0.1639, 0.3299, 0.1648], [-0.1746, 0.3289, 0.1710], [-0.1884, 0.3357, 0.1810]]] ) self.assertTrue(torch.allclose(output[:, 1:4, 1:4] , a , atol=1e-4 ) )
25
0
'''simple docstring''' import argparse import os import jax as jnp import numpy as onp import torch import torch.nn as nn from music_spectrogram_diffusion import inference from tax import checkpoints from diffusers import DDPMScheduler, OnnxRuntimeModel, SpectrogramDiffusionPipeline from diffusers.pipelines.spectrogram_diffusion import SpectrogramContEncoder, SpectrogramNotesEncoder, TaFilmDecoder __SCREAMING_SNAKE_CASE :int = '''base_with_context''' def UpperCAmelCase_ ( __lowercase : str , __lowercase : str ) -> Tuple: '''simple docstring''' _UpperCAmelCase = nn.Parameter(torch.FloatTensor(weights["token_embedder"]["embedding"] ) ) _UpperCAmelCase = nn.Parameter( torch.FloatTensor(weights["Embed_0"]["embedding"] ) , requires_grad=_a ) for lyr_num, lyr in enumerate(model.encoders ): _UpperCAmelCase = weights[f'layers_{lyr_num}'] _UpperCAmelCase = nn.Parameter( torch.FloatTensor(ly_weight["pre_attention_layer_norm"]["scale"] ) ) _UpperCAmelCase = ly_weight["attention"] _UpperCAmelCase = nn.Parameter(torch.FloatTensor(attention_weights["query"]["kernel"].T ) ) _UpperCAmelCase = nn.Parameter(torch.FloatTensor(attention_weights["key"]["kernel"].T ) ) _UpperCAmelCase = nn.Parameter(torch.FloatTensor(attention_weights["value"]["kernel"].T ) ) _UpperCAmelCase = nn.Parameter(torch.FloatTensor(attention_weights["out"]["kernel"].T ) ) _UpperCAmelCase = nn.Parameter(torch.FloatTensor(ly_weight["pre_mlp_layer_norm"]["scale"] ) ) _UpperCAmelCase = nn.Parameter(torch.FloatTensor(ly_weight["mlp"]["wi_0"]["kernel"].T ) ) _UpperCAmelCase = nn.Parameter(torch.FloatTensor(ly_weight["mlp"]["wi_1"]["kernel"].T ) ) _UpperCAmelCase = nn.Parameter(torch.FloatTensor(ly_weight["mlp"]["wo"]["kernel"].T ) ) _UpperCAmelCase = nn.Parameter(torch.FloatTensor(weights["encoder_norm"]["scale"] ) ) return model def UpperCAmelCase_ ( __lowercase : List[str] , __lowercase : Optional[Any] ) -> int: '''simple docstring''' _UpperCAmelCase = nn.Parameter(torch.FloatTensor(weights["input_proj"]["kernel"].T ) ) _UpperCAmelCase = nn.Parameter( torch.FloatTensor(weights["Embed_0"]["embedding"] ) , requires_grad=_a ) for lyr_num, lyr in enumerate(model.encoders ): _UpperCAmelCase = weights[f'layers_{lyr_num}'] _UpperCAmelCase = ly_weight["attention"] _UpperCAmelCase = nn.Parameter(torch.FloatTensor(attention_weights["query"]["kernel"].T ) ) _UpperCAmelCase = nn.Parameter(torch.FloatTensor(attention_weights["key"]["kernel"].T ) ) _UpperCAmelCase = nn.Parameter(torch.FloatTensor(attention_weights["value"]["kernel"].T ) ) _UpperCAmelCase = nn.Parameter(torch.FloatTensor(attention_weights["out"]["kernel"].T ) ) _UpperCAmelCase = nn.Parameter( torch.FloatTensor(ly_weight["pre_attention_layer_norm"]["scale"] ) ) _UpperCAmelCase = nn.Parameter(torch.FloatTensor(ly_weight["mlp"]["wi_0"]["kernel"].T ) ) _UpperCAmelCase = nn.Parameter(torch.FloatTensor(ly_weight["mlp"]["wi_1"]["kernel"].T ) ) _UpperCAmelCase = nn.Parameter(torch.FloatTensor(ly_weight["mlp"]["wo"]["kernel"].T ) ) _UpperCAmelCase = nn.Parameter(torch.FloatTensor(ly_weight["pre_mlp_layer_norm"]["scale"] ) ) _UpperCAmelCase = nn.Parameter(torch.FloatTensor(weights["encoder_norm"]["scale"] ) ) return model def UpperCAmelCase_ ( __lowercase : Tuple , __lowercase : List[Any] ) -> int: '''simple docstring''' _UpperCAmelCase = nn.Parameter(torch.FloatTensor(weights["time_emb_dense0"]["kernel"].T ) ) _UpperCAmelCase = nn.Parameter(torch.FloatTensor(weights["time_emb_dense1"]["kernel"].T ) ) _UpperCAmelCase = nn.Parameter( torch.FloatTensor(weights["Embed_0"]["embedding"] ) , requires_grad=_a ) _UpperCAmelCase = nn.Parameter( torch.FloatTensor(weights["continuous_inputs_projection"]["kernel"].T ) ) for lyr_num, lyr in enumerate(model.decoders ): _UpperCAmelCase = weights[f'layers_{lyr_num}'] _UpperCAmelCase = nn.Parameter( torch.FloatTensor(ly_weight["pre_self_attention_layer_norm"]["scale"] ) ) _UpperCAmelCase = nn.Parameter( torch.FloatTensor(ly_weight["FiLMLayer_0"]["DenseGeneral_0"]["kernel"].T ) ) _UpperCAmelCase = ly_weight["self_attention"] _UpperCAmelCase = nn.Parameter(torch.FloatTensor(attention_weights["query"]["kernel"].T ) ) _UpperCAmelCase = nn.Parameter(torch.FloatTensor(attention_weights["key"]["kernel"].T ) ) _UpperCAmelCase = nn.Parameter(torch.FloatTensor(attention_weights["value"]["kernel"].T ) ) _UpperCAmelCase = nn.Parameter(torch.FloatTensor(attention_weights["out"]["kernel"].T ) ) _UpperCAmelCase = ly_weight["MultiHeadDotProductAttention_0"] _UpperCAmelCase = nn.Parameter(torch.FloatTensor(attention_weights["query"]["kernel"].T ) ) _UpperCAmelCase = nn.Parameter(torch.FloatTensor(attention_weights["key"]["kernel"].T ) ) _UpperCAmelCase = nn.Parameter(torch.FloatTensor(attention_weights["value"]["kernel"].T ) ) _UpperCAmelCase = nn.Parameter(torch.FloatTensor(attention_weights["out"]["kernel"].T ) ) _UpperCAmelCase = nn.Parameter( torch.FloatTensor(ly_weight["pre_cross_attention_layer_norm"]["scale"] ) ) _UpperCAmelCase = nn.Parameter(torch.FloatTensor(ly_weight["pre_mlp_layer_norm"]["scale"] ) ) _UpperCAmelCase = nn.Parameter( torch.FloatTensor(ly_weight["FiLMLayer_1"]["DenseGeneral_0"]["kernel"].T ) ) _UpperCAmelCase = nn.Parameter(torch.FloatTensor(ly_weight["mlp"]["wi_0"]["kernel"].T ) ) _UpperCAmelCase = nn.Parameter(torch.FloatTensor(ly_weight["mlp"]["wi_1"]["kernel"].T ) ) _UpperCAmelCase = nn.Parameter(torch.FloatTensor(ly_weight["mlp"]["wo"]["kernel"].T ) ) _UpperCAmelCase = nn.Parameter(torch.FloatTensor(weights["decoder_norm"]["scale"] ) ) _UpperCAmelCase = nn.Parameter(torch.FloatTensor(weights["spec_out_dense"]["kernel"].T ) ) return model def UpperCAmelCase_ ( __lowercase : Optional[Any] ) -> List[Any]: '''simple docstring''' _UpperCAmelCase = checkpoints.load_tax_checkpoint(args.checkpoint_path ) _UpperCAmelCase = jnp.tree_util.tree_map(onp.array , _a ) _UpperCAmelCase = [ "from __gin__ import dynamic_registration", "from music_spectrogram_diffusion.models.diffusion import diffusion_utils", "diffusion_utils.ClassifierFreeGuidanceConfig.eval_condition_weight = 2.0", "diffusion_utils.DiffusionConfig.classifier_free_guidance = @diffusion_utils.ClassifierFreeGuidanceConfig()", ] _UpperCAmelCase = os.path.join(args.checkpoint_path , ".." , "config.gin" ) _UpperCAmelCase = inference.parse_training_gin_file(_a , _a ) _UpperCAmelCase = inference.InferenceModel(args.checkpoint_path , _a ) _UpperCAmelCase = DDPMScheduler(beta_schedule="squaredcos_cap_v2" , variance_type="fixed_large" ) _UpperCAmelCase = SpectrogramNotesEncoder( max_length=synth_model.sequence_length["inputs"] , vocab_size=synth_model.model.module.config.vocab_size , d_model=synth_model.model.module.config.emb_dim , dropout_rate=synth_model.model.module.config.dropout_rate , num_layers=synth_model.model.module.config.num_encoder_layers , num_heads=synth_model.model.module.config.num_heads , d_kv=synth_model.model.module.config.head_dim , d_ff=synth_model.model.module.config.mlp_dim , feed_forward_proj="gated-gelu" , ) _UpperCAmelCase = SpectrogramContEncoder( input_dims=synth_model.audio_codec.n_dims , targets_context_length=synth_model.sequence_length["targets_context"] , d_model=synth_model.model.module.config.emb_dim , dropout_rate=synth_model.model.module.config.dropout_rate , num_layers=synth_model.model.module.config.num_encoder_layers , num_heads=synth_model.model.module.config.num_heads , d_kv=synth_model.model.module.config.head_dim , d_ff=synth_model.model.module.config.mlp_dim , feed_forward_proj="gated-gelu" , ) _UpperCAmelCase = TaFilmDecoder( input_dims=synth_model.audio_codec.n_dims , targets_length=synth_model.sequence_length["targets_context"] , max_decoder_noise_time=synth_model.model.module.config.max_decoder_noise_time , d_model=synth_model.model.module.config.emb_dim , num_layers=synth_model.model.module.config.num_decoder_layers , num_heads=synth_model.model.module.config.num_heads , d_kv=synth_model.model.module.config.head_dim , d_ff=synth_model.model.module.config.mlp_dim , dropout_rate=synth_model.model.module.config.dropout_rate , ) _UpperCAmelCase = load_notes_encoder(ta_checkpoint["target"]["token_encoder"] , _a ) _UpperCAmelCase = load_continuous_encoder(ta_checkpoint["target"]["continuous_encoder"] , _a ) _UpperCAmelCase = load_decoder(ta_checkpoint["target"]["decoder"] , _a ) _UpperCAmelCase = OnnxRuntimeModel.from_pretrained("kashif/soundstream_mel_decoder" ) _UpperCAmelCase = SpectrogramDiffusionPipeline( notes_encoder=_a , continuous_encoder=_a , decoder=_a , scheduler=_a , melgan=_a , ) if args.save: pipe.save_pretrained(args.output_path ) if __name__ == "__main__": __SCREAMING_SNAKE_CASE :int = argparse.ArgumentParser() parser.add_argument('''--output_path''', default=None, type=str, required=True, help='''Path to the converted model.''') parser.add_argument( '''--save''', default=True, type=bool, required=False, help='''Whether to save the converted model or not.''' ) parser.add_argument( '''--checkpoint_path''', default=F"{MODEL}/checkpoint_500000", type=str, required=False, help='''Path to the original jax model checkpoint.''', ) __SCREAMING_SNAKE_CASE :Tuple = parser.parse_args() main(args)
236
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tokenizers_available, is_torch_available, ) a_ = {'configuration_plbart': ['PLBART_PRETRAINED_CONFIG_ARCHIVE_MAP', 'PLBartConfig']} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a_ = ['PLBartTokenizer'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a_ = [ 'PLBART_PRETRAINED_MODEL_ARCHIVE_LIST', 'PLBartForCausalLM', 'PLBartForConditionalGeneration', 'PLBartForSequenceClassification', 'PLBartModel', 'PLBartPreTrainedModel', ] if TYPE_CHECKING: from .configuration_plbart import PLBART_PRETRAINED_CONFIG_ARCHIVE_MAP, PLBartConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_plbart import PLBartTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_plbart import ( PLBART_PRETRAINED_MODEL_ARCHIVE_LIST, PLBartForCausalLM, PLBartForConditionalGeneration, PLBartForSequenceClassification, PLBartModel, PLBartPreTrainedModel, ) else: import sys a_ = _LazyModule(__name__, globals()['__file__'], _import_structure)
25
0
import argparse import re from typing import Dict import torch from datasets import Audio, Dataset, load_dataset, load_metric from transformers import AutoFeatureExtractor, pipeline def __UpperCAmelCase ( lowerCamelCase_ : List[Any] , lowerCamelCase_ : Optional[int] ) -> List[str]: """simple docstring""" SCREAMING_SNAKE_CASE_ : List[Any] = args.log_outputs SCREAMING_SNAKE_CASE_ : str = "_".join(args.dataset.split('/' ) + [args.config, args.split] ) # load metric SCREAMING_SNAKE_CASE_ : List[Any] = load_metric('wer' ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = load_metric('cer' ) # compute metrics SCREAMING_SNAKE_CASE_ : Dict = wer.compute(references=result['target'] , predictions=result['prediction'] ) SCREAMING_SNAKE_CASE_ : Optional[Any] = cer.compute(references=result['target'] , predictions=result['prediction'] ) # print & log results SCREAMING_SNAKE_CASE_ : Optional[Any] = F'WER: {wer_result}\nCER: {cer_result}' print(_a ) with open(F'{dataset_id}_eval_results.txt' , 'w' ) as f: f.write(_a ) # log all results in text file. Possibly interesting for analysis if log_outputs is not None: SCREAMING_SNAKE_CASE_ : str = F'log_{dataset_id}_predictions.txt' SCREAMING_SNAKE_CASE_ : str = F'log_{dataset_id}_targets.txt' with open(_a , 'w' ) as p, open(_a , 'w' ) as t: # mapping function to write output def write_to_file(lowerCamelCase_ : Optional[Any] , lowerCamelCase_ : Dict ): p.write(F'{i}' + '\n' ) p.write(batch['prediction'] + '\n' ) t.write(F'{i}' + '\n' ) t.write(batch['target'] + '\n' ) result.map(_a , with_indices=_a ) def __UpperCAmelCase ( lowerCamelCase_ : Dict ) -> List[Any]: """simple docstring""" SCREAMING_SNAKE_CASE_ : Union[str, Any] = "[,?.!\-\;\:\"“%‘”�—’…–]" # noqa: W605 IMPORTANT: this should correspond to the chars that were ignored during training SCREAMING_SNAKE_CASE_ : Tuple = re.sub(_a , '' , text.lower() ) # In addition, we can normalize the target text, e.g. removing new lines characters etc... # note that order is important here! SCREAMING_SNAKE_CASE_ : Tuple = ["\n\n", "\n", " ", " "] for t in token_sequences_to_ignore: SCREAMING_SNAKE_CASE_ : List[Any] = " ".join(text.split(_a ) ) return text def __UpperCAmelCase ( lowerCamelCase_ : int ) -> Optional[int]: """simple docstring""" SCREAMING_SNAKE_CASE_ : Optional[Any] = load_dataset(args.dataset , args.config , split=args.split , use_auth_token=_a ) # for testing: only process the first two examples as a test # dataset = dataset.select(range(10)) # load processor SCREAMING_SNAKE_CASE_ : Dict = AutoFeatureExtractor.from_pretrained(args.model_id ) SCREAMING_SNAKE_CASE_ : Optional[int] = feature_extractor.sampling_rate # resample audio SCREAMING_SNAKE_CASE_ : List[str] = dataset.cast_column('audio' , Audio(sampling_rate=_a ) ) # load eval pipeline if args.device is None: SCREAMING_SNAKE_CASE_ : Tuple = 0 if torch.cuda.is_available() else -1 SCREAMING_SNAKE_CASE_ : int = pipeline('automatic-speech-recognition' , model=args.model_id , device=args.device ) # map function to decode audio def map_to_pred(lowerCamelCase_ : Optional[int] ): SCREAMING_SNAKE_CASE_ : Optional[int] = asr( batch['audio']['array'] , chunk_length_s=args.chunk_length_s , stride_length_s=args.stride_length_s ) SCREAMING_SNAKE_CASE_ : Optional[Any] = prediction["text"] SCREAMING_SNAKE_CASE_ : Union[str, Any] = normalize_text(batch['sentence'] ) return batch # run inference on all examples SCREAMING_SNAKE_CASE_ : Optional[Any] = dataset.map(_a , remove_columns=dataset.column_names ) # compute and log_results # do not change function below log_results(_a , _a ) if __name__ == "__main__": UpperCamelCase__ : List[Any] = argparse.ArgumentParser() parser.add_argument( '''--model_id''', type=str, required=True, help='''Model identifier. Should be loadable with 🤗 Transformers''' ) parser.add_argument( '''--dataset''', type=str, required=True, help='''Dataset name to evaluate the `model_id`. Should be loadable with 🤗 Datasets''', ) parser.add_argument( '''--config''', type=str, required=True, help='''Config of the dataset. *E.g.* `\'en\'` for Common Voice''' ) parser.add_argument('''--split''', type=str, required=True, help='''Split of the dataset. *E.g.* `\'test\'`''') parser.add_argument( '''--chunk_length_s''', type=float, default=None, help='''Chunk length in seconds. Defaults to 5 seconds.''' ) parser.add_argument( '''--stride_length_s''', type=float, default=None, help='''Stride of the audio chunks. Defaults to 1 second.''' ) parser.add_argument( '''--log_outputs''', action='''store_true''', help='''If defined, write outputs to log file for analysis.''' ) parser.add_argument( '''--device''', type=int, default=None, help='''The device to run the pipeline on. -1 for CPU (default), 0 for the first GPU and so on.''', ) UpperCamelCase__ : Dict = parser.parse_args() main(args)
105
import unittest import numpy as np import torch from diffusers import KarrasVePipeline, KarrasVeScheduler, UNetaDModel from diffusers.utils.testing_utils import enable_full_determinism, require_torch, slow, torch_device enable_full_determinism() class _UpperCamelCase ( unittest.TestCase ): '''simple docstring''' @property def __UpperCamelCase ( self : List[str] ) -> Union[str, Any]: """simple docstring""" torch.manual_seed(0 ) SCREAMING_SNAKE_CASE : str = UNetaDModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=3 , out_channels=3 , down_block_types=("DownBlock2D", "AttnDownBlock2D") , up_block_types=("AttnUpBlock2D", "UpBlock2D") , ) return model def __UpperCamelCase ( self : Union[str, Any] ) -> Dict: """simple docstring""" SCREAMING_SNAKE_CASE : Union[str, Any] = self.dummy_uncond_unet SCREAMING_SNAKE_CASE : Union[str, Any] = KarrasVeScheduler() SCREAMING_SNAKE_CASE : Any = KarrasVePipeline(unet=a , scheduler=a ) pipe.to(a ) pipe.set_progress_bar_config(disable=a ) SCREAMING_SNAKE_CASE : Any = torch.manual_seed(0 ) SCREAMING_SNAKE_CASE : Optional[Any] = pipe(num_inference_steps=2 , generator=a , output_type="numpy" ).images SCREAMING_SNAKE_CASE : List[str] = torch.manual_seed(0 ) SCREAMING_SNAKE_CASE : List[Any] = pipe(num_inference_steps=2 , generator=a , output_type="numpy" , return_dict=a )[0] SCREAMING_SNAKE_CASE : List[Any] = image[0, -3:, -3:, -1] SCREAMING_SNAKE_CASE : Any = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) SCREAMING_SNAKE_CASE : str = np.array([0.0, 1.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2 @slow @require_torch class _UpperCamelCase ( unittest.TestCase ): '''simple docstring''' def __UpperCamelCase ( self : int ) -> Tuple: """simple docstring""" SCREAMING_SNAKE_CASE : Dict = "google/ncsnpp-celebahq-256" SCREAMING_SNAKE_CASE : List[Any] = UNetaDModel.from_pretrained(a ) SCREAMING_SNAKE_CASE : Any = KarrasVeScheduler() SCREAMING_SNAKE_CASE : Optional[Any] = KarrasVePipeline(unet=a , scheduler=a ) pipe.to(a ) pipe.set_progress_bar_config(disable=a ) SCREAMING_SNAKE_CASE : Union[str, Any] = torch.manual_seed(0 ) SCREAMING_SNAKE_CASE : Any = pipe(num_inference_steps=20 , generator=a , output_type="numpy" ).images SCREAMING_SNAKE_CASE : List[str] = image[0, -3:, -3:, -1] assert image.shape == (1, 256, 256, 3) SCREAMING_SNAKE_CASE : str = np.array([0.578, 0.5811, 0.5924, 0.5809, 0.587, 0.5886, 0.5861, 0.5802, 0.586] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
25
0
'''simple docstring''' # DISCLAIMER: This file is strongly influenced by https://github.com/yang-song/score_sde_pytorch import math from dataclasses import dataclass from typing import Optional, Tuple, Union import torch from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput, randn_tensor from .scheduling_utils import SchedulerMixin, SchedulerOutput @dataclass class lowerCamelCase_ ( __A ): _lowerCAmelCase : Union[str, Any] = 4_2 _lowerCAmelCase : Any = 4_2 class lowerCamelCase_ ( __A , __A ): _lowerCAmelCase : int = 1 @register_to_config def __init__( self : Dict , lowerCAmelCase__ : int = 20_00 , lowerCAmelCase__ : float = 0.15 , lowerCAmelCase__ : float = 0.01 , lowerCAmelCase__ : float = 1348.0 , lowerCAmelCase__ : float = 1e-5 , lowerCAmelCase__ : int = 1 , ): """simple docstring""" SCREAMING_SNAKE_CASE : Tuple = sigma_max # setable values SCREAMING_SNAKE_CASE : str = None self.set_sigmas(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) def __lowercase ( self : Optional[int] , lowerCAmelCase__ : torch.FloatTensor , lowerCAmelCase__ : Optional[int] = None ): """simple docstring""" return sample def __lowercase ( self : Optional[int] , lowerCAmelCase__ : int , lowerCAmelCase__ : float = None , lowerCAmelCase__ : Union[str, torch.device] = None ): """simple docstring""" SCREAMING_SNAKE_CASE : Tuple = sampling_eps if sampling_eps is not None else self.config.sampling_eps SCREAMING_SNAKE_CASE : List[Any] = torch.linspace(1 , lowerCAmelCase__ , lowerCAmelCase__ , device=lowerCAmelCase__ ) def __lowercase ( self : str , lowerCAmelCase__ : int , lowerCAmelCase__ : float = None , lowerCAmelCase__ : float = None , lowerCAmelCase__ : float = None ): """simple docstring""" SCREAMING_SNAKE_CASE : Dict = sigma_min if sigma_min is not None else self.config.sigma_min SCREAMING_SNAKE_CASE : List[str] = sigma_max if sigma_max is not None else self.config.sigma_max SCREAMING_SNAKE_CASE : Tuple = sampling_eps if sampling_eps is not None else self.config.sampling_eps if self.timesteps is None: self.set_timesteps(lowerCAmelCase__ , lowerCAmelCase__ ) SCREAMING_SNAKE_CASE : Tuple = sigma_min * (sigma_max / sigma_min) ** (self.timesteps / sampling_eps) SCREAMING_SNAKE_CASE : Optional[Any] = torch.exp(torch.linspace(math.log(lowerCAmelCase__ ) , math.log(lowerCAmelCase__ ) , lowerCAmelCase__ ) ) SCREAMING_SNAKE_CASE : List[str] = torch.tensor([sigma_min * (sigma_max / sigma_min) ** t for t in self.timesteps] ) def __lowercase ( self : Dict , lowerCAmelCase__ : int , lowerCAmelCase__ : Dict ): """simple docstring""" return torch.where( timesteps == 0 , torch.zeros_like(t.to(timesteps.device ) ) , self.discrete_sigmas[timesteps - 1].to(timesteps.device ) , ) def __lowercase ( self : str , lowerCAmelCase__ : torch.FloatTensor , lowerCAmelCase__ : int , lowerCAmelCase__ : torch.FloatTensor , lowerCAmelCase__ : Optional[torch.Generator] = None , lowerCAmelCase__ : bool = True , ): """simple docstring""" if self.timesteps is None: raise ValueError( '''`self.timesteps` is not set, you need to run \'set_timesteps\' after creating the scheduler''' ) SCREAMING_SNAKE_CASE : int = timestep * torch.ones( sample.shape[0] , device=sample.device ) # torch.repeat_interleave(timestep, sample.shape[0]) SCREAMING_SNAKE_CASE : Tuple = (timestep * (len(self.timesteps ) - 1)).long() # mps requires indices to be in the same device, so we use cpu as is the default with cuda SCREAMING_SNAKE_CASE : int = timesteps.to(self.discrete_sigmas.device ) SCREAMING_SNAKE_CASE : Optional[Any] = self.discrete_sigmas[timesteps].to(sample.device ) SCREAMING_SNAKE_CASE : Optional[Any] = self.get_adjacent_sigma(lowerCAmelCase__ , lowerCAmelCase__ ).to(sample.device ) SCREAMING_SNAKE_CASE : Tuple = torch.zeros_like(lowerCAmelCase__ ) SCREAMING_SNAKE_CASE : List[Any] = (sigma**2 - adjacent_sigma**2) ** 0.5 # equation 6 in the paper: the model_output modeled by the network is grad_x log pt(x) # also equation 47 shows the analog from SDE models to ancestral sampling methods SCREAMING_SNAKE_CASE : int = diffusion.flatten() while len(diffusion.shape ) < len(sample.shape ): SCREAMING_SNAKE_CASE : List[Any] = diffusion.unsqueeze(-1 ) SCREAMING_SNAKE_CASE : List[str] = drift - diffusion**2 * model_output # equation 6: sample noise for the diffusion term of SCREAMING_SNAKE_CASE : Optional[Any] = randn_tensor( sample.shape , layout=sample.layout , generator=lowerCAmelCase__ , device=sample.device , dtype=sample.dtype ) SCREAMING_SNAKE_CASE : Optional[Any] = sample - drift # subtract because `dt` is a small negative timestep # TODO is the variable diffusion the correct scaling term for the noise? SCREAMING_SNAKE_CASE : Any = prev_sample_mean + diffusion * noise # add impact of diffusion field g if not return_dict: return (prev_sample, prev_sample_mean) return SdeVeOutput(prev_sample=lowerCAmelCase__ , prev_sample_mean=lowerCAmelCase__ ) def __lowercase ( self : str , lowerCAmelCase__ : torch.FloatTensor , lowerCAmelCase__ : torch.FloatTensor , lowerCAmelCase__ : Optional[torch.Generator] = None , lowerCAmelCase__ : bool = True , ): """simple docstring""" if self.timesteps is None: raise ValueError( '''`self.timesteps` is not set, you need to run \'set_timesteps\' after creating the scheduler''' ) # For small batch sizes, the paper "suggest replacing norm(z) with sqrt(d), where d is the dim. of z" # sample noise for correction SCREAMING_SNAKE_CASE : List[str] = randn_tensor(sample.shape , layout=sample.layout , generator=lowerCAmelCase__ ).to(sample.device ) # compute step size from the model_output, the noise, and the snr SCREAMING_SNAKE_CASE : Dict = torch.norm(model_output.reshape(model_output.shape[0] , -1 ) , dim=-1 ).mean() SCREAMING_SNAKE_CASE : str = torch.norm(noise.reshape(noise.shape[0] , -1 ) , dim=-1 ).mean() SCREAMING_SNAKE_CASE : int = (self.config.snr * noise_norm / grad_norm) ** 2 * 2 SCREAMING_SNAKE_CASE : Dict = step_size * torch.ones(sample.shape[0] ).to(sample.device ) # self.repeat_scalar(step_size, sample.shape[0]) # compute corrected sample: model_output term and noise term SCREAMING_SNAKE_CASE : Optional[int] = step_size.flatten() while len(step_size.shape ) < len(sample.shape ): SCREAMING_SNAKE_CASE : Union[str, Any] = step_size.unsqueeze(-1 ) SCREAMING_SNAKE_CASE : str = sample + step_size * model_output SCREAMING_SNAKE_CASE : List[Any] = prev_sample_mean + ((step_size * 2) ** 0.5) * noise if not return_dict: return (prev_sample,) return SchedulerOutput(prev_sample=lowerCAmelCase__ ) def __lowercase ( self : int , lowerCAmelCase__ : torch.FloatTensor , lowerCAmelCase__ : torch.FloatTensor , lowerCAmelCase__ : torch.FloatTensor , ): """simple docstring""" SCREAMING_SNAKE_CASE : str = timesteps.to(original_samples.device ) SCREAMING_SNAKE_CASE : Optional[int] = self.discrete_sigmas.to(original_samples.device )[timesteps] SCREAMING_SNAKE_CASE : str = ( noise * sigmas[:, None, None, None] if noise is not None else torch.randn_like(lowerCAmelCase__ ) * sigmas[:, None, None, None] ) SCREAMING_SNAKE_CASE : Optional[Any] = noise + original_samples return noisy_samples def __len__( self : Optional[Any] ): """simple docstring""" return self.config.num_train_timesteps
527
def lowerCamelCase__ ( _a , _a): SCREAMING_SNAKE_CASE : Optional[int] = 0 while b > 0: if b & 1: res += a a += a b >>= 1 return res def lowerCamelCase__ ( _a , _a , _a): SCREAMING_SNAKE_CASE : Optional[int] = 0 while b > 0: if b & 1: SCREAMING_SNAKE_CASE : Optional[Any] = ((res % c) + (a % c)) % c a += a b >>= 1 return res
25
0
from unittest.mock import patch import pyspark from datasets.packaged_modules.spark.spark import ( Spark, SparkExamplesIterable, _generate_iterable_examples, ) from ..utils import ( require_dill_gt_0_3_2, require_not_windows, ) def snake_case_ (__A : Optional[int] , __A : Dict ) -> List[Any]: __lowerCAmelCase : Optional[int] = [] for part_id in partition_order: __lowerCAmelCase : str = df.where(f'''SPARK_PARTITION_ID() = {part_id}''' ).collect() for row_idx, row in enumerate(_a ): expected_row_ids_and_row_dicts.append((f'''{part_id}_{row_idx}''', row.asDict()) ) return expected_row_ids_and_row_dicts @require_not_windows @require_dill_gt_0_3_2 def snake_case_ () -> List[str]: __lowerCAmelCase : str = pyspark.sql.SparkSession.builder.master("""local[*]""" ).appName("""pyspark""" ).getOrCreate() __lowerCAmelCase : Union[str, Any] = spark.range(1_0_0 ).repartition(1 ) __lowerCAmelCase : Dict = Spark(_a ) # The id ints will be converted to Pyarrow int64s, so each row will be 8 bytes. Setting a max_shard_size of 16 means # that each partition can hold 2 rows. spark_builder._repartition_df_if_needed(max_shard_size=1_6 ) # Given that the dataframe has 100 rows and each partition has 2 rows, we expect 50 partitions. assert spark_builder.df.rdd.getNumPartitions() == 5_0 @require_not_windows @require_dill_gt_0_3_2 def snake_case_ () -> Dict: __lowerCAmelCase : Tuple = pyspark.sql.SparkSession.builder.master("""local[*]""" ).appName("""pyspark""" ).getOrCreate() __lowerCAmelCase : Any = spark.range(1_0 ).repartition(2 ) __lowerCAmelCase : Tuple = [1, 0] __lowerCAmelCase : Union[str, Any] = _generate_iterable_examples(_a , _a ) # Reverse the partitions. __lowerCAmelCase : Optional[Any] = _get_expected_row_ids_and_row_dicts_for_partition_order(_a , _a ) for i, (row_id, row_dict) in enumerate(generate_fn() ): __lowerCAmelCase : Optional[Any] = expected_row_ids_and_row_dicts[i] assert row_id == expected_row_id assert row_dict == expected_row_dict @require_not_windows @require_dill_gt_0_3_2 def snake_case_ () -> Optional[Any]: __lowerCAmelCase : Optional[int] = pyspark.sql.SparkSession.builder.master("""local[*]""" ).appName("""pyspark""" ).getOrCreate() __lowerCAmelCase : List[Any] = spark.range(1_0 ).repartition(1 ) __lowerCAmelCase : Tuple = SparkExamplesIterable(_a ) assert it.n_shards == 1 for i, (row_id, row_dict) in enumerate(_a ): assert row_id == f'''0_{i}''' assert row_dict == {"id": i} @require_not_windows @require_dill_gt_0_3_2 def snake_case_ () -> Tuple: __lowerCAmelCase : int = pyspark.sql.SparkSession.builder.master("""local[*]""" ).appName("""pyspark""" ).getOrCreate() __lowerCAmelCase : int = spark.range(3_0 ).repartition(3 ) # Mock the generator so that shuffle reverses the partition indices. with patch("""numpy.random.Generator""" ) as generator_mock: __lowerCAmelCase : int = lambda __A : x.reverse() __lowerCAmelCase : List[Any] = _get_expected_row_ids_and_row_dicts_for_partition_order(_a , [2, 1, 0] ) __lowerCAmelCase : str = SparkExamplesIterable(_a ).shuffle_data_sources(_a ) assert shuffled_it.n_shards == 3 for i, (row_id, row_dict) in enumerate(_a ): __lowerCAmelCase : Optional[int] = expected_row_ids_and_row_dicts[i] assert row_id == expected_row_id assert row_dict == expected_row_dict @require_not_windows @require_dill_gt_0_3_2 def snake_case_ () -> Tuple: __lowerCAmelCase : Optional[int] = pyspark.sql.SparkSession.builder.master("""local[*]""" ).appName("""pyspark""" ).getOrCreate() __lowerCAmelCase : Optional[Any] = spark.range(2_0 ).repartition(4 ) # Partitions 0 and 2 __lowerCAmelCase : int = SparkExamplesIterable(_a ).shard_data_sources(worker_id=0 , num_workers=2 ) assert shard_it_a.n_shards == 2 __lowerCAmelCase : str = _get_expected_row_ids_and_row_dicts_for_partition_order(_a , [0, 2] ) for i, (row_id, row_dict) in enumerate(_a ): __lowerCAmelCase : Optional[Any] = expected_row_ids_and_row_dicts_a[i] assert row_id == expected_row_id assert row_dict == expected_row_dict # Partitions 1 and 3 __lowerCAmelCase : Any = SparkExamplesIterable(_a ).shard_data_sources(worker_id=1 , num_workers=2 ) assert shard_it_a.n_shards == 2 __lowerCAmelCase : List[Any] = _get_expected_row_ids_and_row_dicts_for_partition_order(_a , [1, 3] ) for i, (row_id, row_dict) in enumerate(_a ): __lowerCAmelCase : Union[str, Any] = expected_row_ids_and_row_dicts_a[i] assert row_id == expected_row_id assert row_dict == expected_row_dict @require_not_windows @require_dill_gt_0_3_2 def snake_case_ () -> Dict: __lowerCAmelCase : str = pyspark.sql.SparkSession.builder.master("""local[*]""" ).appName("""pyspark""" ).getOrCreate() __lowerCAmelCase : List[str] = spark.range(1_0_0 ).repartition(1 ) __lowerCAmelCase : int = Spark(_a ) # Choose a small max_shard_size for maximum partitioning. spark_builder._repartition_df_if_needed(max_shard_size=1 ) # The new number of partitions should not be greater than the number of rows. assert spark_builder.df.rdd.getNumPartitions() == 1_0_0
651
from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging a_ = logging.get_logger(__name__) a_ = { 'junnyu/roformer_chinese_small': 'https://huggingface.co/junnyu/roformer_chinese_small/resolve/main/config.json', 'junnyu/roformer_chinese_base': 'https://huggingface.co/junnyu/roformer_chinese_base/resolve/main/config.json', 'junnyu/roformer_chinese_char_small': ( 'https://huggingface.co/junnyu/roformer_chinese_char_small/resolve/main/config.json' ), 'junnyu/roformer_chinese_char_base': ( 'https://huggingface.co/junnyu/roformer_chinese_char_base/resolve/main/config.json' ), 'junnyu/roformer_small_discriminator': ( 'https://huggingface.co/junnyu/roformer_small_discriminator/resolve/main/config.json' ), 'junnyu/roformer_small_generator': ( 'https://huggingface.co/junnyu/roformer_small_generator/resolve/main/config.json' ), # See all RoFormer models at https://huggingface.co/models?filter=roformer } class _UpperCamelCase ( __A ): '''simple docstring''' lowerCamelCase__ ='roformer' def __init__( self : Dict , a : Any=5_0000 , a : List[Any]=None , a : str=768 , a : str=12 , a : Tuple=12 , a : Optional[Any]=3072 , a : List[str]="gelu" , a : List[Any]=0.1 , a : Union[str, Any]=0.1 , a : Tuple=1536 , a : List[str]=2 , a : Tuple=0.02 , a : Any=1e-12 , a : Optional[int]=0 , a : Union[str, Any]=False , a : int=True , **a : str , ) -> int: """simple docstring""" super().__init__(pad_token_id=a , **a ) SCREAMING_SNAKE_CASE : str = vocab_size SCREAMING_SNAKE_CASE : int = hidden_size if embedding_size is None else embedding_size SCREAMING_SNAKE_CASE : List[str] = hidden_size SCREAMING_SNAKE_CASE : Union[str, Any] = num_hidden_layers SCREAMING_SNAKE_CASE : int = num_attention_heads SCREAMING_SNAKE_CASE : Tuple = hidden_act SCREAMING_SNAKE_CASE : int = intermediate_size SCREAMING_SNAKE_CASE : Tuple = hidden_dropout_prob SCREAMING_SNAKE_CASE : int = attention_probs_dropout_prob SCREAMING_SNAKE_CASE : Optional[int] = max_position_embeddings SCREAMING_SNAKE_CASE : Any = type_vocab_size SCREAMING_SNAKE_CASE : Union[str, Any] = initializer_range SCREAMING_SNAKE_CASE : List[str] = layer_norm_eps SCREAMING_SNAKE_CASE : List[str] = rotary_value SCREAMING_SNAKE_CASE : int = use_cache class _UpperCamelCase ( __A ): '''simple docstring''' @property def __UpperCamelCase ( self : Tuple ) -> Mapping[str, Mapping[int, str]]: """simple docstring""" if self.task == "multiple-choice": SCREAMING_SNAKE_CASE : Optional[Any] = {0: "batch", 1: "choice", 2: "sequence"} else: SCREAMING_SNAKE_CASE : str = {0: "batch", 1: "sequence"} SCREAMING_SNAKE_CASE : List[Any] = {0: "batch", 1: "sequence"} return OrderedDict( [ ("input_ids", dynamic_axis), ("attention_mask", dynamic_axis), ("token_type_ids", dynamic_axis), ] )
25
0
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available lowerCAmelCase_ = { 'configuration_clipseg': [ 'CLIPSEG_PRETRAINED_CONFIG_ARCHIVE_MAP', 'CLIPSegConfig', 'CLIPSegTextConfig', 'CLIPSegVisionConfig', ], 'processing_clipseg': ['CLIPSegProcessor'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_ = [ 'CLIPSEG_PRETRAINED_MODEL_ARCHIVE_LIST', 'CLIPSegModel', 'CLIPSegPreTrainedModel', 'CLIPSegTextModel', 'CLIPSegVisionModel', 'CLIPSegForImageSegmentation', ] if TYPE_CHECKING: from .configuration_clipseg import ( CLIPSEG_PRETRAINED_CONFIG_ARCHIVE_MAP, CLIPSegConfig, CLIPSegTextConfig, CLIPSegVisionConfig, ) from .processing_clipseg import CLIPSegProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_clipseg import ( CLIPSEG_PRETRAINED_MODEL_ARCHIVE_LIST, CLIPSegForImageSegmentation, CLIPSegModel, CLIPSegPreTrainedModel, CLIPSegTextModel, CLIPSegVisionModel, ) else: import sys lowerCAmelCase_ = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
217
import argparse import logging from collections import namedtuple import torch from model_bertabs import BertAbsSummarizer from models.model_builder import AbsSummarizer # The authors' implementation from transformers import BertTokenizer logging.basicConfig(level=logging.INFO) a_ = logging.getLogger(__name__) a_ = 'Hello world! cécé herlolip' a_ = namedtuple( 'BertAbsConfig', [ 'temp_dir', 'large', 'use_bert_emb', 'finetune_bert', 'encoder', 'share_emb', 'max_pos', 'enc_layers', 'enc_hidden_size', 'enc_heads', 'enc_ff_size', 'enc_dropout', 'dec_layers', 'dec_hidden_size', 'dec_heads', 'dec_ff_size', 'dec_dropout', ], ) def lowerCamelCase__ ( _a , _a): SCREAMING_SNAKE_CASE : List[Any] = BertAbsConfig( temp_dir="." , finetune_bert=_a , large=_a , share_emb=_a , use_bert_emb=_a , encoder="bert" , max_pos=512 , enc_layers=6 , enc_hidden_size=512 , enc_heads=8 , enc_ff_size=512 , enc_dropout=0.2 , dec_layers=6 , dec_hidden_size=768 , dec_heads=8 , dec_ff_size=2048 , dec_dropout=0.2 , ) SCREAMING_SNAKE_CASE : Dict = torch.load(_a , lambda _a , _a: storage) SCREAMING_SNAKE_CASE : str = AbsSummarizer(_a , torch.device("cpu") , _a) original.eval() SCREAMING_SNAKE_CASE : List[str] = BertAbsSummarizer(_a , torch.device("cpu")) new_model.eval() # ------------------- # Convert the weights # ------------------- logging.info("convert the model") new_model.bert.load_state_dict(original.bert.state_dict()) new_model.decoder.load_state_dict(original.decoder.state_dict()) new_model.generator.load_state_dict(original.generator.state_dict()) # ---------------------------------- # Make sure the outpus are identical # ---------------------------------- logging.info("Make sure that the models' outputs are identical") SCREAMING_SNAKE_CASE : List[str] = BertTokenizer.from_pretrained("bert-base-uncased") # prepare the model inputs SCREAMING_SNAKE_CASE : List[str] = tokenizer.encode("This is sample éàalj'-.") encoder_input_ids.extend([tokenizer.pad_token_id] * (512 - len(_a))) SCREAMING_SNAKE_CASE : int = torch.tensor(_a).unsqueeze(0) SCREAMING_SNAKE_CASE : List[Any] = tokenizer.encode("This is sample 3 éàalj'-.") decoder_input_ids.extend([tokenizer.pad_token_id] * (512 - len(_a))) SCREAMING_SNAKE_CASE : int = torch.tensor(_a).unsqueeze(0) # failsafe to make sure the weights reset does not affect the # loaded weights. assert torch.max(torch.abs(original.generator[0].weight - new_model.generator[0].weight)) == 0 # forward pass SCREAMING_SNAKE_CASE : List[Any] = encoder_input_ids SCREAMING_SNAKE_CASE : List[Any] = decoder_input_ids SCREAMING_SNAKE_CASE : Dict = None SCREAMING_SNAKE_CASE : Optional[Any] = None SCREAMING_SNAKE_CASE : List[Any] = None SCREAMING_SNAKE_CASE : Optional[int] = None SCREAMING_SNAKE_CASE : Dict = None # The original model does not apply the geneator layer immediatly but rather in # the beam search (where it combines softmax + linear layer). Since we already # apply the softmax in our generation process we only apply the linear layer here. # We make sure that the outputs of the full stack are identical SCREAMING_SNAKE_CASE : Optional[int] = original(_a , _a , _a , _a , _a , _a , _a)[0] SCREAMING_SNAKE_CASE : Dict = original.generator(_a) SCREAMING_SNAKE_CASE : Any = new_model( _a , _a , _a , _a , _a)[0] SCREAMING_SNAKE_CASE : Tuple = new_model.generator(_a) SCREAMING_SNAKE_CASE : List[Any] = torch.max(torch.abs(output_converted_model - output_original_model)).item() print("Maximum absolute difference beween weights: {:.2f}".format(_a)) SCREAMING_SNAKE_CASE : Union[str, Any] = torch.max(torch.abs(output_converted_generator - output_original_generator)).item() print("Maximum absolute difference beween weights: {:.2f}".format(_a)) SCREAMING_SNAKE_CASE : int = torch.allclose(_a , _a , atol=1E-3) if are_identical: logging.info("all weights are equal up to 1e-3") else: raise ValueError("the weights are different. The new model is likely different from the original one.") # The model has been saved with torch.save(model) and this is bound to the exact # directory structure. We save the state_dict instead. logging.info("saving the model's state dictionary") torch.save( new_model.state_dict() , "./bertabs-finetuned-cnndm-extractive-abstractive-summarization/pytorch_model.bin") if __name__ == "__main__": a_ = argparse.ArgumentParser() parser.add_argument( '--bertabs_checkpoint_path', default=None, type=str, required=True, help='Path the official PyTorch dump.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, required=True, help='Path to the output PyTorch model.', ) a_ = parser.parse_args() convert_bertabs_checkpoints( args.bertabs_checkpoint_path, args.pytorch_dump_folder_path, )
25
0
from dataclasses import dataclass from typing import Dict, Optional, Tuple, Union import torch import torch.nn as nn from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput, apply_forward_hook from .attention_processor import AttentionProcessor, AttnProcessor from .modeling_utils import ModelMixin from .vae import Decoder, DecoderOutput, DiagonalGaussianDistribution, Encoder @dataclass class a ( __A ): _lowercase = 4_2 class a ( __A , __A ): _lowercase = True @register_to_config def __init__( self , A_ = 3 , A_ = 3 , A_ = ("DownEncoderBlock2D",) , A_ = ("UpDecoderBlock2D",) , A_ = (64,) , A_ = 1 , A_ = "silu" , A_ = 4 , A_ = 32 , A_ = 32 , A_ = 0.1_82_15 , ): '''simple docstring''' super().__init__() # pass init params to Encoder _UpperCAmelCase : List[Any] = Encoder( in_channels=A_ , out_channels=A_ , down_block_types=A_ , block_out_channels=A_ , layers_per_block=A_ , act_fn=A_ , norm_num_groups=A_ , double_z=A_ , ) # pass init params to Decoder _UpperCAmelCase : Dict = Decoder( in_channels=A_ , out_channels=A_ , up_block_types=A_ , block_out_channels=A_ , layers_per_block=A_ , norm_num_groups=A_ , act_fn=A_ , ) _UpperCAmelCase : Any = nn.Convad(2 * latent_channels , 2 * latent_channels , 1 ) _UpperCAmelCase : Dict = nn.Convad(A_ , A_ , 1 ) _UpperCAmelCase : Any = False _UpperCAmelCase : Optional[Any] = False # only relevant if vae tiling is enabled _UpperCAmelCase : Dict = self.config.sample_size _UpperCAmelCase : int = ( self.config.sample_size[0] if isinstance(self.config.sample_size , (list, tuple) ) else self.config.sample_size ) _UpperCAmelCase : Union[str, Any] = int(sample_size / (2 ** (len(self.config.block_out_channels ) - 1)) ) _UpperCAmelCase : Union[str, Any] = 0.25 def _UpperCAmelCase ( self , A_ , A_=False ): '''simple docstring''' if isinstance(A_ , (Encoder, Decoder) ): _UpperCAmelCase : Any = value def _UpperCAmelCase ( self , A_ = True ): '''simple docstring''' _UpperCAmelCase : Optional[int] = use_tiling def _UpperCAmelCase ( self ): '''simple docstring''' self.enable_tiling(A_ ) def _UpperCAmelCase ( self ): '''simple docstring''' _UpperCAmelCase : Tuple = True def _UpperCAmelCase ( self ): '''simple docstring''' _UpperCAmelCase : str = False @property # Copied from diffusers.models.unet_2d_condition.UNet2DConditionModel.attn_processors def _UpperCAmelCase ( self ): '''simple docstring''' _UpperCAmelCase : Any = {} def fn_recursive_add_processors(A_ , A_ , A_ ): if hasattr(A_ , "set_processor" ): _UpperCAmelCase : Any = module.processor for sub_name, child in module.named_children(): fn_recursive_add_processors(f'{name}.{sub_name}' , A_ , A_ ) return processors for name, module in self.named_children(): fn_recursive_add_processors(A_ , A_ , A_ ) return processors def _UpperCAmelCase ( self , A_ ): '''simple docstring''' _UpperCAmelCase : Optional[Any] = len(self.attn_processors.keys() ) if isinstance(A_ , A_ ) and len(A_ ) != count: raise ValueError( f'A dict of processors was passed, but the number of processors {len(A_ )} does not match the' f' number of attention layers: {count}. Please make sure to pass {count} processor classes.' ) def fn_recursive_attn_processor(A_ , A_ , A_ ): if hasattr(A_ , "set_processor" ): if not isinstance(A_ , A_ ): module.set_processor(A_ ) else: module.set_processor(processor.pop(f'{name}.processor' ) ) for sub_name, child in module.named_children(): fn_recursive_attn_processor(f'{name}.{sub_name}' , A_ , A_ ) for name, module in self.named_children(): fn_recursive_attn_processor(A_ , A_ , A_ ) def _UpperCAmelCase ( self ): '''simple docstring''' self.set_attn_processor(AttnProcessor() ) @apply_forward_hook def _UpperCAmelCase ( self , A_ , A_ = True ): '''simple docstring''' if self.use_tiling and (x.shape[-1] > self.tile_sample_min_size or x.shape[-2] > self.tile_sample_min_size): return self.tiled_encode(A_ , return_dict=A_ ) if self.use_slicing and x.shape[0] > 1: _UpperCAmelCase : str = [self.encoder(A_ ) for x_slice in x.split(1 )] _UpperCAmelCase : Any = torch.cat(A_ ) else: _UpperCAmelCase : Optional[Any] = self.encoder(A_ ) _UpperCAmelCase : Any = self.quant_conv(A_ ) _UpperCAmelCase : Optional[Any] = DiagonalGaussianDistribution(A_ ) if not return_dict: return (posterior,) return AutoencoderKLOutput(latent_dist=A_ ) def _UpperCAmelCase ( self , A_ , A_ = True ): '''simple docstring''' if self.use_tiling and (z.shape[-1] > self.tile_latent_min_size or z.shape[-2] > self.tile_latent_min_size): return self.tiled_decode(A_ , return_dict=A_ ) _UpperCAmelCase : int = self.post_quant_conv(A_ ) _UpperCAmelCase : List[Any] = self.decoder(A_ ) if not return_dict: return (dec,) return DecoderOutput(sample=A_ ) @apply_forward_hook def _UpperCAmelCase ( self , A_ , A_ = True ): '''simple docstring''' if self.use_slicing and z.shape[0] > 1: _UpperCAmelCase : List[str] = [self._decode(A_ ).sample for z_slice in z.split(1 )] _UpperCAmelCase : Any = torch.cat(A_ ) else: _UpperCAmelCase : Optional[int] = self._decode(A_ ).sample if not return_dict: return (decoded,) return DecoderOutput(sample=A_ ) def _UpperCAmelCase ( self , A_ , A_ , A_ ): '''simple docstring''' _UpperCAmelCase : List[str] = min(a.shape[2] , b.shape[2] , A_ ) for y in range(A_ ): _UpperCAmelCase : List[str] = a[:, :, -blend_extent + y, :] * (1 - y / blend_extent) + b[:, :, y, :] * (y / blend_extent) return b def _UpperCAmelCase ( self , A_ , A_ , A_ ): '''simple docstring''' _UpperCAmelCase : List[str] = min(a.shape[3] , b.shape[3] , A_ ) for x in range(A_ ): _UpperCAmelCase : Tuple = a[:, :, :, -blend_extent + x] * (1 - x / blend_extent) + b[:, :, :, x] * (x / blend_extent) return b def _UpperCAmelCase ( self , A_ , A_ = True ): '''simple docstring''' _UpperCAmelCase : Dict = int(self.tile_sample_min_size * (1 - self.tile_overlap_factor) ) _UpperCAmelCase : Optional[Any] = int(self.tile_latent_min_size * self.tile_overlap_factor ) _UpperCAmelCase : Dict = self.tile_latent_min_size - blend_extent # Split the image into 512x512 tiles and encode them separately. _UpperCAmelCase : Tuple = [] for i in range(0 , x.shape[2] , A_ ): _UpperCAmelCase : Dict = [] for j in range(0 , x.shape[3] , A_ ): _UpperCAmelCase : Dict = x[:, :, i : i + self.tile_sample_min_size, j : j + self.tile_sample_min_size] _UpperCAmelCase : Union[str, Any] = self.encoder(A_ ) _UpperCAmelCase : Optional[int] = self.quant_conv(A_ ) row.append(A_ ) rows.append(A_ ) _UpperCAmelCase : Tuple = [] for i, row in enumerate(A_ ): _UpperCAmelCase : List[str] = [] for j, tile in enumerate(A_ ): # blend the above tile and the left tile # to the current tile and add the current tile to the result row if i > 0: _UpperCAmelCase : Optional[Any] = self.blend_v(rows[i - 1][j] , A_ , A_ ) if j > 0: _UpperCAmelCase : str = self.blend_h(row[j - 1] , A_ , A_ ) result_row.append(tile[:, :, :row_limit, :row_limit] ) result_rows.append(torch.cat(A_ , dim=3 ) ) _UpperCAmelCase : List[str] = torch.cat(A_ , dim=2 ) _UpperCAmelCase : List[str] = DiagonalGaussianDistribution(A_ ) if not return_dict: return (posterior,) return AutoencoderKLOutput(latent_dist=A_ ) def _UpperCAmelCase ( self , A_ , A_ = True ): '''simple docstring''' _UpperCAmelCase : Dict = int(self.tile_latent_min_size * (1 - self.tile_overlap_factor) ) _UpperCAmelCase : List[str] = int(self.tile_sample_min_size * self.tile_overlap_factor ) _UpperCAmelCase : Dict = self.tile_sample_min_size - blend_extent # Split z into overlapping 64x64 tiles and decode them separately. # The tiles have an overlap to avoid seams between tiles. _UpperCAmelCase : str = [] for i in range(0 , z.shape[2] , A_ ): _UpperCAmelCase : Optional[Any] = [] for j in range(0 , z.shape[3] , A_ ): _UpperCAmelCase : str = z[:, :, i : i + self.tile_latent_min_size, j : j + self.tile_latent_min_size] _UpperCAmelCase : Optional[int] = self.post_quant_conv(A_ ) _UpperCAmelCase : List[Any] = self.decoder(A_ ) row.append(A_ ) rows.append(A_ ) _UpperCAmelCase : Any = [] for i, row in enumerate(A_ ): _UpperCAmelCase : Optional[int] = [] for j, tile in enumerate(A_ ): # blend the above tile and the left tile # to the current tile and add the current tile to the result row if i > 0: _UpperCAmelCase : List[str] = self.blend_v(rows[i - 1][j] , A_ , A_ ) if j > 0: _UpperCAmelCase : List[str] = self.blend_h(row[j - 1] , A_ , A_ ) result_row.append(tile[:, :, :row_limit, :row_limit] ) result_rows.append(torch.cat(A_ , dim=3 ) ) _UpperCAmelCase : Dict = torch.cat(A_ , dim=2 ) if not return_dict: return (dec,) return DecoderOutput(sample=A_ ) def _UpperCAmelCase ( self , A_ , A_ = False , A_ = True , A_ = None , ): '''simple docstring''' _UpperCAmelCase : Dict = sample _UpperCAmelCase : Optional[int] = self.encode(A_ ).latent_dist if sample_posterior: _UpperCAmelCase : Optional[int] = posterior.sample(generator=A_ ) else: _UpperCAmelCase : Tuple = posterior.mode() _UpperCAmelCase : List[str] = self.decode(A_ ).sample if not return_dict: return (dec,) return DecoderOutput(sample=A_ )
300
import argparse from transformers import CLIPImageProcessor, CLIPVisionModelWithProjection from diffusers import UnCLIPImageVariationPipeline, UnCLIPPipeline if __name__ == "__main__": a_ = argparse.ArgumentParser() parser.add_argument('--dump_path', default=None, type=str, required=True, help='Path to the output model.') parser.add_argument( '--txt2img_unclip', default='kakaobrain/karlo-v1-alpha', type=str, required=False, help='The pretrained txt2img unclip.', ) a_ = parser.parse_args() a_ = UnCLIPPipeline.from_pretrained(args.txtaimg_unclip) a_ = CLIPImageProcessor() a_ = CLIPVisionModelWithProjection.from_pretrained('openai/clip-vit-large-patch14') a_ = UnCLIPImageVariationPipeline( decoder=txtaimg.decoder, text_encoder=txtaimg.text_encoder, tokenizer=txtaimg.tokenizer, text_proj=txtaimg.text_proj, feature_extractor=feature_extractor, image_encoder=image_encoder, super_res_first=txtaimg.super_res_first, super_res_last=txtaimg.super_res_last, decoder_scheduler=txtaimg.decoder_scheduler, super_res_scheduler=txtaimg.super_res_scheduler, ) imgaimg.save_pretrained(args.dump_path)
25
0
'''simple docstring''' import random import unittest import numpy as np from diffusers import ( DPMSolverMultistepScheduler, EulerAncestralDiscreteScheduler, EulerDiscreteScheduler, LMSDiscreteScheduler, OnnxStableDiffusionImgaImgPipeline, PNDMScheduler, ) from diffusers.utils import floats_tensor from diffusers.utils.testing_utils import ( is_onnx_available, load_image, nightly, require_onnxruntime, require_torch_gpu, ) from ..test_pipelines_onnx_common import OnnxPipelineTesterMixin if is_onnx_available(): import onnxruntime as ort class __snake_case( __A , unittest.TestCase ): '''simple docstring''' UpperCAmelCase : Any = "hf-internal-testing/tiny-random-OnnxStableDiffusionPipeline" def __snake_case ( self , A_=0 ) -> Dict: lowerCAmelCase = floats_tensor((1, 3, 128, 128) , rng=random.Random(A_ ) ) lowerCAmelCase = np.random.RandomState(A_ ) lowerCAmelCase = { "prompt": "A painting of a squirrel eating a burger", "image": image, "generator": generator, "num_inference_steps": 3, "strength": 0.7_5, "guidance_scale": 7.5, "output_type": "numpy", } return inputs def __snake_case ( self ) -> Any: lowerCAmelCase = OnnxStableDiffusionImgaImgPipeline.from_pretrained(self.hub_checkpoint , provider="""CPUExecutionProvider""" ) pipe.set_progress_bar_config(disable=A_ ) lowerCAmelCase = self.get_dummy_inputs() lowerCAmelCase = pipe(**A_ ).images lowerCAmelCase = image[0, -3:, -3:, -1].flatten() assert image.shape == (1, 128, 128, 3) lowerCAmelCase = np.array([0.6_9_6_4_3, 0.5_8_4_8_4, 0.5_0_3_1_4, 0.5_8_7_6_0, 0.5_5_3_6_8, 0.5_9_6_4_3, 0.5_1_5_2_9, 0.4_1_2_1_7, 0.4_9_0_8_7] ) assert np.abs(image_slice - expected_slice ).max() < 1e-1 def __snake_case ( self ) -> List[Any]: lowerCAmelCase = OnnxStableDiffusionImgaImgPipeline.from_pretrained(self.hub_checkpoint , provider="""CPUExecutionProvider""" ) lowerCAmelCase = PNDMScheduler.from_config(pipe.scheduler.config , skip_prk_steps=A_ ) pipe.set_progress_bar_config(disable=A_ ) lowerCAmelCase = self.get_dummy_inputs() lowerCAmelCase = pipe(**A_ ).images lowerCAmelCase = image[0, -3:, -3:, -1] assert image.shape == (1, 128, 128, 3) lowerCAmelCase = np.array([0.6_1_7_3_7, 0.5_4_6_4_2, 0.5_3_1_8_3, 0.5_4_4_6_5, 0.5_2_7_4_2, 0.6_0_5_2_5, 0.4_9_9_6_9, 0.4_0_6_5_5, 0.4_8_1_5_4] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-1 def __snake_case ( self ) -> Union[str, Any]: lowerCAmelCase = OnnxStableDiffusionImgaImgPipeline.from_pretrained(self.hub_checkpoint , provider="""CPUExecutionProvider""" ) lowerCAmelCase = LMSDiscreteScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=A_ ) # warmup pass to apply optimizations lowerCAmelCase = pipe(**self.get_dummy_inputs() ) lowerCAmelCase = self.get_dummy_inputs() lowerCAmelCase = pipe(**A_ ).images lowerCAmelCase = image[0, -3:, -3:, -1] assert image.shape == (1, 128, 128, 3) lowerCAmelCase = np.array([0.5_2_7_6_1, 0.5_9_9_7_7, 0.4_9_0_3_3, 0.4_9_6_1_9, 0.5_4_2_8_2, 0.5_0_3_1_1, 0.4_7_6_0_0, 0.4_0_9_1_8, 0.4_5_2_0_3] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-1 def __snake_case ( self ) -> List[Any]: lowerCAmelCase = OnnxStableDiffusionImgaImgPipeline.from_pretrained(self.hub_checkpoint , provider="""CPUExecutionProvider""" ) lowerCAmelCase = EulerDiscreteScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=A_ ) lowerCAmelCase = self.get_dummy_inputs() lowerCAmelCase = pipe(**A_ ).images lowerCAmelCase = image[0, -3:, -3:, -1] assert image.shape == (1, 128, 128, 3) lowerCAmelCase = np.array([0.5_2_9_1_1, 0.6_0_0_0_4, 0.4_9_2_2_9, 0.4_9_8_0_5, 0.5_4_5_0_2, 0.5_0_6_8_0, 0.4_7_7_7_7, 0.4_1_0_2_8, 0.4_5_3_0_4] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-1 def __snake_case ( self ) -> Dict: lowerCAmelCase = OnnxStableDiffusionImgaImgPipeline.from_pretrained(self.hub_checkpoint , provider="""CPUExecutionProvider""" ) lowerCAmelCase = EulerAncestralDiscreteScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=A_ ) lowerCAmelCase = self.get_dummy_inputs() lowerCAmelCase = pipe(**A_ ).images lowerCAmelCase = image[0, -3:, -3:, -1] assert image.shape == (1, 128, 128, 3) lowerCAmelCase = np.array([0.5_2_9_1_1, 0.6_0_0_0_4, 0.4_9_2_2_9, 0.4_9_8_0_5, 0.5_4_5_0_2, 0.5_0_6_8_0, 0.4_7_7_7_7, 0.4_1_0_2_8, 0.4_5_3_0_4] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-1 def __snake_case ( self ) -> List[str]: lowerCAmelCase = OnnxStableDiffusionImgaImgPipeline.from_pretrained(self.hub_checkpoint , provider="""CPUExecutionProvider""" ) lowerCAmelCase = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=A_ ) lowerCAmelCase = self.get_dummy_inputs() lowerCAmelCase = pipe(**A_ ).images lowerCAmelCase = image[0, -3:, -3:, -1] assert image.shape == (1, 128, 128, 3) lowerCAmelCase = np.array([0.6_5_3_3_1, 0.5_8_2_7_7, 0.4_8_2_0_4, 0.5_6_0_5_9, 0.5_3_6_6_5, 0.5_6_2_3_5, 0.5_0_9_6_9, 0.4_0_0_0_9, 0.4_6_5_5_2] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-1 @nightly @require_onnxruntime @require_torch_gpu class __snake_case( unittest.TestCase ): '''simple docstring''' @property def __snake_case ( self ) -> Optional[int]: return ( "CUDAExecutionProvider", { "gpu_mem_limit": "15000000000", # 15GB "arena_extend_strategy": "kSameAsRequested", }, ) @property def __snake_case ( self ) -> Dict: lowerCAmelCase = ort.SessionOptions() lowerCAmelCase = False return options def __snake_case ( self ) -> Dict: lowerCAmelCase = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/img2img/sketch-mountains-input.jpg""" ) lowerCAmelCase = init_image.resize((768, 512) ) # using the PNDM scheduler by default lowerCAmelCase = OnnxStableDiffusionImgaImgPipeline.from_pretrained( """CompVis/stable-diffusion-v1-4""" , revision="""onnx""" , safety_checker=A_ , feature_extractor=A_ , provider=self.gpu_provider , sess_options=self.gpu_options , ) pipe.set_progress_bar_config(disable=A_ ) lowerCAmelCase = "A fantasy landscape, trending on artstation" lowerCAmelCase = np.random.RandomState(0 ) lowerCAmelCase = pipe( prompt=A_ , image=A_ , strength=0.7_5 , guidance_scale=7.5 , num_inference_steps=10 , generator=A_ , output_type="""np""" , ) lowerCAmelCase = output.images lowerCAmelCase = images[0, 255:258, 383:386, -1] assert images.shape == (1, 512, 768, 3) lowerCAmelCase = np.array([0.4_9_0_9, 0.5_0_5_9, 0.5_3_7_2, 0.4_6_2_3, 0.4_8_7_6, 0.5_0_4_9, 0.4_8_2_0, 0.4_9_5_6, 0.5_0_1_9] ) # TODO: lower the tolerance after finding the cause of onnxruntime reproducibility issues assert np.abs(image_slice.flatten() - expected_slice ).max() < 2e-2 def __snake_case ( self ) -> List[str]: lowerCAmelCase = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/img2img/sketch-mountains-input.jpg""" ) lowerCAmelCase = init_image.resize((768, 512) ) lowerCAmelCase = LMSDiscreteScheduler.from_pretrained( """runwayml/stable-diffusion-v1-5""" , subfolder="""scheduler""" , revision="""onnx""" ) lowerCAmelCase = OnnxStableDiffusionImgaImgPipeline.from_pretrained( """runwayml/stable-diffusion-v1-5""" , revision="""onnx""" , scheduler=A_ , safety_checker=A_ , feature_extractor=A_ , provider=self.gpu_provider , sess_options=self.gpu_options , ) pipe.set_progress_bar_config(disable=A_ ) lowerCAmelCase = "A fantasy landscape, trending on artstation" lowerCAmelCase = np.random.RandomState(0 ) lowerCAmelCase = pipe( prompt=A_ , image=A_ , strength=0.7_5 , guidance_scale=7.5 , num_inference_steps=20 , generator=A_ , output_type="""np""" , ) lowerCAmelCase = output.images lowerCAmelCase = images[0, 255:258, 383:386, -1] assert images.shape == (1, 512, 768, 3) lowerCAmelCase = np.array([0.8_0_4_3, 0.9_2_6, 0.9_5_8_1, 0.8_1_1_9, 0.8_9_5_4, 0.9_1_3, 0.7_2_0_9, 0.7_4_6_3, 0.7_4_3_1] ) # TODO: lower the tolerance after finding the cause of onnxruntime reproducibility issues assert np.abs(image_slice.flatten() - expected_slice ).max() < 2e-2
433
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available a_ = { 'configuration_swinv2': ['SWINV2_PRETRAINED_CONFIG_ARCHIVE_MAP', 'Swinv2Config'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a_ = [ 'SWINV2_PRETRAINED_MODEL_ARCHIVE_LIST', 'Swinv2ForImageClassification', 'Swinv2ForMaskedImageModeling', 'Swinv2Model', 'Swinv2PreTrainedModel', ] if TYPE_CHECKING: from .configuration_swinva import SWINV2_PRETRAINED_CONFIG_ARCHIVE_MAP, SwinvaConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_swinva import ( SWINV2_PRETRAINED_MODEL_ARCHIVE_LIST, SwinvaForImageClassification, SwinvaForMaskedImageModeling, SwinvaModel, SwinvaPreTrainedModel, ) else: import sys a_ = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
25
0
"""simple docstring""" import argparse import torch from transformers import LxmertConfig, LxmertForPreTraining, load_tf_weights_in_lxmert from transformers.utils import logging logging.set_verbosity_info() def snake_case ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) -> str: # Initialise PyTorch model _snake_case = LxmertConfig.from_json_file(_a ) print(f"""Building PyTorch model from configuration: {config}""" ) _snake_case = LxmertForPreTraining(_a ) # Load weights from tf checkpoint load_tf_weights_in_lxmert(_a , _a , _a ) # Save pytorch-model print(f"""Save PyTorch model to {pytorch_dump_path}""" ) torch.save(model.state_dict() , _a ) if __name__ == "__main__": snake_case = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--tf_checkpoint_path''', default=None, type=str, required=True, help='''Path to the TensorFlow checkpoint path.''' ) parser.add_argument( '''--config_file''', default=None, type=str, required=True, help='''The config json file corresponding to the pre-trained model. \nThis specifies the model architecture.''', ) parser.add_argument( '''--pytorch_dump_path''', default=None, type=str, required=True, help='''Path to the output PyTorch model.''' ) snake_case = parser.parse_args() convert_tf_checkpoint_to_pytorch(args.tf_checkpoint_path, args.config_file, args.pytorch_dump_path)
103
from math import pi, sqrt, tan def lowerCamelCase__ ( _a): if side_length < 0: raise ValueError("surface_area_cube() only accepts non-negative values") return 6 * side_length**2 def lowerCamelCase__ ( _a , _a , _a): if length < 0 or breadth < 0 or height < 0: raise ValueError("surface_area_cuboid() only accepts non-negative values") return 2 * ((length * breadth) + (breadth * height) + (length * height)) def lowerCamelCase__ ( _a): if radius < 0: raise ValueError("surface_area_sphere() only accepts non-negative values") return 4 * pi * radius**2 def lowerCamelCase__ ( _a): if radius < 0: raise ValueError("surface_area_hemisphere() only accepts non-negative values") return 3 * pi * radius**2 def lowerCamelCase__ ( _a , _a): if radius < 0 or height < 0: raise ValueError("surface_area_cone() only accepts non-negative values") return pi * radius * (radius + (height**2 + radius**2) ** 0.5) def lowerCamelCase__ ( _a , _a , _a): if radius_a < 0 or radius_a < 0 or height < 0: raise ValueError( "surface_area_conical_frustum() only accepts non-negative values") SCREAMING_SNAKE_CASE : Any = (height**2 + (radius_a - radius_a) ** 2) ** 0.5 return pi * ((slant_height * (radius_a + radius_a)) + radius_a**2 + radius_a**2) def lowerCamelCase__ ( _a , _a): if radius < 0 or height < 0: raise ValueError("surface_area_cylinder() only accepts non-negative values") return 2 * pi * radius * (height + radius) def lowerCamelCase__ ( _a , _a): if torus_radius < 0 or tube_radius < 0: raise ValueError("surface_area_torus() only accepts non-negative values") if torus_radius < tube_radius: raise ValueError( "surface_area_torus() does not support spindle or self intersecting tori") return 4 * pow(_a , 2) * torus_radius * tube_radius def lowerCamelCase__ ( _a , _a): if length < 0 or width < 0: raise ValueError("area_rectangle() only accepts non-negative values") return length * width def lowerCamelCase__ ( _a): if side_length < 0: raise ValueError("area_square() only accepts non-negative values") return side_length**2 def lowerCamelCase__ ( _a , _a): if base < 0 or height < 0: raise ValueError("area_triangle() only accepts non-negative values") return (base * height) / 2 def lowerCamelCase__ ( _a , _a , _a): if sidea < 0 or sidea < 0 or sidea < 0: raise ValueError("area_triangle_three_sides() only accepts non-negative values") elif sidea + sidea < sidea or sidea + sidea < sidea or sidea + sidea < sidea: raise ValueError("Given three sides do not form a triangle") SCREAMING_SNAKE_CASE : List[str] = (sidea + sidea + sidea) / 2 SCREAMING_SNAKE_CASE : Optional[int] = sqrt( semi_perimeter * (semi_perimeter - sidea) * (semi_perimeter - sidea) * (semi_perimeter - sidea)) return area def lowerCamelCase__ ( _a , _a): if base < 0 or height < 0: raise ValueError("area_parallelogram() only accepts non-negative values") return base * height def lowerCamelCase__ ( _a , _a , _a): if basea < 0 or basea < 0 or height < 0: raise ValueError("area_trapezium() only accepts non-negative values") return 1 / 2 * (basea + basea) * height def lowerCamelCase__ ( _a): if radius < 0: raise ValueError("area_circle() only accepts non-negative values") return pi * radius**2 def lowerCamelCase__ ( _a , _a): if radius_x < 0 or radius_y < 0: raise ValueError("area_ellipse() only accepts non-negative values") return pi * radius_x * radius_y def lowerCamelCase__ ( _a , _a): if diagonal_a < 0 or diagonal_a < 0: raise ValueError("area_rhombus() only accepts non-negative values") return 1 / 2 * diagonal_a * diagonal_a def lowerCamelCase__ ( _a , _a): if not isinstance(_a , _a) or sides < 3: raise ValueError( "area_reg_polygon() only accepts integers greater than or \ equal to three as number of sides") elif length < 0: raise ValueError( "area_reg_polygon() only accepts non-negative values as \ length of a side") return (sides * length**2) / (4 * tan(pi / sides)) return (sides * length**2) / (4 * tan(pi / sides)) if __name__ == "__main__": import doctest doctest.testmod(verbose=True) # verbose so we can see methods missing tests print('[DEMO] Areas of various geometric shapes: \n') print(F'''Rectangle: {area_rectangle(10, 20) = }''') print(F'''Square: {area_square(10) = }''') print(F'''Triangle: {area_triangle(10, 10) = }''') print(F'''Triangle: {area_triangle_three_sides(5, 12, 13) = }''') print(F'''Parallelogram: {area_parallelogram(10, 20) = }''') print(F'''Rhombus: {area_rhombus(10, 20) = }''') print(F'''Trapezium: {area_trapezium(10, 20, 30) = }''') print(F'''Circle: {area_circle(20) = }''') print(F'''Ellipse: {area_ellipse(10, 20) = }''') print('\nSurface Areas of various geometric shapes: \n') print(F'''Cube: {surface_area_cube(20) = }''') print(F'''Cuboid: {surface_area_cuboid(10, 20, 30) = }''') print(F'''Sphere: {surface_area_sphere(20) = }''') print(F'''Hemisphere: {surface_area_hemisphere(20) = }''') print(F'''Cone: {surface_area_cone(10, 20) = }''') print(F'''Conical Frustum: {surface_area_conical_frustum(10, 20, 30) = }''') print(F'''Cylinder: {surface_area_cylinder(10, 20) = }''') print(F'''Torus: {surface_area_torus(20, 10) = }''') print(F'''Equilateral Triangle: {area_reg_polygon(3, 10) = }''') print(F'''Square: {area_reg_polygon(4, 10) = }''') print(F'''Reqular Pentagon: {area_reg_polygon(5, 10) = }''')
25
0
class UpperCAmelCase : '''simple docstring''' def __init__( self : Tuple ,A : Union[str, Any] ): __A = arr.split("," ) def UpperCamelCase_ ( self : Any ): __A = [int(self.array[0] )] * len(self.array ) __A = [int(self.array[0] )] * len(self.array ) for i in range(1 ,len(self.array ) ): __A = max( int(self.array[i] ) + sum_value[i - 1] ,int(self.array[i] ) ) __A = max(sum_value[i] ,rear[i - 1] ) return rear[len(self.array ) - 1] if __name__ == "__main__": SCREAMING_SNAKE_CASE :Dict = input('please input some numbers:') SCREAMING_SNAKE_CASE :List[Any] = SubArray(whole_array) SCREAMING_SNAKE_CASE :List[Any] = array.solve_sub_array() print(('the results is:', re))
55
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available a_ = { 'configuration_instructblip': [ 'INSTRUCTBLIP_PRETRAINED_CONFIG_ARCHIVE_MAP', 'InstructBlipConfig', 'InstructBlipQFormerConfig', 'InstructBlipVisionConfig', ], 'processing_instructblip': ['InstructBlipProcessor'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a_ = [ 'INSTRUCTBLIP_PRETRAINED_MODEL_ARCHIVE_LIST', 'InstructBlipQFormerModel', 'InstructBlipPreTrainedModel', 'InstructBlipForConditionalGeneration', 'InstructBlipVisionModel', ] if TYPE_CHECKING: from .configuration_instructblip import ( INSTRUCTBLIP_PRETRAINED_CONFIG_ARCHIVE_MAP, InstructBlipConfig, InstructBlipQFormerConfig, InstructBlipVisionConfig, ) from .processing_instructblip import InstructBlipProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_instructblip import ( INSTRUCTBLIP_PRETRAINED_MODEL_ARCHIVE_LIST, InstructBlipForConditionalGeneration, InstructBlipPreTrainedModel, InstructBlipQFormerModel, InstructBlipVisionModel, ) else: import sys a_ = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
25
0
"""simple docstring""" import gc import threading import time import psutil import torch class UpperCAmelCase_ : def __init__( self ) -> List[Any]: lowercase__ : int = psutil.Process() lowercase__ : int = False def _UpperCAmelCase ( self ) -> List[str]: lowercase__ : Dict = -1 while True: lowercase__ : Tuple = max(self.process.memory_info().rss , self.cpu_memory_peak ) # can't sleep or will not catch the peak right (this comment is here on purpose) if not self.peak_monitoring: break def _UpperCAmelCase ( self ) -> Optional[int]: lowercase__ : List[Any] = True lowercase__ : Tuple = threading.Thread(target=self.peak_monitor ) lowercase__ : Union[str, Any] = True self.thread.start() def _UpperCAmelCase ( self ) -> List[str]: lowercase__ : List[str] = False self.thread.join() return self.cpu_memory_peak _UpperCamelCase : Optional[int] = PeakCPUMemory() def a_ ( ): '''simple docstring''' lowercase__ : Optional[int] = {"time": time.time()} gc.collect() torch.cuda.empty_cache() # CPU mem lowercase__ : List[Any] = psutil.Process().memory_info().rss cpu_peak_tracker.start() # GPU mem for i in range(torch.cuda.device_count() ): lowercase__ : Dict = torch.cuda.memory_allocated(_a ) torch.cuda.reset_peak_memory_stats() return measures def a_ ( _lowerCAmelCase : int ): '''simple docstring''' lowercase__ : Optional[int] = {"time": time.time() - start_measures["time"]} gc.collect() torch.cuda.empty_cache() # CPU mem lowercase__ : Tuple = (psutil.Process().memory_info().rss - start_measures["cpu"]) / 2**20 lowercase__ : Optional[Any] = (cpu_peak_tracker.stop() - start_measures["cpu"]) / 2**20 # GPU mem for i in range(torch.cuda.device_count() ): lowercase__ : Tuple = (torch.cuda.memory_allocated(_a ) - start_measures[str(_a )]) / 2**20 lowercase__ : Optional[Any] = (torch.cuda.max_memory_allocated(_a ) - start_measures[str(_a )]) / 2**20 return measures def a_ ( _lowerCAmelCase : int , _lowerCAmelCase : str ): '''simple docstring''' print(f"""{description}:""" ) print(f"""- Time: {measures["time"]:.2f}s""" ) for i in range(torch.cuda.device_count() ): print(f"""- GPU {i} allocated: {measures[str(_a )]:.2f}MiB""" ) lowercase__ : Tuple = measures[f"""{i}-peak"""] print(f"""- GPU {i} peak: {peak:.2f}MiB""" ) print(f"""- CPU RAM allocated: {measures["cpu"]:.2f}MiB""" ) print(f"""- CPU RAM peak: {measures["cpu-peak"]:.2f}MiB""" )
599
from __future__ import annotations def lowerCamelCase__ ( _a): SCREAMING_SNAKE_CASE : Optional[Any] = 2 SCREAMING_SNAKE_CASE : Optional[int] = [] while i * i <= n: if n % i: i += 1 else: n //= i factors.append(_a) if n > 1: factors.append(_a) return factors if __name__ == "__main__": import doctest doctest.testmod()
25
0
"""simple docstring""" import copy from typing import Dict, List, Optional from ...configuration_utils import PretrainedConfig from ...utils import logging from ..auto import CONFIG_MAPPING A = { 'facebook/mask2former-swin-small-coco-instance': ( 'https://huggingface.co/facebook/mask2former-swin-small-coco-instance/blob/main/config.json' ) # See all Mask2Former models at https://huggingface.co/models?filter=mask2former } A = logging.get_logger(__name__) class _a ( __A): __magic_name__ = """mask2former""" __magic_name__ = ["""swin"""] __magic_name__ = {"""hidden_size""": """hidden_dim"""} def __init__( self : Dict , _lowercase : Optional[Dict] = None , _lowercase : int = 256 , _lowercase : int = 256 , _lowercase : int = 256 , _lowercase : int = 1024 , _lowercase : str = "relu" , _lowercase : int = 6 , _lowercase : int = 10 , _lowercase : int = 8 , _lowercase : float = 0.0 , _lowercase : int = 2048 , _lowercase : bool = False , _lowercase : bool = False , _lowercase : int = 4 , _lowercase : int = 255 , _lowercase : int = 100 , _lowercase : float = 0.1 , _lowercase : float = 2.0 , _lowercase : float = 5.0 , _lowercase : float = 5.0 , _lowercase : int = 12544 , _lowercase : float = 3.0 , _lowercase : float = 0.75 , _lowercase : float = 0.02 , _lowercase : float = 1.0 , _lowercase : bool = True , _lowercase : List[int] = [4, 8, 16, 32] , _lowercase : bool = None , **_lowercase : Optional[int] , ) -> List[Any]: if backbone_config is None: logger.info("`backbone_config` is `None`. Initializing the config with the default `Swin` backbone." ) snake_case : Tuple = CONFIG_MAPPING["swin"]( image_size=224 , in_channels=3 , patch_size=4 , embed_dim=96 , depths=[2, 2, 18, 2] , num_heads=[3, 6, 12, 24] , window_size=7 , drop_path_rate=0.3 , use_absolute_embeddings=_lowercase , out_features=["stage1", "stage2", "stage3", "stage4"] , ) if isinstance(_lowercase , _lowercase ): snake_case : int = backbone_config.pop("model_type" ) snake_case : List[Any] = CONFIG_MAPPING[backbone_model_type] snake_case : Tuple = config_class.from_dict(_lowercase ) # verify that the backbone is supported if backbone_config.model_type not in self.backbones_supported: logger.warning_once( F'''Backbone {backbone_config.model_type} is not a supported model and may not be compatible with Mask2Former. ''' F'''Supported model types: {",".join(self.backbones_supported )}''' ) snake_case : Optional[Any] = backbone_config snake_case : int = feature_size snake_case : Dict = mask_feature_size snake_case : Any = hidden_dim snake_case : Any = encoder_feedforward_dim snake_case : Tuple = activation_function snake_case : Tuple = encoder_layers snake_case : Dict = decoder_layers snake_case : List[Any] = num_attention_heads snake_case : List[Any] = dropout snake_case : int = dim_feedforward snake_case : int = pre_norm snake_case : Union[str, Any] = enforce_input_projection snake_case : int = common_stride snake_case : Optional[Any] = ignore_value snake_case : Tuple = num_queries snake_case : List[str] = no_object_weight snake_case : Optional[int] = class_weight snake_case : int = mask_weight snake_case : Tuple = dice_weight snake_case : Union[str, Any] = train_num_points snake_case : Tuple = oversample_ratio snake_case : int = importance_sample_ratio snake_case : Any = init_std snake_case : Union[str, Any] = init_xavier_std snake_case : List[Any] = use_auxiliary_loss snake_case : Optional[int] = feature_strides snake_case : Tuple = output_auxiliary_logits snake_case : str = decoder_layers super().__init__(**_lowercase ) @classmethod def __lowercase ( cls : Any , _lowercase : PretrainedConfig , **_lowercase : str ) -> Optional[int]: return cls( backbone_config=_lowercase , **_lowercase , ) def __lowercase ( self : Optional[Any] ) -> Dict[str, any]: snake_case : Any = copy.deepcopy(self.__dict__ ) snake_case : int = self.backbone_config.to_dict() snake_case : str = self.__class__.model_type return output
449
from math import factorial, pi def lowerCamelCase__ ( _a , _a = 30): if not isinstance(_a , (int, float)): raise ValueError("maclaurin_sin() requires either an int or float for theta") if not isinstance(_a , _a) or accuracy <= 0: raise ValueError("maclaurin_sin() requires a positive int for accuracy") SCREAMING_SNAKE_CASE : int = float(_a) SCREAMING_SNAKE_CASE : Dict = theta // (2 * pi) theta -= 2 * div * pi return sum( (-1) ** r * theta ** (2 * r + 1) / factorial(2 * r + 1) for r in range(_a)) def lowerCamelCase__ ( _a , _a = 30): if not isinstance(_a , (int, float)): raise ValueError("maclaurin_cos() requires either an int or float for theta") if not isinstance(_a , _a) or accuracy <= 0: raise ValueError("maclaurin_cos() requires a positive int for accuracy") SCREAMING_SNAKE_CASE : str = float(_a) SCREAMING_SNAKE_CASE : Any = theta // (2 * pi) theta -= 2 * div * pi return sum((-1) ** r * theta ** (2 * r) / factorial(2 * r) for r in range(_a)) if __name__ == "__main__": import doctest doctest.testmod() print(maclaurin_sin(10)) print(maclaurin_sin(-10)) print(maclaurin_sin(10, 15)) print(maclaurin_sin(-10, 15)) print(maclaurin_cos(5)) print(maclaurin_cos(-5)) print(maclaurin_cos(10, 15)) print(maclaurin_cos(-10, 15))
25
0
'''simple docstring''' import os from typing import BinaryIO, Optional, Union import numpy as np import pyarrow.parquet as pq from .. import Audio, Dataset, Features, Image, NamedSplit, Value, config from ..features.features import FeatureType, _visit from ..formatting import query_table from ..packaged_modules import _PACKAGED_DATASETS_MODULES from ..packaged_modules.parquet.parquet import Parquet from ..utils import logging from ..utils.typing import NestedDataStructureLike, PathLike from .abc import AbstractDatasetReader def UpperCAmelCase_ ( __lowercase : Tuple ) -> List[str]: '''simple docstring''' _UpperCAmelCase = np.inf def set_batch_size(__lowercase : Tuple ) -> None: nonlocal batch_size if isinstance(_a , _a ): _UpperCAmelCase = min(_a , config.PARQUET_ROW_GROUP_SIZE_FOR_IMAGE_DATASETS ) elif isinstance(_a , _a ): _UpperCAmelCase = min(_a , config.PARQUET_ROW_GROUP_SIZE_FOR_AUDIO_DATASETS ) elif isinstance(_a , _a ) and feature.dtype == "binary": _UpperCAmelCase = min(_a , config.PARQUET_ROW_GROUP_SIZE_FOR_BINARY_DATASETS ) _visit(_a , _a ) return None if batch_size is np.inf else batch_size class A_ ( __A ): def __init__( self : Union[str, Any] , snake_case_ : NestedDataStructureLike[PathLike] , snake_case_ : Optional[NamedSplit] = None , snake_case_ : Optional[Features] = None , snake_case_ : str = None , snake_case_ : bool = False , snake_case_ : bool = False , snake_case_ : Optional[int] = None , **snake_case_ : str , ): super().__init__( snake_case_ , split=snake_case_ , features=snake_case_ , cache_dir=snake_case_ , keep_in_memory=snake_case_ , streaming=snake_case_ , num_proc=snake_case_ , **snake_case_ , ) _UpperCAmelCase = path_or_paths if isinstance(snake_case_ , snake_case_ ) else {self.split: path_or_paths} _UpperCAmelCase = _PACKAGED_DATASETS_MODULES["parquet"][1] _UpperCAmelCase = Parquet( cache_dir=snake_case_ , data_files=snake_case_ , features=snake_case_ , hash=snake_case_ , **snake_case_ , ) def lowercase ( self : int ): if self.streaming: _UpperCAmelCase = self.builder.as_streaming_dataset(split=self.split ) # Build regular (map-style) dataset else: _UpperCAmelCase = None _UpperCAmelCase = None _UpperCAmelCase = None _UpperCAmelCase = None self.builder.download_and_prepare( download_config=snake_case_ , download_mode=snake_case_ , verification_mode=snake_case_ , base_path=snake_case_ , num_proc=self.num_proc , ) _UpperCAmelCase = self.builder.as_dataset( split=self.split , verification_mode=snake_case_ , in_memory=self.keep_in_memory ) return dataset class A_ : def __init__( self : Union[str, Any] , snake_case_ : Dataset , snake_case_ : Union[PathLike, BinaryIO] , snake_case_ : Optional[int] = None , **snake_case_ : Optional[Any] , ): _UpperCAmelCase = dataset _UpperCAmelCase = path_or_buf _UpperCAmelCase = batch_size or get_writer_batch_size(dataset.features ) _UpperCAmelCase = parquet_writer_kwargs def lowercase ( self : Optional[int] ): _UpperCAmelCase = self.batch_size if self.batch_size else config.DEFAULT_MAX_BATCH_SIZE if isinstance(self.path_or_buf , (str, bytes, os.PathLike) ): with open(self.path_or_buf , "wb+" ) as buffer: _UpperCAmelCase = self._write(file_obj=snake_case_ , batch_size=snake_case_ , **self.parquet_writer_kwargs ) else: _UpperCAmelCase = self._write(file_obj=self.path_or_buf , batch_size=snake_case_ , **self.parquet_writer_kwargs ) return written def lowercase ( self : Optional[Any] , snake_case_ : BinaryIO , snake_case_ : int , **snake_case_ : str ): _UpperCAmelCase = 0 _UpperCAmelCase = parquet_writer_kwargs.pop("path_or_buf" , snake_case_ ) _UpperCAmelCase = self.dataset.features.arrow_schema _UpperCAmelCase = pq.ParquetWriter(snake_case_ , schema=snake_case_ , **snake_case_ ) for offset in logging.tqdm( range(0 , len(self.dataset ) , snake_case_ ) , unit="ba" , disable=not logging.is_progress_bar_enabled() , desc="Creating parquet from Arrow format" , ): _UpperCAmelCase = query_table( table=self.dataset._data , key=slice(snake_case_ , offset + batch_size ) , indices=self.dataset._indices if self.dataset._indices is not None else None , ) writer.write_table(snake_case_ ) written += batch.nbytes writer.close() return written
236
from __future__ import annotations import math class _UpperCamelCase : '''simple docstring''' def __init__( self : Dict , a : int ) -> None: """simple docstring""" SCREAMING_SNAKE_CASE : Dict = size # approximate the overall size of segment tree with given value SCREAMING_SNAKE_CASE : Any = [0 for i in range(0 , 4 * size )] # create array to store lazy update SCREAMING_SNAKE_CASE : Union[str, Any] = [0 for i in range(0 , 4 * size )] SCREAMING_SNAKE_CASE : Any = [0 for i in range(0 , 4 * size )] # flag for lazy update def __UpperCamelCase ( self : Tuple , a : int ) -> int: """simple docstring""" return idx * 2 def __UpperCamelCase ( self : str , a : int ) -> int: """simple docstring""" return idx * 2 + 1 def __UpperCamelCase ( self : int , a : int , a : int , a : int , a : list[int] ) -> None: """simple docstring""" if left_element == right_element: SCREAMING_SNAKE_CASE : int = a[left_element - 1] else: SCREAMING_SNAKE_CASE : Optional[int] = (left_element + right_element) // 2 self.build(self.left(a ) , a , a , a ) self.build(self.right(a ) , mid + 1 , a , a ) SCREAMING_SNAKE_CASE : List[Any] = max( self.segment_tree[self.left(a )] , self.segment_tree[self.right(a )] ) def __UpperCamelCase ( self : Optional[Any] , a : int , a : int , a : int , a : int , a : int , a : int ) -> bool: """simple docstring""" if self.flag[idx] is True: SCREAMING_SNAKE_CASE : Any = self.lazy[idx] SCREAMING_SNAKE_CASE : List[str] = False if left_element != right_element: SCREAMING_SNAKE_CASE : Optional[Any] = self.lazy[idx] SCREAMING_SNAKE_CASE : int = self.lazy[idx] SCREAMING_SNAKE_CASE : Any = True SCREAMING_SNAKE_CASE : List[Any] = True if right_element < a or left_element > b: return True if left_element >= a and right_element <= b: SCREAMING_SNAKE_CASE : Optional[Any] = val if left_element != right_element: SCREAMING_SNAKE_CASE : str = val SCREAMING_SNAKE_CASE : str = val SCREAMING_SNAKE_CASE : Tuple = True SCREAMING_SNAKE_CASE : Optional[Any] = True return True SCREAMING_SNAKE_CASE : int = (left_element + right_element) // 2 self.update(self.left(a ) , a , a , a , a , a ) self.update(self.right(a ) , mid + 1 , a , a , a , a ) SCREAMING_SNAKE_CASE : Optional[int] = max( self.segment_tree[self.left(a )] , self.segment_tree[self.right(a )] ) return True def __UpperCamelCase ( self : Dict , a : int , a : int , a : int , a : int , a : int ) -> int | float: """simple docstring""" if self.flag[idx] is True: SCREAMING_SNAKE_CASE : int = self.lazy[idx] SCREAMING_SNAKE_CASE : List[Any] = False if left_element != right_element: SCREAMING_SNAKE_CASE : Optional[Any] = self.lazy[idx] SCREAMING_SNAKE_CASE : Optional[Any] = self.lazy[idx] SCREAMING_SNAKE_CASE : Optional[Any] = True SCREAMING_SNAKE_CASE : Union[str, Any] = True if right_element < a or left_element > b: return -math.inf if left_element >= a and right_element <= b: return self.segment_tree[idx] SCREAMING_SNAKE_CASE : Dict = (left_element + right_element) // 2 SCREAMING_SNAKE_CASE : Tuple = self.query(self.left(a ) , a , a , a , a ) SCREAMING_SNAKE_CASE : Tuple = self.query(self.right(a ) , mid + 1 , a , a , a ) return max(a , a ) def __str__( self : str ) -> str: """simple docstring""" return str([self.query(1 , 1 , self.size , a , a ) for i in range(1 , self.size + 1 )] ) if __name__ == "__main__": a_ = [1, 2, -4, 7, 3, -5, 6, 11, -20, 9, 14, 15, 5, 2, -8] a_ = 15 a_ = SegmentTree(size) segt.build(1, 1, size, A) print(segt.query(1, 1, size, 4, 6)) print(segt.query(1, 1, size, 7, 11)) print(segt.query(1, 1, size, 7, 12)) segt.update(1, 1, size, 1, 3, 111) print(segt.query(1, 1, size, 1, 15)) segt.update(1, 1, size, 7, 8, 235) print(segt)
25
0
UpperCamelCase__ : str = range(2, 20 + 1) UpperCamelCase__ : Dict = [10**k for k in range(ks[-1] + 1)] UpperCamelCase__ : Tuple = {} def __UpperCAmelCase ( lowerCamelCase_ : str , lowerCamelCase_ : List[str] , lowerCamelCase_ : Optional[int] , lowerCamelCase_ : Optional[int] ) -> Dict: """simple docstring""" SCREAMING_SNAKE_CASE_ : Dict = sum(a_i[j] for j in range(_a , len(_a ) ) ) SCREAMING_SNAKE_CASE_ : str = sum(a_i[j] * base[j] for j in range(min(len(_a ) , _a ) ) ) SCREAMING_SNAKE_CASE_ : Any = 0, 0 SCREAMING_SNAKE_CASE_ : List[Any] = n - i SCREAMING_SNAKE_CASE_ : List[Any] = memo.get(_a ) if sub_memo is not None: SCREAMING_SNAKE_CASE_ : Dict = sub_memo.get(_a ) if jumps is not None and len(_a ) > 0: # find and make the largest jump without going over SCREAMING_SNAKE_CASE_ : Dict = -1 for _k in range(len(_a ) - 1 , -1 , -1 ): if jumps[_k][2] <= k and jumps[_k][1] <= max_dn: SCREAMING_SNAKE_CASE_ : str = _k break if max_jump >= 0: SCREAMING_SNAKE_CASE_ : Dict = jumps[max_jump] # since the difference between jumps is cached, add c SCREAMING_SNAKE_CASE_ : List[str] = diff + c for j in range(min(_a , len(_a ) ) ): SCREAMING_SNAKE_CASE_ : Optional[Any] = divmod(_a , 10 ) if new_c > 0: add(_a , _a , _a ) else: SCREAMING_SNAKE_CASE_ : Optional[Any] = [] else: SCREAMING_SNAKE_CASE_ : str = {c: []} SCREAMING_SNAKE_CASE_ : Optional[Any] = sub_memo if dn >= max_dn or c + diff >= base[k]: return diff, dn if k > ks[0]: while True: # keep doing smaller jumps SCREAMING_SNAKE_CASE_ : List[Any] = next_term(_a , k - 1 , i + dn , _a ) diff += _diff dn += terms_jumped if dn >= max_dn or c + diff >= base[k]: break else: # would be too small a jump, just compute sequential terms instead SCREAMING_SNAKE_CASE_ : int = compute(_a , _a , i + dn , _a ) diff += _diff dn += terms_jumped SCREAMING_SNAKE_CASE_ : Union[str, Any] = sub_memo[c] # keep jumps sorted by # of terms skipped SCREAMING_SNAKE_CASE_ : int = 0 while j < len(_a ): if jumps[j][1] > dn: break j += 1 # cache the jump for this value digitsum(b) and c sub_memo[c].insert(_a , (diff, dn, k) ) return (diff, dn) def __UpperCAmelCase ( lowerCamelCase_ : str , lowerCamelCase_ : Tuple , lowerCamelCase_ : Tuple , lowerCamelCase_ : Optional[Any] ) -> str: """simple docstring""" if i >= n: return 0, i if k > len(_a ): a_i.extend([0 for _ in range(k - len(_a ) )] ) # note: a_i -> b * 10^k + c # ds_b -> digitsum(b) # ds_c -> digitsum(c) SCREAMING_SNAKE_CASE_ : Tuple = i SCREAMING_SNAKE_CASE_ : Any = 0, 0, 0 for j in range(len(_a ) ): if j >= k: ds_b += a_i[j] else: ds_c += a_i[j] while i < n: i += 1 SCREAMING_SNAKE_CASE_ : str = ds_c + ds_b diff += addend SCREAMING_SNAKE_CASE_ : str = 0 for j in range(_a ): SCREAMING_SNAKE_CASE_ : str = a_i[j] + addend SCREAMING_SNAKE_CASE_ : Union[str, Any] = divmod(_a , 10 ) ds_c += a_i[j] if addend > 0: break if addend > 0: add(_a , _a , _a ) return diff, i - start_i def __UpperCAmelCase ( lowerCamelCase_ : Dict , lowerCamelCase_ : Optional[Any] , lowerCamelCase_ : Optional[int] ) -> int: """simple docstring""" for j in range(_a , len(_a ) ): SCREAMING_SNAKE_CASE_ : Tuple = digits[j] + addend if s >= 10: SCREAMING_SNAKE_CASE_ : List[Any] = divmod(_a , 10 ) SCREAMING_SNAKE_CASE_ : int = addend // 10 + quotient else: SCREAMING_SNAKE_CASE_ : Union[str, Any] = s SCREAMING_SNAKE_CASE_ : List[Any] = addend // 10 if addend == 0: break while addend > 0: SCREAMING_SNAKE_CASE_ : str = divmod(_a , 10 ) digits.append(_a ) def __UpperCAmelCase ( lowerCamelCase_ : Any = 10**15 ) -> Optional[Any]: """simple docstring""" SCREAMING_SNAKE_CASE_ : List[str] = [1] SCREAMING_SNAKE_CASE_ : Any = 1 SCREAMING_SNAKE_CASE_ : List[Any] = 0 while True: SCREAMING_SNAKE_CASE_ : Optional[Any] = next_term(_a , 20 , i + dn , _a ) dn += terms_jumped if dn == n - i: break SCREAMING_SNAKE_CASE_ : int = 0 for j in range(len(_a ) ): a_n += digits[j] * 10**j return a_n if __name__ == "__main__": print(F"""{solution() = }""")
105
import gc import unittest import numpy as np import torch from diffusers import StableDiffusionKDiffusionPipeline from diffusers.utils import slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu enable_full_determinism() @slow @require_torch_gpu class _UpperCamelCase ( unittest.TestCase ): '''simple docstring''' def __UpperCamelCase ( self : Dict ) -> Tuple: """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() def __UpperCamelCase ( self : Optional[int] ) -> int: """simple docstring""" SCREAMING_SNAKE_CASE : Optional[Any] = StableDiffusionKDiffusionPipeline.from_pretrained("CompVis/stable-diffusion-v1-4" ) SCREAMING_SNAKE_CASE : str = sd_pipe.to(a ) sd_pipe.set_progress_bar_config(disable=a ) sd_pipe.set_scheduler("sample_euler" ) SCREAMING_SNAKE_CASE : Optional[int] = "A painting of a squirrel eating a burger" SCREAMING_SNAKE_CASE : Any = torch.manual_seed(0 ) SCREAMING_SNAKE_CASE : List[Any] = sd_pipe([prompt] , generator=a , guidance_scale=9.0 , num_inference_steps=20 , output_type="np" ) SCREAMING_SNAKE_CASE : Tuple = output.images SCREAMING_SNAKE_CASE : Any = image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) SCREAMING_SNAKE_CASE : Union[str, Any] = np.array([0.0447, 0.0492, 0.0468, 0.0408, 0.0383, 0.0408, 0.0354, 0.0380, 0.0339] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def __UpperCamelCase ( self : List[Any] ) -> Optional[int]: """simple docstring""" SCREAMING_SNAKE_CASE : int = StableDiffusionKDiffusionPipeline.from_pretrained("stabilityai/stable-diffusion-2-1-base" ) SCREAMING_SNAKE_CASE : Tuple = sd_pipe.to(a ) sd_pipe.set_progress_bar_config(disable=a ) sd_pipe.set_scheduler("sample_euler" ) SCREAMING_SNAKE_CASE : List[str] = "A painting of a squirrel eating a burger" SCREAMING_SNAKE_CASE : List[str] = torch.manual_seed(0 ) SCREAMING_SNAKE_CASE : Union[str, Any] = sd_pipe([prompt] , generator=a , guidance_scale=9.0 , num_inference_steps=20 , output_type="np" ) SCREAMING_SNAKE_CASE : List[Any] = output.images SCREAMING_SNAKE_CASE : Tuple = image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) SCREAMING_SNAKE_CASE : int = np.array([0.1237, 0.1320, 0.1438, 0.1359, 0.1390, 0.1132, 0.1277, 0.1175, 0.1112] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 5e-1 def __UpperCamelCase ( self : Tuple ) -> List[Any]: """simple docstring""" SCREAMING_SNAKE_CASE : Dict = StableDiffusionKDiffusionPipeline.from_pretrained("stabilityai/stable-diffusion-2-1-base" ) SCREAMING_SNAKE_CASE : Union[str, Any] = sd_pipe.to(a ) sd_pipe.set_progress_bar_config(disable=a ) sd_pipe.set_scheduler("sample_dpmpp_2m" ) SCREAMING_SNAKE_CASE : str = "A painting of a squirrel eating a burger" SCREAMING_SNAKE_CASE : Any = torch.manual_seed(0 ) SCREAMING_SNAKE_CASE : str = sd_pipe( [prompt] , generator=a , guidance_scale=7.5 , num_inference_steps=15 , output_type="np" , use_karras_sigmas=a , ) SCREAMING_SNAKE_CASE : str = output.images SCREAMING_SNAKE_CASE : Optional[int] = image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) SCREAMING_SNAKE_CASE : int = np.array( [0.1138_1689, 0.1211_2921, 0.138_9457, 0.1254_9606, 0.124_4964, 0.1083_1517, 0.1156_2866, 0.1086_7816, 0.1049_9048] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
25
0
'''simple docstring''' import tempfile import torch from diffusers import PNDMScheduler from .test_schedulers import SchedulerCommonTest class lowerCamelCase_ ( __A ): _lowerCAmelCase : Union[str, Any] = (PNDMScheduler,) _lowerCAmelCase : List[str] = (('num_inference_steps', 5_0),) def __lowercase ( self : List[Any] , **lowerCAmelCase__ : Optional[int] ): """simple docstring""" SCREAMING_SNAKE_CASE : int = { "num_train_timesteps": 10_00, "beta_start": 0.0001, "beta_end": 0.02, "beta_schedule": "linear", } config.update(**lowerCAmelCase__ ) return config def __lowercase ( self : Optional[int] , lowerCAmelCase__ : List[str]=0 , **lowerCAmelCase__ : int ): """simple docstring""" SCREAMING_SNAKE_CASE : Dict = dict(self.forward_default_kwargs ) SCREAMING_SNAKE_CASE : Union[str, Any] = kwargs.pop('''num_inference_steps''' , lowerCAmelCase__ ) SCREAMING_SNAKE_CASE : str = self.dummy_sample SCREAMING_SNAKE_CASE : Union[str, Any] = 0.1 * sample SCREAMING_SNAKE_CASE : Any = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05] for scheduler_class in self.scheduler_classes: SCREAMING_SNAKE_CASE : Optional[Any] = self.get_scheduler_config(**lowerCAmelCase__ ) SCREAMING_SNAKE_CASE : Any = scheduler_class(**lowerCAmelCase__ ) scheduler.set_timesteps(lowerCAmelCase__ ) # copy over dummy past residuals SCREAMING_SNAKE_CASE : str = dummy_past_residuals[:] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(lowerCAmelCase__ ) SCREAMING_SNAKE_CASE : List[Any] = scheduler_class.from_pretrained(lowerCAmelCase__ ) new_scheduler.set_timesteps(lowerCAmelCase__ ) # copy over dummy past residuals SCREAMING_SNAKE_CASE : Optional[Any] = dummy_past_residuals[:] SCREAMING_SNAKE_CASE : Dict = scheduler.step_prk(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , **lowerCAmelCase__ ).prev_sample SCREAMING_SNAKE_CASE : int = new_scheduler.step_prk(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , **lowerCAmelCase__ ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1e-5, "Scheduler outputs are not identical" SCREAMING_SNAKE_CASE : List[Any] = scheduler.step_plms(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , **lowerCAmelCase__ ).prev_sample SCREAMING_SNAKE_CASE : Optional[Any] = new_scheduler.step_plms(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , **lowerCAmelCase__ ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1e-5, "Scheduler outputs are not identical" def __lowercase ( self : Optional[int] ): """simple docstring""" pass def __lowercase ( self : List[str] , lowerCAmelCase__ : Optional[int]=0 , **lowerCAmelCase__ : Dict ): """simple docstring""" SCREAMING_SNAKE_CASE : Tuple = dict(self.forward_default_kwargs ) SCREAMING_SNAKE_CASE : List[Any] = kwargs.pop('''num_inference_steps''' , lowerCAmelCase__ ) SCREAMING_SNAKE_CASE : Optional[int] = self.dummy_sample SCREAMING_SNAKE_CASE : Union[str, Any] = 0.1 * sample SCREAMING_SNAKE_CASE : Any = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05] for scheduler_class in self.scheduler_classes: SCREAMING_SNAKE_CASE : Optional[Any] = self.get_scheduler_config() SCREAMING_SNAKE_CASE : Optional[int] = scheduler_class(**lowerCAmelCase__ ) scheduler.set_timesteps(lowerCAmelCase__ ) # copy over dummy past residuals (must be after setting timesteps) SCREAMING_SNAKE_CASE : Dict = dummy_past_residuals[:] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(lowerCAmelCase__ ) SCREAMING_SNAKE_CASE : Any = scheduler_class.from_pretrained(lowerCAmelCase__ ) # copy over dummy past residuals new_scheduler.set_timesteps(lowerCAmelCase__ ) # copy over dummy past residual (must be after setting timesteps) SCREAMING_SNAKE_CASE : int = dummy_past_residuals[:] SCREAMING_SNAKE_CASE : Optional[Any] = scheduler.step_prk(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , **lowerCAmelCase__ ).prev_sample SCREAMING_SNAKE_CASE : Union[str, Any] = new_scheduler.step_prk(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , **lowerCAmelCase__ ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1e-5, "Scheduler outputs are not identical" SCREAMING_SNAKE_CASE : str = scheduler.step_plms(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , **lowerCAmelCase__ ).prev_sample SCREAMING_SNAKE_CASE : List[str] = new_scheduler.step_plms(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , **lowerCAmelCase__ ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1e-5, "Scheduler outputs are not identical" def __lowercase ( self : Optional[int] , **lowerCAmelCase__ : int ): """simple docstring""" SCREAMING_SNAKE_CASE : int = self.scheduler_classes[0] SCREAMING_SNAKE_CASE : List[str] = self.get_scheduler_config(**lowerCAmelCase__ ) SCREAMING_SNAKE_CASE : str = scheduler_class(**lowerCAmelCase__ ) SCREAMING_SNAKE_CASE : List[Any] = 10 SCREAMING_SNAKE_CASE : List[Any] = self.dummy_model() SCREAMING_SNAKE_CASE : Optional[int] = self.dummy_sample_deter scheduler.set_timesteps(lowerCAmelCase__ ) for i, t in enumerate(scheduler.prk_timesteps ): SCREAMING_SNAKE_CASE : Union[str, Any] = model(lowerCAmelCase__ , lowerCAmelCase__ ) SCREAMING_SNAKE_CASE : Any = scheduler.step_prk(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ).prev_sample for i, t in enumerate(scheduler.plms_timesteps ): SCREAMING_SNAKE_CASE : Dict = model(lowerCAmelCase__ , lowerCAmelCase__ ) SCREAMING_SNAKE_CASE : List[str] = scheduler.step_plms(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ).prev_sample return sample def __lowercase ( self : List[str] ): """simple docstring""" SCREAMING_SNAKE_CASE : str = dict(self.forward_default_kwargs ) SCREAMING_SNAKE_CASE : int = kwargs.pop('''num_inference_steps''' , lowerCAmelCase__ ) for scheduler_class in self.scheduler_classes: SCREAMING_SNAKE_CASE : Dict = self.get_scheduler_config() SCREAMING_SNAKE_CASE : str = scheduler_class(**lowerCAmelCase__ ) SCREAMING_SNAKE_CASE : List[str] = self.dummy_sample SCREAMING_SNAKE_CASE : Any = 0.1 * sample if num_inference_steps is not None and hasattr(lowerCAmelCase__ , '''set_timesteps''' ): scheduler.set_timesteps(lowerCAmelCase__ ) elif num_inference_steps is not None and not hasattr(lowerCAmelCase__ , '''set_timesteps''' ): SCREAMING_SNAKE_CASE : str = num_inference_steps # copy over dummy past residuals (must be done after set_timesteps) SCREAMING_SNAKE_CASE : List[Any] = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05] SCREAMING_SNAKE_CASE : Dict = dummy_past_residuals[:] SCREAMING_SNAKE_CASE : Any = scheduler.step_prk(lowerCAmelCase__ , 0 , lowerCAmelCase__ , **lowerCAmelCase__ ).prev_sample SCREAMING_SNAKE_CASE : str = scheduler.step_prk(lowerCAmelCase__ , 1 , lowerCAmelCase__ , **lowerCAmelCase__ ).prev_sample self.assertEqual(output_a.shape , sample.shape ) self.assertEqual(output_a.shape , output_a.shape ) SCREAMING_SNAKE_CASE : List[str] = scheduler.step_plms(lowerCAmelCase__ , 0 , lowerCAmelCase__ , **lowerCAmelCase__ ).prev_sample SCREAMING_SNAKE_CASE : int = scheduler.step_plms(lowerCAmelCase__ , 1 , lowerCAmelCase__ , **lowerCAmelCase__ ).prev_sample self.assertEqual(output_a.shape , sample.shape ) self.assertEqual(output_a.shape , output_a.shape ) def __lowercase ( self : Dict ): """simple docstring""" for timesteps in [1_00, 10_00]: self.check_over_configs(num_train_timesteps=lowerCAmelCase__ ) def __lowercase ( self : List[Any] ): """simple docstring""" for steps_offset in [0, 1]: self.check_over_configs(steps_offset=lowerCAmelCase__ ) SCREAMING_SNAKE_CASE : Tuple = self.scheduler_classes[0] SCREAMING_SNAKE_CASE : List[Any] = self.get_scheduler_config(steps_offset=1 ) SCREAMING_SNAKE_CASE : List[str] = scheduler_class(**lowerCAmelCase__ ) scheduler.set_timesteps(10 ) assert torch.equal( scheduler.timesteps , torch.LongTensor( [9_01, 8_51, 8_51, 8_01, 8_01, 7_51, 7_51, 7_01, 7_01, 6_51, 6_51, 6_01, 6_01, 5_01, 4_01, 3_01, 2_01, 1_01, 1] ) , ) def __lowercase ( self : Dict ): """simple docstring""" for beta_start, beta_end in zip([0.0001, 0.001] , [0.002, 0.02] ): self.check_over_configs(beta_start=lowerCAmelCase__ , beta_end=lowerCAmelCase__ ) def __lowercase ( self : Optional[Any] ): """simple docstring""" for schedule in ["linear", "squaredcos_cap_v2"]: self.check_over_configs(beta_schedule=lowerCAmelCase__ ) def __lowercase ( self : Optional[Any] ): """simple docstring""" for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs(prediction_type=lowerCAmelCase__ ) def __lowercase ( self : Any ): """simple docstring""" for t in [1, 5, 10]: self.check_over_forward(time_step=lowerCAmelCase__ ) def __lowercase ( self : Optional[Any] ): """simple docstring""" for t, num_inference_steps in zip([1, 5, 10] , [10, 50, 1_00] ): self.check_over_forward(num_inference_steps=lowerCAmelCase__ ) def __lowercase ( self : Union[str, Any] ): """simple docstring""" SCREAMING_SNAKE_CASE : int = 27 for scheduler_class in self.scheduler_classes: SCREAMING_SNAKE_CASE : str = self.dummy_sample SCREAMING_SNAKE_CASE : Tuple = 0.1 * sample SCREAMING_SNAKE_CASE : Optional[Any] = self.get_scheduler_config() SCREAMING_SNAKE_CASE : Union[str, Any] = scheduler_class(**lowerCAmelCase__ ) scheduler.set_timesteps(lowerCAmelCase__ ) # before power of 3 fix, would error on first step, so we only need to do two for i, t in enumerate(scheduler.prk_timesteps[:2] ): SCREAMING_SNAKE_CASE : Dict = scheduler.step_prk(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ).prev_sample def __lowercase ( self : Optional[int] ): """simple docstring""" with self.assertRaises(lowerCAmelCase__ ): SCREAMING_SNAKE_CASE : List[Any] = self.scheduler_classes[0] SCREAMING_SNAKE_CASE : List[str] = self.get_scheduler_config() SCREAMING_SNAKE_CASE : Optional[Any] = scheduler_class(**lowerCAmelCase__ ) scheduler.step_plms(self.dummy_sample , 1 , self.dummy_sample ).prev_sample def __lowercase ( self : List[Any] ): """simple docstring""" SCREAMING_SNAKE_CASE : Optional[Any] = self.full_loop() SCREAMING_SNAKE_CASE : List[Any] = torch.sum(torch.abs(lowerCAmelCase__ ) ) SCREAMING_SNAKE_CASE : Optional[Any] = torch.mean(torch.abs(lowerCAmelCase__ ) ) assert abs(result_sum.item() - 198.1318 ) < 1e-2 assert abs(result_mean.item() - 0.2580 ) < 1e-3 def __lowercase ( self : Any ): """simple docstring""" SCREAMING_SNAKE_CASE : Optional[int] = self.full_loop(prediction_type='''v_prediction''' ) SCREAMING_SNAKE_CASE : List[str] = torch.sum(torch.abs(lowerCAmelCase__ ) ) SCREAMING_SNAKE_CASE : List[str] = torch.mean(torch.abs(lowerCAmelCase__ ) ) assert abs(result_sum.item() - 67.3986 ) < 1e-2 assert abs(result_mean.item() - 0.0878 ) < 1e-3 def __lowercase ( self : List[str] ): """simple docstring""" SCREAMING_SNAKE_CASE : Tuple = self.full_loop(set_alpha_to_one=lowerCAmelCase__ , beta_start=0.01 ) SCREAMING_SNAKE_CASE : List[str] = torch.sum(torch.abs(lowerCAmelCase__ ) ) SCREAMING_SNAKE_CASE : Optional[int] = torch.mean(torch.abs(lowerCAmelCase__ ) ) assert abs(result_sum.item() - 230.0399 ) < 1e-2 assert abs(result_mean.item() - 0.2995 ) < 1e-3 def __lowercase ( self : int ): """simple docstring""" SCREAMING_SNAKE_CASE : Tuple = self.full_loop(set_alpha_to_one=lowerCAmelCase__ , beta_start=0.01 ) SCREAMING_SNAKE_CASE : Optional[int] = torch.sum(torch.abs(lowerCAmelCase__ ) ) SCREAMING_SNAKE_CASE : Dict = torch.mean(torch.abs(lowerCAmelCase__ ) ) assert abs(result_sum.item() - 186.9482 ) < 1e-2 assert abs(result_mean.item() - 0.2434 ) < 1e-3
527
import unittest import numpy as np from diffusers import LMSDiscreteScheduler, OnnxStableDiffusionInpaintPipeline from diffusers.utils.testing_utils import ( is_onnx_available, load_image, nightly, require_onnxruntime, require_torch_gpu, ) from ..test_pipelines_onnx_common import OnnxPipelineTesterMixin if is_onnx_available(): import onnxruntime as ort class _UpperCamelCase ( __A , unittest.TestCase ): '''simple docstring''' pass @nightly @require_onnxruntime @require_torch_gpu class _UpperCamelCase ( unittest.TestCase ): '''simple docstring''' @property def __UpperCamelCase ( self : List[Any] ) -> List[str]: """simple docstring""" return ( "CUDAExecutionProvider", { "gpu_mem_limit": "15000000000", # 15GB "arena_extend_strategy": "kSameAsRequested", }, ) @property def __UpperCamelCase ( self : int ) -> Optional[Any]: """simple docstring""" SCREAMING_SNAKE_CASE : Optional[Any] = ort.SessionOptions() SCREAMING_SNAKE_CASE : Union[str, Any] = False return options def __UpperCamelCase ( self : List[Any] ) -> List[Any]: """simple docstring""" SCREAMING_SNAKE_CASE : Any = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/in_paint/overture-creations-5sI6fQgYIuo.png" ) SCREAMING_SNAKE_CASE : Optional[Any] = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/in_paint/overture-creations-5sI6fQgYIuo_mask.png" ) SCREAMING_SNAKE_CASE : int = OnnxStableDiffusionInpaintPipeline.from_pretrained( "runwayml/stable-diffusion-inpainting" , revision="onnx" , safety_checker=a , feature_extractor=a , provider=self.gpu_provider , sess_options=self.gpu_options , ) pipe.set_progress_bar_config(disable=a ) SCREAMING_SNAKE_CASE : Optional[Any] = "A red cat sitting on a park bench" SCREAMING_SNAKE_CASE : Tuple = np.random.RandomState(0 ) SCREAMING_SNAKE_CASE : Optional[int] = pipe( prompt=a , image=a , mask_image=a , guidance_scale=7.5 , num_inference_steps=10 , generator=a , output_type="np" , ) SCREAMING_SNAKE_CASE : List[Any] = output.images SCREAMING_SNAKE_CASE : Union[str, Any] = images[0, 255:258, 255:258, -1] assert images.shape == (1, 512, 512, 3) SCREAMING_SNAKE_CASE : int = np.array([0.2514, 0.3007, 0.3517, 0.1790, 0.2382, 0.3167, 0.1944, 0.2273, 0.2464] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3 def __UpperCamelCase ( self : List[Any] ) -> Tuple: """simple docstring""" SCREAMING_SNAKE_CASE : int = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/in_paint/overture-creations-5sI6fQgYIuo.png" ) SCREAMING_SNAKE_CASE : Optional[Any] = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/in_paint/overture-creations-5sI6fQgYIuo_mask.png" ) SCREAMING_SNAKE_CASE : Optional[Any] = LMSDiscreteScheduler.from_pretrained( "runwayml/stable-diffusion-inpainting" , subfolder="scheduler" , revision="onnx" ) SCREAMING_SNAKE_CASE : Union[str, Any] = OnnxStableDiffusionInpaintPipeline.from_pretrained( "runwayml/stable-diffusion-inpainting" , revision="onnx" , scheduler=a , safety_checker=a , feature_extractor=a , provider=self.gpu_provider , sess_options=self.gpu_options , ) pipe.set_progress_bar_config(disable=a ) SCREAMING_SNAKE_CASE : List[Any] = "A red cat sitting on a park bench" SCREAMING_SNAKE_CASE : Dict = np.random.RandomState(0 ) SCREAMING_SNAKE_CASE : Tuple = pipe( prompt=a , image=a , mask_image=a , guidance_scale=7.5 , num_inference_steps=20 , generator=a , output_type="np" , ) SCREAMING_SNAKE_CASE : List[str] = output.images SCREAMING_SNAKE_CASE : Optional[int] = images[0, 255:258, 255:258, -1] assert images.shape == (1, 512, 512, 3) SCREAMING_SNAKE_CASE : Any = np.array([0.0086, 0.0077, 0.0083, 0.0093, 0.0107, 0.0139, 0.0094, 0.0097, 0.0125] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3
25
0
import inspect import unittest from transformers import MobileViTConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import MobileViTForImageClassification, MobileViTForSemanticSegmentation, MobileViTModel from transformers.models.mobilevit.modeling_mobilevit import MOBILEVIT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import MobileViTImageProcessor class SCREAMING_SNAKE_CASE ( __A ): """simple docstring""" def SCREAMING_SNAKE_CASE ( self : List[str] ) -> Dict: """simple docstring""" __lowerCAmelCase : Optional[int] = self.config_class(**self.inputs_dict ) self.parent.assertTrue(hasattr(lowerCAmelCase , """hidden_sizes""" ) ) self.parent.assertTrue(hasattr(lowerCAmelCase , """neck_hidden_sizes""" ) ) self.parent.assertTrue(hasattr(lowerCAmelCase , """num_attention_heads""" ) ) class SCREAMING_SNAKE_CASE : """simple docstring""" def __init__( self : int , lowerCAmelCase : str , lowerCAmelCase : Union[str, Any]=13 , lowerCAmelCase : Dict=32 , lowerCAmelCase : Optional[Any]=2 , lowerCAmelCase : str=3 , lowerCAmelCase : Optional[Any]=6_40 , lowerCAmelCase : List[str]=4 , lowerCAmelCase : Optional[int]="silu" , lowerCAmelCase : Optional[int]=3 , lowerCAmelCase : str=32 , lowerCAmelCase : List[Any]=0.1 , lowerCAmelCase : Optional[Any]=0.1 , lowerCAmelCase : Optional[int]=0.1 , lowerCAmelCase : Any=0.02 , lowerCAmelCase : int=True , lowerCAmelCase : Dict=True , lowerCAmelCase : Dict=10 , lowerCAmelCase : Optional[int]=None , ) -> Dict: """simple docstring""" __lowerCAmelCase : Dict = parent __lowerCAmelCase : Union[str, Any] = batch_size __lowerCAmelCase : Any = image_size __lowerCAmelCase : Dict = patch_size __lowerCAmelCase : Optional[Any] = num_channels __lowerCAmelCase : int = last_hidden_size __lowerCAmelCase : str = num_attention_heads __lowerCAmelCase : Tuple = hidden_act __lowerCAmelCase : Tuple = conv_kernel_size __lowerCAmelCase : List[Any] = output_stride __lowerCAmelCase : List[str] = hidden_dropout_prob __lowerCAmelCase : List[str] = attention_probs_dropout_prob __lowerCAmelCase : List[Any] = classifier_dropout_prob __lowerCAmelCase : Optional[int] = use_labels __lowerCAmelCase : Optional[int] = is_training __lowerCAmelCase : Any = num_labels __lowerCAmelCase : Dict = initializer_range __lowerCAmelCase : List[Any] = scope def SCREAMING_SNAKE_CASE ( self : Dict ) -> Optional[Any]: """simple docstring""" __lowerCAmelCase : Optional[Any] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) __lowerCAmelCase : Any = None __lowerCAmelCase : Any = None if self.use_labels: __lowerCAmelCase : Dict = ids_tensor([self.batch_size] , self.num_labels ) __lowerCAmelCase : Optional[int] = ids_tensor([self.batch_size, self.image_size, self.image_size] , self.num_labels ) __lowerCAmelCase : List[str] = self.get_config() return config, pixel_values, labels, pixel_labels def SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> Optional[Any]: """simple docstring""" return MobileViTConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , num_attention_heads=self.num_attention_heads , hidden_act=self.hidden_act , conv_kernel_size=self.conv_kernel_size , output_stride=self.output_stride , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , classifier_dropout_prob=self.classifier_dropout_prob , initializer_range=self.initializer_range , ) def SCREAMING_SNAKE_CASE ( self : Optional[Any] , lowerCAmelCase : Optional[Any] , lowerCAmelCase : Optional[int] , lowerCAmelCase : Optional[int] , lowerCAmelCase : Tuple ) -> Any: """simple docstring""" __lowerCAmelCase : Optional[int] = MobileViTModel(config=lowerCAmelCase ) model.to(lowerCAmelCase ) model.eval() __lowerCAmelCase : Optional[Any] = model(lowerCAmelCase ) self.parent.assertEqual( result.last_hidden_state.shape , ( self.batch_size, self.last_hidden_size, self.image_size // self.output_stride, self.image_size // self.output_stride, ) , ) def SCREAMING_SNAKE_CASE ( self : Any , lowerCAmelCase : Tuple , lowerCAmelCase : Any , lowerCAmelCase : List[Any] , lowerCAmelCase : Union[str, Any] ) -> Tuple: """simple docstring""" __lowerCAmelCase : str = self.num_labels __lowerCAmelCase : Union[str, Any] = MobileViTForImageClassification(lowerCAmelCase ) model.to(lowerCAmelCase ) model.eval() __lowerCAmelCase : Optional[int] = model(lowerCAmelCase , labels=lowerCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def SCREAMING_SNAKE_CASE ( self : Optional[int] , lowerCAmelCase : List[str] , lowerCAmelCase : Tuple , lowerCAmelCase : Optional[int] , lowerCAmelCase : Dict ) -> int: """simple docstring""" __lowerCAmelCase : Union[str, Any] = self.num_labels __lowerCAmelCase : Union[str, Any] = MobileViTForSemanticSegmentation(lowerCAmelCase ) model.to(lowerCAmelCase ) model.eval() __lowerCAmelCase : Tuple = model(lowerCAmelCase ) self.parent.assertEqual( result.logits.shape , ( self.batch_size, self.num_labels, self.image_size // self.output_stride, self.image_size // self.output_stride, ) , ) __lowerCAmelCase : Tuple = model(lowerCAmelCase , labels=lowerCAmelCase ) self.parent.assertEqual( result.logits.shape , ( self.batch_size, self.num_labels, self.image_size // self.output_stride, self.image_size // self.output_stride, ) , ) def SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> Optional[Any]: """simple docstring""" __lowerCAmelCase : int = self.prepare_config_and_inputs() __lowerCAmelCase : List[str] = config_and_inputs __lowerCAmelCase : Any = {"pixel_values": pixel_values} return config, inputs_dict @require_torch class SCREAMING_SNAKE_CASE ( __A , __A , unittest.TestCase ): """simple docstring""" lowerCamelCase : List[str] =( (MobileViTModel, MobileViTForImageClassification, MobileViTForSemanticSegmentation) if is_torch_available() else () ) lowerCamelCase : str =( { "feature-extraction": MobileViTModel, "image-classification": MobileViTForImageClassification, "image-segmentation": MobileViTForSemanticSegmentation, } if is_torch_available() else {} ) lowerCamelCase : Tuple =False lowerCamelCase : Optional[Any] =False lowerCamelCase : str =False lowerCamelCase : List[Any] =False def SCREAMING_SNAKE_CASE ( self : str ) -> List[Any]: """simple docstring""" __lowerCAmelCase : Optional[int] = MobileViTModelTester(self ) __lowerCAmelCase : Tuple = MobileViTConfigTester(self , config_class=lowerCAmelCase , has_text_modality=lowerCAmelCase ) def SCREAMING_SNAKE_CASE ( self : Tuple ) -> Dict: """simple docstring""" self.config_tester.run_common_tests() @unittest.skip(reason="""MobileViT does not use inputs_embeds""" ) def SCREAMING_SNAKE_CASE ( self : List[Any] ) -> int: """simple docstring""" pass @unittest.skip(reason="""MobileViT does not support input and output embeddings""" ) def SCREAMING_SNAKE_CASE ( self : Any ) -> Tuple: """simple docstring""" pass @unittest.skip(reason="""MobileViT does not output attentions""" ) def SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> str: """simple docstring""" pass def SCREAMING_SNAKE_CASE ( self : Any ) -> List[Any]: """simple docstring""" __lowerCAmelCase : Dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __lowerCAmelCase : Tuple = model_class(lowerCAmelCase ) __lowerCAmelCase : str = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __lowerCAmelCase : Dict = [*signature.parameters.keys()] __lowerCAmelCase : Union[str, Any] = ["pixel_values"] self.assertListEqual(arg_names[:1] , lowerCAmelCase ) @unittest.skip("""Will be fixed soon by reducing the size of the model used for common tests.""" ) def SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> str: """simple docstring""" pass def SCREAMING_SNAKE_CASE ( self : Tuple ) -> List[str]: """simple docstring""" __lowerCAmelCase : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowerCAmelCase ) def SCREAMING_SNAKE_CASE ( self : str ) -> Tuple: """simple docstring""" def check_hidden_states_output(lowerCAmelCase : Tuple , lowerCAmelCase : Tuple , lowerCAmelCase : Optional[Any] ): __lowerCAmelCase : str = model_class(lowerCAmelCase ) model.to(lowerCAmelCase ) model.eval() with torch.no_grad(): __lowerCAmelCase : List[Any] = model(**self._prepare_for_class(lowerCAmelCase , lowerCAmelCase ) ) __lowerCAmelCase : List[str] = outputs.hidden_states __lowerCAmelCase : Optional[Any] = 5 self.assertEqual(len(lowerCAmelCase ) , lowerCAmelCase ) # MobileViT's feature maps are of shape (batch_size, num_channels, height, width) # with the width and height being successively divided by 2. __lowerCAmelCase : Union[str, Any] = 2 for i in range(len(lowerCAmelCase ) ): self.assertListEqual( list(hidden_states[i].shape[-2:] ) , [self.model_tester.image_size // divisor, self.model_tester.image_size // divisor] , ) divisor *= 2 self.assertEqual(self.model_tester.output_stride , divisor // 2 ) __lowerCAmelCase : Tuple = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __lowerCAmelCase : Dict = True check_hidden_states_output(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] __lowerCAmelCase : List[Any] = True check_hidden_states_output(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ) def SCREAMING_SNAKE_CASE ( self : Tuple ) -> int: """simple docstring""" __lowerCAmelCase : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*lowerCAmelCase ) def SCREAMING_SNAKE_CASE ( self : str ) -> Tuple: """simple docstring""" __lowerCAmelCase : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_semantic_segmentation(*lowerCAmelCase ) @slow def SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> List[Any]: """simple docstring""" for model_name in MOBILEVIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __lowerCAmelCase : List[Any] = MobileViTModel.from_pretrained(lowerCAmelCase ) self.assertIsNotNone(lowerCAmelCase ) def snake_case_ () -> Tuple: __lowerCAmelCase : Tuple = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) return image @require_torch @require_vision class SCREAMING_SNAKE_CASE ( unittest.TestCase ): """simple docstring""" @cached_property def SCREAMING_SNAKE_CASE ( self : str ) -> List[Any]: """simple docstring""" return MobileViTImageProcessor.from_pretrained("""apple/mobilevit-xx-small""" ) if is_vision_available() else None @slow def SCREAMING_SNAKE_CASE ( self : Dict ) -> Tuple: """simple docstring""" __lowerCAmelCase : int = MobileViTForImageClassification.from_pretrained("""apple/mobilevit-xx-small""" ).to(lowerCAmelCase ) __lowerCAmelCase : Dict = self.default_image_processor __lowerCAmelCase : List[Any] = prepare_img() __lowerCAmelCase : str = image_processor(images=lowerCAmelCase , return_tensors="""pt""" ).to(lowerCAmelCase ) # forward pass with torch.no_grad(): __lowerCAmelCase : List[str] = model(**lowerCAmelCase ) # verify the logits __lowerCAmelCase : Tuple = torch.Size((1, 10_00) ) self.assertEqual(outputs.logits.shape , lowerCAmelCase ) __lowerCAmelCase : Union[str, Any] = torch.tensor([-1.9364, -1.2327, -0.4653] ).to(lowerCAmelCase ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , lowerCAmelCase , atol=1e-4 ) ) @slow def SCREAMING_SNAKE_CASE ( self : int ) -> Dict: """simple docstring""" __lowerCAmelCase : List[Any] = MobileViTForSemanticSegmentation.from_pretrained("""apple/deeplabv3-mobilevit-xx-small""" ) __lowerCAmelCase : Optional[int] = model.to(lowerCAmelCase ) __lowerCAmelCase : Union[str, Any] = MobileViTImageProcessor.from_pretrained("""apple/deeplabv3-mobilevit-xx-small""" ) __lowerCAmelCase : Tuple = prepare_img() __lowerCAmelCase : Tuple = image_processor(images=lowerCAmelCase , return_tensors="""pt""" ).to(lowerCAmelCase ) # forward pass with torch.no_grad(): __lowerCAmelCase : Optional[int] = model(**lowerCAmelCase ) __lowerCAmelCase : Optional[int] = outputs.logits # verify the logits __lowerCAmelCase : List[Any] = torch.Size((1, 21, 32, 32) ) self.assertEqual(logits.shape , lowerCAmelCase ) __lowerCAmelCase : Any = torch.tensor( [ [[6.9713, 6.9786, 7.2422], [7.2893, 7.2825, 7.4446], [7.6580, 7.8797, 7.9420]], [[-10.6869, -10.3250, -10.3471], [-10.4228, -9.9868, -9.7132], [-11.0405, -11.0221, -10.7318]], [[-3.3089, -2.8539, -2.6740], [-3.2706, -2.5621, -2.5108], [-3.2534, -2.6615, -2.6651]], ] , device=lowerCAmelCase , ) self.assertTrue(torch.allclose(logits[0, :3, :3, :3] , lowerCAmelCase , atol=1e-4 ) ) @slow def SCREAMING_SNAKE_CASE ( self : Dict ) -> List[str]: """simple docstring""" __lowerCAmelCase : Optional[int] = MobileViTForSemanticSegmentation.from_pretrained("""apple/deeplabv3-mobilevit-xx-small""" ) __lowerCAmelCase : List[str] = model.to(lowerCAmelCase ) __lowerCAmelCase : Dict = MobileViTImageProcessor.from_pretrained("""apple/deeplabv3-mobilevit-xx-small""" ) __lowerCAmelCase : Optional[int] = prepare_img() __lowerCAmelCase : List[str] = image_processor(images=lowerCAmelCase , return_tensors="""pt""" ).to(lowerCAmelCase ) # forward pass with torch.no_grad(): __lowerCAmelCase : Optional[int] = model(**lowerCAmelCase ) __lowerCAmelCase : int = outputs.logits.detach().cpu() __lowerCAmelCase : int = image_processor.post_process_semantic_segmentation(outputs=lowerCAmelCase , target_sizes=[(50, 60)] ) __lowerCAmelCase : List[str] = torch.Size((50, 60) ) self.assertEqual(segmentation[0].shape , lowerCAmelCase ) __lowerCAmelCase : int = image_processor.post_process_semantic_segmentation(outputs=lowerCAmelCase ) __lowerCAmelCase : Tuple = torch.Size((32, 32) ) self.assertEqual(segmentation[0].shape , lowerCAmelCase )
651
from operator import delitem, getitem, setitem import pytest from data_structures.hashing.hash_map import HashMap def lowerCamelCase__ ( _a): return getitem, k def lowerCamelCase__ ( _a , _a): return setitem, k, v def lowerCamelCase__ ( _a): return delitem, k def lowerCamelCase__ ( _a , _a , *_a): try: return fun(_a , *_a), None except Exception as e: return None, e a_ = ( _set('key_a', 'val_a'), _set('key_b', 'val_b'), ) a_ = [ _set('key_a', 'val_a'), _set('key_a', 'val_b'), ] a_ = [ _set('key_a', 'val_a'), _set('key_b', 'val_b'), _del('key_a'), _del('key_b'), _set('key_a', 'val_a'), _del('key_a'), ] a_ = [ _get('key_a'), _del('key_a'), _set('key_a', 'val_a'), _del('key_a'), _del('key_a'), _get('key_a'), ] a_ = [ *[_set(x, x) for x in range(5)], # guaranteed upsize ] a_ = [ *[_set(x, x) for x in range(5)], # guaranteed upsize *[_del(x) for x in range(5)], _set('key_a', 'val_b'), ] @pytest.mark.parametrize( "operations" , ( pytest.param(_add_items , id="add items"), pytest.param(_overwrite_items , id="overwrite items"), pytest.param(_delete_items , id="delete items"), pytest.param(_access_absent_items , id="access absent items"), pytest.param(_add_with_resize_up , id="add with resize up"), pytest.param(_add_with_resize_down , id="add with resize down"), ) , ) def lowerCamelCase__ ( _a): SCREAMING_SNAKE_CASE : Dict = HashMap(initial_block_size=4) SCREAMING_SNAKE_CASE : List[str] = {} for _, (fun, *args) in enumerate(_a): SCREAMING_SNAKE_CASE ,SCREAMING_SNAKE_CASE : Union[str, Any] = _run_operation(_a , _a , *_a) SCREAMING_SNAKE_CASE ,SCREAMING_SNAKE_CASE : List[Any] = _run_operation(_a , _a , *_a) assert my_res == py_res assert str(_a) == str(_a) assert set(_a) == set(_a) assert len(_a) == len(_a) assert set(my.items()) == set(py.items()) def lowerCamelCase__ ( ): def is_public(_a) -> bool: return not name.startswith("_") SCREAMING_SNAKE_CASE : List[str] = {name for name in dir({}) if is_public(_a)} SCREAMING_SNAKE_CASE : Union[str, Any] = {name for name in dir(HashMap()) if is_public(_a)} assert dict_public_names > hash_public_names
25
0