code
stringlengths
82
54.1k
code_codestyle
int64
0
699
style_context
stringlengths
111
35.6k
style_context_codestyle
int64
0
699
label
int64
0
1
'''simple docstring''' import unittest import numpy as np from transformers import RoFormerConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor, random_attention_mask if is_flax_available(): import jax.numpy as jnp from transformers.models.roformer.modeling_flax_roformer import ( FlaxRoFormerForMaskedLM, FlaxRoFormerForMultipleChoice, FlaxRoFormerForQuestionAnswering, FlaxRoFormerForSequenceClassification, FlaxRoFormerForTokenClassification, FlaxRoFormerModel, ) class _A ( unittest.TestCase ): def __init__( self : Optional[Any] , __magic_name__ : List[Any] , __magic_name__ : int=13 , __magic_name__ : List[str]=7 , __magic_name__ : int=True , __magic_name__ : List[Any]=True , __magic_name__ : Optional[Any]=True , __magic_name__ : str=True , __magic_name__ : Union[str, Any]=99 , __magic_name__ : Dict=32 , __magic_name__ : Union[str, Any]=5 , __magic_name__ : str=4 , __magic_name__ : Optional[Any]=37 , __magic_name__ : List[str]="gelu" , __magic_name__ : Dict=0.1 , __magic_name__ : Optional[int]=0.1 , __magic_name__ : int=5_12 , __magic_name__ : str=16 , __magic_name__ : Any=2 , __magic_name__ : str=0.02 , __magic_name__ : Any=4 , ) -> Optional[int]: """simple docstring""" __snake_case : Optional[Any] = parent __snake_case : List[str] = batch_size __snake_case : List[str] = seq_length __snake_case : Optional[Any] = is_training __snake_case : Optional[Any] = use_attention_mask __snake_case : int = use_token_type_ids __snake_case : Tuple = use_labels __snake_case : Optional[int] = vocab_size __snake_case : str = hidden_size __snake_case : Union[str, Any] = num_hidden_layers __snake_case : str = num_attention_heads __snake_case : Union[str, Any] = intermediate_size __snake_case : Any = hidden_act __snake_case : List[str] = hidden_dropout_prob __snake_case : Optional[Any] = attention_probs_dropout_prob __snake_case : List[Any] = max_position_embeddings __snake_case : List[Any] = type_vocab_size __snake_case : Optional[int] = type_sequence_label_size __snake_case : Tuple = initializer_range __snake_case : int = num_choices def lowercase__ ( self : Optional[int] ) -> Tuple: """simple docstring""" __snake_case : Dict = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __snake_case : int = None if self.use_attention_mask: __snake_case : Dict = random_attention_mask([self.batch_size, self.seq_length] ) __snake_case : Optional[int] = None if self.use_token_type_ids: __snake_case : str = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) __snake_case : Any = RoFormerConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=__magic_name__ , initializer_range=self.initializer_range , ) return config, input_ids, token_type_ids, attention_mask def lowercase__ ( self : Dict ) -> List[Any]: """simple docstring""" __snake_case : str = self.prepare_config_and_inputs() __snake_case , __snake_case , __snake_case , __snake_case : Optional[int] = config_and_inputs __snake_case : Any = {"""input_ids""": input_ids, """token_type_ids""": token_type_ids, """attention_mask""": attention_mask} return config, inputs_dict @require_flax class _A ( __lowercase , unittest.TestCase ): lowercase__: str = True lowercase__: Tuple = ( ( FlaxRoFormerModel, FlaxRoFormerForMaskedLM, FlaxRoFormerForSequenceClassification, FlaxRoFormerForTokenClassification, FlaxRoFormerForMultipleChoice, FlaxRoFormerForQuestionAnswering, ) if is_flax_available() else () ) def lowercase__ ( self : List[str] ) -> Union[str, Any]: """simple docstring""" __snake_case : List[Any] = FlaxRoFormerModelTester(self ) @slow def lowercase__ ( self : str ) -> int: """simple docstring""" for model_class_name in self.all_model_classes: __snake_case : Optional[Any] = model_class_name.from_pretrained("""junnyu/roformer_chinese_small""" , from_pt=__magic_name__ ) __snake_case : Dict = model(np.ones((1, 1) ) ) self.assertIsNotNone(__magic_name__ ) @require_flax class _A ( unittest.TestCase ): @slow def lowercase__ ( self : str ) -> Union[str, Any]: """simple docstring""" __snake_case : str = FlaxRoFormerForMaskedLM.from_pretrained("""junnyu/roformer_chinese_base""" ) __snake_case : Optional[Any] = jnp.array([[0, 1, 2, 3, 4, 5]] ) __snake_case : int = model(__magic_name__ )[0] __snake_case : Union[str, Any] = 5_00_00 __snake_case : Dict = (1, 6, vocab_size) self.assertEqual(output.shape , __magic_name__ ) __snake_case : Optional[int] = jnp.array( [[[-0.1205, -1.0265, 0.2922], [-1.5134, 0.1974, 0.1519], [-5.0135, -3.9003, -0.8404]]] ) self.assertTrue(jnp.allclose(output[:, :3, :3] , __magic_name__ , atol=1E-4 ) )
26
'''simple docstring''' import cva import numpy as np class _A : def __init__( self : Any , __magic_name__ : float , __magic_name__ : int ) -> Optional[int]: """simple docstring""" if k in (0.04, 0.06): __snake_case : List[str] = k __snake_case : int = window_size else: raise ValueError("""invalid k value""" ) def __str__( self : Union[str, Any] ) -> str: """simple docstring""" return str(self.k ) def lowercase__ ( self : Dict , __magic_name__ : str ) -> tuple[cva.Mat, list[list[int]]]: """simple docstring""" __snake_case : Dict = cva.imread(__magic_name__ , 0 ) __snake_case , __snake_case : List[str] = img.shape __snake_case : list[list[int]] = [] __snake_case : str = img.copy() __snake_case : Tuple = cva.cvtColor(__magic_name__ , cva.COLOR_GRAY2RGB ) __snake_case , __snake_case : List[Any] = np.gradient(__magic_name__ ) __snake_case : Optional[Any] = dx**2 __snake_case : Tuple = dy**2 __snake_case : List[Any] = dx * dy __snake_case : List[Any] = 0.04 __snake_case : Tuple = self.window_size // 2 for y in range(__magic_name__ , h - offset ): for x in range(__magic_name__ , w - offset ): __snake_case : Dict = ixx[ y - offset : y + offset + 1, x - offset : x + offset + 1 ].sum() __snake_case : Optional[int] = iyy[ y - offset : y + offset + 1, x - offset : x + offset + 1 ].sum() __snake_case : str = ixy[ y - offset : y + offset + 1, x - offset : x + offset + 1 ].sum() __snake_case : List[str] = (wxx * wyy) - (wxy**2) __snake_case : Dict = wxx + wyy __snake_case : List[str] = det - k * (trace**2) # Can change the value if r > 0.5: corner_list.append([x, y, r] ) color_img.itemset((y, x, 0) , 0 ) color_img.itemset((y, x, 1) , 0 ) color_img.itemset((y, x, 2) , 2_55 ) return color_img, corner_list if __name__ == "__main__": __UpperCamelCase = HarrisCorner(0.04, 3) __UpperCamelCase , __UpperCamelCase = edge_detect.detect("path_to_image") cva.imwrite("detect.png", color_img)
26
1
'''simple docstring''' from jiwer import compute_measures import datasets __UpperCamelCase = "\\n@inproceedings{inproceedings,\n author = {Morris, Andrew and Maier, Viktoria and Green, Phil},\n year = {2004},\n month = {01},\n pages = {},\n title = {From WER and RIL to MER and WIL: improved evaluation measures for connected speech recognition.}\n}\n" __UpperCamelCase = "\\nWord error rate (WER) is a common metric of the performance of an automatic speech recognition system.\n\nThe general difficulty of measuring performance lies in the fact that the recognized word sequence can have a different length from the reference word sequence (supposedly the correct one). The WER is derived from the Levenshtein distance, working at the word level instead of the phoneme level. The WER is a valuable tool for comparing different systems as well as for evaluating improvements within one system. This kind of measurement, however, provides no details on the nature of translation errors and further work is therefore required to identify the main source(s) of error and to focus any research effort.\n\nThis problem is solved by first aligning the recognized word sequence with the reference (spoken) word sequence using dynamic string alignment. Examination of this issue is seen through a theory called the power law that states the correlation between perplexity and word error rate.\n\nWord error rate can then be computed as:\n\nWER = (S + D + I) / N = (S + D + I) / (S + D + C)\n\nwhere\n\nS is the number of substitutions,\nD is the number of deletions,\nI is the number of insertions,\nC is the number of correct words,\nN is the number of words in the reference (N=S+D+C).\n\nThis value indicates the average number of errors per reference word. The lower the value, the better the\nperformance of the ASR system with a WER of 0 being a perfect score.\n" __UpperCamelCase = "\nCompute WER score of transcribed segments against references.\n\nArgs:\n references: List of references for each speech input.\n predictions: List of transcriptions to score.\n concatenate_texts (bool, default=False): Whether to concatenate all input texts or compute WER iteratively.\n\nReturns:\n (float): the word error rate\n\nExamples:\n\n >>> predictions = [\"this is the prediction\", \"there is an other sample\"]\n >>> references = [\"this is the reference\", \"there is another one\"]\n >>> wer = datasets.load_metric(\"wer\")\n >>> wer_score = wer.compute(predictions=predictions, references=references)\n >>> print(wer_score)\n 0.5\n" @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class _A ( datasets.Metric ): def lowercase__ ( self : int ) -> Optional[int]: """simple docstring""" return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { """predictions""": datasets.Value("""string""" , id="""sequence""" ), """references""": datasets.Value("""string""" , id="""sequence""" ), } ) , codebase_urls=["""https://github.com/jitsi/jiwer/"""] , reference_urls=[ """https://en.wikipedia.org/wiki/Word_error_rate""", ] , ) def lowercase__ ( self : Optional[Any] , __magic_name__ : int=None , __magic_name__ : Dict=None , __magic_name__ : Union[str, Any]=False ) -> str: """simple docstring""" if concatenate_texts: return compute_measures(__magic_name__ , __magic_name__ )["wer"] else: __snake_case : Union[str, Any] = 0 __snake_case : Tuple = 0 for prediction, reference in zip(__magic_name__ , __magic_name__ ): __snake_case : Dict = compute_measures(__magic_name__ , __magic_name__ ) incorrect += measures["substitutions"] + measures["deletions"] + measures["insertions"] total += measures["substitutions"] + measures["deletions"] + measures["hits"] return incorrect / total
26
'''simple docstring''' import warnings from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding class _A ( __lowercase ): lowercase__: Any = ['''image_processor''', '''tokenizer'''] lowercase__: Any = '''CLIPImageProcessor''' lowercase__: Optional[Any] = ('''CLIPTokenizer''', '''CLIPTokenizerFast''') def __init__( self : int , __magic_name__ : Dict=None , __magic_name__ : Dict=None , **__magic_name__ : Union[str, Any] ) -> Any: """simple docstring""" __snake_case : Optional[Any] = None if "feature_extractor" in kwargs: warnings.warn( """The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`""" """ instead.""" , __magic_name__ , ) __snake_case : List[Any] = kwargs.pop("""feature_extractor""" ) __snake_case : List[str] = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError("""You need to specify an `image_processor`.""" ) if tokenizer is None: raise ValueError("""You need to specify a `tokenizer`.""" ) super().__init__(__magic_name__ , __magic_name__ ) def __call__( self : int , __magic_name__ : List[str]=None , __magic_name__ : Tuple=None , __magic_name__ : Any=None , **__magic_name__ : Union[str, Any] ) -> Optional[int]: """simple docstring""" if text is None and images is None: raise ValueError("""You have to specify either text or images. Both cannot be none.""" ) if text is not None: __snake_case : int = self.tokenizer(__magic_name__ , return_tensors=__magic_name__ , **__magic_name__ ) if images is not None: __snake_case : str = self.image_processor(__magic_name__ , return_tensors=__magic_name__ , **__magic_name__ ) if text is not None and images is not None: __snake_case : Union[str, Any] = image_features.pixel_values return encoding elif text is not None: return encoding else: return BatchEncoding(data=dict(**__magic_name__ ) , tensor_type=__magic_name__ ) def lowercase__ ( self : Optional[int] , *__magic_name__ : List[Any] , **__magic_name__ : Any ) -> Optional[Any]: """simple docstring""" return self.tokenizer.batch_decode(*__magic_name__ , **__magic_name__ ) def lowercase__ ( self : List[str] , *__magic_name__ : Tuple , **__magic_name__ : List[Any] ) -> int: """simple docstring""" return self.tokenizer.decode(*__magic_name__ , **__magic_name__ ) @property def lowercase__ ( self : List[Any] ) -> Optional[Any]: """simple docstring""" __snake_case : Dict = self.tokenizer.model_input_names __snake_case : str = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) ) @property def lowercase__ ( self : int ) -> List[str]: """simple docstring""" warnings.warn( """`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.""" , __magic_name__ , ) return self.image_processor_class @property def lowercase__ ( self : Union[str, Any] ) -> Dict: """simple docstring""" warnings.warn( """`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead.""" , __magic_name__ , ) return self.image_processor
26
1
'''simple docstring''' from collections import OrderedDict from typing import TYPE_CHECKING, Any, Mapping, Optional from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging if TYPE_CHECKING: from ... import FeatureExtractionMixin, TensorType __UpperCamelCase = logging.get_logger(__name__) __UpperCamelCase = { "openai/imagegpt-small": "", "openai/imagegpt-medium": "", "openai/imagegpt-large": "", } class _A ( __lowercase ): lowercase__: Dict = '''imagegpt''' lowercase__: Optional[int] = ['''past_key_values'''] lowercase__: Union[str, Any] = { '''hidden_size''': '''n_embd''', '''max_position_embeddings''': '''n_positions''', '''num_attention_heads''': '''n_head''', '''num_hidden_layers''': '''n_layer''', } def __init__( self : str , __magic_name__ : str=5_12 + 1 , __magic_name__ : Union[str, Any]=32 * 32 , __magic_name__ : List[Any]=5_12 , __magic_name__ : Any=24 , __magic_name__ : List[str]=8 , __magic_name__ : int=None , __magic_name__ : Tuple="quick_gelu" , __magic_name__ : Optional[Any]=0.1 , __magic_name__ : List[str]=0.1 , __magic_name__ : Optional[Any]=0.1 , __magic_name__ : Union[str, Any]=1E-5 , __magic_name__ : Optional[Any]=0.02 , __magic_name__ : Optional[Any]=True , __magic_name__ : Dict=True , __magic_name__ : Any=False , __magic_name__ : Optional[Any]=False , __magic_name__ : Dict=False , **__magic_name__ : Dict , ) -> Optional[Any]: """simple docstring""" __snake_case : Optional[int] = vocab_size __snake_case : Optional[Any] = n_positions __snake_case : int = n_embd __snake_case : Dict = n_layer __snake_case : Union[str, Any] = n_head __snake_case : Union[str, Any] = n_inner __snake_case : List[Any] = activation_function __snake_case : int = resid_pdrop __snake_case : Tuple = embd_pdrop __snake_case : List[str] = attn_pdrop __snake_case : Tuple = layer_norm_epsilon __snake_case : Dict = initializer_range __snake_case : str = scale_attn_weights __snake_case : Dict = use_cache __snake_case : Union[str, Any] = scale_attn_by_inverse_layer_idx __snake_case : int = reorder_and_upcast_attn __snake_case : Optional[Any] = tie_word_embeddings super().__init__(tie_word_embeddings=__magic_name__ , **__magic_name__ ) class _A ( __lowercase ): @property def lowercase__ ( self : List[str] ) -> Mapping[str, Mapping[int, str]]: """simple docstring""" return OrderedDict( [ ("""input_ids""", {0: """batch""", 1: """sequence"""}), ] ) def lowercase__ ( self : Any , __magic_name__ : "FeatureExtractionMixin" , __magic_name__ : int = 1 , __magic_name__ : int = -1 , __magic_name__ : bool = False , __magic_name__ : Optional["TensorType"] = None , __magic_name__ : int = 3 , __magic_name__ : int = 32 , __magic_name__ : int = 32 , ) -> Mapping[str, Any]: """simple docstring""" __snake_case : int = self._generate_dummy_images(__magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ ) __snake_case : int = dict(preprocessor(images=__magic_name__ , return_tensors=__magic_name__ ) ) return inputs
26
'''simple docstring''' import datasets import faiss import numpy as np import streamlit as st import torch from elasticsearch import Elasticsearch from elia_utils import ( embed_questions_for_retrieval, make_qa_sas_model, qa_sas_generate, query_es_index, query_qa_dense_index, ) import transformers from transformers import AutoModel, AutoModelForSeqaSeqLM, AutoTokenizer __UpperCamelCase = "bart" __UpperCamelCase = True @st.cache(allow_output_mutation=_lowerCamelCase ) def _a ( ) -> Union[str, Any]: """simple docstring""" if LOAD_DENSE_INDEX: __snake_case : int = AutoTokenizer.from_pretrained("""yjernite/retribert-base-uncased""" ) __snake_case : Tuple = AutoModel.from_pretrained("""yjernite/retribert-base-uncased""" ).to("""cuda:0""" ) __snake_case : List[Any] = qar_model.eval() else: __snake_case , __snake_case : Optional[Any] = (None, None) if MODEL_TYPE == "bart": __snake_case : List[str] = AutoTokenizer.from_pretrained("""yjernite/bart_eli5""" ) __snake_case : Any = AutoModelForSeqaSeqLM.from_pretrained("""yjernite/bart_eli5""" ).to("""cuda:0""" ) __snake_case : int = torch.load("""seq2seq_models/eli5_bart_model_blm_2.pth""" ) sas_model.load_state_dict(save_dict["""model"""] ) __snake_case : int = sas_model.eval() else: __snake_case , __snake_case : Dict = make_qa_sas_model( model_name="""t5-small""" , from_file="""seq2seq_models/eli5_t5_model_1024_4.pth""" , device="""cuda:0""" ) return (qar_tokenizer, qar_model, sas_tokenizer, sas_model) @st.cache(allow_output_mutation=_lowerCamelCase ) def _a ( ) -> Tuple: """simple docstring""" if LOAD_DENSE_INDEX: __snake_case : Tuple = faiss.StandardGpuResources() __snake_case : Optional[Any] = datasets.load_dataset(path="""wiki_snippets""" , name="""wiki40b_en_100_0""" )["""train"""] __snake_case : str = np.memmap( """wiki40b_passages_reps_32_l-8_h-768_b-512-512.dat""" , dtype="""float32""" , mode="""r""" , shape=(wikiaab_passages.num_rows, 128) , ) __snake_case : Optional[int] = faiss.IndexFlatIP(128 ) __snake_case : Any = faiss.index_cpu_to_gpu(_lowerCamelCase , 1 , _lowerCamelCase ) wikiaab_gpu_index_flat.add(_lowerCamelCase ) # TODO fix for larger GPU else: __snake_case , __snake_case : Tuple = (None, None) __snake_case : List[str] = Elasticsearch([{"""host""": """localhost""", """port""": """9200"""}] ) return (wikiaab_passages, wikiaab_gpu_index_flat, es_client) @st.cache(allow_output_mutation=_lowerCamelCase ) def _a ( ) -> List[Any]: """simple docstring""" __snake_case : Tuple = datasets.load_dataset("""eli5""" , name="""LFQA_reddit""" ) __snake_case : Dict = elia["""train_eli5"""] __snake_case : int = np.memmap( """eli5_questions_reps.dat""" , dtype="""float32""" , mode="""r""" , shape=(elia_train.num_rows, 128) ) __snake_case : Dict = faiss.IndexFlatIP(128 ) eli5_train_q_index.add(_lowerCamelCase ) return (elia_train, eli5_train_q_index) __UpperCamelCase , __UpperCamelCase , __UpperCamelCase = load_indexes() __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase = load_models() __UpperCamelCase , __UpperCamelCase = load_train_data() def _a ( _lowerCamelCase , _lowerCamelCase=10 ) -> int: """simple docstring""" __snake_case : Optional[int] = embed_questions_for_retrieval([question] , _lowerCamelCase , _lowerCamelCase ) __snake_case , __snake_case : Tuple = eli5_train_q_index.search(_lowerCamelCase , _lowerCamelCase ) __snake_case : Tuple = [elia_train[int(_lowerCamelCase )] for i in I[0]] return nn_examples def _a ( _lowerCamelCase , _lowerCamelCase="wiki40b" , _lowerCamelCase="dense" , _lowerCamelCase=10 ) -> Optional[Any]: """simple docstring""" if source == "none": __snake_case , __snake_case : Dict = (""" <P> """.join(["""""" for _ in range(11 )] ).strip(), []) else: if method == "dense": __snake_case , __snake_case : Dict = query_qa_dense_index( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) else: __snake_case , __snake_case : str = query_es_index( _lowerCamelCase , _lowerCamelCase , index_name="""english_wiki40b_snippets_100w""" , n_results=_lowerCamelCase , ) __snake_case : Optional[int] = [ (res["""article_title"""], res["""section_title"""].strip(), res["""score"""], res["""passage_text"""]) for res in hit_lst ] __snake_case : Optional[Any] = """question: {} context: {}""".format(_lowerCamelCase , _lowerCamelCase ) return question_doc, support_list @st.cache( hash_funcs={ torch.Tensor: (lambda _lowerCamelCase : None), transformers.models.bart.tokenization_bart.BartTokenizer: (lambda _lowerCamelCase : None), } ) def _a ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase=64 , _lowerCamelCase=256 , _lowerCamelCase=False , _lowerCamelCase=2 , _lowerCamelCase=0.95 , _lowerCamelCase=0.8 ) -> List[str]: """simple docstring""" with torch.no_grad(): __snake_case : Union[str, Any] = qa_sas_generate( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , num_answers=1 , num_beams=_lowerCamelCase , min_len=_lowerCamelCase , max_len=_lowerCamelCase , do_sample=_lowerCamelCase , temp=_lowerCamelCase , top_p=_lowerCamelCase , top_k=_lowerCamelCase , max_input_length=1024 , device="""cuda:0""" , )[0] return (answer, support_list) st.title("Long Form Question Answering with ELI5") # Start sidebar __UpperCamelCase = "<img src='https://huggingface.co/front/assets/huggingface_logo.svg'>" __UpperCamelCase = "\n<html>\n <head>\n <style>\n .img-container {\n padding-left: 90px;\n padding-right: 90px;\n padding-top: 50px;\n padding-bottom: 50px;\n background-color: #f0f3f9;\n }\n </style>\n </head>\n <body>\n <span class=\"img-container\"> <!-- Inline parent element -->\n %s\n </span>\n </body>\n</html>\n" % ( header_html, ) st.sidebar.markdown( header_full, unsafe_allow_html=True, ) # Long Form QA with ELI5 and Wikipedia __UpperCamelCase = "\nThis demo presents a model trained to [provide long-form answers to open-domain questions](https://yjernite.github.io/lfqa.html).\nFirst, a document retriever fetches a set of relevant Wikipedia passages given the question from the [Wiki40b](https://research.google/pubs/pub49029/) dataset,\na pre-processed fixed snapshot of Wikipedia.\n" st.sidebar.markdown(description, unsafe_allow_html=True) __UpperCamelCase = [ "Answer the question", "View the retrieved document only", "View the most similar ELI5 question and answer", "Show me everything, please!", ] __UpperCamelCase = st.sidebar.checkbox("Demo options") if demo_options: __UpperCamelCase = st.sidebar.selectbox( "", action_list, index=3, ) __UpperCamelCase = action_list.index(action_st) __UpperCamelCase = st.sidebar.selectbox( "", ["Show full text of passages", "Show passage section titles"], index=0, ) __UpperCamelCase = show_type == "Show full text of passages" else: __UpperCamelCase = 3 __UpperCamelCase = True __UpperCamelCase = st.sidebar.checkbox("Retrieval options") if retrieval_options: __UpperCamelCase = "\n ### Information retriever options\n\n The **sparse** retriever uses ElasticSearch, while the **dense** retriever uses max-inner-product search between a question and passage embedding\n trained using the [ELI5](https://arxiv.org/abs/1907.09190) questions-answer pairs.\n The answer is then generated by sequence to sequence model which takes the question and retrieved document as input.\n " st.sidebar.markdown(retriever_info) __UpperCamelCase = st.sidebar.selectbox("Which Wikipedia format should the model use?", ["wiki40b", "none"]) __UpperCamelCase = st.sidebar.selectbox("Which Wikipedia indexer should the model use?", ["dense", "sparse", "mixed"]) else: __UpperCamelCase = "wiki40b" __UpperCamelCase = "dense" __UpperCamelCase = "beam" __UpperCamelCase = 2 __UpperCamelCase = 64 __UpperCamelCase = 256 __UpperCamelCase = None __UpperCamelCase = None __UpperCamelCase = st.sidebar.checkbox("Generation options") if generate_options: __UpperCamelCase = "\n ### Answer generation options\n\n The sequence-to-sequence model was initialized with [BART](https://huggingface.co/facebook/bart-large)\n weights and fine-tuned on the ELI5 QA pairs and retrieved documents. You can use the model for greedy decoding with\n **beam** search, or **sample** from the decoder's output probabilities.\n " st.sidebar.markdown(generate_info) __UpperCamelCase = st.sidebar.selectbox("Would you like to use beam search or sample an answer?", ["beam", "sampled"]) __UpperCamelCase = st.sidebar.slider( "Minimum generation length", min_value=8, max_value=256, value=64, step=8, format=None, key=None ) __UpperCamelCase = st.sidebar.slider( "Maximum generation length", min_value=64, max_value=512, value=256, step=16, format=None, key=None ) if sampled == "beam": __UpperCamelCase = st.sidebar.slider("Beam size", min_value=1, max_value=8, value=2, step=None, format=None, key=None) else: __UpperCamelCase = st.sidebar.slider( "Nucleus sampling p", min_value=0.1, max_value=1.0, value=0.95, step=0.01, format=None, key=None ) __UpperCamelCase = st.sidebar.slider( "Temperature", min_value=0.1, max_value=1.0, value=0.7, step=0.01, format=None, key=None ) __UpperCamelCase = None # start main text __UpperCamelCase = [ "<MY QUESTION>", "How do people make chocolate?", "Why do we get a fever when we are sick?", "How can different animals perceive different colors?", "What is natural language processing?", "What's the best way to treat a sunburn?", "What exactly are vitamins ?", "How does nuclear energy provide electricity?", "What's the difference between viruses and bacteria?", "Why are flutes classified as woodwinds when most of them are made out of metal ?", "Why do people like drinking coffee even though it tastes so bad?", "What happens when wine ages? How does it make the wine taste better?", "If an animal is an herbivore, where does it get the protein that it needs to survive if it only eats grass?", "How can we set a date to the beginning or end of an artistic period? Doesn't the change happen gradually?", "How does New Zealand have so many large bird predators?", ] __UpperCamelCase = st.selectbox( "What would you like to ask? ---- select <MY QUESTION> to enter a new query", questions_list, index=1, ) if question_s == "<MY QUESTION>": __UpperCamelCase = st.text_input("Enter your question here:", "") else: __UpperCamelCase = question_s if st.button("Show me!"): if action in [0, 1, 3]: if index_type == "mixed": __UpperCamelCase , __UpperCamelCase = make_support(question, source=wiki_source, method="dense", n_results=10) __UpperCamelCase , __UpperCamelCase = make_support(question, source=wiki_source, method="sparse", n_results=10) __UpperCamelCase = [] for res_d, res_s in zip(support_list_dense, support_list_sparse): if tuple(res_d) not in support_list: support_list += [tuple(res_d)] if tuple(res_s) not in support_list: support_list += [tuple(res_s)] __UpperCamelCase = support_list[:10] __UpperCamelCase = "<P> " + " <P> ".join([res[-1] for res in support_list]) else: __UpperCamelCase , __UpperCamelCase = make_support(question, source=wiki_source, method=index_type, n_results=10) if action in [0, 3]: __UpperCamelCase , __UpperCamelCase = answer_question( question_doc, sas_model, sas_tokenizer, min_len=min_len, max_len=int(max_len), sampling=(sampled == "sampled"), n_beams=n_beams, top_p=top_p, temp=temp, ) st.markdown("### The model generated answer is:") st.write(answer) if action in [0, 1, 3] and wiki_source != "none": st.markdown("--- \n ### The model is drawing information from the following Wikipedia passages:") for i, res in enumerate(support_list): __UpperCamelCase = "https://en.wikipedia.org/wiki/{}".format(res[0].replace(" ", "_")) __UpperCamelCase = res[1].strip() if sec_titles == "": __UpperCamelCase = "[{}]({})".format(res[0], wiki_url) else: __UpperCamelCase = sec_titles.split(" & ") __UpperCamelCase = " & ".join( ["[{}]({}#{})".format(sec.strip(), wiki_url, sec.strip().replace(" ", "_")) for sec in sec_list] ) st.markdown( "{0:02d} - **Article**: {1:<18} <br> _Section_: {2}".format(i + 1, res[0], sections), unsafe_allow_html=True, ) if show_passages: st.write( "> <span style=\"font-family:arial; font-size:10pt;\">" + res[-1] + "</span>", unsafe_allow_html=True ) if action in [2, 3]: __UpperCamelCase = find_nearest_training(question) __UpperCamelCase = nn_train_list[0] st.markdown( "--- \n ### The most similar question in the ELI5 training set was: \n\n {}".format(train_exple["title"]) ) __UpperCamelCase = [ "{}. {}".format(i + 1, " \n".join([line.strip() for line in ans.split("\n") if line.strip() != ""])) for i, (ans, sc) in enumerate(zip(train_exple["answers"]["text"], train_exple["answers"]["score"])) if i == 0 or sc > 2 ] st.markdown("##### Its answers were: \n\n {}".format("\n".join(answers_st))) __UpperCamelCase = "\n---\n\n**Disclaimer**\n\n*The intent of this app is to provide some (hopefully entertaining) insights into the behavior of a current LFQA system.\nEvaluating biases of such a model and ensuring factual generations are still very much open research problems.\nTherefore, until some significant progress is achieved, we caution against using the generated answers for practical purposes.*\n" st.sidebar.markdown(disclaimer, unsafe_allow_html=True)
26
1
'''simple docstring''' import warnings from ...utils import logging from .image_processing_perceiver import PerceiverImageProcessor __UpperCamelCase = logging.get_logger(__name__) class _A ( __lowercase ): def __init__( self : int , *__magic_name__ : int , **__magic_name__ : Tuple ) -> None: """simple docstring""" warnings.warn( """The class PerceiverFeatureExtractor is deprecated and will be removed in version 5 of Transformers.""" """ Please use PerceiverImageProcessor instead.""" , __magic_name__ , ) super().__init__(*__magic_name__ , **__magic_name__ )
26
'''simple docstring''' import warnings from ...utils import logging from .image_processing_owlvit import OwlViTImageProcessor __UpperCamelCase = logging.get_logger(__name__) class _A ( __lowercase ): def __init__( self : int , *__magic_name__ : Optional[Any] , **__magic_name__ : Any ) -> None: """simple docstring""" warnings.warn( """The class OwlViTFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please""" """ use OwlViTImageProcessor instead.""" , __magic_name__ , ) super().__init__(*__magic_name__ , **__magic_name__ )
26
1
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging __UpperCamelCase = logging.get_logger(__name__) __UpperCamelCase = { "uclanlp/visualbert-vqa": "https://huggingface.co/uclanlp/visualbert-vqa/resolve/main/config.json", "uclanlp/visualbert-vqa-pre": "https://huggingface.co/uclanlp/visualbert-vqa-pre/resolve/main/config.json", "uclanlp/visualbert-vqa-coco-pre": ( "https://huggingface.co/uclanlp/visualbert-vqa-coco-pre/resolve/main/config.json" ), "uclanlp/visualbert-vcr": "https://huggingface.co/uclanlp/visualbert-vcr/resolve/main/config.json", "uclanlp/visualbert-vcr-pre": "https://huggingface.co/uclanlp/visualbert-vcr-pre/resolve/main/config.json", "uclanlp/visualbert-vcr-coco-pre": ( "https://huggingface.co/uclanlp/visualbert-vcr-coco-pre/resolve/main/config.json" ), "uclanlp/visualbert-nlvr2": "https://huggingface.co/uclanlp/visualbert-nlvr2/resolve/main/config.json", "uclanlp/visualbert-nlvr2-pre": "https://huggingface.co/uclanlp/visualbert-nlvr2-pre/resolve/main/config.json", "uclanlp/visualbert-nlvr2-coco-pre": ( "https://huggingface.co/uclanlp/visualbert-nlvr2-coco-pre/resolve/main/config.json" ) # See all VisualBERT models at https://huggingface.co/models?filter=visual_bert } class _A ( __lowercase ): lowercase__: Optional[Any] = '''visual_bert''' def __init__( self : Union[str, Any] , __magic_name__ : Any=3_05_22 , __magic_name__ : Union[str, Any]=7_68 , __magic_name__ : Any=5_12 , __magic_name__ : Dict=12 , __magic_name__ : Optional[Any]=12 , __magic_name__ : Optional[Any]=30_72 , __magic_name__ : Tuple="gelu" , __magic_name__ : Any=0.1 , __magic_name__ : Optional[Any]=0.1 , __magic_name__ : List[str]=5_12 , __magic_name__ : int=2 , __magic_name__ : str=0.02 , __magic_name__ : Dict=1E-12 , __magic_name__ : Any=False , __magic_name__ : List[str]=True , __magic_name__ : Union[str, Any]=1 , __magic_name__ : Dict=0 , __magic_name__ : Union[str, Any]=2 , **__magic_name__ : Tuple , ) -> str: """simple docstring""" super().__init__(pad_token_id=__magic_name__ , bos_token_id=__magic_name__ , eos_token_id=__magic_name__ , **__magic_name__ ) __snake_case : Dict = vocab_size __snake_case : Tuple = max_position_embeddings __snake_case : int = hidden_size __snake_case : Dict = visual_embedding_dim __snake_case : Tuple = num_hidden_layers __snake_case : str = num_attention_heads __snake_case : str = intermediate_size __snake_case : int = hidden_act __snake_case : Tuple = hidden_dropout_prob __snake_case : int = attention_probs_dropout_prob __snake_case : List[str] = initializer_range __snake_case : Optional[Any] = type_vocab_size __snake_case : Union[str, Any] = layer_norm_eps __snake_case : Any = bypass_transformer __snake_case : Dict = special_visual_initialize
26
'''simple docstring''' import argparse import torch from transformers import BlenderbotConfig, BlenderbotForConditionalGeneration from transformers.utils import logging logging.set_verbosity_info() __UpperCamelCase = logging.get_logger(__name__) __UpperCamelCase = [ ["attention", "attn"], ["encoder_attention", "encoder_attn"], ["q_lin", "q_proj"], ["k_lin", "k_proj"], ["v_lin", "v_proj"], ["out_lin", "out_proj"], ["norm_embeddings", "layernorm_embedding"], ["position_embeddings", "embed_positions"], ["embeddings", "embed_tokens"], ["ffn.lin", "fc"], ] def _a ( _lowerCamelCase ) -> Union[str, Any]: """simple docstring""" if k == "embeddings.weight": return "shared.weight" for parlai_name, hf_name in PATTERNS: __snake_case : List[str] = k.replace(_lowerCamelCase , _lowerCamelCase ) if k.startswith("""encoder""" ): __snake_case : Optional[int] = k.replace(""".attn""" , """.self_attn""" ) __snake_case : Tuple = k.replace("""norm1""" , """self_attn_layer_norm""" ) __snake_case : List[str] = k.replace("""norm2""" , """final_layer_norm""" ) elif k.startswith("""decoder""" ): __snake_case : List[Any] = k.replace("""norm1""" , """self_attn_layer_norm""" ) __snake_case : str = k.replace("""norm2""" , """encoder_attn_layer_norm""" ) __snake_case : Optional[int] = k.replace("""norm3""" , """final_layer_norm""" ) return k def _a ( _lowerCamelCase ) -> Any: """simple docstring""" __snake_case : Optional[int] = [ """model.encoder.layernorm_embedding.weight""", """model.encoder.layernorm_embedding.bias""", """model.decoder.layernorm_embedding.weight""", """model.decoder.layernorm_embedding.bias""", ] for k in keys: __snake_case : Optional[Any] = sd.pop(_lowerCamelCase ) __snake_case : List[str] = k.replace("""layernorm_embedding""" , """layer_norm""" ) assert new_k not in sd __snake_case : Union[str, Any] = v __UpperCamelCase = ["START"] @torch.no_grad() def _a ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> Dict: """simple docstring""" __snake_case : Optional[int] = torch.load(_lowerCamelCase , map_location="""cpu""" ) __snake_case : Dict = model["""model"""] __snake_case : Optional[int] = BlenderbotConfig.from_json_file(_lowerCamelCase ) __snake_case : Union[str, Any] = BlenderbotForConditionalGeneration(_lowerCamelCase ) __snake_case : List[Any] = m.model.state_dict().keys() __snake_case : int = [] __snake_case : Union[str, Any] = {} for k, v in sd.items(): if k in IGNORE_KEYS: continue __snake_case : Optional[int] = rename_state_dict_key(_lowerCamelCase ) if new_k not in valid_keys: failures.append([k, new_k] ) else: __snake_case : str = v if cfg.normalize_before: # Blenderbot-3B checkpoints. Rename layernorm_embedding -> layer_norm rename_layernorm_keys(_lowerCamelCase ) m.model.load_state_dict(_lowerCamelCase , strict=_lowerCamelCase ) m.half() m.save_pretrained(_lowerCamelCase ) if __name__ == "__main__": __UpperCamelCase = argparse.ArgumentParser() # Required parameters parser.add_argument("--src_path", type=str, help="like blenderbot-model.bin") parser.add_argument("--save_dir", default="hf_blenderbot", type=str, help="Where to save converted model.") parser.add_argument( "--hf_config_json", default="blenderbot-3b-config.json", type=str, help="Path to config to use" ) __UpperCamelCase = parser.parse_args() convert_parlai_checkpoint(args.src_path, args.save_dir, args.hf_config_json)
26
1
'''simple docstring''' from ... import PretrainedConfig __UpperCamelCase = { "sijunhe/nezha-cn-base": "https://huggingface.co/sijunhe/nezha-cn-base/resolve/main/config.json", } class _A ( __lowercase ): lowercase__: List[Any] = NEZHA_PRETRAINED_CONFIG_ARCHIVE_MAP lowercase__: Optional[Any] = '''nezha''' def __init__( self : List[Any] , __magic_name__ : str=2_11_28 , __magic_name__ : Tuple=7_68 , __magic_name__ : int=12 , __magic_name__ : List[str]=12 , __magic_name__ : List[str]=30_72 , __magic_name__ : Tuple="gelu" , __magic_name__ : List[Any]=0.1 , __magic_name__ : Dict=0.1 , __magic_name__ : int=5_12 , __magic_name__ : List[str]=64 , __magic_name__ : Optional[Any]=2 , __magic_name__ : List[str]=0.02 , __magic_name__ : Dict=1E-12 , __magic_name__ : Any=0.1 , __magic_name__ : str=0 , __magic_name__ : List[Any]=2 , __magic_name__ : Tuple=3 , __magic_name__ : Union[str, Any]=True , **__magic_name__ : List[str] , ) -> List[str]: """simple docstring""" super().__init__(pad_token_id=__magic_name__ , bos_token_id=__magic_name__ , eos_token_id=__magic_name__ , **__magic_name__ ) __snake_case : Tuple = vocab_size __snake_case : List[str] = hidden_size __snake_case : Optional[int] = num_hidden_layers __snake_case : str = num_attention_heads __snake_case : Dict = hidden_act __snake_case : List[Any] = intermediate_size __snake_case : int = hidden_dropout_prob __snake_case : Dict = attention_probs_dropout_prob __snake_case : Union[str, Any] = max_position_embeddings __snake_case : str = max_relative_position __snake_case : Optional[int] = type_vocab_size __snake_case : Any = initializer_range __snake_case : Optional[int] = layer_norm_eps __snake_case : Dict = classifier_dropout __snake_case : List[str] = use_cache
26
'''simple docstring''' import argparse import os import re import packaging.version __UpperCamelCase = "examples/" __UpperCamelCase = { "examples": (re.compile(R"^check_min_version\(\"[^\"]+\"\)\s*$", re.MULTILINE), "check_min_version(\"VERSION\")\n"), "init": (re.compile(R"^__version__\s+=\s+\"([^\"]+)\"\s*$", re.MULTILINE), "__version__ = \"VERSION\"\n"), "setup": (re.compile(R"^(\s*)version\s*=\s*\"[^\"]+\",", re.MULTILINE), R"\1version=\"VERSION\","), "doc": (re.compile(R"^(\s*)release\s*=\s*\"[^\"]+\"$", re.MULTILINE), "release = \"VERSION\"\n"), } __UpperCamelCase = { "init": "src/transformers/__init__.py", "setup": "setup.py", } __UpperCamelCase = "README.md" def _a ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> Tuple: """simple docstring""" with open(_lowerCamelCase , """r""" , encoding="""utf-8""" , newline="""\n""" ) as f: __snake_case : Union[str, Any] = f.read() __snake_case , __snake_case : List[Any] = REPLACE_PATTERNS[pattern] __snake_case : Optional[Any] = replace.replace("""VERSION""" , _lowerCamelCase ) __snake_case : Optional[Any] = re_pattern.sub(_lowerCamelCase , _lowerCamelCase ) with open(_lowerCamelCase , """w""" , encoding="""utf-8""" , newline="""\n""" ) as f: f.write(_lowerCamelCase ) def _a ( _lowerCamelCase ) -> Union[str, Any]: """simple docstring""" for folder, directories, fnames in os.walk(_lowerCamelCase ): # Removing some of the folders with non-actively maintained examples from the walk if "research_projects" in directories: directories.remove("""research_projects""" ) if "legacy" in directories: directories.remove("""legacy""" ) for fname in fnames: if fname.endswith(""".py""" ): update_version_in_file(os.path.join(_lowerCamelCase , _lowerCamelCase ) , _lowerCamelCase , pattern="""examples""" ) def _a ( _lowerCamelCase , _lowerCamelCase=False ) -> str: """simple docstring""" for pattern, fname in REPLACE_FILES.items(): update_version_in_file(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) if not patch: update_version_in_examples(_lowerCamelCase ) def _a ( ) -> Optional[int]: """simple docstring""" __snake_case : str = """🤗 Transformers currently provides the following architectures""" __snake_case : List[Any] = """1. Want to contribute a new model?""" with open(_lowerCamelCase , """r""" , encoding="""utf-8""" , newline="""\n""" ) as f: __snake_case : List[str] = f.readlines() # Find the start of the list. __snake_case : Optional[Any] = 0 while not lines[start_index].startswith(_start_prompt ): start_index += 1 start_index += 1 __snake_case : int = start_index # Update the lines in the model list. while not lines[index].startswith(_end_prompt ): if lines[index].startswith("""1.""" ): __snake_case : Optional[Any] = lines[index].replace( """https://huggingface.co/docs/transformers/main/model_doc""" , """https://huggingface.co/docs/transformers/model_doc""" , ) index += 1 with open(_lowerCamelCase , """w""" , encoding="""utf-8""" , newline="""\n""" ) as f: f.writelines(_lowerCamelCase ) def _a ( ) -> Union[str, Any]: """simple docstring""" with open(REPLACE_FILES["""init"""] , """r""" ) as f: __snake_case : List[Any] = f.read() __snake_case : str = REPLACE_PATTERNS["""init"""][0].search(_lowerCamelCase ).groups()[0] return packaging.version.parse(_lowerCamelCase ) def _a ( _lowerCamelCase=False ) -> int: """simple docstring""" __snake_case : List[Any] = get_version() if patch and default_version.is_devrelease: raise ValueError("""Can't create a patch version from the dev branch, checkout a released version!""" ) if default_version.is_devrelease: __snake_case : str = default_version.base_version elif patch: __snake_case : Optional[int] = F'''{default_version.major}.{default_version.minor}.{default_version.micro + 1}''' else: __snake_case : Dict = F'''{default_version.major}.{default_version.minor + 1}.0''' # Now let's ask nicely if that's the right one. __snake_case : Dict = input(F'''Which version are you releasing? [{default_version}]''' ) if len(_lowerCamelCase ) == 0: __snake_case : Any = default_version print(F'''Updating version to {version}.''' ) global_version_update(_lowerCamelCase , patch=_lowerCamelCase ) if not patch: print("""Cleaning main README, don't forget to run `make fix-copies`.""" ) clean_main_ref_in_model_list() def _a ( ) -> Tuple: """simple docstring""" __snake_case : Optional[Any] = get_version() __snake_case : Tuple = F'''{current_version.major}.{current_version.minor + 1}.0.dev0''' __snake_case : Union[str, Any] = current_version.base_version # Check with the user we got that right. __snake_case : int = input(F'''Which version are we developing now? [{dev_version}]''' ) if len(_lowerCamelCase ) == 0: __snake_case : Optional[int] = dev_version print(F'''Updating version to {version}.''' ) global_version_update(_lowerCamelCase ) print("""Cleaning main README, don't forget to run `make fix-copies`.""" ) clean_main_ref_in_model_list() if __name__ == "__main__": __UpperCamelCase = argparse.ArgumentParser() parser.add_argument("--post_release", action="store_true", help="Whether this is pre or post release.") parser.add_argument("--patch", action="store_true", help="Whether or not this is a patch release.") __UpperCamelCase = parser.parse_args() if not args.post_release: pre_release_work(patch=args.patch) elif args.patch: print("Nothing to do after a patch :-)") else: post_release_work()
26
1
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tokenizers_available, is_torch_available, ) __UpperCamelCase = {} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCamelCase = ["NllbTokenizer"] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCamelCase = ["NllbTokenizerFast"] if TYPE_CHECKING: try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_nllb import NllbTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_nllb_fast import NllbTokenizerFast else: import sys __UpperCamelCase = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
26
'''simple docstring''' from unittest import TestCase from datasets import Sequence, Value from datasets.arrow_dataset import Dataset class _A ( __lowercase ): def lowercase__ ( self : Any ) -> str: """simple docstring""" return [ {"col_1": 3, "col_2": "a"}, {"col_1": 2, "col_2": "b"}, {"col_1": 1, "col_2": "c"}, {"col_1": 0, "col_2": "d"}, ] def lowercase__ ( self : str ) -> int: """simple docstring""" __snake_case : Union[str, Any] = {"""col_1""": [3, 2, 1, 0], """col_2""": ["""a""", """b""", """c""", """d"""]} return Dataset.from_dict(__magic_name__ ) def lowercase__ ( self : str ) -> List[Any]: """simple docstring""" __snake_case : Any = self._create_example_records() __snake_case : str = Dataset.from_list(__magic_name__ ) self.assertListEqual(dset.column_names , ["""col_1""", """col_2"""] ) for i, r in enumerate(__magic_name__ ): self.assertDictEqual(__magic_name__ , example_records[i] ) def lowercase__ ( self : Optional[Any] ) -> List[Any]: """simple docstring""" __snake_case : List[Any] = self._create_example_records() __snake_case : Dict = Dataset.from_list(__magic_name__ ) __snake_case : List[Any] = Dataset.from_dict({k: [r[k] for r in example_records] for k in example_records[0]} ) self.assertEqual(dset.info , dset_from_dict.info ) def lowercase__ ( self : str ) -> List[Any]: # checks what happens with missing columns """simple docstring""" __snake_case : Union[str, Any] = [{"""col_1""": 1}, {"""col_2""": """x"""}] __snake_case : Optional[int] = Dataset.from_list(__magic_name__ ) self.assertDictEqual(dset[0] , {"""col_1""": 1} ) self.assertDictEqual(dset[1] , {"""col_1""": None} ) # NB: first record is used for columns def lowercase__ ( self : List[str] ) -> Optional[Any]: # checks if the type can be inferred from the second record """simple docstring""" __snake_case : List[Any] = [{"""col_1""": []}, {"""col_1""": [1, 2]}] __snake_case : int = Dataset.from_list(__magic_name__ ) self.assertEqual(dset.info.features["""col_1"""] , Sequence(Value("""int64""" ) ) ) def lowercase__ ( self : int ) -> Union[str, Any]: """simple docstring""" __snake_case : Tuple = Dataset.from_list([] ) self.assertEqual(len(__magic_name__ ) , 0 ) self.assertListEqual(dset.column_names , [] )
26
1
'''simple docstring''' import inspect import warnings from typing import Any, Dict, Optional, Union from packaging import version def _a ( *_lowerCamelCase , _lowerCamelCase = None , _lowerCamelCase=True , _lowerCamelCase=2 ) -> Union[str, Any]: """simple docstring""" from .. import __version__ __snake_case : Optional[Any] = take_from __snake_case : Union[str, Any] = () if not isinstance(args[0] , _lowerCamelCase ): __snake_case : Union[str, Any] = (args,) for attribute, version_name, message in args: if version.parse(version.parse(_lowerCamelCase ).base_version ) >= version.parse(_lowerCamelCase ): raise ValueError( F'''The deprecation tuple {(attribute, version_name, message)} should be removed since diffusers\'''' F''' version {__version__} is >= {version_name}''' ) __snake_case : Dict = None if isinstance(_lowerCamelCase , _lowerCamelCase ) and attribute in deprecated_kwargs: values += (deprecated_kwargs.pop(_lowerCamelCase ),) __snake_case : List[Any] = F'''The `{attribute}` argument is deprecated and will be removed in version {version_name}.''' elif hasattr(_lowerCamelCase , _lowerCamelCase ): values += (getattr(_lowerCamelCase , _lowerCamelCase ),) __snake_case : str = F'''The `{attribute}` attribute is deprecated and will be removed in version {version_name}.''' elif deprecated_kwargs is None: __snake_case : str = F'''`{attribute}` is deprecated and will be removed in version {version_name}.''' if warning is not None: __snake_case : List[str] = warning + """ """ if standard_warn else """""" warnings.warn(warning + message , _lowerCamelCase , stacklevel=_lowerCamelCase ) if isinstance(_lowerCamelCase , _lowerCamelCase ) and len(_lowerCamelCase ) > 0: __snake_case : Optional[Any] = inspect.getouterframes(inspect.currentframe() )[1] __snake_case : int = call_frame.filename __snake_case : Union[str, Any] = call_frame.lineno __snake_case : Union[str, Any] = call_frame.function __snake_case , __snake_case : str = next(iter(deprecated_kwargs.items() ) ) raise TypeError(F'''{function} in {filename} line {line_number-1} got an unexpected keyword argument `{key}`''' ) if len(_lowerCamelCase ) == 0: return elif len(_lowerCamelCase ) == 1: return values[0] return values
26
'''simple docstring''' import inspect import unittest import torch import torch.nn as nn from accelerate.hooks import ( AlignDevicesHook, ModelHook, SequentialHook, add_hook_to_module, attach_align_device_hook, remove_hook_from_module, remove_hook_from_submodules, ) from accelerate.test_utils import require_multi_gpu class _A ( nn.Module ): def __init__( self : List[str] ) -> Optional[Any]: """simple docstring""" super().__init__() __snake_case : List[Any] = nn.Linear(3 , 4 ) __snake_case : str = nn.BatchNormad(4 ) __snake_case : Optional[Any] = nn.Linear(4 , 5 ) def lowercase__ ( self : str , __magic_name__ : Dict ) -> List[str]: """simple docstring""" return self.lineara(self.batchnorm(self.lineara(__magic_name__ ) ) ) class _A ( __lowercase ): def lowercase__ ( self : List[str] , __magic_name__ : Tuple , *__magic_name__ : Dict , **__magic_name__ : Optional[Any] ) -> Tuple: """simple docstring""" return (args[0] + 1,) + args[1:], kwargs class _A ( __lowercase ): def lowercase__ ( self : str , __magic_name__ : Union[str, Any] , __magic_name__ : Tuple ) -> Union[str, Any]: """simple docstring""" return output + 1 class _A ( unittest.TestCase ): def lowercase__ ( self : Dict ) -> Any: """simple docstring""" __snake_case : int = ModelForTest() __snake_case : Tuple = ModelHook() add_hook_to_module(__magic_name__ , __magic_name__ ) self.assertEqual(test_model._hf_hook , __magic_name__ ) self.assertTrue(hasattr(__magic_name__ , """_old_forward""" ) ) # Check adding the hook did not change the name or the signature self.assertEqual(test_model.forward.__name__ , """forward""" ) self.assertListEqual(list(inspect.signature(test_model.forward ).parameters ) , ["""x"""] ) remove_hook_from_module(__magic_name__ ) self.assertFalse(hasattr(__magic_name__ , """_hf_hook""" ) ) self.assertFalse(hasattr(__magic_name__ , """_old_forward""" ) ) def lowercase__ ( self : Tuple ) -> List[str]: """simple docstring""" __snake_case : List[Any] = ModelForTest() __snake_case : Optional[int] = ModelHook() add_hook_to_module(__magic_name__ , __magic_name__ ) add_hook_to_module(__magic_name__ , __magic_name__ , append=__magic_name__ ) self.assertEqual(isinstance(test_model._hf_hook , __magic_name__ ) , __magic_name__ ) self.assertEqual(len(test_model._hf_hook.hooks ) , 2 ) self.assertTrue(hasattr(__magic_name__ , """_old_forward""" ) ) # Check adding the hook did not change the name or the signature self.assertEqual(test_model.forward.__name__ , """forward""" ) self.assertListEqual(list(inspect.signature(test_model.forward ).parameters ) , ["""x"""] ) remove_hook_from_module(__magic_name__ ) self.assertFalse(hasattr(__magic_name__ , """_hf_hook""" ) ) self.assertFalse(hasattr(__magic_name__ , """_old_forward""" ) ) def lowercase__ ( self : str ) -> Union[str, Any]: """simple docstring""" __snake_case : List[Any] = ModelForTest() __snake_case : Any = torch.randn(2 , 3 ) __snake_case : str = test_model(x + 1 ) __snake_case : int = test_model(x + 2 ) __snake_case : Union[str, Any] = PreForwardHook() add_hook_to_module(__magic_name__ , __magic_name__ ) __snake_case : int = test_model(__magic_name__ ) self.assertTrue(torch.allclose(__magic_name__ , __magic_name__ , atol=1E-5 ) ) # Attaching a hook to a model when it already has one replaces, does not chain __snake_case : Optional[int] = PreForwardHook() add_hook_to_module(__magic_name__ , __magic_name__ ) __snake_case : List[Any] = test_model(__magic_name__ ) self.assertTrue(torch.allclose(__magic_name__ , __magic_name__ , atol=1E-5 ) ) # You need to use the sequential hook to chain two or more hooks __snake_case : Optional[int] = SequentialHook(PreForwardHook() , PreForwardHook() ) add_hook_to_module(__magic_name__ , __magic_name__ ) __snake_case : List[str] = test_model(__magic_name__ ) assert torch.allclose(__magic_name__ , __magic_name__ , atol=1E-5 ) def lowercase__ ( self : Union[str, Any] ) -> List[str]: """simple docstring""" __snake_case : Union[str, Any] = ModelForTest() __snake_case : str = torch.randn(2 , 3 ) __snake_case : Any = test_model(__magic_name__ ) __snake_case : Any = PostForwardHook() add_hook_to_module(__magic_name__ , __magic_name__ ) __snake_case : Any = test_model(__magic_name__ ) self.assertTrue(torch.allclose(__magic_name__ , output + 1 , atol=1E-5 ) ) # Attaching a hook to a model when it already has one replaces, does not chain __snake_case : Any = PostForwardHook() add_hook_to_module(__magic_name__ , __magic_name__ ) __snake_case : Dict = test_model(__magic_name__ ) self.assertTrue(torch.allclose(__magic_name__ , output + 1 , atol=1E-5 ) ) # You need to use the sequential hook to chain two or more hooks __snake_case : str = SequentialHook(PostForwardHook() , PostForwardHook() ) add_hook_to_module(__magic_name__ , __magic_name__ ) __snake_case : int = test_model(__magic_name__ ) assert torch.allclose(__magic_name__ , output + 2 , atol=1E-5 ) def lowercase__ ( self : str ) -> int: """simple docstring""" __snake_case : Union[str, Any] = ModelForTest() __snake_case : int = torch.randn(2 , 3 ) __snake_case : Any = test_model(__magic_name__ ) __snake_case : Dict = PostForwardHook() add_hook_to_module(__magic_name__ , __magic_name__ ) __snake_case : List[Any] = test_model(__magic_name__ ) self.assertTrue(torch.allclose(__magic_name__ , output + 1 ) ) self.assertTrue(outputa.requires_grad ) __snake_case : Dict = True __snake_case : int = test_model(__magic_name__ ) self.assertFalse(outputa.requires_grad ) @require_multi_gpu def lowercase__ ( self : Tuple ) -> List[Any]: """simple docstring""" __snake_case : Tuple = ModelForTest() # Everything is on CPU self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) ) self.assertEqual(model.batchnorm.weight.device , torch.device("""cpu""" ) ) self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) ) # This will move each submodule on different devices add_hook_to_module(model.lineara , AlignDevicesHook(execution_device=0 ) ) add_hook_to_module(model.batchnorm , AlignDevicesHook(execution_device=0 ) ) add_hook_to_module(model.lineara , AlignDevicesHook(execution_device=1 ) ) self.assertEqual(model.lineara.weight.device , torch.device(0 ) ) self.assertEqual(model.batchnorm.weight.device , torch.device(0 ) ) self.assertEqual(model.batchnorm.running_mean.device , torch.device(0 ) ) self.assertEqual(model.lineara.weight.device , torch.device(1 ) ) # We can still make a forward pass. The input does not need to be on any particular device __snake_case : Tuple = torch.randn(2 , 3 ) __snake_case : Union[str, Any] = model(__magic_name__ ) self.assertEqual(output.device , torch.device(1 ) ) # We can add a general hook to put back output on same device as input. add_hook_to_module(__magic_name__ , AlignDevicesHook(io_same_device=__magic_name__ ) ) __snake_case : Tuple = torch.randn(2 , 3 ).to(0 ) __snake_case : Any = model(__magic_name__ ) self.assertEqual(output.device , torch.device(0 ) ) def lowercase__ ( self : Union[str, Any] ) -> str: """simple docstring""" __snake_case : int = ModelForTest() # Everything is on CPU self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) ) self.assertEqual(model.batchnorm.weight.device , torch.device("""cpu""" ) ) self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) ) # This will move each submodule on different devices __snake_case : List[str] = {"""execution_device""": 0 if torch.cuda.is_available() else """cpu""", """offload""": True} add_hook_to_module(model.lineara , AlignDevicesHook(**__magic_name__ ) ) add_hook_to_module(model.batchnorm , AlignDevicesHook(**__magic_name__ ) ) add_hook_to_module(model.lineara , AlignDevicesHook(**__magic_name__ ) ) # Parameters have been offloaded, so on the meta device self.assertEqual(model.lineara.weight.device , torch.device("""meta""" ) ) self.assertEqual(model.batchnorm.weight.device , torch.device("""meta""" ) ) self.assertEqual(model.lineara.weight.device , torch.device("""meta""" ) ) # Buffers are not included in the offload by default, so are on the execution device __snake_case : Any = torch.device(hook_kwargs["""execution_device"""] ) self.assertEqual(model.batchnorm.running_mean.device , __magic_name__ ) __snake_case : Dict = torch.randn(2 , 3 ) __snake_case : Any = model(__magic_name__ ) self.assertEqual(output.device , __magic_name__ ) # Removing hooks loads back the weights in the model. remove_hook_from_module(model.lineara ) remove_hook_from_module(model.batchnorm ) remove_hook_from_module(model.lineara ) self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) ) self.assertEqual(model.batchnorm.weight.device , torch.device("""cpu""" ) ) self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) ) # Now test with buffers included in the offload __snake_case : int = { """execution_device""": 0 if torch.cuda.is_available() else """cpu""", """offload""": True, """offload_buffers""": True, } add_hook_to_module(model.lineara , AlignDevicesHook(**__magic_name__ ) ) add_hook_to_module(model.batchnorm , AlignDevicesHook(**__magic_name__ ) ) add_hook_to_module(model.lineara , AlignDevicesHook(**__magic_name__ ) ) # Parameters have been offloaded, so on the meta device, buffers included self.assertEqual(model.lineara.weight.device , torch.device("""meta""" ) ) self.assertEqual(model.batchnorm.weight.device , torch.device("""meta""" ) ) self.assertEqual(model.lineara.weight.device , torch.device("""meta""" ) ) self.assertEqual(model.batchnorm.running_mean.device , torch.device("""meta""" ) ) __snake_case : str = torch.randn(2 , 3 ) __snake_case : str = model(__magic_name__ ) self.assertEqual(output.device , __magic_name__ ) # Removing hooks loads back the weights in the model. remove_hook_from_module(model.lineara ) remove_hook_from_module(model.batchnorm ) remove_hook_from_module(model.lineara ) self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) ) self.assertEqual(model.batchnorm.weight.device , torch.device("""cpu""" ) ) self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) ) def lowercase__ ( self : Dict ) -> str: """simple docstring""" __snake_case : Tuple = ModelForTest() # Everything is on CPU self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) ) self.assertEqual(model.batchnorm.weight.device , torch.device("""cpu""" ) ) self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) ) # This will move each submodule on different devices __snake_case : Union[str, Any] = 0 if torch.cuda.is_available() else """cpu""" attach_align_device_hook(__magic_name__ , execution_device=__magic_name__ , offload=__magic_name__ ) # Parameters have been offloaded, so on the meta device self.assertEqual(model.lineara.weight.device , torch.device("""meta""" ) ) self.assertEqual(model.batchnorm.weight.device , torch.device("""meta""" ) ) self.assertEqual(model.lineara.weight.device , torch.device("""meta""" ) ) # Buffers are not included in the offload by default, so are on the execution device __snake_case : Union[str, Any] = torch.device(__magic_name__ ) self.assertEqual(model.batchnorm.running_mean.device , __magic_name__ ) __snake_case : Optional[int] = torch.randn(2 , 3 ) __snake_case : Dict = model(__magic_name__ ) self.assertEqual(output.device , __magic_name__ ) # Removing hooks loads back the weights in the model. remove_hook_from_submodules(__magic_name__ ) self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) ) self.assertEqual(model.batchnorm.weight.device , torch.device("""cpu""" ) ) self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) ) # Now test with buffers included in the offload attach_align_device_hook(__magic_name__ , execution_device=__magic_name__ , offload=__magic_name__ , offload_buffers=__magic_name__ ) # Parameters have been offloaded, so on the meta device, buffers included self.assertEqual(model.lineara.weight.device , torch.device("""meta""" ) ) self.assertEqual(model.batchnorm.weight.device , torch.device("""meta""" ) ) self.assertEqual(model.lineara.weight.device , torch.device("""meta""" ) ) self.assertEqual(model.batchnorm.running_mean.device , torch.device("""meta""" ) ) __snake_case : Dict = torch.randn(2 , 3 ) __snake_case : Optional[int] = model(__magic_name__ ) self.assertEqual(output.device , __magic_name__ ) # Removing hooks loads back the weights in the model. remove_hook_from_submodules(__magic_name__ ) self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) ) self.assertEqual(model.batchnorm.weight.device , torch.device("""cpu""" ) ) self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) ) def lowercase__ ( self : Any ) -> Union[str, Any]: """simple docstring""" __snake_case : Any = ModelForTest() # Everything is on CPU self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) ) self.assertEqual(model.batchnorm.weight.device , torch.device("""cpu""" ) ) self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) ) # This will move each submodule on different devices __snake_case : str = 0 if torch.cuda.is_available() else """cpu""" attach_align_device_hook( __magic_name__ , execution_device=__magic_name__ , offload=__magic_name__ , weights_map=model.state_dict() ) # Parameters have been offloaded, so on the meta device self.assertEqual(model.lineara.weight.device , torch.device("""meta""" ) ) self.assertEqual(model.batchnorm.weight.device , torch.device("""meta""" ) ) self.assertEqual(model.lineara.weight.device , torch.device("""meta""" ) ) # Buffers are not included in the offload by default, so are on the execution device __snake_case : List[str] = torch.device(__magic_name__ ) self.assertEqual(model.batchnorm.running_mean.device , __magic_name__ ) __snake_case : Tuple = torch.randn(2 , 3 ) __snake_case : Optional[Any] = model(__magic_name__ ) self.assertEqual(output.device , __magic_name__ ) # Removing hooks loads back the weights in the model. remove_hook_from_submodules(__magic_name__ ) self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) ) self.assertEqual(model.batchnorm.weight.device , torch.device("""cpu""" ) ) self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) ) # Now test with buffers included in the offload attach_align_device_hook( __magic_name__ , execution_device=__magic_name__ , offload=__magic_name__ , weights_map=model.state_dict() , offload_buffers=__magic_name__ , ) # Parameters have been offloaded, so on the meta device, buffers included self.assertEqual(model.lineara.weight.device , torch.device("""meta""" ) ) self.assertEqual(model.batchnorm.weight.device , torch.device("""meta""" ) ) self.assertEqual(model.lineara.weight.device , torch.device("""meta""" ) ) self.assertEqual(model.batchnorm.running_mean.device , torch.device("""meta""" ) ) __snake_case : List[str] = torch.randn(2 , 3 ) __snake_case : Dict = model(__magic_name__ ) self.assertEqual(output.device , __magic_name__ ) # Removing hooks loads back the weights in the model. remove_hook_from_submodules(__magic_name__ ) self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) ) self.assertEqual(model.batchnorm.weight.device , torch.device("""cpu""" ) ) self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) )
26
1
'''simple docstring''' def _a ( _lowerCamelCase = 100 ) -> int: """simple docstring""" __snake_case : Any = n * (n + 1) * (2 * n + 1) / 6 __snake_case : List[Any] = (n * (n + 1) / 2) ** 2 return int(square_of_sum - sum_of_squares ) if __name__ == "__main__": print(f"""{solution() = }""")
26
'''simple docstring''' from __future__ import annotations __UpperCamelCase = [ [-1, 0], # left [0, -1], # down [1, 0], # right [0, 1], # up ] def _a ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , ) -> tuple[list[list[int]], list[list[int]]]: """simple docstring""" __snake_case : List[str] = [ [0 for col in range(len(grid[0] ) )] for row in range(len(_lowerCamelCase ) ) ] # the reference grid __snake_case : Tuple = 1 __snake_case : List[str] = [ [0 for col in range(len(grid[0] ) )] for row in range(len(_lowerCamelCase ) ) ] # the action grid __snake_case : List[str] = init[0] __snake_case : str = init[1] __snake_case : int = 0 __snake_case : int = g + heuristic[x][y] # cost from starting cell to destination cell __snake_case : List[str] = [[f, g, x, y]] __snake_case : Any = False # flag that is set when search is complete __snake_case : int = False # flag set if we can't find expand while not found and not resign: if len(_lowerCamelCase ) == 0: raise ValueError("""Algorithm is unable to find solution""" ) else: # to choose the least costliest action so as to move closer to the goal cell.sort() cell.reverse() __snake_case : Tuple = cell.pop() __snake_case : Optional[int] = next_cell[2] __snake_case : List[Any] = next_cell[3] __snake_case : int = next_cell[1] if x == goal[0] and y == goal[1]: __snake_case : Optional[Any] = True else: for i in range(len(_lowerCamelCase ) ): # to try out different valid actions __snake_case : Union[str, Any] = x + DIRECTIONS[i][0] __snake_case : str = y + DIRECTIONS[i][1] if xa >= 0 and xa < len(_lowerCamelCase ) and ya >= 0 and ya < len(grid[0] ): if closed[xa][ya] == 0 and grid[xa][ya] == 0: __snake_case : str = g + cost __snake_case : Tuple = ga + heuristic[xa][ya] cell.append([fa, ga, xa, ya] ) __snake_case : List[str] = 1 __snake_case : Optional[int] = i __snake_case : List[str] = [] __snake_case : Optional[int] = goal[0] __snake_case : List[Any] = goal[1] invpath.append([x, y] ) # we get the reverse path from here while x != init[0] or y != init[1]: __snake_case : Dict = x - DIRECTIONS[action[x][y]][0] __snake_case : int = y - DIRECTIONS[action[x][y]][1] __snake_case : Optional[int] = xa __snake_case : int = ya invpath.append([x, y] ) __snake_case : Optional[int] = [] for i in range(len(_lowerCamelCase ) ): path.append(invpath[len(_lowerCamelCase ) - 1 - i] ) return path, action if __name__ == "__main__": __UpperCamelCase = [ [0, 1, 0, 0, 0, 0], [0, 1, 0, 0, 0, 0], # 0 are free path whereas 1's are obstacles [0, 1, 0, 0, 0, 0], [0, 1, 0, 0, 1, 0], [0, 0, 0, 0, 1, 0], ] __UpperCamelCase = [0, 0] # all coordinates are given in format [y,x] __UpperCamelCase = [len(grid) - 1, len(grid[0]) - 1] __UpperCamelCase = 1 # the cost map which pushes the path closer to the goal __UpperCamelCase = [[0 for row in range(len(grid[0]))] for col in range(len(grid))] for i in range(len(grid)): for j in range(len(grid[0])): __UpperCamelCase = abs(i - goal[0]) + abs(j - goal[1]) if grid[i][j] == 1: # added extra penalty in the heuristic map __UpperCamelCase = 99 __UpperCamelCase , __UpperCamelCase = search(grid, init, goal, cost, heuristic) print("ACTION MAP") for i in range(len(action)): print(action[i]) for i in range(len(path)): print(path[i])
26
1
'''simple docstring''' # DISCLAIMER: This file is strongly influenced by https://github.com/yang-song/score_sde_pytorch import math from dataclasses import dataclass from typing import Optional, Tuple, Union import torch from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput, randn_tensor from .scheduling_utils import SchedulerMixin, SchedulerOutput @dataclass class _A ( __lowercase ): lowercase__: torch.FloatTensor lowercase__: torch.FloatTensor class _A ( __lowercase , __lowercase ): lowercase__: List[Any] = 1 @register_to_config def __init__( self : Optional[Any] , __magic_name__ : int = 20_00 , __magic_name__ : float = 0.15 , __magic_name__ : float = 0.01 , __magic_name__ : float = 1348.0 , __magic_name__ : float = 1E-5 , __magic_name__ : int = 1 , ) -> int: """simple docstring""" __snake_case : Dict = sigma_max # setable values __snake_case : Optional[Any] = None self.set_sigmas(__magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ ) def lowercase__ ( self : Tuple , __magic_name__ : torch.FloatTensor , __magic_name__ : Optional[int] = None ) -> torch.FloatTensor: """simple docstring""" return sample def lowercase__ ( self : Union[str, Any] , __magic_name__ : int , __magic_name__ : float = None , __magic_name__ : Union[str, torch.device] = None ) -> Union[str, Any]: """simple docstring""" __snake_case : Union[str, Any] = sampling_eps if sampling_eps is not None else self.config.sampling_eps __snake_case : List[str] = torch.linspace(1 , __magic_name__ , __magic_name__ , device=__magic_name__ ) def lowercase__ ( self : Optional[Any] , __magic_name__ : int , __magic_name__ : float = None , __magic_name__ : float = None , __magic_name__ : float = None ) -> int: """simple docstring""" __snake_case : Any = sigma_min if sigma_min is not None else self.config.sigma_min __snake_case : Optional[Any] = sigma_max if sigma_max is not None else self.config.sigma_max __snake_case : int = sampling_eps if sampling_eps is not None else self.config.sampling_eps if self.timesteps is None: self.set_timesteps(__magic_name__ , __magic_name__ ) __snake_case : Union[str, Any] = sigma_min * (sigma_max / sigma_min) ** (self.timesteps / sampling_eps) __snake_case : Any = torch.exp(torch.linspace(math.log(__magic_name__ ) , math.log(__magic_name__ ) , __magic_name__ ) ) __snake_case : List[Any] = torch.tensor([sigma_min * (sigma_max / sigma_min) ** t for t in self.timesteps] ) def lowercase__ ( self : Any , __magic_name__ : List[str] , __magic_name__ : Optional[int] ) -> Dict: """simple docstring""" return torch.where( timesteps == 0 , torch.zeros_like(t.to(timesteps.device ) ) , self.discrete_sigmas[timesteps - 1].to(timesteps.device ) , ) def lowercase__ ( self : Union[str, Any] , __magic_name__ : torch.FloatTensor , __magic_name__ : int , __magic_name__ : torch.FloatTensor , __magic_name__ : Optional[torch.Generator] = None , __magic_name__ : bool = True , ) -> Union[SdeVeOutput, Tuple]: """simple docstring""" if self.timesteps is None: raise ValueError( """`self.timesteps` is not set, you need to run 'set_timesteps' after creating the scheduler""" ) __snake_case : List[str] = timestep * torch.ones( sample.shape[0] , device=sample.device ) # torch.repeat_interleave(timestep, sample.shape[0]) __snake_case : Dict = (timestep * (len(self.timesteps ) - 1)).long() # mps requires indices to be in the same device, so we use cpu as is the default with cuda __snake_case : int = timesteps.to(self.discrete_sigmas.device ) __snake_case : Dict = self.discrete_sigmas[timesteps].to(sample.device ) __snake_case : Union[str, Any] = self.get_adjacent_sigma(__magic_name__ , __magic_name__ ).to(sample.device ) __snake_case : List[str] = torch.zeros_like(__magic_name__ ) __snake_case : Union[str, Any] = (sigma**2 - adjacent_sigma**2) ** 0.5 # equation 6 in the paper: the model_output modeled by the network is grad_x log pt(x) # also equation 47 shows the analog from SDE models to ancestral sampling methods __snake_case : int = diffusion.flatten() while len(diffusion.shape ) < len(sample.shape ): __snake_case : List[str] = diffusion.unsqueeze(-1 ) __snake_case : Optional[int] = drift - diffusion**2 * model_output # equation 6: sample noise for the diffusion term of __snake_case : Any = randn_tensor( sample.shape , layout=sample.layout , generator=__magic_name__ , device=sample.device , dtype=sample.dtype ) __snake_case : Union[str, Any] = sample - drift # subtract because `dt` is a small negative timestep # TODO is the variable diffusion the correct scaling term for the noise? __snake_case : Tuple = prev_sample_mean + diffusion * noise # add impact of diffusion field g if not return_dict: return (prev_sample, prev_sample_mean) return SdeVeOutput(prev_sample=__magic_name__ , prev_sample_mean=__magic_name__ ) def lowercase__ ( self : Dict , __magic_name__ : torch.FloatTensor , __magic_name__ : torch.FloatTensor , __magic_name__ : Optional[torch.Generator] = None , __magic_name__ : bool = True , ) -> Union[SchedulerOutput, Tuple]: """simple docstring""" if self.timesteps is None: raise ValueError( """`self.timesteps` is not set, you need to run 'set_timesteps' after creating the scheduler""" ) # For small batch sizes, the paper "suggest replacing norm(z) with sqrt(d), where d is the dim. of z" # sample noise for correction __snake_case : str = randn_tensor(sample.shape , layout=sample.layout , generator=__magic_name__ ).to(sample.device ) # compute step size from the model_output, the noise, and the snr __snake_case : List[str] = torch.norm(model_output.reshape(model_output.shape[0] , -1 ) , dim=-1 ).mean() __snake_case : Optional[Any] = torch.norm(noise.reshape(noise.shape[0] , -1 ) , dim=-1 ).mean() __snake_case : Optional[Any] = (self.config.snr * noise_norm / grad_norm) ** 2 * 2 __snake_case : Union[str, Any] = step_size * torch.ones(sample.shape[0] ).to(sample.device ) # self.repeat_scalar(step_size, sample.shape[0]) # compute corrected sample: model_output term and noise term __snake_case : int = step_size.flatten() while len(step_size.shape ) < len(sample.shape ): __snake_case : int = step_size.unsqueeze(-1 ) __snake_case : Any = sample + step_size * model_output __snake_case : List[Any] = prev_sample_mean + ((step_size * 2) ** 0.5) * noise if not return_dict: return (prev_sample,) return SchedulerOutput(prev_sample=__magic_name__ ) def lowercase__ ( self : List[Any] , __magic_name__ : torch.FloatTensor , __magic_name__ : torch.FloatTensor , __magic_name__ : torch.FloatTensor , ) -> torch.FloatTensor: """simple docstring""" __snake_case : Union[str, Any] = timesteps.to(original_samples.device ) __snake_case : Union[str, Any] = self.discrete_sigmas.to(original_samples.device )[timesteps] __snake_case : Union[str, Any] = ( noise * sigmas[:, None, None, None] if noise is not None else torch.randn_like(__magic_name__ ) * sigmas[:, None, None, None] ) __snake_case : Union[str, Any] = noise + original_samples return noisy_samples def __len__( self : Optional[int] ) -> List[str]: """simple docstring""" return self.config.num_train_timesteps
26
'''simple docstring''' def _a ( _lowerCamelCase ) -> int: """simple docstring""" if not isinstance(_lowerCamelCase , _lowerCamelCase ): raise TypeError("""only integers accepted as input""" ) else: __snake_case : List[Any] = str(abs(_lowerCamelCase ) ) __snake_case : Union[str, Any] = [list(_lowerCamelCase ) for char in range(len(_lowerCamelCase ) )] for index in range(len(_lowerCamelCase ) ): num_transpositions[index].pop(_lowerCamelCase ) return max( int("""""".join(list(_lowerCamelCase ) ) ) for transposition in num_transpositions ) if __name__ == "__main__": __import__("doctest").testmod()
26
1
'''simple docstring''' from __future__ import annotations import math def _a ( _lowerCamelCase , _lowerCamelCase ) -> float: """simple docstring""" __snake_case : Any = u for i in range(1 , _lowerCamelCase ): __snake_case : Optional[Any] = temp * (u - i) return temp def _a ( ) -> None: """simple docstring""" __snake_case : str = int(input("""enter the numbers of values: """ ) ) __snake_case : list[list[float]] = [] for _ in range(_lowerCamelCase ): y.append([] ) for i in range(_lowerCamelCase ): for j in range(_lowerCamelCase ): y[i].append(_lowerCamelCase ) __snake_case : Any = 0 print("""enter the values of parameters in a list: """ ) __snake_case : Dict = list(map(_lowerCamelCase , input().split() ) ) print("""enter the values of corresponding parameters: """ ) for i in range(_lowerCamelCase ): __snake_case : Optional[int] = float(input() ) __snake_case : List[str] = int(input("""enter the value to interpolate: """ ) ) __snake_case : int = (value - x[0]) / (x[1] - x[0]) # for calculating forward difference table for i in range(1 , _lowerCamelCase ): for j in range(n - i ): __snake_case : List[Any] = y[j + 1][i - 1] - y[j][i - 1] __snake_case : Union[str, Any] = y[0][0] for i in range(1 , _lowerCamelCase ): summ += (ucal(_lowerCamelCase , _lowerCamelCase ) * y[0][i]) / math.factorial(_lowerCamelCase ) print(F'''the value at {value} is {summ}''' ) if __name__ == "__main__": main()
26
'''simple docstring''' from __future__ import annotations import math def _a ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> int: """simple docstring""" if depth < 0: raise ValueError("""Depth cannot be less than 0""" ) if not scores: raise ValueError("""Scores cannot be empty""" ) if depth == height: return scores[node_index] return ( max( minimax(depth + 1 , node_index * 2 , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) , minimax(depth + 1 , node_index * 2 + 1 , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) , ) if is_max else min( minimax(depth + 1 , node_index * 2 , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) , minimax(depth + 1 , node_index * 2 + 1 , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) , ) ) def _a ( ) -> None: """simple docstring""" __snake_case : Union[str, Any] = [90, 23, 6, 33, 21, 65, 123, 3_4423] __snake_case : Optional[int] = math.log(len(_lowerCamelCase ) , 2 ) print(F'''Optimal value : {minimax(0 , 0 , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase )}''' ) if __name__ == "__main__": import doctest doctest.testmod() main()
26
1
'''simple docstring''' import gc import unittest import torch from parameterized import parameterized from diffusers import AutoencoderKL from diffusers.utils import floats_tensor, load_hf_numpy, require_torch_gpu, slow, torch_all_close, torch_device from diffusers.utils.import_utils import is_xformers_available from diffusers.utils.testing_utils import enable_full_determinism from .test_modeling_common import ModelTesterMixin, UNetTesterMixin enable_full_determinism() class _A ( __lowercase , __lowercase , unittest.TestCase ): lowercase__: Tuple = AutoencoderKL lowercase__: int = '''sample''' lowercase__: Dict = 1e-2 @property def lowercase__ ( self : Union[str, Any] ) -> Optional[Any]: """simple docstring""" __snake_case : Optional[int] = 4 __snake_case : Optional[Any] = 3 __snake_case : Optional[Any] = (32, 32) __snake_case : List[Any] = floats_tensor((batch_size, num_channels) + sizes ).to(__magic_name__ ) return {"sample": image} @property def lowercase__ ( self : Any ) -> str: """simple docstring""" return (3, 32, 32) @property def lowercase__ ( self : str ) -> Dict: """simple docstring""" return (3, 32, 32) def lowercase__ ( self : Tuple ) -> Union[str, Any]: """simple docstring""" __snake_case : Union[str, Any] = { """block_out_channels""": [32, 64], """in_channels""": 3, """out_channels""": 3, """down_block_types""": ["""DownEncoderBlock2D""", """DownEncoderBlock2D"""], """up_block_types""": ["""UpDecoderBlock2D""", """UpDecoderBlock2D"""], """latent_channels""": 4, } __snake_case : List[Any] = self.dummy_input return init_dict, inputs_dict def lowercase__ ( self : Union[str, Any] ) -> Optional[int]: """simple docstring""" pass def lowercase__ ( self : Dict ) -> Optional[Any]: """simple docstring""" pass @unittest.skipIf(torch_device == """mps""" , """Gradient checkpointing skipped on MPS""" ) def lowercase__ ( self : Any ) -> List[Any]: """simple docstring""" __snake_case , __snake_case : List[Any] = self.prepare_init_args_and_inputs_for_common() __snake_case : int = self.model_class(**__magic_name__ ) model.to(__magic_name__ ) assert not model.is_gradient_checkpointing and model.training __snake_case : Any = model(**__magic_name__ ).sample # run the backwards pass on the model. For backwards pass, for simplicity purpose, # we won't calculate the loss and rather backprop on out.sum() model.zero_grad() __snake_case : List[str] = torch.randn_like(__magic_name__ ) __snake_case : Dict = (out - labels).mean() loss.backward() # re-instantiate the model now enabling gradient checkpointing __snake_case : Optional[int] = self.model_class(**__magic_name__ ) # clone model model_a.load_state_dict(model.state_dict() ) model_a.to(__magic_name__ ) model_a.enable_gradient_checkpointing() assert model_a.is_gradient_checkpointing and model_a.training __snake_case : Dict = model_a(**__magic_name__ ).sample # run the backwards pass on the model. For backwards pass, for simplicity purpose, # we won't calculate the loss and rather backprop on out.sum() model_a.zero_grad() __snake_case : Optional[Any] = (out_a - labels).mean() loss_a.backward() # compare the output and parameters gradients self.assertTrue((loss - loss_a).abs() < 1E-5 ) __snake_case : Any = dict(model.named_parameters() ) __snake_case : Any = dict(model_a.named_parameters() ) for name, param in named_params.items(): self.assertTrue(torch_all_close(param.grad.data , named_params_a[name].grad.data , atol=5E-5 ) ) def lowercase__ ( self : int ) -> str: """simple docstring""" __snake_case , __snake_case : Optional[Any] = AutoencoderKL.from_pretrained("""fusing/autoencoder-kl-dummy""" , output_loading_info=__magic_name__ ) self.assertIsNotNone(__magic_name__ ) self.assertEqual(len(loading_info["""missing_keys"""] ) , 0 ) model.to(__magic_name__ ) __snake_case : Tuple = model(**self.dummy_input ) assert image is not None, "Make sure output is not None" def lowercase__ ( self : Any ) -> Union[str, Any]: """simple docstring""" __snake_case : Any = AutoencoderKL.from_pretrained("""fusing/autoencoder-kl-dummy""" ) __snake_case : Optional[int] = model.to(__magic_name__ ) model.eval() if torch_device == "mps": __snake_case : Optional[Any] = torch.manual_seed(0 ) else: __snake_case : Optional[int] = torch.Generator(device=__magic_name__ ).manual_seed(0 ) __snake_case : Optional[Any] = torch.randn( 1 , model.config.in_channels , model.config.sample_size , model.config.sample_size , generator=torch.manual_seed(0 ) , ) __snake_case : Any = image.to(__magic_name__ ) with torch.no_grad(): __snake_case : Any = model(__magic_name__ , sample_posterior=__magic_name__ , generator=__magic_name__ ).sample __snake_case : int = output[0, -1, -3:, -3:].flatten().cpu() # Since the VAE Gaussian prior's generator is seeded on the appropriate device, # the expected output slices are not the same for CPU and GPU. if torch_device == "mps": __snake_case : Optional[int] = torch.tensor( [ -4.0_078E-01, -3.8_323E-04, -1.2_681E-01, -1.1_462E-01, 2.0_095E-01, 1.0_893E-01, -8.8_247E-02, -3.0_361E-01, -9.8_644E-03, ] ) elif torch_device == "cpu": __snake_case : List[Any] = torch.tensor( [-0.1352, 0.0878, 0.0419, -0.0818, -0.1069, 0.0688, -0.1458, -0.4446, -0.0026] ) else: __snake_case : str = torch.tensor( [-0.2421, 0.4642, 0.2507, -0.0438, 0.0682, 0.3160, -0.2018, -0.0727, 0.2485] ) self.assertTrue(torch_all_close(__magic_name__ , __magic_name__ , rtol=1E-2 ) ) @slow class _A ( unittest.TestCase ): def lowercase__ ( self : str , __magic_name__ : Tuple , __magic_name__ : str ) -> Optional[Any]: """simple docstring""" return f'''gaussian_noise_s={seed}_shape={"_".join([str(__magic_name__ ) for s in shape] )}.npy''' def lowercase__ ( self : Tuple ) -> Optional[Any]: """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() def lowercase__ ( self : Tuple , __magic_name__ : str=0 , __magic_name__ : Tuple=(4, 3, 5_12, 5_12) , __magic_name__ : Optional[int]=False ) -> Optional[Any]: """simple docstring""" __snake_case : int = torch.floataa if fpaa else torch.floataa __snake_case : str = torch.from_numpy(load_hf_numpy(self.get_file_format(__magic_name__ , __magic_name__ ) ) ).to(__magic_name__ ).to(__magic_name__ ) return image def lowercase__ ( self : Dict , __magic_name__ : Any="CompVis/stable-diffusion-v1-4" , __magic_name__ : List[Any]=False ) -> Optional[int]: """simple docstring""" __snake_case : List[Any] = """fp16""" if fpaa else None __snake_case : Tuple = torch.floataa if fpaa else torch.floataa __snake_case : Dict = AutoencoderKL.from_pretrained( __magic_name__ , subfolder="""vae""" , torch_dtype=__magic_name__ , revision=__magic_name__ , ) model.to(__magic_name__ ).eval() return model def lowercase__ ( self : Tuple , __magic_name__ : Tuple=0 ) -> int: """simple docstring""" if torch_device == "mps": return torch.manual_seed(__magic_name__ ) return torch.Generator(device=__magic_name__ ).manual_seed(__magic_name__ ) @parameterized.expand( [ # fmt: off [33, [-0.1603, 0.9878, -0.0495, -0.0790, -0.2709, 0.8375, -0.2060, -0.0824], [-0.2395, 0.0098, 0.0102, -0.0709, -0.2840, -0.0274, -0.0718, -0.1824]], [47, [-0.2376, 0.1168, 0.1332, -0.4840, -0.2508, -0.0791, -0.0493, -0.4089], [0.0350, 0.0847, 0.0467, 0.0344, -0.0842, -0.0547, -0.0633, -0.1131]], # fmt: on ] ) def lowercase__ ( self : Optional[int] , __magic_name__ : Optional[int] , __magic_name__ : Optional[int] , __magic_name__ : Union[str, Any] ) -> Tuple: """simple docstring""" __snake_case : List[str] = self.get_sd_vae_model() __snake_case : int = self.get_sd_image(__magic_name__ ) __snake_case : Tuple = self.get_generator(__magic_name__ ) with torch.no_grad(): __snake_case : List[str] = model(__magic_name__ , generator=__magic_name__ , sample_posterior=__magic_name__ ).sample assert sample.shape == image.shape __snake_case : List[Any] = sample[-1, -2:, -2:, :2].flatten().float().cpu() __snake_case : str = torch.tensor(expected_slice_mps if torch_device == """mps""" else expected_slice ) assert torch_all_close(__magic_name__ , __magic_name__ , atol=3E-3 ) @parameterized.expand( [ # fmt: off [33, [-0.0513, 0.0289, 1.3799, 0.2166, -0.2573, -0.0871, 0.5103, -0.0999]], [47, [-0.4128, -0.1320, -0.3704, 0.1965, -0.4116, -0.2332, -0.3340, 0.2247]], # fmt: on ] ) @require_torch_gpu def lowercase__ ( self : str , __magic_name__ : Any , __magic_name__ : Union[str, Any] ) -> Optional[Any]: """simple docstring""" __snake_case : List[Any] = self.get_sd_vae_model(fpaa=__magic_name__ ) __snake_case : int = self.get_sd_image(__magic_name__ , fpaa=__magic_name__ ) __snake_case : Union[str, Any] = self.get_generator(__magic_name__ ) with torch.no_grad(): __snake_case : List[str] = model(__magic_name__ , generator=__magic_name__ , sample_posterior=__magic_name__ ).sample assert sample.shape == image.shape __snake_case : List[str] = sample[-1, -2:, :2, -2:].flatten().float().cpu() __snake_case : int = torch.tensor(__magic_name__ ) assert torch_all_close(__magic_name__ , __magic_name__ , atol=1E-2 ) @parameterized.expand( [ # fmt: off [33, [-0.1609, 0.9866, -0.0487, -0.0777, -0.2716, 0.8368, -0.2055, -0.0814], [-0.2395, 0.0098, 0.0102, -0.0709, -0.2840, -0.0274, -0.0718, -0.1824]], [47, [-0.2377, 0.1147, 0.1333, -0.4841, -0.2506, -0.0805, -0.0491, -0.4085], [0.0350, 0.0847, 0.0467, 0.0344, -0.0842, -0.0547, -0.0633, -0.1131]], # fmt: on ] ) def lowercase__ ( self : List[Any] , __magic_name__ : str , __magic_name__ : Optional[int] , __magic_name__ : Union[str, Any] ) -> Optional[Any]: """simple docstring""" __snake_case : int = self.get_sd_vae_model() __snake_case : List[Any] = self.get_sd_image(__magic_name__ ) with torch.no_grad(): __snake_case : str = model(__magic_name__ ).sample assert sample.shape == image.shape __snake_case : int = sample[-1, -2:, -2:, :2].flatten().float().cpu() __snake_case : Tuple = torch.tensor(expected_slice_mps if torch_device == """mps""" else expected_slice ) assert torch_all_close(__magic_name__ , __magic_name__ , atol=3E-3 ) @parameterized.expand( [ # fmt: off [13, [-0.2051, -0.1803, -0.2311, -0.2114, -0.3292, -0.3574, -0.2953, -0.3323]], [37, [-0.2632, -0.2625, -0.2199, -0.2741, -0.4539, -0.4990, -0.3720, -0.4925]], # fmt: on ] ) @require_torch_gpu def lowercase__ ( self : List[str] , __magic_name__ : Tuple , __magic_name__ : Dict ) -> Optional[Any]: """simple docstring""" __snake_case : List[str] = self.get_sd_vae_model() __snake_case : Tuple = self.get_sd_image(__magic_name__ , shape=(3, 4, 64, 64) ) with torch.no_grad(): __snake_case : Dict = model.decode(__magic_name__ ).sample assert list(sample.shape ) == [3, 3, 5_12, 5_12] __snake_case : int = sample[-1, -2:, :2, -2:].flatten().cpu() __snake_case : Optional[Any] = torch.tensor(__magic_name__ ) assert torch_all_close(__magic_name__ , __magic_name__ , atol=1E-3 ) @parameterized.expand( [ # fmt: off [27, [-0.0369, 0.0207, -0.0776, -0.0682, -0.1747, -0.1930, -0.1465, -0.2039]], [16, [-0.1628, -0.2134, -0.2747, -0.2642, -0.3774, -0.4404, -0.3687, -0.4277]], # fmt: on ] ) @require_torch_gpu def lowercase__ ( self : Tuple , __magic_name__ : List[Any] , __magic_name__ : Dict ) -> Union[str, Any]: """simple docstring""" __snake_case : Any = self.get_sd_vae_model(fpaa=__magic_name__ ) __snake_case : Optional[Any] = self.get_sd_image(__magic_name__ , shape=(3, 4, 64, 64) , fpaa=__magic_name__ ) with torch.no_grad(): __snake_case : List[str] = model.decode(__magic_name__ ).sample assert list(sample.shape ) == [3, 3, 5_12, 5_12] __snake_case : str = sample[-1, -2:, :2, -2:].flatten().float().cpu() __snake_case : Optional[Any] = torch.tensor(__magic_name__ ) assert torch_all_close(__magic_name__ , __magic_name__ , atol=5E-3 ) @parameterized.expand([(13,), (16,), (27,)] ) @require_torch_gpu @unittest.skipIf(not is_xformers_available() , reason="""xformers is not required when using PyTorch 2.0.""" ) def lowercase__ ( self : Any , __magic_name__ : Tuple ) -> List[str]: """simple docstring""" __snake_case : List[str] = self.get_sd_vae_model(fpaa=__magic_name__ ) __snake_case : Optional[int] = self.get_sd_image(__magic_name__ , shape=(3, 4, 64, 64) , fpaa=__magic_name__ ) with torch.no_grad(): __snake_case : Any = model.decode(__magic_name__ ).sample model.enable_xformers_memory_efficient_attention() with torch.no_grad(): __snake_case : int = model.decode(__magic_name__ ).sample assert list(sample.shape ) == [3, 3, 5_12, 5_12] assert torch_all_close(__magic_name__ , __magic_name__ , atol=1E-1 ) @parameterized.expand([(13,), (16,), (37,)] ) @require_torch_gpu @unittest.skipIf(not is_xformers_available() , reason="""xformers is not required when using PyTorch 2.0.""" ) def lowercase__ ( self : Dict , __magic_name__ : List[str] ) -> List[str]: """simple docstring""" __snake_case : Optional[int] = self.get_sd_vae_model() __snake_case : Dict = self.get_sd_image(__magic_name__ , shape=(3, 4, 64, 64) ) with torch.no_grad(): __snake_case : List[str] = model.decode(__magic_name__ ).sample model.enable_xformers_memory_efficient_attention() with torch.no_grad(): __snake_case : List[Any] = model.decode(__magic_name__ ).sample assert list(sample.shape ) == [3, 3, 5_12, 5_12] assert torch_all_close(__magic_name__ , __magic_name__ , atol=1E-2 ) @parameterized.expand( [ # fmt: off [33, [-0.3001, 0.0918, -2.6984, -3.9720, -3.2099, -5.0353, 1.7338, -0.2065, 3.4267]], [47, [-1.5030, -4.3871, -6.0355, -9.1157, -1.6661, -2.7853, 2.1607, -5.0823, 2.5633]], # fmt: on ] ) def lowercase__ ( self : Union[str, Any] , __magic_name__ : Tuple , __magic_name__ : str ) -> Tuple: """simple docstring""" __snake_case : Union[str, Any] = self.get_sd_vae_model() __snake_case : Optional[int] = self.get_sd_image(__magic_name__ ) __snake_case : List[Any] = self.get_generator(__magic_name__ ) with torch.no_grad(): __snake_case : List[Any] = model.encode(__magic_name__ ).latent_dist __snake_case : Optional[Any] = dist.sample(generator=__magic_name__ ) assert list(sample.shape ) == [image.shape[0], 4] + [i // 8 for i in image.shape[2:]] __snake_case : int = sample[0, -1, -3:, -3:].flatten().cpu() __snake_case : Tuple = torch.tensor(__magic_name__ ) __snake_case : Any = 3E-3 if torch_device != """mps""" else 1E-2 assert torch_all_close(__magic_name__ , __magic_name__ , atol=__magic_name__ )
26
'''simple docstring''' from __future__ import annotations def _a ( _lowerCamelCase , _lowerCamelCase = None , _lowerCamelCase = None ) -> None: """simple docstring""" if start is None: __snake_case : Optional[Any] = 0 if end is None: __snake_case : Optional[Any] = len(_lowerCamelCase ) - 1 if start >= end: return __snake_case : Tuple = (start + end) // 2 slowsort(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) slowsort(_lowerCamelCase , mid + 1 , _lowerCamelCase ) if sequence[end] < sequence[mid]: __snake_case , __snake_case : str = sequence[mid], sequence[end] slowsort(_lowerCamelCase , _lowerCamelCase , end - 1 ) if __name__ == "__main__": from doctest import testmod testmod()
26
1
'''simple docstring''' import numpy as np import torch from torch.utils.data import Dataset, IterableDataset from ..utils.generic import ModelOutput class _A ( __lowercase ): def __init__( self : str , __magic_name__ : Optional[int] , __magic_name__ : Optional[int] , __magic_name__ : Union[str, Any] ) -> Optional[Any]: """simple docstring""" __snake_case : Any = dataset __snake_case : str = process __snake_case : Union[str, Any] = params def __len__( self : int ) -> Any: """simple docstring""" return len(self.dataset ) def __getitem__( self : Any , __magic_name__ : List[str] ) -> Any: """simple docstring""" __snake_case : Union[str, Any] = self.dataset[i] __snake_case : Dict = self.process(__magic_name__ , **self.params ) return processed class _A ( __lowercase ): def __init__( self : List[str] , __magic_name__ : Tuple , __magic_name__ : int , __magic_name__ : Tuple , __magic_name__ : Optional[int]=None ) -> List[Any]: """simple docstring""" __snake_case : Tuple = loader __snake_case : List[Any] = infer __snake_case : Tuple = params if loader_batch_size == 1: # Let's spare some time by deactivating altogether __snake_case : Any = None __snake_case : Tuple = loader_batch_size # Internal bookkeeping __snake_case : Union[str, Any] = None __snake_case : Optional[Any] = None def __len__( self : Tuple ) -> Optional[int]: """simple docstring""" return len(self.loader ) def __iter__( self : Optional[int] ) -> Optional[Any]: """simple docstring""" __snake_case : Dict = iter(self.loader ) return self def lowercase__ ( self : Optional[int] ) -> Dict: """simple docstring""" if isinstance(self._loader_batch_data , torch.Tensor ): # Batch data is simple tensor, just fetch the slice __snake_case : List[Any] = self._loader_batch_data[self._loader_batch_index] else: # Batch data is assumed to be BaseModelOutput (or dict) __snake_case : Optional[Any] = {} for k, element in self._loader_batch_data.items(): if isinstance(__magic_name__ , __magic_name__ ): # Convert ModelOutput to tuple first __snake_case : int = element.to_tuple() if isinstance(element[0] , torch.Tensor ): __snake_case : List[str] = tuple(el[self._loader_batch_index].unsqueeze(0 ) for el in element ) elif isinstance(element[0] , np.ndarray ): __snake_case : Optional[Any] = tuple(np.expand_dims(el[self._loader_batch_index] , 0 ) for el in element ) continue if k in {"hidden_states", "past_key_values", "attentions"} and isinstance(__magic_name__ , __magic_name__ ): # Those are stored as lists of tensors so need specific unbatching. if isinstance(element[0] , torch.Tensor ): __snake_case : Any = tuple(el[self._loader_batch_index].unsqueeze(0 ) for el in element ) elif isinstance(element[0] , np.ndarray ): __snake_case : Optional[Any] = tuple(np.expand_dims(el[self._loader_batch_index] , 0 ) for el in element ) continue if element is None: # This can happen for optional data that get passed around __snake_case : Tuple = None elif isinstance(element[self._loader_batch_index] , torch.Tensor ): # Take correct batch data, but make it looked like batch_size=1 # For compatibility with other methods within transformers __snake_case : List[str] = element[self._loader_batch_index].unsqueeze(0 ) elif isinstance(element[self._loader_batch_index] , np.ndarray ): # Take correct batch data, but make it looked like batch_size=1 # For compatibility with other methods within transformers __snake_case : Union[str, Any] = np.expand_dims(element[self._loader_batch_index] , 0 ) else: # This is typically a list, so no need to `unsqueeze`. __snake_case : int = element[self._loader_batch_index] # Recreate the element by reusing the original class to make it look # batch_size=1 __snake_case : Union[str, Any] = self._loader_batch_data.__class__(__magic_name__ ) self._loader_batch_index += 1 return result def lowercase__ ( self : Optional[int] ) -> Optional[Any]: """simple docstring""" if self._loader_batch_index is not None and self._loader_batch_index < self.loader_batch_size: # We are currently unrolling a batch so we just need to return # the current item within a batch return self.loader_batch_item() # We're out of items within a batch __snake_case : List[Any] = next(self.iterator ) __snake_case : Union[str, Any] = self.infer(__magic_name__ , **self.params ) # We now have a batch of "inferred things". if self.loader_batch_size is not None: # Try to infer the size of the batch if isinstance(__magic_name__ , torch.Tensor ): __snake_case : List[Any] = processed else: __snake_case : Optional[Any] = list(processed.keys() )[0] __snake_case : Dict = processed[key] if isinstance(__magic_name__ , __magic_name__ ): __snake_case : List[str] = len(__magic_name__ ) else: __snake_case : int = first_tensor.shape[0] if 0 < observed_batch_size < self.loader_batch_size: # could be last batch so we can't unroll as many # elements. __snake_case : Optional[int] = observed_batch_size # Setting internal index to unwrap the batch __snake_case : Union[str, Any] = processed __snake_case : Any = 0 return self.loader_batch_item() else: # We're not unrolling batches return processed class _A ( __lowercase ): def __init__( self : Optional[int] , __magic_name__ : List[Any] , __magic_name__ : List[Any] , __magic_name__ : Optional[int] , __magic_name__ : int=None ) -> Tuple: """simple docstring""" super().__init__(__magic_name__ , __magic_name__ , __magic_name__ ) def __iter__( self : Tuple ) -> Union[str, Any]: """simple docstring""" __snake_case : Dict = iter(self.loader ) __snake_case : List[str] = None return self def lowercase__ ( self : Tuple ) -> Tuple: """simple docstring""" if self.subiterator is None: __snake_case : Any = self.infer(next(self.iterator ) , **self.params ) try: # Try to return next item __snake_case : List[Any] = next(self.subiterator ) except StopIteration: # When a preprocess iterator ends, we can start lookig at the next item # ChunkIterator will keep feeding until ALL elements of iterator # all have created their subiterator and have been iterating against. # # Another way to look at it, is we're basically flattening lists of lists # into a single list, but with generators __snake_case : List[Any] = self.infer(next(self.iterator ) , **self.params ) __snake_case : List[str] = next(self.subiterator ) return processed class _A ( __lowercase ): def __iter__( self : Optional[Any] ) -> Optional[Any]: """simple docstring""" __snake_case : Tuple = iter(self.loader ) return self def lowercase__ ( self : List[str] ) -> Dict: """simple docstring""" __snake_case : Dict = False __snake_case : Union[str, Any] = [] if self._loader_batch_index is not None and self._loader_batch_index < self.loader_batch_size: while self._loader_batch_index < self.loader_batch_size: __snake_case : Union[str, Any] = self.loader_batch_item() __snake_case : List[str] = item.pop("""is_last""" ) accumulator.append(__magic_name__ ) if is_last: return accumulator while not is_last: __snake_case : Union[str, Any] = self.infer(next(self.iterator ) , **self.params ) if self.loader_batch_size is not None: if isinstance(__magic_name__ , torch.Tensor ): __snake_case : str = processed else: __snake_case : Optional[Any] = list(processed.keys() )[0] __snake_case : List[str] = processed[key] if isinstance(__magic_name__ , __magic_name__ ): __snake_case : Tuple = len(__magic_name__ ) else: __snake_case : Dict = first_tensor.shape[0] if 0 < observed_batch_size < self.loader_batch_size: # could be last batch so we can't unroll as many # elements. __snake_case : List[str] = observed_batch_size __snake_case : List[Any] = processed __snake_case : str = 0 while self._loader_batch_index < self.loader_batch_size: __snake_case : List[Any] = self.loader_batch_item() __snake_case : List[Any] = item.pop("""is_last""" ) accumulator.append(__magic_name__ ) if is_last: return accumulator else: __snake_case : Tuple = processed __snake_case : List[Any] = item.pop("""is_last""" ) accumulator.append(__magic_name__ ) return accumulator class _A ( __lowercase ): def __init__( self : str , __magic_name__ : Dataset , __magic_name__ : str ) -> str: """simple docstring""" __snake_case : List[Any] = dataset __snake_case : Optional[int] = key def __len__( self : str ) -> Tuple: """simple docstring""" return len(self.dataset ) def __getitem__( self : Optional[Any] , __magic_name__ : Dict ) -> Optional[Any]: """simple docstring""" return self.dataset[i][self.key] class _A ( __lowercase ): def __init__( self : Optional[Any] , __magic_name__ : Dataset , __magic_name__ : str , __magic_name__ : str ) -> Union[str, Any]: """simple docstring""" __snake_case : List[str] = dataset __snake_case : Any = keya __snake_case : int = keya def __len__( self : Union[str, Any] ) -> Tuple: """simple docstring""" return len(self.dataset ) def __getitem__( self : Union[str, Any] , __magic_name__ : Tuple ) -> Dict: """simple docstring""" return {"text": self.dataset[i][self.keya], "text_pair": self.dataset[i][self.keya]}
26
'''simple docstring''' import doctest import logging import os import unittest from pathlib import Path from typing import List, Union import transformers from transformers.testing_utils import require_tf, require_torch, slow __UpperCamelCase = logging.getLogger() @unittest.skip('''Temporarily disable the doc tests.''' ) @require_torch @require_tf @slow class _A ( unittest.TestCase ): def lowercase__ ( self : Optional[int] , __magic_name__ : Path , __magic_name__ : Union[str, None] = None , __magic_name__ : Union[List[str], None] = None , __magic_name__ : Union[str, List[str], None] = None , __magic_name__ : bool = True , ) -> Optional[int]: """simple docstring""" __snake_case : Union[str, Any] = [file for file in os.listdir(__magic_name__ ) if os.path.isfile(os.path.join(__magic_name__ , __magic_name__ ) )] if identifier is not None: __snake_case : List[Any] = [file for file in files if identifier in file] if n_identifier is not None: if isinstance(__magic_name__ , __magic_name__ ): for n_ in n_identifier: __snake_case : Optional[int] = [file for file in files if n_ not in file] else: __snake_case : Tuple = [file for file in files if n_identifier not in file] __snake_case : Dict = ignore_files or [] ignore_files.append("""__init__.py""" ) __snake_case : List[str] = [file for file in files if file not in ignore_files] for file in files: # Open all files print("""Testing""" , __magic_name__ ) if only_modules: __snake_case : List[Any] = file.split(""".""" )[0] try: __snake_case : List[Any] = getattr(__magic_name__ , __magic_name__ ) __snake_case : Union[str, Any] = doctest.DocTestSuite(__magic_name__ ) __snake_case : Dict = unittest.TextTestRunner().run(__magic_name__ ) self.assertIs(len(result.failures ) , 0 ) except AttributeError: logger.info(f'''{module_identifier} is not a module.''' ) else: __snake_case : Tuple = doctest.testfile(str("""..""" / directory / file ) , optionflags=doctest.ELLIPSIS ) self.assertIs(result.failed , 0 ) def lowercase__ ( self : Union[str, Any] ) -> Any: """simple docstring""" __snake_case : List[Any] = Path("""src/transformers""" ) __snake_case : List[Any] = """modeling""" __snake_case : Union[str, Any] = [ """modeling_ctrl.py""", """modeling_tf_ctrl.py""", ] self.analyze_directory(__magic_name__ , identifier=__magic_name__ , ignore_files=__magic_name__ ) def lowercase__ ( self : Union[str, Any] ) -> int: """simple docstring""" __snake_case : Union[str, Any] = Path("""src/transformers""" ) __snake_case : Any = """tokenization""" self.analyze_directory(__magic_name__ , identifier=__magic_name__ ) def lowercase__ ( self : Union[str, Any] ) -> int: """simple docstring""" __snake_case : List[Any] = Path("""src/transformers""" ) __snake_case : List[str] = """configuration""" self.analyze_directory(__magic_name__ , identifier=__magic_name__ ) def lowercase__ ( self : Dict ) -> Dict: """simple docstring""" __snake_case : Tuple = Path("""src/transformers""" ) __snake_case : int = ["""configuration""", """modeling""", """tokenization"""] self.analyze_directory(__magic_name__ , n_identifier=__magic_name__ ) def lowercase__ ( self : Optional[int] ) -> Union[str, Any]: """simple docstring""" __snake_case : int = Path("""docs/source""" ) __snake_case : Optional[int] = ["""favicon.ico"""] self.analyze_directory(__magic_name__ , ignore_files=__magic_name__ , only_modules=__magic_name__ )
26
1
'''simple docstring''' import inspect import tempfile import unittest from huggingface_hub import hf_hub_download from transformers import is_torch_available from transformers.testing_utils import is_flaky, require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin __UpperCamelCase = 1E-4 if is_torch_available(): import torch from transformers import AutoformerConfig, AutoformerForPrediction, AutoformerModel from transformers.models.autoformer.modeling_autoformer import AutoformerDecoder, AutoformerEncoder @require_torch class _A : def __init__( self : Union[str, Any] , __magic_name__ : Optional[int] , __magic_name__ : Optional[Any]=16 , __magic_name__ : Optional[Any]=13 , __magic_name__ : List[str]=7 , __magic_name__ : Union[str, Any]=14 , __magic_name__ : Any=10 , __magic_name__ : Tuple=19 , __magic_name__ : int=5 , __magic_name__ : Any=4 , __magic_name__ : Tuple=True , __magic_name__ : int=16 , __magic_name__ : Any=2 , __magic_name__ : List[str]=4 , __magic_name__ : str=4 , __magic_name__ : Any="gelu" , __magic_name__ : int=0.1 , __magic_name__ : Tuple=0.1 , __magic_name__ : Optional[int]=[1, 2, 3, 4, 5] , __magic_name__ : Union[str, Any]=25 , __magic_name__ : Union[str, Any]=5 , ) -> List[Any]: """simple docstring""" __snake_case : Dict = d_model __snake_case : int = parent __snake_case : str = batch_size __snake_case : Optional[Any] = prediction_length __snake_case : str = context_length __snake_case : str = cardinality __snake_case : List[Any] = num_time_features __snake_case : Union[str, Any] = lags_sequence __snake_case : str = embedding_dimension __snake_case : Optional[int] = is_training __snake_case : Tuple = hidden_size __snake_case : Any = num_hidden_layers __snake_case : Dict = num_attention_heads __snake_case : Union[str, Any] = intermediate_size __snake_case : Any = hidden_act __snake_case : str = hidden_dropout_prob __snake_case : Tuple = attention_probs_dropout_prob __snake_case : str = context_length __snake_case : int = prediction_length + label_length __snake_case : Optional[Any] = label_length __snake_case : List[str] = moving_average __snake_case : str = autocorrelation_factor def lowercase__ ( self : Tuple ) -> Union[str, Any]: """simple docstring""" return AutoformerConfig( d_model=self.d_model , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , prediction_length=self.prediction_length , context_length=self.context_length , label_length=self.label_length , lags_sequence=self.lags_sequence , num_time_features=self.num_time_features , num_static_categorical_features=1 , cardinality=[self.cardinality] , embedding_dimension=[self.embedding_dimension] , moving_average=self.moving_average , ) def lowercase__ ( self : Union[str, Any] , __magic_name__ : Optional[int] ) -> Dict: """simple docstring""" __snake_case : List[Any] = config.context_length + max(config.lags_sequence ) __snake_case : Any = ids_tensor([self.batch_size, 1] , config.cardinality[0] ) __snake_case : int = floats_tensor([self.batch_size, _past_length, config.num_time_features] ) __snake_case : List[str] = floats_tensor([self.batch_size, _past_length] ) __snake_case : List[Any] = floats_tensor([self.batch_size, _past_length] ) > 0.5 # decoder inputs __snake_case : List[Any] = floats_tensor([self.batch_size, config.prediction_length, config.num_time_features] ) __snake_case : Tuple = floats_tensor([self.batch_size, config.prediction_length] ) __snake_case : Union[str, Any] = { """past_values""": past_values, """static_categorical_features""": static_categorical_features, """past_time_features""": past_time_features, """past_observed_mask""": past_observed_mask, """future_time_features""": future_time_features, """future_values""": future_values, } return inputs_dict def lowercase__ ( self : Union[str, Any] ) -> int: """simple docstring""" __snake_case : List[Any] = self.get_config() __snake_case : Any = self.prepare_autoformer_inputs_dict(__magic_name__ ) return config, inputs_dict def lowercase__ ( self : Union[str, Any] ) -> Any: """simple docstring""" __snake_case , __snake_case : str = self.prepare_config_and_inputs() return config, inputs_dict def lowercase__ ( self : List[str] , __magic_name__ : int , __magic_name__ : List[str] ) -> str: """simple docstring""" __snake_case : Union[str, Any] = AutoformerModel(config=__magic_name__ ).to(__magic_name__ ).eval() __snake_case : Tuple = model(**__magic_name__ ) __snake_case : Optional[int] = outputs.encoder_last_hidden_state __snake_case : Any = outputs.last_hidden_state with tempfile.TemporaryDirectory() as tmpdirname: __snake_case : List[str] = model.get_encoder() encoder.save_pretrained(__magic_name__ ) __snake_case : List[str] = AutoformerEncoder.from_pretrained(__magic_name__ ).to(__magic_name__ ) __snake_case , __snake_case , __snake_case , __snake_case , __snake_case : List[str] = model.create_network_inputs(**__magic_name__ ) __snake_case , __snake_case : List[str] = model.decomposition_layer(transformer_inputs[:, : config.context_length, ...] ) __snake_case : Union[str, Any] = torch.cat( (transformer_inputs[:, : config.context_length, ...], feature[:, : config.context_length, ...]) , dim=-1 , ) __snake_case : Optional[int] = encoder(inputs_embeds=__magic_name__ )[0] self.parent.assertTrue((encoder_last_hidden_state_a - encoder_last_hidden_state).abs().max().item() < 1E-3 ) __snake_case : str = ( torch.mean(transformer_inputs[:, : config.context_length, ...] , dim=1 ) .unsqueeze(1 ) .repeat(1 , config.prediction_length , 1 ) ) __snake_case : Any = torch.zeros( [transformer_inputs.shape[0], config.prediction_length, transformer_inputs.shape[2]] , device=enc_input.device , ) __snake_case : Optional[Any] = torch.cat( ( torch.cat((seasonal_input[:, -config.label_length :, ...], zeros) , dim=1 ), feature[:, config.context_length - config.label_length :, ...], ) , dim=-1 , ) __snake_case : Optional[int] = torch.cat( ( torch.cat((trend_input[:, -config.label_length :, ...], mean) , dim=1 ), feature[:, config.context_length - config.label_length :, ...], ) , dim=-1 , ) with tempfile.TemporaryDirectory() as tmpdirname: __snake_case : List[Any] = model.get_decoder() decoder.save_pretrained(__magic_name__ ) __snake_case : Dict = AutoformerDecoder.from_pretrained(__magic_name__ ).to(__magic_name__ ) __snake_case : str = decoder( trend=__magic_name__ , inputs_embeds=__magic_name__ , encoder_hidden_states=__magic_name__ , )[0] self.parent.assertTrue((last_hidden_state_a - last_hidden_state).abs().max().item() < 1E-3 ) @require_torch class _A ( __lowercase , __lowercase , unittest.TestCase ): lowercase__: Tuple = (AutoformerModel, AutoformerForPrediction) if is_torch_available() else () lowercase__: int = (AutoformerForPrediction,) if is_torch_available() else () lowercase__: int = {'''feature-extraction''': AutoformerModel} if is_torch_available() else {} lowercase__: int = False lowercase__: Optional[int] = False lowercase__: Dict = False lowercase__: List[str] = False lowercase__: int = False lowercase__: List[str] = False def lowercase__ ( self : List[str] ) -> Dict: """simple docstring""" __snake_case : List[str] = AutoformerModelTester(self ) __snake_case : Dict = ConfigTester(self , config_class=__magic_name__ , has_text_modality=__magic_name__ ) def lowercase__ ( self : str ) -> Any: """simple docstring""" self.config_tester.run_common_tests() def lowercase__ ( self : Optional[int] ) -> int: """simple docstring""" __snake_case , __snake_case : str = self.model_tester.prepare_config_and_inputs() for model_class in self.all_model_classes: __snake_case : int = model_class(__magic_name__ ) with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(__magic_name__ ) __snake_case , __snake_case : str = model_class.from_pretrained(__magic_name__ , output_loading_info=__magic_name__ ) self.assertEqual(info["""missing_keys"""] , [] ) def lowercase__ ( self : Optional[Any] ) -> Optional[int]: """simple docstring""" __snake_case : Tuple = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.check_encoder_decoder_model_standalone(*__magic_name__ ) @unittest.skip(reason="""Model has no tokens embeddings""" ) def lowercase__ ( self : Optional[Any] ) -> str: """simple docstring""" pass def lowercase__ ( self : List[str] ) -> Dict: """simple docstring""" __snake_case : Optional[Any] = inspect.signature(getattr(__magic_name__ , """forward""" ) ) # The main input is the name of the argument after `self` __snake_case : List[Any] = list(model_signature.parameters.keys() )[1] self.assertEqual(AutoformerModel.main_input_name , __magic_name__ ) def lowercase__ ( self : int ) -> Dict: """simple docstring""" __snake_case , __snake_case : str = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __snake_case : int = model_class(__magic_name__ ) __snake_case : Tuple = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __snake_case : Tuple = [*signature.parameters.keys()] __snake_case : Any = [ """past_values""", """past_time_features""", """past_observed_mask""", """static_categorical_features""", """static_real_features""", """future_values""", """future_time_features""", ] if model.__class__.__name__ in ["AutoformerForPrediction"]: expected_arg_names.append("""future_observed_mask""" ) expected_arg_names.extend( [ """decoder_attention_mask""", """head_mask""", """decoder_head_mask""", """cross_attn_head_mask""", """encoder_outputs""", """past_key_values""", """output_hidden_states""", """output_attentions""", """use_cache""", """return_dict""", ] ) self.assertListEqual(arg_names[: len(__magic_name__ )] , __magic_name__ ) def lowercase__ ( self : Dict ) -> Optional[Any]: """simple docstring""" __snake_case , __snake_case : Any = self.model_tester.prepare_config_and_inputs_for_common() __snake_case : Any = True __snake_case : Union[str, Any] = getattr(self.model_tester , """seq_length""" , __magic_name__ ) __snake_case : str = getattr(self.model_tester , """decoder_seq_length""" , __magic_name__ ) __snake_case : Tuple = getattr(self.model_tester , """encoder_seq_length""" , __magic_name__ ) __snake_case : Tuple = getattr(self.model_tester , """d_model""" , __magic_name__ ) __snake_case : str = getattr(self.model_tester , """num_attention_heads""" , __magic_name__ ) __snake_case : Optional[int] = d_model // num_attention_heads for model_class in self.all_model_classes: __snake_case : Optional[int] = True __snake_case : List[Any] = False __snake_case : Optional[Any] = True __snake_case : List[str] = model_class(__magic_name__ ) model.to(__magic_name__ ) model.eval() with torch.no_grad(): __snake_case : Dict = model(**self._prepare_for_class(__magic_name__ , __magic_name__ ) ) __snake_case : List[str] = outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions self.assertEqual(len(__magic_name__ ) , self.model_tester.num_hidden_layers ) # check that output_attentions also work using config del inputs_dict["output_attentions"] __snake_case : str = True __snake_case : Optional[Any] = model_class(__magic_name__ ) model.to(__magic_name__ ) model.eval() with torch.no_grad(): __snake_case : str = model(**self._prepare_for_class(__magic_name__ , __magic_name__ ) ) __snake_case : List[Any] = outputs.encoder_attentions self.assertEqual(len(__magic_name__ ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, encoder_seq_length, dim] , ) __snake_case : Union[str, Any] = len(__magic_name__ ) __snake_case : Dict = 7 if "last_hidden_state" in outputs: correct_outlen += 1 if "trend" in outputs: correct_outlen += 1 if "past_key_values" in outputs: correct_outlen += 1 # past_key_values have been returned if "loss" in outputs: correct_outlen += 1 if "params" in outputs: correct_outlen += 1 self.assertEqual(__magic_name__ , __magic_name__ ) # decoder attentions __snake_case : Union[str, Any] = outputs.decoder_attentions self.assertIsInstance(__magic_name__ , (list, tuple) ) self.assertEqual(len(__magic_name__ ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(decoder_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, decoder_seq_length, dim] , ) # cross attentions __snake_case : str = outputs.cross_attentions self.assertIsInstance(__magic_name__ , (list, tuple) ) self.assertEqual(len(__magic_name__ ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(cross_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, decoder_seq_length, dim] , ) # Check attention is always last and order is fine __snake_case : str = True __snake_case : int = True __snake_case : Any = model_class(__magic_name__ ) model.to(__magic_name__ ) model.eval() with torch.no_grad(): __snake_case : Optional[int] = model(**self._prepare_for_class(__magic_name__ , __magic_name__ ) ) self.assertEqual(out_len + 2 , len(__magic_name__ ) ) __snake_case : List[Any] = outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions self.assertEqual(len(__magic_name__ ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(self_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, encoder_seq_length, dim] , ) @is_flaky() def lowercase__ ( self : List[str] ) -> int: """simple docstring""" super().test_retain_grad_hidden_states_attentions() def _a ( _lowerCamelCase="train-batch.pt" ) -> Dict: """simple docstring""" __snake_case : Tuple = hf_hub_download(repo_id="""hf-internal-testing/tourism-monthly-batch""" , filename=_lowerCamelCase , repo_type="""dataset""" ) __snake_case : Union[str, Any] = torch.load(_lowerCamelCase , map_location=_lowerCamelCase ) return batch @require_torch @slow class _A ( unittest.TestCase ): def lowercase__ ( self : List[str] ) -> List[str]: """simple docstring""" __snake_case : int = AutoformerModel.from_pretrained("""huggingface/autoformer-tourism-monthly""" ).to(__magic_name__ ) __snake_case : str = prepare_batch() with torch.no_grad(): __snake_case : Any = model( past_values=batch["""past_values"""] , past_time_features=batch["""past_time_features"""] , past_observed_mask=batch["""past_observed_mask"""] , static_categorical_features=batch["""static_categorical_features"""] , future_values=batch["""future_values"""] , future_time_features=batch["""future_time_features"""] , )[0] __snake_case : List[str] = torch.Size( (64, model.config.prediction_length + model.config.label_length, model.config.feature_size) ) self.assertEqual(output.shape , __magic_name__ ) __snake_case : Any = torch.tensor( [[0.3593, -1.3398, 0.6330], [0.2279, 1.5396, -0.1792], [0.0450, 1.3225, -0.2335]] , device=__magic_name__ ) self.assertTrue(torch.allclose(output[0, :3, :3] , __magic_name__ , atol=__magic_name__ ) ) def lowercase__ ( self : str ) -> List[Any]: """simple docstring""" __snake_case : Any = AutoformerForPrediction.from_pretrained("""huggingface/autoformer-tourism-monthly""" ).to(__magic_name__ ) __snake_case : Optional[Any] = prepare_batch("""val-batch.pt""" ) with torch.no_grad(): __snake_case : Optional[int] = model( past_values=batch["""past_values"""] , past_time_features=batch["""past_time_features"""] , past_observed_mask=batch["""past_observed_mask"""] , static_categorical_features=batch["""static_categorical_features"""] , ).encoder_last_hidden_state __snake_case : Optional[int] = torch.Size((64, model.config.context_length, model.config.d_model) ) self.assertEqual(output.shape , __magic_name__ ) __snake_case : Tuple = torch.tensor( [[-0.0734, -0.9036, 0.8358], [4.7186, 2.4113, 1.9581], [1.7953, 2.3558, 1.2970]] , device=__magic_name__ ) self.assertTrue(torch.allclose(output[0, :3, :3] , __magic_name__ , atol=__magic_name__ ) ) def lowercase__ ( self : List[Any] ) -> List[str]: """simple docstring""" __snake_case : Any = AutoformerForPrediction.from_pretrained("""huggingface/autoformer-tourism-monthly""" ).to(__magic_name__ ) __snake_case : Tuple = prepare_batch("""val-batch.pt""" ) with torch.no_grad(): __snake_case : Any = model.generate( static_categorical_features=batch["""static_categorical_features"""] , past_time_features=batch["""past_time_features"""] , past_values=batch["""past_values"""] , future_time_features=batch["""future_time_features"""] , past_observed_mask=batch["""past_observed_mask"""] , ) __snake_case : List[Any] = torch.Size((64, model.config.num_parallel_samples, model.config.prediction_length) ) self.assertEqual(outputs.sequences.shape , __magic_name__ ) __snake_case : int = torch.tensor([3130.6763, 4056.5293, 7053.0786] , device=__magic_name__ ) __snake_case : List[Any] = outputs.sequences.mean(dim=1 ) self.assertTrue(torch.allclose(mean_prediction[0, -3:] , __magic_name__ , rtol=1E-1 ) )
26
'''simple docstring''' import inspect from typing import Callable, List, Optional, Union import torch from transformers import ( CLIPImageProcessor, CLIPTextModel, CLIPTokenizer, WhisperForConditionalGeneration, WhisperProcessor, ) from diffusers import ( AutoencoderKL, DDIMScheduler, DiffusionPipeline, LMSDiscreteScheduler, PNDMScheduler, UNetaDConditionModel, ) from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion import StableDiffusionPipelineOutput from diffusers.pipelines.stable_diffusion.safety_checker import StableDiffusionSafetyChecker from diffusers.utils import logging __UpperCamelCase = logging.get_logger(__name__) # pylint: disable=invalid-name class _A ( __lowercase ): def __init__( self : str , __magic_name__ : WhisperForConditionalGeneration , __magic_name__ : WhisperProcessor , __magic_name__ : AutoencoderKL , __magic_name__ : CLIPTextModel , __magic_name__ : CLIPTokenizer , __magic_name__ : UNetaDConditionModel , __magic_name__ : Union[DDIMScheduler, PNDMScheduler, LMSDiscreteScheduler] , __magic_name__ : StableDiffusionSafetyChecker , __magic_name__ : CLIPImageProcessor , ) -> Union[str, Any]: """simple docstring""" super().__init__() if safety_checker is None: logger.warning( f'''You have disabled the safety checker for {self.__class__} by passing `safety_checker=None`. Ensure''' """ that you abide to the conditions of the Stable Diffusion license and do not expose unfiltered""" """ results in services or applications open to the public. Both the diffusers team and Hugging Face""" """ strongly recommend to keep the safety filter enabled in all public facing circumstances, disabling""" """ it only for use-cases that involve analyzing network behavior or auditing its results. For more""" """ information, please have a look at https://github.com/huggingface/diffusers/pull/254 .""" ) self.register_modules( speech_model=__magic_name__ , speech_processor=__magic_name__ , vae=__magic_name__ , text_encoder=__magic_name__ , tokenizer=__magic_name__ , unet=__magic_name__ , scheduler=__magic_name__ , feature_extractor=__magic_name__ , ) def lowercase__ ( self : Optional[Any] , __magic_name__ : Optional[Union[str, int]] = "auto" ) -> Union[str, Any]: """simple docstring""" if slice_size == "auto": __snake_case : str = self.unet.config.attention_head_dim // 2 self.unet.set_attention_slice(__magic_name__ ) def lowercase__ ( self : str ) -> Any: """simple docstring""" self.enable_attention_slicing(__magic_name__ ) @torch.no_grad() def __call__( self : Optional[int] , __magic_name__ : str , __magic_name__ : Dict=1_60_00 , __magic_name__ : int = 5_12 , __magic_name__ : int = 5_12 , __magic_name__ : int = 50 , __magic_name__ : float = 7.5 , __magic_name__ : Optional[Union[str, List[str]]] = None , __magic_name__ : Optional[int] = 1 , __magic_name__ : float = 0.0 , __magic_name__ : Optional[torch.Generator] = None , __magic_name__ : Optional[torch.FloatTensor] = None , __magic_name__ : Optional[str] = "pil" , __magic_name__ : bool = True , __magic_name__ : Optional[Callable[[int, int, torch.FloatTensor], None]] = None , __magic_name__ : int = 1 , **__magic_name__ : List[str] , ) -> int: """simple docstring""" __snake_case : List[Any] = self.speech_processor.feature_extractor( __magic_name__ , return_tensors="""pt""" , sampling_rate=__magic_name__ ).input_features.to(self.device ) __snake_case : List[str] = self.speech_model.generate(__magic_name__ , max_length=48_00_00 ) __snake_case : List[Any] = self.speech_processor.tokenizer.batch_decode(__magic_name__ , skip_special_tokens=__magic_name__ , normalize=__magic_name__ )[ 0 ] if isinstance(__magic_name__ , __magic_name__ ): __snake_case : Tuple = 1 elif isinstance(__magic_name__ , __magic_name__ ): __snake_case : Optional[int] = len(__magic_name__ ) else: raise ValueError(f'''`prompt` has to be of type `str` or `list` but is {type(__magic_name__ )}''' ) if height % 8 != 0 or width % 8 != 0: raise ValueError(f'''`height` and `width` have to be divisible by 8 but are {height} and {width}.''' ) if (callback_steps is None) or ( callback_steps is not None and (not isinstance(__magic_name__ , __magic_name__ ) or callback_steps <= 0) ): raise ValueError( f'''`callback_steps` has to be a positive integer but is {callback_steps} of type''' f''' {type(__magic_name__ )}.''' ) # get prompt text embeddings __snake_case : Dict = self.tokenizer( __magic_name__ , padding="""max_length""" , max_length=self.tokenizer.model_max_length , return_tensors="""pt""" , ) __snake_case : Optional[Any] = text_inputs.input_ids if text_input_ids.shape[-1] > self.tokenizer.model_max_length: __snake_case : Tuple = self.tokenizer.batch_decode(text_input_ids[:, self.tokenizer.model_max_length :] ) logger.warning( """The following part of your input was truncated because CLIP can only handle sequences up to""" f''' {self.tokenizer.model_max_length} tokens: {removed_text}''' ) __snake_case : Any = text_input_ids[:, : self.tokenizer.model_max_length] __snake_case : int = self.text_encoder(text_input_ids.to(self.device ) )[0] # duplicate text embeddings for each generation per prompt, using mps friendly method __snake_case , __snake_case , __snake_case : Any = text_embeddings.shape __snake_case : List[Any] = text_embeddings.repeat(1 , __magic_name__ , 1 ) __snake_case : Dict = text_embeddings.view(bs_embed * num_images_per_prompt , __magic_name__ , -1 ) # here `guidance_scale` is defined analog to the guidance weight `w` of equation (2) # of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1` # corresponds to doing no classifier free guidance. __snake_case : Optional[int] = guidance_scale > 1.0 # get unconditional embeddings for classifier free guidance if do_classifier_free_guidance: __snake_case : List[str] if negative_prompt is None: __snake_case : Optional[Any] = [""""""] * batch_size elif type(__magic_name__ ) is not type(__magic_name__ ): raise TypeError( f'''`negative_prompt` should be the same type to `prompt`, but got {type(__magic_name__ )} !=''' f''' {type(__magic_name__ )}.''' ) elif isinstance(__magic_name__ , __magic_name__ ): __snake_case : Dict = [negative_prompt] elif batch_size != len(__magic_name__ ): raise ValueError( f'''`negative_prompt`: {negative_prompt} has batch size {len(__magic_name__ )}, but `prompt`:''' f''' {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches''' """ the batch size of `prompt`.""" ) else: __snake_case : int = negative_prompt __snake_case : List[str] = text_input_ids.shape[-1] __snake_case : Any = self.tokenizer( __magic_name__ , padding="""max_length""" , max_length=__magic_name__ , truncation=__magic_name__ , return_tensors="""pt""" , ) __snake_case : Dict = self.text_encoder(uncond_input.input_ids.to(self.device ) )[0] # duplicate unconditional embeddings for each generation per prompt, using mps friendly method __snake_case : Optional[int] = uncond_embeddings.shape[1] __snake_case : Union[str, Any] = uncond_embeddings.repeat(1 , __magic_name__ , 1 ) __snake_case : Tuple = uncond_embeddings.view(batch_size * num_images_per_prompt , __magic_name__ , -1 ) # For classifier free guidance, we need to do two forward passes. # Here we concatenate the unconditional and text embeddings into a single batch # to avoid doing two forward passes __snake_case : Dict = torch.cat([uncond_embeddings, text_embeddings] ) # get the initial random noise unless the user supplied it # Unlike in other pipelines, latents need to be generated in the target device # for 1-to-1 results reproducibility with the CompVis implementation. # However this currently doesn't work in `mps`. __snake_case : List[Any] = (batch_size * num_images_per_prompt, self.unet.config.in_channels, height // 8, width // 8) __snake_case : List[Any] = text_embeddings.dtype if latents is None: if self.device.type == "mps": # randn does not exist on mps __snake_case : Optional[int] = torch.randn(__magic_name__ , generator=__magic_name__ , device="""cpu""" , dtype=__magic_name__ ).to( self.device ) else: __snake_case : int = torch.randn(__magic_name__ , generator=__magic_name__ , device=self.device , dtype=__magic_name__ ) else: if latents.shape != latents_shape: raise ValueError(f'''Unexpected latents shape, got {latents.shape}, expected {latents_shape}''' ) __snake_case : List[str] = latents.to(self.device ) # set timesteps self.scheduler.set_timesteps(__magic_name__ ) # Some schedulers like PNDM have timesteps as arrays # It's more optimized to move all timesteps to correct device beforehand __snake_case : Optional[int] = self.scheduler.timesteps.to(self.device ) # scale the initial noise by the standard deviation required by the scheduler __snake_case : str = latents * self.scheduler.init_noise_sigma # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature # eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers. # eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502 # and should be between [0, 1] __snake_case : Tuple = """eta""" in set(inspect.signature(self.scheduler.step ).parameters.keys() ) __snake_case : List[str] = {} if accepts_eta: __snake_case : str = eta for i, t in enumerate(self.progress_bar(__magic_name__ ) ): # expand the latents if we are doing classifier free guidance __snake_case : Union[str, Any] = torch.cat([latents] * 2 ) if do_classifier_free_guidance else latents __snake_case : Dict = self.scheduler.scale_model_input(__magic_name__ , __magic_name__ ) # predict the noise residual __snake_case : Tuple = self.unet(__magic_name__ , __magic_name__ , encoder_hidden_states=__magic_name__ ).sample # perform guidance if do_classifier_free_guidance: __snake_case , __snake_case : str = noise_pred.chunk(2 ) __snake_case : Any = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) # compute the previous noisy sample x_t -> x_t-1 __snake_case : Optional[Any] = self.scheduler.step(__magic_name__ , __magic_name__ , __magic_name__ , **__magic_name__ ).prev_sample # call the callback, if provided if callback is not None and i % callback_steps == 0: callback(__magic_name__ , __magic_name__ , __magic_name__ ) __snake_case : int = 1 / 0.18215 * latents __snake_case : Optional[Any] = self.vae.decode(__magic_name__ ).sample __snake_case : Any = (image / 2 + 0.5).clamp(0 , 1 ) # we always cast to float32 as this does not cause significant overhead and is compatible with bfloat16 __snake_case : Any = image.cpu().permute(0 , 2 , 3 , 1 ).float().numpy() if output_type == "pil": __snake_case : Tuple = self.numpy_to_pil(__magic_name__ ) if not return_dict: return image return StableDiffusionPipelineOutput(images=__magic_name__ , nsfw_content_detected=__magic_name__ )
26
1
'''simple docstring''' import numpy as np import skfuzzy as fuzz if __name__ == "__main__": # Create universe of discourse in Python using linspace () __UpperCamelCase = np.linspace(start=0, stop=75, num=75, endpoint=True, retstep=False) # Create two fuzzy sets by defining any membership function # (trapmf(), gbellmf(), gaussmf(), etc). __UpperCamelCase = [0, 25, 50] __UpperCamelCase = [25, 50, 75] __UpperCamelCase = fuzz.membership.trimf(X, abca) __UpperCamelCase = fuzz.membership.trimf(X, abca) # Compute the different operations using inbuilt functions. __UpperCamelCase = np.ones(75) __UpperCamelCase = np.zeros((75,)) # 1. Union = max(µA(x), µB(x)) __UpperCamelCase = fuzz.fuzzy_or(X, young, X, middle_aged)[1] # 2. Intersection = min(µA(x), µB(x)) __UpperCamelCase = fuzz.fuzzy_and(X, young, X, middle_aged)[1] # 3. Complement (A) = (1- min(µA(x)) __UpperCamelCase = fuzz.fuzzy_not(young) # 4. Difference (A/B) = min(µA(x),(1- µB(x))) __UpperCamelCase = fuzz.fuzzy_and(X, young, X, fuzz.fuzzy_not(middle_aged)[1])[1] # 5. Algebraic Sum = [µA(x) + µB(x) – (µA(x) * µB(x))] __UpperCamelCase = young + middle_aged - (young * middle_aged) # 6. Algebraic Product = (µA(x) * µB(x)) __UpperCamelCase = young * middle_aged # 7. Bounded Sum = min[1,(µA(x), µB(x))] __UpperCamelCase = fuzz.fuzzy_and(X, one, X, young + middle_aged)[1] # 8. Bounded difference = min[0,(µA(x), µB(x))] __UpperCamelCase = fuzz.fuzzy_or(X, zero, X, young - middle_aged)[1] # max-min composition # max-product composition # Plot each set A, set B and each operation result using plot() and subplot(). from matplotlib import pyplot as plt plt.figure() plt.subplot(4, 3, 1) plt.plot(X, young) plt.title("Young") plt.grid(True) plt.subplot(4, 3, 2) plt.plot(X, middle_aged) plt.title("Middle aged") plt.grid(True) plt.subplot(4, 3, 3) plt.plot(X, union) plt.title("union") plt.grid(True) plt.subplot(4, 3, 4) plt.plot(X, intersection) plt.title("intersection") plt.grid(True) plt.subplot(4, 3, 5) plt.plot(X, complement_a) plt.title("complement_a") plt.grid(True) plt.subplot(4, 3, 6) plt.plot(X, difference) plt.title("difference a/b") plt.grid(True) plt.subplot(4, 3, 7) plt.plot(X, alg_sum) plt.title("alg_sum") plt.grid(True) plt.subplot(4, 3, 8) plt.plot(X, alg_product) plt.title("alg_product") plt.grid(True) plt.subplot(4, 3, 9) plt.plot(X, bdd_sum) plt.title("bdd_sum") plt.grid(True) plt.subplot(4, 3, 10) plt.plot(X, bdd_difference) plt.title("bdd_difference") plt.grid(True) plt.subplots_adjust(hspace=0.5) plt.show()
26
'''simple docstring''' import os from huggingface_hub.constants import HUGGINGFACE_HUB_CACHE, hf_cache_home __UpperCamelCase = HUGGINGFACE_HUB_CACHE __UpperCamelCase = "config.json" __UpperCamelCase = "diffusion_pytorch_model.bin" __UpperCamelCase = "diffusion_flax_model.msgpack" __UpperCamelCase = "model.onnx" __UpperCamelCase = "diffusion_pytorch_model.safetensors" __UpperCamelCase = "weights.pb" __UpperCamelCase = "https://huggingface.co" __UpperCamelCase = default_cache_path __UpperCamelCase = "diffusers_modules" __UpperCamelCase = os.getenv("HF_MODULES_CACHE", os.path.join(hf_cache_home, "modules")) __UpperCamelCase = ["fp16", "non-ema"] __UpperCamelCase = ".self_attn"
26
1
'''simple docstring''' from __future__ import annotations def _a ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> Optional[int]: # noqa: E741 """simple docstring""" while r - l > 1: __snake_case : str = (l + r) // 2 if v[m] >= key: __snake_case : Any = m else: __snake_case : Union[str, Any] = m # noqa: E741 return r def _a ( _lowerCamelCase ) -> int: """simple docstring""" if len(_lowerCamelCase ) == 0: return 0 __snake_case : Optional[Any] = [0] * len(_lowerCamelCase ) __snake_case : Dict = 1 __snake_case : Any = v[0] for i in range(1 , len(_lowerCamelCase ) ): if v[i] < tail[0]: __snake_case : List[str] = v[i] elif v[i] > tail[length - 1]: __snake_case : Any = v[i] length += 1 else: __snake_case : Optional[Any] = v[i] return length if __name__ == "__main__": import doctest doctest.testmod()
26
'''simple docstring''' import argparse import json import re from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ( MobileNetVaConfig, MobileNetVaForImageClassification, MobileNetVaImageProcessor, load_tf_weights_in_mobilenet_va, ) from transformers.utils import logging logging.set_verbosity_info() __UpperCamelCase = logging.get_logger(__name__) def _a ( _lowerCamelCase ) -> Any: """simple docstring""" __snake_case : Union[str, Any] = MobileNetVaConfig(layer_norm_eps=0.0_01 ) if "_quant" in model_name: raise ValueError("""Quantized models are not supported.""" ) __snake_case : List[Any] = re.match(R"""^mobilenet_v1_([^_]*)_([^_]*)$""" , _lowerCamelCase ) if matches: __snake_case : Optional[Any] = float(matches[1] ) __snake_case : Union[str, Any] = int(matches[2] ) # The TensorFlow version of MobileNetV1 predicts 1001 classes instead of # the usual 1000. The first class (index 0) is "background". __snake_case : Tuple = 1001 __snake_case : Any = """imagenet-1k-id2label.json""" __snake_case : Optional[Any] = """huggingface/label-files""" __snake_case : List[Any] = json.load(open(hf_hub_download(_lowerCamelCase , _lowerCamelCase , repo_type="""dataset""" ) , """r""" ) ) __snake_case : Dict = {int(_lowerCamelCase ) + 1: v for k, v in idalabel.items()} __snake_case : List[str] = """background""" __snake_case : List[str] = idalabel __snake_case : List[Any] = {v: k for k, v in idalabel.items()} return config def _a ( ) -> Optional[Any]: """simple docstring""" __snake_case : Optional[int] = """http://images.cocodataset.org/val2017/000000039769.jpg""" __snake_case : List[Any] = Image.open(requests.get(_lowerCamelCase , stream=_lowerCamelCase ).raw ) return im @torch.no_grad() def _a ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase=False ) -> Optional[Any]: """simple docstring""" __snake_case : Optional[int] = get_mobilenet_va_config(_lowerCamelCase ) # Load 🤗 model __snake_case : Optional[Any] = MobileNetVaForImageClassification(_lowerCamelCase ).eval() # Load weights from TensorFlow checkpoint load_tf_weights_in_mobilenet_va(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) # Check outputs on an image, prepared by MobileNetV1ImageProcessor __snake_case : Optional[int] = MobileNetVaImageProcessor( crop_size={"""width""": config.image_size, """height""": config.image_size} , size={"""shortest_edge""": config.image_size + 32} , ) __snake_case : Tuple = image_processor(images=prepare_img() , return_tensors="""pt""" ) __snake_case : Optional[Any] = model(**_lowerCamelCase ) __snake_case : List[Any] = outputs.logits assert logits.shape == (1, 1001) if model_name == "mobilenet_v1_1.0_224": __snake_case : str = torch.tensor([-4.17_39, -1.12_33, 3.12_05] ) elif model_name == "mobilenet_v1_0.75_192": __snake_case : Tuple = torch.tensor([-3.94_40, -2.31_41, -0.33_33] ) else: __snake_case : List[Any] = None if expected_logits is not None: assert torch.allclose(logits[0, :3] , _lowerCamelCase , atol=1E-4 ) Path(_lowerCamelCase ).mkdir(exist_ok=_lowerCamelCase ) print(F'''Saving model {model_name} to {pytorch_dump_folder_path}''' ) model.save_pretrained(_lowerCamelCase ) print(F'''Saving image processor to {pytorch_dump_folder_path}''' ) image_processor.save_pretrained(_lowerCamelCase ) if push_to_hub: print("""Pushing to the hub...""" ) __snake_case : Optional[Any] = """google/""" + model_name image_processor.push_to_hub(_lowerCamelCase ) model.push_to_hub(_lowerCamelCase ) if __name__ == "__main__": __UpperCamelCase = argparse.ArgumentParser() # Required parameters parser.add_argument( "--model_name", default="mobilenet_v1_1.0_224", type=str, help="Name of the MobileNetV1 model you'd like to convert. Should in the form 'mobilenet_v1_<depth>_<size>'.", ) parser.add_argument( "--checkpoint_path", required=True, type=str, help="Path to the original TensorFlow checkpoint (.ckpt file)." ) parser.add_argument( "--pytorch_dump_folder_path", required=True, type=str, help="Path to the output PyTorch model directory." ) parser.add_argument( "--push_to_hub", action="store_true", help="Whether or not to push the converted model to the 🤗 hub." ) __UpperCamelCase = parser.parse_args() convert_movilevit_checkpoint( args.model_name, args.checkpoint_path, args.pytorch_dump_folder_path, args.push_to_hub )
26
1
'''simple docstring''' import enum import warnings from .. import MODEL_FOR_CAUSAL_LM_MAPPING, TF_MODEL_FOR_CAUSAL_LM_MAPPING from ..utils import add_end_docstrings, is_tf_available from .base import PIPELINE_INIT_ARGS, Pipeline if is_tf_available(): import tensorflow as tf class _A ( enum.Enum ): lowercase__: Any = 0 lowercase__: Optional[Any] = 1 lowercase__: List[Any] = 2 @add_end_docstrings(__lowercase ) class _A ( __lowercase ): lowercase__: List[Any] = ''' In 1991, the remains of Russian Tsar Nicholas II and his family (except for Alexei and Maria) are discovered. The voice of Nicholas\'s young son, Tsarevich Alexei Nikolaevich, narrates the remainder of the story. 1883 Western Siberia, a young Grigori Rasputin is asked by his father and a group of men to perform magic. Rasputin has a vision and denounces one of the men as a horse thief. Although his father initially slaps him for making such an accusation, Rasputin watches as the man is chased outside and beaten. Twenty years later, Rasputin sees a vision of the Virgin Mary, prompting him to become a priest. Rasputin quickly becomes famous, with people, even a bishop, begging for his blessing. <eod> </s> <eos> ''' def __init__( self : int , *__magic_name__ : Tuple , **__magic_name__ : Optional[Any] ) -> Optional[int]: """simple docstring""" super().__init__(*__magic_name__ , **__magic_name__ ) self.check_model_type( TF_MODEL_FOR_CAUSAL_LM_MAPPING if self.framework == """tf""" else MODEL_FOR_CAUSAL_LM_MAPPING ) if "prefix" not in self._preprocess_params: # This is very specific. The logic is quite complex and needs to be done # as a "default". # It also defines both some preprocess_kwargs and generate_kwargs # which is why we cannot put them in their respective methods. __snake_case : Union[str, Any] = None if self.model.config.prefix is not None: __snake_case : Optional[Any] = self.model.config.prefix if prefix is None and self.model.__class__.__name__ in [ "XLNetLMHeadModel", "TransfoXLLMHeadModel", "TFXLNetLMHeadModel", "TFTransfoXLLMHeadModel", ]: # For XLNet and TransformerXL we add an article to the prompt to give more state to the model. __snake_case : Union[str, Any] = self.XL_PREFIX if prefix is not None: # Recalculate some generate_kwargs linked to prefix. __snake_case , __snake_case , __snake_case : int = self._sanitize_parameters(prefix=__magic_name__ , **self._forward_params ) __snake_case : Optional[Any] = {**self._preprocess_params, **preprocess_params} __snake_case : Dict = {**self._forward_params, **forward_params} def lowercase__ ( self : Optional[Any] , __magic_name__ : Optional[Any]=None , __magic_name__ : Union[str, Any]=None , __magic_name__ : Any=None , __magic_name__ : str=None , __magic_name__ : Dict=None , __magic_name__ : Dict=None , __magic_name__ : Tuple=None , __magic_name__ : Any=None , **__magic_name__ : List[str] , ) -> Any: """simple docstring""" __snake_case : Union[str, Any] = {} if prefix is not None: __snake_case : Tuple = prefix if prefix: __snake_case : List[str] = self.tokenizer( __magic_name__ , padding=__magic_name__ , add_special_tokens=__magic_name__ , return_tensors=self.framework ) __snake_case : Optional[int] = prefix_inputs["""input_ids"""].shape[-1] if handle_long_generation is not None: if handle_long_generation not in {"hole"}: raise ValueError( f'''{handle_long_generation} is not a valid value for `handle_long_generation` parameter expected''' """ [None, 'hole']""" ) __snake_case : Optional[Any] = handle_long_generation preprocess_params.update(__magic_name__ ) __snake_case : Dict = generate_kwargs __snake_case : List[Any] = {} if return_full_text is not None and return_type is None: if return_text is not None: raise ValueError("""`return_text` is mutually exclusive with `return_full_text`""" ) if return_tensors is not None: raise ValueError("""`return_full_text` is mutually exclusive with `return_tensors`""" ) __snake_case : Union[str, Any] = ReturnType.FULL_TEXT if return_full_text else ReturnType.NEW_TEXT if return_tensors is not None and return_type is None: if return_text is not None: raise ValueError("""`return_text` is mutually exclusive with `return_tensors`""" ) __snake_case : Union[str, Any] = ReturnType.TENSORS if return_type is not None: __snake_case : Dict = return_type if clean_up_tokenization_spaces is not None: __snake_case : Any = clean_up_tokenization_spaces if stop_sequence is not None: __snake_case : List[str] = self.tokenizer.encode(__magic_name__ , add_special_tokens=__magic_name__ ) if len(__magic_name__ ) > 1: warnings.warn( """Stopping on a multiple token sequence is not yet supported on transformers. The first token of""" """ the stop sequence will be used as the stop sequence string in the interim.""" ) __snake_case : Union[str, Any] = stop_sequence_ids[0] return preprocess_params, forward_params, postprocess_params def lowercase__ ( self : str , *__magic_name__ : Optional[int] , **__magic_name__ : int ) -> int: """simple docstring""" if self.model.__class__.__name__ in ["TransfoXLLMHeadModel"]: kwargs.update({"""add_space_before_punct_symbol""": True} ) return super()._parse_and_tokenize(*__magic_name__ , **__magic_name__ ) def __call__( self : int , __magic_name__ : List[str] , **__magic_name__ : Optional[int] ) -> Dict: """simple docstring""" return super().__call__(__magic_name__ , **__magic_name__ ) def lowercase__ ( self : Tuple , __magic_name__ : int , __magic_name__ : List[str]="" , __magic_name__ : List[str]=None , **__magic_name__ : str ) -> str: """simple docstring""" __snake_case : Optional[int] = self.tokenizer( prefix + prompt_text , padding=__magic_name__ , add_special_tokens=__magic_name__ , return_tensors=self.framework ) __snake_case : Optional[int] = prompt_text if handle_long_generation == "hole": __snake_case : List[str] = inputs["""input_ids"""].shape[-1] if "max_new_tokens" in generate_kwargs: __snake_case : List[Any] = generate_kwargs["""max_new_tokens"""] else: __snake_case : Tuple = generate_kwargs.get("""max_length""" , self.model.config.max_length ) - cur_len if new_tokens < 0: raise ValueError("""We cannot infer how many new tokens are expected""" ) if cur_len + new_tokens > self.tokenizer.model_max_length: __snake_case : str = self.tokenizer.model_max_length - new_tokens if keep_length <= 0: raise ValueError( """We cannot use `hole` to handle this generation the number of desired tokens exceeds the""" """ models max length""" ) __snake_case : Dict = inputs["""input_ids"""][:, -keep_length:] if "attention_mask" in inputs: __snake_case : int = inputs["""attention_mask"""][:, -keep_length:] return inputs def lowercase__ ( self : List[Any] , __magic_name__ : List[Any] , **__magic_name__ : Optional[int] ) -> Any: """simple docstring""" __snake_case : Any = model_inputs["""input_ids"""] __snake_case : List[Any] = model_inputs.get("""attention_mask""" , __magic_name__ ) # Allow empty prompts if input_ids.shape[1] == 0: __snake_case : List[str] = None __snake_case : Optional[int] = None __snake_case : List[str] = 1 else: __snake_case : Optional[int] = input_ids.shape[0] __snake_case : Union[str, Any] = model_inputs.pop("""prompt_text""" ) # If there is a prefix, we may need to adjust the generation length. Do so without permanently modifying # generate_kwargs, as some of the parameterization may come from the initialization of the pipeline. __snake_case : Tuple = generate_kwargs.pop("""prefix_length""" , 0 ) if prefix_length > 0: __snake_case : str = """max_new_tokens""" in generate_kwargs or ( """generation_config""" in generate_kwargs and generate_kwargs["""generation_config"""].max_new_tokens is not None ) if not has_max_new_tokens: __snake_case : List[str] = generate_kwargs.get("""max_length""" ) or self.model.config.max_length generate_kwargs["max_length"] += prefix_length __snake_case : Dict = """min_new_tokens""" in generate_kwargs or ( """generation_config""" in generate_kwargs and generate_kwargs["""generation_config"""].min_new_tokens is not None ) if not has_min_new_tokens and "min_length" in generate_kwargs: generate_kwargs["min_length"] += prefix_length # BS x SL __snake_case : Any = self.model.generate(input_ids=__magic_name__ , attention_mask=__magic_name__ , **__magic_name__ ) __snake_case : Any = generated_sequence.shape[0] if self.framework == "pt": __snake_case : List[str] = generated_sequence.reshape(__magic_name__ , out_b // in_b , *generated_sequence.shape[1:] ) elif self.framework == "tf": __snake_case : List[Any] = tf.reshape(__magic_name__ , (in_b, out_b // in_b, *generated_sequence.shape[1:]) ) return {"generated_sequence": generated_sequence, "input_ids": input_ids, "prompt_text": prompt_text} def lowercase__ ( self : Dict , __magic_name__ : List[str] , __magic_name__ : Any=ReturnType.FULL_TEXT , __magic_name__ : str=True ) -> Tuple: """simple docstring""" __snake_case : List[Any] = model_outputs["""generated_sequence"""][0] __snake_case : Union[str, Any] = model_outputs["""input_ids"""] __snake_case : str = model_outputs["""prompt_text"""] __snake_case : List[Any] = generated_sequence.numpy().tolist() __snake_case : str = [] for sequence in generated_sequence: if return_type == ReturnType.TENSORS: __snake_case : Tuple = {"""generated_token_ids""": sequence} elif return_type in {ReturnType.NEW_TEXT, ReturnType.FULL_TEXT}: # Decode text __snake_case : Tuple = self.tokenizer.decode( __magic_name__ , skip_special_tokens=__magic_name__ , clean_up_tokenization_spaces=__magic_name__ , ) # Remove PADDING prompt of the sequence if XLNet or Transfo-XL model is used if input_ids is None: __snake_case : List[str] = 0 else: __snake_case : Tuple = len( self.tokenizer.decode( input_ids[0] , skip_special_tokens=__magic_name__ , clean_up_tokenization_spaces=__magic_name__ , ) ) if return_type == ReturnType.FULL_TEXT: __snake_case : List[str] = prompt_text + text[prompt_length:] else: __snake_case : Dict = text[prompt_length:] __snake_case : Union[str, Any] = {"""generated_text""": all_text} records.append(__magic_name__ ) return records
26
'''simple docstring''' from sklearn.metrics import recall_score import datasets __UpperCamelCase = "\nRecall is the fraction of the positive examples that were correctly labeled by the model as positive. It can be computed with the equation:\nRecall = TP / (TP + FN)\nWhere TP is the true positives and FN is the false negatives.\n" __UpperCamelCase = "\nArgs:\n- **predictions** (`list` of `int`): The predicted labels.\n- **references** (`list` of `int`): The ground truth labels.\n- **labels** (`list` of `int`): The set of labels to include when `average` is not set to `binary`, and their order when average is `None`. Labels present in the data can be excluded in this input, for example to calculate a multiclass average ignoring a majority negative class, while labels not present in the data will result in 0 components in a macro average. For multilabel targets, labels are column indices. By default, all labels in y_true and y_pred are used in sorted order. Defaults to None.\n- **pos_label** (`int`): The class label to use as the 'positive class' when calculating the recall. Defaults to `1`.\n- **average** (`string`): This parameter is required for multiclass/multilabel targets. If None, the scores for each class are returned. Otherwise, this determines the type of averaging performed on the data. Defaults to `'binary'`.\n - `'binary'`: Only report results for the class specified by `pos_label`. This is applicable only if the target labels and predictions are binary.\n - `'micro'`: Calculate metrics globally by counting the total true positives, false negatives, and false positives.\n - `'macro'`: Calculate metrics for each label, and find their unweighted mean. This does not take label imbalance into account.\n - `'weighted'`: Calculate metrics for each label, and find their average weighted by support (the number of true instances for each label). This alters `'macro'` to account for label imbalance. Note that it can result in an F-score that is not between precision and recall.\n - `'samples'`: Calculate metrics for each instance, and find their average (only meaningful for multilabel classification).\n- **sample_weight** (`list` of `float`): Sample weights Defaults to `None`.\n- **zero_division** (): Sets the value to return when there is a zero division. Defaults to .\n - `'warn'`: If there is a zero division, the return value is `0`, but warnings are also raised.\n - `0`: If there is a zero division, the return value is `0`.\n - `1`: If there is a zero division, the return value is `1`.\n\nReturns:\n- **recall** (`float`, or `array` of `float`): Either the general recall score, or the recall scores for individual classes, depending on the values input to `labels` and `average`. Minimum possible value is 0. Maximum possible value is 1. A higher recall means that more of the positive examples have been labeled correctly. Therefore, a higher recall is generally considered better.\n\nExamples:\n\n Example 1-A simple example with some errors\n >>> recall_metric = datasets.load_metric('recall')\n >>> results = recall_metric.compute(references=[0, 0, 1, 1, 1], predictions=[0, 1, 0, 1, 1])\n >>> print(results)\n {'recall': 0.6666666666666666}\n\n Example 2-The same example as Example 1, but with `pos_label=0` instead of the default `pos_label=1`.\n >>> recall_metric = datasets.load_metric('recall')\n >>> results = recall_metric.compute(references=[0, 0, 1, 1, 1], predictions=[0, 1, 0, 1, 1], pos_label=0)\n >>> print(results)\n {'recall': 0.5}\n\n Example 3-The same example as Example 1, but with `sample_weight` included.\n >>> recall_metric = datasets.load_metric('recall')\n >>> sample_weight = [0.9, 0.2, 0.9, 0.3, 0.8]\n >>> results = recall_metric.compute(references=[0, 0, 1, 1, 1], predictions=[0, 1, 0, 1, 1], sample_weight=sample_weight)\n >>> print(results)\n {'recall': 0.55}\n\n Example 4-A multiclass example, using different averages.\n >>> recall_metric = datasets.load_metric('recall')\n >>> predictions = [0, 2, 1, 0, 0, 1]\n >>> references = [0, 1, 2, 0, 1, 2]\n >>> results = recall_metric.compute(predictions=predictions, references=references, average='macro')\n >>> print(results)\n {'recall': 0.3333333333333333}\n >>> results = recall_metric.compute(predictions=predictions, references=references, average='micro')\n >>> print(results)\n {'recall': 0.3333333333333333}\n >>> results = recall_metric.compute(predictions=predictions, references=references, average='weighted')\n >>> print(results)\n {'recall': 0.3333333333333333}\n >>> results = recall_metric.compute(predictions=predictions, references=references, average=None)\n >>> print(results)\n {'recall': array([1., 0., 0.])}\n" __UpperCamelCase = "\n@article{scikit-learn, title={Scikit-learn: Machine Learning in {P}ython}, author={Pedregosa, F. and Varoquaux, G. and Gramfort, A. and Michel, V. and Thirion, B. and Grisel, O. and Blondel, M. and Prettenhofer, P. and Weiss, R. and Dubourg, V. and Vanderplas, J. and Passos, A. and Cournapeau, D. and Brucher, M. and Perrot, M. and Duchesnay, E.}, journal={Journal of Machine Learning Research}, volume={12}, pages={2825--2830}, year={2011}\n" @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class _A ( datasets.Metric ): def lowercase__ ( self : Optional[int] ) -> Any: """simple docstring""" return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { """predictions""": datasets.Sequence(datasets.Value("""int32""" ) ), """references""": datasets.Sequence(datasets.Value("""int32""" ) ), } if self.config_name == """multilabel""" else { """predictions""": datasets.Value("""int32""" ), """references""": datasets.Value("""int32""" ), } ) , reference_urls=["""https://scikit-learn.org/stable/modules/generated/sklearn.metrics.recall_score.html"""] , ) def lowercase__ ( self : Tuple , __magic_name__ : int , __magic_name__ : Union[str, Any] , __magic_name__ : Any=None , __magic_name__ : Optional[Any]=1 , __magic_name__ : List[str]="binary" , __magic_name__ : Tuple=None , __magic_name__ : Dict="warn" , ) -> Any: """simple docstring""" __snake_case : Tuple = recall_score( __magic_name__ , __magic_name__ , labels=__magic_name__ , pos_label=__magic_name__ , average=__magic_name__ , sample_weight=__magic_name__ , zero_division=__magic_name__ , ) return {"recall": float(__magic_name__ ) if score.size == 1 else score}
26
1
'''simple docstring''' import os from huggingface_hub.constants import HUGGINGFACE_HUB_CACHE, hf_cache_home __UpperCamelCase = HUGGINGFACE_HUB_CACHE __UpperCamelCase = "config.json" __UpperCamelCase = "diffusion_pytorch_model.bin" __UpperCamelCase = "diffusion_flax_model.msgpack" __UpperCamelCase = "model.onnx" __UpperCamelCase = "diffusion_pytorch_model.safetensors" __UpperCamelCase = "weights.pb" __UpperCamelCase = "https://huggingface.co" __UpperCamelCase = default_cache_path __UpperCamelCase = "diffusers_modules" __UpperCamelCase = os.getenv("HF_MODULES_CACHE", os.path.join(hf_cache_home, "modules")) __UpperCamelCase = ["fp16", "non-ema"] __UpperCamelCase = ".self_attn"
26
'''simple docstring''' from sklearn.metrics import matthews_corrcoef import datasets __UpperCamelCase = "\nCompute the Matthews correlation coefficient (MCC)\n\nThe Matthews correlation coefficient is used in machine learning as a\nmeasure of the quality of binary and multiclass classifications. It takes\ninto account true and false positives and negatives and is generally\nregarded as a balanced measure which can be used even if the classes are of\nvery different sizes. The MCC is in essence a correlation coefficient value\nbetween -1 and +1. A coefficient of +1 represents a perfect prediction, 0\nan average random prediction and -1 an inverse prediction. The statistic\nis also known as the phi coefficient. [source: Wikipedia]\n" __UpperCamelCase = "\nArgs:\n predictions (list of int): Predicted labels, as returned by a model.\n references (list of int): Ground truth labels.\n sample_weight (list of int, float, or bool): Sample weights. Defaults to `None`.\nReturns:\n matthews_correlation (dict containing float): Matthews correlation.\nExamples:\n Example 1, a basic example with only predictions and references as inputs:\n >>> matthews_metric = datasets.load_metric(\"matthews_correlation\")\n >>> results = matthews_metric.compute(references=[1, 3, 2, 0, 3, 2],\n ... predictions=[1, 2, 2, 0, 3, 3])\n >>> print(round(results['matthews_correlation'], 2))\n 0.54\n\n Example 2, the same example as above, but also including sample weights:\n >>> matthews_metric = datasets.load_metric(\"matthews_correlation\")\n >>> results = matthews_metric.compute(references=[1, 3, 2, 0, 3, 2],\n ... predictions=[1, 2, 2, 0, 3, 3],\n ... sample_weight=[0.5, 3, 1, 1, 1, 2])\n >>> print(round(results['matthews_correlation'], 2))\n 0.1\n\n Example 3, the same example as above, but with sample weights that cause a negative correlation:\n >>> matthews_metric = datasets.load_metric(\"matthews_correlation\")\n >>> results = matthews_metric.compute(references=[1, 3, 2, 0, 3, 2],\n ... predictions=[1, 2, 2, 0, 3, 3],\n ... sample_weight=[0.5, 1, 0, 0, 0, 1])\n >>> print(round(results['matthews_correlation'], 2))\n -0.25\n" __UpperCamelCase = "\\n@article{scikit-learn,\n title={Scikit-learn: Machine Learning in {P}ython},\n author={Pedregosa, F. and Varoquaux, G. and Gramfort, A. and Michel, V.\n and Thirion, B. and Grisel, O. and Blondel, M. and Prettenhofer, P.\n and Weiss, R. and Dubourg, V. and Vanderplas, J. and Passos, A. and\n Cournapeau, D. and Brucher, M. and Perrot, M. and Duchesnay, E.},\n journal={Journal of Machine Learning Research},\n volume={12},\n pages={2825--2830},\n year={2011}\n}\n" @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class _A ( datasets.Metric ): def lowercase__ ( self : Tuple ) -> Dict: """simple docstring""" return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { """predictions""": datasets.Value("""int32""" ), """references""": datasets.Value("""int32""" ), } ) , reference_urls=[ """https://scikit-learn.org/stable/modules/generated/sklearn.metrics.matthews_corrcoef.html""" ] , ) def lowercase__ ( self : List[Any] , __magic_name__ : Tuple , __magic_name__ : List[Any] , __magic_name__ : Union[str, Any]=None ) -> Optional[int]: """simple docstring""" return { "matthews_correlation": float(matthews_corrcoef(__magic_name__ , __magic_name__ , sample_weight=__magic_name__ ) ), }
26
1
'''simple docstring''' import argparse import re from pathlib import Path import requests import torch from PIL import Image from torchvision.transforms import CenterCrop, Compose, Normalize, Resize, ToTensor from transformers import ( EfficientFormerConfig, EfficientFormerForImageClassificationWithTeacher, EfficientFormerImageProcessor, ) from transformers.image_utils import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD, PILImageResampling def _a ( _lowerCamelCase , _lowerCamelCase ) -> str: """simple docstring""" __snake_case : str = old_name if "patch_embed" in old_name: __snake_case , __snake_case , __snake_case : List[Any] = old_name.split(""".""" ) if layer == "0": __snake_case : int = old_name.replace("""0""" , """convolution1""" ) elif layer == "1": __snake_case : List[str] = old_name.replace("""1""" , """batchnorm_before""" ) elif layer == "3": __snake_case : List[str] = old_name.replace("""3""" , """convolution2""" ) else: __snake_case : str = old_name.replace("""4""" , """batchnorm_after""" ) if "network" in old_name and re.search(R"""\d\.\d""" , _lowerCamelCase ): __snake_case : str = R"""\b\d{2}\b""" if bool(re.search(_lowerCamelCase , _lowerCamelCase ) ): __snake_case : int = re.search(R"""\d\.\d\d.""" , _lowerCamelCase ).group() else: __snake_case : List[Any] = re.search(R"""\d\.\d.""" , _lowerCamelCase ).group() if int(match[0] ) < 6: __snake_case : Dict = old_name.replace(_lowerCamelCase , """""" ) __snake_case : Any = trimmed_name.replace("""network""" , match[0] + """.meta4D_layers.blocks.""" + match[2:-1] ) __snake_case : Optional[int] = """intermediate_stages.""" + trimmed_name else: __snake_case : Dict = old_name.replace(_lowerCamelCase , """""" ) if int(match[2] ) < num_meta4D_last_stage: __snake_case : Optional[Any] = trimmed_name.replace("""network""" , """meta4D_layers.blocks.""" + match[2] ) else: __snake_case : Union[str, Any] = str(int(match[2] ) - num_meta4D_last_stage ) __snake_case : Optional[int] = trimmed_name.replace("""network""" , """meta3D_layers.blocks.""" + layer_index ) if "norm1" in old_name: __snake_case : int = trimmed_name.replace("""norm1""" , """layernorm1""" ) elif "norm2" in old_name: __snake_case : Optional[int] = trimmed_name.replace("""norm2""" , """layernorm2""" ) elif "fc1" in old_name: __snake_case : List[Any] = trimmed_name.replace("""fc1""" , """linear_in""" ) elif "fc2" in old_name: __snake_case : List[Any] = trimmed_name.replace("""fc2""" , """linear_out""" ) __snake_case : Any = """last_stage.""" + trimmed_name elif "network" in old_name and re.search(R""".\d.""" , _lowerCamelCase ): __snake_case : int = old_name.replace("""network""" , """intermediate_stages""" ) if "fc" in new_name: __snake_case : Optional[Any] = new_name.replace("""fc""" , """convolution""" ) elif ("norm1" in new_name) and ("layernorm1" not in new_name): __snake_case : Tuple = new_name.replace("""norm1""" , """batchnorm_before""" ) elif ("norm2" in new_name) and ("layernorm2" not in new_name): __snake_case : Dict = new_name.replace("""norm2""" , """batchnorm_after""" ) if "proj" in new_name: __snake_case : str = new_name.replace("""proj""" , """projection""" ) if "dist_head" in new_name: __snake_case : str = new_name.replace("""dist_head""" , """distillation_classifier""" ) elif "head" in new_name: __snake_case : Union[str, Any] = new_name.replace("""head""" , """classifier""" ) elif "patch_embed" in new_name: __snake_case : int = """efficientformer.""" + new_name elif new_name == "norm.weight" or new_name == "norm.bias": __snake_case : Tuple = new_name.replace("""norm""" , """layernorm""" ) __snake_case : Dict = """efficientformer.""" + new_name else: __snake_case : str = """efficientformer.encoder.""" + new_name return new_name def _a ( _lowerCamelCase , _lowerCamelCase ) -> str: """simple docstring""" for key in checkpoint.copy().keys(): __snake_case : int = checkpoint.pop(_lowerCamelCase ) __snake_case : int = val return checkpoint def _a ( ) -> List[str]: """simple docstring""" __snake_case : Optional[int] = """http://images.cocodataset.org/val2017/000000039769.jpg""" __snake_case : List[str] = Image.open(requests.get(_lowerCamelCase , stream=_lowerCamelCase ).raw ) return image def _a ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> str: """simple docstring""" __snake_case : List[Any] = torch.load(_lowerCamelCase , map_location="""cpu""" )["""model"""] __snake_case : Union[str, Any] = EfficientFormerConfig.from_json_file(_lowerCamelCase ) __snake_case : Dict = EfficientFormerForImageClassificationWithTeacher(_lowerCamelCase ) __snake_case : List[Any] = """_""".join(checkpoint_path.split("""/""" )[-1].split(""".""" )[0].split("""_""" )[:-1] ) __snake_case : Dict = config.depths[-1] - config.num_metaad_blocks + 1 __snake_case : Any = convert_torch_checkpoint(_lowerCamelCase , _lowerCamelCase ) model.load_state_dict(_lowerCamelCase ) model.eval() __snake_case : Optional[int] = { """bilinear""": PILImageResampling.BILINEAR, """bicubic""": PILImageResampling.BICUBIC, """nearest""": PILImageResampling.NEAREST, } # prepare image __snake_case : List[str] = prepare_img() __snake_case : Tuple = 256 __snake_case : Dict = 224 __snake_case : Any = EfficientFormerImageProcessor( size={"""shortest_edge""": image_size} , crop_size={"""height""": crop_size, """width""": crop_size} , resample=pillow_resamplings["""bicubic"""] , ) __snake_case : Dict = processor(images=_lowerCamelCase , return_tensors="""pt""" ).pixel_values # original processing pipeline __snake_case : int = Compose( [ Resize(_lowerCamelCase , interpolation=pillow_resamplings["""bicubic"""] ), CenterCrop(_lowerCamelCase ), ToTensor(), Normalize(_lowerCamelCase , _lowerCamelCase ), ] ) __snake_case : int = image_transforms(_lowerCamelCase ).unsqueeze(0 ) assert torch.allclose(_lowerCamelCase , _lowerCamelCase ) __snake_case : Dict = model(_lowerCamelCase ) __snake_case : Dict = outputs.logits __snake_case : List[str] = (1, 1000) if "l1" in model_name: __snake_case : Dict = torch.Tensor( [-0.13_12, 0.43_53, -1.04_99, -0.51_24, 0.41_83, -0.67_93, -1.37_77, -0.08_93, -0.73_58, -2.43_28] ) assert torch.allclose(logits[0, :10] , _lowerCamelCase , atol=1E-3 ) assert logits.shape == expected_shape elif "l3" in model_name: __snake_case : int = torch.Tensor( [-1.31_50, -1.54_56, -1.25_56, -0.84_96, -0.71_27, -0.78_97, -0.97_28, -0.30_52, 0.37_51, -0.31_27] ) assert torch.allclose(logits[0, :10] , _lowerCamelCase , atol=1E-3 ) assert logits.shape == expected_shape elif "l7" in model_name: __snake_case : int = torch.Tensor( [-1.02_83, -1.41_31, -0.56_44, -1.31_15, -0.57_85, -1.20_49, -0.75_28, 0.19_92, -0.38_22, -0.08_78] ) assert logits.shape == expected_shape else: raise ValueError( F'''Unknown model checkpoint: {checkpoint_path}. Supported version of efficientformer are l1, l3 and l7''' ) # Save Checkpoints Path(_lowerCamelCase ).mkdir(exist_ok=_lowerCamelCase ) model.save_pretrained(_lowerCamelCase ) print(F'''Checkpoint successfuly converted. Model saved at {pytorch_dump_path}''' ) processor.save_pretrained(_lowerCamelCase ) print(F'''Processor successfuly saved at {pytorch_dump_path}''' ) if push_to_hub: print("""Pushing model to the hub...""" ) model.push_to_hub( repo_id=F'''Bearnardd/{pytorch_dump_path}''' , commit_message="""Add model""" , use_temp_dir=_lowerCamelCase , ) processor.push_to_hub( repo_id=F'''Bearnardd/{pytorch_dump_path}''' , commit_message="""Add image processor""" , use_temp_dir=_lowerCamelCase , ) if __name__ == "__main__": __UpperCamelCase = argparse.ArgumentParser() # Required parameters parser.add_argument( "--pytorch_model_path", default=None, type=str, required=True, help="Path to EfficientFormer pytorch checkpoint.", ) parser.add_argument( "--config_file", default=None, type=str, required=True, help="The json file for EfficientFormer model config.", ) parser.add_argument( "--pytorch_dump_path", default=None, type=str, required=True, help="Path to the output PyTorch model." ) parser.add_argument("--push_to_hub", action="store_true", help="Push model and image processor to the hub") parser.add_argument( "--no-push_to_hub", dest="push_to_hub", action="store_false", help="Do not push model and image processor to the hub", ) parser.set_defaults(push_to_hub=True) __UpperCamelCase = parser.parse_args() convert_efficientformer_checkpoint( checkpoint_path=args.pytorch_model_path, efficientformer_config_file=args.config_file, pytorch_dump_path=args.pytorch_dump_path, push_to_hub=args.push_to_hub, )
26
'''simple docstring''' import json import os from pathlib import Path import pytest from datasets.download.download_config import DownloadConfig from datasets.download.download_manager import DownloadManager from datasets.utils.file_utils import hash_url_to_filename __UpperCamelCase = "http://www.mocksite.com/file1.txt" __UpperCamelCase = "\"text\": [\"foo\", \"foo\"]" __UpperCamelCase = "6d8ce9aa78a471c7477201efbeabd3bb01ac2e7d100a6dc024ba1608361f90a8" class _A : lowercase__: str = 200 lowercase__: List[str] = {'''Content-Length''': '''100'''} lowercase__: Union[str, Any] = {} def lowercase__ ( self : Any , **__magic_name__ : List[Any] ) -> Dict: """simple docstring""" return [bytes(__magic_name__ , """utf-8""" )] def _a ( *_lowerCamelCase , **_lowerCamelCase ) -> List[str]: """simple docstring""" return MockResponse() @pytest.mark.parametrize("""urls_type""" , [str, list, dict] ) def _a ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> List[str]: """simple docstring""" import requests monkeypatch.setattr(_lowerCamelCase , """request""" , _lowerCamelCase ) __snake_case : Union[str, Any] = URL if issubclass(_lowerCamelCase , _lowerCamelCase ): __snake_case : str = url elif issubclass(_lowerCamelCase , _lowerCamelCase ): __snake_case : Dict = [url] elif issubclass(_lowerCamelCase , _lowerCamelCase ): __snake_case : Union[str, Any] = {"""train""": url} __snake_case : Dict = """dummy""" __snake_case : List[str] = """downloads""" __snake_case : List[Any] = tmp_path __snake_case : List[Any] = DownloadConfig( cache_dir=os.path.join(_lowerCamelCase , _lowerCamelCase ) , use_etag=_lowerCamelCase , ) __snake_case : List[str] = DownloadManager(dataset_name=_lowerCamelCase , download_config=_lowerCamelCase ) __snake_case : int = dl_manager.download(_lowerCamelCase ) __snake_case : Tuple = urls for downloaded_paths in [downloaded_paths]: if isinstance(_lowerCamelCase , _lowerCamelCase ): __snake_case : Any = [downloaded_paths] __snake_case : List[Any] = [urls] elif isinstance(_lowerCamelCase , _lowerCamelCase ): assert "train" in downloaded_paths.keys() __snake_case : Tuple = downloaded_paths.values() __snake_case : Optional[int] = urls.values() assert downloaded_paths for downloaded_path, input_url in zip(_lowerCamelCase , _lowerCamelCase ): assert downloaded_path == dl_manager.downloaded_paths[input_url] __snake_case : List[str] = Path(_lowerCamelCase ) __snake_case : Any = downloaded_path.parts assert parts[-1] == HASH assert parts[-2] == cache_subdir assert downloaded_path.exists() __snake_case : Union[str, Any] = downloaded_path.read_text() assert content == CONTENT __snake_case : List[str] = downloaded_path.with_suffix(""".json""" ) assert metadata_downloaded_path.exists() __snake_case : Union[str, Any] = json.loads(metadata_downloaded_path.read_text() ) assert metadata_content == {"url": URL, "etag": None} @pytest.mark.parametrize("""paths_type""" , [str, list, dict] ) def _a ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> List[Any]: """simple docstring""" __snake_case : Any = str(_lowerCamelCase ) if issubclass(_lowerCamelCase , _lowerCamelCase ): __snake_case : Optional[int] = filename elif issubclass(_lowerCamelCase , _lowerCamelCase ): __snake_case : Tuple = [filename] elif issubclass(_lowerCamelCase , _lowerCamelCase ): __snake_case : Dict = {"""train""": filename} __snake_case : Optional[Any] = """dummy""" __snake_case : List[Any] = xz_file.parent __snake_case : int = """extracted""" __snake_case : Dict = DownloadConfig( cache_dir=_lowerCamelCase , use_etag=_lowerCamelCase , ) __snake_case : List[str] = DownloadManager(dataset_name=_lowerCamelCase , download_config=_lowerCamelCase ) __snake_case : Optional[Any] = dl_manager.extract(_lowerCamelCase ) __snake_case : Union[str, Any] = paths for extracted_paths in [extracted_paths]: if isinstance(_lowerCamelCase , _lowerCamelCase ): __snake_case : Dict = [extracted_paths] __snake_case : int = [paths] elif isinstance(_lowerCamelCase , _lowerCamelCase ): assert "train" in extracted_paths.keys() __snake_case : int = extracted_paths.values() __snake_case : int = paths.values() assert extracted_paths for extracted_path, input_path in zip(_lowerCamelCase , _lowerCamelCase ): assert extracted_path == dl_manager.extracted_paths[input_path] __snake_case : Any = Path(_lowerCamelCase ) __snake_case : str = extracted_path.parts assert parts[-1] == hash_url_to_filename(_lowerCamelCase , etag=_lowerCamelCase ) assert parts[-2] == extracted_subdir assert extracted_path.exists() __snake_case : Optional[int] = extracted_path.read_text() __snake_case : str = text_file.read_text() assert extracted_file_content == expected_file_content def _a ( _lowerCamelCase , _lowerCamelCase ) -> Optional[int]: """simple docstring""" assert path.endswith(""".jsonl""" ) for num_items, line in enumerate(_lowerCamelCase , start=1 ): __snake_case : Tuple = json.loads(line.decode("""utf-8""" ) ) assert item.keys() == {"col_1", "col_2", "col_3"} assert num_items == 4 @pytest.mark.parametrize("""archive_jsonl""" , ["""tar_jsonl_path""", """zip_jsonl_path"""] ) def _a ( _lowerCamelCase , _lowerCamelCase ) -> Optional[int]: """simple docstring""" __snake_case : Any = request.getfixturevalue(_lowerCamelCase ) __snake_case : str = DownloadManager() for num_jsonl, (path, file) in enumerate(dl_manager.iter_archive(_lowerCamelCase ) , start=1 ): _test_jsonl(_lowerCamelCase , _lowerCamelCase ) assert num_jsonl == 2 @pytest.mark.parametrize("""archive_nested_jsonl""" , ["""tar_nested_jsonl_path""", """zip_nested_jsonl_path"""] ) def _a ( _lowerCamelCase , _lowerCamelCase ) -> List[str]: """simple docstring""" __snake_case : int = request.getfixturevalue(_lowerCamelCase ) __snake_case : List[str] = DownloadManager() for num_tar, (path, file) in enumerate(dl_manager.iter_archive(_lowerCamelCase ) , start=1 ): for num_jsonl, (subpath, subfile) in enumerate(dl_manager.iter_archive(_lowerCamelCase ) , start=1 ): _test_jsonl(_lowerCamelCase , _lowerCamelCase ) assert num_tar == 1 assert num_jsonl == 2 def _a ( _lowerCamelCase ) -> Any: """simple docstring""" __snake_case : List[str] = DownloadManager() for num_file, file in enumerate(dl_manager.iter_files(_lowerCamelCase ) , start=1 ): assert os.path.basename(_lowerCamelCase ) == ("test.txt" if num_file == 1 else "train.txt") assert num_file == 2
26
1
'''simple docstring''' def _a ( _lowerCamelCase , _lowerCamelCase ) -> str: """simple docstring""" if a < 0 or b < 0: raise ValueError("""the value of both inputs must be positive""" ) __snake_case : Optional[int] = str(bin(_lowerCamelCase ) )[2:] # remove the leading "0b" __snake_case : int = str(bin(_lowerCamelCase ) )[2:] # remove the leading "0b" __snake_case : List[str] = max(len(_lowerCamelCase ) , len(_lowerCamelCase ) ) return "0b" + "".join( str(int(char_a != char_b ) ) for char_a, char_b in zip(a_binary.zfill(_lowerCamelCase ) , b_binary.zfill(_lowerCamelCase ) ) ) if __name__ == "__main__": import doctest doctest.testmod()
26
'''simple docstring''' def _a ( _lowerCamelCase = 100 ) -> int: """simple docstring""" __snake_case : Any = n * (n + 1) * (2 * n + 1) / 6 __snake_case : List[Any] = (n * (n + 1) / 2) ** 2 return int(square_of_sum - sum_of_squares ) if __name__ == "__main__": print(f"""{solution() = }""")
26
1
'''simple docstring''' import warnings from ...utils import logging from .image_processing_poolformer import PoolFormerImageProcessor __UpperCamelCase = logging.get_logger(__name__) class _A ( __lowercase ): def __init__( self : List[str] , *__magic_name__ : Optional[Any] , **__magic_name__ : str ) -> None: """simple docstring""" warnings.warn( """The class PoolFormerFeatureExtractor is deprecated and will be removed in version 5 of Transformers.""" """ Please use PoolFormerImageProcessor instead.""" , __magic_name__ , ) super().__init__(*__magic_name__ , **__magic_name__ )
26
'''simple docstring''' from __future__ import annotations from typing import Any class _A : def __init__( self : str , __magic_name__ : int , __magic_name__ : int , __magic_name__ : float = 0 ) -> None: """simple docstring""" __snake_case , __snake_case : Optional[Any] = row, column __snake_case : Dict = [[default_value for c in range(__magic_name__ )] for r in range(__magic_name__ )] def __str__( self : List[Any] ) -> str: """simple docstring""" __snake_case : Dict = f'''Matrix consist of {self.row} rows and {self.column} columns\n''' # Make string identifier __snake_case : Optional[int] = 0 for row_vector in self.array: for obj in row_vector: __snake_case : Optional[int] = max(__magic_name__ , len(str(__magic_name__ ) ) ) __snake_case : str = f'''%{max_element_length}s''' # Make string and return def single_line(__magic_name__ : list[float] ) -> str: nonlocal string_format_identifier __snake_case : Union[str, Any] = """[""" line += ", ".join(string_format_identifier % (obj,) for obj in row_vector ) line += "]" return line s += "\n".join(single_line(__magic_name__ ) for row_vector in self.array ) return s def __repr__( self : Optional[int] ) -> str: """simple docstring""" return str(self ) def lowercase__ ( self : Dict , __magic_name__ : tuple[int, int] ) -> bool: """simple docstring""" if not (isinstance(__magic_name__ , (list, tuple) ) and len(__magic_name__ ) == 2): return False elif not (0 <= loc[0] < self.row and 0 <= loc[1] < self.column): return False else: return True def __getitem__( self : int , __magic_name__ : tuple[int, int] ) -> Any: """simple docstring""" assert self.validate_indicies(__magic_name__ ) return self.array[loc[0]][loc[1]] def __setitem__( self : List[str] , __magic_name__ : tuple[int, int] , __magic_name__ : float ) -> None: """simple docstring""" assert self.validate_indicies(__magic_name__ ) __snake_case : Optional[int] = value def __add__( self : Any , __magic_name__ : Matrix ) -> Matrix: """simple docstring""" assert isinstance(__magic_name__ , __magic_name__ ) assert self.row == another.row and self.column == another.column # Add __snake_case : Union[str, Any] = Matrix(self.row , self.column ) for r in range(self.row ): for c in range(self.column ): __snake_case : List[Any] = self[r, c] + another[r, c] return result def __neg__( self : Tuple ) -> Matrix: """simple docstring""" __snake_case : Tuple = Matrix(self.row , self.column ) for r in range(self.row ): for c in range(self.column ): __snake_case : List[Any] = -self[r, c] return result def __sub__( self : Optional[int] , __magic_name__ : Matrix ) -> Matrix: """simple docstring""" return self + (-another) def __mul__( self : List[Any] , __magic_name__ : int | float | Matrix ) -> Matrix: """simple docstring""" if isinstance(__magic_name__ , (int, float) ): # Scalar multiplication __snake_case : Optional[int] = Matrix(self.row , self.column ) for r in range(self.row ): for c in range(self.column ): __snake_case : Tuple = self[r, c] * another return result elif isinstance(__magic_name__ , __magic_name__ ): # Matrix multiplication assert self.column == another.row __snake_case : Dict = Matrix(self.row , another.column ) for r in range(self.row ): for c in range(another.column ): for i in range(self.column ): result[r, c] += self[r, i] * another[i, c] return result else: __snake_case : Optional[int] = f'''Unsupported type given for another ({type(__magic_name__ )})''' raise TypeError(__magic_name__ ) def lowercase__ ( self : str ) -> Matrix: """simple docstring""" __snake_case : Any = Matrix(self.column , self.row ) for r in range(self.row ): for c in range(self.column ): __snake_case : str = self[r, c] return result def lowercase__ ( self : Union[str, Any] , __magic_name__ : Matrix , __magic_name__ : Matrix ) -> Any: """simple docstring""" assert isinstance(__magic_name__ , __magic_name__ ) and isinstance(__magic_name__ , __magic_name__ ) assert self.row == self.column == u.row == v.row # u, v should be column vector assert u.column == v.column == 1 # u, v should be column vector # Calculate __snake_case : List[str] = v.transpose() __snake_case : Tuple = (v_t * self * u)[0, 0] + 1 if numerator_factor == 0: return None # It's not invertable return self - ((self * u) * (v_t * self) * (1.0 / numerator_factor)) # Testing if __name__ == "__main__": def _a ( ) -> None: """simple docstring""" __snake_case : Tuple = Matrix(3 , 3 , 0 ) for i in range(3 ): __snake_case : Any = 1 print(F'''a^(-1) is {ainv}''' ) # u, v __snake_case : Dict = Matrix(3 , 1 , 0 ) __snake_case , __snake_case , __snake_case : Union[str, Any] = 1, 2, -3 __snake_case : str = Matrix(3 , 1 , 0 ) __snake_case , __snake_case , __snake_case : Tuple = 4, -2, 5 print(F'''u is {u}''' ) print(F'''v is {v}''' ) print(F'''uv^T is {u * v.transpose()}''' ) # Sherman Morrison print(F'''(a + uv^T)^(-1) is {ainv.sherman_morrison(_lowerCamelCase , _lowerCamelCase )}''' ) def _a ( ) -> None: """simple docstring""" import doctest doctest.testmod() testa()
26
1
'''simple docstring''' import logging import os from dataclasses import dataclass, field from functools import partial from pathlib import Path from tempfile import TemporaryDirectory from typing import List, Optional import faiss import torch from datasets import Features, Sequence, Value, load_dataset from transformers import DPRContextEncoder, DPRContextEncoderTokenizerFast, HfArgumentParser __UpperCamelCase = logging.getLogger(__name__) torch.set_grad_enabled(False) __UpperCamelCase = "cuda" if torch.cuda.is_available() else "cpu" def _a ( _lowerCamelCase , _lowerCamelCase=100 , _lowerCamelCase=" " ) -> List[str]: """simple docstring""" __snake_case : Any = text.split(_lowerCamelCase ) return [character.join(text[i : i + n] ).strip() for i in range(0 , len(_lowerCamelCase ) , _lowerCamelCase )] def _a ( _lowerCamelCase ) -> dict: """simple docstring""" __snake_case , __snake_case : Optional[Any] = [], [] for title, text in zip(documents["""title"""] , documents["""text"""] ): if text is not None: for passage in split_text(_lowerCamelCase ): titles.append(title if title is not None else """""" ) texts.append(_lowerCamelCase ) return {"title": titles, "text": texts} def _a ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> dict: """simple docstring""" __snake_case : Dict = ctx_tokenizer( documents["""title"""] , documents["""text"""] , truncation=_lowerCamelCase , padding="""longest""" , return_tensors="""pt""" )["""input_ids"""] __snake_case : int = ctx_encoder(input_ids.to(device=_lowerCamelCase ) , return_dict=_lowerCamelCase ).pooler_output return {"embeddings": embeddings.detach().cpu().numpy()} def _a ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , ) -> List[Any]: """simple docstring""" logger.info("""Step 1 - Create the dataset""" ) ###################################### # The dataset needed for RAG must have three columns: # - title (string): title of the document # - text (string): text of a passage of the document # - embeddings (array of dimension d): DPR representation of the passage # Let's say you have documents in tab-separated csv files with columns "title" and "text" assert os.path.isfile(rag_example_args.csv_path ), "Please provide a valid path to a csv file" # You can load a Dataset object this way __snake_case : Optional[Any] = load_dataset( """csv""" , data_files=[rag_example_args.csv_path] , split="""train""" , delimiter="""\t""" , column_names=["""title""", """text"""] ) # More info about loading csv files in the documentation: https://huggingface.co/docs/datasets/loading_datasets.html?highlight=csv#csv-files # Then split the documents into passages of 100 words __snake_case : str = dataset.map(_lowerCamelCase , batched=_lowerCamelCase , num_proc=processing_args.num_proc ) # And compute the embeddings __snake_case : List[Any] = DPRContextEncoder.from_pretrained(rag_example_args.dpr_ctx_encoder_model_name ).to(device=_lowerCamelCase ) __snake_case : List[Any] = DPRContextEncoderTokenizerFast.from_pretrained(rag_example_args.dpr_ctx_encoder_model_name ) __snake_case : int = Features( {"""text""": Value("""string""" ), """title""": Value("""string""" ), """embeddings""": Sequence(Value("""float32""" ) )} ) # optional, save as float32 instead of float64 to save space __snake_case : Dict = dataset.map( partial(_lowerCamelCase , ctx_encoder=_lowerCamelCase , ctx_tokenizer=_lowerCamelCase ) , batched=_lowerCamelCase , batch_size=processing_args.batch_size , features=_lowerCamelCase , ) # And finally save your dataset __snake_case : Dict = os.path.join(rag_example_args.output_dir , """my_knowledge_dataset""" ) dataset.save_to_disk(_lowerCamelCase ) # from datasets import load_from_disk # dataset = load_from_disk(passages_path) # to reload the dataset ###################################### logger.info("""Step 2 - Index the dataset""" ) ###################################### # Let's use the Faiss implementation of HNSW for fast approximate nearest neighbor search __snake_case : Optional[Any] = faiss.IndexHNSWFlat(index_hnsw_args.d , index_hnsw_args.m , faiss.METRIC_INNER_PRODUCT ) dataset.add_faiss_index("""embeddings""" , custom_index=_lowerCamelCase ) # And save the index __snake_case : List[str] = os.path.join(rag_example_args.output_dir , """my_knowledge_dataset_hnsw_index.faiss""" ) dataset.get_index("""embeddings""" ).save(_lowerCamelCase ) # dataset.load_faiss_index("embeddings", index_path) # to reload the index @dataclass class _A : lowercase__: str = field( default=str(Path(__lowercase ).parent / '''test_run''' / '''dummy-kb''' / '''my_knowledge_dataset.csv''' ) , metadata={'''help''': '''Path to a tab-separated csv file with columns \'title\' and \'text\''''} , ) lowercase__: Optional[str] = field( default=__lowercase , metadata={'''help''': '''Question that is passed as input to RAG. Default is \'What does Moses\' rod turn into ?\'.'''} , ) lowercase__: str = field( default='''facebook/rag-sequence-nq''' , metadata={'''help''': '''The RAG model to use. Either \'facebook/rag-sequence-nq\' or \'facebook/rag-token-nq\''''} , ) lowercase__: str = field( default='''facebook/dpr-ctx_encoder-multiset-base''' , metadata={ '''help''': ( '''The DPR context encoder model to use. Either \'facebook/dpr-ctx_encoder-single-nq-base\' or''' ''' \'facebook/dpr-ctx_encoder-multiset-base\'''' ) } , ) lowercase__: Optional[str] = field( default=str(Path(__lowercase ).parent / '''test_run''' / '''dummy-kb''' ) , metadata={'''help''': '''Path to a directory where the dataset passages and the index will be saved'''} , ) @dataclass class _A : lowercase__: Optional[int] = field( default=__lowercase , metadata={ '''help''': '''The number of processes to use to split the documents into passages. Default is single process.''' } , ) lowercase__: int = field( default=16 , metadata={ '''help''': '''The batch size to use when computing the passages embeddings using the DPR context encoder.''' } , ) @dataclass class _A : lowercase__: int = field( default=768 , metadata={'''help''': '''The dimension of the embeddings to pass to the HNSW Faiss index.'''} , ) lowercase__: int = field( default=128 , metadata={ '''help''': ( '''The number of bi-directional links created for every new element during the HNSW index construction.''' ) } , ) if __name__ == "__main__": logging.basicConfig(level=logging.WARNING) logger.setLevel(logging.INFO) __UpperCamelCase = HfArgumentParser((RagExampleArguments, ProcessingArguments, IndexHnswArguments)) __UpperCamelCase , __UpperCamelCase , __UpperCamelCase = parser.parse_args_into_dataclasses() with TemporaryDirectory() as tmp_dir: __UpperCamelCase = rag_example_args.output_dir or tmp_dir main(rag_example_args, processing_args, index_hnsw_args)
26
'''simple docstring''' import argparse import json import os import torch from torch import nn from transformers import NllbMoeConfig, NllbMoeModel from transformers.modeling_utils import dtype_byte_size from transformers.utils import WEIGHTS_INDEX_NAME, WEIGHTS_NAME def _a ( _lowerCamelCase ) -> List[Any]: """simple docstring""" __snake_case : Union[str, Any] = [ """encoder.version""", """decoder.version""", """model.encoder.version""", """model.decoder.version""", """decoder.output_projection.weight""", """_float_tensor""", """encoder.embed_positions._float_tensor""", """decoder.embed_positions._float_tensor""", ] for k in ignore_keys: state_dict.pop(_lowerCamelCase , _lowerCamelCase ) def _a ( _lowerCamelCase ) -> List[str]: """simple docstring""" __snake_case , __snake_case : Dict = emb.weight.shape __snake_case : Optional[int] = nn.Linear(_lowerCamelCase , _lowerCamelCase , bias=_lowerCamelCase ) __snake_case : Union[str, Any] = emb.weight.data return lin_layer def _a ( _lowerCamelCase , _lowerCamelCase=None ) -> Union[str, Any]: """simple docstring""" __snake_case : Any = {} for old_key in state_dict.keys(): __snake_case : Union[str, Any] = old_key if "moe_layer.experts." in key: if expert_idx is not None: __snake_case : Tuple = key.replace("""moe_layer.experts.0""" , F'''ffn.experts.expert_{expert_idx}''' ) else: __snake_case : Optional[int] = key.replace("""moe_layer.experts.""" , """ffn.experts.expert_""" ) if "gate" in key: __snake_case : Dict = key.replace(""".moe_layer.gate.wg""" , """.ffn.router.classifier""" ) if "fc2" and "experts" not in key: __snake_case : Union[str, Any] = key.replace(""".fc2.""" , """.ffn.fc2.""" ) if "fc1" and "experts" not in key: __snake_case : Optional[int] = key.replace(""".fc1.""" , """.ffn.fc1.""" ) if ".encoder_attn." in key: __snake_case : Tuple = key.replace(""".encoder_attn.""" , """.cross_attention.""" ) if "encoder_attn_layer_norm" in key: __snake_case : Union[str, Any] = key.replace("""encoder_attn_layer_norm""" , """cross_attention_layer_norm""" ) if "final_layer_norm" in key: __snake_case : str = key.replace("""final_layer_norm""" , """ff_layer_norm""" ) __snake_case : str = state_dict[old_key] return new_dict def _a ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase = WEIGHTS_NAME ) -> Dict: """simple docstring""" __snake_case : Optional[int] = [] __snake_case : Dict = 0 os.makedirs(_lowerCamelCase , exist_ok=_lowerCamelCase ) for expert in range(_lowerCamelCase ): __snake_case : Tuple = switch_checkpoint_path + F'''-rank-{expert}.pt''' if os.path.isfile(_lowerCamelCase ): __snake_case : Dict = torch.load(_lowerCamelCase )["""model"""] remove_ignore_keys_(_lowerCamelCase ) __snake_case : Optional[Any] = rename_fairseq_keys(_lowerCamelCase , _lowerCamelCase ) __snake_case : List[Any] = os.path.join( _lowerCamelCase , weights_name.replace(""".bin""" , F'''-{len(_lowerCamelCase )+1:05d}-of-???.bin''' ) ) torch.save(_lowerCamelCase , _lowerCamelCase ) sharded_state_dicts.append(expert_state.keys() ) total_size += sum([value.numel() for key, value in expert_state.items()] ) * dtype_byte_size( expert_state[list(_lowerCamelCase )[0]].dtype ) # Add the last block __snake_case : Optional[Any] = os.path.join(_lowerCamelCase , weights_name.replace(""".bin""" , F'''-{len(_lowerCamelCase )+1:05d}-of-???.bin''' ) ) __snake_case : str = torch.load(switch_checkpoint_path + """-shared.pt""" )["""model"""] remove_ignore_keys_(_lowerCamelCase ) __snake_case : Optional[Any] = rename_fairseq_keys(_lowerCamelCase , _lowerCamelCase ) __snake_case : List[str] = shared_weights["""decoder.embed_tokens.weight"""] sharded_state_dicts.append(shared_weights.keys() ) # If we only have the shared weights (dummy model/experts saved on the same file) if len(_lowerCamelCase ) == 1: __snake_case : Optional[Any] = os.path.join(_lowerCamelCase , _lowerCamelCase ) torch.save(_lowerCamelCase , _lowerCamelCase ) return {weights_name: sharded_state_dicts[0]}, None else: torch.save(_lowerCamelCase , _lowerCamelCase ) # Otherwise, let's build the index __snake_case : Tuple = {} for idx, shard in enumerate(_lowerCamelCase ): __snake_case : Any = weights_name.replace(""".bin""" , F'''-{idx+1:05d}-of-{len(_lowerCamelCase ):05d}.bin''' ) __snake_case : int = os.path.join(_lowerCamelCase , weights_name.replace(""".bin""" , F'''-{idx+1:05d}-of-???.bin''' ) ) os.rename(_lowerCamelCase , os.path.join(_lowerCamelCase , _lowerCamelCase ) ) for key in shard: __snake_case : str = shard_file # Add the metadata __snake_case : Optional[Any] = {"""total_size""": total_size} __snake_case : int = {"""metadata""": metadata, """weight_map""": weight_map} with open(os.path.join(_lowerCamelCase , _lowerCamelCase ) , """w""" , encoding="""utf-8""" ) as f: __snake_case : Union[str, Any] = json.dumps(_lowerCamelCase , indent=2 , sort_keys=_lowerCamelCase ) + """\n""" f.write(_lowerCamelCase ) return metadata, index if __name__ == "__main__": __UpperCamelCase = argparse.ArgumentParser() # Required parameters parser.add_argument( "--nllb_moe_checkpoint_path", default="/home/arthur_huggingface_co/fairseq/weights/checkpoints/model_moe_54b/checkpoint_2_300000", type=str, required=False, help="Path to a directory containing a folder per layer. Follows the original Google format.", ) parser.add_argument("--dtype", default="float32", type=str, required=False, help="dtype of the saved model") parser.add_argument( "--pytorch_dump_folder_path", default="/home/arthur_huggingface_co/fairseq/weights/checkpoints/hf-converted-moe-54b", type=str, required=False, help="Path to the output pytorch model.", ) __UpperCamelCase = parser.parse_args() __UpperCamelCase , __UpperCamelCase = shard_on_the_fly( args.nllb_moe_checkpoint_path, args.pytorch_dump_folder_path, 128, args.dtype, ) __UpperCamelCase = NllbMoeConfig.from_pretrained( "facebook/nllb-200-3.3B", encoder_sparse_step=4, decoder_sparse_step=4, num_experts=128 ) config.save_pretrained(args.pytorch_dump_folder_path) __UpperCamelCase = NllbMoeModel.from_pretrained(args.pytorch_dump_folder_path) print("Done") model.save_pretrained(args.pytorch_dump_folder_path)
26
1
'''simple docstring''' import operator as op def _a ( _lowerCamelCase ) -> Tuple: """simple docstring""" __snake_case : List[Any] = [] __snake_case : Optional[int] = lambda _lowerCamelCase , _lowerCamelCase : int(x / y ) # noqa: E731 integer division operation __snake_case : List[Any] = { """^""": op.pow, """*""": op.mul, """/""": div, """+""": op.add, """-""": op.sub, } # operators & their respective operation # print table header print("""Symbol""".center(8 ) , """Action""".center(12 ) , """Stack""" , sep=""" | """ ) print("""-""" * (30 + len(_lowerCamelCase )) ) for x in post_fix: if x.isdigit(): # if x in digit stack.append(_lowerCamelCase ) # append x to stack # output in tabular format print(x.rjust(8 ) , ("""push(""" + x + """)""").ljust(12 ) , """,""".join(_lowerCamelCase ) , sep=""" | """ ) else: __snake_case : List[str] = stack.pop() # pop stack # output in tabular format print("""""".rjust(8 ) , ("""pop(""" + b + """)""").ljust(12 ) , """,""".join(_lowerCamelCase ) , sep=""" | """ ) __snake_case : Dict = stack.pop() # pop stack # output in tabular format print("""""".rjust(8 ) , ("""pop(""" + a + """)""").ljust(12 ) , """,""".join(_lowerCamelCase ) , sep=""" | """ ) stack.append( str(opr[x](int(_lowerCamelCase ) , int(_lowerCamelCase ) ) ) ) # evaluate the 2 values popped from stack & push result to stack # output in tabular format print( x.rjust(8 ) , ("""push(""" + a + x + b + """)""").ljust(12 ) , """,""".join(_lowerCamelCase ) , sep=""" | """ , ) return int(stack[0] ) if __name__ == "__main__": __UpperCamelCase = input("\n\nEnter a Postfix Equation (space separated) = ").split(" ") print("\n\tResult = ", solve(Postfix))
26
'''simple docstring''' import cva import numpy as np class _A : def __init__( self : Any , __magic_name__ : float , __magic_name__ : int ) -> Optional[int]: """simple docstring""" if k in (0.04, 0.06): __snake_case : List[str] = k __snake_case : int = window_size else: raise ValueError("""invalid k value""" ) def __str__( self : Union[str, Any] ) -> str: """simple docstring""" return str(self.k ) def lowercase__ ( self : Dict , __magic_name__ : str ) -> tuple[cva.Mat, list[list[int]]]: """simple docstring""" __snake_case : Dict = cva.imread(__magic_name__ , 0 ) __snake_case , __snake_case : List[str] = img.shape __snake_case : list[list[int]] = [] __snake_case : str = img.copy() __snake_case : Tuple = cva.cvtColor(__magic_name__ , cva.COLOR_GRAY2RGB ) __snake_case , __snake_case : List[Any] = np.gradient(__magic_name__ ) __snake_case : Optional[Any] = dx**2 __snake_case : Tuple = dy**2 __snake_case : List[Any] = dx * dy __snake_case : List[Any] = 0.04 __snake_case : Tuple = self.window_size // 2 for y in range(__magic_name__ , h - offset ): for x in range(__magic_name__ , w - offset ): __snake_case : Dict = ixx[ y - offset : y + offset + 1, x - offset : x + offset + 1 ].sum() __snake_case : Optional[int] = iyy[ y - offset : y + offset + 1, x - offset : x + offset + 1 ].sum() __snake_case : str = ixy[ y - offset : y + offset + 1, x - offset : x + offset + 1 ].sum() __snake_case : List[str] = (wxx * wyy) - (wxy**2) __snake_case : Dict = wxx + wyy __snake_case : List[str] = det - k * (trace**2) # Can change the value if r > 0.5: corner_list.append([x, y, r] ) color_img.itemset((y, x, 0) , 0 ) color_img.itemset((y, x, 1) , 0 ) color_img.itemset((y, x, 2) , 2_55 ) return color_img, corner_list if __name__ == "__main__": __UpperCamelCase = HarrisCorner(0.04, 3) __UpperCamelCase , __UpperCamelCase = edge_detect.detect("path_to_image") cva.imwrite("detect.png", color_img)
26
1
'''simple docstring''' import baseaa def _a ( _lowerCamelCase ) -> bytes: """simple docstring""" return baseaa.baaencode(string.encode("""utf-8""" ) ) def _a ( _lowerCamelCase ) -> str: """simple docstring""" return baseaa.baadecode(_lowerCamelCase ).decode("""utf-8""" ) if __name__ == "__main__": __UpperCamelCase = "Hello World!" __UpperCamelCase = baseaa_encode(test) print(encoded) __UpperCamelCase = baseaa_decode(encoded) print(decoded)
26
'''simple docstring''' import warnings from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding class _A ( __lowercase ): lowercase__: Any = ['''image_processor''', '''tokenizer'''] lowercase__: Any = '''CLIPImageProcessor''' lowercase__: Optional[Any] = ('''CLIPTokenizer''', '''CLIPTokenizerFast''') def __init__( self : int , __magic_name__ : Dict=None , __magic_name__ : Dict=None , **__magic_name__ : Union[str, Any] ) -> Any: """simple docstring""" __snake_case : Optional[Any] = None if "feature_extractor" in kwargs: warnings.warn( """The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`""" """ instead.""" , __magic_name__ , ) __snake_case : List[Any] = kwargs.pop("""feature_extractor""" ) __snake_case : List[str] = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError("""You need to specify an `image_processor`.""" ) if tokenizer is None: raise ValueError("""You need to specify a `tokenizer`.""" ) super().__init__(__magic_name__ , __magic_name__ ) def __call__( self : int , __magic_name__ : List[str]=None , __magic_name__ : Tuple=None , __magic_name__ : Any=None , **__magic_name__ : Union[str, Any] ) -> Optional[int]: """simple docstring""" if text is None and images is None: raise ValueError("""You have to specify either text or images. Both cannot be none.""" ) if text is not None: __snake_case : int = self.tokenizer(__magic_name__ , return_tensors=__magic_name__ , **__magic_name__ ) if images is not None: __snake_case : str = self.image_processor(__magic_name__ , return_tensors=__magic_name__ , **__magic_name__ ) if text is not None and images is not None: __snake_case : Union[str, Any] = image_features.pixel_values return encoding elif text is not None: return encoding else: return BatchEncoding(data=dict(**__magic_name__ ) , tensor_type=__magic_name__ ) def lowercase__ ( self : Optional[int] , *__magic_name__ : List[Any] , **__magic_name__ : Any ) -> Optional[Any]: """simple docstring""" return self.tokenizer.batch_decode(*__magic_name__ , **__magic_name__ ) def lowercase__ ( self : List[str] , *__magic_name__ : Tuple , **__magic_name__ : List[Any] ) -> int: """simple docstring""" return self.tokenizer.decode(*__magic_name__ , **__magic_name__ ) @property def lowercase__ ( self : List[Any] ) -> Optional[Any]: """simple docstring""" __snake_case : Dict = self.tokenizer.model_input_names __snake_case : str = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) ) @property def lowercase__ ( self : int ) -> List[str]: """simple docstring""" warnings.warn( """`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.""" , __magic_name__ , ) return self.image_processor_class @property def lowercase__ ( self : Union[str, Any] ) -> Dict: """simple docstring""" warnings.warn( """`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead.""" , __magic_name__ , ) return self.image_processor
26
1
'''simple docstring''' from __future__ import annotations from cmath import sqrt def _a ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> tuple[complex, complex]: """simple docstring""" if a == 0: raise ValueError("""Coefficient 'a' must not be zero.""" ) __snake_case : str = b * b - 4 * a * c __snake_case : Optional[Any] = (-b + sqrt(_lowerCamelCase )) / (2 * a) __snake_case : Dict = (-b - sqrt(_lowerCamelCase )) / (2 * a) return ( root_a.real if not root_a.imag else root_a, root_a.real if not root_a.imag else root_a, ) def _a ( ) -> Tuple: """simple docstring""" __snake_case , __snake_case : Dict = quadratic_roots(a=5 , b=6 , c=1 ) print(F'''The solutions are: {solutiona} and {solutiona}''' ) if __name__ == "__main__": main()
26
'''simple docstring''' import datasets import faiss import numpy as np import streamlit as st import torch from elasticsearch import Elasticsearch from elia_utils import ( embed_questions_for_retrieval, make_qa_sas_model, qa_sas_generate, query_es_index, query_qa_dense_index, ) import transformers from transformers import AutoModel, AutoModelForSeqaSeqLM, AutoTokenizer __UpperCamelCase = "bart" __UpperCamelCase = True @st.cache(allow_output_mutation=_lowerCamelCase ) def _a ( ) -> Union[str, Any]: """simple docstring""" if LOAD_DENSE_INDEX: __snake_case : int = AutoTokenizer.from_pretrained("""yjernite/retribert-base-uncased""" ) __snake_case : Tuple = AutoModel.from_pretrained("""yjernite/retribert-base-uncased""" ).to("""cuda:0""" ) __snake_case : List[Any] = qar_model.eval() else: __snake_case , __snake_case : Optional[Any] = (None, None) if MODEL_TYPE == "bart": __snake_case : List[str] = AutoTokenizer.from_pretrained("""yjernite/bart_eli5""" ) __snake_case : Any = AutoModelForSeqaSeqLM.from_pretrained("""yjernite/bart_eli5""" ).to("""cuda:0""" ) __snake_case : int = torch.load("""seq2seq_models/eli5_bart_model_blm_2.pth""" ) sas_model.load_state_dict(save_dict["""model"""] ) __snake_case : int = sas_model.eval() else: __snake_case , __snake_case : Dict = make_qa_sas_model( model_name="""t5-small""" , from_file="""seq2seq_models/eli5_t5_model_1024_4.pth""" , device="""cuda:0""" ) return (qar_tokenizer, qar_model, sas_tokenizer, sas_model) @st.cache(allow_output_mutation=_lowerCamelCase ) def _a ( ) -> Tuple: """simple docstring""" if LOAD_DENSE_INDEX: __snake_case : Tuple = faiss.StandardGpuResources() __snake_case : Optional[Any] = datasets.load_dataset(path="""wiki_snippets""" , name="""wiki40b_en_100_0""" )["""train"""] __snake_case : str = np.memmap( """wiki40b_passages_reps_32_l-8_h-768_b-512-512.dat""" , dtype="""float32""" , mode="""r""" , shape=(wikiaab_passages.num_rows, 128) , ) __snake_case : Optional[int] = faiss.IndexFlatIP(128 ) __snake_case : Any = faiss.index_cpu_to_gpu(_lowerCamelCase , 1 , _lowerCamelCase ) wikiaab_gpu_index_flat.add(_lowerCamelCase ) # TODO fix for larger GPU else: __snake_case , __snake_case : Tuple = (None, None) __snake_case : List[str] = Elasticsearch([{"""host""": """localhost""", """port""": """9200"""}] ) return (wikiaab_passages, wikiaab_gpu_index_flat, es_client) @st.cache(allow_output_mutation=_lowerCamelCase ) def _a ( ) -> List[Any]: """simple docstring""" __snake_case : Tuple = datasets.load_dataset("""eli5""" , name="""LFQA_reddit""" ) __snake_case : Dict = elia["""train_eli5"""] __snake_case : int = np.memmap( """eli5_questions_reps.dat""" , dtype="""float32""" , mode="""r""" , shape=(elia_train.num_rows, 128) ) __snake_case : Dict = faiss.IndexFlatIP(128 ) eli5_train_q_index.add(_lowerCamelCase ) return (elia_train, eli5_train_q_index) __UpperCamelCase , __UpperCamelCase , __UpperCamelCase = load_indexes() __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase = load_models() __UpperCamelCase , __UpperCamelCase = load_train_data() def _a ( _lowerCamelCase , _lowerCamelCase=10 ) -> int: """simple docstring""" __snake_case : Optional[int] = embed_questions_for_retrieval([question] , _lowerCamelCase , _lowerCamelCase ) __snake_case , __snake_case : Tuple = eli5_train_q_index.search(_lowerCamelCase , _lowerCamelCase ) __snake_case : Tuple = [elia_train[int(_lowerCamelCase )] for i in I[0]] return nn_examples def _a ( _lowerCamelCase , _lowerCamelCase="wiki40b" , _lowerCamelCase="dense" , _lowerCamelCase=10 ) -> Optional[Any]: """simple docstring""" if source == "none": __snake_case , __snake_case : Dict = (""" <P> """.join(["""""" for _ in range(11 )] ).strip(), []) else: if method == "dense": __snake_case , __snake_case : Dict = query_qa_dense_index( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) else: __snake_case , __snake_case : str = query_es_index( _lowerCamelCase , _lowerCamelCase , index_name="""english_wiki40b_snippets_100w""" , n_results=_lowerCamelCase , ) __snake_case : Optional[int] = [ (res["""article_title"""], res["""section_title"""].strip(), res["""score"""], res["""passage_text"""]) for res in hit_lst ] __snake_case : Optional[Any] = """question: {} context: {}""".format(_lowerCamelCase , _lowerCamelCase ) return question_doc, support_list @st.cache( hash_funcs={ torch.Tensor: (lambda _lowerCamelCase : None), transformers.models.bart.tokenization_bart.BartTokenizer: (lambda _lowerCamelCase : None), } ) def _a ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase=64 , _lowerCamelCase=256 , _lowerCamelCase=False , _lowerCamelCase=2 , _lowerCamelCase=0.95 , _lowerCamelCase=0.8 ) -> List[str]: """simple docstring""" with torch.no_grad(): __snake_case : Union[str, Any] = qa_sas_generate( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , num_answers=1 , num_beams=_lowerCamelCase , min_len=_lowerCamelCase , max_len=_lowerCamelCase , do_sample=_lowerCamelCase , temp=_lowerCamelCase , top_p=_lowerCamelCase , top_k=_lowerCamelCase , max_input_length=1024 , device="""cuda:0""" , )[0] return (answer, support_list) st.title("Long Form Question Answering with ELI5") # Start sidebar __UpperCamelCase = "<img src='https://huggingface.co/front/assets/huggingface_logo.svg'>" __UpperCamelCase = "\n<html>\n <head>\n <style>\n .img-container {\n padding-left: 90px;\n padding-right: 90px;\n padding-top: 50px;\n padding-bottom: 50px;\n background-color: #f0f3f9;\n }\n </style>\n </head>\n <body>\n <span class=\"img-container\"> <!-- Inline parent element -->\n %s\n </span>\n </body>\n</html>\n" % ( header_html, ) st.sidebar.markdown( header_full, unsafe_allow_html=True, ) # Long Form QA with ELI5 and Wikipedia __UpperCamelCase = "\nThis demo presents a model trained to [provide long-form answers to open-domain questions](https://yjernite.github.io/lfqa.html).\nFirst, a document retriever fetches a set of relevant Wikipedia passages given the question from the [Wiki40b](https://research.google/pubs/pub49029/) dataset,\na pre-processed fixed snapshot of Wikipedia.\n" st.sidebar.markdown(description, unsafe_allow_html=True) __UpperCamelCase = [ "Answer the question", "View the retrieved document only", "View the most similar ELI5 question and answer", "Show me everything, please!", ] __UpperCamelCase = st.sidebar.checkbox("Demo options") if demo_options: __UpperCamelCase = st.sidebar.selectbox( "", action_list, index=3, ) __UpperCamelCase = action_list.index(action_st) __UpperCamelCase = st.sidebar.selectbox( "", ["Show full text of passages", "Show passage section titles"], index=0, ) __UpperCamelCase = show_type == "Show full text of passages" else: __UpperCamelCase = 3 __UpperCamelCase = True __UpperCamelCase = st.sidebar.checkbox("Retrieval options") if retrieval_options: __UpperCamelCase = "\n ### Information retriever options\n\n The **sparse** retriever uses ElasticSearch, while the **dense** retriever uses max-inner-product search between a question and passage embedding\n trained using the [ELI5](https://arxiv.org/abs/1907.09190) questions-answer pairs.\n The answer is then generated by sequence to sequence model which takes the question and retrieved document as input.\n " st.sidebar.markdown(retriever_info) __UpperCamelCase = st.sidebar.selectbox("Which Wikipedia format should the model use?", ["wiki40b", "none"]) __UpperCamelCase = st.sidebar.selectbox("Which Wikipedia indexer should the model use?", ["dense", "sparse", "mixed"]) else: __UpperCamelCase = "wiki40b" __UpperCamelCase = "dense" __UpperCamelCase = "beam" __UpperCamelCase = 2 __UpperCamelCase = 64 __UpperCamelCase = 256 __UpperCamelCase = None __UpperCamelCase = None __UpperCamelCase = st.sidebar.checkbox("Generation options") if generate_options: __UpperCamelCase = "\n ### Answer generation options\n\n The sequence-to-sequence model was initialized with [BART](https://huggingface.co/facebook/bart-large)\n weights and fine-tuned on the ELI5 QA pairs and retrieved documents. You can use the model for greedy decoding with\n **beam** search, or **sample** from the decoder's output probabilities.\n " st.sidebar.markdown(generate_info) __UpperCamelCase = st.sidebar.selectbox("Would you like to use beam search or sample an answer?", ["beam", "sampled"]) __UpperCamelCase = st.sidebar.slider( "Minimum generation length", min_value=8, max_value=256, value=64, step=8, format=None, key=None ) __UpperCamelCase = st.sidebar.slider( "Maximum generation length", min_value=64, max_value=512, value=256, step=16, format=None, key=None ) if sampled == "beam": __UpperCamelCase = st.sidebar.slider("Beam size", min_value=1, max_value=8, value=2, step=None, format=None, key=None) else: __UpperCamelCase = st.sidebar.slider( "Nucleus sampling p", min_value=0.1, max_value=1.0, value=0.95, step=0.01, format=None, key=None ) __UpperCamelCase = st.sidebar.slider( "Temperature", min_value=0.1, max_value=1.0, value=0.7, step=0.01, format=None, key=None ) __UpperCamelCase = None # start main text __UpperCamelCase = [ "<MY QUESTION>", "How do people make chocolate?", "Why do we get a fever when we are sick?", "How can different animals perceive different colors?", "What is natural language processing?", "What's the best way to treat a sunburn?", "What exactly are vitamins ?", "How does nuclear energy provide electricity?", "What's the difference between viruses and bacteria?", "Why are flutes classified as woodwinds when most of them are made out of metal ?", "Why do people like drinking coffee even though it tastes so bad?", "What happens when wine ages? How does it make the wine taste better?", "If an animal is an herbivore, where does it get the protein that it needs to survive if it only eats grass?", "How can we set a date to the beginning or end of an artistic period? Doesn't the change happen gradually?", "How does New Zealand have so many large bird predators?", ] __UpperCamelCase = st.selectbox( "What would you like to ask? ---- select <MY QUESTION> to enter a new query", questions_list, index=1, ) if question_s == "<MY QUESTION>": __UpperCamelCase = st.text_input("Enter your question here:", "") else: __UpperCamelCase = question_s if st.button("Show me!"): if action in [0, 1, 3]: if index_type == "mixed": __UpperCamelCase , __UpperCamelCase = make_support(question, source=wiki_source, method="dense", n_results=10) __UpperCamelCase , __UpperCamelCase = make_support(question, source=wiki_source, method="sparse", n_results=10) __UpperCamelCase = [] for res_d, res_s in zip(support_list_dense, support_list_sparse): if tuple(res_d) not in support_list: support_list += [tuple(res_d)] if tuple(res_s) not in support_list: support_list += [tuple(res_s)] __UpperCamelCase = support_list[:10] __UpperCamelCase = "<P> " + " <P> ".join([res[-1] for res in support_list]) else: __UpperCamelCase , __UpperCamelCase = make_support(question, source=wiki_source, method=index_type, n_results=10) if action in [0, 3]: __UpperCamelCase , __UpperCamelCase = answer_question( question_doc, sas_model, sas_tokenizer, min_len=min_len, max_len=int(max_len), sampling=(sampled == "sampled"), n_beams=n_beams, top_p=top_p, temp=temp, ) st.markdown("### The model generated answer is:") st.write(answer) if action in [0, 1, 3] and wiki_source != "none": st.markdown("--- \n ### The model is drawing information from the following Wikipedia passages:") for i, res in enumerate(support_list): __UpperCamelCase = "https://en.wikipedia.org/wiki/{}".format(res[0].replace(" ", "_")) __UpperCamelCase = res[1].strip() if sec_titles == "": __UpperCamelCase = "[{}]({})".format(res[0], wiki_url) else: __UpperCamelCase = sec_titles.split(" & ") __UpperCamelCase = " & ".join( ["[{}]({}#{})".format(sec.strip(), wiki_url, sec.strip().replace(" ", "_")) for sec in sec_list] ) st.markdown( "{0:02d} - **Article**: {1:<18} <br> _Section_: {2}".format(i + 1, res[0], sections), unsafe_allow_html=True, ) if show_passages: st.write( "> <span style=\"font-family:arial; font-size:10pt;\">" + res[-1] + "</span>", unsafe_allow_html=True ) if action in [2, 3]: __UpperCamelCase = find_nearest_training(question) __UpperCamelCase = nn_train_list[0] st.markdown( "--- \n ### The most similar question in the ELI5 training set was: \n\n {}".format(train_exple["title"]) ) __UpperCamelCase = [ "{}. {}".format(i + 1, " \n".join([line.strip() for line in ans.split("\n") if line.strip() != ""])) for i, (ans, sc) in enumerate(zip(train_exple["answers"]["text"], train_exple["answers"]["score"])) if i == 0 or sc > 2 ] st.markdown("##### Its answers were: \n\n {}".format("\n".join(answers_st))) __UpperCamelCase = "\n---\n\n**Disclaimer**\n\n*The intent of this app is to provide some (hopefully entertaining) insights into the behavior of a current LFQA system.\nEvaluating biases of such a model and ensuring factual generations are still very much open research problems.\nTherefore, until some significant progress is achieved, we caution against using the generated answers for practical purposes.*\n" st.sidebar.markdown(disclaimer, unsafe_allow_html=True)
26
1
'''simple docstring''' from dataclasses import dataclass from typing import List, Optional, Union import numpy as np import PIL from ...utils import BaseOutput, OptionalDependencyNotAvailable, is_torch_available, is_transformers_available from .timesteps import ( fastaa_timesteps, smartaa_timesteps, smartaa_timesteps, smartaaa_timesteps, smartaaa_timesteps, superaa_timesteps, superaa_timesteps, superaaa_timesteps, ) @dataclass class _A ( __lowercase ): lowercase__: Union[List[PIL.Image.Image], np.ndarray] lowercase__: Optional[List[bool]] lowercase__: Optional[List[bool]] try: if not (is_transformers_available() and is_torch_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import * # noqa F403 else: from .pipeline_if import IFPipeline from .pipeline_if_imgaimg import IFImgaImgPipeline from .pipeline_if_imgaimg_superresolution import IFImgaImgSuperResolutionPipeline from .pipeline_if_inpainting import IFInpaintingPipeline from .pipeline_if_inpainting_superresolution import IFInpaintingSuperResolutionPipeline from .pipeline_if_superresolution import IFSuperResolutionPipeline from .safety_checker import IFSafetyChecker from .watermark import IFWatermarker
26
'''simple docstring''' import warnings from ...utils import logging from .image_processing_owlvit import OwlViTImageProcessor __UpperCamelCase = logging.get_logger(__name__) class _A ( __lowercase ): def __init__( self : int , *__magic_name__ : Optional[Any] , **__magic_name__ : Any ) -> None: """simple docstring""" warnings.warn( """The class OwlViTFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please""" """ use OwlViTImageProcessor instead.""" , __magic_name__ , ) super().__init__(*__magic_name__ , **__magic_name__ )
26
1
'''simple docstring''' import gc import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModelWithProjection, CLIPTokenizer from diffusers import HeunDiscreteScheduler, PriorTransformer, ShapEPipeline from diffusers.pipelines.shap_e import ShapERenderer from diffusers.utils import load_numpy, slow from diffusers.utils.testing_utils import require_torch_gpu, torch_device from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference class _A ( __lowercase , unittest.TestCase ): lowercase__: Dict = ShapEPipeline lowercase__: Tuple = ['''prompt'''] lowercase__: str = ['''prompt'''] lowercase__: str = [ '''num_images_per_prompt''', '''num_inference_steps''', '''generator''', '''latents''', '''guidance_scale''', '''frame_size''', '''output_type''', '''return_dict''', ] lowercase__: Dict = False @property def lowercase__ ( self : str ) -> int: """simple docstring""" return 32 @property def lowercase__ ( self : List[Any] ) -> List[Any]: """simple docstring""" return 32 @property def lowercase__ ( self : Union[str, Any] ) -> Optional[Any]: """simple docstring""" return self.time_input_dim * 4 @property def lowercase__ ( self : Tuple ) -> Union[str, Any]: """simple docstring""" return 8 @property def lowercase__ ( self : List[str] ) -> Dict: """simple docstring""" __snake_case : Tuple = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" ) return tokenizer @property def lowercase__ ( self : Any ) -> Any: """simple docstring""" torch.manual_seed(0 ) __snake_case : int = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=self.text_embedder_hidden_size , projection_dim=self.text_embedder_hidden_size , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=10_00 , ) return CLIPTextModelWithProjection(__magic_name__ ) @property def lowercase__ ( self : Optional[int] ) -> Optional[int]: """simple docstring""" torch.manual_seed(0 ) __snake_case : Tuple = { """num_attention_heads""": 2, """attention_head_dim""": 16, """embedding_dim""": self.time_input_dim, """num_embeddings""": 32, """embedding_proj_dim""": self.text_embedder_hidden_size, """time_embed_dim""": self.time_embed_dim, """num_layers""": 1, """clip_embed_dim""": self.time_input_dim * 2, """additional_embeddings""": 0, """time_embed_act_fn""": """gelu""", """norm_in_type""": """layer""", """encoder_hid_proj_type""": None, """added_emb_type""": None, } __snake_case : Union[str, Any] = PriorTransformer(**__magic_name__ ) return model @property def lowercase__ ( self : Optional[int] ) -> str: """simple docstring""" torch.manual_seed(0 ) __snake_case : Dict = { """param_shapes""": ( (self.renderer_dim, 93), (self.renderer_dim, 8), (self.renderer_dim, 8), (self.renderer_dim, 8), ), """d_latent""": self.time_input_dim, """d_hidden""": self.renderer_dim, """n_output""": 12, """background""": ( 0.1, 0.1, 0.1, ), } __snake_case : Dict = ShapERenderer(**__magic_name__ ) return model def lowercase__ ( self : Optional[int] ) -> Any: """simple docstring""" __snake_case : List[str] = self.dummy_prior __snake_case : Any = self.dummy_text_encoder __snake_case : Tuple = self.dummy_tokenizer __snake_case : int = self.dummy_renderer __snake_case : Tuple = HeunDiscreteScheduler( beta_schedule="""exp""" , num_train_timesteps=10_24 , prediction_type="""sample""" , use_karras_sigmas=__magic_name__ , clip_sample=__magic_name__ , clip_sample_range=1.0 , ) __snake_case : int = { """prior""": prior, """text_encoder""": text_encoder, """tokenizer""": tokenizer, """renderer""": renderer, """scheduler""": scheduler, } return components def lowercase__ ( self : Optional[Any] , __magic_name__ : List[Any] , __magic_name__ : Any=0 ) -> Union[str, Any]: """simple docstring""" if str(__magic_name__ ).startswith("""mps""" ): __snake_case : List[Any] = torch.manual_seed(__magic_name__ ) else: __snake_case : Optional[int] = torch.Generator(device=__magic_name__ ).manual_seed(__magic_name__ ) __snake_case : str = { """prompt""": """horse""", """generator""": generator, """num_inference_steps""": 1, """frame_size""": 32, """output_type""": """np""", } return inputs def lowercase__ ( self : List[Any] ) -> Optional[Any]: """simple docstring""" __snake_case : Tuple = """cpu""" __snake_case : Dict = self.get_dummy_components() __snake_case : Dict = self.pipeline_class(**__magic_name__ ) __snake_case : List[Any] = pipe.to(__magic_name__ ) pipe.set_progress_bar_config(disable=__magic_name__ ) __snake_case : Optional[Any] = pipe(**self.get_dummy_inputs(__magic_name__ ) ) __snake_case : str = output.images[0] __snake_case : int = image[0, -3:, -3:, -1] assert image.shape == (20, 32, 32, 3) __snake_case : int = np.array( [ 0.00039216, 0.00039216, 0.00039216, 0.00039216, 0.00039216, 0.00039216, 0.00039216, 0.00039216, 0.00039216, ] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 def lowercase__ ( self : Any ) -> str: """simple docstring""" self._test_inference_batch_consistent(batch_sizes=[1, 2] ) def lowercase__ ( self : int ) -> List[str]: """simple docstring""" __snake_case : Dict = torch_device == """cpu""" __snake_case : int = True self._test_inference_batch_single_identical( batch_size=2 , test_max_difference=__magic_name__ , relax_max_difference=__magic_name__ , ) def lowercase__ ( self : Tuple ) -> Tuple: """simple docstring""" __snake_case : int = self.get_dummy_components() __snake_case : List[str] = self.pipeline_class(**__magic_name__ ) __snake_case : List[Any] = pipe.to(__magic_name__ ) pipe.set_progress_bar_config(disable=__magic_name__ ) __snake_case : str = 1 __snake_case : Optional[int] = 2 __snake_case : int = self.get_dummy_inputs(__magic_name__ ) for key in inputs.keys(): if key in self.batch_params: __snake_case : List[str] = batch_size * [inputs[key]] __snake_case : Optional[Any] = pipe(**__magic_name__ , num_images_per_prompt=__magic_name__ )[0] assert images.shape[0] == batch_size * num_images_per_prompt @slow @require_torch_gpu class _A ( unittest.TestCase ): def lowercase__ ( self : List[Any] ) -> Optional[int]: """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() def lowercase__ ( self : List[str] ) -> List[str]: """simple docstring""" __snake_case : List[Any] = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/shap_e/test_shap_e_np_out.npy""" ) __snake_case : List[Any] = ShapEPipeline.from_pretrained("""openai/shap-e""" ) __snake_case : Optional[int] = pipe.to(__magic_name__ ) pipe.set_progress_bar_config(disable=__magic_name__ ) __snake_case : Optional[int] = torch.Generator(device=__magic_name__ ).manual_seed(0 ) __snake_case : Dict = pipe( """a shark""" , generator=__magic_name__ , guidance_scale=15.0 , num_inference_steps=64 , frame_size=64 , output_type="""np""" , ).images[0] assert images.shape == (20, 64, 64, 3) assert_mean_pixel_difference(__magic_name__ , __magic_name__ )
26
'''simple docstring''' import argparse import torch from transformers import BlenderbotConfig, BlenderbotForConditionalGeneration from transformers.utils import logging logging.set_verbosity_info() __UpperCamelCase = logging.get_logger(__name__) __UpperCamelCase = [ ["attention", "attn"], ["encoder_attention", "encoder_attn"], ["q_lin", "q_proj"], ["k_lin", "k_proj"], ["v_lin", "v_proj"], ["out_lin", "out_proj"], ["norm_embeddings", "layernorm_embedding"], ["position_embeddings", "embed_positions"], ["embeddings", "embed_tokens"], ["ffn.lin", "fc"], ] def _a ( _lowerCamelCase ) -> Union[str, Any]: """simple docstring""" if k == "embeddings.weight": return "shared.weight" for parlai_name, hf_name in PATTERNS: __snake_case : List[str] = k.replace(_lowerCamelCase , _lowerCamelCase ) if k.startswith("""encoder""" ): __snake_case : Optional[int] = k.replace(""".attn""" , """.self_attn""" ) __snake_case : Tuple = k.replace("""norm1""" , """self_attn_layer_norm""" ) __snake_case : List[str] = k.replace("""norm2""" , """final_layer_norm""" ) elif k.startswith("""decoder""" ): __snake_case : List[Any] = k.replace("""norm1""" , """self_attn_layer_norm""" ) __snake_case : str = k.replace("""norm2""" , """encoder_attn_layer_norm""" ) __snake_case : Optional[int] = k.replace("""norm3""" , """final_layer_norm""" ) return k def _a ( _lowerCamelCase ) -> Any: """simple docstring""" __snake_case : Optional[int] = [ """model.encoder.layernorm_embedding.weight""", """model.encoder.layernorm_embedding.bias""", """model.decoder.layernorm_embedding.weight""", """model.decoder.layernorm_embedding.bias""", ] for k in keys: __snake_case : Optional[Any] = sd.pop(_lowerCamelCase ) __snake_case : List[str] = k.replace("""layernorm_embedding""" , """layer_norm""" ) assert new_k not in sd __snake_case : Union[str, Any] = v __UpperCamelCase = ["START"] @torch.no_grad() def _a ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> Dict: """simple docstring""" __snake_case : Optional[int] = torch.load(_lowerCamelCase , map_location="""cpu""" ) __snake_case : Dict = model["""model"""] __snake_case : Optional[int] = BlenderbotConfig.from_json_file(_lowerCamelCase ) __snake_case : Union[str, Any] = BlenderbotForConditionalGeneration(_lowerCamelCase ) __snake_case : List[Any] = m.model.state_dict().keys() __snake_case : int = [] __snake_case : Union[str, Any] = {} for k, v in sd.items(): if k in IGNORE_KEYS: continue __snake_case : Optional[int] = rename_state_dict_key(_lowerCamelCase ) if new_k not in valid_keys: failures.append([k, new_k] ) else: __snake_case : str = v if cfg.normalize_before: # Blenderbot-3B checkpoints. Rename layernorm_embedding -> layer_norm rename_layernorm_keys(_lowerCamelCase ) m.model.load_state_dict(_lowerCamelCase , strict=_lowerCamelCase ) m.half() m.save_pretrained(_lowerCamelCase ) if __name__ == "__main__": __UpperCamelCase = argparse.ArgumentParser() # Required parameters parser.add_argument("--src_path", type=str, help="like blenderbot-model.bin") parser.add_argument("--save_dir", default="hf_blenderbot", type=str, help="Where to save converted model.") parser.add_argument( "--hf_config_json", default="blenderbot-3b-config.json", type=str, help="Path to config to use" ) __UpperCamelCase = parser.parse_args() convert_parlai_checkpoint(args.src_path, args.save_dir, args.hf_config_json)
26
1
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging __UpperCamelCase = logging.get_logger(__name__) __UpperCamelCase = { "MIT/ast-finetuned-audioset-10-10-0.4593": ( "https://huggingface.co/MIT/ast-finetuned-audioset-10-10-0.4593/resolve/main/config.json" ), } class _A ( __lowercase ): lowercase__: Any = '''audio-spectrogram-transformer''' def __init__( self : List[Any] , __magic_name__ : Optional[Any]=7_68 , __magic_name__ : Optional[Any]=12 , __magic_name__ : int=12 , __magic_name__ : Union[str, Any]=30_72 , __magic_name__ : List[str]="gelu" , __magic_name__ : Any=0.0 , __magic_name__ : Dict=0.0 , __magic_name__ : Tuple=0.02 , __magic_name__ : Union[str, Any]=1E-12 , __magic_name__ : str=16 , __magic_name__ : Optional[Any]=True , __magic_name__ : List[Any]=10 , __magic_name__ : Any=10 , __magic_name__ : Tuple=10_24 , __magic_name__ : Optional[int]=1_28 , **__magic_name__ : int , ) -> Dict: """simple docstring""" super().__init__(**__magic_name__ ) __snake_case : Any = hidden_size __snake_case : Union[str, Any] = num_hidden_layers __snake_case : Dict = num_attention_heads __snake_case : Optional[int] = intermediate_size __snake_case : Optional[Any] = hidden_act __snake_case : Optional[Any] = hidden_dropout_prob __snake_case : Union[str, Any] = attention_probs_dropout_prob __snake_case : Any = initializer_range __snake_case : Tuple = layer_norm_eps __snake_case : Dict = patch_size __snake_case : Any = qkv_bias __snake_case : List[Any] = frequency_stride __snake_case : int = time_stride __snake_case : Tuple = max_length __snake_case : int = num_mel_bins
26
'''simple docstring''' import argparse import os import re import packaging.version __UpperCamelCase = "examples/" __UpperCamelCase = { "examples": (re.compile(R"^check_min_version\(\"[^\"]+\"\)\s*$", re.MULTILINE), "check_min_version(\"VERSION\")\n"), "init": (re.compile(R"^__version__\s+=\s+\"([^\"]+)\"\s*$", re.MULTILINE), "__version__ = \"VERSION\"\n"), "setup": (re.compile(R"^(\s*)version\s*=\s*\"[^\"]+\",", re.MULTILINE), R"\1version=\"VERSION\","), "doc": (re.compile(R"^(\s*)release\s*=\s*\"[^\"]+\"$", re.MULTILINE), "release = \"VERSION\"\n"), } __UpperCamelCase = { "init": "src/transformers/__init__.py", "setup": "setup.py", } __UpperCamelCase = "README.md" def _a ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> Tuple: """simple docstring""" with open(_lowerCamelCase , """r""" , encoding="""utf-8""" , newline="""\n""" ) as f: __snake_case : Union[str, Any] = f.read() __snake_case , __snake_case : List[Any] = REPLACE_PATTERNS[pattern] __snake_case : Optional[Any] = replace.replace("""VERSION""" , _lowerCamelCase ) __snake_case : Optional[Any] = re_pattern.sub(_lowerCamelCase , _lowerCamelCase ) with open(_lowerCamelCase , """w""" , encoding="""utf-8""" , newline="""\n""" ) as f: f.write(_lowerCamelCase ) def _a ( _lowerCamelCase ) -> Union[str, Any]: """simple docstring""" for folder, directories, fnames in os.walk(_lowerCamelCase ): # Removing some of the folders with non-actively maintained examples from the walk if "research_projects" in directories: directories.remove("""research_projects""" ) if "legacy" in directories: directories.remove("""legacy""" ) for fname in fnames: if fname.endswith(""".py""" ): update_version_in_file(os.path.join(_lowerCamelCase , _lowerCamelCase ) , _lowerCamelCase , pattern="""examples""" ) def _a ( _lowerCamelCase , _lowerCamelCase=False ) -> str: """simple docstring""" for pattern, fname in REPLACE_FILES.items(): update_version_in_file(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) if not patch: update_version_in_examples(_lowerCamelCase ) def _a ( ) -> Optional[int]: """simple docstring""" __snake_case : str = """🤗 Transformers currently provides the following architectures""" __snake_case : List[Any] = """1. Want to contribute a new model?""" with open(_lowerCamelCase , """r""" , encoding="""utf-8""" , newline="""\n""" ) as f: __snake_case : List[str] = f.readlines() # Find the start of the list. __snake_case : Optional[Any] = 0 while not lines[start_index].startswith(_start_prompt ): start_index += 1 start_index += 1 __snake_case : int = start_index # Update the lines in the model list. while not lines[index].startswith(_end_prompt ): if lines[index].startswith("""1.""" ): __snake_case : Optional[Any] = lines[index].replace( """https://huggingface.co/docs/transformers/main/model_doc""" , """https://huggingface.co/docs/transformers/model_doc""" , ) index += 1 with open(_lowerCamelCase , """w""" , encoding="""utf-8""" , newline="""\n""" ) as f: f.writelines(_lowerCamelCase ) def _a ( ) -> Union[str, Any]: """simple docstring""" with open(REPLACE_FILES["""init"""] , """r""" ) as f: __snake_case : List[Any] = f.read() __snake_case : str = REPLACE_PATTERNS["""init"""][0].search(_lowerCamelCase ).groups()[0] return packaging.version.parse(_lowerCamelCase ) def _a ( _lowerCamelCase=False ) -> int: """simple docstring""" __snake_case : List[Any] = get_version() if patch and default_version.is_devrelease: raise ValueError("""Can't create a patch version from the dev branch, checkout a released version!""" ) if default_version.is_devrelease: __snake_case : str = default_version.base_version elif patch: __snake_case : Optional[int] = F'''{default_version.major}.{default_version.minor}.{default_version.micro + 1}''' else: __snake_case : Dict = F'''{default_version.major}.{default_version.minor + 1}.0''' # Now let's ask nicely if that's the right one. __snake_case : Dict = input(F'''Which version are you releasing? [{default_version}]''' ) if len(_lowerCamelCase ) == 0: __snake_case : Any = default_version print(F'''Updating version to {version}.''' ) global_version_update(_lowerCamelCase , patch=_lowerCamelCase ) if not patch: print("""Cleaning main README, don't forget to run `make fix-copies`.""" ) clean_main_ref_in_model_list() def _a ( ) -> Tuple: """simple docstring""" __snake_case : Optional[Any] = get_version() __snake_case : Tuple = F'''{current_version.major}.{current_version.minor + 1}.0.dev0''' __snake_case : Union[str, Any] = current_version.base_version # Check with the user we got that right. __snake_case : int = input(F'''Which version are we developing now? [{dev_version}]''' ) if len(_lowerCamelCase ) == 0: __snake_case : Optional[int] = dev_version print(F'''Updating version to {version}.''' ) global_version_update(_lowerCamelCase ) print("""Cleaning main README, don't forget to run `make fix-copies`.""" ) clean_main_ref_in_model_list() if __name__ == "__main__": __UpperCamelCase = argparse.ArgumentParser() parser.add_argument("--post_release", action="store_true", help="Whether this is pre or post release.") parser.add_argument("--patch", action="store_true", help="Whether or not this is a patch release.") __UpperCamelCase = parser.parse_args() if not args.post_release: pre_release_work(patch=args.patch) elif args.patch: print("Nothing to do after a patch :-)") else: post_release_work()
26
1
'''simple docstring''' import argparse import json import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ViTImageProcessor, ViTMSNConfig, ViTMSNModel from transformers.image_utils import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD torch.set_grad_enabled(False) def _a ( _lowerCamelCase , _lowerCamelCase=False ) -> List[str]: """simple docstring""" __snake_case : Any = [] for i in range(config.num_hidden_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append((F'''module.blocks.{i}.norm1.weight''', F'''vit.encoder.layer.{i}.layernorm_before.weight''') ) rename_keys.append((F'''module.blocks.{i}.norm1.bias''', F'''vit.encoder.layer.{i}.layernorm_before.bias''') ) rename_keys.append( (F'''module.blocks.{i}.attn.proj.weight''', F'''vit.encoder.layer.{i}.attention.output.dense.weight''') ) rename_keys.append((F'''module.blocks.{i}.attn.proj.bias''', F'''vit.encoder.layer.{i}.attention.output.dense.bias''') ) rename_keys.append((F'''module.blocks.{i}.norm2.weight''', F'''vit.encoder.layer.{i}.layernorm_after.weight''') ) rename_keys.append((F'''module.blocks.{i}.norm2.bias''', F'''vit.encoder.layer.{i}.layernorm_after.bias''') ) rename_keys.append((F'''module.blocks.{i}.mlp.fc1.weight''', F'''vit.encoder.layer.{i}.intermediate.dense.weight''') ) rename_keys.append((F'''module.blocks.{i}.mlp.fc1.bias''', F'''vit.encoder.layer.{i}.intermediate.dense.bias''') ) rename_keys.append((F'''module.blocks.{i}.mlp.fc2.weight''', F'''vit.encoder.layer.{i}.output.dense.weight''') ) rename_keys.append((F'''module.blocks.{i}.mlp.fc2.bias''', F'''vit.encoder.layer.{i}.output.dense.bias''') ) # projection layer + position embeddings rename_keys.extend( [ ("""module.cls_token""", """vit.embeddings.cls_token"""), ("""module.patch_embed.proj.weight""", """vit.embeddings.patch_embeddings.projection.weight"""), ("""module.patch_embed.proj.bias""", """vit.embeddings.patch_embeddings.projection.bias"""), ("""module.pos_embed""", """vit.embeddings.position_embeddings"""), ] ) if base_model: # layernorm + pooler rename_keys.extend( [ ("""module.norm.weight""", """layernorm.weight"""), ("""module.norm.bias""", """layernorm.bias"""), ] ) # if just the base model, we should remove "vit" from all keys that start with "vit" __snake_case : Any = [(pair[0], pair[1][4:]) if pair[1].startswith("""vit""" ) else pair for pair in rename_keys] else: # layernorm + classification head rename_keys.extend( [ ("""norm.weight""", """vit.layernorm.weight"""), ("""norm.bias""", """vit.layernorm.bias"""), ("""head.weight""", """classifier.weight"""), ("""head.bias""", """classifier.bias"""), ] ) return rename_keys def _a ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase=False ) -> Optional[Any]: """simple docstring""" for i in range(config.num_hidden_layers ): if base_model: __snake_case : Optional[int] = """""" else: __snake_case : List[Any] = """vit.""" # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) __snake_case : Any = state_dict.pop(F'''module.blocks.{i}.attn.qkv.weight''' ) __snake_case : int = state_dict.pop(F'''module.blocks.{i}.attn.qkv.bias''' ) # next, add query, keys and values (in that order) to the state dict __snake_case : Optional[Any] = in_proj_weight[ : config.hidden_size, : ] __snake_case : Any = in_proj_bias[: config.hidden_size] __snake_case : Any = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] __snake_case : Union[str, Any] = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] __snake_case : List[Any] = in_proj_weight[ -config.hidden_size :, : ] __snake_case : Tuple = in_proj_bias[-config.hidden_size :] def _a ( _lowerCamelCase ) -> Optional[int]: """simple docstring""" __snake_case : Optional[Any] = ["""head.weight""", """head.bias"""] for k in ignore_keys: state_dict.pop(_lowerCamelCase , _lowerCamelCase ) def _a ( _lowerCamelCase ) -> Optional[Any]: """simple docstring""" __snake_case : List[str] = [ """module.fc.fc1.weight""", """module.fc.fc1.bias""", """module.fc.bn1.weight""", """module.fc.bn1.bias""", """module.fc.bn1.running_mean""", """module.fc.bn1.running_var""", """module.fc.bn1.num_batches_tracked""", """module.fc.fc2.weight""", """module.fc.fc2.bias""", """module.fc.bn2.weight""", """module.fc.bn2.bias""", """module.fc.bn2.running_mean""", """module.fc.bn2.running_var""", """module.fc.bn2.num_batches_tracked""", """module.fc.fc3.weight""", """module.fc.fc3.bias""", ] for k in ignore_keys: state_dict.pop(_lowerCamelCase , _lowerCamelCase ) def _a ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> Dict: """simple docstring""" __snake_case : Optional[int] = dct.pop(_lowerCamelCase ) __snake_case : Optional[Any] = val def _a ( _lowerCamelCase , _lowerCamelCase ) -> Dict: """simple docstring""" __snake_case : Tuple = ViTMSNConfig() __snake_case : Union[str, Any] = 1000 __snake_case : str = """datasets/huggingface/label-files""" __snake_case : Optional[int] = """imagenet-1k-id2label.json""" __snake_case : List[str] = json.load(open(hf_hub_download(_lowerCamelCase , _lowerCamelCase ) , """r""" ) ) __snake_case : Union[str, Any] = {int(_lowerCamelCase ): v for k, v in idalabel.items()} __snake_case : List[Any] = idalabel __snake_case : Optional[int] = {v: k for k, v in idalabel.items()} if "s16" in checkpoint_url: __snake_case : Dict = 384 __snake_case : Optional[int] = 1536 __snake_case : Any = 6 elif "l16" in checkpoint_url: __snake_case : Tuple = 1024 __snake_case : Dict = 4096 __snake_case : Tuple = 24 __snake_case : Dict = 16 __snake_case : Any = 0.1 elif "b4" in checkpoint_url: __snake_case : Optional[Any] = 4 elif "l7" in checkpoint_url: __snake_case : List[Any] = 7 __snake_case : str = 1024 __snake_case : Union[str, Any] = 4096 __snake_case : Tuple = 24 __snake_case : Optional[Any] = 16 __snake_case : Optional[Any] = 0.1 __snake_case : int = ViTMSNModel(_lowerCamelCase ) __snake_case : Union[str, Any] = torch.hub.load_state_dict_from_url(_lowerCamelCase , map_location="""cpu""" )["""target_encoder"""] __snake_case : Dict = ViTImageProcessor(size=config.image_size ) remove_projection_head(_lowerCamelCase ) __snake_case : Tuple = create_rename_keys(_lowerCamelCase , base_model=_lowerCamelCase ) for src, dest in rename_keys: rename_key(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) read_in_q_k_v(_lowerCamelCase , _lowerCamelCase , base_model=_lowerCamelCase ) model.load_state_dict(_lowerCamelCase ) model.eval() __snake_case : int = """http://images.cocodataset.org/val2017/000000039769.jpg""" __snake_case : Any = Image.open(requests.get(_lowerCamelCase , stream=_lowerCamelCase ).raw ) __snake_case : Any = ViTImageProcessor( size=config.image_size , image_mean=_lowerCamelCase , image_std=_lowerCamelCase ) __snake_case : Dict = image_processor(images=_lowerCamelCase , return_tensors="""pt""" ) # forward pass torch.manual_seed(2 ) __snake_case : List[str] = model(**_lowerCamelCase ) __snake_case : Optional[int] = outputs.last_hidden_state # The following Colab Notebook was used to generate these outputs: # https://colab.research.google.com/gist/sayakpaul/3672419a04f5997827503fd84079bdd1/scratchpad.ipynb if "s16" in checkpoint_url: __snake_case : Union[str, Any] = torch.tensor([[-1.09_15, -1.48_76, -1.18_09]] ) elif "b16" in checkpoint_url: __snake_case : Optional[Any] = torch.tensor([[14.28_89, -18.90_45, 11.72_81]] ) elif "l16" in checkpoint_url: __snake_case : Optional[Any] = torch.tensor([[41.50_28, -22.86_81, 45.64_75]] ) elif "b4" in checkpoint_url: __snake_case : str = torch.tensor([[-4.38_68, 5.29_32, -0.41_37]] ) else: __snake_case : str = torch.tensor([[-0.17_92, -0.64_65, 2.42_63]] ) # verify logits assert torch.allclose(last_hidden_state[:, 0, :3] , _lowerCamelCase , atol=1E-4 ) print(F'''Saving model to {pytorch_dump_folder_path}''' ) model.save_pretrained(_lowerCamelCase ) print(F'''Saving image processor to {pytorch_dump_folder_path}''' ) image_processor.save_pretrained(_lowerCamelCase ) if __name__ == "__main__": __UpperCamelCase = argparse.ArgumentParser() # Required parameters parser.add_argument( "--checkpoint_url", default="https://dl.fbaipublicfiles.com/msn/vits16_800ep.pth.tar", type=str, help="URL of the checkpoint you'd like to convert.", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model directory." ) __UpperCamelCase = parser.parse_args() convert_vit_msn_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path)
26
'''simple docstring''' from unittest import TestCase from datasets import Sequence, Value from datasets.arrow_dataset import Dataset class _A ( __lowercase ): def lowercase__ ( self : Any ) -> str: """simple docstring""" return [ {"col_1": 3, "col_2": "a"}, {"col_1": 2, "col_2": "b"}, {"col_1": 1, "col_2": "c"}, {"col_1": 0, "col_2": "d"}, ] def lowercase__ ( self : str ) -> int: """simple docstring""" __snake_case : Union[str, Any] = {"""col_1""": [3, 2, 1, 0], """col_2""": ["""a""", """b""", """c""", """d"""]} return Dataset.from_dict(__magic_name__ ) def lowercase__ ( self : str ) -> List[Any]: """simple docstring""" __snake_case : Any = self._create_example_records() __snake_case : str = Dataset.from_list(__magic_name__ ) self.assertListEqual(dset.column_names , ["""col_1""", """col_2"""] ) for i, r in enumerate(__magic_name__ ): self.assertDictEqual(__magic_name__ , example_records[i] ) def lowercase__ ( self : Optional[Any] ) -> List[Any]: """simple docstring""" __snake_case : List[Any] = self._create_example_records() __snake_case : Dict = Dataset.from_list(__magic_name__ ) __snake_case : List[Any] = Dataset.from_dict({k: [r[k] for r in example_records] for k in example_records[0]} ) self.assertEqual(dset.info , dset_from_dict.info ) def lowercase__ ( self : str ) -> List[Any]: # checks what happens with missing columns """simple docstring""" __snake_case : Union[str, Any] = [{"""col_1""": 1}, {"""col_2""": """x"""}] __snake_case : Optional[int] = Dataset.from_list(__magic_name__ ) self.assertDictEqual(dset[0] , {"""col_1""": 1} ) self.assertDictEqual(dset[1] , {"""col_1""": None} ) # NB: first record is used for columns def lowercase__ ( self : List[str] ) -> Optional[Any]: # checks if the type can be inferred from the second record """simple docstring""" __snake_case : List[Any] = [{"""col_1""": []}, {"""col_1""": [1, 2]}] __snake_case : int = Dataset.from_list(__magic_name__ ) self.assertEqual(dset.info.features["""col_1"""] , Sequence(Value("""int64""" ) ) ) def lowercase__ ( self : int ) -> Union[str, Any]: """simple docstring""" __snake_case : Tuple = Dataset.from_list([] ) self.assertEqual(len(__magic_name__ ) , 0 ) self.assertListEqual(dset.column_names , [] )
26
1
'''simple docstring''' def _a ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> float: """simple docstring""" return round(float(moles / volume ) * nfactor ) def _a ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> float: """simple docstring""" return round(float((moles * 0.08_21 * temperature) / (volume) ) ) def _a ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> float: """simple docstring""" return round(float((moles * 0.08_21 * temperature) / (pressure) ) ) def _a ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> float: """simple docstring""" return round(float((pressure * volume) / (0.08_21 * moles) ) ) if __name__ == "__main__": import doctest doctest.testmod()
26
'''simple docstring''' import inspect import unittest import torch import torch.nn as nn from accelerate.hooks import ( AlignDevicesHook, ModelHook, SequentialHook, add_hook_to_module, attach_align_device_hook, remove_hook_from_module, remove_hook_from_submodules, ) from accelerate.test_utils import require_multi_gpu class _A ( nn.Module ): def __init__( self : List[str] ) -> Optional[Any]: """simple docstring""" super().__init__() __snake_case : List[Any] = nn.Linear(3 , 4 ) __snake_case : str = nn.BatchNormad(4 ) __snake_case : Optional[Any] = nn.Linear(4 , 5 ) def lowercase__ ( self : str , __magic_name__ : Dict ) -> List[str]: """simple docstring""" return self.lineara(self.batchnorm(self.lineara(__magic_name__ ) ) ) class _A ( __lowercase ): def lowercase__ ( self : List[str] , __magic_name__ : Tuple , *__magic_name__ : Dict , **__magic_name__ : Optional[Any] ) -> Tuple: """simple docstring""" return (args[0] + 1,) + args[1:], kwargs class _A ( __lowercase ): def lowercase__ ( self : str , __magic_name__ : Union[str, Any] , __magic_name__ : Tuple ) -> Union[str, Any]: """simple docstring""" return output + 1 class _A ( unittest.TestCase ): def lowercase__ ( self : Dict ) -> Any: """simple docstring""" __snake_case : int = ModelForTest() __snake_case : Tuple = ModelHook() add_hook_to_module(__magic_name__ , __magic_name__ ) self.assertEqual(test_model._hf_hook , __magic_name__ ) self.assertTrue(hasattr(__magic_name__ , """_old_forward""" ) ) # Check adding the hook did not change the name or the signature self.assertEqual(test_model.forward.__name__ , """forward""" ) self.assertListEqual(list(inspect.signature(test_model.forward ).parameters ) , ["""x"""] ) remove_hook_from_module(__magic_name__ ) self.assertFalse(hasattr(__magic_name__ , """_hf_hook""" ) ) self.assertFalse(hasattr(__magic_name__ , """_old_forward""" ) ) def lowercase__ ( self : Tuple ) -> List[str]: """simple docstring""" __snake_case : List[Any] = ModelForTest() __snake_case : Optional[int] = ModelHook() add_hook_to_module(__magic_name__ , __magic_name__ ) add_hook_to_module(__magic_name__ , __magic_name__ , append=__magic_name__ ) self.assertEqual(isinstance(test_model._hf_hook , __magic_name__ ) , __magic_name__ ) self.assertEqual(len(test_model._hf_hook.hooks ) , 2 ) self.assertTrue(hasattr(__magic_name__ , """_old_forward""" ) ) # Check adding the hook did not change the name or the signature self.assertEqual(test_model.forward.__name__ , """forward""" ) self.assertListEqual(list(inspect.signature(test_model.forward ).parameters ) , ["""x"""] ) remove_hook_from_module(__magic_name__ ) self.assertFalse(hasattr(__magic_name__ , """_hf_hook""" ) ) self.assertFalse(hasattr(__magic_name__ , """_old_forward""" ) ) def lowercase__ ( self : str ) -> Union[str, Any]: """simple docstring""" __snake_case : List[Any] = ModelForTest() __snake_case : Any = torch.randn(2 , 3 ) __snake_case : str = test_model(x + 1 ) __snake_case : int = test_model(x + 2 ) __snake_case : Union[str, Any] = PreForwardHook() add_hook_to_module(__magic_name__ , __magic_name__ ) __snake_case : int = test_model(__magic_name__ ) self.assertTrue(torch.allclose(__magic_name__ , __magic_name__ , atol=1E-5 ) ) # Attaching a hook to a model when it already has one replaces, does not chain __snake_case : Optional[int] = PreForwardHook() add_hook_to_module(__magic_name__ , __magic_name__ ) __snake_case : List[Any] = test_model(__magic_name__ ) self.assertTrue(torch.allclose(__magic_name__ , __magic_name__ , atol=1E-5 ) ) # You need to use the sequential hook to chain two or more hooks __snake_case : Optional[int] = SequentialHook(PreForwardHook() , PreForwardHook() ) add_hook_to_module(__magic_name__ , __magic_name__ ) __snake_case : List[str] = test_model(__magic_name__ ) assert torch.allclose(__magic_name__ , __magic_name__ , atol=1E-5 ) def lowercase__ ( self : Union[str, Any] ) -> List[str]: """simple docstring""" __snake_case : Union[str, Any] = ModelForTest() __snake_case : str = torch.randn(2 , 3 ) __snake_case : Any = test_model(__magic_name__ ) __snake_case : Any = PostForwardHook() add_hook_to_module(__magic_name__ , __magic_name__ ) __snake_case : Any = test_model(__magic_name__ ) self.assertTrue(torch.allclose(__magic_name__ , output + 1 , atol=1E-5 ) ) # Attaching a hook to a model when it already has one replaces, does not chain __snake_case : Any = PostForwardHook() add_hook_to_module(__magic_name__ , __magic_name__ ) __snake_case : Dict = test_model(__magic_name__ ) self.assertTrue(torch.allclose(__magic_name__ , output + 1 , atol=1E-5 ) ) # You need to use the sequential hook to chain two or more hooks __snake_case : str = SequentialHook(PostForwardHook() , PostForwardHook() ) add_hook_to_module(__magic_name__ , __magic_name__ ) __snake_case : int = test_model(__magic_name__ ) assert torch.allclose(__magic_name__ , output + 2 , atol=1E-5 ) def lowercase__ ( self : str ) -> int: """simple docstring""" __snake_case : Union[str, Any] = ModelForTest() __snake_case : int = torch.randn(2 , 3 ) __snake_case : Any = test_model(__magic_name__ ) __snake_case : Dict = PostForwardHook() add_hook_to_module(__magic_name__ , __magic_name__ ) __snake_case : List[Any] = test_model(__magic_name__ ) self.assertTrue(torch.allclose(__magic_name__ , output + 1 ) ) self.assertTrue(outputa.requires_grad ) __snake_case : Dict = True __snake_case : int = test_model(__magic_name__ ) self.assertFalse(outputa.requires_grad ) @require_multi_gpu def lowercase__ ( self : Tuple ) -> List[Any]: """simple docstring""" __snake_case : Tuple = ModelForTest() # Everything is on CPU self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) ) self.assertEqual(model.batchnorm.weight.device , torch.device("""cpu""" ) ) self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) ) # This will move each submodule on different devices add_hook_to_module(model.lineara , AlignDevicesHook(execution_device=0 ) ) add_hook_to_module(model.batchnorm , AlignDevicesHook(execution_device=0 ) ) add_hook_to_module(model.lineara , AlignDevicesHook(execution_device=1 ) ) self.assertEqual(model.lineara.weight.device , torch.device(0 ) ) self.assertEqual(model.batchnorm.weight.device , torch.device(0 ) ) self.assertEqual(model.batchnorm.running_mean.device , torch.device(0 ) ) self.assertEqual(model.lineara.weight.device , torch.device(1 ) ) # We can still make a forward pass. The input does not need to be on any particular device __snake_case : Tuple = torch.randn(2 , 3 ) __snake_case : Union[str, Any] = model(__magic_name__ ) self.assertEqual(output.device , torch.device(1 ) ) # We can add a general hook to put back output on same device as input. add_hook_to_module(__magic_name__ , AlignDevicesHook(io_same_device=__magic_name__ ) ) __snake_case : Tuple = torch.randn(2 , 3 ).to(0 ) __snake_case : Any = model(__magic_name__ ) self.assertEqual(output.device , torch.device(0 ) ) def lowercase__ ( self : Union[str, Any] ) -> str: """simple docstring""" __snake_case : int = ModelForTest() # Everything is on CPU self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) ) self.assertEqual(model.batchnorm.weight.device , torch.device("""cpu""" ) ) self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) ) # This will move each submodule on different devices __snake_case : List[str] = {"""execution_device""": 0 if torch.cuda.is_available() else """cpu""", """offload""": True} add_hook_to_module(model.lineara , AlignDevicesHook(**__magic_name__ ) ) add_hook_to_module(model.batchnorm , AlignDevicesHook(**__magic_name__ ) ) add_hook_to_module(model.lineara , AlignDevicesHook(**__magic_name__ ) ) # Parameters have been offloaded, so on the meta device self.assertEqual(model.lineara.weight.device , torch.device("""meta""" ) ) self.assertEqual(model.batchnorm.weight.device , torch.device("""meta""" ) ) self.assertEqual(model.lineara.weight.device , torch.device("""meta""" ) ) # Buffers are not included in the offload by default, so are on the execution device __snake_case : Any = torch.device(hook_kwargs["""execution_device"""] ) self.assertEqual(model.batchnorm.running_mean.device , __magic_name__ ) __snake_case : Dict = torch.randn(2 , 3 ) __snake_case : Any = model(__magic_name__ ) self.assertEqual(output.device , __magic_name__ ) # Removing hooks loads back the weights in the model. remove_hook_from_module(model.lineara ) remove_hook_from_module(model.batchnorm ) remove_hook_from_module(model.lineara ) self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) ) self.assertEqual(model.batchnorm.weight.device , torch.device("""cpu""" ) ) self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) ) # Now test with buffers included in the offload __snake_case : int = { """execution_device""": 0 if torch.cuda.is_available() else """cpu""", """offload""": True, """offload_buffers""": True, } add_hook_to_module(model.lineara , AlignDevicesHook(**__magic_name__ ) ) add_hook_to_module(model.batchnorm , AlignDevicesHook(**__magic_name__ ) ) add_hook_to_module(model.lineara , AlignDevicesHook(**__magic_name__ ) ) # Parameters have been offloaded, so on the meta device, buffers included self.assertEqual(model.lineara.weight.device , torch.device("""meta""" ) ) self.assertEqual(model.batchnorm.weight.device , torch.device("""meta""" ) ) self.assertEqual(model.lineara.weight.device , torch.device("""meta""" ) ) self.assertEqual(model.batchnorm.running_mean.device , torch.device("""meta""" ) ) __snake_case : str = torch.randn(2 , 3 ) __snake_case : str = model(__magic_name__ ) self.assertEqual(output.device , __magic_name__ ) # Removing hooks loads back the weights in the model. remove_hook_from_module(model.lineara ) remove_hook_from_module(model.batchnorm ) remove_hook_from_module(model.lineara ) self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) ) self.assertEqual(model.batchnorm.weight.device , torch.device("""cpu""" ) ) self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) ) def lowercase__ ( self : Dict ) -> str: """simple docstring""" __snake_case : Tuple = ModelForTest() # Everything is on CPU self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) ) self.assertEqual(model.batchnorm.weight.device , torch.device("""cpu""" ) ) self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) ) # This will move each submodule on different devices __snake_case : Union[str, Any] = 0 if torch.cuda.is_available() else """cpu""" attach_align_device_hook(__magic_name__ , execution_device=__magic_name__ , offload=__magic_name__ ) # Parameters have been offloaded, so on the meta device self.assertEqual(model.lineara.weight.device , torch.device("""meta""" ) ) self.assertEqual(model.batchnorm.weight.device , torch.device("""meta""" ) ) self.assertEqual(model.lineara.weight.device , torch.device("""meta""" ) ) # Buffers are not included in the offload by default, so are on the execution device __snake_case : Union[str, Any] = torch.device(__magic_name__ ) self.assertEqual(model.batchnorm.running_mean.device , __magic_name__ ) __snake_case : Optional[int] = torch.randn(2 , 3 ) __snake_case : Dict = model(__magic_name__ ) self.assertEqual(output.device , __magic_name__ ) # Removing hooks loads back the weights in the model. remove_hook_from_submodules(__magic_name__ ) self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) ) self.assertEqual(model.batchnorm.weight.device , torch.device("""cpu""" ) ) self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) ) # Now test with buffers included in the offload attach_align_device_hook(__magic_name__ , execution_device=__magic_name__ , offload=__magic_name__ , offload_buffers=__magic_name__ ) # Parameters have been offloaded, so on the meta device, buffers included self.assertEqual(model.lineara.weight.device , torch.device("""meta""" ) ) self.assertEqual(model.batchnorm.weight.device , torch.device("""meta""" ) ) self.assertEqual(model.lineara.weight.device , torch.device("""meta""" ) ) self.assertEqual(model.batchnorm.running_mean.device , torch.device("""meta""" ) ) __snake_case : Dict = torch.randn(2 , 3 ) __snake_case : Optional[int] = model(__magic_name__ ) self.assertEqual(output.device , __magic_name__ ) # Removing hooks loads back the weights in the model. remove_hook_from_submodules(__magic_name__ ) self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) ) self.assertEqual(model.batchnorm.weight.device , torch.device("""cpu""" ) ) self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) ) def lowercase__ ( self : Any ) -> Union[str, Any]: """simple docstring""" __snake_case : Any = ModelForTest() # Everything is on CPU self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) ) self.assertEqual(model.batchnorm.weight.device , torch.device("""cpu""" ) ) self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) ) # This will move each submodule on different devices __snake_case : str = 0 if torch.cuda.is_available() else """cpu""" attach_align_device_hook( __magic_name__ , execution_device=__magic_name__ , offload=__magic_name__ , weights_map=model.state_dict() ) # Parameters have been offloaded, so on the meta device self.assertEqual(model.lineara.weight.device , torch.device("""meta""" ) ) self.assertEqual(model.batchnorm.weight.device , torch.device("""meta""" ) ) self.assertEqual(model.lineara.weight.device , torch.device("""meta""" ) ) # Buffers are not included in the offload by default, so are on the execution device __snake_case : List[str] = torch.device(__magic_name__ ) self.assertEqual(model.batchnorm.running_mean.device , __magic_name__ ) __snake_case : Tuple = torch.randn(2 , 3 ) __snake_case : Optional[Any] = model(__magic_name__ ) self.assertEqual(output.device , __magic_name__ ) # Removing hooks loads back the weights in the model. remove_hook_from_submodules(__magic_name__ ) self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) ) self.assertEqual(model.batchnorm.weight.device , torch.device("""cpu""" ) ) self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) ) # Now test with buffers included in the offload attach_align_device_hook( __magic_name__ , execution_device=__magic_name__ , offload=__magic_name__ , weights_map=model.state_dict() , offload_buffers=__magic_name__ , ) # Parameters have been offloaded, so on the meta device, buffers included self.assertEqual(model.lineara.weight.device , torch.device("""meta""" ) ) self.assertEqual(model.batchnorm.weight.device , torch.device("""meta""" ) ) self.assertEqual(model.lineara.weight.device , torch.device("""meta""" ) ) self.assertEqual(model.batchnorm.running_mean.device , torch.device("""meta""" ) ) __snake_case : List[str] = torch.randn(2 , 3 ) __snake_case : Dict = model(__magic_name__ ) self.assertEqual(output.device , __magic_name__ ) # Removing hooks loads back the weights in the model. remove_hook_from_submodules(__magic_name__ ) self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) ) self.assertEqual(model.batchnorm.weight.device , torch.device("""cpu""" ) ) self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) )
26
1
'''simple docstring''' from __future__ import annotations from fractions import Fraction def _a ( _lowerCamelCase , _lowerCamelCase ) -> bool: """simple docstring""" return ( num != den and num % 10 == den // 10 and (num // 10) / (den % 10) == num / den ) def _a ( _lowerCamelCase ) -> list[str]: """simple docstring""" __snake_case : Union[str, Any] = [] __snake_case : Dict = 11 __snake_case : List[Any] = int("""1""" + """0""" * digit_len ) for num in range(_lowerCamelCase , _lowerCamelCase ): while den <= 99: if (num != den) and (num % 10 == den // 10) and (den % 10 != 0): if is_digit_cancelling(_lowerCamelCase , _lowerCamelCase ): solutions.append(F'''{num}/{den}''' ) den += 1 num += 1 __snake_case : str = 10 return solutions def _a ( _lowerCamelCase = 2 ) -> int: """simple docstring""" __snake_case : List[Any] = 1.0 for fraction in fraction_list(_lowerCamelCase ): __snake_case : List[Any] = Fraction(_lowerCamelCase ) result *= frac.denominator / frac.numerator return int(_lowerCamelCase ) if __name__ == "__main__": print(solution())
26
'''simple docstring''' from __future__ import annotations __UpperCamelCase = [ [-1, 0], # left [0, -1], # down [1, 0], # right [0, 1], # up ] def _a ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , ) -> tuple[list[list[int]], list[list[int]]]: """simple docstring""" __snake_case : List[str] = [ [0 for col in range(len(grid[0] ) )] for row in range(len(_lowerCamelCase ) ) ] # the reference grid __snake_case : Tuple = 1 __snake_case : List[str] = [ [0 for col in range(len(grid[0] ) )] for row in range(len(_lowerCamelCase ) ) ] # the action grid __snake_case : List[str] = init[0] __snake_case : str = init[1] __snake_case : int = 0 __snake_case : int = g + heuristic[x][y] # cost from starting cell to destination cell __snake_case : List[str] = [[f, g, x, y]] __snake_case : Any = False # flag that is set when search is complete __snake_case : int = False # flag set if we can't find expand while not found and not resign: if len(_lowerCamelCase ) == 0: raise ValueError("""Algorithm is unable to find solution""" ) else: # to choose the least costliest action so as to move closer to the goal cell.sort() cell.reverse() __snake_case : Tuple = cell.pop() __snake_case : Optional[int] = next_cell[2] __snake_case : List[Any] = next_cell[3] __snake_case : int = next_cell[1] if x == goal[0] and y == goal[1]: __snake_case : Optional[Any] = True else: for i in range(len(_lowerCamelCase ) ): # to try out different valid actions __snake_case : Union[str, Any] = x + DIRECTIONS[i][0] __snake_case : str = y + DIRECTIONS[i][1] if xa >= 0 and xa < len(_lowerCamelCase ) and ya >= 0 and ya < len(grid[0] ): if closed[xa][ya] == 0 and grid[xa][ya] == 0: __snake_case : str = g + cost __snake_case : Tuple = ga + heuristic[xa][ya] cell.append([fa, ga, xa, ya] ) __snake_case : List[str] = 1 __snake_case : Optional[int] = i __snake_case : List[str] = [] __snake_case : Optional[int] = goal[0] __snake_case : List[Any] = goal[1] invpath.append([x, y] ) # we get the reverse path from here while x != init[0] or y != init[1]: __snake_case : Dict = x - DIRECTIONS[action[x][y]][0] __snake_case : int = y - DIRECTIONS[action[x][y]][1] __snake_case : Optional[int] = xa __snake_case : int = ya invpath.append([x, y] ) __snake_case : Optional[int] = [] for i in range(len(_lowerCamelCase ) ): path.append(invpath[len(_lowerCamelCase ) - 1 - i] ) return path, action if __name__ == "__main__": __UpperCamelCase = [ [0, 1, 0, 0, 0, 0], [0, 1, 0, 0, 0, 0], # 0 are free path whereas 1's are obstacles [0, 1, 0, 0, 0, 0], [0, 1, 0, 0, 1, 0], [0, 0, 0, 0, 1, 0], ] __UpperCamelCase = [0, 0] # all coordinates are given in format [y,x] __UpperCamelCase = [len(grid) - 1, len(grid[0]) - 1] __UpperCamelCase = 1 # the cost map which pushes the path closer to the goal __UpperCamelCase = [[0 for row in range(len(grid[0]))] for col in range(len(grid))] for i in range(len(grid)): for j in range(len(grid[0])): __UpperCamelCase = abs(i - goal[0]) + abs(j - goal[1]) if grid[i][j] == 1: # added extra penalty in the heuristic map __UpperCamelCase = 99 __UpperCamelCase , __UpperCamelCase = search(grid, init, goal, cost, heuristic) print("ACTION MAP") for i in range(len(action)): print(action[i]) for i in range(len(path)): print(path[i])
26
1
'''simple docstring''' import sys from collections import defaultdict class _A : def __init__( self : List[Any] ) -> Optional[int]: """simple docstring""" __snake_case : Optional[Any] = [] def lowercase__ ( self : int , __magic_name__ : List[Any] ) -> Dict: """simple docstring""" return self.node_position[vertex] def lowercase__ ( self : Optional[int] , __magic_name__ : List[str] , __magic_name__ : Optional[Any] ) -> List[Any]: """simple docstring""" __snake_case : List[str] = pos def lowercase__ ( self : int , __magic_name__ : int , __magic_name__ : int , __magic_name__ : Any , __magic_name__ : str ) -> Optional[Any]: """simple docstring""" if start > size // 2 - 1: return else: if 2 * start + 2 >= size: __snake_case : int = 2 * start + 1 else: if heap[2 * start + 1] < heap[2 * start + 2]: __snake_case : int = 2 * start + 1 else: __snake_case : Any = 2 * start + 2 if heap[smallest_child] < heap[start]: __snake_case , __snake_case : Tuple = heap[smallest_child], positions[smallest_child] __snake_case , __snake_case : Dict = ( heap[start], positions[start], ) __snake_case , __snake_case : Union[str, Any] = temp, tempa __snake_case : Tuple = self.get_position(positions[smallest_child] ) self.set_position( positions[smallest_child] , self.get_position(positions[start] ) ) self.set_position(positions[start] , __magic_name__ ) self.top_to_bottom(__magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ ) def lowercase__ ( self : str , __magic_name__ : str , __magic_name__ : List[str] , __magic_name__ : Any , __magic_name__ : Union[str, Any] ) -> int: """simple docstring""" __snake_case : List[Any] = position[index] while index != 0: __snake_case : List[str] = int((index - 2) / 2 ) if index % 2 == 0 else int((index - 1) / 2 ) if val < heap[parent]: __snake_case : Optional[Any] = heap[parent] __snake_case : Dict = position[parent] self.set_position(position[parent] , __magic_name__ ) else: __snake_case : int = val __snake_case : int = temp self.set_position(__magic_name__ , __magic_name__ ) break __snake_case : List[str] = parent else: __snake_case : Dict = val __snake_case : Optional[int] = temp self.set_position(__magic_name__ , 0 ) def lowercase__ ( self : Optional[int] , __magic_name__ : Dict , __magic_name__ : Tuple ) -> List[str]: """simple docstring""" __snake_case : Any = len(__magic_name__ ) // 2 - 1 for i in range(__magic_name__ , -1 , -1 ): self.top_to_bottom(__magic_name__ , __magic_name__ , len(__magic_name__ ) , __magic_name__ ) def lowercase__ ( self : List[Any] , __magic_name__ : List[Any] , __magic_name__ : List[Any] ) -> List[str]: """simple docstring""" __snake_case : Optional[Any] = positions[0] __snake_case : Optional[int] = sys.maxsize self.top_to_bottom(__magic_name__ , 0 , len(__magic_name__ ) , __magic_name__ ) return temp def _a ( _lowerCamelCase ) -> List[Any]: """simple docstring""" __snake_case : List[Any] = Heap() __snake_case : List[Any] = [0] * len(_lowerCamelCase ) __snake_case : Dict = [-1] * len(_lowerCamelCase ) # Neighboring Tree Vertex of selected vertex # Minimum Distance of explored vertex with neighboring vertex of partial tree # formed in graph __snake_case : List[Any] = [] # Heap of Distance of vertices from their neighboring vertex __snake_case : str = [] for vertex in range(len(_lowerCamelCase ) ): distance_tv.append(sys.maxsize ) positions.append(_lowerCamelCase ) heap.node_position.append(_lowerCamelCase ) __snake_case : Optional[int] = [] __snake_case : List[str] = 1 __snake_case : Any = sys.maxsize for neighbor, distance in adjacency_list[0]: __snake_case : List[str] = 0 __snake_case : List[Any] = distance heap.heapify(_lowerCamelCase , _lowerCamelCase ) for _ in range(1 , len(_lowerCamelCase ) ): __snake_case : Tuple = heap.delete_minimum(_lowerCamelCase , _lowerCamelCase ) if visited[vertex] == 0: tree_edges.append((nbr_tv[vertex], vertex) ) __snake_case : Any = 1 for neighbor, distance in adjacency_list[vertex]: if ( visited[neighbor] == 0 and distance < distance_tv[heap.get_position(_lowerCamelCase )] ): __snake_case : Tuple = distance heap.bottom_to_top( _lowerCamelCase , heap.get_position(_lowerCamelCase ) , _lowerCamelCase , _lowerCamelCase ) __snake_case : int = vertex return tree_edges if __name__ == "__main__": # pragma: no cover # < --------- Prims Algorithm --------- > __UpperCamelCase = int(input("Enter number of edges: ").strip()) __UpperCamelCase = defaultdict(list) for _ in range(edges_number): __UpperCamelCase = [int(x) for x in input().strip().split()] adjacency_list[edge[0]].append([edge[1], edge[2]]) adjacency_list[edge[1]].append([edge[0], edge[2]]) print(prisms_algorithm(adjacency_list))
26
'''simple docstring''' def _a ( _lowerCamelCase ) -> int: """simple docstring""" if not isinstance(_lowerCamelCase , _lowerCamelCase ): raise TypeError("""only integers accepted as input""" ) else: __snake_case : List[Any] = str(abs(_lowerCamelCase ) ) __snake_case : Union[str, Any] = [list(_lowerCamelCase ) for char in range(len(_lowerCamelCase ) )] for index in range(len(_lowerCamelCase ) ): num_transpositions[index].pop(_lowerCamelCase ) return max( int("""""".join(list(_lowerCamelCase ) ) ) for transposition in num_transpositions ) if __name__ == "__main__": __import__("doctest").testmod()
26
1
'''simple docstring''' from typing import List, Optional, Union import numpy as np from ...feature_extraction_sequence_utils import SequenceFeatureExtractor from ...feature_extraction_utils import BatchFeature from ...utils import PaddingStrategy, TensorType, logging __UpperCamelCase = logging.get_logger(__name__) class _A ( __lowercase ): lowercase__: Tuple = ['''input_values''', '''padding_mask'''] def __init__( self : List[Any] , __magic_name__ : int = 1 , __magic_name__ : int = 2_40_00 , __magic_name__ : float = 0.0 , __magic_name__ : float = None , __magic_name__ : float = None , **__magic_name__ : Dict , ) -> Dict: """simple docstring""" super().__init__(feature_size=__magic_name__ , sampling_rate=__magic_name__ , padding_value=__magic_name__ , **__magic_name__ ) __snake_case : Dict = chunk_length_s __snake_case : Optional[Any] = overlap @property def lowercase__ ( self : Union[str, Any] ) -> Optional[int]: """simple docstring""" if self.chunk_length_s is None: return None else: return int(self.chunk_length_s * self.sampling_rate ) @property def lowercase__ ( self : Optional[Any] ) -> Optional[int]: """simple docstring""" if self.chunk_length_s is None or self.overlap is None: return None else: return max(1 , int((1.0 - self.overlap) * self.chunk_length ) ) def __call__( self : Union[str, Any] , __magic_name__ : Union[np.ndarray, List[float], List[np.ndarray], List[List[float]]] , __magic_name__ : Optional[Union[bool, str, PaddingStrategy]] = None , __magic_name__ : Optional[bool] = False , __magic_name__ : Optional[int] = None , __magic_name__ : Optional[Union[str, TensorType]] = None , __magic_name__ : Optional[int] = None , ) -> BatchFeature: """simple docstring""" if sampling_rate is not None: if sampling_rate != self.sampling_rate: raise ValueError( f'''The model corresponding to this feature extractor: {self} was trained using a sampling rate of''' f''' {self.sampling_rate}. Please make sure that the provided audio input was sampled with''' f''' {self.sampling_rate} and not {sampling_rate}.''' ) else: logger.warning( """It is strongly recommended to pass the `sampling_rate` argument to this function. """ """Failing to do so can result in silent errors that might be hard to debug.""" ) if padding and truncation: raise ValueError("""Both padding and truncation were set. Make sure you only set one.""" ) elif padding is None: # by default let's pad the inputs __snake_case : Optional[Any] = True __snake_case : Any = bool( isinstance(__magic_name__ , (list, tuple) ) and (isinstance(raw_audio[0] , (np.ndarray, tuple, list) )) ) if is_batched: __snake_case : Tuple = [np.asarray(__magic_name__ , dtype=np.floataa ).T for audio in raw_audio] elif not is_batched and not isinstance(__magic_name__ , np.ndarray ): __snake_case : Any = np.asarray(__magic_name__ , dtype=np.floataa ) elif isinstance(__magic_name__ , np.ndarray ) and raw_audio.dtype is np.dtype(np.floataa ): __snake_case : List[Any] = raw_audio.astype(np.floataa ) # always return batch if not is_batched: __snake_case : str = [np.asarray(__magic_name__ ).T] # verify inputs are valid for idx, example in enumerate(__magic_name__ ): if example.ndim > 2: raise ValueError(f'''Expected input shape (channels, length) but got shape {example.shape}''' ) if self.feature_size == 1 and example.ndim != 1: raise ValueError(f'''Expected mono audio but example has {example.shape[-1]} channels''' ) if self.feature_size == 2 and example.shape[-1] != 2: raise ValueError(f'''Expected stereo audio but example has {example.shape[-1]} channels''' ) __snake_case : Dict = None __snake_case : Union[str, Any] = BatchFeature({"""input_values""": raw_audio} ) if self.chunk_stride is not None and self.chunk_length is not None and max_length is None: if truncation: __snake_case : Optional[int] = min(array.shape[0] for array in raw_audio ) __snake_case : Union[str, Any] = int(np.floor(max_length / self.chunk_stride ) ) __snake_case : int = (nb_step - 1) * self.chunk_stride + self.chunk_length elif padding: __snake_case : Dict = max(array.shape[0] for array in raw_audio ) __snake_case : str = int(np.ceil(max_length / self.chunk_stride ) ) __snake_case : List[str] = (nb_step - 1) * self.chunk_stride + self.chunk_length __snake_case : Tuple = """max_length""" else: __snake_case : Dict = input_values # normal padding on batch if padded_inputs is None: __snake_case : str = self.pad( __magic_name__ , max_length=__magic_name__ , truncation=__magic_name__ , padding=__magic_name__ , return_attention_mask=__magic_name__ , ) if padding: __snake_case : List[Any] = padded_inputs.pop("""attention_mask""" ) __snake_case : Tuple = [] for example in padded_inputs.pop("""input_values""" ): if self.feature_size == 1: __snake_case : Optional[Any] = example[..., None] input_values.append(example.T ) __snake_case : List[Any] = input_values if return_tensors is not None: __snake_case : List[Any] = padded_inputs.convert_to_tensors(__magic_name__ ) return padded_inputs
26
'''simple docstring''' from __future__ import annotations import math def _a ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> int: """simple docstring""" if depth < 0: raise ValueError("""Depth cannot be less than 0""" ) if not scores: raise ValueError("""Scores cannot be empty""" ) if depth == height: return scores[node_index] return ( max( minimax(depth + 1 , node_index * 2 , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) , minimax(depth + 1 , node_index * 2 + 1 , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) , ) if is_max else min( minimax(depth + 1 , node_index * 2 , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) , minimax(depth + 1 , node_index * 2 + 1 , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) , ) ) def _a ( ) -> None: """simple docstring""" __snake_case : Union[str, Any] = [90, 23, 6, 33, 21, 65, 123, 3_4423] __snake_case : Optional[int] = math.log(len(_lowerCamelCase ) , 2 ) print(F'''Optimal value : {minimax(0 , 0 , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase )}''' ) if __name__ == "__main__": import doctest doctest.testmod() main()
26
1
'''simple docstring''' def _a ( _lowerCamelCase , _lowerCamelCase ) -> int: """simple docstring""" while a != 0: __snake_case , __snake_case : str = b % a, a return b def _a ( _lowerCamelCase , _lowerCamelCase ) -> int: """simple docstring""" if gcd(_lowerCamelCase , _lowerCamelCase ) != 1: __snake_case : Any = F'''mod inverse of {a!r} and {m!r} does not exist''' raise ValueError(_lowerCamelCase ) __snake_case , __snake_case , __snake_case : Dict = 1, 0, a __snake_case , __snake_case , __snake_case : List[Any] = 0, 1, m while va != 0: __snake_case : List[str] = ua // va __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case : Union[str, Any] = (ua - q * va), (ua - q * va), (ua - q * va), va, va, va return ua % m
26
'''simple docstring''' from __future__ import annotations def _a ( _lowerCamelCase , _lowerCamelCase = None , _lowerCamelCase = None ) -> None: """simple docstring""" if start is None: __snake_case : Optional[Any] = 0 if end is None: __snake_case : Optional[Any] = len(_lowerCamelCase ) - 1 if start >= end: return __snake_case : Tuple = (start + end) // 2 slowsort(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) slowsort(_lowerCamelCase , mid + 1 , _lowerCamelCase ) if sequence[end] < sequence[mid]: __snake_case , __snake_case : str = sequence[mid], sequence[end] slowsort(_lowerCamelCase , _lowerCamelCase , end - 1 ) if __name__ == "__main__": from doctest import testmod testmod()
26
1
'''simple docstring''' import argparse import torch from transformers import BlenderbotConfig, BlenderbotForConditionalGeneration from transformers.utils import logging logging.set_verbosity_info() __UpperCamelCase = logging.get_logger(__name__) __UpperCamelCase = [ ["attention", "attn"], ["encoder_attention", "encoder_attn"], ["q_lin", "q_proj"], ["k_lin", "k_proj"], ["v_lin", "v_proj"], ["out_lin", "out_proj"], ["norm_embeddings", "layernorm_embedding"], ["position_embeddings", "embed_positions"], ["embeddings", "embed_tokens"], ["ffn.lin", "fc"], ] def _a ( _lowerCamelCase ) -> Union[str, Any]: """simple docstring""" if k == "embeddings.weight": return "shared.weight" for parlai_name, hf_name in PATTERNS: __snake_case : List[str] = k.replace(_lowerCamelCase , _lowerCamelCase ) if k.startswith("""encoder""" ): __snake_case : Optional[int] = k.replace(""".attn""" , """.self_attn""" ) __snake_case : Tuple = k.replace("""norm1""" , """self_attn_layer_norm""" ) __snake_case : List[str] = k.replace("""norm2""" , """final_layer_norm""" ) elif k.startswith("""decoder""" ): __snake_case : List[Any] = k.replace("""norm1""" , """self_attn_layer_norm""" ) __snake_case : str = k.replace("""norm2""" , """encoder_attn_layer_norm""" ) __snake_case : Optional[int] = k.replace("""norm3""" , """final_layer_norm""" ) return k def _a ( _lowerCamelCase ) -> Any: """simple docstring""" __snake_case : Optional[int] = [ """model.encoder.layernorm_embedding.weight""", """model.encoder.layernorm_embedding.bias""", """model.decoder.layernorm_embedding.weight""", """model.decoder.layernorm_embedding.bias""", ] for k in keys: __snake_case : Optional[Any] = sd.pop(_lowerCamelCase ) __snake_case : List[str] = k.replace("""layernorm_embedding""" , """layer_norm""" ) assert new_k not in sd __snake_case : Union[str, Any] = v __UpperCamelCase = ["START"] @torch.no_grad() def _a ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> Dict: """simple docstring""" __snake_case : Optional[int] = torch.load(_lowerCamelCase , map_location="""cpu""" ) __snake_case : Dict = model["""model"""] __snake_case : Optional[int] = BlenderbotConfig.from_json_file(_lowerCamelCase ) __snake_case : Union[str, Any] = BlenderbotForConditionalGeneration(_lowerCamelCase ) __snake_case : List[Any] = m.model.state_dict().keys() __snake_case : int = [] __snake_case : Union[str, Any] = {} for k, v in sd.items(): if k in IGNORE_KEYS: continue __snake_case : Optional[int] = rename_state_dict_key(_lowerCamelCase ) if new_k not in valid_keys: failures.append([k, new_k] ) else: __snake_case : str = v if cfg.normalize_before: # Blenderbot-3B checkpoints. Rename layernorm_embedding -> layer_norm rename_layernorm_keys(_lowerCamelCase ) m.model.load_state_dict(_lowerCamelCase , strict=_lowerCamelCase ) m.half() m.save_pretrained(_lowerCamelCase ) if __name__ == "__main__": __UpperCamelCase = argparse.ArgumentParser() # Required parameters parser.add_argument("--src_path", type=str, help="like blenderbot-model.bin") parser.add_argument("--save_dir", default="hf_blenderbot", type=str, help="Where to save converted model.") parser.add_argument( "--hf_config_json", default="blenderbot-3b-config.json", type=str, help="Path to config to use" ) __UpperCamelCase = parser.parse_args() convert_parlai_checkpoint(args.src_path, args.save_dir, args.hf_config_json)
26
'''simple docstring''' import doctest import logging import os import unittest from pathlib import Path from typing import List, Union import transformers from transformers.testing_utils import require_tf, require_torch, slow __UpperCamelCase = logging.getLogger() @unittest.skip('''Temporarily disable the doc tests.''' ) @require_torch @require_tf @slow class _A ( unittest.TestCase ): def lowercase__ ( self : Optional[int] , __magic_name__ : Path , __magic_name__ : Union[str, None] = None , __magic_name__ : Union[List[str], None] = None , __magic_name__ : Union[str, List[str], None] = None , __magic_name__ : bool = True , ) -> Optional[int]: """simple docstring""" __snake_case : Union[str, Any] = [file for file in os.listdir(__magic_name__ ) if os.path.isfile(os.path.join(__magic_name__ , __magic_name__ ) )] if identifier is not None: __snake_case : List[Any] = [file for file in files if identifier in file] if n_identifier is not None: if isinstance(__magic_name__ , __magic_name__ ): for n_ in n_identifier: __snake_case : Optional[int] = [file for file in files if n_ not in file] else: __snake_case : Tuple = [file for file in files if n_identifier not in file] __snake_case : Dict = ignore_files or [] ignore_files.append("""__init__.py""" ) __snake_case : List[str] = [file for file in files if file not in ignore_files] for file in files: # Open all files print("""Testing""" , __magic_name__ ) if only_modules: __snake_case : List[Any] = file.split(""".""" )[0] try: __snake_case : List[Any] = getattr(__magic_name__ , __magic_name__ ) __snake_case : Union[str, Any] = doctest.DocTestSuite(__magic_name__ ) __snake_case : Dict = unittest.TextTestRunner().run(__magic_name__ ) self.assertIs(len(result.failures ) , 0 ) except AttributeError: logger.info(f'''{module_identifier} is not a module.''' ) else: __snake_case : Tuple = doctest.testfile(str("""..""" / directory / file ) , optionflags=doctest.ELLIPSIS ) self.assertIs(result.failed , 0 ) def lowercase__ ( self : Union[str, Any] ) -> Any: """simple docstring""" __snake_case : List[Any] = Path("""src/transformers""" ) __snake_case : List[Any] = """modeling""" __snake_case : Union[str, Any] = [ """modeling_ctrl.py""", """modeling_tf_ctrl.py""", ] self.analyze_directory(__magic_name__ , identifier=__magic_name__ , ignore_files=__magic_name__ ) def lowercase__ ( self : Union[str, Any] ) -> int: """simple docstring""" __snake_case : Union[str, Any] = Path("""src/transformers""" ) __snake_case : Any = """tokenization""" self.analyze_directory(__magic_name__ , identifier=__magic_name__ ) def lowercase__ ( self : Union[str, Any] ) -> int: """simple docstring""" __snake_case : List[Any] = Path("""src/transformers""" ) __snake_case : List[str] = """configuration""" self.analyze_directory(__magic_name__ , identifier=__magic_name__ ) def lowercase__ ( self : Dict ) -> Dict: """simple docstring""" __snake_case : Tuple = Path("""src/transformers""" ) __snake_case : int = ["""configuration""", """modeling""", """tokenization"""] self.analyze_directory(__magic_name__ , n_identifier=__magic_name__ ) def lowercase__ ( self : Optional[int] ) -> Union[str, Any]: """simple docstring""" __snake_case : int = Path("""docs/source""" ) __snake_case : Optional[int] = ["""favicon.ico"""] self.analyze_directory(__magic_name__ , ignore_files=__magic_name__ , only_modules=__magic_name__ )
26
1
'''simple docstring''' import logging import sys from dataclasses import dataclass, field from typing import Any, Dict, List, Optional, Union import librosa import torch from datasets import DatasetDict, load_dataset from packaging import version from torch import nn from transformers import ( HfArgumentParser, Trainer, TrainingArguments, WavaVecaConfig, WavaVecaFeatureExtractor, WavaVecaForPreTraining, is_apex_available, trainer_utils, ) from transformers.models.wavaveca.modeling_wavaveca import _compute_mask_indices if is_apex_available(): from apex import amp if version.parse(version.parse(torch.__version__).base_version) >= version.parse("1.6"): __UpperCamelCase = True from torch.cuda.amp import autocast __UpperCamelCase = logging.getLogger(__name__) @dataclass class _A : lowercase__: str = field( metadata={'''help''': '''Path to pretrained model or model identifier from huggingface.co/models'''} ) lowercase__: Optional[str] = field( default=__lowercase , metadata={'''help''': '''Where do you want to store the pretrained models downloaded from huggingface.co'''} , ) lowercase__: Optional[bool] = field( default=__lowercase , metadata={'''help''': '''Whether to freeze the feature extractor layers of the model.'''} ) lowercase__: Optional[bool] = field( default=__lowercase , metadata={'''help''': '''Whether to log verbose messages or not.'''} , ) lowercase__: Optional[float] = field( default=2.0 , metadata={'''help''': '''Maximum temperature for gumbel softmax.'''} ) lowercase__: Optional[float] = field( default=0.5 , metadata={'''help''': '''Minimum temperature for gumbel softmax.'''} ) lowercase__: Optional[float] = field( default=0.9_9_9_9_9_5 , metadata={'''help''': '''Decay of gumbel temperature during training.'''} ) def _a ( _lowerCamelCase , _lowerCamelCase ) -> Optional[int]: """simple docstring""" logging.basicConfig( format="""%(asctime)s - %(levelname)s - %(name)s - %(message)s""" , datefmt="""%m/%d/%Y %H:%M:%S""" , handlers=[logging.StreamHandler(sys.stdout )] , ) __snake_case : int = logging.WARNING if model_args.verbose_logging: __snake_case : Any = logging.DEBUG elif trainer_utils.is_main_process(training_args.local_rank ): __snake_case : List[str] = logging.INFO logger.setLevel(_lowerCamelCase ) @dataclass class _A : lowercase__: str = field( default=__lowercase , metadata={'''help''': '''The name of the dataset to use (via the datasets library).'''} ) lowercase__: Optional[str] = field( default=__lowercase , metadata={'''help''': '''The configuration name of the dataset to use (via the datasets library).'''} ) lowercase__: Optional[str] = field( default='''train''' , metadata={ '''help''': '''The name of the training data set split to use (via the datasets library). Defaults to \'train\'''' } , ) lowercase__: Optional[str] = field( default='''validation''' , metadata={ '''help''': ( '''The name of the validation data set split to use (via the datasets library). Defaults to \'validation\'''' ) } , ) lowercase__: Optional[str] = field( default='''file''' , metadata={'''help''': '''Column in the dataset that contains speech file path. Defaults to \'file\''''} , ) lowercase__: bool = field( default=__lowercase , metadata={'''help''': '''Overwrite the cached preprocessed datasets or not.'''} ) lowercase__: Optional[int] = field( default=1 , metadata={ '''help''': '''The percentage of the train set used as validation set in case there\'s no validation split''' } , ) lowercase__: Optional[int] = field( default=__lowercase , metadata={'''help''': '''The number of processes to use for the preprocessing.'''} , ) lowercase__: Optional[float] = field( default=2_0.0 , metadata={'''help''': '''Filter audio files that are longer than `max_duration_in_seconds` seconds'''} ) @dataclass class _A : lowercase__: WavaVecaForPreTraining lowercase__: WavaVecaFeatureExtractor lowercase__: Union[bool, str] = "longest" lowercase__: Optional[int] = None lowercase__: Optional[int] = None def __call__( self : Any , __magic_name__ : List[Dict[str, Union[List[int], torch.Tensor]]] ) -> Dict[str, torch.Tensor]: """simple docstring""" __snake_case : Any = self.feature_extractor.pad( __magic_name__ , max_length=self.max_length , padding=self.padding , pad_to_multiple_of=self.pad_to_multiple_of , return_tensors="""pt""" , ) __snake_case : int = self.model._get_feat_extract_output_lengths(batch["""input_values"""].shape[-1] ) __snake_case : Optional[Any] = batch["""input_values"""].shape[0] # make sure that no loss is computed on padded inputs if batch["attention_mask"] is not None: # compute real output lengths according to convolution formula __snake_case : Optional[int] = self.model._get_feat_extract_output_lengths(batch["""attention_mask"""].sum(-1 ) ).to( torch.long ) __snake_case : Any = torch.zeros( (batch_size, mask_indices_seq_length) , dtype=torch.long , device=batch["""input_values"""].device ) # these two operations makes sure that all values # before the output lengths indices are attended to __snake_case : Dict = 1 __snake_case : Optional[Any] = attention_mask.flip([-1] ).cumsum(-1 ).flip([-1] ).bool() # sample randomly masked indices __snake_case : int = _compute_mask_indices( (batch_size, mask_indices_seq_length) , self.model.config.mask_time_prob , self.model.config.mask_time_length , attention_mask=__magic_name__ , min_masks=2 , ) return batch class _A ( __lowercase ): def __init__( self : str , *__magic_name__ : Any , __magic_name__ : Optional[Any]=1 , __magic_name__ : int=0 , __magic_name__ : Tuple=1.0 , **__magic_name__ : Any ) -> Dict: """simple docstring""" super().__init__(*__magic_name__ , **__magic_name__ ) __snake_case : List[str] = 0 __snake_case : Optional[Any] = max_gumbel_temp __snake_case : int = min_gumbel_temp __snake_case : Union[str, Any] = gumbel_temp_decay def lowercase__ ( self : Optional[Any] , __magic_name__ : nn.Module , __magic_name__ : Dict[str, Union[torch.Tensor, Any]] ) -> torch.Tensor: """simple docstring""" model.train() __snake_case : int = self._prepare_inputs(__magic_name__ ) if self.use_amp: with autocast(): __snake_case : str = self.compute_loss(__magic_name__ , __magic_name__ ) else: __snake_case : Tuple = self.compute_loss(__magic_name__ , __magic_name__ ) if self.args.n_gpu > 1 or self.deepspeed: if model.module.config.ctc_loss_reduction == "mean": __snake_case : Union[str, Any] = loss.mean() elif model.module.config.ctc_loss_reduction == "sum": __snake_case : str = loss.sum() / (inputs["""mask_time_indices"""]).sum() else: raise ValueError(f'''{model.config.ctc_loss_reduction} is not valid. Choose one of [\'mean\', \'sum\']''' ) if self.args.gradient_accumulation_steps > 1: __snake_case : List[Any] = loss / self.args.gradient_accumulation_steps if self.use_amp: self.scaler.scale(__magic_name__ ).backward() elif self.use_apex: with amp.scale_loss(__magic_name__ , self.optimizer ) as scaled_loss: scaled_loss.backward() elif self.deepspeed: self.deepspeed.backward(__magic_name__ ) else: loss.backward() self.num_update_step += 1 # make sure gumbel softmax temperature is decayed if self.args.n_gpu > 1 or self.deepspeed: model.module.set_gumbel_temperature( max(self.max_gumbel_temp * self.gumbel_temp_decay**self.num_update_step , self.min_gumbel_temp ) ) else: model.set_gumbel_temperature( max(self.max_gumbel_temp * self.gumbel_temp_decay**self.num_update_step , self.min_gumbel_temp ) ) return loss.detach() def _a ( ) -> Any: """simple docstring""" __snake_case : Union[str, Any] = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) __snake_case , __snake_case , __snake_case : List[Any] = parser.parse_args_into_dataclasses() configure_logger(_lowerCamelCase , _lowerCamelCase ) # Downloading and loading a dataset from the hub. __snake_case : Tuple = load_dataset(data_args.dataset_name , data_args.dataset_config_name , cache_dir=model_args.cache_dir ) if "validation" not in datasets.keys(): # make sure only "validation" and "train" keys remain" __snake_case : int = DatasetDict() __snake_case : Union[str, Any] = load_dataset( data_args.dataset_name , data_args.dataset_config_name , split=F'''{data_args.train_split_name}[:{data_args.validation_split_percentage}%]''' , cache_dir=model_args.cache_dir , ) __snake_case : Optional[int] = load_dataset( data_args.dataset_name , data_args.dataset_config_name , split=F'''{data_args.train_split_name}[{data_args.validation_split_percentage}%:]''' , cache_dir=model_args.cache_dir , ) else: # make sure only "validation" and "train" keys remain" __snake_case : Optional[Any] = DatasetDict() __snake_case : Optional[Any] = load_dataset( data_args.dataset_name , data_args.dataset_config_name , split="""validation""" , cache_dir=model_args.cache_dir , ) __snake_case : str = load_dataset( data_args.dataset_name , data_args.dataset_config_name , split=F'''{data_args.train_split_name}''' , cache_dir=model_args.cache_dir , ) # only normalized-inputs-training is supported __snake_case : Union[str, Any] = WavaVecaFeatureExtractor.from_pretrained( model_args.model_name_or_path , cache_dir=model_args.cache_dir , do_normalize=_lowerCamelCase ) def prepare_dataset(_lowerCamelCase ): # check that all files have the correct sampling rate __snake_case , __snake_case : int = librosa.load(batch[data_args.speech_file_column] , sr=feature_extractor.sampling_rate ) return batch # load audio files into numpy arrays __snake_case : List[str] = datasets.map( _lowerCamelCase , num_proc=data_args.preprocessing_num_workers , remove_columns=datasets["""train"""].column_names ) # filter audio files that are too long __snake_case : Optional[Any] = vectorized_datasets.filter( lambda _lowerCamelCase : len(data["""speech"""] ) < int(data_args.max_duration_in_seconds * feature_extractor.sampling_rate ) ) def normalize(_lowerCamelCase ): return feature_extractor(batch["""speech"""] , sampling_rate=feature_extractor.sampling_rate ) # normalize and transform to `BatchFeatures` __snake_case : str = vectorized_datasets.map( _lowerCamelCase , batched=_lowerCamelCase , num_proc=data_args.preprocessing_num_workers , load_from_cache_file=not data_args.overwrite_cache , remove_columns=vectorized_datasets["""train"""].column_names , ) # pretraining is only supported for "newer" stable layer norm architecture # apply_spec_augment has to be True, mask_feature_prob has to be 0.0 __snake_case : str = WavaVecaConfig.from_pretrained( model_args.model_name_or_path , cache_dir=model_args.cache_dir , gradient_checkpointing=training_args.gradient_checkpointing , ) if not config.do_stable_layer_norm or config.feat_extract_norm != "layer": raise ValueError( """PreTraining is only supported for ``config.do_stable_layer_norm=True`` and""" """ ``config.feat_extract_norm='layer'""" ) __snake_case : Tuple = WavaVecaForPreTraining(_lowerCamelCase ) __snake_case : int = DataCollatorForWavaVecaPretraining(model=_lowerCamelCase , feature_extractor=_lowerCamelCase ) __snake_case : List[str] = WavaVecaPreTrainer( model=_lowerCamelCase , data_collator=_lowerCamelCase , args=_lowerCamelCase , train_dataset=vectorized_datasets["""train"""] , eval_dataset=vectorized_datasets["""validation"""] , tokenizer=_lowerCamelCase , max_gumbel_temp=model_args.max_gumbel_temperature , min_gumbel_temp=model_args.min_gumbel_temperature , gumbel_temp_decay=model_args.gumbel_temperature_decay , ) trainer.train() if __name__ == "__main__": main()
26
'''simple docstring''' import inspect from typing import Callable, List, Optional, Union import torch from transformers import ( CLIPImageProcessor, CLIPTextModel, CLIPTokenizer, WhisperForConditionalGeneration, WhisperProcessor, ) from diffusers import ( AutoencoderKL, DDIMScheduler, DiffusionPipeline, LMSDiscreteScheduler, PNDMScheduler, UNetaDConditionModel, ) from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion import StableDiffusionPipelineOutput from diffusers.pipelines.stable_diffusion.safety_checker import StableDiffusionSafetyChecker from diffusers.utils import logging __UpperCamelCase = logging.get_logger(__name__) # pylint: disable=invalid-name class _A ( __lowercase ): def __init__( self : str , __magic_name__ : WhisperForConditionalGeneration , __magic_name__ : WhisperProcessor , __magic_name__ : AutoencoderKL , __magic_name__ : CLIPTextModel , __magic_name__ : CLIPTokenizer , __magic_name__ : UNetaDConditionModel , __magic_name__ : Union[DDIMScheduler, PNDMScheduler, LMSDiscreteScheduler] , __magic_name__ : StableDiffusionSafetyChecker , __magic_name__ : CLIPImageProcessor , ) -> Union[str, Any]: """simple docstring""" super().__init__() if safety_checker is None: logger.warning( f'''You have disabled the safety checker for {self.__class__} by passing `safety_checker=None`. Ensure''' """ that you abide to the conditions of the Stable Diffusion license and do not expose unfiltered""" """ results in services or applications open to the public. Both the diffusers team and Hugging Face""" """ strongly recommend to keep the safety filter enabled in all public facing circumstances, disabling""" """ it only for use-cases that involve analyzing network behavior or auditing its results. For more""" """ information, please have a look at https://github.com/huggingface/diffusers/pull/254 .""" ) self.register_modules( speech_model=__magic_name__ , speech_processor=__magic_name__ , vae=__magic_name__ , text_encoder=__magic_name__ , tokenizer=__magic_name__ , unet=__magic_name__ , scheduler=__magic_name__ , feature_extractor=__magic_name__ , ) def lowercase__ ( self : Optional[Any] , __magic_name__ : Optional[Union[str, int]] = "auto" ) -> Union[str, Any]: """simple docstring""" if slice_size == "auto": __snake_case : str = self.unet.config.attention_head_dim // 2 self.unet.set_attention_slice(__magic_name__ ) def lowercase__ ( self : str ) -> Any: """simple docstring""" self.enable_attention_slicing(__magic_name__ ) @torch.no_grad() def __call__( self : Optional[int] , __magic_name__ : str , __magic_name__ : Dict=1_60_00 , __magic_name__ : int = 5_12 , __magic_name__ : int = 5_12 , __magic_name__ : int = 50 , __magic_name__ : float = 7.5 , __magic_name__ : Optional[Union[str, List[str]]] = None , __magic_name__ : Optional[int] = 1 , __magic_name__ : float = 0.0 , __magic_name__ : Optional[torch.Generator] = None , __magic_name__ : Optional[torch.FloatTensor] = None , __magic_name__ : Optional[str] = "pil" , __magic_name__ : bool = True , __magic_name__ : Optional[Callable[[int, int, torch.FloatTensor], None]] = None , __magic_name__ : int = 1 , **__magic_name__ : List[str] , ) -> int: """simple docstring""" __snake_case : List[Any] = self.speech_processor.feature_extractor( __magic_name__ , return_tensors="""pt""" , sampling_rate=__magic_name__ ).input_features.to(self.device ) __snake_case : List[str] = self.speech_model.generate(__magic_name__ , max_length=48_00_00 ) __snake_case : List[Any] = self.speech_processor.tokenizer.batch_decode(__magic_name__ , skip_special_tokens=__magic_name__ , normalize=__magic_name__ )[ 0 ] if isinstance(__magic_name__ , __magic_name__ ): __snake_case : Tuple = 1 elif isinstance(__magic_name__ , __magic_name__ ): __snake_case : Optional[int] = len(__magic_name__ ) else: raise ValueError(f'''`prompt` has to be of type `str` or `list` but is {type(__magic_name__ )}''' ) if height % 8 != 0 or width % 8 != 0: raise ValueError(f'''`height` and `width` have to be divisible by 8 but are {height} and {width}.''' ) if (callback_steps is None) or ( callback_steps is not None and (not isinstance(__magic_name__ , __magic_name__ ) or callback_steps <= 0) ): raise ValueError( f'''`callback_steps` has to be a positive integer but is {callback_steps} of type''' f''' {type(__magic_name__ )}.''' ) # get prompt text embeddings __snake_case : Dict = self.tokenizer( __magic_name__ , padding="""max_length""" , max_length=self.tokenizer.model_max_length , return_tensors="""pt""" , ) __snake_case : Optional[Any] = text_inputs.input_ids if text_input_ids.shape[-1] > self.tokenizer.model_max_length: __snake_case : Tuple = self.tokenizer.batch_decode(text_input_ids[:, self.tokenizer.model_max_length :] ) logger.warning( """The following part of your input was truncated because CLIP can only handle sequences up to""" f''' {self.tokenizer.model_max_length} tokens: {removed_text}''' ) __snake_case : Any = text_input_ids[:, : self.tokenizer.model_max_length] __snake_case : int = self.text_encoder(text_input_ids.to(self.device ) )[0] # duplicate text embeddings for each generation per prompt, using mps friendly method __snake_case , __snake_case , __snake_case : Any = text_embeddings.shape __snake_case : List[Any] = text_embeddings.repeat(1 , __magic_name__ , 1 ) __snake_case : Dict = text_embeddings.view(bs_embed * num_images_per_prompt , __magic_name__ , -1 ) # here `guidance_scale` is defined analog to the guidance weight `w` of equation (2) # of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1` # corresponds to doing no classifier free guidance. __snake_case : Optional[int] = guidance_scale > 1.0 # get unconditional embeddings for classifier free guidance if do_classifier_free_guidance: __snake_case : List[str] if negative_prompt is None: __snake_case : Optional[Any] = [""""""] * batch_size elif type(__magic_name__ ) is not type(__magic_name__ ): raise TypeError( f'''`negative_prompt` should be the same type to `prompt`, but got {type(__magic_name__ )} !=''' f''' {type(__magic_name__ )}.''' ) elif isinstance(__magic_name__ , __magic_name__ ): __snake_case : Dict = [negative_prompt] elif batch_size != len(__magic_name__ ): raise ValueError( f'''`negative_prompt`: {negative_prompt} has batch size {len(__magic_name__ )}, but `prompt`:''' f''' {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches''' """ the batch size of `prompt`.""" ) else: __snake_case : int = negative_prompt __snake_case : List[str] = text_input_ids.shape[-1] __snake_case : Any = self.tokenizer( __magic_name__ , padding="""max_length""" , max_length=__magic_name__ , truncation=__magic_name__ , return_tensors="""pt""" , ) __snake_case : Dict = self.text_encoder(uncond_input.input_ids.to(self.device ) )[0] # duplicate unconditional embeddings for each generation per prompt, using mps friendly method __snake_case : Optional[int] = uncond_embeddings.shape[1] __snake_case : Union[str, Any] = uncond_embeddings.repeat(1 , __magic_name__ , 1 ) __snake_case : Tuple = uncond_embeddings.view(batch_size * num_images_per_prompt , __magic_name__ , -1 ) # For classifier free guidance, we need to do two forward passes. # Here we concatenate the unconditional and text embeddings into a single batch # to avoid doing two forward passes __snake_case : Dict = torch.cat([uncond_embeddings, text_embeddings] ) # get the initial random noise unless the user supplied it # Unlike in other pipelines, latents need to be generated in the target device # for 1-to-1 results reproducibility with the CompVis implementation. # However this currently doesn't work in `mps`. __snake_case : List[Any] = (batch_size * num_images_per_prompt, self.unet.config.in_channels, height // 8, width // 8) __snake_case : List[Any] = text_embeddings.dtype if latents is None: if self.device.type == "mps": # randn does not exist on mps __snake_case : Optional[int] = torch.randn(__magic_name__ , generator=__magic_name__ , device="""cpu""" , dtype=__magic_name__ ).to( self.device ) else: __snake_case : int = torch.randn(__magic_name__ , generator=__magic_name__ , device=self.device , dtype=__magic_name__ ) else: if latents.shape != latents_shape: raise ValueError(f'''Unexpected latents shape, got {latents.shape}, expected {latents_shape}''' ) __snake_case : List[str] = latents.to(self.device ) # set timesteps self.scheduler.set_timesteps(__magic_name__ ) # Some schedulers like PNDM have timesteps as arrays # It's more optimized to move all timesteps to correct device beforehand __snake_case : Optional[int] = self.scheduler.timesteps.to(self.device ) # scale the initial noise by the standard deviation required by the scheduler __snake_case : str = latents * self.scheduler.init_noise_sigma # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature # eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers. # eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502 # and should be between [0, 1] __snake_case : Tuple = """eta""" in set(inspect.signature(self.scheduler.step ).parameters.keys() ) __snake_case : List[str] = {} if accepts_eta: __snake_case : str = eta for i, t in enumerate(self.progress_bar(__magic_name__ ) ): # expand the latents if we are doing classifier free guidance __snake_case : Union[str, Any] = torch.cat([latents] * 2 ) if do_classifier_free_guidance else latents __snake_case : Dict = self.scheduler.scale_model_input(__magic_name__ , __magic_name__ ) # predict the noise residual __snake_case : Tuple = self.unet(__magic_name__ , __magic_name__ , encoder_hidden_states=__magic_name__ ).sample # perform guidance if do_classifier_free_guidance: __snake_case , __snake_case : str = noise_pred.chunk(2 ) __snake_case : Any = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) # compute the previous noisy sample x_t -> x_t-1 __snake_case : Optional[Any] = self.scheduler.step(__magic_name__ , __magic_name__ , __magic_name__ , **__magic_name__ ).prev_sample # call the callback, if provided if callback is not None and i % callback_steps == 0: callback(__magic_name__ , __magic_name__ , __magic_name__ ) __snake_case : int = 1 / 0.18215 * latents __snake_case : Optional[Any] = self.vae.decode(__magic_name__ ).sample __snake_case : Any = (image / 2 + 0.5).clamp(0 , 1 ) # we always cast to float32 as this does not cause significant overhead and is compatible with bfloat16 __snake_case : Any = image.cpu().permute(0 , 2 , 3 , 1 ).float().numpy() if output_type == "pil": __snake_case : Tuple = self.numpy_to_pil(__magic_name__ ) if not return_dict: return image return StableDiffusionPipelineOutput(images=__magic_name__ , nsfw_content_detected=__magic_name__ )
26
1
'''simple docstring''' from __future__ import annotations from collections import deque class _A : def __init__( self : Optional[Any] , __magic_name__ : list[str] ) -> Tuple: """simple docstring""" __snake_case : list[dict] = [] self.adlist.append( {"""value""": """""", """next_states""": [], """fail_state""": 0, """output""": []} ) for keyword in keywords: self.add_keyword(__magic_name__ ) self.set_fail_transitions() def lowercase__ ( self : Union[str, Any] , __magic_name__ : int , __magic_name__ : str ) -> int | None: """simple docstring""" for state in self.adlist[current_state]["next_states"]: if char == self.adlist[state]["value"]: return state return None def lowercase__ ( self : str , __magic_name__ : str ) -> None: """simple docstring""" __snake_case : Optional[Any] = 0 for character in keyword: __snake_case : int = self.find_next_state(__magic_name__ , __magic_name__ ) if next_state is None: self.adlist.append( { """value""": character, """next_states""": [], """fail_state""": 0, """output""": [], } ) self.adlist[current_state]["next_states"].append(len(self.adlist ) - 1 ) __snake_case : Union[str, Any] = len(self.adlist ) - 1 else: __snake_case : List[str] = next_state self.adlist[current_state]["output"].append(__magic_name__ ) def lowercase__ ( self : Dict ) -> None: """simple docstring""" __snake_case : deque = deque() for node in self.adlist[0]["next_states"]: q.append(__magic_name__ ) __snake_case : Dict = 0 while q: __snake_case : Optional[Any] = q.popleft() for child in self.adlist[r]["next_states"]: q.append(__magic_name__ ) __snake_case : Dict = self.adlist[r]["""fail_state"""] while ( self.find_next_state(__magic_name__ , self.adlist[child]["""value"""] ) is None and state != 0 ): __snake_case : Optional[int] = self.adlist[state]["""fail_state"""] __snake_case : Union[str, Any] = self.find_next_state( __magic_name__ , self.adlist[child]["""value"""] ) if self.adlist[child]["fail_state"] is None: __snake_case : List[Any] = 0 __snake_case : Any = ( self.adlist[child]["""output"""] + self.adlist[self.adlist[child]["""fail_state"""]]["""output"""] ) def lowercase__ ( self : List[str] , __magic_name__ : str ) -> dict[str, list[int]]: """simple docstring""" __snake_case : dict = {} # returns a dict with keywords and list of its occurrences __snake_case : Optional[int] = 0 for i in range(len(__magic_name__ ) ): while ( self.find_next_state(__magic_name__ , string[i] ) is None and current_state != 0 ): __snake_case : List[Any] = self.adlist[current_state]["""fail_state"""] __snake_case : List[Any] = self.find_next_state(__magic_name__ , string[i] ) if next_state is None: __snake_case : int = 0 else: __snake_case : Dict = next_state for key in self.adlist[current_state]["output"]: if key not in result: __snake_case : Union[str, Any] = [] result[key].append(i - len(__magic_name__ ) + 1 ) return result if __name__ == "__main__": import doctest doctest.testmod()
26
'''simple docstring''' import os from huggingface_hub.constants import HUGGINGFACE_HUB_CACHE, hf_cache_home __UpperCamelCase = HUGGINGFACE_HUB_CACHE __UpperCamelCase = "config.json" __UpperCamelCase = "diffusion_pytorch_model.bin" __UpperCamelCase = "diffusion_flax_model.msgpack" __UpperCamelCase = "model.onnx" __UpperCamelCase = "diffusion_pytorch_model.safetensors" __UpperCamelCase = "weights.pb" __UpperCamelCase = "https://huggingface.co" __UpperCamelCase = default_cache_path __UpperCamelCase = "diffusers_modules" __UpperCamelCase = os.getenv("HF_MODULES_CACHE", os.path.join(hf_cache_home, "modules")) __UpperCamelCase = ["fp16", "non-ema"] __UpperCamelCase = ".self_attn"
26
1
'''simple docstring''' __UpperCamelCase = "Alexander Joslin" import operator as op from .stack import Stack def _a ( _lowerCamelCase ) -> int: """simple docstring""" __snake_case : Dict = {"""*""": op.mul, """/""": op.truediv, """+""": op.add, """-""": op.sub} __snake_case : Stack[int] = Stack() __snake_case : Stack[str] = Stack() for i in equation: if i.isdigit(): # RULE 1 operand_stack.push(int(_lowerCamelCase ) ) elif i in operators: # RULE 2 operator_stack.push(_lowerCamelCase ) elif i == ")": # RULE 4 __snake_case : Dict = operator_stack.peek() operator_stack.pop() __snake_case : Dict = operand_stack.peek() operand_stack.pop() __snake_case : Tuple = operand_stack.peek() operand_stack.pop() __snake_case : Optional[Any] = operators[opr](_lowerCamelCase , _lowerCamelCase ) operand_stack.push(_lowerCamelCase ) # RULE 5 return operand_stack.peek() if __name__ == "__main__": __UpperCamelCase = "(5 + ((4 * 2) * (2 + 3)))" # answer = 45 print(f"""{equation} = {dijkstras_two_stack_algorithm(equation)}""")
26
'''simple docstring''' import argparse import json import re from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ( MobileNetVaConfig, MobileNetVaForImageClassification, MobileNetVaImageProcessor, load_tf_weights_in_mobilenet_va, ) from transformers.utils import logging logging.set_verbosity_info() __UpperCamelCase = logging.get_logger(__name__) def _a ( _lowerCamelCase ) -> Any: """simple docstring""" __snake_case : Union[str, Any] = MobileNetVaConfig(layer_norm_eps=0.0_01 ) if "_quant" in model_name: raise ValueError("""Quantized models are not supported.""" ) __snake_case : List[Any] = re.match(R"""^mobilenet_v1_([^_]*)_([^_]*)$""" , _lowerCamelCase ) if matches: __snake_case : Optional[Any] = float(matches[1] ) __snake_case : Union[str, Any] = int(matches[2] ) # The TensorFlow version of MobileNetV1 predicts 1001 classes instead of # the usual 1000. The first class (index 0) is "background". __snake_case : Tuple = 1001 __snake_case : Any = """imagenet-1k-id2label.json""" __snake_case : Optional[Any] = """huggingface/label-files""" __snake_case : List[Any] = json.load(open(hf_hub_download(_lowerCamelCase , _lowerCamelCase , repo_type="""dataset""" ) , """r""" ) ) __snake_case : Dict = {int(_lowerCamelCase ) + 1: v for k, v in idalabel.items()} __snake_case : List[str] = """background""" __snake_case : List[str] = idalabel __snake_case : List[Any] = {v: k for k, v in idalabel.items()} return config def _a ( ) -> Optional[Any]: """simple docstring""" __snake_case : Optional[int] = """http://images.cocodataset.org/val2017/000000039769.jpg""" __snake_case : List[Any] = Image.open(requests.get(_lowerCamelCase , stream=_lowerCamelCase ).raw ) return im @torch.no_grad() def _a ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase=False ) -> Optional[Any]: """simple docstring""" __snake_case : Optional[int] = get_mobilenet_va_config(_lowerCamelCase ) # Load 🤗 model __snake_case : Optional[Any] = MobileNetVaForImageClassification(_lowerCamelCase ).eval() # Load weights from TensorFlow checkpoint load_tf_weights_in_mobilenet_va(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) # Check outputs on an image, prepared by MobileNetV1ImageProcessor __snake_case : Optional[int] = MobileNetVaImageProcessor( crop_size={"""width""": config.image_size, """height""": config.image_size} , size={"""shortest_edge""": config.image_size + 32} , ) __snake_case : Tuple = image_processor(images=prepare_img() , return_tensors="""pt""" ) __snake_case : Optional[Any] = model(**_lowerCamelCase ) __snake_case : List[Any] = outputs.logits assert logits.shape == (1, 1001) if model_name == "mobilenet_v1_1.0_224": __snake_case : str = torch.tensor([-4.17_39, -1.12_33, 3.12_05] ) elif model_name == "mobilenet_v1_0.75_192": __snake_case : Tuple = torch.tensor([-3.94_40, -2.31_41, -0.33_33] ) else: __snake_case : List[Any] = None if expected_logits is not None: assert torch.allclose(logits[0, :3] , _lowerCamelCase , atol=1E-4 ) Path(_lowerCamelCase ).mkdir(exist_ok=_lowerCamelCase ) print(F'''Saving model {model_name} to {pytorch_dump_folder_path}''' ) model.save_pretrained(_lowerCamelCase ) print(F'''Saving image processor to {pytorch_dump_folder_path}''' ) image_processor.save_pretrained(_lowerCamelCase ) if push_to_hub: print("""Pushing to the hub...""" ) __snake_case : Optional[Any] = """google/""" + model_name image_processor.push_to_hub(_lowerCamelCase ) model.push_to_hub(_lowerCamelCase ) if __name__ == "__main__": __UpperCamelCase = argparse.ArgumentParser() # Required parameters parser.add_argument( "--model_name", default="mobilenet_v1_1.0_224", type=str, help="Name of the MobileNetV1 model you'd like to convert. Should in the form 'mobilenet_v1_<depth>_<size>'.", ) parser.add_argument( "--checkpoint_path", required=True, type=str, help="Path to the original TensorFlow checkpoint (.ckpt file)." ) parser.add_argument( "--pytorch_dump_folder_path", required=True, type=str, help="Path to the output PyTorch model directory." ) parser.add_argument( "--push_to_hub", action="store_true", help="Whether or not to push the converted model to the 🤗 hub." ) __UpperCamelCase = parser.parse_args() convert_movilevit_checkpoint( args.model_name, args.checkpoint_path, args.pytorch_dump_folder_path, args.push_to_hub )
26
1
'''simple docstring''' import json from typing import List, Optional, Tuple from tokenizers import pre_tokenizers, processors from ...tokenization_utils_base import AddedToken, BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_roberta import RobertaTokenizer __UpperCamelCase = logging.get_logger(__name__) __UpperCamelCase = {"vocab_file": "vocab.json", "merges_file": "merges.txt", "tokenizer_file": "tokenizer.json"} __UpperCamelCase = { "vocab_file": { "roberta-base": "https://huggingface.co/roberta-base/resolve/main/vocab.json", "roberta-large": "https://huggingface.co/roberta-large/resolve/main/vocab.json", "roberta-large-mnli": "https://huggingface.co/roberta-large-mnli/resolve/main/vocab.json", "distilroberta-base": "https://huggingface.co/distilroberta-base/resolve/main/vocab.json", "roberta-base-openai-detector": "https://huggingface.co/roberta-base-openai-detector/resolve/main/vocab.json", "roberta-large-openai-detector": ( "https://huggingface.co/roberta-large-openai-detector/resolve/main/vocab.json" ), }, "merges_file": { "roberta-base": "https://huggingface.co/roberta-base/resolve/main/merges.txt", "roberta-large": "https://huggingface.co/roberta-large/resolve/main/merges.txt", "roberta-large-mnli": "https://huggingface.co/roberta-large-mnli/resolve/main/merges.txt", "distilroberta-base": "https://huggingface.co/distilroberta-base/resolve/main/merges.txt", "roberta-base-openai-detector": "https://huggingface.co/roberta-base-openai-detector/resolve/main/merges.txt", "roberta-large-openai-detector": ( "https://huggingface.co/roberta-large-openai-detector/resolve/main/merges.txt" ), }, "tokenizer_file": { "roberta-base": "https://huggingface.co/roberta-base/resolve/main/tokenizer.json", "roberta-large": "https://huggingface.co/roberta-large/resolve/main/tokenizer.json", "roberta-large-mnli": "https://huggingface.co/roberta-large-mnli/resolve/main/tokenizer.json", "distilroberta-base": "https://huggingface.co/distilroberta-base/resolve/main/tokenizer.json", "roberta-base-openai-detector": ( "https://huggingface.co/roberta-base-openai-detector/resolve/main/tokenizer.json" ), "roberta-large-openai-detector": ( "https://huggingface.co/roberta-large-openai-detector/resolve/main/tokenizer.json" ), }, } __UpperCamelCase = { "roberta-base": 512, "roberta-large": 512, "roberta-large-mnli": 512, "distilroberta-base": 512, "roberta-base-openai-detector": 512, "roberta-large-openai-detector": 512, } class _A ( __lowercase ): lowercase__: List[str] = VOCAB_FILES_NAMES lowercase__: str = PRETRAINED_VOCAB_FILES_MAP lowercase__: List[str] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowercase__: List[str] = ['''input_ids''', '''attention_mask'''] lowercase__: Optional[int] = RobertaTokenizer def __init__( self : List[str] , __magic_name__ : Any=None , __magic_name__ : Dict=None , __magic_name__ : List[str]=None , __magic_name__ : Any="replace" , __magic_name__ : int="<s>" , __magic_name__ : Union[str, Any]="</s>" , __magic_name__ : Any="</s>" , __magic_name__ : List[Any]="<s>" , __magic_name__ : Optional[int]="<unk>" , __magic_name__ : Any="<pad>" , __magic_name__ : str="<mask>" , __magic_name__ : int=False , __magic_name__ : Optional[Any]=True , **__magic_name__ : str , ) -> Optional[Any]: """simple docstring""" super().__init__( __magic_name__ , __magic_name__ , tokenizer_file=__magic_name__ , errors=__magic_name__ , bos_token=__magic_name__ , eos_token=__magic_name__ , sep_token=__magic_name__ , cls_token=__magic_name__ , unk_token=__magic_name__ , pad_token=__magic_name__ , mask_token=__magic_name__ , add_prefix_space=__magic_name__ , trim_offsets=__magic_name__ , **__magic_name__ , ) __snake_case : List[str] = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() ) if pre_tok_state.get("""add_prefix_space""" , __magic_name__ ) != add_prefix_space: __snake_case : Union[str, Any] = getattr(__magic_name__ , pre_tok_state.pop("""type""" ) ) __snake_case : Optional[Any] = add_prefix_space __snake_case : List[str] = pre_tok_class(**__magic_name__ ) __snake_case : int = add_prefix_space __snake_case : Dict = """post_processor""" __snake_case : List[Any] = getattr(self.backend_tokenizer , __magic_name__ , __magic_name__ ) if tokenizer_component_instance: __snake_case : str = json.loads(tokenizer_component_instance.__getstate__() ) # The lists 'sep' and 'cls' must be cased in tuples for the object `post_processor_class` if "sep" in state: __snake_case : Optional[Any] = tuple(state["""sep"""] ) if "cls" in state: __snake_case : str = tuple(state["""cls"""] ) __snake_case : Optional[int] = False if state.get("""add_prefix_space""" , __magic_name__ ) != add_prefix_space: __snake_case : Union[str, Any] = add_prefix_space __snake_case : List[str] = True if state.get("""trim_offsets""" , __magic_name__ ) != trim_offsets: __snake_case : List[str] = trim_offsets __snake_case : Any = True if changes_to_apply: __snake_case : Tuple = getattr(__magic_name__ , state.pop("""type""" ) ) __snake_case : str = component_class(**__magic_name__ ) setattr(self.backend_tokenizer , __magic_name__ , __magic_name__ ) @property def lowercase__ ( self : Union[str, Any] ) -> str: """simple docstring""" if self._mask_token is None: if self.verbose: logger.error("""Using mask_token, but it is not set yet.""" ) return None return str(self._mask_token ) @mask_token.setter def lowercase__ ( self : Optional[Any] , __magic_name__ : List[str] ) -> Dict: """simple docstring""" __snake_case : List[Any] = AddedToken(__magic_name__ , lstrip=__magic_name__ , rstrip=__magic_name__ ) if isinstance(__magic_name__ , __magic_name__ ) else value __snake_case : List[Any] = value def lowercase__ ( self : Union[str, Any] , *__magic_name__ : Tuple , **__magic_name__ : List[Any] ) -> BatchEncoding: """simple docstring""" __snake_case : Any = kwargs.get("""is_split_into_words""" , __magic_name__ ) assert self.add_prefix_space or not is_split_into_words, ( f'''You need to instantiate {self.__class__.__name__} with add_prefix_space=True ''' "to use it with pretokenized inputs." ) return super()._batch_encode_plus(*__magic_name__ , **__magic_name__ ) def lowercase__ ( self : List[Any] , *__magic_name__ : Any , **__magic_name__ : Optional[Any] ) -> BatchEncoding: """simple docstring""" __snake_case : List[str] = kwargs.get("""is_split_into_words""" , __magic_name__ ) assert self.add_prefix_space or not is_split_into_words, ( f'''You need to instantiate {self.__class__.__name__} with add_prefix_space=True ''' "to use it with pretokenized inputs." ) return super()._encode_plus(*__magic_name__ , **__magic_name__ ) def lowercase__ ( self : Dict , __magic_name__ : str , __magic_name__ : Optional[str] = None ) -> Tuple[str]: """simple docstring""" __snake_case : int = self._tokenizer.model.save(__magic_name__ , name=__magic_name__ ) return tuple(__magic_name__ ) def lowercase__ ( self : Optional[Any] , __magic_name__ : Optional[int] , __magic_name__ : Dict=None ) -> Dict: """simple docstring""" __snake_case : Optional[Any] = [self.bos_token_id] + token_ids_a + [self.eos_token_id] if token_ids_a is None: return output return output + [self.eos_token_id] + token_ids_a + [self.eos_token_id] def lowercase__ ( self : List[str] , __magic_name__ : List[int] , __magic_name__ : Optional[List[int]] = None ) -> List[int]: """simple docstring""" __snake_case : List[str] = [self.sep_token_id] __snake_case : Optional[Any] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0]
26
'''simple docstring''' from sklearn.metrics import recall_score import datasets __UpperCamelCase = "\nRecall is the fraction of the positive examples that were correctly labeled by the model as positive. It can be computed with the equation:\nRecall = TP / (TP + FN)\nWhere TP is the true positives and FN is the false negatives.\n" __UpperCamelCase = "\nArgs:\n- **predictions** (`list` of `int`): The predicted labels.\n- **references** (`list` of `int`): The ground truth labels.\n- **labels** (`list` of `int`): The set of labels to include when `average` is not set to `binary`, and their order when average is `None`. Labels present in the data can be excluded in this input, for example to calculate a multiclass average ignoring a majority negative class, while labels not present in the data will result in 0 components in a macro average. For multilabel targets, labels are column indices. By default, all labels in y_true and y_pred are used in sorted order. Defaults to None.\n- **pos_label** (`int`): The class label to use as the 'positive class' when calculating the recall. Defaults to `1`.\n- **average** (`string`): This parameter is required for multiclass/multilabel targets. If None, the scores for each class are returned. Otherwise, this determines the type of averaging performed on the data. Defaults to `'binary'`.\n - `'binary'`: Only report results for the class specified by `pos_label`. This is applicable only if the target labels and predictions are binary.\n - `'micro'`: Calculate metrics globally by counting the total true positives, false negatives, and false positives.\n - `'macro'`: Calculate metrics for each label, and find their unweighted mean. This does not take label imbalance into account.\n - `'weighted'`: Calculate metrics for each label, and find their average weighted by support (the number of true instances for each label). This alters `'macro'` to account for label imbalance. Note that it can result in an F-score that is not between precision and recall.\n - `'samples'`: Calculate metrics for each instance, and find their average (only meaningful for multilabel classification).\n- **sample_weight** (`list` of `float`): Sample weights Defaults to `None`.\n- **zero_division** (): Sets the value to return when there is a zero division. Defaults to .\n - `'warn'`: If there is a zero division, the return value is `0`, but warnings are also raised.\n - `0`: If there is a zero division, the return value is `0`.\n - `1`: If there is a zero division, the return value is `1`.\n\nReturns:\n- **recall** (`float`, or `array` of `float`): Either the general recall score, or the recall scores for individual classes, depending on the values input to `labels` and `average`. Minimum possible value is 0. Maximum possible value is 1. A higher recall means that more of the positive examples have been labeled correctly. Therefore, a higher recall is generally considered better.\n\nExamples:\n\n Example 1-A simple example with some errors\n >>> recall_metric = datasets.load_metric('recall')\n >>> results = recall_metric.compute(references=[0, 0, 1, 1, 1], predictions=[0, 1, 0, 1, 1])\n >>> print(results)\n {'recall': 0.6666666666666666}\n\n Example 2-The same example as Example 1, but with `pos_label=0` instead of the default `pos_label=1`.\n >>> recall_metric = datasets.load_metric('recall')\n >>> results = recall_metric.compute(references=[0, 0, 1, 1, 1], predictions=[0, 1, 0, 1, 1], pos_label=0)\n >>> print(results)\n {'recall': 0.5}\n\n Example 3-The same example as Example 1, but with `sample_weight` included.\n >>> recall_metric = datasets.load_metric('recall')\n >>> sample_weight = [0.9, 0.2, 0.9, 0.3, 0.8]\n >>> results = recall_metric.compute(references=[0, 0, 1, 1, 1], predictions=[0, 1, 0, 1, 1], sample_weight=sample_weight)\n >>> print(results)\n {'recall': 0.55}\n\n Example 4-A multiclass example, using different averages.\n >>> recall_metric = datasets.load_metric('recall')\n >>> predictions = [0, 2, 1, 0, 0, 1]\n >>> references = [0, 1, 2, 0, 1, 2]\n >>> results = recall_metric.compute(predictions=predictions, references=references, average='macro')\n >>> print(results)\n {'recall': 0.3333333333333333}\n >>> results = recall_metric.compute(predictions=predictions, references=references, average='micro')\n >>> print(results)\n {'recall': 0.3333333333333333}\n >>> results = recall_metric.compute(predictions=predictions, references=references, average='weighted')\n >>> print(results)\n {'recall': 0.3333333333333333}\n >>> results = recall_metric.compute(predictions=predictions, references=references, average=None)\n >>> print(results)\n {'recall': array([1., 0., 0.])}\n" __UpperCamelCase = "\n@article{scikit-learn, title={Scikit-learn: Machine Learning in {P}ython}, author={Pedregosa, F. and Varoquaux, G. and Gramfort, A. and Michel, V. and Thirion, B. and Grisel, O. and Blondel, M. and Prettenhofer, P. and Weiss, R. and Dubourg, V. and Vanderplas, J. and Passos, A. and Cournapeau, D. and Brucher, M. and Perrot, M. and Duchesnay, E.}, journal={Journal of Machine Learning Research}, volume={12}, pages={2825--2830}, year={2011}\n" @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class _A ( datasets.Metric ): def lowercase__ ( self : Optional[int] ) -> Any: """simple docstring""" return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { """predictions""": datasets.Sequence(datasets.Value("""int32""" ) ), """references""": datasets.Sequence(datasets.Value("""int32""" ) ), } if self.config_name == """multilabel""" else { """predictions""": datasets.Value("""int32""" ), """references""": datasets.Value("""int32""" ), } ) , reference_urls=["""https://scikit-learn.org/stable/modules/generated/sklearn.metrics.recall_score.html"""] , ) def lowercase__ ( self : Tuple , __magic_name__ : int , __magic_name__ : Union[str, Any] , __magic_name__ : Any=None , __magic_name__ : Optional[Any]=1 , __magic_name__ : List[str]="binary" , __magic_name__ : Tuple=None , __magic_name__ : Dict="warn" , ) -> Any: """simple docstring""" __snake_case : Tuple = recall_score( __magic_name__ , __magic_name__ , labels=__magic_name__ , pos_label=__magic_name__ , average=__magic_name__ , sample_weight=__magic_name__ , zero_division=__magic_name__ , ) return {"recall": float(__magic_name__ ) if score.size == 1 else score}
26
1
'''simple docstring''' from random import randint from tempfile import TemporaryFile import numpy as np def _a ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> Any: """simple docstring""" __snake_case : List[str] = 0 if start < end: __snake_case : int = randint(_lowerCamelCase , _lowerCamelCase ) __snake_case : int = a[end] __snake_case : str = a[pivot] __snake_case : Tuple = temp __snake_case , __snake_case : Optional[int] = _in_place_partition(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) count += _in_place_quick_sort(_lowerCamelCase , _lowerCamelCase , p - 1 ) count += _in_place_quick_sort(_lowerCamelCase , p + 1 , _lowerCamelCase ) return count def _a ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> List[Any]: """simple docstring""" __snake_case : Any = 0 __snake_case : Any = randint(_lowerCamelCase , _lowerCamelCase ) __snake_case : Optional[int] = a[end] __snake_case : Union[str, Any] = a[pivot] __snake_case : Any = temp __snake_case : Any = start - 1 for index in range(_lowerCamelCase , _lowerCamelCase ): count += 1 if a[index] < a[end]: # check if current val is less than pivot value __snake_case : List[Any] = new_pivot_index + 1 __snake_case : Optional[Any] = a[new_pivot_index] __snake_case : Dict = a[index] __snake_case : Optional[Any] = temp __snake_case : Any = a[new_pivot_index + 1] __snake_case : Optional[int] = a[end] __snake_case : Union[str, Any] = temp return new_pivot_index + 1, count __UpperCamelCase = TemporaryFile() __UpperCamelCase = 100 # 1000 elements are to be sorted __UpperCamelCase , __UpperCamelCase = 0, 1 # mean and standard deviation __UpperCamelCase = np.random.normal(mu, sigma, p) np.save(outfile, X) print("The array is") print(X) outfile.seek(0) # using the same array __UpperCamelCase = np.load(outfile) __UpperCamelCase = len(M) - 1 __UpperCamelCase = _in_place_quick_sort(M, 0, r) print( "No of Comparisons for 100 elements selected from a standard normal distribution" "is :" ) print(z)
26
'''simple docstring''' from sklearn.metrics import matthews_corrcoef import datasets __UpperCamelCase = "\nCompute the Matthews correlation coefficient (MCC)\n\nThe Matthews correlation coefficient is used in machine learning as a\nmeasure of the quality of binary and multiclass classifications. It takes\ninto account true and false positives and negatives and is generally\nregarded as a balanced measure which can be used even if the classes are of\nvery different sizes. The MCC is in essence a correlation coefficient value\nbetween -1 and +1. A coefficient of +1 represents a perfect prediction, 0\nan average random prediction and -1 an inverse prediction. The statistic\nis also known as the phi coefficient. [source: Wikipedia]\n" __UpperCamelCase = "\nArgs:\n predictions (list of int): Predicted labels, as returned by a model.\n references (list of int): Ground truth labels.\n sample_weight (list of int, float, or bool): Sample weights. Defaults to `None`.\nReturns:\n matthews_correlation (dict containing float): Matthews correlation.\nExamples:\n Example 1, a basic example with only predictions and references as inputs:\n >>> matthews_metric = datasets.load_metric(\"matthews_correlation\")\n >>> results = matthews_metric.compute(references=[1, 3, 2, 0, 3, 2],\n ... predictions=[1, 2, 2, 0, 3, 3])\n >>> print(round(results['matthews_correlation'], 2))\n 0.54\n\n Example 2, the same example as above, but also including sample weights:\n >>> matthews_metric = datasets.load_metric(\"matthews_correlation\")\n >>> results = matthews_metric.compute(references=[1, 3, 2, 0, 3, 2],\n ... predictions=[1, 2, 2, 0, 3, 3],\n ... sample_weight=[0.5, 3, 1, 1, 1, 2])\n >>> print(round(results['matthews_correlation'], 2))\n 0.1\n\n Example 3, the same example as above, but with sample weights that cause a negative correlation:\n >>> matthews_metric = datasets.load_metric(\"matthews_correlation\")\n >>> results = matthews_metric.compute(references=[1, 3, 2, 0, 3, 2],\n ... predictions=[1, 2, 2, 0, 3, 3],\n ... sample_weight=[0.5, 1, 0, 0, 0, 1])\n >>> print(round(results['matthews_correlation'], 2))\n -0.25\n" __UpperCamelCase = "\\n@article{scikit-learn,\n title={Scikit-learn: Machine Learning in {P}ython},\n author={Pedregosa, F. and Varoquaux, G. and Gramfort, A. and Michel, V.\n and Thirion, B. and Grisel, O. and Blondel, M. and Prettenhofer, P.\n and Weiss, R. and Dubourg, V. and Vanderplas, J. and Passos, A. and\n Cournapeau, D. and Brucher, M. and Perrot, M. and Duchesnay, E.},\n journal={Journal of Machine Learning Research},\n volume={12},\n pages={2825--2830},\n year={2011}\n}\n" @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class _A ( datasets.Metric ): def lowercase__ ( self : Tuple ) -> Dict: """simple docstring""" return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { """predictions""": datasets.Value("""int32""" ), """references""": datasets.Value("""int32""" ), } ) , reference_urls=[ """https://scikit-learn.org/stable/modules/generated/sklearn.metrics.matthews_corrcoef.html""" ] , ) def lowercase__ ( self : List[Any] , __magic_name__ : Tuple , __magic_name__ : List[Any] , __magic_name__ : Union[str, Any]=None ) -> Optional[int]: """simple docstring""" return { "matthews_correlation": float(matthews_corrcoef(__magic_name__ , __magic_name__ , sample_weight=__magic_name__ ) ), }
26
1
'''simple docstring''' from sklearn.metrics import mean_squared_error import datasets __UpperCamelCase = "\\n@article{scikit-learn,\n title={Scikit-learn: Machine Learning in {P}ython},\n author={Pedregosa, F. and Varoquaux, G. and Gramfort, A. and Michel, V.\n and Thirion, B. and Grisel, O. and Blondel, M. and Prettenhofer, P.\n and Weiss, R. and Dubourg, V. and Vanderplas, J. and Passos, A. and\n Cournapeau, D. and Brucher, M. and Perrot, M. and Duchesnay, E.},\n journal={Journal of Machine Learning Research},\n volume={12},\n pages={2825--2830},\n year={2011}\n}\n" __UpperCamelCase = "\\nMean Squared Error(MSE) is the average of the square of difference between the predicted\nand actual values.\n" __UpperCamelCase = "\nArgs:\n predictions: array-like of shape (n_samples,) or (n_samples, n_outputs)\n Estimated target values.\n references: array-like of shape (n_samples,) or (n_samples, n_outputs)\n Ground truth (correct) target values.\n sample_weight: array-like of shape (n_samples,), default=None\n Sample weights.\n multioutput: {\"raw_values\", \"uniform_average\"} or array-like of shape (n_outputs,), default=\"uniform_average\"\n Defines aggregating of multiple output values. Array-like value defines weights used to average errors.\n\n \"raw_values\" : Returns a full set of errors in case of multioutput input.\n\n \"uniform_average\" : Errors of all outputs are averaged with uniform weight.\n\n squared : bool, default=True\n If True returns MSE value, if False returns RMSE (Root Mean Squared Error) value.\n\nReturns:\n mse : mean squared error.\nExamples:\n\n >>> mse_metric = datasets.load_metric(\"mse\")\n >>> predictions = [2.5, 0.0, 2, 8]\n >>> references = [3, -0.5, 2, 7]\n >>> results = mse_metric.compute(predictions=predictions, references=references)\n >>> print(results)\n {'mse': 0.375}\n >>> rmse_result = mse_metric.compute(predictions=predictions, references=references, squared=False)\n >>> print(rmse_result)\n {'mse': 0.6123724356957945}\n\n If you're using multi-dimensional lists, then set the config as follows :\n\n >>> mse_metric = datasets.load_metric(\"mse\", \"multilist\")\n >>> predictions = [[0.5, 1], [-1, 1], [7, -6]]\n >>> references = [[0, 2], [-1, 2], [8, -5]]\n >>> results = mse_metric.compute(predictions=predictions, references=references)\n >>> print(results)\n {'mse': 0.7083333333333334}\n >>> results = mse_metric.compute(predictions=predictions, references=references, multioutput='raw_values')\n >>> print(results) # doctest: +NORMALIZE_WHITESPACE\n {'mse': array([0.41666667, 1. ])}\n" @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class _A ( datasets.Metric ): def lowercase__ ( self : Union[str, Any] ) -> Union[str, Any]: """simple docstring""" return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features(self._get_feature_types() ) , reference_urls=[ """https://scikit-learn.org/stable/modules/generated/sklearn.metrics.mean_squared_error.html""" ] , ) def lowercase__ ( self : Union[str, Any] ) -> Tuple: """simple docstring""" if self.config_name == "multilist": return { "predictions": datasets.Sequence(datasets.Value("""float""" ) ), "references": datasets.Sequence(datasets.Value("""float""" ) ), } else: return { "predictions": datasets.Value("""float""" ), "references": datasets.Value("""float""" ), } def lowercase__ ( self : Optional[Any] , __magic_name__ : Union[str, Any] , __magic_name__ : Any , __magic_name__ : int=None , __magic_name__ : Tuple="uniform_average" , __magic_name__ : Tuple=True ) -> int: """simple docstring""" __snake_case : Union[str, Any] = mean_squared_error( __magic_name__ , __magic_name__ , sample_weight=__magic_name__ , multioutput=__magic_name__ , squared=__magic_name__ ) return {"mse": mse}
26
'''simple docstring''' import json import os from pathlib import Path import pytest from datasets.download.download_config import DownloadConfig from datasets.download.download_manager import DownloadManager from datasets.utils.file_utils import hash_url_to_filename __UpperCamelCase = "http://www.mocksite.com/file1.txt" __UpperCamelCase = "\"text\": [\"foo\", \"foo\"]" __UpperCamelCase = "6d8ce9aa78a471c7477201efbeabd3bb01ac2e7d100a6dc024ba1608361f90a8" class _A : lowercase__: str = 200 lowercase__: List[str] = {'''Content-Length''': '''100'''} lowercase__: Union[str, Any] = {} def lowercase__ ( self : Any , **__magic_name__ : List[Any] ) -> Dict: """simple docstring""" return [bytes(__magic_name__ , """utf-8""" )] def _a ( *_lowerCamelCase , **_lowerCamelCase ) -> List[str]: """simple docstring""" return MockResponse() @pytest.mark.parametrize("""urls_type""" , [str, list, dict] ) def _a ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> List[str]: """simple docstring""" import requests monkeypatch.setattr(_lowerCamelCase , """request""" , _lowerCamelCase ) __snake_case : Union[str, Any] = URL if issubclass(_lowerCamelCase , _lowerCamelCase ): __snake_case : str = url elif issubclass(_lowerCamelCase , _lowerCamelCase ): __snake_case : Dict = [url] elif issubclass(_lowerCamelCase , _lowerCamelCase ): __snake_case : Union[str, Any] = {"""train""": url} __snake_case : Dict = """dummy""" __snake_case : List[str] = """downloads""" __snake_case : List[Any] = tmp_path __snake_case : List[Any] = DownloadConfig( cache_dir=os.path.join(_lowerCamelCase , _lowerCamelCase ) , use_etag=_lowerCamelCase , ) __snake_case : List[str] = DownloadManager(dataset_name=_lowerCamelCase , download_config=_lowerCamelCase ) __snake_case : int = dl_manager.download(_lowerCamelCase ) __snake_case : Tuple = urls for downloaded_paths in [downloaded_paths]: if isinstance(_lowerCamelCase , _lowerCamelCase ): __snake_case : Any = [downloaded_paths] __snake_case : List[Any] = [urls] elif isinstance(_lowerCamelCase , _lowerCamelCase ): assert "train" in downloaded_paths.keys() __snake_case : Tuple = downloaded_paths.values() __snake_case : Optional[int] = urls.values() assert downloaded_paths for downloaded_path, input_url in zip(_lowerCamelCase , _lowerCamelCase ): assert downloaded_path == dl_manager.downloaded_paths[input_url] __snake_case : List[str] = Path(_lowerCamelCase ) __snake_case : Any = downloaded_path.parts assert parts[-1] == HASH assert parts[-2] == cache_subdir assert downloaded_path.exists() __snake_case : Union[str, Any] = downloaded_path.read_text() assert content == CONTENT __snake_case : List[str] = downloaded_path.with_suffix(""".json""" ) assert metadata_downloaded_path.exists() __snake_case : Union[str, Any] = json.loads(metadata_downloaded_path.read_text() ) assert metadata_content == {"url": URL, "etag": None} @pytest.mark.parametrize("""paths_type""" , [str, list, dict] ) def _a ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> List[Any]: """simple docstring""" __snake_case : Any = str(_lowerCamelCase ) if issubclass(_lowerCamelCase , _lowerCamelCase ): __snake_case : Optional[int] = filename elif issubclass(_lowerCamelCase , _lowerCamelCase ): __snake_case : Tuple = [filename] elif issubclass(_lowerCamelCase , _lowerCamelCase ): __snake_case : Dict = {"""train""": filename} __snake_case : Optional[Any] = """dummy""" __snake_case : List[Any] = xz_file.parent __snake_case : int = """extracted""" __snake_case : Dict = DownloadConfig( cache_dir=_lowerCamelCase , use_etag=_lowerCamelCase , ) __snake_case : List[str] = DownloadManager(dataset_name=_lowerCamelCase , download_config=_lowerCamelCase ) __snake_case : Optional[Any] = dl_manager.extract(_lowerCamelCase ) __snake_case : Union[str, Any] = paths for extracted_paths in [extracted_paths]: if isinstance(_lowerCamelCase , _lowerCamelCase ): __snake_case : Dict = [extracted_paths] __snake_case : int = [paths] elif isinstance(_lowerCamelCase , _lowerCamelCase ): assert "train" in extracted_paths.keys() __snake_case : int = extracted_paths.values() __snake_case : int = paths.values() assert extracted_paths for extracted_path, input_path in zip(_lowerCamelCase , _lowerCamelCase ): assert extracted_path == dl_manager.extracted_paths[input_path] __snake_case : Any = Path(_lowerCamelCase ) __snake_case : str = extracted_path.parts assert parts[-1] == hash_url_to_filename(_lowerCamelCase , etag=_lowerCamelCase ) assert parts[-2] == extracted_subdir assert extracted_path.exists() __snake_case : Optional[int] = extracted_path.read_text() __snake_case : str = text_file.read_text() assert extracted_file_content == expected_file_content def _a ( _lowerCamelCase , _lowerCamelCase ) -> Optional[int]: """simple docstring""" assert path.endswith(""".jsonl""" ) for num_items, line in enumerate(_lowerCamelCase , start=1 ): __snake_case : Tuple = json.loads(line.decode("""utf-8""" ) ) assert item.keys() == {"col_1", "col_2", "col_3"} assert num_items == 4 @pytest.mark.parametrize("""archive_jsonl""" , ["""tar_jsonl_path""", """zip_jsonl_path"""] ) def _a ( _lowerCamelCase , _lowerCamelCase ) -> Optional[int]: """simple docstring""" __snake_case : Any = request.getfixturevalue(_lowerCamelCase ) __snake_case : str = DownloadManager() for num_jsonl, (path, file) in enumerate(dl_manager.iter_archive(_lowerCamelCase ) , start=1 ): _test_jsonl(_lowerCamelCase , _lowerCamelCase ) assert num_jsonl == 2 @pytest.mark.parametrize("""archive_nested_jsonl""" , ["""tar_nested_jsonl_path""", """zip_nested_jsonl_path"""] ) def _a ( _lowerCamelCase , _lowerCamelCase ) -> List[str]: """simple docstring""" __snake_case : int = request.getfixturevalue(_lowerCamelCase ) __snake_case : List[str] = DownloadManager() for num_tar, (path, file) in enumerate(dl_manager.iter_archive(_lowerCamelCase ) , start=1 ): for num_jsonl, (subpath, subfile) in enumerate(dl_manager.iter_archive(_lowerCamelCase ) , start=1 ): _test_jsonl(_lowerCamelCase , _lowerCamelCase ) assert num_tar == 1 assert num_jsonl == 2 def _a ( _lowerCamelCase ) -> Any: """simple docstring""" __snake_case : List[str] = DownloadManager() for num_file, file in enumerate(dl_manager.iter_files(_lowerCamelCase ) , start=1 ): assert os.path.basename(_lowerCamelCase ) == ("test.txt" if num_file == 1 else "train.txt") assert num_file == 2
26
1
'''simple docstring''' from sklearn.metrics import matthews_corrcoef import datasets __UpperCamelCase = "\nCompute the Matthews correlation coefficient (MCC)\n\nThe Matthews correlation coefficient is used in machine learning as a\nmeasure of the quality of binary and multiclass classifications. It takes\ninto account true and false positives and negatives and is generally\nregarded as a balanced measure which can be used even if the classes are of\nvery different sizes. The MCC is in essence a correlation coefficient value\nbetween -1 and +1. A coefficient of +1 represents a perfect prediction, 0\nan average random prediction and -1 an inverse prediction. The statistic\nis also known as the phi coefficient. [source: Wikipedia]\n" __UpperCamelCase = "\nArgs:\n predictions (list of int): Predicted labels, as returned by a model.\n references (list of int): Ground truth labels.\n sample_weight (list of int, float, or bool): Sample weights. Defaults to `None`.\nReturns:\n matthews_correlation (dict containing float): Matthews correlation.\nExamples:\n Example 1, a basic example with only predictions and references as inputs:\n >>> matthews_metric = datasets.load_metric(\"matthews_correlation\")\n >>> results = matthews_metric.compute(references=[1, 3, 2, 0, 3, 2],\n ... predictions=[1, 2, 2, 0, 3, 3])\n >>> print(round(results['matthews_correlation'], 2))\n 0.54\n\n Example 2, the same example as above, but also including sample weights:\n >>> matthews_metric = datasets.load_metric(\"matthews_correlation\")\n >>> results = matthews_metric.compute(references=[1, 3, 2, 0, 3, 2],\n ... predictions=[1, 2, 2, 0, 3, 3],\n ... sample_weight=[0.5, 3, 1, 1, 1, 2])\n >>> print(round(results['matthews_correlation'], 2))\n 0.1\n\n Example 3, the same example as above, but with sample weights that cause a negative correlation:\n >>> matthews_metric = datasets.load_metric(\"matthews_correlation\")\n >>> results = matthews_metric.compute(references=[1, 3, 2, 0, 3, 2],\n ... predictions=[1, 2, 2, 0, 3, 3],\n ... sample_weight=[0.5, 1, 0, 0, 0, 1])\n >>> print(round(results['matthews_correlation'], 2))\n -0.25\n" __UpperCamelCase = "\\n@article{scikit-learn,\n title={Scikit-learn: Machine Learning in {P}ython},\n author={Pedregosa, F. and Varoquaux, G. and Gramfort, A. and Michel, V.\n and Thirion, B. and Grisel, O. and Blondel, M. and Prettenhofer, P.\n and Weiss, R. and Dubourg, V. and Vanderplas, J. and Passos, A. and\n Cournapeau, D. and Brucher, M. and Perrot, M. and Duchesnay, E.},\n journal={Journal of Machine Learning Research},\n volume={12},\n pages={2825--2830},\n year={2011}\n}\n" @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class _A ( datasets.Metric ): def lowercase__ ( self : Tuple ) -> Dict: """simple docstring""" return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { """predictions""": datasets.Value("""int32""" ), """references""": datasets.Value("""int32""" ), } ) , reference_urls=[ """https://scikit-learn.org/stable/modules/generated/sklearn.metrics.matthews_corrcoef.html""" ] , ) def lowercase__ ( self : List[Any] , __magic_name__ : Tuple , __magic_name__ : List[Any] , __magic_name__ : Union[str, Any]=None ) -> Optional[int]: """simple docstring""" return { "matthews_correlation": float(matthews_corrcoef(__magic_name__ , __magic_name__ , sample_weight=__magic_name__ ) ), }
26
'''simple docstring''' def _a ( _lowerCamelCase = 100 ) -> int: """simple docstring""" __snake_case : Any = n * (n + 1) * (2 * n + 1) / 6 __snake_case : List[Any] = (n * (n + 1) / 2) ** 2 return int(square_of_sum - sum_of_squares ) if __name__ == "__main__": print(f"""{solution() = }""")
26
1
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging __UpperCamelCase = logging.get_logger(__name__) __UpperCamelCase = { "facebook/xglm-564M": "https://huggingface.co/facebook/xglm-564M/resolve/main/config.json", # See all XGLM models at https://huggingface.co/models?filter=xglm } class _A ( __lowercase ): lowercase__: Optional[int] = '''xglm''' lowercase__: Tuple = ['''past_key_values'''] lowercase__: Any = { '''num_attention_heads''': '''attention_heads''', '''hidden_size''': '''d_model''', '''num_hidden_layers''': '''num_layers''', } def __init__( self : Tuple , __magic_name__ : str=25_60_08 , __magic_name__ : int=20_48 , __magic_name__ : List[Any]=10_24 , __magic_name__ : Union[str, Any]=40_96 , __magic_name__ : Optional[Any]=24 , __magic_name__ : Union[str, Any]=16 , __magic_name__ : Dict="gelu" , __magic_name__ : Union[str, Any]=0.1 , __magic_name__ : Any=0.1 , __magic_name__ : Optional[int]=0.0 , __magic_name__ : Dict=0.0 , __magic_name__ : List[Any]=0.02 , __magic_name__ : Any=True , __magic_name__ : List[str]=True , __magic_name__ : Union[str, Any]=2 , __magic_name__ : Any=1 , __magic_name__ : Tuple=0 , __magic_name__ : Any=2 , **__magic_name__ : int , ) -> int: """simple docstring""" __snake_case : Tuple = vocab_size __snake_case : Any = max_position_embeddings __snake_case : Optional[Any] = d_model __snake_case : Tuple = ffn_dim __snake_case : Optional[int] = num_layers __snake_case : Union[str, Any] = attention_heads __snake_case : Union[str, Any] = activation_function __snake_case : Optional[int] = dropout __snake_case : Optional[int] = attention_dropout __snake_case : Any = activation_dropout __snake_case : Dict = layerdrop __snake_case : List[Any] = init_std __snake_case : List[Any] = scale_embedding # scale factor will be sqrt(d_model) if True __snake_case : Any = use_cache super().__init__( pad_token_id=__magic_name__ , bos_token_id=__magic_name__ , eos_token_id=__magic_name__ , decoder_start_token_id=__magic_name__ , **__magic_name__ , )
26
'''simple docstring''' from __future__ import annotations from typing import Any class _A : def __init__( self : str , __magic_name__ : int , __magic_name__ : int , __magic_name__ : float = 0 ) -> None: """simple docstring""" __snake_case , __snake_case : Optional[Any] = row, column __snake_case : Dict = [[default_value for c in range(__magic_name__ )] for r in range(__magic_name__ )] def __str__( self : List[Any] ) -> str: """simple docstring""" __snake_case : Dict = f'''Matrix consist of {self.row} rows and {self.column} columns\n''' # Make string identifier __snake_case : Optional[int] = 0 for row_vector in self.array: for obj in row_vector: __snake_case : Optional[int] = max(__magic_name__ , len(str(__magic_name__ ) ) ) __snake_case : str = f'''%{max_element_length}s''' # Make string and return def single_line(__magic_name__ : list[float] ) -> str: nonlocal string_format_identifier __snake_case : Union[str, Any] = """[""" line += ", ".join(string_format_identifier % (obj,) for obj in row_vector ) line += "]" return line s += "\n".join(single_line(__magic_name__ ) for row_vector in self.array ) return s def __repr__( self : Optional[int] ) -> str: """simple docstring""" return str(self ) def lowercase__ ( self : Dict , __magic_name__ : tuple[int, int] ) -> bool: """simple docstring""" if not (isinstance(__magic_name__ , (list, tuple) ) and len(__magic_name__ ) == 2): return False elif not (0 <= loc[0] < self.row and 0 <= loc[1] < self.column): return False else: return True def __getitem__( self : int , __magic_name__ : tuple[int, int] ) -> Any: """simple docstring""" assert self.validate_indicies(__magic_name__ ) return self.array[loc[0]][loc[1]] def __setitem__( self : List[str] , __magic_name__ : tuple[int, int] , __magic_name__ : float ) -> None: """simple docstring""" assert self.validate_indicies(__magic_name__ ) __snake_case : Optional[int] = value def __add__( self : Any , __magic_name__ : Matrix ) -> Matrix: """simple docstring""" assert isinstance(__magic_name__ , __magic_name__ ) assert self.row == another.row and self.column == another.column # Add __snake_case : Union[str, Any] = Matrix(self.row , self.column ) for r in range(self.row ): for c in range(self.column ): __snake_case : List[Any] = self[r, c] + another[r, c] return result def __neg__( self : Tuple ) -> Matrix: """simple docstring""" __snake_case : Tuple = Matrix(self.row , self.column ) for r in range(self.row ): for c in range(self.column ): __snake_case : List[Any] = -self[r, c] return result def __sub__( self : Optional[int] , __magic_name__ : Matrix ) -> Matrix: """simple docstring""" return self + (-another) def __mul__( self : List[Any] , __magic_name__ : int | float | Matrix ) -> Matrix: """simple docstring""" if isinstance(__magic_name__ , (int, float) ): # Scalar multiplication __snake_case : Optional[int] = Matrix(self.row , self.column ) for r in range(self.row ): for c in range(self.column ): __snake_case : Tuple = self[r, c] * another return result elif isinstance(__magic_name__ , __magic_name__ ): # Matrix multiplication assert self.column == another.row __snake_case : Dict = Matrix(self.row , another.column ) for r in range(self.row ): for c in range(another.column ): for i in range(self.column ): result[r, c] += self[r, i] * another[i, c] return result else: __snake_case : Optional[int] = f'''Unsupported type given for another ({type(__magic_name__ )})''' raise TypeError(__magic_name__ ) def lowercase__ ( self : str ) -> Matrix: """simple docstring""" __snake_case : Any = Matrix(self.column , self.row ) for r in range(self.row ): for c in range(self.column ): __snake_case : str = self[r, c] return result def lowercase__ ( self : Union[str, Any] , __magic_name__ : Matrix , __magic_name__ : Matrix ) -> Any: """simple docstring""" assert isinstance(__magic_name__ , __magic_name__ ) and isinstance(__magic_name__ , __magic_name__ ) assert self.row == self.column == u.row == v.row # u, v should be column vector assert u.column == v.column == 1 # u, v should be column vector # Calculate __snake_case : List[str] = v.transpose() __snake_case : Tuple = (v_t * self * u)[0, 0] + 1 if numerator_factor == 0: return None # It's not invertable return self - ((self * u) * (v_t * self) * (1.0 / numerator_factor)) # Testing if __name__ == "__main__": def _a ( ) -> None: """simple docstring""" __snake_case : Tuple = Matrix(3 , 3 , 0 ) for i in range(3 ): __snake_case : Any = 1 print(F'''a^(-1) is {ainv}''' ) # u, v __snake_case : Dict = Matrix(3 , 1 , 0 ) __snake_case , __snake_case , __snake_case : Union[str, Any] = 1, 2, -3 __snake_case : str = Matrix(3 , 1 , 0 ) __snake_case , __snake_case , __snake_case : Tuple = 4, -2, 5 print(F'''u is {u}''' ) print(F'''v is {v}''' ) print(F'''uv^T is {u * v.transpose()}''' ) # Sherman Morrison print(F'''(a + uv^T)^(-1) is {ainv.sherman_morrison(_lowerCamelCase , _lowerCamelCase )}''' ) def _a ( ) -> None: """simple docstring""" import doctest doctest.testmod() testa()
26
1
'''simple docstring''' import unittest from typing import Dict, List, Optional, Union import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import BridgeTowerImageProcessor class _A ( unittest.TestCase ): def __init__( self : Tuple , __magic_name__ : List[Any] , __magic_name__ : bool = True , __magic_name__ : Dict[str, int] = None , __magic_name__ : int = 32 , __magic_name__ : bool = True , __magic_name__ : Union[int, float] = 1 / 2_55 , __magic_name__ : bool = True , __magic_name__ : bool = True , __magic_name__ : Optional[Union[float, List[float]]] = [0.48145466, 0.4578275, 0.40821073] , __magic_name__ : Optional[Union[float, List[float]]] = [0.26862954, 0.26130258, 0.27577711] , __magic_name__ : bool = True , __magic_name__ : Any=7 , __magic_name__ : Tuple=30 , __magic_name__ : List[Any]=4_00 , __magic_name__ : Optional[Any]=3 , ) -> Tuple: """simple docstring""" __snake_case : int = parent __snake_case : Optional[Any] = do_resize __snake_case : List[str] = size if size is not None else {"""shortest_edge""": 2_88} __snake_case : Any = size_divisor __snake_case : List[str] = do_rescale __snake_case : Optional[int] = rescale_factor __snake_case : Any = do_normalize __snake_case : Any = do_center_crop __snake_case : Tuple = image_mean __snake_case : Tuple = image_std __snake_case : int = do_pad __snake_case : Union[str, Any] = batch_size __snake_case : Union[str, Any] = num_channels __snake_case : Optional[int] = min_resolution __snake_case : str = max_resolution def lowercase__ ( self : List[Any] ) -> Any: """simple docstring""" return { "image_mean": self.image_mean, "image_std": self.image_std, "do_normalize": self.do_normalize, "do_resize": self.do_resize, "size": self.size, "size_divisor": self.size_divisor, } def lowercase__ ( self : str , __magic_name__ : Optional[Any] , __magic_name__ : Union[str, Any]=False ) -> Any: """simple docstring""" if not batched: __snake_case : Optional[Any] = self.size["""shortest_edge"""] __snake_case : Optional[int] = image_inputs[0] if isinstance(__magic_name__ , Image.Image ): __snake_case , __snake_case : List[Any] = image.size else: __snake_case , __snake_case : List[str] = image.shape[1], image.shape[2] __snake_case : Optional[Any] = size / min(__magic_name__ , __magic_name__ ) if h < w: __snake_case , __snake_case : List[str] = size, scale * w else: __snake_case , __snake_case : int = scale * h, size __snake_case : str = int((13_33 / 8_00) * size ) if max(__magic_name__ , __magic_name__ ) > max_size: __snake_case : Dict = max_size / max(__magic_name__ , __magic_name__ ) __snake_case : str = newh * scale __snake_case : List[Any] = neww * scale __snake_case , __snake_case : int = int(newh + 0.5 ), int(neww + 0.5 ) __snake_case , __snake_case : Tuple = ( newh // self.size_divisor * self.size_divisor, neww // self.size_divisor * self.size_divisor, ) else: __snake_case : Tuple = [] for image in image_inputs: __snake_case , __snake_case : Tuple = self.get_expected_values([image] ) expected_values.append((expected_height, expected_width) ) __snake_case : Dict = max(__magic_name__ , key=lambda __magic_name__ : item[0] )[0] __snake_case : Union[str, Any] = max(__magic_name__ , key=lambda __magic_name__ : item[1] )[1] return expected_height, expected_width @require_torch @require_vision class _A ( __lowercase , unittest.TestCase ): lowercase__: Any = BridgeTowerImageProcessor if is_vision_available() else None def lowercase__ ( self : List[str] ) -> Dict: """simple docstring""" __snake_case : Optional[int] = BridgeTowerImageProcessingTester(self ) @property def lowercase__ ( self : Optional[Any] ) -> Any: """simple docstring""" return self.image_processor_tester.prepare_image_processor_dict() def lowercase__ ( self : int ) -> Union[str, Any]: """simple docstring""" __snake_case : Optional[int] = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(__magic_name__ , """image_mean""" ) ) self.assertTrue(hasattr(__magic_name__ , """image_std""" ) ) self.assertTrue(hasattr(__magic_name__ , """do_normalize""" ) ) self.assertTrue(hasattr(__magic_name__ , """do_resize""" ) ) self.assertTrue(hasattr(__magic_name__ , """size""" ) ) self.assertTrue(hasattr(__magic_name__ , """size_divisor""" ) ) def lowercase__ ( self : Any ) -> Optional[Any]: """simple docstring""" pass def lowercase__ ( self : Dict ) -> List[str]: """simple docstring""" __snake_case : Dict = self.image_processing_class(**self.image_processor_dict ) # create random PIL images __snake_case : Optional[Any] = prepare_image_inputs(self.image_processor_tester , equal_resolution=__magic_name__ ) for image in image_inputs: self.assertIsInstance(__magic_name__ , Image.Image ) # Test not batched input __snake_case : Any = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values __snake_case , __snake_case : int = self.image_processor_tester.get_expected_values(__magic_name__ ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched __snake_case : Dict = image_processing(__magic_name__ , return_tensors="""pt""" ).pixel_values __snake_case , __snake_case : Optional[int] = self.image_processor_tester.get_expected_values(__magic_name__ , batched=__magic_name__ ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def lowercase__ ( self : Any ) -> str: """simple docstring""" __snake_case : str = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors __snake_case : Optional[Any] = prepare_image_inputs(self.image_processor_tester , equal_resolution=__magic_name__ , numpify=__magic_name__ ) for image in image_inputs: self.assertIsInstance(__magic_name__ , np.ndarray ) # Test not batched input __snake_case : int = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values __snake_case , __snake_case : Optional[int] = self.image_processor_tester.get_expected_values(__magic_name__ ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched __snake_case : Any = image_processing(__magic_name__ , return_tensors="""pt""" ).pixel_values __snake_case , __snake_case : Tuple = self.image_processor_tester.get_expected_values(__magic_name__ , batched=__magic_name__ ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def lowercase__ ( self : str ) -> Any: """simple docstring""" __snake_case : Union[str, Any] = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors __snake_case : Dict = prepare_image_inputs(self.image_processor_tester , equal_resolution=__magic_name__ , torchify=__magic_name__ ) for image in image_inputs: self.assertIsInstance(__magic_name__ , torch.Tensor ) # Test not batched input __snake_case : str = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values __snake_case , __snake_case : List[Any] = self.image_processor_tester.get_expected_values(__magic_name__ ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched __snake_case : Optional[int] = image_processing(__magic_name__ , return_tensors="""pt""" ).pixel_values __snake_case , __snake_case : List[Any] = self.image_processor_tester.get_expected_values(__magic_name__ , batched=__magic_name__ ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , )
26
'''simple docstring''' import argparse import json import os import torch from torch import nn from transformers import NllbMoeConfig, NllbMoeModel from transformers.modeling_utils import dtype_byte_size from transformers.utils import WEIGHTS_INDEX_NAME, WEIGHTS_NAME def _a ( _lowerCamelCase ) -> List[Any]: """simple docstring""" __snake_case : Union[str, Any] = [ """encoder.version""", """decoder.version""", """model.encoder.version""", """model.decoder.version""", """decoder.output_projection.weight""", """_float_tensor""", """encoder.embed_positions._float_tensor""", """decoder.embed_positions._float_tensor""", ] for k in ignore_keys: state_dict.pop(_lowerCamelCase , _lowerCamelCase ) def _a ( _lowerCamelCase ) -> List[str]: """simple docstring""" __snake_case , __snake_case : Dict = emb.weight.shape __snake_case : Optional[int] = nn.Linear(_lowerCamelCase , _lowerCamelCase , bias=_lowerCamelCase ) __snake_case : Union[str, Any] = emb.weight.data return lin_layer def _a ( _lowerCamelCase , _lowerCamelCase=None ) -> Union[str, Any]: """simple docstring""" __snake_case : Any = {} for old_key in state_dict.keys(): __snake_case : Union[str, Any] = old_key if "moe_layer.experts." in key: if expert_idx is not None: __snake_case : Tuple = key.replace("""moe_layer.experts.0""" , F'''ffn.experts.expert_{expert_idx}''' ) else: __snake_case : Optional[int] = key.replace("""moe_layer.experts.""" , """ffn.experts.expert_""" ) if "gate" in key: __snake_case : Dict = key.replace(""".moe_layer.gate.wg""" , """.ffn.router.classifier""" ) if "fc2" and "experts" not in key: __snake_case : Union[str, Any] = key.replace(""".fc2.""" , """.ffn.fc2.""" ) if "fc1" and "experts" not in key: __snake_case : Optional[int] = key.replace(""".fc1.""" , """.ffn.fc1.""" ) if ".encoder_attn." in key: __snake_case : Tuple = key.replace(""".encoder_attn.""" , """.cross_attention.""" ) if "encoder_attn_layer_norm" in key: __snake_case : Union[str, Any] = key.replace("""encoder_attn_layer_norm""" , """cross_attention_layer_norm""" ) if "final_layer_norm" in key: __snake_case : str = key.replace("""final_layer_norm""" , """ff_layer_norm""" ) __snake_case : str = state_dict[old_key] return new_dict def _a ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase = WEIGHTS_NAME ) -> Dict: """simple docstring""" __snake_case : Optional[int] = [] __snake_case : Dict = 0 os.makedirs(_lowerCamelCase , exist_ok=_lowerCamelCase ) for expert in range(_lowerCamelCase ): __snake_case : Tuple = switch_checkpoint_path + F'''-rank-{expert}.pt''' if os.path.isfile(_lowerCamelCase ): __snake_case : Dict = torch.load(_lowerCamelCase )["""model"""] remove_ignore_keys_(_lowerCamelCase ) __snake_case : Optional[Any] = rename_fairseq_keys(_lowerCamelCase , _lowerCamelCase ) __snake_case : List[Any] = os.path.join( _lowerCamelCase , weights_name.replace(""".bin""" , F'''-{len(_lowerCamelCase )+1:05d}-of-???.bin''' ) ) torch.save(_lowerCamelCase , _lowerCamelCase ) sharded_state_dicts.append(expert_state.keys() ) total_size += sum([value.numel() for key, value in expert_state.items()] ) * dtype_byte_size( expert_state[list(_lowerCamelCase )[0]].dtype ) # Add the last block __snake_case : Optional[Any] = os.path.join(_lowerCamelCase , weights_name.replace(""".bin""" , F'''-{len(_lowerCamelCase )+1:05d}-of-???.bin''' ) ) __snake_case : str = torch.load(switch_checkpoint_path + """-shared.pt""" )["""model"""] remove_ignore_keys_(_lowerCamelCase ) __snake_case : Optional[Any] = rename_fairseq_keys(_lowerCamelCase , _lowerCamelCase ) __snake_case : List[str] = shared_weights["""decoder.embed_tokens.weight"""] sharded_state_dicts.append(shared_weights.keys() ) # If we only have the shared weights (dummy model/experts saved on the same file) if len(_lowerCamelCase ) == 1: __snake_case : Optional[Any] = os.path.join(_lowerCamelCase , _lowerCamelCase ) torch.save(_lowerCamelCase , _lowerCamelCase ) return {weights_name: sharded_state_dicts[0]}, None else: torch.save(_lowerCamelCase , _lowerCamelCase ) # Otherwise, let's build the index __snake_case : Tuple = {} for idx, shard in enumerate(_lowerCamelCase ): __snake_case : Any = weights_name.replace(""".bin""" , F'''-{idx+1:05d}-of-{len(_lowerCamelCase ):05d}.bin''' ) __snake_case : int = os.path.join(_lowerCamelCase , weights_name.replace(""".bin""" , F'''-{idx+1:05d}-of-???.bin''' ) ) os.rename(_lowerCamelCase , os.path.join(_lowerCamelCase , _lowerCamelCase ) ) for key in shard: __snake_case : str = shard_file # Add the metadata __snake_case : Optional[Any] = {"""total_size""": total_size} __snake_case : int = {"""metadata""": metadata, """weight_map""": weight_map} with open(os.path.join(_lowerCamelCase , _lowerCamelCase ) , """w""" , encoding="""utf-8""" ) as f: __snake_case : Union[str, Any] = json.dumps(_lowerCamelCase , indent=2 , sort_keys=_lowerCamelCase ) + """\n""" f.write(_lowerCamelCase ) return metadata, index if __name__ == "__main__": __UpperCamelCase = argparse.ArgumentParser() # Required parameters parser.add_argument( "--nllb_moe_checkpoint_path", default="/home/arthur_huggingface_co/fairseq/weights/checkpoints/model_moe_54b/checkpoint_2_300000", type=str, required=False, help="Path to a directory containing a folder per layer. Follows the original Google format.", ) parser.add_argument("--dtype", default="float32", type=str, required=False, help="dtype of the saved model") parser.add_argument( "--pytorch_dump_folder_path", default="/home/arthur_huggingface_co/fairseq/weights/checkpoints/hf-converted-moe-54b", type=str, required=False, help="Path to the output pytorch model.", ) __UpperCamelCase = parser.parse_args() __UpperCamelCase , __UpperCamelCase = shard_on_the_fly( args.nllb_moe_checkpoint_path, args.pytorch_dump_folder_path, 128, args.dtype, ) __UpperCamelCase = NllbMoeConfig.from_pretrained( "facebook/nllb-200-3.3B", encoder_sparse_step=4, decoder_sparse_step=4, num_experts=128 ) config.save_pretrained(args.pytorch_dump_folder_path) __UpperCamelCase = NllbMoeModel.from_pretrained(args.pytorch_dump_folder_path) print("Done") model.save_pretrained(args.pytorch_dump_folder_path)
26
1
'''simple docstring''' from __future__ import annotations from collections import deque from collections.abc import Iterator from dataclasses import dataclass @dataclass class _A : lowercase__: int lowercase__: int class _A : def __init__( self : Optional[int] , __magic_name__ : int ) -> Optional[int]: """simple docstring""" __snake_case : list[list[Edge]] = [[] for _ in range(__magic_name__ )] __snake_case : Tuple = size def __getitem__( self : Optional[int] , __magic_name__ : int ) -> Iterator[Edge]: """simple docstring""" return iter(self._graph[vertex] ) @property def lowercase__ ( self : List[str] ) -> Dict: """simple docstring""" return self._size def lowercase__ ( self : Optional[int] , __magic_name__ : int , __magic_name__ : int , __magic_name__ : int ) -> str: """simple docstring""" if weight not in (0, 1): raise ValueError("""Edge weight must be either 0 or 1.""" ) if to_vertex < 0 or to_vertex >= self.size: raise ValueError("""Vertex indexes must be in [0; size).""" ) self._graph[from_vertex].append(Edge(__magic_name__ , __magic_name__ ) ) def lowercase__ ( self : Optional[Any] , __magic_name__ : int , __magic_name__ : int ) -> int | None: """simple docstring""" __snake_case : Tuple = deque([start_vertex] ) __snake_case : list[int | None] = [None] * self.size __snake_case : int = 0 while queue: __snake_case : str = queue.popleft() __snake_case : Union[str, Any] = distances[current_vertex] if current_distance is None: continue for edge in self[current_vertex]: __snake_case : int = current_distance + edge.weight __snake_case : Optional[int] = distances[edge.destination_vertex] if ( isinstance(__magic_name__ , __magic_name__ ) and new_distance >= dest_vertex_distance ): continue __snake_case : Optional[Any] = new_distance if edge.weight == 0: queue.appendleft(edge.destination_vertex ) else: queue.append(edge.destination_vertex ) if distances[finish_vertex] is None: raise ValueError("""No path from start_vertex to finish_vertex.""" ) return distances[finish_vertex] if __name__ == "__main__": import doctest doctest.testmod()
26
'''simple docstring''' import cva import numpy as np class _A : def __init__( self : Any , __magic_name__ : float , __magic_name__ : int ) -> Optional[int]: """simple docstring""" if k in (0.04, 0.06): __snake_case : List[str] = k __snake_case : int = window_size else: raise ValueError("""invalid k value""" ) def __str__( self : Union[str, Any] ) -> str: """simple docstring""" return str(self.k ) def lowercase__ ( self : Dict , __magic_name__ : str ) -> tuple[cva.Mat, list[list[int]]]: """simple docstring""" __snake_case : Dict = cva.imread(__magic_name__ , 0 ) __snake_case , __snake_case : List[str] = img.shape __snake_case : list[list[int]] = [] __snake_case : str = img.copy() __snake_case : Tuple = cva.cvtColor(__magic_name__ , cva.COLOR_GRAY2RGB ) __snake_case , __snake_case : List[Any] = np.gradient(__magic_name__ ) __snake_case : Optional[Any] = dx**2 __snake_case : Tuple = dy**2 __snake_case : List[Any] = dx * dy __snake_case : List[Any] = 0.04 __snake_case : Tuple = self.window_size // 2 for y in range(__magic_name__ , h - offset ): for x in range(__magic_name__ , w - offset ): __snake_case : Dict = ixx[ y - offset : y + offset + 1, x - offset : x + offset + 1 ].sum() __snake_case : Optional[int] = iyy[ y - offset : y + offset + 1, x - offset : x + offset + 1 ].sum() __snake_case : str = ixy[ y - offset : y + offset + 1, x - offset : x + offset + 1 ].sum() __snake_case : List[str] = (wxx * wyy) - (wxy**2) __snake_case : Dict = wxx + wyy __snake_case : List[str] = det - k * (trace**2) # Can change the value if r > 0.5: corner_list.append([x, y, r] ) color_img.itemset((y, x, 0) , 0 ) color_img.itemset((y, x, 1) , 0 ) color_img.itemset((y, x, 2) , 2_55 ) return color_img, corner_list if __name__ == "__main__": __UpperCamelCase = HarrisCorner(0.04, 3) __UpperCamelCase , __UpperCamelCase = edge_detect.detect("path_to_image") cva.imwrite("detect.png", color_img)
26
1
'''simple docstring''' from random import shuffle import tensorflow as tf from numpy import array def _a ( _lowerCamelCase , _lowerCamelCase ) -> str: """simple docstring""" __snake_case : str = int(_lowerCamelCase ) assert noofclusters < len(_lowerCamelCase ) # Find out the dimensionality __snake_case : Tuple = len(vectors[0] ) # Will help select random centroids from among the available vectors __snake_case : Dict = list(range(len(_lowerCamelCase ) ) ) shuffle(_lowerCamelCase ) # GRAPH OF COMPUTATION # We initialize a new graph and set it as the default during each run # of this algorithm. This ensures that as this function is called # multiple times, the default graph doesn't keep getting crowded with # unused ops and Variables from previous function calls. __snake_case : Dict = tf.Graph() with graph.as_default(): # SESSION OF COMPUTATION __snake_case : List[Any] = tf.Session() ##CONSTRUCTING THE ELEMENTS OF COMPUTATION ##First lets ensure we have a Variable vector for each centroid, ##initialized to one of the vectors from the available data points __snake_case : List[Any] = [ tf.Variable(vectors[vector_indices[i]] ) for i in range(_lowerCamelCase ) ] ##These nodes will assign the centroid Variables the appropriate ##values __snake_case : Dict = tf.placeholder("""float64""" , [dim] ) __snake_case : Optional[int] = [] for centroid in centroids: cent_assigns.append(tf.assign(_lowerCamelCase , _lowerCamelCase ) ) ##Variables for cluster assignments of individual vectors(initialized ##to 0 at first) __snake_case : Dict = [tf.Variable(0 ) for i in range(len(_lowerCamelCase ) )] ##These nodes will assign an assignment Variable the appropriate ##value __snake_case : Optional[Any] = tf.placeholder("""int32""" ) __snake_case : Any = [] for assignment in assignments: cluster_assigns.append(tf.assign(_lowerCamelCase , _lowerCamelCase ) ) ##Now lets construct the node that will compute the mean # The placeholder for the input __snake_case : Union[str, Any] = tf.placeholder("""float""" , [None, dim] ) # The Node/op takes the input and computes a mean along the 0th # dimension, i.e. the list of input vectors __snake_case : Optional[int] = tf.reduce_mean(_lowerCamelCase , 0 ) ##Node for computing Euclidean distances # Placeholders for input __snake_case : int = tf.placeholder("""float""" , [dim] ) __snake_case : Optional[int] = tf.placeholder("""float""" , [dim] ) __snake_case : int = tf.sqrt(tf.reduce_sum(tf.pow(tf.sub(_lowerCamelCase , _lowerCamelCase ) , 2 ) ) ) ##This node will figure out which cluster to assign a vector to, ##based on Euclidean distances of the vector from the centroids. # Placeholder for input __snake_case : Optional[Any] = tf.placeholder("""float""" , [noofclusters] ) __snake_case : Optional[int] = tf.argmin(_lowerCamelCase , 0 ) ##INITIALIZING STATE VARIABLES ##This will help initialization of all Variables defined with respect ##to the graph. The Variable-initializer should be defined after ##all the Variables have been constructed, so that each of them ##will be included in the initialization. __snake_case : str = tf.initialize_all_variables() # Initialize all variables sess.run(_lowerCamelCase ) ##CLUSTERING ITERATIONS # Now perform the Expectation-Maximization steps of K-Means clustering # iterations. To keep things simple, we will only do a set number of # iterations, instead of using a Stopping Criterion. __snake_case : int = 100 for _ in range(_lowerCamelCase ): ##EXPECTATION STEP ##Based on the centroid locations till last iteration, compute ##the _expected_ centroid assignments. # Iterate over each vector for vector_n in range(len(_lowerCamelCase ) ): __snake_case : Optional[int] = vectors[vector_n] # Compute Euclidean distance between this vector and each # centroid. Remember that this list cannot be named #'centroid_distances', since that is the input to the # cluster assignment node. __snake_case : Union[str, Any] = [ sess.run(_lowerCamelCase , feed_dict={va: vect, va: sess.run(_lowerCamelCase )} ) for centroid in centroids ] # Now use the cluster assignment node, with the distances # as the input __snake_case : Dict = sess.run( _lowerCamelCase , feed_dict={centroid_distances: distances} ) # Now assign the value to the appropriate state variable sess.run( cluster_assigns[vector_n] , feed_dict={assignment_value: assignment} ) ##MAXIMIZATION STEP # Based on the expected state computed from the Expectation Step, # compute the locations of the centroids so as to maximize the # overall objective of minimizing within-cluster Sum-of-Squares for cluster_n in range(_lowerCamelCase ): # Collect all the vectors assigned to this cluster __snake_case : str = [ vectors[i] for i in range(len(_lowerCamelCase ) ) if sess.run(assignments[i] ) == cluster_n ] # Compute new centroid location __snake_case : str = sess.run( _lowerCamelCase , feed_dict={mean_input: array(_lowerCamelCase )} ) # Assign value to appropriate variable sess.run( cent_assigns[cluster_n] , feed_dict={centroid_value: new_location} ) # Return centroids and assignments __snake_case : Tuple = sess.run(_lowerCamelCase ) __snake_case : str = sess.run(_lowerCamelCase ) return centroids, assignments
26
'''simple docstring''' import warnings from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding class _A ( __lowercase ): lowercase__: Any = ['''image_processor''', '''tokenizer'''] lowercase__: Any = '''CLIPImageProcessor''' lowercase__: Optional[Any] = ('''CLIPTokenizer''', '''CLIPTokenizerFast''') def __init__( self : int , __magic_name__ : Dict=None , __magic_name__ : Dict=None , **__magic_name__ : Union[str, Any] ) -> Any: """simple docstring""" __snake_case : Optional[Any] = None if "feature_extractor" in kwargs: warnings.warn( """The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`""" """ instead.""" , __magic_name__ , ) __snake_case : List[Any] = kwargs.pop("""feature_extractor""" ) __snake_case : List[str] = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError("""You need to specify an `image_processor`.""" ) if tokenizer is None: raise ValueError("""You need to specify a `tokenizer`.""" ) super().__init__(__magic_name__ , __magic_name__ ) def __call__( self : int , __magic_name__ : List[str]=None , __magic_name__ : Tuple=None , __magic_name__ : Any=None , **__magic_name__ : Union[str, Any] ) -> Optional[int]: """simple docstring""" if text is None and images is None: raise ValueError("""You have to specify either text or images. Both cannot be none.""" ) if text is not None: __snake_case : int = self.tokenizer(__magic_name__ , return_tensors=__magic_name__ , **__magic_name__ ) if images is not None: __snake_case : str = self.image_processor(__magic_name__ , return_tensors=__magic_name__ , **__magic_name__ ) if text is not None and images is not None: __snake_case : Union[str, Any] = image_features.pixel_values return encoding elif text is not None: return encoding else: return BatchEncoding(data=dict(**__magic_name__ ) , tensor_type=__magic_name__ ) def lowercase__ ( self : Optional[int] , *__magic_name__ : List[Any] , **__magic_name__ : Any ) -> Optional[Any]: """simple docstring""" return self.tokenizer.batch_decode(*__magic_name__ , **__magic_name__ ) def lowercase__ ( self : List[str] , *__magic_name__ : Tuple , **__magic_name__ : List[Any] ) -> int: """simple docstring""" return self.tokenizer.decode(*__magic_name__ , **__magic_name__ ) @property def lowercase__ ( self : List[Any] ) -> Optional[Any]: """simple docstring""" __snake_case : Dict = self.tokenizer.model_input_names __snake_case : str = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) ) @property def lowercase__ ( self : int ) -> List[str]: """simple docstring""" warnings.warn( """`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.""" , __magic_name__ , ) return self.image_processor_class @property def lowercase__ ( self : Union[str, Any] ) -> Dict: """simple docstring""" warnings.warn( """`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead.""" , __magic_name__ , ) return self.image_processor
26
1
'''simple docstring''' from typing import TYPE_CHECKING from ....utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available __UpperCamelCase = { "configuration_mctct": ["MCTCT_PRETRAINED_CONFIG_ARCHIVE_MAP", "MCTCTConfig"], "feature_extraction_mctct": ["MCTCTFeatureExtractor"], "processing_mctct": ["MCTCTProcessor"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCamelCase = [ "MCTCT_PRETRAINED_MODEL_ARCHIVE_LIST", "MCTCTForCTC", "MCTCTModel", "MCTCTPreTrainedModel", ] if TYPE_CHECKING: from .configuration_mctct import MCTCT_PRETRAINED_CONFIG_ARCHIVE_MAP, MCTCTConfig from .feature_extraction_mctct import MCTCTFeatureExtractor from .processing_mctct import MCTCTProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mctct import MCTCT_PRETRAINED_MODEL_ARCHIVE_LIST, MCTCTForCTC, MCTCTModel, MCTCTPreTrainedModel else: import sys __UpperCamelCase = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
26
'''simple docstring''' import datasets import faiss import numpy as np import streamlit as st import torch from elasticsearch import Elasticsearch from elia_utils import ( embed_questions_for_retrieval, make_qa_sas_model, qa_sas_generate, query_es_index, query_qa_dense_index, ) import transformers from transformers import AutoModel, AutoModelForSeqaSeqLM, AutoTokenizer __UpperCamelCase = "bart" __UpperCamelCase = True @st.cache(allow_output_mutation=_lowerCamelCase ) def _a ( ) -> Union[str, Any]: """simple docstring""" if LOAD_DENSE_INDEX: __snake_case : int = AutoTokenizer.from_pretrained("""yjernite/retribert-base-uncased""" ) __snake_case : Tuple = AutoModel.from_pretrained("""yjernite/retribert-base-uncased""" ).to("""cuda:0""" ) __snake_case : List[Any] = qar_model.eval() else: __snake_case , __snake_case : Optional[Any] = (None, None) if MODEL_TYPE == "bart": __snake_case : List[str] = AutoTokenizer.from_pretrained("""yjernite/bart_eli5""" ) __snake_case : Any = AutoModelForSeqaSeqLM.from_pretrained("""yjernite/bart_eli5""" ).to("""cuda:0""" ) __snake_case : int = torch.load("""seq2seq_models/eli5_bart_model_blm_2.pth""" ) sas_model.load_state_dict(save_dict["""model"""] ) __snake_case : int = sas_model.eval() else: __snake_case , __snake_case : Dict = make_qa_sas_model( model_name="""t5-small""" , from_file="""seq2seq_models/eli5_t5_model_1024_4.pth""" , device="""cuda:0""" ) return (qar_tokenizer, qar_model, sas_tokenizer, sas_model) @st.cache(allow_output_mutation=_lowerCamelCase ) def _a ( ) -> Tuple: """simple docstring""" if LOAD_DENSE_INDEX: __snake_case : Tuple = faiss.StandardGpuResources() __snake_case : Optional[Any] = datasets.load_dataset(path="""wiki_snippets""" , name="""wiki40b_en_100_0""" )["""train"""] __snake_case : str = np.memmap( """wiki40b_passages_reps_32_l-8_h-768_b-512-512.dat""" , dtype="""float32""" , mode="""r""" , shape=(wikiaab_passages.num_rows, 128) , ) __snake_case : Optional[int] = faiss.IndexFlatIP(128 ) __snake_case : Any = faiss.index_cpu_to_gpu(_lowerCamelCase , 1 , _lowerCamelCase ) wikiaab_gpu_index_flat.add(_lowerCamelCase ) # TODO fix for larger GPU else: __snake_case , __snake_case : Tuple = (None, None) __snake_case : List[str] = Elasticsearch([{"""host""": """localhost""", """port""": """9200"""}] ) return (wikiaab_passages, wikiaab_gpu_index_flat, es_client) @st.cache(allow_output_mutation=_lowerCamelCase ) def _a ( ) -> List[Any]: """simple docstring""" __snake_case : Tuple = datasets.load_dataset("""eli5""" , name="""LFQA_reddit""" ) __snake_case : Dict = elia["""train_eli5"""] __snake_case : int = np.memmap( """eli5_questions_reps.dat""" , dtype="""float32""" , mode="""r""" , shape=(elia_train.num_rows, 128) ) __snake_case : Dict = faiss.IndexFlatIP(128 ) eli5_train_q_index.add(_lowerCamelCase ) return (elia_train, eli5_train_q_index) __UpperCamelCase , __UpperCamelCase , __UpperCamelCase = load_indexes() __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase = load_models() __UpperCamelCase , __UpperCamelCase = load_train_data() def _a ( _lowerCamelCase , _lowerCamelCase=10 ) -> int: """simple docstring""" __snake_case : Optional[int] = embed_questions_for_retrieval([question] , _lowerCamelCase , _lowerCamelCase ) __snake_case , __snake_case : Tuple = eli5_train_q_index.search(_lowerCamelCase , _lowerCamelCase ) __snake_case : Tuple = [elia_train[int(_lowerCamelCase )] for i in I[0]] return nn_examples def _a ( _lowerCamelCase , _lowerCamelCase="wiki40b" , _lowerCamelCase="dense" , _lowerCamelCase=10 ) -> Optional[Any]: """simple docstring""" if source == "none": __snake_case , __snake_case : Dict = (""" <P> """.join(["""""" for _ in range(11 )] ).strip(), []) else: if method == "dense": __snake_case , __snake_case : Dict = query_qa_dense_index( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) else: __snake_case , __snake_case : str = query_es_index( _lowerCamelCase , _lowerCamelCase , index_name="""english_wiki40b_snippets_100w""" , n_results=_lowerCamelCase , ) __snake_case : Optional[int] = [ (res["""article_title"""], res["""section_title"""].strip(), res["""score"""], res["""passage_text"""]) for res in hit_lst ] __snake_case : Optional[Any] = """question: {} context: {}""".format(_lowerCamelCase , _lowerCamelCase ) return question_doc, support_list @st.cache( hash_funcs={ torch.Tensor: (lambda _lowerCamelCase : None), transformers.models.bart.tokenization_bart.BartTokenizer: (lambda _lowerCamelCase : None), } ) def _a ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase=64 , _lowerCamelCase=256 , _lowerCamelCase=False , _lowerCamelCase=2 , _lowerCamelCase=0.95 , _lowerCamelCase=0.8 ) -> List[str]: """simple docstring""" with torch.no_grad(): __snake_case : Union[str, Any] = qa_sas_generate( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , num_answers=1 , num_beams=_lowerCamelCase , min_len=_lowerCamelCase , max_len=_lowerCamelCase , do_sample=_lowerCamelCase , temp=_lowerCamelCase , top_p=_lowerCamelCase , top_k=_lowerCamelCase , max_input_length=1024 , device="""cuda:0""" , )[0] return (answer, support_list) st.title("Long Form Question Answering with ELI5") # Start sidebar __UpperCamelCase = "<img src='https://huggingface.co/front/assets/huggingface_logo.svg'>" __UpperCamelCase = "\n<html>\n <head>\n <style>\n .img-container {\n padding-left: 90px;\n padding-right: 90px;\n padding-top: 50px;\n padding-bottom: 50px;\n background-color: #f0f3f9;\n }\n </style>\n </head>\n <body>\n <span class=\"img-container\"> <!-- Inline parent element -->\n %s\n </span>\n </body>\n</html>\n" % ( header_html, ) st.sidebar.markdown( header_full, unsafe_allow_html=True, ) # Long Form QA with ELI5 and Wikipedia __UpperCamelCase = "\nThis demo presents a model trained to [provide long-form answers to open-domain questions](https://yjernite.github.io/lfqa.html).\nFirst, a document retriever fetches a set of relevant Wikipedia passages given the question from the [Wiki40b](https://research.google/pubs/pub49029/) dataset,\na pre-processed fixed snapshot of Wikipedia.\n" st.sidebar.markdown(description, unsafe_allow_html=True) __UpperCamelCase = [ "Answer the question", "View the retrieved document only", "View the most similar ELI5 question and answer", "Show me everything, please!", ] __UpperCamelCase = st.sidebar.checkbox("Demo options") if demo_options: __UpperCamelCase = st.sidebar.selectbox( "", action_list, index=3, ) __UpperCamelCase = action_list.index(action_st) __UpperCamelCase = st.sidebar.selectbox( "", ["Show full text of passages", "Show passage section titles"], index=0, ) __UpperCamelCase = show_type == "Show full text of passages" else: __UpperCamelCase = 3 __UpperCamelCase = True __UpperCamelCase = st.sidebar.checkbox("Retrieval options") if retrieval_options: __UpperCamelCase = "\n ### Information retriever options\n\n The **sparse** retriever uses ElasticSearch, while the **dense** retriever uses max-inner-product search between a question and passage embedding\n trained using the [ELI5](https://arxiv.org/abs/1907.09190) questions-answer pairs.\n The answer is then generated by sequence to sequence model which takes the question and retrieved document as input.\n " st.sidebar.markdown(retriever_info) __UpperCamelCase = st.sidebar.selectbox("Which Wikipedia format should the model use?", ["wiki40b", "none"]) __UpperCamelCase = st.sidebar.selectbox("Which Wikipedia indexer should the model use?", ["dense", "sparse", "mixed"]) else: __UpperCamelCase = "wiki40b" __UpperCamelCase = "dense" __UpperCamelCase = "beam" __UpperCamelCase = 2 __UpperCamelCase = 64 __UpperCamelCase = 256 __UpperCamelCase = None __UpperCamelCase = None __UpperCamelCase = st.sidebar.checkbox("Generation options") if generate_options: __UpperCamelCase = "\n ### Answer generation options\n\n The sequence-to-sequence model was initialized with [BART](https://huggingface.co/facebook/bart-large)\n weights and fine-tuned on the ELI5 QA pairs and retrieved documents. You can use the model for greedy decoding with\n **beam** search, or **sample** from the decoder's output probabilities.\n " st.sidebar.markdown(generate_info) __UpperCamelCase = st.sidebar.selectbox("Would you like to use beam search or sample an answer?", ["beam", "sampled"]) __UpperCamelCase = st.sidebar.slider( "Minimum generation length", min_value=8, max_value=256, value=64, step=8, format=None, key=None ) __UpperCamelCase = st.sidebar.slider( "Maximum generation length", min_value=64, max_value=512, value=256, step=16, format=None, key=None ) if sampled == "beam": __UpperCamelCase = st.sidebar.slider("Beam size", min_value=1, max_value=8, value=2, step=None, format=None, key=None) else: __UpperCamelCase = st.sidebar.slider( "Nucleus sampling p", min_value=0.1, max_value=1.0, value=0.95, step=0.01, format=None, key=None ) __UpperCamelCase = st.sidebar.slider( "Temperature", min_value=0.1, max_value=1.0, value=0.7, step=0.01, format=None, key=None ) __UpperCamelCase = None # start main text __UpperCamelCase = [ "<MY QUESTION>", "How do people make chocolate?", "Why do we get a fever when we are sick?", "How can different animals perceive different colors?", "What is natural language processing?", "What's the best way to treat a sunburn?", "What exactly are vitamins ?", "How does nuclear energy provide electricity?", "What's the difference between viruses and bacteria?", "Why are flutes classified as woodwinds when most of them are made out of metal ?", "Why do people like drinking coffee even though it tastes so bad?", "What happens when wine ages? How does it make the wine taste better?", "If an animal is an herbivore, where does it get the protein that it needs to survive if it only eats grass?", "How can we set a date to the beginning or end of an artistic period? Doesn't the change happen gradually?", "How does New Zealand have so many large bird predators?", ] __UpperCamelCase = st.selectbox( "What would you like to ask? ---- select <MY QUESTION> to enter a new query", questions_list, index=1, ) if question_s == "<MY QUESTION>": __UpperCamelCase = st.text_input("Enter your question here:", "") else: __UpperCamelCase = question_s if st.button("Show me!"): if action in [0, 1, 3]: if index_type == "mixed": __UpperCamelCase , __UpperCamelCase = make_support(question, source=wiki_source, method="dense", n_results=10) __UpperCamelCase , __UpperCamelCase = make_support(question, source=wiki_source, method="sparse", n_results=10) __UpperCamelCase = [] for res_d, res_s in zip(support_list_dense, support_list_sparse): if tuple(res_d) not in support_list: support_list += [tuple(res_d)] if tuple(res_s) not in support_list: support_list += [tuple(res_s)] __UpperCamelCase = support_list[:10] __UpperCamelCase = "<P> " + " <P> ".join([res[-1] for res in support_list]) else: __UpperCamelCase , __UpperCamelCase = make_support(question, source=wiki_source, method=index_type, n_results=10) if action in [0, 3]: __UpperCamelCase , __UpperCamelCase = answer_question( question_doc, sas_model, sas_tokenizer, min_len=min_len, max_len=int(max_len), sampling=(sampled == "sampled"), n_beams=n_beams, top_p=top_p, temp=temp, ) st.markdown("### The model generated answer is:") st.write(answer) if action in [0, 1, 3] and wiki_source != "none": st.markdown("--- \n ### The model is drawing information from the following Wikipedia passages:") for i, res in enumerate(support_list): __UpperCamelCase = "https://en.wikipedia.org/wiki/{}".format(res[0].replace(" ", "_")) __UpperCamelCase = res[1].strip() if sec_titles == "": __UpperCamelCase = "[{}]({})".format(res[0], wiki_url) else: __UpperCamelCase = sec_titles.split(" & ") __UpperCamelCase = " & ".join( ["[{}]({}#{})".format(sec.strip(), wiki_url, sec.strip().replace(" ", "_")) for sec in sec_list] ) st.markdown( "{0:02d} - **Article**: {1:<18} <br> _Section_: {2}".format(i + 1, res[0], sections), unsafe_allow_html=True, ) if show_passages: st.write( "> <span style=\"font-family:arial; font-size:10pt;\">" + res[-1] + "</span>", unsafe_allow_html=True ) if action in [2, 3]: __UpperCamelCase = find_nearest_training(question) __UpperCamelCase = nn_train_list[0] st.markdown( "--- \n ### The most similar question in the ELI5 training set was: \n\n {}".format(train_exple["title"]) ) __UpperCamelCase = [ "{}. {}".format(i + 1, " \n".join([line.strip() for line in ans.split("\n") if line.strip() != ""])) for i, (ans, sc) in enumerate(zip(train_exple["answers"]["text"], train_exple["answers"]["score"])) if i == 0 or sc > 2 ] st.markdown("##### Its answers were: \n\n {}".format("\n".join(answers_st))) __UpperCamelCase = "\n---\n\n**Disclaimer**\n\n*The intent of this app is to provide some (hopefully entertaining) insights into the behavior of a current LFQA system.\nEvaluating biases of such a model and ensuring factual generations are still very much open research problems.\nTherefore, until some significant progress is achieved, we caution against using the generated answers for practical purposes.*\n" st.sidebar.markdown(disclaimer, unsafe_allow_html=True)
26
1
'''simple docstring''' from __future__ import annotations __UpperCamelCase = [ [-1, 0], # left [0, -1], # down [1, 0], # right [0, 1], # up ] def _a ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , ) -> tuple[list[list[int]], list[list[int]]]: """simple docstring""" __snake_case : List[str] = [ [0 for col in range(len(grid[0] ) )] for row in range(len(_lowerCamelCase ) ) ] # the reference grid __snake_case : Tuple = 1 __snake_case : List[str] = [ [0 for col in range(len(grid[0] ) )] for row in range(len(_lowerCamelCase ) ) ] # the action grid __snake_case : List[str] = init[0] __snake_case : str = init[1] __snake_case : int = 0 __snake_case : int = g + heuristic[x][y] # cost from starting cell to destination cell __snake_case : List[str] = [[f, g, x, y]] __snake_case : Any = False # flag that is set when search is complete __snake_case : int = False # flag set if we can't find expand while not found and not resign: if len(_lowerCamelCase ) == 0: raise ValueError("""Algorithm is unable to find solution""" ) else: # to choose the least costliest action so as to move closer to the goal cell.sort() cell.reverse() __snake_case : Tuple = cell.pop() __snake_case : Optional[int] = next_cell[2] __snake_case : List[Any] = next_cell[3] __snake_case : int = next_cell[1] if x == goal[0] and y == goal[1]: __snake_case : Optional[Any] = True else: for i in range(len(_lowerCamelCase ) ): # to try out different valid actions __snake_case : Union[str, Any] = x + DIRECTIONS[i][0] __snake_case : str = y + DIRECTIONS[i][1] if xa >= 0 and xa < len(_lowerCamelCase ) and ya >= 0 and ya < len(grid[0] ): if closed[xa][ya] == 0 and grid[xa][ya] == 0: __snake_case : str = g + cost __snake_case : Tuple = ga + heuristic[xa][ya] cell.append([fa, ga, xa, ya] ) __snake_case : List[str] = 1 __snake_case : Optional[int] = i __snake_case : List[str] = [] __snake_case : Optional[int] = goal[0] __snake_case : List[Any] = goal[1] invpath.append([x, y] ) # we get the reverse path from here while x != init[0] or y != init[1]: __snake_case : Dict = x - DIRECTIONS[action[x][y]][0] __snake_case : int = y - DIRECTIONS[action[x][y]][1] __snake_case : Optional[int] = xa __snake_case : int = ya invpath.append([x, y] ) __snake_case : Optional[int] = [] for i in range(len(_lowerCamelCase ) ): path.append(invpath[len(_lowerCamelCase ) - 1 - i] ) return path, action if __name__ == "__main__": __UpperCamelCase = [ [0, 1, 0, 0, 0, 0], [0, 1, 0, 0, 0, 0], # 0 are free path whereas 1's are obstacles [0, 1, 0, 0, 0, 0], [0, 1, 0, 0, 1, 0], [0, 0, 0, 0, 1, 0], ] __UpperCamelCase = [0, 0] # all coordinates are given in format [y,x] __UpperCamelCase = [len(grid) - 1, len(grid[0]) - 1] __UpperCamelCase = 1 # the cost map which pushes the path closer to the goal __UpperCamelCase = [[0 for row in range(len(grid[0]))] for col in range(len(grid))] for i in range(len(grid)): for j in range(len(grid[0])): __UpperCamelCase = abs(i - goal[0]) + abs(j - goal[1]) if grid[i][j] == 1: # added extra penalty in the heuristic map __UpperCamelCase = 99 __UpperCamelCase , __UpperCamelCase = search(grid, init, goal, cost, heuristic) print("ACTION MAP") for i in range(len(action)): print(action[i]) for i in range(len(path)): print(path[i])
26
'''simple docstring''' import warnings from ...utils import logging from .image_processing_owlvit import OwlViTImageProcessor __UpperCamelCase = logging.get_logger(__name__) class _A ( __lowercase ): def __init__( self : int , *__magic_name__ : Optional[Any] , **__magic_name__ : Any ) -> None: """simple docstring""" warnings.warn( """The class OwlViTFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please""" """ use OwlViTImageProcessor instead.""" , __magic_name__ , ) super().__init__(*__magic_name__ , **__magic_name__ )
26
1
'''simple docstring''' import os from typing import Dict, List, Union import tensorflow as tf from keras_nlp.tokenizers import BytePairTokenizer from tensorflow_text import pad_model_inputs from .tokenization_gpta import GPTaTokenizer class _A ( tf.keras.layers.Layer ): def __init__( self : Dict , __magic_name__ : Dict[str, int] , __magic_name__ : List[str] , __magic_name__ : int = None , __magic_name__ : int = None ) -> Optional[Any]: """simple docstring""" super().__init__() __snake_case : str = pad_token_id __snake_case : Tuple = max_length __snake_case : Dict = vocab __snake_case : Optional[Any] = merges __snake_case : Optional[Any] = BytePairTokenizer(__magic_name__ , __magic_name__ , sequence_length=__magic_name__ ) @classmethod def lowercase__ ( cls : int , __magic_name__ : GPTaTokenizer , *__magic_name__ : int , **__magic_name__ : int ) -> List[Any]: """simple docstring""" __snake_case : Union[str, Any] = [""" """.join(__magic_name__ ) for m in tokenizer.bpe_ranks.keys()] __snake_case : List[str] = tokenizer.get_vocab() return cls(__magic_name__ , __magic_name__ , *__magic_name__ , **__magic_name__ ) @classmethod def lowercase__ ( cls : int , __magic_name__ : Union[str, os.PathLike] , *__magic_name__ : Dict , **__magic_name__ : str ) -> Optional[Any]: """simple docstring""" __snake_case : Optional[int] = GPTaTokenizer.from_pretrained(__magic_name__ , *__magic_name__ , **__magic_name__ ) return cls.from_tokenizer(__magic_name__ , *__magic_name__ , **__magic_name__ ) @classmethod def lowercase__ ( cls : Any , __magic_name__ : Dict ) -> List[Any]: """simple docstring""" return cls(**__magic_name__ ) def lowercase__ ( self : Optional[Any] ) -> str: """simple docstring""" return { "vocab": self.vocab, "merges": self.merges, "max_length": self.max_length, "pad_token_id": self.pad_token_id, } def lowercase__ ( self : Optional[Any] , __magic_name__ : Any , __magic_name__ : int = None ) -> Optional[Any]: """simple docstring""" __snake_case : Dict = self.tf_tokenizer(__magic_name__ ) __snake_case : Any = tf.ones_like(__magic_name__ ) if self.pad_token_id is not None: # pad the tokens up to max length __snake_case : Dict = max_length if max_length is not None else self.max_length if max_length is not None: __snake_case , __snake_case : Any = pad_model_inputs( __magic_name__ , max_seq_length=__magic_name__ , pad_value=self.pad_token_id ) return {"attention_mask": attention_mask, "input_ids": input_ids}
26
'''simple docstring''' import argparse import torch from transformers import BlenderbotConfig, BlenderbotForConditionalGeneration from transformers.utils import logging logging.set_verbosity_info() __UpperCamelCase = logging.get_logger(__name__) __UpperCamelCase = [ ["attention", "attn"], ["encoder_attention", "encoder_attn"], ["q_lin", "q_proj"], ["k_lin", "k_proj"], ["v_lin", "v_proj"], ["out_lin", "out_proj"], ["norm_embeddings", "layernorm_embedding"], ["position_embeddings", "embed_positions"], ["embeddings", "embed_tokens"], ["ffn.lin", "fc"], ] def _a ( _lowerCamelCase ) -> Union[str, Any]: """simple docstring""" if k == "embeddings.weight": return "shared.weight" for parlai_name, hf_name in PATTERNS: __snake_case : List[str] = k.replace(_lowerCamelCase , _lowerCamelCase ) if k.startswith("""encoder""" ): __snake_case : Optional[int] = k.replace(""".attn""" , """.self_attn""" ) __snake_case : Tuple = k.replace("""norm1""" , """self_attn_layer_norm""" ) __snake_case : List[str] = k.replace("""norm2""" , """final_layer_norm""" ) elif k.startswith("""decoder""" ): __snake_case : List[Any] = k.replace("""norm1""" , """self_attn_layer_norm""" ) __snake_case : str = k.replace("""norm2""" , """encoder_attn_layer_norm""" ) __snake_case : Optional[int] = k.replace("""norm3""" , """final_layer_norm""" ) return k def _a ( _lowerCamelCase ) -> Any: """simple docstring""" __snake_case : Optional[int] = [ """model.encoder.layernorm_embedding.weight""", """model.encoder.layernorm_embedding.bias""", """model.decoder.layernorm_embedding.weight""", """model.decoder.layernorm_embedding.bias""", ] for k in keys: __snake_case : Optional[Any] = sd.pop(_lowerCamelCase ) __snake_case : List[str] = k.replace("""layernorm_embedding""" , """layer_norm""" ) assert new_k not in sd __snake_case : Union[str, Any] = v __UpperCamelCase = ["START"] @torch.no_grad() def _a ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> Dict: """simple docstring""" __snake_case : Optional[int] = torch.load(_lowerCamelCase , map_location="""cpu""" ) __snake_case : Dict = model["""model"""] __snake_case : Optional[int] = BlenderbotConfig.from_json_file(_lowerCamelCase ) __snake_case : Union[str, Any] = BlenderbotForConditionalGeneration(_lowerCamelCase ) __snake_case : List[Any] = m.model.state_dict().keys() __snake_case : int = [] __snake_case : Union[str, Any] = {} for k, v in sd.items(): if k in IGNORE_KEYS: continue __snake_case : Optional[int] = rename_state_dict_key(_lowerCamelCase ) if new_k not in valid_keys: failures.append([k, new_k] ) else: __snake_case : str = v if cfg.normalize_before: # Blenderbot-3B checkpoints. Rename layernorm_embedding -> layer_norm rename_layernorm_keys(_lowerCamelCase ) m.model.load_state_dict(_lowerCamelCase , strict=_lowerCamelCase ) m.half() m.save_pretrained(_lowerCamelCase ) if __name__ == "__main__": __UpperCamelCase = argparse.ArgumentParser() # Required parameters parser.add_argument("--src_path", type=str, help="like blenderbot-model.bin") parser.add_argument("--save_dir", default="hf_blenderbot", type=str, help="Where to save converted model.") parser.add_argument( "--hf_config_json", default="blenderbot-3b-config.json", type=str, help="Path to config to use" ) __UpperCamelCase = parser.parse_args() convert_parlai_checkpoint(args.src_path, args.save_dir, args.hf_config_json)
26
1
'''simple docstring''' from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging __UpperCamelCase = logging.get_logger(__name__) __UpperCamelCase = { "kssteven/ibert-roberta-base": "https://huggingface.co/kssteven/ibert-roberta-base/resolve/main/config.json", "kssteven/ibert-roberta-large": "https://huggingface.co/kssteven/ibert-roberta-large/resolve/main/config.json", "kssteven/ibert-roberta-large-mnli": ( "https://huggingface.co/kssteven/ibert-roberta-large-mnli/resolve/main/config.json" ), } class _A ( __lowercase ): lowercase__: str = '''ibert''' def __init__( self : str , __magic_name__ : str=3_05_22 , __magic_name__ : List[str]=7_68 , __magic_name__ : List[Any]=12 , __magic_name__ : Union[str, Any]=12 , __magic_name__ : int=30_72 , __magic_name__ : Dict="gelu" , __magic_name__ : Union[str, Any]=0.1 , __magic_name__ : Dict=0.1 , __magic_name__ : int=5_12 , __magic_name__ : str=2 , __magic_name__ : List[Any]=0.02 , __magic_name__ : Optional[Any]=1E-12 , __magic_name__ : Optional[Any]=1 , __magic_name__ : str=0 , __magic_name__ : Union[str, Any]=2 , __magic_name__ : Optional[int]="absolute" , __magic_name__ : Dict=False , __magic_name__ : Any="none" , **__magic_name__ : Union[str, Any] , ) -> Union[str, Any]: """simple docstring""" super().__init__(pad_token_id=__magic_name__ , bos_token_id=__magic_name__ , eos_token_id=__magic_name__ , **__magic_name__ ) __snake_case : Tuple = vocab_size __snake_case : Tuple = hidden_size __snake_case : List[Any] = num_hidden_layers __snake_case : str = num_attention_heads __snake_case : Optional[int] = hidden_act __snake_case : int = intermediate_size __snake_case : Any = hidden_dropout_prob __snake_case : List[str] = attention_probs_dropout_prob __snake_case : str = max_position_embeddings __snake_case : List[Any] = type_vocab_size __snake_case : int = initializer_range __snake_case : Union[str, Any] = layer_norm_eps __snake_case : List[Any] = position_embedding_type __snake_case : Optional[int] = quant_mode __snake_case : Optional[int] = force_dequant class _A ( __lowercase ): @property def lowercase__ ( self : Optional[Any] ) -> Mapping[str, Mapping[int, str]]: """simple docstring""" if self.task == "multiple-choice": __snake_case : List[Any] = {0: """batch""", 1: """choice""", 2: """sequence"""} else: __snake_case : str = {0: """batch""", 1: """sequence"""} return OrderedDict( [ ("""input_ids""", dynamic_axis), ("""attention_mask""", dynamic_axis), ] )
26
'''simple docstring''' import argparse import os import re import packaging.version __UpperCamelCase = "examples/" __UpperCamelCase = { "examples": (re.compile(R"^check_min_version\(\"[^\"]+\"\)\s*$", re.MULTILINE), "check_min_version(\"VERSION\")\n"), "init": (re.compile(R"^__version__\s+=\s+\"([^\"]+)\"\s*$", re.MULTILINE), "__version__ = \"VERSION\"\n"), "setup": (re.compile(R"^(\s*)version\s*=\s*\"[^\"]+\",", re.MULTILINE), R"\1version=\"VERSION\","), "doc": (re.compile(R"^(\s*)release\s*=\s*\"[^\"]+\"$", re.MULTILINE), "release = \"VERSION\"\n"), } __UpperCamelCase = { "init": "src/transformers/__init__.py", "setup": "setup.py", } __UpperCamelCase = "README.md" def _a ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> Tuple: """simple docstring""" with open(_lowerCamelCase , """r""" , encoding="""utf-8""" , newline="""\n""" ) as f: __snake_case : Union[str, Any] = f.read() __snake_case , __snake_case : List[Any] = REPLACE_PATTERNS[pattern] __snake_case : Optional[Any] = replace.replace("""VERSION""" , _lowerCamelCase ) __snake_case : Optional[Any] = re_pattern.sub(_lowerCamelCase , _lowerCamelCase ) with open(_lowerCamelCase , """w""" , encoding="""utf-8""" , newline="""\n""" ) as f: f.write(_lowerCamelCase ) def _a ( _lowerCamelCase ) -> Union[str, Any]: """simple docstring""" for folder, directories, fnames in os.walk(_lowerCamelCase ): # Removing some of the folders with non-actively maintained examples from the walk if "research_projects" in directories: directories.remove("""research_projects""" ) if "legacy" in directories: directories.remove("""legacy""" ) for fname in fnames: if fname.endswith(""".py""" ): update_version_in_file(os.path.join(_lowerCamelCase , _lowerCamelCase ) , _lowerCamelCase , pattern="""examples""" ) def _a ( _lowerCamelCase , _lowerCamelCase=False ) -> str: """simple docstring""" for pattern, fname in REPLACE_FILES.items(): update_version_in_file(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) if not patch: update_version_in_examples(_lowerCamelCase ) def _a ( ) -> Optional[int]: """simple docstring""" __snake_case : str = """🤗 Transformers currently provides the following architectures""" __snake_case : List[Any] = """1. Want to contribute a new model?""" with open(_lowerCamelCase , """r""" , encoding="""utf-8""" , newline="""\n""" ) as f: __snake_case : List[str] = f.readlines() # Find the start of the list. __snake_case : Optional[Any] = 0 while not lines[start_index].startswith(_start_prompt ): start_index += 1 start_index += 1 __snake_case : int = start_index # Update the lines in the model list. while not lines[index].startswith(_end_prompt ): if lines[index].startswith("""1.""" ): __snake_case : Optional[Any] = lines[index].replace( """https://huggingface.co/docs/transformers/main/model_doc""" , """https://huggingface.co/docs/transformers/model_doc""" , ) index += 1 with open(_lowerCamelCase , """w""" , encoding="""utf-8""" , newline="""\n""" ) as f: f.writelines(_lowerCamelCase ) def _a ( ) -> Union[str, Any]: """simple docstring""" with open(REPLACE_FILES["""init"""] , """r""" ) as f: __snake_case : List[Any] = f.read() __snake_case : str = REPLACE_PATTERNS["""init"""][0].search(_lowerCamelCase ).groups()[0] return packaging.version.parse(_lowerCamelCase ) def _a ( _lowerCamelCase=False ) -> int: """simple docstring""" __snake_case : List[Any] = get_version() if patch and default_version.is_devrelease: raise ValueError("""Can't create a patch version from the dev branch, checkout a released version!""" ) if default_version.is_devrelease: __snake_case : str = default_version.base_version elif patch: __snake_case : Optional[int] = F'''{default_version.major}.{default_version.minor}.{default_version.micro + 1}''' else: __snake_case : Dict = F'''{default_version.major}.{default_version.minor + 1}.0''' # Now let's ask nicely if that's the right one. __snake_case : Dict = input(F'''Which version are you releasing? [{default_version}]''' ) if len(_lowerCamelCase ) == 0: __snake_case : Any = default_version print(F'''Updating version to {version}.''' ) global_version_update(_lowerCamelCase , patch=_lowerCamelCase ) if not patch: print("""Cleaning main README, don't forget to run `make fix-copies`.""" ) clean_main_ref_in_model_list() def _a ( ) -> Tuple: """simple docstring""" __snake_case : Optional[Any] = get_version() __snake_case : Tuple = F'''{current_version.major}.{current_version.minor + 1}.0.dev0''' __snake_case : Union[str, Any] = current_version.base_version # Check with the user we got that right. __snake_case : int = input(F'''Which version are we developing now? [{dev_version}]''' ) if len(_lowerCamelCase ) == 0: __snake_case : Optional[int] = dev_version print(F'''Updating version to {version}.''' ) global_version_update(_lowerCamelCase ) print("""Cleaning main README, don't forget to run `make fix-copies`.""" ) clean_main_ref_in_model_list() if __name__ == "__main__": __UpperCamelCase = argparse.ArgumentParser() parser.add_argument("--post_release", action="store_true", help="Whether this is pre or post release.") parser.add_argument("--patch", action="store_true", help="Whether or not this is a patch release.") __UpperCamelCase = parser.parse_args() if not args.post_release: pre_release_work(patch=args.patch) elif args.patch: print("Nothing to do after a patch :-)") else: post_release_work()
26
1
'''simple docstring''' def _a ( _lowerCamelCase ) -> int: """simple docstring""" if not isinstance(_lowerCamelCase , _lowerCamelCase ): raise TypeError("""only integers accepted as input""" ) else: __snake_case : List[Any] = str(abs(_lowerCamelCase ) ) __snake_case : Union[str, Any] = [list(_lowerCamelCase ) for char in range(len(_lowerCamelCase ) )] for index in range(len(_lowerCamelCase ) ): num_transpositions[index].pop(_lowerCamelCase ) return max( int("""""".join(list(_lowerCamelCase ) ) ) for transposition in num_transpositions ) if __name__ == "__main__": __import__("doctest").testmod()
26
'''simple docstring''' from unittest import TestCase from datasets import Sequence, Value from datasets.arrow_dataset import Dataset class _A ( __lowercase ): def lowercase__ ( self : Any ) -> str: """simple docstring""" return [ {"col_1": 3, "col_2": "a"}, {"col_1": 2, "col_2": "b"}, {"col_1": 1, "col_2": "c"}, {"col_1": 0, "col_2": "d"}, ] def lowercase__ ( self : str ) -> int: """simple docstring""" __snake_case : Union[str, Any] = {"""col_1""": [3, 2, 1, 0], """col_2""": ["""a""", """b""", """c""", """d"""]} return Dataset.from_dict(__magic_name__ ) def lowercase__ ( self : str ) -> List[Any]: """simple docstring""" __snake_case : Any = self._create_example_records() __snake_case : str = Dataset.from_list(__magic_name__ ) self.assertListEqual(dset.column_names , ["""col_1""", """col_2"""] ) for i, r in enumerate(__magic_name__ ): self.assertDictEqual(__magic_name__ , example_records[i] ) def lowercase__ ( self : Optional[Any] ) -> List[Any]: """simple docstring""" __snake_case : List[Any] = self._create_example_records() __snake_case : Dict = Dataset.from_list(__magic_name__ ) __snake_case : List[Any] = Dataset.from_dict({k: [r[k] for r in example_records] for k in example_records[0]} ) self.assertEqual(dset.info , dset_from_dict.info ) def lowercase__ ( self : str ) -> List[Any]: # checks what happens with missing columns """simple docstring""" __snake_case : Union[str, Any] = [{"""col_1""": 1}, {"""col_2""": """x"""}] __snake_case : Optional[int] = Dataset.from_list(__magic_name__ ) self.assertDictEqual(dset[0] , {"""col_1""": 1} ) self.assertDictEqual(dset[1] , {"""col_1""": None} ) # NB: first record is used for columns def lowercase__ ( self : List[str] ) -> Optional[Any]: # checks if the type can be inferred from the second record """simple docstring""" __snake_case : List[Any] = [{"""col_1""": []}, {"""col_1""": [1, 2]}] __snake_case : int = Dataset.from_list(__magic_name__ ) self.assertEqual(dset.info.features["""col_1"""] , Sequence(Value("""int64""" ) ) ) def lowercase__ ( self : int ) -> Union[str, Any]: """simple docstring""" __snake_case : Tuple = Dataset.from_list([] ) self.assertEqual(len(__magic_name__ ) , 0 ) self.assertListEqual(dset.column_names , [] )
26
1
'''simple docstring''' import warnings from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding class _A ( __lowercase ): lowercase__: Any = ['''image_processor''', '''tokenizer'''] lowercase__: Any = '''CLIPImageProcessor''' lowercase__: Optional[Any] = ('''CLIPTokenizer''', '''CLIPTokenizerFast''') def __init__( self : int , __magic_name__ : Dict=None , __magic_name__ : Dict=None , **__magic_name__ : Union[str, Any] ) -> Any: """simple docstring""" __snake_case : Optional[Any] = None if "feature_extractor" in kwargs: warnings.warn( """The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`""" """ instead.""" , __magic_name__ , ) __snake_case : List[Any] = kwargs.pop("""feature_extractor""" ) __snake_case : List[str] = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError("""You need to specify an `image_processor`.""" ) if tokenizer is None: raise ValueError("""You need to specify a `tokenizer`.""" ) super().__init__(__magic_name__ , __magic_name__ ) def __call__( self : int , __magic_name__ : List[str]=None , __magic_name__ : Tuple=None , __magic_name__ : Any=None , **__magic_name__ : Union[str, Any] ) -> Optional[int]: """simple docstring""" if text is None and images is None: raise ValueError("""You have to specify either text or images. Both cannot be none.""" ) if text is not None: __snake_case : int = self.tokenizer(__magic_name__ , return_tensors=__magic_name__ , **__magic_name__ ) if images is not None: __snake_case : str = self.image_processor(__magic_name__ , return_tensors=__magic_name__ , **__magic_name__ ) if text is not None and images is not None: __snake_case : Union[str, Any] = image_features.pixel_values return encoding elif text is not None: return encoding else: return BatchEncoding(data=dict(**__magic_name__ ) , tensor_type=__magic_name__ ) def lowercase__ ( self : Optional[int] , *__magic_name__ : List[Any] , **__magic_name__ : Any ) -> Optional[Any]: """simple docstring""" return self.tokenizer.batch_decode(*__magic_name__ , **__magic_name__ ) def lowercase__ ( self : List[str] , *__magic_name__ : Tuple , **__magic_name__ : List[Any] ) -> int: """simple docstring""" return self.tokenizer.decode(*__magic_name__ , **__magic_name__ ) @property def lowercase__ ( self : List[Any] ) -> Optional[Any]: """simple docstring""" __snake_case : Dict = self.tokenizer.model_input_names __snake_case : str = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) ) @property def lowercase__ ( self : int ) -> List[str]: """simple docstring""" warnings.warn( """`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.""" , __magic_name__ , ) return self.image_processor_class @property def lowercase__ ( self : Union[str, Any] ) -> Dict: """simple docstring""" warnings.warn( """`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead.""" , __magic_name__ , ) return self.image_processor
26
'''simple docstring''' import inspect import unittest import torch import torch.nn as nn from accelerate.hooks import ( AlignDevicesHook, ModelHook, SequentialHook, add_hook_to_module, attach_align_device_hook, remove_hook_from_module, remove_hook_from_submodules, ) from accelerate.test_utils import require_multi_gpu class _A ( nn.Module ): def __init__( self : List[str] ) -> Optional[Any]: """simple docstring""" super().__init__() __snake_case : List[Any] = nn.Linear(3 , 4 ) __snake_case : str = nn.BatchNormad(4 ) __snake_case : Optional[Any] = nn.Linear(4 , 5 ) def lowercase__ ( self : str , __magic_name__ : Dict ) -> List[str]: """simple docstring""" return self.lineara(self.batchnorm(self.lineara(__magic_name__ ) ) ) class _A ( __lowercase ): def lowercase__ ( self : List[str] , __magic_name__ : Tuple , *__magic_name__ : Dict , **__magic_name__ : Optional[Any] ) -> Tuple: """simple docstring""" return (args[0] + 1,) + args[1:], kwargs class _A ( __lowercase ): def lowercase__ ( self : str , __magic_name__ : Union[str, Any] , __magic_name__ : Tuple ) -> Union[str, Any]: """simple docstring""" return output + 1 class _A ( unittest.TestCase ): def lowercase__ ( self : Dict ) -> Any: """simple docstring""" __snake_case : int = ModelForTest() __snake_case : Tuple = ModelHook() add_hook_to_module(__magic_name__ , __magic_name__ ) self.assertEqual(test_model._hf_hook , __magic_name__ ) self.assertTrue(hasattr(__magic_name__ , """_old_forward""" ) ) # Check adding the hook did not change the name or the signature self.assertEqual(test_model.forward.__name__ , """forward""" ) self.assertListEqual(list(inspect.signature(test_model.forward ).parameters ) , ["""x"""] ) remove_hook_from_module(__magic_name__ ) self.assertFalse(hasattr(__magic_name__ , """_hf_hook""" ) ) self.assertFalse(hasattr(__magic_name__ , """_old_forward""" ) ) def lowercase__ ( self : Tuple ) -> List[str]: """simple docstring""" __snake_case : List[Any] = ModelForTest() __snake_case : Optional[int] = ModelHook() add_hook_to_module(__magic_name__ , __magic_name__ ) add_hook_to_module(__magic_name__ , __magic_name__ , append=__magic_name__ ) self.assertEqual(isinstance(test_model._hf_hook , __magic_name__ ) , __magic_name__ ) self.assertEqual(len(test_model._hf_hook.hooks ) , 2 ) self.assertTrue(hasattr(__magic_name__ , """_old_forward""" ) ) # Check adding the hook did not change the name or the signature self.assertEqual(test_model.forward.__name__ , """forward""" ) self.assertListEqual(list(inspect.signature(test_model.forward ).parameters ) , ["""x"""] ) remove_hook_from_module(__magic_name__ ) self.assertFalse(hasattr(__magic_name__ , """_hf_hook""" ) ) self.assertFalse(hasattr(__magic_name__ , """_old_forward""" ) ) def lowercase__ ( self : str ) -> Union[str, Any]: """simple docstring""" __snake_case : List[Any] = ModelForTest() __snake_case : Any = torch.randn(2 , 3 ) __snake_case : str = test_model(x + 1 ) __snake_case : int = test_model(x + 2 ) __snake_case : Union[str, Any] = PreForwardHook() add_hook_to_module(__magic_name__ , __magic_name__ ) __snake_case : int = test_model(__magic_name__ ) self.assertTrue(torch.allclose(__magic_name__ , __magic_name__ , atol=1E-5 ) ) # Attaching a hook to a model when it already has one replaces, does not chain __snake_case : Optional[int] = PreForwardHook() add_hook_to_module(__magic_name__ , __magic_name__ ) __snake_case : List[Any] = test_model(__magic_name__ ) self.assertTrue(torch.allclose(__magic_name__ , __magic_name__ , atol=1E-5 ) ) # You need to use the sequential hook to chain two or more hooks __snake_case : Optional[int] = SequentialHook(PreForwardHook() , PreForwardHook() ) add_hook_to_module(__magic_name__ , __magic_name__ ) __snake_case : List[str] = test_model(__magic_name__ ) assert torch.allclose(__magic_name__ , __magic_name__ , atol=1E-5 ) def lowercase__ ( self : Union[str, Any] ) -> List[str]: """simple docstring""" __snake_case : Union[str, Any] = ModelForTest() __snake_case : str = torch.randn(2 , 3 ) __snake_case : Any = test_model(__magic_name__ ) __snake_case : Any = PostForwardHook() add_hook_to_module(__magic_name__ , __magic_name__ ) __snake_case : Any = test_model(__magic_name__ ) self.assertTrue(torch.allclose(__magic_name__ , output + 1 , atol=1E-5 ) ) # Attaching a hook to a model when it already has one replaces, does not chain __snake_case : Any = PostForwardHook() add_hook_to_module(__magic_name__ , __magic_name__ ) __snake_case : Dict = test_model(__magic_name__ ) self.assertTrue(torch.allclose(__magic_name__ , output + 1 , atol=1E-5 ) ) # You need to use the sequential hook to chain two or more hooks __snake_case : str = SequentialHook(PostForwardHook() , PostForwardHook() ) add_hook_to_module(__magic_name__ , __magic_name__ ) __snake_case : int = test_model(__magic_name__ ) assert torch.allclose(__magic_name__ , output + 2 , atol=1E-5 ) def lowercase__ ( self : str ) -> int: """simple docstring""" __snake_case : Union[str, Any] = ModelForTest() __snake_case : int = torch.randn(2 , 3 ) __snake_case : Any = test_model(__magic_name__ ) __snake_case : Dict = PostForwardHook() add_hook_to_module(__magic_name__ , __magic_name__ ) __snake_case : List[Any] = test_model(__magic_name__ ) self.assertTrue(torch.allclose(__magic_name__ , output + 1 ) ) self.assertTrue(outputa.requires_grad ) __snake_case : Dict = True __snake_case : int = test_model(__magic_name__ ) self.assertFalse(outputa.requires_grad ) @require_multi_gpu def lowercase__ ( self : Tuple ) -> List[Any]: """simple docstring""" __snake_case : Tuple = ModelForTest() # Everything is on CPU self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) ) self.assertEqual(model.batchnorm.weight.device , torch.device("""cpu""" ) ) self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) ) # This will move each submodule on different devices add_hook_to_module(model.lineara , AlignDevicesHook(execution_device=0 ) ) add_hook_to_module(model.batchnorm , AlignDevicesHook(execution_device=0 ) ) add_hook_to_module(model.lineara , AlignDevicesHook(execution_device=1 ) ) self.assertEqual(model.lineara.weight.device , torch.device(0 ) ) self.assertEqual(model.batchnorm.weight.device , torch.device(0 ) ) self.assertEqual(model.batchnorm.running_mean.device , torch.device(0 ) ) self.assertEqual(model.lineara.weight.device , torch.device(1 ) ) # We can still make a forward pass. The input does not need to be on any particular device __snake_case : Tuple = torch.randn(2 , 3 ) __snake_case : Union[str, Any] = model(__magic_name__ ) self.assertEqual(output.device , torch.device(1 ) ) # We can add a general hook to put back output on same device as input. add_hook_to_module(__magic_name__ , AlignDevicesHook(io_same_device=__magic_name__ ) ) __snake_case : Tuple = torch.randn(2 , 3 ).to(0 ) __snake_case : Any = model(__magic_name__ ) self.assertEqual(output.device , torch.device(0 ) ) def lowercase__ ( self : Union[str, Any] ) -> str: """simple docstring""" __snake_case : int = ModelForTest() # Everything is on CPU self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) ) self.assertEqual(model.batchnorm.weight.device , torch.device("""cpu""" ) ) self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) ) # This will move each submodule on different devices __snake_case : List[str] = {"""execution_device""": 0 if torch.cuda.is_available() else """cpu""", """offload""": True} add_hook_to_module(model.lineara , AlignDevicesHook(**__magic_name__ ) ) add_hook_to_module(model.batchnorm , AlignDevicesHook(**__magic_name__ ) ) add_hook_to_module(model.lineara , AlignDevicesHook(**__magic_name__ ) ) # Parameters have been offloaded, so on the meta device self.assertEqual(model.lineara.weight.device , torch.device("""meta""" ) ) self.assertEqual(model.batchnorm.weight.device , torch.device("""meta""" ) ) self.assertEqual(model.lineara.weight.device , torch.device("""meta""" ) ) # Buffers are not included in the offload by default, so are on the execution device __snake_case : Any = torch.device(hook_kwargs["""execution_device"""] ) self.assertEqual(model.batchnorm.running_mean.device , __magic_name__ ) __snake_case : Dict = torch.randn(2 , 3 ) __snake_case : Any = model(__magic_name__ ) self.assertEqual(output.device , __magic_name__ ) # Removing hooks loads back the weights in the model. remove_hook_from_module(model.lineara ) remove_hook_from_module(model.batchnorm ) remove_hook_from_module(model.lineara ) self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) ) self.assertEqual(model.batchnorm.weight.device , torch.device("""cpu""" ) ) self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) ) # Now test with buffers included in the offload __snake_case : int = { """execution_device""": 0 if torch.cuda.is_available() else """cpu""", """offload""": True, """offload_buffers""": True, } add_hook_to_module(model.lineara , AlignDevicesHook(**__magic_name__ ) ) add_hook_to_module(model.batchnorm , AlignDevicesHook(**__magic_name__ ) ) add_hook_to_module(model.lineara , AlignDevicesHook(**__magic_name__ ) ) # Parameters have been offloaded, so on the meta device, buffers included self.assertEqual(model.lineara.weight.device , torch.device("""meta""" ) ) self.assertEqual(model.batchnorm.weight.device , torch.device("""meta""" ) ) self.assertEqual(model.lineara.weight.device , torch.device("""meta""" ) ) self.assertEqual(model.batchnorm.running_mean.device , torch.device("""meta""" ) ) __snake_case : str = torch.randn(2 , 3 ) __snake_case : str = model(__magic_name__ ) self.assertEqual(output.device , __magic_name__ ) # Removing hooks loads back the weights in the model. remove_hook_from_module(model.lineara ) remove_hook_from_module(model.batchnorm ) remove_hook_from_module(model.lineara ) self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) ) self.assertEqual(model.batchnorm.weight.device , torch.device("""cpu""" ) ) self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) ) def lowercase__ ( self : Dict ) -> str: """simple docstring""" __snake_case : Tuple = ModelForTest() # Everything is on CPU self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) ) self.assertEqual(model.batchnorm.weight.device , torch.device("""cpu""" ) ) self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) ) # This will move each submodule on different devices __snake_case : Union[str, Any] = 0 if torch.cuda.is_available() else """cpu""" attach_align_device_hook(__magic_name__ , execution_device=__magic_name__ , offload=__magic_name__ ) # Parameters have been offloaded, so on the meta device self.assertEqual(model.lineara.weight.device , torch.device("""meta""" ) ) self.assertEqual(model.batchnorm.weight.device , torch.device("""meta""" ) ) self.assertEqual(model.lineara.weight.device , torch.device("""meta""" ) ) # Buffers are not included in the offload by default, so are on the execution device __snake_case : Union[str, Any] = torch.device(__magic_name__ ) self.assertEqual(model.batchnorm.running_mean.device , __magic_name__ ) __snake_case : Optional[int] = torch.randn(2 , 3 ) __snake_case : Dict = model(__magic_name__ ) self.assertEqual(output.device , __magic_name__ ) # Removing hooks loads back the weights in the model. remove_hook_from_submodules(__magic_name__ ) self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) ) self.assertEqual(model.batchnorm.weight.device , torch.device("""cpu""" ) ) self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) ) # Now test with buffers included in the offload attach_align_device_hook(__magic_name__ , execution_device=__magic_name__ , offload=__magic_name__ , offload_buffers=__magic_name__ ) # Parameters have been offloaded, so on the meta device, buffers included self.assertEqual(model.lineara.weight.device , torch.device("""meta""" ) ) self.assertEqual(model.batchnorm.weight.device , torch.device("""meta""" ) ) self.assertEqual(model.lineara.weight.device , torch.device("""meta""" ) ) self.assertEqual(model.batchnorm.running_mean.device , torch.device("""meta""" ) ) __snake_case : Dict = torch.randn(2 , 3 ) __snake_case : Optional[int] = model(__magic_name__ ) self.assertEqual(output.device , __magic_name__ ) # Removing hooks loads back the weights in the model. remove_hook_from_submodules(__magic_name__ ) self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) ) self.assertEqual(model.batchnorm.weight.device , torch.device("""cpu""" ) ) self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) ) def lowercase__ ( self : Any ) -> Union[str, Any]: """simple docstring""" __snake_case : Any = ModelForTest() # Everything is on CPU self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) ) self.assertEqual(model.batchnorm.weight.device , torch.device("""cpu""" ) ) self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) ) # This will move each submodule on different devices __snake_case : str = 0 if torch.cuda.is_available() else """cpu""" attach_align_device_hook( __magic_name__ , execution_device=__magic_name__ , offload=__magic_name__ , weights_map=model.state_dict() ) # Parameters have been offloaded, so on the meta device self.assertEqual(model.lineara.weight.device , torch.device("""meta""" ) ) self.assertEqual(model.batchnorm.weight.device , torch.device("""meta""" ) ) self.assertEqual(model.lineara.weight.device , torch.device("""meta""" ) ) # Buffers are not included in the offload by default, so are on the execution device __snake_case : List[str] = torch.device(__magic_name__ ) self.assertEqual(model.batchnorm.running_mean.device , __magic_name__ ) __snake_case : Tuple = torch.randn(2 , 3 ) __snake_case : Optional[Any] = model(__magic_name__ ) self.assertEqual(output.device , __magic_name__ ) # Removing hooks loads back the weights in the model. remove_hook_from_submodules(__magic_name__ ) self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) ) self.assertEqual(model.batchnorm.weight.device , torch.device("""cpu""" ) ) self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) ) # Now test with buffers included in the offload attach_align_device_hook( __magic_name__ , execution_device=__magic_name__ , offload=__magic_name__ , weights_map=model.state_dict() , offload_buffers=__magic_name__ , ) # Parameters have been offloaded, so on the meta device, buffers included self.assertEqual(model.lineara.weight.device , torch.device("""meta""" ) ) self.assertEqual(model.batchnorm.weight.device , torch.device("""meta""" ) ) self.assertEqual(model.lineara.weight.device , torch.device("""meta""" ) ) self.assertEqual(model.batchnorm.running_mean.device , torch.device("""meta""" ) ) __snake_case : List[str] = torch.randn(2 , 3 ) __snake_case : Dict = model(__magic_name__ ) self.assertEqual(output.device , __magic_name__ ) # Removing hooks loads back the weights in the model. remove_hook_from_submodules(__magic_name__ ) self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) ) self.assertEqual(model.batchnorm.weight.device , torch.device("""cpu""" ) ) self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) )
26
1
'''simple docstring''' from __future__ import annotations __UpperCamelCase = list[list[int]] # assigning initial values to the grid __UpperCamelCase = [ [3, 0, 6, 5, 0, 8, 4, 0, 0], [5, 2, 0, 0, 0, 0, 0, 0, 0], [0, 8, 7, 0, 0, 0, 0, 3, 1], [0, 0, 3, 0, 1, 0, 0, 8, 0], [9, 0, 0, 8, 6, 3, 0, 0, 5], [0, 5, 0, 0, 9, 0, 6, 0, 0], [1, 3, 0, 0, 0, 0, 2, 5, 0], [0, 0, 0, 0, 0, 0, 0, 7, 4], [0, 0, 5, 2, 0, 6, 3, 0, 0], ] # a grid with no solution __UpperCamelCase = [ [5, 0, 6, 5, 0, 8, 4, 0, 3], [5, 2, 0, 0, 0, 0, 0, 0, 2], [1, 8, 7, 0, 0, 0, 0, 3, 1], [0, 0, 3, 0, 1, 0, 0, 8, 0], [9, 0, 0, 8, 6, 3, 0, 0, 5], [0, 5, 0, 0, 9, 0, 6, 0, 0], [1, 3, 0, 0, 0, 0, 2, 5, 0], [0, 0, 0, 0, 0, 0, 0, 7, 4], [0, 0, 5, 2, 0, 6, 3, 0, 0], ] def _a ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> bool: """simple docstring""" for i in range(9 ): if grid[row][i] == n or grid[i][column] == n: return False for i in range(3 ): for j in range(3 ): if grid[(row - row % 3) + i][(column - column % 3) + j] == n: return False return True def _a ( _lowerCamelCase ) -> tuple[int, int] | None: """simple docstring""" for i in range(9 ): for j in range(9 ): if grid[i][j] == 0: return i, j return None def _a ( _lowerCamelCase ) -> Matrix | None: """simple docstring""" if location := find_empty_location(_lowerCamelCase ): __snake_case , __snake_case : Any = location else: # If the location is ``None``, then the grid is solved. return grid for digit in range(1 , 10 ): if is_safe(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): __snake_case : Optional[int] = digit if sudoku(_lowerCamelCase ) is not None: return grid __snake_case : List[str] = 0 return None def _a ( _lowerCamelCase ) -> None: """simple docstring""" for row in grid: for cell in row: print(_lowerCamelCase , end=""" """ ) print() if __name__ == "__main__": # make a copy of grid so that you can compare with the unmodified grid for example_grid in (initial_grid, no_solution): print("\nExample grid:\n" + "=" * 20) print_solution(example_grid) print("\nExample grid solution:") __UpperCamelCase = sudoku(example_grid) if solution is not None: print_solution(solution) else: print("Cannot find a solution.")
26
'''simple docstring''' from __future__ import annotations __UpperCamelCase = [ [-1, 0], # left [0, -1], # down [1, 0], # right [0, 1], # up ] def _a ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , ) -> tuple[list[list[int]], list[list[int]]]: """simple docstring""" __snake_case : List[str] = [ [0 for col in range(len(grid[0] ) )] for row in range(len(_lowerCamelCase ) ) ] # the reference grid __snake_case : Tuple = 1 __snake_case : List[str] = [ [0 for col in range(len(grid[0] ) )] for row in range(len(_lowerCamelCase ) ) ] # the action grid __snake_case : List[str] = init[0] __snake_case : str = init[1] __snake_case : int = 0 __snake_case : int = g + heuristic[x][y] # cost from starting cell to destination cell __snake_case : List[str] = [[f, g, x, y]] __snake_case : Any = False # flag that is set when search is complete __snake_case : int = False # flag set if we can't find expand while not found and not resign: if len(_lowerCamelCase ) == 0: raise ValueError("""Algorithm is unable to find solution""" ) else: # to choose the least costliest action so as to move closer to the goal cell.sort() cell.reverse() __snake_case : Tuple = cell.pop() __snake_case : Optional[int] = next_cell[2] __snake_case : List[Any] = next_cell[3] __snake_case : int = next_cell[1] if x == goal[0] and y == goal[1]: __snake_case : Optional[Any] = True else: for i in range(len(_lowerCamelCase ) ): # to try out different valid actions __snake_case : Union[str, Any] = x + DIRECTIONS[i][0] __snake_case : str = y + DIRECTIONS[i][1] if xa >= 0 and xa < len(_lowerCamelCase ) and ya >= 0 and ya < len(grid[0] ): if closed[xa][ya] == 0 and grid[xa][ya] == 0: __snake_case : str = g + cost __snake_case : Tuple = ga + heuristic[xa][ya] cell.append([fa, ga, xa, ya] ) __snake_case : List[str] = 1 __snake_case : Optional[int] = i __snake_case : List[str] = [] __snake_case : Optional[int] = goal[0] __snake_case : List[Any] = goal[1] invpath.append([x, y] ) # we get the reverse path from here while x != init[0] or y != init[1]: __snake_case : Dict = x - DIRECTIONS[action[x][y]][0] __snake_case : int = y - DIRECTIONS[action[x][y]][1] __snake_case : Optional[int] = xa __snake_case : int = ya invpath.append([x, y] ) __snake_case : Optional[int] = [] for i in range(len(_lowerCamelCase ) ): path.append(invpath[len(_lowerCamelCase ) - 1 - i] ) return path, action if __name__ == "__main__": __UpperCamelCase = [ [0, 1, 0, 0, 0, 0], [0, 1, 0, 0, 0, 0], # 0 are free path whereas 1's are obstacles [0, 1, 0, 0, 0, 0], [0, 1, 0, 0, 1, 0], [0, 0, 0, 0, 1, 0], ] __UpperCamelCase = [0, 0] # all coordinates are given in format [y,x] __UpperCamelCase = [len(grid) - 1, len(grid[0]) - 1] __UpperCamelCase = 1 # the cost map which pushes the path closer to the goal __UpperCamelCase = [[0 for row in range(len(grid[0]))] for col in range(len(grid))] for i in range(len(grid)): for j in range(len(grid[0])): __UpperCamelCase = abs(i - goal[0]) + abs(j - goal[1]) if grid[i][j] == 1: # added extra penalty in the heuristic map __UpperCamelCase = 99 __UpperCamelCase , __UpperCamelCase = search(grid, init, goal, cost, heuristic) print("ACTION MAP") for i in range(len(action)): print(action[i]) for i in range(len(path)): print(path[i])
26
1
'''simple docstring''' import inspect import unittest from transformers import ViTConfig from transformers.testing_utils import ( require_accelerate, require_torch, require_torch_gpu, require_vision, slow, torch_device, ) from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ViTForImageClassification, ViTForMaskedImageModeling, ViTModel from transformers.models.vit.modeling_vit import VIT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import ViTImageProcessor class _A : def __init__( self : List[str] , __magic_name__ : Any , __magic_name__ : Dict=13 , __magic_name__ : Any=30 , __magic_name__ : Union[str, Any]=2 , __magic_name__ : Optional[Any]=3 , __magic_name__ : Tuple=True , __magic_name__ : List[str]=True , __magic_name__ : Dict=32 , __magic_name__ : Dict=5 , __magic_name__ : Tuple=4 , __magic_name__ : str=37 , __magic_name__ : str="gelu" , __magic_name__ : Dict=0.1 , __magic_name__ : Tuple=0.1 , __magic_name__ : Dict=10 , __magic_name__ : str=0.02 , __magic_name__ : str=None , __magic_name__ : Optional[Any]=2 , ) -> str: """simple docstring""" __snake_case : int = parent __snake_case : List[Any] = batch_size __snake_case : Any = image_size __snake_case : Optional[Any] = patch_size __snake_case : str = num_channels __snake_case : List[Any] = is_training __snake_case : int = use_labels __snake_case : Optional[int] = hidden_size __snake_case : int = num_hidden_layers __snake_case : Any = num_attention_heads __snake_case : Union[str, Any] = intermediate_size __snake_case : List[str] = hidden_act __snake_case : Dict = hidden_dropout_prob __snake_case : Any = attention_probs_dropout_prob __snake_case : str = type_sequence_label_size __snake_case : Optional[Any] = initializer_range __snake_case : Any = scope __snake_case : Dict = encoder_stride # in ViT, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token) __snake_case : Tuple = (image_size // patch_size) ** 2 __snake_case : Optional[int] = num_patches + 1 def lowercase__ ( self : Any ) -> List[Any]: """simple docstring""" __snake_case : List[Any] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) __snake_case : int = None if self.use_labels: __snake_case : Optional[int] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __snake_case : List[str] = self.get_config() return config, pixel_values, labels def lowercase__ ( self : str ) -> Tuple: """simple docstring""" return ViTConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=__magic_name__ , initializer_range=self.initializer_range , encoder_stride=self.encoder_stride , ) def lowercase__ ( self : int , __magic_name__ : Any , __magic_name__ : Dict , __magic_name__ : str ) -> str: """simple docstring""" __snake_case : Optional[Any] = ViTModel(config=__magic_name__ ) model.to(__magic_name__ ) model.eval() __snake_case : Dict = model(__magic_name__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def lowercase__ ( self : Any , __magic_name__ : str , __magic_name__ : Dict , __magic_name__ : List[str] ) -> Tuple: """simple docstring""" __snake_case : Optional[Any] = ViTForMaskedImageModeling(config=__magic_name__ ) model.to(__magic_name__ ) model.eval() __snake_case : List[str] = model(__magic_name__ ) self.parent.assertEqual( result.reconstruction.shape , (self.batch_size, self.num_channels, self.image_size, self.image_size) ) # test greyscale images __snake_case : int = 1 __snake_case : List[Any] = ViTForMaskedImageModeling(__magic_name__ ) model.to(__magic_name__ ) model.eval() __snake_case : Optional[Any] = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) __snake_case : Union[str, Any] = model(__magic_name__ ) self.parent.assertEqual(result.reconstruction.shape , (self.batch_size, 1, self.image_size, self.image_size) ) def lowercase__ ( self : int , __magic_name__ : int , __magic_name__ : Any , __magic_name__ : Union[str, Any] ) -> Optional[int]: """simple docstring""" __snake_case : List[Any] = self.type_sequence_label_size __snake_case : Optional[int] = ViTForImageClassification(__magic_name__ ) model.to(__magic_name__ ) model.eval() __snake_case : List[str] = model(__magic_name__ , labels=__magic_name__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) # test greyscale images __snake_case : int = 1 __snake_case : List[str] = ViTForImageClassification(__magic_name__ ) model.to(__magic_name__ ) model.eval() __snake_case : Optional[Any] = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) __snake_case : Union[str, Any] = model(__magic_name__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def lowercase__ ( self : int ) -> Union[str, Any]: """simple docstring""" __snake_case : Optional[Any] = self.prepare_config_and_inputs() ( ( __snake_case ) , ( __snake_case ) , ( __snake_case ) , ) : Optional[Any] = config_and_inputs __snake_case : List[str] = {"""pixel_values""": pixel_values} return config, inputs_dict @require_torch class _A ( __lowercase , __lowercase , unittest.TestCase ): lowercase__: Optional[int] = ( ( ViTModel, ViTForImageClassification, ViTForMaskedImageModeling, ) if is_torch_available() else () ) lowercase__: Tuple = ( {'''feature-extraction''': ViTModel, '''image-classification''': ViTForImageClassification} if is_torch_available() else {} ) lowercase__: Tuple = True lowercase__: str = False lowercase__: Optional[Any] = False lowercase__: Optional[Any] = False def lowercase__ ( self : Optional[int] ) -> str: """simple docstring""" __snake_case : Any = ViTModelTester(self ) __snake_case : Optional[Any] = ConfigTester(self , config_class=__magic_name__ , has_text_modality=__magic_name__ , hidden_size=37 ) def lowercase__ ( self : List[Any] ) -> Any: """simple docstring""" self.config_tester.run_common_tests() @unittest.skip(reason="""ViT does not use inputs_embeds""" ) def lowercase__ ( self : Optional[Any] ) -> Dict: """simple docstring""" pass def lowercase__ ( self : Optional[int] ) -> str: """simple docstring""" __snake_case , __snake_case : Dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __snake_case : int = model_class(__magic_name__ ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) __snake_case : Any = model.get_output_embeddings() self.assertTrue(x is None or isinstance(__magic_name__ , nn.Linear ) ) def lowercase__ ( self : Dict ) -> List[Any]: """simple docstring""" __snake_case , __snake_case : int = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __snake_case : Optional[Any] = model_class(__magic_name__ ) __snake_case : Optional[Any] = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __snake_case : List[str] = [*signature.parameters.keys()] __snake_case : Optional[int] = ["""pixel_values"""] self.assertListEqual(arg_names[:1] , __magic_name__ ) def lowercase__ ( self : Dict ) -> Any: """simple docstring""" __snake_case : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__magic_name__ ) def lowercase__ ( self : int ) -> Optional[int]: """simple docstring""" __snake_case : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_image_modeling(*__magic_name__ ) def lowercase__ ( self : Optional[int] ) -> Optional[int]: """simple docstring""" __snake_case : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*__magic_name__ ) @slow def lowercase__ ( self : int ) -> int: """simple docstring""" for model_name in VIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __snake_case : str = ViTModel.from_pretrained(__magic_name__ ) self.assertIsNotNone(__magic_name__ ) def _a ( ) -> Optional[int]: """simple docstring""" __snake_case : int = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) return image @require_torch @require_vision class _A ( unittest.TestCase ): @cached_property def lowercase__ ( self : Optional[int] ) -> str: """simple docstring""" return ViTImageProcessor.from_pretrained("""google/vit-base-patch16-224""" ) if is_vision_available() else None @slow def lowercase__ ( self : Optional[Any] ) -> str: """simple docstring""" __snake_case : Any = ViTForImageClassification.from_pretrained("""google/vit-base-patch16-224""" ).to(__magic_name__ ) __snake_case : List[str] = self.default_image_processor __snake_case : Any = prepare_img() __snake_case : Optional[Any] = image_processor(images=__magic_name__ , return_tensors="""pt""" ).to(__magic_name__ ) # forward pass with torch.no_grad(): __snake_case : Optional[Any] = model(**__magic_name__ ) # verify the logits __snake_case : List[str] = torch.Size((1, 10_00) ) self.assertEqual(outputs.logits.shape , __magic_name__ ) __snake_case : int = torch.tensor([-0.2744, 0.8215, -0.0836] ).to(__magic_name__ ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , __magic_name__ , atol=1E-4 ) ) @slow def lowercase__ ( self : str ) -> Tuple: """simple docstring""" __snake_case : Tuple = ViTModel.from_pretrained("""facebook/dino-vits8""" ).to(__magic_name__ ) __snake_case : List[str] = ViTImageProcessor.from_pretrained("""facebook/dino-vits8""" , size=4_80 ) __snake_case : Dict = prepare_img() __snake_case : Tuple = image_processor(images=__magic_name__ , return_tensors="""pt""" ) __snake_case : Optional[int] = inputs.pixel_values.to(__magic_name__ ) # forward pass with torch.no_grad(): __snake_case : List[str] = model(__magic_name__ , interpolate_pos_encoding=__magic_name__ ) # verify the logits __snake_case : Any = torch.Size((1, 36_01, 3_84) ) self.assertEqual(outputs.last_hidden_state.shape , __magic_name__ ) __snake_case : Union[str, Any] = torch.tensor( [[4.2340, 4.3906, -6.6692], [4.5463, 1.8928, -6.7257], [4.4429, 0.8496, -5.8585]] ).to(__magic_name__ ) self.assertTrue(torch.allclose(outputs.last_hidden_state[0, :3, :3] , __magic_name__ , atol=1E-4 ) ) @slow @require_accelerate @require_torch_gpu def lowercase__ ( self : Optional[Any] ) -> str: """simple docstring""" __snake_case : int = ViTModel.from_pretrained("""facebook/dino-vits8""" , torch_dtype=torch.floataa , device_map="""auto""" ) __snake_case : str = self.default_image_processor __snake_case : Optional[Any] = prepare_img() __snake_case : Dict = image_processor(images=__magic_name__ , return_tensors="""pt""" ) __snake_case : Dict = inputs.pixel_values.to(__magic_name__ ) # forward pass to make sure inference works in fp16 with torch.no_grad(): __snake_case : List[Any] = model(__magic_name__ )
26
'''simple docstring''' def _a ( _lowerCamelCase ) -> int: """simple docstring""" if not isinstance(_lowerCamelCase , _lowerCamelCase ): raise TypeError("""only integers accepted as input""" ) else: __snake_case : List[Any] = str(abs(_lowerCamelCase ) ) __snake_case : Union[str, Any] = [list(_lowerCamelCase ) for char in range(len(_lowerCamelCase ) )] for index in range(len(_lowerCamelCase ) ): num_transpositions[index].pop(_lowerCamelCase ) return max( int("""""".join(list(_lowerCamelCase ) ) ) for transposition in num_transpositions ) if __name__ == "__main__": __import__("doctest").testmod()
26
1
'''simple docstring''' class _A : def __init__( self : List[str] ) -> None: """simple docstring""" __snake_case : dict[str, TrieNode] = {} # Mapping from char to TrieNode __snake_case : Optional[int] = False def lowercase__ ( self : Union[str, Any] , __magic_name__ : list[str] ) -> None: """simple docstring""" for word in words: self.insert(__magic_name__ ) def lowercase__ ( self : Any , __magic_name__ : str ) -> None: """simple docstring""" __snake_case : Any = self for char in word: if char not in curr.nodes: __snake_case : Dict = TrieNode() __snake_case : Any = curr.nodes[char] __snake_case : Tuple = True def lowercase__ ( self : Dict , __magic_name__ : str ) -> bool: """simple docstring""" __snake_case : Optional[int] = self for char in word: if char not in curr.nodes: return False __snake_case : Tuple = curr.nodes[char] return curr.is_leaf def lowercase__ ( self : List[str] , __magic_name__ : str ) -> None: """simple docstring""" def _delete(__magic_name__ : TrieNode , __magic_name__ : str , __magic_name__ : int ) -> bool: if index == len(__magic_name__ ): # If word does not exist if not curr.is_leaf: return False __snake_case : str = False return len(curr.nodes ) == 0 __snake_case : Union[str, Any] = word[index] __snake_case : Any = curr.nodes.get(__magic_name__ ) # If char not in current trie node if not char_node: return False # Flag to check if node can be deleted __snake_case : Optional[Any] = _delete(__magic_name__ , __magic_name__ , index + 1 ) if delete_curr: del curr.nodes[char] return len(curr.nodes ) == 0 return delete_curr _delete(self , __magic_name__ , 0 ) def _a ( _lowerCamelCase , _lowerCamelCase ) -> None: """simple docstring""" if node.is_leaf: print(_lowerCamelCase , end=""" """ ) for key, value in node.nodes.items(): print_words(_lowerCamelCase , word + key ) def _a ( ) -> bool: """simple docstring""" __snake_case : str = """banana bananas bandana band apple all beast""".split() __snake_case : List[str] = TrieNode() root.insert_many(_lowerCamelCase ) # print_words(root, "") assert all(root.find(_lowerCamelCase ) for word in words ) assert root.find("""banana""" ) assert not root.find("""bandanas""" ) assert not root.find("""apps""" ) assert root.find("""apple""" ) assert root.find("""all""" ) root.delete("""all""" ) assert not root.find("""all""" ) root.delete("""banana""" ) assert not root.find("""banana""" ) assert root.find("""bananas""" ) return True def _a ( _lowerCamelCase , _lowerCamelCase ) -> None: """simple docstring""" print(str(_lowerCamelCase ) , """works!""" if passes else """doesn't work :(""" ) def _a ( ) -> None: """simple docstring""" assert test_trie() def _a ( ) -> None: """simple docstring""" print_results("""Testing trie functionality""" , test_trie() ) if __name__ == "__main__": main()
26
'''simple docstring''' from __future__ import annotations import math def _a ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> int: """simple docstring""" if depth < 0: raise ValueError("""Depth cannot be less than 0""" ) if not scores: raise ValueError("""Scores cannot be empty""" ) if depth == height: return scores[node_index] return ( max( minimax(depth + 1 , node_index * 2 , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) , minimax(depth + 1 , node_index * 2 + 1 , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) , ) if is_max else min( minimax(depth + 1 , node_index * 2 , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) , minimax(depth + 1 , node_index * 2 + 1 , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) , ) ) def _a ( ) -> None: """simple docstring""" __snake_case : Union[str, Any] = [90, 23, 6, 33, 21, 65, 123, 3_4423] __snake_case : Optional[int] = math.log(len(_lowerCamelCase ) , 2 ) print(F'''Optimal value : {minimax(0 , 0 , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase )}''' ) if __name__ == "__main__": import doctest doctest.testmod() main()
26
1
'''simple docstring''' from __future__ import annotations import math import random from typing import Any class _A : def __init__( self : Tuple ) -> None: """simple docstring""" __snake_case : list[Any] = [] __snake_case : int = 0 __snake_case : int = 0 def lowercase__ ( self : List[str] ) -> bool: """simple docstring""" return self.head == self.tail def lowercase__ ( self : int , __magic_name__ : Any ) -> None: """simple docstring""" self.data.append(__magic_name__ ) __snake_case : Dict = self.tail + 1 def lowercase__ ( self : int ) -> Any: """simple docstring""" __snake_case : Optional[int] = self.data[self.head] __snake_case : Optional[Any] = self.head + 1 return ret def lowercase__ ( self : str ) -> int: """simple docstring""" return self.tail - self.head def lowercase__ ( self : int ) -> None: """simple docstring""" print(self.data ) print("""**************""" ) print(self.data[self.head : self.tail] ) class _A : def __init__( self : str , __magic_name__ : Any ) -> None: """simple docstring""" __snake_case : List[Any] = data __snake_case : MyNode | None = None __snake_case : MyNode | None = None __snake_case : int = 1 def lowercase__ ( self : Union[str, Any] ) -> Any: """simple docstring""" return self.data def lowercase__ ( self : Dict ) -> MyNode | None: """simple docstring""" return self.left def lowercase__ ( self : Optional[int] ) -> MyNode | None: """simple docstring""" return self.right def lowercase__ ( self : List[Any] ) -> int: """simple docstring""" return self.height def lowercase__ ( self : Any , __magic_name__ : Any ) -> None: """simple docstring""" __snake_case : Any = data def lowercase__ ( self : Optional[int] , __magic_name__ : MyNode | None ) -> None: """simple docstring""" __snake_case : List[str] = node def lowercase__ ( self : List[Any] , __magic_name__ : MyNode | None ) -> None: """simple docstring""" __snake_case : List[Any] = node def lowercase__ ( self : Optional[Any] , __magic_name__ : int ) -> None: """simple docstring""" __snake_case : Tuple = height def _a ( _lowerCamelCase ) -> int: """simple docstring""" if node is None: return 0 return node.get_height() def _a ( _lowerCamelCase , _lowerCamelCase ) -> int: """simple docstring""" if a > b: return a return b def _a ( _lowerCamelCase ) -> MyNode: """simple docstring""" print("""left rotation node:""" , node.get_data() ) __snake_case : Optional[Any] = node.get_left() assert ret is not None node.set_left(ret.get_right() ) ret.set_right(_lowerCamelCase ) __snake_case : str = my_max(get_height(node.get_right() ) , get_height(node.get_left() ) ) + 1 node.set_height(_lowerCamelCase ) __snake_case : List[Any] = my_max(get_height(ret.get_right() ) , get_height(ret.get_left() ) ) + 1 ret.set_height(_lowerCamelCase ) return ret def _a ( _lowerCamelCase ) -> MyNode: """simple docstring""" print("""right rotation node:""" , node.get_data() ) __snake_case : Optional[Any] = node.get_right() assert ret is not None node.set_right(ret.get_left() ) ret.set_left(_lowerCamelCase ) __snake_case : Tuple = my_max(get_height(node.get_right() ) , get_height(node.get_left() ) ) + 1 node.set_height(_lowerCamelCase ) __snake_case : Any = my_max(get_height(ret.get_right() ) , get_height(ret.get_left() ) ) + 1 ret.set_height(_lowerCamelCase ) return ret def _a ( _lowerCamelCase ) -> MyNode: """simple docstring""" __snake_case : str = node.get_left() assert left_child is not None node.set_left(left_rotation(_lowerCamelCase ) ) return right_rotation(_lowerCamelCase ) def _a ( _lowerCamelCase ) -> MyNode: """simple docstring""" __snake_case : Optional[int] = node.get_right() assert right_child is not None node.set_right(right_rotation(_lowerCamelCase ) ) return left_rotation(_lowerCamelCase ) def _a ( _lowerCamelCase , _lowerCamelCase ) -> MyNode | None: """simple docstring""" if node is None: return MyNode(_lowerCamelCase ) if data < node.get_data(): node.set_left(insert_node(node.get_left() , _lowerCamelCase ) ) if ( get_height(node.get_left() ) - get_height(node.get_right() ) == 2 ): # an unbalance detected __snake_case : Union[str, Any] = node.get_left() assert left_child is not None if ( data < left_child.get_data() ): # new node is the left child of the left child __snake_case : Any = right_rotation(_lowerCamelCase ) else: __snake_case : Tuple = lr_rotation(_lowerCamelCase ) else: node.set_right(insert_node(node.get_right() , _lowerCamelCase ) ) if get_height(node.get_right() ) - get_height(node.get_left() ) == 2: __snake_case : Optional[int] = node.get_right() assert right_child is not None if data < right_child.get_data(): __snake_case : Optional[int] = rl_rotation(_lowerCamelCase ) else: __snake_case : Tuple = left_rotation(_lowerCamelCase ) __snake_case : Optional[Any] = my_max(get_height(node.get_right() ) , get_height(node.get_left() ) ) + 1 node.set_height(_lowerCamelCase ) return node def _a ( _lowerCamelCase ) -> Any: """simple docstring""" while True: __snake_case : Dict = root.get_right() if right_child is None: break __snake_case : List[Any] = right_child return root.get_data() def _a ( _lowerCamelCase ) -> Any: """simple docstring""" while True: __snake_case : Optional[Any] = root.get_left() if left_child is None: break __snake_case : int = left_child return root.get_data() def _a ( _lowerCamelCase , _lowerCamelCase ) -> MyNode | None: """simple docstring""" __snake_case : int = root.get_left() __snake_case : int = root.get_right() if root.get_data() == data: if left_child is not None and right_child is not None: __snake_case : Tuple = get_left_most(_lowerCamelCase ) root.set_data(_lowerCamelCase ) root.set_right(del_node(_lowerCamelCase , _lowerCamelCase ) ) elif left_child is not None: __snake_case : Optional[int] = left_child elif right_child is not None: __snake_case : str = right_child else: return None elif root.get_data() > data: if left_child is None: print("""No such data""" ) return root else: root.set_left(del_node(_lowerCamelCase , _lowerCamelCase ) ) else: # root.get_data() < data if right_child is None: return root else: root.set_right(del_node(_lowerCamelCase , _lowerCamelCase ) ) if get_height(_lowerCamelCase ) - get_height(_lowerCamelCase ) == 2: assert right_child is not None if get_height(right_child.get_right() ) > get_height(right_child.get_left() ): __snake_case : Optional[Any] = left_rotation(_lowerCamelCase ) else: __snake_case : str = rl_rotation(_lowerCamelCase ) elif get_height(_lowerCamelCase ) - get_height(_lowerCamelCase ) == -2: assert left_child is not None if get_height(left_child.get_left() ) > get_height(left_child.get_right() ): __snake_case : List[Any] = right_rotation(_lowerCamelCase ) else: __snake_case : List[str] = lr_rotation(_lowerCamelCase ) __snake_case : List[Any] = my_max(get_height(root.get_right() ) , get_height(root.get_left() ) ) + 1 root.set_height(_lowerCamelCase ) return root class _A : def __init__( self : int ) -> None: """simple docstring""" __snake_case : MyNode | None = None def lowercase__ ( self : Dict ) -> int: """simple docstring""" return get_height(self.root ) def lowercase__ ( self : Tuple , __magic_name__ : Any ) -> None: """simple docstring""" print("""insert:""" + str(__magic_name__ ) ) __snake_case : Optional[Any] = insert_node(self.root , __magic_name__ ) def lowercase__ ( self : Dict , __magic_name__ : Any ) -> None: """simple docstring""" print("""delete:""" + str(__magic_name__ ) ) if self.root is None: print("""Tree is empty!""" ) return __snake_case : str = del_node(self.root , __magic_name__ ) def __str__( self : Dict , ) -> str: # a level traversale, gives a more intuitive look on the tree """simple docstring""" __snake_case : List[Any] = """""" __snake_case : int = MyQueue() q.push(self.root ) __snake_case : int = self.get_height() if layer == 0: return output __snake_case : Any = 0 while not q.is_empty(): __snake_case : Optional[int] = q.pop() __snake_case : Optional[int] = """ """ * int(math.pow(2 , layer - 1 ) ) output += space if node is None: output += "*" q.push(__magic_name__ ) q.push(__magic_name__ ) else: output += str(node.get_data() ) q.push(node.get_left() ) q.push(node.get_right() ) output += space __snake_case : Tuple = cnt + 1 for i in range(1_00 ): if cnt == math.pow(2 , __magic_name__ ) - 1: __snake_case : Tuple = layer - 1 if layer == 0: output += "\n*************************************" return output output += "\n" break output += "\n*************************************" return output def _a ( ) -> None: """simple docstring""" import doctest doctest.testmod() if __name__ == "__main__": _test() __UpperCamelCase = AVLtree() __UpperCamelCase = list(range(10)) random.shuffle(lst) for i in lst: t.insert(i) print(str(t)) random.shuffle(lst) for i in lst: t.del_node(i) print(str(t))
26
'''simple docstring''' from __future__ import annotations def _a ( _lowerCamelCase , _lowerCamelCase = None , _lowerCamelCase = None ) -> None: """simple docstring""" if start is None: __snake_case : Optional[Any] = 0 if end is None: __snake_case : Optional[Any] = len(_lowerCamelCase ) - 1 if start >= end: return __snake_case : Tuple = (start + end) // 2 slowsort(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) slowsort(_lowerCamelCase , mid + 1 , _lowerCamelCase ) if sequence[end] < sequence[mid]: __snake_case , __snake_case : str = sequence[mid], sequence[end] slowsort(_lowerCamelCase , _lowerCamelCase , end - 1 ) if __name__ == "__main__": from doctest import testmod testmod()
26
1
'''simple docstring''' import os import tempfile import unittest import uuid from pathlib import Path from transformers.testing_utils import get_tests_dir, require_soundfile, require_torch, require_vision from transformers.tools.agent_types import AgentAudio, AgentImage, AgentText from transformers.utils import is_soundfile_availble, is_torch_available, is_vision_available if is_torch_available(): import torch if is_soundfile_availble(): import soundfile as sf if is_vision_available(): from PIL import Image def _a ( _lowerCamelCase="" ) -> str: """simple docstring""" __snake_case : Optional[Any] = tempfile.mkdtemp() return os.path.join(_lowerCamelCase , str(uuid.uuida() ) + suffix ) @require_soundfile @require_torch class _A ( unittest.TestCase ): def lowercase__ ( self : Optional[Any] ) -> Optional[int]: """simple docstring""" __snake_case : Optional[int] = torch.rand(12 , dtype=torch.floataa ) - 0.5 __snake_case : Tuple = AgentAudio(__magic_name__ ) __snake_case : List[str] = str(agent_type.to_string() ) # Ensure that the tensor and the agent_type's tensor are the same self.assertTrue(torch.allclose(__magic_name__ , agent_type.to_raw() , atol=1E-4 ) ) del agent_type # Ensure the path remains even after the object deletion self.assertTrue(os.path.exists(__magic_name__ ) ) # Ensure that the file contains the same value as the original tensor __snake_case , __snake_case : Optional[Any] = sf.read(__magic_name__ ) self.assertTrue(torch.allclose(__magic_name__ , torch.tensor(__magic_name__ ) , atol=1E-4 ) ) def lowercase__ ( self : Tuple ) -> int: """simple docstring""" __snake_case : Optional[int] = torch.rand(12 , dtype=torch.floataa ) - 0.5 __snake_case : Tuple = get_new_path(suffix=""".wav""" ) sf.write(__magic_name__ , __magic_name__ , 1_60_00 ) __snake_case : int = AgentAudio(__magic_name__ ) self.assertTrue(torch.allclose(__magic_name__ , agent_type.to_raw() , atol=1E-4 ) ) self.assertEqual(agent_type.to_string() , __magic_name__ ) @require_vision @require_torch class _A ( unittest.TestCase ): def lowercase__ ( self : Tuple ) -> Tuple: """simple docstring""" __snake_case : int = torch.randint(0 , 2_56 , (64, 64, 3) ) __snake_case : List[str] = AgentImage(__magic_name__ ) __snake_case : List[str] = str(agent_type.to_string() ) # Ensure that the tensor and the agent_type's tensor are the same self.assertTrue(torch.allclose(__magic_name__ , agent_type._tensor , atol=1E-4 ) ) self.assertIsInstance(agent_type.to_raw() , Image.Image ) # Ensure the path remains even after the object deletion del agent_type self.assertTrue(os.path.exists(__magic_name__ ) ) def lowercase__ ( self : Union[str, Any] ) -> Optional[Any]: """simple docstring""" __snake_case : Optional[Any] = Path(get_tests_dir("""fixtures/tests_samples/COCO""" ) ) / """000000039769.png""" __snake_case : Tuple = Image.open(__magic_name__ ) __snake_case : Optional[int] = AgentImage(__magic_name__ ) self.assertTrue(path.samefile(agent_type.to_string() ) ) self.assertTrue(image == agent_type.to_raw() ) # Ensure the path remains even after the object deletion del agent_type self.assertTrue(os.path.exists(__magic_name__ ) ) def lowercase__ ( self : Optional[int] ) -> List[Any]: """simple docstring""" __snake_case : Optional[Any] = Path(get_tests_dir("""fixtures/tests_samples/COCO""" ) ) / """000000039769.png""" __snake_case : List[str] = Image.open(__magic_name__ ) __snake_case : Union[str, Any] = AgentImage(__magic_name__ ) self.assertFalse(path.samefile(agent_type.to_string() ) ) self.assertTrue(image == agent_type.to_raw() ) # Ensure the path remains even after the object deletion del agent_type self.assertTrue(os.path.exists(__magic_name__ ) ) class _A ( unittest.TestCase ): def lowercase__ ( self : Optional[Any] ) -> int: """simple docstring""" __snake_case : List[str] = """Hey!""" __snake_case : Optional[Any] = AgentText(__magic_name__ ) self.assertEqual(__magic_name__ , agent_type.to_string() ) self.assertEqual(__magic_name__ , agent_type.to_raw() ) self.assertEqual(__magic_name__ , __magic_name__ )
26
'''simple docstring''' import doctest import logging import os import unittest from pathlib import Path from typing import List, Union import transformers from transformers.testing_utils import require_tf, require_torch, slow __UpperCamelCase = logging.getLogger() @unittest.skip('''Temporarily disable the doc tests.''' ) @require_torch @require_tf @slow class _A ( unittest.TestCase ): def lowercase__ ( self : Optional[int] , __magic_name__ : Path , __magic_name__ : Union[str, None] = None , __magic_name__ : Union[List[str], None] = None , __magic_name__ : Union[str, List[str], None] = None , __magic_name__ : bool = True , ) -> Optional[int]: """simple docstring""" __snake_case : Union[str, Any] = [file for file in os.listdir(__magic_name__ ) if os.path.isfile(os.path.join(__magic_name__ , __magic_name__ ) )] if identifier is not None: __snake_case : List[Any] = [file for file in files if identifier in file] if n_identifier is not None: if isinstance(__magic_name__ , __magic_name__ ): for n_ in n_identifier: __snake_case : Optional[int] = [file for file in files if n_ not in file] else: __snake_case : Tuple = [file for file in files if n_identifier not in file] __snake_case : Dict = ignore_files or [] ignore_files.append("""__init__.py""" ) __snake_case : List[str] = [file for file in files if file not in ignore_files] for file in files: # Open all files print("""Testing""" , __magic_name__ ) if only_modules: __snake_case : List[Any] = file.split(""".""" )[0] try: __snake_case : List[Any] = getattr(__magic_name__ , __magic_name__ ) __snake_case : Union[str, Any] = doctest.DocTestSuite(__magic_name__ ) __snake_case : Dict = unittest.TextTestRunner().run(__magic_name__ ) self.assertIs(len(result.failures ) , 0 ) except AttributeError: logger.info(f'''{module_identifier} is not a module.''' ) else: __snake_case : Tuple = doctest.testfile(str("""..""" / directory / file ) , optionflags=doctest.ELLIPSIS ) self.assertIs(result.failed , 0 ) def lowercase__ ( self : Union[str, Any] ) -> Any: """simple docstring""" __snake_case : List[Any] = Path("""src/transformers""" ) __snake_case : List[Any] = """modeling""" __snake_case : Union[str, Any] = [ """modeling_ctrl.py""", """modeling_tf_ctrl.py""", ] self.analyze_directory(__magic_name__ , identifier=__magic_name__ , ignore_files=__magic_name__ ) def lowercase__ ( self : Union[str, Any] ) -> int: """simple docstring""" __snake_case : Union[str, Any] = Path("""src/transformers""" ) __snake_case : Any = """tokenization""" self.analyze_directory(__magic_name__ , identifier=__magic_name__ ) def lowercase__ ( self : Union[str, Any] ) -> int: """simple docstring""" __snake_case : List[Any] = Path("""src/transformers""" ) __snake_case : List[str] = """configuration""" self.analyze_directory(__magic_name__ , identifier=__magic_name__ ) def lowercase__ ( self : Dict ) -> Dict: """simple docstring""" __snake_case : Tuple = Path("""src/transformers""" ) __snake_case : int = ["""configuration""", """modeling""", """tokenization"""] self.analyze_directory(__magic_name__ , n_identifier=__magic_name__ ) def lowercase__ ( self : Optional[int] ) -> Union[str, Any]: """simple docstring""" __snake_case : int = Path("""docs/source""" ) __snake_case : Optional[int] = ["""favicon.ico"""] self.analyze_directory(__magic_name__ , ignore_files=__magic_name__ , only_modules=__magic_name__ )
26
1
'''simple docstring''' def _a ( _lowerCamelCase , _lowerCamelCase ) -> Any: """simple docstring""" _enforce_args(_lowerCamelCase , _lowerCamelCase ) if n == 0: return 0 __snake_case : Optional[Any] = float("""-inf""" ) for i in range(1 , n + 1 ): __snake_case : List[str] = max( _lowerCamelCase , prices[i - 1] + naive_cut_rod_recursive(n - i , _lowerCamelCase ) ) return max_revue def _a ( _lowerCamelCase , _lowerCamelCase ) -> Optional[Any]: """simple docstring""" _enforce_args(_lowerCamelCase , _lowerCamelCase ) __snake_case : Union[str, Any] = [float("""-inf""" ) for _ in range(n + 1 )] return _top_down_cut_rod_recursive(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) def _a ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> int: """simple docstring""" if max_rev[n] >= 0: return max_rev[n] elif n == 0: return 0 else: __snake_case : List[Any] = float("""-inf""" ) for i in range(1 , n + 1 ): __snake_case : Any = max( _lowerCamelCase , prices[i - 1] + _top_down_cut_rod_recursive(n - i , _lowerCamelCase , _lowerCamelCase ) , ) __snake_case : Optional[int] = max_revenue return max_rev[n] def _a ( _lowerCamelCase , _lowerCamelCase ) -> Dict: """simple docstring""" _enforce_args(_lowerCamelCase , _lowerCamelCase ) # length(max_rev) = n + 1, to accommodate for the revenue obtainable from a rod of # length 0. __snake_case : Any = [float("""-inf""" ) for _ in range(n + 1 )] __snake_case : Dict = 0 for i in range(1 , n + 1 ): __snake_case : Dict = max_rev[i] for j in range(1 , i + 1 ): __snake_case : Dict = max(_lowerCamelCase , prices[j - 1] + max_rev[i - j] ) __snake_case : Optional[int] = max_revenue_i return max_rev[n] def _a ( _lowerCamelCase , _lowerCamelCase ) -> Union[str, Any]: """simple docstring""" if n < 0: __snake_case : List[Any] = F'''n must be greater than or equal to 0. Got n = {n}''' raise ValueError(_lowerCamelCase ) if n > len(_lowerCamelCase ): __snake_case : int = ( """Each integral piece of rod must have a corresponding price. """ F'''Got n = {n} but length of prices = {len(_lowerCamelCase )}''' ) raise ValueError(_lowerCamelCase ) def _a ( ) -> List[Any]: """simple docstring""" __snake_case : Optional[int] = [6, 10, 12, 15, 20, 23] __snake_case : List[str] = len(_lowerCamelCase ) # the best revenue comes from cutting the rod into 6 pieces, each # of length 1 resulting in a revenue of 6 * 6 = 36. __snake_case : Optional[int] = 36 __snake_case : List[str] = top_down_cut_rod(_lowerCamelCase , _lowerCamelCase ) __snake_case : Tuple = bottom_up_cut_rod(_lowerCamelCase , _lowerCamelCase ) __snake_case : str = naive_cut_rod_recursive(_lowerCamelCase , _lowerCamelCase ) assert expected_max_revenue == max_rev_top_down assert max_rev_top_down == max_rev_bottom_up assert max_rev_bottom_up == max_rev_naive if __name__ == "__main__": main()
26
'''simple docstring''' import inspect from typing import Callable, List, Optional, Union import torch from transformers import ( CLIPImageProcessor, CLIPTextModel, CLIPTokenizer, WhisperForConditionalGeneration, WhisperProcessor, ) from diffusers import ( AutoencoderKL, DDIMScheduler, DiffusionPipeline, LMSDiscreteScheduler, PNDMScheduler, UNetaDConditionModel, ) from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion import StableDiffusionPipelineOutput from diffusers.pipelines.stable_diffusion.safety_checker import StableDiffusionSafetyChecker from diffusers.utils import logging __UpperCamelCase = logging.get_logger(__name__) # pylint: disable=invalid-name class _A ( __lowercase ): def __init__( self : str , __magic_name__ : WhisperForConditionalGeneration , __magic_name__ : WhisperProcessor , __magic_name__ : AutoencoderKL , __magic_name__ : CLIPTextModel , __magic_name__ : CLIPTokenizer , __magic_name__ : UNetaDConditionModel , __magic_name__ : Union[DDIMScheduler, PNDMScheduler, LMSDiscreteScheduler] , __magic_name__ : StableDiffusionSafetyChecker , __magic_name__ : CLIPImageProcessor , ) -> Union[str, Any]: """simple docstring""" super().__init__() if safety_checker is None: logger.warning( f'''You have disabled the safety checker for {self.__class__} by passing `safety_checker=None`. Ensure''' """ that you abide to the conditions of the Stable Diffusion license and do not expose unfiltered""" """ results in services or applications open to the public. Both the diffusers team and Hugging Face""" """ strongly recommend to keep the safety filter enabled in all public facing circumstances, disabling""" """ it only for use-cases that involve analyzing network behavior or auditing its results. For more""" """ information, please have a look at https://github.com/huggingface/diffusers/pull/254 .""" ) self.register_modules( speech_model=__magic_name__ , speech_processor=__magic_name__ , vae=__magic_name__ , text_encoder=__magic_name__ , tokenizer=__magic_name__ , unet=__magic_name__ , scheduler=__magic_name__ , feature_extractor=__magic_name__ , ) def lowercase__ ( self : Optional[Any] , __magic_name__ : Optional[Union[str, int]] = "auto" ) -> Union[str, Any]: """simple docstring""" if slice_size == "auto": __snake_case : str = self.unet.config.attention_head_dim // 2 self.unet.set_attention_slice(__magic_name__ ) def lowercase__ ( self : str ) -> Any: """simple docstring""" self.enable_attention_slicing(__magic_name__ ) @torch.no_grad() def __call__( self : Optional[int] , __magic_name__ : str , __magic_name__ : Dict=1_60_00 , __magic_name__ : int = 5_12 , __magic_name__ : int = 5_12 , __magic_name__ : int = 50 , __magic_name__ : float = 7.5 , __magic_name__ : Optional[Union[str, List[str]]] = None , __magic_name__ : Optional[int] = 1 , __magic_name__ : float = 0.0 , __magic_name__ : Optional[torch.Generator] = None , __magic_name__ : Optional[torch.FloatTensor] = None , __magic_name__ : Optional[str] = "pil" , __magic_name__ : bool = True , __magic_name__ : Optional[Callable[[int, int, torch.FloatTensor], None]] = None , __magic_name__ : int = 1 , **__magic_name__ : List[str] , ) -> int: """simple docstring""" __snake_case : List[Any] = self.speech_processor.feature_extractor( __magic_name__ , return_tensors="""pt""" , sampling_rate=__magic_name__ ).input_features.to(self.device ) __snake_case : List[str] = self.speech_model.generate(__magic_name__ , max_length=48_00_00 ) __snake_case : List[Any] = self.speech_processor.tokenizer.batch_decode(__magic_name__ , skip_special_tokens=__magic_name__ , normalize=__magic_name__ )[ 0 ] if isinstance(__magic_name__ , __magic_name__ ): __snake_case : Tuple = 1 elif isinstance(__magic_name__ , __magic_name__ ): __snake_case : Optional[int] = len(__magic_name__ ) else: raise ValueError(f'''`prompt` has to be of type `str` or `list` but is {type(__magic_name__ )}''' ) if height % 8 != 0 or width % 8 != 0: raise ValueError(f'''`height` and `width` have to be divisible by 8 but are {height} and {width}.''' ) if (callback_steps is None) or ( callback_steps is not None and (not isinstance(__magic_name__ , __magic_name__ ) or callback_steps <= 0) ): raise ValueError( f'''`callback_steps` has to be a positive integer but is {callback_steps} of type''' f''' {type(__magic_name__ )}.''' ) # get prompt text embeddings __snake_case : Dict = self.tokenizer( __magic_name__ , padding="""max_length""" , max_length=self.tokenizer.model_max_length , return_tensors="""pt""" , ) __snake_case : Optional[Any] = text_inputs.input_ids if text_input_ids.shape[-1] > self.tokenizer.model_max_length: __snake_case : Tuple = self.tokenizer.batch_decode(text_input_ids[:, self.tokenizer.model_max_length :] ) logger.warning( """The following part of your input was truncated because CLIP can only handle sequences up to""" f''' {self.tokenizer.model_max_length} tokens: {removed_text}''' ) __snake_case : Any = text_input_ids[:, : self.tokenizer.model_max_length] __snake_case : int = self.text_encoder(text_input_ids.to(self.device ) )[0] # duplicate text embeddings for each generation per prompt, using mps friendly method __snake_case , __snake_case , __snake_case : Any = text_embeddings.shape __snake_case : List[Any] = text_embeddings.repeat(1 , __magic_name__ , 1 ) __snake_case : Dict = text_embeddings.view(bs_embed * num_images_per_prompt , __magic_name__ , -1 ) # here `guidance_scale` is defined analog to the guidance weight `w` of equation (2) # of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1` # corresponds to doing no classifier free guidance. __snake_case : Optional[int] = guidance_scale > 1.0 # get unconditional embeddings for classifier free guidance if do_classifier_free_guidance: __snake_case : List[str] if negative_prompt is None: __snake_case : Optional[Any] = [""""""] * batch_size elif type(__magic_name__ ) is not type(__magic_name__ ): raise TypeError( f'''`negative_prompt` should be the same type to `prompt`, but got {type(__magic_name__ )} !=''' f''' {type(__magic_name__ )}.''' ) elif isinstance(__magic_name__ , __magic_name__ ): __snake_case : Dict = [negative_prompt] elif batch_size != len(__magic_name__ ): raise ValueError( f'''`negative_prompt`: {negative_prompt} has batch size {len(__magic_name__ )}, but `prompt`:''' f''' {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches''' """ the batch size of `prompt`.""" ) else: __snake_case : int = negative_prompt __snake_case : List[str] = text_input_ids.shape[-1] __snake_case : Any = self.tokenizer( __magic_name__ , padding="""max_length""" , max_length=__magic_name__ , truncation=__magic_name__ , return_tensors="""pt""" , ) __snake_case : Dict = self.text_encoder(uncond_input.input_ids.to(self.device ) )[0] # duplicate unconditional embeddings for each generation per prompt, using mps friendly method __snake_case : Optional[int] = uncond_embeddings.shape[1] __snake_case : Union[str, Any] = uncond_embeddings.repeat(1 , __magic_name__ , 1 ) __snake_case : Tuple = uncond_embeddings.view(batch_size * num_images_per_prompt , __magic_name__ , -1 ) # For classifier free guidance, we need to do two forward passes. # Here we concatenate the unconditional and text embeddings into a single batch # to avoid doing two forward passes __snake_case : Dict = torch.cat([uncond_embeddings, text_embeddings] ) # get the initial random noise unless the user supplied it # Unlike in other pipelines, latents need to be generated in the target device # for 1-to-1 results reproducibility with the CompVis implementation. # However this currently doesn't work in `mps`. __snake_case : List[Any] = (batch_size * num_images_per_prompt, self.unet.config.in_channels, height // 8, width // 8) __snake_case : List[Any] = text_embeddings.dtype if latents is None: if self.device.type == "mps": # randn does not exist on mps __snake_case : Optional[int] = torch.randn(__magic_name__ , generator=__magic_name__ , device="""cpu""" , dtype=__magic_name__ ).to( self.device ) else: __snake_case : int = torch.randn(__magic_name__ , generator=__magic_name__ , device=self.device , dtype=__magic_name__ ) else: if latents.shape != latents_shape: raise ValueError(f'''Unexpected latents shape, got {latents.shape}, expected {latents_shape}''' ) __snake_case : List[str] = latents.to(self.device ) # set timesteps self.scheduler.set_timesteps(__magic_name__ ) # Some schedulers like PNDM have timesteps as arrays # It's more optimized to move all timesteps to correct device beforehand __snake_case : Optional[int] = self.scheduler.timesteps.to(self.device ) # scale the initial noise by the standard deviation required by the scheduler __snake_case : str = latents * self.scheduler.init_noise_sigma # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature # eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers. # eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502 # and should be between [0, 1] __snake_case : Tuple = """eta""" in set(inspect.signature(self.scheduler.step ).parameters.keys() ) __snake_case : List[str] = {} if accepts_eta: __snake_case : str = eta for i, t in enumerate(self.progress_bar(__magic_name__ ) ): # expand the latents if we are doing classifier free guidance __snake_case : Union[str, Any] = torch.cat([latents] * 2 ) if do_classifier_free_guidance else latents __snake_case : Dict = self.scheduler.scale_model_input(__magic_name__ , __magic_name__ ) # predict the noise residual __snake_case : Tuple = self.unet(__magic_name__ , __magic_name__ , encoder_hidden_states=__magic_name__ ).sample # perform guidance if do_classifier_free_guidance: __snake_case , __snake_case : str = noise_pred.chunk(2 ) __snake_case : Any = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) # compute the previous noisy sample x_t -> x_t-1 __snake_case : Optional[Any] = self.scheduler.step(__magic_name__ , __magic_name__ , __magic_name__ , **__magic_name__ ).prev_sample # call the callback, if provided if callback is not None and i % callback_steps == 0: callback(__magic_name__ , __magic_name__ , __magic_name__ ) __snake_case : int = 1 / 0.18215 * latents __snake_case : Optional[Any] = self.vae.decode(__magic_name__ ).sample __snake_case : Any = (image / 2 + 0.5).clamp(0 , 1 ) # we always cast to float32 as this does not cause significant overhead and is compatible with bfloat16 __snake_case : Any = image.cpu().permute(0 , 2 , 3 , 1 ).float().numpy() if output_type == "pil": __snake_case : Tuple = self.numpy_to_pil(__magic_name__ ) if not return_dict: return image return StableDiffusionPipelineOutput(images=__magic_name__ , nsfw_content_detected=__magic_name__ )
26
1
'''simple docstring''' import doctest import logging import os import unittest from pathlib import Path from typing import List, Union import transformers from transformers.testing_utils import require_tf, require_torch, slow __UpperCamelCase = logging.getLogger() @unittest.skip('''Temporarily disable the doc tests.''' ) @require_torch @require_tf @slow class _A ( unittest.TestCase ): def lowercase__ ( self : Optional[int] , __magic_name__ : Path , __magic_name__ : Union[str, None] = None , __magic_name__ : Union[List[str], None] = None , __magic_name__ : Union[str, List[str], None] = None , __magic_name__ : bool = True , ) -> Optional[int]: """simple docstring""" __snake_case : Union[str, Any] = [file for file in os.listdir(__magic_name__ ) if os.path.isfile(os.path.join(__magic_name__ , __magic_name__ ) )] if identifier is not None: __snake_case : List[Any] = [file for file in files if identifier in file] if n_identifier is not None: if isinstance(__magic_name__ , __magic_name__ ): for n_ in n_identifier: __snake_case : Optional[int] = [file for file in files if n_ not in file] else: __snake_case : Tuple = [file for file in files if n_identifier not in file] __snake_case : Dict = ignore_files or [] ignore_files.append("""__init__.py""" ) __snake_case : List[str] = [file for file in files if file not in ignore_files] for file in files: # Open all files print("""Testing""" , __magic_name__ ) if only_modules: __snake_case : List[Any] = file.split(""".""" )[0] try: __snake_case : List[Any] = getattr(__magic_name__ , __magic_name__ ) __snake_case : Union[str, Any] = doctest.DocTestSuite(__magic_name__ ) __snake_case : Dict = unittest.TextTestRunner().run(__magic_name__ ) self.assertIs(len(result.failures ) , 0 ) except AttributeError: logger.info(f'''{module_identifier} is not a module.''' ) else: __snake_case : Tuple = doctest.testfile(str("""..""" / directory / file ) , optionflags=doctest.ELLIPSIS ) self.assertIs(result.failed , 0 ) def lowercase__ ( self : Union[str, Any] ) -> Any: """simple docstring""" __snake_case : List[Any] = Path("""src/transformers""" ) __snake_case : List[Any] = """modeling""" __snake_case : Union[str, Any] = [ """modeling_ctrl.py""", """modeling_tf_ctrl.py""", ] self.analyze_directory(__magic_name__ , identifier=__magic_name__ , ignore_files=__magic_name__ ) def lowercase__ ( self : Union[str, Any] ) -> int: """simple docstring""" __snake_case : Union[str, Any] = Path("""src/transformers""" ) __snake_case : Any = """tokenization""" self.analyze_directory(__magic_name__ , identifier=__magic_name__ ) def lowercase__ ( self : Union[str, Any] ) -> int: """simple docstring""" __snake_case : List[Any] = Path("""src/transformers""" ) __snake_case : List[str] = """configuration""" self.analyze_directory(__magic_name__ , identifier=__magic_name__ ) def lowercase__ ( self : Dict ) -> Dict: """simple docstring""" __snake_case : Tuple = Path("""src/transformers""" ) __snake_case : int = ["""configuration""", """modeling""", """tokenization"""] self.analyze_directory(__magic_name__ , n_identifier=__magic_name__ ) def lowercase__ ( self : Optional[int] ) -> Union[str, Any]: """simple docstring""" __snake_case : int = Path("""docs/source""" ) __snake_case : Optional[int] = ["""favicon.ico"""] self.analyze_directory(__magic_name__ , ignore_files=__magic_name__ , only_modules=__magic_name__ )
26
'''simple docstring''' import os from huggingface_hub.constants import HUGGINGFACE_HUB_CACHE, hf_cache_home __UpperCamelCase = HUGGINGFACE_HUB_CACHE __UpperCamelCase = "config.json" __UpperCamelCase = "diffusion_pytorch_model.bin" __UpperCamelCase = "diffusion_flax_model.msgpack" __UpperCamelCase = "model.onnx" __UpperCamelCase = "diffusion_pytorch_model.safetensors" __UpperCamelCase = "weights.pb" __UpperCamelCase = "https://huggingface.co" __UpperCamelCase = default_cache_path __UpperCamelCase = "diffusers_modules" __UpperCamelCase = os.getenv("HF_MODULES_CACHE", os.path.join(hf_cache_home, "modules")) __UpperCamelCase = ["fp16", "non-ema"] __UpperCamelCase = ".self_attn"
26
1
'''simple docstring''' from typing import List from .keymap import KEYMAP, get_character def _a ( _lowerCamelCase ) -> int: """simple docstring""" def decorator(_lowerCamelCase ): __snake_case : str = getattr(_lowerCamelCase , """handle_key""" , [] ) handle += [key] setattr(_lowerCamelCase , """handle_key""" , _lowerCamelCase ) return func return decorator def _a ( *_lowerCamelCase ) -> str: """simple docstring""" def decorator(_lowerCamelCase ): __snake_case : List[Any] = getattr(_lowerCamelCase , """handle_key""" , [] ) handle += keys setattr(_lowerCamelCase , """handle_key""" , _lowerCamelCase ) return func return decorator class _A ( __lowercase ): def __new__( cls : List[Any] , __magic_name__ : Optional[Any] , __magic_name__ : Optional[Any] , __magic_name__ : List[Any] ) -> Union[str, Any]: """simple docstring""" __snake_case : str = super().__new__(cls , __magic_name__ , __magic_name__ , __magic_name__ ) if not hasattr(__magic_name__ , """key_handler""" ): setattr(__magic_name__ , """key_handler""" , {} ) setattr(__magic_name__ , """handle_input""" , KeyHandler.handle_input ) for value in attrs.values(): __snake_case : Optional[int] = getattr(__magic_name__ , """handle_key""" , [] ) for key in handled_keys: __snake_case : int = value return new_cls @staticmethod def lowercase__ ( cls : Any ) -> Dict: """simple docstring""" __snake_case : Optional[Any] = get_character() if char != KEYMAP["undefined"]: __snake_case : Tuple = ord(__magic_name__ ) __snake_case : List[Any] = cls.key_handler.get(__magic_name__ ) if handler: __snake_case : Any = char return handler(cls ) else: return None def _a ( cls ) -> str: """simple docstring""" return KeyHandler(cls.__name__ , cls.__bases__ , cls.__dict__.copy() )
26
'''simple docstring''' import argparse import json import re from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ( MobileNetVaConfig, MobileNetVaForImageClassification, MobileNetVaImageProcessor, load_tf_weights_in_mobilenet_va, ) from transformers.utils import logging logging.set_verbosity_info() __UpperCamelCase = logging.get_logger(__name__) def _a ( _lowerCamelCase ) -> Any: """simple docstring""" __snake_case : Union[str, Any] = MobileNetVaConfig(layer_norm_eps=0.0_01 ) if "_quant" in model_name: raise ValueError("""Quantized models are not supported.""" ) __snake_case : List[Any] = re.match(R"""^mobilenet_v1_([^_]*)_([^_]*)$""" , _lowerCamelCase ) if matches: __snake_case : Optional[Any] = float(matches[1] ) __snake_case : Union[str, Any] = int(matches[2] ) # The TensorFlow version of MobileNetV1 predicts 1001 classes instead of # the usual 1000. The first class (index 0) is "background". __snake_case : Tuple = 1001 __snake_case : Any = """imagenet-1k-id2label.json""" __snake_case : Optional[Any] = """huggingface/label-files""" __snake_case : List[Any] = json.load(open(hf_hub_download(_lowerCamelCase , _lowerCamelCase , repo_type="""dataset""" ) , """r""" ) ) __snake_case : Dict = {int(_lowerCamelCase ) + 1: v for k, v in idalabel.items()} __snake_case : List[str] = """background""" __snake_case : List[str] = idalabel __snake_case : List[Any] = {v: k for k, v in idalabel.items()} return config def _a ( ) -> Optional[Any]: """simple docstring""" __snake_case : Optional[int] = """http://images.cocodataset.org/val2017/000000039769.jpg""" __snake_case : List[Any] = Image.open(requests.get(_lowerCamelCase , stream=_lowerCamelCase ).raw ) return im @torch.no_grad() def _a ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase=False ) -> Optional[Any]: """simple docstring""" __snake_case : Optional[int] = get_mobilenet_va_config(_lowerCamelCase ) # Load 🤗 model __snake_case : Optional[Any] = MobileNetVaForImageClassification(_lowerCamelCase ).eval() # Load weights from TensorFlow checkpoint load_tf_weights_in_mobilenet_va(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) # Check outputs on an image, prepared by MobileNetV1ImageProcessor __snake_case : Optional[int] = MobileNetVaImageProcessor( crop_size={"""width""": config.image_size, """height""": config.image_size} , size={"""shortest_edge""": config.image_size + 32} , ) __snake_case : Tuple = image_processor(images=prepare_img() , return_tensors="""pt""" ) __snake_case : Optional[Any] = model(**_lowerCamelCase ) __snake_case : List[Any] = outputs.logits assert logits.shape == (1, 1001) if model_name == "mobilenet_v1_1.0_224": __snake_case : str = torch.tensor([-4.17_39, -1.12_33, 3.12_05] ) elif model_name == "mobilenet_v1_0.75_192": __snake_case : Tuple = torch.tensor([-3.94_40, -2.31_41, -0.33_33] ) else: __snake_case : List[Any] = None if expected_logits is not None: assert torch.allclose(logits[0, :3] , _lowerCamelCase , atol=1E-4 ) Path(_lowerCamelCase ).mkdir(exist_ok=_lowerCamelCase ) print(F'''Saving model {model_name} to {pytorch_dump_folder_path}''' ) model.save_pretrained(_lowerCamelCase ) print(F'''Saving image processor to {pytorch_dump_folder_path}''' ) image_processor.save_pretrained(_lowerCamelCase ) if push_to_hub: print("""Pushing to the hub...""" ) __snake_case : Optional[Any] = """google/""" + model_name image_processor.push_to_hub(_lowerCamelCase ) model.push_to_hub(_lowerCamelCase ) if __name__ == "__main__": __UpperCamelCase = argparse.ArgumentParser() # Required parameters parser.add_argument( "--model_name", default="mobilenet_v1_1.0_224", type=str, help="Name of the MobileNetV1 model you'd like to convert. Should in the form 'mobilenet_v1_<depth>_<size>'.", ) parser.add_argument( "--checkpoint_path", required=True, type=str, help="Path to the original TensorFlow checkpoint (.ckpt file)." ) parser.add_argument( "--pytorch_dump_folder_path", required=True, type=str, help="Path to the output PyTorch model directory." ) parser.add_argument( "--push_to_hub", action="store_true", help="Whether or not to push the converted model to the 🤗 hub." ) __UpperCamelCase = parser.parse_args() convert_movilevit_checkpoint( args.model_name, args.checkpoint_path, args.pytorch_dump_folder_path, args.push_to_hub )
26
1
'''simple docstring''' import inspect import unittest import numpy as np from tests.test_modeling_common import floats_tensor from transformers import DetrConfig, MaskFormerConfig, SwinConfig, is_torch_available, is_vision_available from transformers.testing_utils import require_torch, require_torch_multi_gpu, require_vision, slow, torch_device from transformers.utils import cached_property from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import MaskFormerForInstanceSegmentation, MaskFormerModel if is_vision_available(): from transformers import MaskFormerImageProcessor if is_vision_available(): from PIL import Image class _A : def __init__( self : Any , __magic_name__ : Dict , __magic_name__ : Optional[Any]=2 , __magic_name__ : List[Any]=True , __magic_name__ : Optional[Any]=False , __magic_name__ : Optional[int]=10 , __magic_name__ : Optional[int]=3 , __magic_name__ : Optional[int]=32 * 4 , __magic_name__ : int=32 * 6 , __magic_name__ : List[Any]=4 , __magic_name__ : List[Any]=32 , ) -> Dict: """simple docstring""" __snake_case : str = parent __snake_case : int = batch_size __snake_case : int = is_training __snake_case : Tuple = use_auxiliary_loss __snake_case : List[str] = num_queries __snake_case : str = num_channels __snake_case : Dict = min_size __snake_case : int = max_size __snake_case : List[Any] = num_labels __snake_case : Union[str, Any] = mask_feature_size def lowercase__ ( self : str ) -> Dict: """simple docstring""" __snake_case : str = floats_tensor([self.batch_size, self.num_channels, self.min_size, self.max_size] ).to( __magic_name__ ) __snake_case : Dict = torch.ones([self.batch_size, self.min_size, self.max_size] , device=__magic_name__ ) __snake_case : Optional[Any] = ( torch.rand([self.batch_size, self.num_labels, self.min_size, self.max_size] , device=__magic_name__ ) > 0.5 ).float() __snake_case : Union[str, Any] = (torch.rand((self.batch_size, self.num_labels) , device=__magic_name__ ) > 0.5).long() __snake_case : Tuple = self.get_config() return config, pixel_values, pixel_mask, mask_labels, class_labels def lowercase__ ( self : Optional[Any] ) -> Any: """simple docstring""" return MaskFormerConfig.from_backbone_and_decoder_configs( backbone_config=SwinConfig( depths=[1, 1, 1, 1] , ) , decoder_config=DetrConfig( decoder_ffn_dim=1_28 , num_queries=self.num_queries , decoder_attention_heads=2 , d_model=self.mask_feature_size , ) , mask_feature_size=self.mask_feature_size , fpn_feature_size=self.mask_feature_size , num_channels=self.num_channels , num_labels=self.num_labels , ) def lowercase__ ( self : Optional[Any] ) -> Union[str, Any]: """simple docstring""" __snake_case , __snake_case , __snake_case , __snake_case , __snake_case : Any = self.prepare_config_and_inputs() __snake_case : str = {"""pixel_values""": pixel_values, """pixel_mask""": pixel_mask} return config, inputs_dict def lowercase__ ( self : str , __magic_name__ : int , __magic_name__ : int ) -> Optional[Any]: """simple docstring""" __snake_case : Any = output.encoder_hidden_states __snake_case : List[str] = output.pixel_decoder_hidden_states __snake_case : str = output.transformer_decoder_hidden_states self.parent.assertTrue(len(__magic_name__ ) , len(config.backbone_config.depths ) ) self.parent.assertTrue(len(__magic_name__ ) , len(config.backbone_config.depths ) ) self.parent.assertTrue(len(__magic_name__ ) , config.decoder_config.decoder_layers ) def lowercase__ ( self : List[str] , __magic_name__ : Union[str, Any] , __magic_name__ : int , __magic_name__ : int , __magic_name__ : Tuple=False ) -> int: """simple docstring""" with torch.no_grad(): __snake_case : str = MaskFormerModel(config=__magic_name__ ) model.to(__magic_name__ ) model.eval() __snake_case : List[Any] = model(pixel_values=__magic_name__ , pixel_mask=__magic_name__ ) __snake_case : int = model(__magic_name__ , output_hidden_states=__magic_name__ ) # the correct shape of output.transformer_decoder_hidden_states ensure the correcteness of the # encoder and pixel decoder self.parent.assertEqual( output.transformer_decoder_last_hidden_state.shape , (self.batch_size, self.num_queries, self.mask_feature_size) , ) # let's ensure the other two hidden state exists self.parent.assertTrue(output.pixel_decoder_last_hidden_state is not None ) self.parent.assertTrue(output.encoder_last_hidden_state is not None ) if output_hidden_states: self.check_output_hidden_state(__magic_name__ , __magic_name__ ) def lowercase__ ( self : Union[str, Any] , __magic_name__ : Dict , __magic_name__ : Optional[int] , __magic_name__ : List[Any] , __magic_name__ : Optional[int] , __magic_name__ : Union[str, Any] ) -> Tuple: """simple docstring""" __snake_case : Optional[Any] = MaskFormerForInstanceSegmentation(config=__magic_name__ ) model.to(__magic_name__ ) model.eval() def comm_check_on_output(__magic_name__ : Dict ): # let's still check that all the required stuff is there self.parent.assertTrue(result.transformer_decoder_last_hidden_state is not None ) self.parent.assertTrue(result.pixel_decoder_last_hidden_state is not None ) self.parent.assertTrue(result.encoder_last_hidden_state is not None ) # okay, now we need to check the logits shape # due to the encoder compression, masks have a //4 spatial size self.parent.assertEqual( result.masks_queries_logits.shape , (self.batch_size, self.num_queries, self.min_size // 4, self.max_size // 4) , ) # + 1 for null class self.parent.assertEqual( result.class_queries_logits.shape , (self.batch_size, self.num_queries, self.num_labels + 1) ) with torch.no_grad(): __snake_case : Tuple = model(pixel_values=__magic_name__ , pixel_mask=__magic_name__ ) __snake_case : List[Any] = model(__magic_name__ ) comm_check_on_output(__magic_name__ ) __snake_case : List[Any] = model( pixel_values=__magic_name__ , pixel_mask=__magic_name__ , mask_labels=__magic_name__ , class_labels=__magic_name__ ) comm_check_on_output(__magic_name__ ) self.parent.assertTrue(result.loss is not None ) self.parent.assertEqual(result.loss.shape , torch.Size([1] ) ) @require_torch class _A ( __lowercase , __lowercase , unittest.TestCase ): lowercase__: str = (MaskFormerModel, MaskFormerForInstanceSegmentation) if is_torch_available() else () lowercase__: Tuple = ( {'''feature-extraction''': MaskFormerModel, '''image-segmentation''': MaskFormerForInstanceSegmentation} if is_torch_available() else {} ) lowercase__: Optional[Any] = False lowercase__: Union[str, Any] = False lowercase__: Optional[int] = False lowercase__: Dict = False def lowercase__ ( self : Optional[Any] ) -> Tuple: """simple docstring""" __snake_case : Tuple = MaskFormerModelTester(self ) __snake_case : Optional[int] = ConfigTester(self , config_class=__magic_name__ , has_text_modality=__magic_name__ ) def lowercase__ ( self : List[Any] ) -> Dict: """simple docstring""" self.config_tester.run_common_tests() def lowercase__ ( self : Tuple ) -> Union[str, Any]: """simple docstring""" __snake_case , __snake_case : List[str] = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.create_and_check_maskformer_model(__magic_name__ , **__magic_name__ , output_hidden_states=__magic_name__ ) def lowercase__ ( self : Any ) -> str: """simple docstring""" __snake_case : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_maskformer_instance_segmentation_head_model(*__magic_name__ ) @unittest.skip(reason="""MaskFormer does not use inputs_embeds""" ) def lowercase__ ( self : Optional[int] ) -> int: """simple docstring""" pass @unittest.skip(reason="""MaskFormer does not have a get_input_embeddings method""" ) def lowercase__ ( self : Any ) -> Tuple: """simple docstring""" pass @unittest.skip(reason="""MaskFormer is not a generative model""" ) def lowercase__ ( self : Optional[Any] ) -> Optional[Any]: """simple docstring""" pass @unittest.skip(reason="""MaskFormer does not use token embeddings""" ) def lowercase__ ( self : List[str] ) -> List[str]: """simple docstring""" pass @require_torch_multi_gpu @unittest.skip( reason="""MaskFormer has some layers using `add_module` which doesn't work well with `nn.DataParallel`""" ) def lowercase__ ( self : Dict ) -> Tuple: """simple docstring""" pass @unittest.skip("""Will be fixed soon by reducing the size of the model used for common tests.""" ) def lowercase__ ( self : Any ) -> Optional[Any]: """simple docstring""" pass def lowercase__ ( self : List[str] ) -> List[str]: """simple docstring""" __snake_case , __snake_case : str = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __snake_case : List[str] = model_class(__magic_name__ ) __snake_case : Dict = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __snake_case : Union[str, Any] = [*signature.parameters.keys()] __snake_case : str = ["""pixel_values"""] self.assertListEqual(arg_names[:1] , __magic_name__ ) @slow def lowercase__ ( self : List[Any] ) -> Tuple: """simple docstring""" for model_name in ["facebook/maskformer-swin-small-coco"]: __snake_case : str = MaskFormerModel.from_pretrained(__magic_name__ ) self.assertIsNotNone(__magic_name__ ) def lowercase__ ( self : int ) -> List[str]: """simple docstring""" __snake_case : Any = (self.model_tester.min_size,) * 2 __snake_case : List[Any] = { """pixel_values""": torch.randn((2, 3, *size) , device=__magic_name__ ), """mask_labels""": torch.randn((2, 10, *size) , device=__magic_name__ ), """class_labels""": torch.zeros(2 , 10 , device=__magic_name__ ).long(), } __snake_case : str = MaskFormerForInstanceSegmentation(MaskFormerConfig() ).to(__magic_name__ ) __snake_case : Optional[Any] = model(**__magic_name__ ) self.assertTrue(outputs.loss is not None ) def lowercase__ ( self : List[str] ) -> Dict: """simple docstring""" __snake_case , __snake_case : Any = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.create_and_check_maskformer_model(__magic_name__ , **__magic_name__ , output_hidden_states=__magic_name__ ) def lowercase__ ( self : Optional[int] ) -> Dict: """simple docstring""" __snake_case , __snake_case : Tuple = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __snake_case : List[Any] = model_class(__magic_name__ ).to(__magic_name__ ) __snake_case : Any = model(**__magic_name__ , output_attentions=__magic_name__ ) self.assertTrue(outputs.attentions is not None ) def lowercase__ ( self : List[Any] ) -> List[str]: """simple docstring""" if not self.model_tester.is_training: return # only MaskFormerForInstanceSegmentation has the loss __snake_case : Dict = self.all_model_classes[1] __snake_case , __snake_case , __snake_case , __snake_case , __snake_case : Any = self.model_tester.prepare_config_and_inputs() __snake_case : Union[str, Any] = model_class(__magic_name__ ) model.to(__magic_name__ ) model.train() __snake_case : Dict = model(__magic_name__ , mask_labels=__magic_name__ , class_labels=__magic_name__ ).loss loss.backward() def lowercase__ ( self : Tuple ) -> str: """simple docstring""" __snake_case : Tuple = self.all_model_classes[1] __snake_case , __snake_case , __snake_case , __snake_case , __snake_case : List[str] = self.model_tester.prepare_config_and_inputs() __snake_case : Any = True __snake_case : str = True __snake_case : List[Any] = model_class(__magic_name__ ) model.to(__magic_name__ ) model.train() __snake_case : str = model(__magic_name__ , mask_labels=__magic_name__ , class_labels=__magic_name__ ) __snake_case : Dict = outputs.encoder_hidden_states[0] encoder_hidden_states.retain_grad() __snake_case : Union[str, Any] = outputs.pixel_decoder_hidden_states[0] pixel_decoder_hidden_states.retain_grad() # we requires_grad=True in inputs_embeds (line 2152), the original implementation don't __snake_case : Dict = outputs.transformer_decoder_hidden_states[0] transformer_decoder_hidden_states.retain_grad() __snake_case : Optional[Any] = outputs.attentions[0] attentions.retain_grad() outputs.loss.backward(retain_graph=__magic_name__ ) self.assertIsNotNone(encoder_hidden_states.grad ) self.assertIsNotNone(pixel_decoder_hidden_states.grad ) self.assertIsNotNone(transformer_decoder_hidden_states.grad ) self.assertIsNotNone(attentions.grad ) __UpperCamelCase = 1E-4 def _a ( ) -> Optional[Any]: """simple docstring""" __snake_case : List[Any] = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) return image @require_vision @slow class _A ( unittest.TestCase ): @cached_property def lowercase__ ( self : int ) -> List[Any]: """simple docstring""" return ( MaskFormerImageProcessor.from_pretrained("""facebook/maskformer-swin-small-coco""" ) if is_vision_available() else None ) def lowercase__ ( self : Tuple ) -> Optional[int]: """simple docstring""" __snake_case : List[str] = MaskFormerModel.from_pretrained("""facebook/maskformer-swin-small-coco""" ).to(__magic_name__ ) __snake_case : List[str] = self.default_image_processor __snake_case : Optional[int] = prepare_img() __snake_case : Optional[int] = image_processor(__magic_name__ , return_tensors="""pt""" ).to(__magic_name__ ) __snake_case : str = inputs["""pixel_values"""].shape # check size is divisible by 32 self.assertTrue((inputs_shape[-1] % 32) == 0 and (inputs_shape[-2] % 32) == 0 ) # check size self.assertEqual(__magic_name__ , (1, 3, 8_00, 10_88) ) with torch.no_grad(): __snake_case : Dict = model(**__magic_name__ ) __snake_case : Tuple = torch.tensor( [[-0.0482, 0.9228, 0.4951], [-0.2547, 0.8017, 0.8527], [-0.0069, 0.3385, -0.0089]] ).to(__magic_name__ ) self.assertTrue( torch.allclose( outputs.encoder_last_hidden_state[0, 0, :3, :3] , __magic_name__ , atol=__magic_name__ ) ) __snake_case : Optional[Any] = torch.tensor( [[-0.8422, -0.8434, -0.9718], [-1.0144, -0.5565, -0.4195], [-1.0038, -0.4484, -0.1961]] ).to(__magic_name__ ) self.assertTrue( torch.allclose( outputs.pixel_decoder_last_hidden_state[0, 0, :3, :3] , __magic_name__ , atol=__magic_name__ ) ) __snake_case : Dict = torch.tensor( [[0.2852, -0.0159, 0.9735], [0.6254, 0.1858, 0.8529], [-0.0680, -0.4116, 1.8413]] ).to(__magic_name__ ) self.assertTrue( torch.allclose( outputs.transformer_decoder_last_hidden_state[0, :3, :3] , __magic_name__ , atol=__magic_name__ ) ) def lowercase__ ( self : List[Any] ) -> Optional[int]: """simple docstring""" __snake_case : Optional[Any] = ( MaskFormerForInstanceSegmentation.from_pretrained("""facebook/maskformer-swin-small-coco""" ) .to(__magic_name__ ) .eval() ) __snake_case : List[Any] = self.default_image_processor __snake_case : List[str] = prepare_img() __snake_case : Tuple = image_processor(__magic_name__ , return_tensors="""pt""" ).to(__magic_name__ ) __snake_case : Optional[int] = inputs["""pixel_values"""].shape # check size is divisible by 32 self.assertTrue((inputs_shape[-1] % 32) == 0 and (inputs_shape[-2] % 32) == 0 ) # check size self.assertEqual(__magic_name__ , (1, 3, 8_00, 10_88) ) with torch.no_grad(): __snake_case : int = model(**__magic_name__ ) # masks_queries_logits __snake_case : str = outputs.masks_queries_logits self.assertEqual( masks_queries_logits.shape , (1, model.config.decoder_config.num_queries, inputs_shape[-2] // 4, inputs_shape[-1] // 4) , ) __snake_case : Optional[int] = [ [-1.3737124, -1.7724937, -1.9364233], [-1.5977281, -1.9867939, -2.1523695], [-1.5795398, -1.9269832, -2.093942], ] __snake_case : Optional[Any] = torch.tensor(__magic_name__ ).to(__magic_name__ ) self.assertTrue(torch.allclose(masks_queries_logits[0, 0, :3, :3] , __magic_name__ , atol=__magic_name__ ) ) # class_queries_logits __snake_case : Optional[Any] = outputs.class_queries_logits self.assertEqual( class_queries_logits.shape , (1, model.config.decoder_config.num_queries, model.config.num_labels + 1) ) __snake_case : Optional[int] = torch.tensor( [ [1.6_512E00, -5.2_572E00, -3.3_519E00], [3.6_169E-02, -5.9_025E00, -2.9_313E00], [1.0_766E-04, -7.7_630E00, -5.1_263E00], ] ).to(__magic_name__ ) self.assertTrue(torch.allclose(outputs.class_queries_logits[0, :3, :3] , __magic_name__ , atol=__magic_name__ ) ) def lowercase__ ( self : Any ) -> Any: """simple docstring""" __snake_case : List[Any] = ( MaskFormerForInstanceSegmentation.from_pretrained("""facebook/maskformer-resnet101-coco-stuff""" ) .to(__magic_name__ ) .eval() ) __snake_case : str = self.default_image_processor __snake_case : Union[str, Any] = prepare_img() __snake_case : List[str] = image_processor(__magic_name__ , return_tensors="""pt""" ).to(__magic_name__ ) __snake_case : Dict = inputs["""pixel_values"""].shape # check size is divisible by 32 self.assertTrue((inputs_shape[-1] % 32) == 0 and (inputs_shape[-2] % 32) == 0 ) # check size self.assertEqual(__magic_name__ , (1, 3, 8_00, 10_88) ) with torch.no_grad(): __snake_case : str = model(**__magic_name__ ) # masks_queries_logits __snake_case : List[Any] = outputs.masks_queries_logits self.assertEqual( masks_queries_logits.shape , (1, model.config.decoder_config.num_queries, inputs_shape[-2] // 4, inputs_shape[-1] // 4) , ) __snake_case : List[Any] = [[-0.9046, -2.6366, -4.6062], [-3.4179, -5.7890, -8.8057], [-4.9179, -7.6560, -10.7711]] __snake_case : Union[str, Any] = torch.tensor(__magic_name__ ).to(__magic_name__ ) self.assertTrue(torch.allclose(masks_queries_logits[0, 0, :3, :3] , __magic_name__ , atol=__magic_name__ ) ) # class_queries_logits __snake_case : Union[str, Any] = outputs.class_queries_logits self.assertEqual( class_queries_logits.shape , (1, model.config.decoder_config.num_queries, model.config.num_labels + 1) ) __snake_case : Dict = torch.tensor( [[4.7188, -3.2585, -2.8857], [6.6871, -2.9181, -1.2487], [7.2449, -2.2764, -2.1874]] ).to(__magic_name__ ) self.assertTrue(torch.allclose(outputs.class_queries_logits[0, :3, :3] , __magic_name__ , atol=__magic_name__ ) ) def lowercase__ ( self : Optional[Any] ) -> List[Any]: """simple docstring""" __snake_case : List[str] = ( MaskFormerForInstanceSegmentation.from_pretrained("""facebook/maskformer-swin-small-coco""" ) .to(__magic_name__ ) .eval() ) __snake_case : List[str] = self.default_image_processor __snake_case : str = image_processor( [np.zeros((3, 8_00, 13_33) ), np.zeros((3, 8_00, 13_33) )] , segmentation_maps=[np.zeros((3_84, 3_84) ).astype(np.floataa ), np.zeros((3_84, 3_84) ).astype(np.floataa )] , return_tensors="""pt""" , ) __snake_case : List[str] = inputs["""pixel_values"""].to(__magic_name__ ) __snake_case : Optional[Any] = [el.to(__magic_name__ ) for el in inputs["""mask_labels"""]] __snake_case : Dict = [el.to(__magic_name__ ) for el in inputs["""class_labels"""]] with torch.no_grad(): __snake_case : Any = model(**__magic_name__ ) self.assertTrue(outputs.loss is not None )
26
'''simple docstring''' from sklearn.metrics import recall_score import datasets __UpperCamelCase = "\nRecall is the fraction of the positive examples that were correctly labeled by the model as positive. It can be computed with the equation:\nRecall = TP / (TP + FN)\nWhere TP is the true positives and FN is the false negatives.\n" __UpperCamelCase = "\nArgs:\n- **predictions** (`list` of `int`): The predicted labels.\n- **references** (`list` of `int`): The ground truth labels.\n- **labels** (`list` of `int`): The set of labels to include when `average` is not set to `binary`, and their order when average is `None`. Labels present in the data can be excluded in this input, for example to calculate a multiclass average ignoring a majority negative class, while labels not present in the data will result in 0 components in a macro average. For multilabel targets, labels are column indices. By default, all labels in y_true and y_pred are used in sorted order. Defaults to None.\n- **pos_label** (`int`): The class label to use as the 'positive class' when calculating the recall. Defaults to `1`.\n- **average** (`string`): This parameter is required for multiclass/multilabel targets. If None, the scores for each class are returned. Otherwise, this determines the type of averaging performed on the data. Defaults to `'binary'`.\n - `'binary'`: Only report results for the class specified by `pos_label`. This is applicable only if the target labels and predictions are binary.\n - `'micro'`: Calculate metrics globally by counting the total true positives, false negatives, and false positives.\n - `'macro'`: Calculate metrics for each label, and find their unweighted mean. This does not take label imbalance into account.\n - `'weighted'`: Calculate metrics for each label, and find their average weighted by support (the number of true instances for each label). This alters `'macro'` to account for label imbalance. Note that it can result in an F-score that is not between precision and recall.\n - `'samples'`: Calculate metrics for each instance, and find their average (only meaningful for multilabel classification).\n- **sample_weight** (`list` of `float`): Sample weights Defaults to `None`.\n- **zero_division** (): Sets the value to return when there is a zero division. Defaults to .\n - `'warn'`: If there is a zero division, the return value is `0`, but warnings are also raised.\n - `0`: If there is a zero division, the return value is `0`.\n - `1`: If there is a zero division, the return value is `1`.\n\nReturns:\n- **recall** (`float`, or `array` of `float`): Either the general recall score, or the recall scores for individual classes, depending on the values input to `labels` and `average`. Minimum possible value is 0. Maximum possible value is 1. A higher recall means that more of the positive examples have been labeled correctly. Therefore, a higher recall is generally considered better.\n\nExamples:\n\n Example 1-A simple example with some errors\n >>> recall_metric = datasets.load_metric('recall')\n >>> results = recall_metric.compute(references=[0, 0, 1, 1, 1], predictions=[0, 1, 0, 1, 1])\n >>> print(results)\n {'recall': 0.6666666666666666}\n\n Example 2-The same example as Example 1, but with `pos_label=0` instead of the default `pos_label=1`.\n >>> recall_metric = datasets.load_metric('recall')\n >>> results = recall_metric.compute(references=[0, 0, 1, 1, 1], predictions=[0, 1, 0, 1, 1], pos_label=0)\n >>> print(results)\n {'recall': 0.5}\n\n Example 3-The same example as Example 1, but with `sample_weight` included.\n >>> recall_metric = datasets.load_metric('recall')\n >>> sample_weight = [0.9, 0.2, 0.9, 0.3, 0.8]\n >>> results = recall_metric.compute(references=[0, 0, 1, 1, 1], predictions=[0, 1, 0, 1, 1], sample_weight=sample_weight)\n >>> print(results)\n {'recall': 0.55}\n\n Example 4-A multiclass example, using different averages.\n >>> recall_metric = datasets.load_metric('recall')\n >>> predictions = [0, 2, 1, 0, 0, 1]\n >>> references = [0, 1, 2, 0, 1, 2]\n >>> results = recall_metric.compute(predictions=predictions, references=references, average='macro')\n >>> print(results)\n {'recall': 0.3333333333333333}\n >>> results = recall_metric.compute(predictions=predictions, references=references, average='micro')\n >>> print(results)\n {'recall': 0.3333333333333333}\n >>> results = recall_metric.compute(predictions=predictions, references=references, average='weighted')\n >>> print(results)\n {'recall': 0.3333333333333333}\n >>> results = recall_metric.compute(predictions=predictions, references=references, average=None)\n >>> print(results)\n {'recall': array([1., 0., 0.])}\n" __UpperCamelCase = "\n@article{scikit-learn, title={Scikit-learn: Machine Learning in {P}ython}, author={Pedregosa, F. and Varoquaux, G. and Gramfort, A. and Michel, V. and Thirion, B. and Grisel, O. and Blondel, M. and Prettenhofer, P. and Weiss, R. and Dubourg, V. and Vanderplas, J. and Passos, A. and Cournapeau, D. and Brucher, M. and Perrot, M. and Duchesnay, E.}, journal={Journal of Machine Learning Research}, volume={12}, pages={2825--2830}, year={2011}\n" @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class _A ( datasets.Metric ): def lowercase__ ( self : Optional[int] ) -> Any: """simple docstring""" return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { """predictions""": datasets.Sequence(datasets.Value("""int32""" ) ), """references""": datasets.Sequence(datasets.Value("""int32""" ) ), } if self.config_name == """multilabel""" else { """predictions""": datasets.Value("""int32""" ), """references""": datasets.Value("""int32""" ), } ) , reference_urls=["""https://scikit-learn.org/stable/modules/generated/sklearn.metrics.recall_score.html"""] , ) def lowercase__ ( self : Tuple , __magic_name__ : int , __magic_name__ : Union[str, Any] , __magic_name__ : Any=None , __magic_name__ : Optional[Any]=1 , __magic_name__ : List[str]="binary" , __magic_name__ : Tuple=None , __magic_name__ : Dict="warn" , ) -> Any: """simple docstring""" __snake_case : Tuple = recall_score( __magic_name__ , __magic_name__ , labels=__magic_name__ , pos_label=__magic_name__ , average=__magic_name__ , sample_weight=__magic_name__ , zero_division=__magic_name__ , ) return {"recall": float(__magic_name__ ) if score.size == 1 else score}
26
1
'''simple docstring''' from math import factorial def _a ( _lowerCamelCase , _lowerCamelCase ) -> int: """simple docstring""" if n < k or k < 0: raise ValueError("""Please enter positive integers for n and k where n >= k""" ) return factorial(_lowerCamelCase ) // (factorial(_lowerCamelCase ) * factorial(n - k )) if __name__ == "__main__": print( "The number of five-card hands possible from a standard", f"""fifty-two card deck is: {combinations(52, 5)}\n""", ) print( "If a class of 40 students must be arranged into groups of", f"""4 for group projects, there are {combinations(40, 4)} ways""", "to arrange them.\n", ) print( "If 10 teams are competing in a Formula One race, there", f"""are {combinations(10, 3)} ways that first, second and""", "third place can be awarded.", )
26
'''simple docstring''' from sklearn.metrics import matthews_corrcoef import datasets __UpperCamelCase = "\nCompute the Matthews correlation coefficient (MCC)\n\nThe Matthews correlation coefficient is used in machine learning as a\nmeasure of the quality of binary and multiclass classifications. It takes\ninto account true and false positives and negatives and is generally\nregarded as a balanced measure which can be used even if the classes are of\nvery different sizes. The MCC is in essence a correlation coefficient value\nbetween -1 and +1. A coefficient of +1 represents a perfect prediction, 0\nan average random prediction and -1 an inverse prediction. The statistic\nis also known as the phi coefficient. [source: Wikipedia]\n" __UpperCamelCase = "\nArgs:\n predictions (list of int): Predicted labels, as returned by a model.\n references (list of int): Ground truth labels.\n sample_weight (list of int, float, or bool): Sample weights. Defaults to `None`.\nReturns:\n matthews_correlation (dict containing float): Matthews correlation.\nExamples:\n Example 1, a basic example with only predictions and references as inputs:\n >>> matthews_metric = datasets.load_metric(\"matthews_correlation\")\n >>> results = matthews_metric.compute(references=[1, 3, 2, 0, 3, 2],\n ... predictions=[1, 2, 2, 0, 3, 3])\n >>> print(round(results['matthews_correlation'], 2))\n 0.54\n\n Example 2, the same example as above, but also including sample weights:\n >>> matthews_metric = datasets.load_metric(\"matthews_correlation\")\n >>> results = matthews_metric.compute(references=[1, 3, 2, 0, 3, 2],\n ... predictions=[1, 2, 2, 0, 3, 3],\n ... sample_weight=[0.5, 3, 1, 1, 1, 2])\n >>> print(round(results['matthews_correlation'], 2))\n 0.1\n\n Example 3, the same example as above, but with sample weights that cause a negative correlation:\n >>> matthews_metric = datasets.load_metric(\"matthews_correlation\")\n >>> results = matthews_metric.compute(references=[1, 3, 2, 0, 3, 2],\n ... predictions=[1, 2, 2, 0, 3, 3],\n ... sample_weight=[0.5, 1, 0, 0, 0, 1])\n >>> print(round(results['matthews_correlation'], 2))\n -0.25\n" __UpperCamelCase = "\\n@article{scikit-learn,\n title={Scikit-learn: Machine Learning in {P}ython},\n author={Pedregosa, F. and Varoquaux, G. and Gramfort, A. and Michel, V.\n and Thirion, B. and Grisel, O. and Blondel, M. and Prettenhofer, P.\n and Weiss, R. and Dubourg, V. and Vanderplas, J. and Passos, A. and\n Cournapeau, D. and Brucher, M. and Perrot, M. and Duchesnay, E.},\n journal={Journal of Machine Learning Research},\n volume={12},\n pages={2825--2830},\n year={2011}\n}\n" @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class _A ( datasets.Metric ): def lowercase__ ( self : Tuple ) -> Dict: """simple docstring""" return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { """predictions""": datasets.Value("""int32""" ), """references""": datasets.Value("""int32""" ), } ) , reference_urls=[ """https://scikit-learn.org/stable/modules/generated/sklearn.metrics.matthews_corrcoef.html""" ] , ) def lowercase__ ( self : List[Any] , __magic_name__ : Tuple , __magic_name__ : List[Any] , __magic_name__ : Union[str, Any]=None ) -> Optional[int]: """simple docstring""" return { "matthews_correlation": float(matthews_corrcoef(__magic_name__ , __magic_name__ , sample_weight=__magic_name__ ) ), }
26
1
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_tokenizers_available, is_torch_available, ) __UpperCamelCase = { "configuration_longformer": [ "LONGFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP", "LongformerConfig", "LongformerOnnxConfig", ], "tokenization_longformer": ["LongformerTokenizer"], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCamelCase = ["LongformerTokenizerFast"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCamelCase = [ "LONGFORMER_PRETRAINED_MODEL_ARCHIVE_LIST", "LongformerForMaskedLM", "LongformerForMultipleChoice", "LongformerForQuestionAnswering", "LongformerForSequenceClassification", "LongformerForTokenClassification", "LongformerModel", "LongformerPreTrainedModel", "LongformerSelfAttention", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCamelCase = [ "TF_LONGFORMER_PRETRAINED_MODEL_ARCHIVE_LIST", "TFLongformerForMaskedLM", "TFLongformerForMultipleChoice", "TFLongformerForQuestionAnswering", "TFLongformerForSequenceClassification", "TFLongformerForTokenClassification", "TFLongformerModel", "TFLongformerPreTrainedModel", "TFLongformerSelfAttention", ] if TYPE_CHECKING: from .configuration_longformer import ( LONGFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, LongformerConfig, LongformerOnnxConfig, ) from .tokenization_longformer import LongformerTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_longformer_fast import LongformerTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_longformer import ( LONGFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, LongformerForMaskedLM, LongformerForMultipleChoice, LongformerForQuestionAnswering, LongformerForSequenceClassification, LongformerForTokenClassification, LongformerModel, LongformerPreTrainedModel, LongformerSelfAttention, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_longformer import ( TF_LONGFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, TFLongformerForMaskedLM, TFLongformerForMultipleChoice, TFLongformerForQuestionAnswering, TFLongformerForSequenceClassification, TFLongformerForTokenClassification, TFLongformerModel, TFLongformerPreTrainedModel, TFLongformerSelfAttention, ) else: import sys __UpperCamelCase = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
26
'''simple docstring''' import json import os from pathlib import Path import pytest from datasets.download.download_config import DownloadConfig from datasets.download.download_manager import DownloadManager from datasets.utils.file_utils import hash_url_to_filename __UpperCamelCase = "http://www.mocksite.com/file1.txt" __UpperCamelCase = "\"text\": [\"foo\", \"foo\"]" __UpperCamelCase = "6d8ce9aa78a471c7477201efbeabd3bb01ac2e7d100a6dc024ba1608361f90a8" class _A : lowercase__: str = 200 lowercase__: List[str] = {'''Content-Length''': '''100'''} lowercase__: Union[str, Any] = {} def lowercase__ ( self : Any , **__magic_name__ : List[Any] ) -> Dict: """simple docstring""" return [bytes(__magic_name__ , """utf-8""" )] def _a ( *_lowerCamelCase , **_lowerCamelCase ) -> List[str]: """simple docstring""" return MockResponse() @pytest.mark.parametrize("""urls_type""" , [str, list, dict] ) def _a ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> List[str]: """simple docstring""" import requests monkeypatch.setattr(_lowerCamelCase , """request""" , _lowerCamelCase ) __snake_case : Union[str, Any] = URL if issubclass(_lowerCamelCase , _lowerCamelCase ): __snake_case : str = url elif issubclass(_lowerCamelCase , _lowerCamelCase ): __snake_case : Dict = [url] elif issubclass(_lowerCamelCase , _lowerCamelCase ): __snake_case : Union[str, Any] = {"""train""": url} __snake_case : Dict = """dummy""" __snake_case : List[str] = """downloads""" __snake_case : List[Any] = tmp_path __snake_case : List[Any] = DownloadConfig( cache_dir=os.path.join(_lowerCamelCase , _lowerCamelCase ) , use_etag=_lowerCamelCase , ) __snake_case : List[str] = DownloadManager(dataset_name=_lowerCamelCase , download_config=_lowerCamelCase ) __snake_case : int = dl_manager.download(_lowerCamelCase ) __snake_case : Tuple = urls for downloaded_paths in [downloaded_paths]: if isinstance(_lowerCamelCase , _lowerCamelCase ): __snake_case : Any = [downloaded_paths] __snake_case : List[Any] = [urls] elif isinstance(_lowerCamelCase , _lowerCamelCase ): assert "train" in downloaded_paths.keys() __snake_case : Tuple = downloaded_paths.values() __snake_case : Optional[int] = urls.values() assert downloaded_paths for downloaded_path, input_url in zip(_lowerCamelCase , _lowerCamelCase ): assert downloaded_path == dl_manager.downloaded_paths[input_url] __snake_case : List[str] = Path(_lowerCamelCase ) __snake_case : Any = downloaded_path.parts assert parts[-1] == HASH assert parts[-2] == cache_subdir assert downloaded_path.exists() __snake_case : Union[str, Any] = downloaded_path.read_text() assert content == CONTENT __snake_case : List[str] = downloaded_path.with_suffix(""".json""" ) assert metadata_downloaded_path.exists() __snake_case : Union[str, Any] = json.loads(metadata_downloaded_path.read_text() ) assert metadata_content == {"url": URL, "etag": None} @pytest.mark.parametrize("""paths_type""" , [str, list, dict] ) def _a ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> List[Any]: """simple docstring""" __snake_case : Any = str(_lowerCamelCase ) if issubclass(_lowerCamelCase , _lowerCamelCase ): __snake_case : Optional[int] = filename elif issubclass(_lowerCamelCase , _lowerCamelCase ): __snake_case : Tuple = [filename] elif issubclass(_lowerCamelCase , _lowerCamelCase ): __snake_case : Dict = {"""train""": filename} __snake_case : Optional[Any] = """dummy""" __snake_case : List[Any] = xz_file.parent __snake_case : int = """extracted""" __snake_case : Dict = DownloadConfig( cache_dir=_lowerCamelCase , use_etag=_lowerCamelCase , ) __snake_case : List[str] = DownloadManager(dataset_name=_lowerCamelCase , download_config=_lowerCamelCase ) __snake_case : Optional[Any] = dl_manager.extract(_lowerCamelCase ) __snake_case : Union[str, Any] = paths for extracted_paths in [extracted_paths]: if isinstance(_lowerCamelCase , _lowerCamelCase ): __snake_case : Dict = [extracted_paths] __snake_case : int = [paths] elif isinstance(_lowerCamelCase , _lowerCamelCase ): assert "train" in extracted_paths.keys() __snake_case : int = extracted_paths.values() __snake_case : int = paths.values() assert extracted_paths for extracted_path, input_path in zip(_lowerCamelCase , _lowerCamelCase ): assert extracted_path == dl_manager.extracted_paths[input_path] __snake_case : Any = Path(_lowerCamelCase ) __snake_case : str = extracted_path.parts assert parts[-1] == hash_url_to_filename(_lowerCamelCase , etag=_lowerCamelCase ) assert parts[-2] == extracted_subdir assert extracted_path.exists() __snake_case : Optional[int] = extracted_path.read_text() __snake_case : str = text_file.read_text() assert extracted_file_content == expected_file_content def _a ( _lowerCamelCase , _lowerCamelCase ) -> Optional[int]: """simple docstring""" assert path.endswith(""".jsonl""" ) for num_items, line in enumerate(_lowerCamelCase , start=1 ): __snake_case : Tuple = json.loads(line.decode("""utf-8""" ) ) assert item.keys() == {"col_1", "col_2", "col_3"} assert num_items == 4 @pytest.mark.parametrize("""archive_jsonl""" , ["""tar_jsonl_path""", """zip_jsonl_path"""] ) def _a ( _lowerCamelCase , _lowerCamelCase ) -> Optional[int]: """simple docstring""" __snake_case : Any = request.getfixturevalue(_lowerCamelCase ) __snake_case : str = DownloadManager() for num_jsonl, (path, file) in enumerate(dl_manager.iter_archive(_lowerCamelCase ) , start=1 ): _test_jsonl(_lowerCamelCase , _lowerCamelCase ) assert num_jsonl == 2 @pytest.mark.parametrize("""archive_nested_jsonl""" , ["""tar_nested_jsonl_path""", """zip_nested_jsonl_path"""] ) def _a ( _lowerCamelCase , _lowerCamelCase ) -> List[str]: """simple docstring""" __snake_case : int = request.getfixturevalue(_lowerCamelCase ) __snake_case : List[str] = DownloadManager() for num_tar, (path, file) in enumerate(dl_manager.iter_archive(_lowerCamelCase ) , start=1 ): for num_jsonl, (subpath, subfile) in enumerate(dl_manager.iter_archive(_lowerCamelCase ) , start=1 ): _test_jsonl(_lowerCamelCase , _lowerCamelCase ) assert num_tar == 1 assert num_jsonl == 2 def _a ( _lowerCamelCase ) -> Any: """simple docstring""" __snake_case : List[str] = DownloadManager() for num_file, file in enumerate(dl_manager.iter_files(_lowerCamelCase ) , start=1 ): assert os.path.basename(_lowerCamelCase ) == ("test.txt" if num_file == 1 else "train.txt") assert num_file == 2
26
1
'''simple docstring''' import argparse import json import os import torch from torch import nn from transformers import NllbMoeConfig, NllbMoeModel from transformers.modeling_utils import dtype_byte_size from transformers.utils import WEIGHTS_INDEX_NAME, WEIGHTS_NAME def _a ( _lowerCamelCase ) -> List[Any]: """simple docstring""" __snake_case : Union[str, Any] = [ """encoder.version""", """decoder.version""", """model.encoder.version""", """model.decoder.version""", """decoder.output_projection.weight""", """_float_tensor""", """encoder.embed_positions._float_tensor""", """decoder.embed_positions._float_tensor""", ] for k in ignore_keys: state_dict.pop(_lowerCamelCase , _lowerCamelCase ) def _a ( _lowerCamelCase ) -> List[str]: """simple docstring""" __snake_case , __snake_case : Dict = emb.weight.shape __snake_case : Optional[int] = nn.Linear(_lowerCamelCase , _lowerCamelCase , bias=_lowerCamelCase ) __snake_case : Union[str, Any] = emb.weight.data return lin_layer def _a ( _lowerCamelCase , _lowerCamelCase=None ) -> Union[str, Any]: """simple docstring""" __snake_case : Any = {} for old_key in state_dict.keys(): __snake_case : Union[str, Any] = old_key if "moe_layer.experts." in key: if expert_idx is not None: __snake_case : Tuple = key.replace("""moe_layer.experts.0""" , F'''ffn.experts.expert_{expert_idx}''' ) else: __snake_case : Optional[int] = key.replace("""moe_layer.experts.""" , """ffn.experts.expert_""" ) if "gate" in key: __snake_case : Dict = key.replace(""".moe_layer.gate.wg""" , """.ffn.router.classifier""" ) if "fc2" and "experts" not in key: __snake_case : Union[str, Any] = key.replace(""".fc2.""" , """.ffn.fc2.""" ) if "fc1" and "experts" not in key: __snake_case : Optional[int] = key.replace(""".fc1.""" , """.ffn.fc1.""" ) if ".encoder_attn." in key: __snake_case : Tuple = key.replace(""".encoder_attn.""" , """.cross_attention.""" ) if "encoder_attn_layer_norm" in key: __snake_case : Union[str, Any] = key.replace("""encoder_attn_layer_norm""" , """cross_attention_layer_norm""" ) if "final_layer_norm" in key: __snake_case : str = key.replace("""final_layer_norm""" , """ff_layer_norm""" ) __snake_case : str = state_dict[old_key] return new_dict def _a ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase = WEIGHTS_NAME ) -> Dict: """simple docstring""" __snake_case : Optional[int] = [] __snake_case : Dict = 0 os.makedirs(_lowerCamelCase , exist_ok=_lowerCamelCase ) for expert in range(_lowerCamelCase ): __snake_case : Tuple = switch_checkpoint_path + F'''-rank-{expert}.pt''' if os.path.isfile(_lowerCamelCase ): __snake_case : Dict = torch.load(_lowerCamelCase )["""model"""] remove_ignore_keys_(_lowerCamelCase ) __snake_case : Optional[Any] = rename_fairseq_keys(_lowerCamelCase , _lowerCamelCase ) __snake_case : List[Any] = os.path.join( _lowerCamelCase , weights_name.replace(""".bin""" , F'''-{len(_lowerCamelCase )+1:05d}-of-???.bin''' ) ) torch.save(_lowerCamelCase , _lowerCamelCase ) sharded_state_dicts.append(expert_state.keys() ) total_size += sum([value.numel() for key, value in expert_state.items()] ) * dtype_byte_size( expert_state[list(_lowerCamelCase )[0]].dtype ) # Add the last block __snake_case : Optional[Any] = os.path.join(_lowerCamelCase , weights_name.replace(""".bin""" , F'''-{len(_lowerCamelCase )+1:05d}-of-???.bin''' ) ) __snake_case : str = torch.load(switch_checkpoint_path + """-shared.pt""" )["""model"""] remove_ignore_keys_(_lowerCamelCase ) __snake_case : Optional[Any] = rename_fairseq_keys(_lowerCamelCase , _lowerCamelCase ) __snake_case : List[str] = shared_weights["""decoder.embed_tokens.weight"""] sharded_state_dicts.append(shared_weights.keys() ) # If we only have the shared weights (dummy model/experts saved on the same file) if len(_lowerCamelCase ) == 1: __snake_case : Optional[Any] = os.path.join(_lowerCamelCase , _lowerCamelCase ) torch.save(_lowerCamelCase , _lowerCamelCase ) return {weights_name: sharded_state_dicts[0]}, None else: torch.save(_lowerCamelCase , _lowerCamelCase ) # Otherwise, let's build the index __snake_case : Tuple = {} for idx, shard in enumerate(_lowerCamelCase ): __snake_case : Any = weights_name.replace(""".bin""" , F'''-{idx+1:05d}-of-{len(_lowerCamelCase ):05d}.bin''' ) __snake_case : int = os.path.join(_lowerCamelCase , weights_name.replace(""".bin""" , F'''-{idx+1:05d}-of-???.bin''' ) ) os.rename(_lowerCamelCase , os.path.join(_lowerCamelCase , _lowerCamelCase ) ) for key in shard: __snake_case : str = shard_file # Add the metadata __snake_case : Optional[Any] = {"""total_size""": total_size} __snake_case : int = {"""metadata""": metadata, """weight_map""": weight_map} with open(os.path.join(_lowerCamelCase , _lowerCamelCase ) , """w""" , encoding="""utf-8""" ) as f: __snake_case : Union[str, Any] = json.dumps(_lowerCamelCase , indent=2 , sort_keys=_lowerCamelCase ) + """\n""" f.write(_lowerCamelCase ) return metadata, index if __name__ == "__main__": __UpperCamelCase = argparse.ArgumentParser() # Required parameters parser.add_argument( "--nllb_moe_checkpoint_path", default="/home/arthur_huggingface_co/fairseq/weights/checkpoints/model_moe_54b/checkpoint_2_300000", type=str, required=False, help="Path to a directory containing a folder per layer. Follows the original Google format.", ) parser.add_argument("--dtype", default="float32", type=str, required=False, help="dtype of the saved model") parser.add_argument( "--pytorch_dump_folder_path", default="/home/arthur_huggingface_co/fairseq/weights/checkpoints/hf-converted-moe-54b", type=str, required=False, help="Path to the output pytorch model.", ) __UpperCamelCase = parser.parse_args() __UpperCamelCase , __UpperCamelCase = shard_on_the_fly( args.nllb_moe_checkpoint_path, args.pytorch_dump_folder_path, 128, args.dtype, ) __UpperCamelCase = NllbMoeConfig.from_pretrained( "facebook/nllb-200-3.3B", encoder_sparse_step=4, decoder_sparse_step=4, num_experts=128 ) config.save_pretrained(args.pytorch_dump_folder_path) __UpperCamelCase = NllbMoeModel.from_pretrained(args.pytorch_dump_folder_path) print("Done") model.save_pretrained(args.pytorch_dump_folder_path)
26
'''simple docstring''' def _a ( _lowerCamelCase = 100 ) -> int: """simple docstring""" __snake_case : Any = n * (n + 1) * (2 * n + 1) / 6 __snake_case : List[Any] = (n * (n + 1) / 2) ** 2 return int(square_of_sum - sum_of_squares ) if __name__ == "__main__": print(f"""{solution() = }""")
26
1
'''simple docstring''' from typing import Dict, List from nltk.translate import gleu_score import datasets from datasets import MetricInfo __UpperCamelCase = "\\n@misc{wu2016googles,\n title={Google's Neural Machine Translation System: Bridging the Gap between Human and Machine Translation},\n author={Yonghui Wu and Mike Schuster and Zhifeng Chen and Quoc V. Le and Mohammad Norouzi and Wolfgang Macherey\n and Maxim Krikun and Yuan Cao and Qin Gao and Klaus Macherey and Jeff Klingner and Apurva Shah and Melvin\n Johnson and Xiaobing Liu and Łukasz Kaiser and Stephan Gouws and Yoshikiyo Kato and Taku Kudo and Hideto\n Kazawa and Keith Stevens and George Kurian and Nishant Patil and Wei Wang and Cliff Young and\n Jason Smith and Jason Riesa and Alex Rudnick and Oriol Vinyals and Greg Corrado and Macduff Hughes\n and Jeffrey Dean},\n year={2016},\n eprint={1609.08144},\n archivePrefix={arXiv},\n primaryClass={cs.CL}\n}\n" __UpperCamelCase = "\\nThe BLEU score has some undesirable properties when used for single\nsentences, as it was designed to be a corpus measure. We therefore\nuse a slightly different score for our RL experiments which we call\nthe 'GLEU score'. For the GLEU score, we record all sub-sequences of\n1, 2, 3 or 4 tokens in output and target sequence (n-grams). We then\ncompute a recall, which is the ratio of the number of matching n-grams\nto the number of total n-grams in the target (ground truth) sequence,\nand a precision, which is the ratio of the number of matching n-grams\nto the number of total n-grams in the generated output sequence. Then\nGLEU score is simply the minimum of recall and precision. This GLEU\nscore's range is always between 0 (no matches) and 1 (all match) and\nit is symmetrical when switching output and target. According to\nour experiments, GLEU score correlates quite well with the BLEU\nmetric on a corpus level but does not have its drawbacks for our per\nsentence reward objective.\n" __UpperCamelCase = "\\nComputes corpus-level Google BLEU (GLEU) score of translated segments against one or more references.\nInstead of averaging the sentence level GLEU scores (i.e. macro-average precision), Wu et al. (2016) sum up the matching\ntokens and the max of hypothesis and reference tokens for each sentence, then compute using the aggregate values.\n\nArgs:\n predictions (list of str): list of translations to score.\n Each translation should be tokenized into a list of tokens.\n references (list of list of str): list of lists of references for each translation.\n Each reference should be tokenized into a list of tokens.\n min_len (int): The minimum order of n-gram this function should extract. Defaults to 1.\n max_len (int): The maximum order of n-gram this function should extract. Defaults to 4.\n\nReturns:\n 'google_bleu': google_bleu score\n\nExamples:\n Example 1:\n >>> hyp1 = ['It', 'is', 'a', 'guide', 'to', 'action', 'which',\n ... 'ensures', 'that', 'the', 'rubber', 'duck', 'always',\n ... 'disobeys', 'the', 'commands', 'of', 'the', 'cat']\n >>> ref1a = ['It', 'is', 'the', 'guiding', 'principle', 'which',\n ... 'guarantees', 'the', 'rubber', 'duck', 'forces', 'never',\n ... 'being', 'under', 'the', 'command', 'of', 'the', 'cat']\n\n >>> hyp2 = ['he', 'read', 'the', 'book', 'because', 'he', 'was',\n ... 'interested', 'in', 'world', 'history']\n >>> ref2a = ['he', 'was', 'interested', 'in', 'world', 'history',\n ... 'because', 'he', 'read', 'the', 'book']\n\n >>> list_of_references = [[ref1a], [ref2a]]\n >>> hypotheses = [hyp1, hyp2]\n >>> google_bleu = datasets.load_metric(\"google_bleu\")\n >>> results = google_bleu.compute(predictions=hypotheses, references=list_of_references)\n >>> print(round(results[\"google_bleu\"], 2))\n 0.44\n\n Example 2:\n >>> hyp1 = ['It', 'is', 'a', 'guide', 'to', 'action', 'which',\n ... 'ensures', 'that', 'the', 'rubber', 'duck', 'always',\n ... 'disobeys', 'the', 'commands', 'of', 'the', 'cat']\n >>> ref1a = ['It', 'is', 'the', 'guiding', 'principle', 'which',\n ... 'guarantees', 'the', 'rubber', 'duck', 'forces', 'never',\n ... 'being', 'under', 'the', 'command', 'of', 'the', 'cat']\n >>> ref1b = ['It', 'is', 'a', 'guide', 'to', 'action', 'that',\n ... 'ensures', 'that', 'the', 'rubber', 'duck', 'will', 'never',\n ... 'heed', 'the', 'cat', 'commands']\n >>> ref1c = ['It', 'is', 'the', 'practical', 'guide', 'for', 'the',\n ... 'rubber', 'duck', 'army', 'never', 'to', 'heed', 'the', 'directions',\n ... 'of', 'the', 'cat']\n\n >>> hyp2 = ['he', 'read', 'the', 'book', 'because', 'he', 'was',\n ... 'interested', 'in', 'world', 'history']\n >>> ref2a = ['he', 'was', 'interested', 'in', 'world', 'history',\n ... 'because', 'he', 'read', 'the', 'book']\n\n >>> list_of_references = [[ref1a, ref1b, ref1c], [ref2a]]\n >>> hypotheses = [hyp1, hyp2]\n >>> google_bleu = datasets.load_metric(\"google_bleu\")\n >>> results = google_bleu.compute(predictions=hypotheses, references=list_of_references)\n >>> print(round(results[\"google_bleu\"], 2))\n 0.61\n\n Example 3:\n >>> hyp1 = ['It', 'is', 'a', 'guide', 'to', 'action', 'which',\n ... 'ensures', 'that', 'the', 'rubber', 'duck', 'always',\n ... 'disobeys', 'the', 'commands', 'of', 'the', 'cat']\n >>> ref1a = ['It', 'is', 'the', 'guiding', 'principle', 'which',\n ... 'guarantees', 'the', 'rubber', 'duck', 'forces', 'never',\n ... 'being', 'under', 'the', 'command', 'of', 'the', 'cat']\n >>> ref1b = ['It', 'is', 'a', 'guide', 'to', 'action', 'that',\n ... 'ensures', 'that', 'the', 'rubber', 'duck', 'will', 'never',\n ... 'heed', 'the', 'cat', 'commands']\n >>> ref1c = ['It', 'is', 'the', 'practical', 'guide', 'for', 'the',\n ... 'rubber', 'duck', 'army', 'never', 'to', 'heed', 'the', 'directions',\n ... 'of', 'the', 'cat']\n\n >>> hyp2 = ['he', 'read', 'the', 'book', 'because', 'he', 'was',\n ... 'interested', 'in', 'world', 'history']\n >>> ref2a = ['he', 'was', 'interested', 'in', 'world', 'history',\n ... 'because', 'he', 'read', 'the', 'book']\n\n >>> list_of_references = [[ref1a, ref1b, ref1c], [ref2a]]\n >>> hypotheses = [hyp1, hyp2]\n >>> google_bleu = datasets.load_metric(\"google_bleu\")\n >>> results = google_bleu.compute(predictions=hypotheses, references=list_of_references, min_len=2)\n >>> print(round(results[\"google_bleu\"], 2))\n 0.53\n\n Example 4:\n >>> hyp1 = ['It', 'is', 'a', 'guide', 'to', 'action', 'which',\n ... 'ensures', 'that', 'the', 'rubber', 'duck', 'always',\n ... 'disobeys', 'the', 'commands', 'of', 'the', 'cat']\n >>> ref1a = ['It', 'is', 'the', 'guiding', 'principle', 'which',\n ... 'guarantees', 'the', 'rubber', 'duck', 'forces', 'never',\n ... 'being', 'under', 'the', 'command', 'of', 'the', 'cat']\n >>> ref1b = ['It', 'is', 'a', 'guide', 'to', 'action', 'that',\n ... 'ensures', 'that', 'the', 'rubber', 'duck', 'will', 'never',\n ... 'heed', 'the', 'cat', 'commands']\n >>> ref1c = ['It', 'is', 'the', 'practical', 'guide', 'for', 'the',\n ... 'rubber', 'duck', 'army', 'never', 'to', 'heed', 'the', 'directions',\n ... 'of', 'the', 'cat']\n\n >>> hyp2 = ['he', 'read', 'the', 'book', 'because', 'he', 'was',\n ... 'interested', 'in', 'world', 'history']\n >>> ref2a = ['he', 'was', 'interested', 'in', 'world', 'history',\n ... 'because', 'he', 'read', 'the', 'book']\n\n >>> list_of_references = [[ref1a, ref1b, ref1c], [ref2a]]\n >>> hypotheses = [hyp1, hyp2]\n >>> google_bleu = datasets.load_metric(\"google_bleu\")\n >>> results = google_bleu.compute(predictions=hypotheses,references=list_of_references, min_len=2, max_len=6)\n >>> print(round(results[\"google_bleu\"], 2))\n 0.4\n" @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class _A ( datasets.Metric ): def lowercase__ ( self : Optional[Any] ) -> MetricInfo: """simple docstring""" return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { """predictions""": datasets.Sequence(datasets.Value("""string""" , id="""token""" ) , id="""sequence""" ), """references""": datasets.Sequence( datasets.Sequence(datasets.Value("""string""" , id="""token""" ) , id="""sequence""" ) , id="""references""" ), } ) , ) def lowercase__ ( self : Dict , __magic_name__ : List[List[List[str]]] , __magic_name__ : List[List[str]] , __magic_name__ : int = 1 , __magic_name__ : int = 4 , ) -> Dict[str, float]: """simple docstring""" return { "google_bleu": gleu_score.corpus_gleu( list_of_references=__magic_name__ , hypotheses=__magic_name__ , min_len=__magic_name__ , max_len=__magic_name__ ) }
26
'''simple docstring''' from __future__ import annotations from typing import Any class _A : def __init__( self : str , __magic_name__ : int , __magic_name__ : int , __magic_name__ : float = 0 ) -> None: """simple docstring""" __snake_case , __snake_case : Optional[Any] = row, column __snake_case : Dict = [[default_value for c in range(__magic_name__ )] for r in range(__magic_name__ )] def __str__( self : List[Any] ) -> str: """simple docstring""" __snake_case : Dict = f'''Matrix consist of {self.row} rows and {self.column} columns\n''' # Make string identifier __snake_case : Optional[int] = 0 for row_vector in self.array: for obj in row_vector: __snake_case : Optional[int] = max(__magic_name__ , len(str(__magic_name__ ) ) ) __snake_case : str = f'''%{max_element_length}s''' # Make string and return def single_line(__magic_name__ : list[float] ) -> str: nonlocal string_format_identifier __snake_case : Union[str, Any] = """[""" line += ", ".join(string_format_identifier % (obj,) for obj in row_vector ) line += "]" return line s += "\n".join(single_line(__magic_name__ ) for row_vector in self.array ) return s def __repr__( self : Optional[int] ) -> str: """simple docstring""" return str(self ) def lowercase__ ( self : Dict , __magic_name__ : tuple[int, int] ) -> bool: """simple docstring""" if not (isinstance(__magic_name__ , (list, tuple) ) and len(__magic_name__ ) == 2): return False elif not (0 <= loc[0] < self.row and 0 <= loc[1] < self.column): return False else: return True def __getitem__( self : int , __magic_name__ : tuple[int, int] ) -> Any: """simple docstring""" assert self.validate_indicies(__magic_name__ ) return self.array[loc[0]][loc[1]] def __setitem__( self : List[str] , __magic_name__ : tuple[int, int] , __magic_name__ : float ) -> None: """simple docstring""" assert self.validate_indicies(__magic_name__ ) __snake_case : Optional[int] = value def __add__( self : Any , __magic_name__ : Matrix ) -> Matrix: """simple docstring""" assert isinstance(__magic_name__ , __magic_name__ ) assert self.row == another.row and self.column == another.column # Add __snake_case : Union[str, Any] = Matrix(self.row , self.column ) for r in range(self.row ): for c in range(self.column ): __snake_case : List[Any] = self[r, c] + another[r, c] return result def __neg__( self : Tuple ) -> Matrix: """simple docstring""" __snake_case : Tuple = Matrix(self.row , self.column ) for r in range(self.row ): for c in range(self.column ): __snake_case : List[Any] = -self[r, c] return result def __sub__( self : Optional[int] , __magic_name__ : Matrix ) -> Matrix: """simple docstring""" return self + (-another) def __mul__( self : List[Any] , __magic_name__ : int | float | Matrix ) -> Matrix: """simple docstring""" if isinstance(__magic_name__ , (int, float) ): # Scalar multiplication __snake_case : Optional[int] = Matrix(self.row , self.column ) for r in range(self.row ): for c in range(self.column ): __snake_case : Tuple = self[r, c] * another return result elif isinstance(__magic_name__ , __magic_name__ ): # Matrix multiplication assert self.column == another.row __snake_case : Dict = Matrix(self.row , another.column ) for r in range(self.row ): for c in range(another.column ): for i in range(self.column ): result[r, c] += self[r, i] * another[i, c] return result else: __snake_case : Optional[int] = f'''Unsupported type given for another ({type(__magic_name__ )})''' raise TypeError(__magic_name__ ) def lowercase__ ( self : str ) -> Matrix: """simple docstring""" __snake_case : Any = Matrix(self.column , self.row ) for r in range(self.row ): for c in range(self.column ): __snake_case : str = self[r, c] return result def lowercase__ ( self : Union[str, Any] , __magic_name__ : Matrix , __magic_name__ : Matrix ) -> Any: """simple docstring""" assert isinstance(__magic_name__ , __magic_name__ ) and isinstance(__magic_name__ , __magic_name__ ) assert self.row == self.column == u.row == v.row # u, v should be column vector assert u.column == v.column == 1 # u, v should be column vector # Calculate __snake_case : List[str] = v.transpose() __snake_case : Tuple = (v_t * self * u)[0, 0] + 1 if numerator_factor == 0: return None # It's not invertable return self - ((self * u) * (v_t * self) * (1.0 / numerator_factor)) # Testing if __name__ == "__main__": def _a ( ) -> None: """simple docstring""" __snake_case : Tuple = Matrix(3 , 3 , 0 ) for i in range(3 ): __snake_case : Any = 1 print(F'''a^(-1) is {ainv}''' ) # u, v __snake_case : Dict = Matrix(3 , 1 , 0 ) __snake_case , __snake_case , __snake_case : Union[str, Any] = 1, 2, -3 __snake_case : str = Matrix(3 , 1 , 0 ) __snake_case , __snake_case , __snake_case : Tuple = 4, -2, 5 print(F'''u is {u}''' ) print(F'''v is {v}''' ) print(F'''uv^T is {u * v.transpose()}''' ) # Sherman Morrison print(F'''(a + uv^T)^(-1) is {ainv.sherman_morrison(_lowerCamelCase , _lowerCamelCase )}''' ) def _a ( ) -> None: """simple docstring""" import doctest doctest.testmod() testa()
26
1
'''simple docstring''' import unittest import numpy as np from transformers import is_flax_available from transformers.testing_utils import require_flax from ..test_modeling_flax_common import ids_tensor if is_flax_available(): import jax import jax.numpy as jnp from transformers.generation import ( FlaxForcedBOSTokenLogitsProcessor, FlaxForcedEOSTokenLogitsProcessor, FlaxLogitsProcessorList, FlaxMinLengthLogitsProcessor, FlaxTemperatureLogitsWarper, FlaxTopKLogitsWarper, FlaxTopPLogitsWarper, ) @require_flax class _A ( unittest.TestCase ): def lowercase__ ( self : str , __magic_name__ : int , __magic_name__ : int ) -> Optional[Any]: """simple docstring""" __snake_case : Dict = jnp.ones((batch_size, length) ) / length return scores def lowercase__ ( self : int ) -> Optional[Any]: """simple docstring""" __snake_case : List[str] = None __snake_case : Tuple = 20 __snake_case : Dict = self._get_uniform_logits(batch_size=2 , length=__magic_name__ ) # tweak scores to not be uniform anymore __snake_case : int = scores.at[1, 5].set((1 / length) + 0.1 ) # peak, 1st batch __snake_case : Optional[int] = scores.at[1, 10].set((1 / length) - 0.4 ) # valley, 1st batch # compute softmax __snake_case : str = jax.nn.softmax(__magic_name__ , axis=-1 ) __snake_case : Optional[Any] = FlaxTemperatureLogitsWarper(temperature=0.5 ) __snake_case : Tuple = FlaxTemperatureLogitsWarper(temperature=1.3 ) __snake_case : Optional[Any] = jax.nn.softmax(temp_dist_warper_sharper(__magic_name__ , scores.copy() , cur_len=__magic_name__ ) , axis=-1 ) __snake_case : Optional[Any] = jax.nn.softmax(temp_dist_warper_smoother(__magic_name__ , scores.copy() , cur_len=__magic_name__ ) , axis=-1 ) # uniform distribution stays uniform self.assertTrue(jnp.allclose(probs[0, :] , warped_prob_sharp[0, :] , atol=1E-3 ) ) self.assertTrue(jnp.allclose(probs[0, :] , warped_prob_smooth[0, :] , atol=1E-3 ) ) # sharp peaks get higher, valleys get lower self.assertLess(probs[1, :].max() , warped_prob_sharp[1, :].max() ) self.assertGreater(probs[1, :].min() , warped_prob_sharp[1, :].min() ) # smooth peaks get lower, valleys get higher self.assertGreater(probs[1, :].max() , warped_prob_smooth[1, :].max() ) self.assertLess(probs[1, :].min() , warped_prob_smooth[1, :].min() ) def lowercase__ ( self : int ) -> List[str]: """simple docstring""" __snake_case : int = None __snake_case : List[str] = 10 __snake_case : List[Any] = 2 # create ramp distribution __snake_case : Optional[Any] = np.broadcast_to(np.arange(__magic_name__ )[None, :] , (batch_size, vocab_size) ).copy() __snake_case : Dict = ramp_logits[1:, : vocab_size // 2] + vocab_size __snake_case : List[str] = FlaxTopKLogitsWarper(3 ) __snake_case : Dict = top_k_warp(__magic_name__ , __magic_name__ , cur_len=__magic_name__ ) # check that correct tokens are filtered self.assertListEqual(jnp.isinf(scores[0] ).tolist() , 7 * [True] + 3 * [False] ) self.assertListEqual(jnp.isinf(scores[1] ).tolist() , 2 * [True] + 3 * [False] + 5 * [True] ) # check special case __snake_case : Any = 5 __snake_case : Dict = FlaxTopKLogitsWarper(top_k=1 , filter_value=0.0 , min_tokens_to_keep=3 ) __snake_case : Any = np.broadcast_to(np.arange(__magic_name__ )[None, :] , (batch_size, length) ).copy() __snake_case : List[str] = top_k_warp_safety_check(__magic_name__ , __magic_name__ , cur_len=__magic_name__ ) # min_tokens overwrites k: 3 tokens are kept => 2 tokens are nullified self.assertListEqual((scores == 0.0).sum(axis=-1 ).tolist() , [2, 2] ) def lowercase__ ( self : List[str] ) -> Optional[int]: """simple docstring""" __snake_case : List[Any] = None __snake_case : Any = 10 __snake_case : List[str] = 2 # create distribution and take log (inverse to Softmax as taken in TopPLogitsWarper) __snake_case : Any = np.log(np.array([[0.3, 0.1, 0.1, 0.5], [0.15, 0.3, 0.3, 0.25]] ) ) __snake_case : Any = FlaxTopPLogitsWarper(0.8 ) __snake_case : Tuple = np.exp(top_p_warp(__magic_name__ , __magic_name__ , cur_len=__magic_name__ ) ) # dist should be filtered to keep min num values so that sum is >= top_p # exp (-inf) => 0 __snake_case : Any = np.array([[0.3, 0.0, 0.0, 0.5], [0.0, 0.3, 0.3, 0.25]] ) self.assertTrue(np.allclose(__magic_name__ , __magic_name__ , atol=1E-3 ) ) # check edge cases with negative and extreme logits __snake_case : Optional[Any] = np.broadcast_to(np.arange(__magic_name__ )[None, :] , (batch_size, vocab_size) ).copy() - ( vocab_size // 2 ) # make ramp_logits more extreme __snake_case : Optional[int] = ramp_logits[1] * 100.0 # make sure at least 2 tokens are kept __snake_case : Union[str, Any] = FlaxTopPLogitsWarper(0.9 , min_tokens_to_keep=2 , filter_value=0.0 ) __snake_case : Union[str, Any] = top_p_warp(__magic_name__ , __magic_name__ , cur_len=__magic_name__ ) # first batch should keep three tokens, second batch would keep only 1, but due to `min_tokens_to_keep=2` keeps 2. self.assertListEqual((filtered_dist != 0.0).sum(axis=-1 ).tolist() , [3, 2] ) def lowercase__ ( self : Optional[int] ) -> Optional[int]: """simple docstring""" __snake_case : Any = 20 __snake_case : Tuple = 4 __snake_case : List[Any] = 0 __snake_case : Tuple = FlaxMinLengthLogitsProcessor(min_length=10 , eos_token_id=__magic_name__ ) # check that min length is applied at length 5 __snake_case : Union[str, Any] = ids_tensor((batch_size, 20) , vocab_size=20 ) __snake_case : int = 5 __snake_case : Dict = self._get_uniform_logits(__magic_name__ , __magic_name__ ) __snake_case : Any = min_dist_processor(__magic_name__ , __magic_name__ , cur_len=__magic_name__ ) self.assertListEqual(scores_before_min_length[:, eos_token_id].tolist() , 4 * [-float("""inf""" )] ) # check that min length is not applied anymore at length 15 __snake_case : str = self._get_uniform_logits(__magic_name__ , __magic_name__ ) __snake_case : List[Any] = 15 __snake_case : str = min_dist_processor(__magic_name__ , __magic_name__ , cur_len=__magic_name__ ) self.assertFalse(jnp.isinf(__magic_name__ ).any() ) def lowercase__ ( self : Dict ) -> str: """simple docstring""" __snake_case : Dict = 20 __snake_case : List[str] = 4 __snake_case : Tuple = 0 __snake_case : Optional[int] = FlaxForcedBOSTokenLogitsProcessor(bos_token_id=__magic_name__ ) # check that all scores are -inf except the bos_token_id score __snake_case : List[Any] = ids_tensor((batch_size, 1) , vocab_size=20 ) __snake_case : Optional[int] = 1 __snake_case : Tuple = self._get_uniform_logits(__magic_name__ , __magic_name__ ) __snake_case : List[str] = logits_processor(__magic_name__ , __magic_name__ , cur_len=__magic_name__ ) self.assertTrue(jnp.isneginf(scores[:, bos_token_id + 1 :] ).all() ) self.assertListEqual(scores[:, bos_token_id].tolist() , 4 * [0] ) # score for bos_token_id shold be zero # check that bos_token_id is not forced if current length is greater than 1 __snake_case : Any = 3 __snake_case : Union[str, Any] = self._get_uniform_logits(__magic_name__ , __magic_name__ ) __snake_case : Any = logits_processor(__magic_name__ , __magic_name__ , cur_len=__magic_name__ ) self.assertFalse(jnp.isinf(__magic_name__ ).any() ) def lowercase__ ( self : Any ) -> str: """simple docstring""" __snake_case : List[Any] = 20 __snake_case : Union[str, Any] = 4 __snake_case : Dict = 0 __snake_case : Optional[int] = 5 __snake_case : List[Any] = FlaxForcedEOSTokenLogitsProcessor(max_length=__magic_name__ , eos_token_id=__magic_name__ ) # check that all scores are -inf except the eos_token_id when max_length is reached __snake_case : Optional[int] = ids_tensor((batch_size, 4) , vocab_size=20 ) __snake_case : int = 4 __snake_case : Any = self._get_uniform_logits(__magic_name__ , __magic_name__ ) __snake_case : Dict = logits_processor(__magic_name__ , __magic_name__ , cur_len=__magic_name__ ) self.assertTrue(jnp.isneginf(scores[:, eos_token_id + 1 :] ).all() ) self.assertListEqual(scores[:, eos_token_id].tolist() , 4 * [0] ) # score for eos_token_id should be zero # check that eos_token_id is not forced if max_length is not reached __snake_case : Optional[Any] = 3 __snake_case : Optional[Any] = self._get_uniform_logits(__magic_name__ , __magic_name__ ) __snake_case : Any = logits_processor(__magic_name__ , __magic_name__ , cur_len=__magic_name__ ) self.assertFalse(jnp.isinf(__magic_name__ ).any() ) def lowercase__ ( self : Optional[Any] ) -> str: """simple docstring""" __snake_case : Optional[int] = 4 __snake_case : int = 10 __snake_case : List[Any] = 15 __snake_case : Union[str, Any] = 2 __snake_case : List[str] = 1 __snake_case : Optional[Any] = 15 # dummy input_ids and scores __snake_case : Dict = ids_tensor((batch_size, sequence_length) , __magic_name__ ) __snake_case : Any = input_ids.copy() __snake_case : List[Any] = self._get_uniform_logits(__magic_name__ , __magic_name__ ) __snake_case : str = scores.copy() # instantiate all dist processors __snake_case : Tuple = FlaxTemperatureLogitsWarper(temperature=0.5 ) __snake_case : Union[str, Any] = FlaxTopKLogitsWarper(3 ) __snake_case : List[str] = FlaxTopPLogitsWarper(0.8 ) # instantiate all logits processors __snake_case : Union[str, Any] = FlaxMinLengthLogitsProcessor(min_length=10 , eos_token_id=__magic_name__ ) __snake_case : Union[str, Any] = FlaxForcedBOSTokenLogitsProcessor(bos_token_id=__magic_name__ ) __snake_case : str = FlaxForcedEOSTokenLogitsProcessor(max_length=__magic_name__ , eos_token_id=__magic_name__ ) __snake_case : Tuple = 10 # no processor list __snake_case : Dict = temp_dist_warp(__magic_name__ , __magic_name__ , cur_len=__magic_name__ ) __snake_case : Any = top_k_warp(__magic_name__ , __magic_name__ , cur_len=__magic_name__ ) __snake_case : str = top_p_warp(__magic_name__ , __magic_name__ , cur_len=__magic_name__ ) __snake_case : Optional[int] = min_dist_proc(__magic_name__ , __magic_name__ , cur_len=__magic_name__ ) __snake_case : Optional[Any] = bos_dist_proc(__magic_name__ , __magic_name__ , cur_len=__magic_name__ ) __snake_case : Optional[Any] = eos_dist_proc(__magic_name__ , __magic_name__ , cur_len=__magic_name__ ) # with processor list __snake_case : List[Any] = FlaxLogitsProcessorList( [temp_dist_warp, top_k_warp, top_p_warp, min_dist_proc, bos_dist_proc, eos_dist_proc] ) __snake_case : int = processor(__magic_name__ , __magic_name__ , cur_len=__magic_name__ ) # scores should be equal self.assertTrue(jnp.allclose(__magic_name__ , __magic_name__ , atol=1E-3 ) ) # input_ids should never be changed self.assertListEqual(input_ids.tolist() , input_ids_comp.tolist() ) def lowercase__ ( self : Any ) -> Any: """simple docstring""" __snake_case : Union[str, Any] = 4 __snake_case : Optional[int] = 10 __snake_case : Optional[Any] = 15 __snake_case : Dict = 2 __snake_case : Tuple = 1 __snake_case : Optional[int] = 15 # dummy input_ids and scores __snake_case : List[Any] = ids_tensor((batch_size, sequence_length) , __magic_name__ ) __snake_case : str = input_ids.copy() __snake_case : str = self._get_uniform_logits(__magic_name__ , __magic_name__ ) __snake_case : int = scores.copy() # instantiate all dist processors __snake_case : Optional[int] = FlaxTemperatureLogitsWarper(temperature=0.5 ) __snake_case : Optional[Any] = FlaxTopKLogitsWarper(3 ) __snake_case : str = FlaxTopPLogitsWarper(0.8 ) # instantiate all logits processors __snake_case : Optional[Any] = FlaxMinLengthLogitsProcessor(min_length=10 , eos_token_id=__magic_name__ ) __snake_case : Union[str, Any] = FlaxForcedBOSTokenLogitsProcessor(bos_token_id=__magic_name__ ) __snake_case : Optional[Any] = FlaxForcedEOSTokenLogitsProcessor(max_length=__magic_name__ , eos_token_id=__magic_name__ ) __snake_case : Dict = 10 # no processor list def run_no_processor_list(__magic_name__ : str , __magic_name__ : List[str] , __magic_name__ : int ): __snake_case : Union[str, Any] = temp_dist_warp(__magic_name__ , __magic_name__ , cur_len=__magic_name__ ) __snake_case : Tuple = top_k_warp(__magic_name__ , __magic_name__ , cur_len=__magic_name__ ) __snake_case : List[Any] = top_p_warp(__magic_name__ , __magic_name__ , cur_len=__magic_name__ ) __snake_case : Union[str, Any] = min_dist_proc(__magic_name__ , __magic_name__ , cur_len=__magic_name__ ) __snake_case : List[Any] = bos_dist_proc(__magic_name__ , __magic_name__ , cur_len=__magic_name__ ) __snake_case : List[str] = eos_dist_proc(__magic_name__ , __magic_name__ , cur_len=__magic_name__ ) return scores # with processor list def run_processor_list(__magic_name__ : int , __magic_name__ : Any , __magic_name__ : Dict ): __snake_case : Optional[int] = FlaxLogitsProcessorList( [temp_dist_warp, top_k_warp, top_p_warp, min_dist_proc, bos_dist_proc, eos_dist_proc] ) __snake_case : Optional[Any] = processor(__magic_name__ , __magic_name__ , cur_len=__magic_name__ ) return scores __snake_case : int = jax.jit(__magic_name__ ) __snake_case : List[Any] = jax.jit(__magic_name__ ) __snake_case : List[str] = jitted_run_no_processor_list(__magic_name__ , __magic_name__ , __magic_name__ ) __snake_case : Tuple = jitted_run_processor_list(__magic_name__ , __magic_name__ , __magic_name__ ) # scores should be equal self.assertTrue(jnp.allclose(__magic_name__ , __magic_name__ , atol=1E-3 ) ) # input_ids should never be changed self.assertListEqual(input_ids.tolist() , input_ids_comp.tolist() )
26
'''simple docstring''' import argparse import json import os import torch from torch import nn from transformers import NllbMoeConfig, NllbMoeModel from transformers.modeling_utils import dtype_byte_size from transformers.utils import WEIGHTS_INDEX_NAME, WEIGHTS_NAME def _a ( _lowerCamelCase ) -> List[Any]: """simple docstring""" __snake_case : Union[str, Any] = [ """encoder.version""", """decoder.version""", """model.encoder.version""", """model.decoder.version""", """decoder.output_projection.weight""", """_float_tensor""", """encoder.embed_positions._float_tensor""", """decoder.embed_positions._float_tensor""", ] for k in ignore_keys: state_dict.pop(_lowerCamelCase , _lowerCamelCase ) def _a ( _lowerCamelCase ) -> List[str]: """simple docstring""" __snake_case , __snake_case : Dict = emb.weight.shape __snake_case : Optional[int] = nn.Linear(_lowerCamelCase , _lowerCamelCase , bias=_lowerCamelCase ) __snake_case : Union[str, Any] = emb.weight.data return lin_layer def _a ( _lowerCamelCase , _lowerCamelCase=None ) -> Union[str, Any]: """simple docstring""" __snake_case : Any = {} for old_key in state_dict.keys(): __snake_case : Union[str, Any] = old_key if "moe_layer.experts." in key: if expert_idx is not None: __snake_case : Tuple = key.replace("""moe_layer.experts.0""" , F'''ffn.experts.expert_{expert_idx}''' ) else: __snake_case : Optional[int] = key.replace("""moe_layer.experts.""" , """ffn.experts.expert_""" ) if "gate" in key: __snake_case : Dict = key.replace(""".moe_layer.gate.wg""" , """.ffn.router.classifier""" ) if "fc2" and "experts" not in key: __snake_case : Union[str, Any] = key.replace(""".fc2.""" , """.ffn.fc2.""" ) if "fc1" and "experts" not in key: __snake_case : Optional[int] = key.replace(""".fc1.""" , """.ffn.fc1.""" ) if ".encoder_attn." in key: __snake_case : Tuple = key.replace(""".encoder_attn.""" , """.cross_attention.""" ) if "encoder_attn_layer_norm" in key: __snake_case : Union[str, Any] = key.replace("""encoder_attn_layer_norm""" , """cross_attention_layer_norm""" ) if "final_layer_norm" in key: __snake_case : str = key.replace("""final_layer_norm""" , """ff_layer_norm""" ) __snake_case : str = state_dict[old_key] return new_dict def _a ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase = WEIGHTS_NAME ) -> Dict: """simple docstring""" __snake_case : Optional[int] = [] __snake_case : Dict = 0 os.makedirs(_lowerCamelCase , exist_ok=_lowerCamelCase ) for expert in range(_lowerCamelCase ): __snake_case : Tuple = switch_checkpoint_path + F'''-rank-{expert}.pt''' if os.path.isfile(_lowerCamelCase ): __snake_case : Dict = torch.load(_lowerCamelCase )["""model"""] remove_ignore_keys_(_lowerCamelCase ) __snake_case : Optional[Any] = rename_fairseq_keys(_lowerCamelCase , _lowerCamelCase ) __snake_case : List[Any] = os.path.join( _lowerCamelCase , weights_name.replace(""".bin""" , F'''-{len(_lowerCamelCase )+1:05d}-of-???.bin''' ) ) torch.save(_lowerCamelCase , _lowerCamelCase ) sharded_state_dicts.append(expert_state.keys() ) total_size += sum([value.numel() for key, value in expert_state.items()] ) * dtype_byte_size( expert_state[list(_lowerCamelCase )[0]].dtype ) # Add the last block __snake_case : Optional[Any] = os.path.join(_lowerCamelCase , weights_name.replace(""".bin""" , F'''-{len(_lowerCamelCase )+1:05d}-of-???.bin''' ) ) __snake_case : str = torch.load(switch_checkpoint_path + """-shared.pt""" )["""model"""] remove_ignore_keys_(_lowerCamelCase ) __snake_case : Optional[Any] = rename_fairseq_keys(_lowerCamelCase , _lowerCamelCase ) __snake_case : List[str] = shared_weights["""decoder.embed_tokens.weight"""] sharded_state_dicts.append(shared_weights.keys() ) # If we only have the shared weights (dummy model/experts saved on the same file) if len(_lowerCamelCase ) == 1: __snake_case : Optional[Any] = os.path.join(_lowerCamelCase , _lowerCamelCase ) torch.save(_lowerCamelCase , _lowerCamelCase ) return {weights_name: sharded_state_dicts[0]}, None else: torch.save(_lowerCamelCase , _lowerCamelCase ) # Otherwise, let's build the index __snake_case : Tuple = {} for idx, shard in enumerate(_lowerCamelCase ): __snake_case : Any = weights_name.replace(""".bin""" , F'''-{idx+1:05d}-of-{len(_lowerCamelCase ):05d}.bin''' ) __snake_case : int = os.path.join(_lowerCamelCase , weights_name.replace(""".bin""" , F'''-{idx+1:05d}-of-???.bin''' ) ) os.rename(_lowerCamelCase , os.path.join(_lowerCamelCase , _lowerCamelCase ) ) for key in shard: __snake_case : str = shard_file # Add the metadata __snake_case : Optional[Any] = {"""total_size""": total_size} __snake_case : int = {"""metadata""": metadata, """weight_map""": weight_map} with open(os.path.join(_lowerCamelCase , _lowerCamelCase ) , """w""" , encoding="""utf-8""" ) as f: __snake_case : Union[str, Any] = json.dumps(_lowerCamelCase , indent=2 , sort_keys=_lowerCamelCase ) + """\n""" f.write(_lowerCamelCase ) return metadata, index if __name__ == "__main__": __UpperCamelCase = argparse.ArgumentParser() # Required parameters parser.add_argument( "--nllb_moe_checkpoint_path", default="/home/arthur_huggingface_co/fairseq/weights/checkpoints/model_moe_54b/checkpoint_2_300000", type=str, required=False, help="Path to a directory containing a folder per layer. Follows the original Google format.", ) parser.add_argument("--dtype", default="float32", type=str, required=False, help="dtype of the saved model") parser.add_argument( "--pytorch_dump_folder_path", default="/home/arthur_huggingface_co/fairseq/weights/checkpoints/hf-converted-moe-54b", type=str, required=False, help="Path to the output pytorch model.", ) __UpperCamelCase = parser.parse_args() __UpperCamelCase , __UpperCamelCase = shard_on_the_fly( args.nllb_moe_checkpoint_path, args.pytorch_dump_folder_path, 128, args.dtype, ) __UpperCamelCase = NllbMoeConfig.from_pretrained( "facebook/nllb-200-3.3B", encoder_sparse_step=4, decoder_sparse_step=4, num_experts=128 ) config.save_pretrained(args.pytorch_dump_folder_path) __UpperCamelCase = NllbMoeModel.from_pretrained(args.pytorch_dump_folder_path) print("Done") model.save_pretrained(args.pytorch_dump_folder_path)
26
1
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_tokenizers_available, is_torch_available, ) __UpperCamelCase = { "configuration_deberta": ["DEBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP", "DebertaConfig", "DebertaOnnxConfig"], "tokenization_deberta": ["DebertaTokenizer"], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCamelCase = ["DebertaTokenizerFast"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCamelCase = [ "DEBERTA_PRETRAINED_MODEL_ARCHIVE_LIST", "DebertaForMaskedLM", "DebertaForQuestionAnswering", "DebertaForSequenceClassification", "DebertaForTokenClassification", "DebertaModel", "DebertaPreTrainedModel", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCamelCase = [ "TF_DEBERTA_PRETRAINED_MODEL_ARCHIVE_LIST", "TFDebertaForMaskedLM", "TFDebertaForQuestionAnswering", "TFDebertaForSequenceClassification", "TFDebertaForTokenClassification", "TFDebertaModel", "TFDebertaPreTrainedModel", ] if TYPE_CHECKING: from .configuration_deberta import DEBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP, DebertaConfig, DebertaOnnxConfig from .tokenization_deberta import DebertaTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_deberta_fast import DebertaTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_deberta import ( DEBERTA_PRETRAINED_MODEL_ARCHIVE_LIST, DebertaForMaskedLM, DebertaForQuestionAnswering, DebertaForSequenceClassification, DebertaForTokenClassification, DebertaModel, DebertaPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_deberta import ( TF_DEBERTA_PRETRAINED_MODEL_ARCHIVE_LIST, TFDebertaForMaskedLM, TFDebertaForQuestionAnswering, TFDebertaForSequenceClassification, TFDebertaForTokenClassification, TFDebertaModel, TFDebertaPreTrainedModel, ) else: import sys __UpperCamelCase = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
26
'''simple docstring''' import cva import numpy as np class _A : def __init__( self : Any , __magic_name__ : float , __magic_name__ : int ) -> Optional[int]: """simple docstring""" if k in (0.04, 0.06): __snake_case : List[str] = k __snake_case : int = window_size else: raise ValueError("""invalid k value""" ) def __str__( self : Union[str, Any] ) -> str: """simple docstring""" return str(self.k ) def lowercase__ ( self : Dict , __magic_name__ : str ) -> tuple[cva.Mat, list[list[int]]]: """simple docstring""" __snake_case : Dict = cva.imread(__magic_name__ , 0 ) __snake_case , __snake_case : List[str] = img.shape __snake_case : list[list[int]] = [] __snake_case : str = img.copy() __snake_case : Tuple = cva.cvtColor(__magic_name__ , cva.COLOR_GRAY2RGB ) __snake_case , __snake_case : List[Any] = np.gradient(__magic_name__ ) __snake_case : Optional[Any] = dx**2 __snake_case : Tuple = dy**2 __snake_case : List[Any] = dx * dy __snake_case : List[Any] = 0.04 __snake_case : Tuple = self.window_size // 2 for y in range(__magic_name__ , h - offset ): for x in range(__magic_name__ , w - offset ): __snake_case : Dict = ixx[ y - offset : y + offset + 1, x - offset : x + offset + 1 ].sum() __snake_case : Optional[int] = iyy[ y - offset : y + offset + 1, x - offset : x + offset + 1 ].sum() __snake_case : str = ixy[ y - offset : y + offset + 1, x - offset : x + offset + 1 ].sum() __snake_case : List[str] = (wxx * wyy) - (wxy**2) __snake_case : Dict = wxx + wyy __snake_case : List[str] = det - k * (trace**2) # Can change the value if r > 0.5: corner_list.append([x, y, r] ) color_img.itemset((y, x, 0) , 0 ) color_img.itemset((y, x, 1) , 0 ) color_img.itemset((y, x, 2) , 2_55 ) return color_img, corner_list if __name__ == "__main__": __UpperCamelCase = HarrisCorner(0.04, 3) __UpperCamelCase , __UpperCamelCase = edge_detect.detect("path_to_image") cva.imwrite("detect.png", color_img)
26
1
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging __UpperCamelCase = logging.get_logger(__name__) __UpperCamelCase = { "microsoft/trocr-base-handwritten": ( "https://huggingface.co/microsoft/trocr-base-handwritten/resolve/main/config.json" ), # See all TrOCR models at https://huggingface.co/models?filter=trocr } class _A ( __lowercase ): lowercase__: Tuple = '''trocr''' lowercase__: Tuple = ['''past_key_values'''] lowercase__: Tuple = { '''num_attention_heads''': '''decoder_attention_heads''', '''hidden_size''': '''d_model''', '''num_hidden_layers''': '''decoder_layers''', } def __init__( self : Dict , __magic_name__ : List[Any]=5_02_65 , __magic_name__ : Tuple=10_24 , __magic_name__ : List[Any]=12 , __magic_name__ : int=16 , __magic_name__ : Optional[Any]=40_96 , __magic_name__ : str="gelu" , __magic_name__ : Optional[int]=5_12 , __magic_name__ : int=0.1 , __magic_name__ : List[Any]=0.0 , __magic_name__ : str=0.0 , __magic_name__ : Dict=2 , __magic_name__ : Dict=0.02 , __magic_name__ : Optional[Any]=0.0 , __magic_name__ : Optional[int]=True , __magic_name__ : Dict=False , __magic_name__ : Optional[Any]=True , __magic_name__ : Optional[int]=True , __magic_name__ : List[str]=1 , __magic_name__ : str=0 , __magic_name__ : Dict=2 , **__magic_name__ : List[str] , ) -> Any: """simple docstring""" __snake_case : Optional[Any] = vocab_size __snake_case : Union[str, Any] = d_model __snake_case : List[Any] = decoder_layers __snake_case : Optional[Any] = decoder_attention_heads __snake_case : Optional[int] = decoder_ffn_dim __snake_case : Optional[int] = activation_function __snake_case : Dict = max_position_embeddings __snake_case : Optional[int] = dropout __snake_case : str = attention_dropout __snake_case : List[str] = activation_dropout __snake_case : str = init_std __snake_case : List[str] = decoder_layerdrop __snake_case : Any = use_cache __snake_case : int = scale_embedding __snake_case : List[Any] = use_learned_position_embeddings __snake_case : int = layernorm_embedding super().__init__( pad_token_id=__magic_name__ , bos_token_id=__magic_name__ , eos_token_id=__magic_name__ , decoder_start_token_id=__magic_name__ , **__magic_name__ , )
26
'''simple docstring''' import warnings from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding class _A ( __lowercase ): lowercase__: Any = ['''image_processor''', '''tokenizer'''] lowercase__: Any = '''CLIPImageProcessor''' lowercase__: Optional[Any] = ('''CLIPTokenizer''', '''CLIPTokenizerFast''') def __init__( self : int , __magic_name__ : Dict=None , __magic_name__ : Dict=None , **__magic_name__ : Union[str, Any] ) -> Any: """simple docstring""" __snake_case : Optional[Any] = None if "feature_extractor" in kwargs: warnings.warn( """The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`""" """ instead.""" , __magic_name__ , ) __snake_case : List[Any] = kwargs.pop("""feature_extractor""" ) __snake_case : List[str] = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError("""You need to specify an `image_processor`.""" ) if tokenizer is None: raise ValueError("""You need to specify a `tokenizer`.""" ) super().__init__(__magic_name__ , __magic_name__ ) def __call__( self : int , __magic_name__ : List[str]=None , __magic_name__ : Tuple=None , __magic_name__ : Any=None , **__magic_name__ : Union[str, Any] ) -> Optional[int]: """simple docstring""" if text is None and images is None: raise ValueError("""You have to specify either text or images. Both cannot be none.""" ) if text is not None: __snake_case : int = self.tokenizer(__magic_name__ , return_tensors=__magic_name__ , **__magic_name__ ) if images is not None: __snake_case : str = self.image_processor(__magic_name__ , return_tensors=__magic_name__ , **__magic_name__ ) if text is not None and images is not None: __snake_case : Union[str, Any] = image_features.pixel_values return encoding elif text is not None: return encoding else: return BatchEncoding(data=dict(**__magic_name__ ) , tensor_type=__magic_name__ ) def lowercase__ ( self : Optional[int] , *__magic_name__ : List[Any] , **__magic_name__ : Any ) -> Optional[Any]: """simple docstring""" return self.tokenizer.batch_decode(*__magic_name__ , **__magic_name__ ) def lowercase__ ( self : List[str] , *__magic_name__ : Tuple , **__magic_name__ : List[Any] ) -> int: """simple docstring""" return self.tokenizer.decode(*__magic_name__ , **__magic_name__ ) @property def lowercase__ ( self : List[Any] ) -> Optional[Any]: """simple docstring""" __snake_case : Dict = self.tokenizer.model_input_names __snake_case : str = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) ) @property def lowercase__ ( self : int ) -> List[str]: """simple docstring""" warnings.warn( """`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.""" , __magic_name__ , ) return self.image_processor_class @property def lowercase__ ( self : Union[str, Any] ) -> Dict: """simple docstring""" warnings.warn( """`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead.""" , __magic_name__ , ) return self.image_processor
26
1
'''simple docstring''' import functools from typing import Any def _a ( _lowerCamelCase , _lowerCamelCase ) -> bool: """simple docstring""" if not isinstance(_lowerCamelCase , _lowerCamelCase ) or len(_lowerCamelCase ) == 0: raise ValueError("""the string should be not empty string""" ) if not isinstance(_lowerCamelCase , _lowerCamelCase ) or not all( isinstance(_lowerCamelCase , _lowerCamelCase ) and len(_lowerCamelCase ) > 0 for item in words ): raise ValueError("""the words should be a list of non-empty strings""" ) # Build trie __snake_case : dict[str, Any] = {} __snake_case : str = """WORD_KEEPER""" for word in words: __snake_case : str = trie for c in word: if c not in trie_node: __snake_case : List[Any] = {} __snake_case : Optional[int] = trie_node[c] __snake_case : List[str] = True __snake_case : List[str] = len(_lowerCamelCase ) # Dynamic programming method @functools.cache def is_breakable(_lowerCamelCase ) -> bool: if index == len_string: return True __snake_case : Optional[int] = trie for i in range(_lowerCamelCase , _lowerCamelCase ): __snake_case : Dict = trie_node.get(string[i] , _lowerCamelCase ) if trie_node is None: return False if trie_node.get(_lowerCamelCase , _lowerCamelCase ) and is_breakable(i + 1 ): return True return False return is_breakable(0 ) if __name__ == "__main__": import doctest doctest.testmod()
26
'''simple docstring''' import datasets import faiss import numpy as np import streamlit as st import torch from elasticsearch import Elasticsearch from elia_utils import ( embed_questions_for_retrieval, make_qa_sas_model, qa_sas_generate, query_es_index, query_qa_dense_index, ) import transformers from transformers import AutoModel, AutoModelForSeqaSeqLM, AutoTokenizer __UpperCamelCase = "bart" __UpperCamelCase = True @st.cache(allow_output_mutation=_lowerCamelCase ) def _a ( ) -> Union[str, Any]: """simple docstring""" if LOAD_DENSE_INDEX: __snake_case : int = AutoTokenizer.from_pretrained("""yjernite/retribert-base-uncased""" ) __snake_case : Tuple = AutoModel.from_pretrained("""yjernite/retribert-base-uncased""" ).to("""cuda:0""" ) __snake_case : List[Any] = qar_model.eval() else: __snake_case , __snake_case : Optional[Any] = (None, None) if MODEL_TYPE == "bart": __snake_case : List[str] = AutoTokenizer.from_pretrained("""yjernite/bart_eli5""" ) __snake_case : Any = AutoModelForSeqaSeqLM.from_pretrained("""yjernite/bart_eli5""" ).to("""cuda:0""" ) __snake_case : int = torch.load("""seq2seq_models/eli5_bart_model_blm_2.pth""" ) sas_model.load_state_dict(save_dict["""model"""] ) __snake_case : int = sas_model.eval() else: __snake_case , __snake_case : Dict = make_qa_sas_model( model_name="""t5-small""" , from_file="""seq2seq_models/eli5_t5_model_1024_4.pth""" , device="""cuda:0""" ) return (qar_tokenizer, qar_model, sas_tokenizer, sas_model) @st.cache(allow_output_mutation=_lowerCamelCase ) def _a ( ) -> Tuple: """simple docstring""" if LOAD_DENSE_INDEX: __snake_case : Tuple = faiss.StandardGpuResources() __snake_case : Optional[Any] = datasets.load_dataset(path="""wiki_snippets""" , name="""wiki40b_en_100_0""" )["""train"""] __snake_case : str = np.memmap( """wiki40b_passages_reps_32_l-8_h-768_b-512-512.dat""" , dtype="""float32""" , mode="""r""" , shape=(wikiaab_passages.num_rows, 128) , ) __snake_case : Optional[int] = faiss.IndexFlatIP(128 ) __snake_case : Any = faiss.index_cpu_to_gpu(_lowerCamelCase , 1 , _lowerCamelCase ) wikiaab_gpu_index_flat.add(_lowerCamelCase ) # TODO fix for larger GPU else: __snake_case , __snake_case : Tuple = (None, None) __snake_case : List[str] = Elasticsearch([{"""host""": """localhost""", """port""": """9200"""}] ) return (wikiaab_passages, wikiaab_gpu_index_flat, es_client) @st.cache(allow_output_mutation=_lowerCamelCase ) def _a ( ) -> List[Any]: """simple docstring""" __snake_case : Tuple = datasets.load_dataset("""eli5""" , name="""LFQA_reddit""" ) __snake_case : Dict = elia["""train_eli5"""] __snake_case : int = np.memmap( """eli5_questions_reps.dat""" , dtype="""float32""" , mode="""r""" , shape=(elia_train.num_rows, 128) ) __snake_case : Dict = faiss.IndexFlatIP(128 ) eli5_train_q_index.add(_lowerCamelCase ) return (elia_train, eli5_train_q_index) __UpperCamelCase , __UpperCamelCase , __UpperCamelCase = load_indexes() __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase = load_models() __UpperCamelCase , __UpperCamelCase = load_train_data() def _a ( _lowerCamelCase , _lowerCamelCase=10 ) -> int: """simple docstring""" __snake_case : Optional[int] = embed_questions_for_retrieval([question] , _lowerCamelCase , _lowerCamelCase ) __snake_case , __snake_case : Tuple = eli5_train_q_index.search(_lowerCamelCase , _lowerCamelCase ) __snake_case : Tuple = [elia_train[int(_lowerCamelCase )] for i in I[0]] return nn_examples def _a ( _lowerCamelCase , _lowerCamelCase="wiki40b" , _lowerCamelCase="dense" , _lowerCamelCase=10 ) -> Optional[Any]: """simple docstring""" if source == "none": __snake_case , __snake_case : Dict = (""" <P> """.join(["""""" for _ in range(11 )] ).strip(), []) else: if method == "dense": __snake_case , __snake_case : Dict = query_qa_dense_index( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) else: __snake_case , __snake_case : str = query_es_index( _lowerCamelCase , _lowerCamelCase , index_name="""english_wiki40b_snippets_100w""" , n_results=_lowerCamelCase , ) __snake_case : Optional[int] = [ (res["""article_title"""], res["""section_title"""].strip(), res["""score"""], res["""passage_text"""]) for res in hit_lst ] __snake_case : Optional[Any] = """question: {} context: {}""".format(_lowerCamelCase , _lowerCamelCase ) return question_doc, support_list @st.cache( hash_funcs={ torch.Tensor: (lambda _lowerCamelCase : None), transformers.models.bart.tokenization_bart.BartTokenizer: (lambda _lowerCamelCase : None), } ) def _a ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase=64 , _lowerCamelCase=256 , _lowerCamelCase=False , _lowerCamelCase=2 , _lowerCamelCase=0.95 , _lowerCamelCase=0.8 ) -> List[str]: """simple docstring""" with torch.no_grad(): __snake_case : Union[str, Any] = qa_sas_generate( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , num_answers=1 , num_beams=_lowerCamelCase , min_len=_lowerCamelCase , max_len=_lowerCamelCase , do_sample=_lowerCamelCase , temp=_lowerCamelCase , top_p=_lowerCamelCase , top_k=_lowerCamelCase , max_input_length=1024 , device="""cuda:0""" , )[0] return (answer, support_list) st.title("Long Form Question Answering with ELI5") # Start sidebar __UpperCamelCase = "<img src='https://huggingface.co/front/assets/huggingface_logo.svg'>" __UpperCamelCase = "\n<html>\n <head>\n <style>\n .img-container {\n padding-left: 90px;\n padding-right: 90px;\n padding-top: 50px;\n padding-bottom: 50px;\n background-color: #f0f3f9;\n }\n </style>\n </head>\n <body>\n <span class=\"img-container\"> <!-- Inline parent element -->\n %s\n </span>\n </body>\n</html>\n" % ( header_html, ) st.sidebar.markdown( header_full, unsafe_allow_html=True, ) # Long Form QA with ELI5 and Wikipedia __UpperCamelCase = "\nThis demo presents a model trained to [provide long-form answers to open-domain questions](https://yjernite.github.io/lfqa.html).\nFirst, a document retriever fetches a set of relevant Wikipedia passages given the question from the [Wiki40b](https://research.google/pubs/pub49029/) dataset,\na pre-processed fixed snapshot of Wikipedia.\n" st.sidebar.markdown(description, unsafe_allow_html=True) __UpperCamelCase = [ "Answer the question", "View the retrieved document only", "View the most similar ELI5 question and answer", "Show me everything, please!", ] __UpperCamelCase = st.sidebar.checkbox("Demo options") if demo_options: __UpperCamelCase = st.sidebar.selectbox( "", action_list, index=3, ) __UpperCamelCase = action_list.index(action_st) __UpperCamelCase = st.sidebar.selectbox( "", ["Show full text of passages", "Show passage section titles"], index=0, ) __UpperCamelCase = show_type == "Show full text of passages" else: __UpperCamelCase = 3 __UpperCamelCase = True __UpperCamelCase = st.sidebar.checkbox("Retrieval options") if retrieval_options: __UpperCamelCase = "\n ### Information retriever options\n\n The **sparse** retriever uses ElasticSearch, while the **dense** retriever uses max-inner-product search between a question and passage embedding\n trained using the [ELI5](https://arxiv.org/abs/1907.09190) questions-answer pairs.\n The answer is then generated by sequence to sequence model which takes the question and retrieved document as input.\n " st.sidebar.markdown(retriever_info) __UpperCamelCase = st.sidebar.selectbox("Which Wikipedia format should the model use?", ["wiki40b", "none"]) __UpperCamelCase = st.sidebar.selectbox("Which Wikipedia indexer should the model use?", ["dense", "sparse", "mixed"]) else: __UpperCamelCase = "wiki40b" __UpperCamelCase = "dense" __UpperCamelCase = "beam" __UpperCamelCase = 2 __UpperCamelCase = 64 __UpperCamelCase = 256 __UpperCamelCase = None __UpperCamelCase = None __UpperCamelCase = st.sidebar.checkbox("Generation options") if generate_options: __UpperCamelCase = "\n ### Answer generation options\n\n The sequence-to-sequence model was initialized with [BART](https://huggingface.co/facebook/bart-large)\n weights and fine-tuned on the ELI5 QA pairs and retrieved documents. You can use the model for greedy decoding with\n **beam** search, or **sample** from the decoder's output probabilities.\n " st.sidebar.markdown(generate_info) __UpperCamelCase = st.sidebar.selectbox("Would you like to use beam search or sample an answer?", ["beam", "sampled"]) __UpperCamelCase = st.sidebar.slider( "Minimum generation length", min_value=8, max_value=256, value=64, step=8, format=None, key=None ) __UpperCamelCase = st.sidebar.slider( "Maximum generation length", min_value=64, max_value=512, value=256, step=16, format=None, key=None ) if sampled == "beam": __UpperCamelCase = st.sidebar.slider("Beam size", min_value=1, max_value=8, value=2, step=None, format=None, key=None) else: __UpperCamelCase = st.sidebar.slider( "Nucleus sampling p", min_value=0.1, max_value=1.0, value=0.95, step=0.01, format=None, key=None ) __UpperCamelCase = st.sidebar.slider( "Temperature", min_value=0.1, max_value=1.0, value=0.7, step=0.01, format=None, key=None ) __UpperCamelCase = None # start main text __UpperCamelCase = [ "<MY QUESTION>", "How do people make chocolate?", "Why do we get a fever when we are sick?", "How can different animals perceive different colors?", "What is natural language processing?", "What's the best way to treat a sunburn?", "What exactly are vitamins ?", "How does nuclear energy provide electricity?", "What's the difference between viruses and bacteria?", "Why are flutes classified as woodwinds when most of them are made out of metal ?", "Why do people like drinking coffee even though it tastes so bad?", "What happens when wine ages? How does it make the wine taste better?", "If an animal is an herbivore, where does it get the protein that it needs to survive if it only eats grass?", "How can we set a date to the beginning or end of an artistic period? Doesn't the change happen gradually?", "How does New Zealand have so many large bird predators?", ] __UpperCamelCase = st.selectbox( "What would you like to ask? ---- select <MY QUESTION> to enter a new query", questions_list, index=1, ) if question_s == "<MY QUESTION>": __UpperCamelCase = st.text_input("Enter your question here:", "") else: __UpperCamelCase = question_s if st.button("Show me!"): if action in [0, 1, 3]: if index_type == "mixed": __UpperCamelCase , __UpperCamelCase = make_support(question, source=wiki_source, method="dense", n_results=10) __UpperCamelCase , __UpperCamelCase = make_support(question, source=wiki_source, method="sparse", n_results=10) __UpperCamelCase = [] for res_d, res_s in zip(support_list_dense, support_list_sparse): if tuple(res_d) not in support_list: support_list += [tuple(res_d)] if tuple(res_s) not in support_list: support_list += [tuple(res_s)] __UpperCamelCase = support_list[:10] __UpperCamelCase = "<P> " + " <P> ".join([res[-1] for res in support_list]) else: __UpperCamelCase , __UpperCamelCase = make_support(question, source=wiki_source, method=index_type, n_results=10) if action in [0, 3]: __UpperCamelCase , __UpperCamelCase = answer_question( question_doc, sas_model, sas_tokenizer, min_len=min_len, max_len=int(max_len), sampling=(sampled == "sampled"), n_beams=n_beams, top_p=top_p, temp=temp, ) st.markdown("### The model generated answer is:") st.write(answer) if action in [0, 1, 3] and wiki_source != "none": st.markdown("--- \n ### The model is drawing information from the following Wikipedia passages:") for i, res in enumerate(support_list): __UpperCamelCase = "https://en.wikipedia.org/wiki/{}".format(res[0].replace(" ", "_")) __UpperCamelCase = res[1].strip() if sec_titles == "": __UpperCamelCase = "[{}]({})".format(res[0], wiki_url) else: __UpperCamelCase = sec_titles.split(" & ") __UpperCamelCase = " & ".join( ["[{}]({}#{})".format(sec.strip(), wiki_url, sec.strip().replace(" ", "_")) for sec in sec_list] ) st.markdown( "{0:02d} - **Article**: {1:<18} <br> _Section_: {2}".format(i + 1, res[0], sections), unsafe_allow_html=True, ) if show_passages: st.write( "> <span style=\"font-family:arial; font-size:10pt;\">" + res[-1] + "</span>", unsafe_allow_html=True ) if action in [2, 3]: __UpperCamelCase = find_nearest_training(question) __UpperCamelCase = nn_train_list[0] st.markdown( "--- \n ### The most similar question in the ELI5 training set was: \n\n {}".format(train_exple["title"]) ) __UpperCamelCase = [ "{}. {}".format(i + 1, " \n".join([line.strip() for line in ans.split("\n") if line.strip() != ""])) for i, (ans, sc) in enumerate(zip(train_exple["answers"]["text"], train_exple["answers"]["score"])) if i == 0 or sc > 2 ] st.markdown("##### Its answers were: \n\n {}".format("\n".join(answers_st))) __UpperCamelCase = "\n---\n\n**Disclaimer**\n\n*The intent of this app is to provide some (hopefully entertaining) insights into the behavior of a current LFQA system.\nEvaluating biases of such a model and ensuring factual generations are still very much open research problems.\nTherefore, until some significant progress is achieved, we caution against using the generated answers for practical purposes.*\n" st.sidebar.markdown(disclaimer, unsafe_allow_html=True)
26
1
'''simple docstring''' def _a ( _lowerCamelCase ) -> str: """simple docstring""" return " ".join(input_str.split()[::-1] ) if __name__ == "__main__": import doctest doctest.testmod()
26
'''simple docstring''' import warnings from ...utils import logging from .image_processing_owlvit import OwlViTImageProcessor __UpperCamelCase = logging.get_logger(__name__) class _A ( __lowercase ): def __init__( self : int , *__magic_name__ : Optional[Any] , **__magic_name__ : Any ) -> None: """simple docstring""" warnings.warn( """The class OwlViTFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please""" """ use OwlViTImageProcessor instead.""" , __magic_name__ , ) super().__init__(*__magic_name__ , **__magic_name__ )
26
1
'''simple docstring''' import argparse import torch from transformers import GPTaConfig, GPTaModel, load_tf_weights_in_gpta from transformers.utils import CONFIG_NAME, WEIGHTS_NAME, logging logging.set_verbosity_info() def _a ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> int: """simple docstring""" if gpta_config_file == "": __snake_case : Any = GPTaConfig() else: __snake_case : Dict = GPTaConfig.from_json_file(_lowerCamelCase ) __snake_case : Optional[int] = GPTaModel(_lowerCamelCase ) # Load weights from numpy load_tf_weights_in_gpta(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) # Save pytorch-model __snake_case : Optional[Any] = pytorch_dump_folder_path + """/""" + WEIGHTS_NAME __snake_case : Dict = pytorch_dump_folder_path + """/""" + CONFIG_NAME print(F'''Save PyTorch model to {pytorch_weights_dump_path}''' ) torch.save(model.state_dict() , _lowerCamelCase ) print(F'''Save configuration file to {pytorch_config_dump_path}''' ) with open(_lowerCamelCase , """w""" , encoding="""utf-8""" ) as f: f.write(config.to_json_string() ) if __name__ == "__main__": __UpperCamelCase = argparse.ArgumentParser() # Required parameters parser.add_argument( "--gpt2_checkpoint_path", default=None, type=str, required=True, help="Path to the TensorFlow checkpoint path." ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, required=True, help="Path to the output PyTorch model." ) parser.add_argument( "--gpt2_config_file", default="", type=str, help=( "An optional config json file corresponding to the pre-trained OpenAI model. \n" "This specifies the model architecture." ), ) __UpperCamelCase = parser.parse_args() convert_gpta_checkpoint_to_pytorch(args.gpta_checkpoint_path, args.gpta_config_file, args.pytorch_dump_folder_path)
26
'''simple docstring''' import argparse import torch from transformers import BlenderbotConfig, BlenderbotForConditionalGeneration from transformers.utils import logging logging.set_verbosity_info() __UpperCamelCase = logging.get_logger(__name__) __UpperCamelCase = [ ["attention", "attn"], ["encoder_attention", "encoder_attn"], ["q_lin", "q_proj"], ["k_lin", "k_proj"], ["v_lin", "v_proj"], ["out_lin", "out_proj"], ["norm_embeddings", "layernorm_embedding"], ["position_embeddings", "embed_positions"], ["embeddings", "embed_tokens"], ["ffn.lin", "fc"], ] def _a ( _lowerCamelCase ) -> Union[str, Any]: """simple docstring""" if k == "embeddings.weight": return "shared.weight" for parlai_name, hf_name in PATTERNS: __snake_case : List[str] = k.replace(_lowerCamelCase , _lowerCamelCase ) if k.startswith("""encoder""" ): __snake_case : Optional[int] = k.replace(""".attn""" , """.self_attn""" ) __snake_case : Tuple = k.replace("""norm1""" , """self_attn_layer_norm""" ) __snake_case : List[str] = k.replace("""norm2""" , """final_layer_norm""" ) elif k.startswith("""decoder""" ): __snake_case : List[Any] = k.replace("""norm1""" , """self_attn_layer_norm""" ) __snake_case : str = k.replace("""norm2""" , """encoder_attn_layer_norm""" ) __snake_case : Optional[int] = k.replace("""norm3""" , """final_layer_norm""" ) return k def _a ( _lowerCamelCase ) -> Any: """simple docstring""" __snake_case : Optional[int] = [ """model.encoder.layernorm_embedding.weight""", """model.encoder.layernorm_embedding.bias""", """model.decoder.layernorm_embedding.weight""", """model.decoder.layernorm_embedding.bias""", ] for k in keys: __snake_case : Optional[Any] = sd.pop(_lowerCamelCase ) __snake_case : List[str] = k.replace("""layernorm_embedding""" , """layer_norm""" ) assert new_k not in sd __snake_case : Union[str, Any] = v __UpperCamelCase = ["START"] @torch.no_grad() def _a ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> Dict: """simple docstring""" __snake_case : Optional[int] = torch.load(_lowerCamelCase , map_location="""cpu""" ) __snake_case : Dict = model["""model"""] __snake_case : Optional[int] = BlenderbotConfig.from_json_file(_lowerCamelCase ) __snake_case : Union[str, Any] = BlenderbotForConditionalGeneration(_lowerCamelCase ) __snake_case : List[Any] = m.model.state_dict().keys() __snake_case : int = [] __snake_case : Union[str, Any] = {} for k, v in sd.items(): if k in IGNORE_KEYS: continue __snake_case : Optional[int] = rename_state_dict_key(_lowerCamelCase ) if new_k not in valid_keys: failures.append([k, new_k] ) else: __snake_case : str = v if cfg.normalize_before: # Blenderbot-3B checkpoints. Rename layernorm_embedding -> layer_norm rename_layernorm_keys(_lowerCamelCase ) m.model.load_state_dict(_lowerCamelCase , strict=_lowerCamelCase ) m.half() m.save_pretrained(_lowerCamelCase ) if __name__ == "__main__": __UpperCamelCase = argparse.ArgumentParser() # Required parameters parser.add_argument("--src_path", type=str, help="like blenderbot-model.bin") parser.add_argument("--save_dir", default="hf_blenderbot", type=str, help="Where to save converted model.") parser.add_argument( "--hf_config_json", default="blenderbot-3b-config.json", type=str, help="Path to config to use" ) __UpperCamelCase = parser.parse_args() convert_parlai_checkpoint(args.src_path, args.save_dir, args.hf_config_json)
26
1
'''simple docstring''' from __future__ import annotations from functools import lru_cache from math import ceil __UpperCamelCase = 100 __UpperCamelCase = set(range(3, NUM_PRIMES, 2)) primes.add(2) __UpperCamelCase = 42 for prime in range(3, ceil(NUM_PRIMES**0.5), 2): if prime not in primes: continue primes.difference_update(set(range(prime * prime, NUM_PRIMES, prime))) @lru_cache(maxsize=100 ) def _a ( _lowerCamelCase ) -> set[int]: """simple docstring""" if number_to_partition < 0: return set() elif number_to_partition == 0: return {1} __snake_case : set[int] = set() __snake_case : int __snake_case : int for prime in primes: if prime > number_to_partition: continue for sub in partition(number_to_partition - prime ): ret.add(sub * prime ) return ret def _a ( _lowerCamelCase = 5000 ) -> int | None: """simple docstring""" for number_to_partition in range(1 , _lowerCamelCase ): if len(partition(_lowerCamelCase ) ) > number_unique_partitions: return number_to_partition return None if __name__ == "__main__": print(f"""{solution() = }""")
26
'''simple docstring''' import argparse import os import re import packaging.version __UpperCamelCase = "examples/" __UpperCamelCase = { "examples": (re.compile(R"^check_min_version\(\"[^\"]+\"\)\s*$", re.MULTILINE), "check_min_version(\"VERSION\")\n"), "init": (re.compile(R"^__version__\s+=\s+\"([^\"]+)\"\s*$", re.MULTILINE), "__version__ = \"VERSION\"\n"), "setup": (re.compile(R"^(\s*)version\s*=\s*\"[^\"]+\",", re.MULTILINE), R"\1version=\"VERSION\","), "doc": (re.compile(R"^(\s*)release\s*=\s*\"[^\"]+\"$", re.MULTILINE), "release = \"VERSION\"\n"), } __UpperCamelCase = { "init": "src/transformers/__init__.py", "setup": "setup.py", } __UpperCamelCase = "README.md" def _a ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> Tuple: """simple docstring""" with open(_lowerCamelCase , """r""" , encoding="""utf-8""" , newline="""\n""" ) as f: __snake_case : Union[str, Any] = f.read() __snake_case , __snake_case : List[Any] = REPLACE_PATTERNS[pattern] __snake_case : Optional[Any] = replace.replace("""VERSION""" , _lowerCamelCase ) __snake_case : Optional[Any] = re_pattern.sub(_lowerCamelCase , _lowerCamelCase ) with open(_lowerCamelCase , """w""" , encoding="""utf-8""" , newline="""\n""" ) as f: f.write(_lowerCamelCase ) def _a ( _lowerCamelCase ) -> Union[str, Any]: """simple docstring""" for folder, directories, fnames in os.walk(_lowerCamelCase ): # Removing some of the folders with non-actively maintained examples from the walk if "research_projects" in directories: directories.remove("""research_projects""" ) if "legacy" in directories: directories.remove("""legacy""" ) for fname in fnames: if fname.endswith(""".py""" ): update_version_in_file(os.path.join(_lowerCamelCase , _lowerCamelCase ) , _lowerCamelCase , pattern="""examples""" ) def _a ( _lowerCamelCase , _lowerCamelCase=False ) -> str: """simple docstring""" for pattern, fname in REPLACE_FILES.items(): update_version_in_file(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) if not patch: update_version_in_examples(_lowerCamelCase ) def _a ( ) -> Optional[int]: """simple docstring""" __snake_case : str = """🤗 Transformers currently provides the following architectures""" __snake_case : List[Any] = """1. Want to contribute a new model?""" with open(_lowerCamelCase , """r""" , encoding="""utf-8""" , newline="""\n""" ) as f: __snake_case : List[str] = f.readlines() # Find the start of the list. __snake_case : Optional[Any] = 0 while not lines[start_index].startswith(_start_prompt ): start_index += 1 start_index += 1 __snake_case : int = start_index # Update the lines in the model list. while not lines[index].startswith(_end_prompt ): if lines[index].startswith("""1.""" ): __snake_case : Optional[Any] = lines[index].replace( """https://huggingface.co/docs/transformers/main/model_doc""" , """https://huggingface.co/docs/transformers/model_doc""" , ) index += 1 with open(_lowerCamelCase , """w""" , encoding="""utf-8""" , newline="""\n""" ) as f: f.writelines(_lowerCamelCase ) def _a ( ) -> Union[str, Any]: """simple docstring""" with open(REPLACE_FILES["""init"""] , """r""" ) as f: __snake_case : List[Any] = f.read() __snake_case : str = REPLACE_PATTERNS["""init"""][0].search(_lowerCamelCase ).groups()[0] return packaging.version.parse(_lowerCamelCase ) def _a ( _lowerCamelCase=False ) -> int: """simple docstring""" __snake_case : List[Any] = get_version() if patch and default_version.is_devrelease: raise ValueError("""Can't create a patch version from the dev branch, checkout a released version!""" ) if default_version.is_devrelease: __snake_case : str = default_version.base_version elif patch: __snake_case : Optional[int] = F'''{default_version.major}.{default_version.minor}.{default_version.micro + 1}''' else: __snake_case : Dict = F'''{default_version.major}.{default_version.minor + 1}.0''' # Now let's ask nicely if that's the right one. __snake_case : Dict = input(F'''Which version are you releasing? [{default_version}]''' ) if len(_lowerCamelCase ) == 0: __snake_case : Any = default_version print(F'''Updating version to {version}.''' ) global_version_update(_lowerCamelCase , patch=_lowerCamelCase ) if not patch: print("""Cleaning main README, don't forget to run `make fix-copies`.""" ) clean_main_ref_in_model_list() def _a ( ) -> Tuple: """simple docstring""" __snake_case : Optional[Any] = get_version() __snake_case : Tuple = F'''{current_version.major}.{current_version.minor + 1}.0.dev0''' __snake_case : Union[str, Any] = current_version.base_version # Check with the user we got that right. __snake_case : int = input(F'''Which version are we developing now? [{dev_version}]''' ) if len(_lowerCamelCase ) == 0: __snake_case : Optional[int] = dev_version print(F'''Updating version to {version}.''' ) global_version_update(_lowerCamelCase ) print("""Cleaning main README, don't forget to run `make fix-copies`.""" ) clean_main_ref_in_model_list() if __name__ == "__main__": __UpperCamelCase = argparse.ArgumentParser() parser.add_argument("--post_release", action="store_true", help="Whether this is pre or post release.") parser.add_argument("--patch", action="store_true", help="Whether or not this is a patch release.") __UpperCamelCase = parser.parse_args() if not args.post_release: pre_release_work(patch=args.patch) elif args.patch: print("Nothing to do after a patch :-)") else: post_release_work()
26
1
'''simple docstring''' import copy import inspect import unittest from transformers import AutoBackbone from transformers.configuration_utils import PretrainedConfig from transformers.testing_utils import require_timm, require_torch, torch_device from transformers.utils.import_utils import is_torch_available from ...test_backbone_common import BackboneTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor if is_torch_available(): import torch from transformers import TimmBackbone, TimmBackboneConfig from ...test_pipeline_mixin import PipelineTesterMixin class _A : def __init__( self : Tuple , __magic_name__ : Optional[int] , __magic_name__ : Optional[Any]=None , __magic_name__ : Dict=None , __magic_name__ : List[str]=None , __magic_name__ : int="resnet50" , __magic_name__ : Dict=3 , __magic_name__ : Union[str, Any]=32 , __magic_name__ : Union[str, Any]=3 , __magic_name__ : Dict=True , __magic_name__ : List[str]=True , ) -> Tuple: """simple docstring""" __snake_case : Union[str, Any] = parent __snake_case : List[Any] = out_indices if out_indices is not None else [4] __snake_case : List[Any] = stage_names __snake_case : Tuple = out_features __snake_case : Any = backbone __snake_case : List[str] = batch_size __snake_case : int = image_size __snake_case : Tuple = num_channels __snake_case : Optional[int] = use_pretrained_backbone __snake_case : Any = is_training def lowercase__ ( self : Tuple ) -> str: """simple docstring""" __snake_case : Union[str, Any] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) __snake_case : List[Any] = self.get_config() return config, pixel_values def lowercase__ ( self : Union[str, Any] ) -> Any: """simple docstring""" return TimmBackboneConfig( image_size=self.image_size , num_channels=self.num_channels , out_features=self.out_features , out_indices=self.out_indices , stage_names=self.stage_names , use_pretrained_backbone=self.use_pretrained_backbone , backbone=self.backbone , ) def lowercase__ ( self : Dict , __magic_name__ : List[Any] , __magic_name__ : List[Any] ) -> Optional[Any]: """simple docstring""" __snake_case : List[str] = TimmBackbone(config=__magic_name__ ) model.to(__magic_name__ ) model.eval() with torch.no_grad(): __snake_case : Union[str, Any] = model(__magic_name__ ) self.parent.assertEqual( result.feature_map[-1].shape , (self.batch_size, model.channels[-1], 14, 14) , ) def lowercase__ ( self : str ) -> Optional[int]: """simple docstring""" __snake_case : int = self.prepare_config_and_inputs() __snake_case , __snake_case : Dict = config_and_inputs __snake_case : Any = {"""pixel_values""": pixel_values} return config, inputs_dict @require_torch @require_timm class _A ( __lowercase , __lowercase , __lowercase , unittest.TestCase ): lowercase__: str = (TimmBackbone,) if is_torch_available() else () lowercase__: Optional[int] = {'''feature-extraction''': TimmBackbone} if is_torch_available() else {} lowercase__: Tuple = False lowercase__: List[str] = False lowercase__: Any = False lowercase__: Optional[int] = False def lowercase__ ( self : Dict ) -> Any: """simple docstring""" __snake_case : Dict = TimmBackboneModelTester(self ) __snake_case : Tuple = ConfigTester(self , config_class=__magic_name__ , has_text_modality=__magic_name__ ) def lowercase__ ( self : str ) -> str: """simple docstring""" self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def lowercase__ ( self : Optional[int] ) -> Dict: """simple docstring""" __snake_case : List[str] = """resnet18""" __snake_case : Union[str, Any] = """microsoft/resnet-18""" __snake_case : Union[str, Any] = AutoBackbone.from_pretrained(__magic_name__ , use_timm_backbone=__magic_name__ ) __snake_case : Any = AutoBackbone.from_pretrained(__magic_name__ ) self.assertEqual(len(timm_model.out_features ) , len(transformers_model.out_features ) ) self.assertEqual(len(timm_model.stage_names ) , len(transformers_model.stage_names ) ) self.assertEqual(timm_model.channels , transformers_model.channels ) # Out indices are set to the last layer by default. For timm models, we don't know # the number of layers in advance, so we set it to (-1,), whereas for transformers # models, we set it to [len(stage_names) - 1] (kept for backward compatibility). self.assertEqual(timm_model.out_indices , (-1,) ) self.assertEqual(transformers_model.out_indices , [len(timm_model.stage_names ) - 1] ) __snake_case : Union[str, Any] = AutoBackbone.from_pretrained(__magic_name__ , use_timm_backbone=__magic_name__ , out_indices=[1, 2, 3] ) __snake_case : Tuple = AutoBackbone.from_pretrained(__magic_name__ , out_indices=[1, 2, 3] ) self.assertEqual(timm_model.out_indices , transformers_model.out_indices ) self.assertEqual(len(timm_model.out_features ) , len(transformers_model.out_features ) ) self.assertEqual(timm_model.channels , transformers_model.channels ) @unittest.skip("""TimmBackbone doesn't support feed forward chunking""" ) def lowercase__ ( self : Dict ) -> Dict: """simple docstring""" pass @unittest.skip("""TimmBackbone doesn't have num_hidden_layers attribute""" ) def lowercase__ ( self : str ) -> List[str]: """simple docstring""" pass @unittest.skip("""TimmBackbone initialization is managed on the timm side""" ) def lowercase__ ( self : Any ) -> Optional[int]: """simple docstring""" pass @unittest.skip("""TimmBackbone models doesn't have inputs_embeds""" ) def lowercase__ ( self : List[Any] ) -> Any: """simple docstring""" pass @unittest.skip("""TimmBackbone models doesn't have inputs_embeds""" ) def lowercase__ ( self : Dict ) -> int: """simple docstring""" pass @unittest.skip("""TimmBackbone model cannot be created without specifying a backbone checkpoint""" ) def lowercase__ ( self : Dict ) -> Optional[Any]: """simple docstring""" pass @unittest.skip("""Only checkpoints on timm can be loaded into TimmBackbone""" ) def lowercase__ ( self : Tuple ) -> List[str]: """simple docstring""" pass @unittest.skip("""model weights aren't tied in TimmBackbone.""" ) def lowercase__ ( self : str ) -> Any: """simple docstring""" pass @unittest.skip("""model weights aren't tied in TimmBackbone.""" ) def lowercase__ ( self : Dict ) -> int: """simple docstring""" pass @unittest.skip("""Only checkpoints on timm can be loaded into TimmBackbone""" ) def lowercase__ ( self : Dict ) -> List[Any]: """simple docstring""" pass @unittest.skip("""Only checkpoints on timm can be loaded into TimmBackbone""" ) def lowercase__ ( self : Any ) -> List[str]: """simple docstring""" pass @unittest.skip("""TimmBackbone doesn't have hidden size info in its configuration.""" ) def lowercase__ ( self : Optional[Any] ) -> Tuple: """simple docstring""" pass @unittest.skip("""TimmBackbone doesn't support output_attentions.""" ) def lowercase__ ( self : List[str] ) -> List[Any]: """simple docstring""" pass @unittest.skip("""Safetensors is not supported by timm.""" ) def lowercase__ ( self : Optional[Any] ) -> Tuple: """simple docstring""" pass @unittest.skip("""Will be fixed soon by reducing the size of the model used for common tests.""" ) def lowercase__ ( self : int ) -> Dict: """simple docstring""" pass def lowercase__ ( self : Optional[Any] ) -> Dict: """simple docstring""" __snake_case , __snake_case : List[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __snake_case : Optional[Any] = model_class(__magic_name__ ) __snake_case : Union[str, Any] = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __snake_case : str = [*signature.parameters.keys()] __snake_case : int = ["""pixel_values"""] self.assertListEqual(arg_names[:1] , __magic_name__ ) def lowercase__ ( self : Optional[int] ) -> Union[str, Any]: """simple docstring""" __snake_case , __snake_case : List[Any] = self.model_tester.prepare_config_and_inputs_for_common() __snake_case : Tuple = True __snake_case : List[Any] = self.has_attentions # no need to test all models as different heads yield the same functionality __snake_case : Tuple = self.all_model_classes[0] __snake_case : Dict = model_class(__magic_name__ ) model.to(__magic_name__ ) __snake_case : str = self._prepare_for_class(__magic_name__ , __magic_name__ ) __snake_case : Optional[int] = model(**__magic_name__ ) __snake_case : Optional[Any] = outputs[0][-1] # Encoder-/Decoder-only models __snake_case : Union[str, Any] = outputs.hidden_states[0] hidden_states.retain_grad() if self.has_attentions: __snake_case : int = outputs.attentions[0] attentions.retain_grad() output.flatten()[0].backward(retain_graph=__magic_name__ ) self.assertIsNotNone(hidden_states.grad ) if self.has_attentions: self.assertIsNotNone(attentions.grad ) def lowercase__ ( self : List[str] ) -> Optional[int]: """simple docstring""" __snake_case , __snake_case : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __snake_case : Optional[int] = model_class(__magic_name__ ) model.to(__magic_name__ ) model.eval() __snake_case : Any = model(**__magic_name__ ) self.assertEqual(len(result.feature_maps ) , len(config.out_indices ) ) self.assertEqual(len(model.channels ) , len(config.out_indices ) ) # Check output of last stage is taken if out_features=None, out_indices=None __snake_case : Dict = copy.deepcopy(__magic_name__ ) __snake_case : Optional[Any] = None __snake_case : int = model_class(__magic_name__ ) model.to(__magic_name__ ) model.eval() __snake_case : int = model(**__magic_name__ ) self.assertEqual(len(result.feature_maps ) , 1 ) self.assertEqual(len(model.channels ) , 1 ) # Check backbone can be initialized with fresh weights __snake_case : Union[str, Any] = copy.deepcopy(__magic_name__ ) __snake_case : Optional[int] = False __snake_case : str = model_class(__magic_name__ ) model.to(__magic_name__ ) model.eval() __snake_case : int = model(**__magic_name__ )
26
'''simple docstring''' from unittest import TestCase from datasets import Sequence, Value from datasets.arrow_dataset import Dataset class _A ( __lowercase ): def lowercase__ ( self : Any ) -> str: """simple docstring""" return [ {"col_1": 3, "col_2": "a"}, {"col_1": 2, "col_2": "b"}, {"col_1": 1, "col_2": "c"}, {"col_1": 0, "col_2": "d"}, ] def lowercase__ ( self : str ) -> int: """simple docstring""" __snake_case : Union[str, Any] = {"""col_1""": [3, 2, 1, 0], """col_2""": ["""a""", """b""", """c""", """d"""]} return Dataset.from_dict(__magic_name__ ) def lowercase__ ( self : str ) -> List[Any]: """simple docstring""" __snake_case : Any = self._create_example_records() __snake_case : str = Dataset.from_list(__magic_name__ ) self.assertListEqual(dset.column_names , ["""col_1""", """col_2"""] ) for i, r in enumerate(__magic_name__ ): self.assertDictEqual(__magic_name__ , example_records[i] ) def lowercase__ ( self : Optional[Any] ) -> List[Any]: """simple docstring""" __snake_case : List[Any] = self._create_example_records() __snake_case : Dict = Dataset.from_list(__magic_name__ ) __snake_case : List[Any] = Dataset.from_dict({k: [r[k] for r in example_records] for k in example_records[0]} ) self.assertEqual(dset.info , dset_from_dict.info ) def lowercase__ ( self : str ) -> List[Any]: # checks what happens with missing columns """simple docstring""" __snake_case : Union[str, Any] = [{"""col_1""": 1}, {"""col_2""": """x"""}] __snake_case : Optional[int] = Dataset.from_list(__magic_name__ ) self.assertDictEqual(dset[0] , {"""col_1""": 1} ) self.assertDictEqual(dset[1] , {"""col_1""": None} ) # NB: first record is used for columns def lowercase__ ( self : List[str] ) -> Optional[Any]: # checks if the type can be inferred from the second record """simple docstring""" __snake_case : List[Any] = [{"""col_1""": []}, {"""col_1""": [1, 2]}] __snake_case : int = Dataset.from_list(__magic_name__ ) self.assertEqual(dset.info.features["""col_1"""] , Sequence(Value("""int64""" ) ) ) def lowercase__ ( self : int ) -> Union[str, Any]: """simple docstring""" __snake_case : Tuple = Dataset.from_list([] ) self.assertEqual(len(__magic_name__ ) , 0 ) self.assertListEqual(dset.column_names , [] )
26
1
'''simple docstring''' from math import factorial def _a ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> float: """simple docstring""" if successes > trials: raise ValueError("""successes must be lower or equal to trials""" ) if trials < 0 or successes < 0: raise ValueError("""the function is defined for non-negative integers""" ) if not isinstance(_lowerCamelCase , _lowerCamelCase ) or not isinstance(_lowerCamelCase , _lowerCamelCase ): raise ValueError("""the function is defined for non-negative integers""" ) if not 0 < prob < 1: raise ValueError("""prob has to be in range of 1 - 0""" ) __snake_case : int = (prob**successes) * ((1 - prob) ** (trials - successes)) # Calculate the binomial coefficient: n! / k!(n-k)! __snake_case : List[str] = float(factorial(_lowerCamelCase ) ) coefficient /= factorial(_lowerCamelCase ) * factorial(trials - successes ) return probability * coefficient if __name__ == "__main__": from doctest import testmod testmod() print("Probability of 2 successes out of 4 trails") print("with probability of 0.75 is:", end=" ") print(binomial_distribution(2, 4, 0.75))
26
'''simple docstring''' import inspect import unittest import torch import torch.nn as nn from accelerate.hooks import ( AlignDevicesHook, ModelHook, SequentialHook, add_hook_to_module, attach_align_device_hook, remove_hook_from_module, remove_hook_from_submodules, ) from accelerate.test_utils import require_multi_gpu class _A ( nn.Module ): def __init__( self : List[str] ) -> Optional[Any]: """simple docstring""" super().__init__() __snake_case : List[Any] = nn.Linear(3 , 4 ) __snake_case : str = nn.BatchNormad(4 ) __snake_case : Optional[Any] = nn.Linear(4 , 5 ) def lowercase__ ( self : str , __magic_name__ : Dict ) -> List[str]: """simple docstring""" return self.lineara(self.batchnorm(self.lineara(__magic_name__ ) ) ) class _A ( __lowercase ): def lowercase__ ( self : List[str] , __magic_name__ : Tuple , *__magic_name__ : Dict , **__magic_name__ : Optional[Any] ) -> Tuple: """simple docstring""" return (args[0] + 1,) + args[1:], kwargs class _A ( __lowercase ): def lowercase__ ( self : str , __magic_name__ : Union[str, Any] , __magic_name__ : Tuple ) -> Union[str, Any]: """simple docstring""" return output + 1 class _A ( unittest.TestCase ): def lowercase__ ( self : Dict ) -> Any: """simple docstring""" __snake_case : int = ModelForTest() __snake_case : Tuple = ModelHook() add_hook_to_module(__magic_name__ , __magic_name__ ) self.assertEqual(test_model._hf_hook , __magic_name__ ) self.assertTrue(hasattr(__magic_name__ , """_old_forward""" ) ) # Check adding the hook did not change the name or the signature self.assertEqual(test_model.forward.__name__ , """forward""" ) self.assertListEqual(list(inspect.signature(test_model.forward ).parameters ) , ["""x"""] ) remove_hook_from_module(__magic_name__ ) self.assertFalse(hasattr(__magic_name__ , """_hf_hook""" ) ) self.assertFalse(hasattr(__magic_name__ , """_old_forward""" ) ) def lowercase__ ( self : Tuple ) -> List[str]: """simple docstring""" __snake_case : List[Any] = ModelForTest() __snake_case : Optional[int] = ModelHook() add_hook_to_module(__magic_name__ , __magic_name__ ) add_hook_to_module(__magic_name__ , __magic_name__ , append=__magic_name__ ) self.assertEqual(isinstance(test_model._hf_hook , __magic_name__ ) , __magic_name__ ) self.assertEqual(len(test_model._hf_hook.hooks ) , 2 ) self.assertTrue(hasattr(__magic_name__ , """_old_forward""" ) ) # Check adding the hook did not change the name or the signature self.assertEqual(test_model.forward.__name__ , """forward""" ) self.assertListEqual(list(inspect.signature(test_model.forward ).parameters ) , ["""x"""] ) remove_hook_from_module(__magic_name__ ) self.assertFalse(hasattr(__magic_name__ , """_hf_hook""" ) ) self.assertFalse(hasattr(__magic_name__ , """_old_forward""" ) ) def lowercase__ ( self : str ) -> Union[str, Any]: """simple docstring""" __snake_case : List[Any] = ModelForTest() __snake_case : Any = torch.randn(2 , 3 ) __snake_case : str = test_model(x + 1 ) __snake_case : int = test_model(x + 2 ) __snake_case : Union[str, Any] = PreForwardHook() add_hook_to_module(__magic_name__ , __magic_name__ ) __snake_case : int = test_model(__magic_name__ ) self.assertTrue(torch.allclose(__magic_name__ , __magic_name__ , atol=1E-5 ) ) # Attaching a hook to a model when it already has one replaces, does not chain __snake_case : Optional[int] = PreForwardHook() add_hook_to_module(__magic_name__ , __magic_name__ ) __snake_case : List[Any] = test_model(__magic_name__ ) self.assertTrue(torch.allclose(__magic_name__ , __magic_name__ , atol=1E-5 ) ) # You need to use the sequential hook to chain two or more hooks __snake_case : Optional[int] = SequentialHook(PreForwardHook() , PreForwardHook() ) add_hook_to_module(__magic_name__ , __magic_name__ ) __snake_case : List[str] = test_model(__magic_name__ ) assert torch.allclose(__magic_name__ , __magic_name__ , atol=1E-5 ) def lowercase__ ( self : Union[str, Any] ) -> List[str]: """simple docstring""" __snake_case : Union[str, Any] = ModelForTest() __snake_case : str = torch.randn(2 , 3 ) __snake_case : Any = test_model(__magic_name__ ) __snake_case : Any = PostForwardHook() add_hook_to_module(__magic_name__ , __magic_name__ ) __snake_case : Any = test_model(__magic_name__ ) self.assertTrue(torch.allclose(__magic_name__ , output + 1 , atol=1E-5 ) ) # Attaching a hook to a model when it already has one replaces, does not chain __snake_case : Any = PostForwardHook() add_hook_to_module(__magic_name__ , __magic_name__ ) __snake_case : Dict = test_model(__magic_name__ ) self.assertTrue(torch.allclose(__magic_name__ , output + 1 , atol=1E-5 ) ) # You need to use the sequential hook to chain two or more hooks __snake_case : str = SequentialHook(PostForwardHook() , PostForwardHook() ) add_hook_to_module(__magic_name__ , __magic_name__ ) __snake_case : int = test_model(__magic_name__ ) assert torch.allclose(__magic_name__ , output + 2 , atol=1E-5 ) def lowercase__ ( self : str ) -> int: """simple docstring""" __snake_case : Union[str, Any] = ModelForTest() __snake_case : int = torch.randn(2 , 3 ) __snake_case : Any = test_model(__magic_name__ ) __snake_case : Dict = PostForwardHook() add_hook_to_module(__magic_name__ , __magic_name__ ) __snake_case : List[Any] = test_model(__magic_name__ ) self.assertTrue(torch.allclose(__magic_name__ , output + 1 ) ) self.assertTrue(outputa.requires_grad ) __snake_case : Dict = True __snake_case : int = test_model(__magic_name__ ) self.assertFalse(outputa.requires_grad ) @require_multi_gpu def lowercase__ ( self : Tuple ) -> List[Any]: """simple docstring""" __snake_case : Tuple = ModelForTest() # Everything is on CPU self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) ) self.assertEqual(model.batchnorm.weight.device , torch.device("""cpu""" ) ) self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) ) # This will move each submodule on different devices add_hook_to_module(model.lineara , AlignDevicesHook(execution_device=0 ) ) add_hook_to_module(model.batchnorm , AlignDevicesHook(execution_device=0 ) ) add_hook_to_module(model.lineara , AlignDevicesHook(execution_device=1 ) ) self.assertEqual(model.lineara.weight.device , torch.device(0 ) ) self.assertEqual(model.batchnorm.weight.device , torch.device(0 ) ) self.assertEqual(model.batchnorm.running_mean.device , torch.device(0 ) ) self.assertEqual(model.lineara.weight.device , torch.device(1 ) ) # We can still make a forward pass. The input does not need to be on any particular device __snake_case : Tuple = torch.randn(2 , 3 ) __snake_case : Union[str, Any] = model(__magic_name__ ) self.assertEqual(output.device , torch.device(1 ) ) # We can add a general hook to put back output on same device as input. add_hook_to_module(__magic_name__ , AlignDevicesHook(io_same_device=__magic_name__ ) ) __snake_case : Tuple = torch.randn(2 , 3 ).to(0 ) __snake_case : Any = model(__magic_name__ ) self.assertEqual(output.device , torch.device(0 ) ) def lowercase__ ( self : Union[str, Any] ) -> str: """simple docstring""" __snake_case : int = ModelForTest() # Everything is on CPU self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) ) self.assertEqual(model.batchnorm.weight.device , torch.device("""cpu""" ) ) self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) ) # This will move each submodule on different devices __snake_case : List[str] = {"""execution_device""": 0 if torch.cuda.is_available() else """cpu""", """offload""": True} add_hook_to_module(model.lineara , AlignDevicesHook(**__magic_name__ ) ) add_hook_to_module(model.batchnorm , AlignDevicesHook(**__magic_name__ ) ) add_hook_to_module(model.lineara , AlignDevicesHook(**__magic_name__ ) ) # Parameters have been offloaded, so on the meta device self.assertEqual(model.lineara.weight.device , torch.device("""meta""" ) ) self.assertEqual(model.batchnorm.weight.device , torch.device("""meta""" ) ) self.assertEqual(model.lineara.weight.device , torch.device("""meta""" ) ) # Buffers are not included in the offload by default, so are on the execution device __snake_case : Any = torch.device(hook_kwargs["""execution_device"""] ) self.assertEqual(model.batchnorm.running_mean.device , __magic_name__ ) __snake_case : Dict = torch.randn(2 , 3 ) __snake_case : Any = model(__magic_name__ ) self.assertEqual(output.device , __magic_name__ ) # Removing hooks loads back the weights in the model. remove_hook_from_module(model.lineara ) remove_hook_from_module(model.batchnorm ) remove_hook_from_module(model.lineara ) self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) ) self.assertEqual(model.batchnorm.weight.device , torch.device("""cpu""" ) ) self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) ) # Now test with buffers included in the offload __snake_case : int = { """execution_device""": 0 if torch.cuda.is_available() else """cpu""", """offload""": True, """offload_buffers""": True, } add_hook_to_module(model.lineara , AlignDevicesHook(**__magic_name__ ) ) add_hook_to_module(model.batchnorm , AlignDevicesHook(**__magic_name__ ) ) add_hook_to_module(model.lineara , AlignDevicesHook(**__magic_name__ ) ) # Parameters have been offloaded, so on the meta device, buffers included self.assertEqual(model.lineara.weight.device , torch.device("""meta""" ) ) self.assertEqual(model.batchnorm.weight.device , torch.device("""meta""" ) ) self.assertEqual(model.lineara.weight.device , torch.device("""meta""" ) ) self.assertEqual(model.batchnorm.running_mean.device , torch.device("""meta""" ) ) __snake_case : str = torch.randn(2 , 3 ) __snake_case : str = model(__magic_name__ ) self.assertEqual(output.device , __magic_name__ ) # Removing hooks loads back the weights in the model. remove_hook_from_module(model.lineara ) remove_hook_from_module(model.batchnorm ) remove_hook_from_module(model.lineara ) self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) ) self.assertEqual(model.batchnorm.weight.device , torch.device("""cpu""" ) ) self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) ) def lowercase__ ( self : Dict ) -> str: """simple docstring""" __snake_case : Tuple = ModelForTest() # Everything is on CPU self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) ) self.assertEqual(model.batchnorm.weight.device , torch.device("""cpu""" ) ) self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) ) # This will move each submodule on different devices __snake_case : Union[str, Any] = 0 if torch.cuda.is_available() else """cpu""" attach_align_device_hook(__magic_name__ , execution_device=__magic_name__ , offload=__magic_name__ ) # Parameters have been offloaded, so on the meta device self.assertEqual(model.lineara.weight.device , torch.device("""meta""" ) ) self.assertEqual(model.batchnorm.weight.device , torch.device("""meta""" ) ) self.assertEqual(model.lineara.weight.device , torch.device("""meta""" ) ) # Buffers are not included in the offload by default, so are on the execution device __snake_case : Union[str, Any] = torch.device(__magic_name__ ) self.assertEqual(model.batchnorm.running_mean.device , __magic_name__ ) __snake_case : Optional[int] = torch.randn(2 , 3 ) __snake_case : Dict = model(__magic_name__ ) self.assertEqual(output.device , __magic_name__ ) # Removing hooks loads back the weights in the model. remove_hook_from_submodules(__magic_name__ ) self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) ) self.assertEqual(model.batchnorm.weight.device , torch.device("""cpu""" ) ) self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) ) # Now test with buffers included in the offload attach_align_device_hook(__magic_name__ , execution_device=__magic_name__ , offload=__magic_name__ , offload_buffers=__magic_name__ ) # Parameters have been offloaded, so on the meta device, buffers included self.assertEqual(model.lineara.weight.device , torch.device("""meta""" ) ) self.assertEqual(model.batchnorm.weight.device , torch.device("""meta""" ) ) self.assertEqual(model.lineara.weight.device , torch.device("""meta""" ) ) self.assertEqual(model.batchnorm.running_mean.device , torch.device("""meta""" ) ) __snake_case : Dict = torch.randn(2 , 3 ) __snake_case : Optional[int] = model(__magic_name__ ) self.assertEqual(output.device , __magic_name__ ) # Removing hooks loads back the weights in the model. remove_hook_from_submodules(__magic_name__ ) self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) ) self.assertEqual(model.batchnorm.weight.device , torch.device("""cpu""" ) ) self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) ) def lowercase__ ( self : Any ) -> Union[str, Any]: """simple docstring""" __snake_case : Any = ModelForTest() # Everything is on CPU self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) ) self.assertEqual(model.batchnorm.weight.device , torch.device("""cpu""" ) ) self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) ) # This will move each submodule on different devices __snake_case : str = 0 if torch.cuda.is_available() else """cpu""" attach_align_device_hook( __magic_name__ , execution_device=__magic_name__ , offload=__magic_name__ , weights_map=model.state_dict() ) # Parameters have been offloaded, so on the meta device self.assertEqual(model.lineara.weight.device , torch.device("""meta""" ) ) self.assertEqual(model.batchnorm.weight.device , torch.device("""meta""" ) ) self.assertEqual(model.lineara.weight.device , torch.device("""meta""" ) ) # Buffers are not included in the offload by default, so are on the execution device __snake_case : List[str] = torch.device(__magic_name__ ) self.assertEqual(model.batchnorm.running_mean.device , __magic_name__ ) __snake_case : Tuple = torch.randn(2 , 3 ) __snake_case : Optional[Any] = model(__magic_name__ ) self.assertEqual(output.device , __magic_name__ ) # Removing hooks loads back the weights in the model. remove_hook_from_submodules(__magic_name__ ) self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) ) self.assertEqual(model.batchnorm.weight.device , torch.device("""cpu""" ) ) self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) ) # Now test with buffers included in the offload attach_align_device_hook( __magic_name__ , execution_device=__magic_name__ , offload=__magic_name__ , weights_map=model.state_dict() , offload_buffers=__magic_name__ , ) # Parameters have been offloaded, so on the meta device, buffers included self.assertEqual(model.lineara.weight.device , torch.device("""meta""" ) ) self.assertEqual(model.batchnorm.weight.device , torch.device("""meta""" ) ) self.assertEqual(model.lineara.weight.device , torch.device("""meta""" ) ) self.assertEqual(model.batchnorm.running_mean.device , torch.device("""meta""" ) ) __snake_case : List[str] = torch.randn(2 , 3 ) __snake_case : Dict = model(__magic_name__ ) self.assertEqual(output.device , __magic_name__ ) # Removing hooks loads back the weights in the model. remove_hook_from_submodules(__magic_name__ ) self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) ) self.assertEqual(model.batchnorm.weight.device , torch.device("""cpu""" ) ) self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) )
26
1
'''simple docstring''' from __future__ import annotations def _a ( _lowerCamelCase ) -> None: """simple docstring""" create_state_space_tree(_lowerCamelCase , [] , 0 , [0 for i in range(len(_lowerCamelCase ) )] ) def _a ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , ) -> None: """simple docstring""" if index == len(_lowerCamelCase ): print(_lowerCamelCase ) return for i in range(len(_lowerCamelCase ) ): if not index_used[i]: current_sequence.append(sequence[i] ) __snake_case : Tuple = True create_state_space_tree(_lowerCamelCase , _lowerCamelCase , index + 1 , _lowerCamelCase ) current_sequence.pop() __snake_case : str = False __UpperCamelCase = [3, 1, 2, 4] generate_all_permutations(sequence) __UpperCamelCase = ["A", "B", "C"] generate_all_permutations(sequence_a)
26
'''simple docstring''' from __future__ import annotations __UpperCamelCase = [ [-1, 0], # left [0, -1], # down [1, 0], # right [0, 1], # up ] def _a ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , ) -> tuple[list[list[int]], list[list[int]]]: """simple docstring""" __snake_case : List[str] = [ [0 for col in range(len(grid[0] ) )] for row in range(len(_lowerCamelCase ) ) ] # the reference grid __snake_case : Tuple = 1 __snake_case : List[str] = [ [0 for col in range(len(grid[0] ) )] for row in range(len(_lowerCamelCase ) ) ] # the action grid __snake_case : List[str] = init[0] __snake_case : str = init[1] __snake_case : int = 0 __snake_case : int = g + heuristic[x][y] # cost from starting cell to destination cell __snake_case : List[str] = [[f, g, x, y]] __snake_case : Any = False # flag that is set when search is complete __snake_case : int = False # flag set if we can't find expand while not found and not resign: if len(_lowerCamelCase ) == 0: raise ValueError("""Algorithm is unable to find solution""" ) else: # to choose the least costliest action so as to move closer to the goal cell.sort() cell.reverse() __snake_case : Tuple = cell.pop() __snake_case : Optional[int] = next_cell[2] __snake_case : List[Any] = next_cell[3] __snake_case : int = next_cell[1] if x == goal[0] and y == goal[1]: __snake_case : Optional[Any] = True else: for i in range(len(_lowerCamelCase ) ): # to try out different valid actions __snake_case : Union[str, Any] = x + DIRECTIONS[i][0] __snake_case : str = y + DIRECTIONS[i][1] if xa >= 0 and xa < len(_lowerCamelCase ) and ya >= 0 and ya < len(grid[0] ): if closed[xa][ya] == 0 and grid[xa][ya] == 0: __snake_case : str = g + cost __snake_case : Tuple = ga + heuristic[xa][ya] cell.append([fa, ga, xa, ya] ) __snake_case : List[str] = 1 __snake_case : Optional[int] = i __snake_case : List[str] = [] __snake_case : Optional[int] = goal[0] __snake_case : List[Any] = goal[1] invpath.append([x, y] ) # we get the reverse path from here while x != init[0] or y != init[1]: __snake_case : Dict = x - DIRECTIONS[action[x][y]][0] __snake_case : int = y - DIRECTIONS[action[x][y]][1] __snake_case : Optional[int] = xa __snake_case : int = ya invpath.append([x, y] ) __snake_case : Optional[int] = [] for i in range(len(_lowerCamelCase ) ): path.append(invpath[len(_lowerCamelCase ) - 1 - i] ) return path, action if __name__ == "__main__": __UpperCamelCase = [ [0, 1, 0, 0, 0, 0], [0, 1, 0, 0, 0, 0], # 0 are free path whereas 1's are obstacles [0, 1, 0, 0, 0, 0], [0, 1, 0, 0, 1, 0], [0, 0, 0, 0, 1, 0], ] __UpperCamelCase = [0, 0] # all coordinates are given in format [y,x] __UpperCamelCase = [len(grid) - 1, len(grid[0]) - 1] __UpperCamelCase = 1 # the cost map which pushes the path closer to the goal __UpperCamelCase = [[0 for row in range(len(grid[0]))] for col in range(len(grid))] for i in range(len(grid)): for j in range(len(grid[0])): __UpperCamelCase = abs(i - goal[0]) + abs(j - goal[1]) if grid[i][j] == 1: # added extra penalty in the heuristic map __UpperCamelCase = 99 __UpperCamelCase , __UpperCamelCase = search(grid, init, goal, cost, heuristic) print("ACTION MAP") for i in range(len(action)): print(action[i]) for i in range(len(path)): print(path[i])
26
1
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging __UpperCamelCase = logging.get_logger(__name__) __UpperCamelCase = { "edbeeching/decision-transformer-gym-hopper-medium": ( "https://huggingface.co/edbeeching/decision-transformer-gym-hopper-medium/resolve/main/config.json" ), # See all DecisionTransformer models at https://huggingface.co/models?filter=decision_transformer } class _A ( __lowercase ): lowercase__: Any = '''decision_transformer''' lowercase__: Union[str, Any] = ['''past_key_values'''] lowercase__: List[str] = { '''max_position_embeddings''': '''n_positions''', '''num_attention_heads''': '''n_head''', '''num_hidden_layers''': '''n_layer''', } def __init__( self : Tuple , __magic_name__ : Optional[Any]=17 , __magic_name__ : Any=4 , __magic_name__ : Union[str, Any]=1_28 , __magic_name__ : Optional[Any]=40_96 , __magic_name__ : List[Any]=True , __magic_name__ : List[Any]=1 , __magic_name__ : Optional[Any]=10_24 , __magic_name__ : Union[str, Any]=3 , __magic_name__ : Tuple=1 , __magic_name__ : Dict=None , __magic_name__ : Tuple="relu" , __magic_name__ : List[str]=0.1 , __magic_name__ : Optional[int]=0.1 , __magic_name__ : Any=0.1 , __magic_name__ : str=1E-5 , __magic_name__ : Dict=0.02 , __magic_name__ : List[str]=True , __magic_name__ : List[str]=True , __magic_name__ : Optional[int]=5_02_56 , __magic_name__ : Optional[Any]=5_02_56 , __magic_name__ : int=False , __magic_name__ : Union[str, Any]=False , **__magic_name__ : int , ) -> int: """simple docstring""" __snake_case : str = state_dim __snake_case : Optional[Any] = act_dim __snake_case : Dict = hidden_size __snake_case : int = max_ep_len __snake_case : Any = action_tanh __snake_case : Union[str, Any] = vocab_size __snake_case : Optional[Any] = n_positions __snake_case : Optional[int] = n_layer __snake_case : List[Any] = n_head __snake_case : Tuple = n_inner __snake_case : int = activation_function __snake_case : List[Any] = resid_pdrop __snake_case : Union[str, Any] = embd_pdrop __snake_case : int = attn_pdrop __snake_case : Optional[Any] = layer_norm_epsilon __snake_case : Optional[Any] = initializer_range __snake_case : str = scale_attn_weights __snake_case : str = use_cache __snake_case : List[Any] = scale_attn_by_inverse_layer_idx __snake_case : Dict = reorder_and_upcast_attn __snake_case : Any = bos_token_id __snake_case : Dict = eos_token_id super().__init__(bos_token_id=__magic_name__ , eos_token_id=__magic_name__ , **__magic_name__ )
26
'''simple docstring''' def _a ( _lowerCamelCase ) -> int: """simple docstring""" if not isinstance(_lowerCamelCase , _lowerCamelCase ): raise TypeError("""only integers accepted as input""" ) else: __snake_case : List[Any] = str(abs(_lowerCamelCase ) ) __snake_case : Union[str, Any] = [list(_lowerCamelCase ) for char in range(len(_lowerCamelCase ) )] for index in range(len(_lowerCamelCase ) ): num_transpositions[index].pop(_lowerCamelCase ) return max( int("""""".join(list(_lowerCamelCase ) ) ) for transposition in num_transpositions ) if __name__ == "__main__": __import__("doctest").testmod()
26
1
'''simple docstring''' import numpy as np import qiskit def _a ( _lowerCamelCase = 8 , _lowerCamelCase = None ) -> str: """simple docstring""" __snake_case : Any = np.random.default_rng(seed=_lowerCamelCase ) # Roughly 25% of the qubits will contribute to the key. # So we take more than we need. __snake_case : Optional[int] = 6 * key_len # Measurement basis for Alice's qubits. __snake_case : str = rng.integers(2 , size=_lowerCamelCase ) # The set of states Alice will prepare. __snake_case : Any = rng.integers(2 , size=_lowerCamelCase ) # Measurement basis for Bob's qubits. __snake_case : Any = rng.integers(2 , size=_lowerCamelCase ) # Quantum Circuit to simulate BB84 __snake_case : Dict = qiskit.QuantumCircuit(_lowerCamelCase , name="""BB84""" ) # Alice prepares her qubits according to rules above. for index, _ in enumerate(_lowerCamelCase ): if alice_state[index] == 1: bbaa_circ.x(_lowerCamelCase ) if alice_basis[index] == 1: bbaa_circ.h(_lowerCamelCase ) bbaa_circ.barrier() # Bob measures the received qubits according to rules above. for index, _ in enumerate(_lowerCamelCase ): if bob_basis[index] == 1: bbaa_circ.h(_lowerCamelCase ) bbaa_circ.barrier() bbaa_circ.measure_all() # Simulate the quantum circuit. __snake_case : int = qiskit.Aer.get_backend("""aer_simulator""" ) # We only need to run one shot because the key is unique. # Multiple shots will produce the same key. __snake_case : Any = qiskit.execute(_lowerCamelCase , _lowerCamelCase , shots=1 , seed_simulator=_lowerCamelCase ) # Returns the result of measurement. __snake_case : str = job.result().get_counts(_lowerCamelCase ).most_frequent() # Extracting the generated key from the simulation results. # Only keep measurement results where Alice and Bob chose the same basis. __snake_case : Any = """""".join( [ result_bit for alice_basis_bit, bob_basis_bit, result_bit in zip( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) if alice_basis_bit == bob_basis_bit ] ) # Get final key. Pad with 0 if too short, otherwise truncate. __snake_case : Any = gen_key[:key_len] if len(_lowerCamelCase ) >= key_len else gen_key.ljust(_lowerCamelCase , """0""" ) return key if __name__ == "__main__": print(f"""The generated key is : {bbaa(8, seed=0)}""") from doctest import testmod testmod()
26
'''simple docstring''' from __future__ import annotations import math def _a ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> int: """simple docstring""" if depth < 0: raise ValueError("""Depth cannot be less than 0""" ) if not scores: raise ValueError("""Scores cannot be empty""" ) if depth == height: return scores[node_index] return ( max( minimax(depth + 1 , node_index * 2 , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) , minimax(depth + 1 , node_index * 2 + 1 , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) , ) if is_max else min( minimax(depth + 1 , node_index * 2 , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) , minimax(depth + 1 , node_index * 2 + 1 , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) , ) ) def _a ( ) -> None: """simple docstring""" __snake_case : Union[str, Any] = [90, 23, 6, 33, 21, 65, 123, 3_4423] __snake_case : Optional[int] = math.log(len(_lowerCamelCase ) , 2 ) print(F'''Optimal value : {minimax(0 , 0 , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase )}''' ) if __name__ == "__main__": import doctest doctest.testmod() main()
26
1
'''simple docstring''' from __future__ import annotations def _a ( _lowerCamelCase ) -> bool: """simple docstring""" __snake_case : Union[str, Any] = len(_lowerCamelCase ) # We need to create solution object to save path. __snake_case : Optional[Any] = [[0 for _ in range(_lowerCamelCase )] for _ in range(_lowerCamelCase )] __snake_case : int = run_maze(_lowerCamelCase , 0 , 0 , _lowerCamelCase ) if solved: print("""\n""".join(str(_lowerCamelCase ) for row in solutions ) ) else: print("""No solution exists!""" ) return solved def _a ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> bool: """simple docstring""" __snake_case : str = len(_lowerCamelCase ) # Final check point. if i == j == (size - 1): __snake_case : Tuple = 1 return True __snake_case : Union[str, Any] = (not i < 0) and (not j < 0) # Check lower bounds __snake_case : int = (i < size) and (j < size) # Check upper bounds if lower_flag and upper_flag: # check for already visited and block points. __snake_case : Union[str, Any] = (not solutions[i][j]) and (not maze[i][j]) if block_flag: # check visited __snake_case : Union[str, Any] = 1 # check for directions if ( run_maze(_lowerCamelCase , i + 1 , _lowerCamelCase , _lowerCamelCase ) or run_maze(_lowerCamelCase , _lowerCamelCase , j + 1 , _lowerCamelCase ) or run_maze(_lowerCamelCase , i - 1 , _lowerCamelCase , _lowerCamelCase ) or run_maze(_lowerCamelCase , _lowerCamelCase , j - 1 , _lowerCamelCase ) ): return True __snake_case : Dict = 0 return False return False if __name__ == "__main__": import doctest doctest.testmod()
26
'''simple docstring''' from __future__ import annotations def _a ( _lowerCamelCase , _lowerCamelCase = None , _lowerCamelCase = None ) -> None: """simple docstring""" if start is None: __snake_case : Optional[Any] = 0 if end is None: __snake_case : Optional[Any] = len(_lowerCamelCase ) - 1 if start >= end: return __snake_case : Tuple = (start + end) // 2 slowsort(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) slowsort(_lowerCamelCase , mid + 1 , _lowerCamelCase ) if sequence[end] < sequence[mid]: __snake_case , __snake_case : str = sequence[mid], sequence[end] slowsort(_lowerCamelCase , _lowerCamelCase , end - 1 ) if __name__ == "__main__": from doctest import testmod testmod()
26
1
'''simple docstring''' from decimal import Decimal, getcontext from math import ceil, factorial def _a ( _lowerCamelCase ) -> str: """simple docstring""" if not isinstance(_lowerCamelCase , _lowerCamelCase ): raise TypeError("""Undefined for non-integers""" ) elif precision < 1: raise ValueError("""Undefined for non-natural numbers""" ) __snake_case : Union[str, Any] = precision __snake_case : List[Any] = ceil(precision / 14 ) __snake_case : List[str] = 42_6880 * Decimal(1_0005 ).sqrt() __snake_case : int = 1 __snake_case : Tuple = 1359_1409 __snake_case : Any = Decimal(_lowerCamelCase ) for k in range(1 , _lowerCamelCase ): __snake_case : str = factorial(6 * k ) // (factorial(3 * k ) * factorial(_lowerCamelCase ) ** 3) linear_term += 5_4514_0134 exponential_term *= -26_2537_4126_4076_8000 partial_sum += Decimal(multinomial_term * linear_term ) / exponential_term return str(constant_term / partial_sum )[:-1] if __name__ == "__main__": __UpperCamelCase = 50 print(f"""The first {n} digits of pi is: {pi(n)}""")
26
'''simple docstring''' import doctest import logging import os import unittest from pathlib import Path from typing import List, Union import transformers from transformers.testing_utils import require_tf, require_torch, slow __UpperCamelCase = logging.getLogger() @unittest.skip('''Temporarily disable the doc tests.''' ) @require_torch @require_tf @slow class _A ( unittest.TestCase ): def lowercase__ ( self : Optional[int] , __magic_name__ : Path , __magic_name__ : Union[str, None] = None , __magic_name__ : Union[List[str], None] = None , __magic_name__ : Union[str, List[str], None] = None , __magic_name__ : bool = True , ) -> Optional[int]: """simple docstring""" __snake_case : Union[str, Any] = [file for file in os.listdir(__magic_name__ ) if os.path.isfile(os.path.join(__magic_name__ , __magic_name__ ) )] if identifier is not None: __snake_case : List[Any] = [file for file in files if identifier in file] if n_identifier is not None: if isinstance(__magic_name__ , __magic_name__ ): for n_ in n_identifier: __snake_case : Optional[int] = [file for file in files if n_ not in file] else: __snake_case : Tuple = [file for file in files if n_identifier not in file] __snake_case : Dict = ignore_files or [] ignore_files.append("""__init__.py""" ) __snake_case : List[str] = [file for file in files if file not in ignore_files] for file in files: # Open all files print("""Testing""" , __magic_name__ ) if only_modules: __snake_case : List[Any] = file.split(""".""" )[0] try: __snake_case : List[Any] = getattr(__magic_name__ , __magic_name__ ) __snake_case : Union[str, Any] = doctest.DocTestSuite(__magic_name__ ) __snake_case : Dict = unittest.TextTestRunner().run(__magic_name__ ) self.assertIs(len(result.failures ) , 0 ) except AttributeError: logger.info(f'''{module_identifier} is not a module.''' ) else: __snake_case : Tuple = doctest.testfile(str("""..""" / directory / file ) , optionflags=doctest.ELLIPSIS ) self.assertIs(result.failed , 0 ) def lowercase__ ( self : Union[str, Any] ) -> Any: """simple docstring""" __snake_case : List[Any] = Path("""src/transformers""" ) __snake_case : List[Any] = """modeling""" __snake_case : Union[str, Any] = [ """modeling_ctrl.py""", """modeling_tf_ctrl.py""", ] self.analyze_directory(__magic_name__ , identifier=__magic_name__ , ignore_files=__magic_name__ ) def lowercase__ ( self : Union[str, Any] ) -> int: """simple docstring""" __snake_case : Union[str, Any] = Path("""src/transformers""" ) __snake_case : Any = """tokenization""" self.analyze_directory(__magic_name__ , identifier=__magic_name__ ) def lowercase__ ( self : Union[str, Any] ) -> int: """simple docstring""" __snake_case : List[Any] = Path("""src/transformers""" ) __snake_case : List[str] = """configuration""" self.analyze_directory(__magic_name__ , identifier=__magic_name__ ) def lowercase__ ( self : Dict ) -> Dict: """simple docstring""" __snake_case : Tuple = Path("""src/transformers""" ) __snake_case : int = ["""configuration""", """modeling""", """tokenization"""] self.analyze_directory(__magic_name__ , n_identifier=__magic_name__ ) def lowercase__ ( self : Optional[int] ) -> Union[str, Any]: """simple docstring""" __snake_case : int = Path("""docs/source""" ) __snake_case : Optional[int] = ["""favicon.ico"""] self.analyze_directory(__magic_name__ , ignore_files=__magic_name__ , only_modules=__magic_name__ )
26
1
'''simple docstring''' from pathlib import Path import fire from tqdm import tqdm def _a ( _lowerCamelCase="ro" , _lowerCamelCase="en" , _lowerCamelCase="wmt16" , _lowerCamelCase=None ) -> None: """simple docstring""" try: import datasets except (ModuleNotFoundError, ImportError): raise ImportError("""run pip install datasets""" ) __snake_case : Dict = F'''{src_lang}-{tgt_lang}''' print(F'''Converting {dataset}-{pair}''' ) __snake_case : Tuple = datasets.load_dataset(_lowerCamelCase , _lowerCamelCase ) if save_dir is None: __snake_case : Optional[Any] = F'''{dataset}-{pair}''' __snake_case : List[Any] = Path(_lowerCamelCase ) save_dir.mkdir(exist_ok=_lowerCamelCase ) for split in ds.keys(): print(F'''Splitting {split} with {ds[split].num_rows} records''' ) # to save to val.source, val.target like summary datasets __snake_case : List[str] = """val""" if split == """validation""" else split __snake_case : List[Any] = save_dir.joinpath(F'''{fn}.source''' ) __snake_case : Union[str, Any] = save_dir.joinpath(F'''{fn}.target''' ) __snake_case : Union[str, Any] = src_path.open("""w+""" ) __snake_case : Dict = tgt_path.open("""w+""" ) # reader is the bottleneck so writing one record at a time doesn't slow things down for x in tqdm(ds[split] ): __snake_case : Optional[Any] = x["""translation"""] src_fp.write(ex[src_lang] + """\n""" ) tgt_fp.write(ex[tgt_lang] + """\n""" ) print(F'''Saved {dataset} dataset to {save_dir}''' ) if __name__ == "__main__": fire.Fire(download_wmt_dataset)
26
'''simple docstring''' import inspect from typing import Callable, List, Optional, Union import torch from transformers import ( CLIPImageProcessor, CLIPTextModel, CLIPTokenizer, WhisperForConditionalGeneration, WhisperProcessor, ) from diffusers import ( AutoencoderKL, DDIMScheduler, DiffusionPipeline, LMSDiscreteScheduler, PNDMScheduler, UNetaDConditionModel, ) from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion import StableDiffusionPipelineOutput from diffusers.pipelines.stable_diffusion.safety_checker import StableDiffusionSafetyChecker from diffusers.utils import logging __UpperCamelCase = logging.get_logger(__name__) # pylint: disable=invalid-name class _A ( __lowercase ): def __init__( self : str , __magic_name__ : WhisperForConditionalGeneration , __magic_name__ : WhisperProcessor , __magic_name__ : AutoencoderKL , __magic_name__ : CLIPTextModel , __magic_name__ : CLIPTokenizer , __magic_name__ : UNetaDConditionModel , __magic_name__ : Union[DDIMScheduler, PNDMScheduler, LMSDiscreteScheduler] , __magic_name__ : StableDiffusionSafetyChecker , __magic_name__ : CLIPImageProcessor , ) -> Union[str, Any]: """simple docstring""" super().__init__() if safety_checker is None: logger.warning( f'''You have disabled the safety checker for {self.__class__} by passing `safety_checker=None`. Ensure''' """ that you abide to the conditions of the Stable Diffusion license and do not expose unfiltered""" """ results in services or applications open to the public. Both the diffusers team and Hugging Face""" """ strongly recommend to keep the safety filter enabled in all public facing circumstances, disabling""" """ it only for use-cases that involve analyzing network behavior or auditing its results. For more""" """ information, please have a look at https://github.com/huggingface/diffusers/pull/254 .""" ) self.register_modules( speech_model=__magic_name__ , speech_processor=__magic_name__ , vae=__magic_name__ , text_encoder=__magic_name__ , tokenizer=__magic_name__ , unet=__magic_name__ , scheduler=__magic_name__ , feature_extractor=__magic_name__ , ) def lowercase__ ( self : Optional[Any] , __magic_name__ : Optional[Union[str, int]] = "auto" ) -> Union[str, Any]: """simple docstring""" if slice_size == "auto": __snake_case : str = self.unet.config.attention_head_dim // 2 self.unet.set_attention_slice(__magic_name__ ) def lowercase__ ( self : str ) -> Any: """simple docstring""" self.enable_attention_slicing(__magic_name__ ) @torch.no_grad() def __call__( self : Optional[int] , __magic_name__ : str , __magic_name__ : Dict=1_60_00 , __magic_name__ : int = 5_12 , __magic_name__ : int = 5_12 , __magic_name__ : int = 50 , __magic_name__ : float = 7.5 , __magic_name__ : Optional[Union[str, List[str]]] = None , __magic_name__ : Optional[int] = 1 , __magic_name__ : float = 0.0 , __magic_name__ : Optional[torch.Generator] = None , __magic_name__ : Optional[torch.FloatTensor] = None , __magic_name__ : Optional[str] = "pil" , __magic_name__ : bool = True , __magic_name__ : Optional[Callable[[int, int, torch.FloatTensor], None]] = None , __magic_name__ : int = 1 , **__magic_name__ : List[str] , ) -> int: """simple docstring""" __snake_case : List[Any] = self.speech_processor.feature_extractor( __magic_name__ , return_tensors="""pt""" , sampling_rate=__magic_name__ ).input_features.to(self.device ) __snake_case : List[str] = self.speech_model.generate(__magic_name__ , max_length=48_00_00 ) __snake_case : List[Any] = self.speech_processor.tokenizer.batch_decode(__magic_name__ , skip_special_tokens=__magic_name__ , normalize=__magic_name__ )[ 0 ] if isinstance(__magic_name__ , __magic_name__ ): __snake_case : Tuple = 1 elif isinstance(__magic_name__ , __magic_name__ ): __snake_case : Optional[int] = len(__magic_name__ ) else: raise ValueError(f'''`prompt` has to be of type `str` or `list` but is {type(__magic_name__ )}''' ) if height % 8 != 0 or width % 8 != 0: raise ValueError(f'''`height` and `width` have to be divisible by 8 but are {height} and {width}.''' ) if (callback_steps is None) or ( callback_steps is not None and (not isinstance(__magic_name__ , __magic_name__ ) or callback_steps <= 0) ): raise ValueError( f'''`callback_steps` has to be a positive integer but is {callback_steps} of type''' f''' {type(__magic_name__ )}.''' ) # get prompt text embeddings __snake_case : Dict = self.tokenizer( __magic_name__ , padding="""max_length""" , max_length=self.tokenizer.model_max_length , return_tensors="""pt""" , ) __snake_case : Optional[Any] = text_inputs.input_ids if text_input_ids.shape[-1] > self.tokenizer.model_max_length: __snake_case : Tuple = self.tokenizer.batch_decode(text_input_ids[:, self.tokenizer.model_max_length :] ) logger.warning( """The following part of your input was truncated because CLIP can only handle sequences up to""" f''' {self.tokenizer.model_max_length} tokens: {removed_text}''' ) __snake_case : Any = text_input_ids[:, : self.tokenizer.model_max_length] __snake_case : int = self.text_encoder(text_input_ids.to(self.device ) )[0] # duplicate text embeddings for each generation per prompt, using mps friendly method __snake_case , __snake_case , __snake_case : Any = text_embeddings.shape __snake_case : List[Any] = text_embeddings.repeat(1 , __magic_name__ , 1 ) __snake_case : Dict = text_embeddings.view(bs_embed * num_images_per_prompt , __magic_name__ , -1 ) # here `guidance_scale` is defined analog to the guidance weight `w` of equation (2) # of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1` # corresponds to doing no classifier free guidance. __snake_case : Optional[int] = guidance_scale > 1.0 # get unconditional embeddings for classifier free guidance if do_classifier_free_guidance: __snake_case : List[str] if negative_prompt is None: __snake_case : Optional[Any] = [""""""] * batch_size elif type(__magic_name__ ) is not type(__magic_name__ ): raise TypeError( f'''`negative_prompt` should be the same type to `prompt`, but got {type(__magic_name__ )} !=''' f''' {type(__magic_name__ )}.''' ) elif isinstance(__magic_name__ , __magic_name__ ): __snake_case : Dict = [negative_prompt] elif batch_size != len(__magic_name__ ): raise ValueError( f'''`negative_prompt`: {negative_prompt} has batch size {len(__magic_name__ )}, but `prompt`:''' f''' {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches''' """ the batch size of `prompt`.""" ) else: __snake_case : int = negative_prompt __snake_case : List[str] = text_input_ids.shape[-1] __snake_case : Any = self.tokenizer( __magic_name__ , padding="""max_length""" , max_length=__magic_name__ , truncation=__magic_name__ , return_tensors="""pt""" , ) __snake_case : Dict = self.text_encoder(uncond_input.input_ids.to(self.device ) )[0] # duplicate unconditional embeddings for each generation per prompt, using mps friendly method __snake_case : Optional[int] = uncond_embeddings.shape[1] __snake_case : Union[str, Any] = uncond_embeddings.repeat(1 , __magic_name__ , 1 ) __snake_case : Tuple = uncond_embeddings.view(batch_size * num_images_per_prompt , __magic_name__ , -1 ) # For classifier free guidance, we need to do two forward passes. # Here we concatenate the unconditional and text embeddings into a single batch # to avoid doing two forward passes __snake_case : Dict = torch.cat([uncond_embeddings, text_embeddings] ) # get the initial random noise unless the user supplied it # Unlike in other pipelines, latents need to be generated in the target device # for 1-to-1 results reproducibility with the CompVis implementation. # However this currently doesn't work in `mps`. __snake_case : List[Any] = (batch_size * num_images_per_prompt, self.unet.config.in_channels, height // 8, width // 8) __snake_case : List[Any] = text_embeddings.dtype if latents is None: if self.device.type == "mps": # randn does not exist on mps __snake_case : Optional[int] = torch.randn(__magic_name__ , generator=__magic_name__ , device="""cpu""" , dtype=__magic_name__ ).to( self.device ) else: __snake_case : int = torch.randn(__magic_name__ , generator=__magic_name__ , device=self.device , dtype=__magic_name__ ) else: if latents.shape != latents_shape: raise ValueError(f'''Unexpected latents shape, got {latents.shape}, expected {latents_shape}''' ) __snake_case : List[str] = latents.to(self.device ) # set timesteps self.scheduler.set_timesteps(__magic_name__ ) # Some schedulers like PNDM have timesteps as arrays # It's more optimized to move all timesteps to correct device beforehand __snake_case : Optional[int] = self.scheduler.timesteps.to(self.device ) # scale the initial noise by the standard deviation required by the scheduler __snake_case : str = latents * self.scheduler.init_noise_sigma # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature # eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers. # eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502 # and should be between [0, 1] __snake_case : Tuple = """eta""" in set(inspect.signature(self.scheduler.step ).parameters.keys() ) __snake_case : List[str] = {} if accepts_eta: __snake_case : str = eta for i, t in enumerate(self.progress_bar(__magic_name__ ) ): # expand the latents if we are doing classifier free guidance __snake_case : Union[str, Any] = torch.cat([latents] * 2 ) if do_classifier_free_guidance else latents __snake_case : Dict = self.scheduler.scale_model_input(__magic_name__ , __magic_name__ ) # predict the noise residual __snake_case : Tuple = self.unet(__magic_name__ , __magic_name__ , encoder_hidden_states=__magic_name__ ).sample # perform guidance if do_classifier_free_guidance: __snake_case , __snake_case : str = noise_pred.chunk(2 ) __snake_case : Any = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) # compute the previous noisy sample x_t -> x_t-1 __snake_case : Optional[Any] = self.scheduler.step(__magic_name__ , __magic_name__ , __magic_name__ , **__magic_name__ ).prev_sample # call the callback, if provided if callback is not None and i % callback_steps == 0: callback(__magic_name__ , __magic_name__ , __magic_name__ ) __snake_case : int = 1 / 0.18215 * latents __snake_case : Optional[Any] = self.vae.decode(__magic_name__ ).sample __snake_case : Any = (image / 2 + 0.5).clamp(0 , 1 ) # we always cast to float32 as this does not cause significant overhead and is compatible with bfloat16 __snake_case : Any = image.cpu().permute(0 , 2 , 3 , 1 ).float().numpy() if output_type == "pil": __snake_case : Tuple = self.numpy_to_pil(__magic_name__ ) if not return_dict: return image return StableDiffusionPipelineOutput(images=__magic_name__ , nsfw_content_detected=__magic_name__ )
26
1
'''simple docstring''' import os from collections import namedtuple import pytest from datasets import ClassLabel, Features, Sequence, Value from datasets.commands.test import TestCommand from datasets.info import DatasetInfo, DatasetInfosDict __UpperCamelCase = namedtuple( "_TestCommandArgs", [ "dataset", "name", "cache_dir", "data_dir", "all_configs", "save_infos", "ignore_verifications", "force_redownload", "clear_cache", ], defaults=[None, None, None, False, False, False, False, False], ) def _a ( _lowerCamelCase , _lowerCamelCase ) -> List[Any]: """simple docstring""" return (abs(source - target ) / target) < 0.01 @pytest.mark.integration def _a ( _lowerCamelCase ) -> int: """simple docstring""" __snake_case : Optional[int] = _TestCommandArgs(dataset=_lowerCamelCase , all_configs=_lowerCamelCase , save_infos=_lowerCamelCase ) __snake_case : Any = TestCommand(*_lowerCamelCase ) test_command.run() __snake_case : Tuple = os.path.join(_lowerCamelCase , """README.md""" ) assert os.path.exists(_lowerCamelCase ) __snake_case : Optional[int] = DatasetInfosDict.from_directory(_lowerCamelCase ) __snake_case : Dict = DatasetInfosDict( { """default""": DatasetInfo( features=Features( { """tokens""": Sequence(Value("""string""" ) ), """ner_tags""": Sequence( ClassLabel(names=["""O""", """B-PER""", """I-PER""", """B-ORG""", """I-ORG""", """B-LOC""", """I-LOC"""] ) ), """langs""": Sequence(Value("""string""" ) ), """spans""": Sequence(Value("""string""" ) ), } ) , splits=[ { """name""": """train""", """num_bytes""": 235_1563, """num_examples""": 1_0000, }, { """name""": """validation""", """num_bytes""": 23_8418, """num_examples""": 1000, }, ] , download_size=394_0680 , dataset_size=258_9981 , ) } ) assert dataset_infos.keys() == expected_dataset_infos.keys() for key in DatasetInfo._INCLUDED_INFO_IN_YAML: __snake_case , __snake_case : Dict = getattr(dataset_infos["""default"""] , _lowerCamelCase ), getattr(expected_dataset_infos["""default"""] , _lowerCamelCase ) if key == "num_bytes": assert is_apercent_close(_lowerCamelCase , _lowerCamelCase ) elif key == "splits": assert list(_lowerCamelCase ) == list(_lowerCamelCase ) for split in result: assert result[split].name == expected[split].name assert result[split].num_examples == expected[split].num_examples assert is_apercent_close(result[split].num_bytes , expected[split].num_bytes ) else: result == expected
26
'''simple docstring''' import os from huggingface_hub.constants import HUGGINGFACE_HUB_CACHE, hf_cache_home __UpperCamelCase = HUGGINGFACE_HUB_CACHE __UpperCamelCase = "config.json" __UpperCamelCase = "diffusion_pytorch_model.bin" __UpperCamelCase = "diffusion_flax_model.msgpack" __UpperCamelCase = "model.onnx" __UpperCamelCase = "diffusion_pytorch_model.safetensors" __UpperCamelCase = "weights.pb" __UpperCamelCase = "https://huggingface.co" __UpperCamelCase = default_cache_path __UpperCamelCase = "diffusers_modules" __UpperCamelCase = os.getenv("HF_MODULES_CACHE", os.path.join(hf_cache_home, "modules")) __UpperCamelCase = ["fp16", "non-ema"] __UpperCamelCase = ".self_attn"
26
1
'''simple docstring''' from __future__ import annotations import os import tempfile import unittest import numpy as np from huggingface_hub import hf_hub_download from transformers import is_tensorflow_text_available, is_tf_available from transformers.testing_utils import require_tensorflow_text, require_tf, slow from ..test_modeling_tf_common import floats_tensor from .test_framework_agnostic import GenerationIntegrationTestsMixin if is_tf_available(): import tensorflow as tf from transformers import ( AutoTokenizer, TFAutoModelForCausalLM, TFAutoModelForSeqaSeqLM, TFAutoModelForSpeechSeqaSeq, TFAutoModelForVisionaSeq, TFBartForConditionalGeneration, TFLogitsProcessorList, TFMinLengthLogitsProcessor, tf_top_k_top_p_filtering, ) if is_tensorflow_text_available(): import tensorflow_text as text @require_tf class _A ( unittest.TestCase ): def lowercase__ ( self : Optional[Any] ) -> List[str]: """simple docstring""" __snake_case : Tuple = tf.convert_to_tensor( [ [ 8.2220991, # 3rd highest value; idx. 0 -0.5620044, 5.23229752, 4.0386393, -6.8798378, -0.54785802, -3.2012153, 2.92777176, 1.88171953, 7.35341276, # 5th highest value; idx. 9 8.43207833, # 2nd highest value; idx. 10 -9.85711836, -5.96209236, -1.13039161, -7.1115294, -0.8369633, -5.3186408, 7.06427407, 0.81369344, -0.82023817, -5.9179796, 0.58813443, -6.99778438, 4.71551189, -0.18771637, 7.44020759, # 4th highest value; idx. 25 9.38450987, # 1st highest value; idx. 26 2.12662941, -9.32562038, 2.35652522, ], # cummulative prob of 5 highest values <= 0.6 [ 0.58425518, 4.53139238, -5.57510464, -6.28030699, -7.19529503, -4.02122551, 1.39337037, -6.06707057, 1.59480517, -9.643119, 0.03907799, 0.67231762, -8.88206726, 6.27115922, # 4th highest value; idx. 13 2.28520723, 4.82767506, 4.30421368, 8.8275313, # 2nd highest value; idx. 17 5.44029958, # 5th highest value; idx. 18 -4.4735794, 7.38579536, # 3rd highest value; idx. 20 -2.91051663, 2.61946077, -2.5674762, -9.48959302, -4.02922645, -1.35416918, 9.67702323, # 1st highest value; idx. 27 -5.89478553, 1.85370467, ], # cummulative prob of 5 highest values <= 0.6 ] , dtype=tf.floataa , ) __snake_case : Union[str, Any] = tf.convert_to_tensor( [[0, 0], [0, 9], [0, 10], [0, 25], [0, 26], [1, 13], [1, 17], [1, 18], [1, 20], [1, 27]] , dtype=tf.intaa , ) # expected non filtered idx as noted above __snake_case : Any = tf.convert_to_tensor( [8.222099, 7.3534126, 8.432078, 7.4402075, 9.38451, 6.271159, 8.827531, 5.4402995, 7.3857956, 9.677023] , dtype=tf.floataa , ) # expected non filtered values as noted above __snake_case : Dict = tf_top_k_top_p_filtering(__magic_name__ , top_k=10 , top_p=0.6 , min_tokens_to_keep=4 ) __snake_case : List[Any] = output[output != -float("""inf""" )] __snake_case : List[str] = tf.cast( tf.where(tf.not_equal(__magic_name__ , tf.constant(-float("""inf""" ) , dtype=tf.floataa ) ) ) , dtype=tf.intaa , ) tf.debugging.assert_near(__magic_name__ , __magic_name__ , rtol=1E-12 ) tf.debugging.assert_equal(__magic_name__ , __magic_name__ ) @require_tf class _A ( unittest.TestCase , __lowercase ): # setting framework_dependent_parameters needs to be gated, just like its contents' imports if is_tf_available(): lowercase__: Optional[Any] = { '''AutoModelForCausalLM''': TFAutoModelForCausalLM, '''AutoModelForSpeechSeq2Seq''': TFAutoModelForSpeechSeqaSeq, '''AutoModelForSeq2SeqLM''': TFAutoModelForSeqaSeqLM, '''AutoModelForVision2Seq''': TFAutoModelForVisionaSeq, '''LogitsProcessorList''': TFLogitsProcessorList, '''MinLengthLogitsProcessor''': TFMinLengthLogitsProcessor, '''create_tensor_fn''': tf.convert_to_tensor, '''floats_tensor''': floats_tensor, '''return_tensors''': '''tf''', } @slow def lowercase__ ( self : Optional[Any] ) -> List[Any]: """simple docstring""" __snake_case : Dict = TFAutoModelForCausalLM.from_pretrained("""hf-internal-testing/tiny-random-gpt2""" ) __snake_case : Union[str, Any] = 2 __snake_case : str = 2 class _A ( tf.Module ): def __init__( self : str , __magic_name__ : List[str] ) -> Tuple: """simple docstring""" super(__magic_name__ , self ).__init__() __snake_case : Optional[int] = model @tf.function( input_signature=( tf.TensorSpec((None, input_length) , tf.intaa , name="""input_ids""" ), tf.TensorSpec((None, input_length) , tf.intaa , name="""attention_mask""" ), ) , jit_compile=__magic_name__ , ) def lowercase__ ( self : Optional[Any] , __magic_name__ : Optional[Any] , __magic_name__ : Optional[int] ) -> Any: """simple docstring""" __snake_case : Optional[Any] = self.model.generate( input_ids=__magic_name__ , attention_mask=__magic_name__ , max_new_tokens=__magic_name__ , return_dict_in_generate=__magic_name__ , ) return {"sequences": outputs["sequences"]} __snake_case : int = [[2, 0], [1_02, 1_03]] __snake_case : Dict = [[1, 0], [1, 1]] __snake_case : Tuple = DummyModel(model=__magic_name__ ) with tempfile.TemporaryDirectory() as tmp_dir: tf.saved_model.save(__magic_name__ , __magic_name__ , signatures={"""serving_default""": dummy_model.serving} ) __snake_case : Any = tf.saved_model.load(__magic_name__ ).signatures["""serving_default"""] for batch_size in range(1 , len(__magic_name__ ) + 1 ): __snake_case : Dict = { """input_ids""": tf.constant(dummy_input_ids[:batch_size] ), """attention_mask""": tf.constant(dummy_attention_masks[:batch_size] ), } __snake_case : Any = serving_func(**__magic_name__ )["""sequences"""] __snake_case : str = test_model.generate(**__magic_name__ , max_new_tokens=__magic_name__ ) tf.debugging.assert_equal(__magic_name__ , __magic_name__ ) @slow def lowercase__ ( self : Optional[int] ) -> Optional[int]: """simple docstring""" __snake_case : Optional[int] = TFAutoModelForCausalLM.from_pretrained("""hf-internal-testing/tiny-random-gpt2""" ) __snake_case : str = 1 __snake_case : Any = 2 class _A ( tf.Module ): def __init__( self : str , __magic_name__ : List[str] ) -> List[Any]: """simple docstring""" super(__magic_name__ , self ).__init__() __snake_case : Tuple = model @tf.function( input_signature=( tf.TensorSpec((batch_size, None) , tf.intaa , name="""input_ids""" ), tf.TensorSpec((batch_size, None) , tf.intaa , name="""attention_mask""" ), ) , jit_compile=__magic_name__ , ) def lowercase__ ( self : List[Any] , __magic_name__ : str , __magic_name__ : int ) -> str: """simple docstring""" __snake_case : Optional[Any] = self.model.generate( input_ids=__magic_name__ , attention_mask=__magic_name__ , max_new_tokens=__magic_name__ , return_dict_in_generate=__magic_name__ , ) return {"sequences": outputs["sequences"]} __snake_case : List[str] = [[2], [1_02, 1_03]] __snake_case : Optional[Any] = [[1], [1, 1]] __snake_case : int = DummyModel(model=__magic_name__ ) with tempfile.TemporaryDirectory() as tmp_dir: tf.saved_model.save(__magic_name__ , __magic_name__ , signatures={"""serving_default""": dummy_model.serving} ) __snake_case : List[str] = tf.saved_model.load(__magic_name__ ).signatures["""serving_default"""] for input_row in range(len(__magic_name__ ) ): __snake_case : int = { """input_ids""": tf.constant([dummy_input_ids[input_row]] ), """attention_mask""": tf.constant([dummy_attention_masks[input_row]] ), } __snake_case : Optional[int] = serving_func(**__magic_name__ )["""sequences"""] __snake_case : List[str] = test_model.generate(**__magic_name__ , max_new_tokens=__magic_name__ ) tf.debugging.assert_equal(__magic_name__ , __magic_name__ ) @slow @require_tensorflow_text def lowercase__ ( self : List[str] ) -> Dict: """simple docstring""" with tempfile.TemporaryDirectory() as tmp_dir: # file needed to load the TF tokenizer hf_hub_download(repo_id="""google/flan-t5-small""" , filename="""spiece.model""" , local_dir=__magic_name__ ) class _A ( tf.keras.layers.Layer ): def __init__( self : Optional[int] ) -> int: """simple docstring""" super().__init__() __snake_case : Tuple = text.SentencepieceTokenizer( model=tf.io.gfile.GFile(os.path.join(__magic_name__ , """spiece.model""" ) , """rb""" ).read() ) __snake_case : List[str] = TFAutoModelForSeqaSeqLM.from_pretrained("""hf-internal-testing/tiny-random-t5""" ) def lowercase__ ( self : Optional[int] , __magic_name__ : Tuple , *__magic_name__ : List[Any] , **__magic_name__ : Any ) -> Optional[int]: """simple docstring""" __snake_case : Dict = self.tokenizer.tokenize(__magic_name__ ) __snake_case , __snake_case : List[Any] = text.pad_model_inputs( __magic_name__ , max_seq_length=64 , pad_value=self.model.config.pad_token_id ) __snake_case : Optional[Any] = self.model.generate(input_ids=__magic_name__ , attention_mask=__magic_name__ ) return self.tokenizer.detokenize(__magic_name__ ) __snake_case : Tuple = CompleteSentenceTransformer() __snake_case : Optional[Any] = tf.keras.layers.Input(shape=(1,) , dtype=tf.string , name="""inputs""" ) __snake_case : Any = complete_model(__magic_name__ ) __snake_case : Any = tf.keras.Model(__magic_name__ , __magic_name__ ) keras_model.save(__magic_name__ ) def lowercase__ ( self : str ) -> Dict: """simple docstring""" __snake_case : Any = { """do_sample""": True, """num_beams""": 1, """top_p""": 0.7, """top_k""": 10, """temperature""": 0.7, } __snake_case : Union[str, Any] = 14 __snake_case : Dict = AutoTokenizer.from_pretrained("""hf-internal-testing/tiny-random-gpt2""" ) __snake_case : List[str] = """Hello, my dog is cute and""" __snake_case : Dict = tokenizer(__magic_name__ , return_tensors="""tf""" ) __snake_case : Union[str, Any] = TFAutoModelForCausalLM.from_pretrained("""hf-internal-testing/tiny-random-gpt2""" ) __snake_case : Union[str, Any] = 6_38 # forces the generation to happen on CPU, to avoid GPU-related quirks with tf.device(""":/CPU:0""" ): tf.random.set_seed(0 ) __snake_case : Any = model.generate(**__magic_name__ , eos_token_id=__magic_name__ , **__magic_name__ ) self.assertTrue(expectation == len(generated_tokens[0] ) ) __snake_case : Dict = [6_38, 1_98] with tf.device(""":/CPU:0""" ): tf.random.set_seed(0 ) __snake_case : Tuple = model.generate(**__magic_name__ , eos_token_id=__magic_name__ , **__magic_name__ ) self.assertTrue(expectation == len(generated_tokens[0] ) ) def lowercase__ ( self : Any ) -> List[str]: """simple docstring""" __snake_case : Tuple = AutoTokenizer.from_pretrained("""hf-internal-testing/tiny-random-bart""" ) __snake_case : Union[str, Any] = """Hugging Face is a technology company based in New York and Paris.""" __snake_case : Tuple = bart_tokenizer(__magic_name__ , return_tensors="""tf""" ).input_ids __snake_case : Tuple = TFBartForConditionalGeneration.from_pretrained("""hf-internal-testing/tiny-random-bart""" ) __snake_case : Any = bart_model.generate(__magic_name__ ).numpy() class _A ( __lowercase ): def lowercase__ ( self : Union[str, Any] , __magic_name__ : int , __magic_name__ : Dict=None , **__magic_name__ : Dict ) -> str: """simple docstring""" return super().call(__magic_name__ , **__magic_name__ ) __snake_case : Dict = FakeBart.from_pretrained("""hf-internal-testing/tiny-random-bart""" ) __snake_case : Any = bart_model.generate(__magic_name__ , foo="""bar""" ).numpy() self.assertTrue(np.array_equal(__magic_name__ , __magic_name__ ) ) class _A ( bart_model.model.encoder.__class__ ): def lowercase__ ( self : Union[str, Any] , __magic_name__ : Tuple , **__magic_name__ : Any ) -> int: """simple docstring""" return super().call(__magic_name__ , **__magic_name__ ) __snake_case : int = FakeEncoder(bart_model.config , bart_model.model.shared ) __snake_case : Optional[Any] = fake_encoder # Normal generation still works (the output will be different because the encoder weights are different) __snake_case : Dict = bart_model.generate(__magic_name__ ).numpy() with self.assertRaises(__magic_name__ ): # FakeEncoder.call() accepts **kwargs -> no filtering -> value error due to unexpected input "foo" bart_model.generate(__magic_name__ , foo="""bar""" )
26
'''simple docstring''' import argparse import json import re from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ( MobileNetVaConfig, MobileNetVaForImageClassification, MobileNetVaImageProcessor, load_tf_weights_in_mobilenet_va, ) from transformers.utils import logging logging.set_verbosity_info() __UpperCamelCase = logging.get_logger(__name__) def _a ( _lowerCamelCase ) -> Any: """simple docstring""" __snake_case : Union[str, Any] = MobileNetVaConfig(layer_norm_eps=0.0_01 ) if "_quant" in model_name: raise ValueError("""Quantized models are not supported.""" ) __snake_case : List[Any] = re.match(R"""^mobilenet_v1_([^_]*)_([^_]*)$""" , _lowerCamelCase ) if matches: __snake_case : Optional[Any] = float(matches[1] ) __snake_case : Union[str, Any] = int(matches[2] ) # The TensorFlow version of MobileNetV1 predicts 1001 classes instead of # the usual 1000. The first class (index 0) is "background". __snake_case : Tuple = 1001 __snake_case : Any = """imagenet-1k-id2label.json""" __snake_case : Optional[Any] = """huggingface/label-files""" __snake_case : List[Any] = json.load(open(hf_hub_download(_lowerCamelCase , _lowerCamelCase , repo_type="""dataset""" ) , """r""" ) ) __snake_case : Dict = {int(_lowerCamelCase ) + 1: v for k, v in idalabel.items()} __snake_case : List[str] = """background""" __snake_case : List[str] = idalabel __snake_case : List[Any] = {v: k for k, v in idalabel.items()} return config def _a ( ) -> Optional[Any]: """simple docstring""" __snake_case : Optional[int] = """http://images.cocodataset.org/val2017/000000039769.jpg""" __snake_case : List[Any] = Image.open(requests.get(_lowerCamelCase , stream=_lowerCamelCase ).raw ) return im @torch.no_grad() def _a ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase=False ) -> Optional[Any]: """simple docstring""" __snake_case : Optional[int] = get_mobilenet_va_config(_lowerCamelCase ) # Load 🤗 model __snake_case : Optional[Any] = MobileNetVaForImageClassification(_lowerCamelCase ).eval() # Load weights from TensorFlow checkpoint load_tf_weights_in_mobilenet_va(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) # Check outputs on an image, prepared by MobileNetV1ImageProcessor __snake_case : Optional[int] = MobileNetVaImageProcessor( crop_size={"""width""": config.image_size, """height""": config.image_size} , size={"""shortest_edge""": config.image_size + 32} , ) __snake_case : Tuple = image_processor(images=prepare_img() , return_tensors="""pt""" ) __snake_case : Optional[Any] = model(**_lowerCamelCase ) __snake_case : List[Any] = outputs.logits assert logits.shape == (1, 1001) if model_name == "mobilenet_v1_1.0_224": __snake_case : str = torch.tensor([-4.17_39, -1.12_33, 3.12_05] ) elif model_name == "mobilenet_v1_0.75_192": __snake_case : Tuple = torch.tensor([-3.94_40, -2.31_41, -0.33_33] ) else: __snake_case : List[Any] = None if expected_logits is not None: assert torch.allclose(logits[0, :3] , _lowerCamelCase , atol=1E-4 ) Path(_lowerCamelCase ).mkdir(exist_ok=_lowerCamelCase ) print(F'''Saving model {model_name} to {pytorch_dump_folder_path}''' ) model.save_pretrained(_lowerCamelCase ) print(F'''Saving image processor to {pytorch_dump_folder_path}''' ) image_processor.save_pretrained(_lowerCamelCase ) if push_to_hub: print("""Pushing to the hub...""" ) __snake_case : Optional[Any] = """google/""" + model_name image_processor.push_to_hub(_lowerCamelCase ) model.push_to_hub(_lowerCamelCase ) if __name__ == "__main__": __UpperCamelCase = argparse.ArgumentParser() # Required parameters parser.add_argument( "--model_name", default="mobilenet_v1_1.0_224", type=str, help="Name of the MobileNetV1 model you'd like to convert. Should in the form 'mobilenet_v1_<depth>_<size>'.", ) parser.add_argument( "--checkpoint_path", required=True, type=str, help="Path to the original TensorFlow checkpoint (.ckpt file)." ) parser.add_argument( "--pytorch_dump_folder_path", required=True, type=str, help="Path to the output PyTorch model directory." ) parser.add_argument( "--push_to_hub", action="store_true", help="Whether or not to push the converted model to the 🤗 hub." ) __UpperCamelCase = parser.parse_args() convert_movilevit_checkpoint( args.model_name, args.checkpoint_path, args.pytorch_dump_folder_path, args.push_to_hub )
26
1
'''simple docstring''' from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, convert_to_rgb, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( OPENAI_CLIP_MEAN, OPENAI_CLIP_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging __UpperCamelCase = logging.get_logger(__name__) if is_vision_available(): import PIL class _A ( __lowercase ): lowercase__: str = ['''pixel_values'''] def __init__( self : Union[str, Any] , __magic_name__ : bool = True , __magic_name__ : Dict[str, int] = None , __magic_name__ : PILImageResampling = PILImageResampling.BICUBIC , __magic_name__ : bool = True , __magic_name__ : Dict[str, int] = None , __magic_name__ : bool = True , __magic_name__ : Union[int, float] = 1 / 2_55 , __magic_name__ : bool = True , __magic_name__ : Optional[Union[float, List[float]]] = None , __magic_name__ : Optional[Union[float, List[float]]] = None , __magic_name__ : bool = True , **__magic_name__ : Optional[Any] , ) -> None: """simple docstring""" super().__init__(**__magic_name__ ) __snake_case : Optional[Any] = size if size is not None else {"""shortest_edge""": 2_24} __snake_case : Union[str, Any] = get_size_dict(__magic_name__ , default_to_square=__magic_name__ ) __snake_case : Any = crop_size if crop_size is not None else {"""height""": 2_24, """width""": 2_24} __snake_case : str = get_size_dict(__magic_name__ , default_to_square=__magic_name__ , param_name="""crop_size""" ) __snake_case : Any = do_resize __snake_case : Optional[Any] = size __snake_case : List[str] = resample __snake_case : Optional[int] = do_center_crop __snake_case : List[str] = crop_size __snake_case : Dict = do_rescale __snake_case : List[Any] = rescale_factor __snake_case : Tuple = do_normalize __snake_case : Tuple = image_mean if image_mean is not None else OPENAI_CLIP_MEAN __snake_case : Dict = image_std if image_std is not None else OPENAI_CLIP_STD __snake_case : Tuple = do_convert_rgb def lowercase__ ( self : int , __magic_name__ : np.ndarray , __magic_name__ : Dict[str, int] , __magic_name__ : PILImageResampling = PILImageResampling.BICUBIC , __magic_name__ : Optional[Union[str, ChannelDimension]] = None , **__magic_name__ : Tuple , ) -> np.ndarray: """simple docstring""" __snake_case : Optional[int] = get_size_dict(__magic_name__ , default_to_square=__magic_name__ ) if "shortest_edge" not in size: raise ValueError(f'''The `size` parameter must contain the key `shortest_edge`. Got {size.keys()}''' ) __snake_case : Tuple = get_resize_output_image_size(__magic_name__ , size=size["""shortest_edge"""] , default_to_square=__magic_name__ ) return resize(__magic_name__ , size=__magic_name__ , resample=__magic_name__ , data_format=__magic_name__ , **__magic_name__ ) def lowercase__ ( self : str , __magic_name__ : np.ndarray , __magic_name__ : Dict[str, int] , __magic_name__ : Optional[Union[str, ChannelDimension]] = None , **__magic_name__ : Dict , ) -> np.ndarray: """simple docstring""" __snake_case : str = get_size_dict(__magic_name__ ) if "height" not in size or "width" not in size: raise ValueError(f'''The `size` parameter must contain the keys (height, width). Got {size.keys()}''' ) return center_crop(__magic_name__ , size=(size["""height"""], size["""width"""]) , data_format=__magic_name__ , **__magic_name__ ) def lowercase__ ( self : List[Any] , __magic_name__ : np.ndarray , __magic_name__ : Union[int, float] , __magic_name__ : Optional[Union[str, ChannelDimension]] = None , **__magic_name__ : Optional[int] , ) -> Tuple: """simple docstring""" return rescale(__magic_name__ , scale=__magic_name__ , data_format=__magic_name__ , **__magic_name__ ) def lowercase__ ( self : List[str] , __magic_name__ : np.ndarray , __magic_name__ : Union[float, List[float]] , __magic_name__ : Union[float, List[float]] , __magic_name__ : Optional[Union[str, ChannelDimension]] = None , **__magic_name__ : str , ) -> np.ndarray: """simple docstring""" return normalize(__magic_name__ , mean=__magic_name__ , std=__magic_name__ , data_format=__magic_name__ , **__magic_name__ ) def lowercase__ ( self : Dict , __magic_name__ : ImageInput , __magic_name__ : bool = None , __magic_name__ : Dict[str, int] = None , __magic_name__ : PILImageResampling = None , __magic_name__ : bool = None , __magic_name__ : int = None , __magic_name__ : bool = None , __magic_name__ : float = None , __magic_name__ : bool = None , __magic_name__ : Optional[Union[float, List[float]]] = None , __magic_name__ : Optional[Union[float, List[float]]] = None , __magic_name__ : bool = None , __magic_name__ : Optional[Union[str, TensorType]] = None , __magic_name__ : Optional[ChannelDimension] = ChannelDimension.FIRST , **__magic_name__ : Tuple , ) -> PIL.Image.Image: """simple docstring""" __snake_case : List[str] = do_resize if do_resize is not None else self.do_resize __snake_case : Any = size if size is not None else self.size __snake_case : List[str] = get_size_dict(__magic_name__ , param_name="""size""" , default_to_square=__magic_name__ ) __snake_case : Dict = resample if resample is not None else self.resample __snake_case : Union[str, Any] = do_center_crop if do_center_crop is not None else self.do_center_crop __snake_case : Union[str, Any] = crop_size if crop_size is not None else self.crop_size __snake_case : str = get_size_dict(__magic_name__ , param_name="""crop_size""" , default_to_square=__magic_name__ ) __snake_case : str = do_rescale if do_rescale is not None else self.do_rescale __snake_case : Dict = rescale_factor if rescale_factor is not None else self.rescale_factor __snake_case : int = do_normalize if do_normalize is not None else self.do_normalize __snake_case : Tuple = image_mean if image_mean is not None else self.image_mean __snake_case : List[Any] = image_std if image_std is not None else self.image_std __snake_case : Union[str, Any] = do_convert_rgb if do_convert_rgb is not None else self.do_convert_rgb __snake_case : Optional[int] = make_list_of_images(__magic_name__ ) if not valid_images(__magic_name__ ): raise ValueError( """Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, """ """torch.Tensor, tf.Tensor or jax.ndarray.""" ) if do_resize and size is None: raise ValueError("""Size must be specified if do_resize is True.""" ) if do_center_crop and crop_size is None: raise ValueError("""Crop size must be specified if do_center_crop is True.""" ) if do_rescale and rescale_factor is None: raise ValueError("""Rescale factor must be specified if do_rescale is True.""" ) if do_normalize and (image_mean is None or image_std is None): raise ValueError("""Image mean and std must be specified if do_normalize is True.""" ) # PIL RGBA images are converted to RGB if do_convert_rgb: __snake_case : List[str] = [convert_to_rgb(__magic_name__ ) for image in images] # All transformations expect numpy arrays. __snake_case : str = [to_numpy_array(__magic_name__ ) for image in images] if do_resize: __snake_case : List[str] = [self.resize(image=__magic_name__ , size=__magic_name__ , resample=__magic_name__ ) for image in images] if do_center_crop: __snake_case : Any = [self.center_crop(image=__magic_name__ , size=__magic_name__ ) for image in images] if do_rescale: __snake_case : Optional[Any] = [self.rescale(image=__magic_name__ , scale=__magic_name__ ) for image in images] if do_normalize: __snake_case : int = [self.normalize(image=__magic_name__ , mean=__magic_name__ , std=__magic_name__ ) for image in images] __snake_case : Union[str, Any] = [to_channel_dimension_format(__magic_name__ , __magic_name__ ) for image in images] __snake_case : List[Any] = {"""pixel_values""": images} return BatchFeature(data=__magic_name__ , tensor_type=__magic_name__ )
26
'''simple docstring''' from sklearn.metrics import recall_score import datasets __UpperCamelCase = "\nRecall is the fraction of the positive examples that were correctly labeled by the model as positive. It can be computed with the equation:\nRecall = TP / (TP + FN)\nWhere TP is the true positives and FN is the false negatives.\n" __UpperCamelCase = "\nArgs:\n- **predictions** (`list` of `int`): The predicted labels.\n- **references** (`list` of `int`): The ground truth labels.\n- **labels** (`list` of `int`): The set of labels to include when `average` is not set to `binary`, and their order when average is `None`. Labels present in the data can be excluded in this input, for example to calculate a multiclass average ignoring a majority negative class, while labels not present in the data will result in 0 components in a macro average. For multilabel targets, labels are column indices. By default, all labels in y_true and y_pred are used in sorted order. Defaults to None.\n- **pos_label** (`int`): The class label to use as the 'positive class' when calculating the recall. Defaults to `1`.\n- **average** (`string`): This parameter is required for multiclass/multilabel targets. If None, the scores for each class are returned. Otherwise, this determines the type of averaging performed on the data. Defaults to `'binary'`.\n - `'binary'`: Only report results for the class specified by `pos_label`. This is applicable only if the target labels and predictions are binary.\n - `'micro'`: Calculate metrics globally by counting the total true positives, false negatives, and false positives.\n - `'macro'`: Calculate metrics for each label, and find their unweighted mean. This does not take label imbalance into account.\n - `'weighted'`: Calculate metrics for each label, and find their average weighted by support (the number of true instances for each label). This alters `'macro'` to account for label imbalance. Note that it can result in an F-score that is not between precision and recall.\n - `'samples'`: Calculate metrics for each instance, and find their average (only meaningful for multilabel classification).\n- **sample_weight** (`list` of `float`): Sample weights Defaults to `None`.\n- **zero_division** (): Sets the value to return when there is a zero division. Defaults to .\n - `'warn'`: If there is a zero division, the return value is `0`, but warnings are also raised.\n - `0`: If there is a zero division, the return value is `0`.\n - `1`: If there is a zero division, the return value is `1`.\n\nReturns:\n- **recall** (`float`, or `array` of `float`): Either the general recall score, or the recall scores for individual classes, depending on the values input to `labels` and `average`. Minimum possible value is 0. Maximum possible value is 1. A higher recall means that more of the positive examples have been labeled correctly. Therefore, a higher recall is generally considered better.\n\nExamples:\n\n Example 1-A simple example with some errors\n >>> recall_metric = datasets.load_metric('recall')\n >>> results = recall_metric.compute(references=[0, 0, 1, 1, 1], predictions=[0, 1, 0, 1, 1])\n >>> print(results)\n {'recall': 0.6666666666666666}\n\n Example 2-The same example as Example 1, but with `pos_label=0` instead of the default `pos_label=1`.\n >>> recall_metric = datasets.load_metric('recall')\n >>> results = recall_metric.compute(references=[0, 0, 1, 1, 1], predictions=[0, 1, 0, 1, 1], pos_label=0)\n >>> print(results)\n {'recall': 0.5}\n\n Example 3-The same example as Example 1, but with `sample_weight` included.\n >>> recall_metric = datasets.load_metric('recall')\n >>> sample_weight = [0.9, 0.2, 0.9, 0.3, 0.8]\n >>> results = recall_metric.compute(references=[0, 0, 1, 1, 1], predictions=[0, 1, 0, 1, 1], sample_weight=sample_weight)\n >>> print(results)\n {'recall': 0.55}\n\n Example 4-A multiclass example, using different averages.\n >>> recall_metric = datasets.load_metric('recall')\n >>> predictions = [0, 2, 1, 0, 0, 1]\n >>> references = [0, 1, 2, 0, 1, 2]\n >>> results = recall_metric.compute(predictions=predictions, references=references, average='macro')\n >>> print(results)\n {'recall': 0.3333333333333333}\n >>> results = recall_metric.compute(predictions=predictions, references=references, average='micro')\n >>> print(results)\n {'recall': 0.3333333333333333}\n >>> results = recall_metric.compute(predictions=predictions, references=references, average='weighted')\n >>> print(results)\n {'recall': 0.3333333333333333}\n >>> results = recall_metric.compute(predictions=predictions, references=references, average=None)\n >>> print(results)\n {'recall': array([1., 0., 0.])}\n" __UpperCamelCase = "\n@article{scikit-learn, title={Scikit-learn: Machine Learning in {P}ython}, author={Pedregosa, F. and Varoquaux, G. and Gramfort, A. and Michel, V. and Thirion, B. and Grisel, O. and Blondel, M. and Prettenhofer, P. and Weiss, R. and Dubourg, V. and Vanderplas, J. and Passos, A. and Cournapeau, D. and Brucher, M. and Perrot, M. and Duchesnay, E.}, journal={Journal of Machine Learning Research}, volume={12}, pages={2825--2830}, year={2011}\n" @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class _A ( datasets.Metric ): def lowercase__ ( self : Optional[int] ) -> Any: """simple docstring""" return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { """predictions""": datasets.Sequence(datasets.Value("""int32""" ) ), """references""": datasets.Sequence(datasets.Value("""int32""" ) ), } if self.config_name == """multilabel""" else { """predictions""": datasets.Value("""int32""" ), """references""": datasets.Value("""int32""" ), } ) , reference_urls=["""https://scikit-learn.org/stable/modules/generated/sklearn.metrics.recall_score.html"""] , ) def lowercase__ ( self : Tuple , __magic_name__ : int , __magic_name__ : Union[str, Any] , __magic_name__ : Any=None , __magic_name__ : Optional[Any]=1 , __magic_name__ : List[str]="binary" , __magic_name__ : Tuple=None , __magic_name__ : Dict="warn" , ) -> Any: """simple docstring""" __snake_case : Tuple = recall_score( __magic_name__ , __magic_name__ , labels=__magic_name__ , pos_label=__magic_name__ , average=__magic_name__ , sample_weight=__magic_name__ , zero_division=__magic_name__ , ) return {"recall": float(__magic_name__ ) if score.size == 1 else score}
26
1
'''simple docstring''' def _a ( _lowerCamelCase ) -> bool: """simple docstring""" return sum(i for i in range(1 , number // 2 + 1 ) if number % i == 0 ) == number if __name__ == "__main__": print("Program to check whether a number is a Perfect number or not...") __UpperCamelCase = int(input("Enter number: ").strip()) print(f"""{number} is {'' if perfect(number) else 'not '}a Perfect Number.""")
26
'''simple docstring''' from sklearn.metrics import matthews_corrcoef import datasets __UpperCamelCase = "\nCompute the Matthews correlation coefficient (MCC)\n\nThe Matthews correlation coefficient is used in machine learning as a\nmeasure of the quality of binary and multiclass classifications. It takes\ninto account true and false positives and negatives and is generally\nregarded as a balanced measure which can be used even if the classes are of\nvery different sizes. The MCC is in essence a correlation coefficient value\nbetween -1 and +1. A coefficient of +1 represents a perfect prediction, 0\nan average random prediction and -1 an inverse prediction. The statistic\nis also known as the phi coefficient. [source: Wikipedia]\n" __UpperCamelCase = "\nArgs:\n predictions (list of int): Predicted labels, as returned by a model.\n references (list of int): Ground truth labels.\n sample_weight (list of int, float, or bool): Sample weights. Defaults to `None`.\nReturns:\n matthews_correlation (dict containing float): Matthews correlation.\nExamples:\n Example 1, a basic example with only predictions and references as inputs:\n >>> matthews_metric = datasets.load_metric(\"matthews_correlation\")\n >>> results = matthews_metric.compute(references=[1, 3, 2, 0, 3, 2],\n ... predictions=[1, 2, 2, 0, 3, 3])\n >>> print(round(results['matthews_correlation'], 2))\n 0.54\n\n Example 2, the same example as above, but also including sample weights:\n >>> matthews_metric = datasets.load_metric(\"matthews_correlation\")\n >>> results = matthews_metric.compute(references=[1, 3, 2, 0, 3, 2],\n ... predictions=[1, 2, 2, 0, 3, 3],\n ... sample_weight=[0.5, 3, 1, 1, 1, 2])\n >>> print(round(results['matthews_correlation'], 2))\n 0.1\n\n Example 3, the same example as above, but with sample weights that cause a negative correlation:\n >>> matthews_metric = datasets.load_metric(\"matthews_correlation\")\n >>> results = matthews_metric.compute(references=[1, 3, 2, 0, 3, 2],\n ... predictions=[1, 2, 2, 0, 3, 3],\n ... sample_weight=[0.5, 1, 0, 0, 0, 1])\n >>> print(round(results['matthews_correlation'], 2))\n -0.25\n" __UpperCamelCase = "\\n@article{scikit-learn,\n title={Scikit-learn: Machine Learning in {P}ython},\n author={Pedregosa, F. and Varoquaux, G. and Gramfort, A. and Michel, V.\n and Thirion, B. and Grisel, O. and Blondel, M. and Prettenhofer, P.\n and Weiss, R. and Dubourg, V. and Vanderplas, J. and Passos, A. and\n Cournapeau, D. and Brucher, M. and Perrot, M. and Duchesnay, E.},\n journal={Journal of Machine Learning Research},\n volume={12},\n pages={2825--2830},\n year={2011}\n}\n" @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class _A ( datasets.Metric ): def lowercase__ ( self : Tuple ) -> Dict: """simple docstring""" return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { """predictions""": datasets.Value("""int32""" ), """references""": datasets.Value("""int32""" ), } ) , reference_urls=[ """https://scikit-learn.org/stable/modules/generated/sklearn.metrics.matthews_corrcoef.html""" ] , ) def lowercase__ ( self : List[Any] , __magic_name__ : Tuple , __magic_name__ : List[Any] , __magic_name__ : Union[str, Any]=None ) -> Optional[int]: """simple docstring""" return { "matthews_correlation": float(matthews_corrcoef(__magic_name__ , __magic_name__ , sample_weight=__magic_name__ ) ), }
26
1
'''simple docstring''' from typing import List, Optional, Tuple, Union import torch from ...utils import logging, randn_tensor from ..pipeline_utils import AudioPipelineOutput, DiffusionPipeline __UpperCamelCase = logging.get_logger(__name__) # pylint: disable=invalid-name class _A ( __lowercase ): def __init__( self : Optional[Any] , __magic_name__ : Optional[Any] , __magic_name__ : int ) -> Optional[int]: """simple docstring""" super().__init__() self.register_modules(unet=__magic_name__ , scheduler=__magic_name__ ) @torch.no_grad() def __call__( self : Any , __magic_name__ : int = 1 , __magic_name__ : int = 1_00 , __magic_name__ : Optional[Union[torch.Generator, List[torch.Generator]]] = None , __magic_name__ : Optional[float] = None , __magic_name__ : bool = True , ) -> Union[AudioPipelineOutput, Tuple]: """simple docstring""" if audio_length_in_s is None: __snake_case : Optional[Any] = self.unet.config.sample_size / self.unet.config.sample_rate __snake_case : Union[str, Any] = audio_length_in_s * self.unet.config.sample_rate __snake_case : List[str] = 2 ** len(self.unet.up_blocks ) if sample_size < 3 * down_scale_factor: raise ValueError( f'''{audio_length_in_s} is too small. Make sure it\'s bigger or equal to''' f''' {3 * down_scale_factor / self.unet.config.sample_rate}.''' ) __snake_case : List[str] = int(__magic_name__ ) if sample_size % down_scale_factor != 0: __snake_case : Tuple = ( (audio_length_in_s * self.unet.config.sample_rate) // down_scale_factor + 1 ) * down_scale_factor logger.info( f'''{audio_length_in_s} is increased to {sample_size / self.unet.config.sample_rate} so that it can be handled''' f''' by the model. It will be cut to {original_sample_size / self.unet.config.sample_rate} after the denoising''' """ process.""" ) __snake_case : List[str] = int(__magic_name__ ) __snake_case : Optional[int] = next(iter(self.unet.parameters() ) ).dtype __snake_case : Optional[Any] = (batch_size, self.unet.config.in_channels, sample_size) if isinstance(__magic_name__ , __magic_name__ ) and len(__magic_name__ ) != batch_size: raise ValueError( f'''You have passed a list of generators of length {len(__magic_name__ )}, but requested an effective batch''' f''' size of {batch_size}. Make sure the batch size matches the length of the generators.''' ) __snake_case : List[Any] = randn_tensor(__magic_name__ , generator=__magic_name__ , device=self.device , dtype=__magic_name__ ) # set step values self.scheduler.set_timesteps(__magic_name__ , device=audio.device ) __snake_case : Union[str, Any] = self.scheduler.timesteps.to(__magic_name__ ) for t in self.progress_bar(self.scheduler.timesteps ): # 1. predict noise model_output __snake_case : Tuple = self.unet(__magic_name__ , __magic_name__ ).sample # 2. compute previous image: x_t -> t_t-1 __snake_case : Optional[int] = self.scheduler.step(__magic_name__ , __magic_name__ , __magic_name__ ).prev_sample __snake_case : int = audio.clamp(-1 , 1 ).float().cpu().numpy() __snake_case : str = audio[:, :, :original_sample_size] if not return_dict: return (audio,) return AudioPipelineOutput(audios=__magic_name__ )
26
'''simple docstring''' import json import os from pathlib import Path import pytest from datasets.download.download_config import DownloadConfig from datasets.download.download_manager import DownloadManager from datasets.utils.file_utils import hash_url_to_filename __UpperCamelCase = "http://www.mocksite.com/file1.txt" __UpperCamelCase = "\"text\": [\"foo\", \"foo\"]" __UpperCamelCase = "6d8ce9aa78a471c7477201efbeabd3bb01ac2e7d100a6dc024ba1608361f90a8" class _A : lowercase__: str = 200 lowercase__: List[str] = {'''Content-Length''': '''100'''} lowercase__: Union[str, Any] = {} def lowercase__ ( self : Any , **__magic_name__ : List[Any] ) -> Dict: """simple docstring""" return [bytes(__magic_name__ , """utf-8""" )] def _a ( *_lowerCamelCase , **_lowerCamelCase ) -> List[str]: """simple docstring""" return MockResponse() @pytest.mark.parametrize("""urls_type""" , [str, list, dict] ) def _a ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> List[str]: """simple docstring""" import requests monkeypatch.setattr(_lowerCamelCase , """request""" , _lowerCamelCase ) __snake_case : Union[str, Any] = URL if issubclass(_lowerCamelCase , _lowerCamelCase ): __snake_case : str = url elif issubclass(_lowerCamelCase , _lowerCamelCase ): __snake_case : Dict = [url] elif issubclass(_lowerCamelCase , _lowerCamelCase ): __snake_case : Union[str, Any] = {"""train""": url} __snake_case : Dict = """dummy""" __snake_case : List[str] = """downloads""" __snake_case : List[Any] = tmp_path __snake_case : List[Any] = DownloadConfig( cache_dir=os.path.join(_lowerCamelCase , _lowerCamelCase ) , use_etag=_lowerCamelCase , ) __snake_case : List[str] = DownloadManager(dataset_name=_lowerCamelCase , download_config=_lowerCamelCase ) __snake_case : int = dl_manager.download(_lowerCamelCase ) __snake_case : Tuple = urls for downloaded_paths in [downloaded_paths]: if isinstance(_lowerCamelCase , _lowerCamelCase ): __snake_case : Any = [downloaded_paths] __snake_case : List[Any] = [urls] elif isinstance(_lowerCamelCase , _lowerCamelCase ): assert "train" in downloaded_paths.keys() __snake_case : Tuple = downloaded_paths.values() __snake_case : Optional[int] = urls.values() assert downloaded_paths for downloaded_path, input_url in zip(_lowerCamelCase , _lowerCamelCase ): assert downloaded_path == dl_manager.downloaded_paths[input_url] __snake_case : List[str] = Path(_lowerCamelCase ) __snake_case : Any = downloaded_path.parts assert parts[-1] == HASH assert parts[-2] == cache_subdir assert downloaded_path.exists() __snake_case : Union[str, Any] = downloaded_path.read_text() assert content == CONTENT __snake_case : List[str] = downloaded_path.with_suffix(""".json""" ) assert metadata_downloaded_path.exists() __snake_case : Union[str, Any] = json.loads(metadata_downloaded_path.read_text() ) assert metadata_content == {"url": URL, "etag": None} @pytest.mark.parametrize("""paths_type""" , [str, list, dict] ) def _a ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> List[Any]: """simple docstring""" __snake_case : Any = str(_lowerCamelCase ) if issubclass(_lowerCamelCase , _lowerCamelCase ): __snake_case : Optional[int] = filename elif issubclass(_lowerCamelCase , _lowerCamelCase ): __snake_case : Tuple = [filename] elif issubclass(_lowerCamelCase , _lowerCamelCase ): __snake_case : Dict = {"""train""": filename} __snake_case : Optional[Any] = """dummy""" __snake_case : List[Any] = xz_file.parent __snake_case : int = """extracted""" __snake_case : Dict = DownloadConfig( cache_dir=_lowerCamelCase , use_etag=_lowerCamelCase , ) __snake_case : List[str] = DownloadManager(dataset_name=_lowerCamelCase , download_config=_lowerCamelCase ) __snake_case : Optional[Any] = dl_manager.extract(_lowerCamelCase ) __snake_case : Union[str, Any] = paths for extracted_paths in [extracted_paths]: if isinstance(_lowerCamelCase , _lowerCamelCase ): __snake_case : Dict = [extracted_paths] __snake_case : int = [paths] elif isinstance(_lowerCamelCase , _lowerCamelCase ): assert "train" in extracted_paths.keys() __snake_case : int = extracted_paths.values() __snake_case : int = paths.values() assert extracted_paths for extracted_path, input_path in zip(_lowerCamelCase , _lowerCamelCase ): assert extracted_path == dl_manager.extracted_paths[input_path] __snake_case : Any = Path(_lowerCamelCase ) __snake_case : str = extracted_path.parts assert parts[-1] == hash_url_to_filename(_lowerCamelCase , etag=_lowerCamelCase ) assert parts[-2] == extracted_subdir assert extracted_path.exists() __snake_case : Optional[int] = extracted_path.read_text() __snake_case : str = text_file.read_text() assert extracted_file_content == expected_file_content def _a ( _lowerCamelCase , _lowerCamelCase ) -> Optional[int]: """simple docstring""" assert path.endswith(""".jsonl""" ) for num_items, line in enumerate(_lowerCamelCase , start=1 ): __snake_case : Tuple = json.loads(line.decode("""utf-8""" ) ) assert item.keys() == {"col_1", "col_2", "col_3"} assert num_items == 4 @pytest.mark.parametrize("""archive_jsonl""" , ["""tar_jsonl_path""", """zip_jsonl_path"""] ) def _a ( _lowerCamelCase , _lowerCamelCase ) -> Optional[int]: """simple docstring""" __snake_case : Any = request.getfixturevalue(_lowerCamelCase ) __snake_case : str = DownloadManager() for num_jsonl, (path, file) in enumerate(dl_manager.iter_archive(_lowerCamelCase ) , start=1 ): _test_jsonl(_lowerCamelCase , _lowerCamelCase ) assert num_jsonl == 2 @pytest.mark.parametrize("""archive_nested_jsonl""" , ["""tar_nested_jsonl_path""", """zip_nested_jsonl_path"""] ) def _a ( _lowerCamelCase , _lowerCamelCase ) -> List[str]: """simple docstring""" __snake_case : int = request.getfixturevalue(_lowerCamelCase ) __snake_case : List[str] = DownloadManager() for num_tar, (path, file) in enumerate(dl_manager.iter_archive(_lowerCamelCase ) , start=1 ): for num_jsonl, (subpath, subfile) in enumerate(dl_manager.iter_archive(_lowerCamelCase ) , start=1 ): _test_jsonl(_lowerCamelCase , _lowerCamelCase ) assert num_tar == 1 assert num_jsonl == 2 def _a ( _lowerCamelCase ) -> Any: """simple docstring""" __snake_case : List[str] = DownloadManager() for num_file, file in enumerate(dl_manager.iter_files(_lowerCamelCase ) , start=1 ): assert os.path.basename(_lowerCamelCase ) == ("test.txt" if num_file == 1 else "train.txt") assert num_file == 2
26
1
'''simple docstring''' import unittest from transformers import MODEL_FOR_VISUAL_QUESTION_ANSWERING_MAPPING, is_vision_available from transformers.pipelines import pipeline from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_tf, require_torch, require_vision, slow, ) from .test_pipelines_common import ANY if is_vision_available(): from PIL import Image else: class _A : @staticmethod def lowercase__ ( *__magic_name__ : Dict , **__magic_name__ : Tuple ) -> List[Any]: """simple docstring""" pass @is_pipeline_test @require_torch @require_vision class _A ( unittest.TestCase ): lowercase__: Any = MODEL_FOR_VISUAL_QUESTION_ANSWERING_MAPPING def lowercase__ ( self : Dict , __magic_name__ : List[Any] , __magic_name__ : Optional[int] , __magic_name__ : Any ) -> str: """simple docstring""" __snake_case : Tuple = pipeline("""visual-question-answering""" , model="""hf-internal-testing/tiny-vilt-random-vqa""" ) __snake_case : Union[str, Any] = [ { """image""": Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ), """question""": """How many cats are there?""", }, { """image""": """./tests/fixtures/tests_samples/COCO/000000039769.png""", """question""": """How many cats are there?""", }, ] return vqa_pipeline, examples def lowercase__ ( self : int , __magic_name__ : Tuple , __magic_name__ : Tuple ) -> Dict: """simple docstring""" __snake_case : Optional[int] = vqa_pipeline(__magic_name__ , top_k=1 ) self.assertEqual( __magic_name__ , [ [{"""score""": ANY(__magic_name__ ), """answer""": ANY(__magic_name__ )}], [{"""score""": ANY(__magic_name__ ), """answer""": ANY(__magic_name__ )}], ] , ) @require_torch def lowercase__ ( self : Union[str, Any] ) -> Optional[Any]: """simple docstring""" __snake_case : List[str] = pipeline("""visual-question-answering""" , model="""hf-internal-testing/tiny-vilt-random-vqa""" ) __snake_case : Optional[Any] = """./tests/fixtures/tests_samples/COCO/000000039769.png""" __snake_case : Any = """How many cats are there?""" __snake_case : List[Any] = vqa_pipeline(image=__magic_name__ , question="""How many cats are there?""" , top_k=2 ) self.assertEqual( __magic_name__ , [{"""score""": ANY(__magic_name__ ), """answer""": ANY(__magic_name__ )}, {"""score""": ANY(__magic_name__ ), """answer""": ANY(__magic_name__ )}] ) __snake_case : List[str] = vqa_pipeline({"""image""": image, """question""": question} , top_k=2 ) self.assertEqual( __magic_name__ , [{"""score""": ANY(__magic_name__ ), """answer""": ANY(__magic_name__ )}, {"""score""": ANY(__magic_name__ ), """answer""": ANY(__magic_name__ )}] ) @slow @require_torch def lowercase__ ( self : int ) -> Any: """simple docstring""" __snake_case : Optional[int] = pipeline("""visual-question-answering""" , model="""dandelin/vilt-b32-finetuned-vqa""" ) __snake_case : Dict = """./tests/fixtures/tests_samples/COCO/000000039769.png""" __snake_case : Any = """How many cats are there?""" __snake_case : Tuple = vqa_pipeline(image=__magic_name__ , question=__magic_name__ , top_k=2 ) self.assertEqual( nested_simplify(__magic_name__ , decimals=4 ) , [{"""score""": 0.8799, """answer""": """2"""}, {"""score""": 0.296, """answer""": """1"""}] ) __snake_case : str = vqa_pipeline({"""image""": image, """question""": question} , top_k=2 ) self.assertEqual( nested_simplify(__magic_name__ , decimals=4 ) , [{"""score""": 0.8799, """answer""": """2"""}, {"""score""": 0.296, """answer""": """1"""}] ) __snake_case : Tuple = vqa_pipeline( [{"""image""": image, """question""": question}, {"""image""": image, """question""": question}] , top_k=2 ) self.assertEqual( nested_simplify(__magic_name__ , decimals=4 ) , [[{"""score""": 0.8799, """answer""": """2"""}, {"""score""": 0.296, """answer""": """1"""}]] * 2 , ) @require_tf @unittest.skip("""Visual question answering not implemented in TF""" ) def lowercase__ ( self : Optional[int] ) -> List[Any]: """simple docstring""" pass
26
'''simple docstring''' def _a ( _lowerCamelCase = 100 ) -> int: """simple docstring""" __snake_case : Any = n * (n + 1) * (2 * n + 1) / 6 __snake_case : List[Any] = (n * (n + 1) / 2) ** 2 return int(square_of_sum - sum_of_squares ) if __name__ == "__main__": print(f"""{solution() = }""")
26
1
'''simple docstring''' import argparse import torch from torch import nn from transformers import MBartConfig, MBartForConditionalGeneration def _a ( _lowerCamelCase ) -> List[str]: """simple docstring""" __snake_case : str = [ """encoder.version""", """decoder.version""", """model.encoder.version""", """model.decoder.version""", """_float_tensor""", """decoder.output_projection.weight""", ] for k in ignore_keys: state_dict.pop(_lowerCamelCase , _lowerCamelCase ) def _a ( _lowerCamelCase ) -> Union[str, Any]: """simple docstring""" __snake_case , __snake_case : Tuple = emb.weight.shape __snake_case : List[str] = nn.Linear(_lowerCamelCase , _lowerCamelCase , bias=_lowerCamelCase ) __snake_case : List[str] = emb.weight.data return lin_layer def _a ( _lowerCamelCase , _lowerCamelCase="facebook/mbart-large-en-ro" , _lowerCamelCase=False , _lowerCamelCase=False ) -> List[str]: """simple docstring""" __snake_case : Any = torch.load(_lowerCamelCase , map_location="""cpu""" )["""model"""] remove_ignore_keys_(_lowerCamelCase ) __snake_case : List[str] = state_dict["""encoder.embed_tokens.weight"""].shape[0] __snake_case : Tuple = MBartConfig.from_pretrained(_lowerCamelCase , vocab_size=_lowerCamelCase ) if mbart_aa and finetuned: __snake_case : Dict = """relu""" __snake_case : Union[str, Any] = state_dict["""decoder.embed_tokens.weight"""] __snake_case : Optional[int] = MBartForConditionalGeneration(_lowerCamelCase ) model.model.load_state_dict(_lowerCamelCase ) if finetuned: __snake_case : Any = make_linear_from_emb(model.model.shared ) return model if __name__ == "__main__": __UpperCamelCase = argparse.ArgumentParser() # Required parameters parser.add_argument( "fairseq_path", type=str, help="bart.large, bart.large.cnn or a path to a model.pt on local filesystem." ) parser.add_argument("pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model.") parser.add_argument( "--hf_config", default="facebook/mbart-large-cc25", type=str, help="Which huggingface architecture to use: mbart-large", ) parser.add_argument("--mbart_50", action="store_true", help="whether the model is mMART-50 checkpoint") parser.add_argument("--finetuned", action="store_true", help="whether the model is a fine-tuned checkpoint") __UpperCamelCase = parser.parse_args() __UpperCamelCase = convert_fairseq_mbart_checkpoint_from_disk( args.fairseq_path, hf_config_path=args.hf_config, finetuned=args.finetuned, mbart_aa=args.mbart_aa ) model.save_pretrained(args.pytorch_dump_folder_path)
26
'''simple docstring''' from __future__ import annotations from typing import Any class _A : def __init__( self : str , __magic_name__ : int , __magic_name__ : int , __magic_name__ : float = 0 ) -> None: """simple docstring""" __snake_case , __snake_case : Optional[Any] = row, column __snake_case : Dict = [[default_value for c in range(__magic_name__ )] for r in range(__magic_name__ )] def __str__( self : List[Any] ) -> str: """simple docstring""" __snake_case : Dict = f'''Matrix consist of {self.row} rows and {self.column} columns\n''' # Make string identifier __snake_case : Optional[int] = 0 for row_vector in self.array: for obj in row_vector: __snake_case : Optional[int] = max(__magic_name__ , len(str(__magic_name__ ) ) ) __snake_case : str = f'''%{max_element_length}s''' # Make string and return def single_line(__magic_name__ : list[float] ) -> str: nonlocal string_format_identifier __snake_case : Union[str, Any] = """[""" line += ", ".join(string_format_identifier % (obj,) for obj in row_vector ) line += "]" return line s += "\n".join(single_line(__magic_name__ ) for row_vector in self.array ) return s def __repr__( self : Optional[int] ) -> str: """simple docstring""" return str(self ) def lowercase__ ( self : Dict , __magic_name__ : tuple[int, int] ) -> bool: """simple docstring""" if not (isinstance(__magic_name__ , (list, tuple) ) and len(__magic_name__ ) == 2): return False elif not (0 <= loc[0] < self.row and 0 <= loc[1] < self.column): return False else: return True def __getitem__( self : int , __magic_name__ : tuple[int, int] ) -> Any: """simple docstring""" assert self.validate_indicies(__magic_name__ ) return self.array[loc[0]][loc[1]] def __setitem__( self : List[str] , __magic_name__ : tuple[int, int] , __magic_name__ : float ) -> None: """simple docstring""" assert self.validate_indicies(__magic_name__ ) __snake_case : Optional[int] = value def __add__( self : Any , __magic_name__ : Matrix ) -> Matrix: """simple docstring""" assert isinstance(__magic_name__ , __magic_name__ ) assert self.row == another.row and self.column == another.column # Add __snake_case : Union[str, Any] = Matrix(self.row , self.column ) for r in range(self.row ): for c in range(self.column ): __snake_case : List[Any] = self[r, c] + another[r, c] return result def __neg__( self : Tuple ) -> Matrix: """simple docstring""" __snake_case : Tuple = Matrix(self.row , self.column ) for r in range(self.row ): for c in range(self.column ): __snake_case : List[Any] = -self[r, c] return result def __sub__( self : Optional[int] , __magic_name__ : Matrix ) -> Matrix: """simple docstring""" return self + (-another) def __mul__( self : List[Any] , __magic_name__ : int | float | Matrix ) -> Matrix: """simple docstring""" if isinstance(__magic_name__ , (int, float) ): # Scalar multiplication __snake_case : Optional[int] = Matrix(self.row , self.column ) for r in range(self.row ): for c in range(self.column ): __snake_case : Tuple = self[r, c] * another return result elif isinstance(__magic_name__ , __magic_name__ ): # Matrix multiplication assert self.column == another.row __snake_case : Dict = Matrix(self.row , another.column ) for r in range(self.row ): for c in range(another.column ): for i in range(self.column ): result[r, c] += self[r, i] * another[i, c] return result else: __snake_case : Optional[int] = f'''Unsupported type given for another ({type(__magic_name__ )})''' raise TypeError(__magic_name__ ) def lowercase__ ( self : str ) -> Matrix: """simple docstring""" __snake_case : Any = Matrix(self.column , self.row ) for r in range(self.row ): for c in range(self.column ): __snake_case : str = self[r, c] return result def lowercase__ ( self : Union[str, Any] , __magic_name__ : Matrix , __magic_name__ : Matrix ) -> Any: """simple docstring""" assert isinstance(__magic_name__ , __magic_name__ ) and isinstance(__magic_name__ , __magic_name__ ) assert self.row == self.column == u.row == v.row # u, v should be column vector assert u.column == v.column == 1 # u, v should be column vector # Calculate __snake_case : List[str] = v.transpose() __snake_case : Tuple = (v_t * self * u)[0, 0] + 1 if numerator_factor == 0: return None # It's not invertable return self - ((self * u) * (v_t * self) * (1.0 / numerator_factor)) # Testing if __name__ == "__main__": def _a ( ) -> None: """simple docstring""" __snake_case : Tuple = Matrix(3 , 3 , 0 ) for i in range(3 ): __snake_case : Any = 1 print(F'''a^(-1) is {ainv}''' ) # u, v __snake_case : Dict = Matrix(3 , 1 , 0 ) __snake_case , __snake_case , __snake_case : Union[str, Any] = 1, 2, -3 __snake_case : str = Matrix(3 , 1 , 0 ) __snake_case , __snake_case , __snake_case : Tuple = 4, -2, 5 print(F'''u is {u}''' ) print(F'''v is {v}''' ) print(F'''uv^T is {u * v.transpose()}''' ) # Sherman Morrison print(F'''(a + uv^T)^(-1) is {ainv.sherman_morrison(_lowerCamelCase , _lowerCamelCase )}''' ) def _a ( ) -> None: """simple docstring""" import doctest doctest.testmod() testa()
26
1
'''simple docstring''' from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, logging __UpperCamelCase = logging.get_logger(__name__) class _A ( __lowercase ): lowercase__: List[Any] = ['''pixel_values'''] def __init__( self : Any , __magic_name__ : bool = True , __magic_name__ : Optional[Dict[str, int]] = None , __magic_name__ : PILImageResampling = PILImageResampling.BILINEAR , __magic_name__ : bool = True , __magic_name__ : Dict[str, int] = None , __magic_name__ : bool = True , __magic_name__ : Union[int, float] = 1 / 2_55 , __magic_name__ : bool = True , __magic_name__ : Optional[Union[float, List[float]]] = None , __magic_name__ : Optional[Union[float, List[float]]] = None , **__magic_name__ : Any , ) -> None: """simple docstring""" super().__init__(**__magic_name__ ) __snake_case : Optional[int] = size if size is not None else {"""shortest_edge""": 2_56} __snake_case : Dict = get_size_dict(__magic_name__ , default_to_square=__magic_name__ ) __snake_case : Union[str, Any] = crop_size if crop_size is not None else {"""height""": 2_24, """width""": 2_24} __snake_case : Any = get_size_dict(__magic_name__ ) __snake_case : Optional[Any] = do_resize __snake_case : Dict = size __snake_case : Any = resample __snake_case : str = do_center_crop __snake_case : Optional[int] = crop_size __snake_case : int = do_rescale __snake_case : Optional[Any] = rescale_factor __snake_case : Any = do_normalize __snake_case : List[str] = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN __snake_case : Optional[Any] = image_std if image_std is not None else IMAGENET_STANDARD_STD def lowercase__ ( self : List[Any] , __magic_name__ : np.ndarray , __magic_name__ : Dict[str, int] , __magic_name__ : PILImageResampling = PILImageResampling.BICUBIC , __magic_name__ : Optional[Union[str, ChannelDimension]] = None , **__magic_name__ : Optional[int] , ) -> np.ndarray: """simple docstring""" __snake_case : Optional[Any] = get_size_dict(__magic_name__ , default_to_square=__magic_name__ ) if "shortest_edge" not in size: raise ValueError(f'''The `size` parameter must contain the key `shortest_edge`. Got {size.keys()}''' ) __snake_case : Union[str, Any] = get_resize_output_image_size(__magic_name__ , size=size["""shortest_edge"""] , default_to_square=__magic_name__ ) return resize(__magic_name__ , size=__magic_name__ , resample=__magic_name__ , data_format=__magic_name__ , **__magic_name__ ) def lowercase__ ( self : str , __magic_name__ : np.ndarray , __magic_name__ : Dict[str, int] , __magic_name__ : Optional[Union[str, ChannelDimension]] = None , **__magic_name__ : Union[str, Any] , ) -> np.ndarray: """simple docstring""" __snake_case : int = get_size_dict(__magic_name__ ) return center_crop(__magic_name__ , size=(size["""height"""], size["""width"""]) , data_format=__magic_name__ , **__magic_name__ ) def lowercase__ ( self : str , __magic_name__ : np.ndarray , __magic_name__ : float , __magic_name__ : Optional[Union[str, ChannelDimension]] = None , **__magic_name__ : Any ) -> np.ndarray: """simple docstring""" return rescale(__magic_name__ , scale=__magic_name__ , data_format=__magic_name__ , **__magic_name__ ) def lowercase__ ( self : Dict , __magic_name__ : np.ndarray , __magic_name__ : Union[float, List[float]] , __magic_name__ : Union[float, List[float]] , __magic_name__ : Optional[Union[str, ChannelDimension]] = None , **__magic_name__ : Optional[int] , ) -> np.ndarray: """simple docstring""" return normalize(__magic_name__ , mean=__magic_name__ , std=__magic_name__ , data_format=__magic_name__ , **__magic_name__ ) def lowercase__ ( self : int , __magic_name__ : ImageInput , __magic_name__ : Optional[bool] = None , __magic_name__ : Dict[str, int] = None , __magic_name__ : PILImageResampling = None , __magic_name__ : bool = None , __magic_name__ : Dict[str, int] = None , __magic_name__ : Optional[bool] = None , __magic_name__ : Optional[float] = None , __magic_name__ : Optional[bool] = None , __magic_name__ : Optional[Union[float, List[float]]] = None , __magic_name__ : Optional[Union[float, List[float]]] = None , __magic_name__ : Optional[Union[str, TensorType]] = None , __magic_name__ : Union[str, ChannelDimension] = ChannelDimension.FIRST , **__magic_name__ : List[Any] , ) -> Optional[int]: """simple docstring""" __snake_case : List[Any] = do_resize if do_resize is not None else self.do_resize __snake_case : Optional[int] = size if size is not None else self.size __snake_case : Any = get_size_dict(__magic_name__ , default_to_square=__magic_name__ ) __snake_case : List[Any] = resample if resample is not None else self.resample __snake_case : str = do_center_crop if do_center_crop is not None else self.do_center_crop __snake_case : str = crop_size if crop_size is not None else self.crop_size __snake_case : str = get_size_dict(__magic_name__ ) __snake_case : Union[str, Any] = do_rescale if do_rescale is not None else self.do_rescale __snake_case : Optional[int] = rescale_factor if rescale_factor is not None else self.rescale_factor __snake_case : Tuple = do_normalize if do_normalize is not None else self.do_normalize __snake_case : Optional[Any] = image_mean if image_mean is not None else self.image_mean __snake_case : Tuple = image_std if image_std is not None else self.image_std __snake_case : int = make_list_of_images(__magic_name__ ) if not valid_images(__magic_name__ ): raise ValueError( """Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, """ """torch.Tensor, tf.Tensor or jax.ndarray.""" ) if do_resize and size is None: raise ValueError("""Size must be specified if do_resize is True.""" ) if do_center_crop and crop_size is None: raise ValueError("""Crop size must be specified if do_center_crop is True.""" ) if do_rescale and rescale_factor is None: raise ValueError("""Rescale factor must be specified if do_rescale is True.""" ) if do_normalize and (image_mean is None or image_std is None): raise ValueError("""Image mean and std must be specified if do_normalize is True.""" ) # All transformations expect numpy arrays. __snake_case : str = [to_numpy_array(__magic_name__ ) for image in images] if do_resize: __snake_case : int = [self.resize(image=__magic_name__ , size=__magic_name__ , resample=__magic_name__ ) for image in images] if do_center_crop: __snake_case : Any = [self.center_crop(image=__magic_name__ , size=__magic_name__ ) for image in images] if do_rescale: __snake_case : List[Any] = [self.rescale(image=__magic_name__ , scale=__magic_name__ ) for image in images] if do_normalize: __snake_case : Tuple = [self.normalize(image=__magic_name__ , mean=__magic_name__ , std=__magic_name__ ) for image in images] __snake_case : Dict = [to_channel_dimension_format(__magic_name__ , __magic_name__ ) for image in images] __snake_case : Union[str, Any] = {"""pixel_values""": images} return BatchFeature(data=__magic_name__ , tensor_type=__magic_name__ )
26
'''simple docstring''' import argparse import json import os import torch from torch import nn from transformers import NllbMoeConfig, NllbMoeModel from transformers.modeling_utils import dtype_byte_size from transformers.utils import WEIGHTS_INDEX_NAME, WEIGHTS_NAME def _a ( _lowerCamelCase ) -> List[Any]: """simple docstring""" __snake_case : Union[str, Any] = [ """encoder.version""", """decoder.version""", """model.encoder.version""", """model.decoder.version""", """decoder.output_projection.weight""", """_float_tensor""", """encoder.embed_positions._float_tensor""", """decoder.embed_positions._float_tensor""", ] for k in ignore_keys: state_dict.pop(_lowerCamelCase , _lowerCamelCase ) def _a ( _lowerCamelCase ) -> List[str]: """simple docstring""" __snake_case , __snake_case : Dict = emb.weight.shape __snake_case : Optional[int] = nn.Linear(_lowerCamelCase , _lowerCamelCase , bias=_lowerCamelCase ) __snake_case : Union[str, Any] = emb.weight.data return lin_layer def _a ( _lowerCamelCase , _lowerCamelCase=None ) -> Union[str, Any]: """simple docstring""" __snake_case : Any = {} for old_key in state_dict.keys(): __snake_case : Union[str, Any] = old_key if "moe_layer.experts." in key: if expert_idx is not None: __snake_case : Tuple = key.replace("""moe_layer.experts.0""" , F'''ffn.experts.expert_{expert_idx}''' ) else: __snake_case : Optional[int] = key.replace("""moe_layer.experts.""" , """ffn.experts.expert_""" ) if "gate" in key: __snake_case : Dict = key.replace(""".moe_layer.gate.wg""" , """.ffn.router.classifier""" ) if "fc2" and "experts" not in key: __snake_case : Union[str, Any] = key.replace(""".fc2.""" , """.ffn.fc2.""" ) if "fc1" and "experts" not in key: __snake_case : Optional[int] = key.replace(""".fc1.""" , """.ffn.fc1.""" ) if ".encoder_attn." in key: __snake_case : Tuple = key.replace(""".encoder_attn.""" , """.cross_attention.""" ) if "encoder_attn_layer_norm" in key: __snake_case : Union[str, Any] = key.replace("""encoder_attn_layer_norm""" , """cross_attention_layer_norm""" ) if "final_layer_norm" in key: __snake_case : str = key.replace("""final_layer_norm""" , """ff_layer_norm""" ) __snake_case : str = state_dict[old_key] return new_dict def _a ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase = WEIGHTS_NAME ) -> Dict: """simple docstring""" __snake_case : Optional[int] = [] __snake_case : Dict = 0 os.makedirs(_lowerCamelCase , exist_ok=_lowerCamelCase ) for expert in range(_lowerCamelCase ): __snake_case : Tuple = switch_checkpoint_path + F'''-rank-{expert}.pt''' if os.path.isfile(_lowerCamelCase ): __snake_case : Dict = torch.load(_lowerCamelCase )["""model"""] remove_ignore_keys_(_lowerCamelCase ) __snake_case : Optional[Any] = rename_fairseq_keys(_lowerCamelCase , _lowerCamelCase ) __snake_case : List[Any] = os.path.join( _lowerCamelCase , weights_name.replace(""".bin""" , F'''-{len(_lowerCamelCase )+1:05d}-of-???.bin''' ) ) torch.save(_lowerCamelCase , _lowerCamelCase ) sharded_state_dicts.append(expert_state.keys() ) total_size += sum([value.numel() for key, value in expert_state.items()] ) * dtype_byte_size( expert_state[list(_lowerCamelCase )[0]].dtype ) # Add the last block __snake_case : Optional[Any] = os.path.join(_lowerCamelCase , weights_name.replace(""".bin""" , F'''-{len(_lowerCamelCase )+1:05d}-of-???.bin''' ) ) __snake_case : str = torch.load(switch_checkpoint_path + """-shared.pt""" )["""model"""] remove_ignore_keys_(_lowerCamelCase ) __snake_case : Optional[Any] = rename_fairseq_keys(_lowerCamelCase , _lowerCamelCase ) __snake_case : List[str] = shared_weights["""decoder.embed_tokens.weight"""] sharded_state_dicts.append(shared_weights.keys() ) # If we only have the shared weights (dummy model/experts saved on the same file) if len(_lowerCamelCase ) == 1: __snake_case : Optional[Any] = os.path.join(_lowerCamelCase , _lowerCamelCase ) torch.save(_lowerCamelCase , _lowerCamelCase ) return {weights_name: sharded_state_dicts[0]}, None else: torch.save(_lowerCamelCase , _lowerCamelCase ) # Otherwise, let's build the index __snake_case : Tuple = {} for idx, shard in enumerate(_lowerCamelCase ): __snake_case : Any = weights_name.replace(""".bin""" , F'''-{idx+1:05d}-of-{len(_lowerCamelCase ):05d}.bin''' ) __snake_case : int = os.path.join(_lowerCamelCase , weights_name.replace(""".bin""" , F'''-{idx+1:05d}-of-???.bin''' ) ) os.rename(_lowerCamelCase , os.path.join(_lowerCamelCase , _lowerCamelCase ) ) for key in shard: __snake_case : str = shard_file # Add the metadata __snake_case : Optional[Any] = {"""total_size""": total_size} __snake_case : int = {"""metadata""": metadata, """weight_map""": weight_map} with open(os.path.join(_lowerCamelCase , _lowerCamelCase ) , """w""" , encoding="""utf-8""" ) as f: __snake_case : Union[str, Any] = json.dumps(_lowerCamelCase , indent=2 , sort_keys=_lowerCamelCase ) + """\n""" f.write(_lowerCamelCase ) return metadata, index if __name__ == "__main__": __UpperCamelCase = argparse.ArgumentParser() # Required parameters parser.add_argument( "--nllb_moe_checkpoint_path", default="/home/arthur_huggingface_co/fairseq/weights/checkpoints/model_moe_54b/checkpoint_2_300000", type=str, required=False, help="Path to a directory containing a folder per layer. Follows the original Google format.", ) parser.add_argument("--dtype", default="float32", type=str, required=False, help="dtype of the saved model") parser.add_argument( "--pytorch_dump_folder_path", default="/home/arthur_huggingface_co/fairseq/weights/checkpoints/hf-converted-moe-54b", type=str, required=False, help="Path to the output pytorch model.", ) __UpperCamelCase = parser.parse_args() __UpperCamelCase , __UpperCamelCase = shard_on_the_fly( args.nllb_moe_checkpoint_path, args.pytorch_dump_folder_path, 128, args.dtype, ) __UpperCamelCase = NllbMoeConfig.from_pretrained( "facebook/nllb-200-3.3B", encoder_sparse_step=4, decoder_sparse_step=4, num_experts=128 ) config.save_pretrained(args.pytorch_dump_folder_path) __UpperCamelCase = NllbMoeModel.from_pretrained(args.pytorch_dump_folder_path) print("Done") model.save_pretrained(args.pytorch_dump_folder_path)
26
1
'''simple docstring''' import argparse import os.path as osp import re import torch from safetensors.torch import load_file, save_file # =================# # UNet Conversion # # =================# __UpperCamelCase = [ # (stable-diffusion, HF Diffusers) ("time_embed.0.weight", "time_embedding.linear_1.weight"), ("time_embed.0.bias", "time_embedding.linear_1.bias"), ("time_embed.2.weight", "time_embedding.linear_2.weight"), ("time_embed.2.bias", "time_embedding.linear_2.bias"), ("input_blocks.0.0.weight", "conv_in.weight"), ("input_blocks.0.0.bias", "conv_in.bias"), ("out.0.weight", "conv_norm_out.weight"), ("out.0.bias", "conv_norm_out.bias"), ("out.2.weight", "conv_out.weight"), ("out.2.bias", "conv_out.bias"), ] __UpperCamelCase = [ # (stable-diffusion, HF Diffusers) ("in_layers.0", "norm1"), ("in_layers.2", "conv1"), ("out_layers.0", "norm2"), ("out_layers.3", "conv2"), ("emb_layers.1", "time_emb_proj"), ("skip_connection", "conv_shortcut"), ] __UpperCamelCase = [] # hardcoded number of downblocks and resnets/attentions... # would need smarter logic for other networks. for i in range(4): # loop over downblocks/upblocks for j in range(2): # loop over resnets/attentions for downblocks __UpperCamelCase = f"""down_blocks.{i}.resnets.{j}.""" __UpperCamelCase = f"""input_blocks.{3*i + j + 1}.0.""" unet_conversion_map_layer.append((sd_down_res_prefix, hf_down_res_prefix)) if i < 3: # no attention layers in down_blocks.3 __UpperCamelCase = f"""down_blocks.{i}.attentions.{j}.""" __UpperCamelCase = f"""input_blocks.{3*i + j + 1}.1.""" unet_conversion_map_layer.append((sd_down_atn_prefix, hf_down_atn_prefix)) for j in range(3): # loop over resnets/attentions for upblocks __UpperCamelCase = f"""up_blocks.{i}.resnets.{j}.""" __UpperCamelCase = f"""output_blocks.{3*i + j}.0.""" unet_conversion_map_layer.append((sd_up_res_prefix, hf_up_res_prefix)) if i > 0: # no attention layers in up_blocks.0 __UpperCamelCase = f"""up_blocks.{i}.attentions.{j}.""" __UpperCamelCase = f"""output_blocks.{3*i + j}.1.""" unet_conversion_map_layer.append((sd_up_atn_prefix, hf_up_atn_prefix)) if i < 3: # no downsample in down_blocks.3 __UpperCamelCase = f"""down_blocks.{i}.downsamplers.0.conv.""" __UpperCamelCase = f"""input_blocks.{3*(i+1)}.0.op.""" unet_conversion_map_layer.append((sd_downsample_prefix, hf_downsample_prefix)) # no upsample in up_blocks.3 __UpperCamelCase = f"""up_blocks.{i}.upsamplers.0.""" __UpperCamelCase = f"""output_blocks.{3*i + 2}.{1 if i == 0 else 2}.""" unet_conversion_map_layer.append((sd_upsample_prefix, hf_upsample_prefix)) __UpperCamelCase = "mid_block.attentions.0." __UpperCamelCase = "middle_block.1." unet_conversion_map_layer.append((sd_mid_atn_prefix, hf_mid_atn_prefix)) for j in range(2): __UpperCamelCase = f"""mid_block.resnets.{j}.""" __UpperCamelCase = f"""middle_block.{2*j}.""" unet_conversion_map_layer.append((sd_mid_res_prefix, hf_mid_res_prefix)) def _a ( _lowerCamelCase ) -> Union[str, Any]: """simple docstring""" __snake_case : str = {k: k for k in unet_state_dict.keys()} for sd_name, hf_name in unet_conversion_map: __snake_case : Dict = sd_name for k, v in mapping.items(): if "resnets" in k: for sd_part, hf_part in unet_conversion_map_resnet: __snake_case : Optional[int] = v.replace(_lowerCamelCase , _lowerCamelCase ) __snake_case : Optional[Any] = v for k, v in mapping.items(): for sd_part, hf_part in unet_conversion_map_layer: __snake_case : Tuple = v.replace(_lowerCamelCase , _lowerCamelCase ) __snake_case : int = v __snake_case : str = {v: unet_state_dict[k] for k, v in mapping.items()} return new_state_dict # ================# # VAE Conversion # # ================# __UpperCamelCase = [ # (stable-diffusion, HF Diffusers) ("nin_shortcut", "conv_shortcut"), ("norm_out", "conv_norm_out"), ("mid.attn_1.", "mid_block.attentions.0."), ] for i in range(4): # down_blocks have two resnets for j in range(2): __UpperCamelCase = f"""encoder.down_blocks.{i}.resnets.{j}.""" __UpperCamelCase = f"""encoder.down.{i}.block.{j}.""" vae_conversion_map.append((sd_down_prefix, hf_down_prefix)) if i < 3: __UpperCamelCase = f"""down_blocks.{i}.downsamplers.0.""" __UpperCamelCase = f"""down.{i}.downsample.""" vae_conversion_map.append((sd_downsample_prefix, hf_downsample_prefix)) __UpperCamelCase = f"""up_blocks.{i}.upsamplers.0.""" __UpperCamelCase = f"""up.{3-i}.upsample.""" vae_conversion_map.append((sd_upsample_prefix, hf_upsample_prefix)) # up_blocks have three resnets # also, up blocks in hf are numbered in reverse from sd for j in range(3): __UpperCamelCase = f"""decoder.up_blocks.{i}.resnets.{j}.""" __UpperCamelCase = f"""decoder.up.{3-i}.block.{j}.""" vae_conversion_map.append((sd_up_prefix, hf_up_prefix)) # this part accounts for mid blocks in both the encoder and the decoder for i in range(2): __UpperCamelCase = f"""mid_block.resnets.{i}.""" __UpperCamelCase = f"""mid.block_{i+1}.""" vae_conversion_map.append((sd_mid_res_prefix, hf_mid_res_prefix)) __UpperCamelCase = [ # (stable-diffusion, HF Diffusers) ("norm.", "group_norm."), ("q.", "query."), ("k.", "key."), ("v.", "value."), ("proj_out.", "proj_attn."), ] def _a ( _lowerCamelCase ) -> List[str]: """simple docstring""" return w.reshape(*w.shape , 1 , 1 ) def _a ( _lowerCamelCase ) -> Tuple: """simple docstring""" __snake_case : Tuple = {k: k for k in vae_state_dict.keys()} for k, v in mapping.items(): for sd_part, hf_part in vae_conversion_map: __snake_case : Optional[int] = v.replace(_lowerCamelCase , _lowerCamelCase ) __snake_case : Dict = v for k, v in mapping.items(): if "attentions" in k: for sd_part, hf_part in vae_conversion_map_attn: __snake_case : Optional[int] = v.replace(_lowerCamelCase , _lowerCamelCase ) __snake_case : List[str] = v __snake_case : List[Any] = {v: vae_state_dict[k] for k, v in mapping.items()} __snake_case : Optional[Any] = ["""q""", """k""", """v""", """proj_out"""] for k, v in new_state_dict.items(): for weight_name in weights_to_convert: if F'''mid.attn_1.{weight_name}.weight''' in k: print(F'''Reshaping {k} for SD format''' ) __snake_case : Any = reshape_weight_for_sd(_lowerCamelCase ) return new_state_dict # =========================# # Text Encoder Conversion # # =========================# __UpperCamelCase = [ # (stable-diffusion, HF Diffusers) ("resblocks.", "text_model.encoder.layers."), ("ln_1", "layer_norm1"), ("ln_2", "layer_norm2"), (".c_fc.", ".fc1."), (".c_proj.", ".fc2."), (".attn", ".self_attn"), ("ln_final.", "transformer.text_model.final_layer_norm."), ("token_embedding.weight", "transformer.text_model.embeddings.token_embedding.weight"), ("positional_embedding", "transformer.text_model.embeddings.position_embedding.weight"), ] __UpperCamelCase = {re.escape(x[1]): x[0] for x in textenc_conversion_lst} __UpperCamelCase = re.compile("|".join(protected.keys())) # Ordering is from https://github.com/pytorch/pytorch/blob/master/test/cpp/api/modules.cpp __UpperCamelCase = {"q": 0, "k": 1, "v": 2} def _a ( _lowerCamelCase ) -> Optional[Any]: """simple docstring""" __snake_case : Any = {} __snake_case : List[str] = {} __snake_case : Union[str, Any] = {} for k, v in text_enc_dict.items(): if ( k.endswith(""".self_attn.q_proj.weight""" ) or k.endswith(""".self_attn.k_proj.weight""" ) or k.endswith(""".self_attn.v_proj.weight""" ) ): __snake_case : Tuple = k[: -len(""".q_proj.weight""" )] __snake_case : str = k[-len("""q_proj.weight""" )] if k_pre not in capture_qkv_weight: __snake_case : Optional[Any] = [None, None, None] __snake_case : Optional[int] = v continue if ( k.endswith(""".self_attn.q_proj.bias""" ) or k.endswith(""".self_attn.k_proj.bias""" ) or k.endswith(""".self_attn.v_proj.bias""" ) ): __snake_case : Tuple = k[: -len(""".q_proj.bias""" )] __snake_case : Optional[int] = k[-len("""q_proj.bias""" )] if k_pre not in capture_qkv_bias: __snake_case : int = [None, None, None] __snake_case : Union[str, Any] = v continue __snake_case : str = textenc_pattern.sub(lambda _lowerCamelCase : protected[re.escape(m.group(0 ) )] , _lowerCamelCase ) __snake_case : Tuple = v for k_pre, tensors in capture_qkv_weight.items(): if None in tensors: raise Exception("""CORRUPTED MODEL: one of the q-k-v values for the text encoder was missing""" ) __snake_case : Tuple = textenc_pattern.sub(lambda _lowerCamelCase : protected[re.escape(m.group(0 ) )] , _lowerCamelCase ) __snake_case : int = torch.cat(_lowerCamelCase ) for k_pre, tensors in capture_qkv_bias.items(): if None in tensors: raise Exception("""CORRUPTED MODEL: one of the q-k-v values for the text encoder was missing""" ) __snake_case : Any = textenc_pattern.sub(lambda _lowerCamelCase : protected[re.escape(m.group(0 ) )] , _lowerCamelCase ) __snake_case : Optional[int] = torch.cat(_lowerCamelCase ) return new_state_dict def _a ( _lowerCamelCase ) -> List[str]: """simple docstring""" return text_enc_dict if __name__ == "__main__": __UpperCamelCase = argparse.ArgumentParser() parser.add_argument("--model_path", default=None, type=str, required=True, help="Path to the model to convert.") parser.add_argument("--checkpoint_path", default=None, type=str, required=True, help="Path to the output model.") parser.add_argument("--half", action="store_true", help="Save weights in half precision.") parser.add_argument( "--use_safetensors", action="store_true", help="Save weights use safetensors, default is ckpt." ) __UpperCamelCase = parser.parse_args() assert args.model_path is not None, "Must provide a model path!" assert args.checkpoint_path is not None, "Must provide a checkpoint path!" # Path for safetensors __UpperCamelCase = osp.join(args.model_path, "unet", "diffusion_pytorch_model.safetensors") __UpperCamelCase = osp.join(args.model_path, "vae", "diffusion_pytorch_model.safetensors") __UpperCamelCase = osp.join(args.model_path, "text_encoder", "model.safetensors") # Load models from safetensors if it exists, if it doesn't pytorch if osp.exists(unet_path): __UpperCamelCase = load_file(unet_path, device="cpu") else: __UpperCamelCase = osp.join(args.model_path, "unet", "diffusion_pytorch_model.bin") __UpperCamelCase = torch.load(unet_path, map_location="cpu") if osp.exists(vae_path): __UpperCamelCase = load_file(vae_path, device="cpu") else: __UpperCamelCase = osp.join(args.model_path, "vae", "diffusion_pytorch_model.bin") __UpperCamelCase = torch.load(vae_path, map_location="cpu") if osp.exists(text_enc_path): __UpperCamelCase = load_file(text_enc_path, device="cpu") else: __UpperCamelCase = osp.join(args.model_path, "text_encoder", "pytorch_model.bin") __UpperCamelCase = torch.load(text_enc_path, map_location="cpu") # Convert the UNet model __UpperCamelCase = convert_unet_state_dict(unet_state_dict) __UpperCamelCase = {"model.diffusion_model." + k: v for k, v in unet_state_dict.items()} # Convert the VAE model __UpperCamelCase = convert_vae_state_dict(vae_state_dict) __UpperCamelCase = {"first_stage_model." + k: v for k, v in vae_state_dict.items()} # Easiest way to identify v2.0 model seems to be that the text encoder (OpenCLIP) is deeper __UpperCamelCase = "text_model.encoder.layers.22.layer_norm2.bias" in text_enc_dict if is_vaa_model: # Need to add the tag 'transformer' in advance so we can knock it out from the final layer-norm __UpperCamelCase = {"transformer." + k: v for k, v in text_enc_dict.items()} __UpperCamelCase = convert_text_enc_state_dict_vaa(text_enc_dict) __UpperCamelCase = {"cond_stage_model.model." + k: v for k, v in text_enc_dict.items()} else: __UpperCamelCase = convert_text_enc_state_dict(text_enc_dict) __UpperCamelCase = {"cond_stage_model.transformer." + k: v for k, v in text_enc_dict.items()} # Put together new checkpoint __UpperCamelCase = {**unet_state_dict, **vae_state_dict, **text_enc_dict} if args.half: __UpperCamelCase = {k: v.half() for k, v in state_dict.items()} if args.use_safetensors: save_file(state_dict, args.checkpoint_path) else: __UpperCamelCase = {"state_dict": state_dict} torch.save(state_dict, args.checkpoint_path)
26
'''simple docstring''' import cva import numpy as np class _A : def __init__( self : Any , __magic_name__ : float , __magic_name__ : int ) -> Optional[int]: """simple docstring""" if k in (0.04, 0.06): __snake_case : List[str] = k __snake_case : int = window_size else: raise ValueError("""invalid k value""" ) def __str__( self : Union[str, Any] ) -> str: """simple docstring""" return str(self.k ) def lowercase__ ( self : Dict , __magic_name__ : str ) -> tuple[cva.Mat, list[list[int]]]: """simple docstring""" __snake_case : Dict = cva.imread(__magic_name__ , 0 ) __snake_case , __snake_case : List[str] = img.shape __snake_case : list[list[int]] = [] __snake_case : str = img.copy() __snake_case : Tuple = cva.cvtColor(__magic_name__ , cva.COLOR_GRAY2RGB ) __snake_case , __snake_case : List[Any] = np.gradient(__magic_name__ ) __snake_case : Optional[Any] = dx**2 __snake_case : Tuple = dy**2 __snake_case : List[Any] = dx * dy __snake_case : List[Any] = 0.04 __snake_case : Tuple = self.window_size // 2 for y in range(__magic_name__ , h - offset ): for x in range(__magic_name__ , w - offset ): __snake_case : Dict = ixx[ y - offset : y + offset + 1, x - offset : x + offset + 1 ].sum() __snake_case : Optional[int] = iyy[ y - offset : y + offset + 1, x - offset : x + offset + 1 ].sum() __snake_case : str = ixy[ y - offset : y + offset + 1, x - offset : x + offset + 1 ].sum() __snake_case : List[str] = (wxx * wyy) - (wxy**2) __snake_case : Dict = wxx + wyy __snake_case : List[str] = det - k * (trace**2) # Can change the value if r > 0.5: corner_list.append([x, y, r] ) color_img.itemset((y, x, 0) , 0 ) color_img.itemset((y, x, 1) , 0 ) color_img.itemset((y, x, 2) , 2_55 ) return color_img, corner_list if __name__ == "__main__": __UpperCamelCase = HarrisCorner(0.04, 3) __UpperCamelCase , __UpperCamelCase = edge_detect.detect("path_to_image") cva.imwrite("detect.png", color_img)
26
1
'''simple docstring''' from typing import Optional from torch import nn from .transformer_ad import TransformeraDModel, TransformeraDModelOutput class _A ( nn.Module ): def __init__( self : Optional[Any] , __magic_name__ : int = 16 , __magic_name__ : int = 88 , __magic_name__ : Optional[int] = None , __magic_name__ : int = 1 , __magic_name__ : float = 0.0 , __magic_name__ : int = 32 , __magic_name__ : Optional[int] = None , __magic_name__ : bool = False , __magic_name__ : Optional[int] = None , __magic_name__ : Optional[int] = None , __magic_name__ : str = "geglu" , __magic_name__ : Optional[int] = None , ) -> Any: """simple docstring""" super().__init__() __snake_case : List[Any] = nn.ModuleList( [ TransformeraDModel( num_attention_heads=__magic_name__ , attention_head_dim=__magic_name__ , in_channels=__magic_name__ , num_layers=__magic_name__ , dropout=__magic_name__ , norm_num_groups=__magic_name__ , cross_attention_dim=__magic_name__ , attention_bias=__magic_name__ , sample_size=__magic_name__ , num_vector_embeds=__magic_name__ , activation_fn=__magic_name__ , num_embeds_ada_norm=__magic_name__ , ) for _ in range(2 ) ] ) # Variables that can be set by a pipeline: # The ratio of transformer1 to transformer2's output states to be combined during inference __snake_case : List[Any] = 0.5 # The shape of `encoder_hidden_states` is expected to be # `(batch_size, condition_lengths[0]+condition_lengths[1], num_features)` __snake_case : Any = [77, 2_57] # Which transformer to use to encode which condition. # E.g. `(1, 0)` means that we'll use `transformers[1](conditions[0])` and `transformers[0](conditions[1])` __snake_case : int = [1, 0] def lowercase__ ( self : List[str] , __magic_name__ : Optional[Any] , __magic_name__ : str , __magic_name__ : List[str]=None , __magic_name__ : int=None , __magic_name__ : Optional[Any]=None , __magic_name__ : bool = True , ) -> Dict: """simple docstring""" __snake_case : Optional[int] = hidden_states __snake_case : int = [] __snake_case : int = 0 # attention_mask is not used yet for i in range(2 ): # for each of the two transformers, pass the corresponding condition tokens __snake_case : Tuple = encoder_hidden_states[:, tokens_start : tokens_start + self.condition_lengths[i]] __snake_case : Tuple = self.transformer_index_for_condition[i] __snake_case : Optional[Any] = self.transformers[transformer_index]( __magic_name__ , encoder_hidden_states=__magic_name__ , timestep=__magic_name__ , cross_attention_kwargs=__magic_name__ , return_dict=__magic_name__ , )[0] encoded_states.append(encoded_state - input_states ) tokens_start += self.condition_lengths[i] __snake_case : List[Any] = encoded_states[0] * self.mix_ratio + encoded_states[1] * (1 - self.mix_ratio) __snake_case : List[str] = output_states + input_states if not return_dict: return (output_states,) return TransformeraDModelOutput(sample=__magic_name__ )
26
'''simple docstring''' import warnings from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding class _A ( __lowercase ): lowercase__: Any = ['''image_processor''', '''tokenizer'''] lowercase__: Any = '''CLIPImageProcessor''' lowercase__: Optional[Any] = ('''CLIPTokenizer''', '''CLIPTokenizerFast''') def __init__( self : int , __magic_name__ : Dict=None , __magic_name__ : Dict=None , **__magic_name__ : Union[str, Any] ) -> Any: """simple docstring""" __snake_case : Optional[Any] = None if "feature_extractor" in kwargs: warnings.warn( """The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`""" """ instead.""" , __magic_name__ , ) __snake_case : List[Any] = kwargs.pop("""feature_extractor""" ) __snake_case : List[str] = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError("""You need to specify an `image_processor`.""" ) if tokenizer is None: raise ValueError("""You need to specify a `tokenizer`.""" ) super().__init__(__magic_name__ , __magic_name__ ) def __call__( self : int , __magic_name__ : List[str]=None , __magic_name__ : Tuple=None , __magic_name__ : Any=None , **__magic_name__ : Union[str, Any] ) -> Optional[int]: """simple docstring""" if text is None and images is None: raise ValueError("""You have to specify either text or images. Both cannot be none.""" ) if text is not None: __snake_case : int = self.tokenizer(__magic_name__ , return_tensors=__magic_name__ , **__magic_name__ ) if images is not None: __snake_case : str = self.image_processor(__magic_name__ , return_tensors=__magic_name__ , **__magic_name__ ) if text is not None and images is not None: __snake_case : Union[str, Any] = image_features.pixel_values return encoding elif text is not None: return encoding else: return BatchEncoding(data=dict(**__magic_name__ ) , tensor_type=__magic_name__ ) def lowercase__ ( self : Optional[int] , *__magic_name__ : List[Any] , **__magic_name__ : Any ) -> Optional[Any]: """simple docstring""" return self.tokenizer.batch_decode(*__magic_name__ , **__magic_name__ ) def lowercase__ ( self : List[str] , *__magic_name__ : Tuple , **__magic_name__ : List[Any] ) -> int: """simple docstring""" return self.tokenizer.decode(*__magic_name__ , **__magic_name__ ) @property def lowercase__ ( self : List[Any] ) -> Optional[Any]: """simple docstring""" __snake_case : Dict = self.tokenizer.model_input_names __snake_case : str = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) ) @property def lowercase__ ( self : int ) -> List[str]: """simple docstring""" warnings.warn( """`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.""" , __magic_name__ , ) return self.image_processor_class @property def lowercase__ ( self : Union[str, Any] ) -> Dict: """simple docstring""" warnings.warn( """`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead.""" , __magic_name__ , ) return self.image_processor
26
1
'''simple docstring''' import argparse import os import re import packaging.version __UpperCamelCase = "examples/" __UpperCamelCase = { "examples": (re.compile(R"^check_min_version\(\"[^\"]+\"\)\s*$", re.MULTILINE), "check_min_version(\"VERSION\")\n"), "init": (re.compile(R"^__version__\s+=\s+\"([^\"]+)\"\s*$", re.MULTILINE), "__version__ = \"VERSION\"\n"), "setup": (re.compile(R"^(\s*)version\s*=\s*\"[^\"]+\",", re.MULTILINE), R"\1version=\"VERSION\","), "doc": (re.compile(R"^(\s*)release\s*=\s*\"[^\"]+\"$", re.MULTILINE), "release = \"VERSION\"\n"), } __UpperCamelCase = { "init": "src/transformers/__init__.py", "setup": "setup.py", } __UpperCamelCase = "README.md" def _a ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> Tuple: """simple docstring""" with open(_lowerCamelCase , """r""" , encoding="""utf-8""" , newline="""\n""" ) as f: __snake_case : Union[str, Any] = f.read() __snake_case , __snake_case : List[Any] = REPLACE_PATTERNS[pattern] __snake_case : Optional[Any] = replace.replace("""VERSION""" , _lowerCamelCase ) __snake_case : Optional[Any] = re_pattern.sub(_lowerCamelCase , _lowerCamelCase ) with open(_lowerCamelCase , """w""" , encoding="""utf-8""" , newline="""\n""" ) as f: f.write(_lowerCamelCase ) def _a ( _lowerCamelCase ) -> Union[str, Any]: """simple docstring""" for folder, directories, fnames in os.walk(_lowerCamelCase ): # Removing some of the folders with non-actively maintained examples from the walk if "research_projects" in directories: directories.remove("""research_projects""" ) if "legacy" in directories: directories.remove("""legacy""" ) for fname in fnames: if fname.endswith(""".py""" ): update_version_in_file(os.path.join(_lowerCamelCase , _lowerCamelCase ) , _lowerCamelCase , pattern="""examples""" ) def _a ( _lowerCamelCase , _lowerCamelCase=False ) -> str: """simple docstring""" for pattern, fname in REPLACE_FILES.items(): update_version_in_file(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) if not patch: update_version_in_examples(_lowerCamelCase ) def _a ( ) -> Optional[int]: """simple docstring""" __snake_case : str = """🤗 Transformers currently provides the following architectures""" __snake_case : List[Any] = """1. Want to contribute a new model?""" with open(_lowerCamelCase , """r""" , encoding="""utf-8""" , newline="""\n""" ) as f: __snake_case : List[str] = f.readlines() # Find the start of the list. __snake_case : Optional[Any] = 0 while not lines[start_index].startswith(_start_prompt ): start_index += 1 start_index += 1 __snake_case : int = start_index # Update the lines in the model list. while not lines[index].startswith(_end_prompt ): if lines[index].startswith("""1.""" ): __snake_case : Optional[Any] = lines[index].replace( """https://huggingface.co/docs/transformers/main/model_doc""" , """https://huggingface.co/docs/transformers/model_doc""" , ) index += 1 with open(_lowerCamelCase , """w""" , encoding="""utf-8""" , newline="""\n""" ) as f: f.writelines(_lowerCamelCase ) def _a ( ) -> Union[str, Any]: """simple docstring""" with open(REPLACE_FILES["""init"""] , """r""" ) as f: __snake_case : List[Any] = f.read() __snake_case : str = REPLACE_PATTERNS["""init"""][0].search(_lowerCamelCase ).groups()[0] return packaging.version.parse(_lowerCamelCase ) def _a ( _lowerCamelCase=False ) -> int: """simple docstring""" __snake_case : List[Any] = get_version() if patch and default_version.is_devrelease: raise ValueError("""Can't create a patch version from the dev branch, checkout a released version!""" ) if default_version.is_devrelease: __snake_case : str = default_version.base_version elif patch: __snake_case : Optional[int] = F'''{default_version.major}.{default_version.minor}.{default_version.micro + 1}''' else: __snake_case : Dict = F'''{default_version.major}.{default_version.minor + 1}.0''' # Now let's ask nicely if that's the right one. __snake_case : Dict = input(F'''Which version are you releasing? [{default_version}]''' ) if len(_lowerCamelCase ) == 0: __snake_case : Any = default_version print(F'''Updating version to {version}.''' ) global_version_update(_lowerCamelCase , patch=_lowerCamelCase ) if not patch: print("""Cleaning main README, don't forget to run `make fix-copies`.""" ) clean_main_ref_in_model_list() def _a ( ) -> Tuple: """simple docstring""" __snake_case : Optional[Any] = get_version() __snake_case : Tuple = F'''{current_version.major}.{current_version.minor + 1}.0.dev0''' __snake_case : Union[str, Any] = current_version.base_version # Check with the user we got that right. __snake_case : int = input(F'''Which version are we developing now? [{dev_version}]''' ) if len(_lowerCamelCase ) == 0: __snake_case : Optional[int] = dev_version print(F'''Updating version to {version}.''' ) global_version_update(_lowerCamelCase ) print("""Cleaning main README, don't forget to run `make fix-copies`.""" ) clean_main_ref_in_model_list() if __name__ == "__main__": __UpperCamelCase = argparse.ArgumentParser() parser.add_argument("--post_release", action="store_true", help="Whether this is pre or post release.") parser.add_argument("--patch", action="store_true", help="Whether or not this is a patch release.") __UpperCamelCase = parser.parse_args() if not args.post_release: pre_release_work(patch=args.patch) elif args.patch: print("Nothing to do after a patch :-)") else: post_release_work()
26
'''simple docstring''' import datasets import faiss import numpy as np import streamlit as st import torch from elasticsearch import Elasticsearch from elia_utils import ( embed_questions_for_retrieval, make_qa_sas_model, qa_sas_generate, query_es_index, query_qa_dense_index, ) import transformers from transformers import AutoModel, AutoModelForSeqaSeqLM, AutoTokenizer __UpperCamelCase = "bart" __UpperCamelCase = True @st.cache(allow_output_mutation=_lowerCamelCase ) def _a ( ) -> Union[str, Any]: """simple docstring""" if LOAD_DENSE_INDEX: __snake_case : int = AutoTokenizer.from_pretrained("""yjernite/retribert-base-uncased""" ) __snake_case : Tuple = AutoModel.from_pretrained("""yjernite/retribert-base-uncased""" ).to("""cuda:0""" ) __snake_case : List[Any] = qar_model.eval() else: __snake_case , __snake_case : Optional[Any] = (None, None) if MODEL_TYPE == "bart": __snake_case : List[str] = AutoTokenizer.from_pretrained("""yjernite/bart_eli5""" ) __snake_case : Any = AutoModelForSeqaSeqLM.from_pretrained("""yjernite/bart_eli5""" ).to("""cuda:0""" ) __snake_case : int = torch.load("""seq2seq_models/eli5_bart_model_blm_2.pth""" ) sas_model.load_state_dict(save_dict["""model"""] ) __snake_case : int = sas_model.eval() else: __snake_case , __snake_case : Dict = make_qa_sas_model( model_name="""t5-small""" , from_file="""seq2seq_models/eli5_t5_model_1024_4.pth""" , device="""cuda:0""" ) return (qar_tokenizer, qar_model, sas_tokenizer, sas_model) @st.cache(allow_output_mutation=_lowerCamelCase ) def _a ( ) -> Tuple: """simple docstring""" if LOAD_DENSE_INDEX: __snake_case : Tuple = faiss.StandardGpuResources() __snake_case : Optional[Any] = datasets.load_dataset(path="""wiki_snippets""" , name="""wiki40b_en_100_0""" )["""train"""] __snake_case : str = np.memmap( """wiki40b_passages_reps_32_l-8_h-768_b-512-512.dat""" , dtype="""float32""" , mode="""r""" , shape=(wikiaab_passages.num_rows, 128) , ) __snake_case : Optional[int] = faiss.IndexFlatIP(128 ) __snake_case : Any = faiss.index_cpu_to_gpu(_lowerCamelCase , 1 , _lowerCamelCase ) wikiaab_gpu_index_flat.add(_lowerCamelCase ) # TODO fix for larger GPU else: __snake_case , __snake_case : Tuple = (None, None) __snake_case : List[str] = Elasticsearch([{"""host""": """localhost""", """port""": """9200"""}] ) return (wikiaab_passages, wikiaab_gpu_index_flat, es_client) @st.cache(allow_output_mutation=_lowerCamelCase ) def _a ( ) -> List[Any]: """simple docstring""" __snake_case : Tuple = datasets.load_dataset("""eli5""" , name="""LFQA_reddit""" ) __snake_case : Dict = elia["""train_eli5"""] __snake_case : int = np.memmap( """eli5_questions_reps.dat""" , dtype="""float32""" , mode="""r""" , shape=(elia_train.num_rows, 128) ) __snake_case : Dict = faiss.IndexFlatIP(128 ) eli5_train_q_index.add(_lowerCamelCase ) return (elia_train, eli5_train_q_index) __UpperCamelCase , __UpperCamelCase , __UpperCamelCase = load_indexes() __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase = load_models() __UpperCamelCase , __UpperCamelCase = load_train_data() def _a ( _lowerCamelCase , _lowerCamelCase=10 ) -> int: """simple docstring""" __snake_case : Optional[int] = embed_questions_for_retrieval([question] , _lowerCamelCase , _lowerCamelCase ) __snake_case , __snake_case : Tuple = eli5_train_q_index.search(_lowerCamelCase , _lowerCamelCase ) __snake_case : Tuple = [elia_train[int(_lowerCamelCase )] for i in I[0]] return nn_examples def _a ( _lowerCamelCase , _lowerCamelCase="wiki40b" , _lowerCamelCase="dense" , _lowerCamelCase=10 ) -> Optional[Any]: """simple docstring""" if source == "none": __snake_case , __snake_case : Dict = (""" <P> """.join(["""""" for _ in range(11 )] ).strip(), []) else: if method == "dense": __snake_case , __snake_case : Dict = query_qa_dense_index( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) else: __snake_case , __snake_case : str = query_es_index( _lowerCamelCase , _lowerCamelCase , index_name="""english_wiki40b_snippets_100w""" , n_results=_lowerCamelCase , ) __snake_case : Optional[int] = [ (res["""article_title"""], res["""section_title"""].strip(), res["""score"""], res["""passage_text"""]) for res in hit_lst ] __snake_case : Optional[Any] = """question: {} context: {}""".format(_lowerCamelCase , _lowerCamelCase ) return question_doc, support_list @st.cache( hash_funcs={ torch.Tensor: (lambda _lowerCamelCase : None), transformers.models.bart.tokenization_bart.BartTokenizer: (lambda _lowerCamelCase : None), } ) def _a ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase=64 , _lowerCamelCase=256 , _lowerCamelCase=False , _lowerCamelCase=2 , _lowerCamelCase=0.95 , _lowerCamelCase=0.8 ) -> List[str]: """simple docstring""" with torch.no_grad(): __snake_case : Union[str, Any] = qa_sas_generate( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , num_answers=1 , num_beams=_lowerCamelCase , min_len=_lowerCamelCase , max_len=_lowerCamelCase , do_sample=_lowerCamelCase , temp=_lowerCamelCase , top_p=_lowerCamelCase , top_k=_lowerCamelCase , max_input_length=1024 , device="""cuda:0""" , )[0] return (answer, support_list) st.title("Long Form Question Answering with ELI5") # Start sidebar __UpperCamelCase = "<img src='https://huggingface.co/front/assets/huggingface_logo.svg'>" __UpperCamelCase = "\n<html>\n <head>\n <style>\n .img-container {\n padding-left: 90px;\n padding-right: 90px;\n padding-top: 50px;\n padding-bottom: 50px;\n background-color: #f0f3f9;\n }\n </style>\n </head>\n <body>\n <span class=\"img-container\"> <!-- Inline parent element -->\n %s\n </span>\n </body>\n</html>\n" % ( header_html, ) st.sidebar.markdown( header_full, unsafe_allow_html=True, ) # Long Form QA with ELI5 and Wikipedia __UpperCamelCase = "\nThis demo presents a model trained to [provide long-form answers to open-domain questions](https://yjernite.github.io/lfqa.html).\nFirst, a document retriever fetches a set of relevant Wikipedia passages given the question from the [Wiki40b](https://research.google/pubs/pub49029/) dataset,\na pre-processed fixed snapshot of Wikipedia.\n" st.sidebar.markdown(description, unsafe_allow_html=True) __UpperCamelCase = [ "Answer the question", "View the retrieved document only", "View the most similar ELI5 question and answer", "Show me everything, please!", ] __UpperCamelCase = st.sidebar.checkbox("Demo options") if demo_options: __UpperCamelCase = st.sidebar.selectbox( "", action_list, index=3, ) __UpperCamelCase = action_list.index(action_st) __UpperCamelCase = st.sidebar.selectbox( "", ["Show full text of passages", "Show passage section titles"], index=0, ) __UpperCamelCase = show_type == "Show full text of passages" else: __UpperCamelCase = 3 __UpperCamelCase = True __UpperCamelCase = st.sidebar.checkbox("Retrieval options") if retrieval_options: __UpperCamelCase = "\n ### Information retriever options\n\n The **sparse** retriever uses ElasticSearch, while the **dense** retriever uses max-inner-product search between a question and passage embedding\n trained using the [ELI5](https://arxiv.org/abs/1907.09190) questions-answer pairs.\n The answer is then generated by sequence to sequence model which takes the question and retrieved document as input.\n " st.sidebar.markdown(retriever_info) __UpperCamelCase = st.sidebar.selectbox("Which Wikipedia format should the model use?", ["wiki40b", "none"]) __UpperCamelCase = st.sidebar.selectbox("Which Wikipedia indexer should the model use?", ["dense", "sparse", "mixed"]) else: __UpperCamelCase = "wiki40b" __UpperCamelCase = "dense" __UpperCamelCase = "beam" __UpperCamelCase = 2 __UpperCamelCase = 64 __UpperCamelCase = 256 __UpperCamelCase = None __UpperCamelCase = None __UpperCamelCase = st.sidebar.checkbox("Generation options") if generate_options: __UpperCamelCase = "\n ### Answer generation options\n\n The sequence-to-sequence model was initialized with [BART](https://huggingface.co/facebook/bart-large)\n weights and fine-tuned on the ELI5 QA pairs and retrieved documents. You can use the model for greedy decoding with\n **beam** search, or **sample** from the decoder's output probabilities.\n " st.sidebar.markdown(generate_info) __UpperCamelCase = st.sidebar.selectbox("Would you like to use beam search or sample an answer?", ["beam", "sampled"]) __UpperCamelCase = st.sidebar.slider( "Minimum generation length", min_value=8, max_value=256, value=64, step=8, format=None, key=None ) __UpperCamelCase = st.sidebar.slider( "Maximum generation length", min_value=64, max_value=512, value=256, step=16, format=None, key=None ) if sampled == "beam": __UpperCamelCase = st.sidebar.slider("Beam size", min_value=1, max_value=8, value=2, step=None, format=None, key=None) else: __UpperCamelCase = st.sidebar.slider( "Nucleus sampling p", min_value=0.1, max_value=1.0, value=0.95, step=0.01, format=None, key=None ) __UpperCamelCase = st.sidebar.slider( "Temperature", min_value=0.1, max_value=1.0, value=0.7, step=0.01, format=None, key=None ) __UpperCamelCase = None # start main text __UpperCamelCase = [ "<MY QUESTION>", "How do people make chocolate?", "Why do we get a fever when we are sick?", "How can different animals perceive different colors?", "What is natural language processing?", "What's the best way to treat a sunburn?", "What exactly are vitamins ?", "How does nuclear energy provide electricity?", "What's the difference between viruses and bacteria?", "Why are flutes classified as woodwinds when most of them are made out of metal ?", "Why do people like drinking coffee even though it tastes so bad?", "What happens when wine ages? How does it make the wine taste better?", "If an animal is an herbivore, where does it get the protein that it needs to survive if it only eats grass?", "How can we set a date to the beginning or end of an artistic period? Doesn't the change happen gradually?", "How does New Zealand have so many large bird predators?", ] __UpperCamelCase = st.selectbox( "What would you like to ask? ---- select <MY QUESTION> to enter a new query", questions_list, index=1, ) if question_s == "<MY QUESTION>": __UpperCamelCase = st.text_input("Enter your question here:", "") else: __UpperCamelCase = question_s if st.button("Show me!"): if action in [0, 1, 3]: if index_type == "mixed": __UpperCamelCase , __UpperCamelCase = make_support(question, source=wiki_source, method="dense", n_results=10) __UpperCamelCase , __UpperCamelCase = make_support(question, source=wiki_source, method="sparse", n_results=10) __UpperCamelCase = [] for res_d, res_s in zip(support_list_dense, support_list_sparse): if tuple(res_d) not in support_list: support_list += [tuple(res_d)] if tuple(res_s) not in support_list: support_list += [tuple(res_s)] __UpperCamelCase = support_list[:10] __UpperCamelCase = "<P> " + " <P> ".join([res[-1] for res in support_list]) else: __UpperCamelCase , __UpperCamelCase = make_support(question, source=wiki_source, method=index_type, n_results=10) if action in [0, 3]: __UpperCamelCase , __UpperCamelCase = answer_question( question_doc, sas_model, sas_tokenizer, min_len=min_len, max_len=int(max_len), sampling=(sampled == "sampled"), n_beams=n_beams, top_p=top_p, temp=temp, ) st.markdown("### The model generated answer is:") st.write(answer) if action in [0, 1, 3] and wiki_source != "none": st.markdown("--- \n ### The model is drawing information from the following Wikipedia passages:") for i, res in enumerate(support_list): __UpperCamelCase = "https://en.wikipedia.org/wiki/{}".format(res[0].replace(" ", "_")) __UpperCamelCase = res[1].strip() if sec_titles == "": __UpperCamelCase = "[{}]({})".format(res[0], wiki_url) else: __UpperCamelCase = sec_titles.split(" & ") __UpperCamelCase = " & ".join( ["[{}]({}#{})".format(sec.strip(), wiki_url, sec.strip().replace(" ", "_")) for sec in sec_list] ) st.markdown( "{0:02d} - **Article**: {1:<18} <br> _Section_: {2}".format(i + 1, res[0], sections), unsafe_allow_html=True, ) if show_passages: st.write( "> <span style=\"font-family:arial; font-size:10pt;\">" + res[-1] + "</span>", unsafe_allow_html=True ) if action in [2, 3]: __UpperCamelCase = find_nearest_training(question) __UpperCamelCase = nn_train_list[0] st.markdown( "--- \n ### The most similar question in the ELI5 training set was: \n\n {}".format(train_exple["title"]) ) __UpperCamelCase = [ "{}. {}".format(i + 1, " \n".join([line.strip() for line in ans.split("\n") if line.strip() != ""])) for i, (ans, sc) in enumerate(zip(train_exple["answers"]["text"], train_exple["answers"]["score"])) if i == 0 or sc > 2 ] st.markdown("##### Its answers were: \n\n {}".format("\n".join(answers_st))) __UpperCamelCase = "\n---\n\n**Disclaimer**\n\n*The intent of this app is to provide some (hopefully entertaining) insights into the behavior of a current LFQA system.\nEvaluating biases of such a model and ensuring factual generations are still very much open research problems.\nTherefore, until some significant progress is achieved, we caution against using the generated answers for practical purposes.*\n" st.sidebar.markdown(disclaimer, unsafe_allow_html=True)
26
1
'''simple docstring''' import math from dataclasses import dataclass from typing import Optional, Tuple, Union import numpy as np import torch from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput, randn_tensor from .scheduling_utils import SchedulerMixin @dataclass # Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput with DDPM->UnCLIP class _A ( __lowercase ): lowercase__: torch.FloatTensor lowercase__: Optional[torch.FloatTensor] = None def _a ( _lowerCamelCase , _lowerCamelCase=0.9_99 , _lowerCamelCase="cosine" , ) -> int: """simple docstring""" if alpha_transform_type == "cosine": def alpha_bar_fn(_lowerCamelCase ): return math.cos((t + 0.0_08) / 1.0_08 * math.pi / 2 ) ** 2 elif alpha_transform_type == "exp": def alpha_bar_fn(_lowerCamelCase ): return math.exp(t * -12.0 ) else: raise ValueError(F'''Unsupported alpha_tranform_type: {alpha_transform_type}''' ) __snake_case : Dict = [] for i in range(_lowerCamelCase ): __snake_case : List[Any] = i / num_diffusion_timesteps __snake_case : str = (i + 1) / num_diffusion_timesteps betas.append(min(1 - alpha_bar_fn(_lowerCamelCase ) / alpha_bar_fn(_lowerCamelCase ) , _lowerCamelCase ) ) return torch.tensor(_lowerCamelCase , dtype=torch.floataa ) class _A ( __lowercase , __lowercase ): @register_to_config def __init__( self : Optional[Any] , __magic_name__ : int = 10_00 , __magic_name__ : str = "fixed_small_log" , __magic_name__ : bool = True , __magic_name__ : Optional[float] = 1.0 , __magic_name__ : str = "epsilon" , __magic_name__ : str = "squaredcos_cap_v2" , ) -> List[Any]: """simple docstring""" if beta_schedule != "squaredcos_cap_v2": raise ValueError("""UnCLIPScheduler only supports `beta_schedule`: 'squaredcos_cap_v2'""" ) __snake_case : Optional[int] = betas_for_alpha_bar(__magic_name__ ) __snake_case : List[str] = 1.0 - self.betas __snake_case : Optional[Any] = torch.cumprod(self.alphas , dim=0 ) __snake_case : Any = torch.tensor(1.0 ) # standard deviation of the initial noise distribution __snake_case : int = 1.0 # setable values __snake_case : Union[str, Any] = None __snake_case : Any = torch.from_numpy(np.arange(0 , __magic_name__ )[::-1].copy() ) __snake_case : Optional[Any] = variance_type def lowercase__ ( self : Optional[Any] , __magic_name__ : torch.FloatTensor , __magic_name__ : Optional[int] = None ) -> torch.FloatTensor: """simple docstring""" return sample def lowercase__ ( self : Optional[Any] , __magic_name__ : int , __magic_name__ : Union[str, torch.device] = None ) -> Union[str, Any]: """simple docstring""" __snake_case : Optional[Any] = num_inference_steps __snake_case : Optional[int] = (self.config.num_train_timesteps - 1) / (self.num_inference_steps - 1) __snake_case : int = (np.arange(0 , __magic_name__ ) * step_ratio).round()[::-1].copy().astype(np.intaa ) __snake_case : str = torch.from_numpy(__magic_name__ ).to(__magic_name__ ) def lowercase__ ( self : List[Any] , __magic_name__ : Optional[Any] , __magic_name__ : str=None , __magic_name__ : int=None , __magic_name__ : List[Any]=None ) -> List[Any]: """simple docstring""" if prev_timestep is None: __snake_case : Union[str, Any] = t - 1 __snake_case : Optional[int] = self.alphas_cumprod[t] __snake_case : Optional[Any] = self.alphas_cumprod[prev_timestep] if prev_timestep >= 0 else self.one __snake_case : Union[str, Any] = 1 - alpha_prod_t __snake_case : int = 1 - alpha_prod_t_prev if prev_timestep == t - 1: __snake_case : Union[str, Any] = self.betas[t] else: __snake_case : Tuple = 1 - alpha_prod_t / alpha_prod_t_prev # For t > 0, compute predicted variance βt (see formula (6) and (7) from https://arxiv.org/pdf/2006.11239.pdf) # and sample from it to get previous sample # x_{t-1} ~ N(pred_prev_sample, variance) == add variance to pred_sample __snake_case : Union[str, Any] = beta_prod_t_prev / beta_prod_t * beta if variance_type is None: __snake_case : Optional[int] = self.config.variance_type # hacks - were probably added for training stability if variance_type == "fixed_small_log": __snake_case : int = torch.log(torch.clamp(__magic_name__ , min=1E-20 ) ) __snake_case : List[Any] = torch.exp(0.5 * variance ) elif variance_type == "learned_range": # NOTE difference with DDPM scheduler __snake_case : Tuple = variance.log() __snake_case : str = beta.log() __snake_case : int = (predicted_variance + 1) / 2 __snake_case : Tuple = frac * max_log + (1 - frac) * min_log return variance def lowercase__ ( self : str , __magic_name__ : torch.FloatTensor , __magic_name__ : int , __magic_name__ : torch.FloatTensor , __magic_name__ : Optional[int] = None , __magic_name__ : Dict=None , __magic_name__ : bool = True , ) -> Union[UnCLIPSchedulerOutput, Tuple]: """simple docstring""" __snake_case : Any = timestep if model_output.shape[1] == sample.shape[1] * 2 and self.variance_type == "learned_range": __snake_case , __snake_case : Optional[Any] = torch.split(__magic_name__ , sample.shape[1] , dim=1 ) else: __snake_case : Tuple = None # 1. compute alphas, betas if prev_timestep is None: __snake_case : Tuple = t - 1 __snake_case : Union[str, Any] = self.alphas_cumprod[t] __snake_case : List[Any] = self.alphas_cumprod[prev_timestep] if prev_timestep >= 0 else self.one __snake_case : Optional[int] = 1 - alpha_prod_t __snake_case : Tuple = 1 - alpha_prod_t_prev if prev_timestep == t - 1: __snake_case : List[Any] = self.betas[t] __snake_case : List[Any] = self.alphas[t] else: __snake_case : int = 1 - alpha_prod_t / alpha_prod_t_prev __snake_case : Optional[Any] = 1 - beta # 2. compute predicted original sample from predicted noise also called # "predicted x_0" of formula (15) from https://arxiv.org/pdf/2006.11239.pdf if self.config.prediction_type == "epsilon": __snake_case : List[str] = (sample - beta_prod_t ** 0.5 * model_output) / alpha_prod_t ** 0.5 elif self.config.prediction_type == "sample": __snake_case : Optional[Any] = model_output else: raise ValueError( f'''prediction_type given as {self.config.prediction_type} must be one of `epsilon` or `sample`''' """ for the UnCLIPScheduler.""" ) # 3. Clip "predicted x_0" if self.config.clip_sample: __snake_case : Tuple = torch.clamp( __magic_name__ , -self.config.clip_sample_range , self.config.clip_sample_range ) # 4. Compute coefficients for pred_original_sample x_0 and current sample x_t # See formula (7) from https://arxiv.org/pdf/2006.11239.pdf __snake_case : Union[str, Any] = (alpha_prod_t_prev ** 0.5 * beta) / beta_prod_t __snake_case : List[Any] = alpha ** 0.5 * beta_prod_t_prev / beta_prod_t # 5. Compute predicted previous sample µ_t # See formula (7) from https://arxiv.org/pdf/2006.11239.pdf __snake_case : List[Any] = pred_original_sample_coeff * pred_original_sample + current_sample_coeff * sample # 6. Add noise __snake_case : List[str] = 0 if t > 0: __snake_case : Dict = randn_tensor( model_output.shape , dtype=model_output.dtype , generator=__magic_name__ , device=model_output.device ) __snake_case : Union[str, Any] = self._get_variance( __magic_name__ , predicted_variance=__magic_name__ , prev_timestep=__magic_name__ , ) if self.variance_type == "fixed_small_log": __snake_case : Tuple = variance elif self.variance_type == "learned_range": __snake_case : int = (0.5 * variance).exp() else: raise ValueError( f'''variance_type given as {self.variance_type} must be one of `fixed_small_log` or `learned_range`''' """ for the UnCLIPScheduler.""" ) __snake_case : List[Any] = variance * variance_noise __snake_case : int = pred_prev_sample + variance if not return_dict: return (pred_prev_sample,) return UnCLIPSchedulerOutput(prev_sample=__magic_name__ , pred_original_sample=__magic_name__ ) def lowercase__ ( self : List[str] , __magic_name__ : torch.FloatTensor , __magic_name__ : torch.FloatTensor , __magic_name__ : torch.IntTensor , ) -> torch.FloatTensor: """simple docstring""" __snake_case : str = self.alphas_cumprod.to(device=original_samples.device , dtype=original_samples.dtype ) __snake_case : Tuple = timesteps.to(original_samples.device ) __snake_case : List[str] = alphas_cumprod[timesteps] ** 0.5 __snake_case : Any = sqrt_alpha_prod.flatten() while len(sqrt_alpha_prod.shape ) < len(original_samples.shape ): __snake_case : Union[str, Any] = sqrt_alpha_prod.unsqueeze(-1 ) __snake_case : List[str] = (1 - alphas_cumprod[timesteps]) ** 0.5 __snake_case : str = sqrt_one_minus_alpha_prod.flatten() while len(sqrt_one_minus_alpha_prod.shape ) < len(original_samples.shape ): __snake_case : Optional[Any] = sqrt_one_minus_alpha_prod.unsqueeze(-1 ) __snake_case : List[str] = sqrt_alpha_prod * original_samples + sqrt_one_minus_alpha_prod * noise return noisy_samples
26
'''simple docstring''' import warnings from ...utils import logging from .image_processing_owlvit import OwlViTImageProcessor __UpperCamelCase = logging.get_logger(__name__) class _A ( __lowercase ): def __init__( self : int , *__magic_name__ : Optional[Any] , **__magic_name__ : Any ) -> None: """simple docstring""" warnings.warn( """The class OwlViTFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please""" """ use OwlViTImageProcessor instead.""" , __magic_name__ , ) super().__init__(*__magic_name__ , **__magic_name__ )
26
1
'''simple docstring''' from statistics import mean, stdev def _a ( _lowerCamelCase , _lowerCamelCase = 3 ) -> list: """simple docstring""" __snake_case : Dict = min(_lowerCamelCase ) __snake_case : int = max(_lowerCamelCase ) # normalize data return [round((x - x_min) / (x_max - x_min) , _lowerCamelCase ) for x in data] def _a ( _lowerCamelCase , _lowerCamelCase = 3 ) -> list: """simple docstring""" __snake_case : List[str] = mean(_lowerCamelCase ) __snake_case : Any = stdev(_lowerCamelCase ) # standardize data return [round((x - mu) / (sigma) , _lowerCamelCase ) for x in data]
26
'''simple docstring''' import argparse import torch from transformers import BlenderbotConfig, BlenderbotForConditionalGeneration from transformers.utils import logging logging.set_verbosity_info() __UpperCamelCase = logging.get_logger(__name__) __UpperCamelCase = [ ["attention", "attn"], ["encoder_attention", "encoder_attn"], ["q_lin", "q_proj"], ["k_lin", "k_proj"], ["v_lin", "v_proj"], ["out_lin", "out_proj"], ["norm_embeddings", "layernorm_embedding"], ["position_embeddings", "embed_positions"], ["embeddings", "embed_tokens"], ["ffn.lin", "fc"], ] def _a ( _lowerCamelCase ) -> Union[str, Any]: """simple docstring""" if k == "embeddings.weight": return "shared.weight" for parlai_name, hf_name in PATTERNS: __snake_case : List[str] = k.replace(_lowerCamelCase , _lowerCamelCase ) if k.startswith("""encoder""" ): __snake_case : Optional[int] = k.replace(""".attn""" , """.self_attn""" ) __snake_case : Tuple = k.replace("""norm1""" , """self_attn_layer_norm""" ) __snake_case : List[str] = k.replace("""norm2""" , """final_layer_norm""" ) elif k.startswith("""decoder""" ): __snake_case : List[Any] = k.replace("""norm1""" , """self_attn_layer_norm""" ) __snake_case : str = k.replace("""norm2""" , """encoder_attn_layer_norm""" ) __snake_case : Optional[int] = k.replace("""norm3""" , """final_layer_norm""" ) return k def _a ( _lowerCamelCase ) -> Any: """simple docstring""" __snake_case : Optional[int] = [ """model.encoder.layernorm_embedding.weight""", """model.encoder.layernorm_embedding.bias""", """model.decoder.layernorm_embedding.weight""", """model.decoder.layernorm_embedding.bias""", ] for k in keys: __snake_case : Optional[Any] = sd.pop(_lowerCamelCase ) __snake_case : List[str] = k.replace("""layernorm_embedding""" , """layer_norm""" ) assert new_k not in sd __snake_case : Union[str, Any] = v __UpperCamelCase = ["START"] @torch.no_grad() def _a ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> Dict: """simple docstring""" __snake_case : Optional[int] = torch.load(_lowerCamelCase , map_location="""cpu""" ) __snake_case : Dict = model["""model"""] __snake_case : Optional[int] = BlenderbotConfig.from_json_file(_lowerCamelCase ) __snake_case : Union[str, Any] = BlenderbotForConditionalGeneration(_lowerCamelCase ) __snake_case : List[Any] = m.model.state_dict().keys() __snake_case : int = [] __snake_case : Union[str, Any] = {} for k, v in sd.items(): if k in IGNORE_KEYS: continue __snake_case : Optional[int] = rename_state_dict_key(_lowerCamelCase ) if new_k not in valid_keys: failures.append([k, new_k] ) else: __snake_case : str = v if cfg.normalize_before: # Blenderbot-3B checkpoints. Rename layernorm_embedding -> layer_norm rename_layernorm_keys(_lowerCamelCase ) m.model.load_state_dict(_lowerCamelCase , strict=_lowerCamelCase ) m.half() m.save_pretrained(_lowerCamelCase ) if __name__ == "__main__": __UpperCamelCase = argparse.ArgumentParser() # Required parameters parser.add_argument("--src_path", type=str, help="like blenderbot-model.bin") parser.add_argument("--save_dir", default="hf_blenderbot", type=str, help="Where to save converted model.") parser.add_argument( "--hf_config_json", default="blenderbot-3b-config.json", type=str, help="Path to config to use" ) __UpperCamelCase = parser.parse_args() convert_parlai_checkpoint(args.src_path, args.save_dir, args.hf_config_json)
26
1
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tf_available, is_tokenizers_available, is_torch_available, ) __UpperCamelCase = {"configuration_xlnet": ["XLNET_PRETRAINED_CONFIG_ARCHIVE_MAP", "XLNetConfig"]} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCamelCase = ["XLNetTokenizer"] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCamelCase = ["XLNetTokenizerFast"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCamelCase = [ "XLNET_PRETRAINED_MODEL_ARCHIVE_LIST", "XLNetForMultipleChoice", "XLNetForQuestionAnswering", "XLNetForQuestionAnsweringSimple", "XLNetForSequenceClassification", "XLNetForTokenClassification", "XLNetLMHeadModel", "XLNetModel", "XLNetPreTrainedModel", "load_tf_weights_in_xlnet", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCamelCase = [ "TF_XLNET_PRETRAINED_MODEL_ARCHIVE_LIST", "TFXLNetForMultipleChoice", "TFXLNetForQuestionAnsweringSimple", "TFXLNetForSequenceClassification", "TFXLNetForTokenClassification", "TFXLNetLMHeadModel", "TFXLNetMainLayer", "TFXLNetModel", "TFXLNetPreTrainedModel", ] if TYPE_CHECKING: from .configuration_xlnet import XLNET_PRETRAINED_CONFIG_ARCHIVE_MAP, XLNetConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_xlnet import XLNetTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_xlnet_fast import XLNetTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_xlnet import ( XLNET_PRETRAINED_MODEL_ARCHIVE_LIST, XLNetForMultipleChoice, XLNetForQuestionAnswering, XLNetForQuestionAnsweringSimple, XLNetForSequenceClassification, XLNetForTokenClassification, XLNetLMHeadModel, XLNetModel, XLNetPreTrainedModel, load_tf_weights_in_xlnet, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_xlnet import ( TF_XLNET_PRETRAINED_MODEL_ARCHIVE_LIST, TFXLNetForMultipleChoice, TFXLNetForQuestionAnsweringSimple, TFXLNetForSequenceClassification, TFXLNetForTokenClassification, TFXLNetLMHeadModel, TFXLNetMainLayer, TFXLNetModel, TFXLNetPreTrainedModel, ) else: import sys __UpperCamelCase = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
26
'''simple docstring''' import argparse import os import re import packaging.version __UpperCamelCase = "examples/" __UpperCamelCase = { "examples": (re.compile(R"^check_min_version\(\"[^\"]+\"\)\s*$", re.MULTILINE), "check_min_version(\"VERSION\")\n"), "init": (re.compile(R"^__version__\s+=\s+\"([^\"]+)\"\s*$", re.MULTILINE), "__version__ = \"VERSION\"\n"), "setup": (re.compile(R"^(\s*)version\s*=\s*\"[^\"]+\",", re.MULTILINE), R"\1version=\"VERSION\","), "doc": (re.compile(R"^(\s*)release\s*=\s*\"[^\"]+\"$", re.MULTILINE), "release = \"VERSION\"\n"), } __UpperCamelCase = { "init": "src/transformers/__init__.py", "setup": "setup.py", } __UpperCamelCase = "README.md" def _a ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> Tuple: """simple docstring""" with open(_lowerCamelCase , """r""" , encoding="""utf-8""" , newline="""\n""" ) as f: __snake_case : Union[str, Any] = f.read() __snake_case , __snake_case : List[Any] = REPLACE_PATTERNS[pattern] __snake_case : Optional[Any] = replace.replace("""VERSION""" , _lowerCamelCase ) __snake_case : Optional[Any] = re_pattern.sub(_lowerCamelCase , _lowerCamelCase ) with open(_lowerCamelCase , """w""" , encoding="""utf-8""" , newline="""\n""" ) as f: f.write(_lowerCamelCase ) def _a ( _lowerCamelCase ) -> Union[str, Any]: """simple docstring""" for folder, directories, fnames in os.walk(_lowerCamelCase ): # Removing some of the folders with non-actively maintained examples from the walk if "research_projects" in directories: directories.remove("""research_projects""" ) if "legacy" in directories: directories.remove("""legacy""" ) for fname in fnames: if fname.endswith(""".py""" ): update_version_in_file(os.path.join(_lowerCamelCase , _lowerCamelCase ) , _lowerCamelCase , pattern="""examples""" ) def _a ( _lowerCamelCase , _lowerCamelCase=False ) -> str: """simple docstring""" for pattern, fname in REPLACE_FILES.items(): update_version_in_file(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) if not patch: update_version_in_examples(_lowerCamelCase ) def _a ( ) -> Optional[int]: """simple docstring""" __snake_case : str = """🤗 Transformers currently provides the following architectures""" __snake_case : List[Any] = """1. Want to contribute a new model?""" with open(_lowerCamelCase , """r""" , encoding="""utf-8""" , newline="""\n""" ) as f: __snake_case : List[str] = f.readlines() # Find the start of the list. __snake_case : Optional[Any] = 0 while not lines[start_index].startswith(_start_prompt ): start_index += 1 start_index += 1 __snake_case : int = start_index # Update the lines in the model list. while not lines[index].startswith(_end_prompt ): if lines[index].startswith("""1.""" ): __snake_case : Optional[Any] = lines[index].replace( """https://huggingface.co/docs/transformers/main/model_doc""" , """https://huggingface.co/docs/transformers/model_doc""" , ) index += 1 with open(_lowerCamelCase , """w""" , encoding="""utf-8""" , newline="""\n""" ) as f: f.writelines(_lowerCamelCase ) def _a ( ) -> Union[str, Any]: """simple docstring""" with open(REPLACE_FILES["""init"""] , """r""" ) as f: __snake_case : List[Any] = f.read() __snake_case : str = REPLACE_PATTERNS["""init"""][0].search(_lowerCamelCase ).groups()[0] return packaging.version.parse(_lowerCamelCase ) def _a ( _lowerCamelCase=False ) -> int: """simple docstring""" __snake_case : List[Any] = get_version() if patch and default_version.is_devrelease: raise ValueError("""Can't create a patch version from the dev branch, checkout a released version!""" ) if default_version.is_devrelease: __snake_case : str = default_version.base_version elif patch: __snake_case : Optional[int] = F'''{default_version.major}.{default_version.minor}.{default_version.micro + 1}''' else: __snake_case : Dict = F'''{default_version.major}.{default_version.minor + 1}.0''' # Now let's ask nicely if that's the right one. __snake_case : Dict = input(F'''Which version are you releasing? [{default_version}]''' ) if len(_lowerCamelCase ) == 0: __snake_case : Any = default_version print(F'''Updating version to {version}.''' ) global_version_update(_lowerCamelCase , patch=_lowerCamelCase ) if not patch: print("""Cleaning main README, don't forget to run `make fix-copies`.""" ) clean_main_ref_in_model_list() def _a ( ) -> Tuple: """simple docstring""" __snake_case : Optional[Any] = get_version() __snake_case : Tuple = F'''{current_version.major}.{current_version.minor + 1}.0.dev0''' __snake_case : Union[str, Any] = current_version.base_version # Check with the user we got that right. __snake_case : int = input(F'''Which version are we developing now? [{dev_version}]''' ) if len(_lowerCamelCase ) == 0: __snake_case : Optional[int] = dev_version print(F'''Updating version to {version}.''' ) global_version_update(_lowerCamelCase ) print("""Cleaning main README, don't forget to run `make fix-copies`.""" ) clean_main_ref_in_model_list() if __name__ == "__main__": __UpperCamelCase = argparse.ArgumentParser() parser.add_argument("--post_release", action="store_true", help="Whether this is pre or post release.") parser.add_argument("--patch", action="store_true", help="Whether or not this is a patch release.") __UpperCamelCase = parser.parse_args() if not args.post_release: pre_release_work(patch=args.patch) elif args.patch: print("Nothing to do after a patch :-)") else: post_release_work()
26
1
'''simple docstring''' import unittest from datasets import load_dataset from transformers.pipelines import pipeline from transformers.testing_utils import is_pipeline_test, nested_simplify, require_torch, slow @is_pipeline_test @require_torch class _A ( unittest.TestCase ): @require_torch def lowercase__ ( self : int ) -> List[str]: """simple docstring""" __snake_case : Any = pipeline( task="""zero-shot-audio-classification""" , model="""hf-internal-testing/tiny-clap-htsat-unfused""" ) __snake_case : Optional[Any] = load_dataset("""ashraq/esc50""" ) __snake_case : Dict = dataset["""train"""]["""audio"""][-1]["""array"""] __snake_case : str = audio_classifier(__magic_name__ , candidate_labels=["""Sound of a dog""", """Sound of vaccum cleaner"""] ) self.assertEqual( nested_simplify(__magic_name__ ) , [{"""score""": 0.501, """label""": """Sound of a dog"""}, {"""score""": 0.499, """label""": """Sound of vaccum cleaner"""}] , ) @unittest.skip("""No models are available in TF""" ) def lowercase__ ( self : Union[str, Any] ) -> str: """simple docstring""" pass @slow @require_torch def lowercase__ ( self : Dict ) -> Tuple: """simple docstring""" __snake_case : Optional[int] = pipeline( task="""zero-shot-audio-classification""" , model="""laion/clap-htsat-unfused""" , ) # This is an audio of a dog __snake_case : Tuple = load_dataset("""ashraq/esc50""" ) __snake_case : Union[str, Any] = dataset["""train"""]["""audio"""][-1]["""array"""] __snake_case : str = audio_classifier(__magic_name__ , candidate_labels=["""Sound of a dog""", """Sound of vaccum cleaner"""] ) self.assertEqual( nested_simplify(__magic_name__ ) , [ {"""score""": 0.999, """label""": """Sound of a dog"""}, {"""score""": 0.001, """label""": """Sound of vaccum cleaner"""}, ] , ) __snake_case : Any = audio_classifier([audio] * 5 , candidate_labels=["""Sound of a dog""", """Sound of vaccum cleaner"""] ) self.assertEqual( nested_simplify(__magic_name__ ) , [ [ {"""score""": 0.999, """label""": """Sound of a dog"""}, {"""score""": 0.001, """label""": """Sound of vaccum cleaner"""}, ], ] * 5 , ) __snake_case : Optional[int] = audio_classifier( [audio] * 5 , candidate_labels=["""Sound of a dog""", """Sound of vaccum cleaner"""] , batch_size=5 ) self.assertEqual( nested_simplify(__magic_name__ ) , [ [ {"""score""": 0.999, """label""": """Sound of a dog"""}, {"""score""": 0.001, """label""": """Sound of vaccum cleaner"""}, ], ] * 5 , ) @unittest.skip("""No models are available in TF""" ) def lowercase__ ( self : List[str] ) -> Optional[Any]: """simple docstring""" pass
26
'''simple docstring''' from unittest import TestCase from datasets import Sequence, Value from datasets.arrow_dataset import Dataset class _A ( __lowercase ): def lowercase__ ( self : Any ) -> str: """simple docstring""" return [ {"col_1": 3, "col_2": "a"}, {"col_1": 2, "col_2": "b"}, {"col_1": 1, "col_2": "c"}, {"col_1": 0, "col_2": "d"}, ] def lowercase__ ( self : str ) -> int: """simple docstring""" __snake_case : Union[str, Any] = {"""col_1""": [3, 2, 1, 0], """col_2""": ["""a""", """b""", """c""", """d"""]} return Dataset.from_dict(__magic_name__ ) def lowercase__ ( self : str ) -> List[Any]: """simple docstring""" __snake_case : Any = self._create_example_records() __snake_case : str = Dataset.from_list(__magic_name__ ) self.assertListEqual(dset.column_names , ["""col_1""", """col_2"""] ) for i, r in enumerate(__magic_name__ ): self.assertDictEqual(__magic_name__ , example_records[i] ) def lowercase__ ( self : Optional[Any] ) -> List[Any]: """simple docstring""" __snake_case : List[Any] = self._create_example_records() __snake_case : Dict = Dataset.from_list(__magic_name__ ) __snake_case : List[Any] = Dataset.from_dict({k: [r[k] for r in example_records] for k in example_records[0]} ) self.assertEqual(dset.info , dset_from_dict.info ) def lowercase__ ( self : str ) -> List[Any]: # checks what happens with missing columns """simple docstring""" __snake_case : Union[str, Any] = [{"""col_1""": 1}, {"""col_2""": """x"""}] __snake_case : Optional[int] = Dataset.from_list(__magic_name__ ) self.assertDictEqual(dset[0] , {"""col_1""": 1} ) self.assertDictEqual(dset[1] , {"""col_1""": None} ) # NB: first record is used for columns def lowercase__ ( self : List[str] ) -> Optional[Any]: # checks if the type can be inferred from the second record """simple docstring""" __snake_case : List[Any] = [{"""col_1""": []}, {"""col_1""": [1, 2]}] __snake_case : int = Dataset.from_list(__magic_name__ ) self.assertEqual(dset.info.features["""col_1"""] , Sequence(Value("""int64""" ) ) ) def lowercase__ ( self : int ) -> Union[str, Any]: """simple docstring""" __snake_case : Tuple = Dataset.from_list([] ) self.assertEqual(len(__magic_name__ ) , 0 ) self.assertListEqual(dset.column_names , [] )
26
1
'''simple docstring''' from __future__ import annotations def _a ( _lowerCamelCase , _lowerCamelCase ) -> list[tuple[int, int]]: """simple docstring""" __snake_case , __snake_case : Optional[Any] = position __snake_case : Any = [ (y + 1, x + 2), (y - 1, x + 2), (y + 1, x - 2), (y - 1, x - 2), (y + 2, x + 1), (y + 2, x - 1), (y - 2, x + 1), (y - 2, x - 1), ] __snake_case : Optional[Any] = [] for position in positions: __snake_case , __snake_case : List[Any] = position if 0 <= y_test < n and 0 <= x_test < n: permissible_positions.append(_lowerCamelCase ) return permissible_positions def _a ( _lowerCamelCase ) -> bool: """simple docstring""" return not any(elem == 0 for row in board for elem in row ) def _a ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> bool: """simple docstring""" if is_complete(_lowerCamelCase ): return True for position in get_valid_pos(_lowerCamelCase , len(_lowerCamelCase ) ): __snake_case , __snake_case : Dict = position if board[y][x] == 0: __snake_case : int = curr + 1 if open_knight_tour_helper(_lowerCamelCase , _lowerCamelCase , curr + 1 ): return True __snake_case : int = 0 return False def _a ( _lowerCamelCase ) -> list[list[int]]: """simple docstring""" __snake_case : Dict = [[0 for i in range(_lowerCamelCase )] for j in range(_lowerCamelCase )] for i in range(_lowerCamelCase ): for j in range(_lowerCamelCase ): __snake_case : Dict = 1 if open_knight_tour_helper(_lowerCamelCase , (i, j) , 1 ): return board __snake_case : Any = 0 __snake_case : str = F'''Open Kight Tour cannot be performed on a board of size {n}''' raise ValueError(_lowerCamelCase ) if __name__ == "__main__": import doctest doctest.testmod()
26
'''simple docstring''' import inspect import unittest import torch import torch.nn as nn from accelerate.hooks import ( AlignDevicesHook, ModelHook, SequentialHook, add_hook_to_module, attach_align_device_hook, remove_hook_from_module, remove_hook_from_submodules, ) from accelerate.test_utils import require_multi_gpu class _A ( nn.Module ): def __init__( self : List[str] ) -> Optional[Any]: """simple docstring""" super().__init__() __snake_case : List[Any] = nn.Linear(3 , 4 ) __snake_case : str = nn.BatchNormad(4 ) __snake_case : Optional[Any] = nn.Linear(4 , 5 ) def lowercase__ ( self : str , __magic_name__ : Dict ) -> List[str]: """simple docstring""" return self.lineara(self.batchnorm(self.lineara(__magic_name__ ) ) ) class _A ( __lowercase ): def lowercase__ ( self : List[str] , __magic_name__ : Tuple , *__magic_name__ : Dict , **__magic_name__ : Optional[Any] ) -> Tuple: """simple docstring""" return (args[0] + 1,) + args[1:], kwargs class _A ( __lowercase ): def lowercase__ ( self : str , __magic_name__ : Union[str, Any] , __magic_name__ : Tuple ) -> Union[str, Any]: """simple docstring""" return output + 1 class _A ( unittest.TestCase ): def lowercase__ ( self : Dict ) -> Any: """simple docstring""" __snake_case : int = ModelForTest() __snake_case : Tuple = ModelHook() add_hook_to_module(__magic_name__ , __magic_name__ ) self.assertEqual(test_model._hf_hook , __magic_name__ ) self.assertTrue(hasattr(__magic_name__ , """_old_forward""" ) ) # Check adding the hook did not change the name or the signature self.assertEqual(test_model.forward.__name__ , """forward""" ) self.assertListEqual(list(inspect.signature(test_model.forward ).parameters ) , ["""x"""] ) remove_hook_from_module(__magic_name__ ) self.assertFalse(hasattr(__magic_name__ , """_hf_hook""" ) ) self.assertFalse(hasattr(__magic_name__ , """_old_forward""" ) ) def lowercase__ ( self : Tuple ) -> List[str]: """simple docstring""" __snake_case : List[Any] = ModelForTest() __snake_case : Optional[int] = ModelHook() add_hook_to_module(__magic_name__ , __magic_name__ ) add_hook_to_module(__magic_name__ , __magic_name__ , append=__magic_name__ ) self.assertEqual(isinstance(test_model._hf_hook , __magic_name__ ) , __magic_name__ ) self.assertEqual(len(test_model._hf_hook.hooks ) , 2 ) self.assertTrue(hasattr(__magic_name__ , """_old_forward""" ) ) # Check adding the hook did not change the name or the signature self.assertEqual(test_model.forward.__name__ , """forward""" ) self.assertListEqual(list(inspect.signature(test_model.forward ).parameters ) , ["""x"""] ) remove_hook_from_module(__magic_name__ ) self.assertFalse(hasattr(__magic_name__ , """_hf_hook""" ) ) self.assertFalse(hasattr(__magic_name__ , """_old_forward""" ) ) def lowercase__ ( self : str ) -> Union[str, Any]: """simple docstring""" __snake_case : List[Any] = ModelForTest() __snake_case : Any = torch.randn(2 , 3 ) __snake_case : str = test_model(x + 1 ) __snake_case : int = test_model(x + 2 ) __snake_case : Union[str, Any] = PreForwardHook() add_hook_to_module(__magic_name__ , __magic_name__ ) __snake_case : int = test_model(__magic_name__ ) self.assertTrue(torch.allclose(__magic_name__ , __magic_name__ , atol=1E-5 ) ) # Attaching a hook to a model when it already has one replaces, does not chain __snake_case : Optional[int] = PreForwardHook() add_hook_to_module(__magic_name__ , __magic_name__ ) __snake_case : List[Any] = test_model(__magic_name__ ) self.assertTrue(torch.allclose(__magic_name__ , __magic_name__ , atol=1E-5 ) ) # You need to use the sequential hook to chain two or more hooks __snake_case : Optional[int] = SequentialHook(PreForwardHook() , PreForwardHook() ) add_hook_to_module(__magic_name__ , __magic_name__ ) __snake_case : List[str] = test_model(__magic_name__ ) assert torch.allclose(__magic_name__ , __magic_name__ , atol=1E-5 ) def lowercase__ ( self : Union[str, Any] ) -> List[str]: """simple docstring""" __snake_case : Union[str, Any] = ModelForTest() __snake_case : str = torch.randn(2 , 3 ) __snake_case : Any = test_model(__magic_name__ ) __snake_case : Any = PostForwardHook() add_hook_to_module(__magic_name__ , __magic_name__ ) __snake_case : Any = test_model(__magic_name__ ) self.assertTrue(torch.allclose(__magic_name__ , output + 1 , atol=1E-5 ) ) # Attaching a hook to a model when it already has one replaces, does not chain __snake_case : Any = PostForwardHook() add_hook_to_module(__magic_name__ , __magic_name__ ) __snake_case : Dict = test_model(__magic_name__ ) self.assertTrue(torch.allclose(__magic_name__ , output + 1 , atol=1E-5 ) ) # You need to use the sequential hook to chain two or more hooks __snake_case : str = SequentialHook(PostForwardHook() , PostForwardHook() ) add_hook_to_module(__magic_name__ , __magic_name__ ) __snake_case : int = test_model(__magic_name__ ) assert torch.allclose(__magic_name__ , output + 2 , atol=1E-5 ) def lowercase__ ( self : str ) -> int: """simple docstring""" __snake_case : Union[str, Any] = ModelForTest() __snake_case : int = torch.randn(2 , 3 ) __snake_case : Any = test_model(__magic_name__ ) __snake_case : Dict = PostForwardHook() add_hook_to_module(__magic_name__ , __magic_name__ ) __snake_case : List[Any] = test_model(__magic_name__ ) self.assertTrue(torch.allclose(__magic_name__ , output + 1 ) ) self.assertTrue(outputa.requires_grad ) __snake_case : Dict = True __snake_case : int = test_model(__magic_name__ ) self.assertFalse(outputa.requires_grad ) @require_multi_gpu def lowercase__ ( self : Tuple ) -> List[Any]: """simple docstring""" __snake_case : Tuple = ModelForTest() # Everything is on CPU self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) ) self.assertEqual(model.batchnorm.weight.device , torch.device("""cpu""" ) ) self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) ) # This will move each submodule on different devices add_hook_to_module(model.lineara , AlignDevicesHook(execution_device=0 ) ) add_hook_to_module(model.batchnorm , AlignDevicesHook(execution_device=0 ) ) add_hook_to_module(model.lineara , AlignDevicesHook(execution_device=1 ) ) self.assertEqual(model.lineara.weight.device , torch.device(0 ) ) self.assertEqual(model.batchnorm.weight.device , torch.device(0 ) ) self.assertEqual(model.batchnorm.running_mean.device , torch.device(0 ) ) self.assertEqual(model.lineara.weight.device , torch.device(1 ) ) # We can still make a forward pass. The input does not need to be on any particular device __snake_case : Tuple = torch.randn(2 , 3 ) __snake_case : Union[str, Any] = model(__magic_name__ ) self.assertEqual(output.device , torch.device(1 ) ) # We can add a general hook to put back output on same device as input. add_hook_to_module(__magic_name__ , AlignDevicesHook(io_same_device=__magic_name__ ) ) __snake_case : Tuple = torch.randn(2 , 3 ).to(0 ) __snake_case : Any = model(__magic_name__ ) self.assertEqual(output.device , torch.device(0 ) ) def lowercase__ ( self : Union[str, Any] ) -> str: """simple docstring""" __snake_case : int = ModelForTest() # Everything is on CPU self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) ) self.assertEqual(model.batchnorm.weight.device , torch.device("""cpu""" ) ) self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) ) # This will move each submodule on different devices __snake_case : List[str] = {"""execution_device""": 0 if torch.cuda.is_available() else """cpu""", """offload""": True} add_hook_to_module(model.lineara , AlignDevicesHook(**__magic_name__ ) ) add_hook_to_module(model.batchnorm , AlignDevicesHook(**__magic_name__ ) ) add_hook_to_module(model.lineara , AlignDevicesHook(**__magic_name__ ) ) # Parameters have been offloaded, so on the meta device self.assertEqual(model.lineara.weight.device , torch.device("""meta""" ) ) self.assertEqual(model.batchnorm.weight.device , torch.device("""meta""" ) ) self.assertEqual(model.lineara.weight.device , torch.device("""meta""" ) ) # Buffers are not included in the offload by default, so are on the execution device __snake_case : Any = torch.device(hook_kwargs["""execution_device"""] ) self.assertEqual(model.batchnorm.running_mean.device , __magic_name__ ) __snake_case : Dict = torch.randn(2 , 3 ) __snake_case : Any = model(__magic_name__ ) self.assertEqual(output.device , __magic_name__ ) # Removing hooks loads back the weights in the model. remove_hook_from_module(model.lineara ) remove_hook_from_module(model.batchnorm ) remove_hook_from_module(model.lineara ) self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) ) self.assertEqual(model.batchnorm.weight.device , torch.device("""cpu""" ) ) self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) ) # Now test with buffers included in the offload __snake_case : int = { """execution_device""": 0 if torch.cuda.is_available() else """cpu""", """offload""": True, """offload_buffers""": True, } add_hook_to_module(model.lineara , AlignDevicesHook(**__magic_name__ ) ) add_hook_to_module(model.batchnorm , AlignDevicesHook(**__magic_name__ ) ) add_hook_to_module(model.lineara , AlignDevicesHook(**__magic_name__ ) ) # Parameters have been offloaded, so on the meta device, buffers included self.assertEqual(model.lineara.weight.device , torch.device("""meta""" ) ) self.assertEqual(model.batchnorm.weight.device , torch.device("""meta""" ) ) self.assertEqual(model.lineara.weight.device , torch.device("""meta""" ) ) self.assertEqual(model.batchnorm.running_mean.device , torch.device("""meta""" ) ) __snake_case : str = torch.randn(2 , 3 ) __snake_case : str = model(__magic_name__ ) self.assertEqual(output.device , __magic_name__ ) # Removing hooks loads back the weights in the model. remove_hook_from_module(model.lineara ) remove_hook_from_module(model.batchnorm ) remove_hook_from_module(model.lineara ) self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) ) self.assertEqual(model.batchnorm.weight.device , torch.device("""cpu""" ) ) self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) ) def lowercase__ ( self : Dict ) -> str: """simple docstring""" __snake_case : Tuple = ModelForTest() # Everything is on CPU self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) ) self.assertEqual(model.batchnorm.weight.device , torch.device("""cpu""" ) ) self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) ) # This will move each submodule on different devices __snake_case : Union[str, Any] = 0 if torch.cuda.is_available() else """cpu""" attach_align_device_hook(__magic_name__ , execution_device=__magic_name__ , offload=__magic_name__ ) # Parameters have been offloaded, so on the meta device self.assertEqual(model.lineara.weight.device , torch.device("""meta""" ) ) self.assertEqual(model.batchnorm.weight.device , torch.device("""meta""" ) ) self.assertEqual(model.lineara.weight.device , torch.device("""meta""" ) ) # Buffers are not included in the offload by default, so are on the execution device __snake_case : Union[str, Any] = torch.device(__magic_name__ ) self.assertEqual(model.batchnorm.running_mean.device , __magic_name__ ) __snake_case : Optional[int] = torch.randn(2 , 3 ) __snake_case : Dict = model(__magic_name__ ) self.assertEqual(output.device , __magic_name__ ) # Removing hooks loads back the weights in the model. remove_hook_from_submodules(__magic_name__ ) self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) ) self.assertEqual(model.batchnorm.weight.device , torch.device("""cpu""" ) ) self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) ) # Now test with buffers included in the offload attach_align_device_hook(__magic_name__ , execution_device=__magic_name__ , offload=__magic_name__ , offload_buffers=__magic_name__ ) # Parameters have been offloaded, so on the meta device, buffers included self.assertEqual(model.lineara.weight.device , torch.device("""meta""" ) ) self.assertEqual(model.batchnorm.weight.device , torch.device("""meta""" ) ) self.assertEqual(model.lineara.weight.device , torch.device("""meta""" ) ) self.assertEqual(model.batchnorm.running_mean.device , torch.device("""meta""" ) ) __snake_case : Dict = torch.randn(2 , 3 ) __snake_case : Optional[int] = model(__magic_name__ ) self.assertEqual(output.device , __magic_name__ ) # Removing hooks loads back the weights in the model. remove_hook_from_submodules(__magic_name__ ) self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) ) self.assertEqual(model.batchnorm.weight.device , torch.device("""cpu""" ) ) self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) ) def lowercase__ ( self : Any ) -> Union[str, Any]: """simple docstring""" __snake_case : Any = ModelForTest() # Everything is on CPU self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) ) self.assertEqual(model.batchnorm.weight.device , torch.device("""cpu""" ) ) self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) ) # This will move each submodule on different devices __snake_case : str = 0 if torch.cuda.is_available() else """cpu""" attach_align_device_hook( __magic_name__ , execution_device=__magic_name__ , offload=__magic_name__ , weights_map=model.state_dict() ) # Parameters have been offloaded, so on the meta device self.assertEqual(model.lineara.weight.device , torch.device("""meta""" ) ) self.assertEqual(model.batchnorm.weight.device , torch.device("""meta""" ) ) self.assertEqual(model.lineara.weight.device , torch.device("""meta""" ) ) # Buffers are not included in the offload by default, so are on the execution device __snake_case : List[str] = torch.device(__magic_name__ ) self.assertEqual(model.batchnorm.running_mean.device , __magic_name__ ) __snake_case : Tuple = torch.randn(2 , 3 ) __snake_case : Optional[Any] = model(__magic_name__ ) self.assertEqual(output.device , __magic_name__ ) # Removing hooks loads back the weights in the model. remove_hook_from_submodules(__magic_name__ ) self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) ) self.assertEqual(model.batchnorm.weight.device , torch.device("""cpu""" ) ) self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) ) # Now test with buffers included in the offload attach_align_device_hook( __magic_name__ , execution_device=__magic_name__ , offload=__magic_name__ , weights_map=model.state_dict() , offload_buffers=__magic_name__ , ) # Parameters have been offloaded, so on the meta device, buffers included self.assertEqual(model.lineara.weight.device , torch.device("""meta""" ) ) self.assertEqual(model.batchnorm.weight.device , torch.device("""meta""" ) ) self.assertEqual(model.lineara.weight.device , torch.device("""meta""" ) ) self.assertEqual(model.batchnorm.running_mean.device , torch.device("""meta""" ) ) __snake_case : List[str] = torch.randn(2 , 3 ) __snake_case : Dict = model(__magic_name__ ) self.assertEqual(output.device , __magic_name__ ) # Removing hooks loads back the weights in the model. remove_hook_from_submodules(__magic_name__ ) self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) ) self.assertEqual(model.batchnorm.weight.device , torch.device("""cpu""" ) ) self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) )
26
1
'''simple docstring''' import numpy class _A : def __init__( self : Any , __magic_name__ : numpy.ndarray , __magic_name__ : numpy.ndarray ) -> None: """simple docstring""" __snake_case : Optional[int] = input_array # Random initial weights are assigned where first argument is the # number of nodes in previous layer and second argument is the # number of nodes in the next layer. # Random initial weights are assigned. # self.input_array.shape[1] is used to represent number of nodes in input layer. # First hidden layer consists of 4 nodes. __snake_case : str = numpy.random.rand( self.input_array.shape[1] , 4 ) # Random initial values for the first hidden layer. # First hidden layer has 4 nodes. # Second hidden layer has 3 nodes. __snake_case : Dict = numpy.random.rand( 4 , 3 ) # Random initial values for the second hidden layer. # Second hidden layer has 3 nodes. # Output layer has 1 node. __snake_case : Any = numpy.random.rand(3 , 1 ) # Real output values provided. __snake_case : Optional[int] = output_array # Predicted output values by the neural network. # Predicted_output array initially consists of zeroes. __snake_case : Tuple = numpy.zeros(output_array.shape ) def lowercase__ ( self : Optional[int] ) -> numpy.ndarray: """simple docstring""" __snake_case : Dict = sigmoid( numpy.dot(self.input_array , self.input_layer_and_first_hidden_layer_weights ) ) # layer_between_first_hidden_layer_and_second_hidden_layer is the layer # connecting the first hidden set of nodes with the second hidden set of nodes. __snake_case : str = sigmoid( numpy.dot( self.layer_between_input_and_first_hidden_layer , self.first_hidden_layer_and_second_hidden_layer_weights , ) ) # layer_between_second_hidden_layer_and_output is the layer connecting # second hidden layer with the output node. __snake_case : List[str] = sigmoid( numpy.dot( self.layer_between_first_hidden_layer_and_second_hidden_layer , self.second_hidden_layer_and_output_layer_weights , ) ) return self.layer_between_second_hidden_layer_and_output def lowercase__ ( self : Tuple ) -> None: """simple docstring""" __snake_case : Optional[Any] = numpy.dot( self.layer_between_first_hidden_layer_and_second_hidden_layer.T , 2 * (self.output_array - self.predicted_output) * sigmoid_derivative(self.predicted_output ) , ) __snake_case : Union[str, Any] = numpy.dot( self.layer_between_input_and_first_hidden_layer.T , numpy.dot( 2 * (self.output_array - self.predicted_output) * sigmoid_derivative(self.predicted_output ) , self.second_hidden_layer_and_output_layer_weights.T , ) * sigmoid_derivative( self.layer_between_first_hidden_layer_and_second_hidden_layer ) , ) __snake_case : Tuple = numpy.dot( self.input_array.T , numpy.dot( numpy.dot( 2 * (self.output_array - self.predicted_output) * sigmoid_derivative(self.predicted_output ) , self.second_hidden_layer_and_output_layer_weights.T , ) * sigmoid_derivative( self.layer_between_first_hidden_layer_and_second_hidden_layer ) , self.first_hidden_layer_and_second_hidden_layer_weights.T , ) * sigmoid_derivative(self.layer_between_input_and_first_hidden_layer ) , ) self.input_layer_and_first_hidden_layer_weights += ( updated_input_layer_and_first_hidden_layer_weights ) self.first_hidden_layer_and_second_hidden_layer_weights += ( updated_first_hidden_layer_and_second_hidden_layer_weights ) self.second_hidden_layer_and_output_layer_weights += ( updated_second_hidden_layer_and_output_layer_weights ) def lowercase__ ( self : Any , __magic_name__ : numpy.ndarray , __magic_name__ : int , __magic_name__ : bool ) -> None: """simple docstring""" for iteration in range(1 , iterations + 1 ): __snake_case : Dict = self.feedforward() self.back_propagation() if give_loss: __snake_case : int = numpy.mean(numpy.square(output - self.feedforward() ) ) print(f'''Iteration {iteration} Loss: {loss}''' ) def lowercase__ ( self : Union[str, Any] , __magic_name__ : numpy.ndarray ) -> int: """simple docstring""" __snake_case : Dict = input_arr __snake_case : List[str] = sigmoid( numpy.dot(self.array , self.input_layer_and_first_hidden_layer_weights ) ) __snake_case : List[str] = sigmoid( numpy.dot( self.layer_between_input_and_first_hidden_layer , self.first_hidden_layer_and_second_hidden_layer_weights , ) ) __snake_case : Optional[Any] = sigmoid( numpy.dot( self.layer_between_first_hidden_layer_and_second_hidden_layer , self.second_hidden_layer_and_output_layer_weights , ) ) return int(self.layer_between_second_hidden_layer_and_output > 0.6 ) def _a ( _lowerCamelCase ) -> numpy.ndarray: """simple docstring""" return 1 / (1 + numpy.exp(-value )) def _a ( _lowerCamelCase ) -> numpy.ndarray: """simple docstring""" return (value) * (1 - (value)) def _a ( ) -> int: """simple docstring""" __snake_case : int = numpy.array( ( [0, 0, 0], [0, 0, 1], [0, 1, 0], [0, 1, 1], [1, 0, 0], [1, 0, 1], [1, 1, 0], [1, 1, 1], ) , dtype=numpy.floataa , ) # True output values for the given input values. __snake_case : Optional[Any] = numpy.array(([0], [1], [1], [0], [1], [0], [0], [1]) , dtype=numpy.floataa ) # Calling neural network class. __snake_case : List[Any] = TwoHiddenLayerNeuralNetwork( input_array=_lowerCamelCase , output_array=_lowerCamelCase ) # Calling training function. # Set give_loss to True if you want to see loss in every iteration. neural_network.train(output=_lowerCamelCase , iterations=10 , give_loss=_lowerCamelCase ) return neural_network.predict(numpy.array(([1, 1, 1]) , dtype=numpy.floataa ) ) if __name__ == "__main__": example()
26
'''simple docstring''' from __future__ import annotations __UpperCamelCase = [ [-1, 0], # left [0, -1], # down [1, 0], # right [0, 1], # up ] def _a ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , ) -> tuple[list[list[int]], list[list[int]]]: """simple docstring""" __snake_case : List[str] = [ [0 for col in range(len(grid[0] ) )] for row in range(len(_lowerCamelCase ) ) ] # the reference grid __snake_case : Tuple = 1 __snake_case : List[str] = [ [0 for col in range(len(grid[0] ) )] for row in range(len(_lowerCamelCase ) ) ] # the action grid __snake_case : List[str] = init[0] __snake_case : str = init[1] __snake_case : int = 0 __snake_case : int = g + heuristic[x][y] # cost from starting cell to destination cell __snake_case : List[str] = [[f, g, x, y]] __snake_case : Any = False # flag that is set when search is complete __snake_case : int = False # flag set if we can't find expand while not found and not resign: if len(_lowerCamelCase ) == 0: raise ValueError("""Algorithm is unable to find solution""" ) else: # to choose the least costliest action so as to move closer to the goal cell.sort() cell.reverse() __snake_case : Tuple = cell.pop() __snake_case : Optional[int] = next_cell[2] __snake_case : List[Any] = next_cell[3] __snake_case : int = next_cell[1] if x == goal[0] and y == goal[1]: __snake_case : Optional[Any] = True else: for i in range(len(_lowerCamelCase ) ): # to try out different valid actions __snake_case : Union[str, Any] = x + DIRECTIONS[i][0] __snake_case : str = y + DIRECTIONS[i][1] if xa >= 0 and xa < len(_lowerCamelCase ) and ya >= 0 and ya < len(grid[0] ): if closed[xa][ya] == 0 and grid[xa][ya] == 0: __snake_case : str = g + cost __snake_case : Tuple = ga + heuristic[xa][ya] cell.append([fa, ga, xa, ya] ) __snake_case : List[str] = 1 __snake_case : Optional[int] = i __snake_case : List[str] = [] __snake_case : Optional[int] = goal[0] __snake_case : List[Any] = goal[1] invpath.append([x, y] ) # we get the reverse path from here while x != init[0] or y != init[1]: __snake_case : Dict = x - DIRECTIONS[action[x][y]][0] __snake_case : int = y - DIRECTIONS[action[x][y]][1] __snake_case : Optional[int] = xa __snake_case : int = ya invpath.append([x, y] ) __snake_case : Optional[int] = [] for i in range(len(_lowerCamelCase ) ): path.append(invpath[len(_lowerCamelCase ) - 1 - i] ) return path, action if __name__ == "__main__": __UpperCamelCase = [ [0, 1, 0, 0, 0, 0], [0, 1, 0, 0, 0, 0], # 0 are free path whereas 1's are obstacles [0, 1, 0, 0, 0, 0], [0, 1, 0, 0, 1, 0], [0, 0, 0, 0, 1, 0], ] __UpperCamelCase = [0, 0] # all coordinates are given in format [y,x] __UpperCamelCase = [len(grid) - 1, len(grid[0]) - 1] __UpperCamelCase = 1 # the cost map which pushes the path closer to the goal __UpperCamelCase = [[0 for row in range(len(grid[0]))] for col in range(len(grid))] for i in range(len(grid)): for j in range(len(grid[0])): __UpperCamelCase = abs(i - goal[0]) + abs(j - goal[1]) if grid[i][j] == 1: # added extra penalty in the heuristic map __UpperCamelCase = 99 __UpperCamelCase , __UpperCamelCase = search(grid, init, goal, cost, heuristic) print("ACTION MAP") for i in range(len(action)): print(action[i]) for i in range(len(path)): print(path[i])
26
1
'''simple docstring''' import dataclasses import re import string from typing import Any, Dict, Iterator, List, Mapping, Optional, Sequence, Tuple import numpy as np from . import residue_constants __UpperCamelCase = Mapping[str, np.ndarray] __UpperCamelCase = Mapping[str, Any] # Is a nested dict. __UpperCamelCase = 0.01 @dataclasses.dataclass(frozen=__lowercase ) class _A : lowercase__: np.ndarray # [num_res, num_atom_type, 3] # Amino-acid type for each residue represented as an integer between 0 and # 20, where 20 is 'X'. lowercase__: np.ndarray # [num_res] # Binary float mask to indicate presence of a particular atom. 1.0 if an atom # is present and 0.0 if not. This should be used for loss masking. lowercase__: np.ndarray # [num_res, num_atom_type] # Residue index as used in PDB. It is not necessarily continuous or 0-indexed. lowercase__: np.ndarray # [num_res] # B-factors, or temperature factors, of each residue (in sq. angstroms units), # representing the displacement of the residue from its ground truth mean # value. lowercase__: np.ndarray # [num_res, num_atom_type] # Chain indices for multi-chain predictions lowercase__: Optional[np.ndarray] = None # Optional remark about the protein. Included as a comment in output PDB # files lowercase__: Optional[str] = None # Templates used to generate this protein (prediction-only) lowercase__: Optional[Sequence[str]] = None # Chain corresponding to each parent lowercase__: Optional[Sequence[int]] = None def _a ( _lowerCamelCase ) -> Protein: """simple docstring""" __snake_case : List[str] = R"""(\[[A-Z]+\]\n)""" __snake_case : List[str] = [tag.strip() for tag in re.split(_lowerCamelCase , _lowerCamelCase ) if len(_lowerCamelCase ) > 0] __snake_case : Iterator[Tuple[str, List[str]]] = zip(tags[0::2] , [l.split("""\n""" ) for l in tags[1::2]] ) __snake_case : List[str] = ["N", "CA", "C"] __snake_case : Union[str, Any] = None __snake_case : Optional[Any] = None __snake_case : str = None for g in groups: if "[PRIMARY]" == g[0]: __snake_case : Any = g[1][0].strip() for i in range(len(_lowerCamelCase ) ): if seq[i] not in residue_constants.restypes: __snake_case : Union[str, Any] = """X""" # FIXME: strings are immutable __snake_case : Optional[Any] = np.array( [residue_constants.restype_order.get(_lowerCamelCase , residue_constants.restype_num ) for res_symbol in seq] ) elif "[TERTIARY]" == g[0]: __snake_case : List[List[float]] = [] for axis in range(3 ): tertiary.append(list(map(_lowerCamelCase , g[1][axis].split() ) ) ) __snake_case : Optional[Any] = np.array(_lowerCamelCase ) __snake_case : Any = np.zeros((len(tertiary[0] ) // 3, residue_constants.atom_type_num, 3) ).astype(np.floataa ) for i, atom in enumerate(_lowerCamelCase ): __snake_case : Union[str, Any] = np.transpose(tertiary_np[:, i::3] ) atom_positions *= PICO_TO_ANGSTROM elif "[MASK]" == g[0]: __snake_case : Union[str, Any] = np.array(list(map({"""-""": 0, """+""": 1}.get , g[1][0].strip() ) ) ) __snake_case : List[str] = np.zeros( ( len(_lowerCamelCase ), residue_constants.atom_type_num, ) ).astype(np.floataa ) for i, atom in enumerate(_lowerCamelCase ): __snake_case : Optional[Any] = 1 atom_mask *= mask[..., None] assert aatype is not None return Protein( atom_positions=_lowerCamelCase , atom_mask=_lowerCamelCase , aatype=_lowerCamelCase , residue_index=np.arange(len(_lowerCamelCase ) ) , b_factors=_lowerCamelCase , ) def _a ( _lowerCamelCase , _lowerCamelCase = 0 ) -> List[str]: """simple docstring""" __snake_case : List[str] = [] __snake_case : Tuple = prot.remark if remark is not None: pdb_headers.append(F'''REMARK {remark}''' ) __snake_case : Optional[int] = prot.parents __snake_case : Optional[int] = prot.parents_chain_index if parents is not None and parents_chain_index is not None: __snake_case : Any = [p for i, p in zip(_lowerCamelCase , _lowerCamelCase ) if i == chain_id] if parents is None or len(_lowerCamelCase ) == 0: __snake_case : str = ["""N/A"""] pdb_headers.append(F'''PARENT {" ".join(_lowerCamelCase )}''' ) return pdb_headers def _a ( _lowerCamelCase , _lowerCamelCase ) -> str: """simple docstring""" __snake_case : List[str] = [] __snake_case : int = pdb_str.split("""\n""" ) __snake_case : Union[str, Any] = prot.remark if remark is not None: out_pdb_lines.append(F'''REMARK {remark}''' ) __snake_case : List[List[str]] if prot.parents is not None and len(prot.parents ) > 0: __snake_case : Union[str, Any] = [] if prot.parents_chain_index is not None: __snake_case : Dict[str, List[str]] = {} for p, i in zip(prot.parents , prot.parents_chain_index ): parent_dict.setdefault(str(_lowerCamelCase ) , [] ) parent_dict[str(_lowerCamelCase )].append(_lowerCamelCase ) __snake_case : Optional[int] = max([int(_lowerCamelCase ) for chain_idx in parent_dict] ) for i in range(max_idx + 1 ): __snake_case : Tuple = parent_dict.get(str(_lowerCamelCase ) , ["""N/A"""] ) parents_per_chain.append(_lowerCamelCase ) else: parents_per_chain.append(list(prot.parents ) ) else: __snake_case : Dict = [["""N/A"""]] def make_parent_line(_lowerCamelCase ) -> str: return F'''PARENT {" ".join(_lowerCamelCase )}''' out_pdb_lines.append(make_parent_line(parents_per_chain[0] ) ) __snake_case : Any = 0 for i, l in enumerate(_lowerCamelCase ): if "PARENT" not in l and "REMARK" not in l: out_pdb_lines.append(_lowerCamelCase ) if "TER" in l and "END" not in lines[i + 1]: chain_counter += 1 if not chain_counter >= len(_lowerCamelCase ): __snake_case : int = parents_per_chain[chain_counter] else: __snake_case : int = ["""N/A"""] out_pdb_lines.append(make_parent_line(_lowerCamelCase ) ) return "\n".join(_lowerCamelCase ) def _a ( _lowerCamelCase ) -> str: """simple docstring""" __snake_case : Optional[int] = residue_constants.restypes + ["""X"""] def res_atoa(_lowerCamelCase ) -> str: return residue_constants.restype_atoa.get(restypes[r] , """UNK""" ) __snake_case : Union[str, Any] = residue_constants.atom_types __snake_case : List[str] = [] __snake_case : int = prot.atom_mask __snake_case : Optional[int] = prot.aatype __snake_case : List[str] = prot.atom_positions __snake_case : str = prot.residue_index.astype(np.intaa ) __snake_case : Optional[int] = prot.b_factors __snake_case : str = prot.chain_index if np.any(aatype > residue_constants.restype_num ): raise ValueError("""Invalid aatypes.""" ) __snake_case : Optional[int] = get_pdb_headers(_lowerCamelCase ) if len(_lowerCamelCase ) > 0: pdb_lines.extend(_lowerCamelCase ) __snake_case : Dict = aatype.shape[0] __snake_case : Optional[int] = 1 __snake_case : List[str] = 0 __snake_case : Optional[Any] = string.ascii_uppercase __snake_case : Tuple = None # Add all atom sites. for i in range(_lowerCamelCase ): __snake_case : Optional[Any] = res_atoa(aatype[i] ) for atom_name, pos, mask, b_factor in zip(_lowerCamelCase , atom_positions[i] , atom_mask[i] , b_factors[i] ): if mask < 0.5: continue __snake_case : int = """ATOM""" __snake_case : int = atom_name if len(_lowerCamelCase ) == 4 else F''' {atom_name}''' __snake_case : List[str] = """""" __snake_case : Optional[Any] = """""" __snake_case : Any = 1.00 __snake_case : Optional[Any] = atom_name[0] # Protein supports only C, N, O, S, this works. __snake_case : List[Any] = """""" __snake_case : Tuple = """A""" if chain_index is not None: __snake_case : Optional[int] = chain_tags[chain_index[i]] # PDB is a columnar format, every space matters here! __snake_case : Optional[int] = ( F'''{record_type:<6}{atom_index:>5} {name:<4}{alt_loc:>1}''' F'''{res_name_a:>3} {chain_tag:>1}''' F'''{residue_index[i]:>4}{insertion_code:>1} ''' F'''{pos[0]:>8.3f}{pos[1]:>8.3f}{pos[2]:>8.3f}''' F'''{occupancy:>6.2f}{b_factor:>6.2f} ''' F'''{element:>2}{charge:>2}''' ) pdb_lines.append(_lowerCamelCase ) atom_index += 1 __snake_case : List[str] = i == n - 1 if chain_index is not None: if i != n - 1 and chain_index[i + 1] != prev_chain_index: __snake_case : Optional[Any] = True __snake_case : Union[str, Any] = chain_index[i + 1] if should_terminate: # Close the chain. __snake_case : Optional[Any] = """TER""" __snake_case : List[str] = ( F'''{chain_end:<6}{atom_index:>5} {res_atoa(aatype[i] ):>3} {chain_tag:>1}{residue_index[i]:>4}''' ) pdb_lines.append(_lowerCamelCase ) atom_index += 1 if i != n - 1: # "prev" is a misnomer here. This happens at the beginning of # each new chain. pdb_lines.extend(get_pdb_headers(_lowerCamelCase , _lowerCamelCase ) ) pdb_lines.append("""END""" ) pdb_lines.append("""""" ) return "\n".join(_lowerCamelCase ) def _a ( _lowerCamelCase ) -> np.ndarray: """simple docstring""" return residue_constants.STANDARD_ATOM_MASK[prot.aatype] def _a ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase = None , _lowerCamelCase = None , _lowerCamelCase = None , _lowerCamelCase = None , _lowerCamelCase = None , ) -> Protein: """simple docstring""" return Protein( aatype=features["""aatype"""] , atom_positions=result["""final_atom_positions"""] , atom_mask=result["""final_atom_mask"""] , residue_index=features["""residue_index"""] + 1 , b_factors=b_factors if b_factors is not None else np.zeros_like(result["""final_atom_mask"""] ) , chain_index=_lowerCamelCase , remark=_lowerCamelCase , parents=_lowerCamelCase , parents_chain_index=_lowerCamelCase , )
26
'''simple docstring''' def _a ( _lowerCamelCase ) -> int: """simple docstring""" if not isinstance(_lowerCamelCase , _lowerCamelCase ): raise TypeError("""only integers accepted as input""" ) else: __snake_case : List[Any] = str(abs(_lowerCamelCase ) ) __snake_case : Union[str, Any] = [list(_lowerCamelCase ) for char in range(len(_lowerCamelCase ) )] for index in range(len(_lowerCamelCase ) ): num_transpositions[index].pop(_lowerCamelCase ) return max( int("""""".join(list(_lowerCamelCase ) ) ) for transposition in num_transpositions ) if __name__ == "__main__": __import__("doctest").testmod()
26
1
'''simple docstring''' import unittest import numpy as np from diffusers import LMSDiscreteScheduler, OnnxStableDiffusionInpaintPipeline from diffusers.utils.testing_utils import ( is_onnx_available, load_image, nightly, require_onnxruntime, require_torch_gpu, ) from ..test_pipelines_onnx_common import OnnxPipelineTesterMixin if is_onnx_available(): import onnxruntime as ort class _A ( __lowercase , unittest.TestCase ): # FIXME: add fast tests pass @nightly @require_onnxruntime @require_torch_gpu class _A ( unittest.TestCase ): @property def lowercase__ ( self : str ) -> Optional[Any]: """simple docstring""" return ( "CUDAExecutionProvider", { "gpu_mem_limit": "15000000000", # 15GB "arena_extend_strategy": "kSameAsRequested", }, ) @property def lowercase__ ( self : int ) -> Optional[Any]: """simple docstring""" __snake_case : str = ort.SessionOptions() __snake_case : Optional[Any] = False return options def lowercase__ ( self : Any ) -> Tuple: """simple docstring""" __snake_case : Tuple = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/in_paint/overture-creations-5sI6fQgYIuo.png""" ) __snake_case : List[Any] = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/in_paint/overture-creations-5sI6fQgYIuo_mask.png""" ) __snake_case : List[str] = OnnxStableDiffusionInpaintPipeline.from_pretrained( """runwayml/stable-diffusion-inpainting""" , revision="""onnx""" , safety_checker=__magic_name__ , feature_extractor=__magic_name__ , provider=self.gpu_provider , sess_options=self.gpu_options , ) pipe.set_progress_bar_config(disable=__magic_name__ ) __snake_case : str = """A red cat sitting on a park bench""" __snake_case : List[str] = np.random.RandomState(0 ) __snake_case : Optional[int] = pipe( prompt=__magic_name__ , image=__magic_name__ , mask_image=__magic_name__ , guidance_scale=7.5 , num_inference_steps=10 , generator=__magic_name__ , output_type="""np""" , ) __snake_case : Tuple = output.images __snake_case : Dict = images[0, 2_55:2_58, 2_55:2_58, -1] assert images.shape == (1, 5_12, 5_12, 3) __snake_case : str = np.array([0.2514, 0.3007, 0.3517, 0.1790, 0.2382, 0.3167, 0.1944, 0.2273, 0.2464] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-3 def lowercase__ ( self : Union[str, Any] ) -> str: """simple docstring""" __snake_case : int = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/in_paint/overture-creations-5sI6fQgYIuo.png""" ) __snake_case : Tuple = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/in_paint/overture-creations-5sI6fQgYIuo_mask.png""" ) __snake_case : List[str] = LMSDiscreteScheduler.from_pretrained( """runwayml/stable-diffusion-inpainting""" , subfolder="""scheduler""" , revision="""onnx""" ) __snake_case : List[Any] = OnnxStableDiffusionInpaintPipeline.from_pretrained( """runwayml/stable-diffusion-inpainting""" , revision="""onnx""" , scheduler=__magic_name__ , safety_checker=__magic_name__ , feature_extractor=__magic_name__ , provider=self.gpu_provider , sess_options=self.gpu_options , ) pipe.set_progress_bar_config(disable=__magic_name__ ) __snake_case : Union[str, Any] = """A red cat sitting on a park bench""" __snake_case : Union[str, Any] = np.random.RandomState(0 ) __snake_case : Optional[Any] = pipe( prompt=__magic_name__ , image=__magic_name__ , mask_image=__magic_name__ , guidance_scale=7.5 , num_inference_steps=20 , generator=__magic_name__ , output_type="""np""" , ) __snake_case : Optional[int] = output.images __snake_case : Dict = images[0, 2_55:2_58, 2_55:2_58, -1] assert images.shape == (1, 5_12, 5_12, 3) __snake_case : Dict = np.array([0.0086, 0.0077, 0.0083, 0.0093, 0.0107, 0.0139, 0.0094, 0.0097, 0.0125] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-3
26
'''simple docstring''' from __future__ import annotations import math def _a ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> int: """simple docstring""" if depth < 0: raise ValueError("""Depth cannot be less than 0""" ) if not scores: raise ValueError("""Scores cannot be empty""" ) if depth == height: return scores[node_index] return ( max( minimax(depth + 1 , node_index * 2 , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) , minimax(depth + 1 , node_index * 2 + 1 , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) , ) if is_max else min( minimax(depth + 1 , node_index * 2 , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) , minimax(depth + 1 , node_index * 2 + 1 , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) , ) ) def _a ( ) -> None: """simple docstring""" __snake_case : Union[str, Any] = [90, 23, 6, 33, 21, 65, 123, 3_4423] __snake_case : Optional[int] = math.log(len(_lowerCamelCase ) , 2 ) print(F'''Optimal value : {minimax(0 , 0 , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase )}''' ) if __name__ == "__main__": import doctest doctest.testmod() main()
26
1
'''simple docstring''' import cva import numpy as np class _A : def __init__( self : Any , __magic_name__ : float , __magic_name__ : int ) -> Optional[int]: """simple docstring""" if k in (0.04, 0.06): __snake_case : List[str] = k __snake_case : int = window_size else: raise ValueError("""invalid k value""" ) def __str__( self : Union[str, Any] ) -> str: """simple docstring""" return str(self.k ) def lowercase__ ( self : Dict , __magic_name__ : str ) -> tuple[cva.Mat, list[list[int]]]: """simple docstring""" __snake_case : Dict = cva.imread(__magic_name__ , 0 ) __snake_case , __snake_case : List[str] = img.shape __snake_case : list[list[int]] = [] __snake_case : str = img.copy() __snake_case : Tuple = cva.cvtColor(__magic_name__ , cva.COLOR_GRAY2RGB ) __snake_case , __snake_case : List[Any] = np.gradient(__magic_name__ ) __snake_case : Optional[Any] = dx**2 __snake_case : Tuple = dy**2 __snake_case : List[Any] = dx * dy __snake_case : List[Any] = 0.04 __snake_case : Tuple = self.window_size // 2 for y in range(__magic_name__ , h - offset ): for x in range(__magic_name__ , w - offset ): __snake_case : Dict = ixx[ y - offset : y + offset + 1, x - offset : x + offset + 1 ].sum() __snake_case : Optional[int] = iyy[ y - offset : y + offset + 1, x - offset : x + offset + 1 ].sum() __snake_case : str = ixy[ y - offset : y + offset + 1, x - offset : x + offset + 1 ].sum() __snake_case : List[str] = (wxx * wyy) - (wxy**2) __snake_case : Dict = wxx + wyy __snake_case : List[str] = det - k * (trace**2) # Can change the value if r > 0.5: corner_list.append([x, y, r] ) color_img.itemset((y, x, 0) , 0 ) color_img.itemset((y, x, 1) , 0 ) color_img.itemset((y, x, 2) , 2_55 ) return color_img, corner_list if __name__ == "__main__": __UpperCamelCase = HarrisCorner(0.04, 3) __UpperCamelCase , __UpperCamelCase = edge_detect.detect("path_to_image") cva.imwrite("detect.png", color_img)
26
'''simple docstring''' from __future__ import annotations def _a ( _lowerCamelCase , _lowerCamelCase = None , _lowerCamelCase = None ) -> None: """simple docstring""" if start is None: __snake_case : Optional[Any] = 0 if end is None: __snake_case : Optional[Any] = len(_lowerCamelCase ) - 1 if start >= end: return __snake_case : Tuple = (start + end) // 2 slowsort(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) slowsort(_lowerCamelCase , mid + 1 , _lowerCamelCase ) if sequence[end] < sequence[mid]: __snake_case , __snake_case : str = sequence[mid], sequence[end] slowsort(_lowerCamelCase , _lowerCamelCase , end - 1 ) if __name__ == "__main__": from doctest import testmod testmod()
26
1