code
stringlengths
82
54.1k
code_codestyle
int64
0
699
style_context
stringlengths
111
35.6k
style_context_codestyle
int64
0
699
label
int64
0
1
'''simple docstring''' import inspect import unittest from huggingface_hub import hf_hub_download from transformers import ConvNextConfig, UperNetConfig from transformers.testing_utils import require_torch, require_torch_multi_gpu, require_vision, slow, torch_device from transformers.utils import is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import UperNetForSemanticSegmentation from transformers.models.upernet.modeling_upernet import UPERNET_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class _A : def __init__( self : List[Any] , __magic_name__ : Dict , __magic_name__ : Optional[Any]=13 , __magic_name__ : Optional[Any]=32 , __magic_name__ : Tuple=3 , __magic_name__ : Union[str, Any]=4 , __magic_name__ : Dict=[10, 20, 30, 40] , __magic_name__ : str=[2, 2, 3, 2] , __magic_name__ : Tuple=True , __magic_name__ : Any=True , __magic_name__ : Tuple=37 , __magic_name__ : int="gelu" , __magic_name__ : Union[str, Any]=10 , __magic_name__ : Optional[int]=0.02 , __magic_name__ : int=["stage2", "stage3", "stage4"] , __magic_name__ : Optional[Any]=3 , __magic_name__ : Dict=None , ) -> Tuple: """simple docstring""" __snake_case : str = parent __snake_case : List[Any] = batch_size __snake_case : Any = image_size __snake_case : int = num_channels __snake_case : List[Any] = num_stages __snake_case : Union[str, Any] = hidden_sizes __snake_case : Dict = depths __snake_case : Optional[int] = is_training __snake_case : Any = use_labels __snake_case : Union[str, Any] = intermediate_size __snake_case : str = hidden_act __snake_case : Dict = type_sequence_label_size __snake_case : Any = initializer_range __snake_case : str = out_features __snake_case : str = num_labels __snake_case : Dict = scope __snake_case : Optional[int] = num_stages def lowercase__ ( self : Any ) -> Optional[Any]: """simple docstring""" __snake_case : List[str] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) __snake_case : Optional[int] = None if self.use_labels: __snake_case : str = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __snake_case : Optional[int] = self.get_config() return config, pixel_values, labels def lowercase__ ( self : Optional[int] ) -> Dict: """simple docstring""" return ConvNextConfig( num_channels=self.num_channels , num_stages=self.num_stages , hidden_sizes=self.hidden_sizes , depths=self.depths , is_training=self.is_training , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , out_features=self.out_features , ) def lowercase__ ( self : int ) -> int: """simple docstring""" return UperNetConfig( backbone_config=self.get_backbone_config() , hidden_size=5_12 , pool_scales=[1, 2, 3, 6] , use_auxiliary_head=__magic_name__ , auxiliary_loss_weight=0.4 , auxiliary_in_channels=40 , auxiliary_channels=2_56 , auxiliary_num_convs=1 , auxiliary_concat_input=__magic_name__ , loss_ignore_index=2_55 , num_labels=self.num_labels , ) def lowercase__ ( self : Optional[Any] , __magic_name__ : Tuple , __magic_name__ : Any , __magic_name__ : List[str] ) -> Optional[int]: """simple docstring""" __snake_case : Optional[Any] = UperNetForSemanticSegmentation(config=__magic_name__ ) model.to(__magic_name__ ) model.eval() __snake_case : int = model(__magic_name__ ) self.parent.assertEqual( result.logits.shape , (self.batch_size, self.num_labels, self.image_size, self.image_size) ) def lowercase__ ( self : List[str] ) -> Any: """simple docstring""" __snake_case : Tuple = self.prepare_config_and_inputs() ( ( __snake_case ) , ( __snake_case ) , ( __snake_case ) , ) : List[str] = config_and_inputs __snake_case : int = {"""pixel_values""": pixel_values} return config, inputs_dict @require_torch class _A ( __lowercase , __lowercase , unittest.TestCase ): lowercase__: int = (UperNetForSemanticSegmentation,) if is_torch_available() else () lowercase__: Dict = {'''image-segmentation''': UperNetForSemanticSegmentation} if is_torch_available() else {} lowercase__: int = False lowercase__: str = False lowercase__: Optional[Any] = False lowercase__: List[str] = False lowercase__: str = False lowercase__: str = False def lowercase__ ( self : Optional[int] ) -> Optional[int]: """simple docstring""" __snake_case : Optional[Any] = UperNetModelTester(self ) __snake_case : Union[str, Any] = ConfigTester(self , config_class=__magic_name__ , has_text_modality=__magic_name__ , hidden_size=37 ) def lowercase__ ( self : Optional[Any] ) -> Optional[int]: """simple docstring""" self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def lowercase__ ( self : Union[str, Any] ) -> Optional[Any]: """simple docstring""" return def lowercase__ ( self : Tuple ) -> Dict: """simple docstring""" __snake_case , __snake_case : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __snake_case : Dict = model_class(__magic_name__ ) __snake_case : Dict = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __snake_case : Any = [*signature.parameters.keys()] __snake_case : str = ["""pixel_values"""] self.assertListEqual(arg_names[:1] , __magic_name__ ) def lowercase__ ( self : List[Any] ) -> Optional[Any]: """simple docstring""" __snake_case : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_semantic_segmentation(*__magic_name__ ) @unittest.skip(reason="""UperNet does not use inputs_embeds""" ) def lowercase__ ( self : List[str] ) -> Optional[int]: """simple docstring""" pass @unittest.skip(reason="""UperNet does not support input and output embeddings""" ) def lowercase__ ( self : Union[str, Any] ) -> List[str]: """simple docstring""" pass @unittest.skip(reason="""UperNet does not have a base model""" ) def lowercase__ ( self : Tuple ) -> Optional[Any]: """simple docstring""" pass @unittest.skip(reason="""UperNet does not have a base model""" ) def lowercase__ ( self : int ) -> int: """simple docstring""" pass @require_torch_multi_gpu @unittest.skip(reason="""UperNet has some layers using `add_module` which doesn't work well with `nn.DataParallel`""" ) def lowercase__ ( self : Optional[Any] ) -> List[str]: """simple docstring""" pass @unittest.skip("""Will be fixed soon by reducing the size of the model used for common tests.""" ) def lowercase__ ( self : List[str] ) -> List[Any]: """simple docstring""" pass def lowercase__ ( self : List[Any] ) -> List[Any]: """simple docstring""" def check_hidden_states_output(__magic_name__ : Dict , __magic_name__ : int , __magic_name__ : Any ): __snake_case : Dict = model_class(__magic_name__ ) model.to(__magic_name__ ) model.eval() with torch.no_grad(): __snake_case : Union[str, Any] = model(**self._prepare_for_class(__magic_name__ , __magic_name__ ) ) __snake_case : int = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states __snake_case : Optional[Any] = self.model_tester.num_stages self.assertEqual(len(__magic_name__ ) , expected_num_stages + 1 ) # ConvNext's feature maps are of shape (batch_size, num_channels, height, width) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [self.model_tester.image_size // 4, self.model_tester.image_size // 4] , ) __snake_case , __snake_case : str = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __snake_case : List[str] = True check_hidden_states_output(__magic_name__ , __magic_name__ , __magic_name__ ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] __snake_case : Tuple = True check_hidden_states_output(__magic_name__ , __magic_name__ , __magic_name__ ) def lowercase__ ( self : Optional[Any] ) -> Optional[Any]: """simple docstring""" __snake_case , __snake_case : Dict = self.model_tester.prepare_config_and_inputs_for_common() __snake_case : Any = _config_zero_init(__magic_name__ ) __snake_case : Union[str, Any] = _config_zero_init(configs_no_init.backbone_config ) for model_class in self.all_model_classes: __snake_case : Optional[int] = model_class(config=__magic_name__ ) for name, param in model.named_parameters(): if param.requires_grad: self.assertIn( ((param.data.mean() * 1E9).round() / 1E9).item() , [0.0, 1.0] , msg=f'''Parameter {name} of model {model_class} seems not properly initialized''' , ) @unittest.skip(reason="""UperNet does not have tied weights""" ) def lowercase__ ( self : List[str] ) -> Optional[Any]: """simple docstring""" pass @slow def lowercase__ ( self : List[str] ) -> int: """simple docstring""" for model_name in UPERNET_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __snake_case : List[str] = UperNetForSemanticSegmentation.from_pretrained(__magic_name__ ) self.assertIsNotNone(__magic_name__ ) def _a ( ) -> Any: """simple docstring""" __snake_case : Dict = hf_hub_download( repo_id="""hf-internal-testing/fixtures_ade20k""" , repo_type="""dataset""" , filename="""ADE_val_00000001.jpg""" ) __snake_case : List[str] = Image.open(_lowerCamelCase ).convert("""RGB""" ) return image @require_torch @require_vision @slow class _A ( unittest.TestCase ): def lowercase__ ( self : List[str] ) -> Optional[int]: """simple docstring""" __snake_case : Union[str, Any] = AutoImageProcessor.from_pretrained("""openmmlab/upernet-swin-tiny""" ) __snake_case : int = UperNetForSemanticSegmentation.from_pretrained("""openmmlab/upernet-swin-tiny""" ).to(__magic_name__ ) __snake_case : Tuple = prepare_img() __snake_case : int = processor(images=__magic_name__ , return_tensors="""pt""" ).to(__magic_name__ ) with torch.no_grad(): __snake_case : Union[str, Any] = model(**__magic_name__ ) __snake_case : str = torch.Size((1, model.config.num_labels, 5_12, 5_12) ) self.assertEqual(outputs.logits.shape , __magic_name__ ) __snake_case : List[str] = torch.tensor( [[-7.5958, -7.5958, -7.4302], [-7.5958, -7.5958, -7.4302], [-7.4797, -7.4797, -7.3068]] ).to(__magic_name__ ) self.assertTrue(torch.allclose(outputs.logits[0, 0, :3, :3] , __magic_name__ , atol=1E-4 ) ) def lowercase__ ( self : Optional[int] ) -> str: """simple docstring""" __snake_case : str = AutoImageProcessor.from_pretrained("""openmmlab/upernet-convnext-tiny""" ) __snake_case : Any = UperNetForSemanticSegmentation.from_pretrained("""openmmlab/upernet-convnext-tiny""" ).to(__magic_name__ ) __snake_case : Union[str, Any] = prepare_img() __snake_case : Optional[int] = processor(images=__magic_name__ , return_tensors="""pt""" ).to(__magic_name__ ) with torch.no_grad(): __snake_case : int = model(**__magic_name__ ) __snake_case : Optional[Any] = torch.Size((1, model.config.num_labels, 5_12, 5_12) ) self.assertEqual(outputs.logits.shape , __magic_name__ ) __snake_case : str = torch.tensor( [[-8.8110, -8.8110, -8.6521], [-8.8110, -8.8110, -8.6521], [-8.7746, -8.7746, -8.6130]] ).to(__magic_name__ ) self.assertTrue(torch.allclose(outputs.logits[0, 0, :3, :3] , __magic_name__ , atol=1E-4 ) )
26
'''simple docstring''' import doctest import logging import os import unittest from pathlib import Path from typing import List, Union import transformers from transformers.testing_utils import require_tf, require_torch, slow __UpperCamelCase = logging.getLogger() @unittest.skip('''Temporarily disable the doc tests.''' ) @require_torch @require_tf @slow class _A ( unittest.TestCase ): def lowercase__ ( self : Optional[int] , __magic_name__ : Path , __magic_name__ : Union[str, None] = None , __magic_name__ : Union[List[str], None] = None , __magic_name__ : Union[str, List[str], None] = None , __magic_name__ : bool = True , ) -> Optional[int]: """simple docstring""" __snake_case : Union[str, Any] = [file for file in os.listdir(__magic_name__ ) if os.path.isfile(os.path.join(__magic_name__ , __magic_name__ ) )] if identifier is not None: __snake_case : List[Any] = [file for file in files if identifier in file] if n_identifier is not None: if isinstance(__magic_name__ , __magic_name__ ): for n_ in n_identifier: __snake_case : Optional[int] = [file for file in files if n_ not in file] else: __snake_case : Tuple = [file for file in files if n_identifier not in file] __snake_case : Dict = ignore_files or [] ignore_files.append("""__init__.py""" ) __snake_case : List[str] = [file for file in files if file not in ignore_files] for file in files: # Open all files print("""Testing""" , __magic_name__ ) if only_modules: __snake_case : List[Any] = file.split(""".""" )[0] try: __snake_case : List[Any] = getattr(__magic_name__ , __magic_name__ ) __snake_case : Union[str, Any] = doctest.DocTestSuite(__magic_name__ ) __snake_case : Dict = unittest.TextTestRunner().run(__magic_name__ ) self.assertIs(len(result.failures ) , 0 ) except AttributeError: logger.info(f'''{module_identifier} is not a module.''' ) else: __snake_case : Tuple = doctest.testfile(str("""..""" / directory / file ) , optionflags=doctest.ELLIPSIS ) self.assertIs(result.failed , 0 ) def lowercase__ ( self : Union[str, Any] ) -> Any: """simple docstring""" __snake_case : List[Any] = Path("""src/transformers""" ) __snake_case : List[Any] = """modeling""" __snake_case : Union[str, Any] = [ """modeling_ctrl.py""", """modeling_tf_ctrl.py""", ] self.analyze_directory(__magic_name__ , identifier=__magic_name__ , ignore_files=__magic_name__ ) def lowercase__ ( self : Union[str, Any] ) -> int: """simple docstring""" __snake_case : Union[str, Any] = Path("""src/transformers""" ) __snake_case : Any = """tokenization""" self.analyze_directory(__magic_name__ , identifier=__magic_name__ ) def lowercase__ ( self : Union[str, Any] ) -> int: """simple docstring""" __snake_case : List[Any] = Path("""src/transformers""" ) __snake_case : List[str] = """configuration""" self.analyze_directory(__magic_name__ , identifier=__magic_name__ ) def lowercase__ ( self : Dict ) -> Dict: """simple docstring""" __snake_case : Tuple = Path("""src/transformers""" ) __snake_case : int = ["""configuration""", """modeling""", """tokenization"""] self.analyze_directory(__magic_name__ , n_identifier=__magic_name__ ) def lowercase__ ( self : Optional[int] ) -> Union[str, Any]: """simple docstring""" __snake_case : int = Path("""docs/source""" ) __snake_case : Optional[int] = ["""favicon.ico"""] self.analyze_directory(__magic_name__ , ignore_files=__magic_name__ , only_modules=__magic_name__ )
26
1
'''simple docstring''' import importlib import sys from argparse import REMAINDER, ArgumentParser from pathlib import Path import torch_xla.distributed.xla_multiprocessing as xmp def _a ( ) -> Any: """simple docstring""" __snake_case : Tuple = ArgumentParser( description=( """PyTorch TPU distributed training launch helper utility that will spawn up multiple distributed processes""" ) ) # Optional arguments for the launch helper parser.add_argument("""--num_cores""" , type=_lowerCamelCase , default=1 , help="""Number of TPU cores to use (1 or 8).""" ) # positional parser.add_argument( """training_script""" , type=_lowerCamelCase , help=( """The full path to the single TPU training """ """program/script to be launched in parallel, """ """followed by all the arguments for the """ """training script""" ) , ) # rest from the training program parser.add_argument("""training_script_args""" , nargs=_lowerCamelCase ) return parser.parse_args() def _a ( ) -> str: """simple docstring""" __snake_case : Optional[Any] = parse_args() # Import training_script as a module. __snake_case : Optional[int] = Path(args.training_script ) sys.path.append(str(script_fpath.parent.resolve() ) ) __snake_case : Any = script_fpath.stem __snake_case : List[str] = importlib.import_module(_lowerCamelCase ) # Patch sys.argv __snake_case : int = [args.training_script] + args.training_script_args + ["""--tpu_num_cores""", str(args.num_cores )] xmp.spawn(mod._mp_fn , args=() , nprocs=args.num_cores ) if __name__ == "__main__": main()
26
'''simple docstring''' import inspect from typing import Callable, List, Optional, Union import torch from transformers import ( CLIPImageProcessor, CLIPTextModel, CLIPTokenizer, WhisperForConditionalGeneration, WhisperProcessor, ) from diffusers import ( AutoencoderKL, DDIMScheduler, DiffusionPipeline, LMSDiscreteScheduler, PNDMScheduler, UNetaDConditionModel, ) from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion import StableDiffusionPipelineOutput from diffusers.pipelines.stable_diffusion.safety_checker import StableDiffusionSafetyChecker from diffusers.utils import logging __UpperCamelCase = logging.get_logger(__name__) # pylint: disable=invalid-name class _A ( __lowercase ): def __init__( self : str , __magic_name__ : WhisperForConditionalGeneration , __magic_name__ : WhisperProcessor , __magic_name__ : AutoencoderKL , __magic_name__ : CLIPTextModel , __magic_name__ : CLIPTokenizer , __magic_name__ : UNetaDConditionModel , __magic_name__ : Union[DDIMScheduler, PNDMScheduler, LMSDiscreteScheduler] , __magic_name__ : StableDiffusionSafetyChecker , __magic_name__ : CLIPImageProcessor , ) -> Union[str, Any]: """simple docstring""" super().__init__() if safety_checker is None: logger.warning( f'''You have disabled the safety checker for {self.__class__} by passing `safety_checker=None`. Ensure''' """ that you abide to the conditions of the Stable Diffusion license and do not expose unfiltered""" """ results in services or applications open to the public. Both the diffusers team and Hugging Face""" """ strongly recommend to keep the safety filter enabled in all public facing circumstances, disabling""" """ it only for use-cases that involve analyzing network behavior or auditing its results. For more""" """ information, please have a look at https://github.com/huggingface/diffusers/pull/254 .""" ) self.register_modules( speech_model=__magic_name__ , speech_processor=__magic_name__ , vae=__magic_name__ , text_encoder=__magic_name__ , tokenizer=__magic_name__ , unet=__magic_name__ , scheduler=__magic_name__ , feature_extractor=__magic_name__ , ) def lowercase__ ( self : Optional[Any] , __magic_name__ : Optional[Union[str, int]] = "auto" ) -> Union[str, Any]: """simple docstring""" if slice_size == "auto": __snake_case : str = self.unet.config.attention_head_dim // 2 self.unet.set_attention_slice(__magic_name__ ) def lowercase__ ( self : str ) -> Any: """simple docstring""" self.enable_attention_slicing(__magic_name__ ) @torch.no_grad() def __call__( self : Optional[int] , __magic_name__ : str , __magic_name__ : Dict=1_60_00 , __magic_name__ : int = 5_12 , __magic_name__ : int = 5_12 , __magic_name__ : int = 50 , __magic_name__ : float = 7.5 , __magic_name__ : Optional[Union[str, List[str]]] = None , __magic_name__ : Optional[int] = 1 , __magic_name__ : float = 0.0 , __magic_name__ : Optional[torch.Generator] = None , __magic_name__ : Optional[torch.FloatTensor] = None , __magic_name__ : Optional[str] = "pil" , __magic_name__ : bool = True , __magic_name__ : Optional[Callable[[int, int, torch.FloatTensor], None]] = None , __magic_name__ : int = 1 , **__magic_name__ : List[str] , ) -> int: """simple docstring""" __snake_case : List[Any] = self.speech_processor.feature_extractor( __magic_name__ , return_tensors="""pt""" , sampling_rate=__magic_name__ ).input_features.to(self.device ) __snake_case : List[str] = self.speech_model.generate(__magic_name__ , max_length=48_00_00 ) __snake_case : List[Any] = self.speech_processor.tokenizer.batch_decode(__magic_name__ , skip_special_tokens=__magic_name__ , normalize=__magic_name__ )[ 0 ] if isinstance(__magic_name__ , __magic_name__ ): __snake_case : Tuple = 1 elif isinstance(__magic_name__ , __magic_name__ ): __snake_case : Optional[int] = len(__magic_name__ ) else: raise ValueError(f'''`prompt` has to be of type `str` or `list` but is {type(__magic_name__ )}''' ) if height % 8 != 0 or width % 8 != 0: raise ValueError(f'''`height` and `width` have to be divisible by 8 but are {height} and {width}.''' ) if (callback_steps is None) or ( callback_steps is not None and (not isinstance(__magic_name__ , __magic_name__ ) or callback_steps <= 0) ): raise ValueError( f'''`callback_steps` has to be a positive integer but is {callback_steps} of type''' f''' {type(__magic_name__ )}.''' ) # get prompt text embeddings __snake_case : Dict = self.tokenizer( __magic_name__ , padding="""max_length""" , max_length=self.tokenizer.model_max_length , return_tensors="""pt""" , ) __snake_case : Optional[Any] = text_inputs.input_ids if text_input_ids.shape[-1] > self.tokenizer.model_max_length: __snake_case : Tuple = self.tokenizer.batch_decode(text_input_ids[:, self.tokenizer.model_max_length :] ) logger.warning( """The following part of your input was truncated because CLIP can only handle sequences up to""" f''' {self.tokenizer.model_max_length} tokens: {removed_text}''' ) __snake_case : Any = text_input_ids[:, : self.tokenizer.model_max_length] __snake_case : int = self.text_encoder(text_input_ids.to(self.device ) )[0] # duplicate text embeddings for each generation per prompt, using mps friendly method __snake_case , __snake_case , __snake_case : Any = text_embeddings.shape __snake_case : List[Any] = text_embeddings.repeat(1 , __magic_name__ , 1 ) __snake_case : Dict = text_embeddings.view(bs_embed * num_images_per_prompt , __magic_name__ , -1 ) # here `guidance_scale` is defined analog to the guidance weight `w` of equation (2) # of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1` # corresponds to doing no classifier free guidance. __snake_case : Optional[int] = guidance_scale > 1.0 # get unconditional embeddings for classifier free guidance if do_classifier_free_guidance: __snake_case : List[str] if negative_prompt is None: __snake_case : Optional[Any] = [""""""] * batch_size elif type(__magic_name__ ) is not type(__magic_name__ ): raise TypeError( f'''`negative_prompt` should be the same type to `prompt`, but got {type(__magic_name__ )} !=''' f''' {type(__magic_name__ )}.''' ) elif isinstance(__magic_name__ , __magic_name__ ): __snake_case : Dict = [negative_prompt] elif batch_size != len(__magic_name__ ): raise ValueError( f'''`negative_prompt`: {negative_prompt} has batch size {len(__magic_name__ )}, but `prompt`:''' f''' {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches''' """ the batch size of `prompt`.""" ) else: __snake_case : int = negative_prompt __snake_case : List[str] = text_input_ids.shape[-1] __snake_case : Any = self.tokenizer( __magic_name__ , padding="""max_length""" , max_length=__magic_name__ , truncation=__magic_name__ , return_tensors="""pt""" , ) __snake_case : Dict = self.text_encoder(uncond_input.input_ids.to(self.device ) )[0] # duplicate unconditional embeddings for each generation per prompt, using mps friendly method __snake_case : Optional[int] = uncond_embeddings.shape[1] __snake_case : Union[str, Any] = uncond_embeddings.repeat(1 , __magic_name__ , 1 ) __snake_case : Tuple = uncond_embeddings.view(batch_size * num_images_per_prompt , __magic_name__ , -1 ) # For classifier free guidance, we need to do two forward passes. # Here we concatenate the unconditional and text embeddings into a single batch # to avoid doing two forward passes __snake_case : Dict = torch.cat([uncond_embeddings, text_embeddings] ) # get the initial random noise unless the user supplied it # Unlike in other pipelines, latents need to be generated in the target device # for 1-to-1 results reproducibility with the CompVis implementation. # However this currently doesn't work in `mps`. __snake_case : List[Any] = (batch_size * num_images_per_prompt, self.unet.config.in_channels, height // 8, width // 8) __snake_case : List[Any] = text_embeddings.dtype if latents is None: if self.device.type == "mps": # randn does not exist on mps __snake_case : Optional[int] = torch.randn(__magic_name__ , generator=__magic_name__ , device="""cpu""" , dtype=__magic_name__ ).to( self.device ) else: __snake_case : int = torch.randn(__magic_name__ , generator=__magic_name__ , device=self.device , dtype=__magic_name__ ) else: if latents.shape != latents_shape: raise ValueError(f'''Unexpected latents shape, got {latents.shape}, expected {latents_shape}''' ) __snake_case : List[str] = latents.to(self.device ) # set timesteps self.scheduler.set_timesteps(__magic_name__ ) # Some schedulers like PNDM have timesteps as arrays # It's more optimized to move all timesteps to correct device beforehand __snake_case : Optional[int] = self.scheduler.timesteps.to(self.device ) # scale the initial noise by the standard deviation required by the scheduler __snake_case : str = latents * self.scheduler.init_noise_sigma # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature # eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers. # eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502 # and should be between [0, 1] __snake_case : Tuple = """eta""" in set(inspect.signature(self.scheduler.step ).parameters.keys() ) __snake_case : List[str] = {} if accepts_eta: __snake_case : str = eta for i, t in enumerate(self.progress_bar(__magic_name__ ) ): # expand the latents if we are doing classifier free guidance __snake_case : Union[str, Any] = torch.cat([latents] * 2 ) if do_classifier_free_guidance else latents __snake_case : Dict = self.scheduler.scale_model_input(__magic_name__ , __magic_name__ ) # predict the noise residual __snake_case : Tuple = self.unet(__magic_name__ , __magic_name__ , encoder_hidden_states=__magic_name__ ).sample # perform guidance if do_classifier_free_guidance: __snake_case , __snake_case : str = noise_pred.chunk(2 ) __snake_case : Any = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) # compute the previous noisy sample x_t -> x_t-1 __snake_case : Optional[Any] = self.scheduler.step(__magic_name__ , __magic_name__ , __magic_name__ , **__magic_name__ ).prev_sample # call the callback, if provided if callback is not None and i % callback_steps == 0: callback(__magic_name__ , __magic_name__ , __magic_name__ ) __snake_case : int = 1 / 0.18215 * latents __snake_case : Optional[Any] = self.vae.decode(__magic_name__ ).sample __snake_case : Any = (image / 2 + 0.5).clamp(0 , 1 ) # we always cast to float32 as this does not cause significant overhead and is compatible with bfloat16 __snake_case : Any = image.cpu().permute(0 , 2 , 3 , 1 ).float().numpy() if output_type == "pil": __snake_case : Tuple = self.numpy_to_pil(__magic_name__ ) if not return_dict: return image return StableDiffusionPipelineOutput(images=__magic_name__ , nsfw_content_detected=__magic_name__ )
26
1
'''simple docstring''' import copy from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging from ..auto import CONFIG_MAPPING __UpperCamelCase = logging.get_logger(__name__) __UpperCamelCase = { "microsoft/conditional-detr-resnet-50": ( "https://huggingface.co/microsoft/conditional-detr-resnet-50/resolve/main/config.json" ), } class _A ( __lowercase ): lowercase__: List[str] = '''conditional_detr''' lowercase__: Optional[int] = ['''past_key_values'''] lowercase__: Tuple = { '''hidden_size''': '''d_model''', '''num_attention_heads''': '''encoder_attention_heads''', } def __init__( self : Tuple , __magic_name__ : Optional[Any]=True , __magic_name__ : int=None , __magic_name__ : str=3 , __magic_name__ : Tuple=3_00 , __magic_name__ : str=6 , __magic_name__ : Any=20_48 , __magic_name__ : Optional[int]=8 , __magic_name__ : Dict=6 , __magic_name__ : Optional[int]=20_48 , __magic_name__ : List[str]=8 , __magic_name__ : Union[str, Any]=0.0 , __magic_name__ : Any=0.0 , __magic_name__ : int=True , __magic_name__ : List[str]="relu" , __magic_name__ : Tuple=2_56 , __magic_name__ : Any=0.1 , __magic_name__ : Union[str, Any]=0.0 , __magic_name__ : int=0.0 , __magic_name__ : str=0.02 , __magic_name__ : List[str]=1.0 , __magic_name__ : Union[str, Any]=False , __magic_name__ : Dict="sine" , __magic_name__ : Union[str, Any]="resnet50" , __magic_name__ : Optional[int]=True , __magic_name__ : Any=False , __magic_name__ : Dict=2 , __magic_name__ : Any=5 , __magic_name__ : Dict=2 , __magic_name__ : int=1 , __magic_name__ : Optional[Any]=1 , __magic_name__ : Union[str, Any]=2 , __magic_name__ : Optional[int]=5 , __magic_name__ : Dict=2 , __magic_name__ : Any=0.25 , **__magic_name__ : Dict , ) -> int: """simple docstring""" if backbone_config is not None and use_timm_backbone: raise ValueError("""You can't specify both `backbone_config` and `use_timm_backbone`.""" ) if not use_timm_backbone: if backbone_config is None: logger.info("""`backbone_config` is `None`. Initializing the config with the default `ResNet` backbone.""" ) __snake_case : Any = CONFIG_MAPPING["""resnet"""](out_features=["""stage4"""] ) elif isinstance(__magic_name__ , __magic_name__ ): __snake_case : Dict = backbone_config.get("""model_type""" ) __snake_case : Dict = CONFIG_MAPPING[backbone_model_type] __snake_case : List[Any] = config_class.from_dict(__magic_name__ ) __snake_case : Any = use_timm_backbone __snake_case : Tuple = backbone_config __snake_case : Optional[Any] = num_channels __snake_case : int = num_queries __snake_case : Dict = d_model __snake_case : Optional[int] = encoder_ffn_dim __snake_case : int = encoder_layers __snake_case : List[Any] = encoder_attention_heads __snake_case : List[Any] = decoder_ffn_dim __snake_case : int = decoder_layers __snake_case : Optional[Any] = decoder_attention_heads __snake_case : Any = dropout __snake_case : int = attention_dropout __snake_case : Optional[Any] = activation_dropout __snake_case : Tuple = activation_function __snake_case : Union[str, Any] = init_std __snake_case : int = init_xavier_std __snake_case : Any = encoder_layerdrop __snake_case : Union[str, Any] = decoder_layerdrop __snake_case : List[str] = encoder_layers __snake_case : Tuple = auxiliary_loss __snake_case : str = position_embedding_type __snake_case : Dict = backbone __snake_case : str = use_pretrained_backbone __snake_case : str = dilation # Hungarian matcher __snake_case : int = class_cost __snake_case : Tuple = bbox_cost __snake_case : str = giou_cost # Loss coefficients __snake_case : Any = mask_loss_coefficient __snake_case : Any = dice_loss_coefficient __snake_case : List[str] = cls_loss_coefficient __snake_case : int = bbox_loss_coefficient __snake_case : Optional[int] = giou_loss_coefficient __snake_case : Optional[int] = focal_alpha super().__init__(is_encoder_decoder=__magic_name__ , **__magic_name__ ) @property def lowercase__ ( self : Optional[Any] ) -> int: """simple docstring""" return self.encoder_attention_heads @property def lowercase__ ( self : Any ) -> int: """simple docstring""" return self.d_model def lowercase__ ( self : Optional[Any] ) -> List[Any]: """simple docstring""" __snake_case : Optional[int] = copy.deepcopy(self.__dict__ ) if self.backbone_config is not None: __snake_case : Union[str, Any] = self.backbone_config.to_dict() __snake_case : Dict = self.__class__.model_type return output class _A ( __lowercase ): lowercase__: Dict = version.parse('''1.11''' ) @property def lowercase__ ( self : int ) -> Mapping[str, Mapping[int, str]]: """simple docstring""" return OrderedDict( [ ("""pixel_values""", {0: """batch""", 1: """num_channels""", 2: """height""", 3: """width"""}), ("""pixel_mask""", {0: """batch"""}), ] ) @property def lowercase__ ( self : List[Any] ) -> float: """simple docstring""" return 1E-5 @property def lowercase__ ( self : str ) -> int: """simple docstring""" return 12
26
'''simple docstring''' import os from huggingface_hub.constants import HUGGINGFACE_HUB_CACHE, hf_cache_home __UpperCamelCase = HUGGINGFACE_HUB_CACHE __UpperCamelCase = "config.json" __UpperCamelCase = "diffusion_pytorch_model.bin" __UpperCamelCase = "diffusion_flax_model.msgpack" __UpperCamelCase = "model.onnx" __UpperCamelCase = "diffusion_pytorch_model.safetensors" __UpperCamelCase = "weights.pb" __UpperCamelCase = "https://huggingface.co" __UpperCamelCase = default_cache_path __UpperCamelCase = "diffusers_modules" __UpperCamelCase = os.getenv("HF_MODULES_CACHE", os.path.join(hf_cache_home, "modules")) __UpperCamelCase = ["fp16", "non-ema"] __UpperCamelCase = ".self_attn"
26
1
'''simple docstring''' import unittest from transformers import XLMConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( XLMForMultipleChoice, XLMForQuestionAnswering, XLMForQuestionAnsweringSimple, XLMForSequenceClassification, XLMForTokenClassification, XLMModel, XLMWithLMHeadModel, ) from transformers.models.xlm.modeling_xlm import XLM_PRETRAINED_MODEL_ARCHIVE_LIST class _A : def __init__( self : List[Any] , __magic_name__ : Tuple , __magic_name__ : Optional[int]=13 , __magic_name__ : Any=7 , __magic_name__ : Any=True , __magic_name__ : Optional[int]=True , __magic_name__ : Any=True , __magic_name__ : str=True , __magic_name__ : Tuple=True , __magic_name__ : str=False , __magic_name__ : List[Any]=False , __magic_name__ : Optional[Any]=False , __magic_name__ : int=2 , __magic_name__ : Any=99 , __magic_name__ : Union[str, Any]=0 , __magic_name__ : Tuple=32 , __magic_name__ : Optional[int]=5 , __magic_name__ : Tuple=4 , __magic_name__ : int=0.1 , __magic_name__ : Optional[Any]=0.1 , __magic_name__ : int=5_12 , __magic_name__ : str=2 , __magic_name__ : Tuple=0.02 , __magic_name__ : List[str]=2 , __magic_name__ : List[Any]=4 , __magic_name__ : str="last" , __magic_name__ : Dict=True , __magic_name__ : Optional[int]=None , __magic_name__ : int=0 , ) -> str: """simple docstring""" __snake_case : List[str] = parent __snake_case : List[str] = batch_size __snake_case : List[str] = seq_length __snake_case : Dict = is_training __snake_case : Optional[Any] = use_input_lengths __snake_case : Optional[int] = use_token_type_ids __snake_case : int = use_labels __snake_case : Any = gelu_activation __snake_case : List[str] = sinusoidal_embeddings __snake_case : int = causal __snake_case : int = asm __snake_case : Any = n_langs __snake_case : Any = vocab_size __snake_case : str = n_special __snake_case : Union[str, Any] = hidden_size __snake_case : Optional[Any] = num_hidden_layers __snake_case : int = num_attention_heads __snake_case : Any = hidden_dropout_prob __snake_case : Any = attention_probs_dropout_prob __snake_case : Optional[int] = max_position_embeddings __snake_case : str = type_sequence_label_size __snake_case : Optional[int] = initializer_range __snake_case : List[str] = num_labels __snake_case : List[str] = num_choices __snake_case : Tuple = summary_type __snake_case : List[str] = use_proj __snake_case : Dict = scope __snake_case : Any = bos_token_id def lowercase__ ( self : List[str] ) -> Dict: """simple docstring""" __snake_case : Union[str, Any] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __snake_case : List[Any] = random_attention_mask([self.batch_size, self.seq_length] ) __snake_case : List[Any] = None if self.use_input_lengths: __snake_case : Optional[int] = ( ids_tensor([self.batch_size] , vocab_size=2 ) + self.seq_length - 2 ) # small variation of seq_length __snake_case : Optional[Any] = None if self.use_token_type_ids: __snake_case : int = ids_tensor([self.batch_size, self.seq_length] , self.n_langs ) __snake_case : List[str] = None __snake_case : List[Any] = None __snake_case : List[Any] = None if self.use_labels: __snake_case : Optional[int] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __snake_case : Optional[int] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) __snake_case : int = ids_tensor([self.batch_size] , 2 ).float() __snake_case : List[str] = ids_tensor([self.batch_size] , self.num_choices ) __snake_case : Any = self.get_config() return ( config, input_ids, token_type_ids, input_lengths, sequence_labels, token_labels, is_impossible_labels, choice_labels, input_mask, ) def lowercase__ ( self : str ) -> Optional[Any]: """simple docstring""" return XLMConfig( vocab_size=self.vocab_size , n_special=self.n_special , emb_dim=self.hidden_size , n_layers=self.num_hidden_layers , n_heads=self.num_attention_heads , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , gelu_activation=self.gelu_activation , sinusoidal_embeddings=self.sinusoidal_embeddings , asm=self.asm , causal=self.causal , n_langs=self.n_langs , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , summary_type=self.summary_type , use_proj=self.use_proj , num_labels=self.num_labels , bos_token_id=self.bos_token_id , ) def lowercase__ ( self : List[str] , __magic_name__ : str , __magic_name__ : Dict , __magic_name__ : Optional[int] , __magic_name__ : Any , __magic_name__ : List[str] , __magic_name__ : List[Any] , __magic_name__ : Union[str, Any] , __magic_name__ : List[str] , __magic_name__ : Any , ) -> Optional[Any]: """simple docstring""" __snake_case : List[Any] = XLMModel(config=__magic_name__ ) model.to(__magic_name__ ) model.eval() __snake_case : Any = model(__magic_name__ , lengths=__magic_name__ , langs=__magic_name__ ) __snake_case : List[str] = model(__magic_name__ , langs=__magic_name__ ) __snake_case : Optional[int] = model(__magic_name__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def lowercase__ ( self : Tuple , __magic_name__ : Optional[Any] , __magic_name__ : str , __magic_name__ : Tuple , __magic_name__ : int , __magic_name__ : str , __magic_name__ : List[Any] , __magic_name__ : List[Any] , __magic_name__ : str , __magic_name__ : Optional[int] , ) -> List[str]: """simple docstring""" __snake_case : Dict = XLMWithLMHeadModel(__magic_name__ ) model.to(__magic_name__ ) model.eval() __snake_case : Any = model(__magic_name__ , token_type_ids=__magic_name__ , labels=__magic_name__ ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def lowercase__ ( self : Dict , __magic_name__ : Tuple , __magic_name__ : List[str] , __magic_name__ : Tuple , __magic_name__ : Dict , __magic_name__ : int , __magic_name__ : Optional[int] , __magic_name__ : Dict , __magic_name__ : List[Any] , __magic_name__ : Union[str, Any] , ) -> List[str]: """simple docstring""" __snake_case : int = XLMForQuestionAnsweringSimple(__magic_name__ ) model.to(__magic_name__ ) model.eval() __snake_case : int = model(__magic_name__ ) __snake_case : Any = model(__magic_name__ , start_positions=__magic_name__ , end_positions=__magic_name__ ) __snake_case : Tuple = outputs self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def lowercase__ ( self : int , __magic_name__ : List[Any] , __magic_name__ : Tuple , __magic_name__ : List[Any] , __magic_name__ : List[str] , __magic_name__ : Dict , __magic_name__ : Union[str, Any] , __magic_name__ : Union[str, Any] , __magic_name__ : Optional[int] , __magic_name__ : Tuple , ) -> int: """simple docstring""" __snake_case : Dict = XLMForQuestionAnswering(__magic_name__ ) model.to(__magic_name__ ) model.eval() __snake_case : Optional[Any] = model(__magic_name__ ) __snake_case : Optional[Any] = model( __magic_name__ , start_positions=__magic_name__ , end_positions=__magic_name__ , cls_index=__magic_name__ , is_impossible=__magic_name__ , p_mask=__magic_name__ , ) __snake_case : Dict = model( __magic_name__ , start_positions=__magic_name__ , end_positions=__magic_name__ , cls_index=__magic_name__ , is_impossible=__magic_name__ , ) ((__snake_case) , ) : Dict = result_with_labels.to_tuple() __snake_case : str = model(__magic_name__ , start_positions=__magic_name__ , end_positions=__magic_name__ ) ((__snake_case) , ) : List[Any] = result_with_labels.to_tuple() self.parent.assertEqual(result_with_labels.loss.shape , () ) self.parent.assertEqual(result.start_top_log_probs.shape , (self.batch_size, model.config.start_n_top) ) self.parent.assertEqual(result.start_top_index.shape , (self.batch_size, model.config.start_n_top) ) self.parent.assertEqual( result.end_top_log_probs.shape , (self.batch_size, model.config.start_n_top * model.config.end_n_top) ) self.parent.assertEqual( result.end_top_index.shape , (self.batch_size, model.config.start_n_top * model.config.end_n_top) ) self.parent.assertEqual(result.cls_logits.shape , (self.batch_size,) ) def lowercase__ ( self : List[Any] , __magic_name__ : Union[str, Any] , __magic_name__ : str , __magic_name__ : Dict , __magic_name__ : List[str] , __magic_name__ : int , __magic_name__ : Dict , __magic_name__ : List[Any] , __magic_name__ : List[str] , __magic_name__ : Tuple , ) -> int: """simple docstring""" __snake_case : List[str] = XLMForSequenceClassification(__magic_name__ ) model.to(__magic_name__ ) model.eval() __snake_case : Optional[int] = model(__magic_name__ ) __snake_case : Optional[int] = model(__magic_name__ , labels=__magic_name__ ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def lowercase__ ( self : Union[str, Any] , __magic_name__ : Optional[int] , __magic_name__ : List[Any] , __magic_name__ : Any , __magic_name__ : Optional[Any] , __magic_name__ : int , __magic_name__ : Optional[Any] , __magic_name__ : Optional[int] , __magic_name__ : Any , __magic_name__ : List[str] , ) -> str: """simple docstring""" __snake_case : Any = self.num_labels __snake_case : Dict = XLMForTokenClassification(__magic_name__ ) model.to(__magic_name__ ) model.eval() __snake_case : Optional[Any] = model(__magic_name__ , attention_mask=__magic_name__ , labels=__magic_name__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def lowercase__ ( self : Optional[Any] , __magic_name__ : int , __magic_name__ : List[Any] , __magic_name__ : int , __magic_name__ : Optional[int] , __magic_name__ : Optional[int] , __magic_name__ : int , __magic_name__ : Optional[Any] , __magic_name__ : Dict , __magic_name__ : List[str] , ) -> Dict: """simple docstring""" __snake_case : Tuple = self.num_choices __snake_case : Optional[Any] = XLMForMultipleChoice(config=__magic_name__ ) model.to(__magic_name__ ) model.eval() __snake_case : List[str] = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() __snake_case : List[str] = token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() __snake_case : List[str] = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() __snake_case : Optional[Any] = model( __magic_name__ , attention_mask=__magic_name__ , token_type_ids=__magic_name__ , labels=__magic_name__ , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def lowercase__ ( self : List[Any] ) -> Optional[Any]: """simple docstring""" __snake_case : Optional[int] = self.prepare_config_and_inputs() ( ( __snake_case ) , ( __snake_case ) , ( __snake_case ) , ( __snake_case ) , ( __snake_case ) , ( __snake_case ) , ( __snake_case ) , ( __snake_case ) , ( __snake_case ) , ) : Optional[Any] = config_and_inputs __snake_case : Any = {"""input_ids""": input_ids, """token_type_ids""": token_type_ids, """lengths""": input_lengths} return config, inputs_dict @require_torch class _A ( __lowercase , __lowercase , __lowercase , unittest.TestCase ): lowercase__: Optional[Any] = ( ( XLMModel, XLMWithLMHeadModel, XLMForQuestionAnswering, XLMForSequenceClassification, XLMForQuestionAnsweringSimple, XLMForTokenClassification, XLMForMultipleChoice, ) if is_torch_available() else () ) lowercase__: Union[str, Any] = ( (XLMWithLMHeadModel,) if is_torch_available() else () ) # TODO (PVP): Check other models whether language generation is also applicable lowercase__: Union[str, Any] = ( { '''feature-extraction''': XLMModel, '''fill-mask''': XLMWithLMHeadModel, '''question-answering''': XLMForQuestionAnsweringSimple, '''text-classification''': XLMForSequenceClassification, '''text-generation''': XLMWithLMHeadModel, '''token-classification''': XLMForTokenClassification, '''zero-shot''': XLMForSequenceClassification, } if is_torch_available() else {} ) def lowercase__ ( self : Optional[int] , __magic_name__ : List[Any] , __magic_name__ : str , __magic_name__ : Optional[int] , __magic_name__ : Tuple , __magic_name__ : Optional[Any] ) -> Union[str, Any]: """simple docstring""" if ( pipeline_test_casse_name == "QAPipelineTests" and tokenizer_name is not None and not tokenizer_name.endswith("""Fast""" ) ): # `QAPipelineTests` fails for a few models when the slower tokenizer are used. # (The slower tokenizers were never used for pipeline tests before the pipeline testing rework) # TODO: check (and possibly fix) the `QAPipelineTests` with slower tokenizer return True return False def lowercase__ ( self : Tuple , __magic_name__ : List[str] , __magic_name__ : Tuple , __magic_name__ : Union[str, Any]=False ) -> Optional[Any]: """simple docstring""" __snake_case : List[str] = super()._prepare_for_class(__magic_name__ , __magic_name__ , return_labels=__magic_name__ ) if return_labels: if model_class.__name__ == "XLMForQuestionAnswering": __snake_case : List[Any] = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=__magic_name__ ) __snake_case : Optional[Any] = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=__magic_name__ ) return inputs_dict def lowercase__ ( self : Union[str, Any] ) -> str: """simple docstring""" __snake_case : Any = XLMModelTester(self ) __snake_case : List[str] = ConfigTester(self , config_class=__magic_name__ , emb_dim=37 ) def lowercase__ ( self : int ) -> Tuple: """simple docstring""" self.config_tester.run_common_tests() def lowercase__ ( self : Dict ) -> int: """simple docstring""" __snake_case : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_model(*__magic_name__ ) def lowercase__ ( self : Any ) -> Union[str, Any]: """simple docstring""" __snake_case : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_lm_head(*__magic_name__ ) def lowercase__ ( self : Optional[int] ) -> List[str]: """simple docstring""" __snake_case : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_simple_qa(*__magic_name__ ) def lowercase__ ( self : List[str] ) -> List[str]: """simple docstring""" __snake_case : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_qa(*__magic_name__ ) def lowercase__ ( self : Optional[int] ) -> str: """simple docstring""" __snake_case : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_sequence_classif(*__magic_name__ ) def lowercase__ ( self : Union[str, Any] ) -> Dict: """simple docstring""" __snake_case : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_token_classif(*__magic_name__ ) def lowercase__ ( self : Optional[Any] ) -> Optional[Any]: """simple docstring""" __snake_case : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_for_multiple_choice(*__magic_name__ ) def lowercase__ ( self : str , __magic_name__ : List[str] , __magic_name__ : Tuple , __magic_name__ : str , __magic_name__ : int , __magic_name__ : Any , __magic_name__ : int=False , __magic_name__ : Any=1 ) -> str: """simple docstring""" self.assertIsInstance(__magic_name__ , __magic_name__ ) self.assertListEqual( [isinstance(__magic_name__ , __magic_name__ ) for iter_attentions in attentions] , [True] * len(__magic_name__ ) ) self.assertEqual(len(__magic_name__ ) , (max_length - min_length) * num_beam_groups ) for idx, iter_attentions in enumerate(__magic_name__ ): # adds PAD dummy token __snake_case : List[str] = min_length + idx + 1 __snake_case : List[Any] = min_length + idx + 1 __snake_case : int = ( batch_size * num_beam_groups, config.num_attention_heads, tgt_len, src_len, ) # check attn size self.assertListEqual( [layer_attention.shape for layer_attention in iter_attentions] , [expected_shape] * len(__magic_name__ ) ) def lowercase__ ( self : Any , __magic_name__ : int , __magic_name__ : Dict , __magic_name__ : List[str] , __magic_name__ : Any , __magic_name__ : List[str] , __magic_name__ : Dict=False , __magic_name__ : Optional[int]=1 ) -> Optional[int]: """simple docstring""" self.assertIsInstance(__magic_name__ , __magic_name__ ) self.assertListEqual( [isinstance(__magic_name__ , __magic_name__ ) for iter_hidden_states in hidden_states] , [True] * len(__magic_name__ ) , ) self.assertEqual(len(__magic_name__ ) , (max_length - min_length) * num_beam_groups ) for idx, iter_hidden_states in enumerate(__magic_name__ ): # adds PAD dummy token __snake_case : str = min_length + idx + 1 __snake_case : Union[str, Any] = (batch_size * num_beam_groups, seq_len, config.hidden_size) # check hidden size self.assertListEqual( [layer_hidden_states.shape for layer_hidden_states in iter_hidden_states] , [expected_shape] * len(__magic_name__ ) , ) pass @slow def lowercase__ ( self : Union[str, Any] ) -> Union[str, Any]: """simple docstring""" for model_name in XLM_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __snake_case : Dict = XLMModel.from_pretrained(__magic_name__ ) self.assertIsNotNone(__magic_name__ ) @require_torch class _A ( unittest.TestCase ): @slow def lowercase__ ( self : str ) -> Tuple: """simple docstring""" __snake_case : Union[str, Any] = XLMWithLMHeadModel.from_pretrained("""xlm-mlm-en-2048""" ) model.to(__magic_name__ ) __snake_case : Any = torch.tensor([[14, 4_47]] , dtype=torch.long , device=__magic_name__ ) # the president __snake_case : Union[str, Any] = [ 14, 4_47, 14, 4_47, 14, 4_47, 14, 4_47, 14, 4_47, 14, 4_47, 14, 4_47, 14, 4_47, 14, 4_47, 14, 4_47, ] # the president the president the president the president the president the president the president the president the president the president # TODO(PVP): this and other input_ids I tried for generation give pretty bad results. Not sure why. Model might just not be made for auto-regressive inference __snake_case : Tuple = model.generate(__magic_name__ , do_sample=__magic_name__ ) self.assertListEqual(output_ids[0].cpu().numpy().tolist() , __magic_name__ )
26
'''simple docstring''' import argparse import json import re from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ( MobileNetVaConfig, MobileNetVaForImageClassification, MobileNetVaImageProcessor, load_tf_weights_in_mobilenet_va, ) from transformers.utils import logging logging.set_verbosity_info() __UpperCamelCase = logging.get_logger(__name__) def _a ( _lowerCamelCase ) -> Any: """simple docstring""" __snake_case : Union[str, Any] = MobileNetVaConfig(layer_norm_eps=0.0_01 ) if "_quant" in model_name: raise ValueError("""Quantized models are not supported.""" ) __snake_case : List[Any] = re.match(R"""^mobilenet_v1_([^_]*)_([^_]*)$""" , _lowerCamelCase ) if matches: __snake_case : Optional[Any] = float(matches[1] ) __snake_case : Union[str, Any] = int(matches[2] ) # The TensorFlow version of MobileNetV1 predicts 1001 classes instead of # the usual 1000. The first class (index 0) is "background". __snake_case : Tuple = 1001 __snake_case : Any = """imagenet-1k-id2label.json""" __snake_case : Optional[Any] = """huggingface/label-files""" __snake_case : List[Any] = json.load(open(hf_hub_download(_lowerCamelCase , _lowerCamelCase , repo_type="""dataset""" ) , """r""" ) ) __snake_case : Dict = {int(_lowerCamelCase ) + 1: v for k, v in idalabel.items()} __snake_case : List[str] = """background""" __snake_case : List[str] = idalabel __snake_case : List[Any] = {v: k for k, v in idalabel.items()} return config def _a ( ) -> Optional[Any]: """simple docstring""" __snake_case : Optional[int] = """http://images.cocodataset.org/val2017/000000039769.jpg""" __snake_case : List[Any] = Image.open(requests.get(_lowerCamelCase , stream=_lowerCamelCase ).raw ) return im @torch.no_grad() def _a ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase=False ) -> Optional[Any]: """simple docstring""" __snake_case : Optional[int] = get_mobilenet_va_config(_lowerCamelCase ) # Load 🤗 model __snake_case : Optional[Any] = MobileNetVaForImageClassification(_lowerCamelCase ).eval() # Load weights from TensorFlow checkpoint load_tf_weights_in_mobilenet_va(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) # Check outputs on an image, prepared by MobileNetV1ImageProcessor __snake_case : Optional[int] = MobileNetVaImageProcessor( crop_size={"""width""": config.image_size, """height""": config.image_size} , size={"""shortest_edge""": config.image_size + 32} , ) __snake_case : Tuple = image_processor(images=prepare_img() , return_tensors="""pt""" ) __snake_case : Optional[Any] = model(**_lowerCamelCase ) __snake_case : List[Any] = outputs.logits assert logits.shape == (1, 1001) if model_name == "mobilenet_v1_1.0_224": __snake_case : str = torch.tensor([-4.17_39, -1.12_33, 3.12_05] ) elif model_name == "mobilenet_v1_0.75_192": __snake_case : Tuple = torch.tensor([-3.94_40, -2.31_41, -0.33_33] ) else: __snake_case : List[Any] = None if expected_logits is not None: assert torch.allclose(logits[0, :3] , _lowerCamelCase , atol=1E-4 ) Path(_lowerCamelCase ).mkdir(exist_ok=_lowerCamelCase ) print(F'''Saving model {model_name} to {pytorch_dump_folder_path}''' ) model.save_pretrained(_lowerCamelCase ) print(F'''Saving image processor to {pytorch_dump_folder_path}''' ) image_processor.save_pretrained(_lowerCamelCase ) if push_to_hub: print("""Pushing to the hub...""" ) __snake_case : Optional[Any] = """google/""" + model_name image_processor.push_to_hub(_lowerCamelCase ) model.push_to_hub(_lowerCamelCase ) if __name__ == "__main__": __UpperCamelCase = argparse.ArgumentParser() # Required parameters parser.add_argument( "--model_name", default="mobilenet_v1_1.0_224", type=str, help="Name of the MobileNetV1 model you'd like to convert. Should in the form 'mobilenet_v1_<depth>_<size>'.", ) parser.add_argument( "--checkpoint_path", required=True, type=str, help="Path to the original TensorFlow checkpoint (.ckpt file)." ) parser.add_argument( "--pytorch_dump_folder_path", required=True, type=str, help="Path to the output PyTorch model directory." ) parser.add_argument( "--push_to_hub", action="store_true", help="Whether or not to push the converted model to the 🤗 hub." ) __UpperCamelCase = parser.parse_args() convert_movilevit_checkpoint( args.model_name, args.checkpoint_path, args.pytorch_dump_folder_path, args.push_to_hub )
26
1
'''simple docstring''' import pytest import requests from datasets.utils.file_utils import http_head from .utils import OfflineSimulationMode, RequestWouldHangIndefinitelyError, offline @pytest.mark.integration def _a ( ) -> Tuple: """simple docstring""" with offline(OfflineSimulationMode.CONNECTION_TIMES_OUT ): with pytest.raises(_lowerCamelCase ): requests.request("""GET""" , """https://huggingface.co""" ) with pytest.raises(requests.exceptions.ConnectTimeout ): requests.request("""GET""" , """https://huggingface.co""" , timeout=1.0 ) @pytest.mark.integration def _a ( ) -> Tuple: """simple docstring""" with offline(OfflineSimulationMode.CONNECTION_FAILS ): with pytest.raises(requests.exceptions.ConnectionError ): requests.request("""GET""" , """https://huggingface.co""" ) def _a ( ) -> Any: """simple docstring""" with offline(OfflineSimulationMode.HF_DATASETS_OFFLINE_SET_TO_1 ): with pytest.raises(_lowerCamelCase ): http_head("""https://huggingface.co""" )
26
'''simple docstring''' from sklearn.metrics import recall_score import datasets __UpperCamelCase = "\nRecall is the fraction of the positive examples that were correctly labeled by the model as positive. It can be computed with the equation:\nRecall = TP / (TP + FN)\nWhere TP is the true positives and FN is the false negatives.\n" __UpperCamelCase = "\nArgs:\n- **predictions** (`list` of `int`): The predicted labels.\n- **references** (`list` of `int`): The ground truth labels.\n- **labels** (`list` of `int`): The set of labels to include when `average` is not set to `binary`, and their order when average is `None`. Labels present in the data can be excluded in this input, for example to calculate a multiclass average ignoring a majority negative class, while labels not present in the data will result in 0 components in a macro average. For multilabel targets, labels are column indices. By default, all labels in y_true and y_pred are used in sorted order. Defaults to None.\n- **pos_label** (`int`): The class label to use as the 'positive class' when calculating the recall. Defaults to `1`.\n- **average** (`string`): This parameter is required for multiclass/multilabel targets. If None, the scores for each class are returned. Otherwise, this determines the type of averaging performed on the data. Defaults to `'binary'`.\n - `'binary'`: Only report results for the class specified by `pos_label`. This is applicable only if the target labels and predictions are binary.\n - `'micro'`: Calculate metrics globally by counting the total true positives, false negatives, and false positives.\n - `'macro'`: Calculate metrics for each label, and find their unweighted mean. This does not take label imbalance into account.\n - `'weighted'`: Calculate metrics for each label, and find their average weighted by support (the number of true instances for each label). This alters `'macro'` to account for label imbalance. Note that it can result in an F-score that is not between precision and recall.\n - `'samples'`: Calculate metrics for each instance, and find their average (only meaningful for multilabel classification).\n- **sample_weight** (`list` of `float`): Sample weights Defaults to `None`.\n- **zero_division** (): Sets the value to return when there is a zero division. Defaults to .\n - `'warn'`: If there is a zero division, the return value is `0`, but warnings are also raised.\n - `0`: If there is a zero division, the return value is `0`.\n - `1`: If there is a zero division, the return value is `1`.\n\nReturns:\n- **recall** (`float`, or `array` of `float`): Either the general recall score, or the recall scores for individual classes, depending on the values input to `labels` and `average`. Minimum possible value is 0. Maximum possible value is 1. A higher recall means that more of the positive examples have been labeled correctly. Therefore, a higher recall is generally considered better.\n\nExamples:\n\n Example 1-A simple example with some errors\n >>> recall_metric = datasets.load_metric('recall')\n >>> results = recall_metric.compute(references=[0, 0, 1, 1, 1], predictions=[0, 1, 0, 1, 1])\n >>> print(results)\n {'recall': 0.6666666666666666}\n\n Example 2-The same example as Example 1, but with `pos_label=0` instead of the default `pos_label=1`.\n >>> recall_metric = datasets.load_metric('recall')\n >>> results = recall_metric.compute(references=[0, 0, 1, 1, 1], predictions=[0, 1, 0, 1, 1], pos_label=0)\n >>> print(results)\n {'recall': 0.5}\n\n Example 3-The same example as Example 1, but with `sample_weight` included.\n >>> recall_metric = datasets.load_metric('recall')\n >>> sample_weight = [0.9, 0.2, 0.9, 0.3, 0.8]\n >>> results = recall_metric.compute(references=[0, 0, 1, 1, 1], predictions=[0, 1, 0, 1, 1], sample_weight=sample_weight)\n >>> print(results)\n {'recall': 0.55}\n\n Example 4-A multiclass example, using different averages.\n >>> recall_metric = datasets.load_metric('recall')\n >>> predictions = [0, 2, 1, 0, 0, 1]\n >>> references = [0, 1, 2, 0, 1, 2]\n >>> results = recall_metric.compute(predictions=predictions, references=references, average='macro')\n >>> print(results)\n {'recall': 0.3333333333333333}\n >>> results = recall_metric.compute(predictions=predictions, references=references, average='micro')\n >>> print(results)\n {'recall': 0.3333333333333333}\n >>> results = recall_metric.compute(predictions=predictions, references=references, average='weighted')\n >>> print(results)\n {'recall': 0.3333333333333333}\n >>> results = recall_metric.compute(predictions=predictions, references=references, average=None)\n >>> print(results)\n {'recall': array([1., 0., 0.])}\n" __UpperCamelCase = "\n@article{scikit-learn, title={Scikit-learn: Machine Learning in {P}ython}, author={Pedregosa, F. and Varoquaux, G. and Gramfort, A. and Michel, V. and Thirion, B. and Grisel, O. and Blondel, M. and Prettenhofer, P. and Weiss, R. and Dubourg, V. and Vanderplas, J. and Passos, A. and Cournapeau, D. and Brucher, M. and Perrot, M. and Duchesnay, E.}, journal={Journal of Machine Learning Research}, volume={12}, pages={2825--2830}, year={2011}\n" @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class _A ( datasets.Metric ): def lowercase__ ( self : Optional[int] ) -> Any: """simple docstring""" return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { """predictions""": datasets.Sequence(datasets.Value("""int32""" ) ), """references""": datasets.Sequence(datasets.Value("""int32""" ) ), } if self.config_name == """multilabel""" else { """predictions""": datasets.Value("""int32""" ), """references""": datasets.Value("""int32""" ), } ) , reference_urls=["""https://scikit-learn.org/stable/modules/generated/sklearn.metrics.recall_score.html"""] , ) def lowercase__ ( self : Tuple , __magic_name__ : int , __magic_name__ : Union[str, Any] , __magic_name__ : Any=None , __magic_name__ : Optional[Any]=1 , __magic_name__ : List[str]="binary" , __magic_name__ : Tuple=None , __magic_name__ : Dict="warn" , ) -> Any: """simple docstring""" __snake_case : Tuple = recall_score( __magic_name__ , __magic_name__ , labels=__magic_name__ , pos_label=__magic_name__ , average=__magic_name__ , sample_weight=__magic_name__ , zero_division=__magic_name__ , ) return {"recall": float(__magic_name__ ) if score.size == 1 else score}
26
1
'''simple docstring''' class _A : def __init__( self : str ) -> List[Any]: """simple docstring""" __snake_case : Optional[Any] = 0 __snake_case : List[Any] = 0 __snake_case : List[Any] = {} def lowercase__ ( self : List[str] , __magic_name__ : List[Any] ) -> Dict: """simple docstring""" if vertex not in self.adjacency: __snake_case : List[str] = {} self.num_vertices += 1 def lowercase__ ( self : List[Any] , __magic_name__ : Optional[Any] , __magic_name__ : Optional[Any] , __magic_name__ : int ) -> int: """simple docstring""" self.add_vertex(__magic_name__ ) self.add_vertex(__magic_name__ ) if head == tail: return __snake_case : Tuple = weight __snake_case : Optional[Any] = weight def lowercase__ ( self : Optional[int] ) -> Optional[Any]: """simple docstring""" __snake_case : Any = self.get_edges() for edge in edges: __snake_case , __snake_case , __snake_case : Union[str, Any] = edge edges.remove((tail, head, weight) ) for i in range(len(__magic_name__ ) ): __snake_case : Optional[int] = list(edges[i] ) edges.sort(key=lambda __magic_name__ : e[2] ) for i in range(len(__magic_name__ ) - 1 ): if edges[i][2] >= edges[i + 1][2]: __snake_case : Optional[Any] = edges[i][2] + 1 for edge in edges: __snake_case , __snake_case , __snake_case : Union[str, Any] = edge __snake_case : List[Any] = weight __snake_case : Dict = weight def __str__( self : Optional[Any] ) -> Optional[int]: """simple docstring""" __snake_case : int = """""" for tail in self.adjacency: for head in self.adjacency[tail]: __snake_case : Union[str, Any] = self.adjacency[head][tail] string += f'''{head} -> {tail} == {weight}\n''' return string.rstrip("""\n""" ) def lowercase__ ( self : int ) -> List[str]: """simple docstring""" __snake_case : int = [] for tail in self.adjacency: for head in self.adjacency[tail]: output.append((tail, head, self.adjacency[head][tail]) ) return output def lowercase__ ( self : Union[str, Any] ) -> str: """simple docstring""" return self.adjacency.keys() @staticmethod def lowercase__ ( __magic_name__ : int=None , __magic_name__ : List[str]=None ) -> Tuple: """simple docstring""" __snake_case : Dict = Graph() if vertices is None: __snake_case : Tuple = [] if edges is None: __snake_case : Optional[Any] = [] for vertex in vertices: g.add_vertex(__magic_name__ ) for edge in edges: g.add_edge(*__magic_name__ ) return g class _A : def __init__( self : int ) -> Tuple: """simple docstring""" __snake_case : Optional[int] = {} __snake_case : Union[str, Any] = {} def __len__( self : Tuple ) -> Optional[int]: """simple docstring""" return len(self.parent ) def lowercase__ ( self : str , __magic_name__ : int ) -> Optional[Any]: """simple docstring""" if item in self.parent: return self.find(__magic_name__ ) __snake_case : Any = item __snake_case : str = 0 return item def lowercase__ ( self : List[Any] , __magic_name__ : str ) -> List[Any]: """simple docstring""" if item not in self.parent: return self.make_set(__magic_name__ ) if item != self.parent[item]: __snake_case : int = self.find(self.parent[item] ) return self.parent[item] def lowercase__ ( self : List[str] , __magic_name__ : Dict , __magic_name__ : Optional[int] ) -> List[str]: """simple docstring""" __snake_case : List[str] = self.find(__magic_name__ ) __snake_case : List[str] = self.find(__magic_name__ ) if roota == roota: return roota if self.rank[roota] > self.rank[roota]: __snake_case : int = roota return roota if self.rank[roota] < self.rank[roota]: __snake_case : Union[str, Any] = roota return roota if self.rank[roota] == self.rank[roota]: self.rank[roota] += 1 __snake_case : Union[str, Any] = roota return roota return None @staticmethod def lowercase__ ( __magic_name__ : int ) -> Union[str, Any]: """simple docstring""" __snake_case : Any = graph.num_vertices __snake_case : Dict = Graph.UnionFind() __snake_case : Dict = [] while num_components > 1: __snake_case : Optional[int] = {} for vertex in graph.get_vertices(): __snake_case : Union[str, Any] = -1 __snake_case : Optional[Any] = graph.get_edges() for edge in edges: __snake_case , __snake_case , __snake_case : Union[str, Any] = edge edges.remove((tail, head, weight) ) for edge in edges: __snake_case , __snake_case , __snake_case : Optional[Any] = edge __snake_case : List[Any] = union_find.find(__magic_name__ ) __snake_case : Union[str, Any] = union_find.find(__magic_name__ ) if seta != seta: if cheap_edge[seta] == -1 or cheap_edge[seta][2] > weight: __snake_case : str = [head, tail, weight] if cheap_edge[seta] == -1 or cheap_edge[seta][2] > weight: __snake_case : Optional[int] = [head, tail, weight] for vertex in cheap_edge: if cheap_edge[vertex] != -1: __snake_case , __snake_case , __snake_case : Any = cheap_edge[vertex] if union_find.find(__magic_name__ ) != union_find.find(__magic_name__ ): union_find.union(__magic_name__ , __magic_name__ ) mst_edges.append(cheap_edge[vertex] ) __snake_case : int = num_components - 1 __snake_case : Optional[int] = Graph.build(edges=__magic_name__ ) return mst
26
'''simple docstring''' from sklearn.metrics import matthews_corrcoef import datasets __UpperCamelCase = "\nCompute the Matthews correlation coefficient (MCC)\n\nThe Matthews correlation coefficient is used in machine learning as a\nmeasure of the quality of binary and multiclass classifications. It takes\ninto account true and false positives and negatives and is generally\nregarded as a balanced measure which can be used even if the classes are of\nvery different sizes. The MCC is in essence a correlation coefficient value\nbetween -1 and +1. A coefficient of +1 represents a perfect prediction, 0\nan average random prediction and -1 an inverse prediction. The statistic\nis also known as the phi coefficient. [source: Wikipedia]\n" __UpperCamelCase = "\nArgs:\n predictions (list of int): Predicted labels, as returned by a model.\n references (list of int): Ground truth labels.\n sample_weight (list of int, float, or bool): Sample weights. Defaults to `None`.\nReturns:\n matthews_correlation (dict containing float): Matthews correlation.\nExamples:\n Example 1, a basic example with only predictions and references as inputs:\n >>> matthews_metric = datasets.load_metric(\"matthews_correlation\")\n >>> results = matthews_metric.compute(references=[1, 3, 2, 0, 3, 2],\n ... predictions=[1, 2, 2, 0, 3, 3])\n >>> print(round(results['matthews_correlation'], 2))\n 0.54\n\n Example 2, the same example as above, but also including sample weights:\n >>> matthews_metric = datasets.load_metric(\"matthews_correlation\")\n >>> results = matthews_metric.compute(references=[1, 3, 2, 0, 3, 2],\n ... predictions=[1, 2, 2, 0, 3, 3],\n ... sample_weight=[0.5, 3, 1, 1, 1, 2])\n >>> print(round(results['matthews_correlation'], 2))\n 0.1\n\n Example 3, the same example as above, but with sample weights that cause a negative correlation:\n >>> matthews_metric = datasets.load_metric(\"matthews_correlation\")\n >>> results = matthews_metric.compute(references=[1, 3, 2, 0, 3, 2],\n ... predictions=[1, 2, 2, 0, 3, 3],\n ... sample_weight=[0.5, 1, 0, 0, 0, 1])\n >>> print(round(results['matthews_correlation'], 2))\n -0.25\n" __UpperCamelCase = "\\n@article{scikit-learn,\n title={Scikit-learn: Machine Learning in {P}ython},\n author={Pedregosa, F. and Varoquaux, G. and Gramfort, A. and Michel, V.\n and Thirion, B. and Grisel, O. and Blondel, M. and Prettenhofer, P.\n and Weiss, R. and Dubourg, V. and Vanderplas, J. and Passos, A. and\n Cournapeau, D. and Brucher, M. and Perrot, M. and Duchesnay, E.},\n journal={Journal of Machine Learning Research},\n volume={12},\n pages={2825--2830},\n year={2011}\n}\n" @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class _A ( datasets.Metric ): def lowercase__ ( self : Tuple ) -> Dict: """simple docstring""" return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { """predictions""": datasets.Value("""int32""" ), """references""": datasets.Value("""int32""" ), } ) , reference_urls=[ """https://scikit-learn.org/stable/modules/generated/sklearn.metrics.matthews_corrcoef.html""" ] , ) def lowercase__ ( self : List[Any] , __magic_name__ : Tuple , __magic_name__ : List[Any] , __magic_name__ : Union[str, Any]=None ) -> Optional[int]: """simple docstring""" return { "matthews_correlation": float(matthews_corrcoef(__magic_name__ , __magic_name__ , sample_weight=__magic_name__ ) ), }
26
1
'''simple docstring''' def _a ( _lowerCamelCase ) -> int: """simple docstring""" __snake_case : List[str] = 0 while num > 0: digit_sum += num % 10 num //= 10 return digit_sum def _a ( _lowerCamelCase = 100 ) -> int: """simple docstring""" __snake_case : Union[str, Any] = 1 __snake_case : Optional[int] = 2 for i in range(2 , max_n + 1 ): __snake_case : int = pre_numerator __snake_case : Optional[int] = 2 * i // 3 if i % 3 == 0 else 1 __snake_case : Dict = cur_numerator __snake_case : List[str] = e_cont * pre_numerator + temp return sum_digits(_lowerCamelCase ) if __name__ == "__main__": print(f"""{solution() = }""")
26
'''simple docstring''' import json import os from pathlib import Path import pytest from datasets.download.download_config import DownloadConfig from datasets.download.download_manager import DownloadManager from datasets.utils.file_utils import hash_url_to_filename __UpperCamelCase = "http://www.mocksite.com/file1.txt" __UpperCamelCase = "\"text\": [\"foo\", \"foo\"]" __UpperCamelCase = "6d8ce9aa78a471c7477201efbeabd3bb01ac2e7d100a6dc024ba1608361f90a8" class _A : lowercase__: str = 200 lowercase__: List[str] = {'''Content-Length''': '''100'''} lowercase__: Union[str, Any] = {} def lowercase__ ( self : Any , **__magic_name__ : List[Any] ) -> Dict: """simple docstring""" return [bytes(__magic_name__ , """utf-8""" )] def _a ( *_lowerCamelCase , **_lowerCamelCase ) -> List[str]: """simple docstring""" return MockResponse() @pytest.mark.parametrize("""urls_type""" , [str, list, dict] ) def _a ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> List[str]: """simple docstring""" import requests monkeypatch.setattr(_lowerCamelCase , """request""" , _lowerCamelCase ) __snake_case : Union[str, Any] = URL if issubclass(_lowerCamelCase , _lowerCamelCase ): __snake_case : str = url elif issubclass(_lowerCamelCase , _lowerCamelCase ): __snake_case : Dict = [url] elif issubclass(_lowerCamelCase , _lowerCamelCase ): __snake_case : Union[str, Any] = {"""train""": url} __snake_case : Dict = """dummy""" __snake_case : List[str] = """downloads""" __snake_case : List[Any] = tmp_path __snake_case : List[Any] = DownloadConfig( cache_dir=os.path.join(_lowerCamelCase , _lowerCamelCase ) , use_etag=_lowerCamelCase , ) __snake_case : List[str] = DownloadManager(dataset_name=_lowerCamelCase , download_config=_lowerCamelCase ) __snake_case : int = dl_manager.download(_lowerCamelCase ) __snake_case : Tuple = urls for downloaded_paths in [downloaded_paths]: if isinstance(_lowerCamelCase , _lowerCamelCase ): __snake_case : Any = [downloaded_paths] __snake_case : List[Any] = [urls] elif isinstance(_lowerCamelCase , _lowerCamelCase ): assert "train" in downloaded_paths.keys() __snake_case : Tuple = downloaded_paths.values() __snake_case : Optional[int] = urls.values() assert downloaded_paths for downloaded_path, input_url in zip(_lowerCamelCase , _lowerCamelCase ): assert downloaded_path == dl_manager.downloaded_paths[input_url] __snake_case : List[str] = Path(_lowerCamelCase ) __snake_case : Any = downloaded_path.parts assert parts[-1] == HASH assert parts[-2] == cache_subdir assert downloaded_path.exists() __snake_case : Union[str, Any] = downloaded_path.read_text() assert content == CONTENT __snake_case : List[str] = downloaded_path.with_suffix(""".json""" ) assert metadata_downloaded_path.exists() __snake_case : Union[str, Any] = json.loads(metadata_downloaded_path.read_text() ) assert metadata_content == {"url": URL, "etag": None} @pytest.mark.parametrize("""paths_type""" , [str, list, dict] ) def _a ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> List[Any]: """simple docstring""" __snake_case : Any = str(_lowerCamelCase ) if issubclass(_lowerCamelCase , _lowerCamelCase ): __snake_case : Optional[int] = filename elif issubclass(_lowerCamelCase , _lowerCamelCase ): __snake_case : Tuple = [filename] elif issubclass(_lowerCamelCase , _lowerCamelCase ): __snake_case : Dict = {"""train""": filename} __snake_case : Optional[Any] = """dummy""" __snake_case : List[Any] = xz_file.parent __snake_case : int = """extracted""" __snake_case : Dict = DownloadConfig( cache_dir=_lowerCamelCase , use_etag=_lowerCamelCase , ) __snake_case : List[str] = DownloadManager(dataset_name=_lowerCamelCase , download_config=_lowerCamelCase ) __snake_case : Optional[Any] = dl_manager.extract(_lowerCamelCase ) __snake_case : Union[str, Any] = paths for extracted_paths in [extracted_paths]: if isinstance(_lowerCamelCase , _lowerCamelCase ): __snake_case : Dict = [extracted_paths] __snake_case : int = [paths] elif isinstance(_lowerCamelCase , _lowerCamelCase ): assert "train" in extracted_paths.keys() __snake_case : int = extracted_paths.values() __snake_case : int = paths.values() assert extracted_paths for extracted_path, input_path in zip(_lowerCamelCase , _lowerCamelCase ): assert extracted_path == dl_manager.extracted_paths[input_path] __snake_case : Any = Path(_lowerCamelCase ) __snake_case : str = extracted_path.parts assert parts[-1] == hash_url_to_filename(_lowerCamelCase , etag=_lowerCamelCase ) assert parts[-2] == extracted_subdir assert extracted_path.exists() __snake_case : Optional[int] = extracted_path.read_text() __snake_case : str = text_file.read_text() assert extracted_file_content == expected_file_content def _a ( _lowerCamelCase , _lowerCamelCase ) -> Optional[int]: """simple docstring""" assert path.endswith(""".jsonl""" ) for num_items, line in enumerate(_lowerCamelCase , start=1 ): __snake_case : Tuple = json.loads(line.decode("""utf-8""" ) ) assert item.keys() == {"col_1", "col_2", "col_3"} assert num_items == 4 @pytest.mark.parametrize("""archive_jsonl""" , ["""tar_jsonl_path""", """zip_jsonl_path"""] ) def _a ( _lowerCamelCase , _lowerCamelCase ) -> Optional[int]: """simple docstring""" __snake_case : Any = request.getfixturevalue(_lowerCamelCase ) __snake_case : str = DownloadManager() for num_jsonl, (path, file) in enumerate(dl_manager.iter_archive(_lowerCamelCase ) , start=1 ): _test_jsonl(_lowerCamelCase , _lowerCamelCase ) assert num_jsonl == 2 @pytest.mark.parametrize("""archive_nested_jsonl""" , ["""tar_nested_jsonl_path""", """zip_nested_jsonl_path"""] ) def _a ( _lowerCamelCase , _lowerCamelCase ) -> List[str]: """simple docstring""" __snake_case : int = request.getfixturevalue(_lowerCamelCase ) __snake_case : List[str] = DownloadManager() for num_tar, (path, file) in enumerate(dl_manager.iter_archive(_lowerCamelCase ) , start=1 ): for num_jsonl, (subpath, subfile) in enumerate(dl_manager.iter_archive(_lowerCamelCase ) , start=1 ): _test_jsonl(_lowerCamelCase , _lowerCamelCase ) assert num_tar == 1 assert num_jsonl == 2 def _a ( _lowerCamelCase ) -> Any: """simple docstring""" __snake_case : List[str] = DownloadManager() for num_file, file in enumerate(dl_manager.iter_files(_lowerCamelCase ) , start=1 ): assert os.path.basename(_lowerCamelCase ) == ("test.txt" if num_file == 1 else "train.txt") assert num_file == 2
26
1
'''simple docstring''' import argparse from collections import OrderedDict from pathlib import Path import requests import torch from PIL import Image from transformers import GLPNConfig, GLPNForDepthEstimation, GLPNImageProcessor from transformers.utils import logging logging.set_verbosity_info() __UpperCamelCase = logging.get_logger(__name__) def _a ( _lowerCamelCase ) -> Tuple: """simple docstring""" __snake_case : Union[str, Any] = OrderedDict() for key, value in state_dict.items(): if key.startswith("""module.encoder""" ): __snake_case : Optional[int] = key.replace("""module.encoder""" , """glpn.encoder""" ) if key.startswith("""module.decoder""" ): __snake_case : str = key.replace("""module.decoder""" , """decoder.stages""" ) if "patch_embed" in key: # replace for example patch_embed1 by patch_embeddings.0 __snake_case : List[Any] = key[key.find("""patch_embed""" ) + len("""patch_embed""" )] __snake_case : List[Any] = key.replace(F'''patch_embed{idx}''' , F'''patch_embeddings.{int(_lowerCamelCase )-1}''' ) if "norm" in key: __snake_case : Union[str, Any] = key.replace("""norm""" , """layer_norm""" ) if "glpn.encoder.layer_norm" in key: # replace for example layer_norm1 by layer_norm.0 __snake_case : int = key[key.find("""glpn.encoder.layer_norm""" ) + len("""glpn.encoder.layer_norm""" )] __snake_case : List[Any] = key.replace(F'''layer_norm{idx}''' , F'''layer_norm.{int(_lowerCamelCase )-1}''' ) if "layer_norm1" in key: __snake_case : Optional[Any] = key.replace("""layer_norm1""" , """layer_norm_1""" ) if "layer_norm2" in key: __snake_case : Any = key.replace("""layer_norm2""" , """layer_norm_2""" ) if "block" in key: # replace for example block1 by block.0 __snake_case : Optional[int] = key[key.find("""block""" ) + len("""block""" )] __snake_case : Optional[Any] = key.replace(F'''block{idx}''' , F'''block.{int(_lowerCamelCase )-1}''' ) if "attn.q" in key: __snake_case : List[str] = key.replace("""attn.q""" , """attention.self.query""" ) if "attn.proj" in key: __snake_case : Union[str, Any] = key.replace("""attn.proj""" , """attention.output.dense""" ) if "attn" in key: __snake_case : List[Any] = key.replace("""attn""" , """attention.self""" ) if "fc1" in key: __snake_case : str = key.replace("""fc1""" , """dense1""" ) if "fc2" in key: __snake_case : Union[str, Any] = key.replace("""fc2""" , """dense2""" ) if "linear_pred" in key: __snake_case : List[str] = key.replace("""linear_pred""" , """classifier""" ) if "linear_fuse" in key: __snake_case : Any = key.replace("""linear_fuse.conv""" , """linear_fuse""" ) __snake_case : Any = key.replace("""linear_fuse.bn""" , """batch_norm""" ) if "linear_c" in key: # replace for example linear_c4 by linear_c.3 __snake_case : str = key[key.find("""linear_c""" ) + len("""linear_c""" )] __snake_case : List[Any] = key.replace(F'''linear_c{idx}''' , F'''linear_c.{int(_lowerCamelCase )-1}''' ) if "bot_conv" in key: __snake_case : Dict = key.replace("""bot_conv""" , """0.convolution""" ) if "skip_conv1" in key: __snake_case : List[str] = key.replace("""skip_conv1""" , """1.convolution""" ) if "skip_conv2" in key: __snake_case : Optional[int] = key.replace("""skip_conv2""" , """2.convolution""" ) if "fusion1" in key: __snake_case : Union[str, Any] = key.replace("""fusion1""" , """1.fusion""" ) if "fusion2" in key: __snake_case : List[Any] = key.replace("""fusion2""" , """2.fusion""" ) if "fusion3" in key: __snake_case : List[Any] = key.replace("""fusion3""" , """3.fusion""" ) if "fusion" in key and "conv" in key: __snake_case : Dict = key.replace("""conv""" , """convolutional_layer""" ) if key.startswith("""module.last_layer_depth""" ): __snake_case : Union[str, Any] = key.replace("""module.last_layer_depth""" , """head.head""" ) __snake_case : int = value return new_state_dict def _a ( _lowerCamelCase , _lowerCamelCase ) -> Any: """simple docstring""" for i in range(config.num_encoder_blocks ): for j in range(config.depths[i] ): # read in weights + bias of keys and values (which is a single matrix in the original implementation) __snake_case : Optional[int] = state_dict.pop(F'''glpn.encoder.block.{i}.{j}.attention.self.kv.weight''' ) __snake_case : int = state_dict.pop(F'''glpn.encoder.block.{i}.{j}.attention.self.kv.bias''' ) # next, add keys and values (in that order) to the state dict __snake_case : str = kv_weight[ : config.hidden_sizes[i], : ] __snake_case : Dict = kv_bias[: config.hidden_sizes[i]] __snake_case : List[Any] = kv_weight[ config.hidden_sizes[i] :, : ] __snake_case : List[str] = kv_bias[config.hidden_sizes[i] :] def _a ( ) -> Union[str, Any]: """simple docstring""" __snake_case : Optional[int] = """http://images.cocodataset.org/val2017/000000039769.jpg""" __snake_case : str = Image.open(requests.get(_lowerCamelCase , stream=_lowerCamelCase ).raw ) return image @torch.no_grad() def _a ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase=False , _lowerCamelCase=None ) -> List[Any]: """simple docstring""" __snake_case : Optional[Any] = GLPNConfig(hidden_sizes=[64, 128, 320, 512] , decoder_hidden_size=64 , depths=[3, 8, 27, 3] ) # load image processor (only resize + rescale) __snake_case : List[Any] = GLPNImageProcessor() # prepare image __snake_case : str = prepare_img() __snake_case : str = image_processor(images=_lowerCamelCase , return_tensors="""pt""" ).pixel_values logger.info("""Converting model...""" ) # load original state dict __snake_case : Union[str, Any] = torch.load(_lowerCamelCase , map_location=torch.device("""cpu""" ) ) # rename keys __snake_case : Any = rename_keys(_lowerCamelCase ) # key and value matrices need special treatment read_in_k_v(_lowerCamelCase , _lowerCamelCase ) # create HuggingFace model and load state dict __snake_case : Any = GLPNForDepthEstimation(_lowerCamelCase ) model.load_state_dict(_lowerCamelCase ) model.eval() # forward pass __snake_case : Optional[Any] = model(_lowerCamelCase ) __snake_case : Any = outputs.predicted_depth # verify output if model_name is not None: if "nyu" in model_name: __snake_case : Any = torch.tensor( [[4.41_47, 4.08_73, 4.06_73], [3.78_90, 3.28_81, 3.15_25], [3.76_74, 3.54_23, 3.49_13]] ) elif "kitti" in model_name: __snake_case : Tuple = torch.tensor( [[3.42_91, 2.78_65, 2.51_51], [3.28_41, 2.70_21, 2.35_02], [3.11_47, 2.46_25, 2.24_81]] ) else: raise ValueError(F'''Unknown model name: {model_name}''' ) __snake_case : List[Any] = torch.Size([1, 480, 640] ) assert predicted_depth.shape == expected_shape assert torch.allclose(predicted_depth[0, :3, :3] , _lowerCamelCase , atol=1E-4 ) print("""Looks ok!""" ) # finally, push to hub if required if push_to_hub: logger.info("""Pushing model and image processor to the hub...""" ) model.push_to_hub( repo_path_or_name=Path(_lowerCamelCase , _lowerCamelCase ) , organization="""nielsr""" , commit_message="""Add model""" , use_temp_dir=_lowerCamelCase , ) image_processor.push_to_hub( repo_path_or_name=Path(_lowerCamelCase , _lowerCamelCase ) , organization="""nielsr""" , commit_message="""Add image processor""" , use_temp_dir=_lowerCamelCase , ) if __name__ == "__main__": __UpperCamelCase = argparse.ArgumentParser() parser.add_argument( "--checkpoint_path", default=None, type=str, help="Path to the original PyTorch checkpoint (.pth file).", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, help="Path to the folder to output PyTorch model." ) parser.add_argument( "--push_to_hub", action="store_true", help="Whether to upload the model to the HuggingFace hub." ) parser.add_argument( "--model_name", default="glpn-kitti", type=str, help="Name of the model in case you're pushing to the hub.", ) __UpperCamelCase = parser.parse_args() convert_glpn_checkpoint(args.checkpoint_path, args.pytorch_dump_folder_path, args.push_to_hub, args.model_name)
26
'''simple docstring''' def _a ( _lowerCamelCase = 100 ) -> int: """simple docstring""" __snake_case : Any = n * (n + 1) * (2 * n + 1) / 6 __snake_case : List[Any] = (n * (n + 1) / 2) ** 2 return int(square_of_sum - sum_of_squares ) if __name__ == "__main__": print(f"""{solution() = }""")
26
1
'''simple docstring''' from __future__ import annotations class _A : def __init__( self : int , __magic_name__ : str , __magic_name__ : str ) -> Any: """simple docstring""" __snake_case , __snake_case : str = text, pattern __snake_case , __snake_case : List[Any] = len(__magic_name__ ), len(__magic_name__ ) def lowercase__ ( self : Union[str, Any] , __magic_name__ : str ) -> int: """simple docstring""" for i in range(self.patLen - 1 , -1 , -1 ): if char == self.pattern[i]: return i return -1 def lowercase__ ( self : List[Any] , __magic_name__ : int ) -> int: """simple docstring""" for i in range(self.patLen - 1 , -1 , -1 ): if self.pattern[i] != self.text[current_pos + i]: return current_pos + i return -1 def lowercase__ ( self : Union[str, Any] ) -> list[int]: """simple docstring""" __snake_case : Tuple = [] for i in range(self.textLen - self.patLen + 1 ): __snake_case : List[Any] = self.mismatch_in_text(__magic_name__ ) if mismatch_index == -1: positions.append(__magic_name__ ) else: __snake_case : List[Any] = self.match_in_pattern(self.text[mismatch_index] ) __snake_case : Tuple = ( mismatch_index - match_index ) # shifting index lgtm [py/multiple-definition] return positions __UpperCamelCase = "ABAABA" __UpperCamelCase = "AB" __UpperCamelCase = BoyerMooreSearch(text, pattern) __UpperCamelCase = bms.bad_character_heuristic() if len(positions) == 0: print("No match found") else: print("Pattern found in following positions: ") print(positions)
26
'''simple docstring''' from __future__ import annotations from typing import Any class _A : def __init__( self : str , __magic_name__ : int , __magic_name__ : int , __magic_name__ : float = 0 ) -> None: """simple docstring""" __snake_case , __snake_case : Optional[Any] = row, column __snake_case : Dict = [[default_value for c in range(__magic_name__ )] for r in range(__magic_name__ )] def __str__( self : List[Any] ) -> str: """simple docstring""" __snake_case : Dict = f'''Matrix consist of {self.row} rows and {self.column} columns\n''' # Make string identifier __snake_case : Optional[int] = 0 for row_vector in self.array: for obj in row_vector: __snake_case : Optional[int] = max(__magic_name__ , len(str(__magic_name__ ) ) ) __snake_case : str = f'''%{max_element_length}s''' # Make string and return def single_line(__magic_name__ : list[float] ) -> str: nonlocal string_format_identifier __snake_case : Union[str, Any] = """[""" line += ", ".join(string_format_identifier % (obj,) for obj in row_vector ) line += "]" return line s += "\n".join(single_line(__magic_name__ ) for row_vector in self.array ) return s def __repr__( self : Optional[int] ) -> str: """simple docstring""" return str(self ) def lowercase__ ( self : Dict , __magic_name__ : tuple[int, int] ) -> bool: """simple docstring""" if not (isinstance(__magic_name__ , (list, tuple) ) and len(__magic_name__ ) == 2): return False elif not (0 <= loc[0] < self.row and 0 <= loc[1] < self.column): return False else: return True def __getitem__( self : int , __magic_name__ : tuple[int, int] ) -> Any: """simple docstring""" assert self.validate_indicies(__magic_name__ ) return self.array[loc[0]][loc[1]] def __setitem__( self : List[str] , __magic_name__ : tuple[int, int] , __magic_name__ : float ) -> None: """simple docstring""" assert self.validate_indicies(__magic_name__ ) __snake_case : Optional[int] = value def __add__( self : Any , __magic_name__ : Matrix ) -> Matrix: """simple docstring""" assert isinstance(__magic_name__ , __magic_name__ ) assert self.row == another.row and self.column == another.column # Add __snake_case : Union[str, Any] = Matrix(self.row , self.column ) for r in range(self.row ): for c in range(self.column ): __snake_case : List[Any] = self[r, c] + another[r, c] return result def __neg__( self : Tuple ) -> Matrix: """simple docstring""" __snake_case : Tuple = Matrix(self.row , self.column ) for r in range(self.row ): for c in range(self.column ): __snake_case : List[Any] = -self[r, c] return result def __sub__( self : Optional[int] , __magic_name__ : Matrix ) -> Matrix: """simple docstring""" return self + (-another) def __mul__( self : List[Any] , __magic_name__ : int | float | Matrix ) -> Matrix: """simple docstring""" if isinstance(__magic_name__ , (int, float) ): # Scalar multiplication __snake_case : Optional[int] = Matrix(self.row , self.column ) for r in range(self.row ): for c in range(self.column ): __snake_case : Tuple = self[r, c] * another return result elif isinstance(__magic_name__ , __magic_name__ ): # Matrix multiplication assert self.column == another.row __snake_case : Dict = Matrix(self.row , another.column ) for r in range(self.row ): for c in range(another.column ): for i in range(self.column ): result[r, c] += self[r, i] * another[i, c] return result else: __snake_case : Optional[int] = f'''Unsupported type given for another ({type(__magic_name__ )})''' raise TypeError(__magic_name__ ) def lowercase__ ( self : str ) -> Matrix: """simple docstring""" __snake_case : Any = Matrix(self.column , self.row ) for r in range(self.row ): for c in range(self.column ): __snake_case : str = self[r, c] return result def lowercase__ ( self : Union[str, Any] , __magic_name__ : Matrix , __magic_name__ : Matrix ) -> Any: """simple docstring""" assert isinstance(__magic_name__ , __magic_name__ ) and isinstance(__magic_name__ , __magic_name__ ) assert self.row == self.column == u.row == v.row # u, v should be column vector assert u.column == v.column == 1 # u, v should be column vector # Calculate __snake_case : List[str] = v.transpose() __snake_case : Tuple = (v_t * self * u)[0, 0] + 1 if numerator_factor == 0: return None # It's not invertable return self - ((self * u) * (v_t * self) * (1.0 / numerator_factor)) # Testing if __name__ == "__main__": def _a ( ) -> None: """simple docstring""" __snake_case : Tuple = Matrix(3 , 3 , 0 ) for i in range(3 ): __snake_case : Any = 1 print(F'''a^(-1) is {ainv}''' ) # u, v __snake_case : Dict = Matrix(3 , 1 , 0 ) __snake_case , __snake_case , __snake_case : Union[str, Any] = 1, 2, -3 __snake_case : str = Matrix(3 , 1 , 0 ) __snake_case , __snake_case , __snake_case : Tuple = 4, -2, 5 print(F'''u is {u}''' ) print(F'''v is {v}''' ) print(F'''uv^T is {u * v.transpose()}''' ) # Sherman Morrison print(F'''(a + uv^T)^(-1) is {ainv.sherman_morrison(_lowerCamelCase , _lowerCamelCase )}''' ) def _a ( ) -> None: """simple docstring""" import doctest doctest.testmod() testa()
26
1
'''simple docstring''' def _a ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> int: """simple docstring""" def update_area_of_max_square(_lowerCamelCase , _lowerCamelCase ) -> int: # BASE CASE if row >= rows or col >= cols: return 0 __snake_case : Dict = update_area_of_max_square(_lowerCamelCase , col + 1 ) __snake_case : Optional[int] = update_area_of_max_square(row + 1 , col + 1 ) __snake_case : Any = update_area_of_max_square(row + 1 , _lowerCamelCase ) if mat[row][col]: __snake_case : Optional[Any] = 1 + min([right, diagonal, down] ) __snake_case : int = max(largest_square_area[0] , _lowerCamelCase ) return sub_problem_sol else: return 0 __snake_case : List[Any] = [0] update_area_of_max_square(0 , 0 ) return largest_square_area[0] def _a ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> int: """simple docstring""" def update_area_of_max_square_using_dp_array( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> int: if row >= rows or col >= cols: return 0 if dp_array[row][col] != -1: return dp_array[row][col] __snake_case : Tuple = update_area_of_max_square_using_dp_array(_lowerCamelCase , col + 1 , _lowerCamelCase ) __snake_case : Dict = update_area_of_max_square_using_dp_array(row + 1 , col + 1 , _lowerCamelCase ) __snake_case : Union[str, Any] = update_area_of_max_square_using_dp_array(row + 1 , _lowerCamelCase , _lowerCamelCase ) if mat[row][col]: __snake_case : List[Any] = 1 + min([right, diagonal, down] ) __snake_case : List[str] = max(largest_square_area[0] , _lowerCamelCase ) __snake_case : List[str] = sub_problem_sol return sub_problem_sol else: return 0 __snake_case : Union[str, Any] = [0] __snake_case : Union[str, Any] = [[-1] * cols for _ in range(_lowerCamelCase )] update_area_of_max_square_using_dp_array(0 , 0 , _lowerCamelCase ) return largest_square_area[0] def _a ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> int: """simple docstring""" __snake_case : Optional[int] = [[0] * (cols + 1) for _ in range(rows + 1 )] __snake_case : str = 0 for row in range(rows - 1 , -1 , -1 ): for col in range(cols - 1 , -1 , -1 ): __snake_case : List[Any] = dp_array[row][col + 1] __snake_case : str = dp_array[row + 1][col + 1] __snake_case : List[str] = dp_array[row + 1][col] if mat[row][col] == 1: __snake_case : List[str] = 1 + min(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) __snake_case : str = max(dp_array[row][col] , _lowerCamelCase ) else: __snake_case : Optional[Any] = 0 return largest_square_area def _a ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> int: """simple docstring""" __snake_case : Any = [0] * (cols + 1) __snake_case : Union[str, Any] = [0] * (cols + 1) __snake_case : List[Any] = 0 for row in range(rows - 1 , -1 , -1 ): for col in range(cols - 1 , -1 , -1 ): __snake_case : int = current_row[col + 1] __snake_case : Dict = next_row[col + 1] __snake_case : int = next_row[col] if mat[row][col] == 1: __snake_case : Union[str, Any] = 1 + min(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) __snake_case : Union[str, Any] = max(current_row[col] , _lowerCamelCase ) else: __snake_case : List[Any] = 0 __snake_case : Optional[Any] = current_row return largest_square_area if __name__ == "__main__": import doctest doctest.testmod() print(largest_square_area_in_matrix_bottom_up(2, 2, [[1, 1], [1, 1]]))
26
'''simple docstring''' import argparse import json import os import torch from torch import nn from transformers import NllbMoeConfig, NllbMoeModel from transformers.modeling_utils import dtype_byte_size from transformers.utils import WEIGHTS_INDEX_NAME, WEIGHTS_NAME def _a ( _lowerCamelCase ) -> List[Any]: """simple docstring""" __snake_case : Union[str, Any] = [ """encoder.version""", """decoder.version""", """model.encoder.version""", """model.decoder.version""", """decoder.output_projection.weight""", """_float_tensor""", """encoder.embed_positions._float_tensor""", """decoder.embed_positions._float_tensor""", ] for k in ignore_keys: state_dict.pop(_lowerCamelCase , _lowerCamelCase ) def _a ( _lowerCamelCase ) -> List[str]: """simple docstring""" __snake_case , __snake_case : Dict = emb.weight.shape __snake_case : Optional[int] = nn.Linear(_lowerCamelCase , _lowerCamelCase , bias=_lowerCamelCase ) __snake_case : Union[str, Any] = emb.weight.data return lin_layer def _a ( _lowerCamelCase , _lowerCamelCase=None ) -> Union[str, Any]: """simple docstring""" __snake_case : Any = {} for old_key in state_dict.keys(): __snake_case : Union[str, Any] = old_key if "moe_layer.experts." in key: if expert_idx is not None: __snake_case : Tuple = key.replace("""moe_layer.experts.0""" , F'''ffn.experts.expert_{expert_idx}''' ) else: __snake_case : Optional[int] = key.replace("""moe_layer.experts.""" , """ffn.experts.expert_""" ) if "gate" in key: __snake_case : Dict = key.replace(""".moe_layer.gate.wg""" , """.ffn.router.classifier""" ) if "fc2" and "experts" not in key: __snake_case : Union[str, Any] = key.replace(""".fc2.""" , """.ffn.fc2.""" ) if "fc1" and "experts" not in key: __snake_case : Optional[int] = key.replace(""".fc1.""" , """.ffn.fc1.""" ) if ".encoder_attn." in key: __snake_case : Tuple = key.replace(""".encoder_attn.""" , """.cross_attention.""" ) if "encoder_attn_layer_norm" in key: __snake_case : Union[str, Any] = key.replace("""encoder_attn_layer_norm""" , """cross_attention_layer_norm""" ) if "final_layer_norm" in key: __snake_case : str = key.replace("""final_layer_norm""" , """ff_layer_norm""" ) __snake_case : str = state_dict[old_key] return new_dict def _a ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase = WEIGHTS_NAME ) -> Dict: """simple docstring""" __snake_case : Optional[int] = [] __snake_case : Dict = 0 os.makedirs(_lowerCamelCase , exist_ok=_lowerCamelCase ) for expert in range(_lowerCamelCase ): __snake_case : Tuple = switch_checkpoint_path + F'''-rank-{expert}.pt''' if os.path.isfile(_lowerCamelCase ): __snake_case : Dict = torch.load(_lowerCamelCase )["""model"""] remove_ignore_keys_(_lowerCamelCase ) __snake_case : Optional[Any] = rename_fairseq_keys(_lowerCamelCase , _lowerCamelCase ) __snake_case : List[Any] = os.path.join( _lowerCamelCase , weights_name.replace(""".bin""" , F'''-{len(_lowerCamelCase )+1:05d}-of-???.bin''' ) ) torch.save(_lowerCamelCase , _lowerCamelCase ) sharded_state_dicts.append(expert_state.keys() ) total_size += sum([value.numel() for key, value in expert_state.items()] ) * dtype_byte_size( expert_state[list(_lowerCamelCase )[0]].dtype ) # Add the last block __snake_case : Optional[Any] = os.path.join(_lowerCamelCase , weights_name.replace(""".bin""" , F'''-{len(_lowerCamelCase )+1:05d}-of-???.bin''' ) ) __snake_case : str = torch.load(switch_checkpoint_path + """-shared.pt""" )["""model"""] remove_ignore_keys_(_lowerCamelCase ) __snake_case : Optional[Any] = rename_fairseq_keys(_lowerCamelCase , _lowerCamelCase ) __snake_case : List[str] = shared_weights["""decoder.embed_tokens.weight"""] sharded_state_dicts.append(shared_weights.keys() ) # If we only have the shared weights (dummy model/experts saved on the same file) if len(_lowerCamelCase ) == 1: __snake_case : Optional[Any] = os.path.join(_lowerCamelCase , _lowerCamelCase ) torch.save(_lowerCamelCase , _lowerCamelCase ) return {weights_name: sharded_state_dicts[0]}, None else: torch.save(_lowerCamelCase , _lowerCamelCase ) # Otherwise, let's build the index __snake_case : Tuple = {} for idx, shard in enumerate(_lowerCamelCase ): __snake_case : Any = weights_name.replace(""".bin""" , F'''-{idx+1:05d}-of-{len(_lowerCamelCase ):05d}.bin''' ) __snake_case : int = os.path.join(_lowerCamelCase , weights_name.replace(""".bin""" , F'''-{idx+1:05d}-of-???.bin''' ) ) os.rename(_lowerCamelCase , os.path.join(_lowerCamelCase , _lowerCamelCase ) ) for key in shard: __snake_case : str = shard_file # Add the metadata __snake_case : Optional[Any] = {"""total_size""": total_size} __snake_case : int = {"""metadata""": metadata, """weight_map""": weight_map} with open(os.path.join(_lowerCamelCase , _lowerCamelCase ) , """w""" , encoding="""utf-8""" ) as f: __snake_case : Union[str, Any] = json.dumps(_lowerCamelCase , indent=2 , sort_keys=_lowerCamelCase ) + """\n""" f.write(_lowerCamelCase ) return metadata, index if __name__ == "__main__": __UpperCamelCase = argparse.ArgumentParser() # Required parameters parser.add_argument( "--nllb_moe_checkpoint_path", default="/home/arthur_huggingface_co/fairseq/weights/checkpoints/model_moe_54b/checkpoint_2_300000", type=str, required=False, help="Path to a directory containing a folder per layer. Follows the original Google format.", ) parser.add_argument("--dtype", default="float32", type=str, required=False, help="dtype of the saved model") parser.add_argument( "--pytorch_dump_folder_path", default="/home/arthur_huggingface_co/fairseq/weights/checkpoints/hf-converted-moe-54b", type=str, required=False, help="Path to the output pytorch model.", ) __UpperCamelCase = parser.parse_args() __UpperCamelCase , __UpperCamelCase = shard_on_the_fly( args.nllb_moe_checkpoint_path, args.pytorch_dump_folder_path, 128, args.dtype, ) __UpperCamelCase = NllbMoeConfig.from_pretrained( "facebook/nllb-200-3.3B", encoder_sparse_step=4, decoder_sparse_step=4, num_experts=128 ) config.save_pretrained(args.pytorch_dump_folder_path) __UpperCamelCase = NllbMoeModel.from_pretrained(args.pytorch_dump_folder_path) print("Done") model.save_pretrained(args.pytorch_dump_folder_path)
26
1
'''simple docstring''' import argparse import os import jax as jnp import numpy as onp import torch import torch.nn as nn from music_spectrogram_diffusion import inference from tax import checkpoints from diffusers import DDPMScheduler, OnnxRuntimeModel, SpectrogramDiffusionPipeline from diffusers.pipelines.spectrogram_diffusion import SpectrogramContEncoder, SpectrogramNotesEncoder, TaFilmDecoder __UpperCamelCase = "base_with_context" def _a ( _lowerCamelCase , _lowerCamelCase ) -> int: """simple docstring""" __snake_case : str = nn.Parameter(torch.FloatTensor(weights["""token_embedder"""]["""embedding"""] ) ) __snake_case : Optional[Any] = nn.Parameter( torch.FloatTensor(weights["""Embed_0"""]["""embedding"""] ) , requires_grad=_lowerCamelCase ) for lyr_num, lyr in enumerate(model.encoders ): __snake_case : Optional[Any] = weights[F'''layers_{lyr_num}'''] __snake_case : Tuple = nn.Parameter( torch.FloatTensor(ly_weight["""pre_attention_layer_norm"""]["""scale"""] ) ) __snake_case : str = ly_weight["""attention"""] __snake_case : int = nn.Parameter(torch.FloatTensor(attention_weights["""query"""]["""kernel"""].T ) ) __snake_case : Optional[Any] = nn.Parameter(torch.FloatTensor(attention_weights["""key"""]["""kernel"""].T ) ) __snake_case : Tuple = nn.Parameter(torch.FloatTensor(attention_weights["""value"""]["""kernel"""].T ) ) __snake_case : int = nn.Parameter(torch.FloatTensor(attention_weights["""out"""]["""kernel"""].T ) ) __snake_case : Dict = nn.Parameter(torch.FloatTensor(ly_weight["""pre_mlp_layer_norm"""]["""scale"""] ) ) __snake_case : Tuple = nn.Parameter(torch.FloatTensor(ly_weight["""mlp"""]["""wi_0"""]["""kernel"""].T ) ) __snake_case : str = nn.Parameter(torch.FloatTensor(ly_weight["""mlp"""]["""wi_1"""]["""kernel"""].T ) ) __snake_case : str = nn.Parameter(torch.FloatTensor(ly_weight["""mlp"""]["""wo"""]["""kernel"""].T ) ) __snake_case : List[str] = nn.Parameter(torch.FloatTensor(weights["""encoder_norm"""]["""scale"""] ) ) return model def _a ( _lowerCamelCase , _lowerCamelCase ) -> str: """simple docstring""" __snake_case : List[Any] = nn.Parameter(torch.FloatTensor(weights["""input_proj"""]["""kernel"""].T ) ) __snake_case : str = nn.Parameter( torch.FloatTensor(weights["""Embed_0"""]["""embedding"""] ) , requires_grad=_lowerCamelCase ) for lyr_num, lyr in enumerate(model.encoders ): __snake_case : Union[str, Any] = weights[F'''layers_{lyr_num}'''] __snake_case : List[Any] = ly_weight["""attention"""] __snake_case : Optional[int] = nn.Parameter(torch.FloatTensor(attention_weights["""query"""]["""kernel"""].T ) ) __snake_case : str = nn.Parameter(torch.FloatTensor(attention_weights["""key"""]["""kernel"""].T ) ) __snake_case : List[str] = nn.Parameter(torch.FloatTensor(attention_weights["""value"""]["""kernel"""].T ) ) __snake_case : List[str] = nn.Parameter(torch.FloatTensor(attention_weights["""out"""]["""kernel"""].T ) ) __snake_case : Dict = nn.Parameter( torch.FloatTensor(ly_weight["""pre_attention_layer_norm"""]["""scale"""] ) ) __snake_case : Tuple = nn.Parameter(torch.FloatTensor(ly_weight["""mlp"""]["""wi_0"""]["""kernel"""].T ) ) __snake_case : List[str] = nn.Parameter(torch.FloatTensor(ly_weight["""mlp"""]["""wi_1"""]["""kernel"""].T ) ) __snake_case : Any = nn.Parameter(torch.FloatTensor(ly_weight["""mlp"""]["""wo"""]["""kernel"""].T ) ) __snake_case : Tuple = nn.Parameter(torch.FloatTensor(ly_weight["""pre_mlp_layer_norm"""]["""scale"""] ) ) __snake_case : Union[str, Any] = nn.Parameter(torch.FloatTensor(weights["""encoder_norm"""]["""scale"""] ) ) return model def _a ( _lowerCamelCase , _lowerCamelCase ) -> Optional[Any]: """simple docstring""" __snake_case : Tuple = nn.Parameter(torch.FloatTensor(weights["""time_emb_dense0"""]["""kernel"""].T ) ) __snake_case : Dict = nn.Parameter(torch.FloatTensor(weights["""time_emb_dense1"""]["""kernel"""].T ) ) __snake_case : Any = nn.Parameter( torch.FloatTensor(weights["""Embed_0"""]["""embedding"""] ) , requires_grad=_lowerCamelCase ) __snake_case : Union[str, Any] = nn.Parameter( torch.FloatTensor(weights["""continuous_inputs_projection"""]["""kernel"""].T ) ) for lyr_num, lyr in enumerate(model.decoders ): __snake_case : List[Any] = weights[F'''layers_{lyr_num}'''] __snake_case : Optional[Any] = nn.Parameter( torch.FloatTensor(ly_weight["""pre_self_attention_layer_norm"""]["""scale"""] ) ) __snake_case : Dict = nn.Parameter( torch.FloatTensor(ly_weight["""FiLMLayer_0"""]["""DenseGeneral_0"""]["""kernel"""].T ) ) __snake_case : List[Any] = ly_weight["""self_attention"""] __snake_case : Dict = nn.Parameter(torch.FloatTensor(attention_weights["""query"""]["""kernel"""].T ) ) __snake_case : Dict = nn.Parameter(torch.FloatTensor(attention_weights["""key"""]["""kernel"""].T ) ) __snake_case : Optional[int] = nn.Parameter(torch.FloatTensor(attention_weights["""value"""]["""kernel"""].T ) ) __snake_case : Optional[Any] = nn.Parameter(torch.FloatTensor(attention_weights["""out"""]["""kernel"""].T ) ) __snake_case : str = ly_weight["""MultiHeadDotProductAttention_0"""] __snake_case : List[Any] = nn.Parameter(torch.FloatTensor(attention_weights["""query"""]["""kernel"""].T ) ) __snake_case : int = nn.Parameter(torch.FloatTensor(attention_weights["""key"""]["""kernel"""].T ) ) __snake_case : List[Any] = nn.Parameter(torch.FloatTensor(attention_weights["""value"""]["""kernel"""].T ) ) __snake_case : str = nn.Parameter(torch.FloatTensor(attention_weights["""out"""]["""kernel"""].T ) ) __snake_case : Optional[Any] = nn.Parameter( torch.FloatTensor(ly_weight["""pre_cross_attention_layer_norm"""]["""scale"""] ) ) __snake_case : Any = nn.Parameter(torch.FloatTensor(ly_weight["""pre_mlp_layer_norm"""]["""scale"""] ) ) __snake_case : Dict = nn.Parameter( torch.FloatTensor(ly_weight["""FiLMLayer_1"""]["""DenseGeneral_0"""]["""kernel"""].T ) ) __snake_case : List[Any] = nn.Parameter(torch.FloatTensor(ly_weight["""mlp"""]["""wi_0"""]["""kernel"""].T ) ) __snake_case : Any = nn.Parameter(torch.FloatTensor(ly_weight["""mlp"""]["""wi_1"""]["""kernel"""].T ) ) __snake_case : Any = nn.Parameter(torch.FloatTensor(ly_weight["""mlp"""]["""wo"""]["""kernel"""].T ) ) __snake_case : int = nn.Parameter(torch.FloatTensor(weights["""decoder_norm"""]["""scale"""] ) ) __snake_case : int = nn.Parameter(torch.FloatTensor(weights["""spec_out_dense"""]["""kernel"""].T ) ) return model def _a ( _lowerCamelCase ) -> Optional[int]: """simple docstring""" __snake_case : Optional[Any] = checkpoints.load_tax_checkpoint(args.checkpoint_path ) __snake_case : Any = jnp.tree_util.tree_map(onp.array , _lowerCamelCase ) __snake_case : Union[str, Any] = [ """from __gin__ import dynamic_registration""", """from music_spectrogram_diffusion.models.diffusion import diffusion_utils""", """diffusion_utils.ClassifierFreeGuidanceConfig.eval_condition_weight = 2.0""", """diffusion_utils.DiffusionConfig.classifier_free_guidance = @diffusion_utils.ClassifierFreeGuidanceConfig()""", ] __snake_case : str = os.path.join(args.checkpoint_path , """..""" , """config.gin""" ) __snake_case : Tuple = inference.parse_training_gin_file(_lowerCamelCase , _lowerCamelCase ) __snake_case : Any = inference.InferenceModel(args.checkpoint_path , _lowerCamelCase ) __snake_case : Tuple = DDPMScheduler(beta_schedule="""squaredcos_cap_v2""" , variance_type="""fixed_large""" ) __snake_case : Dict = SpectrogramNotesEncoder( max_length=synth_model.sequence_length["""inputs"""] , vocab_size=synth_model.model.module.config.vocab_size , d_model=synth_model.model.module.config.emb_dim , dropout_rate=synth_model.model.module.config.dropout_rate , num_layers=synth_model.model.module.config.num_encoder_layers , num_heads=synth_model.model.module.config.num_heads , d_kv=synth_model.model.module.config.head_dim , d_ff=synth_model.model.module.config.mlp_dim , feed_forward_proj="""gated-gelu""" , ) __snake_case : List[Any] = SpectrogramContEncoder( input_dims=synth_model.audio_codec.n_dims , targets_context_length=synth_model.sequence_length["""targets_context"""] , d_model=synth_model.model.module.config.emb_dim , dropout_rate=synth_model.model.module.config.dropout_rate , num_layers=synth_model.model.module.config.num_encoder_layers , num_heads=synth_model.model.module.config.num_heads , d_kv=synth_model.model.module.config.head_dim , d_ff=synth_model.model.module.config.mlp_dim , feed_forward_proj="""gated-gelu""" , ) __snake_case : int = TaFilmDecoder( input_dims=synth_model.audio_codec.n_dims , targets_length=synth_model.sequence_length["""targets_context"""] , max_decoder_noise_time=synth_model.model.module.config.max_decoder_noise_time , d_model=synth_model.model.module.config.emb_dim , num_layers=synth_model.model.module.config.num_decoder_layers , num_heads=synth_model.model.module.config.num_heads , d_kv=synth_model.model.module.config.head_dim , d_ff=synth_model.model.module.config.mlp_dim , dropout_rate=synth_model.model.module.config.dropout_rate , ) __snake_case : Any = load_notes_encoder(ta_checkpoint["""target"""]["""token_encoder"""] , _lowerCamelCase ) __snake_case : Optional[Any] = load_continuous_encoder(ta_checkpoint["""target"""]["""continuous_encoder"""] , _lowerCamelCase ) __snake_case : Optional[int] = load_decoder(ta_checkpoint["""target"""]["""decoder"""] , _lowerCamelCase ) __snake_case : Any = OnnxRuntimeModel.from_pretrained("""kashif/soundstream_mel_decoder""" ) __snake_case : List[Any] = SpectrogramDiffusionPipeline( notes_encoder=_lowerCamelCase , continuous_encoder=_lowerCamelCase , decoder=_lowerCamelCase , scheduler=_lowerCamelCase , melgan=_lowerCamelCase , ) if args.save: pipe.save_pretrained(args.output_path ) if __name__ == "__main__": __UpperCamelCase = argparse.ArgumentParser() parser.add_argument("--output_path", default=None, type=str, required=True, help="Path to the converted model.") parser.add_argument( "--save", default=True, type=bool, required=False, help="Whether to save the converted model or not." ) parser.add_argument( "--checkpoint_path", default=f"""{MODEL}/checkpoint_500000""", type=str, required=False, help="Path to the original jax model checkpoint.", ) __UpperCamelCase = parser.parse_args() main(args)
26
'''simple docstring''' import cva import numpy as np class _A : def __init__( self : Any , __magic_name__ : float , __magic_name__ : int ) -> Optional[int]: """simple docstring""" if k in (0.04, 0.06): __snake_case : List[str] = k __snake_case : int = window_size else: raise ValueError("""invalid k value""" ) def __str__( self : Union[str, Any] ) -> str: """simple docstring""" return str(self.k ) def lowercase__ ( self : Dict , __magic_name__ : str ) -> tuple[cva.Mat, list[list[int]]]: """simple docstring""" __snake_case : Dict = cva.imread(__magic_name__ , 0 ) __snake_case , __snake_case : List[str] = img.shape __snake_case : list[list[int]] = [] __snake_case : str = img.copy() __snake_case : Tuple = cva.cvtColor(__magic_name__ , cva.COLOR_GRAY2RGB ) __snake_case , __snake_case : List[Any] = np.gradient(__magic_name__ ) __snake_case : Optional[Any] = dx**2 __snake_case : Tuple = dy**2 __snake_case : List[Any] = dx * dy __snake_case : List[Any] = 0.04 __snake_case : Tuple = self.window_size // 2 for y in range(__magic_name__ , h - offset ): for x in range(__magic_name__ , w - offset ): __snake_case : Dict = ixx[ y - offset : y + offset + 1, x - offset : x + offset + 1 ].sum() __snake_case : Optional[int] = iyy[ y - offset : y + offset + 1, x - offset : x + offset + 1 ].sum() __snake_case : str = ixy[ y - offset : y + offset + 1, x - offset : x + offset + 1 ].sum() __snake_case : List[str] = (wxx * wyy) - (wxy**2) __snake_case : Dict = wxx + wyy __snake_case : List[str] = det - k * (trace**2) # Can change the value if r > 0.5: corner_list.append([x, y, r] ) color_img.itemset((y, x, 0) , 0 ) color_img.itemset((y, x, 1) , 0 ) color_img.itemset((y, x, 2) , 2_55 ) return color_img, corner_list if __name__ == "__main__": __UpperCamelCase = HarrisCorner(0.04, 3) __UpperCamelCase , __UpperCamelCase = edge_detect.detect("path_to_image") cva.imwrite("detect.png", color_img)
26
1
'''simple docstring''' from __future__ import annotations def _a ( _lowerCamelCase , _lowerCamelCase = None , _lowerCamelCase = None ) -> None: """simple docstring""" if start is None: __snake_case : Optional[Any] = 0 if end is None: __snake_case : Optional[Any] = len(_lowerCamelCase ) - 1 if start >= end: return __snake_case : Tuple = (start + end) // 2 slowsort(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) slowsort(_lowerCamelCase , mid + 1 , _lowerCamelCase ) if sequence[end] < sequence[mid]: __snake_case , __snake_case : str = sequence[mid], sequence[end] slowsort(_lowerCamelCase , _lowerCamelCase , end - 1 ) if __name__ == "__main__": from doctest import testmod testmod()
26
'''simple docstring''' import warnings from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding class _A ( __lowercase ): lowercase__: Any = ['''image_processor''', '''tokenizer'''] lowercase__: Any = '''CLIPImageProcessor''' lowercase__: Optional[Any] = ('''CLIPTokenizer''', '''CLIPTokenizerFast''') def __init__( self : int , __magic_name__ : Dict=None , __magic_name__ : Dict=None , **__magic_name__ : Union[str, Any] ) -> Any: """simple docstring""" __snake_case : Optional[Any] = None if "feature_extractor" in kwargs: warnings.warn( """The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`""" """ instead.""" , __magic_name__ , ) __snake_case : List[Any] = kwargs.pop("""feature_extractor""" ) __snake_case : List[str] = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError("""You need to specify an `image_processor`.""" ) if tokenizer is None: raise ValueError("""You need to specify a `tokenizer`.""" ) super().__init__(__magic_name__ , __magic_name__ ) def __call__( self : int , __magic_name__ : List[str]=None , __magic_name__ : Tuple=None , __magic_name__ : Any=None , **__magic_name__ : Union[str, Any] ) -> Optional[int]: """simple docstring""" if text is None and images is None: raise ValueError("""You have to specify either text or images. Both cannot be none.""" ) if text is not None: __snake_case : int = self.tokenizer(__magic_name__ , return_tensors=__magic_name__ , **__magic_name__ ) if images is not None: __snake_case : str = self.image_processor(__magic_name__ , return_tensors=__magic_name__ , **__magic_name__ ) if text is not None and images is not None: __snake_case : Union[str, Any] = image_features.pixel_values return encoding elif text is not None: return encoding else: return BatchEncoding(data=dict(**__magic_name__ ) , tensor_type=__magic_name__ ) def lowercase__ ( self : Optional[int] , *__magic_name__ : List[Any] , **__magic_name__ : Any ) -> Optional[Any]: """simple docstring""" return self.tokenizer.batch_decode(*__magic_name__ , **__magic_name__ ) def lowercase__ ( self : List[str] , *__magic_name__ : Tuple , **__magic_name__ : List[Any] ) -> int: """simple docstring""" return self.tokenizer.decode(*__magic_name__ , **__magic_name__ ) @property def lowercase__ ( self : List[Any] ) -> Optional[Any]: """simple docstring""" __snake_case : Dict = self.tokenizer.model_input_names __snake_case : str = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) ) @property def lowercase__ ( self : int ) -> List[str]: """simple docstring""" warnings.warn( """`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.""" , __magic_name__ , ) return self.image_processor_class @property def lowercase__ ( self : Union[str, Any] ) -> Dict: """simple docstring""" warnings.warn( """`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead.""" , __magic_name__ , ) return self.image_processor
26
1
'''simple docstring''' from __future__ import annotations def _a ( _lowerCamelCase , _lowerCamelCase ) -> int: """simple docstring""" if len(_lowerCamelCase ) < k or k < 0: raise ValueError("""Invalid Input""" ) __snake_case : List[str] = sum(array[:k] ) for i in range(len(_lowerCamelCase ) - k ): __snake_case : Union[str, Any] = current_sum - array[i] + array[i + k] __snake_case : Optional[Any] = max(_lowerCamelCase , _lowerCamelCase ) return max_sum if __name__ == "__main__": from doctest import testmod from random import randint testmod() __UpperCamelCase = [randint(-1000, 1000) for i in range(100)] __UpperCamelCase = randint(0, 110) print(f"""The maximum sum of {k} consecutive elements is {max_sum_in_array(array,k)}""")
26
'''simple docstring''' import datasets import faiss import numpy as np import streamlit as st import torch from elasticsearch import Elasticsearch from elia_utils import ( embed_questions_for_retrieval, make_qa_sas_model, qa_sas_generate, query_es_index, query_qa_dense_index, ) import transformers from transformers import AutoModel, AutoModelForSeqaSeqLM, AutoTokenizer __UpperCamelCase = "bart" __UpperCamelCase = True @st.cache(allow_output_mutation=_lowerCamelCase ) def _a ( ) -> Union[str, Any]: """simple docstring""" if LOAD_DENSE_INDEX: __snake_case : int = AutoTokenizer.from_pretrained("""yjernite/retribert-base-uncased""" ) __snake_case : Tuple = AutoModel.from_pretrained("""yjernite/retribert-base-uncased""" ).to("""cuda:0""" ) __snake_case : List[Any] = qar_model.eval() else: __snake_case , __snake_case : Optional[Any] = (None, None) if MODEL_TYPE == "bart": __snake_case : List[str] = AutoTokenizer.from_pretrained("""yjernite/bart_eli5""" ) __snake_case : Any = AutoModelForSeqaSeqLM.from_pretrained("""yjernite/bart_eli5""" ).to("""cuda:0""" ) __snake_case : int = torch.load("""seq2seq_models/eli5_bart_model_blm_2.pth""" ) sas_model.load_state_dict(save_dict["""model"""] ) __snake_case : int = sas_model.eval() else: __snake_case , __snake_case : Dict = make_qa_sas_model( model_name="""t5-small""" , from_file="""seq2seq_models/eli5_t5_model_1024_4.pth""" , device="""cuda:0""" ) return (qar_tokenizer, qar_model, sas_tokenizer, sas_model) @st.cache(allow_output_mutation=_lowerCamelCase ) def _a ( ) -> Tuple: """simple docstring""" if LOAD_DENSE_INDEX: __snake_case : Tuple = faiss.StandardGpuResources() __snake_case : Optional[Any] = datasets.load_dataset(path="""wiki_snippets""" , name="""wiki40b_en_100_0""" )["""train"""] __snake_case : str = np.memmap( """wiki40b_passages_reps_32_l-8_h-768_b-512-512.dat""" , dtype="""float32""" , mode="""r""" , shape=(wikiaab_passages.num_rows, 128) , ) __snake_case : Optional[int] = faiss.IndexFlatIP(128 ) __snake_case : Any = faiss.index_cpu_to_gpu(_lowerCamelCase , 1 , _lowerCamelCase ) wikiaab_gpu_index_flat.add(_lowerCamelCase ) # TODO fix for larger GPU else: __snake_case , __snake_case : Tuple = (None, None) __snake_case : List[str] = Elasticsearch([{"""host""": """localhost""", """port""": """9200"""}] ) return (wikiaab_passages, wikiaab_gpu_index_flat, es_client) @st.cache(allow_output_mutation=_lowerCamelCase ) def _a ( ) -> List[Any]: """simple docstring""" __snake_case : Tuple = datasets.load_dataset("""eli5""" , name="""LFQA_reddit""" ) __snake_case : Dict = elia["""train_eli5"""] __snake_case : int = np.memmap( """eli5_questions_reps.dat""" , dtype="""float32""" , mode="""r""" , shape=(elia_train.num_rows, 128) ) __snake_case : Dict = faiss.IndexFlatIP(128 ) eli5_train_q_index.add(_lowerCamelCase ) return (elia_train, eli5_train_q_index) __UpperCamelCase , __UpperCamelCase , __UpperCamelCase = load_indexes() __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase = load_models() __UpperCamelCase , __UpperCamelCase = load_train_data() def _a ( _lowerCamelCase , _lowerCamelCase=10 ) -> int: """simple docstring""" __snake_case : Optional[int] = embed_questions_for_retrieval([question] , _lowerCamelCase , _lowerCamelCase ) __snake_case , __snake_case : Tuple = eli5_train_q_index.search(_lowerCamelCase , _lowerCamelCase ) __snake_case : Tuple = [elia_train[int(_lowerCamelCase )] for i in I[0]] return nn_examples def _a ( _lowerCamelCase , _lowerCamelCase="wiki40b" , _lowerCamelCase="dense" , _lowerCamelCase=10 ) -> Optional[Any]: """simple docstring""" if source == "none": __snake_case , __snake_case : Dict = (""" <P> """.join(["""""" for _ in range(11 )] ).strip(), []) else: if method == "dense": __snake_case , __snake_case : Dict = query_qa_dense_index( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) else: __snake_case , __snake_case : str = query_es_index( _lowerCamelCase , _lowerCamelCase , index_name="""english_wiki40b_snippets_100w""" , n_results=_lowerCamelCase , ) __snake_case : Optional[int] = [ (res["""article_title"""], res["""section_title"""].strip(), res["""score"""], res["""passage_text"""]) for res in hit_lst ] __snake_case : Optional[Any] = """question: {} context: {}""".format(_lowerCamelCase , _lowerCamelCase ) return question_doc, support_list @st.cache( hash_funcs={ torch.Tensor: (lambda _lowerCamelCase : None), transformers.models.bart.tokenization_bart.BartTokenizer: (lambda _lowerCamelCase : None), } ) def _a ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase=64 , _lowerCamelCase=256 , _lowerCamelCase=False , _lowerCamelCase=2 , _lowerCamelCase=0.95 , _lowerCamelCase=0.8 ) -> List[str]: """simple docstring""" with torch.no_grad(): __snake_case : Union[str, Any] = qa_sas_generate( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , num_answers=1 , num_beams=_lowerCamelCase , min_len=_lowerCamelCase , max_len=_lowerCamelCase , do_sample=_lowerCamelCase , temp=_lowerCamelCase , top_p=_lowerCamelCase , top_k=_lowerCamelCase , max_input_length=1024 , device="""cuda:0""" , )[0] return (answer, support_list) st.title("Long Form Question Answering with ELI5") # Start sidebar __UpperCamelCase = "<img src='https://huggingface.co/front/assets/huggingface_logo.svg'>" __UpperCamelCase = "\n<html>\n <head>\n <style>\n .img-container {\n padding-left: 90px;\n padding-right: 90px;\n padding-top: 50px;\n padding-bottom: 50px;\n background-color: #f0f3f9;\n }\n </style>\n </head>\n <body>\n <span class=\"img-container\"> <!-- Inline parent element -->\n %s\n </span>\n </body>\n</html>\n" % ( header_html, ) st.sidebar.markdown( header_full, unsafe_allow_html=True, ) # Long Form QA with ELI5 and Wikipedia __UpperCamelCase = "\nThis demo presents a model trained to [provide long-form answers to open-domain questions](https://yjernite.github.io/lfqa.html).\nFirst, a document retriever fetches a set of relevant Wikipedia passages given the question from the [Wiki40b](https://research.google/pubs/pub49029/) dataset,\na pre-processed fixed snapshot of Wikipedia.\n" st.sidebar.markdown(description, unsafe_allow_html=True) __UpperCamelCase = [ "Answer the question", "View the retrieved document only", "View the most similar ELI5 question and answer", "Show me everything, please!", ] __UpperCamelCase = st.sidebar.checkbox("Demo options") if demo_options: __UpperCamelCase = st.sidebar.selectbox( "", action_list, index=3, ) __UpperCamelCase = action_list.index(action_st) __UpperCamelCase = st.sidebar.selectbox( "", ["Show full text of passages", "Show passage section titles"], index=0, ) __UpperCamelCase = show_type == "Show full text of passages" else: __UpperCamelCase = 3 __UpperCamelCase = True __UpperCamelCase = st.sidebar.checkbox("Retrieval options") if retrieval_options: __UpperCamelCase = "\n ### Information retriever options\n\n The **sparse** retriever uses ElasticSearch, while the **dense** retriever uses max-inner-product search between a question and passage embedding\n trained using the [ELI5](https://arxiv.org/abs/1907.09190) questions-answer pairs.\n The answer is then generated by sequence to sequence model which takes the question and retrieved document as input.\n " st.sidebar.markdown(retriever_info) __UpperCamelCase = st.sidebar.selectbox("Which Wikipedia format should the model use?", ["wiki40b", "none"]) __UpperCamelCase = st.sidebar.selectbox("Which Wikipedia indexer should the model use?", ["dense", "sparse", "mixed"]) else: __UpperCamelCase = "wiki40b" __UpperCamelCase = "dense" __UpperCamelCase = "beam" __UpperCamelCase = 2 __UpperCamelCase = 64 __UpperCamelCase = 256 __UpperCamelCase = None __UpperCamelCase = None __UpperCamelCase = st.sidebar.checkbox("Generation options") if generate_options: __UpperCamelCase = "\n ### Answer generation options\n\n The sequence-to-sequence model was initialized with [BART](https://huggingface.co/facebook/bart-large)\n weights and fine-tuned on the ELI5 QA pairs and retrieved documents. You can use the model for greedy decoding with\n **beam** search, or **sample** from the decoder's output probabilities.\n " st.sidebar.markdown(generate_info) __UpperCamelCase = st.sidebar.selectbox("Would you like to use beam search or sample an answer?", ["beam", "sampled"]) __UpperCamelCase = st.sidebar.slider( "Minimum generation length", min_value=8, max_value=256, value=64, step=8, format=None, key=None ) __UpperCamelCase = st.sidebar.slider( "Maximum generation length", min_value=64, max_value=512, value=256, step=16, format=None, key=None ) if sampled == "beam": __UpperCamelCase = st.sidebar.slider("Beam size", min_value=1, max_value=8, value=2, step=None, format=None, key=None) else: __UpperCamelCase = st.sidebar.slider( "Nucleus sampling p", min_value=0.1, max_value=1.0, value=0.95, step=0.01, format=None, key=None ) __UpperCamelCase = st.sidebar.slider( "Temperature", min_value=0.1, max_value=1.0, value=0.7, step=0.01, format=None, key=None ) __UpperCamelCase = None # start main text __UpperCamelCase = [ "<MY QUESTION>", "How do people make chocolate?", "Why do we get a fever when we are sick?", "How can different animals perceive different colors?", "What is natural language processing?", "What's the best way to treat a sunburn?", "What exactly are vitamins ?", "How does nuclear energy provide electricity?", "What's the difference between viruses and bacteria?", "Why are flutes classified as woodwinds when most of them are made out of metal ?", "Why do people like drinking coffee even though it tastes so bad?", "What happens when wine ages? How does it make the wine taste better?", "If an animal is an herbivore, where does it get the protein that it needs to survive if it only eats grass?", "How can we set a date to the beginning or end of an artistic period? Doesn't the change happen gradually?", "How does New Zealand have so many large bird predators?", ] __UpperCamelCase = st.selectbox( "What would you like to ask? ---- select <MY QUESTION> to enter a new query", questions_list, index=1, ) if question_s == "<MY QUESTION>": __UpperCamelCase = st.text_input("Enter your question here:", "") else: __UpperCamelCase = question_s if st.button("Show me!"): if action in [0, 1, 3]: if index_type == "mixed": __UpperCamelCase , __UpperCamelCase = make_support(question, source=wiki_source, method="dense", n_results=10) __UpperCamelCase , __UpperCamelCase = make_support(question, source=wiki_source, method="sparse", n_results=10) __UpperCamelCase = [] for res_d, res_s in zip(support_list_dense, support_list_sparse): if tuple(res_d) not in support_list: support_list += [tuple(res_d)] if tuple(res_s) not in support_list: support_list += [tuple(res_s)] __UpperCamelCase = support_list[:10] __UpperCamelCase = "<P> " + " <P> ".join([res[-1] for res in support_list]) else: __UpperCamelCase , __UpperCamelCase = make_support(question, source=wiki_source, method=index_type, n_results=10) if action in [0, 3]: __UpperCamelCase , __UpperCamelCase = answer_question( question_doc, sas_model, sas_tokenizer, min_len=min_len, max_len=int(max_len), sampling=(sampled == "sampled"), n_beams=n_beams, top_p=top_p, temp=temp, ) st.markdown("### The model generated answer is:") st.write(answer) if action in [0, 1, 3] and wiki_source != "none": st.markdown("--- \n ### The model is drawing information from the following Wikipedia passages:") for i, res in enumerate(support_list): __UpperCamelCase = "https://en.wikipedia.org/wiki/{}".format(res[0].replace(" ", "_")) __UpperCamelCase = res[1].strip() if sec_titles == "": __UpperCamelCase = "[{}]({})".format(res[0], wiki_url) else: __UpperCamelCase = sec_titles.split(" & ") __UpperCamelCase = " & ".join( ["[{}]({}#{})".format(sec.strip(), wiki_url, sec.strip().replace(" ", "_")) for sec in sec_list] ) st.markdown( "{0:02d} - **Article**: {1:<18} <br> _Section_: {2}".format(i + 1, res[0], sections), unsafe_allow_html=True, ) if show_passages: st.write( "> <span style=\"font-family:arial; font-size:10pt;\">" + res[-1] + "</span>", unsafe_allow_html=True ) if action in [2, 3]: __UpperCamelCase = find_nearest_training(question) __UpperCamelCase = nn_train_list[0] st.markdown( "--- \n ### The most similar question in the ELI5 training set was: \n\n {}".format(train_exple["title"]) ) __UpperCamelCase = [ "{}. {}".format(i + 1, " \n".join([line.strip() for line in ans.split("\n") if line.strip() != ""])) for i, (ans, sc) in enumerate(zip(train_exple["answers"]["text"], train_exple["answers"]["score"])) if i == 0 or sc > 2 ] st.markdown("##### Its answers were: \n\n {}".format("\n".join(answers_st))) __UpperCamelCase = "\n---\n\n**Disclaimer**\n\n*The intent of this app is to provide some (hopefully entertaining) insights into the behavior of a current LFQA system.\nEvaluating biases of such a model and ensuring factual generations are still very much open research problems.\nTherefore, until some significant progress is achieved, we caution against using the generated answers for practical purposes.*\n" st.sidebar.markdown(disclaimer, unsafe_allow_html=True)
26
1
'''simple docstring''' from __future__ import annotations import math def _a ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> int: """simple docstring""" if depth < 0: raise ValueError("""Depth cannot be less than 0""" ) if not scores: raise ValueError("""Scores cannot be empty""" ) if depth == height: return scores[node_index] return ( max( minimax(depth + 1 , node_index * 2 , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) , minimax(depth + 1 , node_index * 2 + 1 , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) , ) if is_max else min( minimax(depth + 1 , node_index * 2 , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) , minimax(depth + 1 , node_index * 2 + 1 , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) , ) ) def _a ( ) -> None: """simple docstring""" __snake_case : Union[str, Any] = [90, 23, 6, 33, 21, 65, 123, 3_4423] __snake_case : Optional[int] = math.log(len(_lowerCamelCase ) , 2 ) print(F'''Optimal value : {minimax(0 , 0 , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase )}''' ) if __name__ == "__main__": import doctest doctest.testmod() main()
26
'''simple docstring''' import warnings from ...utils import logging from .image_processing_owlvit import OwlViTImageProcessor __UpperCamelCase = logging.get_logger(__name__) class _A ( __lowercase ): def __init__( self : int , *__magic_name__ : Optional[Any] , **__magic_name__ : Any ) -> None: """simple docstring""" warnings.warn( """The class OwlViTFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please""" """ use OwlViTImageProcessor instead.""" , __magic_name__ , ) super().__init__(*__magic_name__ , **__magic_name__ )
26
1
'''simple docstring''' import argparse import torch from transformers import BertConfig, BertForPreTraining, load_tf_weights_in_bert from transformers.utils import logging logging.set_verbosity_info() def _a ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> List[str]: """simple docstring""" __snake_case : Optional[Any] = BertConfig.from_json_file(_lowerCamelCase ) print(F'''Building PyTorch model from configuration: {config}''' ) __snake_case : int = BertForPreTraining(_lowerCamelCase ) # Load weights from tf checkpoint load_tf_weights_in_bert(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) # Save pytorch-model print(F'''Save PyTorch model to {pytorch_dump_path}''' ) torch.save(model.state_dict() , _lowerCamelCase ) if __name__ == "__main__": __UpperCamelCase = argparse.ArgumentParser() # Required parameters parser.add_argument( "--tf_checkpoint_path", default=None, type=str, required=True, help="Path to the TensorFlow checkpoint path." ) parser.add_argument( "--bert_config_file", default=None, type=str, required=True, help=( "The config json file corresponding to the pre-trained BERT model. \n" "This specifies the model architecture." ), ) parser.add_argument( "--pytorch_dump_path", default=None, type=str, required=True, help="Path to the output PyTorch model." ) __UpperCamelCase = parser.parse_args() convert_tf_checkpoint_to_pytorch(args.tf_checkpoint_path, args.bert_config_file, args.pytorch_dump_path)
26
'''simple docstring''' import argparse import torch from transformers import BlenderbotConfig, BlenderbotForConditionalGeneration from transformers.utils import logging logging.set_verbosity_info() __UpperCamelCase = logging.get_logger(__name__) __UpperCamelCase = [ ["attention", "attn"], ["encoder_attention", "encoder_attn"], ["q_lin", "q_proj"], ["k_lin", "k_proj"], ["v_lin", "v_proj"], ["out_lin", "out_proj"], ["norm_embeddings", "layernorm_embedding"], ["position_embeddings", "embed_positions"], ["embeddings", "embed_tokens"], ["ffn.lin", "fc"], ] def _a ( _lowerCamelCase ) -> Union[str, Any]: """simple docstring""" if k == "embeddings.weight": return "shared.weight" for parlai_name, hf_name in PATTERNS: __snake_case : List[str] = k.replace(_lowerCamelCase , _lowerCamelCase ) if k.startswith("""encoder""" ): __snake_case : Optional[int] = k.replace(""".attn""" , """.self_attn""" ) __snake_case : Tuple = k.replace("""norm1""" , """self_attn_layer_norm""" ) __snake_case : List[str] = k.replace("""norm2""" , """final_layer_norm""" ) elif k.startswith("""decoder""" ): __snake_case : List[Any] = k.replace("""norm1""" , """self_attn_layer_norm""" ) __snake_case : str = k.replace("""norm2""" , """encoder_attn_layer_norm""" ) __snake_case : Optional[int] = k.replace("""norm3""" , """final_layer_norm""" ) return k def _a ( _lowerCamelCase ) -> Any: """simple docstring""" __snake_case : Optional[int] = [ """model.encoder.layernorm_embedding.weight""", """model.encoder.layernorm_embedding.bias""", """model.decoder.layernorm_embedding.weight""", """model.decoder.layernorm_embedding.bias""", ] for k in keys: __snake_case : Optional[Any] = sd.pop(_lowerCamelCase ) __snake_case : List[str] = k.replace("""layernorm_embedding""" , """layer_norm""" ) assert new_k not in sd __snake_case : Union[str, Any] = v __UpperCamelCase = ["START"] @torch.no_grad() def _a ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> Dict: """simple docstring""" __snake_case : Optional[int] = torch.load(_lowerCamelCase , map_location="""cpu""" ) __snake_case : Dict = model["""model"""] __snake_case : Optional[int] = BlenderbotConfig.from_json_file(_lowerCamelCase ) __snake_case : Union[str, Any] = BlenderbotForConditionalGeneration(_lowerCamelCase ) __snake_case : List[Any] = m.model.state_dict().keys() __snake_case : int = [] __snake_case : Union[str, Any] = {} for k, v in sd.items(): if k in IGNORE_KEYS: continue __snake_case : Optional[int] = rename_state_dict_key(_lowerCamelCase ) if new_k not in valid_keys: failures.append([k, new_k] ) else: __snake_case : str = v if cfg.normalize_before: # Blenderbot-3B checkpoints. Rename layernorm_embedding -> layer_norm rename_layernorm_keys(_lowerCamelCase ) m.model.load_state_dict(_lowerCamelCase , strict=_lowerCamelCase ) m.half() m.save_pretrained(_lowerCamelCase ) if __name__ == "__main__": __UpperCamelCase = argparse.ArgumentParser() # Required parameters parser.add_argument("--src_path", type=str, help="like blenderbot-model.bin") parser.add_argument("--save_dir", default="hf_blenderbot", type=str, help="Where to save converted model.") parser.add_argument( "--hf_config_json", default="blenderbot-3b-config.json", type=str, help="Path to config to use" ) __UpperCamelCase = parser.parse_args() convert_parlai_checkpoint(args.src_path, args.save_dir, args.hf_config_json)
26
1
'''simple docstring''' import json import os import re import unittest from transformers import CodeGenTokenizer, CodeGenTokenizerFast from transformers.models.codegen.tokenization_codegen import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class _A ( __lowercase , unittest.TestCase ): lowercase__: Optional[int] = CodeGenTokenizer lowercase__: str = CodeGenTokenizerFast lowercase__: Dict = True lowercase__: List[str] = {'''add_prefix_space''': True} lowercase__: Optional[int] = False def lowercase__ ( self : Dict ) -> Any: """simple docstring""" super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt __snake_case : Optional[int] = [ """l""", """o""", """w""", """e""", """r""", """s""", """t""", """i""", """d""", """n""", """\u0120""", """\u0120l""", """\u0120n""", """\u0120lo""", """\u0120low""", """er""", """\u0120lowest""", """\u0120newer""", """\u0120wider""", """<unk>""", """<|endoftext|>""", ] __snake_case : Any = dict(zip(__magic_name__ , range(len(__magic_name__ ) ) ) ) __snake_case : Union[str, Any] = ["""#version: 0.2""", """\u0120 l""", """\u0120l o""", """\u0120lo w""", """e r""", """"""] __snake_case : Union[str, Any] = {"""unk_token""": """<unk>"""} __snake_case : Dict = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""] ) __snake_case : Tuple = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""merges_file"""] ) with open(self.vocab_file , """w""" , encoding="""utf-8""" ) as fp: fp.write(json.dumps(__magic_name__ ) + """\n""" ) with open(self.merges_file , """w""" , encoding="""utf-8""" ) as fp: fp.write("""\n""".join(__magic_name__ ) ) def lowercase__ ( self : Dict , **__magic_name__ : Tuple ) -> List[Any]: """simple docstring""" kwargs.update(self.special_tokens_map ) return CodeGenTokenizer.from_pretrained(self.tmpdirname , **__magic_name__ ) def lowercase__ ( self : Any , **__magic_name__ : Union[str, Any] ) -> List[Any]: """simple docstring""" kwargs.update(self.special_tokens_map ) return CodeGenTokenizerFast.from_pretrained(self.tmpdirname , **__magic_name__ ) def lowercase__ ( self : int , __magic_name__ : Union[str, Any] ) -> List[Any]: """simple docstring""" __snake_case : int = """lower newer""" __snake_case : Any = """lower newer""" return input_text, output_text def lowercase__ ( self : List[str] ) -> Optional[Any]: """simple docstring""" __snake_case : Union[str, Any] = CodeGenTokenizer(self.vocab_file , self.merges_file , **self.special_tokens_map ) __snake_case : List[Any] = """lower newer""" __snake_case : int = ["""\u0120low""", """er""", """\u0120""", """n""", """e""", """w""", """er"""] __snake_case : List[str] = tokenizer.tokenize(__magic_name__ , add_prefix_space=__magic_name__ ) self.assertListEqual(__magic_name__ , __magic_name__ ) __snake_case : str = tokens + [tokenizer.unk_token] __snake_case : Optional[int] = [14, 15, 10, 9, 3, 2, 15, 19] self.assertListEqual(tokenizer.convert_tokens_to_ids(__magic_name__ ) , __magic_name__ ) def lowercase__ ( self : Union[str, Any] ) -> Union[str, Any]: """simple docstring""" if not self.test_rust_tokenizer: return __snake_case : str = self.get_tokenizer() __snake_case : int = self.get_rust_tokenizer(add_prefix_space=__magic_name__ ) __snake_case : List[Any] = """lower newer""" # Testing tokenization __snake_case : int = tokenizer.tokenize(__magic_name__ , add_prefix_space=__magic_name__ ) __snake_case : Dict = rust_tokenizer.tokenize(__magic_name__ ) self.assertListEqual(__magic_name__ , __magic_name__ ) # Testing conversion to ids without special tokens __snake_case : str = tokenizer.encode(__magic_name__ , add_special_tokens=__magic_name__ , add_prefix_space=__magic_name__ ) __snake_case : Any = rust_tokenizer.encode(__magic_name__ , add_special_tokens=__magic_name__ ) self.assertListEqual(__magic_name__ , __magic_name__ ) # Testing conversion to ids with special tokens __snake_case : Optional[int] = self.get_rust_tokenizer(add_prefix_space=__magic_name__ ) __snake_case : List[str] = tokenizer.encode(__magic_name__ , add_prefix_space=__magic_name__ ) __snake_case : Union[str, Any] = rust_tokenizer.encode(__magic_name__ ) self.assertListEqual(__magic_name__ , __magic_name__ ) # Testing the unknown token __snake_case : Dict = tokens + [rust_tokenizer.unk_token] __snake_case : Any = [14, 15, 10, 9, 3, 2, 15, 19] self.assertListEqual(rust_tokenizer.convert_tokens_to_ids(__magic_name__ ) , __magic_name__ ) def lowercase__ ( self : Any , *__magic_name__ : str , **__magic_name__ : int ) -> int: """simple docstring""" pass def lowercase__ ( self : Union[str, Any] , __magic_name__ : Tuple=15 ) -> Any: """simple docstring""" for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f'''{tokenizer.__class__.__name__} ({pretrained_name})''' ): __snake_case : Any = self.rust_tokenizer_class.from_pretrained(__magic_name__ , **__magic_name__ ) # Simple input __snake_case : Any = """This is a simple input""" __snake_case : int = ["""This is a simple input 1""", """This is a simple input 2"""] __snake_case : int = ("""This is a simple input""", """This is a pair""") __snake_case : Optional[int] = [ ("""This is a simple input 1""", """This is a simple input 2"""), ("""This is a simple pair 1""", """This is a simple pair 2"""), ] # Simple input tests self.assertRaises(__magic_name__ , tokenizer_r.encode , __magic_name__ , max_length=__magic_name__ , padding="""max_length""" ) # Simple input self.assertRaises(__magic_name__ , tokenizer_r.encode_plus , __magic_name__ , max_length=__magic_name__ , padding="""max_length""" ) # Simple input self.assertRaises( __magic_name__ , tokenizer_r.batch_encode_plus , __magic_name__ , max_length=__magic_name__ , padding="""max_length""" , ) # Pair input self.assertRaises(__magic_name__ , tokenizer_r.encode , __magic_name__ , max_length=__magic_name__ , padding="""max_length""" ) # Pair input self.assertRaises(__magic_name__ , tokenizer_r.encode_plus , __magic_name__ , max_length=__magic_name__ , padding="""max_length""" ) # Pair input self.assertRaises( __magic_name__ , tokenizer_r.batch_encode_plus , __magic_name__ , max_length=__magic_name__ , padding="""max_length""" , ) def lowercase__ ( self : Optional[Any] ) -> Union[str, Any]: """simple docstring""" __snake_case : Tuple = CodeGenTokenizer.from_pretrained(self.tmpdirname , pad_token="""<pad>""" ) # Simple input __snake_case : Tuple = """This is a simple input""" __snake_case : Union[str, Any] = ["""This is a simple input looooooooong""", """This is a simple input"""] __snake_case : int = ("""This is a simple input""", """This is a pair""") __snake_case : str = [ ("""This is a simple input loooooong""", """This is a simple input"""), ("""This is a simple pair loooooong""", """This is a simple pair"""), ] __snake_case : Any = tokenizer.pad_token_id __snake_case : List[str] = tokenizer(__magic_name__ , padding="""max_length""" , max_length=30 , return_tensors="""np""" ) __snake_case : List[Any] = tokenizer(__magic_name__ , padding=__magic_name__ , truncate=__magic_name__ , return_tensors="""np""" ) __snake_case : Optional[Any] = tokenizer(*__magic_name__ , padding="""max_length""" , max_length=60 , return_tensors="""np""" ) __snake_case : Optional[Any] = tokenizer(__magic_name__ , padding=__magic_name__ , truncate=__magic_name__ , return_tensors="""np""" ) # s # test single string max_length padding self.assertEqual(out_s["""input_ids"""].shape[-1] , 30 ) self.assertTrue(pad_token_id in out_s["""input_ids"""] ) self.assertTrue(0 in out_s["""attention_mask"""] ) # s2 # test automatic padding self.assertEqual(out_sa["""input_ids"""].shape[-1] , 33 ) # long slice doesn't have padding self.assertFalse(pad_token_id in out_sa["""input_ids"""][0] ) self.assertFalse(0 in out_sa["""attention_mask"""][0] ) # short slice does have padding self.assertTrue(pad_token_id in out_sa["""input_ids"""][1] ) self.assertTrue(0 in out_sa["""attention_mask"""][1] ) # p # test single pair max_length padding self.assertEqual(out_p["""input_ids"""].shape[-1] , 60 ) self.assertTrue(pad_token_id in out_p["""input_ids"""] ) self.assertTrue(0 in out_p["""attention_mask"""] ) # p2 # test automatic padding pair self.assertEqual(out_pa["""input_ids"""].shape[-1] , 52 ) # long slice pair doesn't have padding self.assertFalse(pad_token_id in out_pa["""input_ids"""][0] ) self.assertFalse(0 in out_pa["""attention_mask"""][0] ) # short slice pair does have padding self.assertTrue(pad_token_id in out_pa["""input_ids"""][1] ) self.assertTrue(0 in out_pa["""attention_mask"""][1] ) def lowercase__ ( self : Any ) -> Dict: """simple docstring""" __snake_case : Optional[Any] = """$$$""" __snake_case : Union[str, Any] = CodeGenTokenizer.from_pretrained(self.tmpdirname , bos_token=__magic_name__ , add_bos_token=__magic_name__ ) __snake_case : Tuple = """This is a simple input""" __snake_case : Dict = ["""This is a simple input 1""", """This is a simple input 2"""] __snake_case : int = tokenizer.bos_token_id __snake_case : List[Any] = tokenizer(__magic_name__ ) __snake_case : str = tokenizer(__magic_name__ ) self.assertEqual(out_s.input_ids[0] , __magic_name__ ) self.assertTrue(all(o[0] == bos_token_id for o in out_sa.input_ids ) ) __snake_case : str = tokenizer.decode(out_s.input_ids ) __snake_case : Tuple = tokenizer.batch_decode(out_sa.input_ids ) self.assertEqual(decode_s.split()[0] , __magic_name__ ) self.assertTrue(all(d.split()[0] == bos_token for d in decode_sa ) ) @slow def lowercase__ ( self : Union[str, Any] ) -> int: """simple docstring""" __snake_case : List[Any] = CodeGenTokenizer.from_pretrained("""Salesforce/codegen-350M-mono""" ) __snake_case : Dict = """\nif len_a > len_b:\n result = a\nelse:\n result = b\n\n\n\n#""" __snake_case : Any = """\nif len_a > len_b: result = a\nelse: result = b""" __snake_case : Dict = tokenizer.encode(__magic_name__ ) __snake_case : Any = ["""^#""", re.escape("""<|endoftext|>""" ), """^'''""", """^\"\"\"""", """\n\n\n"""] __snake_case : Optional[int] = tokenizer.decode(__magic_name__ , truncate_before_pattern=__magic_name__ ) self.assertEqual(__magic_name__ , __magic_name__ ) def lowercase__ ( self : Union[str, Any] ) -> Union[str, Any]: """simple docstring""" pass
26
'''simple docstring''' import argparse import os import re import packaging.version __UpperCamelCase = "examples/" __UpperCamelCase = { "examples": (re.compile(R"^check_min_version\(\"[^\"]+\"\)\s*$", re.MULTILINE), "check_min_version(\"VERSION\")\n"), "init": (re.compile(R"^__version__\s+=\s+\"([^\"]+)\"\s*$", re.MULTILINE), "__version__ = \"VERSION\"\n"), "setup": (re.compile(R"^(\s*)version\s*=\s*\"[^\"]+\",", re.MULTILINE), R"\1version=\"VERSION\","), "doc": (re.compile(R"^(\s*)release\s*=\s*\"[^\"]+\"$", re.MULTILINE), "release = \"VERSION\"\n"), } __UpperCamelCase = { "init": "src/transformers/__init__.py", "setup": "setup.py", } __UpperCamelCase = "README.md" def _a ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> Tuple: """simple docstring""" with open(_lowerCamelCase , """r""" , encoding="""utf-8""" , newline="""\n""" ) as f: __snake_case : Union[str, Any] = f.read() __snake_case , __snake_case : List[Any] = REPLACE_PATTERNS[pattern] __snake_case : Optional[Any] = replace.replace("""VERSION""" , _lowerCamelCase ) __snake_case : Optional[Any] = re_pattern.sub(_lowerCamelCase , _lowerCamelCase ) with open(_lowerCamelCase , """w""" , encoding="""utf-8""" , newline="""\n""" ) as f: f.write(_lowerCamelCase ) def _a ( _lowerCamelCase ) -> Union[str, Any]: """simple docstring""" for folder, directories, fnames in os.walk(_lowerCamelCase ): # Removing some of the folders with non-actively maintained examples from the walk if "research_projects" in directories: directories.remove("""research_projects""" ) if "legacy" in directories: directories.remove("""legacy""" ) for fname in fnames: if fname.endswith(""".py""" ): update_version_in_file(os.path.join(_lowerCamelCase , _lowerCamelCase ) , _lowerCamelCase , pattern="""examples""" ) def _a ( _lowerCamelCase , _lowerCamelCase=False ) -> str: """simple docstring""" for pattern, fname in REPLACE_FILES.items(): update_version_in_file(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) if not patch: update_version_in_examples(_lowerCamelCase ) def _a ( ) -> Optional[int]: """simple docstring""" __snake_case : str = """🤗 Transformers currently provides the following architectures""" __snake_case : List[Any] = """1. Want to contribute a new model?""" with open(_lowerCamelCase , """r""" , encoding="""utf-8""" , newline="""\n""" ) as f: __snake_case : List[str] = f.readlines() # Find the start of the list. __snake_case : Optional[Any] = 0 while not lines[start_index].startswith(_start_prompt ): start_index += 1 start_index += 1 __snake_case : int = start_index # Update the lines in the model list. while not lines[index].startswith(_end_prompt ): if lines[index].startswith("""1.""" ): __snake_case : Optional[Any] = lines[index].replace( """https://huggingface.co/docs/transformers/main/model_doc""" , """https://huggingface.co/docs/transformers/model_doc""" , ) index += 1 with open(_lowerCamelCase , """w""" , encoding="""utf-8""" , newline="""\n""" ) as f: f.writelines(_lowerCamelCase ) def _a ( ) -> Union[str, Any]: """simple docstring""" with open(REPLACE_FILES["""init"""] , """r""" ) as f: __snake_case : List[Any] = f.read() __snake_case : str = REPLACE_PATTERNS["""init"""][0].search(_lowerCamelCase ).groups()[0] return packaging.version.parse(_lowerCamelCase ) def _a ( _lowerCamelCase=False ) -> int: """simple docstring""" __snake_case : List[Any] = get_version() if patch and default_version.is_devrelease: raise ValueError("""Can't create a patch version from the dev branch, checkout a released version!""" ) if default_version.is_devrelease: __snake_case : str = default_version.base_version elif patch: __snake_case : Optional[int] = F'''{default_version.major}.{default_version.minor}.{default_version.micro + 1}''' else: __snake_case : Dict = F'''{default_version.major}.{default_version.minor + 1}.0''' # Now let's ask nicely if that's the right one. __snake_case : Dict = input(F'''Which version are you releasing? [{default_version}]''' ) if len(_lowerCamelCase ) == 0: __snake_case : Any = default_version print(F'''Updating version to {version}.''' ) global_version_update(_lowerCamelCase , patch=_lowerCamelCase ) if not patch: print("""Cleaning main README, don't forget to run `make fix-copies`.""" ) clean_main_ref_in_model_list() def _a ( ) -> Tuple: """simple docstring""" __snake_case : Optional[Any] = get_version() __snake_case : Tuple = F'''{current_version.major}.{current_version.minor + 1}.0.dev0''' __snake_case : Union[str, Any] = current_version.base_version # Check with the user we got that right. __snake_case : int = input(F'''Which version are we developing now? [{dev_version}]''' ) if len(_lowerCamelCase ) == 0: __snake_case : Optional[int] = dev_version print(F'''Updating version to {version}.''' ) global_version_update(_lowerCamelCase ) print("""Cleaning main README, don't forget to run `make fix-copies`.""" ) clean_main_ref_in_model_list() if __name__ == "__main__": __UpperCamelCase = argparse.ArgumentParser() parser.add_argument("--post_release", action="store_true", help="Whether this is pre or post release.") parser.add_argument("--patch", action="store_true", help="Whether or not this is a patch release.") __UpperCamelCase = parser.parse_args() if not args.post_release: pre_release_work(patch=args.patch) elif args.patch: print("Nothing to do after a patch :-)") else: post_release_work()
26
1
'''simple docstring''' from ...utils import is_torch_available, is_transformers_available if is_transformers_available() and is_torch_available(): from .pipeline_vq_diffusion import LearnedClassifierFreeSamplingEmbeddings, VQDiffusionPipeline
26
'''simple docstring''' from unittest import TestCase from datasets import Sequence, Value from datasets.arrow_dataset import Dataset class _A ( __lowercase ): def lowercase__ ( self : Any ) -> str: """simple docstring""" return [ {"col_1": 3, "col_2": "a"}, {"col_1": 2, "col_2": "b"}, {"col_1": 1, "col_2": "c"}, {"col_1": 0, "col_2": "d"}, ] def lowercase__ ( self : str ) -> int: """simple docstring""" __snake_case : Union[str, Any] = {"""col_1""": [3, 2, 1, 0], """col_2""": ["""a""", """b""", """c""", """d"""]} return Dataset.from_dict(__magic_name__ ) def lowercase__ ( self : str ) -> List[Any]: """simple docstring""" __snake_case : Any = self._create_example_records() __snake_case : str = Dataset.from_list(__magic_name__ ) self.assertListEqual(dset.column_names , ["""col_1""", """col_2"""] ) for i, r in enumerate(__magic_name__ ): self.assertDictEqual(__magic_name__ , example_records[i] ) def lowercase__ ( self : Optional[Any] ) -> List[Any]: """simple docstring""" __snake_case : List[Any] = self._create_example_records() __snake_case : Dict = Dataset.from_list(__magic_name__ ) __snake_case : List[Any] = Dataset.from_dict({k: [r[k] for r in example_records] for k in example_records[0]} ) self.assertEqual(dset.info , dset_from_dict.info ) def lowercase__ ( self : str ) -> List[Any]: # checks what happens with missing columns """simple docstring""" __snake_case : Union[str, Any] = [{"""col_1""": 1}, {"""col_2""": """x"""}] __snake_case : Optional[int] = Dataset.from_list(__magic_name__ ) self.assertDictEqual(dset[0] , {"""col_1""": 1} ) self.assertDictEqual(dset[1] , {"""col_1""": None} ) # NB: first record is used for columns def lowercase__ ( self : List[str] ) -> Optional[Any]: # checks if the type can be inferred from the second record """simple docstring""" __snake_case : List[Any] = [{"""col_1""": []}, {"""col_1""": [1, 2]}] __snake_case : int = Dataset.from_list(__magic_name__ ) self.assertEqual(dset.info.features["""col_1"""] , Sequence(Value("""int64""" ) ) ) def lowercase__ ( self : int ) -> Union[str, Any]: """simple docstring""" __snake_case : Tuple = Dataset.from_list([] ) self.assertEqual(len(__magic_name__ ) , 0 ) self.assertListEqual(dset.column_names , [] )
26
1
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available __UpperCamelCase = { "configuration_rag": ["RagConfig"], "retrieval_rag": ["RagRetriever"], "tokenization_rag": ["RagTokenizer"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCamelCase = [ "RagModel", "RagPreTrainedModel", "RagSequenceForGeneration", "RagTokenForGeneration", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCamelCase = [ "TFRagModel", "TFRagPreTrainedModel", "TFRagSequenceForGeneration", "TFRagTokenForGeneration", ] if TYPE_CHECKING: from .configuration_rag import RagConfig from .retrieval_rag import RagRetriever from .tokenization_rag import RagTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_rag import RagModel, RagPreTrainedModel, RagSequenceForGeneration, RagTokenForGeneration try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_rag import ( TFRagModel, TFRagPreTrainedModel, TFRagSequenceForGeneration, TFRagTokenForGeneration, ) else: import sys __UpperCamelCase = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
26
'''simple docstring''' import inspect import unittest import torch import torch.nn as nn from accelerate.hooks import ( AlignDevicesHook, ModelHook, SequentialHook, add_hook_to_module, attach_align_device_hook, remove_hook_from_module, remove_hook_from_submodules, ) from accelerate.test_utils import require_multi_gpu class _A ( nn.Module ): def __init__( self : List[str] ) -> Optional[Any]: """simple docstring""" super().__init__() __snake_case : List[Any] = nn.Linear(3 , 4 ) __snake_case : str = nn.BatchNormad(4 ) __snake_case : Optional[Any] = nn.Linear(4 , 5 ) def lowercase__ ( self : str , __magic_name__ : Dict ) -> List[str]: """simple docstring""" return self.lineara(self.batchnorm(self.lineara(__magic_name__ ) ) ) class _A ( __lowercase ): def lowercase__ ( self : List[str] , __magic_name__ : Tuple , *__magic_name__ : Dict , **__magic_name__ : Optional[Any] ) -> Tuple: """simple docstring""" return (args[0] + 1,) + args[1:], kwargs class _A ( __lowercase ): def lowercase__ ( self : str , __magic_name__ : Union[str, Any] , __magic_name__ : Tuple ) -> Union[str, Any]: """simple docstring""" return output + 1 class _A ( unittest.TestCase ): def lowercase__ ( self : Dict ) -> Any: """simple docstring""" __snake_case : int = ModelForTest() __snake_case : Tuple = ModelHook() add_hook_to_module(__magic_name__ , __magic_name__ ) self.assertEqual(test_model._hf_hook , __magic_name__ ) self.assertTrue(hasattr(__magic_name__ , """_old_forward""" ) ) # Check adding the hook did not change the name or the signature self.assertEqual(test_model.forward.__name__ , """forward""" ) self.assertListEqual(list(inspect.signature(test_model.forward ).parameters ) , ["""x"""] ) remove_hook_from_module(__magic_name__ ) self.assertFalse(hasattr(__magic_name__ , """_hf_hook""" ) ) self.assertFalse(hasattr(__magic_name__ , """_old_forward""" ) ) def lowercase__ ( self : Tuple ) -> List[str]: """simple docstring""" __snake_case : List[Any] = ModelForTest() __snake_case : Optional[int] = ModelHook() add_hook_to_module(__magic_name__ , __magic_name__ ) add_hook_to_module(__magic_name__ , __magic_name__ , append=__magic_name__ ) self.assertEqual(isinstance(test_model._hf_hook , __magic_name__ ) , __magic_name__ ) self.assertEqual(len(test_model._hf_hook.hooks ) , 2 ) self.assertTrue(hasattr(__magic_name__ , """_old_forward""" ) ) # Check adding the hook did not change the name or the signature self.assertEqual(test_model.forward.__name__ , """forward""" ) self.assertListEqual(list(inspect.signature(test_model.forward ).parameters ) , ["""x"""] ) remove_hook_from_module(__magic_name__ ) self.assertFalse(hasattr(__magic_name__ , """_hf_hook""" ) ) self.assertFalse(hasattr(__magic_name__ , """_old_forward""" ) ) def lowercase__ ( self : str ) -> Union[str, Any]: """simple docstring""" __snake_case : List[Any] = ModelForTest() __snake_case : Any = torch.randn(2 , 3 ) __snake_case : str = test_model(x + 1 ) __snake_case : int = test_model(x + 2 ) __snake_case : Union[str, Any] = PreForwardHook() add_hook_to_module(__magic_name__ , __magic_name__ ) __snake_case : int = test_model(__magic_name__ ) self.assertTrue(torch.allclose(__magic_name__ , __magic_name__ , atol=1E-5 ) ) # Attaching a hook to a model when it already has one replaces, does not chain __snake_case : Optional[int] = PreForwardHook() add_hook_to_module(__magic_name__ , __magic_name__ ) __snake_case : List[Any] = test_model(__magic_name__ ) self.assertTrue(torch.allclose(__magic_name__ , __magic_name__ , atol=1E-5 ) ) # You need to use the sequential hook to chain two or more hooks __snake_case : Optional[int] = SequentialHook(PreForwardHook() , PreForwardHook() ) add_hook_to_module(__magic_name__ , __magic_name__ ) __snake_case : List[str] = test_model(__magic_name__ ) assert torch.allclose(__magic_name__ , __magic_name__ , atol=1E-5 ) def lowercase__ ( self : Union[str, Any] ) -> List[str]: """simple docstring""" __snake_case : Union[str, Any] = ModelForTest() __snake_case : str = torch.randn(2 , 3 ) __snake_case : Any = test_model(__magic_name__ ) __snake_case : Any = PostForwardHook() add_hook_to_module(__magic_name__ , __magic_name__ ) __snake_case : Any = test_model(__magic_name__ ) self.assertTrue(torch.allclose(__magic_name__ , output + 1 , atol=1E-5 ) ) # Attaching a hook to a model when it already has one replaces, does not chain __snake_case : Any = PostForwardHook() add_hook_to_module(__magic_name__ , __magic_name__ ) __snake_case : Dict = test_model(__magic_name__ ) self.assertTrue(torch.allclose(__magic_name__ , output + 1 , atol=1E-5 ) ) # You need to use the sequential hook to chain two or more hooks __snake_case : str = SequentialHook(PostForwardHook() , PostForwardHook() ) add_hook_to_module(__magic_name__ , __magic_name__ ) __snake_case : int = test_model(__magic_name__ ) assert torch.allclose(__magic_name__ , output + 2 , atol=1E-5 ) def lowercase__ ( self : str ) -> int: """simple docstring""" __snake_case : Union[str, Any] = ModelForTest() __snake_case : int = torch.randn(2 , 3 ) __snake_case : Any = test_model(__magic_name__ ) __snake_case : Dict = PostForwardHook() add_hook_to_module(__magic_name__ , __magic_name__ ) __snake_case : List[Any] = test_model(__magic_name__ ) self.assertTrue(torch.allclose(__magic_name__ , output + 1 ) ) self.assertTrue(outputa.requires_grad ) __snake_case : Dict = True __snake_case : int = test_model(__magic_name__ ) self.assertFalse(outputa.requires_grad ) @require_multi_gpu def lowercase__ ( self : Tuple ) -> List[Any]: """simple docstring""" __snake_case : Tuple = ModelForTest() # Everything is on CPU self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) ) self.assertEqual(model.batchnorm.weight.device , torch.device("""cpu""" ) ) self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) ) # This will move each submodule on different devices add_hook_to_module(model.lineara , AlignDevicesHook(execution_device=0 ) ) add_hook_to_module(model.batchnorm , AlignDevicesHook(execution_device=0 ) ) add_hook_to_module(model.lineara , AlignDevicesHook(execution_device=1 ) ) self.assertEqual(model.lineara.weight.device , torch.device(0 ) ) self.assertEqual(model.batchnorm.weight.device , torch.device(0 ) ) self.assertEqual(model.batchnorm.running_mean.device , torch.device(0 ) ) self.assertEqual(model.lineara.weight.device , torch.device(1 ) ) # We can still make a forward pass. The input does not need to be on any particular device __snake_case : Tuple = torch.randn(2 , 3 ) __snake_case : Union[str, Any] = model(__magic_name__ ) self.assertEqual(output.device , torch.device(1 ) ) # We can add a general hook to put back output on same device as input. add_hook_to_module(__magic_name__ , AlignDevicesHook(io_same_device=__magic_name__ ) ) __snake_case : Tuple = torch.randn(2 , 3 ).to(0 ) __snake_case : Any = model(__magic_name__ ) self.assertEqual(output.device , torch.device(0 ) ) def lowercase__ ( self : Union[str, Any] ) -> str: """simple docstring""" __snake_case : int = ModelForTest() # Everything is on CPU self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) ) self.assertEqual(model.batchnorm.weight.device , torch.device("""cpu""" ) ) self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) ) # This will move each submodule on different devices __snake_case : List[str] = {"""execution_device""": 0 if torch.cuda.is_available() else """cpu""", """offload""": True} add_hook_to_module(model.lineara , AlignDevicesHook(**__magic_name__ ) ) add_hook_to_module(model.batchnorm , AlignDevicesHook(**__magic_name__ ) ) add_hook_to_module(model.lineara , AlignDevicesHook(**__magic_name__ ) ) # Parameters have been offloaded, so on the meta device self.assertEqual(model.lineara.weight.device , torch.device("""meta""" ) ) self.assertEqual(model.batchnorm.weight.device , torch.device("""meta""" ) ) self.assertEqual(model.lineara.weight.device , torch.device("""meta""" ) ) # Buffers are not included in the offload by default, so are on the execution device __snake_case : Any = torch.device(hook_kwargs["""execution_device"""] ) self.assertEqual(model.batchnorm.running_mean.device , __magic_name__ ) __snake_case : Dict = torch.randn(2 , 3 ) __snake_case : Any = model(__magic_name__ ) self.assertEqual(output.device , __magic_name__ ) # Removing hooks loads back the weights in the model. remove_hook_from_module(model.lineara ) remove_hook_from_module(model.batchnorm ) remove_hook_from_module(model.lineara ) self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) ) self.assertEqual(model.batchnorm.weight.device , torch.device("""cpu""" ) ) self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) ) # Now test with buffers included in the offload __snake_case : int = { """execution_device""": 0 if torch.cuda.is_available() else """cpu""", """offload""": True, """offload_buffers""": True, } add_hook_to_module(model.lineara , AlignDevicesHook(**__magic_name__ ) ) add_hook_to_module(model.batchnorm , AlignDevicesHook(**__magic_name__ ) ) add_hook_to_module(model.lineara , AlignDevicesHook(**__magic_name__ ) ) # Parameters have been offloaded, so on the meta device, buffers included self.assertEqual(model.lineara.weight.device , torch.device("""meta""" ) ) self.assertEqual(model.batchnorm.weight.device , torch.device("""meta""" ) ) self.assertEqual(model.lineara.weight.device , torch.device("""meta""" ) ) self.assertEqual(model.batchnorm.running_mean.device , torch.device("""meta""" ) ) __snake_case : str = torch.randn(2 , 3 ) __snake_case : str = model(__magic_name__ ) self.assertEqual(output.device , __magic_name__ ) # Removing hooks loads back the weights in the model. remove_hook_from_module(model.lineara ) remove_hook_from_module(model.batchnorm ) remove_hook_from_module(model.lineara ) self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) ) self.assertEqual(model.batchnorm.weight.device , torch.device("""cpu""" ) ) self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) ) def lowercase__ ( self : Dict ) -> str: """simple docstring""" __snake_case : Tuple = ModelForTest() # Everything is on CPU self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) ) self.assertEqual(model.batchnorm.weight.device , torch.device("""cpu""" ) ) self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) ) # This will move each submodule on different devices __snake_case : Union[str, Any] = 0 if torch.cuda.is_available() else """cpu""" attach_align_device_hook(__magic_name__ , execution_device=__magic_name__ , offload=__magic_name__ ) # Parameters have been offloaded, so on the meta device self.assertEqual(model.lineara.weight.device , torch.device("""meta""" ) ) self.assertEqual(model.batchnorm.weight.device , torch.device("""meta""" ) ) self.assertEqual(model.lineara.weight.device , torch.device("""meta""" ) ) # Buffers are not included in the offload by default, so are on the execution device __snake_case : Union[str, Any] = torch.device(__magic_name__ ) self.assertEqual(model.batchnorm.running_mean.device , __magic_name__ ) __snake_case : Optional[int] = torch.randn(2 , 3 ) __snake_case : Dict = model(__magic_name__ ) self.assertEqual(output.device , __magic_name__ ) # Removing hooks loads back the weights in the model. remove_hook_from_submodules(__magic_name__ ) self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) ) self.assertEqual(model.batchnorm.weight.device , torch.device("""cpu""" ) ) self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) ) # Now test with buffers included in the offload attach_align_device_hook(__magic_name__ , execution_device=__magic_name__ , offload=__magic_name__ , offload_buffers=__magic_name__ ) # Parameters have been offloaded, so on the meta device, buffers included self.assertEqual(model.lineara.weight.device , torch.device("""meta""" ) ) self.assertEqual(model.batchnorm.weight.device , torch.device("""meta""" ) ) self.assertEqual(model.lineara.weight.device , torch.device("""meta""" ) ) self.assertEqual(model.batchnorm.running_mean.device , torch.device("""meta""" ) ) __snake_case : Dict = torch.randn(2 , 3 ) __snake_case : Optional[int] = model(__magic_name__ ) self.assertEqual(output.device , __magic_name__ ) # Removing hooks loads back the weights in the model. remove_hook_from_submodules(__magic_name__ ) self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) ) self.assertEqual(model.batchnorm.weight.device , torch.device("""cpu""" ) ) self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) ) def lowercase__ ( self : Any ) -> Union[str, Any]: """simple docstring""" __snake_case : Any = ModelForTest() # Everything is on CPU self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) ) self.assertEqual(model.batchnorm.weight.device , torch.device("""cpu""" ) ) self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) ) # This will move each submodule on different devices __snake_case : str = 0 if torch.cuda.is_available() else """cpu""" attach_align_device_hook( __magic_name__ , execution_device=__magic_name__ , offload=__magic_name__ , weights_map=model.state_dict() ) # Parameters have been offloaded, so on the meta device self.assertEqual(model.lineara.weight.device , torch.device("""meta""" ) ) self.assertEqual(model.batchnorm.weight.device , torch.device("""meta""" ) ) self.assertEqual(model.lineara.weight.device , torch.device("""meta""" ) ) # Buffers are not included in the offload by default, so are on the execution device __snake_case : List[str] = torch.device(__magic_name__ ) self.assertEqual(model.batchnorm.running_mean.device , __magic_name__ ) __snake_case : Tuple = torch.randn(2 , 3 ) __snake_case : Optional[Any] = model(__magic_name__ ) self.assertEqual(output.device , __magic_name__ ) # Removing hooks loads back the weights in the model. remove_hook_from_submodules(__magic_name__ ) self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) ) self.assertEqual(model.batchnorm.weight.device , torch.device("""cpu""" ) ) self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) ) # Now test with buffers included in the offload attach_align_device_hook( __magic_name__ , execution_device=__magic_name__ , offload=__magic_name__ , weights_map=model.state_dict() , offload_buffers=__magic_name__ , ) # Parameters have been offloaded, so on the meta device, buffers included self.assertEqual(model.lineara.weight.device , torch.device("""meta""" ) ) self.assertEqual(model.batchnorm.weight.device , torch.device("""meta""" ) ) self.assertEqual(model.lineara.weight.device , torch.device("""meta""" ) ) self.assertEqual(model.batchnorm.running_mean.device , torch.device("""meta""" ) ) __snake_case : List[str] = torch.randn(2 , 3 ) __snake_case : Dict = model(__magic_name__ ) self.assertEqual(output.device , __magic_name__ ) # Removing hooks loads back the weights in the model. remove_hook_from_submodules(__magic_name__ ) self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) ) self.assertEqual(model.batchnorm.weight.device , torch.device("""cpu""" ) ) self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) )
26
1
'''simple docstring''' import multiprocessing import os from typing import BinaryIO, Optional, Union import fsspec from .. import Dataset, Features, NamedSplit, config from ..formatting import query_table from ..packaged_modules.json.json import Json from ..utils import logging from ..utils.typing import NestedDataStructureLike, PathLike from .abc import AbstractDatasetReader class _A ( __lowercase ): def __init__( self : Union[str, Any] , __magic_name__ : NestedDataStructureLike[PathLike] , __magic_name__ : Optional[NamedSplit] = None , __magic_name__ : Optional[Features] = None , __magic_name__ : str = None , __magic_name__ : bool = False , __magic_name__ : bool = False , __magic_name__ : Optional[str] = None , __magic_name__ : Optional[int] = None , **__magic_name__ : int , ) -> List[str]: """simple docstring""" super().__init__( __magic_name__ , split=__magic_name__ , features=__magic_name__ , cache_dir=__magic_name__ , keep_in_memory=__magic_name__ , streaming=__magic_name__ , num_proc=__magic_name__ , **__magic_name__ , ) __snake_case : Union[str, Any] = field __snake_case : Dict = path_or_paths if isinstance(__magic_name__ , __magic_name__ ) else {self.split: path_or_paths} __snake_case : Any = Json( cache_dir=__magic_name__ , data_files=__magic_name__ , features=__magic_name__ , field=__magic_name__ , **__magic_name__ , ) def lowercase__ ( self : str ) -> Optional[int]: """simple docstring""" if self.streaming: __snake_case : int = self.builder.as_streaming_dataset(split=self.split ) # Build regular (map-style) dataset else: __snake_case : List[str] = None __snake_case : str = None __snake_case : List[Any] = None __snake_case : int = None self.builder.download_and_prepare( download_config=__magic_name__ , download_mode=__magic_name__ , verification_mode=__magic_name__ , base_path=__magic_name__ , num_proc=self.num_proc , ) __snake_case : Tuple = self.builder.as_dataset( split=self.split , verification_mode=__magic_name__ , in_memory=self.keep_in_memory ) return dataset class _A : def __init__( self : Any , __magic_name__ : Dataset , __magic_name__ : Union[PathLike, BinaryIO] , __magic_name__ : Optional[int] = None , __magic_name__ : Optional[int] = None , **__magic_name__ : List[Any] , ) -> List[str]: """simple docstring""" if num_proc is not None and num_proc <= 0: raise ValueError(f'''num_proc {num_proc} must be an integer > 0.''' ) __snake_case : List[str] = dataset __snake_case : List[str] = path_or_buf __snake_case : Optional[int] = batch_size if batch_size else config.DEFAULT_MAX_BATCH_SIZE __snake_case : List[str] = num_proc __snake_case : int = """utf-8""" __snake_case : Tuple = to_json_kwargs def lowercase__ ( self : Tuple ) -> int: """simple docstring""" __snake_case : Optional[int] = self.to_json_kwargs.pop("""path_or_buf""" , __magic_name__ ) __snake_case : Optional[Any] = self.to_json_kwargs.pop("""orient""" , """records""" ) __snake_case : List[Any] = self.to_json_kwargs.pop("""lines""" , True if orient == """records""" else False ) __snake_case : Optional[Any] = self.to_json_kwargs.pop("""index""" , False if orient in ["""split""", """table"""] else True ) __snake_case : Dict = self.to_json_kwargs.pop("""compression""" , __magic_name__ ) if compression not in [None, "infer", "gzip", "bz2", "xz"]: raise NotImplementedError(f'''`datasets` currently does not support {compression} compression''' ) if isinstance(self.path_or_buf , (str, bytes, os.PathLike) ): with fsspec.open(self.path_or_buf , """wb""" , compression=__magic_name__ ) as buffer: __snake_case : Any = self._write(file_obj=__magic_name__ , orient=__magic_name__ , lines=__magic_name__ , index=__magic_name__ , **self.to_json_kwargs ) else: if compression: raise NotImplementedError( f'''The compression parameter is not supported when writing to a buffer, but compression={compression}''' """ was passed. Please provide a local path instead.""" ) __snake_case : Dict = self._write( file_obj=self.path_or_buf , orient=__magic_name__ , lines=__magic_name__ , index=__magic_name__ , **self.to_json_kwargs ) return written def lowercase__ ( self : Optional[Any] , __magic_name__ : Tuple ) -> Optional[int]: """simple docstring""" __snake_case , __snake_case , __snake_case , __snake_case , __snake_case : Union[str, Any] = args __snake_case : List[Any] = query_table( table=self.dataset.data , key=slice(__magic_name__ , offset + self.batch_size ) , indices=self.dataset._indices , ) __snake_case : str = batch.to_pandas().to_json( path_or_buf=__magic_name__ , orient=__magic_name__ , lines=__magic_name__ , index=__magic_name__ , **__magic_name__ ) if not json_str.endswith("""\n""" ): json_str += "\n" return json_str.encode(self.encoding ) def lowercase__ ( self : Tuple , __magic_name__ : BinaryIO , __magic_name__ : List[str] , __magic_name__ : Union[str, Any] , __magic_name__ : Optional[int] , **__magic_name__ : int , ) -> int: """simple docstring""" __snake_case : Tuple = 0 if self.num_proc is None or self.num_proc == 1: for offset in logging.tqdm( range(0 , len(self.dataset ) , self.batch_size ) , unit="""ba""" , disable=not logging.is_progress_bar_enabled() , desc="""Creating json from Arrow format""" , ): __snake_case : Tuple = self._batch_json((offset, orient, lines, index, to_json_kwargs) ) written += file_obj.write(__magic_name__ ) else: __snake_case , __snake_case : Any = len(self.dataset ), self.batch_size with multiprocessing.Pool(self.num_proc ) as pool: for json_str in logging.tqdm( pool.imap( self._batch_json , [(offset, orient, lines, index, to_json_kwargs) for offset in range(0 , __magic_name__ , __magic_name__ )] , ) , total=(num_rows // batch_size) + 1 if num_rows % batch_size else num_rows // batch_size , unit="""ba""" , disable=not logging.is_progress_bar_enabled() , desc="""Creating json from Arrow format""" , ): written += file_obj.write(__magic_name__ ) return written
26
'''simple docstring''' from __future__ import annotations __UpperCamelCase = [ [-1, 0], # left [0, -1], # down [1, 0], # right [0, 1], # up ] def _a ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , ) -> tuple[list[list[int]], list[list[int]]]: """simple docstring""" __snake_case : List[str] = [ [0 for col in range(len(grid[0] ) )] for row in range(len(_lowerCamelCase ) ) ] # the reference grid __snake_case : Tuple = 1 __snake_case : List[str] = [ [0 for col in range(len(grid[0] ) )] for row in range(len(_lowerCamelCase ) ) ] # the action grid __snake_case : List[str] = init[0] __snake_case : str = init[1] __snake_case : int = 0 __snake_case : int = g + heuristic[x][y] # cost from starting cell to destination cell __snake_case : List[str] = [[f, g, x, y]] __snake_case : Any = False # flag that is set when search is complete __snake_case : int = False # flag set if we can't find expand while not found and not resign: if len(_lowerCamelCase ) == 0: raise ValueError("""Algorithm is unable to find solution""" ) else: # to choose the least costliest action so as to move closer to the goal cell.sort() cell.reverse() __snake_case : Tuple = cell.pop() __snake_case : Optional[int] = next_cell[2] __snake_case : List[Any] = next_cell[3] __snake_case : int = next_cell[1] if x == goal[0] and y == goal[1]: __snake_case : Optional[Any] = True else: for i in range(len(_lowerCamelCase ) ): # to try out different valid actions __snake_case : Union[str, Any] = x + DIRECTIONS[i][0] __snake_case : str = y + DIRECTIONS[i][1] if xa >= 0 and xa < len(_lowerCamelCase ) and ya >= 0 and ya < len(grid[0] ): if closed[xa][ya] == 0 and grid[xa][ya] == 0: __snake_case : str = g + cost __snake_case : Tuple = ga + heuristic[xa][ya] cell.append([fa, ga, xa, ya] ) __snake_case : List[str] = 1 __snake_case : Optional[int] = i __snake_case : List[str] = [] __snake_case : Optional[int] = goal[0] __snake_case : List[Any] = goal[1] invpath.append([x, y] ) # we get the reverse path from here while x != init[0] or y != init[1]: __snake_case : Dict = x - DIRECTIONS[action[x][y]][0] __snake_case : int = y - DIRECTIONS[action[x][y]][1] __snake_case : Optional[int] = xa __snake_case : int = ya invpath.append([x, y] ) __snake_case : Optional[int] = [] for i in range(len(_lowerCamelCase ) ): path.append(invpath[len(_lowerCamelCase ) - 1 - i] ) return path, action if __name__ == "__main__": __UpperCamelCase = [ [0, 1, 0, 0, 0, 0], [0, 1, 0, 0, 0, 0], # 0 are free path whereas 1's are obstacles [0, 1, 0, 0, 0, 0], [0, 1, 0, 0, 1, 0], [0, 0, 0, 0, 1, 0], ] __UpperCamelCase = [0, 0] # all coordinates are given in format [y,x] __UpperCamelCase = [len(grid) - 1, len(grid[0]) - 1] __UpperCamelCase = 1 # the cost map which pushes the path closer to the goal __UpperCamelCase = [[0 for row in range(len(grid[0]))] for col in range(len(grid))] for i in range(len(grid)): for j in range(len(grid[0])): __UpperCamelCase = abs(i - goal[0]) + abs(j - goal[1]) if grid[i][j] == 1: # added extra penalty in the heuristic map __UpperCamelCase = 99 __UpperCamelCase , __UpperCamelCase = search(grid, init, goal, cost, heuristic) print("ACTION MAP") for i in range(len(action)): print(action[i]) for i in range(len(path)): print(path[i])
26
1
'''simple docstring''' import io import json import fsspec import pytest from datasets import Dataset, DatasetDict, Features, NamedSplit, Value from datasets.io.json import JsonDatasetReader, JsonDatasetWriter from ..utils import assert_arrow_memory_doesnt_increase, assert_arrow_memory_increases def _a ( _lowerCamelCase , _lowerCamelCase ) -> Any: """simple docstring""" assert isinstance(_lowerCamelCase , _lowerCamelCase ) assert dataset.num_rows == 4 assert dataset.num_columns == 3 assert dataset.column_names == ["col_1", "col_2", "col_3"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype @pytest.mark.parametrize("""keep_in_memory""" , [False, True] ) def _a ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> Optional[Any]: """simple docstring""" __snake_case : str = tmp_path / """cache""" __snake_case : Optional[Any] = {"""col_1""": """string""", """col_2""": """int64""", """col_3""": """float64"""} with assert_arrow_memory_increases() if keep_in_memory else assert_arrow_memory_doesnt_increase(): __snake_case : Tuple = JsonDatasetReader(_lowerCamelCase , cache_dir=_lowerCamelCase , keep_in_memory=_lowerCamelCase ).read() _check_json_dataset(_lowerCamelCase , _lowerCamelCase ) @pytest.mark.parametrize( """features""" , [ None, {"""col_1""": """string""", """col_2""": """int64""", """col_3""": """float64"""}, {"""col_1""": """string""", """col_2""": """string""", """col_3""": """string"""}, {"""col_1""": """int32""", """col_2""": """int32""", """col_3""": """int32"""}, {"""col_1""": """float32""", """col_2""": """float32""", """col_3""": """float32"""}, ] , ) def _a ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> int: """simple docstring""" __snake_case : Optional[Any] = tmp_path / """cache""" __snake_case : Any = {"""col_1""": """string""", """col_2""": """int64""", """col_3""": """float64"""} __snake_case : Tuple = features.copy() if features else default_expected_features __snake_case : int = ( Features({feature: Value(_lowerCamelCase ) for feature, dtype in features.items()} ) if features is not None else None ) __snake_case : Optional[int] = JsonDatasetReader(_lowerCamelCase , features=_lowerCamelCase , cache_dir=_lowerCamelCase ).read() _check_json_dataset(_lowerCamelCase , _lowerCamelCase ) @pytest.mark.parametrize( """features""" , [ None, {"""col_3""": """float64""", """col_1""": """string""", """col_2""": """int64"""}, ] , ) def _a ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> Dict: """simple docstring""" __snake_case : Dict = tmp_path / """cache""" __snake_case : Any = {"""col_3""": """float64""", """col_1""": """string""", """col_2""": """int64"""} __snake_case : Dict = features.copy() if features else default_expected_features __snake_case : Optional[int] = ( Features({feature: Value(_lowerCamelCase ) for feature, dtype in features.items()} ) if features is not None else None ) __snake_case : Tuple = JsonDatasetReader(_lowerCamelCase , features=_lowerCamelCase , cache_dir=_lowerCamelCase ).read() assert isinstance(_lowerCamelCase , _lowerCamelCase ) assert dataset.num_rows == 2 assert dataset.num_columns == 3 assert dataset.column_names == ["col_3", "col_1", "col_2"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype def _a ( _lowerCamelCase , _lowerCamelCase ) -> List[Any]: """simple docstring""" __snake_case : Optional[Any] = {"""col_2""": """int64""", """col_3""": """float64""", """col_1""": """string"""} __snake_case : Tuple = features.copy() __snake_case : List[str] = ( Features({feature: Value(_lowerCamelCase ) for feature, dtype in features.items()} ) if features is not None else None ) __snake_case : int = tmp_path / """cache""" __snake_case : List[Any] = JsonDatasetReader(_lowerCamelCase , features=_lowerCamelCase , cache_dir=_lowerCamelCase ).read() assert isinstance(_lowerCamelCase , _lowerCamelCase ) assert dataset.num_rows == 2 assert dataset.num_columns == 3 assert dataset.column_names == ["col_2", "col_3", "col_1"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype @pytest.mark.parametrize("""split""" , [None, NamedSplit("""train""" ), """train""", """test"""] ) def _a ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> Union[str, Any]: """simple docstring""" __snake_case : Optional[Any] = tmp_path / """cache""" __snake_case : int = {"""col_1""": """string""", """col_2""": """int64""", """col_3""": """float64"""} __snake_case : int = JsonDatasetReader(_lowerCamelCase , cache_dir=_lowerCamelCase , split=_lowerCamelCase ).read() _check_json_dataset(_lowerCamelCase , _lowerCamelCase ) assert dataset.split == split if split else "train" @pytest.mark.parametrize("""path_type""" , [str, list] ) def _a ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> Dict: """simple docstring""" if issubclass(_lowerCamelCase , _lowerCamelCase ): __snake_case : Optional[int] = jsonl_path elif issubclass(_lowerCamelCase , _lowerCamelCase ): __snake_case : Any = [jsonl_path] __snake_case : Optional[int] = tmp_path / """cache""" __snake_case : Tuple = {"""col_1""": """string""", """col_2""": """int64""", """col_3""": """float64"""} __snake_case : Tuple = JsonDatasetReader(_lowerCamelCase , cache_dir=_lowerCamelCase ).read() _check_json_dataset(_lowerCamelCase , _lowerCamelCase ) def _a ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase=("train",) ) -> Tuple: """simple docstring""" assert isinstance(_lowerCamelCase , _lowerCamelCase ) for split in splits: __snake_case : Optional[int] = dataset_dict[split] assert dataset.num_rows == 4 assert dataset.num_columns == 3 assert dataset.column_names == ["col_1", "col_2", "col_3"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype @pytest.mark.parametrize("""keep_in_memory""" , [False, True] ) def _a ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> Union[str, Any]: """simple docstring""" __snake_case : List[Any] = tmp_path / """cache""" __snake_case : str = {"""col_1""": """string""", """col_2""": """int64""", """col_3""": """float64"""} with assert_arrow_memory_increases() if keep_in_memory else assert_arrow_memory_doesnt_increase(): __snake_case : Optional[Any] = JsonDatasetReader({"""train""": jsonl_path} , cache_dir=_lowerCamelCase , keep_in_memory=_lowerCamelCase ).read() _check_json_datasetdict(_lowerCamelCase , _lowerCamelCase ) @pytest.mark.parametrize( """features""" , [ None, {"""col_1""": """string""", """col_2""": """int64""", """col_3""": """float64"""}, {"""col_1""": """string""", """col_2""": """string""", """col_3""": """string"""}, {"""col_1""": """int32""", """col_2""": """int32""", """col_3""": """int32"""}, {"""col_1""": """float32""", """col_2""": """float32""", """col_3""": """float32"""}, ] , ) def _a ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> Union[str, Any]: """simple docstring""" __snake_case : int = tmp_path / """cache""" __snake_case : int = {"""col_1""": """string""", """col_2""": """int64""", """col_3""": """float64"""} __snake_case : int = features.copy() if features else default_expected_features __snake_case : Any = ( Features({feature: Value(_lowerCamelCase ) for feature, dtype in features.items()} ) if features is not None else None ) __snake_case : int = JsonDatasetReader({"""train""": jsonl_path} , features=_lowerCamelCase , cache_dir=_lowerCamelCase ).read() _check_json_datasetdict(_lowerCamelCase , _lowerCamelCase ) @pytest.mark.parametrize("""split""" , [None, NamedSplit("""train""" ), """train""", """test"""] ) def _a ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> List[str]: """simple docstring""" if split: __snake_case : Union[str, Any] = {split: jsonl_path} else: __snake_case : Any = """train""" __snake_case : Optional[int] = {"""train""": jsonl_path, """test""": jsonl_path} __snake_case : List[Any] = tmp_path / """cache""" __snake_case : Optional[Any] = {"""col_1""": """string""", """col_2""": """int64""", """col_3""": """float64"""} __snake_case : Union[str, Any] = JsonDatasetReader(_lowerCamelCase , cache_dir=_lowerCamelCase ).read() _check_json_datasetdict(_lowerCamelCase , _lowerCamelCase , splits=list(path.keys() ) ) assert all(dataset[split].split == split for split in path.keys() ) def _a ( _lowerCamelCase ) -> List[Any]: """simple docstring""" return json.load(_lowerCamelCase ) def _a ( _lowerCamelCase ) -> Dict: """simple docstring""" return [json.loads(_lowerCamelCase ) for line in buffer] class _A : @pytest.mark.parametrize("""lines, load_json_function""" , [(True, load_json_lines), (False, load_json)] ) def lowercase__ ( self : Optional[Any] , __magic_name__ : List[Any] , __magic_name__ : List[str] , __magic_name__ : Optional[int] ) -> Tuple: """simple docstring""" with io.BytesIO() as buffer: JsonDatasetWriter(__magic_name__ , __magic_name__ , lines=__magic_name__ ).write() buffer.seek(0 ) __snake_case : Any = load_json_function(__magic_name__ ) assert isinstance(__magic_name__ , __magic_name__ ) assert isinstance(exported_content[0] , __magic_name__ ) assert len(__magic_name__ ) == 10 @pytest.mark.parametrize( """orient, container, keys, len_at""" , [ ("""records""", list, {"""tokens""", """labels""", """answers""", """id"""}, None), ("""split""", dict, {"""columns""", """data"""}, """data"""), ("""index""", dict, set("""0123456789""" ), None), ("""columns""", dict, {"""tokens""", """labels""", """answers""", """id"""}, """tokens"""), ("""values""", list, None, None), ("""table""", dict, {"""schema""", """data"""}, """data"""), ] , ) def lowercase__ ( self : Optional[Any] , __magic_name__ : List[Any] , __magic_name__ : Dict , __magic_name__ : Union[str, Any] , __magic_name__ : Any , __magic_name__ : Tuple ) -> Tuple: """simple docstring""" with io.BytesIO() as buffer: JsonDatasetWriter(__magic_name__ , __magic_name__ , lines=__magic_name__ , orient=__magic_name__ ).write() buffer.seek(0 ) __snake_case : Any = load_json(__magic_name__ ) assert isinstance(__magic_name__ , __magic_name__ ) if keys: if container is dict: assert exported_content.keys() == keys else: assert exported_content[0].keys() == keys else: assert not hasattr(__magic_name__ , """keys""" ) and not hasattr(exported_content[0] , """keys""" ) if len_at: assert len(exported_content[len_at] ) == 10 else: assert len(__magic_name__ ) == 10 @pytest.mark.parametrize("""lines, load_json_function""" , [(True, load_json_lines), (False, load_json)] ) def lowercase__ ( self : Union[str, Any] , __magic_name__ : List[Any] , __magic_name__ : Tuple , __magic_name__ : Dict ) -> Tuple: """simple docstring""" with io.BytesIO() as buffer: JsonDatasetWriter(__magic_name__ , __magic_name__ , lines=__magic_name__ , num_proc=2 ).write() buffer.seek(0 ) __snake_case : int = load_json_function(__magic_name__ ) assert isinstance(__magic_name__ , __magic_name__ ) assert isinstance(exported_content[0] , __magic_name__ ) assert len(__magic_name__ ) == 10 @pytest.mark.parametrize( """orient, container, keys, len_at""" , [ ("""records""", list, {"""tokens""", """labels""", """answers""", """id"""}, None), ("""split""", dict, {"""columns""", """data"""}, """data"""), ("""index""", dict, set("""0123456789""" ), None), ("""columns""", dict, {"""tokens""", """labels""", """answers""", """id"""}, """tokens"""), ("""values""", list, None, None), ("""table""", dict, {"""schema""", """data"""}, """data"""), ] , ) def lowercase__ ( self : Optional[int] , __magic_name__ : List[Any] , __magic_name__ : List[Any] , __magic_name__ : str , __magic_name__ : Optional[int] , __magic_name__ : Optional[int] ) -> Optional[int]: """simple docstring""" with io.BytesIO() as buffer: JsonDatasetWriter(__magic_name__ , __magic_name__ , lines=__magic_name__ , orient=__magic_name__ , num_proc=2 ).write() buffer.seek(0 ) __snake_case : List[str] = load_json(__magic_name__ ) assert isinstance(__magic_name__ , __magic_name__ ) if keys: if container is dict: assert exported_content.keys() == keys else: assert exported_content[0].keys() == keys else: assert not hasattr(__magic_name__ , """keys""" ) and not hasattr(exported_content[0] , """keys""" ) if len_at: assert len(exported_content[len_at] ) == 10 else: assert len(__magic_name__ ) == 10 def lowercase__ ( self : List[Any] , __magic_name__ : List[str] ) -> str: """simple docstring""" with pytest.raises(__magic_name__ ): with io.BytesIO() as buffer: JsonDatasetWriter(__magic_name__ , __magic_name__ , num_proc=0 ) @pytest.mark.parametrize("""compression, extension""" , [("""gzip""", """gz"""), ("""bz2""", """bz2"""), ("""xz""", """xz""")] ) def lowercase__ ( self : Union[str, Any] , __magic_name__ : Optional[Any] , __magic_name__ : Optional[int] , __magic_name__ : Optional[Any] , __magic_name__ : Optional[Any] , __magic_name__ : Union[str, Any] ) -> Tuple: """simple docstring""" __snake_case : Optional[Any] = tmp_path_factory.mktemp("""data""" ) / f'''test.json.{extension}''' __snake_case : Union[str, Any] = str(shared_datadir / f'''test_file.json.{extension}''' ) JsonDatasetWriter(__magic_name__ , __magic_name__ , compression=__magic_name__ ).write() with fsspec.open(__magic_name__ , """rb""" , compression="""infer""" ) as f: __snake_case : List[Any] = f.read() with fsspec.open(__magic_name__ , """rb""" , compression="""infer""" ) as f: __snake_case : Optional[Any] = f.read() assert exported_content == original_content
26
'''simple docstring''' def _a ( _lowerCamelCase ) -> int: """simple docstring""" if not isinstance(_lowerCamelCase , _lowerCamelCase ): raise TypeError("""only integers accepted as input""" ) else: __snake_case : List[Any] = str(abs(_lowerCamelCase ) ) __snake_case : Union[str, Any] = [list(_lowerCamelCase ) for char in range(len(_lowerCamelCase ) )] for index in range(len(_lowerCamelCase ) ): num_transpositions[index].pop(_lowerCamelCase ) return max( int("""""".join(list(_lowerCamelCase ) ) ) for transposition in num_transpositions ) if __name__ == "__main__": __import__("doctest").testmod()
26
1
'''simple docstring''' import glob import os import random from string import ascii_lowercase, digits import cva __UpperCamelCase = "" __UpperCamelCase = "" __UpperCamelCase = "" __UpperCamelCase = 1 # (0 is vertical, 1 is horizontal) def _a ( ) -> None: """simple docstring""" __snake_case , __snake_case : Optional[int] = get_dataset(_lowerCamelCase , _lowerCamelCase ) print("""Processing...""" ) __snake_case , __snake_case , __snake_case : Union[str, Any] = update_image_and_anno(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) for index, image in enumerate(_lowerCamelCase ): # Get random string code: '7b7ad245cdff75241935e4dd860f3bad' __snake_case : Tuple = random_chars(32 ) __snake_case : Tuple = paths[index].split(os.sep )[-1].rsplit(""".""" , 1 )[0] __snake_case : List[Any] = F'''{OUTPUT_DIR}/{file_name}_FLIP_{letter_code}''' cva.imwrite(F'''/{file_root}.jpg''' , _lowerCamelCase , [cva.IMWRITE_JPEG_QUALITY, 85] ) print(F'''Success {index+1}/{len(_lowerCamelCase )} with {file_name}''' ) __snake_case : str = [] for anno in new_annos[index]: __snake_case : Union[str, Any] = F'''{anno[0]} {anno[1]} {anno[2]} {anno[3]} {anno[4]}''' annos_list.append(_lowerCamelCase ) with open(F'''/{file_root}.txt''' , """w""" ) as outfile: outfile.write("""\n""".join(line for line in annos_list ) ) def _a ( _lowerCamelCase , _lowerCamelCase ) -> tuple[list, list]: """simple docstring""" __snake_case : int = [] __snake_case : int = [] for label_file in glob.glob(os.path.join(_lowerCamelCase , """*.txt""" ) ): __snake_case : str = label_file.split(os.sep )[-1].rsplit(""".""" , 1 )[0] with open(_lowerCamelCase ) as in_file: __snake_case : List[Any] = in_file.readlines() __snake_case : Tuple = os.path.join(_lowerCamelCase , F'''{label_name}.jpg''' ) __snake_case : Tuple = [] for obj_list in obj_lists: __snake_case : Union[str, Any] = obj_list.rstrip("""\n""" ).split(""" """ ) boxes.append( [ int(obj[0] ), float(obj[1] ), float(obj[2] ), float(obj[3] ), float(obj[4] ), ] ) if not boxes: continue img_paths.append(_lowerCamelCase ) labels.append(_lowerCamelCase ) return img_paths, labels def _a ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase = 1 ) -> tuple[list, list, list]: """simple docstring""" __snake_case : Tuple = [] __snake_case : Optional[Any] = [] __snake_case : List[Any] = [] for idx in range(len(_lowerCamelCase ) ): __snake_case : str = [] __snake_case : List[Any] = img_list[idx] path_list.append(_lowerCamelCase ) __snake_case : Optional[Any] = anno_list[idx] __snake_case : int = cva.imread(_lowerCamelCase ) if flip_type == 1: __snake_case : List[Any] = cva.flip(_lowerCamelCase , _lowerCamelCase ) for bbox in img_annos: __snake_case : int = 1 - bbox[1] new_annos.append([bbox[0], x_center_new, bbox[2], bbox[3], bbox[4]] ) elif flip_type == 0: __snake_case : Any = cva.flip(_lowerCamelCase , _lowerCamelCase ) for bbox in img_annos: __snake_case : List[str] = 1 - bbox[2] new_annos.append([bbox[0], bbox[1], y_center_new, bbox[3], bbox[4]] ) new_annos_lists.append(_lowerCamelCase ) new_imgs_list.append(_lowerCamelCase ) return new_imgs_list, new_annos_lists, path_list def _a ( _lowerCamelCase = 32 ) -> str: """simple docstring""" assert number_char > 1, "The number of character should greater than 1" __snake_case : List[str] = ascii_lowercase + digits return "".join(random.choice(_lowerCamelCase ) for _ in range(_lowerCamelCase ) ) if __name__ == "__main__": main() print("DONE ✅")
26
'''simple docstring''' from __future__ import annotations import math def _a ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> int: """simple docstring""" if depth < 0: raise ValueError("""Depth cannot be less than 0""" ) if not scores: raise ValueError("""Scores cannot be empty""" ) if depth == height: return scores[node_index] return ( max( minimax(depth + 1 , node_index * 2 , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) , minimax(depth + 1 , node_index * 2 + 1 , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) , ) if is_max else min( minimax(depth + 1 , node_index * 2 , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) , minimax(depth + 1 , node_index * 2 + 1 , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) , ) ) def _a ( ) -> None: """simple docstring""" __snake_case : Union[str, Any] = [90, 23, 6, 33, 21, 65, 123, 3_4423] __snake_case : Optional[int] = math.log(len(_lowerCamelCase ) , 2 ) print(F'''Optimal value : {minimax(0 , 0 , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase )}''' ) if __name__ == "__main__": import doctest doctest.testmod() main()
26
1
'''simple docstring''' from __future__ import annotations import random # Maximum size of the population. Bigger could be faster but is more memory expensive. __UpperCamelCase = 200 # Number of elements selected in every generation of evolution. The selection takes # place from best to worst of that generation and must be smaller than N_POPULATION. __UpperCamelCase = 50 # Probability that an element of a generation can mutate, changing one of its genes. # This will guarantee that all genes will be used during evolution. __UpperCamelCase = 0.4 # Just a seed to improve randomness required by the algorithm. random.seed(random.randint(0, 1000)) def _a ( _lowerCamelCase , _lowerCamelCase ) -> tuple[str, float]: """simple docstring""" __snake_case : Any = len([g for position, g in enumerate(_lowerCamelCase ) if g == main_target[position]] ) return (item, float(_lowerCamelCase )) def _a ( _lowerCamelCase , _lowerCamelCase ) -> tuple[str, str]: """simple docstring""" __snake_case : Optional[Any] = random.randint(0 , len(_lowerCamelCase ) - 1 ) __snake_case : str = parent_a[:random_slice] + parent_a[random_slice:] __snake_case : List[str] = parent_a[:random_slice] + parent_a[random_slice:] return (child_a, child_a) def _a ( _lowerCamelCase , _lowerCamelCase ) -> str: """simple docstring""" __snake_case : str = list(_lowerCamelCase ) if random.uniform(0 , 1 ) < MUTATION_PROBABILITY: __snake_case : List[str] = random.choice(_lowerCamelCase ) return "".join(_lowerCamelCase ) def _a ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , ) -> list[str]: """simple docstring""" __snake_case : str = [] # Generate more children proportionally to the fitness score. __snake_case : Optional[Any] = int(parent_a[1] * 100 ) + 1 __snake_case : int = 10 if child_n >= 10 else child_n for _ in range(_lowerCamelCase ): __snake_case : List[str] = population_score[random.randint(0 , _lowerCamelCase )][0] __snake_case , __snake_case : Optional[Any] = crossover(parent_a[0] , _lowerCamelCase ) # Append new string to the population list. pop.append(mutate(_lowerCamelCase , _lowerCamelCase ) ) pop.append(mutate(_lowerCamelCase , _lowerCamelCase ) ) return pop def _a ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase = True ) -> tuple[int, int, str]: """simple docstring""" if N_POPULATION < N_SELECTED: __snake_case : Dict = F'''{N_POPULATION} must be bigger than {N_SELECTED}''' raise ValueError(_lowerCamelCase ) # Verify that the target contains no genes besides the ones inside genes variable. __snake_case : List[str] = sorted({c for c in target if c not in genes} ) if not_in_genes_list: __snake_case : int = F'''{not_in_genes_list} is not in genes list, evolution cannot converge''' raise ValueError(_lowerCamelCase ) # Generate random starting population. __snake_case : Union[str, Any] = [] for _ in range(_lowerCamelCase ): population.append("""""".join([random.choice(_lowerCamelCase ) for i in range(len(_lowerCamelCase ) )] ) ) # Just some logs to know what the algorithms is doing. __snake_case , __snake_case : Any = 0, 0 # This loop will end when we find a perfect match for our target. while True: generation += 1 total_population += len(_lowerCamelCase ) # Random population created. Now it's time to evaluate. # Adding a bit of concurrency can make everything faster, # # import concurrent.futures # population_score: list[tuple[str, float]] = [] # with concurrent.futures.ThreadPoolExecutor( # max_workers=NUM_WORKERS) as executor: # futures = {executor.submit(evaluate, item) for item in population} # concurrent.futures.wait(futures) # population_score = [item.result() for item in futures] # # but with a simple algorithm like this, it will probably be slower. # We just need to call evaluate for every item inside the population. __snake_case : Any = [evaluate(_lowerCamelCase , _lowerCamelCase ) for item in population] # Check if there is a matching evolution. __snake_case : List[str] = sorted(_lowerCamelCase , key=lambda _lowerCamelCase : x[1] , reverse=_lowerCamelCase ) if population_score[0][0] == target: return (generation, total_population, population_score[0][0]) # Print the best result every 10 generation. # Just to know that the algorithm is working. if debug and generation % 10 == 0: print( F'''\nGeneration: {generation}''' F'''\nTotal Population:{total_population}''' F'''\nBest score: {population_score[0][1]}''' F'''\nBest string: {population_score[0][0]}''' ) # Flush the old population, keeping some of the best evolutions. # Keeping this avoid regression of evolution. __snake_case : Tuple = population[: int(N_POPULATION / 3 )] population.clear() population.extend(_lowerCamelCase ) # Normalize population score to be between 0 and 1. __snake_case : int = [ (item, score / len(_lowerCamelCase )) for item, score in population_score ] # This is selection for i in range(_lowerCamelCase ): population.extend(select(population_score[int(_lowerCamelCase )] , _lowerCamelCase , _lowerCamelCase ) ) # Check if the population has already reached the maximum value and if so, # break the cycle. If this check is disabled, the algorithm will take # forever to compute large strings, but will also calculate small strings in # a far fewer generations. if len(_lowerCamelCase ) > N_POPULATION: break if __name__ == "__main__": __UpperCamelCase = ( "This is a genetic algorithm to evaluate, combine, evolve, and mutate a string!" ) __UpperCamelCase = list( " ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklm" "nopqrstuvwxyz.,;!?+-*#@^'èéòà€ù=)(&%$£/\\" ) __UpperCamelCase , __UpperCamelCase , __UpperCamelCase = basic(target_str, genes_list) print( f"""\nGeneration: {generation}\nTotal Population: {population}\nTarget: {target}""" )
26
'''simple docstring''' from __future__ import annotations def _a ( _lowerCamelCase , _lowerCamelCase = None , _lowerCamelCase = None ) -> None: """simple docstring""" if start is None: __snake_case : Optional[Any] = 0 if end is None: __snake_case : Optional[Any] = len(_lowerCamelCase ) - 1 if start >= end: return __snake_case : Tuple = (start + end) // 2 slowsort(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) slowsort(_lowerCamelCase , mid + 1 , _lowerCamelCase ) if sequence[end] < sequence[mid]: __snake_case , __snake_case : str = sequence[mid], sequence[end] slowsort(_lowerCamelCase , _lowerCamelCase , end - 1 ) if __name__ == "__main__": from doctest import testmod testmod()
26
1
'''simple docstring''' import unittest from pathlib import Path from shutil import copyfile from transformers import SPIECE_UNDERLINE, is_sentencepiece_available from transformers.models.speech_to_text import SpeechaTextTokenizer from transformers.models.speech_to_text.tokenization_speech_to_text import VOCAB_FILES_NAMES, save_json from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin __UpperCamelCase = get_tests_dir("fixtures/test_sentencepiece.model") if is_sentencepiece_available(): import sentencepiece as sp __UpperCamelCase = 5 __UpperCamelCase = 10 @require_sentencepiece @require_tokenizers class _A ( __lowercase , unittest.TestCase ): lowercase__: Optional[Any] = SpeechaTextTokenizer lowercase__: Optional[int] = False lowercase__: Union[str, Any] = True def lowercase__ ( self : List[Any] ) -> str: """simple docstring""" super().setUp() __snake_case : Tuple = sp.SentencePieceProcessor() spm_model.Load(__magic_name__ ) __snake_case : int = ["""<s>""", """<pad>""", """</s>""", """<unk>"""] vocab += [spm_model.IdToPiece(id_ ) for id_ in range(len(__magic_name__ ) )] __snake_case : int = dict(zip(__magic_name__ , range(len(__magic_name__ ) ) ) ) __snake_case : Union[str, Any] = Path(self.tmpdirname ) save_json(__magic_name__ , save_dir / VOCAB_FILES_NAMES["""vocab_file"""] ) if not (save_dir / VOCAB_FILES_NAMES["spm_file"]).exists(): copyfile(__magic_name__ , save_dir / VOCAB_FILES_NAMES["""spm_file"""] ) __snake_case : Dict = SpeechaTextTokenizer.from_pretrained(self.tmpdirname ) tokenizer.save_pretrained(self.tmpdirname ) def lowercase__ ( self : Dict ) -> int: """simple docstring""" __snake_case : Any = """<pad>""" __snake_case : Optional[Any] = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(__magic_name__ ) , __magic_name__ ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(__magic_name__ ) , __magic_name__ ) def lowercase__ ( self : List[str] ) -> List[str]: """simple docstring""" __snake_case : List[Any] = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , """<s>""" ) self.assertEqual(vocab_keys[1] , """<pad>""" ) self.assertEqual(vocab_keys[-1] , """j""" ) self.assertEqual(len(__magic_name__ ) , 10_01 ) def lowercase__ ( self : List[str] ) -> int: """simple docstring""" self.assertEqual(self.get_tokenizer().vocab_size , 10_01 ) def lowercase__ ( self : str ) -> Tuple: """simple docstring""" __snake_case : Union[str, Any] = SpeechaTextTokenizer.from_pretrained(self.tmpdirname ) __snake_case : List[Any] = tokenizer.tokenize("""This is a test""" ) self.assertListEqual(__magic_name__ , ["""▁This""", """▁is""", """▁a""", """▁t""", """est"""] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(__magic_name__ ) , [2_89, 50, 14, 1_74, 3_86] , ) __snake_case : Optional[int] = tokenizer.tokenize("""I was born in 92000, and this is falsé.""" ) self.assertListEqual( __magic_name__ , [SPIECE_UNDERLINE + """I""", SPIECE_UNDERLINE + """was""", SPIECE_UNDERLINE + """b""", """or""", """n""", SPIECE_UNDERLINE + """in""", SPIECE_UNDERLINE + """""", """9""", """2""", """0""", """0""", """0""", """,""", SPIECE_UNDERLINE + """and""", SPIECE_UNDERLINE + """this""", SPIECE_UNDERLINE + """is""", SPIECE_UNDERLINE + """f""", """al""", """s""", """é""", """."""] , ) __snake_case : Union[str, Any] = tokenizer.convert_tokens_to_ids(__magic_name__ ) self.assertListEqual(__magic_name__ , [12, 25, 88, 59, 28, 23, 11, 4, 6_06, 3_51, 3_51, 3_51, 7, 16, 70, 50, 76, 84, 10, 4, 8] ) __snake_case : List[Any] = tokenizer.convert_ids_to_tokens(__magic_name__ ) self.assertListEqual( __magic_name__ , [SPIECE_UNDERLINE + """I""", SPIECE_UNDERLINE + """was""", SPIECE_UNDERLINE + """b""", """or""", """n""", SPIECE_UNDERLINE + """in""", SPIECE_UNDERLINE + """""", """<unk>""", """2""", """0""", """0""", """0""", """,""", SPIECE_UNDERLINE + """and""", SPIECE_UNDERLINE + """this""", SPIECE_UNDERLINE + """is""", SPIECE_UNDERLINE + """f""", """al""", """s""", """<unk>""", """."""] , ) @slow def lowercase__ ( self : int ) -> Tuple: """simple docstring""" __snake_case : List[Any] = {"""input_ids""": [[37_91, 7_97, 31, 11, 64, 7_97, 31, 24_29, 4_33, 12, 11_76, 12, 20, 7_86, 9_15, 1_42, 24_13, 2_40, 37, 32_38, 7_97, 31, 11, 35, 93, 9_15, 1_42, 24_13, 2_40, 37, 55_40, 5_67, 12_76, 93, 37, 6_10, 40, 62, 4_55, 6_57, 10_42, 1_23, 7_80, 1_77, 37, 3_09, 2_41, 12_98, 5_14, 20, 2_92, 27_37, 1_14, 24_69, 2_41, 85, 64, 3_02, 5_48, 5_28, 4_23, 4, 5_09, 4_06, 4_23, 37, 6_01, 4, 7_77, 3_02, 5_48, 5_28, 4_23, 2_84, 4, 33_88, 5_11, 4_59, 4, 35_55, 40, 3_21, 3_02, 7_05, 4, 33_88, 5_11, 5_83, 3_26, 5, 5, 5, 62, 33_10, 5_60, 1_77, 26_80, 2_17, 15_08, 32, 31, 8_53, 4_18, 64, 5_83, 5_11, 16_05, 62, 35, 93, 5_60, 1_77, 26_80, 2_17, 15_08, 15_21, 64, 5_83, 5_11, 5_19, 62, 20, 15_15, 7_64, 20, 1_49, 2_61, 56_25, 79_72, 20, 55_40, 5_67, 12_76, 93, 39_25, 16_75, 11, 15, 8_02, 79_72, 5_76, 2_17, 15_08, 11, 35, 93, 12_53, 24_41, 15, 2_89, 6_52, 31, 4_16, 3_21, 38_42, 1_15, 40, 9_11, 8, 4_76, 6_19, 4, 3_80, 1_42, 4_23, 3_35, 2_40, 35, 93, 2_64, 8, 11, 3_35, 5_69, 4_20, 1_63, 5, 2], [2_60, 5_48, 5_28, 4_23, 20, 4_51, 20, 26_81, 11_53, 34_34, 20, 55_40, 37, 5_67, 1_26, 12_53, 24_41, 33_76, 4_49, 2_10, 4_31, 15_63, 1_77, 7_67, 55_40, 11, 12_03, 4_72, 11, 29_53, 6_85, 2_85, 3_64, 7_06, 11_53, 20, 67_99, 20, 28_69, 20, 44_64, 1_26, 40, 24_29, 20, 10_40, 8_66, 26_64, 4_18, 20, 3_18, 20, 17_26, 1_86, 20, 2_65, 5_22, 35, 93, 21_91, 46_34, 20, 10_40, 12, 67_99, 15, 2_28, 23_56, 1_42, 31, 11, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [25_75, 26_66, 6_84, 15_82, 11_76, 12, 6_27, 1_49, 6_19, 20, 49_02, 5_63, 11, 20, 1_49, 2_61, 34_20, 23_56, 1_74, 1_42, 47_14, 1_31, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]], """attention_mask""": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=__magic_name__ , model_name="""facebook/s2t-small-mustc-en-de-st""" , revision="""a14f04cf0776c02f62a8cb800cf7909e15ea23ad""" , ) @require_sentencepiece class _A ( unittest.TestCase ): lowercase__: List[Any] = '''valhalla/s2t_mustc_multilinguial_medium''' lowercase__: Union[str, Any] = '''C\'est trop cool''' lowercase__: Union[str, Any] = '''Esto es genial''' @classmethod def lowercase__ ( cls : Optional[Any] ) -> int: """simple docstring""" __snake_case : SpeechaTextTokenizer = SpeechaTextTokenizer.from_pretrained(cls.checkpoint_name ) return cls def lowercase__ ( self : List[Any] ) -> Optional[int]: """simple docstring""" self.assertEqual(self.tokenizer.lang_code_to_id["""pt"""] , 4 ) self.assertEqual(self.tokenizer.lang_code_to_id["""ru"""] , 6 ) self.assertEqual(self.tokenizer.lang_code_to_id["""it"""] , 9 ) self.assertEqual(self.tokenizer.lang_code_to_id["""de"""] , 11 ) def lowercase__ ( self : Optional[int] ) -> Dict: """simple docstring""" self.assertEqual(self.tokenizer.vocab_size , 1_00_00 ) def lowercase__ ( self : List[Any] ) -> Optional[Any]: """simple docstring""" self.assertIn(__magic_name__ , self.tokenizer.all_special_ids ) __snake_case : Tuple = [ES_CODE, 4, 16_01, 47, 76_47, 2] __snake_case : Any = self.tokenizer.decode(__magic_name__ , skip_special_tokens=__magic_name__ ) __snake_case : int = self.tokenizer.decode(generated_ids[1:] , skip_special_tokens=__magic_name__ ) self.assertEqual(__magic_name__ , __magic_name__ ) self.assertNotIn(self.tokenizer.eos_token , __magic_name__ ) def lowercase__ ( self : Union[str, Any] ) -> Any: """simple docstring""" __snake_case : Optional[Any] = """fr""" __snake_case : int = self.tokenizer(self.french_text ).input_ids self.assertEqual(encoded[0] , __magic_name__ ) self.assertEqual(encoded[-1] , self.tokenizer.eos_token_id ) def lowercase__ ( self : Dict ) -> Union[str, Any]: """simple docstring""" __snake_case : Dict = """fr""" self.assertListEqual(self.tokenizer.prefix_tokens , [FR_CODE] ) __snake_case : Any = """es""" self.assertListEqual(self.tokenizer.prefix_tokens , [ES_CODE] )
26
'''simple docstring''' import doctest import logging import os import unittest from pathlib import Path from typing import List, Union import transformers from transformers.testing_utils import require_tf, require_torch, slow __UpperCamelCase = logging.getLogger() @unittest.skip('''Temporarily disable the doc tests.''' ) @require_torch @require_tf @slow class _A ( unittest.TestCase ): def lowercase__ ( self : Optional[int] , __magic_name__ : Path , __magic_name__ : Union[str, None] = None , __magic_name__ : Union[List[str], None] = None , __magic_name__ : Union[str, List[str], None] = None , __magic_name__ : bool = True , ) -> Optional[int]: """simple docstring""" __snake_case : Union[str, Any] = [file for file in os.listdir(__magic_name__ ) if os.path.isfile(os.path.join(__magic_name__ , __magic_name__ ) )] if identifier is not None: __snake_case : List[Any] = [file for file in files if identifier in file] if n_identifier is not None: if isinstance(__magic_name__ , __magic_name__ ): for n_ in n_identifier: __snake_case : Optional[int] = [file for file in files if n_ not in file] else: __snake_case : Tuple = [file for file in files if n_identifier not in file] __snake_case : Dict = ignore_files or [] ignore_files.append("""__init__.py""" ) __snake_case : List[str] = [file for file in files if file not in ignore_files] for file in files: # Open all files print("""Testing""" , __magic_name__ ) if only_modules: __snake_case : List[Any] = file.split(""".""" )[0] try: __snake_case : List[Any] = getattr(__magic_name__ , __magic_name__ ) __snake_case : Union[str, Any] = doctest.DocTestSuite(__magic_name__ ) __snake_case : Dict = unittest.TextTestRunner().run(__magic_name__ ) self.assertIs(len(result.failures ) , 0 ) except AttributeError: logger.info(f'''{module_identifier} is not a module.''' ) else: __snake_case : Tuple = doctest.testfile(str("""..""" / directory / file ) , optionflags=doctest.ELLIPSIS ) self.assertIs(result.failed , 0 ) def lowercase__ ( self : Union[str, Any] ) -> Any: """simple docstring""" __snake_case : List[Any] = Path("""src/transformers""" ) __snake_case : List[Any] = """modeling""" __snake_case : Union[str, Any] = [ """modeling_ctrl.py""", """modeling_tf_ctrl.py""", ] self.analyze_directory(__magic_name__ , identifier=__magic_name__ , ignore_files=__magic_name__ ) def lowercase__ ( self : Union[str, Any] ) -> int: """simple docstring""" __snake_case : Union[str, Any] = Path("""src/transformers""" ) __snake_case : Any = """tokenization""" self.analyze_directory(__magic_name__ , identifier=__magic_name__ ) def lowercase__ ( self : Union[str, Any] ) -> int: """simple docstring""" __snake_case : List[Any] = Path("""src/transformers""" ) __snake_case : List[str] = """configuration""" self.analyze_directory(__magic_name__ , identifier=__magic_name__ ) def lowercase__ ( self : Dict ) -> Dict: """simple docstring""" __snake_case : Tuple = Path("""src/transformers""" ) __snake_case : int = ["""configuration""", """modeling""", """tokenization"""] self.analyze_directory(__magic_name__ , n_identifier=__magic_name__ ) def lowercase__ ( self : Optional[int] ) -> Union[str, Any]: """simple docstring""" __snake_case : int = Path("""docs/source""" ) __snake_case : Optional[int] = ["""favicon.ico"""] self.analyze_directory(__magic_name__ , ignore_files=__magic_name__ , only_modules=__magic_name__ )
26
1
'''simple docstring''' import math from enum import Enum from typing import Optional, Union from torch.optim import Optimizer from torch.optim.lr_scheduler import LambdaLR from .utils import logging __UpperCamelCase = logging.get_logger(__name__) class _A ( __lowercase ): lowercase__: List[Any] = '''linear''' lowercase__: Optional[int] = '''cosine''' lowercase__: Tuple = '''cosine_with_restarts''' lowercase__: str = '''polynomial''' lowercase__: Union[str, Any] = '''constant''' lowercase__: Dict = '''constant_with_warmup''' lowercase__: List[str] = '''piecewise_constant''' def _a ( _lowerCamelCase , _lowerCamelCase = -1 ) -> str: """simple docstring""" return LambdaLR(_lowerCamelCase , lambda _lowerCamelCase : 1 , last_epoch=_lowerCamelCase ) def _a ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase = -1 ) -> List[str]: """simple docstring""" def lr_lambda(_lowerCamelCase ): if current_step < num_warmup_steps: return float(_lowerCamelCase ) / float(max(1.0 , _lowerCamelCase ) ) return 1.0 return LambdaLR(_lowerCamelCase , _lowerCamelCase , last_epoch=_lowerCamelCase ) def _a ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase = -1 ) -> Optional[Any]: """simple docstring""" __snake_case : str = {} __snake_case : str = step_rules.split(""",""" ) for rule_str in rule_list[:-1]: __snake_case , __snake_case : str = rule_str.split(""":""" ) __snake_case : Optional[int] = int(_lowerCamelCase ) __snake_case : Tuple = float(_lowerCamelCase ) __snake_case : Optional[Any] = value __snake_case : Optional[Any] = float(rule_list[-1] ) def create_rules_function(_lowerCamelCase , _lowerCamelCase ): def rule_func(_lowerCamelCase ) -> float: __snake_case : str = sorted(rules_dict.keys() ) for i, sorted_step in enumerate(_lowerCamelCase ): if steps < sorted_step: return rules_dict[sorted_steps[i]] return last_lr_multiple return rule_func __snake_case : Any = create_rules_function(_lowerCamelCase , _lowerCamelCase ) return LambdaLR(_lowerCamelCase , _lowerCamelCase , last_epoch=_lowerCamelCase ) def _a ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase=-1 ) -> List[str]: """simple docstring""" def lr_lambda(_lowerCamelCase ): if current_step < num_warmup_steps: return float(_lowerCamelCase ) / float(max(1 , _lowerCamelCase ) ) return max( 0.0 , float(num_training_steps - current_step ) / float(max(1 , num_training_steps - num_warmup_steps ) ) ) return LambdaLR(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) def _a ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase = 0.5 , _lowerCamelCase = -1 ) -> List[str]: """simple docstring""" def lr_lambda(_lowerCamelCase ): if current_step < num_warmup_steps: return float(_lowerCamelCase ) / float(max(1 , _lowerCamelCase ) ) __snake_case : Optional[Any] = float(current_step - num_warmup_steps ) / float(max(1 , num_training_steps - num_warmup_steps ) ) return max(0.0 , 0.5 * (1.0 + math.cos(math.pi * float(_lowerCamelCase ) * 2.0 * progress )) ) return LambdaLR(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) def _a ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase = 1 , _lowerCamelCase = -1 ) -> str: """simple docstring""" def lr_lambda(_lowerCamelCase ): if current_step < num_warmup_steps: return float(_lowerCamelCase ) / float(max(1 , _lowerCamelCase ) ) __snake_case : str = float(current_step - num_warmup_steps ) / float(max(1 , num_training_steps - num_warmup_steps ) ) if progress >= 1.0: return 0.0 return max(0.0 , 0.5 * (1.0 + math.cos(math.pi * ((float(_lowerCamelCase ) * progress) % 1.0) )) ) return LambdaLR(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) def _a ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase=1E-7 , _lowerCamelCase=1.0 , _lowerCamelCase=-1 ) -> Any: """simple docstring""" __snake_case : int = optimizer.defaults["""lr"""] if not (lr_init > lr_end): raise ValueError(F'''lr_end ({lr_end}) must be be smaller than initial lr ({lr_init})''' ) def lr_lambda(_lowerCamelCase ): if current_step < num_warmup_steps: return float(_lowerCamelCase ) / float(max(1 , _lowerCamelCase ) ) elif current_step > num_training_steps: return lr_end / lr_init # as LambdaLR multiplies by lr_init else: __snake_case : Tuple = lr_init - lr_end __snake_case : str = num_training_steps - num_warmup_steps __snake_case : str = 1 - (current_step - num_warmup_steps) / decay_steps __snake_case : Union[str, Any] = lr_range * pct_remaining**power + lr_end return decay / lr_init # as LambdaLR multiplies by lr_init return LambdaLR(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) __UpperCamelCase = { SchedulerType.LINEAR: get_linear_schedule_with_warmup, SchedulerType.COSINE: get_cosine_schedule_with_warmup, SchedulerType.COSINE_WITH_RESTARTS: get_cosine_with_hard_restarts_schedule_with_warmup, SchedulerType.POLYNOMIAL: get_polynomial_decay_schedule_with_warmup, SchedulerType.CONSTANT: get_constant_schedule, SchedulerType.CONSTANT_WITH_WARMUP: get_constant_schedule_with_warmup, SchedulerType.PIECEWISE_CONSTANT: get_piecewise_constant_schedule, } def _a ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase = None , _lowerCamelCase = None , _lowerCamelCase = None , _lowerCamelCase = 1 , _lowerCamelCase = 1.0 , _lowerCamelCase = -1 , ) -> Optional[Any]: """simple docstring""" __snake_case : str = SchedulerType(_lowerCamelCase ) __snake_case : Any = TYPE_TO_SCHEDULER_FUNCTION[name] if name == SchedulerType.CONSTANT: return schedule_func(_lowerCamelCase , last_epoch=_lowerCamelCase ) if name == SchedulerType.PIECEWISE_CONSTANT: return schedule_func(_lowerCamelCase , step_rules=_lowerCamelCase , last_epoch=_lowerCamelCase ) # All other schedulers require `num_warmup_steps` if num_warmup_steps is None: raise ValueError(F'''{name} requires `num_warmup_steps`, please provide that argument.''' ) if name == SchedulerType.CONSTANT_WITH_WARMUP: return schedule_func(_lowerCamelCase , num_warmup_steps=_lowerCamelCase , last_epoch=_lowerCamelCase ) # All other schedulers require `num_training_steps` if num_training_steps is None: raise ValueError(F'''{name} requires `num_training_steps`, please provide that argument.''' ) if name == SchedulerType.COSINE_WITH_RESTARTS: return schedule_func( _lowerCamelCase , num_warmup_steps=_lowerCamelCase , num_training_steps=_lowerCamelCase , num_cycles=_lowerCamelCase , last_epoch=_lowerCamelCase , ) if name == SchedulerType.POLYNOMIAL: return schedule_func( _lowerCamelCase , num_warmup_steps=_lowerCamelCase , num_training_steps=_lowerCamelCase , power=_lowerCamelCase , last_epoch=_lowerCamelCase , ) return schedule_func( _lowerCamelCase , num_warmup_steps=_lowerCamelCase , num_training_steps=_lowerCamelCase , last_epoch=_lowerCamelCase )
26
'''simple docstring''' import inspect from typing import Callable, List, Optional, Union import torch from transformers import ( CLIPImageProcessor, CLIPTextModel, CLIPTokenizer, WhisperForConditionalGeneration, WhisperProcessor, ) from diffusers import ( AutoencoderKL, DDIMScheduler, DiffusionPipeline, LMSDiscreteScheduler, PNDMScheduler, UNetaDConditionModel, ) from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion import StableDiffusionPipelineOutput from diffusers.pipelines.stable_diffusion.safety_checker import StableDiffusionSafetyChecker from diffusers.utils import logging __UpperCamelCase = logging.get_logger(__name__) # pylint: disable=invalid-name class _A ( __lowercase ): def __init__( self : str , __magic_name__ : WhisperForConditionalGeneration , __magic_name__ : WhisperProcessor , __magic_name__ : AutoencoderKL , __magic_name__ : CLIPTextModel , __magic_name__ : CLIPTokenizer , __magic_name__ : UNetaDConditionModel , __magic_name__ : Union[DDIMScheduler, PNDMScheduler, LMSDiscreteScheduler] , __magic_name__ : StableDiffusionSafetyChecker , __magic_name__ : CLIPImageProcessor , ) -> Union[str, Any]: """simple docstring""" super().__init__() if safety_checker is None: logger.warning( f'''You have disabled the safety checker for {self.__class__} by passing `safety_checker=None`. Ensure''' """ that you abide to the conditions of the Stable Diffusion license and do not expose unfiltered""" """ results in services or applications open to the public. Both the diffusers team and Hugging Face""" """ strongly recommend to keep the safety filter enabled in all public facing circumstances, disabling""" """ it only for use-cases that involve analyzing network behavior or auditing its results. For more""" """ information, please have a look at https://github.com/huggingface/diffusers/pull/254 .""" ) self.register_modules( speech_model=__magic_name__ , speech_processor=__magic_name__ , vae=__magic_name__ , text_encoder=__magic_name__ , tokenizer=__magic_name__ , unet=__magic_name__ , scheduler=__magic_name__ , feature_extractor=__magic_name__ , ) def lowercase__ ( self : Optional[Any] , __magic_name__ : Optional[Union[str, int]] = "auto" ) -> Union[str, Any]: """simple docstring""" if slice_size == "auto": __snake_case : str = self.unet.config.attention_head_dim // 2 self.unet.set_attention_slice(__magic_name__ ) def lowercase__ ( self : str ) -> Any: """simple docstring""" self.enable_attention_slicing(__magic_name__ ) @torch.no_grad() def __call__( self : Optional[int] , __magic_name__ : str , __magic_name__ : Dict=1_60_00 , __magic_name__ : int = 5_12 , __magic_name__ : int = 5_12 , __magic_name__ : int = 50 , __magic_name__ : float = 7.5 , __magic_name__ : Optional[Union[str, List[str]]] = None , __magic_name__ : Optional[int] = 1 , __magic_name__ : float = 0.0 , __magic_name__ : Optional[torch.Generator] = None , __magic_name__ : Optional[torch.FloatTensor] = None , __magic_name__ : Optional[str] = "pil" , __magic_name__ : bool = True , __magic_name__ : Optional[Callable[[int, int, torch.FloatTensor], None]] = None , __magic_name__ : int = 1 , **__magic_name__ : List[str] , ) -> int: """simple docstring""" __snake_case : List[Any] = self.speech_processor.feature_extractor( __magic_name__ , return_tensors="""pt""" , sampling_rate=__magic_name__ ).input_features.to(self.device ) __snake_case : List[str] = self.speech_model.generate(__magic_name__ , max_length=48_00_00 ) __snake_case : List[Any] = self.speech_processor.tokenizer.batch_decode(__magic_name__ , skip_special_tokens=__magic_name__ , normalize=__magic_name__ )[ 0 ] if isinstance(__magic_name__ , __magic_name__ ): __snake_case : Tuple = 1 elif isinstance(__magic_name__ , __magic_name__ ): __snake_case : Optional[int] = len(__magic_name__ ) else: raise ValueError(f'''`prompt` has to be of type `str` or `list` but is {type(__magic_name__ )}''' ) if height % 8 != 0 or width % 8 != 0: raise ValueError(f'''`height` and `width` have to be divisible by 8 but are {height} and {width}.''' ) if (callback_steps is None) or ( callback_steps is not None and (not isinstance(__magic_name__ , __magic_name__ ) or callback_steps <= 0) ): raise ValueError( f'''`callback_steps` has to be a positive integer but is {callback_steps} of type''' f''' {type(__magic_name__ )}.''' ) # get prompt text embeddings __snake_case : Dict = self.tokenizer( __magic_name__ , padding="""max_length""" , max_length=self.tokenizer.model_max_length , return_tensors="""pt""" , ) __snake_case : Optional[Any] = text_inputs.input_ids if text_input_ids.shape[-1] > self.tokenizer.model_max_length: __snake_case : Tuple = self.tokenizer.batch_decode(text_input_ids[:, self.tokenizer.model_max_length :] ) logger.warning( """The following part of your input was truncated because CLIP can only handle sequences up to""" f''' {self.tokenizer.model_max_length} tokens: {removed_text}''' ) __snake_case : Any = text_input_ids[:, : self.tokenizer.model_max_length] __snake_case : int = self.text_encoder(text_input_ids.to(self.device ) )[0] # duplicate text embeddings for each generation per prompt, using mps friendly method __snake_case , __snake_case , __snake_case : Any = text_embeddings.shape __snake_case : List[Any] = text_embeddings.repeat(1 , __magic_name__ , 1 ) __snake_case : Dict = text_embeddings.view(bs_embed * num_images_per_prompt , __magic_name__ , -1 ) # here `guidance_scale` is defined analog to the guidance weight `w` of equation (2) # of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1` # corresponds to doing no classifier free guidance. __snake_case : Optional[int] = guidance_scale > 1.0 # get unconditional embeddings for classifier free guidance if do_classifier_free_guidance: __snake_case : List[str] if negative_prompt is None: __snake_case : Optional[Any] = [""""""] * batch_size elif type(__magic_name__ ) is not type(__magic_name__ ): raise TypeError( f'''`negative_prompt` should be the same type to `prompt`, but got {type(__magic_name__ )} !=''' f''' {type(__magic_name__ )}.''' ) elif isinstance(__magic_name__ , __magic_name__ ): __snake_case : Dict = [negative_prompt] elif batch_size != len(__magic_name__ ): raise ValueError( f'''`negative_prompt`: {negative_prompt} has batch size {len(__magic_name__ )}, but `prompt`:''' f''' {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches''' """ the batch size of `prompt`.""" ) else: __snake_case : int = negative_prompt __snake_case : List[str] = text_input_ids.shape[-1] __snake_case : Any = self.tokenizer( __magic_name__ , padding="""max_length""" , max_length=__magic_name__ , truncation=__magic_name__ , return_tensors="""pt""" , ) __snake_case : Dict = self.text_encoder(uncond_input.input_ids.to(self.device ) )[0] # duplicate unconditional embeddings for each generation per prompt, using mps friendly method __snake_case : Optional[int] = uncond_embeddings.shape[1] __snake_case : Union[str, Any] = uncond_embeddings.repeat(1 , __magic_name__ , 1 ) __snake_case : Tuple = uncond_embeddings.view(batch_size * num_images_per_prompt , __magic_name__ , -1 ) # For classifier free guidance, we need to do two forward passes. # Here we concatenate the unconditional and text embeddings into a single batch # to avoid doing two forward passes __snake_case : Dict = torch.cat([uncond_embeddings, text_embeddings] ) # get the initial random noise unless the user supplied it # Unlike in other pipelines, latents need to be generated in the target device # for 1-to-1 results reproducibility with the CompVis implementation. # However this currently doesn't work in `mps`. __snake_case : List[Any] = (batch_size * num_images_per_prompt, self.unet.config.in_channels, height // 8, width // 8) __snake_case : List[Any] = text_embeddings.dtype if latents is None: if self.device.type == "mps": # randn does not exist on mps __snake_case : Optional[int] = torch.randn(__magic_name__ , generator=__magic_name__ , device="""cpu""" , dtype=__magic_name__ ).to( self.device ) else: __snake_case : int = torch.randn(__magic_name__ , generator=__magic_name__ , device=self.device , dtype=__magic_name__ ) else: if latents.shape != latents_shape: raise ValueError(f'''Unexpected latents shape, got {latents.shape}, expected {latents_shape}''' ) __snake_case : List[str] = latents.to(self.device ) # set timesteps self.scheduler.set_timesteps(__magic_name__ ) # Some schedulers like PNDM have timesteps as arrays # It's more optimized to move all timesteps to correct device beforehand __snake_case : Optional[int] = self.scheduler.timesteps.to(self.device ) # scale the initial noise by the standard deviation required by the scheduler __snake_case : str = latents * self.scheduler.init_noise_sigma # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature # eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers. # eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502 # and should be between [0, 1] __snake_case : Tuple = """eta""" in set(inspect.signature(self.scheduler.step ).parameters.keys() ) __snake_case : List[str] = {} if accepts_eta: __snake_case : str = eta for i, t in enumerate(self.progress_bar(__magic_name__ ) ): # expand the latents if we are doing classifier free guidance __snake_case : Union[str, Any] = torch.cat([latents] * 2 ) if do_classifier_free_guidance else latents __snake_case : Dict = self.scheduler.scale_model_input(__magic_name__ , __magic_name__ ) # predict the noise residual __snake_case : Tuple = self.unet(__magic_name__ , __magic_name__ , encoder_hidden_states=__magic_name__ ).sample # perform guidance if do_classifier_free_guidance: __snake_case , __snake_case : str = noise_pred.chunk(2 ) __snake_case : Any = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) # compute the previous noisy sample x_t -> x_t-1 __snake_case : Optional[Any] = self.scheduler.step(__magic_name__ , __magic_name__ , __magic_name__ , **__magic_name__ ).prev_sample # call the callback, if provided if callback is not None and i % callback_steps == 0: callback(__magic_name__ , __magic_name__ , __magic_name__ ) __snake_case : int = 1 / 0.18215 * latents __snake_case : Optional[Any] = self.vae.decode(__magic_name__ ).sample __snake_case : Any = (image / 2 + 0.5).clamp(0 , 1 ) # we always cast to float32 as this does not cause significant overhead and is compatible with bfloat16 __snake_case : Any = image.cpu().permute(0 , 2 , 3 , 1 ).float().numpy() if output_type == "pil": __snake_case : Tuple = self.numpy_to_pil(__magic_name__ ) if not return_dict: return image return StableDiffusionPipelineOutput(images=__magic_name__ , nsfw_content_detected=__magic_name__ )
26
1
'''simple docstring''' def _a ( _lowerCamelCase , _lowerCamelCase ) -> list[str]: """simple docstring""" return [sentence[i : i + ngram_size] for i in range(len(_lowerCamelCase ) - ngram_size + 1 )] if __name__ == "__main__": from doctest import testmod testmod()
26
'''simple docstring''' import os from huggingface_hub.constants import HUGGINGFACE_HUB_CACHE, hf_cache_home __UpperCamelCase = HUGGINGFACE_HUB_CACHE __UpperCamelCase = "config.json" __UpperCamelCase = "diffusion_pytorch_model.bin" __UpperCamelCase = "diffusion_flax_model.msgpack" __UpperCamelCase = "model.onnx" __UpperCamelCase = "diffusion_pytorch_model.safetensors" __UpperCamelCase = "weights.pb" __UpperCamelCase = "https://huggingface.co" __UpperCamelCase = default_cache_path __UpperCamelCase = "diffusers_modules" __UpperCamelCase = os.getenv("HF_MODULES_CACHE", os.path.join(hf_cache_home, "modules")) __UpperCamelCase = ["fp16", "non-ema"] __UpperCamelCase = ".self_attn"
26
1
'''simple docstring''' import datasets import faiss import numpy as np import streamlit as st import torch from elasticsearch import Elasticsearch from elia_utils import ( embed_questions_for_retrieval, make_qa_sas_model, qa_sas_generate, query_es_index, query_qa_dense_index, ) import transformers from transformers import AutoModel, AutoModelForSeqaSeqLM, AutoTokenizer __UpperCamelCase = "bart" __UpperCamelCase = True @st.cache(allow_output_mutation=_lowerCamelCase ) def _a ( ) -> Union[str, Any]: """simple docstring""" if LOAD_DENSE_INDEX: __snake_case : int = AutoTokenizer.from_pretrained("""yjernite/retribert-base-uncased""" ) __snake_case : Tuple = AutoModel.from_pretrained("""yjernite/retribert-base-uncased""" ).to("""cuda:0""" ) __snake_case : List[Any] = qar_model.eval() else: __snake_case , __snake_case : Optional[Any] = (None, None) if MODEL_TYPE == "bart": __snake_case : List[str] = AutoTokenizer.from_pretrained("""yjernite/bart_eli5""" ) __snake_case : Any = AutoModelForSeqaSeqLM.from_pretrained("""yjernite/bart_eli5""" ).to("""cuda:0""" ) __snake_case : int = torch.load("""seq2seq_models/eli5_bart_model_blm_2.pth""" ) sas_model.load_state_dict(save_dict["""model"""] ) __snake_case : int = sas_model.eval() else: __snake_case , __snake_case : Dict = make_qa_sas_model( model_name="""t5-small""" , from_file="""seq2seq_models/eli5_t5_model_1024_4.pth""" , device="""cuda:0""" ) return (qar_tokenizer, qar_model, sas_tokenizer, sas_model) @st.cache(allow_output_mutation=_lowerCamelCase ) def _a ( ) -> Tuple: """simple docstring""" if LOAD_DENSE_INDEX: __snake_case : Tuple = faiss.StandardGpuResources() __snake_case : Optional[Any] = datasets.load_dataset(path="""wiki_snippets""" , name="""wiki40b_en_100_0""" )["""train"""] __snake_case : str = np.memmap( """wiki40b_passages_reps_32_l-8_h-768_b-512-512.dat""" , dtype="""float32""" , mode="""r""" , shape=(wikiaab_passages.num_rows, 128) , ) __snake_case : Optional[int] = faiss.IndexFlatIP(128 ) __snake_case : Any = faiss.index_cpu_to_gpu(_lowerCamelCase , 1 , _lowerCamelCase ) wikiaab_gpu_index_flat.add(_lowerCamelCase ) # TODO fix for larger GPU else: __snake_case , __snake_case : Tuple = (None, None) __snake_case : List[str] = Elasticsearch([{"""host""": """localhost""", """port""": """9200"""}] ) return (wikiaab_passages, wikiaab_gpu_index_flat, es_client) @st.cache(allow_output_mutation=_lowerCamelCase ) def _a ( ) -> List[Any]: """simple docstring""" __snake_case : Tuple = datasets.load_dataset("""eli5""" , name="""LFQA_reddit""" ) __snake_case : Dict = elia["""train_eli5"""] __snake_case : int = np.memmap( """eli5_questions_reps.dat""" , dtype="""float32""" , mode="""r""" , shape=(elia_train.num_rows, 128) ) __snake_case : Dict = faiss.IndexFlatIP(128 ) eli5_train_q_index.add(_lowerCamelCase ) return (elia_train, eli5_train_q_index) __UpperCamelCase , __UpperCamelCase , __UpperCamelCase = load_indexes() __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase = load_models() __UpperCamelCase , __UpperCamelCase = load_train_data() def _a ( _lowerCamelCase , _lowerCamelCase=10 ) -> int: """simple docstring""" __snake_case : Optional[int] = embed_questions_for_retrieval([question] , _lowerCamelCase , _lowerCamelCase ) __snake_case , __snake_case : Tuple = eli5_train_q_index.search(_lowerCamelCase , _lowerCamelCase ) __snake_case : Tuple = [elia_train[int(_lowerCamelCase )] for i in I[0]] return nn_examples def _a ( _lowerCamelCase , _lowerCamelCase="wiki40b" , _lowerCamelCase="dense" , _lowerCamelCase=10 ) -> Optional[Any]: """simple docstring""" if source == "none": __snake_case , __snake_case : Dict = (""" <P> """.join(["""""" for _ in range(11 )] ).strip(), []) else: if method == "dense": __snake_case , __snake_case : Dict = query_qa_dense_index( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) else: __snake_case , __snake_case : str = query_es_index( _lowerCamelCase , _lowerCamelCase , index_name="""english_wiki40b_snippets_100w""" , n_results=_lowerCamelCase , ) __snake_case : Optional[int] = [ (res["""article_title"""], res["""section_title"""].strip(), res["""score"""], res["""passage_text"""]) for res in hit_lst ] __snake_case : Optional[Any] = """question: {} context: {}""".format(_lowerCamelCase , _lowerCamelCase ) return question_doc, support_list @st.cache( hash_funcs={ torch.Tensor: (lambda _lowerCamelCase : None), transformers.models.bart.tokenization_bart.BartTokenizer: (lambda _lowerCamelCase : None), } ) def _a ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase=64 , _lowerCamelCase=256 , _lowerCamelCase=False , _lowerCamelCase=2 , _lowerCamelCase=0.95 , _lowerCamelCase=0.8 ) -> List[str]: """simple docstring""" with torch.no_grad(): __snake_case : Union[str, Any] = qa_sas_generate( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , num_answers=1 , num_beams=_lowerCamelCase , min_len=_lowerCamelCase , max_len=_lowerCamelCase , do_sample=_lowerCamelCase , temp=_lowerCamelCase , top_p=_lowerCamelCase , top_k=_lowerCamelCase , max_input_length=1024 , device="""cuda:0""" , )[0] return (answer, support_list) st.title("Long Form Question Answering with ELI5") # Start sidebar __UpperCamelCase = "<img src='https://huggingface.co/front/assets/huggingface_logo.svg'>" __UpperCamelCase = "\n<html>\n <head>\n <style>\n .img-container {\n padding-left: 90px;\n padding-right: 90px;\n padding-top: 50px;\n padding-bottom: 50px;\n background-color: #f0f3f9;\n }\n </style>\n </head>\n <body>\n <span class=\"img-container\"> <!-- Inline parent element -->\n %s\n </span>\n </body>\n</html>\n" % ( header_html, ) st.sidebar.markdown( header_full, unsafe_allow_html=True, ) # Long Form QA with ELI5 and Wikipedia __UpperCamelCase = "\nThis demo presents a model trained to [provide long-form answers to open-domain questions](https://yjernite.github.io/lfqa.html).\nFirst, a document retriever fetches a set of relevant Wikipedia passages given the question from the [Wiki40b](https://research.google/pubs/pub49029/) dataset,\na pre-processed fixed snapshot of Wikipedia.\n" st.sidebar.markdown(description, unsafe_allow_html=True) __UpperCamelCase = [ "Answer the question", "View the retrieved document only", "View the most similar ELI5 question and answer", "Show me everything, please!", ] __UpperCamelCase = st.sidebar.checkbox("Demo options") if demo_options: __UpperCamelCase = st.sidebar.selectbox( "", action_list, index=3, ) __UpperCamelCase = action_list.index(action_st) __UpperCamelCase = st.sidebar.selectbox( "", ["Show full text of passages", "Show passage section titles"], index=0, ) __UpperCamelCase = show_type == "Show full text of passages" else: __UpperCamelCase = 3 __UpperCamelCase = True __UpperCamelCase = st.sidebar.checkbox("Retrieval options") if retrieval_options: __UpperCamelCase = "\n ### Information retriever options\n\n The **sparse** retriever uses ElasticSearch, while the **dense** retriever uses max-inner-product search between a question and passage embedding\n trained using the [ELI5](https://arxiv.org/abs/1907.09190) questions-answer pairs.\n The answer is then generated by sequence to sequence model which takes the question and retrieved document as input.\n " st.sidebar.markdown(retriever_info) __UpperCamelCase = st.sidebar.selectbox("Which Wikipedia format should the model use?", ["wiki40b", "none"]) __UpperCamelCase = st.sidebar.selectbox("Which Wikipedia indexer should the model use?", ["dense", "sparse", "mixed"]) else: __UpperCamelCase = "wiki40b" __UpperCamelCase = "dense" __UpperCamelCase = "beam" __UpperCamelCase = 2 __UpperCamelCase = 64 __UpperCamelCase = 256 __UpperCamelCase = None __UpperCamelCase = None __UpperCamelCase = st.sidebar.checkbox("Generation options") if generate_options: __UpperCamelCase = "\n ### Answer generation options\n\n The sequence-to-sequence model was initialized with [BART](https://huggingface.co/facebook/bart-large)\n weights and fine-tuned on the ELI5 QA pairs and retrieved documents. You can use the model for greedy decoding with\n **beam** search, or **sample** from the decoder's output probabilities.\n " st.sidebar.markdown(generate_info) __UpperCamelCase = st.sidebar.selectbox("Would you like to use beam search or sample an answer?", ["beam", "sampled"]) __UpperCamelCase = st.sidebar.slider( "Minimum generation length", min_value=8, max_value=256, value=64, step=8, format=None, key=None ) __UpperCamelCase = st.sidebar.slider( "Maximum generation length", min_value=64, max_value=512, value=256, step=16, format=None, key=None ) if sampled == "beam": __UpperCamelCase = st.sidebar.slider("Beam size", min_value=1, max_value=8, value=2, step=None, format=None, key=None) else: __UpperCamelCase = st.sidebar.slider( "Nucleus sampling p", min_value=0.1, max_value=1.0, value=0.95, step=0.01, format=None, key=None ) __UpperCamelCase = st.sidebar.slider( "Temperature", min_value=0.1, max_value=1.0, value=0.7, step=0.01, format=None, key=None ) __UpperCamelCase = None # start main text __UpperCamelCase = [ "<MY QUESTION>", "How do people make chocolate?", "Why do we get a fever when we are sick?", "How can different animals perceive different colors?", "What is natural language processing?", "What's the best way to treat a sunburn?", "What exactly are vitamins ?", "How does nuclear energy provide electricity?", "What's the difference between viruses and bacteria?", "Why are flutes classified as woodwinds when most of them are made out of metal ?", "Why do people like drinking coffee even though it tastes so bad?", "What happens when wine ages? How does it make the wine taste better?", "If an animal is an herbivore, where does it get the protein that it needs to survive if it only eats grass?", "How can we set a date to the beginning or end of an artistic period? Doesn't the change happen gradually?", "How does New Zealand have so many large bird predators?", ] __UpperCamelCase = st.selectbox( "What would you like to ask? ---- select <MY QUESTION> to enter a new query", questions_list, index=1, ) if question_s == "<MY QUESTION>": __UpperCamelCase = st.text_input("Enter your question here:", "") else: __UpperCamelCase = question_s if st.button("Show me!"): if action in [0, 1, 3]: if index_type == "mixed": __UpperCamelCase , __UpperCamelCase = make_support(question, source=wiki_source, method="dense", n_results=10) __UpperCamelCase , __UpperCamelCase = make_support(question, source=wiki_source, method="sparse", n_results=10) __UpperCamelCase = [] for res_d, res_s in zip(support_list_dense, support_list_sparse): if tuple(res_d) not in support_list: support_list += [tuple(res_d)] if tuple(res_s) not in support_list: support_list += [tuple(res_s)] __UpperCamelCase = support_list[:10] __UpperCamelCase = "<P> " + " <P> ".join([res[-1] for res in support_list]) else: __UpperCamelCase , __UpperCamelCase = make_support(question, source=wiki_source, method=index_type, n_results=10) if action in [0, 3]: __UpperCamelCase , __UpperCamelCase = answer_question( question_doc, sas_model, sas_tokenizer, min_len=min_len, max_len=int(max_len), sampling=(sampled == "sampled"), n_beams=n_beams, top_p=top_p, temp=temp, ) st.markdown("### The model generated answer is:") st.write(answer) if action in [0, 1, 3] and wiki_source != "none": st.markdown("--- \n ### The model is drawing information from the following Wikipedia passages:") for i, res in enumerate(support_list): __UpperCamelCase = "https://en.wikipedia.org/wiki/{}".format(res[0].replace(" ", "_")) __UpperCamelCase = res[1].strip() if sec_titles == "": __UpperCamelCase = "[{}]({})".format(res[0], wiki_url) else: __UpperCamelCase = sec_titles.split(" & ") __UpperCamelCase = " & ".join( ["[{}]({}#{})".format(sec.strip(), wiki_url, sec.strip().replace(" ", "_")) for sec in sec_list] ) st.markdown( "{0:02d} - **Article**: {1:<18} <br> _Section_: {2}".format(i + 1, res[0], sections), unsafe_allow_html=True, ) if show_passages: st.write( "> <span style=\"font-family:arial; font-size:10pt;\">" + res[-1] + "</span>", unsafe_allow_html=True ) if action in [2, 3]: __UpperCamelCase = find_nearest_training(question) __UpperCamelCase = nn_train_list[0] st.markdown( "--- \n ### The most similar question in the ELI5 training set was: \n\n {}".format(train_exple["title"]) ) __UpperCamelCase = [ "{}. {}".format(i + 1, " \n".join([line.strip() for line in ans.split("\n") if line.strip() != ""])) for i, (ans, sc) in enumerate(zip(train_exple["answers"]["text"], train_exple["answers"]["score"])) if i == 0 or sc > 2 ] st.markdown("##### Its answers were: \n\n {}".format("\n".join(answers_st))) __UpperCamelCase = "\n---\n\n**Disclaimer**\n\n*The intent of this app is to provide some (hopefully entertaining) insights into the behavior of a current LFQA system.\nEvaluating biases of such a model and ensuring factual generations are still very much open research problems.\nTherefore, until some significant progress is achieved, we caution against using the generated answers for practical purposes.*\n" st.sidebar.markdown(disclaimer, unsafe_allow_html=True)
26
'''simple docstring''' import argparse import json import re from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ( MobileNetVaConfig, MobileNetVaForImageClassification, MobileNetVaImageProcessor, load_tf_weights_in_mobilenet_va, ) from transformers.utils import logging logging.set_verbosity_info() __UpperCamelCase = logging.get_logger(__name__) def _a ( _lowerCamelCase ) -> Any: """simple docstring""" __snake_case : Union[str, Any] = MobileNetVaConfig(layer_norm_eps=0.0_01 ) if "_quant" in model_name: raise ValueError("""Quantized models are not supported.""" ) __snake_case : List[Any] = re.match(R"""^mobilenet_v1_([^_]*)_([^_]*)$""" , _lowerCamelCase ) if matches: __snake_case : Optional[Any] = float(matches[1] ) __snake_case : Union[str, Any] = int(matches[2] ) # The TensorFlow version of MobileNetV1 predicts 1001 classes instead of # the usual 1000. The first class (index 0) is "background". __snake_case : Tuple = 1001 __snake_case : Any = """imagenet-1k-id2label.json""" __snake_case : Optional[Any] = """huggingface/label-files""" __snake_case : List[Any] = json.load(open(hf_hub_download(_lowerCamelCase , _lowerCamelCase , repo_type="""dataset""" ) , """r""" ) ) __snake_case : Dict = {int(_lowerCamelCase ) + 1: v for k, v in idalabel.items()} __snake_case : List[str] = """background""" __snake_case : List[str] = idalabel __snake_case : List[Any] = {v: k for k, v in idalabel.items()} return config def _a ( ) -> Optional[Any]: """simple docstring""" __snake_case : Optional[int] = """http://images.cocodataset.org/val2017/000000039769.jpg""" __snake_case : List[Any] = Image.open(requests.get(_lowerCamelCase , stream=_lowerCamelCase ).raw ) return im @torch.no_grad() def _a ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase=False ) -> Optional[Any]: """simple docstring""" __snake_case : Optional[int] = get_mobilenet_va_config(_lowerCamelCase ) # Load 🤗 model __snake_case : Optional[Any] = MobileNetVaForImageClassification(_lowerCamelCase ).eval() # Load weights from TensorFlow checkpoint load_tf_weights_in_mobilenet_va(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) # Check outputs on an image, prepared by MobileNetV1ImageProcessor __snake_case : Optional[int] = MobileNetVaImageProcessor( crop_size={"""width""": config.image_size, """height""": config.image_size} , size={"""shortest_edge""": config.image_size + 32} , ) __snake_case : Tuple = image_processor(images=prepare_img() , return_tensors="""pt""" ) __snake_case : Optional[Any] = model(**_lowerCamelCase ) __snake_case : List[Any] = outputs.logits assert logits.shape == (1, 1001) if model_name == "mobilenet_v1_1.0_224": __snake_case : str = torch.tensor([-4.17_39, -1.12_33, 3.12_05] ) elif model_name == "mobilenet_v1_0.75_192": __snake_case : Tuple = torch.tensor([-3.94_40, -2.31_41, -0.33_33] ) else: __snake_case : List[Any] = None if expected_logits is not None: assert torch.allclose(logits[0, :3] , _lowerCamelCase , atol=1E-4 ) Path(_lowerCamelCase ).mkdir(exist_ok=_lowerCamelCase ) print(F'''Saving model {model_name} to {pytorch_dump_folder_path}''' ) model.save_pretrained(_lowerCamelCase ) print(F'''Saving image processor to {pytorch_dump_folder_path}''' ) image_processor.save_pretrained(_lowerCamelCase ) if push_to_hub: print("""Pushing to the hub...""" ) __snake_case : Optional[Any] = """google/""" + model_name image_processor.push_to_hub(_lowerCamelCase ) model.push_to_hub(_lowerCamelCase ) if __name__ == "__main__": __UpperCamelCase = argparse.ArgumentParser() # Required parameters parser.add_argument( "--model_name", default="mobilenet_v1_1.0_224", type=str, help="Name of the MobileNetV1 model you'd like to convert. Should in the form 'mobilenet_v1_<depth>_<size>'.", ) parser.add_argument( "--checkpoint_path", required=True, type=str, help="Path to the original TensorFlow checkpoint (.ckpt file)." ) parser.add_argument( "--pytorch_dump_folder_path", required=True, type=str, help="Path to the output PyTorch model directory." ) parser.add_argument( "--push_to_hub", action="store_true", help="Whether or not to push the converted model to the 🤗 hub." ) __UpperCamelCase = parser.parse_args() convert_movilevit_checkpoint( args.model_name, args.checkpoint_path, args.pytorch_dump_folder_path, args.push_to_hub )
26
1
'''simple docstring''' import os from argparse import ArgumentParser, Namespace from ..data import SingleSentenceClassificationProcessor as Processor from ..pipelines import TextClassificationPipeline from ..utils import is_tf_available, is_torch_available, logging from . import BaseTransformersCLICommand if not is_tf_available() and not is_torch_available(): raise RuntimeError("At least one of PyTorch or TensorFlow 2.0+ should be installed to use CLI training") # TF training parameters __UpperCamelCase = False __UpperCamelCase = False def _a ( _lowerCamelCase ) -> str: """simple docstring""" return TrainCommand(_lowerCamelCase ) class _A ( __lowercase ): @staticmethod def lowercase__ ( __magic_name__ : ArgumentParser ) -> Tuple: """simple docstring""" __snake_case : Tuple = parser.add_parser("""train""" , help="""CLI tool to train a model on a task.""" ) train_parser.add_argument( """--train_data""" , type=__magic_name__ , required=__magic_name__ , help="""path to train (and optionally evaluation) dataset as a csv with tab separated labels and sentences.""" , ) train_parser.add_argument( """--column_label""" , type=__magic_name__ , default=0 , help="""Column of the dataset csv file with example labels.""" ) train_parser.add_argument( """--column_text""" , type=__magic_name__ , default=1 , help="""Column of the dataset csv file with example texts.""" ) train_parser.add_argument( """--column_id""" , type=__magic_name__ , default=2 , help="""Column of the dataset csv file with example ids.""" ) train_parser.add_argument( """--skip_first_row""" , action="""store_true""" , help="""Skip the first row of the csv file (headers).""" ) train_parser.add_argument("""--validation_data""" , type=__magic_name__ , default="""""" , help="""path to validation dataset.""" ) train_parser.add_argument( """--validation_split""" , type=__magic_name__ , default=0.1 , help="""if validation dataset is not provided, fraction of train dataset to use as validation dataset.""" , ) train_parser.add_argument("""--output""" , type=__magic_name__ , default="""./""" , help="""path to saved the trained model.""" ) train_parser.add_argument( """--task""" , type=__magic_name__ , default="""text_classification""" , help="""Task to train the model on.""" ) train_parser.add_argument( """--model""" , type=__magic_name__ , default="""bert-base-uncased""" , help="""Model's name or path to stored model.""" ) train_parser.add_argument("""--train_batch_size""" , type=__magic_name__ , default=32 , help="""Batch size for training.""" ) train_parser.add_argument("""--valid_batch_size""" , type=__magic_name__ , default=64 , help="""Batch size for validation.""" ) train_parser.add_argument("""--learning_rate""" , type=__magic_name__ , default=3E-5 , help="""Learning rate.""" ) train_parser.add_argument("""--adam_epsilon""" , type=__magic_name__ , default=1E-08 , help="""Epsilon for Adam optimizer.""" ) train_parser.set_defaults(func=__magic_name__ ) def __init__( self : Dict , __magic_name__ : Namespace ) -> List[Any]: """simple docstring""" __snake_case : List[str] = logging.get_logger("""transformers-cli/training""" ) __snake_case : Dict = """tf""" if is_tf_available() else """torch""" os.makedirs(args.output , exist_ok=__magic_name__ ) __snake_case : int = args.output __snake_case : Optional[int] = args.column_label __snake_case : List[str] = args.column_text __snake_case : Union[str, Any] = args.column_id self.logger.info(f'''Loading {args.task} pipeline for {args.model}''' ) if args.task == "text_classification": __snake_case : List[Any] = TextClassificationPipeline.from_pretrained(args.model ) elif args.task == "token_classification": raise NotImplementedError elif args.task == "question_answering": raise NotImplementedError self.logger.info(f'''Loading dataset from {args.train_data}''' ) __snake_case : Optional[int] = Processor.create_from_csv( args.train_data , column_label=args.column_label , column_text=args.column_text , column_id=args.column_id , skip_first_row=args.skip_first_row , ) __snake_case : Optional[int] = None if args.validation_data: self.logger.info(f'''Loading validation dataset from {args.validation_data}''' ) __snake_case : List[str] = Processor.create_from_csv( args.validation_data , column_label=args.column_label , column_text=args.column_text , column_id=args.column_id , skip_first_row=args.skip_first_row , ) __snake_case : int = args.validation_split __snake_case : Tuple = args.train_batch_size __snake_case : List[str] = args.valid_batch_size __snake_case : int = args.learning_rate __snake_case : Any = args.adam_epsilon def lowercase__ ( self : Dict ) -> Tuple: """simple docstring""" if self.framework == "tf": return self.run_tf() return self.run_torch() def lowercase__ ( self : List[str] ) -> Union[str, Any]: """simple docstring""" raise NotImplementedError def lowercase__ ( self : str ) -> str: """simple docstring""" self.pipeline.fit( self.train_dataset , validation_data=self.valid_dataset , validation_split=self.validation_split , learning_rate=self.learning_rate , adam_epsilon=self.adam_epsilon , train_batch_size=self.train_batch_size , valid_batch_size=self.valid_batch_size , ) # Save trained pipeline self.pipeline.save_pretrained(self.output )
26
'''simple docstring''' from sklearn.metrics import recall_score import datasets __UpperCamelCase = "\nRecall is the fraction of the positive examples that were correctly labeled by the model as positive. It can be computed with the equation:\nRecall = TP / (TP + FN)\nWhere TP is the true positives and FN is the false negatives.\n" __UpperCamelCase = "\nArgs:\n- **predictions** (`list` of `int`): The predicted labels.\n- **references** (`list` of `int`): The ground truth labels.\n- **labels** (`list` of `int`): The set of labels to include when `average` is not set to `binary`, and their order when average is `None`. Labels present in the data can be excluded in this input, for example to calculate a multiclass average ignoring a majority negative class, while labels not present in the data will result in 0 components in a macro average. For multilabel targets, labels are column indices. By default, all labels in y_true and y_pred are used in sorted order. Defaults to None.\n- **pos_label** (`int`): The class label to use as the 'positive class' when calculating the recall. Defaults to `1`.\n- **average** (`string`): This parameter is required for multiclass/multilabel targets. If None, the scores for each class are returned. Otherwise, this determines the type of averaging performed on the data. Defaults to `'binary'`.\n - `'binary'`: Only report results for the class specified by `pos_label`. This is applicable only if the target labels and predictions are binary.\n - `'micro'`: Calculate metrics globally by counting the total true positives, false negatives, and false positives.\n - `'macro'`: Calculate metrics for each label, and find their unweighted mean. This does not take label imbalance into account.\n - `'weighted'`: Calculate metrics for each label, and find their average weighted by support (the number of true instances for each label). This alters `'macro'` to account for label imbalance. Note that it can result in an F-score that is not between precision and recall.\n - `'samples'`: Calculate metrics for each instance, and find their average (only meaningful for multilabel classification).\n- **sample_weight** (`list` of `float`): Sample weights Defaults to `None`.\n- **zero_division** (): Sets the value to return when there is a zero division. Defaults to .\n - `'warn'`: If there is a zero division, the return value is `0`, but warnings are also raised.\n - `0`: If there is a zero division, the return value is `0`.\n - `1`: If there is a zero division, the return value is `1`.\n\nReturns:\n- **recall** (`float`, or `array` of `float`): Either the general recall score, or the recall scores for individual classes, depending on the values input to `labels` and `average`. Minimum possible value is 0. Maximum possible value is 1. A higher recall means that more of the positive examples have been labeled correctly. Therefore, a higher recall is generally considered better.\n\nExamples:\n\n Example 1-A simple example with some errors\n >>> recall_metric = datasets.load_metric('recall')\n >>> results = recall_metric.compute(references=[0, 0, 1, 1, 1], predictions=[0, 1, 0, 1, 1])\n >>> print(results)\n {'recall': 0.6666666666666666}\n\n Example 2-The same example as Example 1, but with `pos_label=0` instead of the default `pos_label=1`.\n >>> recall_metric = datasets.load_metric('recall')\n >>> results = recall_metric.compute(references=[0, 0, 1, 1, 1], predictions=[0, 1, 0, 1, 1], pos_label=0)\n >>> print(results)\n {'recall': 0.5}\n\n Example 3-The same example as Example 1, but with `sample_weight` included.\n >>> recall_metric = datasets.load_metric('recall')\n >>> sample_weight = [0.9, 0.2, 0.9, 0.3, 0.8]\n >>> results = recall_metric.compute(references=[0, 0, 1, 1, 1], predictions=[0, 1, 0, 1, 1], sample_weight=sample_weight)\n >>> print(results)\n {'recall': 0.55}\n\n Example 4-A multiclass example, using different averages.\n >>> recall_metric = datasets.load_metric('recall')\n >>> predictions = [0, 2, 1, 0, 0, 1]\n >>> references = [0, 1, 2, 0, 1, 2]\n >>> results = recall_metric.compute(predictions=predictions, references=references, average='macro')\n >>> print(results)\n {'recall': 0.3333333333333333}\n >>> results = recall_metric.compute(predictions=predictions, references=references, average='micro')\n >>> print(results)\n {'recall': 0.3333333333333333}\n >>> results = recall_metric.compute(predictions=predictions, references=references, average='weighted')\n >>> print(results)\n {'recall': 0.3333333333333333}\n >>> results = recall_metric.compute(predictions=predictions, references=references, average=None)\n >>> print(results)\n {'recall': array([1., 0., 0.])}\n" __UpperCamelCase = "\n@article{scikit-learn, title={Scikit-learn: Machine Learning in {P}ython}, author={Pedregosa, F. and Varoquaux, G. and Gramfort, A. and Michel, V. and Thirion, B. and Grisel, O. and Blondel, M. and Prettenhofer, P. and Weiss, R. and Dubourg, V. and Vanderplas, J. and Passos, A. and Cournapeau, D. and Brucher, M. and Perrot, M. and Duchesnay, E.}, journal={Journal of Machine Learning Research}, volume={12}, pages={2825--2830}, year={2011}\n" @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class _A ( datasets.Metric ): def lowercase__ ( self : Optional[int] ) -> Any: """simple docstring""" return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { """predictions""": datasets.Sequence(datasets.Value("""int32""" ) ), """references""": datasets.Sequence(datasets.Value("""int32""" ) ), } if self.config_name == """multilabel""" else { """predictions""": datasets.Value("""int32""" ), """references""": datasets.Value("""int32""" ), } ) , reference_urls=["""https://scikit-learn.org/stable/modules/generated/sklearn.metrics.recall_score.html"""] , ) def lowercase__ ( self : Tuple , __magic_name__ : int , __magic_name__ : Union[str, Any] , __magic_name__ : Any=None , __magic_name__ : Optional[Any]=1 , __magic_name__ : List[str]="binary" , __magic_name__ : Tuple=None , __magic_name__ : Dict="warn" , ) -> Any: """simple docstring""" __snake_case : Tuple = recall_score( __magic_name__ , __magic_name__ , labels=__magic_name__ , pos_label=__magic_name__ , average=__magic_name__ , sample_weight=__magic_name__ , zero_division=__magic_name__ , ) return {"recall": float(__magic_name__ ) if score.size == 1 else score}
26
1
'''simple docstring''' import argparse import json import re from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ( MobileNetVaConfig, MobileNetVaForImageClassification, MobileNetVaImageProcessor, load_tf_weights_in_mobilenet_va, ) from transformers.utils import logging logging.set_verbosity_info() __UpperCamelCase = logging.get_logger(__name__) def _a ( _lowerCamelCase ) -> Any: """simple docstring""" __snake_case : Union[str, Any] = MobileNetVaConfig(layer_norm_eps=0.0_01 ) if "_quant" in model_name: raise ValueError("""Quantized models are not supported.""" ) __snake_case : List[Any] = re.match(R"""^mobilenet_v1_([^_]*)_([^_]*)$""" , _lowerCamelCase ) if matches: __snake_case : Optional[Any] = float(matches[1] ) __snake_case : Union[str, Any] = int(matches[2] ) # The TensorFlow version of MobileNetV1 predicts 1001 classes instead of # the usual 1000. The first class (index 0) is "background". __snake_case : Tuple = 1001 __snake_case : Any = """imagenet-1k-id2label.json""" __snake_case : Optional[Any] = """huggingface/label-files""" __snake_case : List[Any] = json.load(open(hf_hub_download(_lowerCamelCase , _lowerCamelCase , repo_type="""dataset""" ) , """r""" ) ) __snake_case : Dict = {int(_lowerCamelCase ) + 1: v for k, v in idalabel.items()} __snake_case : List[str] = """background""" __snake_case : List[str] = idalabel __snake_case : List[Any] = {v: k for k, v in idalabel.items()} return config def _a ( ) -> Optional[Any]: """simple docstring""" __snake_case : Optional[int] = """http://images.cocodataset.org/val2017/000000039769.jpg""" __snake_case : List[Any] = Image.open(requests.get(_lowerCamelCase , stream=_lowerCamelCase ).raw ) return im @torch.no_grad() def _a ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase=False ) -> Optional[Any]: """simple docstring""" __snake_case : Optional[int] = get_mobilenet_va_config(_lowerCamelCase ) # Load 🤗 model __snake_case : Optional[Any] = MobileNetVaForImageClassification(_lowerCamelCase ).eval() # Load weights from TensorFlow checkpoint load_tf_weights_in_mobilenet_va(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) # Check outputs on an image, prepared by MobileNetV1ImageProcessor __snake_case : Optional[int] = MobileNetVaImageProcessor( crop_size={"""width""": config.image_size, """height""": config.image_size} , size={"""shortest_edge""": config.image_size + 32} , ) __snake_case : Tuple = image_processor(images=prepare_img() , return_tensors="""pt""" ) __snake_case : Optional[Any] = model(**_lowerCamelCase ) __snake_case : List[Any] = outputs.logits assert logits.shape == (1, 1001) if model_name == "mobilenet_v1_1.0_224": __snake_case : str = torch.tensor([-4.17_39, -1.12_33, 3.12_05] ) elif model_name == "mobilenet_v1_0.75_192": __snake_case : Tuple = torch.tensor([-3.94_40, -2.31_41, -0.33_33] ) else: __snake_case : List[Any] = None if expected_logits is not None: assert torch.allclose(logits[0, :3] , _lowerCamelCase , atol=1E-4 ) Path(_lowerCamelCase ).mkdir(exist_ok=_lowerCamelCase ) print(F'''Saving model {model_name} to {pytorch_dump_folder_path}''' ) model.save_pretrained(_lowerCamelCase ) print(F'''Saving image processor to {pytorch_dump_folder_path}''' ) image_processor.save_pretrained(_lowerCamelCase ) if push_to_hub: print("""Pushing to the hub...""" ) __snake_case : Optional[Any] = """google/""" + model_name image_processor.push_to_hub(_lowerCamelCase ) model.push_to_hub(_lowerCamelCase ) if __name__ == "__main__": __UpperCamelCase = argparse.ArgumentParser() # Required parameters parser.add_argument( "--model_name", default="mobilenet_v1_1.0_224", type=str, help="Name of the MobileNetV1 model you'd like to convert. Should in the form 'mobilenet_v1_<depth>_<size>'.", ) parser.add_argument( "--checkpoint_path", required=True, type=str, help="Path to the original TensorFlow checkpoint (.ckpt file)." ) parser.add_argument( "--pytorch_dump_folder_path", required=True, type=str, help="Path to the output PyTorch model directory." ) parser.add_argument( "--push_to_hub", action="store_true", help="Whether or not to push the converted model to the 🤗 hub." ) __UpperCamelCase = parser.parse_args() convert_movilevit_checkpoint( args.model_name, args.checkpoint_path, args.pytorch_dump_folder_path, args.push_to_hub )
26
'''simple docstring''' from sklearn.metrics import matthews_corrcoef import datasets __UpperCamelCase = "\nCompute the Matthews correlation coefficient (MCC)\n\nThe Matthews correlation coefficient is used in machine learning as a\nmeasure of the quality of binary and multiclass classifications. It takes\ninto account true and false positives and negatives and is generally\nregarded as a balanced measure which can be used even if the classes are of\nvery different sizes. The MCC is in essence a correlation coefficient value\nbetween -1 and +1. A coefficient of +1 represents a perfect prediction, 0\nan average random prediction and -1 an inverse prediction. The statistic\nis also known as the phi coefficient. [source: Wikipedia]\n" __UpperCamelCase = "\nArgs:\n predictions (list of int): Predicted labels, as returned by a model.\n references (list of int): Ground truth labels.\n sample_weight (list of int, float, or bool): Sample weights. Defaults to `None`.\nReturns:\n matthews_correlation (dict containing float): Matthews correlation.\nExamples:\n Example 1, a basic example with only predictions and references as inputs:\n >>> matthews_metric = datasets.load_metric(\"matthews_correlation\")\n >>> results = matthews_metric.compute(references=[1, 3, 2, 0, 3, 2],\n ... predictions=[1, 2, 2, 0, 3, 3])\n >>> print(round(results['matthews_correlation'], 2))\n 0.54\n\n Example 2, the same example as above, but also including sample weights:\n >>> matthews_metric = datasets.load_metric(\"matthews_correlation\")\n >>> results = matthews_metric.compute(references=[1, 3, 2, 0, 3, 2],\n ... predictions=[1, 2, 2, 0, 3, 3],\n ... sample_weight=[0.5, 3, 1, 1, 1, 2])\n >>> print(round(results['matthews_correlation'], 2))\n 0.1\n\n Example 3, the same example as above, but with sample weights that cause a negative correlation:\n >>> matthews_metric = datasets.load_metric(\"matthews_correlation\")\n >>> results = matthews_metric.compute(references=[1, 3, 2, 0, 3, 2],\n ... predictions=[1, 2, 2, 0, 3, 3],\n ... sample_weight=[0.5, 1, 0, 0, 0, 1])\n >>> print(round(results['matthews_correlation'], 2))\n -0.25\n" __UpperCamelCase = "\\n@article{scikit-learn,\n title={Scikit-learn: Machine Learning in {P}ython},\n author={Pedregosa, F. and Varoquaux, G. and Gramfort, A. and Michel, V.\n and Thirion, B. and Grisel, O. and Blondel, M. and Prettenhofer, P.\n and Weiss, R. and Dubourg, V. and Vanderplas, J. and Passos, A. and\n Cournapeau, D. and Brucher, M. and Perrot, M. and Duchesnay, E.},\n journal={Journal of Machine Learning Research},\n volume={12},\n pages={2825--2830},\n year={2011}\n}\n" @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class _A ( datasets.Metric ): def lowercase__ ( self : Tuple ) -> Dict: """simple docstring""" return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { """predictions""": datasets.Value("""int32""" ), """references""": datasets.Value("""int32""" ), } ) , reference_urls=[ """https://scikit-learn.org/stable/modules/generated/sklearn.metrics.matthews_corrcoef.html""" ] , ) def lowercase__ ( self : List[Any] , __magic_name__ : Tuple , __magic_name__ : List[Any] , __magic_name__ : Union[str, Any]=None ) -> Optional[int]: """simple docstring""" return { "matthews_correlation": float(matthews_corrcoef(__magic_name__ , __magic_name__ , sample_weight=__magic_name__ ) ), }
26
1
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_speech_available, is_tf_available, is_torch_available, ) __UpperCamelCase = { "configuration_speech_to_text": ["SPEECH_TO_TEXT_PRETRAINED_CONFIG_ARCHIVE_MAP", "Speech2TextConfig"], "processing_speech_to_text": ["Speech2TextProcessor"], } try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCamelCase = ["Speech2TextTokenizer"] try: if not is_speech_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCamelCase = ["Speech2TextFeatureExtractor"] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCamelCase = [ "TF_SPEECH_TO_TEXT_PRETRAINED_MODEL_ARCHIVE_LIST", "TFSpeech2TextForConditionalGeneration", "TFSpeech2TextModel", "TFSpeech2TextPreTrainedModel", ] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCamelCase = [ "SPEECH_TO_TEXT_PRETRAINED_MODEL_ARCHIVE_LIST", "Speech2TextForConditionalGeneration", "Speech2TextModel", "Speech2TextPreTrainedModel", ] if TYPE_CHECKING: from .configuration_speech_to_text import SPEECH_TO_TEXT_PRETRAINED_CONFIG_ARCHIVE_MAP, SpeechaTextConfig from .processing_speech_to_text import SpeechaTextProcessor try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_speech_to_text import SpeechaTextTokenizer try: if not is_speech_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_speech_to_text import SpeechaTextFeatureExtractor try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_speech_to_text import ( TF_SPEECH_TO_TEXT_PRETRAINED_MODEL_ARCHIVE_LIST, TFSpeechaTextForConditionalGeneration, TFSpeechaTextModel, TFSpeechaTextPreTrainedModel, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_speech_to_text import ( SPEECH_TO_TEXT_PRETRAINED_MODEL_ARCHIVE_LIST, SpeechaTextForConditionalGeneration, SpeechaTextModel, SpeechaTextPreTrainedModel, ) else: import sys __UpperCamelCase = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
26
'''simple docstring''' import json import os from pathlib import Path import pytest from datasets.download.download_config import DownloadConfig from datasets.download.download_manager import DownloadManager from datasets.utils.file_utils import hash_url_to_filename __UpperCamelCase = "http://www.mocksite.com/file1.txt" __UpperCamelCase = "\"text\": [\"foo\", \"foo\"]" __UpperCamelCase = "6d8ce9aa78a471c7477201efbeabd3bb01ac2e7d100a6dc024ba1608361f90a8" class _A : lowercase__: str = 200 lowercase__: List[str] = {'''Content-Length''': '''100'''} lowercase__: Union[str, Any] = {} def lowercase__ ( self : Any , **__magic_name__ : List[Any] ) -> Dict: """simple docstring""" return [bytes(__magic_name__ , """utf-8""" )] def _a ( *_lowerCamelCase , **_lowerCamelCase ) -> List[str]: """simple docstring""" return MockResponse() @pytest.mark.parametrize("""urls_type""" , [str, list, dict] ) def _a ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> List[str]: """simple docstring""" import requests monkeypatch.setattr(_lowerCamelCase , """request""" , _lowerCamelCase ) __snake_case : Union[str, Any] = URL if issubclass(_lowerCamelCase , _lowerCamelCase ): __snake_case : str = url elif issubclass(_lowerCamelCase , _lowerCamelCase ): __snake_case : Dict = [url] elif issubclass(_lowerCamelCase , _lowerCamelCase ): __snake_case : Union[str, Any] = {"""train""": url} __snake_case : Dict = """dummy""" __snake_case : List[str] = """downloads""" __snake_case : List[Any] = tmp_path __snake_case : List[Any] = DownloadConfig( cache_dir=os.path.join(_lowerCamelCase , _lowerCamelCase ) , use_etag=_lowerCamelCase , ) __snake_case : List[str] = DownloadManager(dataset_name=_lowerCamelCase , download_config=_lowerCamelCase ) __snake_case : int = dl_manager.download(_lowerCamelCase ) __snake_case : Tuple = urls for downloaded_paths in [downloaded_paths]: if isinstance(_lowerCamelCase , _lowerCamelCase ): __snake_case : Any = [downloaded_paths] __snake_case : List[Any] = [urls] elif isinstance(_lowerCamelCase , _lowerCamelCase ): assert "train" in downloaded_paths.keys() __snake_case : Tuple = downloaded_paths.values() __snake_case : Optional[int] = urls.values() assert downloaded_paths for downloaded_path, input_url in zip(_lowerCamelCase , _lowerCamelCase ): assert downloaded_path == dl_manager.downloaded_paths[input_url] __snake_case : List[str] = Path(_lowerCamelCase ) __snake_case : Any = downloaded_path.parts assert parts[-1] == HASH assert parts[-2] == cache_subdir assert downloaded_path.exists() __snake_case : Union[str, Any] = downloaded_path.read_text() assert content == CONTENT __snake_case : List[str] = downloaded_path.with_suffix(""".json""" ) assert metadata_downloaded_path.exists() __snake_case : Union[str, Any] = json.loads(metadata_downloaded_path.read_text() ) assert metadata_content == {"url": URL, "etag": None} @pytest.mark.parametrize("""paths_type""" , [str, list, dict] ) def _a ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> List[Any]: """simple docstring""" __snake_case : Any = str(_lowerCamelCase ) if issubclass(_lowerCamelCase , _lowerCamelCase ): __snake_case : Optional[int] = filename elif issubclass(_lowerCamelCase , _lowerCamelCase ): __snake_case : Tuple = [filename] elif issubclass(_lowerCamelCase , _lowerCamelCase ): __snake_case : Dict = {"""train""": filename} __snake_case : Optional[Any] = """dummy""" __snake_case : List[Any] = xz_file.parent __snake_case : int = """extracted""" __snake_case : Dict = DownloadConfig( cache_dir=_lowerCamelCase , use_etag=_lowerCamelCase , ) __snake_case : List[str] = DownloadManager(dataset_name=_lowerCamelCase , download_config=_lowerCamelCase ) __snake_case : Optional[Any] = dl_manager.extract(_lowerCamelCase ) __snake_case : Union[str, Any] = paths for extracted_paths in [extracted_paths]: if isinstance(_lowerCamelCase , _lowerCamelCase ): __snake_case : Dict = [extracted_paths] __snake_case : int = [paths] elif isinstance(_lowerCamelCase , _lowerCamelCase ): assert "train" in extracted_paths.keys() __snake_case : int = extracted_paths.values() __snake_case : int = paths.values() assert extracted_paths for extracted_path, input_path in zip(_lowerCamelCase , _lowerCamelCase ): assert extracted_path == dl_manager.extracted_paths[input_path] __snake_case : Any = Path(_lowerCamelCase ) __snake_case : str = extracted_path.parts assert parts[-1] == hash_url_to_filename(_lowerCamelCase , etag=_lowerCamelCase ) assert parts[-2] == extracted_subdir assert extracted_path.exists() __snake_case : Optional[int] = extracted_path.read_text() __snake_case : str = text_file.read_text() assert extracted_file_content == expected_file_content def _a ( _lowerCamelCase , _lowerCamelCase ) -> Optional[int]: """simple docstring""" assert path.endswith(""".jsonl""" ) for num_items, line in enumerate(_lowerCamelCase , start=1 ): __snake_case : Tuple = json.loads(line.decode("""utf-8""" ) ) assert item.keys() == {"col_1", "col_2", "col_3"} assert num_items == 4 @pytest.mark.parametrize("""archive_jsonl""" , ["""tar_jsonl_path""", """zip_jsonl_path"""] ) def _a ( _lowerCamelCase , _lowerCamelCase ) -> Optional[int]: """simple docstring""" __snake_case : Any = request.getfixturevalue(_lowerCamelCase ) __snake_case : str = DownloadManager() for num_jsonl, (path, file) in enumerate(dl_manager.iter_archive(_lowerCamelCase ) , start=1 ): _test_jsonl(_lowerCamelCase , _lowerCamelCase ) assert num_jsonl == 2 @pytest.mark.parametrize("""archive_nested_jsonl""" , ["""tar_nested_jsonl_path""", """zip_nested_jsonl_path"""] ) def _a ( _lowerCamelCase , _lowerCamelCase ) -> List[str]: """simple docstring""" __snake_case : int = request.getfixturevalue(_lowerCamelCase ) __snake_case : List[str] = DownloadManager() for num_tar, (path, file) in enumerate(dl_manager.iter_archive(_lowerCamelCase ) , start=1 ): for num_jsonl, (subpath, subfile) in enumerate(dl_manager.iter_archive(_lowerCamelCase ) , start=1 ): _test_jsonl(_lowerCamelCase , _lowerCamelCase ) assert num_tar == 1 assert num_jsonl == 2 def _a ( _lowerCamelCase ) -> Any: """simple docstring""" __snake_case : List[str] = DownloadManager() for num_file, file in enumerate(dl_manager.iter_files(_lowerCamelCase ) , start=1 ): assert os.path.basename(_lowerCamelCase ) == ("test.txt" if num_file == 1 else "train.txt") assert num_file == 2
26
1
'''simple docstring''' from collections import OrderedDict from typing import TYPE_CHECKING, Any, List, Mapping, Optional from packaging import version if TYPE_CHECKING: from ... import PreTrainedTokenizer, TensorType from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfigWithPast, PatchingSpec from ...utils import is_torch_available, logging __UpperCamelCase = logging.get_logger(__name__) __UpperCamelCase = { "bigscience/bloom": "https://huggingface.co/bigscience/bloom/resolve/main/config.json", "bigscience/bloom-560m": "https://huggingface.co/bigscience/bloom-560m/blob/main/config.json", "bigscience/bloom-1b1": "https://huggingface.co/bigscience/bloom-1b1/blob/main/config.json", "bigscience/bloom-1b7": "https://huggingface.co/bigscience/bloom-1b7/blob/main/config.json", "bigscience/bloom-3b": "https://huggingface.co/bigscience/bloom-3b/blob/main/config.json", "bigscience/bloom-7b1": "https://huggingface.co/bigscience/bloom-7b1/blob/main/config.json", } class _A ( __lowercase ): lowercase__: Any = '''bloom''' lowercase__: List[str] = ['''past_key_values'''] lowercase__: Any = { '''num_hidden_layers''': '''n_layer''', '''num_attention_heads''': '''n_head''', } def __init__( self : str , __magic_name__ : str=25_08_80 , __magic_name__ : Optional[Any]=64 , __magic_name__ : Dict=2 , __magic_name__ : Optional[int]=8 , __magic_name__ : Optional[int]=1E-5 , __magic_name__ : Optional[int]=0.02 , __magic_name__ : Union[str, Any]=True , __magic_name__ : int=1 , __magic_name__ : int=2 , __magic_name__ : List[str]=False , __magic_name__ : str=0.0 , __magic_name__ : List[Any]=0.0 , __magic_name__ : List[Any]=1 , __magic_name__ : Any=False , **__magic_name__ : List[Any] , ) -> List[str]: """simple docstring""" __snake_case : List[Any] = vocab_size # Backward compatibility with n_embed kwarg __snake_case : List[str] = kwargs.pop("""n_embed""" , __magic_name__ ) __snake_case : Union[str, Any] = hidden_size if n_embed is None else n_embed __snake_case : Union[str, Any] = n_layer __snake_case : Dict = n_head __snake_case : Dict = layer_norm_epsilon __snake_case : int = initializer_range __snake_case : Optional[int] = use_cache __snake_case : List[str] = pretraining_tp __snake_case : int = apply_residual_connection_post_layernorm __snake_case : str = hidden_dropout __snake_case : Tuple = attention_dropout __snake_case : int = bos_token_id __snake_case : Any = eos_token_id __snake_case : Union[str, Any] = slow_but_exact super().__init__(bos_token_id=__magic_name__ , eos_token_id=__magic_name__ , **__magic_name__ ) class _A ( __lowercase ): lowercase__: Optional[int] = version.parse('''1.12''' ) def __init__( self : Optional[int] , __magic_name__ : PretrainedConfig , __magic_name__ : str = "default" , __magic_name__ : List[PatchingSpec] = None , __magic_name__ : bool = False , ) -> Optional[int]: """simple docstring""" super().__init__(__magic_name__ , task=__magic_name__ , patching_specs=__magic_name__ , use_past=__magic_name__ ) if not getattr(self._config , """pad_token_id""" , __magic_name__ ): # TODO: how to do that better? __snake_case : str = 0 @property def lowercase__ ( self : Tuple ) -> Mapping[str, Mapping[int, str]]: """simple docstring""" __snake_case : Dict = OrderedDict({"""input_ids""": {0: """batch""", 1: """sequence"""}} ) if self.use_past: # BLOOM stores values on dynamic axis 2. For more details see: https://github.com/huggingface/transformers/pull/18344 self.fill_with_past_key_values_(__magic_name__ , direction="""inputs""" , inverted_values_shape=__magic_name__ ) __snake_case : List[Any] = {0: """batch""", 1: """past_sequence + sequence"""} else: __snake_case : Any = {0: """batch""", 1: """sequence"""} return common_inputs @property def lowercase__ ( self : Optional[Any] ) -> int: """simple docstring""" return self._config.n_layer @property def lowercase__ ( self : Optional[Any] ) -> int: """simple docstring""" return self._config.n_head @property def lowercase__ ( self : Optional[int] ) -> float: """simple docstring""" return 1E-3 def lowercase__ ( self : List[Any] , __magic_name__ : "PreTrainedTokenizer" , __magic_name__ : int = -1 , __magic_name__ : int = -1 , __magic_name__ : bool = False , __magic_name__ : Optional["TensorType"] = None , ) -> Mapping[str, Any]: """simple docstring""" __snake_case : int = super(__magic_name__ , self ).generate_dummy_inputs( __magic_name__ , batch_size=__magic_name__ , seq_length=__magic_name__ , is_pair=__magic_name__ , framework=__magic_name__ ) # We need to order the input in the way they appears in the forward() __snake_case : Optional[Any] = OrderedDict({"""input_ids""": common_inputs["""input_ids"""]} ) # Need to add the past_keys if self.use_past: if not is_torch_available(): raise ValueError("""Cannot generate dummy past_keys inputs without PyTorch installed.""" ) else: import torch __snake_case , __snake_case : str = common_inputs["""input_ids"""].shape # Not using the same length for past_key_values __snake_case : Tuple = seqlen + 2 __snake_case : List[str] = self._config.hidden_size // self.num_attention_heads __snake_case : Any = ( batch * self.num_attention_heads, head_dim, past_key_values_length, ) __snake_case : Optional[Any] = ( batch * self.num_attention_heads, past_key_values_length, head_dim, ) __snake_case : Dict = [ (torch.zeros(__magic_name__ ), torch.zeros(__magic_name__ )) for _ in range(self.num_layers ) ] __snake_case : Union[str, Any] = common_inputs["""attention_mask"""] if self.use_past: __snake_case : Any = ordered_inputs["""attention_mask"""].dtype __snake_case : int = torch.cat( [ordered_inputs["""attention_mask"""], torch.ones(__magic_name__ , __magic_name__ , dtype=__magic_name__ )] , dim=1 ) return ordered_inputs @property def lowercase__ ( self : List[Any] ) -> int: """simple docstring""" return 13
26
'''simple docstring''' def _a ( _lowerCamelCase = 100 ) -> int: """simple docstring""" __snake_case : Any = n * (n + 1) * (2 * n + 1) / 6 __snake_case : List[Any] = (n * (n + 1) / 2) ** 2 return int(square_of_sum - sum_of_squares ) if __name__ == "__main__": print(f"""{solution() = }""")
26
1
'''simple docstring''' import json import os import sys import tempfile import unittest from pathlib import Path from shutil import copyfile from huggingface_hub import HfFolder, Repository, create_repo, delete_repo from requests.exceptions import HTTPError import transformers from transformers import ( CONFIG_MAPPING, FEATURE_EXTRACTOR_MAPPING, PROCESSOR_MAPPING, TOKENIZER_MAPPING, AutoConfig, AutoFeatureExtractor, AutoProcessor, AutoTokenizer, BertTokenizer, ProcessorMixin, WavaVecaConfig, WavaVecaFeatureExtractor, WavaVecaProcessor, ) from transformers.testing_utils import TOKEN, USER, get_tests_dir, is_staging_test from transformers.tokenization_utils import TOKENIZER_CONFIG_FILE from transformers.utils import FEATURE_EXTRACTOR_NAME, is_tokenizers_available sys.path.append(str(Path(__file__).parent.parent.parent.parent / "utils")) from test_module.custom_configuration import CustomConfig # noqa E402 from test_module.custom_feature_extraction import CustomFeatureExtractor # noqa E402 from test_module.custom_processing import CustomProcessor # noqa E402 from test_module.custom_tokenization import CustomTokenizer # noqa E402 __UpperCamelCase = get_tests_dir("fixtures/dummy_feature_extractor_config.json") __UpperCamelCase = get_tests_dir("fixtures/vocab.json") __UpperCamelCase = get_tests_dir("fixtures") class _A ( unittest.TestCase ): lowercase__: str = ['''[UNK]''', '''[CLS]''', '''[SEP]''', '''[PAD]''', '''[MASK]''', '''bla''', '''blou'''] def lowercase__ ( self : List[Any] ) -> Union[str, Any]: """simple docstring""" __snake_case : Optional[int] = 0 def lowercase__ ( self : Optional[int] ) -> Optional[int]: """simple docstring""" __snake_case : int = AutoProcessor.from_pretrained("""facebook/wav2vec2-base-960h""" ) self.assertIsInstance(__magic_name__ , __magic_name__ ) def lowercase__ ( self : str ) -> Union[str, Any]: """simple docstring""" with tempfile.TemporaryDirectory() as tmpdirname: __snake_case : List[Any] = WavaVecaConfig() __snake_case : List[Any] = AutoProcessor.from_pretrained("""facebook/wav2vec2-base-960h""" ) # save in new folder model_config.save_pretrained(__magic_name__ ) processor.save_pretrained(__magic_name__ ) __snake_case : Optional[int] = AutoProcessor.from_pretrained(__magic_name__ ) self.assertIsInstance(__magic_name__ , __magic_name__ ) def lowercase__ ( self : List[str] ) -> Dict: """simple docstring""" with tempfile.TemporaryDirectory() as tmpdirname: # copy relevant files copyfile(__magic_name__ , os.path.join(__magic_name__ , __magic_name__ ) ) copyfile(__magic_name__ , os.path.join(__magic_name__ , """vocab.json""" ) ) __snake_case : Optional[Any] = AutoProcessor.from_pretrained(__magic_name__ ) self.assertIsInstance(__magic_name__ , __magic_name__ ) def lowercase__ ( self : Dict ) -> Union[str, Any]: """simple docstring""" with tempfile.TemporaryDirectory() as tmpdirname: __snake_case : Any = WavaVecaFeatureExtractor() __snake_case : List[Any] = AutoTokenizer.from_pretrained("""facebook/wav2vec2-base-960h""" ) __snake_case : Union[str, Any] = WavaVecaProcessor(__magic_name__ , __magic_name__ ) # save in new folder processor.save_pretrained(__magic_name__ ) # drop `processor_class` in tokenizer with open(os.path.join(__magic_name__ , __magic_name__ ) , """r""" ) as f: __snake_case : Optional[Any] = json.load(__magic_name__ ) config_dict.pop("""processor_class""" ) with open(os.path.join(__magic_name__ , __magic_name__ ) , """w""" ) as f: f.write(json.dumps(__magic_name__ ) ) __snake_case : List[str] = AutoProcessor.from_pretrained(__magic_name__ ) self.assertIsInstance(__magic_name__ , __magic_name__ ) def lowercase__ ( self : Union[str, Any] ) -> List[str]: """simple docstring""" with tempfile.TemporaryDirectory() as tmpdirname: __snake_case : Optional[int] = WavaVecaFeatureExtractor() __snake_case : List[Any] = AutoTokenizer.from_pretrained("""facebook/wav2vec2-base-960h""" ) __snake_case : Optional[Any] = WavaVecaProcessor(__magic_name__ , __magic_name__ ) # save in new folder processor.save_pretrained(__magic_name__ ) # drop `processor_class` in feature extractor with open(os.path.join(__magic_name__ , __magic_name__ ) , """r""" ) as f: __snake_case : str = json.load(__magic_name__ ) config_dict.pop("""processor_class""" ) with open(os.path.join(__magic_name__ , __magic_name__ ) , """w""" ) as f: f.write(json.dumps(__magic_name__ ) ) __snake_case : Union[str, Any] = AutoProcessor.from_pretrained(__magic_name__ ) self.assertIsInstance(__magic_name__ , __magic_name__ ) def lowercase__ ( self : str ) -> List[Any]: """simple docstring""" with tempfile.TemporaryDirectory() as tmpdirname: __snake_case : List[Any] = WavaVecaConfig(processor_class="""Wav2Vec2Processor""" ) model_config.save_pretrained(__magic_name__ ) # copy relevant files copyfile(__magic_name__ , os.path.join(__magic_name__ , """vocab.json""" ) ) # create emtpy sample processor with open(os.path.join(__magic_name__ , __magic_name__ ) , """w""" ) as f: f.write("""{}""" ) __snake_case : int = AutoProcessor.from_pretrained(__magic_name__ ) self.assertIsInstance(__magic_name__ , __magic_name__ ) def lowercase__ ( self : Dict ) -> List[str]: """simple docstring""" with self.assertRaises(__magic_name__ ): __snake_case : List[Any] = AutoProcessor.from_pretrained("""hf-internal-testing/test_dynamic_processor""" ) # If remote code is disabled, we can't load this config. with self.assertRaises(__magic_name__ ): __snake_case : Union[str, Any] = AutoProcessor.from_pretrained( """hf-internal-testing/test_dynamic_processor""" , trust_remote_code=__magic_name__ ) __snake_case : List[Any] = AutoProcessor.from_pretrained("""hf-internal-testing/test_dynamic_processor""" , trust_remote_code=__magic_name__ ) self.assertTrue(processor.special_attribute_present ) self.assertEqual(processor.__class__.__name__ , """NewProcessor""" ) __snake_case : Tuple = processor.feature_extractor self.assertTrue(feature_extractor.special_attribute_present ) self.assertEqual(feature_extractor.__class__.__name__ , """NewFeatureExtractor""" ) __snake_case : Any = processor.tokenizer self.assertTrue(tokenizer.special_attribute_present ) if is_tokenizers_available(): self.assertEqual(tokenizer.__class__.__name__ , """NewTokenizerFast""" ) # Test we can also load the slow version __snake_case : List[str] = AutoProcessor.from_pretrained( """hf-internal-testing/test_dynamic_processor""" , trust_remote_code=__magic_name__ , use_fast=__magic_name__ ) __snake_case : Optional[int] = new_processor.tokenizer self.assertTrue(new_tokenizer.special_attribute_present ) self.assertEqual(new_tokenizer.__class__.__name__ , """NewTokenizer""" ) else: self.assertEqual(tokenizer.__class__.__name__ , """NewTokenizer""" ) def lowercase__ ( self : List[str] ) -> str: """simple docstring""" try: AutoConfig.register("""custom""" , __magic_name__ ) AutoFeatureExtractor.register(__magic_name__ , __magic_name__ ) AutoTokenizer.register(__magic_name__ , slow_tokenizer_class=__magic_name__ ) AutoProcessor.register(__magic_name__ , __magic_name__ ) # Trying to register something existing in the Transformers library will raise an error with self.assertRaises(__magic_name__ ): AutoProcessor.register(__magic_name__ , __magic_name__ ) # Now that the config is registered, it can be used as any other config with the auto-API __snake_case : Union[str, Any] = CustomFeatureExtractor.from_pretrained(__magic_name__ ) with tempfile.TemporaryDirectory() as tmp_dir: __snake_case : str = os.path.join(__magic_name__ , """vocab.txt""" ) with open(__magic_name__ , """w""" , encoding="""utf-8""" ) as vocab_writer: vocab_writer.write("""""".join([x + """\n""" for x in self.vocab_tokens] ) ) __snake_case : int = CustomTokenizer(__magic_name__ ) __snake_case : str = CustomProcessor(__magic_name__ , __magic_name__ ) with tempfile.TemporaryDirectory() as tmp_dir: processor.save_pretrained(__magic_name__ ) __snake_case : Dict = AutoProcessor.from_pretrained(__magic_name__ ) self.assertIsInstance(__magic_name__ , __magic_name__ ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in FEATURE_EXTRACTOR_MAPPING._extra_content: del FEATURE_EXTRACTOR_MAPPING._extra_content[CustomConfig] if CustomConfig in TOKENIZER_MAPPING._extra_content: del TOKENIZER_MAPPING._extra_content[CustomConfig] if CustomConfig in PROCESSOR_MAPPING._extra_content: del PROCESSOR_MAPPING._extra_content[CustomConfig] def lowercase__ ( self : Any ) -> List[Any]: """simple docstring""" class _A ( __lowercase ): lowercase__: Optional[Any] = False class _A ( __lowercase ): lowercase__: int = False class _A ( __lowercase ): lowercase__: List[Any] = '''AutoFeatureExtractor''' lowercase__: Tuple = '''AutoTokenizer''' lowercase__: Union[str, Any] = False try: AutoConfig.register("""custom""" , __magic_name__ ) AutoFeatureExtractor.register(__magic_name__ , __magic_name__ ) AutoTokenizer.register(__magic_name__ , slow_tokenizer_class=__magic_name__ ) AutoProcessor.register(__magic_name__ , __magic_name__ ) # If remote code is not set, the default is to use local classes. __snake_case : Any = AutoProcessor.from_pretrained("""hf-internal-testing/test_dynamic_processor""" ) self.assertEqual(processor.__class__.__name__ , """NewProcessor""" ) self.assertFalse(processor.special_attribute_present ) self.assertFalse(processor.feature_extractor.special_attribute_present ) self.assertFalse(processor.tokenizer.special_attribute_present ) # If remote code is disabled, we load the local ones. __snake_case : Optional[Any] = AutoProcessor.from_pretrained( """hf-internal-testing/test_dynamic_processor""" , trust_remote_code=__magic_name__ ) self.assertEqual(processor.__class__.__name__ , """NewProcessor""" ) self.assertFalse(processor.special_attribute_present ) self.assertFalse(processor.feature_extractor.special_attribute_present ) self.assertFalse(processor.tokenizer.special_attribute_present ) # If remote is enabled, we load from the Hub. __snake_case : List[Any] = AutoProcessor.from_pretrained( """hf-internal-testing/test_dynamic_processor""" , trust_remote_code=__magic_name__ ) self.assertEqual(processor.__class__.__name__ , """NewProcessor""" ) self.assertTrue(processor.special_attribute_present ) self.assertTrue(processor.feature_extractor.special_attribute_present ) self.assertTrue(processor.tokenizer.special_attribute_present ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in FEATURE_EXTRACTOR_MAPPING._extra_content: del FEATURE_EXTRACTOR_MAPPING._extra_content[CustomConfig] if CustomConfig in TOKENIZER_MAPPING._extra_content: del TOKENIZER_MAPPING._extra_content[CustomConfig] if CustomConfig in PROCESSOR_MAPPING._extra_content: del PROCESSOR_MAPPING._extra_content[CustomConfig] def lowercase__ ( self : Optional[Any] ) -> List[Any]: """simple docstring""" __snake_case : Dict = AutoProcessor.from_pretrained("""hf-internal-testing/tiny-random-bert""" ) self.assertEqual(processor.__class__.__name__ , """BertTokenizerFast""" ) def lowercase__ ( self : List[str] ) -> str: """simple docstring""" __snake_case : int = AutoProcessor.from_pretrained("""hf-internal-testing/tiny-random-convnext""" ) self.assertEqual(processor.__class__.__name__ , """ConvNextImageProcessor""" ) @is_staging_test class _A ( unittest.TestCase ): lowercase__: Dict = ['''[UNK]''', '''[CLS]''', '''[SEP]''', '''[PAD]''', '''[MASK]''', '''bla''', '''blou'''] @classmethod def lowercase__ ( cls : str ) -> List[str]: """simple docstring""" __snake_case : Dict = TOKEN HfFolder.save_token(__magic_name__ ) @classmethod def lowercase__ ( cls : Dict ) -> str: """simple docstring""" try: delete_repo(token=cls._token , repo_id="""test-processor""" ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id="""valid_org/test-processor-org""" ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id="""test-dynamic-processor""" ) except HTTPError: pass def lowercase__ ( self : str ) -> str: """simple docstring""" __snake_case : int = WavaVecaProcessor.from_pretrained(__magic_name__ ) with tempfile.TemporaryDirectory() as tmp_dir: processor.save_pretrained( os.path.join(__magic_name__ , """test-processor""" ) , push_to_hub=__magic_name__ , use_auth_token=self._token ) __snake_case : Union[str, Any] = WavaVecaProcessor.from_pretrained(f'''{USER}/test-processor''' ) for k, v in processor.feature_extractor.__dict__.items(): self.assertEqual(__magic_name__ , getattr(new_processor.feature_extractor , __magic_name__ ) ) self.assertDictEqual(new_processor.tokenizer.get_vocab() , processor.tokenizer.get_vocab() ) def lowercase__ ( self : List[str] ) -> Union[str, Any]: """simple docstring""" __snake_case : List[str] = WavaVecaProcessor.from_pretrained(__magic_name__ ) with tempfile.TemporaryDirectory() as tmp_dir: processor.save_pretrained( os.path.join(__magic_name__ , """test-processor-org""" ) , push_to_hub=__magic_name__ , use_auth_token=self._token , organization="""valid_org""" , ) __snake_case : Tuple = WavaVecaProcessor.from_pretrained("""valid_org/test-processor-org""" ) for k, v in processor.feature_extractor.__dict__.items(): self.assertEqual(__magic_name__ , getattr(new_processor.feature_extractor , __magic_name__ ) ) self.assertDictEqual(new_processor.tokenizer.get_vocab() , processor.tokenizer.get_vocab() ) def lowercase__ ( self : Union[str, Any] ) -> Union[str, Any]: """simple docstring""" CustomFeatureExtractor.register_for_auto_class() CustomTokenizer.register_for_auto_class() CustomProcessor.register_for_auto_class() __snake_case : Optional[int] = CustomFeatureExtractor.from_pretrained(__magic_name__ ) with tempfile.TemporaryDirectory() as tmp_dir: __snake_case : Optional[Any] = os.path.join(__magic_name__ , """vocab.txt""" ) with open(__magic_name__ , """w""" , encoding="""utf-8""" ) as vocab_writer: vocab_writer.write("""""".join([x + """\n""" for x in self.vocab_tokens] ) ) __snake_case : Union[str, Any] = CustomTokenizer(__magic_name__ ) __snake_case : Optional[int] = CustomProcessor(__magic_name__ , __magic_name__ ) with tempfile.TemporaryDirectory() as tmp_dir: create_repo(f'''{USER}/test-dynamic-processor''' , token=self._token ) __snake_case : str = Repository(__magic_name__ , clone_from=f'''{USER}/test-dynamic-processor''' , token=self._token ) processor.save_pretrained(__magic_name__ ) # This has added the proper auto_map field to the feature extractor config self.assertDictEqual( processor.feature_extractor.auto_map , { """AutoFeatureExtractor""": """custom_feature_extraction.CustomFeatureExtractor""", """AutoProcessor""": """custom_processing.CustomProcessor""", } , ) # This has added the proper auto_map field to the tokenizer config with open(os.path.join(__magic_name__ , """tokenizer_config.json""" ) ) as f: __snake_case : Dict = json.load(__magic_name__ ) self.assertDictEqual( tokenizer_config["""auto_map"""] , { """AutoTokenizer""": ["""custom_tokenization.CustomTokenizer""", None], """AutoProcessor""": """custom_processing.CustomProcessor""", } , ) # The code has been copied from fixtures self.assertTrue(os.path.isfile(os.path.join(__magic_name__ , """custom_feature_extraction.py""" ) ) ) self.assertTrue(os.path.isfile(os.path.join(__magic_name__ , """custom_tokenization.py""" ) ) ) self.assertTrue(os.path.isfile(os.path.join(__magic_name__ , """custom_processing.py""" ) ) ) repo.push_to_hub() __snake_case : List[str] = AutoProcessor.from_pretrained(f'''{USER}/test-dynamic-processor''' , trust_remote_code=__magic_name__ ) # Can't make an isinstance check because the new_processor is from the CustomProcessor class of a dynamic module self.assertEqual(new_processor.__class__.__name__ , """CustomProcessor""" )
26
'''simple docstring''' from __future__ import annotations from typing import Any class _A : def __init__( self : str , __magic_name__ : int , __magic_name__ : int , __magic_name__ : float = 0 ) -> None: """simple docstring""" __snake_case , __snake_case : Optional[Any] = row, column __snake_case : Dict = [[default_value for c in range(__magic_name__ )] for r in range(__magic_name__ )] def __str__( self : List[Any] ) -> str: """simple docstring""" __snake_case : Dict = f'''Matrix consist of {self.row} rows and {self.column} columns\n''' # Make string identifier __snake_case : Optional[int] = 0 for row_vector in self.array: for obj in row_vector: __snake_case : Optional[int] = max(__magic_name__ , len(str(__magic_name__ ) ) ) __snake_case : str = f'''%{max_element_length}s''' # Make string and return def single_line(__magic_name__ : list[float] ) -> str: nonlocal string_format_identifier __snake_case : Union[str, Any] = """[""" line += ", ".join(string_format_identifier % (obj,) for obj in row_vector ) line += "]" return line s += "\n".join(single_line(__magic_name__ ) for row_vector in self.array ) return s def __repr__( self : Optional[int] ) -> str: """simple docstring""" return str(self ) def lowercase__ ( self : Dict , __magic_name__ : tuple[int, int] ) -> bool: """simple docstring""" if not (isinstance(__magic_name__ , (list, tuple) ) and len(__magic_name__ ) == 2): return False elif not (0 <= loc[0] < self.row and 0 <= loc[1] < self.column): return False else: return True def __getitem__( self : int , __magic_name__ : tuple[int, int] ) -> Any: """simple docstring""" assert self.validate_indicies(__magic_name__ ) return self.array[loc[0]][loc[1]] def __setitem__( self : List[str] , __magic_name__ : tuple[int, int] , __magic_name__ : float ) -> None: """simple docstring""" assert self.validate_indicies(__magic_name__ ) __snake_case : Optional[int] = value def __add__( self : Any , __magic_name__ : Matrix ) -> Matrix: """simple docstring""" assert isinstance(__magic_name__ , __magic_name__ ) assert self.row == another.row and self.column == another.column # Add __snake_case : Union[str, Any] = Matrix(self.row , self.column ) for r in range(self.row ): for c in range(self.column ): __snake_case : List[Any] = self[r, c] + another[r, c] return result def __neg__( self : Tuple ) -> Matrix: """simple docstring""" __snake_case : Tuple = Matrix(self.row , self.column ) for r in range(self.row ): for c in range(self.column ): __snake_case : List[Any] = -self[r, c] return result def __sub__( self : Optional[int] , __magic_name__ : Matrix ) -> Matrix: """simple docstring""" return self + (-another) def __mul__( self : List[Any] , __magic_name__ : int | float | Matrix ) -> Matrix: """simple docstring""" if isinstance(__magic_name__ , (int, float) ): # Scalar multiplication __snake_case : Optional[int] = Matrix(self.row , self.column ) for r in range(self.row ): for c in range(self.column ): __snake_case : Tuple = self[r, c] * another return result elif isinstance(__magic_name__ , __magic_name__ ): # Matrix multiplication assert self.column == another.row __snake_case : Dict = Matrix(self.row , another.column ) for r in range(self.row ): for c in range(another.column ): for i in range(self.column ): result[r, c] += self[r, i] * another[i, c] return result else: __snake_case : Optional[int] = f'''Unsupported type given for another ({type(__magic_name__ )})''' raise TypeError(__magic_name__ ) def lowercase__ ( self : str ) -> Matrix: """simple docstring""" __snake_case : Any = Matrix(self.column , self.row ) for r in range(self.row ): for c in range(self.column ): __snake_case : str = self[r, c] return result def lowercase__ ( self : Union[str, Any] , __magic_name__ : Matrix , __magic_name__ : Matrix ) -> Any: """simple docstring""" assert isinstance(__magic_name__ , __magic_name__ ) and isinstance(__magic_name__ , __magic_name__ ) assert self.row == self.column == u.row == v.row # u, v should be column vector assert u.column == v.column == 1 # u, v should be column vector # Calculate __snake_case : List[str] = v.transpose() __snake_case : Tuple = (v_t * self * u)[0, 0] + 1 if numerator_factor == 0: return None # It's not invertable return self - ((self * u) * (v_t * self) * (1.0 / numerator_factor)) # Testing if __name__ == "__main__": def _a ( ) -> None: """simple docstring""" __snake_case : Tuple = Matrix(3 , 3 , 0 ) for i in range(3 ): __snake_case : Any = 1 print(F'''a^(-1) is {ainv}''' ) # u, v __snake_case : Dict = Matrix(3 , 1 , 0 ) __snake_case , __snake_case , __snake_case : Union[str, Any] = 1, 2, -3 __snake_case : str = Matrix(3 , 1 , 0 ) __snake_case , __snake_case , __snake_case : Tuple = 4, -2, 5 print(F'''u is {u}''' ) print(F'''v is {v}''' ) print(F'''uv^T is {u * v.transpose()}''' ) # Sherman Morrison print(F'''(a + uv^T)^(-1) is {ainv.sherman_morrison(_lowerCamelCase , _lowerCamelCase )}''' ) def _a ( ) -> None: """simple docstring""" import doctest doctest.testmod() testa()
26
1
'''simple docstring''' import json import os import tempfile from transformers.testing_utils import check_json_file_has_correct_format class _A : lowercase__: int = None def lowercase__ ( self : Any ) -> Any: """simple docstring""" __snake_case : List[Any] = self.feature_extraction_class(**self.feat_extract_dict ) __snake_case : Dict = json.loads(feat_extract.to_json_string() ) for key, value in self.feat_extract_dict.items(): self.assertEqual(obj[key] , __magic_name__ ) def lowercase__ ( self : Optional[int] ) -> int: """simple docstring""" __snake_case : str = self.feature_extraction_class(**self.feat_extract_dict ) with tempfile.TemporaryDirectory() as tmpdirname: __snake_case : Optional[int] = os.path.join(__magic_name__ , """feat_extract.json""" ) feat_extract_first.to_json_file(__magic_name__ ) __snake_case : List[str] = self.feature_extraction_class.from_json_file(__magic_name__ ) self.assertEqual(feat_extract_second.to_dict() , feat_extract_first.to_dict() ) def lowercase__ ( self : Any ) -> Optional[int]: """simple docstring""" __snake_case : Any = self.feature_extraction_class(**self.feat_extract_dict ) with tempfile.TemporaryDirectory() as tmpdirname: __snake_case : Tuple = feat_extract_first.save_pretrained(__magic_name__ )[0] check_json_file_has_correct_format(__magic_name__ ) __snake_case : Union[str, Any] = self.feature_extraction_class.from_pretrained(__magic_name__ ) self.assertEqual(feat_extract_second.to_dict() , feat_extract_first.to_dict() ) def lowercase__ ( self : Optional[Any] ) -> List[Any]: """simple docstring""" __snake_case : List[str] = self.feature_extraction_class() self.assertIsNotNone(__magic_name__ )
26
'''simple docstring''' import argparse import json import os import torch from torch import nn from transformers import NllbMoeConfig, NllbMoeModel from transformers.modeling_utils import dtype_byte_size from transformers.utils import WEIGHTS_INDEX_NAME, WEIGHTS_NAME def _a ( _lowerCamelCase ) -> List[Any]: """simple docstring""" __snake_case : Union[str, Any] = [ """encoder.version""", """decoder.version""", """model.encoder.version""", """model.decoder.version""", """decoder.output_projection.weight""", """_float_tensor""", """encoder.embed_positions._float_tensor""", """decoder.embed_positions._float_tensor""", ] for k in ignore_keys: state_dict.pop(_lowerCamelCase , _lowerCamelCase ) def _a ( _lowerCamelCase ) -> List[str]: """simple docstring""" __snake_case , __snake_case : Dict = emb.weight.shape __snake_case : Optional[int] = nn.Linear(_lowerCamelCase , _lowerCamelCase , bias=_lowerCamelCase ) __snake_case : Union[str, Any] = emb.weight.data return lin_layer def _a ( _lowerCamelCase , _lowerCamelCase=None ) -> Union[str, Any]: """simple docstring""" __snake_case : Any = {} for old_key in state_dict.keys(): __snake_case : Union[str, Any] = old_key if "moe_layer.experts." in key: if expert_idx is not None: __snake_case : Tuple = key.replace("""moe_layer.experts.0""" , F'''ffn.experts.expert_{expert_idx}''' ) else: __snake_case : Optional[int] = key.replace("""moe_layer.experts.""" , """ffn.experts.expert_""" ) if "gate" in key: __snake_case : Dict = key.replace(""".moe_layer.gate.wg""" , """.ffn.router.classifier""" ) if "fc2" and "experts" not in key: __snake_case : Union[str, Any] = key.replace(""".fc2.""" , """.ffn.fc2.""" ) if "fc1" and "experts" not in key: __snake_case : Optional[int] = key.replace(""".fc1.""" , """.ffn.fc1.""" ) if ".encoder_attn." in key: __snake_case : Tuple = key.replace(""".encoder_attn.""" , """.cross_attention.""" ) if "encoder_attn_layer_norm" in key: __snake_case : Union[str, Any] = key.replace("""encoder_attn_layer_norm""" , """cross_attention_layer_norm""" ) if "final_layer_norm" in key: __snake_case : str = key.replace("""final_layer_norm""" , """ff_layer_norm""" ) __snake_case : str = state_dict[old_key] return new_dict def _a ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase = WEIGHTS_NAME ) -> Dict: """simple docstring""" __snake_case : Optional[int] = [] __snake_case : Dict = 0 os.makedirs(_lowerCamelCase , exist_ok=_lowerCamelCase ) for expert in range(_lowerCamelCase ): __snake_case : Tuple = switch_checkpoint_path + F'''-rank-{expert}.pt''' if os.path.isfile(_lowerCamelCase ): __snake_case : Dict = torch.load(_lowerCamelCase )["""model"""] remove_ignore_keys_(_lowerCamelCase ) __snake_case : Optional[Any] = rename_fairseq_keys(_lowerCamelCase , _lowerCamelCase ) __snake_case : List[Any] = os.path.join( _lowerCamelCase , weights_name.replace(""".bin""" , F'''-{len(_lowerCamelCase )+1:05d}-of-???.bin''' ) ) torch.save(_lowerCamelCase , _lowerCamelCase ) sharded_state_dicts.append(expert_state.keys() ) total_size += sum([value.numel() for key, value in expert_state.items()] ) * dtype_byte_size( expert_state[list(_lowerCamelCase )[0]].dtype ) # Add the last block __snake_case : Optional[Any] = os.path.join(_lowerCamelCase , weights_name.replace(""".bin""" , F'''-{len(_lowerCamelCase )+1:05d}-of-???.bin''' ) ) __snake_case : str = torch.load(switch_checkpoint_path + """-shared.pt""" )["""model"""] remove_ignore_keys_(_lowerCamelCase ) __snake_case : Optional[Any] = rename_fairseq_keys(_lowerCamelCase , _lowerCamelCase ) __snake_case : List[str] = shared_weights["""decoder.embed_tokens.weight"""] sharded_state_dicts.append(shared_weights.keys() ) # If we only have the shared weights (dummy model/experts saved on the same file) if len(_lowerCamelCase ) == 1: __snake_case : Optional[Any] = os.path.join(_lowerCamelCase , _lowerCamelCase ) torch.save(_lowerCamelCase , _lowerCamelCase ) return {weights_name: sharded_state_dicts[0]}, None else: torch.save(_lowerCamelCase , _lowerCamelCase ) # Otherwise, let's build the index __snake_case : Tuple = {} for idx, shard in enumerate(_lowerCamelCase ): __snake_case : Any = weights_name.replace(""".bin""" , F'''-{idx+1:05d}-of-{len(_lowerCamelCase ):05d}.bin''' ) __snake_case : int = os.path.join(_lowerCamelCase , weights_name.replace(""".bin""" , F'''-{idx+1:05d}-of-???.bin''' ) ) os.rename(_lowerCamelCase , os.path.join(_lowerCamelCase , _lowerCamelCase ) ) for key in shard: __snake_case : str = shard_file # Add the metadata __snake_case : Optional[Any] = {"""total_size""": total_size} __snake_case : int = {"""metadata""": metadata, """weight_map""": weight_map} with open(os.path.join(_lowerCamelCase , _lowerCamelCase ) , """w""" , encoding="""utf-8""" ) as f: __snake_case : Union[str, Any] = json.dumps(_lowerCamelCase , indent=2 , sort_keys=_lowerCamelCase ) + """\n""" f.write(_lowerCamelCase ) return metadata, index if __name__ == "__main__": __UpperCamelCase = argparse.ArgumentParser() # Required parameters parser.add_argument( "--nllb_moe_checkpoint_path", default="/home/arthur_huggingface_co/fairseq/weights/checkpoints/model_moe_54b/checkpoint_2_300000", type=str, required=False, help="Path to a directory containing a folder per layer. Follows the original Google format.", ) parser.add_argument("--dtype", default="float32", type=str, required=False, help="dtype of the saved model") parser.add_argument( "--pytorch_dump_folder_path", default="/home/arthur_huggingface_co/fairseq/weights/checkpoints/hf-converted-moe-54b", type=str, required=False, help="Path to the output pytorch model.", ) __UpperCamelCase = parser.parse_args() __UpperCamelCase , __UpperCamelCase = shard_on_the_fly( args.nllb_moe_checkpoint_path, args.pytorch_dump_folder_path, 128, args.dtype, ) __UpperCamelCase = NllbMoeConfig.from_pretrained( "facebook/nllb-200-3.3B", encoder_sparse_step=4, decoder_sparse_step=4, num_experts=128 ) config.save_pretrained(args.pytorch_dump_folder_path) __UpperCamelCase = NllbMoeModel.from_pretrained(args.pytorch_dump_folder_path) print("Done") model.save_pretrained(args.pytorch_dump_folder_path)
26
1
'''simple docstring''' from collections.abc import Iterable from typing import Any class _A : def __init__( self : Optional[int] , __magic_name__ : int | None = None ) -> Any: """simple docstring""" __snake_case : str = value __snake_case : Node | None = None # Added in order to delete a node easier __snake_case : Node | None = None __snake_case : Node | None = None def __repr__( self : Any ) -> str: """simple docstring""" from pprint import pformat if self.left is None and self.right is None: return str(self.value ) return pformat({f'''{self.value}''': (self.left, self.right)} , indent=1 ) class _A : def __init__( self : int , __magic_name__ : Node | None = None ) -> str: """simple docstring""" __snake_case : Tuple = root def __str__( self : List[str] ) -> str: """simple docstring""" return str(self.root ) def lowercase__ ( self : Any , __magic_name__ : Node , __magic_name__ : Node | None ) -> None: """simple docstring""" if new_children is not None: # reset its kids __snake_case : Dict = node.parent if node.parent is not None: # reset its parent if self.is_right(__magic_name__ ): # If it is the right children __snake_case : Any = new_children else: __snake_case : Optional[Any] = new_children else: __snake_case : Dict = new_children def lowercase__ ( self : Optional[Any] , __magic_name__ : Node ) -> bool: """simple docstring""" if node.parent and node.parent.right: return node == node.parent.right return False def lowercase__ ( self : Optional[int] ) -> bool: """simple docstring""" return self.root is None def lowercase__ ( self : Dict , __magic_name__ : Optional[int] ) -> None: """simple docstring""" __snake_case : Any = Node(__magic_name__ ) # create a new Node if self.empty(): # if Tree is empty __snake_case : List[Any] = new_node # set its root else: # Tree is not empty __snake_case : Union[str, Any] = self.root # from root if parent_node is None: return while True: # While we don't get to a leaf if value < parent_node.value: # We go left if parent_node.left is None: __snake_case : Optional[int] = new_node # We insert the new node in a leaf break else: __snake_case : Optional[int] = parent_node.left else: if parent_node.right is None: __snake_case : Union[str, Any] = new_node break else: __snake_case : str = parent_node.right __snake_case : List[Any] = parent_node def lowercase__ ( self : Dict , *__magic_name__ : Union[str, Any] ) -> None: """simple docstring""" for value in values: self.__insert(__magic_name__ ) def lowercase__ ( self : int , __magic_name__ : Tuple ) -> Node | None: """simple docstring""" if self.empty(): raise IndexError("""Warning: Tree is empty! please use another.""" ) else: __snake_case : str = self.root # use lazy evaluation here to avoid NoneType Attribute error while node is not None and node.value is not value: __snake_case : Dict = node.left if value < node.value else node.right return node def lowercase__ ( self : Union[str, Any] , __magic_name__ : Node | None = None ) -> Node | None: """simple docstring""" if node is None: if self.root is None: return None __snake_case : List[str] = self.root if not self.empty(): while node.right is not None: __snake_case : Optional[Any] = node.right return node def lowercase__ ( self : Optional[int] , __magic_name__ : Node | None = None ) -> Node | None: """simple docstring""" if node is None: __snake_case : List[str] = self.root if self.root is None: return None if not self.empty(): __snake_case : Dict = self.root while node.left is not None: __snake_case : Optional[Any] = node.left return node def lowercase__ ( self : str , __magic_name__ : int ) -> None: """simple docstring""" __snake_case : Dict = self.search(__magic_name__ ) # Look for the node with that label if node is not None: if node.left is None and node.right is None: # If it has no children self.__reassign_nodes(__magic_name__ , __magic_name__ ) elif node.left is None: # Has only right children self.__reassign_nodes(__magic_name__ , node.right ) elif node.right is None: # Has only left children self.__reassign_nodes(__magic_name__ , node.left ) else: __snake_case : Tuple = self.get_max( node.left ) # Gets the max value of the left branch self.remove(tmp_node.value ) # type: ignore __snake_case : Any = ( tmp_node.value # type: ignore ) # Assigns the value to the node to delete and keep tree structure def lowercase__ ( self : List[Any] , __magic_name__ : Node | None ) -> Iterable: """simple docstring""" if node is not None: yield node # Preorder Traversal yield from self.preorder_traverse(node.left ) yield from self.preorder_traverse(node.right ) def lowercase__ ( self : int , __magic_name__ : Optional[int]=None ) -> Any: """simple docstring""" if traversal_function is None: return self.preorder_traverse(self.root ) else: return traversal_function(self.root ) def lowercase__ ( self : str , __magic_name__ : list , __magic_name__ : Node | None ) -> None: """simple docstring""" if node: self.inorder(__magic_name__ , node.left ) arr.append(node.value ) self.inorder(__magic_name__ , node.right ) def lowercase__ ( self : int , __magic_name__ : int , __magic_name__ : Node ) -> int: """simple docstring""" __snake_case : list[int] = [] self.inorder(__magic_name__ , __magic_name__ ) # append all values to list using inorder traversal return arr[k - 1] def _a ( _lowerCamelCase ) -> list[Node]: """simple docstring""" __snake_case : int = [] if curr_node is not None: __snake_case : List[Any] = postorder(curr_node.left ) + postorder(curr_node.right ) + [curr_node] return node_list def _a ( ) -> None: """simple docstring""" __snake_case : Optional[Any] = (8, 3, 6, 1, 10, 14, 13, 4, 7) __snake_case : str = BinarySearchTree() for i in testlist: t.insert(_lowerCamelCase ) # Prints all the elements of the list in order traversal print(_lowerCamelCase ) if t.search(6 ) is not None: print("""The value 6 exists""" ) else: print("""The value 6 doesn't exist""" ) if t.search(-1 ) is not None: print("""The value -1 exists""" ) else: print("""The value -1 doesn't exist""" ) if not t.empty(): print("""Max Value: """ , t.get_max().value ) # type: ignore print("""Min Value: """ , t.get_min().value ) # type: ignore for i in testlist: t.remove(_lowerCamelCase ) print(_lowerCamelCase ) if __name__ == "__main__": import doctest doctest.testmod(verbose=True)
26
'''simple docstring''' import cva import numpy as np class _A : def __init__( self : Any , __magic_name__ : float , __magic_name__ : int ) -> Optional[int]: """simple docstring""" if k in (0.04, 0.06): __snake_case : List[str] = k __snake_case : int = window_size else: raise ValueError("""invalid k value""" ) def __str__( self : Union[str, Any] ) -> str: """simple docstring""" return str(self.k ) def lowercase__ ( self : Dict , __magic_name__ : str ) -> tuple[cva.Mat, list[list[int]]]: """simple docstring""" __snake_case : Dict = cva.imread(__magic_name__ , 0 ) __snake_case , __snake_case : List[str] = img.shape __snake_case : list[list[int]] = [] __snake_case : str = img.copy() __snake_case : Tuple = cva.cvtColor(__magic_name__ , cva.COLOR_GRAY2RGB ) __snake_case , __snake_case : List[Any] = np.gradient(__magic_name__ ) __snake_case : Optional[Any] = dx**2 __snake_case : Tuple = dy**2 __snake_case : List[Any] = dx * dy __snake_case : List[Any] = 0.04 __snake_case : Tuple = self.window_size // 2 for y in range(__magic_name__ , h - offset ): for x in range(__magic_name__ , w - offset ): __snake_case : Dict = ixx[ y - offset : y + offset + 1, x - offset : x + offset + 1 ].sum() __snake_case : Optional[int] = iyy[ y - offset : y + offset + 1, x - offset : x + offset + 1 ].sum() __snake_case : str = ixy[ y - offset : y + offset + 1, x - offset : x + offset + 1 ].sum() __snake_case : List[str] = (wxx * wyy) - (wxy**2) __snake_case : Dict = wxx + wyy __snake_case : List[str] = det - k * (trace**2) # Can change the value if r > 0.5: corner_list.append([x, y, r] ) color_img.itemset((y, x, 0) , 0 ) color_img.itemset((y, x, 1) , 0 ) color_img.itemset((y, x, 2) , 2_55 ) return color_img, corner_list if __name__ == "__main__": __UpperCamelCase = HarrisCorner(0.04, 3) __UpperCamelCase , __UpperCamelCase = edge_detect.detect("path_to_image") cva.imwrite("detect.png", color_img)
26
1
'''simple docstring''' from collections import OrderedDict from typing import TYPE_CHECKING, Any, List, Mapping, Optional, Union from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import TensorType, logging if TYPE_CHECKING: from ...onnx.config import PatchingSpec from ...tokenization_utils_base import PreTrainedTokenizerBase __UpperCamelCase = logging.get_logger(__name__) __UpperCamelCase = { "allenai/longformer-base-4096": "https://huggingface.co/allenai/longformer-base-4096/resolve/main/config.json", "allenai/longformer-large-4096": "https://huggingface.co/allenai/longformer-large-4096/resolve/main/config.json", "allenai/longformer-large-4096-finetuned-triviaqa": ( "https://huggingface.co/allenai/longformer-large-4096-finetuned-triviaqa/resolve/main/config.json" ), "allenai/longformer-base-4096-extra.pos.embd.only": ( "https://huggingface.co/allenai/longformer-base-4096-extra.pos.embd.only/resolve/main/config.json" ), "allenai/longformer-large-4096-extra.pos.embd.only": ( "https://huggingface.co/allenai/longformer-large-4096-extra.pos.embd.only/resolve/main/config.json" ), } class _A ( __lowercase ): lowercase__: Union[str, Any] = '''longformer''' def __init__( self : List[str] , __magic_name__ : Union[List[int], int] = 5_12 , __magic_name__ : int = 2 , __magic_name__ : int = 1 , __magic_name__ : int = 0 , __magic_name__ : int = 2 , __magic_name__ : int = 3_05_22 , __magic_name__ : int = 7_68 , __magic_name__ : int = 12 , __magic_name__ : int = 12 , __magic_name__ : int = 30_72 , __magic_name__ : str = "gelu" , __magic_name__ : float = 0.1 , __magic_name__ : float = 0.1 , __magic_name__ : int = 5_12 , __magic_name__ : int = 2 , __magic_name__ : float = 0.02 , __magic_name__ : float = 1E-12 , __magic_name__ : bool = False , **__magic_name__ : str , ) -> List[str]: """simple docstring""" super().__init__(pad_token_id=__magic_name__ , **__magic_name__ ) __snake_case : int = attention_window __snake_case : Optional[int] = sep_token_id __snake_case : List[Any] = bos_token_id __snake_case : Tuple = eos_token_id __snake_case : List[str] = vocab_size __snake_case : Tuple = hidden_size __snake_case : Optional[int] = num_hidden_layers __snake_case : Tuple = num_attention_heads __snake_case : Any = hidden_act __snake_case : Any = intermediate_size __snake_case : List[str] = hidden_dropout_prob __snake_case : Dict = attention_probs_dropout_prob __snake_case : str = max_position_embeddings __snake_case : Any = type_vocab_size __snake_case : int = initializer_range __snake_case : Optional[int] = layer_norm_eps __snake_case : Optional[Any] = onnx_export class _A ( __lowercase ): def __init__( self : Dict , __magic_name__ : "PretrainedConfig" , __magic_name__ : str = "default" , __magic_name__ : "List[PatchingSpec]" = None ) -> Any: """simple docstring""" super().__init__(__magic_name__ , __magic_name__ , __magic_name__ ) __snake_case : Optional[int] = True @property def lowercase__ ( self : List[Any] ) -> Mapping[str, Mapping[int, str]]: """simple docstring""" if self.task == "multiple-choice": __snake_case : Optional[Any] = {0: """batch""", 1: """choice""", 2: """sequence"""} else: __snake_case : List[str] = {0: """batch""", 1: """sequence"""} return OrderedDict( [ ("""input_ids""", dynamic_axis), ("""attention_mask""", dynamic_axis), ("""global_attention_mask""", dynamic_axis), ] ) @property def lowercase__ ( self : List[Any] ) -> Mapping[str, Mapping[int, str]]: """simple docstring""" __snake_case : int = super().outputs if self.task == "default": __snake_case : Tuple = {0: """batch"""} return outputs @property def lowercase__ ( self : int ) -> float: """simple docstring""" return 1E-4 @property def lowercase__ ( self : Any ) -> int: """simple docstring""" return max(super().default_onnx_opset , 14 ) def lowercase__ ( self : Dict , __magic_name__ : "PreTrainedTokenizerBase" , __magic_name__ : int = -1 , __magic_name__ : int = -1 , __magic_name__ : bool = False , __magic_name__ : Optional[TensorType] = None , ) -> Mapping[str, Any]: """simple docstring""" __snake_case : int = super().generate_dummy_inputs( preprocessor=__magic_name__ , batch_size=__magic_name__ , seq_length=__magic_name__ , is_pair=__magic_name__ , framework=__magic_name__ ) import torch # for some reason, replacing this code by inputs["global_attention_mask"] = torch.randint(2, inputs["input_ids"].shape, dtype=torch.int64) # makes the export fail randomly __snake_case : List[str] = torch.zeros_like(inputs["""input_ids"""] ) # make every second token global __snake_case : Optional[Any] = 1 return inputs
26
'''simple docstring''' import warnings from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding class _A ( __lowercase ): lowercase__: Any = ['''image_processor''', '''tokenizer'''] lowercase__: Any = '''CLIPImageProcessor''' lowercase__: Optional[Any] = ('''CLIPTokenizer''', '''CLIPTokenizerFast''') def __init__( self : int , __magic_name__ : Dict=None , __magic_name__ : Dict=None , **__magic_name__ : Union[str, Any] ) -> Any: """simple docstring""" __snake_case : Optional[Any] = None if "feature_extractor" in kwargs: warnings.warn( """The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`""" """ instead.""" , __magic_name__ , ) __snake_case : List[Any] = kwargs.pop("""feature_extractor""" ) __snake_case : List[str] = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError("""You need to specify an `image_processor`.""" ) if tokenizer is None: raise ValueError("""You need to specify a `tokenizer`.""" ) super().__init__(__magic_name__ , __magic_name__ ) def __call__( self : int , __magic_name__ : List[str]=None , __magic_name__ : Tuple=None , __magic_name__ : Any=None , **__magic_name__ : Union[str, Any] ) -> Optional[int]: """simple docstring""" if text is None and images is None: raise ValueError("""You have to specify either text or images. Both cannot be none.""" ) if text is not None: __snake_case : int = self.tokenizer(__magic_name__ , return_tensors=__magic_name__ , **__magic_name__ ) if images is not None: __snake_case : str = self.image_processor(__magic_name__ , return_tensors=__magic_name__ , **__magic_name__ ) if text is not None and images is not None: __snake_case : Union[str, Any] = image_features.pixel_values return encoding elif text is not None: return encoding else: return BatchEncoding(data=dict(**__magic_name__ ) , tensor_type=__magic_name__ ) def lowercase__ ( self : Optional[int] , *__magic_name__ : List[Any] , **__magic_name__ : Any ) -> Optional[Any]: """simple docstring""" return self.tokenizer.batch_decode(*__magic_name__ , **__magic_name__ ) def lowercase__ ( self : List[str] , *__magic_name__ : Tuple , **__magic_name__ : List[Any] ) -> int: """simple docstring""" return self.tokenizer.decode(*__magic_name__ , **__magic_name__ ) @property def lowercase__ ( self : List[Any] ) -> Optional[Any]: """simple docstring""" __snake_case : Dict = self.tokenizer.model_input_names __snake_case : str = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) ) @property def lowercase__ ( self : int ) -> List[str]: """simple docstring""" warnings.warn( """`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.""" , __magic_name__ , ) return self.image_processor_class @property def lowercase__ ( self : Union[str, Any] ) -> Dict: """simple docstring""" warnings.warn( """`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead.""" , __magic_name__ , ) return self.image_processor
26
1
'''simple docstring''' def _a ( _lowerCamelCase = 10 , _lowerCamelCase = 1000 , _lowerCamelCase = True ) -> int: """simple docstring""" assert ( isinstance(_lowerCamelCase , _lowerCamelCase ) and isinstance(_lowerCamelCase , _lowerCamelCase ) and isinstance(_lowerCamelCase , _lowerCamelCase ) ), "Invalid type of value(s) specified to function!" if min_val > max_val: raise ValueError("""Invalid value for min_val or max_val (min_value < max_value)""" ) return min_val if option else max_val def _a ( _lowerCamelCase , _lowerCamelCase ) -> int: """simple docstring""" return int((number_a + number_a) / 2 ) def _a ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> None: """simple docstring""" assert ( isinstance(_lowerCamelCase , _lowerCamelCase ) and isinstance(_lowerCamelCase , _lowerCamelCase ) and isinstance(_lowerCamelCase , _lowerCamelCase ) ), 'argument values must be type of "int"' if lower > higher: raise ValueError("""argument value for lower and higher must be(lower > higher)""" ) if not lower < to_guess < higher: raise ValueError( """guess value must be within the range of lower and higher value""" ) def answer(_lowerCamelCase ) -> str: if number > to_guess: return "high" elif number < to_guess: return "low" else: return "same" print("""started...""" ) __snake_case : Any = lower __snake_case : List[Any] = higher __snake_case : Tuple = [] while True: __snake_case : List[str] = get_avg(_lowerCamelCase , _lowerCamelCase ) last_numbers.append(_lowerCamelCase ) if answer(_lowerCamelCase ) == "low": __snake_case : Union[str, Any] = number elif answer(_lowerCamelCase ) == "high": __snake_case : Dict = number else: break print(F'''guess the number : {last_numbers[-1]}''' ) print(F'''details : {last_numbers!s}''' ) def _a ( ) -> None: """simple docstring""" __snake_case : List[Any] = int(input("""Enter lower value : """ ).strip() ) __snake_case : Tuple = int(input("""Enter high value : """ ).strip() ) __snake_case : Tuple = int(input("""Enter value to guess : """ ).strip() ) guess_the_number(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) if __name__ == "__main__": main()
26
'''simple docstring''' import datasets import faiss import numpy as np import streamlit as st import torch from elasticsearch import Elasticsearch from elia_utils import ( embed_questions_for_retrieval, make_qa_sas_model, qa_sas_generate, query_es_index, query_qa_dense_index, ) import transformers from transformers import AutoModel, AutoModelForSeqaSeqLM, AutoTokenizer __UpperCamelCase = "bart" __UpperCamelCase = True @st.cache(allow_output_mutation=_lowerCamelCase ) def _a ( ) -> Union[str, Any]: """simple docstring""" if LOAD_DENSE_INDEX: __snake_case : int = AutoTokenizer.from_pretrained("""yjernite/retribert-base-uncased""" ) __snake_case : Tuple = AutoModel.from_pretrained("""yjernite/retribert-base-uncased""" ).to("""cuda:0""" ) __snake_case : List[Any] = qar_model.eval() else: __snake_case , __snake_case : Optional[Any] = (None, None) if MODEL_TYPE == "bart": __snake_case : List[str] = AutoTokenizer.from_pretrained("""yjernite/bart_eli5""" ) __snake_case : Any = AutoModelForSeqaSeqLM.from_pretrained("""yjernite/bart_eli5""" ).to("""cuda:0""" ) __snake_case : int = torch.load("""seq2seq_models/eli5_bart_model_blm_2.pth""" ) sas_model.load_state_dict(save_dict["""model"""] ) __snake_case : int = sas_model.eval() else: __snake_case , __snake_case : Dict = make_qa_sas_model( model_name="""t5-small""" , from_file="""seq2seq_models/eli5_t5_model_1024_4.pth""" , device="""cuda:0""" ) return (qar_tokenizer, qar_model, sas_tokenizer, sas_model) @st.cache(allow_output_mutation=_lowerCamelCase ) def _a ( ) -> Tuple: """simple docstring""" if LOAD_DENSE_INDEX: __snake_case : Tuple = faiss.StandardGpuResources() __snake_case : Optional[Any] = datasets.load_dataset(path="""wiki_snippets""" , name="""wiki40b_en_100_0""" )["""train"""] __snake_case : str = np.memmap( """wiki40b_passages_reps_32_l-8_h-768_b-512-512.dat""" , dtype="""float32""" , mode="""r""" , shape=(wikiaab_passages.num_rows, 128) , ) __snake_case : Optional[int] = faiss.IndexFlatIP(128 ) __snake_case : Any = faiss.index_cpu_to_gpu(_lowerCamelCase , 1 , _lowerCamelCase ) wikiaab_gpu_index_flat.add(_lowerCamelCase ) # TODO fix for larger GPU else: __snake_case , __snake_case : Tuple = (None, None) __snake_case : List[str] = Elasticsearch([{"""host""": """localhost""", """port""": """9200"""}] ) return (wikiaab_passages, wikiaab_gpu_index_flat, es_client) @st.cache(allow_output_mutation=_lowerCamelCase ) def _a ( ) -> List[Any]: """simple docstring""" __snake_case : Tuple = datasets.load_dataset("""eli5""" , name="""LFQA_reddit""" ) __snake_case : Dict = elia["""train_eli5"""] __snake_case : int = np.memmap( """eli5_questions_reps.dat""" , dtype="""float32""" , mode="""r""" , shape=(elia_train.num_rows, 128) ) __snake_case : Dict = faiss.IndexFlatIP(128 ) eli5_train_q_index.add(_lowerCamelCase ) return (elia_train, eli5_train_q_index) __UpperCamelCase , __UpperCamelCase , __UpperCamelCase = load_indexes() __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase = load_models() __UpperCamelCase , __UpperCamelCase = load_train_data() def _a ( _lowerCamelCase , _lowerCamelCase=10 ) -> int: """simple docstring""" __snake_case : Optional[int] = embed_questions_for_retrieval([question] , _lowerCamelCase , _lowerCamelCase ) __snake_case , __snake_case : Tuple = eli5_train_q_index.search(_lowerCamelCase , _lowerCamelCase ) __snake_case : Tuple = [elia_train[int(_lowerCamelCase )] for i in I[0]] return nn_examples def _a ( _lowerCamelCase , _lowerCamelCase="wiki40b" , _lowerCamelCase="dense" , _lowerCamelCase=10 ) -> Optional[Any]: """simple docstring""" if source == "none": __snake_case , __snake_case : Dict = (""" <P> """.join(["""""" for _ in range(11 )] ).strip(), []) else: if method == "dense": __snake_case , __snake_case : Dict = query_qa_dense_index( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) else: __snake_case , __snake_case : str = query_es_index( _lowerCamelCase , _lowerCamelCase , index_name="""english_wiki40b_snippets_100w""" , n_results=_lowerCamelCase , ) __snake_case : Optional[int] = [ (res["""article_title"""], res["""section_title"""].strip(), res["""score"""], res["""passage_text"""]) for res in hit_lst ] __snake_case : Optional[Any] = """question: {} context: {}""".format(_lowerCamelCase , _lowerCamelCase ) return question_doc, support_list @st.cache( hash_funcs={ torch.Tensor: (lambda _lowerCamelCase : None), transformers.models.bart.tokenization_bart.BartTokenizer: (lambda _lowerCamelCase : None), } ) def _a ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase=64 , _lowerCamelCase=256 , _lowerCamelCase=False , _lowerCamelCase=2 , _lowerCamelCase=0.95 , _lowerCamelCase=0.8 ) -> List[str]: """simple docstring""" with torch.no_grad(): __snake_case : Union[str, Any] = qa_sas_generate( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , num_answers=1 , num_beams=_lowerCamelCase , min_len=_lowerCamelCase , max_len=_lowerCamelCase , do_sample=_lowerCamelCase , temp=_lowerCamelCase , top_p=_lowerCamelCase , top_k=_lowerCamelCase , max_input_length=1024 , device="""cuda:0""" , )[0] return (answer, support_list) st.title("Long Form Question Answering with ELI5") # Start sidebar __UpperCamelCase = "<img src='https://huggingface.co/front/assets/huggingface_logo.svg'>" __UpperCamelCase = "\n<html>\n <head>\n <style>\n .img-container {\n padding-left: 90px;\n padding-right: 90px;\n padding-top: 50px;\n padding-bottom: 50px;\n background-color: #f0f3f9;\n }\n </style>\n </head>\n <body>\n <span class=\"img-container\"> <!-- Inline parent element -->\n %s\n </span>\n </body>\n</html>\n" % ( header_html, ) st.sidebar.markdown( header_full, unsafe_allow_html=True, ) # Long Form QA with ELI5 and Wikipedia __UpperCamelCase = "\nThis demo presents a model trained to [provide long-form answers to open-domain questions](https://yjernite.github.io/lfqa.html).\nFirst, a document retriever fetches a set of relevant Wikipedia passages given the question from the [Wiki40b](https://research.google/pubs/pub49029/) dataset,\na pre-processed fixed snapshot of Wikipedia.\n" st.sidebar.markdown(description, unsafe_allow_html=True) __UpperCamelCase = [ "Answer the question", "View the retrieved document only", "View the most similar ELI5 question and answer", "Show me everything, please!", ] __UpperCamelCase = st.sidebar.checkbox("Demo options") if demo_options: __UpperCamelCase = st.sidebar.selectbox( "", action_list, index=3, ) __UpperCamelCase = action_list.index(action_st) __UpperCamelCase = st.sidebar.selectbox( "", ["Show full text of passages", "Show passage section titles"], index=0, ) __UpperCamelCase = show_type == "Show full text of passages" else: __UpperCamelCase = 3 __UpperCamelCase = True __UpperCamelCase = st.sidebar.checkbox("Retrieval options") if retrieval_options: __UpperCamelCase = "\n ### Information retriever options\n\n The **sparse** retriever uses ElasticSearch, while the **dense** retriever uses max-inner-product search between a question and passage embedding\n trained using the [ELI5](https://arxiv.org/abs/1907.09190) questions-answer pairs.\n The answer is then generated by sequence to sequence model which takes the question and retrieved document as input.\n " st.sidebar.markdown(retriever_info) __UpperCamelCase = st.sidebar.selectbox("Which Wikipedia format should the model use?", ["wiki40b", "none"]) __UpperCamelCase = st.sidebar.selectbox("Which Wikipedia indexer should the model use?", ["dense", "sparse", "mixed"]) else: __UpperCamelCase = "wiki40b" __UpperCamelCase = "dense" __UpperCamelCase = "beam" __UpperCamelCase = 2 __UpperCamelCase = 64 __UpperCamelCase = 256 __UpperCamelCase = None __UpperCamelCase = None __UpperCamelCase = st.sidebar.checkbox("Generation options") if generate_options: __UpperCamelCase = "\n ### Answer generation options\n\n The sequence-to-sequence model was initialized with [BART](https://huggingface.co/facebook/bart-large)\n weights and fine-tuned on the ELI5 QA pairs and retrieved documents. You can use the model for greedy decoding with\n **beam** search, or **sample** from the decoder's output probabilities.\n " st.sidebar.markdown(generate_info) __UpperCamelCase = st.sidebar.selectbox("Would you like to use beam search or sample an answer?", ["beam", "sampled"]) __UpperCamelCase = st.sidebar.slider( "Minimum generation length", min_value=8, max_value=256, value=64, step=8, format=None, key=None ) __UpperCamelCase = st.sidebar.slider( "Maximum generation length", min_value=64, max_value=512, value=256, step=16, format=None, key=None ) if sampled == "beam": __UpperCamelCase = st.sidebar.slider("Beam size", min_value=1, max_value=8, value=2, step=None, format=None, key=None) else: __UpperCamelCase = st.sidebar.slider( "Nucleus sampling p", min_value=0.1, max_value=1.0, value=0.95, step=0.01, format=None, key=None ) __UpperCamelCase = st.sidebar.slider( "Temperature", min_value=0.1, max_value=1.0, value=0.7, step=0.01, format=None, key=None ) __UpperCamelCase = None # start main text __UpperCamelCase = [ "<MY QUESTION>", "How do people make chocolate?", "Why do we get a fever when we are sick?", "How can different animals perceive different colors?", "What is natural language processing?", "What's the best way to treat a sunburn?", "What exactly are vitamins ?", "How does nuclear energy provide electricity?", "What's the difference between viruses and bacteria?", "Why are flutes classified as woodwinds when most of them are made out of metal ?", "Why do people like drinking coffee even though it tastes so bad?", "What happens when wine ages? How does it make the wine taste better?", "If an animal is an herbivore, where does it get the protein that it needs to survive if it only eats grass?", "How can we set a date to the beginning or end of an artistic period? Doesn't the change happen gradually?", "How does New Zealand have so many large bird predators?", ] __UpperCamelCase = st.selectbox( "What would you like to ask? ---- select <MY QUESTION> to enter a new query", questions_list, index=1, ) if question_s == "<MY QUESTION>": __UpperCamelCase = st.text_input("Enter your question here:", "") else: __UpperCamelCase = question_s if st.button("Show me!"): if action in [0, 1, 3]: if index_type == "mixed": __UpperCamelCase , __UpperCamelCase = make_support(question, source=wiki_source, method="dense", n_results=10) __UpperCamelCase , __UpperCamelCase = make_support(question, source=wiki_source, method="sparse", n_results=10) __UpperCamelCase = [] for res_d, res_s in zip(support_list_dense, support_list_sparse): if tuple(res_d) not in support_list: support_list += [tuple(res_d)] if tuple(res_s) not in support_list: support_list += [tuple(res_s)] __UpperCamelCase = support_list[:10] __UpperCamelCase = "<P> " + " <P> ".join([res[-1] for res in support_list]) else: __UpperCamelCase , __UpperCamelCase = make_support(question, source=wiki_source, method=index_type, n_results=10) if action in [0, 3]: __UpperCamelCase , __UpperCamelCase = answer_question( question_doc, sas_model, sas_tokenizer, min_len=min_len, max_len=int(max_len), sampling=(sampled == "sampled"), n_beams=n_beams, top_p=top_p, temp=temp, ) st.markdown("### The model generated answer is:") st.write(answer) if action in [0, 1, 3] and wiki_source != "none": st.markdown("--- \n ### The model is drawing information from the following Wikipedia passages:") for i, res in enumerate(support_list): __UpperCamelCase = "https://en.wikipedia.org/wiki/{}".format(res[0].replace(" ", "_")) __UpperCamelCase = res[1].strip() if sec_titles == "": __UpperCamelCase = "[{}]({})".format(res[0], wiki_url) else: __UpperCamelCase = sec_titles.split(" & ") __UpperCamelCase = " & ".join( ["[{}]({}#{})".format(sec.strip(), wiki_url, sec.strip().replace(" ", "_")) for sec in sec_list] ) st.markdown( "{0:02d} - **Article**: {1:<18} <br> _Section_: {2}".format(i + 1, res[0], sections), unsafe_allow_html=True, ) if show_passages: st.write( "> <span style=\"font-family:arial; font-size:10pt;\">" + res[-1] + "</span>", unsafe_allow_html=True ) if action in [2, 3]: __UpperCamelCase = find_nearest_training(question) __UpperCamelCase = nn_train_list[0] st.markdown( "--- \n ### The most similar question in the ELI5 training set was: \n\n {}".format(train_exple["title"]) ) __UpperCamelCase = [ "{}. {}".format(i + 1, " \n".join([line.strip() for line in ans.split("\n") if line.strip() != ""])) for i, (ans, sc) in enumerate(zip(train_exple["answers"]["text"], train_exple["answers"]["score"])) if i == 0 or sc > 2 ] st.markdown("##### Its answers were: \n\n {}".format("\n".join(answers_st))) __UpperCamelCase = "\n---\n\n**Disclaimer**\n\n*The intent of this app is to provide some (hopefully entertaining) insights into the behavior of a current LFQA system.\nEvaluating biases of such a model and ensuring factual generations are still very much open research problems.\nTherefore, until some significant progress is achieved, we caution against using the generated answers for practical purposes.*\n" st.sidebar.markdown(disclaimer, unsafe_allow_html=True)
26
1
'''simple docstring''' import copy from ...configuration_utils import PretrainedConfig from ...utils import logging __UpperCamelCase = logging.get_logger(__name__) class _A ( __lowercase ): lowercase__: Any = '''encoder-decoder''' lowercase__: str = True def __init__( self : str , **__magic_name__ : int ) -> str: """simple docstring""" super().__init__(**__magic_name__ ) assert ( "encoder" in kwargs and "decoder" in kwargs ), "Config has to be initialized with encoder and decoder config" __snake_case : Any = kwargs.pop("""encoder""" ) __snake_case : Union[str, Any] = encoder_config.pop("""model_type""" ) __snake_case : Optional[int] = kwargs.pop("""decoder""" ) __snake_case : Dict = decoder_config.pop("""model_type""" ) from ..auto.configuration_auto import AutoConfig __snake_case : Optional[Any] = AutoConfig.for_model(__magic_name__ , **__magic_name__ ) __snake_case : Optional[Any] = AutoConfig.for_model(__magic_name__ , **__magic_name__ ) __snake_case : List[str] = True @classmethod def lowercase__ ( cls : Optional[Any] , __magic_name__ : PretrainedConfig , __magic_name__ : PretrainedConfig , **__magic_name__ : Dict ) -> PretrainedConfig: """simple docstring""" logger.info("""Set `config.is_decoder=True` and `config.add_cross_attention=True` for decoder_config""" ) __snake_case : List[Any] = True __snake_case : Any = True return cls(encoder=encoder_config.to_dict() , decoder=decoder_config.to_dict() , **__magic_name__ ) def lowercase__ ( self : Optional[int] ) -> str: """simple docstring""" __snake_case : Union[str, Any] = copy.deepcopy(self.__dict__ ) __snake_case : int = self.encoder.to_dict() __snake_case : List[str] = self.decoder.to_dict() __snake_case : Tuple = self.__class__.model_type return output
26
'''simple docstring''' import warnings from ...utils import logging from .image_processing_owlvit import OwlViTImageProcessor __UpperCamelCase = logging.get_logger(__name__) class _A ( __lowercase ): def __init__( self : int , *__magic_name__ : Optional[Any] , **__magic_name__ : Any ) -> None: """simple docstring""" warnings.warn( """The class OwlViTFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please""" """ use OwlViTImageProcessor instead.""" , __magic_name__ , ) super().__init__(*__magic_name__ , **__magic_name__ )
26
1
'''simple docstring''' import argparse import shutil from pathlib import Path from tqdm import tqdm from transformers import AutoTokenizer def _a ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase=1024 ) -> List[str]: """simple docstring""" __snake_case , __snake_case : int = [], [] __snake_case : List[str] = list(zip(_lowerCamelCase , _lowerCamelCase ) ) __snake_case , __snake_case : Union[str, Any] = sorted_examples[0] def is_too_big(_lowerCamelCase ): return tok(_lowerCamelCase , return_tensors="""pt""" ).input_ids.shape[1] > max_tokens for src, tgt in tqdm(sorted_examples[1:] ): __snake_case : Union[str, Any] = new_src + """ """ + src __snake_case : List[Any] = new_tgt + """ """ + tgt if is_too_big(_lowerCamelCase ) or is_too_big(_lowerCamelCase ): # cant fit, finalize example finished_src.append(_lowerCamelCase ) finished_tgt.append(_lowerCamelCase ) __snake_case , __snake_case : Optional[int] = src, tgt else: # can fit, keep adding __snake_case , __snake_case : Dict = cand_src, cand_tgt # cleanup if new_src: assert new_tgt finished_src.append(_lowerCamelCase ) finished_tgt.append(_lowerCamelCase ) return finished_src, finished_tgt def _a ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> Dict: """simple docstring""" __snake_case : Optional[Any] = Path(_lowerCamelCase ) save_path.mkdir(exist_ok=_lowerCamelCase ) for split in ["train"]: __snake_case , __snake_case : int = data_dir / F'''{split}.source''', data_dir / F'''{split}.target''' __snake_case : Union[str, Any] = [x.rstrip() for x in Path(_lowerCamelCase ).open().readlines()] __snake_case : str = [x.rstrip() for x in Path(_lowerCamelCase ).open().readlines()] __snake_case , __snake_case : Optional[Any] = pack_examples(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) print(F'''packed {split} split from {len(_lowerCamelCase )} examples -> {len(_lowerCamelCase )}.''' ) Path(save_path / F'''{split}.source''' ).open("""w""" ).write("""\n""".join(_lowerCamelCase ) ) Path(save_path / F'''{split}.target''' ).open("""w""" ).write("""\n""".join(_lowerCamelCase ) ) for split in ["val", "test"]: __snake_case , __snake_case : Any = data_dir / F'''{split}.source''', data_dir / F'''{split}.target''' shutil.copyfile(_lowerCamelCase , save_path / F'''{split}.source''' ) shutil.copyfile(_lowerCamelCase , save_path / F'''{split}.target''' ) def _a ( ) -> int: """simple docstring""" __snake_case : List[str] = argparse.ArgumentParser() parser.add_argument("""--tok_name""" , type=_lowerCamelCase , help="""like facebook/bart-large-cnn,t5-base, etc.""" ) parser.add_argument("""--max_seq_len""" , type=_lowerCamelCase , default=128 ) parser.add_argument("""--data_dir""" , type=_lowerCamelCase ) parser.add_argument("""--save_path""" , type=_lowerCamelCase ) __snake_case : int = parser.parse_args() __snake_case : List[str] = AutoTokenizer.from_pretrained(args.tok_name ) return pack_data_dir(_lowerCamelCase , Path(args.data_dir ) , args.max_seq_len , args.save_path ) if __name__ == "__main__": packer_cli()
26
'''simple docstring''' import argparse import torch from transformers import BlenderbotConfig, BlenderbotForConditionalGeneration from transformers.utils import logging logging.set_verbosity_info() __UpperCamelCase = logging.get_logger(__name__) __UpperCamelCase = [ ["attention", "attn"], ["encoder_attention", "encoder_attn"], ["q_lin", "q_proj"], ["k_lin", "k_proj"], ["v_lin", "v_proj"], ["out_lin", "out_proj"], ["norm_embeddings", "layernorm_embedding"], ["position_embeddings", "embed_positions"], ["embeddings", "embed_tokens"], ["ffn.lin", "fc"], ] def _a ( _lowerCamelCase ) -> Union[str, Any]: """simple docstring""" if k == "embeddings.weight": return "shared.weight" for parlai_name, hf_name in PATTERNS: __snake_case : List[str] = k.replace(_lowerCamelCase , _lowerCamelCase ) if k.startswith("""encoder""" ): __snake_case : Optional[int] = k.replace(""".attn""" , """.self_attn""" ) __snake_case : Tuple = k.replace("""norm1""" , """self_attn_layer_norm""" ) __snake_case : List[str] = k.replace("""norm2""" , """final_layer_norm""" ) elif k.startswith("""decoder""" ): __snake_case : List[Any] = k.replace("""norm1""" , """self_attn_layer_norm""" ) __snake_case : str = k.replace("""norm2""" , """encoder_attn_layer_norm""" ) __snake_case : Optional[int] = k.replace("""norm3""" , """final_layer_norm""" ) return k def _a ( _lowerCamelCase ) -> Any: """simple docstring""" __snake_case : Optional[int] = [ """model.encoder.layernorm_embedding.weight""", """model.encoder.layernorm_embedding.bias""", """model.decoder.layernorm_embedding.weight""", """model.decoder.layernorm_embedding.bias""", ] for k in keys: __snake_case : Optional[Any] = sd.pop(_lowerCamelCase ) __snake_case : List[str] = k.replace("""layernorm_embedding""" , """layer_norm""" ) assert new_k not in sd __snake_case : Union[str, Any] = v __UpperCamelCase = ["START"] @torch.no_grad() def _a ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> Dict: """simple docstring""" __snake_case : Optional[int] = torch.load(_lowerCamelCase , map_location="""cpu""" ) __snake_case : Dict = model["""model"""] __snake_case : Optional[int] = BlenderbotConfig.from_json_file(_lowerCamelCase ) __snake_case : Union[str, Any] = BlenderbotForConditionalGeneration(_lowerCamelCase ) __snake_case : List[Any] = m.model.state_dict().keys() __snake_case : int = [] __snake_case : Union[str, Any] = {} for k, v in sd.items(): if k in IGNORE_KEYS: continue __snake_case : Optional[int] = rename_state_dict_key(_lowerCamelCase ) if new_k not in valid_keys: failures.append([k, new_k] ) else: __snake_case : str = v if cfg.normalize_before: # Blenderbot-3B checkpoints. Rename layernorm_embedding -> layer_norm rename_layernorm_keys(_lowerCamelCase ) m.model.load_state_dict(_lowerCamelCase , strict=_lowerCamelCase ) m.half() m.save_pretrained(_lowerCamelCase ) if __name__ == "__main__": __UpperCamelCase = argparse.ArgumentParser() # Required parameters parser.add_argument("--src_path", type=str, help="like blenderbot-model.bin") parser.add_argument("--save_dir", default="hf_blenderbot", type=str, help="Where to save converted model.") parser.add_argument( "--hf_config_json", default="blenderbot-3b-config.json", type=str, help="Path to config to use" ) __UpperCamelCase = parser.parse_args() convert_parlai_checkpoint(args.src_path, args.save_dir, args.hf_config_json)
26
1
'''simple docstring''' def _a ( _lowerCamelCase = 400_0000 ) -> int: """simple docstring""" __snake_case : str = [0, 1] __snake_case : Optional[int] = 0 while fib[i] <= n: fib.append(fib[i] + fib[i + 1] ) if fib[i + 2] > n: break i += 1 __snake_case : Tuple = 0 for j in range(len(_lowerCamelCase ) - 1 ): if fib[j] % 2 == 0: total += fib[j] return total if __name__ == "__main__": print(f"""{solution() = }""")
26
'''simple docstring''' import argparse import os import re import packaging.version __UpperCamelCase = "examples/" __UpperCamelCase = { "examples": (re.compile(R"^check_min_version\(\"[^\"]+\"\)\s*$", re.MULTILINE), "check_min_version(\"VERSION\")\n"), "init": (re.compile(R"^__version__\s+=\s+\"([^\"]+)\"\s*$", re.MULTILINE), "__version__ = \"VERSION\"\n"), "setup": (re.compile(R"^(\s*)version\s*=\s*\"[^\"]+\",", re.MULTILINE), R"\1version=\"VERSION\","), "doc": (re.compile(R"^(\s*)release\s*=\s*\"[^\"]+\"$", re.MULTILINE), "release = \"VERSION\"\n"), } __UpperCamelCase = { "init": "src/transformers/__init__.py", "setup": "setup.py", } __UpperCamelCase = "README.md" def _a ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> Tuple: """simple docstring""" with open(_lowerCamelCase , """r""" , encoding="""utf-8""" , newline="""\n""" ) as f: __snake_case : Union[str, Any] = f.read() __snake_case , __snake_case : List[Any] = REPLACE_PATTERNS[pattern] __snake_case : Optional[Any] = replace.replace("""VERSION""" , _lowerCamelCase ) __snake_case : Optional[Any] = re_pattern.sub(_lowerCamelCase , _lowerCamelCase ) with open(_lowerCamelCase , """w""" , encoding="""utf-8""" , newline="""\n""" ) as f: f.write(_lowerCamelCase ) def _a ( _lowerCamelCase ) -> Union[str, Any]: """simple docstring""" for folder, directories, fnames in os.walk(_lowerCamelCase ): # Removing some of the folders with non-actively maintained examples from the walk if "research_projects" in directories: directories.remove("""research_projects""" ) if "legacy" in directories: directories.remove("""legacy""" ) for fname in fnames: if fname.endswith(""".py""" ): update_version_in_file(os.path.join(_lowerCamelCase , _lowerCamelCase ) , _lowerCamelCase , pattern="""examples""" ) def _a ( _lowerCamelCase , _lowerCamelCase=False ) -> str: """simple docstring""" for pattern, fname in REPLACE_FILES.items(): update_version_in_file(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) if not patch: update_version_in_examples(_lowerCamelCase ) def _a ( ) -> Optional[int]: """simple docstring""" __snake_case : str = """🤗 Transformers currently provides the following architectures""" __snake_case : List[Any] = """1. Want to contribute a new model?""" with open(_lowerCamelCase , """r""" , encoding="""utf-8""" , newline="""\n""" ) as f: __snake_case : List[str] = f.readlines() # Find the start of the list. __snake_case : Optional[Any] = 0 while not lines[start_index].startswith(_start_prompt ): start_index += 1 start_index += 1 __snake_case : int = start_index # Update the lines in the model list. while not lines[index].startswith(_end_prompt ): if lines[index].startswith("""1.""" ): __snake_case : Optional[Any] = lines[index].replace( """https://huggingface.co/docs/transformers/main/model_doc""" , """https://huggingface.co/docs/transformers/model_doc""" , ) index += 1 with open(_lowerCamelCase , """w""" , encoding="""utf-8""" , newline="""\n""" ) as f: f.writelines(_lowerCamelCase ) def _a ( ) -> Union[str, Any]: """simple docstring""" with open(REPLACE_FILES["""init"""] , """r""" ) as f: __snake_case : List[Any] = f.read() __snake_case : str = REPLACE_PATTERNS["""init"""][0].search(_lowerCamelCase ).groups()[0] return packaging.version.parse(_lowerCamelCase ) def _a ( _lowerCamelCase=False ) -> int: """simple docstring""" __snake_case : List[Any] = get_version() if patch and default_version.is_devrelease: raise ValueError("""Can't create a patch version from the dev branch, checkout a released version!""" ) if default_version.is_devrelease: __snake_case : str = default_version.base_version elif patch: __snake_case : Optional[int] = F'''{default_version.major}.{default_version.minor}.{default_version.micro + 1}''' else: __snake_case : Dict = F'''{default_version.major}.{default_version.minor + 1}.0''' # Now let's ask nicely if that's the right one. __snake_case : Dict = input(F'''Which version are you releasing? [{default_version}]''' ) if len(_lowerCamelCase ) == 0: __snake_case : Any = default_version print(F'''Updating version to {version}.''' ) global_version_update(_lowerCamelCase , patch=_lowerCamelCase ) if not patch: print("""Cleaning main README, don't forget to run `make fix-copies`.""" ) clean_main_ref_in_model_list() def _a ( ) -> Tuple: """simple docstring""" __snake_case : Optional[Any] = get_version() __snake_case : Tuple = F'''{current_version.major}.{current_version.minor + 1}.0.dev0''' __snake_case : Union[str, Any] = current_version.base_version # Check with the user we got that right. __snake_case : int = input(F'''Which version are we developing now? [{dev_version}]''' ) if len(_lowerCamelCase ) == 0: __snake_case : Optional[int] = dev_version print(F'''Updating version to {version}.''' ) global_version_update(_lowerCamelCase ) print("""Cleaning main README, don't forget to run `make fix-copies`.""" ) clean_main_ref_in_model_list() if __name__ == "__main__": __UpperCamelCase = argparse.ArgumentParser() parser.add_argument("--post_release", action="store_true", help="Whether this is pre or post release.") parser.add_argument("--patch", action="store_true", help="Whether or not this is a patch release.") __UpperCamelCase = parser.parse_args() if not args.post_release: pre_release_work(patch=args.patch) elif args.patch: print("Nothing to do after a patch :-)") else: post_release_work()
26
1
'''simple docstring''' def _a ( _lowerCamelCase ) -> float: """simple docstring""" __snake_case : Tuple = 0 while len(_lowerCamelCase ) > 1: __snake_case : List[str] = 0 # Consider two files with minimum cost to be merged for _ in range(2 ): __snake_case : Optional[Any] = files.index(min(_lowerCamelCase ) ) temp += files[min_index] files.pop(_lowerCamelCase ) files.append(_lowerCamelCase ) optimal_merge_cost += temp return optimal_merge_cost if __name__ == "__main__": import doctest doctest.testmod()
26
'''simple docstring''' from unittest import TestCase from datasets import Sequence, Value from datasets.arrow_dataset import Dataset class _A ( __lowercase ): def lowercase__ ( self : Any ) -> str: """simple docstring""" return [ {"col_1": 3, "col_2": "a"}, {"col_1": 2, "col_2": "b"}, {"col_1": 1, "col_2": "c"}, {"col_1": 0, "col_2": "d"}, ] def lowercase__ ( self : str ) -> int: """simple docstring""" __snake_case : Union[str, Any] = {"""col_1""": [3, 2, 1, 0], """col_2""": ["""a""", """b""", """c""", """d"""]} return Dataset.from_dict(__magic_name__ ) def lowercase__ ( self : str ) -> List[Any]: """simple docstring""" __snake_case : Any = self._create_example_records() __snake_case : str = Dataset.from_list(__magic_name__ ) self.assertListEqual(dset.column_names , ["""col_1""", """col_2"""] ) for i, r in enumerate(__magic_name__ ): self.assertDictEqual(__magic_name__ , example_records[i] ) def lowercase__ ( self : Optional[Any] ) -> List[Any]: """simple docstring""" __snake_case : List[Any] = self._create_example_records() __snake_case : Dict = Dataset.from_list(__magic_name__ ) __snake_case : List[Any] = Dataset.from_dict({k: [r[k] for r in example_records] for k in example_records[0]} ) self.assertEqual(dset.info , dset_from_dict.info ) def lowercase__ ( self : str ) -> List[Any]: # checks what happens with missing columns """simple docstring""" __snake_case : Union[str, Any] = [{"""col_1""": 1}, {"""col_2""": """x"""}] __snake_case : Optional[int] = Dataset.from_list(__magic_name__ ) self.assertDictEqual(dset[0] , {"""col_1""": 1} ) self.assertDictEqual(dset[1] , {"""col_1""": None} ) # NB: first record is used for columns def lowercase__ ( self : List[str] ) -> Optional[Any]: # checks if the type can be inferred from the second record """simple docstring""" __snake_case : List[Any] = [{"""col_1""": []}, {"""col_1""": [1, 2]}] __snake_case : int = Dataset.from_list(__magic_name__ ) self.assertEqual(dset.info.features["""col_1"""] , Sequence(Value("""int64""" ) ) ) def lowercase__ ( self : int ) -> Union[str, Any]: """simple docstring""" __snake_case : Tuple = Dataset.from_list([] ) self.assertEqual(len(__magic_name__ ) , 0 ) self.assertListEqual(dset.column_names , [] )
26
1
'''simple docstring''' def _a ( _lowerCamelCase , _lowerCamelCase ) -> List[Any]: """simple docstring""" __snake_case : Optional[Any] = [0 for i in range(r + 1 )] # nc0 = 1 __snake_case : Optional[Any] = 1 for i in range(1 , n + 1 ): # to compute current row from previous row. __snake_case : Optional[Any] = min(_lowerCamelCase , _lowerCamelCase ) while j > 0: c[j] += c[j - 1] j -= 1 return c[r] print(binomial_coefficient(n=10, r=5))
26
'''simple docstring''' import inspect import unittest import torch import torch.nn as nn from accelerate.hooks import ( AlignDevicesHook, ModelHook, SequentialHook, add_hook_to_module, attach_align_device_hook, remove_hook_from_module, remove_hook_from_submodules, ) from accelerate.test_utils import require_multi_gpu class _A ( nn.Module ): def __init__( self : List[str] ) -> Optional[Any]: """simple docstring""" super().__init__() __snake_case : List[Any] = nn.Linear(3 , 4 ) __snake_case : str = nn.BatchNormad(4 ) __snake_case : Optional[Any] = nn.Linear(4 , 5 ) def lowercase__ ( self : str , __magic_name__ : Dict ) -> List[str]: """simple docstring""" return self.lineara(self.batchnorm(self.lineara(__magic_name__ ) ) ) class _A ( __lowercase ): def lowercase__ ( self : List[str] , __magic_name__ : Tuple , *__magic_name__ : Dict , **__magic_name__ : Optional[Any] ) -> Tuple: """simple docstring""" return (args[0] + 1,) + args[1:], kwargs class _A ( __lowercase ): def lowercase__ ( self : str , __magic_name__ : Union[str, Any] , __magic_name__ : Tuple ) -> Union[str, Any]: """simple docstring""" return output + 1 class _A ( unittest.TestCase ): def lowercase__ ( self : Dict ) -> Any: """simple docstring""" __snake_case : int = ModelForTest() __snake_case : Tuple = ModelHook() add_hook_to_module(__magic_name__ , __magic_name__ ) self.assertEqual(test_model._hf_hook , __magic_name__ ) self.assertTrue(hasattr(__magic_name__ , """_old_forward""" ) ) # Check adding the hook did not change the name or the signature self.assertEqual(test_model.forward.__name__ , """forward""" ) self.assertListEqual(list(inspect.signature(test_model.forward ).parameters ) , ["""x"""] ) remove_hook_from_module(__magic_name__ ) self.assertFalse(hasattr(__magic_name__ , """_hf_hook""" ) ) self.assertFalse(hasattr(__magic_name__ , """_old_forward""" ) ) def lowercase__ ( self : Tuple ) -> List[str]: """simple docstring""" __snake_case : List[Any] = ModelForTest() __snake_case : Optional[int] = ModelHook() add_hook_to_module(__magic_name__ , __magic_name__ ) add_hook_to_module(__magic_name__ , __magic_name__ , append=__magic_name__ ) self.assertEqual(isinstance(test_model._hf_hook , __magic_name__ ) , __magic_name__ ) self.assertEqual(len(test_model._hf_hook.hooks ) , 2 ) self.assertTrue(hasattr(__magic_name__ , """_old_forward""" ) ) # Check adding the hook did not change the name or the signature self.assertEqual(test_model.forward.__name__ , """forward""" ) self.assertListEqual(list(inspect.signature(test_model.forward ).parameters ) , ["""x"""] ) remove_hook_from_module(__magic_name__ ) self.assertFalse(hasattr(__magic_name__ , """_hf_hook""" ) ) self.assertFalse(hasattr(__magic_name__ , """_old_forward""" ) ) def lowercase__ ( self : str ) -> Union[str, Any]: """simple docstring""" __snake_case : List[Any] = ModelForTest() __snake_case : Any = torch.randn(2 , 3 ) __snake_case : str = test_model(x + 1 ) __snake_case : int = test_model(x + 2 ) __snake_case : Union[str, Any] = PreForwardHook() add_hook_to_module(__magic_name__ , __magic_name__ ) __snake_case : int = test_model(__magic_name__ ) self.assertTrue(torch.allclose(__magic_name__ , __magic_name__ , atol=1E-5 ) ) # Attaching a hook to a model when it already has one replaces, does not chain __snake_case : Optional[int] = PreForwardHook() add_hook_to_module(__magic_name__ , __magic_name__ ) __snake_case : List[Any] = test_model(__magic_name__ ) self.assertTrue(torch.allclose(__magic_name__ , __magic_name__ , atol=1E-5 ) ) # You need to use the sequential hook to chain two or more hooks __snake_case : Optional[int] = SequentialHook(PreForwardHook() , PreForwardHook() ) add_hook_to_module(__magic_name__ , __magic_name__ ) __snake_case : List[str] = test_model(__magic_name__ ) assert torch.allclose(__magic_name__ , __magic_name__ , atol=1E-5 ) def lowercase__ ( self : Union[str, Any] ) -> List[str]: """simple docstring""" __snake_case : Union[str, Any] = ModelForTest() __snake_case : str = torch.randn(2 , 3 ) __snake_case : Any = test_model(__magic_name__ ) __snake_case : Any = PostForwardHook() add_hook_to_module(__magic_name__ , __magic_name__ ) __snake_case : Any = test_model(__magic_name__ ) self.assertTrue(torch.allclose(__magic_name__ , output + 1 , atol=1E-5 ) ) # Attaching a hook to a model when it already has one replaces, does not chain __snake_case : Any = PostForwardHook() add_hook_to_module(__magic_name__ , __magic_name__ ) __snake_case : Dict = test_model(__magic_name__ ) self.assertTrue(torch.allclose(__magic_name__ , output + 1 , atol=1E-5 ) ) # You need to use the sequential hook to chain two or more hooks __snake_case : str = SequentialHook(PostForwardHook() , PostForwardHook() ) add_hook_to_module(__magic_name__ , __magic_name__ ) __snake_case : int = test_model(__magic_name__ ) assert torch.allclose(__magic_name__ , output + 2 , atol=1E-5 ) def lowercase__ ( self : str ) -> int: """simple docstring""" __snake_case : Union[str, Any] = ModelForTest() __snake_case : int = torch.randn(2 , 3 ) __snake_case : Any = test_model(__magic_name__ ) __snake_case : Dict = PostForwardHook() add_hook_to_module(__magic_name__ , __magic_name__ ) __snake_case : List[Any] = test_model(__magic_name__ ) self.assertTrue(torch.allclose(__magic_name__ , output + 1 ) ) self.assertTrue(outputa.requires_grad ) __snake_case : Dict = True __snake_case : int = test_model(__magic_name__ ) self.assertFalse(outputa.requires_grad ) @require_multi_gpu def lowercase__ ( self : Tuple ) -> List[Any]: """simple docstring""" __snake_case : Tuple = ModelForTest() # Everything is on CPU self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) ) self.assertEqual(model.batchnorm.weight.device , torch.device("""cpu""" ) ) self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) ) # This will move each submodule on different devices add_hook_to_module(model.lineara , AlignDevicesHook(execution_device=0 ) ) add_hook_to_module(model.batchnorm , AlignDevicesHook(execution_device=0 ) ) add_hook_to_module(model.lineara , AlignDevicesHook(execution_device=1 ) ) self.assertEqual(model.lineara.weight.device , torch.device(0 ) ) self.assertEqual(model.batchnorm.weight.device , torch.device(0 ) ) self.assertEqual(model.batchnorm.running_mean.device , torch.device(0 ) ) self.assertEqual(model.lineara.weight.device , torch.device(1 ) ) # We can still make a forward pass. The input does not need to be on any particular device __snake_case : Tuple = torch.randn(2 , 3 ) __snake_case : Union[str, Any] = model(__magic_name__ ) self.assertEqual(output.device , torch.device(1 ) ) # We can add a general hook to put back output on same device as input. add_hook_to_module(__magic_name__ , AlignDevicesHook(io_same_device=__magic_name__ ) ) __snake_case : Tuple = torch.randn(2 , 3 ).to(0 ) __snake_case : Any = model(__magic_name__ ) self.assertEqual(output.device , torch.device(0 ) ) def lowercase__ ( self : Union[str, Any] ) -> str: """simple docstring""" __snake_case : int = ModelForTest() # Everything is on CPU self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) ) self.assertEqual(model.batchnorm.weight.device , torch.device("""cpu""" ) ) self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) ) # This will move each submodule on different devices __snake_case : List[str] = {"""execution_device""": 0 if torch.cuda.is_available() else """cpu""", """offload""": True} add_hook_to_module(model.lineara , AlignDevicesHook(**__magic_name__ ) ) add_hook_to_module(model.batchnorm , AlignDevicesHook(**__magic_name__ ) ) add_hook_to_module(model.lineara , AlignDevicesHook(**__magic_name__ ) ) # Parameters have been offloaded, so on the meta device self.assertEqual(model.lineara.weight.device , torch.device("""meta""" ) ) self.assertEqual(model.batchnorm.weight.device , torch.device("""meta""" ) ) self.assertEqual(model.lineara.weight.device , torch.device("""meta""" ) ) # Buffers are not included in the offload by default, so are on the execution device __snake_case : Any = torch.device(hook_kwargs["""execution_device"""] ) self.assertEqual(model.batchnorm.running_mean.device , __magic_name__ ) __snake_case : Dict = torch.randn(2 , 3 ) __snake_case : Any = model(__magic_name__ ) self.assertEqual(output.device , __magic_name__ ) # Removing hooks loads back the weights in the model. remove_hook_from_module(model.lineara ) remove_hook_from_module(model.batchnorm ) remove_hook_from_module(model.lineara ) self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) ) self.assertEqual(model.batchnorm.weight.device , torch.device("""cpu""" ) ) self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) ) # Now test with buffers included in the offload __snake_case : int = { """execution_device""": 0 if torch.cuda.is_available() else """cpu""", """offload""": True, """offload_buffers""": True, } add_hook_to_module(model.lineara , AlignDevicesHook(**__magic_name__ ) ) add_hook_to_module(model.batchnorm , AlignDevicesHook(**__magic_name__ ) ) add_hook_to_module(model.lineara , AlignDevicesHook(**__magic_name__ ) ) # Parameters have been offloaded, so on the meta device, buffers included self.assertEqual(model.lineara.weight.device , torch.device("""meta""" ) ) self.assertEqual(model.batchnorm.weight.device , torch.device("""meta""" ) ) self.assertEqual(model.lineara.weight.device , torch.device("""meta""" ) ) self.assertEqual(model.batchnorm.running_mean.device , torch.device("""meta""" ) ) __snake_case : str = torch.randn(2 , 3 ) __snake_case : str = model(__magic_name__ ) self.assertEqual(output.device , __magic_name__ ) # Removing hooks loads back the weights in the model. remove_hook_from_module(model.lineara ) remove_hook_from_module(model.batchnorm ) remove_hook_from_module(model.lineara ) self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) ) self.assertEqual(model.batchnorm.weight.device , torch.device("""cpu""" ) ) self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) ) def lowercase__ ( self : Dict ) -> str: """simple docstring""" __snake_case : Tuple = ModelForTest() # Everything is on CPU self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) ) self.assertEqual(model.batchnorm.weight.device , torch.device("""cpu""" ) ) self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) ) # This will move each submodule on different devices __snake_case : Union[str, Any] = 0 if torch.cuda.is_available() else """cpu""" attach_align_device_hook(__magic_name__ , execution_device=__magic_name__ , offload=__magic_name__ ) # Parameters have been offloaded, so on the meta device self.assertEqual(model.lineara.weight.device , torch.device("""meta""" ) ) self.assertEqual(model.batchnorm.weight.device , torch.device("""meta""" ) ) self.assertEqual(model.lineara.weight.device , torch.device("""meta""" ) ) # Buffers are not included in the offload by default, so are on the execution device __snake_case : Union[str, Any] = torch.device(__magic_name__ ) self.assertEqual(model.batchnorm.running_mean.device , __magic_name__ ) __snake_case : Optional[int] = torch.randn(2 , 3 ) __snake_case : Dict = model(__magic_name__ ) self.assertEqual(output.device , __magic_name__ ) # Removing hooks loads back the weights in the model. remove_hook_from_submodules(__magic_name__ ) self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) ) self.assertEqual(model.batchnorm.weight.device , torch.device("""cpu""" ) ) self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) ) # Now test with buffers included in the offload attach_align_device_hook(__magic_name__ , execution_device=__magic_name__ , offload=__magic_name__ , offload_buffers=__magic_name__ ) # Parameters have been offloaded, so on the meta device, buffers included self.assertEqual(model.lineara.weight.device , torch.device("""meta""" ) ) self.assertEqual(model.batchnorm.weight.device , torch.device("""meta""" ) ) self.assertEqual(model.lineara.weight.device , torch.device("""meta""" ) ) self.assertEqual(model.batchnorm.running_mean.device , torch.device("""meta""" ) ) __snake_case : Dict = torch.randn(2 , 3 ) __snake_case : Optional[int] = model(__magic_name__ ) self.assertEqual(output.device , __magic_name__ ) # Removing hooks loads back the weights in the model. remove_hook_from_submodules(__magic_name__ ) self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) ) self.assertEqual(model.batchnorm.weight.device , torch.device("""cpu""" ) ) self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) ) def lowercase__ ( self : Any ) -> Union[str, Any]: """simple docstring""" __snake_case : Any = ModelForTest() # Everything is on CPU self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) ) self.assertEqual(model.batchnorm.weight.device , torch.device("""cpu""" ) ) self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) ) # This will move each submodule on different devices __snake_case : str = 0 if torch.cuda.is_available() else """cpu""" attach_align_device_hook( __magic_name__ , execution_device=__magic_name__ , offload=__magic_name__ , weights_map=model.state_dict() ) # Parameters have been offloaded, so on the meta device self.assertEqual(model.lineara.weight.device , torch.device("""meta""" ) ) self.assertEqual(model.batchnorm.weight.device , torch.device("""meta""" ) ) self.assertEqual(model.lineara.weight.device , torch.device("""meta""" ) ) # Buffers are not included in the offload by default, so are on the execution device __snake_case : List[str] = torch.device(__magic_name__ ) self.assertEqual(model.batchnorm.running_mean.device , __magic_name__ ) __snake_case : Tuple = torch.randn(2 , 3 ) __snake_case : Optional[Any] = model(__magic_name__ ) self.assertEqual(output.device , __magic_name__ ) # Removing hooks loads back the weights in the model. remove_hook_from_submodules(__magic_name__ ) self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) ) self.assertEqual(model.batchnorm.weight.device , torch.device("""cpu""" ) ) self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) ) # Now test with buffers included in the offload attach_align_device_hook( __magic_name__ , execution_device=__magic_name__ , offload=__magic_name__ , weights_map=model.state_dict() , offload_buffers=__magic_name__ , ) # Parameters have been offloaded, so on the meta device, buffers included self.assertEqual(model.lineara.weight.device , torch.device("""meta""" ) ) self.assertEqual(model.batchnorm.weight.device , torch.device("""meta""" ) ) self.assertEqual(model.lineara.weight.device , torch.device("""meta""" ) ) self.assertEqual(model.batchnorm.running_mean.device , torch.device("""meta""" ) ) __snake_case : List[str] = torch.randn(2 , 3 ) __snake_case : Dict = model(__magic_name__ ) self.assertEqual(output.device , __magic_name__ ) # Removing hooks loads back the weights in the model. remove_hook_from_submodules(__magic_name__ ) self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) ) self.assertEqual(model.batchnorm.weight.device , torch.device("""cpu""" ) ) self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) )
26
1
'''simple docstring''' from __future__ import annotations import numpy as np def _a ( _lowerCamelCase ) -> tuple[np.ndarray, np.ndarray]: """simple docstring""" __snake_case , __snake_case : Optional[Any] = np.shape(_lowerCamelCase ) if rows != columns: __snake_case : int = ( """'table' has to be of square shaped array but got a """ F'''{rows}x{columns} array:\n{table}''' ) raise ValueError(_lowerCamelCase ) __snake_case : Any = np.zeros((rows, columns) ) __snake_case : List[Any] = np.zeros((rows, columns) ) for i in range(_lowerCamelCase ): for j in range(_lowerCamelCase ): __snake_case : Optional[Any] = sum(lower[i][k] * upper[k][j] for k in range(_lowerCamelCase ) ) if upper[j][j] == 0: raise ArithmeticError("""No LU decomposition exists""" ) __snake_case : Optional[Any] = (table[i][j] - total) / upper[j][j] __snake_case : List[str] = 1 for j in range(_lowerCamelCase , _lowerCamelCase ): __snake_case : Tuple = sum(lower[i][k] * upper[k][j] for k in range(_lowerCamelCase ) ) __snake_case : Optional[int] = table[i][j] - total return lower, upper if __name__ == "__main__": import doctest doctest.testmod()
26
'''simple docstring''' from __future__ import annotations __UpperCamelCase = [ [-1, 0], # left [0, -1], # down [1, 0], # right [0, 1], # up ] def _a ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , ) -> tuple[list[list[int]], list[list[int]]]: """simple docstring""" __snake_case : List[str] = [ [0 for col in range(len(grid[0] ) )] for row in range(len(_lowerCamelCase ) ) ] # the reference grid __snake_case : Tuple = 1 __snake_case : List[str] = [ [0 for col in range(len(grid[0] ) )] for row in range(len(_lowerCamelCase ) ) ] # the action grid __snake_case : List[str] = init[0] __snake_case : str = init[1] __snake_case : int = 0 __snake_case : int = g + heuristic[x][y] # cost from starting cell to destination cell __snake_case : List[str] = [[f, g, x, y]] __snake_case : Any = False # flag that is set when search is complete __snake_case : int = False # flag set if we can't find expand while not found and not resign: if len(_lowerCamelCase ) == 0: raise ValueError("""Algorithm is unable to find solution""" ) else: # to choose the least costliest action so as to move closer to the goal cell.sort() cell.reverse() __snake_case : Tuple = cell.pop() __snake_case : Optional[int] = next_cell[2] __snake_case : List[Any] = next_cell[3] __snake_case : int = next_cell[1] if x == goal[0] and y == goal[1]: __snake_case : Optional[Any] = True else: for i in range(len(_lowerCamelCase ) ): # to try out different valid actions __snake_case : Union[str, Any] = x + DIRECTIONS[i][0] __snake_case : str = y + DIRECTIONS[i][1] if xa >= 0 and xa < len(_lowerCamelCase ) and ya >= 0 and ya < len(grid[0] ): if closed[xa][ya] == 0 and grid[xa][ya] == 0: __snake_case : str = g + cost __snake_case : Tuple = ga + heuristic[xa][ya] cell.append([fa, ga, xa, ya] ) __snake_case : List[str] = 1 __snake_case : Optional[int] = i __snake_case : List[str] = [] __snake_case : Optional[int] = goal[0] __snake_case : List[Any] = goal[1] invpath.append([x, y] ) # we get the reverse path from here while x != init[0] or y != init[1]: __snake_case : Dict = x - DIRECTIONS[action[x][y]][0] __snake_case : int = y - DIRECTIONS[action[x][y]][1] __snake_case : Optional[int] = xa __snake_case : int = ya invpath.append([x, y] ) __snake_case : Optional[int] = [] for i in range(len(_lowerCamelCase ) ): path.append(invpath[len(_lowerCamelCase ) - 1 - i] ) return path, action if __name__ == "__main__": __UpperCamelCase = [ [0, 1, 0, 0, 0, 0], [0, 1, 0, 0, 0, 0], # 0 are free path whereas 1's are obstacles [0, 1, 0, 0, 0, 0], [0, 1, 0, 0, 1, 0], [0, 0, 0, 0, 1, 0], ] __UpperCamelCase = [0, 0] # all coordinates are given in format [y,x] __UpperCamelCase = [len(grid) - 1, len(grid[0]) - 1] __UpperCamelCase = 1 # the cost map which pushes the path closer to the goal __UpperCamelCase = [[0 for row in range(len(grid[0]))] for col in range(len(grid))] for i in range(len(grid)): for j in range(len(grid[0])): __UpperCamelCase = abs(i - goal[0]) + abs(j - goal[1]) if grid[i][j] == 1: # added extra penalty in the heuristic map __UpperCamelCase = 99 __UpperCamelCase , __UpperCamelCase = search(grid, init, goal, cost, heuristic) print("ACTION MAP") for i in range(len(action)): print(action[i]) for i in range(len(path)): print(path[i])
26
1
'''simple docstring''' def _a ( _lowerCamelCase = 1000 ) -> int: """simple docstring""" __snake_case : List[str] = -1 __snake_case : List[str] = 0 for a in range(1 , n // 3 ): # Solving the two equations a**2+b**2=c**2 and a+b+c=N eliminating c __snake_case : List[Any] = (n * n - 2 * a * n) // (2 * n - 2 * a) __snake_case : Any = n - a - b if c * c == (a * a + b * b): __snake_case : Any = a * b * c if candidate >= product: __snake_case : Union[str, Any] = candidate return product if __name__ == "__main__": print(f"""{solution() = }""")
26
'''simple docstring''' def _a ( _lowerCamelCase ) -> int: """simple docstring""" if not isinstance(_lowerCamelCase , _lowerCamelCase ): raise TypeError("""only integers accepted as input""" ) else: __snake_case : List[Any] = str(abs(_lowerCamelCase ) ) __snake_case : Union[str, Any] = [list(_lowerCamelCase ) for char in range(len(_lowerCamelCase ) )] for index in range(len(_lowerCamelCase ) ): num_transpositions[index].pop(_lowerCamelCase ) return max( int("""""".join(list(_lowerCamelCase ) ) ) for transposition in num_transpositions ) if __name__ == "__main__": __import__("doctest").testmod()
26
1
'''simple docstring''' import enum import warnings from ..tokenization_utils import TruncationStrategy from ..utils import add_end_docstrings, is_tf_available, is_torch_available, logging from .base import PIPELINE_INIT_ARGS, Pipeline if is_tf_available(): import tensorflow as tf from ..models.auto.modeling_tf_auto import TF_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING if is_torch_available(): from ..models.auto.modeling_auto import MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING __UpperCamelCase = logging.get_logger(__name__) class _A ( enum.Enum ): lowercase__: List[str] = 0 lowercase__: List[Any] = 1 @add_end_docstrings(__lowercase ) class _A ( __lowercase ): lowercase__: str = '''generated''' def __init__( self : Any , *__magic_name__ : Optional[int] , **__magic_name__ : Any ) -> Optional[Any]: """simple docstring""" super().__init__(*__magic_name__ , **__magic_name__ ) self.check_model_type( TF_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING if self.framework == """tf""" else MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING ) def lowercase__ ( self : List[str] , __magic_name__ : List[str]=None , __magic_name__ : Tuple=None , __magic_name__ : Tuple=None , __magic_name__ : Any=None , __magic_name__ : int=None , __magic_name__ : Any=None , **__magic_name__ : str , ) -> Any: """simple docstring""" __snake_case : Any = {} if truncation is not None: __snake_case : List[str] = truncation __snake_case : Optional[Any] = generate_kwargs __snake_case : Dict = {} if return_tensors is not None and return_type is None: __snake_case : int = ReturnType.TENSORS if return_tensors else ReturnType.TEXT if return_type is not None: __snake_case : Any = return_type if clean_up_tokenization_spaces is not None: __snake_case : Optional[int] = clean_up_tokenization_spaces if stop_sequence is not None: __snake_case : Tuple = self.tokenizer.encode(__magic_name__ , add_special_tokens=__magic_name__ ) if len(__magic_name__ ) > 1: warnings.warn( """Stopping on a multiple token sequence is not yet supported on transformers. The first token of""" """ the stop sequence will be used as the stop sequence string in the interim.""" ) __snake_case : Optional[int] = stop_sequence_ids[0] return preprocess_params, forward_params, postprocess_params def lowercase__ ( self : List[Any] , __magic_name__ : int , __magic_name__ : int , __magic_name__ : int ) -> List[Any]: """simple docstring""" return True def lowercase__ ( self : List[Any] , *__magic_name__ : Union[str, Any] , __magic_name__ : Optional[int] ) -> Optional[Any]: """simple docstring""" __snake_case : List[str] = self.model.config.prefix if self.model.config.prefix is not None else """""" if isinstance(args[0] , __magic_name__ ): if self.tokenizer.pad_token_id is None: raise ValueError("""Please make sure that the tokenizer has a pad_token_id when using a batch input""" ) __snake_case : List[str] = ([prefix + arg for arg in args[0]],) __snake_case : Dict = True elif isinstance(args[0] , __magic_name__ ): __snake_case : List[str] = (prefix + args[0],) __snake_case : Union[str, Any] = False else: raise ValueError( f''' `args[0]`: {args[0]} have the wrong format. The should be either of type `str` or type `list`''' ) __snake_case : Dict = self.tokenizer(*__magic_name__ , padding=__magic_name__ , truncation=__magic_name__ , return_tensors=self.framework ) # This is produced by tokenizers but is an invalid generate kwargs if "token_type_ids" in inputs: del inputs["token_type_ids"] return inputs def __call__( self : Any , *__magic_name__ : Optional[int] , **__magic_name__ : Dict ) -> Optional[int]: """simple docstring""" __snake_case : List[Any] = super().__call__(*__magic_name__ , **__magic_name__ ) if ( isinstance(args[0] , __magic_name__ ) and all(isinstance(__magic_name__ , __magic_name__ ) for el in args[0] ) and all(len(__magic_name__ ) == 1 for res in result ) ): return [res[0] for res in result] return result def lowercase__ ( self : Optional[int] , __magic_name__ : Optional[Any] , __magic_name__ : str=TruncationStrategy.DO_NOT_TRUNCATE , **__magic_name__ : str ) -> str: """simple docstring""" __snake_case : Dict = self._parse_and_tokenize(__magic_name__ , truncation=__magic_name__ , **__magic_name__ ) return inputs def lowercase__ ( self : Optional[Any] , __magic_name__ : Any , **__magic_name__ : List[str] ) -> Any: """simple docstring""" if self.framework == "pt": __snake_case , __snake_case : str = model_inputs["""input_ids"""].shape elif self.framework == "tf": __snake_case , __snake_case : Optional[int] = tf.shape(model_inputs["""input_ids"""] ).numpy() __snake_case : List[str] = generate_kwargs.get("""min_length""" , self.model.config.min_length ) __snake_case : Optional[Any] = generate_kwargs.get("""max_length""" , self.model.config.max_length ) self.check_inputs(__magic_name__ , generate_kwargs["""min_length"""] , generate_kwargs["""max_length"""] ) __snake_case : Union[str, Any] = self.model.generate(**__magic_name__ , **__magic_name__ ) __snake_case : Optional[int] = output_ids.shape[0] if self.framework == "pt": __snake_case : Union[str, Any] = output_ids.reshape(__magic_name__ , out_b // in_b , *output_ids.shape[1:] ) elif self.framework == "tf": __snake_case : Tuple = tf.reshape(__magic_name__ , (in_b, out_b // in_b, *output_ids.shape[1:]) ) return {"output_ids": output_ids} def lowercase__ ( self : str , __magic_name__ : Union[str, Any] , __magic_name__ : Any=ReturnType.TEXT , __magic_name__ : Dict=False ) -> Any: """simple docstring""" __snake_case : Union[str, Any] = [] for output_ids in model_outputs["output_ids"][0]: if return_type == ReturnType.TENSORS: __snake_case : Optional[int] = {f'''{self.return_name}_token_ids''': output_ids} elif return_type == ReturnType.TEXT: __snake_case : Optional[int] = { f'''{self.return_name}_text''': self.tokenizer.decode( __magic_name__ , skip_special_tokens=__magic_name__ , clean_up_tokenization_spaces=__magic_name__ , ) } records.append(__magic_name__ ) return records @add_end_docstrings(__lowercase ) class _A ( __lowercase ): lowercase__: Optional[int] = '''summary''' def __call__( self : Tuple , *__magic_name__ : Any , **__magic_name__ : str ) -> Any: """simple docstring""" return super().__call__(*__magic_name__ , **__magic_name__ ) def lowercase__ ( self : int , __magic_name__ : int , __magic_name__ : int , __magic_name__ : int ) -> bool: """simple docstring""" if max_length < min_length: logger.warning(f'''Your min_length={min_length} must be inferior than your max_length={max_length}.''' ) if input_length < max_length: logger.warning( f'''Your max_length is set to {max_length}, but your input_length is only {input_length}. Since this is ''' """a summarization task, where outputs shorter than the input are typically wanted, you might """ f'''consider decreasing max_length manually, e.g. summarizer(\'...\', max_length={input_length//2})''' ) @add_end_docstrings(__lowercase ) class _A ( __lowercase ): lowercase__: Union[str, Any] = '''translation''' def lowercase__ ( self : Union[str, Any] , __magic_name__ : int , __magic_name__ : int , __magic_name__ : int ) -> str: """simple docstring""" if input_length > 0.9 * max_length: logger.warning( f'''Your input_length: {input_length} is bigger than 0.9 * max_length: {max_length}. You might consider ''' """increasing your max_length manually, e.g. translator('...', max_length=400)""" ) return True def lowercase__ ( self : Optional[Any] , *__magic_name__ : Dict , __magic_name__ : List[Any]=TruncationStrategy.DO_NOT_TRUNCATE , __magic_name__ : Any=None , __magic_name__ : List[Any]=None ) -> Tuple: """simple docstring""" if getattr(self.tokenizer , """_build_translation_inputs""" , __magic_name__ ): return self.tokenizer._build_translation_inputs( *__magic_name__ , return_tensors=self.framework , truncation=__magic_name__ , src_lang=__magic_name__ , tgt_lang=__magic_name__ ) else: return super()._parse_and_tokenize(*__magic_name__ , truncation=__magic_name__ ) def lowercase__ ( self : List[Any] , __magic_name__ : Any=None , __magic_name__ : Union[str, Any]=None , **__magic_name__ : Union[str, Any] ) -> Optional[Any]: """simple docstring""" __snake_case , __snake_case , __snake_case : List[Any] = super()._sanitize_parameters(**__magic_name__ ) if src_lang is not None: __snake_case : int = src_lang if tgt_lang is not None: __snake_case : Any = tgt_lang if src_lang is None and tgt_lang is None: # Backward compatibility, direct arguments use is preferred. __snake_case : Tuple = kwargs.get("""task""" , self.task ) __snake_case : Union[str, Any] = task.split("""_""" ) if task and len(__magic_name__ ) == 4: # translation, XX, to YY __snake_case : List[Any] = items[1] __snake_case : str = items[3] return preprocess_params, forward_params, postprocess_params def __call__( self : List[Any] , *__magic_name__ : int , **__magic_name__ : Union[str, Any] ) -> int: """simple docstring""" return super().__call__(*__magic_name__ , **__magic_name__ )
26
'''simple docstring''' from __future__ import annotations import math def _a ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> int: """simple docstring""" if depth < 0: raise ValueError("""Depth cannot be less than 0""" ) if not scores: raise ValueError("""Scores cannot be empty""" ) if depth == height: return scores[node_index] return ( max( minimax(depth + 1 , node_index * 2 , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) , minimax(depth + 1 , node_index * 2 + 1 , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) , ) if is_max else min( minimax(depth + 1 , node_index * 2 , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) , minimax(depth + 1 , node_index * 2 + 1 , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) , ) ) def _a ( ) -> None: """simple docstring""" __snake_case : Union[str, Any] = [90, 23, 6, 33, 21, 65, 123, 3_4423] __snake_case : Optional[int] = math.log(len(_lowerCamelCase ) , 2 ) print(F'''Optimal value : {minimax(0 , 0 , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase )}''' ) if __name__ == "__main__": import doctest doctest.testmod() main()
26
1
'''simple docstring''' from transformers import HfArgumentParser, TensorFlowBenchmark, TensorFlowBenchmarkArguments def _a ( ) -> Dict: """simple docstring""" __snake_case : int = HfArgumentParser(_lowerCamelCase ) __snake_case : int = parser.parse_args_into_dataclasses()[0] __snake_case : Optional[int] = TensorFlowBenchmark(args=_lowerCamelCase ) try: __snake_case : Dict = parser.parse_args_into_dataclasses()[0] except ValueError as e: __snake_case : int = """Arg --no_{0} is no longer used, please use --no-{0} instead.""" __snake_case : Dict = """ """.join(str(_lowerCamelCase ).split(""" """ )[:-1] ) __snake_case : List[Any] = """""" __snake_case : Any = eval(str(_lowerCamelCase ).split(""" """ )[-1] ) __snake_case : List[str] = [] for arg in depreciated_args: # arg[2:] removes '--' if arg[2:] in TensorFlowBenchmark.deprecated_args: # arg[5:] removes '--no_' full_error_msg += arg_error_msg.format(arg[5:] ) else: wrong_args.append(_lowerCamelCase ) if len(_lowerCamelCase ) > 0: __snake_case : List[str] = full_error_msg + begin_error_msg + str(_lowerCamelCase ) raise ValueError(_lowerCamelCase ) benchmark.run() if __name__ == "__main__": main()
26
'''simple docstring''' from __future__ import annotations def _a ( _lowerCamelCase , _lowerCamelCase = None , _lowerCamelCase = None ) -> None: """simple docstring""" if start is None: __snake_case : Optional[Any] = 0 if end is None: __snake_case : Optional[Any] = len(_lowerCamelCase ) - 1 if start >= end: return __snake_case : Tuple = (start + end) // 2 slowsort(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) slowsort(_lowerCamelCase , mid + 1 , _lowerCamelCase ) if sequence[end] < sequence[mid]: __snake_case , __snake_case : str = sequence[mid], sequence[end] slowsort(_lowerCamelCase , _lowerCamelCase , end - 1 ) if __name__ == "__main__": from doctest import testmod testmod()
26
1
'''simple docstring''' import comet # From: unbabel-comet import torch import datasets __UpperCamelCase = datasets.logging.get_logger(__name__) __UpperCamelCase = "\\n@inproceedings{rei-EtAl:2020:WMT,\n author = {Rei, Ricardo and Stewart, Craig and Farinha, Ana C and Lavie, Alon},\n title = {Unbabel's Participation in the WMT20 Metrics Shared Task},\n booktitle = {Proceedings of the Fifth Conference on Machine Translation},\n month = {November},\n year = {2020},\n address = {Online},\n publisher = {Association for Computational Linguistics},\n pages = {909--918},\n}\n@inproceedings{rei-etal-2020-comet,\n title = \"{COMET}: A Neural Framework for {MT} Evaluation\",\n author = \"Rei, Ricardo and\n Stewart, Craig and\n Farinha, Ana C and\n Lavie, Alon\",\n booktitle = \"Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP)\",\n month = nov,\n year = \"2020\",\n address = \"Online\",\n publisher = \"Association for Computational Linguistics\",\n url = \"https://www.aclweb.org/anthology/2020.emnlp-main.213\",\n pages = \"2685--2702\",\n}\n" __UpperCamelCase = "\\nCrosslingual Optimized Metric for Evaluation of Translation (COMET) is an open-source framework used to train Machine Translation metrics that achieve high levels of correlation with different types of human judgments (HTER, DA's or MQM).\nWith the release of the framework the authors also released fully trained models that were used to compete in the WMT20 Metrics Shared Task achieving SOTA in that years competition.\n\nSee the [README.md] file at https://unbabel.github.io/COMET/html/models.html for more information.\n" __UpperCamelCase = "\nCOMET score.\n\nArgs:\n\n`sources` (list of str): Source sentences\n`predictions` (list of str): candidate translations\n`references` (list of str): reference translations\n`cuda` (bool): If set to True, runs COMET using GPU\n`show_progress` (bool): Shows progress\n`model`: COMET model to be used. Will default to `wmt-large-da-estimator-1719` if None.\n\nReturns:\n `samples`: List of dictionaries with `src`, `mt`, `ref` and `score`.\n `scores`: List of scores.\n\nExamples:\n\n >>> comet_metric = datasets.load_metric('comet')\n >>> # comet_metric = load_metric('comet', 'wmt20-comet-da') # you can also choose which model to use\n >>> source = [\"Dem Feuer konnte Einhalt geboten werden\", \"Schulen und Kindergärten wurden eröffnet.\"]\n >>> hypothesis = [\"The fire could be stopped\", \"Schools and kindergartens were open\"]\n >>> reference = [\"They were able to control the fire.\", \"Schools and kindergartens opened\"]\n >>> results = comet_metric.compute(predictions=hypothesis, references=reference, sources=source)\n >>> print([round(v, 2) for v in results[\"scores\"]])\n [0.19, 0.92]\n" @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class _A ( datasets.Metric ): def lowercase__ ( self : str ) -> Tuple: """simple docstring""" return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , homepage="""https://unbabel.github.io/COMET/html/index.html""" , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { """sources""": datasets.Value("""string""" , id="""sequence""" ), """predictions""": datasets.Value("""string""" , id="""sequence""" ), """references""": datasets.Value("""string""" , id="""sequence""" ), } ) , codebase_urls=["""https://github.com/Unbabel/COMET"""] , reference_urls=[ """https://github.com/Unbabel/COMET""", """https://www.aclweb.org/anthology/2020.emnlp-main.213/""", """http://www.statmt.org/wmt20/pdf/2020.wmt-1.101.pdf6""", ] , ) def lowercase__ ( self : int , __magic_name__ : Any ) -> Any: """simple docstring""" if self.config_name == "default": __snake_case : Tuple = comet.load_from_checkpoint(comet.download_model("""wmt20-comet-da""" ) ) else: __snake_case : Any = comet.load_from_checkpoint(comet.download_model(self.config_name ) ) def lowercase__ ( self : Union[str, Any] , __magic_name__ : Dict , __magic_name__ : List[str] , __magic_name__ : Any , __magic_name__ : int=None , __magic_name__ : str=False ) -> List[str]: """simple docstring""" if gpus is None: __snake_case : List[str] = 1 if torch.cuda.is_available() else 0 __snake_case : int = {"""src""": sources, """mt""": predictions, """ref""": references} __snake_case : Optional[Any] = [dict(zip(__magic_name__ , __magic_name__ ) ) for t in zip(*data.values() )] __snake_case , __snake_case : List[Any] = self.scorer.predict(__magic_name__ , gpus=__magic_name__ , progress_bar=__magic_name__ ) return {"mean_score": mean_score, "scores": scores}
26
'''simple docstring''' import doctest import logging import os import unittest from pathlib import Path from typing import List, Union import transformers from transformers.testing_utils import require_tf, require_torch, slow __UpperCamelCase = logging.getLogger() @unittest.skip('''Temporarily disable the doc tests.''' ) @require_torch @require_tf @slow class _A ( unittest.TestCase ): def lowercase__ ( self : Optional[int] , __magic_name__ : Path , __magic_name__ : Union[str, None] = None , __magic_name__ : Union[List[str], None] = None , __magic_name__ : Union[str, List[str], None] = None , __magic_name__ : bool = True , ) -> Optional[int]: """simple docstring""" __snake_case : Union[str, Any] = [file for file in os.listdir(__magic_name__ ) if os.path.isfile(os.path.join(__magic_name__ , __magic_name__ ) )] if identifier is not None: __snake_case : List[Any] = [file for file in files if identifier in file] if n_identifier is not None: if isinstance(__magic_name__ , __magic_name__ ): for n_ in n_identifier: __snake_case : Optional[int] = [file for file in files if n_ not in file] else: __snake_case : Tuple = [file for file in files if n_identifier not in file] __snake_case : Dict = ignore_files or [] ignore_files.append("""__init__.py""" ) __snake_case : List[str] = [file for file in files if file not in ignore_files] for file in files: # Open all files print("""Testing""" , __magic_name__ ) if only_modules: __snake_case : List[Any] = file.split(""".""" )[0] try: __snake_case : List[Any] = getattr(__magic_name__ , __magic_name__ ) __snake_case : Union[str, Any] = doctest.DocTestSuite(__magic_name__ ) __snake_case : Dict = unittest.TextTestRunner().run(__magic_name__ ) self.assertIs(len(result.failures ) , 0 ) except AttributeError: logger.info(f'''{module_identifier} is not a module.''' ) else: __snake_case : Tuple = doctest.testfile(str("""..""" / directory / file ) , optionflags=doctest.ELLIPSIS ) self.assertIs(result.failed , 0 ) def lowercase__ ( self : Union[str, Any] ) -> Any: """simple docstring""" __snake_case : List[Any] = Path("""src/transformers""" ) __snake_case : List[Any] = """modeling""" __snake_case : Union[str, Any] = [ """modeling_ctrl.py""", """modeling_tf_ctrl.py""", ] self.analyze_directory(__magic_name__ , identifier=__magic_name__ , ignore_files=__magic_name__ ) def lowercase__ ( self : Union[str, Any] ) -> int: """simple docstring""" __snake_case : Union[str, Any] = Path("""src/transformers""" ) __snake_case : Any = """tokenization""" self.analyze_directory(__magic_name__ , identifier=__magic_name__ ) def lowercase__ ( self : Union[str, Any] ) -> int: """simple docstring""" __snake_case : List[Any] = Path("""src/transformers""" ) __snake_case : List[str] = """configuration""" self.analyze_directory(__magic_name__ , identifier=__magic_name__ ) def lowercase__ ( self : Dict ) -> Dict: """simple docstring""" __snake_case : Tuple = Path("""src/transformers""" ) __snake_case : int = ["""configuration""", """modeling""", """tokenization"""] self.analyze_directory(__magic_name__ , n_identifier=__magic_name__ ) def lowercase__ ( self : Optional[int] ) -> Union[str, Any]: """simple docstring""" __snake_case : int = Path("""docs/source""" ) __snake_case : Optional[int] = ["""favicon.ico"""] self.analyze_directory(__magic_name__ , ignore_files=__magic_name__ , only_modules=__magic_name__ )
26
1
'''simple docstring''' def _a ( _lowerCamelCase ) -> bool: """simple docstring""" __snake_case : str = (1 + 24 * n) ** 0.5 return ((1 + root) / 6) % 1 == 0 def _a ( _lowerCamelCase = 5000 ) -> int: """simple docstring""" __snake_case : str = [(i * (3 * i - 1)) // 2 for i in range(1 , _lowerCamelCase )] for i, pentagonal_i in enumerate(_lowerCamelCase ): for j in range(_lowerCamelCase , len(_lowerCamelCase ) ): __snake_case : int = pentagonal_nums[j] __snake_case : Tuple = pentagonal_i + pentagonal_j __snake_case : str = pentagonal_j - pentagonal_i if is_pentagonal(_lowerCamelCase ) and is_pentagonal(_lowerCamelCase ): return b return -1 if __name__ == "__main__": print(f"""{solution() = }""")
26
'''simple docstring''' import inspect from typing import Callable, List, Optional, Union import torch from transformers import ( CLIPImageProcessor, CLIPTextModel, CLIPTokenizer, WhisperForConditionalGeneration, WhisperProcessor, ) from diffusers import ( AutoencoderKL, DDIMScheduler, DiffusionPipeline, LMSDiscreteScheduler, PNDMScheduler, UNetaDConditionModel, ) from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion import StableDiffusionPipelineOutput from diffusers.pipelines.stable_diffusion.safety_checker import StableDiffusionSafetyChecker from diffusers.utils import logging __UpperCamelCase = logging.get_logger(__name__) # pylint: disable=invalid-name class _A ( __lowercase ): def __init__( self : str , __magic_name__ : WhisperForConditionalGeneration , __magic_name__ : WhisperProcessor , __magic_name__ : AutoencoderKL , __magic_name__ : CLIPTextModel , __magic_name__ : CLIPTokenizer , __magic_name__ : UNetaDConditionModel , __magic_name__ : Union[DDIMScheduler, PNDMScheduler, LMSDiscreteScheduler] , __magic_name__ : StableDiffusionSafetyChecker , __magic_name__ : CLIPImageProcessor , ) -> Union[str, Any]: """simple docstring""" super().__init__() if safety_checker is None: logger.warning( f'''You have disabled the safety checker for {self.__class__} by passing `safety_checker=None`. Ensure''' """ that you abide to the conditions of the Stable Diffusion license and do not expose unfiltered""" """ results in services or applications open to the public. Both the diffusers team and Hugging Face""" """ strongly recommend to keep the safety filter enabled in all public facing circumstances, disabling""" """ it only for use-cases that involve analyzing network behavior or auditing its results. For more""" """ information, please have a look at https://github.com/huggingface/diffusers/pull/254 .""" ) self.register_modules( speech_model=__magic_name__ , speech_processor=__magic_name__ , vae=__magic_name__ , text_encoder=__magic_name__ , tokenizer=__magic_name__ , unet=__magic_name__ , scheduler=__magic_name__ , feature_extractor=__magic_name__ , ) def lowercase__ ( self : Optional[Any] , __magic_name__ : Optional[Union[str, int]] = "auto" ) -> Union[str, Any]: """simple docstring""" if slice_size == "auto": __snake_case : str = self.unet.config.attention_head_dim // 2 self.unet.set_attention_slice(__magic_name__ ) def lowercase__ ( self : str ) -> Any: """simple docstring""" self.enable_attention_slicing(__magic_name__ ) @torch.no_grad() def __call__( self : Optional[int] , __magic_name__ : str , __magic_name__ : Dict=1_60_00 , __magic_name__ : int = 5_12 , __magic_name__ : int = 5_12 , __magic_name__ : int = 50 , __magic_name__ : float = 7.5 , __magic_name__ : Optional[Union[str, List[str]]] = None , __magic_name__ : Optional[int] = 1 , __magic_name__ : float = 0.0 , __magic_name__ : Optional[torch.Generator] = None , __magic_name__ : Optional[torch.FloatTensor] = None , __magic_name__ : Optional[str] = "pil" , __magic_name__ : bool = True , __magic_name__ : Optional[Callable[[int, int, torch.FloatTensor], None]] = None , __magic_name__ : int = 1 , **__magic_name__ : List[str] , ) -> int: """simple docstring""" __snake_case : List[Any] = self.speech_processor.feature_extractor( __magic_name__ , return_tensors="""pt""" , sampling_rate=__magic_name__ ).input_features.to(self.device ) __snake_case : List[str] = self.speech_model.generate(__magic_name__ , max_length=48_00_00 ) __snake_case : List[Any] = self.speech_processor.tokenizer.batch_decode(__magic_name__ , skip_special_tokens=__magic_name__ , normalize=__magic_name__ )[ 0 ] if isinstance(__magic_name__ , __magic_name__ ): __snake_case : Tuple = 1 elif isinstance(__magic_name__ , __magic_name__ ): __snake_case : Optional[int] = len(__magic_name__ ) else: raise ValueError(f'''`prompt` has to be of type `str` or `list` but is {type(__magic_name__ )}''' ) if height % 8 != 0 or width % 8 != 0: raise ValueError(f'''`height` and `width` have to be divisible by 8 but are {height} and {width}.''' ) if (callback_steps is None) or ( callback_steps is not None and (not isinstance(__magic_name__ , __magic_name__ ) or callback_steps <= 0) ): raise ValueError( f'''`callback_steps` has to be a positive integer but is {callback_steps} of type''' f''' {type(__magic_name__ )}.''' ) # get prompt text embeddings __snake_case : Dict = self.tokenizer( __magic_name__ , padding="""max_length""" , max_length=self.tokenizer.model_max_length , return_tensors="""pt""" , ) __snake_case : Optional[Any] = text_inputs.input_ids if text_input_ids.shape[-1] > self.tokenizer.model_max_length: __snake_case : Tuple = self.tokenizer.batch_decode(text_input_ids[:, self.tokenizer.model_max_length :] ) logger.warning( """The following part of your input was truncated because CLIP can only handle sequences up to""" f''' {self.tokenizer.model_max_length} tokens: {removed_text}''' ) __snake_case : Any = text_input_ids[:, : self.tokenizer.model_max_length] __snake_case : int = self.text_encoder(text_input_ids.to(self.device ) )[0] # duplicate text embeddings for each generation per prompt, using mps friendly method __snake_case , __snake_case , __snake_case : Any = text_embeddings.shape __snake_case : List[Any] = text_embeddings.repeat(1 , __magic_name__ , 1 ) __snake_case : Dict = text_embeddings.view(bs_embed * num_images_per_prompt , __magic_name__ , -1 ) # here `guidance_scale` is defined analog to the guidance weight `w` of equation (2) # of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1` # corresponds to doing no classifier free guidance. __snake_case : Optional[int] = guidance_scale > 1.0 # get unconditional embeddings for classifier free guidance if do_classifier_free_guidance: __snake_case : List[str] if negative_prompt is None: __snake_case : Optional[Any] = [""""""] * batch_size elif type(__magic_name__ ) is not type(__magic_name__ ): raise TypeError( f'''`negative_prompt` should be the same type to `prompt`, but got {type(__magic_name__ )} !=''' f''' {type(__magic_name__ )}.''' ) elif isinstance(__magic_name__ , __magic_name__ ): __snake_case : Dict = [negative_prompt] elif batch_size != len(__magic_name__ ): raise ValueError( f'''`negative_prompt`: {negative_prompt} has batch size {len(__magic_name__ )}, but `prompt`:''' f''' {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches''' """ the batch size of `prompt`.""" ) else: __snake_case : int = negative_prompt __snake_case : List[str] = text_input_ids.shape[-1] __snake_case : Any = self.tokenizer( __magic_name__ , padding="""max_length""" , max_length=__magic_name__ , truncation=__magic_name__ , return_tensors="""pt""" , ) __snake_case : Dict = self.text_encoder(uncond_input.input_ids.to(self.device ) )[0] # duplicate unconditional embeddings for each generation per prompt, using mps friendly method __snake_case : Optional[int] = uncond_embeddings.shape[1] __snake_case : Union[str, Any] = uncond_embeddings.repeat(1 , __magic_name__ , 1 ) __snake_case : Tuple = uncond_embeddings.view(batch_size * num_images_per_prompt , __magic_name__ , -1 ) # For classifier free guidance, we need to do two forward passes. # Here we concatenate the unconditional and text embeddings into a single batch # to avoid doing two forward passes __snake_case : Dict = torch.cat([uncond_embeddings, text_embeddings] ) # get the initial random noise unless the user supplied it # Unlike in other pipelines, latents need to be generated in the target device # for 1-to-1 results reproducibility with the CompVis implementation. # However this currently doesn't work in `mps`. __snake_case : List[Any] = (batch_size * num_images_per_prompt, self.unet.config.in_channels, height // 8, width // 8) __snake_case : List[Any] = text_embeddings.dtype if latents is None: if self.device.type == "mps": # randn does not exist on mps __snake_case : Optional[int] = torch.randn(__magic_name__ , generator=__magic_name__ , device="""cpu""" , dtype=__magic_name__ ).to( self.device ) else: __snake_case : int = torch.randn(__magic_name__ , generator=__magic_name__ , device=self.device , dtype=__magic_name__ ) else: if latents.shape != latents_shape: raise ValueError(f'''Unexpected latents shape, got {latents.shape}, expected {latents_shape}''' ) __snake_case : List[str] = latents.to(self.device ) # set timesteps self.scheduler.set_timesteps(__magic_name__ ) # Some schedulers like PNDM have timesteps as arrays # It's more optimized to move all timesteps to correct device beforehand __snake_case : Optional[int] = self.scheduler.timesteps.to(self.device ) # scale the initial noise by the standard deviation required by the scheduler __snake_case : str = latents * self.scheduler.init_noise_sigma # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature # eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers. # eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502 # and should be between [0, 1] __snake_case : Tuple = """eta""" in set(inspect.signature(self.scheduler.step ).parameters.keys() ) __snake_case : List[str] = {} if accepts_eta: __snake_case : str = eta for i, t in enumerate(self.progress_bar(__magic_name__ ) ): # expand the latents if we are doing classifier free guidance __snake_case : Union[str, Any] = torch.cat([latents] * 2 ) if do_classifier_free_guidance else latents __snake_case : Dict = self.scheduler.scale_model_input(__magic_name__ , __magic_name__ ) # predict the noise residual __snake_case : Tuple = self.unet(__magic_name__ , __magic_name__ , encoder_hidden_states=__magic_name__ ).sample # perform guidance if do_classifier_free_guidance: __snake_case , __snake_case : str = noise_pred.chunk(2 ) __snake_case : Any = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) # compute the previous noisy sample x_t -> x_t-1 __snake_case : Optional[Any] = self.scheduler.step(__magic_name__ , __magic_name__ , __magic_name__ , **__magic_name__ ).prev_sample # call the callback, if provided if callback is not None and i % callback_steps == 0: callback(__magic_name__ , __magic_name__ , __magic_name__ ) __snake_case : int = 1 / 0.18215 * latents __snake_case : Optional[Any] = self.vae.decode(__magic_name__ ).sample __snake_case : Any = (image / 2 + 0.5).clamp(0 , 1 ) # we always cast to float32 as this does not cause significant overhead and is compatible with bfloat16 __snake_case : Any = image.cpu().permute(0 , 2 , 3 , 1 ).float().numpy() if output_type == "pil": __snake_case : Tuple = self.numpy_to_pil(__magic_name__ ) if not return_dict: return image return StableDiffusionPipelineOutput(images=__magic_name__ , nsfw_content_detected=__magic_name__ )
26
1
'''simple docstring''' import json import os import unittest from transformers.models.ctrl.tokenization_ctrl import VOCAB_FILES_NAMES, CTRLTokenizer from ...test_tokenization_common import TokenizerTesterMixin class _A ( __lowercase , unittest.TestCase ): lowercase__: Optional[Any] = CTRLTokenizer lowercase__: Dict = False lowercase__: List[Any] = False def lowercase__ ( self : List[str] ) -> str: """simple docstring""" super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt __snake_case : Any = ["""adapt""", """re@@""", """a@@""", """apt""", """c@@""", """t""", """<unk>"""] __snake_case : Optional[Any] = dict(zip(__magic_name__ , range(len(__magic_name__ ) ) ) ) __snake_case : Optional[Any] = ["""#version: 0.2""", """a p""", """ap t</w>""", """r e""", """a d""", """ad apt</w>""", """"""] __snake_case : int = {"""unk_token""": """<unk>"""} __snake_case : List[str] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""] ) __snake_case : Tuple = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""merges_file"""] ) with open(self.vocab_file , """w""" , encoding="""utf-8""" ) as fp: fp.write(json.dumps(__magic_name__ ) + """\n""" ) with open(self.merges_file , """w""" , encoding="""utf-8""" ) as fp: fp.write("""\n""".join(__magic_name__ ) ) def lowercase__ ( self : Union[str, Any] , **__magic_name__ : List[Any] ) -> Optional[Any]: """simple docstring""" kwargs.update(self.special_tokens_map ) return CTRLTokenizer.from_pretrained(self.tmpdirname , **__magic_name__ ) def lowercase__ ( self : Tuple , __magic_name__ : Tuple ) -> List[Any]: """simple docstring""" __snake_case : Tuple = """adapt react readapt apt""" __snake_case : Tuple = """adapt react readapt apt""" return input_text, output_text def lowercase__ ( self : Union[str, Any] ) -> str: """simple docstring""" __snake_case : int = CTRLTokenizer(self.vocab_file , self.merges_file , **self.special_tokens_map ) __snake_case : str = """adapt react readapt apt""" __snake_case : List[str] = """adapt re@@ a@@ c@@ t re@@ adapt apt""".split() __snake_case : List[str] = tokenizer.tokenize(__magic_name__ ) self.assertListEqual(__magic_name__ , __magic_name__ ) __snake_case : Union[str, Any] = tokens + [tokenizer.unk_token] __snake_case : Union[str, Any] = [0, 1, 2, 4, 5, 1, 0, 3, 6] self.assertListEqual(tokenizer.convert_tokens_to_ids(__magic_name__ ) , __magic_name__ )
26
'''simple docstring''' import os from huggingface_hub.constants import HUGGINGFACE_HUB_CACHE, hf_cache_home __UpperCamelCase = HUGGINGFACE_HUB_CACHE __UpperCamelCase = "config.json" __UpperCamelCase = "diffusion_pytorch_model.bin" __UpperCamelCase = "diffusion_flax_model.msgpack" __UpperCamelCase = "model.onnx" __UpperCamelCase = "diffusion_pytorch_model.safetensors" __UpperCamelCase = "weights.pb" __UpperCamelCase = "https://huggingface.co" __UpperCamelCase = default_cache_path __UpperCamelCase = "diffusers_modules" __UpperCamelCase = os.getenv("HF_MODULES_CACHE", os.path.join(hf_cache_home, "modules")) __UpperCamelCase = ["fp16", "non-ema"] __UpperCamelCase = ".self_attn"
26
1
'''simple docstring''' from typing import TYPE_CHECKING from ..utils import _LazyModule __UpperCamelCase = { "config": [ "EXTERNAL_DATA_FORMAT_SIZE_LIMIT", "OnnxConfig", "OnnxConfigWithPast", "OnnxSeq2SeqConfigWithPast", "PatchingSpec", ], "convert": ["export", "validate_model_outputs"], "features": ["FeaturesManager"], "utils": ["ParameterFormat", "compute_serialized_parameters_size"], } if TYPE_CHECKING: from .config import ( EXTERNAL_DATA_FORMAT_SIZE_LIMIT, OnnxConfig, OnnxConfigWithPast, OnnxSeqaSeqConfigWithPast, PatchingSpec, ) from .convert import export, validate_model_outputs from .features import FeaturesManager from .utils import ParameterFormat, compute_serialized_parameters_size else: import sys __UpperCamelCase = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
26
'''simple docstring''' import argparse import json import re from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ( MobileNetVaConfig, MobileNetVaForImageClassification, MobileNetVaImageProcessor, load_tf_weights_in_mobilenet_va, ) from transformers.utils import logging logging.set_verbosity_info() __UpperCamelCase = logging.get_logger(__name__) def _a ( _lowerCamelCase ) -> Any: """simple docstring""" __snake_case : Union[str, Any] = MobileNetVaConfig(layer_norm_eps=0.0_01 ) if "_quant" in model_name: raise ValueError("""Quantized models are not supported.""" ) __snake_case : List[Any] = re.match(R"""^mobilenet_v1_([^_]*)_([^_]*)$""" , _lowerCamelCase ) if matches: __snake_case : Optional[Any] = float(matches[1] ) __snake_case : Union[str, Any] = int(matches[2] ) # The TensorFlow version of MobileNetV1 predicts 1001 classes instead of # the usual 1000. The first class (index 0) is "background". __snake_case : Tuple = 1001 __snake_case : Any = """imagenet-1k-id2label.json""" __snake_case : Optional[Any] = """huggingface/label-files""" __snake_case : List[Any] = json.load(open(hf_hub_download(_lowerCamelCase , _lowerCamelCase , repo_type="""dataset""" ) , """r""" ) ) __snake_case : Dict = {int(_lowerCamelCase ) + 1: v for k, v in idalabel.items()} __snake_case : List[str] = """background""" __snake_case : List[str] = idalabel __snake_case : List[Any] = {v: k for k, v in idalabel.items()} return config def _a ( ) -> Optional[Any]: """simple docstring""" __snake_case : Optional[int] = """http://images.cocodataset.org/val2017/000000039769.jpg""" __snake_case : List[Any] = Image.open(requests.get(_lowerCamelCase , stream=_lowerCamelCase ).raw ) return im @torch.no_grad() def _a ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase=False ) -> Optional[Any]: """simple docstring""" __snake_case : Optional[int] = get_mobilenet_va_config(_lowerCamelCase ) # Load 🤗 model __snake_case : Optional[Any] = MobileNetVaForImageClassification(_lowerCamelCase ).eval() # Load weights from TensorFlow checkpoint load_tf_weights_in_mobilenet_va(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) # Check outputs on an image, prepared by MobileNetV1ImageProcessor __snake_case : Optional[int] = MobileNetVaImageProcessor( crop_size={"""width""": config.image_size, """height""": config.image_size} , size={"""shortest_edge""": config.image_size + 32} , ) __snake_case : Tuple = image_processor(images=prepare_img() , return_tensors="""pt""" ) __snake_case : Optional[Any] = model(**_lowerCamelCase ) __snake_case : List[Any] = outputs.logits assert logits.shape == (1, 1001) if model_name == "mobilenet_v1_1.0_224": __snake_case : str = torch.tensor([-4.17_39, -1.12_33, 3.12_05] ) elif model_name == "mobilenet_v1_0.75_192": __snake_case : Tuple = torch.tensor([-3.94_40, -2.31_41, -0.33_33] ) else: __snake_case : List[Any] = None if expected_logits is not None: assert torch.allclose(logits[0, :3] , _lowerCamelCase , atol=1E-4 ) Path(_lowerCamelCase ).mkdir(exist_ok=_lowerCamelCase ) print(F'''Saving model {model_name} to {pytorch_dump_folder_path}''' ) model.save_pretrained(_lowerCamelCase ) print(F'''Saving image processor to {pytorch_dump_folder_path}''' ) image_processor.save_pretrained(_lowerCamelCase ) if push_to_hub: print("""Pushing to the hub...""" ) __snake_case : Optional[Any] = """google/""" + model_name image_processor.push_to_hub(_lowerCamelCase ) model.push_to_hub(_lowerCamelCase ) if __name__ == "__main__": __UpperCamelCase = argparse.ArgumentParser() # Required parameters parser.add_argument( "--model_name", default="mobilenet_v1_1.0_224", type=str, help="Name of the MobileNetV1 model you'd like to convert. Should in the form 'mobilenet_v1_<depth>_<size>'.", ) parser.add_argument( "--checkpoint_path", required=True, type=str, help="Path to the original TensorFlow checkpoint (.ckpt file)." ) parser.add_argument( "--pytorch_dump_folder_path", required=True, type=str, help="Path to the output PyTorch model directory." ) parser.add_argument( "--push_to_hub", action="store_true", help="Whether or not to push the converted model to the 🤗 hub." ) __UpperCamelCase = parser.parse_args() convert_movilevit_checkpoint( args.model_name, args.checkpoint_path, args.pytorch_dump_folder_path, args.push_to_hub )
26
1
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, is_vision_available, ) __UpperCamelCase = { "configuration_clip": [ "CLIP_PRETRAINED_CONFIG_ARCHIVE_MAP", "CLIPConfig", "CLIPOnnxConfig", "CLIPTextConfig", "CLIPVisionConfig", ], "processing_clip": ["CLIPProcessor"], "tokenization_clip": ["CLIPTokenizer"], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCamelCase = ["CLIPTokenizerFast"] try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCamelCase = ["CLIPFeatureExtractor"] __UpperCamelCase = ["CLIPImageProcessor"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCamelCase = [ "CLIP_PRETRAINED_MODEL_ARCHIVE_LIST", "CLIPModel", "CLIPPreTrainedModel", "CLIPTextModel", "CLIPTextModelWithProjection", "CLIPVisionModel", "CLIPVisionModelWithProjection", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCamelCase = [ "TF_CLIP_PRETRAINED_MODEL_ARCHIVE_LIST", "TFCLIPModel", "TFCLIPPreTrainedModel", "TFCLIPTextModel", "TFCLIPVisionModel", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCamelCase = [ "FlaxCLIPModel", "FlaxCLIPPreTrainedModel", "FlaxCLIPTextModel", "FlaxCLIPTextPreTrainedModel", "FlaxCLIPVisionModel", "FlaxCLIPVisionPreTrainedModel", ] if TYPE_CHECKING: from .configuration_clip import ( CLIP_PRETRAINED_CONFIG_ARCHIVE_MAP, CLIPConfig, CLIPOnnxConfig, CLIPTextConfig, CLIPVisionConfig, ) from .processing_clip import CLIPProcessor from .tokenization_clip import CLIPTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_clip_fast import CLIPTokenizerFast try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_clip import CLIPFeatureExtractor from .image_processing_clip import CLIPImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_clip import ( CLIP_PRETRAINED_MODEL_ARCHIVE_LIST, CLIPModel, CLIPPreTrainedModel, CLIPTextModel, CLIPTextModelWithProjection, CLIPVisionModel, CLIPVisionModelWithProjection, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_clip import ( TF_CLIP_PRETRAINED_MODEL_ARCHIVE_LIST, TFCLIPModel, TFCLIPPreTrainedModel, TFCLIPTextModel, TFCLIPVisionModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_clip import ( FlaxCLIPModel, FlaxCLIPPreTrainedModel, FlaxCLIPTextModel, FlaxCLIPTextPreTrainedModel, FlaxCLIPVisionModel, FlaxCLIPVisionPreTrainedModel, ) else: import sys __UpperCamelCase = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
26
'''simple docstring''' from sklearn.metrics import recall_score import datasets __UpperCamelCase = "\nRecall is the fraction of the positive examples that were correctly labeled by the model as positive. It can be computed with the equation:\nRecall = TP / (TP + FN)\nWhere TP is the true positives and FN is the false negatives.\n" __UpperCamelCase = "\nArgs:\n- **predictions** (`list` of `int`): The predicted labels.\n- **references** (`list` of `int`): The ground truth labels.\n- **labels** (`list` of `int`): The set of labels to include when `average` is not set to `binary`, and their order when average is `None`. Labels present in the data can be excluded in this input, for example to calculate a multiclass average ignoring a majority negative class, while labels not present in the data will result in 0 components in a macro average. For multilabel targets, labels are column indices. By default, all labels in y_true and y_pred are used in sorted order. Defaults to None.\n- **pos_label** (`int`): The class label to use as the 'positive class' when calculating the recall. Defaults to `1`.\n- **average** (`string`): This parameter is required for multiclass/multilabel targets. If None, the scores for each class are returned. Otherwise, this determines the type of averaging performed on the data. Defaults to `'binary'`.\n - `'binary'`: Only report results for the class specified by `pos_label`. This is applicable only if the target labels and predictions are binary.\n - `'micro'`: Calculate metrics globally by counting the total true positives, false negatives, and false positives.\n - `'macro'`: Calculate metrics for each label, and find their unweighted mean. This does not take label imbalance into account.\n - `'weighted'`: Calculate metrics for each label, and find their average weighted by support (the number of true instances for each label). This alters `'macro'` to account for label imbalance. Note that it can result in an F-score that is not between precision and recall.\n - `'samples'`: Calculate metrics for each instance, and find their average (only meaningful for multilabel classification).\n- **sample_weight** (`list` of `float`): Sample weights Defaults to `None`.\n- **zero_division** (): Sets the value to return when there is a zero division. Defaults to .\n - `'warn'`: If there is a zero division, the return value is `0`, but warnings are also raised.\n - `0`: If there is a zero division, the return value is `0`.\n - `1`: If there is a zero division, the return value is `1`.\n\nReturns:\n- **recall** (`float`, or `array` of `float`): Either the general recall score, or the recall scores for individual classes, depending on the values input to `labels` and `average`. Minimum possible value is 0. Maximum possible value is 1. A higher recall means that more of the positive examples have been labeled correctly. Therefore, a higher recall is generally considered better.\n\nExamples:\n\n Example 1-A simple example with some errors\n >>> recall_metric = datasets.load_metric('recall')\n >>> results = recall_metric.compute(references=[0, 0, 1, 1, 1], predictions=[0, 1, 0, 1, 1])\n >>> print(results)\n {'recall': 0.6666666666666666}\n\n Example 2-The same example as Example 1, but with `pos_label=0` instead of the default `pos_label=1`.\n >>> recall_metric = datasets.load_metric('recall')\n >>> results = recall_metric.compute(references=[0, 0, 1, 1, 1], predictions=[0, 1, 0, 1, 1], pos_label=0)\n >>> print(results)\n {'recall': 0.5}\n\n Example 3-The same example as Example 1, but with `sample_weight` included.\n >>> recall_metric = datasets.load_metric('recall')\n >>> sample_weight = [0.9, 0.2, 0.9, 0.3, 0.8]\n >>> results = recall_metric.compute(references=[0, 0, 1, 1, 1], predictions=[0, 1, 0, 1, 1], sample_weight=sample_weight)\n >>> print(results)\n {'recall': 0.55}\n\n Example 4-A multiclass example, using different averages.\n >>> recall_metric = datasets.load_metric('recall')\n >>> predictions = [0, 2, 1, 0, 0, 1]\n >>> references = [0, 1, 2, 0, 1, 2]\n >>> results = recall_metric.compute(predictions=predictions, references=references, average='macro')\n >>> print(results)\n {'recall': 0.3333333333333333}\n >>> results = recall_metric.compute(predictions=predictions, references=references, average='micro')\n >>> print(results)\n {'recall': 0.3333333333333333}\n >>> results = recall_metric.compute(predictions=predictions, references=references, average='weighted')\n >>> print(results)\n {'recall': 0.3333333333333333}\n >>> results = recall_metric.compute(predictions=predictions, references=references, average=None)\n >>> print(results)\n {'recall': array([1., 0., 0.])}\n" __UpperCamelCase = "\n@article{scikit-learn, title={Scikit-learn: Machine Learning in {P}ython}, author={Pedregosa, F. and Varoquaux, G. and Gramfort, A. and Michel, V. and Thirion, B. and Grisel, O. and Blondel, M. and Prettenhofer, P. and Weiss, R. and Dubourg, V. and Vanderplas, J. and Passos, A. and Cournapeau, D. and Brucher, M. and Perrot, M. and Duchesnay, E.}, journal={Journal of Machine Learning Research}, volume={12}, pages={2825--2830}, year={2011}\n" @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class _A ( datasets.Metric ): def lowercase__ ( self : Optional[int] ) -> Any: """simple docstring""" return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { """predictions""": datasets.Sequence(datasets.Value("""int32""" ) ), """references""": datasets.Sequence(datasets.Value("""int32""" ) ), } if self.config_name == """multilabel""" else { """predictions""": datasets.Value("""int32""" ), """references""": datasets.Value("""int32""" ), } ) , reference_urls=["""https://scikit-learn.org/stable/modules/generated/sklearn.metrics.recall_score.html"""] , ) def lowercase__ ( self : Tuple , __magic_name__ : int , __magic_name__ : Union[str, Any] , __magic_name__ : Any=None , __magic_name__ : Optional[Any]=1 , __magic_name__ : List[str]="binary" , __magic_name__ : Tuple=None , __magic_name__ : Dict="warn" , ) -> Any: """simple docstring""" __snake_case : Tuple = recall_score( __magic_name__ , __magic_name__ , labels=__magic_name__ , pos_label=__magic_name__ , average=__magic_name__ , sample_weight=__magic_name__ , zero_division=__magic_name__ , ) return {"recall": float(__magic_name__ ) if score.size == 1 else score}
26
1
'''simple docstring''' import argparse import json from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ViTConfig, ViTForImageClassification, ViTImageProcessor, ViTModel from transformers.utils import logging logging.set_verbosity_info() __UpperCamelCase = logging.get_logger(__name__) def _a ( _lowerCamelCase , _lowerCamelCase=False ) -> Any: """simple docstring""" __snake_case : List[Any] = [] for i in range(config.num_hidden_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append((F'''blocks.{i}.norm1.weight''', F'''vit.encoder.layer.{i}.layernorm_before.weight''') ) rename_keys.append((F'''blocks.{i}.norm1.bias''', F'''vit.encoder.layer.{i}.layernorm_before.bias''') ) rename_keys.append((F'''blocks.{i}.attn.proj.weight''', F'''vit.encoder.layer.{i}.attention.output.dense.weight''') ) rename_keys.append((F'''blocks.{i}.attn.proj.bias''', F'''vit.encoder.layer.{i}.attention.output.dense.bias''') ) rename_keys.append((F'''blocks.{i}.norm2.weight''', F'''vit.encoder.layer.{i}.layernorm_after.weight''') ) rename_keys.append((F'''blocks.{i}.norm2.bias''', F'''vit.encoder.layer.{i}.layernorm_after.bias''') ) rename_keys.append((F'''blocks.{i}.mlp.fc1.weight''', F'''vit.encoder.layer.{i}.intermediate.dense.weight''') ) rename_keys.append((F'''blocks.{i}.mlp.fc1.bias''', F'''vit.encoder.layer.{i}.intermediate.dense.bias''') ) rename_keys.append((F'''blocks.{i}.mlp.fc2.weight''', F'''vit.encoder.layer.{i}.output.dense.weight''') ) rename_keys.append((F'''blocks.{i}.mlp.fc2.bias''', F'''vit.encoder.layer.{i}.output.dense.bias''') ) # projection layer + position embeddings rename_keys.extend( [ ("""cls_token""", """vit.embeddings.cls_token"""), ("""patch_embed.proj.weight""", """vit.embeddings.patch_embeddings.projection.weight"""), ("""patch_embed.proj.bias""", """vit.embeddings.patch_embeddings.projection.bias"""), ("""pos_embed""", """vit.embeddings.position_embeddings"""), ] ) if base_model: # layernorm + pooler rename_keys.extend( [ ("""norm.weight""", """layernorm.weight"""), ("""norm.bias""", """layernorm.bias"""), ] ) # if just the base model, we should remove "vit" from all keys that start with "vit" __snake_case : Dict = [(pair[0], pair[1][4:]) if pair[1].startswith("""vit""" ) else pair for pair in rename_keys] else: # layernorm + classification head rename_keys.extend( [ ("""norm.weight""", """vit.layernorm.weight"""), ("""norm.bias""", """vit.layernorm.bias"""), ("""head.weight""", """classifier.weight"""), ("""head.bias""", """classifier.bias"""), ] ) return rename_keys def _a ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase=False ) -> Tuple: """simple docstring""" for i in range(config.num_hidden_layers ): if base_model: __snake_case : List[str] = """""" else: __snake_case : Dict = """vit.""" # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) __snake_case : List[str] = state_dict.pop(F'''blocks.{i}.attn.qkv.weight''' ) __snake_case : Any = state_dict.pop(F'''blocks.{i}.attn.qkv.bias''' ) # next, add query, keys and values (in that order) to the state dict __snake_case : Dict = in_proj_weight[ : config.hidden_size, : ] __snake_case : str = in_proj_bias[: config.hidden_size] __snake_case : Optional[int] = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] __snake_case : Dict = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] __snake_case : Optional[Any] = in_proj_weight[ -config.hidden_size :, : ] __snake_case : str = in_proj_bias[-config.hidden_size :] def _a ( _lowerCamelCase ) -> Dict: """simple docstring""" __snake_case : Union[str, Any] = ["""head.weight""", """head.bias"""] for k in ignore_keys: state_dict.pop(_lowerCamelCase , _lowerCamelCase ) def _a ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> str: """simple docstring""" __snake_case : Dict = dct.pop(_lowerCamelCase ) __snake_case : List[Any] = val def _a ( ) -> Tuple: """simple docstring""" __snake_case : int = """http://images.cocodataset.org/val2017/000000039769.jpg""" __snake_case : Optional[Any] = Image.open(requests.get(_lowerCamelCase , stream=_lowerCamelCase ).raw ) return im @torch.no_grad() def _a ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase=True ) -> str: """simple docstring""" __snake_case : Optional[Any] = ViTConfig() # patch_size if model_name[-1] == "8": __snake_case : List[Any] = 8 # set labels if required if not base_model: __snake_case : Union[str, Any] = 1000 __snake_case : str = """huggingface/label-files""" __snake_case : List[str] = """imagenet-1k-id2label.json""" __snake_case : List[str] = json.load(open(hf_hub_download(_lowerCamelCase , _lowerCamelCase , repo_type="""dataset""" ) , """r""" ) ) __snake_case : Optional[Any] = {int(_lowerCamelCase ): v for k, v in idalabel.items()} __snake_case : Optional[int] = idalabel __snake_case : Any = {v: k for k, v in idalabel.items()} # size of the architecture if model_name in ["dino_vits8", "dino_vits16"]: __snake_case : List[str] = 384 __snake_case : Optional[Any] = 1536 __snake_case : Optional[int] = 12 __snake_case : Optional[Any] = 6 # load original model from torch hub __snake_case : List[str] = torch.hub.load("""facebookresearch/dino:main""" , _lowerCamelCase ) original_model.eval() # load state_dict of original model, remove and rename some keys __snake_case : str = original_model.state_dict() if base_model: remove_classification_head_(_lowerCamelCase ) __snake_case : str = create_rename_keys(_lowerCamelCase , base_model=_lowerCamelCase ) for src, dest in rename_keys: rename_key(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) read_in_q_k_v(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) # load HuggingFace model if base_model: __snake_case : Union[str, Any] = ViTModel(_lowerCamelCase , add_pooling_layer=_lowerCamelCase ).eval() else: __snake_case : Optional[int] = ViTForImageClassification(_lowerCamelCase ).eval() model.load_state_dict(_lowerCamelCase ) # Check outputs on an image, prepared by ViTImageProcessor __snake_case : List[str] = ViTImageProcessor() __snake_case : Tuple = image_processor(images=prepare_img() , return_tensors="""pt""" ) __snake_case : Any = encoding["""pixel_values"""] __snake_case : Optional[int] = model(_lowerCamelCase ) if base_model: __snake_case : List[Any] = original_model(_lowerCamelCase ) assert torch.allclose(_lowerCamelCase , outputs.last_hidden_state[:, 0, :] , atol=1E-1 ) else: __snake_case : Dict = original_model(_lowerCamelCase ) assert logits.shape == outputs.logits.shape assert torch.allclose(_lowerCamelCase , outputs.logits , atol=1E-3 ) Path(_lowerCamelCase ).mkdir(exist_ok=_lowerCamelCase ) print(F'''Saving model {model_name} to {pytorch_dump_folder_path}''' ) model.save_pretrained(_lowerCamelCase ) print(F'''Saving image processor to {pytorch_dump_folder_path}''' ) image_processor.save_pretrained(_lowerCamelCase ) if __name__ == "__main__": __UpperCamelCase = argparse.ArgumentParser() # Required parameters parser.add_argument( "--model_name", default="dino_vitb16", type=str, help="Name of the model trained with DINO you'd like to convert.", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model directory." ) parser.add_argument( "--base_model", action="store_true", help="Whether to only convert the base model (no projection head weights).", ) parser.set_defaults(base_model=True) __UpperCamelCase = parser.parse_args() convert_vit_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.base_model)
26
'''simple docstring''' from sklearn.metrics import matthews_corrcoef import datasets __UpperCamelCase = "\nCompute the Matthews correlation coefficient (MCC)\n\nThe Matthews correlation coefficient is used in machine learning as a\nmeasure of the quality of binary and multiclass classifications. It takes\ninto account true and false positives and negatives and is generally\nregarded as a balanced measure which can be used even if the classes are of\nvery different sizes. The MCC is in essence a correlation coefficient value\nbetween -1 and +1. A coefficient of +1 represents a perfect prediction, 0\nan average random prediction and -1 an inverse prediction. The statistic\nis also known as the phi coefficient. [source: Wikipedia]\n" __UpperCamelCase = "\nArgs:\n predictions (list of int): Predicted labels, as returned by a model.\n references (list of int): Ground truth labels.\n sample_weight (list of int, float, or bool): Sample weights. Defaults to `None`.\nReturns:\n matthews_correlation (dict containing float): Matthews correlation.\nExamples:\n Example 1, a basic example with only predictions and references as inputs:\n >>> matthews_metric = datasets.load_metric(\"matthews_correlation\")\n >>> results = matthews_metric.compute(references=[1, 3, 2, 0, 3, 2],\n ... predictions=[1, 2, 2, 0, 3, 3])\n >>> print(round(results['matthews_correlation'], 2))\n 0.54\n\n Example 2, the same example as above, but also including sample weights:\n >>> matthews_metric = datasets.load_metric(\"matthews_correlation\")\n >>> results = matthews_metric.compute(references=[1, 3, 2, 0, 3, 2],\n ... predictions=[1, 2, 2, 0, 3, 3],\n ... sample_weight=[0.5, 3, 1, 1, 1, 2])\n >>> print(round(results['matthews_correlation'], 2))\n 0.1\n\n Example 3, the same example as above, but with sample weights that cause a negative correlation:\n >>> matthews_metric = datasets.load_metric(\"matthews_correlation\")\n >>> results = matthews_metric.compute(references=[1, 3, 2, 0, 3, 2],\n ... predictions=[1, 2, 2, 0, 3, 3],\n ... sample_weight=[0.5, 1, 0, 0, 0, 1])\n >>> print(round(results['matthews_correlation'], 2))\n -0.25\n" __UpperCamelCase = "\\n@article{scikit-learn,\n title={Scikit-learn: Machine Learning in {P}ython},\n author={Pedregosa, F. and Varoquaux, G. and Gramfort, A. and Michel, V.\n and Thirion, B. and Grisel, O. and Blondel, M. and Prettenhofer, P.\n and Weiss, R. and Dubourg, V. and Vanderplas, J. and Passos, A. and\n Cournapeau, D. and Brucher, M. and Perrot, M. and Duchesnay, E.},\n journal={Journal of Machine Learning Research},\n volume={12},\n pages={2825--2830},\n year={2011}\n}\n" @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class _A ( datasets.Metric ): def lowercase__ ( self : Tuple ) -> Dict: """simple docstring""" return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { """predictions""": datasets.Value("""int32""" ), """references""": datasets.Value("""int32""" ), } ) , reference_urls=[ """https://scikit-learn.org/stable/modules/generated/sklearn.metrics.matthews_corrcoef.html""" ] , ) def lowercase__ ( self : List[Any] , __magic_name__ : Tuple , __magic_name__ : List[Any] , __magic_name__ : Union[str, Any]=None ) -> Optional[int]: """simple docstring""" return { "matthews_correlation": float(matthews_corrcoef(__magic_name__ , __magic_name__ , sample_weight=__magic_name__ ) ), }
26
1
'''simple docstring''' from sympy import diff, lambdify, symbols from sympy.functions import * # noqa: F403 def _a ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase = "x" , _lowerCamelCase = 10**-10 , _lowerCamelCase = 1 , ) -> complex: """simple docstring""" __snake_case : Union[str, Any] = symbols(_lowerCamelCase ) __snake_case : Union[str, Any] = lambdify(_lowerCamelCase , _lowerCamelCase ) __snake_case : List[Any] = lambdify(_lowerCamelCase , diff(_lowerCamelCase , _lowerCamelCase ) ) __snake_case : List[str] = starting_point while True: if diff_function(_lowerCamelCase ) != 0: __snake_case : Optional[int] = prev_guess - multiplicity * func(_lowerCamelCase ) / diff_function( _lowerCamelCase ) else: raise ZeroDivisionError("""Could not find root""" ) from None # Precision is checked by comparing the difference of consecutive guesses if abs(next_guess - prev_guess ) < precision: return next_guess __snake_case : str = next_guess # Let's Execute if __name__ == "__main__": # Find root of trigonometric function # Find value of pi print(f"""The root of sin(x) = 0 is {newton_raphson('sin(x)', 2)}""") # Find root of polynomial # Find fourth Root of 5 print(f"""The root of x**4 - 5 = 0 is {newton_raphson('x**4 -5', 0.4 +5J)}""") # Find value of e print( "The root of log(y) - 1 = 0 is ", f"""{newton_raphson('log(y) - 1', 2, variable='y')}""", ) # Exponential Roots print( "The root of exp(x) - 1 = 0 is", f"""{newton_raphson('exp(x) - 1', 10, precision=0.0_05)}""", ) # Find root of cos(x) print(f"""The root of cos(x) = 0 is {newton_raphson('cos(x)', 0)}""")
26
'''simple docstring''' import json import os from pathlib import Path import pytest from datasets.download.download_config import DownloadConfig from datasets.download.download_manager import DownloadManager from datasets.utils.file_utils import hash_url_to_filename __UpperCamelCase = "http://www.mocksite.com/file1.txt" __UpperCamelCase = "\"text\": [\"foo\", \"foo\"]" __UpperCamelCase = "6d8ce9aa78a471c7477201efbeabd3bb01ac2e7d100a6dc024ba1608361f90a8" class _A : lowercase__: str = 200 lowercase__: List[str] = {'''Content-Length''': '''100'''} lowercase__: Union[str, Any] = {} def lowercase__ ( self : Any , **__magic_name__ : List[Any] ) -> Dict: """simple docstring""" return [bytes(__magic_name__ , """utf-8""" )] def _a ( *_lowerCamelCase , **_lowerCamelCase ) -> List[str]: """simple docstring""" return MockResponse() @pytest.mark.parametrize("""urls_type""" , [str, list, dict] ) def _a ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> List[str]: """simple docstring""" import requests monkeypatch.setattr(_lowerCamelCase , """request""" , _lowerCamelCase ) __snake_case : Union[str, Any] = URL if issubclass(_lowerCamelCase , _lowerCamelCase ): __snake_case : str = url elif issubclass(_lowerCamelCase , _lowerCamelCase ): __snake_case : Dict = [url] elif issubclass(_lowerCamelCase , _lowerCamelCase ): __snake_case : Union[str, Any] = {"""train""": url} __snake_case : Dict = """dummy""" __snake_case : List[str] = """downloads""" __snake_case : List[Any] = tmp_path __snake_case : List[Any] = DownloadConfig( cache_dir=os.path.join(_lowerCamelCase , _lowerCamelCase ) , use_etag=_lowerCamelCase , ) __snake_case : List[str] = DownloadManager(dataset_name=_lowerCamelCase , download_config=_lowerCamelCase ) __snake_case : int = dl_manager.download(_lowerCamelCase ) __snake_case : Tuple = urls for downloaded_paths in [downloaded_paths]: if isinstance(_lowerCamelCase , _lowerCamelCase ): __snake_case : Any = [downloaded_paths] __snake_case : List[Any] = [urls] elif isinstance(_lowerCamelCase , _lowerCamelCase ): assert "train" in downloaded_paths.keys() __snake_case : Tuple = downloaded_paths.values() __snake_case : Optional[int] = urls.values() assert downloaded_paths for downloaded_path, input_url in zip(_lowerCamelCase , _lowerCamelCase ): assert downloaded_path == dl_manager.downloaded_paths[input_url] __snake_case : List[str] = Path(_lowerCamelCase ) __snake_case : Any = downloaded_path.parts assert parts[-1] == HASH assert parts[-2] == cache_subdir assert downloaded_path.exists() __snake_case : Union[str, Any] = downloaded_path.read_text() assert content == CONTENT __snake_case : List[str] = downloaded_path.with_suffix(""".json""" ) assert metadata_downloaded_path.exists() __snake_case : Union[str, Any] = json.loads(metadata_downloaded_path.read_text() ) assert metadata_content == {"url": URL, "etag": None} @pytest.mark.parametrize("""paths_type""" , [str, list, dict] ) def _a ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> List[Any]: """simple docstring""" __snake_case : Any = str(_lowerCamelCase ) if issubclass(_lowerCamelCase , _lowerCamelCase ): __snake_case : Optional[int] = filename elif issubclass(_lowerCamelCase , _lowerCamelCase ): __snake_case : Tuple = [filename] elif issubclass(_lowerCamelCase , _lowerCamelCase ): __snake_case : Dict = {"""train""": filename} __snake_case : Optional[Any] = """dummy""" __snake_case : List[Any] = xz_file.parent __snake_case : int = """extracted""" __snake_case : Dict = DownloadConfig( cache_dir=_lowerCamelCase , use_etag=_lowerCamelCase , ) __snake_case : List[str] = DownloadManager(dataset_name=_lowerCamelCase , download_config=_lowerCamelCase ) __snake_case : Optional[Any] = dl_manager.extract(_lowerCamelCase ) __snake_case : Union[str, Any] = paths for extracted_paths in [extracted_paths]: if isinstance(_lowerCamelCase , _lowerCamelCase ): __snake_case : Dict = [extracted_paths] __snake_case : int = [paths] elif isinstance(_lowerCamelCase , _lowerCamelCase ): assert "train" in extracted_paths.keys() __snake_case : int = extracted_paths.values() __snake_case : int = paths.values() assert extracted_paths for extracted_path, input_path in zip(_lowerCamelCase , _lowerCamelCase ): assert extracted_path == dl_manager.extracted_paths[input_path] __snake_case : Any = Path(_lowerCamelCase ) __snake_case : str = extracted_path.parts assert parts[-1] == hash_url_to_filename(_lowerCamelCase , etag=_lowerCamelCase ) assert parts[-2] == extracted_subdir assert extracted_path.exists() __snake_case : Optional[int] = extracted_path.read_text() __snake_case : str = text_file.read_text() assert extracted_file_content == expected_file_content def _a ( _lowerCamelCase , _lowerCamelCase ) -> Optional[int]: """simple docstring""" assert path.endswith(""".jsonl""" ) for num_items, line in enumerate(_lowerCamelCase , start=1 ): __snake_case : Tuple = json.loads(line.decode("""utf-8""" ) ) assert item.keys() == {"col_1", "col_2", "col_3"} assert num_items == 4 @pytest.mark.parametrize("""archive_jsonl""" , ["""tar_jsonl_path""", """zip_jsonl_path"""] ) def _a ( _lowerCamelCase , _lowerCamelCase ) -> Optional[int]: """simple docstring""" __snake_case : Any = request.getfixturevalue(_lowerCamelCase ) __snake_case : str = DownloadManager() for num_jsonl, (path, file) in enumerate(dl_manager.iter_archive(_lowerCamelCase ) , start=1 ): _test_jsonl(_lowerCamelCase , _lowerCamelCase ) assert num_jsonl == 2 @pytest.mark.parametrize("""archive_nested_jsonl""" , ["""tar_nested_jsonl_path""", """zip_nested_jsonl_path"""] ) def _a ( _lowerCamelCase , _lowerCamelCase ) -> List[str]: """simple docstring""" __snake_case : int = request.getfixturevalue(_lowerCamelCase ) __snake_case : List[str] = DownloadManager() for num_tar, (path, file) in enumerate(dl_manager.iter_archive(_lowerCamelCase ) , start=1 ): for num_jsonl, (subpath, subfile) in enumerate(dl_manager.iter_archive(_lowerCamelCase ) , start=1 ): _test_jsonl(_lowerCamelCase , _lowerCamelCase ) assert num_tar == 1 assert num_jsonl == 2 def _a ( _lowerCamelCase ) -> Any: """simple docstring""" __snake_case : List[str] = DownloadManager() for num_file, file in enumerate(dl_manager.iter_files(_lowerCamelCase ) , start=1 ): assert os.path.basename(_lowerCamelCase ) == ("test.txt" if num_file == 1 else "train.txt") assert num_file == 2
26
1
'''simple docstring''' import unittest from accelerate import debug_launcher from accelerate.test_utils import require_cpu, test_ops, test_script @require_cpu class _A ( unittest.TestCase ): def lowercase__ ( self : Tuple ) -> List[str]: """simple docstring""" debug_launcher(test_script.main ) def lowercase__ ( self : Optional[int] ) -> Optional[Any]: """simple docstring""" debug_launcher(test_ops.main )
26
'''simple docstring''' def _a ( _lowerCamelCase = 100 ) -> int: """simple docstring""" __snake_case : Any = n * (n + 1) * (2 * n + 1) / 6 __snake_case : List[Any] = (n * (n + 1) / 2) ** 2 return int(square_of_sum - sum_of_squares ) if __name__ == "__main__": print(f"""{solution() = }""")
26
1
'''simple docstring''' import shutil import tempfile import unittest import numpy as np import pytest from transformers.testing_utils import require_vision from transformers.utils import is_vision_available if is_vision_available(): from PIL import Image from transformers import ( AutoProcessor, BertTokenizerFast, BlipImageProcessor, GPTaTokenizer, InstructBlipProcessor, PreTrainedTokenizerFast, ) @require_vision class _A ( unittest.TestCase ): def lowercase__ ( self : Optional[int] ) -> Dict: """simple docstring""" __snake_case : List[str] = tempfile.mkdtemp() __snake_case : List[str] = BlipImageProcessor() __snake_case : Tuple = GPTaTokenizer.from_pretrained("""hf-internal-testing/tiny-random-GPT2Model""" ) __snake_case : str = BertTokenizerFast.from_pretrained("""hf-internal-testing/tiny-random-bert""" ) __snake_case : Dict = InstructBlipProcessor(__magic_name__ , __magic_name__ , __magic_name__ ) processor.save_pretrained(self.tmpdirname ) def lowercase__ ( self : List[Any] , **__magic_name__ : Tuple ) -> Union[str, Any]: """simple docstring""" return AutoProcessor.from_pretrained(self.tmpdirname , **__magic_name__ ).tokenizer def lowercase__ ( self : Optional[int] , **__magic_name__ : Optional[Any] ) -> List[Any]: """simple docstring""" return AutoProcessor.from_pretrained(self.tmpdirname , **__magic_name__ ).image_processor def lowercase__ ( self : int , **__magic_name__ : Dict ) -> Optional[int]: """simple docstring""" return AutoProcessor.from_pretrained(self.tmpdirname , **__magic_name__ ).qformer_tokenizer def lowercase__ ( self : Any ) -> Tuple: """simple docstring""" shutil.rmtree(self.tmpdirname ) def lowercase__ ( self : List[str] ) -> Tuple: """simple docstring""" __snake_case : Any = [np.random.randint(2_55 , size=(3, 30, 4_00) , dtype=np.uinta )] __snake_case : Union[str, Any] = [Image.fromarray(np.moveaxis(__magic_name__ , 0 , -1 ) ) for x in image_inputs] return image_inputs def lowercase__ ( self : int ) -> List[Any]: """simple docstring""" __snake_case : List[Any] = InstructBlipProcessor( tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() , qformer_tokenizer=self.get_qformer_tokenizer() , ) processor.save_pretrained(self.tmpdirname ) __snake_case : List[Any] = self.get_tokenizer(bos_token="""(BOS)""" , eos_token="""(EOS)""" ) __snake_case : Optional[Any] = self.get_image_processor(do_normalize=__magic_name__ , padding_value=1.0 ) __snake_case : Optional[Any] = InstructBlipProcessor.from_pretrained( self.tmpdirname , bos_token="""(BOS)""" , eos_token="""(EOS)""" , do_normalize=__magic_name__ , padding_value=1.0 ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer , __magic_name__ ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , __magic_name__ ) self.assertIsInstance(processor.qformer_tokenizer , __magic_name__ ) def lowercase__ ( self : Union[str, Any] ) -> int: """simple docstring""" __snake_case : Optional[int] = self.get_image_processor() __snake_case : str = self.get_tokenizer() __snake_case : str = self.get_qformer_tokenizer() __snake_case : List[str] = InstructBlipProcessor( tokenizer=__magic_name__ , image_processor=__magic_name__ , qformer_tokenizer=__magic_name__ ) __snake_case : List[Any] = self.prepare_image_inputs() __snake_case : Dict = image_processor(__magic_name__ , return_tensors="""np""" ) __snake_case : Any = processor(images=__magic_name__ , return_tensors="""np""" ) for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1E-2 ) def lowercase__ ( self : Optional[int] ) -> Optional[Any]: """simple docstring""" __snake_case : List[str] = self.get_image_processor() __snake_case : Tuple = self.get_tokenizer() __snake_case : str = self.get_qformer_tokenizer() __snake_case : str = InstructBlipProcessor( tokenizer=__magic_name__ , image_processor=__magic_name__ , qformer_tokenizer=__magic_name__ ) __snake_case : List[Any] = """lower newer""" __snake_case : List[str] = processor(text=__magic_name__ ) __snake_case : Union[str, Any] = tokenizer(__magic_name__ , return_token_type_ids=__magic_name__ ) __snake_case : Tuple = qformer_tokenizer(__magic_name__ , return_token_type_ids=__magic_name__ ) for key in encoded_tokens.keys(): self.assertListEqual(encoded_tokens[key] , encoded_processor[key] ) for key in encoded_tokens_qformer.keys(): self.assertListEqual(encoded_tokens_qformer[key] , encoded_processor["""qformer_""" + key] ) def lowercase__ ( self : List[str] ) -> List[Any]: """simple docstring""" __snake_case : Union[str, Any] = self.get_image_processor() __snake_case : Union[str, Any] = self.get_tokenizer() __snake_case : Optional[int] = self.get_qformer_tokenizer() __snake_case : Tuple = InstructBlipProcessor( tokenizer=__magic_name__ , image_processor=__magic_name__ , qformer_tokenizer=__magic_name__ ) __snake_case : Union[str, Any] = """lower newer""" __snake_case : List[str] = self.prepare_image_inputs() __snake_case : int = processor(text=__magic_name__ , images=__magic_name__ ) self.assertListEqual( list(inputs.keys() ) , ["""input_ids""", """attention_mask""", """qformer_input_ids""", """qformer_attention_mask""", """pixel_values"""] , ) # test if it raises when no input is passed with pytest.raises(__magic_name__ ): processor() def lowercase__ ( self : Any ) -> List[str]: """simple docstring""" __snake_case : Union[str, Any] = self.get_image_processor() __snake_case : Union[str, Any] = self.get_tokenizer() __snake_case : Tuple = self.get_qformer_tokenizer() __snake_case : Dict = InstructBlipProcessor( tokenizer=__magic_name__ , image_processor=__magic_name__ , qformer_tokenizer=__magic_name__ ) __snake_case : Optional[Any] = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] __snake_case : int = processor.batch_decode(__magic_name__ ) __snake_case : str = tokenizer.batch_decode(__magic_name__ ) self.assertListEqual(__magic_name__ , __magic_name__ ) def lowercase__ ( self : Union[str, Any] ) -> str: """simple docstring""" __snake_case : Any = self.get_image_processor() __snake_case : List[str] = self.get_tokenizer() __snake_case : str = self.get_qformer_tokenizer() __snake_case : Dict = InstructBlipProcessor( tokenizer=__magic_name__ , image_processor=__magic_name__ , qformer_tokenizer=__magic_name__ ) __snake_case : Optional[int] = """lower newer""" __snake_case : List[Any] = self.prepare_image_inputs() __snake_case : Optional[Any] = processor(text=__magic_name__ , images=__magic_name__ ) self.assertListEqual( list(inputs.keys() ) , ["""input_ids""", """attention_mask""", """qformer_input_ids""", """qformer_attention_mask""", """pixel_values"""] , )
26
'''simple docstring''' from __future__ import annotations from typing import Any class _A : def __init__( self : str , __magic_name__ : int , __magic_name__ : int , __magic_name__ : float = 0 ) -> None: """simple docstring""" __snake_case , __snake_case : Optional[Any] = row, column __snake_case : Dict = [[default_value for c in range(__magic_name__ )] for r in range(__magic_name__ )] def __str__( self : List[Any] ) -> str: """simple docstring""" __snake_case : Dict = f'''Matrix consist of {self.row} rows and {self.column} columns\n''' # Make string identifier __snake_case : Optional[int] = 0 for row_vector in self.array: for obj in row_vector: __snake_case : Optional[int] = max(__magic_name__ , len(str(__magic_name__ ) ) ) __snake_case : str = f'''%{max_element_length}s''' # Make string and return def single_line(__magic_name__ : list[float] ) -> str: nonlocal string_format_identifier __snake_case : Union[str, Any] = """[""" line += ", ".join(string_format_identifier % (obj,) for obj in row_vector ) line += "]" return line s += "\n".join(single_line(__magic_name__ ) for row_vector in self.array ) return s def __repr__( self : Optional[int] ) -> str: """simple docstring""" return str(self ) def lowercase__ ( self : Dict , __magic_name__ : tuple[int, int] ) -> bool: """simple docstring""" if not (isinstance(__magic_name__ , (list, tuple) ) and len(__magic_name__ ) == 2): return False elif not (0 <= loc[0] < self.row and 0 <= loc[1] < self.column): return False else: return True def __getitem__( self : int , __magic_name__ : tuple[int, int] ) -> Any: """simple docstring""" assert self.validate_indicies(__magic_name__ ) return self.array[loc[0]][loc[1]] def __setitem__( self : List[str] , __magic_name__ : tuple[int, int] , __magic_name__ : float ) -> None: """simple docstring""" assert self.validate_indicies(__magic_name__ ) __snake_case : Optional[int] = value def __add__( self : Any , __magic_name__ : Matrix ) -> Matrix: """simple docstring""" assert isinstance(__magic_name__ , __magic_name__ ) assert self.row == another.row and self.column == another.column # Add __snake_case : Union[str, Any] = Matrix(self.row , self.column ) for r in range(self.row ): for c in range(self.column ): __snake_case : List[Any] = self[r, c] + another[r, c] return result def __neg__( self : Tuple ) -> Matrix: """simple docstring""" __snake_case : Tuple = Matrix(self.row , self.column ) for r in range(self.row ): for c in range(self.column ): __snake_case : List[Any] = -self[r, c] return result def __sub__( self : Optional[int] , __magic_name__ : Matrix ) -> Matrix: """simple docstring""" return self + (-another) def __mul__( self : List[Any] , __magic_name__ : int | float | Matrix ) -> Matrix: """simple docstring""" if isinstance(__magic_name__ , (int, float) ): # Scalar multiplication __snake_case : Optional[int] = Matrix(self.row , self.column ) for r in range(self.row ): for c in range(self.column ): __snake_case : Tuple = self[r, c] * another return result elif isinstance(__magic_name__ , __magic_name__ ): # Matrix multiplication assert self.column == another.row __snake_case : Dict = Matrix(self.row , another.column ) for r in range(self.row ): for c in range(another.column ): for i in range(self.column ): result[r, c] += self[r, i] * another[i, c] return result else: __snake_case : Optional[int] = f'''Unsupported type given for another ({type(__magic_name__ )})''' raise TypeError(__magic_name__ ) def lowercase__ ( self : str ) -> Matrix: """simple docstring""" __snake_case : Any = Matrix(self.column , self.row ) for r in range(self.row ): for c in range(self.column ): __snake_case : str = self[r, c] return result def lowercase__ ( self : Union[str, Any] , __magic_name__ : Matrix , __magic_name__ : Matrix ) -> Any: """simple docstring""" assert isinstance(__magic_name__ , __magic_name__ ) and isinstance(__magic_name__ , __magic_name__ ) assert self.row == self.column == u.row == v.row # u, v should be column vector assert u.column == v.column == 1 # u, v should be column vector # Calculate __snake_case : List[str] = v.transpose() __snake_case : Tuple = (v_t * self * u)[0, 0] + 1 if numerator_factor == 0: return None # It's not invertable return self - ((self * u) * (v_t * self) * (1.0 / numerator_factor)) # Testing if __name__ == "__main__": def _a ( ) -> None: """simple docstring""" __snake_case : Tuple = Matrix(3 , 3 , 0 ) for i in range(3 ): __snake_case : Any = 1 print(F'''a^(-1) is {ainv}''' ) # u, v __snake_case : Dict = Matrix(3 , 1 , 0 ) __snake_case , __snake_case , __snake_case : Union[str, Any] = 1, 2, -3 __snake_case : str = Matrix(3 , 1 , 0 ) __snake_case , __snake_case , __snake_case : Tuple = 4, -2, 5 print(F'''u is {u}''' ) print(F'''v is {v}''' ) print(F'''uv^T is {u * v.transpose()}''' ) # Sherman Morrison print(F'''(a + uv^T)^(-1) is {ainv.sherman_morrison(_lowerCamelCase , _lowerCamelCase )}''' ) def _a ( ) -> None: """simple docstring""" import doctest doctest.testmod() testa()
26
1
'''simple docstring''' import json import multiprocessing import os import re from collections import defaultdict import torch from accelerate import Accelerator from accelerate.utils import set_seed from arguments import HumanEvalArguments from datasets import load_dataset, load_metric from torch.utils.data import IterableDataset from torch.utils.data.dataloader import DataLoader from tqdm import tqdm import transformers from transformers import AutoModelForCausalLM, AutoTokenizer, HfArgumentParser, StoppingCriteria, StoppingCriteriaList __UpperCamelCase = ["\nclass", "\ndef", "\n#", "\n@", "\nprint", "\nif"] class _A ( __lowercase ): def __init__( self : Tuple , __magic_name__ : Dict , __magic_name__ : Tuple , __magic_name__ : Tuple=None , __magic_name__ : Optional[Any]=1 ) -> Optional[Any]: """simple docstring""" __snake_case : Any = tokenizer __snake_case : Dict = dataset __snake_case : Optional[Any] = len(__magic_name__ ) if n_tasks is None else n_tasks __snake_case : List[Any] = n_copies def __iter__( self : int ) -> Optional[Any]: """simple docstring""" __snake_case : Tuple = [] for task in range(self.n_tasks ): # without strip, the model generate commented codes ... prompts.append(self.tokenizer.eos_token + self.dataset[task]["""prompt"""].strip() ) __snake_case : Optional[int] = self.tokenizer(__magic_name__ , padding=__magic_name__ , return_tensors="""pt""" ) for task in range(self.n_tasks ): for _ in range(self.n_copies ): yield { "ids": outputs.input_ids[task], "task_id": task, "input_len": outputs.attention_mask[task].sum(), } class _A ( __lowercase ): def __init__( self : Any , __magic_name__ : Optional[Any] , __magic_name__ : Optional[int] , __magic_name__ : str ) -> Tuple: """simple docstring""" __snake_case : int = start_length __snake_case : Union[str, Any] = eof_strings __snake_case : Dict = tokenizer def __call__( self : str , __magic_name__ : str , __magic_name__ : Union[str, Any] , **__magic_name__ : List[Any] ) -> List[Any]: """simple docstring""" __snake_case : Optional[Any] = self.tokenizer.batch_decode(input_ids[:, self.start_length :] ) __snake_case : int = [] for decoded_generation in decoded_generations: done.append(any(stop_string in decoded_generation for stop_string in self.eof_strings ) ) return all(__magic_name__ ) def _a ( _lowerCamelCase ) -> Any: """simple docstring""" __snake_case : Optional[int] = re.split("""(%s)""" % """|""".join(_lowerCamelCase ) , _lowerCamelCase ) # last string should be "" return "".join(string_list[:-2] ) def _a ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase=20 , **_lowerCamelCase ) -> int: """simple docstring""" __snake_case : Optional[int] = defaultdict(_lowerCamelCase ) # dict of list of generated tokens for step, batch in tqdm(enumerate(_lowerCamelCase ) ): with torch.no_grad(): __snake_case : int = batch["""ids"""].shape[-1] __snake_case : Dict = accelerator.unwrap_model(_lowerCamelCase ).generate( input_ids=batch["""ids"""][:, : batch["""input_len"""]] , num_return_sequences=_lowerCamelCase , **_lowerCamelCase ) # each task is generated batch_size times __snake_case : int = batch["""task_id"""].repeat(_lowerCamelCase ) __snake_case : Tuple = accelerator.pad_across_processes( _lowerCamelCase , dim=1 , pad_index=tokenizer.pad_token_id ) __snake_case , __snake_case : Any = accelerator.gather((generated_tokens, generated_tasks) ) __snake_case : List[str] = generated_tokens.cpu().numpy() __snake_case : Any = generated_tasks.cpu().numpy() for task, generated_tokens in zip(_lowerCamelCase , _lowerCamelCase ): gen_token_dict[task].append(_lowerCamelCase ) __snake_case : List[str] = [[] for _ in range(_lowerCamelCase )] for task, generated_tokens in gen_token_dict.items(): for s in generated_tokens: __snake_case : int = tokenizer.decode(_lowerCamelCase , skip_special_tokens=_lowerCamelCase , clean_up_tokenization_spaces=_lowerCamelCase ) code_gens[task].append(remove_last_block(_lowerCamelCase ) ) return code_gens def _a ( ) -> List[Any]: """simple docstring""" __snake_case : int = HfArgumentParser(_lowerCamelCase ) __snake_case : Dict = parser.parse_args() transformers.logging.set_verbosity_error() # enables code execution in code_eval metric __snake_case : Optional[int] = args.HF_ALLOW_CODE_EVAL # make sure tokenizer plays nice with multiprocessing __snake_case : int = """false""" if args.num_workers is None: __snake_case : Dict = multiprocessing.cpu_count() # Use dataset load to feed to accelerate __snake_case : str = Accelerator() set_seed(args.seed , device_specific=_lowerCamelCase ) # Load model and tokenizer __snake_case : Any = AutoTokenizer.from_pretrained(args.model_ckpt ) __snake_case : Dict = tokenizer.eos_token __snake_case : str = AutoModelForCausalLM.from_pretrained(args.model_ckpt ) # Generation settings __snake_case : Optional[int] = { """do_sample""": args.do_sample, """temperature""": args.temperature, """max_new_tokens""": args.max_new_tokens, """top_p""": args.top_p, """top_k""": args.top_k, """stopping_criteria""": StoppingCriteriaList([EndOfFunctionCriteria(0 , _lowerCamelCase , _lowerCamelCase )] ), } # Load evaluation dataset and metric __snake_case : Dict = load_dataset("""openai_humaneval""" ) __snake_case : int = load_metric("""code_eval""" ) __snake_case : int = args.num_tasks if args.num_tasks is not None else len(human_eval["""test"""] ) __snake_case : str = args.n_samples // args.batch_size __snake_case : List[str] = TokenizedDataset(_lowerCamelCase , human_eval["""test"""] , n_copies=_lowerCamelCase , n_tasks=_lowerCamelCase ) # do not confuse args.batch_size, which is actually the num_return_sequences __snake_case : Dict = DataLoader(_lowerCamelCase , batch_size=1 ) # Run a quick test to see if code evaluation is enabled try: __snake_case : int = code_eval_metric.compute(references=[""""""] , predictions=[[""""""]] ) except ValueError as exception: print( """Code evaluation not enabled. Read the warning below carefully and then use `--HF_ALLOW_CODE_EVAL=\"1\"`""" """ flag to enable code evaluation.""" ) raise exception __snake_case , __snake_case : List[str] = accelerator.prepare(_lowerCamelCase , _lowerCamelCase ) __snake_case : Optional[int] = complete_code( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , n_tasks=_lowerCamelCase , batch_size=args.batch_size , **_lowerCamelCase , ) if accelerator.is_main_process: __snake_case : str = [] for task in tqdm(range(_lowerCamelCase ) ): __snake_case : Union[str, Any] = human_eval["""test"""][task]["""test"""] __snake_case : List[str] = F'''check({human_eval["test"][task]["entry_point"]})''' references.append("""\n""" + test_func + """\n""" + entry_point ) # Evaluate completions with "code_eval" metric __snake_case , __snake_case : Optional[int] = code_eval_metric.compute( references=_lowerCamelCase , predictions=_lowerCamelCase , num_workers=args.num_workers ) print(F'''Results: {pass_at_k}''' ) # Save results to json file with open(args.output_file , """w""" ) as fp: json.dump(_lowerCamelCase , _lowerCamelCase ) # For some reason the folliwng seems to be necessary sometimes for code_eval to work nice with multiprocessing # https://stackoverflow.com/questions/60804599/python-multiprocessing-keeps-spawning-the-whole-script if __name__ == "__main__": main()
26
'''simple docstring''' import argparse import json import os import torch from torch import nn from transformers import NllbMoeConfig, NllbMoeModel from transformers.modeling_utils import dtype_byte_size from transformers.utils import WEIGHTS_INDEX_NAME, WEIGHTS_NAME def _a ( _lowerCamelCase ) -> List[Any]: """simple docstring""" __snake_case : Union[str, Any] = [ """encoder.version""", """decoder.version""", """model.encoder.version""", """model.decoder.version""", """decoder.output_projection.weight""", """_float_tensor""", """encoder.embed_positions._float_tensor""", """decoder.embed_positions._float_tensor""", ] for k in ignore_keys: state_dict.pop(_lowerCamelCase , _lowerCamelCase ) def _a ( _lowerCamelCase ) -> List[str]: """simple docstring""" __snake_case , __snake_case : Dict = emb.weight.shape __snake_case : Optional[int] = nn.Linear(_lowerCamelCase , _lowerCamelCase , bias=_lowerCamelCase ) __snake_case : Union[str, Any] = emb.weight.data return lin_layer def _a ( _lowerCamelCase , _lowerCamelCase=None ) -> Union[str, Any]: """simple docstring""" __snake_case : Any = {} for old_key in state_dict.keys(): __snake_case : Union[str, Any] = old_key if "moe_layer.experts." in key: if expert_idx is not None: __snake_case : Tuple = key.replace("""moe_layer.experts.0""" , F'''ffn.experts.expert_{expert_idx}''' ) else: __snake_case : Optional[int] = key.replace("""moe_layer.experts.""" , """ffn.experts.expert_""" ) if "gate" in key: __snake_case : Dict = key.replace(""".moe_layer.gate.wg""" , """.ffn.router.classifier""" ) if "fc2" and "experts" not in key: __snake_case : Union[str, Any] = key.replace(""".fc2.""" , """.ffn.fc2.""" ) if "fc1" and "experts" not in key: __snake_case : Optional[int] = key.replace(""".fc1.""" , """.ffn.fc1.""" ) if ".encoder_attn." in key: __snake_case : Tuple = key.replace(""".encoder_attn.""" , """.cross_attention.""" ) if "encoder_attn_layer_norm" in key: __snake_case : Union[str, Any] = key.replace("""encoder_attn_layer_norm""" , """cross_attention_layer_norm""" ) if "final_layer_norm" in key: __snake_case : str = key.replace("""final_layer_norm""" , """ff_layer_norm""" ) __snake_case : str = state_dict[old_key] return new_dict def _a ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase = WEIGHTS_NAME ) -> Dict: """simple docstring""" __snake_case : Optional[int] = [] __snake_case : Dict = 0 os.makedirs(_lowerCamelCase , exist_ok=_lowerCamelCase ) for expert in range(_lowerCamelCase ): __snake_case : Tuple = switch_checkpoint_path + F'''-rank-{expert}.pt''' if os.path.isfile(_lowerCamelCase ): __snake_case : Dict = torch.load(_lowerCamelCase )["""model"""] remove_ignore_keys_(_lowerCamelCase ) __snake_case : Optional[Any] = rename_fairseq_keys(_lowerCamelCase , _lowerCamelCase ) __snake_case : List[Any] = os.path.join( _lowerCamelCase , weights_name.replace(""".bin""" , F'''-{len(_lowerCamelCase )+1:05d}-of-???.bin''' ) ) torch.save(_lowerCamelCase , _lowerCamelCase ) sharded_state_dicts.append(expert_state.keys() ) total_size += sum([value.numel() for key, value in expert_state.items()] ) * dtype_byte_size( expert_state[list(_lowerCamelCase )[0]].dtype ) # Add the last block __snake_case : Optional[Any] = os.path.join(_lowerCamelCase , weights_name.replace(""".bin""" , F'''-{len(_lowerCamelCase )+1:05d}-of-???.bin''' ) ) __snake_case : str = torch.load(switch_checkpoint_path + """-shared.pt""" )["""model"""] remove_ignore_keys_(_lowerCamelCase ) __snake_case : Optional[Any] = rename_fairseq_keys(_lowerCamelCase , _lowerCamelCase ) __snake_case : List[str] = shared_weights["""decoder.embed_tokens.weight"""] sharded_state_dicts.append(shared_weights.keys() ) # If we only have the shared weights (dummy model/experts saved on the same file) if len(_lowerCamelCase ) == 1: __snake_case : Optional[Any] = os.path.join(_lowerCamelCase , _lowerCamelCase ) torch.save(_lowerCamelCase , _lowerCamelCase ) return {weights_name: sharded_state_dicts[0]}, None else: torch.save(_lowerCamelCase , _lowerCamelCase ) # Otherwise, let's build the index __snake_case : Tuple = {} for idx, shard in enumerate(_lowerCamelCase ): __snake_case : Any = weights_name.replace(""".bin""" , F'''-{idx+1:05d}-of-{len(_lowerCamelCase ):05d}.bin''' ) __snake_case : int = os.path.join(_lowerCamelCase , weights_name.replace(""".bin""" , F'''-{idx+1:05d}-of-???.bin''' ) ) os.rename(_lowerCamelCase , os.path.join(_lowerCamelCase , _lowerCamelCase ) ) for key in shard: __snake_case : str = shard_file # Add the metadata __snake_case : Optional[Any] = {"""total_size""": total_size} __snake_case : int = {"""metadata""": metadata, """weight_map""": weight_map} with open(os.path.join(_lowerCamelCase , _lowerCamelCase ) , """w""" , encoding="""utf-8""" ) as f: __snake_case : Union[str, Any] = json.dumps(_lowerCamelCase , indent=2 , sort_keys=_lowerCamelCase ) + """\n""" f.write(_lowerCamelCase ) return metadata, index if __name__ == "__main__": __UpperCamelCase = argparse.ArgumentParser() # Required parameters parser.add_argument( "--nllb_moe_checkpoint_path", default="/home/arthur_huggingface_co/fairseq/weights/checkpoints/model_moe_54b/checkpoint_2_300000", type=str, required=False, help="Path to a directory containing a folder per layer. Follows the original Google format.", ) parser.add_argument("--dtype", default="float32", type=str, required=False, help="dtype of the saved model") parser.add_argument( "--pytorch_dump_folder_path", default="/home/arthur_huggingface_co/fairseq/weights/checkpoints/hf-converted-moe-54b", type=str, required=False, help="Path to the output pytorch model.", ) __UpperCamelCase = parser.parse_args() __UpperCamelCase , __UpperCamelCase = shard_on_the_fly( args.nllb_moe_checkpoint_path, args.pytorch_dump_folder_path, 128, args.dtype, ) __UpperCamelCase = NllbMoeConfig.from_pretrained( "facebook/nllb-200-3.3B", encoder_sparse_step=4, decoder_sparse_step=4, num_experts=128 ) config.save_pretrained(args.pytorch_dump_folder_path) __UpperCamelCase = NllbMoeModel.from_pretrained(args.pytorch_dump_folder_path) print("Done") model.save_pretrained(args.pytorch_dump_folder_path)
26
1
'''simple docstring''' import argparse import json import os import fairseq import torch from fairseq.data import Dictionary from transformers import ( WavaVecaConfig, WavaVecaCTCTokenizer, WavaVecaFeatureExtractor, WavaVecaForCTC, WavaVecaForPreTraining, WavaVecaProcessor, logging, ) from transformers.models.wavaveca.modeling_wavaveca import WavaVecaForSequenceClassification logging.set_verbosity_info() __UpperCamelCase = logging.get_logger(__name__) __UpperCamelCase = { "post_extract_proj": "feature_projection.projection", "encoder.pos_conv.0": "encoder.pos_conv_embed.conv", "self_attn.k_proj": "encoder.layers.*.attention.k_proj", "self_attn.v_proj": "encoder.layers.*.attention.v_proj", "self_attn.q_proj": "encoder.layers.*.attention.q_proj", "self_attn.out_proj": "encoder.layers.*.attention.out_proj", "self_attn_layer_norm": "encoder.layers.*.layer_norm", "fc1": "encoder.layers.*.feed_forward.intermediate_dense", "fc2": "encoder.layers.*.feed_forward.output_dense", "final_layer_norm": "encoder.layers.*.final_layer_norm", "encoder.layer_norm": "encoder.layer_norm", "adapter_layer": "encoder.layers.*.adapter_layer", "w2v_model.layer_norm": "feature_projection.layer_norm", "quantizer.weight_proj": "quantizer.weight_proj", "quantizer.vars": "quantizer.codevectors", "project_q": "project_q", "final_proj": "project_hid", "w2v_encoder.proj": "lm_head", "mask_emb": "masked_spec_embed", "pooling_layer.linear": "projector", "pooling_layer.projection": "classifier", } __UpperCamelCase = [ "lm_head", "quantizer.weight_proj", "quantizer.codevectors", "project_q", "project_hid", "projector", "classifier", ] def _a ( _lowerCamelCase ) -> Dict: """simple docstring""" __snake_case : int = {} with open(_lowerCamelCase , """r""" ) as file: for line_number, line in enumerate(_lowerCamelCase ): __snake_case : Union[str, Any] = line.strip() if line: __snake_case : int = line.split() __snake_case : Tuple = line_number __snake_case : Optional[Any] = words[0] __snake_case : str = value return result def _a ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> List[str]: """simple docstring""" for attribute in key.split(""".""" ): __snake_case : List[str] = getattr(_lowerCamelCase , _lowerCamelCase ) __snake_case : Tuple = None for param_key in PARAM_MAPPING.keys(): if full_name.endswith(_lowerCamelCase ): __snake_case : Optional[int] = PARAM_MAPPING[full_name.split(""".""" )[-1]] __snake_case : List[str] = """param""" if weight_type is not None and weight_type != "param": __snake_case : str = getattr(_lowerCamelCase , _lowerCamelCase ).shape elif weight_type is not None and weight_type == "param": __snake_case : List[Any] = hf_pointer for attribute in hf_param_name.split(""".""" ): __snake_case : List[Any] = getattr(_lowerCamelCase , _lowerCamelCase ) __snake_case : str = shape_pointer.shape # let's reduce dimension __snake_case : Union[str, Any] = value[0] else: __snake_case : List[Any] = hf_pointer.shape if hf_shape != value.shape: raise ValueError( F'''Shape of hf {key + "." + weight_type if weight_type is not None else ""} is {hf_shape}, but should be''' F''' {value.shape} for {full_name}''' ) if weight_type == "weight": __snake_case : Any = value elif weight_type == "weight_g": __snake_case : Any = value elif weight_type == "weight_v": __snake_case : Dict = value elif weight_type == "bias": __snake_case : Optional[Any] = value elif weight_type == "param": for attribute in hf_param_name.split(""".""" ): __snake_case : Any = getattr(_lowerCamelCase , _lowerCamelCase ) __snake_case : Union[str, Any] = value else: __snake_case : Optional[Any] = value logger.info(F'''{key + "." + weight_type if weight_type is not None else ""} was initialized from {full_name}.''' ) def _a ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> List[str]: """simple docstring""" __snake_case : List[Any] = None for param_key in PARAM_MAPPING.keys(): if full_name.endswith(_lowerCamelCase ): __snake_case : Union[str, Any] = PARAM_MAPPING[full_name.split(""".""" )[-1]] __snake_case : Union[str, Any] = """param""" if weight_type is not None and weight_type != "param": __snake_case : List[Any] = """.""".join([key, weight_type] ) elif weight_type is not None and weight_type == "param": __snake_case : List[str] = """.""".join([key, hf_param_name] ) else: __snake_case : List[Any] = key __snake_case : Union[str, Any] = value if """lm_head""" in full_key else value[0] __UpperCamelCase = { "W_a": "linear_1.weight", "W_b": "linear_2.weight", "b_a": "linear_1.bias", "b_b": "linear_2.bias", "ln_W": "norm.weight", "ln_b": "norm.bias", } def _a ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase=None , _lowerCamelCase=None ) -> Tuple: """simple docstring""" __snake_case : Optional[int] = False for key, mapped_key in MAPPING.items(): __snake_case : Union[str, Any] = """wav2vec2.""" + mapped_key if mapped_key not in TOP_LEVEL_KEYS else mapped_key if key in name or key.split("""w2v_model.""" )[-1] == name.split(""".""" )[0]: __snake_case : Dict = True if "*" in mapped_key: __snake_case : Optional[int] = name.split(_lowerCamelCase )[0].split(""".""" )[-2] __snake_case : List[str] = mapped_key.replace("""*""" , _lowerCamelCase ) if "weight_g" in name: __snake_case : Optional[int] = """weight_g""" elif "weight_v" in name: __snake_case : Optional[int] = """weight_v""" elif "bias" in name: __snake_case : Union[str, Any] = """bias""" elif "weight" in name: # TODO: don't match quantizer.weight_proj __snake_case : Any = """weight""" else: __snake_case : Optional[int] = None if hf_dict is not None: rename_dict(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) else: set_recursively(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) return is_used return is_used def _a ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> Tuple: """simple docstring""" __snake_case : Optional[int] = [] __snake_case : Tuple = fairseq_model.state_dict() __snake_case : List[str] = hf_model.wavaveca.feature_extractor for name, value in fairseq_dict.items(): __snake_case : Union[str, Any] = False if "conv_layers" in name: load_conv_layer( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , hf_model.config.feat_extract_norm == """group""" , ) __snake_case : List[Any] = True else: __snake_case : Optional[Any] = load_wavaveca_layer(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) if not is_used: unused_weights.append(_lowerCamelCase ) logger.warning(F'''Unused weights: {unused_weights}''' ) def _a ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> Tuple: """simple docstring""" __snake_case : Optional[Any] = full_name.split("""conv_layers.""" )[-1] __snake_case : Tuple = name.split(""".""" ) __snake_case : Dict = int(items[0] ) __snake_case : List[Any] = int(items[1] ) if type_id == 0: if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.bias.data.shape: raise ValueError( F'''{full_name} has size {value.shape}, but''' F''' {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.''' ) __snake_case : List[Any] = value logger.info(F'''Feat extract conv layer {layer_id} was initialized from {full_name}.''' ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.weight.data.shape: raise ValueError( F'''{full_name} has size {value.shape}, but''' F''' {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.''' ) __snake_case : Dict = value logger.info(F'''Feat extract conv layer {layer_id} was initialized from {full_name}.''' ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape: raise ValueError( F'''{full_name} has size {value.shape}, but''' F''' {feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape} was found.''' ) __snake_case : int = value logger.info(F'''Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.''' ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape: raise ValueError( F'''{full_name} has size {value.shape}, but''' F''' {feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape} was found.''' ) __snake_case : int = value logger.info(F'''Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.''' ) else: unused_weights.append(_lowerCamelCase ) @torch.no_grad() def _a ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase=None , _lowerCamelCase=None , _lowerCamelCase=True , _lowerCamelCase=False ) -> int: """simple docstring""" if config_path is not None: __snake_case : Dict = WavaVecaConfig.from_pretrained(_lowerCamelCase ) else: __snake_case : Dict = WavaVecaConfig() if is_seq_class: __snake_case : str = read_txt_into_dict(_lowerCamelCase ) __snake_case : List[Any] = idalabel __snake_case : Any = WavaVecaForSequenceClassification(_lowerCamelCase ) __snake_case : List[Any] = WavaVecaFeatureExtractor( feature_size=1 , sampling_rate=1_6000 , padding_value=0 , do_normalize=_lowerCamelCase , return_attention_mask=_lowerCamelCase , ) feature_extractor.save_pretrained(_lowerCamelCase ) elif is_finetuned: if dict_path: __snake_case : int = Dictionary.load(_lowerCamelCase ) # important change bos & pad token id since CTC symbol is <pad> and # not <s> as in fairseq __snake_case : Union[str, Any] = target_dict.pad_index __snake_case : Union[str, Any] = target_dict.bos_index __snake_case : Optional[Any] = target_dict.eos_index __snake_case : int = len(target_dict.symbols ) __snake_case : Dict = os.path.join(_lowerCamelCase , """vocab.json""" ) if not os.path.isdir(_lowerCamelCase ): logger.error("""--pytorch_dump_folder_path ({}) should be a directory""".format(_lowerCamelCase ) ) return os.makedirs(_lowerCamelCase , exist_ok=_lowerCamelCase ) __snake_case : List[Any] = target_dict.indices # fairseq has the <pad> and <s> switched __snake_case : List[Any] = 0 __snake_case : Any = 1 with open(_lowerCamelCase , """w""" , encoding="""utf-8""" ) as vocab_handle: json.dump(_lowerCamelCase , _lowerCamelCase ) __snake_case : Dict = WavaVecaCTCTokenizer( _lowerCamelCase , unk_token=target_dict.unk_word , pad_token=target_dict.pad_word , bos_token=target_dict.bos_word , eos_token=target_dict.eos_word , word_delimiter_token="""|""" , do_lower_case=_lowerCamelCase , ) __snake_case : Union[str, Any] = True if config.feat_extract_norm == """layer""" else False __snake_case : List[Any] = WavaVecaFeatureExtractor( feature_size=1 , sampling_rate=1_6000 , padding_value=0 , do_normalize=_lowerCamelCase , return_attention_mask=_lowerCamelCase , ) __snake_case : Optional[int] = WavaVecaProcessor(feature_extractor=_lowerCamelCase , tokenizer=_lowerCamelCase ) processor.save_pretrained(_lowerCamelCase ) __snake_case : int = WavaVecaForCTC(_lowerCamelCase ) else: __snake_case : Optional[int] = WavaVecaForPreTraining(_lowerCamelCase ) if is_finetuned or is_seq_class: __snake_case , __snake_case , __snake_case : Tuple = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path] , arg_overrides={"""data""": """/""".join(dict_path.split("""/""" )[:-1] )} ) else: __snake_case : Optional[int] = argparse.Namespace(task="""audio_pretraining""" ) __snake_case : Dict = fairseq.tasks.setup_task(_lowerCamelCase ) __snake_case , __snake_case , __snake_case : Dict = fairseq.checkpoint_utils.load_model_ensemble_and_task([checkpoint_path] , task=_lowerCamelCase ) __snake_case : Any = model[0].eval() recursively_load_weights(_lowerCamelCase , _lowerCamelCase , not is_finetuned ) hf_wavavec.save_pretrained(_lowerCamelCase ) if __name__ == "__main__": __UpperCamelCase = argparse.ArgumentParser() parser.add_argument("--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model.") parser.add_argument("--checkpoint_path", default=None, type=str, help="Path to fairseq checkpoint") parser.add_argument("--dict_path", default=None, type=str, help="Path to dict of fine-tuned model") parser.add_argument("--config_path", default=None, type=str, help="Path to hf config.json of model to convert") parser.add_argument( "--not_finetuned", action="store_true", help="Whether the model to convert is a fine-tuned model or not" ) parser.add_argument( "--is_seq_class", action="store_true", help="Whether the model to convert is a fine-tuned sequence classification model or not", ) __UpperCamelCase = parser.parse_args() __UpperCamelCase = not args.not_finetuned and not args.is_seq_class convert_wavaveca_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.dict_path, is_finetuned, args.is_seq_class, )
26
'''simple docstring''' import cva import numpy as np class _A : def __init__( self : Any , __magic_name__ : float , __magic_name__ : int ) -> Optional[int]: """simple docstring""" if k in (0.04, 0.06): __snake_case : List[str] = k __snake_case : int = window_size else: raise ValueError("""invalid k value""" ) def __str__( self : Union[str, Any] ) -> str: """simple docstring""" return str(self.k ) def lowercase__ ( self : Dict , __magic_name__ : str ) -> tuple[cva.Mat, list[list[int]]]: """simple docstring""" __snake_case : Dict = cva.imread(__magic_name__ , 0 ) __snake_case , __snake_case : List[str] = img.shape __snake_case : list[list[int]] = [] __snake_case : str = img.copy() __snake_case : Tuple = cva.cvtColor(__magic_name__ , cva.COLOR_GRAY2RGB ) __snake_case , __snake_case : List[Any] = np.gradient(__magic_name__ ) __snake_case : Optional[Any] = dx**2 __snake_case : Tuple = dy**2 __snake_case : List[Any] = dx * dy __snake_case : List[Any] = 0.04 __snake_case : Tuple = self.window_size // 2 for y in range(__magic_name__ , h - offset ): for x in range(__magic_name__ , w - offset ): __snake_case : Dict = ixx[ y - offset : y + offset + 1, x - offset : x + offset + 1 ].sum() __snake_case : Optional[int] = iyy[ y - offset : y + offset + 1, x - offset : x + offset + 1 ].sum() __snake_case : str = ixy[ y - offset : y + offset + 1, x - offset : x + offset + 1 ].sum() __snake_case : List[str] = (wxx * wyy) - (wxy**2) __snake_case : Dict = wxx + wyy __snake_case : List[str] = det - k * (trace**2) # Can change the value if r > 0.5: corner_list.append([x, y, r] ) color_img.itemset((y, x, 0) , 0 ) color_img.itemset((y, x, 1) , 0 ) color_img.itemset((y, x, 2) , 2_55 ) return color_img, corner_list if __name__ == "__main__": __UpperCamelCase = HarrisCorner(0.04, 3) __UpperCamelCase , __UpperCamelCase = edge_detect.detect("path_to_image") cva.imwrite("detect.png", color_img)
26
1
'''simple docstring''' def _a ( _lowerCamelCase , _lowerCamelCase = False ) -> bool: """simple docstring""" if n == 2: return True if not n % 2 or n < 2: return False if n > 5 and n % 10 not in (1, 3, 7, 9): # can quickly check last digit return False if n > 3_3170_4406_4679_8873_8596_1981 and not allow_probable: raise ValueError( """Warning: upper bound of deterministic test is exceeded. """ """Pass allow_probable=True to allow probabilistic test. """ """A return value of True indicates a probable prime.""" ) # array bounds provided by analysis __snake_case : List[Any] = [ 2047, 137_3653, 2532_6001, 32_1503_1751, 2_1523_0289_8747, 3_4747_4966_0383, 341_5500_7172_8321, 1, 382_5123_0565_4641_3051, 1, 1, 3186_6585_7834_0311_5116_7461, 3_3170_4406_4679_8873_8596_1981, ] __snake_case : str = [2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41] for idx, _p in enumerate(_lowerCamelCase , 1 ): if n < _p: # then we have our last prime to check __snake_case : Tuple = primes[:idx] break __snake_case , __snake_case : Union[str, Any] = n - 1, 0 # break up n -1 into a power of 2 (s) and # remaining odd component # essentially, solve for d * 2 ** s == n - 1 while d % 2 == 0: d //= 2 s += 1 for prime in plist: __snake_case : Tuple = False for r in range(_lowerCamelCase ): __snake_case : Tuple = pow(_lowerCamelCase , d * 2**r , _lowerCamelCase ) # see article for analysis explanation for m if (r == 0 and m == 1) or ((m + 1) % n == 0): __snake_case : List[str] = True # this loop will not determine compositeness break if pr: continue # if pr is False, then the above loop never evaluated to true, # and the n MUST be composite return False return True def _a ( ) -> None: """simple docstring""" assert not miller_rabin(561 ) assert miller_rabin(563 ) # 2047 assert not miller_rabin(83_8201 ) assert miller_rabin(83_8207 ) # 1_373_653 assert not miller_rabin(1731_6001 ) assert miller_rabin(1731_6017 ) # 25_326_001 assert not miller_rabin(30_7838_6641 ) assert miller_rabin(30_7838_6653 ) # 3_215_031_751 assert not miller_rabin(1_7130_4557_4801 ) assert miller_rabin(1_7130_4557_4819 ) # 2_152_302_898_747 assert not miller_rabin(2_7797_9972_8307 ) assert miller_rabin(2_7797_9972_8327 ) # 3_474_749_660_383 assert not miller_rabin(113_8500_2390_9441 ) assert miller_rabin(113_8500_2390_9527 ) # 341_550_071_728_321 assert not miller_rabin(127_5041_0188_4880_4351 ) assert miller_rabin(127_5041_0188_4880_4391 ) # 3_825_123_056_546_413_051 assert not miller_rabin(796_6646_4458_5077_8779_1867 ) assert miller_rabin(796_6646_4458_5077_8779_1951 ) # 318_665_857_834_031_151_167_461 assert not miller_rabin(5528_4067_7446_6478_9766_0333 ) assert miller_rabin(5528_4067_7446_6478_9766_0359 ) # 3_317_044_064_679_887_385_961_981 # upper limit for probabilistic test if __name__ == "__main__": test_miller_rabin()
26
'''simple docstring''' import warnings from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding class _A ( __lowercase ): lowercase__: Any = ['''image_processor''', '''tokenizer'''] lowercase__: Any = '''CLIPImageProcessor''' lowercase__: Optional[Any] = ('''CLIPTokenizer''', '''CLIPTokenizerFast''') def __init__( self : int , __magic_name__ : Dict=None , __magic_name__ : Dict=None , **__magic_name__ : Union[str, Any] ) -> Any: """simple docstring""" __snake_case : Optional[Any] = None if "feature_extractor" in kwargs: warnings.warn( """The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`""" """ instead.""" , __magic_name__ , ) __snake_case : List[Any] = kwargs.pop("""feature_extractor""" ) __snake_case : List[str] = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError("""You need to specify an `image_processor`.""" ) if tokenizer is None: raise ValueError("""You need to specify a `tokenizer`.""" ) super().__init__(__magic_name__ , __magic_name__ ) def __call__( self : int , __magic_name__ : List[str]=None , __magic_name__ : Tuple=None , __magic_name__ : Any=None , **__magic_name__ : Union[str, Any] ) -> Optional[int]: """simple docstring""" if text is None and images is None: raise ValueError("""You have to specify either text or images. Both cannot be none.""" ) if text is not None: __snake_case : int = self.tokenizer(__magic_name__ , return_tensors=__magic_name__ , **__magic_name__ ) if images is not None: __snake_case : str = self.image_processor(__magic_name__ , return_tensors=__magic_name__ , **__magic_name__ ) if text is not None and images is not None: __snake_case : Union[str, Any] = image_features.pixel_values return encoding elif text is not None: return encoding else: return BatchEncoding(data=dict(**__magic_name__ ) , tensor_type=__magic_name__ ) def lowercase__ ( self : Optional[int] , *__magic_name__ : List[Any] , **__magic_name__ : Any ) -> Optional[Any]: """simple docstring""" return self.tokenizer.batch_decode(*__magic_name__ , **__magic_name__ ) def lowercase__ ( self : List[str] , *__magic_name__ : Tuple , **__magic_name__ : List[Any] ) -> int: """simple docstring""" return self.tokenizer.decode(*__magic_name__ , **__magic_name__ ) @property def lowercase__ ( self : List[Any] ) -> Optional[Any]: """simple docstring""" __snake_case : Dict = self.tokenizer.model_input_names __snake_case : str = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) ) @property def lowercase__ ( self : int ) -> List[str]: """simple docstring""" warnings.warn( """`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.""" , __magic_name__ , ) return self.image_processor_class @property def lowercase__ ( self : Union[str, Any] ) -> Dict: """simple docstring""" warnings.warn( """`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead.""" , __magic_name__ , ) return self.image_processor
26
1
'''simple docstring''' import logging import torch from torch import nn from torch.nn import CrossEntropyLoss, MSELoss from transformers.file_utils import add_start_docstrings, add_start_docstrings_to_model_forward from transformers.models.bert.modeling_bert import ( BERT_INPUTS_DOCSTRING, BERT_START_DOCSTRING, BertEncoder, BertModel, BertPreTrainedModel, ) __UpperCamelCase = logging.getLogger(__name__) class _A ( __lowercase ): def lowercase__ ( self : int , __magic_name__ : Dict , __magic_name__ : Any , __magic_name__ : Union[str, Any]=None , __magic_name__ : Optional[Any]=None ) -> str: """simple docstring""" __snake_case : List[Any] = self.layer[current_layer](__magic_name__ , __magic_name__ , head_mask[current_layer] ) __snake_case : Any = layer_outputs[0] return hidden_states @add_start_docstrings( '''The bare Bert Model transformer with PABEE outputting raw hidden-states without any specific head on top.''' , __lowercase , ) class _A ( __lowercase ): def __init__( self : Optional[Any] , __magic_name__ : str ) -> Dict: """simple docstring""" super().__init__(__magic_name__ ) __snake_case : Optional[Any] = BertEncoderWithPabee(__magic_name__ ) self.init_weights() __snake_case : Union[str, Any] = 0 __snake_case : Union[str, Any] = 0 __snake_case : Optional[int] = 0 __snake_case : List[str] = 0 def lowercase__ ( self : Union[str, Any] , __magic_name__ : Tuple ) -> Dict: """simple docstring""" __snake_case : Tuple = threshold def lowercase__ ( self : List[str] , __magic_name__ : List[Any] ) -> Tuple: """simple docstring""" __snake_case : List[Any] = patience def lowercase__ ( self : Optional[Any] ) -> Tuple: """simple docstring""" __snake_case : Optional[Any] = 0 __snake_case : Dict = 0 def lowercase__ ( self : Union[str, Any] ) -> int: """simple docstring""" __snake_case : Optional[Any] = self.inference_layers_num / self.inference_instances_num __snake_case : Any = ( f'''*** Patience = {self.patience} Avg. Inference Layers = {avg_inf_layers:.2f} Speed Up =''' f''' {1 - avg_inf_layers / self.config.num_hidden_layers:.2f} ***''' ) print(__magic_name__ ) @add_start_docstrings_to_model_forward(__magic_name__ ) def lowercase__ ( self : List[Any] , __magic_name__ : List[str]=None , __magic_name__ : List[Any]=None , __magic_name__ : Optional[int]=None , __magic_name__ : Optional[Any]=None , __magic_name__ : int=None , __magic_name__ : Optional[int]=None , __magic_name__ : Optional[Any]=None , __magic_name__ : Optional[Any]=None , __magic_name__ : List[str]=None , __magic_name__ : Optional[Any]=None , __magic_name__ : Optional[int]=False , ) -> str: """simple docstring""" if input_ids is not None and inputs_embeds is not None: raise ValueError("""You cannot specify both input_ids and inputs_embeds at the same time""" ) elif input_ids is not None: __snake_case : Union[str, Any] = input_ids.size() elif inputs_embeds is not None: __snake_case : List[str] = inputs_embeds.size()[:-1] else: raise ValueError("""You have to specify either input_ids or inputs_embeds""" ) __snake_case : Tuple = input_ids.device if input_ids is not None else inputs_embeds.device if attention_mask is None: __snake_case : int = torch.ones(__magic_name__ , device=__magic_name__ ) if token_type_ids is None: __snake_case : int = torch.zeros(__magic_name__ , dtype=torch.long , device=__magic_name__ ) # We can provide a self-attention mask of dimensions [batch_size, from_seq_length, to_seq_length] # ourselves in which case we just need to make it broadcastable to all heads. __snake_case : torch.Tensor = self.get_extended_attention_mask(__magic_name__ , __magic_name__ , __magic_name__ ) # If a 2D ou 3D attention mask is provided for the cross-attention # we need to make broadcastable to [batch_size, num_heads, seq_length, seq_length] if self.config.is_decoder and encoder_hidden_states is not None: __snake_case , __snake_case , __snake_case : str = encoder_hidden_states.size() __snake_case : List[Any] = (encoder_batch_size, encoder_sequence_length) if encoder_attention_mask is None: __snake_case : List[Any] = torch.ones(__magic_name__ , device=__magic_name__ ) __snake_case : Optional[Any] = self.invert_attention_mask(__magic_name__ ) else: __snake_case : Any = None # Prepare head mask if needed # 1.0 in head_mask indicate we keep the head # attention_probs has shape bsz x n_heads x N x N # input head_mask has shape [num_heads] or [num_hidden_layers x num_heads] # and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length] __snake_case : List[Any] = self.get_head_mask(__magic_name__ , self.config.num_hidden_layers ) __snake_case : Optional[Any] = self.embeddings( input_ids=__magic_name__ , position_ids=__magic_name__ , token_type_ids=__magic_name__ , inputs_embeds=__magic_name__ ) __snake_case : Optional[int] = embedding_output if self.training: __snake_case : Any = [] for i in range(self.config.num_hidden_layers ): __snake_case : Any = self.encoder.adaptive_forward( __magic_name__ , current_layer=__magic_name__ , attention_mask=__magic_name__ , head_mask=__magic_name__ ) __snake_case : int = self.pooler(__magic_name__ ) __snake_case : Tuple = output_layers[i](output_dropout(__magic_name__ ) ) res.append(__magic_name__ ) elif self.patience == 0: # Use all layers for inference __snake_case : int = self.encoder( __magic_name__ , attention_mask=__magic_name__ , head_mask=__magic_name__ , encoder_hidden_states=__magic_name__ , encoder_attention_mask=__magic_name__ , ) __snake_case : Tuple = self.pooler(encoder_outputs[0] ) __snake_case : Optional[int] = [output_layers[self.config.num_hidden_layers - 1](__magic_name__ )] else: __snake_case : List[str] = 0 __snake_case : List[Any] = None __snake_case : Optional[int] = 0 for i in range(self.config.num_hidden_layers ): calculated_layer_num += 1 __snake_case : List[Any] = self.encoder.adaptive_forward( __magic_name__ , current_layer=__magic_name__ , attention_mask=__magic_name__ , head_mask=__magic_name__ ) __snake_case : Union[str, Any] = self.pooler(__magic_name__ ) __snake_case : str = output_layers[i](__magic_name__ ) if regression: __snake_case : str = logits.detach() if patient_result is not None: __snake_case : Any = patient_result.detach() if (patient_result is not None) and torch.abs(patient_result - labels ) < self.regression_threshold: patient_counter += 1 else: __snake_case : Any = 0 else: __snake_case : int = logits.detach().argmax(dim=1 ) if patient_result is not None: __snake_case : Any = patient_result.detach().argmax(dim=1 ) if (patient_result is not None) and torch.all(labels.eq(__magic_name__ ) ): patient_counter += 1 else: __snake_case : Tuple = 0 __snake_case : Optional[int] = logits if patient_counter == self.patience: break __snake_case : Tuple = [patient_result] self.inference_layers_num += calculated_layer_num self.inference_instances_num += 1 return res @add_start_docstrings( '''Bert Model transformer with PABEE and a sequence classification/regression head on top (a linear layer on top of the pooled output) e.g. for GLUE tasks. ''' , __lowercase , ) class _A ( __lowercase ): def __init__( self : Union[str, Any] , __magic_name__ : str ) -> Any: """simple docstring""" super().__init__(__magic_name__ ) __snake_case : List[str] = config.num_labels __snake_case : Union[str, Any] = BertModelWithPabee(__magic_name__ ) __snake_case : str = nn.Dropout(config.hidden_dropout_prob ) __snake_case : Union[str, Any] = nn.ModuleList( [nn.Linear(config.hidden_size , self.config.num_labels ) for _ in range(config.num_hidden_layers )] ) self.init_weights() @add_start_docstrings_to_model_forward(__magic_name__ ) def lowercase__ ( self : List[str] , __magic_name__ : Dict=None , __magic_name__ : str=None , __magic_name__ : Union[str, Any]=None , __magic_name__ : str=None , __magic_name__ : Dict=None , __magic_name__ : str=None , __magic_name__ : Tuple=None , ) -> Optional[Any]: """simple docstring""" __snake_case : Any = self.bert( input_ids=__magic_name__ , attention_mask=__magic_name__ , token_type_ids=__magic_name__ , position_ids=__magic_name__ , head_mask=__magic_name__ , inputs_embeds=__magic_name__ , output_dropout=self.dropout , output_layers=self.classifiers , regression=self.num_labels == 1 , ) __snake_case : Optional[int] = (logits[-1],) if labels is not None: __snake_case : List[str] = None __snake_case : Optional[Any] = 0 for ix, logits_item in enumerate(__magic_name__ ): if self.num_labels == 1: # We are doing regression __snake_case : Optional[int] = MSELoss() __snake_case : List[Any] = loss_fct(logits_item.view(-1 ) , labels.view(-1 ) ) else: __snake_case : Union[str, Any] = CrossEntropyLoss() __snake_case : List[Any] = loss_fct(logits_item.view(-1 , self.num_labels ) , labels.view(-1 ) ) if total_loss is None: __snake_case : List[Any] = loss else: total_loss += loss * (ix + 1) total_weights += ix + 1 __snake_case : List[Any] = (total_loss / total_weights,) + outputs return outputs
26
'''simple docstring''' import datasets import faiss import numpy as np import streamlit as st import torch from elasticsearch import Elasticsearch from elia_utils import ( embed_questions_for_retrieval, make_qa_sas_model, qa_sas_generate, query_es_index, query_qa_dense_index, ) import transformers from transformers import AutoModel, AutoModelForSeqaSeqLM, AutoTokenizer __UpperCamelCase = "bart" __UpperCamelCase = True @st.cache(allow_output_mutation=_lowerCamelCase ) def _a ( ) -> Union[str, Any]: """simple docstring""" if LOAD_DENSE_INDEX: __snake_case : int = AutoTokenizer.from_pretrained("""yjernite/retribert-base-uncased""" ) __snake_case : Tuple = AutoModel.from_pretrained("""yjernite/retribert-base-uncased""" ).to("""cuda:0""" ) __snake_case : List[Any] = qar_model.eval() else: __snake_case , __snake_case : Optional[Any] = (None, None) if MODEL_TYPE == "bart": __snake_case : List[str] = AutoTokenizer.from_pretrained("""yjernite/bart_eli5""" ) __snake_case : Any = AutoModelForSeqaSeqLM.from_pretrained("""yjernite/bart_eli5""" ).to("""cuda:0""" ) __snake_case : int = torch.load("""seq2seq_models/eli5_bart_model_blm_2.pth""" ) sas_model.load_state_dict(save_dict["""model"""] ) __snake_case : int = sas_model.eval() else: __snake_case , __snake_case : Dict = make_qa_sas_model( model_name="""t5-small""" , from_file="""seq2seq_models/eli5_t5_model_1024_4.pth""" , device="""cuda:0""" ) return (qar_tokenizer, qar_model, sas_tokenizer, sas_model) @st.cache(allow_output_mutation=_lowerCamelCase ) def _a ( ) -> Tuple: """simple docstring""" if LOAD_DENSE_INDEX: __snake_case : Tuple = faiss.StandardGpuResources() __snake_case : Optional[Any] = datasets.load_dataset(path="""wiki_snippets""" , name="""wiki40b_en_100_0""" )["""train"""] __snake_case : str = np.memmap( """wiki40b_passages_reps_32_l-8_h-768_b-512-512.dat""" , dtype="""float32""" , mode="""r""" , shape=(wikiaab_passages.num_rows, 128) , ) __snake_case : Optional[int] = faiss.IndexFlatIP(128 ) __snake_case : Any = faiss.index_cpu_to_gpu(_lowerCamelCase , 1 , _lowerCamelCase ) wikiaab_gpu_index_flat.add(_lowerCamelCase ) # TODO fix for larger GPU else: __snake_case , __snake_case : Tuple = (None, None) __snake_case : List[str] = Elasticsearch([{"""host""": """localhost""", """port""": """9200"""}] ) return (wikiaab_passages, wikiaab_gpu_index_flat, es_client) @st.cache(allow_output_mutation=_lowerCamelCase ) def _a ( ) -> List[Any]: """simple docstring""" __snake_case : Tuple = datasets.load_dataset("""eli5""" , name="""LFQA_reddit""" ) __snake_case : Dict = elia["""train_eli5"""] __snake_case : int = np.memmap( """eli5_questions_reps.dat""" , dtype="""float32""" , mode="""r""" , shape=(elia_train.num_rows, 128) ) __snake_case : Dict = faiss.IndexFlatIP(128 ) eli5_train_q_index.add(_lowerCamelCase ) return (elia_train, eli5_train_q_index) __UpperCamelCase , __UpperCamelCase , __UpperCamelCase = load_indexes() __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase = load_models() __UpperCamelCase , __UpperCamelCase = load_train_data() def _a ( _lowerCamelCase , _lowerCamelCase=10 ) -> int: """simple docstring""" __snake_case : Optional[int] = embed_questions_for_retrieval([question] , _lowerCamelCase , _lowerCamelCase ) __snake_case , __snake_case : Tuple = eli5_train_q_index.search(_lowerCamelCase , _lowerCamelCase ) __snake_case : Tuple = [elia_train[int(_lowerCamelCase )] for i in I[0]] return nn_examples def _a ( _lowerCamelCase , _lowerCamelCase="wiki40b" , _lowerCamelCase="dense" , _lowerCamelCase=10 ) -> Optional[Any]: """simple docstring""" if source == "none": __snake_case , __snake_case : Dict = (""" <P> """.join(["""""" for _ in range(11 )] ).strip(), []) else: if method == "dense": __snake_case , __snake_case : Dict = query_qa_dense_index( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) else: __snake_case , __snake_case : str = query_es_index( _lowerCamelCase , _lowerCamelCase , index_name="""english_wiki40b_snippets_100w""" , n_results=_lowerCamelCase , ) __snake_case : Optional[int] = [ (res["""article_title"""], res["""section_title"""].strip(), res["""score"""], res["""passage_text"""]) for res in hit_lst ] __snake_case : Optional[Any] = """question: {} context: {}""".format(_lowerCamelCase , _lowerCamelCase ) return question_doc, support_list @st.cache( hash_funcs={ torch.Tensor: (lambda _lowerCamelCase : None), transformers.models.bart.tokenization_bart.BartTokenizer: (lambda _lowerCamelCase : None), } ) def _a ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase=64 , _lowerCamelCase=256 , _lowerCamelCase=False , _lowerCamelCase=2 , _lowerCamelCase=0.95 , _lowerCamelCase=0.8 ) -> List[str]: """simple docstring""" with torch.no_grad(): __snake_case : Union[str, Any] = qa_sas_generate( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , num_answers=1 , num_beams=_lowerCamelCase , min_len=_lowerCamelCase , max_len=_lowerCamelCase , do_sample=_lowerCamelCase , temp=_lowerCamelCase , top_p=_lowerCamelCase , top_k=_lowerCamelCase , max_input_length=1024 , device="""cuda:0""" , )[0] return (answer, support_list) st.title("Long Form Question Answering with ELI5") # Start sidebar __UpperCamelCase = "<img src='https://huggingface.co/front/assets/huggingface_logo.svg'>" __UpperCamelCase = "\n<html>\n <head>\n <style>\n .img-container {\n padding-left: 90px;\n padding-right: 90px;\n padding-top: 50px;\n padding-bottom: 50px;\n background-color: #f0f3f9;\n }\n </style>\n </head>\n <body>\n <span class=\"img-container\"> <!-- Inline parent element -->\n %s\n </span>\n </body>\n</html>\n" % ( header_html, ) st.sidebar.markdown( header_full, unsafe_allow_html=True, ) # Long Form QA with ELI5 and Wikipedia __UpperCamelCase = "\nThis demo presents a model trained to [provide long-form answers to open-domain questions](https://yjernite.github.io/lfqa.html).\nFirst, a document retriever fetches a set of relevant Wikipedia passages given the question from the [Wiki40b](https://research.google/pubs/pub49029/) dataset,\na pre-processed fixed snapshot of Wikipedia.\n" st.sidebar.markdown(description, unsafe_allow_html=True) __UpperCamelCase = [ "Answer the question", "View the retrieved document only", "View the most similar ELI5 question and answer", "Show me everything, please!", ] __UpperCamelCase = st.sidebar.checkbox("Demo options") if demo_options: __UpperCamelCase = st.sidebar.selectbox( "", action_list, index=3, ) __UpperCamelCase = action_list.index(action_st) __UpperCamelCase = st.sidebar.selectbox( "", ["Show full text of passages", "Show passage section titles"], index=0, ) __UpperCamelCase = show_type == "Show full text of passages" else: __UpperCamelCase = 3 __UpperCamelCase = True __UpperCamelCase = st.sidebar.checkbox("Retrieval options") if retrieval_options: __UpperCamelCase = "\n ### Information retriever options\n\n The **sparse** retriever uses ElasticSearch, while the **dense** retriever uses max-inner-product search between a question and passage embedding\n trained using the [ELI5](https://arxiv.org/abs/1907.09190) questions-answer pairs.\n The answer is then generated by sequence to sequence model which takes the question and retrieved document as input.\n " st.sidebar.markdown(retriever_info) __UpperCamelCase = st.sidebar.selectbox("Which Wikipedia format should the model use?", ["wiki40b", "none"]) __UpperCamelCase = st.sidebar.selectbox("Which Wikipedia indexer should the model use?", ["dense", "sparse", "mixed"]) else: __UpperCamelCase = "wiki40b" __UpperCamelCase = "dense" __UpperCamelCase = "beam" __UpperCamelCase = 2 __UpperCamelCase = 64 __UpperCamelCase = 256 __UpperCamelCase = None __UpperCamelCase = None __UpperCamelCase = st.sidebar.checkbox("Generation options") if generate_options: __UpperCamelCase = "\n ### Answer generation options\n\n The sequence-to-sequence model was initialized with [BART](https://huggingface.co/facebook/bart-large)\n weights and fine-tuned on the ELI5 QA pairs and retrieved documents. You can use the model for greedy decoding with\n **beam** search, or **sample** from the decoder's output probabilities.\n " st.sidebar.markdown(generate_info) __UpperCamelCase = st.sidebar.selectbox("Would you like to use beam search or sample an answer?", ["beam", "sampled"]) __UpperCamelCase = st.sidebar.slider( "Minimum generation length", min_value=8, max_value=256, value=64, step=8, format=None, key=None ) __UpperCamelCase = st.sidebar.slider( "Maximum generation length", min_value=64, max_value=512, value=256, step=16, format=None, key=None ) if sampled == "beam": __UpperCamelCase = st.sidebar.slider("Beam size", min_value=1, max_value=8, value=2, step=None, format=None, key=None) else: __UpperCamelCase = st.sidebar.slider( "Nucleus sampling p", min_value=0.1, max_value=1.0, value=0.95, step=0.01, format=None, key=None ) __UpperCamelCase = st.sidebar.slider( "Temperature", min_value=0.1, max_value=1.0, value=0.7, step=0.01, format=None, key=None ) __UpperCamelCase = None # start main text __UpperCamelCase = [ "<MY QUESTION>", "How do people make chocolate?", "Why do we get a fever when we are sick?", "How can different animals perceive different colors?", "What is natural language processing?", "What's the best way to treat a sunburn?", "What exactly are vitamins ?", "How does nuclear energy provide electricity?", "What's the difference between viruses and bacteria?", "Why are flutes classified as woodwinds when most of them are made out of metal ?", "Why do people like drinking coffee even though it tastes so bad?", "What happens when wine ages? How does it make the wine taste better?", "If an animal is an herbivore, where does it get the protein that it needs to survive if it only eats grass?", "How can we set a date to the beginning or end of an artistic period? Doesn't the change happen gradually?", "How does New Zealand have so many large bird predators?", ] __UpperCamelCase = st.selectbox( "What would you like to ask? ---- select <MY QUESTION> to enter a new query", questions_list, index=1, ) if question_s == "<MY QUESTION>": __UpperCamelCase = st.text_input("Enter your question here:", "") else: __UpperCamelCase = question_s if st.button("Show me!"): if action in [0, 1, 3]: if index_type == "mixed": __UpperCamelCase , __UpperCamelCase = make_support(question, source=wiki_source, method="dense", n_results=10) __UpperCamelCase , __UpperCamelCase = make_support(question, source=wiki_source, method="sparse", n_results=10) __UpperCamelCase = [] for res_d, res_s in zip(support_list_dense, support_list_sparse): if tuple(res_d) not in support_list: support_list += [tuple(res_d)] if tuple(res_s) not in support_list: support_list += [tuple(res_s)] __UpperCamelCase = support_list[:10] __UpperCamelCase = "<P> " + " <P> ".join([res[-1] for res in support_list]) else: __UpperCamelCase , __UpperCamelCase = make_support(question, source=wiki_source, method=index_type, n_results=10) if action in [0, 3]: __UpperCamelCase , __UpperCamelCase = answer_question( question_doc, sas_model, sas_tokenizer, min_len=min_len, max_len=int(max_len), sampling=(sampled == "sampled"), n_beams=n_beams, top_p=top_p, temp=temp, ) st.markdown("### The model generated answer is:") st.write(answer) if action in [0, 1, 3] and wiki_source != "none": st.markdown("--- \n ### The model is drawing information from the following Wikipedia passages:") for i, res in enumerate(support_list): __UpperCamelCase = "https://en.wikipedia.org/wiki/{}".format(res[0].replace(" ", "_")) __UpperCamelCase = res[1].strip() if sec_titles == "": __UpperCamelCase = "[{}]({})".format(res[0], wiki_url) else: __UpperCamelCase = sec_titles.split(" & ") __UpperCamelCase = " & ".join( ["[{}]({}#{})".format(sec.strip(), wiki_url, sec.strip().replace(" ", "_")) for sec in sec_list] ) st.markdown( "{0:02d} - **Article**: {1:<18} <br> _Section_: {2}".format(i + 1, res[0], sections), unsafe_allow_html=True, ) if show_passages: st.write( "> <span style=\"font-family:arial; font-size:10pt;\">" + res[-1] + "</span>", unsafe_allow_html=True ) if action in [2, 3]: __UpperCamelCase = find_nearest_training(question) __UpperCamelCase = nn_train_list[0] st.markdown( "--- \n ### The most similar question in the ELI5 training set was: \n\n {}".format(train_exple["title"]) ) __UpperCamelCase = [ "{}. {}".format(i + 1, " \n".join([line.strip() for line in ans.split("\n") if line.strip() != ""])) for i, (ans, sc) in enumerate(zip(train_exple["answers"]["text"], train_exple["answers"]["score"])) if i == 0 or sc > 2 ] st.markdown("##### Its answers were: \n\n {}".format("\n".join(answers_st))) __UpperCamelCase = "\n---\n\n**Disclaimer**\n\n*The intent of this app is to provide some (hopefully entertaining) insights into the behavior of a current LFQA system.\nEvaluating biases of such a model and ensuring factual generations are still very much open research problems.\nTherefore, until some significant progress is achieved, we caution against using the generated answers for practical purposes.*\n" st.sidebar.markdown(disclaimer, unsafe_allow_html=True)
26
1
'''simple docstring''' import os import re import warnings from shutil import copyfile from typing import TYPE_CHECKING, Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import PreTrainedTokenizer if TYPE_CHECKING: from ...tokenization_utils_base import TextInput from ...utils import logging __UpperCamelCase = logging.get_logger(__name__) __UpperCamelCase = {"vocab_file": "spiece.model"} __UpperCamelCase = { "vocab_file": { "t5-small": "https://huggingface.co/t5-small/resolve/main/spiece.model", "t5-base": "https://huggingface.co/t5-base/resolve/main/spiece.model", "t5-large": "https://huggingface.co/t5-large/resolve/main/spiece.model", "t5-3b": "https://huggingface.co/t5-3b/resolve/main/spiece.model", "t5-11b": "https://huggingface.co/t5-11b/resolve/main/spiece.model", } } # TODO(PVP) - this should be removed in Transformers v5 __UpperCamelCase = { "t5-small": 512, "t5-base": 512, "t5-large": 512, "t5-3b": 512, "t5-11b": 512, } __UpperCamelCase = "▁" class _A ( __lowercase ): lowercase__: Tuple = VOCAB_FILES_NAMES lowercase__: List[str] = PRETRAINED_VOCAB_FILES_MAP lowercase__: Union[str, Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowercase__: Optional[int] = ['''input_ids''', '''attention_mask'''] def __init__( self : List[Any] , __magic_name__ : Optional[int] , __magic_name__ : Optional[int]="</s>" , __magic_name__ : Optional[int]="<unk>" , __magic_name__ : Any="<pad>" , __magic_name__ : Any=1_00 , __magic_name__ : Optional[Any]=None , __magic_name__ : Optional[Dict[str, Any]] = None , __magic_name__ : List[Any]=True , **__magic_name__ : str , ) -> None: """simple docstring""" if extra_ids > 0 and additional_special_tokens is None: __snake_case : List[str] = [f'''<extra_id_{i}>''' for i in range(__magic_name__ )] elif extra_ids > 0 and additional_special_tokens is not None: # Check that we have the right number of extra_id special tokens __snake_case : Tuple = len(set(filter(lambda __magic_name__ : bool("""extra_id""" in str(__magic_name__ ) ) , __magic_name__ ) ) ) if extra_tokens != extra_ids: raise ValueError( f'''Both extra_ids ({extra_ids}) and additional_special_tokens ({additional_special_tokens}) are''' """ provided to T5Tokenizer. In this case the additional_special_tokens must include the extra_ids""" """ tokens""" ) if legacy: logger.warning_once( f'''You are using the legacy behaviour of the {self.__class__}. This means that tokens that come after special tokens will not be properly handled. We recommend you to''' """ read the related pull request available at https://github.com/huggingface/transformers/pull/24565""" ) __snake_case : str = legacy __snake_case : Tuple = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( eos_token=__magic_name__ , unk_token=__magic_name__ , pad_token=__magic_name__ , extra_ids=__magic_name__ , additional_special_tokens=__magic_name__ , sp_model_kwargs=self.sp_model_kwargs , legacy=__magic_name__ , **__magic_name__ , ) __snake_case : Dict = vocab_file __snake_case : List[Any] = extra_ids __snake_case : Any = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(__magic_name__ ) @staticmethod def lowercase__ ( __magic_name__ : Optional[Any] , __magic_name__ : Optional[Any] , __magic_name__ : Dict ) -> Dict: """simple docstring""" if pretrained_model_name_or_path in TaTokenizer.max_model_input_sizes: __snake_case : Optional[Any] = TaTokenizer.max_model_input_sizes[pretrained_model_name_or_path] if init_max_model_length is not None and init_max_model_length != max_model_length: return init_max_model_length elif init_max_model_length is None: warnings.warn( """This tokenizer was incorrectly instantiated with a model max length of""" f''' {deprecated_max_model_length} which will be corrected in Transformers v5.\nFor now, this''' """ behavior is kept to avoid breaking backwards compatibility when padding/encoding with""" """ `truncation is True`.\n- Be aware that you SHOULD NOT rely on""" f''' {pretrained_model_name_or_path} automatically truncating your input to''' f''' {deprecated_max_model_length} when padding/encoding.\n- If you want to encode/pad to sequences''' f''' longer than {deprecated_max_model_length} you can either instantiate this tokenizer with''' """ `model_max_length` or pass `max_length` when encoding/padding.\n- To avoid this warning, please""" """ instantiate this tokenizer with `model_max_length` set to your preferred value.""" , __magic_name__ , ) return max_model_length @property def lowercase__ ( self : Union[str, Any] ) -> List[Any]: """simple docstring""" return self.sp_model.get_piece_size() + self._extra_ids def lowercase__ ( self : Dict ) -> Optional[Any]: """simple docstring""" __snake_case : List[str] = {self.convert_ids_to_tokens(__magic_name__ ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def lowercase__ ( self : Union[str, Any] , __magic_name__ : List[int] , __magic_name__ : Optional[List[int]] = None , __magic_name__ : bool = False ) -> List[int]: """simple docstring""" if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=__magic_name__ , token_ids_a=__magic_name__ , already_has_special_tokens=__magic_name__ ) # normal case: some special tokens if token_ids_a is None: return ([0] * len(__magic_name__ )) + [1] return ([0] * len(__magic_name__ )) + [1] + ([0] * len(__magic_name__ )) + [1] def lowercase__ ( self : int ) -> Any: """simple docstring""" return list( set(filter(lambda __magic_name__ : bool(re.search(r"""<extra_id_\d+>""" , __magic_name__ ) ) is not None , self.additional_special_tokens ) ) ) def lowercase__ ( self : Optional[Any] ) -> List[str]: """simple docstring""" return [self._convert_token_to_id(__magic_name__ ) for token in self.get_sentinel_tokens()] def lowercase__ ( self : str , __magic_name__ : List[int] ) -> List[int]: """simple docstring""" if len(__magic_name__ ) > 0 and token_ids[-1] == self.eos_token_id: warnings.warn( f'''This sequence already has {self.eos_token}. In future versions this behavior may lead to duplicated''' """ eos tokens being added.""" ) return token_ids else: return token_ids + [self.eos_token_id] def lowercase__ ( self : str , __magic_name__ : List[int] , __magic_name__ : Optional[List[int]] = None ) -> List[int]: """simple docstring""" __snake_case : int = [self.eos_token_id] if token_ids_a is None: return len(token_ids_a + eos ) * [0] return len(token_ids_a + eos + token_ids_a + eos ) * [0] def lowercase__ ( self : Union[str, Any] , __magic_name__ : List[int] , __magic_name__ : Optional[List[int]] = None ) -> List[int]: """simple docstring""" __snake_case : Dict = self._add_eos_if_not_present(__magic_name__ ) if token_ids_a is None: return token_ids_a else: __snake_case : int = self._add_eos_if_not_present(__magic_name__ ) return token_ids_a + token_ids_a def __getstate__( self : str ) -> Union[str, Any]: """simple docstring""" __snake_case : Optional[int] = self.__dict__.copy() __snake_case : Dict = None return state def __setstate__( self : int , __magic_name__ : Union[str, Any] ) -> Optional[Any]: """simple docstring""" __snake_case : Any = d # for backward compatibility if not hasattr(self , """sp_model_kwargs""" ): __snake_case : int = {} __snake_case : List[str] = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def lowercase__ ( self : List[str] , __magic_name__ : "TextInput" , **__magic_name__ : Tuple ) -> List[str]: """simple docstring""" if not self.legacy: __snake_case : Dict = SPIECE_UNDERLINE + text.replace(__magic_name__ , """ """ ) return super().tokenize(__magic_name__ , **__magic_name__ ) def lowercase__ ( self : Dict , __magic_name__ : Union[str, Any] , **__magic_name__ : int ) -> Dict: """simple docstring""" if not self.legacy: __snake_case : Dict = text.startswith(__magic_name__ ) if is_first: __snake_case : Union[str, Any] = text[1:] __snake_case : List[str] = self.sp_model.encode(__magic_name__ , out_type=__magic_name__ ) if not self.legacy and not is_first and not text.startswith(""" """ ) and tokens[0].startswith(__magic_name__ ): __snake_case : Any = ([tokens[0][1:]] if len(tokens[0] ) > 1 else []) + tokens[1:] return tokens def lowercase__ ( self : Dict , __magic_name__ : Optional[Any] ) -> Optional[int]: """simple docstring""" if token.startswith("""<extra_id_""" ): __snake_case : List[str] = re.match(r"""<extra_id_(\d+)>""" , __magic_name__ ) __snake_case : str = int(match.group(1 ) ) return self.vocab_size - num - 1 return self.sp_model.piece_to_id(__magic_name__ ) def lowercase__ ( self : Any , __magic_name__ : List[Any] ) -> Any: """simple docstring""" if index < self.sp_model.get_piece_size(): __snake_case : List[str] = self.sp_model.IdToPiece(__magic_name__ ) else: __snake_case : Any = f'''<extra_id_{self.vocab_size - 1 - index}>''' return token def lowercase__ ( self : Any , __magic_name__ : Optional[Any] ) -> Tuple: """simple docstring""" __snake_case : List[Any] = [] __snake_case : List[Any] = """""" __snake_case : str = False for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: if not prev_is_special: out_string += " " out_string += self.sp_model.decode(__magic_name__ ) + token __snake_case : Optional[int] = True __snake_case : Union[str, Any] = [] else: current_sub_tokens.append(__magic_name__ ) __snake_case : Optional[Any] = False out_string += self.sp_model.decode(__magic_name__ ) return out_string.strip() def lowercase__ ( self : List[Any] , __magic_name__ : str , __magic_name__ : Optional[str] = None ) -> Tuple[str]: """simple docstring""" if not os.path.isdir(__magic_name__ ): logger.error(f'''Vocabulary path ({save_directory}) should be a directory''' ) return __snake_case : Any = os.path.join( __magic_name__ , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(__magic_name__ ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , __magic_name__ ) elif not os.path.isfile(self.vocab_file ): with open(__magic_name__ , """wb""" ) as fi: __snake_case : Optional[int] = self.sp_model.serialized_model_proto() fi.write(__magic_name__ ) return (out_vocab_file,)
26
'''simple docstring''' import warnings from ...utils import logging from .image_processing_owlvit import OwlViTImageProcessor __UpperCamelCase = logging.get_logger(__name__) class _A ( __lowercase ): def __init__( self : int , *__magic_name__ : Optional[Any] , **__magic_name__ : Any ) -> None: """simple docstring""" warnings.warn( """The class OwlViTFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please""" """ use OwlViTImageProcessor instead.""" , __magic_name__ , ) super().__init__(*__magic_name__ , **__magic_name__ )
26
1
'''simple docstring''' import inspect import unittest import torch import torch.nn as nn from accelerate.hooks import ( AlignDevicesHook, ModelHook, SequentialHook, add_hook_to_module, attach_align_device_hook, remove_hook_from_module, remove_hook_from_submodules, ) from accelerate.test_utils import require_multi_gpu class _A ( nn.Module ): def __init__( self : List[str] ) -> Optional[Any]: """simple docstring""" super().__init__() __snake_case : List[Any] = nn.Linear(3 , 4 ) __snake_case : str = nn.BatchNormad(4 ) __snake_case : Optional[Any] = nn.Linear(4 , 5 ) def lowercase__ ( self : str , __magic_name__ : Dict ) -> List[str]: """simple docstring""" return self.lineara(self.batchnorm(self.lineara(__magic_name__ ) ) ) class _A ( __lowercase ): def lowercase__ ( self : List[str] , __magic_name__ : Tuple , *__magic_name__ : Dict , **__magic_name__ : Optional[Any] ) -> Tuple: """simple docstring""" return (args[0] + 1,) + args[1:], kwargs class _A ( __lowercase ): def lowercase__ ( self : str , __magic_name__ : Union[str, Any] , __magic_name__ : Tuple ) -> Union[str, Any]: """simple docstring""" return output + 1 class _A ( unittest.TestCase ): def lowercase__ ( self : Dict ) -> Any: """simple docstring""" __snake_case : int = ModelForTest() __snake_case : Tuple = ModelHook() add_hook_to_module(__magic_name__ , __magic_name__ ) self.assertEqual(test_model._hf_hook , __magic_name__ ) self.assertTrue(hasattr(__magic_name__ , """_old_forward""" ) ) # Check adding the hook did not change the name or the signature self.assertEqual(test_model.forward.__name__ , """forward""" ) self.assertListEqual(list(inspect.signature(test_model.forward ).parameters ) , ["""x"""] ) remove_hook_from_module(__magic_name__ ) self.assertFalse(hasattr(__magic_name__ , """_hf_hook""" ) ) self.assertFalse(hasattr(__magic_name__ , """_old_forward""" ) ) def lowercase__ ( self : Tuple ) -> List[str]: """simple docstring""" __snake_case : List[Any] = ModelForTest() __snake_case : Optional[int] = ModelHook() add_hook_to_module(__magic_name__ , __magic_name__ ) add_hook_to_module(__magic_name__ , __magic_name__ , append=__magic_name__ ) self.assertEqual(isinstance(test_model._hf_hook , __magic_name__ ) , __magic_name__ ) self.assertEqual(len(test_model._hf_hook.hooks ) , 2 ) self.assertTrue(hasattr(__magic_name__ , """_old_forward""" ) ) # Check adding the hook did not change the name or the signature self.assertEqual(test_model.forward.__name__ , """forward""" ) self.assertListEqual(list(inspect.signature(test_model.forward ).parameters ) , ["""x"""] ) remove_hook_from_module(__magic_name__ ) self.assertFalse(hasattr(__magic_name__ , """_hf_hook""" ) ) self.assertFalse(hasattr(__magic_name__ , """_old_forward""" ) ) def lowercase__ ( self : str ) -> Union[str, Any]: """simple docstring""" __snake_case : List[Any] = ModelForTest() __snake_case : Any = torch.randn(2 , 3 ) __snake_case : str = test_model(x + 1 ) __snake_case : int = test_model(x + 2 ) __snake_case : Union[str, Any] = PreForwardHook() add_hook_to_module(__magic_name__ , __magic_name__ ) __snake_case : int = test_model(__magic_name__ ) self.assertTrue(torch.allclose(__magic_name__ , __magic_name__ , atol=1E-5 ) ) # Attaching a hook to a model when it already has one replaces, does not chain __snake_case : Optional[int] = PreForwardHook() add_hook_to_module(__magic_name__ , __magic_name__ ) __snake_case : List[Any] = test_model(__magic_name__ ) self.assertTrue(torch.allclose(__magic_name__ , __magic_name__ , atol=1E-5 ) ) # You need to use the sequential hook to chain two or more hooks __snake_case : Optional[int] = SequentialHook(PreForwardHook() , PreForwardHook() ) add_hook_to_module(__magic_name__ , __magic_name__ ) __snake_case : List[str] = test_model(__magic_name__ ) assert torch.allclose(__magic_name__ , __magic_name__ , atol=1E-5 ) def lowercase__ ( self : Union[str, Any] ) -> List[str]: """simple docstring""" __snake_case : Union[str, Any] = ModelForTest() __snake_case : str = torch.randn(2 , 3 ) __snake_case : Any = test_model(__magic_name__ ) __snake_case : Any = PostForwardHook() add_hook_to_module(__magic_name__ , __magic_name__ ) __snake_case : Any = test_model(__magic_name__ ) self.assertTrue(torch.allclose(__magic_name__ , output + 1 , atol=1E-5 ) ) # Attaching a hook to a model when it already has one replaces, does not chain __snake_case : Any = PostForwardHook() add_hook_to_module(__magic_name__ , __magic_name__ ) __snake_case : Dict = test_model(__magic_name__ ) self.assertTrue(torch.allclose(__magic_name__ , output + 1 , atol=1E-5 ) ) # You need to use the sequential hook to chain two or more hooks __snake_case : str = SequentialHook(PostForwardHook() , PostForwardHook() ) add_hook_to_module(__magic_name__ , __magic_name__ ) __snake_case : int = test_model(__magic_name__ ) assert torch.allclose(__magic_name__ , output + 2 , atol=1E-5 ) def lowercase__ ( self : str ) -> int: """simple docstring""" __snake_case : Union[str, Any] = ModelForTest() __snake_case : int = torch.randn(2 , 3 ) __snake_case : Any = test_model(__magic_name__ ) __snake_case : Dict = PostForwardHook() add_hook_to_module(__magic_name__ , __magic_name__ ) __snake_case : List[Any] = test_model(__magic_name__ ) self.assertTrue(torch.allclose(__magic_name__ , output + 1 ) ) self.assertTrue(outputa.requires_grad ) __snake_case : Dict = True __snake_case : int = test_model(__magic_name__ ) self.assertFalse(outputa.requires_grad ) @require_multi_gpu def lowercase__ ( self : Tuple ) -> List[Any]: """simple docstring""" __snake_case : Tuple = ModelForTest() # Everything is on CPU self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) ) self.assertEqual(model.batchnorm.weight.device , torch.device("""cpu""" ) ) self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) ) # This will move each submodule on different devices add_hook_to_module(model.lineara , AlignDevicesHook(execution_device=0 ) ) add_hook_to_module(model.batchnorm , AlignDevicesHook(execution_device=0 ) ) add_hook_to_module(model.lineara , AlignDevicesHook(execution_device=1 ) ) self.assertEqual(model.lineara.weight.device , torch.device(0 ) ) self.assertEqual(model.batchnorm.weight.device , torch.device(0 ) ) self.assertEqual(model.batchnorm.running_mean.device , torch.device(0 ) ) self.assertEqual(model.lineara.weight.device , torch.device(1 ) ) # We can still make a forward pass. The input does not need to be on any particular device __snake_case : Tuple = torch.randn(2 , 3 ) __snake_case : Union[str, Any] = model(__magic_name__ ) self.assertEqual(output.device , torch.device(1 ) ) # We can add a general hook to put back output on same device as input. add_hook_to_module(__magic_name__ , AlignDevicesHook(io_same_device=__magic_name__ ) ) __snake_case : Tuple = torch.randn(2 , 3 ).to(0 ) __snake_case : Any = model(__magic_name__ ) self.assertEqual(output.device , torch.device(0 ) ) def lowercase__ ( self : Union[str, Any] ) -> str: """simple docstring""" __snake_case : int = ModelForTest() # Everything is on CPU self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) ) self.assertEqual(model.batchnorm.weight.device , torch.device("""cpu""" ) ) self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) ) # This will move each submodule on different devices __snake_case : List[str] = {"""execution_device""": 0 if torch.cuda.is_available() else """cpu""", """offload""": True} add_hook_to_module(model.lineara , AlignDevicesHook(**__magic_name__ ) ) add_hook_to_module(model.batchnorm , AlignDevicesHook(**__magic_name__ ) ) add_hook_to_module(model.lineara , AlignDevicesHook(**__magic_name__ ) ) # Parameters have been offloaded, so on the meta device self.assertEqual(model.lineara.weight.device , torch.device("""meta""" ) ) self.assertEqual(model.batchnorm.weight.device , torch.device("""meta""" ) ) self.assertEqual(model.lineara.weight.device , torch.device("""meta""" ) ) # Buffers are not included in the offload by default, so are on the execution device __snake_case : Any = torch.device(hook_kwargs["""execution_device"""] ) self.assertEqual(model.batchnorm.running_mean.device , __magic_name__ ) __snake_case : Dict = torch.randn(2 , 3 ) __snake_case : Any = model(__magic_name__ ) self.assertEqual(output.device , __magic_name__ ) # Removing hooks loads back the weights in the model. remove_hook_from_module(model.lineara ) remove_hook_from_module(model.batchnorm ) remove_hook_from_module(model.lineara ) self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) ) self.assertEqual(model.batchnorm.weight.device , torch.device("""cpu""" ) ) self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) ) # Now test with buffers included in the offload __snake_case : int = { """execution_device""": 0 if torch.cuda.is_available() else """cpu""", """offload""": True, """offload_buffers""": True, } add_hook_to_module(model.lineara , AlignDevicesHook(**__magic_name__ ) ) add_hook_to_module(model.batchnorm , AlignDevicesHook(**__magic_name__ ) ) add_hook_to_module(model.lineara , AlignDevicesHook(**__magic_name__ ) ) # Parameters have been offloaded, so on the meta device, buffers included self.assertEqual(model.lineara.weight.device , torch.device("""meta""" ) ) self.assertEqual(model.batchnorm.weight.device , torch.device("""meta""" ) ) self.assertEqual(model.lineara.weight.device , torch.device("""meta""" ) ) self.assertEqual(model.batchnorm.running_mean.device , torch.device("""meta""" ) ) __snake_case : str = torch.randn(2 , 3 ) __snake_case : str = model(__magic_name__ ) self.assertEqual(output.device , __magic_name__ ) # Removing hooks loads back the weights in the model. remove_hook_from_module(model.lineara ) remove_hook_from_module(model.batchnorm ) remove_hook_from_module(model.lineara ) self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) ) self.assertEqual(model.batchnorm.weight.device , torch.device("""cpu""" ) ) self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) ) def lowercase__ ( self : Dict ) -> str: """simple docstring""" __snake_case : Tuple = ModelForTest() # Everything is on CPU self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) ) self.assertEqual(model.batchnorm.weight.device , torch.device("""cpu""" ) ) self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) ) # This will move each submodule on different devices __snake_case : Union[str, Any] = 0 if torch.cuda.is_available() else """cpu""" attach_align_device_hook(__magic_name__ , execution_device=__magic_name__ , offload=__magic_name__ ) # Parameters have been offloaded, so on the meta device self.assertEqual(model.lineara.weight.device , torch.device("""meta""" ) ) self.assertEqual(model.batchnorm.weight.device , torch.device("""meta""" ) ) self.assertEqual(model.lineara.weight.device , torch.device("""meta""" ) ) # Buffers are not included in the offload by default, so are on the execution device __snake_case : Union[str, Any] = torch.device(__magic_name__ ) self.assertEqual(model.batchnorm.running_mean.device , __magic_name__ ) __snake_case : Optional[int] = torch.randn(2 , 3 ) __snake_case : Dict = model(__magic_name__ ) self.assertEqual(output.device , __magic_name__ ) # Removing hooks loads back the weights in the model. remove_hook_from_submodules(__magic_name__ ) self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) ) self.assertEqual(model.batchnorm.weight.device , torch.device("""cpu""" ) ) self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) ) # Now test with buffers included in the offload attach_align_device_hook(__magic_name__ , execution_device=__magic_name__ , offload=__magic_name__ , offload_buffers=__magic_name__ ) # Parameters have been offloaded, so on the meta device, buffers included self.assertEqual(model.lineara.weight.device , torch.device("""meta""" ) ) self.assertEqual(model.batchnorm.weight.device , torch.device("""meta""" ) ) self.assertEqual(model.lineara.weight.device , torch.device("""meta""" ) ) self.assertEqual(model.batchnorm.running_mean.device , torch.device("""meta""" ) ) __snake_case : Dict = torch.randn(2 , 3 ) __snake_case : Optional[int] = model(__magic_name__ ) self.assertEqual(output.device , __magic_name__ ) # Removing hooks loads back the weights in the model. remove_hook_from_submodules(__magic_name__ ) self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) ) self.assertEqual(model.batchnorm.weight.device , torch.device("""cpu""" ) ) self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) ) def lowercase__ ( self : Any ) -> Union[str, Any]: """simple docstring""" __snake_case : Any = ModelForTest() # Everything is on CPU self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) ) self.assertEqual(model.batchnorm.weight.device , torch.device("""cpu""" ) ) self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) ) # This will move each submodule on different devices __snake_case : str = 0 if torch.cuda.is_available() else """cpu""" attach_align_device_hook( __magic_name__ , execution_device=__magic_name__ , offload=__magic_name__ , weights_map=model.state_dict() ) # Parameters have been offloaded, so on the meta device self.assertEqual(model.lineara.weight.device , torch.device("""meta""" ) ) self.assertEqual(model.batchnorm.weight.device , torch.device("""meta""" ) ) self.assertEqual(model.lineara.weight.device , torch.device("""meta""" ) ) # Buffers are not included in the offload by default, so are on the execution device __snake_case : List[str] = torch.device(__magic_name__ ) self.assertEqual(model.batchnorm.running_mean.device , __magic_name__ ) __snake_case : Tuple = torch.randn(2 , 3 ) __snake_case : Optional[Any] = model(__magic_name__ ) self.assertEqual(output.device , __magic_name__ ) # Removing hooks loads back the weights in the model. remove_hook_from_submodules(__magic_name__ ) self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) ) self.assertEqual(model.batchnorm.weight.device , torch.device("""cpu""" ) ) self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) ) # Now test with buffers included in the offload attach_align_device_hook( __magic_name__ , execution_device=__magic_name__ , offload=__magic_name__ , weights_map=model.state_dict() , offload_buffers=__magic_name__ , ) # Parameters have been offloaded, so on the meta device, buffers included self.assertEqual(model.lineara.weight.device , torch.device("""meta""" ) ) self.assertEqual(model.batchnorm.weight.device , torch.device("""meta""" ) ) self.assertEqual(model.lineara.weight.device , torch.device("""meta""" ) ) self.assertEqual(model.batchnorm.running_mean.device , torch.device("""meta""" ) ) __snake_case : List[str] = torch.randn(2 , 3 ) __snake_case : Dict = model(__magic_name__ ) self.assertEqual(output.device , __magic_name__ ) # Removing hooks loads back the weights in the model. remove_hook_from_submodules(__magic_name__ ) self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) ) self.assertEqual(model.batchnorm.weight.device , torch.device("""cpu""" ) ) self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) )
26
'''simple docstring''' import argparse import torch from transformers import BlenderbotConfig, BlenderbotForConditionalGeneration from transformers.utils import logging logging.set_verbosity_info() __UpperCamelCase = logging.get_logger(__name__) __UpperCamelCase = [ ["attention", "attn"], ["encoder_attention", "encoder_attn"], ["q_lin", "q_proj"], ["k_lin", "k_proj"], ["v_lin", "v_proj"], ["out_lin", "out_proj"], ["norm_embeddings", "layernorm_embedding"], ["position_embeddings", "embed_positions"], ["embeddings", "embed_tokens"], ["ffn.lin", "fc"], ] def _a ( _lowerCamelCase ) -> Union[str, Any]: """simple docstring""" if k == "embeddings.weight": return "shared.weight" for parlai_name, hf_name in PATTERNS: __snake_case : List[str] = k.replace(_lowerCamelCase , _lowerCamelCase ) if k.startswith("""encoder""" ): __snake_case : Optional[int] = k.replace(""".attn""" , """.self_attn""" ) __snake_case : Tuple = k.replace("""norm1""" , """self_attn_layer_norm""" ) __snake_case : List[str] = k.replace("""norm2""" , """final_layer_norm""" ) elif k.startswith("""decoder""" ): __snake_case : List[Any] = k.replace("""norm1""" , """self_attn_layer_norm""" ) __snake_case : str = k.replace("""norm2""" , """encoder_attn_layer_norm""" ) __snake_case : Optional[int] = k.replace("""norm3""" , """final_layer_norm""" ) return k def _a ( _lowerCamelCase ) -> Any: """simple docstring""" __snake_case : Optional[int] = [ """model.encoder.layernorm_embedding.weight""", """model.encoder.layernorm_embedding.bias""", """model.decoder.layernorm_embedding.weight""", """model.decoder.layernorm_embedding.bias""", ] for k in keys: __snake_case : Optional[Any] = sd.pop(_lowerCamelCase ) __snake_case : List[str] = k.replace("""layernorm_embedding""" , """layer_norm""" ) assert new_k not in sd __snake_case : Union[str, Any] = v __UpperCamelCase = ["START"] @torch.no_grad() def _a ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> Dict: """simple docstring""" __snake_case : Optional[int] = torch.load(_lowerCamelCase , map_location="""cpu""" ) __snake_case : Dict = model["""model"""] __snake_case : Optional[int] = BlenderbotConfig.from_json_file(_lowerCamelCase ) __snake_case : Union[str, Any] = BlenderbotForConditionalGeneration(_lowerCamelCase ) __snake_case : List[Any] = m.model.state_dict().keys() __snake_case : int = [] __snake_case : Union[str, Any] = {} for k, v in sd.items(): if k in IGNORE_KEYS: continue __snake_case : Optional[int] = rename_state_dict_key(_lowerCamelCase ) if new_k not in valid_keys: failures.append([k, new_k] ) else: __snake_case : str = v if cfg.normalize_before: # Blenderbot-3B checkpoints. Rename layernorm_embedding -> layer_norm rename_layernorm_keys(_lowerCamelCase ) m.model.load_state_dict(_lowerCamelCase , strict=_lowerCamelCase ) m.half() m.save_pretrained(_lowerCamelCase ) if __name__ == "__main__": __UpperCamelCase = argparse.ArgumentParser() # Required parameters parser.add_argument("--src_path", type=str, help="like blenderbot-model.bin") parser.add_argument("--save_dir", default="hf_blenderbot", type=str, help="Where to save converted model.") parser.add_argument( "--hf_config_json", default="blenderbot-3b-config.json", type=str, help="Path to config to use" ) __UpperCamelCase = parser.parse_args() convert_parlai_checkpoint(args.src_path, args.save_dir, args.hf_config_json)
26
1
'''simple docstring''' import unittest from datasets import load_dataset from transformers import BloomTokenizerFast from transformers.testing_utils import require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class _A ( __lowercase , unittest.TestCase ): lowercase__: List[Any] = None lowercase__: Optional[int] = BloomTokenizerFast lowercase__: Union[str, Any] = BloomTokenizerFast lowercase__: int = True lowercase__: Tuple = False lowercase__: Union[str, Any] = '''tokenizer_file''' lowercase__: List[str] = {'''bos_token''': '''<s>''', '''eos_token''': '''</s>''', '''unk_token''': '''<unk>''', '''pad_token''': '''<pad>'''} def lowercase__ ( self : Optional[int] ) -> Any: """simple docstring""" super().setUp() __snake_case : List[Any] = BloomTokenizerFast.from_pretrained("""bigscience/tokenizer""" ) tokenizer.save_pretrained(self.tmpdirname ) def lowercase__ ( self : Tuple , **__magic_name__ : List[Any] ) -> List[Any]: """simple docstring""" kwargs.update(self.special_tokens_map ) return BloomTokenizerFast.from_pretrained(self.tmpdirname , **__magic_name__ ) def lowercase__ ( self : Tuple ) -> Any: """simple docstring""" __snake_case : Tuple = self.get_rust_tokenizer() __snake_case : Optional[int] = ["""The quick brown fox</s>""", """jumps over the lazy dog</s>"""] __snake_case : Any = [[21_75, 2_37_14, 7_31_73, 14_42_52, 2], [77, 13_26_19, 34_78, 3_68, 10_95_86, 3_54_33, 2]] __snake_case : Optional[int] = tokenizer.batch_encode_plus(__magic_name__ )["""input_ids"""] self.assertListEqual(__magic_name__ , __magic_name__ ) __snake_case : List[Any] = tokenizer.batch_decode(__magic_name__ ) self.assertListEqual(__magic_name__ , __magic_name__ ) def lowercase__ ( self : Optional[int] , __magic_name__ : str=6 ) -> int: """simple docstring""" for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f'''{tokenizer.__class__.__name__} ({pretrained_name})''' ): __snake_case : Optional[Any] = self.rust_tokenizer_class.from_pretrained(__magic_name__ , **__magic_name__ ) # tokenizer_r.pad_token = None # Hotfixing padding = None # Simple input __snake_case : List[Any] = """This is a simple input""" __snake_case : List[Any] = ["""This is a simple input 1""", """This is a simple input 2"""] __snake_case : int = ("""This is a simple input""", """This is a pair""") __snake_case : List[Any] = [ ("""This is a simple input 1""", """This is a simple input 2"""), ("""This is a simple pair 1""", """This is a simple pair 2"""), ] # Simple input tests try: tokenizer_r.encode(__magic_name__ , max_length=__magic_name__ ) tokenizer_r.encode_plus(__magic_name__ , max_length=__magic_name__ ) tokenizer_r.batch_encode_plus(__magic_name__ , max_length=__magic_name__ ) tokenizer_r.encode(__magic_name__ , max_length=__magic_name__ ) tokenizer_r.batch_encode_plus(__magic_name__ , max_length=__magic_name__ ) except ValueError: self.fail("""Bloom Tokenizer should be able to deal with padding""" ) __snake_case : Optional[int] = None # Hotfixing padding = None self.assertRaises(__magic_name__ , tokenizer_r.encode , __magic_name__ , max_length=__magic_name__ , padding="""max_length""" ) # Simple input self.assertRaises(__magic_name__ , tokenizer_r.encode_plus , __magic_name__ , max_length=__magic_name__ , padding="""max_length""" ) # Simple input self.assertRaises( __magic_name__ , tokenizer_r.batch_encode_plus , __magic_name__ , max_length=__magic_name__ , padding="""max_length""" , ) # Pair input self.assertRaises(__magic_name__ , tokenizer_r.encode , __magic_name__ , max_length=__magic_name__ , padding="""max_length""" ) # Pair input self.assertRaises(__magic_name__ , tokenizer_r.encode_plus , __magic_name__ , max_length=__magic_name__ , padding="""max_length""" ) # Pair input self.assertRaises( __magic_name__ , tokenizer_r.batch_encode_plus , __magic_name__ , max_length=__magic_name__ , padding="""max_length""" , ) def lowercase__ ( self : int ) -> List[Any]: """simple docstring""" __snake_case : Union[str, Any] = self.get_rust_tokenizer() __snake_case : List[Any] = load_dataset("""xnli""" , """all_languages""" , split="""test""" , streaming=__magic_name__ ) __snake_case : str = next(iter(__magic_name__ ) )["""premise"""] # pick up one data __snake_case : Tuple = list(sample_data.values() ) __snake_case : Optional[Any] = list(map(tokenizer.encode , __magic_name__ ) ) __snake_case : Optional[int] = [tokenizer.decode(__magic_name__ , clean_up_tokenization_spaces=__magic_name__ ) for x in output_tokens] self.assertListEqual(__magic_name__ , __magic_name__ ) def lowercase__ ( self : Optional[Any] ) -> Optional[int]: """simple docstring""" self.assertGreaterEqual(len(self.tokenizer_class.pretrained_vocab_files_map ) , 1 ) self.assertGreaterEqual(len(list(self.tokenizer_class.pretrained_vocab_files_map.values() )[0] ) , 1 )
26
'''simple docstring''' import argparse import os import re import packaging.version __UpperCamelCase = "examples/" __UpperCamelCase = { "examples": (re.compile(R"^check_min_version\(\"[^\"]+\"\)\s*$", re.MULTILINE), "check_min_version(\"VERSION\")\n"), "init": (re.compile(R"^__version__\s+=\s+\"([^\"]+)\"\s*$", re.MULTILINE), "__version__ = \"VERSION\"\n"), "setup": (re.compile(R"^(\s*)version\s*=\s*\"[^\"]+\",", re.MULTILINE), R"\1version=\"VERSION\","), "doc": (re.compile(R"^(\s*)release\s*=\s*\"[^\"]+\"$", re.MULTILINE), "release = \"VERSION\"\n"), } __UpperCamelCase = { "init": "src/transformers/__init__.py", "setup": "setup.py", } __UpperCamelCase = "README.md" def _a ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> Tuple: """simple docstring""" with open(_lowerCamelCase , """r""" , encoding="""utf-8""" , newline="""\n""" ) as f: __snake_case : Union[str, Any] = f.read() __snake_case , __snake_case : List[Any] = REPLACE_PATTERNS[pattern] __snake_case : Optional[Any] = replace.replace("""VERSION""" , _lowerCamelCase ) __snake_case : Optional[Any] = re_pattern.sub(_lowerCamelCase , _lowerCamelCase ) with open(_lowerCamelCase , """w""" , encoding="""utf-8""" , newline="""\n""" ) as f: f.write(_lowerCamelCase ) def _a ( _lowerCamelCase ) -> Union[str, Any]: """simple docstring""" for folder, directories, fnames in os.walk(_lowerCamelCase ): # Removing some of the folders with non-actively maintained examples from the walk if "research_projects" in directories: directories.remove("""research_projects""" ) if "legacy" in directories: directories.remove("""legacy""" ) for fname in fnames: if fname.endswith(""".py""" ): update_version_in_file(os.path.join(_lowerCamelCase , _lowerCamelCase ) , _lowerCamelCase , pattern="""examples""" ) def _a ( _lowerCamelCase , _lowerCamelCase=False ) -> str: """simple docstring""" for pattern, fname in REPLACE_FILES.items(): update_version_in_file(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) if not patch: update_version_in_examples(_lowerCamelCase ) def _a ( ) -> Optional[int]: """simple docstring""" __snake_case : str = """🤗 Transformers currently provides the following architectures""" __snake_case : List[Any] = """1. Want to contribute a new model?""" with open(_lowerCamelCase , """r""" , encoding="""utf-8""" , newline="""\n""" ) as f: __snake_case : List[str] = f.readlines() # Find the start of the list. __snake_case : Optional[Any] = 0 while not lines[start_index].startswith(_start_prompt ): start_index += 1 start_index += 1 __snake_case : int = start_index # Update the lines in the model list. while not lines[index].startswith(_end_prompt ): if lines[index].startswith("""1.""" ): __snake_case : Optional[Any] = lines[index].replace( """https://huggingface.co/docs/transformers/main/model_doc""" , """https://huggingface.co/docs/transformers/model_doc""" , ) index += 1 with open(_lowerCamelCase , """w""" , encoding="""utf-8""" , newline="""\n""" ) as f: f.writelines(_lowerCamelCase ) def _a ( ) -> Union[str, Any]: """simple docstring""" with open(REPLACE_FILES["""init"""] , """r""" ) as f: __snake_case : List[Any] = f.read() __snake_case : str = REPLACE_PATTERNS["""init"""][0].search(_lowerCamelCase ).groups()[0] return packaging.version.parse(_lowerCamelCase ) def _a ( _lowerCamelCase=False ) -> int: """simple docstring""" __snake_case : List[Any] = get_version() if patch and default_version.is_devrelease: raise ValueError("""Can't create a patch version from the dev branch, checkout a released version!""" ) if default_version.is_devrelease: __snake_case : str = default_version.base_version elif patch: __snake_case : Optional[int] = F'''{default_version.major}.{default_version.minor}.{default_version.micro + 1}''' else: __snake_case : Dict = F'''{default_version.major}.{default_version.minor + 1}.0''' # Now let's ask nicely if that's the right one. __snake_case : Dict = input(F'''Which version are you releasing? [{default_version}]''' ) if len(_lowerCamelCase ) == 0: __snake_case : Any = default_version print(F'''Updating version to {version}.''' ) global_version_update(_lowerCamelCase , patch=_lowerCamelCase ) if not patch: print("""Cleaning main README, don't forget to run `make fix-copies`.""" ) clean_main_ref_in_model_list() def _a ( ) -> Tuple: """simple docstring""" __snake_case : Optional[Any] = get_version() __snake_case : Tuple = F'''{current_version.major}.{current_version.minor + 1}.0.dev0''' __snake_case : Union[str, Any] = current_version.base_version # Check with the user we got that right. __snake_case : int = input(F'''Which version are we developing now? [{dev_version}]''' ) if len(_lowerCamelCase ) == 0: __snake_case : Optional[int] = dev_version print(F'''Updating version to {version}.''' ) global_version_update(_lowerCamelCase ) print("""Cleaning main README, don't forget to run `make fix-copies`.""" ) clean_main_ref_in_model_list() if __name__ == "__main__": __UpperCamelCase = argparse.ArgumentParser() parser.add_argument("--post_release", action="store_true", help="Whether this is pre or post release.") parser.add_argument("--patch", action="store_true", help="Whether or not this is a patch release.") __UpperCamelCase = parser.parse_args() if not args.post_release: pre_release_work(patch=args.patch) elif args.patch: print("Nothing to do after a patch :-)") else: post_release_work()
26
1
import random from typing import Any def __lowercase ( snake_case ): """simple docstring""" for _ in range(len(snake_case ) ): __magic_name__ :Optional[int] = random.randint(0, len(snake_case ) - 1 ) __magic_name__ :Union[str, Any] = random.randint(0, len(snake_case ) - 1 ) __magic_name__ , __magic_name__ :List[Any] = data[b], data[a] return data if __name__ == "__main__": SCREAMING_SNAKE_CASE__ : List[Any] = [0, 1, 2, 3, 4, 5, 6, 7] SCREAMING_SNAKE_CASE__ : int = ["""python""", """says""", """hello""", """!"""] print("""Fisher-Yates Shuffle:""") print("""List""", integers, strings) print("""FY Shuffle""", fisher_yates_shuffle(integers), fisher_yates_shuffle(strings))
0
'''simple docstring''' from unittest import TestCase from datasets import Sequence, Value from datasets.arrow_dataset import Dataset class _A ( __lowercase ): def lowercase__ ( self : Any ) -> str: """simple docstring""" return [ {"col_1": 3, "col_2": "a"}, {"col_1": 2, "col_2": "b"}, {"col_1": 1, "col_2": "c"}, {"col_1": 0, "col_2": "d"}, ] def lowercase__ ( self : str ) -> int: """simple docstring""" __snake_case : Union[str, Any] = {"""col_1""": [3, 2, 1, 0], """col_2""": ["""a""", """b""", """c""", """d"""]} return Dataset.from_dict(__magic_name__ ) def lowercase__ ( self : str ) -> List[Any]: """simple docstring""" __snake_case : Any = self._create_example_records() __snake_case : str = Dataset.from_list(__magic_name__ ) self.assertListEqual(dset.column_names , ["""col_1""", """col_2"""] ) for i, r in enumerate(__magic_name__ ): self.assertDictEqual(__magic_name__ , example_records[i] ) def lowercase__ ( self : Optional[Any] ) -> List[Any]: """simple docstring""" __snake_case : List[Any] = self._create_example_records() __snake_case : Dict = Dataset.from_list(__magic_name__ ) __snake_case : List[Any] = Dataset.from_dict({k: [r[k] for r in example_records] for k in example_records[0]} ) self.assertEqual(dset.info , dset_from_dict.info ) def lowercase__ ( self : str ) -> List[Any]: # checks what happens with missing columns """simple docstring""" __snake_case : Union[str, Any] = [{"""col_1""": 1}, {"""col_2""": """x"""}] __snake_case : Optional[int] = Dataset.from_list(__magic_name__ ) self.assertDictEqual(dset[0] , {"""col_1""": 1} ) self.assertDictEqual(dset[1] , {"""col_1""": None} ) # NB: first record is used for columns def lowercase__ ( self : List[str] ) -> Optional[Any]: # checks if the type can be inferred from the second record """simple docstring""" __snake_case : List[Any] = [{"""col_1""": []}, {"""col_1""": [1, 2]}] __snake_case : int = Dataset.from_list(__magic_name__ ) self.assertEqual(dset.info.features["""col_1"""] , Sequence(Value("""int64""" ) ) ) def lowercase__ ( self : int ) -> Union[str, Any]: """simple docstring""" __snake_case : Tuple = Dataset.from_list([] ) self.assertEqual(len(__magic_name__ ) , 0 ) self.assertListEqual(dset.column_names , [] )
26
0
from . import ( albert, align, altclip, audio_spectrogram_transformer, auto, autoformer, bark, bart, barthez, bartpho, beit, bert, bert_generation, bert_japanese, bertweet, big_bird, bigbird_pegasus, biogpt, bit, blenderbot, blenderbot_small, blip, blip_a, bloom, bridgetower, byta, camembert, canine, chinese_clip, clap, clip, clipseg, codegen, conditional_detr, convbert, convnext, convnextva, cpm, cpmant, ctrl, cvt, dataavec, deberta, deberta_va, decision_transformer, deformable_detr, deit, deprecated, deta, detr, dialogpt, dinat, distilbert, dit, donut, dpr, dpt, efficientformer, efficientnet, electra, encodec, encoder_decoder, ernie, ernie_m, esm, falcon, flaubert, flava, fnet, focalnet, fsmt, funnel, git, glpn, gpta, gpt_bigcode, gpt_neo, gpt_neox, gpt_neox_japanese, gpt_swa, gptj, gptsan_japanese, graphormer, groupvit, herbert, hubert, ibert, imagegpt, informer, instructblip, jukebox, layoutlm, layoutlmva, layoutlmva, layoutxlm, led, levit, lilt, llama, longformer, longta, luke, lxmert, mam_aaa, marian, markuplm, maskaformer, maskformer, mbart, mbartaa, mega, megatron_bert, megatron_gpta, mgp_str, mluke, mobilebert, mobilenet_va, mobilenet_va, mobilevit, mobilevitva, mpnet, mra, mta, musicgen, mvp, nat, nezha, nllb, nllb_moe, nystromformer, oneformer, open_llama, openai, opt, owlvit, pegasus, pegasus_x, perceiver, phobert, pixastruct, plbart, poolformer, prophetnet, qdqbert, rag, realm, reformer, regnet, rembert, resnet, roberta, roberta_prelayernorm, roc_bert, roformer, rwkv, sam, segformer, sew, sew_d, speech_encoder_decoder, speech_to_text, speech_to_text_a, speechta, splinter, squeezebert, swiftformer, swin, swinasr, swinva, switch_transformers, ta, table_transformer, tapas, time_series_transformer, timesformer, timm_backbone, transfo_xl, trocr, tvlt, umta, unispeech, unispeech_sat, upernet, videomae, vilt, vision_encoder_decoder, vision_text_dual_encoder, visual_bert, vit, vit_hybrid, vit_mae, vit_msn, vivit, wavaveca, wavaveca_conformer, wavaveca_phoneme, wavaveca_with_lm, wavlm, whisper, x_clip, xglm, xlm, xlm_prophetnet, xlm_roberta, xlm_roberta_xl, xlnet, xmod, yolos, yoso, )
1
'''simple docstring''' import inspect import unittest import torch import torch.nn as nn from accelerate.hooks import ( AlignDevicesHook, ModelHook, SequentialHook, add_hook_to_module, attach_align_device_hook, remove_hook_from_module, remove_hook_from_submodules, ) from accelerate.test_utils import require_multi_gpu class _A ( nn.Module ): def __init__( self : List[str] ) -> Optional[Any]: """simple docstring""" super().__init__() __snake_case : List[Any] = nn.Linear(3 , 4 ) __snake_case : str = nn.BatchNormad(4 ) __snake_case : Optional[Any] = nn.Linear(4 , 5 ) def lowercase__ ( self : str , __magic_name__ : Dict ) -> List[str]: """simple docstring""" return self.lineara(self.batchnorm(self.lineara(__magic_name__ ) ) ) class _A ( __lowercase ): def lowercase__ ( self : List[str] , __magic_name__ : Tuple , *__magic_name__ : Dict , **__magic_name__ : Optional[Any] ) -> Tuple: """simple docstring""" return (args[0] + 1,) + args[1:], kwargs class _A ( __lowercase ): def lowercase__ ( self : str , __magic_name__ : Union[str, Any] , __magic_name__ : Tuple ) -> Union[str, Any]: """simple docstring""" return output + 1 class _A ( unittest.TestCase ): def lowercase__ ( self : Dict ) -> Any: """simple docstring""" __snake_case : int = ModelForTest() __snake_case : Tuple = ModelHook() add_hook_to_module(__magic_name__ , __magic_name__ ) self.assertEqual(test_model._hf_hook , __magic_name__ ) self.assertTrue(hasattr(__magic_name__ , """_old_forward""" ) ) # Check adding the hook did not change the name or the signature self.assertEqual(test_model.forward.__name__ , """forward""" ) self.assertListEqual(list(inspect.signature(test_model.forward ).parameters ) , ["""x"""] ) remove_hook_from_module(__magic_name__ ) self.assertFalse(hasattr(__magic_name__ , """_hf_hook""" ) ) self.assertFalse(hasattr(__magic_name__ , """_old_forward""" ) ) def lowercase__ ( self : Tuple ) -> List[str]: """simple docstring""" __snake_case : List[Any] = ModelForTest() __snake_case : Optional[int] = ModelHook() add_hook_to_module(__magic_name__ , __magic_name__ ) add_hook_to_module(__magic_name__ , __magic_name__ , append=__magic_name__ ) self.assertEqual(isinstance(test_model._hf_hook , __magic_name__ ) , __magic_name__ ) self.assertEqual(len(test_model._hf_hook.hooks ) , 2 ) self.assertTrue(hasattr(__magic_name__ , """_old_forward""" ) ) # Check adding the hook did not change the name or the signature self.assertEqual(test_model.forward.__name__ , """forward""" ) self.assertListEqual(list(inspect.signature(test_model.forward ).parameters ) , ["""x"""] ) remove_hook_from_module(__magic_name__ ) self.assertFalse(hasattr(__magic_name__ , """_hf_hook""" ) ) self.assertFalse(hasattr(__magic_name__ , """_old_forward""" ) ) def lowercase__ ( self : str ) -> Union[str, Any]: """simple docstring""" __snake_case : List[Any] = ModelForTest() __snake_case : Any = torch.randn(2 , 3 ) __snake_case : str = test_model(x + 1 ) __snake_case : int = test_model(x + 2 ) __snake_case : Union[str, Any] = PreForwardHook() add_hook_to_module(__magic_name__ , __magic_name__ ) __snake_case : int = test_model(__magic_name__ ) self.assertTrue(torch.allclose(__magic_name__ , __magic_name__ , atol=1E-5 ) ) # Attaching a hook to a model when it already has one replaces, does not chain __snake_case : Optional[int] = PreForwardHook() add_hook_to_module(__magic_name__ , __magic_name__ ) __snake_case : List[Any] = test_model(__magic_name__ ) self.assertTrue(torch.allclose(__magic_name__ , __magic_name__ , atol=1E-5 ) ) # You need to use the sequential hook to chain two or more hooks __snake_case : Optional[int] = SequentialHook(PreForwardHook() , PreForwardHook() ) add_hook_to_module(__magic_name__ , __magic_name__ ) __snake_case : List[str] = test_model(__magic_name__ ) assert torch.allclose(__magic_name__ , __magic_name__ , atol=1E-5 ) def lowercase__ ( self : Union[str, Any] ) -> List[str]: """simple docstring""" __snake_case : Union[str, Any] = ModelForTest() __snake_case : str = torch.randn(2 , 3 ) __snake_case : Any = test_model(__magic_name__ ) __snake_case : Any = PostForwardHook() add_hook_to_module(__magic_name__ , __magic_name__ ) __snake_case : Any = test_model(__magic_name__ ) self.assertTrue(torch.allclose(__magic_name__ , output + 1 , atol=1E-5 ) ) # Attaching a hook to a model when it already has one replaces, does not chain __snake_case : Any = PostForwardHook() add_hook_to_module(__magic_name__ , __magic_name__ ) __snake_case : Dict = test_model(__magic_name__ ) self.assertTrue(torch.allclose(__magic_name__ , output + 1 , atol=1E-5 ) ) # You need to use the sequential hook to chain two or more hooks __snake_case : str = SequentialHook(PostForwardHook() , PostForwardHook() ) add_hook_to_module(__magic_name__ , __magic_name__ ) __snake_case : int = test_model(__magic_name__ ) assert torch.allclose(__magic_name__ , output + 2 , atol=1E-5 ) def lowercase__ ( self : str ) -> int: """simple docstring""" __snake_case : Union[str, Any] = ModelForTest() __snake_case : int = torch.randn(2 , 3 ) __snake_case : Any = test_model(__magic_name__ ) __snake_case : Dict = PostForwardHook() add_hook_to_module(__magic_name__ , __magic_name__ ) __snake_case : List[Any] = test_model(__magic_name__ ) self.assertTrue(torch.allclose(__magic_name__ , output + 1 ) ) self.assertTrue(outputa.requires_grad ) __snake_case : Dict = True __snake_case : int = test_model(__magic_name__ ) self.assertFalse(outputa.requires_grad ) @require_multi_gpu def lowercase__ ( self : Tuple ) -> List[Any]: """simple docstring""" __snake_case : Tuple = ModelForTest() # Everything is on CPU self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) ) self.assertEqual(model.batchnorm.weight.device , torch.device("""cpu""" ) ) self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) ) # This will move each submodule on different devices add_hook_to_module(model.lineara , AlignDevicesHook(execution_device=0 ) ) add_hook_to_module(model.batchnorm , AlignDevicesHook(execution_device=0 ) ) add_hook_to_module(model.lineara , AlignDevicesHook(execution_device=1 ) ) self.assertEqual(model.lineara.weight.device , torch.device(0 ) ) self.assertEqual(model.batchnorm.weight.device , torch.device(0 ) ) self.assertEqual(model.batchnorm.running_mean.device , torch.device(0 ) ) self.assertEqual(model.lineara.weight.device , torch.device(1 ) ) # We can still make a forward pass. The input does not need to be on any particular device __snake_case : Tuple = torch.randn(2 , 3 ) __snake_case : Union[str, Any] = model(__magic_name__ ) self.assertEqual(output.device , torch.device(1 ) ) # We can add a general hook to put back output on same device as input. add_hook_to_module(__magic_name__ , AlignDevicesHook(io_same_device=__magic_name__ ) ) __snake_case : Tuple = torch.randn(2 , 3 ).to(0 ) __snake_case : Any = model(__magic_name__ ) self.assertEqual(output.device , torch.device(0 ) ) def lowercase__ ( self : Union[str, Any] ) -> str: """simple docstring""" __snake_case : int = ModelForTest() # Everything is on CPU self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) ) self.assertEqual(model.batchnorm.weight.device , torch.device("""cpu""" ) ) self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) ) # This will move each submodule on different devices __snake_case : List[str] = {"""execution_device""": 0 if torch.cuda.is_available() else """cpu""", """offload""": True} add_hook_to_module(model.lineara , AlignDevicesHook(**__magic_name__ ) ) add_hook_to_module(model.batchnorm , AlignDevicesHook(**__magic_name__ ) ) add_hook_to_module(model.lineara , AlignDevicesHook(**__magic_name__ ) ) # Parameters have been offloaded, so on the meta device self.assertEqual(model.lineara.weight.device , torch.device("""meta""" ) ) self.assertEqual(model.batchnorm.weight.device , torch.device("""meta""" ) ) self.assertEqual(model.lineara.weight.device , torch.device("""meta""" ) ) # Buffers are not included in the offload by default, so are on the execution device __snake_case : Any = torch.device(hook_kwargs["""execution_device"""] ) self.assertEqual(model.batchnorm.running_mean.device , __magic_name__ ) __snake_case : Dict = torch.randn(2 , 3 ) __snake_case : Any = model(__magic_name__ ) self.assertEqual(output.device , __magic_name__ ) # Removing hooks loads back the weights in the model. remove_hook_from_module(model.lineara ) remove_hook_from_module(model.batchnorm ) remove_hook_from_module(model.lineara ) self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) ) self.assertEqual(model.batchnorm.weight.device , torch.device("""cpu""" ) ) self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) ) # Now test with buffers included in the offload __snake_case : int = { """execution_device""": 0 if torch.cuda.is_available() else """cpu""", """offload""": True, """offload_buffers""": True, } add_hook_to_module(model.lineara , AlignDevicesHook(**__magic_name__ ) ) add_hook_to_module(model.batchnorm , AlignDevicesHook(**__magic_name__ ) ) add_hook_to_module(model.lineara , AlignDevicesHook(**__magic_name__ ) ) # Parameters have been offloaded, so on the meta device, buffers included self.assertEqual(model.lineara.weight.device , torch.device("""meta""" ) ) self.assertEqual(model.batchnorm.weight.device , torch.device("""meta""" ) ) self.assertEqual(model.lineara.weight.device , torch.device("""meta""" ) ) self.assertEqual(model.batchnorm.running_mean.device , torch.device("""meta""" ) ) __snake_case : str = torch.randn(2 , 3 ) __snake_case : str = model(__magic_name__ ) self.assertEqual(output.device , __magic_name__ ) # Removing hooks loads back the weights in the model. remove_hook_from_module(model.lineara ) remove_hook_from_module(model.batchnorm ) remove_hook_from_module(model.lineara ) self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) ) self.assertEqual(model.batchnorm.weight.device , torch.device("""cpu""" ) ) self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) ) def lowercase__ ( self : Dict ) -> str: """simple docstring""" __snake_case : Tuple = ModelForTest() # Everything is on CPU self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) ) self.assertEqual(model.batchnorm.weight.device , torch.device("""cpu""" ) ) self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) ) # This will move each submodule on different devices __snake_case : Union[str, Any] = 0 if torch.cuda.is_available() else """cpu""" attach_align_device_hook(__magic_name__ , execution_device=__magic_name__ , offload=__magic_name__ ) # Parameters have been offloaded, so on the meta device self.assertEqual(model.lineara.weight.device , torch.device("""meta""" ) ) self.assertEqual(model.batchnorm.weight.device , torch.device("""meta""" ) ) self.assertEqual(model.lineara.weight.device , torch.device("""meta""" ) ) # Buffers are not included in the offload by default, so are on the execution device __snake_case : Union[str, Any] = torch.device(__magic_name__ ) self.assertEqual(model.batchnorm.running_mean.device , __magic_name__ ) __snake_case : Optional[int] = torch.randn(2 , 3 ) __snake_case : Dict = model(__magic_name__ ) self.assertEqual(output.device , __magic_name__ ) # Removing hooks loads back the weights in the model. remove_hook_from_submodules(__magic_name__ ) self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) ) self.assertEqual(model.batchnorm.weight.device , torch.device("""cpu""" ) ) self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) ) # Now test with buffers included in the offload attach_align_device_hook(__magic_name__ , execution_device=__magic_name__ , offload=__magic_name__ , offload_buffers=__magic_name__ ) # Parameters have been offloaded, so on the meta device, buffers included self.assertEqual(model.lineara.weight.device , torch.device("""meta""" ) ) self.assertEqual(model.batchnorm.weight.device , torch.device("""meta""" ) ) self.assertEqual(model.lineara.weight.device , torch.device("""meta""" ) ) self.assertEqual(model.batchnorm.running_mean.device , torch.device("""meta""" ) ) __snake_case : Dict = torch.randn(2 , 3 ) __snake_case : Optional[int] = model(__magic_name__ ) self.assertEqual(output.device , __magic_name__ ) # Removing hooks loads back the weights in the model. remove_hook_from_submodules(__magic_name__ ) self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) ) self.assertEqual(model.batchnorm.weight.device , torch.device("""cpu""" ) ) self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) ) def lowercase__ ( self : Any ) -> Union[str, Any]: """simple docstring""" __snake_case : Any = ModelForTest() # Everything is on CPU self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) ) self.assertEqual(model.batchnorm.weight.device , torch.device("""cpu""" ) ) self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) ) # This will move each submodule on different devices __snake_case : str = 0 if torch.cuda.is_available() else """cpu""" attach_align_device_hook( __magic_name__ , execution_device=__magic_name__ , offload=__magic_name__ , weights_map=model.state_dict() ) # Parameters have been offloaded, so on the meta device self.assertEqual(model.lineara.weight.device , torch.device("""meta""" ) ) self.assertEqual(model.batchnorm.weight.device , torch.device("""meta""" ) ) self.assertEqual(model.lineara.weight.device , torch.device("""meta""" ) ) # Buffers are not included in the offload by default, so are on the execution device __snake_case : List[str] = torch.device(__magic_name__ ) self.assertEqual(model.batchnorm.running_mean.device , __magic_name__ ) __snake_case : Tuple = torch.randn(2 , 3 ) __snake_case : Optional[Any] = model(__magic_name__ ) self.assertEqual(output.device , __magic_name__ ) # Removing hooks loads back the weights in the model. remove_hook_from_submodules(__magic_name__ ) self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) ) self.assertEqual(model.batchnorm.weight.device , torch.device("""cpu""" ) ) self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) ) # Now test with buffers included in the offload attach_align_device_hook( __magic_name__ , execution_device=__magic_name__ , offload=__magic_name__ , weights_map=model.state_dict() , offload_buffers=__magic_name__ , ) # Parameters have been offloaded, so on the meta device, buffers included self.assertEqual(model.lineara.weight.device , torch.device("""meta""" ) ) self.assertEqual(model.batchnorm.weight.device , torch.device("""meta""" ) ) self.assertEqual(model.lineara.weight.device , torch.device("""meta""" ) ) self.assertEqual(model.batchnorm.running_mean.device , torch.device("""meta""" ) ) __snake_case : List[str] = torch.randn(2 , 3 ) __snake_case : Dict = model(__magic_name__ ) self.assertEqual(output.device , __magic_name__ ) # Removing hooks loads back the weights in the model. remove_hook_from_submodules(__magic_name__ ) self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) ) self.assertEqual(model.batchnorm.weight.device , torch.device("""cpu""" ) ) self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) )
26
0
UpperCAmelCase_ = [sum(int(c, 1_0) ** 2 for c in i.__str__()) for i in range(1_0_0_0_0_0)] def SCREAMING_SNAKE_CASE_ ( _snake_case :int ) -> int: _A = 0 while number: # Increased Speed Slightly by checking every 5 digits together. sum_of_digits_squared += DIGITS_SQUARED[number % 100_000] number //= 100_000 return sum_of_digits_squared # There are 2 Chains made, # One ends with 89 with the chain member 58 being the one which when declared first, # there will be the least number of iterations for all the members to be checked. # The other one ends with 1 and has only one element 1. # So 58 and 1 are chosen to be declared at the starting. # Changed dictionary to an array to quicken the solution UpperCAmelCase_ = [None] * 1_0_0_0_0_0_0_0 UpperCAmelCase_ = True UpperCAmelCase_ = False def SCREAMING_SNAKE_CASE_ ( _snake_case :int ) -> bool: if CHAINS[number - 1] is not None: return CHAINS[number - 1] # type: ignore _A = chain(next_number(_snake_case ) ) _A = number_chain while number < 10_000_000: _A = number_chain number *= 10 return number_chain def SCREAMING_SNAKE_CASE_ ( _snake_case :int = 10_000_000 ) -> int: for i in range(1 , _snake_case ): if CHAINS[i] is None: chain(i + 1 ) return CHAINS[:number].count(_snake_case ) if __name__ == "__main__": import doctest doctest.testmod() print(f'{solution() = }')
2
'''simple docstring''' from __future__ import annotations __UpperCamelCase = [ [-1, 0], # left [0, -1], # down [1, 0], # right [0, 1], # up ] def _a ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , ) -> tuple[list[list[int]], list[list[int]]]: """simple docstring""" __snake_case : List[str] = [ [0 for col in range(len(grid[0] ) )] for row in range(len(_lowerCamelCase ) ) ] # the reference grid __snake_case : Tuple = 1 __snake_case : List[str] = [ [0 for col in range(len(grid[0] ) )] for row in range(len(_lowerCamelCase ) ) ] # the action grid __snake_case : List[str] = init[0] __snake_case : str = init[1] __snake_case : int = 0 __snake_case : int = g + heuristic[x][y] # cost from starting cell to destination cell __snake_case : List[str] = [[f, g, x, y]] __snake_case : Any = False # flag that is set when search is complete __snake_case : int = False # flag set if we can't find expand while not found and not resign: if len(_lowerCamelCase ) == 0: raise ValueError("""Algorithm is unable to find solution""" ) else: # to choose the least costliest action so as to move closer to the goal cell.sort() cell.reverse() __snake_case : Tuple = cell.pop() __snake_case : Optional[int] = next_cell[2] __snake_case : List[Any] = next_cell[3] __snake_case : int = next_cell[1] if x == goal[0] and y == goal[1]: __snake_case : Optional[Any] = True else: for i in range(len(_lowerCamelCase ) ): # to try out different valid actions __snake_case : Union[str, Any] = x + DIRECTIONS[i][0] __snake_case : str = y + DIRECTIONS[i][1] if xa >= 0 and xa < len(_lowerCamelCase ) and ya >= 0 and ya < len(grid[0] ): if closed[xa][ya] == 0 and grid[xa][ya] == 0: __snake_case : str = g + cost __snake_case : Tuple = ga + heuristic[xa][ya] cell.append([fa, ga, xa, ya] ) __snake_case : List[str] = 1 __snake_case : Optional[int] = i __snake_case : List[str] = [] __snake_case : Optional[int] = goal[0] __snake_case : List[Any] = goal[1] invpath.append([x, y] ) # we get the reverse path from here while x != init[0] or y != init[1]: __snake_case : Dict = x - DIRECTIONS[action[x][y]][0] __snake_case : int = y - DIRECTIONS[action[x][y]][1] __snake_case : Optional[int] = xa __snake_case : int = ya invpath.append([x, y] ) __snake_case : Optional[int] = [] for i in range(len(_lowerCamelCase ) ): path.append(invpath[len(_lowerCamelCase ) - 1 - i] ) return path, action if __name__ == "__main__": __UpperCamelCase = [ [0, 1, 0, 0, 0, 0], [0, 1, 0, 0, 0, 0], # 0 are free path whereas 1's are obstacles [0, 1, 0, 0, 0, 0], [0, 1, 0, 0, 1, 0], [0, 0, 0, 0, 1, 0], ] __UpperCamelCase = [0, 0] # all coordinates are given in format [y,x] __UpperCamelCase = [len(grid) - 1, len(grid[0]) - 1] __UpperCamelCase = 1 # the cost map which pushes the path closer to the goal __UpperCamelCase = [[0 for row in range(len(grid[0]))] for col in range(len(grid))] for i in range(len(grid)): for j in range(len(grid[0])): __UpperCamelCase = abs(i - goal[0]) + abs(j - goal[1]) if grid[i][j] == 1: # added extra penalty in the heuristic map __UpperCamelCase = 99 __UpperCamelCase , __UpperCamelCase = search(grid, init, goal, cost, heuristic) print("ACTION MAP") for i in range(len(action)): print(action[i]) for i in range(len(path)): print(path[i])
26
0
'''simple docstring''' import argparse import json from collections import OrderedDict from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import PoolFormerConfig, PoolFormerForImageClassification, PoolFormerImageProcessor from transformers.utils import logging logging.set_verbosity_info() lowerCAmelCase : Tuple = logging.get_logger(__name__) def A_( A : Union[str, Any] , A : Dict , A : Dict , A : Any): UpperCamelCase = original_name.split('.')[0] UpperCamelCase = key.split('.') UpperCamelCase = int(key_list[key_list.index(A) - 2]) UpperCamelCase = int(key_list[key_list.index(A) - 1]) UpperCamelCase = orig_block_num - offset UpperCamelCase = key.replace(f'''{orig_block_num}.{layer_num}.{original_name}''' , f'''block.{new_block_num}.{layer_num}.{new_name}''') return key def A_( A : Union[str, Any]): UpperCamelCase = OrderedDict() UpperCamelCase , UpperCamelCase = 0, 0 for key, value in state_dict.items(): if key.startswith('network'): UpperCamelCase = key.replace('network' , 'poolformer.encoder') if "proj" in key: # Works for the first embedding as well as the internal embedding layers if key.endswith('bias') and "patch_embed" not in key: patch_emb_offset += 1 UpperCamelCase = key[: key.find('proj')] UpperCamelCase = key.replace(A , f'''patch_embeddings.{total_embed_found}.''') UpperCamelCase = key.replace('proj' , 'projection') if key.endswith('bias'): total_embed_found += 1 if "patch_embeddings" in key: UpperCamelCase = 'poolformer.encoder.' + key if "mlp.fc1" in key: UpperCamelCase = replace_key_with_offset(A , A , 'mlp.fc1' , 'output.conv1') if "mlp.fc2" in key: UpperCamelCase = replace_key_with_offset(A , A , 'mlp.fc2' , 'output.conv2') if "norm1" in key: UpperCamelCase = replace_key_with_offset(A , A , 'norm1' , 'before_norm') if "norm2" in key: UpperCamelCase = replace_key_with_offset(A , A , 'norm2' , 'after_norm') if "layer_scale_1" in key: UpperCamelCase = replace_key_with_offset(A , A , 'layer_scale_1' , 'layer_scale_1') if "layer_scale_2" in key: UpperCamelCase = replace_key_with_offset(A , A , 'layer_scale_2' , 'layer_scale_2') if "head" in key: UpperCamelCase = key.replace('head' , 'classifier') UpperCamelCase = value return new_state_dict def A_( ): UpperCamelCase = 'http://images.cocodataset.org/val2017/000000039769.jpg' UpperCamelCase = Image.open(requests.get(A , stream=A).raw) return image @torch.no_grad() def A_( A : Union[str, Any] , A : List[Any] , A : List[Any]): UpperCamelCase = PoolFormerConfig() # set attributes based on model_name UpperCamelCase = 'huggingface/label-files' UpperCamelCase = model_name[-3:] UpperCamelCase = 1000 UpperCamelCase = 'imagenet-1k-id2label.json' UpperCamelCase = (1, 1000) # set config attributes UpperCamelCase = json.load(open(hf_hub_download(A , A , repo_type='dataset') , 'r')) UpperCamelCase = {int(A): v for k, v in idalabel.items()} UpperCamelCase = idalabel UpperCamelCase = {v: k for k, v in idalabel.items()} if size == "s12": UpperCamelCase = [2, 2, 6, 2] UpperCamelCase = [64, 128, 320, 512] UpperCamelCase = 4.0 UpperCamelCase = 0.9 elif size == "s24": UpperCamelCase = [4, 4, 12, 4] UpperCamelCase = [64, 128, 320, 512] UpperCamelCase = 4.0 UpperCamelCase = 0.9 elif size == "s36": UpperCamelCase = [6, 6, 18, 6] UpperCamelCase = [64, 128, 320, 512] UpperCamelCase = 4.0 UpperCamelCase = 1E-6 UpperCamelCase = 0.9 elif size == "m36": UpperCamelCase = [6, 6, 18, 6] UpperCamelCase = [96, 192, 384, 768] UpperCamelCase = 4.0 UpperCamelCase = 1E-6 UpperCamelCase = 0.95 elif size == "m48": UpperCamelCase = [8, 8, 24, 8] UpperCamelCase = [96, 192, 384, 768] UpperCamelCase = 4.0 UpperCamelCase = 1E-6 UpperCamelCase = 0.95 else: raise ValueError(f'''Size {size} not supported''') # load image processor UpperCamelCase = PoolFormerImageProcessor(crop_pct=A) # Prepare image UpperCamelCase = prepare_img() UpperCamelCase = image_processor(images=A , return_tensors='pt').pixel_values logger.info(f'''Converting model {model_name}...''') # load original state dict UpperCamelCase = torch.load(A , map_location=torch.device('cpu')) # rename keys UpperCamelCase = rename_keys(A) # create HuggingFace model and load state dict UpperCamelCase = PoolFormerForImageClassification(A) model.load_state_dict(A) model.eval() # Define image processor UpperCamelCase = PoolFormerImageProcessor(crop_pct=A) UpperCamelCase = image_processor(images=prepare_img() , return_tensors='pt').pixel_values # forward pass UpperCamelCase = model(A) UpperCamelCase = outputs.logits # define expected logit slices for different models if size == "s12": UpperCamelCase = torch.tensor([-0.3_045, -0.6_758, -0.4_869]) elif size == "s24": UpperCamelCase = torch.tensor([0.4_402, -0.1_374, -0.8_045]) elif size == "s36": UpperCamelCase = torch.tensor([-0.6_080, -0.5_133, -0.5_898]) elif size == "m36": UpperCamelCase = torch.tensor([0.3_952, 0.2_263, -1.2_668]) elif size == "m48": UpperCamelCase = torch.tensor([0.1_167, -0.0_656, -0.3_423]) else: raise ValueError(f'''Size {size} not supported''') # verify logits assert logits.shape == expected_shape assert torch.allclose(logits[0, :3] , A , atol=1E-2) # finally, save model and image processor logger.info(f'''Saving PyTorch model and image processor to {pytorch_dump_folder_path}...''') Path(A).mkdir(exist_ok=A) model.save_pretrained(A) print(f'''Saving image processor to {pytorch_dump_folder_path}''') image_processor.save_pretrained(A) if __name__ == "__main__": lowerCAmelCase : int = argparse.ArgumentParser() parser.add_argument( '--model_name', default='poolformer_s12', type=str, help='Name of the model you\'d like to convert.', ) parser.add_argument( '--checkpoint_path', default=None, type=str, help='Path to the original PyTorch checkpoint (.pth file).' ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to the folder to output PyTorch model.' ) lowerCAmelCase : Union[str, Any] = parser.parse_args() convert_poolformer_checkpoint(args.model_name, args.checkpoint_path, args.pytorch_dump_folder_path)
3
'''simple docstring''' def _a ( _lowerCamelCase ) -> int: """simple docstring""" if not isinstance(_lowerCamelCase , _lowerCamelCase ): raise TypeError("""only integers accepted as input""" ) else: __snake_case : List[Any] = str(abs(_lowerCamelCase ) ) __snake_case : Union[str, Any] = [list(_lowerCamelCase ) for char in range(len(_lowerCamelCase ) )] for index in range(len(_lowerCamelCase ) ): num_transpositions[index].pop(_lowerCamelCase ) return max( int("""""".join(list(_lowerCamelCase ) ) ) for transposition in num_transpositions ) if __name__ == "__main__": __import__("doctest").testmod()
26
0
"""simple docstring""" def _SCREAMING_SNAKE_CASE (): return [list(range(1000 - i , -1000 - i , -1 ) ) for i in range(1000 )] __UpperCamelCase : Union[str, Any] = generate_large_matrix() __UpperCamelCase : Tuple = ( [[4, 3, 2, -1], [3, 2, 1, -1], [1, 1, -1, -2], [-1, -1, -2, -3]], [[3, 2], [1, 0]], [[7, 7, 6]], [[7, 7, 6], [-1, -2, -3]], grid, ) def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : list[list[int]] ): assert all(row == sorted(_UpperCAmelCase , reverse=_UpperCAmelCase ) for row in grid ) assert all(list(_UpperCAmelCase ) == sorted(_UpperCAmelCase , reverse=_UpperCAmelCase ) for col in zip(*_UpperCAmelCase ) ) def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : list[int] ): lowerCAmelCase = 0 lowerCAmelCase = len(_UpperCAmelCase ) - 1 # Edge cases such as no values or all numbers are negative. if not array or array[0] < 0: return 0 while right + 1 > left: lowerCAmelCase = (left + right) // 2 lowerCAmelCase = array[mid] # Num must be negative and the index must be greater than or equal to 0. if num < 0 and array[mid - 1] >= 0: return mid if num >= 0: lowerCAmelCase = mid + 1 else: lowerCAmelCase = mid - 1 # No negative numbers so return the last index of the array + 1 which is the length. return len(_UpperCAmelCase ) def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : list[list[int]] ): lowerCAmelCase = 0 lowerCAmelCase = len(grid[0] ) for i in range(len(_UpperCAmelCase ) ): lowerCAmelCase = find_negative_index(grid[i][:bound] ) total += bound return (len(_UpperCAmelCase ) * len(grid[0] )) - total def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : list[list[int]] ): return len([number for row in grid for number in row if number < 0] ) def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : list[list[int]] ): lowerCAmelCase = 0 for row in grid: for i, number in enumerate(_UpperCAmelCase ): if number < 0: total += len(_UpperCAmelCase ) - i break return total def _SCREAMING_SNAKE_CASE (): from timeit import timeit print('Running benchmarks' ) lowerCAmelCase = ( 'from __main__ import count_negatives_binary_search, ' 'count_negatives_brute_force, count_negatives_brute_force_with_break, grid' ) for func in ( "count_negatives_binary_search", # took 0.7727 seconds "count_negatives_brute_force_with_break", # took 4.6505 seconds "count_negatives_brute_force", # took 12.8160 seconds ): lowerCAmelCase = timeit(F'{func}(grid=grid)' , setup=_UpperCAmelCase , number=500 ) print(F'{func}() took {time:0.4f} seconds' ) if __name__ == "__main__": import doctest doctest.testmod() benchmark()
4
'''simple docstring''' from __future__ import annotations import math def _a ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> int: """simple docstring""" if depth < 0: raise ValueError("""Depth cannot be less than 0""" ) if not scores: raise ValueError("""Scores cannot be empty""" ) if depth == height: return scores[node_index] return ( max( minimax(depth + 1 , node_index * 2 , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) , minimax(depth + 1 , node_index * 2 + 1 , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) , ) if is_max else min( minimax(depth + 1 , node_index * 2 , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) , minimax(depth + 1 , node_index * 2 + 1 , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) , ) ) def _a ( ) -> None: """simple docstring""" __snake_case : Union[str, Any] = [90, 23, 6, 33, 21, 65, 123, 3_4423] __snake_case : Optional[int] = math.log(len(_lowerCamelCase ) , 2 ) print(F'''Optimal value : {minimax(0 , 0 , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase )}''' ) if __name__ == "__main__": import doctest doctest.testmod() main()
26
0
'''simple docstring''' # limitations under the License. from typing import Optional, Tuple, Union import torch from diffusers import DiffusionPipeline, ImagePipelineOutput class UpperCAmelCase_ ( _SCREAMING_SNAKE_CASE ): '''simple docstring''' def __init__( self , _lowercase , _lowercase ): """simple docstring""" super().__init__() self.register_modules(unet=_lowercase , scheduler=_lowercase ) @torch.no_grad() def __call__( self , _lowercase = 1 , _lowercase = None , _lowercase = 50 , _lowercase = "pil" , _lowercase = True , **_lowercase , ): """simple docstring""" _lowerCAmelCase = torch.randn( (batch_size, self.unet.config.in_channels, self.unet.config.sample_size, self.unet.config.sample_size) , generator=_lowercase , ) _lowerCAmelCase = image.to(self.device ) # set step values self.scheduler.set_timesteps(_lowercase ) for t in self.progress_bar(self.scheduler.timesteps ): # 1. predict noise model_output _lowerCAmelCase = self.unet(_lowercase , _lowercase ).sample # 2. predict previous mean of image x_t-1 and add variance depending on eta # eta corresponds to η in paper and should be between [0, 1] # do x_t -> x_t-1 _lowerCAmelCase = self.scheduler.step(_lowercase , _lowercase , _lowercase ).prev_sample _lowerCAmelCase = (image / 2 + 0.5).clamp(0 , 1 ) _lowerCAmelCase = image.cpu().permute(0 , 2 , 3 , 1 ).numpy() if output_type == "pil": _lowerCAmelCase = self.numpy_to_pil(_lowercase ) if not return_dict: return (image,), "This is a local test" return ImagePipelineOutput(images=_lowercase ), "This is a local test"
5
'''simple docstring''' from __future__ import annotations def _a ( _lowerCamelCase , _lowerCamelCase = None , _lowerCamelCase = None ) -> None: """simple docstring""" if start is None: __snake_case : Optional[Any] = 0 if end is None: __snake_case : Optional[Any] = len(_lowerCamelCase ) - 1 if start >= end: return __snake_case : Tuple = (start + end) // 2 slowsort(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) slowsort(_lowerCamelCase , mid + 1 , _lowerCamelCase ) if sequence[end] < sequence[mid]: __snake_case , __snake_case : str = sequence[mid], sequence[end] slowsort(_lowerCamelCase , _lowerCamelCase , end - 1 ) if __name__ == "__main__": from doctest import testmod testmod()
26
0
import numpy as np from numpy import ndarray from scipy.optimize import Bounds, LinearConstraint, minimize def SCREAMING_SNAKE_CASE__ ( UpperCamelCase__: ndarray ): return np.dot(UpperCamelCase__ , UpperCamelCase__ ) class UpperCamelCase_ : def __init__( self :int , *, __A :float = np.inf , __A :str = "linear" , __A :float = 0.0 , ) -> None: """simple docstring""" SCREAMING_SNAKE_CASE__ = regularization SCREAMING_SNAKE_CASE__ = gamma if kernel == "linear": SCREAMING_SNAKE_CASE__ = self.__linear elif kernel == "rbf": if self.gamma == 0: raise ValueError("""rbf kernel requires gamma""" ) if not isinstance(self.gamma , (float, int) ): raise ValueError("""gamma must be float or int""" ) if not self.gamma > 0: raise ValueError("""gamma must be > 0""" ) SCREAMING_SNAKE_CASE__ = self.__rbf # in the future, there could be a default value like in sklearn # sklear: def_gamma = 1/(n_features * X.var()) (wiki) # previously it was 1/(n_features) else: SCREAMING_SNAKE_CASE__ = f'''Unknown kernel: {kernel}''' raise ValueError(__A ) def _snake_case ( self :Optional[Any] , __A :ndarray , __A :ndarray ) -> float: """simple docstring""" return np.dot(__A , __A ) def _snake_case ( self :Union[str, Any] , __A :ndarray , __A :ndarray ) -> float: """simple docstring""" return np.exp(-(self.gamma * norm_squared(vectora - vectora )) ) def _snake_case ( self :Union[str, Any] , __A :list[ndarray] , __A :ndarray ) -> None: """simple docstring""" SCREAMING_SNAKE_CASE__ = observations SCREAMING_SNAKE_CASE__ = classes # using Wolfe's Dual to calculate w. # Primal problem: minimize 1/2*norm_squared(w) # constraint: yn(w . xn + b) >= 1 # # With l a vector # Dual problem: maximize sum_n(ln) - # 1/2 * sum_n(sum_m(ln*lm*yn*ym*xn . xm)) # constraint: self.C >= ln >= 0 # and sum_n(ln*yn) = 0 # Then we get w using w = sum_n(ln*yn*xn) # At the end we can get b ~= mean(yn - w . xn) # # Since we use kernels, we only need l_star to calculate b # and to classify observations ((SCREAMING_SNAKE_CASE__) , ) = np.shape(__A ) def to_minimize(__A :ndarray ) -> float: SCREAMING_SNAKE_CASE__ = 0 ((SCREAMING_SNAKE_CASE__) , ) = np.shape(__A ) for i in range(__A ): for j in range(__A ): s += ( candidate[i] * candidate[j] * classes[i] * classes[j] * self.kernel(observations[i] , observations[j] ) ) return 1 / 2 * s - sum(__A ) SCREAMING_SNAKE_CASE__ = LinearConstraint(__A , 0 , 0 ) SCREAMING_SNAKE_CASE__ = Bounds(0 , self.regularization ) SCREAMING_SNAKE_CASE__ = minimize( __A , np.ones(__A ) , bounds=__A , constraints=[ly_contraint] ).x SCREAMING_SNAKE_CASE__ = l_star # calculating mean offset of separation plane to points SCREAMING_SNAKE_CASE__ = 0 for i in range(__A ): for j in range(__A ): s += classes[i] - classes[i] * self.optimum[i] * self.kernel( observations[i] , observations[j] ) SCREAMING_SNAKE_CASE__ = s / n def _snake_case ( self :Optional[int] , __A :ndarray ) -> int: """simple docstring""" SCREAMING_SNAKE_CASE__ = sum( self.optimum[n] * self.classes[n] * self.kernel(self.observations[n] , __A ) for n in range(len(self.classes ) ) ) return 1 if s + self.offset >= 0 else -1 if __name__ == "__main__": import doctest doctest.testmod()
6
'''simple docstring''' import doctest import logging import os import unittest from pathlib import Path from typing import List, Union import transformers from transformers.testing_utils import require_tf, require_torch, slow __UpperCamelCase = logging.getLogger() @unittest.skip('''Temporarily disable the doc tests.''' ) @require_torch @require_tf @slow class _A ( unittest.TestCase ): def lowercase__ ( self : Optional[int] , __magic_name__ : Path , __magic_name__ : Union[str, None] = None , __magic_name__ : Union[List[str], None] = None , __magic_name__ : Union[str, List[str], None] = None , __magic_name__ : bool = True , ) -> Optional[int]: """simple docstring""" __snake_case : Union[str, Any] = [file for file in os.listdir(__magic_name__ ) if os.path.isfile(os.path.join(__magic_name__ , __magic_name__ ) )] if identifier is not None: __snake_case : List[Any] = [file for file in files if identifier in file] if n_identifier is not None: if isinstance(__magic_name__ , __magic_name__ ): for n_ in n_identifier: __snake_case : Optional[int] = [file for file in files if n_ not in file] else: __snake_case : Tuple = [file for file in files if n_identifier not in file] __snake_case : Dict = ignore_files or [] ignore_files.append("""__init__.py""" ) __snake_case : List[str] = [file for file in files if file not in ignore_files] for file in files: # Open all files print("""Testing""" , __magic_name__ ) if only_modules: __snake_case : List[Any] = file.split(""".""" )[0] try: __snake_case : List[Any] = getattr(__magic_name__ , __magic_name__ ) __snake_case : Union[str, Any] = doctest.DocTestSuite(__magic_name__ ) __snake_case : Dict = unittest.TextTestRunner().run(__magic_name__ ) self.assertIs(len(result.failures ) , 0 ) except AttributeError: logger.info(f'''{module_identifier} is not a module.''' ) else: __snake_case : Tuple = doctest.testfile(str("""..""" / directory / file ) , optionflags=doctest.ELLIPSIS ) self.assertIs(result.failed , 0 ) def lowercase__ ( self : Union[str, Any] ) -> Any: """simple docstring""" __snake_case : List[Any] = Path("""src/transformers""" ) __snake_case : List[Any] = """modeling""" __snake_case : Union[str, Any] = [ """modeling_ctrl.py""", """modeling_tf_ctrl.py""", ] self.analyze_directory(__magic_name__ , identifier=__magic_name__ , ignore_files=__magic_name__ ) def lowercase__ ( self : Union[str, Any] ) -> int: """simple docstring""" __snake_case : Union[str, Any] = Path("""src/transformers""" ) __snake_case : Any = """tokenization""" self.analyze_directory(__magic_name__ , identifier=__magic_name__ ) def lowercase__ ( self : Union[str, Any] ) -> int: """simple docstring""" __snake_case : List[Any] = Path("""src/transformers""" ) __snake_case : List[str] = """configuration""" self.analyze_directory(__magic_name__ , identifier=__magic_name__ ) def lowercase__ ( self : Dict ) -> Dict: """simple docstring""" __snake_case : Tuple = Path("""src/transformers""" ) __snake_case : int = ["""configuration""", """modeling""", """tokenization"""] self.analyze_directory(__magic_name__ , n_identifier=__magic_name__ ) def lowercase__ ( self : Optional[int] ) -> Union[str, Any]: """simple docstring""" __snake_case : int = Path("""docs/source""" ) __snake_case : Optional[int] = ["""favicon.ico"""] self.analyze_directory(__magic_name__ , ignore_files=__magic_name__ , only_modules=__magic_name__ )
26
0
"""simple docstring""" import gc import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModelWithProjection, CLIPTokenizer from diffusers import HeunDiscreteScheduler, PriorTransformer, ShapEPipeline from diffusers.pipelines.shap_e import ShapERenderer from diffusers.utils import load_numpy, slow from diffusers.utils.testing_utils import require_torch_gpu, torch_device from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference class lowercase_ ( __lowerCAmelCase , unittest.TestCase ): '''simple docstring''' UpperCAmelCase : str = ShapEPipeline UpperCAmelCase : Union[str, Any] = ['''prompt'''] UpperCAmelCase : Union[str, Any] = ['''prompt'''] UpperCAmelCase : List[str] = [ '''num_images_per_prompt''', '''num_inference_steps''', '''generator''', '''latents''', '''guidance_scale''', '''frame_size''', '''output_type''', '''return_dict''', ] UpperCAmelCase : Optional[Any] = False @property def lowerCAmelCase_ ( self : Optional[int] ): return 32 @property def lowerCAmelCase_ ( self : Optional[Any] ): return 32 @property def lowerCAmelCase_ ( self : Union[str, Any] ): return self.time_input_dim * 4 @property def lowerCAmelCase_ ( self : str ): return 8 @property def lowerCAmelCase_ ( self : Optional[Any] ): _A = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip' ) return tokenizer @property def lowerCAmelCase_ ( self : Union[str, Any] ): torch.manual_seed(0 ) _A = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=self.text_embedder_hidden_size , projection_dim=self.text_embedder_hidden_size , intermediate_size=37 , layer_norm_eps=1E-0_5 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_000 , ) return CLIPTextModelWithProjection(_UpperCAmelCase ) @property def lowerCAmelCase_ ( self : Optional[int] ): torch.manual_seed(0 ) _A = { 'num_attention_heads': 2, 'attention_head_dim': 16, 'embedding_dim': self.time_input_dim, 'num_embeddings': 32, 'embedding_proj_dim': self.text_embedder_hidden_size, 'time_embed_dim': self.time_embed_dim, 'num_layers': 1, 'clip_embed_dim': self.time_input_dim * 2, 'additional_embeddings': 0, 'time_embed_act_fn': 'gelu', 'norm_in_type': 'layer', 'encoder_hid_proj_type': None, 'added_emb_type': None, } _A = PriorTransformer(**_UpperCAmelCase ) return model @property def lowerCAmelCase_ ( self : List[Any] ): torch.manual_seed(0 ) _A = { 'param_shapes': ( (self.renderer_dim, 93), (self.renderer_dim, 8), (self.renderer_dim, 8), (self.renderer_dim, 8), ), 'd_latent': self.time_input_dim, 'd_hidden': self.renderer_dim, 'n_output': 12, 'background': ( 0.1, 0.1, 0.1, ), } _A = ShapERenderer(**_UpperCAmelCase ) return model def lowerCAmelCase_ ( self : List[Any] ): _A = self.dummy_prior _A = self.dummy_text_encoder _A = self.dummy_tokenizer _A = self.dummy_renderer _A = HeunDiscreteScheduler( beta_schedule='exp' , num_train_timesteps=1_024 , prediction_type='sample' , use_karras_sigmas=_UpperCAmelCase , clip_sample=_UpperCAmelCase , clip_sample_range=1.0 , ) _A = { 'prior': prior, 'text_encoder': text_encoder, 'tokenizer': tokenizer, 'renderer': renderer, 'scheduler': scheduler, } return components def lowerCAmelCase_ ( self : Any , _UpperCAmelCase : List[Any] , _UpperCAmelCase : List[Any]=0 ): if str(_UpperCAmelCase ).startswith('mps' ): _A = torch.manual_seed(_UpperCAmelCase ) else: _A = torch.Generator(device=_UpperCAmelCase ).manual_seed(_UpperCAmelCase ) _A = { 'prompt': 'horse', 'generator': generator, 'num_inference_steps': 1, 'frame_size': 32, 'output_type': 'np', } return inputs def lowerCAmelCase_ ( self : int ): _A = 'cpu' _A = self.get_dummy_components() _A = self.pipeline_class(**_UpperCAmelCase ) _A = pipe.to(_UpperCAmelCase ) pipe.set_progress_bar_config(disable=_UpperCAmelCase ) _A = pipe(**self.get_dummy_inputs(_UpperCAmelCase ) ) _A = output.images[0] _A = image[0, -3:, -3:, -1] assert image.shape == (20, 32, 32, 3) _A = np.array( [ 0.0003_9216, 0.0003_9216, 0.0003_9216, 0.0003_9216, 0.0003_9216, 0.0003_9216, 0.0003_9216, 0.0003_9216, 0.0003_9216, ] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 def lowerCAmelCase_ ( self : List[Any] ): # NOTE: Larger batch sizes cause this test to timeout, only test on smaller batches self._test_inference_batch_consistent(batch_sizes=[1, 2] ) def lowerCAmelCase_ ( self : Tuple ): _A = torch_device == 'cpu' _A = True self._test_inference_batch_single_identical( batch_size=2 , test_max_difference=_UpperCAmelCase , relax_max_difference=_UpperCAmelCase , ) def lowerCAmelCase_ ( self : str ): _A = self.get_dummy_components() _A = self.pipeline_class(**_UpperCAmelCase ) _A = pipe.to(_UpperCAmelCase ) pipe.set_progress_bar_config(disable=_UpperCAmelCase ) _A = 1 _A = 2 _A = self.get_dummy_inputs(_UpperCAmelCase ) for key in inputs.keys(): if key in self.batch_params: _A = batch_size * [inputs[key]] _A = pipe(**_UpperCAmelCase , num_images_per_prompt=_UpperCAmelCase )[0] assert images.shape[0] == batch_size * num_images_per_prompt @slow @require_torch_gpu class lowercase_ ( unittest.TestCase ): '''simple docstring''' def lowerCAmelCase_ ( self : Tuple ): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def lowerCAmelCase_ ( self : Tuple ): _A = load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/shap_e/test_shap_e_np_out.npy' ) _A = ShapEPipeline.from_pretrained('openai/shap-e' ) _A = pipe.to(_UpperCAmelCase ) pipe.set_progress_bar_config(disable=_UpperCAmelCase ) _A = torch.Generator(device=_UpperCAmelCase ).manual_seed(0 ) _A = pipe( 'a shark' , generator=_UpperCAmelCase , guidance_scale=15.0 , num_inference_steps=64 , frame_size=64 , output_type='np' , ).images[0] assert images.shape == (20, 64, 64, 3) assert_mean_pixel_difference(_UpperCAmelCase , _UpperCAmelCase )
7
'''simple docstring''' import inspect from typing import Callable, List, Optional, Union import torch from transformers import ( CLIPImageProcessor, CLIPTextModel, CLIPTokenizer, WhisperForConditionalGeneration, WhisperProcessor, ) from diffusers import ( AutoencoderKL, DDIMScheduler, DiffusionPipeline, LMSDiscreteScheduler, PNDMScheduler, UNetaDConditionModel, ) from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion import StableDiffusionPipelineOutput from diffusers.pipelines.stable_diffusion.safety_checker import StableDiffusionSafetyChecker from diffusers.utils import logging __UpperCamelCase = logging.get_logger(__name__) # pylint: disable=invalid-name class _A ( __lowercase ): def __init__( self : str , __magic_name__ : WhisperForConditionalGeneration , __magic_name__ : WhisperProcessor , __magic_name__ : AutoencoderKL , __magic_name__ : CLIPTextModel , __magic_name__ : CLIPTokenizer , __magic_name__ : UNetaDConditionModel , __magic_name__ : Union[DDIMScheduler, PNDMScheduler, LMSDiscreteScheduler] , __magic_name__ : StableDiffusionSafetyChecker , __magic_name__ : CLIPImageProcessor , ) -> Union[str, Any]: """simple docstring""" super().__init__() if safety_checker is None: logger.warning( f'''You have disabled the safety checker for {self.__class__} by passing `safety_checker=None`. Ensure''' """ that you abide to the conditions of the Stable Diffusion license and do not expose unfiltered""" """ results in services or applications open to the public. Both the diffusers team and Hugging Face""" """ strongly recommend to keep the safety filter enabled in all public facing circumstances, disabling""" """ it only for use-cases that involve analyzing network behavior or auditing its results. For more""" """ information, please have a look at https://github.com/huggingface/diffusers/pull/254 .""" ) self.register_modules( speech_model=__magic_name__ , speech_processor=__magic_name__ , vae=__magic_name__ , text_encoder=__magic_name__ , tokenizer=__magic_name__ , unet=__magic_name__ , scheduler=__magic_name__ , feature_extractor=__magic_name__ , ) def lowercase__ ( self : Optional[Any] , __magic_name__ : Optional[Union[str, int]] = "auto" ) -> Union[str, Any]: """simple docstring""" if slice_size == "auto": __snake_case : str = self.unet.config.attention_head_dim // 2 self.unet.set_attention_slice(__magic_name__ ) def lowercase__ ( self : str ) -> Any: """simple docstring""" self.enable_attention_slicing(__magic_name__ ) @torch.no_grad() def __call__( self : Optional[int] , __magic_name__ : str , __magic_name__ : Dict=1_60_00 , __magic_name__ : int = 5_12 , __magic_name__ : int = 5_12 , __magic_name__ : int = 50 , __magic_name__ : float = 7.5 , __magic_name__ : Optional[Union[str, List[str]]] = None , __magic_name__ : Optional[int] = 1 , __magic_name__ : float = 0.0 , __magic_name__ : Optional[torch.Generator] = None , __magic_name__ : Optional[torch.FloatTensor] = None , __magic_name__ : Optional[str] = "pil" , __magic_name__ : bool = True , __magic_name__ : Optional[Callable[[int, int, torch.FloatTensor], None]] = None , __magic_name__ : int = 1 , **__magic_name__ : List[str] , ) -> int: """simple docstring""" __snake_case : List[Any] = self.speech_processor.feature_extractor( __magic_name__ , return_tensors="""pt""" , sampling_rate=__magic_name__ ).input_features.to(self.device ) __snake_case : List[str] = self.speech_model.generate(__magic_name__ , max_length=48_00_00 ) __snake_case : List[Any] = self.speech_processor.tokenizer.batch_decode(__magic_name__ , skip_special_tokens=__magic_name__ , normalize=__magic_name__ )[ 0 ] if isinstance(__magic_name__ , __magic_name__ ): __snake_case : Tuple = 1 elif isinstance(__magic_name__ , __magic_name__ ): __snake_case : Optional[int] = len(__magic_name__ ) else: raise ValueError(f'''`prompt` has to be of type `str` or `list` but is {type(__magic_name__ )}''' ) if height % 8 != 0 or width % 8 != 0: raise ValueError(f'''`height` and `width` have to be divisible by 8 but are {height} and {width}.''' ) if (callback_steps is None) or ( callback_steps is not None and (not isinstance(__magic_name__ , __magic_name__ ) or callback_steps <= 0) ): raise ValueError( f'''`callback_steps` has to be a positive integer but is {callback_steps} of type''' f''' {type(__magic_name__ )}.''' ) # get prompt text embeddings __snake_case : Dict = self.tokenizer( __magic_name__ , padding="""max_length""" , max_length=self.tokenizer.model_max_length , return_tensors="""pt""" , ) __snake_case : Optional[Any] = text_inputs.input_ids if text_input_ids.shape[-1] > self.tokenizer.model_max_length: __snake_case : Tuple = self.tokenizer.batch_decode(text_input_ids[:, self.tokenizer.model_max_length :] ) logger.warning( """The following part of your input was truncated because CLIP can only handle sequences up to""" f''' {self.tokenizer.model_max_length} tokens: {removed_text}''' ) __snake_case : Any = text_input_ids[:, : self.tokenizer.model_max_length] __snake_case : int = self.text_encoder(text_input_ids.to(self.device ) )[0] # duplicate text embeddings for each generation per prompt, using mps friendly method __snake_case , __snake_case , __snake_case : Any = text_embeddings.shape __snake_case : List[Any] = text_embeddings.repeat(1 , __magic_name__ , 1 ) __snake_case : Dict = text_embeddings.view(bs_embed * num_images_per_prompt , __magic_name__ , -1 ) # here `guidance_scale` is defined analog to the guidance weight `w` of equation (2) # of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1` # corresponds to doing no classifier free guidance. __snake_case : Optional[int] = guidance_scale > 1.0 # get unconditional embeddings for classifier free guidance if do_classifier_free_guidance: __snake_case : List[str] if negative_prompt is None: __snake_case : Optional[Any] = [""""""] * batch_size elif type(__magic_name__ ) is not type(__magic_name__ ): raise TypeError( f'''`negative_prompt` should be the same type to `prompt`, but got {type(__magic_name__ )} !=''' f''' {type(__magic_name__ )}.''' ) elif isinstance(__magic_name__ , __magic_name__ ): __snake_case : Dict = [negative_prompt] elif batch_size != len(__magic_name__ ): raise ValueError( f'''`negative_prompt`: {negative_prompt} has batch size {len(__magic_name__ )}, but `prompt`:''' f''' {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches''' """ the batch size of `prompt`.""" ) else: __snake_case : int = negative_prompt __snake_case : List[str] = text_input_ids.shape[-1] __snake_case : Any = self.tokenizer( __magic_name__ , padding="""max_length""" , max_length=__magic_name__ , truncation=__magic_name__ , return_tensors="""pt""" , ) __snake_case : Dict = self.text_encoder(uncond_input.input_ids.to(self.device ) )[0] # duplicate unconditional embeddings for each generation per prompt, using mps friendly method __snake_case : Optional[int] = uncond_embeddings.shape[1] __snake_case : Union[str, Any] = uncond_embeddings.repeat(1 , __magic_name__ , 1 ) __snake_case : Tuple = uncond_embeddings.view(batch_size * num_images_per_prompt , __magic_name__ , -1 ) # For classifier free guidance, we need to do two forward passes. # Here we concatenate the unconditional and text embeddings into a single batch # to avoid doing two forward passes __snake_case : Dict = torch.cat([uncond_embeddings, text_embeddings] ) # get the initial random noise unless the user supplied it # Unlike in other pipelines, latents need to be generated in the target device # for 1-to-1 results reproducibility with the CompVis implementation. # However this currently doesn't work in `mps`. __snake_case : List[Any] = (batch_size * num_images_per_prompt, self.unet.config.in_channels, height // 8, width // 8) __snake_case : List[Any] = text_embeddings.dtype if latents is None: if self.device.type == "mps": # randn does not exist on mps __snake_case : Optional[int] = torch.randn(__magic_name__ , generator=__magic_name__ , device="""cpu""" , dtype=__magic_name__ ).to( self.device ) else: __snake_case : int = torch.randn(__magic_name__ , generator=__magic_name__ , device=self.device , dtype=__magic_name__ ) else: if latents.shape != latents_shape: raise ValueError(f'''Unexpected latents shape, got {latents.shape}, expected {latents_shape}''' ) __snake_case : List[str] = latents.to(self.device ) # set timesteps self.scheduler.set_timesteps(__magic_name__ ) # Some schedulers like PNDM have timesteps as arrays # It's more optimized to move all timesteps to correct device beforehand __snake_case : Optional[int] = self.scheduler.timesteps.to(self.device ) # scale the initial noise by the standard deviation required by the scheduler __snake_case : str = latents * self.scheduler.init_noise_sigma # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature # eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers. # eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502 # and should be between [0, 1] __snake_case : Tuple = """eta""" in set(inspect.signature(self.scheduler.step ).parameters.keys() ) __snake_case : List[str] = {} if accepts_eta: __snake_case : str = eta for i, t in enumerate(self.progress_bar(__magic_name__ ) ): # expand the latents if we are doing classifier free guidance __snake_case : Union[str, Any] = torch.cat([latents] * 2 ) if do_classifier_free_guidance else latents __snake_case : Dict = self.scheduler.scale_model_input(__magic_name__ , __magic_name__ ) # predict the noise residual __snake_case : Tuple = self.unet(__magic_name__ , __magic_name__ , encoder_hidden_states=__magic_name__ ).sample # perform guidance if do_classifier_free_guidance: __snake_case , __snake_case : str = noise_pred.chunk(2 ) __snake_case : Any = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) # compute the previous noisy sample x_t -> x_t-1 __snake_case : Optional[Any] = self.scheduler.step(__magic_name__ , __magic_name__ , __magic_name__ , **__magic_name__ ).prev_sample # call the callback, if provided if callback is not None and i % callback_steps == 0: callback(__magic_name__ , __magic_name__ , __magic_name__ ) __snake_case : int = 1 / 0.18215 * latents __snake_case : Optional[Any] = self.vae.decode(__magic_name__ ).sample __snake_case : Any = (image / 2 + 0.5).clamp(0 , 1 ) # we always cast to float32 as this does not cause significant overhead and is compatible with bfloat16 __snake_case : Any = image.cpu().permute(0 , 2 , 3 , 1 ).float().numpy() if output_type == "pil": __snake_case : Tuple = self.numpy_to_pil(__magic_name__ ) if not return_dict: return image return StableDiffusionPipelineOutput(images=__magic_name__ , nsfw_content_detected=__magic_name__ )
26
0
'''simple docstring''' from dataclasses import dataclass, field from typing import ClassVar, Dict from ..features import Features, Value from .base import TaskTemplate @dataclass(frozen=a__ ) class SCREAMING_SNAKE_CASE (a__ ): # `task` is not a ClassVar since we want it to be part of the `asdict` output for JSON serialization lowerCAmelCase = field(default='''summarization''' , metadata={'''include_in_asdict_even_if_is_default''': True} ) lowerCAmelCase = Features({'''text''': Value('''string''' )} ) lowerCAmelCase = Features({'''summary''': Value('''string''' )} ) lowerCAmelCase = "text" lowerCAmelCase = "summary" @property def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' return {self.text_column: "text", self.summary_column: "summary"}
8
'''simple docstring''' import os from huggingface_hub.constants import HUGGINGFACE_HUB_CACHE, hf_cache_home __UpperCamelCase = HUGGINGFACE_HUB_CACHE __UpperCamelCase = "config.json" __UpperCamelCase = "diffusion_pytorch_model.bin" __UpperCamelCase = "diffusion_flax_model.msgpack" __UpperCamelCase = "model.onnx" __UpperCamelCase = "diffusion_pytorch_model.safetensors" __UpperCamelCase = "weights.pb" __UpperCamelCase = "https://huggingface.co" __UpperCamelCase = default_cache_path __UpperCamelCase = "diffusers_modules" __UpperCamelCase = os.getenv("HF_MODULES_CACHE", os.path.join(hf_cache_home, "modules")) __UpperCamelCase = ["fp16", "non-ema"] __UpperCamelCase = ".self_attn"
26
0
import inspect from typing import Callable, List, Optional, Union import torch from transformers import CLIPImageProcessor, CLIPTextModel, CLIPTokenizer from diffusers import DiffusionPipeline from diffusers.models import AutoencoderKL, UNetaDConditionModel from diffusers.pipelines.stable_diffusion import StableDiffusionPipelineOutput from diffusers.pipelines.stable_diffusion.safety_checker import StableDiffusionSafetyChecker from diffusers.schedulers import DDIMScheduler, LMSDiscreteScheduler, PNDMScheduler from diffusers.utils import logging SCREAMING_SNAKE_CASE__ = logging.get_logger(__name__) # pylint: disable=invalid-name class __lowerCAmelCase ( UpperCAmelCase_ ): """simple docstring""" def __init__( self : Dict , _snake_case : AutoencoderKL , _snake_case : CLIPTextModel , _snake_case : CLIPTokenizer , _snake_case : UNetaDConditionModel , _snake_case : Union[DDIMScheduler, PNDMScheduler, LMSDiscreteScheduler] , _snake_case : StableDiffusionSafetyChecker , _snake_case : CLIPImageProcessor , ): """simple docstring""" super().__init__() self.register_modules( vae=_snake_case , text_encoder=_snake_case , tokenizer=_snake_case , unet=_snake_case , scheduler=_snake_case , safety_checker=_snake_case , feature_extractor=_snake_case , ) def _a ( self : List[Any] , _snake_case : Optional[Union[str, int]] = "auto" ): """simple docstring""" if slice_size == "auto": # half the attention head size is usually a good trade-off between # speed and memory A__ = self.unet.config.attention_head_dim // 2 self.unet.set_attention_slice(_snake_case ) def _a ( self : str ): """simple docstring""" self.enable_attention_slicing(_snake_case ) @torch.no_grad() def __call__( self : Optional[int] , _snake_case : Union[str, List[str]] , _snake_case : int = 5_12 , _snake_case : int = 5_12 , _snake_case : int = 50 , _snake_case : float = 7.5 , _snake_case : Optional[Union[str, List[str]]] = None , _snake_case : Optional[int] = 1 , _snake_case : float = 0.0 , _snake_case : Optional[torch.Generator] = None , _snake_case : Optional[torch.FloatTensor] = None , _snake_case : Optional[str] = "pil" , _snake_case : bool = True , _snake_case : Optional[Callable[[int, int, torch.FloatTensor], None]] = None , _snake_case : int = 1 , _snake_case : Optional[torch.FloatTensor] = None , **_snake_case : List[str] , ): """simple docstring""" if isinstance(_snake_case , _snake_case ): A__ = 1 elif isinstance(_snake_case , _snake_case ): A__ = len(_snake_case ) else: raise ValueError(F'''`prompt` has to be of type `str` or `list` but is {type(_snake_case )}''' ) if height % 8 != 0 or width % 8 != 0: raise ValueError(F'''`height` and `width` have to be divisible by 8 but are {height} and {width}.''' ) if (callback_steps is None) or ( callback_steps is not None and (not isinstance(_snake_case , _snake_case ) or callback_steps <= 0) ): raise ValueError( F'''`callback_steps` has to be a positive integer but is {callback_steps} of type''' F''' {type(_snake_case )}.''' ) # get prompt text embeddings A__ = self.tokenizer( _snake_case , padding='max_length' , max_length=self.tokenizer.model_max_length , return_tensors='pt' , ) A__ = text_inputs.input_ids if text_input_ids.shape[-1] > self.tokenizer.model_max_length: A__ = self.tokenizer.batch_decode(text_input_ids[:, self.tokenizer.model_max_length :] ) logger.warning( 'The following part of your input was truncated because CLIP can only handle sequences up to' F''' {self.tokenizer.model_max_length} tokens: {removed_text}''' ) A__ = text_input_ids[:, : self.tokenizer.model_max_length] if text_embeddings is None: A__ = self.text_encoder(text_input_ids.to(self.device ) )[0] # duplicate text embeddings for each generation per prompt, using mps friendly method A__ , A__ , A__ = text_embeddings.shape A__ = text_embeddings.repeat(1 , _snake_case , 1 ) A__ = text_embeddings.view(bs_embed * num_images_per_prompt , _snake_case , -1 ) # here `guidance_scale` is defined analog to the guidance weight `w` of equation (2) # of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1` # corresponds to doing no classifier free guidance. A__ = guidance_scale > 1.0 # get unconditional embeddings for classifier free guidance if do_classifier_free_guidance: A__ = 42 if negative_prompt is None: A__ = [''] elif type(_snake_case ) is not type(_snake_case ): raise TypeError( F'''`negative_prompt` should be the same type to `prompt`, but got {type(_snake_case )} !=''' F''' {type(_snake_case )}.''' ) elif isinstance(_snake_case , _snake_case ): A__ = [negative_prompt] elif batch_size != len(_snake_case ): raise ValueError( F'''`negative_prompt`: {negative_prompt} has batch size {len(_snake_case )}, but `prompt`:''' F''' {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches''' ' the batch size of `prompt`.' ) else: A__ = negative_prompt A__ = text_input_ids.shape[-1] A__ = self.tokenizer( _snake_case , padding='max_length' , max_length=_snake_case , truncation=_snake_case , return_tensors='pt' , ) A__ = self.text_encoder(uncond_input.input_ids.to(self.device ) )[0] # duplicate unconditional embeddings for each generation per prompt, using mps friendly method A__ = uncond_embeddings.shape[1] A__ = uncond_embeddings.repeat(_snake_case , _snake_case , 1 ) A__ = uncond_embeddings.view(batch_size * num_images_per_prompt , _snake_case , -1 ) # For classifier free guidance, we need to do two forward passes. # Here we concatenate the unconditional and text embeddings into a single batch # to avoid doing two forward passes A__ = torch.cat([uncond_embeddings, text_embeddings] ) # get the initial random noise unless the user supplied it # Unlike in other pipelines, latents need to be generated in the target device # for 1-to-1 results reproducibility with the CompVis implementation. # However this currently doesn't work in `mps`. A__ = (batch_size * num_images_per_prompt, self.unet.config.in_channels, height // 8, width // 8) A__ = (batch_size * num_images_per_prompt, self.unet.config.in_channels, 64, 64) A__ = text_embeddings.dtype if latents is None: if self.device.type == "mps": # randn does not exist on mps A__ = torch.randn( _snake_case , generator=_snake_case , device='cpu' , dtype=_snake_case ).to(self.device ) A__ = torch.randn(_snake_case , generator=_snake_case , device='cpu' , dtype=_snake_case ).to( self.device ) else: A__ = torch.randn( _snake_case , generator=_snake_case , device=self.device , dtype=_snake_case ) A__ = torch.randn(_snake_case , generator=_snake_case , device=self.device , dtype=_snake_case ) else: if latents_reference.shape != latents_shape: raise ValueError(F'''Unexpected latents shape, got {latents.shape}, expected {latents_shape}''' ) A__ = latents_reference.to(self.device ) A__ = latents.to(self.device ) # This is the key part of the pipeline where we # try to ensure that the generated images w/ the same seed # but different sizes actually result in similar images A__ = (latents_shape[3] - latents_shape_reference[3]) // 2 A__ = (latents_shape[2] - latents_shape_reference[2]) // 2 A__ = latents_shape_reference[3] if dx >= 0 else latents_shape_reference[3] + 2 * dx A__ = latents_shape_reference[2] if dy >= 0 else latents_shape_reference[2] + 2 * dy A__ = 0 if dx < 0 else dx A__ = 0 if dy < 0 else dy A__ = max(-dx , 0 ) A__ = max(-dy , 0 ) # import pdb # pdb.set_trace() A__ = latents_reference[:, :, dy : dy + h, dx : dx + w] # set timesteps self.scheduler.set_timesteps(_snake_case ) # Some schedulers like PNDM have timesteps as arrays # It's more optimized to move all timesteps to correct device beforehand A__ = self.scheduler.timesteps.to(self.device ) # scale the initial noise by the standard deviation required by the scheduler A__ = latents * self.scheduler.init_noise_sigma # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature # eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers. # eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502 # and should be between [0, 1] A__ = 'eta' in set(inspect.signature(self.scheduler.step ).parameters.keys() ) A__ = {} if accepts_eta: A__ = eta for i, t in enumerate(self.progress_bar(_snake_case ) ): # expand the latents if we are doing classifier free guidance A__ = torch.cat([latents] * 2 ) if do_classifier_free_guidance else latents A__ = self.scheduler.scale_model_input(_snake_case , _snake_case ) # predict the noise residual A__ = self.unet(_snake_case , _snake_case , encoder_hidden_states=_snake_case ).sample # perform guidance if do_classifier_free_guidance: A__ , A__ = noise_pred.chunk(2 ) A__ = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) # compute the previous noisy sample x_t -> x_t-1 A__ = self.scheduler.step(_snake_case , _snake_case , _snake_case , **_snake_case ).prev_sample # call the callback, if provided if callback is not None and i % callback_steps == 0: callback(_snake_case , _snake_case , _snake_case ) A__ = 1 / 0.1_8215 * latents A__ = self.vae.decode(_snake_case ).sample A__ = (image / 2 + 0.5).clamp(0 , 1 ) # we always cast to float32 as this does not cause significant overhead and is compatible with bfloat16 A__ = image.cpu().permute(0 , 2 , 3 , 1 ).float().numpy() if self.safety_checker is not None: A__ = self.feature_extractor(self.numpy_to_pil(_snake_case ) , return_tensors='pt' ).to( self.device ) A__ , A__ = self.safety_checker( images=_snake_case , clip_input=safety_checker_input.pixel_values.to(text_embeddings.dtype ) ) else: A__ = None if output_type == "pil": A__ = self.numpy_to_pil(_snake_case ) if not return_dict: return (image, has_nsfw_concept) return StableDiffusionPipelineOutput(images=_snake_case , nsfw_content_detected=_snake_case )
9
'''simple docstring''' import argparse import json import re from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ( MobileNetVaConfig, MobileNetVaForImageClassification, MobileNetVaImageProcessor, load_tf_weights_in_mobilenet_va, ) from transformers.utils import logging logging.set_verbosity_info() __UpperCamelCase = logging.get_logger(__name__) def _a ( _lowerCamelCase ) -> Any: """simple docstring""" __snake_case : Union[str, Any] = MobileNetVaConfig(layer_norm_eps=0.0_01 ) if "_quant" in model_name: raise ValueError("""Quantized models are not supported.""" ) __snake_case : List[Any] = re.match(R"""^mobilenet_v1_([^_]*)_([^_]*)$""" , _lowerCamelCase ) if matches: __snake_case : Optional[Any] = float(matches[1] ) __snake_case : Union[str, Any] = int(matches[2] ) # The TensorFlow version of MobileNetV1 predicts 1001 classes instead of # the usual 1000. The first class (index 0) is "background". __snake_case : Tuple = 1001 __snake_case : Any = """imagenet-1k-id2label.json""" __snake_case : Optional[Any] = """huggingface/label-files""" __snake_case : List[Any] = json.load(open(hf_hub_download(_lowerCamelCase , _lowerCamelCase , repo_type="""dataset""" ) , """r""" ) ) __snake_case : Dict = {int(_lowerCamelCase ) + 1: v for k, v in idalabel.items()} __snake_case : List[str] = """background""" __snake_case : List[str] = idalabel __snake_case : List[Any] = {v: k for k, v in idalabel.items()} return config def _a ( ) -> Optional[Any]: """simple docstring""" __snake_case : Optional[int] = """http://images.cocodataset.org/val2017/000000039769.jpg""" __snake_case : List[Any] = Image.open(requests.get(_lowerCamelCase , stream=_lowerCamelCase ).raw ) return im @torch.no_grad() def _a ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase=False ) -> Optional[Any]: """simple docstring""" __snake_case : Optional[int] = get_mobilenet_va_config(_lowerCamelCase ) # Load 🤗 model __snake_case : Optional[Any] = MobileNetVaForImageClassification(_lowerCamelCase ).eval() # Load weights from TensorFlow checkpoint load_tf_weights_in_mobilenet_va(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) # Check outputs on an image, prepared by MobileNetV1ImageProcessor __snake_case : Optional[int] = MobileNetVaImageProcessor( crop_size={"""width""": config.image_size, """height""": config.image_size} , size={"""shortest_edge""": config.image_size + 32} , ) __snake_case : Tuple = image_processor(images=prepare_img() , return_tensors="""pt""" ) __snake_case : Optional[Any] = model(**_lowerCamelCase ) __snake_case : List[Any] = outputs.logits assert logits.shape == (1, 1001) if model_name == "mobilenet_v1_1.0_224": __snake_case : str = torch.tensor([-4.17_39, -1.12_33, 3.12_05] ) elif model_name == "mobilenet_v1_0.75_192": __snake_case : Tuple = torch.tensor([-3.94_40, -2.31_41, -0.33_33] ) else: __snake_case : List[Any] = None if expected_logits is not None: assert torch.allclose(logits[0, :3] , _lowerCamelCase , atol=1E-4 ) Path(_lowerCamelCase ).mkdir(exist_ok=_lowerCamelCase ) print(F'''Saving model {model_name} to {pytorch_dump_folder_path}''' ) model.save_pretrained(_lowerCamelCase ) print(F'''Saving image processor to {pytorch_dump_folder_path}''' ) image_processor.save_pretrained(_lowerCamelCase ) if push_to_hub: print("""Pushing to the hub...""" ) __snake_case : Optional[Any] = """google/""" + model_name image_processor.push_to_hub(_lowerCamelCase ) model.push_to_hub(_lowerCamelCase ) if __name__ == "__main__": __UpperCamelCase = argparse.ArgumentParser() # Required parameters parser.add_argument( "--model_name", default="mobilenet_v1_1.0_224", type=str, help="Name of the MobileNetV1 model you'd like to convert. Should in the form 'mobilenet_v1_<depth>_<size>'.", ) parser.add_argument( "--checkpoint_path", required=True, type=str, help="Path to the original TensorFlow checkpoint (.ckpt file)." ) parser.add_argument( "--pytorch_dump_folder_path", required=True, type=str, help="Path to the output PyTorch model directory." ) parser.add_argument( "--push_to_hub", action="store_true", help="Whether or not to push the converted model to the 🤗 hub." ) __UpperCamelCase = parser.parse_args() convert_movilevit_checkpoint( args.model_name, args.checkpoint_path, args.pytorch_dump_folder_path, args.push_to_hub )
26
0
import argparse import tensorflow as tf import torch from transformers import BertConfig, BertForMaskedLM from transformers.models.bert.modeling_bert import ( BertIntermediate, BertLayer, BertOutput, BertPooler, BertSelfAttention, BertSelfOutput, ) from transformers.utils import logging logging.set_verbosity_info() def _snake_case ( __snake_case , __snake_case , __snake_case ): def get_masked_lm_array(__snake_case ): _UpperCamelCase = f"""masked_lm/{name}/.ATTRIBUTES/VARIABLE_VALUE""" _UpperCamelCase = tf.train.load_variable(__snake_case , __snake_case ) if "kernel" in name: _UpperCamelCase = array.transpose() return torch.from_numpy(__snake_case ) def get_encoder_array(__snake_case ): _UpperCamelCase = f"""encoder/{name}/.ATTRIBUTES/VARIABLE_VALUE""" _UpperCamelCase = tf.train.load_variable(__snake_case , __snake_case ) if "kernel" in name: _UpperCamelCase = array.transpose() return torch.from_numpy(__snake_case ) def get_encoder_layer_array(__snake_case , __snake_case ): _UpperCamelCase = f"""encoder/_transformer_layers/{layer_index}/{name}/.ATTRIBUTES/VARIABLE_VALUE""" _UpperCamelCase = tf.train.load_variable(__snake_case , __snake_case ) if "kernel" in name: _UpperCamelCase = array.transpose() return torch.from_numpy(__snake_case ) def get_encoder_attention_layer_array(__snake_case , __snake_case , __snake_case ): _UpperCamelCase = f"""encoder/_transformer_layers/{layer_index}/_attention_layer/{name}/.ATTRIBUTES/VARIABLE_VALUE""" _UpperCamelCase = tf.train.load_variable(__snake_case , __snake_case ) _UpperCamelCase = array.reshape(__snake_case ) if "kernel" in name: _UpperCamelCase = array.transpose() return torch.from_numpy(__snake_case ) print(f"""Loading model based on config from {config_path}...""" ) _UpperCamelCase = BertConfig.from_json_file(__snake_case ) _UpperCamelCase = BertForMaskedLM(__snake_case ) # Layers for layer_index in range(0 , config.num_hidden_layers ): _UpperCamelCase = model.bert.encoder.layer[layer_index] # Self-attention _UpperCamelCase = layer.attention.self _UpperCamelCase = get_encoder_attention_layer_array( __snake_case , '''_query_dense/kernel''' , self_attn.query.weight.data.shape ) _UpperCamelCase = get_encoder_attention_layer_array( __snake_case , '''_query_dense/bias''' , self_attn.query.bias.data.shape ) _UpperCamelCase = get_encoder_attention_layer_array( __snake_case , '''_key_dense/kernel''' , self_attn.key.weight.data.shape ) _UpperCamelCase = get_encoder_attention_layer_array( __snake_case , '''_key_dense/bias''' , self_attn.key.bias.data.shape ) _UpperCamelCase = get_encoder_attention_layer_array( __snake_case , '''_value_dense/kernel''' , self_attn.value.weight.data.shape ) _UpperCamelCase = get_encoder_attention_layer_array( __snake_case , '''_value_dense/bias''' , self_attn.value.bias.data.shape ) # Self-attention Output _UpperCamelCase = layer.attention.output _UpperCamelCase = get_encoder_attention_layer_array( __snake_case , '''_output_dense/kernel''' , self_output.dense.weight.data.shape ) _UpperCamelCase = get_encoder_attention_layer_array( __snake_case , '''_output_dense/bias''' , self_output.dense.bias.data.shape ) _UpperCamelCase = get_encoder_layer_array(__snake_case , '''_attention_layer_norm/gamma''' ) _UpperCamelCase = get_encoder_layer_array(__snake_case , '''_attention_layer_norm/beta''' ) # Intermediate _UpperCamelCase = layer.intermediate _UpperCamelCase = get_encoder_layer_array(__snake_case , '''_intermediate_dense/kernel''' ) _UpperCamelCase = get_encoder_layer_array(__snake_case , '''_intermediate_dense/bias''' ) # Output _UpperCamelCase = layer.output _UpperCamelCase = get_encoder_layer_array(__snake_case , '''_output_dense/kernel''' ) _UpperCamelCase = get_encoder_layer_array(__snake_case , '''_output_dense/bias''' ) _UpperCamelCase = get_encoder_layer_array(__snake_case , '''_output_layer_norm/gamma''' ) _UpperCamelCase = get_encoder_layer_array(__snake_case , '''_output_layer_norm/beta''' ) # Embeddings _UpperCamelCase = get_encoder_array('''_position_embedding_layer/embeddings''' ) _UpperCamelCase = get_encoder_array('''_type_embedding_layer/embeddings''' ) _UpperCamelCase = get_encoder_array('''_embedding_norm_layer/gamma''' ) _UpperCamelCase = get_encoder_array('''_embedding_norm_layer/beta''' ) # LM Head _UpperCamelCase = model.cls.predictions.transform _UpperCamelCase = get_masked_lm_array('''dense/kernel''' ) _UpperCamelCase = get_masked_lm_array('''dense/bias''' ) _UpperCamelCase = get_masked_lm_array('''layer_norm/gamma''' ) _UpperCamelCase = get_masked_lm_array('''layer_norm/beta''' ) _UpperCamelCase = get_masked_lm_array('''embedding_table''' ) # Pooling _UpperCamelCase = BertPooler(config=__snake_case ) _UpperCamelCase = get_encoder_array('''_pooler_layer/kernel''' ) _UpperCamelCase = get_encoder_array('''_pooler_layer/bias''' ) # Export final model model.save_pretrained(__snake_case ) # Integration test - should load without any errors ;) _UpperCamelCase = BertForMaskedLM.from_pretrained(__snake_case ) print(new_model.eval() ) print('''Model conversion was done sucessfully!''' ) if __name__ == "__main__": _lowerCAmelCase = argparse.ArgumentParser() parser.add_argument( "--tf_checkpoint_path", type=str, required=True, help="Path to the TensorFlow Token Dropping checkpoint path." ) parser.add_argument( "--bert_config_file", type=str, required=True, help="The config json file corresponding to the BERT model. This specifies the model architecture.", ) parser.add_argument( "--pytorch_dump_path", type=str, required=True, help="Path to the output PyTorch model.", ) _lowerCAmelCase = parser.parse_args() convert_checkpoint_to_pytorch(args.tf_checkpoint_path, args.bert_config_file, args.pytorch_dump_path)
10
'''simple docstring''' from sklearn.metrics import recall_score import datasets __UpperCamelCase = "\nRecall is the fraction of the positive examples that were correctly labeled by the model as positive. It can be computed with the equation:\nRecall = TP / (TP + FN)\nWhere TP is the true positives and FN is the false negatives.\n" __UpperCamelCase = "\nArgs:\n- **predictions** (`list` of `int`): The predicted labels.\n- **references** (`list` of `int`): The ground truth labels.\n- **labels** (`list` of `int`): The set of labels to include when `average` is not set to `binary`, and their order when average is `None`. Labels present in the data can be excluded in this input, for example to calculate a multiclass average ignoring a majority negative class, while labels not present in the data will result in 0 components in a macro average. For multilabel targets, labels are column indices. By default, all labels in y_true and y_pred are used in sorted order. Defaults to None.\n- **pos_label** (`int`): The class label to use as the 'positive class' when calculating the recall. Defaults to `1`.\n- **average** (`string`): This parameter is required for multiclass/multilabel targets. If None, the scores for each class are returned. Otherwise, this determines the type of averaging performed on the data. Defaults to `'binary'`.\n - `'binary'`: Only report results for the class specified by `pos_label`. This is applicable only if the target labels and predictions are binary.\n - `'micro'`: Calculate metrics globally by counting the total true positives, false negatives, and false positives.\n - `'macro'`: Calculate metrics for each label, and find their unweighted mean. This does not take label imbalance into account.\n - `'weighted'`: Calculate metrics for each label, and find their average weighted by support (the number of true instances for each label). This alters `'macro'` to account for label imbalance. Note that it can result in an F-score that is not between precision and recall.\n - `'samples'`: Calculate metrics for each instance, and find their average (only meaningful for multilabel classification).\n- **sample_weight** (`list` of `float`): Sample weights Defaults to `None`.\n- **zero_division** (): Sets the value to return when there is a zero division. Defaults to .\n - `'warn'`: If there is a zero division, the return value is `0`, but warnings are also raised.\n - `0`: If there is a zero division, the return value is `0`.\n - `1`: If there is a zero division, the return value is `1`.\n\nReturns:\n- **recall** (`float`, or `array` of `float`): Either the general recall score, or the recall scores for individual classes, depending on the values input to `labels` and `average`. Minimum possible value is 0. Maximum possible value is 1. A higher recall means that more of the positive examples have been labeled correctly. Therefore, a higher recall is generally considered better.\n\nExamples:\n\n Example 1-A simple example with some errors\n >>> recall_metric = datasets.load_metric('recall')\n >>> results = recall_metric.compute(references=[0, 0, 1, 1, 1], predictions=[0, 1, 0, 1, 1])\n >>> print(results)\n {'recall': 0.6666666666666666}\n\n Example 2-The same example as Example 1, but with `pos_label=0` instead of the default `pos_label=1`.\n >>> recall_metric = datasets.load_metric('recall')\n >>> results = recall_metric.compute(references=[0, 0, 1, 1, 1], predictions=[0, 1, 0, 1, 1], pos_label=0)\n >>> print(results)\n {'recall': 0.5}\n\n Example 3-The same example as Example 1, but with `sample_weight` included.\n >>> recall_metric = datasets.load_metric('recall')\n >>> sample_weight = [0.9, 0.2, 0.9, 0.3, 0.8]\n >>> results = recall_metric.compute(references=[0, 0, 1, 1, 1], predictions=[0, 1, 0, 1, 1], sample_weight=sample_weight)\n >>> print(results)\n {'recall': 0.55}\n\n Example 4-A multiclass example, using different averages.\n >>> recall_metric = datasets.load_metric('recall')\n >>> predictions = [0, 2, 1, 0, 0, 1]\n >>> references = [0, 1, 2, 0, 1, 2]\n >>> results = recall_metric.compute(predictions=predictions, references=references, average='macro')\n >>> print(results)\n {'recall': 0.3333333333333333}\n >>> results = recall_metric.compute(predictions=predictions, references=references, average='micro')\n >>> print(results)\n {'recall': 0.3333333333333333}\n >>> results = recall_metric.compute(predictions=predictions, references=references, average='weighted')\n >>> print(results)\n {'recall': 0.3333333333333333}\n >>> results = recall_metric.compute(predictions=predictions, references=references, average=None)\n >>> print(results)\n {'recall': array([1., 0., 0.])}\n" __UpperCamelCase = "\n@article{scikit-learn, title={Scikit-learn: Machine Learning in {P}ython}, author={Pedregosa, F. and Varoquaux, G. and Gramfort, A. and Michel, V. and Thirion, B. and Grisel, O. and Blondel, M. and Prettenhofer, P. and Weiss, R. and Dubourg, V. and Vanderplas, J. and Passos, A. and Cournapeau, D. and Brucher, M. and Perrot, M. and Duchesnay, E.}, journal={Journal of Machine Learning Research}, volume={12}, pages={2825--2830}, year={2011}\n" @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class _A ( datasets.Metric ): def lowercase__ ( self : Optional[int] ) -> Any: """simple docstring""" return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { """predictions""": datasets.Sequence(datasets.Value("""int32""" ) ), """references""": datasets.Sequence(datasets.Value("""int32""" ) ), } if self.config_name == """multilabel""" else { """predictions""": datasets.Value("""int32""" ), """references""": datasets.Value("""int32""" ), } ) , reference_urls=["""https://scikit-learn.org/stable/modules/generated/sklearn.metrics.recall_score.html"""] , ) def lowercase__ ( self : Tuple , __magic_name__ : int , __magic_name__ : Union[str, Any] , __magic_name__ : Any=None , __magic_name__ : Optional[Any]=1 , __magic_name__ : List[str]="binary" , __magic_name__ : Tuple=None , __magic_name__ : Dict="warn" , ) -> Any: """simple docstring""" __snake_case : Tuple = recall_score( __magic_name__ , __magic_name__ , labels=__magic_name__ , pos_label=__magic_name__ , average=__magic_name__ , sample_weight=__magic_name__ , zero_division=__magic_name__ , ) return {"recall": float(__magic_name__ ) if score.size == 1 else score}
26
0
'''simple docstring''' import random import unittest import torch from diffusers import IFInpaintingSuperResolutionPipeline from diffusers.utils import floats_tensor from diffusers.utils.import_utils import is_xformers_available from diffusers.utils.testing_utils import skip_mps, torch_device from ..pipeline_params import ( TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS, TEXT_GUIDED_IMAGE_INPAINTING_PARAMS, ) from ..test_pipelines_common import PipelineTesterMixin from . import IFPipelineTesterMixin @skip_mps class __A ( A , A , unittest.TestCase ): '''simple docstring''' __lowerCamelCase : List[Any] = IFInpaintingSuperResolutionPipeline __lowerCamelCase : Tuple = TEXT_GUIDED_IMAGE_INPAINTING_PARAMS - {'width', 'height'} __lowerCamelCase : Optional[Any] = TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS.union({'original_image'} ) __lowerCamelCase : str = PipelineTesterMixin.required_optional_params - {'latents'} def a__ (self ) -> List[Any]: """simple docstring""" return self._get_superresolution_dummy_components() def a__ (self , A , A=0 ) -> List[Any]: """simple docstring""" if str(A ).startswith('''mps''' ): _a = torch.manual_seed(A ) else: _a = torch.Generator(device=A ).manual_seed(A ) _a = floats_tensor((1, 3, 16, 16) , rng=random.Random(A ) ).to(A ) _a = floats_tensor((1, 3, 32, 32) , rng=random.Random(A ) ).to(A ) _a = floats_tensor((1, 3, 32, 32) , rng=random.Random(A ) ).to(A ) _a = { '''prompt''': '''A painting of a squirrel eating a burger''', '''image''': image, '''original_image''': original_image, '''mask_image''': mask_image, '''generator''': generator, '''num_inference_steps''': 2, '''output_type''': '''numpy''', } return inputs @unittest.skipIf( torch_device != '''cuda''' or not is_xformers_available() , reason='''XFormers attention is only available with CUDA and `xformers` installed''' , ) def a__ (self ) -> Optional[int]: """simple docstring""" self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=1E-3 ) def a__ (self ) -> str: """simple docstring""" self._test_save_load_optional_components() @unittest.skipIf(torch_device != '''cuda''' , reason='''float16 requires CUDA''' ) def a__ (self ) -> str: """simple docstring""" super().test_save_load_floataa(expected_max_diff=1E-1 ) def a__ (self ) -> Tuple: """simple docstring""" self._test_attention_slicing_forward_pass(expected_max_diff=1E-2 ) def a__ (self ) -> Union[str, Any]: """simple docstring""" self._test_save_load_local() def a__ (self ) -> Any: """simple docstring""" self._test_inference_batch_single_identical( expected_max_diff=1E-2 , )
11
'''simple docstring''' from sklearn.metrics import matthews_corrcoef import datasets __UpperCamelCase = "\nCompute the Matthews correlation coefficient (MCC)\n\nThe Matthews correlation coefficient is used in machine learning as a\nmeasure of the quality of binary and multiclass classifications. It takes\ninto account true and false positives and negatives and is generally\nregarded as a balanced measure which can be used even if the classes are of\nvery different sizes. The MCC is in essence a correlation coefficient value\nbetween -1 and +1. A coefficient of +1 represents a perfect prediction, 0\nan average random prediction and -1 an inverse prediction. The statistic\nis also known as the phi coefficient. [source: Wikipedia]\n" __UpperCamelCase = "\nArgs:\n predictions (list of int): Predicted labels, as returned by a model.\n references (list of int): Ground truth labels.\n sample_weight (list of int, float, or bool): Sample weights. Defaults to `None`.\nReturns:\n matthews_correlation (dict containing float): Matthews correlation.\nExamples:\n Example 1, a basic example with only predictions and references as inputs:\n >>> matthews_metric = datasets.load_metric(\"matthews_correlation\")\n >>> results = matthews_metric.compute(references=[1, 3, 2, 0, 3, 2],\n ... predictions=[1, 2, 2, 0, 3, 3])\n >>> print(round(results['matthews_correlation'], 2))\n 0.54\n\n Example 2, the same example as above, but also including sample weights:\n >>> matthews_metric = datasets.load_metric(\"matthews_correlation\")\n >>> results = matthews_metric.compute(references=[1, 3, 2, 0, 3, 2],\n ... predictions=[1, 2, 2, 0, 3, 3],\n ... sample_weight=[0.5, 3, 1, 1, 1, 2])\n >>> print(round(results['matthews_correlation'], 2))\n 0.1\n\n Example 3, the same example as above, but with sample weights that cause a negative correlation:\n >>> matthews_metric = datasets.load_metric(\"matthews_correlation\")\n >>> results = matthews_metric.compute(references=[1, 3, 2, 0, 3, 2],\n ... predictions=[1, 2, 2, 0, 3, 3],\n ... sample_weight=[0.5, 1, 0, 0, 0, 1])\n >>> print(round(results['matthews_correlation'], 2))\n -0.25\n" __UpperCamelCase = "\\n@article{scikit-learn,\n title={Scikit-learn: Machine Learning in {P}ython},\n author={Pedregosa, F. and Varoquaux, G. and Gramfort, A. and Michel, V.\n and Thirion, B. and Grisel, O. and Blondel, M. and Prettenhofer, P.\n and Weiss, R. and Dubourg, V. and Vanderplas, J. and Passos, A. and\n Cournapeau, D. and Brucher, M. and Perrot, M. and Duchesnay, E.},\n journal={Journal of Machine Learning Research},\n volume={12},\n pages={2825--2830},\n year={2011}\n}\n" @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class _A ( datasets.Metric ): def lowercase__ ( self : Tuple ) -> Dict: """simple docstring""" return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { """predictions""": datasets.Value("""int32""" ), """references""": datasets.Value("""int32""" ), } ) , reference_urls=[ """https://scikit-learn.org/stable/modules/generated/sklearn.metrics.matthews_corrcoef.html""" ] , ) def lowercase__ ( self : List[Any] , __magic_name__ : Tuple , __magic_name__ : List[Any] , __magic_name__ : Union[str, Any]=None ) -> Optional[int]: """simple docstring""" return { "matthews_correlation": float(matthews_corrcoef(__magic_name__ , __magic_name__ , sample_weight=__magic_name__ ) ), }
26
0
from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging lowerCamelCase__ : List[Any] = logging.get_logger(__name__) lowerCamelCase__ : Union[str, Any] = { """YituTech/conv-bert-base""": """https://huggingface.co/YituTech/conv-bert-base/resolve/main/config.json""", """YituTech/conv-bert-medium-small""": ( """https://huggingface.co/YituTech/conv-bert-medium-small/resolve/main/config.json""" ), """YituTech/conv-bert-small""": """https://huggingface.co/YituTech/conv-bert-small/resolve/main/config.json""", # See all ConvBERT models at https://huggingface.co/models?filter=convbert } class _snake_case ( UpperCAmelCase_ ): __lowerCAmelCase : Union[str, Any] = 'convbert' def __init__( self , SCREAMING_SNAKE_CASE_=3_05_22 , SCREAMING_SNAKE_CASE_=7_68 , SCREAMING_SNAKE_CASE_=12 , SCREAMING_SNAKE_CASE_=12 , SCREAMING_SNAKE_CASE_=30_72 , SCREAMING_SNAKE_CASE_="gelu" , SCREAMING_SNAKE_CASE_=0.1 , SCREAMING_SNAKE_CASE_=0.1 , SCREAMING_SNAKE_CASE_=5_12 , SCREAMING_SNAKE_CASE_=2 , SCREAMING_SNAKE_CASE_=0.0_2 , SCREAMING_SNAKE_CASE_=1E-12 , SCREAMING_SNAKE_CASE_=1 , SCREAMING_SNAKE_CASE_=0 , SCREAMING_SNAKE_CASE_=2 , SCREAMING_SNAKE_CASE_=7_68 , SCREAMING_SNAKE_CASE_=2 , SCREAMING_SNAKE_CASE_=9 , SCREAMING_SNAKE_CASE_=1 , SCREAMING_SNAKE_CASE_=None , **SCREAMING_SNAKE_CASE_ , ): '''simple docstring''' super().__init__( pad_token_id=SCREAMING_SNAKE_CASE_ , bos_token_id=SCREAMING_SNAKE_CASE_ , eos_token_id=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ , ) lowercase__ : Dict = vocab_size lowercase__ : List[Any] = hidden_size lowercase__ : Optional[Any] = num_hidden_layers lowercase__ : Union[str, Any] = num_attention_heads lowercase__ : List[str] = intermediate_size lowercase__ : Optional[int] = hidden_act lowercase__ : Tuple = hidden_dropout_prob lowercase__ : List[str] = attention_probs_dropout_prob lowercase__ : Tuple = max_position_embeddings lowercase__ : Dict = type_vocab_size lowercase__ : Union[str, Any] = initializer_range lowercase__ : Dict = layer_norm_eps lowercase__ : Tuple = embedding_size lowercase__ : List[str] = head_ratio lowercase__ : Dict = conv_kernel_size lowercase__ : Dict = num_groups lowercase__ : int = classifier_dropout class _snake_case ( UpperCAmelCase_ ): @property def lowercase__ ( self): '''simple docstring''' if self.task == "multiple-choice": lowercase__ : Union[str, Any] = {0: """batch""", 1: """choice""", 2: """sequence"""} else: lowercase__ : str = {0: """batch""", 1: """sequence"""} return OrderedDict( [ ("""input_ids""", dynamic_axis), ("""attention_mask""", dynamic_axis), ("""token_type_ids""", dynamic_axis), ])
12
'''simple docstring''' import json import os from pathlib import Path import pytest from datasets.download.download_config import DownloadConfig from datasets.download.download_manager import DownloadManager from datasets.utils.file_utils import hash_url_to_filename __UpperCamelCase = "http://www.mocksite.com/file1.txt" __UpperCamelCase = "\"text\": [\"foo\", \"foo\"]" __UpperCamelCase = "6d8ce9aa78a471c7477201efbeabd3bb01ac2e7d100a6dc024ba1608361f90a8" class _A : lowercase__: str = 200 lowercase__: List[str] = {'''Content-Length''': '''100'''} lowercase__: Union[str, Any] = {} def lowercase__ ( self : Any , **__magic_name__ : List[Any] ) -> Dict: """simple docstring""" return [bytes(__magic_name__ , """utf-8""" )] def _a ( *_lowerCamelCase , **_lowerCamelCase ) -> List[str]: """simple docstring""" return MockResponse() @pytest.mark.parametrize("""urls_type""" , [str, list, dict] ) def _a ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> List[str]: """simple docstring""" import requests monkeypatch.setattr(_lowerCamelCase , """request""" , _lowerCamelCase ) __snake_case : Union[str, Any] = URL if issubclass(_lowerCamelCase , _lowerCamelCase ): __snake_case : str = url elif issubclass(_lowerCamelCase , _lowerCamelCase ): __snake_case : Dict = [url] elif issubclass(_lowerCamelCase , _lowerCamelCase ): __snake_case : Union[str, Any] = {"""train""": url} __snake_case : Dict = """dummy""" __snake_case : List[str] = """downloads""" __snake_case : List[Any] = tmp_path __snake_case : List[Any] = DownloadConfig( cache_dir=os.path.join(_lowerCamelCase , _lowerCamelCase ) , use_etag=_lowerCamelCase , ) __snake_case : List[str] = DownloadManager(dataset_name=_lowerCamelCase , download_config=_lowerCamelCase ) __snake_case : int = dl_manager.download(_lowerCamelCase ) __snake_case : Tuple = urls for downloaded_paths in [downloaded_paths]: if isinstance(_lowerCamelCase , _lowerCamelCase ): __snake_case : Any = [downloaded_paths] __snake_case : List[Any] = [urls] elif isinstance(_lowerCamelCase , _lowerCamelCase ): assert "train" in downloaded_paths.keys() __snake_case : Tuple = downloaded_paths.values() __snake_case : Optional[int] = urls.values() assert downloaded_paths for downloaded_path, input_url in zip(_lowerCamelCase , _lowerCamelCase ): assert downloaded_path == dl_manager.downloaded_paths[input_url] __snake_case : List[str] = Path(_lowerCamelCase ) __snake_case : Any = downloaded_path.parts assert parts[-1] == HASH assert parts[-2] == cache_subdir assert downloaded_path.exists() __snake_case : Union[str, Any] = downloaded_path.read_text() assert content == CONTENT __snake_case : List[str] = downloaded_path.with_suffix(""".json""" ) assert metadata_downloaded_path.exists() __snake_case : Union[str, Any] = json.loads(metadata_downloaded_path.read_text() ) assert metadata_content == {"url": URL, "etag": None} @pytest.mark.parametrize("""paths_type""" , [str, list, dict] ) def _a ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> List[Any]: """simple docstring""" __snake_case : Any = str(_lowerCamelCase ) if issubclass(_lowerCamelCase , _lowerCamelCase ): __snake_case : Optional[int] = filename elif issubclass(_lowerCamelCase , _lowerCamelCase ): __snake_case : Tuple = [filename] elif issubclass(_lowerCamelCase , _lowerCamelCase ): __snake_case : Dict = {"""train""": filename} __snake_case : Optional[Any] = """dummy""" __snake_case : List[Any] = xz_file.parent __snake_case : int = """extracted""" __snake_case : Dict = DownloadConfig( cache_dir=_lowerCamelCase , use_etag=_lowerCamelCase , ) __snake_case : List[str] = DownloadManager(dataset_name=_lowerCamelCase , download_config=_lowerCamelCase ) __snake_case : Optional[Any] = dl_manager.extract(_lowerCamelCase ) __snake_case : Union[str, Any] = paths for extracted_paths in [extracted_paths]: if isinstance(_lowerCamelCase , _lowerCamelCase ): __snake_case : Dict = [extracted_paths] __snake_case : int = [paths] elif isinstance(_lowerCamelCase , _lowerCamelCase ): assert "train" in extracted_paths.keys() __snake_case : int = extracted_paths.values() __snake_case : int = paths.values() assert extracted_paths for extracted_path, input_path in zip(_lowerCamelCase , _lowerCamelCase ): assert extracted_path == dl_manager.extracted_paths[input_path] __snake_case : Any = Path(_lowerCamelCase ) __snake_case : str = extracted_path.parts assert parts[-1] == hash_url_to_filename(_lowerCamelCase , etag=_lowerCamelCase ) assert parts[-2] == extracted_subdir assert extracted_path.exists() __snake_case : Optional[int] = extracted_path.read_text() __snake_case : str = text_file.read_text() assert extracted_file_content == expected_file_content def _a ( _lowerCamelCase , _lowerCamelCase ) -> Optional[int]: """simple docstring""" assert path.endswith(""".jsonl""" ) for num_items, line in enumerate(_lowerCamelCase , start=1 ): __snake_case : Tuple = json.loads(line.decode("""utf-8""" ) ) assert item.keys() == {"col_1", "col_2", "col_3"} assert num_items == 4 @pytest.mark.parametrize("""archive_jsonl""" , ["""tar_jsonl_path""", """zip_jsonl_path"""] ) def _a ( _lowerCamelCase , _lowerCamelCase ) -> Optional[int]: """simple docstring""" __snake_case : Any = request.getfixturevalue(_lowerCamelCase ) __snake_case : str = DownloadManager() for num_jsonl, (path, file) in enumerate(dl_manager.iter_archive(_lowerCamelCase ) , start=1 ): _test_jsonl(_lowerCamelCase , _lowerCamelCase ) assert num_jsonl == 2 @pytest.mark.parametrize("""archive_nested_jsonl""" , ["""tar_nested_jsonl_path""", """zip_nested_jsonl_path"""] ) def _a ( _lowerCamelCase , _lowerCamelCase ) -> List[str]: """simple docstring""" __snake_case : int = request.getfixturevalue(_lowerCamelCase ) __snake_case : List[str] = DownloadManager() for num_tar, (path, file) in enumerate(dl_manager.iter_archive(_lowerCamelCase ) , start=1 ): for num_jsonl, (subpath, subfile) in enumerate(dl_manager.iter_archive(_lowerCamelCase ) , start=1 ): _test_jsonl(_lowerCamelCase , _lowerCamelCase ) assert num_tar == 1 assert num_jsonl == 2 def _a ( _lowerCamelCase ) -> Any: """simple docstring""" __snake_case : List[str] = DownloadManager() for num_file, file in enumerate(dl_manager.iter_files(_lowerCamelCase ) , start=1 ): assert os.path.basename(_lowerCamelCase ) == ("test.txt" if num_file == 1 else "train.txt") assert num_file == 2
26
0
'''simple docstring''' import flax.linen as nn import jax import jax.numpy as jnp class UpperCAmelCase_ (nn.Module ): """simple docstring""" lowerCamelCase : int lowerCamelCase : jnp.dtype = jnp.floataa def lowercase_ ( self ) -> Union[str, Any]: __lowerCamelCase : Optional[Any] = nn.Conv( self.out_channels , kernel_size=(3, 3) , strides=(1, 1) , padding=((1, 1), (1, 1)) , dtype=self.dtype , ) def __call__( self , SCREAMING_SNAKE_CASE_ ) -> Any: __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase : Optional[int] = hidden_states.shape __lowerCamelCase : Dict = jax.image.resize( SCREAMING_SNAKE_CASE_ , shape=(batch, height * 2, width * 2, channels) , method='nearest' , ) __lowerCamelCase : Optional[Any] = self.conv(SCREAMING_SNAKE_CASE_ ) return hidden_states class UpperCAmelCase_ (nn.Module ): """simple docstring""" lowerCamelCase : int lowerCamelCase : jnp.dtype = jnp.floataa def lowercase_ ( self ) -> List[str]: __lowerCamelCase : str = nn.Conv( self.out_channels , kernel_size=(3, 3) , strides=(2, 2) , padding=((1, 1), (1, 1)) , dtype=self.dtype , ) def __call__( self , SCREAMING_SNAKE_CASE_ ) -> List[str]: # pad = ((0, 0), (0, 1), (0, 1), (0, 0)) # pad height and width dim # hidden_states = jnp.pad(hidden_states, pad_width=pad) __lowerCamelCase : str = self.conv(SCREAMING_SNAKE_CASE_ ) return hidden_states class UpperCAmelCase_ (nn.Module ): """simple docstring""" lowerCamelCase : int lowerCamelCase : int = None lowerCamelCase : float = 0.0 lowerCamelCase : bool = None lowerCamelCase : jnp.dtype = jnp.floataa def lowercase_ ( self ) -> Optional[int]: __lowerCamelCase : Optional[Any] = self.in_channels if self.out_channels is None else self.out_channels __lowerCamelCase : Optional[Any] = nn.GroupNorm(num_groups=32 , epsilon=1E-5 ) __lowerCamelCase : Tuple = nn.Conv( SCREAMING_SNAKE_CASE_ , kernel_size=(3, 3) , strides=(1, 1) , padding=((1, 1), (1, 1)) , dtype=self.dtype , ) __lowerCamelCase : List[str] = nn.Dense(SCREAMING_SNAKE_CASE_ , dtype=self.dtype ) __lowerCamelCase : Dict = nn.GroupNorm(num_groups=32 , epsilon=1E-5 ) __lowerCamelCase : int = nn.Dropout(self.dropout_prob ) __lowerCamelCase : Union[str, Any] = nn.Conv( SCREAMING_SNAKE_CASE_ , kernel_size=(3, 3) , strides=(1, 1) , padding=((1, 1), (1, 1)) , dtype=self.dtype , ) __lowerCamelCase : Optional[int] = self.in_channels != out_channels if self.use_nin_shortcut is None else self.use_nin_shortcut __lowerCamelCase : List[Any] = None if use_nin_shortcut: __lowerCamelCase : Any = nn.Conv( SCREAMING_SNAKE_CASE_ , kernel_size=(1, 1) , strides=(1, 1) , padding='VALID' , dtype=self.dtype , ) def __call__( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_=True ) -> Tuple: __lowerCamelCase : List[Any] = hidden_states __lowerCamelCase : str = self.norma(SCREAMING_SNAKE_CASE_ ) __lowerCamelCase : Union[str, Any] = nn.swish(SCREAMING_SNAKE_CASE_ ) __lowerCamelCase : Union[str, Any] = self.conva(SCREAMING_SNAKE_CASE_ ) __lowerCamelCase : str = self.time_emb_proj(nn.swish(SCREAMING_SNAKE_CASE_ ) ) __lowerCamelCase : List[str] = jnp.expand_dims(jnp.expand_dims(SCREAMING_SNAKE_CASE_ , 1 ) , 1 ) __lowerCamelCase : Optional[int] = hidden_states + temb __lowerCamelCase : List[Any] = self.norma(SCREAMING_SNAKE_CASE_ ) __lowerCamelCase : Any = nn.swish(SCREAMING_SNAKE_CASE_ ) __lowerCamelCase : List[Any] = self.dropout(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) __lowerCamelCase : List[Any] = self.conva(SCREAMING_SNAKE_CASE_ ) if self.conv_shortcut is not None: __lowerCamelCase : List[str] = self.conv_shortcut(SCREAMING_SNAKE_CASE_ ) return hidden_states + residual
13
'''simple docstring''' def _a ( _lowerCamelCase = 100 ) -> int: """simple docstring""" __snake_case : Any = n * (n + 1) * (2 * n + 1) / 6 __snake_case : List[Any] = (n * (n + 1) / 2) ** 2 return int(square_of_sum - sum_of_squares ) if __name__ == "__main__": print(f"""{solution() = }""")
26
0
import json import logging import os import sys from time import time from unittest.mock import patch from transformers.testing_utils import TestCasePlus, require_torch_tpu logging.basicConfig(level=logging.DEBUG) a__ = logging.getLogger() def __UpperCAmelCase ( __a : List[str] ) -> Tuple: """simple docstring""" _a : List[str] = {} _a : int = os.path.join(__a ,'''all_results.json''' ) if os.path.exists(__a ): with open(__a ,'''r''' ) as f: _a : Any = json.load(__a ) else: raise ValueError(F"""can't find {path}""" ) return results a__ = logging.StreamHandler(sys.stdout) logger.addHandler(stream_handler) @require_torch_tpu class UpperCAmelCase_ ( __lowercase ): """simple docstring""" def __lowercase ( self ) -> Optional[Any]: import xla_spawn _a : Union[str, Any] = self.get_auto_remove_tmp_dir() _a : List[Any] = F""" ./examples/pytorch/text-classification/run_glue.py --num_cores=8 ./examples/pytorch/text-classification/run_glue.py --model_name_or_path distilbert-base-uncased --output_dir {tmp_dir} --overwrite_output_dir --train_file ./tests/fixtures/tests_samples/MRPC/train.csv --validation_file ./tests/fixtures/tests_samples/MRPC/dev.csv --do_train --do_eval --debug tpu_metrics_debug --per_device_train_batch_size=2 --per_device_eval_batch_size=1 --learning_rate=1e-4 --max_steps=10 --warmup_steps=2 --seed=42 --max_seq_length=128 """.split() with patch.object(_a , '''argv''' , _a ): _a : List[str] = time() xla_spawn.main() _a : Tuple = time() _a : Tuple = get_results(_a ) self.assertGreaterEqual(result['''eval_accuracy'''] , 0.75 ) # Assert that the script takes less than 500 seconds to make sure it doesn't hang. self.assertLess(end - start , 5_0_0 ) def __lowercase ( self ) -> Dict: import xla_spawn _a : str = ''' ./tests/test_trainer_tpu.py --num_cores=8 ./tests/test_trainer_tpu.py '''.split() with patch.object(_a , '''argv''' , _a ): xla_spawn.main()
14
'''simple docstring''' from __future__ import annotations from typing import Any class _A : def __init__( self : str , __magic_name__ : int , __magic_name__ : int , __magic_name__ : float = 0 ) -> None: """simple docstring""" __snake_case , __snake_case : Optional[Any] = row, column __snake_case : Dict = [[default_value for c in range(__magic_name__ )] for r in range(__magic_name__ )] def __str__( self : List[Any] ) -> str: """simple docstring""" __snake_case : Dict = f'''Matrix consist of {self.row} rows and {self.column} columns\n''' # Make string identifier __snake_case : Optional[int] = 0 for row_vector in self.array: for obj in row_vector: __snake_case : Optional[int] = max(__magic_name__ , len(str(__magic_name__ ) ) ) __snake_case : str = f'''%{max_element_length}s''' # Make string and return def single_line(__magic_name__ : list[float] ) -> str: nonlocal string_format_identifier __snake_case : Union[str, Any] = """[""" line += ", ".join(string_format_identifier % (obj,) for obj in row_vector ) line += "]" return line s += "\n".join(single_line(__magic_name__ ) for row_vector in self.array ) return s def __repr__( self : Optional[int] ) -> str: """simple docstring""" return str(self ) def lowercase__ ( self : Dict , __magic_name__ : tuple[int, int] ) -> bool: """simple docstring""" if not (isinstance(__magic_name__ , (list, tuple) ) and len(__magic_name__ ) == 2): return False elif not (0 <= loc[0] < self.row and 0 <= loc[1] < self.column): return False else: return True def __getitem__( self : int , __magic_name__ : tuple[int, int] ) -> Any: """simple docstring""" assert self.validate_indicies(__magic_name__ ) return self.array[loc[0]][loc[1]] def __setitem__( self : List[str] , __magic_name__ : tuple[int, int] , __magic_name__ : float ) -> None: """simple docstring""" assert self.validate_indicies(__magic_name__ ) __snake_case : Optional[int] = value def __add__( self : Any , __magic_name__ : Matrix ) -> Matrix: """simple docstring""" assert isinstance(__magic_name__ , __magic_name__ ) assert self.row == another.row and self.column == another.column # Add __snake_case : Union[str, Any] = Matrix(self.row , self.column ) for r in range(self.row ): for c in range(self.column ): __snake_case : List[Any] = self[r, c] + another[r, c] return result def __neg__( self : Tuple ) -> Matrix: """simple docstring""" __snake_case : Tuple = Matrix(self.row , self.column ) for r in range(self.row ): for c in range(self.column ): __snake_case : List[Any] = -self[r, c] return result def __sub__( self : Optional[int] , __magic_name__ : Matrix ) -> Matrix: """simple docstring""" return self + (-another) def __mul__( self : List[Any] , __magic_name__ : int | float | Matrix ) -> Matrix: """simple docstring""" if isinstance(__magic_name__ , (int, float) ): # Scalar multiplication __snake_case : Optional[int] = Matrix(self.row , self.column ) for r in range(self.row ): for c in range(self.column ): __snake_case : Tuple = self[r, c] * another return result elif isinstance(__magic_name__ , __magic_name__ ): # Matrix multiplication assert self.column == another.row __snake_case : Dict = Matrix(self.row , another.column ) for r in range(self.row ): for c in range(another.column ): for i in range(self.column ): result[r, c] += self[r, i] * another[i, c] return result else: __snake_case : Optional[int] = f'''Unsupported type given for another ({type(__magic_name__ )})''' raise TypeError(__magic_name__ ) def lowercase__ ( self : str ) -> Matrix: """simple docstring""" __snake_case : Any = Matrix(self.column , self.row ) for r in range(self.row ): for c in range(self.column ): __snake_case : str = self[r, c] return result def lowercase__ ( self : Union[str, Any] , __magic_name__ : Matrix , __magic_name__ : Matrix ) -> Any: """simple docstring""" assert isinstance(__magic_name__ , __magic_name__ ) and isinstance(__magic_name__ , __magic_name__ ) assert self.row == self.column == u.row == v.row # u, v should be column vector assert u.column == v.column == 1 # u, v should be column vector # Calculate __snake_case : List[str] = v.transpose() __snake_case : Tuple = (v_t * self * u)[0, 0] + 1 if numerator_factor == 0: return None # It's not invertable return self - ((self * u) * (v_t * self) * (1.0 / numerator_factor)) # Testing if __name__ == "__main__": def _a ( ) -> None: """simple docstring""" __snake_case : Tuple = Matrix(3 , 3 , 0 ) for i in range(3 ): __snake_case : Any = 1 print(F'''a^(-1) is {ainv}''' ) # u, v __snake_case : Dict = Matrix(3 , 1 , 0 ) __snake_case , __snake_case , __snake_case : Union[str, Any] = 1, 2, -3 __snake_case : str = Matrix(3 , 1 , 0 ) __snake_case , __snake_case , __snake_case : Tuple = 4, -2, 5 print(F'''u is {u}''' ) print(F'''v is {v}''' ) print(F'''uv^T is {u * v.transpose()}''' ) # Sherman Morrison print(F'''(a + uv^T)^(-1) is {ainv.sherman_morrison(_lowerCamelCase , _lowerCamelCase )}''' ) def _a ( ) -> None: """simple docstring""" import doctest doctest.testmod() testa()
26
0
import copy import re class A : '''simple docstring''' A__ = '''hp''' A__ = {} A__ = None @classmethod def lowerCamelCase__ (cls : str , _UpperCAmelCase : Any , _UpperCAmelCase : List[str] ) -> Tuple: """simple docstring""" lowercase__ = prefix lowercase__ = defaults cls.build_naming_info() @staticmethod def lowerCamelCase__ (_UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : int ) -> Tuple: """simple docstring""" if len(_UpperCAmelCase ) == 0: return "" lowercase__ = None if any(char.isdigit() for char in word ): raise Exception(f'''Parameters should not contain numbers: \'{word}\' contains a number''' ) if word in info["short_word"]: return info["short_word"][word] for prefix_len in range(1 , len(_UpperCAmelCase ) + 1 ): lowercase__ = word[:prefix_len] if prefix in info["reverse_short_word"]: continue else: lowercase__ = prefix break if short_word is None: # Paranoid fallback def int_to_alphabetic(_UpperCAmelCase : Union[str, Any] ): lowercase__ = """""" while integer != 0: lowercase__ = chr(ord("""A""" ) + integer % 10 ) + s integer //= 10 return s lowercase__ = 0 while True: lowercase__ = word + """#""" + int_to_alphabetic(_UpperCAmelCase ) if sword in info["reverse_short_word"]: continue else: lowercase__ = sword break lowercase__ = short_word lowercase__ = word return short_word @staticmethod def lowerCamelCase__ (_UpperCAmelCase : Dict , _UpperCAmelCase : Optional[int] ) -> Union[str, Any]: """simple docstring""" lowercase__ = param_name.split("""_""" ) lowercase__ = [TrialShortNamer.shortname_for_word(_UpperCAmelCase , _UpperCAmelCase ) for word in words] # We try to create a separatorless short name, but if there is a collision we have to fallback # to a separated short name lowercase__ = ["""""", """_"""] for separator in separators: lowercase__ = separator.join(_UpperCAmelCase ) if shortname not in info["reverse_short_param"]: lowercase__ = shortname lowercase__ = param_name return shortname return param_name @staticmethod def lowerCamelCase__ (_UpperCAmelCase : Optional[Any] , _UpperCAmelCase : Optional[int] ) -> int: """simple docstring""" lowercase__ = TrialShortNamer.shortname_for_key(_UpperCAmelCase , _UpperCAmelCase ) lowercase__ = short_name lowercase__ = param_name @classmethod def lowerCamelCase__ (cls : Union[str, Any] ) -> Tuple: """simple docstring""" if cls.NAMING_INFO is not None: return lowercase__ = { """short_word""": {}, """reverse_short_word""": {}, """short_param""": {}, """reverse_short_param""": {}, } lowercase__ = list(cls.DEFAULTS.keys() ) for k in field_keys: cls.add_new_param_name(_UpperCAmelCase , _UpperCAmelCase ) lowercase__ = info @classmethod def lowerCamelCase__ (cls : str , _UpperCAmelCase : Tuple ) -> List[str]: """simple docstring""" cls.build_naming_info() assert cls.PREFIX is not None lowercase__ = [copy.copy(cls.PREFIX )] for k, v in params.items(): if k not in cls.DEFAULTS: raise Exception(f'''You should provide a default value for the param name {k} with value {v}''' ) if v == cls.DEFAULTS[k]: # The default value is not added to the name continue lowercase__ = cls.NAMING_INFO["""short_param"""][k] if isinstance(_UpperCAmelCase , _UpperCAmelCase ): lowercase__ = 1 if v else 0 lowercase__ = """""" if isinstance(_UpperCAmelCase , (int, float) ) else """-""" lowercase__ = f'''{key}{sep}{v}''' name.append(_UpperCAmelCase ) return "_".join(_UpperCAmelCase ) @classmethod def lowerCamelCase__ (cls : Union[str, Any] , _UpperCAmelCase : Union[str, Any] ) -> Union[str, Any]: """simple docstring""" lowercase__ = repr[len(cls.PREFIX ) + 1 :] if repr == "": lowercase__ = [] else: lowercase__ = repr.split("""_""" ) lowercase__ = {} for value in values: if "-" in value: lowercase__ , lowercase__ = value.split("""-""" ) else: lowercase__ = re.sub("""[0-9.]""" , """""" , _UpperCAmelCase ) lowercase__ = float(re.sub("""[^0-9.]""" , """""" , _UpperCAmelCase ) ) lowercase__ = cls.NAMING_INFO["""reverse_short_param"""][p_k] lowercase__ = p_v for k in cls.DEFAULTS: if k not in parameters: lowercase__ = cls.DEFAULTS[k] return parameters
15
'''simple docstring''' import argparse import json import os import torch from torch import nn from transformers import NllbMoeConfig, NllbMoeModel from transformers.modeling_utils import dtype_byte_size from transformers.utils import WEIGHTS_INDEX_NAME, WEIGHTS_NAME def _a ( _lowerCamelCase ) -> List[Any]: """simple docstring""" __snake_case : Union[str, Any] = [ """encoder.version""", """decoder.version""", """model.encoder.version""", """model.decoder.version""", """decoder.output_projection.weight""", """_float_tensor""", """encoder.embed_positions._float_tensor""", """decoder.embed_positions._float_tensor""", ] for k in ignore_keys: state_dict.pop(_lowerCamelCase , _lowerCamelCase ) def _a ( _lowerCamelCase ) -> List[str]: """simple docstring""" __snake_case , __snake_case : Dict = emb.weight.shape __snake_case : Optional[int] = nn.Linear(_lowerCamelCase , _lowerCamelCase , bias=_lowerCamelCase ) __snake_case : Union[str, Any] = emb.weight.data return lin_layer def _a ( _lowerCamelCase , _lowerCamelCase=None ) -> Union[str, Any]: """simple docstring""" __snake_case : Any = {} for old_key in state_dict.keys(): __snake_case : Union[str, Any] = old_key if "moe_layer.experts." in key: if expert_idx is not None: __snake_case : Tuple = key.replace("""moe_layer.experts.0""" , F'''ffn.experts.expert_{expert_idx}''' ) else: __snake_case : Optional[int] = key.replace("""moe_layer.experts.""" , """ffn.experts.expert_""" ) if "gate" in key: __snake_case : Dict = key.replace(""".moe_layer.gate.wg""" , """.ffn.router.classifier""" ) if "fc2" and "experts" not in key: __snake_case : Union[str, Any] = key.replace(""".fc2.""" , """.ffn.fc2.""" ) if "fc1" and "experts" not in key: __snake_case : Optional[int] = key.replace(""".fc1.""" , """.ffn.fc1.""" ) if ".encoder_attn." in key: __snake_case : Tuple = key.replace(""".encoder_attn.""" , """.cross_attention.""" ) if "encoder_attn_layer_norm" in key: __snake_case : Union[str, Any] = key.replace("""encoder_attn_layer_norm""" , """cross_attention_layer_norm""" ) if "final_layer_norm" in key: __snake_case : str = key.replace("""final_layer_norm""" , """ff_layer_norm""" ) __snake_case : str = state_dict[old_key] return new_dict def _a ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase = WEIGHTS_NAME ) -> Dict: """simple docstring""" __snake_case : Optional[int] = [] __snake_case : Dict = 0 os.makedirs(_lowerCamelCase , exist_ok=_lowerCamelCase ) for expert in range(_lowerCamelCase ): __snake_case : Tuple = switch_checkpoint_path + F'''-rank-{expert}.pt''' if os.path.isfile(_lowerCamelCase ): __snake_case : Dict = torch.load(_lowerCamelCase )["""model"""] remove_ignore_keys_(_lowerCamelCase ) __snake_case : Optional[Any] = rename_fairseq_keys(_lowerCamelCase , _lowerCamelCase ) __snake_case : List[Any] = os.path.join( _lowerCamelCase , weights_name.replace(""".bin""" , F'''-{len(_lowerCamelCase )+1:05d}-of-???.bin''' ) ) torch.save(_lowerCamelCase , _lowerCamelCase ) sharded_state_dicts.append(expert_state.keys() ) total_size += sum([value.numel() for key, value in expert_state.items()] ) * dtype_byte_size( expert_state[list(_lowerCamelCase )[0]].dtype ) # Add the last block __snake_case : Optional[Any] = os.path.join(_lowerCamelCase , weights_name.replace(""".bin""" , F'''-{len(_lowerCamelCase )+1:05d}-of-???.bin''' ) ) __snake_case : str = torch.load(switch_checkpoint_path + """-shared.pt""" )["""model"""] remove_ignore_keys_(_lowerCamelCase ) __snake_case : Optional[Any] = rename_fairseq_keys(_lowerCamelCase , _lowerCamelCase ) __snake_case : List[str] = shared_weights["""decoder.embed_tokens.weight"""] sharded_state_dicts.append(shared_weights.keys() ) # If we only have the shared weights (dummy model/experts saved on the same file) if len(_lowerCamelCase ) == 1: __snake_case : Optional[Any] = os.path.join(_lowerCamelCase , _lowerCamelCase ) torch.save(_lowerCamelCase , _lowerCamelCase ) return {weights_name: sharded_state_dicts[0]}, None else: torch.save(_lowerCamelCase , _lowerCamelCase ) # Otherwise, let's build the index __snake_case : Tuple = {} for idx, shard in enumerate(_lowerCamelCase ): __snake_case : Any = weights_name.replace(""".bin""" , F'''-{idx+1:05d}-of-{len(_lowerCamelCase ):05d}.bin''' ) __snake_case : int = os.path.join(_lowerCamelCase , weights_name.replace(""".bin""" , F'''-{idx+1:05d}-of-???.bin''' ) ) os.rename(_lowerCamelCase , os.path.join(_lowerCamelCase , _lowerCamelCase ) ) for key in shard: __snake_case : str = shard_file # Add the metadata __snake_case : Optional[Any] = {"""total_size""": total_size} __snake_case : int = {"""metadata""": metadata, """weight_map""": weight_map} with open(os.path.join(_lowerCamelCase , _lowerCamelCase ) , """w""" , encoding="""utf-8""" ) as f: __snake_case : Union[str, Any] = json.dumps(_lowerCamelCase , indent=2 , sort_keys=_lowerCamelCase ) + """\n""" f.write(_lowerCamelCase ) return metadata, index if __name__ == "__main__": __UpperCamelCase = argparse.ArgumentParser() # Required parameters parser.add_argument( "--nllb_moe_checkpoint_path", default="/home/arthur_huggingface_co/fairseq/weights/checkpoints/model_moe_54b/checkpoint_2_300000", type=str, required=False, help="Path to a directory containing a folder per layer. Follows the original Google format.", ) parser.add_argument("--dtype", default="float32", type=str, required=False, help="dtype of the saved model") parser.add_argument( "--pytorch_dump_folder_path", default="/home/arthur_huggingface_co/fairseq/weights/checkpoints/hf-converted-moe-54b", type=str, required=False, help="Path to the output pytorch model.", ) __UpperCamelCase = parser.parse_args() __UpperCamelCase , __UpperCamelCase = shard_on_the_fly( args.nllb_moe_checkpoint_path, args.pytorch_dump_folder_path, 128, args.dtype, ) __UpperCamelCase = NllbMoeConfig.from_pretrained( "facebook/nllb-200-3.3B", encoder_sparse_step=4, decoder_sparse_step=4, num_experts=128 ) config.save_pretrained(args.pytorch_dump_folder_path) __UpperCamelCase = NllbMoeModel.from_pretrained(args.pytorch_dump_folder_path) print("Done") model.save_pretrained(args.pytorch_dump_folder_path)
26
0
from typing import Any import numpy as np def __a ( A__ : np.ndarray ): return np.array_equal(A__ , matrix.conjugate().T ) def __a ( A__ : np.ndarray , A__ : np.ndarray ): SCREAMING_SNAKE_CASE = v.conjugate().T SCREAMING_SNAKE_CASE = v_star.dot(A__ ) assert isinstance(A__ , np.ndarray ) return (v_star_dot.dot(A__ )) / (v_star.dot(A__ )) def __a ( ): SCREAMING_SNAKE_CASE = np.array([[2, 2 + 1j, 4], [2 - 1j, 3, 1j], [4, -1j, 1]] ) SCREAMING_SNAKE_CASE = np.array([[1], [2], [3]] ) assert is_hermitian(A__ ), F"{a} is not hermitian." print(rayleigh_quotient(A__ , A__ ) ) SCREAMING_SNAKE_CASE = np.array([[1, 2, 4], [2, 3, -1], [4, -1, 1]] ) assert is_hermitian(A__ ), F"{a} is not hermitian." assert rayleigh_quotient(A__ , A__ ) == float(3 ) if __name__ == "__main__": import doctest doctest.testmod() tests()
16
'''simple docstring''' import cva import numpy as np class _A : def __init__( self : Any , __magic_name__ : float , __magic_name__ : int ) -> Optional[int]: """simple docstring""" if k in (0.04, 0.06): __snake_case : List[str] = k __snake_case : int = window_size else: raise ValueError("""invalid k value""" ) def __str__( self : Union[str, Any] ) -> str: """simple docstring""" return str(self.k ) def lowercase__ ( self : Dict , __magic_name__ : str ) -> tuple[cva.Mat, list[list[int]]]: """simple docstring""" __snake_case : Dict = cva.imread(__magic_name__ , 0 ) __snake_case , __snake_case : List[str] = img.shape __snake_case : list[list[int]] = [] __snake_case : str = img.copy() __snake_case : Tuple = cva.cvtColor(__magic_name__ , cva.COLOR_GRAY2RGB ) __snake_case , __snake_case : List[Any] = np.gradient(__magic_name__ ) __snake_case : Optional[Any] = dx**2 __snake_case : Tuple = dy**2 __snake_case : List[Any] = dx * dy __snake_case : List[Any] = 0.04 __snake_case : Tuple = self.window_size // 2 for y in range(__magic_name__ , h - offset ): for x in range(__magic_name__ , w - offset ): __snake_case : Dict = ixx[ y - offset : y + offset + 1, x - offset : x + offset + 1 ].sum() __snake_case : Optional[int] = iyy[ y - offset : y + offset + 1, x - offset : x + offset + 1 ].sum() __snake_case : str = ixy[ y - offset : y + offset + 1, x - offset : x + offset + 1 ].sum() __snake_case : List[str] = (wxx * wyy) - (wxy**2) __snake_case : Dict = wxx + wyy __snake_case : List[str] = det - k * (trace**2) # Can change the value if r > 0.5: corner_list.append([x, y, r] ) color_img.itemset((y, x, 0) , 0 ) color_img.itemset((y, x, 1) , 0 ) color_img.itemset((y, x, 2) , 2_55 ) return color_img, corner_list if __name__ == "__main__": __UpperCamelCase = HarrisCorner(0.04, 3) __UpperCamelCase , __UpperCamelCase = edge_detect.detect("path_to_image") cva.imwrite("detect.png", color_img)
26
0
import numpy as np class lowerCamelCase_ : def __init__( self : Union[str, Any] ): __A : Union[str, Any] = (0, 0) __A : Optional[Any] = None __A : int = 0 __A : List[Any] = 0 __A : Any = 0 def __eq__( self : str , __A : Dict ): return self.position == cell.position def lowerCAmelCase_ ( self : int ): print(self.position ) class lowerCamelCase_ : def __init__( self : Dict , __A : List[str]=(5, 5) ): __A : str = np.zeros(__A ) __A : str = world_size[0] __A : Union[str, Any] = world_size[1] def lowerCAmelCase_ ( self : Dict ): print(self.w ) def lowerCAmelCase_ ( self : int , __A : str ): __A : int = [ (-1, -1), (-1, 0), (-1, 1), (0, -1), (0, 1), (1, -1), (1, 0), (1, 1), ] __A : Optional[int] = cell.position[0] __A : List[str] = cell.position[1] __A : Optional[int] = [] for n in neughbour_cord: __A : Optional[int] = current_x + n[0] __A : int = current_y + n[1] if 0 <= x < self.world_x_limit and 0 <= y < self.world_y_limit: __A : int = Cell() __A : Optional[Any] = (x, y) __A : Optional[Any] = cell neighbours.append(__A ) return neighbours def __SCREAMING_SNAKE_CASE ( a__ : Tuple ,a__ : Optional[int] ,a__ : List[str] ) -> Any: __A : Dict = [] __A : Dict = [] _open.append(a__ ) while _open: __A : List[str] = np.argmin([n.f for n in _open] ) __A : Dict = _open[min_f] _closed.append(_open.pop(a__ ) ) if current == goal: break for n in world.get_neigbours(a__ ): for c in _closed: if c == n: continue __A : Tuple = current.g + 1 __A , __A : int = n.position __A , __A : str = goal.position __A : Optional[int] = (ya - ya) ** 2 + (xa - xa) ** 2 __A : Any = n.h + n.g for c in _open: if c == n and c.f < n.f: continue _open.append(a__ ) __A : Any = [] while current.parent is not None: path.append(current.position ) __A : Tuple = current.parent path.append(current.position ) return path[::-1] if __name__ == "__main__": UpperCAmelCase_ : List[str] = Gridworld() # Start position and goal UpperCAmelCase_ : Any = Cell() UpperCAmelCase_ : Tuple = (0, 0) UpperCAmelCase_ : Tuple = Cell() UpperCAmelCase_ : str = (4, 4) print(f"""path from {start.position} to {goal.position}""") UpperCAmelCase_ : Tuple = astar(world, start, goal) # Just for visual reasons. for i in s: UpperCAmelCase_ : Optional[int] = 1 print(world.w)
17
'''simple docstring''' import warnings from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding class _A ( __lowercase ): lowercase__: Any = ['''image_processor''', '''tokenizer'''] lowercase__: Any = '''CLIPImageProcessor''' lowercase__: Optional[Any] = ('''CLIPTokenizer''', '''CLIPTokenizerFast''') def __init__( self : int , __magic_name__ : Dict=None , __magic_name__ : Dict=None , **__magic_name__ : Union[str, Any] ) -> Any: """simple docstring""" __snake_case : Optional[Any] = None if "feature_extractor" in kwargs: warnings.warn( """The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`""" """ instead.""" , __magic_name__ , ) __snake_case : List[Any] = kwargs.pop("""feature_extractor""" ) __snake_case : List[str] = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError("""You need to specify an `image_processor`.""" ) if tokenizer is None: raise ValueError("""You need to specify a `tokenizer`.""" ) super().__init__(__magic_name__ , __magic_name__ ) def __call__( self : int , __magic_name__ : List[str]=None , __magic_name__ : Tuple=None , __magic_name__ : Any=None , **__magic_name__ : Union[str, Any] ) -> Optional[int]: """simple docstring""" if text is None and images is None: raise ValueError("""You have to specify either text or images. Both cannot be none.""" ) if text is not None: __snake_case : int = self.tokenizer(__magic_name__ , return_tensors=__magic_name__ , **__magic_name__ ) if images is not None: __snake_case : str = self.image_processor(__magic_name__ , return_tensors=__magic_name__ , **__magic_name__ ) if text is not None and images is not None: __snake_case : Union[str, Any] = image_features.pixel_values return encoding elif text is not None: return encoding else: return BatchEncoding(data=dict(**__magic_name__ ) , tensor_type=__magic_name__ ) def lowercase__ ( self : Optional[int] , *__magic_name__ : List[Any] , **__magic_name__ : Any ) -> Optional[Any]: """simple docstring""" return self.tokenizer.batch_decode(*__magic_name__ , **__magic_name__ ) def lowercase__ ( self : List[str] , *__magic_name__ : Tuple , **__magic_name__ : List[Any] ) -> int: """simple docstring""" return self.tokenizer.decode(*__magic_name__ , **__magic_name__ ) @property def lowercase__ ( self : List[Any] ) -> Optional[Any]: """simple docstring""" __snake_case : Dict = self.tokenizer.model_input_names __snake_case : str = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) ) @property def lowercase__ ( self : int ) -> List[str]: """simple docstring""" warnings.warn( """`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.""" , __magic_name__ , ) return self.image_processor_class @property def lowercase__ ( self : Union[str, Any] ) -> Dict: """simple docstring""" warnings.warn( """`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead.""" , __magic_name__ , ) return self.image_processor
26
0
'''simple docstring''' def __a(SCREAMING_SNAKE_CASE_ : list , SCREAMING_SNAKE_CASE_ : int = 0 ): '''simple docstring''' _lowerCAmelCase = length or len(SCREAMING_SNAKE_CASE_ ) _lowerCAmelCase = False for i in range(length - 1 ): if list_data[i] > list_data[i + 1]: _lowerCAmelCase , _lowerCAmelCase = list_data[i + 1], list_data[i] _lowerCAmelCase = True return list_data if not swapped else bubble_sort(SCREAMING_SNAKE_CASE_ , length - 1 ) if __name__ == "__main__": import doctest doctest.testmod()
18
'''simple docstring''' import datasets import faiss import numpy as np import streamlit as st import torch from elasticsearch import Elasticsearch from elia_utils import ( embed_questions_for_retrieval, make_qa_sas_model, qa_sas_generate, query_es_index, query_qa_dense_index, ) import transformers from transformers import AutoModel, AutoModelForSeqaSeqLM, AutoTokenizer __UpperCamelCase = "bart" __UpperCamelCase = True @st.cache(allow_output_mutation=_lowerCamelCase ) def _a ( ) -> Union[str, Any]: """simple docstring""" if LOAD_DENSE_INDEX: __snake_case : int = AutoTokenizer.from_pretrained("""yjernite/retribert-base-uncased""" ) __snake_case : Tuple = AutoModel.from_pretrained("""yjernite/retribert-base-uncased""" ).to("""cuda:0""" ) __snake_case : List[Any] = qar_model.eval() else: __snake_case , __snake_case : Optional[Any] = (None, None) if MODEL_TYPE == "bart": __snake_case : List[str] = AutoTokenizer.from_pretrained("""yjernite/bart_eli5""" ) __snake_case : Any = AutoModelForSeqaSeqLM.from_pretrained("""yjernite/bart_eli5""" ).to("""cuda:0""" ) __snake_case : int = torch.load("""seq2seq_models/eli5_bart_model_blm_2.pth""" ) sas_model.load_state_dict(save_dict["""model"""] ) __snake_case : int = sas_model.eval() else: __snake_case , __snake_case : Dict = make_qa_sas_model( model_name="""t5-small""" , from_file="""seq2seq_models/eli5_t5_model_1024_4.pth""" , device="""cuda:0""" ) return (qar_tokenizer, qar_model, sas_tokenizer, sas_model) @st.cache(allow_output_mutation=_lowerCamelCase ) def _a ( ) -> Tuple: """simple docstring""" if LOAD_DENSE_INDEX: __snake_case : Tuple = faiss.StandardGpuResources() __snake_case : Optional[Any] = datasets.load_dataset(path="""wiki_snippets""" , name="""wiki40b_en_100_0""" )["""train"""] __snake_case : str = np.memmap( """wiki40b_passages_reps_32_l-8_h-768_b-512-512.dat""" , dtype="""float32""" , mode="""r""" , shape=(wikiaab_passages.num_rows, 128) , ) __snake_case : Optional[int] = faiss.IndexFlatIP(128 ) __snake_case : Any = faiss.index_cpu_to_gpu(_lowerCamelCase , 1 , _lowerCamelCase ) wikiaab_gpu_index_flat.add(_lowerCamelCase ) # TODO fix for larger GPU else: __snake_case , __snake_case : Tuple = (None, None) __snake_case : List[str] = Elasticsearch([{"""host""": """localhost""", """port""": """9200"""}] ) return (wikiaab_passages, wikiaab_gpu_index_flat, es_client) @st.cache(allow_output_mutation=_lowerCamelCase ) def _a ( ) -> List[Any]: """simple docstring""" __snake_case : Tuple = datasets.load_dataset("""eli5""" , name="""LFQA_reddit""" ) __snake_case : Dict = elia["""train_eli5"""] __snake_case : int = np.memmap( """eli5_questions_reps.dat""" , dtype="""float32""" , mode="""r""" , shape=(elia_train.num_rows, 128) ) __snake_case : Dict = faiss.IndexFlatIP(128 ) eli5_train_q_index.add(_lowerCamelCase ) return (elia_train, eli5_train_q_index) __UpperCamelCase , __UpperCamelCase , __UpperCamelCase = load_indexes() __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase = load_models() __UpperCamelCase , __UpperCamelCase = load_train_data() def _a ( _lowerCamelCase , _lowerCamelCase=10 ) -> int: """simple docstring""" __snake_case : Optional[int] = embed_questions_for_retrieval([question] , _lowerCamelCase , _lowerCamelCase ) __snake_case , __snake_case : Tuple = eli5_train_q_index.search(_lowerCamelCase , _lowerCamelCase ) __snake_case : Tuple = [elia_train[int(_lowerCamelCase )] for i in I[0]] return nn_examples def _a ( _lowerCamelCase , _lowerCamelCase="wiki40b" , _lowerCamelCase="dense" , _lowerCamelCase=10 ) -> Optional[Any]: """simple docstring""" if source == "none": __snake_case , __snake_case : Dict = (""" <P> """.join(["""""" for _ in range(11 )] ).strip(), []) else: if method == "dense": __snake_case , __snake_case : Dict = query_qa_dense_index( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) else: __snake_case , __snake_case : str = query_es_index( _lowerCamelCase , _lowerCamelCase , index_name="""english_wiki40b_snippets_100w""" , n_results=_lowerCamelCase , ) __snake_case : Optional[int] = [ (res["""article_title"""], res["""section_title"""].strip(), res["""score"""], res["""passage_text"""]) for res in hit_lst ] __snake_case : Optional[Any] = """question: {} context: {}""".format(_lowerCamelCase , _lowerCamelCase ) return question_doc, support_list @st.cache( hash_funcs={ torch.Tensor: (lambda _lowerCamelCase : None), transformers.models.bart.tokenization_bart.BartTokenizer: (lambda _lowerCamelCase : None), } ) def _a ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase=64 , _lowerCamelCase=256 , _lowerCamelCase=False , _lowerCamelCase=2 , _lowerCamelCase=0.95 , _lowerCamelCase=0.8 ) -> List[str]: """simple docstring""" with torch.no_grad(): __snake_case : Union[str, Any] = qa_sas_generate( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , num_answers=1 , num_beams=_lowerCamelCase , min_len=_lowerCamelCase , max_len=_lowerCamelCase , do_sample=_lowerCamelCase , temp=_lowerCamelCase , top_p=_lowerCamelCase , top_k=_lowerCamelCase , max_input_length=1024 , device="""cuda:0""" , )[0] return (answer, support_list) st.title("Long Form Question Answering with ELI5") # Start sidebar __UpperCamelCase = "<img src='https://huggingface.co/front/assets/huggingface_logo.svg'>" __UpperCamelCase = "\n<html>\n <head>\n <style>\n .img-container {\n padding-left: 90px;\n padding-right: 90px;\n padding-top: 50px;\n padding-bottom: 50px;\n background-color: #f0f3f9;\n }\n </style>\n </head>\n <body>\n <span class=\"img-container\"> <!-- Inline parent element -->\n %s\n </span>\n </body>\n</html>\n" % ( header_html, ) st.sidebar.markdown( header_full, unsafe_allow_html=True, ) # Long Form QA with ELI5 and Wikipedia __UpperCamelCase = "\nThis demo presents a model trained to [provide long-form answers to open-domain questions](https://yjernite.github.io/lfqa.html).\nFirst, a document retriever fetches a set of relevant Wikipedia passages given the question from the [Wiki40b](https://research.google/pubs/pub49029/) dataset,\na pre-processed fixed snapshot of Wikipedia.\n" st.sidebar.markdown(description, unsafe_allow_html=True) __UpperCamelCase = [ "Answer the question", "View the retrieved document only", "View the most similar ELI5 question and answer", "Show me everything, please!", ] __UpperCamelCase = st.sidebar.checkbox("Demo options") if demo_options: __UpperCamelCase = st.sidebar.selectbox( "", action_list, index=3, ) __UpperCamelCase = action_list.index(action_st) __UpperCamelCase = st.sidebar.selectbox( "", ["Show full text of passages", "Show passage section titles"], index=0, ) __UpperCamelCase = show_type == "Show full text of passages" else: __UpperCamelCase = 3 __UpperCamelCase = True __UpperCamelCase = st.sidebar.checkbox("Retrieval options") if retrieval_options: __UpperCamelCase = "\n ### Information retriever options\n\n The **sparse** retriever uses ElasticSearch, while the **dense** retriever uses max-inner-product search between a question and passage embedding\n trained using the [ELI5](https://arxiv.org/abs/1907.09190) questions-answer pairs.\n The answer is then generated by sequence to sequence model which takes the question and retrieved document as input.\n " st.sidebar.markdown(retriever_info) __UpperCamelCase = st.sidebar.selectbox("Which Wikipedia format should the model use?", ["wiki40b", "none"]) __UpperCamelCase = st.sidebar.selectbox("Which Wikipedia indexer should the model use?", ["dense", "sparse", "mixed"]) else: __UpperCamelCase = "wiki40b" __UpperCamelCase = "dense" __UpperCamelCase = "beam" __UpperCamelCase = 2 __UpperCamelCase = 64 __UpperCamelCase = 256 __UpperCamelCase = None __UpperCamelCase = None __UpperCamelCase = st.sidebar.checkbox("Generation options") if generate_options: __UpperCamelCase = "\n ### Answer generation options\n\n The sequence-to-sequence model was initialized with [BART](https://huggingface.co/facebook/bart-large)\n weights and fine-tuned on the ELI5 QA pairs and retrieved documents. You can use the model for greedy decoding with\n **beam** search, or **sample** from the decoder's output probabilities.\n " st.sidebar.markdown(generate_info) __UpperCamelCase = st.sidebar.selectbox("Would you like to use beam search or sample an answer?", ["beam", "sampled"]) __UpperCamelCase = st.sidebar.slider( "Minimum generation length", min_value=8, max_value=256, value=64, step=8, format=None, key=None ) __UpperCamelCase = st.sidebar.slider( "Maximum generation length", min_value=64, max_value=512, value=256, step=16, format=None, key=None ) if sampled == "beam": __UpperCamelCase = st.sidebar.slider("Beam size", min_value=1, max_value=8, value=2, step=None, format=None, key=None) else: __UpperCamelCase = st.sidebar.slider( "Nucleus sampling p", min_value=0.1, max_value=1.0, value=0.95, step=0.01, format=None, key=None ) __UpperCamelCase = st.sidebar.slider( "Temperature", min_value=0.1, max_value=1.0, value=0.7, step=0.01, format=None, key=None ) __UpperCamelCase = None # start main text __UpperCamelCase = [ "<MY QUESTION>", "How do people make chocolate?", "Why do we get a fever when we are sick?", "How can different animals perceive different colors?", "What is natural language processing?", "What's the best way to treat a sunburn?", "What exactly are vitamins ?", "How does nuclear energy provide electricity?", "What's the difference between viruses and bacteria?", "Why are flutes classified as woodwinds when most of them are made out of metal ?", "Why do people like drinking coffee even though it tastes so bad?", "What happens when wine ages? How does it make the wine taste better?", "If an animal is an herbivore, where does it get the protein that it needs to survive if it only eats grass?", "How can we set a date to the beginning or end of an artistic period? Doesn't the change happen gradually?", "How does New Zealand have so many large bird predators?", ] __UpperCamelCase = st.selectbox( "What would you like to ask? ---- select <MY QUESTION> to enter a new query", questions_list, index=1, ) if question_s == "<MY QUESTION>": __UpperCamelCase = st.text_input("Enter your question here:", "") else: __UpperCamelCase = question_s if st.button("Show me!"): if action in [0, 1, 3]: if index_type == "mixed": __UpperCamelCase , __UpperCamelCase = make_support(question, source=wiki_source, method="dense", n_results=10) __UpperCamelCase , __UpperCamelCase = make_support(question, source=wiki_source, method="sparse", n_results=10) __UpperCamelCase = [] for res_d, res_s in zip(support_list_dense, support_list_sparse): if tuple(res_d) not in support_list: support_list += [tuple(res_d)] if tuple(res_s) not in support_list: support_list += [tuple(res_s)] __UpperCamelCase = support_list[:10] __UpperCamelCase = "<P> " + " <P> ".join([res[-1] for res in support_list]) else: __UpperCamelCase , __UpperCamelCase = make_support(question, source=wiki_source, method=index_type, n_results=10) if action in [0, 3]: __UpperCamelCase , __UpperCamelCase = answer_question( question_doc, sas_model, sas_tokenizer, min_len=min_len, max_len=int(max_len), sampling=(sampled == "sampled"), n_beams=n_beams, top_p=top_p, temp=temp, ) st.markdown("### The model generated answer is:") st.write(answer) if action in [0, 1, 3] and wiki_source != "none": st.markdown("--- \n ### The model is drawing information from the following Wikipedia passages:") for i, res in enumerate(support_list): __UpperCamelCase = "https://en.wikipedia.org/wiki/{}".format(res[0].replace(" ", "_")) __UpperCamelCase = res[1].strip() if sec_titles == "": __UpperCamelCase = "[{}]({})".format(res[0], wiki_url) else: __UpperCamelCase = sec_titles.split(" & ") __UpperCamelCase = " & ".join( ["[{}]({}#{})".format(sec.strip(), wiki_url, sec.strip().replace(" ", "_")) for sec in sec_list] ) st.markdown( "{0:02d} - **Article**: {1:<18} <br> _Section_: {2}".format(i + 1, res[0], sections), unsafe_allow_html=True, ) if show_passages: st.write( "> <span style=\"font-family:arial; font-size:10pt;\">" + res[-1] + "</span>", unsafe_allow_html=True ) if action in [2, 3]: __UpperCamelCase = find_nearest_training(question) __UpperCamelCase = nn_train_list[0] st.markdown( "--- \n ### The most similar question in the ELI5 training set was: \n\n {}".format(train_exple["title"]) ) __UpperCamelCase = [ "{}. {}".format(i + 1, " \n".join([line.strip() for line in ans.split("\n") if line.strip() != ""])) for i, (ans, sc) in enumerate(zip(train_exple["answers"]["text"], train_exple["answers"]["score"])) if i == 0 or sc > 2 ] st.markdown("##### Its answers were: \n\n {}".format("\n".join(answers_st))) __UpperCamelCase = "\n---\n\n**Disclaimer**\n\n*The intent of this app is to provide some (hopefully entertaining) insights into the behavior of a current LFQA system.\nEvaluating biases of such a model and ensuring factual generations are still very much open research problems.\nTherefore, until some significant progress is achieved, we caution against using the generated answers for practical purposes.*\n" st.sidebar.markdown(disclaimer, unsafe_allow_html=True)
26
0
"""simple docstring""" from typing import List, Optional, Tuple, Union import PIL import torch from torchvision import transforms from diffusers.pipeline_utils import DiffusionPipeline, ImagePipelineOutput from diffusers.schedulers import DDIMScheduler from diffusers.utils import randn_tensor _a = transforms.Compose( [ transforms.Resize((256, 256)), transforms.ToTensor(), transforms.Normalize([0.5], [0.5]), ] ) def lowerCamelCase__ ( __snake_case ) -> Optional[Any]: """simple docstring""" if isinstance(__snake_case, torch.Tensor ): return image elif isinstance(__snake_case, PIL.Image.Image ): _UpperCamelCase = [image] _UpperCamelCase = [trans(img.convert('''RGB''' ) ) for img in image] _UpperCamelCase = torch.stack(__snake_case ) return image class _UpperCAmelCase( lowerCamelCase ): def __init__( self , __a , __a) -> Dict: '''simple docstring''' super().__init__() # make sure scheduler can always be converted to DDIM _UpperCamelCase = DDIMScheduler.from_config(scheduler.config) self.register_modules(unet=__a , scheduler=__a) def UpperCAmelCase ( self , __a) -> Tuple: '''simple docstring''' if strength < 0 or strength > 1: raise ValueError(F'''The value of strength should in [0.0, 1.0] but is {strength}''') def UpperCAmelCase ( self , __a , __a , __a) -> Dict: '''simple docstring''' # get the original timestep using init_timestep _UpperCamelCase = min(int(num_inference_steps * strength) , __a) _UpperCamelCase = max(num_inference_steps - init_timestep , 0) _UpperCamelCase = self.scheduler.timesteps[t_start:] return timesteps, num_inference_steps - t_start def UpperCAmelCase ( self , __a , __a , __a , __a , __a , __a=None) -> int: '''simple docstring''' if not isinstance(__a , (torch.Tensor, PIL.Image.Image, list)): raise ValueError( F'''`image` has to be of type `torch.Tensor`, `PIL.Image.Image` or list but is {type(__a)}''') _UpperCamelCase = image.to(device=__a , dtype=__a) if isinstance(__a , __a) and len(__a) != batch_size: raise ValueError( F'''You have passed a list of generators of length {len(__a)}, but requested an effective batch''' F''' size of {batch_size}. Make sure the batch size matches the length of the generators.''') _UpperCamelCase = init_latents.shape _UpperCamelCase = randn_tensor(__a , generator=__a , device=__a , dtype=__a) # get latents print('''add noise to latents at timestep''' , __a) _UpperCamelCase = self.scheduler.add_noise(__a , __a , __a) _UpperCamelCase = init_latents return latents @torch.no_grad() def __call__( self , __a = None , __a = 0.8 , __a = 1 , __a = None , __a = 0.0 , __a = 50 , __a = None , __a = "pil" , __a = True , ) -> Union[ImagePipelineOutput, Tuple]: '''simple docstring''' self.check_inputs(__a) # 2. Preprocess image _UpperCamelCase = preprocess(__a) # 3. set timesteps self.scheduler.set_timesteps(__a , device=self.device) _UpperCamelCase , _UpperCamelCase = self.get_timesteps(__a , __a , self.device) _UpperCamelCase = timesteps[:1].repeat(__a) # 4. Prepare latent variables _UpperCamelCase = self.prepare_latents(__a , __a , __a , self.unet.dtype , self.device , __a) _UpperCamelCase = latents # 5. Denoising loop for t in self.progress_bar(__a): # 1. predict noise model_output _UpperCamelCase = self.unet(__a , __a).sample # 2. predict previous mean of image x_t-1 and add variance depending on eta # eta corresponds to η in paper and should be between [0, 1] # do x_t -> x_t-1 _UpperCamelCase = self.scheduler.step( __a , __a , __a , eta=__a , use_clipped_model_output=__a , generator=__a , ).prev_sample _UpperCamelCase = (image / 2 + 0.5).clamp(0 , 1) _UpperCamelCase = image.cpu().permute(0 , 2 , 3 , 1).numpy() if output_type == "pil": _UpperCamelCase = self.numpy_to_pil(__a) if not return_dict: return (image, latent_timestep.item()) return ImagePipelineOutput(images=__a)
19
'''simple docstring''' import warnings from ...utils import logging from .image_processing_owlvit import OwlViTImageProcessor __UpperCamelCase = logging.get_logger(__name__) class _A ( __lowercase ): def __init__( self : int , *__magic_name__ : Optional[Any] , **__magic_name__ : Any ) -> None: """simple docstring""" warnings.warn( """The class OwlViTFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please""" """ use OwlViTImageProcessor instead.""" , __magic_name__ , ) super().__init__(*__magic_name__ , **__magic_name__ )
26
0
import unittest from transformers import is_torch_available from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow if is_torch_available(): import torch from transformers import XLMRobertaModel @require_sentencepiece @require_tokenizers @require_torch class lowercase_ (unittest.TestCase ): @slow def __UpperCamelCase ( self) -> Union[str, Any]: a__ =XLMRobertaModel.from_pretrained('xlm-roberta-base') a__ =torch.tensor([[0, 581, 10269, 83, 99942, 136, 60742, 23, 70, 80583, 18276, 2]]) # The dog is cute and lives in the garden house a__ =torch.Size((1, 12, 768)) # batch_size, sequence_length, embedding_vector_dim a__ =torch.tensor( [[-0.01_01, 0.12_18, -0.08_03, 0.08_01, 0.13_27, 0.07_76, -0.12_15, 0.23_83, 0.33_38, 0.31_06, 0.03_00, 0.02_52]]) # xlmr = torch.hub.load('pytorch/fairseq', 'xlmr.base') # xlmr.eval() # expected_output_values_last_dim = xlmr.extract_features(input_ids[0])[:, :, -1] with torch.no_grad(): a__ =model(lowercase_)['last_hidden_state'].detach() self.assertEqual(output.shape , lowercase_) # compare the actual values for a slice of last dim self.assertTrue(torch.allclose(output[:, :, -1] , lowercase_ , atol=1e-3)) @slow def __UpperCamelCase ( self) -> Tuple: a__ =XLMRobertaModel.from_pretrained('xlm-roberta-large') a__ =torch.tensor([[0, 581, 10269, 83, 99942, 136, 60742, 23, 70, 80583, 18276, 2]]) # The dog is cute and lives in the garden house a__ =torch.Size((1, 12, 1024)) # batch_size, sequence_length, embedding_vector_dim a__ =torch.tensor( [[-0.06_99, -0.03_18, 0.07_05, -0.12_41, 0.09_99, -0.05_20, 0.10_04, -0.18_38, -0.47_04, 0.14_37, 0.08_21, 0.01_26]]) # xlmr = torch.hub.load('pytorch/fairseq', 'xlmr.large') # xlmr.eval() # expected_output_values_last_dim = xlmr.extract_features(input_ids[0])[:, :, -1] with torch.no_grad(): a__ =model(lowercase_)['last_hidden_state'].detach() self.assertEqual(output.shape , lowercase_) # compare the actual values for a slice of last dim self.assertTrue(torch.allclose(output[:, :, -1] , lowercase_ , atol=1e-3))
20
'''simple docstring''' import argparse import torch from transformers import BlenderbotConfig, BlenderbotForConditionalGeneration from transformers.utils import logging logging.set_verbosity_info() __UpperCamelCase = logging.get_logger(__name__) __UpperCamelCase = [ ["attention", "attn"], ["encoder_attention", "encoder_attn"], ["q_lin", "q_proj"], ["k_lin", "k_proj"], ["v_lin", "v_proj"], ["out_lin", "out_proj"], ["norm_embeddings", "layernorm_embedding"], ["position_embeddings", "embed_positions"], ["embeddings", "embed_tokens"], ["ffn.lin", "fc"], ] def _a ( _lowerCamelCase ) -> Union[str, Any]: """simple docstring""" if k == "embeddings.weight": return "shared.weight" for parlai_name, hf_name in PATTERNS: __snake_case : List[str] = k.replace(_lowerCamelCase , _lowerCamelCase ) if k.startswith("""encoder""" ): __snake_case : Optional[int] = k.replace(""".attn""" , """.self_attn""" ) __snake_case : Tuple = k.replace("""norm1""" , """self_attn_layer_norm""" ) __snake_case : List[str] = k.replace("""norm2""" , """final_layer_norm""" ) elif k.startswith("""decoder""" ): __snake_case : List[Any] = k.replace("""norm1""" , """self_attn_layer_norm""" ) __snake_case : str = k.replace("""norm2""" , """encoder_attn_layer_norm""" ) __snake_case : Optional[int] = k.replace("""norm3""" , """final_layer_norm""" ) return k def _a ( _lowerCamelCase ) -> Any: """simple docstring""" __snake_case : Optional[int] = [ """model.encoder.layernorm_embedding.weight""", """model.encoder.layernorm_embedding.bias""", """model.decoder.layernorm_embedding.weight""", """model.decoder.layernorm_embedding.bias""", ] for k in keys: __snake_case : Optional[Any] = sd.pop(_lowerCamelCase ) __snake_case : List[str] = k.replace("""layernorm_embedding""" , """layer_norm""" ) assert new_k not in sd __snake_case : Union[str, Any] = v __UpperCamelCase = ["START"] @torch.no_grad() def _a ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> Dict: """simple docstring""" __snake_case : Optional[int] = torch.load(_lowerCamelCase , map_location="""cpu""" ) __snake_case : Dict = model["""model"""] __snake_case : Optional[int] = BlenderbotConfig.from_json_file(_lowerCamelCase ) __snake_case : Union[str, Any] = BlenderbotForConditionalGeneration(_lowerCamelCase ) __snake_case : List[Any] = m.model.state_dict().keys() __snake_case : int = [] __snake_case : Union[str, Any] = {} for k, v in sd.items(): if k in IGNORE_KEYS: continue __snake_case : Optional[int] = rename_state_dict_key(_lowerCamelCase ) if new_k not in valid_keys: failures.append([k, new_k] ) else: __snake_case : str = v if cfg.normalize_before: # Blenderbot-3B checkpoints. Rename layernorm_embedding -> layer_norm rename_layernorm_keys(_lowerCamelCase ) m.model.load_state_dict(_lowerCamelCase , strict=_lowerCamelCase ) m.half() m.save_pretrained(_lowerCamelCase ) if __name__ == "__main__": __UpperCamelCase = argparse.ArgumentParser() # Required parameters parser.add_argument("--src_path", type=str, help="like blenderbot-model.bin") parser.add_argument("--save_dir", default="hf_blenderbot", type=str, help="Where to save converted model.") parser.add_argument( "--hf_config_json", default="blenderbot-3b-config.json", type=str, help="Path to config to use" ) __UpperCamelCase = parser.parse_args() convert_parlai_checkpoint(args.src_path, args.save_dir, args.hf_config_json)
26
0
import torch import torch.nn as nn from transformers.modeling_utils import ModuleUtilsMixin from transformers.models.ta.modeling_ta import TaBlock, TaConfig, TaLayerNorm from ...configuration_utils import ConfigMixin, register_to_config from ...models import ModelMixin class __A ( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ): @register_to_config def __init__( self :Optional[Any] , __snake_case :int , __snake_case :int , __snake_case :int , __snake_case :float , __snake_case :int , __snake_case :int , __snake_case :int , __snake_case :int , __snake_case :str , __snake_case :bool = False , ): '''simple docstring''' super().__init__() __magic_name__ : List[str] =nn.Embedding(__snake_case , __snake_case ) __magic_name__ : int =nn.Embedding(__snake_case , __snake_case ) __magic_name__ : Tuple =False __magic_name__ : List[str] =nn.Dropout(p=__snake_case ) __magic_name__ : Union[str, Any] =TaConfig( vocab_size=__snake_case , d_model=__snake_case , num_heads=__snake_case , d_kv=__snake_case , d_ff=__snake_case , dropout_rate=__snake_case , feed_forward_proj=__snake_case , is_decoder=__snake_case , is_encoder_decoder=__snake_case , ) __magic_name__ : List[Any] =nn.ModuleList() for lyr_num in range(__snake_case ): __magic_name__ : Any =TaBlock(__snake_case ) self.encoders.append(__snake_case ) __magic_name__ : Union[str, Any] =TaLayerNorm(__snake_case ) __magic_name__ : str =nn.Dropout(p=__snake_case ) def A__ ( self :List[Any] , __snake_case :Union[str, Any] , __snake_case :List[str] ): '''simple docstring''' __magic_name__ : Dict =self.token_embedder(__snake_case ) __magic_name__ : List[Any] =encoder_input_tokens.shape[1] __magic_name__ : Any =torch.arange(__snake_case , device=encoder_input_tokens.device ) x += self.position_encoding(__snake_case ) __magic_name__ : Optional[int] =self.dropout_pre(__snake_case ) # inverted the attention mask __magic_name__ : Optional[int] =encoder_input_tokens.size() __magic_name__ : Optional[int] =self.get_extended_attention_mask(__snake_case , __snake_case ) for lyr in self.encoders: __magic_name__ : Union[str, Any] =lyr(__snake_case , __snake_case )[0] __magic_name__ : int =self.layer_norm(__snake_case ) return self.dropout_post(__snake_case ), encoder_inputs_mask
21
'''simple docstring''' import argparse import os import re import packaging.version __UpperCamelCase = "examples/" __UpperCamelCase = { "examples": (re.compile(R"^check_min_version\(\"[^\"]+\"\)\s*$", re.MULTILINE), "check_min_version(\"VERSION\")\n"), "init": (re.compile(R"^__version__\s+=\s+\"([^\"]+)\"\s*$", re.MULTILINE), "__version__ = \"VERSION\"\n"), "setup": (re.compile(R"^(\s*)version\s*=\s*\"[^\"]+\",", re.MULTILINE), R"\1version=\"VERSION\","), "doc": (re.compile(R"^(\s*)release\s*=\s*\"[^\"]+\"$", re.MULTILINE), "release = \"VERSION\"\n"), } __UpperCamelCase = { "init": "src/transformers/__init__.py", "setup": "setup.py", } __UpperCamelCase = "README.md" def _a ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> Tuple: """simple docstring""" with open(_lowerCamelCase , """r""" , encoding="""utf-8""" , newline="""\n""" ) as f: __snake_case : Union[str, Any] = f.read() __snake_case , __snake_case : List[Any] = REPLACE_PATTERNS[pattern] __snake_case : Optional[Any] = replace.replace("""VERSION""" , _lowerCamelCase ) __snake_case : Optional[Any] = re_pattern.sub(_lowerCamelCase , _lowerCamelCase ) with open(_lowerCamelCase , """w""" , encoding="""utf-8""" , newline="""\n""" ) as f: f.write(_lowerCamelCase ) def _a ( _lowerCamelCase ) -> Union[str, Any]: """simple docstring""" for folder, directories, fnames in os.walk(_lowerCamelCase ): # Removing some of the folders with non-actively maintained examples from the walk if "research_projects" in directories: directories.remove("""research_projects""" ) if "legacy" in directories: directories.remove("""legacy""" ) for fname in fnames: if fname.endswith(""".py""" ): update_version_in_file(os.path.join(_lowerCamelCase , _lowerCamelCase ) , _lowerCamelCase , pattern="""examples""" ) def _a ( _lowerCamelCase , _lowerCamelCase=False ) -> str: """simple docstring""" for pattern, fname in REPLACE_FILES.items(): update_version_in_file(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) if not patch: update_version_in_examples(_lowerCamelCase ) def _a ( ) -> Optional[int]: """simple docstring""" __snake_case : str = """🤗 Transformers currently provides the following architectures""" __snake_case : List[Any] = """1. Want to contribute a new model?""" with open(_lowerCamelCase , """r""" , encoding="""utf-8""" , newline="""\n""" ) as f: __snake_case : List[str] = f.readlines() # Find the start of the list. __snake_case : Optional[Any] = 0 while not lines[start_index].startswith(_start_prompt ): start_index += 1 start_index += 1 __snake_case : int = start_index # Update the lines in the model list. while not lines[index].startswith(_end_prompt ): if lines[index].startswith("""1.""" ): __snake_case : Optional[Any] = lines[index].replace( """https://huggingface.co/docs/transformers/main/model_doc""" , """https://huggingface.co/docs/transformers/model_doc""" , ) index += 1 with open(_lowerCamelCase , """w""" , encoding="""utf-8""" , newline="""\n""" ) as f: f.writelines(_lowerCamelCase ) def _a ( ) -> Union[str, Any]: """simple docstring""" with open(REPLACE_FILES["""init"""] , """r""" ) as f: __snake_case : List[Any] = f.read() __snake_case : str = REPLACE_PATTERNS["""init"""][0].search(_lowerCamelCase ).groups()[0] return packaging.version.parse(_lowerCamelCase ) def _a ( _lowerCamelCase=False ) -> int: """simple docstring""" __snake_case : List[Any] = get_version() if patch and default_version.is_devrelease: raise ValueError("""Can't create a patch version from the dev branch, checkout a released version!""" ) if default_version.is_devrelease: __snake_case : str = default_version.base_version elif patch: __snake_case : Optional[int] = F'''{default_version.major}.{default_version.minor}.{default_version.micro + 1}''' else: __snake_case : Dict = F'''{default_version.major}.{default_version.minor + 1}.0''' # Now let's ask nicely if that's the right one. __snake_case : Dict = input(F'''Which version are you releasing? [{default_version}]''' ) if len(_lowerCamelCase ) == 0: __snake_case : Any = default_version print(F'''Updating version to {version}.''' ) global_version_update(_lowerCamelCase , patch=_lowerCamelCase ) if not patch: print("""Cleaning main README, don't forget to run `make fix-copies`.""" ) clean_main_ref_in_model_list() def _a ( ) -> Tuple: """simple docstring""" __snake_case : Optional[Any] = get_version() __snake_case : Tuple = F'''{current_version.major}.{current_version.minor + 1}.0.dev0''' __snake_case : Union[str, Any] = current_version.base_version # Check with the user we got that right. __snake_case : int = input(F'''Which version are we developing now? [{dev_version}]''' ) if len(_lowerCamelCase ) == 0: __snake_case : Optional[int] = dev_version print(F'''Updating version to {version}.''' ) global_version_update(_lowerCamelCase ) print("""Cleaning main README, don't forget to run `make fix-copies`.""" ) clean_main_ref_in_model_list() if __name__ == "__main__": __UpperCamelCase = argparse.ArgumentParser() parser.add_argument("--post_release", action="store_true", help="Whether this is pre or post release.") parser.add_argument("--patch", action="store_true", help="Whether or not this is a patch release.") __UpperCamelCase = parser.parse_args() if not args.post_release: pre_release_work(patch=args.patch) elif args.patch: print("Nothing to do after a patch :-)") else: post_release_work()
26
0
'''simple docstring''' import unittest from transformers import LiltConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( LiltForQuestionAnswering, LiltForSequenceClassification, LiltForTokenClassification, LiltModel, ) from transformers.models.lilt.modeling_lilt import LILT_PRETRAINED_MODEL_ARCHIVE_LIST class A : def __init__( self : Any , lowerCAmelCase_ : List[Any] , lowerCAmelCase_ : List[str]=13 , lowerCAmelCase_ : List[Any]=7 , lowerCAmelCase_ : Any=True , lowerCAmelCase_ : Optional[Any]=True , lowerCAmelCase_ : Dict=True , lowerCAmelCase_ : Optional[Any]=True , lowerCAmelCase_ : Optional[Any]=99 , lowerCAmelCase_ : List[Any]=24 , lowerCAmelCase_ : int=2 , lowerCAmelCase_ : Union[str, Any]=6 , lowerCAmelCase_ : Tuple=37 , lowerCAmelCase_ : List[Any]="gelu" , lowerCAmelCase_ : Union[str, Any]=0.1 , lowerCAmelCase_ : Any=0.1 , lowerCAmelCase_ : Optional[Any]=5_12 , lowerCAmelCase_ : Tuple=16 , lowerCAmelCase_ : int=2 , lowerCAmelCase_ : str=0.0_2 , lowerCAmelCase_ : Optional[int]=3 , lowerCAmelCase_ : Any=None , lowerCAmelCase_ : int=10_00 , ) -> int: """simple docstring""" _a = parent _a = batch_size _a = seq_length _a = is_training _a = use_input_mask _a = use_token_type_ids _a = use_labels _a = vocab_size _a = hidden_size _a = num_hidden_layers _a = num_attention_heads _a = intermediate_size _a = hidden_act _a = hidden_dropout_prob _a = attention_probs_dropout_prob _a = max_position_embeddings _a = type_vocab_size _a = type_sequence_label_size _a = initializer_range _a = num_labels _a = scope _a = range_bbox def __lowerCAmelCase ( self : List[Any] ) -> Union[str, Any]: """simple docstring""" _a = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _a = ids_tensor([self.batch_size, self.seq_length, 4] , self.range_bbox ) # Ensure that bbox is legal for i in range(bbox.shape[0] ): for j in range(bbox.shape[1] ): if bbox[i, j, 3] < bbox[i, j, 1]: _a = bbox[i, j, 3] _a = bbox[i, j, 1] _a = t if bbox[i, j, 2] < bbox[i, j, 0]: _a = bbox[i, j, 2] _a = bbox[i, j, 0] _a = t _a = None if self.use_input_mask: _a = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 ) _a = None if self.use_token_type_ids: _a = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) _a = None _a = None if self.use_labels: _a = ids_tensor([self.batch_size] , self.type_sequence_label_size ) _a = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) _a = self.get_config() return config, input_ids, bbox, token_type_ids, input_mask, sequence_labels, token_labels def __lowerCAmelCase ( self : Union[str, Any] ) -> Optional[int]: """simple docstring""" return LiltConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , ) def __lowerCAmelCase ( self : List[str] , lowerCAmelCase_ : int , lowerCAmelCase_ : List[Any] , lowerCAmelCase_ : List[str] , lowerCAmelCase_ : Tuple , lowerCAmelCase_ : List[str] , lowerCAmelCase_ : Union[str, Any] , lowerCAmelCase_ : Any , ) -> Optional[int]: """simple docstring""" _a = LiltModel(config=lowerCAmelCase_ ) model.to(lowerCAmelCase_ ) model.eval() _a = model(lowerCAmelCase_ , bbox=lowerCAmelCase_ , attention_mask=lowerCAmelCase_ , token_type_ids=lowerCAmelCase_ ) _a = model(lowerCAmelCase_ , bbox=lowerCAmelCase_ , token_type_ids=lowerCAmelCase_ ) _a = model(lowerCAmelCase_ , bbox=lowerCAmelCase_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) ) def __lowerCAmelCase ( self : Optional[int] , lowerCAmelCase_ : int , lowerCAmelCase_ : Tuple , lowerCAmelCase_ : Optional[Any] , lowerCAmelCase_ : Dict , lowerCAmelCase_ : str , lowerCAmelCase_ : Optional[Any] , lowerCAmelCase_ : Any , ) -> Any: """simple docstring""" _a = self.num_labels _a = LiltForTokenClassification(config=lowerCAmelCase_ ) model.to(lowerCAmelCase_ ) model.eval() _a = model( lowerCAmelCase_ , bbox=lowerCAmelCase_ , attention_mask=lowerCAmelCase_ , token_type_ids=lowerCAmelCase_ , labels=lowerCAmelCase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def __lowerCAmelCase ( self : Any , lowerCAmelCase_ : Optional[Any] , lowerCAmelCase_ : Dict , lowerCAmelCase_ : Optional[Any] , lowerCAmelCase_ : List[Any] , lowerCAmelCase_ : Any , lowerCAmelCase_ : Union[str, Any] , lowerCAmelCase_ : Union[str, Any] , ) -> Dict: """simple docstring""" _a = LiltForQuestionAnswering(config=lowerCAmelCase_ ) model.to(lowerCAmelCase_ ) model.eval() _a = model( lowerCAmelCase_ , bbox=lowerCAmelCase_ , attention_mask=lowerCAmelCase_ , token_type_ids=lowerCAmelCase_ , start_positions=lowerCAmelCase_ , end_positions=lowerCAmelCase_ , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def __lowerCAmelCase ( self : Union[str, Any] ) -> Tuple: """simple docstring""" _a = self.prepare_config_and_inputs() ( ( _a ) , ( _a ) , ( _a ) , ( _a ) , ( _a ) , ( _a ) , ( _a ) , ) = config_and_inputs _a = { '''input_ids''': input_ids, '''bbox''': bbox, '''token_type_ids''': token_type_ids, '''attention_mask''': input_mask, } return config, inputs_dict @require_torch class A ( _a ,_a ,_a ,unittest.TestCase ): lowercase_ = ( ( LiltModel, LiltForSequenceClassification, LiltForTokenClassification, LiltForQuestionAnswering, ) if is_torch_available() else () ) lowercase_ = ( { 'feature-extraction': LiltModel, 'question-answering': LiltForQuestionAnswering, 'text-classification': LiltForSequenceClassification, 'token-classification': LiltForTokenClassification, 'zero-shot': LiltForSequenceClassification, } if is_torch_available() else {} ) lowercase_ = False lowercase_ = False def __lowerCAmelCase ( self : Optional[Any] , lowerCAmelCase_ : int , lowerCAmelCase_ : List[Any] , lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : Any , lowerCAmelCase_ : List[str] ) -> Optional[int]: """simple docstring""" return True def __lowerCAmelCase ( self : List[str] ) -> Any: """simple docstring""" _a = LiltModelTester(self ) _a = ConfigTester(self , config_class=lowerCAmelCase_ , hidden_size=37 ) def __lowerCAmelCase ( self : List[Any] ) -> Any: """simple docstring""" self.config_tester.run_common_tests() def __lowerCAmelCase ( self : List[Any] ) -> int: """simple docstring""" _a = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowerCAmelCase_ ) def __lowerCAmelCase ( self : Tuple ) -> Tuple: """simple docstring""" _a = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: _a = type self.model_tester.create_and_check_model(*lowerCAmelCase_ ) def __lowerCAmelCase ( self : str ) -> Dict: """simple docstring""" _a = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*lowerCAmelCase_ ) def __lowerCAmelCase ( self : List[Any] ) -> Dict: """simple docstring""" _a = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*lowerCAmelCase_ ) @slow def __lowerCAmelCase ( self : str ) -> List[Any]: """simple docstring""" for model_name in LILT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _a = LiltModel.from_pretrained(lowerCAmelCase_ ) self.assertIsNotNone(lowerCAmelCase_ ) @require_torch @slow class A ( unittest.TestCase ): def __lowerCAmelCase ( self : Any ) -> Optional[int]: """simple docstring""" _a = LiltModel.from_pretrained('''SCUT-DLVCLab/lilt-roberta-en-base''' ).to(lowerCAmelCase_ ) _a = torch.tensor([[1, 2]] , device=lowerCAmelCase_ ) _a = torch.tensor([[[1, 2, 3, 4], [5, 6, 7, 8]]] , device=lowerCAmelCase_ ) # forward pass with torch.no_grad(): _a = model(input_ids=lowerCAmelCase_ , bbox=lowerCAmelCase_ ) _a = torch.Size([1, 2, 7_68] ) _a = torch.tensor( [[-0.0_6_5_3, 0.0_9_5_0, -0.0_0_6_1], [-0.0_5_4_5, 0.0_9_2_6, -0.0_3_2_4]] , device=lowerCAmelCase_ , ) self.assertTrue(outputs.last_hidden_state.shape , lowerCAmelCase_ ) self.assertTrue(torch.allclose(outputs.last_hidden_state[0, :, :3] , lowerCAmelCase_ , atol=1e-3 ) )
22
'''simple docstring''' from unittest import TestCase from datasets import Sequence, Value from datasets.arrow_dataset import Dataset class _A ( __lowercase ): def lowercase__ ( self : Any ) -> str: """simple docstring""" return [ {"col_1": 3, "col_2": "a"}, {"col_1": 2, "col_2": "b"}, {"col_1": 1, "col_2": "c"}, {"col_1": 0, "col_2": "d"}, ] def lowercase__ ( self : str ) -> int: """simple docstring""" __snake_case : Union[str, Any] = {"""col_1""": [3, 2, 1, 0], """col_2""": ["""a""", """b""", """c""", """d"""]} return Dataset.from_dict(__magic_name__ ) def lowercase__ ( self : str ) -> List[Any]: """simple docstring""" __snake_case : Any = self._create_example_records() __snake_case : str = Dataset.from_list(__magic_name__ ) self.assertListEqual(dset.column_names , ["""col_1""", """col_2"""] ) for i, r in enumerate(__magic_name__ ): self.assertDictEqual(__magic_name__ , example_records[i] ) def lowercase__ ( self : Optional[Any] ) -> List[Any]: """simple docstring""" __snake_case : List[Any] = self._create_example_records() __snake_case : Dict = Dataset.from_list(__magic_name__ ) __snake_case : List[Any] = Dataset.from_dict({k: [r[k] for r in example_records] for k in example_records[0]} ) self.assertEqual(dset.info , dset_from_dict.info ) def lowercase__ ( self : str ) -> List[Any]: # checks what happens with missing columns """simple docstring""" __snake_case : Union[str, Any] = [{"""col_1""": 1}, {"""col_2""": """x"""}] __snake_case : Optional[int] = Dataset.from_list(__magic_name__ ) self.assertDictEqual(dset[0] , {"""col_1""": 1} ) self.assertDictEqual(dset[1] , {"""col_1""": None} ) # NB: first record is used for columns def lowercase__ ( self : List[str] ) -> Optional[Any]: # checks if the type can be inferred from the second record """simple docstring""" __snake_case : List[Any] = [{"""col_1""": []}, {"""col_1""": [1, 2]}] __snake_case : int = Dataset.from_list(__magic_name__ ) self.assertEqual(dset.info.features["""col_1"""] , Sequence(Value("""int64""" ) ) ) def lowercase__ ( self : int ) -> Union[str, Any]: """simple docstring""" __snake_case : Tuple = Dataset.from_list([] ) self.assertEqual(len(__magic_name__ ) , 0 ) self.assertListEqual(dset.column_names , [] )
26
0
import argparse import glob import logging import os import sys import time from collections import defaultdict from pathlib import Path from typing import Dict, List, Tuple import numpy as np import pytorch_lightning as pl import torch from callbacks import SeqaSeqLoggingCallback, get_checkpoint_callback, get_early_stopping_callback from torch import nn from torch.utils.data import DataLoader from transformers import MBartTokenizer, TaForConditionalGeneration from transformers.models.bart.modeling_bart import shift_tokens_right from utils import ( ROUGE_KEYS, LegacySeqaSeqDataset, SeqaSeqDataset, assert_all_frozen, calculate_bleu, calculate_rouge, check_output_dir, flatten_list, freeze_embeds, freeze_params, get_git_info, label_smoothed_nll_loss, lmap, pickle_save, save_git_info, save_json, use_task_specific_params, ) # need the parent dir module sys.path.insert(2, str(Path(__file__).resolve().parents[1])) from lightning_base import BaseTransformer, add_generic_args, generic_train # noqa snake_case__ : str = logging.getLogger(__name__) class _a ( UpperCAmelCase__ ): """simple docstring""" A_ = """summarization""" A_ = ["""loss"""] A_ = ROUGE_KEYS A_ = """rouge2""" def __init__( self , _UpperCAmelCase , **_UpperCAmelCase ) -> Union[str, Any]: if hparams.sortish_sampler and hparams.gpus > 1: UpperCamelCase_ = False elif hparams.max_tokens_per_batch is not None: if hparams.gpus > 1: raise NotImplementedError('Dynamic Batch size does not work for multi-gpu training' ) if hparams.sortish_sampler: raise ValueError('--sortish_sampler and --max_tokens_per_batch may not be used simultaneously' ) super().__init__(_UpperCAmelCase , num_labels=_UpperCAmelCase , mode=self.mode , **_UpperCAmelCase ) use_task_specific_params(self.model , 'summarization' ) save_git_info(self.hparams.output_dir ) UpperCamelCase_ = Path(self.output_dir ) / 'metrics.json' UpperCamelCase_ = Path(self.output_dir ) / 'hparams.pkl' pickle_save(self.hparams , self.hparams_save_path ) UpperCamelCase_ = 0 UpperCamelCase_ = defaultdict(_UpperCAmelCase ) UpperCamelCase_ = self.config.model_type UpperCamelCase_ = self.config.tgt_vocab_size if self.model_type == 'fsmt' else self.config.vocab_size UpperCamelCase_ = { "data_dir": self.hparams.data_dir, "max_source_length": self.hparams.max_source_length, "prefix": self.model.config.prefix or "", } UpperCamelCase_ = { 'train': self.hparams.n_train, 'val': self.hparams.n_val, 'test': self.hparams.n_test, } UpperCamelCase_ = {k: v if v >= 0 else None for k, v in n_observations_per_split.items()} UpperCamelCase_ = { 'train': self.hparams.max_target_length, 'val': self.hparams.val_max_target_length, 'test': self.hparams.test_max_target_length, } assert self.target_lens["train"] <= self.target_lens["val"], f"""target_lens: {self.target_lens}""" assert self.target_lens["train"] <= self.target_lens["test"], f"""target_lens: {self.target_lens}""" if self.hparams.freeze_embeds: freeze_embeds(self.model ) if self.hparams.freeze_encoder: freeze_params(self.model.get_encoder() ) assert_all_frozen(self.model.get_encoder() ) UpperCamelCase_ = get_git_info()['repo_sha'] UpperCamelCase_ = hparams.num_workers UpperCamelCase_ = None # default to config if self.model.config.decoder_start_token_id is None and isinstance(self.tokenizer , _UpperCAmelCase ): UpperCamelCase_ = self.tokenizer.lang_code_to_id[hparams.tgt_lang] UpperCamelCase_ = self.decoder_start_token_id UpperCamelCase_ = ( SeqaSeqDataset if hasattr(self.tokenizer , 'prepare_seq2seq_batch' ) else LegacySeqaSeqDataset ) UpperCamelCase_ = False UpperCamelCase_ = self.model.config.num_beams if self.hparams.eval_beams is None else self.hparams.eval_beams if self.hparams.eval_max_gen_length is not None: UpperCamelCase_ = self.hparams.eval_max_gen_length else: UpperCamelCase_ = self.model.config.max_length UpperCamelCase_ = self.default_val_metric if self.hparams.val_metric is None else self.hparams.val_metric def _UpperCAmelCase ( self , _UpperCAmelCase ) -> Dict[str, List[str]]: UpperCamelCase_ = { k: self.tokenizer.batch_decode(v.tolist() ) if 'mask' not in k else v.shape for k, v in batch.items() } save_json(_UpperCAmelCase , Path(self.output_dir ) / 'text_batch.json' ) save_json({k: v.tolist() for k, v in batch.items()} , Path(self.output_dir ) / 'tok_batch.json' ) UpperCamelCase_ = True return readable_batch def _UpperCAmelCase ( self , _UpperCAmelCase , **_UpperCAmelCase ) -> Union[str, Any]: return self.model(_UpperCAmelCase , **_UpperCAmelCase ) def _UpperCAmelCase ( self , _UpperCAmelCase ) -> int: UpperCamelCase_ = self.tokenizer.batch_decode( _UpperCAmelCase , skip_special_tokens=_UpperCAmelCase , clean_up_tokenization_spaces=_UpperCAmelCase ) return lmap(str.strip , _UpperCAmelCase ) def _UpperCAmelCase ( self , _UpperCAmelCase ) -> Tuple: UpperCamelCase_ = self.tokenizer.pad_token_id UpperCamelCase_ , UpperCamelCase_ = batch['input_ids'], batch['attention_mask'] UpperCamelCase_ = batch['labels'] if isinstance(self.model , _UpperCAmelCase ): UpperCamelCase_ = self.model._shift_right(_UpperCAmelCase ) else: UpperCamelCase_ = shift_tokens_right(_UpperCAmelCase , _UpperCAmelCase ) if not self.already_saved_batch: # This would be slightly better if it only happened on rank zero UpperCamelCase_ = decoder_input_ids self.save_readable_batch(_UpperCAmelCase ) UpperCamelCase_ = self(_UpperCAmelCase , attention_mask=_UpperCAmelCase , decoder_input_ids=_UpperCAmelCase , use_cache=_UpperCAmelCase ) UpperCamelCase_ = outputs['logits'] if self.hparams.label_smoothing == 0: # Same behavior as modeling_bart.py, besides ignoring pad_token_id UpperCamelCase_ = nn.CrossEntropyLoss(ignore_index=_UpperCAmelCase ) assert lm_logits.shape[-1] == self.vocab_size UpperCamelCase_ = ce_loss_fct(lm_logits.view(-1 , lm_logits.shape[-1] ) , tgt_ids.view(-1 ) ) else: UpperCamelCase_ = nn.functional.log_softmax(_UpperCAmelCase , dim=-1 ) UpperCamelCase_ , UpperCamelCase_ = label_smoothed_nll_loss( _UpperCAmelCase , _UpperCAmelCase , self.hparams.label_smoothing , ignore_index=_UpperCAmelCase ) return (loss,) @property def _UpperCAmelCase ( self ) -> int: return self.tokenizer.pad_token_id def _UpperCAmelCase ( self , _UpperCAmelCase , _UpperCAmelCase ) -> Dict: UpperCamelCase_ = self._step(_UpperCAmelCase ) UpperCamelCase_ = dict(zip(self.loss_names , _UpperCAmelCase ) ) # tokens per batch UpperCamelCase_ = batch['input_ids'].ne(self.pad ).sum() + batch['labels'].ne(self.pad ).sum() UpperCamelCase_ = batch['input_ids'].shape[0] UpperCamelCase_ = batch['input_ids'].eq(self.pad ).sum() UpperCamelCase_ = batch['input_ids'].eq(self.pad ).float().mean() # TODO(SS): make a wandb summary metric for this return {"loss": loss_tensors[0], "log": logs} def _UpperCAmelCase ( self , _UpperCAmelCase , _UpperCAmelCase ) -> Dict: return self._generative_step(_UpperCAmelCase ) def _UpperCAmelCase ( self , _UpperCAmelCase , _UpperCAmelCase="val" ) -> Dict: self.step_count += 1 UpperCamelCase_ = {k: torch.stack([x[k] for x in outputs] ).mean() for k in self.loss_names} UpperCamelCase_ = losses['loss'] UpperCamelCase_ = { k: np.array([x[k] for x in outputs] ).mean() for k in self.metric_names + ['gen_time', 'gen_len'] } UpperCamelCase_ = ( generative_metrics[self.val_metric] if self.val_metric in generative_metrics else losses[self.val_metric] ) UpperCamelCase_ = torch.tensor(_UpperCAmelCase ).type_as(_UpperCAmelCase ) generative_metrics.update({k: v.item() for k, v in losses.items()} ) losses.update(_UpperCAmelCase ) UpperCamelCase_ = {f"""{prefix}_avg_{k}""": x for k, x in losses.items()} UpperCamelCase_ = self.step_count self.metrics[prefix].append(_UpperCAmelCase ) # callback writes this to self.metrics_save_path UpperCamelCase_ = flatten_list([x['preds'] for x in outputs] ) return { "log": all_metrics, "preds": preds, f"""{prefix}_loss""": loss, f"""{prefix}_{self.val_metric}""": metric_tensor, } def _UpperCAmelCase ( self , _UpperCAmelCase , _UpperCAmelCase ) -> Dict: return calculate_rouge(_UpperCAmelCase , _UpperCAmelCase ) def _UpperCAmelCase ( self , _UpperCAmelCase ) -> dict: UpperCamelCase_ = time.time() # parser.add_argument('--eval_max_gen_length', type=int, default=None, help='never generate more than n tokens') UpperCamelCase_ = self.model.generate( batch['input_ids'] , attention_mask=batch['attention_mask'] , use_cache=_UpperCAmelCase , decoder_start_token_id=self.decoder_start_token_id , num_beams=self.eval_beams , max_length=self.eval_max_length , ) UpperCamelCase_ = (time.time() - ta) / batch['input_ids'].shape[0] UpperCamelCase_ = self.ids_to_clean_text(_UpperCAmelCase ) UpperCamelCase_ = self.ids_to_clean_text(batch['labels'] ) UpperCamelCase_ = self._step(_UpperCAmelCase ) UpperCamelCase_ = dict(zip(self.loss_names , _UpperCAmelCase ) ) UpperCamelCase_ = self.calc_generative_metrics(_UpperCAmelCase , _UpperCAmelCase ) UpperCamelCase_ = np.mean(lmap(_UpperCAmelCase , _UpperCAmelCase ) ) base_metrics.update(gen_time=_UpperCAmelCase , gen_len=_UpperCAmelCase , preds=_UpperCAmelCase , target=_UpperCAmelCase , **_UpperCAmelCase ) return base_metrics def _UpperCAmelCase ( self , _UpperCAmelCase , _UpperCAmelCase ) -> str: return self._generative_step(_UpperCAmelCase ) def _UpperCAmelCase ( self , _UpperCAmelCase ) -> int: return self.validation_epoch_end(_UpperCAmelCase , prefix='test' ) def _UpperCAmelCase ( self , _UpperCAmelCase ) -> SeqaSeqDataset: UpperCamelCase_ = self.n_obs[type_path] UpperCamelCase_ = self.target_lens[type_path] UpperCamelCase_ = self.dataset_class( self.tokenizer , type_path=_UpperCAmelCase , n_obs=_UpperCAmelCase , max_target_length=_UpperCAmelCase , **self.dataset_kwargs , ) return dataset def _UpperCAmelCase ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase = False ) -> DataLoader: UpperCamelCase_ = self.get_dataset(_UpperCAmelCase ) if self.hparams.sortish_sampler and type_path != "test" and type_path != "val": UpperCamelCase_ = dataset.make_sortish_sampler(_UpperCAmelCase , distributed=self.hparams.gpus > 1 ) return DataLoader( _UpperCAmelCase , batch_size=_UpperCAmelCase , collate_fn=dataset.collate_fn , shuffle=_UpperCAmelCase , num_workers=self.num_workers , sampler=_UpperCAmelCase , ) elif self.hparams.max_tokens_per_batch is not None and type_path != "test" and type_path != "val": UpperCamelCase_ = dataset.make_dynamic_sampler( self.hparams.max_tokens_per_batch , distributed=self.hparams.gpus > 1 ) return DataLoader( _UpperCAmelCase , batch_sampler=_UpperCAmelCase , collate_fn=dataset.collate_fn , num_workers=self.num_workers , ) else: return DataLoader( _UpperCAmelCase , batch_size=_UpperCAmelCase , collate_fn=dataset.collate_fn , shuffle=_UpperCAmelCase , num_workers=self.num_workers , sampler=_UpperCAmelCase , ) def _UpperCAmelCase ( self ) -> DataLoader: UpperCamelCase_ = self.get_dataloader('train' , batch_size=self.hparams.train_batch_size , shuffle=_UpperCAmelCase ) return dataloader def _UpperCAmelCase ( self ) -> DataLoader: return self.get_dataloader('val' , batch_size=self.hparams.eval_batch_size ) def _UpperCAmelCase ( self ) -> DataLoader: return self.get_dataloader('test' , batch_size=self.hparams.eval_batch_size ) @staticmethod def _UpperCAmelCase ( _UpperCAmelCase , _UpperCAmelCase ) -> List[Any]: BaseTransformer.add_model_specific_args(_UpperCAmelCase , _UpperCAmelCase ) add_generic_args(_UpperCAmelCase , _UpperCAmelCase ) parser.add_argument( '--max_source_length' , default=1024 , type=_UpperCAmelCase , help=( 'The maximum total input sequence length after tokenization. Sequences longer ' 'than this will be truncated, sequences shorter will be padded.' ) , ) parser.add_argument( '--max_target_length' , default=56 , type=_UpperCAmelCase , help=( 'The maximum total input sequence length after tokenization. Sequences longer ' 'than this will be truncated, sequences shorter will be padded.' ) , ) parser.add_argument( '--val_max_target_length' , default=142 , type=_UpperCAmelCase , help=( 'The maximum total input sequence length after tokenization. Sequences longer ' 'than this will be truncated, sequences shorter will be padded.' ) , ) parser.add_argument( '--test_max_target_length' , default=142 , type=_UpperCAmelCase , help=( 'The maximum total input sequence length after tokenization. Sequences longer ' 'than this will be truncated, sequences shorter will be padded.' ) , ) parser.add_argument('--freeze_encoder' , action='store_true' ) parser.add_argument('--freeze_embeds' , action='store_true' ) parser.add_argument('--sortish_sampler' , action='store_true' , default=_UpperCAmelCase ) parser.add_argument('--overwrite_output_dir' , action='store_true' , default=_UpperCAmelCase ) parser.add_argument('--max_tokens_per_batch' , type=_UpperCAmelCase , default=_UpperCAmelCase ) parser.add_argument('--logger_name' , type=_UpperCAmelCase , choices=['default', 'wandb', 'wandb_shared'] , default='default' ) parser.add_argument('--n_train' , type=_UpperCAmelCase , default=-1 , required=_UpperCAmelCase , help='# examples. -1 means use all.' ) parser.add_argument('--n_val' , type=_UpperCAmelCase , default=500 , required=_UpperCAmelCase , help='# examples. -1 means use all.' ) parser.add_argument('--n_test' , type=_UpperCAmelCase , default=-1 , required=_UpperCAmelCase , help='# examples. -1 means use all.' ) parser.add_argument( '--task' , type=_UpperCAmelCase , default='summarization' , required=_UpperCAmelCase , help='# examples. -1 means use all.' ) parser.add_argument('--label_smoothing' , type=_UpperCAmelCase , default=0.0 , required=_UpperCAmelCase ) parser.add_argument('--src_lang' , type=_UpperCAmelCase , default='' , required=_UpperCAmelCase ) parser.add_argument('--tgt_lang' , type=_UpperCAmelCase , default='' , required=_UpperCAmelCase ) parser.add_argument('--eval_beams' , type=_UpperCAmelCase , default=_UpperCAmelCase , required=_UpperCAmelCase ) parser.add_argument( '--val_metric' , type=_UpperCAmelCase , default=_UpperCAmelCase , required=_UpperCAmelCase , choices=['bleu', 'rouge2', 'loss', None] ) parser.add_argument('--eval_max_gen_length' , type=_UpperCAmelCase , default=_UpperCAmelCase , help='never generate more than n tokens' ) parser.add_argument('--save_top_k' , type=_UpperCAmelCase , default=1 , required=_UpperCAmelCase , help='How many checkpoints to save' ) parser.add_argument( '--early_stopping_patience' , type=_UpperCAmelCase , default=-1 , required=_UpperCAmelCase , help=( '-1 means never early stop. early_stopping_patience is measured in validation checks, not epochs. So' ' val_check_interval will effect it.' ) , ) return parser class _a ( UpperCAmelCase__ ): """simple docstring""" A_ = """translation""" A_ = ["""loss"""] A_ = ["""bleu"""] A_ = """bleu""" def __init__( self , _UpperCAmelCase , **_UpperCAmelCase ) -> Optional[int]: super().__init__(_UpperCAmelCase , **_UpperCAmelCase ) UpperCamelCase_ = hparams.src_lang UpperCamelCase_ = hparams.tgt_lang def _UpperCAmelCase ( self , _UpperCAmelCase , _UpperCAmelCase ) -> dict: return calculate_bleu(_UpperCAmelCase , _UpperCAmelCase ) def _snake_case (__lowercase , __lowercase=None): Path(args.output_dir).mkdir(exist_ok=__lowercase) check_output_dir(__lowercase , expected_items=3) if model is None: if "summarization" in args.task: UpperCamelCase_ = SummarizationModule(__lowercase) else: UpperCamelCase_ = TranslationModule(__lowercase) UpperCamelCase_ = Path(args.data_dir).name if ( args.logger_name == "default" or args.fast_dev_run or str(args.output_dir).startswith('/tmp') or str(args.output_dir).startswith('/var') ): UpperCamelCase_ = True # don't pollute wandb logs unnecessarily elif args.logger_name == "wandb": from pytorch_lightning.loggers import WandbLogger UpperCamelCase_ = os.environ.get('WANDB_PROJECT' , __lowercase) UpperCamelCase_ = WandbLogger(name=model.output_dir.name , project=__lowercase) elif args.logger_name == "wandb_shared": from pytorch_lightning.loggers import WandbLogger UpperCamelCase_ = WandbLogger(name=model.output_dir.name , project=f"""hf_{dataset}""") if args.early_stopping_patience >= 0: UpperCamelCase_ = get_early_stopping_callback(model.val_metric , args.early_stopping_patience) else: UpperCamelCase_ = False UpperCamelCase_ = args.val_metric == 'loss' UpperCamelCase_ = generic_train( __lowercase , __lowercase , logging_callback=SeqaSeqLoggingCallback() , checkpoint_callback=get_checkpoint_callback( args.output_dir , model.val_metric , args.save_top_k , __lowercase) , early_stopping_callback=__lowercase , logger=__lowercase , ) pickle_save(model.hparams , model.output_dir / 'hparams.pkl') if not args.do_predict: return model UpperCamelCase_ = '' UpperCamelCase_ = sorted(glob.glob(os.path.join(args.output_dir , '*.ckpt') , recursive=__lowercase)) if checkpoints: UpperCamelCase_ = checkpoints[-1] UpperCamelCase_ = checkpoints[-1] trainer.logger.log_hyperparams(model.hparams) # test() without a model tests using the best checkpoint automatically trainer.test() return model if __name__ == "__main__": snake_case__ : Union[str, Any] = argparse.ArgumentParser() snake_case__ : Dict = pl.Trainer.add_argparse_args(parser) snake_case__ : List[str] = SummarizationModule.add_model_specific_args(parser, os.getcwd()) snake_case__ : Optional[Any] = parser.parse_args() main(args)
23
'''simple docstring''' import inspect import unittest import torch import torch.nn as nn from accelerate.hooks import ( AlignDevicesHook, ModelHook, SequentialHook, add_hook_to_module, attach_align_device_hook, remove_hook_from_module, remove_hook_from_submodules, ) from accelerate.test_utils import require_multi_gpu class _A ( nn.Module ): def __init__( self : List[str] ) -> Optional[Any]: """simple docstring""" super().__init__() __snake_case : List[Any] = nn.Linear(3 , 4 ) __snake_case : str = nn.BatchNormad(4 ) __snake_case : Optional[Any] = nn.Linear(4 , 5 ) def lowercase__ ( self : str , __magic_name__ : Dict ) -> List[str]: """simple docstring""" return self.lineara(self.batchnorm(self.lineara(__magic_name__ ) ) ) class _A ( __lowercase ): def lowercase__ ( self : List[str] , __magic_name__ : Tuple , *__magic_name__ : Dict , **__magic_name__ : Optional[Any] ) -> Tuple: """simple docstring""" return (args[0] + 1,) + args[1:], kwargs class _A ( __lowercase ): def lowercase__ ( self : str , __magic_name__ : Union[str, Any] , __magic_name__ : Tuple ) -> Union[str, Any]: """simple docstring""" return output + 1 class _A ( unittest.TestCase ): def lowercase__ ( self : Dict ) -> Any: """simple docstring""" __snake_case : int = ModelForTest() __snake_case : Tuple = ModelHook() add_hook_to_module(__magic_name__ , __magic_name__ ) self.assertEqual(test_model._hf_hook , __magic_name__ ) self.assertTrue(hasattr(__magic_name__ , """_old_forward""" ) ) # Check adding the hook did not change the name or the signature self.assertEqual(test_model.forward.__name__ , """forward""" ) self.assertListEqual(list(inspect.signature(test_model.forward ).parameters ) , ["""x"""] ) remove_hook_from_module(__magic_name__ ) self.assertFalse(hasattr(__magic_name__ , """_hf_hook""" ) ) self.assertFalse(hasattr(__magic_name__ , """_old_forward""" ) ) def lowercase__ ( self : Tuple ) -> List[str]: """simple docstring""" __snake_case : List[Any] = ModelForTest() __snake_case : Optional[int] = ModelHook() add_hook_to_module(__magic_name__ , __magic_name__ ) add_hook_to_module(__magic_name__ , __magic_name__ , append=__magic_name__ ) self.assertEqual(isinstance(test_model._hf_hook , __magic_name__ ) , __magic_name__ ) self.assertEqual(len(test_model._hf_hook.hooks ) , 2 ) self.assertTrue(hasattr(__magic_name__ , """_old_forward""" ) ) # Check adding the hook did not change the name or the signature self.assertEqual(test_model.forward.__name__ , """forward""" ) self.assertListEqual(list(inspect.signature(test_model.forward ).parameters ) , ["""x"""] ) remove_hook_from_module(__magic_name__ ) self.assertFalse(hasattr(__magic_name__ , """_hf_hook""" ) ) self.assertFalse(hasattr(__magic_name__ , """_old_forward""" ) ) def lowercase__ ( self : str ) -> Union[str, Any]: """simple docstring""" __snake_case : List[Any] = ModelForTest() __snake_case : Any = torch.randn(2 , 3 ) __snake_case : str = test_model(x + 1 ) __snake_case : int = test_model(x + 2 ) __snake_case : Union[str, Any] = PreForwardHook() add_hook_to_module(__magic_name__ , __magic_name__ ) __snake_case : int = test_model(__magic_name__ ) self.assertTrue(torch.allclose(__magic_name__ , __magic_name__ , atol=1E-5 ) ) # Attaching a hook to a model when it already has one replaces, does not chain __snake_case : Optional[int] = PreForwardHook() add_hook_to_module(__magic_name__ , __magic_name__ ) __snake_case : List[Any] = test_model(__magic_name__ ) self.assertTrue(torch.allclose(__magic_name__ , __magic_name__ , atol=1E-5 ) ) # You need to use the sequential hook to chain two or more hooks __snake_case : Optional[int] = SequentialHook(PreForwardHook() , PreForwardHook() ) add_hook_to_module(__magic_name__ , __magic_name__ ) __snake_case : List[str] = test_model(__magic_name__ ) assert torch.allclose(__magic_name__ , __magic_name__ , atol=1E-5 ) def lowercase__ ( self : Union[str, Any] ) -> List[str]: """simple docstring""" __snake_case : Union[str, Any] = ModelForTest() __snake_case : str = torch.randn(2 , 3 ) __snake_case : Any = test_model(__magic_name__ ) __snake_case : Any = PostForwardHook() add_hook_to_module(__magic_name__ , __magic_name__ ) __snake_case : Any = test_model(__magic_name__ ) self.assertTrue(torch.allclose(__magic_name__ , output + 1 , atol=1E-5 ) ) # Attaching a hook to a model when it already has one replaces, does not chain __snake_case : Any = PostForwardHook() add_hook_to_module(__magic_name__ , __magic_name__ ) __snake_case : Dict = test_model(__magic_name__ ) self.assertTrue(torch.allclose(__magic_name__ , output + 1 , atol=1E-5 ) ) # You need to use the sequential hook to chain two or more hooks __snake_case : str = SequentialHook(PostForwardHook() , PostForwardHook() ) add_hook_to_module(__magic_name__ , __magic_name__ ) __snake_case : int = test_model(__magic_name__ ) assert torch.allclose(__magic_name__ , output + 2 , atol=1E-5 ) def lowercase__ ( self : str ) -> int: """simple docstring""" __snake_case : Union[str, Any] = ModelForTest() __snake_case : int = torch.randn(2 , 3 ) __snake_case : Any = test_model(__magic_name__ ) __snake_case : Dict = PostForwardHook() add_hook_to_module(__magic_name__ , __magic_name__ ) __snake_case : List[Any] = test_model(__magic_name__ ) self.assertTrue(torch.allclose(__magic_name__ , output + 1 ) ) self.assertTrue(outputa.requires_grad ) __snake_case : Dict = True __snake_case : int = test_model(__magic_name__ ) self.assertFalse(outputa.requires_grad ) @require_multi_gpu def lowercase__ ( self : Tuple ) -> List[Any]: """simple docstring""" __snake_case : Tuple = ModelForTest() # Everything is on CPU self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) ) self.assertEqual(model.batchnorm.weight.device , torch.device("""cpu""" ) ) self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) ) # This will move each submodule on different devices add_hook_to_module(model.lineara , AlignDevicesHook(execution_device=0 ) ) add_hook_to_module(model.batchnorm , AlignDevicesHook(execution_device=0 ) ) add_hook_to_module(model.lineara , AlignDevicesHook(execution_device=1 ) ) self.assertEqual(model.lineara.weight.device , torch.device(0 ) ) self.assertEqual(model.batchnorm.weight.device , torch.device(0 ) ) self.assertEqual(model.batchnorm.running_mean.device , torch.device(0 ) ) self.assertEqual(model.lineara.weight.device , torch.device(1 ) ) # We can still make a forward pass. The input does not need to be on any particular device __snake_case : Tuple = torch.randn(2 , 3 ) __snake_case : Union[str, Any] = model(__magic_name__ ) self.assertEqual(output.device , torch.device(1 ) ) # We can add a general hook to put back output on same device as input. add_hook_to_module(__magic_name__ , AlignDevicesHook(io_same_device=__magic_name__ ) ) __snake_case : Tuple = torch.randn(2 , 3 ).to(0 ) __snake_case : Any = model(__magic_name__ ) self.assertEqual(output.device , torch.device(0 ) ) def lowercase__ ( self : Union[str, Any] ) -> str: """simple docstring""" __snake_case : int = ModelForTest() # Everything is on CPU self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) ) self.assertEqual(model.batchnorm.weight.device , torch.device("""cpu""" ) ) self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) ) # This will move each submodule on different devices __snake_case : List[str] = {"""execution_device""": 0 if torch.cuda.is_available() else """cpu""", """offload""": True} add_hook_to_module(model.lineara , AlignDevicesHook(**__magic_name__ ) ) add_hook_to_module(model.batchnorm , AlignDevicesHook(**__magic_name__ ) ) add_hook_to_module(model.lineara , AlignDevicesHook(**__magic_name__ ) ) # Parameters have been offloaded, so on the meta device self.assertEqual(model.lineara.weight.device , torch.device("""meta""" ) ) self.assertEqual(model.batchnorm.weight.device , torch.device("""meta""" ) ) self.assertEqual(model.lineara.weight.device , torch.device("""meta""" ) ) # Buffers are not included in the offload by default, so are on the execution device __snake_case : Any = torch.device(hook_kwargs["""execution_device"""] ) self.assertEqual(model.batchnorm.running_mean.device , __magic_name__ ) __snake_case : Dict = torch.randn(2 , 3 ) __snake_case : Any = model(__magic_name__ ) self.assertEqual(output.device , __magic_name__ ) # Removing hooks loads back the weights in the model. remove_hook_from_module(model.lineara ) remove_hook_from_module(model.batchnorm ) remove_hook_from_module(model.lineara ) self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) ) self.assertEqual(model.batchnorm.weight.device , torch.device("""cpu""" ) ) self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) ) # Now test with buffers included in the offload __snake_case : int = { """execution_device""": 0 if torch.cuda.is_available() else """cpu""", """offload""": True, """offload_buffers""": True, } add_hook_to_module(model.lineara , AlignDevicesHook(**__magic_name__ ) ) add_hook_to_module(model.batchnorm , AlignDevicesHook(**__magic_name__ ) ) add_hook_to_module(model.lineara , AlignDevicesHook(**__magic_name__ ) ) # Parameters have been offloaded, so on the meta device, buffers included self.assertEqual(model.lineara.weight.device , torch.device("""meta""" ) ) self.assertEqual(model.batchnorm.weight.device , torch.device("""meta""" ) ) self.assertEqual(model.lineara.weight.device , torch.device("""meta""" ) ) self.assertEqual(model.batchnorm.running_mean.device , torch.device("""meta""" ) ) __snake_case : str = torch.randn(2 , 3 ) __snake_case : str = model(__magic_name__ ) self.assertEqual(output.device , __magic_name__ ) # Removing hooks loads back the weights in the model. remove_hook_from_module(model.lineara ) remove_hook_from_module(model.batchnorm ) remove_hook_from_module(model.lineara ) self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) ) self.assertEqual(model.batchnorm.weight.device , torch.device("""cpu""" ) ) self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) ) def lowercase__ ( self : Dict ) -> str: """simple docstring""" __snake_case : Tuple = ModelForTest() # Everything is on CPU self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) ) self.assertEqual(model.batchnorm.weight.device , torch.device("""cpu""" ) ) self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) ) # This will move each submodule on different devices __snake_case : Union[str, Any] = 0 if torch.cuda.is_available() else """cpu""" attach_align_device_hook(__magic_name__ , execution_device=__magic_name__ , offload=__magic_name__ ) # Parameters have been offloaded, so on the meta device self.assertEqual(model.lineara.weight.device , torch.device("""meta""" ) ) self.assertEqual(model.batchnorm.weight.device , torch.device("""meta""" ) ) self.assertEqual(model.lineara.weight.device , torch.device("""meta""" ) ) # Buffers are not included in the offload by default, so are on the execution device __snake_case : Union[str, Any] = torch.device(__magic_name__ ) self.assertEqual(model.batchnorm.running_mean.device , __magic_name__ ) __snake_case : Optional[int] = torch.randn(2 , 3 ) __snake_case : Dict = model(__magic_name__ ) self.assertEqual(output.device , __magic_name__ ) # Removing hooks loads back the weights in the model. remove_hook_from_submodules(__magic_name__ ) self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) ) self.assertEqual(model.batchnorm.weight.device , torch.device("""cpu""" ) ) self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) ) # Now test with buffers included in the offload attach_align_device_hook(__magic_name__ , execution_device=__magic_name__ , offload=__magic_name__ , offload_buffers=__magic_name__ ) # Parameters have been offloaded, so on the meta device, buffers included self.assertEqual(model.lineara.weight.device , torch.device("""meta""" ) ) self.assertEqual(model.batchnorm.weight.device , torch.device("""meta""" ) ) self.assertEqual(model.lineara.weight.device , torch.device("""meta""" ) ) self.assertEqual(model.batchnorm.running_mean.device , torch.device("""meta""" ) ) __snake_case : Dict = torch.randn(2 , 3 ) __snake_case : Optional[int] = model(__magic_name__ ) self.assertEqual(output.device , __magic_name__ ) # Removing hooks loads back the weights in the model. remove_hook_from_submodules(__magic_name__ ) self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) ) self.assertEqual(model.batchnorm.weight.device , torch.device("""cpu""" ) ) self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) ) def lowercase__ ( self : Any ) -> Union[str, Any]: """simple docstring""" __snake_case : Any = ModelForTest() # Everything is on CPU self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) ) self.assertEqual(model.batchnorm.weight.device , torch.device("""cpu""" ) ) self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) ) # This will move each submodule on different devices __snake_case : str = 0 if torch.cuda.is_available() else """cpu""" attach_align_device_hook( __magic_name__ , execution_device=__magic_name__ , offload=__magic_name__ , weights_map=model.state_dict() ) # Parameters have been offloaded, so on the meta device self.assertEqual(model.lineara.weight.device , torch.device("""meta""" ) ) self.assertEqual(model.batchnorm.weight.device , torch.device("""meta""" ) ) self.assertEqual(model.lineara.weight.device , torch.device("""meta""" ) ) # Buffers are not included in the offload by default, so are on the execution device __snake_case : List[str] = torch.device(__magic_name__ ) self.assertEqual(model.batchnorm.running_mean.device , __magic_name__ ) __snake_case : Tuple = torch.randn(2 , 3 ) __snake_case : Optional[Any] = model(__magic_name__ ) self.assertEqual(output.device , __magic_name__ ) # Removing hooks loads back the weights in the model. remove_hook_from_submodules(__magic_name__ ) self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) ) self.assertEqual(model.batchnorm.weight.device , torch.device("""cpu""" ) ) self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) ) # Now test with buffers included in the offload attach_align_device_hook( __magic_name__ , execution_device=__magic_name__ , offload=__magic_name__ , weights_map=model.state_dict() , offload_buffers=__magic_name__ , ) # Parameters have been offloaded, so on the meta device, buffers included self.assertEqual(model.lineara.weight.device , torch.device("""meta""" ) ) self.assertEqual(model.batchnorm.weight.device , torch.device("""meta""" ) ) self.assertEqual(model.lineara.weight.device , torch.device("""meta""" ) ) self.assertEqual(model.batchnorm.running_mean.device , torch.device("""meta""" ) ) __snake_case : List[str] = torch.randn(2 , 3 ) __snake_case : Dict = model(__magic_name__ ) self.assertEqual(output.device , __magic_name__ ) # Removing hooks loads back the weights in the model. remove_hook_from_submodules(__magic_name__ ) self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) ) self.assertEqual(model.batchnorm.weight.device , torch.device("""cpu""" ) ) self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) )
26
0
'''simple docstring''' from typing import Optional from torch import nn from .transformer_ad import TransformeraDModel, TransformeraDModelOutput class lowerCAmelCase ( nn.Module): def __init__( self , __SCREAMING_SNAKE_CASE = 16 , __SCREAMING_SNAKE_CASE = 88 , __SCREAMING_SNAKE_CASE = None , __SCREAMING_SNAKE_CASE = 1 , __SCREAMING_SNAKE_CASE = 0.0 , __SCREAMING_SNAKE_CASE = 32 , __SCREAMING_SNAKE_CASE = None , __SCREAMING_SNAKE_CASE = False , __SCREAMING_SNAKE_CASE = None , __SCREAMING_SNAKE_CASE = None , __SCREAMING_SNAKE_CASE = "geglu" , __SCREAMING_SNAKE_CASE = None , ) -> Optional[int]: '''simple docstring''' super().__init__() __snake_case = nn.ModuleList( [ TransformeraDModel( num_attention_heads=__SCREAMING_SNAKE_CASE , attention_head_dim=__SCREAMING_SNAKE_CASE , in_channels=__SCREAMING_SNAKE_CASE , num_layers=__SCREAMING_SNAKE_CASE , dropout=__SCREAMING_SNAKE_CASE , norm_num_groups=__SCREAMING_SNAKE_CASE , cross_attention_dim=__SCREAMING_SNAKE_CASE , attention_bias=__SCREAMING_SNAKE_CASE , sample_size=__SCREAMING_SNAKE_CASE , num_vector_embeds=__SCREAMING_SNAKE_CASE , activation_fn=__SCREAMING_SNAKE_CASE , num_embeds_ada_norm=__SCREAMING_SNAKE_CASE , ) for _ in range(2 ) ] ) # Variables that can be set by a pipeline: # The ratio of transformer1 to transformer2's output states to be combined during inference __snake_case = 0.5 # The shape of `encoder_hidden_states` is expected to be # `(batch_size, condition_lengths[0]+condition_lengths[1], num_features)` __snake_case = [77, 257] # Which transformer to use to encode which condition. # E.g. `(1, 0)` means that we'll use `transformers[1](conditions[0])` and `transformers[0](conditions[1])` __snake_case = [1, 0] def lowerCAmelCase ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE=None , __SCREAMING_SNAKE_CASE=None , __SCREAMING_SNAKE_CASE=None , __SCREAMING_SNAKE_CASE = True , ) -> List[str]: '''simple docstring''' __snake_case = hidden_states __snake_case = [] __snake_case = 0 # attention_mask is not used yet for i in range(2 ): # for each of the two transformers, pass the corresponding condition tokens __snake_case = encoder_hidden_states[:, tokens_start : tokens_start + self.condition_lengths[i]] __snake_case = self.transformer_index_for_condition[i] __snake_case = self.transformers[transformer_index]( __SCREAMING_SNAKE_CASE , encoder_hidden_states=__SCREAMING_SNAKE_CASE , timestep=__SCREAMING_SNAKE_CASE , cross_attention_kwargs=__SCREAMING_SNAKE_CASE , return_dict=__SCREAMING_SNAKE_CASE , )[0] encoded_states.append(encoded_state - input_states ) tokens_start += self.condition_lengths[i] __snake_case = encoded_states[0] * self.mix_ratio + encoded_states[1] * (1 - self.mix_ratio) __snake_case = output_states + input_states if not return_dict: return (output_states,) return TransformeraDModelOutput(sample=__SCREAMING_SNAKE_CASE )
24
'''simple docstring''' from __future__ import annotations __UpperCamelCase = [ [-1, 0], # left [0, -1], # down [1, 0], # right [0, 1], # up ] def _a ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , ) -> tuple[list[list[int]], list[list[int]]]: """simple docstring""" __snake_case : List[str] = [ [0 for col in range(len(grid[0] ) )] for row in range(len(_lowerCamelCase ) ) ] # the reference grid __snake_case : Tuple = 1 __snake_case : List[str] = [ [0 for col in range(len(grid[0] ) )] for row in range(len(_lowerCamelCase ) ) ] # the action grid __snake_case : List[str] = init[0] __snake_case : str = init[1] __snake_case : int = 0 __snake_case : int = g + heuristic[x][y] # cost from starting cell to destination cell __snake_case : List[str] = [[f, g, x, y]] __snake_case : Any = False # flag that is set when search is complete __snake_case : int = False # flag set if we can't find expand while not found and not resign: if len(_lowerCamelCase ) == 0: raise ValueError("""Algorithm is unable to find solution""" ) else: # to choose the least costliest action so as to move closer to the goal cell.sort() cell.reverse() __snake_case : Tuple = cell.pop() __snake_case : Optional[int] = next_cell[2] __snake_case : List[Any] = next_cell[3] __snake_case : int = next_cell[1] if x == goal[0] and y == goal[1]: __snake_case : Optional[Any] = True else: for i in range(len(_lowerCamelCase ) ): # to try out different valid actions __snake_case : Union[str, Any] = x + DIRECTIONS[i][0] __snake_case : str = y + DIRECTIONS[i][1] if xa >= 0 and xa < len(_lowerCamelCase ) and ya >= 0 and ya < len(grid[0] ): if closed[xa][ya] == 0 and grid[xa][ya] == 0: __snake_case : str = g + cost __snake_case : Tuple = ga + heuristic[xa][ya] cell.append([fa, ga, xa, ya] ) __snake_case : List[str] = 1 __snake_case : Optional[int] = i __snake_case : List[str] = [] __snake_case : Optional[int] = goal[0] __snake_case : List[Any] = goal[1] invpath.append([x, y] ) # we get the reverse path from here while x != init[0] or y != init[1]: __snake_case : Dict = x - DIRECTIONS[action[x][y]][0] __snake_case : int = y - DIRECTIONS[action[x][y]][1] __snake_case : Optional[int] = xa __snake_case : int = ya invpath.append([x, y] ) __snake_case : Optional[int] = [] for i in range(len(_lowerCamelCase ) ): path.append(invpath[len(_lowerCamelCase ) - 1 - i] ) return path, action if __name__ == "__main__": __UpperCamelCase = [ [0, 1, 0, 0, 0, 0], [0, 1, 0, 0, 0, 0], # 0 are free path whereas 1's are obstacles [0, 1, 0, 0, 0, 0], [0, 1, 0, 0, 1, 0], [0, 0, 0, 0, 1, 0], ] __UpperCamelCase = [0, 0] # all coordinates are given in format [y,x] __UpperCamelCase = [len(grid) - 1, len(grid[0]) - 1] __UpperCamelCase = 1 # the cost map which pushes the path closer to the goal __UpperCamelCase = [[0 for row in range(len(grid[0]))] for col in range(len(grid))] for i in range(len(grid)): for j in range(len(grid[0])): __UpperCamelCase = abs(i - goal[0]) + abs(j - goal[1]) if grid[i][j] == 1: # added extra penalty in the heuristic map __UpperCamelCase = 99 __UpperCamelCase , __UpperCamelCase = search(grid, init, goal, cost, heuristic) print("ACTION MAP") for i in range(len(action)): print(action[i]) for i in range(len(path)): print(path[i])
26
0
import os from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils import AddedToken from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_big_bird import BigBirdTokenizer else: a_ = None a_ = logging.get_logger(__name__) a_ = {'vocab_file': 'spiece.model', 'tokenizer_file': 'tokenizer.json'} a_ = { 'vocab_file': { 'google/bigbird-roberta-base': 'https://huggingface.co/google/bigbird-roberta-base/resolve/main/spiece.model', 'google/bigbird-roberta-large': ( 'https://huggingface.co/google/bigbird-roberta-large/resolve/main/spiece.model' ), 'google/bigbird-base-trivia-itc': ( 'https://huggingface.co/google/bigbird-base-trivia-itc/resolve/main/spiece.model' ), }, 'tokenizer_file': { 'google/bigbird-roberta-base': ( 'https://huggingface.co/google/bigbird-roberta-base/resolve/main/tokenizer.json' ), 'google/bigbird-roberta-large': ( 'https://huggingface.co/google/bigbird-roberta-large/resolve/main/tokenizer.json' ), 'google/bigbird-base-trivia-itc': ( 'https://huggingface.co/google/bigbird-base-trivia-itc/resolve/main/tokenizer.json' ), }, } a_ = { 'google/bigbird-roberta-base': 4096, 'google/bigbird-roberta-large': 4096, 'google/bigbird-base-trivia-itc': 4096, } a_ = '▁' class _UpperCamelCase ( __A ): '''simple docstring''' lowerCamelCase__ =VOCAB_FILES_NAMES lowerCamelCase__ =PRETRAINED_VOCAB_FILES_MAP lowerCamelCase__ =PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCamelCase__ =BigBirdTokenizer lowerCamelCase__ =['input_ids', 'attention_mask'] lowerCamelCase__ =[] def __init__( self : str , a : int=None , a : Optional[int]=None , a : Union[str, Any]="<unk>" , a : int="<s>" , a : Any="</s>" , a : List[str]="<pad>" , a : List[Any]="[SEP]" , a : Optional[Any]="[MASK]" , a : Optional[int]="[CLS]" , **a : List[str] , ) -> List[Any]: """simple docstring""" SCREAMING_SNAKE_CASE : str = AddedToken(a , lstrip=a , rstrip=a ) if isinstance(a , a ) else bos_token SCREAMING_SNAKE_CASE : Tuple = AddedToken(a , lstrip=a , rstrip=a ) if isinstance(a , a ) else eos_token SCREAMING_SNAKE_CASE : List[Any] = AddedToken(a , lstrip=a , rstrip=a ) if isinstance(a , a ) else unk_token SCREAMING_SNAKE_CASE : Optional[int] = AddedToken(a , lstrip=a , rstrip=a ) if isinstance(a , a ) else pad_token SCREAMING_SNAKE_CASE : Optional[Any] = AddedToken(a , lstrip=a , rstrip=a ) if isinstance(a , a ) else cls_token SCREAMING_SNAKE_CASE : int = AddedToken(a , lstrip=a , rstrip=a ) if isinstance(a , a ) else sep_token # Mask token behave like a normal word, i.e. include the space before it SCREAMING_SNAKE_CASE : Tuple = AddedToken(a , lstrip=a , rstrip=a ) if isinstance(a , a ) else mask_token super().__init__( a , tokenizer_file=a , bos_token=a , eos_token=a , unk_token=a , sep_token=a , pad_token=a , cls_token=a , mask_token=a , **a , ) SCREAMING_SNAKE_CASE : Tuple = vocab_file SCREAMING_SNAKE_CASE : Tuple = False if not self.vocab_file else True def __UpperCamelCase ( self : Dict , a : List[int] , a : Optional[List[int]] = None ) -> List[int]: """simple docstring""" SCREAMING_SNAKE_CASE : Optional[Any] = [self.sep_token_id] SCREAMING_SNAKE_CASE : Optional[Any] = [self.cls_token_id] if token_ids_a is None: return cls + token_ids_a + sep return cls + token_ids_a + sep + token_ids_a + sep def __UpperCamelCase ( self : List[Any] , a : List[int] , a : Optional[List[int]] = None , a : bool = False ) -> List[int]: """simple docstring""" if already_has_special_tokens: if token_ids_a is not None: raise ValueError( "You should not supply a second sequence if the provided sequence of " "ids is already formatted with special tokens for the model." ) return [1 if x in [self.sep_token_id, self.cls_token_id] else 0 for x in token_ids_a] if token_ids_a is None: return [1] + ([0] * len(a )) + [1] return [1] + ([0] * len(a )) + [1] + ([0] * len(a )) + [1] def __UpperCamelCase ( self : List[str] , a : List[int] , a : Optional[List[int]] = None ) -> List[int]: """simple docstring""" SCREAMING_SNAKE_CASE : Optional[Any] = [self.sep_token_id] SCREAMING_SNAKE_CASE : str = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def __UpperCamelCase ( self : Optional[Any] , a : str , a : Optional[str] = None ) -> Tuple[str]: """simple docstring""" if not self.can_save_slow_tokenizer: raise ValueError( "Your fast tokenizer does not have the necessary information to save the vocabulary for a slow " "tokenizer." ) if not os.path.isdir(a ): logger.error(F"Vocabulary path ({save_directory}) should be a directory" ) return SCREAMING_SNAKE_CASE : Optional[int] = os.path.join( a , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(a ): copyfile(self.vocab_file , a ) return (out_vocab_file,)
25
'''simple docstring''' def _a ( _lowerCamelCase ) -> int: """simple docstring""" if not isinstance(_lowerCamelCase , _lowerCamelCase ): raise TypeError("""only integers accepted as input""" ) else: __snake_case : List[Any] = str(abs(_lowerCamelCase ) ) __snake_case : Union[str, Any] = [list(_lowerCamelCase ) for char in range(len(_lowerCamelCase ) )] for index in range(len(_lowerCamelCase ) ): num_transpositions[index].pop(_lowerCamelCase ) return max( int("""""".join(list(_lowerCamelCase ) ) ) for transposition in num_transpositions ) if __name__ == "__main__": __import__("doctest").testmod()
26
0
import argparse import hashlib # hashlib is only used inside the Test class import struct class lowerCamelCase: '''simple docstring''' def __init__( self , snake_case_ ): _A = data _A = [0X6745_2301, 0XEFCD_AB89, 0X98BA_DCFE, 0X1032_5476, 0XC3D2_E1F0] @staticmethod def lowerCAmelCase__ ( snake_case_ , snake_case_ ): return ((n << b) | (n >> (32 - b))) & 0XFFFF_FFFF def lowerCAmelCase__ ( self ): _A = B'\x80' + B'\x00' * (63 - (len(self.data ) + 8) % 64) _A = self.data + padding + struct.pack('>Q' , 8 * len(self.data ) ) return padded_data def lowerCAmelCase__ ( self ): return [ self.padded_data[i : i + 64] for i in range(0 , len(self.padded_data ) , 64 ) ] def lowerCAmelCase__ ( self , snake_case_ ): _A = list(struct.unpack('>16L' , snake_case_ ) ) + [0] * 64 for i in range(16 , 80 ): _A = self.rotate((w[i - 3] ^ w[i - 8] ^ w[i - 14] ^ w[i - 16]) , 1 ) return w def lowerCAmelCase__ ( self ): _A = self.padding() _A = self.split_blocks() for block in self.blocks: _A = self.expand_block(snake_case_ ) _A, _A, _A, _A, _A = self.h for i in range(0 , 80 ): if 0 <= i < 20: _A = (b & c) | ((~b) & d) _A = 0X5A82_7999 elif 20 <= i < 40: _A = b ^ c ^ d _A = 0X6ED9_EBA1 elif 40 <= i < 60: _A = (b & c) | (b & d) | (c & d) _A = 0X8F1B_BCDC elif 60 <= i < 80: _A = b ^ c ^ d _A = 0XCA62_C1D6 _A, _A, _A, _A, _A = ( self.rotate(snake_case_ , 5 ) + f + e + k + expanded_block[i] & 0XFFFF_FFFF, a, self.rotate(snake_case_ , 30 ), c, d, ) _A = ( self.h[0] + a & 0XFFFF_FFFF, self.h[1] + b & 0XFFFF_FFFF, self.h[2] + c & 0XFFFF_FFFF, self.h[3] + d & 0XFFFF_FFFF, self.h[4] + e & 0XFFFF_FFFF, ) return ("{:08x}" * 5).format(*self.h ) def __lowerCAmelCase( ) -> Any: """simple docstring""" _A = b'Test String' assert SHAaHash(_SCREAMING_SNAKE_CASE ).final_hash() == hashlib.shaa(_SCREAMING_SNAKE_CASE ).hexdigest() # noqa: S324 def __lowerCAmelCase( ) -> int: """simple docstring""" _A = argparse.ArgumentParser(description='Process some strings or files' ) parser.add_argument( '--string' , dest='input_string' , default='Hello World!! Welcome to Cryptography' , help='Hash the string' , ) parser.add_argument('--file' , dest='input_file' , help='Hash contents of a file' ) _A = parser.parse_args() _A = args.input_string # In any case hash input should be a bytestring if args.input_file: with open(args.input_file , 'rb' ) as f: _A = f.read() else: _A = bytes(_SCREAMING_SNAKE_CASE , 'utf-8' ) print(SHAaHash(_SCREAMING_SNAKE_CASE ).final_hash() ) if __name__ == "__main__": main() import doctest doctest.testmod()
27
'''simple docstring''' from __future__ import annotations import math def _a ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> int: """simple docstring""" if depth < 0: raise ValueError("""Depth cannot be less than 0""" ) if not scores: raise ValueError("""Scores cannot be empty""" ) if depth == height: return scores[node_index] return ( max( minimax(depth + 1 , node_index * 2 , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) , minimax(depth + 1 , node_index * 2 + 1 , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) , ) if is_max else min( minimax(depth + 1 , node_index * 2 , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) , minimax(depth + 1 , node_index * 2 + 1 , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) , ) ) def _a ( ) -> None: """simple docstring""" __snake_case : Union[str, Any] = [90, 23, 6, 33, 21, 65, 123, 3_4423] __snake_case : Optional[int] = math.log(len(_lowerCamelCase ) , 2 ) print(F'''Optimal value : {minimax(0 , 0 , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase )}''' ) if __name__ == "__main__": import doctest doctest.testmod() main()
26
0
'''simple docstring''' from __future__ import annotations def lowercase__( __UpperCamelCase: list[int] ): # This function is recursive """simple docstring""" SCREAMING_SNAKE_CASE : Optional[int] = len(__UpperCamelCase ) # If the array contains only one element, we return it (it's the stop condition of # recursion) if array_length <= 1: return array # Else SCREAMING_SNAKE_CASE : Optional[Any] = array[0] SCREAMING_SNAKE_CASE : List[str] = False SCREAMING_SNAKE_CASE : Any = 1 SCREAMING_SNAKE_CASE : list[int] = [] while not is_found and i < array_length: if array[i] < pivot: SCREAMING_SNAKE_CASE : int = True SCREAMING_SNAKE_CASE : Optional[int] = [element for element in array[i:] if element >= array[i]] SCREAMING_SNAKE_CASE : List[str] = longest_subsequence(__UpperCamelCase ) if len(__UpperCamelCase ) > len(__UpperCamelCase ): SCREAMING_SNAKE_CASE : List[str] = temp_array else: i += 1 SCREAMING_SNAKE_CASE : Tuple = [element for element in array[1:] if element >= pivot] SCREAMING_SNAKE_CASE : Optional[Any] = [pivot, *longest_subsequence(__UpperCamelCase )] if len(__UpperCamelCase ) > len(__UpperCamelCase ): return temp_array else: return longest_subseq if __name__ == "__main__": import doctest doctest.testmod()
28
'''simple docstring''' from __future__ import annotations def _a ( _lowerCamelCase , _lowerCamelCase = None , _lowerCamelCase = None ) -> None: """simple docstring""" if start is None: __snake_case : Optional[Any] = 0 if end is None: __snake_case : Optional[Any] = len(_lowerCamelCase ) - 1 if start >= end: return __snake_case : Tuple = (start + end) // 2 slowsort(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) slowsort(_lowerCamelCase , mid + 1 , _lowerCamelCase ) if sequence[end] < sequence[mid]: __snake_case , __snake_case : str = sequence[mid], sequence[end] slowsort(_lowerCamelCase , _lowerCamelCase , end - 1 ) if __name__ == "__main__": from doctest import testmod testmod()
26
0
"""simple docstring""" import torch from transformers import AutoModel class __lowerCamelCase ( torch.nn.Module ): def __init__( self , UpperCAmelCase="sayef/fsner-bert-base-uncased" ): super(UpperCAmelCase , self ).__init__() lowerCamelCase_ = AutoModel.from_pretrained(UpperCAmelCase , return_dict=UpperCAmelCase ) lowerCamelCase_ = torch.nn.CosineSimilarity(3 , 1e-0_8 ) lowerCamelCase_ = torch.nn.Softmax(dim=1 ) def UpperCAmelCase__ ( self , **UpperCAmelCase ): return self.bert(**UpperCAmelCase ).last_hidden_state def UpperCAmelCase__ ( self , UpperCAmelCase ): return token_embeddings.sum(2 , keepdim=UpperCAmelCase ) def UpperCAmelCase__ ( self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase=1 ): return self.softmax(T * self.cos(UpperCAmelCase , UpperCAmelCase ) ) def UpperCAmelCase__ ( self , UpperCAmelCase , UpperCAmelCase ): lowerCamelCase_ = W_supports['''sizes'''].tolist() lowerCamelCase_ = W_supports['''start_token_id'''].item() lowerCamelCase_ = W_supports['''end_token_id'''].item() del W_supports["sizes"] del W_supports["start_token_id"] del W_supports["end_token_id"] lowerCamelCase_ = self.BERT(**UpperCAmelCase ) lowerCamelCase_ = self.BERT(**UpperCAmelCase ) lowerCamelCase_ = None lowerCamelCase_ = None lowerCamelCase_ = W_supports['''input_ids'''] == start_token_id lowerCamelCase_ = W_supports['''input_ids'''] == end_token_id for i, size in enumerate(UpperCAmelCase ): if i == 0: lowerCamelCase_ = 0 else: lowerCamelCase_ = support_sizes[i - 1] lowerCamelCase_ = S[s : s + size][start_token_masks[s : s + size]] lowerCamelCase_ = S[s : s + size][end_token_masks[s : s + size]] lowerCamelCase_ = torch.matmul(q[i] , s_start.T ).sum(1 ).softmax(0 ) lowerCamelCase_ = torch.matmul(q[i] , s_end.T ).sum(1 ).softmax(0 ) if p_starts is not None: lowerCamelCase_ = torch.vstack((p_starts, p_start) ) lowerCamelCase_ = torch.vstack((p_ends, p_end) ) else: lowerCamelCase_ = p_start lowerCamelCase_ = p_end return p_starts, p_ends
29
'''simple docstring''' import doctest import logging import os import unittest from pathlib import Path from typing import List, Union import transformers from transformers.testing_utils import require_tf, require_torch, slow __UpperCamelCase = logging.getLogger() @unittest.skip('''Temporarily disable the doc tests.''' ) @require_torch @require_tf @slow class _A ( unittest.TestCase ): def lowercase__ ( self : Optional[int] , __magic_name__ : Path , __magic_name__ : Union[str, None] = None , __magic_name__ : Union[List[str], None] = None , __magic_name__ : Union[str, List[str], None] = None , __magic_name__ : bool = True , ) -> Optional[int]: """simple docstring""" __snake_case : Union[str, Any] = [file for file in os.listdir(__magic_name__ ) if os.path.isfile(os.path.join(__magic_name__ , __magic_name__ ) )] if identifier is not None: __snake_case : List[Any] = [file for file in files if identifier in file] if n_identifier is not None: if isinstance(__magic_name__ , __magic_name__ ): for n_ in n_identifier: __snake_case : Optional[int] = [file for file in files if n_ not in file] else: __snake_case : Tuple = [file for file in files if n_identifier not in file] __snake_case : Dict = ignore_files or [] ignore_files.append("""__init__.py""" ) __snake_case : List[str] = [file for file in files if file not in ignore_files] for file in files: # Open all files print("""Testing""" , __magic_name__ ) if only_modules: __snake_case : List[Any] = file.split(""".""" )[0] try: __snake_case : List[Any] = getattr(__magic_name__ , __magic_name__ ) __snake_case : Union[str, Any] = doctest.DocTestSuite(__magic_name__ ) __snake_case : Dict = unittest.TextTestRunner().run(__magic_name__ ) self.assertIs(len(result.failures ) , 0 ) except AttributeError: logger.info(f'''{module_identifier} is not a module.''' ) else: __snake_case : Tuple = doctest.testfile(str("""..""" / directory / file ) , optionflags=doctest.ELLIPSIS ) self.assertIs(result.failed , 0 ) def lowercase__ ( self : Union[str, Any] ) -> Any: """simple docstring""" __snake_case : List[Any] = Path("""src/transformers""" ) __snake_case : List[Any] = """modeling""" __snake_case : Union[str, Any] = [ """modeling_ctrl.py""", """modeling_tf_ctrl.py""", ] self.analyze_directory(__magic_name__ , identifier=__magic_name__ , ignore_files=__magic_name__ ) def lowercase__ ( self : Union[str, Any] ) -> int: """simple docstring""" __snake_case : Union[str, Any] = Path("""src/transformers""" ) __snake_case : Any = """tokenization""" self.analyze_directory(__magic_name__ , identifier=__magic_name__ ) def lowercase__ ( self : Union[str, Any] ) -> int: """simple docstring""" __snake_case : List[Any] = Path("""src/transformers""" ) __snake_case : List[str] = """configuration""" self.analyze_directory(__magic_name__ , identifier=__magic_name__ ) def lowercase__ ( self : Dict ) -> Dict: """simple docstring""" __snake_case : Tuple = Path("""src/transformers""" ) __snake_case : int = ["""configuration""", """modeling""", """tokenization"""] self.analyze_directory(__magic_name__ , n_identifier=__magic_name__ ) def lowercase__ ( self : Optional[int] ) -> Union[str, Any]: """simple docstring""" __snake_case : int = Path("""docs/source""" ) __snake_case : Optional[int] = ["""favicon.ico"""] self.analyze_directory(__magic_name__ , ignore_files=__magic_name__ , only_modules=__magic_name__ )
26
0
from __future__ import annotations def lowerCamelCase__ ( _lowercase ): '''simple docstring''' UpperCAmelCase_ : Optional[int] = 0.00 UpperCAmelCase_ : Tuple = 0 for resistor in resistors: if resistor <= 0: UpperCAmelCase_ : List[Any] = f'''Resistor at index {index} has a negative or zero value!''' raise ValueError(_lowercase ) first_sum += 1 / float(_lowercase ) index += 1 return 1 / first_sum def lowerCamelCase__ ( _lowercase ): '''simple docstring''' UpperCAmelCase_ : Tuple = 0.00 UpperCAmelCase_ : str = 0 for resistor in resistors: sum_r += resistor if resistor < 0: UpperCAmelCase_ : Tuple = f'''Resistor at index {index} has a negative value!''' raise ValueError(_lowercase ) index += 1 return sum_r if __name__ == "__main__": import doctest doctest.testmod()
30
'''simple docstring''' import inspect from typing import Callable, List, Optional, Union import torch from transformers import ( CLIPImageProcessor, CLIPTextModel, CLIPTokenizer, WhisperForConditionalGeneration, WhisperProcessor, ) from diffusers import ( AutoencoderKL, DDIMScheduler, DiffusionPipeline, LMSDiscreteScheduler, PNDMScheduler, UNetaDConditionModel, ) from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion import StableDiffusionPipelineOutput from diffusers.pipelines.stable_diffusion.safety_checker import StableDiffusionSafetyChecker from diffusers.utils import logging __UpperCamelCase = logging.get_logger(__name__) # pylint: disable=invalid-name class _A ( __lowercase ): def __init__( self : str , __magic_name__ : WhisperForConditionalGeneration , __magic_name__ : WhisperProcessor , __magic_name__ : AutoencoderKL , __magic_name__ : CLIPTextModel , __magic_name__ : CLIPTokenizer , __magic_name__ : UNetaDConditionModel , __magic_name__ : Union[DDIMScheduler, PNDMScheduler, LMSDiscreteScheduler] , __magic_name__ : StableDiffusionSafetyChecker , __magic_name__ : CLIPImageProcessor , ) -> Union[str, Any]: """simple docstring""" super().__init__() if safety_checker is None: logger.warning( f'''You have disabled the safety checker for {self.__class__} by passing `safety_checker=None`. Ensure''' """ that you abide to the conditions of the Stable Diffusion license and do not expose unfiltered""" """ results in services or applications open to the public. Both the diffusers team and Hugging Face""" """ strongly recommend to keep the safety filter enabled in all public facing circumstances, disabling""" """ it only for use-cases that involve analyzing network behavior or auditing its results. For more""" """ information, please have a look at https://github.com/huggingface/diffusers/pull/254 .""" ) self.register_modules( speech_model=__magic_name__ , speech_processor=__magic_name__ , vae=__magic_name__ , text_encoder=__magic_name__ , tokenizer=__magic_name__ , unet=__magic_name__ , scheduler=__magic_name__ , feature_extractor=__magic_name__ , ) def lowercase__ ( self : Optional[Any] , __magic_name__ : Optional[Union[str, int]] = "auto" ) -> Union[str, Any]: """simple docstring""" if slice_size == "auto": __snake_case : str = self.unet.config.attention_head_dim // 2 self.unet.set_attention_slice(__magic_name__ ) def lowercase__ ( self : str ) -> Any: """simple docstring""" self.enable_attention_slicing(__magic_name__ ) @torch.no_grad() def __call__( self : Optional[int] , __magic_name__ : str , __magic_name__ : Dict=1_60_00 , __magic_name__ : int = 5_12 , __magic_name__ : int = 5_12 , __magic_name__ : int = 50 , __magic_name__ : float = 7.5 , __magic_name__ : Optional[Union[str, List[str]]] = None , __magic_name__ : Optional[int] = 1 , __magic_name__ : float = 0.0 , __magic_name__ : Optional[torch.Generator] = None , __magic_name__ : Optional[torch.FloatTensor] = None , __magic_name__ : Optional[str] = "pil" , __magic_name__ : bool = True , __magic_name__ : Optional[Callable[[int, int, torch.FloatTensor], None]] = None , __magic_name__ : int = 1 , **__magic_name__ : List[str] , ) -> int: """simple docstring""" __snake_case : List[Any] = self.speech_processor.feature_extractor( __magic_name__ , return_tensors="""pt""" , sampling_rate=__magic_name__ ).input_features.to(self.device ) __snake_case : List[str] = self.speech_model.generate(__magic_name__ , max_length=48_00_00 ) __snake_case : List[Any] = self.speech_processor.tokenizer.batch_decode(__magic_name__ , skip_special_tokens=__magic_name__ , normalize=__magic_name__ )[ 0 ] if isinstance(__magic_name__ , __magic_name__ ): __snake_case : Tuple = 1 elif isinstance(__magic_name__ , __magic_name__ ): __snake_case : Optional[int] = len(__magic_name__ ) else: raise ValueError(f'''`prompt` has to be of type `str` or `list` but is {type(__magic_name__ )}''' ) if height % 8 != 0 or width % 8 != 0: raise ValueError(f'''`height` and `width` have to be divisible by 8 but are {height} and {width}.''' ) if (callback_steps is None) or ( callback_steps is not None and (not isinstance(__magic_name__ , __magic_name__ ) or callback_steps <= 0) ): raise ValueError( f'''`callback_steps` has to be a positive integer but is {callback_steps} of type''' f''' {type(__magic_name__ )}.''' ) # get prompt text embeddings __snake_case : Dict = self.tokenizer( __magic_name__ , padding="""max_length""" , max_length=self.tokenizer.model_max_length , return_tensors="""pt""" , ) __snake_case : Optional[Any] = text_inputs.input_ids if text_input_ids.shape[-1] > self.tokenizer.model_max_length: __snake_case : Tuple = self.tokenizer.batch_decode(text_input_ids[:, self.tokenizer.model_max_length :] ) logger.warning( """The following part of your input was truncated because CLIP can only handle sequences up to""" f''' {self.tokenizer.model_max_length} tokens: {removed_text}''' ) __snake_case : Any = text_input_ids[:, : self.tokenizer.model_max_length] __snake_case : int = self.text_encoder(text_input_ids.to(self.device ) )[0] # duplicate text embeddings for each generation per prompt, using mps friendly method __snake_case , __snake_case , __snake_case : Any = text_embeddings.shape __snake_case : List[Any] = text_embeddings.repeat(1 , __magic_name__ , 1 ) __snake_case : Dict = text_embeddings.view(bs_embed * num_images_per_prompt , __magic_name__ , -1 ) # here `guidance_scale` is defined analog to the guidance weight `w` of equation (2) # of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1` # corresponds to doing no classifier free guidance. __snake_case : Optional[int] = guidance_scale > 1.0 # get unconditional embeddings for classifier free guidance if do_classifier_free_guidance: __snake_case : List[str] if negative_prompt is None: __snake_case : Optional[Any] = [""""""] * batch_size elif type(__magic_name__ ) is not type(__magic_name__ ): raise TypeError( f'''`negative_prompt` should be the same type to `prompt`, but got {type(__magic_name__ )} !=''' f''' {type(__magic_name__ )}.''' ) elif isinstance(__magic_name__ , __magic_name__ ): __snake_case : Dict = [negative_prompt] elif batch_size != len(__magic_name__ ): raise ValueError( f'''`negative_prompt`: {negative_prompt} has batch size {len(__magic_name__ )}, but `prompt`:''' f''' {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches''' """ the batch size of `prompt`.""" ) else: __snake_case : int = negative_prompt __snake_case : List[str] = text_input_ids.shape[-1] __snake_case : Any = self.tokenizer( __magic_name__ , padding="""max_length""" , max_length=__magic_name__ , truncation=__magic_name__ , return_tensors="""pt""" , ) __snake_case : Dict = self.text_encoder(uncond_input.input_ids.to(self.device ) )[0] # duplicate unconditional embeddings for each generation per prompt, using mps friendly method __snake_case : Optional[int] = uncond_embeddings.shape[1] __snake_case : Union[str, Any] = uncond_embeddings.repeat(1 , __magic_name__ , 1 ) __snake_case : Tuple = uncond_embeddings.view(batch_size * num_images_per_prompt , __magic_name__ , -1 ) # For classifier free guidance, we need to do two forward passes. # Here we concatenate the unconditional and text embeddings into a single batch # to avoid doing two forward passes __snake_case : Dict = torch.cat([uncond_embeddings, text_embeddings] ) # get the initial random noise unless the user supplied it # Unlike in other pipelines, latents need to be generated in the target device # for 1-to-1 results reproducibility with the CompVis implementation. # However this currently doesn't work in `mps`. __snake_case : List[Any] = (batch_size * num_images_per_prompt, self.unet.config.in_channels, height // 8, width // 8) __snake_case : List[Any] = text_embeddings.dtype if latents is None: if self.device.type == "mps": # randn does not exist on mps __snake_case : Optional[int] = torch.randn(__magic_name__ , generator=__magic_name__ , device="""cpu""" , dtype=__magic_name__ ).to( self.device ) else: __snake_case : int = torch.randn(__magic_name__ , generator=__magic_name__ , device=self.device , dtype=__magic_name__ ) else: if latents.shape != latents_shape: raise ValueError(f'''Unexpected latents shape, got {latents.shape}, expected {latents_shape}''' ) __snake_case : List[str] = latents.to(self.device ) # set timesteps self.scheduler.set_timesteps(__magic_name__ ) # Some schedulers like PNDM have timesteps as arrays # It's more optimized to move all timesteps to correct device beforehand __snake_case : Optional[int] = self.scheduler.timesteps.to(self.device ) # scale the initial noise by the standard deviation required by the scheduler __snake_case : str = latents * self.scheduler.init_noise_sigma # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature # eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers. # eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502 # and should be between [0, 1] __snake_case : Tuple = """eta""" in set(inspect.signature(self.scheduler.step ).parameters.keys() ) __snake_case : List[str] = {} if accepts_eta: __snake_case : str = eta for i, t in enumerate(self.progress_bar(__magic_name__ ) ): # expand the latents if we are doing classifier free guidance __snake_case : Union[str, Any] = torch.cat([latents] * 2 ) if do_classifier_free_guidance else latents __snake_case : Dict = self.scheduler.scale_model_input(__magic_name__ , __magic_name__ ) # predict the noise residual __snake_case : Tuple = self.unet(__magic_name__ , __magic_name__ , encoder_hidden_states=__magic_name__ ).sample # perform guidance if do_classifier_free_guidance: __snake_case , __snake_case : str = noise_pred.chunk(2 ) __snake_case : Any = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) # compute the previous noisy sample x_t -> x_t-1 __snake_case : Optional[Any] = self.scheduler.step(__magic_name__ , __magic_name__ , __magic_name__ , **__magic_name__ ).prev_sample # call the callback, if provided if callback is not None and i % callback_steps == 0: callback(__magic_name__ , __magic_name__ , __magic_name__ ) __snake_case : int = 1 / 0.18215 * latents __snake_case : Optional[Any] = self.vae.decode(__magic_name__ ).sample __snake_case : Any = (image / 2 + 0.5).clamp(0 , 1 ) # we always cast to float32 as this does not cause significant overhead and is compatible with bfloat16 __snake_case : Any = image.cpu().permute(0 , 2 , 3 , 1 ).float().numpy() if output_type == "pil": __snake_case : Tuple = self.numpy_to_pil(__magic_name__ ) if not return_dict: return image return StableDiffusionPipelineOutput(images=__magic_name__ , nsfw_content_detected=__magic_name__ )
26
0
import torch from torch import nn from torch.nn import CrossEntropyLoss, MSELoss from transformers.file_utils import add_start_docstrings, add_start_docstrings_to_model_forward from transformers.models.bert.modeling_bert import ( BERT_INPUTS_DOCSTRING, BERT_START_DOCSTRING, BertEmbeddings, BertLayer, BertPooler, BertPreTrainedModel, ) def UpperCAmelCase_ ( __UpperCAmelCase : Optional[Any] ) -> Optional[Any]: SCREAMING_SNAKE_CASE_ = torch.exp(__UpperCAmelCase ) SCREAMING_SNAKE_CASE_ = torch.sum(__UpperCAmelCase , dim=1 ) # sum of exp(x_i) SCREAMING_SNAKE_CASE_ = torch.sum(x * exp_x , dim=1 ) # sum of x_i * exp(x_i) return torch.log(__UpperCAmelCase ) - B / A class lowerCamelCase_ ( nn.Module ): '''simple docstring''' def __init__( self : Tuple , _lowerCAmelCase : List[Any] ): super().__init__() SCREAMING_SNAKE_CASE_ = config.output_attentions SCREAMING_SNAKE_CASE_ = config.output_hidden_states SCREAMING_SNAKE_CASE_ = nn.ModuleList([BertLayer(_lowerCAmelCase ) for _ in range(config.num_hidden_layers )] ) SCREAMING_SNAKE_CASE_ = nn.ModuleList([BertHighway(_lowerCAmelCase ) for _ in range(config.num_hidden_layers )] ) SCREAMING_SNAKE_CASE_ = [-1 for _ in range(config.num_hidden_layers )] def lowerCAmelCase_ ( self : Tuple , _lowerCAmelCase : Optional[Any] ): if (type(_lowerCAmelCase ) is float) or (type(_lowerCAmelCase ) is int): for i in range(len(self.early_exit_entropy ) ): SCREAMING_SNAKE_CASE_ = x else: SCREAMING_SNAKE_CASE_ = x def lowerCAmelCase_ ( self : List[Any] , _lowerCAmelCase : List[Any] ): SCREAMING_SNAKE_CASE_ = pooler.state_dict() for highway in self.highway: for name, param in highway.pooler.state_dict().items(): param.copy_(loaded_model[name] ) def lowerCAmelCase_ ( self : Tuple , _lowerCAmelCase : int , _lowerCAmelCase : Union[str, Any]=None , _lowerCAmelCase : Tuple=None , _lowerCAmelCase : List[Any]=None , _lowerCAmelCase : Optional[Any]=None , ): SCREAMING_SNAKE_CASE_ = () SCREAMING_SNAKE_CASE_ = () SCREAMING_SNAKE_CASE_ = () for i, layer_module in enumerate(self.layer ): if self.output_hidden_states: SCREAMING_SNAKE_CASE_ = all_hidden_states + (hidden_states,) SCREAMING_SNAKE_CASE_ = layer_module( _lowerCAmelCase , _lowerCAmelCase , head_mask[i] , _lowerCAmelCase , _lowerCAmelCase ) SCREAMING_SNAKE_CASE_ = layer_outputs[0] if self.output_attentions: SCREAMING_SNAKE_CASE_ = all_attentions + (layer_outputs[1],) SCREAMING_SNAKE_CASE_ = (hidden_states,) if self.output_hidden_states: SCREAMING_SNAKE_CASE_ = current_outputs + (all_hidden_states,) if self.output_attentions: SCREAMING_SNAKE_CASE_ = current_outputs + (all_attentions,) SCREAMING_SNAKE_CASE_ = self.highway[i](_lowerCAmelCase ) # logits, pooled_output if not self.training: SCREAMING_SNAKE_CASE_ = highway_exit[0] SCREAMING_SNAKE_CASE_ = entropy(_lowerCAmelCase ) SCREAMING_SNAKE_CASE_ = highway_exit + (highway_entropy,) # logits, hidden_states(?), entropy SCREAMING_SNAKE_CASE_ = all_highway_exits + (highway_exit,) if highway_entropy < self.early_exit_entropy[i]: SCREAMING_SNAKE_CASE_ = (highway_logits,) + current_outputs[1:] + (all_highway_exits,) raise HighwayException(_lowerCAmelCase , i + 1 ) else: SCREAMING_SNAKE_CASE_ = all_highway_exits + (highway_exit,) # Add last layer if self.output_hidden_states: SCREAMING_SNAKE_CASE_ = all_hidden_states + (hidden_states,) SCREAMING_SNAKE_CASE_ = (hidden_states,) if self.output_hidden_states: SCREAMING_SNAKE_CASE_ = outputs + (all_hidden_states,) if self.output_attentions: SCREAMING_SNAKE_CASE_ = outputs + (all_attentions,) SCREAMING_SNAKE_CASE_ = outputs + (all_highway_exits,) return outputs # last-layer hidden state, (all hidden states), (all attentions), all highway exits @add_start_docstrings( "The Bert Model transformer with early exiting (DeeBERT). " , _SCREAMING_SNAKE_CASE , ) class lowerCamelCase_ ( _SCREAMING_SNAKE_CASE ): '''simple docstring''' def __init__( self : List[Any] , _lowerCAmelCase : Tuple ): super().__init__(_lowerCAmelCase ) SCREAMING_SNAKE_CASE_ = config SCREAMING_SNAKE_CASE_ = BertEmbeddings(_lowerCAmelCase ) SCREAMING_SNAKE_CASE_ = DeeBertEncoder(_lowerCAmelCase ) SCREAMING_SNAKE_CASE_ = BertPooler(_lowerCAmelCase ) self.init_weights() def lowerCAmelCase_ ( self : int ): self.encoder.init_highway_pooler(self.pooler ) def lowerCAmelCase_ ( self : Optional[int] ): return self.embeddings.word_embeddings def lowerCAmelCase_ ( self : Optional[Any] , _lowerCAmelCase : List[Any] ): SCREAMING_SNAKE_CASE_ = value def lowerCAmelCase_ ( self : str , _lowerCAmelCase : Tuple ): for layer, heads in heads_to_prune.items(): self.encoder.layer[layer].attention.prune_heads(_lowerCAmelCase ) @add_start_docstrings_to_model_forward(_lowerCAmelCase ) def lowerCAmelCase_ ( self : Any , _lowerCAmelCase : str=None , _lowerCAmelCase : int=None , _lowerCAmelCase : str=None , _lowerCAmelCase : str=None , _lowerCAmelCase : Tuple=None , _lowerCAmelCase : Dict=None , _lowerCAmelCase : int=None , _lowerCAmelCase : Any=None , ): if input_ids is not None and inputs_embeds is not None: raise ValueError('You cannot specify both input_ids and inputs_embeds at the same time' ) elif input_ids is not None: SCREAMING_SNAKE_CASE_ = input_ids.size() elif inputs_embeds is not None: SCREAMING_SNAKE_CASE_ = inputs_embeds.size()[:-1] else: raise ValueError('You have to specify either input_ids or inputs_embeds' ) SCREAMING_SNAKE_CASE_ = input_ids.device if input_ids is not None else inputs_embeds.device if attention_mask is None: SCREAMING_SNAKE_CASE_ = torch.ones(_lowerCAmelCase , device=_lowerCAmelCase ) if encoder_attention_mask is None: SCREAMING_SNAKE_CASE_ = torch.ones(_lowerCAmelCase , device=_lowerCAmelCase ) if token_type_ids is None: SCREAMING_SNAKE_CASE_ = torch.zeros(_lowerCAmelCase , dtype=torch.long , device=_lowerCAmelCase ) # We can provide a self-attention mask of dimensions [batch_size, from_seq_length, to_seq_length] # ourselves in which case we just need to make it broadcastable to all heads. SCREAMING_SNAKE_CASE_ = self.get_extended_attention_mask(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) # If a 2D ou 3D attention mask is provided for the cross-attention # we need to make broadcastable to [batch_size, num_heads, seq_length, seq_length] if encoder_attention_mask.dim() == 3: SCREAMING_SNAKE_CASE_ = encoder_attention_mask[:, None, :, :] if encoder_attention_mask.dim() == 2: SCREAMING_SNAKE_CASE_ = encoder_attention_mask[:, None, None, :] SCREAMING_SNAKE_CASE_ = encoder_extended_attention_mask.to( dtype=next(self.parameters() ).dtype ) # fp16 compatibility SCREAMING_SNAKE_CASE_ = (1.0 - encoder_extended_attention_mask) * -1_0000.0 # Prepare head mask if needed # 1.0 in head_mask indicate we keep the head # attention_probs has shape bsz x n_heads x N x N # input head_mask has shape [num_heads] or [num_hidden_layers x num_heads] # and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length] SCREAMING_SNAKE_CASE_ = self.get_head_mask(_lowerCAmelCase , self.config.num_hidden_layers ) SCREAMING_SNAKE_CASE_ = self.embeddings( input_ids=_lowerCAmelCase , position_ids=_lowerCAmelCase , token_type_ids=_lowerCAmelCase , inputs_embeds=_lowerCAmelCase ) SCREAMING_SNAKE_CASE_ = self.encoder( _lowerCAmelCase , attention_mask=_lowerCAmelCase , head_mask=_lowerCAmelCase , encoder_hidden_states=_lowerCAmelCase , encoder_attention_mask=_lowerCAmelCase , ) SCREAMING_SNAKE_CASE_ = encoder_outputs[0] SCREAMING_SNAKE_CASE_ = self.pooler(_lowerCAmelCase ) SCREAMING_SNAKE_CASE_ = ( sequence_output, pooled_output, ) + encoder_outputs[ 1: ] # add hidden_states and attentions if they are here return outputs # sequence_output, pooled_output, (hidden_states), (attentions), highway exits class lowerCamelCase_ ( _SCREAMING_SNAKE_CASE ): '''simple docstring''' def __init__( self : Dict , _lowerCAmelCase : str , _lowerCAmelCase : str ): SCREAMING_SNAKE_CASE_ = message SCREAMING_SNAKE_CASE_ = exit_layer # start from 1! class lowerCamelCase_ ( nn.Module ): '''simple docstring''' def __init__( self : List[Any] , _lowerCAmelCase : int ): super().__init__() SCREAMING_SNAKE_CASE_ = BertPooler(_lowerCAmelCase ) SCREAMING_SNAKE_CASE_ = nn.Dropout(config.hidden_dropout_prob ) SCREAMING_SNAKE_CASE_ = nn.Linear(config.hidden_size , config.num_labels ) def lowerCAmelCase_ ( self : List[Any] , _lowerCAmelCase : Optional[Any] ): # Pooler SCREAMING_SNAKE_CASE_ = encoder_outputs[0] SCREAMING_SNAKE_CASE_ = self.pooler(_lowerCAmelCase ) # "return" pooler_output # BertModel SCREAMING_SNAKE_CASE_ = (pooler_input, pooler_output) + encoder_outputs[1:] # "return" bmodel_output # Dropout and classification SCREAMING_SNAKE_CASE_ = bmodel_output[1] SCREAMING_SNAKE_CASE_ = self.dropout(_lowerCAmelCase ) SCREAMING_SNAKE_CASE_ = self.classifier(_lowerCAmelCase ) return logits, pooled_output @add_start_docstrings( "Bert Model (with early exiting - DeeBERT) with a classifier on top,\n also takes care of multi-layer training. " , _SCREAMING_SNAKE_CASE , ) class lowerCamelCase_ ( _SCREAMING_SNAKE_CASE ): '''simple docstring''' def __init__( self : Tuple , _lowerCAmelCase : List[str] ): super().__init__(_lowerCAmelCase ) SCREAMING_SNAKE_CASE_ = config.num_labels SCREAMING_SNAKE_CASE_ = config.num_hidden_layers SCREAMING_SNAKE_CASE_ = DeeBertModel(_lowerCAmelCase ) SCREAMING_SNAKE_CASE_ = nn.Dropout(config.hidden_dropout_prob ) SCREAMING_SNAKE_CASE_ = nn.Linear(config.hidden_size , self.config.num_labels ) self.init_weights() @add_start_docstrings_to_model_forward(_lowerCAmelCase ) def lowerCAmelCase_ ( self : List[Any] , _lowerCAmelCase : int=None , _lowerCAmelCase : List[str]=None , _lowerCAmelCase : Optional[Any]=None , _lowerCAmelCase : List[Any]=None , _lowerCAmelCase : List[str]=None , _lowerCAmelCase : int=None , _lowerCAmelCase : List[Any]=None , _lowerCAmelCase : List[str]=-1 , _lowerCAmelCase : List[str]=False , ): SCREAMING_SNAKE_CASE_ = self.num_layers try: SCREAMING_SNAKE_CASE_ = self.bert( _lowerCAmelCase , attention_mask=_lowerCAmelCase , token_type_ids=_lowerCAmelCase , position_ids=_lowerCAmelCase , head_mask=_lowerCAmelCase , inputs_embeds=_lowerCAmelCase , ) # sequence_output, pooled_output, (hidden_states), (attentions), highway exits SCREAMING_SNAKE_CASE_ = outputs[1] SCREAMING_SNAKE_CASE_ = self.dropout(_lowerCAmelCase ) SCREAMING_SNAKE_CASE_ = self.classifier(_lowerCAmelCase ) SCREAMING_SNAKE_CASE_ = (logits,) + outputs[2:] # add hidden states and attention if they are here except HighwayException as e: SCREAMING_SNAKE_CASE_ = e.message SCREAMING_SNAKE_CASE_ = e.exit_layer SCREAMING_SNAKE_CASE_ = outputs[0] if not self.training: SCREAMING_SNAKE_CASE_ = entropy(_lowerCAmelCase ) SCREAMING_SNAKE_CASE_ = [] SCREAMING_SNAKE_CASE_ = [] if labels is not None: if self.num_labels == 1: # We are doing regression SCREAMING_SNAKE_CASE_ = MSELoss() SCREAMING_SNAKE_CASE_ = loss_fct(logits.view(-1 ) , labels.view(-1 ) ) else: SCREAMING_SNAKE_CASE_ = CrossEntropyLoss() SCREAMING_SNAKE_CASE_ = loss_fct(logits.view(-1 , self.num_labels ) , labels.view(-1 ) ) # work with highway exits SCREAMING_SNAKE_CASE_ = [] for highway_exit in outputs[-1]: SCREAMING_SNAKE_CASE_ = highway_exit[0] if not self.training: highway_logits_all.append(_lowerCAmelCase ) highway_entropy.append(highway_exit[2] ) if self.num_labels == 1: # We are doing regression SCREAMING_SNAKE_CASE_ = MSELoss() SCREAMING_SNAKE_CASE_ = loss_fct(highway_logits.view(-1 ) , labels.view(-1 ) ) else: SCREAMING_SNAKE_CASE_ = CrossEntropyLoss() SCREAMING_SNAKE_CASE_ = loss_fct(highway_logits.view(-1 , self.num_labels ) , labels.view(-1 ) ) highway_losses.append(_lowerCAmelCase ) if train_highway: SCREAMING_SNAKE_CASE_ = (sum(highway_losses[:-1] ),) + outputs # exclude the final highway, of course else: SCREAMING_SNAKE_CASE_ = (loss,) + outputs if not self.training: SCREAMING_SNAKE_CASE_ = outputs + ((original_entropy, highway_entropy), exit_layer) if output_layer >= 0: SCREAMING_SNAKE_CASE_ = ( (outputs[0],) + (highway_logits_all[output_layer],) + outputs[2:] ) # use the highway of the last layer return outputs # (loss), logits, (hidden_states), (attentions), (highway_exits)
31
'''simple docstring''' import os from huggingface_hub.constants import HUGGINGFACE_HUB_CACHE, hf_cache_home __UpperCamelCase = HUGGINGFACE_HUB_CACHE __UpperCamelCase = "config.json" __UpperCamelCase = "diffusion_pytorch_model.bin" __UpperCamelCase = "diffusion_flax_model.msgpack" __UpperCamelCase = "model.onnx" __UpperCamelCase = "diffusion_pytorch_model.safetensors" __UpperCamelCase = "weights.pb" __UpperCamelCase = "https://huggingface.co" __UpperCamelCase = default_cache_path __UpperCamelCase = "diffusers_modules" __UpperCamelCase = os.getenv("HF_MODULES_CACHE", os.path.join(hf_cache_home, "modules")) __UpperCamelCase = ["fp16", "non-ema"] __UpperCamelCase = ".self_attn"
26
0
import functools import operator from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCAmelCase_ = logging.get_logger(__name__) UpperCAmelCase_ = { "microsoft/wavlm-base": "https://huggingface.co/microsoft/wavlm-base/resolve/main/config.json", # See all WavLM models at https://huggingface.co/models?filter=wavlm } class __UpperCamelCase ( A__ ): __A : Union[str, Any] = """wavlm""" def __init__( self , _UpperCamelCase=32 , _UpperCamelCase=768 , _UpperCamelCase=12 , _UpperCamelCase=12 , _UpperCamelCase=3072 , _UpperCamelCase="gelu" , _UpperCamelCase=0.1 , _UpperCamelCase=0.1 , _UpperCamelCase=0.1 , _UpperCamelCase=0.0 , _UpperCamelCase=0.1 , _UpperCamelCase=0.1 , _UpperCamelCase=0.02 , _UpperCamelCase=1e-5 , _UpperCamelCase="group" , _UpperCamelCase="gelu" , _UpperCamelCase=(512, 512, 512, 512, 512, 512, 512) , _UpperCamelCase=(5, 2, 2, 2, 2, 2, 2) , _UpperCamelCase=(10, 3, 3, 3, 3, 2, 2) , _UpperCamelCase=False , _UpperCamelCase=128 , _UpperCamelCase=16 , _UpperCamelCase=320 , _UpperCamelCase=800 , _UpperCamelCase=False , _UpperCamelCase=True , _UpperCamelCase=0.05 , _UpperCamelCase=10 , _UpperCamelCase=2 , _UpperCamelCase=0.0 , _UpperCamelCase=10 , _UpperCamelCase=320 , _UpperCamelCase=2 , _UpperCamelCase=0.1 , _UpperCamelCase=100 , _UpperCamelCase=256 , _UpperCamelCase=256 , _UpperCamelCase=0.1 , _UpperCamelCase="mean" , _UpperCamelCase=False , _UpperCamelCase=False , _UpperCamelCase=256 , _UpperCamelCase=(512, 512, 512, 512, 1500) , _UpperCamelCase=(5, 3, 3, 1, 1) , _UpperCamelCase=(1, 2, 3, 1, 1) , _UpperCamelCase=512 , _UpperCamelCase=80 , _UpperCamelCase=0 , _UpperCamelCase=1 , _UpperCamelCase=2 , _UpperCamelCase=False , _UpperCamelCase=3 , _UpperCamelCase=2 , _UpperCamelCase=3 , _UpperCamelCase=None , **_UpperCamelCase , ): super().__init__(**_UpperCamelCase , pad_token_id=_UpperCamelCase , bos_token_id=_UpperCamelCase , eos_token_id=_UpperCamelCase ) _UpperCAmelCase = hidden_size _UpperCAmelCase = feat_extract_norm _UpperCAmelCase = feat_extract_activation _UpperCAmelCase = list(_UpperCamelCase ) _UpperCAmelCase = list(_UpperCamelCase ) _UpperCAmelCase = list(_UpperCamelCase ) _UpperCAmelCase = conv_bias _UpperCAmelCase = num_buckets _UpperCAmelCase = max_bucket_distance _UpperCAmelCase = num_conv_pos_embeddings _UpperCAmelCase = num_conv_pos_embedding_groups _UpperCAmelCase = len(self.conv_dim ) _UpperCAmelCase = num_hidden_layers _UpperCAmelCase = intermediate_size _UpperCAmelCase = hidden_act _UpperCAmelCase = num_attention_heads _UpperCAmelCase = hidden_dropout _UpperCAmelCase = attention_dropout _UpperCAmelCase = activation_dropout _UpperCAmelCase = feat_proj_dropout _UpperCAmelCase = final_dropout _UpperCAmelCase = layerdrop _UpperCAmelCase = layer_norm_eps _UpperCAmelCase = initializer_range _UpperCAmelCase = num_ctc_classes _UpperCAmelCase = vocab_size _UpperCAmelCase = do_stable_layer_norm _UpperCAmelCase = use_weighted_layer_sum _UpperCAmelCase = classifier_proj_size if ( (len(self.conv_stride ) != self.num_feat_extract_layers) or (len(self.conv_kernel ) != self.num_feat_extract_layers) or (len(self.conv_dim ) != self.num_feat_extract_layers) ): raise ValueError( '''Configuration for convolutional layers is incorrect. It is required that `len(config.conv_dim)` ==''' ''' `len(config.conv_stride)` == `len(config.conv_kernel)`, but is `len(config.conv_dim) =''' f''' {len(self.conv_dim )}`, `len(config.conv_stride) = {len(self.conv_stride )}`,''' f''' `len(config.conv_kernel) = {len(self.conv_kernel )}`.''' ) # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 _UpperCAmelCase = apply_spec_augment _UpperCAmelCase = mask_time_prob _UpperCAmelCase = mask_time_length _UpperCAmelCase = mask_time_min_masks _UpperCAmelCase = mask_feature_prob _UpperCAmelCase = mask_feature_length # parameters for pretraining with codevector quantized representations _UpperCAmelCase = num_codevectors_per_group _UpperCAmelCase = num_codevector_groups _UpperCAmelCase = contrastive_logits_temperature _UpperCAmelCase = num_negatives _UpperCAmelCase = codevector_dim _UpperCAmelCase = proj_codevector_dim _UpperCAmelCase = diversity_loss_weight # ctc loss _UpperCAmelCase = ctc_loss_reduction _UpperCAmelCase = ctc_zero_infinity # adapter _UpperCAmelCase = add_adapter _UpperCAmelCase = adapter_kernel_size _UpperCAmelCase = adapter_stride _UpperCAmelCase = num_adapter_layers _UpperCAmelCase = output_hidden_size or hidden_size # SequenceClassification-specific parameter. Feel free to ignore for other classes. _UpperCAmelCase = classifier_proj_size # XVector-specific parameters. Feel free to ignore for other classes. _UpperCAmelCase = list(_UpperCamelCase ) _UpperCAmelCase = list(_UpperCamelCase ) _UpperCAmelCase = list(_UpperCamelCase ) _UpperCAmelCase = xvector_output_dim @property def UpperCamelCase( self ): return functools.reduce(operator.mul , self.conv_stride , 1 )
32
'''simple docstring''' import argparse import json import re from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ( MobileNetVaConfig, MobileNetVaForImageClassification, MobileNetVaImageProcessor, load_tf_weights_in_mobilenet_va, ) from transformers.utils import logging logging.set_verbosity_info() __UpperCamelCase = logging.get_logger(__name__) def _a ( _lowerCamelCase ) -> Any: """simple docstring""" __snake_case : Union[str, Any] = MobileNetVaConfig(layer_norm_eps=0.0_01 ) if "_quant" in model_name: raise ValueError("""Quantized models are not supported.""" ) __snake_case : List[Any] = re.match(R"""^mobilenet_v1_([^_]*)_([^_]*)$""" , _lowerCamelCase ) if matches: __snake_case : Optional[Any] = float(matches[1] ) __snake_case : Union[str, Any] = int(matches[2] ) # The TensorFlow version of MobileNetV1 predicts 1001 classes instead of # the usual 1000. The first class (index 0) is "background". __snake_case : Tuple = 1001 __snake_case : Any = """imagenet-1k-id2label.json""" __snake_case : Optional[Any] = """huggingface/label-files""" __snake_case : List[Any] = json.load(open(hf_hub_download(_lowerCamelCase , _lowerCamelCase , repo_type="""dataset""" ) , """r""" ) ) __snake_case : Dict = {int(_lowerCamelCase ) + 1: v for k, v in idalabel.items()} __snake_case : List[str] = """background""" __snake_case : List[str] = idalabel __snake_case : List[Any] = {v: k for k, v in idalabel.items()} return config def _a ( ) -> Optional[Any]: """simple docstring""" __snake_case : Optional[int] = """http://images.cocodataset.org/val2017/000000039769.jpg""" __snake_case : List[Any] = Image.open(requests.get(_lowerCamelCase , stream=_lowerCamelCase ).raw ) return im @torch.no_grad() def _a ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase=False ) -> Optional[Any]: """simple docstring""" __snake_case : Optional[int] = get_mobilenet_va_config(_lowerCamelCase ) # Load 🤗 model __snake_case : Optional[Any] = MobileNetVaForImageClassification(_lowerCamelCase ).eval() # Load weights from TensorFlow checkpoint load_tf_weights_in_mobilenet_va(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) # Check outputs on an image, prepared by MobileNetV1ImageProcessor __snake_case : Optional[int] = MobileNetVaImageProcessor( crop_size={"""width""": config.image_size, """height""": config.image_size} , size={"""shortest_edge""": config.image_size + 32} , ) __snake_case : Tuple = image_processor(images=prepare_img() , return_tensors="""pt""" ) __snake_case : Optional[Any] = model(**_lowerCamelCase ) __snake_case : List[Any] = outputs.logits assert logits.shape == (1, 1001) if model_name == "mobilenet_v1_1.0_224": __snake_case : str = torch.tensor([-4.17_39, -1.12_33, 3.12_05] ) elif model_name == "mobilenet_v1_0.75_192": __snake_case : Tuple = torch.tensor([-3.94_40, -2.31_41, -0.33_33] ) else: __snake_case : List[Any] = None if expected_logits is not None: assert torch.allclose(logits[0, :3] , _lowerCamelCase , atol=1E-4 ) Path(_lowerCamelCase ).mkdir(exist_ok=_lowerCamelCase ) print(F'''Saving model {model_name} to {pytorch_dump_folder_path}''' ) model.save_pretrained(_lowerCamelCase ) print(F'''Saving image processor to {pytorch_dump_folder_path}''' ) image_processor.save_pretrained(_lowerCamelCase ) if push_to_hub: print("""Pushing to the hub...""" ) __snake_case : Optional[Any] = """google/""" + model_name image_processor.push_to_hub(_lowerCamelCase ) model.push_to_hub(_lowerCamelCase ) if __name__ == "__main__": __UpperCamelCase = argparse.ArgumentParser() # Required parameters parser.add_argument( "--model_name", default="mobilenet_v1_1.0_224", type=str, help="Name of the MobileNetV1 model you'd like to convert. Should in the form 'mobilenet_v1_<depth>_<size>'.", ) parser.add_argument( "--checkpoint_path", required=True, type=str, help="Path to the original TensorFlow checkpoint (.ckpt file)." ) parser.add_argument( "--pytorch_dump_folder_path", required=True, type=str, help="Path to the output PyTorch model directory." ) parser.add_argument( "--push_to_hub", action="store_true", help="Whether or not to push the converted model to the 🤗 hub." ) __UpperCamelCase = parser.parse_args() convert_movilevit_checkpoint( args.model_name, args.checkpoint_path, args.pytorch_dump_folder_path, args.push_to_hub )
26
0
from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCamelCase__ : Union[str, Any] = logging.get_logger(__name__) lowerCamelCase__ : Optional[int] = { """microsoft/trocr-base-handwritten""": ( """https://huggingface.co/microsoft/trocr-base-handwritten/resolve/main/config.json""" ), # See all TrOCR models at https://huggingface.co/models?filter=trocr } class __magic_name__ (snake_case_ ): '''simple docstring''' __lowercase : Union[str, Any] = 'trocr' __lowercase : Optional[Any] = ['past_key_values'] __lowercase : Union[str, Any] = { 'num_attention_heads': 'decoder_attention_heads', 'hidden_size': 'd_model', 'num_hidden_layers': 'decoder_layers', } def __init__( self:Optional[Any] , _a:Optional[int]=5_02_65 , _a:List[Any]=10_24 , _a:Union[str, Any]=12 , _a:Any=16 , _a:int=40_96 , _a:int="gelu" , _a:Union[str, Any]=5_12 , _a:str=0.1 , _a:Dict=0.0 , _a:int=0.0 , _a:int=2 , _a:Union[str, Any]=0.02 , _a:List[Any]=0.0 , _a:Any=True , _a:Optional[Any]=False , _a:Union[str, Any]=True , _a:List[Any]=True , _a:Any=1 , _a:str=0 , _a:Optional[int]=2 , **_a:int , ): snake_case__ = vocab_size snake_case__ = d_model snake_case__ = decoder_layers snake_case__ = decoder_attention_heads snake_case__ = decoder_ffn_dim snake_case__ = activation_function snake_case__ = max_position_embeddings snake_case__ = dropout snake_case__ = attention_dropout snake_case__ = activation_dropout snake_case__ = init_std snake_case__ = decoder_layerdrop snake_case__ = use_cache snake_case__ = scale_embedding snake_case__ = use_learned_position_embeddings snake_case__ = layernorm_embedding super().__init__( pad_token_id=_a , bos_token_id=_a , eos_token_id=_a , decoder_start_token_id=_a , **_a , )
33
'''simple docstring''' from sklearn.metrics import recall_score import datasets __UpperCamelCase = "\nRecall is the fraction of the positive examples that were correctly labeled by the model as positive. It can be computed with the equation:\nRecall = TP / (TP + FN)\nWhere TP is the true positives and FN is the false negatives.\n" __UpperCamelCase = "\nArgs:\n- **predictions** (`list` of `int`): The predicted labels.\n- **references** (`list` of `int`): The ground truth labels.\n- **labels** (`list` of `int`): The set of labels to include when `average` is not set to `binary`, and their order when average is `None`. Labels present in the data can be excluded in this input, for example to calculate a multiclass average ignoring a majority negative class, while labels not present in the data will result in 0 components in a macro average. For multilabel targets, labels are column indices. By default, all labels in y_true and y_pred are used in sorted order. Defaults to None.\n- **pos_label** (`int`): The class label to use as the 'positive class' when calculating the recall. Defaults to `1`.\n- **average** (`string`): This parameter is required for multiclass/multilabel targets. If None, the scores for each class are returned. Otherwise, this determines the type of averaging performed on the data. Defaults to `'binary'`.\n - `'binary'`: Only report results for the class specified by `pos_label`. This is applicable only if the target labels and predictions are binary.\n - `'micro'`: Calculate metrics globally by counting the total true positives, false negatives, and false positives.\n - `'macro'`: Calculate metrics for each label, and find their unweighted mean. This does not take label imbalance into account.\n - `'weighted'`: Calculate metrics for each label, and find their average weighted by support (the number of true instances for each label). This alters `'macro'` to account for label imbalance. Note that it can result in an F-score that is not between precision and recall.\n - `'samples'`: Calculate metrics for each instance, and find their average (only meaningful for multilabel classification).\n- **sample_weight** (`list` of `float`): Sample weights Defaults to `None`.\n- **zero_division** (): Sets the value to return when there is a zero division. Defaults to .\n - `'warn'`: If there is a zero division, the return value is `0`, but warnings are also raised.\n - `0`: If there is a zero division, the return value is `0`.\n - `1`: If there is a zero division, the return value is `1`.\n\nReturns:\n- **recall** (`float`, or `array` of `float`): Either the general recall score, or the recall scores for individual classes, depending on the values input to `labels` and `average`. Minimum possible value is 0. Maximum possible value is 1. A higher recall means that more of the positive examples have been labeled correctly. Therefore, a higher recall is generally considered better.\n\nExamples:\n\n Example 1-A simple example with some errors\n >>> recall_metric = datasets.load_metric('recall')\n >>> results = recall_metric.compute(references=[0, 0, 1, 1, 1], predictions=[0, 1, 0, 1, 1])\n >>> print(results)\n {'recall': 0.6666666666666666}\n\n Example 2-The same example as Example 1, but with `pos_label=0` instead of the default `pos_label=1`.\n >>> recall_metric = datasets.load_metric('recall')\n >>> results = recall_metric.compute(references=[0, 0, 1, 1, 1], predictions=[0, 1, 0, 1, 1], pos_label=0)\n >>> print(results)\n {'recall': 0.5}\n\n Example 3-The same example as Example 1, but with `sample_weight` included.\n >>> recall_metric = datasets.load_metric('recall')\n >>> sample_weight = [0.9, 0.2, 0.9, 0.3, 0.8]\n >>> results = recall_metric.compute(references=[0, 0, 1, 1, 1], predictions=[0, 1, 0, 1, 1], sample_weight=sample_weight)\n >>> print(results)\n {'recall': 0.55}\n\n Example 4-A multiclass example, using different averages.\n >>> recall_metric = datasets.load_metric('recall')\n >>> predictions = [0, 2, 1, 0, 0, 1]\n >>> references = [0, 1, 2, 0, 1, 2]\n >>> results = recall_metric.compute(predictions=predictions, references=references, average='macro')\n >>> print(results)\n {'recall': 0.3333333333333333}\n >>> results = recall_metric.compute(predictions=predictions, references=references, average='micro')\n >>> print(results)\n {'recall': 0.3333333333333333}\n >>> results = recall_metric.compute(predictions=predictions, references=references, average='weighted')\n >>> print(results)\n {'recall': 0.3333333333333333}\n >>> results = recall_metric.compute(predictions=predictions, references=references, average=None)\n >>> print(results)\n {'recall': array([1., 0., 0.])}\n" __UpperCamelCase = "\n@article{scikit-learn, title={Scikit-learn: Machine Learning in {P}ython}, author={Pedregosa, F. and Varoquaux, G. and Gramfort, A. and Michel, V. and Thirion, B. and Grisel, O. and Blondel, M. and Prettenhofer, P. and Weiss, R. and Dubourg, V. and Vanderplas, J. and Passos, A. and Cournapeau, D. and Brucher, M. and Perrot, M. and Duchesnay, E.}, journal={Journal of Machine Learning Research}, volume={12}, pages={2825--2830}, year={2011}\n" @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class _A ( datasets.Metric ): def lowercase__ ( self : Optional[int] ) -> Any: """simple docstring""" return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { """predictions""": datasets.Sequence(datasets.Value("""int32""" ) ), """references""": datasets.Sequence(datasets.Value("""int32""" ) ), } if self.config_name == """multilabel""" else { """predictions""": datasets.Value("""int32""" ), """references""": datasets.Value("""int32""" ), } ) , reference_urls=["""https://scikit-learn.org/stable/modules/generated/sklearn.metrics.recall_score.html"""] , ) def lowercase__ ( self : Tuple , __magic_name__ : int , __magic_name__ : Union[str, Any] , __magic_name__ : Any=None , __magic_name__ : Optional[Any]=1 , __magic_name__ : List[str]="binary" , __magic_name__ : Tuple=None , __magic_name__ : Dict="warn" , ) -> Any: """simple docstring""" __snake_case : Tuple = recall_score( __magic_name__ , __magic_name__ , labels=__magic_name__ , pos_label=__magic_name__ , average=__magic_name__ , sample_weight=__magic_name__ , zero_division=__magic_name__ , ) return {"recall": float(__magic_name__ ) if score.size == 1 else score}
26
0
"""simple docstring""" import os import tempfile import unittest import numpy as np from diffusers.utils import is_flax_available from diffusers.utils.testing_utils import require_flax, slow if is_flax_available(): import jax import jax.numpy as jnp from flax.jax_utils import replicate from flax.training.common_utils import shard from diffusers import FlaxDDIMScheduler, FlaxDiffusionPipeline, FlaxStableDiffusionPipeline @require_flax class snake_case_ ( unittest.TestCase ): """simple docstring""" def UpperCAmelCase__ ( self) -> Optional[Any]: with tempfile.TemporaryDirectory() as tmpdirname: # pipeline has Flax weights UpperCamelCase = FlaxDiffusionPipeline.from_pretrained( '''hf-internal-testing/tiny-stable-diffusion-pipe''' , safety_checker=lowerCamelCase_ , cache_dir=lowerCamelCase_) UpperCamelCase = [t[-1] for t in os.walk(os.path.join(lowerCamelCase_ , os.listdir(lowerCamelCase_)[0] , '''snapshots'''))] UpperCamelCase = [item for sublist in all_root_files for item in sublist] # None of the downloaded files should be a PyTorch file even if we have some here: # https://huggingface.co/hf-internal-testing/tiny-stable-diffusion-pipe/blob/main/unet/diffusion_pytorch_model.bin assert not any(f.endswith('''.bin''') for f in files) @slow @require_flax class snake_case_ ( unittest.TestCase ): """simple docstring""" def UpperCAmelCase__ ( self) -> Any: UpperCamelCase , UpperCamelCase = FlaxStableDiffusionPipeline.from_pretrained( '''hf-internal-testing/tiny-stable-diffusion-pipe''' , safety_checker=lowerCamelCase_) UpperCamelCase = ( '''A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of''' ''' field, close up, split lighting, cinematic''' ) UpperCamelCase = jax.random.PRNGKey(0) UpperCamelCase = 4 UpperCamelCase = jax.device_count() UpperCamelCase = num_samples * [prompt] UpperCamelCase = pipeline.prepare_inputs(lowerCamelCase_) # shard inputs and rng UpperCamelCase = replicate(lowerCamelCase_) UpperCamelCase = jax.random.split(lowerCamelCase_ , lowerCamelCase_) UpperCamelCase = shard(lowerCamelCase_) UpperCamelCase = pipeline(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , jit=lowerCamelCase_).images assert images.shape == (num_samples, 1, 6_4, 6_4, 3) if jax.device_count() == 8: assert np.abs(np.abs(images[0, 0, :2, :2, -2:] , dtype=np.floataa).sum() - 4.151_4745) < 1e-3 assert np.abs(np.abs(lowerCamelCase_ , dtype=np.floataa).sum() - 4_9947.875) < 5e-1 UpperCamelCase = pipeline.numpy_to_pil(np.asarray(images.reshape((num_samples,) + images.shape[-3:]))) assert len(lowerCamelCase_) == num_samples def UpperCAmelCase__ ( self) -> Tuple: UpperCamelCase , UpperCamelCase = FlaxStableDiffusionPipeline.from_pretrained( '''CompVis/stable-diffusion-v1-4''' , revision='''flax''' , safety_checker=lowerCamelCase_) UpperCamelCase = ( '''A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of''' ''' field, close up, split lighting, cinematic''' ) UpperCamelCase = jax.random.PRNGKey(0) UpperCamelCase = 5_0 UpperCamelCase = jax.device_count() UpperCamelCase = num_samples * [prompt] UpperCamelCase = pipeline.prepare_inputs(lowerCamelCase_) # shard inputs and rng UpperCamelCase = replicate(lowerCamelCase_) UpperCamelCase = jax.random.split(lowerCamelCase_ , lowerCamelCase_) UpperCamelCase = shard(lowerCamelCase_) UpperCamelCase = pipeline(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , jit=lowerCamelCase_).images assert images.shape == (num_samples, 1, 5_1_2, 5_1_2, 3) if jax.device_count() == 8: assert np.abs((np.abs(images[0, 0, :2, :2, -2:] , dtype=np.floataa).sum() - 0.0565_2401)) < 1e-3 assert np.abs((np.abs(lowerCamelCase_ , dtype=np.floataa).sum() - 238_3808.2)) < 5e-1 def UpperCAmelCase__ ( self) -> Any: UpperCamelCase , UpperCamelCase = FlaxStableDiffusionPipeline.from_pretrained( '''CompVis/stable-diffusion-v1-4''' , revision='''bf16''' , dtype=jnp.bfloataa , safety_checker=lowerCamelCase_) UpperCamelCase = ( '''A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of''' ''' field, close up, split lighting, cinematic''' ) UpperCamelCase = jax.random.PRNGKey(0) UpperCamelCase = 5_0 UpperCamelCase = jax.device_count() UpperCamelCase = num_samples * [prompt] UpperCamelCase = pipeline.prepare_inputs(lowerCamelCase_) # shard inputs and rng UpperCamelCase = replicate(lowerCamelCase_) UpperCamelCase = jax.random.split(lowerCamelCase_ , lowerCamelCase_) UpperCamelCase = shard(lowerCamelCase_) UpperCamelCase = pipeline(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , jit=lowerCamelCase_).images assert images.shape == (num_samples, 1, 5_1_2, 5_1_2, 3) if jax.device_count() == 8: assert np.abs((np.abs(images[0, 0, :2, :2, -2:] , dtype=np.floataa).sum() - 0.0400_3906)) < 1e-3 assert np.abs((np.abs(lowerCamelCase_ , dtype=np.floataa).sum() - 237_3516.75)) < 5e-1 def UpperCAmelCase__ ( self) -> str: UpperCamelCase , UpperCamelCase = FlaxStableDiffusionPipeline.from_pretrained( '''CompVis/stable-diffusion-v1-4''' , revision='''bf16''' , dtype=jnp.bfloataa) UpperCamelCase = ( '''A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of''' ''' field, close up, split lighting, cinematic''' ) UpperCamelCase = jax.random.PRNGKey(0) UpperCamelCase = 5_0 UpperCamelCase = jax.device_count() UpperCamelCase = num_samples * [prompt] UpperCamelCase = pipeline.prepare_inputs(lowerCamelCase_) # shard inputs and rng UpperCamelCase = replicate(lowerCamelCase_) UpperCamelCase = jax.random.split(lowerCamelCase_ , lowerCamelCase_) UpperCamelCase = shard(lowerCamelCase_) UpperCamelCase = pipeline(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , jit=lowerCamelCase_).images assert images.shape == (num_samples, 1, 5_1_2, 5_1_2, 3) if jax.device_count() == 8: assert np.abs((np.abs(images[0, 0, :2, :2, -2:] , dtype=np.floataa).sum() - 0.0400_3906)) < 1e-3 assert np.abs((np.abs(lowerCamelCase_ , dtype=np.floataa).sum() - 237_3516.75)) < 5e-1 def UpperCAmelCase__ ( self) -> str: UpperCamelCase = FlaxDDIMScheduler( beta_start=0.0_0085 , beta_end=0.012 , beta_schedule='''scaled_linear''' , set_alpha_to_one=lowerCamelCase_ , steps_offset=1 , ) UpperCamelCase , UpperCamelCase = FlaxStableDiffusionPipeline.from_pretrained( '''CompVis/stable-diffusion-v1-4''' , revision='''bf16''' , dtype=jnp.bfloataa , scheduler=lowerCamelCase_ , safety_checker=lowerCamelCase_ , ) UpperCamelCase = scheduler.create_state() UpperCamelCase = scheduler_state UpperCamelCase = ( '''A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of''' ''' field, close up, split lighting, cinematic''' ) UpperCamelCase = jax.random.PRNGKey(0) UpperCamelCase = 5_0 UpperCamelCase = jax.device_count() UpperCamelCase = num_samples * [prompt] UpperCamelCase = pipeline.prepare_inputs(lowerCamelCase_) # shard inputs and rng UpperCamelCase = replicate(lowerCamelCase_) UpperCamelCase = jax.random.split(lowerCamelCase_ , lowerCamelCase_) UpperCamelCase = shard(lowerCamelCase_) UpperCamelCase = pipeline(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , jit=lowerCamelCase_).images assert images.shape == (num_samples, 1, 5_1_2, 5_1_2, 3) if jax.device_count() == 8: assert np.abs((np.abs(images[0, 0, :2, :2, -2:] , dtype=np.floataa).sum() - 0.0_4504_3945)) < 1e-3 assert np.abs((np.abs(lowerCamelCase_ , dtype=np.floataa).sum() - 234_7693.5)) < 5e-1 def UpperCAmelCase__ ( self) -> List[Any]: UpperCamelCase = ( '''A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of''' ''' field, close up, split lighting, cinematic''' ) UpperCamelCase = jax.device_count() UpperCamelCase = num_samples * [prompt] UpperCamelCase = jax.random.split(jax.random.PRNGKey(0) , lowerCamelCase_) UpperCamelCase , UpperCamelCase = FlaxStableDiffusionPipeline.from_pretrained( '''CompVis/stable-diffusion-v1-4''' , revision='''bf16''' , dtype=jnp.bfloataa , safety_checker=lowerCamelCase_ , ) UpperCamelCase = replicate(lowerCamelCase_) UpperCamelCase = pipeline.prepare_inputs(lowerCamelCase_) UpperCamelCase = shard(lowerCamelCase_) UpperCamelCase = pipeline(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , jit=lowerCamelCase_).images assert images.shape == (num_samples, 1, 5_1_2, 5_1_2, 3) UpperCamelCase = images[2, 0, 2_5_6, 1_0:1_7, 1] # With memory efficient attention UpperCamelCase , UpperCamelCase = FlaxStableDiffusionPipeline.from_pretrained( '''CompVis/stable-diffusion-v1-4''' , revision='''bf16''' , dtype=jnp.bfloataa , safety_checker=lowerCamelCase_ , use_memory_efficient_attention=lowerCamelCase_ , ) UpperCamelCase = replicate(lowerCamelCase_) UpperCamelCase = pipeline.prepare_inputs(lowerCamelCase_) UpperCamelCase = shard(lowerCamelCase_) UpperCamelCase = pipeline(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , jit=lowerCamelCase_).images assert images_eff.shape == (num_samples, 1, 5_1_2, 5_1_2, 3) UpperCamelCase = images[2, 0, 2_5_6, 1_0:1_7, 1] # I checked the results visually and they are very similar. However, I saw that the max diff is `1` and the `sum` # over the 8 images is exactly `256`, which is very suspicious. Testing a random slice for now. assert abs(slice_eff - slice).max() < 1e-2
34
'''simple docstring''' from sklearn.metrics import matthews_corrcoef import datasets __UpperCamelCase = "\nCompute the Matthews correlation coefficient (MCC)\n\nThe Matthews correlation coefficient is used in machine learning as a\nmeasure of the quality of binary and multiclass classifications. It takes\ninto account true and false positives and negatives and is generally\nregarded as a balanced measure which can be used even if the classes are of\nvery different sizes. The MCC is in essence a correlation coefficient value\nbetween -1 and +1. A coefficient of +1 represents a perfect prediction, 0\nan average random prediction and -1 an inverse prediction. The statistic\nis also known as the phi coefficient. [source: Wikipedia]\n" __UpperCamelCase = "\nArgs:\n predictions (list of int): Predicted labels, as returned by a model.\n references (list of int): Ground truth labels.\n sample_weight (list of int, float, or bool): Sample weights. Defaults to `None`.\nReturns:\n matthews_correlation (dict containing float): Matthews correlation.\nExamples:\n Example 1, a basic example with only predictions and references as inputs:\n >>> matthews_metric = datasets.load_metric(\"matthews_correlation\")\n >>> results = matthews_metric.compute(references=[1, 3, 2, 0, 3, 2],\n ... predictions=[1, 2, 2, 0, 3, 3])\n >>> print(round(results['matthews_correlation'], 2))\n 0.54\n\n Example 2, the same example as above, but also including sample weights:\n >>> matthews_metric = datasets.load_metric(\"matthews_correlation\")\n >>> results = matthews_metric.compute(references=[1, 3, 2, 0, 3, 2],\n ... predictions=[1, 2, 2, 0, 3, 3],\n ... sample_weight=[0.5, 3, 1, 1, 1, 2])\n >>> print(round(results['matthews_correlation'], 2))\n 0.1\n\n Example 3, the same example as above, but with sample weights that cause a negative correlation:\n >>> matthews_metric = datasets.load_metric(\"matthews_correlation\")\n >>> results = matthews_metric.compute(references=[1, 3, 2, 0, 3, 2],\n ... predictions=[1, 2, 2, 0, 3, 3],\n ... sample_weight=[0.5, 1, 0, 0, 0, 1])\n >>> print(round(results['matthews_correlation'], 2))\n -0.25\n" __UpperCamelCase = "\\n@article{scikit-learn,\n title={Scikit-learn: Machine Learning in {P}ython},\n author={Pedregosa, F. and Varoquaux, G. and Gramfort, A. and Michel, V.\n and Thirion, B. and Grisel, O. and Blondel, M. and Prettenhofer, P.\n and Weiss, R. and Dubourg, V. and Vanderplas, J. and Passos, A. and\n Cournapeau, D. and Brucher, M. and Perrot, M. and Duchesnay, E.},\n journal={Journal of Machine Learning Research},\n volume={12},\n pages={2825--2830},\n year={2011}\n}\n" @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class _A ( datasets.Metric ): def lowercase__ ( self : Tuple ) -> Dict: """simple docstring""" return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { """predictions""": datasets.Value("""int32""" ), """references""": datasets.Value("""int32""" ), } ) , reference_urls=[ """https://scikit-learn.org/stable/modules/generated/sklearn.metrics.matthews_corrcoef.html""" ] , ) def lowercase__ ( self : List[Any] , __magic_name__ : Tuple , __magic_name__ : List[Any] , __magic_name__ : Union[str, Any]=None ) -> Optional[int]: """simple docstring""" return { "matthews_correlation": float(matthews_corrcoef(__magic_name__ , __magic_name__ , sample_weight=__magic_name__ ) ), }
26
0
import sys def a ( A__ ) -> Any: '''simple docstring''' SCREAMING_SNAKE_CASE__ : int = len(A__ ) SCREAMING_SNAKE_CASE__ : Tuple = [[0 for x in range(A__ )] for x in range(A__ )] SCREAMING_SNAKE_CASE__ : str = [[0 for x in range(A__ )] for x in range(A__ )] for chain_length in range(2 , A__ ): for a in range(1 , n - chain_length + 1 ): SCREAMING_SNAKE_CASE__ : List[str] = a + chain_length - 1 SCREAMING_SNAKE_CASE__ : Any = sys.maxsize for c in range(A__ , A__ ): SCREAMING_SNAKE_CASE__ : Dict = ( matrix[a][c] + matrix[c + 1][b] + array[a - 1] * array[c] * array[b] ) if cost < matrix[a][b]: SCREAMING_SNAKE_CASE__ : Optional[int] = cost SCREAMING_SNAKE_CASE__ : int = c return matrix, sol def a ( A__ , A__ , A__ ) -> List[str]: '''simple docstring''' if i == j: print('''A''' + str(A__ ) , end=''' ''' ) else: print('''(''' , end=''' ''' ) print_optiomal_solution(A__ , A__ , optimal_solution[i][j] ) print_optiomal_solution(A__ , optimal_solution[i][j] + 1 , A__ ) print(''')''' , end=''' ''' ) def a ( ) -> Tuple: '''simple docstring''' SCREAMING_SNAKE_CASE__ : Any = [3_0, 3_5, 1_5, 5, 1_0, 2_0, 2_5] SCREAMING_SNAKE_CASE__ : List[str] = len(A__ ) # Size of matrix created from above array will be # 30*35 35*15 15*5 5*10 10*20 20*25 SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : Any = matrix_chain_order(A__ ) print('''No. of Operation required: ''' + str(matrix[1][n - 1] ) ) print_optiomal_solution(A__ , 1 , n - 1 ) if __name__ == "__main__": main()
35
'''simple docstring''' import json import os from pathlib import Path import pytest from datasets.download.download_config import DownloadConfig from datasets.download.download_manager import DownloadManager from datasets.utils.file_utils import hash_url_to_filename __UpperCamelCase = "http://www.mocksite.com/file1.txt" __UpperCamelCase = "\"text\": [\"foo\", \"foo\"]" __UpperCamelCase = "6d8ce9aa78a471c7477201efbeabd3bb01ac2e7d100a6dc024ba1608361f90a8" class _A : lowercase__: str = 200 lowercase__: List[str] = {'''Content-Length''': '''100'''} lowercase__: Union[str, Any] = {} def lowercase__ ( self : Any , **__magic_name__ : List[Any] ) -> Dict: """simple docstring""" return [bytes(__magic_name__ , """utf-8""" )] def _a ( *_lowerCamelCase , **_lowerCamelCase ) -> List[str]: """simple docstring""" return MockResponse() @pytest.mark.parametrize("""urls_type""" , [str, list, dict] ) def _a ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> List[str]: """simple docstring""" import requests monkeypatch.setattr(_lowerCamelCase , """request""" , _lowerCamelCase ) __snake_case : Union[str, Any] = URL if issubclass(_lowerCamelCase , _lowerCamelCase ): __snake_case : str = url elif issubclass(_lowerCamelCase , _lowerCamelCase ): __snake_case : Dict = [url] elif issubclass(_lowerCamelCase , _lowerCamelCase ): __snake_case : Union[str, Any] = {"""train""": url} __snake_case : Dict = """dummy""" __snake_case : List[str] = """downloads""" __snake_case : List[Any] = tmp_path __snake_case : List[Any] = DownloadConfig( cache_dir=os.path.join(_lowerCamelCase , _lowerCamelCase ) , use_etag=_lowerCamelCase , ) __snake_case : List[str] = DownloadManager(dataset_name=_lowerCamelCase , download_config=_lowerCamelCase ) __snake_case : int = dl_manager.download(_lowerCamelCase ) __snake_case : Tuple = urls for downloaded_paths in [downloaded_paths]: if isinstance(_lowerCamelCase , _lowerCamelCase ): __snake_case : Any = [downloaded_paths] __snake_case : List[Any] = [urls] elif isinstance(_lowerCamelCase , _lowerCamelCase ): assert "train" in downloaded_paths.keys() __snake_case : Tuple = downloaded_paths.values() __snake_case : Optional[int] = urls.values() assert downloaded_paths for downloaded_path, input_url in zip(_lowerCamelCase , _lowerCamelCase ): assert downloaded_path == dl_manager.downloaded_paths[input_url] __snake_case : List[str] = Path(_lowerCamelCase ) __snake_case : Any = downloaded_path.parts assert parts[-1] == HASH assert parts[-2] == cache_subdir assert downloaded_path.exists() __snake_case : Union[str, Any] = downloaded_path.read_text() assert content == CONTENT __snake_case : List[str] = downloaded_path.with_suffix(""".json""" ) assert metadata_downloaded_path.exists() __snake_case : Union[str, Any] = json.loads(metadata_downloaded_path.read_text() ) assert metadata_content == {"url": URL, "etag": None} @pytest.mark.parametrize("""paths_type""" , [str, list, dict] ) def _a ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> List[Any]: """simple docstring""" __snake_case : Any = str(_lowerCamelCase ) if issubclass(_lowerCamelCase , _lowerCamelCase ): __snake_case : Optional[int] = filename elif issubclass(_lowerCamelCase , _lowerCamelCase ): __snake_case : Tuple = [filename] elif issubclass(_lowerCamelCase , _lowerCamelCase ): __snake_case : Dict = {"""train""": filename} __snake_case : Optional[Any] = """dummy""" __snake_case : List[Any] = xz_file.parent __snake_case : int = """extracted""" __snake_case : Dict = DownloadConfig( cache_dir=_lowerCamelCase , use_etag=_lowerCamelCase , ) __snake_case : List[str] = DownloadManager(dataset_name=_lowerCamelCase , download_config=_lowerCamelCase ) __snake_case : Optional[Any] = dl_manager.extract(_lowerCamelCase ) __snake_case : Union[str, Any] = paths for extracted_paths in [extracted_paths]: if isinstance(_lowerCamelCase , _lowerCamelCase ): __snake_case : Dict = [extracted_paths] __snake_case : int = [paths] elif isinstance(_lowerCamelCase , _lowerCamelCase ): assert "train" in extracted_paths.keys() __snake_case : int = extracted_paths.values() __snake_case : int = paths.values() assert extracted_paths for extracted_path, input_path in zip(_lowerCamelCase , _lowerCamelCase ): assert extracted_path == dl_manager.extracted_paths[input_path] __snake_case : Any = Path(_lowerCamelCase ) __snake_case : str = extracted_path.parts assert parts[-1] == hash_url_to_filename(_lowerCamelCase , etag=_lowerCamelCase ) assert parts[-2] == extracted_subdir assert extracted_path.exists() __snake_case : Optional[int] = extracted_path.read_text() __snake_case : str = text_file.read_text() assert extracted_file_content == expected_file_content def _a ( _lowerCamelCase , _lowerCamelCase ) -> Optional[int]: """simple docstring""" assert path.endswith(""".jsonl""" ) for num_items, line in enumerate(_lowerCamelCase , start=1 ): __snake_case : Tuple = json.loads(line.decode("""utf-8""" ) ) assert item.keys() == {"col_1", "col_2", "col_3"} assert num_items == 4 @pytest.mark.parametrize("""archive_jsonl""" , ["""tar_jsonl_path""", """zip_jsonl_path"""] ) def _a ( _lowerCamelCase , _lowerCamelCase ) -> Optional[int]: """simple docstring""" __snake_case : Any = request.getfixturevalue(_lowerCamelCase ) __snake_case : str = DownloadManager() for num_jsonl, (path, file) in enumerate(dl_manager.iter_archive(_lowerCamelCase ) , start=1 ): _test_jsonl(_lowerCamelCase , _lowerCamelCase ) assert num_jsonl == 2 @pytest.mark.parametrize("""archive_nested_jsonl""" , ["""tar_nested_jsonl_path""", """zip_nested_jsonl_path"""] ) def _a ( _lowerCamelCase , _lowerCamelCase ) -> List[str]: """simple docstring""" __snake_case : int = request.getfixturevalue(_lowerCamelCase ) __snake_case : List[str] = DownloadManager() for num_tar, (path, file) in enumerate(dl_manager.iter_archive(_lowerCamelCase ) , start=1 ): for num_jsonl, (subpath, subfile) in enumerate(dl_manager.iter_archive(_lowerCamelCase ) , start=1 ): _test_jsonl(_lowerCamelCase , _lowerCamelCase ) assert num_tar == 1 assert num_jsonl == 2 def _a ( _lowerCamelCase ) -> Any: """simple docstring""" __snake_case : List[str] = DownloadManager() for num_file, file in enumerate(dl_manager.iter_files(_lowerCamelCase ) , start=1 ): assert os.path.basename(_lowerCamelCase ) == ("test.txt" if num_file == 1 else "train.txt") assert num_file == 2
26
0
from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, convert_to_rgb, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( OPENAI_CLIP_MEAN, OPENAI_CLIP_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging __lowercase : Any = logging.get_logger(__name__) if is_vision_available(): import PIL class _A ( snake_case ): '''simple docstring''' __lowerCamelCase : List[Any] = ['''pixel_values'''] def __init__( self ,SCREAMING_SNAKE_CASE_ = True ,SCREAMING_SNAKE_CASE_ = None ,SCREAMING_SNAKE_CASE_ = PILImageResampling.BICUBIC ,SCREAMING_SNAKE_CASE_ = True ,SCREAMING_SNAKE_CASE_ = None ,SCREAMING_SNAKE_CASE_ = True ,SCREAMING_SNAKE_CASE_ = 1 / 255 ,SCREAMING_SNAKE_CASE_ = True ,SCREAMING_SNAKE_CASE_ = None ,SCREAMING_SNAKE_CASE_ = None ,SCREAMING_SNAKE_CASE_ = True ,**SCREAMING_SNAKE_CASE_ ,): '''simple docstring''' super().__init__(**SCREAMING_SNAKE_CASE_ ) snake_case : Optional[int] = size if size is not None else {"""shortest_edge""": 224} snake_case : List[Any] = get_size_dict(SCREAMING_SNAKE_CASE_ ,default_to_square=SCREAMING_SNAKE_CASE_ ) snake_case : List[Any] = crop_size if crop_size is not None else {"""height""": 224, """width""": 224} snake_case : str = get_size_dict(SCREAMING_SNAKE_CASE_ ,default_to_square=SCREAMING_SNAKE_CASE_ ,param_name="""crop_size""" ) snake_case : Any = do_resize snake_case : int = size snake_case : List[Any] = resample snake_case : int = do_center_crop snake_case : str = crop_size snake_case : List[Any] = do_rescale snake_case : Union[str, Any] = rescale_factor snake_case : Any = do_normalize snake_case : Tuple = image_mean if image_mean is not None else OPENAI_CLIP_MEAN snake_case : Dict = image_std if image_std is not None else OPENAI_CLIP_STD snake_case : Any = do_convert_rgb def snake_case_ ( self ,SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ = PILImageResampling.BICUBIC ,SCREAMING_SNAKE_CASE_ = None ,**SCREAMING_SNAKE_CASE_ ,): '''simple docstring''' snake_case : List[Any] = get_size_dict(SCREAMING_SNAKE_CASE_ ,default_to_square=SCREAMING_SNAKE_CASE_ ) if "shortest_edge" not in size: raise ValueError(F"""The `size` parameter must contain the key `shortest_edge`. Got {size.keys()}""" ) snake_case : Any = get_resize_output_image_size(SCREAMING_SNAKE_CASE_ ,size=size["""shortest_edge"""] ,default_to_square=SCREAMING_SNAKE_CASE_ ) return resize(SCREAMING_SNAKE_CASE_ ,size=SCREAMING_SNAKE_CASE_ ,resample=SCREAMING_SNAKE_CASE_ ,data_format=SCREAMING_SNAKE_CASE_ ,**SCREAMING_SNAKE_CASE_ ) def snake_case_ ( self ,SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ = None ,**SCREAMING_SNAKE_CASE_ ,): '''simple docstring''' snake_case : List[str] = get_size_dict(SCREAMING_SNAKE_CASE_ ) if "height" not in size or "width" not in size: raise ValueError(F"""The `size` parameter must contain the keys (height, width). Got {size.keys()}""" ) return center_crop(SCREAMING_SNAKE_CASE_ ,size=(size["""height"""], size["""width"""]) ,data_format=SCREAMING_SNAKE_CASE_ ,**SCREAMING_SNAKE_CASE_ ) def snake_case_ ( self ,SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ = None ,**SCREAMING_SNAKE_CASE_ ,): '''simple docstring''' return rescale(SCREAMING_SNAKE_CASE_ ,scale=SCREAMING_SNAKE_CASE_ ,data_format=SCREAMING_SNAKE_CASE_ ,**SCREAMING_SNAKE_CASE_ ) def snake_case_ ( self ,SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ = None ,**SCREAMING_SNAKE_CASE_ ,): '''simple docstring''' return normalize(SCREAMING_SNAKE_CASE_ ,mean=SCREAMING_SNAKE_CASE_ ,std=SCREAMING_SNAKE_CASE_ ,data_format=SCREAMING_SNAKE_CASE_ ,**SCREAMING_SNAKE_CASE_ ) def snake_case_ ( self ,SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ = None ,SCREAMING_SNAKE_CASE_ = None ,SCREAMING_SNAKE_CASE_ = None ,SCREAMING_SNAKE_CASE_ = None ,SCREAMING_SNAKE_CASE_ = None ,SCREAMING_SNAKE_CASE_ = None ,SCREAMING_SNAKE_CASE_ = None ,SCREAMING_SNAKE_CASE_ = None ,SCREAMING_SNAKE_CASE_ = None ,SCREAMING_SNAKE_CASE_ = None ,SCREAMING_SNAKE_CASE_ = None ,SCREAMING_SNAKE_CASE_ = None ,SCREAMING_SNAKE_CASE_ = ChannelDimension.FIRST ,**SCREAMING_SNAKE_CASE_ ,): '''simple docstring''' snake_case : Optional[int] = do_resize if do_resize is not None else self.do_resize snake_case : Union[str, Any] = size if size is not None else self.size snake_case : List[Any] = get_size_dict(SCREAMING_SNAKE_CASE_ ,param_name="""size""" ,default_to_square=SCREAMING_SNAKE_CASE_ ) snake_case : Any = resample if resample is not None else self.resample snake_case : Union[str, Any] = do_center_crop if do_center_crop is not None else self.do_center_crop snake_case : List[Any] = crop_size if crop_size is not None else self.crop_size snake_case : List[str] = get_size_dict(SCREAMING_SNAKE_CASE_ ,param_name="""crop_size""" ,default_to_square=SCREAMING_SNAKE_CASE_ ) snake_case : str = do_rescale if do_rescale is not None else self.do_rescale snake_case : Tuple = rescale_factor if rescale_factor is not None else self.rescale_factor snake_case : Optional[Any] = do_normalize if do_normalize is not None else self.do_normalize snake_case : Tuple = image_mean if image_mean is not None else self.image_mean snake_case : Tuple = image_std if image_std is not None else self.image_std snake_case : Dict = do_convert_rgb if do_convert_rgb is not None else self.do_convert_rgb snake_case : List[Any] = make_list_of_images(SCREAMING_SNAKE_CASE_ ) if not valid_images(SCREAMING_SNAKE_CASE_ ): raise ValueError( """Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, """ """torch.Tensor, tf.Tensor or jax.ndarray.""" ) if do_resize and size is None: raise ValueError("""Size must be specified if do_resize is True.""" ) if do_center_crop and crop_size is None: raise ValueError("""Crop size must be specified if do_center_crop is True.""" ) if do_rescale and rescale_factor is None: raise ValueError("""Rescale factor must be specified if do_rescale is True.""" ) if do_normalize and (image_mean is None or image_std is None): raise ValueError("""Image mean and std must be specified if do_normalize is True.""" ) # PIL RGBA images are converted to RGB if do_convert_rgb: snake_case : List[str] = [convert_to_rgb(SCREAMING_SNAKE_CASE_ ) for image in images] # All transformations expect numpy arrays. snake_case : Optional[Any] = [to_numpy_array(SCREAMING_SNAKE_CASE_ ) for image in images] if do_resize: snake_case : Union[str, Any] = [self.resize(image=SCREAMING_SNAKE_CASE_ ,size=SCREAMING_SNAKE_CASE_ ,resample=SCREAMING_SNAKE_CASE_ ) for image in images] if do_center_crop: snake_case : List[Any] = [self.center_crop(image=SCREAMING_SNAKE_CASE_ ,size=SCREAMING_SNAKE_CASE_ ) for image in images] if do_rescale: snake_case : List[Any] = [self.rescale(image=SCREAMING_SNAKE_CASE_ ,scale=SCREAMING_SNAKE_CASE_ ) for image in images] if do_normalize: snake_case : List[Any] = [self.normalize(image=SCREAMING_SNAKE_CASE_ ,mean=SCREAMING_SNAKE_CASE_ ,std=SCREAMING_SNAKE_CASE_ ) for image in images] snake_case : Optional[Any] = [to_channel_dimension_format(SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ ) for image in images] snake_case : Optional[int] = {"""pixel_values""": images} return BatchFeature(data=SCREAMING_SNAKE_CASE_ ,tensor_type=SCREAMING_SNAKE_CASE_ )
36
'''simple docstring''' def _a ( _lowerCamelCase = 100 ) -> int: """simple docstring""" __snake_case : Any = n * (n + 1) * (2 * n + 1) / 6 __snake_case : List[Any] = (n * (n + 1) / 2) ** 2 return int(square_of_sum - sum_of_squares ) if __name__ == "__main__": print(f"""{solution() = }""")
26
0
from collections import defaultdict from graphs.minimum_spanning_tree_prims import prisms_algorithm as mst def UpperCamelCase_ ( ) -> Optional[Any]: a__, a__ : Tuple = 9, 14 # noqa: F841 a__ : int = [ [0, 1, 4], [0, 7, 8], [1, 2, 8], [7, 8, 7], [7, 6, 1], [2, 8, 2], [8, 6, 6], [2, 3, 7], [2, 5, 4], [6, 5, 2], [3, 5, 14], [3, 4, 9], [5, 4, 10], [1, 7, 11], ] a__ : str = defaultdict(__a ) for nodea, nodea, cost in edges: adjancency[nodea].append([nodea, cost] ) adjancency[nodea].append([nodea, cost] ) a__ : Union[str, Any] = mst(__a ) a__ : str = [ [7, 6, 1], [2, 8, 2], [6, 5, 2], [0, 1, 4], [2, 5, 4], [2, 3, 7], [0, 7, 8], [3, 4, 9], ] for answer in expected: a__ : List[str] = tuple(answer[:2] ) a__ : Any = tuple(edge[::-1] ) assert edge in result or reverse in result
37
'''simple docstring''' from __future__ import annotations from typing import Any class _A : def __init__( self : str , __magic_name__ : int , __magic_name__ : int , __magic_name__ : float = 0 ) -> None: """simple docstring""" __snake_case , __snake_case : Optional[Any] = row, column __snake_case : Dict = [[default_value for c in range(__magic_name__ )] for r in range(__magic_name__ )] def __str__( self : List[Any] ) -> str: """simple docstring""" __snake_case : Dict = f'''Matrix consist of {self.row} rows and {self.column} columns\n''' # Make string identifier __snake_case : Optional[int] = 0 for row_vector in self.array: for obj in row_vector: __snake_case : Optional[int] = max(__magic_name__ , len(str(__magic_name__ ) ) ) __snake_case : str = f'''%{max_element_length}s''' # Make string and return def single_line(__magic_name__ : list[float] ) -> str: nonlocal string_format_identifier __snake_case : Union[str, Any] = """[""" line += ", ".join(string_format_identifier % (obj,) for obj in row_vector ) line += "]" return line s += "\n".join(single_line(__magic_name__ ) for row_vector in self.array ) return s def __repr__( self : Optional[int] ) -> str: """simple docstring""" return str(self ) def lowercase__ ( self : Dict , __magic_name__ : tuple[int, int] ) -> bool: """simple docstring""" if not (isinstance(__magic_name__ , (list, tuple) ) and len(__magic_name__ ) == 2): return False elif not (0 <= loc[0] < self.row and 0 <= loc[1] < self.column): return False else: return True def __getitem__( self : int , __magic_name__ : tuple[int, int] ) -> Any: """simple docstring""" assert self.validate_indicies(__magic_name__ ) return self.array[loc[0]][loc[1]] def __setitem__( self : List[str] , __magic_name__ : tuple[int, int] , __magic_name__ : float ) -> None: """simple docstring""" assert self.validate_indicies(__magic_name__ ) __snake_case : Optional[int] = value def __add__( self : Any , __magic_name__ : Matrix ) -> Matrix: """simple docstring""" assert isinstance(__magic_name__ , __magic_name__ ) assert self.row == another.row and self.column == another.column # Add __snake_case : Union[str, Any] = Matrix(self.row , self.column ) for r in range(self.row ): for c in range(self.column ): __snake_case : List[Any] = self[r, c] + another[r, c] return result def __neg__( self : Tuple ) -> Matrix: """simple docstring""" __snake_case : Tuple = Matrix(self.row , self.column ) for r in range(self.row ): for c in range(self.column ): __snake_case : List[Any] = -self[r, c] return result def __sub__( self : Optional[int] , __magic_name__ : Matrix ) -> Matrix: """simple docstring""" return self + (-another) def __mul__( self : List[Any] , __magic_name__ : int | float | Matrix ) -> Matrix: """simple docstring""" if isinstance(__magic_name__ , (int, float) ): # Scalar multiplication __snake_case : Optional[int] = Matrix(self.row , self.column ) for r in range(self.row ): for c in range(self.column ): __snake_case : Tuple = self[r, c] * another return result elif isinstance(__magic_name__ , __magic_name__ ): # Matrix multiplication assert self.column == another.row __snake_case : Dict = Matrix(self.row , another.column ) for r in range(self.row ): for c in range(another.column ): for i in range(self.column ): result[r, c] += self[r, i] * another[i, c] return result else: __snake_case : Optional[int] = f'''Unsupported type given for another ({type(__magic_name__ )})''' raise TypeError(__magic_name__ ) def lowercase__ ( self : str ) -> Matrix: """simple docstring""" __snake_case : Any = Matrix(self.column , self.row ) for r in range(self.row ): for c in range(self.column ): __snake_case : str = self[r, c] return result def lowercase__ ( self : Union[str, Any] , __magic_name__ : Matrix , __magic_name__ : Matrix ) -> Any: """simple docstring""" assert isinstance(__magic_name__ , __magic_name__ ) and isinstance(__magic_name__ , __magic_name__ ) assert self.row == self.column == u.row == v.row # u, v should be column vector assert u.column == v.column == 1 # u, v should be column vector # Calculate __snake_case : List[str] = v.transpose() __snake_case : Tuple = (v_t * self * u)[0, 0] + 1 if numerator_factor == 0: return None # It's not invertable return self - ((self * u) * (v_t * self) * (1.0 / numerator_factor)) # Testing if __name__ == "__main__": def _a ( ) -> None: """simple docstring""" __snake_case : Tuple = Matrix(3 , 3 , 0 ) for i in range(3 ): __snake_case : Any = 1 print(F'''a^(-1) is {ainv}''' ) # u, v __snake_case : Dict = Matrix(3 , 1 , 0 ) __snake_case , __snake_case , __snake_case : Union[str, Any] = 1, 2, -3 __snake_case : str = Matrix(3 , 1 , 0 ) __snake_case , __snake_case , __snake_case : Tuple = 4, -2, 5 print(F'''u is {u}''' ) print(F'''v is {v}''' ) print(F'''uv^T is {u * v.transpose()}''' ) # Sherman Morrison print(F'''(a + uv^T)^(-1) is {ainv.sherman_morrison(_lowerCamelCase , _lowerCamelCase )}''' ) def _a ( ) -> None: """simple docstring""" import doctest doctest.testmod() testa()
26
0
'''simple docstring''' def UpperCamelCase__ ( ) -> Union[str, Any]: '''simple docstring''' snake_case__ : Any = [] snake_case__ : Tuple = 1 while len(__magic_name__ ) < 1E6: constant.append(str(__magic_name__ ) ) i += 1 snake_case__ : Optional[Any] = """""".join(__magic_name__ ) return ( int(constant[0] ) * int(constant[9] ) * int(constant[99] ) * int(constant[9_99] ) * int(constant[99_99] ) * int(constant[9_99_99] ) * int(constant[99_99_99] ) ) if __name__ == "__main__": print(solution())
38
'''simple docstring''' import argparse import json import os import torch from torch import nn from transformers import NllbMoeConfig, NllbMoeModel from transformers.modeling_utils import dtype_byte_size from transformers.utils import WEIGHTS_INDEX_NAME, WEIGHTS_NAME def _a ( _lowerCamelCase ) -> List[Any]: """simple docstring""" __snake_case : Union[str, Any] = [ """encoder.version""", """decoder.version""", """model.encoder.version""", """model.decoder.version""", """decoder.output_projection.weight""", """_float_tensor""", """encoder.embed_positions._float_tensor""", """decoder.embed_positions._float_tensor""", ] for k in ignore_keys: state_dict.pop(_lowerCamelCase , _lowerCamelCase ) def _a ( _lowerCamelCase ) -> List[str]: """simple docstring""" __snake_case , __snake_case : Dict = emb.weight.shape __snake_case : Optional[int] = nn.Linear(_lowerCamelCase , _lowerCamelCase , bias=_lowerCamelCase ) __snake_case : Union[str, Any] = emb.weight.data return lin_layer def _a ( _lowerCamelCase , _lowerCamelCase=None ) -> Union[str, Any]: """simple docstring""" __snake_case : Any = {} for old_key in state_dict.keys(): __snake_case : Union[str, Any] = old_key if "moe_layer.experts." in key: if expert_idx is not None: __snake_case : Tuple = key.replace("""moe_layer.experts.0""" , F'''ffn.experts.expert_{expert_idx}''' ) else: __snake_case : Optional[int] = key.replace("""moe_layer.experts.""" , """ffn.experts.expert_""" ) if "gate" in key: __snake_case : Dict = key.replace(""".moe_layer.gate.wg""" , """.ffn.router.classifier""" ) if "fc2" and "experts" not in key: __snake_case : Union[str, Any] = key.replace(""".fc2.""" , """.ffn.fc2.""" ) if "fc1" and "experts" not in key: __snake_case : Optional[int] = key.replace(""".fc1.""" , """.ffn.fc1.""" ) if ".encoder_attn." in key: __snake_case : Tuple = key.replace(""".encoder_attn.""" , """.cross_attention.""" ) if "encoder_attn_layer_norm" in key: __snake_case : Union[str, Any] = key.replace("""encoder_attn_layer_norm""" , """cross_attention_layer_norm""" ) if "final_layer_norm" in key: __snake_case : str = key.replace("""final_layer_norm""" , """ff_layer_norm""" ) __snake_case : str = state_dict[old_key] return new_dict def _a ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase = WEIGHTS_NAME ) -> Dict: """simple docstring""" __snake_case : Optional[int] = [] __snake_case : Dict = 0 os.makedirs(_lowerCamelCase , exist_ok=_lowerCamelCase ) for expert in range(_lowerCamelCase ): __snake_case : Tuple = switch_checkpoint_path + F'''-rank-{expert}.pt''' if os.path.isfile(_lowerCamelCase ): __snake_case : Dict = torch.load(_lowerCamelCase )["""model"""] remove_ignore_keys_(_lowerCamelCase ) __snake_case : Optional[Any] = rename_fairseq_keys(_lowerCamelCase , _lowerCamelCase ) __snake_case : List[Any] = os.path.join( _lowerCamelCase , weights_name.replace(""".bin""" , F'''-{len(_lowerCamelCase )+1:05d}-of-???.bin''' ) ) torch.save(_lowerCamelCase , _lowerCamelCase ) sharded_state_dicts.append(expert_state.keys() ) total_size += sum([value.numel() for key, value in expert_state.items()] ) * dtype_byte_size( expert_state[list(_lowerCamelCase )[0]].dtype ) # Add the last block __snake_case : Optional[Any] = os.path.join(_lowerCamelCase , weights_name.replace(""".bin""" , F'''-{len(_lowerCamelCase )+1:05d}-of-???.bin''' ) ) __snake_case : str = torch.load(switch_checkpoint_path + """-shared.pt""" )["""model"""] remove_ignore_keys_(_lowerCamelCase ) __snake_case : Optional[Any] = rename_fairseq_keys(_lowerCamelCase , _lowerCamelCase ) __snake_case : List[str] = shared_weights["""decoder.embed_tokens.weight"""] sharded_state_dicts.append(shared_weights.keys() ) # If we only have the shared weights (dummy model/experts saved on the same file) if len(_lowerCamelCase ) == 1: __snake_case : Optional[Any] = os.path.join(_lowerCamelCase , _lowerCamelCase ) torch.save(_lowerCamelCase , _lowerCamelCase ) return {weights_name: sharded_state_dicts[0]}, None else: torch.save(_lowerCamelCase , _lowerCamelCase ) # Otherwise, let's build the index __snake_case : Tuple = {} for idx, shard in enumerate(_lowerCamelCase ): __snake_case : Any = weights_name.replace(""".bin""" , F'''-{idx+1:05d}-of-{len(_lowerCamelCase ):05d}.bin''' ) __snake_case : int = os.path.join(_lowerCamelCase , weights_name.replace(""".bin""" , F'''-{idx+1:05d}-of-???.bin''' ) ) os.rename(_lowerCamelCase , os.path.join(_lowerCamelCase , _lowerCamelCase ) ) for key in shard: __snake_case : str = shard_file # Add the metadata __snake_case : Optional[Any] = {"""total_size""": total_size} __snake_case : int = {"""metadata""": metadata, """weight_map""": weight_map} with open(os.path.join(_lowerCamelCase , _lowerCamelCase ) , """w""" , encoding="""utf-8""" ) as f: __snake_case : Union[str, Any] = json.dumps(_lowerCamelCase , indent=2 , sort_keys=_lowerCamelCase ) + """\n""" f.write(_lowerCamelCase ) return metadata, index if __name__ == "__main__": __UpperCamelCase = argparse.ArgumentParser() # Required parameters parser.add_argument( "--nllb_moe_checkpoint_path", default="/home/arthur_huggingface_co/fairseq/weights/checkpoints/model_moe_54b/checkpoint_2_300000", type=str, required=False, help="Path to a directory containing a folder per layer. Follows the original Google format.", ) parser.add_argument("--dtype", default="float32", type=str, required=False, help="dtype of the saved model") parser.add_argument( "--pytorch_dump_folder_path", default="/home/arthur_huggingface_co/fairseq/weights/checkpoints/hf-converted-moe-54b", type=str, required=False, help="Path to the output pytorch model.", ) __UpperCamelCase = parser.parse_args() __UpperCamelCase , __UpperCamelCase = shard_on_the_fly( args.nllb_moe_checkpoint_path, args.pytorch_dump_folder_path, 128, args.dtype, ) __UpperCamelCase = NllbMoeConfig.from_pretrained( "facebook/nllb-200-3.3B", encoder_sparse_step=4, decoder_sparse_step=4, num_experts=128 ) config.save_pretrained(args.pytorch_dump_folder_path) __UpperCamelCase = NllbMoeModel.from_pretrained(args.pytorch_dump_folder_path) print("Done") model.save_pretrained(args.pytorch_dump_folder_path)
26
0
import math import numpy as np import qiskit from qiskit import Aer, ClassicalRegister, QuantumCircuit, QuantumRegister, execute def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ = 3 ): if isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): raise TypeError('''number of qubits must be a integer.''' ) if number_of_qubits <= 0: raise ValueError('''number of qubits must be > 0.''' ) if math.floor(SCREAMING_SNAKE_CASE__ ) != number_of_qubits: raise ValueError('''number of qubits must be exact integer.''' ) if number_of_qubits > 10: raise ValueError('''number of qubits too large to simulate(>10).''' ) snake_case_ = QuantumRegister(SCREAMING_SNAKE_CASE__ , '''qr''' ) snake_case_ = ClassicalRegister(SCREAMING_SNAKE_CASE__ , '''cr''' ) snake_case_ = QuantumCircuit(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) snake_case_ = number_of_qubits for i in range(SCREAMING_SNAKE_CASE__ ): quantum_circuit.h(number_of_qubits - i - 1 ) counter -= 1 for j in range(SCREAMING_SNAKE_CASE__ ): quantum_circuit.cp(np.pi / 2 ** (counter - j) , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) for k in range(number_of_qubits // 2 ): quantum_circuit.swap(SCREAMING_SNAKE_CASE__ , number_of_qubits - k - 1 ) # measure all the qubits quantum_circuit.measure(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) # simulate with 10000 shots snake_case_ = Aer.get_backend('''qasm_simulator''' ) snake_case_ = execute(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , shots=10000 ) return job.result().get_counts(SCREAMING_SNAKE_CASE__ ) if __name__ == "__main__": print( f"""Total count for quantum fourier transform state is: \ {quantum_fourier_transform(3)}""" )
39
'''simple docstring''' import cva import numpy as np class _A : def __init__( self : Any , __magic_name__ : float , __magic_name__ : int ) -> Optional[int]: """simple docstring""" if k in (0.04, 0.06): __snake_case : List[str] = k __snake_case : int = window_size else: raise ValueError("""invalid k value""" ) def __str__( self : Union[str, Any] ) -> str: """simple docstring""" return str(self.k ) def lowercase__ ( self : Dict , __magic_name__ : str ) -> tuple[cva.Mat, list[list[int]]]: """simple docstring""" __snake_case : Dict = cva.imread(__magic_name__ , 0 ) __snake_case , __snake_case : List[str] = img.shape __snake_case : list[list[int]] = [] __snake_case : str = img.copy() __snake_case : Tuple = cva.cvtColor(__magic_name__ , cva.COLOR_GRAY2RGB ) __snake_case , __snake_case : List[Any] = np.gradient(__magic_name__ ) __snake_case : Optional[Any] = dx**2 __snake_case : Tuple = dy**2 __snake_case : List[Any] = dx * dy __snake_case : List[Any] = 0.04 __snake_case : Tuple = self.window_size // 2 for y in range(__magic_name__ , h - offset ): for x in range(__magic_name__ , w - offset ): __snake_case : Dict = ixx[ y - offset : y + offset + 1, x - offset : x + offset + 1 ].sum() __snake_case : Optional[int] = iyy[ y - offset : y + offset + 1, x - offset : x + offset + 1 ].sum() __snake_case : str = ixy[ y - offset : y + offset + 1, x - offset : x + offset + 1 ].sum() __snake_case : List[str] = (wxx * wyy) - (wxy**2) __snake_case : Dict = wxx + wyy __snake_case : List[str] = det - k * (trace**2) # Can change the value if r > 0.5: corner_list.append([x, y, r] ) color_img.itemset((y, x, 0) , 0 ) color_img.itemset((y, x, 1) , 0 ) color_img.itemset((y, x, 2) , 2_55 ) return color_img, corner_list if __name__ == "__main__": __UpperCamelCase = HarrisCorner(0.04, 3) __UpperCamelCase , __UpperCamelCase = edge_detect.detect("path_to_image") cva.imwrite("detect.png", color_img)
26
0
import json import os from typing import Optional, Tuple from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging __UpperCAmelCase = logging.get_logger(__name__) __UpperCAmelCase = {'''vocab_file''': '''vocab.json'''} __UpperCAmelCase = { '''vocab_file''': { '''mgp-str''': '''https://huggingface.co/alibaba-damo/mgp-str-base/blob/main/vocab.json''', } } __UpperCAmelCase = {'''mgp-str''': 27} class lowerCAmelCase_ ( a__ ): UpperCAmelCase__ : List[str] = VOCAB_FILES_NAMES UpperCAmelCase__ : Tuple = PRETRAINED_VOCAB_FILES_MAP UpperCAmelCase__ : int = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES def __init__( self, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_="[GO]", SCREAMING_SNAKE_CASE_="[GO]", SCREAMING_SNAKE_CASE_="[s]", SCREAMING_SNAKE_CASE_="[GO]", **SCREAMING_SNAKE_CASE_ ) -> int: super().__init__( unk_token=SCREAMING_SNAKE_CASE_, bos_token=SCREAMING_SNAKE_CASE_, eos_token=SCREAMING_SNAKE_CASE_, pad_token=SCREAMING_SNAKE_CASE_, **SCREAMING_SNAKE_CASE_, ) with open(SCREAMING_SNAKE_CASE_, encoding='utf-8' ) as vocab_handle: UpperCamelCase : Optional[int] = json.load(SCREAMING_SNAKE_CASE_ ) UpperCamelCase : Optional[int] = {v: k for k, v in self.vocab.items()} @property def snake_case_ ( self ) -> Any: return len(self.vocab ) def snake_case_ ( self ) -> List[Any]: return dict(self.vocab, **self.added_tokens_encoder ) def snake_case_ ( self, SCREAMING_SNAKE_CASE_ ) -> str: UpperCamelCase : List[Any] = [] for s in text: char_tokens.extend(SCREAMING_SNAKE_CASE_ ) return char_tokens def snake_case_ ( self, SCREAMING_SNAKE_CASE_ ) -> Dict: return self.vocab.get(SCREAMING_SNAKE_CASE_, self.vocab.get(self.unk_token ) ) def snake_case_ ( self, SCREAMING_SNAKE_CASE_ ) -> str: return self.decoder.get(SCREAMING_SNAKE_CASE_ ) def snake_case_ ( self, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ = None ) -> Tuple[str]: if not os.path.isdir(SCREAMING_SNAKE_CASE_ ): logger.error('Vocabulary path ({}) should be a directory'.format(SCREAMING_SNAKE_CASE_ ) ) return UpperCamelCase : Dict = os.path.join( SCREAMING_SNAKE_CASE_, (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) with open(SCREAMING_SNAKE_CASE_, 'w', encoding='utf-8' ) as f: f.write(json.dumps(self.vocab, indent=2, sort_keys=SCREAMING_SNAKE_CASE_, ensure_ascii=SCREAMING_SNAKE_CASE_ ) + '\n' ) return (vocab_file,)
40
'''simple docstring''' import warnings from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding class _A ( __lowercase ): lowercase__: Any = ['''image_processor''', '''tokenizer'''] lowercase__: Any = '''CLIPImageProcessor''' lowercase__: Optional[Any] = ('''CLIPTokenizer''', '''CLIPTokenizerFast''') def __init__( self : int , __magic_name__ : Dict=None , __magic_name__ : Dict=None , **__magic_name__ : Union[str, Any] ) -> Any: """simple docstring""" __snake_case : Optional[Any] = None if "feature_extractor" in kwargs: warnings.warn( """The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`""" """ instead.""" , __magic_name__ , ) __snake_case : List[Any] = kwargs.pop("""feature_extractor""" ) __snake_case : List[str] = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError("""You need to specify an `image_processor`.""" ) if tokenizer is None: raise ValueError("""You need to specify a `tokenizer`.""" ) super().__init__(__magic_name__ , __magic_name__ ) def __call__( self : int , __magic_name__ : List[str]=None , __magic_name__ : Tuple=None , __magic_name__ : Any=None , **__magic_name__ : Union[str, Any] ) -> Optional[int]: """simple docstring""" if text is None and images is None: raise ValueError("""You have to specify either text or images. Both cannot be none.""" ) if text is not None: __snake_case : int = self.tokenizer(__magic_name__ , return_tensors=__magic_name__ , **__magic_name__ ) if images is not None: __snake_case : str = self.image_processor(__magic_name__ , return_tensors=__magic_name__ , **__magic_name__ ) if text is not None and images is not None: __snake_case : Union[str, Any] = image_features.pixel_values return encoding elif text is not None: return encoding else: return BatchEncoding(data=dict(**__magic_name__ ) , tensor_type=__magic_name__ ) def lowercase__ ( self : Optional[int] , *__magic_name__ : List[Any] , **__magic_name__ : Any ) -> Optional[Any]: """simple docstring""" return self.tokenizer.batch_decode(*__magic_name__ , **__magic_name__ ) def lowercase__ ( self : List[str] , *__magic_name__ : Tuple , **__magic_name__ : List[Any] ) -> int: """simple docstring""" return self.tokenizer.decode(*__magic_name__ , **__magic_name__ ) @property def lowercase__ ( self : List[Any] ) -> Optional[Any]: """simple docstring""" __snake_case : Dict = self.tokenizer.model_input_names __snake_case : str = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) ) @property def lowercase__ ( self : int ) -> List[str]: """simple docstring""" warnings.warn( """`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.""" , __magic_name__ , ) return self.image_processor_class @property def lowercase__ ( self : Union[str, Any] ) -> Dict: """simple docstring""" warnings.warn( """`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead.""" , __magic_name__ , ) return self.image_processor
26
0