code
stringlengths
82
54.1k
code_codestyle
int64
0
699
style_context
stringlengths
111
35.6k
style_context_codestyle
int64
0
699
label
int64
0
1
import argparse import logging import pickle from collections import Counter logging.basicConfig( format="%(asctime)s - %(levelname)s - %(name)s - %(message)s", datefmt="%m/%d/%Y %H:%M:%S", level=logging.INFO ) _snake_case : Dict = logging.getLogger(__name__) if __name__ == "__main__": _snake_case : int = argparse.ArgumentParser( description="Token Counts for smoothing the masking probabilities in MLM (cf XLM/word2vec)" ) parser.add_argument( "--data_file", type=str, default="data/dump.bert-base-uncased.pickle", help="The binarized dataset." ) parser.add_argument( "--token_counts_dump", type=str, default="data/token_counts.bert-base-uncased.pickle", help="The dump file." ) parser.add_argument("--vocab_size", default=30_522, type=int) _snake_case : str = parser.parse_args() logger.info(f'''Loading data from {args.data_file}''') with open(args.data_file, "rb") as fp: _snake_case : str = pickle.load(fp) logger.info("Counting occurrences for MLM.") _snake_case : Optional[int] = Counter() for tk_ids in data: counter.update(tk_ids) _snake_case : int = [0] * args.vocab_size for k, v in counter.items(): _snake_case : List[Any] = v logger.info(f'''Dump to {args.token_counts_dump}''') with open(args.token_counts_dump, "wb") as handle: pickle.dump(counts, handle, protocol=pickle.HIGHEST_PROTOCOL)
81
import unittest from transformers import is_torch_available, is_vision_available from transformers.testing_utils import require_torch, require_vision, slow, torch_device if is_torch_available(): import torch from transformers import AutoModelForImageClassification if is_vision_available(): from transformers import AutoImageProcessor @require_torch @require_vision class __a( unittest.TestCase ): """simple docstring""" @slow def a__ ( self ) -> List[str]: UpperCAmelCase_ : Tuple = AutoImageProcessor.from_pretrained('''microsoft/dit-base-finetuned-rvlcdip''' ) UpperCAmelCase_ : Union[str, Any] = AutoModelForImageClassification.from_pretrained('''microsoft/dit-base-finetuned-rvlcdip''' ) model.to(_SCREAMING_SNAKE_CASE ) from datasets import load_dataset UpperCAmelCase_ : Optional[int] = load_dataset('''nielsr/rvlcdip-demo''' ) UpperCAmelCase_ : Optional[Any] = dataset['''train'''][0]['''image'''].convert('''RGB''' ) UpperCAmelCase_ : str = image_processor(_SCREAMING_SNAKE_CASE ,return_tensors='''pt''' ).to(_SCREAMING_SNAKE_CASE ) # forward pass with torch.no_grad(): UpperCAmelCase_ : Optional[int] = model(**_SCREAMING_SNAKE_CASE ) UpperCAmelCase_ : List[Any] = outputs.logits UpperCAmelCase_ : Tuple = torch.Size((1, 16) ) self.assertEqual(logits.shape ,_SCREAMING_SNAKE_CASE ) UpperCAmelCase_ : int = torch.tensor( [-0.41_58, -0.40_92, -0.43_47] ,device=_SCREAMING_SNAKE_CASE ,dtype=torch.float ,) self.assertTrue(torch.allclose(logits[0, :3] ,_SCREAMING_SNAKE_CASE ,atol=1e-4 ) )
30
0
"""simple docstring""" import torch from diffusers import CMStochasticIterativeScheduler from .test_schedulers import SchedulerCommonTest class lowercase__ ( SCREAMING_SNAKE_CASE ): '''simple docstring''' UpperCamelCase = (CMStochasticIterativeScheduler,) UpperCamelCase = 10 def lowercase__ ( self : Optional[int] , **_UpperCAmelCase : Dict ) -> Union[str, Any]: '''simple docstring''' UpperCAmelCase_ = { "num_train_timesteps": 201, "sigma_min": 0.002, "sigma_max": 80.0, } config.update(**_UpperCAmelCase ) return config def lowercase__ ( self : Dict ) -> Union[str, Any]: '''simple docstring''' UpperCAmelCase_ = 10 UpperCAmelCase_ = self.get_scheduler_config() UpperCAmelCase_ = self.scheduler_classes[0](**_UpperCAmelCase ) scheduler.set_timesteps(_UpperCAmelCase ) UpperCAmelCase_ = scheduler.timesteps[0] UpperCAmelCase_ = scheduler.timesteps[1] UpperCAmelCase_ = self.dummy_sample UpperCAmelCase_ = 0.1 * sample UpperCAmelCase_ = scheduler.step(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ).prev_sample UpperCAmelCase_ = scheduler.step(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ).prev_sample self.assertEqual(output_a.shape , sample.shape ) self.assertEqual(output_a.shape , output_a.shape ) def lowercase__ ( self : List[Any] ) -> Tuple: '''simple docstring''' for timesteps in [10, 50, 100, 1000]: self.check_over_configs(num_train_timesteps=_UpperCAmelCase ) def lowercase__ ( self : str ) -> Union[str, Any]: '''simple docstring''' for clip_denoised in [True, False]: self.check_over_configs(clip_denoised=_UpperCAmelCase ) def lowercase__ ( self : Union[str, Any] ) -> str: '''simple docstring''' UpperCAmelCase_ = self.scheduler_classes[0] UpperCAmelCase_ = self.get_scheduler_config() UpperCAmelCase_ = scheduler_class(**_UpperCAmelCase ) UpperCAmelCase_ = 1 scheduler.set_timesteps(_UpperCAmelCase ) UpperCAmelCase_ = scheduler.timesteps UpperCAmelCase_ = torch.manual_seed(0 ) UpperCAmelCase_ = self.dummy_model() UpperCAmelCase_ = self.dummy_sample_deter * scheduler.init_noise_sigma for i, t in enumerate(_UpperCAmelCase ): # 1. scale model input UpperCAmelCase_ = scheduler.scale_model_input(_UpperCAmelCase , _UpperCAmelCase ) # 2. predict noise residual UpperCAmelCase_ = model(_UpperCAmelCase , _UpperCAmelCase ) # 3. predict previous sample x_t-1 UpperCAmelCase_ = scheduler.step(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , generator=_UpperCAmelCase ).prev_sample UpperCAmelCase_ = pred_prev_sample UpperCAmelCase_ = torch.sum(torch.abs(_UpperCAmelCase ) ) UpperCAmelCase_ = torch.mean(torch.abs(_UpperCAmelCase ) ) assert abs(result_sum.item() - 192.7614 ) < 1e-2 assert abs(result_mean.item() - 0.2510 ) < 1e-3 def lowercase__ ( self : List[str] ) -> Optional[int]: '''simple docstring''' UpperCAmelCase_ = self.scheduler_classes[0] UpperCAmelCase_ = self.get_scheduler_config() UpperCAmelCase_ = scheduler_class(**_UpperCAmelCase ) UpperCAmelCase_ = [106, 0] scheduler.set_timesteps(timesteps=_UpperCAmelCase ) UpperCAmelCase_ = scheduler.timesteps UpperCAmelCase_ = torch.manual_seed(0 ) UpperCAmelCase_ = self.dummy_model() UpperCAmelCase_ = self.dummy_sample_deter * scheduler.init_noise_sigma for t in timesteps: # 1. scale model input UpperCAmelCase_ = scheduler.scale_model_input(_UpperCAmelCase , _UpperCAmelCase ) # 2. predict noise residual UpperCAmelCase_ = model(_UpperCAmelCase , _UpperCAmelCase ) # 3. predict previous sample x_t-1 UpperCAmelCase_ = scheduler.step(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , generator=_UpperCAmelCase ).prev_sample UpperCAmelCase_ = pred_prev_sample UpperCAmelCase_ = torch.sum(torch.abs(_UpperCAmelCase ) ) UpperCAmelCase_ = torch.mean(torch.abs(_UpperCAmelCase ) ) assert abs(result_sum.item() - 347.6357 ) < 1e-2 assert abs(result_mean.item() - 0.4527 ) < 1e-3 def lowercase__ ( self : Tuple ) -> List[str]: '''simple docstring''' UpperCAmelCase_ = self.scheduler_classes[0] UpperCAmelCase_ = self.get_scheduler_config() UpperCAmelCase_ = scheduler_class(**_UpperCAmelCase ) UpperCAmelCase_ = [39, 30, 12, 15, 0] with self.assertRaises(_UpperCAmelCase , msg="`timesteps` must be in descending order." ): scheduler.set_timesteps(timesteps=_UpperCAmelCase ) def lowercase__ ( self : Any ) -> List[str]: '''simple docstring''' UpperCAmelCase_ = self.scheduler_classes[0] UpperCAmelCase_ = self.get_scheduler_config() UpperCAmelCase_ = scheduler_class(**_UpperCAmelCase ) UpperCAmelCase_ = [39, 30, 12, 1, 0] UpperCAmelCase_ = len(_UpperCAmelCase ) with self.assertRaises(_UpperCAmelCase , msg="Can only pass one of `num_inference_steps` or `timesteps`." ): scheduler.set_timesteps(num_inference_steps=_UpperCAmelCase , timesteps=_UpperCAmelCase ) def lowercase__ ( self : Union[str, Any] ) -> Optional[int]: '''simple docstring''' UpperCAmelCase_ = self.scheduler_classes[0] UpperCAmelCase_ = self.get_scheduler_config() UpperCAmelCase_ = scheduler_class(**_UpperCAmelCase ) UpperCAmelCase_ = [scheduler.config.num_train_timesteps] with self.assertRaises( _UpperCAmelCase , msg="`timesteps` must start before `self.config.train_timesteps`: {scheduler.config.num_train_timesteps}}" , ): scheduler.set_timesteps(timesteps=_UpperCAmelCase )
82
import warnings from ...utils import logging from .image_processing_clip import CLIPImageProcessor __a = logging.get_logger(__name__) class __a( _a ): """simple docstring""" def __init__( self ,*_SCREAMING_SNAKE_CASE ,**_SCREAMING_SNAKE_CASE ) -> None: warnings.warn( '''The class CLIPFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please''' ''' use CLIPImageProcessor instead.''' ,_SCREAMING_SNAKE_CASE ,) super().__init__(*_SCREAMING_SNAKE_CASE ,**_SCREAMING_SNAKE_CASE )
30
0
"""simple docstring""" import itertools import json import linecache import os import pickle import re import socket import string from collections import Counter from logging import getLogger from pathlib import Path from typing import Callable, Dict, Iterable, List import git import torch from torch.utils.data import Dataset from transformers import BartTokenizer, RagTokenizer, TaTokenizer def snake_case_ ( A_ : Tuple, A_ : List[str], A_ : Optional[Any], A_ : Dict, A_ : Dict=True, A_ : int="pt" ): '''simple docstring''' _lowerCamelCase : str = {'''add_prefix_space''': True} if isinstance(A_, A_ ) and not line.startswith(''' ''' ) else {} _lowerCamelCase : Union[str, Any] = padding_side return tokenizer( [line], max_length=A_, padding='''max_length''' if pad_to_max_length else None, truncation=A_, return_tensors=A_, add_special_tokens=A_, **A_, ) def snake_case_ ( A_ : Any, A_ : Optional[int], A_ : List[Any]=None, ): '''simple docstring''' _lowerCamelCase : Optional[int] = input_ids.ne(A_ ).any(dim=0 ) if attention_mask is None: return input_ids[:, keep_column_mask] else: return (input_ids[:, keep_column_mask], attention_mask[:, keep_column_mask]) class __snake_case ( _lowercase): def __init__( self : Tuple , __lowerCAmelCase : Optional[Any] , __lowerCAmelCase : Dict , __lowerCAmelCase : List[Any] , __lowerCAmelCase : Optional[Any] , __lowerCAmelCase : Tuple="train" , __lowerCAmelCase : List[str]=None , __lowerCAmelCase : Optional[int]=None , __lowerCAmelCase : Any=None , __lowerCAmelCase : Union[str, Any]="" , ): """simple docstring""" super().__init__() _lowerCamelCase : Optional[int] = Path(__lowerCAmelCase ).joinpath(type_path + '''.source''' ) _lowerCamelCase : List[str] = Path(__lowerCAmelCase ).joinpath(type_path + '''.target''' ) _lowerCamelCase : List[Any] = self.get_char_lens(self.src_file ) _lowerCamelCase : Optional[int] = max_source_length _lowerCamelCase : Optional[Any] = max_target_length assert min(self.src_lens ) > 0, f'''found empty line in {self.src_file}''' _lowerCamelCase : List[Any] = tokenizer _lowerCamelCase : List[Any] = prefix if n_obs is not None: _lowerCamelCase : List[str] = self.src_lens[:n_obs] _lowerCamelCase : int = src_lang _lowerCamelCase : Union[str, Any] = tgt_lang def __len__( self : int ): """simple docstring""" return len(self.src_lens ) def __getitem__( self : Dict , __lowerCAmelCase : Optional[Any] ): """simple docstring""" _lowerCamelCase : str = index + 1 # linecache starts at 1 _lowerCamelCase : Union[str, Any] = self.prefix + linecache.getline(str(self.src_file ) , __lowerCAmelCase ).rstrip('''\n''' ) _lowerCamelCase : Optional[Any] = linecache.getline(str(self.tgt_file ) , __lowerCAmelCase ).rstrip('''\n''' ) assert source_line, f'''empty source line for index {index}''' assert tgt_line, f'''empty tgt line for index {index}''' # Need to add eos token manually for T5 if isinstance(self.tokenizer , __lowerCAmelCase ): source_line += self.tokenizer.eos_token tgt_line += self.tokenizer.eos_token # Pad source and target to the right _lowerCamelCase : Optional[int] = ( self.tokenizer.question_encoder if isinstance(self.tokenizer , __lowerCAmelCase ) else self.tokenizer ) _lowerCamelCase : Union[str, Any] = self.tokenizer.generator if isinstance(self.tokenizer , __lowerCAmelCase ) else self.tokenizer _lowerCamelCase : List[str] = encode_line(__lowerCAmelCase , __lowerCAmelCase , self.max_source_length , '''right''' ) _lowerCamelCase : List[str] = encode_line(__lowerCAmelCase , __lowerCAmelCase , self.max_target_length , '''right''' ) _lowerCamelCase : Optional[Any] = source_inputs['''input_ids'''].squeeze() _lowerCamelCase : Union[str, Any] = target_inputs['''input_ids'''].squeeze() _lowerCamelCase : Any = source_inputs['''attention_mask'''].squeeze() return { "input_ids": source_ids, "attention_mask": src_mask, "decoder_input_ids": target_ids, } @staticmethod def SCREAMING_SNAKE_CASE ( __lowerCAmelCase : str ): """simple docstring""" return [len(__lowerCAmelCase ) for x in Path(__lowerCAmelCase ).open().readlines()] def SCREAMING_SNAKE_CASE ( self : List[Any] , __lowerCAmelCase : Any ): """simple docstring""" _lowerCamelCase : List[Any] = torch.stack([x['''input_ids'''] for x in batch] ) _lowerCamelCase : Tuple = torch.stack([x['''attention_mask'''] for x in batch] ) _lowerCamelCase : Union[str, Any] = torch.stack([x['''decoder_input_ids'''] for x in batch] ) _lowerCamelCase : Tuple = ( self.tokenizer.generator.pad_token_id if isinstance(self.tokenizer , __lowerCAmelCase ) else self.tokenizer.pad_token_id ) _lowerCamelCase : Tuple = ( self.tokenizer.question_encoder.pad_token_id if isinstance(self.tokenizer , __lowerCAmelCase ) else self.tokenizer.pad_token_id ) _lowerCamelCase : Union[str, Any] = trim_batch(__lowerCAmelCase , __lowerCAmelCase ) _lowerCamelCase , _lowerCamelCase : List[str] = trim_batch(__lowerCAmelCase , __lowerCAmelCase , attention_mask=__lowerCAmelCase ) _lowerCamelCase : Optional[int] = { '''input_ids''': source_ids, '''attention_mask''': source_mask, '''decoder_input_ids''': y, } return batch lowerCAmelCase__ = getLogger(__name__) def snake_case_ ( A_ : List[List] ): '''simple docstring''' return list(itertools.chain.from_iterable(A_ ) ) def snake_case_ ( A_ : str ): '''simple docstring''' _lowerCamelCase : Dict = get_git_info() save_json(A_, os.path.join(A_, '''git_log.json''' ) ) def snake_case_ ( A_ : str, A_ : Union[str, Any], A_ : int=4, **A_ : Optional[int] ): '''simple docstring''' with open(A_, '''w''' ) as f: json.dump(A_, A_, indent=A_, **A_ ) def snake_case_ ( A_ : Any ): '''simple docstring''' with open(A_ ) as f: return json.load(A_ ) def snake_case_ ( ): '''simple docstring''' _lowerCamelCase : List[str] = git.Repo(search_parent_directories=A_ ) _lowerCamelCase : str = { '''repo_id''': str(A_ ), '''repo_sha''': str(repo.head.object.hexsha ), '''repo_branch''': str(repo.active_branch ), '''hostname''': str(socket.gethostname() ), } return repo_infos def snake_case_ ( A_ : Callable, A_ : Iterable ): '''simple docstring''' return list(map(A_, A_ ) ) def snake_case_ ( A_ : str, A_ : Tuple ): '''simple docstring''' with open(A_, '''wb''' ) as f: return pickle.dump(A_, A_ ) def snake_case_ ( A_ : List[str] ): '''simple docstring''' def remove_articles(A_ : str ): return re.sub(R'''\b(a|an|the)\b''', ''' ''', A_ ) def white_space_fix(A_ : Any ): return " ".join(text.split() ) def remove_punc(A_ : List[Any] ): _lowerCamelCase : Any = set(string.punctuation ) return "".join(ch for ch in text if ch not in exclude ) def lower(A_ : Optional[int] ): return text.lower() return white_space_fix(remove_articles(remove_punc(lower(A_ ) ) ) ) def snake_case_ ( A_ : int, A_ : List[Any] ): '''simple docstring''' _lowerCamelCase : str = normalize_answer(A_ ).split() _lowerCamelCase : int = normalize_answer(A_ ).split() _lowerCamelCase : str = Counter(A_ ) & Counter(A_ ) _lowerCamelCase : Any = sum(common.values() ) if num_same == 0: return 0 _lowerCamelCase : int = 1.0 * num_same / len(A_ ) _lowerCamelCase : str = 1.0 * num_same / len(A_ ) _lowerCamelCase : List[Any] = (2 * precision * recall) / (precision + recall) return fa def snake_case_ ( A_ : Dict, A_ : str ): '''simple docstring''' return normalize_answer(A_ ) == normalize_answer(A_ ) def snake_case_ ( A_ : List[str], A_ : List[str] ): '''simple docstring''' assert len(A_ ) == len(A_ ) _lowerCamelCase : Optional[Any] = 0 for hypo, pred in zip(A_, A_ ): em += exact_match_score(A_, A_ ) if len(A_ ) > 0: em /= len(A_ ) return {"em": em} def snake_case_ ( A_ : Optional[int] ): '''simple docstring''' return model_prefix.startswith('''rag''' ) def snake_case_ ( A_ : Dict, A_ : int, A_ : List[Any] ): '''simple docstring''' _lowerCamelCase : Dict = {p: p for p in extra_params} # T5 models don't have `dropout` param, they have `dropout_rate` instead _lowerCamelCase : Tuple = '''dropout_rate''' for p in extra_params: if getattr(A_, A_, A_ ): if not hasattr(A_, A_ ) and not hasattr(A_, equivalent_param[p] ): logger.info('''config doesn\'t have a `{}` attribute'''.format(A_ ) ) delattr(A_, A_ ) continue _lowerCamelCase : Union[str, Any] = p if hasattr(A_, A_ ) else equivalent_param[p] setattr(A_, A_, getattr(A_, A_ ) ) delattr(A_, A_ ) return hparams, config
83
import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import PoolFormerImageProcessor class __a( unittest.TestCase ): """simple docstring""" def __init__( self ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE=7 ,_SCREAMING_SNAKE_CASE=3 ,_SCREAMING_SNAKE_CASE=30 ,_SCREAMING_SNAKE_CASE=400 ,_SCREAMING_SNAKE_CASE=True ,_SCREAMING_SNAKE_CASE=None ,_SCREAMING_SNAKE_CASE=0.9 ,_SCREAMING_SNAKE_CASE=None ,_SCREAMING_SNAKE_CASE=True ,_SCREAMING_SNAKE_CASE=[0.5, 0.5, 0.5] ,_SCREAMING_SNAKE_CASE=[0.5, 0.5, 0.5] ,) -> Optional[int]: UpperCAmelCase_ : int = size if size is not None else {'''shortest_edge''': 30} UpperCAmelCase_ : List[str] = crop_size if crop_size is not None else {'''height''': 30, '''width''': 30} UpperCAmelCase_ : Dict = parent UpperCAmelCase_ : int = batch_size UpperCAmelCase_ : int = num_channels UpperCAmelCase_ : Any = min_resolution UpperCAmelCase_ : Tuple = max_resolution UpperCAmelCase_ : Optional[int] = do_resize_and_center_crop UpperCAmelCase_ : Tuple = size UpperCAmelCase_ : List[str] = crop_pct UpperCAmelCase_ : List[str] = crop_size UpperCAmelCase_ : Any = do_normalize UpperCAmelCase_ : str = image_mean UpperCAmelCase_ : List[Any] = image_std def a__ ( self ) -> str: return { "size": self.size, "do_resize_and_center_crop": self.do_resize_and_center_crop, "crop_pct": self.crop_pct, "crop_size": self.crop_size, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, } @require_torch @require_vision class __a( _a , unittest.TestCase ): """simple docstring""" lowerCAmelCase = PoolFormerImageProcessor if is_vision_available() else None def a__ ( self ) -> Dict: UpperCAmelCase_ : str = PoolFormerImageProcessingTester(self ) @property def a__ ( self ) -> Optional[int]: return self.image_processor_tester.prepare_image_processor_dict() def a__ ( self ) -> Optional[int]: UpperCAmelCase_ : List[Any] = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(_SCREAMING_SNAKE_CASE ,'''do_resize_and_center_crop''' ) ) self.assertTrue(hasattr(_SCREAMING_SNAKE_CASE ,'''size''' ) ) self.assertTrue(hasattr(_SCREAMING_SNAKE_CASE ,'''crop_pct''' ) ) self.assertTrue(hasattr(_SCREAMING_SNAKE_CASE ,'''do_normalize''' ) ) self.assertTrue(hasattr(_SCREAMING_SNAKE_CASE ,'''image_mean''' ) ) self.assertTrue(hasattr(_SCREAMING_SNAKE_CASE ,'''image_std''' ) ) def a__ ( self ) -> Union[str, Any]: UpperCAmelCase_ : Any = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size ,{'''shortest_edge''': 30} ) self.assertEqual(image_processor.crop_size ,{'''height''': 30, '''width''': 30} ) UpperCAmelCase_ : Optional[Any] = self.image_processing_class.from_dict(self.image_processor_dict ,size=42 ,crop_size=84 ) self.assertEqual(image_processor.size ,{'''shortest_edge''': 42} ) self.assertEqual(image_processor.crop_size ,{'''height''': 84, '''width''': 84} ) def a__ ( self ) -> Optional[int]: pass def a__ ( self ) -> Dict: # Initialize image_processing UpperCAmelCase_ : str = self.image_processing_class(**self.image_processor_dict ) # create random PIL images UpperCAmelCase_ : int = prepare_image_inputs(self.image_processor_tester ,equal_resolution=_SCREAMING_SNAKE_CASE ) for image in image_inputs: self.assertIsInstance(_SCREAMING_SNAKE_CASE ,Image.Image ) # Test not batched input UpperCAmelCase_ : Optional[int] = image_processing(image_inputs[0] ,return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape ,( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) ,) # Test batched UpperCAmelCase_ : Union[str, Any] = image_processing(_SCREAMING_SNAKE_CASE ,return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape ,( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) ,) def a__ ( self ) -> List[Any]: # Initialize image_processing UpperCAmelCase_ : Any = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors UpperCAmelCase_ : List[str] = prepare_image_inputs(self.image_processor_tester ,equal_resolution=_SCREAMING_SNAKE_CASE ,numpify=_SCREAMING_SNAKE_CASE ) for image in image_inputs: self.assertIsInstance(_SCREAMING_SNAKE_CASE ,np.ndarray ) # Test not batched input UpperCAmelCase_ : Tuple = image_processing(image_inputs[0] ,return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape ,( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) ,) # Test batched UpperCAmelCase_ : List[Any] = image_processing(_SCREAMING_SNAKE_CASE ,return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape ,( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) ,) def a__ ( self ) -> Union[str, Any]: # Initialize image_processing UpperCAmelCase_ : List[Any] = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors UpperCAmelCase_ : Optional[Any] = prepare_image_inputs(self.image_processor_tester ,equal_resolution=_SCREAMING_SNAKE_CASE ,torchify=_SCREAMING_SNAKE_CASE ) for image in image_inputs: self.assertIsInstance(_SCREAMING_SNAKE_CASE ,torch.Tensor ) # Test not batched input UpperCAmelCase_ : Tuple = image_processing(image_inputs[0] ,return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape ,( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) ,) # Test batched UpperCAmelCase_ : List[Any] = image_processing(_SCREAMING_SNAKE_CASE ,return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape ,( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) ,)
30
0
def UpperCAmelCase_ ( __SCREAMING_SNAKE_CASE ): lowercase = [int(__SCREAMING_SNAKE_CASE ) for i in ip_va_address.split('.' ) if i.isdigit()] return len(__SCREAMING_SNAKE_CASE ) == 4 and all(0 <= int(__SCREAMING_SNAKE_CASE ) <= 254 for octet in octets ) if __name__ == "__main__": UpperCAmelCase = input().strip() UpperCAmelCase = '''valid''' if is_ip_va_address_valid(ip) else '''invalid''' print(F"""{ip} is a {valid_or_invalid} IP v4 address.""")
84
import unittest import numpy as np def lowerCamelCase__ ( _lowercase , _lowercase , _lowercase , _lowercase = None , ): '''simple docstring''' UpperCAmelCase_ : Dict = np.shape(_lowercase ) UpperCAmelCase_ : Optional[Any] = np.shape(_lowercase ) UpperCAmelCase_ : Tuple = np.shape(_lowercase ) if shape_a[0] != shape_b[0]: UpperCAmelCase_ : Tuple = ( '''Expected the same number of rows for A and B. ''' f'''Instead found A of size {shape_a} and B of size {shape_b}''' ) raise ValueError(_lowercase ) if shape_b[1] != shape_c[1]: UpperCAmelCase_ : List[Any] = ( '''Expected the same number of columns for B and C. ''' f'''Instead found B of size {shape_b} and C of size {shape_c}''' ) raise ValueError(_lowercase ) UpperCAmelCase_ : Dict = pseudo_inv if a_inv is None: try: UpperCAmelCase_ : Any = np.linalg.inv(_lowercase ) except np.linalg.LinAlgError: raise ValueError( '''Input matrix A is not invertible. Cannot compute Schur complement.''' ) return mat_c - mat_b.T @ a_inv @ mat_b class __a( unittest.TestCase ): """simple docstring""" def a__ ( self ) -> None: UpperCAmelCase_ : str = np.array([[1, 2, 1], [2, 1, 2], [3, 2, 4]] ) UpperCAmelCase_ : Any = np.array([[0, 3], [3, 0], [2, 3]] ) UpperCAmelCase_ : List[str] = np.array([[2, 1], [6, 3]] ) UpperCAmelCase_ : Tuple = schur_complement(_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ) UpperCAmelCase_ : List[Any] = np.block([[a, b], [b.T, c]] ) UpperCAmelCase_ : List[Any] = np.linalg.det(_SCREAMING_SNAKE_CASE ) UpperCAmelCase_ : List[Any] = np.linalg.det(_SCREAMING_SNAKE_CASE ) UpperCAmelCase_ : Any = np.linalg.det(_SCREAMING_SNAKE_CASE ) self.assertAlmostEqual(_SCREAMING_SNAKE_CASE ,det_a * det_s ) def a__ ( self ) -> None: UpperCAmelCase_ : str = np.array([[1, 2, 1], [2, 1, 2], [3, 2, 4]] ) UpperCAmelCase_ : Optional[int] = np.array([[0, 3], [3, 0], [2, 3]] ) UpperCAmelCase_ : Optional[int] = np.array([[2, 1], [6, 3]] ) with self.assertRaises(_SCREAMING_SNAKE_CASE ): schur_complement(_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ) def a__ ( self ) -> None: UpperCAmelCase_ : Optional[int] = np.array([[1, 2, 1], [2, 1, 2], [3, 2, 4]] ) UpperCAmelCase_ : Optional[Any] = np.array([[0, 3], [3, 0], [2, 3]] ) UpperCAmelCase_ : int = np.array([[2, 1, 3], [6, 3, 5]] ) with self.assertRaises(_SCREAMING_SNAKE_CASE ): schur_complement(_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ) if __name__ == "__main__": import doctest doctest.testmod() unittest.main()
30
0
import os from argparse import ArgumentParser from typing import List import torch.utils.data from datasets import Dataset, IterableDataset from datasets.distributed import split_dataset_by_node SCREAMING_SNAKE_CASE__ : Any = 4 SCREAMING_SNAKE_CASE__ : Optional[Any] = 3 class snake_case ( UpperCamelCase_ ): pass def _a ( lowercase__ : List[str] ): '''simple docstring''' for shard in shards: for i in range(lowercase__ ): yield {"i": i, "shard": shard} def _a ( ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : str = int(os.environ['RANK'] ) SCREAMING_SNAKE_CASE__ : List[Any] = int(os.environ['WORLD_SIZE'] ) SCREAMING_SNAKE_CASE__ : Union[str, Any] = ArgumentParser() parser.add_argument('--streaming' , type=lowercase__ ) parser.add_argument('--local_rank' , type=lowercase__ ) parser.add_argument('--num_workers' , type=lowercase__ , default=0 ) SCREAMING_SNAKE_CASE__ : Union[str, Any] = parser.parse_args() SCREAMING_SNAKE_CASE__ : List[str] = args.streaming SCREAMING_SNAKE_CASE__ : int = args.num_workers SCREAMING_SNAKE_CASE__ : Optional[int] = {'shards': [f'''shard_{shard_idx}''' for shard_idx in range(lowercase__ )]} SCREAMING_SNAKE_CASE__ : Any = IterableDataset.from_generator(lowercase__ , gen_kwargs=lowercase__ ) if not streaming: SCREAMING_SNAKE_CASE__ : int = Dataset.from_list(list(lowercase__ ) ) SCREAMING_SNAKE_CASE__ : Optional[Any] = split_dataset_by_node(lowercase__ , rank=lowercase__ , world_size=lowercase__ ) SCREAMING_SNAKE_CASE__ : str = torch.utils.data.DataLoader(lowercase__ , num_workers=lowercase__ ) SCREAMING_SNAKE_CASE__ : Tuple = NUM_SHARDS * NUM_ITEMS_PER_SHARD SCREAMING_SNAKE_CASE__ : Tuple = full_size // world_size expected_local_size += int(rank < (full_size % world_size) ) SCREAMING_SNAKE_CASE__ : List[str] = sum(1 for _ in dataloader ) if local_size != expected_local_size: raise FailedTestError(f'''local_size {local_size} != expected_local_size {expected_local_size}''' ) if __name__ == "__main__": main()
85
__a = 'ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789+/' def lowerCamelCase__ ( _lowercase ): '''simple docstring''' if not isinstance(_lowercase , _lowercase ): UpperCAmelCase_ : Union[str, Any] = f'''a bytes-like object is required, not \'{data.__class__.__name__}\'''' raise TypeError(_lowercase ) UpperCAmelCase_ : Any = ''''''.join(bin(_lowercase )[2:].zfill(8 ) for byte in data ) UpperCAmelCase_ : Any = len(_lowercase ) % 6 != 0 if padding_needed: # The padding that will be added later UpperCAmelCase_ : Union[str, Any] = B'''=''' * ((6 - len(_lowercase ) % 6) // 2) # Append binary_stream with arbitrary binary digits (0's by default) to make its # length a multiple of 6. binary_stream += "0" * (6 - len(_lowercase ) % 6) else: UpperCAmelCase_ : int = B'''''' # Encode every 6 binary digits to their corresponding Base64 character return ( "".join( B64_CHARSET[int(binary_stream[index : index + 6] , 2 )] for index in range(0 , len(_lowercase ) , 6 ) ).encode() + padding ) def lowerCamelCase__ ( _lowercase ): '''simple docstring''' if not isinstance(_lowercase , _lowercase ) and not isinstance(_lowercase , _lowercase ): UpperCAmelCase_ : Tuple = ( '''argument should be a bytes-like object or ASCII string, ''' f'''not \'{encoded_data.__class__.__name__}\'''' ) raise TypeError(_lowercase ) # In case encoded_data is a bytes-like object, make sure it contains only # ASCII characters so we convert it to a string object if isinstance(_lowercase , _lowercase ): try: UpperCAmelCase_ : Any = encoded_data.decode('''utf-8''' ) except UnicodeDecodeError: raise ValueError('''base64 encoded data should only contain ASCII characters''' ) UpperCAmelCase_ : str = encoded_data.count('''=''' ) # Check if the encoded string contains non base64 characters if padding: assert all( char in B64_CHARSET for char in encoded_data[:-padding] ), "Invalid base64 character(s) found." else: assert all( char in B64_CHARSET for char in encoded_data ), "Invalid base64 character(s) found." # Check the padding assert len(_lowercase ) % 4 == 0 and padding < 3, "Incorrect padding" if padding: # Remove padding if there is one UpperCAmelCase_ : List[Any] = encoded_data[:-padding] UpperCAmelCase_ : List[Any] = ''''''.join( bin(B64_CHARSET.index(_lowercase ) )[2:].zfill(6 ) for char in encoded_data )[: -padding * 2] else: UpperCAmelCase_ : Tuple = ''''''.join( bin(B64_CHARSET.index(_lowercase ) )[2:].zfill(6 ) for char in encoded_data ) UpperCAmelCase_ : str = [ int(binary_stream[index : index + 8] , 2 ) for index in range(0 , len(_lowercase ) , 8 ) ] return bytes(_lowercase ) if __name__ == "__main__": import doctest doctest.testmod()
30
0
import argparse import os from transformers.utils import direct_transformers_import # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_task_guides.py __a :Optional[Any] = 'src/transformers' __a :Tuple = 'docs/source/en/tasks' def __snake_case ( __UpperCamelCase : List[Any] ,__UpperCamelCase : Dict ,__UpperCamelCase : int ): """simple docstring""" with open(__UpperCamelCase ,"r" ,encoding="utf-8" ,newline="\n" ) as f: A_ = f.readlines() # Find the start prompt. A_ = 0 while not lines[start_index].startswith(__UpperCamelCase ): start_index += 1 start_index += 1 A_ = start_index while not lines[end_index].startswith(__UpperCamelCase ): end_index += 1 end_index -= 1 while len(lines[start_index] ) <= 1: start_index += 1 while len(lines[end_index] ) <= 1: end_index -= 1 end_index += 1 return "".join(lines[start_index:end_index] ), start_index, end_index, lines # This is to make sure the transformers module imported is the one in the repo. __a :List[str] = direct_transformers_import(TRANSFORMERS_PATH) __a :Optional[Any] = { 'asr.md': transformers_module.models.auto.modeling_auto.MODEL_FOR_CTC_MAPPING_NAMES, 'audio_classification.md': transformers_module.models.auto.modeling_auto.MODEL_FOR_AUDIO_CLASSIFICATION_MAPPING_NAMES, 'language_modeling.md': transformers_module.models.auto.modeling_auto.MODEL_FOR_CAUSAL_LM_MAPPING_NAMES, 'image_classification.md': transformers_module.models.auto.modeling_auto.MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING_NAMES, 'masked_language_modeling.md': transformers_module.models.auto.modeling_auto.MODEL_FOR_MASKED_LM_MAPPING_NAMES, 'multiple_choice.md': transformers_module.models.auto.modeling_auto.MODEL_FOR_MULTIPLE_CHOICE_MAPPING_NAMES, 'object_detection.md': transformers_module.models.auto.modeling_auto.MODEL_FOR_OBJECT_DETECTION_MAPPING_NAMES, 'question_answering.md': transformers_module.models.auto.modeling_auto.MODEL_FOR_QUESTION_ANSWERING_MAPPING_NAMES, 'semantic_segmentation.md': transformers_module.models.auto.modeling_auto.MODEL_FOR_SEMANTIC_SEGMENTATION_MAPPING_NAMES, 'sequence_classification.md': transformers_module.models.auto.modeling_auto.MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING_NAMES, 'summarization.md': transformers_module.models.auto.modeling_auto.MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING_NAMES, 'token_classification.md': transformers_module.models.auto.modeling_auto.MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING_NAMES, 'translation.md': transformers_module.models.auto.modeling_auto.MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING_NAMES, 'video_classification.md': transformers_module.models.auto.modeling_auto.MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING_NAMES, 'document_question_answering.md': transformers_module.models.auto.modeling_auto.MODEL_FOR_DOCUMENT_QUESTION_ANSWERING_MAPPING_NAMES, 'monocular_depth_estimation.md': transformers_module.models.auto.modeling_auto.MODEL_FOR_DEPTH_ESTIMATION_MAPPING_NAMES, } # This list contains model types used in some task guides that are not in `CONFIG_MAPPING_NAMES` (therefore not in any # `MODEL_MAPPING_NAMES` or any `MODEL_FOR_XXX_MAPPING_NAMES`). __a :Optional[Any] = { 'summarization.md': ('nllb',), 'translation.md': ('nllb',), } def __snake_case ( __UpperCamelCase : Tuple ): """simple docstring""" A_ = TASK_GUIDE_TO_MODELS[task_guide] A_ = SPECIAL_TASK_GUIDE_TO_MODEL_TYPES.get(__UpperCamelCase ,set() ) A_ = { code: name for code, name in transformers_module.MODEL_NAMES_MAPPING.items() if (code in model_maping_names or code in special_model_types) } return ", ".join([f'''[{name}](../model_doc/{code})''' for code, name in model_names.items()] ) + "\n" def __snake_case ( __UpperCamelCase : str ,__UpperCamelCase : List[str]=False ): """simple docstring""" A_ , A_ , A_ , A_ = _find_text_in_file( filename=os.path.join(__UpperCamelCase ,__UpperCamelCase ) ,start_prompt="<!--This tip is automatically generated by `make fix-copies`, do not fill manually!-->" ,end_prompt="<!--End of the generated tip-->" ,) A_ = get_model_list_for_task(__UpperCamelCase ) if current_list != new_list: if overwrite: with open(os.path.join(__UpperCamelCase ,__UpperCamelCase ) ,"w" ,encoding="utf-8" ,newline="\n" ) as f: f.writelines(lines[:start_index] + [new_list] + lines[end_index:] ) else: raise ValueError( f'''The list of models that can be used in the {task_guide} guide needs an update. Run `make fix-copies`''' " to fix this." ) if __name__ == "__main__": __a :int = argparse.ArgumentParser() parser.add_argument('--fix_and_overwrite', action='store_true', help='Whether to fix inconsistencies.') __a :Optional[Any] = parser.parse_args() for task_guide in TASK_GUIDE_TO_MODELS.keys(): check_model_list_for_task(task_guide, args.fix_and_overwrite)
86
import os import shutil import sys import tempfile import unittest from pathlib import Path import pytest import transformers from transformers import ( BERT_PRETRAINED_CONFIG_ARCHIVE_MAP, GPT2_PRETRAINED_CONFIG_ARCHIVE_MAP, AutoTokenizer, BertConfig, BertTokenizer, BertTokenizerFast, CTRLTokenizer, GPTaTokenizer, GPTaTokenizerFast, PreTrainedTokenizerFast, RobertaTokenizer, RobertaTokenizerFast, is_tokenizers_available, ) from transformers.models.auto.configuration_auto import CONFIG_MAPPING, AutoConfig from transformers.models.auto.tokenization_auto import ( TOKENIZER_MAPPING, get_tokenizer_config, tokenizer_class_from_name, ) from transformers.models.roberta.configuration_roberta import RobertaConfig from transformers.testing_utils import ( DUMMY_DIFF_TOKENIZER_IDENTIFIER, DUMMY_UNKNOWN_IDENTIFIER, SMALL_MODEL_IDENTIFIER, RequestCounter, require_tokenizers, slow, ) sys.path.append(str(Path(__file__).parent.parent.parent.parent / 'utils')) from test_module.custom_configuration import CustomConfig # noqa E402 from test_module.custom_tokenization import CustomTokenizer # noqa E402 if is_tokenizers_available(): from test_module.custom_tokenization_fast import CustomTokenizerFast class __a( unittest.TestCase ): """simple docstring""" def a__ ( self ) -> Union[str, Any]: UpperCAmelCase_ : Tuple = 0 @slow def a__ ( self ) -> Any: for model_name in (x for x in BERT_PRETRAINED_CONFIG_ARCHIVE_MAP.keys() if "japanese" not in x): UpperCAmelCase_ : Optional[Any] = AutoTokenizer.from_pretrained(_SCREAMING_SNAKE_CASE ) self.assertIsNotNone(_SCREAMING_SNAKE_CASE ) self.assertIsInstance(_SCREAMING_SNAKE_CASE ,(BertTokenizer, BertTokenizerFast) ) self.assertGreater(len(_SCREAMING_SNAKE_CASE ) ,0 ) for model_name in GPT2_PRETRAINED_CONFIG_ARCHIVE_MAP.keys(): UpperCAmelCase_ : Union[str, Any] = AutoTokenizer.from_pretrained(_SCREAMING_SNAKE_CASE ) self.assertIsNotNone(_SCREAMING_SNAKE_CASE ) self.assertIsInstance(_SCREAMING_SNAKE_CASE ,(GPTaTokenizer, GPTaTokenizerFast) ) self.assertGreater(len(_SCREAMING_SNAKE_CASE ) ,0 ) def a__ ( self ) -> Optional[Any]: UpperCAmelCase_ : List[str] = AutoTokenizer.from_pretrained(_SCREAMING_SNAKE_CASE ) self.assertIsInstance(_SCREAMING_SNAKE_CASE ,(BertTokenizer, BertTokenizerFast) ) self.assertEqual(tokenizer.vocab_size ,12 ) def a__ ( self ) -> Tuple: UpperCAmelCase_ : Any = AutoTokenizer.from_pretrained(_SCREAMING_SNAKE_CASE ) self.assertIsInstance(_SCREAMING_SNAKE_CASE ,(RobertaTokenizer, RobertaTokenizerFast) ) self.assertEqual(tokenizer.vocab_size ,20 ) def a__ ( self ) -> List[str]: UpperCAmelCase_ : int = AutoConfig.from_pretrained(_SCREAMING_SNAKE_CASE ) self.assertIsInstance(_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ) # Check that tokenizer_type ≠ model_type UpperCAmelCase_ : Optional[int] = AutoTokenizer.from_pretrained(_SCREAMING_SNAKE_CASE ,config=_SCREAMING_SNAKE_CASE ) self.assertIsInstance(_SCREAMING_SNAKE_CASE ,(BertTokenizer, BertTokenizerFast) ) self.assertEqual(tokenizer.vocab_size ,12 ) def a__ ( self ) -> Dict: with tempfile.TemporaryDirectory() as tmp_dir: shutil.copy('''./tests/fixtures/vocab.txt''' ,os.path.join(_SCREAMING_SNAKE_CASE ,'''vocab.txt''' ) ) UpperCAmelCase_ : Optional[int] = AutoTokenizer.from_pretrained(_SCREAMING_SNAKE_CASE ,tokenizer_type='''bert''' ,use_fast=_SCREAMING_SNAKE_CASE ) self.assertIsInstance(_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ) with tempfile.TemporaryDirectory() as tmp_dir: shutil.copy('''./tests/fixtures/vocab.json''' ,os.path.join(_SCREAMING_SNAKE_CASE ,'''vocab.json''' ) ) shutil.copy('''./tests/fixtures/merges.txt''' ,os.path.join(_SCREAMING_SNAKE_CASE ,'''merges.txt''' ) ) UpperCAmelCase_ : Optional[Any] = AutoTokenizer.from_pretrained(_SCREAMING_SNAKE_CASE ,tokenizer_type='''gpt2''' ,use_fast=_SCREAMING_SNAKE_CASE ) self.assertIsInstance(_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ) @require_tokenizers def a__ ( self ) -> Optional[int]: with tempfile.TemporaryDirectory() as tmp_dir: shutil.copy('''./tests/fixtures/vocab.txt''' ,os.path.join(_SCREAMING_SNAKE_CASE ,'''vocab.txt''' ) ) UpperCAmelCase_ : Tuple = AutoTokenizer.from_pretrained(_SCREAMING_SNAKE_CASE ,tokenizer_type='''bert''' ) self.assertIsInstance(_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ) with tempfile.TemporaryDirectory() as tmp_dir: shutil.copy('''./tests/fixtures/vocab.json''' ,os.path.join(_SCREAMING_SNAKE_CASE ,'''vocab.json''' ) ) shutil.copy('''./tests/fixtures/merges.txt''' ,os.path.join(_SCREAMING_SNAKE_CASE ,'''merges.txt''' ) ) UpperCAmelCase_ : Union[str, Any] = AutoTokenizer.from_pretrained(_SCREAMING_SNAKE_CASE ,tokenizer_type='''gpt2''' ) self.assertIsInstance(_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ) def a__ ( self ) -> int: with pytest.raises(_SCREAMING_SNAKE_CASE ): AutoTokenizer.from_pretrained('''./''' ,tokenizer_type='''xxx''' ) @require_tokenizers def a__ ( self ) -> Optional[Any]: for tokenizer_class in [BertTokenizer, BertTokenizerFast, AutoTokenizer]: UpperCAmelCase_ : Any = tokenizer_class.from_pretrained('''wietsedv/bert-base-dutch-cased''' ) self.assertIsInstance(_SCREAMING_SNAKE_CASE ,(BertTokenizer, BertTokenizerFast) ) if isinstance(_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ): self.assertEqual(tokenizer.basic_tokenizer.do_lower_case ,_SCREAMING_SNAKE_CASE ) else: self.assertEqual(tokenizer.do_lower_case ,_SCREAMING_SNAKE_CASE ) self.assertEqual(tokenizer.model_max_length ,512 ) @require_tokenizers def a__ ( self ) -> List[Any]: for tokenizer_class in [BertTokenizer, BertTokenizerFast, AutoTokenizer]: with self.assertRaisesRegex( _SCREAMING_SNAKE_CASE ,'''julien-c/herlolip-not-exists is not a local folder and is not a valid model identifier''' ,): UpperCAmelCase_ : int = tokenizer_class.from_pretrained('''julien-c/herlolip-not-exists''' ) def a__ ( self ) -> Optional[Any]: # tests: https://github.com/huggingface/transformers/pull/13251 # 1. models with `-`, e.g. xlm-roberta -> xlm_roberta # 2. models that don't remap 1-1 from model-name to model file, e.g., openai-gpt -> openai UpperCAmelCase_ : int = TOKENIZER_MAPPING.values() UpperCAmelCase_ : List[Any] = [] for slow_tok, fast_tok in tokenizers: if slow_tok is not None: tokenizer_names.append(slow_tok.__name__ ) if fast_tok is not None: tokenizer_names.append(fast_tok.__name__ ) for tokenizer_name in tokenizer_names: # must find the right class tokenizer_class_from_name(_SCREAMING_SNAKE_CASE ) @require_tokenizers def a__ ( self ) -> Tuple: self.assertIsInstance(AutoTokenizer.from_pretrained('''bert-base-cased''' ,use_fast=_SCREAMING_SNAKE_CASE ) ,_SCREAMING_SNAKE_CASE ) self.assertIsInstance(AutoTokenizer.from_pretrained('''bert-base-cased''' ) ,_SCREAMING_SNAKE_CASE ) @require_tokenizers def a__ ( self ) -> Optional[int]: UpperCAmelCase_ : str = AutoTokenizer.from_pretrained('''distilbert-base-uncased''' ,do_lower_case=_SCREAMING_SNAKE_CASE ) UpperCAmelCase_ : int = '''Hello, world. How are you?''' UpperCAmelCase_ : List[Any] = tokenizer.tokenize(_SCREAMING_SNAKE_CASE ) self.assertEqual('''[UNK]''' ,tokens[0] ) UpperCAmelCase_ : Any = AutoTokenizer.from_pretrained('''microsoft/mpnet-base''' ,do_lower_case=_SCREAMING_SNAKE_CASE ) UpperCAmelCase_ : Tuple = tokenizer.tokenize(_SCREAMING_SNAKE_CASE ) self.assertEqual('''[UNK]''' ,tokens[0] ) @require_tokenizers def a__ ( self ) -> Dict: UpperCAmelCase_ : List[Any] = AutoTokenizer.from_pretrained('''robot-test/dummy-tokenizer-fast-with-model-config''' ) self.assertEqual(type(_SCREAMING_SNAKE_CASE ) ,_SCREAMING_SNAKE_CASE ) self.assertEqual(tokenizer.model_max_length ,512 ) self.assertEqual(tokenizer.vocab_size ,30_000 ) self.assertEqual(tokenizer.unk_token ,'''[UNK]''' ) self.assertEqual(tokenizer.padding_side ,'''right''' ) self.assertEqual(tokenizer.truncation_side ,'''right''' ) def a__ ( self ) -> Dict: UpperCAmelCase_ : Any = AutoTokenizer.from_pretrained(_SCREAMING_SNAKE_CASE ) self.assertIsInstance(_SCREAMING_SNAKE_CASE ,(BertTokenizer, BertTokenizerFast) ) with tempfile.TemporaryDirectory() as tmp_dir: tokenizer.save_pretrained(_SCREAMING_SNAKE_CASE ) UpperCAmelCase_ : Dict = AutoTokenizer.from_pretrained(_SCREAMING_SNAKE_CASE ) self.assertIsInstance(_SCREAMING_SNAKE_CASE ,tokenizer.__class__ ) self.assertEqual(tokenizera.vocab_size ,12 ) def a__ ( self ) -> Optional[Any]: UpperCAmelCase_ : Tuple = AutoTokenizer.from_pretrained('''ctrl''' ) # There is no fast CTRL so this always gives us a slow tokenizer. self.assertIsInstance(_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ) def a__ ( self ) -> str: # Check we can load the tokenizer config of an online model. UpperCAmelCase_ : int = get_tokenizer_config('''bert-base-cased''' ) UpperCAmelCase_ : Optional[int] = config.pop('''_commit_hash''' ,_SCREAMING_SNAKE_CASE ) # If we ever update bert-base-cased tokenizer config, this dict here will need to be updated. self.assertEqual(_SCREAMING_SNAKE_CASE ,{'''do_lower_case''': False} ) # This model does not have a tokenizer_config so we get back an empty dict. UpperCAmelCase_ : Any = get_tokenizer_config(_SCREAMING_SNAKE_CASE ) self.assertDictEqual(_SCREAMING_SNAKE_CASE ,{} ) # A tokenizer saved with `save_pretrained` always creates a tokenizer config. UpperCAmelCase_ : Dict = AutoTokenizer.from_pretrained(_SCREAMING_SNAKE_CASE ) with tempfile.TemporaryDirectory() as tmp_dir: tokenizer.save_pretrained(_SCREAMING_SNAKE_CASE ) UpperCAmelCase_ : Dict = get_tokenizer_config(_SCREAMING_SNAKE_CASE ) # Check the class of the tokenizer was properly saved (note that it always saves the slow class). self.assertEqual(config['''tokenizer_class'''] ,'''BertTokenizer''' ) def a__ ( self ) -> str: try: AutoConfig.register('''custom''' ,_SCREAMING_SNAKE_CASE ) AutoTokenizer.register(_SCREAMING_SNAKE_CASE ,slow_tokenizer_class=_SCREAMING_SNAKE_CASE ) # Trying to register something existing in the Transformers library will raise an error with self.assertRaises(_SCREAMING_SNAKE_CASE ): AutoTokenizer.register(_SCREAMING_SNAKE_CASE ,slow_tokenizer_class=_SCREAMING_SNAKE_CASE ) UpperCAmelCase_ : str = CustomTokenizer.from_pretrained(_SCREAMING_SNAKE_CASE ) with tempfile.TemporaryDirectory() as tmp_dir: tokenizer.save_pretrained(_SCREAMING_SNAKE_CASE ) UpperCAmelCase_ : Dict = AutoTokenizer.from_pretrained(_SCREAMING_SNAKE_CASE ) self.assertIsInstance(_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in TOKENIZER_MAPPING._extra_content: del TOKENIZER_MAPPING._extra_content[CustomConfig] @require_tokenizers def a__ ( self ) -> int: try: AutoConfig.register('''custom''' ,_SCREAMING_SNAKE_CASE ) # Can register in two steps AutoTokenizer.register(_SCREAMING_SNAKE_CASE ,slow_tokenizer_class=_SCREAMING_SNAKE_CASE ) self.assertEqual(TOKENIZER_MAPPING[CustomConfig] ,(CustomTokenizer, None) ) AutoTokenizer.register(_SCREAMING_SNAKE_CASE ,fast_tokenizer_class=_SCREAMING_SNAKE_CASE ) self.assertEqual(TOKENIZER_MAPPING[CustomConfig] ,(CustomTokenizer, CustomTokenizerFast) ) del TOKENIZER_MAPPING._extra_content[CustomConfig] # Can register in one step AutoTokenizer.register( _SCREAMING_SNAKE_CASE ,slow_tokenizer_class=_SCREAMING_SNAKE_CASE ,fast_tokenizer_class=_SCREAMING_SNAKE_CASE ) self.assertEqual(TOKENIZER_MAPPING[CustomConfig] ,(CustomTokenizer, CustomTokenizerFast) ) # Trying to register something existing in the Transformers library will raise an error with self.assertRaises(_SCREAMING_SNAKE_CASE ): AutoTokenizer.register(_SCREAMING_SNAKE_CASE ,fast_tokenizer_class=_SCREAMING_SNAKE_CASE ) # We pass through a bert tokenizer fast cause there is no converter slow to fast for our new toknizer # and that model does not have a tokenizer.json with tempfile.TemporaryDirectory() as tmp_dir: UpperCAmelCase_ : List[str] = BertTokenizerFast.from_pretrained(_SCREAMING_SNAKE_CASE ) bert_tokenizer.save_pretrained(_SCREAMING_SNAKE_CASE ) UpperCAmelCase_ : str = CustomTokenizerFast.from_pretrained(_SCREAMING_SNAKE_CASE ) with tempfile.TemporaryDirectory() as tmp_dir: tokenizer.save_pretrained(_SCREAMING_SNAKE_CASE ) UpperCAmelCase_ : Optional[int] = AutoTokenizer.from_pretrained(_SCREAMING_SNAKE_CASE ) self.assertIsInstance(_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ) UpperCAmelCase_ : Any = AutoTokenizer.from_pretrained(_SCREAMING_SNAKE_CASE ,use_fast=_SCREAMING_SNAKE_CASE ) self.assertIsInstance(_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in TOKENIZER_MAPPING._extra_content: del TOKENIZER_MAPPING._extra_content[CustomConfig] def a__ ( self ) -> Optional[int]: # If remote code is not set, we will time out when asking whether to load the model. with self.assertRaises(_SCREAMING_SNAKE_CASE ): UpperCAmelCase_ : Tuple = AutoTokenizer.from_pretrained('''hf-internal-testing/test_dynamic_tokenizer''' ) # If remote code is disabled, we can't load this config. with self.assertRaises(_SCREAMING_SNAKE_CASE ): UpperCAmelCase_ : Union[str, Any] = AutoTokenizer.from_pretrained( '''hf-internal-testing/test_dynamic_tokenizer''' ,trust_remote_code=_SCREAMING_SNAKE_CASE ) UpperCAmelCase_ : Dict = AutoTokenizer.from_pretrained('''hf-internal-testing/test_dynamic_tokenizer''' ,trust_remote_code=_SCREAMING_SNAKE_CASE ) self.assertTrue(tokenizer.special_attribute_present ) # Test tokenizer can be reloaded. with tempfile.TemporaryDirectory() as tmp_dir: tokenizer.save_pretrained(_SCREAMING_SNAKE_CASE ) UpperCAmelCase_ : int = AutoTokenizer.from_pretrained(_SCREAMING_SNAKE_CASE ,trust_remote_code=_SCREAMING_SNAKE_CASE ) self.assertTrue(reloaded_tokenizer.special_attribute_present ) if is_tokenizers_available(): self.assertEqual(tokenizer.__class__.__name__ ,'''NewTokenizerFast''' ) self.assertEqual(reloaded_tokenizer.__class__.__name__ ,'''NewTokenizerFast''' ) # Test we can also load the slow version UpperCAmelCase_ : List[str] = AutoTokenizer.from_pretrained( '''hf-internal-testing/test_dynamic_tokenizer''' ,trust_remote_code=_SCREAMING_SNAKE_CASE ,use_fast=_SCREAMING_SNAKE_CASE ) self.assertTrue(tokenizer.special_attribute_present ) self.assertEqual(tokenizer.__class__.__name__ ,'''NewTokenizer''' ) # Test tokenizer can be reloaded. with tempfile.TemporaryDirectory() as tmp_dir: tokenizer.save_pretrained(_SCREAMING_SNAKE_CASE ) UpperCAmelCase_ : Optional[int] = AutoTokenizer.from_pretrained(_SCREAMING_SNAKE_CASE ,trust_remote_code=_SCREAMING_SNAKE_CASE ,use_fast=_SCREAMING_SNAKE_CASE ) self.assertEqual(reloaded_tokenizer.__class__.__name__ ,'''NewTokenizer''' ) self.assertTrue(reloaded_tokenizer.special_attribute_present ) else: self.assertEqual(tokenizer.__class__.__name__ ,'''NewTokenizer''' ) self.assertEqual(reloaded_tokenizer.__class__.__name__ ,'''NewTokenizer''' ) @require_tokenizers def a__ ( self ) -> Optional[int]: class __a( _a ): """simple docstring""" lowerCAmelCase = False class __a( _a ): """simple docstring""" lowerCAmelCase = NewTokenizer lowerCAmelCase = False try: AutoConfig.register('''custom''' ,_SCREAMING_SNAKE_CASE ) AutoTokenizer.register(_SCREAMING_SNAKE_CASE ,slow_tokenizer_class=_SCREAMING_SNAKE_CASE ) AutoTokenizer.register(_SCREAMING_SNAKE_CASE ,fast_tokenizer_class=_SCREAMING_SNAKE_CASE ) # If remote code is not set, the default is to use local UpperCAmelCase_ : int = AutoTokenizer.from_pretrained('''hf-internal-testing/test_dynamic_tokenizer''' ) self.assertEqual(tokenizer.__class__.__name__ ,'''NewTokenizerFast''' ) self.assertFalse(tokenizer.special_attribute_present ) UpperCAmelCase_ : Any = AutoTokenizer.from_pretrained('''hf-internal-testing/test_dynamic_tokenizer''' ,use_fast=_SCREAMING_SNAKE_CASE ) self.assertEqual(tokenizer.__class__.__name__ ,'''NewTokenizer''' ) self.assertFalse(tokenizer.special_attribute_present ) # If remote code is disabled, we load the local one. UpperCAmelCase_ : Tuple = AutoTokenizer.from_pretrained( '''hf-internal-testing/test_dynamic_tokenizer''' ,trust_remote_code=_SCREAMING_SNAKE_CASE ) self.assertEqual(tokenizer.__class__.__name__ ,'''NewTokenizerFast''' ) self.assertFalse(tokenizer.special_attribute_present ) UpperCAmelCase_ : List[str] = AutoTokenizer.from_pretrained( '''hf-internal-testing/test_dynamic_tokenizer''' ,trust_remote_code=_SCREAMING_SNAKE_CASE ,use_fast=_SCREAMING_SNAKE_CASE ) self.assertEqual(tokenizer.__class__.__name__ ,'''NewTokenizer''' ) self.assertFalse(tokenizer.special_attribute_present ) # If remote is enabled, we load from the Hub UpperCAmelCase_ : Optional[int] = AutoTokenizer.from_pretrained( '''hf-internal-testing/test_dynamic_tokenizer''' ,trust_remote_code=_SCREAMING_SNAKE_CASE ) self.assertEqual(tokenizer.__class__.__name__ ,'''NewTokenizerFast''' ) self.assertTrue(tokenizer.special_attribute_present ) UpperCAmelCase_ : Any = AutoTokenizer.from_pretrained( '''hf-internal-testing/test_dynamic_tokenizer''' ,trust_remote_code=_SCREAMING_SNAKE_CASE ,use_fast=_SCREAMING_SNAKE_CASE ) self.assertEqual(tokenizer.__class__.__name__ ,'''NewTokenizer''' ) self.assertTrue(tokenizer.special_attribute_present ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in TOKENIZER_MAPPING._extra_content: del TOKENIZER_MAPPING._extra_content[CustomConfig] def a__ ( self ) -> int: UpperCAmelCase_ : Optional[int] = AutoTokenizer.from_pretrained( '''hf-internal-testing/test_dynamic_tokenizer_legacy''' ,trust_remote_code=_SCREAMING_SNAKE_CASE ) self.assertTrue(tokenizer.special_attribute_present ) if is_tokenizers_available(): self.assertEqual(tokenizer.__class__.__name__ ,'''NewTokenizerFast''' ) # Test we can also load the slow version UpperCAmelCase_ : Tuple = AutoTokenizer.from_pretrained( '''hf-internal-testing/test_dynamic_tokenizer_legacy''' ,trust_remote_code=_SCREAMING_SNAKE_CASE ,use_fast=_SCREAMING_SNAKE_CASE ) self.assertTrue(tokenizer.special_attribute_present ) self.assertEqual(tokenizer.__class__.__name__ ,'''NewTokenizer''' ) else: self.assertEqual(tokenizer.__class__.__name__ ,'''NewTokenizer''' ) def a__ ( self ) -> Optional[Any]: with self.assertRaisesRegex( _SCREAMING_SNAKE_CASE ,'''bert-base is not a local folder and is not a valid model identifier''' ): UpperCAmelCase_ : Tuple = AutoTokenizer.from_pretrained('''bert-base''' ) def a__ ( self ) -> List[Any]: with self.assertRaisesRegex( _SCREAMING_SNAKE_CASE ,R'''aaaaaa is not a valid git identifier \(branch name, tag name or commit id\)''' ): UpperCAmelCase_ : str = AutoTokenizer.from_pretrained(_SCREAMING_SNAKE_CASE ,revision='''aaaaaa''' ) def a__ ( self ) -> Any: # Make sure we have cached the tokenizer. UpperCAmelCase_ : Optional[int] = AutoTokenizer.from_pretrained('''hf-internal-testing/tiny-random-bert''' ) with RequestCounter() as counter: UpperCAmelCase_ : List[str] = AutoTokenizer.from_pretrained('''hf-internal-testing/tiny-random-bert''' ) self.assertEqual(counter.get_request_count ,0 ) self.assertEqual(counter.head_request_count ,1 ) self.assertEqual(counter.other_request_count ,0 )
30
0
from typing import TYPE_CHECKING from ....utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available _lowerCamelCase : Any = { """configuration_mctct""": ["""MCTCT_PRETRAINED_CONFIG_ARCHIVE_MAP""", """MCTCTConfig"""], """feature_extraction_mctct""": ["""MCTCTFeatureExtractor"""], """processing_mctct""": ["""MCTCTProcessor"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCamelCase : Optional[int] = [ """MCTCT_PRETRAINED_MODEL_ARCHIVE_LIST""", """MCTCTForCTC""", """MCTCTModel""", """MCTCTPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_mctct import MCTCT_PRETRAINED_CONFIG_ARCHIVE_MAP, MCTCTConfig from .feature_extraction_mctct import MCTCTFeatureExtractor from .processing_mctct import MCTCTProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mctct import MCTCT_PRETRAINED_MODEL_ARCHIVE_LIST, MCTCTForCTC, MCTCTModel, MCTCTPreTrainedModel else: import sys _lowerCamelCase : List[Any] = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
87
from functools import reduce __a = ( '73167176531330624919225119674426574742355349194934' '96983520312774506326239578318016984801869478851843' '85861560789112949495459501737958331952853208805511' '12540698747158523863050715693290963295227443043557' '66896648950445244523161731856403098711121722383113' '62229893423380308135336276614282806444486645238749' '30358907296290491560440772390713810515859307960866' '70172427121883998797908792274921901699720888093776' '65727333001053367881220235421809751254540594752243' '52584907711670556013604839586446706324415722155397' '53697817977846174064955149290862569321978468622482' '83972241375657056057490261407972968652414535100474' '82166370484403199890008895243450658541227588666881' '16427171479924442928230863465674813919123162824586' '17866458359124566529476545682848912883142607690042' '24219022671055626321111109370544217506941658960408' '07198403850962455444362981230987879927244284909188' '84580156166097919133875499200524063689912560717606' '05886116467109405077541002256983155200055935729725' '71636269561882670428252483600823257530420752963450' ) def lowerCamelCase__ ( _lowercase = N ): '''simple docstring''' return max( # mypy cannot properly interpret reduce int(reduce(lambda _lowercase , _lowercase : str(int(_lowercase ) * int(_lowercase ) ) , n[i : i + 13] ) ) for i in range(len(_lowercase ) - 12 ) ) if __name__ == "__main__": print(F"""{solution() = }""")
30
0
"""simple docstring""" from typing import Any, Dict, List, Union from ..utils import add_end_docstrings, is_torch_available, is_vision_available, logging, requires_backends from .base import PIPELINE_INIT_ARGS, Pipeline if is_vision_available(): from ..image_utils import load_image if is_torch_available(): import torch from ..models.auto.modeling_auto import MODEL_FOR_OBJECT_DETECTION_MAPPING, MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING UpperCAmelCase = logging.get_logger(__name__) UpperCAmelCase = Dict[str, Any] UpperCAmelCase = List[Prediction] @add_end_docstrings(A_ ) class lowercase__ ( A_ ): def __init__( self , *SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE) -> int: super().__init__(*SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE) if self.framework == "tf": raise ValueError(F'The {self.__class__} is only available in PyTorch.') requires_backends(self , """vision""") self.check_model_type( dict(MODEL_FOR_OBJECT_DETECTION_MAPPING.items() + MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING.items())) def UpperCamelCase_ ( self , **SCREAMING_SNAKE_CASE) -> Optional[Any]: _lowerCamelCase : int = {} if "threshold" in kwargs: _lowerCamelCase : List[Any] = kwargs["""threshold"""] return {}, {}, postprocess_kwargs def __call__( self , *SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE) -> Union[Predictions, List[Prediction]]: return super().__call__(*SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE) def UpperCamelCase_ ( self , SCREAMING_SNAKE_CASE) -> Optional[Any]: _lowerCamelCase : int = load_image(SCREAMING_SNAKE_CASE) _lowerCamelCase : Tuple = torch.IntTensor([[image.height, image.width]]) _lowerCamelCase : Dict = self.image_processor(images=[image] , return_tensors="""pt""") if self.tokenizer is not None: _lowerCamelCase : Union[str, Any] = self.tokenizer(text=inputs["""words"""] , boxes=inputs["""boxes"""] , return_tensors="""pt""") _lowerCamelCase : Optional[Any] = target_size return inputs def UpperCamelCase_ ( self , SCREAMING_SNAKE_CASE) -> Union[str, Any]: _lowerCamelCase : int = model_inputs.pop("""target_size""") _lowerCamelCase : Optional[Any] = self.model(**SCREAMING_SNAKE_CASE) _lowerCamelCase : Tuple = outputs.__class__({"""target_size""": target_size, **outputs}) if self.tokenizer is not None: _lowerCamelCase : Union[str, Any] = model_inputs["""bbox"""] return model_outputs def UpperCamelCase_ ( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE=0.9) -> List[str]: _lowerCamelCase : Tuple = model_outputs["""target_size"""] if self.tokenizer is not None: # This is a LayoutLMForTokenClassification variant. # The OCR got the boxes and the model classified the words. _lowerCamelCase , _lowerCamelCase : Union[str, Any] = target_size[0].tolist() def unnormalize(SCREAMING_SNAKE_CASE): return self._get_bounding_box( torch.Tensor( [ (width * bbox[0] / 1000), (height * bbox[1] / 1000), (width * bbox[2] / 1000), (height * bbox[3] / 1000), ])) _lowerCamelCase , _lowerCamelCase : List[Any] = model_outputs["""logits"""].squeeze(0).softmax(dim=-1).max(dim=-1) _lowerCamelCase : int = [self.model.config.idalabel[prediction] for prediction in classes.tolist()] _lowerCamelCase : Any = [unnormalize(SCREAMING_SNAKE_CASE) for bbox in model_outputs["""bbox"""].squeeze(0)] _lowerCamelCase : str = ["""score""", """label""", """box"""] _lowerCamelCase : Optional[Any] = [dict(zip(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE)) for vals in zip(scores.tolist() , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE) if vals[0] > threshold] else: # This is a regular ForObjectDetectionModel _lowerCamelCase : Union[str, Any] = self.image_processor.post_process_object_detection(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE) _lowerCamelCase : List[Any] = raw_annotations[0] _lowerCamelCase : Tuple = raw_annotation["""scores"""] _lowerCamelCase : int = raw_annotation["""labels"""] _lowerCamelCase : Any = raw_annotation["""boxes"""] _lowerCamelCase : str = scores.tolist() _lowerCamelCase : Any = [self.model.config.idalabel[label.item()] for label in labels] _lowerCamelCase : List[str] = [self._get_bounding_box(SCREAMING_SNAKE_CASE) for box in boxes] # {"scores": [...], ...} --> [{"score":x, ...}, ...] _lowerCamelCase : Optional[int] = ["""score""", """label""", """box"""] _lowerCamelCase : Any = [ dict(zip(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE)) for vals in zip(raw_annotation["""scores"""] , raw_annotation["""labels"""] , raw_annotation["""boxes"""]) ] return annotation def UpperCamelCase_ ( self , SCREAMING_SNAKE_CASE) -> Dict[str, int]: if self.framework != "pt": raise ValueError("""The ObjectDetectionPipeline is only available in PyTorch.""") _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase : Tuple = box.int().tolist() _lowerCamelCase : List[Any] = { """xmin""": xmin, """ymin""": ymin, """xmax""": xmax, """ymax""": ymax, } return bbox
88
from decimal import Decimal, getcontext from math import ceil, factorial def lowerCamelCase__ ( _lowercase ): '''simple docstring''' if not isinstance(_lowercase , _lowercase ): raise TypeError('''Undefined for non-integers''' ) elif precision < 1: raise ValueError('''Undefined for non-natural numbers''' ) UpperCAmelCase_ : Tuple = precision UpperCAmelCase_ : Optional[Any] = ceil(precision / 14 ) UpperCAmelCase_ : int = 426880 * Decimal(10005 ).sqrt() UpperCAmelCase_ : Tuple = 1 UpperCAmelCase_ : List[Any] = 13591409 UpperCAmelCase_ : Optional[Any] = Decimal(_lowercase ) for k in range(1 , _lowercase ): UpperCAmelCase_ : List[str] = factorial(6 * k ) // (factorial(3 * k ) * factorial(_lowercase ) ** 3) linear_term += 545140134 exponential_term *= -262537412640768000 partial_sum += Decimal(multinomial_term * linear_term ) / exponential_term return str(constant_term / partial_sum )[:-1] if __name__ == "__main__": __a = 50 print(F"""The first {n} digits of pi is: {pi(n)}""")
30
0
def UpperCamelCase_( lowerCamelCase_ ) -> int: return 1 if digit in (0, 1) else (digit * factorial(digit - 1 )) def UpperCamelCase_( lowerCamelCase_ ) -> bool: _lowercase : int = 0 _lowercase : Optional[int] = number while duplicate > 0: _lowercase , _lowercase : Optional[int] = divmod(lowerCamelCase_ , 10 ) fact_sum += factorial(lowerCamelCase_ ) return fact_sum == number if __name__ == "__main__": print("Program to check whether a number is a Krisnamurthy Number or not.") SCREAMING_SNAKE_CASE : Any = int(input("Enter number: ").strip()) print( F"{number} is {'' if krishnamurthy(number) else 'not '}a Krishnamurthy Number." )
89
from __future__ import annotations import math __a = '2020.9.26' __a = 'xcodz-dot, cclaus, dhruvmanila' def lowerCamelCase__ ( _lowercase , _lowercase , _lowercase , _lowercase , _lowercase ): '''simple docstring''' if not all(isinstance(_lowercase , (float, int) ) for val in locals().values() ): UpperCAmelCase_ : Optional[int] = f'''Input values must either be float or int: {list(locals().values() )}''' raise TypeError(_lowercase ) UpperCAmelCase_ : Tuple = ((x * distance) / (z + distance)) * scale UpperCAmelCase_ : str = ((y * distance) / (z + distance)) * scale return projected_x, projected_y def lowerCamelCase__ ( _lowercase , _lowercase , _lowercase , _lowercase , _lowercase ): '''simple docstring''' if not isinstance(_lowercase , _lowercase ): raise TypeError('''Axis must be a str''' ) UpperCAmelCase_ : Optional[Any] = locals() del input_variables["axis"] if not all(isinstance(_lowercase , (float, int) ) for val in input_variables.values() ): UpperCAmelCase_ : List[Any] = ( '''Input values except axis must either be float or int: ''' f'''{list(input_variables.values() )}''' ) raise TypeError(_lowercase ) UpperCAmelCase_ : Dict = (angle % 360) / 450 * 180 / math.pi if axis == "z": UpperCAmelCase_ : Optional[int] = x * math.cos(_lowercase ) - y * math.sin(_lowercase ) UpperCAmelCase_ : List[Any] = y * math.cos(_lowercase ) + x * math.sin(_lowercase ) UpperCAmelCase_ : Optional[int] = z elif axis == "x": UpperCAmelCase_ : Any = y * math.cos(_lowercase ) - z * math.sin(_lowercase ) UpperCAmelCase_ : int = z * math.cos(_lowercase ) + y * math.sin(_lowercase ) UpperCAmelCase_ : Dict = x elif axis == "y": UpperCAmelCase_ : Union[str, Any] = x * math.cos(_lowercase ) - z * math.sin(_lowercase ) UpperCAmelCase_ : Optional[int] = z * math.cos(_lowercase ) + x * math.sin(_lowercase ) UpperCAmelCase_ : Optional[int] = y else: raise ValueError('''not a valid axis, choose one of \'x\', \'y\', \'z\'''' ) return new_x, new_y, new_z if __name__ == "__main__": import doctest doctest.testmod() print(F"""{convert_to_ad(1.0, 2.0, 3.0, 10.0, 10.0) = }""") print(F"""{rotate(1.0, 2.0, 3.0, "y", 90.0) = }""")
30
0
'''simple docstring''' import unittest from transformers import SPIECE_UNDERLINE, XLNetTokenizer, XLNetTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin __UpperCAmelCase = get_tests_dir('''fixtures/test_sentencepiece.model''') @require_sentencepiece @require_tokenizers class a__ ( a__ , unittest.TestCase ): '''simple docstring''' lowercase__ : Optional[Any] = XLNetTokenizer lowercase__ : int = XLNetTokenizerFast lowercase__ : Optional[int] = True lowercase__ : Optional[int] = True def __SCREAMING_SNAKE_CASE ( self ) -> List[Any]: super().setUp() # We have a SentencePiece fixture for testing lowerCAmelCase__ = XLNetTokenizer(lowerCamelCase_ , keep_accents=lowerCamelCase_ ) tokenizer.sanitize_special_tokens() tokenizer.save_pretrained(self.tmpdirname ) def __SCREAMING_SNAKE_CASE ( self ) -> Dict: lowerCAmelCase__ = '''<s>''' lowerCAmelCase__ = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(lowerCamelCase_ ) , lowerCamelCase_ ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(lowerCamelCase_ ) , lowerCamelCase_ ) def __SCREAMING_SNAKE_CASE ( self ) -> List[Any]: lowerCAmelCase__ = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , '''<unk>''' ) self.assertEqual(vocab_keys[1] , '''<s>''' ) self.assertEqual(vocab_keys[-1] , '''<eod>''' ) self.assertEqual(len(lowerCamelCase_ ) , 10_06 ) def __SCREAMING_SNAKE_CASE ( self ) -> Dict: self.assertEqual(self.get_tokenizer().vocab_size , 10_00 ) def __SCREAMING_SNAKE_CASE ( self ) -> List[str]: lowerCAmelCase__ = XLNetTokenizer(lowerCamelCase_ , keep_accents=lowerCamelCase_ ) lowerCAmelCase__ = tokenizer.tokenize('''This is a test''' ) self.assertListEqual(lowerCamelCase_ , ['''▁This''', '''▁is''', '''▁a''', '''▁t''', '''est'''] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(lowerCamelCase_ ) , [2_85, 46, 10, 1_70, 3_82] ) lowerCAmelCase__ = tokenizer.tokenize('''I was born in 92000, and this is falsé.''' ) self.assertListEqual( lowerCamelCase_ , [ SPIECE_UNDERLINE + '''I''', SPIECE_UNDERLINE + '''was''', SPIECE_UNDERLINE + '''b''', '''or''', '''n''', SPIECE_UNDERLINE + '''in''', SPIECE_UNDERLINE + '''''', '''9''', '''2''', '''0''', '''0''', '''0''', ''',''', SPIECE_UNDERLINE + '''and''', SPIECE_UNDERLINE + '''this''', SPIECE_UNDERLINE + '''is''', SPIECE_UNDERLINE + '''f''', '''al''', '''s''', '''é''', '''.''', ] , ) lowerCAmelCase__ = tokenizer.convert_tokens_to_ids(lowerCamelCase_ ) self.assertListEqual(lowerCamelCase_ , [8, 21, 84, 55, 24, 19, 7, 0, 6_02, 3_47, 3_47, 3_47, 3, 12, 66, 46, 72, 80, 6, 0, 4] ) lowerCAmelCase__ = tokenizer.convert_ids_to_tokens(lowerCamelCase_ ) self.assertListEqual( lowerCamelCase_ , [ SPIECE_UNDERLINE + '''I''', SPIECE_UNDERLINE + '''was''', SPIECE_UNDERLINE + '''b''', '''or''', '''n''', SPIECE_UNDERLINE + '''in''', SPIECE_UNDERLINE + '''''', '''<unk>''', '''2''', '''0''', '''0''', '''0''', ''',''', SPIECE_UNDERLINE + '''and''', SPIECE_UNDERLINE + '''this''', SPIECE_UNDERLINE + '''is''', SPIECE_UNDERLINE + '''f''', '''al''', '''s''', '''<unk>''', '''.''', ] , ) def __SCREAMING_SNAKE_CASE ( self ) -> Optional[Any]: lowerCAmelCase__ = XLNetTokenizer(lowerCamelCase_ , do_lower_case=lowerCamelCase_ ) lowerCAmelCase__ = tokenizer.tokenize('''I was born in 92000, and this is falsé.''' ) self.assertListEqual( lowerCamelCase_ , [ SPIECE_UNDERLINE + '''''', '''i''', SPIECE_UNDERLINE + '''was''', SPIECE_UNDERLINE + '''b''', '''or''', '''n''', SPIECE_UNDERLINE + '''in''', SPIECE_UNDERLINE + '''''', '''9''', '''2''', '''0''', '''0''', '''0''', ''',''', SPIECE_UNDERLINE + '''and''', SPIECE_UNDERLINE + '''this''', SPIECE_UNDERLINE + '''is''', SPIECE_UNDERLINE + '''f''', '''al''', '''se''', '''.''', ] , ) self.assertListEqual(tokenizer.tokenize('''H\u00E9llo''' ) , ['''▁he''', '''ll''', '''o'''] ) def __SCREAMING_SNAKE_CASE ( self ) -> Tuple: lowerCAmelCase__ = XLNetTokenizer(lowerCamelCase_ , do_lower_case=lowerCamelCase_ ) lowerCAmelCase__ = tokenizer.tokenize('''I was born in 92000, and this is falsé.''' ) self.assertListEqual( lowerCamelCase_ , [ SPIECE_UNDERLINE + '''I''', SPIECE_UNDERLINE + '''was''', SPIECE_UNDERLINE + '''b''', '''or''', '''n''', SPIECE_UNDERLINE + '''in''', SPIECE_UNDERLINE + '''''', '''9''', '''2''', '''0''', '''0''', '''0''', ''',''', SPIECE_UNDERLINE + '''and''', SPIECE_UNDERLINE + '''this''', SPIECE_UNDERLINE + '''is''', SPIECE_UNDERLINE + '''f''', '''al''', '''se''', '''.''', ] , ) @slow def __SCREAMING_SNAKE_CASE ( self ) -> str: lowerCAmelCase__ = XLNetTokenizer.from_pretrained('''xlnet-base-cased''' ) lowerCAmelCase__ = tokenizer.encode('''sequence builders''' , add_special_tokens=lowerCamelCase_ ) lowerCAmelCase__ = tokenizer.encode('''multi-sequence build''' , add_special_tokens=lowerCamelCase_ ) lowerCAmelCase__ = tokenizer.build_inputs_with_special_tokens(lowerCamelCase_ ) lowerCAmelCase__ = tokenizer.build_inputs_with_special_tokens(lowerCamelCase_ , lowerCamelCase_ ) assert encoded_sentence == text + [4, 3] assert encoded_pair == text + [4] + text_a + [4, 3] @slow def __SCREAMING_SNAKE_CASE ( self ) -> Any: # fmt: off lowerCAmelCase__ = {'''input_ids''': [[17, 2_14_42, 2_70, 17, 10, 1_46_45, 3_18, 34, 17, 45_46, 31_45, 7_87, 13, 77_52, 2_20_18, 23, 21, 17, 45_46, 31_45, 7_87, 13, 33_52, 1_44_31, 13, 55_00, 11, 11_76, 5_80, 13, 1_68_19, 47_97, 23, 17, 10, 1_71_35, 6_58, 19, 4_57, 79_32, 13, 1_84, 19, 31_54, 1_71_35, 64_68, 19, 14_04, 1_22_69, 19, 42_29, 53_56, 1_62_64, 46, 19, 17, 2_05_45, 1_03_95, 9, 9, 9, 11, 28, 64_21, 95_31, 2_07_29, 17, 10, 3_53, 1_70_22, 11, 21, 64_21, 95_31, 1_69_49, 17, 10, 1_15_09, 7_53, 11, 33, 95, 24_21, 73_85, 9_56, 1_44_31, 26_26, 25, 8_42, 73_85, 48_36, 21, 14_29, 22_72, 98_55, 31_20, 1_61, 2_47_38, 19, 1_32_03, 6_58, 2_18, 7_87, 21, 4_30, 1_84_82, 8_47, 26_37, 9, 4, 3], [5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 3_22, 2_21_78, 27, 10_64, 22, 9_56, 13, 1_11_01, 14_29, 58_54, 2_43_13, 1_89_53, 40, 4_22, 2_43_66, 68, 17_58, 37, 1_04_83, 1_42_57, 31, 2_07, 2_63, 21, 2_03, 37_73, 25, 71, 97_35, 9, 4, 3], [5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 32, 20_49, 34_42, 17, 1_38_94, 33_80, 23, 95, 18, 1_76_34, 22_88, 9, 4, 3]], '''token_type_ids''': [[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2], [3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2], [3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2]], '''attention_mask''': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=lowerCamelCase_ , model_name='''xlnet-base-cased''' , revision='''c841166438c31ec7ca9a106dee7bb312b73ae511''' , )
90
# Lint as: python3 # pylint: enable=line-too-long # pylint: disable=g-import-not-at-top,g-bad-import-order,wrong-import-position __a = '2.13.1' import platform import pyarrow from packaging import version if version.parse(platform.python_version()) < version.parse('3.7'): raise ImportWarning( 'To use `datasets`, Python>=3.7 is required, and the current version of Python doesn\'t match this condition.' ) if version.parse(pyarrow.__version__).major < 8: raise ImportWarning( 'To use `datasets`, the module `pyarrow>=8.0.0` is required, and the current version of `pyarrow` doesn\'t match this condition.\n' 'If you are running this in a Google Colab, you should probably just restart the runtime to use the right version of `pyarrow`.' ) del platform del pyarrow del version from .arrow_dataset import Dataset from .arrow_reader import ReadInstruction from .builder import ArrowBasedBuilder, BeamBasedBuilder, BuilderConfig, DatasetBuilder, GeneratorBasedBuilder from .combine import concatenate_datasets, interleave_datasets from .dataset_dict import DatasetDict, IterableDatasetDict from .download import * from .features import * from .fingerprint import disable_caching, enable_caching, is_caching_enabled, set_caching_enabled from .info import DatasetInfo, MetricInfo from .inspect import ( get_dataset_config_info, get_dataset_config_names, get_dataset_infos, get_dataset_split_names, inspect_dataset, inspect_metric, list_datasets, list_metrics, ) from .iterable_dataset import IterableDataset from .load import load_dataset, load_dataset_builder, load_from_disk, load_metric from .metric import Metric from .splits import ( NamedSplit, NamedSplitAll, Split, SplitBase, SplitDict, SplitGenerator, SplitInfo, SubSplitInfo, percent, ) from .tasks import * from .utils import * from .utils import logging # deprecated modules from datasets import arrow_dataset as _arrow_dataset # isort:skip from datasets import utils as _utils # isort:skip from datasets.utils import download_manager as _deprecated_download_manager # isort:skip __a = concatenate_datasets __a = DownloadConfig __a = DownloadManager __a = DownloadMode __a = DownloadConfig __a = DownloadMode __a = DownloadManager del _arrow_dataset, _utils, _deprecated_download_manager
30
0
"""simple docstring""" def _snake_case ( snake_case__ : int ): assert ( isinstance(snake_case__ , snake_case__ ) and number_of_steps > 0 ), F'number_of_steps needs to be positive integer, your input {number_of_steps}' if number_of_steps == 1: return 1 A , A = 1, 1 for _ in range(number_of_steps - 1 ): A , A = current + previous, current return current if __name__ == "__main__": import doctest doctest.testmod()
91
def lowerCamelCase__ ( _lowercase , _lowercase ): '''simple docstring''' while a != 0: UpperCAmelCase_, UpperCAmelCase_ : Optional[int] = b % a, a return b def lowerCamelCase__ ( _lowercase , _lowercase ): '''simple docstring''' if gcd(_lowercase , _lowercase ) != 1: UpperCAmelCase_ : int = f'''mod inverse of {a!r} and {m!r} does not exist''' raise ValueError(_lowercase ) UpperCAmelCase_, UpperCAmelCase_, UpperCAmelCase_ : Union[str, Any] = 1, 0, a UpperCAmelCase_, UpperCAmelCase_, UpperCAmelCase_ : Dict = 0, 1, m while va != 0: UpperCAmelCase_ : List[Any] = ua // va UpperCAmelCase_, UpperCAmelCase_, UpperCAmelCase_, UpperCAmelCase_, UpperCAmelCase_, UpperCAmelCase_ : Any = (ua - q * va), (ua - q * va), (ua - q * va), va, va, va return ua % m
30
0
'''simple docstring''' # tests directory-specific settings - this file is run automatically # by pytest before any tests are run import doctest import sys import warnings from os.path import abspath, dirname, join import _pytest from transformers.testing_utils import HfDoctestModule, HfDocTestParser # allow having multiple repository checkouts and not needing to remember to rerun # 'pip install -e .[dev]' when switching between checkouts and running tests. UpperCamelCase_ = abspath(join(dirname(__file__), """src""")) sys.path.insert(1, git_repo_path) # silence FutureWarning warnings in tests since often we can't act on them until # they become normal warnings - i.e. the tests still need to test the current functionality warnings.simplefilter(action="""ignore""", category=FutureWarning) def _lowerCAmelCase ( __magic_name__ : int ) -> Tuple: config.addinivalue_line( '''markers''' , '''is_pt_tf_cross_test: mark test to run only when PT and TF interactions are tested''' ) config.addinivalue_line( '''markers''' , '''is_pt_flax_cross_test: mark test to run only when PT and FLAX interactions are tested''' ) config.addinivalue_line('''markers''' , '''is_pipeline_test: mark test to run only when pipelines are tested''' ) config.addinivalue_line('''markers''' , '''is_staging_test: mark test to run only in the staging environment''' ) config.addinivalue_line('''markers''' , '''accelerate_tests: mark test that require accelerate''' ) config.addinivalue_line('''markers''' , '''tool_tests: mark the tool tests that are run on their specific schedule''' ) def _lowerCAmelCase ( __magic_name__ : int ) -> Any: from transformers.testing_utils import pytest_addoption_shared pytest_addoption_shared(__magic_name__ ) def _lowerCAmelCase ( __magic_name__ : Any ) -> Any: from transformers.testing_utils import pytest_terminal_summary_main lowercase : Optional[Any] =terminalreporter.config.getoption('''--make-reports''' ) if make_reports: pytest_terminal_summary_main(__magic_name__ , id=__magic_name__ ) def _lowerCAmelCase ( __magic_name__ : Tuple , __magic_name__ : Union[str, Any] ) -> List[str]: # If no tests are collected, pytest exists with code 5, which makes the CI fail. if exitstatus == 5: lowercase : Optional[int] =0 # Doctest custom flag to ignore output. UpperCamelCase_ = doctest.register_optionflag("""IGNORE_RESULT""") UpperCamelCase_ = doctest.OutputChecker class __SCREAMING_SNAKE_CASE ( lowercase__ ): def lowerCamelCase_ ( self : Optional[Any] , UpperCAmelCase__ : Union[str, Any] , UpperCAmelCase__ : List[Any] , UpperCAmelCase__ : List[Any] ): '''simple docstring''' if IGNORE_RESULT & optionflags: return True return OutputChecker.check_output(self , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ) UpperCamelCase_ = CustomOutputChecker UpperCamelCase_ = HfDoctestModule UpperCamelCase_ = HfDocTestParser
92
# Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import numpy as np import torch from ..models.clipseg import CLIPSegForImageSegmentation from ..utils import is_vision_available, requires_backends from .base import PipelineTool if is_vision_available(): from PIL import Image class __a( _a ): """simple docstring""" lowerCAmelCase = ( '''This is a tool that creates a segmentation mask of an image according to a label. It cannot create an image.''' '''It takes two arguments named `image` which should be the original image, and `label` which should be a text ''' '''describing the elements what should be identified in the segmentation mask. The tool returns the mask.''' ) lowerCAmelCase = '''CIDAS/clipseg-rd64-refined''' lowerCAmelCase = '''image_segmenter''' lowerCAmelCase = CLIPSegForImageSegmentation lowerCAmelCase = ['''image''', '''text'''] lowerCAmelCase = ['''image'''] def __init__( self ,*_SCREAMING_SNAKE_CASE ,**_SCREAMING_SNAKE_CASE ) -> Dict: requires_backends(self ,['''vision'''] ) super().__init__(*_SCREAMING_SNAKE_CASE ,**_SCREAMING_SNAKE_CASE ) def a__ ( self ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ) -> Tuple: return self.pre_processor(text=[label] ,images=[image] ,padding=_SCREAMING_SNAKE_CASE ,return_tensors='''pt''' ) def a__ ( self ,_SCREAMING_SNAKE_CASE ) -> str: with torch.no_grad(): UpperCAmelCase_ : Dict = self.model(**_SCREAMING_SNAKE_CASE ).logits return logits def a__ ( self ,_SCREAMING_SNAKE_CASE ) -> Dict: UpperCAmelCase_ : Dict = outputs.cpu().detach().numpy() UpperCAmelCase_ : Any = 0 UpperCAmelCase_ : List[Any] = 1 return Image.fromarray((array * 255).astype(np.uinta ) )
30
0
"""simple docstring""" import darl # noqa import gym import tqdm from diffusers.experimental import ValueGuidedRLPipeline __A = { """n_samples""": 64, """horizon""": 32, """num_inference_steps""": 20, """n_guide_steps""": 2, # can set to 0 for faster sampling, does not use value network """scale_grad_by_std""": True, """scale""": 0.1, """eta""": 0.0, """t_grad_cutoff""": 2, """device""": """cpu""", } if __name__ == "__main__": __A = """hopper-medium-v2""" __A = gym.make(env_name) __A = ValueGuidedRLPipeline.from_pretrained( """bglick13/hopper-medium-v2-value-function-hor32""", env=env, ) env.seed(0) __A = env.reset() __A = 0 __A = 0 __A = 1000 __A = [obs.copy()] try: for t in tqdm.tqdm(range(T)): # call the policy __A = pipeline(obs, planning_horizon=32) # execute action in environment __A , __A , __A , __A = env.step(denorm_actions) __A = env.get_normalized_score(total_reward) # update return total_reward += reward total_score += score print( F'''Step: {t}, Reward: {reward}, Total Reward: {total_reward}, Score: {score}, Total Score:''' F''' {total_score}''' ) # save observations for rendering rollout.append(next_observation.copy()) __A = next_observation except KeyboardInterrupt: pass print(F'''Total reward: {total_reward}''')
93
import numpy as np import datasets __a = '\nCompute the Mahalanobis Distance\n\nMahalonobis distance is the distance between a point and a distribution.\nAnd not between two distinct points. It is effectively a multivariate equivalent of the Euclidean distance.\nIt was introduced by Prof. P. C. Mahalanobis in 1936\nand has been used in various statistical applications ever since\n[source: https://www.machinelearningplus.com/statistics/mahalanobis-distance/]\n' __a = '\\n@article{de2000mahalanobis,\n title={The mahalanobis distance},\n author={De Maesschalck, Roy and Jouan-Rimbaud, Delphine and Massart, D{\'e}sir{\'e} L},\n journal={Chemometrics and intelligent laboratory systems},\n volume={50},\n number={1},\n pages={1--18},\n year={2000},\n publisher={Elsevier}\n}\n' __a = '\nArgs:\n X: List of datapoints to be compared with the `reference_distribution`.\n reference_distribution: List of datapoints from the reference distribution we want to compare to.\nReturns:\n mahalanobis: The Mahalonobis distance for each datapoint in `X`.\nExamples:\n\n >>> mahalanobis_metric = datasets.load_metric("mahalanobis")\n >>> results = mahalanobis_metric.compute(reference_distribution=[[0, 1], [1, 0]], X=[[0, 1]])\n >>> print(results)\n {\'mahalanobis\': array([0.5])}\n' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class __a( datasets.Metric ): """simple docstring""" def a__ ( self ) -> Union[str, Any]: return datasets.MetricInfo( description=_DESCRIPTION ,citation=_CITATION ,inputs_description=_KWARGS_DESCRIPTION ,features=datasets.Features( { '''X''': datasets.Sequence(datasets.Value('''float''' ,id='''sequence''' ) ,id='''X''' ), } ) ,) def a__ ( self ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ) -> Any: # convert to numpy arrays UpperCAmelCase_ : str = np.array(_SCREAMING_SNAKE_CASE ) UpperCAmelCase_ : List[Any] = np.array(_SCREAMING_SNAKE_CASE ) # Assert that arrays are 2D if len(X.shape ) != 2: raise ValueError('''Expected `X` to be a 2D vector''' ) if len(reference_distribution.shape ) != 2: raise ValueError('''Expected `reference_distribution` to be a 2D vector''' ) if reference_distribution.shape[0] < 2: raise ValueError( '''Expected `reference_distribution` to be a 2D vector with more than one element in the first dimension''' ) # Get mahalanobis distance for each prediction UpperCAmelCase_ : List[str] = X - np.mean(_SCREAMING_SNAKE_CASE ) UpperCAmelCase_ : Dict = np.cov(reference_distribution.T ) try: UpperCAmelCase_ : Any = np.linalg.inv(_SCREAMING_SNAKE_CASE ) except np.linalg.LinAlgError: UpperCAmelCase_ : List[str] = np.linalg.pinv(_SCREAMING_SNAKE_CASE ) UpperCAmelCase_ : Union[str, Any] = np.dot(_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ) UpperCAmelCase_ : List[Any] = np.dot(_SCREAMING_SNAKE_CASE ,X_minus_mu.T ).diagonal() return {"mahalanobis": mahal_dist}
30
0
'''simple docstring''' import re from filelock import FileLock try: import nltk SCREAMING_SNAKE_CASE = True except (ImportError, ModuleNotFoundError): SCREAMING_SNAKE_CASE = False if NLTK_AVAILABLE: with FileLock('.lock') as lock: nltk.download('punkt', quiet=True) def lowercase_ ( __A : str ) -> str: """simple docstring""" re.sub('''<n>''' , '''''' , __A ) # remove pegasus newline char assert NLTK_AVAILABLE, "nltk must be installed to separate newlines between sentences. (pip install nltk)" return "\n".join(nltk.sent_tokenize(__A ) )
94
import collections from typing import List, Optional, Union from ...tokenization_utils_base import BatchEncoding from ...utils import TensorType, add_end_docstrings, add_start_docstrings, logging from ..bert.tokenization_bert import BertTokenizer __a = logging.get_logger(__name__) __a = {'vocab_file': 'vocab.txt', 'tokenizer_file': 'tokenizer.json'} __a = { 'vocab_file': { 'facebook/dpr-ctx_encoder-single-nq-base': ( 'https://huggingface.co/facebook/dpr-ctx_encoder-single-nq-base/resolve/main/vocab.txt' ), 'facebook/dpr-ctx_encoder-multiset-base': ( 'https://huggingface.co/facebook/dpr-ctx_encoder-multiset-base/resolve/main/vocab.txt' ), }, 'tokenizer_file': { 'facebook/dpr-ctx_encoder-single-nq-base': ( 'https://huggingface.co/facebook/dpr-ctx_encoder-single-nq-base/resolve/main/tokenizer.json' ), 'facebook/dpr-ctx_encoder-multiset-base': ( 'https://huggingface.co/facebook/dpr-ctx_encoder-multiset-base/resolve/main/tokenizer.json' ), }, } __a = { 'vocab_file': { 'facebook/dpr-question_encoder-single-nq-base': ( 'https://huggingface.co/facebook/dpr-question_encoder-single-nq-base/resolve/main/vocab.txt' ), 'facebook/dpr-question_encoder-multiset-base': ( 'https://huggingface.co/facebook/dpr-question_encoder-multiset-base/resolve/main/vocab.txt' ), }, 'tokenizer_file': { 'facebook/dpr-question_encoder-single-nq-base': ( 'https://huggingface.co/facebook/dpr-question_encoder-single-nq-base/resolve/main/tokenizer.json' ), 'facebook/dpr-question_encoder-multiset-base': ( 'https://huggingface.co/facebook/dpr-question_encoder-multiset-base/resolve/main/tokenizer.json' ), }, } __a = { 'vocab_file': { 'facebook/dpr-reader-single-nq-base': ( 'https://huggingface.co/facebook/dpr-reader-single-nq-base/resolve/main/vocab.txt' ), 'facebook/dpr-reader-multiset-base': ( 'https://huggingface.co/facebook/dpr-reader-multiset-base/resolve/main/vocab.txt' ), }, 'tokenizer_file': { 'facebook/dpr-reader-single-nq-base': ( 'https://huggingface.co/facebook/dpr-reader-single-nq-base/resolve/main/tokenizer.json' ), 'facebook/dpr-reader-multiset-base': ( 'https://huggingface.co/facebook/dpr-reader-multiset-base/resolve/main/tokenizer.json' ), }, } __a = { 'facebook/dpr-ctx_encoder-single-nq-base': 512, 'facebook/dpr-ctx_encoder-multiset-base': 512, } __a = { 'facebook/dpr-question_encoder-single-nq-base': 512, 'facebook/dpr-question_encoder-multiset-base': 512, } __a = { 'facebook/dpr-reader-single-nq-base': 512, 'facebook/dpr-reader-multiset-base': 512, } __a = { 'facebook/dpr-ctx_encoder-single-nq-base': {'do_lower_case': True}, 'facebook/dpr-ctx_encoder-multiset-base': {'do_lower_case': True}, } __a = { 'facebook/dpr-question_encoder-single-nq-base': {'do_lower_case': True}, 'facebook/dpr-question_encoder-multiset-base': {'do_lower_case': True}, } __a = { 'facebook/dpr-reader-single-nq-base': {'do_lower_case': True}, 'facebook/dpr-reader-multiset-base': {'do_lower_case': True}, } class __a( _a ): """simple docstring""" lowerCAmelCase = VOCAB_FILES_NAMES lowerCAmelCase = CONTEXT_ENCODER_PRETRAINED_VOCAB_FILES_MAP lowerCAmelCase = CONTEXT_ENCODER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCAmelCase = CONTEXT_ENCODER_PRETRAINED_INIT_CONFIGURATION class __a( _a ): """simple docstring""" lowerCAmelCase = VOCAB_FILES_NAMES lowerCAmelCase = QUESTION_ENCODER_PRETRAINED_VOCAB_FILES_MAP lowerCAmelCase = QUESTION_ENCODER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCAmelCase = QUESTION_ENCODER_PRETRAINED_INIT_CONFIGURATION __a = collections.namedtuple( 'DPRSpanPrediction', ['span_score', 'relevance_score', 'doc_id', 'start_index', 'end_index', 'text'] ) __a = collections.namedtuple('DPRReaderOutput', ['start_logits', 'end_logits', 'relevance_logits']) __a = R'\n Return a dictionary with the token ids of the input strings and other information to give to `.decode_best_spans`.\n It converts the strings of a question and different passages (title and text) in a sequence of IDs (integers),\n using the tokenizer and vocabulary. The resulting `input_ids` is a matrix of size `(n_passages, sequence_length)`\n with the format:\n\n ```\n [CLS] <question token ids> [SEP] <titles ids> [SEP] <texts ids>\n ```\n\n Args:\n questions (`str` or `List[str]`):\n The questions to be encoded. You can specify one question for many passages. In this case, the question\n will be duplicated like `[questions] * n_passages`. Otherwise you have to specify as many questions as in\n `titles` or `texts`.\n titles (`str` or `List[str]`):\n The passages titles to be encoded. This can be a string or a list of strings if there are several passages.\n texts (`str` or `List[str]`):\n The passages texts to be encoded. This can be a string or a list of strings if there are several passages.\n padding (`bool`, `str` or [`~utils.PaddingStrategy`], *optional*, defaults to `False`):\n Activates and controls padding. Accepts the following values:\n\n - `True` or `\'longest\'`: Pad to the longest sequence in the batch (or no padding if only a single sequence\n if provided).\n - `\'max_length\'`: Pad to a maximum length specified with the argument `max_length` or to the maximum\n acceptable input length for the model if that argument is not provided.\n - `False` or `\'do_not_pad\'` (default): No padding (i.e., can output a batch with sequences of different\n lengths).\n truncation (`bool`, `str` or [`~tokenization_utils_base.TruncationStrategy`], *optional*, defaults to `False`):\n Activates and controls truncation. Accepts the following values:\n\n - `True` or `\'longest_first\'`: Truncate to a maximum length specified with the argument `max_length` or to\n the maximum acceptable input length for the model if that argument is not provided. This will truncate\n token by token, removing a token from the longest sequence in the pair if a pair of sequences (or a batch\n of pairs) is provided.\n - `\'only_first\'`: Truncate to a maximum length specified with the argument `max_length` or to the maximum\n acceptable input length for the model if that argument is not provided. This will only truncate the first\n sequence of a pair if a pair of sequences (or a batch of pairs) is provided.\n - `\'only_second\'`: Truncate to a maximum length specified with the argument `max_length` or to the maximum\n acceptable input length for the model if that argument is not provided. This will only truncate the\n second sequence of a pair if a pair of sequences (or a batch of pairs) is provided.\n - `False` or `\'do_not_truncate\'` (default): No truncation (i.e., can output batch with sequence lengths\n greater than the model maximum admissible input size).\n max_length (`int`, *optional*):\n Controls the maximum length to use by one of the truncation/padding parameters.\n\n If left unset or set to `None`, this will use the predefined model maximum length if a maximum length\n is required by one of the truncation/padding parameters. If the model has no specific maximum input\n length (like XLNet) truncation/padding to a maximum length will be deactivated.\n return_tensors (`str` or [`~utils.TensorType`], *optional*):\n If set, will return tensors instead of list of python integers. Acceptable values are:\n\n - `\'tf\'`: Return TensorFlow `tf.constant` objects.\n - `\'pt\'`: Return PyTorch `torch.Tensor` objects.\n - `\'np\'`: Return Numpy `np.ndarray` objects.\n return_attention_mask (`bool`, *optional*):\n Whether or not to return the attention mask. If not set, will return the attention mask according to the\n specific tokenizer\'s default, defined by the `return_outputs` attribute.\n\n [What are attention masks?](../glossary#attention-mask)\n\n Returns:\n `Dict[str, List[List[int]]]`: A dictionary with the following keys:\n\n - `input_ids`: List of token ids to be fed to a model.\n - `attention_mask`: List of indices specifying which tokens should be attended to by the model.\n ' @add_start_docstrings(_a ) class __a: """simple docstring""" def __call__( self ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE = None ,_SCREAMING_SNAKE_CASE = None ,_SCREAMING_SNAKE_CASE = False ,_SCREAMING_SNAKE_CASE = False ,_SCREAMING_SNAKE_CASE = None ,_SCREAMING_SNAKE_CASE = None ,_SCREAMING_SNAKE_CASE = None ,**_SCREAMING_SNAKE_CASE ,) -> BatchEncoding: if titles is None and texts is None: return super().__call__( _SCREAMING_SNAKE_CASE ,padding=_SCREAMING_SNAKE_CASE ,truncation=_SCREAMING_SNAKE_CASE ,max_length=_SCREAMING_SNAKE_CASE ,return_tensors=_SCREAMING_SNAKE_CASE ,return_attention_mask=_SCREAMING_SNAKE_CASE ,**_SCREAMING_SNAKE_CASE ,) elif titles is None or texts is None: UpperCAmelCase_ : List[str] = titles if texts is None else texts return super().__call__( _SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ,padding=_SCREAMING_SNAKE_CASE ,truncation=_SCREAMING_SNAKE_CASE ,max_length=_SCREAMING_SNAKE_CASE ,return_tensors=_SCREAMING_SNAKE_CASE ,return_attention_mask=_SCREAMING_SNAKE_CASE ,**_SCREAMING_SNAKE_CASE ,) UpperCAmelCase_ : List[Any] = titles if not isinstance(_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ) else [titles] UpperCAmelCase_ : List[str] = texts if not isinstance(_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ) else [texts] UpperCAmelCase_ : Any = len(_SCREAMING_SNAKE_CASE ) UpperCAmelCase_ : List[Any] = questions if not isinstance(_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ) else [questions] * n_passages if len(_SCREAMING_SNAKE_CASE ) != len(_SCREAMING_SNAKE_CASE ): raise ValueError( f'''There should be as many titles than texts but got {len(_SCREAMING_SNAKE_CASE )} titles and {len(_SCREAMING_SNAKE_CASE )} texts.''' ) UpperCAmelCase_ : Tuple = super().__call__(_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ,padding=_SCREAMING_SNAKE_CASE ,truncation=_SCREAMING_SNAKE_CASE )['''input_ids'''] UpperCAmelCase_ : int = super().__call__(_SCREAMING_SNAKE_CASE ,add_special_tokens=_SCREAMING_SNAKE_CASE ,padding=_SCREAMING_SNAKE_CASE ,truncation=_SCREAMING_SNAKE_CASE )['''input_ids'''] UpperCAmelCase_ : Optional[int] = { '''input_ids''': [ (encoded_question_and_title + encoded_text)[:max_length] if max_length is not None and truncation else encoded_question_and_title + encoded_text for encoded_question_and_title, encoded_text in zip(_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ) ] } if return_attention_mask is not False: UpperCAmelCase_ : List[str] = [] for input_ids in encoded_inputs["input_ids"]: attention_mask.append([int(input_id != self.pad_token_id ) for input_id in input_ids] ) UpperCAmelCase_ : Dict = attention_mask return self.pad(_SCREAMING_SNAKE_CASE ,padding=_SCREAMING_SNAKE_CASE ,max_length=_SCREAMING_SNAKE_CASE ,return_tensors=_SCREAMING_SNAKE_CASE ) def a__ ( self ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE = 16 ,_SCREAMING_SNAKE_CASE = 64 ,_SCREAMING_SNAKE_CASE = 4 ,) -> List[DPRSpanPrediction]: UpperCAmelCase_ : Tuple = reader_input['''input_ids'''] UpperCAmelCase_, UpperCAmelCase_, UpperCAmelCase_ : Optional[Any] = reader_output[:3] UpperCAmelCase_ : Optional[Any] = len(_SCREAMING_SNAKE_CASE ) UpperCAmelCase_ : int = sorted(range(_SCREAMING_SNAKE_CASE ) ,reverse=_SCREAMING_SNAKE_CASE ,key=relevance_logits.__getitem__ ) UpperCAmelCase_ : List[DPRReaderOutput] = [] for doc_id in sorted_docs: UpperCAmelCase_ : List[Any] = list(input_ids[doc_id] ) # assuming question & title information is at the beginning of the sequence UpperCAmelCase_ : str = sequence_ids.index(self.sep_token_id ,2 ) + 1 # second sep id if sequence_ids[-1] == self.pad_token_id: UpperCAmelCase_ : List[Any] = sequence_ids.index(self.pad_token_id ) else: UpperCAmelCase_ : int = len(_SCREAMING_SNAKE_CASE ) UpperCAmelCase_ : Tuple = self._get_best_spans( start_logits=start_logits[doc_id][passage_offset:sequence_len] ,end_logits=end_logits[doc_id][passage_offset:sequence_len] ,max_answer_length=_SCREAMING_SNAKE_CASE ,top_spans=_SCREAMING_SNAKE_CASE ,) for start_index, end_index in best_spans: start_index += passage_offset end_index += passage_offset nbest_spans_predictions.append( DPRSpanPrediction( span_score=start_logits[doc_id][start_index] + end_logits[doc_id][end_index] ,relevance_score=relevance_logits[doc_id] ,doc_id=_SCREAMING_SNAKE_CASE ,start_index=_SCREAMING_SNAKE_CASE ,end_index=_SCREAMING_SNAKE_CASE ,text=self.decode(sequence_ids[start_index : end_index + 1] ) ,) ) if len(_SCREAMING_SNAKE_CASE ) >= num_spans: break return nbest_spans_predictions[:num_spans] def a__ ( self ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ,) -> List[DPRSpanPrediction]: UpperCAmelCase_ : Tuple = [] for start_index, start_score in enumerate(_SCREAMING_SNAKE_CASE ): for answer_length, end_score in enumerate(end_logits[start_index : start_index + max_answer_length] ): scores.append(((start_index, start_index + answer_length), start_score + end_score) ) UpperCAmelCase_ : int = sorted(_SCREAMING_SNAKE_CASE ,key=lambda _SCREAMING_SNAKE_CASE : x[1] ,reverse=_SCREAMING_SNAKE_CASE ) UpperCAmelCase_ : Union[str, Any] = [] for (start_index, end_index), score in scores: if start_index > end_index: raise ValueError(f'''Wrong span indices: [{start_index}:{end_index}]''' ) UpperCAmelCase_ : str = end_index - start_index + 1 if length > max_answer_length: raise ValueError(f'''Span is too long: {length} > {max_answer_length}''' ) if any( start_index <= prev_start_index <= prev_end_index <= end_index or prev_start_index <= start_index <= end_index <= prev_end_index for (prev_start_index, prev_end_index) in chosen_span_intervals ): continue chosen_span_intervals.append((start_index, end_index) ) if len(_SCREAMING_SNAKE_CASE ) == top_spans: break return chosen_span_intervals @add_end_docstrings(_a ) class __a( _a , _a ): """simple docstring""" lowerCAmelCase = VOCAB_FILES_NAMES lowerCAmelCase = READER_PRETRAINED_VOCAB_FILES_MAP lowerCAmelCase = READER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCAmelCase = READER_PRETRAINED_INIT_CONFIGURATION lowerCAmelCase = ['''input_ids''', '''attention_mask''']
30
0
"""simple docstring""" from .integrations import ( is_optuna_available, is_ray_available, is_sigopt_available, is_wandb_available, run_hp_search_optuna, run_hp_search_ray, run_hp_search_sigopt, run_hp_search_wandb, ) from .trainer_utils import ( HPSearchBackend, default_hp_space_optuna, default_hp_space_ray, default_hp_space_sigopt, default_hp_space_wandb, ) from .utils import logging lowerCamelCase_ = logging.get_logger(__name__) class UpperCamelCase_ : __magic_name__ = 42 __magic_name__ = None @staticmethod def _SCREAMING_SNAKE_CASE ( ) -> Optional[int]: raise NotImplementedError def _SCREAMING_SNAKE_CASE ( self : List[Any] , lowerCAmelCase_ : int , lowerCAmelCase_ : int , lowerCAmelCase_ : str , **lowerCAmelCase_ : Union[str, Any] ) -> Optional[Any]: raise NotImplementedError def _SCREAMING_SNAKE_CASE ( self : Optional[int] , lowerCAmelCase_ : Union[str, Any] ) -> str: raise NotImplementedError def _SCREAMING_SNAKE_CASE ( self : List[Any] ) -> Dict: if not self.is_available(): raise RuntimeError( f"""You picked the {self.name} backend, but it is not installed. Run {self.pip_install()}.""" ) @classmethod def _SCREAMING_SNAKE_CASE ( cls : Tuple ) -> List[str]: return f"""`pip install {cls.pip_package or cls.name}`""" class UpperCamelCase_ (__A ): __magic_name__ = '''optuna''' @staticmethod def _SCREAMING_SNAKE_CASE ( ) -> List[str]: return is_optuna_available() def _SCREAMING_SNAKE_CASE ( self : int , lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : int , lowerCAmelCase_ : str , **lowerCAmelCase_ : Tuple ) -> int: return run_hp_search_optuna(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , **lowerCAmelCase_ ) def _SCREAMING_SNAKE_CASE ( self : List[str] , lowerCAmelCase_ : Dict ) -> Optional[Any]: return default_hp_space_optuna(lowerCAmelCase_ ) class UpperCamelCase_ (__A ): __magic_name__ = '''ray''' __magic_name__ = '''\'ray[tune]\'''' @staticmethod def _SCREAMING_SNAKE_CASE ( ) -> Optional[int]: return is_ray_available() def _SCREAMING_SNAKE_CASE ( self : List[str] , lowerCAmelCase_ : Union[str, Any] , lowerCAmelCase_ : int , lowerCAmelCase_ : str , **lowerCAmelCase_ : Tuple ) -> List[str]: return run_hp_search_ray(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , **lowerCAmelCase_ ) def _SCREAMING_SNAKE_CASE ( self : str , lowerCAmelCase_ : Tuple ) -> Optional[int]: return default_hp_space_ray(lowerCAmelCase_ ) class UpperCamelCase_ (__A ): __magic_name__ = '''sigopt''' @staticmethod def _SCREAMING_SNAKE_CASE ( ) -> List[Any]: return is_sigopt_available() def _SCREAMING_SNAKE_CASE ( self : Any , lowerCAmelCase_ : str , lowerCAmelCase_ : int , lowerCAmelCase_ : str , **lowerCAmelCase_ : str ) -> str: return run_hp_search_sigopt(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , **lowerCAmelCase_ ) def _SCREAMING_SNAKE_CASE ( self : Tuple , lowerCAmelCase_ : Any ) -> Any: return default_hp_space_sigopt(lowerCAmelCase_ ) class UpperCamelCase_ (__A ): __magic_name__ = '''wandb''' @staticmethod def _SCREAMING_SNAKE_CASE ( ) -> int: return is_wandb_available() def _SCREAMING_SNAKE_CASE ( self : Dict , lowerCAmelCase_ : Tuple , lowerCAmelCase_ : int , lowerCAmelCase_ : str , **lowerCAmelCase_ : Optional[Any] ) -> Optional[Any]: return run_hp_search_wandb(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , **lowerCAmelCase_ ) def _SCREAMING_SNAKE_CASE ( self : Optional[int] , lowerCAmelCase_ : List[str] ) -> Any: return default_hp_space_wandb(lowerCAmelCase_ ) lowerCamelCase_ = { HPSearchBackend(backend.name): backend for backend in [OptunaBackend, RayTuneBackend, SigOptBackend, WandbBackend] } def snake_case ( ): UpperCAmelCase_ : List[str] = [backend for backend in ALL_HYPERPARAMETER_SEARCH_BACKENDS.values() if backend.is_available()] if len(A__ ) > 0: UpperCAmelCase_ : Optional[Any] = available_backends[0].name if len(A__ ) > 1: logger.info( F"""{len(A__ )} hyperparameter search backends available. Using {name} as the default.""" ) return name raise RuntimeError( "No hyperparameter search backend available.\n" + "\n".join( F""" - To install {backend.name} run {backend.pip_install()}""" for backend in ALL_HYPERPARAMETER_SEARCH_BACKENDS.values() ) )
95
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_torch_available, ) __a = { 'configuration_encodec': [ 'ENCODEC_PRETRAINED_CONFIG_ARCHIVE_MAP', 'EncodecConfig', ], 'feature_extraction_encodec': ['EncodecFeatureExtractor'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __a = [ 'ENCODEC_PRETRAINED_MODEL_ARCHIVE_LIST', 'EncodecModel', 'EncodecPreTrainedModel', ] if TYPE_CHECKING: from .configuration_encodec import ( ENCODEC_PRETRAINED_CONFIG_ARCHIVE_MAP, EncodecConfig, ) from .feature_extraction_encodec import EncodecFeatureExtractor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_encodec import ( ENCODEC_PRETRAINED_MODEL_ARCHIVE_LIST, EncodecModel, EncodecPreTrainedModel, ) else: import sys __a = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
30
0
"""simple docstring""" import datasets from .evaluate import evaluate __lowerCamelCase = '\\n@article{hendrycks2021cuad,\n title={CUAD: An Expert-Annotated NLP Dataset for Legal Contract Review},\n author={Dan Hendrycks and Collin Burns and Anya Chen and Spencer Ball},\n journal={arXiv preprint arXiv:2103.06268},\n year={2021}\n}\n' __lowerCamelCase = '\nThis metric wrap the official scoring script for version 1 of the Contract\nUnderstanding Atticus Dataset (CUAD).\nContract Understanding Atticus Dataset (CUAD) v1 is a corpus of more than 13,000 labels in 510\ncommercial legal contracts that have been manually labeled to identify 41 categories of important\nclauses that lawyers look for when reviewing contracts in connection with corporate transactions.\n' __lowerCamelCase = '\nComputes CUAD scores (EM, F1, AUPR, Precision@80%Recall, and Precision@90%Recall).\nArgs:\n predictions: List of question-answers dictionaries with the following key-values:\n - \'id\': id of the question-answer pair as given in the references (see below)\n - \'prediction_text\': list of possible texts for the answer, as a list of strings\n depending on a threshold on the confidence probability of each prediction.\n references: List of question-answers dictionaries with the following key-values:\n - \'id\': id of the question-answer pair (see above),\n - \'answers\': a Dict in the CUAD dataset format\n {\n \'text\': list of possible texts for the answer, as a list of strings\n \'answer_start\': list of start positions for the answer, as a list of ints\n }\n Note that answer_start values are not taken into account to compute the metric.\nReturns:\n \'exact_match\': Exact match (the normalized answer exactly match the gold answer)\n \'f1\': The F-score of predicted tokens versus the gold answer\n \'aupr\': Area Under the Precision-Recall curve\n \'prec_at_80_recall\': Precision at 80% recall\n \'prec_at_90_recall\': Precision at 90% recall\nExamples:\n >>> predictions = [{\'prediction_text\': [\'The seller:\', \'The buyer/End-User: Shenzhen LOHAS Supply Chain Management Co., Ltd.\'], \'id\': \'LohaCompanyltd_20191209_F-1_EX-10.16_11917878_EX-10.16_Supply Agreement__Parties\'}]\n >>> references = [{\'answers\': {\'answer_start\': [143, 49], \'text\': [\'The seller:\', \'The buyer/End-User: Shenzhen LOHAS Supply Chain Management Co., Ltd.\']}, \'id\': \'LohaCompanyltd_20191209_F-1_EX-10.16_11917878_EX-10.16_Supply Agreement__Parties\'}]\n >>> cuad_metric = datasets.load_metric("cuad")\n >>> results = cuad_metric.compute(predictions=predictions, references=references)\n >>> print(results)\n {\'exact_match\': 100.0, \'f1\': 100.0, \'aupr\': 0.0, \'prec_at_80_recall\': 1.0, \'prec_at_90_recall\': 1.0}\n' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION ,_KWARGS_DESCRIPTION ) class __A ( datasets.Metric ): def lowerCamelCase__ ( self : Tuple ) -> int: return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { """predictions""": { """id""": datasets.Value("""string""" ), """prediction_text""": datasets.features.Sequence(datasets.Value("""string""" ) ), }, """references""": { """id""": datasets.Value("""string""" ), """answers""": datasets.features.Sequence( { """text""": datasets.Value("""string""" ), """answer_start""": datasets.Value("""int32""" ), } ), }, } ) , codebase_urls=["""https://www.atticusprojectai.org/cuad"""] , reference_urls=["""https://www.atticusprojectai.org/cuad"""] , ) def lowerCamelCase__ ( self : List[str] , __snake_case : List[str] , __snake_case : Dict ) -> List[str]: __magic_name__: Union[str, Any] = {prediction["""id"""]: prediction["""prediction_text"""] for prediction in predictions} __magic_name__: List[str] = [ { """paragraphs""": [ { """qas""": [ { """answers""": [{"""text""": answer_text} for answer_text in ref["""answers"""]["""text"""]], """id""": ref["""id"""], } for ref in references ] } ] } ] __magic_name__: Tuple = evaluate(dataset=__snake_case , predictions=__snake_case ) return score
96
import functools import operator from ...configuration_utils import PretrainedConfig from ...utils import logging __a = logging.get_logger(__name__) __a = { 'facebook/wav2vec2-base-960h': 'https://huggingface.co/facebook/wav2vec2-base-960h/resolve/main/config.json', # See all Wav2Vec2 models at https://huggingface.co/models?filter=wav2vec2 } class __a( _a ): """simple docstring""" lowerCAmelCase = '''wav2vec2''' def __init__( self ,_SCREAMING_SNAKE_CASE=32 ,_SCREAMING_SNAKE_CASE=768 ,_SCREAMING_SNAKE_CASE=12 ,_SCREAMING_SNAKE_CASE=12 ,_SCREAMING_SNAKE_CASE=3_072 ,_SCREAMING_SNAKE_CASE="gelu" ,_SCREAMING_SNAKE_CASE=0.1 ,_SCREAMING_SNAKE_CASE=0.1 ,_SCREAMING_SNAKE_CASE=0.1 ,_SCREAMING_SNAKE_CASE=0.0 ,_SCREAMING_SNAKE_CASE=0.0 ,_SCREAMING_SNAKE_CASE=0.1 ,_SCREAMING_SNAKE_CASE=0.1 ,_SCREAMING_SNAKE_CASE=0.02 ,_SCREAMING_SNAKE_CASE=1e-5 ,_SCREAMING_SNAKE_CASE="group" ,_SCREAMING_SNAKE_CASE="gelu" ,_SCREAMING_SNAKE_CASE=(512, 512, 512, 512, 512, 512, 512) ,_SCREAMING_SNAKE_CASE=(5, 2, 2, 2, 2, 2, 2) ,_SCREAMING_SNAKE_CASE=(10, 3, 3, 3, 3, 2, 2) ,_SCREAMING_SNAKE_CASE=False ,_SCREAMING_SNAKE_CASE=128 ,_SCREAMING_SNAKE_CASE=16 ,_SCREAMING_SNAKE_CASE=False ,_SCREAMING_SNAKE_CASE=True ,_SCREAMING_SNAKE_CASE=0.05 ,_SCREAMING_SNAKE_CASE=10 ,_SCREAMING_SNAKE_CASE=2 ,_SCREAMING_SNAKE_CASE=0.0 ,_SCREAMING_SNAKE_CASE=10 ,_SCREAMING_SNAKE_CASE=0 ,_SCREAMING_SNAKE_CASE=320 ,_SCREAMING_SNAKE_CASE=2 ,_SCREAMING_SNAKE_CASE=0.1 ,_SCREAMING_SNAKE_CASE=100 ,_SCREAMING_SNAKE_CASE=256 ,_SCREAMING_SNAKE_CASE=256 ,_SCREAMING_SNAKE_CASE=0.1 ,_SCREAMING_SNAKE_CASE="sum" ,_SCREAMING_SNAKE_CASE=False ,_SCREAMING_SNAKE_CASE=False ,_SCREAMING_SNAKE_CASE=256 ,_SCREAMING_SNAKE_CASE=(512, 512, 512, 512, 1_500) ,_SCREAMING_SNAKE_CASE=(5, 3, 3, 1, 1) ,_SCREAMING_SNAKE_CASE=(1, 2, 3, 1, 1) ,_SCREAMING_SNAKE_CASE=512 ,_SCREAMING_SNAKE_CASE=0 ,_SCREAMING_SNAKE_CASE=1 ,_SCREAMING_SNAKE_CASE=2 ,_SCREAMING_SNAKE_CASE=False ,_SCREAMING_SNAKE_CASE=3 ,_SCREAMING_SNAKE_CASE=2 ,_SCREAMING_SNAKE_CASE=3 ,_SCREAMING_SNAKE_CASE=None ,_SCREAMING_SNAKE_CASE=None ,**_SCREAMING_SNAKE_CASE ,) -> Optional[int]: super().__init__(**_SCREAMING_SNAKE_CASE ,pad_token_id=_SCREAMING_SNAKE_CASE ,bos_token_id=_SCREAMING_SNAKE_CASE ,eos_token_id=_SCREAMING_SNAKE_CASE ) UpperCAmelCase_ : int = hidden_size UpperCAmelCase_ : Tuple = feat_extract_norm UpperCAmelCase_ : List[Any] = feat_extract_activation UpperCAmelCase_ : str = list(_SCREAMING_SNAKE_CASE ) UpperCAmelCase_ : Any = list(_SCREAMING_SNAKE_CASE ) UpperCAmelCase_ : Tuple = list(_SCREAMING_SNAKE_CASE ) UpperCAmelCase_ : Dict = conv_bias UpperCAmelCase_ : str = num_conv_pos_embeddings UpperCAmelCase_ : Any = num_conv_pos_embedding_groups UpperCAmelCase_ : Tuple = len(self.conv_dim ) UpperCAmelCase_ : Union[str, Any] = num_hidden_layers UpperCAmelCase_ : Dict = intermediate_size UpperCAmelCase_ : Any = hidden_act UpperCAmelCase_ : Any = num_attention_heads UpperCAmelCase_ : str = hidden_dropout UpperCAmelCase_ : int = attention_dropout UpperCAmelCase_ : Tuple = activation_dropout UpperCAmelCase_ : List[str] = feat_proj_dropout UpperCAmelCase_ : int = final_dropout UpperCAmelCase_ : Union[str, Any] = layerdrop UpperCAmelCase_ : Optional[Any] = layer_norm_eps UpperCAmelCase_ : str = initializer_range UpperCAmelCase_ : List[str] = vocab_size UpperCAmelCase_ : Optional[int] = do_stable_layer_norm UpperCAmelCase_ : Optional[int] = use_weighted_layer_sum if ( (len(self.conv_stride ) != self.num_feat_extract_layers) or (len(self.conv_kernel ) != self.num_feat_extract_layers) or (len(self.conv_dim ) != self.num_feat_extract_layers) ): raise ValueError( '''Configuration for convolutional layers is incorrect. It is required that `len(config.conv_dim)` ==''' ''' `len(config.conv_stride)` == `len(config.conv_kernel)`, but is `len(config.conv_dim) =''' f''' {len(self.conv_dim )}`, `len(config.conv_stride) = {len(self.conv_stride )}`,''' f''' `len(config.conv_kernel) = {len(self.conv_kernel )}`.''' ) # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 UpperCAmelCase_ : Optional[int] = apply_spec_augment UpperCAmelCase_ : Tuple = mask_time_prob UpperCAmelCase_ : Optional[Any] = mask_time_length UpperCAmelCase_ : Union[str, Any] = mask_time_min_masks UpperCAmelCase_ : Optional[Any] = mask_feature_prob UpperCAmelCase_ : str = mask_feature_length UpperCAmelCase_ : Dict = mask_feature_min_masks # parameters for pretraining with codevector quantized representations UpperCAmelCase_ : Union[str, Any] = num_codevectors_per_group UpperCAmelCase_ : Any = num_codevector_groups UpperCAmelCase_ : Union[str, Any] = contrastive_logits_temperature UpperCAmelCase_ : List[str] = feat_quantizer_dropout UpperCAmelCase_ : Dict = num_negatives UpperCAmelCase_ : List[str] = codevector_dim UpperCAmelCase_ : List[str] = proj_codevector_dim UpperCAmelCase_ : str = diversity_loss_weight # ctc loss UpperCAmelCase_ : List[Any] = ctc_loss_reduction UpperCAmelCase_ : List[str] = ctc_zero_infinity # adapter UpperCAmelCase_ : Optional[Any] = add_adapter UpperCAmelCase_ : Any = adapter_kernel_size UpperCAmelCase_ : Optional[int] = adapter_stride UpperCAmelCase_ : List[Any] = num_adapter_layers UpperCAmelCase_ : Optional[Any] = output_hidden_size or hidden_size UpperCAmelCase_ : Optional[int] = adapter_attn_dim # SequenceClassification-specific parameter. Feel free to ignore for other classes. UpperCAmelCase_ : List[str] = classifier_proj_size # XVector-specific parameters. Feel free to ignore for other classes. UpperCAmelCase_ : List[str] = list(_SCREAMING_SNAKE_CASE ) UpperCAmelCase_ : int = list(_SCREAMING_SNAKE_CASE ) UpperCAmelCase_ : Dict = list(_SCREAMING_SNAKE_CASE ) UpperCAmelCase_ : Any = xvector_output_dim @property def a__ ( self ) -> Any: return functools.reduce(operator.mul ,self.conv_stride ,1 )
30
0
from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, logging __a = logging.get_logger(__name__) class lowercase__( UpperCAmelCase ): """simple docstring""" a :Any = ['pixel_values'] def __init__( self : Tuple , SCREAMING_SNAKE_CASE_ : bool = True , SCREAMING_SNAKE_CASE_ : Optional[Dict[str, int]] = None , SCREAMING_SNAKE_CASE_ : PILImageResampling = PILImageResampling.BILINEAR , SCREAMING_SNAKE_CASE_ : bool = True , SCREAMING_SNAKE_CASE_ : Dict[str, int] = None , SCREAMING_SNAKE_CASE_ : bool = True , SCREAMING_SNAKE_CASE_ : Union[int, float] = 1 / 2_5_5 , SCREAMING_SNAKE_CASE_ : bool = True , SCREAMING_SNAKE_CASE_ : Optional[Union[float, List[float]]] = None , SCREAMING_SNAKE_CASE_ : Optional[Union[float, List[float]]] = None , **SCREAMING_SNAKE_CASE_ : Tuple , ) -> None: super().__init__(**SCREAMING_SNAKE_CASE_ ) lowercase_ = size if size is not None else {'''shortest_edge''': 2_5_6} lowercase_ = get_size_dict(SCREAMING_SNAKE_CASE_ , default_to_square=SCREAMING_SNAKE_CASE_ ) lowercase_ = crop_size if crop_size is not None else {'''height''': 2_2_4, '''width''': 2_2_4} lowercase_ = get_size_dict(SCREAMING_SNAKE_CASE_ ) lowercase_ = do_resize lowercase_ = size lowercase_ = resample lowercase_ = do_center_crop lowercase_ = crop_size lowercase_ = do_rescale lowercase_ = rescale_factor lowercase_ = do_normalize lowercase_ = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN lowercase_ = image_std if image_std is not None else IMAGENET_STANDARD_STD def _lowercase ( self : str , SCREAMING_SNAKE_CASE_ : np.ndarray , SCREAMING_SNAKE_CASE_ : Dict[str, int] , SCREAMING_SNAKE_CASE_ : PILImageResampling = PILImageResampling.BICUBIC , SCREAMING_SNAKE_CASE_ : Optional[Union[str, ChannelDimension]] = None , **SCREAMING_SNAKE_CASE_ : List[str] , ) -> np.ndarray: lowercase_ = get_size_dict(SCREAMING_SNAKE_CASE_ , default_to_square=SCREAMING_SNAKE_CASE_ ) if "shortest_edge" not in size: raise ValueError(f'''The `size` parameter must contain the key `shortest_edge`. Got {size.keys()}''' ) lowercase_ = get_resize_output_image_size(SCREAMING_SNAKE_CASE_ , size=size['''shortest_edge'''] , default_to_square=SCREAMING_SNAKE_CASE_ ) return resize(SCREAMING_SNAKE_CASE_ , size=SCREAMING_SNAKE_CASE_ , resample=SCREAMING_SNAKE_CASE_ , data_format=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) def _lowercase ( self : int , SCREAMING_SNAKE_CASE_ : np.ndarray , SCREAMING_SNAKE_CASE_ : Dict[str, int] , SCREAMING_SNAKE_CASE_ : Optional[Union[str, ChannelDimension]] = None , **SCREAMING_SNAKE_CASE_ : Tuple , ) -> np.ndarray: lowercase_ = get_size_dict(SCREAMING_SNAKE_CASE_ ) return center_crop(SCREAMING_SNAKE_CASE_ , size=(size['''height'''], size['''width''']) , data_format=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) def _lowercase ( self : str , SCREAMING_SNAKE_CASE_ : np.ndarray , SCREAMING_SNAKE_CASE_ : float , SCREAMING_SNAKE_CASE_ : Optional[Union[str, ChannelDimension]] = None , **SCREAMING_SNAKE_CASE_ : List[Any] ) -> np.ndarray: return rescale(SCREAMING_SNAKE_CASE_ , scale=SCREAMING_SNAKE_CASE_ , data_format=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) def _lowercase ( self : Union[str, Any] , SCREAMING_SNAKE_CASE_ : np.ndarray , SCREAMING_SNAKE_CASE_ : Union[float, List[float]] , SCREAMING_SNAKE_CASE_ : Union[float, List[float]] , SCREAMING_SNAKE_CASE_ : Optional[Union[str, ChannelDimension]] = None , **SCREAMING_SNAKE_CASE_ : Any , ) -> np.ndarray: return normalize(SCREAMING_SNAKE_CASE_ , mean=SCREAMING_SNAKE_CASE_ , std=SCREAMING_SNAKE_CASE_ , data_format=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) def _lowercase ( self : int , SCREAMING_SNAKE_CASE_ : ImageInput , SCREAMING_SNAKE_CASE_ : Optional[bool] = None , SCREAMING_SNAKE_CASE_ : Dict[str, int] = None , SCREAMING_SNAKE_CASE_ : PILImageResampling = None , SCREAMING_SNAKE_CASE_ : bool = None , SCREAMING_SNAKE_CASE_ : Dict[str, int] = None , SCREAMING_SNAKE_CASE_ : Optional[bool] = None , SCREAMING_SNAKE_CASE_ : Optional[float] = None , SCREAMING_SNAKE_CASE_ : Optional[bool] = None , SCREAMING_SNAKE_CASE_ : Optional[Union[float, List[float]]] = None , SCREAMING_SNAKE_CASE_ : Optional[Union[float, List[float]]] = None , SCREAMING_SNAKE_CASE_ : Optional[Union[str, TensorType]] = None , SCREAMING_SNAKE_CASE_ : Union[str, ChannelDimension] = ChannelDimension.FIRST , **SCREAMING_SNAKE_CASE_ : Optional[int] , ) -> str: lowercase_ = do_resize if do_resize is not None else self.do_resize lowercase_ = size if size is not None else self.size lowercase_ = get_size_dict(SCREAMING_SNAKE_CASE_ , default_to_square=SCREAMING_SNAKE_CASE_ ) lowercase_ = resample if resample is not None else self.resample lowercase_ = do_center_crop if do_center_crop is not None else self.do_center_crop lowercase_ = crop_size if crop_size is not None else self.crop_size lowercase_ = get_size_dict(SCREAMING_SNAKE_CASE_ ) lowercase_ = do_rescale if do_rescale is not None else self.do_rescale lowercase_ = rescale_factor if rescale_factor is not None else self.rescale_factor lowercase_ = do_normalize if do_normalize is not None else self.do_normalize lowercase_ = image_mean if image_mean is not None else self.image_mean lowercase_ = image_std if image_std is not None else self.image_std lowercase_ = make_list_of_images(SCREAMING_SNAKE_CASE_ ) if not valid_images(SCREAMING_SNAKE_CASE_ ): raise ValueError( '''Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ''' '''torch.Tensor, tf.Tensor or jax.ndarray.''' ) if do_resize and size is None: raise ValueError('''Size must be specified if do_resize is True.''' ) if do_center_crop and crop_size is None: raise ValueError('''Crop size must be specified if do_center_crop is True.''' ) if do_rescale and rescale_factor is None: raise ValueError('''Rescale factor must be specified if do_rescale is True.''' ) if do_normalize and (image_mean is None or image_std is None): raise ValueError('''Image mean and std must be specified if do_normalize is True.''' ) # All transformations expect numpy arrays. lowercase_ = [to_numpy_array(SCREAMING_SNAKE_CASE_ ) for image in images] if do_resize: lowercase_ = [self.resize(image=SCREAMING_SNAKE_CASE_ , size=SCREAMING_SNAKE_CASE_ , resample=SCREAMING_SNAKE_CASE_ ) for image in images] if do_center_crop: lowercase_ = [self.center_crop(image=SCREAMING_SNAKE_CASE_ , size=SCREAMING_SNAKE_CASE_ ) for image in images] if do_rescale: lowercase_ = [self.rescale(image=SCREAMING_SNAKE_CASE_ , scale=SCREAMING_SNAKE_CASE_ ) for image in images] if do_normalize: lowercase_ = [self.normalize(image=SCREAMING_SNAKE_CASE_ , mean=SCREAMING_SNAKE_CASE_ , std=SCREAMING_SNAKE_CASE_ ) for image in images] lowercase_ = [to_channel_dimension_format(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) for image in images] lowercase_ = {'''pixel_values''': images} return BatchFeature(data=SCREAMING_SNAKE_CASE_ , tensor_type=SCREAMING_SNAKE_CASE_ )
97
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tokenizers_available, is_torch_available, ) __a = {} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __a = ['NllbTokenizer'] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __a = ['NllbTokenizerFast'] if TYPE_CHECKING: try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_nllb import NllbTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_nllb_fast import NllbTokenizerFast else: import sys __a = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
30
0
'''simple docstring''' import qiskit def a__ ( lowercase : int, lowercase : int ) -> qiskit.result.counts.Counts: """simple docstring""" _UpperCamelCase = qiskit.Aer.get_backend('''aer_simulator''' ) # Create a Quantum Circuit acting on the q register _UpperCamelCase = qiskit.QuantumCircuit(lowercase, lowercase ) # Apply X (NOT) Gate to Qubits 0 & 1 circuit.x(0 ) circuit.x(1 ) # Map the quantum measurement to the classical bits circuit.measure([0, 1], [0, 1] ) # Execute the circuit on the qasm simulator _UpperCamelCase = qiskit.execute(lowercase, lowercase, shots=1000 ) # Return the histogram data of the results of the experiment. return job.result().get_counts(lowercase ) if __name__ == "__main__": lowercase__ : List[str] = single_qubit_measure(2, 2) print(F"""Total count for various states are: {counts}""")
98
import json import multiprocessing import os import re from collections import defaultdict import torch from accelerate import Accelerator from accelerate.utils import set_seed from arguments import HumanEvalArguments from datasets import load_dataset, load_metric from torch.utils.data import IterableDataset from torch.utils.data.dataloader import DataLoader from tqdm import tqdm import transformers from transformers import AutoModelForCausalLM, AutoTokenizer, HfArgumentParser, StoppingCriteria, StoppingCriteriaList __a = ['\nclass', '\ndef', '\n#', '\n@', '\nprint', '\nif'] class __a( _a ): """simple docstring""" def __init__( self ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE=None ,_SCREAMING_SNAKE_CASE=1 ) -> Dict: UpperCAmelCase_ : List[Any] = tokenizer UpperCAmelCase_ : int = dataset UpperCAmelCase_ : Dict = len(_SCREAMING_SNAKE_CASE ) if n_tasks is None else n_tasks UpperCAmelCase_ : Optional[int] = n_copies def __iter__( self ) -> Any: UpperCAmelCase_ : List[Any] = [] for task in range(self.n_tasks ): # without strip, the model generate commented codes ... prompts.append(self.tokenizer.eos_token + self.dataset[task]['''prompt'''].strip() ) UpperCAmelCase_ : Union[str, Any] = self.tokenizer(_SCREAMING_SNAKE_CASE ,padding=_SCREAMING_SNAKE_CASE ,return_tensors='''pt''' ) for task in range(self.n_tasks ): for _ in range(self.n_copies ): yield { "ids": outputs.input_ids[task], "task_id": task, "input_len": outputs.attention_mask[task].sum(), } class __a( _a ): """simple docstring""" def __init__( self ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ) -> List[Any]: UpperCAmelCase_ : str = start_length UpperCAmelCase_ : Optional[int] = eof_strings UpperCAmelCase_ : str = tokenizer def __call__( self ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ,**_SCREAMING_SNAKE_CASE ) -> List[Any]: UpperCAmelCase_ : Optional[Any] = self.tokenizer.batch_decode(input_ids[:, self.start_length :] ) UpperCAmelCase_ : Optional[int] = [] for decoded_generation in decoded_generations: done.append(any(stop_string in decoded_generation for stop_string in self.eof_strings ) ) return all(_SCREAMING_SNAKE_CASE ) def lowerCamelCase__ ( _lowercase ): '''simple docstring''' UpperCAmelCase_ : Tuple = re.split('''(%s)''' % '''|'''.join(_lowercase ) , _lowercase ) # last string should be "" return "".join(string_list[:-2] ) def lowerCamelCase__ ( _lowercase , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase=20 , **_lowercase ): '''simple docstring''' UpperCAmelCase_ : List[Any] = defaultdict(_lowercase ) # dict of list of generated tokens for step, batch in tqdm(enumerate(_lowercase ) ): with torch.no_grad(): UpperCAmelCase_ : Dict = batch['''ids'''].shape[-1] UpperCAmelCase_ : Optional[Any] = accelerator.unwrap_model(_lowercase ).generate( input_ids=batch['''ids'''][:, : batch['''input_len''']] , num_return_sequences=_lowercase , **_lowercase ) # each task is generated batch_size times UpperCAmelCase_ : Union[str, Any] = batch['''task_id'''].repeat(_lowercase ) UpperCAmelCase_ : Dict = accelerator.pad_across_processes( _lowercase , dim=1 , pad_index=tokenizer.pad_token_id ) UpperCAmelCase_, UpperCAmelCase_ : List[str] = accelerator.gather((generated_tokens, generated_tasks) ) UpperCAmelCase_ : Union[str, Any] = generated_tokens.cpu().numpy() UpperCAmelCase_ : Union[str, Any] = generated_tasks.cpu().numpy() for task, generated_tokens in zip(_lowercase , _lowercase ): gen_token_dict[task].append(_lowercase ) UpperCAmelCase_ : Union[str, Any] = [[] for _ in range(_lowercase )] for task, generated_tokens in gen_token_dict.items(): for s in generated_tokens: UpperCAmelCase_ : int = tokenizer.decode(_lowercase , skip_special_tokens=_lowercase , clean_up_tokenization_spaces=_lowercase ) code_gens[task].append(remove_last_block(_lowercase ) ) return code_gens def lowerCamelCase__ ( ): '''simple docstring''' UpperCAmelCase_ : Optional[Any] = HfArgumentParser(_lowercase ) UpperCAmelCase_ : int = parser.parse_args() transformers.logging.set_verbosity_error() # enables code execution in code_eval metric UpperCAmelCase_ : Optional[Any] = args.HF_ALLOW_CODE_EVAL # make sure tokenizer plays nice with multiprocessing UpperCAmelCase_ : List[Any] = '''false''' if args.num_workers is None: UpperCAmelCase_ : Optional[Any] = multiprocessing.cpu_count() # Use dataset load to feed to accelerate UpperCAmelCase_ : int = Accelerator() set_seed(args.seed , device_specific=_lowercase ) # Load model and tokenizer UpperCAmelCase_ : Tuple = AutoTokenizer.from_pretrained(args.model_ckpt ) UpperCAmelCase_ : Any = tokenizer.eos_token UpperCAmelCase_ : List[str] = AutoModelForCausalLM.from_pretrained(args.model_ckpt ) # Generation settings UpperCAmelCase_ : str = { '''do_sample''': args.do_sample, '''temperature''': args.temperature, '''max_new_tokens''': args.max_new_tokens, '''top_p''': args.top_p, '''top_k''': args.top_k, '''stopping_criteria''': StoppingCriteriaList([EndOfFunctionCriteria(0 , _lowercase , _lowercase )] ), } # Load evaluation dataset and metric UpperCAmelCase_ : Tuple = load_dataset('''openai_humaneval''' ) UpperCAmelCase_ : Dict = load_metric('''code_eval''' ) UpperCAmelCase_ : Optional[int] = args.num_tasks if args.num_tasks is not None else len(human_eval['''test'''] ) UpperCAmelCase_ : str = args.n_samples // args.batch_size UpperCAmelCase_ : str = TokenizedDataset(_lowercase , human_eval['''test'''] , n_copies=_lowercase , n_tasks=_lowercase ) # do not confuse args.batch_size, which is actually the num_return_sequences UpperCAmelCase_ : Optional[Any] = DataLoader(_lowercase , batch_size=1 ) # Run a quick test to see if code evaluation is enabled try: UpperCAmelCase_ : Any = code_eval_metric.compute(references=[''''''] , predictions=[['''''']] ) except ValueError as exception: print( '''Code evaluation not enabled. Read the warning below carefully and then use `--HF_ALLOW_CODE_EVAL="1"`''' ''' flag to enable code evaluation.''' ) raise exception UpperCAmelCase_, UpperCAmelCase_ : int = accelerator.prepare(_lowercase , _lowercase ) UpperCAmelCase_ : int = complete_code( _lowercase , _lowercase , _lowercase , _lowercase , n_tasks=_lowercase , batch_size=args.batch_size , **_lowercase , ) if accelerator.is_main_process: UpperCAmelCase_ : Any = [] for task in tqdm(range(_lowercase ) ): UpperCAmelCase_ : int = human_eval['''test'''][task]['''test'''] UpperCAmelCase_ : str = f'''check({human_eval["test"][task]["entry_point"]})''' references.append('''\n''' + test_func + '''\n''' + entry_point ) # Evaluate completions with "code_eval" metric UpperCAmelCase_, UpperCAmelCase_ : Any = code_eval_metric.compute( references=_lowercase , predictions=_lowercase , num_workers=args.num_workers ) print(f'''Results: {pass_at_k}''' ) # Save results to json file with open(args.output_file , '''w''' ) as fp: json.dump(_lowercase , _lowercase ) # For some reason the folliwng seems to be necessary sometimes for code_eval to work nice with multiprocessing # https://stackoverflow.com/questions/60804599/python-multiprocessing-keeps-spawning-the-whole-script if __name__ == "__main__": main()
30
0
from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, logging SCREAMING_SNAKE_CASE = logging.get_logger(__name__) class __UpperCAmelCase ( __A ): """simple docstring""" _lowerCamelCase = ["""pixel_values"""] def __init__( self , __A = True , __A = None , __A = PILImageResampling.BILINEAR , __A = True , __A = None , __A = True , __A = 1 / 255 , __A = True , __A = None , __A = None , **__A , ): super().__init__(**__A ) __a = size if size is not None else {"""shortest_edge""": 256} __a = get_size_dict(__A , default_to_square=__A ) __a = crop_size if crop_size is not None else {"""height""": 224, """width""": 224} __a = get_size_dict(__A ) __a = do_resize __a = size __a = resample __a = do_center_crop __a = crop_size __a = do_rescale __a = rescale_factor __a = do_normalize __a = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN __a = image_std if image_std is not None else IMAGENET_STANDARD_STD def snake_case_ ( self , __A , __A , __A = PILImageResampling.BICUBIC , __A = None , **__A , ): __a = get_size_dict(__A , default_to_square=__A ) if "shortest_edge" not in size: raise ValueError(f'''The `size` parameter must contain the key `shortest_edge`. Got {size.keys()}''' ) __a = get_resize_output_image_size(__A , size=size["""shortest_edge"""] , default_to_square=__A ) return resize(__A , size=__A , resample=__A , data_format=__A , **__A ) def snake_case_ ( self , __A , __A , __A = None , **__A , ): __a = get_size_dict(__A ) return center_crop(__A , size=(size["""height"""], size["""width"""]) , data_format=__A , **__A ) def snake_case_ ( self , __A , __A , __A = None , **__A ): return rescale(__A , scale=__A , data_format=__A , **__A ) def snake_case_ ( self , __A , __A , __A , __A = None , **__A , ): return normalize(__A , mean=__A , std=__A , data_format=__A , **__A ) def snake_case_ ( self , __A , __A = None , __A = None , __A = None , __A = None , __A = None , __A = None , __A = None , __A = None , __A = None , __A = None , __A = None , __A = ChannelDimension.FIRST , **__A , ): __a = do_resize if do_resize is not None else self.do_resize __a = size if size is not None else self.size __a = get_size_dict(__A , default_to_square=__A ) __a = resample if resample is not None else self.resample __a = do_center_crop if do_center_crop is not None else self.do_center_crop __a = crop_size if crop_size is not None else self.crop_size __a = get_size_dict(__A ) __a = do_rescale if do_rescale is not None else self.do_rescale __a = rescale_factor if rescale_factor is not None else self.rescale_factor __a = do_normalize if do_normalize is not None else self.do_normalize __a = image_mean if image_mean is not None else self.image_mean __a = image_std if image_std is not None else self.image_std __a = make_list_of_images(__A ) if not valid_images(__A ): raise ValueError( """Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, """ """torch.Tensor, tf.Tensor or jax.ndarray.""" ) if do_resize and size is None: raise ValueError("""Size must be specified if do_resize is True.""" ) if do_center_crop and crop_size is None: raise ValueError("""Crop size must be specified if do_center_crop is True.""" ) if do_rescale and rescale_factor is None: raise ValueError("""Rescale factor must be specified if do_rescale is True.""" ) if do_normalize and (image_mean is None or image_std is None): raise ValueError("""Image mean and std must be specified if do_normalize is True.""" ) # All transformations expect numpy arrays. __a = [to_numpy_array(__A ) for image in images] if do_resize: __a = [self.resize(image=__A , size=__A , resample=__A ) for image in images] if do_center_crop: __a = [self.center_crop(image=__A , size=__A ) for image in images] if do_rescale: __a = [self.rescale(image=__A , scale=__A ) for image in images] if do_normalize: __a = [self.normalize(image=__A , mean=__A , std=__A ) for image in images] __a = [to_channel_dimension_format(__A , __A ) for image in images] __a = {"""pixel_values""": images} return BatchFeature(data=__A , tensor_type=__A )
99
from collections import OrderedDict from typing import TYPE_CHECKING, Any, Mapping, Optional from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging if TYPE_CHECKING: from ... import FeatureExtractionMixin, TensorType __a = logging.get_logger(__name__) __a = { 'openai/imagegpt-small': '', 'openai/imagegpt-medium': '', 'openai/imagegpt-large': '', } class __a( _a ): """simple docstring""" lowerCAmelCase = '''imagegpt''' lowerCAmelCase = ['''past_key_values'''] lowerCAmelCase = { '''hidden_size''': '''n_embd''', '''max_position_embeddings''': '''n_positions''', '''num_attention_heads''': '''n_head''', '''num_hidden_layers''': '''n_layer''', } def __init__( self ,_SCREAMING_SNAKE_CASE=512 + 1 ,_SCREAMING_SNAKE_CASE=32 * 32 ,_SCREAMING_SNAKE_CASE=512 ,_SCREAMING_SNAKE_CASE=24 ,_SCREAMING_SNAKE_CASE=8 ,_SCREAMING_SNAKE_CASE=None ,_SCREAMING_SNAKE_CASE="quick_gelu" ,_SCREAMING_SNAKE_CASE=0.1 ,_SCREAMING_SNAKE_CASE=0.1 ,_SCREAMING_SNAKE_CASE=0.1 ,_SCREAMING_SNAKE_CASE=1e-5 ,_SCREAMING_SNAKE_CASE=0.02 ,_SCREAMING_SNAKE_CASE=True ,_SCREAMING_SNAKE_CASE=True ,_SCREAMING_SNAKE_CASE=False ,_SCREAMING_SNAKE_CASE=False ,_SCREAMING_SNAKE_CASE=False ,**_SCREAMING_SNAKE_CASE ,) -> Optional[int]: UpperCAmelCase_ : Optional[int] = vocab_size UpperCAmelCase_ : Union[str, Any] = n_positions UpperCAmelCase_ : Union[str, Any] = n_embd UpperCAmelCase_ : Any = n_layer UpperCAmelCase_ : Optional[Any] = n_head UpperCAmelCase_ : Union[str, Any] = n_inner UpperCAmelCase_ : List[Any] = activation_function UpperCAmelCase_ : List[str] = resid_pdrop UpperCAmelCase_ : str = embd_pdrop UpperCAmelCase_ : Optional[Any] = attn_pdrop UpperCAmelCase_ : Dict = layer_norm_epsilon UpperCAmelCase_ : Union[str, Any] = initializer_range UpperCAmelCase_ : Dict = scale_attn_weights UpperCAmelCase_ : Any = use_cache UpperCAmelCase_ : List[str] = scale_attn_by_inverse_layer_idx UpperCAmelCase_ : Tuple = reorder_and_upcast_attn UpperCAmelCase_ : int = tie_word_embeddings super().__init__(tie_word_embeddings=_SCREAMING_SNAKE_CASE ,**_SCREAMING_SNAKE_CASE ) class __a( _a ): """simple docstring""" @property def a__ ( self ) -> Mapping[str, Mapping[int, str]]: return OrderedDict( [ ('''input_ids''', {0: '''batch''', 1: '''sequence'''}), ] ) def a__ ( self ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE = 1 ,_SCREAMING_SNAKE_CASE = -1 ,_SCREAMING_SNAKE_CASE = False ,_SCREAMING_SNAKE_CASE = None ,_SCREAMING_SNAKE_CASE = 3 ,_SCREAMING_SNAKE_CASE = 32 ,_SCREAMING_SNAKE_CASE = 32 ,) -> Mapping[str, Any]: UpperCAmelCase_ : Any = self._generate_dummy_images(_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ) UpperCAmelCase_ : Optional[int] = dict(preprocessor(images=_SCREAMING_SNAKE_CASE ,return_tensors=_SCREAMING_SNAKE_CASE ) ) return inputs
30
0
import os from tempfile import TemporaryDirectory from unittest import TestCase import pytest from absl.testing import parameterized from datasets import config from datasets.arrow_reader import HF_GCP_BASE_URL from datasets.builder import DatasetBuilder from datasets.dataset_dict import IterableDatasetDict from datasets.iterable_dataset import IterableDataset from datasets.load import dataset_module_factory, import_main_class from datasets.utils.file_utils import cached_path _A : Optional[int] = [ {"""dataset""": """wikipedia""", """config_name""": """20220301.de"""}, {"""dataset""": """wikipedia""", """config_name""": """20220301.en"""}, {"""dataset""": """wikipedia""", """config_name""": """20220301.fr"""}, {"""dataset""": """wikipedia""", """config_name""": """20220301.frr"""}, {"""dataset""": """wikipedia""", """config_name""": """20220301.it"""}, {"""dataset""": """wikipedia""", """config_name""": """20220301.simple"""}, {"""dataset""": """snli""", """config_name""": """plain_text"""}, {"""dataset""": """eli5""", """config_name""": """LFQA_reddit"""}, {"""dataset""": """wiki40b""", """config_name""": """en"""}, {"""dataset""": """wiki_dpr""", """config_name""": """psgs_w100.nq.compressed"""}, {"""dataset""": """wiki_dpr""", """config_name""": """psgs_w100.nq.no_index"""}, {"""dataset""": """wiki_dpr""", """config_name""": """psgs_w100.multiset.no_index"""}, {"""dataset""": """natural_questions""", """config_name""": """default"""}, ] def __snake_case ( lowerCAmelCase_=True ) -> Union[str, Any]: if with_config: return [ { "testcase_name": d["dataset"] + "/" + d["config_name"], "dataset": d["dataset"], "config_name": d["config_name"], } for d in DATASETS_ON_HF_GCP ] else: return [ {"testcase_name": dataset, "dataset": dataset} for dataset in {d["dataset"] for d in DATASETS_ON_HF_GCP} ] @parameterized.named_parameters(list_datasets_on_hf_gcp_parameters(with_config=__SCREAMING_SNAKE_CASE ) ) class __snake_case ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' lowerCamelCase__ : Any = None lowerCamelCase__ : Optional[int] = None def lowercase_ ( self , A_ , A_ ): '''simple docstring''' with TemporaryDirectory() as tmp_dir: SCREAMING_SNAKE_CASE__ = dataset_module_factory(A_ , cache_dir=A_ ) SCREAMING_SNAKE_CASE__ = import_main_class(dataset_module.module_path , dataset=A_ ) SCREAMING_SNAKE_CASE__ = builder_cls( cache_dir=A_ , config_name=A_ , hash=dataset_module.hash , ) SCREAMING_SNAKE_CASE__ = '''/'''.join( [ HF_GCP_BASE_URL, builder_instance._relative_data_dir(with_hash=A_ ).replace(os.sep , '''/''' ), config.DATASET_INFO_FILENAME, ] ) SCREAMING_SNAKE_CASE__ = cached_path(A_ , cache_dir=A_ ) self.assertTrue(os.path.exists(A_ ) ) @pytest.mark.integration def __snake_case ( lowerCAmelCase_ ) -> List[str]: SCREAMING_SNAKE_CASE__ = tmp_path_factory.mktemp('''test_hf_gcp''' ) / '''test_wikipedia_simple''' SCREAMING_SNAKE_CASE__ = dataset_module_factory('''wikipedia''' , cache_dir=lowerCAmelCase_ ) SCREAMING_SNAKE_CASE__ = import_main_class(dataset_module.module_path ) SCREAMING_SNAKE_CASE__ = builder_cls( cache_dir=lowerCAmelCase_ , config_name='''20220301.frr''' , hash=dataset_module.hash , ) # use the HF cloud storage, not the original download_and_prepare that uses apache-beam SCREAMING_SNAKE_CASE__ = None builder_instance.download_and_prepare() SCREAMING_SNAKE_CASE__ = builder_instance.as_dataset() assert ds @pytest.mark.integration def __snake_case ( lowerCAmelCase_ ) -> Dict: SCREAMING_SNAKE_CASE__ = dataset_module_factory('''wikipedia''' , cache_dir=lowerCAmelCase_ ) SCREAMING_SNAKE_CASE__ = import_main_class(dataset_module.module_path , dataset=lowerCAmelCase_ ) SCREAMING_SNAKE_CASE__ = builder_cls( cache_dir=lowerCAmelCase_ , config_name='''20220301.frr''' , hash=dataset_module.hash , ) SCREAMING_SNAKE_CASE__ = builder_instance.as_streaming_dataset() assert ds assert isinstance(lowerCAmelCase_ , lowerCAmelCase_ ) assert "train" in ds assert isinstance(ds['''train'''] , lowerCAmelCase_ ) assert next(iter(ds['''train'''] ) )
100
import argparse import json import os import re import torch from transformers import BloomConfig, BloomModel from transformers.file_utils import CONFIG_NAME, WEIGHTS_NAME from transformers.utils import logging logging.set_verbosity_info() __a = [ 'word_embeddings_layernorm.weight', 'word_embeddings_layernorm.bias', 'input_layernorm.weight', 'input_layernorm.bias', 'post_attention_layernorm.weight', 'post_attention_layernorm.bias', 'self_attention.dense.bias', 'mlp.dense_4h_to_h.bias', 'ln_f.weight', 'ln_f.bias', ] __a = [ 'mlp.dense_4h_to_h.weight', 'self_attention.dense.weight', ] def lowerCamelCase__ ( _lowercase , _lowercase ): '''simple docstring''' UpperCAmelCase_ : List[Any] = { '''word_embeddings.weight''': '''word_embeddings.weight''', '''word_embeddings.norm.weight''': '''word_embeddings_layernorm.weight''', '''word_embeddings.norm.bias''': '''word_embeddings_layernorm.bias''', '''weight''': '''ln_f.weight''', '''bias''': '''ln_f.bias''', } if key in layer_rename_map: return layer_rename_map[key] # Handle transformer blocks UpperCAmelCase_ : Union[str, Any] = int(re.match(r'''.*layer_(\d*).*''' , _lowercase )[1] ) layer_number -= 3 return f'''h.{layer_number}.''' + key def lowerCamelCase__ ( _lowercase ): '''simple docstring''' if dtype == torch.bool: return 1 / 8 UpperCAmelCase_ : Any = re.search(r'''[^\d](\d+)$''' , str(_lowercase ) ) if bit_search is None: raise ValueError(f'''`dtype` is not a valid dtype: {dtype}.''' ) UpperCAmelCase_ : Optional[int] = int(bit_search.groups()[0] ) return bit_size // 8 def lowerCamelCase__ ( _lowercase , _lowercase , _lowercase , _lowercase , _lowercase ): '''simple docstring''' if bloom_config_file == "": UpperCAmelCase_ : Tuple = BloomConfig() else: UpperCAmelCase_ : Optional[int] = BloomConfig.from_json_file(_lowercase ) if shard_model: UpperCAmelCase_ : Any = os.listdir(_lowercase ) UpperCAmelCase_ : Union[str, Any] = sorted(filter(lambda _lowercase : s.startswith('''layer''' ) and "model_00" in s , _lowercase ) ) UpperCAmelCase_ : Any = {'''weight_map''': {}, '''metadata''': {}} UpperCAmelCase_ : List[str] = 0 UpperCAmelCase_ : Any = None UpperCAmelCase_ : Optional[int] = BloomConfig() for j, file in enumerate(_lowercase ): print('''Processing file: {}'''.format(_lowercase ) ) UpperCAmelCase_ : Optional[Any] = None for i in range(_lowercase ): # load all TP files UpperCAmelCase_ : Tuple = file.replace('''model_00''' , f'''model_0{i}''' ) UpperCAmelCase_ : Any = torch.load(os.path.join(_lowercase , _lowercase ) , map_location='''cpu''' ) # Rename keys in the transformers names UpperCAmelCase_ : Dict = list(temp.keys() ) for key in keys: UpperCAmelCase_ : Union[str, Any] = temp.pop(_lowercase ) if tensors is None: UpperCAmelCase_ : Union[str, Any] = temp else: for key in tensors.keys(): if any(key.endswith(_lowercase ) for end in WEIGHTS_TO_AVERAGE_ENDSWITH ): # We average (sum and then divide) some weights accross TP ranks (see https://github.com/bigscience-workshop/Megatron-DeepSpeed/blob/olruwase/sync_layer_norms/megatron/training.py#L425) tensors[key] += temp[key] else: # Some weights are RowParallelLinear in Megatron-Deepspeed, others are ColumnParallel UpperCAmelCase_ : int = 1 if any(text in key for text in WEIGHTS_WITH_ROW_PARALLELISM_CONTAIN ) else 0 # We concatenate these weights accross TP ranks UpperCAmelCase_ : Tuple = torch.cat([tensors[key], temp[key]] , dim=_lowercase ) # Divide by the number of TP the weights we want to average for key in tensors.keys(): if any(key.endswith(_lowercase ) for end in WEIGHTS_TO_AVERAGE_ENDSWITH ): UpperCAmelCase_ : List[str] = tensors[key] / pretraining_tp torch.save( _lowercase , os.path.join( _lowercase , '''pytorch_model_{}-of-{}.bin'''.format(str(j + 1 ).zfill(5 ) , str(len(_lowercase ) ).zfill(5 ) ) , ) , ) for key in tensors.keys(): UpperCAmelCase_ : Union[str, Any] = tensors[key] total_size += value.numel() * get_dtype_size(value.dtype ) if key not in index_dict["weight_map"]: UpperCAmelCase_ : List[str] = '''pytorch_model_{}-of-{}.bin'''.format( str(j + 1 ).zfill(5 ) , str(len(_lowercase ) ).zfill(5 ) ) UpperCAmelCase_ : List[Any] = BloomConfig() UpperCAmelCase_ : Tuple = pytorch_dump_folder_path + '''/''' + CONFIG_NAME UpperCAmelCase_ : List[str] = total_size with open(_lowercase , '''w''' , encoding='''utf-8''' ) as f: f.write(config.to_json_string() ) with open(os.path.join(_lowercase , WEIGHTS_NAME + '''.index.json''' ) , '''w''' , encoding='''utf-8''' ) as f: UpperCAmelCase_ : Optional[Any] = json.dumps(_lowercase , indent=2 , sort_keys=_lowercase ) + '''\n''' f.write(_lowercase ) else: UpperCAmelCase_ : Any = BloomModel(_lowercase ) UpperCAmelCase_ : Tuple = os.listdir(_lowercase ) UpperCAmelCase_ : Union[str, Any] = sorted(filter(lambda _lowercase : s.startswith('''layer''' ) and "model_00" in s , _lowercase ) ) UpperCAmelCase_ : Any = None for i, file in enumerate(_lowercase ): UpperCAmelCase_ : Optional[Any] = None for i in range(_lowercase ): # load all TP files UpperCAmelCase_ : List[Any] = file.replace('''model_00''' , f'''model_0{i}''' ) UpperCAmelCase_ : Optional[int] = torch.load(os.path.join(_lowercase , _lowercase ) , map_location='''cpu''' ) # Rename keys in the transformers names UpperCAmelCase_ : str = list(temp.keys() ) for key in keys: UpperCAmelCase_ : Dict = temp.pop(_lowercase ) if tensors is None: UpperCAmelCase_ : int = temp else: for key in tensors.keys(): # We average (sum and then divide) some weights accross TP ranks (see https://github.com/bigscience-workshop/Megatron-DeepSpeed/blob/olruwase/sync_layer_norms/megatron/training.py#L425) if any(key.endswith(_lowercase ) for end in WEIGHTS_TO_AVERAGE_ENDSWITH ): tensors[key] += temp[key] else: # Some weights are RowParallelLinear in Megatron-Deepspeed, others are ColumnParallel UpperCAmelCase_ : Optional[int] = 1 if any(text in key for text in WEIGHTS_WITH_ROW_PARALLELISM_CONTAIN ) else 0 # We concatenate these weights accross TP ranks UpperCAmelCase_ : List[str] = torch.cat([tensors[key], temp[key]] , dim=_lowercase ) # Divide by the number of TP the weights we want to average for key in tensors.keys(): if any(key.endswith(_lowercase ) for end in WEIGHTS_TO_AVERAGE_ENDSWITH ): UpperCAmelCase_ : Dict = tensors[key] / pretraining_tp UpperCAmelCase_ : Tuple = model.load_state_dict(_lowercase , strict=_lowercase ) assert not other_keys.unexpected_keys, f'''The keys {other_keys.unexpected_keys} are unexpected''' if missing_keys is None: UpperCAmelCase_ : Union[str, Any] = set(other_keys.missing_keys ) else: UpperCAmelCase_ : Dict = missing_keys.intersection(set(other_keys.missing_keys ) ) assert not missing_keys, f'''The keys {missing_keys} are missing''' # Save pytorch-model os.makedirs(_lowercase , exist_ok=_lowercase ) UpperCAmelCase_ : str = pytorch_dump_folder_path + '''/''' + WEIGHTS_NAME UpperCAmelCase_ : Dict = pytorch_dump_folder_path + '''/''' + CONFIG_NAME print(f'''Save PyTorch model to {pytorch_weights_dump_path} with dtype {config.torch_dtype}''' ) if config.torch_dtype is not None: UpperCAmelCase_ : Optional[int] = model.to(config.torch_dtype ) torch.save(model.state_dict() , _lowercase ) print(f'''Save configuration file to {pytorch_config_dump_path}''' ) with open(_lowercase , '''w''' , encoding='''utf-8''' ) as f: f.write(config.to_json_string() ) if __name__ == "__main__": __a = argparse.ArgumentParser() # Required parameters parser.add_argument( '--bloom_checkpoint_path', default=None, type=str, required=True, help='Path to the Megatron-LM checkpoint path.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, required=True, help='Path to the output PyTorch model.' ) parser.add_argument( '--bloom_config_file', default='', type=str, help=( 'An optional config json file corresponding to the pre-trained model. \n' 'This specifies the model architecture.' ), ) parser.add_argument( '--shard_model', action='store_true', help='An optional setting to shard the output model \nThis enables sharding the converted checkpoint', ) parser.add_argument( '--pretraining_tp', default=4, type=int, help='Pretraining TP rank that has been used when training the model in Megatron-LM \n', ) __a = parser.parse_args() convert_bloom_checkpoint_to_pytorch( args.bloom_checkpoint_path, args.bloom_config_file, args.pytorch_dump_folder_path, args.shard_model, args.pretraining_tp, )
30
0
from . import ( albert, align, altclip, audio_spectrogram_transformer, auto, autoformer, bark, bart, barthez, bartpho, beit, bert, bert_generation, bert_japanese, bertweet, big_bird, bigbird_pegasus, biogpt, bit, blenderbot, blenderbot_small, blip, blip_a, bloom, bridgetower, byta, camembert, canine, chinese_clip, clap, clip, clipseg, codegen, conditional_detr, convbert, convnext, convnextva, cpm, cpmant, ctrl, cvt, dataavec, deberta, deberta_va, decision_transformer, deformable_detr, deit, deprecated, deta, detr, dialogpt, dinat, distilbert, dit, donut, dpr, dpt, efficientformer, efficientnet, electra, encodec, encoder_decoder, ernie, ernie_m, esm, falcon, flaubert, flava, fnet, focalnet, fsmt, funnel, git, glpn, gpta, gpt_bigcode, gpt_neo, gpt_neox, gpt_neox_japanese, gpt_swa, gptj, gptsan_japanese, graphormer, groupvit, herbert, hubert, ibert, imagegpt, informer, instructblip, jukebox, layoutlm, layoutlmva, layoutlmva, layoutxlm, led, levit, lilt, llama, longformer, longta, luke, lxmert, mam_aaa, marian, markuplm, maskaformer, maskformer, mbart, mbartaa, mega, megatron_bert, megatron_gpta, mgp_str, mluke, mobilebert, mobilenet_va, mobilenet_va, mobilevit, mobilevitva, mpnet, mra, mta, musicgen, mvp, nat, nezha, nllb, nllb_moe, nystromformer, oneformer, open_llama, openai, opt, owlvit, pegasus, pegasus_x, perceiver, phobert, pixastruct, plbart, poolformer, prophetnet, qdqbert, rag, realm, reformer, regnet, rembert, resnet, roberta, roberta_prelayernorm, roc_bert, roformer, rwkv, sam, segformer, sew, sew_d, speech_encoder_decoder, speech_to_text, speech_to_text_a, speechta, splinter, squeezebert, swiftformer, swin, swinasr, swinva, switch_transformers, ta, table_transformer, tapas, time_series_transformer, timesformer, timm_backbone, transfo_xl, trocr, tvlt, umta, unispeech, unispeech_sat, upernet, videomae, vilt, vision_encoder_decoder, vision_text_dual_encoder, visual_bert, vit, vit_hybrid, vit_mae, vit_msn, vivit, wavaveca, wavaveca_conformer, wavaveca_phoneme, wavaveca_with_lm, wavlm, whisper, x_clip, xglm, xlm, xlm_prophetnet, xlm_roberta, xlm_roberta_xl, xlnet, xmod, yolos, yoso, )
101
def lowerCamelCase__ ( ): '''simple docstring''' UpperCAmelCase_ : Dict = 0 for i in range(1 , 1001 ): total += i**i return str(_lowercase )[-10:] if __name__ == "__main__": print(solution())
30
0
"""simple docstring""" import numpy class lowercase__ : """simple docstring""" def __init__( self , _A , _A ): '''simple docstring''' UpperCamelCase : Dict = input_array # Random initial weights are assigned where first argument is the # number of nodes in previous layer and second argument is the # number of nodes in the next layer. # Random initial weights are assigned. # self.input_array.shape[1] is used to represent number of nodes in input layer. # First hidden layer consists of 4 nodes. UpperCamelCase : Optional[Any] = numpy.random.rand( self.input_array.shape[1] , 4 ) # Random initial values for the first hidden layer. # First hidden layer has 4 nodes. # Second hidden layer has 3 nodes. UpperCamelCase : Union[str, Any] = numpy.random.rand( 4 , 3 ) # Random initial values for the second hidden layer. # Second hidden layer has 3 nodes. # Output layer has 1 node. UpperCamelCase : Dict = numpy.random.rand(3 , 1 ) # Real output values provided. UpperCamelCase : Dict = output_array # Predicted output values by the neural network. # Predicted_output array initially consists of zeroes. UpperCamelCase : Optional[Any] = numpy.zeros(output_array.shape ) def _a ( self ): '''simple docstring''' UpperCamelCase : Tuple = sigmoid( numpy.dot(self.input_array , self.input_layer_and_first_hidden_layer_weights ) ) # layer_between_first_hidden_layer_and_second_hidden_layer is the layer # connecting the first hidden set of nodes with the second hidden set of nodes. UpperCamelCase : Optional[int] = sigmoid( numpy.dot( self.layer_between_input_and_first_hidden_layer , self.first_hidden_layer_and_second_hidden_layer_weights , ) ) # layer_between_second_hidden_layer_and_output is the layer connecting # second hidden layer with the output node. UpperCamelCase : Any = sigmoid( numpy.dot( self.layer_between_first_hidden_layer_and_second_hidden_layer , self.second_hidden_layer_and_output_layer_weights , ) ) return self.layer_between_second_hidden_layer_and_output def _a ( self ): '''simple docstring''' UpperCamelCase : Dict = numpy.dot( self.layer_between_first_hidden_layer_and_second_hidden_layer.T , 2 * (self.output_array - self.predicted_output) * sigmoid_derivative(self.predicted_output ) , ) UpperCamelCase : List[str] = numpy.dot( self.layer_between_input_and_first_hidden_layer.T , numpy.dot( 2 * (self.output_array - self.predicted_output) * sigmoid_derivative(self.predicted_output ) , self.second_hidden_layer_and_output_layer_weights.T , ) * sigmoid_derivative( self.layer_between_first_hidden_layer_and_second_hidden_layer ) , ) UpperCamelCase : List[str] = numpy.dot( self.input_array.T , numpy.dot( numpy.dot( 2 * (self.output_array - self.predicted_output) * sigmoid_derivative(self.predicted_output ) , self.second_hidden_layer_and_output_layer_weights.T , ) * sigmoid_derivative( self.layer_between_first_hidden_layer_and_second_hidden_layer ) , self.first_hidden_layer_and_second_hidden_layer_weights.T , ) * sigmoid_derivative(self.layer_between_input_and_first_hidden_layer ) , ) self.input_layer_and_first_hidden_layer_weights += ( updated_input_layer_and_first_hidden_layer_weights ) self.first_hidden_layer_and_second_hidden_layer_weights += ( updated_first_hidden_layer_and_second_hidden_layer_weights ) self.second_hidden_layer_and_output_layer_weights += ( updated_second_hidden_layer_and_output_layer_weights ) def _a ( self , _A , _A , _A ): '''simple docstring''' for iteration in range(1 , iterations + 1 ): UpperCamelCase : int = self.feedforward() self.back_propagation() if give_loss: UpperCamelCase : Dict = numpy.mean(numpy.square(output - self.feedforward() ) ) print(f"""Iteration {iteration} Loss: {loss}""" ) def _a ( self , _A ): '''simple docstring''' UpperCamelCase : List[Any] = input_arr UpperCamelCase : int = sigmoid( numpy.dot(self.array , self.input_layer_and_first_hidden_layer_weights ) ) UpperCamelCase : str = sigmoid( numpy.dot( self.layer_between_input_and_first_hidden_layer , self.first_hidden_layer_and_second_hidden_layer_weights , ) ) UpperCamelCase : int = sigmoid( numpy.dot( self.layer_between_first_hidden_layer_and_second_hidden_layer , self.second_hidden_layer_and_output_layer_weights , ) ) return int(self.layer_between_second_hidden_layer_and_output > 0.6 ) def UpperCamelCase (SCREAMING_SNAKE_CASE ): return 1 / (1 + numpy.exp(-value )) def UpperCamelCase (SCREAMING_SNAKE_CASE ): return (value) * (1 - (value)) def UpperCamelCase (): UpperCamelCase : str = numpy.array( ( [0, 0, 0], [0, 0, 1], [0, 1, 0], [0, 1, 1], [1, 0, 0], [1, 0, 1], [1, 1, 0], [1, 1, 1], ) , dtype=numpy.floataa , ) # True output values for the given input values. UpperCamelCase : Optional[int] = numpy.array(([0], [1], [1], [0], [1], [0], [0], [1]) , dtype=numpy.floataa ) # Calling neural network class. UpperCamelCase : Dict = TwoHiddenLayerNeuralNetwork( input_array=SCREAMING_SNAKE_CASE , output_array=SCREAMING_SNAKE_CASE ) # Calling training function. # Set give_loss to True if you want to see loss in every iteration. neural_network.train(output=SCREAMING_SNAKE_CASE , iterations=10 , give_loss=SCREAMING_SNAKE_CASE ) return neural_network.predict(numpy.array(([1, 1, 1]) , dtype=numpy.floataa ) ) if __name__ == "__main__": example()
102
import os import sys import warnings from dataclasses import dataclass, field from io import BytesIO from typing import TYPE_CHECKING, Any, ClassVar, Dict, List, Optional, Union import numpy as np import pyarrow as pa from .. import config from ..download.streaming_download_manager import xopen from ..table import array_cast from ..utils.file_utils import is_local_path from ..utils.py_utils import first_non_null_value, no_op_if_value_is_null, string_to_dict if TYPE_CHECKING: import PIL.Image from .features import FeatureType __a = None __a = '<' if sys.byteorder == 'little' else '>' # Origin: https://github.com/python-pillow/Pillow/blob/698951e19e19972aeed56df686868f1329981c12/src/PIL/Image.py#L3126 minus "|i1" which values are not preserved correctly when saving and loading an image __a = [ np.dtype('|b1'), np.dtype('|u1'), np.dtype('<u2'), np.dtype('>u2'), np.dtype('<i2'), np.dtype('>i2'), np.dtype('<u4'), np.dtype('>u4'), np.dtype('<i4'), np.dtype('>i4'), np.dtype('<f4'), np.dtype('>f4'), np.dtype('<f8'), np.dtype('>f8'), ] @dataclass class __a: """simple docstring""" lowerCAmelCase = True lowerCAmelCase = None # Automatically constructed lowerCAmelCase = "PIL.Image.Image" lowerCAmelCase = pa.struct({'''bytes''': pa.binary(), '''path''': pa.string()} ) lowerCAmelCase = field(default='''Image''' , init=_a , repr=_a ) def __call__( self ) -> Tuple: return self.pa_type def a__ ( self ,_SCREAMING_SNAKE_CASE ) -> dict: if config.PIL_AVAILABLE: import PIL.Image else: raise ImportError('''To support encoding images, please install \'Pillow\'.''' ) if isinstance(_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ): UpperCAmelCase_ : List[str] = np.array(_SCREAMING_SNAKE_CASE ) if isinstance(_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ): return {"path": value, "bytes": None} elif isinstance(_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ): return {"path": None, "bytes": value} elif isinstance(_SCREAMING_SNAKE_CASE ,np.ndarray ): # convert the image array to PNG/TIFF bytes return encode_np_array(_SCREAMING_SNAKE_CASE ) elif isinstance(_SCREAMING_SNAKE_CASE ,PIL.Image.Image ): # convert the PIL image to bytes (default format is PNG/TIFF) return encode_pil_image(_SCREAMING_SNAKE_CASE ) elif value.get('''path''' ) is not None and os.path.isfile(value['''path'''] ): # we set "bytes": None to not duplicate the data if they're already available locally return {"bytes": None, "path": value.get('''path''' )} elif value.get('''bytes''' ) is not None or value.get('''path''' ) is not None: # store the image bytes, and path is used to infer the image format using the file extension return {"bytes": value.get('''bytes''' ), "path": value.get('''path''' )} else: raise ValueError( f'''An image sample should have one of \'path\' or \'bytes\' but they are missing or None in {value}.''' ) def a__ ( self ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE=None ) -> "PIL.Image.Image": if not self.decode: raise RuntimeError('''Decoding is disabled for this feature. Please use Image(decode=True) instead.''' ) if config.PIL_AVAILABLE: import PIL.Image else: raise ImportError('''To support decoding images, please install \'Pillow\'.''' ) if token_per_repo_id is None: UpperCAmelCase_ : Dict = {} UpperCAmelCase_, UpperCAmelCase_ : Union[str, Any] = value['''path'''], value['''bytes'''] if bytes_ is None: if path is None: raise ValueError(f'''An image should have one of \'path\' or \'bytes\' but both are None in {value}.''' ) else: if is_local_path(_SCREAMING_SNAKE_CASE ): UpperCAmelCase_ : Tuple = PIL.Image.open(_SCREAMING_SNAKE_CASE ) else: UpperCAmelCase_ : Dict = path.split('''::''' )[-1] try: UpperCAmelCase_ : Optional[int] = string_to_dict(_SCREAMING_SNAKE_CASE ,config.HUB_DATASETS_URL )['''repo_id'''] UpperCAmelCase_ : Tuple = token_per_repo_id.get(_SCREAMING_SNAKE_CASE ) except ValueError: UpperCAmelCase_ : Optional[Any] = None with xopen(_SCREAMING_SNAKE_CASE ,'''rb''' ,use_auth_token=_SCREAMING_SNAKE_CASE ) as f: UpperCAmelCase_ : List[str] = BytesIO(f.read() ) UpperCAmelCase_ : Optional[Any] = PIL.Image.open(bytes_ ) else: UpperCAmelCase_ : List[Any] = PIL.Image.open(BytesIO(bytes_ ) ) image.load() # to avoid "Too many open files" errors return image def a__ ( self ) -> Union["FeatureType", Dict[str, "FeatureType"]]: from .features import Value return ( self if self.decode else { "bytes": Value('''binary''' ), "path": Value('''string''' ), } ) def a__ ( self ,_SCREAMING_SNAKE_CASE ) -> pa.StructArray: if pa.types.is_string(storage.type ): UpperCAmelCase_ : Dict = pa.array([None] * len(_SCREAMING_SNAKE_CASE ) ,type=pa.binary() ) UpperCAmelCase_ : Dict = pa.StructArray.from_arrays([bytes_array, storage] ,['''bytes''', '''path'''] ,mask=storage.is_null() ) elif pa.types.is_binary(storage.type ): UpperCAmelCase_ : List[str] = pa.array([None] * len(_SCREAMING_SNAKE_CASE ) ,type=pa.string() ) UpperCAmelCase_ : Tuple = pa.StructArray.from_arrays([storage, path_array] ,['''bytes''', '''path'''] ,mask=storage.is_null() ) elif pa.types.is_struct(storage.type ): if storage.type.get_field_index('''bytes''' ) >= 0: UpperCAmelCase_ : Dict = storage.field('''bytes''' ) else: UpperCAmelCase_ : Any = pa.array([None] * len(_SCREAMING_SNAKE_CASE ) ,type=pa.binary() ) if storage.type.get_field_index('''path''' ) >= 0: UpperCAmelCase_ : int = storage.field('''path''' ) else: UpperCAmelCase_ : List[str] = pa.array([None] * len(_SCREAMING_SNAKE_CASE ) ,type=pa.string() ) UpperCAmelCase_ : Optional[Any] = pa.StructArray.from_arrays([bytes_array, path_array] ,['''bytes''', '''path'''] ,mask=storage.is_null() ) elif pa.types.is_list(storage.type ): UpperCAmelCase_ : Optional[Any] = pa.array( [encode_np_array(np.array(_SCREAMING_SNAKE_CASE ) )['''bytes'''] if arr is not None else None for arr in storage.to_pylist()] ,type=pa.binary() ,) UpperCAmelCase_ : Any = pa.array([None] * len(_SCREAMING_SNAKE_CASE ) ,type=pa.string() ) UpperCAmelCase_ : Dict = pa.StructArray.from_arrays( [bytes_array, path_array] ,['''bytes''', '''path'''] ,mask=bytes_array.is_null() ) return array_cast(_SCREAMING_SNAKE_CASE ,self.pa_type ) def a__ ( self ,_SCREAMING_SNAKE_CASE ) -> pa.StructArray: @no_op_if_value_is_null def path_to_bytes(_SCREAMING_SNAKE_CASE ): with xopen(_SCREAMING_SNAKE_CASE ,'''rb''' ) as f: UpperCAmelCase_ : Any = f.read() return bytes_ UpperCAmelCase_ : Union[str, Any] = pa.array( [ (path_to_bytes(x['''path'''] ) if x['''bytes'''] is None else x['''bytes''']) if x is not None else None for x in storage.to_pylist() ] ,type=pa.binary() ,) UpperCAmelCase_ : List[str] = pa.array( [os.path.basename(_SCREAMING_SNAKE_CASE ) if path is not None else None for path in storage.field('''path''' ).to_pylist()] ,type=pa.string() ,) UpperCAmelCase_ : Union[str, Any] = pa.StructArray.from_arrays([bytes_array, path_array] ,['''bytes''', '''path'''] ,mask=bytes_array.is_null() ) return array_cast(_SCREAMING_SNAKE_CASE ,self.pa_type ) def lowerCamelCase__ ( ): '''simple docstring''' if config.PIL_AVAILABLE: import PIL.Image else: raise ImportError('''To support encoding images, please install \'Pillow\'.''' ) global _IMAGE_COMPRESSION_FORMATS if _IMAGE_COMPRESSION_FORMATS is None: PIL.Image.init() UpperCAmelCase_ : Optional[int] = list(set(PIL.Image.OPEN.keys() ) & set(PIL.Image.SAVE.keys() ) ) return _IMAGE_COMPRESSION_FORMATS def lowerCamelCase__ ( _lowercase ): '''simple docstring''' UpperCAmelCase_ : Optional[int] = BytesIO() if image.format in list_image_compression_formats(): UpperCAmelCase_ : int = image.format else: UpperCAmelCase_ : List[Any] = '''PNG''' if image.mode in ['''1''', '''L''', '''LA''', '''RGB''', '''RGBA'''] else '''TIFF''' image.save(_lowercase , format=_lowercase ) return buffer.getvalue() def lowerCamelCase__ ( _lowercase ): '''simple docstring''' if hasattr(_lowercase , '''filename''' ) and image.filename != "": return {"path": image.filename, "bytes": None} else: return {"path": None, "bytes": image_to_bytes(_lowercase )} def lowerCamelCase__ ( _lowercase ): '''simple docstring''' if config.PIL_AVAILABLE: import PIL.Image else: raise ImportError('''To support encoding images, please install \'Pillow\'.''' ) UpperCAmelCase_ : Tuple = array.dtype UpperCAmelCase_ : List[str] = dtype.byteorder if dtype.byteorder != '''=''' else _NATIVE_BYTEORDER UpperCAmelCase_ : Dict = dtype.kind UpperCAmelCase_ : Union[str, Any] = dtype.itemsize UpperCAmelCase_ : Optional[Any] = None # Multi-channel array case (only np.dtype("|u1") is allowed) if array.shape[2:]: UpperCAmelCase_ : Tuple = np.dtype('''|u1''' ) if dtype_kind not in ["u", "i"]: raise TypeError( f'''Unsupported array dtype {dtype} for image encoding. Only {dest_dtype} is supported for multi-channel arrays.''' ) if dtype is not dest_dtype: warnings.warn(f'''Downcasting array dtype {dtype} to {dest_dtype} to be compatible with \'Pillow\'''' ) # Exact match elif dtype in _VALID_IMAGE_ARRAY_DTPYES: UpperCAmelCase_ : Union[str, Any] = dtype else: # Downcast the type within the kind (np.can_cast(from_type, to_type, casting="same_kind") doesn't behave as expected, so do it manually) while dtype_itemsize >= 1: UpperCAmelCase_ : Union[str, Any] = dtype_byteorder + dtype_kind + str(_lowercase ) UpperCAmelCase_ : str = np.dtype(_lowercase ) if dest_dtype in _VALID_IMAGE_ARRAY_DTPYES: warnings.warn(f'''Downcasting array dtype {dtype} to {dest_dtype} to be compatible with \'Pillow\'''' ) break else: dtype_itemsize //= 2 if dest_dtype is None: raise TypeError( f'''Cannot convert dtype {dtype} to a valid image dtype. Valid image dtypes: {_VALID_IMAGE_ARRAY_DTPYES}''' ) UpperCAmelCase_ : Any = PIL.Image.fromarray(array.astype(_lowercase ) ) return {"path": None, "bytes": image_to_bytes(_lowercase )} def lowerCamelCase__ ( _lowercase ): '''simple docstring''' if config.PIL_AVAILABLE: import PIL.Image else: raise ImportError('''To support encoding images, please install \'Pillow\'.''' ) if objs: UpperCAmelCase_, UpperCAmelCase_ : Tuple = first_non_null_value(_lowercase ) if isinstance(_lowercase , _lowercase ): return [{"path": obj, "bytes": None} if obj is not None else None for obj in objs] if isinstance(_lowercase , np.ndarray ): UpperCAmelCase_ : Any = no_op_if_value_is_null(_lowercase ) return [obj_to_image_dict_func(_lowercase ) for obj in objs] elif isinstance(_lowercase , PIL.Image.Image ): UpperCAmelCase_ : Union[str, Any] = no_op_if_value_is_null(_lowercase ) return [obj_to_image_dict_func(_lowercase ) for obj in objs] else: return objs else: return objs
30
0
"""simple docstring""" import operator def snake_case ( lowerCAmelCase_ , lowerCAmelCase_ = False , lowerCAmelCase_ = None ) -> list: _snake_case = operator.lt if reverse else operator.gt _snake_case = solution or [] if not arr: return solution _snake_case = [arr.pop(0 )] for i, item in enumerate(lowerCAmelCase_ ): if _operator(lowerCAmelCase_ , sublist[-1] ): sublist.append(lowerCAmelCase_ ) arr.pop(lowerCAmelCase_ ) # merging sublist into solution list if not solution: solution.extend(lowerCAmelCase_ ) else: while sublist: _snake_case = sublist.pop(0 ) for i, xx in enumerate(lowerCAmelCase_ ): if not _operator(lowerCAmelCase_ , lowerCAmelCase_ ): solution.insert(lowerCAmelCase_ , lowerCAmelCase_ ) break else: solution.append(lowerCAmelCase_ ) strand_sort(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) return solution if __name__ == "__main__": assert strand_sort([4, 3, 5, 1, 2]) == [1, 2, 3, 4, 5] assert strand_sort([4, 3, 5, 1, 2], reverse=True) == [5, 4, 3, 2, 1]
103
import unittest from transformers import is_torch_available, is_vision_available from transformers.testing_utils import require_torch, require_vision, slow, torch_device if is_torch_available(): import torch from transformers import AutoModelForImageClassification if is_vision_available(): from transformers import AutoImageProcessor @require_torch @require_vision class __a( unittest.TestCase ): """simple docstring""" @slow def a__ ( self ) -> List[str]: UpperCAmelCase_ : Tuple = AutoImageProcessor.from_pretrained('''microsoft/dit-base-finetuned-rvlcdip''' ) UpperCAmelCase_ : Union[str, Any] = AutoModelForImageClassification.from_pretrained('''microsoft/dit-base-finetuned-rvlcdip''' ) model.to(_SCREAMING_SNAKE_CASE ) from datasets import load_dataset UpperCAmelCase_ : Optional[int] = load_dataset('''nielsr/rvlcdip-demo''' ) UpperCAmelCase_ : Optional[Any] = dataset['''train'''][0]['''image'''].convert('''RGB''' ) UpperCAmelCase_ : str = image_processor(_SCREAMING_SNAKE_CASE ,return_tensors='''pt''' ).to(_SCREAMING_SNAKE_CASE ) # forward pass with torch.no_grad(): UpperCAmelCase_ : Optional[int] = model(**_SCREAMING_SNAKE_CASE ) UpperCAmelCase_ : List[Any] = outputs.logits UpperCAmelCase_ : Tuple = torch.Size((1, 16) ) self.assertEqual(logits.shape ,_SCREAMING_SNAKE_CASE ) UpperCAmelCase_ : int = torch.tensor( [-0.41_58, -0.40_92, -0.43_47] ,device=_SCREAMING_SNAKE_CASE ,dtype=torch.float ,) self.assertTrue(torch.allclose(logits[0, :3] ,_SCREAMING_SNAKE_CASE ,atol=1e-4 ) )
30
0
"""simple docstring""" from ...utils import ( OptionalDependencyNotAvailable, is_torch_available, is_transformers_available, is_transformers_version, ) try: if not (is_transformers_available() and is_torch_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import ShapEPipeline else: from .camera import create_pan_cameras from .pipeline_shap_e import ShapEPipeline from .pipeline_shap_e_img2img import ShapEImgaImgPipeline from .renderer import ( BoundingBoxVolume, ImportanceRaySampler, MLPNeRFModelOutput, MLPNeRSTFModel, ShapEParamsProjModel, ShapERenderer, StratifiedRaySampler, VoidNeRFModel, )
104
import warnings from ...utils import logging from .image_processing_clip import CLIPImageProcessor __a = logging.get_logger(__name__) class __a( _a ): """simple docstring""" def __init__( self ,*_SCREAMING_SNAKE_CASE ,**_SCREAMING_SNAKE_CASE ) -> None: warnings.warn( '''The class CLIPFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please''' ''' use CLIPImageProcessor instead.''' ,_SCREAMING_SNAKE_CASE ,) super().__init__(*_SCREAMING_SNAKE_CASE ,**_SCREAMING_SNAKE_CASE )
30
0
import unittest from transformers import BigBirdConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor, random_attention_mask if is_flax_available(): import jax from transformers.models.big_bird.modeling_flax_big_bird import ( FlaxBigBirdForCausalLM, FlaxBigBirdForMaskedLM, FlaxBigBirdForMultipleChoice, FlaxBigBirdForPreTraining, FlaxBigBirdForQuestionAnswering, FlaxBigBirdForSequenceClassification, FlaxBigBirdForTokenClassification, FlaxBigBirdModel, ) class lowerCAmelCase_ ( unittest.TestCase ): def __init__( self ,snake_case__ ,snake_case__=2 ,snake_case__=56 ,snake_case__=True ,snake_case__=True ,snake_case__=True ,snake_case__=True ,snake_case__=99 ,snake_case__=32 ,snake_case__=2 ,snake_case__=2 ,snake_case__=7 ,snake_case__="gelu_new" ,snake_case__=0.1 ,snake_case__=0.1 ,snake_case__=512 ,snake_case__=16 ,snake_case__=2 ,snake_case__=0.02 ,snake_case__=4 ,snake_case__="block_sparse" ,snake_case__=True ,snake_case__=False ,snake_case__=2 ,snake_case__=3 ,): SCREAMING_SNAKE_CASE_ : Tuple = parent SCREAMING_SNAKE_CASE_ : int = batch_size SCREAMING_SNAKE_CASE_ : str = seq_length SCREAMING_SNAKE_CASE_ : Tuple = is_training SCREAMING_SNAKE_CASE_ : int = use_attention_mask SCREAMING_SNAKE_CASE_ : int = use_token_type_ids SCREAMING_SNAKE_CASE_ : int = use_labels SCREAMING_SNAKE_CASE_ : str = vocab_size SCREAMING_SNAKE_CASE_ : List[str] = hidden_size SCREAMING_SNAKE_CASE_ : Optional[Any] = num_hidden_layers SCREAMING_SNAKE_CASE_ : Optional[int] = num_attention_heads SCREAMING_SNAKE_CASE_ : Union[str, Any] = intermediate_size SCREAMING_SNAKE_CASE_ : List[Any] = hidden_act SCREAMING_SNAKE_CASE_ : Optional[int] = hidden_dropout_prob SCREAMING_SNAKE_CASE_ : str = attention_probs_dropout_prob SCREAMING_SNAKE_CASE_ : Optional[int] = max_position_embeddings SCREAMING_SNAKE_CASE_ : int = type_vocab_size SCREAMING_SNAKE_CASE_ : Tuple = type_sequence_label_size SCREAMING_SNAKE_CASE_ : Optional[int] = initializer_range SCREAMING_SNAKE_CASE_ : List[Any] = num_choices SCREAMING_SNAKE_CASE_ : Any = rescale_embeddings SCREAMING_SNAKE_CASE_ : int = attention_type SCREAMING_SNAKE_CASE_ : Any = use_bias SCREAMING_SNAKE_CASE_ : Optional[int] = block_size SCREAMING_SNAKE_CASE_ : Dict = num_random_blocks def snake_case ( self ): SCREAMING_SNAKE_CASE_ : List[Any] = ids_tensor([self.batch_size, self.seq_length] ,self.vocab_size ) SCREAMING_SNAKE_CASE_ : int = None if self.use_attention_mask: SCREAMING_SNAKE_CASE_ : List[Any] = random_attention_mask([self.batch_size, self.seq_length] ) SCREAMING_SNAKE_CASE_ : Any = None if self.use_token_type_ids: SCREAMING_SNAKE_CASE_ : Dict = ids_tensor([self.batch_size, self.seq_length] ,self.type_vocab_size ) SCREAMING_SNAKE_CASE_ : int = BigBirdConfig( vocab_size=self.vocab_size ,hidden_size=self.hidden_size ,num_hidden_layers=self.num_hidden_layers ,num_attention_heads=self.num_attention_heads ,intermediate_size=self.intermediate_size ,hidden_act=self.hidden_act ,hidden_dropout_prob=self.hidden_dropout_prob ,attention_probs_dropout_prob=self.attention_probs_dropout_prob ,max_position_embeddings=self.max_position_embeddings ,type_vocab_size=self.type_vocab_size ,is_decoder=snake_case__ ,initializer_range=self.initializer_range ,attention_type=self.attention_type ,block_size=self.block_size ,num_random_blocks=self.num_random_blocks ,use_bias=self.use_bias ,rescale_embeddings=self.rescale_embeddings ,) return config, input_ids, token_type_ids, attention_mask def snake_case ( self ): SCREAMING_SNAKE_CASE_ : Union[str, Any] = self.prepare_config_and_inputs() SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : List[str] = config_and_inputs SCREAMING_SNAKE_CASE_ : int = { 'input_ids': input_ids, 'token_type_ids': token_type_ids, 'attention_mask': attention_mask, } return config, inputs_dict @require_flax class lowerCAmelCase_ ( lowerCamelCase_ , unittest.TestCase ): __a : int = ( ( FlaxBigBirdForCausalLM, FlaxBigBirdModel, FlaxBigBirdForPreTraining, FlaxBigBirdForMaskedLM, FlaxBigBirdForMultipleChoice, FlaxBigBirdForQuestionAnswering, FlaxBigBirdForSequenceClassification, FlaxBigBirdForTokenClassification, ) if is_flax_available() else () ) __a : List[Any] = False __a : Any = False def snake_case ( self ): SCREAMING_SNAKE_CASE_ : Dict = FlaxBigBirdModelTester(self ) @slow # copied from `test_modeling_flax_common` because it takes much longer than other models def snake_case ( self ): super().test_from_pretrained_save_pretrained() @slow # copied from `test_modeling_flax_common` because it takes much longer than other models def snake_case ( self ): super().test_from_pretrained_with_no_automatic_init() @slow # copied from `test_modeling_flax_common` because it takes much longer than other models def snake_case ( self ): super().test_no_automatic_init() @slow # copied from `test_modeling_flax_common` because it takes much longer than other models def snake_case ( self ): super().test_hidden_states_output() @slow def snake_case ( self ): for model_class_name in self.all_model_classes: SCREAMING_SNAKE_CASE_ : Dict = model_class_name.from_pretrained('google/bigbird-roberta-base' ) self.assertIsNotNone(snake_case__ ) def snake_case ( self ): if self.test_attn_probs: super().test_attention_outputs() @slow # copied from `test_modeling_flax_common` because it takes much longer than other models def snake_case ( self ): SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : List[str] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): SCREAMING_SNAKE_CASE_ : str = self._prepare_for_class(snake_case__ ,snake_case__ ) SCREAMING_SNAKE_CASE_ : Dict = model_class(snake_case__ ) @jax.jit def model_jitted(snake_case__ ,snake_case__=None ,**snake_case__ ): return model(input_ids=snake_case__ ,attention_mask=snake_case__ ,**snake_case__ ) with self.subTest('JIT Enabled' ): SCREAMING_SNAKE_CASE_ : Optional[int] = model_jitted(**snake_case__ ).to_tuple() with self.subTest('JIT Disabled' ): with jax.disable_jit(): SCREAMING_SNAKE_CASE_ : Any = model_jitted(**snake_case__ ).to_tuple() self.assertEqual(len(snake_case__ ) ,len(snake_case__ ) ) for jitted_output, output in zip(snake_case__ ,snake_case__ ): self.assertEqual(jitted_output.shape ,output.shape ) def snake_case ( self ,snake_case__ ,snake_case__ ,snake_case__ ,snake_case__=1E-5 ,snake_case__="outputs" ,snake_case__=None ): # `bigbird_block_sparse_attention` in `FlaxBigBird` returns `attention_probs = None`, while in PyTorch version, # an effort was done to return `attention_probs` (yet to be verified). if name.startswith('outputs.attentions' ): return else: super().check_pt_flax_outputs(snake_case__ ,snake_case__ ,snake_case__ ,snake_case__ ,snake_case__ ,snake_case__ )
105
import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import PoolFormerImageProcessor class __a( unittest.TestCase ): """simple docstring""" def __init__( self ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE=7 ,_SCREAMING_SNAKE_CASE=3 ,_SCREAMING_SNAKE_CASE=30 ,_SCREAMING_SNAKE_CASE=400 ,_SCREAMING_SNAKE_CASE=True ,_SCREAMING_SNAKE_CASE=None ,_SCREAMING_SNAKE_CASE=0.9 ,_SCREAMING_SNAKE_CASE=None ,_SCREAMING_SNAKE_CASE=True ,_SCREAMING_SNAKE_CASE=[0.5, 0.5, 0.5] ,_SCREAMING_SNAKE_CASE=[0.5, 0.5, 0.5] ,) -> Optional[int]: UpperCAmelCase_ : int = size if size is not None else {'''shortest_edge''': 30} UpperCAmelCase_ : List[str] = crop_size if crop_size is not None else {'''height''': 30, '''width''': 30} UpperCAmelCase_ : Dict = parent UpperCAmelCase_ : int = batch_size UpperCAmelCase_ : int = num_channels UpperCAmelCase_ : Any = min_resolution UpperCAmelCase_ : Tuple = max_resolution UpperCAmelCase_ : Optional[int] = do_resize_and_center_crop UpperCAmelCase_ : Tuple = size UpperCAmelCase_ : List[str] = crop_pct UpperCAmelCase_ : List[str] = crop_size UpperCAmelCase_ : Any = do_normalize UpperCAmelCase_ : str = image_mean UpperCAmelCase_ : List[Any] = image_std def a__ ( self ) -> str: return { "size": self.size, "do_resize_and_center_crop": self.do_resize_and_center_crop, "crop_pct": self.crop_pct, "crop_size": self.crop_size, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, } @require_torch @require_vision class __a( _a , unittest.TestCase ): """simple docstring""" lowerCAmelCase = PoolFormerImageProcessor if is_vision_available() else None def a__ ( self ) -> Dict: UpperCAmelCase_ : str = PoolFormerImageProcessingTester(self ) @property def a__ ( self ) -> Optional[int]: return self.image_processor_tester.prepare_image_processor_dict() def a__ ( self ) -> Optional[int]: UpperCAmelCase_ : List[Any] = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(_SCREAMING_SNAKE_CASE ,'''do_resize_and_center_crop''' ) ) self.assertTrue(hasattr(_SCREAMING_SNAKE_CASE ,'''size''' ) ) self.assertTrue(hasattr(_SCREAMING_SNAKE_CASE ,'''crop_pct''' ) ) self.assertTrue(hasattr(_SCREAMING_SNAKE_CASE ,'''do_normalize''' ) ) self.assertTrue(hasattr(_SCREAMING_SNAKE_CASE ,'''image_mean''' ) ) self.assertTrue(hasattr(_SCREAMING_SNAKE_CASE ,'''image_std''' ) ) def a__ ( self ) -> Union[str, Any]: UpperCAmelCase_ : Any = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size ,{'''shortest_edge''': 30} ) self.assertEqual(image_processor.crop_size ,{'''height''': 30, '''width''': 30} ) UpperCAmelCase_ : Optional[Any] = self.image_processing_class.from_dict(self.image_processor_dict ,size=42 ,crop_size=84 ) self.assertEqual(image_processor.size ,{'''shortest_edge''': 42} ) self.assertEqual(image_processor.crop_size ,{'''height''': 84, '''width''': 84} ) def a__ ( self ) -> Optional[int]: pass def a__ ( self ) -> Dict: # Initialize image_processing UpperCAmelCase_ : str = self.image_processing_class(**self.image_processor_dict ) # create random PIL images UpperCAmelCase_ : int = prepare_image_inputs(self.image_processor_tester ,equal_resolution=_SCREAMING_SNAKE_CASE ) for image in image_inputs: self.assertIsInstance(_SCREAMING_SNAKE_CASE ,Image.Image ) # Test not batched input UpperCAmelCase_ : Optional[int] = image_processing(image_inputs[0] ,return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape ,( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) ,) # Test batched UpperCAmelCase_ : Union[str, Any] = image_processing(_SCREAMING_SNAKE_CASE ,return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape ,( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) ,) def a__ ( self ) -> List[Any]: # Initialize image_processing UpperCAmelCase_ : Any = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors UpperCAmelCase_ : List[str] = prepare_image_inputs(self.image_processor_tester ,equal_resolution=_SCREAMING_SNAKE_CASE ,numpify=_SCREAMING_SNAKE_CASE ) for image in image_inputs: self.assertIsInstance(_SCREAMING_SNAKE_CASE ,np.ndarray ) # Test not batched input UpperCAmelCase_ : Tuple = image_processing(image_inputs[0] ,return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape ,( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) ,) # Test batched UpperCAmelCase_ : List[Any] = image_processing(_SCREAMING_SNAKE_CASE ,return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape ,( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) ,) def a__ ( self ) -> Union[str, Any]: # Initialize image_processing UpperCAmelCase_ : List[Any] = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors UpperCAmelCase_ : Optional[Any] = prepare_image_inputs(self.image_processor_tester ,equal_resolution=_SCREAMING_SNAKE_CASE ,torchify=_SCREAMING_SNAKE_CASE ) for image in image_inputs: self.assertIsInstance(_SCREAMING_SNAKE_CASE ,torch.Tensor ) # Test not batched input UpperCAmelCase_ : Tuple = image_processing(image_inputs[0] ,return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape ,( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) ,) # Test batched UpperCAmelCase_ : List[Any] = image_processing(_SCREAMING_SNAKE_CASE ,return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape ,( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) ,)
30
0
import datasets from .nmt_bleu import compute_bleu # From: https://github.com/tensorflow/nmt/blob/master/nmt/scripts/bleu.py __snake_case :List[str] ='\\n@INPROCEEDINGS{Papineni02bleu:a,\n author = {Kishore Papineni and Salim Roukos and Todd Ward and Wei-jing Zhu},\n title = {BLEU: a Method for Automatic Evaluation of Machine Translation},\n booktitle = {},\n year = {2002},\n pages = {311--318}\n}\n@inproceedings{lin-och-2004-orange,\n title = "{ORANGE}: a Method for Evaluating Automatic Evaluation Metrics for Machine Translation",\n author = "Lin, Chin-Yew and\n Och, Franz Josef",\n booktitle = "{COLING} 2004: Proceedings of the 20th International Conference on Computational Linguistics",\n month = "aug 23{--}aug 27",\n year = "2004",\n address = "Geneva, Switzerland",\n publisher = "COLING",\n url = "https://www.aclweb.org/anthology/C04-1072",\n pages = "501--507",\n}\n' __snake_case :Union[str, Any] ='\\nBLEU (bilingual evaluation understudy) is an algorithm for evaluating the quality of text which has been machine-translated from one natural language to another.\nQuality is considered to be the correspondence between a machine\'s output and that of a human: "the closer a machine translation is to a professional human translation,\nthe better it is" – this is the central idea behind BLEU. BLEU was one of the first metrics to claim a high correlation with human judgements of quality, and\nremains one of the most popular automated and inexpensive metrics.\n\nScores are calculated for individual translated segments—generally sentences—by comparing them with a set of good quality reference translations.\nThose scores are then averaged over the whole corpus to reach an estimate of the translation\'s overall quality. Intelligibility or grammatical correctness\nare not taken into account[citation needed].\n\nBLEU\'s output is always a number between 0 and 1. This value indicates how similar the candidate text is to the reference texts, with values closer to 1\nrepresenting more similar texts. Few human translations will attain a score of 1, since this would indicate that the candidate is identical to one of the\nreference translations. For this reason, it is not necessary to attain a score of 1. Because there are more opportunities to match, adding additional\nreference translations will increase the BLEU score.\n' __snake_case :Optional[Any] ='\nComputes BLEU score of translated segments against one or more references.\nArgs:\n predictions: list of translations to score.\n Each translation should be tokenized into a list of tokens.\n references: list of lists of references for each translation.\n Each reference should be tokenized into a list of tokens.\n max_order: Maximum n-gram order to use when computing BLEU score.\n smooth: Whether or not to apply Lin et al. 2004 smoothing.\nReturns:\n \'bleu\': bleu score,\n \'precisions\': geometric mean of n-gram precisions,\n \'brevity_penalty\': brevity penalty,\n \'length_ratio\': ratio of lengths,\n \'translation_length\': translation_length,\n \'reference_length\': reference_length\nExamples:\n\n >>> predictions = [\n ... ["hello", "there", "general", "kenobi"], # tokenized prediction of the first sample\n ... ["foo", "bar", "foobar"] # tokenized prediction of the second sample\n ... ]\n >>> references = [\n ... [["hello", "there", "general", "kenobi"], ["hello", "there", "!"]], # tokenized references for the first sample (2 references)\n ... [["foo", "bar", "foobar"]] # tokenized references for the second sample (1 reference)\n ... ]\n >>> bleu = datasets.load_metric("bleu")\n >>> results = bleu.compute(predictions=predictions, references=references)\n >>> print(results["bleu"])\n 1.0\n' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class lowerCAmelCase__ ( datasets.Metric ): def __UpperCamelCase ( self : List[str] ) -> Any: return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { 'predictions': datasets.Sequence(datasets.Value('string' , id='token' ) , id='sequence' ), 'references': datasets.Sequence( datasets.Sequence(datasets.Value('string' , id='token' ) , id='sequence' ) , id='references' ), } ) , codebase_urls=['https://github.com/tensorflow/nmt/blob/master/nmt/scripts/bleu.py'] , reference_urls=[ 'https://en.wikipedia.org/wiki/BLEU', 'https://towardsdatascience.com/evaluating-text-output-in-nlp-bleu-at-your-own-risk-e8609665a213', ] , ) def __UpperCamelCase ( self : List[str] , __UpperCamelCase : Tuple , __UpperCamelCase : str , __UpperCamelCase : Any=4 , __UpperCamelCase : Tuple=False ) -> str: A = compute_bleu( reference_corpus=__UpperCamelCase , translation_corpus=__UpperCamelCase , max_order=__UpperCamelCase , smooth=__UpperCamelCase ) ((A) , (A) , (A) , (A) , (A) , (A)) = score return { "bleu": bleu, "precisions": precisions, "brevity_penalty": bp, "length_ratio": ratio, "translation_length": translation_length, "reference_length": reference_length, }
106
import unittest import numpy as np def lowerCamelCase__ ( _lowercase , _lowercase , _lowercase , _lowercase = None , ): '''simple docstring''' UpperCAmelCase_ : Dict = np.shape(_lowercase ) UpperCAmelCase_ : Optional[Any] = np.shape(_lowercase ) UpperCAmelCase_ : Tuple = np.shape(_lowercase ) if shape_a[0] != shape_b[0]: UpperCAmelCase_ : Tuple = ( '''Expected the same number of rows for A and B. ''' f'''Instead found A of size {shape_a} and B of size {shape_b}''' ) raise ValueError(_lowercase ) if shape_b[1] != shape_c[1]: UpperCAmelCase_ : List[Any] = ( '''Expected the same number of columns for B and C. ''' f'''Instead found B of size {shape_b} and C of size {shape_c}''' ) raise ValueError(_lowercase ) UpperCAmelCase_ : Dict = pseudo_inv if a_inv is None: try: UpperCAmelCase_ : Any = np.linalg.inv(_lowercase ) except np.linalg.LinAlgError: raise ValueError( '''Input matrix A is not invertible. Cannot compute Schur complement.''' ) return mat_c - mat_b.T @ a_inv @ mat_b class __a( unittest.TestCase ): """simple docstring""" def a__ ( self ) -> None: UpperCAmelCase_ : str = np.array([[1, 2, 1], [2, 1, 2], [3, 2, 4]] ) UpperCAmelCase_ : Any = np.array([[0, 3], [3, 0], [2, 3]] ) UpperCAmelCase_ : List[str] = np.array([[2, 1], [6, 3]] ) UpperCAmelCase_ : Tuple = schur_complement(_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ) UpperCAmelCase_ : List[Any] = np.block([[a, b], [b.T, c]] ) UpperCAmelCase_ : List[Any] = np.linalg.det(_SCREAMING_SNAKE_CASE ) UpperCAmelCase_ : List[Any] = np.linalg.det(_SCREAMING_SNAKE_CASE ) UpperCAmelCase_ : Any = np.linalg.det(_SCREAMING_SNAKE_CASE ) self.assertAlmostEqual(_SCREAMING_SNAKE_CASE ,det_a * det_s ) def a__ ( self ) -> None: UpperCAmelCase_ : str = np.array([[1, 2, 1], [2, 1, 2], [3, 2, 4]] ) UpperCAmelCase_ : Optional[int] = np.array([[0, 3], [3, 0], [2, 3]] ) UpperCAmelCase_ : Optional[int] = np.array([[2, 1], [6, 3]] ) with self.assertRaises(_SCREAMING_SNAKE_CASE ): schur_complement(_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ) def a__ ( self ) -> None: UpperCAmelCase_ : Optional[int] = np.array([[1, 2, 1], [2, 1, 2], [3, 2, 4]] ) UpperCAmelCase_ : Optional[Any] = np.array([[0, 3], [3, 0], [2, 3]] ) UpperCAmelCase_ : int = np.array([[2, 1, 3], [6, 3, 5]] ) with self.assertRaises(_SCREAMING_SNAKE_CASE ): schur_complement(_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ) if __name__ == "__main__": import doctest doctest.testmod() unittest.main()
30
0
'''simple docstring''' from typing import TYPE_CHECKING from ....utils import _LazyModule _UpperCAmelCase : Tuple = {'''tokenization_tapex''': ['''TapexTokenizer''']} if TYPE_CHECKING: from .tokenization_tapex import TapexTokenizer else: import sys _UpperCAmelCase : int = _LazyModule(__name__, globals()['''__file__'''], _import_structure)
107
__a = 'ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789+/' def lowerCamelCase__ ( _lowercase ): '''simple docstring''' if not isinstance(_lowercase , _lowercase ): UpperCAmelCase_ : Union[str, Any] = f'''a bytes-like object is required, not \'{data.__class__.__name__}\'''' raise TypeError(_lowercase ) UpperCAmelCase_ : Any = ''''''.join(bin(_lowercase )[2:].zfill(8 ) for byte in data ) UpperCAmelCase_ : Any = len(_lowercase ) % 6 != 0 if padding_needed: # The padding that will be added later UpperCAmelCase_ : Union[str, Any] = B'''=''' * ((6 - len(_lowercase ) % 6) // 2) # Append binary_stream with arbitrary binary digits (0's by default) to make its # length a multiple of 6. binary_stream += "0" * (6 - len(_lowercase ) % 6) else: UpperCAmelCase_ : int = B'''''' # Encode every 6 binary digits to their corresponding Base64 character return ( "".join( B64_CHARSET[int(binary_stream[index : index + 6] , 2 )] for index in range(0 , len(_lowercase ) , 6 ) ).encode() + padding ) def lowerCamelCase__ ( _lowercase ): '''simple docstring''' if not isinstance(_lowercase , _lowercase ) and not isinstance(_lowercase , _lowercase ): UpperCAmelCase_ : Tuple = ( '''argument should be a bytes-like object or ASCII string, ''' f'''not \'{encoded_data.__class__.__name__}\'''' ) raise TypeError(_lowercase ) # In case encoded_data is a bytes-like object, make sure it contains only # ASCII characters so we convert it to a string object if isinstance(_lowercase , _lowercase ): try: UpperCAmelCase_ : Any = encoded_data.decode('''utf-8''' ) except UnicodeDecodeError: raise ValueError('''base64 encoded data should only contain ASCII characters''' ) UpperCAmelCase_ : str = encoded_data.count('''=''' ) # Check if the encoded string contains non base64 characters if padding: assert all( char in B64_CHARSET for char in encoded_data[:-padding] ), "Invalid base64 character(s) found." else: assert all( char in B64_CHARSET for char in encoded_data ), "Invalid base64 character(s) found." # Check the padding assert len(_lowercase ) % 4 == 0 and padding < 3, "Incorrect padding" if padding: # Remove padding if there is one UpperCAmelCase_ : List[Any] = encoded_data[:-padding] UpperCAmelCase_ : List[Any] = ''''''.join( bin(B64_CHARSET.index(_lowercase ) )[2:].zfill(6 ) for char in encoded_data )[: -padding * 2] else: UpperCAmelCase_ : Tuple = ''''''.join( bin(B64_CHARSET.index(_lowercase ) )[2:].zfill(6 ) for char in encoded_data ) UpperCAmelCase_ : str = [ int(binary_stream[index : index + 8] , 2 ) for index in range(0 , len(_lowercase ) , 8 ) ] return bytes(_lowercase ) if __name__ == "__main__": import doctest doctest.testmod()
30
0
from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import convert_to_rgb, normalize, rescale, resize, to_channel_dimension_format from ...image_utils import ( OPENAI_CLIP_MEAN, OPENAI_CLIP_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging if is_vision_available(): import PIL __a: Dict = logging.get_logger(__name__) class SCREAMING_SNAKE_CASE__ ( UpperCAmelCase ): '''simple docstring''' _lowerCamelCase = ['''pixel_values'''] def __init__( self : Any , lowerCamelCase : bool = True , lowerCamelCase : Dict[str, int] = None , lowerCamelCase : PILImageResampling = PILImageResampling.BICUBIC , lowerCamelCase : bool = True , lowerCamelCase : Union[int, float] = 1 / 255 , lowerCamelCase : bool = True , lowerCamelCase : Optional[Union[float, List[float]]] = None , lowerCamelCase : Optional[Union[float, List[float]]] = None , lowerCamelCase : bool = True , **lowerCamelCase : List[Any] , ) -> None: """simple docstring""" super().__init__(**lowerCamelCase ) _UpperCAmelCase = size if size is not None else {"""height""": 384, """width""": 384} _UpperCAmelCase = get_size_dict(lowerCamelCase , default_to_square=lowerCamelCase ) _UpperCAmelCase = do_resize _UpperCAmelCase = size _UpperCAmelCase = resample _UpperCAmelCase = do_rescale _UpperCAmelCase = rescale_factor _UpperCAmelCase = do_normalize _UpperCAmelCase = image_mean if image_mean is not None else OPENAI_CLIP_MEAN _UpperCAmelCase = image_std if image_std is not None else OPENAI_CLIP_STD _UpperCAmelCase = do_convert_rgb def lowerCamelCase ( self : Any , lowerCamelCase : np.ndarray , lowerCamelCase : Dict[str, int] , lowerCamelCase : PILImageResampling = PILImageResampling.BICUBIC , lowerCamelCase : Optional[Union[str, ChannelDimension]] = None , **lowerCamelCase : str , ) -> np.ndarray: """simple docstring""" _UpperCAmelCase = get_size_dict(lowerCamelCase , default_to_square=lowerCamelCase ) if "height" not in size or "width" not in size: raise ValueError(f"""The `size` dictionary must contain the keys `height` and `width`. Got {size.keys()}""" ) _UpperCAmelCase = (size["""height"""], size["""width"""]) return resize(lowerCamelCase , size=lowerCamelCase , resample=lowerCamelCase , data_format=lowerCamelCase , **lowerCamelCase ) def lowerCamelCase ( self : Tuple , lowerCamelCase : np.ndarray , lowerCamelCase : Union[int, float] , lowerCamelCase : Optional[Union[str, ChannelDimension]] = None , **lowerCamelCase : Dict , ) -> Union[str, Any]: """simple docstring""" return rescale(lowerCamelCase , scale=lowerCamelCase , data_format=lowerCamelCase , **lowerCamelCase ) def lowerCamelCase ( self : Tuple , lowerCamelCase : np.ndarray , lowerCamelCase : Union[float, List[float]] , lowerCamelCase : Union[float, List[float]] , lowerCamelCase : Optional[Union[str, ChannelDimension]] = None , **lowerCamelCase : List[Any] , ) -> np.ndarray: """simple docstring""" return normalize(lowerCamelCase , mean=lowerCamelCase , std=lowerCamelCase , data_format=lowerCamelCase , **lowerCamelCase ) def lowerCamelCase ( self : Dict , lowerCamelCase : ImageInput , lowerCamelCase : Optional[bool] = None , lowerCamelCase : Optional[Dict[str, int]] = None , lowerCamelCase : PILImageResampling = None , lowerCamelCase : Optional[bool] = None , lowerCamelCase : Optional[float] = None , lowerCamelCase : Optional[bool] = None , lowerCamelCase : Optional[Union[float, List[float]]] = None , lowerCamelCase : Optional[Union[float, List[float]]] = None , lowerCamelCase : Optional[Union[str, TensorType]] = None , lowerCamelCase : bool = None , lowerCamelCase : ChannelDimension = ChannelDimension.FIRST , **lowerCamelCase : List[str] , ) -> PIL.Image.Image: """simple docstring""" _UpperCAmelCase = do_resize if do_resize is not None else self.do_resize _UpperCAmelCase = resample if resample is not None else self.resample _UpperCAmelCase = do_rescale if do_rescale is not None else self.do_rescale _UpperCAmelCase = rescale_factor if rescale_factor is not None else self.rescale_factor _UpperCAmelCase = do_normalize if do_normalize is not None else self.do_normalize _UpperCAmelCase = image_mean if image_mean is not None else self.image_mean _UpperCAmelCase = image_std if image_std is not None else self.image_std _UpperCAmelCase = do_convert_rgb if do_convert_rgb is not None else self.do_convert_rgb _UpperCAmelCase = size if size is not None else self.size _UpperCAmelCase = get_size_dict(lowerCamelCase , default_to_square=lowerCamelCase ) _UpperCAmelCase = make_list_of_images(lowerCamelCase ) if not valid_images(lowerCamelCase ): raise ValueError( """Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, """ """torch.Tensor, tf.Tensor or jax.ndarray.""" ) if do_resize and size is None or resample is None: raise ValueError("""Size and resample must be specified if do_resize is True.""" ) if do_rescale and rescale_factor is None: raise ValueError("""Rescale factor must be specified if do_rescale is True.""" ) if do_normalize and (image_mean is None or image_std is None): raise ValueError("""Image mean and std must be specified if do_normalize is True.""" ) # PIL RGBA images are converted to RGB if do_convert_rgb: _UpperCAmelCase = [convert_to_rgb(lowerCamelCase ) for image in images] # All transformations expect numpy arrays. _UpperCAmelCase = [to_numpy_array(lowerCamelCase ) for image in images] if do_resize: _UpperCAmelCase = [self.resize(image=lowerCamelCase , size=lowerCamelCase , resample=lowerCamelCase ) for image in images] if do_rescale: _UpperCAmelCase = [self.rescale(image=lowerCamelCase , scale=lowerCamelCase ) for image in images] if do_normalize: _UpperCAmelCase = [self.normalize(image=lowerCamelCase , mean=lowerCamelCase , std=lowerCamelCase ) for image in images] _UpperCAmelCase = [to_channel_dimension_format(lowerCamelCase , lowerCamelCase ) for image in images] _UpperCAmelCase = BatchFeature(data={"""pixel_values""": images} , tensor_type=lowerCamelCase ) return encoded_outputs
108
import os import shutil import sys import tempfile import unittest from pathlib import Path import pytest import transformers from transformers import ( BERT_PRETRAINED_CONFIG_ARCHIVE_MAP, GPT2_PRETRAINED_CONFIG_ARCHIVE_MAP, AutoTokenizer, BertConfig, BertTokenizer, BertTokenizerFast, CTRLTokenizer, GPTaTokenizer, GPTaTokenizerFast, PreTrainedTokenizerFast, RobertaTokenizer, RobertaTokenizerFast, is_tokenizers_available, ) from transformers.models.auto.configuration_auto import CONFIG_MAPPING, AutoConfig from transformers.models.auto.tokenization_auto import ( TOKENIZER_MAPPING, get_tokenizer_config, tokenizer_class_from_name, ) from transformers.models.roberta.configuration_roberta import RobertaConfig from transformers.testing_utils import ( DUMMY_DIFF_TOKENIZER_IDENTIFIER, DUMMY_UNKNOWN_IDENTIFIER, SMALL_MODEL_IDENTIFIER, RequestCounter, require_tokenizers, slow, ) sys.path.append(str(Path(__file__).parent.parent.parent.parent / 'utils')) from test_module.custom_configuration import CustomConfig # noqa E402 from test_module.custom_tokenization import CustomTokenizer # noqa E402 if is_tokenizers_available(): from test_module.custom_tokenization_fast import CustomTokenizerFast class __a( unittest.TestCase ): """simple docstring""" def a__ ( self ) -> Union[str, Any]: UpperCAmelCase_ : Tuple = 0 @slow def a__ ( self ) -> Any: for model_name in (x for x in BERT_PRETRAINED_CONFIG_ARCHIVE_MAP.keys() if "japanese" not in x): UpperCAmelCase_ : Optional[Any] = AutoTokenizer.from_pretrained(_SCREAMING_SNAKE_CASE ) self.assertIsNotNone(_SCREAMING_SNAKE_CASE ) self.assertIsInstance(_SCREAMING_SNAKE_CASE ,(BertTokenizer, BertTokenizerFast) ) self.assertGreater(len(_SCREAMING_SNAKE_CASE ) ,0 ) for model_name in GPT2_PRETRAINED_CONFIG_ARCHIVE_MAP.keys(): UpperCAmelCase_ : Union[str, Any] = AutoTokenizer.from_pretrained(_SCREAMING_SNAKE_CASE ) self.assertIsNotNone(_SCREAMING_SNAKE_CASE ) self.assertIsInstance(_SCREAMING_SNAKE_CASE ,(GPTaTokenizer, GPTaTokenizerFast) ) self.assertGreater(len(_SCREAMING_SNAKE_CASE ) ,0 ) def a__ ( self ) -> Optional[Any]: UpperCAmelCase_ : List[str] = AutoTokenizer.from_pretrained(_SCREAMING_SNAKE_CASE ) self.assertIsInstance(_SCREAMING_SNAKE_CASE ,(BertTokenizer, BertTokenizerFast) ) self.assertEqual(tokenizer.vocab_size ,12 ) def a__ ( self ) -> Tuple: UpperCAmelCase_ : Any = AutoTokenizer.from_pretrained(_SCREAMING_SNAKE_CASE ) self.assertIsInstance(_SCREAMING_SNAKE_CASE ,(RobertaTokenizer, RobertaTokenizerFast) ) self.assertEqual(tokenizer.vocab_size ,20 ) def a__ ( self ) -> List[str]: UpperCAmelCase_ : int = AutoConfig.from_pretrained(_SCREAMING_SNAKE_CASE ) self.assertIsInstance(_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ) # Check that tokenizer_type ≠ model_type UpperCAmelCase_ : Optional[int] = AutoTokenizer.from_pretrained(_SCREAMING_SNAKE_CASE ,config=_SCREAMING_SNAKE_CASE ) self.assertIsInstance(_SCREAMING_SNAKE_CASE ,(BertTokenizer, BertTokenizerFast) ) self.assertEqual(tokenizer.vocab_size ,12 ) def a__ ( self ) -> Dict: with tempfile.TemporaryDirectory() as tmp_dir: shutil.copy('''./tests/fixtures/vocab.txt''' ,os.path.join(_SCREAMING_SNAKE_CASE ,'''vocab.txt''' ) ) UpperCAmelCase_ : Optional[int] = AutoTokenizer.from_pretrained(_SCREAMING_SNAKE_CASE ,tokenizer_type='''bert''' ,use_fast=_SCREAMING_SNAKE_CASE ) self.assertIsInstance(_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ) with tempfile.TemporaryDirectory() as tmp_dir: shutil.copy('''./tests/fixtures/vocab.json''' ,os.path.join(_SCREAMING_SNAKE_CASE ,'''vocab.json''' ) ) shutil.copy('''./tests/fixtures/merges.txt''' ,os.path.join(_SCREAMING_SNAKE_CASE ,'''merges.txt''' ) ) UpperCAmelCase_ : Optional[Any] = AutoTokenizer.from_pretrained(_SCREAMING_SNAKE_CASE ,tokenizer_type='''gpt2''' ,use_fast=_SCREAMING_SNAKE_CASE ) self.assertIsInstance(_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ) @require_tokenizers def a__ ( self ) -> Optional[int]: with tempfile.TemporaryDirectory() as tmp_dir: shutil.copy('''./tests/fixtures/vocab.txt''' ,os.path.join(_SCREAMING_SNAKE_CASE ,'''vocab.txt''' ) ) UpperCAmelCase_ : Tuple = AutoTokenizer.from_pretrained(_SCREAMING_SNAKE_CASE ,tokenizer_type='''bert''' ) self.assertIsInstance(_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ) with tempfile.TemporaryDirectory() as tmp_dir: shutil.copy('''./tests/fixtures/vocab.json''' ,os.path.join(_SCREAMING_SNAKE_CASE ,'''vocab.json''' ) ) shutil.copy('''./tests/fixtures/merges.txt''' ,os.path.join(_SCREAMING_SNAKE_CASE ,'''merges.txt''' ) ) UpperCAmelCase_ : Union[str, Any] = AutoTokenizer.from_pretrained(_SCREAMING_SNAKE_CASE ,tokenizer_type='''gpt2''' ) self.assertIsInstance(_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ) def a__ ( self ) -> int: with pytest.raises(_SCREAMING_SNAKE_CASE ): AutoTokenizer.from_pretrained('''./''' ,tokenizer_type='''xxx''' ) @require_tokenizers def a__ ( self ) -> Optional[Any]: for tokenizer_class in [BertTokenizer, BertTokenizerFast, AutoTokenizer]: UpperCAmelCase_ : Any = tokenizer_class.from_pretrained('''wietsedv/bert-base-dutch-cased''' ) self.assertIsInstance(_SCREAMING_SNAKE_CASE ,(BertTokenizer, BertTokenizerFast) ) if isinstance(_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ): self.assertEqual(tokenizer.basic_tokenizer.do_lower_case ,_SCREAMING_SNAKE_CASE ) else: self.assertEqual(tokenizer.do_lower_case ,_SCREAMING_SNAKE_CASE ) self.assertEqual(tokenizer.model_max_length ,512 ) @require_tokenizers def a__ ( self ) -> List[Any]: for tokenizer_class in [BertTokenizer, BertTokenizerFast, AutoTokenizer]: with self.assertRaisesRegex( _SCREAMING_SNAKE_CASE ,'''julien-c/herlolip-not-exists is not a local folder and is not a valid model identifier''' ,): UpperCAmelCase_ : int = tokenizer_class.from_pretrained('''julien-c/herlolip-not-exists''' ) def a__ ( self ) -> Optional[Any]: # tests: https://github.com/huggingface/transformers/pull/13251 # 1. models with `-`, e.g. xlm-roberta -> xlm_roberta # 2. models that don't remap 1-1 from model-name to model file, e.g., openai-gpt -> openai UpperCAmelCase_ : int = TOKENIZER_MAPPING.values() UpperCAmelCase_ : List[Any] = [] for slow_tok, fast_tok in tokenizers: if slow_tok is not None: tokenizer_names.append(slow_tok.__name__ ) if fast_tok is not None: tokenizer_names.append(fast_tok.__name__ ) for tokenizer_name in tokenizer_names: # must find the right class tokenizer_class_from_name(_SCREAMING_SNAKE_CASE ) @require_tokenizers def a__ ( self ) -> Tuple: self.assertIsInstance(AutoTokenizer.from_pretrained('''bert-base-cased''' ,use_fast=_SCREAMING_SNAKE_CASE ) ,_SCREAMING_SNAKE_CASE ) self.assertIsInstance(AutoTokenizer.from_pretrained('''bert-base-cased''' ) ,_SCREAMING_SNAKE_CASE ) @require_tokenizers def a__ ( self ) -> Optional[int]: UpperCAmelCase_ : str = AutoTokenizer.from_pretrained('''distilbert-base-uncased''' ,do_lower_case=_SCREAMING_SNAKE_CASE ) UpperCAmelCase_ : int = '''Hello, world. How are you?''' UpperCAmelCase_ : List[Any] = tokenizer.tokenize(_SCREAMING_SNAKE_CASE ) self.assertEqual('''[UNK]''' ,tokens[0] ) UpperCAmelCase_ : Any = AutoTokenizer.from_pretrained('''microsoft/mpnet-base''' ,do_lower_case=_SCREAMING_SNAKE_CASE ) UpperCAmelCase_ : Tuple = tokenizer.tokenize(_SCREAMING_SNAKE_CASE ) self.assertEqual('''[UNK]''' ,tokens[0] ) @require_tokenizers def a__ ( self ) -> Dict: UpperCAmelCase_ : List[Any] = AutoTokenizer.from_pretrained('''robot-test/dummy-tokenizer-fast-with-model-config''' ) self.assertEqual(type(_SCREAMING_SNAKE_CASE ) ,_SCREAMING_SNAKE_CASE ) self.assertEqual(tokenizer.model_max_length ,512 ) self.assertEqual(tokenizer.vocab_size ,30_000 ) self.assertEqual(tokenizer.unk_token ,'''[UNK]''' ) self.assertEqual(tokenizer.padding_side ,'''right''' ) self.assertEqual(tokenizer.truncation_side ,'''right''' ) def a__ ( self ) -> Dict: UpperCAmelCase_ : Any = AutoTokenizer.from_pretrained(_SCREAMING_SNAKE_CASE ) self.assertIsInstance(_SCREAMING_SNAKE_CASE ,(BertTokenizer, BertTokenizerFast) ) with tempfile.TemporaryDirectory() as tmp_dir: tokenizer.save_pretrained(_SCREAMING_SNAKE_CASE ) UpperCAmelCase_ : Dict = AutoTokenizer.from_pretrained(_SCREAMING_SNAKE_CASE ) self.assertIsInstance(_SCREAMING_SNAKE_CASE ,tokenizer.__class__ ) self.assertEqual(tokenizera.vocab_size ,12 ) def a__ ( self ) -> Optional[Any]: UpperCAmelCase_ : Tuple = AutoTokenizer.from_pretrained('''ctrl''' ) # There is no fast CTRL so this always gives us a slow tokenizer. self.assertIsInstance(_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ) def a__ ( self ) -> str: # Check we can load the tokenizer config of an online model. UpperCAmelCase_ : int = get_tokenizer_config('''bert-base-cased''' ) UpperCAmelCase_ : Optional[int] = config.pop('''_commit_hash''' ,_SCREAMING_SNAKE_CASE ) # If we ever update bert-base-cased tokenizer config, this dict here will need to be updated. self.assertEqual(_SCREAMING_SNAKE_CASE ,{'''do_lower_case''': False} ) # This model does not have a tokenizer_config so we get back an empty dict. UpperCAmelCase_ : Any = get_tokenizer_config(_SCREAMING_SNAKE_CASE ) self.assertDictEqual(_SCREAMING_SNAKE_CASE ,{} ) # A tokenizer saved with `save_pretrained` always creates a tokenizer config. UpperCAmelCase_ : Dict = AutoTokenizer.from_pretrained(_SCREAMING_SNAKE_CASE ) with tempfile.TemporaryDirectory() as tmp_dir: tokenizer.save_pretrained(_SCREAMING_SNAKE_CASE ) UpperCAmelCase_ : Dict = get_tokenizer_config(_SCREAMING_SNAKE_CASE ) # Check the class of the tokenizer was properly saved (note that it always saves the slow class). self.assertEqual(config['''tokenizer_class'''] ,'''BertTokenizer''' ) def a__ ( self ) -> str: try: AutoConfig.register('''custom''' ,_SCREAMING_SNAKE_CASE ) AutoTokenizer.register(_SCREAMING_SNAKE_CASE ,slow_tokenizer_class=_SCREAMING_SNAKE_CASE ) # Trying to register something existing in the Transformers library will raise an error with self.assertRaises(_SCREAMING_SNAKE_CASE ): AutoTokenizer.register(_SCREAMING_SNAKE_CASE ,slow_tokenizer_class=_SCREAMING_SNAKE_CASE ) UpperCAmelCase_ : str = CustomTokenizer.from_pretrained(_SCREAMING_SNAKE_CASE ) with tempfile.TemporaryDirectory() as tmp_dir: tokenizer.save_pretrained(_SCREAMING_SNAKE_CASE ) UpperCAmelCase_ : Dict = AutoTokenizer.from_pretrained(_SCREAMING_SNAKE_CASE ) self.assertIsInstance(_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in TOKENIZER_MAPPING._extra_content: del TOKENIZER_MAPPING._extra_content[CustomConfig] @require_tokenizers def a__ ( self ) -> int: try: AutoConfig.register('''custom''' ,_SCREAMING_SNAKE_CASE ) # Can register in two steps AutoTokenizer.register(_SCREAMING_SNAKE_CASE ,slow_tokenizer_class=_SCREAMING_SNAKE_CASE ) self.assertEqual(TOKENIZER_MAPPING[CustomConfig] ,(CustomTokenizer, None) ) AutoTokenizer.register(_SCREAMING_SNAKE_CASE ,fast_tokenizer_class=_SCREAMING_SNAKE_CASE ) self.assertEqual(TOKENIZER_MAPPING[CustomConfig] ,(CustomTokenizer, CustomTokenizerFast) ) del TOKENIZER_MAPPING._extra_content[CustomConfig] # Can register in one step AutoTokenizer.register( _SCREAMING_SNAKE_CASE ,slow_tokenizer_class=_SCREAMING_SNAKE_CASE ,fast_tokenizer_class=_SCREAMING_SNAKE_CASE ) self.assertEqual(TOKENIZER_MAPPING[CustomConfig] ,(CustomTokenizer, CustomTokenizerFast) ) # Trying to register something existing in the Transformers library will raise an error with self.assertRaises(_SCREAMING_SNAKE_CASE ): AutoTokenizer.register(_SCREAMING_SNAKE_CASE ,fast_tokenizer_class=_SCREAMING_SNAKE_CASE ) # We pass through a bert tokenizer fast cause there is no converter slow to fast for our new toknizer # and that model does not have a tokenizer.json with tempfile.TemporaryDirectory() as tmp_dir: UpperCAmelCase_ : List[str] = BertTokenizerFast.from_pretrained(_SCREAMING_SNAKE_CASE ) bert_tokenizer.save_pretrained(_SCREAMING_SNAKE_CASE ) UpperCAmelCase_ : str = CustomTokenizerFast.from_pretrained(_SCREAMING_SNAKE_CASE ) with tempfile.TemporaryDirectory() as tmp_dir: tokenizer.save_pretrained(_SCREAMING_SNAKE_CASE ) UpperCAmelCase_ : Optional[int] = AutoTokenizer.from_pretrained(_SCREAMING_SNAKE_CASE ) self.assertIsInstance(_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ) UpperCAmelCase_ : Any = AutoTokenizer.from_pretrained(_SCREAMING_SNAKE_CASE ,use_fast=_SCREAMING_SNAKE_CASE ) self.assertIsInstance(_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in TOKENIZER_MAPPING._extra_content: del TOKENIZER_MAPPING._extra_content[CustomConfig] def a__ ( self ) -> Optional[int]: # If remote code is not set, we will time out when asking whether to load the model. with self.assertRaises(_SCREAMING_SNAKE_CASE ): UpperCAmelCase_ : Tuple = AutoTokenizer.from_pretrained('''hf-internal-testing/test_dynamic_tokenizer''' ) # If remote code is disabled, we can't load this config. with self.assertRaises(_SCREAMING_SNAKE_CASE ): UpperCAmelCase_ : Union[str, Any] = AutoTokenizer.from_pretrained( '''hf-internal-testing/test_dynamic_tokenizer''' ,trust_remote_code=_SCREAMING_SNAKE_CASE ) UpperCAmelCase_ : Dict = AutoTokenizer.from_pretrained('''hf-internal-testing/test_dynamic_tokenizer''' ,trust_remote_code=_SCREAMING_SNAKE_CASE ) self.assertTrue(tokenizer.special_attribute_present ) # Test tokenizer can be reloaded. with tempfile.TemporaryDirectory() as tmp_dir: tokenizer.save_pretrained(_SCREAMING_SNAKE_CASE ) UpperCAmelCase_ : int = AutoTokenizer.from_pretrained(_SCREAMING_SNAKE_CASE ,trust_remote_code=_SCREAMING_SNAKE_CASE ) self.assertTrue(reloaded_tokenizer.special_attribute_present ) if is_tokenizers_available(): self.assertEqual(tokenizer.__class__.__name__ ,'''NewTokenizerFast''' ) self.assertEqual(reloaded_tokenizer.__class__.__name__ ,'''NewTokenizerFast''' ) # Test we can also load the slow version UpperCAmelCase_ : List[str] = AutoTokenizer.from_pretrained( '''hf-internal-testing/test_dynamic_tokenizer''' ,trust_remote_code=_SCREAMING_SNAKE_CASE ,use_fast=_SCREAMING_SNAKE_CASE ) self.assertTrue(tokenizer.special_attribute_present ) self.assertEqual(tokenizer.__class__.__name__ ,'''NewTokenizer''' ) # Test tokenizer can be reloaded. with tempfile.TemporaryDirectory() as tmp_dir: tokenizer.save_pretrained(_SCREAMING_SNAKE_CASE ) UpperCAmelCase_ : Optional[int] = AutoTokenizer.from_pretrained(_SCREAMING_SNAKE_CASE ,trust_remote_code=_SCREAMING_SNAKE_CASE ,use_fast=_SCREAMING_SNAKE_CASE ) self.assertEqual(reloaded_tokenizer.__class__.__name__ ,'''NewTokenizer''' ) self.assertTrue(reloaded_tokenizer.special_attribute_present ) else: self.assertEqual(tokenizer.__class__.__name__ ,'''NewTokenizer''' ) self.assertEqual(reloaded_tokenizer.__class__.__name__ ,'''NewTokenizer''' ) @require_tokenizers def a__ ( self ) -> Optional[int]: class __a( _a ): """simple docstring""" lowerCAmelCase = False class __a( _a ): """simple docstring""" lowerCAmelCase = NewTokenizer lowerCAmelCase = False try: AutoConfig.register('''custom''' ,_SCREAMING_SNAKE_CASE ) AutoTokenizer.register(_SCREAMING_SNAKE_CASE ,slow_tokenizer_class=_SCREAMING_SNAKE_CASE ) AutoTokenizer.register(_SCREAMING_SNAKE_CASE ,fast_tokenizer_class=_SCREAMING_SNAKE_CASE ) # If remote code is not set, the default is to use local UpperCAmelCase_ : int = AutoTokenizer.from_pretrained('''hf-internal-testing/test_dynamic_tokenizer''' ) self.assertEqual(tokenizer.__class__.__name__ ,'''NewTokenizerFast''' ) self.assertFalse(tokenizer.special_attribute_present ) UpperCAmelCase_ : Any = AutoTokenizer.from_pretrained('''hf-internal-testing/test_dynamic_tokenizer''' ,use_fast=_SCREAMING_SNAKE_CASE ) self.assertEqual(tokenizer.__class__.__name__ ,'''NewTokenizer''' ) self.assertFalse(tokenizer.special_attribute_present ) # If remote code is disabled, we load the local one. UpperCAmelCase_ : Tuple = AutoTokenizer.from_pretrained( '''hf-internal-testing/test_dynamic_tokenizer''' ,trust_remote_code=_SCREAMING_SNAKE_CASE ) self.assertEqual(tokenizer.__class__.__name__ ,'''NewTokenizerFast''' ) self.assertFalse(tokenizer.special_attribute_present ) UpperCAmelCase_ : List[str] = AutoTokenizer.from_pretrained( '''hf-internal-testing/test_dynamic_tokenizer''' ,trust_remote_code=_SCREAMING_SNAKE_CASE ,use_fast=_SCREAMING_SNAKE_CASE ) self.assertEqual(tokenizer.__class__.__name__ ,'''NewTokenizer''' ) self.assertFalse(tokenizer.special_attribute_present ) # If remote is enabled, we load from the Hub UpperCAmelCase_ : Optional[int] = AutoTokenizer.from_pretrained( '''hf-internal-testing/test_dynamic_tokenizer''' ,trust_remote_code=_SCREAMING_SNAKE_CASE ) self.assertEqual(tokenizer.__class__.__name__ ,'''NewTokenizerFast''' ) self.assertTrue(tokenizer.special_attribute_present ) UpperCAmelCase_ : Any = AutoTokenizer.from_pretrained( '''hf-internal-testing/test_dynamic_tokenizer''' ,trust_remote_code=_SCREAMING_SNAKE_CASE ,use_fast=_SCREAMING_SNAKE_CASE ) self.assertEqual(tokenizer.__class__.__name__ ,'''NewTokenizer''' ) self.assertTrue(tokenizer.special_attribute_present ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in TOKENIZER_MAPPING._extra_content: del TOKENIZER_MAPPING._extra_content[CustomConfig] def a__ ( self ) -> int: UpperCAmelCase_ : Optional[int] = AutoTokenizer.from_pretrained( '''hf-internal-testing/test_dynamic_tokenizer_legacy''' ,trust_remote_code=_SCREAMING_SNAKE_CASE ) self.assertTrue(tokenizer.special_attribute_present ) if is_tokenizers_available(): self.assertEqual(tokenizer.__class__.__name__ ,'''NewTokenizerFast''' ) # Test we can also load the slow version UpperCAmelCase_ : Tuple = AutoTokenizer.from_pretrained( '''hf-internal-testing/test_dynamic_tokenizer_legacy''' ,trust_remote_code=_SCREAMING_SNAKE_CASE ,use_fast=_SCREAMING_SNAKE_CASE ) self.assertTrue(tokenizer.special_attribute_present ) self.assertEqual(tokenizer.__class__.__name__ ,'''NewTokenizer''' ) else: self.assertEqual(tokenizer.__class__.__name__ ,'''NewTokenizer''' ) def a__ ( self ) -> Optional[Any]: with self.assertRaisesRegex( _SCREAMING_SNAKE_CASE ,'''bert-base is not a local folder and is not a valid model identifier''' ): UpperCAmelCase_ : Tuple = AutoTokenizer.from_pretrained('''bert-base''' ) def a__ ( self ) -> List[Any]: with self.assertRaisesRegex( _SCREAMING_SNAKE_CASE ,R'''aaaaaa is not a valid git identifier \(branch name, tag name or commit id\)''' ): UpperCAmelCase_ : str = AutoTokenizer.from_pretrained(_SCREAMING_SNAKE_CASE ,revision='''aaaaaa''' ) def a__ ( self ) -> Any: # Make sure we have cached the tokenizer. UpperCAmelCase_ : Optional[int] = AutoTokenizer.from_pretrained('''hf-internal-testing/tiny-random-bert''' ) with RequestCounter() as counter: UpperCAmelCase_ : List[str] = AutoTokenizer.from_pretrained('''hf-internal-testing/tiny-random-bert''' ) self.assertEqual(counter.get_request_count ,0 ) self.assertEqual(counter.head_request_count ,1 ) self.assertEqual(counter.other_request_count ,0 )
30
0
'''simple docstring''' import argparse import json import os import numpy as np import PIL import requests import tensorflow.keras.applications.efficientnet as efficientnet import torch from huggingface_hub import hf_hub_download from PIL import Image from tensorflow.keras.preprocessing import image from transformers import ( EfficientNetConfig, EfficientNetForImageClassification, EfficientNetImageProcessor, ) from transformers.utils import logging logging.set_verbosity_info() a = logging.get_logger(__name__) a = { "b0": efficientnet.EfficientNetBa, "b1": efficientnet.EfficientNetBa, "b2": efficientnet.EfficientNetBa, "b3": efficientnet.EfficientNetBa, "b4": efficientnet.EfficientNetBa, "b5": efficientnet.EfficientNetBa, "b6": efficientnet.EfficientNetBa, "b7": efficientnet.EfficientNetBa, } a = { "b0": { "hidden_dim": 1280, "width_coef": 1.0, "depth_coef": 1.0, "image_size": 224, "dropout_rate": 0.2, "dw_padding": [], }, "b1": { "hidden_dim": 1280, "width_coef": 1.0, "depth_coef": 1.1, "image_size": 240, "dropout_rate": 0.2, "dw_padding": [16], }, "b2": { "hidden_dim": 1408, "width_coef": 1.1, "depth_coef": 1.2, "image_size": 260, "dropout_rate": 0.3, "dw_padding": [5, 8, 16], }, "b3": { "hidden_dim": 1536, "width_coef": 1.2, "depth_coef": 1.4, "image_size": 300, "dropout_rate": 0.3, "dw_padding": [5, 18], }, "b4": { "hidden_dim": 1792, "width_coef": 1.4, "depth_coef": 1.8, "image_size": 380, "dropout_rate": 0.4, "dw_padding": [6], }, "b5": { "hidden_dim": 2048, "width_coef": 1.6, "depth_coef": 2.2, "image_size": 456, "dropout_rate": 0.4, "dw_padding": [13, 27], }, "b6": { "hidden_dim": 2304, "width_coef": 1.8, "depth_coef": 2.6, "image_size": 528, "dropout_rate": 0.5, "dw_padding": [31], }, "b7": { "hidden_dim": 2560, "width_coef": 2.0, "depth_coef": 3.1, "image_size": 600, "dropout_rate": 0.5, "dw_padding": [18], }, } def __magic_name__ ( __UpperCAmelCase ) -> Tuple: '''simple docstring''' __SCREAMING_SNAKE_CASE = EfficientNetConfig() __SCREAMING_SNAKE_CASE = CONFIG_MAP[model_name]["""hidden_dim"""] __SCREAMING_SNAKE_CASE = CONFIG_MAP[model_name]["""width_coef"""] __SCREAMING_SNAKE_CASE = CONFIG_MAP[model_name]["""depth_coef"""] __SCREAMING_SNAKE_CASE = CONFIG_MAP[model_name]["""image_size"""] __SCREAMING_SNAKE_CASE = CONFIG_MAP[model_name]["""dropout_rate"""] __SCREAMING_SNAKE_CASE = CONFIG_MAP[model_name]["""dw_padding"""] __SCREAMING_SNAKE_CASE = """huggingface/label-files""" __SCREAMING_SNAKE_CASE = """imagenet-1k-id2label.json""" __SCREAMING_SNAKE_CASE = 1000 __SCREAMING_SNAKE_CASE = json.load(open(hf_hub_download(__UpperCAmelCase , __UpperCAmelCase , repo_type="""dataset""" ) , """r""" ) ) __SCREAMING_SNAKE_CASE = {int(__UpperCAmelCase ): v for k, v in idalabel.items()} __SCREAMING_SNAKE_CASE = idalabel __SCREAMING_SNAKE_CASE = {v: k for k, v in idalabel.items()} return config def __magic_name__ ( ) -> List[str]: '''simple docstring''' __SCREAMING_SNAKE_CASE = """http://images.cocodataset.org/val2017/000000039769.jpg""" __SCREAMING_SNAKE_CASE = Image.open(requests.get(__UpperCAmelCase , stream=__UpperCAmelCase ).raw ) return im def __magic_name__ ( __UpperCAmelCase ) -> Tuple: '''simple docstring''' __SCREAMING_SNAKE_CASE = CONFIG_MAP[model_name]["""image_size"""] __SCREAMING_SNAKE_CASE = EfficientNetImageProcessor( size={"""height""": size, """width""": size} , image_mean=[0.4_8_5, 0.4_5_6, 0.4_0_6] , image_std=[0.4_7_8_5_3_9_4_4, 0.4_7_3_2_8_6_4, 0.4_7_4_3_4_1_6_3] , do_center_crop=__UpperCAmelCase , ) return preprocessor def __magic_name__ ( __UpperCAmelCase ) -> List[str]: '''simple docstring''' __SCREAMING_SNAKE_CASE = [v.split("""_""" )[0].split("""block""" )[1] for v in original_param_names if v.startswith("""block""" )] __SCREAMING_SNAKE_CASE = sorted(set(__UpperCAmelCase ) ) __SCREAMING_SNAKE_CASE = len(__UpperCAmelCase ) __SCREAMING_SNAKE_CASE = {b: str(__UpperCAmelCase ) for b, i in zip(__UpperCAmelCase , range(__UpperCAmelCase ) )} __SCREAMING_SNAKE_CASE = [] rename_keys.append(("""stem_conv/kernel:0""", """embeddings.convolution.weight""") ) rename_keys.append(("""stem_bn/gamma:0""", """embeddings.batchnorm.weight""") ) rename_keys.append(("""stem_bn/beta:0""", """embeddings.batchnorm.bias""") ) rename_keys.append(("""stem_bn/moving_mean:0""", """embeddings.batchnorm.running_mean""") ) rename_keys.append(("""stem_bn/moving_variance:0""", """embeddings.batchnorm.running_var""") ) for b in block_names: __SCREAMING_SNAKE_CASE = block_name_mapping[b] rename_keys.append((f"""block{b}_expand_conv/kernel:0""", f"""encoder.blocks.{hf_b}.expansion.expand_conv.weight""") ) rename_keys.append((f"""block{b}_expand_bn/gamma:0""", f"""encoder.blocks.{hf_b}.expansion.expand_bn.weight""") ) rename_keys.append((f"""block{b}_expand_bn/beta:0""", f"""encoder.blocks.{hf_b}.expansion.expand_bn.bias""") ) rename_keys.append( (f"""block{b}_expand_bn/moving_mean:0""", f"""encoder.blocks.{hf_b}.expansion.expand_bn.running_mean""") ) rename_keys.append( (f"""block{b}_expand_bn/moving_variance:0""", f"""encoder.blocks.{hf_b}.expansion.expand_bn.running_var""") ) rename_keys.append( (f"""block{b}_dwconv/depthwise_kernel:0""", f"""encoder.blocks.{hf_b}.depthwise_conv.depthwise_conv.weight""") ) rename_keys.append((f"""block{b}_bn/gamma:0""", f"""encoder.blocks.{hf_b}.depthwise_conv.depthwise_norm.weight""") ) rename_keys.append((f"""block{b}_bn/beta:0""", f"""encoder.blocks.{hf_b}.depthwise_conv.depthwise_norm.bias""") ) rename_keys.append( (f"""block{b}_bn/moving_mean:0""", f"""encoder.blocks.{hf_b}.depthwise_conv.depthwise_norm.running_mean""") ) rename_keys.append( (f"""block{b}_bn/moving_variance:0""", f"""encoder.blocks.{hf_b}.depthwise_conv.depthwise_norm.running_var""") ) rename_keys.append((f"""block{b}_se_reduce/kernel:0""", f"""encoder.blocks.{hf_b}.squeeze_excite.reduce.weight""") ) rename_keys.append((f"""block{b}_se_reduce/bias:0""", f"""encoder.blocks.{hf_b}.squeeze_excite.reduce.bias""") ) rename_keys.append((f"""block{b}_se_expand/kernel:0""", f"""encoder.blocks.{hf_b}.squeeze_excite.expand.weight""") ) rename_keys.append((f"""block{b}_se_expand/bias:0""", f"""encoder.blocks.{hf_b}.squeeze_excite.expand.bias""") ) rename_keys.append( (f"""block{b}_project_conv/kernel:0""", f"""encoder.blocks.{hf_b}.projection.project_conv.weight""") ) rename_keys.append((f"""block{b}_project_bn/gamma:0""", f"""encoder.blocks.{hf_b}.projection.project_bn.weight""") ) rename_keys.append((f"""block{b}_project_bn/beta:0""", f"""encoder.blocks.{hf_b}.projection.project_bn.bias""") ) rename_keys.append( (f"""block{b}_project_bn/moving_mean:0""", f"""encoder.blocks.{hf_b}.projection.project_bn.running_mean""") ) rename_keys.append( (f"""block{b}_project_bn/moving_variance:0""", f"""encoder.blocks.{hf_b}.projection.project_bn.running_var""") ) rename_keys.append(("""top_conv/kernel:0""", """encoder.top_conv.weight""") ) rename_keys.append(("""top_bn/gamma:0""", """encoder.top_bn.weight""") ) rename_keys.append(("""top_bn/beta:0""", """encoder.top_bn.bias""") ) rename_keys.append(("""top_bn/moving_mean:0""", """encoder.top_bn.running_mean""") ) rename_keys.append(("""top_bn/moving_variance:0""", """encoder.top_bn.running_var""") ) __SCREAMING_SNAKE_CASE = {} for item in rename_keys: if item[0] in original_param_names: __SCREAMING_SNAKE_CASE = """efficientnet.""" + item[1] __SCREAMING_SNAKE_CASE = """classifier.weight""" __SCREAMING_SNAKE_CASE = """classifier.bias""" return key_mapping def __magic_name__ ( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> Tuple: '''simple docstring''' for key, value in tf_params.items(): if "normalization" in key: continue __SCREAMING_SNAKE_CASE = key_mapping[key] if "_conv" in key and "kernel" in key: __SCREAMING_SNAKE_CASE = torch.from_numpy(__UpperCAmelCase ).permute(3 , 2 , 0 , 1 ) elif "depthwise_kernel" in key: __SCREAMING_SNAKE_CASE = torch.from_numpy(__UpperCAmelCase ).permute(2 , 3 , 0 , 1 ) elif "kernel" in key: __SCREAMING_SNAKE_CASE = torch.from_numpy(np.transpose(__UpperCAmelCase ) ) else: __SCREAMING_SNAKE_CASE = torch.from_numpy(__UpperCAmelCase ) # Replace HF parameters with original TF model parameters assert hf_params[hf_key].shape == new_hf_value.shape hf_params[hf_key].copy_(__UpperCAmelCase ) @torch.no_grad() def __magic_name__ ( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> str: '''simple docstring''' __SCREAMING_SNAKE_CASE = model_classes[model_name]( include_top=__UpperCAmelCase , weights="""imagenet""" , input_tensor=__UpperCAmelCase , input_shape=__UpperCAmelCase , pooling=__UpperCAmelCase , classes=1000 , classifier_activation="""softmax""" , ) __SCREAMING_SNAKE_CASE = original_model.trainable_variables __SCREAMING_SNAKE_CASE = original_model.non_trainable_variables __SCREAMING_SNAKE_CASE = {param.name: param.numpy() for param in tf_params} for param in tf_non_train_params: __SCREAMING_SNAKE_CASE = param.numpy() __SCREAMING_SNAKE_CASE = list(tf_params.keys() ) # Load HuggingFace model __SCREAMING_SNAKE_CASE = get_efficientnet_config(__UpperCAmelCase ) __SCREAMING_SNAKE_CASE = EfficientNetForImageClassification(__UpperCAmelCase ).eval() __SCREAMING_SNAKE_CASE = hf_model.state_dict() # Create src-to-dst parameter name mapping dictionary print("""Converting parameters...""" ) __SCREAMING_SNAKE_CASE = rename_keys(__UpperCAmelCase ) replace_params(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) # Initialize preprocessor and preprocess input image __SCREAMING_SNAKE_CASE = convert_image_processor(__UpperCAmelCase ) __SCREAMING_SNAKE_CASE = preprocessor(images=prepare_img() , return_tensors="""pt""" ) # HF model inference hf_model.eval() with torch.no_grad(): __SCREAMING_SNAKE_CASE = hf_model(**__UpperCAmelCase ) __SCREAMING_SNAKE_CASE = outputs.logits.detach().numpy() # Original model inference __SCREAMING_SNAKE_CASE = False __SCREAMING_SNAKE_CASE = CONFIG_MAP[model_name]["""image_size"""] __SCREAMING_SNAKE_CASE = prepare_img().resize((image_size, image_size) , resample=PIL.Image.NEAREST ) __SCREAMING_SNAKE_CASE = image.img_to_array(__UpperCAmelCase ) __SCREAMING_SNAKE_CASE = np.expand_dims(__UpperCAmelCase , axis=0 ) __SCREAMING_SNAKE_CASE = original_model.predict(__UpperCAmelCase ) # Check whether original and HF model outputs match -> np.allclose assert np.allclose(__UpperCAmelCase , __UpperCAmelCase , atol=1e-3 ), "The predicted logits are not the same." print("""Model outputs match!""" ) if save_model: # Create folder to save model if not os.path.isdir(__UpperCAmelCase ): os.mkdir(__UpperCAmelCase ) # Save converted model and image processor hf_model.save_pretrained(__UpperCAmelCase ) preprocessor.save_pretrained(__UpperCAmelCase ) if push_to_hub: # Push model and image processor to hub print(f"""Pushing converted {model_name} to the hub...""" ) __SCREAMING_SNAKE_CASE = f"""efficientnet-{model_name}""" preprocessor.push_to_hub(__UpperCAmelCase ) hf_model.push_to_hub(__UpperCAmelCase ) if __name__ == "__main__": a = argparse.ArgumentParser() # Required parameters parser.add_argument( "--model_name", default="b0", type=str, help="Version name of the EfficientNet model you want to convert, select from [b0, b1, b2, b3, b4, b5, b6, b7].", ) parser.add_argument( "--pytorch_dump_folder_path", default="hf_model", type=str, help="Path to the output PyTorch model directory.", ) parser.add_argument("--save_model", action="store_true", help="Save model to local") parser.add_argument("--push_to_hub", action="store_true", help="Push model and image processor to the hub") a = parser.parse_args() convert_efficientnet_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.save_model, args.push_to_hub)
109
from functools import reduce __a = ( '73167176531330624919225119674426574742355349194934' '96983520312774506326239578318016984801869478851843' '85861560789112949495459501737958331952853208805511' '12540698747158523863050715693290963295227443043557' '66896648950445244523161731856403098711121722383113' '62229893423380308135336276614282806444486645238749' '30358907296290491560440772390713810515859307960866' '70172427121883998797908792274921901699720888093776' '65727333001053367881220235421809751254540594752243' '52584907711670556013604839586446706324415722155397' '53697817977846174064955149290862569321978468622482' '83972241375657056057490261407972968652414535100474' '82166370484403199890008895243450658541227588666881' '16427171479924442928230863465674813919123162824586' '17866458359124566529476545682848912883142607690042' '24219022671055626321111109370544217506941658960408' '07198403850962455444362981230987879927244284909188' '84580156166097919133875499200524063689912560717606' '05886116467109405077541002256983155200055935729725' '71636269561882670428252483600823257530420752963450' ) def lowerCamelCase__ ( _lowercase = N ): '''simple docstring''' return max( # mypy cannot properly interpret reduce int(reduce(lambda _lowercase , _lowercase : str(int(_lowercase ) * int(_lowercase ) ) , n[i : i + 13] ) ) for i in range(len(_lowercase ) - 12 ) ) if __name__ == "__main__": print(F"""{solution() = }""")
30
0
"""simple docstring""" import argparse import torch from torch import nn from transformers import SpeechaTextConfig, SpeechaTextForConditionalGeneration def lowerCamelCase ( _snake_case ): UpperCAmelCase__ : Tuple = [ 'encoder.version', 'decoder.version', 'model.encoder.version', 'model.decoder.version', 'decoder.output_projection.weight', '_float_tensor', 'encoder.embed_positions._float_tensor', 'decoder.embed_positions._float_tensor', ] for k in ignore_keys: state_dict.pop(_snake_case ,_snake_case ) def lowerCamelCase ( _snake_case ): UpperCAmelCase__ : Tuple = list(s_dict.keys() ) for key in keys: if "transformer_layers" in key: UpperCAmelCase__ : int = s_dict.pop(_snake_case ) elif "subsample" in key: UpperCAmelCase__ : Union[str, Any] = s_dict.pop(_snake_case ) def lowerCamelCase ( _snake_case ): UpperCAmelCase__ , UpperCAmelCase__ : Optional[Any] = emb.weight.shape UpperCAmelCase__ : Optional[Any] = nn.Linear(_snake_case ,_snake_case ,bias=_snake_case ) UpperCAmelCase__ : Tuple = emb.weight.data return lin_layer def lowerCamelCase ( _snake_case ,_snake_case ): UpperCAmelCase__ : List[str] = torch.load(_snake_case ,map_location='cpu' ) UpperCAmelCase__ : Union[str, Any] = mam_aaa['args'] UpperCAmelCase__ : List[Any] = mam_aaa['model'] UpperCAmelCase__ : str = state_dict['decoder.output_projection.weight'] remove_ignore_keys_(_snake_case ) rename_keys(_snake_case ) UpperCAmelCase__ : Union[str, Any] = state_dict['decoder.embed_tokens.weight'].shape[0] UpperCAmelCase__ : Optional[int] = args.share_decoder_input_output_embed UpperCAmelCase__ : Tuple = [int(_snake_case ) for i in args.conv_kernel_sizes.split(',' )] UpperCAmelCase__ : List[Any] = SpeechaTextConfig( vocab_size=_snake_case ,max_source_positions=args.max_source_positions ,max_target_positions=args.max_target_positions ,encoder_layers=args.encoder_layers ,decoder_layers=args.decoder_layers ,encoder_attention_heads=args.encoder_attention_heads ,decoder_attention_heads=args.decoder_attention_heads ,encoder_ffn_dim=args.encoder_ffn_embed_dim ,decoder_ffn_dim=args.decoder_ffn_embed_dim ,d_model=args.encoder_embed_dim ,dropout=args.dropout ,attention_dropout=args.attention_dropout ,activation_dropout=args.activation_dropout ,activation_function='relu' ,num_conv_layers=len(_snake_case ) ,conv_channels=args.conv_channels ,conv_kernel_sizes=_snake_case ,input_feat_per_channel=args.input_feat_per_channel ,input_channels=args.input_channels ,tie_word_embeddings=_snake_case ,num_beams=5 ,max_length=200 ,use_cache=_snake_case ,decoder_start_token_id=2 ,early_stopping=_snake_case ,) UpperCAmelCase__ : Optional[Any] = SpeechaTextForConditionalGeneration(_snake_case ) UpperCAmelCase__ , UpperCAmelCase__ : List[str] = model.model.load_state_dict(_snake_case ,strict=_snake_case ) if len(_snake_case ) > 0 and not set(_snake_case ) <= { "encoder.embed_positions.weights", "decoder.embed_positions.weights", }: raise ValueError( 'Only `encoder.embed_positions.weights` and `decoder.embed_positions.weights` are allowed to be missing,' F''' but all the following weights are missing {missing}''' ) if tie_embeds: UpperCAmelCase__ : Any = make_linear_from_emb(model.model.decoder.embed_tokens ) else: UpperCAmelCase__ : Union[str, Any] = lm_head_weights model.save_pretrained(_snake_case ) if __name__ == "__main__": UpperCamelCase__ = argparse.ArgumentParser() # Required parameters parser.add_argument('--fairseq_path', type=str, help='Path to the fairseq model (.pt) file.') parser.add_argument('--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model.') UpperCamelCase__ = parser.parse_args() convert_fairseq_sat_checkpoint_to_tfms(args.fairseq_path, args.pytorch_dump_folder_path)
110
from decimal import Decimal, getcontext from math import ceil, factorial def lowerCamelCase__ ( _lowercase ): '''simple docstring''' if not isinstance(_lowercase , _lowercase ): raise TypeError('''Undefined for non-integers''' ) elif precision < 1: raise ValueError('''Undefined for non-natural numbers''' ) UpperCAmelCase_ : Tuple = precision UpperCAmelCase_ : Optional[Any] = ceil(precision / 14 ) UpperCAmelCase_ : int = 426880 * Decimal(10005 ).sqrt() UpperCAmelCase_ : Tuple = 1 UpperCAmelCase_ : List[Any] = 13591409 UpperCAmelCase_ : Optional[Any] = Decimal(_lowercase ) for k in range(1 , _lowercase ): UpperCAmelCase_ : List[str] = factorial(6 * k ) // (factorial(3 * k ) * factorial(_lowercase ) ** 3) linear_term += 545140134 exponential_term *= -262537412640768000 partial_sum += Decimal(multinomial_term * linear_term ) / exponential_term return str(constant_term / partial_sum )[:-1] if __name__ == "__main__": __a = 50 print(F"""The first {n} digits of pi is: {pi(n)}""")
30
0
'''simple docstring''' from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging lowerCAmelCase_ = logging.get_logger(__name__) lowerCAmelCase_ = { 'distilbert-base-uncased': 'https://huggingface.co/distilbert-base-uncased/resolve/main/config.json', 'distilbert-base-uncased-distilled-squad': ( 'https://huggingface.co/distilbert-base-uncased-distilled-squad/resolve/main/config.json' ), 'distilbert-base-cased': 'https://huggingface.co/distilbert-base-cased/resolve/main/config.json', 'distilbert-base-cased-distilled-squad': ( 'https://huggingface.co/distilbert-base-cased-distilled-squad/resolve/main/config.json' ), 'distilbert-base-german-cased': 'https://huggingface.co/distilbert-base-german-cased/resolve/main/config.json', 'distilbert-base-multilingual-cased': ( 'https://huggingface.co/distilbert-base-multilingual-cased/resolve/main/config.json' ), 'distilbert-base-uncased-finetuned-sst-2-english': ( 'https://huggingface.co/distilbert-base-uncased-finetuned-sst-2-english/resolve/main/config.json' ), } class UpperCAmelCase_ ( _a ): """simple docstring""" __SCREAMING_SNAKE_CASE = '''distilbert''' __SCREAMING_SNAKE_CASE = { '''hidden_size''': '''dim''', '''num_attention_heads''': '''n_heads''', '''num_hidden_layers''': '''n_layers''', } def __init__( self , lowerCamelCase=3_05_22 , lowerCamelCase=5_12 , lowerCamelCase=False , lowerCamelCase=6 , lowerCamelCase=12 , lowerCamelCase=7_68 , lowerCamelCase=4 * 7_68 , lowerCamelCase=0.1 , lowerCamelCase=0.1 , lowerCamelCase="gelu" , lowerCamelCase=0.02 , lowerCamelCase=0.1 , lowerCamelCase=0.2 , lowerCamelCase=0 , **lowerCamelCase , ) -> Tuple: '''simple docstring''' UpperCamelCase : Dict = vocab_size UpperCamelCase : List[Any] = max_position_embeddings UpperCamelCase : Dict = sinusoidal_pos_embds UpperCamelCase : Optional[Any] = n_layers UpperCamelCase : Any = n_heads UpperCamelCase : Optional[int] = dim UpperCamelCase : str = hidden_dim UpperCamelCase : Optional[Any] = dropout UpperCamelCase : Tuple = attention_dropout UpperCamelCase : Union[str, Any] = activation UpperCamelCase : Union[str, Any] = initializer_range UpperCamelCase : Dict = qa_dropout UpperCamelCase : Optional[int] = seq_classif_dropout super().__init__(**_SCREAMING_SNAKE_CASE , pad_token_id=_SCREAMING_SNAKE_CASE ) class UpperCAmelCase_ ( _a ): """simple docstring""" @property def SCREAMING_SNAKE_CASE__ ( self ) -> Mapping[str, Mapping[int, str]]: '''simple docstring''' if self.task == "multiple-choice": UpperCamelCase : int = {0: '''batch''', 1: '''choice''', 2: '''sequence'''} else: UpperCamelCase : List[Any] = {0: '''batch''', 1: '''sequence'''} return OrderedDict( [ ("input_ids", dynamic_axis), ("attention_mask", dynamic_axis), ] )
173
from __future__ import annotations import math __a = '2020.9.26' __a = 'xcodz-dot, cclaus, dhruvmanila' def lowerCamelCase__ ( _lowercase , _lowercase , _lowercase , _lowercase , _lowercase ): '''simple docstring''' if not all(isinstance(_lowercase , (float, int) ) for val in locals().values() ): UpperCAmelCase_ : Optional[int] = f'''Input values must either be float or int: {list(locals().values() )}''' raise TypeError(_lowercase ) UpperCAmelCase_ : Tuple = ((x * distance) / (z + distance)) * scale UpperCAmelCase_ : str = ((y * distance) / (z + distance)) * scale return projected_x, projected_y def lowerCamelCase__ ( _lowercase , _lowercase , _lowercase , _lowercase , _lowercase ): '''simple docstring''' if not isinstance(_lowercase , _lowercase ): raise TypeError('''Axis must be a str''' ) UpperCAmelCase_ : Optional[Any] = locals() del input_variables["axis"] if not all(isinstance(_lowercase , (float, int) ) for val in input_variables.values() ): UpperCAmelCase_ : List[Any] = ( '''Input values except axis must either be float or int: ''' f'''{list(input_variables.values() )}''' ) raise TypeError(_lowercase ) UpperCAmelCase_ : Dict = (angle % 360) / 450 * 180 / math.pi if axis == "z": UpperCAmelCase_ : Optional[int] = x * math.cos(_lowercase ) - y * math.sin(_lowercase ) UpperCAmelCase_ : List[Any] = y * math.cos(_lowercase ) + x * math.sin(_lowercase ) UpperCAmelCase_ : Optional[int] = z elif axis == "x": UpperCAmelCase_ : Any = y * math.cos(_lowercase ) - z * math.sin(_lowercase ) UpperCAmelCase_ : int = z * math.cos(_lowercase ) + y * math.sin(_lowercase ) UpperCAmelCase_ : Dict = x elif axis == "y": UpperCAmelCase_ : Union[str, Any] = x * math.cos(_lowercase ) - z * math.sin(_lowercase ) UpperCAmelCase_ : Optional[int] = z * math.cos(_lowercase ) + x * math.sin(_lowercase ) UpperCAmelCase_ : Optional[int] = y else: raise ValueError('''not a valid axis, choose one of \'x\', \'y\', \'z\'''' ) return new_x, new_y, new_z if __name__ == "__main__": import doctest doctest.testmod() print(F"""{convert_to_ad(1.0, 2.0, 3.0, 10.0, 10.0) = }""") print(F"""{rotate(1.0, 2.0, 3.0, "y", 90.0) = }""")
30
0
import unittest from transformers.testing_utils import require_bsa from transformers.utils import is_bsa_available from ...test_feature_extraction_common import FeatureExtractionSavingTestMixin if is_bsa_available(): from transformers import MarkupLMFeatureExtractor class lowercase_ (unittest.TestCase ): def __init__( self : Any , snake_case__ : List[Any] ): """simple docstring""" SCREAMING_SNAKE_CASE_ = parent def __a ( self : Optional[Any] ): """simple docstring""" return {} def _a ( )-> Optional[int]: SCREAMING_SNAKE_CASE_ = '''<HTML> <HEAD> <TITLE>sample document</TITLE> </HEAD> <BODY BGCOLOR="FFFFFF"> <HR> <a href="http://google.com">Goog</a> <H1>This is one header</H1> <H2>This is a another Header</H2> <P>Travel from <P> <B>SFO to JFK</B> <BR> <B><I>on May 2, 2015 at 2:00 pm. For details go to confirm.com </I></B> <HR> <div style="color:#0000FF"> <h3>Traveler <b> name </b> is <p> John Doe </p> </div>''' SCREAMING_SNAKE_CASE_ = ''' <!DOCTYPE html> <html> <body> <h1>My First Heading</h1> <p>My first paragraph.</p> </body> </html> ''' return [html_string_a, html_string_a] @require_bsa class lowercase_ (_a , unittest.TestCase ): lowerCAmelCase__ =MarkupLMFeatureExtractor if is_bsa_available() else None def __a ( self : Tuple ): """simple docstring""" SCREAMING_SNAKE_CASE_ = MarkupLMFeatureExtractionTester(self ) @property def __a ( self : int ): """simple docstring""" return self.feature_extract_tester.prepare_feat_extract_dict() def __a ( self : Optional[int] ): """simple docstring""" SCREAMING_SNAKE_CASE_ = self.feature_extraction_class() # Test not batched input SCREAMING_SNAKE_CASE_ = get_html_strings()[0] SCREAMING_SNAKE_CASE_ = feature_extractor(_SCREAMING_SNAKE_CASE ) # fmt: off SCREAMING_SNAKE_CASE_ = [['''sample document''', '''Goog''', '''This is one header''', '''This is a another Header''', '''Travel from''', '''SFO to JFK''', '''on May 2, 2015 at 2:00 pm. For details go to confirm.com''', '''Traveler''', '''name''', '''is''', '''John Doe''']] SCREAMING_SNAKE_CASE_ = [['''/html/head/title''', '''/html/body/a''', '''/html/body/h1''', '''/html/body/h2''', '''/html/body/p''', '''/html/body/p/p/b[1]''', '''/html/body/p/p/b[2]/i''', '''/html/body/p/p/div/h3''', '''/html/body/p/p/div/h3/b''', '''/html/body/p/p/div/h3''', '''/html/body/p/p/div/h3/p''']] # fmt: on self.assertEqual(encoding.nodes , _SCREAMING_SNAKE_CASE ) self.assertEqual(encoding.xpaths , _SCREAMING_SNAKE_CASE ) # Test batched SCREAMING_SNAKE_CASE_ = get_html_strings() SCREAMING_SNAKE_CASE_ = feature_extractor(_SCREAMING_SNAKE_CASE ) # fmt: off SCREAMING_SNAKE_CASE_ = expected_nodes + [['''My First Heading''', '''My first paragraph.''']] SCREAMING_SNAKE_CASE_ = expected_xpaths + [['''/html/body/h1''', '''/html/body/p''']] self.assertEqual(len(encoding.nodes ) , 2 ) self.assertEqual(len(encoding.xpaths ) , 2 ) self.assertEqual(encoding.nodes , _SCREAMING_SNAKE_CASE ) self.assertEqual(encoding.xpaths , _SCREAMING_SNAKE_CASE )
360
# Lint as: python3 # pylint: enable=line-too-long # pylint: disable=g-import-not-at-top,g-bad-import-order,wrong-import-position __a = '2.13.1' import platform import pyarrow from packaging import version if version.parse(platform.python_version()) < version.parse('3.7'): raise ImportWarning( 'To use `datasets`, Python>=3.7 is required, and the current version of Python doesn\'t match this condition.' ) if version.parse(pyarrow.__version__).major < 8: raise ImportWarning( 'To use `datasets`, the module `pyarrow>=8.0.0` is required, and the current version of `pyarrow` doesn\'t match this condition.\n' 'If you are running this in a Google Colab, you should probably just restart the runtime to use the right version of `pyarrow`.' ) del platform del pyarrow del version from .arrow_dataset import Dataset from .arrow_reader import ReadInstruction from .builder import ArrowBasedBuilder, BeamBasedBuilder, BuilderConfig, DatasetBuilder, GeneratorBasedBuilder from .combine import concatenate_datasets, interleave_datasets from .dataset_dict import DatasetDict, IterableDatasetDict from .download import * from .features import * from .fingerprint import disable_caching, enable_caching, is_caching_enabled, set_caching_enabled from .info import DatasetInfo, MetricInfo from .inspect import ( get_dataset_config_info, get_dataset_config_names, get_dataset_infos, get_dataset_split_names, inspect_dataset, inspect_metric, list_datasets, list_metrics, ) from .iterable_dataset import IterableDataset from .load import load_dataset, load_dataset_builder, load_from_disk, load_metric from .metric import Metric from .splits import ( NamedSplit, NamedSplitAll, Split, SplitBase, SplitDict, SplitGenerator, SplitInfo, SubSplitInfo, percent, ) from .tasks import * from .utils import * from .utils import logging # deprecated modules from datasets import arrow_dataset as _arrow_dataset # isort:skip from datasets import utils as _utils # isort:skip from datasets.utils import download_manager as _deprecated_download_manager # isort:skip __a = concatenate_datasets __a = DownloadConfig __a = DownloadManager __a = DownloadMode __a = DownloadConfig __a = DownloadMode __a = DownloadManager del _arrow_dataset, _utils, _deprecated_download_manager
30
0
"""simple docstring""" import argparse import json import os import evaluate import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType from accelerate.utils.deepspeed import DummyOptim, DummyScheduler SCREAMING_SNAKE_CASE_ = 16 SCREAMING_SNAKE_CASE_ = 32 def A__ ( A__ , A__ = 16 , A__ = "bert-base-cased" ) -> List[str]: '''simple docstring''' _UpperCAmelCase = AutoTokenizer.from_pretrained(_lowercase ) _UpperCAmelCase = load_dataset("glue" , "mrpc" ) def tokenize_function(A__ ): # max_length=None => use the model max length (it's actually the default) _UpperCAmelCase = tokenizer(examples["sentence1"] , examples["sentence2"] , truncation=_lowercase , max_length=_lowercase ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset _UpperCAmelCase = datasets.map( _lowercase , batched=_lowercase , remove_columns=["idx", "sentence1", "sentence2"] , load_from_cache_file=_lowercase ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library _UpperCAmelCase = tokenized_datasets.rename_column("label" , "labels" ) def collate_fn(A__ ): # On TPU it's best to pad everything to the same length or training will be very slow. if accelerator.distributed_type == DistributedType.TPU: return tokenizer.pad(_lowercase , padding="max_length" , max_length=128 , return_tensors="pt" ) return tokenizer.pad(_lowercase , padding="longest" , return_tensors="pt" ) # Instantiate dataloaders. _UpperCAmelCase = DataLoader( tokenized_datasets["train"] , shuffle=_lowercase , collate_fn=_lowercase , batch_size=_lowercase ) _UpperCAmelCase = DataLoader( tokenized_datasets["validation"] , shuffle=_lowercase , collate_fn=_lowercase , batch_size=_lowercase ) return train_dataloader, eval_dataloader def A__ ( A__ , A__ , A__ , A__ ) -> Optional[int]: '''simple docstring''' model.eval() _UpperCAmelCase = 0 for step, batch in enumerate(_lowercase ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) with torch.no_grad(): _UpperCAmelCase = model(**_lowercase ) _UpperCAmelCase = outputs.logits.argmax(dim=-1 ) # It is slightly faster to call this once, than multiple times _UpperCAmelCase = accelerator.gather( (predictions, batch["labels"]) ) # If we are in a multiprocess environment, the last batch has duplicates if accelerator.use_distributed: if step == len(_lowercase ) - 1: _UpperCAmelCase = predictions[: len(eval_dataloader.dataset ) - samples_seen] _UpperCAmelCase = references[: len(eval_dataloader.dataset ) - samples_seen] else: samples_seen += references.shape[0] metric.add_batch( predictions=_lowercase , references=_lowercase , ) _UpperCAmelCase = metric.compute() return eval_metric["accuracy"] def A__ ( A__ , A__ ) -> List[Any]: '''simple docstring''' _UpperCAmelCase = Accelerator() # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs _UpperCAmelCase = config['''lr'''] _UpperCAmelCase = int(config["num_epochs"] ) _UpperCAmelCase = int(config["seed"] ) _UpperCAmelCase = int(config["batch_size"] ) _UpperCAmelCase = args.model_name_or_path set_seed(_lowercase ) _UpperCAmelCase = get_dataloaders(_lowercase , _lowercase , _lowercase ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) _UpperCAmelCase = AutoModelForSequenceClassification.from_pretrained(_lowercase , return_dict=_lowercase ) # Instantiate optimizer _UpperCAmelCase = ( AdamW if accelerator.state.deepspeed_plugin is None or '''optimizer''' not in accelerator.state.deepspeed_plugin.deepspeed_config else DummyOptim ) _UpperCAmelCase = optimizer_cls(params=model.parameters() , lr=_lowercase ) if accelerator.state.deepspeed_plugin is not None: _UpperCAmelCase = accelerator.state.deepspeed_plugin.deepspeed_config[ '''gradient_accumulation_steps''' ] else: _UpperCAmelCase = 1 _UpperCAmelCase = (len(_lowercase ) * num_epochs) // gradient_accumulation_steps # Instantiate scheduler if ( accelerator.state.deepspeed_plugin is None or "scheduler" not in accelerator.state.deepspeed_plugin.deepspeed_config ): _UpperCAmelCase = get_linear_schedule_with_warmup( optimizer=_lowercase , num_warmup_steps=0 , num_training_steps=_lowercase , ) else: _UpperCAmelCase = DummyScheduler(_lowercase , total_num_steps=_lowercase , warmup_num_steps=0 ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. _UpperCAmelCase = accelerator.prepare( _lowercase , _lowercase , _lowercase , _lowercase , _lowercase ) # We need to keep track of how many total steps we have iterated over _UpperCAmelCase = 0 # We also need to keep track of the stating epoch so files are named properly _UpperCAmelCase = 0 _UpperCAmelCase = evaluate.load("glue" , "mrpc" ) _UpperCAmelCase = num_epochs if args.partial_train_epoch is not None: _UpperCAmelCase = args.partial_train_epoch if args.resume_from_checkpoint: accelerator.load_state(args.resume_from_checkpoint ) _UpperCAmelCase = args.resume_from_checkpoint.split("epoch_" )[1] _UpperCAmelCase = '''''' for char in epoch_string: if char.isdigit(): state_epoch_num += char else: break _UpperCAmelCase = int(_lowercase ) + 1 _UpperCAmelCase = evaluation_loop(_lowercase , _lowercase , _lowercase , _lowercase ) accelerator.print("resumed checkpoint performance:" , _lowercase ) accelerator.print("resumed checkpoint\'s scheduler\'s lr:" , lr_scheduler.get_lr()[0] ) accelerator.print("resumed optimizers\'s lr:" , optimizer.param_groups[0]["lr"] ) with open(os.path.join(args.output_dir , F"""state_{starting_epoch-1}.json""" ) , "r" ) as f: _UpperCAmelCase = json.load(_lowercase ) assert resumed_state["accuracy"] == accuracy, "Accuracy mismatch, loading from checkpoint failed" assert ( resumed_state["lr"] == lr_scheduler.get_lr()[0] ), "Scheduler learning rate mismatch, loading from checkpoint failed" assert ( resumed_state["optimizer_lr"] == optimizer.param_groups[0]["lr"] ), "Optimizer learning rate mismatch, loading from checkpoint failed" assert resumed_state["epoch"] == starting_epoch - 1, "Epoch mismatch, loading from checkpoint failed" return # Now we train the model _UpperCAmelCase = {} for epoch in range(_lowercase , _lowercase ): model.train() for step, batch in enumerate(_lowercase ): _UpperCAmelCase = model(**_lowercase ) _UpperCAmelCase = outputs.loss _UpperCAmelCase = loss / gradient_accumulation_steps accelerator.backward(_lowercase ) if step % gradient_accumulation_steps == 0: optimizer.step() lr_scheduler.step() optimizer.zero_grad() overall_step += 1 _UpperCAmelCase = F"""epoch_{epoch}""" _UpperCAmelCase = os.path.join(args.output_dir , _lowercase ) accelerator.save_state(_lowercase ) _UpperCAmelCase = evaluation_loop(_lowercase , _lowercase , _lowercase , _lowercase ) _UpperCAmelCase = accuracy _UpperCAmelCase = lr_scheduler.get_lr()[0] _UpperCAmelCase = optimizer.param_groups[0]['''lr'''] _UpperCAmelCase = epoch _UpperCAmelCase = overall_step accelerator.print(F"""epoch {epoch}:""" , _lowercase ) accelerator.wait_for_everyone() if accelerator.is_main_process: with open(os.path.join(args.output_dir , F"""state_{epoch}.json""" ) , "w" ) as f: json.dump(_lowercase , _lowercase ) def A__ ( ) -> List[Any]: '''simple docstring''' _UpperCAmelCase = argparse.ArgumentParser(description="Simple example of training script tracking peak GPU memory usage." ) parser.add_argument( "--model_name_or_path" , type=_lowercase , default="bert-base-cased" , help="Path to pretrained model or model identifier from huggingface.co/models." , required=_lowercase , ) parser.add_argument( "--output_dir" , type=_lowercase , default="." , help="Optional save directory where all checkpoint folders will be stored. Default is the current working directory." , ) parser.add_argument( "--resume_from_checkpoint" , type=_lowercase , default=_lowercase , help="If the training should continue from a checkpoint folder." , ) parser.add_argument( "--partial_train_epoch" , type=_lowercase , default=_lowercase , help="If passed, the training will stop after this number of epochs." , ) parser.add_argument( "--num_epochs" , type=_lowercase , default=2 , help="Number of train epochs." , ) _UpperCAmelCase = parser.parse_args() _UpperCAmelCase = {'''lr''': 2E-5, '''num_epochs''': args.num_epochs, '''seed''': 42, '''batch_size''': 16} training_function(_lowercase , _lowercase ) if __name__ == "__main__": main()
426
def lowerCamelCase__ ( _lowercase , _lowercase ): '''simple docstring''' while a != 0: UpperCAmelCase_, UpperCAmelCase_ : Optional[int] = b % a, a return b def lowerCamelCase__ ( _lowercase , _lowercase ): '''simple docstring''' if gcd(_lowercase , _lowercase ) != 1: UpperCAmelCase_ : int = f'''mod inverse of {a!r} and {m!r} does not exist''' raise ValueError(_lowercase ) UpperCAmelCase_, UpperCAmelCase_, UpperCAmelCase_ : Union[str, Any] = 1, 0, a UpperCAmelCase_, UpperCAmelCase_, UpperCAmelCase_ : Dict = 0, 1, m while va != 0: UpperCAmelCase_ : List[Any] = ua // va UpperCAmelCase_, UpperCAmelCase_, UpperCAmelCase_, UpperCAmelCase_, UpperCAmelCase_, UpperCAmelCase_ : Any = (ua - q * va), (ua - q * va), (ua - q * va), va, va, va return ua % m
30
0
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging __lowercase : List[str] = logging.get_logger(__name__) __lowercase : Tuple = { 'facebook/s2t-small-librispeech-asr': ( 'https://huggingface.co/facebook/s2t-small-librispeech-asr/resolve/main/config.json' ), # See all Speech2Text models at https://huggingface.co/models?filter=speech_to_text } class __UpperCamelCase ( _a ): A_ = "speech_to_text" A_ = ["past_key_values"] A_ = {"num_attention_heads": "encoder_attention_heads", "hidden_size": "d_model"} def __init__( self , __a=1_0000 , __a=12 , __a=2048 , __a=4 , __a=6 , __a=2048 , __a=4 , __a=0.0 , __a=0.0 , __a=True , __a=True , __a="relu" , __a=256 , __a=0.1 , __a=0.0 , __a=0.0 , __a=0.02 , __a=2 , __a=True , __a=1 , __a=0 , __a=2 , __a=6000 , __a=1024 , __a=2 , __a=(5, 5) , __a=1024 , __a=80 , __a=1 , **__a , ): '''simple docstring''' __a : Dict = vocab_size __a : Any = d_model __a : Union[str, Any] = encoder_ffn_dim __a : List[str] = encoder_layers __a : Tuple = encoder_attention_heads __a : List[str] = decoder_ffn_dim __a : int = decoder_layers __a : int = decoder_attention_heads __a : Tuple = dropout __a : Any = attention_dropout __a : Dict = activation_dropout __a : Optional[Any] = activation_function __a : int = init_std __a : Dict = encoder_layerdrop __a : List[str] = decoder_layerdrop __a : Optional[int] = use_cache __a : List[str] = encoder_layers __a : Optional[int] = scale_embedding # scale factor will be sqrt(d_model) if True __a : str = max_source_positions __a : Any = max_target_positions __a : Optional[int] = num_conv_layers __a : Optional[int] = list(_SCREAMING_SNAKE_CASE ) __a : str = conv_channels __a : List[Any] = input_feat_per_channel __a : List[str] = input_channels if len(self.conv_kernel_sizes ) != self.num_conv_layers: raise ValueError( 'Configuration for convolutional module is incorrect. ' 'It is required that `len(config.conv_kernel_sizes)` == `config.num_conv_layers` ' f"""but is `len(config.conv_kernel_sizes) = {len(self.conv_kernel_sizes )}`, """ f"""`config.num_conv_layers = {self.num_conv_layers}`.""" ) super().__init__( pad_token_id=_SCREAMING_SNAKE_CASE , bos_token_id=_SCREAMING_SNAKE_CASE , eos_token_id=_SCREAMING_SNAKE_CASE , is_encoder_decoder=_SCREAMING_SNAKE_CASE , decoder_start_token_id=_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE , )
476
# Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import numpy as np import torch from ..models.clipseg import CLIPSegForImageSegmentation from ..utils import is_vision_available, requires_backends from .base import PipelineTool if is_vision_available(): from PIL import Image class __a( _a ): """simple docstring""" lowerCAmelCase = ( '''This is a tool that creates a segmentation mask of an image according to a label. It cannot create an image.''' '''It takes two arguments named `image` which should be the original image, and `label` which should be a text ''' '''describing the elements what should be identified in the segmentation mask. The tool returns the mask.''' ) lowerCAmelCase = '''CIDAS/clipseg-rd64-refined''' lowerCAmelCase = '''image_segmenter''' lowerCAmelCase = CLIPSegForImageSegmentation lowerCAmelCase = ['''image''', '''text'''] lowerCAmelCase = ['''image'''] def __init__( self ,*_SCREAMING_SNAKE_CASE ,**_SCREAMING_SNAKE_CASE ) -> Dict: requires_backends(self ,['''vision'''] ) super().__init__(*_SCREAMING_SNAKE_CASE ,**_SCREAMING_SNAKE_CASE ) def a__ ( self ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ) -> Tuple: return self.pre_processor(text=[label] ,images=[image] ,padding=_SCREAMING_SNAKE_CASE ,return_tensors='''pt''' ) def a__ ( self ,_SCREAMING_SNAKE_CASE ) -> str: with torch.no_grad(): UpperCAmelCase_ : Dict = self.model(**_SCREAMING_SNAKE_CASE ).logits return logits def a__ ( self ,_SCREAMING_SNAKE_CASE ) -> Dict: UpperCAmelCase_ : Dict = outputs.cpu().detach().numpy() UpperCAmelCase_ : Any = 0 UpperCAmelCase_ : List[Any] = 1 return Image.fromarray((array * 255).astype(np.uinta ) )
30
0
import os import shutil import sys import tempfile import unittest from pathlib import Path import pytest import transformers from transformers import ( BERT_PRETRAINED_CONFIG_ARCHIVE_MAP, GPT2_PRETRAINED_CONFIG_ARCHIVE_MAP, AutoTokenizer, BertConfig, BertTokenizer, BertTokenizerFast, CTRLTokenizer, GPTaTokenizer, GPTaTokenizerFast, PreTrainedTokenizerFast, RobertaTokenizer, RobertaTokenizerFast, is_tokenizers_available, ) from transformers.models.auto.configuration_auto import CONFIG_MAPPING, AutoConfig from transformers.models.auto.tokenization_auto import ( TOKENIZER_MAPPING, get_tokenizer_config, tokenizer_class_from_name, ) from transformers.models.roberta.configuration_roberta import RobertaConfig from transformers.testing_utils import ( DUMMY_DIFF_TOKENIZER_IDENTIFIER, DUMMY_UNKNOWN_IDENTIFIER, SMALL_MODEL_IDENTIFIER, RequestCounter, require_tokenizers, slow, ) sys.path.append(str(Path(__file__).parent.parent.parent.parent / 'utils')) from test_module.custom_configuration import CustomConfig # noqa E402 from test_module.custom_tokenization import CustomTokenizer # noqa E402 if is_tokenizers_available(): from test_module.custom_tokenization_fast import CustomTokenizerFast class lowerCamelCase__ ( unittest.TestCase ): def lowerCamelCase_ ( self : str ): '''simple docstring''' lowerCamelCase__: Tuple = 0 @slow def lowerCamelCase_ ( self : Optional[int] ): '''simple docstring''' for model_name in (x for x in BERT_PRETRAINED_CONFIG_ARCHIVE_MAP.keys() if "japanese" not in x): lowerCamelCase__: Optional[Any] = AutoTokenizer.from_pretrained(_SCREAMING_SNAKE_CASE ) self.assertIsNotNone(_SCREAMING_SNAKE_CASE ) self.assertIsInstance(_SCREAMING_SNAKE_CASE , (BertTokenizer, BertTokenizerFast) ) self.assertGreater(len(_SCREAMING_SNAKE_CASE ) , 0 ) for model_name in GPT2_PRETRAINED_CONFIG_ARCHIVE_MAP.keys(): lowerCamelCase__: Union[str, Any] = AutoTokenizer.from_pretrained(_SCREAMING_SNAKE_CASE ) self.assertIsNotNone(_SCREAMING_SNAKE_CASE ) self.assertIsInstance(_SCREAMING_SNAKE_CASE , (GPTaTokenizer, GPTaTokenizerFast) ) self.assertGreater(len(_SCREAMING_SNAKE_CASE ) , 0 ) def lowerCamelCase_ ( self : str ): '''simple docstring''' lowerCamelCase__: List[str] = AutoTokenizer.from_pretrained(_SCREAMING_SNAKE_CASE ) self.assertIsInstance(_SCREAMING_SNAKE_CASE , (BertTokenizer, BertTokenizerFast) ) self.assertEqual(tokenizer.vocab_size , 12 ) def lowerCamelCase_ ( self : Dict ): '''simple docstring''' lowerCamelCase__: Any = AutoTokenizer.from_pretrained(_SCREAMING_SNAKE_CASE ) self.assertIsInstance(_SCREAMING_SNAKE_CASE , (RobertaTokenizer, RobertaTokenizerFast) ) self.assertEqual(tokenizer.vocab_size , 20 ) def lowerCamelCase_ ( self : Any ): '''simple docstring''' lowerCamelCase__: int = AutoConfig.from_pretrained(_SCREAMING_SNAKE_CASE ) self.assertIsInstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) # Check that tokenizer_type ≠ model_type lowerCamelCase__: Optional[int] = AutoTokenizer.from_pretrained(_SCREAMING_SNAKE_CASE , config=_SCREAMING_SNAKE_CASE ) self.assertIsInstance(_SCREAMING_SNAKE_CASE , (BertTokenizer, BertTokenizerFast) ) self.assertEqual(tokenizer.vocab_size , 12 ) def lowerCamelCase_ ( self : Optional[int] ): '''simple docstring''' with tempfile.TemporaryDirectory() as tmp_dir: shutil.copy("""./tests/fixtures/vocab.txt""" , os.path.join(_SCREAMING_SNAKE_CASE , """vocab.txt""" ) ) lowerCamelCase__: Optional[int] = AutoTokenizer.from_pretrained(_SCREAMING_SNAKE_CASE , tokenizer_type="""bert""" , use_fast=_SCREAMING_SNAKE_CASE ) self.assertIsInstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) with tempfile.TemporaryDirectory() as tmp_dir: shutil.copy("""./tests/fixtures/vocab.json""" , os.path.join(_SCREAMING_SNAKE_CASE , """vocab.json""" ) ) shutil.copy("""./tests/fixtures/merges.txt""" , os.path.join(_SCREAMING_SNAKE_CASE , """merges.txt""" ) ) lowerCamelCase__: Optional[Any] = AutoTokenizer.from_pretrained(_SCREAMING_SNAKE_CASE , tokenizer_type="""gpt2""" , use_fast=_SCREAMING_SNAKE_CASE ) self.assertIsInstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) @require_tokenizers def lowerCamelCase_ ( self : List[str] ): '''simple docstring''' with tempfile.TemporaryDirectory() as tmp_dir: shutil.copy("""./tests/fixtures/vocab.txt""" , os.path.join(_SCREAMING_SNAKE_CASE , """vocab.txt""" ) ) lowerCamelCase__: Tuple = AutoTokenizer.from_pretrained(_SCREAMING_SNAKE_CASE , tokenizer_type="""bert""" ) self.assertIsInstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) with tempfile.TemporaryDirectory() as tmp_dir: shutil.copy("""./tests/fixtures/vocab.json""" , os.path.join(_SCREAMING_SNAKE_CASE , """vocab.json""" ) ) shutil.copy("""./tests/fixtures/merges.txt""" , os.path.join(_SCREAMING_SNAKE_CASE , """merges.txt""" ) ) lowerCamelCase__: Union[str, Any] = AutoTokenizer.from_pretrained(_SCREAMING_SNAKE_CASE , tokenizer_type="""gpt2""" ) self.assertIsInstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) def lowerCamelCase_ ( self : Optional[int] ): '''simple docstring''' with pytest.raises(_SCREAMING_SNAKE_CASE ): AutoTokenizer.from_pretrained("""./""" , tokenizer_type="""xxx""" ) @require_tokenizers def lowerCamelCase_ ( self : Tuple ): '''simple docstring''' for tokenizer_class in [BertTokenizer, BertTokenizerFast, AutoTokenizer]: lowerCamelCase__: Any = tokenizer_class.from_pretrained("""wietsedv/bert-base-dutch-cased""" ) self.assertIsInstance(_SCREAMING_SNAKE_CASE , (BertTokenizer, BertTokenizerFast) ) if isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): self.assertEqual(tokenizer.basic_tokenizer.do_lower_case , _SCREAMING_SNAKE_CASE ) else: self.assertEqual(tokenizer.do_lower_case , _SCREAMING_SNAKE_CASE ) self.assertEqual(tokenizer.model_max_length , 512 ) @require_tokenizers def lowerCamelCase_ ( self : Any ): '''simple docstring''' for tokenizer_class in [BertTokenizer, BertTokenizerFast, AutoTokenizer]: with self.assertRaisesRegex( _SCREAMING_SNAKE_CASE , """julien-c/herlolip-not-exists is not a local folder and is not a valid model identifier""" , ): lowerCamelCase__: int = tokenizer_class.from_pretrained("""julien-c/herlolip-not-exists""" ) def lowerCamelCase_ ( self : Dict ): '''simple docstring''' lowerCamelCase__: int = TOKENIZER_MAPPING.values() lowerCamelCase__: List[Any] = [] for slow_tok, fast_tok in tokenizers: if slow_tok is not None: tokenizer_names.append(slow_tok.__name__ ) if fast_tok is not None: tokenizer_names.append(fast_tok.__name__ ) for tokenizer_name in tokenizer_names: # must find the right class tokenizer_class_from_name(_SCREAMING_SNAKE_CASE ) @require_tokenizers def lowerCamelCase_ ( self : Optional[int] ): '''simple docstring''' self.assertIsInstance(AutoTokenizer.from_pretrained("""bert-base-cased""" , use_fast=_SCREAMING_SNAKE_CASE ) , _SCREAMING_SNAKE_CASE ) self.assertIsInstance(AutoTokenizer.from_pretrained("""bert-base-cased""" ) , _SCREAMING_SNAKE_CASE ) @require_tokenizers def lowerCamelCase_ ( self : int ): '''simple docstring''' lowerCamelCase__: str = AutoTokenizer.from_pretrained("""distilbert-base-uncased""" , do_lower_case=_SCREAMING_SNAKE_CASE ) lowerCamelCase__: int = '''Hello, world. How are you?''' lowerCamelCase__: List[Any] = tokenizer.tokenize(_SCREAMING_SNAKE_CASE ) self.assertEqual("""[UNK]""" , tokens[0] ) lowerCamelCase__: Any = AutoTokenizer.from_pretrained("""microsoft/mpnet-base""" , do_lower_case=_SCREAMING_SNAKE_CASE ) lowerCamelCase__: Tuple = tokenizer.tokenize(_SCREAMING_SNAKE_CASE ) self.assertEqual("""[UNK]""" , tokens[0] ) @require_tokenizers def lowerCamelCase_ ( self : Optional[int] ): '''simple docstring''' lowerCamelCase__: List[Any] = AutoTokenizer.from_pretrained("""robot-test/dummy-tokenizer-fast-with-model-config""" ) self.assertEqual(type(_SCREAMING_SNAKE_CASE ) , _SCREAMING_SNAKE_CASE ) self.assertEqual(tokenizer.model_max_length , 512 ) self.assertEqual(tokenizer.vocab_size , 30000 ) self.assertEqual(tokenizer.unk_token , """[UNK]""" ) self.assertEqual(tokenizer.padding_side , """right""" ) self.assertEqual(tokenizer.truncation_side , """right""" ) def lowerCamelCase_ ( self : Optional[int] ): '''simple docstring''' lowerCamelCase__: Any = AutoTokenizer.from_pretrained(_SCREAMING_SNAKE_CASE ) self.assertIsInstance(_SCREAMING_SNAKE_CASE , (BertTokenizer, BertTokenizerFast) ) with tempfile.TemporaryDirectory() as tmp_dir: tokenizer.save_pretrained(_SCREAMING_SNAKE_CASE ) lowerCamelCase__: Dict = AutoTokenizer.from_pretrained(_SCREAMING_SNAKE_CASE ) self.assertIsInstance(_SCREAMING_SNAKE_CASE , tokenizer.__class__ ) self.assertEqual(tokenizera.vocab_size , 12 ) def lowerCamelCase_ ( self : int ): '''simple docstring''' lowerCamelCase__: Tuple = AutoTokenizer.from_pretrained("""ctrl""" ) # There is no fast CTRL so this always gives us a slow tokenizer. self.assertIsInstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) def lowerCamelCase_ ( self : Any ): '''simple docstring''' lowerCamelCase__: int = get_tokenizer_config("""bert-base-cased""" ) lowerCamelCase__: Optional[int] = config.pop("""_commit_hash""" , _SCREAMING_SNAKE_CASE ) # If we ever update bert-base-cased tokenizer config, this dict here will need to be updated. self.assertEqual(_SCREAMING_SNAKE_CASE , {"""do_lower_case""": False} ) # This model does not have a tokenizer_config so we get back an empty dict. lowerCamelCase__: Any = get_tokenizer_config(_SCREAMING_SNAKE_CASE ) self.assertDictEqual(_SCREAMING_SNAKE_CASE , {} ) # A tokenizer saved with `save_pretrained` always creates a tokenizer config. lowerCamelCase__: Dict = AutoTokenizer.from_pretrained(_SCREAMING_SNAKE_CASE ) with tempfile.TemporaryDirectory() as tmp_dir: tokenizer.save_pretrained(_SCREAMING_SNAKE_CASE ) lowerCamelCase__: Dict = get_tokenizer_config(_SCREAMING_SNAKE_CASE ) # Check the class of the tokenizer was properly saved (note that it always saves the slow class). self.assertEqual(config["""tokenizer_class"""] , """BertTokenizer""" ) def lowerCamelCase_ ( self : Optional[Any] ): '''simple docstring''' try: AutoConfig.register("""custom""" , _SCREAMING_SNAKE_CASE ) AutoTokenizer.register(_SCREAMING_SNAKE_CASE , slow_tokenizer_class=_SCREAMING_SNAKE_CASE ) # Trying to register something existing in the Transformers library will raise an error with self.assertRaises(_SCREAMING_SNAKE_CASE ): AutoTokenizer.register(_SCREAMING_SNAKE_CASE , slow_tokenizer_class=_SCREAMING_SNAKE_CASE ) lowerCamelCase__: str = CustomTokenizer.from_pretrained(_SCREAMING_SNAKE_CASE ) with tempfile.TemporaryDirectory() as tmp_dir: tokenizer.save_pretrained(_SCREAMING_SNAKE_CASE ) lowerCamelCase__: Dict = AutoTokenizer.from_pretrained(_SCREAMING_SNAKE_CASE ) self.assertIsInstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in TOKENIZER_MAPPING._extra_content: del TOKENIZER_MAPPING._extra_content[CustomConfig] @require_tokenizers def lowerCamelCase_ ( self : Dict ): '''simple docstring''' try: AutoConfig.register("""custom""" , _SCREAMING_SNAKE_CASE ) # Can register in two steps AutoTokenizer.register(_SCREAMING_SNAKE_CASE , slow_tokenizer_class=_SCREAMING_SNAKE_CASE ) self.assertEqual(TOKENIZER_MAPPING[CustomConfig] , (CustomTokenizer, None) ) AutoTokenizer.register(_SCREAMING_SNAKE_CASE , fast_tokenizer_class=_SCREAMING_SNAKE_CASE ) self.assertEqual(TOKENIZER_MAPPING[CustomConfig] , (CustomTokenizer, CustomTokenizerFast) ) del TOKENIZER_MAPPING._extra_content[CustomConfig] # Can register in one step AutoTokenizer.register( _SCREAMING_SNAKE_CASE , slow_tokenizer_class=_SCREAMING_SNAKE_CASE , fast_tokenizer_class=_SCREAMING_SNAKE_CASE ) self.assertEqual(TOKENIZER_MAPPING[CustomConfig] , (CustomTokenizer, CustomTokenizerFast) ) # Trying to register something existing in the Transformers library will raise an error with self.assertRaises(_SCREAMING_SNAKE_CASE ): AutoTokenizer.register(_SCREAMING_SNAKE_CASE , fast_tokenizer_class=_SCREAMING_SNAKE_CASE ) # We pass through a bert tokenizer fast cause there is no converter slow to fast for our new toknizer # and that model does not have a tokenizer.json with tempfile.TemporaryDirectory() as tmp_dir: lowerCamelCase__: List[str] = BertTokenizerFast.from_pretrained(_SCREAMING_SNAKE_CASE ) bert_tokenizer.save_pretrained(_SCREAMING_SNAKE_CASE ) lowerCamelCase__: str = CustomTokenizerFast.from_pretrained(_SCREAMING_SNAKE_CASE ) with tempfile.TemporaryDirectory() as tmp_dir: tokenizer.save_pretrained(_SCREAMING_SNAKE_CASE ) lowerCamelCase__: Optional[int] = AutoTokenizer.from_pretrained(_SCREAMING_SNAKE_CASE ) self.assertIsInstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) lowerCamelCase__: Any = AutoTokenizer.from_pretrained(_SCREAMING_SNAKE_CASE , use_fast=_SCREAMING_SNAKE_CASE ) self.assertIsInstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in TOKENIZER_MAPPING._extra_content: del TOKENIZER_MAPPING._extra_content[CustomConfig] def lowerCamelCase_ ( self : List[str] ): '''simple docstring''' with self.assertRaises(_SCREAMING_SNAKE_CASE ): lowerCamelCase__: Tuple = AutoTokenizer.from_pretrained("""hf-internal-testing/test_dynamic_tokenizer""" ) # If remote code is disabled, we can't load this config. with self.assertRaises(_SCREAMING_SNAKE_CASE ): lowerCamelCase__: Union[str, Any] = AutoTokenizer.from_pretrained( """hf-internal-testing/test_dynamic_tokenizer""" , trust_remote_code=_SCREAMING_SNAKE_CASE ) lowerCamelCase__: Dict = AutoTokenizer.from_pretrained("""hf-internal-testing/test_dynamic_tokenizer""" , trust_remote_code=_SCREAMING_SNAKE_CASE ) self.assertTrue(tokenizer.special_attribute_present ) # Test tokenizer can be reloaded. with tempfile.TemporaryDirectory() as tmp_dir: tokenizer.save_pretrained(_SCREAMING_SNAKE_CASE ) lowerCamelCase__: int = AutoTokenizer.from_pretrained(_SCREAMING_SNAKE_CASE , trust_remote_code=_SCREAMING_SNAKE_CASE ) self.assertTrue(reloaded_tokenizer.special_attribute_present ) if is_tokenizers_available(): self.assertEqual(tokenizer.__class__.__name__ , """NewTokenizerFast""" ) self.assertEqual(reloaded_tokenizer.__class__.__name__ , """NewTokenizerFast""" ) # Test we can also load the slow version lowerCamelCase__: List[str] = AutoTokenizer.from_pretrained( """hf-internal-testing/test_dynamic_tokenizer""" , trust_remote_code=_SCREAMING_SNAKE_CASE , use_fast=_SCREAMING_SNAKE_CASE ) self.assertTrue(tokenizer.special_attribute_present ) self.assertEqual(tokenizer.__class__.__name__ , """NewTokenizer""" ) # Test tokenizer can be reloaded. with tempfile.TemporaryDirectory() as tmp_dir: tokenizer.save_pretrained(_SCREAMING_SNAKE_CASE ) lowerCamelCase__: Optional[int] = AutoTokenizer.from_pretrained(_SCREAMING_SNAKE_CASE , trust_remote_code=_SCREAMING_SNAKE_CASE , use_fast=_SCREAMING_SNAKE_CASE ) self.assertEqual(reloaded_tokenizer.__class__.__name__ , """NewTokenizer""" ) self.assertTrue(reloaded_tokenizer.special_attribute_present ) else: self.assertEqual(tokenizer.__class__.__name__ , """NewTokenizer""" ) self.assertEqual(reloaded_tokenizer.__class__.__name__ , """NewTokenizer""" ) @require_tokenizers def lowerCamelCase_ ( self : Union[str, Any] ): '''simple docstring''' class lowerCamelCase__ ( _a ): __lowerCamelCase = False class lowerCamelCase__ ( _a ): __lowerCamelCase = NewTokenizer __lowerCamelCase = False try: AutoConfig.register("""custom""" , _SCREAMING_SNAKE_CASE ) AutoTokenizer.register(_SCREAMING_SNAKE_CASE , slow_tokenizer_class=_SCREAMING_SNAKE_CASE ) AutoTokenizer.register(_SCREAMING_SNAKE_CASE , fast_tokenizer_class=_SCREAMING_SNAKE_CASE ) # If remote code is not set, the default is to use local lowerCamelCase__: int = AutoTokenizer.from_pretrained("""hf-internal-testing/test_dynamic_tokenizer""" ) self.assertEqual(tokenizer.__class__.__name__ , """NewTokenizerFast""" ) self.assertFalse(tokenizer.special_attribute_present ) lowerCamelCase__: Any = AutoTokenizer.from_pretrained("""hf-internal-testing/test_dynamic_tokenizer""" , use_fast=_SCREAMING_SNAKE_CASE ) self.assertEqual(tokenizer.__class__.__name__ , """NewTokenizer""" ) self.assertFalse(tokenizer.special_attribute_present ) # If remote code is disabled, we load the local one. lowerCamelCase__: Tuple = AutoTokenizer.from_pretrained( """hf-internal-testing/test_dynamic_tokenizer""" , trust_remote_code=_SCREAMING_SNAKE_CASE ) self.assertEqual(tokenizer.__class__.__name__ , """NewTokenizerFast""" ) self.assertFalse(tokenizer.special_attribute_present ) lowerCamelCase__: List[str] = AutoTokenizer.from_pretrained( """hf-internal-testing/test_dynamic_tokenizer""" , trust_remote_code=_SCREAMING_SNAKE_CASE , use_fast=_SCREAMING_SNAKE_CASE ) self.assertEqual(tokenizer.__class__.__name__ , """NewTokenizer""" ) self.assertFalse(tokenizer.special_attribute_present ) # If remote is enabled, we load from the Hub lowerCamelCase__: Optional[int] = AutoTokenizer.from_pretrained( """hf-internal-testing/test_dynamic_tokenizer""" , trust_remote_code=_SCREAMING_SNAKE_CASE ) self.assertEqual(tokenizer.__class__.__name__ , """NewTokenizerFast""" ) self.assertTrue(tokenizer.special_attribute_present ) lowerCamelCase__: Any = AutoTokenizer.from_pretrained( """hf-internal-testing/test_dynamic_tokenizer""" , trust_remote_code=_SCREAMING_SNAKE_CASE , use_fast=_SCREAMING_SNAKE_CASE ) self.assertEqual(tokenizer.__class__.__name__ , """NewTokenizer""" ) self.assertTrue(tokenizer.special_attribute_present ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in TOKENIZER_MAPPING._extra_content: del TOKENIZER_MAPPING._extra_content[CustomConfig] def lowerCamelCase_ ( self : str ): '''simple docstring''' lowerCamelCase__: Optional[int] = AutoTokenizer.from_pretrained( """hf-internal-testing/test_dynamic_tokenizer_legacy""" , trust_remote_code=_SCREAMING_SNAKE_CASE ) self.assertTrue(tokenizer.special_attribute_present ) if is_tokenizers_available(): self.assertEqual(tokenizer.__class__.__name__ , """NewTokenizerFast""" ) # Test we can also load the slow version lowerCamelCase__: Tuple = AutoTokenizer.from_pretrained( """hf-internal-testing/test_dynamic_tokenizer_legacy""" , trust_remote_code=_SCREAMING_SNAKE_CASE , use_fast=_SCREAMING_SNAKE_CASE ) self.assertTrue(tokenizer.special_attribute_present ) self.assertEqual(tokenizer.__class__.__name__ , """NewTokenizer""" ) else: self.assertEqual(tokenizer.__class__.__name__ , """NewTokenizer""" ) def lowerCamelCase_ ( self : Dict ): '''simple docstring''' with self.assertRaisesRegex( _SCREAMING_SNAKE_CASE , """bert-base is not a local folder and is not a valid model identifier""" ): lowerCamelCase__: Tuple = AutoTokenizer.from_pretrained("""bert-base""" ) def lowerCamelCase_ ( self : str ): '''simple docstring''' with self.assertRaisesRegex( _SCREAMING_SNAKE_CASE , R"""aaaaaa is not a valid git identifier \(branch name, tag name or commit id\)""" ): lowerCamelCase__: str = AutoTokenizer.from_pretrained(_SCREAMING_SNAKE_CASE , revision="""aaaaaa""" ) def lowerCamelCase_ ( self : List[Any] ): '''simple docstring''' lowerCamelCase__: Optional[int] = AutoTokenizer.from_pretrained("""hf-internal-testing/tiny-random-bert""" ) with RequestCounter() as counter: lowerCamelCase__: List[str] = AutoTokenizer.from_pretrained("""hf-internal-testing/tiny-random-bert""" ) self.assertEqual(counter.get_request_count , 0 ) self.assertEqual(counter.head_request_count , 1 ) self.assertEqual(counter.other_request_count , 0 )
306
import numpy as np import datasets __a = '\nCompute the Mahalanobis Distance\n\nMahalonobis distance is the distance between a point and a distribution.\nAnd not between two distinct points. It is effectively a multivariate equivalent of the Euclidean distance.\nIt was introduced by Prof. P. C. Mahalanobis in 1936\nand has been used in various statistical applications ever since\n[source: https://www.machinelearningplus.com/statistics/mahalanobis-distance/]\n' __a = '\\n@article{de2000mahalanobis,\n title={The mahalanobis distance},\n author={De Maesschalck, Roy and Jouan-Rimbaud, Delphine and Massart, D{\'e}sir{\'e} L},\n journal={Chemometrics and intelligent laboratory systems},\n volume={50},\n number={1},\n pages={1--18},\n year={2000},\n publisher={Elsevier}\n}\n' __a = '\nArgs:\n X: List of datapoints to be compared with the `reference_distribution`.\n reference_distribution: List of datapoints from the reference distribution we want to compare to.\nReturns:\n mahalanobis: The Mahalonobis distance for each datapoint in `X`.\nExamples:\n\n >>> mahalanobis_metric = datasets.load_metric("mahalanobis")\n >>> results = mahalanobis_metric.compute(reference_distribution=[[0, 1], [1, 0]], X=[[0, 1]])\n >>> print(results)\n {\'mahalanobis\': array([0.5])}\n' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class __a( datasets.Metric ): """simple docstring""" def a__ ( self ) -> Union[str, Any]: return datasets.MetricInfo( description=_DESCRIPTION ,citation=_CITATION ,inputs_description=_KWARGS_DESCRIPTION ,features=datasets.Features( { '''X''': datasets.Sequence(datasets.Value('''float''' ,id='''sequence''' ) ,id='''X''' ), } ) ,) def a__ ( self ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ) -> Any: # convert to numpy arrays UpperCAmelCase_ : str = np.array(_SCREAMING_SNAKE_CASE ) UpperCAmelCase_ : List[Any] = np.array(_SCREAMING_SNAKE_CASE ) # Assert that arrays are 2D if len(X.shape ) != 2: raise ValueError('''Expected `X` to be a 2D vector''' ) if len(reference_distribution.shape ) != 2: raise ValueError('''Expected `reference_distribution` to be a 2D vector''' ) if reference_distribution.shape[0] < 2: raise ValueError( '''Expected `reference_distribution` to be a 2D vector with more than one element in the first dimension''' ) # Get mahalanobis distance for each prediction UpperCAmelCase_ : List[str] = X - np.mean(_SCREAMING_SNAKE_CASE ) UpperCAmelCase_ : Dict = np.cov(reference_distribution.T ) try: UpperCAmelCase_ : Any = np.linalg.inv(_SCREAMING_SNAKE_CASE ) except np.linalg.LinAlgError: UpperCAmelCase_ : List[str] = np.linalg.pinv(_SCREAMING_SNAKE_CASE ) UpperCAmelCase_ : Union[str, Any] = np.dot(_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ) UpperCAmelCase_ : List[Any] = np.dot(_SCREAMING_SNAKE_CASE ,X_minus_mu.T ).diagonal() return {"mahalanobis": mahal_dist}
30
0
from datetime import datetime import matplotlib.pyplot as plt import torch def __lowerCAmelCase ( __magic_name__ ): for param in module.parameters(): _lowercase: str = False def __lowerCAmelCase ( ): _lowercase: List[str] = '''cuda''' if torch.cuda.is_available() else '''cpu''' if torch.backends.mps.is_available() and torch.backends.mps.is_built(): _lowercase: Dict = '''mps''' if device == "mps": print( "WARNING: MPS currently doesn\'t seem to work, and messes up backpropagation without any visible torch" " errors. I recommend using CUDA on a colab notebook or CPU instead if you\'re facing inexplicable issues" " with generations." ) return device def __lowerCAmelCase ( __magic_name__ ): _lowercase: Tuple = plt.imshow(_lowercase ) fig.axes.get_xaxis().set_visible(_lowercase ) fig.axes.get_yaxis().set_visible(_lowercase ) plt.show() def __lowerCAmelCase ( ): _lowercase: Optional[Any] = datetime.now() _lowercase: Optional[Any] = current_time.strftime("%H:%M:%S" ) return timestamp
226
import collections from typing import List, Optional, Union from ...tokenization_utils_base import BatchEncoding from ...utils import TensorType, add_end_docstrings, add_start_docstrings, logging from ..bert.tokenization_bert import BertTokenizer __a = logging.get_logger(__name__) __a = {'vocab_file': 'vocab.txt', 'tokenizer_file': 'tokenizer.json'} __a = { 'vocab_file': { 'facebook/dpr-ctx_encoder-single-nq-base': ( 'https://huggingface.co/facebook/dpr-ctx_encoder-single-nq-base/resolve/main/vocab.txt' ), 'facebook/dpr-ctx_encoder-multiset-base': ( 'https://huggingface.co/facebook/dpr-ctx_encoder-multiset-base/resolve/main/vocab.txt' ), }, 'tokenizer_file': { 'facebook/dpr-ctx_encoder-single-nq-base': ( 'https://huggingface.co/facebook/dpr-ctx_encoder-single-nq-base/resolve/main/tokenizer.json' ), 'facebook/dpr-ctx_encoder-multiset-base': ( 'https://huggingface.co/facebook/dpr-ctx_encoder-multiset-base/resolve/main/tokenizer.json' ), }, } __a = { 'vocab_file': { 'facebook/dpr-question_encoder-single-nq-base': ( 'https://huggingface.co/facebook/dpr-question_encoder-single-nq-base/resolve/main/vocab.txt' ), 'facebook/dpr-question_encoder-multiset-base': ( 'https://huggingface.co/facebook/dpr-question_encoder-multiset-base/resolve/main/vocab.txt' ), }, 'tokenizer_file': { 'facebook/dpr-question_encoder-single-nq-base': ( 'https://huggingface.co/facebook/dpr-question_encoder-single-nq-base/resolve/main/tokenizer.json' ), 'facebook/dpr-question_encoder-multiset-base': ( 'https://huggingface.co/facebook/dpr-question_encoder-multiset-base/resolve/main/tokenizer.json' ), }, } __a = { 'vocab_file': { 'facebook/dpr-reader-single-nq-base': ( 'https://huggingface.co/facebook/dpr-reader-single-nq-base/resolve/main/vocab.txt' ), 'facebook/dpr-reader-multiset-base': ( 'https://huggingface.co/facebook/dpr-reader-multiset-base/resolve/main/vocab.txt' ), }, 'tokenizer_file': { 'facebook/dpr-reader-single-nq-base': ( 'https://huggingface.co/facebook/dpr-reader-single-nq-base/resolve/main/tokenizer.json' ), 'facebook/dpr-reader-multiset-base': ( 'https://huggingface.co/facebook/dpr-reader-multiset-base/resolve/main/tokenizer.json' ), }, } __a = { 'facebook/dpr-ctx_encoder-single-nq-base': 512, 'facebook/dpr-ctx_encoder-multiset-base': 512, } __a = { 'facebook/dpr-question_encoder-single-nq-base': 512, 'facebook/dpr-question_encoder-multiset-base': 512, } __a = { 'facebook/dpr-reader-single-nq-base': 512, 'facebook/dpr-reader-multiset-base': 512, } __a = { 'facebook/dpr-ctx_encoder-single-nq-base': {'do_lower_case': True}, 'facebook/dpr-ctx_encoder-multiset-base': {'do_lower_case': True}, } __a = { 'facebook/dpr-question_encoder-single-nq-base': {'do_lower_case': True}, 'facebook/dpr-question_encoder-multiset-base': {'do_lower_case': True}, } __a = { 'facebook/dpr-reader-single-nq-base': {'do_lower_case': True}, 'facebook/dpr-reader-multiset-base': {'do_lower_case': True}, } class __a( _a ): """simple docstring""" lowerCAmelCase = VOCAB_FILES_NAMES lowerCAmelCase = CONTEXT_ENCODER_PRETRAINED_VOCAB_FILES_MAP lowerCAmelCase = CONTEXT_ENCODER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCAmelCase = CONTEXT_ENCODER_PRETRAINED_INIT_CONFIGURATION class __a( _a ): """simple docstring""" lowerCAmelCase = VOCAB_FILES_NAMES lowerCAmelCase = QUESTION_ENCODER_PRETRAINED_VOCAB_FILES_MAP lowerCAmelCase = QUESTION_ENCODER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCAmelCase = QUESTION_ENCODER_PRETRAINED_INIT_CONFIGURATION __a = collections.namedtuple( 'DPRSpanPrediction', ['span_score', 'relevance_score', 'doc_id', 'start_index', 'end_index', 'text'] ) __a = collections.namedtuple('DPRReaderOutput', ['start_logits', 'end_logits', 'relevance_logits']) __a = R'\n Return a dictionary with the token ids of the input strings and other information to give to `.decode_best_spans`.\n It converts the strings of a question and different passages (title and text) in a sequence of IDs (integers),\n using the tokenizer and vocabulary. The resulting `input_ids` is a matrix of size `(n_passages, sequence_length)`\n with the format:\n\n ```\n [CLS] <question token ids> [SEP] <titles ids> [SEP] <texts ids>\n ```\n\n Args:\n questions (`str` or `List[str]`):\n The questions to be encoded. You can specify one question for many passages. In this case, the question\n will be duplicated like `[questions] * n_passages`. Otherwise you have to specify as many questions as in\n `titles` or `texts`.\n titles (`str` or `List[str]`):\n The passages titles to be encoded. This can be a string or a list of strings if there are several passages.\n texts (`str` or `List[str]`):\n The passages texts to be encoded. This can be a string or a list of strings if there are several passages.\n padding (`bool`, `str` or [`~utils.PaddingStrategy`], *optional*, defaults to `False`):\n Activates and controls padding. Accepts the following values:\n\n - `True` or `\'longest\'`: Pad to the longest sequence in the batch (or no padding if only a single sequence\n if provided).\n - `\'max_length\'`: Pad to a maximum length specified with the argument `max_length` or to the maximum\n acceptable input length for the model if that argument is not provided.\n - `False` or `\'do_not_pad\'` (default): No padding (i.e., can output a batch with sequences of different\n lengths).\n truncation (`bool`, `str` or [`~tokenization_utils_base.TruncationStrategy`], *optional*, defaults to `False`):\n Activates and controls truncation. Accepts the following values:\n\n - `True` or `\'longest_first\'`: Truncate to a maximum length specified with the argument `max_length` or to\n the maximum acceptable input length for the model if that argument is not provided. This will truncate\n token by token, removing a token from the longest sequence in the pair if a pair of sequences (or a batch\n of pairs) is provided.\n - `\'only_first\'`: Truncate to a maximum length specified with the argument `max_length` or to the maximum\n acceptable input length for the model if that argument is not provided. This will only truncate the first\n sequence of a pair if a pair of sequences (or a batch of pairs) is provided.\n - `\'only_second\'`: Truncate to a maximum length specified with the argument `max_length` or to the maximum\n acceptable input length for the model if that argument is not provided. This will only truncate the\n second sequence of a pair if a pair of sequences (or a batch of pairs) is provided.\n - `False` or `\'do_not_truncate\'` (default): No truncation (i.e., can output batch with sequence lengths\n greater than the model maximum admissible input size).\n max_length (`int`, *optional*):\n Controls the maximum length to use by one of the truncation/padding parameters.\n\n If left unset or set to `None`, this will use the predefined model maximum length if a maximum length\n is required by one of the truncation/padding parameters. If the model has no specific maximum input\n length (like XLNet) truncation/padding to a maximum length will be deactivated.\n return_tensors (`str` or [`~utils.TensorType`], *optional*):\n If set, will return tensors instead of list of python integers. Acceptable values are:\n\n - `\'tf\'`: Return TensorFlow `tf.constant` objects.\n - `\'pt\'`: Return PyTorch `torch.Tensor` objects.\n - `\'np\'`: Return Numpy `np.ndarray` objects.\n return_attention_mask (`bool`, *optional*):\n Whether or not to return the attention mask. If not set, will return the attention mask according to the\n specific tokenizer\'s default, defined by the `return_outputs` attribute.\n\n [What are attention masks?](../glossary#attention-mask)\n\n Returns:\n `Dict[str, List[List[int]]]`: A dictionary with the following keys:\n\n - `input_ids`: List of token ids to be fed to a model.\n - `attention_mask`: List of indices specifying which tokens should be attended to by the model.\n ' @add_start_docstrings(_a ) class __a: """simple docstring""" def __call__( self ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE = None ,_SCREAMING_SNAKE_CASE = None ,_SCREAMING_SNAKE_CASE = False ,_SCREAMING_SNAKE_CASE = False ,_SCREAMING_SNAKE_CASE = None ,_SCREAMING_SNAKE_CASE = None ,_SCREAMING_SNAKE_CASE = None ,**_SCREAMING_SNAKE_CASE ,) -> BatchEncoding: if titles is None and texts is None: return super().__call__( _SCREAMING_SNAKE_CASE ,padding=_SCREAMING_SNAKE_CASE ,truncation=_SCREAMING_SNAKE_CASE ,max_length=_SCREAMING_SNAKE_CASE ,return_tensors=_SCREAMING_SNAKE_CASE ,return_attention_mask=_SCREAMING_SNAKE_CASE ,**_SCREAMING_SNAKE_CASE ,) elif titles is None or texts is None: UpperCAmelCase_ : List[str] = titles if texts is None else texts return super().__call__( _SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ,padding=_SCREAMING_SNAKE_CASE ,truncation=_SCREAMING_SNAKE_CASE ,max_length=_SCREAMING_SNAKE_CASE ,return_tensors=_SCREAMING_SNAKE_CASE ,return_attention_mask=_SCREAMING_SNAKE_CASE ,**_SCREAMING_SNAKE_CASE ,) UpperCAmelCase_ : List[Any] = titles if not isinstance(_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ) else [titles] UpperCAmelCase_ : List[str] = texts if not isinstance(_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ) else [texts] UpperCAmelCase_ : Any = len(_SCREAMING_SNAKE_CASE ) UpperCAmelCase_ : List[Any] = questions if not isinstance(_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ) else [questions] * n_passages if len(_SCREAMING_SNAKE_CASE ) != len(_SCREAMING_SNAKE_CASE ): raise ValueError( f'''There should be as many titles than texts but got {len(_SCREAMING_SNAKE_CASE )} titles and {len(_SCREAMING_SNAKE_CASE )} texts.''' ) UpperCAmelCase_ : Tuple = super().__call__(_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ,padding=_SCREAMING_SNAKE_CASE ,truncation=_SCREAMING_SNAKE_CASE )['''input_ids'''] UpperCAmelCase_ : int = super().__call__(_SCREAMING_SNAKE_CASE ,add_special_tokens=_SCREAMING_SNAKE_CASE ,padding=_SCREAMING_SNAKE_CASE ,truncation=_SCREAMING_SNAKE_CASE )['''input_ids'''] UpperCAmelCase_ : Optional[int] = { '''input_ids''': [ (encoded_question_and_title + encoded_text)[:max_length] if max_length is not None and truncation else encoded_question_and_title + encoded_text for encoded_question_and_title, encoded_text in zip(_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ) ] } if return_attention_mask is not False: UpperCAmelCase_ : List[str] = [] for input_ids in encoded_inputs["input_ids"]: attention_mask.append([int(input_id != self.pad_token_id ) for input_id in input_ids] ) UpperCAmelCase_ : Dict = attention_mask return self.pad(_SCREAMING_SNAKE_CASE ,padding=_SCREAMING_SNAKE_CASE ,max_length=_SCREAMING_SNAKE_CASE ,return_tensors=_SCREAMING_SNAKE_CASE ) def a__ ( self ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE = 16 ,_SCREAMING_SNAKE_CASE = 64 ,_SCREAMING_SNAKE_CASE = 4 ,) -> List[DPRSpanPrediction]: UpperCAmelCase_ : Tuple = reader_input['''input_ids'''] UpperCAmelCase_, UpperCAmelCase_, UpperCAmelCase_ : Optional[Any] = reader_output[:3] UpperCAmelCase_ : Optional[Any] = len(_SCREAMING_SNAKE_CASE ) UpperCAmelCase_ : int = sorted(range(_SCREAMING_SNAKE_CASE ) ,reverse=_SCREAMING_SNAKE_CASE ,key=relevance_logits.__getitem__ ) UpperCAmelCase_ : List[DPRReaderOutput] = [] for doc_id in sorted_docs: UpperCAmelCase_ : List[Any] = list(input_ids[doc_id] ) # assuming question & title information is at the beginning of the sequence UpperCAmelCase_ : str = sequence_ids.index(self.sep_token_id ,2 ) + 1 # second sep id if sequence_ids[-1] == self.pad_token_id: UpperCAmelCase_ : List[Any] = sequence_ids.index(self.pad_token_id ) else: UpperCAmelCase_ : int = len(_SCREAMING_SNAKE_CASE ) UpperCAmelCase_ : Tuple = self._get_best_spans( start_logits=start_logits[doc_id][passage_offset:sequence_len] ,end_logits=end_logits[doc_id][passage_offset:sequence_len] ,max_answer_length=_SCREAMING_SNAKE_CASE ,top_spans=_SCREAMING_SNAKE_CASE ,) for start_index, end_index in best_spans: start_index += passage_offset end_index += passage_offset nbest_spans_predictions.append( DPRSpanPrediction( span_score=start_logits[doc_id][start_index] + end_logits[doc_id][end_index] ,relevance_score=relevance_logits[doc_id] ,doc_id=_SCREAMING_SNAKE_CASE ,start_index=_SCREAMING_SNAKE_CASE ,end_index=_SCREAMING_SNAKE_CASE ,text=self.decode(sequence_ids[start_index : end_index + 1] ) ,) ) if len(_SCREAMING_SNAKE_CASE ) >= num_spans: break return nbest_spans_predictions[:num_spans] def a__ ( self ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ,) -> List[DPRSpanPrediction]: UpperCAmelCase_ : Tuple = [] for start_index, start_score in enumerate(_SCREAMING_SNAKE_CASE ): for answer_length, end_score in enumerate(end_logits[start_index : start_index + max_answer_length] ): scores.append(((start_index, start_index + answer_length), start_score + end_score) ) UpperCAmelCase_ : int = sorted(_SCREAMING_SNAKE_CASE ,key=lambda _SCREAMING_SNAKE_CASE : x[1] ,reverse=_SCREAMING_SNAKE_CASE ) UpperCAmelCase_ : Union[str, Any] = [] for (start_index, end_index), score in scores: if start_index > end_index: raise ValueError(f'''Wrong span indices: [{start_index}:{end_index}]''' ) UpperCAmelCase_ : str = end_index - start_index + 1 if length > max_answer_length: raise ValueError(f'''Span is too long: {length} > {max_answer_length}''' ) if any( start_index <= prev_start_index <= prev_end_index <= end_index or prev_start_index <= start_index <= end_index <= prev_end_index for (prev_start_index, prev_end_index) in chosen_span_intervals ): continue chosen_span_intervals.append((start_index, end_index) ) if len(_SCREAMING_SNAKE_CASE ) == top_spans: break return chosen_span_intervals @add_end_docstrings(_a ) class __a( _a , _a ): """simple docstring""" lowerCAmelCase = VOCAB_FILES_NAMES lowerCAmelCase = READER_PRETRAINED_VOCAB_FILES_MAP lowerCAmelCase = READER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCAmelCase = READER_PRETRAINED_INIT_CONFIGURATION lowerCAmelCase = ['''input_ids''', '''attention_mask''']
30
0
def a ( snake_case__: int , snake_case__: Optional[Any] = False ): '''simple docstring''' if n == 2: return True if not n % 2 or n < 2: return False if n > 5 and n % 10 not in (1, 3, 7, 9): # can quickly check last digit return False if n > 3_317_044_064_679_887_385_961_981 and not allow_probable: raise ValueError( '''Warning: upper bound of deterministic test is exceeded. ''' '''Pass allow_probable=True to allow probabilistic test. ''' '''A return value of True indicates a probable prime.''' ) # array bounds provided by analysis lowercase_ = [ 2_047, 1_373_653, 25_326_001, 3_215_031_751, 2_152_302_898_747, 3_474_749_660_383, 341_550_071_728_321, 1, 3_825_123_056_546_413_051, 1, 1, 318_665_857_834_031_151_167_461, 3_317_044_064_679_887_385_961_981, ] lowercase_ = [2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41] for idx, _p in enumerate(_lowercase , 1 ): if n < _p: # then we have our last prime to check lowercase_ = primes[:idx] break lowercase_ = n - 1, 0 # break up n -1 into a power of 2 (s) and # remaining odd component # essentially, solve for d * 2 ** s == n - 1 while d % 2 == 0: d //= 2 s += 1 for prime in plist: lowercase_ = False for r in range(_lowercase ): lowercase_ = pow(_lowercase , d * 2**r , _lowercase ) # see article for analysis explanation for m if (r == 0 and m == 1) or ((m + 1) % n == 0): lowercase_ = True # this loop will not determine compositeness break if pr: continue # if pr is False, then the above loop never evaluated to true, # and the n MUST be composite return False return True def a ( ): '''simple docstring''' assert not miller_rabin(561 ) assert miller_rabin(563 ) # 2047 assert not miller_rabin(838_201 ) assert miller_rabin(838_207 ) # 1_373_653 assert not miller_rabin(17_316_001 ) assert miller_rabin(17_316_017 ) # 25_326_001 assert not miller_rabin(3_078_386_641 ) assert miller_rabin(3_078_386_653 ) # 3_215_031_751 assert not miller_rabin(1_713_045_574_801 ) assert miller_rabin(1_713_045_574_819 ) # 2_152_302_898_747 assert not miller_rabin(2_779_799_728_307 ) assert miller_rabin(2_779_799_728_327 ) # 3_474_749_660_383 assert not miller_rabin(113_850_023_909_441 ) assert miller_rabin(113_850_023_909_527 ) # 341_550_071_728_321 assert not miller_rabin(1_275_041_018_848_804_351 ) assert miller_rabin(1_275_041_018_848_804_391 ) # 3_825_123_056_546_413_051 assert not miller_rabin(79_666_464_458_507_787_791_867 ) assert miller_rabin(79_666_464_458_507_787_791_951 ) # 318_665_857_834_031_151_167_461 assert not miller_rabin(552_840_677_446_647_897_660_333 ) assert miller_rabin(552_840_677_446_647_897_660_359 ) # 3_317_044_064_679_887_385_961_981 # upper limit for probabilistic test if __name__ == "__main__": test_miller_rabin()
97
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_torch_available, ) __a = { 'configuration_encodec': [ 'ENCODEC_PRETRAINED_CONFIG_ARCHIVE_MAP', 'EncodecConfig', ], 'feature_extraction_encodec': ['EncodecFeatureExtractor'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __a = [ 'ENCODEC_PRETRAINED_MODEL_ARCHIVE_LIST', 'EncodecModel', 'EncodecPreTrainedModel', ] if TYPE_CHECKING: from .configuration_encodec import ( ENCODEC_PRETRAINED_CONFIG_ARCHIVE_MAP, EncodecConfig, ) from .feature_extraction_encodec import EncodecFeatureExtractor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_encodec import ( ENCODEC_PRETRAINED_MODEL_ARCHIVE_LIST, EncodecModel, EncodecPreTrainedModel, ) else: import sys __a = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
30
0
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging SCREAMING_SNAKE_CASE = logging.get_logger(__name__) SCREAMING_SNAKE_CASE = { # See all MEGATRON_BERT models at https://huggingface.co/models?filter=bert } class UpperCAmelCase_ ( _a ): '''simple docstring''' lowercase_ : List[Any] = "megatron-bert" def __init__( self : int , snake_case__ : Optional[int]=2_90_56 , snake_case__ : Any=10_24 , snake_case__ : Any=24 , snake_case__ : str=16 , snake_case__ : List[Any]=40_96 , snake_case__ : Optional[int]="gelu" , snake_case__ : int=0.1 , snake_case__ : Union[str, Any]=0.1 , snake_case__ : List[str]=5_12 , snake_case__ : Optional[int]=2 , snake_case__ : Dict=0.02 , snake_case__ : List[str]=1e-12 , snake_case__ : List[Any]=0 , snake_case__ : int="absolute" , snake_case__ : Any=True , **snake_case__ : Tuple , ): '''simple docstring''' super().__init__(pad_token_id=_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) UpperCAmelCase__ : Any = vocab_size UpperCAmelCase__ : List[Any] = hidden_size UpperCAmelCase__ : List[str] = num_hidden_layers UpperCAmelCase__ : Dict = num_attention_heads UpperCAmelCase__ : Dict = hidden_act UpperCAmelCase__ : Optional[int] = intermediate_size UpperCAmelCase__ : List[Any] = hidden_dropout_prob UpperCAmelCase__ : Union[str, Any] = attention_probs_dropout_prob UpperCAmelCase__ : Union[str, Any] = max_position_embeddings UpperCAmelCase__ : Tuple = type_vocab_size UpperCAmelCase__ : Optional[Any] = initializer_range UpperCAmelCase__ : Dict = layer_norm_eps UpperCAmelCase__ : Dict = position_embedding_type UpperCAmelCase__ : int = use_cache
199
import functools import operator from ...configuration_utils import PretrainedConfig from ...utils import logging __a = logging.get_logger(__name__) __a = { 'facebook/wav2vec2-base-960h': 'https://huggingface.co/facebook/wav2vec2-base-960h/resolve/main/config.json', # See all Wav2Vec2 models at https://huggingface.co/models?filter=wav2vec2 } class __a( _a ): """simple docstring""" lowerCAmelCase = '''wav2vec2''' def __init__( self ,_SCREAMING_SNAKE_CASE=32 ,_SCREAMING_SNAKE_CASE=768 ,_SCREAMING_SNAKE_CASE=12 ,_SCREAMING_SNAKE_CASE=12 ,_SCREAMING_SNAKE_CASE=3_072 ,_SCREAMING_SNAKE_CASE="gelu" ,_SCREAMING_SNAKE_CASE=0.1 ,_SCREAMING_SNAKE_CASE=0.1 ,_SCREAMING_SNAKE_CASE=0.1 ,_SCREAMING_SNAKE_CASE=0.0 ,_SCREAMING_SNAKE_CASE=0.0 ,_SCREAMING_SNAKE_CASE=0.1 ,_SCREAMING_SNAKE_CASE=0.1 ,_SCREAMING_SNAKE_CASE=0.02 ,_SCREAMING_SNAKE_CASE=1e-5 ,_SCREAMING_SNAKE_CASE="group" ,_SCREAMING_SNAKE_CASE="gelu" ,_SCREAMING_SNAKE_CASE=(512, 512, 512, 512, 512, 512, 512) ,_SCREAMING_SNAKE_CASE=(5, 2, 2, 2, 2, 2, 2) ,_SCREAMING_SNAKE_CASE=(10, 3, 3, 3, 3, 2, 2) ,_SCREAMING_SNAKE_CASE=False ,_SCREAMING_SNAKE_CASE=128 ,_SCREAMING_SNAKE_CASE=16 ,_SCREAMING_SNAKE_CASE=False ,_SCREAMING_SNAKE_CASE=True ,_SCREAMING_SNAKE_CASE=0.05 ,_SCREAMING_SNAKE_CASE=10 ,_SCREAMING_SNAKE_CASE=2 ,_SCREAMING_SNAKE_CASE=0.0 ,_SCREAMING_SNAKE_CASE=10 ,_SCREAMING_SNAKE_CASE=0 ,_SCREAMING_SNAKE_CASE=320 ,_SCREAMING_SNAKE_CASE=2 ,_SCREAMING_SNAKE_CASE=0.1 ,_SCREAMING_SNAKE_CASE=100 ,_SCREAMING_SNAKE_CASE=256 ,_SCREAMING_SNAKE_CASE=256 ,_SCREAMING_SNAKE_CASE=0.1 ,_SCREAMING_SNAKE_CASE="sum" ,_SCREAMING_SNAKE_CASE=False ,_SCREAMING_SNAKE_CASE=False ,_SCREAMING_SNAKE_CASE=256 ,_SCREAMING_SNAKE_CASE=(512, 512, 512, 512, 1_500) ,_SCREAMING_SNAKE_CASE=(5, 3, 3, 1, 1) ,_SCREAMING_SNAKE_CASE=(1, 2, 3, 1, 1) ,_SCREAMING_SNAKE_CASE=512 ,_SCREAMING_SNAKE_CASE=0 ,_SCREAMING_SNAKE_CASE=1 ,_SCREAMING_SNAKE_CASE=2 ,_SCREAMING_SNAKE_CASE=False ,_SCREAMING_SNAKE_CASE=3 ,_SCREAMING_SNAKE_CASE=2 ,_SCREAMING_SNAKE_CASE=3 ,_SCREAMING_SNAKE_CASE=None ,_SCREAMING_SNAKE_CASE=None ,**_SCREAMING_SNAKE_CASE ,) -> Optional[int]: super().__init__(**_SCREAMING_SNAKE_CASE ,pad_token_id=_SCREAMING_SNAKE_CASE ,bos_token_id=_SCREAMING_SNAKE_CASE ,eos_token_id=_SCREAMING_SNAKE_CASE ) UpperCAmelCase_ : int = hidden_size UpperCAmelCase_ : Tuple = feat_extract_norm UpperCAmelCase_ : List[Any] = feat_extract_activation UpperCAmelCase_ : str = list(_SCREAMING_SNAKE_CASE ) UpperCAmelCase_ : Any = list(_SCREAMING_SNAKE_CASE ) UpperCAmelCase_ : Tuple = list(_SCREAMING_SNAKE_CASE ) UpperCAmelCase_ : Dict = conv_bias UpperCAmelCase_ : str = num_conv_pos_embeddings UpperCAmelCase_ : Any = num_conv_pos_embedding_groups UpperCAmelCase_ : Tuple = len(self.conv_dim ) UpperCAmelCase_ : Union[str, Any] = num_hidden_layers UpperCAmelCase_ : Dict = intermediate_size UpperCAmelCase_ : Any = hidden_act UpperCAmelCase_ : Any = num_attention_heads UpperCAmelCase_ : str = hidden_dropout UpperCAmelCase_ : int = attention_dropout UpperCAmelCase_ : Tuple = activation_dropout UpperCAmelCase_ : List[str] = feat_proj_dropout UpperCAmelCase_ : int = final_dropout UpperCAmelCase_ : Union[str, Any] = layerdrop UpperCAmelCase_ : Optional[Any] = layer_norm_eps UpperCAmelCase_ : str = initializer_range UpperCAmelCase_ : List[str] = vocab_size UpperCAmelCase_ : Optional[int] = do_stable_layer_norm UpperCAmelCase_ : Optional[int] = use_weighted_layer_sum if ( (len(self.conv_stride ) != self.num_feat_extract_layers) or (len(self.conv_kernel ) != self.num_feat_extract_layers) or (len(self.conv_dim ) != self.num_feat_extract_layers) ): raise ValueError( '''Configuration for convolutional layers is incorrect. It is required that `len(config.conv_dim)` ==''' ''' `len(config.conv_stride)` == `len(config.conv_kernel)`, but is `len(config.conv_dim) =''' f''' {len(self.conv_dim )}`, `len(config.conv_stride) = {len(self.conv_stride )}`,''' f''' `len(config.conv_kernel) = {len(self.conv_kernel )}`.''' ) # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 UpperCAmelCase_ : Optional[int] = apply_spec_augment UpperCAmelCase_ : Tuple = mask_time_prob UpperCAmelCase_ : Optional[Any] = mask_time_length UpperCAmelCase_ : Union[str, Any] = mask_time_min_masks UpperCAmelCase_ : Optional[Any] = mask_feature_prob UpperCAmelCase_ : str = mask_feature_length UpperCAmelCase_ : Dict = mask_feature_min_masks # parameters for pretraining with codevector quantized representations UpperCAmelCase_ : Union[str, Any] = num_codevectors_per_group UpperCAmelCase_ : Any = num_codevector_groups UpperCAmelCase_ : Union[str, Any] = contrastive_logits_temperature UpperCAmelCase_ : List[str] = feat_quantizer_dropout UpperCAmelCase_ : Dict = num_negatives UpperCAmelCase_ : List[str] = codevector_dim UpperCAmelCase_ : List[str] = proj_codevector_dim UpperCAmelCase_ : str = diversity_loss_weight # ctc loss UpperCAmelCase_ : List[Any] = ctc_loss_reduction UpperCAmelCase_ : List[str] = ctc_zero_infinity # adapter UpperCAmelCase_ : Optional[Any] = add_adapter UpperCAmelCase_ : Any = adapter_kernel_size UpperCAmelCase_ : Optional[int] = adapter_stride UpperCAmelCase_ : List[Any] = num_adapter_layers UpperCAmelCase_ : Optional[Any] = output_hidden_size or hidden_size UpperCAmelCase_ : Optional[int] = adapter_attn_dim # SequenceClassification-specific parameter. Feel free to ignore for other classes. UpperCAmelCase_ : List[str] = classifier_proj_size # XVector-specific parameters. Feel free to ignore for other classes. UpperCAmelCase_ : List[str] = list(_SCREAMING_SNAKE_CASE ) UpperCAmelCase_ : int = list(_SCREAMING_SNAKE_CASE ) UpperCAmelCase_ : Dict = list(_SCREAMING_SNAKE_CASE ) UpperCAmelCase_ : Any = xvector_output_dim @property def a__ ( self ) -> Any: return functools.reduce(operator.mul ,self.conv_stride ,1 )
30
0
def _UpperCamelCase ( lowercase__ = 10 , lowercase__ = 22 ): __SCREAMING_SNAKE_CASE : Tuple = range(1 , _lowercase ) __SCREAMING_SNAKE_CASE : Optional[int] = range(1 , _lowercase ) return sum( 1 for power in powers for base in bases if len(str(base**power ) ) == power ) if __name__ == "__main__": print(f"""{solution(1_0, 2_2) = }""")
696
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tokenizers_available, is_torch_available, ) __a = {} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __a = ['NllbTokenizer'] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __a = ['NllbTokenizerFast'] if TYPE_CHECKING: try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_nllb import NllbTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_nllb_fast import NllbTokenizerFast else: import sys __a = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
30
0
from __future__ import annotations from fractions import Fraction def UpperCAmelCase__ (UpperCamelCase_ ,UpperCamelCase_ ): """simple docstring""" return ( num != den and num % 10 == den // 10 and (num // 10) / (den % 10) == num / den ) def UpperCAmelCase__ (UpperCamelCase_ ): """simple docstring""" snake_case = [] snake_case = 11 snake_case = int('''1''' + '''0''' * digit_len ) for num in range(_lowercase ,_lowercase ): while den <= 99: if (num != den) and (num % 10 == den // 10) and (den % 10 != 0): if is_digit_cancelling(_lowercase ,_lowercase ): solutions.append(F'''{num}/{den}''' ) den += 1 num += 1 snake_case = 10 return solutions def UpperCAmelCase__ (UpperCamelCase_ = 2 ): """simple docstring""" snake_case = 1.0 for fraction in fraction_list(_lowercase ): snake_case = Fraction(_lowercase ) result *= frac.denominator / frac.numerator return int(_lowercase ) if __name__ == "__main__": print(solution())
550
import json import multiprocessing import os import re from collections import defaultdict import torch from accelerate import Accelerator from accelerate.utils import set_seed from arguments import HumanEvalArguments from datasets import load_dataset, load_metric from torch.utils.data import IterableDataset from torch.utils.data.dataloader import DataLoader from tqdm import tqdm import transformers from transformers import AutoModelForCausalLM, AutoTokenizer, HfArgumentParser, StoppingCriteria, StoppingCriteriaList __a = ['\nclass', '\ndef', '\n#', '\n@', '\nprint', '\nif'] class __a( _a ): """simple docstring""" def __init__( self ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE=None ,_SCREAMING_SNAKE_CASE=1 ) -> Dict: UpperCAmelCase_ : List[Any] = tokenizer UpperCAmelCase_ : int = dataset UpperCAmelCase_ : Dict = len(_SCREAMING_SNAKE_CASE ) if n_tasks is None else n_tasks UpperCAmelCase_ : Optional[int] = n_copies def __iter__( self ) -> Any: UpperCAmelCase_ : List[Any] = [] for task in range(self.n_tasks ): # without strip, the model generate commented codes ... prompts.append(self.tokenizer.eos_token + self.dataset[task]['''prompt'''].strip() ) UpperCAmelCase_ : Union[str, Any] = self.tokenizer(_SCREAMING_SNAKE_CASE ,padding=_SCREAMING_SNAKE_CASE ,return_tensors='''pt''' ) for task in range(self.n_tasks ): for _ in range(self.n_copies ): yield { "ids": outputs.input_ids[task], "task_id": task, "input_len": outputs.attention_mask[task].sum(), } class __a( _a ): """simple docstring""" def __init__( self ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ) -> List[Any]: UpperCAmelCase_ : str = start_length UpperCAmelCase_ : Optional[int] = eof_strings UpperCAmelCase_ : str = tokenizer def __call__( self ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ,**_SCREAMING_SNAKE_CASE ) -> List[Any]: UpperCAmelCase_ : Optional[Any] = self.tokenizer.batch_decode(input_ids[:, self.start_length :] ) UpperCAmelCase_ : Optional[int] = [] for decoded_generation in decoded_generations: done.append(any(stop_string in decoded_generation for stop_string in self.eof_strings ) ) return all(_SCREAMING_SNAKE_CASE ) def lowerCamelCase__ ( _lowercase ): '''simple docstring''' UpperCAmelCase_ : Tuple = re.split('''(%s)''' % '''|'''.join(_lowercase ) , _lowercase ) # last string should be "" return "".join(string_list[:-2] ) def lowerCamelCase__ ( _lowercase , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase=20 , **_lowercase ): '''simple docstring''' UpperCAmelCase_ : List[Any] = defaultdict(_lowercase ) # dict of list of generated tokens for step, batch in tqdm(enumerate(_lowercase ) ): with torch.no_grad(): UpperCAmelCase_ : Dict = batch['''ids'''].shape[-1] UpperCAmelCase_ : Optional[Any] = accelerator.unwrap_model(_lowercase ).generate( input_ids=batch['''ids'''][:, : batch['''input_len''']] , num_return_sequences=_lowercase , **_lowercase ) # each task is generated batch_size times UpperCAmelCase_ : Union[str, Any] = batch['''task_id'''].repeat(_lowercase ) UpperCAmelCase_ : Dict = accelerator.pad_across_processes( _lowercase , dim=1 , pad_index=tokenizer.pad_token_id ) UpperCAmelCase_, UpperCAmelCase_ : List[str] = accelerator.gather((generated_tokens, generated_tasks) ) UpperCAmelCase_ : Union[str, Any] = generated_tokens.cpu().numpy() UpperCAmelCase_ : Union[str, Any] = generated_tasks.cpu().numpy() for task, generated_tokens in zip(_lowercase , _lowercase ): gen_token_dict[task].append(_lowercase ) UpperCAmelCase_ : Union[str, Any] = [[] for _ in range(_lowercase )] for task, generated_tokens in gen_token_dict.items(): for s in generated_tokens: UpperCAmelCase_ : int = tokenizer.decode(_lowercase , skip_special_tokens=_lowercase , clean_up_tokenization_spaces=_lowercase ) code_gens[task].append(remove_last_block(_lowercase ) ) return code_gens def lowerCamelCase__ ( ): '''simple docstring''' UpperCAmelCase_ : Optional[Any] = HfArgumentParser(_lowercase ) UpperCAmelCase_ : int = parser.parse_args() transformers.logging.set_verbosity_error() # enables code execution in code_eval metric UpperCAmelCase_ : Optional[Any] = args.HF_ALLOW_CODE_EVAL # make sure tokenizer plays nice with multiprocessing UpperCAmelCase_ : List[Any] = '''false''' if args.num_workers is None: UpperCAmelCase_ : Optional[Any] = multiprocessing.cpu_count() # Use dataset load to feed to accelerate UpperCAmelCase_ : int = Accelerator() set_seed(args.seed , device_specific=_lowercase ) # Load model and tokenizer UpperCAmelCase_ : Tuple = AutoTokenizer.from_pretrained(args.model_ckpt ) UpperCAmelCase_ : Any = tokenizer.eos_token UpperCAmelCase_ : List[str] = AutoModelForCausalLM.from_pretrained(args.model_ckpt ) # Generation settings UpperCAmelCase_ : str = { '''do_sample''': args.do_sample, '''temperature''': args.temperature, '''max_new_tokens''': args.max_new_tokens, '''top_p''': args.top_p, '''top_k''': args.top_k, '''stopping_criteria''': StoppingCriteriaList([EndOfFunctionCriteria(0 , _lowercase , _lowercase )] ), } # Load evaluation dataset and metric UpperCAmelCase_ : Tuple = load_dataset('''openai_humaneval''' ) UpperCAmelCase_ : Dict = load_metric('''code_eval''' ) UpperCAmelCase_ : Optional[int] = args.num_tasks if args.num_tasks is not None else len(human_eval['''test'''] ) UpperCAmelCase_ : str = args.n_samples // args.batch_size UpperCAmelCase_ : str = TokenizedDataset(_lowercase , human_eval['''test'''] , n_copies=_lowercase , n_tasks=_lowercase ) # do not confuse args.batch_size, which is actually the num_return_sequences UpperCAmelCase_ : Optional[Any] = DataLoader(_lowercase , batch_size=1 ) # Run a quick test to see if code evaluation is enabled try: UpperCAmelCase_ : Any = code_eval_metric.compute(references=[''''''] , predictions=[['''''']] ) except ValueError as exception: print( '''Code evaluation not enabled. Read the warning below carefully and then use `--HF_ALLOW_CODE_EVAL="1"`''' ''' flag to enable code evaluation.''' ) raise exception UpperCAmelCase_, UpperCAmelCase_ : int = accelerator.prepare(_lowercase , _lowercase ) UpperCAmelCase_ : int = complete_code( _lowercase , _lowercase , _lowercase , _lowercase , n_tasks=_lowercase , batch_size=args.batch_size , **_lowercase , ) if accelerator.is_main_process: UpperCAmelCase_ : Any = [] for task in tqdm(range(_lowercase ) ): UpperCAmelCase_ : int = human_eval['''test'''][task]['''test'''] UpperCAmelCase_ : str = f'''check({human_eval["test"][task]["entry_point"]})''' references.append('''\n''' + test_func + '''\n''' + entry_point ) # Evaluate completions with "code_eval" metric UpperCAmelCase_, UpperCAmelCase_ : Any = code_eval_metric.compute( references=_lowercase , predictions=_lowercase , num_workers=args.num_workers ) print(f'''Results: {pass_at_k}''' ) # Save results to json file with open(args.output_file , '''w''' ) as fp: json.dump(_lowercase , _lowercase ) # For some reason the folliwng seems to be necessary sometimes for code_eval to work nice with multiprocessing # https://stackoverflow.com/questions/60804599/python-multiprocessing-keeps-spawning-the-whole-script if __name__ == "__main__": main()
30
0
'''simple docstring''' import argparse import collections import numpy as np import torch from flax import traverse_util from tax import checkpoints from transformers import MTaConfig, UMTaEncoderModel, UMTaForConditionalGeneration from transformers.utils import logging logging.set_verbosity_info() def UpperCamelCase__ ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) -> Optional[Any]: return params[f"{prefix}/{prefix}/relpos_bias/rel_embedding"][:, i, :] def UpperCamelCase__ ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE="attention" ) -> Union[str, Any]: snake_case__ : Dict = np.ascontiguousarray(params[f"{prefix}/{prefix}/{layer_name}/key/kernel"][:, i, :, :] ) snake_case__ : Dict = k_tmp.reshape(k_tmp.shape[0] , k_tmp.shape[1] * k_tmp.shape[2] ) snake_case__ : Tuple = np.ascontiguousarray(params[f"{prefix}/{prefix}/{layer_name}/out/kernel"][:, i, :, :] ) snake_case__ : Union[str, Any] = o_tmp.reshape(o_tmp.shape[0] * o_tmp.shape[1] , o_tmp.shape[2] ) snake_case__ : Optional[Any] = np.ascontiguousarray(params[f"{prefix}/{prefix}/{layer_name}/query/kernel"][:, i, :, :] ) snake_case__ : List[Any] = q_tmp.reshape(q_tmp.shape[0] , q_tmp.shape[1] * q_tmp.shape[2] ) snake_case__ : str = np.ascontiguousarray(params[f"{prefix}/{prefix}/{layer_name}/value/kernel"][:, i, :, :] ) snake_case__ : Optional[Any] = v_tmp.reshape(v_tmp.shape[0] , v_tmp.shape[1] * v_tmp.shape[2] ) return k, o, q, v def UpperCamelCase__ ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE=False ) -> List[str]: if split_mlp_wi: snake_case__ : Any = params[f"{prefix}/{prefix}/mlp/wi_0/kernel"][:, i, :] snake_case__ : str = params[f"{prefix}/{prefix}/mlp/wi_1/kernel"][:, i, :] snake_case__ : int = (wi_a, wi_a) else: snake_case__ : str = params[f"{prefix}/{prefix}/mlp/wi/kernel"][:, i, :] snake_case__ : Optional[int] = params[f"{prefix}/{prefix}/mlp/wo/kernel"][:, i, :] return wi, wo def UpperCamelCase__ ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) -> List[str]: return params[f"{prefix}/{prefix}/{layer_name}/scale"][:, i] def UpperCamelCase__ ( __SCREAMING_SNAKE_CASE , *, __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = False ) -> Dict: snake_case__ : Optional[Any] = traverse_util.flatten_dict(variables['target'] ) snake_case__ : Optional[Any] = {'''/'''.join(_lowercase ): v for k, v in old.items()} # v1.1 models have a gated GeLU with wi_0 and wi_1 instead of wi snake_case__ : List[str] = '''encoder/encoder/mlp/wi_0/kernel''' in old print('Split MLP:' , _lowercase ) snake_case__ : int = collections.OrderedDict() # Shared embeddings. snake_case__ : Optional[Any] = old['''token_embedder/embedding'''] # Encoder. for i in range(_lowercase ): # Block i, layer 0 (Self Attention). snake_case__ : str = tax_layer_norm_lookup(_lowercase , _lowercase , 'encoder' , 'pre_attention_layer_norm' ) snake_case__ : List[str] = tax_attention_lookup(_lowercase , _lowercase , 'encoder' , 'attention' ) snake_case__ : Optional[Any] = layer_norm snake_case__ : str = k.T snake_case__ : Tuple = o.T snake_case__ : Union[str, Any] = q.T snake_case__ : Dict = v.T # Block i, layer 1 (MLP). snake_case__ : str = tax_layer_norm_lookup(_lowercase , _lowercase , 'encoder' , 'pre_mlp_layer_norm' ) snake_case__ : Dict = tax_mlp_lookup(_lowercase , _lowercase , 'encoder' , _lowercase ) snake_case__ : List[Any] = layer_norm if split_mlp_wi: snake_case__ : int = wi[0].T snake_case__ : str = wi[1].T else: snake_case__ : Optional[int] = wi.T snake_case__ : List[Any] = wo.T if scalable_attention: # convert the rel_embedding of each layer snake_case__ : List[str] = tax_relpos_bias_lookup( _lowercase , _lowercase , 'encoder' ).T snake_case__ : Optional[int] = old['''encoder/encoder_norm/scale'''] if not scalable_attention: snake_case__ : str = tax_relpos_bias_lookup( _lowercase , 0 , 'encoder' ).T snake_case__ : Optional[int] = tax_relpos_bias_lookup( _lowercase , 0 , 'decoder' ).T if not is_encoder_only: # Decoder. for i in range(_lowercase ): # Block i, layer 0 (Self Attention). snake_case__ : Union[str, Any] = tax_layer_norm_lookup(_lowercase , _lowercase , 'decoder' , 'pre_self_attention_layer_norm' ) snake_case__ : List[str] = tax_attention_lookup(_lowercase , _lowercase , 'decoder' , 'self_attention' ) snake_case__ : Union[str, Any] = layer_norm snake_case__ : str = k.T snake_case__ : Dict = o.T snake_case__ : Optional[int] = q.T snake_case__ : Union[str, Any] = v.T # Block i, layer 1 (Cross Attention). snake_case__ : Union[str, Any] = tax_layer_norm_lookup(_lowercase , _lowercase , 'decoder' , 'pre_cross_attention_layer_norm' ) snake_case__ : Optional[Any] = tax_attention_lookup(_lowercase , _lowercase , 'decoder' , 'encoder_decoder_attention' ) snake_case__ : Tuple = layer_norm snake_case__ : int = k.T snake_case__ : Optional[Any] = o.T snake_case__ : Tuple = q.T snake_case__ : Union[str, Any] = v.T # Block i, layer 2 (MLP). snake_case__ : Optional[int] = tax_layer_norm_lookup(_lowercase , _lowercase , 'decoder' , 'pre_mlp_layer_norm' ) snake_case__ : Optional[int] = tax_mlp_lookup(_lowercase , _lowercase , 'decoder' , _lowercase ) snake_case__ : List[Any] = layer_norm if split_mlp_wi: snake_case__ : int = wi[0].T snake_case__ : Any = wi[1].T else: snake_case__ : Any = wi.T snake_case__ : Dict = wo.T if scalable_attention: # convert the rel_embedding of each layer snake_case__ : List[str] = tax_relpos_bias_lookup(_lowercase , _lowercase , 'decoder' ).T snake_case__ : List[str] = old['''decoder/decoder_norm/scale'''] # LM Head (only in v1.1 checkpoints, in v1.0 embeddings are used instead) if "decoder/logits_dense/kernel" in old: snake_case__ : Optional[Any] = old['''decoder/logits_dense/kernel'''].T return new def UpperCamelCase__ ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) -> Tuple: snake_case__ : List[str] = collections.OrderedDict([(k, torch.from_numpy(v.copy() )) for (k, v) in converted_params.items()] ) # Add what is missing. if "encoder.embed_tokens.weight" not in state_dict: snake_case__ : Tuple = state_dict['''shared.weight'''] if not is_encoder_only: if "decoder.embed_tokens.weight" not in state_dict: snake_case__ : Any = state_dict['''shared.weight'''] if "lm_head.weight" not in state_dict: # For old 1.0 models. print('Using shared word embeddings as lm_head.' ) snake_case__ : Tuple = state_dict['''shared.weight'''] return state_dict def UpperCamelCase__ ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) -> List[str]: snake_case__ : int = checkpoints.load_tax_checkpoint(_lowercase ) snake_case__ : List[Any] = convert_tax_to_pytorch( _lowercase , num_layers=config.num_layers , is_encoder_only=_lowercase , scalable_attention=_lowercase ) snake_case__ : Optional[Any] = make_state_dict(_lowercase , _lowercase ) model.load_state_dict(_lowercase , strict=_lowercase ) def UpperCamelCase__ ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = False , __SCREAMING_SNAKE_CASE = False , ) -> Optional[int]: snake_case__ : Optional[Any] = MTaConfig.from_json_file(_lowercase ) print(f"Building PyTorch model from configuration: {config}" ) # Non-v1.1 checkpoints could also use T5Model, but this works for all. # The v1.0 checkpoints will simply have an LM head that is the word embeddings. if is_encoder_only: snake_case__ : Any = UMTaEncoderModel(_lowercase ) else: snake_case__ : List[Any] = UMTaForConditionalGeneration(_lowercase ) # Load weights from tf checkpoint load_tax_weights_in_ta(_lowercase , _lowercase , _lowercase , _lowercase , _lowercase ) # Save pytorch-model print(f"Save PyTorch model to {pytorch_dump_path}" ) model.save_pretrained(_lowercase ) # Verify that we can load the checkpoint. model.from_pretrained(_lowercase ) print('Done' ) if __name__ == "__main__": A_ = argparse.ArgumentParser(description="Converts a native T5X checkpoint into a PyTorch checkpoint.") # Required parameters parser.add_argument( "--t5x_checkpoint_path", default=None, type=str, required=True, help="Path to the T5X checkpoint." ) parser.add_argument( "--config_file", default=None, type=str, required=True, help="The config json file corresponding to the pre-trained T5 model.\nThis specifies the model architecture.", ) parser.add_argument( "--pytorch_dump_path", default=None, type=str, required=True, help="Path to the output PyTorch model." ) parser.add_argument( "--is_encoder_only", action="store_true", help="Check if the model is encoder-decoder model", default=False ) parser.add_argument( "--scalable_attention", action="store_true", help="Whether the model uses scaled attention (umt5 model)", default=False, ) A_ = parser.parse_args() convert_tax_checkpoint_to_pytorch( args.tax_checkpoint_path, args.config_file, args.pytorch_dump_path, args.is_encoder_only, args.scalable_attention, )
270
from collections import OrderedDict from typing import TYPE_CHECKING, Any, Mapping, Optional from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging if TYPE_CHECKING: from ... import FeatureExtractionMixin, TensorType __a = logging.get_logger(__name__) __a = { 'openai/imagegpt-small': '', 'openai/imagegpt-medium': '', 'openai/imagegpt-large': '', } class __a( _a ): """simple docstring""" lowerCAmelCase = '''imagegpt''' lowerCAmelCase = ['''past_key_values'''] lowerCAmelCase = { '''hidden_size''': '''n_embd''', '''max_position_embeddings''': '''n_positions''', '''num_attention_heads''': '''n_head''', '''num_hidden_layers''': '''n_layer''', } def __init__( self ,_SCREAMING_SNAKE_CASE=512 + 1 ,_SCREAMING_SNAKE_CASE=32 * 32 ,_SCREAMING_SNAKE_CASE=512 ,_SCREAMING_SNAKE_CASE=24 ,_SCREAMING_SNAKE_CASE=8 ,_SCREAMING_SNAKE_CASE=None ,_SCREAMING_SNAKE_CASE="quick_gelu" ,_SCREAMING_SNAKE_CASE=0.1 ,_SCREAMING_SNAKE_CASE=0.1 ,_SCREAMING_SNAKE_CASE=0.1 ,_SCREAMING_SNAKE_CASE=1e-5 ,_SCREAMING_SNAKE_CASE=0.02 ,_SCREAMING_SNAKE_CASE=True ,_SCREAMING_SNAKE_CASE=True ,_SCREAMING_SNAKE_CASE=False ,_SCREAMING_SNAKE_CASE=False ,_SCREAMING_SNAKE_CASE=False ,**_SCREAMING_SNAKE_CASE ,) -> Optional[int]: UpperCAmelCase_ : Optional[int] = vocab_size UpperCAmelCase_ : Union[str, Any] = n_positions UpperCAmelCase_ : Union[str, Any] = n_embd UpperCAmelCase_ : Any = n_layer UpperCAmelCase_ : Optional[Any] = n_head UpperCAmelCase_ : Union[str, Any] = n_inner UpperCAmelCase_ : List[Any] = activation_function UpperCAmelCase_ : List[str] = resid_pdrop UpperCAmelCase_ : str = embd_pdrop UpperCAmelCase_ : Optional[Any] = attn_pdrop UpperCAmelCase_ : Dict = layer_norm_epsilon UpperCAmelCase_ : Union[str, Any] = initializer_range UpperCAmelCase_ : Dict = scale_attn_weights UpperCAmelCase_ : Any = use_cache UpperCAmelCase_ : List[str] = scale_attn_by_inverse_layer_idx UpperCAmelCase_ : Tuple = reorder_and_upcast_attn UpperCAmelCase_ : int = tie_word_embeddings super().__init__(tie_word_embeddings=_SCREAMING_SNAKE_CASE ,**_SCREAMING_SNAKE_CASE ) class __a( _a ): """simple docstring""" @property def a__ ( self ) -> Mapping[str, Mapping[int, str]]: return OrderedDict( [ ('''input_ids''', {0: '''batch''', 1: '''sequence'''}), ] ) def a__ ( self ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE = 1 ,_SCREAMING_SNAKE_CASE = -1 ,_SCREAMING_SNAKE_CASE = False ,_SCREAMING_SNAKE_CASE = None ,_SCREAMING_SNAKE_CASE = 3 ,_SCREAMING_SNAKE_CASE = 32 ,_SCREAMING_SNAKE_CASE = 32 ,) -> Mapping[str, Any]: UpperCAmelCase_ : Any = self._generate_dummy_images(_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ) UpperCAmelCase_ : Optional[int] = dict(preprocessor(images=_SCREAMING_SNAKE_CASE ,return_tensors=_SCREAMING_SNAKE_CASE ) ) return inputs
30
0
'''simple docstring''' import copy import os from typing import Union from ...configuration_utils import PretrainedConfig from ...models.auto.modeling_auto import MODEL_FOR_CAUSAL_LM_MAPPING_NAMES from ...utils import logging from ..auto import CONFIG_MAPPING lowerCAmelCase_ = logging.get_logger(__name__) lowerCAmelCase_ = { 'Salesforce/instruct-blip-flan-t5': 'https://huggingface.co/Salesforce/instruct-blip-flan-t5/resolve/main/config.json', } class UpperCAmelCase_ ( _a ): """simple docstring""" __SCREAMING_SNAKE_CASE = '''instructblip_vision_model''' def __init__( self , lowerCamelCase=14_08 , lowerCamelCase=61_44 , lowerCamelCase=39 , lowerCamelCase=16 , lowerCamelCase=2_24 , lowerCamelCase=14 , lowerCamelCase="gelu" , lowerCamelCase=1e-6 , lowerCamelCase=0.0 , lowerCamelCase=1e-10 , lowerCamelCase=True , **lowerCamelCase , ) -> Any: '''simple docstring''' super().__init__(**_SCREAMING_SNAKE_CASE ) UpperCamelCase : Optional[int] = hidden_size UpperCamelCase : List[Any] = intermediate_size UpperCamelCase : Tuple = num_hidden_layers UpperCamelCase : Dict = num_attention_heads UpperCamelCase : Optional[Any] = patch_size UpperCamelCase : str = image_size UpperCamelCase : Optional[Any] = initializer_range UpperCamelCase : Optional[int] = attention_dropout UpperCamelCase : List[str] = layer_norm_eps UpperCamelCase : List[Any] = hidden_act UpperCamelCase : Any = qkv_bias @classmethod def SCREAMING_SNAKE_CASE__ ( cls , lowerCamelCase , **lowerCamelCase ) -> "PretrainedConfig": '''simple docstring''' cls._set_token_in_kwargs(_SCREAMING_SNAKE_CASE ) UpperCamelCase : Tuple = cls.get_config_dict(_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) # get the vision config dict if we are loading from InstructBlipConfig if config_dict.get("model_type" ) == "instructblip": UpperCamelCase : Optional[Any] = config_dict['''vision_config'''] if "model_type" in config_dict and hasattr(cls , "model_type" ) and config_dict["model_type"] != cls.model_type: logger.warning( f'''You are using a model of type {config_dict['model_type']} to instantiate a model of type ''' f'''{cls.model_type}. This is not supported for all configurations of models and can yield errors.''' ) return cls.from_dict(_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) class UpperCAmelCase_ ( _a ): """simple docstring""" __SCREAMING_SNAKE_CASE = '''instructblip_qformer''' def __init__( self , lowerCamelCase=3_05_22 , lowerCamelCase=7_68 , lowerCamelCase=12 , lowerCamelCase=12 , lowerCamelCase=30_72 , lowerCamelCase="gelu" , lowerCamelCase=0.1 , lowerCamelCase=0.1 , lowerCamelCase=5_12 , lowerCamelCase=0.02 , lowerCamelCase=1e-12 , lowerCamelCase=0 , lowerCamelCase="absolute" , lowerCamelCase=2 , lowerCamelCase=14_08 , **lowerCamelCase , ) -> int: '''simple docstring''' super().__init__(pad_token_id=_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) UpperCamelCase : List[Any] = vocab_size UpperCamelCase : Optional[int] = hidden_size UpperCamelCase : int = num_hidden_layers UpperCamelCase : Any = num_attention_heads UpperCamelCase : Optional[int] = hidden_act UpperCamelCase : List[Any] = intermediate_size UpperCamelCase : Optional[int] = hidden_dropout_prob UpperCamelCase : List[Any] = attention_probs_dropout_prob UpperCamelCase : List[Any] = max_position_embeddings UpperCamelCase : int = initializer_range UpperCamelCase : List[str] = layer_norm_eps UpperCamelCase : Tuple = position_embedding_type UpperCamelCase : int = cross_attention_frequency UpperCamelCase : Optional[int] = encoder_hidden_size @classmethod def SCREAMING_SNAKE_CASE__ ( cls , lowerCamelCase , **lowerCamelCase ) -> "PretrainedConfig": '''simple docstring''' cls._set_token_in_kwargs(_SCREAMING_SNAKE_CASE ) UpperCamelCase : Optional[int] = cls.get_config_dict(_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) # get the qformer config dict if we are loading from InstructBlipConfig if config_dict.get("model_type" ) == "instructblip": UpperCamelCase : str = config_dict['''qformer_config'''] if "model_type" in config_dict and hasattr(cls , "model_type" ) and config_dict["model_type"] != cls.model_type: logger.warning( f'''You are using a model of type {config_dict['model_type']} to instantiate a model of type ''' f'''{cls.model_type}. This is not supported for all configurations of models and can yield errors.''' ) return cls.from_dict(_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) class UpperCAmelCase_ ( _a ): """simple docstring""" __SCREAMING_SNAKE_CASE = '''instructblip''' __SCREAMING_SNAKE_CASE = True def __init__( self , lowerCamelCase=None , lowerCamelCase=None , lowerCamelCase=None , lowerCamelCase=32 , **lowerCamelCase ) -> List[str]: '''simple docstring''' super().__init__(**_SCREAMING_SNAKE_CASE ) if vision_config is None: UpperCamelCase : List[Any] = {} logger.info("vision_config is None. initializing the InstructBlipVisionConfig with default values." ) if qformer_config is None: UpperCamelCase : Tuple = {} logger.info("qformer_config is None. Initializing the InstructBlipQFormerConfig with default values." ) if text_config is None: UpperCamelCase : str = {} logger.info("text_config is None. Initializing the text config with default values (`OPTConfig`)." ) UpperCamelCase : List[str] = InstructBlipVisionConfig(**_SCREAMING_SNAKE_CASE ) UpperCamelCase : Optional[Any] = InstructBlipQFormerConfig(**_SCREAMING_SNAKE_CASE ) UpperCamelCase : Dict = text_config['''model_type'''] if '''model_type''' in text_config else '''opt''' UpperCamelCase : List[Any] = CONFIG_MAPPING[text_model_type](**_SCREAMING_SNAKE_CASE ) UpperCamelCase : Tuple = self.text_config.tie_word_embeddings UpperCamelCase : List[Any] = self.text_config.is_encoder_decoder UpperCamelCase : int = num_query_tokens UpperCamelCase : Any = self.vision_config.hidden_size UpperCamelCase : List[Any] = self.text_config.model_type in MODEL_FOR_CAUSAL_LM_MAPPING_NAMES UpperCamelCase : Optional[Any] = 1.0 UpperCamelCase : Any = 0.02 @classmethod def SCREAMING_SNAKE_CASE__ ( cls , lowerCamelCase , lowerCamelCase , lowerCamelCase , **lowerCamelCase , ) -> Optional[Any]: '''simple docstring''' return cls( vision_config=vision_config.to_dict() , qformer_config=qformer_config.to_dict() , text_config=text_config.to_dict() , **_SCREAMING_SNAKE_CASE , ) def SCREAMING_SNAKE_CASE__ ( self ) -> str: '''simple docstring''' UpperCamelCase : Union[str, Any] = copy.deepcopy(self.__dict__ ) UpperCamelCase : Any = self.vision_config.to_dict() UpperCamelCase : List[str] = self.qformer_config.to_dict() UpperCamelCase : Dict = self.text_config.to_dict() UpperCamelCase : Optional[Any] = self.__class__.model_type return output
173
import argparse import json import os import re import torch from transformers import BloomConfig, BloomModel from transformers.file_utils import CONFIG_NAME, WEIGHTS_NAME from transformers.utils import logging logging.set_verbosity_info() __a = [ 'word_embeddings_layernorm.weight', 'word_embeddings_layernorm.bias', 'input_layernorm.weight', 'input_layernorm.bias', 'post_attention_layernorm.weight', 'post_attention_layernorm.bias', 'self_attention.dense.bias', 'mlp.dense_4h_to_h.bias', 'ln_f.weight', 'ln_f.bias', ] __a = [ 'mlp.dense_4h_to_h.weight', 'self_attention.dense.weight', ] def lowerCamelCase__ ( _lowercase , _lowercase ): '''simple docstring''' UpperCAmelCase_ : List[Any] = { '''word_embeddings.weight''': '''word_embeddings.weight''', '''word_embeddings.norm.weight''': '''word_embeddings_layernorm.weight''', '''word_embeddings.norm.bias''': '''word_embeddings_layernorm.bias''', '''weight''': '''ln_f.weight''', '''bias''': '''ln_f.bias''', } if key in layer_rename_map: return layer_rename_map[key] # Handle transformer blocks UpperCAmelCase_ : Union[str, Any] = int(re.match(r'''.*layer_(\d*).*''' , _lowercase )[1] ) layer_number -= 3 return f'''h.{layer_number}.''' + key def lowerCamelCase__ ( _lowercase ): '''simple docstring''' if dtype == torch.bool: return 1 / 8 UpperCAmelCase_ : Any = re.search(r'''[^\d](\d+)$''' , str(_lowercase ) ) if bit_search is None: raise ValueError(f'''`dtype` is not a valid dtype: {dtype}.''' ) UpperCAmelCase_ : Optional[int] = int(bit_search.groups()[0] ) return bit_size // 8 def lowerCamelCase__ ( _lowercase , _lowercase , _lowercase , _lowercase , _lowercase ): '''simple docstring''' if bloom_config_file == "": UpperCAmelCase_ : Tuple = BloomConfig() else: UpperCAmelCase_ : Optional[int] = BloomConfig.from_json_file(_lowercase ) if shard_model: UpperCAmelCase_ : Any = os.listdir(_lowercase ) UpperCAmelCase_ : Union[str, Any] = sorted(filter(lambda _lowercase : s.startswith('''layer''' ) and "model_00" in s , _lowercase ) ) UpperCAmelCase_ : Any = {'''weight_map''': {}, '''metadata''': {}} UpperCAmelCase_ : List[str] = 0 UpperCAmelCase_ : Any = None UpperCAmelCase_ : Optional[int] = BloomConfig() for j, file in enumerate(_lowercase ): print('''Processing file: {}'''.format(_lowercase ) ) UpperCAmelCase_ : Optional[Any] = None for i in range(_lowercase ): # load all TP files UpperCAmelCase_ : Tuple = file.replace('''model_00''' , f'''model_0{i}''' ) UpperCAmelCase_ : Any = torch.load(os.path.join(_lowercase , _lowercase ) , map_location='''cpu''' ) # Rename keys in the transformers names UpperCAmelCase_ : Dict = list(temp.keys() ) for key in keys: UpperCAmelCase_ : Union[str, Any] = temp.pop(_lowercase ) if tensors is None: UpperCAmelCase_ : Union[str, Any] = temp else: for key in tensors.keys(): if any(key.endswith(_lowercase ) for end in WEIGHTS_TO_AVERAGE_ENDSWITH ): # We average (sum and then divide) some weights accross TP ranks (see https://github.com/bigscience-workshop/Megatron-DeepSpeed/blob/olruwase/sync_layer_norms/megatron/training.py#L425) tensors[key] += temp[key] else: # Some weights are RowParallelLinear in Megatron-Deepspeed, others are ColumnParallel UpperCAmelCase_ : int = 1 if any(text in key for text in WEIGHTS_WITH_ROW_PARALLELISM_CONTAIN ) else 0 # We concatenate these weights accross TP ranks UpperCAmelCase_ : Tuple = torch.cat([tensors[key], temp[key]] , dim=_lowercase ) # Divide by the number of TP the weights we want to average for key in tensors.keys(): if any(key.endswith(_lowercase ) for end in WEIGHTS_TO_AVERAGE_ENDSWITH ): UpperCAmelCase_ : List[str] = tensors[key] / pretraining_tp torch.save( _lowercase , os.path.join( _lowercase , '''pytorch_model_{}-of-{}.bin'''.format(str(j + 1 ).zfill(5 ) , str(len(_lowercase ) ).zfill(5 ) ) , ) , ) for key in tensors.keys(): UpperCAmelCase_ : Union[str, Any] = tensors[key] total_size += value.numel() * get_dtype_size(value.dtype ) if key not in index_dict["weight_map"]: UpperCAmelCase_ : List[str] = '''pytorch_model_{}-of-{}.bin'''.format( str(j + 1 ).zfill(5 ) , str(len(_lowercase ) ).zfill(5 ) ) UpperCAmelCase_ : List[Any] = BloomConfig() UpperCAmelCase_ : Tuple = pytorch_dump_folder_path + '''/''' + CONFIG_NAME UpperCAmelCase_ : List[str] = total_size with open(_lowercase , '''w''' , encoding='''utf-8''' ) as f: f.write(config.to_json_string() ) with open(os.path.join(_lowercase , WEIGHTS_NAME + '''.index.json''' ) , '''w''' , encoding='''utf-8''' ) as f: UpperCAmelCase_ : Optional[Any] = json.dumps(_lowercase , indent=2 , sort_keys=_lowercase ) + '''\n''' f.write(_lowercase ) else: UpperCAmelCase_ : Any = BloomModel(_lowercase ) UpperCAmelCase_ : Tuple = os.listdir(_lowercase ) UpperCAmelCase_ : Union[str, Any] = sorted(filter(lambda _lowercase : s.startswith('''layer''' ) and "model_00" in s , _lowercase ) ) UpperCAmelCase_ : Any = None for i, file in enumerate(_lowercase ): UpperCAmelCase_ : Optional[Any] = None for i in range(_lowercase ): # load all TP files UpperCAmelCase_ : List[Any] = file.replace('''model_00''' , f'''model_0{i}''' ) UpperCAmelCase_ : Optional[int] = torch.load(os.path.join(_lowercase , _lowercase ) , map_location='''cpu''' ) # Rename keys in the transformers names UpperCAmelCase_ : str = list(temp.keys() ) for key in keys: UpperCAmelCase_ : Dict = temp.pop(_lowercase ) if tensors is None: UpperCAmelCase_ : int = temp else: for key in tensors.keys(): # We average (sum and then divide) some weights accross TP ranks (see https://github.com/bigscience-workshop/Megatron-DeepSpeed/blob/olruwase/sync_layer_norms/megatron/training.py#L425) if any(key.endswith(_lowercase ) for end in WEIGHTS_TO_AVERAGE_ENDSWITH ): tensors[key] += temp[key] else: # Some weights are RowParallelLinear in Megatron-Deepspeed, others are ColumnParallel UpperCAmelCase_ : Optional[int] = 1 if any(text in key for text in WEIGHTS_WITH_ROW_PARALLELISM_CONTAIN ) else 0 # We concatenate these weights accross TP ranks UpperCAmelCase_ : List[str] = torch.cat([tensors[key], temp[key]] , dim=_lowercase ) # Divide by the number of TP the weights we want to average for key in tensors.keys(): if any(key.endswith(_lowercase ) for end in WEIGHTS_TO_AVERAGE_ENDSWITH ): UpperCAmelCase_ : Dict = tensors[key] / pretraining_tp UpperCAmelCase_ : Tuple = model.load_state_dict(_lowercase , strict=_lowercase ) assert not other_keys.unexpected_keys, f'''The keys {other_keys.unexpected_keys} are unexpected''' if missing_keys is None: UpperCAmelCase_ : Union[str, Any] = set(other_keys.missing_keys ) else: UpperCAmelCase_ : Dict = missing_keys.intersection(set(other_keys.missing_keys ) ) assert not missing_keys, f'''The keys {missing_keys} are missing''' # Save pytorch-model os.makedirs(_lowercase , exist_ok=_lowercase ) UpperCAmelCase_ : str = pytorch_dump_folder_path + '''/''' + WEIGHTS_NAME UpperCAmelCase_ : Dict = pytorch_dump_folder_path + '''/''' + CONFIG_NAME print(f'''Save PyTorch model to {pytorch_weights_dump_path} with dtype {config.torch_dtype}''' ) if config.torch_dtype is not None: UpperCAmelCase_ : Optional[int] = model.to(config.torch_dtype ) torch.save(model.state_dict() , _lowercase ) print(f'''Save configuration file to {pytorch_config_dump_path}''' ) with open(_lowercase , '''w''' , encoding='''utf-8''' ) as f: f.write(config.to_json_string() ) if __name__ == "__main__": __a = argparse.ArgumentParser() # Required parameters parser.add_argument( '--bloom_checkpoint_path', default=None, type=str, required=True, help='Path to the Megatron-LM checkpoint path.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, required=True, help='Path to the output PyTorch model.' ) parser.add_argument( '--bloom_config_file', default='', type=str, help=( 'An optional config json file corresponding to the pre-trained model. \n' 'This specifies the model architecture.' ), ) parser.add_argument( '--shard_model', action='store_true', help='An optional setting to shard the output model \nThis enables sharding the converted checkpoint', ) parser.add_argument( '--pretraining_tp', default=4, type=int, help='Pretraining TP rank that has been used when training the model in Megatron-LM \n', ) __a = parser.parse_args() convert_bloom_checkpoint_to_pytorch( args.bloom_checkpoint_path, args.bloom_config_file, args.pytorch_dump_folder_path, args.shard_model, args.pretraining_tp, )
30
0
from __future__ import annotations import unittest from transformers import AutoTokenizer, PegasusConfig, is_tf_available from transformers.testing_utils import require_sentencepiece, require_tf, require_tokenizers, slow from transformers.utils import cached_property from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFAutoModelForSeqaSeqLM, TFPegasusForConditionalGeneration, TFPegasusModel @require_tf class lowercase_ : lowerCAmelCase__ =PegasusConfig lowerCAmelCase__ ={} lowerCAmelCase__ ="gelu" def __init__( self : str , snake_case__ : Dict , snake_case__ : Dict=13 , snake_case__ : Optional[Any]=7 , snake_case__ : int=True , snake_case__ : Any=False , snake_case__ : str=99 , snake_case__ : Union[str, Any]=32 , snake_case__ : str=2 , snake_case__ : Union[str, Any]=4 , snake_case__ : Optional[Any]=37 , snake_case__ : List[Any]=0.1 , snake_case__ : str=0.1 , snake_case__ : Tuple=40 , snake_case__ : Optional[int]=2 , snake_case__ : Dict=1 , snake_case__ : Dict=0 , ): """simple docstring""" SCREAMING_SNAKE_CASE_ = parent SCREAMING_SNAKE_CASE_ = batch_size SCREAMING_SNAKE_CASE_ = seq_length SCREAMING_SNAKE_CASE_ = is_training SCREAMING_SNAKE_CASE_ = use_labels SCREAMING_SNAKE_CASE_ = vocab_size SCREAMING_SNAKE_CASE_ = hidden_size SCREAMING_SNAKE_CASE_ = num_hidden_layers SCREAMING_SNAKE_CASE_ = num_attention_heads SCREAMING_SNAKE_CASE_ = intermediate_size SCREAMING_SNAKE_CASE_ = hidden_dropout_prob SCREAMING_SNAKE_CASE_ = attention_probs_dropout_prob SCREAMING_SNAKE_CASE_ = max_position_embeddings SCREAMING_SNAKE_CASE_ = eos_token_id SCREAMING_SNAKE_CASE_ = pad_token_id SCREAMING_SNAKE_CASE_ = bos_token_id def __a ( self : Tuple ): """simple docstring""" SCREAMING_SNAKE_CASE_ = ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size ) SCREAMING_SNAKE_CASE_ = tf.expand_dims(tf.constant([self.eos_token_id] * self.batch_size ) , 1 ) SCREAMING_SNAKE_CASE_ = tf.concat([input_ids, eos_tensor] , axis=1 ) SCREAMING_SNAKE_CASE_ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) SCREAMING_SNAKE_CASE_ = self.config_cls( vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_ids=[2] , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.pad_token_id , **self.config_updates , ) SCREAMING_SNAKE_CASE_ = prepare_pegasus_inputs_dict(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) return config, inputs_dict def __a ( self : int , snake_case__ : Any , snake_case__ : str ): """simple docstring""" SCREAMING_SNAKE_CASE_ = TFPegasusModel(config=_SCREAMING_SNAKE_CASE ).get_decoder() SCREAMING_SNAKE_CASE_ = inputs_dict['''input_ids'''] SCREAMING_SNAKE_CASE_ = input_ids[:1, :] SCREAMING_SNAKE_CASE_ = inputs_dict['''attention_mask'''][:1, :] SCREAMING_SNAKE_CASE_ = inputs_dict['''head_mask'''] SCREAMING_SNAKE_CASE_ = 1 # first forward pass SCREAMING_SNAKE_CASE_ = model(_SCREAMING_SNAKE_CASE , attention_mask=_SCREAMING_SNAKE_CASE , head_mask=_SCREAMING_SNAKE_CASE , use_cache=_SCREAMING_SNAKE_CASE ) SCREAMING_SNAKE_CASE_ = outputs.to_tuple() # create hypothetical next token and extent to next_input_ids SCREAMING_SNAKE_CASE_ = ids_tensor((self.batch_size, 3) , config.vocab_size ) SCREAMING_SNAKE_CASE_ = tf.cast(ids_tensor((self.batch_size, 3) , 2 ) , tf.inta ) # append to next input_ids and SCREAMING_SNAKE_CASE_ = tf.concat([input_ids, next_tokens] , axis=-1 ) SCREAMING_SNAKE_CASE_ = tf.concat([attention_mask, next_attn_mask] , axis=-1 ) SCREAMING_SNAKE_CASE_ = model(_SCREAMING_SNAKE_CASE , attention_mask=_SCREAMING_SNAKE_CASE )[0] SCREAMING_SNAKE_CASE_ = model(_SCREAMING_SNAKE_CASE , attention_mask=_SCREAMING_SNAKE_CASE , past_key_values=_SCREAMING_SNAKE_CASE )[0] self.parent.assertEqual(next_tokens.shape[1] , output_from_past.shape[1] ) # select random slice SCREAMING_SNAKE_CASE_ = int(ids_tensor((1,) , output_from_past.shape[-1] ) ) SCREAMING_SNAKE_CASE_ = output_from_no_past[:, -3:, random_slice_idx] SCREAMING_SNAKE_CASE_ = output_from_past[:, :, random_slice_idx] # test that outputs are equal for slice tf.debugging.assert_near(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , rtol=1e-3 ) def _a ( lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase=None , lowerCAmelCase=None , lowerCAmelCase=None , lowerCAmelCase=None , lowerCAmelCase=None , )-> str: if attention_mask is None: SCREAMING_SNAKE_CASE_ = tf.cast(tf.math.not_equal(_lowercase , config.pad_token_id ) , tf.inta ) if decoder_attention_mask is None: SCREAMING_SNAKE_CASE_ = tf.concat( [ tf.ones(decoder_input_ids[:, :1].shape , dtype=tf.inta ), tf.cast(tf.math.not_equal(decoder_input_ids[:, 1:] , config.pad_token_id ) , tf.inta ), ] , axis=-1 , ) if head_mask is None: SCREAMING_SNAKE_CASE_ = tf.ones((config.encoder_layers, config.encoder_attention_heads) ) if decoder_head_mask is None: SCREAMING_SNAKE_CASE_ = tf.ones((config.decoder_layers, config.decoder_attention_heads) ) if cross_attn_head_mask is None: SCREAMING_SNAKE_CASE_ = tf.ones((config.decoder_layers, config.decoder_attention_heads) ) return { "input_ids": input_ids, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "decoder_attention_mask": decoder_attention_mask, "head_mask": head_mask, "decoder_head_mask": decoder_head_mask, "cross_attn_head_mask": cross_attn_head_mask, } @require_tf class lowercase_ (_a , _a , unittest.TestCase ): lowerCAmelCase__ =(TFPegasusForConditionalGeneration, TFPegasusModel) if is_tf_available() else () lowerCAmelCase__ =(TFPegasusForConditionalGeneration,) if is_tf_available() else () lowerCAmelCase__ =( { "conversational": TFPegasusForConditionalGeneration, "feature-extraction": TFPegasusModel, "summarization": TFPegasusForConditionalGeneration, "text2text-generation": TFPegasusForConditionalGeneration, "translation": TFPegasusForConditionalGeneration, } if is_tf_available() else {} ) lowerCAmelCase__ =True lowerCAmelCase__ =False lowerCAmelCase__ =False def __a ( self : Any ): """simple docstring""" SCREAMING_SNAKE_CASE_ = TFPegasusModelTester(self ) SCREAMING_SNAKE_CASE_ = ConfigTester(self , config_class=_SCREAMING_SNAKE_CASE ) def __a ( self : Optional[Any] ): """simple docstring""" self.config_tester.run_common_tests() def __a ( self : Optional[Any] ): """simple docstring""" SCREAMING_SNAKE_CASE_ = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.check_decoder_model_past_large_inputs(*_SCREAMING_SNAKE_CASE ) @require_sentencepiece @require_tokenizers @require_tf class lowercase_ (unittest.TestCase ): lowerCAmelCase__ =[ " PG&E stated it scheduled the blackouts in response to forecasts for high winds amid dry conditions. The aim is to reduce the risk of wildfires. Nearly 800 thousand customers were scheduled to be affected by the shutoffs which were expected to last through at least midday tomorrow.", " The London trio are up for best UK act and best album, as well as getting two nominations in the best song category.\"We got told like this morning \'Oh I think you\'re nominated\'\", said Dappy.\"And I was like \'Oh yeah, which one?\' And now we\'ve got nominated for four awards. I mean, wow!\"Bandmate Fazer added: \"We thought it\'s best of us to come down and mingle with everyone and say hello to the cameras. And now we find we\'ve got four nominations.\"The band have two shots at the best song prize, getting the nod for their Tynchy Stryder collaboration Number One, and single Strong Again.Their album Uncle B will also go up against records by the likes of Beyonce and Kanye West.N-Dubz picked up the best newcomer Mobo in 2007, but female member Tulisa said they wouldn\'t be too disappointed if they didn\'t win this time around.\"At the end of the day we\'re grateful to be where we are in our careers.\"If it don\'t happen then it don\'t happen - live to fight another day and keep on making albums and hits for the fans.\"Dappy also revealed they could be performing live several times on the night.The group will be doing Number One and also a possible rendition of the War Child single, I Got Soul.The charity song is a re-working of The Killers\' All These Things That I\'ve Done and is set to feature artists like Chipmunk, Ironik and Pixie Lott.This year\'s Mobos will be held outside of London for the first time, in Glasgow on 30 September.N-Dubz said they were looking forward to performing for their Scottish fans and boasted about their recent shows north of the border.\"We just done Edinburgh the other day,\" said Dappy.\"We smashed up an N-Dubz show over there. We done Aberdeen about three or four months ago - we smashed up that show over there! Everywhere we go we smash it up!\" ", ] lowerCAmelCase__ =[ "California\'s largest electricity provider has cut power to hundreds of thousands of customers in an effort to" " reduce the risk of wildfires.", "N-Dubz have revealed they\'re \"grateful\" to have been nominated for four Mobo Awards.", ] # differs slightly from pytorch, likely due to numerical differences in linear layers lowerCAmelCase__ ="google/pegasus-xsum" @cached_property def __a ( self : List[Any] ): """simple docstring""" return AutoTokenizer.from_pretrained(self.model_name ) @cached_property def __a ( self : Optional[int] ): """simple docstring""" SCREAMING_SNAKE_CASE_ = TFAutoModelForSeqaSeqLM.from_pretrained(self.model_name ) return model def __a ( self : Optional[int] , **snake_case__ : Optional[int] ): """simple docstring""" SCREAMING_SNAKE_CASE_ = self.translate_src_text(**_SCREAMING_SNAKE_CASE ) assert self.expected_text == generated_words def __a ( self : Optional[Any] , **snake_case__ : Dict ): """simple docstring""" SCREAMING_SNAKE_CASE_ = self.tokenizer(self.src_text , **_SCREAMING_SNAKE_CASE , padding=_SCREAMING_SNAKE_CASE , return_tensors='tf' ) SCREAMING_SNAKE_CASE_ = self.model.generate( model_inputs.input_ids , attention_mask=model_inputs.attention_mask , num_beams=2 , use_cache=_SCREAMING_SNAKE_CASE , ) SCREAMING_SNAKE_CASE_ = self.tokenizer.batch_decode(generated_ids.numpy() , skip_special_tokens=_SCREAMING_SNAKE_CASE ) return generated_words @slow def __a ( self : int ): """simple docstring""" self._assert_generated_batch_equal_expected()
360
def lowerCamelCase__ ( ): '''simple docstring''' UpperCAmelCase_ : Dict = 0 for i in range(1 , 1001 ): total += i**i return str(_lowercase )[-10:] if __name__ == "__main__": print(solution())
30
0
"""simple docstring""" from collections import OrderedDict from typing import TYPE_CHECKING, Any, Mapping, Optional from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging if TYPE_CHECKING: from ... import FeatureExtractionMixin, TensorType SCREAMING_SNAKE_CASE_ = logging.get_logger(__name__) SCREAMING_SNAKE_CASE_ = { '''openai/imagegpt-small''': '''''', '''openai/imagegpt-medium''': '''''', '''openai/imagegpt-large''': '''''', } class a ( _a ): """simple docstring""" A__ : List[Any] = "imagegpt" A__ : Dict = ["past_key_values"] A__ : Dict = { "hidden_size": "n_embd", "max_position_embeddings": "n_positions", "num_attention_heads": "n_head", "num_hidden_layers": "n_layer", } def __init__( self , snake_case_=512 + 1 , snake_case_=32 * 32 , snake_case_=512 , snake_case_=24 , snake_case_=8 , snake_case_=None , snake_case_="quick_gelu" , snake_case_=0.1 , snake_case_=0.1 , snake_case_=0.1 , snake_case_=1e-5 , snake_case_=0.02 , snake_case_=True , snake_case_=True , snake_case_=False , snake_case_=False , snake_case_=False , **snake_case_ , ) -> Optional[int]: _UpperCAmelCase = vocab_size _UpperCAmelCase = n_positions _UpperCAmelCase = n_embd _UpperCAmelCase = n_layer _UpperCAmelCase = n_head _UpperCAmelCase = n_inner _UpperCAmelCase = activation_function _UpperCAmelCase = resid_pdrop _UpperCAmelCase = embd_pdrop _UpperCAmelCase = attn_pdrop _UpperCAmelCase = layer_norm_epsilon _UpperCAmelCase = initializer_range _UpperCAmelCase = scale_attn_weights _UpperCAmelCase = use_cache _UpperCAmelCase = scale_attn_by_inverse_layer_idx _UpperCAmelCase = reorder_and_upcast_attn _UpperCAmelCase = tie_word_embeddings super().__init__(tie_word_embeddings=_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) class a ( _a ): """simple docstring""" @property def __A ( self ) -> Mapping[str, Mapping[int, str]]: return OrderedDict( [ ("input_ids", {0: "batch", 1: "sequence"}), ] ) def __A ( self , snake_case_ , snake_case_ = 1 , snake_case_ = -1 , snake_case_ = False , snake_case_ = None , snake_case_ = 3 , snake_case_ = 32 , snake_case_ = 32 , ) -> Mapping[str, Any]: _UpperCAmelCase = self._generate_dummy_images(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) _UpperCAmelCase = dict(preprocessor(images=_SCREAMING_SNAKE_CASE , return_tensors=_SCREAMING_SNAKE_CASE ) ) return inputs
426
import os import sys import warnings from dataclasses import dataclass, field from io import BytesIO from typing import TYPE_CHECKING, Any, ClassVar, Dict, List, Optional, Union import numpy as np import pyarrow as pa from .. import config from ..download.streaming_download_manager import xopen from ..table import array_cast from ..utils.file_utils import is_local_path from ..utils.py_utils import first_non_null_value, no_op_if_value_is_null, string_to_dict if TYPE_CHECKING: import PIL.Image from .features import FeatureType __a = None __a = '<' if sys.byteorder == 'little' else '>' # Origin: https://github.com/python-pillow/Pillow/blob/698951e19e19972aeed56df686868f1329981c12/src/PIL/Image.py#L3126 minus "|i1" which values are not preserved correctly when saving and loading an image __a = [ np.dtype('|b1'), np.dtype('|u1'), np.dtype('<u2'), np.dtype('>u2'), np.dtype('<i2'), np.dtype('>i2'), np.dtype('<u4'), np.dtype('>u4'), np.dtype('<i4'), np.dtype('>i4'), np.dtype('<f4'), np.dtype('>f4'), np.dtype('<f8'), np.dtype('>f8'), ] @dataclass class __a: """simple docstring""" lowerCAmelCase = True lowerCAmelCase = None # Automatically constructed lowerCAmelCase = "PIL.Image.Image" lowerCAmelCase = pa.struct({'''bytes''': pa.binary(), '''path''': pa.string()} ) lowerCAmelCase = field(default='''Image''' , init=_a , repr=_a ) def __call__( self ) -> Tuple: return self.pa_type def a__ ( self ,_SCREAMING_SNAKE_CASE ) -> dict: if config.PIL_AVAILABLE: import PIL.Image else: raise ImportError('''To support encoding images, please install \'Pillow\'.''' ) if isinstance(_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ): UpperCAmelCase_ : List[str] = np.array(_SCREAMING_SNAKE_CASE ) if isinstance(_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ): return {"path": value, "bytes": None} elif isinstance(_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ): return {"path": None, "bytes": value} elif isinstance(_SCREAMING_SNAKE_CASE ,np.ndarray ): # convert the image array to PNG/TIFF bytes return encode_np_array(_SCREAMING_SNAKE_CASE ) elif isinstance(_SCREAMING_SNAKE_CASE ,PIL.Image.Image ): # convert the PIL image to bytes (default format is PNG/TIFF) return encode_pil_image(_SCREAMING_SNAKE_CASE ) elif value.get('''path''' ) is not None and os.path.isfile(value['''path'''] ): # we set "bytes": None to not duplicate the data if they're already available locally return {"bytes": None, "path": value.get('''path''' )} elif value.get('''bytes''' ) is not None or value.get('''path''' ) is not None: # store the image bytes, and path is used to infer the image format using the file extension return {"bytes": value.get('''bytes''' ), "path": value.get('''path''' )} else: raise ValueError( f'''An image sample should have one of \'path\' or \'bytes\' but they are missing or None in {value}.''' ) def a__ ( self ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE=None ) -> "PIL.Image.Image": if not self.decode: raise RuntimeError('''Decoding is disabled for this feature. Please use Image(decode=True) instead.''' ) if config.PIL_AVAILABLE: import PIL.Image else: raise ImportError('''To support decoding images, please install \'Pillow\'.''' ) if token_per_repo_id is None: UpperCAmelCase_ : Dict = {} UpperCAmelCase_, UpperCAmelCase_ : Union[str, Any] = value['''path'''], value['''bytes'''] if bytes_ is None: if path is None: raise ValueError(f'''An image should have one of \'path\' or \'bytes\' but both are None in {value}.''' ) else: if is_local_path(_SCREAMING_SNAKE_CASE ): UpperCAmelCase_ : Tuple = PIL.Image.open(_SCREAMING_SNAKE_CASE ) else: UpperCAmelCase_ : Dict = path.split('''::''' )[-1] try: UpperCAmelCase_ : Optional[int] = string_to_dict(_SCREAMING_SNAKE_CASE ,config.HUB_DATASETS_URL )['''repo_id'''] UpperCAmelCase_ : Tuple = token_per_repo_id.get(_SCREAMING_SNAKE_CASE ) except ValueError: UpperCAmelCase_ : Optional[Any] = None with xopen(_SCREAMING_SNAKE_CASE ,'''rb''' ,use_auth_token=_SCREAMING_SNAKE_CASE ) as f: UpperCAmelCase_ : List[str] = BytesIO(f.read() ) UpperCAmelCase_ : Optional[Any] = PIL.Image.open(bytes_ ) else: UpperCAmelCase_ : List[Any] = PIL.Image.open(BytesIO(bytes_ ) ) image.load() # to avoid "Too many open files" errors return image def a__ ( self ) -> Union["FeatureType", Dict[str, "FeatureType"]]: from .features import Value return ( self if self.decode else { "bytes": Value('''binary''' ), "path": Value('''string''' ), } ) def a__ ( self ,_SCREAMING_SNAKE_CASE ) -> pa.StructArray: if pa.types.is_string(storage.type ): UpperCAmelCase_ : Dict = pa.array([None] * len(_SCREAMING_SNAKE_CASE ) ,type=pa.binary() ) UpperCAmelCase_ : Dict = pa.StructArray.from_arrays([bytes_array, storage] ,['''bytes''', '''path'''] ,mask=storage.is_null() ) elif pa.types.is_binary(storage.type ): UpperCAmelCase_ : List[str] = pa.array([None] * len(_SCREAMING_SNAKE_CASE ) ,type=pa.string() ) UpperCAmelCase_ : Tuple = pa.StructArray.from_arrays([storage, path_array] ,['''bytes''', '''path'''] ,mask=storage.is_null() ) elif pa.types.is_struct(storage.type ): if storage.type.get_field_index('''bytes''' ) >= 0: UpperCAmelCase_ : Dict = storage.field('''bytes''' ) else: UpperCAmelCase_ : Any = pa.array([None] * len(_SCREAMING_SNAKE_CASE ) ,type=pa.binary() ) if storage.type.get_field_index('''path''' ) >= 0: UpperCAmelCase_ : int = storage.field('''path''' ) else: UpperCAmelCase_ : List[str] = pa.array([None] * len(_SCREAMING_SNAKE_CASE ) ,type=pa.string() ) UpperCAmelCase_ : Optional[Any] = pa.StructArray.from_arrays([bytes_array, path_array] ,['''bytes''', '''path'''] ,mask=storage.is_null() ) elif pa.types.is_list(storage.type ): UpperCAmelCase_ : Optional[Any] = pa.array( [encode_np_array(np.array(_SCREAMING_SNAKE_CASE ) )['''bytes'''] if arr is not None else None for arr in storage.to_pylist()] ,type=pa.binary() ,) UpperCAmelCase_ : Any = pa.array([None] * len(_SCREAMING_SNAKE_CASE ) ,type=pa.string() ) UpperCAmelCase_ : Dict = pa.StructArray.from_arrays( [bytes_array, path_array] ,['''bytes''', '''path'''] ,mask=bytes_array.is_null() ) return array_cast(_SCREAMING_SNAKE_CASE ,self.pa_type ) def a__ ( self ,_SCREAMING_SNAKE_CASE ) -> pa.StructArray: @no_op_if_value_is_null def path_to_bytes(_SCREAMING_SNAKE_CASE ): with xopen(_SCREAMING_SNAKE_CASE ,'''rb''' ) as f: UpperCAmelCase_ : Any = f.read() return bytes_ UpperCAmelCase_ : Union[str, Any] = pa.array( [ (path_to_bytes(x['''path'''] ) if x['''bytes'''] is None else x['''bytes''']) if x is not None else None for x in storage.to_pylist() ] ,type=pa.binary() ,) UpperCAmelCase_ : List[str] = pa.array( [os.path.basename(_SCREAMING_SNAKE_CASE ) if path is not None else None for path in storage.field('''path''' ).to_pylist()] ,type=pa.string() ,) UpperCAmelCase_ : Union[str, Any] = pa.StructArray.from_arrays([bytes_array, path_array] ,['''bytes''', '''path'''] ,mask=bytes_array.is_null() ) return array_cast(_SCREAMING_SNAKE_CASE ,self.pa_type ) def lowerCamelCase__ ( ): '''simple docstring''' if config.PIL_AVAILABLE: import PIL.Image else: raise ImportError('''To support encoding images, please install \'Pillow\'.''' ) global _IMAGE_COMPRESSION_FORMATS if _IMAGE_COMPRESSION_FORMATS is None: PIL.Image.init() UpperCAmelCase_ : Optional[int] = list(set(PIL.Image.OPEN.keys() ) & set(PIL.Image.SAVE.keys() ) ) return _IMAGE_COMPRESSION_FORMATS def lowerCamelCase__ ( _lowercase ): '''simple docstring''' UpperCAmelCase_ : Optional[int] = BytesIO() if image.format in list_image_compression_formats(): UpperCAmelCase_ : int = image.format else: UpperCAmelCase_ : List[Any] = '''PNG''' if image.mode in ['''1''', '''L''', '''LA''', '''RGB''', '''RGBA'''] else '''TIFF''' image.save(_lowercase , format=_lowercase ) return buffer.getvalue() def lowerCamelCase__ ( _lowercase ): '''simple docstring''' if hasattr(_lowercase , '''filename''' ) and image.filename != "": return {"path": image.filename, "bytes": None} else: return {"path": None, "bytes": image_to_bytes(_lowercase )} def lowerCamelCase__ ( _lowercase ): '''simple docstring''' if config.PIL_AVAILABLE: import PIL.Image else: raise ImportError('''To support encoding images, please install \'Pillow\'.''' ) UpperCAmelCase_ : Tuple = array.dtype UpperCAmelCase_ : List[str] = dtype.byteorder if dtype.byteorder != '''=''' else _NATIVE_BYTEORDER UpperCAmelCase_ : Dict = dtype.kind UpperCAmelCase_ : Union[str, Any] = dtype.itemsize UpperCAmelCase_ : Optional[Any] = None # Multi-channel array case (only np.dtype("|u1") is allowed) if array.shape[2:]: UpperCAmelCase_ : Tuple = np.dtype('''|u1''' ) if dtype_kind not in ["u", "i"]: raise TypeError( f'''Unsupported array dtype {dtype} for image encoding. Only {dest_dtype} is supported for multi-channel arrays.''' ) if dtype is not dest_dtype: warnings.warn(f'''Downcasting array dtype {dtype} to {dest_dtype} to be compatible with \'Pillow\'''' ) # Exact match elif dtype in _VALID_IMAGE_ARRAY_DTPYES: UpperCAmelCase_ : Union[str, Any] = dtype else: # Downcast the type within the kind (np.can_cast(from_type, to_type, casting="same_kind") doesn't behave as expected, so do it manually) while dtype_itemsize >= 1: UpperCAmelCase_ : Union[str, Any] = dtype_byteorder + dtype_kind + str(_lowercase ) UpperCAmelCase_ : str = np.dtype(_lowercase ) if dest_dtype in _VALID_IMAGE_ARRAY_DTPYES: warnings.warn(f'''Downcasting array dtype {dtype} to {dest_dtype} to be compatible with \'Pillow\'''' ) break else: dtype_itemsize //= 2 if dest_dtype is None: raise TypeError( f'''Cannot convert dtype {dtype} to a valid image dtype. Valid image dtypes: {_VALID_IMAGE_ARRAY_DTPYES}''' ) UpperCAmelCase_ : Any = PIL.Image.fromarray(array.astype(_lowercase ) ) return {"path": None, "bytes": image_to_bytes(_lowercase )} def lowerCamelCase__ ( _lowercase ): '''simple docstring''' if config.PIL_AVAILABLE: import PIL.Image else: raise ImportError('''To support encoding images, please install \'Pillow\'.''' ) if objs: UpperCAmelCase_, UpperCAmelCase_ : Tuple = first_non_null_value(_lowercase ) if isinstance(_lowercase , _lowercase ): return [{"path": obj, "bytes": None} if obj is not None else None for obj in objs] if isinstance(_lowercase , np.ndarray ): UpperCAmelCase_ : Any = no_op_if_value_is_null(_lowercase ) return [obj_to_image_dict_func(_lowercase ) for obj in objs] elif isinstance(_lowercase , PIL.Image.Image ): UpperCAmelCase_ : Union[str, Any] = no_op_if_value_is_null(_lowercase ) return [obj_to_image_dict_func(_lowercase ) for obj in objs] else: return objs else: return objs
30
0
'''simple docstring''' import unittest from transformers import is_torch_available, is_vision_available from transformers.testing_utils import require_torch, require_vision, slow, torch_device if is_torch_available(): import torch from transformers import AutoModelForImageClassification if is_vision_available(): from transformers import AutoImageProcessor @require_torch @require_vision class __UpperCamelCase ( unittest.TestCase ): @slow def __UpperCAmelCase ( self ): '''simple docstring''' __a : Tuple = AutoImageProcessor.from_pretrained('microsoft/dit-base-finetuned-rvlcdip' ) __a : Union[str, Any] = AutoModelForImageClassification.from_pretrained('microsoft/dit-base-finetuned-rvlcdip' ) model.to(_SCREAMING_SNAKE_CASE ) from datasets import load_dataset __a : Optional[int] = load_dataset('nielsr/rvlcdip-demo' ) __a : Optional[Any] = dataset['''train'''][0]['''image'''].convert('RGB' ) __a : str = image_processor(_SCREAMING_SNAKE_CASE , return_tensors='pt' ).to(_SCREAMING_SNAKE_CASE ) # forward pass with torch.no_grad(): __a : Optional[int] = model(**_SCREAMING_SNAKE_CASE ) __a : List[Any] = outputs.logits __a : Tuple = torch.Size((1, 16) ) self.assertEqual(logits.shape , _SCREAMING_SNAKE_CASE ) __a : int = torch.tensor( [-0.4158, -0.4092, -0.4347] , device=_SCREAMING_SNAKE_CASE , dtype=torch.float , ) self.assertTrue(torch.allclose(logits[0, :3] , _SCREAMING_SNAKE_CASE , atol=1E-4 ) )
476
import unittest from transformers import is_torch_available, is_vision_available from transformers.testing_utils import require_torch, require_vision, slow, torch_device if is_torch_available(): import torch from transformers import AutoModelForImageClassification if is_vision_available(): from transformers import AutoImageProcessor @require_torch @require_vision class __a( unittest.TestCase ): """simple docstring""" @slow def a__ ( self ) -> List[str]: UpperCAmelCase_ : Tuple = AutoImageProcessor.from_pretrained('''microsoft/dit-base-finetuned-rvlcdip''' ) UpperCAmelCase_ : Union[str, Any] = AutoModelForImageClassification.from_pretrained('''microsoft/dit-base-finetuned-rvlcdip''' ) model.to(_SCREAMING_SNAKE_CASE ) from datasets import load_dataset UpperCAmelCase_ : Optional[int] = load_dataset('''nielsr/rvlcdip-demo''' ) UpperCAmelCase_ : Optional[Any] = dataset['''train'''][0]['''image'''].convert('''RGB''' ) UpperCAmelCase_ : str = image_processor(_SCREAMING_SNAKE_CASE ,return_tensors='''pt''' ).to(_SCREAMING_SNAKE_CASE ) # forward pass with torch.no_grad(): UpperCAmelCase_ : Optional[int] = model(**_SCREAMING_SNAKE_CASE ) UpperCAmelCase_ : List[Any] = outputs.logits UpperCAmelCase_ : Tuple = torch.Size((1, 16) ) self.assertEqual(logits.shape ,_SCREAMING_SNAKE_CASE ) UpperCAmelCase_ : int = torch.tensor( [-0.41_58, -0.40_92, -0.43_47] ,device=_SCREAMING_SNAKE_CASE ,dtype=torch.float ,) self.assertTrue(torch.allclose(logits[0, :3] ,_SCREAMING_SNAKE_CASE ,atol=1e-4 ) )
30
0
# Copyright 2022 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse import os import platform import numpy as np import psutil import torch from accelerate import __version__ as version from accelerate.commands.config import default_config_file, load_config_from_file from ..utils import is_npu_available, is_xpu_available def __lowerCAmelCase ( _UpperCamelCase=None ) -> Any: '''simple docstring''' if subparsers is not None: lowerCamelCase__: Optional[Any] = subparsers.add_parser("""env""" ) else: lowerCamelCase__: List[str] = argparse.ArgumentParser("""Accelerate env command""" ) parser.add_argument( """--config_file""" , default=_lowercase , help="""The config file to use for the default values in the launching script.""" ) if subparsers is not None: parser.set_defaults(func=_lowercase ) return parser def __lowerCAmelCase ( _UpperCamelCase ) -> Any: '''simple docstring''' lowerCamelCase__: Dict = torch.__version__ lowerCamelCase__: Optional[Any] = torch.cuda.is_available() lowerCamelCase__: int = is_xpu_available() lowerCamelCase__: Union[str, Any] = is_npu_available() lowerCamelCase__: Optional[Any] = '''Not found''' # Get the default from the config file. if args.config_file is not None or os.path.isfile(_lowercase ): lowerCamelCase__: List[Any] = load_config_from_file(args.config_file ).to_dict() lowerCamelCase__: Tuple = { '''`Accelerate` version''': version, '''Platform''': platform.platform(), '''Python version''': platform.python_version(), '''Numpy version''': np.__version__, '''PyTorch version (GPU?)''': f"""{pt_version} ({pt_cuda_available})""", '''PyTorch XPU available''': str(_lowercase ), '''PyTorch NPU available''': str(_lowercase ), '''System RAM''': f"""{psutil.virtual_memory().total / 1024 ** 3:.2f} GB""", } if pt_cuda_available: lowerCamelCase__: int = torch.cuda.get_device_name() print("""\nCopy-and-paste the text below in your GitHub issue\n""" ) print("""\n""".join([f"""- {prop}: {val}""" for prop, val in info.items()] ) ) print("""- `Accelerate` default config:""" if args.config_file is None else """- `Accelerate` config passed:""" ) lowerCamelCase__: Optional[int] = ( '''\n'''.join([f"""\t- {prop}: {val}""" for prop, val in accelerate_config.items()] ) if isinstance(_lowercase , _lowercase ) else f"""\t{accelerate_config}""" ) print(_lowercase ) lowerCamelCase__: int = accelerate_config return info def __lowerCAmelCase ( ) -> Union[str, Any]: '''simple docstring''' lowerCamelCase__: List[str] = env_command_parser() lowerCamelCase__: Tuple = parser.parse_args() env_command(_lowercase ) return 0 if __name__ == "__main__": raise SystemExit(main())
306
import warnings from ...utils import logging from .image_processing_clip import CLIPImageProcessor __a = logging.get_logger(__name__) class __a( _a ): """simple docstring""" def __init__( self ,*_SCREAMING_SNAKE_CASE ,**_SCREAMING_SNAKE_CASE ) -> None: warnings.warn( '''The class CLIPFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please''' ''' use CLIPImageProcessor instead.''' ,_SCREAMING_SNAKE_CASE ,) super().__init__(*_SCREAMING_SNAKE_CASE ,**_SCREAMING_SNAKE_CASE )
30
0
import unittest from transformers import ( MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, TextClassificationPipeline, pipeline, ) from transformers.testing_utils import is_pipeline_test, nested_simplify, require_tf, require_torch, slow from .test_pipelines_common import ANY # These 2 model types require different inputs than those of the usual text models. _SCREAMING_SNAKE_CASE : Tuple = {'LayoutLMv2Config', 'LayoutLMv3Config'} @is_pipeline_test class A ( unittest.TestCase ): '''simple docstring''' lowerCamelCase : str = MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING lowerCamelCase : Tuple = TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING if model_mapping is not None: lowerCamelCase : Union[str, Any] = {config: model for config, model in model_mapping.items() if config.__name__ not in _TO_SKIP} if tf_model_mapping is not None: lowerCamelCase : Union[str, Any] = { config: model for config, model in tf_model_mapping.items() if config.__name__ not in _TO_SKIP } @require_torch def UpperCAmelCase__ ( self : Optional[Any]): _lowercase: Dict = pipeline( task="text-classification" , model="hf-internal-testing/tiny-random-distilbert" , framework="pt") _lowercase: Optional[int] = text_classifier("This is great !") self.assertEqual(nested_simplify(_SCREAMING_SNAKE_CASE) , [{"label": "LABEL_0", "score": 0.5_0_4}]) _lowercase: Tuple = text_classifier("This is great !" , top_k=2) self.assertEqual( nested_simplify(_SCREAMING_SNAKE_CASE) , [{"label": "LABEL_0", "score": 0.5_0_4}, {"label": "LABEL_1", "score": 0.4_9_6}]) _lowercase: Union[str, Any] = text_classifier(["This is great !", "This is bad"] , top_k=2) self.assertEqual( nested_simplify(_SCREAMING_SNAKE_CASE) , [ [{"label": "LABEL_0", "score": 0.5_0_4}, {"label": "LABEL_1", "score": 0.4_9_6}], [{"label": "LABEL_0", "score": 0.5_0_4}, {"label": "LABEL_1", "score": 0.4_9_6}], ] , ) _lowercase: int = text_classifier("This is great !" , top_k=1) self.assertEqual(nested_simplify(_SCREAMING_SNAKE_CASE) , [{"label": "LABEL_0", "score": 0.5_0_4}]) # Legacy behavior _lowercase: int = text_classifier("This is great !" , return_all_scores=_SCREAMING_SNAKE_CASE) self.assertEqual(nested_simplify(_SCREAMING_SNAKE_CASE) , [{"label": "LABEL_0", "score": 0.5_0_4}]) _lowercase: Optional[int] = text_classifier("This is great !" , return_all_scores=_SCREAMING_SNAKE_CASE) self.assertEqual( nested_simplify(_SCREAMING_SNAKE_CASE) , [[{"label": "LABEL_0", "score": 0.5_0_4}, {"label": "LABEL_1", "score": 0.4_9_6}]]) _lowercase: Any = text_classifier(["This is great !", "Something else"] , return_all_scores=_SCREAMING_SNAKE_CASE) self.assertEqual( nested_simplify(_SCREAMING_SNAKE_CASE) , [ [{"label": "LABEL_0", "score": 0.5_0_4}, {"label": "LABEL_1", "score": 0.4_9_6}], [{"label": "LABEL_0", "score": 0.5_0_4}, {"label": "LABEL_1", "score": 0.4_9_6}], ] , ) _lowercase: Tuple = text_classifier(["This is great !", "Something else"] , return_all_scores=_SCREAMING_SNAKE_CASE) self.assertEqual( nested_simplify(_SCREAMING_SNAKE_CASE) , [ {"label": "LABEL_0", "score": 0.5_0_4}, {"label": "LABEL_0", "score": 0.5_0_4}, ] , ) @require_torch def UpperCAmelCase__ ( self : Any): import torch _lowercase: int = pipeline( task="text-classification" , model="hf-internal-testing/tiny-random-distilbert" , framework="pt" , device=torch.device("cpu") , ) _lowercase: Optional[int] = text_classifier("This is great !") self.assertEqual(nested_simplify(_SCREAMING_SNAKE_CASE) , [{"label": "LABEL_0", "score": 0.5_0_4}]) @require_tf def UpperCAmelCase__ ( self : Tuple): _lowercase: Tuple = pipeline( task="text-classification" , model="hf-internal-testing/tiny-random-distilbert" , framework="tf") _lowercase: Tuple = text_classifier("This is great !") self.assertEqual(nested_simplify(_SCREAMING_SNAKE_CASE) , [{"label": "LABEL_0", "score": 0.5_0_4}]) @slow @require_torch def UpperCAmelCase__ ( self : int): _lowercase: Union[str, Any] = pipeline("text-classification") _lowercase: Optional[Any] = text_classifier("This is great !") self.assertEqual(nested_simplify(_SCREAMING_SNAKE_CASE) , [{"label": "POSITIVE", "score": 1.0}]) _lowercase: Tuple = text_classifier("This is bad !") self.assertEqual(nested_simplify(_SCREAMING_SNAKE_CASE) , [{"label": "NEGATIVE", "score": 1.0}]) _lowercase: Tuple = text_classifier("Birds are a type of animal") self.assertEqual(nested_simplify(_SCREAMING_SNAKE_CASE) , [{"label": "POSITIVE", "score": 0.9_8_8}]) @slow @require_tf def UpperCAmelCase__ ( self : Optional[Any]): _lowercase: Union[str, Any] = pipeline("text-classification" , framework="tf") _lowercase: List[Any] = text_classifier("This is great !") self.assertEqual(nested_simplify(_SCREAMING_SNAKE_CASE) , [{"label": "POSITIVE", "score": 1.0}]) _lowercase: Any = text_classifier("This is bad !") self.assertEqual(nested_simplify(_SCREAMING_SNAKE_CASE) , [{"label": "NEGATIVE", "score": 1.0}]) _lowercase: Optional[Any] = text_classifier("Birds are a type of animal") self.assertEqual(nested_simplify(_SCREAMING_SNAKE_CASE) , [{"label": "POSITIVE", "score": 0.9_8_8}]) def UpperCAmelCase__ ( self : Tuple , _UpperCamelCase : Union[str, Any] , _UpperCamelCase : Dict , _UpperCamelCase : Union[str, Any]): _lowercase: Optional[int] = TextClassificationPipeline(model=_SCREAMING_SNAKE_CASE , tokenizer=_SCREAMING_SNAKE_CASE) return text_classifier, ["HuggingFace is in", "This is another test"] def UpperCAmelCase__ ( self : int , _UpperCamelCase : Dict , _UpperCamelCase : List[Any]): _lowercase: Tuple = text_classifier.model # Small inputs because BartTokenizer tiny has maximum position embeddings = 22 _lowercase: Tuple = '''HuggingFace is in''' _lowercase: str = text_classifier(_SCREAMING_SNAKE_CASE) self.assertEqual(nested_simplify(_SCREAMING_SNAKE_CASE) , [{"label": ANY(_SCREAMING_SNAKE_CASE), "score": ANY(_SCREAMING_SNAKE_CASE)}]) self.assertTrue(outputs[0]["label"] in model.config.idalabel.values()) _lowercase: int = ['''HuggingFace is in ''', '''Paris is in France'''] _lowercase: Optional[Any] = text_classifier(_SCREAMING_SNAKE_CASE) self.assertEqual( nested_simplify(_SCREAMING_SNAKE_CASE) , [{"label": ANY(_SCREAMING_SNAKE_CASE), "score": ANY(_SCREAMING_SNAKE_CASE)}, {"label": ANY(_SCREAMING_SNAKE_CASE), "score": ANY(_SCREAMING_SNAKE_CASE)}] , ) self.assertTrue(outputs[0]["label"] in model.config.idalabel.values()) self.assertTrue(outputs[1]["label"] in model.config.idalabel.values()) # Forcing to get all results with `top_k=None` # This is NOT the legacy format _lowercase: Optional[Any] = text_classifier(_SCREAMING_SNAKE_CASE , top_k=_SCREAMING_SNAKE_CASE) _lowercase: Union[str, Any] = len(model.config.idalabel.values()) self.assertEqual( nested_simplify(_SCREAMING_SNAKE_CASE) , [[{"label": ANY(_SCREAMING_SNAKE_CASE), "score": ANY(_SCREAMING_SNAKE_CASE)}] * N, [{"label": ANY(_SCREAMING_SNAKE_CASE), "score": ANY(_SCREAMING_SNAKE_CASE)}] * N] , ) _lowercase: List[str] = {'''text''': '''HuggingFace is in ''', '''text_pair''': '''Paris is in France'''} _lowercase: Any = text_classifier(_SCREAMING_SNAKE_CASE) self.assertEqual( nested_simplify(_SCREAMING_SNAKE_CASE) , {"label": ANY(_SCREAMING_SNAKE_CASE), "score": ANY(_SCREAMING_SNAKE_CASE)} , ) self.assertTrue(outputs["label"] in model.config.idalabel.values()) # This might be used a text pair, but tokenizer + pipe interaction # makes it hard to understand that it's not using the pair properly # https://github.com/huggingface/transformers/issues/17305 # We disabled this usage instead as it was outputting wrong outputs. _lowercase: Union[str, Any] = [['''HuggingFace is in ''', '''Paris is in France''']] with self.assertRaises(_SCREAMING_SNAKE_CASE): text_classifier(_SCREAMING_SNAKE_CASE) # This used to be valid for doing text pairs # We're keeping it working because of backward compatibility _lowercase: Optional[int] = text_classifier([[["HuggingFace is in ", "Paris is in France"]]]) self.assertEqual( nested_simplify(_SCREAMING_SNAKE_CASE) , [{"label": ANY(_SCREAMING_SNAKE_CASE), "score": ANY(_SCREAMING_SNAKE_CASE)}] , ) self.assertTrue(outputs[0]["label"] in model.config.idalabel.values())
226
import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import PoolFormerImageProcessor class __a( unittest.TestCase ): """simple docstring""" def __init__( self ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE=7 ,_SCREAMING_SNAKE_CASE=3 ,_SCREAMING_SNAKE_CASE=30 ,_SCREAMING_SNAKE_CASE=400 ,_SCREAMING_SNAKE_CASE=True ,_SCREAMING_SNAKE_CASE=None ,_SCREAMING_SNAKE_CASE=0.9 ,_SCREAMING_SNAKE_CASE=None ,_SCREAMING_SNAKE_CASE=True ,_SCREAMING_SNAKE_CASE=[0.5, 0.5, 0.5] ,_SCREAMING_SNAKE_CASE=[0.5, 0.5, 0.5] ,) -> Optional[int]: UpperCAmelCase_ : int = size if size is not None else {'''shortest_edge''': 30} UpperCAmelCase_ : List[str] = crop_size if crop_size is not None else {'''height''': 30, '''width''': 30} UpperCAmelCase_ : Dict = parent UpperCAmelCase_ : int = batch_size UpperCAmelCase_ : int = num_channels UpperCAmelCase_ : Any = min_resolution UpperCAmelCase_ : Tuple = max_resolution UpperCAmelCase_ : Optional[int] = do_resize_and_center_crop UpperCAmelCase_ : Tuple = size UpperCAmelCase_ : List[str] = crop_pct UpperCAmelCase_ : List[str] = crop_size UpperCAmelCase_ : Any = do_normalize UpperCAmelCase_ : str = image_mean UpperCAmelCase_ : List[Any] = image_std def a__ ( self ) -> str: return { "size": self.size, "do_resize_and_center_crop": self.do_resize_and_center_crop, "crop_pct": self.crop_pct, "crop_size": self.crop_size, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, } @require_torch @require_vision class __a( _a , unittest.TestCase ): """simple docstring""" lowerCAmelCase = PoolFormerImageProcessor if is_vision_available() else None def a__ ( self ) -> Dict: UpperCAmelCase_ : str = PoolFormerImageProcessingTester(self ) @property def a__ ( self ) -> Optional[int]: return self.image_processor_tester.prepare_image_processor_dict() def a__ ( self ) -> Optional[int]: UpperCAmelCase_ : List[Any] = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(_SCREAMING_SNAKE_CASE ,'''do_resize_and_center_crop''' ) ) self.assertTrue(hasattr(_SCREAMING_SNAKE_CASE ,'''size''' ) ) self.assertTrue(hasattr(_SCREAMING_SNAKE_CASE ,'''crop_pct''' ) ) self.assertTrue(hasattr(_SCREAMING_SNAKE_CASE ,'''do_normalize''' ) ) self.assertTrue(hasattr(_SCREAMING_SNAKE_CASE ,'''image_mean''' ) ) self.assertTrue(hasattr(_SCREAMING_SNAKE_CASE ,'''image_std''' ) ) def a__ ( self ) -> Union[str, Any]: UpperCAmelCase_ : Any = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size ,{'''shortest_edge''': 30} ) self.assertEqual(image_processor.crop_size ,{'''height''': 30, '''width''': 30} ) UpperCAmelCase_ : Optional[Any] = self.image_processing_class.from_dict(self.image_processor_dict ,size=42 ,crop_size=84 ) self.assertEqual(image_processor.size ,{'''shortest_edge''': 42} ) self.assertEqual(image_processor.crop_size ,{'''height''': 84, '''width''': 84} ) def a__ ( self ) -> Optional[int]: pass def a__ ( self ) -> Dict: # Initialize image_processing UpperCAmelCase_ : str = self.image_processing_class(**self.image_processor_dict ) # create random PIL images UpperCAmelCase_ : int = prepare_image_inputs(self.image_processor_tester ,equal_resolution=_SCREAMING_SNAKE_CASE ) for image in image_inputs: self.assertIsInstance(_SCREAMING_SNAKE_CASE ,Image.Image ) # Test not batched input UpperCAmelCase_ : Optional[int] = image_processing(image_inputs[0] ,return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape ,( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) ,) # Test batched UpperCAmelCase_ : Union[str, Any] = image_processing(_SCREAMING_SNAKE_CASE ,return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape ,( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) ,) def a__ ( self ) -> List[Any]: # Initialize image_processing UpperCAmelCase_ : Any = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors UpperCAmelCase_ : List[str] = prepare_image_inputs(self.image_processor_tester ,equal_resolution=_SCREAMING_SNAKE_CASE ,numpify=_SCREAMING_SNAKE_CASE ) for image in image_inputs: self.assertIsInstance(_SCREAMING_SNAKE_CASE ,np.ndarray ) # Test not batched input UpperCAmelCase_ : Tuple = image_processing(image_inputs[0] ,return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape ,( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) ,) # Test batched UpperCAmelCase_ : List[Any] = image_processing(_SCREAMING_SNAKE_CASE ,return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape ,( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) ,) def a__ ( self ) -> Union[str, Any]: # Initialize image_processing UpperCAmelCase_ : List[Any] = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors UpperCAmelCase_ : Optional[Any] = prepare_image_inputs(self.image_processor_tester ,equal_resolution=_SCREAMING_SNAKE_CASE ,torchify=_SCREAMING_SNAKE_CASE ) for image in image_inputs: self.assertIsInstance(_SCREAMING_SNAKE_CASE ,torch.Tensor ) # Test not batched input UpperCAmelCase_ : Tuple = image_processing(image_inputs[0] ,return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape ,( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) ,) # Test batched UpperCAmelCase_ : List[Any] = image_processing(_SCREAMING_SNAKE_CASE ,return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape ,( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) ,)
30
0
import inspect import unittest from transformers import BitConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_backbone_common import BackboneTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import BitBackbone, BitForImageClassification, BitImageProcessor, BitModel from transformers.models.bit.modeling_bit import BIT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image class lowercase__: """simple docstring""" def __init__( self : Union[str, Any] , SCREAMING_SNAKE_CASE_ : Union[str, Any] , SCREAMING_SNAKE_CASE_ : str=3 , SCREAMING_SNAKE_CASE_ : Union[str, Any]=3_2 , SCREAMING_SNAKE_CASE_ : Any=3 , SCREAMING_SNAKE_CASE_ : List[Any]=1_0 , SCREAMING_SNAKE_CASE_ : List[Any]=[8, 1_6, 3_2, 6_4] , SCREAMING_SNAKE_CASE_ : str=[1, 1, 2, 1] , SCREAMING_SNAKE_CASE_ : Optional[Any]=True , SCREAMING_SNAKE_CASE_ : int=True , SCREAMING_SNAKE_CASE_ : List[str]="relu" , SCREAMING_SNAKE_CASE_ : Dict=3 , SCREAMING_SNAKE_CASE_ : Union[str, Any]=None , SCREAMING_SNAKE_CASE_ : Dict=["stage2", "stage3", "stage4"] , SCREAMING_SNAKE_CASE_ : Optional[Any]=[2, 3, 4] , SCREAMING_SNAKE_CASE_ : str=1 , ) -> Union[str, Any]: lowercase_ = parent lowercase_ = batch_size lowercase_ = image_size lowercase_ = num_channels lowercase_ = embeddings_size lowercase_ = hidden_sizes lowercase_ = depths lowercase_ = is_training lowercase_ = use_labels lowercase_ = hidden_act lowercase_ = num_labels lowercase_ = scope lowercase_ = len(_SCREAMING_SNAKE_CASE ) lowercase_ = out_features lowercase_ = out_indices lowercase_ = num_groups def _lowercase ( self : Union[str, Any] ) -> Union[str, Any]: lowercase_ = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) lowercase_ = None if self.use_labels: lowercase_ = ids_tensor([self.batch_size] , self.num_labels ) lowercase_ = self.get_config() return config, pixel_values, labels def _lowercase ( self : Tuple ) -> List[Any]: return BitConfig( num_channels=self.num_channels , embeddings_size=self.embeddings_size , hidden_sizes=self.hidden_sizes , depths=self.depths , hidden_act=self.hidden_act , num_labels=self.num_labels , out_features=self.out_features , out_indices=self.out_indices , num_groups=self.num_groups , ) def _lowercase ( self : List[Any] , SCREAMING_SNAKE_CASE_ : List[str] , SCREAMING_SNAKE_CASE_ : Optional[int] , SCREAMING_SNAKE_CASE_ : Any ) -> Dict: lowercase_ = BitModel(config=_SCREAMING_SNAKE_CASE ) model.to(_SCREAMING_SNAKE_CASE ) model.eval() lowercase_ = model(_SCREAMING_SNAKE_CASE ) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], self.image_size // 3_2, self.image_size // 3_2) , ) def _lowercase ( self : Tuple , SCREAMING_SNAKE_CASE_ : List[str] , SCREAMING_SNAKE_CASE_ : Optional[Any] , SCREAMING_SNAKE_CASE_ : Optional[Any] ) -> Optional[Any]: lowercase_ = self.num_labels lowercase_ = BitForImageClassification(_SCREAMING_SNAKE_CASE ) model.to(_SCREAMING_SNAKE_CASE ) model.eval() lowercase_ = model(_SCREAMING_SNAKE_CASE , labels=_SCREAMING_SNAKE_CASE ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def _lowercase ( self : Tuple , SCREAMING_SNAKE_CASE_ : Optional[int] , SCREAMING_SNAKE_CASE_ : List[str] , SCREAMING_SNAKE_CASE_ : int ) -> Optional[Any]: lowercase_ = BitBackbone(config=_SCREAMING_SNAKE_CASE ) model.to(_SCREAMING_SNAKE_CASE ) model.eval() lowercase_ = model(_SCREAMING_SNAKE_CASE ) # verify feature maps self.parent.assertEqual(len(result.feature_maps ) , len(config.out_features ) ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.hidden_sizes[1], 4, 4] ) # verify channels self.parent.assertEqual(len(model.channels ) , len(config.out_features ) ) self.parent.assertListEqual(model.channels , config.hidden_sizes[1:] ) # verify backbone works with out_features=None lowercase_ = None lowercase_ = BitBackbone(config=_SCREAMING_SNAKE_CASE ) model.to(_SCREAMING_SNAKE_CASE ) model.eval() lowercase_ = model(_SCREAMING_SNAKE_CASE ) # verify feature maps self.parent.assertEqual(len(result.feature_maps ) , 1 ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.hidden_sizes[-1], 1, 1] ) # verify channels self.parent.assertEqual(len(model.channels ) , 1 ) self.parent.assertListEqual(model.channels , [config.hidden_sizes[-1]] ) def _lowercase ( self : int ) -> Optional[Any]: lowercase_ = self.prepare_config_and_inputs() lowercase_ = config_and_inputs lowercase_ = {'''pixel_values''': pixel_values} return config, inputs_dict @require_torch class lowercase__( _a , _a , unittest.TestCase ): """simple docstring""" a :int = (BitModel, BitForImageClassification, BitBackbone) if is_torch_available() else () a :List[str] = ( {'feature-extraction': BitModel, 'image-classification': BitForImageClassification} if is_torch_available() else {} ) a :Optional[int] = False a :Optional[Any] = False a :str = False a :Any = False a :str = False def _lowercase ( self : str ) -> int: lowercase_ = BitModelTester(self ) lowercase_ = ConfigTester(self , config_class=_SCREAMING_SNAKE_CASE , has_text_modality=_SCREAMING_SNAKE_CASE ) def _lowercase ( self : Union[str, Any] ) -> Union[str, Any]: self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def _lowercase ( self : int ) -> Any: return @unittest.skip(reason='''Bit does not output attentions''' ) def _lowercase ( self : Dict ) -> Union[str, Any]: pass @unittest.skip(reason='''Bit does not use inputs_embeds''' ) def _lowercase ( self : int ) -> List[str]: pass @unittest.skip(reason='''Bit does not support input and output embeddings''' ) def _lowercase ( self : List[str] ) -> Optional[int]: pass def _lowercase ( self : List[str] ) -> int: lowercase_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowercase_ = model_class(_SCREAMING_SNAKE_CASE ) lowercase_ = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic lowercase_ = [*signature.parameters.keys()] lowercase_ = ['''pixel_values'''] self.assertListEqual(arg_names[:1] , _SCREAMING_SNAKE_CASE ) def _lowercase ( self : int ) -> List[Any]: lowercase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_SCREAMING_SNAKE_CASE ) def _lowercase ( self : Tuple ) -> List[str]: lowercase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_backbone(*_SCREAMING_SNAKE_CASE ) def _lowercase ( self : int ) -> int: lowercase_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowercase_ = model_class(config=_SCREAMING_SNAKE_CASE ) for name, module in model.named_modules(): if isinstance(_SCREAMING_SNAKE_CASE , (nn.BatchNormad, nn.GroupNorm) ): self.assertTrue( torch.all(module.weight == 1 ) , msg=f'''Parameter {name} of model {model_class} seems not properly initialized''' , ) self.assertTrue( torch.all(module.bias == 0 ) , msg=f'''Parameter {name} of model {model_class} seems not properly initialized''' , ) def _lowercase ( self : int ) -> Optional[int]: def check_hidden_states_output(SCREAMING_SNAKE_CASE_ : Union[str, Any] , SCREAMING_SNAKE_CASE_ : List[Any] , SCREAMING_SNAKE_CASE_ : Tuple ): lowercase_ = model_class(_SCREAMING_SNAKE_CASE ) model.to(_SCREAMING_SNAKE_CASE ) model.eval() with torch.no_grad(): lowercase_ = model(**self._prepare_for_class(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ) lowercase_ = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states lowercase_ = self.model_tester.num_stages self.assertEqual(len(_SCREAMING_SNAKE_CASE ) , expected_num_stages + 1 ) # Bit's feature maps are of shape (batch_size, num_channels, height, width) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [self.model_tester.image_size // 4, self.model_tester.image_size // 4] , ) lowercase_ = self.model_tester.prepare_config_and_inputs_for_common() lowercase_ = ['''preactivation''', '''bottleneck'''] for model_class in self.all_model_classes: for layer_type in layers_type: lowercase_ = layer_type lowercase_ = True check_hidden_states_output(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] lowercase_ = True check_hidden_states_output(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) @unittest.skip(reason='''Bit does not use feedforward chunking''' ) def _lowercase ( self : Dict ) -> List[str]: pass def _lowercase ( self : Optional[Any] ) -> Optional[int]: lowercase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*_SCREAMING_SNAKE_CASE ) @slow def _lowercase ( self : List[str] ) -> Optional[int]: for model_name in BIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowercase_ = BitModel.from_pretrained(_SCREAMING_SNAKE_CASE ) self.assertIsNotNone(_SCREAMING_SNAKE_CASE ) def a ( ): '''simple docstring''' lowercase_ = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) return image @require_torch @require_vision class lowercase__( unittest.TestCase ): """simple docstring""" @cached_property def _lowercase ( self : int ) -> Optional[Any]: return ( BitImageProcessor.from_pretrained(BIT_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) if is_vision_available() else None ) @slow def _lowercase ( self : str ) -> List[Any]: lowercase_ = BitForImageClassification.from_pretrained(BIT_PRETRAINED_MODEL_ARCHIVE_LIST[0] ).to(_SCREAMING_SNAKE_CASE ) lowercase_ = self.default_image_processor lowercase_ = prepare_img() lowercase_ = image_processor(images=_SCREAMING_SNAKE_CASE , return_tensors='''pt''' ).to(_SCREAMING_SNAKE_CASE ) # forward pass with torch.no_grad(): lowercase_ = model(**_SCREAMING_SNAKE_CASE ) # verify the logits lowercase_ = torch.Size((1, 1_0_0_0) ) self.assertEqual(outputs.logits.shape , _SCREAMING_SNAKE_CASE ) lowercase_ = torch.tensor([[-0.65_26, -0.52_63, -1.43_98]] ).to(_SCREAMING_SNAKE_CASE ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , _SCREAMING_SNAKE_CASE , atol=1e-4 ) ) @require_torch class lowercase__( _a , unittest.TestCase ): """simple docstring""" a :List[Any] = (BitBackbone,) if is_torch_available() else () a :int = BitConfig a :List[str] = False def _lowercase ( self : Optional[Any] ) -> Optional[int]: lowercase_ = BitModelTester(self )
97
import unittest import numpy as np def lowerCamelCase__ ( _lowercase , _lowercase , _lowercase , _lowercase = None , ): '''simple docstring''' UpperCAmelCase_ : Dict = np.shape(_lowercase ) UpperCAmelCase_ : Optional[Any] = np.shape(_lowercase ) UpperCAmelCase_ : Tuple = np.shape(_lowercase ) if shape_a[0] != shape_b[0]: UpperCAmelCase_ : Tuple = ( '''Expected the same number of rows for A and B. ''' f'''Instead found A of size {shape_a} and B of size {shape_b}''' ) raise ValueError(_lowercase ) if shape_b[1] != shape_c[1]: UpperCAmelCase_ : List[Any] = ( '''Expected the same number of columns for B and C. ''' f'''Instead found B of size {shape_b} and C of size {shape_c}''' ) raise ValueError(_lowercase ) UpperCAmelCase_ : Dict = pseudo_inv if a_inv is None: try: UpperCAmelCase_ : Any = np.linalg.inv(_lowercase ) except np.linalg.LinAlgError: raise ValueError( '''Input matrix A is not invertible. Cannot compute Schur complement.''' ) return mat_c - mat_b.T @ a_inv @ mat_b class __a( unittest.TestCase ): """simple docstring""" def a__ ( self ) -> None: UpperCAmelCase_ : str = np.array([[1, 2, 1], [2, 1, 2], [3, 2, 4]] ) UpperCAmelCase_ : Any = np.array([[0, 3], [3, 0], [2, 3]] ) UpperCAmelCase_ : List[str] = np.array([[2, 1], [6, 3]] ) UpperCAmelCase_ : Tuple = schur_complement(_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ) UpperCAmelCase_ : List[Any] = np.block([[a, b], [b.T, c]] ) UpperCAmelCase_ : List[Any] = np.linalg.det(_SCREAMING_SNAKE_CASE ) UpperCAmelCase_ : List[Any] = np.linalg.det(_SCREAMING_SNAKE_CASE ) UpperCAmelCase_ : Any = np.linalg.det(_SCREAMING_SNAKE_CASE ) self.assertAlmostEqual(_SCREAMING_SNAKE_CASE ,det_a * det_s ) def a__ ( self ) -> None: UpperCAmelCase_ : str = np.array([[1, 2, 1], [2, 1, 2], [3, 2, 4]] ) UpperCAmelCase_ : Optional[int] = np.array([[0, 3], [3, 0], [2, 3]] ) UpperCAmelCase_ : Optional[int] = np.array([[2, 1], [6, 3]] ) with self.assertRaises(_SCREAMING_SNAKE_CASE ): schur_complement(_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ) def a__ ( self ) -> None: UpperCAmelCase_ : Optional[int] = np.array([[1, 2, 1], [2, 1, 2], [3, 2, 4]] ) UpperCAmelCase_ : Optional[Any] = np.array([[0, 3], [3, 0], [2, 3]] ) UpperCAmelCase_ : int = np.array([[2, 1, 3], [6, 3, 5]] ) with self.assertRaises(_SCREAMING_SNAKE_CASE ): schur_complement(_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ) if __name__ == "__main__": import doctest doctest.testmod() unittest.main()
30
0
'''simple docstring''' def snake_case_ ( lowercase__ , lowercase__ ): UpperCAmelCase__ : Any = len(_lowercase ) print("The following activities are selected:" ) # The first activity is always selected UpperCAmelCase__ : int = 0 print(_lowercase , end="," ) # Consider rest of the activities for j in range(_lowercase ): # If this activity has start time greater than # or equal to the finish time of previously # selected activity, then select it if start[j] >= finish[i]: print(_lowercase , end="," ) UpperCAmelCase__ : Optional[Any] = j if __name__ == "__main__": import doctest doctest.testmod() SCREAMING_SNAKE_CASE = [1, 3, 0, 5, 8, 5] SCREAMING_SNAKE_CASE = [2, 4, 6, 7, 9, 9] print_max_activities(start, finish)
199
__a = 'ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789+/' def lowerCamelCase__ ( _lowercase ): '''simple docstring''' if not isinstance(_lowercase , _lowercase ): UpperCAmelCase_ : Union[str, Any] = f'''a bytes-like object is required, not \'{data.__class__.__name__}\'''' raise TypeError(_lowercase ) UpperCAmelCase_ : Any = ''''''.join(bin(_lowercase )[2:].zfill(8 ) for byte in data ) UpperCAmelCase_ : Any = len(_lowercase ) % 6 != 0 if padding_needed: # The padding that will be added later UpperCAmelCase_ : Union[str, Any] = B'''=''' * ((6 - len(_lowercase ) % 6) // 2) # Append binary_stream with arbitrary binary digits (0's by default) to make its # length a multiple of 6. binary_stream += "0" * (6 - len(_lowercase ) % 6) else: UpperCAmelCase_ : int = B'''''' # Encode every 6 binary digits to their corresponding Base64 character return ( "".join( B64_CHARSET[int(binary_stream[index : index + 6] , 2 )] for index in range(0 , len(_lowercase ) , 6 ) ).encode() + padding ) def lowerCamelCase__ ( _lowercase ): '''simple docstring''' if not isinstance(_lowercase , _lowercase ) and not isinstance(_lowercase , _lowercase ): UpperCAmelCase_ : Tuple = ( '''argument should be a bytes-like object or ASCII string, ''' f'''not \'{encoded_data.__class__.__name__}\'''' ) raise TypeError(_lowercase ) # In case encoded_data is a bytes-like object, make sure it contains only # ASCII characters so we convert it to a string object if isinstance(_lowercase , _lowercase ): try: UpperCAmelCase_ : Any = encoded_data.decode('''utf-8''' ) except UnicodeDecodeError: raise ValueError('''base64 encoded data should only contain ASCII characters''' ) UpperCAmelCase_ : str = encoded_data.count('''=''' ) # Check if the encoded string contains non base64 characters if padding: assert all( char in B64_CHARSET for char in encoded_data[:-padding] ), "Invalid base64 character(s) found." else: assert all( char in B64_CHARSET for char in encoded_data ), "Invalid base64 character(s) found." # Check the padding assert len(_lowercase ) % 4 == 0 and padding < 3, "Incorrect padding" if padding: # Remove padding if there is one UpperCAmelCase_ : List[Any] = encoded_data[:-padding] UpperCAmelCase_ : List[Any] = ''''''.join( bin(B64_CHARSET.index(_lowercase ) )[2:].zfill(6 ) for char in encoded_data )[: -padding * 2] else: UpperCAmelCase_ : Tuple = ''''''.join( bin(B64_CHARSET.index(_lowercase ) )[2:].zfill(6 ) for char in encoded_data ) UpperCAmelCase_ : str = [ int(binary_stream[index : index + 8] , 2 ) for index in range(0 , len(_lowercase ) , 8 ) ] return bytes(_lowercase ) if __name__ == "__main__": import doctest doctest.testmod()
30
0
from __future__ import annotations def _UpperCamelCase ( lowercase__ , lowercase__ = None , lowercase__ = None ): if start is None: __SCREAMING_SNAKE_CASE : List[str] = 0 if end is None: __SCREAMING_SNAKE_CASE : Dict = len(_lowercase ) - 1 if start >= end: return __SCREAMING_SNAKE_CASE : Optional[Any] = (start + end) // 2 slowsort(_lowercase , _lowercase , _lowercase ) slowsort(_lowercase , mid + 1 , _lowercase ) if sequence[end] < sequence[mid]: __SCREAMING_SNAKE_CASE : List[str] = sequence[mid], sequence[end] slowsort(_lowercase , _lowercase , end - 1 ) if __name__ == "__main__": from doctest import testmod testmod()
696
import os import shutil import sys import tempfile import unittest from pathlib import Path import pytest import transformers from transformers import ( BERT_PRETRAINED_CONFIG_ARCHIVE_MAP, GPT2_PRETRAINED_CONFIG_ARCHIVE_MAP, AutoTokenizer, BertConfig, BertTokenizer, BertTokenizerFast, CTRLTokenizer, GPTaTokenizer, GPTaTokenizerFast, PreTrainedTokenizerFast, RobertaTokenizer, RobertaTokenizerFast, is_tokenizers_available, ) from transformers.models.auto.configuration_auto import CONFIG_MAPPING, AutoConfig from transformers.models.auto.tokenization_auto import ( TOKENIZER_MAPPING, get_tokenizer_config, tokenizer_class_from_name, ) from transformers.models.roberta.configuration_roberta import RobertaConfig from transformers.testing_utils import ( DUMMY_DIFF_TOKENIZER_IDENTIFIER, DUMMY_UNKNOWN_IDENTIFIER, SMALL_MODEL_IDENTIFIER, RequestCounter, require_tokenizers, slow, ) sys.path.append(str(Path(__file__).parent.parent.parent.parent / 'utils')) from test_module.custom_configuration import CustomConfig # noqa E402 from test_module.custom_tokenization import CustomTokenizer # noqa E402 if is_tokenizers_available(): from test_module.custom_tokenization_fast import CustomTokenizerFast class __a( unittest.TestCase ): """simple docstring""" def a__ ( self ) -> Union[str, Any]: UpperCAmelCase_ : Tuple = 0 @slow def a__ ( self ) -> Any: for model_name in (x for x in BERT_PRETRAINED_CONFIG_ARCHIVE_MAP.keys() if "japanese" not in x): UpperCAmelCase_ : Optional[Any] = AutoTokenizer.from_pretrained(_SCREAMING_SNAKE_CASE ) self.assertIsNotNone(_SCREAMING_SNAKE_CASE ) self.assertIsInstance(_SCREAMING_SNAKE_CASE ,(BertTokenizer, BertTokenizerFast) ) self.assertGreater(len(_SCREAMING_SNAKE_CASE ) ,0 ) for model_name in GPT2_PRETRAINED_CONFIG_ARCHIVE_MAP.keys(): UpperCAmelCase_ : Union[str, Any] = AutoTokenizer.from_pretrained(_SCREAMING_SNAKE_CASE ) self.assertIsNotNone(_SCREAMING_SNAKE_CASE ) self.assertIsInstance(_SCREAMING_SNAKE_CASE ,(GPTaTokenizer, GPTaTokenizerFast) ) self.assertGreater(len(_SCREAMING_SNAKE_CASE ) ,0 ) def a__ ( self ) -> Optional[Any]: UpperCAmelCase_ : List[str] = AutoTokenizer.from_pretrained(_SCREAMING_SNAKE_CASE ) self.assertIsInstance(_SCREAMING_SNAKE_CASE ,(BertTokenizer, BertTokenizerFast) ) self.assertEqual(tokenizer.vocab_size ,12 ) def a__ ( self ) -> Tuple: UpperCAmelCase_ : Any = AutoTokenizer.from_pretrained(_SCREAMING_SNAKE_CASE ) self.assertIsInstance(_SCREAMING_SNAKE_CASE ,(RobertaTokenizer, RobertaTokenizerFast) ) self.assertEqual(tokenizer.vocab_size ,20 ) def a__ ( self ) -> List[str]: UpperCAmelCase_ : int = AutoConfig.from_pretrained(_SCREAMING_SNAKE_CASE ) self.assertIsInstance(_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ) # Check that tokenizer_type ≠ model_type UpperCAmelCase_ : Optional[int] = AutoTokenizer.from_pretrained(_SCREAMING_SNAKE_CASE ,config=_SCREAMING_SNAKE_CASE ) self.assertIsInstance(_SCREAMING_SNAKE_CASE ,(BertTokenizer, BertTokenizerFast) ) self.assertEqual(tokenizer.vocab_size ,12 ) def a__ ( self ) -> Dict: with tempfile.TemporaryDirectory() as tmp_dir: shutil.copy('''./tests/fixtures/vocab.txt''' ,os.path.join(_SCREAMING_SNAKE_CASE ,'''vocab.txt''' ) ) UpperCAmelCase_ : Optional[int] = AutoTokenizer.from_pretrained(_SCREAMING_SNAKE_CASE ,tokenizer_type='''bert''' ,use_fast=_SCREAMING_SNAKE_CASE ) self.assertIsInstance(_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ) with tempfile.TemporaryDirectory() as tmp_dir: shutil.copy('''./tests/fixtures/vocab.json''' ,os.path.join(_SCREAMING_SNAKE_CASE ,'''vocab.json''' ) ) shutil.copy('''./tests/fixtures/merges.txt''' ,os.path.join(_SCREAMING_SNAKE_CASE ,'''merges.txt''' ) ) UpperCAmelCase_ : Optional[Any] = AutoTokenizer.from_pretrained(_SCREAMING_SNAKE_CASE ,tokenizer_type='''gpt2''' ,use_fast=_SCREAMING_SNAKE_CASE ) self.assertIsInstance(_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ) @require_tokenizers def a__ ( self ) -> Optional[int]: with tempfile.TemporaryDirectory() as tmp_dir: shutil.copy('''./tests/fixtures/vocab.txt''' ,os.path.join(_SCREAMING_SNAKE_CASE ,'''vocab.txt''' ) ) UpperCAmelCase_ : Tuple = AutoTokenizer.from_pretrained(_SCREAMING_SNAKE_CASE ,tokenizer_type='''bert''' ) self.assertIsInstance(_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ) with tempfile.TemporaryDirectory() as tmp_dir: shutil.copy('''./tests/fixtures/vocab.json''' ,os.path.join(_SCREAMING_SNAKE_CASE ,'''vocab.json''' ) ) shutil.copy('''./tests/fixtures/merges.txt''' ,os.path.join(_SCREAMING_SNAKE_CASE ,'''merges.txt''' ) ) UpperCAmelCase_ : Union[str, Any] = AutoTokenizer.from_pretrained(_SCREAMING_SNAKE_CASE ,tokenizer_type='''gpt2''' ) self.assertIsInstance(_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ) def a__ ( self ) -> int: with pytest.raises(_SCREAMING_SNAKE_CASE ): AutoTokenizer.from_pretrained('''./''' ,tokenizer_type='''xxx''' ) @require_tokenizers def a__ ( self ) -> Optional[Any]: for tokenizer_class in [BertTokenizer, BertTokenizerFast, AutoTokenizer]: UpperCAmelCase_ : Any = tokenizer_class.from_pretrained('''wietsedv/bert-base-dutch-cased''' ) self.assertIsInstance(_SCREAMING_SNAKE_CASE ,(BertTokenizer, BertTokenizerFast) ) if isinstance(_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ): self.assertEqual(tokenizer.basic_tokenizer.do_lower_case ,_SCREAMING_SNAKE_CASE ) else: self.assertEqual(tokenizer.do_lower_case ,_SCREAMING_SNAKE_CASE ) self.assertEqual(tokenizer.model_max_length ,512 ) @require_tokenizers def a__ ( self ) -> List[Any]: for tokenizer_class in [BertTokenizer, BertTokenizerFast, AutoTokenizer]: with self.assertRaisesRegex( _SCREAMING_SNAKE_CASE ,'''julien-c/herlolip-not-exists is not a local folder and is not a valid model identifier''' ,): UpperCAmelCase_ : int = tokenizer_class.from_pretrained('''julien-c/herlolip-not-exists''' ) def a__ ( self ) -> Optional[Any]: # tests: https://github.com/huggingface/transformers/pull/13251 # 1. models with `-`, e.g. xlm-roberta -> xlm_roberta # 2. models that don't remap 1-1 from model-name to model file, e.g., openai-gpt -> openai UpperCAmelCase_ : int = TOKENIZER_MAPPING.values() UpperCAmelCase_ : List[Any] = [] for slow_tok, fast_tok in tokenizers: if slow_tok is not None: tokenizer_names.append(slow_tok.__name__ ) if fast_tok is not None: tokenizer_names.append(fast_tok.__name__ ) for tokenizer_name in tokenizer_names: # must find the right class tokenizer_class_from_name(_SCREAMING_SNAKE_CASE ) @require_tokenizers def a__ ( self ) -> Tuple: self.assertIsInstance(AutoTokenizer.from_pretrained('''bert-base-cased''' ,use_fast=_SCREAMING_SNAKE_CASE ) ,_SCREAMING_SNAKE_CASE ) self.assertIsInstance(AutoTokenizer.from_pretrained('''bert-base-cased''' ) ,_SCREAMING_SNAKE_CASE ) @require_tokenizers def a__ ( self ) -> Optional[int]: UpperCAmelCase_ : str = AutoTokenizer.from_pretrained('''distilbert-base-uncased''' ,do_lower_case=_SCREAMING_SNAKE_CASE ) UpperCAmelCase_ : int = '''Hello, world. How are you?''' UpperCAmelCase_ : List[Any] = tokenizer.tokenize(_SCREAMING_SNAKE_CASE ) self.assertEqual('''[UNK]''' ,tokens[0] ) UpperCAmelCase_ : Any = AutoTokenizer.from_pretrained('''microsoft/mpnet-base''' ,do_lower_case=_SCREAMING_SNAKE_CASE ) UpperCAmelCase_ : Tuple = tokenizer.tokenize(_SCREAMING_SNAKE_CASE ) self.assertEqual('''[UNK]''' ,tokens[0] ) @require_tokenizers def a__ ( self ) -> Dict: UpperCAmelCase_ : List[Any] = AutoTokenizer.from_pretrained('''robot-test/dummy-tokenizer-fast-with-model-config''' ) self.assertEqual(type(_SCREAMING_SNAKE_CASE ) ,_SCREAMING_SNAKE_CASE ) self.assertEqual(tokenizer.model_max_length ,512 ) self.assertEqual(tokenizer.vocab_size ,30_000 ) self.assertEqual(tokenizer.unk_token ,'''[UNK]''' ) self.assertEqual(tokenizer.padding_side ,'''right''' ) self.assertEqual(tokenizer.truncation_side ,'''right''' ) def a__ ( self ) -> Dict: UpperCAmelCase_ : Any = AutoTokenizer.from_pretrained(_SCREAMING_SNAKE_CASE ) self.assertIsInstance(_SCREAMING_SNAKE_CASE ,(BertTokenizer, BertTokenizerFast) ) with tempfile.TemporaryDirectory() as tmp_dir: tokenizer.save_pretrained(_SCREAMING_SNAKE_CASE ) UpperCAmelCase_ : Dict = AutoTokenizer.from_pretrained(_SCREAMING_SNAKE_CASE ) self.assertIsInstance(_SCREAMING_SNAKE_CASE ,tokenizer.__class__ ) self.assertEqual(tokenizera.vocab_size ,12 ) def a__ ( self ) -> Optional[Any]: UpperCAmelCase_ : Tuple = AutoTokenizer.from_pretrained('''ctrl''' ) # There is no fast CTRL so this always gives us a slow tokenizer. self.assertIsInstance(_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ) def a__ ( self ) -> str: # Check we can load the tokenizer config of an online model. UpperCAmelCase_ : int = get_tokenizer_config('''bert-base-cased''' ) UpperCAmelCase_ : Optional[int] = config.pop('''_commit_hash''' ,_SCREAMING_SNAKE_CASE ) # If we ever update bert-base-cased tokenizer config, this dict here will need to be updated. self.assertEqual(_SCREAMING_SNAKE_CASE ,{'''do_lower_case''': False} ) # This model does not have a tokenizer_config so we get back an empty dict. UpperCAmelCase_ : Any = get_tokenizer_config(_SCREAMING_SNAKE_CASE ) self.assertDictEqual(_SCREAMING_SNAKE_CASE ,{} ) # A tokenizer saved with `save_pretrained` always creates a tokenizer config. UpperCAmelCase_ : Dict = AutoTokenizer.from_pretrained(_SCREAMING_SNAKE_CASE ) with tempfile.TemporaryDirectory() as tmp_dir: tokenizer.save_pretrained(_SCREAMING_SNAKE_CASE ) UpperCAmelCase_ : Dict = get_tokenizer_config(_SCREAMING_SNAKE_CASE ) # Check the class of the tokenizer was properly saved (note that it always saves the slow class). self.assertEqual(config['''tokenizer_class'''] ,'''BertTokenizer''' ) def a__ ( self ) -> str: try: AutoConfig.register('''custom''' ,_SCREAMING_SNAKE_CASE ) AutoTokenizer.register(_SCREAMING_SNAKE_CASE ,slow_tokenizer_class=_SCREAMING_SNAKE_CASE ) # Trying to register something existing in the Transformers library will raise an error with self.assertRaises(_SCREAMING_SNAKE_CASE ): AutoTokenizer.register(_SCREAMING_SNAKE_CASE ,slow_tokenizer_class=_SCREAMING_SNAKE_CASE ) UpperCAmelCase_ : str = CustomTokenizer.from_pretrained(_SCREAMING_SNAKE_CASE ) with tempfile.TemporaryDirectory() as tmp_dir: tokenizer.save_pretrained(_SCREAMING_SNAKE_CASE ) UpperCAmelCase_ : Dict = AutoTokenizer.from_pretrained(_SCREAMING_SNAKE_CASE ) self.assertIsInstance(_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in TOKENIZER_MAPPING._extra_content: del TOKENIZER_MAPPING._extra_content[CustomConfig] @require_tokenizers def a__ ( self ) -> int: try: AutoConfig.register('''custom''' ,_SCREAMING_SNAKE_CASE ) # Can register in two steps AutoTokenizer.register(_SCREAMING_SNAKE_CASE ,slow_tokenizer_class=_SCREAMING_SNAKE_CASE ) self.assertEqual(TOKENIZER_MAPPING[CustomConfig] ,(CustomTokenizer, None) ) AutoTokenizer.register(_SCREAMING_SNAKE_CASE ,fast_tokenizer_class=_SCREAMING_SNAKE_CASE ) self.assertEqual(TOKENIZER_MAPPING[CustomConfig] ,(CustomTokenizer, CustomTokenizerFast) ) del TOKENIZER_MAPPING._extra_content[CustomConfig] # Can register in one step AutoTokenizer.register( _SCREAMING_SNAKE_CASE ,slow_tokenizer_class=_SCREAMING_SNAKE_CASE ,fast_tokenizer_class=_SCREAMING_SNAKE_CASE ) self.assertEqual(TOKENIZER_MAPPING[CustomConfig] ,(CustomTokenizer, CustomTokenizerFast) ) # Trying to register something existing in the Transformers library will raise an error with self.assertRaises(_SCREAMING_SNAKE_CASE ): AutoTokenizer.register(_SCREAMING_SNAKE_CASE ,fast_tokenizer_class=_SCREAMING_SNAKE_CASE ) # We pass through a bert tokenizer fast cause there is no converter slow to fast for our new toknizer # and that model does not have a tokenizer.json with tempfile.TemporaryDirectory() as tmp_dir: UpperCAmelCase_ : List[str] = BertTokenizerFast.from_pretrained(_SCREAMING_SNAKE_CASE ) bert_tokenizer.save_pretrained(_SCREAMING_SNAKE_CASE ) UpperCAmelCase_ : str = CustomTokenizerFast.from_pretrained(_SCREAMING_SNAKE_CASE ) with tempfile.TemporaryDirectory() as tmp_dir: tokenizer.save_pretrained(_SCREAMING_SNAKE_CASE ) UpperCAmelCase_ : Optional[int] = AutoTokenizer.from_pretrained(_SCREAMING_SNAKE_CASE ) self.assertIsInstance(_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ) UpperCAmelCase_ : Any = AutoTokenizer.from_pretrained(_SCREAMING_SNAKE_CASE ,use_fast=_SCREAMING_SNAKE_CASE ) self.assertIsInstance(_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in TOKENIZER_MAPPING._extra_content: del TOKENIZER_MAPPING._extra_content[CustomConfig] def a__ ( self ) -> Optional[int]: # If remote code is not set, we will time out when asking whether to load the model. with self.assertRaises(_SCREAMING_SNAKE_CASE ): UpperCAmelCase_ : Tuple = AutoTokenizer.from_pretrained('''hf-internal-testing/test_dynamic_tokenizer''' ) # If remote code is disabled, we can't load this config. with self.assertRaises(_SCREAMING_SNAKE_CASE ): UpperCAmelCase_ : Union[str, Any] = AutoTokenizer.from_pretrained( '''hf-internal-testing/test_dynamic_tokenizer''' ,trust_remote_code=_SCREAMING_SNAKE_CASE ) UpperCAmelCase_ : Dict = AutoTokenizer.from_pretrained('''hf-internal-testing/test_dynamic_tokenizer''' ,trust_remote_code=_SCREAMING_SNAKE_CASE ) self.assertTrue(tokenizer.special_attribute_present ) # Test tokenizer can be reloaded. with tempfile.TemporaryDirectory() as tmp_dir: tokenizer.save_pretrained(_SCREAMING_SNAKE_CASE ) UpperCAmelCase_ : int = AutoTokenizer.from_pretrained(_SCREAMING_SNAKE_CASE ,trust_remote_code=_SCREAMING_SNAKE_CASE ) self.assertTrue(reloaded_tokenizer.special_attribute_present ) if is_tokenizers_available(): self.assertEqual(tokenizer.__class__.__name__ ,'''NewTokenizerFast''' ) self.assertEqual(reloaded_tokenizer.__class__.__name__ ,'''NewTokenizerFast''' ) # Test we can also load the slow version UpperCAmelCase_ : List[str] = AutoTokenizer.from_pretrained( '''hf-internal-testing/test_dynamic_tokenizer''' ,trust_remote_code=_SCREAMING_SNAKE_CASE ,use_fast=_SCREAMING_SNAKE_CASE ) self.assertTrue(tokenizer.special_attribute_present ) self.assertEqual(tokenizer.__class__.__name__ ,'''NewTokenizer''' ) # Test tokenizer can be reloaded. with tempfile.TemporaryDirectory() as tmp_dir: tokenizer.save_pretrained(_SCREAMING_SNAKE_CASE ) UpperCAmelCase_ : Optional[int] = AutoTokenizer.from_pretrained(_SCREAMING_SNAKE_CASE ,trust_remote_code=_SCREAMING_SNAKE_CASE ,use_fast=_SCREAMING_SNAKE_CASE ) self.assertEqual(reloaded_tokenizer.__class__.__name__ ,'''NewTokenizer''' ) self.assertTrue(reloaded_tokenizer.special_attribute_present ) else: self.assertEqual(tokenizer.__class__.__name__ ,'''NewTokenizer''' ) self.assertEqual(reloaded_tokenizer.__class__.__name__ ,'''NewTokenizer''' ) @require_tokenizers def a__ ( self ) -> Optional[int]: class __a( _a ): """simple docstring""" lowerCAmelCase = False class __a( _a ): """simple docstring""" lowerCAmelCase = NewTokenizer lowerCAmelCase = False try: AutoConfig.register('''custom''' ,_SCREAMING_SNAKE_CASE ) AutoTokenizer.register(_SCREAMING_SNAKE_CASE ,slow_tokenizer_class=_SCREAMING_SNAKE_CASE ) AutoTokenizer.register(_SCREAMING_SNAKE_CASE ,fast_tokenizer_class=_SCREAMING_SNAKE_CASE ) # If remote code is not set, the default is to use local UpperCAmelCase_ : int = AutoTokenizer.from_pretrained('''hf-internal-testing/test_dynamic_tokenizer''' ) self.assertEqual(tokenizer.__class__.__name__ ,'''NewTokenizerFast''' ) self.assertFalse(tokenizer.special_attribute_present ) UpperCAmelCase_ : Any = AutoTokenizer.from_pretrained('''hf-internal-testing/test_dynamic_tokenizer''' ,use_fast=_SCREAMING_SNAKE_CASE ) self.assertEqual(tokenizer.__class__.__name__ ,'''NewTokenizer''' ) self.assertFalse(tokenizer.special_attribute_present ) # If remote code is disabled, we load the local one. UpperCAmelCase_ : Tuple = AutoTokenizer.from_pretrained( '''hf-internal-testing/test_dynamic_tokenizer''' ,trust_remote_code=_SCREAMING_SNAKE_CASE ) self.assertEqual(tokenizer.__class__.__name__ ,'''NewTokenizerFast''' ) self.assertFalse(tokenizer.special_attribute_present ) UpperCAmelCase_ : List[str] = AutoTokenizer.from_pretrained( '''hf-internal-testing/test_dynamic_tokenizer''' ,trust_remote_code=_SCREAMING_SNAKE_CASE ,use_fast=_SCREAMING_SNAKE_CASE ) self.assertEqual(tokenizer.__class__.__name__ ,'''NewTokenizer''' ) self.assertFalse(tokenizer.special_attribute_present ) # If remote is enabled, we load from the Hub UpperCAmelCase_ : Optional[int] = AutoTokenizer.from_pretrained( '''hf-internal-testing/test_dynamic_tokenizer''' ,trust_remote_code=_SCREAMING_SNAKE_CASE ) self.assertEqual(tokenizer.__class__.__name__ ,'''NewTokenizerFast''' ) self.assertTrue(tokenizer.special_attribute_present ) UpperCAmelCase_ : Any = AutoTokenizer.from_pretrained( '''hf-internal-testing/test_dynamic_tokenizer''' ,trust_remote_code=_SCREAMING_SNAKE_CASE ,use_fast=_SCREAMING_SNAKE_CASE ) self.assertEqual(tokenizer.__class__.__name__ ,'''NewTokenizer''' ) self.assertTrue(tokenizer.special_attribute_present ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in TOKENIZER_MAPPING._extra_content: del TOKENIZER_MAPPING._extra_content[CustomConfig] def a__ ( self ) -> int: UpperCAmelCase_ : Optional[int] = AutoTokenizer.from_pretrained( '''hf-internal-testing/test_dynamic_tokenizer_legacy''' ,trust_remote_code=_SCREAMING_SNAKE_CASE ) self.assertTrue(tokenizer.special_attribute_present ) if is_tokenizers_available(): self.assertEqual(tokenizer.__class__.__name__ ,'''NewTokenizerFast''' ) # Test we can also load the slow version UpperCAmelCase_ : Tuple = AutoTokenizer.from_pretrained( '''hf-internal-testing/test_dynamic_tokenizer_legacy''' ,trust_remote_code=_SCREAMING_SNAKE_CASE ,use_fast=_SCREAMING_SNAKE_CASE ) self.assertTrue(tokenizer.special_attribute_present ) self.assertEqual(tokenizer.__class__.__name__ ,'''NewTokenizer''' ) else: self.assertEqual(tokenizer.__class__.__name__ ,'''NewTokenizer''' ) def a__ ( self ) -> Optional[Any]: with self.assertRaisesRegex( _SCREAMING_SNAKE_CASE ,'''bert-base is not a local folder and is not a valid model identifier''' ): UpperCAmelCase_ : Tuple = AutoTokenizer.from_pretrained('''bert-base''' ) def a__ ( self ) -> List[Any]: with self.assertRaisesRegex( _SCREAMING_SNAKE_CASE ,R'''aaaaaa is not a valid git identifier \(branch name, tag name or commit id\)''' ): UpperCAmelCase_ : str = AutoTokenizer.from_pretrained(_SCREAMING_SNAKE_CASE ,revision='''aaaaaa''' ) def a__ ( self ) -> Any: # Make sure we have cached the tokenizer. UpperCAmelCase_ : Optional[int] = AutoTokenizer.from_pretrained('''hf-internal-testing/tiny-random-bert''' ) with RequestCounter() as counter: UpperCAmelCase_ : List[str] = AutoTokenizer.from_pretrained('''hf-internal-testing/tiny-random-bert''' ) self.assertEqual(counter.get_request_count ,0 ) self.assertEqual(counter.head_request_count ,1 ) self.assertEqual(counter.other_request_count ,0 )
30
0
import os import unittest from tempfile import TemporaryDirectory import torch import torch.nn as nn from accelerate.utils import ( OffloadedWeightsLoader, extract_submodules_state_dict, load_offloaded_weight, offload_state_dict, offload_weight, ) class A__ ( nn.Module ): """simple docstring""" def __init__( self ): super().__init__() snake_case = nn.Linear(3 , 4 ) snake_case = nn.BatchNormad(4 ) snake_case = nn.Linear(4 , 5 ) def a_ ( self , __snake_case ): return self.lineara(self.batchnorm(self.lineara(_SCREAMING_SNAKE_CASE ) ) ) class A__ ( unittest.TestCase ): """simple docstring""" def a_ ( self ): snake_case = ModelForTest() with TemporaryDirectory() as tmp_dir: offload_state_dict(_SCREAMING_SNAKE_CASE , model.state_dict() ) snake_case = os.path.join(_SCREAMING_SNAKE_CASE , '''index.json''' ) self.assertTrue(os.path.isfile(_SCREAMING_SNAKE_CASE ) ) # TODO: add tests on what is inside the index for key in ["linear1.weight", "linear1.bias", "linear2.weight", "linear2.bias"]: snake_case = os.path.join(_SCREAMING_SNAKE_CASE , F'''{key}.dat''' ) self.assertTrue(os.path.isfile(_SCREAMING_SNAKE_CASE ) ) # TODO: add tests on the fact weights are properly loaded def a_ ( self ): snake_case = [torch.floataa, torch.floataa, torch.bfloataa] for dtype in dtypes: snake_case = torch.randn(2 , 3 , dtype=_SCREAMING_SNAKE_CASE ) with TemporaryDirectory() as tmp_dir: snake_case = offload_weight(_SCREAMING_SNAKE_CASE , '''weight''' , _SCREAMING_SNAKE_CASE , {} ) snake_case = os.path.join(_SCREAMING_SNAKE_CASE , '''weight.dat''' ) self.assertTrue(os.path.isfile(_SCREAMING_SNAKE_CASE ) ) self.assertDictEqual(_SCREAMING_SNAKE_CASE , {'''weight''': {'''shape''': [2, 3], '''dtype''': str(_SCREAMING_SNAKE_CASE ).split('''.''' )[1]}} ) snake_case = load_offloaded_weight(_SCREAMING_SNAKE_CASE , index['''weight'''] ) self.assertTrue(torch.equal(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ) def a_ ( self ): snake_case = ModelForTest() snake_case = model.state_dict() snake_case = {k: v for k, v in state_dict.items() if '''linear2''' not in k} snake_case = {k: v for k, v in state_dict.items() if '''linear2''' in k} with TemporaryDirectory() as tmp_dir: offload_state_dict(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) snake_case = OffloadedWeightsLoader(state_dict=_SCREAMING_SNAKE_CASE , save_folder=_SCREAMING_SNAKE_CASE ) # Every key is there with the right value self.assertEqual(sorted(_SCREAMING_SNAKE_CASE ) , sorted(state_dict.keys() ) ) for key, param in state_dict.items(): self.assertTrue(torch.allclose(_SCREAMING_SNAKE_CASE , weight_map[key] ) ) snake_case = {k: v for k, v in state_dict.items() if '''weight''' in k} snake_case = {k: v for k, v in state_dict.items() if '''weight''' not in k} with TemporaryDirectory() as tmp_dir: offload_state_dict(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) snake_case = OffloadedWeightsLoader(state_dict=_SCREAMING_SNAKE_CASE , save_folder=_SCREAMING_SNAKE_CASE ) # Every key is there with the right value self.assertEqual(sorted(_SCREAMING_SNAKE_CASE ) , sorted(state_dict.keys() ) ) for key, param in state_dict.items(): self.assertTrue(torch.allclose(_SCREAMING_SNAKE_CASE , weight_map[key] ) ) with TemporaryDirectory() as tmp_dir: offload_state_dict(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) # Duplicates are removed snake_case = OffloadedWeightsLoader(state_dict=_SCREAMING_SNAKE_CASE , save_folder=_SCREAMING_SNAKE_CASE ) # Every key is there with the right value self.assertEqual(sorted(_SCREAMING_SNAKE_CASE ) , sorted(state_dict.keys() ) ) for key, param in state_dict.items(): self.assertTrue(torch.allclose(_SCREAMING_SNAKE_CASE , weight_map[key] ) ) def a_ ( self ): snake_case = {'''a.1''': 0, '''a.10''': 1, '''a.2''': 2} snake_case = extract_submodules_state_dict(_SCREAMING_SNAKE_CASE , ['''a.1''', '''a.2'''] ) self.assertDictEqual(_SCREAMING_SNAKE_CASE , {'''a.1''': 0, '''a.2''': 2} ) snake_case = {'''a.1.a''': 0, '''a.10.a''': 1, '''a.2.a''': 2} snake_case = extract_submodules_state_dict(_SCREAMING_SNAKE_CASE , ['''a.1''', '''a.2'''] ) self.assertDictEqual(_SCREAMING_SNAKE_CASE , {'''a.1.a''': 0, '''a.2.a''': 2} )
550
from functools import reduce __a = ( '73167176531330624919225119674426574742355349194934' '96983520312774506326239578318016984801869478851843' '85861560789112949495459501737958331952853208805511' '12540698747158523863050715693290963295227443043557' '66896648950445244523161731856403098711121722383113' '62229893423380308135336276614282806444486645238749' '30358907296290491560440772390713810515859307960866' '70172427121883998797908792274921901699720888093776' '65727333001053367881220235421809751254540594752243' '52584907711670556013604839586446706324415722155397' '53697817977846174064955149290862569321978468622482' '83972241375657056057490261407972968652414535100474' '82166370484403199890008895243450658541227588666881' '16427171479924442928230863465674813919123162824586' '17866458359124566529476545682848912883142607690042' '24219022671055626321111109370544217506941658960408' '07198403850962455444362981230987879927244284909188' '84580156166097919133875499200524063689912560717606' '05886116467109405077541002256983155200055935729725' '71636269561882670428252483600823257530420752963450' ) def lowerCamelCase__ ( _lowercase = N ): '''simple docstring''' return max( # mypy cannot properly interpret reduce int(reduce(lambda _lowercase , _lowercase : str(int(_lowercase ) * int(_lowercase ) ) , n[i : i + 13] ) ) for i in range(len(_lowercase ) - 12 ) ) if __name__ == "__main__": print(F"""{solution() = }""")
30
0
'''simple docstring''' import argparse import intel_extension_for_pytorch as ipex import torch from diffusers import DPMSolverMultistepScheduler, StableDiffusionPipeline A_ = argparse.ArgumentParser("Stable Diffusion script with intel optimization", add_help=False) parser.add_argument("--dpm", action="store_true", help="Enable DPMSolver or not") parser.add_argument("--steps", default=None, type=int, help="Num inference steps") A_ = parser.parse_args() A_ = "cpu" A_ = "a lovely <dicoo> in red dress and hat, in the snowly and brightly night, with many brighly buildings" A_ = "path-to-your-trained-model" A_ = StableDiffusionPipeline.from_pretrained(model_id) if args.dpm: A_ = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config) A_ = pipe.to(device) # to channels last A_ = pipe.unet.to(memory_format=torch.channels_last) A_ = pipe.vae.to(memory_format=torch.channels_last) A_ = pipe.text_encoder.to(memory_format=torch.channels_last) if pipe.requires_safety_checker: A_ = pipe.safety_checker.to(memory_format=torch.channels_last) # optimize with ipex A_ = torch.randn(2, 4, 64, 64) A_ = torch.rand(1) * 999 A_ = torch.randn(2, 77, 768) A_ = (sample, timestep, encoder_hidden_status) try: A_ = ipex.optimize(pipe.unet.eval(), dtype=torch.bfloataa, inplace=True, sample_input=input_example) except Exception: A_ = ipex.optimize(pipe.unet.eval(), dtype=torch.bfloataa, inplace=True) A_ = ipex.optimize(pipe.vae.eval(), dtype=torch.bfloataa, inplace=True) A_ = ipex.optimize(pipe.text_encoder.eval(), dtype=torch.bfloataa, inplace=True) if pipe.requires_safety_checker: A_ = ipex.optimize(pipe.safety_checker.eval(), dtype=torch.bfloataa, inplace=True) # compute A_ = 666 A_ = torch.Generator(device).manual_seed(seed) A_ = {"generator": generator} if args.steps is not None: A_ = args.steps with torch.cpu.amp.autocast(enabled=True, dtype=torch.bfloataa): A_ = pipe(prompt, **generate_kwargs).images[0] # save image image.save("generated.png")
270
from decimal import Decimal, getcontext from math import ceil, factorial def lowerCamelCase__ ( _lowercase ): '''simple docstring''' if not isinstance(_lowercase , _lowercase ): raise TypeError('''Undefined for non-integers''' ) elif precision < 1: raise ValueError('''Undefined for non-natural numbers''' ) UpperCAmelCase_ : Tuple = precision UpperCAmelCase_ : Optional[Any] = ceil(precision / 14 ) UpperCAmelCase_ : int = 426880 * Decimal(10005 ).sqrt() UpperCAmelCase_ : Tuple = 1 UpperCAmelCase_ : List[Any] = 13591409 UpperCAmelCase_ : Optional[Any] = Decimal(_lowercase ) for k in range(1 , _lowercase ): UpperCAmelCase_ : List[str] = factorial(6 * k ) // (factorial(3 * k ) * factorial(_lowercase ) ** 3) linear_term += 545140134 exponential_term *= -262537412640768000 partial_sum += Decimal(multinomial_term * linear_term ) / exponential_term return str(constant_term / partial_sum )[:-1] if __name__ == "__main__": __a = 50 print(F"""The first {n} digits of pi is: {pi(n)}""")
30
0
'''simple docstring''' import re from flax.core.frozen_dict import freeze from flax.traverse_util import flatten_dict, unflatten_dict from jax.experimental import PartitionSpec as P # Sentinels lowerCAmelCase_ = object() # For specifying empty leaf dict `{}` lowerCAmelCase_ = object() def A__ ( A : str , A : Optional[int]): '''simple docstring''' UpperCamelCase : Optional[int] = tuple((re.compile(x + "$") for x in qs)) for i in range(len(_lowercase) - len(_lowercase) + 1): UpperCamelCase : List[Any] = [x.match(_lowercase) for x, y in zip(_lowercase , ks[i:])] if matches and all(_lowercase): return True return False def A__ ( A : List[str]): '''simple docstring''' def replace(A : Optional[int] , A : Dict): for rule, replacement in rules: if _match(_lowercase , _lowercase): return replacement return val return replace def A__ ( ): '''simple docstring''' return [ # embeddings (("transformer", "wpe", "embedding"), P("mp" , _lowercase)), (("transformer", "wte", "embedding"), P("mp" , _lowercase)), # atention (("attention", "(q_proj|k_proj|v_proj)", "kernel"), P(_lowercase , "mp")), (("attention", "out_proj", "kernel"), P("mp" , _lowercase)), (("attention", "out_proj", "bias"), None), # mlp (("mlp", "c_fc", "kernel"), P(_lowercase , "mp")), (("mlp", "c_fc", "bias"), P("mp")), (("mlp", "c_proj", "kernel"), P("mp" , _lowercase)), (("mlp", "c_proj", "bias"), None), # layer norms ((r"ln_\d+", "bias"), None), ((r"\d+", r"ln_\d+", "scale"), None), (("ln_f", "bias"), None), (("ln_f", "scale"), None), ] def A__ ( A : Optional[Any]): '''simple docstring''' UpperCamelCase : Any = _get_partition_rules() UpperCamelCase : List[str] = _replacement_rules(_lowercase) UpperCamelCase : Dict = {k: _unmatched for k in flatten_dict(_lowercase)} UpperCamelCase : Optional[Any] = {k: replace(_lowercase , _lowercase) for k, v in initd.items()} assert _unmatched not in result.values(), "Incomplete partition spec." return freeze(unflatten_dict(_lowercase))
173
from __future__ import annotations import math __a = '2020.9.26' __a = 'xcodz-dot, cclaus, dhruvmanila' def lowerCamelCase__ ( _lowercase , _lowercase , _lowercase , _lowercase , _lowercase ): '''simple docstring''' if not all(isinstance(_lowercase , (float, int) ) for val in locals().values() ): UpperCAmelCase_ : Optional[int] = f'''Input values must either be float or int: {list(locals().values() )}''' raise TypeError(_lowercase ) UpperCAmelCase_ : Tuple = ((x * distance) / (z + distance)) * scale UpperCAmelCase_ : str = ((y * distance) / (z + distance)) * scale return projected_x, projected_y def lowerCamelCase__ ( _lowercase , _lowercase , _lowercase , _lowercase , _lowercase ): '''simple docstring''' if not isinstance(_lowercase , _lowercase ): raise TypeError('''Axis must be a str''' ) UpperCAmelCase_ : Optional[Any] = locals() del input_variables["axis"] if not all(isinstance(_lowercase , (float, int) ) for val in input_variables.values() ): UpperCAmelCase_ : List[Any] = ( '''Input values except axis must either be float or int: ''' f'''{list(input_variables.values() )}''' ) raise TypeError(_lowercase ) UpperCAmelCase_ : Dict = (angle % 360) / 450 * 180 / math.pi if axis == "z": UpperCAmelCase_ : Optional[int] = x * math.cos(_lowercase ) - y * math.sin(_lowercase ) UpperCAmelCase_ : List[Any] = y * math.cos(_lowercase ) + x * math.sin(_lowercase ) UpperCAmelCase_ : Optional[int] = z elif axis == "x": UpperCAmelCase_ : Any = y * math.cos(_lowercase ) - z * math.sin(_lowercase ) UpperCAmelCase_ : int = z * math.cos(_lowercase ) + y * math.sin(_lowercase ) UpperCAmelCase_ : Dict = x elif axis == "y": UpperCAmelCase_ : Union[str, Any] = x * math.cos(_lowercase ) - z * math.sin(_lowercase ) UpperCAmelCase_ : Optional[int] = z * math.cos(_lowercase ) + x * math.sin(_lowercase ) UpperCAmelCase_ : Optional[int] = y else: raise ValueError('''not a valid axis, choose one of \'x\', \'y\', \'z\'''' ) return new_x, new_y, new_z if __name__ == "__main__": import doctest doctest.testmod() print(F"""{convert_to_ad(1.0, 2.0, 3.0, 10.0, 10.0) = }""") print(F"""{rotate(1.0, 2.0, 3.0, "y", 90.0) = }""")
30
0
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_torch_available, ) SCREAMING_SNAKE_CASE: Tuple = { '''configuration_encodec''': [ '''ENCODEC_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''EncodecConfig''', ], '''feature_extraction_encodec''': ['''EncodecFeatureExtractor'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE: Any = [ '''ENCODEC_PRETRAINED_MODEL_ARCHIVE_LIST''', '''EncodecModel''', '''EncodecPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_encodec import ( ENCODEC_PRETRAINED_CONFIG_ARCHIVE_MAP, EncodecConfig, ) from .feature_extraction_encodec import EncodecFeatureExtractor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_encodec import ( ENCODEC_PRETRAINED_MODEL_ARCHIVE_LIST, EncodecModel, EncodecPreTrainedModel, ) else: import sys SCREAMING_SNAKE_CASE: Union[str, Any] = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
360
# Lint as: python3 # pylint: enable=line-too-long # pylint: disable=g-import-not-at-top,g-bad-import-order,wrong-import-position __a = '2.13.1' import platform import pyarrow from packaging import version if version.parse(platform.python_version()) < version.parse('3.7'): raise ImportWarning( 'To use `datasets`, Python>=3.7 is required, and the current version of Python doesn\'t match this condition.' ) if version.parse(pyarrow.__version__).major < 8: raise ImportWarning( 'To use `datasets`, the module `pyarrow>=8.0.0` is required, and the current version of `pyarrow` doesn\'t match this condition.\n' 'If you are running this in a Google Colab, you should probably just restart the runtime to use the right version of `pyarrow`.' ) del platform del pyarrow del version from .arrow_dataset import Dataset from .arrow_reader import ReadInstruction from .builder import ArrowBasedBuilder, BeamBasedBuilder, BuilderConfig, DatasetBuilder, GeneratorBasedBuilder from .combine import concatenate_datasets, interleave_datasets from .dataset_dict import DatasetDict, IterableDatasetDict from .download import * from .features import * from .fingerprint import disable_caching, enable_caching, is_caching_enabled, set_caching_enabled from .info import DatasetInfo, MetricInfo from .inspect import ( get_dataset_config_info, get_dataset_config_names, get_dataset_infos, get_dataset_split_names, inspect_dataset, inspect_metric, list_datasets, list_metrics, ) from .iterable_dataset import IterableDataset from .load import load_dataset, load_dataset_builder, load_from_disk, load_metric from .metric import Metric from .splits import ( NamedSplit, NamedSplitAll, Split, SplitBase, SplitDict, SplitGenerator, SplitInfo, SubSplitInfo, percent, ) from .tasks import * from .utils import * from .utils import logging # deprecated modules from datasets import arrow_dataset as _arrow_dataset # isort:skip from datasets import utils as _utils # isort:skip from datasets.utils import download_manager as _deprecated_download_manager # isort:skip __a = concatenate_datasets __a = DownloadConfig __a = DownloadManager __a = DownloadMode __a = DownloadConfig __a = DownloadMode __a = DownloadManager del _arrow_dataset, _utils, _deprecated_download_manager
30
0
"""simple docstring""" from heapq import heappop, heappush import numpy as np def A__ ( A__ , A__ , A__ , A__ , ) -> Optional[int]: '''simple docstring''' _UpperCAmelCase = grid.shape _UpperCAmelCase = [-1, 1, 0, 0] _UpperCAmelCase = [0, 0, -1, 1] if allow_diagonal: dx += [-1, -1, 1, 1] dy += [-1, 1, -1, 1] _UpperCAmelCase = [(0, source)], set() _UpperCAmelCase = np.full((rows, cols) , np.inf ) _UpperCAmelCase = 0 _UpperCAmelCase = np.empty((rows, cols) , dtype=_lowercase ) _UpperCAmelCase = None while queue: (_UpperCAmelCase) = heappop(_lowercase ) if (x, y) in visited: continue visited.add((x, y) ) if (x, y) == destination: _UpperCAmelCase = [] while (x, y) != source: path.append((x, y) ) _UpperCAmelCase = predecessors[x, y] path.append(_lowercase ) # add the source manually path.reverse() return matrix[destination], path for i in range(len(_lowercase ) ): _UpperCAmelCase = x + dx[i], y + dy[i] if 0 <= nx < rows and 0 <= ny < cols: _UpperCAmelCase = grid[nx][ny] if next_node == 1 and matrix[nx, ny] > dist + 1: heappush(_lowercase , (dist + 1, (nx, ny)) ) _UpperCAmelCase = dist + 1 _UpperCAmelCase = (x, y) return np.inf, [] if __name__ == "__main__": import doctest doctest.testmod()
426
def lowerCamelCase__ ( _lowercase , _lowercase ): '''simple docstring''' while a != 0: UpperCAmelCase_, UpperCAmelCase_ : Optional[int] = b % a, a return b def lowerCamelCase__ ( _lowercase , _lowercase ): '''simple docstring''' if gcd(_lowercase , _lowercase ) != 1: UpperCAmelCase_ : int = f'''mod inverse of {a!r} and {m!r} does not exist''' raise ValueError(_lowercase ) UpperCAmelCase_, UpperCAmelCase_, UpperCAmelCase_ : Union[str, Any] = 1, 0, a UpperCAmelCase_, UpperCAmelCase_, UpperCAmelCase_ : Dict = 0, 1, m while va != 0: UpperCAmelCase_ : List[Any] = ua // va UpperCAmelCase_, UpperCAmelCase_, UpperCAmelCase_, UpperCAmelCase_, UpperCAmelCase_, UpperCAmelCase_ : Any = (ua - q * va), (ua - q * va), (ua - q * va), va, va, va return ua % m
30
0
'''simple docstring''' __lowercase : str = 'Input must be a string of 8 numbers plus letter' __lowercase : Union[str, Any] = 'TRWAGMYFPDXBNJZSQVHLCKE' def lowerCamelCase (_SCREAMING_SNAKE_CASE : str ): if not isinstance(_lowercase , _lowercase ): __a : List[Any] = F"""Expected string as input, found {type(_lowercase ).__name__}""" raise TypeError(_lowercase ) __a : Tuple = spanish_id.replace('-' , '' ).upper() if len(_lowercase ) != 9: raise ValueError(_lowercase ) try: __a : str = int(spanish_id_clean[0:8] ) __a : Optional[int] = spanish_id_clean[8] except ValueError as ex: raise ValueError(_lowercase ) from ex if letter.isdigit(): raise ValueError(_lowercase ) return letter == LOOKUP_LETTERS[number % 23] if __name__ == "__main__": import doctest doctest.testmod()
476
# Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import numpy as np import torch from ..models.clipseg import CLIPSegForImageSegmentation from ..utils import is_vision_available, requires_backends from .base import PipelineTool if is_vision_available(): from PIL import Image class __a( _a ): """simple docstring""" lowerCAmelCase = ( '''This is a tool that creates a segmentation mask of an image according to a label. It cannot create an image.''' '''It takes two arguments named `image` which should be the original image, and `label` which should be a text ''' '''describing the elements what should be identified in the segmentation mask. The tool returns the mask.''' ) lowerCAmelCase = '''CIDAS/clipseg-rd64-refined''' lowerCAmelCase = '''image_segmenter''' lowerCAmelCase = CLIPSegForImageSegmentation lowerCAmelCase = ['''image''', '''text'''] lowerCAmelCase = ['''image'''] def __init__( self ,*_SCREAMING_SNAKE_CASE ,**_SCREAMING_SNAKE_CASE ) -> Dict: requires_backends(self ,['''vision'''] ) super().__init__(*_SCREAMING_SNAKE_CASE ,**_SCREAMING_SNAKE_CASE ) def a__ ( self ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ) -> Tuple: return self.pre_processor(text=[label] ,images=[image] ,padding=_SCREAMING_SNAKE_CASE ,return_tensors='''pt''' ) def a__ ( self ,_SCREAMING_SNAKE_CASE ) -> str: with torch.no_grad(): UpperCAmelCase_ : Dict = self.model(**_SCREAMING_SNAKE_CASE ).logits return logits def a__ ( self ,_SCREAMING_SNAKE_CASE ) -> Dict: UpperCAmelCase_ : Dict = outputs.cpu().detach().numpy() UpperCAmelCase_ : Any = 0 UpperCAmelCase_ : List[Any] = 1 return Image.fromarray((array * 255).astype(np.uinta ) )
30
0
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available _lowercase = { 'configuration_luke': ['LUKE_PRETRAINED_CONFIG_ARCHIVE_MAP', 'LukeConfig'], 'tokenization_luke': ['LukeTokenizer'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase = [ 'LUKE_PRETRAINED_MODEL_ARCHIVE_LIST', 'LukeForEntityClassification', 'LukeForEntityPairClassification', 'LukeForEntitySpanClassification', 'LukeForMultipleChoice', 'LukeForQuestionAnswering', 'LukeForSequenceClassification', 'LukeForTokenClassification', 'LukeForMaskedLM', 'LukeModel', 'LukePreTrainedModel', ] if TYPE_CHECKING: from .configuration_luke import LUKE_PRETRAINED_CONFIG_ARCHIVE_MAP, LukeConfig from .tokenization_luke import LukeTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_luke import ( LUKE_PRETRAINED_MODEL_ARCHIVE_LIST, LukeForEntityClassification, LukeForEntityPairClassification, LukeForEntitySpanClassification, LukeForMaskedLM, LukeForMultipleChoice, LukeForQuestionAnswering, LukeForSequenceClassification, LukeForTokenClassification, LukeModel, LukePreTrainedModel, ) else: import sys _lowercase = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
306
import numpy as np import datasets __a = '\nCompute the Mahalanobis Distance\n\nMahalonobis distance is the distance between a point and a distribution.\nAnd not between two distinct points. It is effectively a multivariate equivalent of the Euclidean distance.\nIt was introduced by Prof. P. C. Mahalanobis in 1936\nand has been used in various statistical applications ever since\n[source: https://www.machinelearningplus.com/statistics/mahalanobis-distance/]\n' __a = '\\n@article{de2000mahalanobis,\n title={The mahalanobis distance},\n author={De Maesschalck, Roy and Jouan-Rimbaud, Delphine and Massart, D{\'e}sir{\'e} L},\n journal={Chemometrics and intelligent laboratory systems},\n volume={50},\n number={1},\n pages={1--18},\n year={2000},\n publisher={Elsevier}\n}\n' __a = '\nArgs:\n X: List of datapoints to be compared with the `reference_distribution`.\n reference_distribution: List of datapoints from the reference distribution we want to compare to.\nReturns:\n mahalanobis: The Mahalonobis distance for each datapoint in `X`.\nExamples:\n\n >>> mahalanobis_metric = datasets.load_metric("mahalanobis")\n >>> results = mahalanobis_metric.compute(reference_distribution=[[0, 1], [1, 0]], X=[[0, 1]])\n >>> print(results)\n {\'mahalanobis\': array([0.5])}\n' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class __a( datasets.Metric ): """simple docstring""" def a__ ( self ) -> Union[str, Any]: return datasets.MetricInfo( description=_DESCRIPTION ,citation=_CITATION ,inputs_description=_KWARGS_DESCRIPTION ,features=datasets.Features( { '''X''': datasets.Sequence(datasets.Value('''float''' ,id='''sequence''' ) ,id='''X''' ), } ) ,) def a__ ( self ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ) -> Any: # convert to numpy arrays UpperCAmelCase_ : str = np.array(_SCREAMING_SNAKE_CASE ) UpperCAmelCase_ : List[Any] = np.array(_SCREAMING_SNAKE_CASE ) # Assert that arrays are 2D if len(X.shape ) != 2: raise ValueError('''Expected `X` to be a 2D vector''' ) if len(reference_distribution.shape ) != 2: raise ValueError('''Expected `reference_distribution` to be a 2D vector''' ) if reference_distribution.shape[0] < 2: raise ValueError( '''Expected `reference_distribution` to be a 2D vector with more than one element in the first dimension''' ) # Get mahalanobis distance for each prediction UpperCAmelCase_ : List[str] = X - np.mean(_SCREAMING_SNAKE_CASE ) UpperCAmelCase_ : Dict = np.cov(reference_distribution.T ) try: UpperCAmelCase_ : Any = np.linalg.inv(_SCREAMING_SNAKE_CASE ) except np.linalg.LinAlgError: UpperCAmelCase_ : List[str] = np.linalg.pinv(_SCREAMING_SNAKE_CASE ) UpperCAmelCase_ : Union[str, Any] = np.dot(_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ) UpperCAmelCase_ : List[Any] = np.dot(_SCREAMING_SNAKE_CASE ,X_minus_mu.T ).diagonal() return {"mahalanobis": mahal_dist}
30
0
from ...configuration_utils import PretrainedConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices _SCREAMING_SNAKE_CASE : Union[str, Any] = logging.get_logger(__name__) _SCREAMING_SNAKE_CASE : Dict = { 'shi-labs/nat-mini-in1k-224': 'https://huggingface.co/shi-labs/nat-mini-in1k-224/resolve/main/config.json', # See all Nat models at https://huggingface.co/models?filter=nat } class A ( _a , _a ): '''simple docstring''' lowerCamelCase : Dict = """nat""" lowerCamelCase : Any = { """num_attention_heads""": """num_heads""", """num_hidden_layers""": """num_layers""", } def __init__( self : Optional[int] , _UpperCamelCase : Dict=4 , _UpperCamelCase : Union[str, Any]=3 , _UpperCamelCase : List[Any]=64 , _UpperCamelCase : str=[3, 4, 6, 5] , _UpperCamelCase : Dict=[2, 4, 8, 16] , _UpperCamelCase : List[str]=7 , _UpperCamelCase : Optional[Any]=3.0 , _UpperCamelCase : Tuple=True , _UpperCamelCase : List[Any]=0.0 , _UpperCamelCase : int=0.0 , _UpperCamelCase : Dict=0.1 , _UpperCamelCase : Union[str, Any]="gelu" , _UpperCamelCase : int=0.0_2 , _UpperCamelCase : Union[str, Any]=1e-5 , _UpperCamelCase : Any=0.0 , _UpperCamelCase : Union[str, Any]=None , _UpperCamelCase : Optional[int]=None , **_UpperCamelCase : Tuple , ): super().__init__(**_SCREAMING_SNAKE_CASE) _lowercase: Optional[int] = patch_size _lowercase: Any = num_channels _lowercase: Optional[Any] = embed_dim _lowercase: Union[str, Any] = depths _lowercase: Union[str, Any] = len(_SCREAMING_SNAKE_CASE) _lowercase: Dict = num_heads _lowercase: Optional[int] = kernel_size _lowercase: Any = mlp_ratio _lowercase: Optional[Any] = qkv_bias _lowercase: Union[str, Any] = hidden_dropout_prob _lowercase: Optional[int] = attention_probs_dropout_prob _lowercase: Tuple = drop_path_rate _lowercase: Union[str, Any] = hidden_act _lowercase: Dict = layer_norm_eps _lowercase: Any = initializer_range # we set the hidden_size attribute in order to make Nat work with VisionEncoderDecoderModel # this indicates the channel dimension after the last stage of the model _lowercase: List[Any] = int(embed_dim * 2 ** (len(_SCREAMING_SNAKE_CASE) - 1)) _lowercase: Dict = layer_scale_init_value _lowercase: Any = ['''stem'''] + [f"stage{idx}" for idx in range(1 , len(_SCREAMING_SNAKE_CASE) + 1)] _lowercase: Dict = get_aligned_output_features_output_indices( out_features=_SCREAMING_SNAKE_CASE , out_indices=_SCREAMING_SNAKE_CASE , stage_names=self.stage_names)
226
import collections from typing import List, Optional, Union from ...tokenization_utils_base import BatchEncoding from ...utils import TensorType, add_end_docstrings, add_start_docstrings, logging from ..bert.tokenization_bert import BertTokenizer __a = logging.get_logger(__name__) __a = {'vocab_file': 'vocab.txt', 'tokenizer_file': 'tokenizer.json'} __a = { 'vocab_file': { 'facebook/dpr-ctx_encoder-single-nq-base': ( 'https://huggingface.co/facebook/dpr-ctx_encoder-single-nq-base/resolve/main/vocab.txt' ), 'facebook/dpr-ctx_encoder-multiset-base': ( 'https://huggingface.co/facebook/dpr-ctx_encoder-multiset-base/resolve/main/vocab.txt' ), }, 'tokenizer_file': { 'facebook/dpr-ctx_encoder-single-nq-base': ( 'https://huggingface.co/facebook/dpr-ctx_encoder-single-nq-base/resolve/main/tokenizer.json' ), 'facebook/dpr-ctx_encoder-multiset-base': ( 'https://huggingface.co/facebook/dpr-ctx_encoder-multiset-base/resolve/main/tokenizer.json' ), }, } __a = { 'vocab_file': { 'facebook/dpr-question_encoder-single-nq-base': ( 'https://huggingface.co/facebook/dpr-question_encoder-single-nq-base/resolve/main/vocab.txt' ), 'facebook/dpr-question_encoder-multiset-base': ( 'https://huggingface.co/facebook/dpr-question_encoder-multiset-base/resolve/main/vocab.txt' ), }, 'tokenizer_file': { 'facebook/dpr-question_encoder-single-nq-base': ( 'https://huggingface.co/facebook/dpr-question_encoder-single-nq-base/resolve/main/tokenizer.json' ), 'facebook/dpr-question_encoder-multiset-base': ( 'https://huggingface.co/facebook/dpr-question_encoder-multiset-base/resolve/main/tokenizer.json' ), }, } __a = { 'vocab_file': { 'facebook/dpr-reader-single-nq-base': ( 'https://huggingface.co/facebook/dpr-reader-single-nq-base/resolve/main/vocab.txt' ), 'facebook/dpr-reader-multiset-base': ( 'https://huggingface.co/facebook/dpr-reader-multiset-base/resolve/main/vocab.txt' ), }, 'tokenizer_file': { 'facebook/dpr-reader-single-nq-base': ( 'https://huggingface.co/facebook/dpr-reader-single-nq-base/resolve/main/tokenizer.json' ), 'facebook/dpr-reader-multiset-base': ( 'https://huggingface.co/facebook/dpr-reader-multiset-base/resolve/main/tokenizer.json' ), }, } __a = { 'facebook/dpr-ctx_encoder-single-nq-base': 512, 'facebook/dpr-ctx_encoder-multiset-base': 512, } __a = { 'facebook/dpr-question_encoder-single-nq-base': 512, 'facebook/dpr-question_encoder-multiset-base': 512, } __a = { 'facebook/dpr-reader-single-nq-base': 512, 'facebook/dpr-reader-multiset-base': 512, } __a = { 'facebook/dpr-ctx_encoder-single-nq-base': {'do_lower_case': True}, 'facebook/dpr-ctx_encoder-multiset-base': {'do_lower_case': True}, } __a = { 'facebook/dpr-question_encoder-single-nq-base': {'do_lower_case': True}, 'facebook/dpr-question_encoder-multiset-base': {'do_lower_case': True}, } __a = { 'facebook/dpr-reader-single-nq-base': {'do_lower_case': True}, 'facebook/dpr-reader-multiset-base': {'do_lower_case': True}, } class __a( _a ): """simple docstring""" lowerCAmelCase = VOCAB_FILES_NAMES lowerCAmelCase = CONTEXT_ENCODER_PRETRAINED_VOCAB_FILES_MAP lowerCAmelCase = CONTEXT_ENCODER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCAmelCase = CONTEXT_ENCODER_PRETRAINED_INIT_CONFIGURATION class __a( _a ): """simple docstring""" lowerCAmelCase = VOCAB_FILES_NAMES lowerCAmelCase = QUESTION_ENCODER_PRETRAINED_VOCAB_FILES_MAP lowerCAmelCase = QUESTION_ENCODER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCAmelCase = QUESTION_ENCODER_PRETRAINED_INIT_CONFIGURATION __a = collections.namedtuple( 'DPRSpanPrediction', ['span_score', 'relevance_score', 'doc_id', 'start_index', 'end_index', 'text'] ) __a = collections.namedtuple('DPRReaderOutput', ['start_logits', 'end_logits', 'relevance_logits']) __a = R'\n Return a dictionary with the token ids of the input strings and other information to give to `.decode_best_spans`.\n It converts the strings of a question and different passages (title and text) in a sequence of IDs (integers),\n using the tokenizer and vocabulary. The resulting `input_ids` is a matrix of size `(n_passages, sequence_length)`\n with the format:\n\n ```\n [CLS] <question token ids> [SEP] <titles ids> [SEP] <texts ids>\n ```\n\n Args:\n questions (`str` or `List[str]`):\n The questions to be encoded. You can specify one question for many passages. In this case, the question\n will be duplicated like `[questions] * n_passages`. Otherwise you have to specify as many questions as in\n `titles` or `texts`.\n titles (`str` or `List[str]`):\n The passages titles to be encoded. This can be a string or a list of strings if there are several passages.\n texts (`str` or `List[str]`):\n The passages texts to be encoded. This can be a string or a list of strings if there are several passages.\n padding (`bool`, `str` or [`~utils.PaddingStrategy`], *optional*, defaults to `False`):\n Activates and controls padding. Accepts the following values:\n\n - `True` or `\'longest\'`: Pad to the longest sequence in the batch (or no padding if only a single sequence\n if provided).\n - `\'max_length\'`: Pad to a maximum length specified with the argument `max_length` or to the maximum\n acceptable input length for the model if that argument is not provided.\n - `False` or `\'do_not_pad\'` (default): No padding (i.e., can output a batch with sequences of different\n lengths).\n truncation (`bool`, `str` or [`~tokenization_utils_base.TruncationStrategy`], *optional*, defaults to `False`):\n Activates and controls truncation. Accepts the following values:\n\n - `True` or `\'longest_first\'`: Truncate to a maximum length specified with the argument `max_length` or to\n the maximum acceptable input length for the model if that argument is not provided. This will truncate\n token by token, removing a token from the longest sequence in the pair if a pair of sequences (or a batch\n of pairs) is provided.\n - `\'only_first\'`: Truncate to a maximum length specified with the argument `max_length` or to the maximum\n acceptable input length for the model if that argument is not provided. This will only truncate the first\n sequence of a pair if a pair of sequences (or a batch of pairs) is provided.\n - `\'only_second\'`: Truncate to a maximum length specified with the argument `max_length` or to the maximum\n acceptable input length for the model if that argument is not provided. This will only truncate the\n second sequence of a pair if a pair of sequences (or a batch of pairs) is provided.\n - `False` or `\'do_not_truncate\'` (default): No truncation (i.e., can output batch with sequence lengths\n greater than the model maximum admissible input size).\n max_length (`int`, *optional*):\n Controls the maximum length to use by one of the truncation/padding parameters.\n\n If left unset or set to `None`, this will use the predefined model maximum length if a maximum length\n is required by one of the truncation/padding parameters. If the model has no specific maximum input\n length (like XLNet) truncation/padding to a maximum length will be deactivated.\n return_tensors (`str` or [`~utils.TensorType`], *optional*):\n If set, will return tensors instead of list of python integers. Acceptable values are:\n\n - `\'tf\'`: Return TensorFlow `tf.constant` objects.\n - `\'pt\'`: Return PyTorch `torch.Tensor` objects.\n - `\'np\'`: Return Numpy `np.ndarray` objects.\n return_attention_mask (`bool`, *optional*):\n Whether or not to return the attention mask. If not set, will return the attention mask according to the\n specific tokenizer\'s default, defined by the `return_outputs` attribute.\n\n [What are attention masks?](../glossary#attention-mask)\n\n Returns:\n `Dict[str, List[List[int]]]`: A dictionary with the following keys:\n\n - `input_ids`: List of token ids to be fed to a model.\n - `attention_mask`: List of indices specifying which tokens should be attended to by the model.\n ' @add_start_docstrings(_a ) class __a: """simple docstring""" def __call__( self ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE = None ,_SCREAMING_SNAKE_CASE = None ,_SCREAMING_SNAKE_CASE = False ,_SCREAMING_SNAKE_CASE = False ,_SCREAMING_SNAKE_CASE = None ,_SCREAMING_SNAKE_CASE = None ,_SCREAMING_SNAKE_CASE = None ,**_SCREAMING_SNAKE_CASE ,) -> BatchEncoding: if titles is None and texts is None: return super().__call__( _SCREAMING_SNAKE_CASE ,padding=_SCREAMING_SNAKE_CASE ,truncation=_SCREAMING_SNAKE_CASE ,max_length=_SCREAMING_SNAKE_CASE ,return_tensors=_SCREAMING_SNAKE_CASE ,return_attention_mask=_SCREAMING_SNAKE_CASE ,**_SCREAMING_SNAKE_CASE ,) elif titles is None or texts is None: UpperCAmelCase_ : List[str] = titles if texts is None else texts return super().__call__( _SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ,padding=_SCREAMING_SNAKE_CASE ,truncation=_SCREAMING_SNAKE_CASE ,max_length=_SCREAMING_SNAKE_CASE ,return_tensors=_SCREAMING_SNAKE_CASE ,return_attention_mask=_SCREAMING_SNAKE_CASE ,**_SCREAMING_SNAKE_CASE ,) UpperCAmelCase_ : List[Any] = titles if not isinstance(_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ) else [titles] UpperCAmelCase_ : List[str] = texts if not isinstance(_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ) else [texts] UpperCAmelCase_ : Any = len(_SCREAMING_SNAKE_CASE ) UpperCAmelCase_ : List[Any] = questions if not isinstance(_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ) else [questions] * n_passages if len(_SCREAMING_SNAKE_CASE ) != len(_SCREAMING_SNAKE_CASE ): raise ValueError( f'''There should be as many titles than texts but got {len(_SCREAMING_SNAKE_CASE )} titles and {len(_SCREAMING_SNAKE_CASE )} texts.''' ) UpperCAmelCase_ : Tuple = super().__call__(_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ,padding=_SCREAMING_SNAKE_CASE ,truncation=_SCREAMING_SNAKE_CASE )['''input_ids'''] UpperCAmelCase_ : int = super().__call__(_SCREAMING_SNAKE_CASE ,add_special_tokens=_SCREAMING_SNAKE_CASE ,padding=_SCREAMING_SNAKE_CASE ,truncation=_SCREAMING_SNAKE_CASE )['''input_ids'''] UpperCAmelCase_ : Optional[int] = { '''input_ids''': [ (encoded_question_and_title + encoded_text)[:max_length] if max_length is not None and truncation else encoded_question_and_title + encoded_text for encoded_question_and_title, encoded_text in zip(_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ) ] } if return_attention_mask is not False: UpperCAmelCase_ : List[str] = [] for input_ids in encoded_inputs["input_ids"]: attention_mask.append([int(input_id != self.pad_token_id ) for input_id in input_ids] ) UpperCAmelCase_ : Dict = attention_mask return self.pad(_SCREAMING_SNAKE_CASE ,padding=_SCREAMING_SNAKE_CASE ,max_length=_SCREAMING_SNAKE_CASE ,return_tensors=_SCREAMING_SNAKE_CASE ) def a__ ( self ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE = 16 ,_SCREAMING_SNAKE_CASE = 64 ,_SCREAMING_SNAKE_CASE = 4 ,) -> List[DPRSpanPrediction]: UpperCAmelCase_ : Tuple = reader_input['''input_ids'''] UpperCAmelCase_, UpperCAmelCase_, UpperCAmelCase_ : Optional[Any] = reader_output[:3] UpperCAmelCase_ : Optional[Any] = len(_SCREAMING_SNAKE_CASE ) UpperCAmelCase_ : int = sorted(range(_SCREAMING_SNAKE_CASE ) ,reverse=_SCREAMING_SNAKE_CASE ,key=relevance_logits.__getitem__ ) UpperCAmelCase_ : List[DPRReaderOutput] = [] for doc_id in sorted_docs: UpperCAmelCase_ : List[Any] = list(input_ids[doc_id] ) # assuming question & title information is at the beginning of the sequence UpperCAmelCase_ : str = sequence_ids.index(self.sep_token_id ,2 ) + 1 # second sep id if sequence_ids[-1] == self.pad_token_id: UpperCAmelCase_ : List[Any] = sequence_ids.index(self.pad_token_id ) else: UpperCAmelCase_ : int = len(_SCREAMING_SNAKE_CASE ) UpperCAmelCase_ : Tuple = self._get_best_spans( start_logits=start_logits[doc_id][passage_offset:sequence_len] ,end_logits=end_logits[doc_id][passage_offset:sequence_len] ,max_answer_length=_SCREAMING_SNAKE_CASE ,top_spans=_SCREAMING_SNAKE_CASE ,) for start_index, end_index in best_spans: start_index += passage_offset end_index += passage_offset nbest_spans_predictions.append( DPRSpanPrediction( span_score=start_logits[doc_id][start_index] + end_logits[doc_id][end_index] ,relevance_score=relevance_logits[doc_id] ,doc_id=_SCREAMING_SNAKE_CASE ,start_index=_SCREAMING_SNAKE_CASE ,end_index=_SCREAMING_SNAKE_CASE ,text=self.decode(sequence_ids[start_index : end_index + 1] ) ,) ) if len(_SCREAMING_SNAKE_CASE ) >= num_spans: break return nbest_spans_predictions[:num_spans] def a__ ( self ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ,) -> List[DPRSpanPrediction]: UpperCAmelCase_ : Tuple = [] for start_index, start_score in enumerate(_SCREAMING_SNAKE_CASE ): for answer_length, end_score in enumerate(end_logits[start_index : start_index + max_answer_length] ): scores.append(((start_index, start_index + answer_length), start_score + end_score) ) UpperCAmelCase_ : int = sorted(_SCREAMING_SNAKE_CASE ,key=lambda _SCREAMING_SNAKE_CASE : x[1] ,reverse=_SCREAMING_SNAKE_CASE ) UpperCAmelCase_ : Union[str, Any] = [] for (start_index, end_index), score in scores: if start_index > end_index: raise ValueError(f'''Wrong span indices: [{start_index}:{end_index}]''' ) UpperCAmelCase_ : str = end_index - start_index + 1 if length > max_answer_length: raise ValueError(f'''Span is too long: {length} > {max_answer_length}''' ) if any( start_index <= prev_start_index <= prev_end_index <= end_index or prev_start_index <= start_index <= end_index <= prev_end_index for (prev_start_index, prev_end_index) in chosen_span_intervals ): continue chosen_span_intervals.append((start_index, end_index) ) if len(_SCREAMING_SNAKE_CASE ) == top_spans: break return chosen_span_intervals @add_end_docstrings(_a ) class __a( _a , _a ): """simple docstring""" lowerCAmelCase = VOCAB_FILES_NAMES lowerCAmelCase = READER_PRETRAINED_VOCAB_FILES_MAP lowerCAmelCase = READER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCAmelCase = READER_PRETRAINED_INIT_CONFIGURATION lowerCAmelCase = ['''input_ids''', '''attention_mask''']
30
0
from __future__ import annotations import collections import pprint from pathlib import Path def a ( snake_case__: Union[str, Any] ): '''simple docstring''' return "".join(sorted(_lowercase ) ) def a ( snake_case__: str ): '''simple docstring''' return word_by_signature[signature(_lowercase )] __a = Path(__file__).parent.joinpath('words.txt').read_text(encoding='utf-8') __a = sorted({word.strip().lower() for word in data.splitlines()}) __a = collections.defaultdict(list) for word in word_list: word_by_signature[signature(word)].append(word) if __name__ == "__main__": __a = {word: anagram(word) for word in word_list if len(anagram(word)) > 1} with open('anagrams.txt', 'w') as file: file.write('all_anagrams = \n ') file.write(pprint.pformat(all_anagrams))
97
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_torch_available, ) __a = { 'configuration_encodec': [ 'ENCODEC_PRETRAINED_CONFIG_ARCHIVE_MAP', 'EncodecConfig', ], 'feature_extraction_encodec': ['EncodecFeatureExtractor'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __a = [ 'ENCODEC_PRETRAINED_MODEL_ARCHIVE_LIST', 'EncodecModel', 'EncodecPreTrainedModel', ] if TYPE_CHECKING: from .configuration_encodec import ( ENCODEC_PRETRAINED_CONFIG_ARCHIVE_MAP, EncodecConfig, ) from .feature_extraction_encodec import EncodecFeatureExtractor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_encodec import ( ENCODEC_PRETRAINED_MODEL_ARCHIVE_LIST, EncodecModel, EncodecPreTrainedModel, ) else: import sys __a = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
30
0
'''simple docstring''' import operator as op SCREAMING_SNAKE_CASE = """scaler.pt""" SCREAMING_SNAKE_CASE = """pytorch_model""" SCREAMING_SNAKE_CASE = """random_states""" SCREAMING_SNAKE_CASE = """optimizer""" SCREAMING_SNAKE_CASE = """scheduler""" SCREAMING_SNAKE_CASE = """pytorch_model.bin""" SCREAMING_SNAKE_CASE = """pytorch_model.bin.index.json""" SCREAMING_SNAKE_CASE = """model.safetensors""" SCREAMING_SNAKE_CASE = """model.safetensors.index.json""" SCREAMING_SNAKE_CASE = """1.10.2""" SCREAMING_SNAKE_CASE = """py38""" SCREAMING_SNAKE_CASE = """4.17.0""" SCREAMING_SNAKE_CASE = ["""ml.p3.16xlarge""", """ml.p3dn.24xlarge""", """ml.p4dn.24xlarge"""] SCREAMING_SNAKE_CASE = ["""FULL_SHARD""", """SHARD_GRAD_OP""", """NO_SHARD""", """HYBRID_SHARD""", """HYBRID_SHARD_ZERO2"""] SCREAMING_SNAKE_CASE = ["""TRANSFORMER_BASED_WRAP""", """SIZE_BASED_WRAP""", """NO_WRAP"""] SCREAMING_SNAKE_CASE = ["""BACKWARD_PRE""", """BACKWARD_POST""", """NO_PREFETCH"""] SCREAMING_SNAKE_CASE = ["""FULL_STATE_DICT""", """LOCAL_STATE_DICT""", """SHARDED_STATE_DICT"""] SCREAMING_SNAKE_CASE = """2.0.1""" SCREAMING_SNAKE_CASE = ["""pdsh""", """standard""", """openmpi""", """mvapich"""] SCREAMING_SNAKE_CASE = ["""default""", """reduce-overhead""", """max-autotune"""] SCREAMING_SNAKE_CASE = {""">""": op.gt, """>=""": op.ge, """==""": op.eq, """!=""": op.ne, """<=""": op.le, """<""": op.lt} # These are the args for `torch.distributed.launch` for pytorch < 1.9 SCREAMING_SNAKE_CASE = [ """nnodes""", """nproc_per_node""", """rdzv_backend""", """rdzv_endpoint""", """rdzv_id""", """rdzv_conf""", """standalone""", """max_restarts""", """monitor_interval""", """start_method""", """role""", """module""", """m""", """no_python""", """run_path""", """log_dir""", """r""", """redirects""", """t""", """tee""", """node_rank""", """master_addr""", """master_port""", ] SCREAMING_SNAKE_CASE = ["""DEEPSPEED""", """MULTI_GPU""", """FSDP""", """MEGATRON_LM"""] SCREAMING_SNAKE_CASE = ["""DEEPSPEED""", """MULTI_XPU""", """FSDP"""]
199
import functools import operator from ...configuration_utils import PretrainedConfig from ...utils import logging __a = logging.get_logger(__name__) __a = { 'facebook/wav2vec2-base-960h': 'https://huggingface.co/facebook/wav2vec2-base-960h/resolve/main/config.json', # See all Wav2Vec2 models at https://huggingface.co/models?filter=wav2vec2 } class __a( _a ): """simple docstring""" lowerCAmelCase = '''wav2vec2''' def __init__( self ,_SCREAMING_SNAKE_CASE=32 ,_SCREAMING_SNAKE_CASE=768 ,_SCREAMING_SNAKE_CASE=12 ,_SCREAMING_SNAKE_CASE=12 ,_SCREAMING_SNAKE_CASE=3_072 ,_SCREAMING_SNAKE_CASE="gelu" ,_SCREAMING_SNAKE_CASE=0.1 ,_SCREAMING_SNAKE_CASE=0.1 ,_SCREAMING_SNAKE_CASE=0.1 ,_SCREAMING_SNAKE_CASE=0.0 ,_SCREAMING_SNAKE_CASE=0.0 ,_SCREAMING_SNAKE_CASE=0.1 ,_SCREAMING_SNAKE_CASE=0.1 ,_SCREAMING_SNAKE_CASE=0.02 ,_SCREAMING_SNAKE_CASE=1e-5 ,_SCREAMING_SNAKE_CASE="group" ,_SCREAMING_SNAKE_CASE="gelu" ,_SCREAMING_SNAKE_CASE=(512, 512, 512, 512, 512, 512, 512) ,_SCREAMING_SNAKE_CASE=(5, 2, 2, 2, 2, 2, 2) ,_SCREAMING_SNAKE_CASE=(10, 3, 3, 3, 3, 2, 2) ,_SCREAMING_SNAKE_CASE=False ,_SCREAMING_SNAKE_CASE=128 ,_SCREAMING_SNAKE_CASE=16 ,_SCREAMING_SNAKE_CASE=False ,_SCREAMING_SNAKE_CASE=True ,_SCREAMING_SNAKE_CASE=0.05 ,_SCREAMING_SNAKE_CASE=10 ,_SCREAMING_SNAKE_CASE=2 ,_SCREAMING_SNAKE_CASE=0.0 ,_SCREAMING_SNAKE_CASE=10 ,_SCREAMING_SNAKE_CASE=0 ,_SCREAMING_SNAKE_CASE=320 ,_SCREAMING_SNAKE_CASE=2 ,_SCREAMING_SNAKE_CASE=0.1 ,_SCREAMING_SNAKE_CASE=100 ,_SCREAMING_SNAKE_CASE=256 ,_SCREAMING_SNAKE_CASE=256 ,_SCREAMING_SNAKE_CASE=0.1 ,_SCREAMING_SNAKE_CASE="sum" ,_SCREAMING_SNAKE_CASE=False ,_SCREAMING_SNAKE_CASE=False ,_SCREAMING_SNAKE_CASE=256 ,_SCREAMING_SNAKE_CASE=(512, 512, 512, 512, 1_500) ,_SCREAMING_SNAKE_CASE=(5, 3, 3, 1, 1) ,_SCREAMING_SNAKE_CASE=(1, 2, 3, 1, 1) ,_SCREAMING_SNAKE_CASE=512 ,_SCREAMING_SNAKE_CASE=0 ,_SCREAMING_SNAKE_CASE=1 ,_SCREAMING_SNAKE_CASE=2 ,_SCREAMING_SNAKE_CASE=False ,_SCREAMING_SNAKE_CASE=3 ,_SCREAMING_SNAKE_CASE=2 ,_SCREAMING_SNAKE_CASE=3 ,_SCREAMING_SNAKE_CASE=None ,_SCREAMING_SNAKE_CASE=None ,**_SCREAMING_SNAKE_CASE ,) -> Optional[int]: super().__init__(**_SCREAMING_SNAKE_CASE ,pad_token_id=_SCREAMING_SNAKE_CASE ,bos_token_id=_SCREAMING_SNAKE_CASE ,eos_token_id=_SCREAMING_SNAKE_CASE ) UpperCAmelCase_ : int = hidden_size UpperCAmelCase_ : Tuple = feat_extract_norm UpperCAmelCase_ : List[Any] = feat_extract_activation UpperCAmelCase_ : str = list(_SCREAMING_SNAKE_CASE ) UpperCAmelCase_ : Any = list(_SCREAMING_SNAKE_CASE ) UpperCAmelCase_ : Tuple = list(_SCREAMING_SNAKE_CASE ) UpperCAmelCase_ : Dict = conv_bias UpperCAmelCase_ : str = num_conv_pos_embeddings UpperCAmelCase_ : Any = num_conv_pos_embedding_groups UpperCAmelCase_ : Tuple = len(self.conv_dim ) UpperCAmelCase_ : Union[str, Any] = num_hidden_layers UpperCAmelCase_ : Dict = intermediate_size UpperCAmelCase_ : Any = hidden_act UpperCAmelCase_ : Any = num_attention_heads UpperCAmelCase_ : str = hidden_dropout UpperCAmelCase_ : int = attention_dropout UpperCAmelCase_ : Tuple = activation_dropout UpperCAmelCase_ : List[str] = feat_proj_dropout UpperCAmelCase_ : int = final_dropout UpperCAmelCase_ : Union[str, Any] = layerdrop UpperCAmelCase_ : Optional[Any] = layer_norm_eps UpperCAmelCase_ : str = initializer_range UpperCAmelCase_ : List[str] = vocab_size UpperCAmelCase_ : Optional[int] = do_stable_layer_norm UpperCAmelCase_ : Optional[int] = use_weighted_layer_sum if ( (len(self.conv_stride ) != self.num_feat_extract_layers) or (len(self.conv_kernel ) != self.num_feat_extract_layers) or (len(self.conv_dim ) != self.num_feat_extract_layers) ): raise ValueError( '''Configuration for convolutional layers is incorrect. It is required that `len(config.conv_dim)` ==''' ''' `len(config.conv_stride)` == `len(config.conv_kernel)`, but is `len(config.conv_dim) =''' f''' {len(self.conv_dim )}`, `len(config.conv_stride) = {len(self.conv_stride )}`,''' f''' `len(config.conv_kernel) = {len(self.conv_kernel )}`.''' ) # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 UpperCAmelCase_ : Optional[int] = apply_spec_augment UpperCAmelCase_ : Tuple = mask_time_prob UpperCAmelCase_ : Optional[Any] = mask_time_length UpperCAmelCase_ : Union[str, Any] = mask_time_min_masks UpperCAmelCase_ : Optional[Any] = mask_feature_prob UpperCAmelCase_ : str = mask_feature_length UpperCAmelCase_ : Dict = mask_feature_min_masks # parameters for pretraining with codevector quantized representations UpperCAmelCase_ : Union[str, Any] = num_codevectors_per_group UpperCAmelCase_ : Any = num_codevector_groups UpperCAmelCase_ : Union[str, Any] = contrastive_logits_temperature UpperCAmelCase_ : List[str] = feat_quantizer_dropout UpperCAmelCase_ : Dict = num_negatives UpperCAmelCase_ : List[str] = codevector_dim UpperCAmelCase_ : List[str] = proj_codevector_dim UpperCAmelCase_ : str = diversity_loss_weight # ctc loss UpperCAmelCase_ : List[Any] = ctc_loss_reduction UpperCAmelCase_ : List[str] = ctc_zero_infinity # adapter UpperCAmelCase_ : Optional[Any] = add_adapter UpperCAmelCase_ : Any = adapter_kernel_size UpperCAmelCase_ : Optional[int] = adapter_stride UpperCAmelCase_ : List[Any] = num_adapter_layers UpperCAmelCase_ : Optional[Any] = output_hidden_size or hidden_size UpperCAmelCase_ : Optional[int] = adapter_attn_dim # SequenceClassification-specific parameter. Feel free to ignore for other classes. UpperCAmelCase_ : List[str] = classifier_proj_size # XVector-specific parameters. Feel free to ignore for other classes. UpperCAmelCase_ : List[str] = list(_SCREAMING_SNAKE_CASE ) UpperCAmelCase_ : int = list(_SCREAMING_SNAKE_CASE ) UpperCAmelCase_ : Dict = list(_SCREAMING_SNAKE_CASE ) UpperCAmelCase_ : Any = xvector_output_dim @property def a__ ( self ) -> Any: return functools.reduce(operator.mul ,self.conv_stride ,1 )
30
0
import sacrebleu as scb from packaging import version from sacrebleu import TER import datasets __lowerCAmelCase : Dict ='\\n@inproceedings{snover-etal-2006-study,\n title = "A Study of Translation Edit Rate with Targeted Human Annotation",\n author = "Snover, Matthew and\n Dorr, Bonnie and\n Schwartz, Rich and\n Micciulla, Linnea and\n Makhoul, John",\n booktitle = "Proceedings of the 7th Conference of the Association for Machine Translation in the Americas: Technical Papers",\n month = aug # " 8-12",\n year = "2006",\n address = "Cambridge, Massachusetts, USA",\n publisher = "Association for Machine Translation in the Americas",\n url = "https://aclanthology.org/2006.amta-papers.25",\n pages = "223--231",\n}\n@inproceedings{post-2018-call,\n title = "A Call for Clarity in Reporting {BLEU} Scores",\n author = "Post, Matt",\n booktitle = "Proceedings of the Third Conference on Machine Translation: Research Papers",\n month = oct,\n year = "2018",\n address = "Belgium, Brussels",\n publisher = "Association for Computational Linguistics",\n url = "https://www.aclweb.org/anthology/W18-6319",\n pages = "186--191",\n}\n' __lowerCAmelCase : Dict ='\\nTER (Translation Edit Rate, also called Translation Error Rate) is a metric to quantify the edit operations that a\nhypothesis requires to match a reference translation. We use the implementation that is already present in sacrebleu\n(https://github.com/mjpost/sacreBLEU#ter), which in turn is inspired by the TERCOM implementation, which can be found\nhere: https://github.com/jhclark/tercom.\n\nThe implementation here is slightly different from sacrebleu in terms of the required input format. The length of\nthe references and hypotheses lists need to be the same, so you may need to transpose your references compared to\nsacrebleu\'s required input format. See https://github.com/huggingface/datasets/issues/3154#issuecomment-950746534\n\nSee the README.md file at https://github.com/mjpost/sacreBLEU#ter for more information.\n' __lowerCAmelCase : Dict ='\nProduces TER scores alongside the number of edits and reference length.\n\nArgs:\n predictions (list of str): The system stream (a sequence of segments).\n references (list of list of str): A list of one or more reference streams (each a sequence of segments).\n normalized (boolean): If `True`, applies basic tokenization and normalization to sentences. Defaults to `False`.\n ignore_punct (boolean): If `True`, applies basic tokenization and normalization to sentences. Defaults to `False`.\n support_zh_ja_chars (boolean): If `True`, tokenization/normalization supports processing of Chinese characters,\n as well as Japanese Kanji, Hiragana, Katakana, and Phonetic Extensions of Katakana.\n Only applies if `normalized = True`. Defaults to `False`.\n case_sensitive (boolean): If `False`, makes all predictions and references lowercase to ignore differences in case. Defaults to `False`.\n\nReturns:\n \'score\' (float): TER score (num_edits / sum_ref_lengths * 100)\n \'num_edits\' (int): The cumulative number of edits\n \'ref_length\' (float): The cumulative average reference length\n\nExamples:\n Example 1:\n >>> predictions = ["does this sentence match??",\n ... "what about this sentence?",\n ... "What did the TER metric user say to the developer?"]\n >>> references = [["does this sentence match", "does this sentence match!?!"],\n ... ["wHaT aBoUt ThIs SeNtEnCe?", "wHaT aBoUt ThIs SeNtEnCe?"],\n ... ["Your jokes are...", "...TERrible"]]\n >>> ter = datasets.load_metric("ter")\n >>> results = ter.compute(predictions=predictions,\n ... references=references,\n ... case_sensitive=True)\n >>> print(results)\n {\'score\': 150.0, \'num_edits\': 15, \'ref_length\': 10.0}\n\n Example 2:\n >>> predictions = ["does this sentence match??",\n ... "what about this sentence?"]\n >>> references = [["does this sentence match", "does this sentence match!?!"],\n ... ["wHaT aBoUt ThIs SeNtEnCe?", "wHaT aBoUt ThIs SeNtEnCe?"]]\n >>> ter = datasets.load_metric("ter")\n >>> results = ter.compute(predictions=predictions,\n ... references=references,\n ... case_sensitive=True)\n >>> print(results)\n {\'score\': 62.5, \'num_edits\': 5, \'ref_length\': 8.0}\n\n Example 3:\n >>> predictions = ["does this sentence match??",\n ... "what about this sentence?"]\n >>> references = [["does this sentence match", "does this sentence match!?!"],\n ... ["wHaT aBoUt ThIs SeNtEnCe?", "wHaT aBoUt ThIs SeNtEnCe?"]]\n >>> ter = datasets.load_metric("ter")\n >>> results = ter.compute(predictions=predictions,\n ... references=references,\n ... normalized=True,\n ... case_sensitive=True)\n >>> print(results)\n {\'score\': 57.14285714285714, \'num_edits\': 6, \'ref_length\': 10.5}\n\n Example 4:\n >>> predictions = ["does this sentence match??",\n ... "what about this sentence?"]\n >>> references = [["does this sentence match", "does this sentence match!?!"],\n ... ["wHaT aBoUt ThIs SeNtEnCe?", "wHaT aBoUt ThIs SeNtEnCe?"]]\n >>> ter = datasets.load_metric("ter")\n >>> results = ter.compute(predictions=predictions,\n ... references=references,\n ... ignore_punct=True,\n ... case_sensitive=False)\n >>> print(results)\n {\'score\': 0.0, \'num_edits\': 0, \'ref_length\': 8.0}\n\n Example 5:\n >>> predictions = ["does this sentence match??",\n ... "what about this sentence?",\n ... "What did the TER metric user say to the developer?"]\n >>> references = [["does this sentence match", "does this sentence match!?!"],\n ... ["wHaT aBoUt ThIs SeNtEnCe?", "wHaT aBoUt ThIs SeNtEnCe?"],\n ... ["Your jokes are...", "...TERrible"]]\n >>> ter = datasets.load_metric("ter")\n >>> results = ter.compute(predictions=predictions,\n ... references=references,\n ... ignore_punct=True,\n ... case_sensitive=False)\n >>> print(results)\n {\'score\': 100.0, \'num_edits\': 10, \'ref_length\': 10.0}\n' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class _lowercase ( datasets.Metric ): '''simple docstring''' def __magic_name__( self :Tuple ) -> Tuple: if version.parse(scb.__version__ ) < version.parse('''1.4.12''' ): raise ImportWarning( '''To use `sacrebleu`, the module `sacrebleu>=1.4.12` is required, and the current version of `sacrebleu` doesn\'t match this condition.\n''' '''You can install it with `pip install "sacrebleu>=1.4.12"`.''' ) return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , homepage='''http://www.cs.umd.edu/~snover/tercom/''' , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { '''predictions''': datasets.Value('''string''' , id='''sequence''' ), '''references''': datasets.Sequence(datasets.Value('''string''' , id='''sequence''' ) , id='''references''' ), } ) , codebase_urls=['''https://github.com/mjpost/sacreBLEU#ter'''] , reference_urls=[ '''https://github.com/jhclark/tercom''', ] , ) def __magic_name__( self :List[str] , lowerCAmelCase__ :Union[str, Any] , lowerCAmelCase__ :str , lowerCAmelCase__ :List[str] = False , lowerCAmelCase__ :Union[str, Any] = False , lowerCAmelCase__ :Dict = False , lowerCAmelCase__ :Any = False , ) -> Optional[Any]: __SCREAMING_SNAKE_CASE : Tuple = len(references[0] ) if any(len(_SCREAMING_SNAKE_CASE ) != references_per_prediction for refs in references ): raise ValueError('''Sacrebleu requires the same number of references for each prediction''' ) __SCREAMING_SNAKE_CASE : str = [[refs[i] for refs in references] for i in range(_SCREAMING_SNAKE_CASE )] __SCREAMING_SNAKE_CASE : Tuple = TER( normalized=_SCREAMING_SNAKE_CASE , no_punct=_SCREAMING_SNAKE_CASE , asian_support=_SCREAMING_SNAKE_CASE , case_sensitive=_SCREAMING_SNAKE_CASE , ) __SCREAMING_SNAKE_CASE : Optional[Any] = sb_ter.corpus_score(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) return {"score": output.score, "num_edits": output.num_edits, "ref_length": output.ref_length}
696
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tokenizers_available, is_torch_available, ) __a = {} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __a = ['NllbTokenizer'] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __a = ['NllbTokenizerFast'] if TYPE_CHECKING: try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_nllb import NllbTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_nllb_fast import NllbTokenizerFast else: import sys __a = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
30
0
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available _SCREAMING_SNAKE_CASE : List[Any] = { "configuration_conditional_detr": [ "CONDITIONAL_DETR_PRETRAINED_CONFIG_ARCHIVE_MAP", "ConditionalDetrConfig", "ConditionalDetrOnnxConfig", ] } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _SCREAMING_SNAKE_CASE : Union[str, Any] = ["ConditionalDetrFeatureExtractor"] _SCREAMING_SNAKE_CASE : Union[str, Any] = ["ConditionalDetrImageProcessor"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _SCREAMING_SNAKE_CASE : Dict = [ "CONDITIONAL_DETR_PRETRAINED_MODEL_ARCHIVE_LIST", "ConditionalDetrForObjectDetection", "ConditionalDetrForSegmentation", "ConditionalDetrModel", "ConditionalDetrPreTrainedModel", ] if TYPE_CHECKING: from .configuration_conditional_detr import ( CONDITIONAL_DETR_PRETRAINED_CONFIG_ARCHIVE_MAP, ConditionalDetrConfig, ConditionalDetrOnnxConfig, ) try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_conditional_detr import ConditionalDetrFeatureExtractor from .image_processing_conditional_detr import ConditionalDetrImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_conditional_detr import ( CONDITIONAL_DETR_PRETRAINED_MODEL_ARCHIVE_LIST, ConditionalDetrForObjectDetection, ConditionalDetrForSegmentation, ConditionalDetrModel, ConditionalDetrPreTrainedModel, ) else: import sys _SCREAMING_SNAKE_CASE : List[str] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
550
import json import multiprocessing import os import re from collections import defaultdict import torch from accelerate import Accelerator from accelerate.utils import set_seed from arguments import HumanEvalArguments from datasets import load_dataset, load_metric from torch.utils.data import IterableDataset from torch.utils.data.dataloader import DataLoader from tqdm import tqdm import transformers from transformers import AutoModelForCausalLM, AutoTokenizer, HfArgumentParser, StoppingCriteria, StoppingCriteriaList __a = ['\nclass', '\ndef', '\n#', '\n@', '\nprint', '\nif'] class __a( _a ): """simple docstring""" def __init__( self ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE=None ,_SCREAMING_SNAKE_CASE=1 ) -> Dict: UpperCAmelCase_ : List[Any] = tokenizer UpperCAmelCase_ : int = dataset UpperCAmelCase_ : Dict = len(_SCREAMING_SNAKE_CASE ) if n_tasks is None else n_tasks UpperCAmelCase_ : Optional[int] = n_copies def __iter__( self ) -> Any: UpperCAmelCase_ : List[Any] = [] for task in range(self.n_tasks ): # without strip, the model generate commented codes ... prompts.append(self.tokenizer.eos_token + self.dataset[task]['''prompt'''].strip() ) UpperCAmelCase_ : Union[str, Any] = self.tokenizer(_SCREAMING_SNAKE_CASE ,padding=_SCREAMING_SNAKE_CASE ,return_tensors='''pt''' ) for task in range(self.n_tasks ): for _ in range(self.n_copies ): yield { "ids": outputs.input_ids[task], "task_id": task, "input_len": outputs.attention_mask[task].sum(), } class __a( _a ): """simple docstring""" def __init__( self ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ) -> List[Any]: UpperCAmelCase_ : str = start_length UpperCAmelCase_ : Optional[int] = eof_strings UpperCAmelCase_ : str = tokenizer def __call__( self ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ,**_SCREAMING_SNAKE_CASE ) -> List[Any]: UpperCAmelCase_ : Optional[Any] = self.tokenizer.batch_decode(input_ids[:, self.start_length :] ) UpperCAmelCase_ : Optional[int] = [] for decoded_generation in decoded_generations: done.append(any(stop_string in decoded_generation for stop_string in self.eof_strings ) ) return all(_SCREAMING_SNAKE_CASE ) def lowerCamelCase__ ( _lowercase ): '''simple docstring''' UpperCAmelCase_ : Tuple = re.split('''(%s)''' % '''|'''.join(_lowercase ) , _lowercase ) # last string should be "" return "".join(string_list[:-2] ) def lowerCamelCase__ ( _lowercase , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase=20 , **_lowercase ): '''simple docstring''' UpperCAmelCase_ : List[Any] = defaultdict(_lowercase ) # dict of list of generated tokens for step, batch in tqdm(enumerate(_lowercase ) ): with torch.no_grad(): UpperCAmelCase_ : Dict = batch['''ids'''].shape[-1] UpperCAmelCase_ : Optional[Any] = accelerator.unwrap_model(_lowercase ).generate( input_ids=batch['''ids'''][:, : batch['''input_len''']] , num_return_sequences=_lowercase , **_lowercase ) # each task is generated batch_size times UpperCAmelCase_ : Union[str, Any] = batch['''task_id'''].repeat(_lowercase ) UpperCAmelCase_ : Dict = accelerator.pad_across_processes( _lowercase , dim=1 , pad_index=tokenizer.pad_token_id ) UpperCAmelCase_, UpperCAmelCase_ : List[str] = accelerator.gather((generated_tokens, generated_tasks) ) UpperCAmelCase_ : Union[str, Any] = generated_tokens.cpu().numpy() UpperCAmelCase_ : Union[str, Any] = generated_tasks.cpu().numpy() for task, generated_tokens in zip(_lowercase , _lowercase ): gen_token_dict[task].append(_lowercase ) UpperCAmelCase_ : Union[str, Any] = [[] for _ in range(_lowercase )] for task, generated_tokens in gen_token_dict.items(): for s in generated_tokens: UpperCAmelCase_ : int = tokenizer.decode(_lowercase , skip_special_tokens=_lowercase , clean_up_tokenization_spaces=_lowercase ) code_gens[task].append(remove_last_block(_lowercase ) ) return code_gens def lowerCamelCase__ ( ): '''simple docstring''' UpperCAmelCase_ : Optional[Any] = HfArgumentParser(_lowercase ) UpperCAmelCase_ : int = parser.parse_args() transformers.logging.set_verbosity_error() # enables code execution in code_eval metric UpperCAmelCase_ : Optional[Any] = args.HF_ALLOW_CODE_EVAL # make sure tokenizer plays nice with multiprocessing UpperCAmelCase_ : List[Any] = '''false''' if args.num_workers is None: UpperCAmelCase_ : Optional[Any] = multiprocessing.cpu_count() # Use dataset load to feed to accelerate UpperCAmelCase_ : int = Accelerator() set_seed(args.seed , device_specific=_lowercase ) # Load model and tokenizer UpperCAmelCase_ : Tuple = AutoTokenizer.from_pretrained(args.model_ckpt ) UpperCAmelCase_ : Any = tokenizer.eos_token UpperCAmelCase_ : List[str] = AutoModelForCausalLM.from_pretrained(args.model_ckpt ) # Generation settings UpperCAmelCase_ : str = { '''do_sample''': args.do_sample, '''temperature''': args.temperature, '''max_new_tokens''': args.max_new_tokens, '''top_p''': args.top_p, '''top_k''': args.top_k, '''stopping_criteria''': StoppingCriteriaList([EndOfFunctionCriteria(0 , _lowercase , _lowercase )] ), } # Load evaluation dataset and metric UpperCAmelCase_ : Tuple = load_dataset('''openai_humaneval''' ) UpperCAmelCase_ : Dict = load_metric('''code_eval''' ) UpperCAmelCase_ : Optional[int] = args.num_tasks if args.num_tasks is not None else len(human_eval['''test'''] ) UpperCAmelCase_ : str = args.n_samples // args.batch_size UpperCAmelCase_ : str = TokenizedDataset(_lowercase , human_eval['''test'''] , n_copies=_lowercase , n_tasks=_lowercase ) # do not confuse args.batch_size, which is actually the num_return_sequences UpperCAmelCase_ : Optional[Any] = DataLoader(_lowercase , batch_size=1 ) # Run a quick test to see if code evaluation is enabled try: UpperCAmelCase_ : Any = code_eval_metric.compute(references=[''''''] , predictions=[['''''']] ) except ValueError as exception: print( '''Code evaluation not enabled. Read the warning below carefully and then use `--HF_ALLOW_CODE_EVAL="1"`''' ''' flag to enable code evaluation.''' ) raise exception UpperCAmelCase_, UpperCAmelCase_ : int = accelerator.prepare(_lowercase , _lowercase ) UpperCAmelCase_ : int = complete_code( _lowercase , _lowercase , _lowercase , _lowercase , n_tasks=_lowercase , batch_size=args.batch_size , **_lowercase , ) if accelerator.is_main_process: UpperCAmelCase_ : Any = [] for task in tqdm(range(_lowercase ) ): UpperCAmelCase_ : int = human_eval['''test'''][task]['''test'''] UpperCAmelCase_ : str = f'''check({human_eval["test"][task]["entry_point"]})''' references.append('''\n''' + test_func + '''\n''' + entry_point ) # Evaluate completions with "code_eval" metric UpperCAmelCase_, UpperCAmelCase_ : Any = code_eval_metric.compute( references=_lowercase , predictions=_lowercase , num_workers=args.num_workers ) print(f'''Results: {pass_at_k}''' ) # Save results to json file with open(args.output_file , '''w''' ) as fp: json.dump(_lowercase , _lowercase ) # For some reason the folliwng seems to be necessary sometimes for code_eval to work nice with multiprocessing # https://stackoverflow.com/questions/60804599/python-multiprocessing-keeps-spawning-the-whole-script if __name__ == "__main__": main()
30
0
'''simple docstring''' from typing import Optional import torch import torch.utils.checkpoint from torch import Tensor, nn from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss from ...activations import ACTaFN from ...file_utils import add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward from ...modeling_outputs import ( BaseModelOutputWithNoAttention, BaseModelOutputWithPoolingAndNoAttention, ImageClassifierOutputWithNoAttention, ) from ...modeling_utils import PreTrainedModel from ...utils import logging from .configuration_regnet import RegNetConfig A_ = logging.get_logger(__name__) # General docstring A_ = "RegNetConfig" # Base docstring A_ = "facebook/regnet-y-040" A_ = [1, 1088, 7, 7] # Image classification docstring A_ = "facebook/regnet-y-040" A_ = "tabby, tabby cat" A_ = [ "facebook/regnet-y-040", # See all regnet models at https://huggingface.co/models?filter=regnet ] class lowercase_ ( nn.Module ): def __init__( self : str , __lowerCamelCase : Optional[Any] , __lowerCamelCase : Tuple , __lowerCamelCase : Tuple = 3 , __lowerCamelCase : Tuple = 1 , __lowerCamelCase : int = 1 , __lowerCamelCase : Optional[Any] = "relu" , ): super().__init__() snake_case__ : List[Any] = nn.Convad( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , kernel_size=_SCREAMING_SNAKE_CASE , stride=_SCREAMING_SNAKE_CASE , padding=kernel_size // 2 , groups=_SCREAMING_SNAKE_CASE , bias=_SCREAMING_SNAKE_CASE , ) snake_case__ : List[str] = nn.BatchNormad(_SCREAMING_SNAKE_CASE ) snake_case__ : Any = ACTaFN[activation] if activation is not None else nn.Identity() def _lowerCAmelCase ( self : str , __lowerCamelCase : Optional[Any] ): snake_case__ : List[str] = self.convolution(_SCREAMING_SNAKE_CASE ) snake_case__ : Union[str, Any] = self.normalization(_SCREAMING_SNAKE_CASE ) snake_case__ : str = self.activation(_SCREAMING_SNAKE_CASE ) return hidden_state class lowercase_ ( nn.Module ): def __init__( self : Any , __lowerCamelCase : Any ): super().__init__() snake_case__ : Optional[int] = RegNetConvLayer( config.num_channels , config.embedding_size , kernel_size=3 , stride=2 , activation=config.hidden_act ) snake_case__ : Optional[int] = config.num_channels def _lowerCAmelCase ( self : Union[str, Any] , __lowerCamelCase : str ): snake_case__ : Dict = pixel_values.shape[1] if num_channels != self.num_channels: raise ValueError( 'Make sure that the channel dimension of the pixel values match with the one set in the configuration.' ) snake_case__ : Union[str, Any] = self.embedder(_SCREAMING_SNAKE_CASE ) return hidden_state class lowercase_ ( nn.Module ): def __init__( self : Optional[int] , __lowerCamelCase : Dict , __lowerCamelCase : int , __lowerCamelCase : List[str] = 2 ): super().__init__() snake_case__ : int = nn.Convad(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , kernel_size=1 , stride=_SCREAMING_SNAKE_CASE , bias=_SCREAMING_SNAKE_CASE ) snake_case__ : Any = nn.BatchNormad(_SCREAMING_SNAKE_CASE ) def _lowerCAmelCase ( self : Dict , __lowerCamelCase : Optional[Any] ): snake_case__ : List[str] = self.convolution(_SCREAMING_SNAKE_CASE ) snake_case__ : Union[str, Any] = self.normalization(_SCREAMING_SNAKE_CASE ) return hidden_state class lowercase_ ( nn.Module ): def __init__( self : Any , __lowerCamelCase : Optional[int] , __lowerCamelCase : List[Any] ): super().__init__() snake_case__ : str = nn.AdaptiveAvgPoolad((1, 1) ) snake_case__ : int = nn.Sequential( nn.Convad(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , kernel_size=1 ) , nn.ReLU() , nn.Convad(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , kernel_size=1 ) , nn.Sigmoid() , ) def _lowerCAmelCase ( self : Optional[Any] , __lowerCamelCase : Any ): # b c h w -> b c 1 1 snake_case__ : int = self.pooler(_SCREAMING_SNAKE_CASE ) snake_case__ : Union[str, Any] = self.attention(_SCREAMING_SNAKE_CASE ) snake_case__ : Union[str, Any] = hidden_state * attention return hidden_state class lowercase_ ( nn.Module ): def __init__( self : Dict , __lowerCamelCase : str , __lowerCamelCase : int , __lowerCamelCase : int , __lowerCamelCase : str = 1 ): super().__init__() snake_case__ : str = in_channels != out_channels or stride != 1 snake_case__ : Optional[int] = max(1 , out_channels // config.groups_width ) snake_case__ : int = ( RegNetShortCut(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , stride=_SCREAMING_SNAKE_CASE ) if should_apply_shortcut else nn.Identity() ) snake_case__ : Dict = nn.Sequential( RegNetConvLayer(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , kernel_size=1 , activation=config.hidden_act ) , RegNetConvLayer(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , stride=_SCREAMING_SNAKE_CASE , groups=_SCREAMING_SNAKE_CASE , activation=config.hidden_act ) , RegNetConvLayer(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , kernel_size=1 , activation=_SCREAMING_SNAKE_CASE ) , ) snake_case__ : List[str] = ACTaFN[config.hidden_act] def _lowerCAmelCase ( self : Dict , __lowerCamelCase : int ): snake_case__ : int = hidden_state snake_case__ : Optional[Any] = self.layer(_SCREAMING_SNAKE_CASE ) snake_case__ : int = self.shortcut(_SCREAMING_SNAKE_CASE ) hidden_state += residual snake_case__ : Optional[int] = self.activation(_SCREAMING_SNAKE_CASE ) return hidden_state class lowercase_ ( nn.Module ): def __init__( self : Any , __lowerCamelCase : List[Any] , __lowerCamelCase : Any , __lowerCamelCase : int , __lowerCamelCase : Union[str, Any] = 1 ): super().__init__() snake_case__ : Optional[int] = in_channels != out_channels or stride != 1 snake_case__ : Dict = max(1 , out_channels // config.groups_width ) snake_case__ : List[Any] = ( RegNetShortCut(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , stride=_SCREAMING_SNAKE_CASE ) if should_apply_shortcut else nn.Identity() ) snake_case__ : List[str] = nn.Sequential( RegNetConvLayer(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , kernel_size=1 , activation=config.hidden_act ) , RegNetConvLayer(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , stride=_SCREAMING_SNAKE_CASE , groups=_SCREAMING_SNAKE_CASE , activation=config.hidden_act ) , RegNetSELayer(_SCREAMING_SNAKE_CASE , reduced_channels=int(round(in_channels / 4 ) ) ) , RegNetConvLayer(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , kernel_size=1 , activation=_SCREAMING_SNAKE_CASE ) , ) snake_case__ : List[str] = ACTaFN[config.hidden_act] def _lowerCAmelCase ( self : Dict , __lowerCamelCase : str ): snake_case__ : Dict = hidden_state snake_case__ : Union[str, Any] = self.layer(_SCREAMING_SNAKE_CASE ) snake_case__ : int = self.shortcut(_SCREAMING_SNAKE_CASE ) hidden_state += residual snake_case__ : Optional[int] = self.activation(_SCREAMING_SNAKE_CASE ) return hidden_state class lowercase_ ( nn.Module ): def __init__( self : str , __lowerCamelCase : str , __lowerCamelCase : Union[str, Any] , __lowerCamelCase : Optional[Any] , __lowerCamelCase : int = 2 , __lowerCamelCase : List[Any] = 2 , ): super().__init__() snake_case__ : Dict = RegNetXLayer if config.layer_type == '''x''' else RegNetYLayer snake_case__ : Dict = nn.Sequential( # downsampling is done in the first layer with stride of 2 layer( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , stride=_SCREAMING_SNAKE_CASE , ) , *[layer(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) for _ in range(depth - 1 )] , ) def _lowerCAmelCase ( self : List[str] , __lowerCamelCase : Tuple ): snake_case__ : int = self.layers(_SCREAMING_SNAKE_CASE ) return hidden_state class lowercase_ ( nn.Module ): def __init__( self : List[str] , __lowerCamelCase : List[str] ): super().__init__() snake_case__ : Tuple = nn.ModuleList([] ) # based on `downsample_in_first_stage`, the first layer of the first stage may or may not downsample the input self.stages.append( RegNetStage( _SCREAMING_SNAKE_CASE , config.embedding_size , config.hidden_sizes[0] , stride=2 if config.downsample_in_first_stage else 1 , depth=config.depths[0] , ) ) snake_case__ : Optional[int] = zip(config.hidden_sizes , config.hidden_sizes[1:] ) for (in_channels, out_channels), depth in zip(_SCREAMING_SNAKE_CASE , config.depths[1:] ): self.stages.append(RegNetStage(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , depth=_SCREAMING_SNAKE_CASE ) ) def _lowerCAmelCase ( self : str , __lowerCamelCase : Any , __lowerCamelCase : Optional[Any] = False , __lowerCamelCase : Optional[int] = True ): snake_case__ : Union[str, Any] = () if output_hidden_states else None for stage_module in self.stages: if output_hidden_states: snake_case__ : Any = hidden_states + (hidden_state,) snake_case__ : Dict = stage_module(_SCREAMING_SNAKE_CASE ) if output_hidden_states: snake_case__ : Dict = hidden_states + (hidden_state,) if not return_dict: return tuple(v for v in [hidden_state, hidden_states] if v is not None ) return BaseModelOutputWithNoAttention(last_hidden_state=_SCREAMING_SNAKE_CASE , hidden_states=_SCREAMING_SNAKE_CASE ) class lowercase_ ( _a ): A_ = RegNetConfig A_ = "regnet" A_ = "pixel_values" A_ = True def _lowerCAmelCase ( self : Tuple , __lowerCamelCase : Union[str, Any] ): if isinstance(_SCREAMING_SNAKE_CASE , nn.Convad ): nn.init.kaiming_normal_(module.weight , mode='fan_out' , nonlinearity='relu' ) elif isinstance(_SCREAMING_SNAKE_CASE , (nn.BatchNormad, nn.GroupNorm) ): nn.init.constant_(module.weight , 1 ) nn.init.constant_(module.bias , 0 ) def _lowerCAmelCase ( self : Dict , __lowerCamelCase : Tuple , __lowerCamelCase : int=False ): if isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): snake_case__ : List[Any] = value A_ = R"\n This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. Use it\n as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and\n behavior.\n\n Parameters:\n config ([`RegNetConfig`]): Model configuration class with all the parameters of the model.\n Initializing with a config file does not load the weights associated with the model, only the\n configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.\n" A_ = R"\n Args:\n pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`):\n Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See\n [`ConvNextImageProcessor.__call__`] for details.\n\n output_hidden_states (`bool`, *optional*):\n Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for\n more detail.\n return_dict (`bool`, *optional*):\n Whether or not to return a [`~file_utils.ModelOutput`] instead of a plain tuple.\n" @add_start_docstrings( "The bare RegNet model outputting raw features without any specific head on top." , _a , ) # Copied from transformers.models.resnet.modeling_resnet.ResNetModel with RESNET->REGNET,ResNet->RegNet class lowercase_ ( _a ): def __init__( self : Optional[int] , __lowerCamelCase : Optional[int] ): super().__init__(_SCREAMING_SNAKE_CASE ) snake_case__ : Tuple = config snake_case__ : List[Any] = RegNetEmbeddings(_SCREAMING_SNAKE_CASE ) snake_case__ : Optional[Any] = RegNetEncoder(_SCREAMING_SNAKE_CASE ) snake_case__ : str = nn.AdaptiveAvgPoolad((1, 1) ) # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(_SCREAMING_SNAKE_CASE ) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC , output_type=_SCREAMING_SNAKE_CASE , config_class=_CONFIG_FOR_DOC , modality='vision' , expected_output=_EXPECTED_OUTPUT_SHAPE , ) def _lowerCAmelCase ( self : str , __lowerCamelCase : str , __lowerCamelCase : str = None , __lowerCamelCase : Dict = None ): snake_case__ : Optional[Any] = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) snake_case__ : Any = return_dict if return_dict is not None else self.config.use_return_dict snake_case__ : int = self.embedder(_SCREAMING_SNAKE_CASE ) snake_case__ : int = self.encoder( _SCREAMING_SNAKE_CASE , output_hidden_states=_SCREAMING_SNAKE_CASE , return_dict=_SCREAMING_SNAKE_CASE ) snake_case__ : str = encoder_outputs[0] snake_case__ : Optional[int] = self.pooler(_SCREAMING_SNAKE_CASE ) if not return_dict: return (last_hidden_state, pooled_output) + encoder_outputs[1:] return BaseModelOutputWithPoolingAndNoAttention( last_hidden_state=_SCREAMING_SNAKE_CASE , pooler_output=_SCREAMING_SNAKE_CASE , hidden_states=encoder_outputs.hidden_states , ) @add_start_docstrings( "\n RegNet Model with an image classification head on top (a linear layer on top of the pooled features), e.g. for\n ImageNet.\n " , _a , ) # Copied from transformers.models.resnet.modeling_resnet.ResNetForImageClassification with RESNET->REGNET,ResNet->RegNet,resnet->regnet class lowercase_ ( _a ): def __init__( self : int , __lowerCamelCase : Optional[int] ): super().__init__(_SCREAMING_SNAKE_CASE ) snake_case__ : Optional[Any] = config.num_labels snake_case__ : Optional[int] = RegNetModel(_SCREAMING_SNAKE_CASE ) # classification head snake_case__ : Any = nn.Sequential( nn.Flatten() , nn.Linear(config.hidden_sizes[-1] , config.num_labels ) if config.num_labels > 0 else nn.Identity() , ) # initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(_SCREAMING_SNAKE_CASE ) @add_code_sample_docstrings( checkpoint=_IMAGE_CLASS_CHECKPOINT , output_type=_SCREAMING_SNAKE_CASE , config_class=_CONFIG_FOR_DOC , expected_output=_IMAGE_CLASS_EXPECTED_OUTPUT , ) def _lowerCAmelCase ( self : Dict , __lowerCamelCase : List[Any] = None , __lowerCamelCase : str = None , __lowerCamelCase : int = None , __lowerCamelCase : int = None , ): snake_case__ : Optional[Any] = return_dict if return_dict is not None else self.config.use_return_dict snake_case__ : Optional[Any] = self.regnet(_SCREAMING_SNAKE_CASE , output_hidden_states=_SCREAMING_SNAKE_CASE , return_dict=_SCREAMING_SNAKE_CASE ) snake_case__ : Optional[Any] = outputs.pooler_output if return_dict else outputs[1] snake_case__ : int = self.classifier(_SCREAMING_SNAKE_CASE ) snake_case__ : Optional[int] = None if labels is not None: if self.config.problem_type is None: if self.num_labels == 1: snake_case__ : Optional[int] = '''regression''' elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int): snake_case__ : List[str] = '''single_label_classification''' else: snake_case__ : Union[str, Any] = '''multi_label_classification''' if self.config.problem_type == "regression": snake_case__ : str = MSELoss() if self.num_labels == 1: snake_case__ : str = loss_fct(logits.squeeze() , labels.squeeze() ) else: snake_case__ : Optional[Any] = loss_fct(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) elif self.config.problem_type == "single_label_classification": snake_case__ : str = CrossEntropyLoss() snake_case__ : int = loss_fct(logits.view(-1 , self.num_labels ) , labels.view(-1 ) ) elif self.config.problem_type == "multi_label_classification": snake_case__ : List[Any] = BCEWithLogitsLoss() snake_case__ : Any = loss_fct(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) if not return_dict: snake_case__ : int = (logits,) + outputs[2:] return (loss,) + output if loss is not None else output return ImageClassifierOutputWithNoAttention(loss=_SCREAMING_SNAKE_CASE , logits=_SCREAMING_SNAKE_CASE , hidden_states=outputs.hidden_states )
270
from collections import OrderedDict from typing import TYPE_CHECKING, Any, Mapping, Optional from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging if TYPE_CHECKING: from ... import FeatureExtractionMixin, TensorType __a = logging.get_logger(__name__) __a = { 'openai/imagegpt-small': '', 'openai/imagegpt-medium': '', 'openai/imagegpt-large': '', } class __a( _a ): """simple docstring""" lowerCAmelCase = '''imagegpt''' lowerCAmelCase = ['''past_key_values'''] lowerCAmelCase = { '''hidden_size''': '''n_embd''', '''max_position_embeddings''': '''n_positions''', '''num_attention_heads''': '''n_head''', '''num_hidden_layers''': '''n_layer''', } def __init__( self ,_SCREAMING_SNAKE_CASE=512 + 1 ,_SCREAMING_SNAKE_CASE=32 * 32 ,_SCREAMING_SNAKE_CASE=512 ,_SCREAMING_SNAKE_CASE=24 ,_SCREAMING_SNAKE_CASE=8 ,_SCREAMING_SNAKE_CASE=None ,_SCREAMING_SNAKE_CASE="quick_gelu" ,_SCREAMING_SNAKE_CASE=0.1 ,_SCREAMING_SNAKE_CASE=0.1 ,_SCREAMING_SNAKE_CASE=0.1 ,_SCREAMING_SNAKE_CASE=1e-5 ,_SCREAMING_SNAKE_CASE=0.02 ,_SCREAMING_SNAKE_CASE=True ,_SCREAMING_SNAKE_CASE=True ,_SCREAMING_SNAKE_CASE=False ,_SCREAMING_SNAKE_CASE=False ,_SCREAMING_SNAKE_CASE=False ,**_SCREAMING_SNAKE_CASE ,) -> Optional[int]: UpperCAmelCase_ : Optional[int] = vocab_size UpperCAmelCase_ : Union[str, Any] = n_positions UpperCAmelCase_ : Union[str, Any] = n_embd UpperCAmelCase_ : Any = n_layer UpperCAmelCase_ : Optional[Any] = n_head UpperCAmelCase_ : Union[str, Any] = n_inner UpperCAmelCase_ : List[Any] = activation_function UpperCAmelCase_ : List[str] = resid_pdrop UpperCAmelCase_ : str = embd_pdrop UpperCAmelCase_ : Optional[Any] = attn_pdrop UpperCAmelCase_ : Dict = layer_norm_epsilon UpperCAmelCase_ : Union[str, Any] = initializer_range UpperCAmelCase_ : Dict = scale_attn_weights UpperCAmelCase_ : Any = use_cache UpperCAmelCase_ : List[str] = scale_attn_by_inverse_layer_idx UpperCAmelCase_ : Tuple = reorder_and_upcast_attn UpperCAmelCase_ : int = tie_word_embeddings super().__init__(tie_word_embeddings=_SCREAMING_SNAKE_CASE ,**_SCREAMING_SNAKE_CASE ) class __a( _a ): """simple docstring""" @property def a__ ( self ) -> Mapping[str, Mapping[int, str]]: return OrderedDict( [ ('''input_ids''', {0: '''batch''', 1: '''sequence'''}), ] ) def a__ ( self ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE = 1 ,_SCREAMING_SNAKE_CASE = -1 ,_SCREAMING_SNAKE_CASE = False ,_SCREAMING_SNAKE_CASE = None ,_SCREAMING_SNAKE_CASE = 3 ,_SCREAMING_SNAKE_CASE = 32 ,_SCREAMING_SNAKE_CASE = 32 ,) -> Mapping[str, Any]: UpperCAmelCase_ : Any = self._generate_dummy_images(_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ) UpperCAmelCase_ : Optional[int] = dict(preprocessor(images=_SCREAMING_SNAKE_CASE ,return_tensors=_SCREAMING_SNAKE_CASE ) ) return inputs
30
0
'''simple docstring''' from torch import nn class UpperCAmelCase_ ( nn.Module ): """simple docstring""" def __init__( self , lowerCamelCase , lowerCamelCase ) -> Dict: '''simple docstring''' super().__init__() UpperCamelCase : Optional[int] = class_size UpperCamelCase : Any = embed_size # self.mlp1 = nn.Linear(embed_size, embed_size) # self.mlp2 = (nn.Linear(embed_size, class_size)) UpperCamelCase : str = nn.Linear(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) def SCREAMING_SNAKE_CASE__ ( self , lowerCamelCase ) -> Optional[int]: '''simple docstring''' UpperCamelCase : Dict = self.mlp(_SCREAMING_SNAKE_CASE ) return logits
173
import argparse import json import os import re import torch from transformers import BloomConfig, BloomModel from transformers.file_utils import CONFIG_NAME, WEIGHTS_NAME from transformers.utils import logging logging.set_verbosity_info() __a = [ 'word_embeddings_layernorm.weight', 'word_embeddings_layernorm.bias', 'input_layernorm.weight', 'input_layernorm.bias', 'post_attention_layernorm.weight', 'post_attention_layernorm.bias', 'self_attention.dense.bias', 'mlp.dense_4h_to_h.bias', 'ln_f.weight', 'ln_f.bias', ] __a = [ 'mlp.dense_4h_to_h.weight', 'self_attention.dense.weight', ] def lowerCamelCase__ ( _lowercase , _lowercase ): '''simple docstring''' UpperCAmelCase_ : List[Any] = { '''word_embeddings.weight''': '''word_embeddings.weight''', '''word_embeddings.norm.weight''': '''word_embeddings_layernorm.weight''', '''word_embeddings.norm.bias''': '''word_embeddings_layernorm.bias''', '''weight''': '''ln_f.weight''', '''bias''': '''ln_f.bias''', } if key in layer_rename_map: return layer_rename_map[key] # Handle transformer blocks UpperCAmelCase_ : Union[str, Any] = int(re.match(r'''.*layer_(\d*).*''' , _lowercase )[1] ) layer_number -= 3 return f'''h.{layer_number}.''' + key def lowerCamelCase__ ( _lowercase ): '''simple docstring''' if dtype == torch.bool: return 1 / 8 UpperCAmelCase_ : Any = re.search(r'''[^\d](\d+)$''' , str(_lowercase ) ) if bit_search is None: raise ValueError(f'''`dtype` is not a valid dtype: {dtype}.''' ) UpperCAmelCase_ : Optional[int] = int(bit_search.groups()[0] ) return bit_size // 8 def lowerCamelCase__ ( _lowercase , _lowercase , _lowercase , _lowercase , _lowercase ): '''simple docstring''' if bloom_config_file == "": UpperCAmelCase_ : Tuple = BloomConfig() else: UpperCAmelCase_ : Optional[int] = BloomConfig.from_json_file(_lowercase ) if shard_model: UpperCAmelCase_ : Any = os.listdir(_lowercase ) UpperCAmelCase_ : Union[str, Any] = sorted(filter(lambda _lowercase : s.startswith('''layer''' ) and "model_00" in s , _lowercase ) ) UpperCAmelCase_ : Any = {'''weight_map''': {}, '''metadata''': {}} UpperCAmelCase_ : List[str] = 0 UpperCAmelCase_ : Any = None UpperCAmelCase_ : Optional[int] = BloomConfig() for j, file in enumerate(_lowercase ): print('''Processing file: {}'''.format(_lowercase ) ) UpperCAmelCase_ : Optional[Any] = None for i in range(_lowercase ): # load all TP files UpperCAmelCase_ : Tuple = file.replace('''model_00''' , f'''model_0{i}''' ) UpperCAmelCase_ : Any = torch.load(os.path.join(_lowercase , _lowercase ) , map_location='''cpu''' ) # Rename keys in the transformers names UpperCAmelCase_ : Dict = list(temp.keys() ) for key in keys: UpperCAmelCase_ : Union[str, Any] = temp.pop(_lowercase ) if tensors is None: UpperCAmelCase_ : Union[str, Any] = temp else: for key in tensors.keys(): if any(key.endswith(_lowercase ) for end in WEIGHTS_TO_AVERAGE_ENDSWITH ): # We average (sum and then divide) some weights accross TP ranks (see https://github.com/bigscience-workshop/Megatron-DeepSpeed/blob/olruwase/sync_layer_norms/megatron/training.py#L425) tensors[key] += temp[key] else: # Some weights are RowParallelLinear in Megatron-Deepspeed, others are ColumnParallel UpperCAmelCase_ : int = 1 if any(text in key for text in WEIGHTS_WITH_ROW_PARALLELISM_CONTAIN ) else 0 # We concatenate these weights accross TP ranks UpperCAmelCase_ : Tuple = torch.cat([tensors[key], temp[key]] , dim=_lowercase ) # Divide by the number of TP the weights we want to average for key in tensors.keys(): if any(key.endswith(_lowercase ) for end in WEIGHTS_TO_AVERAGE_ENDSWITH ): UpperCAmelCase_ : List[str] = tensors[key] / pretraining_tp torch.save( _lowercase , os.path.join( _lowercase , '''pytorch_model_{}-of-{}.bin'''.format(str(j + 1 ).zfill(5 ) , str(len(_lowercase ) ).zfill(5 ) ) , ) , ) for key in tensors.keys(): UpperCAmelCase_ : Union[str, Any] = tensors[key] total_size += value.numel() * get_dtype_size(value.dtype ) if key not in index_dict["weight_map"]: UpperCAmelCase_ : List[str] = '''pytorch_model_{}-of-{}.bin'''.format( str(j + 1 ).zfill(5 ) , str(len(_lowercase ) ).zfill(5 ) ) UpperCAmelCase_ : List[Any] = BloomConfig() UpperCAmelCase_ : Tuple = pytorch_dump_folder_path + '''/''' + CONFIG_NAME UpperCAmelCase_ : List[str] = total_size with open(_lowercase , '''w''' , encoding='''utf-8''' ) as f: f.write(config.to_json_string() ) with open(os.path.join(_lowercase , WEIGHTS_NAME + '''.index.json''' ) , '''w''' , encoding='''utf-8''' ) as f: UpperCAmelCase_ : Optional[Any] = json.dumps(_lowercase , indent=2 , sort_keys=_lowercase ) + '''\n''' f.write(_lowercase ) else: UpperCAmelCase_ : Any = BloomModel(_lowercase ) UpperCAmelCase_ : Tuple = os.listdir(_lowercase ) UpperCAmelCase_ : Union[str, Any] = sorted(filter(lambda _lowercase : s.startswith('''layer''' ) and "model_00" in s , _lowercase ) ) UpperCAmelCase_ : Any = None for i, file in enumerate(_lowercase ): UpperCAmelCase_ : Optional[Any] = None for i in range(_lowercase ): # load all TP files UpperCAmelCase_ : List[Any] = file.replace('''model_00''' , f'''model_0{i}''' ) UpperCAmelCase_ : Optional[int] = torch.load(os.path.join(_lowercase , _lowercase ) , map_location='''cpu''' ) # Rename keys in the transformers names UpperCAmelCase_ : str = list(temp.keys() ) for key in keys: UpperCAmelCase_ : Dict = temp.pop(_lowercase ) if tensors is None: UpperCAmelCase_ : int = temp else: for key in tensors.keys(): # We average (sum and then divide) some weights accross TP ranks (see https://github.com/bigscience-workshop/Megatron-DeepSpeed/blob/olruwase/sync_layer_norms/megatron/training.py#L425) if any(key.endswith(_lowercase ) for end in WEIGHTS_TO_AVERAGE_ENDSWITH ): tensors[key] += temp[key] else: # Some weights are RowParallelLinear in Megatron-Deepspeed, others are ColumnParallel UpperCAmelCase_ : Optional[int] = 1 if any(text in key for text in WEIGHTS_WITH_ROW_PARALLELISM_CONTAIN ) else 0 # We concatenate these weights accross TP ranks UpperCAmelCase_ : List[str] = torch.cat([tensors[key], temp[key]] , dim=_lowercase ) # Divide by the number of TP the weights we want to average for key in tensors.keys(): if any(key.endswith(_lowercase ) for end in WEIGHTS_TO_AVERAGE_ENDSWITH ): UpperCAmelCase_ : Dict = tensors[key] / pretraining_tp UpperCAmelCase_ : Tuple = model.load_state_dict(_lowercase , strict=_lowercase ) assert not other_keys.unexpected_keys, f'''The keys {other_keys.unexpected_keys} are unexpected''' if missing_keys is None: UpperCAmelCase_ : Union[str, Any] = set(other_keys.missing_keys ) else: UpperCAmelCase_ : Dict = missing_keys.intersection(set(other_keys.missing_keys ) ) assert not missing_keys, f'''The keys {missing_keys} are missing''' # Save pytorch-model os.makedirs(_lowercase , exist_ok=_lowercase ) UpperCAmelCase_ : str = pytorch_dump_folder_path + '''/''' + WEIGHTS_NAME UpperCAmelCase_ : Dict = pytorch_dump_folder_path + '''/''' + CONFIG_NAME print(f'''Save PyTorch model to {pytorch_weights_dump_path} with dtype {config.torch_dtype}''' ) if config.torch_dtype is not None: UpperCAmelCase_ : Optional[int] = model.to(config.torch_dtype ) torch.save(model.state_dict() , _lowercase ) print(f'''Save configuration file to {pytorch_config_dump_path}''' ) with open(_lowercase , '''w''' , encoding='''utf-8''' ) as f: f.write(config.to_json_string() ) if __name__ == "__main__": __a = argparse.ArgumentParser() # Required parameters parser.add_argument( '--bloom_checkpoint_path', default=None, type=str, required=True, help='Path to the Megatron-LM checkpoint path.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, required=True, help='Path to the output PyTorch model.' ) parser.add_argument( '--bloom_config_file', default='', type=str, help=( 'An optional config json file corresponding to the pre-trained model. \n' 'This specifies the model architecture.' ), ) parser.add_argument( '--shard_model', action='store_true', help='An optional setting to shard the output model \nThis enables sharding the converted checkpoint', ) parser.add_argument( '--pretraining_tp', default=4, type=int, help='Pretraining TP rank that has been used when training the model in Megatron-LM \n', ) __a = parser.parse_args() convert_bloom_checkpoint_to_pytorch( args.bloom_checkpoint_path, args.bloom_config_file, args.pytorch_dump_folder_path, args.shard_model, args.pretraining_tp, )
30
0
import json import logging import os import sys from pathlib import Path import finetune_rag from transformers.file_utils import is_apex_available from transformers.testing_utils import ( TestCasePlus, execute_subprocess_async, require_ray, require_torch_gpu, require_torch_multi_gpu, ) logging.basicConfig(level=logging.DEBUG) SCREAMING_SNAKE_CASE: Optional[Any] = logging.getLogger() SCREAMING_SNAKE_CASE: str = logging.StreamHandler(sys.stdout) logger.addHandler(stream_handler) class lowercase_ (_a ): def __a ( self : Tuple , snake_case__ : Tuple ): """simple docstring""" os.makedirs(_SCREAMING_SNAKE_CASE , exist_ok=_SCREAMING_SNAKE_CASE ) SCREAMING_SNAKE_CASE_ = {'''source''': '''What is love ?''', '''target''': '''life'''} SCREAMING_SNAKE_CASE_ = {'''train''': 12, '''val''': 2, '''test''': 2} for split in ["train", "test", "val"]: for field in ["source", "target"]: SCREAMING_SNAKE_CASE_ = '''\n'''.join([contents[field]] * n_lines[split] ) with open(os.path.join(_SCREAMING_SNAKE_CASE , f'''{split}.{field}''' ) , 'w' ) as f: f.write(_SCREAMING_SNAKE_CASE ) def __a ( self : Tuple , snake_case__ : Union[str, Any] , snake_case__ : Dict = "pytorch" ): """simple docstring""" SCREAMING_SNAKE_CASE_ = self.get_auto_remove_tmp_dir() SCREAMING_SNAKE_CASE_ = os.path.join(_SCREAMING_SNAKE_CASE , 'output' ) SCREAMING_SNAKE_CASE_ = os.path.join(_SCREAMING_SNAKE_CASE , 'data' ) self._create_dummy_data(data_dir=_SCREAMING_SNAKE_CASE ) SCREAMING_SNAKE_CASE_ = f''' --data_dir {data_dir} \ --output_dir {output_dir} \ --model_name_or_path facebook/rag-sequence-base \ --model_type rag_sequence \ --do_train \ --do_predict \ --n_val -1 \ --val_check_interval 1.0 \ --train_batch_size 2 \ --eval_batch_size 1 \ --max_source_length 25 \ --max_target_length 25 \ --val_max_target_length 25 \ --test_max_target_length 25 \ --label_smoothing 0.1 \ --dropout 0.1 \ --attention_dropout 0.1 \ --weight_decay 0.001 \ --adam_epsilon 1e-08 \ --max_grad_norm 0.1 \ --lr_scheduler polynomial \ --learning_rate 3e-04 \ --num_train_epochs 1 \ --warmup_steps 4 \ --gradient_accumulation_steps 1 \ --distributed-port 8787 \ --use_dummy_dataset 1 \ --distributed_retriever {distributed_retriever} \ '''.split() if gpus > 0: testargs.append(f'''--gpus={gpus}''' ) if is_apex_available(): testargs.append('--fp16' ) else: testargs.append('--gpus=0' ) testargs.append('--distributed_backend=ddp_cpu' ) testargs.append('--num_processes=2' ) SCREAMING_SNAKE_CASE_ = [sys.executable, str(Path(finetune_rag.__file__ ).resolve() )] + testargs execute_subprocess_async(_SCREAMING_SNAKE_CASE , env=self.get_env() ) SCREAMING_SNAKE_CASE_ = os.path.join(_SCREAMING_SNAKE_CASE , 'metrics.json' ) with open(_SCREAMING_SNAKE_CASE ) as f: SCREAMING_SNAKE_CASE_ = json.load(_SCREAMING_SNAKE_CASE ) return result @require_torch_gpu def __a ( self : Dict ): """simple docstring""" SCREAMING_SNAKE_CASE_ = self._run_finetune(gpus=1 ) self.assertGreaterEqual(result['test'][0]['test_avg_em'] , 0.2 ) @require_torch_multi_gpu def __a ( self : str ): """simple docstring""" SCREAMING_SNAKE_CASE_ = self._run_finetune(gpus=2 ) self.assertGreaterEqual(result['test'][0]['test_avg_em'] , 0.2 ) @require_torch_gpu @require_ray def __a ( self : Union[str, Any] ): """simple docstring""" SCREAMING_SNAKE_CASE_ = self._run_finetune(gpus=1 , distributed_retriever='ray' ) self.assertGreaterEqual(result['test'][0]['test_avg_em'] , 0.2 ) @require_torch_multi_gpu @require_ray def __a ( self : Tuple ): """simple docstring""" SCREAMING_SNAKE_CASE_ = self._run_finetune(gpus=1 , distributed_retriever='ray' ) self.assertGreaterEqual(result['test'][0]['test_avg_em'] , 0.2 )
360
def lowerCamelCase__ ( ): '''simple docstring''' UpperCAmelCase_ : Dict = 0 for i in range(1 , 1001 ): total += i**i return str(_lowercase )[-10:] if __name__ == "__main__": print(solution())
30
0
"""simple docstring""" import json import os import shutil import tempfile import unittest import numpy as np import pytest from transformers import MgpstrTokenizer from transformers.models.mgp_str.tokenization_mgp_str import VOCAB_FILES_NAMES from transformers.testing_utils import require_torch, require_vision from transformers.utils import IMAGE_PROCESSOR_NAME, is_torch_available, is_vision_available if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import MgpstrProcessor, ViTImageProcessor @require_torch @require_vision class a ( unittest.TestCase ): """simple docstring""" A__ : int = ViTImageProcessor if is_vision_available() else None @property def __A ( self ) -> Tuple: return self.image_processor_tester.prepare_image_processor_dict() def __A ( self ) -> List[Any]: _UpperCAmelCase = (3, 32, 128) _UpperCAmelCase = tempfile.mkdtemp() # fmt: off _UpperCAmelCase = ['''[GO]''', '''[s]''', '''0''', '''1''', '''2''', '''3''', '''4''', '''5''', '''6''', '''7''', '''8''', '''9''', '''a''', '''b''', '''c''', '''d''', '''e''', '''f''', '''g''', '''h''', '''i''', '''j''', '''k''', '''l''', '''m''', '''n''', '''o''', '''p''', '''q''', '''r''', '''s''', '''t''', '''u''', '''v''', '''w''', '''x''', '''y''', '''z'''] # fmt: on _UpperCAmelCase = dict(zip(_SCREAMING_SNAKE_CASE , range(len(_SCREAMING_SNAKE_CASE ) ) ) ) _UpperCAmelCase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["vocab_file"] ) with open(self.vocab_file , "w" , encoding="utf-8" ) as fp: fp.write(json.dumps(_SCREAMING_SNAKE_CASE ) + "\n" ) _UpperCAmelCase = { '''do_normalize''': False, '''do_resize''': True, '''image_processor_type''': '''ViTImageProcessor''', '''resample''': 3, '''size''': {'''height''': 32, '''width''': 128}, } _UpperCAmelCase = os.path.join(self.tmpdirname , _SCREAMING_SNAKE_CASE ) with open(self.image_processor_file , "w" , encoding="utf-8" ) as fp: json.dump(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) def __A ( self , **snake_case_ ) -> Any: return MgpstrTokenizer.from_pretrained(self.tmpdirname , **_SCREAMING_SNAKE_CASE ) def __A ( self , **snake_case_ ) -> str: return ViTImageProcessor.from_pretrained(self.tmpdirname , **_SCREAMING_SNAKE_CASE ) def __A ( self ) -> Optional[Any]: shutil.rmtree(self.tmpdirname ) def __A ( self ) -> List[Any]: _UpperCAmelCase = np.random.randint(255 , size=(3, 30, 400) , dtype=np.uinta ) _UpperCAmelCase = Image.fromarray(np.moveaxis(_SCREAMING_SNAKE_CASE , 0 , -1 ) ) return image_input def __A ( self ) -> List[str]: _UpperCAmelCase = self.get_tokenizer() _UpperCAmelCase = self.get_image_processor() _UpperCAmelCase = MgpstrProcessor(tokenizer=_SCREAMING_SNAKE_CASE , image_processor=_SCREAMING_SNAKE_CASE ) processor.save_pretrained(self.tmpdirname ) _UpperCAmelCase = MgpstrProcessor.from_pretrained(self.tmpdirname , use_fast=_SCREAMING_SNAKE_CASE ) self.assertEqual(processor.char_tokenizer.get_vocab() , tokenizer.get_vocab() ) self.assertIsInstance(processor.char_tokenizer , _SCREAMING_SNAKE_CASE ) self.assertEqual(processor.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertIsInstance(processor.image_processor , _SCREAMING_SNAKE_CASE ) def __A ( self ) -> Any: _UpperCAmelCase = self.get_tokenizer() _UpperCAmelCase = self.get_image_processor() _UpperCAmelCase = MgpstrProcessor(tokenizer=_SCREAMING_SNAKE_CASE , image_processor=_SCREAMING_SNAKE_CASE ) processor.save_pretrained(self.tmpdirname ) _UpperCAmelCase = self.get_tokenizer(bos_token="(BOS)" , eos_token="(EOS)" ) _UpperCAmelCase = self.get_image_processor(do_normalize=_SCREAMING_SNAKE_CASE , padding_value=1.0 ) _UpperCAmelCase = MgpstrProcessor.from_pretrained( self.tmpdirname , bos_token="(BOS)" , eos_token="(EOS)" , do_normalize=_SCREAMING_SNAKE_CASE , padding_value=1.0 ) self.assertEqual(processor.char_tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.char_tokenizer , _SCREAMING_SNAKE_CASE ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , _SCREAMING_SNAKE_CASE ) def __A ( self ) -> Dict: _UpperCAmelCase = self.get_image_processor() _UpperCAmelCase = self.get_tokenizer() _UpperCAmelCase = MgpstrProcessor(tokenizer=_SCREAMING_SNAKE_CASE , image_processor=_SCREAMING_SNAKE_CASE ) _UpperCAmelCase = self.prepare_image_inputs() _UpperCAmelCase = image_processor(_SCREAMING_SNAKE_CASE , return_tensors="np" ) _UpperCAmelCase = processor(images=_SCREAMING_SNAKE_CASE , return_tensors="np" ) for key in input_image_proc.keys(): self.assertAlmostEqual(input_image_proc[key].sum() , input_processor[key].sum() , delta=1e-2 ) def __A ( self ) -> List[Any]: _UpperCAmelCase = self.get_image_processor() _UpperCAmelCase = self.get_tokenizer() _UpperCAmelCase = MgpstrProcessor(tokenizer=_SCREAMING_SNAKE_CASE , image_processor=_SCREAMING_SNAKE_CASE ) _UpperCAmelCase = '''test''' _UpperCAmelCase = processor(text=_SCREAMING_SNAKE_CASE ) _UpperCAmelCase = tokenizer(_SCREAMING_SNAKE_CASE ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key] ) def __A ( self ) -> List[str]: _UpperCAmelCase = self.get_image_processor() _UpperCAmelCase = self.get_tokenizer() _UpperCAmelCase = MgpstrProcessor(tokenizer=_SCREAMING_SNAKE_CASE , image_processor=_SCREAMING_SNAKE_CASE ) _UpperCAmelCase = '''test''' _UpperCAmelCase = self.prepare_image_inputs() _UpperCAmelCase = processor(text=_SCREAMING_SNAKE_CASE , images=_SCREAMING_SNAKE_CASE ) self.assertListEqual(list(inputs.keys() ) , ["pixel_values", "labels"] ) # test if it raises when no input is passed with pytest.raises(_SCREAMING_SNAKE_CASE ): processor() def __A ( self ) -> List[str]: _UpperCAmelCase = self.get_image_processor() _UpperCAmelCase = self.get_tokenizer() _UpperCAmelCase = MgpstrProcessor(tokenizer=_SCREAMING_SNAKE_CASE , image_processor=_SCREAMING_SNAKE_CASE ) _UpperCAmelCase = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9], [3, 4, 3, 1, 1, 8, 9]] _UpperCAmelCase = processor.char_decode(_SCREAMING_SNAKE_CASE ) _UpperCAmelCase = tokenizer.batch_decode(_SCREAMING_SNAKE_CASE ) _UpperCAmelCase = [seq.replace(" " , "" ) for seq in decoded_tok] self.assertListEqual(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) def __A ( self ) -> List[Any]: _UpperCAmelCase = self.get_image_processor() _UpperCAmelCase = self.get_tokenizer() _UpperCAmelCase = MgpstrProcessor(tokenizer=_SCREAMING_SNAKE_CASE , image_processor=_SCREAMING_SNAKE_CASE ) _UpperCAmelCase = None _UpperCAmelCase = self.prepare_image_inputs() _UpperCAmelCase = processor(text=_SCREAMING_SNAKE_CASE , images=_SCREAMING_SNAKE_CASE ) self.assertListEqual(list(inputs.keys() ) , processor.model_input_names ) def __A ( self ) -> Optional[Any]: _UpperCAmelCase = self.get_image_processor() _UpperCAmelCase = self.get_tokenizer() _UpperCAmelCase = MgpstrProcessor(tokenizer=_SCREAMING_SNAKE_CASE , image_processor=_SCREAMING_SNAKE_CASE ) _UpperCAmelCase = torch.randn(1 , 27 , 38 ) _UpperCAmelCase = torch.randn(1 , 27 , 50257 ) _UpperCAmelCase = torch.randn(1 , 27 , 30522 ) _UpperCAmelCase = processor.batch_decode([char_input, bpe_input, wp_input] ) self.assertListEqual(list(results.keys() ) , ["generated_text", "scores", "char_preds", "bpe_preds", "wp_preds"] )
426
import os import sys import warnings from dataclasses import dataclass, field from io import BytesIO from typing import TYPE_CHECKING, Any, ClassVar, Dict, List, Optional, Union import numpy as np import pyarrow as pa from .. import config from ..download.streaming_download_manager import xopen from ..table import array_cast from ..utils.file_utils import is_local_path from ..utils.py_utils import first_non_null_value, no_op_if_value_is_null, string_to_dict if TYPE_CHECKING: import PIL.Image from .features import FeatureType __a = None __a = '<' if sys.byteorder == 'little' else '>' # Origin: https://github.com/python-pillow/Pillow/blob/698951e19e19972aeed56df686868f1329981c12/src/PIL/Image.py#L3126 minus "|i1" which values are not preserved correctly when saving and loading an image __a = [ np.dtype('|b1'), np.dtype('|u1'), np.dtype('<u2'), np.dtype('>u2'), np.dtype('<i2'), np.dtype('>i2'), np.dtype('<u4'), np.dtype('>u4'), np.dtype('<i4'), np.dtype('>i4'), np.dtype('<f4'), np.dtype('>f4'), np.dtype('<f8'), np.dtype('>f8'), ] @dataclass class __a: """simple docstring""" lowerCAmelCase = True lowerCAmelCase = None # Automatically constructed lowerCAmelCase = "PIL.Image.Image" lowerCAmelCase = pa.struct({'''bytes''': pa.binary(), '''path''': pa.string()} ) lowerCAmelCase = field(default='''Image''' , init=_a , repr=_a ) def __call__( self ) -> Tuple: return self.pa_type def a__ ( self ,_SCREAMING_SNAKE_CASE ) -> dict: if config.PIL_AVAILABLE: import PIL.Image else: raise ImportError('''To support encoding images, please install \'Pillow\'.''' ) if isinstance(_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ): UpperCAmelCase_ : List[str] = np.array(_SCREAMING_SNAKE_CASE ) if isinstance(_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ): return {"path": value, "bytes": None} elif isinstance(_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ): return {"path": None, "bytes": value} elif isinstance(_SCREAMING_SNAKE_CASE ,np.ndarray ): # convert the image array to PNG/TIFF bytes return encode_np_array(_SCREAMING_SNAKE_CASE ) elif isinstance(_SCREAMING_SNAKE_CASE ,PIL.Image.Image ): # convert the PIL image to bytes (default format is PNG/TIFF) return encode_pil_image(_SCREAMING_SNAKE_CASE ) elif value.get('''path''' ) is not None and os.path.isfile(value['''path'''] ): # we set "bytes": None to not duplicate the data if they're already available locally return {"bytes": None, "path": value.get('''path''' )} elif value.get('''bytes''' ) is not None or value.get('''path''' ) is not None: # store the image bytes, and path is used to infer the image format using the file extension return {"bytes": value.get('''bytes''' ), "path": value.get('''path''' )} else: raise ValueError( f'''An image sample should have one of \'path\' or \'bytes\' but they are missing or None in {value}.''' ) def a__ ( self ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE=None ) -> "PIL.Image.Image": if not self.decode: raise RuntimeError('''Decoding is disabled for this feature. Please use Image(decode=True) instead.''' ) if config.PIL_AVAILABLE: import PIL.Image else: raise ImportError('''To support decoding images, please install \'Pillow\'.''' ) if token_per_repo_id is None: UpperCAmelCase_ : Dict = {} UpperCAmelCase_, UpperCAmelCase_ : Union[str, Any] = value['''path'''], value['''bytes'''] if bytes_ is None: if path is None: raise ValueError(f'''An image should have one of \'path\' or \'bytes\' but both are None in {value}.''' ) else: if is_local_path(_SCREAMING_SNAKE_CASE ): UpperCAmelCase_ : Tuple = PIL.Image.open(_SCREAMING_SNAKE_CASE ) else: UpperCAmelCase_ : Dict = path.split('''::''' )[-1] try: UpperCAmelCase_ : Optional[int] = string_to_dict(_SCREAMING_SNAKE_CASE ,config.HUB_DATASETS_URL )['''repo_id'''] UpperCAmelCase_ : Tuple = token_per_repo_id.get(_SCREAMING_SNAKE_CASE ) except ValueError: UpperCAmelCase_ : Optional[Any] = None with xopen(_SCREAMING_SNAKE_CASE ,'''rb''' ,use_auth_token=_SCREAMING_SNAKE_CASE ) as f: UpperCAmelCase_ : List[str] = BytesIO(f.read() ) UpperCAmelCase_ : Optional[Any] = PIL.Image.open(bytes_ ) else: UpperCAmelCase_ : List[Any] = PIL.Image.open(BytesIO(bytes_ ) ) image.load() # to avoid "Too many open files" errors return image def a__ ( self ) -> Union["FeatureType", Dict[str, "FeatureType"]]: from .features import Value return ( self if self.decode else { "bytes": Value('''binary''' ), "path": Value('''string''' ), } ) def a__ ( self ,_SCREAMING_SNAKE_CASE ) -> pa.StructArray: if pa.types.is_string(storage.type ): UpperCAmelCase_ : Dict = pa.array([None] * len(_SCREAMING_SNAKE_CASE ) ,type=pa.binary() ) UpperCAmelCase_ : Dict = pa.StructArray.from_arrays([bytes_array, storage] ,['''bytes''', '''path'''] ,mask=storage.is_null() ) elif pa.types.is_binary(storage.type ): UpperCAmelCase_ : List[str] = pa.array([None] * len(_SCREAMING_SNAKE_CASE ) ,type=pa.string() ) UpperCAmelCase_ : Tuple = pa.StructArray.from_arrays([storage, path_array] ,['''bytes''', '''path'''] ,mask=storage.is_null() ) elif pa.types.is_struct(storage.type ): if storage.type.get_field_index('''bytes''' ) >= 0: UpperCAmelCase_ : Dict = storage.field('''bytes''' ) else: UpperCAmelCase_ : Any = pa.array([None] * len(_SCREAMING_SNAKE_CASE ) ,type=pa.binary() ) if storage.type.get_field_index('''path''' ) >= 0: UpperCAmelCase_ : int = storage.field('''path''' ) else: UpperCAmelCase_ : List[str] = pa.array([None] * len(_SCREAMING_SNAKE_CASE ) ,type=pa.string() ) UpperCAmelCase_ : Optional[Any] = pa.StructArray.from_arrays([bytes_array, path_array] ,['''bytes''', '''path'''] ,mask=storage.is_null() ) elif pa.types.is_list(storage.type ): UpperCAmelCase_ : Optional[Any] = pa.array( [encode_np_array(np.array(_SCREAMING_SNAKE_CASE ) )['''bytes'''] if arr is not None else None for arr in storage.to_pylist()] ,type=pa.binary() ,) UpperCAmelCase_ : Any = pa.array([None] * len(_SCREAMING_SNAKE_CASE ) ,type=pa.string() ) UpperCAmelCase_ : Dict = pa.StructArray.from_arrays( [bytes_array, path_array] ,['''bytes''', '''path'''] ,mask=bytes_array.is_null() ) return array_cast(_SCREAMING_SNAKE_CASE ,self.pa_type ) def a__ ( self ,_SCREAMING_SNAKE_CASE ) -> pa.StructArray: @no_op_if_value_is_null def path_to_bytes(_SCREAMING_SNAKE_CASE ): with xopen(_SCREAMING_SNAKE_CASE ,'''rb''' ) as f: UpperCAmelCase_ : Any = f.read() return bytes_ UpperCAmelCase_ : Union[str, Any] = pa.array( [ (path_to_bytes(x['''path'''] ) if x['''bytes'''] is None else x['''bytes''']) if x is not None else None for x in storage.to_pylist() ] ,type=pa.binary() ,) UpperCAmelCase_ : List[str] = pa.array( [os.path.basename(_SCREAMING_SNAKE_CASE ) if path is not None else None for path in storage.field('''path''' ).to_pylist()] ,type=pa.string() ,) UpperCAmelCase_ : Union[str, Any] = pa.StructArray.from_arrays([bytes_array, path_array] ,['''bytes''', '''path'''] ,mask=bytes_array.is_null() ) return array_cast(_SCREAMING_SNAKE_CASE ,self.pa_type ) def lowerCamelCase__ ( ): '''simple docstring''' if config.PIL_AVAILABLE: import PIL.Image else: raise ImportError('''To support encoding images, please install \'Pillow\'.''' ) global _IMAGE_COMPRESSION_FORMATS if _IMAGE_COMPRESSION_FORMATS is None: PIL.Image.init() UpperCAmelCase_ : Optional[int] = list(set(PIL.Image.OPEN.keys() ) & set(PIL.Image.SAVE.keys() ) ) return _IMAGE_COMPRESSION_FORMATS def lowerCamelCase__ ( _lowercase ): '''simple docstring''' UpperCAmelCase_ : Optional[int] = BytesIO() if image.format in list_image_compression_formats(): UpperCAmelCase_ : int = image.format else: UpperCAmelCase_ : List[Any] = '''PNG''' if image.mode in ['''1''', '''L''', '''LA''', '''RGB''', '''RGBA'''] else '''TIFF''' image.save(_lowercase , format=_lowercase ) return buffer.getvalue() def lowerCamelCase__ ( _lowercase ): '''simple docstring''' if hasattr(_lowercase , '''filename''' ) and image.filename != "": return {"path": image.filename, "bytes": None} else: return {"path": None, "bytes": image_to_bytes(_lowercase )} def lowerCamelCase__ ( _lowercase ): '''simple docstring''' if config.PIL_AVAILABLE: import PIL.Image else: raise ImportError('''To support encoding images, please install \'Pillow\'.''' ) UpperCAmelCase_ : Tuple = array.dtype UpperCAmelCase_ : List[str] = dtype.byteorder if dtype.byteorder != '''=''' else _NATIVE_BYTEORDER UpperCAmelCase_ : Dict = dtype.kind UpperCAmelCase_ : Union[str, Any] = dtype.itemsize UpperCAmelCase_ : Optional[Any] = None # Multi-channel array case (only np.dtype("|u1") is allowed) if array.shape[2:]: UpperCAmelCase_ : Tuple = np.dtype('''|u1''' ) if dtype_kind not in ["u", "i"]: raise TypeError( f'''Unsupported array dtype {dtype} for image encoding. Only {dest_dtype} is supported for multi-channel arrays.''' ) if dtype is not dest_dtype: warnings.warn(f'''Downcasting array dtype {dtype} to {dest_dtype} to be compatible with \'Pillow\'''' ) # Exact match elif dtype in _VALID_IMAGE_ARRAY_DTPYES: UpperCAmelCase_ : Union[str, Any] = dtype else: # Downcast the type within the kind (np.can_cast(from_type, to_type, casting="same_kind") doesn't behave as expected, so do it manually) while dtype_itemsize >= 1: UpperCAmelCase_ : Union[str, Any] = dtype_byteorder + dtype_kind + str(_lowercase ) UpperCAmelCase_ : str = np.dtype(_lowercase ) if dest_dtype in _VALID_IMAGE_ARRAY_DTPYES: warnings.warn(f'''Downcasting array dtype {dtype} to {dest_dtype} to be compatible with \'Pillow\'''' ) break else: dtype_itemsize //= 2 if dest_dtype is None: raise TypeError( f'''Cannot convert dtype {dtype} to a valid image dtype. Valid image dtypes: {_VALID_IMAGE_ARRAY_DTPYES}''' ) UpperCAmelCase_ : Any = PIL.Image.fromarray(array.astype(_lowercase ) ) return {"path": None, "bytes": image_to_bytes(_lowercase )} def lowerCamelCase__ ( _lowercase ): '''simple docstring''' if config.PIL_AVAILABLE: import PIL.Image else: raise ImportError('''To support encoding images, please install \'Pillow\'.''' ) if objs: UpperCAmelCase_, UpperCAmelCase_ : Tuple = first_non_null_value(_lowercase ) if isinstance(_lowercase , _lowercase ): return [{"path": obj, "bytes": None} if obj is not None else None for obj in objs] if isinstance(_lowercase , np.ndarray ): UpperCAmelCase_ : Any = no_op_if_value_is_null(_lowercase ) return [obj_to_image_dict_func(_lowercase ) for obj in objs] elif isinstance(_lowercase , PIL.Image.Image ): UpperCAmelCase_ : Union[str, Any] = no_op_if_value_is_null(_lowercase ) return [obj_to_image_dict_func(_lowercase ) for obj in objs] else: return objs else: return objs
30
0
'''simple docstring''' from pathlib import Path from typing import List from transformers import is_torch_available, is_vision_available from transformers.testing_utils import get_tests_dir, is_tool_test from transformers.tools.agent_types import AGENT_TYPE_MAPPING, AgentAudio, AgentImage, AgentText if is_torch_available(): import torch if is_vision_available(): from PIL import Image __lowercase : List[str] = ['text', 'image', 'audio'] def lowerCamelCase (_SCREAMING_SNAKE_CASE : Tuple ): __a : int = [] for input_type in input_types: if input_type == "text": inputs.append('Text input' ) elif input_type == "image": inputs.append( Image.open(Path(get_tests_dir('fixtures/tests_samples/COCO' ) ) / '000000039769.png' ).resize((512, 512) ) ) elif input_type == "audio": inputs.append(torch.ones(3_000 ) ) elif isinstance(_lowercase , _lowercase ): inputs.append(create_inputs(_lowercase ) ) else: raise ValueError(F"""Invalid type requested: {input_type}""" ) return inputs def lowerCamelCase (_SCREAMING_SNAKE_CASE : int ): __a : Dict = [] for output in outputs: if isinstance(_lowercase , (str, AgentText) ): output_types.append('text' ) elif isinstance(_lowercase , (Image.Image, AgentImage) ): output_types.append('image' ) elif isinstance(_lowercase , (torch.Tensor, AgentAudio) ): output_types.append('audio' ) else: raise ValueError(F"""Invalid output: {output}""" ) return output_types @is_tool_test class __UpperCamelCase : def __UpperCAmelCase ( self ): '''simple docstring''' self.assertTrue(hasattr(self.tool , 'inputs' ) ) self.assertTrue(hasattr(self.tool , 'outputs' ) ) __a : str = self.tool.inputs for _input in inputs: if isinstance(_input , _SCREAMING_SNAKE_CASE ): for __input in _input: self.assertTrue(__input in authorized_types ) else: self.assertTrue(_input in authorized_types ) __a : Union[str, Any] = self.tool.outputs for _output in outputs: self.assertTrue(_output in authorized_types ) def __UpperCAmelCase ( self ): '''simple docstring''' __a : Union[str, Any] = create_inputs(self.tool.inputs ) __a : Any = self.tool(*_SCREAMING_SNAKE_CASE ) # There is a single output if len(self.tool.outputs ) == 1: __a : Optional[int] = [outputs] self.assertListEqual(output_types(_SCREAMING_SNAKE_CASE ) , self.tool.outputs ) def __UpperCAmelCase ( self ): '''simple docstring''' self.assertTrue(hasattr(self.tool , 'description' ) ) self.assertTrue(hasattr(self.tool , 'default_checkpoint' ) ) self.assertTrue(self.tool.description.startswith('This is a tool that' ) ) def __UpperCAmelCase ( self ): '''simple docstring''' __a : Optional[Any] = create_inputs(self.tool.inputs ) __a : str = self.tool(*_SCREAMING_SNAKE_CASE ) if not isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): __a : Union[str, Any] = [outputs] self.assertEqual(len(_SCREAMING_SNAKE_CASE ) , len(self.tool.outputs ) ) for output, output_type in zip(_SCREAMING_SNAKE_CASE , self.tool.outputs ): __a : Union[str, Any] = AGENT_TYPE_MAPPING[output_type] self.assertTrue(isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ) def __UpperCAmelCase ( self ): '''simple docstring''' __a : Union[str, Any] = create_inputs(self.tool.inputs ) __a : Tuple = [] for _input, input_type in zip(_SCREAMING_SNAKE_CASE , self.tool.inputs ): if isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): _inputs.append([AGENT_TYPE_MAPPING[_input_type](_input ) for _input_type in input_type] ) else: _inputs.append(AGENT_TYPE_MAPPING[input_type](_input ) ) # Should not raise an error __a : List[Any] = self.tool(*_SCREAMING_SNAKE_CASE ) if not isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): __a : Optional[Any] = [outputs] self.assertEqual(len(_SCREAMING_SNAKE_CASE ) , len(self.tool.outputs ) )
476
import unittest from transformers import is_torch_available, is_vision_available from transformers.testing_utils import require_torch, require_vision, slow, torch_device if is_torch_available(): import torch from transformers import AutoModelForImageClassification if is_vision_available(): from transformers import AutoImageProcessor @require_torch @require_vision class __a( unittest.TestCase ): """simple docstring""" @slow def a__ ( self ) -> List[str]: UpperCAmelCase_ : Tuple = AutoImageProcessor.from_pretrained('''microsoft/dit-base-finetuned-rvlcdip''' ) UpperCAmelCase_ : Union[str, Any] = AutoModelForImageClassification.from_pretrained('''microsoft/dit-base-finetuned-rvlcdip''' ) model.to(_SCREAMING_SNAKE_CASE ) from datasets import load_dataset UpperCAmelCase_ : Optional[int] = load_dataset('''nielsr/rvlcdip-demo''' ) UpperCAmelCase_ : Optional[Any] = dataset['''train'''][0]['''image'''].convert('''RGB''' ) UpperCAmelCase_ : str = image_processor(_SCREAMING_SNAKE_CASE ,return_tensors='''pt''' ).to(_SCREAMING_SNAKE_CASE ) # forward pass with torch.no_grad(): UpperCAmelCase_ : Optional[int] = model(**_SCREAMING_SNAKE_CASE ) UpperCAmelCase_ : List[Any] = outputs.logits UpperCAmelCase_ : Tuple = torch.Size((1, 16) ) self.assertEqual(logits.shape ,_SCREAMING_SNAKE_CASE ) UpperCAmelCase_ : int = torch.tensor( [-0.41_58, -0.40_92, -0.43_47] ,device=_SCREAMING_SNAKE_CASE ,dtype=torch.float ,) self.assertTrue(torch.allclose(logits[0, :3] ,_SCREAMING_SNAKE_CASE ,atol=1e-4 ) )
30
0
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tokenizers_available, is_torch_available, ) _lowercase = {'configuration_reformer': ['REFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP', 'ReformerConfig']} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase = ['ReformerTokenizer'] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase = ['ReformerTokenizerFast'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase = [ 'REFORMER_PRETRAINED_MODEL_ARCHIVE_LIST', 'ReformerAttention', 'ReformerForMaskedLM', 'ReformerForQuestionAnswering', 'ReformerForSequenceClassification', 'ReformerLayer', 'ReformerModel', 'ReformerModelWithLMHead', 'ReformerPreTrainedModel', ] if TYPE_CHECKING: from .configuration_reformer import REFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, ReformerConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_reformer import ReformerTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_reformer_fast import ReformerTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_reformer import ( REFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, ReformerAttention, ReformerForMaskedLM, ReformerForQuestionAnswering, ReformerForSequenceClassification, ReformerLayer, ReformerModel, ReformerModelWithLMHead, ReformerPreTrainedModel, ) else: import sys _lowercase = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
306
import warnings from ...utils import logging from .image_processing_clip import CLIPImageProcessor __a = logging.get_logger(__name__) class __a( _a ): """simple docstring""" def __init__( self ,*_SCREAMING_SNAKE_CASE ,**_SCREAMING_SNAKE_CASE ) -> None: warnings.warn( '''The class CLIPFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please''' ''' use CLIPImageProcessor instead.''' ,_SCREAMING_SNAKE_CASE ,) super().__init__(*_SCREAMING_SNAKE_CASE ,**_SCREAMING_SNAKE_CASE )
30
0
from __future__ import annotations _SCREAMING_SNAKE_CASE : Optional[Any] = [-10, -5, 0, 5, 5.1, 11, 13, 21, 3, 4, -21, -10, -5, -1, 0] _SCREAMING_SNAKE_CASE : Optional[int] = [-5, 0, 5, 5.1, 11, 13, 21, -1, 4, -1, -10, -5, -1, 0, -1] def __lowerCAmelCase ( __magic_name__ ): _lowercase: List[Any] = [] _lowercase: List[str] = len(_lowercase ) for i in range(_lowercase ): _lowercase: float = -1 for j in range(i + 1 , _lowercase ): if arr[i] < arr[j]: _lowercase: Union[str, Any] = arr[j] break result.append(_lowercase ) return result def __lowerCAmelCase ( __magic_name__ ): _lowercase: Union[str, Any] = [] for i, outer in enumerate(_lowercase ): _lowercase: float = -1 for inner in arr[i + 1 :]: if outer < inner: _lowercase: List[Any] = inner break result.append(_lowercase ) return result def __lowerCAmelCase ( __magic_name__ ): _lowercase: Optional[int] = len(_lowercase ) _lowercase: list[float] = [] _lowercase: list[float] = [-1] * arr_size for index in reversed(range(_lowercase ) ): if stack: while stack[-1] <= arr[index]: stack.pop() if not stack: break if stack: _lowercase: int = stack[-1] stack.append(arr[index] ) return result if __name__ == "__main__": from doctest import testmod from timeit import timeit testmod() print(next_greatest_element_slow(arr)) print(next_greatest_element_fast(arr)) print(next_greatest_element(arr)) _SCREAMING_SNAKE_CASE : Tuple = ( 'from __main__ import arr, next_greatest_element_slow, ' 'next_greatest_element_fast, next_greatest_element' ) print( 'next_greatest_element_slow():', timeit('next_greatest_element_slow(arr)', setup=setup), ) print( 'next_greatest_element_fast():', timeit('next_greatest_element_fast(arr)', setup=setup), ) print( ' next_greatest_element():', timeit('next_greatest_element(arr)', setup=setup), )
226
import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import PoolFormerImageProcessor class __a( unittest.TestCase ): """simple docstring""" def __init__( self ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE=7 ,_SCREAMING_SNAKE_CASE=3 ,_SCREAMING_SNAKE_CASE=30 ,_SCREAMING_SNAKE_CASE=400 ,_SCREAMING_SNAKE_CASE=True ,_SCREAMING_SNAKE_CASE=None ,_SCREAMING_SNAKE_CASE=0.9 ,_SCREAMING_SNAKE_CASE=None ,_SCREAMING_SNAKE_CASE=True ,_SCREAMING_SNAKE_CASE=[0.5, 0.5, 0.5] ,_SCREAMING_SNAKE_CASE=[0.5, 0.5, 0.5] ,) -> Optional[int]: UpperCAmelCase_ : int = size if size is not None else {'''shortest_edge''': 30} UpperCAmelCase_ : List[str] = crop_size if crop_size is not None else {'''height''': 30, '''width''': 30} UpperCAmelCase_ : Dict = parent UpperCAmelCase_ : int = batch_size UpperCAmelCase_ : int = num_channels UpperCAmelCase_ : Any = min_resolution UpperCAmelCase_ : Tuple = max_resolution UpperCAmelCase_ : Optional[int] = do_resize_and_center_crop UpperCAmelCase_ : Tuple = size UpperCAmelCase_ : List[str] = crop_pct UpperCAmelCase_ : List[str] = crop_size UpperCAmelCase_ : Any = do_normalize UpperCAmelCase_ : str = image_mean UpperCAmelCase_ : List[Any] = image_std def a__ ( self ) -> str: return { "size": self.size, "do_resize_and_center_crop": self.do_resize_and_center_crop, "crop_pct": self.crop_pct, "crop_size": self.crop_size, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, } @require_torch @require_vision class __a( _a , unittest.TestCase ): """simple docstring""" lowerCAmelCase = PoolFormerImageProcessor if is_vision_available() else None def a__ ( self ) -> Dict: UpperCAmelCase_ : str = PoolFormerImageProcessingTester(self ) @property def a__ ( self ) -> Optional[int]: return self.image_processor_tester.prepare_image_processor_dict() def a__ ( self ) -> Optional[int]: UpperCAmelCase_ : List[Any] = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(_SCREAMING_SNAKE_CASE ,'''do_resize_and_center_crop''' ) ) self.assertTrue(hasattr(_SCREAMING_SNAKE_CASE ,'''size''' ) ) self.assertTrue(hasattr(_SCREAMING_SNAKE_CASE ,'''crop_pct''' ) ) self.assertTrue(hasattr(_SCREAMING_SNAKE_CASE ,'''do_normalize''' ) ) self.assertTrue(hasattr(_SCREAMING_SNAKE_CASE ,'''image_mean''' ) ) self.assertTrue(hasattr(_SCREAMING_SNAKE_CASE ,'''image_std''' ) ) def a__ ( self ) -> Union[str, Any]: UpperCAmelCase_ : Any = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size ,{'''shortest_edge''': 30} ) self.assertEqual(image_processor.crop_size ,{'''height''': 30, '''width''': 30} ) UpperCAmelCase_ : Optional[Any] = self.image_processing_class.from_dict(self.image_processor_dict ,size=42 ,crop_size=84 ) self.assertEqual(image_processor.size ,{'''shortest_edge''': 42} ) self.assertEqual(image_processor.crop_size ,{'''height''': 84, '''width''': 84} ) def a__ ( self ) -> Optional[int]: pass def a__ ( self ) -> Dict: # Initialize image_processing UpperCAmelCase_ : str = self.image_processing_class(**self.image_processor_dict ) # create random PIL images UpperCAmelCase_ : int = prepare_image_inputs(self.image_processor_tester ,equal_resolution=_SCREAMING_SNAKE_CASE ) for image in image_inputs: self.assertIsInstance(_SCREAMING_SNAKE_CASE ,Image.Image ) # Test not batched input UpperCAmelCase_ : Optional[int] = image_processing(image_inputs[0] ,return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape ,( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) ,) # Test batched UpperCAmelCase_ : Union[str, Any] = image_processing(_SCREAMING_SNAKE_CASE ,return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape ,( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) ,) def a__ ( self ) -> List[Any]: # Initialize image_processing UpperCAmelCase_ : Any = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors UpperCAmelCase_ : List[str] = prepare_image_inputs(self.image_processor_tester ,equal_resolution=_SCREAMING_SNAKE_CASE ,numpify=_SCREAMING_SNAKE_CASE ) for image in image_inputs: self.assertIsInstance(_SCREAMING_SNAKE_CASE ,np.ndarray ) # Test not batched input UpperCAmelCase_ : Tuple = image_processing(image_inputs[0] ,return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape ,( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) ,) # Test batched UpperCAmelCase_ : List[Any] = image_processing(_SCREAMING_SNAKE_CASE ,return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape ,( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) ,) def a__ ( self ) -> Union[str, Any]: # Initialize image_processing UpperCAmelCase_ : List[Any] = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors UpperCAmelCase_ : Optional[Any] = prepare_image_inputs(self.image_processor_tester ,equal_resolution=_SCREAMING_SNAKE_CASE ,torchify=_SCREAMING_SNAKE_CASE ) for image in image_inputs: self.assertIsInstance(_SCREAMING_SNAKE_CASE ,torch.Tensor ) # Test not batched input UpperCAmelCase_ : Tuple = image_processing(image_inputs[0] ,return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape ,( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) ,) # Test batched UpperCAmelCase_ : List[Any] = image_processing(_SCREAMING_SNAKE_CASE ,return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape ,( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) ,)
30
0
import unittest from transformers import BigBirdConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor, random_attention_mask if is_flax_available(): import jax from transformers.models.big_bird.modeling_flax_big_bird import ( FlaxBigBirdForCausalLM, FlaxBigBirdForMaskedLM, FlaxBigBirdForMultipleChoice, FlaxBigBirdForPreTraining, FlaxBigBirdForQuestionAnswering, FlaxBigBirdForSequenceClassification, FlaxBigBirdForTokenClassification, FlaxBigBirdModel, ) class lowercase__( unittest.TestCase ): """simple docstring""" def __init__( self : List[str] , SCREAMING_SNAKE_CASE_ : Union[str, Any] , SCREAMING_SNAKE_CASE_ : Dict=2 , SCREAMING_SNAKE_CASE_ : List[Any]=5_6 , SCREAMING_SNAKE_CASE_ : Dict=True , SCREAMING_SNAKE_CASE_ : Union[str, Any]=True , SCREAMING_SNAKE_CASE_ : List[Any]=True , SCREAMING_SNAKE_CASE_ : Optional[int]=True , SCREAMING_SNAKE_CASE_ : Dict=9_9 , SCREAMING_SNAKE_CASE_ : Any=3_2 , SCREAMING_SNAKE_CASE_ : Union[str, Any]=2 , SCREAMING_SNAKE_CASE_ : Dict=2 , SCREAMING_SNAKE_CASE_ : Optional[int]=7 , SCREAMING_SNAKE_CASE_ : str="gelu_new" , SCREAMING_SNAKE_CASE_ : List[str]=0.1 , SCREAMING_SNAKE_CASE_ : Dict=0.1 , SCREAMING_SNAKE_CASE_ : str=5_1_2 , SCREAMING_SNAKE_CASE_ : Tuple=1_6 , SCREAMING_SNAKE_CASE_ : Union[str, Any]=2 , SCREAMING_SNAKE_CASE_ : Union[str, Any]=0.02 , SCREAMING_SNAKE_CASE_ : Any=4 , SCREAMING_SNAKE_CASE_ : Union[str, Any]="block_sparse" , SCREAMING_SNAKE_CASE_ : Tuple=True , SCREAMING_SNAKE_CASE_ : Any=False , SCREAMING_SNAKE_CASE_ : int=2 , SCREAMING_SNAKE_CASE_ : Optional[int]=3 , ) -> Tuple: lowercase_ = parent lowercase_ = batch_size lowercase_ = seq_length lowercase_ = is_training lowercase_ = use_attention_mask lowercase_ = use_token_type_ids lowercase_ = use_labels lowercase_ = vocab_size lowercase_ = hidden_size lowercase_ = num_hidden_layers lowercase_ = num_attention_heads lowercase_ = intermediate_size lowercase_ = hidden_act lowercase_ = hidden_dropout_prob lowercase_ = attention_probs_dropout_prob lowercase_ = max_position_embeddings lowercase_ = type_vocab_size lowercase_ = type_sequence_label_size lowercase_ = initializer_range lowercase_ = num_choices lowercase_ = rescale_embeddings lowercase_ = attention_type lowercase_ = use_bias lowercase_ = block_size lowercase_ = num_random_blocks def _lowercase ( self : Tuple ) -> Union[str, Any]: lowercase_ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) lowercase_ = None if self.use_attention_mask: lowercase_ = random_attention_mask([self.batch_size, self.seq_length] ) lowercase_ = None if self.use_token_type_ids: lowercase_ = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) lowercase_ = BigBirdConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=_SCREAMING_SNAKE_CASE , initializer_range=self.initializer_range , attention_type=self.attention_type , block_size=self.block_size , num_random_blocks=self.num_random_blocks , use_bias=self.use_bias , rescale_embeddings=self.rescale_embeddings , ) return config, input_ids, token_type_ids, attention_mask def _lowercase ( self : List[str] ) -> Optional[Any]: lowercase_ = self.prepare_config_and_inputs() lowercase_ = config_and_inputs lowercase_ = { '''input_ids''': input_ids, '''token_type_ids''': token_type_ids, '''attention_mask''': attention_mask, } return config, inputs_dict @require_flax class lowercase__( _a , unittest.TestCase ): """simple docstring""" a :Optional[Any] = ( ( FlaxBigBirdForCausalLM, FlaxBigBirdModel, FlaxBigBirdForPreTraining, FlaxBigBirdForMaskedLM, FlaxBigBirdForMultipleChoice, FlaxBigBirdForQuestionAnswering, FlaxBigBirdForSequenceClassification, FlaxBigBirdForTokenClassification, ) if is_flax_available() else () ) a :List[Any] = False a :Tuple = False def _lowercase ( self : Optional[Any] ) -> int: lowercase_ = FlaxBigBirdModelTester(self ) @slow # copied from `test_modeling_flax_common` because it takes much longer than other models def _lowercase ( self : Optional[int] ) -> Optional[int]: super().test_from_pretrained_save_pretrained() @slow # copied from `test_modeling_flax_common` because it takes much longer than other models def _lowercase ( self : Tuple ) -> Optional[Any]: super().test_from_pretrained_with_no_automatic_init() @slow # copied from `test_modeling_flax_common` because it takes much longer than other models def _lowercase ( self : List[Any] ) -> Tuple: super().test_no_automatic_init() @slow # copied from `test_modeling_flax_common` because it takes much longer than other models def _lowercase ( self : List[Any] ) -> int: super().test_hidden_states_output() @slow def _lowercase ( self : Optional[Any] ) -> str: for model_class_name in self.all_model_classes: lowercase_ = model_class_name.from_pretrained('''google/bigbird-roberta-base''' ) self.assertIsNotNone(_SCREAMING_SNAKE_CASE ) def _lowercase ( self : Optional[int] ) -> Any: if self.test_attn_probs: super().test_attention_outputs() @slow # copied from `test_modeling_flax_common` because it takes much longer than other models def _lowercase ( self : Union[str, Any] ) -> List[str]: lowercase_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): lowercase_ = self._prepare_for_class(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) lowercase_ = model_class(_SCREAMING_SNAKE_CASE ) @jax.jit def model_jitted(SCREAMING_SNAKE_CASE_ : Union[str, Any] , SCREAMING_SNAKE_CASE_ : int=None , **SCREAMING_SNAKE_CASE_ : int ): return model(input_ids=_SCREAMING_SNAKE_CASE , attention_mask=_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) with self.subTest('''JIT Enabled''' ): lowercase_ = model_jitted(**_SCREAMING_SNAKE_CASE ).to_tuple() with self.subTest('''JIT Disabled''' ): with jax.disable_jit(): lowercase_ = model_jitted(**_SCREAMING_SNAKE_CASE ).to_tuple() self.assertEqual(len(_SCREAMING_SNAKE_CASE ) , len(_SCREAMING_SNAKE_CASE ) ) for jitted_output, output in zip(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): self.assertEqual(jitted_output.shape , output.shape ) def _lowercase ( self : Optional[int] , SCREAMING_SNAKE_CASE_ : Union[str, Any] , SCREAMING_SNAKE_CASE_ : List[str] , SCREAMING_SNAKE_CASE_ : Any , SCREAMING_SNAKE_CASE_ : Optional[Any]=1e-5 , SCREAMING_SNAKE_CASE_ : Any="outputs" , SCREAMING_SNAKE_CASE_ : int=None ) -> Any: # `bigbird_block_sparse_attention` in `FlaxBigBird` returns `attention_probs = None`, while in PyTorch version, # an effort was done to return `attention_probs` (yet to be verified). if name.startswith('''outputs.attentions''' ): return else: super().check_pt_flax_outputs(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
97
import unittest import numpy as np def lowerCamelCase__ ( _lowercase , _lowercase , _lowercase , _lowercase = None , ): '''simple docstring''' UpperCAmelCase_ : Dict = np.shape(_lowercase ) UpperCAmelCase_ : Optional[Any] = np.shape(_lowercase ) UpperCAmelCase_ : Tuple = np.shape(_lowercase ) if shape_a[0] != shape_b[0]: UpperCAmelCase_ : Tuple = ( '''Expected the same number of rows for A and B. ''' f'''Instead found A of size {shape_a} and B of size {shape_b}''' ) raise ValueError(_lowercase ) if shape_b[1] != shape_c[1]: UpperCAmelCase_ : List[Any] = ( '''Expected the same number of columns for B and C. ''' f'''Instead found B of size {shape_b} and C of size {shape_c}''' ) raise ValueError(_lowercase ) UpperCAmelCase_ : Dict = pseudo_inv if a_inv is None: try: UpperCAmelCase_ : Any = np.linalg.inv(_lowercase ) except np.linalg.LinAlgError: raise ValueError( '''Input matrix A is not invertible. Cannot compute Schur complement.''' ) return mat_c - mat_b.T @ a_inv @ mat_b class __a( unittest.TestCase ): """simple docstring""" def a__ ( self ) -> None: UpperCAmelCase_ : str = np.array([[1, 2, 1], [2, 1, 2], [3, 2, 4]] ) UpperCAmelCase_ : Any = np.array([[0, 3], [3, 0], [2, 3]] ) UpperCAmelCase_ : List[str] = np.array([[2, 1], [6, 3]] ) UpperCAmelCase_ : Tuple = schur_complement(_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ) UpperCAmelCase_ : List[Any] = np.block([[a, b], [b.T, c]] ) UpperCAmelCase_ : List[Any] = np.linalg.det(_SCREAMING_SNAKE_CASE ) UpperCAmelCase_ : List[Any] = np.linalg.det(_SCREAMING_SNAKE_CASE ) UpperCAmelCase_ : Any = np.linalg.det(_SCREAMING_SNAKE_CASE ) self.assertAlmostEqual(_SCREAMING_SNAKE_CASE ,det_a * det_s ) def a__ ( self ) -> None: UpperCAmelCase_ : str = np.array([[1, 2, 1], [2, 1, 2], [3, 2, 4]] ) UpperCAmelCase_ : Optional[int] = np.array([[0, 3], [3, 0], [2, 3]] ) UpperCAmelCase_ : Optional[int] = np.array([[2, 1], [6, 3]] ) with self.assertRaises(_SCREAMING_SNAKE_CASE ): schur_complement(_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ) def a__ ( self ) -> None: UpperCAmelCase_ : Optional[int] = np.array([[1, 2, 1], [2, 1, 2], [3, 2, 4]] ) UpperCAmelCase_ : Optional[Any] = np.array([[0, 3], [3, 0], [2, 3]] ) UpperCAmelCase_ : int = np.array([[2, 1, 3], [6, 3, 5]] ) with self.assertRaises(_SCREAMING_SNAKE_CASE ): schur_complement(_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ) if __name__ == "__main__": import doctest doctest.testmod() unittest.main()
30
0
'''simple docstring''' import inspect import math import tempfile import unittest import numpy as np from transformers import ViTMAEConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ViTMAEForPreTraining, ViTMAEModel from transformers.models.vit.modeling_vit import VIT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import ViTImageProcessor class UpperCAmelCase_ : '''simple docstring''' def __init__( self : Tuple , snake_case__ : Optional[int] , snake_case__ : Union[str, Any]=13 , snake_case__ : Any=30 , snake_case__ : int=2 , snake_case__ : Union[str, Any]=3 , snake_case__ : int=True , snake_case__ : Tuple=True , snake_case__ : List[Any]=32 , snake_case__ : str=5 , snake_case__ : Optional[int]=4 , snake_case__ : List[str]=37 , snake_case__ : str="gelu" , snake_case__ : List[str]=0.1 , snake_case__ : int=0.1 , snake_case__ : List[str]=10 , snake_case__ : Any=0.02 , snake_case__ : Union[str, Any]=3 , snake_case__ : Dict=0.6 , snake_case__ : Any=None , ): '''simple docstring''' UpperCAmelCase__ : str = parent UpperCAmelCase__ : Optional[int] = batch_size UpperCAmelCase__ : Optional[int] = image_size UpperCAmelCase__ : Tuple = patch_size UpperCAmelCase__ : Dict = num_channels UpperCAmelCase__ : List[Any] = is_training UpperCAmelCase__ : str = use_labels UpperCAmelCase__ : Optional[int] = hidden_size UpperCAmelCase__ : Optional[int] = num_hidden_layers UpperCAmelCase__ : Optional[Any] = num_attention_heads UpperCAmelCase__ : List[Any] = intermediate_size UpperCAmelCase__ : Dict = hidden_act UpperCAmelCase__ : str = hidden_dropout_prob UpperCAmelCase__ : Dict = attention_probs_dropout_prob UpperCAmelCase__ : Dict = type_sequence_label_size UpperCAmelCase__ : Union[str, Any] = initializer_range UpperCAmelCase__ : Dict = mask_ratio UpperCAmelCase__ : Optional[Any] = scope # in ViTMAE, the expected sequence length = (num_patches + 1) * (1 - config.mask_ratio), rounded above # (we add 1 for the [CLS] token) UpperCAmelCase__ : Union[str, Any] = (image_size // patch_size) ** 2 UpperCAmelCase__ : str = int(math.ceil((1 - mask_ratio) * (num_patches + 1) ) ) def UpperCamelCase ( self : str ): '''simple docstring''' UpperCAmelCase__ : Optional[Any] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) UpperCAmelCase__ : Optional[Any] = None if self.use_labels: UpperCAmelCase__ : Tuple = ids_tensor([self.batch_size] , self.type_sequence_label_size ) UpperCAmelCase__ : int = self.get_config() return config, pixel_values, labels def UpperCamelCase ( self : List[str] ): '''simple docstring''' return ViTMAEConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=_SCREAMING_SNAKE_CASE , initializer_range=self.initializer_range , mask_ratio=self.mask_ratio , ) def UpperCamelCase ( self : Dict , snake_case__ : int , snake_case__ : List[Any] , snake_case__ : Optional[int] ): '''simple docstring''' UpperCAmelCase__ : Any = ViTMAEModel(config=_SCREAMING_SNAKE_CASE ) model.to(_SCREAMING_SNAKE_CASE ) model.eval() UpperCAmelCase__ : Any = model(_SCREAMING_SNAKE_CASE ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def UpperCamelCase ( self : Optional[Any] , snake_case__ : Optional[int] , snake_case__ : Tuple , snake_case__ : Optional[int] ): '''simple docstring''' UpperCAmelCase__ : str = ViTMAEForPreTraining(_SCREAMING_SNAKE_CASE ) model.to(_SCREAMING_SNAKE_CASE ) model.eval() UpperCAmelCase__ : Dict = model(_SCREAMING_SNAKE_CASE ) UpperCAmelCase__ : List[Any] = (self.image_size // self.patch_size) ** 2 UpperCAmelCase__ : Dict = self.patch_size**2 * self.num_channels self.parent.assertEqual(result.logits.shape , (self.batch_size, num_patches, expected_num_channels) ) # test greyscale images UpperCAmelCase__ : str = 1 UpperCAmelCase__ : Optional[Any] = ViTMAEForPreTraining(_SCREAMING_SNAKE_CASE ) model.to(_SCREAMING_SNAKE_CASE ) model.eval() UpperCAmelCase__ : int = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) UpperCAmelCase__ : Dict = model(_SCREAMING_SNAKE_CASE ) UpperCAmelCase__ : Optional[Any] = self.patch_size**2 self.parent.assertEqual(result.logits.shape , (self.batch_size, num_patches, expected_num_channels) ) def UpperCamelCase ( self : Any ): '''simple docstring''' UpperCAmelCase__ : Tuple = self.prepare_config_and_inputs() UpperCAmelCase__ : Any = config_and_inputs UpperCAmelCase__ : List[str] = {'''pixel_values''': pixel_values} return config, inputs_dict @require_torch class UpperCAmelCase_ ( _a , _a , unittest.TestCase ): '''simple docstring''' lowercase_ : Tuple = (ViTMAEModel, ViTMAEForPreTraining) if is_torch_available() else () lowercase_ : List[str] = {"feature-extraction": ViTMAEModel} if is_torch_available() else {} lowercase_ : int = False lowercase_ : List[Any] = False lowercase_ : str = False lowercase_ : List[str] = False def UpperCamelCase ( self : List[str] ): '''simple docstring''' UpperCAmelCase__ : Optional[Any] = ViTMAEModelTester(self ) UpperCAmelCase__ : List[str] = ConfigTester(self , config_class=_SCREAMING_SNAKE_CASE , has_text_modality=_SCREAMING_SNAKE_CASE , hidden_size=37 ) def UpperCamelCase ( self : Tuple ): '''simple docstring''' self.config_tester.run_common_tests() @unittest.skip(reason="ViTMAE does not use inputs_embeds" ) def UpperCamelCase ( self : Optional[Any] ): '''simple docstring''' pass def UpperCamelCase ( self : int ): '''simple docstring''' UpperCAmelCase__ : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCAmelCase__ : Tuple = model_class(_SCREAMING_SNAKE_CASE ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) UpperCAmelCase__ : int = model.get_output_embeddings() self.assertTrue(x is None or isinstance(_SCREAMING_SNAKE_CASE , nn.Linear ) ) def UpperCamelCase ( self : Any ): '''simple docstring''' UpperCAmelCase__ : List[str] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCAmelCase__ : Any = model_class(_SCREAMING_SNAKE_CASE ) UpperCAmelCase__ : Dict = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic UpperCAmelCase__ : Tuple = [*signature.parameters.keys()] UpperCAmelCase__ : List[Any] = ['''pixel_values'''] self.assertListEqual(arg_names[:1] , _SCREAMING_SNAKE_CASE ) def UpperCamelCase ( self : Union[str, Any] ): '''simple docstring''' UpperCAmelCase__ : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_SCREAMING_SNAKE_CASE ) def UpperCamelCase ( self : Any ): '''simple docstring''' UpperCAmelCase__ : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_pretraining(*_SCREAMING_SNAKE_CASE ) def UpperCamelCase ( self : int , snake_case__ : Union[str, Any] , snake_case__ : List[str] , snake_case__ : Tuple ): '''simple docstring''' np.random.seed(2 ) UpperCAmelCase__ : List[Any] = int((pt_model.config.image_size // pt_model.config.patch_size) ** 2 ) UpperCAmelCase__ : List[Any] = np.random.uniform(size=(self.model_tester.batch_size, num_patches) ) UpperCAmelCase__ : Any = torch.from_numpy(_SCREAMING_SNAKE_CASE ) # Add `noise` argument. # PT inputs will be prepared in `super().check_pt_tf_models()` with this added `noise` argument UpperCAmelCase__ : Union[str, Any] = pt_noise super().check_pt_tf_models(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) def UpperCamelCase ( self : List[Any] ): '''simple docstring''' UpperCAmelCase__ : Tuple = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCAmelCase__ : List[str] = model_class(_SCREAMING_SNAKE_CASE ) model.to(_SCREAMING_SNAKE_CASE ) model.eval() # make random mask reproducible torch.manual_seed(2 ) with torch.no_grad(): UpperCAmelCase__ : Dict = model(**self._prepare_for_class(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ) UpperCAmelCase__ : List[str] = outputs[0].cpu().numpy() UpperCAmelCase__ : str = 0 with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(_SCREAMING_SNAKE_CASE ) UpperCAmelCase__ : Any = model_class.from_pretrained(_SCREAMING_SNAKE_CASE ) model.to(_SCREAMING_SNAKE_CASE ) # make random mask reproducible torch.manual_seed(2 ) with torch.no_grad(): UpperCAmelCase__ : int = model(**self._prepare_for_class(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ) # Make sure we don't have nans UpperCAmelCase__ : Tuple = after_outputs[0].cpu().numpy() UpperCAmelCase__ : Optional[int] = 0 UpperCAmelCase__ : Tuple = np.amax(np.abs(out_a - out_a ) ) self.assertLessEqual(_SCREAMING_SNAKE_CASE , 1e-5 ) @unittest.skip( reason="ViTMAE returns a random mask + ids_restore in each forward pass. See test_save_load\n to get deterministic results." ) def UpperCamelCase ( self : Optional[int] ): '''simple docstring''' pass @unittest.skip( reason="ViTMAE returns a random mask + ids_restore in each forward pass. See test_save_load\n to get deterministic results." ) def UpperCamelCase ( self : Dict ): '''simple docstring''' pass @unittest.skip( reason="ViTMAE returns a random mask + ids_restore in each forward pass. See test_save_load\n to get deterministic results." ) def UpperCamelCase ( self : Dict ): '''simple docstring''' pass @unittest.skip(reason="ViTMAE returns a random mask + ids_restore in each forward pass. See test_save_load" ) def UpperCamelCase ( self : List[str] ): '''simple docstring''' pass @unittest.skip("Will be fixed soon by reducing the size of the model used for common tests." ) def UpperCamelCase ( self : Tuple ): '''simple docstring''' pass @slow def UpperCamelCase ( self : Optional[Any] ): '''simple docstring''' for model_name in VIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCAmelCase__ : Tuple = ViTMAEModel.from_pretrained(_SCREAMING_SNAKE_CASE ) self.assertIsNotNone(_SCREAMING_SNAKE_CASE ) def snake_case_ ( ): UpperCAmelCase__ : str = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) return image @require_torch @require_vision class UpperCAmelCase_ ( unittest.TestCase ): '''simple docstring''' @cached_property def UpperCamelCase ( self : Optional[Any] ): '''simple docstring''' return ViTImageProcessor.from_pretrained("facebook/vit-mae-base" ) if is_vision_available() else None @slow def UpperCamelCase ( self : Union[str, Any] ): '''simple docstring''' np.random.seed(2 ) UpperCAmelCase__ : List[str] = ViTMAEForPreTraining.from_pretrained("facebook/vit-mae-base" ).to(_SCREAMING_SNAKE_CASE ) UpperCAmelCase__ : int = self.default_image_processor UpperCAmelCase__ : str = prepare_img() UpperCAmelCase__ : Union[str, Any] = image_processor(images=_SCREAMING_SNAKE_CASE , return_tensors="pt" ).to(_SCREAMING_SNAKE_CASE ) # prepare a noise vector that will be also used for testing the TF model # (this way we can ensure that the PT and TF models operate on the same inputs) UpperCAmelCase__ : Any = ViTMAEConfig() UpperCAmelCase__ : Any = int((vit_mae_config.image_size // vit_mae_config.patch_size) ** 2 ) UpperCAmelCase__ : Optional[Any] = np.random.uniform(size=(1, num_patches) ) # forward pass with torch.no_grad(): UpperCAmelCase__ : int = model(**_SCREAMING_SNAKE_CASE , noise=torch.from_numpy(_SCREAMING_SNAKE_CASE ).to(device=_SCREAMING_SNAKE_CASE ) ) # verify the logits UpperCAmelCase__ : Tuple = torch.Size((1, 1_96, 7_68) ) self.assertEqual(outputs.logits.shape , _SCREAMING_SNAKE_CASE ) UpperCAmelCase__ : Optional[Any] = torch.tensor( [[-0.0548, -1.7023, -0.9325], [0.3721, -0.5670, -0.2233], [0.8235, -1.3878, -0.3524]] ) self.assertTrue(torch.allclose(outputs.logits[0, :3, :3] , expected_slice.to(_SCREAMING_SNAKE_CASE ) , atol=1e-4 ) )
199
__a = 'ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789+/' def lowerCamelCase__ ( _lowercase ): '''simple docstring''' if not isinstance(_lowercase , _lowercase ): UpperCAmelCase_ : Union[str, Any] = f'''a bytes-like object is required, not \'{data.__class__.__name__}\'''' raise TypeError(_lowercase ) UpperCAmelCase_ : Any = ''''''.join(bin(_lowercase )[2:].zfill(8 ) for byte in data ) UpperCAmelCase_ : Any = len(_lowercase ) % 6 != 0 if padding_needed: # The padding that will be added later UpperCAmelCase_ : Union[str, Any] = B'''=''' * ((6 - len(_lowercase ) % 6) // 2) # Append binary_stream with arbitrary binary digits (0's by default) to make its # length a multiple of 6. binary_stream += "0" * (6 - len(_lowercase ) % 6) else: UpperCAmelCase_ : int = B'''''' # Encode every 6 binary digits to their corresponding Base64 character return ( "".join( B64_CHARSET[int(binary_stream[index : index + 6] , 2 )] for index in range(0 , len(_lowercase ) , 6 ) ).encode() + padding ) def lowerCamelCase__ ( _lowercase ): '''simple docstring''' if not isinstance(_lowercase , _lowercase ) and not isinstance(_lowercase , _lowercase ): UpperCAmelCase_ : Tuple = ( '''argument should be a bytes-like object or ASCII string, ''' f'''not \'{encoded_data.__class__.__name__}\'''' ) raise TypeError(_lowercase ) # In case encoded_data is a bytes-like object, make sure it contains only # ASCII characters so we convert it to a string object if isinstance(_lowercase , _lowercase ): try: UpperCAmelCase_ : Any = encoded_data.decode('''utf-8''' ) except UnicodeDecodeError: raise ValueError('''base64 encoded data should only contain ASCII characters''' ) UpperCAmelCase_ : str = encoded_data.count('''=''' ) # Check if the encoded string contains non base64 characters if padding: assert all( char in B64_CHARSET for char in encoded_data[:-padding] ), "Invalid base64 character(s) found." else: assert all( char in B64_CHARSET for char in encoded_data ), "Invalid base64 character(s) found." # Check the padding assert len(_lowercase ) % 4 == 0 and padding < 3, "Incorrect padding" if padding: # Remove padding if there is one UpperCAmelCase_ : List[Any] = encoded_data[:-padding] UpperCAmelCase_ : List[Any] = ''''''.join( bin(B64_CHARSET.index(_lowercase ) )[2:].zfill(6 ) for char in encoded_data )[: -padding * 2] else: UpperCAmelCase_ : Tuple = ''''''.join( bin(B64_CHARSET.index(_lowercase ) )[2:].zfill(6 ) for char in encoded_data ) UpperCAmelCase_ : str = [ int(binary_stream[index : index + 8] , 2 ) for index in range(0 , len(_lowercase ) , 8 ) ] return bytes(_lowercase ) if __name__ == "__main__": import doctest doctest.testmod()
30
0
from math import cos, sin, sqrt, tau from audio_filters.iir_filter import IIRFilter def _UpperCamelCase ( lowercase__ , lowercase__ , lowercase__ = 1 / sqrt(2 ) ): __SCREAMING_SNAKE_CASE : Tuple = tau * frequency / samplerate __SCREAMING_SNAKE_CASE : int = sin(_lowercase ) __SCREAMING_SNAKE_CASE : List[str] = cos(_lowercase ) __SCREAMING_SNAKE_CASE : Optional[Any] = _sin / (2 * q_factor) __SCREAMING_SNAKE_CASE : str = (1 - _cos) / 2 __SCREAMING_SNAKE_CASE : Dict = 1 - _cos __SCREAMING_SNAKE_CASE : Dict = 1 + alpha __SCREAMING_SNAKE_CASE : Any = -2 * _cos __SCREAMING_SNAKE_CASE : List[Any] = 1 - alpha __SCREAMING_SNAKE_CASE : List[str] = IIRFilter(2 ) filt.set_coefficients([aa, aa, aa] , [ba, ba, ba] ) return filt def _UpperCamelCase ( lowercase__ , lowercase__ , lowercase__ = 1 / sqrt(2 ) ): __SCREAMING_SNAKE_CASE : Any = tau * frequency / samplerate __SCREAMING_SNAKE_CASE : Optional[int] = sin(_lowercase ) __SCREAMING_SNAKE_CASE : Optional[Any] = cos(_lowercase ) __SCREAMING_SNAKE_CASE : List[str] = _sin / (2 * q_factor) __SCREAMING_SNAKE_CASE : Tuple = (1 + _cos) / 2 __SCREAMING_SNAKE_CASE : Any = -1 - _cos __SCREAMING_SNAKE_CASE : Dict = 1 + alpha __SCREAMING_SNAKE_CASE : Optional[Any] = -2 * _cos __SCREAMING_SNAKE_CASE : Optional[int] = 1 - alpha __SCREAMING_SNAKE_CASE : Dict = IIRFilter(2 ) filt.set_coefficients([aa, aa, aa] , [ba, ba, ba] ) return filt def _UpperCamelCase ( lowercase__ , lowercase__ , lowercase__ = 1 / sqrt(2 ) ): __SCREAMING_SNAKE_CASE : Tuple = tau * frequency / samplerate __SCREAMING_SNAKE_CASE : Union[str, Any] = sin(_lowercase ) __SCREAMING_SNAKE_CASE : int = cos(_lowercase ) __SCREAMING_SNAKE_CASE : Tuple = _sin / (2 * q_factor) __SCREAMING_SNAKE_CASE : List[str] = _sin / 2 __SCREAMING_SNAKE_CASE : str = 0 __SCREAMING_SNAKE_CASE : str = -ba __SCREAMING_SNAKE_CASE : Optional[int] = 1 + alpha __SCREAMING_SNAKE_CASE : Optional[int] = -2 * _cos __SCREAMING_SNAKE_CASE : Any = 1 - alpha __SCREAMING_SNAKE_CASE : Dict = IIRFilter(2 ) filt.set_coefficients([aa, aa, aa] , [ba, ba, ba] ) return filt def _UpperCamelCase ( lowercase__ , lowercase__ , lowercase__ = 1 / sqrt(2 ) ): __SCREAMING_SNAKE_CASE : Optional[Any] = tau * frequency / samplerate __SCREAMING_SNAKE_CASE : List[Any] = sin(_lowercase ) __SCREAMING_SNAKE_CASE : Optional[int] = cos(_lowercase ) __SCREAMING_SNAKE_CASE : Union[str, Any] = _sin / (2 * q_factor) __SCREAMING_SNAKE_CASE : Any = 1 - alpha __SCREAMING_SNAKE_CASE : int = -2 * _cos __SCREAMING_SNAKE_CASE : List[str] = 1 + alpha __SCREAMING_SNAKE_CASE : Optional[Any] = IIRFilter(2 ) filt.set_coefficients([ba, ba, ba] , [ba, ba, ba] ) return filt def _UpperCamelCase ( lowercase__ , lowercase__ , lowercase__ , lowercase__ = 1 / sqrt(2 ) , ): __SCREAMING_SNAKE_CASE : List[str] = tau * frequency / samplerate __SCREAMING_SNAKE_CASE : int = sin(_lowercase ) __SCREAMING_SNAKE_CASE : int = cos(_lowercase ) __SCREAMING_SNAKE_CASE : Tuple = _sin / (2 * q_factor) __SCREAMING_SNAKE_CASE : Dict = 10 ** (gain_db / 40) __SCREAMING_SNAKE_CASE : List[str] = 1 + alpha * big_a __SCREAMING_SNAKE_CASE : Tuple = -2 * _cos __SCREAMING_SNAKE_CASE : Tuple = 1 - alpha * big_a __SCREAMING_SNAKE_CASE : Tuple = 1 + alpha / big_a __SCREAMING_SNAKE_CASE : Optional[Any] = -2 * _cos __SCREAMING_SNAKE_CASE : Dict = 1 - alpha / big_a __SCREAMING_SNAKE_CASE : Optional[Any] = IIRFilter(2 ) filt.set_coefficients([aa, aa, aa] , [ba, ba, ba] ) return filt def _UpperCamelCase ( lowercase__ , lowercase__ , lowercase__ , lowercase__ = 1 / sqrt(2 ) , ): __SCREAMING_SNAKE_CASE : List[str] = tau * frequency / samplerate __SCREAMING_SNAKE_CASE : Dict = sin(_lowercase ) __SCREAMING_SNAKE_CASE : List[str] = cos(_lowercase ) __SCREAMING_SNAKE_CASE : str = _sin / (2 * q_factor) __SCREAMING_SNAKE_CASE : str = 10 ** (gain_db / 40) __SCREAMING_SNAKE_CASE : Tuple = (big_a + 1) - (big_a - 1) * _cos __SCREAMING_SNAKE_CASE : Optional[Any] = (big_a + 1) + (big_a - 1) * _cos __SCREAMING_SNAKE_CASE : str = (big_a - 1) - (big_a + 1) * _cos __SCREAMING_SNAKE_CASE : Optional[Any] = (big_a - 1) + (big_a + 1) * _cos __SCREAMING_SNAKE_CASE : int = 2 * sqrt(_lowercase ) * alpha __SCREAMING_SNAKE_CASE : Optional[Any] = big_a * (pmc + aaa) __SCREAMING_SNAKE_CASE : List[str] = 2 * big_a * mpc __SCREAMING_SNAKE_CASE : Tuple = big_a * (pmc - aaa) __SCREAMING_SNAKE_CASE : Optional[Any] = ppmc + aaa __SCREAMING_SNAKE_CASE : List[str] = -2 * pmpc __SCREAMING_SNAKE_CASE : Dict = ppmc - aaa __SCREAMING_SNAKE_CASE : str = IIRFilter(2 ) filt.set_coefficients([aa, aa, aa] , [ba, ba, ba] ) return filt def _UpperCamelCase ( lowercase__ , lowercase__ , lowercase__ , lowercase__ = 1 / sqrt(2 ) , ): __SCREAMING_SNAKE_CASE : Any = tau * frequency / samplerate __SCREAMING_SNAKE_CASE : Dict = sin(_lowercase ) __SCREAMING_SNAKE_CASE : int = cos(_lowercase ) __SCREAMING_SNAKE_CASE : str = _sin / (2 * q_factor) __SCREAMING_SNAKE_CASE : Tuple = 10 ** (gain_db / 40) __SCREAMING_SNAKE_CASE : int = (big_a + 1) - (big_a - 1) * _cos __SCREAMING_SNAKE_CASE : Tuple = (big_a + 1) + (big_a - 1) * _cos __SCREAMING_SNAKE_CASE : str = (big_a - 1) - (big_a + 1) * _cos __SCREAMING_SNAKE_CASE : Dict = (big_a - 1) + (big_a + 1) * _cos __SCREAMING_SNAKE_CASE : Any = 2 * sqrt(_lowercase ) * alpha __SCREAMING_SNAKE_CASE : Union[str, Any] = big_a * (ppmc + aaa) __SCREAMING_SNAKE_CASE : int = -2 * big_a * pmpc __SCREAMING_SNAKE_CASE : Union[str, Any] = big_a * (ppmc - aaa) __SCREAMING_SNAKE_CASE : Optional[Any] = pmc + aaa __SCREAMING_SNAKE_CASE : Union[str, Any] = 2 * mpc __SCREAMING_SNAKE_CASE : str = pmc - aaa __SCREAMING_SNAKE_CASE : str = IIRFilter(2 ) filt.set_coefficients([aa, aa, aa] , [ba, ba, ba] ) return filt
696
import os import shutil import sys import tempfile import unittest from pathlib import Path import pytest import transformers from transformers import ( BERT_PRETRAINED_CONFIG_ARCHIVE_MAP, GPT2_PRETRAINED_CONFIG_ARCHIVE_MAP, AutoTokenizer, BertConfig, BertTokenizer, BertTokenizerFast, CTRLTokenizer, GPTaTokenizer, GPTaTokenizerFast, PreTrainedTokenizerFast, RobertaTokenizer, RobertaTokenizerFast, is_tokenizers_available, ) from transformers.models.auto.configuration_auto import CONFIG_MAPPING, AutoConfig from transformers.models.auto.tokenization_auto import ( TOKENIZER_MAPPING, get_tokenizer_config, tokenizer_class_from_name, ) from transformers.models.roberta.configuration_roberta import RobertaConfig from transformers.testing_utils import ( DUMMY_DIFF_TOKENIZER_IDENTIFIER, DUMMY_UNKNOWN_IDENTIFIER, SMALL_MODEL_IDENTIFIER, RequestCounter, require_tokenizers, slow, ) sys.path.append(str(Path(__file__).parent.parent.parent.parent / 'utils')) from test_module.custom_configuration import CustomConfig # noqa E402 from test_module.custom_tokenization import CustomTokenizer # noqa E402 if is_tokenizers_available(): from test_module.custom_tokenization_fast import CustomTokenizerFast class __a( unittest.TestCase ): """simple docstring""" def a__ ( self ) -> Union[str, Any]: UpperCAmelCase_ : Tuple = 0 @slow def a__ ( self ) -> Any: for model_name in (x for x in BERT_PRETRAINED_CONFIG_ARCHIVE_MAP.keys() if "japanese" not in x): UpperCAmelCase_ : Optional[Any] = AutoTokenizer.from_pretrained(_SCREAMING_SNAKE_CASE ) self.assertIsNotNone(_SCREAMING_SNAKE_CASE ) self.assertIsInstance(_SCREAMING_SNAKE_CASE ,(BertTokenizer, BertTokenizerFast) ) self.assertGreater(len(_SCREAMING_SNAKE_CASE ) ,0 ) for model_name in GPT2_PRETRAINED_CONFIG_ARCHIVE_MAP.keys(): UpperCAmelCase_ : Union[str, Any] = AutoTokenizer.from_pretrained(_SCREAMING_SNAKE_CASE ) self.assertIsNotNone(_SCREAMING_SNAKE_CASE ) self.assertIsInstance(_SCREAMING_SNAKE_CASE ,(GPTaTokenizer, GPTaTokenizerFast) ) self.assertGreater(len(_SCREAMING_SNAKE_CASE ) ,0 ) def a__ ( self ) -> Optional[Any]: UpperCAmelCase_ : List[str] = AutoTokenizer.from_pretrained(_SCREAMING_SNAKE_CASE ) self.assertIsInstance(_SCREAMING_SNAKE_CASE ,(BertTokenizer, BertTokenizerFast) ) self.assertEqual(tokenizer.vocab_size ,12 ) def a__ ( self ) -> Tuple: UpperCAmelCase_ : Any = AutoTokenizer.from_pretrained(_SCREAMING_SNAKE_CASE ) self.assertIsInstance(_SCREAMING_SNAKE_CASE ,(RobertaTokenizer, RobertaTokenizerFast) ) self.assertEqual(tokenizer.vocab_size ,20 ) def a__ ( self ) -> List[str]: UpperCAmelCase_ : int = AutoConfig.from_pretrained(_SCREAMING_SNAKE_CASE ) self.assertIsInstance(_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ) # Check that tokenizer_type ≠ model_type UpperCAmelCase_ : Optional[int] = AutoTokenizer.from_pretrained(_SCREAMING_SNAKE_CASE ,config=_SCREAMING_SNAKE_CASE ) self.assertIsInstance(_SCREAMING_SNAKE_CASE ,(BertTokenizer, BertTokenizerFast) ) self.assertEqual(tokenizer.vocab_size ,12 ) def a__ ( self ) -> Dict: with tempfile.TemporaryDirectory() as tmp_dir: shutil.copy('''./tests/fixtures/vocab.txt''' ,os.path.join(_SCREAMING_SNAKE_CASE ,'''vocab.txt''' ) ) UpperCAmelCase_ : Optional[int] = AutoTokenizer.from_pretrained(_SCREAMING_SNAKE_CASE ,tokenizer_type='''bert''' ,use_fast=_SCREAMING_SNAKE_CASE ) self.assertIsInstance(_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ) with tempfile.TemporaryDirectory() as tmp_dir: shutil.copy('''./tests/fixtures/vocab.json''' ,os.path.join(_SCREAMING_SNAKE_CASE ,'''vocab.json''' ) ) shutil.copy('''./tests/fixtures/merges.txt''' ,os.path.join(_SCREAMING_SNAKE_CASE ,'''merges.txt''' ) ) UpperCAmelCase_ : Optional[Any] = AutoTokenizer.from_pretrained(_SCREAMING_SNAKE_CASE ,tokenizer_type='''gpt2''' ,use_fast=_SCREAMING_SNAKE_CASE ) self.assertIsInstance(_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ) @require_tokenizers def a__ ( self ) -> Optional[int]: with tempfile.TemporaryDirectory() as tmp_dir: shutil.copy('''./tests/fixtures/vocab.txt''' ,os.path.join(_SCREAMING_SNAKE_CASE ,'''vocab.txt''' ) ) UpperCAmelCase_ : Tuple = AutoTokenizer.from_pretrained(_SCREAMING_SNAKE_CASE ,tokenizer_type='''bert''' ) self.assertIsInstance(_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ) with tempfile.TemporaryDirectory() as tmp_dir: shutil.copy('''./tests/fixtures/vocab.json''' ,os.path.join(_SCREAMING_SNAKE_CASE ,'''vocab.json''' ) ) shutil.copy('''./tests/fixtures/merges.txt''' ,os.path.join(_SCREAMING_SNAKE_CASE ,'''merges.txt''' ) ) UpperCAmelCase_ : Union[str, Any] = AutoTokenizer.from_pretrained(_SCREAMING_SNAKE_CASE ,tokenizer_type='''gpt2''' ) self.assertIsInstance(_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ) def a__ ( self ) -> int: with pytest.raises(_SCREAMING_SNAKE_CASE ): AutoTokenizer.from_pretrained('''./''' ,tokenizer_type='''xxx''' ) @require_tokenizers def a__ ( self ) -> Optional[Any]: for tokenizer_class in [BertTokenizer, BertTokenizerFast, AutoTokenizer]: UpperCAmelCase_ : Any = tokenizer_class.from_pretrained('''wietsedv/bert-base-dutch-cased''' ) self.assertIsInstance(_SCREAMING_SNAKE_CASE ,(BertTokenizer, BertTokenizerFast) ) if isinstance(_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ): self.assertEqual(tokenizer.basic_tokenizer.do_lower_case ,_SCREAMING_SNAKE_CASE ) else: self.assertEqual(tokenizer.do_lower_case ,_SCREAMING_SNAKE_CASE ) self.assertEqual(tokenizer.model_max_length ,512 ) @require_tokenizers def a__ ( self ) -> List[Any]: for tokenizer_class in [BertTokenizer, BertTokenizerFast, AutoTokenizer]: with self.assertRaisesRegex( _SCREAMING_SNAKE_CASE ,'''julien-c/herlolip-not-exists is not a local folder and is not a valid model identifier''' ,): UpperCAmelCase_ : int = tokenizer_class.from_pretrained('''julien-c/herlolip-not-exists''' ) def a__ ( self ) -> Optional[Any]: # tests: https://github.com/huggingface/transformers/pull/13251 # 1. models with `-`, e.g. xlm-roberta -> xlm_roberta # 2. models that don't remap 1-1 from model-name to model file, e.g., openai-gpt -> openai UpperCAmelCase_ : int = TOKENIZER_MAPPING.values() UpperCAmelCase_ : List[Any] = [] for slow_tok, fast_tok in tokenizers: if slow_tok is not None: tokenizer_names.append(slow_tok.__name__ ) if fast_tok is not None: tokenizer_names.append(fast_tok.__name__ ) for tokenizer_name in tokenizer_names: # must find the right class tokenizer_class_from_name(_SCREAMING_SNAKE_CASE ) @require_tokenizers def a__ ( self ) -> Tuple: self.assertIsInstance(AutoTokenizer.from_pretrained('''bert-base-cased''' ,use_fast=_SCREAMING_SNAKE_CASE ) ,_SCREAMING_SNAKE_CASE ) self.assertIsInstance(AutoTokenizer.from_pretrained('''bert-base-cased''' ) ,_SCREAMING_SNAKE_CASE ) @require_tokenizers def a__ ( self ) -> Optional[int]: UpperCAmelCase_ : str = AutoTokenizer.from_pretrained('''distilbert-base-uncased''' ,do_lower_case=_SCREAMING_SNAKE_CASE ) UpperCAmelCase_ : int = '''Hello, world. How are you?''' UpperCAmelCase_ : List[Any] = tokenizer.tokenize(_SCREAMING_SNAKE_CASE ) self.assertEqual('''[UNK]''' ,tokens[0] ) UpperCAmelCase_ : Any = AutoTokenizer.from_pretrained('''microsoft/mpnet-base''' ,do_lower_case=_SCREAMING_SNAKE_CASE ) UpperCAmelCase_ : Tuple = tokenizer.tokenize(_SCREAMING_SNAKE_CASE ) self.assertEqual('''[UNK]''' ,tokens[0] ) @require_tokenizers def a__ ( self ) -> Dict: UpperCAmelCase_ : List[Any] = AutoTokenizer.from_pretrained('''robot-test/dummy-tokenizer-fast-with-model-config''' ) self.assertEqual(type(_SCREAMING_SNAKE_CASE ) ,_SCREAMING_SNAKE_CASE ) self.assertEqual(tokenizer.model_max_length ,512 ) self.assertEqual(tokenizer.vocab_size ,30_000 ) self.assertEqual(tokenizer.unk_token ,'''[UNK]''' ) self.assertEqual(tokenizer.padding_side ,'''right''' ) self.assertEqual(tokenizer.truncation_side ,'''right''' ) def a__ ( self ) -> Dict: UpperCAmelCase_ : Any = AutoTokenizer.from_pretrained(_SCREAMING_SNAKE_CASE ) self.assertIsInstance(_SCREAMING_SNAKE_CASE ,(BertTokenizer, BertTokenizerFast) ) with tempfile.TemporaryDirectory() as tmp_dir: tokenizer.save_pretrained(_SCREAMING_SNAKE_CASE ) UpperCAmelCase_ : Dict = AutoTokenizer.from_pretrained(_SCREAMING_SNAKE_CASE ) self.assertIsInstance(_SCREAMING_SNAKE_CASE ,tokenizer.__class__ ) self.assertEqual(tokenizera.vocab_size ,12 ) def a__ ( self ) -> Optional[Any]: UpperCAmelCase_ : Tuple = AutoTokenizer.from_pretrained('''ctrl''' ) # There is no fast CTRL so this always gives us a slow tokenizer. self.assertIsInstance(_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ) def a__ ( self ) -> str: # Check we can load the tokenizer config of an online model. UpperCAmelCase_ : int = get_tokenizer_config('''bert-base-cased''' ) UpperCAmelCase_ : Optional[int] = config.pop('''_commit_hash''' ,_SCREAMING_SNAKE_CASE ) # If we ever update bert-base-cased tokenizer config, this dict here will need to be updated. self.assertEqual(_SCREAMING_SNAKE_CASE ,{'''do_lower_case''': False} ) # This model does not have a tokenizer_config so we get back an empty dict. UpperCAmelCase_ : Any = get_tokenizer_config(_SCREAMING_SNAKE_CASE ) self.assertDictEqual(_SCREAMING_SNAKE_CASE ,{} ) # A tokenizer saved with `save_pretrained` always creates a tokenizer config. UpperCAmelCase_ : Dict = AutoTokenizer.from_pretrained(_SCREAMING_SNAKE_CASE ) with tempfile.TemporaryDirectory() as tmp_dir: tokenizer.save_pretrained(_SCREAMING_SNAKE_CASE ) UpperCAmelCase_ : Dict = get_tokenizer_config(_SCREAMING_SNAKE_CASE ) # Check the class of the tokenizer was properly saved (note that it always saves the slow class). self.assertEqual(config['''tokenizer_class'''] ,'''BertTokenizer''' ) def a__ ( self ) -> str: try: AutoConfig.register('''custom''' ,_SCREAMING_SNAKE_CASE ) AutoTokenizer.register(_SCREAMING_SNAKE_CASE ,slow_tokenizer_class=_SCREAMING_SNAKE_CASE ) # Trying to register something existing in the Transformers library will raise an error with self.assertRaises(_SCREAMING_SNAKE_CASE ): AutoTokenizer.register(_SCREAMING_SNAKE_CASE ,slow_tokenizer_class=_SCREAMING_SNAKE_CASE ) UpperCAmelCase_ : str = CustomTokenizer.from_pretrained(_SCREAMING_SNAKE_CASE ) with tempfile.TemporaryDirectory() as tmp_dir: tokenizer.save_pretrained(_SCREAMING_SNAKE_CASE ) UpperCAmelCase_ : Dict = AutoTokenizer.from_pretrained(_SCREAMING_SNAKE_CASE ) self.assertIsInstance(_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in TOKENIZER_MAPPING._extra_content: del TOKENIZER_MAPPING._extra_content[CustomConfig] @require_tokenizers def a__ ( self ) -> int: try: AutoConfig.register('''custom''' ,_SCREAMING_SNAKE_CASE ) # Can register in two steps AutoTokenizer.register(_SCREAMING_SNAKE_CASE ,slow_tokenizer_class=_SCREAMING_SNAKE_CASE ) self.assertEqual(TOKENIZER_MAPPING[CustomConfig] ,(CustomTokenizer, None) ) AutoTokenizer.register(_SCREAMING_SNAKE_CASE ,fast_tokenizer_class=_SCREAMING_SNAKE_CASE ) self.assertEqual(TOKENIZER_MAPPING[CustomConfig] ,(CustomTokenizer, CustomTokenizerFast) ) del TOKENIZER_MAPPING._extra_content[CustomConfig] # Can register in one step AutoTokenizer.register( _SCREAMING_SNAKE_CASE ,slow_tokenizer_class=_SCREAMING_SNAKE_CASE ,fast_tokenizer_class=_SCREAMING_SNAKE_CASE ) self.assertEqual(TOKENIZER_MAPPING[CustomConfig] ,(CustomTokenizer, CustomTokenizerFast) ) # Trying to register something existing in the Transformers library will raise an error with self.assertRaises(_SCREAMING_SNAKE_CASE ): AutoTokenizer.register(_SCREAMING_SNAKE_CASE ,fast_tokenizer_class=_SCREAMING_SNAKE_CASE ) # We pass through a bert tokenizer fast cause there is no converter slow to fast for our new toknizer # and that model does not have a tokenizer.json with tempfile.TemporaryDirectory() as tmp_dir: UpperCAmelCase_ : List[str] = BertTokenizerFast.from_pretrained(_SCREAMING_SNAKE_CASE ) bert_tokenizer.save_pretrained(_SCREAMING_SNAKE_CASE ) UpperCAmelCase_ : str = CustomTokenizerFast.from_pretrained(_SCREAMING_SNAKE_CASE ) with tempfile.TemporaryDirectory() as tmp_dir: tokenizer.save_pretrained(_SCREAMING_SNAKE_CASE ) UpperCAmelCase_ : Optional[int] = AutoTokenizer.from_pretrained(_SCREAMING_SNAKE_CASE ) self.assertIsInstance(_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ) UpperCAmelCase_ : Any = AutoTokenizer.from_pretrained(_SCREAMING_SNAKE_CASE ,use_fast=_SCREAMING_SNAKE_CASE ) self.assertIsInstance(_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in TOKENIZER_MAPPING._extra_content: del TOKENIZER_MAPPING._extra_content[CustomConfig] def a__ ( self ) -> Optional[int]: # If remote code is not set, we will time out when asking whether to load the model. with self.assertRaises(_SCREAMING_SNAKE_CASE ): UpperCAmelCase_ : Tuple = AutoTokenizer.from_pretrained('''hf-internal-testing/test_dynamic_tokenizer''' ) # If remote code is disabled, we can't load this config. with self.assertRaises(_SCREAMING_SNAKE_CASE ): UpperCAmelCase_ : Union[str, Any] = AutoTokenizer.from_pretrained( '''hf-internal-testing/test_dynamic_tokenizer''' ,trust_remote_code=_SCREAMING_SNAKE_CASE ) UpperCAmelCase_ : Dict = AutoTokenizer.from_pretrained('''hf-internal-testing/test_dynamic_tokenizer''' ,trust_remote_code=_SCREAMING_SNAKE_CASE ) self.assertTrue(tokenizer.special_attribute_present ) # Test tokenizer can be reloaded. with tempfile.TemporaryDirectory() as tmp_dir: tokenizer.save_pretrained(_SCREAMING_SNAKE_CASE ) UpperCAmelCase_ : int = AutoTokenizer.from_pretrained(_SCREAMING_SNAKE_CASE ,trust_remote_code=_SCREAMING_SNAKE_CASE ) self.assertTrue(reloaded_tokenizer.special_attribute_present ) if is_tokenizers_available(): self.assertEqual(tokenizer.__class__.__name__ ,'''NewTokenizerFast''' ) self.assertEqual(reloaded_tokenizer.__class__.__name__ ,'''NewTokenizerFast''' ) # Test we can also load the slow version UpperCAmelCase_ : List[str] = AutoTokenizer.from_pretrained( '''hf-internal-testing/test_dynamic_tokenizer''' ,trust_remote_code=_SCREAMING_SNAKE_CASE ,use_fast=_SCREAMING_SNAKE_CASE ) self.assertTrue(tokenizer.special_attribute_present ) self.assertEqual(tokenizer.__class__.__name__ ,'''NewTokenizer''' ) # Test tokenizer can be reloaded. with tempfile.TemporaryDirectory() as tmp_dir: tokenizer.save_pretrained(_SCREAMING_SNAKE_CASE ) UpperCAmelCase_ : Optional[int] = AutoTokenizer.from_pretrained(_SCREAMING_SNAKE_CASE ,trust_remote_code=_SCREAMING_SNAKE_CASE ,use_fast=_SCREAMING_SNAKE_CASE ) self.assertEqual(reloaded_tokenizer.__class__.__name__ ,'''NewTokenizer''' ) self.assertTrue(reloaded_tokenizer.special_attribute_present ) else: self.assertEqual(tokenizer.__class__.__name__ ,'''NewTokenizer''' ) self.assertEqual(reloaded_tokenizer.__class__.__name__ ,'''NewTokenizer''' ) @require_tokenizers def a__ ( self ) -> Optional[int]: class __a( _a ): """simple docstring""" lowerCAmelCase = False class __a( _a ): """simple docstring""" lowerCAmelCase = NewTokenizer lowerCAmelCase = False try: AutoConfig.register('''custom''' ,_SCREAMING_SNAKE_CASE ) AutoTokenizer.register(_SCREAMING_SNAKE_CASE ,slow_tokenizer_class=_SCREAMING_SNAKE_CASE ) AutoTokenizer.register(_SCREAMING_SNAKE_CASE ,fast_tokenizer_class=_SCREAMING_SNAKE_CASE ) # If remote code is not set, the default is to use local UpperCAmelCase_ : int = AutoTokenizer.from_pretrained('''hf-internal-testing/test_dynamic_tokenizer''' ) self.assertEqual(tokenizer.__class__.__name__ ,'''NewTokenizerFast''' ) self.assertFalse(tokenizer.special_attribute_present ) UpperCAmelCase_ : Any = AutoTokenizer.from_pretrained('''hf-internal-testing/test_dynamic_tokenizer''' ,use_fast=_SCREAMING_SNAKE_CASE ) self.assertEqual(tokenizer.__class__.__name__ ,'''NewTokenizer''' ) self.assertFalse(tokenizer.special_attribute_present ) # If remote code is disabled, we load the local one. UpperCAmelCase_ : Tuple = AutoTokenizer.from_pretrained( '''hf-internal-testing/test_dynamic_tokenizer''' ,trust_remote_code=_SCREAMING_SNAKE_CASE ) self.assertEqual(tokenizer.__class__.__name__ ,'''NewTokenizerFast''' ) self.assertFalse(tokenizer.special_attribute_present ) UpperCAmelCase_ : List[str] = AutoTokenizer.from_pretrained( '''hf-internal-testing/test_dynamic_tokenizer''' ,trust_remote_code=_SCREAMING_SNAKE_CASE ,use_fast=_SCREAMING_SNAKE_CASE ) self.assertEqual(tokenizer.__class__.__name__ ,'''NewTokenizer''' ) self.assertFalse(tokenizer.special_attribute_present ) # If remote is enabled, we load from the Hub UpperCAmelCase_ : Optional[int] = AutoTokenizer.from_pretrained( '''hf-internal-testing/test_dynamic_tokenizer''' ,trust_remote_code=_SCREAMING_SNAKE_CASE ) self.assertEqual(tokenizer.__class__.__name__ ,'''NewTokenizerFast''' ) self.assertTrue(tokenizer.special_attribute_present ) UpperCAmelCase_ : Any = AutoTokenizer.from_pretrained( '''hf-internal-testing/test_dynamic_tokenizer''' ,trust_remote_code=_SCREAMING_SNAKE_CASE ,use_fast=_SCREAMING_SNAKE_CASE ) self.assertEqual(tokenizer.__class__.__name__ ,'''NewTokenizer''' ) self.assertTrue(tokenizer.special_attribute_present ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in TOKENIZER_MAPPING._extra_content: del TOKENIZER_MAPPING._extra_content[CustomConfig] def a__ ( self ) -> int: UpperCAmelCase_ : Optional[int] = AutoTokenizer.from_pretrained( '''hf-internal-testing/test_dynamic_tokenizer_legacy''' ,trust_remote_code=_SCREAMING_SNAKE_CASE ) self.assertTrue(tokenizer.special_attribute_present ) if is_tokenizers_available(): self.assertEqual(tokenizer.__class__.__name__ ,'''NewTokenizerFast''' ) # Test we can also load the slow version UpperCAmelCase_ : Tuple = AutoTokenizer.from_pretrained( '''hf-internal-testing/test_dynamic_tokenizer_legacy''' ,trust_remote_code=_SCREAMING_SNAKE_CASE ,use_fast=_SCREAMING_SNAKE_CASE ) self.assertTrue(tokenizer.special_attribute_present ) self.assertEqual(tokenizer.__class__.__name__ ,'''NewTokenizer''' ) else: self.assertEqual(tokenizer.__class__.__name__ ,'''NewTokenizer''' ) def a__ ( self ) -> Optional[Any]: with self.assertRaisesRegex( _SCREAMING_SNAKE_CASE ,'''bert-base is not a local folder and is not a valid model identifier''' ): UpperCAmelCase_ : Tuple = AutoTokenizer.from_pretrained('''bert-base''' ) def a__ ( self ) -> List[Any]: with self.assertRaisesRegex( _SCREAMING_SNAKE_CASE ,R'''aaaaaa is not a valid git identifier \(branch name, tag name or commit id\)''' ): UpperCAmelCase_ : str = AutoTokenizer.from_pretrained(_SCREAMING_SNAKE_CASE ,revision='''aaaaaa''' ) def a__ ( self ) -> Any: # Make sure we have cached the tokenizer. UpperCAmelCase_ : Optional[int] = AutoTokenizer.from_pretrained('''hf-internal-testing/tiny-random-bert''' ) with RequestCounter() as counter: UpperCAmelCase_ : List[str] = AutoTokenizer.from_pretrained('''hf-internal-testing/tiny-random-bert''' ) self.assertEqual(counter.get_request_count ,0 ) self.assertEqual(counter.head_request_count ,1 ) self.assertEqual(counter.other_request_count ,0 )
30
0
import pickle import numpy as np from matplotlib import pyplot as plt class A__ : """simple docstring""" def __init__( self , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case=0.2 , __snake_case=0.2 ): snake_case = bp_numa snake_case = bp_numa snake_case = bp_numa snake_case = conva_get[:2] snake_case = conva_get[2] snake_case = size_pa snake_case = rate_w snake_case = rate_t snake_case = [ np.mat(-1 * np.random.rand(self.conva[0] , self.conva[0] ) + 0.5 ) for i in range(self.conva[1] ) ] snake_case = np.mat(-1 * np.random.rand(self.num_bpa , self.num_bpa ) + 0.5 ) snake_case = np.mat(-1 * np.random.rand(self.num_bpa , self.num_bpa ) + 0.5 ) snake_case = -2 * np.random.rand(self.conva[1] ) + 1 snake_case = -2 * np.random.rand(self.num_bpa ) + 1 snake_case = -2 * np.random.rand(self.num_bpa ) + 1 def a_ ( self , __snake_case ): # save model dict with pickle snake_case = { '''num_bp1''': self.num_bpa, '''num_bp2''': self.num_bpa, '''num_bp3''': self.num_bpa, '''conv1''': self.conva, '''step_conv1''': self.step_conva, '''size_pooling1''': self.size_poolinga, '''rate_weight''': self.rate_weight, '''rate_thre''': self.rate_thre, '''w_conv1''': self.w_conva, '''wkj''': self.wkj, '''vji''': self.vji, '''thre_conv1''': self.thre_conva, '''thre_bp2''': self.thre_bpa, '''thre_bp3''': self.thre_bpa, } with open(_SCREAMING_SNAKE_CASE , '''wb''' ) as f: pickle.dump(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) print(F'''Model saved: {save_path}''' ) @classmethod def a_ ( cls , __snake_case ): # read saved model with open(_SCREAMING_SNAKE_CASE , '''rb''' ) as f: snake_case = pickle.load(_SCREAMING_SNAKE_CASE ) # noqa: S301 snake_case = model_dic.get('''conv1''' ) conv_get.append(model_dic.get('''step_conv1''' ) ) snake_case = model_dic.get('''size_pooling1''' ) snake_case = model_dic.get('''num_bp1''' ) snake_case = model_dic.get('''num_bp2''' ) snake_case = model_dic.get('''num_bp3''' ) snake_case = model_dic.get('''rate_weight''' ) snake_case = model_dic.get('''rate_thre''' ) # create model instance snake_case = CNN(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) # modify model parameter snake_case = model_dic.get('''w_conv1''' ) snake_case = model_dic.get('''wkj''' ) snake_case = model_dic.get('''vji''' ) snake_case = model_dic.get('''thre_conv1''' ) snake_case = model_dic.get('''thre_bp2''' ) snake_case = model_dic.get('''thre_bp3''' ) return conv_ins def a_ ( self , __snake_case ): return 1 / (1 + np.exp(-1 * x )) def a_ ( self , __snake_case ): return round(_SCREAMING_SNAKE_CASE , 3 ) def a_ ( self , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case ): # convolution process snake_case = convs[0] snake_case = convs[1] snake_case = np.shape(_SCREAMING_SNAKE_CASE )[0] # get the data slice of original image data, data_focus snake_case = [] for i_focus in range(0 , size_data - size_conv + 1 , _SCREAMING_SNAKE_CASE ): for j_focus in range(0 , size_data - size_conv + 1 , _SCREAMING_SNAKE_CASE ): snake_case = data[ i_focus : i_focus + size_conv, j_focus : j_focus + size_conv ] data_focus.append(_SCREAMING_SNAKE_CASE ) # calculate the feature map of every single kernel, and saved as list of matrix snake_case = [] snake_case = int((size_data - size_conv) / conv_step + 1 ) for i_map in range(_SCREAMING_SNAKE_CASE ): snake_case = [] for i_focus in range(len(_SCREAMING_SNAKE_CASE ) ): snake_case = ( np.sum(np.multiply(data_focus[i_focus] , w_convs[i_map] ) ) - thre_convs[i_map] ) featuremap.append(self.sig(_SCREAMING_SNAKE_CASE ) ) snake_case = np.asmatrix(_SCREAMING_SNAKE_CASE ).reshape( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) data_featuremap.append(_SCREAMING_SNAKE_CASE ) # expanding the data slice to One dimenssion snake_case = [] for each_focus in data_focus: focusa_list.extend(self.Expand_Mat(_SCREAMING_SNAKE_CASE ) ) snake_case = np.asarray(_SCREAMING_SNAKE_CASE ) return focus_list, data_featuremap def a_ ( self , __snake_case , __snake_case , __snake_case="average_pool" ): # pooling process snake_case = len(featuremaps[0] ) snake_case = int(size_map / size_pooling ) snake_case = [] for i_map in range(len(_SCREAMING_SNAKE_CASE ) ): snake_case = featuremaps[i_map] snake_case = [] for i_focus in range(0 , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): for j_focus in range(0 , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): snake_case = feature_map[ i_focus : i_focus + size_pooling, j_focus : j_focus + size_pooling, ] if pooling_type == "average_pool": # average pooling map_pooled.append(np.average(_SCREAMING_SNAKE_CASE ) ) elif pooling_type == "max_pooling": # max pooling map_pooled.append(np.max(_SCREAMING_SNAKE_CASE ) ) snake_case = np.asmatrix(_SCREAMING_SNAKE_CASE ).reshape(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) featuremap_pooled.append(_SCREAMING_SNAKE_CASE ) return featuremap_pooled def a_ ( self , __snake_case ): # expanding three dimension data to one dimension list snake_case = [] for i in range(len(_SCREAMING_SNAKE_CASE ) ): snake_case = np.shape(data[i] ) snake_case = data[i].reshape(1 , shapes[0] * shapes[1] ) snake_case = data_listed.getA().tolist()[0] data_expanded.extend(_SCREAMING_SNAKE_CASE ) snake_case = np.asarray(_SCREAMING_SNAKE_CASE ) return data_expanded def a_ ( self , __snake_case ): # expanding matrix to one dimension list snake_case = np.asarray(_SCREAMING_SNAKE_CASE ) snake_case = np.shape(_SCREAMING_SNAKE_CASE ) snake_case = data_mat.reshape(1 , shapes[0] * shapes[1] ) return data_expanded def a_ ( self , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case ): snake_case = [] snake_case = 0 for i_map in range(_SCREAMING_SNAKE_CASE ): snake_case = np.ones((size_map, size_map) ) for i in range(0 , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): for j in range(0 , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): snake_case = pd_pool[ i_pool ] snake_case = i_pool + 1 snake_case = np.multiply( _SCREAMING_SNAKE_CASE , np.multiply(out_map[i_map] , (1 - out_map[i_map]) ) ) pd_all.append(_SCREAMING_SNAKE_CASE ) return pd_all def a_ ( self , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case=bool ): # model traning print('''----------------------Start Training-------------------------''' ) print((''' - - Shape: Train_Data ''', np.shape(_SCREAMING_SNAKE_CASE )) ) print((''' - - Shape: Teach_Data ''', np.shape(_SCREAMING_SNAKE_CASE )) ) snake_case = 0 snake_case = [] snake_case = 1_0_0_0_0 while rp < n_repeat and mse >= error_accuracy: snake_case = 0 print(F'''-------------Learning Time {rp}--------------''' ) for p in range(len(_SCREAMING_SNAKE_CASE ) ): # print('------------Learning Image: %d--------------'%p) snake_case = np.asmatrix(datas_train[p] ) snake_case = np.asarray(datas_teach[p] ) snake_case = self.convolute( _SCREAMING_SNAKE_CASE , self.conva , self.w_conva , self.thre_conva , conv_step=self.step_conva , ) snake_case = self.pooling(_SCREAMING_SNAKE_CASE , self.size_poolinga ) snake_case = np.shape(_SCREAMING_SNAKE_CASE ) snake_case = self._expand(_SCREAMING_SNAKE_CASE ) snake_case = data_bp_input snake_case = np.dot(_SCREAMING_SNAKE_CASE , self.vji.T ) - self.thre_bpa snake_case = self.sig(_SCREAMING_SNAKE_CASE ) snake_case = np.dot(_SCREAMING_SNAKE_CASE , self.wkj.T ) - self.thre_bpa snake_case = self.sig(_SCREAMING_SNAKE_CASE ) # --------------Model Leaning ------------------------ # calculate error and gradient--------------- snake_case = np.multiply( (data_teach - bp_outa) , np.multiply(_SCREAMING_SNAKE_CASE , (1 - bp_outa) ) ) snake_case = np.multiply( np.dot(_SCREAMING_SNAKE_CASE , self.wkj ) , np.multiply(_SCREAMING_SNAKE_CASE , (1 - bp_outa) ) ) snake_case = np.dot(_SCREAMING_SNAKE_CASE , self.vji ) snake_case = pd_i_all / (self.size_poolinga * self.size_poolinga) snake_case = pd_conva_pooled.T.getA().tolist() snake_case = self._calculate_gradient_from_pool( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , shape_featuremapa[0] , shape_featuremapa[1] , self.size_poolinga , ) # weight and threshold learning process--------- # convolution layer for k_conv in range(self.conva[1] ): snake_case = self._expand_mat(pd_conva_all[k_conv] ) snake_case = self.rate_weight * np.dot(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) snake_case = self.w_conva[k_conv] + delta_w.reshape( (self.conva[0], self.conva[0]) ) snake_case = ( self.thre_conva[k_conv] - np.sum(pd_conva_all[k_conv] ) * self.rate_thre ) # all connected layer snake_case = self.wkj + pd_k_all.T * bp_outa * self.rate_weight snake_case = self.vji + pd_j_all.T * bp_outa * self.rate_weight snake_case = self.thre_bpa - pd_k_all * self.rate_thre snake_case = self.thre_bpa - pd_j_all * self.rate_thre # calculate the sum error of all single image snake_case = np.sum(abs(data_teach - bp_outa ) ) error_count += errors # print(' ----Teach ',data_teach) # print(' ----BP_output ',bp_out3) snake_case = rp + 1 snake_case = error_count / patterns all_mse.append(_SCREAMING_SNAKE_CASE ) def draw_error(): snake_case = [error_accuracy for i in range(int(n_repeat * 1.2 ) )] plt.plot(_SCREAMING_SNAKE_CASE , '''+-''' ) plt.plot(_SCREAMING_SNAKE_CASE , '''r--''' ) plt.xlabel('''Learning Times''' ) plt.ylabel('''All_mse''' ) plt.grid(_SCREAMING_SNAKE_CASE , alpha=0.5 ) plt.show() print('''------------------Training Complished---------------------''' ) print((''' - - Training epoch: ''', rp, F''' - - Mse: {mse:.6f}''') ) if draw_e: draw_error() return mse def a_ ( self , __snake_case ): # model predict snake_case = [] print('''-------------------Start Testing-------------------------''' ) print((''' - - Shape: Test_Data ''', np.shape(_SCREAMING_SNAKE_CASE )) ) for p in range(len(_SCREAMING_SNAKE_CASE ) ): snake_case = np.asmatrix(datas_test[p] ) snake_case = self.convolute( _SCREAMING_SNAKE_CASE , self.conva , self.w_conva , self.thre_conva , conv_step=self.step_conva , ) snake_case = self.pooling(_SCREAMING_SNAKE_CASE , self.size_poolinga ) snake_case = self._expand(_SCREAMING_SNAKE_CASE ) snake_case = data_bp_input snake_case = bp_outa * self.vji.T - self.thre_bpa snake_case = self.sig(_SCREAMING_SNAKE_CASE ) snake_case = bp_outa * self.wkj.T - self.thre_bpa snake_case = self.sig(_SCREAMING_SNAKE_CASE ) produce_out.extend(bp_outa.getA().tolist() ) snake_case = [list(map(self.do_round , _SCREAMING_SNAKE_CASE ) ) for each in produce_out] return np.asarray(_SCREAMING_SNAKE_CASE ) def a_ ( self , __snake_case ): # return the data of image after convoluting process so we can check it out snake_case = np.asmatrix(_SCREAMING_SNAKE_CASE ) snake_case = self.convolute( _SCREAMING_SNAKE_CASE , self.conva , self.w_conva , self.thre_conva , conv_step=self.step_conva , ) snake_case = self.pooling(_SCREAMING_SNAKE_CASE , self.size_poolinga ) return data_conveda, data_pooleda if __name__ == "__main__": pass
550
from functools import reduce __a = ( '73167176531330624919225119674426574742355349194934' '96983520312774506326239578318016984801869478851843' '85861560789112949495459501737958331952853208805511' '12540698747158523863050715693290963295227443043557' '66896648950445244523161731856403098711121722383113' '62229893423380308135336276614282806444486645238749' '30358907296290491560440772390713810515859307960866' '70172427121883998797908792274921901699720888093776' '65727333001053367881220235421809751254540594752243' '52584907711670556013604839586446706324415722155397' '53697817977846174064955149290862569321978468622482' '83972241375657056057490261407972968652414535100474' '82166370484403199890008895243450658541227588666881' '16427171479924442928230863465674813919123162824586' '17866458359124566529476545682848912883142607690042' '24219022671055626321111109370544217506941658960408' '07198403850962455444362981230987879927244284909188' '84580156166097919133875499200524063689912560717606' '05886116467109405077541002256983155200055935729725' '71636269561882670428252483600823257530420752963450' ) def lowerCamelCase__ ( _lowercase = N ): '''simple docstring''' return max( # mypy cannot properly interpret reduce int(reduce(lambda _lowercase , _lowercase : str(int(_lowercase ) * int(_lowercase ) ) , n[i : i + 13] ) ) for i in range(len(_lowercase ) - 12 ) ) if __name__ == "__main__": print(F"""{solution() = }""")
30
0
'''simple docstring''' import json import os import unittest from transformers import AutoTokenizer, GPTaTokenizer, GPTaTokenizerFast from transformers.models.gpta.tokenization_gpta import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class lowercase_ ( _a , unittest.TestCase ): A_ = GPTaTokenizer A_ = GPTaTokenizerFast A_ = True A_ = {"add_prefix_space": True} A_ = False def _lowerCAmelCase ( self : Tuple ): super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt snake_case__ : Optional[Any] = [ '''l''', '''o''', '''w''', '''e''', '''r''', '''s''', '''t''', '''i''', '''d''', '''n''', '''\u0120''', '''\u0120l''', '''\u0120n''', '''\u0120lo''', '''\u0120low''', '''er''', '''\u0120lowest''', '''\u0120newer''', '''\u0120wider''', '''<unk>''', '''<|endoftext|>''', ] snake_case__ : Optional[Any] = dict(zip(_SCREAMING_SNAKE_CASE , range(len(_SCREAMING_SNAKE_CASE ) ) ) ) snake_case__ : int = ['''#version: 0.2''', '''\u0120 l''', '''\u0120l o''', '''\u0120lo w''', '''e r''', ''''''] snake_case__ : Optional[int] = {'''unk_token''': '''<unk>'''} snake_case__ : str = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['vocab_file'] ) snake_case__ : str = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['merges_file'] ) with open(self.vocab_file , 'w' , encoding='utf-8' ) as fp: fp.write(json.dumps(_SCREAMING_SNAKE_CASE ) + '\n' ) with open(self.merges_file , 'w' , encoding='utf-8' ) as fp: fp.write('\n'.join(_SCREAMING_SNAKE_CASE ) ) def _lowerCAmelCase ( self : List[str] , **__lowerCamelCase : Tuple ): kwargs.update(self.special_tokens_map ) return GPTaTokenizer.from_pretrained(self.tmpdirname , **_SCREAMING_SNAKE_CASE ) def _lowerCAmelCase ( self : Tuple , **__lowerCamelCase : Optional[Any] ): kwargs.update(self.special_tokens_map ) return GPTaTokenizerFast.from_pretrained(self.tmpdirname , **_SCREAMING_SNAKE_CASE ) def _lowerCAmelCase ( self : Dict , __lowerCamelCase : List[Any] ): snake_case__ : Optional[int] = '''lower newer''' snake_case__ : List[str] = '''lower newer''' return input_text, output_text def _lowerCAmelCase ( self : int ): snake_case__ : List[str] = GPTaTokenizer(self.vocab_file , self.merges_file , **self.special_tokens_map ) snake_case__ : int = '''lower newer''' snake_case__ : Tuple = ['''\u0120low''', '''er''', '''\u0120''', '''n''', '''e''', '''w''', '''er'''] snake_case__ : Dict = tokenizer.tokenize(_SCREAMING_SNAKE_CASE , add_prefix_space=_SCREAMING_SNAKE_CASE ) self.assertListEqual(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) snake_case__ : Any = tokens + [tokenizer.unk_token] snake_case__ : Optional[Any] = [14, 15, 10, 9, 3, 2, 15, 19] self.assertListEqual(tokenizer.convert_tokens_to_ids(_SCREAMING_SNAKE_CASE ) , _SCREAMING_SNAKE_CASE ) def _lowerCAmelCase ( self : Tuple ): if not self.test_rust_tokenizer: return snake_case__ : Union[str, Any] = self.get_tokenizer() snake_case__ : int = self.get_rust_tokenizer(add_prefix_space=_SCREAMING_SNAKE_CASE ) snake_case__ : Dict = '''lower newer''' # Testing tokenization snake_case__ : Dict = tokenizer.tokenize(_SCREAMING_SNAKE_CASE , add_prefix_space=_SCREAMING_SNAKE_CASE ) snake_case__ : Optional[int] = rust_tokenizer.tokenize(_SCREAMING_SNAKE_CASE ) self.assertListEqual(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) # Testing conversion to ids without special tokens snake_case__ : Any = tokenizer.encode(_SCREAMING_SNAKE_CASE , add_special_tokens=_SCREAMING_SNAKE_CASE , add_prefix_space=_SCREAMING_SNAKE_CASE ) snake_case__ : Tuple = rust_tokenizer.encode(_SCREAMING_SNAKE_CASE , add_special_tokens=_SCREAMING_SNAKE_CASE ) self.assertListEqual(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) # Testing conversion to ids with special tokens snake_case__ : str = self.get_rust_tokenizer(add_prefix_space=_SCREAMING_SNAKE_CASE ) snake_case__ : Any = tokenizer.encode(_SCREAMING_SNAKE_CASE , add_prefix_space=_SCREAMING_SNAKE_CASE ) snake_case__ : Tuple = rust_tokenizer.encode(_SCREAMING_SNAKE_CASE ) self.assertListEqual(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) # Testing the unknown token snake_case__ : Dict = tokens + [rust_tokenizer.unk_token] snake_case__ : List[Any] = [14, 15, 10, 9, 3, 2, 15, 19] self.assertListEqual(rust_tokenizer.convert_tokens_to_ids(_SCREAMING_SNAKE_CASE ) , _SCREAMING_SNAKE_CASE ) def _lowerCAmelCase ( self : str , *__lowerCamelCase : List[Any] , **__lowerCamelCase : Optional[Any] ): # It's very difficult to mix/test pretokenization with byte-level # And get both GPT2 and Roberta to work at the same time (mostly an issue of adding a space before the string) pass def _lowerCAmelCase ( self : Optional[Any] , __lowerCamelCase : List[Any]=15 ): for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F"{tokenizer.__class__.__name__} ({pretrained_name})" ): snake_case__ : Union[str, Any] = self.rust_tokenizer_class.from_pretrained(_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) # Simple input snake_case__ : str = '''This is a simple input''' snake_case__ : str = ['''This is a simple input 1''', '''This is a simple input 2'''] snake_case__ : int = ('''This is a simple input''', '''This is a pair''') snake_case__ : Any = [ ('''This is a simple input 1''', '''This is a simple input 2'''), ('''This is a simple pair 1''', '''This is a simple pair 2'''), ] # Simple input tests self.assertRaises(_SCREAMING_SNAKE_CASE , tokenizer_r.encode , _SCREAMING_SNAKE_CASE , max_length=_SCREAMING_SNAKE_CASE , padding='max_length' ) # Simple input self.assertRaises(_SCREAMING_SNAKE_CASE , tokenizer_r.encode_plus , _SCREAMING_SNAKE_CASE , max_length=_SCREAMING_SNAKE_CASE , padding='max_length' ) # Simple input self.assertRaises( _SCREAMING_SNAKE_CASE , tokenizer_r.batch_encode_plus , _SCREAMING_SNAKE_CASE , max_length=_SCREAMING_SNAKE_CASE , padding='max_length' , ) # Pair input self.assertRaises(_SCREAMING_SNAKE_CASE , tokenizer_r.encode , _SCREAMING_SNAKE_CASE , max_length=_SCREAMING_SNAKE_CASE , padding='max_length' ) # Pair input self.assertRaises(_SCREAMING_SNAKE_CASE , tokenizer_r.encode_plus , _SCREAMING_SNAKE_CASE , max_length=_SCREAMING_SNAKE_CASE , padding='max_length' ) # Pair input self.assertRaises( _SCREAMING_SNAKE_CASE , tokenizer_r.batch_encode_plus , _SCREAMING_SNAKE_CASE , max_length=_SCREAMING_SNAKE_CASE , padding='max_length' , ) def _lowerCAmelCase ( self : List[str] ): snake_case__ : Tuple = GPTaTokenizer.from_pretrained(self.tmpdirname , pad_token='<pad>' ) # Simple input snake_case__ : str = '''This is a simple input''' snake_case__ : Tuple = ['''This is a simple input looooooooong''', '''This is a simple input'''] snake_case__ : Union[str, Any] = ('''This is a simple input''', '''This is a pair''') snake_case__ : Optional[Any] = [ ('''This is a simple input loooooong''', '''This is a simple input'''), ('''This is a simple pair loooooong''', '''This is a simple pair'''), ] snake_case__ : Union[str, Any] = tokenizer.pad_token_id snake_case__ : Dict = tokenizer(_SCREAMING_SNAKE_CASE , padding='max_length' , max_length=30 , return_tensors='np' ) snake_case__ : int = tokenizer(_SCREAMING_SNAKE_CASE , padding=_SCREAMING_SNAKE_CASE , truncate=_SCREAMING_SNAKE_CASE , return_tensors='np' ) snake_case__ : Tuple = tokenizer(*_SCREAMING_SNAKE_CASE , padding='max_length' , max_length=60 , return_tensors='np' ) snake_case__ : List[Any] = tokenizer(_SCREAMING_SNAKE_CASE , padding=_SCREAMING_SNAKE_CASE , truncate=_SCREAMING_SNAKE_CASE , return_tensors='np' ) # s # test single string max_length padding self.assertEqual(out_s['input_ids'].shape[-1] , 30 ) self.assertTrue(pad_token_id in out_s['input_ids'] ) self.assertTrue(0 in out_s['attention_mask'] ) # s2 # test automatic padding self.assertEqual(out_sa['input_ids'].shape[-1] , 33 ) # long slice doesn't have padding self.assertFalse(pad_token_id in out_sa['input_ids'][0] ) self.assertFalse(0 in out_sa['attention_mask'][0] ) # short slice does have padding self.assertTrue(pad_token_id in out_sa['input_ids'][1] ) self.assertTrue(0 in out_sa['attention_mask'][1] ) # p # test single pair max_length padding self.assertEqual(out_p['input_ids'].shape[-1] , 60 ) self.assertTrue(pad_token_id in out_p['input_ids'] ) self.assertTrue(0 in out_p['attention_mask'] ) # p2 # test automatic padding pair self.assertEqual(out_pa['input_ids'].shape[-1] , 52 ) # long slice pair doesn't have padding self.assertFalse(pad_token_id in out_pa['input_ids'][0] ) self.assertFalse(0 in out_pa['attention_mask'][0] ) # short slice pair does have padding self.assertTrue(pad_token_id in out_pa['input_ids'][1] ) self.assertTrue(0 in out_pa['attention_mask'][1] ) def _lowerCAmelCase ( self : Optional[Any] ): snake_case__ : List[Any] = '''$$$''' snake_case__ : Any = GPTaTokenizer.from_pretrained(self.tmpdirname , bos_token=_SCREAMING_SNAKE_CASE , add_bos_token=_SCREAMING_SNAKE_CASE ) snake_case__ : Tuple = '''This is a simple input''' snake_case__ : Union[str, Any] = ['''This is a simple input 1''', '''This is a simple input 2'''] snake_case__ : List[Any] = tokenizer.bos_token_id snake_case__ : List[str] = tokenizer(_SCREAMING_SNAKE_CASE ) snake_case__ : Optional[Any] = tokenizer(_SCREAMING_SNAKE_CASE ) self.assertEqual(out_s.input_ids[0] , _SCREAMING_SNAKE_CASE ) self.assertTrue(all(o[0] == bos_token_id for o in out_sa.input_ids ) ) snake_case__ : Tuple = tokenizer.decode(out_s.input_ids ) snake_case__ : Union[str, Any] = tokenizer.batch_decode(out_sa.input_ids ) self.assertEqual(decode_s.split()[0] , _SCREAMING_SNAKE_CASE ) self.assertTrue(all(d.split()[0] == bos_token for d in decode_sa ) ) def _lowerCAmelCase ( self : Optional[int] ): pass def _lowerCAmelCase ( self : int ): # TODO: change to self.get_tokenizers() when the fast version is implemented snake_case__ : Tuple = [self.get_tokenizer(do_lower_case=_SCREAMING_SNAKE_CASE , add_bos_token=_SCREAMING_SNAKE_CASE )] for tokenizer in tokenizers: with self.subTest(F"{tokenizer.__class__.__name__}" ): snake_case__ : List[Any] = '''Encode this.''' snake_case__ : List[Any] = '''This one too please.''' snake_case__ : Optional[int] = tokenizer.encode(_SCREAMING_SNAKE_CASE , add_special_tokens=_SCREAMING_SNAKE_CASE ) encoded_sequence += tokenizer.encode(_SCREAMING_SNAKE_CASE , add_special_tokens=_SCREAMING_SNAKE_CASE ) snake_case__ : Dict = tokenizer.encode_plus( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , add_special_tokens=_SCREAMING_SNAKE_CASE , return_special_tokens_mask=_SCREAMING_SNAKE_CASE , ) snake_case__ : int = encoded_sequence_dict['''input_ids'''] snake_case__ : Union[str, Any] = encoded_sequence_dict['''special_tokens_mask'''] self.assertEqual(len(_SCREAMING_SNAKE_CASE ) , len(_SCREAMING_SNAKE_CASE ) ) snake_case__ : List[str] = [ (x if not special_tokens_mask[i] else None) for i, x in enumerate(_SCREAMING_SNAKE_CASE ) ] snake_case__ : str = [x for x in filtered_sequence if x is not None] self.assertEqual(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) @require_tokenizers class lowercase_ ( unittest.TestCase ): def _lowerCAmelCase ( self : List[Any] ): # More context: # https://huggingface.co/wjmcat/opt-350m-paddle/discussions/1 # https://huggingface.slack.com/archives/C01N44FJDHT/p1653511495183519 # https://github.com/huggingface/transformers/pull/17088#discussion_r871246439 snake_case__ : Any = AutoTokenizer.from_pretrained('facebook/opt-350m' , from_slow=_SCREAMING_SNAKE_CASE ) snake_case__ : List[str] = '''A photo of a cat''' snake_case__ : Any = tokenizer.encode( _SCREAMING_SNAKE_CASE , ) self.assertEqual(_SCREAMING_SNAKE_CASE , [2, 250, 1345, 9, 10, 4758] ) tokenizer.save_pretrained('test_opt' ) snake_case__ : Dict = AutoTokenizer.from_pretrained('./test_opt' ) snake_case__ : Optional[Any] = tokenizer.encode( _SCREAMING_SNAKE_CASE , ) self.assertEqual(_SCREAMING_SNAKE_CASE , [2, 250, 1345, 9, 10, 4758] ) def _lowerCAmelCase ( self : str ): snake_case__ : Tuple = AutoTokenizer.from_pretrained('facebook/opt-350m' , use_slow=_SCREAMING_SNAKE_CASE ) snake_case__ : Dict = '''A photo of a cat''' snake_case__ : int = tokenizer.encode( _SCREAMING_SNAKE_CASE , ) # Same as above self.assertEqual(_SCREAMING_SNAKE_CASE , [2, 250, 1345, 9, 10, 4758] ) @unittest.skip('This test is failing because of a bug in the fast tokenizer' ) def _lowerCAmelCase ( self : int ): snake_case__ : Union[str, Any] = AutoTokenizer.from_pretrained('facebook/opt-350m' , from_slow=_SCREAMING_SNAKE_CASE ) snake_case__ : Any = '''bos''' snake_case__ : Dict = tokenizer.get_vocab()['''bos'''] snake_case__ : Optional[int] = '''A photo of a cat''' snake_case__ : Any = tokenizer.encode( _SCREAMING_SNAKE_CASE , ) # We changed the bos token self.assertEqual(_SCREAMING_SNAKE_CASE , [31957, 250, 1345, 9, 10, 4758] ) tokenizer.save_pretrained('./tok' ) snake_case__ : Optional[Any] = AutoTokenizer.from_pretrained('./tok' ) self.assertTrue(tokenizer.is_fast ) snake_case__ : Tuple = tokenizer.encode( _SCREAMING_SNAKE_CASE , ) self.assertEqual(_SCREAMING_SNAKE_CASE , [31957, 250, 1345, 9, 10, 4758] )
270
from decimal import Decimal, getcontext from math import ceil, factorial def lowerCamelCase__ ( _lowercase ): '''simple docstring''' if not isinstance(_lowercase , _lowercase ): raise TypeError('''Undefined for non-integers''' ) elif precision < 1: raise ValueError('''Undefined for non-natural numbers''' ) UpperCAmelCase_ : Tuple = precision UpperCAmelCase_ : Optional[Any] = ceil(precision / 14 ) UpperCAmelCase_ : int = 426880 * Decimal(10005 ).sqrt() UpperCAmelCase_ : Tuple = 1 UpperCAmelCase_ : List[Any] = 13591409 UpperCAmelCase_ : Optional[Any] = Decimal(_lowercase ) for k in range(1 , _lowercase ): UpperCAmelCase_ : List[str] = factorial(6 * k ) // (factorial(3 * k ) * factorial(_lowercase ) ** 3) linear_term += 545140134 exponential_term *= -262537412640768000 partial_sum += Decimal(multinomial_term * linear_term ) / exponential_term return str(constant_term / partial_sum )[:-1] if __name__ == "__main__": __a = 50 print(F"""The first {n} digits of pi is: {pi(n)}""")
30
0
'''simple docstring''' def A__ ( A : str): '''simple docstring''' if edge <= 0 or not isinstance(_lowercase , _lowercase): raise ValueError("Length must be a positive.") return 3 * ((25 + 10 * (5 ** (1 / 2))) ** (1 / 2)) * (edge**2) def A__ ( A : List[str]): '''simple docstring''' if edge <= 0 or not isinstance(_lowercase , _lowercase): raise ValueError("Length must be a positive.") return ((15 + (7 * (5 ** (1 / 2)))) / 4) * (edge**3) if __name__ == "__main__": import doctest doctest.testmod()
173
from __future__ import annotations import math __a = '2020.9.26' __a = 'xcodz-dot, cclaus, dhruvmanila' def lowerCamelCase__ ( _lowercase , _lowercase , _lowercase , _lowercase , _lowercase ): '''simple docstring''' if not all(isinstance(_lowercase , (float, int) ) for val in locals().values() ): UpperCAmelCase_ : Optional[int] = f'''Input values must either be float or int: {list(locals().values() )}''' raise TypeError(_lowercase ) UpperCAmelCase_ : Tuple = ((x * distance) / (z + distance)) * scale UpperCAmelCase_ : str = ((y * distance) / (z + distance)) * scale return projected_x, projected_y def lowerCamelCase__ ( _lowercase , _lowercase , _lowercase , _lowercase , _lowercase ): '''simple docstring''' if not isinstance(_lowercase , _lowercase ): raise TypeError('''Axis must be a str''' ) UpperCAmelCase_ : Optional[Any] = locals() del input_variables["axis"] if not all(isinstance(_lowercase , (float, int) ) for val in input_variables.values() ): UpperCAmelCase_ : List[Any] = ( '''Input values except axis must either be float or int: ''' f'''{list(input_variables.values() )}''' ) raise TypeError(_lowercase ) UpperCAmelCase_ : Dict = (angle % 360) / 450 * 180 / math.pi if axis == "z": UpperCAmelCase_ : Optional[int] = x * math.cos(_lowercase ) - y * math.sin(_lowercase ) UpperCAmelCase_ : List[Any] = y * math.cos(_lowercase ) + x * math.sin(_lowercase ) UpperCAmelCase_ : Optional[int] = z elif axis == "x": UpperCAmelCase_ : Any = y * math.cos(_lowercase ) - z * math.sin(_lowercase ) UpperCAmelCase_ : int = z * math.cos(_lowercase ) + y * math.sin(_lowercase ) UpperCAmelCase_ : Dict = x elif axis == "y": UpperCAmelCase_ : Union[str, Any] = x * math.cos(_lowercase ) - z * math.sin(_lowercase ) UpperCAmelCase_ : Optional[int] = z * math.cos(_lowercase ) + x * math.sin(_lowercase ) UpperCAmelCase_ : Optional[int] = y else: raise ValueError('''not a valid axis, choose one of \'x\', \'y\', \'z\'''' ) return new_x, new_y, new_z if __name__ == "__main__": import doctest doctest.testmod() print(F"""{convert_to_ad(1.0, 2.0, 3.0, 10.0, 10.0) = }""") print(F"""{rotate(1.0, 2.0, 3.0, "y", 90.0) = }""")
30
0
from functools import reduce SCREAMING_SNAKE_CASE: int = ( '''73167176531330624919225119674426574742355349194934''' '''96983520312774506326239578318016984801869478851843''' '''85861560789112949495459501737958331952853208805511''' '''12540698747158523863050715693290963295227443043557''' '''66896648950445244523161731856403098711121722383113''' '''62229893423380308135336276614282806444486645238749''' '''30358907296290491560440772390713810515859307960866''' '''70172427121883998797908792274921901699720888093776''' '''65727333001053367881220235421809751254540594752243''' '''52584907711670556013604839586446706324415722155397''' '''53697817977846174064955149290862569321978468622482''' '''83972241375657056057490261407972968652414535100474''' '''82166370484403199890008895243450658541227588666881''' '''16427171479924442928230863465674813919123162824586''' '''17866458359124566529476545682848912883142607690042''' '''24219022671055626321111109370544217506941658960408''' '''07198403850962455444362981230987879927244284909188''' '''84580156166097919133875499200524063689912560717606''' '''05886116467109405077541002256983155200055935729725''' '''71636269561882670428252483600823257530420752963450''' ) def _a ( lowerCAmelCase = N )-> List[Any]: return max( # mypy cannot properly interpret reduce int(reduce(lambda lowerCAmelCase , lowerCAmelCase : str(int(_lowercase ) * int(_lowercase ) ) , n[i : i + 13] ) ) for i in range(len(_lowercase ) - 12 ) ) if __name__ == "__main__": print(f"""{solution() = }""")
360
# Lint as: python3 # pylint: enable=line-too-long # pylint: disable=g-import-not-at-top,g-bad-import-order,wrong-import-position __a = '2.13.1' import platform import pyarrow from packaging import version if version.parse(platform.python_version()) < version.parse('3.7'): raise ImportWarning( 'To use `datasets`, Python>=3.7 is required, and the current version of Python doesn\'t match this condition.' ) if version.parse(pyarrow.__version__).major < 8: raise ImportWarning( 'To use `datasets`, the module `pyarrow>=8.0.0` is required, and the current version of `pyarrow` doesn\'t match this condition.\n' 'If you are running this in a Google Colab, you should probably just restart the runtime to use the right version of `pyarrow`.' ) del platform del pyarrow del version from .arrow_dataset import Dataset from .arrow_reader import ReadInstruction from .builder import ArrowBasedBuilder, BeamBasedBuilder, BuilderConfig, DatasetBuilder, GeneratorBasedBuilder from .combine import concatenate_datasets, interleave_datasets from .dataset_dict import DatasetDict, IterableDatasetDict from .download import * from .features import * from .fingerprint import disable_caching, enable_caching, is_caching_enabled, set_caching_enabled from .info import DatasetInfo, MetricInfo from .inspect import ( get_dataset_config_info, get_dataset_config_names, get_dataset_infos, get_dataset_split_names, inspect_dataset, inspect_metric, list_datasets, list_metrics, ) from .iterable_dataset import IterableDataset from .load import load_dataset, load_dataset_builder, load_from_disk, load_metric from .metric import Metric from .splits import ( NamedSplit, NamedSplitAll, Split, SplitBase, SplitDict, SplitGenerator, SplitInfo, SubSplitInfo, percent, ) from .tasks import * from .utils import * from .utils import logging # deprecated modules from datasets import arrow_dataset as _arrow_dataset # isort:skip from datasets import utils as _utils # isort:skip from datasets.utils import download_manager as _deprecated_download_manager # isort:skip __a = concatenate_datasets __a = DownloadConfig __a = DownloadManager __a = DownloadMode __a = DownloadConfig __a = DownloadMode __a = DownloadManager del _arrow_dataset, _utils, _deprecated_download_manager
30
0
"""simple docstring""" # Copyright 2023 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available SCREAMING_SNAKE_CASE_ = { '''configuration_xmod''': [ '''XMOD_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''XmodConfig''', '''XmodOnnxConfig''', ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE_ = [ '''XMOD_PRETRAINED_MODEL_ARCHIVE_LIST''', '''XmodForCausalLM''', '''XmodForMaskedLM''', '''XmodForMultipleChoice''', '''XmodForQuestionAnswering''', '''XmodForSequenceClassification''', '''XmodForTokenClassification''', '''XmodModel''', '''XmodPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_xmod import XMOD_PRETRAINED_CONFIG_ARCHIVE_MAP, XmodConfig, XmodOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_xmod import ( XMOD_PRETRAINED_MODEL_ARCHIVE_LIST, XmodForCausalLM, XmodForMaskedLM, XmodForMultipleChoice, XmodForQuestionAnswering, XmodForSequenceClassification, XmodForTokenClassification, XmodModel, XmodPreTrainedModel, ) else: import sys SCREAMING_SNAKE_CASE_ = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
426
def lowerCamelCase__ ( _lowercase , _lowercase ): '''simple docstring''' while a != 0: UpperCAmelCase_, UpperCAmelCase_ : Optional[int] = b % a, a return b def lowerCamelCase__ ( _lowercase , _lowercase ): '''simple docstring''' if gcd(_lowercase , _lowercase ) != 1: UpperCAmelCase_ : int = f'''mod inverse of {a!r} and {m!r} does not exist''' raise ValueError(_lowercase ) UpperCAmelCase_, UpperCAmelCase_, UpperCAmelCase_ : Union[str, Any] = 1, 0, a UpperCAmelCase_, UpperCAmelCase_, UpperCAmelCase_ : Dict = 0, 1, m while va != 0: UpperCAmelCase_ : List[Any] = ua // va UpperCAmelCase_, UpperCAmelCase_, UpperCAmelCase_, UpperCAmelCase_, UpperCAmelCase_, UpperCAmelCase_ : Any = (ua - q * va), (ua - q * va), (ua - q * va), va, va, va return ua % m
30
0
'''simple docstring''' import argparse import json import os import re import torch from transformers import BloomConfig, BloomModel from transformers.file_utils import CONFIG_NAME, WEIGHTS_NAME from transformers.utils import logging logging.set_verbosity_info() __lowercase : List[Any] = [ 'word_embeddings_layernorm.weight', 'word_embeddings_layernorm.bias', 'input_layernorm.weight', 'input_layernorm.bias', 'post_attention_layernorm.weight', 'post_attention_layernorm.bias', 'self_attention.dense.bias', 'mlp.dense_4h_to_h.bias', 'ln_f.weight', 'ln_f.bias', ] __lowercase : Optional[int] = [ 'mlp.dense_4h_to_h.weight', 'self_attention.dense.weight', ] def lowerCamelCase (_SCREAMING_SNAKE_CASE : Tuple , _SCREAMING_SNAKE_CASE : Optional[int] ): __a : List[Any] = { '''word_embeddings.weight''': '''word_embeddings.weight''', '''word_embeddings.norm.weight''': '''word_embeddings_layernorm.weight''', '''word_embeddings.norm.bias''': '''word_embeddings_layernorm.bias''', '''weight''': '''ln_f.weight''', '''bias''': '''ln_f.bias''', } if key in layer_rename_map: return layer_rename_map[key] # Handle transformer blocks __a : Union[str, Any] = int(re.match(r'.*layer_(\d*).*' , _lowercase )[1] ) layer_number -= 3 return F"""h.{layer_number}.""" + key def lowerCamelCase (_SCREAMING_SNAKE_CASE : int ): if dtype == torch.bool: return 1 / 8 __a : Any = re.search(r'[^\d](\d+)$' , str(_lowercase ) ) if bit_search is None: raise ValueError(F"""`dtype` is not a valid dtype: {dtype}.""" ) __a : Optional[int] = int(bit_search.groups()[0] ) return bit_size // 8 def lowerCamelCase (_SCREAMING_SNAKE_CASE : Optional[int] , _SCREAMING_SNAKE_CASE : Tuple , _SCREAMING_SNAKE_CASE : Tuple , _SCREAMING_SNAKE_CASE : Optional[int] , _SCREAMING_SNAKE_CASE : Union[str, Any] ): if bloom_config_file == "": __a : Tuple = BloomConfig() else: __a : Optional[int] = BloomConfig.from_json_file(_lowercase ) if shard_model: __a : Any = os.listdir(_lowercase ) __a : Union[str, Any] = sorted(filter(lambda _SCREAMING_SNAKE_CASE : s.startswith('layer' ) and "model_00" in s , _lowercase ) ) __a : Any = {'''weight_map''': {}, '''metadata''': {}} __a : List[str] = 0 __a : Any = None __a : Optional[int] = BloomConfig() for j, file in enumerate(_lowercase ): print('Processing file: {}'.format(_lowercase ) ) __a : Optional[Any] = None for i in range(_lowercase ): # load all TP files __a : Tuple = file.replace('model_00' , F"""model_0{i}""" ) __a : Any = torch.load(os.path.join(_lowercase , _lowercase ) , map_location='cpu' ) # Rename keys in the transformers names __a : Dict = list(temp.keys() ) for key in keys: __a : Union[str, Any] = temp.pop(_lowercase ) if tensors is None: __a : Union[str, Any] = temp else: for key in tensors.keys(): if any(key.endswith(_lowercase ) for end in WEIGHTS_TO_AVERAGE_ENDSWITH ): # We average (sum and then divide) some weights accross TP ranks (see https://github.com/bigscience-workshop/Megatron-DeepSpeed/blob/olruwase/sync_layer_norms/megatron/training.py#L425) tensors[key] += temp[key] else: # Some weights are RowParallelLinear in Megatron-Deepspeed, others are ColumnParallel __a : int = 1 if any(text in key for text in WEIGHTS_WITH_ROW_PARALLELISM_CONTAIN ) else 0 # We concatenate these weights accross TP ranks __a : Tuple = torch.cat([tensors[key], temp[key]] , dim=_lowercase ) # Divide by the number of TP the weights we want to average for key in tensors.keys(): if any(key.endswith(_lowercase ) for end in WEIGHTS_TO_AVERAGE_ENDSWITH ): __a : List[str] = tensors[key] / pretraining_tp torch.save( _lowercase , os.path.join( _lowercase , 'pytorch_model_{}-of-{}.bin'.format(str(j + 1 ).zfill(5 ) , str(len(_lowercase ) ).zfill(5 ) ) , ) , ) for key in tensors.keys(): __a : Union[str, Any] = tensors[key] total_size += value.numel() * get_dtype_size(value.dtype ) if key not in index_dict["weight_map"]: __a : List[str] = '''pytorch_model_{}-of-{}.bin'''.format( str(j + 1 ).zfill(5 ) , str(len(_lowercase ) ).zfill(5 ) ) __a : List[Any] = BloomConfig() __a : Tuple = pytorch_dump_folder_path + '''/''' + CONFIG_NAME __a : List[str] = total_size with open(_lowercase , 'w' , encoding='utf-8' ) as f: f.write(config.to_json_string() ) with open(os.path.join(_lowercase , WEIGHTS_NAME + '.index.json' ) , 'w' , encoding='utf-8' ) as f: __a : Optional[Any] = json.dumps(_lowercase , indent=2 , sort_keys=_lowercase ) + '''\n''' f.write(_lowercase ) else: __a : Any = BloomModel(_lowercase ) __a : Tuple = os.listdir(_lowercase ) __a : Union[str, Any] = sorted(filter(lambda _SCREAMING_SNAKE_CASE : s.startswith('layer' ) and "model_00" in s , _lowercase ) ) __a : Any = None for i, file in enumerate(_lowercase ): __a : Optional[Any] = None for i in range(_lowercase ): # load all TP files __a : List[Any] = file.replace('model_00' , F"""model_0{i}""" ) __a : Optional[int] = torch.load(os.path.join(_lowercase , _lowercase ) , map_location='cpu' ) # Rename keys in the transformers names __a : str = list(temp.keys() ) for key in keys: __a : Dict = temp.pop(_lowercase ) if tensors is None: __a : int = temp else: for key in tensors.keys(): # We average (sum and then divide) some weights accross TP ranks (see https://github.com/bigscience-workshop/Megatron-DeepSpeed/blob/olruwase/sync_layer_norms/megatron/training.py#L425) if any(key.endswith(_lowercase ) for end in WEIGHTS_TO_AVERAGE_ENDSWITH ): tensors[key] += temp[key] else: # Some weights are RowParallelLinear in Megatron-Deepspeed, others are ColumnParallel __a : Optional[int] = 1 if any(text in key for text in WEIGHTS_WITH_ROW_PARALLELISM_CONTAIN ) else 0 # We concatenate these weights accross TP ranks __a : List[str] = torch.cat([tensors[key], temp[key]] , dim=_lowercase ) # Divide by the number of TP the weights we want to average for key in tensors.keys(): if any(key.endswith(_lowercase ) for end in WEIGHTS_TO_AVERAGE_ENDSWITH ): __a : Dict = tensors[key] / pretraining_tp __a : Tuple = model.load_state_dict(_lowercase , strict=_lowercase ) assert not other_keys.unexpected_keys, F"""The keys {other_keys.unexpected_keys} are unexpected""" if missing_keys is None: __a : Union[str, Any] = set(other_keys.missing_keys ) else: __a : Dict = missing_keys.intersection(set(other_keys.missing_keys ) ) assert not missing_keys, F"""The keys {missing_keys} are missing""" # Save pytorch-model os.makedirs(_lowercase , exist_ok=_lowercase ) __a : str = pytorch_dump_folder_path + '''/''' + WEIGHTS_NAME __a : Dict = pytorch_dump_folder_path + '''/''' + CONFIG_NAME print(F"""Save PyTorch model to {pytorch_weights_dump_path} with dtype {config.torch_dtype}""" ) if config.torch_dtype is not None: __a : Optional[int] = model.to(config.torch_dtype ) torch.save(model.state_dict() , _lowercase ) print(F"""Save configuration file to {pytorch_config_dump_path}""" ) with open(_lowercase , 'w' , encoding='utf-8' ) as f: f.write(config.to_json_string() ) if __name__ == "__main__": __lowercase : Optional[int] = argparse.ArgumentParser() # Required parameters parser.add_argument( '--bloom_checkpoint_path', default=None, type=str, required=True, help='Path to the Megatron-LM checkpoint path.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, required=True, help='Path to the output PyTorch model.' ) parser.add_argument( '--bloom_config_file', default='', type=str, help=( 'An optional config json file corresponding to the pre-trained model. \n' 'This specifies the model architecture.' ), ) parser.add_argument( '--shard_model', action='store_true', help='An optional setting to shard the output model \nThis enables sharding the converted checkpoint', ) parser.add_argument( '--pretraining_tp', default=4, type=int, help='Pretraining TP rank that has been used when training the model in Megatron-LM \n', ) __lowercase : List[Any] = parser.parse_args() convert_bloom_checkpoint_to_pytorch( args.bloom_checkpoint_path, args.bloom_config_file, args.pytorch_dump_folder_path, args.shard_model, args.pretraining_tp, )
476
# Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import numpy as np import torch from ..models.clipseg import CLIPSegForImageSegmentation from ..utils import is_vision_available, requires_backends from .base import PipelineTool if is_vision_available(): from PIL import Image class __a( _a ): """simple docstring""" lowerCAmelCase = ( '''This is a tool that creates a segmentation mask of an image according to a label. It cannot create an image.''' '''It takes two arguments named `image` which should be the original image, and `label` which should be a text ''' '''describing the elements what should be identified in the segmentation mask. The tool returns the mask.''' ) lowerCAmelCase = '''CIDAS/clipseg-rd64-refined''' lowerCAmelCase = '''image_segmenter''' lowerCAmelCase = CLIPSegForImageSegmentation lowerCAmelCase = ['''image''', '''text'''] lowerCAmelCase = ['''image'''] def __init__( self ,*_SCREAMING_SNAKE_CASE ,**_SCREAMING_SNAKE_CASE ) -> Dict: requires_backends(self ,['''vision'''] ) super().__init__(*_SCREAMING_SNAKE_CASE ,**_SCREAMING_SNAKE_CASE ) def a__ ( self ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ) -> Tuple: return self.pre_processor(text=[label] ,images=[image] ,padding=_SCREAMING_SNAKE_CASE ,return_tensors='''pt''' ) def a__ ( self ,_SCREAMING_SNAKE_CASE ) -> str: with torch.no_grad(): UpperCAmelCase_ : Dict = self.model(**_SCREAMING_SNAKE_CASE ).logits return logits def a__ ( self ,_SCREAMING_SNAKE_CASE ) -> Dict: UpperCAmelCase_ : Dict = outputs.cpu().detach().numpy() UpperCAmelCase_ : Any = 0 UpperCAmelCase_ : List[Any] = 1 return Image.fromarray((array * 255).astype(np.uinta ) )
30
0
from transformers import BertTokenizer, EncoderDecoderModel, SeqaSeqTrainer, SeqaSeqTrainingArguments from transformers.testing_utils import TestCasePlus, require_torch, slow from transformers.utils import is_datasets_available if is_datasets_available(): import datasets class lowerCamelCase__ ( _a ): @slow @require_torch def lowerCamelCase_ ( self : Any ): '''simple docstring''' lowerCamelCase__: Tuple = EncoderDecoderModel.from_encoder_decoder_pretrained("""prajjwal1/bert-tiny""" , """prajjwal1/bert-tiny""" ) lowerCamelCase__: Union[str, Any] = BertTokenizer.from_pretrained("""bert-base-uncased""" ) lowerCamelCase__: Optional[int] = bertabert.config.encoder.vocab_size lowerCamelCase__: Any = tokenizer.sep_token_id lowerCamelCase__: Optional[int] = tokenizer.cls_token_id lowerCamelCase__: List[Any] = 128 lowerCamelCase__: int = datasets.load_dataset("""cnn_dailymail""" , """3.0.0""" , split="""train[:1%]""" ) lowerCamelCase__: str = datasets.load_dataset("""cnn_dailymail""" , """3.0.0""" , split="""validation[:1%]""" ) lowerCamelCase__: str = train_dataset.select(range(32 ) ) lowerCamelCase__: int = val_dataset.select(range(16 ) ) lowerCamelCase__: Optional[Any] = 4 def _map_to_encoder_decoder_inputs(__a : Union[str, Any] ): # Tokenizer will automatically set [BOS] <text> [EOS] lowerCamelCase__: List[str] = tokenizer(batch["""article"""] , padding="""max_length""" , truncation=_SCREAMING_SNAKE_CASE , max_length=512 ) lowerCamelCase__: str = tokenizer(batch["""highlights"""] , padding="""max_length""" , truncation=_SCREAMING_SNAKE_CASE , max_length=128 ) lowerCamelCase__: List[str] = inputs.input_ids lowerCamelCase__: Optional[Any] = inputs.attention_mask lowerCamelCase__: Optional[Any] = outputs.input_ids lowerCamelCase__: Optional[int] = outputs.input_ids.copy() lowerCamelCase__: Any = [ [-100 if token == tokenizer.pad_token_id else token for token in labels] for labels in batch['''labels'''] ] lowerCamelCase__: Dict = outputs.attention_mask assert all(len(_SCREAMING_SNAKE_CASE ) == 512 for x in inputs.input_ids ) assert all(len(_SCREAMING_SNAKE_CASE ) == 128 for x in outputs.input_ids ) return batch def _compute_metrics(__a : Tuple ): lowerCamelCase__: List[str] = pred.label_ids lowerCamelCase__: Dict = pred.predictions # all unnecessary tokens are removed lowerCamelCase__: List[str] = tokenizer.batch_decode(_SCREAMING_SNAKE_CASE , skip_special_tokens=_SCREAMING_SNAKE_CASE ) lowerCamelCase__: List[str] = tokenizer.batch_decode(_SCREAMING_SNAKE_CASE , skip_special_tokens=_SCREAMING_SNAKE_CASE ) lowerCamelCase__: str = sum([int(pred_str[i] == label_str[i] ) for i in range(len(_SCREAMING_SNAKE_CASE ) )] ) / len(_SCREAMING_SNAKE_CASE ) return {"accuracy": accuracy} # map train dataset lowerCamelCase__: Union[str, Any] = train_dataset.map( _map_to_encoder_decoder_inputs , batched=_SCREAMING_SNAKE_CASE , batch_size=_SCREAMING_SNAKE_CASE , remove_columns=["""article""", """highlights"""] , ) train_dataset.set_format( type="""torch""" , columns=["""input_ids""", """attention_mask""", """decoder_input_ids""", """decoder_attention_mask""", """labels"""] , ) # same for validation dataset lowerCamelCase__: List[str] = val_dataset.map( _map_to_encoder_decoder_inputs , batched=_SCREAMING_SNAKE_CASE , batch_size=_SCREAMING_SNAKE_CASE , remove_columns=["""article""", """highlights"""] , ) val_dataset.set_format( type="""torch""" , columns=["""input_ids""", """attention_mask""", """decoder_input_ids""", """decoder_attention_mask""", """labels"""] , ) lowerCamelCase__: Optional[int] = self.get_auto_remove_tmp_dir() lowerCamelCase__: List[Any] = SeqaSeqTrainingArguments( output_dir=_SCREAMING_SNAKE_CASE , per_device_train_batch_size=_SCREAMING_SNAKE_CASE , per_device_eval_batch_size=_SCREAMING_SNAKE_CASE , predict_with_generate=_SCREAMING_SNAKE_CASE , evaluation_strategy="""steps""" , do_train=_SCREAMING_SNAKE_CASE , do_eval=_SCREAMING_SNAKE_CASE , warmup_steps=0 , eval_steps=2 , logging_steps=2 , ) # instantiate trainer lowerCamelCase__: int = SeqaSeqTrainer( model=_SCREAMING_SNAKE_CASE , args=_SCREAMING_SNAKE_CASE , compute_metrics=_compute_metrics , train_dataset=_SCREAMING_SNAKE_CASE , eval_dataset=_SCREAMING_SNAKE_CASE , tokenizer=_SCREAMING_SNAKE_CASE , ) # start training trainer.train()
306
import numpy as np import datasets __a = '\nCompute the Mahalanobis Distance\n\nMahalonobis distance is the distance between a point and a distribution.\nAnd not between two distinct points. It is effectively a multivariate equivalent of the Euclidean distance.\nIt was introduced by Prof. P. C. Mahalanobis in 1936\nand has been used in various statistical applications ever since\n[source: https://www.machinelearningplus.com/statistics/mahalanobis-distance/]\n' __a = '\\n@article{de2000mahalanobis,\n title={The mahalanobis distance},\n author={De Maesschalck, Roy and Jouan-Rimbaud, Delphine and Massart, D{\'e}sir{\'e} L},\n journal={Chemometrics and intelligent laboratory systems},\n volume={50},\n number={1},\n pages={1--18},\n year={2000},\n publisher={Elsevier}\n}\n' __a = '\nArgs:\n X: List of datapoints to be compared with the `reference_distribution`.\n reference_distribution: List of datapoints from the reference distribution we want to compare to.\nReturns:\n mahalanobis: The Mahalonobis distance for each datapoint in `X`.\nExamples:\n\n >>> mahalanobis_metric = datasets.load_metric("mahalanobis")\n >>> results = mahalanobis_metric.compute(reference_distribution=[[0, 1], [1, 0]], X=[[0, 1]])\n >>> print(results)\n {\'mahalanobis\': array([0.5])}\n' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class __a( datasets.Metric ): """simple docstring""" def a__ ( self ) -> Union[str, Any]: return datasets.MetricInfo( description=_DESCRIPTION ,citation=_CITATION ,inputs_description=_KWARGS_DESCRIPTION ,features=datasets.Features( { '''X''': datasets.Sequence(datasets.Value('''float''' ,id='''sequence''' ) ,id='''X''' ), } ) ,) def a__ ( self ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ) -> Any: # convert to numpy arrays UpperCAmelCase_ : str = np.array(_SCREAMING_SNAKE_CASE ) UpperCAmelCase_ : List[Any] = np.array(_SCREAMING_SNAKE_CASE ) # Assert that arrays are 2D if len(X.shape ) != 2: raise ValueError('''Expected `X` to be a 2D vector''' ) if len(reference_distribution.shape ) != 2: raise ValueError('''Expected `reference_distribution` to be a 2D vector''' ) if reference_distribution.shape[0] < 2: raise ValueError( '''Expected `reference_distribution` to be a 2D vector with more than one element in the first dimension''' ) # Get mahalanobis distance for each prediction UpperCAmelCase_ : List[str] = X - np.mean(_SCREAMING_SNAKE_CASE ) UpperCAmelCase_ : Dict = np.cov(reference_distribution.T ) try: UpperCAmelCase_ : Any = np.linalg.inv(_SCREAMING_SNAKE_CASE ) except np.linalg.LinAlgError: UpperCAmelCase_ : List[str] = np.linalg.pinv(_SCREAMING_SNAKE_CASE ) UpperCAmelCase_ : Union[str, Any] = np.dot(_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ) UpperCAmelCase_ : List[Any] = np.dot(_SCREAMING_SNAKE_CASE ,X_minus_mu.T ).diagonal() return {"mahalanobis": mahal_dist}
30
0
from unittest.mock import Mock, patch from file_transfer.send_file import send_file @patch("socket.socket" ) @patch("builtins.open" ) def __lowerCAmelCase ( __magic_name__ , __magic_name__ ): _lowercase: int = Mock() _lowercase: Dict = conn, Mock() _lowercase: Tuple = iter([1, None] ) _lowercase: int = lambda __magic_name__ : next(_lowercase ) # ===== invoke ===== send_file(filename="mytext.txt" , testing=_lowercase ) # ===== ensurance ===== sock.assert_called_once() sock.return_value.bind.assert_called_once() sock.return_value.listen.assert_called_once() sock.return_value.accept.assert_called_once() conn.recv.assert_called_once() file.return_value.__enter__.assert_called_once() file.return_value.__enter__.return_value.read.assert_called() conn.send.assert_called_once() conn.close.assert_called_once() sock.return_value.shutdown.assert_called_once() sock.return_value.close.assert_called_once()
226
import collections from typing import List, Optional, Union from ...tokenization_utils_base import BatchEncoding from ...utils import TensorType, add_end_docstrings, add_start_docstrings, logging from ..bert.tokenization_bert import BertTokenizer __a = logging.get_logger(__name__) __a = {'vocab_file': 'vocab.txt', 'tokenizer_file': 'tokenizer.json'} __a = { 'vocab_file': { 'facebook/dpr-ctx_encoder-single-nq-base': ( 'https://huggingface.co/facebook/dpr-ctx_encoder-single-nq-base/resolve/main/vocab.txt' ), 'facebook/dpr-ctx_encoder-multiset-base': ( 'https://huggingface.co/facebook/dpr-ctx_encoder-multiset-base/resolve/main/vocab.txt' ), }, 'tokenizer_file': { 'facebook/dpr-ctx_encoder-single-nq-base': ( 'https://huggingface.co/facebook/dpr-ctx_encoder-single-nq-base/resolve/main/tokenizer.json' ), 'facebook/dpr-ctx_encoder-multiset-base': ( 'https://huggingface.co/facebook/dpr-ctx_encoder-multiset-base/resolve/main/tokenizer.json' ), }, } __a = { 'vocab_file': { 'facebook/dpr-question_encoder-single-nq-base': ( 'https://huggingface.co/facebook/dpr-question_encoder-single-nq-base/resolve/main/vocab.txt' ), 'facebook/dpr-question_encoder-multiset-base': ( 'https://huggingface.co/facebook/dpr-question_encoder-multiset-base/resolve/main/vocab.txt' ), }, 'tokenizer_file': { 'facebook/dpr-question_encoder-single-nq-base': ( 'https://huggingface.co/facebook/dpr-question_encoder-single-nq-base/resolve/main/tokenizer.json' ), 'facebook/dpr-question_encoder-multiset-base': ( 'https://huggingface.co/facebook/dpr-question_encoder-multiset-base/resolve/main/tokenizer.json' ), }, } __a = { 'vocab_file': { 'facebook/dpr-reader-single-nq-base': ( 'https://huggingface.co/facebook/dpr-reader-single-nq-base/resolve/main/vocab.txt' ), 'facebook/dpr-reader-multiset-base': ( 'https://huggingface.co/facebook/dpr-reader-multiset-base/resolve/main/vocab.txt' ), }, 'tokenizer_file': { 'facebook/dpr-reader-single-nq-base': ( 'https://huggingface.co/facebook/dpr-reader-single-nq-base/resolve/main/tokenizer.json' ), 'facebook/dpr-reader-multiset-base': ( 'https://huggingface.co/facebook/dpr-reader-multiset-base/resolve/main/tokenizer.json' ), }, } __a = { 'facebook/dpr-ctx_encoder-single-nq-base': 512, 'facebook/dpr-ctx_encoder-multiset-base': 512, } __a = { 'facebook/dpr-question_encoder-single-nq-base': 512, 'facebook/dpr-question_encoder-multiset-base': 512, } __a = { 'facebook/dpr-reader-single-nq-base': 512, 'facebook/dpr-reader-multiset-base': 512, } __a = { 'facebook/dpr-ctx_encoder-single-nq-base': {'do_lower_case': True}, 'facebook/dpr-ctx_encoder-multiset-base': {'do_lower_case': True}, } __a = { 'facebook/dpr-question_encoder-single-nq-base': {'do_lower_case': True}, 'facebook/dpr-question_encoder-multiset-base': {'do_lower_case': True}, } __a = { 'facebook/dpr-reader-single-nq-base': {'do_lower_case': True}, 'facebook/dpr-reader-multiset-base': {'do_lower_case': True}, } class __a( _a ): """simple docstring""" lowerCAmelCase = VOCAB_FILES_NAMES lowerCAmelCase = CONTEXT_ENCODER_PRETRAINED_VOCAB_FILES_MAP lowerCAmelCase = CONTEXT_ENCODER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCAmelCase = CONTEXT_ENCODER_PRETRAINED_INIT_CONFIGURATION class __a( _a ): """simple docstring""" lowerCAmelCase = VOCAB_FILES_NAMES lowerCAmelCase = QUESTION_ENCODER_PRETRAINED_VOCAB_FILES_MAP lowerCAmelCase = QUESTION_ENCODER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCAmelCase = QUESTION_ENCODER_PRETRAINED_INIT_CONFIGURATION __a = collections.namedtuple( 'DPRSpanPrediction', ['span_score', 'relevance_score', 'doc_id', 'start_index', 'end_index', 'text'] ) __a = collections.namedtuple('DPRReaderOutput', ['start_logits', 'end_logits', 'relevance_logits']) __a = R'\n Return a dictionary with the token ids of the input strings and other information to give to `.decode_best_spans`.\n It converts the strings of a question and different passages (title and text) in a sequence of IDs (integers),\n using the tokenizer and vocabulary. The resulting `input_ids` is a matrix of size `(n_passages, sequence_length)`\n with the format:\n\n ```\n [CLS] <question token ids> [SEP] <titles ids> [SEP] <texts ids>\n ```\n\n Args:\n questions (`str` or `List[str]`):\n The questions to be encoded. You can specify one question for many passages. In this case, the question\n will be duplicated like `[questions] * n_passages`. Otherwise you have to specify as many questions as in\n `titles` or `texts`.\n titles (`str` or `List[str]`):\n The passages titles to be encoded. This can be a string or a list of strings if there are several passages.\n texts (`str` or `List[str]`):\n The passages texts to be encoded. This can be a string or a list of strings if there are several passages.\n padding (`bool`, `str` or [`~utils.PaddingStrategy`], *optional*, defaults to `False`):\n Activates and controls padding. Accepts the following values:\n\n - `True` or `\'longest\'`: Pad to the longest sequence in the batch (or no padding if only a single sequence\n if provided).\n - `\'max_length\'`: Pad to a maximum length specified with the argument `max_length` or to the maximum\n acceptable input length for the model if that argument is not provided.\n - `False` or `\'do_not_pad\'` (default): No padding (i.e., can output a batch with sequences of different\n lengths).\n truncation (`bool`, `str` or [`~tokenization_utils_base.TruncationStrategy`], *optional*, defaults to `False`):\n Activates and controls truncation. Accepts the following values:\n\n - `True` or `\'longest_first\'`: Truncate to a maximum length specified with the argument `max_length` or to\n the maximum acceptable input length for the model if that argument is not provided. This will truncate\n token by token, removing a token from the longest sequence in the pair if a pair of sequences (or a batch\n of pairs) is provided.\n - `\'only_first\'`: Truncate to a maximum length specified with the argument `max_length` or to the maximum\n acceptable input length for the model if that argument is not provided. This will only truncate the first\n sequence of a pair if a pair of sequences (or a batch of pairs) is provided.\n - `\'only_second\'`: Truncate to a maximum length specified with the argument `max_length` or to the maximum\n acceptable input length for the model if that argument is not provided. This will only truncate the\n second sequence of a pair if a pair of sequences (or a batch of pairs) is provided.\n - `False` or `\'do_not_truncate\'` (default): No truncation (i.e., can output batch with sequence lengths\n greater than the model maximum admissible input size).\n max_length (`int`, *optional*):\n Controls the maximum length to use by one of the truncation/padding parameters.\n\n If left unset or set to `None`, this will use the predefined model maximum length if a maximum length\n is required by one of the truncation/padding parameters. If the model has no specific maximum input\n length (like XLNet) truncation/padding to a maximum length will be deactivated.\n return_tensors (`str` or [`~utils.TensorType`], *optional*):\n If set, will return tensors instead of list of python integers. Acceptable values are:\n\n - `\'tf\'`: Return TensorFlow `tf.constant` objects.\n - `\'pt\'`: Return PyTorch `torch.Tensor` objects.\n - `\'np\'`: Return Numpy `np.ndarray` objects.\n return_attention_mask (`bool`, *optional*):\n Whether or not to return the attention mask. If not set, will return the attention mask according to the\n specific tokenizer\'s default, defined by the `return_outputs` attribute.\n\n [What are attention masks?](../glossary#attention-mask)\n\n Returns:\n `Dict[str, List[List[int]]]`: A dictionary with the following keys:\n\n - `input_ids`: List of token ids to be fed to a model.\n - `attention_mask`: List of indices specifying which tokens should be attended to by the model.\n ' @add_start_docstrings(_a ) class __a: """simple docstring""" def __call__( self ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE = None ,_SCREAMING_SNAKE_CASE = None ,_SCREAMING_SNAKE_CASE = False ,_SCREAMING_SNAKE_CASE = False ,_SCREAMING_SNAKE_CASE = None ,_SCREAMING_SNAKE_CASE = None ,_SCREAMING_SNAKE_CASE = None ,**_SCREAMING_SNAKE_CASE ,) -> BatchEncoding: if titles is None and texts is None: return super().__call__( _SCREAMING_SNAKE_CASE ,padding=_SCREAMING_SNAKE_CASE ,truncation=_SCREAMING_SNAKE_CASE ,max_length=_SCREAMING_SNAKE_CASE ,return_tensors=_SCREAMING_SNAKE_CASE ,return_attention_mask=_SCREAMING_SNAKE_CASE ,**_SCREAMING_SNAKE_CASE ,) elif titles is None or texts is None: UpperCAmelCase_ : List[str] = titles if texts is None else texts return super().__call__( _SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ,padding=_SCREAMING_SNAKE_CASE ,truncation=_SCREAMING_SNAKE_CASE ,max_length=_SCREAMING_SNAKE_CASE ,return_tensors=_SCREAMING_SNAKE_CASE ,return_attention_mask=_SCREAMING_SNAKE_CASE ,**_SCREAMING_SNAKE_CASE ,) UpperCAmelCase_ : List[Any] = titles if not isinstance(_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ) else [titles] UpperCAmelCase_ : List[str] = texts if not isinstance(_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ) else [texts] UpperCAmelCase_ : Any = len(_SCREAMING_SNAKE_CASE ) UpperCAmelCase_ : List[Any] = questions if not isinstance(_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ) else [questions] * n_passages if len(_SCREAMING_SNAKE_CASE ) != len(_SCREAMING_SNAKE_CASE ): raise ValueError( f'''There should be as many titles than texts but got {len(_SCREAMING_SNAKE_CASE )} titles and {len(_SCREAMING_SNAKE_CASE )} texts.''' ) UpperCAmelCase_ : Tuple = super().__call__(_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ,padding=_SCREAMING_SNAKE_CASE ,truncation=_SCREAMING_SNAKE_CASE )['''input_ids'''] UpperCAmelCase_ : int = super().__call__(_SCREAMING_SNAKE_CASE ,add_special_tokens=_SCREAMING_SNAKE_CASE ,padding=_SCREAMING_SNAKE_CASE ,truncation=_SCREAMING_SNAKE_CASE )['''input_ids'''] UpperCAmelCase_ : Optional[int] = { '''input_ids''': [ (encoded_question_and_title + encoded_text)[:max_length] if max_length is not None and truncation else encoded_question_and_title + encoded_text for encoded_question_and_title, encoded_text in zip(_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ) ] } if return_attention_mask is not False: UpperCAmelCase_ : List[str] = [] for input_ids in encoded_inputs["input_ids"]: attention_mask.append([int(input_id != self.pad_token_id ) for input_id in input_ids] ) UpperCAmelCase_ : Dict = attention_mask return self.pad(_SCREAMING_SNAKE_CASE ,padding=_SCREAMING_SNAKE_CASE ,max_length=_SCREAMING_SNAKE_CASE ,return_tensors=_SCREAMING_SNAKE_CASE ) def a__ ( self ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE = 16 ,_SCREAMING_SNAKE_CASE = 64 ,_SCREAMING_SNAKE_CASE = 4 ,) -> List[DPRSpanPrediction]: UpperCAmelCase_ : Tuple = reader_input['''input_ids'''] UpperCAmelCase_, UpperCAmelCase_, UpperCAmelCase_ : Optional[Any] = reader_output[:3] UpperCAmelCase_ : Optional[Any] = len(_SCREAMING_SNAKE_CASE ) UpperCAmelCase_ : int = sorted(range(_SCREAMING_SNAKE_CASE ) ,reverse=_SCREAMING_SNAKE_CASE ,key=relevance_logits.__getitem__ ) UpperCAmelCase_ : List[DPRReaderOutput] = [] for doc_id in sorted_docs: UpperCAmelCase_ : List[Any] = list(input_ids[doc_id] ) # assuming question & title information is at the beginning of the sequence UpperCAmelCase_ : str = sequence_ids.index(self.sep_token_id ,2 ) + 1 # second sep id if sequence_ids[-1] == self.pad_token_id: UpperCAmelCase_ : List[Any] = sequence_ids.index(self.pad_token_id ) else: UpperCAmelCase_ : int = len(_SCREAMING_SNAKE_CASE ) UpperCAmelCase_ : Tuple = self._get_best_spans( start_logits=start_logits[doc_id][passage_offset:sequence_len] ,end_logits=end_logits[doc_id][passage_offset:sequence_len] ,max_answer_length=_SCREAMING_SNAKE_CASE ,top_spans=_SCREAMING_SNAKE_CASE ,) for start_index, end_index in best_spans: start_index += passage_offset end_index += passage_offset nbest_spans_predictions.append( DPRSpanPrediction( span_score=start_logits[doc_id][start_index] + end_logits[doc_id][end_index] ,relevance_score=relevance_logits[doc_id] ,doc_id=_SCREAMING_SNAKE_CASE ,start_index=_SCREAMING_SNAKE_CASE ,end_index=_SCREAMING_SNAKE_CASE ,text=self.decode(sequence_ids[start_index : end_index + 1] ) ,) ) if len(_SCREAMING_SNAKE_CASE ) >= num_spans: break return nbest_spans_predictions[:num_spans] def a__ ( self ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ,) -> List[DPRSpanPrediction]: UpperCAmelCase_ : Tuple = [] for start_index, start_score in enumerate(_SCREAMING_SNAKE_CASE ): for answer_length, end_score in enumerate(end_logits[start_index : start_index + max_answer_length] ): scores.append(((start_index, start_index + answer_length), start_score + end_score) ) UpperCAmelCase_ : int = sorted(_SCREAMING_SNAKE_CASE ,key=lambda _SCREAMING_SNAKE_CASE : x[1] ,reverse=_SCREAMING_SNAKE_CASE ) UpperCAmelCase_ : Union[str, Any] = [] for (start_index, end_index), score in scores: if start_index > end_index: raise ValueError(f'''Wrong span indices: [{start_index}:{end_index}]''' ) UpperCAmelCase_ : str = end_index - start_index + 1 if length > max_answer_length: raise ValueError(f'''Span is too long: {length} > {max_answer_length}''' ) if any( start_index <= prev_start_index <= prev_end_index <= end_index or prev_start_index <= start_index <= end_index <= prev_end_index for (prev_start_index, prev_end_index) in chosen_span_intervals ): continue chosen_span_intervals.append((start_index, end_index) ) if len(_SCREAMING_SNAKE_CASE ) == top_spans: break return chosen_span_intervals @add_end_docstrings(_a ) class __a( _a , _a ): """simple docstring""" lowerCAmelCase = VOCAB_FILES_NAMES lowerCAmelCase = READER_PRETRAINED_VOCAB_FILES_MAP lowerCAmelCase = READER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCAmelCase = READER_PRETRAINED_INIT_CONFIGURATION lowerCAmelCase = ['''input_ids''', '''attention_mask''']
30
0
from diffusers.utils.testing_utils import require_onnxruntime @require_onnxruntime class lowercase__: """simple docstring""" pass
97
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_torch_available, ) __a = { 'configuration_encodec': [ 'ENCODEC_PRETRAINED_CONFIG_ARCHIVE_MAP', 'EncodecConfig', ], 'feature_extraction_encodec': ['EncodecFeatureExtractor'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __a = [ 'ENCODEC_PRETRAINED_MODEL_ARCHIVE_LIST', 'EncodecModel', 'EncodecPreTrainedModel', ] if TYPE_CHECKING: from .configuration_encodec import ( ENCODEC_PRETRAINED_CONFIG_ARCHIVE_MAP, EncodecConfig, ) from .feature_extraction_encodec import EncodecFeatureExtractor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_encodec import ( ENCODEC_PRETRAINED_MODEL_ARCHIVE_LIST, EncodecModel, EncodecPreTrainedModel, ) else: import sys __a = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
30
0
'''simple docstring''' import math_equivalence # From: git+https://github.com/hendrycks/math.git import datasets SCREAMING_SNAKE_CASE = """\\n@article{hendrycksmath2021,\n title={Measuring Mathematical Problem Solving With the MATH Dataset},\n author={Dan Hendrycks\n and Collin Burns\n and Saurav Kadavath\n and Akul Arora\n and Steven Basart\n and Eric Tang\n and Dawn Song\n and Jacob Steinhardt},\n journal={arXiv preprint arXiv:2103.03874},\n year={2021}\n}\n""" SCREAMING_SNAKE_CASE = """\\nThis metric is used to assess performance on the Mathematics Aptitude Test of Heuristics (MATH) dataset.\nIt first canonicalizes the inputs (e.g., converting \"1/2\" to \"\\frac{1}{2}\") and then computes accuracy.\n""" SCREAMING_SNAKE_CASE = R"""\nCalculates accuracy after canonicalizing inputs.\n\nArgs:\n predictions: list of predictions to score. Each prediction\n is a string that contains natural language and LaTex.\n references: list of reference for each prediction. Each\n reference is a string that contains natural language\n and LaTex.\nReturns:\n accuracy: accuracy after canonicalizing inputs\n (e.g., converting \"1/2\" to \"\\frac{1}{2}\")\n\nExamples:\n >>> metric = datasets.load_metric(\"competition_math\")\n >>> results = metric.compute(references=[\"\\frac{1}{2}\"], predictions=[\"1/2\"])\n >>> print(results)\n {\'accuracy\': 1.0}\n""" @datasets.utils.file_utils.add_end_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class UpperCAmelCase_ ( datasets.Metric ): '''simple docstring''' def UpperCamelCase ( self : Union[str, Any] ): '''simple docstring''' return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { "predictions": datasets.Value("string" ), "references": datasets.Value("string" ), } ) , homepage="https://github.com/hendrycks/math" , codebase_urls=["https://github.com/hendrycks/math"] , ) def UpperCamelCase ( self : Tuple , snake_case__ : Tuple , snake_case__ : Dict ): '''simple docstring''' UpperCAmelCase__ : List[Any] = 0.0 for i, j in zip(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): n_correct += 1.0 if math_equivalence.is_equiv(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) else 0.0 UpperCAmelCase__ : str = n_correct / len(_SCREAMING_SNAKE_CASE ) return { "accuracy": accuracy, }
199
import functools import operator from ...configuration_utils import PretrainedConfig from ...utils import logging __a = logging.get_logger(__name__) __a = { 'facebook/wav2vec2-base-960h': 'https://huggingface.co/facebook/wav2vec2-base-960h/resolve/main/config.json', # See all Wav2Vec2 models at https://huggingface.co/models?filter=wav2vec2 } class __a( _a ): """simple docstring""" lowerCAmelCase = '''wav2vec2''' def __init__( self ,_SCREAMING_SNAKE_CASE=32 ,_SCREAMING_SNAKE_CASE=768 ,_SCREAMING_SNAKE_CASE=12 ,_SCREAMING_SNAKE_CASE=12 ,_SCREAMING_SNAKE_CASE=3_072 ,_SCREAMING_SNAKE_CASE="gelu" ,_SCREAMING_SNAKE_CASE=0.1 ,_SCREAMING_SNAKE_CASE=0.1 ,_SCREAMING_SNAKE_CASE=0.1 ,_SCREAMING_SNAKE_CASE=0.0 ,_SCREAMING_SNAKE_CASE=0.0 ,_SCREAMING_SNAKE_CASE=0.1 ,_SCREAMING_SNAKE_CASE=0.1 ,_SCREAMING_SNAKE_CASE=0.02 ,_SCREAMING_SNAKE_CASE=1e-5 ,_SCREAMING_SNAKE_CASE="group" ,_SCREAMING_SNAKE_CASE="gelu" ,_SCREAMING_SNAKE_CASE=(512, 512, 512, 512, 512, 512, 512) ,_SCREAMING_SNAKE_CASE=(5, 2, 2, 2, 2, 2, 2) ,_SCREAMING_SNAKE_CASE=(10, 3, 3, 3, 3, 2, 2) ,_SCREAMING_SNAKE_CASE=False ,_SCREAMING_SNAKE_CASE=128 ,_SCREAMING_SNAKE_CASE=16 ,_SCREAMING_SNAKE_CASE=False ,_SCREAMING_SNAKE_CASE=True ,_SCREAMING_SNAKE_CASE=0.05 ,_SCREAMING_SNAKE_CASE=10 ,_SCREAMING_SNAKE_CASE=2 ,_SCREAMING_SNAKE_CASE=0.0 ,_SCREAMING_SNAKE_CASE=10 ,_SCREAMING_SNAKE_CASE=0 ,_SCREAMING_SNAKE_CASE=320 ,_SCREAMING_SNAKE_CASE=2 ,_SCREAMING_SNAKE_CASE=0.1 ,_SCREAMING_SNAKE_CASE=100 ,_SCREAMING_SNAKE_CASE=256 ,_SCREAMING_SNAKE_CASE=256 ,_SCREAMING_SNAKE_CASE=0.1 ,_SCREAMING_SNAKE_CASE="sum" ,_SCREAMING_SNAKE_CASE=False ,_SCREAMING_SNAKE_CASE=False ,_SCREAMING_SNAKE_CASE=256 ,_SCREAMING_SNAKE_CASE=(512, 512, 512, 512, 1_500) ,_SCREAMING_SNAKE_CASE=(5, 3, 3, 1, 1) ,_SCREAMING_SNAKE_CASE=(1, 2, 3, 1, 1) ,_SCREAMING_SNAKE_CASE=512 ,_SCREAMING_SNAKE_CASE=0 ,_SCREAMING_SNAKE_CASE=1 ,_SCREAMING_SNAKE_CASE=2 ,_SCREAMING_SNAKE_CASE=False ,_SCREAMING_SNAKE_CASE=3 ,_SCREAMING_SNAKE_CASE=2 ,_SCREAMING_SNAKE_CASE=3 ,_SCREAMING_SNAKE_CASE=None ,_SCREAMING_SNAKE_CASE=None ,**_SCREAMING_SNAKE_CASE ,) -> Optional[int]: super().__init__(**_SCREAMING_SNAKE_CASE ,pad_token_id=_SCREAMING_SNAKE_CASE ,bos_token_id=_SCREAMING_SNAKE_CASE ,eos_token_id=_SCREAMING_SNAKE_CASE ) UpperCAmelCase_ : int = hidden_size UpperCAmelCase_ : Tuple = feat_extract_norm UpperCAmelCase_ : List[Any] = feat_extract_activation UpperCAmelCase_ : str = list(_SCREAMING_SNAKE_CASE ) UpperCAmelCase_ : Any = list(_SCREAMING_SNAKE_CASE ) UpperCAmelCase_ : Tuple = list(_SCREAMING_SNAKE_CASE ) UpperCAmelCase_ : Dict = conv_bias UpperCAmelCase_ : str = num_conv_pos_embeddings UpperCAmelCase_ : Any = num_conv_pos_embedding_groups UpperCAmelCase_ : Tuple = len(self.conv_dim ) UpperCAmelCase_ : Union[str, Any] = num_hidden_layers UpperCAmelCase_ : Dict = intermediate_size UpperCAmelCase_ : Any = hidden_act UpperCAmelCase_ : Any = num_attention_heads UpperCAmelCase_ : str = hidden_dropout UpperCAmelCase_ : int = attention_dropout UpperCAmelCase_ : Tuple = activation_dropout UpperCAmelCase_ : List[str] = feat_proj_dropout UpperCAmelCase_ : int = final_dropout UpperCAmelCase_ : Union[str, Any] = layerdrop UpperCAmelCase_ : Optional[Any] = layer_norm_eps UpperCAmelCase_ : str = initializer_range UpperCAmelCase_ : List[str] = vocab_size UpperCAmelCase_ : Optional[int] = do_stable_layer_norm UpperCAmelCase_ : Optional[int] = use_weighted_layer_sum if ( (len(self.conv_stride ) != self.num_feat_extract_layers) or (len(self.conv_kernel ) != self.num_feat_extract_layers) or (len(self.conv_dim ) != self.num_feat_extract_layers) ): raise ValueError( '''Configuration for convolutional layers is incorrect. It is required that `len(config.conv_dim)` ==''' ''' `len(config.conv_stride)` == `len(config.conv_kernel)`, but is `len(config.conv_dim) =''' f''' {len(self.conv_dim )}`, `len(config.conv_stride) = {len(self.conv_stride )}`,''' f''' `len(config.conv_kernel) = {len(self.conv_kernel )}`.''' ) # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 UpperCAmelCase_ : Optional[int] = apply_spec_augment UpperCAmelCase_ : Tuple = mask_time_prob UpperCAmelCase_ : Optional[Any] = mask_time_length UpperCAmelCase_ : Union[str, Any] = mask_time_min_masks UpperCAmelCase_ : Optional[Any] = mask_feature_prob UpperCAmelCase_ : str = mask_feature_length UpperCAmelCase_ : Dict = mask_feature_min_masks # parameters for pretraining with codevector quantized representations UpperCAmelCase_ : Union[str, Any] = num_codevectors_per_group UpperCAmelCase_ : Any = num_codevector_groups UpperCAmelCase_ : Union[str, Any] = contrastive_logits_temperature UpperCAmelCase_ : List[str] = feat_quantizer_dropout UpperCAmelCase_ : Dict = num_negatives UpperCAmelCase_ : List[str] = codevector_dim UpperCAmelCase_ : List[str] = proj_codevector_dim UpperCAmelCase_ : str = diversity_loss_weight # ctc loss UpperCAmelCase_ : List[Any] = ctc_loss_reduction UpperCAmelCase_ : List[str] = ctc_zero_infinity # adapter UpperCAmelCase_ : Optional[Any] = add_adapter UpperCAmelCase_ : Any = adapter_kernel_size UpperCAmelCase_ : Optional[int] = adapter_stride UpperCAmelCase_ : List[Any] = num_adapter_layers UpperCAmelCase_ : Optional[Any] = output_hidden_size or hidden_size UpperCAmelCase_ : Optional[int] = adapter_attn_dim # SequenceClassification-specific parameter. Feel free to ignore for other classes. UpperCAmelCase_ : List[str] = classifier_proj_size # XVector-specific parameters. Feel free to ignore for other classes. UpperCAmelCase_ : List[str] = list(_SCREAMING_SNAKE_CASE ) UpperCAmelCase_ : int = list(_SCREAMING_SNAKE_CASE ) UpperCAmelCase_ : Dict = list(_SCREAMING_SNAKE_CASE ) UpperCAmelCase_ : Any = xvector_output_dim @property def a__ ( self ) -> Any: return functools.reduce(operator.mul ,self.conv_stride ,1 )
30
0
import argparse __lowerCAmelCase : Optional[Any] ='docs/source/_static/js/custom.js' def _UpperCamelCase ( lowercase__ ): with open(_lowercase , encoding='''utf-8''' , newline='''\n''' ) as f: __SCREAMING_SNAKE_CASE : List[Any] = f.readlines() __SCREAMING_SNAKE_CASE : List[Any] = 0 # First let's put the right version while not lines[index].startswith('''const stableVersion =''' ): index += 1 __SCREAMING_SNAKE_CASE : Optional[int] = F'''const stableVersion = "v{version}"\n''' # Then update the dictionary while not lines[index].startswith('''const versionMapping = {''' ): index += 1 # We go until the end while not lines[index].startswith('''}''' ): index += 1 # We add the new version at the end lines[index - 1] += F''' "v{version}": "v{version}",\n''' with open(_lowercase , '''w''' , encoding='''utf-8''' , newline='''\n''' ) as f: f.writelines(_lowercase ) if __name__ == "__main__": __lowerCAmelCase : Dict =argparse.ArgumentParser() parser.add_argument('--version', help='Release version.') __lowerCAmelCase : int =parser.parse_args() update_custom_js(args.version)
696
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tokenizers_available, is_torch_available, ) __a = {} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __a = ['NllbTokenizer'] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __a = ['NllbTokenizerFast'] if TYPE_CHECKING: try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_nllb import NllbTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_nllb_fast import NllbTokenizerFast else: import sys __a = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
30
0
_SCREAMING_SNAKE_CASE : Optional[Any] = "ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789+/" def UpperCAmelCase__ (UpperCamelCase_ ): """simple docstring""" if not isinstance(_lowercase ,_lowercase ): snake_case = F'''a bytes-like object is required, not \'{data.__class__.__name__}\'''' raise TypeError(_lowercase ) snake_case = ''''''.join(bin(_lowercase )[2:].zfill(8 ) for byte in data ) snake_case = len(_lowercase ) % 6 != 0 if padding_needed: # The padding that will be added later snake_case = B'''=''' * ((6 - len(_lowercase ) % 6) // 2) # Append binary_stream with arbitrary binary digits (0's by default) to make its # length a multiple of 6. binary_stream += "0" * (6 - len(_lowercase ) % 6) else: snake_case = B'''''' # Encode every 6 binary digits to their corresponding Base64 character return ( "".join( B64_CHARSET[int(binary_stream[index : index + 6] ,2 )] for index in range(0 ,len(_lowercase ) ,6 ) ).encode() + padding ) def UpperCAmelCase__ (UpperCamelCase_ ): """simple docstring""" if not isinstance(_lowercase ,_lowercase ) and not isinstance(_lowercase ,_lowercase ): snake_case = ( '''argument should be a bytes-like object or ASCII string, ''' F'''not \'{encoded_data.__class__.__name__}\'''' ) raise TypeError(_lowercase ) # In case encoded_data is a bytes-like object, make sure it contains only # ASCII characters so we convert it to a string object if isinstance(_lowercase ,_lowercase ): try: snake_case = encoded_data.decode('''utf-8''' ) except UnicodeDecodeError: raise ValueError('''base64 encoded data should only contain ASCII characters''' ) snake_case = encoded_data.count('''=''' ) # Check if the encoded string contains non base64 characters if padding: assert all( char in B64_CHARSET for char in encoded_data[:-padding] ), "Invalid base64 character(s) found." else: assert all( char in B64_CHARSET for char in encoded_data ), "Invalid base64 character(s) found." # Check the padding assert len(_lowercase ) % 4 == 0 and padding < 3, "Incorrect padding" if padding: # Remove padding if there is one snake_case = encoded_data[:-padding] snake_case = ''''''.join( bin(B64_CHARSET.index(_lowercase ) )[2:].zfill(6 ) for char in encoded_data )[: -padding * 2] else: snake_case = ''''''.join( bin(B64_CHARSET.index(_lowercase ) )[2:].zfill(6 ) for char in encoded_data ) snake_case = [ int(binary_stream[index : index + 8] ,2 ) for index in range(0 ,len(_lowercase ) ,8 ) ] return bytes(_lowercase ) if __name__ == "__main__": import doctest doctest.testmod()
550
import json import multiprocessing import os import re from collections import defaultdict import torch from accelerate import Accelerator from accelerate.utils import set_seed from arguments import HumanEvalArguments from datasets import load_dataset, load_metric from torch.utils.data import IterableDataset from torch.utils.data.dataloader import DataLoader from tqdm import tqdm import transformers from transformers import AutoModelForCausalLM, AutoTokenizer, HfArgumentParser, StoppingCriteria, StoppingCriteriaList __a = ['\nclass', '\ndef', '\n#', '\n@', '\nprint', '\nif'] class __a( _a ): """simple docstring""" def __init__( self ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE=None ,_SCREAMING_SNAKE_CASE=1 ) -> Dict: UpperCAmelCase_ : List[Any] = tokenizer UpperCAmelCase_ : int = dataset UpperCAmelCase_ : Dict = len(_SCREAMING_SNAKE_CASE ) if n_tasks is None else n_tasks UpperCAmelCase_ : Optional[int] = n_copies def __iter__( self ) -> Any: UpperCAmelCase_ : List[Any] = [] for task in range(self.n_tasks ): # without strip, the model generate commented codes ... prompts.append(self.tokenizer.eos_token + self.dataset[task]['''prompt'''].strip() ) UpperCAmelCase_ : Union[str, Any] = self.tokenizer(_SCREAMING_SNAKE_CASE ,padding=_SCREAMING_SNAKE_CASE ,return_tensors='''pt''' ) for task in range(self.n_tasks ): for _ in range(self.n_copies ): yield { "ids": outputs.input_ids[task], "task_id": task, "input_len": outputs.attention_mask[task].sum(), } class __a( _a ): """simple docstring""" def __init__( self ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ) -> List[Any]: UpperCAmelCase_ : str = start_length UpperCAmelCase_ : Optional[int] = eof_strings UpperCAmelCase_ : str = tokenizer def __call__( self ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ,**_SCREAMING_SNAKE_CASE ) -> List[Any]: UpperCAmelCase_ : Optional[Any] = self.tokenizer.batch_decode(input_ids[:, self.start_length :] ) UpperCAmelCase_ : Optional[int] = [] for decoded_generation in decoded_generations: done.append(any(stop_string in decoded_generation for stop_string in self.eof_strings ) ) return all(_SCREAMING_SNAKE_CASE ) def lowerCamelCase__ ( _lowercase ): '''simple docstring''' UpperCAmelCase_ : Tuple = re.split('''(%s)''' % '''|'''.join(_lowercase ) , _lowercase ) # last string should be "" return "".join(string_list[:-2] ) def lowerCamelCase__ ( _lowercase , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase=20 , **_lowercase ): '''simple docstring''' UpperCAmelCase_ : List[Any] = defaultdict(_lowercase ) # dict of list of generated tokens for step, batch in tqdm(enumerate(_lowercase ) ): with torch.no_grad(): UpperCAmelCase_ : Dict = batch['''ids'''].shape[-1] UpperCAmelCase_ : Optional[Any] = accelerator.unwrap_model(_lowercase ).generate( input_ids=batch['''ids'''][:, : batch['''input_len''']] , num_return_sequences=_lowercase , **_lowercase ) # each task is generated batch_size times UpperCAmelCase_ : Union[str, Any] = batch['''task_id'''].repeat(_lowercase ) UpperCAmelCase_ : Dict = accelerator.pad_across_processes( _lowercase , dim=1 , pad_index=tokenizer.pad_token_id ) UpperCAmelCase_, UpperCAmelCase_ : List[str] = accelerator.gather((generated_tokens, generated_tasks) ) UpperCAmelCase_ : Union[str, Any] = generated_tokens.cpu().numpy() UpperCAmelCase_ : Union[str, Any] = generated_tasks.cpu().numpy() for task, generated_tokens in zip(_lowercase , _lowercase ): gen_token_dict[task].append(_lowercase ) UpperCAmelCase_ : Union[str, Any] = [[] for _ in range(_lowercase )] for task, generated_tokens in gen_token_dict.items(): for s in generated_tokens: UpperCAmelCase_ : int = tokenizer.decode(_lowercase , skip_special_tokens=_lowercase , clean_up_tokenization_spaces=_lowercase ) code_gens[task].append(remove_last_block(_lowercase ) ) return code_gens def lowerCamelCase__ ( ): '''simple docstring''' UpperCAmelCase_ : Optional[Any] = HfArgumentParser(_lowercase ) UpperCAmelCase_ : int = parser.parse_args() transformers.logging.set_verbosity_error() # enables code execution in code_eval metric UpperCAmelCase_ : Optional[Any] = args.HF_ALLOW_CODE_EVAL # make sure tokenizer plays nice with multiprocessing UpperCAmelCase_ : List[Any] = '''false''' if args.num_workers is None: UpperCAmelCase_ : Optional[Any] = multiprocessing.cpu_count() # Use dataset load to feed to accelerate UpperCAmelCase_ : int = Accelerator() set_seed(args.seed , device_specific=_lowercase ) # Load model and tokenizer UpperCAmelCase_ : Tuple = AutoTokenizer.from_pretrained(args.model_ckpt ) UpperCAmelCase_ : Any = tokenizer.eos_token UpperCAmelCase_ : List[str] = AutoModelForCausalLM.from_pretrained(args.model_ckpt ) # Generation settings UpperCAmelCase_ : str = { '''do_sample''': args.do_sample, '''temperature''': args.temperature, '''max_new_tokens''': args.max_new_tokens, '''top_p''': args.top_p, '''top_k''': args.top_k, '''stopping_criteria''': StoppingCriteriaList([EndOfFunctionCriteria(0 , _lowercase , _lowercase )] ), } # Load evaluation dataset and metric UpperCAmelCase_ : Tuple = load_dataset('''openai_humaneval''' ) UpperCAmelCase_ : Dict = load_metric('''code_eval''' ) UpperCAmelCase_ : Optional[int] = args.num_tasks if args.num_tasks is not None else len(human_eval['''test'''] ) UpperCAmelCase_ : str = args.n_samples // args.batch_size UpperCAmelCase_ : str = TokenizedDataset(_lowercase , human_eval['''test'''] , n_copies=_lowercase , n_tasks=_lowercase ) # do not confuse args.batch_size, which is actually the num_return_sequences UpperCAmelCase_ : Optional[Any] = DataLoader(_lowercase , batch_size=1 ) # Run a quick test to see if code evaluation is enabled try: UpperCAmelCase_ : Any = code_eval_metric.compute(references=[''''''] , predictions=[['''''']] ) except ValueError as exception: print( '''Code evaluation not enabled. Read the warning below carefully and then use `--HF_ALLOW_CODE_EVAL="1"`''' ''' flag to enable code evaluation.''' ) raise exception UpperCAmelCase_, UpperCAmelCase_ : int = accelerator.prepare(_lowercase , _lowercase ) UpperCAmelCase_ : int = complete_code( _lowercase , _lowercase , _lowercase , _lowercase , n_tasks=_lowercase , batch_size=args.batch_size , **_lowercase , ) if accelerator.is_main_process: UpperCAmelCase_ : Any = [] for task in tqdm(range(_lowercase ) ): UpperCAmelCase_ : int = human_eval['''test'''][task]['''test'''] UpperCAmelCase_ : str = f'''check({human_eval["test"][task]["entry_point"]})''' references.append('''\n''' + test_func + '''\n''' + entry_point ) # Evaluate completions with "code_eval" metric UpperCAmelCase_, UpperCAmelCase_ : Any = code_eval_metric.compute( references=_lowercase , predictions=_lowercase , num_workers=args.num_workers ) print(f'''Results: {pass_at_k}''' ) # Save results to json file with open(args.output_file , '''w''' ) as fp: json.dump(_lowercase , _lowercase ) # For some reason the folliwng seems to be necessary sometimes for code_eval to work nice with multiprocessing # https://stackoverflow.com/questions/60804599/python-multiprocessing-keeps-spawning-the-whole-script if __name__ == "__main__": main()
30
0
'''simple docstring''' from . import ( albert, align, altclip, audio_spectrogram_transformer, auto, autoformer, bark, bart, barthez, bartpho, beit, bert, bert_generation, bert_japanese, bertweet, big_bird, bigbird_pegasus, biogpt, bit, blenderbot, blenderbot_small, blip, blip_a, bloom, bridgetower, byta, camembert, canine, chinese_clip, clap, clip, clipseg, codegen, conditional_detr, convbert, convnext, convnextva, cpm, cpmant, ctrl, cvt, dataavec, deberta, deberta_va, decision_transformer, deformable_detr, deit, deprecated, deta, detr, dialogpt, dinat, distilbert, dit, donut, dpr, dpt, efficientformer, efficientnet, electra, encodec, encoder_decoder, ernie, ernie_m, esm, falcon, flaubert, flava, fnet, focalnet, fsmt, funnel, git, glpn, gpta, gpt_bigcode, gpt_neo, gpt_neox, gpt_neox_japanese, gpt_swa, gptj, gptsan_japanese, graphormer, groupvit, herbert, hubert, ibert, imagegpt, informer, instructblip, jukebox, layoutlm, layoutlmva, layoutlmva, layoutxlm, led, levit, lilt, llama, longformer, longta, luke, lxmert, mam_aaa, marian, markuplm, maskaformer, maskformer, mbart, mbartaa, mega, megatron_bert, megatron_gpta, mgp_str, mluke, mobilebert, mobilenet_va, mobilenet_va, mobilevit, mobilevitva, mpnet, mra, mta, musicgen, mvp, nat, nezha, nllb, nllb_moe, nystromformer, oneformer, open_llama, openai, opt, owlvit, pegasus, pegasus_x, perceiver, phobert, pixastruct, plbart, poolformer, prophetnet, qdqbert, rag, realm, reformer, regnet, rembert, resnet, roberta, roberta_prelayernorm, roc_bert, roformer, rwkv, sam, segformer, sew, sew_d, speech_encoder_decoder, speech_to_text, speech_to_text_a, speechta, splinter, squeezebert, swiftformer, swin, swinasr, swinva, switch_transformers, ta, table_transformer, tapas, time_series_transformer, timesformer, timm_backbone, transfo_xl, trocr, tvlt, umta, unispeech, unispeech_sat, upernet, videomae, vilt, vision_encoder_decoder, vision_text_dual_encoder, visual_bert, vit, vit_hybrid, vit_mae, vit_msn, vivit, wavaveca, wavaveca_conformer, wavaveca_phoneme, wavaveca_with_lm, wavlm, whisper, x_clip, xglm, xlm, xlm_prophetnet, xlm_roberta, xlm_roberta_xl, xlnet, xmod, yolos, yoso, )
270
from collections import OrderedDict from typing import TYPE_CHECKING, Any, Mapping, Optional from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging if TYPE_CHECKING: from ... import FeatureExtractionMixin, TensorType __a = logging.get_logger(__name__) __a = { 'openai/imagegpt-small': '', 'openai/imagegpt-medium': '', 'openai/imagegpt-large': '', } class __a( _a ): """simple docstring""" lowerCAmelCase = '''imagegpt''' lowerCAmelCase = ['''past_key_values'''] lowerCAmelCase = { '''hidden_size''': '''n_embd''', '''max_position_embeddings''': '''n_positions''', '''num_attention_heads''': '''n_head''', '''num_hidden_layers''': '''n_layer''', } def __init__( self ,_SCREAMING_SNAKE_CASE=512 + 1 ,_SCREAMING_SNAKE_CASE=32 * 32 ,_SCREAMING_SNAKE_CASE=512 ,_SCREAMING_SNAKE_CASE=24 ,_SCREAMING_SNAKE_CASE=8 ,_SCREAMING_SNAKE_CASE=None ,_SCREAMING_SNAKE_CASE="quick_gelu" ,_SCREAMING_SNAKE_CASE=0.1 ,_SCREAMING_SNAKE_CASE=0.1 ,_SCREAMING_SNAKE_CASE=0.1 ,_SCREAMING_SNAKE_CASE=1e-5 ,_SCREAMING_SNAKE_CASE=0.02 ,_SCREAMING_SNAKE_CASE=True ,_SCREAMING_SNAKE_CASE=True ,_SCREAMING_SNAKE_CASE=False ,_SCREAMING_SNAKE_CASE=False ,_SCREAMING_SNAKE_CASE=False ,**_SCREAMING_SNAKE_CASE ,) -> Optional[int]: UpperCAmelCase_ : Optional[int] = vocab_size UpperCAmelCase_ : Union[str, Any] = n_positions UpperCAmelCase_ : Union[str, Any] = n_embd UpperCAmelCase_ : Any = n_layer UpperCAmelCase_ : Optional[Any] = n_head UpperCAmelCase_ : Union[str, Any] = n_inner UpperCAmelCase_ : List[Any] = activation_function UpperCAmelCase_ : List[str] = resid_pdrop UpperCAmelCase_ : str = embd_pdrop UpperCAmelCase_ : Optional[Any] = attn_pdrop UpperCAmelCase_ : Dict = layer_norm_epsilon UpperCAmelCase_ : Union[str, Any] = initializer_range UpperCAmelCase_ : Dict = scale_attn_weights UpperCAmelCase_ : Any = use_cache UpperCAmelCase_ : List[str] = scale_attn_by_inverse_layer_idx UpperCAmelCase_ : Tuple = reorder_and_upcast_attn UpperCAmelCase_ : int = tie_word_embeddings super().__init__(tie_word_embeddings=_SCREAMING_SNAKE_CASE ,**_SCREAMING_SNAKE_CASE ) class __a( _a ): """simple docstring""" @property def a__ ( self ) -> Mapping[str, Mapping[int, str]]: return OrderedDict( [ ('''input_ids''', {0: '''batch''', 1: '''sequence'''}), ] ) def a__ ( self ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE = 1 ,_SCREAMING_SNAKE_CASE = -1 ,_SCREAMING_SNAKE_CASE = False ,_SCREAMING_SNAKE_CASE = None ,_SCREAMING_SNAKE_CASE = 3 ,_SCREAMING_SNAKE_CASE = 32 ,_SCREAMING_SNAKE_CASE = 32 ,) -> Mapping[str, Any]: UpperCAmelCase_ : Any = self._generate_dummy_images(_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ) UpperCAmelCase_ : Optional[int] = dict(preprocessor(images=_SCREAMING_SNAKE_CASE ,return_tensors=_SCREAMING_SNAKE_CASE ) ) return inputs
30
0
'''simple docstring''' import os from datetime import datetime as dt from github import Github lowerCAmelCase_ = [ 'good first issue', 'feature request', 'wip', ] def A__ ( ): '''simple docstring''' UpperCamelCase : str = Github(os.environ["GITHUB_TOKEN"]) UpperCamelCase : Union[str, Any] = g.get_repo("huggingface/accelerate") UpperCamelCase : str = repo.get_issues(state="open") for issue in open_issues: UpperCamelCase : Dict = sorted([comment for comment in issue.get_comments()] , key=lambda A: i.created_at , reverse=_lowercase) UpperCamelCase : Optional[Any] = comments[0] if len(_lowercase) > 0 else None UpperCamelCase : Optional[Any] = dt.utcnow() UpperCamelCase : List[Any] = (current_time - issue.updated_at).days UpperCamelCase : str = (current_time - issue.created_at).days if ( last_comment is not None and last_comment.user.login == "github-actions[bot]" and days_since_updated > 7 and days_since_creation >= 30 and not any(label.name.lower() in LABELS_TO_EXEMPT for label in issue.get_labels()) ): # Close issue since it has been 7 days of inactivity since bot mention. issue.edit(state="closed") elif ( days_since_updated > 23 and days_since_creation >= 30 and not any(label.name.lower() in LABELS_TO_EXEMPT for label in issue.get_labels()) ): # Add stale comment issue.create_comment( "This issue has been automatically marked as stale because it has not had " "recent activity. If you think this still needs to be addressed " "please comment on this thread.\n\nPlease note that issues that do not follow the " "[contributing guidelines](https://github.com/huggingface/accelerate/blob/main/CONTRIBUTING.md) " "are likely to be ignored.") if __name__ == "__main__": main()
173
import argparse import json import os import re import torch from transformers import BloomConfig, BloomModel from transformers.file_utils import CONFIG_NAME, WEIGHTS_NAME from transformers.utils import logging logging.set_verbosity_info() __a = [ 'word_embeddings_layernorm.weight', 'word_embeddings_layernorm.bias', 'input_layernorm.weight', 'input_layernorm.bias', 'post_attention_layernorm.weight', 'post_attention_layernorm.bias', 'self_attention.dense.bias', 'mlp.dense_4h_to_h.bias', 'ln_f.weight', 'ln_f.bias', ] __a = [ 'mlp.dense_4h_to_h.weight', 'self_attention.dense.weight', ] def lowerCamelCase__ ( _lowercase , _lowercase ): '''simple docstring''' UpperCAmelCase_ : List[Any] = { '''word_embeddings.weight''': '''word_embeddings.weight''', '''word_embeddings.norm.weight''': '''word_embeddings_layernorm.weight''', '''word_embeddings.norm.bias''': '''word_embeddings_layernorm.bias''', '''weight''': '''ln_f.weight''', '''bias''': '''ln_f.bias''', } if key in layer_rename_map: return layer_rename_map[key] # Handle transformer blocks UpperCAmelCase_ : Union[str, Any] = int(re.match(r'''.*layer_(\d*).*''' , _lowercase )[1] ) layer_number -= 3 return f'''h.{layer_number}.''' + key def lowerCamelCase__ ( _lowercase ): '''simple docstring''' if dtype == torch.bool: return 1 / 8 UpperCAmelCase_ : Any = re.search(r'''[^\d](\d+)$''' , str(_lowercase ) ) if bit_search is None: raise ValueError(f'''`dtype` is not a valid dtype: {dtype}.''' ) UpperCAmelCase_ : Optional[int] = int(bit_search.groups()[0] ) return bit_size // 8 def lowerCamelCase__ ( _lowercase , _lowercase , _lowercase , _lowercase , _lowercase ): '''simple docstring''' if bloom_config_file == "": UpperCAmelCase_ : Tuple = BloomConfig() else: UpperCAmelCase_ : Optional[int] = BloomConfig.from_json_file(_lowercase ) if shard_model: UpperCAmelCase_ : Any = os.listdir(_lowercase ) UpperCAmelCase_ : Union[str, Any] = sorted(filter(lambda _lowercase : s.startswith('''layer''' ) and "model_00" in s , _lowercase ) ) UpperCAmelCase_ : Any = {'''weight_map''': {}, '''metadata''': {}} UpperCAmelCase_ : List[str] = 0 UpperCAmelCase_ : Any = None UpperCAmelCase_ : Optional[int] = BloomConfig() for j, file in enumerate(_lowercase ): print('''Processing file: {}'''.format(_lowercase ) ) UpperCAmelCase_ : Optional[Any] = None for i in range(_lowercase ): # load all TP files UpperCAmelCase_ : Tuple = file.replace('''model_00''' , f'''model_0{i}''' ) UpperCAmelCase_ : Any = torch.load(os.path.join(_lowercase , _lowercase ) , map_location='''cpu''' ) # Rename keys in the transformers names UpperCAmelCase_ : Dict = list(temp.keys() ) for key in keys: UpperCAmelCase_ : Union[str, Any] = temp.pop(_lowercase ) if tensors is None: UpperCAmelCase_ : Union[str, Any] = temp else: for key in tensors.keys(): if any(key.endswith(_lowercase ) for end in WEIGHTS_TO_AVERAGE_ENDSWITH ): # We average (sum and then divide) some weights accross TP ranks (see https://github.com/bigscience-workshop/Megatron-DeepSpeed/blob/olruwase/sync_layer_norms/megatron/training.py#L425) tensors[key] += temp[key] else: # Some weights are RowParallelLinear in Megatron-Deepspeed, others are ColumnParallel UpperCAmelCase_ : int = 1 if any(text in key for text in WEIGHTS_WITH_ROW_PARALLELISM_CONTAIN ) else 0 # We concatenate these weights accross TP ranks UpperCAmelCase_ : Tuple = torch.cat([tensors[key], temp[key]] , dim=_lowercase ) # Divide by the number of TP the weights we want to average for key in tensors.keys(): if any(key.endswith(_lowercase ) for end in WEIGHTS_TO_AVERAGE_ENDSWITH ): UpperCAmelCase_ : List[str] = tensors[key] / pretraining_tp torch.save( _lowercase , os.path.join( _lowercase , '''pytorch_model_{}-of-{}.bin'''.format(str(j + 1 ).zfill(5 ) , str(len(_lowercase ) ).zfill(5 ) ) , ) , ) for key in tensors.keys(): UpperCAmelCase_ : Union[str, Any] = tensors[key] total_size += value.numel() * get_dtype_size(value.dtype ) if key not in index_dict["weight_map"]: UpperCAmelCase_ : List[str] = '''pytorch_model_{}-of-{}.bin'''.format( str(j + 1 ).zfill(5 ) , str(len(_lowercase ) ).zfill(5 ) ) UpperCAmelCase_ : List[Any] = BloomConfig() UpperCAmelCase_ : Tuple = pytorch_dump_folder_path + '''/''' + CONFIG_NAME UpperCAmelCase_ : List[str] = total_size with open(_lowercase , '''w''' , encoding='''utf-8''' ) as f: f.write(config.to_json_string() ) with open(os.path.join(_lowercase , WEIGHTS_NAME + '''.index.json''' ) , '''w''' , encoding='''utf-8''' ) as f: UpperCAmelCase_ : Optional[Any] = json.dumps(_lowercase , indent=2 , sort_keys=_lowercase ) + '''\n''' f.write(_lowercase ) else: UpperCAmelCase_ : Any = BloomModel(_lowercase ) UpperCAmelCase_ : Tuple = os.listdir(_lowercase ) UpperCAmelCase_ : Union[str, Any] = sorted(filter(lambda _lowercase : s.startswith('''layer''' ) and "model_00" in s , _lowercase ) ) UpperCAmelCase_ : Any = None for i, file in enumerate(_lowercase ): UpperCAmelCase_ : Optional[Any] = None for i in range(_lowercase ): # load all TP files UpperCAmelCase_ : List[Any] = file.replace('''model_00''' , f'''model_0{i}''' ) UpperCAmelCase_ : Optional[int] = torch.load(os.path.join(_lowercase , _lowercase ) , map_location='''cpu''' ) # Rename keys in the transformers names UpperCAmelCase_ : str = list(temp.keys() ) for key in keys: UpperCAmelCase_ : Dict = temp.pop(_lowercase ) if tensors is None: UpperCAmelCase_ : int = temp else: for key in tensors.keys(): # We average (sum and then divide) some weights accross TP ranks (see https://github.com/bigscience-workshop/Megatron-DeepSpeed/blob/olruwase/sync_layer_norms/megatron/training.py#L425) if any(key.endswith(_lowercase ) for end in WEIGHTS_TO_AVERAGE_ENDSWITH ): tensors[key] += temp[key] else: # Some weights are RowParallelLinear in Megatron-Deepspeed, others are ColumnParallel UpperCAmelCase_ : Optional[int] = 1 if any(text in key for text in WEIGHTS_WITH_ROW_PARALLELISM_CONTAIN ) else 0 # We concatenate these weights accross TP ranks UpperCAmelCase_ : List[str] = torch.cat([tensors[key], temp[key]] , dim=_lowercase ) # Divide by the number of TP the weights we want to average for key in tensors.keys(): if any(key.endswith(_lowercase ) for end in WEIGHTS_TO_AVERAGE_ENDSWITH ): UpperCAmelCase_ : Dict = tensors[key] / pretraining_tp UpperCAmelCase_ : Tuple = model.load_state_dict(_lowercase , strict=_lowercase ) assert not other_keys.unexpected_keys, f'''The keys {other_keys.unexpected_keys} are unexpected''' if missing_keys is None: UpperCAmelCase_ : Union[str, Any] = set(other_keys.missing_keys ) else: UpperCAmelCase_ : Dict = missing_keys.intersection(set(other_keys.missing_keys ) ) assert not missing_keys, f'''The keys {missing_keys} are missing''' # Save pytorch-model os.makedirs(_lowercase , exist_ok=_lowercase ) UpperCAmelCase_ : str = pytorch_dump_folder_path + '''/''' + WEIGHTS_NAME UpperCAmelCase_ : Dict = pytorch_dump_folder_path + '''/''' + CONFIG_NAME print(f'''Save PyTorch model to {pytorch_weights_dump_path} with dtype {config.torch_dtype}''' ) if config.torch_dtype is not None: UpperCAmelCase_ : Optional[int] = model.to(config.torch_dtype ) torch.save(model.state_dict() , _lowercase ) print(f'''Save configuration file to {pytorch_config_dump_path}''' ) with open(_lowercase , '''w''' , encoding='''utf-8''' ) as f: f.write(config.to_json_string() ) if __name__ == "__main__": __a = argparse.ArgumentParser() # Required parameters parser.add_argument( '--bloom_checkpoint_path', default=None, type=str, required=True, help='Path to the Megatron-LM checkpoint path.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, required=True, help='Path to the output PyTorch model.' ) parser.add_argument( '--bloom_config_file', default='', type=str, help=( 'An optional config json file corresponding to the pre-trained model. \n' 'This specifies the model architecture.' ), ) parser.add_argument( '--shard_model', action='store_true', help='An optional setting to shard the output model \nThis enables sharding the converted checkpoint', ) parser.add_argument( '--pretraining_tp', default=4, type=int, help='Pretraining TP rank that has been used when training the model in Megatron-LM \n', ) __a = parser.parse_args() convert_bloom_checkpoint_to_pytorch( args.bloom_checkpoint_path, args.bloom_config_file, args.pytorch_dump_folder_path, args.shard_model, args.pretraining_tp, )
30
0
import os from collections import deque import torch from torch.utils.data import Dataset class lowercase_ (_a ): def __init__( self : Dict , snake_case__ : str="" , snake_case__ : List[Any]="train" ): """simple docstring""" assert os.path.isdir(_SCREAMING_SNAKE_CASE ) SCREAMING_SNAKE_CASE_ = [] SCREAMING_SNAKE_CASE_ = os.listdir(_SCREAMING_SNAKE_CASE ) for story_filename in story_filenames_list: if "summary" in story_filename: continue SCREAMING_SNAKE_CASE_ = os.path.join(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) if not os.path.isfile(_SCREAMING_SNAKE_CASE ): continue self.documents.append(_SCREAMING_SNAKE_CASE ) def __len__( self : Dict ): """simple docstring""" return len(self.documents ) def __getitem__( self : List[Any] , snake_case__ : List[Any] ): """simple docstring""" SCREAMING_SNAKE_CASE_ = self.documents[idx] SCREAMING_SNAKE_CASE_ = document_path.split('/' )[-1] with open(_SCREAMING_SNAKE_CASE , encoding='utf-8' ) as source: SCREAMING_SNAKE_CASE_ = source.read() SCREAMING_SNAKE_CASE_ = process_story(_SCREAMING_SNAKE_CASE ) return document_name, story_lines, summary_lines def _a ( lowerCAmelCase )-> List[str]: SCREAMING_SNAKE_CASE_ = list(filter(lambda lowerCAmelCase : len(_lowercase ) != 0 , [line.strip() for line in raw_story.split('\n' )] ) ) # for some unknown reason some lines miss a period, add it SCREAMING_SNAKE_CASE_ = [_add_missing_period(_lowercase ) for line in nonempty_lines] # gather article lines SCREAMING_SNAKE_CASE_ = [] SCREAMING_SNAKE_CASE_ = deque(_lowercase ) while True: try: SCREAMING_SNAKE_CASE_ = lines.popleft() if element.startswith('@highlight' ): break story_lines.append(_lowercase ) except IndexError: # if "@highlight" is absent from the file we pop # all elements until there is None, raising an exception. return story_lines, [] # gather summary lines SCREAMING_SNAKE_CASE_ = list(filter(lambda lowerCAmelCase : not t.startswith('@highlight' ) , _lowercase ) ) return story_lines, summary_lines def _a ( lowerCAmelCase )-> List[Any]: SCREAMING_SNAKE_CASE_ = ['''.''', '''!''', '''?''', '''...''', '''\'''', '''`''', '''"''', '''\u2019''', '''\u2019''', ''')'''] if line.startswith('@highlight' ): return line if line[-1] in END_TOKENS: return line return line + "." def _a ( lowerCAmelCase , lowerCAmelCase , lowerCAmelCase )-> str: if len(_lowercase ) > block_size: return sequence[:block_size] else: sequence.extend([pad_token_id] * (block_size - len(_lowercase )) ) return sequence def _a ( lowerCAmelCase , lowerCAmelCase )-> List[Any]: SCREAMING_SNAKE_CASE_ = torch.ones_like(_lowercase ) SCREAMING_SNAKE_CASE_ = sequence == pad_token_id SCREAMING_SNAKE_CASE_ = 0 return mask def _a ( lowerCAmelCase , lowerCAmelCase , lowerCAmelCase )-> Dict: SCREAMING_SNAKE_CASE_ = [tokenizer.encode(_lowercase ) for line in story_lines] SCREAMING_SNAKE_CASE_ = [token for sentence in story_lines_token_ids for token in sentence] SCREAMING_SNAKE_CASE_ = [tokenizer.encode(_lowercase ) for line in summary_lines] SCREAMING_SNAKE_CASE_ = [token for sentence in summary_lines_token_ids for token in sentence] return story_token_ids, summary_token_ids def _a ( lowerCAmelCase , lowerCAmelCase )-> Union[str, Any]: SCREAMING_SNAKE_CASE_ = [] for sequence in batch: SCREAMING_SNAKE_CASE_ = -1 SCREAMING_SNAKE_CASE_ = [] for s in sequence: if s == separator_token_id: sentence_num += 1 embeddings.append(sentence_num % 2 ) batch_embeddings.append(_lowercase ) return torch.tensor(_lowercase )
360
def lowerCamelCase__ ( ): '''simple docstring''' UpperCAmelCase_ : Dict = 0 for i in range(1 , 1001 ): total += i**i return str(_lowercase )[-10:] if __name__ == "__main__": print(solution())
30
0
"""simple docstring""" import itertools import os from collections import Counter, defaultdict from concurrent.futures import ThreadPoolExecutor, as_completed import numpy as np import datasets from .execute import check_correctness SCREAMING_SNAKE_CASE_ = '''\\n@misc{chen2021evaluating,\n title={Evaluating Large Language Models Trained on Code},\n author={Mark Chen and Jerry Tworek and Heewoo Jun and Qiming Yuan \\nand Henrique Ponde de Oliveira Pinto and Jared Kaplan and Harri Edwards \\nand Yuri Burda and Nicholas Joseph and Greg Brockman and Alex Ray \\nand Raul Puri and Gretchen Krueger and Michael Petrov and Heidy Khlaaf \\nand Girish Sastry and Pamela Mishkin and Brooke Chan and Scott Gray \\nand Nick Ryder and Mikhail Pavlov and Alethea Power and Lukasz Kaiser \\nand Mohammad Bavarian and Clemens Winter and Philippe Tillet \\nand Felipe Petroski Such and Dave Cummings and Matthias Plappert \\nand Fotios Chantzis and Elizabeth Barnes and Ariel Herbert-Voss \\nand William Hebgen Guss and Alex Nichol and Alex Paino and Nikolas Tezak \\nand Jie Tang and Igor Babuschkin and Suchir Balaji and Shantanu Jain \\nand William Saunders and Christopher Hesse and Andrew N. Carr \\nand Jan Leike and Josh Achiam and Vedant Misra and Evan Morikawa \\nand Alec Radford and Matthew Knight and Miles Brundage and Mira Murati \\nand Katie Mayer and Peter Welinder and Bob McGrew and Dario Amodei \\nand Sam McCandlish and Ilya Sutskever and Wojciech Zaremba},\n year={2021},\n eprint={2107.03374},\n archivePrefix={arXiv},\n primaryClass={cs.LG}\n}\n''' SCREAMING_SNAKE_CASE_ = '''\\nThis metric implements the evaluation harness for the HumanEval problem solving dataset\ndescribed in the paper "Evaluating Large Language Models Trained on Code"\n(https://arxiv.org/abs/2107.03374).\n''' SCREAMING_SNAKE_CASE_ = '''\nCalculates how good are predictions given some references, using certain scores\nArgs:\n predictions: list of candidates to evaluate. Each candidates should be a list\n of strings with several code candidates to solve the problem.\n references: a list with a test for each prediction. Each test should evaluate the\n correctness of a code candidate.\n k: number of code candidates to consider in the evaluation (Default: [1, 10, 100])\n num_workers: number of workers used to evaluate the canidate programs (Default: 4).\n timeout:\nReturns:\n pass_at_k: dict with pass rates for each k\n results: dict with granular results of each unittest\nExamples:\n >>> code_eval = datasets.load_metric("code_eval")\n >>> test_cases = ["assert add(2,3)==5"]\n >>> candidates = [["def add(a,b): return a*b", "def add(a, b): return a+b"]]\n >>> pass_at_k, results = code_eval.compute(references=test_cases, predictions=candidates, k=[1, 2])\n >>> print(pass_at_k)\n {\'pass@1\': 0.5, \'pass@2\': 1.0}\n''' SCREAMING_SNAKE_CASE_ = '''\n################################################################################\n !!!WARNING!!!\n################################################################################\nThe "code_eval" metric executes untrusted model-generated code in Python.\nAlthough it is highly unlikely that model-generated code will do something\novertly malicious in response to this test suite, model-generated code may act\ndestructively due to a lack of model capability or alignment.\nUsers are strongly encouraged to sandbox this evaluation suite so that it\ndoes not perform destructive actions on their host or network. For more\ninformation on how OpenAI sandboxes its code, see the paper "Evaluating Large\nLanguage Models Trained on Code" (https://arxiv.org/abs/2107.03374).\n\nOnce you have read this disclaimer and taken appropriate precautions,\nset the environment variable HF_ALLOW_CODE_EVAL="1". Within Python you can to this\nwith:\n\n>>> import os\n>>> os.environ["HF_ALLOW_CODE_EVAL"] = "1"\n\n################################################################################\\n''' SCREAMING_SNAKE_CASE_ = '''The MIT License\n\nCopyright (c) OpenAI (https://openai.com)\n\nPermission is hereby granted, free of charge, to any person obtaining a copy\nof this software and associated documentation files (the "Software"), to deal\nin the Software without restriction, including without limitation the rights\nto use, copy, modify, merge, publish, distribute, sublicense, and/or sell\ncopies of the Software, and to permit persons to whom the Software is\nfurnished to do so, subject to the following conditions:\n\nThe above copyright notice and this permission notice shall be included in\nall copies or substantial portions of the Software.\n\nTHE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR\nIMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,\nFITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE\nAUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER\nLIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,\nOUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN\nTHE SOFTWARE.''' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION, _KWARGS_DESCRIPTION ) class a ( datasets.Metric ): """simple docstring""" def __A ( self ) -> Optional[Any]: return datasets.MetricInfo( # This is the description that will appear on the metrics page. description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { "predictions": datasets.Sequence(datasets.Value("string" ) ), "references": datasets.Value("string" ), } ) , homepage="https://github.com/openai/human-eval" , codebase_urls=["https://github.com/openai/human-eval"] , reference_urls=["https://github.com/openai/human-eval"] , license=_LICENSE , ) def __A ( self , snake_case_ , snake_case_ , snake_case_=[1, 10, 100] , snake_case_=4 , snake_case_=3.0 ) -> int: if os.getenv("HF_ALLOW_CODE_EVAL" , 0 ) != "1": raise ValueError(_WARNING ) if os.name == "nt": raise NotImplementedError("This metric is currently not supported on Windows." ) with ThreadPoolExecutor(max_workers=_SCREAMING_SNAKE_CASE ) as executor: _UpperCAmelCase = [] _UpperCAmelCase = Counter() _UpperCAmelCase = 0 _UpperCAmelCase = defaultdict(_SCREAMING_SNAKE_CASE ) for task_id, (candidates, test_case) in enumerate(zip(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ): for candidate in candidates: _UpperCAmelCase = candidate + '''\n''' + test_case _UpperCAmelCase = (test_program, timeout, task_id, completion_id[task_id]) _UpperCAmelCase = executor.submit(_SCREAMING_SNAKE_CASE , *_SCREAMING_SNAKE_CASE ) futures.append(_SCREAMING_SNAKE_CASE ) completion_id[task_id] += 1 n_samples += 1 for future in as_completed(_SCREAMING_SNAKE_CASE ): _UpperCAmelCase = future.result() results[result["task_id"]].append((result["completion_id"], result) ) _UpperCAmelCase = [], [] for result in results.values(): result.sort() _UpperCAmelCase = [r[1]['''passed'''] for r in result] total.append(len(_SCREAMING_SNAKE_CASE ) ) correct.append(sum(_SCREAMING_SNAKE_CASE ) ) _UpperCAmelCase = np.array(_SCREAMING_SNAKE_CASE ) _UpperCAmelCase = np.array(_SCREAMING_SNAKE_CASE ) _UpperCAmelCase = k _UpperCAmelCase = {F"""pass@{k}""": estimate_pass_at_k(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ).mean() for k in ks if (total >= k).all()} return pass_at_k, results def A__ ( A__ , A__ , A__ ) -> int: '''simple docstring''' def estimator(A__ , A__ , A__ ) -> float: if n - c < k: return 1.0 return 1.0 - np.prod(1.0 - k / np.arange(n - c + 1 , n + 1 ) ) if isinstance(_lowercase , _lowercase ): _UpperCAmelCase = itertools.repeat(_lowercase , len(_lowercase ) ) else: assert len(_lowercase ) == len(_lowercase ) _UpperCAmelCase = iter(_lowercase ) return np.array([estimator(int(_lowercase ) , int(_lowercase ) , _lowercase ) for n, c in zip(_lowercase , _lowercase )] )
426
import os import sys import warnings from dataclasses import dataclass, field from io import BytesIO from typing import TYPE_CHECKING, Any, ClassVar, Dict, List, Optional, Union import numpy as np import pyarrow as pa from .. import config from ..download.streaming_download_manager import xopen from ..table import array_cast from ..utils.file_utils import is_local_path from ..utils.py_utils import first_non_null_value, no_op_if_value_is_null, string_to_dict if TYPE_CHECKING: import PIL.Image from .features import FeatureType __a = None __a = '<' if sys.byteorder == 'little' else '>' # Origin: https://github.com/python-pillow/Pillow/blob/698951e19e19972aeed56df686868f1329981c12/src/PIL/Image.py#L3126 minus "|i1" which values are not preserved correctly when saving and loading an image __a = [ np.dtype('|b1'), np.dtype('|u1'), np.dtype('<u2'), np.dtype('>u2'), np.dtype('<i2'), np.dtype('>i2'), np.dtype('<u4'), np.dtype('>u4'), np.dtype('<i4'), np.dtype('>i4'), np.dtype('<f4'), np.dtype('>f4'), np.dtype('<f8'), np.dtype('>f8'), ] @dataclass class __a: """simple docstring""" lowerCAmelCase = True lowerCAmelCase = None # Automatically constructed lowerCAmelCase = "PIL.Image.Image" lowerCAmelCase = pa.struct({'''bytes''': pa.binary(), '''path''': pa.string()} ) lowerCAmelCase = field(default='''Image''' , init=_a , repr=_a ) def __call__( self ) -> Tuple: return self.pa_type def a__ ( self ,_SCREAMING_SNAKE_CASE ) -> dict: if config.PIL_AVAILABLE: import PIL.Image else: raise ImportError('''To support encoding images, please install \'Pillow\'.''' ) if isinstance(_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ): UpperCAmelCase_ : List[str] = np.array(_SCREAMING_SNAKE_CASE ) if isinstance(_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ): return {"path": value, "bytes": None} elif isinstance(_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ): return {"path": None, "bytes": value} elif isinstance(_SCREAMING_SNAKE_CASE ,np.ndarray ): # convert the image array to PNG/TIFF bytes return encode_np_array(_SCREAMING_SNAKE_CASE ) elif isinstance(_SCREAMING_SNAKE_CASE ,PIL.Image.Image ): # convert the PIL image to bytes (default format is PNG/TIFF) return encode_pil_image(_SCREAMING_SNAKE_CASE ) elif value.get('''path''' ) is not None and os.path.isfile(value['''path'''] ): # we set "bytes": None to not duplicate the data if they're already available locally return {"bytes": None, "path": value.get('''path''' )} elif value.get('''bytes''' ) is not None or value.get('''path''' ) is not None: # store the image bytes, and path is used to infer the image format using the file extension return {"bytes": value.get('''bytes''' ), "path": value.get('''path''' )} else: raise ValueError( f'''An image sample should have one of \'path\' or \'bytes\' but they are missing or None in {value}.''' ) def a__ ( self ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE=None ) -> "PIL.Image.Image": if not self.decode: raise RuntimeError('''Decoding is disabled for this feature. Please use Image(decode=True) instead.''' ) if config.PIL_AVAILABLE: import PIL.Image else: raise ImportError('''To support decoding images, please install \'Pillow\'.''' ) if token_per_repo_id is None: UpperCAmelCase_ : Dict = {} UpperCAmelCase_, UpperCAmelCase_ : Union[str, Any] = value['''path'''], value['''bytes'''] if bytes_ is None: if path is None: raise ValueError(f'''An image should have one of \'path\' or \'bytes\' but both are None in {value}.''' ) else: if is_local_path(_SCREAMING_SNAKE_CASE ): UpperCAmelCase_ : Tuple = PIL.Image.open(_SCREAMING_SNAKE_CASE ) else: UpperCAmelCase_ : Dict = path.split('''::''' )[-1] try: UpperCAmelCase_ : Optional[int] = string_to_dict(_SCREAMING_SNAKE_CASE ,config.HUB_DATASETS_URL )['''repo_id'''] UpperCAmelCase_ : Tuple = token_per_repo_id.get(_SCREAMING_SNAKE_CASE ) except ValueError: UpperCAmelCase_ : Optional[Any] = None with xopen(_SCREAMING_SNAKE_CASE ,'''rb''' ,use_auth_token=_SCREAMING_SNAKE_CASE ) as f: UpperCAmelCase_ : List[str] = BytesIO(f.read() ) UpperCAmelCase_ : Optional[Any] = PIL.Image.open(bytes_ ) else: UpperCAmelCase_ : List[Any] = PIL.Image.open(BytesIO(bytes_ ) ) image.load() # to avoid "Too many open files" errors return image def a__ ( self ) -> Union["FeatureType", Dict[str, "FeatureType"]]: from .features import Value return ( self if self.decode else { "bytes": Value('''binary''' ), "path": Value('''string''' ), } ) def a__ ( self ,_SCREAMING_SNAKE_CASE ) -> pa.StructArray: if pa.types.is_string(storage.type ): UpperCAmelCase_ : Dict = pa.array([None] * len(_SCREAMING_SNAKE_CASE ) ,type=pa.binary() ) UpperCAmelCase_ : Dict = pa.StructArray.from_arrays([bytes_array, storage] ,['''bytes''', '''path'''] ,mask=storage.is_null() ) elif pa.types.is_binary(storage.type ): UpperCAmelCase_ : List[str] = pa.array([None] * len(_SCREAMING_SNAKE_CASE ) ,type=pa.string() ) UpperCAmelCase_ : Tuple = pa.StructArray.from_arrays([storage, path_array] ,['''bytes''', '''path'''] ,mask=storage.is_null() ) elif pa.types.is_struct(storage.type ): if storage.type.get_field_index('''bytes''' ) >= 0: UpperCAmelCase_ : Dict = storage.field('''bytes''' ) else: UpperCAmelCase_ : Any = pa.array([None] * len(_SCREAMING_SNAKE_CASE ) ,type=pa.binary() ) if storage.type.get_field_index('''path''' ) >= 0: UpperCAmelCase_ : int = storage.field('''path''' ) else: UpperCAmelCase_ : List[str] = pa.array([None] * len(_SCREAMING_SNAKE_CASE ) ,type=pa.string() ) UpperCAmelCase_ : Optional[Any] = pa.StructArray.from_arrays([bytes_array, path_array] ,['''bytes''', '''path'''] ,mask=storage.is_null() ) elif pa.types.is_list(storage.type ): UpperCAmelCase_ : Optional[Any] = pa.array( [encode_np_array(np.array(_SCREAMING_SNAKE_CASE ) )['''bytes'''] if arr is not None else None for arr in storage.to_pylist()] ,type=pa.binary() ,) UpperCAmelCase_ : Any = pa.array([None] * len(_SCREAMING_SNAKE_CASE ) ,type=pa.string() ) UpperCAmelCase_ : Dict = pa.StructArray.from_arrays( [bytes_array, path_array] ,['''bytes''', '''path'''] ,mask=bytes_array.is_null() ) return array_cast(_SCREAMING_SNAKE_CASE ,self.pa_type ) def a__ ( self ,_SCREAMING_SNAKE_CASE ) -> pa.StructArray: @no_op_if_value_is_null def path_to_bytes(_SCREAMING_SNAKE_CASE ): with xopen(_SCREAMING_SNAKE_CASE ,'''rb''' ) as f: UpperCAmelCase_ : Any = f.read() return bytes_ UpperCAmelCase_ : Union[str, Any] = pa.array( [ (path_to_bytes(x['''path'''] ) if x['''bytes'''] is None else x['''bytes''']) if x is not None else None for x in storage.to_pylist() ] ,type=pa.binary() ,) UpperCAmelCase_ : List[str] = pa.array( [os.path.basename(_SCREAMING_SNAKE_CASE ) if path is not None else None for path in storage.field('''path''' ).to_pylist()] ,type=pa.string() ,) UpperCAmelCase_ : Union[str, Any] = pa.StructArray.from_arrays([bytes_array, path_array] ,['''bytes''', '''path'''] ,mask=bytes_array.is_null() ) return array_cast(_SCREAMING_SNAKE_CASE ,self.pa_type ) def lowerCamelCase__ ( ): '''simple docstring''' if config.PIL_AVAILABLE: import PIL.Image else: raise ImportError('''To support encoding images, please install \'Pillow\'.''' ) global _IMAGE_COMPRESSION_FORMATS if _IMAGE_COMPRESSION_FORMATS is None: PIL.Image.init() UpperCAmelCase_ : Optional[int] = list(set(PIL.Image.OPEN.keys() ) & set(PIL.Image.SAVE.keys() ) ) return _IMAGE_COMPRESSION_FORMATS def lowerCamelCase__ ( _lowercase ): '''simple docstring''' UpperCAmelCase_ : Optional[int] = BytesIO() if image.format in list_image_compression_formats(): UpperCAmelCase_ : int = image.format else: UpperCAmelCase_ : List[Any] = '''PNG''' if image.mode in ['''1''', '''L''', '''LA''', '''RGB''', '''RGBA'''] else '''TIFF''' image.save(_lowercase , format=_lowercase ) return buffer.getvalue() def lowerCamelCase__ ( _lowercase ): '''simple docstring''' if hasattr(_lowercase , '''filename''' ) and image.filename != "": return {"path": image.filename, "bytes": None} else: return {"path": None, "bytes": image_to_bytes(_lowercase )} def lowerCamelCase__ ( _lowercase ): '''simple docstring''' if config.PIL_AVAILABLE: import PIL.Image else: raise ImportError('''To support encoding images, please install \'Pillow\'.''' ) UpperCAmelCase_ : Tuple = array.dtype UpperCAmelCase_ : List[str] = dtype.byteorder if dtype.byteorder != '''=''' else _NATIVE_BYTEORDER UpperCAmelCase_ : Dict = dtype.kind UpperCAmelCase_ : Union[str, Any] = dtype.itemsize UpperCAmelCase_ : Optional[Any] = None # Multi-channel array case (only np.dtype("|u1") is allowed) if array.shape[2:]: UpperCAmelCase_ : Tuple = np.dtype('''|u1''' ) if dtype_kind not in ["u", "i"]: raise TypeError( f'''Unsupported array dtype {dtype} for image encoding. Only {dest_dtype} is supported for multi-channel arrays.''' ) if dtype is not dest_dtype: warnings.warn(f'''Downcasting array dtype {dtype} to {dest_dtype} to be compatible with \'Pillow\'''' ) # Exact match elif dtype in _VALID_IMAGE_ARRAY_DTPYES: UpperCAmelCase_ : Union[str, Any] = dtype else: # Downcast the type within the kind (np.can_cast(from_type, to_type, casting="same_kind") doesn't behave as expected, so do it manually) while dtype_itemsize >= 1: UpperCAmelCase_ : Union[str, Any] = dtype_byteorder + dtype_kind + str(_lowercase ) UpperCAmelCase_ : str = np.dtype(_lowercase ) if dest_dtype in _VALID_IMAGE_ARRAY_DTPYES: warnings.warn(f'''Downcasting array dtype {dtype} to {dest_dtype} to be compatible with \'Pillow\'''' ) break else: dtype_itemsize //= 2 if dest_dtype is None: raise TypeError( f'''Cannot convert dtype {dtype} to a valid image dtype. Valid image dtypes: {_VALID_IMAGE_ARRAY_DTPYES}''' ) UpperCAmelCase_ : Any = PIL.Image.fromarray(array.astype(_lowercase ) ) return {"path": None, "bytes": image_to_bytes(_lowercase )} def lowerCamelCase__ ( _lowercase ): '''simple docstring''' if config.PIL_AVAILABLE: import PIL.Image else: raise ImportError('''To support encoding images, please install \'Pillow\'.''' ) if objs: UpperCAmelCase_, UpperCAmelCase_ : Tuple = first_non_null_value(_lowercase ) if isinstance(_lowercase , _lowercase ): return [{"path": obj, "bytes": None} if obj is not None else None for obj in objs] if isinstance(_lowercase , np.ndarray ): UpperCAmelCase_ : Any = no_op_if_value_is_null(_lowercase ) return [obj_to_image_dict_func(_lowercase ) for obj in objs] elif isinstance(_lowercase , PIL.Image.Image ): UpperCAmelCase_ : Union[str, Any] = no_op_if_value_is_null(_lowercase ) return [obj_to_image_dict_func(_lowercase ) for obj in objs] else: return objs else: return objs
30
0
'''simple docstring''' import os import sys import warnings from dataclasses import dataclass, field from io import BytesIO from typing import TYPE_CHECKING, Any, ClassVar, Dict, List, Optional, Union import numpy as np import pyarrow as pa from .. import config from ..download.streaming_download_manager import xopen from ..table import array_cast from ..utils.file_utils import is_local_path from ..utils.py_utils import first_non_null_value, no_op_if_value_is_null, string_to_dict if TYPE_CHECKING: import PIL.Image from .features import FeatureType __lowercase : Tuple = None __lowercase : List[str] = '<' if sys.byteorder == 'little' else '>' # Origin: https://github.com/python-pillow/Pillow/blob/698951e19e19972aeed56df686868f1329981c12/src/PIL/Image.py#L3126 minus "|i1" which values are not preserved correctly when saving and loading an image __lowercase : Union[str, Any] = [ np.dtype('|b1'), np.dtype('|u1'), np.dtype('<u2'), np.dtype('>u2'), np.dtype('<i2'), np.dtype('>i2'), np.dtype('<u4'), np.dtype('>u4'), np.dtype('<i4'), np.dtype('>i4'), np.dtype('<f4'), np.dtype('>f4'), np.dtype('<f8'), np.dtype('>f8'), ] @dataclass class __UpperCamelCase : A_ = True A_ = None # Automatically constructed A_ = "PIL.Image.Image" A_ = pa.struct({"bytes": pa.binary(), "path": pa.string()} ) A_ = field(default="Image" , init=_a , repr=_a ) def __call__( self ): '''simple docstring''' return self.pa_type def __UpperCAmelCase ( self , __a ): '''simple docstring''' if config.PIL_AVAILABLE: import PIL.Image else: raise ImportError('To support encoding images, please install \'Pillow\'.' ) if isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): __a : List[str] = np.array(_SCREAMING_SNAKE_CASE ) if isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): return {"path": value, "bytes": None} elif isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): return {"path": None, "bytes": value} elif isinstance(_SCREAMING_SNAKE_CASE , np.ndarray ): # convert the image array to PNG/TIFF bytes return encode_np_array(_SCREAMING_SNAKE_CASE ) elif isinstance(_SCREAMING_SNAKE_CASE , PIL.Image.Image ): # convert the PIL image to bytes (default format is PNG/TIFF) return encode_pil_image(_SCREAMING_SNAKE_CASE ) elif value.get('path' ) is not None and os.path.isfile(value['path'] ): # we set "bytes": None to not duplicate the data if they're already available locally return {"bytes": None, "path": value.get('path' )} elif value.get('bytes' ) is not None or value.get('path' ) is not None: # store the image bytes, and path is used to infer the image format using the file extension return {"bytes": value.get('bytes' ), "path": value.get('path' )} else: raise ValueError( f"""An image sample should have one of \'path\' or \'bytes\' but they are missing or None in {value}.""" ) def __UpperCAmelCase ( self , __a , __a=None ): '''simple docstring''' if not self.decode: raise RuntimeError('Decoding is disabled for this feature. Please use Image(decode=True) instead.' ) if config.PIL_AVAILABLE: import PIL.Image else: raise ImportError('To support decoding images, please install \'Pillow\'.' ) if token_per_repo_id is None: __a : Dict = {} __a : Union[str, Any] = value['''path'''], value['''bytes'''] if bytes_ is None: if path is None: raise ValueError(f"""An image should have one of \'path\' or \'bytes\' but both are None in {value}.""" ) else: if is_local_path(_SCREAMING_SNAKE_CASE ): __a : Tuple = PIL.Image.open(_SCREAMING_SNAKE_CASE ) else: __a : Dict = path.split('::' )[-1] try: __a : Optional[int] = string_to_dict(_SCREAMING_SNAKE_CASE , config.HUB_DATASETS_URL )['''repo_id'''] __a : Tuple = token_per_repo_id.get(_SCREAMING_SNAKE_CASE ) except ValueError: __a : Optional[Any] = None with xopen(_SCREAMING_SNAKE_CASE , 'rb' , use_auth_token=_SCREAMING_SNAKE_CASE ) as f: __a : List[str] = BytesIO(f.read() ) __a : Optional[Any] = PIL.Image.open(bytes_ ) else: __a : List[Any] = PIL.Image.open(BytesIO(bytes_ ) ) image.load() # to avoid "Too many open files" errors return image def __UpperCAmelCase ( self ): '''simple docstring''' from .features import Value return ( self if self.decode else { "bytes": Value('binary' ), "path": Value('string' ), } ) def __UpperCAmelCase ( self , __a ): '''simple docstring''' if pa.types.is_string(storage.type ): __a : Dict = pa.array([None] * len(_SCREAMING_SNAKE_CASE ) , type=pa.binary() ) __a : Dict = pa.StructArray.from_arrays([bytes_array, storage] , ['bytes', 'path'] , mask=storage.is_null() ) elif pa.types.is_binary(storage.type ): __a : List[str] = pa.array([None] * len(_SCREAMING_SNAKE_CASE ) , type=pa.string() ) __a : Tuple = pa.StructArray.from_arrays([storage, path_array] , ['bytes', 'path'] , mask=storage.is_null() ) elif pa.types.is_struct(storage.type ): if storage.type.get_field_index('bytes' ) >= 0: __a : Dict = storage.field('bytes' ) else: __a : Any = pa.array([None] * len(_SCREAMING_SNAKE_CASE ) , type=pa.binary() ) if storage.type.get_field_index('path' ) >= 0: __a : int = storage.field('path' ) else: __a : List[str] = pa.array([None] * len(_SCREAMING_SNAKE_CASE ) , type=pa.string() ) __a : Optional[Any] = pa.StructArray.from_arrays([bytes_array, path_array] , ['bytes', 'path'] , mask=storage.is_null() ) elif pa.types.is_list(storage.type ): __a : Optional[Any] = pa.array( [encode_np_array(np.array(_SCREAMING_SNAKE_CASE ) )['bytes'] if arr is not None else None for arr in storage.to_pylist()] , type=pa.binary() , ) __a : Any = pa.array([None] * len(_SCREAMING_SNAKE_CASE ) , type=pa.string() ) __a : Dict = pa.StructArray.from_arrays( [bytes_array, path_array] , ['bytes', 'path'] , mask=bytes_array.is_null() ) return array_cast(_SCREAMING_SNAKE_CASE , self.pa_type ) def __UpperCAmelCase ( self , __a ): '''simple docstring''' @no_op_if_value_is_null def path_to_bytes(__a ): with xopen(_SCREAMING_SNAKE_CASE , 'rb' ) as f: __a : Any = f.read() return bytes_ __a : Union[str, Any] = pa.array( [ (path_to_bytes(x['path'] ) if x['bytes'] is None else x['bytes']) if x is not None else None for x in storage.to_pylist() ] , type=pa.binary() , ) __a : List[str] = pa.array( [os.path.basename(_SCREAMING_SNAKE_CASE ) if path is not None else None for path in storage.field('path' ).to_pylist()] , type=pa.string() , ) __a : Union[str, Any] = pa.StructArray.from_arrays([bytes_array, path_array] , ['bytes', 'path'] , mask=bytes_array.is_null() ) return array_cast(_SCREAMING_SNAKE_CASE , self.pa_type ) def lowerCamelCase (): if config.PIL_AVAILABLE: import PIL.Image else: raise ImportError('To support encoding images, please install \'Pillow\'.' ) global _IMAGE_COMPRESSION_FORMATS if _IMAGE_COMPRESSION_FORMATS is None: PIL.Image.init() __a : Optional[int] = list(set(PIL.Image.OPEN.keys() ) & set(PIL.Image.SAVE.keys() ) ) return _IMAGE_COMPRESSION_FORMATS def lowerCamelCase (_SCREAMING_SNAKE_CASE : str ): __a : Optional[int] = BytesIO() if image.format in list_image_compression_formats(): __a : int = image.format else: __a : List[Any] = '''PNG''' if image.mode in ['''1''', '''L''', '''LA''', '''RGB''', '''RGBA'''] else '''TIFF''' image.save(_lowercase , format=_lowercase ) return buffer.getvalue() def lowerCamelCase (_SCREAMING_SNAKE_CASE : Union[str, Any] ): if hasattr(_lowercase , 'filename' ) and image.filename != "": return {"path": image.filename, "bytes": None} else: return {"path": None, "bytes": image_to_bytes(_lowercase )} def lowerCamelCase (_SCREAMING_SNAKE_CASE : Any ): if config.PIL_AVAILABLE: import PIL.Image else: raise ImportError('To support encoding images, please install \'Pillow\'.' ) __a : Tuple = array.dtype __a : List[str] = dtype.byteorder if dtype.byteorder != '''=''' else _NATIVE_BYTEORDER __a : Dict = dtype.kind __a : Union[str, Any] = dtype.itemsize __a : Optional[Any] = None # Multi-channel array case (only np.dtype("|u1") is allowed) if array.shape[2:]: __a : Tuple = np.dtype('|u1' ) if dtype_kind not in ["u", "i"]: raise TypeError( F"""Unsupported array dtype {dtype} for image encoding. Only {dest_dtype} is supported for multi-channel arrays.""" ) if dtype is not dest_dtype: warnings.warn(F"""Downcasting array dtype {dtype} to {dest_dtype} to be compatible with \'Pillow\'""" ) # Exact match elif dtype in _VALID_IMAGE_ARRAY_DTPYES: __a : Union[str, Any] = dtype else: # Downcast the type within the kind (np.can_cast(from_type, to_type, casting="same_kind") doesn't behave as expected, so do it manually) while dtype_itemsize >= 1: __a : Union[str, Any] = dtype_byteorder + dtype_kind + str(_lowercase ) __a : str = np.dtype(_lowercase ) if dest_dtype in _VALID_IMAGE_ARRAY_DTPYES: warnings.warn(F"""Downcasting array dtype {dtype} to {dest_dtype} to be compatible with \'Pillow\'""" ) break else: dtype_itemsize //= 2 if dest_dtype is None: raise TypeError( F"""Cannot convert dtype {dtype} to a valid image dtype. Valid image dtypes: {_VALID_IMAGE_ARRAY_DTPYES}""" ) __a : Any = PIL.Image.fromarray(array.astype(_lowercase ) ) return {"path": None, "bytes": image_to_bytes(_lowercase )} def lowerCamelCase (_SCREAMING_SNAKE_CASE : List[Any] ): if config.PIL_AVAILABLE: import PIL.Image else: raise ImportError('To support encoding images, please install \'Pillow\'.' ) if objs: __a : Tuple = first_non_null_value(_lowercase ) if isinstance(_lowercase , _lowercase ): return [{"path": obj, "bytes": None} if obj is not None else None for obj in objs] if isinstance(_lowercase , np.ndarray ): __a : Any = no_op_if_value_is_null(_lowercase ) return [obj_to_image_dict_func(_lowercase ) for obj in objs] elif isinstance(_lowercase , PIL.Image.Image ): __a : Union[str, Any] = no_op_if_value_is_null(_lowercase ) return [obj_to_image_dict_func(_lowercase ) for obj in objs] else: return objs else: return objs
476
import unittest from transformers import is_torch_available, is_vision_available from transformers.testing_utils import require_torch, require_vision, slow, torch_device if is_torch_available(): import torch from transformers import AutoModelForImageClassification if is_vision_available(): from transformers import AutoImageProcessor @require_torch @require_vision class __a( unittest.TestCase ): """simple docstring""" @slow def a__ ( self ) -> List[str]: UpperCAmelCase_ : Tuple = AutoImageProcessor.from_pretrained('''microsoft/dit-base-finetuned-rvlcdip''' ) UpperCAmelCase_ : Union[str, Any] = AutoModelForImageClassification.from_pretrained('''microsoft/dit-base-finetuned-rvlcdip''' ) model.to(_SCREAMING_SNAKE_CASE ) from datasets import load_dataset UpperCAmelCase_ : Optional[int] = load_dataset('''nielsr/rvlcdip-demo''' ) UpperCAmelCase_ : Optional[Any] = dataset['''train'''][0]['''image'''].convert('''RGB''' ) UpperCAmelCase_ : str = image_processor(_SCREAMING_SNAKE_CASE ,return_tensors='''pt''' ).to(_SCREAMING_SNAKE_CASE ) # forward pass with torch.no_grad(): UpperCAmelCase_ : Optional[int] = model(**_SCREAMING_SNAKE_CASE ) UpperCAmelCase_ : List[Any] = outputs.logits UpperCAmelCase_ : Tuple = torch.Size((1, 16) ) self.assertEqual(logits.shape ,_SCREAMING_SNAKE_CASE ) UpperCAmelCase_ : int = torch.tensor( [-0.41_58, -0.40_92, -0.43_47] ,device=_SCREAMING_SNAKE_CASE ,dtype=torch.float ,) self.assertTrue(torch.allclose(logits[0, :3] ,_SCREAMING_SNAKE_CASE ,atol=1e-4 ) )
30
0
import importlib import json import os import sys import tempfile import unittest from pathlib import Path import transformers import transformers.models.auto from transformers.models.auto.configuration_auto import CONFIG_MAPPING, AutoConfig from transformers.models.bert.configuration_bert import BertConfig from transformers.models.roberta.configuration_roberta import RobertaConfig from transformers.testing_utils import DUMMY_UNKNOWN_IDENTIFIER, get_tests_dir sys.path.append(str(Path(__file__).parent.parent.parent.parent / 'utils')) from test_module.custom_configuration import CustomConfig # noqa E402 _lowercase = get_tests_dir('fixtures/dummy-config.json') class lowerCamelCase__ ( unittest.TestCase ): def lowerCamelCase_ ( self : str ): '''simple docstring''' lowerCamelCase__: List[Any] = 0 def lowerCamelCase_ ( self : int ): '''simple docstring''' self.assertIsNotNone(transformers.models.auto.__spec__ ) self.assertIsNotNone(importlib.util.find_spec("""transformers.models.auto""" ) ) def lowerCamelCase_ ( self : Optional[Any] ): '''simple docstring''' lowerCamelCase__: Any = AutoConfig.from_pretrained("""bert-base-uncased""" ) self.assertIsInstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) def lowerCamelCase_ ( self : Dict ): '''simple docstring''' lowerCamelCase__: Dict = AutoConfig.from_pretrained(_SCREAMING_SNAKE_CASE ) self.assertIsInstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) def lowerCamelCase_ ( self : str ): '''simple docstring''' lowerCamelCase__: Union[str, Any] = AutoConfig.from_pretrained(_SCREAMING_SNAKE_CASE ) self.assertIsInstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) def lowerCamelCase_ ( self : Dict ): '''simple docstring''' lowerCamelCase__: Dict = AutoConfig.for_model("""roberta""" ) self.assertIsInstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) def lowerCamelCase_ ( self : List[Any] ): '''simple docstring''' with tempfile.TemporaryDirectory() as tmp_dir: # This model name contains bert and roberta, but roberta ends up being picked. lowerCamelCase__: str = os.path.join(_SCREAMING_SNAKE_CASE , """fake-roberta""" ) os.makedirs(_SCREAMING_SNAKE_CASE , exist_ok=_SCREAMING_SNAKE_CASE ) with open(os.path.join(_SCREAMING_SNAKE_CASE , """config.json""" ) , """w""" ) as f: f.write(json.dumps({} ) ) lowerCamelCase__: Optional[int] = AutoConfig.from_pretrained(_SCREAMING_SNAKE_CASE ) self.assertEqual(type(_SCREAMING_SNAKE_CASE ) , _SCREAMING_SNAKE_CASE ) def lowerCamelCase_ ( self : Dict ): '''simple docstring''' try: AutoConfig.register("""custom""" , _SCREAMING_SNAKE_CASE ) # Wrong model type will raise an error with self.assertRaises(_SCREAMING_SNAKE_CASE ): AutoConfig.register("""model""" , _SCREAMING_SNAKE_CASE ) # Trying to register something existing in the Transformers library will raise an error with self.assertRaises(_SCREAMING_SNAKE_CASE ): AutoConfig.register("""bert""" , _SCREAMING_SNAKE_CASE ) # Now that the config is registered, it can be used as any other config with the auto-API lowerCamelCase__: List[Any] = CustomConfig() with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained(_SCREAMING_SNAKE_CASE ) lowerCamelCase__: List[str] = AutoConfig.from_pretrained(_SCREAMING_SNAKE_CASE ) self.assertIsInstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] def lowerCamelCase_ ( self : str ): '''simple docstring''' with self.assertRaisesRegex( _SCREAMING_SNAKE_CASE , """bert-base is not a local folder and is not a valid model identifier""" ): lowerCamelCase__: Dict = AutoConfig.from_pretrained("""bert-base""" ) def lowerCamelCase_ ( self : Optional[int] ): '''simple docstring''' with self.assertRaisesRegex( _SCREAMING_SNAKE_CASE , R"""aaaaaa is not a valid git identifier \(branch name, tag name or commit id\)""" ): lowerCamelCase__: Optional[int] = AutoConfig.from_pretrained(_SCREAMING_SNAKE_CASE , revision="""aaaaaa""" ) def lowerCamelCase_ ( self : Optional[Any] ): '''simple docstring''' with self.assertRaisesRegex( _SCREAMING_SNAKE_CASE , """hf-internal-testing/no-config-test-repo does not appear to have a file named config.json.""" , ): lowerCamelCase__: Dict = AutoConfig.from_pretrained("""hf-internal-testing/no-config-test-repo""" ) def lowerCamelCase_ ( self : Optional[Any] ): '''simple docstring''' with self.assertRaises(_SCREAMING_SNAKE_CASE ): lowerCamelCase__: Dict = AutoConfig.from_pretrained("""hf-internal-testing/test_dynamic_model""" ) # If remote code is disabled, we can't load this config. with self.assertRaises(_SCREAMING_SNAKE_CASE ): lowerCamelCase__: Any = AutoConfig.from_pretrained("""hf-internal-testing/test_dynamic_model""" , trust_remote_code=_SCREAMING_SNAKE_CASE ) lowerCamelCase__: str = AutoConfig.from_pretrained("""hf-internal-testing/test_dynamic_model""" , trust_remote_code=_SCREAMING_SNAKE_CASE ) self.assertEqual(config.__class__.__name__ , """NewModelConfig""" ) # Test config can be reloaded. with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained(_SCREAMING_SNAKE_CASE ) lowerCamelCase__: int = AutoConfig.from_pretrained(_SCREAMING_SNAKE_CASE , trust_remote_code=_SCREAMING_SNAKE_CASE ) self.assertEqual(reloaded_config.__class__.__name__ , """NewModelConfig""" ) def lowerCamelCase_ ( self : List[Any] ): '''simple docstring''' class lowerCamelCase__ ( _a ): __lowerCamelCase = """new-model""" try: AutoConfig.register("""new-model""" , _SCREAMING_SNAKE_CASE ) # If remote code is not set, the default is to use local lowerCamelCase__: List[Any] = AutoConfig.from_pretrained("""hf-internal-testing/test_dynamic_model""" ) self.assertEqual(config.__class__.__name__ , """NewModelConfigLocal""" ) # If remote code is disabled, we load the local one. lowerCamelCase__: Dict = AutoConfig.from_pretrained("""hf-internal-testing/test_dynamic_model""" , trust_remote_code=_SCREAMING_SNAKE_CASE ) self.assertEqual(config.__class__.__name__ , """NewModelConfigLocal""" ) # If remote is enabled, we load from the Hub lowerCamelCase__: Union[str, Any] = AutoConfig.from_pretrained("""hf-internal-testing/test_dynamic_model""" , trust_remote_code=_SCREAMING_SNAKE_CASE ) self.assertEqual(config.__class__.__name__ , """NewModelConfig""" ) finally: if "new-model" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["new-model"]
306
import warnings from ...utils import logging from .image_processing_clip import CLIPImageProcessor __a = logging.get_logger(__name__) class __a( _a ): """simple docstring""" def __init__( self ,*_SCREAMING_SNAKE_CASE ,**_SCREAMING_SNAKE_CASE ) -> None: warnings.warn( '''The class CLIPFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please''' ''' use CLIPImageProcessor instead.''' ,_SCREAMING_SNAKE_CASE ,) super().__init__(*_SCREAMING_SNAKE_CASE ,**_SCREAMING_SNAKE_CASE )
30
0
import colorsys from PIL import Image # type: ignore def __lowerCAmelCase ( __magic_name__ , __magic_name__ , __magic_name__ ): _lowercase: Union[str, Any] = x _lowercase: List[str] = y for step in range(_lowercase ): # noqa: B007 _lowercase: Union[str, Any] = a * a - b * b + x _lowercase: List[Any] = 2 * a * b + y _lowercase: List[Any] = a_new # divergence happens for all complex number with an absolute value # greater than 4 if a * a + b * b > 4: break return step / (max_step - 1) def __lowerCAmelCase ( __magic_name__ ): if distance == 1: return (0, 0, 0) else: return (2_5_5, 2_5_5, 2_5_5) def __lowerCAmelCase ( __magic_name__ ): if distance == 1: return (0, 0, 0) else: return tuple(round(i * 2_5_5 ) for i in colorsys.hsv_to_rgb(_lowercase , 1 , 1 ) ) def __lowerCAmelCase ( __magic_name__ = 8_0_0 , __magic_name__ = 6_0_0 , __magic_name__ = -0.6 , __magic_name__ = 0 , __magic_name__ = 3.2 , __magic_name__ = 5_0 , __magic_name__ = True , ): _lowercase: int = Image.new("RGB" , (image_width, image_height) ) _lowercase: List[str] = img.load() # loop through the image-coordinates for image_x in range(_lowercase ): for image_y in range(_lowercase ): # determine the figure-coordinates based on the image-coordinates _lowercase: str = figure_width / image_width * image_height _lowercase: Dict = figure_center_x + (image_x / image_width - 0.5) * figure_width _lowercase: Any = figure_center_y + (image_y / image_height - 0.5) * figure_height _lowercase: int = get_distance(_lowercase , _lowercase , _lowercase ) # color the corresponding pixel based on the selected coloring-function if use_distance_color_coding: _lowercase: Dict = get_color_coded_rgb(_lowercase ) else: _lowercase: int = get_black_and_white_rgb(_lowercase ) return img if __name__ == "__main__": import doctest doctest.testmod() # colored version, full figure _SCREAMING_SNAKE_CASE : Optional[Any] = get_image() # uncomment for colored version, different section, zoomed in # img = get_image(figure_center_x = -0.6, figure_center_y = -0.4, # figure_width = 0.8) # uncomment for black and white version, full figure # img = get_image(use_distance_color_coding = False) # uncomment to save the image # img.save("mandelbrot.png") img.show()
226
import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import PoolFormerImageProcessor class __a( unittest.TestCase ): """simple docstring""" def __init__( self ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE=7 ,_SCREAMING_SNAKE_CASE=3 ,_SCREAMING_SNAKE_CASE=30 ,_SCREAMING_SNAKE_CASE=400 ,_SCREAMING_SNAKE_CASE=True ,_SCREAMING_SNAKE_CASE=None ,_SCREAMING_SNAKE_CASE=0.9 ,_SCREAMING_SNAKE_CASE=None ,_SCREAMING_SNAKE_CASE=True ,_SCREAMING_SNAKE_CASE=[0.5, 0.5, 0.5] ,_SCREAMING_SNAKE_CASE=[0.5, 0.5, 0.5] ,) -> Optional[int]: UpperCAmelCase_ : int = size if size is not None else {'''shortest_edge''': 30} UpperCAmelCase_ : List[str] = crop_size if crop_size is not None else {'''height''': 30, '''width''': 30} UpperCAmelCase_ : Dict = parent UpperCAmelCase_ : int = batch_size UpperCAmelCase_ : int = num_channels UpperCAmelCase_ : Any = min_resolution UpperCAmelCase_ : Tuple = max_resolution UpperCAmelCase_ : Optional[int] = do_resize_and_center_crop UpperCAmelCase_ : Tuple = size UpperCAmelCase_ : List[str] = crop_pct UpperCAmelCase_ : List[str] = crop_size UpperCAmelCase_ : Any = do_normalize UpperCAmelCase_ : str = image_mean UpperCAmelCase_ : List[Any] = image_std def a__ ( self ) -> str: return { "size": self.size, "do_resize_and_center_crop": self.do_resize_and_center_crop, "crop_pct": self.crop_pct, "crop_size": self.crop_size, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, } @require_torch @require_vision class __a( _a , unittest.TestCase ): """simple docstring""" lowerCAmelCase = PoolFormerImageProcessor if is_vision_available() else None def a__ ( self ) -> Dict: UpperCAmelCase_ : str = PoolFormerImageProcessingTester(self ) @property def a__ ( self ) -> Optional[int]: return self.image_processor_tester.prepare_image_processor_dict() def a__ ( self ) -> Optional[int]: UpperCAmelCase_ : List[Any] = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(_SCREAMING_SNAKE_CASE ,'''do_resize_and_center_crop''' ) ) self.assertTrue(hasattr(_SCREAMING_SNAKE_CASE ,'''size''' ) ) self.assertTrue(hasattr(_SCREAMING_SNAKE_CASE ,'''crop_pct''' ) ) self.assertTrue(hasattr(_SCREAMING_SNAKE_CASE ,'''do_normalize''' ) ) self.assertTrue(hasattr(_SCREAMING_SNAKE_CASE ,'''image_mean''' ) ) self.assertTrue(hasattr(_SCREAMING_SNAKE_CASE ,'''image_std''' ) ) def a__ ( self ) -> Union[str, Any]: UpperCAmelCase_ : Any = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size ,{'''shortest_edge''': 30} ) self.assertEqual(image_processor.crop_size ,{'''height''': 30, '''width''': 30} ) UpperCAmelCase_ : Optional[Any] = self.image_processing_class.from_dict(self.image_processor_dict ,size=42 ,crop_size=84 ) self.assertEqual(image_processor.size ,{'''shortest_edge''': 42} ) self.assertEqual(image_processor.crop_size ,{'''height''': 84, '''width''': 84} ) def a__ ( self ) -> Optional[int]: pass def a__ ( self ) -> Dict: # Initialize image_processing UpperCAmelCase_ : str = self.image_processing_class(**self.image_processor_dict ) # create random PIL images UpperCAmelCase_ : int = prepare_image_inputs(self.image_processor_tester ,equal_resolution=_SCREAMING_SNAKE_CASE ) for image in image_inputs: self.assertIsInstance(_SCREAMING_SNAKE_CASE ,Image.Image ) # Test not batched input UpperCAmelCase_ : Optional[int] = image_processing(image_inputs[0] ,return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape ,( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) ,) # Test batched UpperCAmelCase_ : Union[str, Any] = image_processing(_SCREAMING_SNAKE_CASE ,return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape ,( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) ,) def a__ ( self ) -> List[Any]: # Initialize image_processing UpperCAmelCase_ : Any = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors UpperCAmelCase_ : List[str] = prepare_image_inputs(self.image_processor_tester ,equal_resolution=_SCREAMING_SNAKE_CASE ,numpify=_SCREAMING_SNAKE_CASE ) for image in image_inputs: self.assertIsInstance(_SCREAMING_SNAKE_CASE ,np.ndarray ) # Test not batched input UpperCAmelCase_ : Tuple = image_processing(image_inputs[0] ,return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape ,( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) ,) # Test batched UpperCAmelCase_ : List[Any] = image_processing(_SCREAMING_SNAKE_CASE ,return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape ,( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) ,) def a__ ( self ) -> Union[str, Any]: # Initialize image_processing UpperCAmelCase_ : List[Any] = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors UpperCAmelCase_ : Optional[Any] = prepare_image_inputs(self.image_processor_tester ,equal_resolution=_SCREAMING_SNAKE_CASE ,torchify=_SCREAMING_SNAKE_CASE ) for image in image_inputs: self.assertIsInstance(_SCREAMING_SNAKE_CASE ,torch.Tensor ) # Test not batched input UpperCAmelCase_ : Tuple = image_processing(image_inputs[0] ,return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape ,( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) ,) # Test batched UpperCAmelCase_ : List[Any] = image_processing(_SCREAMING_SNAKE_CASE ,return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape ,( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) ,)
30
0
import json import multiprocessing import os import re from collections import defaultdict import torch from accelerate import Accelerator from accelerate.utils import set_seed from arguments import HumanEvalArguments from datasets import load_dataset, load_metric from torch.utils.data import IterableDataset from torch.utils.data.dataloader import DataLoader from tqdm import tqdm import transformers from transformers import AutoModelForCausalLM, AutoTokenizer, HfArgumentParser, StoppingCriteria, StoppingCriteriaList __a = ['\nclass', '\ndef', '\n#', '\n@', '\nprint', '\nif'] class lowercase__( _a ): """simple docstring""" def __init__( self : str , SCREAMING_SNAKE_CASE_ : Tuple , SCREAMING_SNAKE_CASE_ : Any , SCREAMING_SNAKE_CASE_ : List[str]=None , SCREAMING_SNAKE_CASE_ : Dict=1 ) -> Dict: lowercase_ = tokenizer lowercase_ = dataset lowercase_ = len(_SCREAMING_SNAKE_CASE ) if n_tasks is None else n_tasks lowercase_ = n_copies def __iter__( self : Union[str, Any] ) -> Any: lowercase_ = [] for task in range(self.n_tasks ): # without strip, the model generate commented codes ... prompts.append(self.tokenizer.eos_token + self.dataset[task]['''prompt'''].strip() ) lowercase_ = self.tokenizer(_SCREAMING_SNAKE_CASE , padding=_SCREAMING_SNAKE_CASE , return_tensors='''pt''' ) for task in range(self.n_tasks ): for _ in range(self.n_copies ): yield { "ids": outputs.input_ids[task], "task_id": task, "input_len": outputs.attention_mask[task].sum(), } class lowercase__( _a ): """simple docstring""" def __init__( self : Optional[Any] , SCREAMING_SNAKE_CASE_ : Optional[Any] , SCREAMING_SNAKE_CASE_ : Dict , SCREAMING_SNAKE_CASE_ : List[Any] ) -> List[Any]: lowercase_ = start_length lowercase_ = eof_strings lowercase_ = tokenizer def __call__( self : int , SCREAMING_SNAKE_CASE_ : List[str] , SCREAMING_SNAKE_CASE_ : Any , **SCREAMING_SNAKE_CASE_ : Union[str, Any] ) -> List[Any]: lowercase_ = self.tokenizer.batch_decode(input_ids[:, self.start_length :] ) lowercase_ = [] for decoded_generation in decoded_generations: done.append(any(stop_string in decoded_generation for stop_string in self.eof_strings ) ) return all(_SCREAMING_SNAKE_CASE ) def a ( snake_case__: Dict ): '''simple docstring''' lowercase_ = re.split('''(%s)''' % '''|'''.join(_lowercase ) , _lowercase ) # last string should be "" return "".join(string_list[:-2] ) def a ( snake_case__: int , snake_case__: str , snake_case__: List[str] , snake_case__: Optional[Any] , snake_case__: List[str] , snake_case__: str=20 , **snake_case__: int ): '''simple docstring''' lowercase_ = defaultdict(_lowercase ) # dict of list of generated tokens for step, batch in tqdm(enumerate(_lowercase ) ): with torch.no_grad(): lowercase_ = batch['''ids'''].shape[-1] lowercase_ = accelerator.unwrap_model(_lowercase ).generate( input_ids=batch['''ids'''][:, : batch['''input_len''']] , num_return_sequences=_lowercase , **_lowercase ) # each task is generated batch_size times lowercase_ = batch['''task_id'''].repeat(_lowercase ) lowercase_ = accelerator.pad_across_processes( _lowercase , dim=1 , pad_index=tokenizer.pad_token_id ) lowercase_ = accelerator.gather((generated_tokens, generated_tasks) ) lowercase_ = generated_tokens.cpu().numpy() lowercase_ = generated_tasks.cpu().numpy() for task, generated_tokens in zip(_lowercase , _lowercase ): gen_token_dict[task].append(_lowercase ) lowercase_ = [[] for _ in range(_lowercase )] for task, generated_tokens in gen_token_dict.items(): for s in generated_tokens: lowercase_ = tokenizer.decode(_lowercase , skip_special_tokens=_lowercase , clean_up_tokenization_spaces=_lowercase ) code_gens[task].append(remove_last_block(_lowercase ) ) return code_gens def a ( ): '''simple docstring''' lowercase_ = HfArgumentParser(_lowercase ) lowercase_ = parser.parse_args() transformers.logging.set_verbosity_error() # enables code execution in code_eval metric lowercase_ = args.HF_ALLOW_CODE_EVAL # make sure tokenizer plays nice with multiprocessing lowercase_ = '''false''' if args.num_workers is None: lowercase_ = multiprocessing.cpu_count() # Use dataset load to feed to accelerate lowercase_ = Accelerator() set_seed(args.seed , device_specific=_lowercase ) # Load model and tokenizer lowercase_ = AutoTokenizer.from_pretrained(args.model_ckpt ) lowercase_ = tokenizer.eos_token lowercase_ = AutoModelForCausalLM.from_pretrained(args.model_ckpt ) # Generation settings lowercase_ = { '''do_sample''': args.do_sample, '''temperature''': args.temperature, '''max_new_tokens''': args.max_new_tokens, '''top_p''': args.top_p, '''top_k''': args.top_k, '''stopping_criteria''': StoppingCriteriaList([EndOfFunctionCriteria(0 , _lowercase , _lowercase )] ), } # Load evaluation dataset and metric lowercase_ = load_dataset('''openai_humaneval''' ) lowercase_ = load_metric('''code_eval''' ) lowercase_ = args.num_tasks if args.num_tasks is not None else len(human_eval['''test'''] ) lowercase_ = args.n_samples // args.batch_size lowercase_ = TokenizedDataset(_lowercase , human_eval['''test'''] , n_copies=_lowercase , n_tasks=_lowercase ) # do not confuse args.batch_size, which is actually the num_return_sequences lowercase_ = DataLoader(_lowercase , batch_size=1 ) # Run a quick test to see if code evaluation is enabled try: lowercase_ = code_eval_metric.compute(references=[''''''] , predictions=[['''''']] ) except ValueError as exception: print( '''Code evaluation not enabled. Read the warning below carefully and then use `--HF_ALLOW_CODE_EVAL="1"`''' ''' flag to enable code evaluation.''' ) raise exception lowercase_ = accelerator.prepare(_lowercase , _lowercase ) lowercase_ = complete_code( _lowercase , _lowercase , _lowercase , _lowercase , n_tasks=_lowercase , batch_size=args.batch_size , **_lowercase , ) if accelerator.is_main_process: lowercase_ = [] for task in tqdm(range(_lowercase ) ): lowercase_ = human_eval['''test'''][task]['''test'''] lowercase_ = F'''check({human_eval['test'][task]['entry_point']})''' references.append('''\n''' + test_func + '''\n''' + entry_point ) # Evaluate completions with "code_eval" metric lowercase_ = code_eval_metric.compute( references=_lowercase , predictions=_lowercase , num_workers=args.num_workers ) print(F'''Results: {pass_at_k}''' ) # Save results to json file with open(args.output_file , '''w''' ) as fp: json.dump(_lowercase , _lowercase ) # For some reason the folliwng seems to be necessary sometimes for code_eval to work nice with multiprocessing # https://stackoverflow.com/questions/60804599/python-multiprocessing-keeps-spawning-the-whole-script if __name__ == "__main__": main()
97
import unittest import numpy as np def lowerCamelCase__ ( _lowercase , _lowercase , _lowercase , _lowercase = None , ): '''simple docstring''' UpperCAmelCase_ : Dict = np.shape(_lowercase ) UpperCAmelCase_ : Optional[Any] = np.shape(_lowercase ) UpperCAmelCase_ : Tuple = np.shape(_lowercase ) if shape_a[0] != shape_b[0]: UpperCAmelCase_ : Tuple = ( '''Expected the same number of rows for A and B. ''' f'''Instead found A of size {shape_a} and B of size {shape_b}''' ) raise ValueError(_lowercase ) if shape_b[1] != shape_c[1]: UpperCAmelCase_ : List[Any] = ( '''Expected the same number of columns for B and C. ''' f'''Instead found B of size {shape_b} and C of size {shape_c}''' ) raise ValueError(_lowercase ) UpperCAmelCase_ : Dict = pseudo_inv if a_inv is None: try: UpperCAmelCase_ : Any = np.linalg.inv(_lowercase ) except np.linalg.LinAlgError: raise ValueError( '''Input matrix A is not invertible. Cannot compute Schur complement.''' ) return mat_c - mat_b.T @ a_inv @ mat_b class __a( unittest.TestCase ): """simple docstring""" def a__ ( self ) -> None: UpperCAmelCase_ : str = np.array([[1, 2, 1], [2, 1, 2], [3, 2, 4]] ) UpperCAmelCase_ : Any = np.array([[0, 3], [3, 0], [2, 3]] ) UpperCAmelCase_ : List[str] = np.array([[2, 1], [6, 3]] ) UpperCAmelCase_ : Tuple = schur_complement(_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ) UpperCAmelCase_ : List[Any] = np.block([[a, b], [b.T, c]] ) UpperCAmelCase_ : List[Any] = np.linalg.det(_SCREAMING_SNAKE_CASE ) UpperCAmelCase_ : List[Any] = np.linalg.det(_SCREAMING_SNAKE_CASE ) UpperCAmelCase_ : Any = np.linalg.det(_SCREAMING_SNAKE_CASE ) self.assertAlmostEqual(_SCREAMING_SNAKE_CASE ,det_a * det_s ) def a__ ( self ) -> None: UpperCAmelCase_ : str = np.array([[1, 2, 1], [2, 1, 2], [3, 2, 4]] ) UpperCAmelCase_ : Optional[int] = np.array([[0, 3], [3, 0], [2, 3]] ) UpperCAmelCase_ : Optional[int] = np.array([[2, 1], [6, 3]] ) with self.assertRaises(_SCREAMING_SNAKE_CASE ): schur_complement(_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ) def a__ ( self ) -> None: UpperCAmelCase_ : Optional[int] = np.array([[1, 2, 1], [2, 1, 2], [3, 2, 4]] ) UpperCAmelCase_ : Optional[Any] = np.array([[0, 3], [3, 0], [2, 3]] ) UpperCAmelCase_ : int = np.array([[2, 1, 3], [6, 3, 5]] ) with self.assertRaises(_SCREAMING_SNAKE_CASE ): schur_complement(_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ) if __name__ == "__main__": import doctest doctest.testmod() unittest.main()
30
0
'''simple docstring''' import os import pytest import yaml from datasets.features.features import Features, Value from datasets.info import DatasetInfo, DatasetInfosDict @pytest.mark.parametrize( "files" , [ ["full:README.md", "dataset_infos.json"], ["empty:README.md", "dataset_infos.json"], ["dataset_infos.json"], ["full:README.md"], ] , ) def snake_case_ ( lowercase__ , lowercase__ ): UpperCAmelCase__ : int = tmp_path_factory.mktemp("dset_infos_dir" ) if "full:README.md" in files: with open(dataset_infos_dir / "README.md" , "w" ) as f: f.write("---\ndataset_info:\n dataset_size: 42\n---" ) if "empty:README.md" in files: with open(dataset_infos_dir / "README.md" , "w" ) as f: f.write("" ) # we want to support dataset_infos.json for backward compatibility if "dataset_infos.json" in files: with open(dataset_infos_dir / "dataset_infos.json" , "w" ) as f: f.write("{\"default\": {\"dataset_size\": 42}}" ) UpperCAmelCase__ : List[Any] = DatasetInfosDict.from_directory(_lowercase ) assert dataset_infos assert dataset_infos["default"].dataset_size == 4_2 @pytest.mark.parametrize( "dataset_info" , [ DatasetInfo(), DatasetInfo( description="foo" , features=Features({"a": Value("int32" )} ) , builder_name="builder" , config_name="config" , version="1.0.0" , splits=[{"name": "train"}] , download_size=4_2 , ), ] , ) def snake_case_ ( lowercase__ , lowercase__ ): UpperCAmelCase__ : List[str] = str(_lowercase ) dataset_info.write_to_directory(_lowercase ) UpperCAmelCase__ : int = DatasetInfo.from_directory(_lowercase ) assert dataset_info == reloaded assert os.path.exists(os.path.join(_lowercase , "dataset_info.json" ) ) def snake_case_ ( ): UpperCAmelCase__ : Tuple = DatasetInfo( description="foo" , citation="bar" , homepage="https://foo.bar" , license="CC0" , features=Features({"a": Value("int32" )} ) , post_processed={} , supervised_keys=() , task_templates=[] , builder_name="builder" , config_name="config" , version="1.0.0" , splits=[{"name": "train", "num_examples": 4_2}] , download_checksums={} , download_size=1_3_3_7 , post_processing_size=4_4_2 , dataset_size=1_2_3_4 , size_in_bytes=1_3_3_7 + 4_4_2 + 1_2_3_4 , ) UpperCAmelCase__ : List[str] = dataset_info._to_yaml_dict() assert sorted(_lowercase ) == sorted(DatasetInfo._INCLUDED_INFO_IN_YAML ) for key in DatasetInfo._INCLUDED_INFO_IN_YAML: assert key in dataset_info_yaml_dict assert isinstance(dataset_info_yaml_dict[key] , (list, dict, int, str) ) UpperCAmelCase__ : str = yaml.safe_dump(_lowercase ) UpperCAmelCase__ : List[Any] = yaml.safe_load(_lowercase ) assert dataset_info_yaml_dict == reloaded def snake_case_ ( ): UpperCAmelCase__ : Optional[int] = DatasetInfo() UpperCAmelCase__ : Union[str, Any] = dataset_info._to_yaml_dict() assert dataset_info_yaml_dict == {} @pytest.mark.parametrize( "dataset_infos_dict" , [ DatasetInfosDict(), DatasetInfosDict({"default": DatasetInfo()} ), DatasetInfosDict({"my_config_name": DatasetInfo()} ), DatasetInfosDict( { "default": DatasetInfo( description="foo" , features=Features({"a": Value("int32" )} ) , builder_name="builder" , config_name="config" , version="1.0.0" , splits=[{"name": "train"}] , download_size=4_2 , ) } ), DatasetInfosDict( { "v1": DatasetInfo(dataset_size=4_2 ), "v2": DatasetInfo(dataset_size=1_3_3_7 ), } ), ] , ) def snake_case_ ( lowercase__ , lowercase__ ): UpperCAmelCase__ : Optional[int] = str(_lowercase ) dataset_infos_dict.write_to_directory(_lowercase ) UpperCAmelCase__ : Dict = DatasetInfosDict.from_directory(_lowercase ) # the config_name of the dataset_infos_dict take over the attribute for config_name, dataset_info in dataset_infos_dict.items(): UpperCAmelCase__ : List[str] = config_name # the yaml representation doesn't include fields like description or citation # so we just test that we can recover what we can from the yaml UpperCAmelCase__ : Optional[Any] = DatasetInfo._from_yaml_dict(dataset_info._to_yaml_dict() ) assert dataset_infos_dict == reloaded if dataset_infos_dict: assert os.path.exists(os.path.join(_lowercase , "README.md" ) )
199
__a = 'ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789+/' def lowerCamelCase__ ( _lowercase ): '''simple docstring''' if not isinstance(_lowercase , _lowercase ): UpperCAmelCase_ : Union[str, Any] = f'''a bytes-like object is required, not \'{data.__class__.__name__}\'''' raise TypeError(_lowercase ) UpperCAmelCase_ : Any = ''''''.join(bin(_lowercase )[2:].zfill(8 ) for byte in data ) UpperCAmelCase_ : Any = len(_lowercase ) % 6 != 0 if padding_needed: # The padding that will be added later UpperCAmelCase_ : Union[str, Any] = B'''=''' * ((6 - len(_lowercase ) % 6) // 2) # Append binary_stream with arbitrary binary digits (0's by default) to make its # length a multiple of 6. binary_stream += "0" * (6 - len(_lowercase ) % 6) else: UpperCAmelCase_ : int = B'''''' # Encode every 6 binary digits to their corresponding Base64 character return ( "".join( B64_CHARSET[int(binary_stream[index : index + 6] , 2 )] for index in range(0 , len(_lowercase ) , 6 ) ).encode() + padding ) def lowerCamelCase__ ( _lowercase ): '''simple docstring''' if not isinstance(_lowercase , _lowercase ) and not isinstance(_lowercase , _lowercase ): UpperCAmelCase_ : Tuple = ( '''argument should be a bytes-like object or ASCII string, ''' f'''not \'{encoded_data.__class__.__name__}\'''' ) raise TypeError(_lowercase ) # In case encoded_data is a bytes-like object, make sure it contains only # ASCII characters so we convert it to a string object if isinstance(_lowercase , _lowercase ): try: UpperCAmelCase_ : Any = encoded_data.decode('''utf-8''' ) except UnicodeDecodeError: raise ValueError('''base64 encoded data should only contain ASCII characters''' ) UpperCAmelCase_ : str = encoded_data.count('''=''' ) # Check if the encoded string contains non base64 characters if padding: assert all( char in B64_CHARSET for char in encoded_data[:-padding] ), "Invalid base64 character(s) found." else: assert all( char in B64_CHARSET for char in encoded_data ), "Invalid base64 character(s) found." # Check the padding assert len(_lowercase ) % 4 == 0 and padding < 3, "Incorrect padding" if padding: # Remove padding if there is one UpperCAmelCase_ : List[Any] = encoded_data[:-padding] UpperCAmelCase_ : List[Any] = ''''''.join( bin(B64_CHARSET.index(_lowercase ) )[2:].zfill(6 ) for char in encoded_data )[: -padding * 2] else: UpperCAmelCase_ : Tuple = ''''''.join( bin(B64_CHARSET.index(_lowercase ) )[2:].zfill(6 ) for char in encoded_data ) UpperCAmelCase_ : str = [ int(binary_stream[index : index + 8] , 2 ) for index in range(0 , len(_lowercase ) , 8 ) ] return bytes(_lowercase ) if __name__ == "__main__": import doctest doctest.testmod()
30
0
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tensorflow_text_available, is_torch_available __lowerCAmelCase : Dict ={ 'configuration_ernie': ['ERNIE_PRETRAINED_CONFIG_ARCHIVE_MAP', 'ErnieConfig', 'ErnieOnnxConfig'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCAmelCase : int =[ 'ERNIE_PRETRAINED_MODEL_ARCHIVE_LIST', 'ErnieForCausalLM', 'ErnieForMaskedLM', 'ErnieForMultipleChoice', 'ErnieForNextSentencePrediction', 'ErnieForPreTraining', 'ErnieForQuestionAnswering', 'ErnieForSequenceClassification', 'ErnieForTokenClassification', 'ErnieModel', 'ErniePreTrainedModel', ] if TYPE_CHECKING: from .configuration_ernie import ERNIE_PRETRAINED_CONFIG_ARCHIVE_MAP, ErnieConfig, ErnieOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_ernie import ( ERNIE_PRETRAINED_MODEL_ARCHIVE_LIST, ErnieForCausalLM, ErnieForMaskedLM, ErnieForMultipleChoice, ErnieForNextSentencePrediction, ErnieForPreTraining, ErnieForQuestionAnswering, ErnieForSequenceClassification, ErnieForTokenClassification, ErnieModel, ErniePreTrainedModel, ) else: import sys __lowerCAmelCase : Optional[Any] =_LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
696
import os import shutil import sys import tempfile import unittest from pathlib import Path import pytest import transformers from transformers import ( BERT_PRETRAINED_CONFIG_ARCHIVE_MAP, GPT2_PRETRAINED_CONFIG_ARCHIVE_MAP, AutoTokenizer, BertConfig, BertTokenizer, BertTokenizerFast, CTRLTokenizer, GPTaTokenizer, GPTaTokenizerFast, PreTrainedTokenizerFast, RobertaTokenizer, RobertaTokenizerFast, is_tokenizers_available, ) from transformers.models.auto.configuration_auto import CONFIG_MAPPING, AutoConfig from transformers.models.auto.tokenization_auto import ( TOKENIZER_MAPPING, get_tokenizer_config, tokenizer_class_from_name, ) from transformers.models.roberta.configuration_roberta import RobertaConfig from transformers.testing_utils import ( DUMMY_DIFF_TOKENIZER_IDENTIFIER, DUMMY_UNKNOWN_IDENTIFIER, SMALL_MODEL_IDENTIFIER, RequestCounter, require_tokenizers, slow, ) sys.path.append(str(Path(__file__).parent.parent.parent.parent / 'utils')) from test_module.custom_configuration import CustomConfig # noqa E402 from test_module.custom_tokenization import CustomTokenizer # noqa E402 if is_tokenizers_available(): from test_module.custom_tokenization_fast import CustomTokenizerFast class __a( unittest.TestCase ): """simple docstring""" def a__ ( self ) -> Union[str, Any]: UpperCAmelCase_ : Tuple = 0 @slow def a__ ( self ) -> Any: for model_name in (x for x in BERT_PRETRAINED_CONFIG_ARCHIVE_MAP.keys() if "japanese" not in x): UpperCAmelCase_ : Optional[Any] = AutoTokenizer.from_pretrained(_SCREAMING_SNAKE_CASE ) self.assertIsNotNone(_SCREAMING_SNAKE_CASE ) self.assertIsInstance(_SCREAMING_SNAKE_CASE ,(BertTokenizer, BertTokenizerFast) ) self.assertGreater(len(_SCREAMING_SNAKE_CASE ) ,0 ) for model_name in GPT2_PRETRAINED_CONFIG_ARCHIVE_MAP.keys(): UpperCAmelCase_ : Union[str, Any] = AutoTokenizer.from_pretrained(_SCREAMING_SNAKE_CASE ) self.assertIsNotNone(_SCREAMING_SNAKE_CASE ) self.assertIsInstance(_SCREAMING_SNAKE_CASE ,(GPTaTokenizer, GPTaTokenizerFast) ) self.assertGreater(len(_SCREAMING_SNAKE_CASE ) ,0 ) def a__ ( self ) -> Optional[Any]: UpperCAmelCase_ : List[str] = AutoTokenizer.from_pretrained(_SCREAMING_SNAKE_CASE ) self.assertIsInstance(_SCREAMING_SNAKE_CASE ,(BertTokenizer, BertTokenizerFast) ) self.assertEqual(tokenizer.vocab_size ,12 ) def a__ ( self ) -> Tuple: UpperCAmelCase_ : Any = AutoTokenizer.from_pretrained(_SCREAMING_SNAKE_CASE ) self.assertIsInstance(_SCREAMING_SNAKE_CASE ,(RobertaTokenizer, RobertaTokenizerFast) ) self.assertEqual(tokenizer.vocab_size ,20 ) def a__ ( self ) -> List[str]: UpperCAmelCase_ : int = AutoConfig.from_pretrained(_SCREAMING_SNAKE_CASE ) self.assertIsInstance(_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ) # Check that tokenizer_type ≠ model_type UpperCAmelCase_ : Optional[int] = AutoTokenizer.from_pretrained(_SCREAMING_SNAKE_CASE ,config=_SCREAMING_SNAKE_CASE ) self.assertIsInstance(_SCREAMING_SNAKE_CASE ,(BertTokenizer, BertTokenizerFast) ) self.assertEqual(tokenizer.vocab_size ,12 ) def a__ ( self ) -> Dict: with tempfile.TemporaryDirectory() as tmp_dir: shutil.copy('''./tests/fixtures/vocab.txt''' ,os.path.join(_SCREAMING_SNAKE_CASE ,'''vocab.txt''' ) ) UpperCAmelCase_ : Optional[int] = AutoTokenizer.from_pretrained(_SCREAMING_SNAKE_CASE ,tokenizer_type='''bert''' ,use_fast=_SCREAMING_SNAKE_CASE ) self.assertIsInstance(_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ) with tempfile.TemporaryDirectory() as tmp_dir: shutil.copy('''./tests/fixtures/vocab.json''' ,os.path.join(_SCREAMING_SNAKE_CASE ,'''vocab.json''' ) ) shutil.copy('''./tests/fixtures/merges.txt''' ,os.path.join(_SCREAMING_SNAKE_CASE ,'''merges.txt''' ) ) UpperCAmelCase_ : Optional[Any] = AutoTokenizer.from_pretrained(_SCREAMING_SNAKE_CASE ,tokenizer_type='''gpt2''' ,use_fast=_SCREAMING_SNAKE_CASE ) self.assertIsInstance(_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ) @require_tokenizers def a__ ( self ) -> Optional[int]: with tempfile.TemporaryDirectory() as tmp_dir: shutil.copy('''./tests/fixtures/vocab.txt''' ,os.path.join(_SCREAMING_SNAKE_CASE ,'''vocab.txt''' ) ) UpperCAmelCase_ : Tuple = AutoTokenizer.from_pretrained(_SCREAMING_SNAKE_CASE ,tokenizer_type='''bert''' ) self.assertIsInstance(_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ) with tempfile.TemporaryDirectory() as tmp_dir: shutil.copy('''./tests/fixtures/vocab.json''' ,os.path.join(_SCREAMING_SNAKE_CASE ,'''vocab.json''' ) ) shutil.copy('''./tests/fixtures/merges.txt''' ,os.path.join(_SCREAMING_SNAKE_CASE ,'''merges.txt''' ) ) UpperCAmelCase_ : Union[str, Any] = AutoTokenizer.from_pretrained(_SCREAMING_SNAKE_CASE ,tokenizer_type='''gpt2''' ) self.assertIsInstance(_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ) def a__ ( self ) -> int: with pytest.raises(_SCREAMING_SNAKE_CASE ): AutoTokenizer.from_pretrained('''./''' ,tokenizer_type='''xxx''' ) @require_tokenizers def a__ ( self ) -> Optional[Any]: for tokenizer_class in [BertTokenizer, BertTokenizerFast, AutoTokenizer]: UpperCAmelCase_ : Any = tokenizer_class.from_pretrained('''wietsedv/bert-base-dutch-cased''' ) self.assertIsInstance(_SCREAMING_SNAKE_CASE ,(BertTokenizer, BertTokenizerFast) ) if isinstance(_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ): self.assertEqual(tokenizer.basic_tokenizer.do_lower_case ,_SCREAMING_SNAKE_CASE ) else: self.assertEqual(tokenizer.do_lower_case ,_SCREAMING_SNAKE_CASE ) self.assertEqual(tokenizer.model_max_length ,512 ) @require_tokenizers def a__ ( self ) -> List[Any]: for tokenizer_class in [BertTokenizer, BertTokenizerFast, AutoTokenizer]: with self.assertRaisesRegex( _SCREAMING_SNAKE_CASE ,'''julien-c/herlolip-not-exists is not a local folder and is not a valid model identifier''' ,): UpperCAmelCase_ : int = tokenizer_class.from_pretrained('''julien-c/herlolip-not-exists''' ) def a__ ( self ) -> Optional[Any]: # tests: https://github.com/huggingface/transformers/pull/13251 # 1. models with `-`, e.g. xlm-roberta -> xlm_roberta # 2. models that don't remap 1-1 from model-name to model file, e.g., openai-gpt -> openai UpperCAmelCase_ : int = TOKENIZER_MAPPING.values() UpperCAmelCase_ : List[Any] = [] for slow_tok, fast_tok in tokenizers: if slow_tok is not None: tokenizer_names.append(slow_tok.__name__ ) if fast_tok is not None: tokenizer_names.append(fast_tok.__name__ ) for tokenizer_name in tokenizer_names: # must find the right class tokenizer_class_from_name(_SCREAMING_SNAKE_CASE ) @require_tokenizers def a__ ( self ) -> Tuple: self.assertIsInstance(AutoTokenizer.from_pretrained('''bert-base-cased''' ,use_fast=_SCREAMING_SNAKE_CASE ) ,_SCREAMING_SNAKE_CASE ) self.assertIsInstance(AutoTokenizer.from_pretrained('''bert-base-cased''' ) ,_SCREAMING_SNAKE_CASE ) @require_tokenizers def a__ ( self ) -> Optional[int]: UpperCAmelCase_ : str = AutoTokenizer.from_pretrained('''distilbert-base-uncased''' ,do_lower_case=_SCREAMING_SNAKE_CASE ) UpperCAmelCase_ : int = '''Hello, world. How are you?''' UpperCAmelCase_ : List[Any] = tokenizer.tokenize(_SCREAMING_SNAKE_CASE ) self.assertEqual('''[UNK]''' ,tokens[0] ) UpperCAmelCase_ : Any = AutoTokenizer.from_pretrained('''microsoft/mpnet-base''' ,do_lower_case=_SCREAMING_SNAKE_CASE ) UpperCAmelCase_ : Tuple = tokenizer.tokenize(_SCREAMING_SNAKE_CASE ) self.assertEqual('''[UNK]''' ,tokens[0] ) @require_tokenizers def a__ ( self ) -> Dict: UpperCAmelCase_ : List[Any] = AutoTokenizer.from_pretrained('''robot-test/dummy-tokenizer-fast-with-model-config''' ) self.assertEqual(type(_SCREAMING_SNAKE_CASE ) ,_SCREAMING_SNAKE_CASE ) self.assertEqual(tokenizer.model_max_length ,512 ) self.assertEqual(tokenizer.vocab_size ,30_000 ) self.assertEqual(tokenizer.unk_token ,'''[UNK]''' ) self.assertEqual(tokenizer.padding_side ,'''right''' ) self.assertEqual(tokenizer.truncation_side ,'''right''' ) def a__ ( self ) -> Dict: UpperCAmelCase_ : Any = AutoTokenizer.from_pretrained(_SCREAMING_SNAKE_CASE ) self.assertIsInstance(_SCREAMING_SNAKE_CASE ,(BertTokenizer, BertTokenizerFast) ) with tempfile.TemporaryDirectory() as tmp_dir: tokenizer.save_pretrained(_SCREAMING_SNAKE_CASE ) UpperCAmelCase_ : Dict = AutoTokenizer.from_pretrained(_SCREAMING_SNAKE_CASE ) self.assertIsInstance(_SCREAMING_SNAKE_CASE ,tokenizer.__class__ ) self.assertEqual(tokenizera.vocab_size ,12 ) def a__ ( self ) -> Optional[Any]: UpperCAmelCase_ : Tuple = AutoTokenizer.from_pretrained('''ctrl''' ) # There is no fast CTRL so this always gives us a slow tokenizer. self.assertIsInstance(_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ) def a__ ( self ) -> str: # Check we can load the tokenizer config of an online model. UpperCAmelCase_ : int = get_tokenizer_config('''bert-base-cased''' ) UpperCAmelCase_ : Optional[int] = config.pop('''_commit_hash''' ,_SCREAMING_SNAKE_CASE ) # If we ever update bert-base-cased tokenizer config, this dict here will need to be updated. self.assertEqual(_SCREAMING_SNAKE_CASE ,{'''do_lower_case''': False} ) # This model does not have a tokenizer_config so we get back an empty dict. UpperCAmelCase_ : Any = get_tokenizer_config(_SCREAMING_SNAKE_CASE ) self.assertDictEqual(_SCREAMING_SNAKE_CASE ,{} ) # A tokenizer saved with `save_pretrained` always creates a tokenizer config. UpperCAmelCase_ : Dict = AutoTokenizer.from_pretrained(_SCREAMING_SNAKE_CASE ) with tempfile.TemporaryDirectory() as tmp_dir: tokenizer.save_pretrained(_SCREAMING_SNAKE_CASE ) UpperCAmelCase_ : Dict = get_tokenizer_config(_SCREAMING_SNAKE_CASE ) # Check the class of the tokenizer was properly saved (note that it always saves the slow class). self.assertEqual(config['''tokenizer_class'''] ,'''BertTokenizer''' ) def a__ ( self ) -> str: try: AutoConfig.register('''custom''' ,_SCREAMING_SNAKE_CASE ) AutoTokenizer.register(_SCREAMING_SNAKE_CASE ,slow_tokenizer_class=_SCREAMING_SNAKE_CASE ) # Trying to register something existing in the Transformers library will raise an error with self.assertRaises(_SCREAMING_SNAKE_CASE ): AutoTokenizer.register(_SCREAMING_SNAKE_CASE ,slow_tokenizer_class=_SCREAMING_SNAKE_CASE ) UpperCAmelCase_ : str = CustomTokenizer.from_pretrained(_SCREAMING_SNAKE_CASE ) with tempfile.TemporaryDirectory() as tmp_dir: tokenizer.save_pretrained(_SCREAMING_SNAKE_CASE ) UpperCAmelCase_ : Dict = AutoTokenizer.from_pretrained(_SCREAMING_SNAKE_CASE ) self.assertIsInstance(_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in TOKENIZER_MAPPING._extra_content: del TOKENIZER_MAPPING._extra_content[CustomConfig] @require_tokenizers def a__ ( self ) -> int: try: AutoConfig.register('''custom''' ,_SCREAMING_SNAKE_CASE ) # Can register in two steps AutoTokenizer.register(_SCREAMING_SNAKE_CASE ,slow_tokenizer_class=_SCREAMING_SNAKE_CASE ) self.assertEqual(TOKENIZER_MAPPING[CustomConfig] ,(CustomTokenizer, None) ) AutoTokenizer.register(_SCREAMING_SNAKE_CASE ,fast_tokenizer_class=_SCREAMING_SNAKE_CASE ) self.assertEqual(TOKENIZER_MAPPING[CustomConfig] ,(CustomTokenizer, CustomTokenizerFast) ) del TOKENIZER_MAPPING._extra_content[CustomConfig] # Can register in one step AutoTokenizer.register( _SCREAMING_SNAKE_CASE ,slow_tokenizer_class=_SCREAMING_SNAKE_CASE ,fast_tokenizer_class=_SCREAMING_SNAKE_CASE ) self.assertEqual(TOKENIZER_MAPPING[CustomConfig] ,(CustomTokenizer, CustomTokenizerFast) ) # Trying to register something existing in the Transformers library will raise an error with self.assertRaises(_SCREAMING_SNAKE_CASE ): AutoTokenizer.register(_SCREAMING_SNAKE_CASE ,fast_tokenizer_class=_SCREAMING_SNAKE_CASE ) # We pass through a bert tokenizer fast cause there is no converter slow to fast for our new toknizer # and that model does not have a tokenizer.json with tempfile.TemporaryDirectory() as tmp_dir: UpperCAmelCase_ : List[str] = BertTokenizerFast.from_pretrained(_SCREAMING_SNAKE_CASE ) bert_tokenizer.save_pretrained(_SCREAMING_SNAKE_CASE ) UpperCAmelCase_ : str = CustomTokenizerFast.from_pretrained(_SCREAMING_SNAKE_CASE ) with tempfile.TemporaryDirectory() as tmp_dir: tokenizer.save_pretrained(_SCREAMING_SNAKE_CASE ) UpperCAmelCase_ : Optional[int] = AutoTokenizer.from_pretrained(_SCREAMING_SNAKE_CASE ) self.assertIsInstance(_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ) UpperCAmelCase_ : Any = AutoTokenizer.from_pretrained(_SCREAMING_SNAKE_CASE ,use_fast=_SCREAMING_SNAKE_CASE ) self.assertIsInstance(_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in TOKENIZER_MAPPING._extra_content: del TOKENIZER_MAPPING._extra_content[CustomConfig] def a__ ( self ) -> Optional[int]: # If remote code is not set, we will time out when asking whether to load the model. with self.assertRaises(_SCREAMING_SNAKE_CASE ): UpperCAmelCase_ : Tuple = AutoTokenizer.from_pretrained('''hf-internal-testing/test_dynamic_tokenizer''' ) # If remote code is disabled, we can't load this config. with self.assertRaises(_SCREAMING_SNAKE_CASE ): UpperCAmelCase_ : Union[str, Any] = AutoTokenizer.from_pretrained( '''hf-internal-testing/test_dynamic_tokenizer''' ,trust_remote_code=_SCREAMING_SNAKE_CASE ) UpperCAmelCase_ : Dict = AutoTokenizer.from_pretrained('''hf-internal-testing/test_dynamic_tokenizer''' ,trust_remote_code=_SCREAMING_SNAKE_CASE ) self.assertTrue(tokenizer.special_attribute_present ) # Test tokenizer can be reloaded. with tempfile.TemporaryDirectory() as tmp_dir: tokenizer.save_pretrained(_SCREAMING_SNAKE_CASE ) UpperCAmelCase_ : int = AutoTokenizer.from_pretrained(_SCREAMING_SNAKE_CASE ,trust_remote_code=_SCREAMING_SNAKE_CASE ) self.assertTrue(reloaded_tokenizer.special_attribute_present ) if is_tokenizers_available(): self.assertEqual(tokenizer.__class__.__name__ ,'''NewTokenizerFast''' ) self.assertEqual(reloaded_tokenizer.__class__.__name__ ,'''NewTokenizerFast''' ) # Test we can also load the slow version UpperCAmelCase_ : List[str] = AutoTokenizer.from_pretrained( '''hf-internal-testing/test_dynamic_tokenizer''' ,trust_remote_code=_SCREAMING_SNAKE_CASE ,use_fast=_SCREAMING_SNAKE_CASE ) self.assertTrue(tokenizer.special_attribute_present ) self.assertEqual(tokenizer.__class__.__name__ ,'''NewTokenizer''' ) # Test tokenizer can be reloaded. with tempfile.TemporaryDirectory() as tmp_dir: tokenizer.save_pretrained(_SCREAMING_SNAKE_CASE ) UpperCAmelCase_ : Optional[int] = AutoTokenizer.from_pretrained(_SCREAMING_SNAKE_CASE ,trust_remote_code=_SCREAMING_SNAKE_CASE ,use_fast=_SCREAMING_SNAKE_CASE ) self.assertEqual(reloaded_tokenizer.__class__.__name__ ,'''NewTokenizer''' ) self.assertTrue(reloaded_tokenizer.special_attribute_present ) else: self.assertEqual(tokenizer.__class__.__name__ ,'''NewTokenizer''' ) self.assertEqual(reloaded_tokenizer.__class__.__name__ ,'''NewTokenizer''' ) @require_tokenizers def a__ ( self ) -> Optional[int]: class __a( _a ): """simple docstring""" lowerCAmelCase = False class __a( _a ): """simple docstring""" lowerCAmelCase = NewTokenizer lowerCAmelCase = False try: AutoConfig.register('''custom''' ,_SCREAMING_SNAKE_CASE ) AutoTokenizer.register(_SCREAMING_SNAKE_CASE ,slow_tokenizer_class=_SCREAMING_SNAKE_CASE ) AutoTokenizer.register(_SCREAMING_SNAKE_CASE ,fast_tokenizer_class=_SCREAMING_SNAKE_CASE ) # If remote code is not set, the default is to use local UpperCAmelCase_ : int = AutoTokenizer.from_pretrained('''hf-internal-testing/test_dynamic_tokenizer''' ) self.assertEqual(tokenizer.__class__.__name__ ,'''NewTokenizerFast''' ) self.assertFalse(tokenizer.special_attribute_present ) UpperCAmelCase_ : Any = AutoTokenizer.from_pretrained('''hf-internal-testing/test_dynamic_tokenizer''' ,use_fast=_SCREAMING_SNAKE_CASE ) self.assertEqual(tokenizer.__class__.__name__ ,'''NewTokenizer''' ) self.assertFalse(tokenizer.special_attribute_present ) # If remote code is disabled, we load the local one. UpperCAmelCase_ : Tuple = AutoTokenizer.from_pretrained( '''hf-internal-testing/test_dynamic_tokenizer''' ,trust_remote_code=_SCREAMING_SNAKE_CASE ) self.assertEqual(tokenizer.__class__.__name__ ,'''NewTokenizerFast''' ) self.assertFalse(tokenizer.special_attribute_present ) UpperCAmelCase_ : List[str] = AutoTokenizer.from_pretrained( '''hf-internal-testing/test_dynamic_tokenizer''' ,trust_remote_code=_SCREAMING_SNAKE_CASE ,use_fast=_SCREAMING_SNAKE_CASE ) self.assertEqual(tokenizer.__class__.__name__ ,'''NewTokenizer''' ) self.assertFalse(tokenizer.special_attribute_present ) # If remote is enabled, we load from the Hub UpperCAmelCase_ : Optional[int] = AutoTokenizer.from_pretrained( '''hf-internal-testing/test_dynamic_tokenizer''' ,trust_remote_code=_SCREAMING_SNAKE_CASE ) self.assertEqual(tokenizer.__class__.__name__ ,'''NewTokenizerFast''' ) self.assertTrue(tokenizer.special_attribute_present ) UpperCAmelCase_ : Any = AutoTokenizer.from_pretrained( '''hf-internal-testing/test_dynamic_tokenizer''' ,trust_remote_code=_SCREAMING_SNAKE_CASE ,use_fast=_SCREAMING_SNAKE_CASE ) self.assertEqual(tokenizer.__class__.__name__ ,'''NewTokenizer''' ) self.assertTrue(tokenizer.special_attribute_present ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in TOKENIZER_MAPPING._extra_content: del TOKENIZER_MAPPING._extra_content[CustomConfig] def a__ ( self ) -> int: UpperCAmelCase_ : Optional[int] = AutoTokenizer.from_pretrained( '''hf-internal-testing/test_dynamic_tokenizer_legacy''' ,trust_remote_code=_SCREAMING_SNAKE_CASE ) self.assertTrue(tokenizer.special_attribute_present ) if is_tokenizers_available(): self.assertEqual(tokenizer.__class__.__name__ ,'''NewTokenizerFast''' ) # Test we can also load the slow version UpperCAmelCase_ : Tuple = AutoTokenizer.from_pretrained( '''hf-internal-testing/test_dynamic_tokenizer_legacy''' ,trust_remote_code=_SCREAMING_SNAKE_CASE ,use_fast=_SCREAMING_SNAKE_CASE ) self.assertTrue(tokenizer.special_attribute_present ) self.assertEqual(tokenizer.__class__.__name__ ,'''NewTokenizer''' ) else: self.assertEqual(tokenizer.__class__.__name__ ,'''NewTokenizer''' ) def a__ ( self ) -> Optional[Any]: with self.assertRaisesRegex( _SCREAMING_SNAKE_CASE ,'''bert-base is not a local folder and is not a valid model identifier''' ): UpperCAmelCase_ : Tuple = AutoTokenizer.from_pretrained('''bert-base''' ) def a__ ( self ) -> List[Any]: with self.assertRaisesRegex( _SCREAMING_SNAKE_CASE ,R'''aaaaaa is not a valid git identifier \(branch name, tag name or commit id\)''' ): UpperCAmelCase_ : str = AutoTokenizer.from_pretrained(_SCREAMING_SNAKE_CASE ,revision='''aaaaaa''' ) def a__ ( self ) -> Any: # Make sure we have cached the tokenizer. UpperCAmelCase_ : Optional[int] = AutoTokenizer.from_pretrained('''hf-internal-testing/tiny-random-bert''' ) with RequestCounter() as counter: UpperCAmelCase_ : List[str] = AutoTokenizer.from_pretrained('''hf-internal-testing/tiny-random-bert''' ) self.assertEqual(counter.get_request_count ,0 ) self.assertEqual(counter.head_request_count ,1 ) self.assertEqual(counter.other_request_count ,0 )
30
0
from ...configuration_utils import PretrainedConfig from ...utils import logging _SCREAMING_SNAKE_CASE : Union[str, Any] = logging.get_logger(__name__) _SCREAMING_SNAKE_CASE : Optional[Any] = { "vinvino02/glpn-kitti": "https://huggingface.co/vinvino02/glpn-kitti/resolve/main/config.json", # See all GLPN models at https://huggingface.co/models?filter=glpn } class A__ ( _a ): """simple docstring""" __magic_name__ = 'glpn' def __init__( self , __snake_case=3 , __snake_case=4 , __snake_case=[2, 2, 2, 2] , __snake_case=[8, 4, 2, 1] , __snake_case=[3_2, 6_4, 1_6_0, 2_5_6] , __snake_case=[7, 3, 3, 3] , __snake_case=[4, 2, 2, 2] , __snake_case=[1, 2, 5, 8] , __snake_case=[4, 4, 4, 4] , __snake_case="gelu" , __snake_case=0.0 , __snake_case=0.0 , __snake_case=0.02 , __snake_case=0.1 , __snake_case=1E-6 , __snake_case=6_4 , __snake_case=1_0 , __snake_case=-1 , **__snake_case , ): super().__init__(**_SCREAMING_SNAKE_CASE ) snake_case = num_channels snake_case = num_encoder_blocks snake_case = depths snake_case = sr_ratios snake_case = hidden_sizes snake_case = patch_sizes snake_case = strides snake_case = mlp_ratios snake_case = num_attention_heads snake_case = hidden_act snake_case = hidden_dropout_prob snake_case = attention_probs_dropout_prob snake_case = initializer_range snake_case = drop_path_rate snake_case = layer_norm_eps snake_case = decoder_hidden_size snake_case = max_depth snake_case = head_in_index
550
from functools import reduce __a = ( '73167176531330624919225119674426574742355349194934' '96983520312774506326239578318016984801869478851843' '85861560789112949495459501737958331952853208805511' '12540698747158523863050715693290963295227443043557' '66896648950445244523161731856403098711121722383113' '62229893423380308135336276614282806444486645238749' '30358907296290491560440772390713810515859307960866' '70172427121883998797908792274921901699720888093776' '65727333001053367881220235421809751254540594752243' '52584907711670556013604839586446706324415722155397' '53697817977846174064955149290862569321978468622482' '83972241375657056057490261407972968652414535100474' '82166370484403199890008895243450658541227588666881' '16427171479924442928230863465674813919123162824586' '17866458359124566529476545682848912883142607690042' '24219022671055626321111109370544217506941658960408' '07198403850962455444362981230987879927244284909188' '84580156166097919133875499200524063689912560717606' '05886116467109405077541002256983155200055935729725' '71636269561882670428252483600823257530420752963450' ) def lowerCamelCase__ ( _lowercase = N ): '''simple docstring''' return max( # mypy cannot properly interpret reduce int(reduce(lambda _lowercase , _lowercase : str(int(_lowercase ) * int(_lowercase ) ) , n[i : i + 13] ) ) for i in range(len(_lowercase ) - 12 ) ) if __name__ == "__main__": print(F"""{solution() = }""")
30
0
'''simple docstring''' import unittest from transformers import JukeboxTokenizer from transformers.testing_utils import require_torch class lowercase_ ( unittest.TestCase ): A_ = JukeboxTokenizer A_ = { "artist": "Zac Brown Band", "genres": "Country", "lyrics": "I met a traveller from an antique land,\n Who said \"Two vast and trunkless legs of stone\n Stand in the desert. . . . Near them, on the sand,\n Half sunk a shattered visage lies, whose frown,\n And wrinkled lip, and sneer of cold command,\n Tell that its sculptor well those passions read\n Which yet survive, stamped on these lifeless things,\n The hand that mocked them, and the heart that fed;\n And on the pedestal, these words appear:\n My name is Ozymandias, King of Kings;\n Look on my Works, ye Mighty, and despair!\n Nothing beside remains. Round the decay\n Of that colossal Wreck, boundless and bare\n The lone and level sands stretch far away\n ", } @require_torch def _lowerCAmelCase ( self : List[str] ): import torch snake_case__ : int = JukeboxTokenizer.from_pretrained('openai/jukebox-1b-lyrics' ) snake_case__ : List[str] = tokenizer(**self.metas )['''input_ids'''] # fmt: off snake_case__ : List[Any] = [ torch.tensor([[ 0, 0, 0, 7169, 507, 9, 76, 39, 31, 46, 76, 27, 76, 46, 44, 27, 48, 31, 38, 38, 31, 44, 76, 32, 44, 41, 39, 76, 27, 40, 76, 27, 40, 46, 35, 43, 47, 31, 76, 38, 27, 40, 30, 64, 78, 76, 76, 76, 76, 76, 76, 76, 76, 23, 34, 41, 76, 45, 27, 35, 30, 76, 71, 20, 49, 41, 76, 48, 27, 45, 46, 76, 27, 40, 30, 76, 46, 44, 47, 40, 37, 38, 31, 45, 45, 76, 38, 31, 33, 45, 76, 41, 32, 76, 45, 46, 41, 40, 31, 78, 76, 76, 76, 76, 76, 76, 76, 76, 19, 46, 27, 40, 30, 76, 35, 40, 76, 46, 34, 31, 76, 30, 31, 45, 31, 44, 46, 63, 76, 63, 76, 63, 76, 63, 76, 14, 31, 27, 44, 76, 46, 34, 31, 39, 64, 76, 41, 40, 76, 46, 34, 31, 76, 45, 27, 40, 30, 64, 78, 76, 76, 76, 76, 76, 76, 76, 76, 8, 27, 38, 32, 76, 45, 47, 40, 37, 76, 27, 76, 45, 34, 27, 46, 46, 31, 44, 31, 30, 76, 48, 35, 45, 27, 33, 31, 76, 38, 35, 31, 45, 64, 76, 49, 34, 41, 45, 31, 76, 32, 44, 41, 49, 40, 64, 78, 76, 76, 76, 76, 76, 76, 76, 76, 1, 40, 30, 76, 49, 44, 35, 40, 37, 38, 31, 30, 76, 38, 35, 42, 64, 76, 27, 40, 30, 76, 45, 40, 31, 31, 44, 76, 41, 32, 76, 29, 41, 38, 30, 76, 29, 41, 39, 39, 27, 40, 30, 64, 78, 76, 76, 76, 76, 76, 76, 76, 76, 20, 31, 38, 38, 76, 46, 34, 27, 46, 76, 35, 46, 45, 76, 45, 29, 47, 38, 42, 46, 41, 44, 76, 49, 31, 38, 38, 76, 46, 34, 41, 45, 31, 76, 42, 27, 45, 45, 35, 41, 40, 45, 76, 44, 31, 27, 30, 78, 76, 76, 76, 76, 76, 76, 76, 76, 23, 34, 35, 29, 34, 76, 51, 31, 46, 76, 45, 47, 44, 48, 35, 48, 31, 64, 76, 45, 46, 27, 39, 42, 31, 30, 76, 41, 40, 76, 46, 34, 31, 45, 31, 76, 38, 35, 32, 31, 38, 31, 45, 45, 76, 46, 34, 35, 40, 33, 45, 64, 78, 76, 76, 76, 76, 76, 76, 76, 76, 20, 34, 31, 76, 34, 27, 40, 30, 76, 46, 34, 27, 46, 76, 39, 41, 29, 37, 31, 30, 76, 46, 34, 31, 39, 64, 76, 27, 40, 30, 76, 46, 34, 31, 76, 34, 31, 27, 44, 46, 76, 46, 34, 27, 46, 76, 32, 31, 30, 66, 78, 76, 76, 76, 76, 76, 76, 76, 76, 1, 40, 30, 76, 41, 40, 76, 46, 34, 31, 76, 42, 31, 30, 31, 45, 46, 27, 38, 64, 76, 46, 34, 31, 45, 31, 76, 49, 41, 44, 30, 45, 76, 27, 42, 42, 31, 27, 44, 65, 78, 76, 76, 76, 76, 76, 76, 76, 76, 13, 51, 76, 40, 27, 39, 31, 76, 35, 45, 76, 15, 52, 51, 39, 27, 40, 30, 35, 27, 45, 64, 76, 11, 35, 40, 33, 76, 41, 32, 76, 11, 35, 40, 33, 45, 66, 78, 76, 76, 76, 76, 76, 76, 76, 76, 12, 41, 41, 37, 76, 41, 40, 76, 39, 51, 76, 23, 41, 44, 37, 45, 64, 76, 51, 31, 76, 13, 35, 33, 34, 46, 51, 64, 76, 27, 40, 30, 76, 30, 31, 45, 42, 27, 35, 44, 67, 78, 76, 76, 76, 76, 76, 76, 76, 76, 14, 41, 46, 34, 35, 40, 33, 76, 28, 31, 45, 35, 30, 31, 76, 44, 31, 39, 27, 35, 40, 45, 63, 76, 18, 41, 47, 40, 30, 76, 46, 34, 31, 76, 30, 31, 29, 27, 51, 78, 76, 76, 76, 76, 76, 76, 76, 76, 15, 32, 76, 46, 34, 27, 46, 76, 29, 41, 38, 41, 45, 45, 27, 38, 76, 23, 44, 31, 29, 37, 64, 76, 28, 41, 47, 40, 30, 38, 31, 45, 45, 76, 27, 40, 30, 76, 28, 27, 44, 31, 78, 76, 76, 76, 76, 76, 76, 76, 76, 20, 34, 31, 76, 38, 41, 40, 31, 76, 27, 40, 30, 76, 38, 31, 48, 31, 38, 76, 45, 27, 40, 30, 45, 76, 45, 46, 44, 31, 46, 29, 34, 76, 32, 27, 44, 76, 27, 49, 27, 51, 78, 76, 76, 76, 76, 76, 76, 76, 76]] ), torch.tensor([[0, 0, 0, 1069, 11]] ), torch.tensor([[0, 0, 0, 1069, 11]] ), ] # fmt: on self.assertTrue(torch.allclose(tokens[0] , EXPECTED_OUTPUT[0] ) ) self.assertTrue(torch.allclose(tokens[1] , EXPECTED_OUTPUT[1] ) ) self.assertTrue(torch.allclose(tokens[2] , EXPECTED_OUTPUT[2] ) ) @require_torch def _lowerCAmelCase ( self : Dict ): import torch snake_case__ : List[Any] = JukeboxTokenizer.from_pretrained('openai/jukebox-5b-lyrics' ) snake_case__ : int = tokenizer(**self.metas )['''input_ids'''] # fmt: off snake_case__ : Dict = [ torch.tensor([[ 0, 0, 0, 1069, 11, -1, -1, -1, -1, 9, 77, 39, 31, 46, 77, 27, 77, 46, 44, 27, 48, 31, 38, 38, 31, 44, 77, 32, 44, 41, 39, 77, 27, 40, 77, 27, 40, 46, 35, 43, 47, 31, 77, 38, 27, 40, 30, 64, 79, 77, 77, 77, 77, 77, 77, 77, 77, 23, 34, 41, 77, 45, 27, 35, 30, 77, 72, 20, 49, 41, 77, 48, 27, 45, 46, 77, 27, 40, 30, 77, 46, 44, 47, 40, 37, 38, 31, 45, 45, 77, 38, 31, 33, 45, 77, 41, 32, 77, 45, 46, 41, 40, 31, 79, 77, 77, 77, 77, 77, 77, 77, 77, 19, 46, 27, 40, 30, 77, 35, 40, 77, 46, 34, 31, 77, 30, 31, 45, 31, 44, 46, 63, 77, 63, 77, 63, 77, 63, 77, 14, 31, 27, 44, 77, 46, 34, 31, 39, 64, 77, 41, 40, 77, 46, 34, 31, 77, 45, 27, 40, 30, 64, 79, 77, 77, 77, 77, 77, 77, 77, 77, 8, 27, 38, 32, 77, 45, 47, 40, 37, 77, 27, 77, 45, 34, 27, 46, 46, 31, 44, 31, 30, 77, 48, 35, 45, 27, 33, 31, 77, 38, 35, 31, 45, 64, 77, 49, 34, 41, 45, 31, 77, 32, 44, 41, 49, 40, 64, 79, 77, 77, 77, 77, 77, 77, 77, 77, 1, 40, 30, 77, 49, 44, 35, 40, 37, 38, 31, 30, 77, 38, 35, 42, 64, 77, 27, 40, 30, 77, 45, 40, 31, 31, 44, 77, 41, 32, 77, 29, 41, 38, 30, 77, 29, 41, 39, 39, 27, 40, 30, 64, 79, 77, 77, 77, 77, 77, 77, 77, 77, 20, 31, 38, 38, 77, 46, 34, 27, 46, 77, 35, 46, 45, 77, 45, 29, 47, 38, 42, 46, 41, 44, 77, 49, 31, 38, 38, 77, 46, 34, 41, 45, 31, 77, 42, 27, 45, 45, 35, 41, 40, 45, 77, 44, 31, 27, 30, 79, 77, 77, 77, 77, 77, 77, 77, 77, 23, 34, 35, 29, 34, 77, 51, 31, 46, 77, 45, 47, 44, 48, 35, 48, 31, 64, 77, 45, 46, 27, 39, 42, 31, 30, 77, 41, 40, 77, 46, 34, 31, 45, 31, 77, 38, 35, 32, 31, 38, 31, 45, 45, 77, 46, 34, 35, 40, 33, 45, 64, 79, 77, 77, 77, 77, 77, 77, 77, 77, 20, 34, 31, 77, 34, 27, 40, 30, 77, 46, 34, 27, 46, 77, 39, 41, 29, 37, 31, 30, 77, 46, 34, 31, 39, 64, 77, 27, 40, 30, 77, 46, 34, 31, 77, 34, 31, 27, 44, 46, 77, 46, 34, 27, 46, 77, 32, 31, 30, 66, 79, 77, 77, 77, 77, 77, 77, 77, 77, 1, 40, 30, 77, 41, 40, 77, 46, 34, 31, 77, 42, 31, 30, 31, 45, 46, 27, 38, 64, 77, 46, 34, 31, 45, 31, 77, 49, 41, 44, 30, 45, 77, 27, 42, 42, 31, 27, 44, 65, 79, 77, 77, 77, 77, 77, 77, 77, 77, 13, 51, 77, 40, 27, 39, 31, 77, 35, 45, 77, 15, 52, 51, 39, 27, 40, 30, 35, 27, 45, 64, 77, 11, 35, 40, 33, 77, 41, 32, 77, 11, 35, 40, 33, 45, 66, 79, 77, 77, 77, 77, 77, 77, 77, 77, 12, 41, 41, 37, 77, 41, 40, 77, 39, 51, 77, 23, 41, 44, 37, 45, 64, 77, 51, 31, 77, 13, 35, 33, 34, 46, 51, 64, 77, 27, 40, 30, 77, 30, 31, 45, 42, 27, 35, 44, 67, 79, 77, 77, 77, 77, 77, 77, 77, 77, 14, 41, 46, 34, 35, 40, 33, 77, 28, 31, 45, 35, 30, 31, 77, 44, 31, 39, 27, 35, 40, 45, 63, 77, 18, 41, 47, 40, 30, 77, 46, 34, 31, 77, 30, 31, 29, 27, 51, 79, 77, 77, 77, 77, 77, 77, 77, 77, 15, 32, 77, 46, 34, 27, 46, 77, 29, 41, 38, 41, 45, 45, 27, 38, 77, 23, 44, 31, 29, 37, 64, 77, 28, 41, 47, 40, 30, 38, 31, 45, 45, 77, 27, 40, 30, 77, 28, 27, 44, 31, 79, 77, 77, 77, 77, 77, 77, 77, 77, 20, 34, 31, 77, 38, 41, 40, 31, 77, 27, 40, 30, 77, 38, 31, 48, 31, 38, 77, 45, 27, 40, 30, 45, 77, 45, 46, 44, 31, 46, 29, 34, 77, 32, 27, 44, 77, 27, 49, 27, 51, 79, 77, 77, 77, 77, 77, 77, 77, 77]] ), torch.tensor([[0, 0, 0, 1069, 11, -1, -1, -1, -1]] ), torch.tensor([[0, 0, 0, 1069, 11, -1, -1, -1, -1]] ), ] # fmt: on self.assertTrue(torch.allclose(tokens[0] , EXPECTED_OUTPUT[0] ) ) self.assertTrue(torch.allclose(tokens[1] , EXPECTED_OUTPUT[1] ) ) self.assertTrue(torch.allclose(tokens[2] , EXPECTED_OUTPUT[2] ) )
270
from decimal import Decimal, getcontext from math import ceil, factorial def lowerCamelCase__ ( _lowercase ): '''simple docstring''' if not isinstance(_lowercase , _lowercase ): raise TypeError('''Undefined for non-integers''' ) elif precision < 1: raise ValueError('''Undefined for non-natural numbers''' ) UpperCAmelCase_ : Tuple = precision UpperCAmelCase_ : Optional[Any] = ceil(precision / 14 ) UpperCAmelCase_ : int = 426880 * Decimal(10005 ).sqrt() UpperCAmelCase_ : Tuple = 1 UpperCAmelCase_ : List[Any] = 13591409 UpperCAmelCase_ : Optional[Any] = Decimal(_lowercase ) for k in range(1 , _lowercase ): UpperCAmelCase_ : List[str] = factorial(6 * k ) // (factorial(3 * k ) * factorial(_lowercase ) ** 3) linear_term += 545140134 exponential_term *= -262537412640768000 partial_sum += Decimal(multinomial_term * linear_term ) / exponential_term return str(constant_term / partial_sum )[:-1] if __name__ == "__main__": __a = 50 print(F"""The first {n} digits of pi is: {pi(n)}""")
30
0
'''simple docstring''' # Lint as: python3 # pylint: enable=line-too-long # pylint: disable=g-import-not-at-top,g-bad-import-order,wrong-import-position lowerCAmelCase_ = '2.13.1' import platform import pyarrow from packaging import version if version.parse(platform.python_version()) < version.parse('3.7'): raise ImportWarning( 'To use `datasets`, Python>=3.7 is required, and the current version of Python doesn\'t match this condition.' ) if version.parse(pyarrow.__version__).major < 8: raise ImportWarning( 'To use `datasets`, the module `pyarrow>=8.0.0` is required, and the current version of `pyarrow` doesn\'t match this condition.\n' 'If you are running this in a Google Colab, you should probably just restart the runtime to use the right version of `pyarrow`.' ) del platform del pyarrow del version from .arrow_dataset import Dataset from .arrow_reader import ReadInstruction from .builder import ArrowBasedBuilder, BeamBasedBuilder, BuilderConfig, DatasetBuilder, GeneratorBasedBuilder from .combine import concatenate_datasets, interleave_datasets from .dataset_dict import DatasetDict, IterableDatasetDict from .download import * from .features import * from .fingerprint import disable_caching, enable_caching, is_caching_enabled, set_caching_enabled from .info import DatasetInfo, MetricInfo from .inspect import ( get_dataset_config_info, get_dataset_config_names, get_dataset_infos, get_dataset_split_names, inspect_dataset, inspect_metric, list_datasets, list_metrics, ) from .iterable_dataset import IterableDataset from .load import load_dataset, load_dataset_builder, load_from_disk, load_metric from .metric import Metric from .splits import ( NamedSplit, NamedSplitAll, Split, SplitBase, SplitDict, SplitGenerator, SplitInfo, SubSplitInfo, percent, ) from .tasks import * from .utils import * from .utils import logging # deprecated modules from datasets import arrow_dataset as _arrow_dataset # isort:skip from datasets import utils as _utils # isort:skip from datasets.utils import download_manager as _deprecated_download_manager # isort:skip lowerCAmelCase_ = concatenate_datasets lowerCAmelCase_ = DownloadConfig lowerCAmelCase_ = DownloadManager lowerCAmelCase_ = DownloadMode lowerCAmelCase_ = DownloadConfig lowerCAmelCase_ = DownloadMode lowerCAmelCase_ = DownloadManager del _arrow_dataset, _utils, _deprecated_download_manager
173
from __future__ import annotations import math __a = '2020.9.26' __a = 'xcodz-dot, cclaus, dhruvmanila' def lowerCamelCase__ ( _lowercase , _lowercase , _lowercase , _lowercase , _lowercase ): '''simple docstring''' if not all(isinstance(_lowercase , (float, int) ) for val in locals().values() ): UpperCAmelCase_ : Optional[int] = f'''Input values must either be float or int: {list(locals().values() )}''' raise TypeError(_lowercase ) UpperCAmelCase_ : Tuple = ((x * distance) / (z + distance)) * scale UpperCAmelCase_ : str = ((y * distance) / (z + distance)) * scale return projected_x, projected_y def lowerCamelCase__ ( _lowercase , _lowercase , _lowercase , _lowercase , _lowercase ): '''simple docstring''' if not isinstance(_lowercase , _lowercase ): raise TypeError('''Axis must be a str''' ) UpperCAmelCase_ : Optional[Any] = locals() del input_variables["axis"] if not all(isinstance(_lowercase , (float, int) ) for val in input_variables.values() ): UpperCAmelCase_ : List[Any] = ( '''Input values except axis must either be float or int: ''' f'''{list(input_variables.values() )}''' ) raise TypeError(_lowercase ) UpperCAmelCase_ : Dict = (angle % 360) / 450 * 180 / math.pi if axis == "z": UpperCAmelCase_ : Optional[int] = x * math.cos(_lowercase ) - y * math.sin(_lowercase ) UpperCAmelCase_ : List[Any] = y * math.cos(_lowercase ) + x * math.sin(_lowercase ) UpperCAmelCase_ : Optional[int] = z elif axis == "x": UpperCAmelCase_ : Any = y * math.cos(_lowercase ) - z * math.sin(_lowercase ) UpperCAmelCase_ : int = z * math.cos(_lowercase ) + y * math.sin(_lowercase ) UpperCAmelCase_ : Dict = x elif axis == "y": UpperCAmelCase_ : Union[str, Any] = x * math.cos(_lowercase ) - z * math.sin(_lowercase ) UpperCAmelCase_ : Optional[int] = z * math.cos(_lowercase ) + x * math.sin(_lowercase ) UpperCAmelCase_ : Optional[int] = y else: raise ValueError('''not a valid axis, choose one of \'x\', \'y\', \'z\'''' ) return new_x, new_y, new_z if __name__ == "__main__": import doctest doctest.testmod() print(F"""{convert_to_ad(1.0, 2.0, 3.0, 10.0, 10.0) = }""") print(F"""{rotate(1.0, 2.0, 3.0, "y", 90.0) = }""")
30
0
import argparse import os import torch from transformers import ( XLNetConfig, XLNetForQuestionAnswering, XLNetForSequenceClassification, XLNetLMHeadModel, load_tf_weights_in_xlnet, ) from transformers.utils import CONFIG_NAME, WEIGHTS_NAME, logging SCREAMING_SNAKE_CASE: List[str] = { '''cola''': 2, '''mnli''': 3, '''mrpc''': 2, '''sst-2''': 2, '''sts-b''': 1, '''qqp''': 2, '''qnli''': 2, '''rte''': 2, '''wnli''': 2, } logging.set_verbosity_info() def _a ( lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase=None )-> Tuple: SCREAMING_SNAKE_CASE_ = XLNetConfig.from_json_file(_lowercase ) SCREAMING_SNAKE_CASE_ = finetuning_task.lower() if finetuning_task is not None else '''''' if finetuning_task in GLUE_TASKS_NUM_LABELS: print(F'''Building PyTorch XLNetForSequenceClassification model from configuration: {config}''' ) SCREAMING_SNAKE_CASE_ = finetuning_task SCREAMING_SNAKE_CASE_ = GLUE_TASKS_NUM_LABELS[finetuning_task] SCREAMING_SNAKE_CASE_ = XLNetForSequenceClassification(_lowercase ) elif "squad" in finetuning_task: SCREAMING_SNAKE_CASE_ = finetuning_task SCREAMING_SNAKE_CASE_ = XLNetForQuestionAnswering(_lowercase ) else: SCREAMING_SNAKE_CASE_ = XLNetLMHeadModel(_lowercase ) # Load weights from tf checkpoint load_tf_weights_in_xlnet(_lowercase , _lowercase , _lowercase ) # Save pytorch-model SCREAMING_SNAKE_CASE_ = os.path.join(_lowercase , _lowercase ) SCREAMING_SNAKE_CASE_ = os.path.join(_lowercase , _lowercase ) print(F'''Save PyTorch model to {os.path.abspath(_lowercase )}''' ) torch.save(model.state_dict() , _lowercase ) print(F'''Save configuration file to {os.path.abspath(_lowercase )}''' ) with open(_lowercase , 'w' , encoding='utf-8' ) as f: f.write(config.to_json_string() ) if __name__ == "__main__": SCREAMING_SNAKE_CASE: List[Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--tf_checkpoint_path''', default=None, type=str, required=True, help='''Path to the TensorFlow checkpoint path.''' ) parser.add_argument( '''--xlnet_config_file''', default=None, type=str, required=True, help=( '''The config json file corresponding to the pre-trained XLNet model. \n''' '''This specifies the model architecture.''' ), ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, required=True, help='''Path to the folder to store the PyTorch model or dataset/vocab.''', ) parser.add_argument( '''--finetuning_task''', default=None, type=str, help='''Name of a task on which the XLNet TensorFlow model was fine-tuned''', ) SCREAMING_SNAKE_CASE: Union[str, Any] = parser.parse_args() print(args) convert_xlnet_checkpoint_to_pytorch( args.tf_checkpoint_path, args.xlnet_config_file, args.pytorch_dump_folder_path, args.finetuning_task )
360
# Lint as: python3 # pylint: enable=line-too-long # pylint: disable=g-import-not-at-top,g-bad-import-order,wrong-import-position __a = '2.13.1' import platform import pyarrow from packaging import version if version.parse(platform.python_version()) < version.parse('3.7'): raise ImportWarning( 'To use `datasets`, Python>=3.7 is required, and the current version of Python doesn\'t match this condition.' ) if version.parse(pyarrow.__version__).major < 8: raise ImportWarning( 'To use `datasets`, the module `pyarrow>=8.0.0` is required, and the current version of `pyarrow` doesn\'t match this condition.\n' 'If you are running this in a Google Colab, you should probably just restart the runtime to use the right version of `pyarrow`.' ) del platform del pyarrow del version from .arrow_dataset import Dataset from .arrow_reader import ReadInstruction from .builder import ArrowBasedBuilder, BeamBasedBuilder, BuilderConfig, DatasetBuilder, GeneratorBasedBuilder from .combine import concatenate_datasets, interleave_datasets from .dataset_dict import DatasetDict, IterableDatasetDict from .download import * from .features import * from .fingerprint import disable_caching, enable_caching, is_caching_enabled, set_caching_enabled from .info import DatasetInfo, MetricInfo from .inspect import ( get_dataset_config_info, get_dataset_config_names, get_dataset_infos, get_dataset_split_names, inspect_dataset, inspect_metric, list_datasets, list_metrics, ) from .iterable_dataset import IterableDataset from .load import load_dataset, load_dataset_builder, load_from_disk, load_metric from .metric import Metric from .splits import ( NamedSplit, NamedSplitAll, Split, SplitBase, SplitDict, SplitGenerator, SplitInfo, SubSplitInfo, percent, ) from .tasks import * from .utils import * from .utils import logging # deprecated modules from datasets import arrow_dataset as _arrow_dataset # isort:skip from datasets import utils as _utils # isort:skip from datasets.utils import download_manager as _deprecated_download_manager # isort:skip __a = concatenate_datasets __a = DownloadConfig __a = DownloadManager __a = DownloadMode __a = DownloadConfig __a = DownloadMode __a = DownloadManager del _arrow_dataset, _utils, _deprecated_download_manager
30
0
"""simple docstring""" from collections.abc import Sequence from queue import Queue class a : """simple docstring""" def __init__( self , snake_case_ , snake_case_ , snake_case_ , snake_case_=None , snake_case_=None ) -> Tuple: _UpperCAmelCase = start _UpperCAmelCase = end _UpperCAmelCase = val _UpperCAmelCase = (start + end) // 2 _UpperCAmelCase = left _UpperCAmelCase = right def __repr__( self ) -> Union[str, Any]: return F"""SegmentTreeNode(start={self.start}, end={self.end}, val={self.val})""" class a : """simple docstring""" def __init__( self , snake_case_ , snake_case_ ) -> Any: _UpperCAmelCase = collection _UpperCAmelCase = function if self.collection: _UpperCAmelCase = self._build_tree(0 , len(_SCREAMING_SNAKE_CASE ) - 1 ) def __A ( self , snake_case_ , snake_case_ ) -> Any: self._update_tree(self.root , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) def __A ( self , snake_case_ , snake_case_ ) -> Any: return self._query_range(self.root , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) def __A ( self , snake_case_ , snake_case_ ) -> List[Any]: if start == end: return SegmentTreeNode(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , self.collection[start] ) _UpperCAmelCase = (start + end) // 2 _UpperCAmelCase = self._build_tree(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) _UpperCAmelCase = self._build_tree(mid + 1 , _SCREAMING_SNAKE_CASE ) return SegmentTreeNode(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , self.fn(left.val , right.val ) , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) def __A ( self , snake_case_ , snake_case_ , snake_case_ ) -> Dict: if node.start == i and node.end == i: _UpperCAmelCase = val return if i <= node.mid: self._update_tree(node.left , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) else: self._update_tree(node.right , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) _UpperCAmelCase = self.fn(node.left.val , node.right.val ) def __A ( self , snake_case_ , snake_case_ , snake_case_ ) -> Tuple: if node.start == i and node.end == j: return node.val if i <= node.mid: if j <= node.mid: # range in left child tree return self._query_range(node.left , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) else: # range in left child tree and right child tree return self.fn( self._query_range(node.left , _SCREAMING_SNAKE_CASE , node.mid ) , self._query_range(node.right , node.mid + 1 , _SCREAMING_SNAKE_CASE ) , ) else: # range in right child tree return self._query_range(node.right , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) def __A ( self ) -> int: if self.root is not None: _UpperCAmelCase = Queue() queue.put(self.root ) while not queue.empty(): _UpperCAmelCase = queue.get() yield node if node.left is not None: queue.put(node.left ) if node.right is not None: queue.put(node.right ) if __name__ == "__main__": import operator for fn in [operator.add, max, min]: print('''*''' * 50) SCREAMING_SNAKE_CASE_ = SegmentTree([2, 1, 5, 3, 4], fn) for node in arr.traverse(): print(node) print() arr.update(1, 5) for node in arr.traverse(): print(node) print() print(arr.query_range(3, 4)) # 7 print(arr.query_range(2, 2)) # 5 print(arr.query_range(1, 3)) # 13 print()
426
def lowerCamelCase__ ( _lowercase , _lowercase ): '''simple docstring''' while a != 0: UpperCAmelCase_, UpperCAmelCase_ : Optional[int] = b % a, a return b def lowerCamelCase__ ( _lowercase , _lowercase ): '''simple docstring''' if gcd(_lowercase , _lowercase ) != 1: UpperCAmelCase_ : int = f'''mod inverse of {a!r} and {m!r} does not exist''' raise ValueError(_lowercase ) UpperCAmelCase_, UpperCAmelCase_, UpperCAmelCase_ : Union[str, Any] = 1, 0, a UpperCAmelCase_, UpperCAmelCase_, UpperCAmelCase_ : Dict = 0, 1, m while va != 0: UpperCAmelCase_ : List[Any] = ua // va UpperCAmelCase_, UpperCAmelCase_, UpperCAmelCase_, UpperCAmelCase_, UpperCAmelCase_, UpperCAmelCase_ : Any = (ua - q * va), (ua - q * va), (ua - q * va), va, va, va return ua % m
30
0
'''simple docstring''' def lowerCamelCase (_SCREAMING_SNAKE_CASE : Any ): return sum(i for i in range(1 , number // 2 + 1 ) if number % i == 0 ) == number if __name__ == "__main__": print('Program to check whether a number is a Perfect number or not...') __lowercase : Dict = int(input('Enter number: ').strip()) print(f'''{number} is {'' if perfect(number) else 'not '}a Perfect Number.''')
476
# Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import numpy as np import torch from ..models.clipseg import CLIPSegForImageSegmentation from ..utils import is_vision_available, requires_backends from .base import PipelineTool if is_vision_available(): from PIL import Image class __a( _a ): """simple docstring""" lowerCAmelCase = ( '''This is a tool that creates a segmentation mask of an image according to a label. It cannot create an image.''' '''It takes two arguments named `image` which should be the original image, and `label` which should be a text ''' '''describing the elements what should be identified in the segmentation mask. The tool returns the mask.''' ) lowerCAmelCase = '''CIDAS/clipseg-rd64-refined''' lowerCAmelCase = '''image_segmenter''' lowerCAmelCase = CLIPSegForImageSegmentation lowerCAmelCase = ['''image''', '''text'''] lowerCAmelCase = ['''image'''] def __init__( self ,*_SCREAMING_SNAKE_CASE ,**_SCREAMING_SNAKE_CASE ) -> Dict: requires_backends(self ,['''vision'''] ) super().__init__(*_SCREAMING_SNAKE_CASE ,**_SCREAMING_SNAKE_CASE ) def a__ ( self ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ) -> Tuple: return self.pre_processor(text=[label] ,images=[image] ,padding=_SCREAMING_SNAKE_CASE ,return_tensors='''pt''' ) def a__ ( self ,_SCREAMING_SNAKE_CASE ) -> str: with torch.no_grad(): UpperCAmelCase_ : Dict = self.model(**_SCREAMING_SNAKE_CASE ).logits return logits def a__ ( self ,_SCREAMING_SNAKE_CASE ) -> Dict: UpperCAmelCase_ : Dict = outputs.cpu().detach().numpy() UpperCAmelCase_ : Any = 0 UpperCAmelCase_ : List[Any] = 1 return Image.fromarray((array * 255).astype(np.uinta ) )
30
0