code
stringlengths
82
54.1k
code_codestyle
int64
0
699
style_context
stringlengths
111
35.6k
style_context_codestyle
int64
0
699
label
int64
0
1
from ...configuration_utils import PretrainedConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices lowerCamelCase__ : Union[str, Any] = logging.get_logger(__name__) lowerCamelCase__ : Tuple = { 'facebook/convnextv2-tiny-1k-224': 'https://huggingface.co/facebook/convnextv2-tiny-1k-224/resolve/main/config.json', } class lowerCamelCase_ ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): '''simple docstring''' lowercase_ = "convnextv2" def __init__( self : Tuple , _lowerCAmelCase : str=3 , _lowerCAmelCase : Optional[int]=4 , _lowerCAmelCase : List[str]=4 , _lowerCAmelCase : Any=None , _lowerCAmelCase : Tuple=None , _lowerCAmelCase : int="gelu" , _lowerCAmelCase : Optional[Any]=0.02 , _lowerCAmelCase : Any=1E-12 , _lowerCAmelCase : Union[str, Any]=0.0 , _lowerCAmelCase : Dict=224 , _lowerCAmelCase : Union[str, Any]=None , _lowerCAmelCase : Union[str, Any]=None , **_lowerCAmelCase : Tuple , ): super().__init__(**_lowerCAmelCase ) SCREAMING_SNAKE_CASE_ = num_channels SCREAMING_SNAKE_CASE_ = patch_size SCREAMING_SNAKE_CASE_ = num_stages SCREAMING_SNAKE_CASE_ = [96, 192, 384, 768] if hidden_sizes is None else hidden_sizes SCREAMING_SNAKE_CASE_ = [3, 3, 9, 3] if depths is None else depths SCREAMING_SNAKE_CASE_ = hidden_act SCREAMING_SNAKE_CASE_ = initializer_range SCREAMING_SNAKE_CASE_ = layer_norm_eps SCREAMING_SNAKE_CASE_ = drop_path_rate SCREAMING_SNAKE_CASE_ = image_size SCREAMING_SNAKE_CASE_ = ['stem'] + [F"stage{idx}" for idx in range(1 , len(self.depths ) + 1 )] SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = get_aligned_output_features_output_indices( out_features=_lowerCAmelCase , out_indices=_lowerCAmelCase , stage_names=self.stage_names )
31
def UpperCAmelCase_ ( __UpperCAmelCase : list , __UpperCAmelCase : int , __UpperCAmelCase : int = 0 , __UpperCAmelCase : int = 0 ) -> int: SCREAMING_SNAKE_CASE_ = right or len(__UpperCAmelCase ) - 1 if left > right: return -1 elif list_data[left] == key: return left elif list_data[right] == key: return right else: return search(__UpperCAmelCase , __UpperCAmelCase , left + 1 , right - 1 ) if __name__ == "__main__": import doctest doctest.testmod()
31
1
import argparse import torch from diffusers.pipelines.stable_diffusion.convert_from_ckpt import download_from_original_stable_diffusion_ckpt if __name__ == "__main__": lowerCamelCase__ : Dict = argparse.ArgumentParser() parser.add_argument( '--checkpoint_path', default=None, type=str, required=True, help='Path to the checkpoint to convert.' ) # !wget https://raw.githubusercontent.com/CompVis/stable-diffusion/main/configs/stable-diffusion/v1-inference.yaml parser.add_argument( '--original_config_file', default=None, type=str, help='The YAML config file corresponding to the original architecture.', ) parser.add_argument( '--num_in_channels', default=None, type=int, help='The number of input channels. If `None` number of input channels will be automatically inferred.', ) parser.add_argument( '--scheduler_type', default='pndm', type=str, help='Type of scheduler to use. Should be one of [\'pndm\', \'lms\', \'ddim\', \'euler\', \'euler-ancestral\', \'dpm\']', ) parser.add_argument( '--pipeline_type', default=None, type=str, help=( 'The pipeline type. One of \'FrozenOpenCLIPEmbedder\', \'FrozenCLIPEmbedder\', \'PaintByExample\'' '. If `None` pipeline will be automatically inferred.' ), ) parser.add_argument( '--image_size', default=None, type=int, help=( 'The image size that the model was trained on. Use 512 for Stable Diffusion v1.X and Stable Siffusion v2' ' Base. Use 768 for Stable Diffusion v2.' ), ) parser.add_argument( '--prediction_type', default=None, type=str, help=( 'The prediction type that the model was trained on. Use \'epsilon\' for Stable Diffusion v1.X and Stable' ' Diffusion v2 Base. Use \'v_prediction\' for Stable Diffusion v2.' ), ) parser.add_argument( '--extract_ema', action='store_true', help=( 'Only relevant for checkpoints that have both EMA and non-EMA weights. Whether to extract the EMA weights' ' or not. Defaults to `False`. Add `--extract_ema` to extract the EMA weights. EMA weights usually yield' ' higher quality images for inference. Non-EMA weights are usually better to continue fine-tuning.' ), ) parser.add_argument( '--upcast_attention', action='store_true', help=( 'Whether the attention computation should always be upcasted. This is necessary when running stable' ' diffusion 2.1.' ), ) parser.add_argument( '--from_safetensors', action='store_true', help='If `--checkpoint_path` is in `safetensors` format, load checkpoint with safetensors instead of PyTorch.', ) parser.add_argument( '--to_safetensors', action='store_true', help='Whether to store pipeline in safetensors format or not.', ) parser.add_argument('--dump_path', default=None, type=str, required=True, help='Path to the output model.') parser.add_argument('--device', type=str, help='Device to use (e.g. cpu, cuda:0, cuda:1, etc.)') parser.add_argument( '--stable_unclip', type=str, default=None, required=False, help='Set if this is a stable unCLIP model. One of \'txt2img\' or \'img2img\'.', ) parser.add_argument( '--stable_unclip_prior', type=str, default=None, required=False, help='Set if this is a stable unCLIP txt2img model. Selects which prior to use. If `--stable_unclip` is set to `txt2img`, the karlo prior (https://huggingface.co/kakaobrain/karlo-v1-alpha/tree/main/prior) is selected by default.', ) parser.add_argument( '--clip_stats_path', type=str, help='Path to the clip stats file. Only required if the stable unclip model\'s config specifies `model.params.noise_aug_config.params.clip_stats_path`.', required=False, ) parser.add_argument( '--controlnet', action='store_true', default=None, help='Set flag if this is a controlnet checkpoint.' ) parser.add_argument('--half', action='store_true', help='Save weights in half precision.') parser.add_argument( '--vae_path', type=str, default=None, required=False, help='Set to a path, hub id to an already converted vae to not convert it again.', ) lowerCamelCase__ : List[Any] = parser.parse_args() lowerCamelCase__ : Union[str, Any] = download_from_original_stable_diffusion_ckpt( checkpoint_path=args.checkpoint_path, original_config_file=args.original_config_file, image_size=args.image_size, prediction_type=args.prediction_type, model_type=args.pipeline_type, extract_ema=args.extract_ema, scheduler_type=args.scheduler_type, num_in_channels=args.num_in_channels, upcast_attention=args.upcast_attention, from_safetensors=args.from_safetensors, device=args.device, stable_unclip=args.stable_unclip, stable_unclip_prior=args.stable_unclip_prior, clip_stats_path=args.clip_stats_path, controlnet=args.controlnet, vae_path=args.vae_path, ) if args.half: pipe.to(torch_dtype=torch.floataa) if args.controlnet: # only save the controlnet model pipe.controlnet.save_pretrained(args.dump_path, safe_serialization=args.to_safetensors) else: pipe.save_pretrained(args.dump_path, safe_serialization=args.to_safetensors)
31
import os from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils import AddedToken from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_fnet import FNetTokenizer else: lowerCamelCase__ : Optional[Any] = None lowerCamelCase__ : List[str] = logging.get_logger(__name__) lowerCamelCase__ : List[str] = {'vocab_file': 'spiece.model', 'tokenizer_file': 'tokenizer.json'} lowerCamelCase__ : List[str] = { 'vocab_file': { 'google/fnet-base': 'https://huggingface.co/google/fnet-base/resolve/main/spiece.model', 'google/fnet-large': 'https://huggingface.co/google/fnet-large/resolve/main/spiece.model', }, 'tokenizer_file': { 'google/fnet-base': 'https://huggingface.co/google/fnet-base/resolve/main/tokenizer.json', 'google/fnet-large': 'https://huggingface.co/google/fnet-large/resolve/main/tokenizer.json', }, } lowerCamelCase__ : Optional[Any] = { 'google/fnet-base': 512, 'google/fnet-large': 512, } lowerCamelCase__ : List[Any] = '▁' class lowerCamelCase_ ( _SCREAMING_SNAKE_CASE ): '''simple docstring''' lowercase_ = VOCAB_FILES_NAMES lowercase_ = PRETRAINED_VOCAB_FILES_MAP lowercase_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowercase_ = ["input_ids", "token_type_ids"] lowercase_ = FNetTokenizer def __init__( self : List[Any] , _lowerCAmelCase : Dict=None , _lowerCAmelCase : Dict=None , _lowerCAmelCase : List[str]=False , _lowerCAmelCase : Optional[Any]=True , _lowerCAmelCase : Tuple=True , _lowerCAmelCase : List[Any]="<unk>" , _lowerCAmelCase : Optional[Any]="[SEP]" , _lowerCAmelCase : Optional[Any]="<pad>" , _lowerCAmelCase : Optional[int]="[CLS]" , _lowerCAmelCase : Optional[Any]="[MASK]" , **_lowerCAmelCase : Any , ): # Mask token behave like a normal word, i.e. include the space before it and # is included in the raw text, there should be a match in a non-normalized sentence. SCREAMING_SNAKE_CASE_ = ( AddedToken(_lowerCAmelCase , lstrip=_lowerCAmelCase , rstrip=_lowerCAmelCase , normalized=_lowerCAmelCase ) if isinstance(_lowerCAmelCase , _lowerCAmelCase ) else mask_token ) super().__init__( _lowerCAmelCase , tokenizer_file=_lowerCAmelCase , do_lower_case=_lowerCAmelCase , remove_space=_lowerCAmelCase , keep_accents=_lowerCAmelCase , unk_token=_lowerCAmelCase , sep_token=_lowerCAmelCase , pad_token=_lowerCAmelCase , cls_token=_lowerCAmelCase , mask_token=_lowerCAmelCase , **_lowerCAmelCase , ) SCREAMING_SNAKE_CASE_ = do_lower_case SCREAMING_SNAKE_CASE_ = remove_space SCREAMING_SNAKE_CASE_ = keep_accents SCREAMING_SNAKE_CASE_ = vocab_file SCREAMING_SNAKE_CASE_ = False if not self.vocab_file else True def lowerCAmelCase_ ( self : Any , _lowerCAmelCase : List[int] , _lowerCAmelCase : Optional[List[int]] = None ): SCREAMING_SNAKE_CASE_ = [self.sep_token_id] SCREAMING_SNAKE_CASE_ = [self.cls_token_id] if token_ids_a is None: return cls + token_ids_a + sep return cls + token_ids_a + sep + token_ids_a + sep def lowerCAmelCase_ ( self : Optional[int] , _lowerCAmelCase : List[int] , _lowerCAmelCase : Optional[List[int]] = None ): SCREAMING_SNAKE_CASE_ = [self.sep_token_id] SCREAMING_SNAKE_CASE_ = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def lowerCAmelCase_ ( self : Optional[Any] , _lowerCAmelCase : str , _lowerCAmelCase : Optional[str] = None ): if not os.path.isdir(_lowerCAmelCase ): logger.error(F"Vocabulary path ({save_directory}) should be a directory" ) return SCREAMING_SNAKE_CASE_ = os.path.join( _lowerCAmelCase , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(_lowerCAmelCase ): copyfile(self.vocab_file , _lowerCAmelCase ) return (out_vocab_file,)
31
1
import random def UpperCAmelCase_ ( __UpperCAmelCase : list , __UpperCAmelCase : Dict ) -> tuple: SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = [], [], [] for element in data: if element < pivot: less.append(__UpperCAmelCase ) elif element > pivot: greater.append(__UpperCAmelCase ) else: equal.append(__UpperCAmelCase ) return less, equal, greater def UpperCAmelCase_ ( __UpperCAmelCase : list , __UpperCAmelCase : int ) -> List[str]: # index = len(items) // 2 when trying to find the median # (value of index when items is sorted) # invalid input if index >= len(__UpperCAmelCase ) or index < 0: return None SCREAMING_SNAKE_CASE_ = items[random.randint(0 , len(__UpperCAmelCase ) - 1 )] SCREAMING_SNAKE_CASE_ = 0 SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = _partition(__UpperCAmelCase , __UpperCAmelCase ) SCREAMING_SNAKE_CASE_ = len(__UpperCAmelCase ) SCREAMING_SNAKE_CASE_ = len(__UpperCAmelCase ) # index is the pivot if m <= index < m + count: return pivot # must be in smaller elif m > index: return quick_select(__UpperCAmelCase , __UpperCAmelCase ) # must be in larger else: return quick_select(__UpperCAmelCase , index - (m + count) )
31
from __future__ import annotations from collections.abc import Generator def UpperCAmelCase_ ( ) -> Generator[int, None, None]: SCREAMING_SNAKE_CASE_ = {} SCREAMING_SNAKE_CASE_ = 2 while True: SCREAMING_SNAKE_CASE_ = factor_map.pop(__UpperCAmelCase , __UpperCAmelCase ) if factor: SCREAMING_SNAKE_CASE_ = factor + prime while x in factor_map: x += factor SCREAMING_SNAKE_CASE_ = factor else: SCREAMING_SNAKE_CASE_ = prime yield prime prime += 1 def UpperCAmelCase_ ( __UpperCAmelCase : float = 1E10 ) -> int: SCREAMING_SNAKE_CASE_ = sieve() SCREAMING_SNAKE_CASE_ = 1 while True: SCREAMING_SNAKE_CASE_ = next(__UpperCAmelCase ) if (2 * prime * n) > limit: return n # Ignore the next prime as the reminder will be 2. next(__UpperCAmelCase ) n += 2 if __name__ == "__main__": print(solution())
31
1
import os import shutil from pathlib import Path from typing import Optional, Union import numpy as np from huggingface_hub import hf_hub_download from ..utils import ONNX_EXTERNAL_WEIGHTS_NAME, ONNX_WEIGHTS_NAME, is_onnx_available, logging if is_onnx_available(): import onnxruntime as ort lowerCamelCase__ : Dict = logging.get_logger(__name__) lowerCamelCase__ : int = { 'tensor(bool)': np.bool_, 'tensor(int8)': np.inta, 'tensor(uint8)': np.uinta, 'tensor(int16)': np.intaa, 'tensor(uint16)': np.uintaa, 'tensor(int32)': np.intaa, 'tensor(uint32)': np.uintaa, 'tensor(int64)': np.intaa, 'tensor(uint64)': np.uintaa, 'tensor(float16)': np.floataa, 'tensor(float)': np.floataa, 'tensor(double)': np.floataa, } class lowerCamelCase_ : '''simple docstring''' def __init__( self : Optional[Any] , _lowerCAmelCase : int=None , **_lowerCAmelCase : Optional[Any] ): logger.info('`diffusers.OnnxRuntimeModel` is experimental and might change in the future.' ) SCREAMING_SNAKE_CASE_ = model SCREAMING_SNAKE_CASE_ = kwargs.get('model_save_dir' , _lowerCAmelCase ) SCREAMING_SNAKE_CASE_ = kwargs.get('latest_model_name' , _lowerCAmelCase ) def __call__( self : int , **_lowerCAmelCase : Any ): SCREAMING_SNAKE_CASE_ = {k: np.array(_lowerCAmelCase ) for k, v in kwargs.items()} return self.model.run(_lowerCAmelCase , _lowerCAmelCase ) @staticmethod def lowerCAmelCase_ ( _lowerCAmelCase : Union[str, Path] , _lowerCAmelCase : Tuple=None , _lowerCAmelCase : Dict=None ): if provider is None: logger.info('No onnxruntime provider specified, using CPUExecutionProvider' ) SCREAMING_SNAKE_CASE_ = 'CPUExecutionProvider' return ort.InferenceSession(_lowerCAmelCase , providers=[provider] , sess_options=_lowerCAmelCase ) def lowerCAmelCase_ ( self : Tuple , _lowerCAmelCase : Union[str, Path] , _lowerCAmelCase : Optional[str] = None , **_lowerCAmelCase : str ): SCREAMING_SNAKE_CASE_ = file_name if file_name is not None else ONNX_WEIGHTS_NAME SCREAMING_SNAKE_CASE_ = self.model_save_dir.joinpath(self.latest_model_name ) SCREAMING_SNAKE_CASE_ = Path(_lowerCAmelCase ).joinpath(_lowerCAmelCase ) try: shutil.copyfile(_lowerCAmelCase , _lowerCAmelCase ) except shutil.SameFileError: pass # copy external weights (for models >2GB) SCREAMING_SNAKE_CASE_ = self.model_save_dir.joinpath(_lowerCAmelCase ) if src_path.exists(): SCREAMING_SNAKE_CASE_ = Path(_lowerCAmelCase ).joinpath(_lowerCAmelCase ) try: shutil.copyfile(_lowerCAmelCase , _lowerCAmelCase ) except shutil.SameFileError: pass def lowerCAmelCase_ ( self : List[Any] , _lowerCAmelCase : Union[str, os.PathLike] , **_lowerCAmelCase : int , ): if os.path.isfile(_lowerCAmelCase ): logger.error(F"Provided path ({save_directory}) should be a directory, not a file" ) return os.makedirs(_lowerCAmelCase , exist_ok=_lowerCAmelCase ) # saving model weights/files self._save_pretrained(_lowerCAmelCase , **_lowerCAmelCase ) @classmethod def lowerCAmelCase_ ( cls : Optional[Any] , _lowerCAmelCase : Union[str, Path] , _lowerCAmelCase : Optional[Union[bool, str, None]] = None , _lowerCAmelCase : Optional[Union[str, None]] = None , _lowerCAmelCase : bool = False , _lowerCAmelCase : Optional[str] = None , _lowerCAmelCase : Optional[str] = None , _lowerCAmelCase : Optional[str] = None , _lowerCAmelCase : Optional["ort.SessionOptions"] = None , **_lowerCAmelCase : str , ): SCREAMING_SNAKE_CASE_ = file_name if file_name is not None else ONNX_WEIGHTS_NAME # load model from local directory if os.path.isdir(_lowerCAmelCase ): SCREAMING_SNAKE_CASE_ = OnnxRuntimeModel.load_model( os.path.join(_lowerCAmelCase , _lowerCAmelCase ) , provider=_lowerCAmelCase , sess_options=_lowerCAmelCase ) SCREAMING_SNAKE_CASE_ = Path(_lowerCAmelCase ) # load model from hub else: # download model SCREAMING_SNAKE_CASE_ = hf_hub_download( repo_id=_lowerCAmelCase , filename=_lowerCAmelCase , use_auth_token=_lowerCAmelCase , revision=_lowerCAmelCase , cache_dir=_lowerCAmelCase , force_download=_lowerCAmelCase , ) SCREAMING_SNAKE_CASE_ = Path(_lowerCAmelCase ).parent SCREAMING_SNAKE_CASE_ = Path(_lowerCAmelCase ).name SCREAMING_SNAKE_CASE_ = OnnxRuntimeModel.load_model(_lowerCAmelCase , provider=_lowerCAmelCase , sess_options=_lowerCAmelCase ) return cls(model=_lowerCAmelCase , **_lowerCAmelCase ) @classmethod def lowerCAmelCase_ ( cls : Union[str, Any] , _lowerCAmelCase : Union[str, Path] , _lowerCAmelCase : bool = True , _lowerCAmelCase : Optional[str] = None , _lowerCAmelCase : Optional[str] = None , **_lowerCAmelCase : List[str] , ): SCREAMING_SNAKE_CASE_ = None if len(str(_lowerCAmelCase ).split('@' ) ) == 2: SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = model_id.split('@' ) return cls._from_pretrained( model_id=_lowerCAmelCase , revision=_lowerCAmelCase , cache_dir=_lowerCAmelCase , force_download=_lowerCAmelCase , use_auth_token=_lowerCAmelCase , **_lowerCAmelCase , )
31
import numpy as np import torch from torch.utils.data import DataLoader from accelerate.utils.dataclasses import DistributedType class lowerCamelCase_ : '''simple docstring''' def __init__( self : Any , _lowerCAmelCase : Optional[int]=2 , _lowerCAmelCase : Any=3 , _lowerCAmelCase : Tuple=64 , _lowerCAmelCase : List[str]=None ): SCREAMING_SNAKE_CASE_ = np.random.default_rng(_lowerCAmelCase ) SCREAMING_SNAKE_CASE_ = length SCREAMING_SNAKE_CASE_ = rng.normal(size=(length,) ).astype(np.floataa ) SCREAMING_SNAKE_CASE_ = a * self.x + b + rng.normal(scale=0.1 , size=(length,) ).astype(np.floataa ) def __len__( self : Optional[int] ): return self.length def __getitem__( self : str , _lowerCAmelCase : Union[str, Any] ): return {"x": self.x[i], "y": self.y[i]} class lowerCamelCase_ ( torch.nn.Module ): '''simple docstring''' def __init__( self : Tuple , _lowerCAmelCase : Dict=0 , _lowerCAmelCase : List[str]=0 , _lowerCAmelCase : str=False ): super().__init__() SCREAMING_SNAKE_CASE_ = torch.nn.Parameter(torch.tensor([2, 3] ).float() ) SCREAMING_SNAKE_CASE_ = torch.nn.Parameter(torch.tensor([2, 3] ).float() ) SCREAMING_SNAKE_CASE_ = True def lowerCAmelCase_ ( self : Dict , _lowerCAmelCase : Union[str, Any]=None ): if self.first_batch: print(F"Model dtype: {self.a.dtype}, {self.b.dtype}. Input dtype: {x.dtype}" ) SCREAMING_SNAKE_CASE_ = False return x * self.a[0] + self.b[0] class lowerCamelCase_ ( torch.nn.Module ): '''simple docstring''' def __init__( self : Optional[int] , _lowerCAmelCase : Any=0 , _lowerCAmelCase : Any=0 , _lowerCAmelCase : Optional[Any]=False ): super().__init__() SCREAMING_SNAKE_CASE_ = torch.nn.Parameter(torch.tensor(_lowerCAmelCase ).float() ) SCREAMING_SNAKE_CASE_ = torch.nn.Parameter(torch.tensor(_lowerCAmelCase ).float() ) SCREAMING_SNAKE_CASE_ = True def lowerCAmelCase_ ( self : Optional[Any] , _lowerCAmelCase : Optional[int]=None ): if self.first_batch: print(F"Model dtype: {self.a.dtype}, {self.b.dtype}. Input dtype: {x.dtype}" ) SCREAMING_SNAKE_CASE_ = False return x * self.a + self.b def UpperCAmelCase_ ( __UpperCAmelCase : Dict , __UpperCAmelCase : int = 16 ) -> Union[str, Any]: from datasets import load_dataset from transformers import AutoTokenizer SCREAMING_SNAKE_CASE_ = AutoTokenizer.from_pretrained('bert-base-cased' ) SCREAMING_SNAKE_CASE_ = {'train': 'tests/test_samples/MRPC/train.csv', 'validation': 'tests/test_samples/MRPC/dev.csv'} SCREAMING_SNAKE_CASE_ = load_dataset('csv' , data_files=__UpperCAmelCase ) SCREAMING_SNAKE_CASE_ = datasets['train'].unique('label' ) SCREAMING_SNAKE_CASE_ = {v: i for i, v in enumerate(__UpperCAmelCase )} def tokenize_function(__UpperCAmelCase : Optional[int] ): # max_length=None => use the model max length (it's actually the default) SCREAMING_SNAKE_CASE_ = tokenizer( examples['sentence1'] , examples['sentence2'] , truncation=__UpperCAmelCase , max_length=__UpperCAmelCase , padding='max_length' ) if "label" in examples: SCREAMING_SNAKE_CASE_ = [label_to_id[l] for l in examples['label']] return outputs # Apply the method we just defined to all the examples in all the splits of the dataset SCREAMING_SNAKE_CASE_ = datasets.map( __UpperCAmelCase , batched=__UpperCAmelCase , remove_columns=['sentence1', 'sentence2', 'label'] , ) def collate_fn(__UpperCAmelCase : Dict ): # On TPU it's best to pad everything to the same length or training will be very slow. if accelerator.distributed_type == DistributedType.TPU: return tokenizer.pad(__UpperCAmelCase , padding='max_length' , max_length=1_28 , return_tensors='pt' ) return tokenizer.pad(__UpperCAmelCase , padding='longest' , return_tensors='pt' ) # Instantiate dataloaders. SCREAMING_SNAKE_CASE_ = DataLoader(tokenized_datasets['train'] , shuffle=__UpperCAmelCase , collate_fn=__UpperCAmelCase , batch_size=2 ) SCREAMING_SNAKE_CASE_ = DataLoader(tokenized_datasets['validation'] , shuffle=__UpperCAmelCase , collate_fn=__UpperCAmelCase , batch_size=1 ) return train_dataloader, eval_dataloader
31
1
import pytest import datasets.config from datasets.utils.info_utils import is_small_dataset @pytest.mark.parametrize('dataset_size' , [None, 4_00 * 2**20, 6_00 * 2**20] ) @pytest.mark.parametrize('input_in_memory_max_size' , ['default', 0, 1_00 * 2**20, 9_00 * 2**20] ) def UpperCAmelCase_ ( __UpperCAmelCase : Dict , __UpperCAmelCase : Optional[Any] , __UpperCAmelCase : Optional[Any] ) -> Dict: if input_in_memory_max_size != "default": monkeypatch.setattr(datasets.config , 'IN_MEMORY_MAX_SIZE' , __UpperCAmelCase ) SCREAMING_SNAKE_CASE_ = datasets.config.IN_MEMORY_MAX_SIZE if input_in_memory_max_size == "default": assert in_memory_max_size == 0 else: assert in_memory_max_size == input_in_memory_max_size if dataset_size and in_memory_max_size: SCREAMING_SNAKE_CASE_ = dataset_size < in_memory_max_size else: SCREAMING_SNAKE_CASE_ = False SCREAMING_SNAKE_CASE_ = is_small_dataset(__UpperCAmelCase ) assert result == expected
31
import warnings from ...utils import logging from .image_processing_layoutlmva import LayoutLMvaImageProcessor lowerCamelCase__ : Union[str, Any] = logging.get_logger(__name__) class lowerCamelCase_ ( _SCREAMING_SNAKE_CASE ): '''simple docstring''' def __init__( self : Dict , *_lowerCAmelCase : Optional[Any] , **_lowerCAmelCase : Any ): warnings.warn( 'The class LayoutLMv2FeatureExtractor is deprecated and will be removed in version 5 of Transformers.' ' Please use LayoutLMv2ImageProcessor instead.' , _lowerCAmelCase , ) super().__init__(*_lowerCAmelCase , **_lowerCAmelCase )
31
1
import copy import os from typing import Union from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCamelCase__ : Optional[int] = logging.get_logger(__name__) lowerCamelCase__ : Any = { 'microsoft/git-base': 'https://huggingface.co/microsoft/git-base/resolve/main/config.json', } class lowerCamelCase_ ( _SCREAMING_SNAKE_CASE ): '''simple docstring''' lowercase_ = "git_vision_model" def __init__( self : str , _lowerCAmelCase : Dict=768 , _lowerCAmelCase : str=3_072 , _lowerCAmelCase : Optional[Any]=12 , _lowerCAmelCase : Union[str, Any]=12 , _lowerCAmelCase : List[Any]=3 , _lowerCAmelCase : Any=224 , _lowerCAmelCase : List[Any]=16 , _lowerCAmelCase : Optional[Any]="quick_gelu" , _lowerCAmelCase : Tuple=1E-5 , _lowerCAmelCase : List[Any]=0.0 , _lowerCAmelCase : Tuple=0.02 , **_lowerCAmelCase : Any , ): super().__init__(**_lowerCAmelCase ) SCREAMING_SNAKE_CASE_ = hidden_size SCREAMING_SNAKE_CASE_ = intermediate_size SCREAMING_SNAKE_CASE_ = num_hidden_layers SCREAMING_SNAKE_CASE_ = num_attention_heads SCREAMING_SNAKE_CASE_ = num_channels SCREAMING_SNAKE_CASE_ = patch_size SCREAMING_SNAKE_CASE_ = image_size SCREAMING_SNAKE_CASE_ = initializer_range SCREAMING_SNAKE_CASE_ = attention_dropout SCREAMING_SNAKE_CASE_ = layer_norm_eps SCREAMING_SNAKE_CASE_ = hidden_act @classmethod def lowerCAmelCase_ ( cls : Union[str, Any] , _lowerCAmelCase : Union[str, os.PathLike] , **_lowerCAmelCase : Any ): cls._set_token_in_kwargs(_lowerCAmelCase ) SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = cls.get_config_dict(_lowerCAmelCase , **_lowerCAmelCase ) # get the vision config dict if we are loading from GITConfig if config_dict.get('model_type' ) == "git": SCREAMING_SNAKE_CASE_ = config_dict['vision_config'] if "model_type" in config_dict and hasattr(cls , 'model_type' ) and config_dict["model_type"] != cls.model_type: logger.warning( F"You are using a model of type {config_dict['model_type']} to instantiate a model of type " F"{cls.model_type}. This is not supported for all configurations of models and can yield errors." ) return cls.from_dict(_lowerCAmelCase , **_lowerCAmelCase ) class lowerCamelCase_ ( _SCREAMING_SNAKE_CASE ): '''simple docstring''' lowercase_ = "git" def __init__( self : Union[str, Any] , _lowerCAmelCase : List[Any]=None , _lowerCAmelCase : Optional[Any]=30_522 , _lowerCAmelCase : Union[str, Any]=768 , _lowerCAmelCase : List[str]=6 , _lowerCAmelCase : Optional[int]=12 , _lowerCAmelCase : str=3_072 , _lowerCAmelCase : Any="gelu" , _lowerCAmelCase : Optional[Any]=0.1 , _lowerCAmelCase : Optional[int]=0.1 , _lowerCAmelCase : Optional[int]=1_024 , _lowerCAmelCase : int=0.02 , _lowerCAmelCase : Any=1E-12 , _lowerCAmelCase : List[Any]=0 , _lowerCAmelCase : Any="absolute" , _lowerCAmelCase : str=True , _lowerCAmelCase : Optional[Any]=False , _lowerCAmelCase : Optional[Any]=101 , _lowerCAmelCase : Tuple=102 , _lowerCAmelCase : Any=None , **_lowerCAmelCase : List[str] , ): super().__init__(bos_token_id=_lowerCAmelCase , eos_token_id=_lowerCAmelCase , pad_token_id=_lowerCAmelCase , **_lowerCAmelCase ) if vision_config is None: SCREAMING_SNAKE_CASE_ = {} logger.info('vision_config is None. initializing the GitVisionConfig with default values.' ) SCREAMING_SNAKE_CASE_ = GitVisionConfig(**_lowerCAmelCase ) SCREAMING_SNAKE_CASE_ = vocab_size SCREAMING_SNAKE_CASE_ = hidden_size SCREAMING_SNAKE_CASE_ = num_hidden_layers SCREAMING_SNAKE_CASE_ = num_attention_heads SCREAMING_SNAKE_CASE_ = hidden_act SCREAMING_SNAKE_CASE_ = intermediate_size SCREAMING_SNAKE_CASE_ = hidden_dropout_prob SCREAMING_SNAKE_CASE_ = attention_probs_dropout_prob SCREAMING_SNAKE_CASE_ = max_position_embeddings SCREAMING_SNAKE_CASE_ = initializer_range SCREAMING_SNAKE_CASE_ = layer_norm_eps SCREAMING_SNAKE_CASE_ = position_embedding_type SCREAMING_SNAKE_CASE_ = use_cache SCREAMING_SNAKE_CASE_ = tie_word_embeddings SCREAMING_SNAKE_CASE_ = num_image_with_embedding SCREAMING_SNAKE_CASE_ = bos_token_id SCREAMING_SNAKE_CASE_ = eos_token_id def lowerCAmelCase_ ( self : Dict ): SCREAMING_SNAKE_CASE_ = copy.deepcopy(self.__dict__ ) SCREAMING_SNAKE_CASE_ = self.vision_config.to_dict() SCREAMING_SNAKE_CASE_ = self.__class__.model_type return output
31
def UpperCAmelCase_ ( ) -> list[list[int]]: return [list(range(10_00 - i , -10_00 - i , -1 ) ) for i in range(10_00 )] lowerCamelCase__ : List[Any] = generate_large_matrix() lowerCamelCase__ : List[Any] = ( [[4, 3, 2, -1], [3, 2, 1, -1], [1, 1, -1, -2], [-1, -1, -2, -3]], [[3, 2], [1, 0]], [[7, 7, 6]], [[7, 7, 6], [-1, -2, -3]], grid, ) def UpperCAmelCase_ ( __UpperCAmelCase : list[list[int]] ) -> None: assert all(row == sorted(__UpperCAmelCase , reverse=__UpperCAmelCase ) for row in grid ) assert all(list(__UpperCAmelCase ) == sorted(__UpperCAmelCase , reverse=__UpperCAmelCase ) for col in zip(*__UpperCAmelCase ) ) def UpperCAmelCase_ ( __UpperCAmelCase : list[int] ) -> int: SCREAMING_SNAKE_CASE_ = 0 SCREAMING_SNAKE_CASE_ = len(__UpperCAmelCase ) - 1 # Edge cases such as no values or all numbers are negative. if not array or array[0] < 0: return 0 while right + 1 > left: SCREAMING_SNAKE_CASE_ = (left + right) // 2 SCREAMING_SNAKE_CASE_ = array[mid] # Num must be negative and the index must be greater than or equal to 0. if num < 0 and array[mid - 1] >= 0: return mid if num >= 0: SCREAMING_SNAKE_CASE_ = mid + 1 else: SCREAMING_SNAKE_CASE_ = mid - 1 # No negative numbers so return the last index of the array + 1 which is the length. return len(__UpperCAmelCase ) def UpperCAmelCase_ ( __UpperCAmelCase : list[list[int]] ) -> int: SCREAMING_SNAKE_CASE_ = 0 SCREAMING_SNAKE_CASE_ = len(grid[0] ) for i in range(len(__UpperCAmelCase ) ): SCREAMING_SNAKE_CASE_ = find_negative_index(grid[i][:bound] ) total += bound return (len(__UpperCAmelCase ) * len(grid[0] )) - total def UpperCAmelCase_ ( __UpperCAmelCase : list[list[int]] ) -> int: return len([number for row in grid for number in row if number < 0] ) def UpperCAmelCase_ ( __UpperCAmelCase : list[list[int]] ) -> int: SCREAMING_SNAKE_CASE_ = 0 for row in grid: for i, number in enumerate(__UpperCAmelCase ): if number < 0: total += len(__UpperCAmelCase ) - i break return total def UpperCAmelCase_ ( ) -> None: from timeit import timeit print('Running benchmarks' ) SCREAMING_SNAKE_CASE_ = ( 'from __main__ import count_negatives_binary_search, ' 'count_negatives_brute_force, count_negatives_brute_force_with_break, grid' ) for func in ( "count_negatives_binary_search", # took 0.7727 seconds "count_negatives_brute_force_with_break", # took 4.6505 seconds "count_negatives_brute_force", # took 12.8160 seconds ): SCREAMING_SNAKE_CASE_ = timeit(f"{func}(grid=grid)" , setup=__UpperCAmelCase , number=5_00 ) print(f"{func}() took {time:0.4f} seconds" ) if __name__ == "__main__": import doctest doctest.testmod() benchmark()
31
1
import argparse import os from io import BytesIO from pathlib import Path import requests from clip_retrieval.clip_client import ClipClient from PIL import Image from tqdm import tqdm def UpperCAmelCase_ ( __UpperCAmelCase : Union[str, Any] , __UpperCAmelCase : Dict , __UpperCAmelCase : Optional[Any] ) -> Dict: SCREAMING_SNAKE_CASE_ = 1.5 SCREAMING_SNAKE_CASE_ = int(factor * num_class_images ) SCREAMING_SNAKE_CASE_ = ClipClient( url='https://knn.laion.ai/knn-service' , indice_name='laion_400m' , num_images=__UpperCAmelCase , aesthetic_weight=0.1 ) os.makedirs(f"{class_data_dir}/images" , exist_ok=__UpperCAmelCase ) if len(list(Path(f"{class_data_dir}/images" ).iterdir() ) ) >= num_class_images: return while True: SCREAMING_SNAKE_CASE_ = client.query(text=__UpperCAmelCase ) if len(__UpperCAmelCase ) >= factor * num_class_images or num_images > 1E4: break else: SCREAMING_SNAKE_CASE_ = int(factor * num_images ) SCREAMING_SNAKE_CASE_ = ClipClient( url='https://knn.laion.ai/knn-service' , indice_name='laion_400m' , num_images=__UpperCAmelCase , aesthetic_weight=0.1 , ) SCREAMING_SNAKE_CASE_ = 0 SCREAMING_SNAKE_CASE_ = 0 SCREAMING_SNAKE_CASE_ = tqdm(desc='downloading real regularization images' , total=__UpperCAmelCase ) with open(f"{class_data_dir}/caption.txt" , 'w' ) as fa, open(f"{class_data_dir}/urls.txt" , 'w' ) as fa, open( f"{class_data_dir}/images.txt" , 'w' ) as fa: while total < num_class_images: SCREAMING_SNAKE_CASE_ = class_images[count] count += 1 try: SCREAMING_SNAKE_CASE_ = requests.get(images['url'] ) if img.status_code == 2_00: SCREAMING_SNAKE_CASE_ = Image.open(BytesIO(img.content ) ) with open(f"{class_data_dir}/images/{total}.jpg" , 'wb' ) as f: f.write(img.content ) fa.write(images['caption'] + '\n' ) fa.write(images['url'] + '\n' ) fa.write(f"{class_data_dir}/images/{total}.jpg" + '\n' ) total += 1 pbar.update(1 ) else: continue except Exception: continue return def UpperCAmelCase_ ( ) -> Optional[int]: SCREAMING_SNAKE_CASE_ = argparse.ArgumentParser('' , add_help=__UpperCAmelCase ) parser.add_argument('--class_prompt' , help='text prompt to retrieve images' , required=__UpperCAmelCase , type=__UpperCAmelCase ) parser.add_argument('--class_data_dir' , help='path to save images' , required=__UpperCAmelCase , type=__UpperCAmelCase ) parser.add_argument('--num_class_images' , help='number of images to download' , default=2_00 , type=__UpperCAmelCase ) return parser.parse_args() if __name__ == "__main__": lowerCamelCase__ : List[Any] = parse_args() retrieve(args.class_prompt, args.class_data_dir, args.num_class_images)
31
from typing import TYPE_CHECKING from ....utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available lowerCamelCase__ : Optional[int] = {'configuration_mmbt': ['MMBTConfig']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase__ : Any = ['MMBTForClassification', 'MMBTModel', 'ModalEmbeddings'] if TYPE_CHECKING: from .configuration_mmbt import MMBTConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mmbt import MMBTForClassification, MMBTModel, ModalEmbeddings else: import sys lowerCamelCase__ : str = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
31
1
import argparse import os.path as osp import re import torch from safetensors.torch import load_file, save_file # =================# # UNet Conversion # # =================# lowerCamelCase__ : Dict = [ # (stable-diffusion, HF Diffusers) ('time_embed.0.weight', 'time_embedding.linear_1.weight'), ('time_embed.0.bias', 'time_embedding.linear_1.bias'), ('time_embed.2.weight', 'time_embedding.linear_2.weight'), ('time_embed.2.bias', 'time_embedding.linear_2.bias'), ('input_blocks.0.0.weight', 'conv_in.weight'), ('input_blocks.0.0.bias', 'conv_in.bias'), ('out.0.weight', 'conv_norm_out.weight'), ('out.0.bias', 'conv_norm_out.bias'), ('out.2.weight', 'conv_out.weight'), ('out.2.bias', 'conv_out.bias'), ] lowerCamelCase__ : Any = [ # (stable-diffusion, HF Diffusers) ('in_layers.0', 'norm1'), ('in_layers.2', 'conv1'), ('out_layers.0', 'norm2'), ('out_layers.3', 'conv2'), ('emb_layers.1', 'time_emb_proj'), ('skip_connection', 'conv_shortcut'), ] lowerCamelCase__ : int = [] # hardcoded number of downblocks and resnets/attentions... # would need smarter logic for other networks. for i in range(4): # loop over downblocks/upblocks for j in range(2): # loop over resnets/attentions for downblocks lowerCamelCase__ : str = f'''down_blocks.{i}.resnets.{j}.''' lowerCamelCase__ : List[Any] = f'''input_blocks.{3*i + j + 1}.0.''' unet_conversion_map_layer.append((sd_down_res_prefix, hf_down_res_prefix)) if i < 3: # no attention layers in down_blocks.3 lowerCamelCase__ : Optional[Any] = f'''down_blocks.{i}.attentions.{j}.''' lowerCamelCase__ : str = f'''input_blocks.{3*i + j + 1}.1.''' unet_conversion_map_layer.append((sd_down_atn_prefix, hf_down_atn_prefix)) for j in range(3): # loop over resnets/attentions for upblocks lowerCamelCase__ : List[Any] = f'''up_blocks.{i}.resnets.{j}.''' lowerCamelCase__ : List[Any] = f'''output_blocks.{3*i + j}.0.''' unet_conversion_map_layer.append((sd_up_res_prefix, hf_up_res_prefix)) if i > 0: # no attention layers in up_blocks.0 lowerCamelCase__ : Tuple = f'''up_blocks.{i}.attentions.{j}.''' lowerCamelCase__ : Dict = f'''output_blocks.{3*i + j}.1.''' unet_conversion_map_layer.append((sd_up_atn_prefix, hf_up_atn_prefix)) if i < 3: # no downsample in down_blocks.3 lowerCamelCase__ : Union[str, Any] = f'''down_blocks.{i}.downsamplers.0.conv.''' lowerCamelCase__ : Union[str, Any] = f'''input_blocks.{3*(i+1)}.0.op.''' unet_conversion_map_layer.append((sd_downsample_prefix, hf_downsample_prefix)) # no upsample in up_blocks.3 lowerCamelCase__ : Optional[int] = f'''up_blocks.{i}.upsamplers.0.''' lowerCamelCase__ : List[Any] = f'''output_blocks.{3*i + 2}.{1 if i == 0 else 2}.''' unet_conversion_map_layer.append((sd_upsample_prefix, hf_upsample_prefix)) lowerCamelCase__ : Dict = 'mid_block.attentions.0.' lowerCamelCase__ : Any = 'middle_block.1.' unet_conversion_map_layer.append((sd_mid_atn_prefix, hf_mid_atn_prefix)) for j in range(2): lowerCamelCase__ : Union[str, Any] = f'''mid_block.resnets.{j}.''' lowerCamelCase__ : int = f'''middle_block.{2*j}.''' unet_conversion_map_layer.append((sd_mid_res_prefix, hf_mid_res_prefix)) def UpperCAmelCase_ ( __UpperCAmelCase : Tuple ) -> int: # buyer beware: this is a *brittle* function, # and correct output requires that all of these pieces interact in # the exact order in which I have arranged them. SCREAMING_SNAKE_CASE_ = {k: k for k in unet_state_dict.keys()} for sd_name, hf_name in unet_conversion_map: SCREAMING_SNAKE_CASE_ = sd_name for k, v in mapping.items(): if "resnets" in k: for sd_part, hf_part in unet_conversion_map_resnet: SCREAMING_SNAKE_CASE_ = v.replace(__UpperCAmelCase , __UpperCAmelCase ) SCREAMING_SNAKE_CASE_ = v for k, v in mapping.items(): for sd_part, hf_part in unet_conversion_map_layer: SCREAMING_SNAKE_CASE_ = v.replace(__UpperCAmelCase , __UpperCAmelCase ) SCREAMING_SNAKE_CASE_ = v SCREAMING_SNAKE_CASE_ = {v: unet_state_dict[k] for k, v in mapping.items()} return new_state_dict # ================# # VAE Conversion # # ================# lowerCamelCase__ : str = [ # (stable-diffusion, HF Diffusers) ('nin_shortcut', 'conv_shortcut'), ('norm_out', 'conv_norm_out'), ('mid.attn_1.', 'mid_block.attentions.0.'), ] for i in range(4): # down_blocks have two resnets for j in range(2): lowerCamelCase__ : Union[str, Any] = f'''encoder.down_blocks.{i}.resnets.{j}.''' lowerCamelCase__ : Union[str, Any] = f'''encoder.down.{i}.block.{j}.''' vae_conversion_map.append((sd_down_prefix, hf_down_prefix)) if i < 3: lowerCamelCase__ : int = f'''down_blocks.{i}.downsamplers.0.''' lowerCamelCase__ : List[Any] = f'''down.{i}.downsample.''' vae_conversion_map.append((sd_downsample_prefix, hf_downsample_prefix)) lowerCamelCase__ : List[Any] = f'''up_blocks.{i}.upsamplers.0.''' lowerCamelCase__ : int = f'''up.{3-i}.upsample.''' vae_conversion_map.append((sd_upsample_prefix, hf_upsample_prefix)) # up_blocks have three resnets # also, up blocks in hf are numbered in reverse from sd for j in range(3): lowerCamelCase__ : Dict = f'''decoder.up_blocks.{i}.resnets.{j}.''' lowerCamelCase__ : Any = f'''decoder.up.{3-i}.block.{j}.''' vae_conversion_map.append((sd_up_prefix, hf_up_prefix)) # this part accounts for mid blocks in both the encoder and the decoder for i in range(2): lowerCamelCase__ : List[str] = f'''mid_block.resnets.{i}.''' lowerCamelCase__ : str = f'''mid.block_{i+1}.''' vae_conversion_map.append((sd_mid_res_prefix, hf_mid_res_prefix)) lowerCamelCase__ : str = [ # (stable-diffusion, HF Diffusers) ('norm.', 'group_norm.'), ('q.', 'query.'), ('k.', 'key.'), ('v.', 'value.'), ('proj_out.', 'proj_attn.'), ] def UpperCAmelCase_ ( __UpperCAmelCase : Tuple ) -> List[str]: # convert HF linear weights to SD conv2d weights return w.reshape(*w.shape , 1 , 1 ) def UpperCAmelCase_ ( __UpperCAmelCase : List[str] ) -> int: SCREAMING_SNAKE_CASE_ = {k: k for k in vae_state_dict.keys()} for k, v in mapping.items(): for sd_part, hf_part in vae_conversion_map: SCREAMING_SNAKE_CASE_ = v.replace(__UpperCAmelCase , __UpperCAmelCase ) SCREAMING_SNAKE_CASE_ = v for k, v in mapping.items(): if "attentions" in k: for sd_part, hf_part in vae_conversion_map_attn: SCREAMING_SNAKE_CASE_ = v.replace(__UpperCAmelCase , __UpperCAmelCase ) SCREAMING_SNAKE_CASE_ = v SCREAMING_SNAKE_CASE_ = {v: vae_state_dict[k] for k, v in mapping.items()} SCREAMING_SNAKE_CASE_ = ['q', 'k', 'v', 'proj_out'] for k, v in new_state_dict.items(): for weight_name in weights_to_convert: if f"mid.attn_1.{weight_name}.weight" in k: print(f"Reshaping {k} for SD format" ) SCREAMING_SNAKE_CASE_ = reshape_weight_for_sd(__UpperCAmelCase ) return new_state_dict # =========================# # Text Encoder Conversion # # =========================# lowerCamelCase__ : str = [ # (stable-diffusion, HF Diffusers) ('resblocks.', 'text_model.encoder.layers.'), ('ln_1', 'layer_norm1'), ('ln_2', 'layer_norm2'), ('.c_fc.', '.fc1.'), ('.c_proj.', '.fc2.'), ('.attn', '.self_attn'), ('ln_final.', 'transformer.text_model.final_layer_norm.'), ('token_embedding.weight', 'transformer.text_model.embeddings.token_embedding.weight'), ('positional_embedding', 'transformer.text_model.embeddings.position_embedding.weight'), ] lowerCamelCase__ : Tuple = {re.escape(x[1]): x[0] for x in textenc_conversion_lst} lowerCamelCase__ : str = re.compile('|'.join(protected.keys())) # Ordering is from https://github.com/pytorch/pytorch/blob/master/test/cpp/api/modules.cpp lowerCamelCase__ : Optional[int] = {'q': 0, 'k': 1, 'v': 2} def UpperCAmelCase_ ( __UpperCAmelCase : List[str] ) -> Union[str, Any]: SCREAMING_SNAKE_CASE_ = {} SCREAMING_SNAKE_CASE_ = {} SCREAMING_SNAKE_CASE_ = {} for k, v in text_enc_dict.items(): if ( k.endswith('.self_attn.q_proj.weight' ) or k.endswith('.self_attn.k_proj.weight' ) or k.endswith('.self_attn.v_proj.weight' ) ): SCREAMING_SNAKE_CASE_ = k[: -len('.q_proj.weight' )] SCREAMING_SNAKE_CASE_ = k[-len('q_proj.weight' )] if k_pre not in capture_qkv_weight: SCREAMING_SNAKE_CASE_ = [None, None, None] SCREAMING_SNAKE_CASE_ = v continue if ( k.endswith('.self_attn.q_proj.bias' ) or k.endswith('.self_attn.k_proj.bias' ) or k.endswith('.self_attn.v_proj.bias' ) ): SCREAMING_SNAKE_CASE_ = k[: -len('.q_proj.bias' )] SCREAMING_SNAKE_CASE_ = k[-len('q_proj.bias' )] if k_pre not in capture_qkv_bias: SCREAMING_SNAKE_CASE_ = [None, None, None] SCREAMING_SNAKE_CASE_ = v continue SCREAMING_SNAKE_CASE_ = textenc_pattern.sub(lambda __UpperCAmelCase : protected[re.escape(m.group(0 ) )] , __UpperCAmelCase ) SCREAMING_SNAKE_CASE_ = v for k_pre, tensors in capture_qkv_weight.items(): if None in tensors: raise Exception('CORRUPTED MODEL: one of the q-k-v values for the text encoder was missing' ) SCREAMING_SNAKE_CASE_ = textenc_pattern.sub(lambda __UpperCAmelCase : protected[re.escape(m.group(0 ) )] , __UpperCAmelCase ) SCREAMING_SNAKE_CASE_ = torch.cat(__UpperCAmelCase ) for k_pre, tensors in capture_qkv_bias.items(): if None in tensors: raise Exception('CORRUPTED MODEL: one of the q-k-v values for the text encoder was missing' ) SCREAMING_SNAKE_CASE_ = textenc_pattern.sub(lambda __UpperCAmelCase : protected[re.escape(m.group(0 ) )] , __UpperCAmelCase ) SCREAMING_SNAKE_CASE_ = torch.cat(__UpperCAmelCase ) return new_state_dict def UpperCAmelCase_ ( __UpperCAmelCase : Optional[int] ) -> Optional[Any]: return text_enc_dict if __name__ == "__main__": lowerCamelCase__ : int = argparse.ArgumentParser() parser.add_argument('--model_path', default=None, type=str, required=True, help='Path to the model to convert.') parser.add_argument('--checkpoint_path', default=None, type=str, required=True, help='Path to the output model.') parser.add_argument('--half', action='store_true', help='Save weights in half precision.') parser.add_argument( '--use_safetensors', action='store_true', help='Save weights use safetensors, default is ckpt.' ) lowerCamelCase__ : Any = parser.parse_args() assert args.model_path is not None, "Must provide a model path!" assert args.checkpoint_path is not None, "Must provide a checkpoint path!" # Path for safetensors lowerCamelCase__ : Union[str, Any] = osp.join(args.model_path, 'unet', 'diffusion_pytorch_model.safetensors') lowerCamelCase__ : Dict = osp.join(args.model_path, 'vae', 'diffusion_pytorch_model.safetensors') lowerCamelCase__ : List[str] = osp.join(args.model_path, 'text_encoder', 'model.safetensors') # Load models from safetensors if it exists, if it doesn't pytorch if osp.exists(unet_path): lowerCamelCase__ : Any = load_file(unet_path, device='cpu') else: lowerCamelCase__ : List[str] = osp.join(args.model_path, 'unet', 'diffusion_pytorch_model.bin') lowerCamelCase__ : Any = torch.load(unet_path, map_location='cpu') if osp.exists(vae_path): lowerCamelCase__ : Tuple = load_file(vae_path, device='cpu') else: lowerCamelCase__ : Any = osp.join(args.model_path, 'vae', 'diffusion_pytorch_model.bin') lowerCamelCase__ : str = torch.load(vae_path, map_location='cpu') if osp.exists(text_enc_path): lowerCamelCase__ : List[str] = load_file(text_enc_path, device='cpu') else: lowerCamelCase__ : Optional[Any] = osp.join(args.model_path, 'text_encoder', 'pytorch_model.bin') lowerCamelCase__ : int = torch.load(text_enc_path, map_location='cpu') # Convert the UNet model lowerCamelCase__ : List[str] = convert_unet_state_dict(unet_state_dict) lowerCamelCase__ : Union[str, Any] = {'model.diffusion_model.' + k: v for k, v in unet_state_dict.items()} # Convert the VAE model lowerCamelCase__ : List[Any] = convert_vae_state_dict(vae_state_dict) lowerCamelCase__ : int = {'first_stage_model.' + k: v for k, v in vae_state_dict.items()} # Easiest way to identify v2.0 model seems to be that the text encoder (OpenCLIP) is deeper lowerCamelCase__ : str = 'text_model.encoder.layers.22.layer_norm2.bias' in text_enc_dict if is_vaa_model: # Need to add the tag 'transformer' in advance so we can knock it out from the final layer-norm lowerCamelCase__ : int = {'transformer.' + k: v for k, v in text_enc_dict.items()} lowerCamelCase__ : Union[str, Any] = convert_text_enc_state_dict_vaa(text_enc_dict) lowerCamelCase__ : Any = {'cond_stage_model.model.' + k: v for k, v in text_enc_dict.items()} else: lowerCamelCase__ : List[str] = convert_text_enc_state_dict(text_enc_dict) lowerCamelCase__ : Any = {'cond_stage_model.transformer.' + k: v for k, v in text_enc_dict.items()} # Put together new checkpoint lowerCamelCase__ : Union[str, Any] = {**unet_state_dict, **vae_state_dict, **text_enc_dict} if args.half: lowerCamelCase__ : Dict = {k: v.half() for k, v in state_dict.items()} if args.use_safetensors: save_file(state_dict, args.checkpoint_path) else: lowerCamelCase__ : Optional[int] = {'state_dict': state_dict} torch.save(state_dict, args.checkpoint_path)
31
import unittest from typing import Tuple import torch from diffusers.utils import floats_tensor, randn_tensor, torch_all_close, torch_device from diffusers.utils.testing_utils import require_torch @require_torch class lowerCamelCase_ : '''simple docstring''' @property def lowerCAmelCase_ ( self : Optional[Any] ): return self.get_dummy_input() @property def lowerCAmelCase_ ( self : Union[str, Any] ): if self.block_type == "down": return (4, 32, 16, 16) elif self.block_type == "mid": return (4, 32, 32, 32) elif self.block_type == "up": return (4, 32, 64, 64) raise ValueError(F"'{self.block_type}' is not a supported block_type. Set it to 'up', 'mid', or 'down'." ) def lowerCAmelCase_ ( self : List[str] , _lowerCAmelCase : Optional[Any]=True , _lowerCAmelCase : str=False , _lowerCAmelCase : Optional[int]=False , _lowerCAmelCase : Dict=False , ): SCREAMING_SNAKE_CASE_ = 4 SCREAMING_SNAKE_CASE_ = 32 SCREAMING_SNAKE_CASE_ = (32, 32) SCREAMING_SNAKE_CASE_ = torch.manual_seed(0 ) SCREAMING_SNAKE_CASE_ = torch.device(_lowerCAmelCase ) SCREAMING_SNAKE_CASE_ = (batch_size, num_channels) + sizes SCREAMING_SNAKE_CASE_ = randn_tensor(_lowerCAmelCase , generator=_lowerCAmelCase , device=_lowerCAmelCase ) SCREAMING_SNAKE_CASE_ = {'hidden_states': hidden_states} if include_temb: SCREAMING_SNAKE_CASE_ = 128 SCREAMING_SNAKE_CASE_ = randn_tensor((batch_size, temb_channels) , generator=_lowerCAmelCase , device=_lowerCAmelCase ) if include_res_hidden_states_tuple: SCREAMING_SNAKE_CASE_ = torch.manual_seed(1 ) SCREAMING_SNAKE_CASE_ = (randn_tensor(_lowerCAmelCase , generator=_lowerCAmelCase , device=_lowerCAmelCase ),) if include_encoder_hidden_states: SCREAMING_SNAKE_CASE_ = floats_tensor((batch_size, 32, 32) ).to(_lowerCAmelCase ) if include_skip_sample: SCREAMING_SNAKE_CASE_ = randn_tensor(((batch_size, 3) + sizes) , generator=_lowerCAmelCase , device=_lowerCAmelCase ) return dummy_input def lowerCAmelCase_ ( self : Optional[int] ): SCREAMING_SNAKE_CASE_ = { 'in_channels': 32, 'out_channels': 32, 'temb_channels': 128, } if self.block_type == "up": SCREAMING_SNAKE_CASE_ = 32 if self.block_type == "mid": init_dict.pop('out_channels' ) SCREAMING_SNAKE_CASE_ = self.dummy_input return init_dict, inputs_dict def lowerCAmelCase_ ( self : Dict , _lowerCAmelCase : Optional[Any] ): SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = self.prepare_init_args_and_inputs_for_common() SCREAMING_SNAKE_CASE_ = self.block_class(**_lowerCAmelCase ) unet_block.to(_lowerCAmelCase ) unet_block.eval() with torch.no_grad(): SCREAMING_SNAKE_CASE_ = unet_block(**_lowerCAmelCase ) if isinstance(_lowerCAmelCase , _lowerCAmelCase ): SCREAMING_SNAKE_CASE_ = output[0] self.assertEqual(output.shape , self.output_shape ) SCREAMING_SNAKE_CASE_ = output[0, -1, -3:, -3:] SCREAMING_SNAKE_CASE_ = torch.tensor(_lowerCAmelCase ).to(_lowerCAmelCase ) assert torch_all_close(output_slice.flatten() , _lowerCAmelCase , atol=5E-3 ) @unittest.skipIf(torch_device == 'mps' , 'Training is not supported in mps' ) def lowerCAmelCase_ ( self : Any ): SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = self.prepare_init_args_and_inputs_for_common() SCREAMING_SNAKE_CASE_ = self.block_class(**_lowerCAmelCase ) model.to(_lowerCAmelCase ) model.train() SCREAMING_SNAKE_CASE_ = model(**_lowerCAmelCase ) if isinstance(_lowerCAmelCase , _lowerCAmelCase ): SCREAMING_SNAKE_CASE_ = output[0] SCREAMING_SNAKE_CASE_ = torch.device(_lowerCAmelCase ) SCREAMING_SNAKE_CASE_ = randn_tensor(output.shape , device=_lowerCAmelCase ) SCREAMING_SNAKE_CASE_ = torch.nn.functional.mse_loss(_lowerCAmelCase , _lowerCAmelCase ) loss.backward()
31
1
from typing import Optional from urllib.parse import quote import huggingface_hub as hfh from packaging import version def UpperCAmelCase_ ( __UpperCAmelCase : str , __UpperCAmelCase : str , __UpperCAmelCase : Optional[str] = None ) -> str: if version.parse(hfh.__version__ ).release < version.parse('0.11.0' ).release: # old versions of hfh don't url-encode the file path SCREAMING_SNAKE_CASE_ = quote(__UpperCAmelCase ) return hfh.hf_hub_url(__UpperCAmelCase , __UpperCAmelCase , repo_type='dataset' , revision=__UpperCAmelCase )
31
import operator as op def UpperCAmelCase_ ( __UpperCAmelCase : str ) -> Any: SCREAMING_SNAKE_CASE_ = [] SCREAMING_SNAKE_CASE_ = lambda __UpperCAmelCase , __UpperCAmelCase : int(x / y ) # noqa: E731 integer division operation SCREAMING_SNAKE_CASE_ = { '^': op.pow, '*': op.mul, '/': div, '+': op.add, '-': op.sub, } # operators & their respective operation # print table header print('Symbol'.center(8 ) , 'Action'.center(12 ) , 'Stack' , sep=' | ' ) print('-' * (30 + len(__UpperCAmelCase )) ) for x in post_fix: if x.isdigit(): # if x in digit stack.append(__UpperCAmelCase ) # append x to stack # output in tabular format print(x.rjust(8 ) , ('push(' + x + ')').ljust(12 ) , ','.join(__UpperCAmelCase ) , sep=' | ' ) else: SCREAMING_SNAKE_CASE_ = stack.pop() # pop stack # output in tabular format print(''.rjust(8 ) , ('pop(' + b + ')').ljust(12 ) , ','.join(__UpperCAmelCase ) , sep=' | ' ) SCREAMING_SNAKE_CASE_ = stack.pop() # pop stack # output in tabular format print(''.rjust(8 ) , ('pop(' + a + ')').ljust(12 ) , ','.join(__UpperCAmelCase ) , sep=' | ' ) stack.append( str(opr[x](int(__UpperCAmelCase ) , int(__UpperCAmelCase ) ) ) ) # evaluate the 2 values popped from stack & push result to stack # output in tabular format print( x.rjust(8 ) , ('push(' + a + x + b + ')').ljust(12 ) , ','.join(__UpperCAmelCase ) , sep=' | ' , ) return int(stack[0] ) if __name__ == "__main__": lowerCamelCase__ : Tuple = input('\n\nEnter a Postfix Equation (space separated) = ').split(' ') print('\n\tResult = ', solve(Postfix))
31
1
import operator as op def UpperCAmelCase_ ( __UpperCAmelCase : str ) -> Any: SCREAMING_SNAKE_CASE_ = [] SCREAMING_SNAKE_CASE_ = lambda __UpperCAmelCase , __UpperCAmelCase : int(x / y ) # noqa: E731 integer division operation SCREAMING_SNAKE_CASE_ = { '^': op.pow, '*': op.mul, '/': div, '+': op.add, '-': op.sub, } # operators & their respective operation # print table header print('Symbol'.center(8 ) , 'Action'.center(12 ) , 'Stack' , sep=' | ' ) print('-' * (30 + len(__UpperCAmelCase )) ) for x in post_fix: if x.isdigit(): # if x in digit stack.append(__UpperCAmelCase ) # append x to stack # output in tabular format print(x.rjust(8 ) , ('push(' + x + ')').ljust(12 ) , ','.join(__UpperCAmelCase ) , sep=' | ' ) else: SCREAMING_SNAKE_CASE_ = stack.pop() # pop stack # output in tabular format print(''.rjust(8 ) , ('pop(' + b + ')').ljust(12 ) , ','.join(__UpperCAmelCase ) , sep=' | ' ) SCREAMING_SNAKE_CASE_ = stack.pop() # pop stack # output in tabular format print(''.rjust(8 ) , ('pop(' + a + ')').ljust(12 ) , ','.join(__UpperCAmelCase ) , sep=' | ' ) stack.append( str(opr[x](int(__UpperCAmelCase ) , int(__UpperCAmelCase ) ) ) ) # evaluate the 2 values popped from stack & push result to stack # output in tabular format print( x.rjust(8 ) , ('push(' + a + x + b + ')').ljust(12 ) , ','.join(__UpperCAmelCase ) , sep=' | ' , ) return int(stack[0] ) if __name__ == "__main__": lowerCamelCase__ : Tuple = input('\n\nEnter a Postfix Equation (space separated) = ').split(' ') print('\n\tResult = ', solve(Postfix))
31
def UpperCAmelCase_ ( __UpperCAmelCase : int ) -> int: assert isinstance(__UpperCAmelCase , __UpperCAmelCase ), f"The input value of [n={number}] is not an integer" if number == 1: return 2 elif number < 1: SCREAMING_SNAKE_CASE_ = f"The input value of [n={number}] has to be > 0" raise ValueError(__UpperCAmelCase ) else: SCREAMING_SNAKE_CASE_ = sylvester(number - 1 ) SCREAMING_SNAKE_CASE_ = num - 1 SCREAMING_SNAKE_CASE_ = num return lower * upper + 1 if __name__ == "__main__": print(f'''The 8th number in Sylvester\'s sequence: {sylvester(8)}''')
31
1
import unittest import numpy as np import requests from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch from transformers.pytorch_utils import is_torch_greater_or_equal_than_1_11 else: lowerCamelCase__ : Tuple = False if is_vision_available(): from PIL import Image from transformers import PixaStructImageProcessor class lowerCamelCase_ ( unittest.TestCase ): '''simple docstring''' def __init__( self : Tuple , _lowerCAmelCase : Tuple , _lowerCAmelCase : Optional[Any]=7 , _lowerCAmelCase : List[Any]=3 , _lowerCAmelCase : Tuple=18 , _lowerCAmelCase : str=30 , _lowerCAmelCase : str=400 , _lowerCAmelCase : Union[str, Any]=None , _lowerCAmelCase : int=True , _lowerCAmelCase : List[Any]=True , _lowerCAmelCase : Any=None , ): SCREAMING_SNAKE_CASE_ = size if size is not None else {'height': 20, 'width': 20} SCREAMING_SNAKE_CASE_ = parent SCREAMING_SNAKE_CASE_ = batch_size SCREAMING_SNAKE_CASE_ = num_channels SCREAMING_SNAKE_CASE_ = image_size SCREAMING_SNAKE_CASE_ = min_resolution SCREAMING_SNAKE_CASE_ = max_resolution SCREAMING_SNAKE_CASE_ = size SCREAMING_SNAKE_CASE_ = do_normalize SCREAMING_SNAKE_CASE_ = do_convert_rgb SCREAMING_SNAKE_CASE_ = [512, 1_024, 2_048, 4_096] SCREAMING_SNAKE_CASE_ = patch_size if patch_size is not None else {'height': 16, 'width': 16} def lowerCAmelCase_ ( self : List[str] ): return {"do_normalize": self.do_normalize, "do_convert_rgb": self.do_convert_rgb} def lowerCAmelCase_ ( self : List[Any] ): SCREAMING_SNAKE_CASE_ = 'https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/tasks/australia.jpg' SCREAMING_SNAKE_CASE_ = Image.open(requests.get(_lowerCAmelCase , stream=_lowerCAmelCase ).raw ).convert('RGB' ) return raw_image @unittest.skipIf( not is_torch_greater_or_equal_than_1_11 , reason="`Pix2StructImageProcessor` requires `torch>=1.11.0`." , ) @require_torch @require_vision class lowerCamelCase_ ( _SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' lowercase_ = PixaStructImageProcessor if is_vision_available() else None def lowerCAmelCase_ ( self : Union[str, Any] ): SCREAMING_SNAKE_CASE_ = PixaStructImageProcessingTester(self ) @property def lowerCAmelCase_ ( self : int ): return self.image_processor_tester.prepare_image_processor_dict() def lowerCAmelCase_ ( self : Any ): SCREAMING_SNAKE_CASE_ = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(_lowerCAmelCase , 'do_normalize' ) ) self.assertTrue(hasattr(_lowerCAmelCase , 'do_convert_rgb' ) ) def lowerCAmelCase_ ( self : Optional[Any] ): SCREAMING_SNAKE_CASE_ = self.image_processor_tester.prepare_dummy_image() SCREAMING_SNAKE_CASE_ = self.image_processing_class(**self.image_processor_dict ) SCREAMING_SNAKE_CASE_ = 2_048 SCREAMING_SNAKE_CASE_ = image_processor(_lowerCAmelCase , return_tensors='pt' , max_patches=_lowerCAmelCase ) self.assertTrue(torch.allclose(inputs.flattened_patches.mean() , torch.tensor(0.0606 ) , atol=1E-3 , rtol=1E-3 ) ) def lowerCAmelCase_ ( self : str ): # Initialize image_processor SCREAMING_SNAKE_CASE_ = self.image_processing_class(**self.image_processor_dict ) # create random PIL images SCREAMING_SNAKE_CASE_ = prepare_image_inputs(self.image_processor_tester , equal_resolution=_lowerCAmelCase ) for image in image_inputs: self.assertIsInstance(_lowerCAmelCase , Image.Image ) # Test not batched input SCREAMING_SNAKE_CASE_ = ( (self.image_processor_tester.patch_size['height'] * self.image_processor_tester.patch_size['width']) * self.image_processor_tester.num_channels ) + 2 for max_patch in self.image_processor_tester.max_patches: # Test not batched input SCREAMING_SNAKE_CASE_ = image_processor( image_inputs[0] , return_tensors='pt' , max_patches=_lowerCAmelCase ).flattened_patches self.assertEqual( encoded_images.shape , (1, max_patch, expected_hidden_dim) , ) # Test batched SCREAMING_SNAKE_CASE_ = image_processor( _lowerCAmelCase , return_tensors='pt' , max_patches=_lowerCAmelCase ).flattened_patches self.assertEqual( encoded_images.shape , (self.image_processor_tester.batch_size, max_patch, expected_hidden_dim) , ) def lowerCAmelCase_ ( self : int ): # Initialize image_processor SCREAMING_SNAKE_CASE_ = self.image_processing_class(**self.image_processor_dict ) # create random PIL images SCREAMING_SNAKE_CASE_ = prepare_image_inputs(self.image_processor_tester , equal_resolution=_lowerCAmelCase ) for image in image_inputs: self.assertIsInstance(_lowerCAmelCase , Image.Image ) # Test not batched input SCREAMING_SNAKE_CASE_ = ( (self.image_processor_tester.patch_size['height'] * self.image_processor_tester.patch_size['width']) * self.image_processor_tester.num_channels ) + 2 SCREAMING_SNAKE_CASE_ = True for max_patch in self.image_processor_tester.max_patches: # Test not batched input with self.assertRaises(_lowerCAmelCase ): SCREAMING_SNAKE_CASE_ = image_processor( image_inputs[0] , return_tensors='pt' , max_patches=_lowerCAmelCase ).flattened_patches SCREAMING_SNAKE_CASE_ = 'Hello' SCREAMING_SNAKE_CASE_ = image_processor( image_inputs[0] , return_tensors='pt' , max_patches=_lowerCAmelCase , header_text=_lowerCAmelCase ).flattened_patches self.assertEqual( encoded_images.shape , (1, max_patch, expected_hidden_dim) , ) # Test batched SCREAMING_SNAKE_CASE_ = image_processor( _lowerCAmelCase , return_tensors='pt' , max_patches=_lowerCAmelCase , header_text=_lowerCAmelCase ).flattened_patches self.assertEqual( encoded_images.shape , (self.image_processor_tester.batch_size, max_patch, expected_hidden_dim) , ) def lowerCAmelCase_ ( self : str ): # Initialize image_processor SCREAMING_SNAKE_CASE_ = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors SCREAMING_SNAKE_CASE_ = prepare_image_inputs(self.image_processor_tester , equal_resolution=_lowerCAmelCase , numpify=_lowerCAmelCase ) for image in image_inputs: self.assertIsInstance(_lowerCAmelCase , np.ndarray ) SCREAMING_SNAKE_CASE_ = ( (self.image_processor_tester.patch_size['height'] * self.image_processor_tester.patch_size['width']) * self.image_processor_tester.num_channels ) + 2 for max_patch in self.image_processor_tester.max_patches: # Test not batched input SCREAMING_SNAKE_CASE_ = image_processor( image_inputs[0] , return_tensors='pt' , max_patches=_lowerCAmelCase ).flattened_patches self.assertEqual( encoded_images.shape , (1, max_patch, expected_hidden_dim) , ) # Test batched SCREAMING_SNAKE_CASE_ = image_processor( _lowerCAmelCase , return_tensors='pt' , max_patches=_lowerCAmelCase ).flattened_patches self.assertEqual( encoded_images.shape , (self.image_processor_tester.batch_size, max_patch, expected_hidden_dim) , ) def lowerCAmelCase_ ( self : str ): # Initialize image_processor SCREAMING_SNAKE_CASE_ = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors SCREAMING_SNAKE_CASE_ = prepare_image_inputs(self.image_processor_tester , equal_resolution=_lowerCAmelCase , torchify=_lowerCAmelCase ) for image in image_inputs: self.assertIsInstance(_lowerCAmelCase , torch.Tensor ) # Test not batched input SCREAMING_SNAKE_CASE_ = ( (self.image_processor_tester.patch_size['height'] * self.image_processor_tester.patch_size['width']) * self.image_processor_tester.num_channels ) + 2 for max_patch in self.image_processor_tester.max_patches: # Test not batched input SCREAMING_SNAKE_CASE_ = image_processor( image_inputs[0] , return_tensors='pt' , max_patches=_lowerCAmelCase ).flattened_patches self.assertEqual( encoded_images.shape , (1, max_patch, expected_hidden_dim) , ) # Test batched SCREAMING_SNAKE_CASE_ = image_processor( _lowerCAmelCase , return_tensors='pt' , max_patches=_lowerCAmelCase ).flattened_patches self.assertEqual( encoded_images.shape , (self.image_processor_tester.batch_size, max_patch, expected_hidden_dim) , ) @unittest.skipIf( not is_torch_greater_or_equal_than_1_11 , reason="`Pix2StructImageProcessor` requires `torch>=1.11.0`." , ) @require_torch @require_vision class lowerCamelCase_ ( _SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' lowercase_ = PixaStructImageProcessor if is_vision_available() else None def lowerCAmelCase_ ( self : List[Any] ): SCREAMING_SNAKE_CASE_ = PixaStructImageProcessingTester(self , num_channels=4 ) SCREAMING_SNAKE_CASE_ = 3 @property def lowerCAmelCase_ ( self : Any ): return self.image_processor_tester.prepare_image_processor_dict() def lowerCAmelCase_ ( self : str ): SCREAMING_SNAKE_CASE_ = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(_lowerCAmelCase , 'do_normalize' ) ) self.assertTrue(hasattr(_lowerCAmelCase , 'do_convert_rgb' ) ) def lowerCAmelCase_ ( self : List[str] ): # Initialize image_processor SCREAMING_SNAKE_CASE_ = self.image_processing_class(**self.image_processor_dict ) # create random PIL images SCREAMING_SNAKE_CASE_ = prepare_image_inputs(self.image_processor_tester , equal_resolution=_lowerCAmelCase ) for image in image_inputs: self.assertIsInstance(_lowerCAmelCase , Image.Image ) # Test not batched input SCREAMING_SNAKE_CASE_ = ( (self.image_processor_tester.patch_size['height'] * self.image_processor_tester.patch_size['width']) * (self.image_processor_tester.num_channels - 1) ) + 2 for max_patch in self.image_processor_tester.max_patches: # Test not batched input SCREAMING_SNAKE_CASE_ = image_processor( image_inputs[0] , return_tensors='pt' , max_patches=_lowerCAmelCase ).flattened_patches self.assertEqual( encoded_images.shape , (1, max_patch, expected_hidden_dim) , ) # Test batched SCREAMING_SNAKE_CASE_ = image_processor( _lowerCAmelCase , return_tensors='pt' , max_patches=_lowerCAmelCase ).flattened_patches self.assertEqual( encoded_images.shape , (self.image_processor_tester.batch_size, max_patch, expected_hidden_dim) , )
31
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_sentencepiece_available, is_tf_available, is_tokenizers_available, is_torch_available, ) if is_sentencepiece_available(): from ..ta.tokenization_ta import TaTokenizer else: from ...utils.dummy_sentencepiece_objects import TaTokenizer lowerCamelCase__ : List[Any] = TaTokenizer if is_tokenizers_available(): from ..ta.tokenization_ta_fast import TaTokenizerFast else: from ...utils.dummy_tokenizers_objects import TaTokenizerFast lowerCamelCase__ : Union[str, Any] = TaTokenizerFast lowerCamelCase__ : Dict = {'configuration_mt5': ['MT5Config', 'MT5OnnxConfig']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase__ : Tuple = [ 'MT5EncoderModel', 'MT5ForConditionalGeneration', 'MT5ForQuestionAnswering', 'MT5Model', 'MT5PreTrainedModel', 'MT5Stack', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase__ : Tuple = ['TFMT5EncoderModel', 'TFMT5ForConditionalGeneration', 'TFMT5Model'] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase__ : Tuple = ['FlaxMT5EncoderModel', 'FlaxMT5ForConditionalGeneration', 'FlaxMT5Model'] if TYPE_CHECKING: from .configuration_mta import MTaConfig, MTaOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mta import ( MTaEncoderModel, MTaForConditionalGeneration, MTaForQuestionAnswering, MTaModel, MTaPreTrainedModel, MTaStack, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_mta import TFMTaEncoderModel, TFMTaForConditionalGeneration, TFMTaModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_mta import FlaxMTaEncoderModel, FlaxMTaForConditionalGeneration, FlaxMTaModel else: import sys lowerCamelCase__ : int = _LazyModule( __name__, globals()['__file__'], _import_structure, extra_objects={'MT5Tokenizer': MTaTokenizer, 'MT5TokenizerFast': MTaTokenizerFast}, module_spec=__spec__, )
31
1
import math def UpperCAmelCase_ ( __UpperCAmelCase : int ) -> list[int]: SCREAMING_SNAKE_CASE_ = [] SCREAMING_SNAKE_CASE_ = 2 SCREAMING_SNAKE_CASE_ = int(math.sqrt(__UpperCAmelCase ) ) # Size of every segment SCREAMING_SNAKE_CASE_ = [True] * (end + 1) SCREAMING_SNAKE_CASE_ = [] while start <= end: if temp[start] is True: in_prime.append(__UpperCAmelCase ) for i in range(start * start , end + 1 , __UpperCAmelCase ): SCREAMING_SNAKE_CASE_ = False start += 1 prime += in_prime SCREAMING_SNAKE_CASE_ = end + 1 SCREAMING_SNAKE_CASE_ = min(2 * end , __UpperCAmelCase ) while low <= n: SCREAMING_SNAKE_CASE_ = [True] * (high - low + 1) for each in in_prime: SCREAMING_SNAKE_CASE_ = math.floor(low / each ) * each if t < low: t += each for j in range(__UpperCAmelCase , high + 1 , __UpperCAmelCase ): SCREAMING_SNAKE_CASE_ = False for j in range(len(__UpperCAmelCase ) ): if temp[j] is True: prime.append(j + low ) SCREAMING_SNAKE_CASE_ = high + 1 SCREAMING_SNAKE_CASE_ = min(high + end , __UpperCAmelCase ) return prime print(sieve(10**6))
31
import subprocess import sys from transformers import BertConfig, BertModel, BertTokenizer, pipeline from transformers.testing_utils import TestCasePlus, require_torch class lowerCamelCase_ ( _SCREAMING_SNAKE_CASE ): '''simple docstring''' @require_torch def lowerCAmelCase_ ( self : int ): # this test is a bit tricky since TRANSFORMERS_OFFLINE can only be changed before # `transformers` is loaded, and it's too late for inside pytest - so we are changing it # while running an external program # python one-liner segments # this must be loaded before socket.socket is monkey-patched SCREAMING_SNAKE_CASE_ = '\nfrom transformers import BertConfig, BertModel, BertTokenizer, pipeline\n ' SCREAMING_SNAKE_CASE_ = '\nmname = "hf-internal-testing/tiny-random-bert"\nBertConfig.from_pretrained(mname)\nBertModel.from_pretrained(mname)\nBertTokenizer.from_pretrained(mname)\npipe = pipeline(task="fill-mask", model=mname)\nprint("success")\n ' SCREAMING_SNAKE_CASE_ = '\nimport socket\ndef offline_socket(*args, **kwargs): raise RuntimeError("Offline mode is enabled, we shouldn\'t access internet")\nsocket.socket = offline_socket\n ' # Force fetching the files so that we can use the cache SCREAMING_SNAKE_CASE_ = 'hf-internal-testing/tiny-random-bert' BertConfig.from_pretrained(_lowerCAmelCase ) BertModel.from_pretrained(_lowerCAmelCase ) BertTokenizer.from_pretrained(_lowerCAmelCase ) pipeline(task='fill-mask' , model=_lowerCAmelCase ) # baseline - just load from_pretrained with normal network SCREAMING_SNAKE_CASE_ = [sys.executable, '-c', '\n'.join([load, run, mock] )] # should succeed SCREAMING_SNAKE_CASE_ = self.get_env() # should succeed as TRANSFORMERS_OFFLINE=1 tells it to use local files SCREAMING_SNAKE_CASE_ = '1' SCREAMING_SNAKE_CASE_ = subprocess.run(_lowerCAmelCase , env=_lowerCAmelCase , check=_lowerCAmelCase , capture_output=_lowerCAmelCase ) self.assertEqual(result.returncode , 0 , result.stderr ) self.assertIn('success' , result.stdout.decode() ) @require_torch def lowerCAmelCase_ ( self : Tuple ): # python one-liner segments # this must be loaded before socket.socket is monkey-patched SCREAMING_SNAKE_CASE_ = '\nfrom transformers import BertConfig, BertModel, BertTokenizer, pipeline\n ' SCREAMING_SNAKE_CASE_ = '\nmname = "hf-internal-testing/tiny-random-bert"\nBertConfig.from_pretrained(mname)\nBertModel.from_pretrained(mname)\nBertTokenizer.from_pretrained(mname)\npipe = pipeline(task="fill-mask", model=mname)\nprint("success")\n ' SCREAMING_SNAKE_CASE_ = '\nimport socket\ndef offline_socket(*args, **kwargs): raise socket.error("Faking flaky internet")\nsocket.socket = offline_socket\n ' # Force fetching the files so that we can use the cache SCREAMING_SNAKE_CASE_ = 'hf-internal-testing/tiny-random-bert' BertConfig.from_pretrained(_lowerCAmelCase ) BertModel.from_pretrained(_lowerCAmelCase ) BertTokenizer.from_pretrained(_lowerCAmelCase ) pipeline(task='fill-mask' , model=_lowerCAmelCase ) # baseline - just load from_pretrained with normal network SCREAMING_SNAKE_CASE_ = [sys.executable, '-c', '\n'.join([load, run, mock] )] # should succeed SCREAMING_SNAKE_CASE_ = self.get_env() SCREAMING_SNAKE_CASE_ = subprocess.run(_lowerCAmelCase , env=_lowerCAmelCase , check=_lowerCAmelCase , capture_output=_lowerCAmelCase ) self.assertEqual(result.returncode , 0 , result.stderr ) self.assertIn('success' , result.stdout.decode() ) @require_torch def lowerCAmelCase_ ( self : List[str] ): # this test is a bit tricky since TRANSFORMERS_OFFLINE can only be changed before # `transformers` is loaded, and it's too late for inside pytest - so we are changing it # while running an external program # python one-liner segments # this must be loaded before socket.socket is monkey-patched SCREAMING_SNAKE_CASE_ = '\nfrom transformers import BertConfig, BertModel, BertTokenizer\n ' SCREAMING_SNAKE_CASE_ = '\nmname = "hf-internal-testing/tiny-random-bert-sharded"\nBertConfig.from_pretrained(mname)\nBertModel.from_pretrained(mname)\nprint("success")\n ' SCREAMING_SNAKE_CASE_ = '\nimport socket\ndef offline_socket(*args, **kwargs): raise ValueError("Offline mode is enabled")\nsocket.socket = offline_socket\n ' # baseline - just load from_pretrained with normal network SCREAMING_SNAKE_CASE_ = [sys.executable, '-c', '\n'.join([load, run] )] # should succeed SCREAMING_SNAKE_CASE_ = self.get_env() SCREAMING_SNAKE_CASE_ = subprocess.run(_lowerCAmelCase , env=_lowerCAmelCase , check=_lowerCAmelCase , capture_output=_lowerCAmelCase ) self.assertEqual(result.returncode , 0 , result.stderr ) self.assertIn('success' , result.stdout.decode() ) # next emulate no network SCREAMING_SNAKE_CASE_ = [sys.executable, '-c', '\n'.join([load, mock, run] )] # Doesn't fail anymore since the model is in the cache due to other tests, so commenting this. # env["TRANSFORMERS_OFFLINE"] = "0" # result = subprocess.run(cmd, env=env, check=False, capture_output=True) # self.assertEqual(result.returncode, 1, result.stderr) # should succeed as TRANSFORMERS_OFFLINE=1 tells it to use local files SCREAMING_SNAKE_CASE_ = '1' SCREAMING_SNAKE_CASE_ = subprocess.run(_lowerCAmelCase , env=_lowerCAmelCase , check=_lowerCAmelCase , capture_output=_lowerCAmelCase ) self.assertEqual(result.returncode , 0 , result.stderr ) self.assertIn('success' , result.stdout.decode() ) @require_torch def lowerCAmelCase_ ( self : Any ): SCREAMING_SNAKE_CASE_ = '\nfrom transformers import pipeline\n ' SCREAMING_SNAKE_CASE_ = '\nmname = "hf-internal-testing/tiny-random-bert"\npipe = pipeline(model=mname)\n ' SCREAMING_SNAKE_CASE_ = '\nimport socket\ndef offline_socket(*args, **kwargs): raise socket.error("Offline mode is enabled")\nsocket.socket = offline_socket\n ' SCREAMING_SNAKE_CASE_ = self.get_env() SCREAMING_SNAKE_CASE_ = '1' SCREAMING_SNAKE_CASE_ = [sys.executable, '-c', '\n'.join([load, mock, run] )] SCREAMING_SNAKE_CASE_ = subprocess.run(_lowerCAmelCase , env=_lowerCAmelCase , check=_lowerCAmelCase , capture_output=_lowerCAmelCase ) self.assertEqual(result.returncode , 1 , result.stderr ) self.assertIn( 'You cannot infer task automatically within `pipeline` when using offline mode' , result.stderr.decode().replace('\n' , '' ) , ) @require_torch def lowerCAmelCase_ ( self : Optional[int] ): SCREAMING_SNAKE_CASE_ = '\nfrom transformers import AutoModel\n ' SCREAMING_SNAKE_CASE_ = '\nmname = "hf-internal-testing/test_dynamic_model"\nAutoModel.from_pretrained(mname, trust_remote_code=True)\nprint("success")\n ' # baseline - just load from_pretrained with normal network SCREAMING_SNAKE_CASE_ = [sys.executable, '-c', '\n'.join([load, run] )] # should succeed SCREAMING_SNAKE_CASE_ = self.get_env() SCREAMING_SNAKE_CASE_ = subprocess.run(_lowerCAmelCase , env=_lowerCAmelCase , check=_lowerCAmelCase , capture_output=_lowerCAmelCase ) self.assertEqual(result.returncode , 0 , result.stderr ) self.assertIn('success' , result.stdout.decode() ) # should succeed as TRANSFORMERS_OFFLINE=1 tells it to use local files SCREAMING_SNAKE_CASE_ = '1' SCREAMING_SNAKE_CASE_ = subprocess.run(_lowerCAmelCase , env=_lowerCAmelCase , check=_lowerCAmelCase , capture_output=_lowerCAmelCase ) self.assertEqual(result.returncode , 0 , result.stderr ) self.assertIn('success' , result.stdout.decode() )
31
1
import unittest from parameterized import parameterized from transformers import AutoTokenizer, GPTNeoXConfig, is_torch_available, set_seed from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( GPTNeoXForCausalLM, GPTNeoXForQuestionAnswering, GPTNeoXForSequenceClassification, GPTNeoXForTokenClassification, GPTNeoXModel, ) class lowerCamelCase_ : '''simple docstring''' def __init__( self : int , _lowerCAmelCase : List[Any] , _lowerCAmelCase : List[str]=13 , _lowerCAmelCase : List[str]=7 , _lowerCAmelCase : Optional[int]=True , _lowerCAmelCase : List[Any]=True , _lowerCAmelCase : Optional[int]=True , _lowerCAmelCase : Optional[Any]=True , _lowerCAmelCase : Optional[int]=99 , _lowerCAmelCase : int=64 , _lowerCAmelCase : str=5 , _lowerCAmelCase : Optional[Any]=4 , _lowerCAmelCase : Tuple=37 , _lowerCAmelCase : Any="gelu" , _lowerCAmelCase : Optional[Any]=0.1 , _lowerCAmelCase : str=0.1 , _lowerCAmelCase : str=512 , _lowerCAmelCase : List[str]=16 , _lowerCAmelCase : Union[str, Any]=2 , _lowerCAmelCase : Dict=0.02 , _lowerCAmelCase : List[Any]=3 , _lowerCAmelCase : List[str]=4 , _lowerCAmelCase : str=None , ): SCREAMING_SNAKE_CASE_ = parent SCREAMING_SNAKE_CASE_ = batch_size SCREAMING_SNAKE_CASE_ = seq_length SCREAMING_SNAKE_CASE_ = is_training SCREAMING_SNAKE_CASE_ = use_input_mask SCREAMING_SNAKE_CASE_ = use_token_type_ids SCREAMING_SNAKE_CASE_ = use_labels SCREAMING_SNAKE_CASE_ = vocab_size SCREAMING_SNAKE_CASE_ = hidden_size SCREAMING_SNAKE_CASE_ = num_hidden_layers SCREAMING_SNAKE_CASE_ = num_attention_heads SCREAMING_SNAKE_CASE_ = intermediate_size SCREAMING_SNAKE_CASE_ = hidden_act SCREAMING_SNAKE_CASE_ = hidden_dropout_prob SCREAMING_SNAKE_CASE_ = attention_probs_dropout_prob SCREAMING_SNAKE_CASE_ = max_position_embeddings SCREAMING_SNAKE_CASE_ = type_vocab_size SCREAMING_SNAKE_CASE_ = type_sequence_label_size SCREAMING_SNAKE_CASE_ = initializer_range SCREAMING_SNAKE_CASE_ = num_labels SCREAMING_SNAKE_CASE_ = num_choices SCREAMING_SNAKE_CASE_ = scope SCREAMING_SNAKE_CASE_ = vocab_size - 1 def lowerCAmelCase_ ( self : Any ): SCREAMING_SNAKE_CASE_ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) SCREAMING_SNAKE_CASE_ = None if self.use_input_mask: SCREAMING_SNAKE_CASE_ = random_attention_mask([self.batch_size, self.seq_length] ) SCREAMING_SNAKE_CASE_ = None if self.use_labels: SCREAMING_SNAKE_CASE_ = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) SCREAMING_SNAKE_CASE_ = self.get_config() return config, input_ids, input_mask, token_labels def lowerCAmelCase_ ( self : Tuple ): return GPTNeoXConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=_lowerCAmelCase , initializer_range=self.initializer_range , pad_token_id=self.pad_token_id , ) def lowerCAmelCase_ ( self : str ): SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = self.prepare_config_and_inputs() SCREAMING_SNAKE_CASE_ = True return config, input_ids, input_mask, token_labels def lowerCAmelCase_ ( self : Dict , _lowerCAmelCase : List[Any] , _lowerCAmelCase : Optional[int] , _lowerCAmelCase : Dict ): SCREAMING_SNAKE_CASE_ = GPTNeoXModel(config=_lowerCAmelCase ) model.to(_lowerCAmelCase ) model.eval() SCREAMING_SNAKE_CASE_ = model(_lowerCAmelCase , attention_mask=_lowerCAmelCase ) SCREAMING_SNAKE_CASE_ = model(_lowerCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def lowerCAmelCase_ ( self : Dict , _lowerCAmelCase : Tuple , _lowerCAmelCase : List[Any] , _lowerCAmelCase : Tuple ): SCREAMING_SNAKE_CASE_ = True SCREAMING_SNAKE_CASE_ = GPTNeoXModel(_lowerCAmelCase ) model.to(_lowerCAmelCase ) model.eval() SCREAMING_SNAKE_CASE_ = model(_lowerCAmelCase , attention_mask=_lowerCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def lowerCAmelCase_ ( self : List[str] , _lowerCAmelCase : Tuple , _lowerCAmelCase : str , _lowerCAmelCase : Dict , _lowerCAmelCase : Any ): SCREAMING_SNAKE_CASE_ = GPTNeoXForCausalLM(config=_lowerCAmelCase ) model.to(_lowerCAmelCase ) model.eval() SCREAMING_SNAKE_CASE_ = model(_lowerCAmelCase , attention_mask=_lowerCAmelCase , labels=_lowerCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def lowerCAmelCase_ ( self : Optional[Any] , _lowerCAmelCase : Optional[Any] , _lowerCAmelCase : List[Any] , _lowerCAmelCase : Optional[Any] , _lowerCAmelCase : int ): SCREAMING_SNAKE_CASE_ = self.num_labels SCREAMING_SNAKE_CASE_ = GPTNeoXForQuestionAnswering(_lowerCAmelCase ) model.to(_lowerCAmelCase ) model.eval() SCREAMING_SNAKE_CASE_ = model(_lowerCAmelCase , attention_mask=_lowerCAmelCase ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def lowerCAmelCase_ ( self : int , _lowerCAmelCase : Any , _lowerCAmelCase : Union[str, Any] , _lowerCAmelCase : Optional[Any] , _lowerCAmelCase : Tuple ): SCREAMING_SNAKE_CASE_ = self.num_labels SCREAMING_SNAKE_CASE_ = GPTNeoXForSequenceClassification(_lowerCAmelCase ) model.to(_lowerCAmelCase ) model.eval() SCREAMING_SNAKE_CASE_ = ids_tensor([self.batch_size] , self.type_sequence_label_size ) SCREAMING_SNAKE_CASE_ = model(_lowerCAmelCase , attention_mask=_lowerCAmelCase , labels=_lowerCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def lowerCAmelCase_ ( self : List[str] , _lowerCAmelCase : List[Any] , _lowerCAmelCase : Dict , _lowerCAmelCase : int , _lowerCAmelCase : List[str] ): SCREAMING_SNAKE_CASE_ = self.num_labels SCREAMING_SNAKE_CASE_ = GPTNeoXForTokenClassification(_lowerCAmelCase ) model.to(_lowerCAmelCase ) model.eval() SCREAMING_SNAKE_CASE_ = model(_lowerCAmelCase , attention_mask=_lowerCAmelCase , labels=_lowerCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def lowerCAmelCase_ ( self : Optional[int] , _lowerCAmelCase : int , _lowerCAmelCase : Union[str, Any] , _lowerCAmelCase : Dict ): SCREAMING_SNAKE_CASE_ = True SCREAMING_SNAKE_CASE_ = GPTNeoXForCausalLM(config=_lowerCAmelCase ) model.to(_lowerCAmelCase ) model.eval() # first forward pass SCREAMING_SNAKE_CASE_ = model(_lowerCAmelCase , attention_mask=_lowerCAmelCase , use_cache=_lowerCAmelCase ) SCREAMING_SNAKE_CASE_ = outputs.past_key_values # create hypothetical multiple next token and extent to next_input_ids SCREAMING_SNAKE_CASE_ = ids_tensor((self.batch_size, 3) , config.vocab_size ) SCREAMING_SNAKE_CASE_ = ids_tensor((self.batch_size, 3) , vocab_size=2 ) # append to next input_ids and SCREAMING_SNAKE_CASE_ = torch.cat([input_ids, next_tokens] , dim=-1 ) SCREAMING_SNAKE_CASE_ = torch.cat([input_mask, next_mask] , dim=-1 ) SCREAMING_SNAKE_CASE_ = model(_lowerCAmelCase , attention_mask=_lowerCAmelCase , output_hidden_states=_lowerCAmelCase ) SCREAMING_SNAKE_CASE_ = output_from_no_past['hidden_states'][0] SCREAMING_SNAKE_CASE_ = model( _lowerCAmelCase , attention_mask=_lowerCAmelCase , past_key_values=_lowerCAmelCase , output_hidden_states=_lowerCAmelCase , )['hidden_states'][0] # select random slice SCREAMING_SNAKE_CASE_ = ids_tensor((1,) , output_from_past.shape[-1] ).item() SCREAMING_SNAKE_CASE_ = output_from_no_past[:, -3:, random_slice_idx].detach() SCREAMING_SNAKE_CASE_ = output_from_past[:, :, random_slice_idx].detach() self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1] ) # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(_lowerCAmelCase , _lowerCAmelCase , atol=1E-3 ) ) def lowerCAmelCase_ ( self : int ): SCREAMING_SNAKE_CASE_ = self.prepare_config_and_inputs() SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = config_and_inputs SCREAMING_SNAKE_CASE_ = {'input_ids': input_ids, 'attention_mask': input_mask} return config, inputs_dict @require_torch class lowerCamelCase_ ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' lowercase_ = ( ( GPTNeoXModel, GPTNeoXForCausalLM, GPTNeoXForQuestionAnswering, GPTNeoXForSequenceClassification, GPTNeoXForTokenClassification, ) if is_torch_available() else () ) lowercase_ = (GPTNeoXForCausalLM,) if is_torch_available() else () lowercase_ = ( { "feature-extraction": GPTNeoXModel, "question-answering": GPTNeoXForQuestionAnswering, "text-classification": GPTNeoXForSequenceClassification, "text-generation": GPTNeoXForCausalLM, "token-classification": GPTNeoXForTokenClassification, "zero-shot": GPTNeoXForSequenceClassification, } if is_torch_available() else {} ) lowercase_ = False lowercase_ = False lowercase_ = False lowercase_ = False def lowerCAmelCase_ ( self : Union[str, Any] ): SCREAMING_SNAKE_CASE_ = GPTNeoXModelTester(self ) SCREAMING_SNAKE_CASE_ = ConfigTester(self , config_class=_lowerCAmelCase , hidden_size=64 , num_attention_heads=8 ) def lowerCAmelCase_ ( self : Any ): self.config_tester.run_common_tests() def lowerCAmelCase_ ( self : int ): SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) def lowerCAmelCase_ ( self : Dict ): SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = self.model_tester.prepare_config_and_inputs_for_decoder() self.model_tester.create_and_check_model_as_decoder(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) def lowerCAmelCase_ ( self : Dict ): # This regression test was failing with PyTorch < 1.3 SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = self.model_tester.prepare_config_and_inputs_for_decoder() SCREAMING_SNAKE_CASE_ = None self.model_tester.create_and_check_model_as_decoder(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) def lowerCAmelCase_ ( self : int ): SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_decoder_model_past_large_inputs(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) def lowerCAmelCase_ ( self : Union[str, Any] ): SCREAMING_SNAKE_CASE_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_causal_lm(*_lowerCAmelCase ) def lowerCAmelCase_ ( self : int ): SCREAMING_SNAKE_CASE_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*_lowerCAmelCase ) def lowerCAmelCase_ ( self : Union[str, Any] ): SCREAMING_SNAKE_CASE_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*_lowerCAmelCase ) def lowerCAmelCase_ ( self : List[str] ): SCREAMING_SNAKE_CASE_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*_lowerCAmelCase ) @unittest.skip(reason='Feed forward chunking is not implemented' ) def lowerCAmelCase_ ( self : str ): pass @parameterized.expand([('linear',), ('dynamic',)] ) def lowerCAmelCase_ ( self : Any , _lowerCAmelCase : Dict ): SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = self.model_tester.prepare_config_and_inputs_for_common() SCREAMING_SNAKE_CASE_ = ids_tensor([1, 10] , config.vocab_size ) SCREAMING_SNAKE_CASE_ = ids_tensor([1, int(config.max_position_embeddings * 1.5 )] , config.vocab_size ) set_seed(42 ) # Fixed seed at init time so the two models get the same random weights SCREAMING_SNAKE_CASE_ = GPTNeoXModel(_lowerCAmelCase ) original_model.to(_lowerCAmelCase ) original_model.eval() SCREAMING_SNAKE_CASE_ = original_model(_lowerCAmelCase ).last_hidden_state SCREAMING_SNAKE_CASE_ = original_model(_lowerCAmelCase ).last_hidden_state set_seed(42 ) # Fixed seed at init time so the two models get the same random weights SCREAMING_SNAKE_CASE_ = {'type': scaling_type, 'factor': 10.0} SCREAMING_SNAKE_CASE_ = GPTNeoXModel(_lowerCAmelCase ) scaled_model.to(_lowerCAmelCase ) scaled_model.eval() SCREAMING_SNAKE_CASE_ = scaled_model(_lowerCAmelCase ).last_hidden_state SCREAMING_SNAKE_CASE_ = scaled_model(_lowerCAmelCase ).last_hidden_state # Dynamic scaling does not change the RoPE embeddings until it receives an input longer than the original # maximum sequence length, so the outputs for the short input should match. if scaling_type == "dynamic": self.assertTrue(torch.allclose(_lowerCAmelCase , _lowerCAmelCase , atol=1E-5 ) ) else: self.assertFalse(torch.allclose(_lowerCAmelCase , _lowerCAmelCase , atol=1E-5 ) ) # The output should be different for long inputs self.assertFalse(torch.allclose(_lowerCAmelCase , _lowerCAmelCase , atol=1E-5 ) ) @require_torch class lowerCamelCase_ ( unittest.TestCase ): '''simple docstring''' @slow def lowerCAmelCase_ ( self : Union[str, Any] ): SCREAMING_SNAKE_CASE_ = AutoTokenizer.from_pretrained('EleutherAI/pythia-410m-deduped' ) for checkpointing in [True, False]: SCREAMING_SNAKE_CASE_ = GPTNeoXForCausalLM.from_pretrained('EleutherAI/pythia-410m-deduped' ) if checkpointing: model.gradient_checkpointing_enable() else: model.gradient_checkpointing_disable() model.to(_lowerCAmelCase ) SCREAMING_SNAKE_CASE_ = tokenizer('My favorite food is' , return_tensors='pt' ).to(_lowerCAmelCase ) # The hub repo. is updated on 2023-04-04, resulting in poor outputs. # See: https://github.com/huggingface/transformers/pull/24193 SCREAMING_SNAKE_CASE_ = 'My favorite food is a good old-fashioned, old-fashioned, old-fashioned.\n\nI\'m not sure' SCREAMING_SNAKE_CASE_ = model.generate(**_lowerCAmelCase , do_sample=_lowerCAmelCase , max_new_tokens=20 ) SCREAMING_SNAKE_CASE_ = tokenizer.batch_decode(_lowerCAmelCase )[0] self.assertEqual(_lowerCAmelCase , _lowerCAmelCase )
31
import torch from transformers import PreTrainedModel, XLMRobertaConfig, XLMRobertaModel class lowerCamelCase_ ( _SCREAMING_SNAKE_CASE ): '''simple docstring''' lowercase_ = "M-CLIP" def __init__( self : Tuple , _lowerCAmelCase : List[str]=1_024 , _lowerCAmelCase : str=768 , **_lowerCAmelCase : Union[str, Any] ): SCREAMING_SNAKE_CASE_ = transformerDimSize SCREAMING_SNAKE_CASE_ = imageDimSize super().__init__(**_lowerCAmelCase ) class lowerCamelCase_ ( _SCREAMING_SNAKE_CASE ): '''simple docstring''' lowercase_ = MCLIPConfig def __init__( self : Dict , _lowerCAmelCase : Union[str, Any] , *_lowerCAmelCase : str , **_lowerCAmelCase : str ): super().__init__(_lowerCAmelCase , *_lowerCAmelCase , **_lowerCAmelCase ) SCREAMING_SNAKE_CASE_ = XLMRobertaModel(_lowerCAmelCase ) SCREAMING_SNAKE_CASE_ = torch.nn.Linear( in_features=config.transformerDimensions , out_features=config.numDims ) def lowerCAmelCase_ ( self : List[Any] , _lowerCAmelCase : Any , _lowerCAmelCase : Union[str, Any] ): SCREAMING_SNAKE_CASE_ = self.transformer(input_ids=_lowerCAmelCase , attention_mask=_lowerCAmelCase )[0] SCREAMING_SNAKE_CASE_ = (embs * attention_mask.unsqueeze(2 )).sum(dim=1 ) / attention_mask.sum(dim=1 )[:, None] return self.LinearTransformation(_lowerCAmelCase ), embs
31
1
import os import string import sys lowerCamelCase__ : Any = 1 << 8 lowerCamelCase__ : Optional[int] = { 'tab': ord('\t'), 'newline': ord('\r'), 'esc': 27, 'up': 65 + ARROW_KEY_FLAG, 'down': 66 + ARROW_KEY_FLAG, 'right': 67 + ARROW_KEY_FLAG, 'left': 68 + ARROW_KEY_FLAG, 'mod_int': 91, 'undefined': sys.maxsize, 'interrupt': 3, 'insert': 50, 'delete': 51, 'pg_up': 53, 'pg_down': 54, } lowerCamelCase__ : Dict = KEYMAP['up'] lowerCamelCase__ : int = KEYMAP['left'] if sys.platform == "win32": lowerCamelCase__ : Any = [] lowerCamelCase__ : List[str] = { b'\xe0H': KEYMAP['up'] - ARROW_KEY_FLAG, b'\x00H': KEYMAP['up'] - ARROW_KEY_FLAG, b'\xe0P': KEYMAP['down'] - ARROW_KEY_FLAG, b'\x00P': KEYMAP['down'] - ARROW_KEY_FLAG, b'\xe0M': KEYMAP['right'] - ARROW_KEY_FLAG, b'\x00M': KEYMAP['right'] - ARROW_KEY_FLAG, b'\xe0K': KEYMAP['left'] - ARROW_KEY_FLAG, b'\x00K': KEYMAP['left'] - ARROW_KEY_FLAG, } for i in range(10): lowerCamelCase__ : Union[str, Any] = ord(str(i)) def UpperCAmelCase_ ( ) -> Dict: if os.name == "nt": import msvcrt SCREAMING_SNAKE_CASE_ = 'mbcs' # Flush the keyboard buffer while msvcrt.kbhit(): msvcrt.getch() if len(__UpperCAmelCase ) == 0: # Read the keystroke SCREAMING_SNAKE_CASE_ = msvcrt.getch() # If it is a prefix char, get second part if ch in (b"\x00", b"\xe0"): SCREAMING_SNAKE_CASE_ = ch + msvcrt.getch() # Translate actual Win chars to bullet char types try: SCREAMING_SNAKE_CASE_ = chr(WIN_KEYMAP[cha] ) WIN_CH_BUFFER.append(chr(KEYMAP['mod_int'] ) ) WIN_CH_BUFFER.append(__UpperCAmelCase ) if ord(__UpperCAmelCase ) in ( KEYMAP["insert"] - 1 << 9, KEYMAP["delete"] - 1 << 9, KEYMAP["pg_up"] - 1 << 9, KEYMAP["pg_down"] - 1 << 9, ): WIN_CH_BUFFER.append(chr(1_26 ) ) SCREAMING_SNAKE_CASE_ = chr(KEYMAP['esc'] ) except KeyError: SCREAMING_SNAKE_CASE_ = cha[1] else: SCREAMING_SNAKE_CASE_ = ch.decode(__UpperCAmelCase ) else: SCREAMING_SNAKE_CASE_ = WIN_CH_BUFFER.pop(0 ) elif os.name == "posix": import termios import tty SCREAMING_SNAKE_CASE_ = sys.stdin.fileno() SCREAMING_SNAKE_CASE_ = termios.tcgetattr(__UpperCAmelCase ) try: tty.setraw(__UpperCAmelCase ) SCREAMING_SNAKE_CASE_ = sys.stdin.read(1 ) finally: termios.tcsetattr(__UpperCAmelCase , termios.TCSADRAIN , __UpperCAmelCase ) return ch def UpperCAmelCase_ ( ) -> List[str]: SCREAMING_SNAKE_CASE_ = get_raw_chars() if ord(__UpperCAmelCase ) in [KEYMAP["interrupt"], KEYMAP["newline"]]: return char elif ord(__UpperCAmelCase ) == KEYMAP["esc"]: SCREAMING_SNAKE_CASE_ = get_raw_chars() if ord(__UpperCAmelCase ) == KEYMAP["mod_int"]: SCREAMING_SNAKE_CASE_ = get_raw_chars() if ord(__UpperCAmelCase ) >= KEYMAP["arrow_begin"] - ARROW_KEY_FLAG and ord(__UpperCAmelCase ) <= KEYMAP["arrow_end"] - ARROW_KEY_FLAG: return chr(ord(__UpperCAmelCase ) + ARROW_KEY_FLAG ) else: return KEYMAP["undefined"] else: return get_raw_chars() else: if char in string.printable: return char else: return KEYMAP["undefined"]
31
import gc import random import unittest import numpy as np import torch from transformers import XLMRobertaTokenizer from diffusers import ( AltDiffusionImgaImgPipeline, AutoencoderKL, PNDMScheduler, UNetaDConditionModel, ) from diffusers.image_processor import VaeImageProcessor from diffusers.pipelines.alt_diffusion.modeling_roberta_series import ( RobertaSeriesConfig, RobertaSeriesModelWithTransformation, ) from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu enable_full_determinism() class lowerCamelCase_ ( unittest.TestCase ): '''simple docstring''' def lowerCAmelCase_ ( self : str ): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() @property def lowerCAmelCase_ ( self : Union[str, Any] ): SCREAMING_SNAKE_CASE_ = 1 SCREAMING_SNAKE_CASE_ = 3 SCREAMING_SNAKE_CASE_ = (32, 32) SCREAMING_SNAKE_CASE_ = floats_tensor((batch_size, num_channels) + sizes , rng=random.Random(0 ) ).to(_lowerCAmelCase ) return image @property def lowerCAmelCase_ ( self : Union[str, Any] ): torch.manual_seed(0 ) SCREAMING_SNAKE_CASE_ = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=('DownBlock2D', 'CrossAttnDownBlock2D') , up_block_types=('CrossAttnUpBlock2D', 'UpBlock2D') , cross_attention_dim=32 , ) return model @property def lowerCAmelCase_ ( self : Tuple ): torch.manual_seed(0 ) SCREAMING_SNAKE_CASE_ = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=['DownEncoderBlock2D', 'DownEncoderBlock2D'] , up_block_types=['UpDecoderBlock2D', 'UpDecoderBlock2D'] , latent_channels=4 , ) return model @property def lowerCAmelCase_ ( self : Optional[int] ): torch.manual_seed(0 ) SCREAMING_SNAKE_CASE_ = RobertaSeriesConfig( hidden_size=32 , project_dim=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=5_006 , ) return RobertaSeriesModelWithTransformation(_lowerCAmelCase ) @property def lowerCAmelCase_ ( self : List[Any] ): def extract(*_lowerCAmelCase : Optional[int] , **_lowerCAmelCase : str ): class lowerCamelCase_ : '''simple docstring''' def __init__( self : str ): SCREAMING_SNAKE_CASE_ = torch.ones([0] ) def lowerCAmelCase_ ( self : Union[str, Any] , _lowerCAmelCase : int ): self.pixel_values.to(_lowerCAmelCase ) return self return Out() return extract def lowerCAmelCase_ ( self : Optional[Any] ): SCREAMING_SNAKE_CASE_ = 'cpu' # ensure determinism for the device-dependent torch.Generator SCREAMING_SNAKE_CASE_ = self.dummy_cond_unet SCREAMING_SNAKE_CASE_ = PNDMScheduler(skip_prk_steps=_lowerCAmelCase ) SCREAMING_SNAKE_CASE_ = self.dummy_vae SCREAMING_SNAKE_CASE_ = self.dummy_text_encoder SCREAMING_SNAKE_CASE_ = XLMRobertaTokenizer.from_pretrained('hf-internal-testing/tiny-xlm-roberta' ) SCREAMING_SNAKE_CASE_ = 77 SCREAMING_SNAKE_CASE_ = self.dummy_image.to(_lowerCAmelCase ) SCREAMING_SNAKE_CASE_ = init_image / 2 + 0.5 # make sure here that pndm scheduler skips prk SCREAMING_SNAKE_CASE_ = AltDiffusionImgaImgPipeline( unet=_lowerCAmelCase , scheduler=_lowerCAmelCase , vae=_lowerCAmelCase , text_encoder=_lowerCAmelCase , tokenizer=_lowerCAmelCase , safety_checker=_lowerCAmelCase , feature_extractor=self.dummy_extractor , ) SCREAMING_SNAKE_CASE_ = VaeImageProcessor(vae_scale_factor=alt_pipe.vae_scale_factor , do_normalize=_lowerCAmelCase ) SCREAMING_SNAKE_CASE_ = alt_pipe.to(_lowerCAmelCase ) alt_pipe.set_progress_bar_config(disable=_lowerCAmelCase ) SCREAMING_SNAKE_CASE_ = 'A painting of a squirrel eating a burger' SCREAMING_SNAKE_CASE_ = torch.Generator(device=_lowerCAmelCase ).manual_seed(0 ) SCREAMING_SNAKE_CASE_ = alt_pipe( [prompt] , generator=_lowerCAmelCase , guidance_scale=6.0 , num_inference_steps=2 , output_type='np' , image=_lowerCAmelCase , ) SCREAMING_SNAKE_CASE_ = output.images SCREAMING_SNAKE_CASE_ = torch.Generator(device=_lowerCAmelCase ).manual_seed(0 ) SCREAMING_SNAKE_CASE_ = alt_pipe( [prompt] , generator=_lowerCAmelCase , guidance_scale=6.0 , num_inference_steps=2 , output_type='np' , image=_lowerCAmelCase , return_dict=_lowerCAmelCase , )[0] SCREAMING_SNAKE_CASE_ = image[0, -3:, -3:, -1] SCREAMING_SNAKE_CASE_ = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) SCREAMING_SNAKE_CASE_ = np.array([0.4427, 0.3731, 0.4249, 0.4941, 0.4546, 0.4148, 0.4193, 0.4666, 0.4499] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 5E-3 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 5E-3 @unittest.skipIf(torch_device != 'cuda' , 'This test requires a GPU' ) def lowerCAmelCase_ ( self : Tuple ): SCREAMING_SNAKE_CASE_ = self.dummy_cond_unet SCREAMING_SNAKE_CASE_ = PNDMScheduler(skip_prk_steps=_lowerCAmelCase ) SCREAMING_SNAKE_CASE_ = self.dummy_vae SCREAMING_SNAKE_CASE_ = self.dummy_text_encoder SCREAMING_SNAKE_CASE_ = XLMRobertaTokenizer.from_pretrained('hf-internal-testing/tiny-xlm-roberta' ) SCREAMING_SNAKE_CASE_ = 77 SCREAMING_SNAKE_CASE_ = self.dummy_image.to(_lowerCAmelCase ) # put models in fp16 SCREAMING_SNAKE_CASE_ = unet.half() SCREAMING_SNAKE_CASE_ = vae.half() SCREAMING_SNAKE_CASE_ = bert.half() # make sure here that pndm scheduler skips prk SCREAMING_SNAKE_CASE_ = AltDiffusionImgaImgPipeline( unet=_lowerCAmelCase , scheduler=_lowerCAmelCase , vae=_lowerCAmelCase , text_encoder=_lowerCAmelCase , tokenizer=_lowerCAmelCase , safety_checker=_lowerCAmelCase , feature_extractor=self.dummy_extractor , ) SCREAMING_SNAKE_CASE_ = VaeImageProcessor(vae_scale_factor=alt_pipe.vae_scale_factor , do_normalize=_lowerCAmelCase ) SCREAMING_SNAKE_CASE_ = alt_pipe.to(_lowerCAmelCase ) alt_pipe.set_progress_bar_config(disable=_lowerCAmelCase ) SCREAMING_SNAKE_CASE_ = 'A painting of a squirrel eating a burger' SCREAMING_SNAKE_CASE_ = torch.manual_seed(0 ) SCREAMING_SNAKE_CASE_ = alt_pipe( [prompt] , generator=_lowerCAmelCase , num_inference_steps=2 , output_type='np' , image=_lowerCAmelCase , ).images assert image.shape == (1, 32, 32, 3) @unittest.skipIf(torch_device != 'cuda' , 'This test requires a GPU' ) def lowerCAmelCase_ ( self : str ): SCREAMING_SNAKE_CASE_ = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/img2img/sketch-mountains-input.jpg' ) # resize to resolution that is divisible by 8 but not 16 or 32 SCREAMING_SNAKE_CASE_ = init_image.resize((760, 504) ) SCREAMING_SNAKE_CASE_ = 'BAAI/AltDiffusion' SCREAMING_SNAKE_CASE_ = AltDiffusionImgaImgPipeline.from_pretrained( _lowerCAmelCase , safety_checker=_lowerCAmelCase , ) pipe.to(_lowerCAmelCase ) pipe.set_progress_bar_config(disable=_lowerCAmelCase ) pipe.enable_attention_slicing() SCREAMING_SNAKE_CASE_ = 'A fantasy landscape, trending on artstation' SCREAMING_SNAKE_CASE_ = torch.manual_seed(0 ) SCREAMING_SNAKE_CASE_ = pipe( prompt=_lowerCAmelCase , image=_lowerCAmelCase , strength=0.75 , guidance_scale=7.5 , generator=_lowerCAmelCase , output_type='np' , ) SCREAMING_SNAKE_CASE_ = output.images[0] SCREAMING_SNAKE_CASE_ = image[255:258, 383:386, -1] assert image.shape == (504, 760, 3) SCREAMING_SNAKE_CASE_ = np.array([0.9358, 0.9397, 0.9599, 0.9901, 1.0000, 1.0000, 0.9882, 1.0000, 1.0000] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 @slow @require_torch_gpu class lowerCamelCase_ ( unittest.TestCase ): '''simple docstring''' def lowerCAmelCase_ ( self : str ): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def lowerCAmelCase_ ( self : int ): SCREAMING_SNAKE_CASE_ = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/img2img/sketch-mountains-input.jpg' ) SCREAMING_SNAKE_CASE_ = init_image.resize((768, 512) ) SCREAMING_SNAKE_CASE_ = load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/img2img/fantasy_landscape_alt.npy' ) SCREAMING_SNAKE_CASE_ = 'BAAI/AltDiffusion' SCREAMING_SNAKE_CASE_ = AltDiffusionImgaImgPipeline.from_pretrained( _lowerCAmelCase , safety_checker=_lowerCAmelCase , ) pipe.to(_lowerCAmelCase ) pipe.set_progress_bar_config(disable=_lowerCAmelCase ) pipe.enable_attention_slicing() SCREAMING_SNAKE_CASE_ = 'A fantasy landscape, trending on artstation' SCREAMING_SNAKE_CASE_ = torch.manual_seed(0 ) SCREAMING_SNAKE_CASE_ = pipe( prompt=_lowerCAmelCase , image=_lowerCAmelCase , strength=0.75 , guidance_scale=7.5 , generator=_lowerCAmelCase , output_type='np' , ) SCREAMING_SNAKE_CASE_ = output.images[0] assert image.shape == (512, 768, 3) # img2img is flaky across GPUs even in fp32, so using MAE here assert np.abs(expected_image - image ).max() < 1E-2
31
1
from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCamelCase__ : Optional[int] = logging.get_logger(__name__) lowerCamelCase__ : List[str] = { 'tanreinama/GPTSAN-2.8B-spout_is_uniform': ( 'https://huggingface.co/tanreinama/GPTSAN-2.8B-spout_is_uniform/resolve/main/config.json' ), } class lowerCamelCase_ ( _SCREAMING_SNAKE_CASE ): '''simple docstring''' lowercase_ = "gptsan-japanese" lowercase_ = [ "past_key_values", ] lowercase_ = { "hidden_size": "d_model", "num_attention_heads": "num_heads", "num_hidden_layers": "num_layers", } def __init__( self : List[str] , _lowerCAmelCase : Any=36_000 , _lowerCAmelCase : Any=1_280 , _lowerCAmelCase : Any=1_024 , _lowerCAmelCase : Union[str, Any]=8_192 , _lowerCAmelCase : int=4_096 , _lowerCAmelCase : int=128 , _lowerCAmelCase : int=10 , _lowerCAmelCase : Tuple=0 , _lowerCAmelCase : Union[str, Any]=16 , _lowerCAmelCase : Union[str, Any]=16 , _lowerCAmelCase : Any=128 , _lowerCAmelCase : Dict=0.0 , _lowerCAmelCase : List[str]=1E-5 , _lowerCAmelCase : Union[str, Any]=False , _lowerCAmelCase : Optional[Any]=0.0 , _lowerCAmelCase : Any="float32" , _lowerCAmelCase : Union[str, Any]=False , _lowerCAmelCase : List[Any]=False , _lowerCAmelCase : int=False , _lowerCAmelCase : int=0.002 , _lowerCAmelCase : Tuple=False , _lowerCAmelCase : List[Any]=True , _lowerCAmelCase : List[str]=35_998 , _lowerCAmelCase : int=35_995 , _lowerCAmelCase : str=35_999 , **_lowerCAmelCase : str , ): SCREAMING_SNAKE_CASE_ = vocab_size SCREAMING_SNAKE_CASE_ = max_position_embeddings SCREAMING_SNAKE_CASE_ = d_model SCREAMING_SNAKE_CASE_ = d_ff SCREAMING_SNAKE_CASE_ = d_ext SCREAMING_SNAKE_CASE_ = d_spout SCREAMING_SNAKE_CASE_ = num_switch_layers SCREAMING_SNAKE_CASE_ = num_ext_layers SCREAMING_SNAKE_CASE_ = num_switch_layers + num_ext_layers SCREAMING_SNAKE_CASE_ = num_heads SCREAMING_SNAKE_CASE_ = num_experts SCREAMING_SNAKE_CASE_ = expert_capacity SCREAMING_SNAKE_CASE_ = dropout_rate SCREAMING_SNAKE_CASE_ = layer_norm_epsilon SCREAMING_SNAKE_CASE_ = router_bias SCREAMING_SNAKE_CASE_ = router_jitter_noise SCREAMING_SNAKE_CASE_ = router_dtype SCREAMING_SNAKE_CASE_ = router_ignore_padding_tokens SCREAMING_SNAKE_CASE_ = output_hidden_states SCREAMING_SNAKE_CASE_ = output_attentions SCREAMING_SNAKE_CASE_ = initializer_factor SCREAMING_SNAKE_CASE_ = output_router_logits SCREAMING_SNAKE_CASE_ = use_cache super().__init__( separator_token_id=_lowerCAmelCase , pad_token_id=_lowerCAmelCase , eos_token_id=_lowerCAmelCase , **_lowerCAmelCase , )
31
from collections import OrderedDict from typing import TYPE_CHECKING, Any, List, Mapping, Optional, Union from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import TensorType, logging if TYPE_CHECKING: from ...onnx.config import PatchingSpec from ...tokenization_utils_base import PreTrainedTokenizerBase lowerCamelCase__ : Optional[int] = logging.get_logger(__name__) lowerCamelCase__ : Dict = { 'allenai/longformer-base-4096': 'https://huggingface.co/allenai/longformer-base-4096/resolve/main/config.json', 'allenai/longformer-large-4096': 'https://huggingface.co/allenai/longformer-large-4096/resolve/main/config.json', 'allenai/longformer-large-4096-finetuned-triviaqa': ( 'https://huggingface.co/allenai/longformer-large-4096-finetuned-triviaqa/resolve/main/config.json' ), 'allenai/longformer-base-4096-extra.pos.embd.only': ( 'https://huggingface.co/allenai/longformer-base-4096-extra.pos.embd.only/resolve/main/config.json' ), 'allenai/longformer-large-4096-extra.pos.embd.only': ( 'https://huggingface.co/allenai/longformer-large-4096-extra.pos.embd.only/resolve/main/config.json' ), } class lowerCamelCase_ ( _SCREAMING_SNAKE_CASE ): '''simple docstring''' lowercase_ = "longformer" def __init__( self : Union[str, Any] , _lowerCAmelCase : Union[List[int], int] = 512 , _lowerCAmelCase : int = 2 , _lowerCAmelCase : int = 1 , _lowerCAmelCase : int = 0 , _lowerCAmelCase : int = 2 , _lowerCAmelCase : int = 30_522 , _lowerCAmelCase : int = 768 , _lowerCAmelCase : int = 12 , _lowerCAmelCase : int = 12 , _lowerCAmelCase : int = 3_072 , _lowerCAmelCase : str = "gelu" , _lowerCAmelCase : float = 0.1 , _lowerCAmelCase : float = 0.1 , _lowerCAmelCase : int = 512 , _lowerCAmelCase : int = 2 , _lowerCAmelCase : float = 0.02 , _lowerCAmelCase : float = 1E-12 , _lowerCAmelCase : bool = False , **_lowerCAmelCase : Union[str, Any] , ): super().__init__(pad_token_id=_lowerCAmelCase , **_lowerCAmelCase ) SCREAMING_SNAKE_CASE_ = attention_window SCREAMING_SNAKE_CASE_ = sep_token_id SCREAMING_SNAKE_CASE_ = bos_token_id SCREAMING_SNAKE_CASE_ = eos_token_id SCREAMING_SNAKE_CASE_ = vocab_size SCREAMING_SNAKE_CASE_ = hidden_size SCREAMING_SNAKE_CASE_ = num_hidden_layers SCREAMING_SNAKE_CASE_ = num_attention_heads SCREAMING_SNAKE_CASE_ = hidden_act SCREAMING_SNAKE_CASE_ = intermediate_size SCREAMING_SNAKE_CASE_ = hidden_dropout_prob SCREAMING_SNAKE_CASE_ = attention_probs_dropout_prob SCREAMING_SNAKE_CASE_ = max_position_embeddings SCREAMING_SNAKE_CASE_ = type_vocab_size SCREAMING_SNAKE_CASE_ = initializer_range SCREAMING_SNAKE_CASE_ = layer_norm_eps SCREAMING_SNAKE_CASE_ = onnx_export class lowerCamelCase_ ( _SCREAMING_SNAKE_CASE ): '''simple docstring''' def __init__( self : Optional[Any] , _lowerCAmelCase : "PretrainedConfig" , _lowerCAmelCase : str = "default" , _lowerCAmelCase : "List[PatchingSpec]" = None ): super().__init__(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) SCREAMING_SNAKE_CASE_ = True @property def lowerCAmelCase_ ( self : Any ): if self.task == "multiple-choice": SCREAMING_SNAKE_CASE_ = {0: 'batch', 1: 'choice', 2: 'sequence'} else: SCREAMING_SNAKE_CASE_ = {0: 'batch', 1: 'sequence'} return OrderedDict( [ ('input_ids', dynamic_axis), ('attention_mask', dynamic_axis), ('global_attention_mask', dynamic_axis), ] ) @property def lowerCAmelCase_ ( self : Optional[int] ): SCREAMING_SNAKE_CASE_ = super().outputs if self.task == "default": SCREAMING_SNAKE_CASE_ = {0: 'batch'} return outputs @property def lowerCAmelCase_ ( self : str ): return 1E-4 @property def lowerCAmelCase_ ( self : Optional[Any] ): # needs to be >= 14 to support tril operator return max(super().default_onnx_opset , 14 ) def lowerCAmelCase_ ( self : str , _lowerCAmelCase : "PreTrainedTokenizerBase" , _lowerCAmelCase : int = -1 , _lowerCAmelCase : int = -1 , _lowerCAmelCase : bool = False , _lowerCAmelCase : Optional[TensorType] = None , ): SCREAMING_SNAKE_CASE_ = super().generate_dummy_inputs( preprocessor=_lowerCAmelCase , batch_size=_lowerCAmelCase , seq_length=_lowerCAmelCase , is_pair=_lowerCAmelCase , framework=_lowerCAmelCase ) import torch # for some reason, replacing this code by inputs["global_attention_mask"] = torch.randint(2, inputs["input_ids"].shape, dtype=torch.int64) # makes the export fail randomly SCREAMING_SNAKE_CASE_ = torch.zeros_like(inputs['input_ids'] ) # make every second token global SCREAMING_SNAKE_CASE_ = 1 return inputs
31
1
import warnings from ..trainer import Trainer from ..utils import logging lowerCamelCase__ : Union[str, Any] = logging.get_logger(__name__) class lowerCamelCase_ ( _SCREAMING_SNAKE_CASE ): '''simple docstring''' def __init__( self : Tuple , _lowerCAmelCase : Dict=None , **_lowerCAmelCase : List[str] ): warnings.warn( '`SageMakerTrainer` is deprecated and will be removed in v5 of Transformers. You can use `Trainer` ' 'instead.' , _lowerCAmelCase , ) super().__init__(args=_lowerCAmelCase , **_lowerCAmelCase )
31
import warnings from ...utils import logging from .image_processing_mobilevit import MobileViTImageProcessor lowerCamelCase__ : Optional[int] = logging.get_logger(__name__) class lowerCamelCase_ ( _SCREAMING_SNAKE_CASE ): '''simple docstring''' def __init__( self : str , *_lowerCAmelCase : Tuple , **_lowerCAmelCase : int ): warnings.warn( 'The class MobileViTFeatureExtractor is deprecated and will be removed in version 5 of Transformers.' ' Please use MobileViTImageProcessor instead.' , _lowerCAmelCase , ) super().__init__(*_lowerCAmelCase , **_lowerCAmelCase )
31
1
def UpperCAmelCase_ ( __UpperCAmelCase : int , __UpperCAmelCase : int ) -> str: if b == 0: return 1 if (b % 2) == 0: return actual_power(__UpperCAmelCase , int(b / 2 ) ) * actual_power(__UpperCAmelCase , int(b / 2 ) ) else: return a * actual_power(__UpperCAmelCase , int(b / 2 ) ) * actual_power(__UpperCAmelCase , int(b / 2 ) ) def UpperCAmelCase_ ( __UpperCAmelCase : int , __UpperCAmelCase : int ) -> float: if b < 0: return 1 / actual_power(__UpperCAmelCase , __UpperCAmelCase ) return actual_power(__UpperCAmelCase , __UpperCAmelCase ) if __name__ == "__main__": print(power(-2, -3))
31
from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCamelCase__ : Optional[int] = logging.get_logger(__name__) lowerCamelCase__ : Tuple = { 'microsoft/swinv2-tiny-patch4-window8-256': ( 'https://huggingface.co/microsoft/swinv2-tiny-patch4-window8-256/resolve/main/config.json' ), } class lowerCamelCase_ ( _SCREAMING_SNAKE_CASE ): '''simple docstring''' lowercase_ = "swinv2" lowercase_ = { "num_attention_heads": "num_heads", "num_hidden_layers": "num_layers", } def __init__( self : Dict , _lowerCAmelCase : Optional[Any]=224 , _lowerCAmelCase : Optional[int]=4 , _lowerCAmelCase : Tuple=3 , _lowerCAmelCase : Tuple=96 , _lowerCAmelCase : Dict=[2, 2, 6, 2] , _lowerCAmelCase : Optional[Any]=[3, 6, 12, 24] , _lowerCAmelCase : str=7 , _lowerCAmelCase : List[Any]=4.0 , _lowerCAmelCase : List[str]=True , _lowerCAmelCase : List[Any]=0.0 , _lowerCAmelCase : List[Any]=0.0 , _lowerCAmelCase : Any=0.1 , _lowerCAmelCase : List[Any]="gelu" , _lowerCAmelCase : str=False , _lowerCAmelCase : str=0.02 , _lowerCAmelCase : List[Any]=1E-5 , _lowerCAmelCase : str=32 , **_lowerCAmelCase : List[Any] , ): super().__init__(**_lowerCAmelCase ) SCREAMING_SNAKE_CASE_ = image_size SCREAMING_SNAKE_CASE_ = patch_size SCREAMING_SNAKE_CASE_ = num_channels SCREAMING_SNAKE_CASE_ = embed_dim SCREAMING_SNAKE_CASE_ = depths SCREAMING_SNAKE_CASE_ = len(_lowerCAmelCase ) SCREAMING_SNAKE_CASE_ = num_heads SCREAMING_SNAKE_CASE_ = window_size SCREAMING_SNAKE_CASE_ = mlp_ratio SCREAMING_SNAKE_CASE_ = qkv_bias SCREAMING_SNAKE_CASE_ = hidden_dropout_prob SCREAMING_SNAKE_CASE_ = attention_probs_dropout_prob SCREAMING_SNAKE_CASE_ = drop_path_rate SCREAMING_SNAKE_CASE_ = hidden_act SCREAMING_SNAKE_CASE_ = use_absolute_embeddings SCREAMING_SNAKE_CASE_ = layer_norm_eps SCREAMING_SNAKE_CASE_ = initializer_range SCREAMING_SNAKE_CASE_ = encoder_stride # we set the hidden_size attribute in order to make Swinv2 work with VisionEncoderDecoderModel # this indicates the channel dimension after the last stage of the model SCREAMING_SNAKE_CASE_ = int(embed_dim * 2 ** (len(_lowerCAmelCase ) - 1) ) SCREAMING_SNAKE_CASE_ = (0, 0, 0, 0)
31
1
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available lowerCamelCase__ : Union[str, Any] = {} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase__ : List[Any] = ['GPTSw3Tokenizer'] if TYPE_CHECKING: try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_gpt_swa import GPTSwaTokenizer else: import sys lowerCamelCase__ : List[Any] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
31
import itertools import random import unittest import numpy as np from transformers import BatchFeature, SpeechTaFeatureExtractor from transformers.testing_utils import require_torch from transformers.utils.import_utils import is_torch_available from ...test_sequence_feature_extraction_common import SequenceFeatureExtractionTestMixin if is_torch_available(): import torch lowerCamelCase__ : Dict = random.Random() def UpperCAmelCase_ ( __UpperCAmelCase : int , __UpperCAmelCase : Tuple=1.0 , __UpperCAmelCase : Dict=None , __UpperCAmelCase : Dict=None ) -> Tuple: if rng is None: SCREAMING_SNAKE_CASE_ = global_rng SCREAMING_SNAKE_CASE_ = [] for batch_idx in range(shape[0] ): values.append([] ) for _ in range(shape[1] ): values[-1].append(rng.random() * scale ) return values @require_torch class lowerCamelCase_ ( unittest.TestCase ): '''simple docstring''' def __init__( self : List[str] , _lowerCAmelCase : int , _lowerCAmelCase : Optional[Any]=7 , _lowerCAmelCase : Union[str, Any]=400 , _lowerCAmelCase : Tuple=2_000 , _lowerCAmelCase : str=1 , _lowerCAmelCase : int=0.0 , _lowerCAmelCase : Optional[Any]=16_000 , _lowerCAmelCase : Optional[Any]=True , _lowerCAmelCase : Any=80 , _lowerCAmelCase : Union[str, Any]=16 , _lowerCAmelCase : List[str]=64 , _lowerCAmelCase : List[Any]="hann_window" , _lowerCAmelCase : Any=80 , _lowerCAmelCase : List[Any]=7_600 , _lowerCAmelCase : List[Any]=1E-10 , _lowerCAmelCase : Optional[Any]=True , ): SCREAMING_SNAKE_CASE_ = parent SCREAMING_SNAKE_CASE_ = batch_size SCREAMING_SNAKE_CASE_ = min_seq_length SCREAMING_SNAKE_CASE_ = max_seq_length SCREAMING_SNAKE_CASE_ = (self.max_seq_length - self.min_seq_length) // (self.batch_size - 1) SCREAMING_SNAKE_CASE_ = feature_size SCREAMING_SNAKE_CASE_ = padding_value SCREAMING_SNAKE_CASE_ = sampling_rate SCREAMING_SNAKE_CASE_ = do_normalize SCREAMING_SNAKE_CASE_ = num_mel_bins SCREAMING_SNAKE_CASE_ = hop_length SCREAMING_SNAKE_CASE_ = win_length SCREAMING_SNAKE_CASE_ = win_function SCREAMING_SNAKE_CASE_ = fmin SCREAMING_SNAKE_CASE_ = fmax SCREAMING_SNAKE_CASE_ = mel_floor SCREAMING_SNAKE_CASE_ = return_attention_mask def lowerCAmelCase_ ( self : Union[str, Any] ): return { "feature_size": self.feature_size, "padding_value": self.padding_value, "sampling_rate": self.sampling_rate, "do_normalize": self.do_normalize, "num_mel_bins": self.num_mel_bins, "hop_length": self.hop_length, "win_length": self.win_length, "win_function": self.win_function, "fmin": self.fmin, "fmax": self.fmax, "mel_floor": self.mel_floor, "return_attention_mask": self.return_attention_mask, } def lowerCAmelCase_ ( self : Dict , _lowerCAmelCase : Optional[int]=False , _lowerCAmelCase : str=False ): def _flatten(_lowerCAmelCase : Dict ): return list(itertools.chain(*_lowerCAmelCase ) ) if equal_length: SCREAMING_SNAKE_CASE_ = floats_list((self.batch_size, self.max_seq_length) ) else: # make sure that inputs increase in size SCREAMING_SNAKE_CASE_ = [ _flatten(floats_list((x, self.feature_size) ) ) for x in range(self.min_seq_length , self.max_seq_length , self.seq_length_diff ) ] if numpify: SCREAMING_SNAKE_CASE_ = [np.asarray(_lowerCAmelCase ) for x in speech_inputs] return speech_inputs def lowerCAmelCase_ ( self : List[Any] , _lowerCAmelCase : Union[str, Any]=False , _lowerCAmelCase : Optional[int]=False ): if equal_length: SCREAMING_SNAKE_CASE_ = [floats_list((self.max_seq_length, self.num_mel_bins) ) for _ in range(self.batch_size )] else: # make sure that inputs increase in size SCREAMING_SNAKE_CASE_ = [ floats_list((x, self.num_mel_bins) ) for x in range(self.min_seq_length , self.max_seq_length , self.seq_length_diff ) ] if numpify: SCREAMING_SNAKE_CASE_ = [np.asarray(_lowerCAmelCase ) for x in speech_inputs] return speech_inputs @require_torch class lowerCamelCase_ ( _SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' lowercase_ = SpeechTaFeatureExtractor def lowerCAmelCase_ ( self : Any ): SCREAMING_SNAKE_CASE_ = SpeechTaFeatureExtractionTester(self ) def lowerCAmelCase_ ( self : Any , _lowerCAmelCase : int ): self.assertTrue(np.all(np.mean(_lowerCAmelCase , axis=0 ) < 1E-3 ) ) self.assertTrue(np.all(np.abs(np.var(_lowerCAmelCase , axis=0 ) - 1 ) < 1E-3 ) ) def lowerCAmelCase_ ( self : List[Any] ): # Tests that all call wrap to encode_plus and batch_encode_plus SCREAMING_SNAKE_CASE_ = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) # create three inputs of length 800, 1000, and 1200 SCREAMING_SNAKE_CASE_ = [floats_list((1, x) )[0] for x in range(800 , 1_400 , 200 )] SCREAMING_SNAKE_CASE_ = [np.asarray(_lowerCAmelCase ) for speech_input in speech_inputs] # Test not batched input SCREAMING_SNAKE_CASE_ = feat_extract(speech_inputs[0] , return_tensors='np' ).input_values SCREAMING_SNAKE_CASE_ = feat_extract(np_speech_inputs[0] , return_tensors='np' ).input_values self.assertTrue(np.allclose(_lowerCAmelCase , _lowerCAmelCase , atol=1E-3 ) ) # Test batched SCREAMING_SNAKE_CASE_ = feat_extract(_lowerCAmelCase , return_tensors='np' ).input_values SCREAMING_SNAKE_CASE_ = feat_extract(_lowerCAmelCase , return_tensors='np' ).input_values for enc_seq_a, enc_seq_a in zip(_lowerCAmelCase , _lowerCAmelCase ): self.assertTrue(np.allclose(_lowerCAmelCase , _lowerCAmelCase , atol=1E-3 ) ) def lowerCAmelCase_ ( self : Union[str, Any] ): SCREAMING_SNAKE_CASE_ = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) SCREAMING_SNAKE_CASE_ = [floats_list((1, x) )[0] for x in range(800 , 1_400 , 200 )] SCREAMING_SNAKE_CASE_ = ['longest', 'max_length', 'do_not_pad'] SCREAMING_SNAKE_CASE_ = [None, 1_600, None] for max_length, padding in zip(_lowerCAmelCase , _lowerCAmelCase ): SCREAMING_SNAKE_CASE_ = feat_extract(_lowerCAmelCase , padding=_lowerCAmelCase , max_length=_lowerCAmelCase , return_tensors='np' ) SCREAMING_SNAKE_CASE_ = processed.input_values self._check_zero_mean_unit_variance(input_values[0][:800] ) self.assertTrue(input_values[0][800:].sum() < 1E-6 ) self._check_zero_mean_unit_variance(input_values[1][:1_000] ) self.assertTrue(input_values[0][1_000:].sum() < 1E-6 ) self._check_zero_mean_unit_variance(input_values[2][:1_200] ) def lowerCAmelCase_ ( self : Optional[Any] ): SCREAMING_SNAKE_CASE_ = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) SCREAMING_SNAKE_CASE_ = range(800 , 1_400 , 200 ) SCREAMING_SNAKE_CASE_ = [floats_list((1, x) )[0] for x in lengths] SCREAMING_SNAKE_CASE_ = ['longest', 'max_length', 'do_not_pad'] SCREAMING_SNAKE_CASE_ = [None, 1_600, None] for max_length, padding in zip(_lowerCAmelCase , _lowerCAmelCase ): SCREAMING_SNAKE_CASE_ = feat_extract(_lowerCAmelCase , max_length=_lowerCAmelCase , padding=_lowerCAmelCase ) SCREAMING_SNAKE_CASE_ = processed.input_values self._check_zero_mean_unit_variance(input_values[0][:800] ) self._check_zero_mean_unit_variance(input_values[1][:1_000] ) self._check_zero_mean_unit_variance(input_values[2][:1_200] ) def lowerCAmelCase_ ( self : Dict ): SCREAMING_SNAKE_CASE_ = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) SCREAMING_SNAKE_CASE_ = [floats_list((1, x) )[0] for x in range(800 , 1_400 , 200 )] SCREAMING_SNAKE_CASE_ = feat_extract( _lowerCAmelCase , truncation=_lowerCAmelCase , max_length=1_000 , padding='max_length' , return_tensors='np' ) SCREAMING_SNAKE_CASE_ = processed.input_values self._check_zero_mean_unit_variance(input_values[0, :800] ) self._check_zero_mean_unit_variance(input_values[1] ) self._check_zero_mean_unit_variance(input_values[2] ) def lowerCAmelCase_ ( self : Dict ): SCREAMING_SNAKE_CASE_ = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) SCREAMING_SNAKE_CASE_ = [floats_list((1, x) )[0] for x in range(800 , 1_400 , 200 )] SCREAMING_SNAKE_CASE_ = feat_extract( _lowerCAmelCase , truncation=_lowerCAmelCase , max_length=1_000 , padding='longest' , return_tensors='np' ) SCREAMING_SNAKE_CASE_ = processed.input_values self._check_zero_mean_unit_variance(input_values[0, :800] ) self._check_zero_mean_unit_variance(input_values[1, :1_000] ) self._check_zero_mean_unit_variance(input_values[2] ) # make sure that if max_length < longest -> then pad to max_length self.assertTrue(input_values.shape == (3, 1_000) ) SCREAMING_SNAKE_CASE_ = [floats_list((1, x) )[0] for x in range(800 , 1_400 , 200 )] SCREAMING_SNAKE_CASE_ = feat_extract( _lowerCAmelCase , truncation=_lowerCAmelCase , max_length=2_000 , padding='longest' , return_tensors='np' ) SCREAMING_SNAKE_CASE_ = processed.input_values self._check_zero_mean_unit_variance(input_values[0, :800] ) self._check_zero_mean_unit_variance(input_values[1, :1_000] ) self._check_zero_mean_unit_variance(input_values[2] ) # make sure that if max_length > longest -> then pad to longest self.assertTrue(input_values.shape == (3, 1_200) ) def lowerCAmelCase_ ( self : Optional[int] ): SCREAMING_SNAKE_CASE_ = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) SCREAMING_SNAKE_CASE_ = np.random.rand(100 ).astype(np.floataa ) SCREAMING_SNAKE_CASE_ = np_speech_inputs.tolist() for inputs in [py_speech_inputs, np_speech_inputs]: SCREAMING_SNAKE_CASE_ = feature_extractor.pad([{'input_values': inputs}] , return_tensors='np' ) self.assertTrue(np_processed.input_values.dtype == np.floataa ) SCREAMING_SNAKE_CASE_ = feature_extractor.pad([{'input_values': inputs}] , return_tensors='pt' ) self.assertTrue(pt_processed.input_values.dtype == torch.floataa ) def lowerCAmelCase_ ( self : Tuple ): # Tests that all call wrap to encode_plus and batch_encode_plus SCREAMING_SNAKE_CASE_ = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) # create three inputs of length 800, 1000, and 1200 SCREAMING_SNAKE_CASE_ = [floats_list((1, x) )[0] for x in range(800 , 1_400 , 200 )] SCREAMING_SNAKE_CASE_ = [np.asarray(_lowerCAmelCase ) for speech_input in speech_inputs] # Test feature size SCREAMING_SNAKE_CASE_ = feature_extractor(audio_target=_lowerCAmelCase , padding=_lowerCAmelCase , return_tensors='np' ).input_values self.assertTrue(input_values.ndim == 3 ) self.assertTrue(input_values.shape[-1] == feature_extractor.num_mel_bins ) # Test not batched input SCREAMING_SNAKE_CASE_ = feature_extractor(speech_inputs[0] , return_tensors='np' ).input_values SCREAMING_SNAKE_CASE_ = feature_extractor(np_speech_inputs[0] , return_tensors='np' ).input_values self.assertTrue(np.allclose(_lowerCAmelCase , _lowerCAmelCase , atol=1E-3 ) ) # Test batched SCREAMING_SNAKE_CASE_ = feature_extractor(_lowerCAmelCase , return_tensors='np' ).input_values SCREAMING_SNAKE_CASE_ = feature_extractor(_lowerCAmelCase , return_tensors='np' ).input_values for enc_seq_a, enc_seq_a in zip(_lowerCAmelCase , _lowerCAmelCase ): self.assertTrue(np.allclose(_lowerCAmelCase , _lowerCAmelCase , atol=1E-3 ) ) # Test 2-D numpy arrays are batched. SCREAMING_SNAKE_CASE_ = [floats_list((1, x) )[0] for x in (800, 800, 800)] SCREAMING_SNAKE_CASE_ = np.asarray(_lowerCAmelCase ) SCREAMING_SNAKE_CASE_ = feature_extractor(_lowerCAmelCase , return_tensors='np' ).input_values SCREAMING_SNAKE_CASE_ = feature_extractor(_lowerCAmelCase , return_tensors='np' ).input_values for enc_seq_a, enc_seq_a in zip(_lowerCAmelCase , _lowerCAmelCase ): self.assertTrue(np.allclose(_lowerCAmelCase , _lowerCAmelCase , atol=1E-3 ) ) def lowerCAmelCase_ ( self : str ): SCREAMING_SNAKE_CASE_ = self.feat_extract_tester.prepare_inputs_for_target() SCREAMING_SNAKE_CASE_ = self.feature_extraction_class(**self.feat_extract_dict ) SCREAMING_SNAKE_CASE_ = feat_extract.model_input_names[0] SCREAMING_SNAKE_CASE_ = BatchFeature({input_name: speech_inputs} ) self.assertTrue(all(len(_lowerCAmelCase ) == len(_lowerCAmelCase ) for x, y in zip(_lowerCAmelCase , processed_features[input_name] ) ) ) SCREAMING_SNAKE_CASE_ = self.feat_extract_tester.prepare_inputs_for_target(equal_length=_lowerCAmelCase ) SCREAMING_SNAKE_CASE_ = BatchFeature({input_name: speech_inputs} , tensor_type='np' ) SCREAMING_SNAKE_CASE_ = processed_features[input_name] if len(batch_features_input.shape ) < 3: SCREAMING_SNAKE_CASE_ = batch_features_input[:, :, None] self.assertTrue( batch_features_input.shape == (self.feat_extract_tester.batch_size, len(speech_inputs[0] ), self.feat_extract_tester.num_mel_bins) ) @require_torch def lowerCAmelCase_ ( self : Dict ): SCREAMING_SNAKE_CASE_ = self.feat_extract_tester.prepare_inputs_for_target(equal_length=_lowerCAmelCase ) SCREAMING_SNAKE_CASE_ = self.feature_extraction_class(**self.feat_extract_dict ) SCREAMING_SNAKE_CASE_ = feat_extract.model_input_names[0] SCREAMING_SNAKE_CASE_ = BatchFeature({input_name: speech_inputs} , tensor_type='pt' ) SCREAMING_SNAKE_CASE_ = processed_features[input_name] if len(batch_features_input.shape ) < 3: SCREAMING_SNAKE_CASE_ = batch_features_input[:, :, None] self.assertTrue( batch_features_input.shape == (self.feat_extract_tester.batch_size, len(speech_inputs[0] ), self.feat_extract_tester.num_mel_bins) ) @require_torch def lowerCAmelCase_ ( self : Dict ): SCREAMING_SNAKE_CASE_ = self.feature_extraction_class(**self.feat_extract_dict ) SCREAMING_SNAKE_CASE_ = self.feat_extract_tester.prepare_inputs_for_target() SCREAMING_SNAKE_CASE_ = feat_extract.model_input_names[0] SCREAMING_SNAKE_CASE_ = BatchFeature({input_name: speech_inputs} ) SCREAMING_SNAKE_CASE_ = feat_extract.num_mel_bins # hack! SCREAMING_SNAKE_CASE_ = feat_extract.pad(_lowerCAmelCase , padding='longest' , return_tensors='np' )[input_name] SCREAMING_SNAKE_CASE_ = feat_extract.pad(_lowerCAmelCase , padding='longest' , return_tensors='pt' )[input_name] self.assertTrue(abs(input_np.astype(np.floataa ).sum() - input_pt.numpy().astype(np.floataa ).sum() ) < 1E-2 ) def lowerCAmelCase_ ( self : str ): SCREAMING_SNAKE_CASE_ = self.feat_extract_dict SCREAMING_SNAKE_CASE_ = True SCREAMING_SNAKE_CASE_ = self.feature_extraction_class(**_lowerCAmelCase ) SCREAMING_SNAKE_CASE_ = self.feat_extract_tester.prepare_inputs_for_target() SCREAMING_SNAKE_CASE_ = [len(_lowerCAmelCase ) for x in speech_inputs] SCREAMING_SNAKE_CASE_ = feat_extract.model_input_names[0] SCREAMING_SNAKE_CASE_ = BatchFeature({input_name: speech_inputs} ) SCREAMING_SNAKE_CASE_ = feat_extract.num_mel_bins # hack! SCREAMING_SNAKE_CASE_ = feat_extract.pad(_lowerCAmelCase , padding='longest' , return_tensors='np' ) self.assertIn('attention_mask' , _lowerCAmelCase ) self.assertListEqual(list(processed.attention_mask.shape ) , list(processed[input_name].shape[:2] ) ) self.assertListEqual(processed.attention_mask.sum(-1 ).tolist() , _lowerCAmelCase ) def lowerCAmelCase_ ( self : Any ): SCREAMING_SNAKE_CASE_ = self.feat_extract_dict SCREAMING_SNAKE_CASE_ = True SCREAMING_SNAKE_CASE_ = self.feature_extraction_class(**_lowerCAmelCase ) SCREAMING_SNAKE_CASE_ = self.feat_extract_tester.prepare_inputs_for_target() SCREAMING_SNAKE_CASE_ = [len(_lowerCAmelCase ) for x in speech_inputs] SCREAMING_SNAKE_CASE_ = feat_extract.model_input_names[0] SCREAMING_SNAKE_CASE_ = BatchFeature({input_name: speech_inputs} ) SCREAMING_SNAKE_CASE_ = min(_lowerCAmelCase ) SCREAMING_SNAKE_CASE_ = feat_extract.num_mel_bins # hack! SCREAMING_SNAKE_CASE_ = feat_extract.pad( _lowerCAmelCase , padding='max_length' , max_length=_lowerCAmelCase , truncation=_lowerCAmelCase , return_tensors='np' ) self.assertIn('attention_mask' , _lowerCAmelCase ) self.assertListEqual( list(processed_pad.attention_mask.shape ) , [processed_pad[input_name].shape[0], max_length] ) self.assertListEqual( processed_pad.attention_mask[:, :max_length].sum(-1 ).tolist() , [max_length for x in speech_inputs] ) def lowerCAmelCase_ ( self : List[Any] , _lowerCAmelCase : Tuple ): from datasets import load_dataset SCREAMING_SNAKE_CASE_ = load_dataset('hf-internal-testing/librispeech_asr_dummy' , 'clean' , split='validation' ) # automatic decoding with librispeech SCREAMING_SNAKE_CASE_ = ds.sort('id' ).select(range(_lowerCAmelCase ) )[:num_samples]['audio'] return [x["array"] for x in speech_samples] def lowerCAmelCase_ ( self : Any ): # fmt: off SCREAMING_SNAKE_CASE_ = torch.tensor( [2.3_804E-03, 2.0_752E-03, 1.9_836E-03, 2.1_057E-03, 1.6_174E-03, 3.0_518E-04, 9.1_553E-05, 3.3_569E-04, 9.7_656E-04, 1.8_311E-03, 2.0_142E-03, 2.1_057E-03, 1.7_395E-03, 4.5_776E-04, -3.9_673E-04, 4.5_776E-04, 1.0_071E-03, 9.1_553E-05, 4.8_828E-04, 1.1_597E-03, 7.3_242E-04, 9.4_604E-04, 1.8_005E-03, 1.8_311E-03, 8.8_501E-04, 4.2_725E-04, 4.8_828E-04, 7.3_242E-04, 1.0_986E-03, 2.1_057E-03] ) # fmt: on SCREAMING_SNAKE_CASE_ = self._load_datasamples(1 ) SCREAMING_SNAKE_CASE_ = SpeechTaFeatureExtractor() SCREAMING_SNAKE_CASE_ = feature_extractor(_lowerCAmelCase , return_tensors='pt' ).input_values self.assertEquals(input_values.shape , (1, 93_680) ) self.assertTrue(torch.allclose(input_values[0, :30] , _lowerCAmelCase , atol=1E-6 ) ) def lowerCAmelCase_ ( self : Optional[int] ): # fmt: off SCREAMING_SNAKE_CASE_ = torch.tensor( [-2.6870, -3.0104, -3.1356, -3.5352, -3.0044, -3.0353, -3.4719, -3.6777, -3.1520, -2.9435, -2.6553, -2.8795, -2.9944, -2.5921, -3.0279, -3.0386, -3.0864, -3.1291, -3.2353, -2.7444, -2.6831, -2.7287, -3.1761, -3.1571, -3.2726, -3.0582, -3.1007, -3.4533, -3.4695, -3.0998] ) # fmt: on SCREAMING_SNAKE_CASE_ = self._load_datasamples(1 ) SCREAMING_SNAKE_CASE_ = SpeechTaFeatureExtractor() SCREAMING_SNAKE_CASE_ = feature_extractor(audio_target=_lowerCAmelCase , return_tensors='pt' ).input_values self.assertEquals(input_values.shape , (1, 366, 80) ) self.assertTrue(torch.allclose(input_values[0, 0, :30] , _lowerCAmelCase , atol=1E-4 ) )
31
1
# Algorithm for the pigeonhole sorting def UpperCAmelCase_ ( __UpperCAmelCase : Any ) -> List[str]: SCREAMING_SNAKE_CASE_ = min(__UpperCAmelCase ) # min() finds the minimum value SCREAMING_SNAKE_CASE_ = max(__UpperCAmelCase ) # max() finds the maximum value SCREAMING_SNAKE_CASE_ = max_val - min_val + 1 # size is difference of max and min values plus one # list of pigeonholes of size equal to the variable size SCREAMING_SNAKE_CASE_ = [0] * size # Populate the pigeonholes. for x in a: assert isinstance(__UpperCAmelCase , __UpperCAmelCase ), "integers only please" holes[x - min_val] += 1 # Putting the elements back into the array in an order. SCREAMING_SNAKE_CASE_ = 0 for count in range(__UpperCAmelCase ): while holes[count] > 0: holes[count] -= 1 SCREAMING_SNAKE_CASE_ = count + min_val i += 1 def UpperCAmelCase_ ( ) -> Optional[int]: SCREAMING_SNAKE_CASE_ = [8, 3, 2, 7, 4, 6, 8] pigeonhole_sort(__UpperCAmelCase ) print('Sorted order is:' , ' '.join(__UpperCAmelCase ) ) if __name__ == "__main__": main()
31
from __future__ import annotations from typing import TypedDict class lowerCamelCase_ ( _SCREAMING_SNAKE_CASE ): '''simple docstring''' lowercase_ = 42 lowercase_ = 42 def UpperCAmelCase_ ( __UpperCAmelCase : str ) -> list[str]: if not isinstance(__UpperCAmelCase , __UpperCAmelCase ): raise TypeError('The parameter s type must be str.' ) return [s[i:] + s[:i] for i in range(len(__UpperCAmelCase ) )] def UpperCAmelCase_ ( __UpperCAmelCase : str ) -> BWTTransformDict: if not isinstance(__UpperCAmelCase , __UpperCAmelCase ): raise TypeError('The parameter s type must be str.' ) if not s: raise ValueError('The parameter s must not be empty.' ) SCREAMING_SNAKE_CASE_ = all_rotations(__UpperCAmelCase ) rotations.sort() # sort the list of rotations in alphabetically order # make a string composed of the last char of each rotation SCREAMING_SNAKE_CASE_ = { "bwt_string": "".join([word[-1] for word in rotations] ), "idx_original_string": rotations.index(__UpperCAmelCase ), } return response def UpperCAmelCase_ ( __UpperCAmelCase : str , __UpperCAmelCase : int ) -> str: if not isinstance(__UpperCAmelCase , __UpperCAmelCase ): raise TypeError('The parameter bwt_string type must be str.' ) if not bwt_string: raise ValueError('The parameter bwt_string must not be empty.' ) try: SCREAMING_SNAKE_CASE_ = int(__UpperCAmelCase ) except ValueError: raise TypeError( 'The parameter idx_original_string type must be int or passive' ' of cast to int.' ) if idx_original_string < 0: raise ValueError('The parameter idx_original_string must not be lower than 0.' ) if idx_original_string >= len(__UpperCAmelCase ): raise ValueError( 'The parameter idx_original_string must be lower than' ' len(bwt_string).' ) SCREAMING_SNAKE_CASE_ = [''] * len(__UpperCAmelCase ) for _ in range(len(__UpperCAmelCase ) ): for i in range(len(__UpperCAmelCase ) ): SCREAMING_SNAKE_CASE_ = bwt_string[i] + ordered_rotations[i] ordered_rotations.sort() return ordered_rotations[idx_original_string] if __name__ == "__main__": lowerCamelCase__ : Optional[int] = 'Provide a string that I will generate its BWT transform: ' lowerCamelCase__ : List[str] = input(entry_msg).strip() lowerCamelCase__ : int = bwt_transform(s) print( f'''Burrows Wheeler transform for string \'{s}\' results ''' f'''in \'{result['bwt_string']}\'''' ) lowerCamelCase__ : Dict = reverse_bwt(result['bwt_string'], result['idx_original_string']) print( f'''Reversing Burrows Wheeler transform for entry \'{result['bwt_string']}\' ''' f'''we get original string \'{original_string}\'''' )
31
1
from dataclasses import dataclass from typing import Tuple import numpy as np import torch @dataclass class lowerCamelCase_ : '''simple docstring''' lowercase_ = 42 # [batch_size x 3] lowercase_ = 42 # [batch_size x 3] lowercase_ = 42 # [batch_size x 3] lowercase_ = 42 # [batch_size x 3] lowercase_ = 42 lowercase_ = 42 lowercase_ = 42 lowercase_ = 42 lowercase_ = 42 def lowerCAmelCase_ ( self : Dict ): assert self.x.shape[0] == self.y.shape[0] == self.z.shape[0] == self.origin.shape[0] assert self.x.shape[1] == self.y.shape[1] == self.z.shape[1] == self.origin.shape[1] == 3 assert len(self.x.shape ) == len(self.y.shape ) == len(self.z.shape ) == len(self.origin.shape ) == 2 def lowerCAmelCase_ ( self : Optional[Any] ): return torch.from_numpy(np.array([self.width, self.height] , dtype=np.floataa ) ) def lowerCAmelCase_ ( self : str ): return torch.from_numpy(np.array([self.x_fov, self.y_fov] , dtype=np.floataa ) ) def lowerCAmelCase_ ( self : Any ): SCREAMING_SNAKE_CASE_ = torch.arange(self.height * self.width ) SCREAMING_SNAKE_CASE_ = torch.stack( [ pixel_indices % self.width, torch.div(_lowerCAmelCase , self.width , rounding_mode='trunc' ), ] , axis=1 , ) return coords @property def lowerCAmelCase_ ( self : str ): SCREAMING_SNAKE_CASE_ , *SCREAMING_SNAKE_CASE_ = self.shape SCREAMING_SNAKE_CASE_ = int(np.prod(_lowerCAmelCase ) ) SCREAMING_SNAKE_CASE_ = self.get_image_coords() SCREAMING_SNAKE_CASE_ = torch.broadcast_to(coords.unsqueeze(0 ) , [batch_size * inner_batch_size, *coords.shape] ) SCREAMING_SNAKE_CASE_ = self.get_camera_rays(_lowerCAmelCase ) SCREAMING_SNAKE_CASE_ = rays.view(_lowerCAmelCase , inner_batch_size * self.height * self.width , 2 , 3 ) return rays def lowerCAmelCase_ ( self : str , _lowerCAmelCase : torch.Tensor ): SCREAMING_SNAKE_CASE_ , *SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = coords.shape assert n_coords == 2 assert batch_size == self.origin.shape[0] SCREAMING_SNAKE_CASE_ = coords.view(_lowerCAmelCase , -1 , 2 ) SCREAMING_SNAKE_CASE_ = self.resolution() SCREAMING_SNAKE_CASE_ = self.fov() SCREAMING_SNAKE_CASE_ = (flat.float() / (res - 1)) * 2 - 1 SCREAMING_SNAKE_CASE_ = fracs * torch.tan(fov / 2 ) SCREAMING_SNAKE_CASE_ = fracs.view(_lowerCAmelCase , -1 , 2 ) SCREAMING_SNAKE_CASE_ = ( self.z.view(_lowerCAmelCase , 1 , 3 ) + self.x.view(_lowerCAmelCase , 1 , 3 ) * fracs[:, :, :1] + self.y.view(_lowerCAmelCase , 1 , 3 ) * fracs[:, :, 1:] ) SCREAMING_SNAKE_CASE_ = directions / directions.norm(dim=-1 , keepdim=_lowerCAmelCase ) SCREAMING_SNAKE_CASE_ = torch.stack( [ torch.broadcast_to(self.origin.view(_lowerCAmelCase , 1 , 3 ) , [batch_size, directions.shape[1], 3] ), directions, ] , dim=2 , ) return rays.view(_lowerCAmelCase , *_lowerCAmelCase , 2 , 3 ) def lowerCAmelCase_ ( self : Optional[Any] , _lowerCAmelCase : int , _lowerCAmelCase : int ): assert width * self.height == height * self.width, "The aspect ratio should not change." return DifferentiableProjectiveCamera( origin=self.origin , x=self.x , y=self.y , z=self.z , width=_lowerCAmelCase , height=_lowerCAmelCase , x_fov=self.x_fov , y_fov=self.y_fov , ) def UpperCAmelCase_ ( __UpperCAmelCase : int ) -> DifferentiableProjectiveCamera: SCREAMING_SNAKE_CASE_ = [] SCREAMING_SNAKE_CASE_ = [] SCREAMING_SNAKE_CASE_ = [] SCREAMING_SNAKE_CASE_ = [] for theta in np.linspace(0 , 2 * np.pi , num=20 ): SCREAMING_SNAKE_CASE_ = np.array([np.sin(__UpperCAmelCase ), np.cos(__UpperCAmelCase ), -0.5] ) z /= np.sqrt(np.sum(z**2 ) ) SCREAMING_SNAKE_CASE_ = -z * 4 SCREAMING_SNAKE_CASE_ = np.array([np.cos(__UpperCAmelCase ), -np.sin(__UpperCAmelCase ), 0.0] ) SCREAMING_SNAKE_CASE_ = np.cross(__UpperCAmelCase , __UpperCAmelCase ) origins.append(__UpperCAmelCase ) xs.append(__UpperCAmelCase ) ys.append(__UpperCAmelCase ) zs.append(__UpperCAmelCase ) return DifferentiableProjectiveCamera( origin=torch.from_numpy(np.stack(__UpperCAmelCase , axis=0 ) ).float() , x=torch.from_numpy(np.stack(__UpperCAmelCase , axis=0 ) ).float() , y=torch.from_numpy(np.stack(__UpperCAmelCase , axis=0 ) ).float() , z=torch.from_numpy(np.stack(__UpperCAmelCase , axis=0 ) ).float() , width=__UpperCAmelCase , height=__UpperCAmelCase , x_fov=0.7 , y_fov=0.7 , shape=(1, len(__UpperCAmelCase )) , )
31
class lowerCamelCase_ : '''simple docstring''' def __init__( self : str ): SCREAMING_SNAKE_CASE_ = {} def lowerCAmelCase_ ( self : List[str] ): print(self.vertex ) for i in self.vertex: print(_lowerCAmelCase , ' -> ' , ' -> '.join([str(_lowerCAmelCase ) for j in self.vertex[i]] ) ) def lowerCAmelCase_ ( self : Union[str, Any] , _lowerCAmelCase : int , _lowerCAmelCase : int ): # check if vertex is already present, if from_vertex in self.vertex: self.vertex[from_vertex].append(_lowerCAmelCase ) else: # else make a new vertex SCREAMING_SNAKE_CASE_ = [to_vertex] def lowerCAmelCase_ ( self : Optional[Any] ): # visited array for storing already visited nodes SCREAMING_SNAKE_CASE_ = [False] * len(self.vertex ) # call the recursive helper function for i in range(len(self.vertex ) ): if not visited[i]: self.dfs_recursive(_lowerCAmelCase , _lowerCAmelCase ) def lowerCAmelCase_ ( self : Tuple , _lowerCAmelCase : int , _lowerCAmelCase : list ): # mark start vertex as visited SCREAMING_SNAKE_CASE_ = True print(_lowerCAmelCase , end=' ' ) # Recur for all the vertices that are adjacent to this node for i in self.vertex: if not visited[i]: self.dfs_recursive(_lowerCAmelCase , _lowerCAmelCase ) if __name__ == "__main__": lowerCamelCase__ : List[Any] = Graph() g.add_edge(0, 1) g.add_edge(0, 2) g.add_edge(1, 2) g.add_edge(2, 0) g.add_edge(2, 3) g.add_edge(3, 3) g.print_graph() print('DFS:') g.dfs() # OUTPUT: # 0 -> 1 -> 2 # 1 -> 2 # 2 -> 0 -> 3 # 3 -> 3 # DFS: # 0 1 2 3
31
1
import gc import random import unittest import torch from diffusers import ( IFImgaImgPipeline, IFImgaImgSuperResolutionPipeline, IFInpaintingPipeline, IFInpaintingSuperResolutionPipeline, IFPipeline, IFSuperResolutionPipeline, ) from diffusers.models.attention_processor import AttnAddedKVProcessor from diffusers.utils.import_utils import is_xformers_available from diffusers.utils.testing_utils import floats_tensor, load_numpy, require_torch_gpu, skip_mps, slow, torch_device from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_PARAMS from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference from . import IFPipelineTesterMixin @skip_mps class lowerCamelCase_ ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' lowercase_ = IFPipeline lowercase_ = TEXT_TO_IMAGE_PARAMS - {"width", "height", "latents"} lowercase_ = TEXT_TO_IMAGE_BATCH_PARAMS lowercase_ = PipelineTesterMixin.required_optional_params - {"latents"} def lowerCAmelCase_ ( self : str ): return self._get_dummy_components() def lowerCAmelCase_ ( self : Any , _lowerCAmelCase : Union[str, Any] , _lowerCAmelCase : str=0 ): if str(_lowerCAmelCase ).startswith('mps' ): SCREAMING_SNAKE_CASE_ = torch.manual_seed(_lowerCAmelCase ) else: SCREAMING_SNAKE_CASE_ = torch.Generator(device=_lowerCAmelCase ).manual_seed(_lowerCAmelCase ) SCREAMING_SNAKE_CASE_ = { 'prompt': 'A painting of a squirrel eating a burger', 'generator': generator, 'num_inference_steps': 2, 'output_type': 'numpy', } return inputs def lowerCAmelCase_ ( self : str ): self._test_save_load_optional_components() @unittest.skipIf(torch_device != 'cuda' , reason='float16 requires CUDA' ) def lowerCAmelCase_ ( self : Optional[Any] ): # Due to non-determinism in save load of the hf-internal-testing/tiny-random-t5 text encoder super().test_save_load_floataa(expected_max_diff=1E-1 ) def lowerCAmelCase_ ( self : Dict ): self._test_attention_slicing_forward_pass(expected_max_diff=1E-2 ) def lowerCAmelCase_ ( self : List[Any] ): self._test_save_load_local() def lowerCAmelCase_ ( self : Union[str, Any] ): self._test_inference_batch_single_identical( expected_max_diff=1E-2 , ) @unittest.skipIf( torch_device != 'cuda' or not is_xformers_available() , reason='XFormers attention is only available with CUDA and `xformers` installed' , ) def lowerCAmelCase_ ( self : Dict ): self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=1E-3 ) @slow @require_torch_gpu class lowerCamelCase_ ( unittest.TestCase ): '''simple docstring''' def lowerCAmelCase_ ( self : Optional[int] ): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def lowerCAmelCase_ ( self : Any ): # if SCREAMING_SNAKE_CASE_ = IFPipeline.from_pretrained('DeepFloyd/IF-I-XL-v1.0' , variant='fp16' , torch_dtype=torch.floataa ) SCREAMING_SNAKE_CASE_ = IFSuperResolutionPipeline.from_pretrained( 'DeepFloyd/IF-II-L-v1.0' , variant='fp16' , torch_dtype=torch.floataa , text_encoder=_lowerCAmelCase , tokenizer=_lowerCAmelCase ) # pre compute text embeddings and remove T5 to save memory pipe_a.text_encoder.to('cuda' ) SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = pipe_a.encode_prompt('anime turtle' , device='cuda' ) del pipe_a.tokenizer del pipe_a.text_encoder gc.collect() SCREAMING_SNAKE_CASE_ = None SCREAMING_SNAKE_CASE_ = None pipe_a.enable_model_cpu_offload() pipe_a.enable_model_cpu_offload() pipe_a.unet.set_attn_processor(AttnAddedKVProcessor() ) pipe_a.unet.set_attn_processor(AttnAddedKVProcessor() ) self._test_if(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) pipe_a.remove_all_hooks() pipe_a.remove_all_hooks() # img2img SCREAMING_SNAKE_CASE_ = IFImgaImgPipeline(**pipe_a.components ) SCREAMING_SNAKE_CASE_ = IFImgaImgSuperResolutionPipeline(**pipe_a.components ) pipe_a.enable_model_cpu_offload() pipe_a.enable_model_cpu_offload() pipe_a.unet.set_attn_processor(AttnAddedKVProcessor() ) pipe_a.unet.set_attn_processor(AttnAddedKVProcessor() ) self._test_if_imgaimg(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) pipe_a.remove_all_hooks() pipe_a.remove_all_hooks() # inpainting SCREAMING_SNAKE_CASE_ = IFInpaintingPipeline(**pipe_a.components ) SCREAMING_SNAKE_CASE_ = IFInpaintingSuperResolutionPipeline(**pipe_a.components ) pipe_a.enable_model_cpu_offload() pipe_a.enable_model_cpu_offload() pipe_a.unet.set_attn_processor(AttnAddedKVProcessor() ) pipe_a.unet.set_attn_processor(AttnAddedKVProcessor() ) self._test_if_inpainting(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) def lowerCAmelCase_ ( self : Optional[Any] , _lowerCAmelCase : Union[str, Any] , _lowerCAmelCase : Tuple , _lowerCAmelCase : Optional[int] , _lowerCAmelCase : Optional[Any] ): # pipeline 1 _start_torch_memory_measurement() SCREAMING_SNAKE_CASE_ = torch.Generator(device='cpu' ).manual_seed(0 ) SCREAMING_SNAKE_CASE_ = pipe_a( prompt_embeds=_lowerCAmelCase , negative_prompt_embeds=_lowerCAmelCase , num_inference_steps=2 , generator=_lowerCAmelCase , output_type='np' , ) SCREAMING_SNAKE_CASE_ = output.images[0] assert image.shape == (64, 64, 3) SCREAMING_SNAKE_CASE_ = torch.cuda.max_memory_allocated() assert mem_bytes < 13 * 10**9 SCREAMING_SNAKE_CASE_ = load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if.npy' ) assert_mean_pixel_difference(_lowerCAmelCase , _lowerCAmelCase ) # pipeline 2 _start_torch_memory_measurement() SCREAMING_SNAKE_CASE_ = torch.Generator(device='cpu' ).manual_seed(0 ) SCREAMING_SNAKE_CASE_ = floats_tensor((1, 3, 64, 64) , rng=random.Random(0 ) ).to(_lowerCAmelCase ) SCREAMING_SNAKE_CASE_ = pipe_a( prompt_embeds=_lowerCAmelCase , negative_prompt_embeds=_lowerCAmelCase , image=_lowerCAmelCase , generator=_lowerCAmelCase , num_inference_steps=2 , output_type='np' , ) SCREAMING_SNAKE_CASE_ = output.images[0] assert image.shape == (256, 256, 3) SCREAMING_SNAKE_CASE_ = torch.cuda.max_memory_allocated() assert mem_bytes < 4 * 10**9 SCREAMING_SNAKE_CASE_ = load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if_superresolution_stage_II.npy' ) assert_mean_pixel_difference(_lowerCAmelCase , _lowerCAmelCase ) def lowerCAmelCase_ ( self : Tuple , _lowerCAmelCase : Tuple , _lowerCAmelCase : str , _lowerCAmelCase : Union[str, Any] , _lowerCAmelCase : int ): # pipeline 1 _start_torch_memory_measurement() SCREAMING_SNAKE_CASE_ = floats_tensor((1, 3, 64, 64) , rng=random.Random(0 ) ).to(_lowerCAmelCase ) SCREAMING_SNAKE_CASE_ = torch.Generator(device='cpu' ).manual_seed(0 ) SCREAMING_SNAKE_CASE_ = pipe_a( prompt_embeds=_lowerCAmelCase , negative_prompt_embeds=_lowerCAmelCase , image=_lowerCAmelCase , num_inference_steps=2 , generator=_lowerCAmelCase , output_type='np' , ) SCREAMING_SNAKE_CASE_ = output.images[0] assert image.shape == (64, 64, 3) SCREAMING_SNAKE_CASE_ = torch.cuda.max_memory_allocated() assert mem_bytes < 10 * 10**9 SCREAMING_SNAKE_CASE_ = load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if_img2img.npy' ) assert_mean_pixel_difference(_lowerCAmelCase , _lowerCAmelCase ) # pipeline 2 _start_torch_memory_measurement() SCREAMING_SNAKE_CASE_ = torch.Generator(device='cpu' ).manual_seed(0 ) SCREAMING_SNAKE_CASE_ = floats_tensor((1, 3, 256, 256) , rng=random.Random(0 ) ).to(_lowerCAmelCase ) SCREAMING_SNAKE_CASE_ = floats_tensor((1, 3, 64, 64) , rng=random.Random(0 ) ).to(_lowerCAmelCase ) SCREAMING_SNAKE_CASE_ = pipe_a( prompt_embeds=_lowerCAmelCase , negative_prompt_embeds=_lowerCAmelCase , image=_lowerCAmelCase , original_image=_lowerCAmelCase , generator=_lowerCAmelCase , num_inference_steps=2 , output_type='np' , ) SCREAMING_SNAKE_CASE_ = output.images[0] assert image.shape == (256, 256, 3) SCREAMING_SNAKE_CASE_ = torch.cuda.max_memory_allocated() assert mem_bytes < 4 * 10**9 SCREAMING_SNAKE_CASE_ = load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if_img2img_superresolution_stage_II.npy' ) assert_mean_pixel_difference(_lowerCAmelCase , _lowerCAmelCase ) def lowerCAmelCase_ ( self : List[Any] , _lowerCAmelCase : Dict , _lowerCAmelCase : List[Any] , _lowerCAmelCase : Dict , _lowerCAmelCase : int ): # pipeline 1 _start_torch_memory_measurement() SCREAMING_SNAKE_CASE_ = floats_tensor((1, 3, 64, 64) , rng=random.Random(0 ) ).to(_lowerCAmelCase ) SCREAMING_SNAKE_CASE_ = floats_tensor((1, 3, 64, 64) , rng=random.Random(1 ) ).to(_lowerCAmelCase ) SCREAMING_SNAKE_CASE_ = torch.Generator(device='cpu' ).manual_seed(0 ) SCREAMING_SNAKE_CASE_ = pipe_a( prompt_embeds=_lowerCAmelCase , negative_prompt_embeds=_lowerCAmelCase , image=_lowerCAmelCase , mask_image=_lowerCAmelCase , num_inference_steps=2 , generator=_lowerCAmelCase , output_type='np' , ) SCREAMING_SNAKE_CASE_ = output.images[0] assert image.shape == (64, 64, 3) SCREAMING_SNAKE_CASE_ = torch.cuda.max_memory_allocated() assert mem_bytes < 10 * 10**9 SCREAMING_SNAKE_CASE_ = load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if_inpainting.npy' ) assert_mean_pixel_difference(_lowerCAmelCase , _lowerCAmelCase ) # pipeline 2 _start_torch_memory_measurement() SCREAMING_SNAKE_CASE_ = torch.Generator(device='cpu' ).manual_seed(0 ) SCREAMING_SNAKE_CASE_ = floats_tensor((1, 3, 64, 64) , rng=random.Random(0 ) ).to(_lowerCAmelCase ) SCREAMING_SNAKE_CASE_ = floats_tensor((1, 3, 256, 256) , rng=random.Random(0 ) ).to(_lowerCAmelCase ) SCREAMING_SNAKE_CASE_ = floats_tensor((1, 3, 256, 256) , rng=random.Random(1 ) ).to(_lowerCAmelCase ) SCREAMING_SNAKE_CASE_ = pipe_a( prompt_embeds=_lowerCAmelCase , negative_prompt_embeds=_lowerCAmelCase , image=_lowerCAmelCase , mask_image=_lowerCAmelCase , original_image=_lowerCAmelCase , generator=_lowerCAmelCase , num_inference_steps=2 , output_type='np' , ) SCREAMING_SNAKE_CASE_ = output.images[0] assert image.shape == (256, 256, 3) SCREAMING_SNAKE_CASE_ = torch.cuda.max_memory_allocated() assert mem_bytes < 4 * 10**9 SCREAMING_SNAKE_CASE_ = load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if_inpainting_superresolution_stage_II.npy' ) assert_mean_pixel_difference(_lowerCAmelCase , _lowerCAmelCase ) def UpperCAmelCase_ ( ) -> Optional[Any]: torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() torch.cuda.reset_peak_memory_stats()
31
from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCamelCase__ : str = logging.get_logger(__name__) lowerCamelCase__ : Tuple = { 'funnel-transformer/small': 'https://huggingface.co/funnel-transformer/small/resolve/main/config.json', 'funnel-transformer/small-base': 'https://huggingface.co/funnel-transformer/small-base/resolve/main/config.json', 'funnel-transformer/medium': 'https://huggingface.co/funnel-transformer/medium/resolve/main/config.json', 'funnel-transformer/medium-base': 'https://huggingface.co/funnel-transformer/medium-base/resolve/main/config.json', 'funnel-transformer/intermediate': ( 'https://huggingface.co/funnel-transformer/intermediate/resolve/main/config.json' ), 'funnel-transformer/intermediate-base': ( 'https://huggingface.co/funnel-transformer/intermediate-base/resolve/main/config.json' ), 'funnel-transformer/large': 'https://huggingface.co/funnel-transformer/large/resolve/main/config.json', 'funnel-transformer/large-base': 'https://huggingface.co/funnel-transformer/large-base/resolve/main/config.json', 'funnel-transformer/xlarge': 'https://huggingface.co/funnel-transformer/xlarge/resolve/main/config.json', 'funnel-transformer/xlarge-base': 'https://huggingface.co/funnel-transformer/xlarge-base/resolve/main/config.json', } class lowerCamelCase_ ( _SCREAMING_SNAKE_CASE ): '''simple docstring''' lowercase_ = "funnel" lowercase_ = { "hidden_size": "d_model", "num_attention_heads": "n_head", } def __init__( self : int , _lowerCAmelCase : Optional[int]=30_522 , _lowerCAmelCase : List[str]=[4, 4, 4] , _lowerCAmelCase : Tuple=None , _lowerCAmelCase : Optional[int]=2 , _lowerCAmelCase : int=768 , _lowerCAmelCase : Optional[Any]=12 , _lowerCAmelCase : Optional[Any]=64 , _lowerCAmelCase : Optional[Any]=3_072 , _lowerCAmelCase : List[str]="gelu_new" , _lowerCAmelCase : Any=0.1 , _lowerCAmelCase : int=0.1 , _lowerCAmelCase : Tuple=0.0 , _lowerCAmelCase : List[Any]=0.1 , _lowerCAmelCase : Dict=None , _lowerCAmelCase : str=1E-9 , _lowerCAmelCase : Any="mean" , _lowerCAmelCase : Union[str, Any]="relative_shift" , _lowerCAmelCase : Optional[Any]=True , _lowerCAmelCase : Dict=True , _lowerCAmelCase : Tuple=True , **_lowerCAmelCase : Optional[Any] , ): SCREAMING_SNAKE_CASE_ = vocab_size SCREAMING_SNAKE_CASE_ = block_sizes SCREAMING_SNAKE_CASE_ = [1] * len(_lowerCAmelCase ) if block_repeats is None else block_repeats assert len(_lowerCAmelCase ) == len( self.block_repeats ), "`block_sizes` and `block_repeats` should have the same length." SCREAMING_SNAKE_CASE_ = num_decoder_layers SCREAMING_SNAKE_CASE_ = d_model SCREAMING_SNAKE_CASE_ = n_head SCREAMING_SNAKE_CASE_ = d_head SCREAMING_SNAKE_CASE_ = d_inner SCREAMING_SNAKE_CASE_ = hidden_act SCREAMING_SNAKE_CASE_ = hidden_dropout SCREAMING_SNAKE_CASE_ = attention_dropout SCREAMING_SNAKE_CASE_ = activation_dropout SCREAMING_SNAKE_CASE_ = initializer_range SCREAMING_SNAKE_CASE_ = initializer_std SCREAMING_SNAKE_CASE_ = layer_norm_eps assert pooling_type in [ "mean", "max", ], F"Got {pooling_type} for `pooling_type` but only 'mean' and 'max' are supported." SCREAMING_SNAKE_CASE_ = pooling_type assert attention_type in [ "relative_shift", "factorized", ], F"Got {attention_type} for `attention_type` but only 'relative_shift' and 'factorized' are supported." SCREAMING_SNAKE_CASE_ = attention_type SCREAMING_SNAKE_CASE_ = separate_cls SCREAMING_SNAKE_CASE_ = truncate_seq SCREAMING_SNAKE_CASE_ = pool_q_only super().__init__(**_lowerCAmelCase ) @property def lowerCAmelCase_ ( self : Optional[int] ): return sum(self.block_sizes ) @num_hidden_layers.setter def lowerCAmelCase_ ( self : int , _lowerCAmelCase : List[Any] ): raise NotImplementedError( 'This model does not support the setting of `num_hidden_layers`. Please set `block_sizes`.' ) @property def lowerCAmelCase_ ( self : List[Any] ): return len(self.block_sizes ) @num_blocks.setter def lowerCAmelCase_ ( self : Dict , _lowerCAmelCase : Union[str, Any] ): raise NotImplementedError('This model does not support the setting of `num_blocks`. Please set `block_sizes`.' )
31
1
import os from collections.abc import Iterator def UpperCAmelCase_ ( __UpperCAmelCase : str = "." ) -> Iterator[str]: for dir_path, dir_names, filenames in os.walk(__UpperCAmelCase ): SCREAMING_SNAKE_CASE_ = [d for d in dir_names if d != 'scripts' and d[0] not in '._'] for filename in filenames: if filename == "__init__.py": continue if os.path.splitext(__UpperCAmelCase )[1] in (".py", ".ipynb"): yield os.path.join(__UpperCAmelCase , __UpperCAmelCase ).lstrip('./' ) def UpperCAmelCase_ ( __UpperCAmelCase : Tuple ) -> Optional[Any]: return f"{i * ' '}*" if i else "\n##" def UpperCAmelCase_ ( __UpperCAmelCase : str , __UpperCAmelCase : str ) -> str: SCREAMING_SNAKE_CASE_ = old_path.split(os.sep ) for i, new_part in enumerate(new_path.split(os.sep ) ): if (i + 1 > len(__UpperCAmelCase ) or old_parts[i] != new_part) and new_part: print(f"{md_prefix(__UpperCAmelCase )} {new_part.replace('_' , ' ' ).title()}" ) return new_path def UpperCAmelCase_ ( __UpperCAmelCase : str = "." ) -> None: SCREAMING_SNAKE_CASE_ = '' for filepath in sorted(good_file_paths(__UpperCAmelCase ) ): SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = os.path.split(__UpperCAmelCase ) if filepath != old_path: SCREAMING_SNAKE_CASE_ = print_path(__UpperCAmelCase , __UpperCAmelCase ) SCREAMING_SNAKE_CASE_ = (filepath.count(os.sep ) + 1) if filepath else 0 SCREAMING_SNAKE_CASE_ = f"{filepath}/{filename}".replace(' ' , '%20' ) SCREAMING_SNAKE_CASE_ = os.path.splitext(filename.replace('_' , ' ' ).title() )[0] print(f"{md_prefix(__UpperCAmelCase )} [{filename}]({url})" ) if __name__ == "__main__": print_directory_md('.')
31
from __future__ import annotations from collections.abc import Iterator class lowerCamelCase_ : '''simple docstring''' def __init__( self : Union[str, Any] , _lowerCAmelCase : int ): SCREAMING_SNAKE_CASE_ = value SCREAMING_SNAKE_CASE_ = None SCREAMING_SNAKE_CASE_ = None class lowerCamelCase_ : '''simple docstring''' def __init__( self : int , _lowerCAmelCase : Node ): SCREAMING_SNAKE_CASE_ = tree def lowerCAmelCase_ ( self : Union[str, Any] , _lowerCAmelCase : Node | None ): if node is None: return 0 return node.value + ( self.depth_first_search(node.left ) + self.depth_first_search(node.right ) ) def __iter__( self : Dict ): yield self.depth_first_search(self.tree ) if __name__ == "__main__": import doctest doctest.testmod()
31
1
# Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse import os from accelerate.test_utils import execute_subprocess_async def UpperCAmelCase_ ( __UpperCAmelCase : List[str]=None ) -> Any: if subparsers is not None: SCREAMING_SNAKE_CASE_ = subparsers.add_parser('test' ) else: SCREAMING_SNAKE_CASE_ = argparse.ArgumentParser('Accelerate test command' ) parser.add_argument( '--config_file' , default=__UpperCAmelCase , help=( 'The path to use to store the config file. Will default to a file named default_config.yaml in the cache ' 'location, which is the content of the environment `HF_HOME` suffixed with \'accelerate\', or if you don\'t have ' 'such an environment variable, your cache directory (\'~/.cache\' or the content of `XDG_CACHE_HOME`) suffixed ' 'with \'huggingface\'.' ) , ) if subparsers is not None: parser.set_defaults(func=__UpperCAmelCase ) return parser def UpperCAmelCase_ ( __UpperCAmelCase : Optional[int] ) -> List[Any]: SCREAMING_SNAKE_CASE_ = os.path.sep.join(__file__.split(os.path.sep )[:-2] + ['test_utils', 'scripts', 'test_script.py'] ) if args.config_file is None: SCREAMING_SNAKE_CASE_ = script_name else: SCREAMING_SNAKE_CASE_ = f"--config_file={args.config_file} {script_name}" SCREAMING_SNAKE_CASE_ = ['accelerate-launch'] + test_args.split() SCREAMING_SNAKE_CASE_ = execute_subprocess_async(__UpperCAmelCase , env=os.environ.copy() ) if result.returncode == 0: print('Test is a success! You are ready for your distributed training!' ) def UpperCAmelCase_ ( ) -> Optional[int]: SCREAMING_SNAKE_CASE_ = test_command_parser() SCREAMING_SNAKE_CASE_ = parser.parse_args() test_command(__UpperCAmelCase ) if __name__ == "__main__": main()
31
def UpperCAmelCase_ ( __UpperCAmelCase : list , __UpperCAmelCase : int , __UpperCAmelCase : int = 0 , __UpperCAmelCase : int = 0 ) -> int: SCREAMING_SNAKE_CASE_ = right or len(__UpperCAmelCase ) - 1 if left > right: return -1 elif list_data[left] == key: return left elif list_data[right] == key: return right else: return search(__UpperCAmelCase , __UpperCAmelCase , left + 1 , right - 1 ) if __name__ == "__main__": import doctest doctest.testmod()
31
1
from maths.prime_check import is_prime def UpperCAmelCase_ ( __UpperCAmelCase : int ) -> int: if not isinstance(__UpperCAmelCase , __UpperCAmelCase ): SCREAMING_SNAKE_CASE_ = f"Input value of [number={number}] must be an integer" raise TypeError(__UpperCAmelCase ) if is_prime(__UpperCAmelCase ) and is_prime(number + 2 ): return number + 2 else: return -1 if __name__ == "__main__": import doctest doctest.testmod()
31
import os from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils import AddedToken from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_fnet import FNetTokenizer else: lowerCamelCase__ : Optional[Any] = None lowerCamelCase__ : List[str] = logging.get_logger(__name__) lowerCamelCase__ : List[str] = {'vocab_file': 'spiece.model', 'tokenizer_file': 'tokenizer.json'} lowerCamelCase__ : List[str] = { 'vocab_file': { 'google/fnet-base': 'https://huggingface.co/google/fnet-base/resolve/main/spiece.model', 'google/fnet-large': 'https://huggingface.co/google/fnet-large/resolve/main/spiece.model', }, 'tokenizer_file': { 'google/fnet-base': 'https://huggingface.co/google/fnet-base/resolve/main/tokenizer.json', 'google/fnet-large': 'https://huggingface.co/google/fnet-large/resolve/main/tokenizer.json', }, } lowerCamelCase__ : Optional[Any] = { 'google/fnet-base': 512, 'google/fnet-large': 512, } lowerCamelCase__ : List[Any] = '▁' class lowerCamelCase_ ( _SCREAMING_SNAKE_CASE ): '''simple docstring''' lowercase_ = VOCAB_FILES_NAMES lowercase_ = PRETRAINED_VOCAB_FILES_MAP lowercase_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowercase_ = ["input_ids", "token_type_ids"] lowercase_ = FNetTokenizer def __init__( self : List[Any] , _lowerCAmelCase : Dict=None , _lowerCAmelCase : Dict=None , _lowerCAmelCase : List[str]=False , _lowerCAmelCase : Optional[Any]=True , _lowerCAmelCase : Tuple=True , _lowerCAmelCase : List[Any]="<unk>" , _lowerCAmelCase : Optional[Any]="[SEP]" , _lowerCAmelCase : Optional[Any]="<pad>" , _lowerCAmelCase : Optional[int]="[CLS]" , _lowerCAmelCase : Optional[Any]="[MASK]" , **_lowerCAmelCase : Any , ): # Mask token behave like a normal word, i.e. include the space before it and # is included in the raw text, there should be a match in a non-normalized sentence. SCREAMING_SNAKE_CASE_ = ( AddedToken(_lowerCAmelCase , lstrip=_lowerCAmelCase , rstrip=_lowerCAmelCase , normalized=_lowerCAmelCase ) if isinstance(_lowerCAmelCase , _lowerCAmelCase ) else mask_token ) super().__init__( _lowerCAmelCase , tokenizer_file=_lowerCAmelCase , do_lower_case=_lowerCAmelCase , remove_space=_lowerCAmelCase , keep_accents=_lowerCAmelCase , unk_token=_lowerCAmelCase , sep_token=_lowerCAmelCase , pad_token=_lowerCAmelCase , cls_token=_lowerCAmelCase , mask_token=_lowerCAmelCase , **_lowerCAmelCase , ) SCREAMING_SNAKE_CASE_ = do_lower_case SCREAMING_SNAKE_CASE_ = remove_space SCREAMING_SNAKE_CASE_ = keep_accents SCREAMING_SNAKE_CASE_ = vocab_file SCREAMING_SNAKE_CASE_ = False if not self.vocab_file else True def lowerCAmelCase_ ( self : Any , _lowerCAmelCase : List[int] , _lowerCAmelCase : Optional[List[int]] = None ): SCREAMING_SNAKE_CASE_ = [self.sep_token_id] SCREAMING_SNAKE_CASE_ = [self.cls_token_id] if token_ids_a is None: return cls + token_ids_a + sep return cls + token_ids_a + sep + token_ids_a + sep def lowerCAmelCase_ ( self : Optional[int] , _lowerCAmelCase : List[int] , _lowerCAmelCase : Optional[List[int]] = None ): SCREAMING_SNAKE_CASE_ = [self.sep_token_id] SCREAMING_SNAKE_CASE_ = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def lowerCAmelCase_ ( self : Optional[Any] , _lowerCAmelCase : str , _lowerCAmelCase : Optional[str] = None ): if not os.path.isdir(_lowerCAmelCase ): logger.error(F"Vocabulary path ({save_directory}) should be a directory" ) return SCREAMING_SNAKE_CASE_ = os.path.join( _lowerCAmelCase , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(_lowerCAmelCase ): copyfile(self.vocab_file , _lowerCAmelCase ) return (out_vocab_file,)
31
1
import math import qiskit def UpperCAmelCase_ ( __UpperCAmelCase : int = 1 , __UpperCAmelCase : int = 1 , __UpperCAmelCase : int = 1 ) -> qiskit.result.counts.Counts: if ( isinstance(__UpperCAmelCase , __UpperCAmelCase ) or isinstance(__UpperCAmelCase , __UpperCAmelCase ) or isinstance(__UpperCAmelCase , __UpperCAmelCase ) ): raise TypeError('inputs must be integers.' ) if (input_a < 0) or (input_a < 0) or (carry_in < 0): raise ValueError('inputs must be positive.' ) if ( (math.floor(__UpperCAmelCase ) != input_a) or (math.floor(__UpperCAmelCase ) != input_a) or (math.floor(__UpperCAmelCase ) != carry_in) ): raise ValueError('inputs must be exact integers.' ) if (input_a > 2) or (input_a > 2) or (carry_in > 2): raise ValueError('inputs must be less or equal to 2.' ) # build registers SCREAMING_SNAKE_CASE_ = qiskit.QuantumRegister(4 , 'qr' ) SCREAMING_SNAKE_CASE_ = qiskit.ClassicalRegister(2 , 'cr' ) # list the entries SCREAMING_SNAKE_CASE_ = [input_a, input_a, carry_in] SCREAMING_SNAKE_CASE_ = qiskit.QuantumCircuit(__UpperCAmelCase , __UpperCAmelCase ) for i in range(0 , 3 ): if entry[i] == 2: quantum_circuit.h(__UpperCAmelCase ) # for hadamard entries elif entry[i] == 1: quantum_circuit.x(__UpperCAmelCase ) # for 1 entries elif entry[i] == 0: quantum_circuit.i(__UpperCAmelCase ) # for 0 entries # build the circuit quantum_circuit.ccx(0 , 1 , 3 ) # ccx = toffoli gate quantum_circuit.cx(0 , 1 ) quantum_circuit.ccx(1 , 2 , 3 ) quantum_circuit.cx(1 , 2 ) quantum_circuit.cx(0 , 1 ) quantum_circuit.measure([2, 3] , __UpperCAmelCase ) # measure the last two qbits SCREAMING_SNAKE_CASE_ = qiskit.Aer.get_backend('aer_simulator' ) SCREAMING_SNAKE_CASE_ = qiskit.execute(__UpperCAmelCase , __UpperCAmelCase , shots=10_00 ) return job.result().get_counts(__UpperCAmelCase ) if __name__ == "__main__": print(f'''Total sum count for state is: {quantum_full_adder(1, 1, 1)}''')
31
from __future__ import annotations from collections.abc import Generator def UpperCAmelCase_ ( ) -> Generator[int, None, None]: SCREAMING_SNAKE_CASE_ = {} SCREAMING_SNAKE_CASE_ = 2 while True: SCREAMING_SNAKE_CASE_ = factor_map.pop(__UpperCAmelCase , __UpperCAmelCase ) if factor: SCREAMING_SNAKE_CASE_ = factor + prime while x in factor_map: x += factor SCREAMING_SNAKE_CASE_ = factor else: SCREAMING_SNAKE_CASE_ = prime yield prime prime += 1 def UpperCAmelCase_ ( __UpperCAmelCase : float = 1E10 ) -> int: SCREAMING_SNAKE_CASE_ = sieve() SCREAMING_SNAKE_CASE_ = 1 while True: SCREAMING_SNAKE_CASE_ = next(__UpperCAmelCase ) if (2 * prime * n) > limit: return n # Ignore the next prime as the reminder will be 2. next(__UpperCAmelCase ) n += 2 if __name__ == "__main__": print(solution())
31
1
from random import randint from tempfile import TemporaryFile import numpy as np def UpperCAmelCase_ ( __UpperCAmelCase : Tuple , __UpperCAmelCase : Union[str, Any] , __UpperCAmelCase : int ) -> Dict: SCREAMING_SNAKE_CASE_ = 0 if start < end: SCREAMING_SNAKE_CASE_ = randint(__UpperCAmelCase , __UpperCAmelCase ) SCREAMING_SNAKE_CASE_ = a[end] SCREAMING_SNAKE_CASE_ = a[pivot] SCREAMING_SNAKE_CASE_ = temp SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = _in_place_partition(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) count += _in_place_quick_sort(__UpperCAmelCase , __UpperCAmelCase , p - 1 ) count += _in_place_quick_sort(__UpperCAmelCase , p + 1 , __UpperCAmelCase ) return count def UpperCAmelCase_ ( __UpperCAmelCase : List[Any] , __UpperCAmelCase : str , __UpperCAmelCase : Optional[int] ) -> Union[str, Any]: SCREAMING_SNAKE_CASE_ = 0 SCREAMING_SNAKE_CASE_ = randint(__UpperCAmelCase , __UpperCAmelCase ) SCREAMING_SNAKE_CASE_ = a[end] SCREAMING_SNAKE_CASE_ = a[pivot] SCREAMING_SNAKE_CASE_ = temp SCREAMING_SNAKE_CASE_ = start - 1 for index in range(__UpperCAmelCase , __UpperCAmelCase ): count += 1 if a[index] < a[end]: # check if current val is less than pivot value SCREAMING_SNAKE_CASE_ = new_pivot_index + 1 SCREAMING_SNAKE_CASE_ = a[new_pivot_index] SCREAMING_SNAKE_CASE_ = a[index] SCREAMING_SNAKE_CASE_ = temp SCREAMING_SNAKE_CASE_ = a[new_pivot_index + 1] SCREAMING_SNAKE_CASE_ = a[end] SCREAMING_SNAKE_CASE_ = temp return new_pivot_index + 1, count lowerCamelCase__ : List[Any] = TemporaryFile() lowerCamelCase__ : Optional[Any] = 100 # 1000 elements are to be sorted lowerCamelCase__ , lowerCamelCase__ : List[str] = 0, 1 # mean and standard deviation lowerCamelCase__ : Tuple = np.random.normal(mu, sigma, p) np.save(outfile, X) print('The array is') print(X) outfile.seek(0) # using the same array lowerCamelCase__ : Union[str, Any] = np.load(outfile) lowerCamelCase__ : Union[str, Any] = len(M) - 1 lowerCamelCase__ : Dict = _in_place_quick_sort(M, 0, r) print( 'No of Comparisons for 100 elements selected from a standard normal distribution' 'is :' ) print(z)
31
import numpy as np import torch from torch.utils.data import DataLoader from accelerate.utils.dataclasses import DistributedType class lowerCamelCase_ : '''simple docstring''' def __init__( self : Any , _lowerCAmelCase : Optional[int]=2 , _lowerCAmelCase : Any=3 , _lowerCAmelCase : Tuple=64 , _lowerCAmelCase : List[str]=None ): SCREAMING_SNAKE_CASE_ = np.random.default_rng(_lowerCAmelCase ) SCREAMING_SNAKE_CASE_ = length SCREAMING_SNAKE_CASE_ = rng.normal(size=(length,) ).astype(np.floataa ) SCREAMING_SNAKE_CASE_ = a * self.x + b + rng.normal(scale=0.1 , size=(length,) ).astype(np.floataa ) def __len__( self : Optional[int] ): return self.length def __getitem__( self : str , _lowerCAmelCase : Union[str, Any] ): return {"x": self.x[i], "y": self.y[i]} class lowerCamelCase_ ( torch.nn.Module ): '''simple docstring''' def __init__( self : Tuple , _lowerCAmelCase : Dict=0 , _lowerCAmelCase : List[str]=0 , _lowerCAmelCase : str=False ): super().__init__() SCREAMING_SNAKE_CASE_ = torch.nn.Parameter(torch.tensor([2, 3] ).float() ) SCREAMING_SNAKE_CASE_ = torch.nn.Parameter(torch.tensor([2, 3] ).float() ) SCREAMING_SNAKE_CASE_ = True def lowerCAmelCase_ ( self : Dict , _lowerCAmelCase : Union[str, Any]=None ): if self.first_batch: print(F"Model dtype: {self.a.dtype}, {self.b.dtype}. Input dtype: {x.dtype}" ) SCREAMING_SNAKE_CASE_ = False return x * self.a[0] + self.b[0] class lowerCamelCase_ ( torch.nn.Module ): '''simple docstring''' def __init__( self : Optional[int] , _lowerCAmelCase : Any=0 , _lowerCAmelCase : Any=0 , _lowerCAmelCase : Optional[Any]=False ): super().__init__() SCREAMING_SNAKE_CASE_ = torch.nn.Parameter(torch.tensor(_lowerCAmelCase ).float() ) SCREAMING_SNAKE_CASE_ = torch.nn.Parameter(torch.tensor(_lowerCAmelCase ).float() ) SCREAMING_SNAKE_CASE_ = True def lowerCAmelCase_ ( self : Optional[Any] , _lowerCAmelCase : Optional[int]=None ): if self.first_batch: print(F"Model dtype: {self.a.dtype}, {self.b.dtype}. Input dtype: {x.dtype}" ) SCREAMING_SNAKE_CASE_ = False return x * self.a + self.b def UpperCAmelCase_ ( __UpperCAmelCase : Dict , __UpperCAmelCase : int = 16 ) -> Union[str, Any]: from datasets import load_dataset from transformers import AutoTokenizer SCREAMING_SNAKE_CASE_ = AutoTokenizer.from_pretrained('bert-base-cased' ) SCREAMING_SNAKE_CASE_ = {'train': 'tests/test_samples/MRPC/train.csv', 'validation': 'tests/test_samples/MRPC/dev.csv'} SCREAMING_SNAKE_CASE_ = load_dataset('csv' , data_files=__UpperCAmelCase ) SCREAMING_SNAKE_CASE_ = datasets['train'].unique('label' ) SCREAMING_SNAKE_CASE_ = {v: i for i, v in enumerate(__UpperCAmelCase )} def tokenize_function(__UpperCAmelCase : Optional[int] ): # max_length=None => use the model max length (it's actually the default) SCREAMING_SNAKE_CASE_ = tokenizer( examples['sentence1'] , examples['sentence2'] , truncation=__UpperCAmelCase , max_length=__UpperCAmelCase , padding='max_length' ) if "label" in examples: SCREAMING_SNAKE_CASE_ = [label_to_id[l] for l in examples['label']] return outputs # Apply the method we just defined to all the examples in all the splits of the dataset SCREAMING_SNAKE_CASE_ = datasets.map( __UpperCAmelCase , batched=__UpperCAmelCase , remove_columns=['sentence1', 'sentence2', 'label'] , ) def collate_fn(__UpperCAmelCase : Dict ): # On TPU it's best to pad everything to the same length or training will be very slow. if accelerator.distributed_type == DistributedType.TPU: return tokenizer.pad(__UpperCAmelCase , padding='max_length' , max_length=1_28 , return_tensors='pt' ) return tokenizer.pad(__UpperCAmelCase , padding='longest' , return_tensors='pt' ) # Instantiate dataloaders. SCREAMING_SNAKE_CASE_ = DataLoader(tokenized_datasets['train'] , shuffle=__UpperCAmelCase , collate_fn=__UpperCAmelCase , batch_size=2 ) SCREAMING_SNAKE_CASE_ = DataLoader(tokenized_datasets['validation'] , shuffle=__UpperCAmelCase , collate_fn=__UpperCAmelCase , batch_size=1 ) return train_dataloader, eval_dataloader
31
1
import os import zipfile import pytest from datasets.utils.extract import ( BzipaExtractor, Extractor, GzipExtractor, LzaExtractor, SevenZipExtractor, TarExtractor, XzExtractor, ZipExtractor, ZstdExtractor, ) from .utils import require_lza, require_pyazr, require_zstandard @pytest.mark.parametrize( 'compression_format, is_archive' , [ ('7z', True), ('bz2', False), ('gzip', False), ('lz4', False), ('tar', True), ('xz', False), ('zip', True), ('zstd', False), ] , ) def UpperCAmelCase_ ( __UpperCAmelCase : str , __UpperCAmelCase : Optional[int] , __UpperCAmelCase : Any , __UpperCAmelCase : Optional[Any] , __UpperCAmelCase : Dict , __UpperCAmelCase : List[Any] , __UpperCAmelCase : List[str] , __UpperCAmelCase : List[str] , __UpperCAmelCase : List[str] , __UpperCAmelCase : Tuple , __UpperCAmelCase : Dict , __UpperCAmelCase : Tuple , ) -> Union[str, Any]: SCREAMING_SNAKE_CASE_ = { '7z': (seven_zip_file, SevenZipExtractor), 'bz2': (bza_file, BzipaExtractor), 'gzip': (gz_file, GzipExtractor), 'lz4': (lza_file, LzaExtractor), 'tar': (tar_file, TarExtractor), 'xz': (xz_file, XzExtractor), 'zip': (zip_file, ZipExtractor), 'zstd': (zstd_file, ZstdExtractor), } SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = input_paths_and_base_extractors[compression_format] if input_path is None: SCREAMING_SNAKE_CASE_ = f"for '{compression_format}' compression_format, " if compression_format == "7z": reason += require_pyazr.kwargs["reason"] elif compression_format == "lz4": reason += require_lza.kwargs["reason"] elif compression_format == "zstd": reason += require_zstandard.kwargs["reason"] pytest.skip(__UpperCAmelCase ) assert base_extractor.is_extractable(__UpperCAmelCase ) SCREAMING_SNAKE_CASE_ = tmp_path / ('extracted' if is_archive else 'extracted.txt') base_extractor.extract(__UpperCAmelCase , __UpperCAmelCase ) if is_archive: assert output_path.is_dir() for file_path in output_path.iterdir(): assert file_path.name == text_file.name SCREAMING_SNAKE_CASE_ = file_path.read_text(encoding='utf-8' ) else: SCREAMING_SNAKE_CASE_ = output_path.read_text(encoding='utf-8' ) SCREAMING_SNAKE_CASE_ = text_file.read_text(encoding='utf-8' ) assert extracted_file_content == expected_file_content @pytest.mark.parametrize( 'compression_format, is_archive' , [ ('7z', True), ('bz2', False), ('gzip', False), ('lz4', False), ('tar', True), ('xz', False), ('zip', True), ('zstd', False), ] , ) def UpperCAmelCase_ ( __UpperCAmelCase : List[Any] , __UpperCAmelCase : List[Any] , __UpperCAmelCase : Optional[Any] , __UpperCAmelCase : List[Any] , __UpperCAmelCase : Union[str, Any] , __UpperCAmelCase : Union[str, Any] , __UpperCAmelCase : Union[str, Any] , __UpperCAmelCase : Any , __UpperCAmelCase : Optional[int] , __UpperCAmelCase : Optional[Any] , __UpperCAmelCase : Dict , __UpperCAmelCase : List[str] , ) -> Optional[int]: SCREAMING_SNAKE_CASE_ = { '7z': seven_zip_file, 'bz2': bza_file, 'gzip': gz_file, 'lz4': lza_file, 'tar': tar_file, 'xz': xz_file, 'zip': zip_file, 'zstd': zstd_file, } SCREAMING_SNAKE_CASE_ = input_paths[compression_format] if input_path is None: SCREAMING_SNAKE_CASE_ = f"for '{compression_format}' compression_format, " if compression_format == "7z": reason += require_pyazr.kwargs["reason"] elif compression_format == "lz4": reason += require_lza.kwargs["reason"] elif compression_format == "zstd": reason += require_zstandard.kwargs["reason"] pytest.skip(__UpperCAmelCase ) SCREAMING_SNAKE_CASE_ = Extractor.infer_extractor_format(__UpperCAmelCase ) assert extractor_format is not None SCREAMING_SNAKE_CASE_ = tmp_path / ('extracted' if is_archive else 'extracted.txt') Extractor.extract(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) if is_archive: assert output_path.is_dir() for file_path in output_path.iterdir(): assert file_path.name == text_file.name SCREAMING_SNAKE_CASE_ = file_path.read_text(encoding='utf-8' ) else: SCREAMING_SNAKE_CASE_ = output_path.read_text(encoding='utf-8' ) SCREAMING_SNAKE_CASE_ = text_file.read_text(encoding='utf-8' ) assert extracted_file_content == expected_file_content @pytest.fixture def UpperCAmelCase_ ( __UpperCAmelCase : Union[str, Any] , __UpperCAmelCase : int ) -> int: import tarfile SCREAMING_SNAKE_CASE_ = tmp_path / 'data_dot_dot' directory.mkdir() SCREAMING_SNAKE_CASE_ = directory / 'tar_file_with_dot_dot.tar' with tarfile.TarFile(__UpperCAmelCase , 'w' ) as f: f.add(__UpperCAmelCase , arcname=os.path.join('..' , text_file.name ) ) return path @pytest.fixture def UpperCAmelCase_ ( __UpperCAmelCase : Optional[int] ) -> str: import tarfile SCREAMING_SNAKE_CASE_ = tmp_path / 'data_sym_link' directory.mkdir() SCREAMING_SNAKE_CASE_ = directory / 'tar_file_with_sym_link.tar' os.symlink('..' , directory / 'subdir' , target_is_directory=__UpperCAmelCase ) with tarfile.TarFile(__UpperCAmelCase , 'w' ) as f: f.add(str(directory / 'subdir' ) , arcname='subdir' ) # str required by os.readlink on Windows and Python < 3.8 return path @pytest.mark.parametrize( 'insecure_tar_file, error_log' , [('tar_file_with_dot_dot', 'illegal path'), ('tar_file_with_sym_link', 'Symlink')] , ) def UpperCAmelCase_ ( __UpperCAmelCase : Tuple , __UpperCAmelCase : Tuple , __UpperCAmelCase : Tuple , __UpperCAmelCase : Tuple , __UpperCAmelCase : Union[str, Any] , __UpperCAmelCase : Optional[Any] ) -> Dict: SCREAMING_SNAKE_CASE_ = { 'tar_file_with_dot_dot': tar_file_with_dot_dot, 'tar_file_with_sym_link': tar_file_with_sym_link, } SCREAMING_SNAKE_CASE_ = insecure_tar_files[insecure_tar_file] SCREAMING_SNAKE_CASE_ = tmp_path / 'extracted' TarExtractor.extract(__UpperCAmelCase , __UpperCAmelCase ) assert caplog.text for record in caplog.records: assert record.levelname == "ERROR" assert error_log in record.msg def UpperCAmelCase_ ( __UpperCAmelCase : List[str] ) -> int: # We should have less false positives than zipfile.is_zipfile # We do that by checking only the magic number SCREAMING_SNAKE_CASE_ = tmpdir / 'not_a_zip_file' # From: https://github.com/python/cpython/pull/5053 SCREAMING_SNAKE_CASE_ = ( b'\x89PNG\r\n\x1a\n\x00\x00\x00\rIHDR\x00\x00\x00\x01\x00\x00' b'\x00\x02\x08\x06\x00\x00\x00\x99\x81\xb6\'\x00\x00\x00\x15I' b'DATx\x01\x01\n\x00\xf5\xff\x00PK\x05\x06\x00PK\x06\x06\x07' b'\xac\x01N\xc6|a\r\x00\x00\x00\x00IEND\xaeB`\x82' ) with not_a_zip_file.open('wb' ) as f: f.write(__UpperCAmelCase ) assert zipfile.is_zipfile(str(__UpperCAmelCase ) ) # is a false positive for `zipfile` assert not ZipExtractor.is_extractable(__UpperCAmelCase ) # but we're right
31
import warnings from ...utils import logging from .image_processing_layoutlmva import LayoutLMvaImageProcessor lowerCamelCase__ : Union[str, Any] = logging.get_logger(__name__) class lowerCamelCase_ ( _SCREAMING_SNAKE_CASE ): '''simple docstring''' def __init__( self : Dict , *_lowerCAmelCase : Optional[Any] , **_lowerCAmelCase : Any ): warnings.warn( 'The class LayoutLMv2FeatureExtractor is deprecated and will be removed in version 5 of Transformers.' ' Please use LayoutLMv2ImageProcessor instead.' , _lowerCAmelCase , ) super().__init__(*_lowerCAmelCase , **_lowerCAmelCase )
31
1
import inspect import unittest from transformers import MobileNetVaConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import MobileNetVaForImageClassification, MobileNetVaForSemanticSegmentation, MobileNetVaModel from transformers.models.mobilenet_va.modeling_mobilenet_va import MOBILENET_V2_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import MobileNetVaImageProcessor class lowerCamelCase_ ( _SCREAMING_SNAKE_CASE ): '''simple docstring''' def lowerCAmelCase_ ( self : Dict ): SCREAMING_SNAKE_CASE_ = self.config_class(**self.inputs_dict ) self.parent.assertTrue(hasattr(_lowerCAmelCase , 'tf_padding' ) ) self.parent.assertTrue(hasattr(_lowerCAmelCase , 'depth_multiplier' ) ) class lowerCamelCase_ : '''simple docstring''' def __init__( self : Dict , _lowerCAmelCase : int , _lowerCAmelCase : List[Any]=13 , _lowerCAmelCase : Optional[Any]=3 , _lowerCAmelCase : Optional[int]=32 , _lowerCAmelCase : Dict=0.25 , _lowerCAmelCase : str=8 , _lowerCAmelCase : Dict=8 , _lowerCAmelCase : Union[str, Any]=6 , _lowerCAmelCase : str=32 , _lowerCAmelCase : int=True , _lowerCAmelCase : Dict=True , _lowerCAmelCase : Optional[int]=True , _lowerCAmelCase : Tuple="relu6" , _lowerCAmelCase : Optional[int]=1_280 , _lowerCAmelCase : Union[str, Any]=0.1 , _lowerCAmelCase : Any=0.02 , _lowerCAmelCase : int=True , _lowerCAmelCase : Dict=True , _lowerCAmelCase : Union[str, Any]=10 , _lowerCAmelCase : Optional[Any]=None , ): SCREAMING_SNAKE_CASE_ = parent SCREAMING_SNAKE_CASE_ = batch_size SCREAMING_SNAKE_CASE_ = num_channels SCREAMING_SNAKE_CASE_ = image_size SCREAMING_SNAKE_CASE_ = depth_multiplier SCREAMING_SNAKE_CASE_ = depth_divisible_by SCREAMING_SNAKE_CASE_ = min_depth SCREAMING_SNAKE_CASE_ = expand_ratio SCREAMING_SNAKE_CASE_ = tf_padding SCREAMING_SNAKE_CASE_ = output_stride SCREAMING_SNAKE_CASE_ = first_layer_is_expansion SCREAMING_SNAKE_CASE_ = finegrained_output SCREAMING_SNAKE_CASE_ = hidden_act SCREAMING_SNAKE_CASE_ = last_hidden_size if finegrained_output else int(last_hidden_size * depth_multiplier ) SCREAMING_SNAKE_CASE_ = classifier_dropout_prob SCREAMING_SNAKE_CASE_ = use_labels SCREAMING_SNAKE_CASE_ = is_training SCREAMING_SNAKE_CASE_ = num_labels SCREAMING_SNAKE_CASE_ = initializer_range SCREAMING_SNAKE_CASE_ = scope def lowerCAmelCase_ ( self : Union[str, Any] ): SCREAMING_SNAKE_CASE_ = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) SCREAMING_SNAKE_CASE_ = None SCREAMING_SNAKE_CASE_ = None if self.use_labels: SCREAMING_SNAKE_CASE_ = ids_tensor([self.batch_size] , self.num_labels ) SCREAMING_SNAKE_CASE_ = ids_tensor([self.batch_size, self.image_size, self.image_size] , self.num_labels ) SCREAMING_SNAKE_CASE_ = self.get_config() return config, pixel_values, labels, pixel_labels def lowerCAmelCase_ ( self : str ): return MobileNetVaConfig( num_channels=self.num_channels , image_size=self.image_size , depth_multiplier=self.depth_multiplier , depth_divisible_by=self.depth_divisible_by , min_depth=self.min_depth , expand_ratio=self.expand_ratio , output_stride=self.output_stride , first_layer_is_expansion=self.first_layer_is_expansion , finegrained_output=self.finegrained_output , hidden_act=self.hidden_act , tf_padding=self.tf_padding , classifier_dropout_prob=self.classifier_dropout_prob , initializer_range=self.initializer_range , ) def lowerCAmelCase_ ( self : Optional[int] , _lowerCAmelCase : Optional[int] , _lowerCAmelCase : Optional[Any] , _lowerCAmelCase : List[Any] , _lowerCAmelCase : str ): SCREAMING_SNAKE_CASE_ = MobileNetVaModel(config=_lowerCAmelCase ) model.to(_lowerCAmelCase ) model.eval() SCREAMING_SNAKE_CASE_ = model(_lowerCAmelCase ) self.parent.assertEqual( result.last_hidden_state.shape , ( self.batch_size, self.last_hidden_size, self.image_size // self.output_stride, self.image_size // self.output_stride, ) , ) self.parent.assertEqual( result.pooler_output.shape , (self.batch_size, self.last_hidden_size) , ) def lowerCAmelCase_ ( self : Any , _lowerCAmelCase : Optional[int] , _lowerCAmelCase : int , _lowerCAmelCase : List[Any] , _lowerCAmelCase : Optional[Any] ): SCREAMING_SNAKE_CASE_ = self.num_labels SCREAMING_SNAKE_CASE_ = MobileNetVaForImageClassification(_lowerCAmelCase ) model.to(_lowerCAmelCase ) model.eval() SCREAMING_SNAKE_CASE_ = model(_lowerCAmelCase , labels=_lowerCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def lowerCAmelCase_ ( self : List[Any] , _lowerCAmelCase : int , _lowerCAmelCase : int , _lowerCAmelCase : Dict , _lowerCAmelCase : Dict ): SCREAMING_SNAKE_CASE_ = self.num_labels SCREAMING_SNAKE_CASE_ = MobileNetVaForSemanticSegmentation(_lowerCAmelCase ) model.to(_lowerCAmelCase ) model.eval() SCREAMING_SNAKE_CASE_ = model(_lowerCAmelCase ) self.parent.assertEqual( result.logits.shape , ( self.batch_size, self.num_labels, self.image_size // self.output_stride, self.image_size // self.output_stride, ) , ) SCREAMING_SNAKE_CASE_ = model(_lowerCAmelCase , labels=_lowerCAmelCase ) self.parent.assertEqual( result.logits.shape , ( self.batch_size, self.num_labels, self.image_size // self.output_stride, self.image_size // self.output_stride, ) , ) def lowerCAmelCase_ ( self : List[str] ): SCREAMING_SNAKE_CASE_ = self.prepare_config_and_inputs() SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = config_and_inputs SCREAMING_SNAKE_CASE_ = {'pixel_values': pixel_values} return config, inputs_dict @require_torch class lowerCamelCase_ ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' lowercase_ = ( (MobileNetVaModel, MobileNetVaForImageClassification, MobileNetVaForSemanticSegmentation) if is_torch_available() else () ) lowercase_ = ( { "feature-extraction": MobileNetVaModel, "image-classification": MobileNetVaForImageClassification, "image-segmentation": MobileNetVaForSemanticSegmentation, } if is_torch_available() else {} ) lowercase_ = False lowercase_ = False lowercase_ = False lowercase_ = False def lowerCAmelCase_ ( self : List[str] ): SCREAMING_SNAKE_CASE_ = MobileNetVaModelTester(self ) SCREAMING_SNAKE_CASE_ = MobileNetVaConfigTester(self , config_class=_lowerCAmelCase , has_text_modality=_lowerCAmelCase ) def lowerCAmelCase_ ( self : List[Any] ): self.config_tester.run_common_tests() @unittest.skip(reason='MobileNetV2 does not use inputs_embeds' ) def lowerCAmelCase_ ( self : Any ): pass @unittest.skip(reason='MobileNetV2 does not support input and output embeddings' ) def lowerCAmelCase_ ( self : Optional[int] ): pass @unittest.skip(reason='MobileNetV2 does not output attentions' ) def lowerCAmelCase_ ( self : Optional[int] ): pass def lowerCAmelCase_ ( self : str ): SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: SCREAMING_SNAKE_CASE_ = model_class(_lowerCAmelCase ) SCREAMING_SNAKE_CASE_ = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic SCREAMING_SNAKE_CASE_ = [*signature.parameters.keys()] SCREAMING_SNAKE_CASE_ = ['pixel_values'] self.assertListEqual(arg_names[:1] , _lowerCAmelCase ) def lowerCAmelCase_ ( self : List[Any] ): SCREAMING_SNAKE_CASE_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_lowerCAmelCase ) def lowerCAmelCase_ ( self : int ): def check_hidden_states_output(_lowerCAmelCase : List[str] , _lowerCAmelCase : Union[str, Any] , _lowerCAmelCase : Tuple ): SCREAMING_SNAKE_CASE_ = model_class(_lowerCAmelCase ) model.to(_lowerCAmelCase ) model.eval() with torch.no_grad(): SCREAMING_SNAKE_CASE_ = model(**self._prepare_for_class(_lowerCAmelCase , _lowerCAmelCase ) ) SCREAMING_SNAKE_CASE_ = outputs.hidden_states SCREAMING_SNAKE_CASE_ = 16 self.assertEqual(len(_lowerCAmelCase ) , _lowerCAmelCase ) SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: SCREAMING_SNAKE_CASE_ = True check_hidden_states_output(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] SCREAMING_SNAKE_CASE_ = True check_hidden_states_output(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) def lowerCAmelCase_ ( self : int ): SCREAMING_SNAKE_CASE_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*_lowerCAmelCase ) def lowerCAmelCase_ ( self : List[Any] ): SCREAMING_SNAKE_CASE_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_semantic_segmentation(*_lowerCAmelCase ) @slow def lowerCAmelCase_ ( self : Any ): for model_name in MOBILENET_V2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: SCREAMING_SNAKE_CASE_ = MobileNetVaModel.from_pretrained(_lowerCAmelCase ) self.assertIsNotNone(_lowerCAmelCase ) def UpperCAmelCase_ ( ) -> Dict: SCREAMING_SNAKE_CASE_ = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) return image @require_torch @require_vision class lowerCamelCase_ ( unittest.TestCase ): '''simple docstring''' @cached_property def lowerCAmelCase_ ( self : Optional[Any] ): return ( MobileNetVaImageProcessor.from_pretrained('google/mobilenet_v2_1.0_224' ) if is_vision_available() else None ) @slow def lowerCAmelCase_ ( self : List[str] ): SCREAMING_SNAKE_CASE_ = MobileNetVaForImageClassification.from_pretrained('google/mobilenet_v2_1.0_224' ).to(_lowerCAmelCase ) SCREAMING_SNAKE_CASE_ = self.default_image_processor SCREAMING_SNAKE_CASE_ = prepare_img() SCREAMING_SNAKE_CASE_ = image_processor(images=_lowerCAmelCase , return_tensors='pt' ).to(_lowerCAmelCase ) # forward pass with torch.no_grad(): SCREAMING_SNAKE_CASE_ = model(**_lowerCAmelCase ) # verify the logits SCREAMING_SNAKE_CASE_ = torch.Size((1, 1_001) ) self.assertEqual(outputs.logits.shape , _lowerCAmelCase ) SCREAMING_SNAKE_CASE_ = torch.tensor([0.2445, -1.1993, 0.1905] ).to(_lowerCAmelCase ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , _lowerCAmelCase , atol=1E-4 ) ) @slow def lowerCAmelCase_ ( self : Union[str, Any] ): SCREAMING_SNAKE_CASE_ = MobileNetVaForSemanticSegmentation.from_pretrained('google/deeplabv3_mobilenet_v2_1.0_513' ) SCREAMING_SNAKE_CASE_ = model.to(_lowerCAmelCase ) SCREAMING_SNAKE_CASE_ = MobileNetVaImageProcessor.from_pretrained('google/deeplabv3_mobilenet_v2_1.0_513' ) SCREAMING_SNAKE_CASE_ = prepare_img() SCREAMING_SNAKE_CASE_ = image_processor(images=_lowerCAmelCase , return_tensors='pt' ).to(_lowerCAmelCase ) # forward pass with torch.no_grad(): SCREAMING_SNAKE_CASE_ = model(**_lowerCAmelCase ) SCREAMING_SNAKE_CASE_ = outputs.logits # verify the logits SCREAMING_SNAKE_CASE_ = torch.Size((1, 21, 65, 65) ) self.assertEqual(logits.shape , _lowerCAmelCase ) SCREAMING_SNAKE_CASE_ = torch.tensor( [ [[17.5790, 17.7581, 18.3355], [18.3257, 18.4230, 18.8973], [18.6169, 18.8650, 19.2187]], [[-2.1595, -2.0977, -2.3741], [-2.4226, -2.3028, -2.6835], [-2.7819, -2.5991, -2.7706]], [[4.2058, 4.8317, 4.7638], [4.4136, 5.0361, 4.9383], [4.5028, 4.9644, 4.8734]], ] , device=_lowerCAmelCase , ) self.assertTrue(torch.allclose(logits[0, :3, :3, :3] , _lowerCAmelCase , atol=1E-4 ) )
31
def UpperCAmelCase_ ( ) -> list[list[int]]: return [list(range(10_00 - i , -10_00 - i , -1 ) ) for i in range(10_00 )] lowerCamelCase__ : List[Any] = generate_large_matrix() lowerCamelCase__ : List[Any] = ( [[4, 3, 2, -1], [3, 2, 1, -1], [1, 1, -1, -2], [-1, -1, -2, -3]], [[3, 2], [1, 0]], [[7, 7, 6]], [[7, 7, 6], [-1, -2, -3]], grid, ) def UpperCAmelCase_ ( __UpperCAmelCase : list[list[int]] ) -> None: assert all(row == sorted(__UpperCAmelCase , reverse=__UpperCAmelCase ) for row in grid ) assert all(list(__UpperCAmelCase ) == sorted(__UpperCAmelCase , reverse=__UpperCAmelCase ) for col in zip(*__UpperCAmelCase ) ) def UpperCAmelCase_ ( __UpperCAmelCase : list[int] ) -> int: SCREAMING_SNAKE_CASE_ = 0 SCREAMING_SNAKE_CASE_ = len(__UpperCAmelCase ) - 1 # Edge cases such as no values or all numbers are negative. if not array or array[0] < 0: return 0 while right + 1 > left: SCREAMING_SNAKE_CASE_ = (left + right) // 2 SCREAMING_SNAKE_CASE_ = array[mid] # Num must be negative and the index must be greater than or equal to 0. if num < 0 and array[mid - 1] >= 0: return mid if num >= 0: SCREAMING_SNAKE_CASE_ = mid + 1 else: SCREAMING_SNAKE_CASE_ = mid - 1 # No negative numbers so return the last index of the array + 1 which is the length. return len(__UpperCAmelCase ) def UpperCAmelCase_ ( __UpperCAmelCase : list[list[int]] ) -> int: SCREAMING_SNAKE_CASE_ = 0 SCREAMING_SNAKE_CASE_ = len(grid[0] ) for i in range(len(__UpperCAmelCase ) ): SCREAMING_SNAKE_CASE_ = find_negative_index(grid[i][:bound] ) total += bound return (len(__UpperCAmelCase ) * len(grid[0] )) - total def UpperCAmelCase_ ( __UpperCAmelCase : list[list[int]] ) -> int: return len([number for row in grid for number in row if number < 0] ) def UpperCAmelCase_ ( __UpperCAmelCase : list[list[int]] ) -> int: SCREAMING_SNAKE_CASE_ = 0 for row in grid: for i, number in enumerate(__UpperCAmelCase ): if number < 0: total += len(__UpperCAmelCase ) - i break return total def UpperCAmelCase_ ( ) -> None: from timeit import timeit print('Running benchmarks' ) SCREAMING_SNAKE_CASE_ = ( 'from __main__ import count_negatives_binary_search, ' 'count_negatives_brute_force, count_negatives_brute_force_with_break, grid' ) for func in ( "count_negatives_binary_search", # took 0.7727 seconds "count_negatives_brute_force_with_break", # took 4.6505 seconds "count_negatives_brute_force", # took 12.8160 seconds ): SCREAMING_SNAKE_CASE_ = timeit(f"{func}(grid=grid)" , setup=__UpperCAmelCase , number=5_00 ) print(f"{func}() took {time:0.4f} seconds" ) if __name__ == "__main__": import doctest doctest.testmod() benchmark()
31
1
from dataclasses import dataclass from typing import Optional import numpy as np import torch import torch.nn as nn from ..utils import BaseOutput, is_torch_version, randn_tensor from .attention_processor import SpatialNorm from .unet_ad_blocks import UNetMidBlockaD, get_down_block, get_up_block @dataclass class lowerCamelCase_ ( _SCREAMING_SNAKE_CASE ): '''simple docstring''' lowercase_ = 42 class lowerCamelCase_ ( nn.Module ): '''simple docstring''' def __init__( self : Dict , _lowerCAmelCase : Union[str, Any]=3 , _lowerCAmelCase : Optional[int]=3 , _lowerCAmelCase : Union[str, Any]=("DownEncoderBlock2D",) , _lowerCAmelCase : Any=(64,) , _lowerCAmelCase : Optional[int]=2 , _lowerCAmelCase : Tuple=32 , _lowerCAmelCase : Any="silu" , _lowerCAmelCase : Any=True , ): super().__init__() SCREAMING_SNAKE_CASE_ = layers_per_block SCREAMING_SNAKE_CASE_ = torch.nn.Convad( _lowerCAmelCase , block_out_channels[0] , kernel_size=3 , stride=1 , padding=1 , ) SCREAMING_SNAKE_CASE_ = None SCREAMING_SNAKE_CASE_ = nn.ModuleList([] ) # down SCREAMING_SNAKE_CASE_ = block_out_channels[0] for i, down_block_type in enumerate(_lowerCAmelCase ): SCREAMING_SNAKE_CASE_ = output_channel SCREAMING_SNAKE_CASE_ = block_out_channels[i] SCREAMING_SNAKE_CASE_ = i == len(_lowerCAmelCase ) - 1 SCREAMING_SNAKE_CASE_ = get_down_block( _lowerCAmelCase , num_layers=self.layers_per_block , in_channels=_lowerCAmelCase , out_channels=_lowerCAmelCase , add_downsample=not is_final_block , resnet_eps=1E-6 , downsample_padding=0 , resnet_act_fn=_lowerCAmelCase , resnet_groups=_lowerCAmelCase , attention_head_dim=_lowerCAmelCase , temb_channels=_lowerCAmelCase , ) self.down_blocks.append(_lowerCAmelCase ) # mid SCREAMING_SNAKE_CASE_ = UNetMidBlockaD( in_channels=block_out_channels[-1] , resnet_eps=1E-6 , resnet_act_fn=_lowerCAmelCase , output_scale_factor=1 , resnet_time_scale_shift='default' , attention_head_dim=block_out_channels[-1] , resnet_groups=_lowerCAmelCase , temb_channels=_lowerCAmelCase , ) # out SCREAMING_SNAKE_CASE_ = nn.GroupNorm(num_channels=block_out_channels[-1] , num_groups=_lowerCAmelCase , eps=1E-6 ) SCREAMING_SNAKE_CASE_ = nn.SiLU() SCREAMING_SNAKE_CASE_ = 2 * out_channels if double_z else out_channels SCREAMING_SNAKE_CASE_ = nn.Convad(block_out_channels[-1] , _lowerCAmelCase , 3 , padding=1 ) SCREAMING_SNAKE_CASE_ = False def lowerCAmelCase_ ( self : Tuple , _lowerCAmelCase : int ): SCREAMING_SNAKE_CASE_ = x SCREAMING_SNAKE_CASE_ = self.conv_in(_lowerCAmelCase ) if self.training and self.gradient_checkpointing: def create_custom_forward(_lowerCAmelCase : Dict ): def custom_forward(*_lowerCAmelCase : Optional[Any] ): return module(*_lowerCAmelCase ) return custom_forward # down if is_torch_version('>=' , '1.11.0' ): for down_block in self.down_blocks: SCREAMING_SNAKE_CASE_ = torch.utils.checkpoint.checkpoint( create_custom_forward(_lowerCAmelCase ) , _lowerCAmelCase , use_reentrant=_lowerCAmelCase ) # middle SCREAMING_SNAKE_CASE_ = torch.utils.checkpoint.checkpoint( create_custom_forward(self.mid_block ) , _lowerCAmelCase , use_reentrant=_lowerCAmelCase ) else: for down_block in self.down_blocks: SCREAMING_SNAKE_CASE_ = torch.utils.checkpoint.checkpoint(create_custom_forward(_lowerCAmelCase ) , _lowerCAmelCase ) # middle SCREAMING_SNAKE_CASE_ = torch.utils.checkpoint.checkpoint(create_custom_forward(self.mid_block ) , _lowerCAmelCase ) else: # down for down_block in self.down_blocks: SCREAMING_SNAKE_CASE_ = down_block(_lowerCAmelCase ) # middle SCREAMING_SNAKE_CASE_ = self.mid_block(_lowerCAmelCase ) # post-process SCREAMING_SNAKE_CASE_ = self.conv_norm_out(_lowerCAmelCase ) SCREAMING_SNAKE_CASE_ = self.conv_act(_lowerCAmelCase ) SCREAMING_SNAKE_CASE_ = self.conv_out(_lowerCAmelCase ) return sample class lowerCamelCase_ ( nn.Module ): '''simple docstring''' def __init__( self : Any , _lowerCAmelCase : str=3 , _lowerCAmelCase : int=3 , _lowerCAmelCase : List[Any]=("UpDecoderBlock2D",) , _lowerCAmelCase : List[str]=(64,) , _lowerCAmelCase : Optional[Any]=2 , _lowerCAmelCase : Tuple=32 , _lowerCAmelCase : int="silu" , _lowerCAmelCase : Any="group" , ): super().__init__() SCREAMING_SNAKE_CASE_ = layers_per_block SCREAMING_SNAKE_CASE_ = nn.Convad( _lowerCAmelCase , block_out_channels[-1] , kernel_size=3 , stride=1 , padding=1 , ) SCREAMING_SNAKE_CASE_ = None SCREAMING_SNAKE_CASE_ = nn.ModuleList([] ) SCREAMING_SNAKE_CASE_ = in_channels if norm_type == 'spatial' else None # mid SCREAMING_SNAKE_CASE_ = UNetMidBlockaD( in_channels=block_out_channels[-1] , resnet_eps=1E-6 , resnet_act_fn=_lowerCAmelCase , output_scale_factor=1 , resnet_time_scale_shift='default' if norm_type == 'group' else norm_type , attention_head_dim=block_out_channels[-1] , resnet_groups=_lowerCAmelCase , temb_channels=_lowerCAmelCase , ) # up SCREAMING_SNAKE_CASE_ = list(reversed(_lowerCAmelCase ) ) SCREAMING_SNAKE_CASE_ = reversed_block_out_channels[0] for i, up_block_type in enumerate(_lowerCAmelCase ): SCREAMING_SNAKE_CASE_ = output_channel SCREAMING_SNAKE_CASE_ = reversed_block_out_channels[i] SCREAMING_SNAKE_CASE_ = i == len(_lowerCAmelCase ) - 1 SCREAMING_SNAKE_CASE_ = get_up_block( _lowerCAmelCase , num_layers=self.layers_per_block + 1 , in_channels=_lowerCAmelCase , out_channels=_lowerCAmelCase , prev_output_channel=_lowerCAmelCase , add_upsample=not is_final_block , resnet_eps=1E-6 , resnet_act_fn=_lowerCAmelCase , resnet_groups=_lowerCAmelCase , attention_head_dim=_lowerCAmelCase , temb_channels=_lowerCAmelCase , resnet_time_scale_shift=_lowerCAmelCase , ) self.up_blocks.append(_lowerCAmelCase ) SCREAMING_SNAKE_CASE_ = output_channel # out if norm_type == "spatial": SCREAMING_SNAKE_CASE_ = SpatialNorm(block_out_channels[0] , _lowerCAmelCase ) else: SCREAMING_SNAKE_CASE_ = nn.GroupNorm(num_channels=block_out_channels[0] , num_groups=_lowerCAmelCase , eps=1E-6 ) SCREAMING_SNAKE_CASE_ = nn.SiLU() SCREAMING_SNAKE_CASE_ = nn.Convad(block_out_channels[0] , _lowerCAmelCase , 3 , padding=1 ) SCREAMING_SNAKE_CASE_ = False def lowerCAmelCase_ ( self : Dict , _lowerCAmelCase : int , _lowerCAmelCase : List[Any]=None ): SCREAMING_SNAKE_CASE_ = z SCREAMING_SNAKE_CASE_ = self.conv_in(_lowerCAmelCase ) SCREAMING_SNAKE_CASE_ = next(iter(self.up_blocks.parameters() ) ).dtype if self.training and self.gradient_checkpointing: def create_custom_forward(_lowerCAmelCase : Dict ): def custom_forward(*_lowerCAmelCase : int ): return module(*_lowerCAmelCase ) return custom_forward if is_torch_version('>=' , '1.11.0' ): # middle SCREAMING_SNAKE_CASE_ = torch.utils.checkpoint.checkpoint( create_custom_forward(self.mid_block ) , _lowerCAmelCase , _lowerCAmelCase , use_reentrant=_lowerCAmelCase ) SCREAMING_SNAKE_CASE_ = sample.to(_lowerCAmelCase ) # up for up_block in self.up_blocks: SCREAMING_SNAKE_CASE_ = torch.utils.checkpoint.checkpoint( create_custom_forward(_lowerCAmelCase ) , _lowerCAmelCase , _lowerCAmelCase , use_reentrant=_lowerCAmelCase ) else: # middle SCREAMING_SNAKE_CASE_ = torch.utils.checkpoint.checkpoint( create_custom_forward(self.mid_block ) , _lowerCAmelCase , _lowerCAmelCase ) SCREAMING_SNAKE_CASE_ = sample.to(_lowerCAmelCase ) # up for up_block in self.up_blocks: SCREAMING_SNAKE_CASE_ = torch.utils.checkpoint.checkpoint(create_custom_forward(_lowerCAmelCase ) , _lowerCAmelCase , _lowerCAmelCase ) else: # middle SCREAMING_SNAKE_CASE_ = self.mid_block(_lowerCAmelCase , _lowerCAmelCase ) SCREAMING_SNAKE_CASE_ = sample.to(_lowerCAmelCase ) # up for up_block in self.up_blocks: SCREAMING_SNAKE_CASE_ = up_block(_lowerCAmelCase , _lowerCAmelCase ) # post-process if latent_embeds is None: SCREAMING_SNAKE_CASE_ = self.conv_norm_out(_lowerCAmelCase ) else: SCREAMING_SNAKE_CASE_ = self.conv_norm_out(_lowerCAmelCase , _lowerCAmelCase ) SCREAMING_SNAKE_CASE_ = self.conv_act(_lowerCAmelCase ) SCREAMING_SNAKE_CASE_ = self.conv_out(_lowerCAmelCase ) return sample class lowerCamelCase_ ( nn.Module ): '''simple docstring''' def __init__( self : str , _lowerCAmelCase : Optional[Any] , _lowerCAmelCase : Dict , _lowerCAmelCase : List[str] , _lowerCAmelCase : Optional[int]=None , _lowerCAmelCase : List[str]="random" , _lowerCAmelCase : Optional[int]=False , _lowerCAmelCase : Dict=True ): super().__init__() SCREAMING_SNAKE_CASE_ = n_e SCREAMING_SNAKE_CASE_ = vq_embed_dim SCREAMING_SNAKE_CASE_ = beta SCREAMING_SNAKE_CASE_ = legacy SCREAMING_SNAKE_CASE_ = nn.Embedding(self.n_e , self.vq_embed_dim ) self.embedding.weight.data.uniform_(-1.0 / self.n_e , 1.0 / self.n_e ) SCREAMING_SNAKE_CASE_ = remap if self.remap is not None: self.register_buffer('used' , torch.tensor(np.load(self.remap ) ) ) SCREAMING_SNAKE_CASE_ = self.used.shape[0] SCREAMING_SNAKE_CASE_ = unknown_index # "random" or "extra" or integer if self.unknown_index == "extra": SCREAMING_SNAKE_CASE_ = self.re_embed SCREAMING_SNAKE_CASE_ = self.re_embed + 1 print( F"Remapping {self.n_e} indices to {self.re_embed} indices. " F"Using {self.unknown_index} for unknown indices." ) else: SCREAMING_SNAKE_CASE_ = n_e SCREAMING_SNAKE_CASE_ = sane_index_shape def lowerCAmelCase_ ( self : Optional[int] , _lowerCAmelCase : Any ): SCREAMING_SNAKE_CASE_ = inds.shape assert len(_lowerCAmelCase ) > 1 SCREAMING_SNAKE_CASE_ = inds.reshape(ishape[0] , -1 ) SCREAMING_SNAKE_CASE_ = self.used.to(_lowerCAmelCase ) SCREAMING_SNAKE_CASE_ = (inds[:, :, None] == used[None, None, ...]).long() SCREAMING_SNAKE_CASE_ = match.argmax(-1 ) SCREAMING_SNAKE_CASE_ = match.sum(2 ) < 1 if self.unknown_index == "random": SCREAMING_SNAKE_CASE_ = torch.randint(0 , self.re_embed , size=new[unknown].shape ).to(device=new.device ) else: SCREAMING_SNAKE_CASE_ = self.unknown_index return new.reshape(_lowerCAmelCase ) def lowerCAmelCase_ ( self : int , _lowerCAmelCase : Dict ): SCREAMING_SNAKE_CASE_ = inds.shape assert len(_lowerCAmelCase ) > 1 SCREAMING_SNAKE_CASE_ = inds.reshape(ishape[0] , -1 ) SCREAMING_SNAKE_CASE_ = self.used.to(_lowerCAmelCase ) if self.re_embed > self.used.shape[0]: # extra token SCREAMING_SNAKE_CASE_ = 0 # simply set to zero SCREAMING_SNAKE_CASE_ = torch.gather(used[None, :][inds.shape[0] * [0], :] , 1 , _lowerCAmelCase ) return back.reshape(_lowerCAmelCase ) def lowerCAmelCase_ ( self : Tuple , _lowerCAmelCase : Optional[int] ): # reshape z -> (batch, height, width, channel) and flatten SCREAMING_SNAKE_CASE_ = z.permute(0 , 2 , 3 , 1 ).contiguous() SCREAMING_SNAKE_CASE_ = z.view(-1 , self.vq_embed_dim ) # distances from z to embeddings e_j (z - e)^2 = z^2 + e^2 - 2 e * z SCREAMING_SNAKE_CASE_ = torch.argmin(torch.cdist(_lowerCAmelCase , self.embedding.weight ) , dim=1 ) SCREAMING_SNAKE_CASE_ = self.embedding(_lowerCAmelCase ).view(z.shape ) SCREAMING_SNAKE_CASE_ = None SCREAMING_SNAKE_CASE_ = None # compute loss for embedding if not self.legacy: SCREAMING_SNAKE_CASE_ = self.beta * torch.mean((z_q.detach() - z) ** 2 ) + torch.mean((z_q - z.detach()) ** 2 ) else: SCREAMING_SNAKE_CASE_ = torch.mean((z_q.detach() - z) ** 2 ) + self.beta * torch.mean((z_q - z.detach()) ** 2 ) # preserve gradients SCREAMING_SNAKE_CASE_ = z + (z_q - z).detach() # reshape back to match original input shape SCREAMING_SNAKE_CASE_ = z_q.permute(0 , 3 , 1 , 2 ).contiguous() if self.remap is not None: SCREAMING_SNAKE_CASE_ = min_encoding_indices.reshape(z.shape[0] , -1 ) # add batch axis SCREAMING_SNAKE_CASE_ = self.remap_to_used(_lowerCAmelCase ) SCREAMING_SNAKE_CASE_ = min_encoding_indices.reshape(-1 , 1 ) # flatten if self.sane_index_shape: SCREAMING_SNAKE_CASE_ = min_encoding_indices.reshape(z_q.shape[0] , z_q.shape[2] , z_q.shape[3] ) return z_q, loss, (perplexity, min_encodings, min_encoding_indices) def lowerCAmelCase_ ( self : Union[str, Any] , _lowerCAmelCase : Dict , _lowerCAmelCase : int ): # shape specifying (batch, height, width, channel) if self.remap is not None: SCREAMING_SNAKE_CASE_ = indices.reshape(shape[0] , -1 ) # add batch axis SCREAMING_SNAKE_CASE_ = self.unmap_to_all(_lowerCAmelCase ) SCREAMING_SNAKE_CASE_ = indices.reshape(-1 ) # flatten again # get quantized latent vectors SCREAMING_SNAKE_CASE_ = self.embedding(_lowerCAmelCase ) if shape is not None: SCREAMING_SNAKE_CASE_ = z_q.view(_lowerCAmelCase ) # reshape back to match original input shape SCREAMING_SNAKE_CASE_ = z_q.permute(0 , 3 , 1 , 2 ).contiguous() return z_q class lowerCamelCase_ ( _SCREAMING_SNAKE_CASE ): '''simple docstring''' def __init__( self : Union[str, Any] , _lowerCAmelCase : Tuple , _lowerCAmelCase : Dict=False ): SCREAMING_SNAKE_CASE_ = parameters SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = torch.chunk(_lowerCAmelCase , 2 , dim=1 ) SCREAMING_SNAKE_CASE_ = torch.clamp(self.logvar , -30.0 , 20.0 ) SCREAMING_SNAKE_CASE_ = deterministic SCREAMING_SNAKE_CASE_ = torch.exp(0.5 * self.logvar ) SCREAMING_SNAKE_CASE_ = torch.exp(self.logvar ) if self.deterministic: SCREAMING_SNAKE_CASE_ = SCREAMING_SNAKE_CASE_ = torch.zeros_like( self.mean , device=self.parameters.device , dtype=self.parameters.dtype ) def lowerCAmelCase_ ( self : Optional[int] , _lowerCAmelCase : Optional[torch.Generator] = None ): # make sure sample is on the same device as the parameters and has same dtype SCREAMING_SNAKE_CASE_ = randn_tensor( self.mean.shape , generator=_lowerCAmelCase , device=self.parameters.device , dtype=self.parameters.dtype ) SCREAMING_SNAKE_CASE_ = self.mean + self.std * sample return x def lowerCAmelCase_ ( self : List[str] , _lowerCAmelCase : Union[str, Any]=None ): if self.deterministic: return torch.Tensor([0.0] ) else: if other is None: return 0.5 * torch.sum(torch.pow(self.mean , 2 ) + self.var - 1.0 - self.logvar , dim=[1, 2, 3] ) else: return 0.5 * torch.sum( torch.pow(self.mean - other.mean , 2 ) / other.var + self.var / other.var - 1.0 - self.logvar + other.logvar , dim=[1, 2, 3] , ) def lowerCAmelCase_ ( self : Dict , _lowerCAmelCase : Any , _lowerCAmelCase : Optional[int]=[1, 2, 3] ): if self.deterministic: return torch.Tensor([0.0] ) SCREAMING_SNAKE_CASE_ = np.log(2.0 * np.pi ) return 0.5 * torch.sum(logtwopi + self.logvar + torch.pow(sample - self.mean , 2 ) / self.var , dim=_lowerCAmelCase ) def lowerCAmelCase_ ( self : Tuple ): return self.mean
31
from typing import TYPE_CHECKING from ....utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available lowerCamelCase__ : Optional[int] = {'configuration_mmbt': ['MMBTConfig']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase__ : Any = ['MMBTForClassification', 'MMBTModel', 'ModalEmbeddings'] if TYPE_CHECKING: from .configuration_mmbt import MMBTConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mmbt import MMBTForClassification, MMBTModel, ModalEmbeddings else: import sys lowerCamelCase__ : str = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
31
1
def UpperCAmelCase_ ( __UpperCAmelCase : str = "The quick brown fox jumps over the lazy dog" , ) -> bool: SCREAMING_SNAKE_CASE_ = set() # Replace all the whitespace in our sentence SCREAMING_SNAKE_CASE_ = input_str.replace(' ' , '' ) for alpha in input_str: if "a" <= alpha.lower() <= "z": frequency.add(alpha.lower() ) return len(__UpperCAmelCase ) == 26 def UpperCAmelCase_ ( __UpperCAmelCase : str = "The quick brown fox jumps over the lazy dog" , ) -> bool: SCREAMING_SNAKE_CASE_ = [False] * 26 for char in input_str: if char.islower(): SCREAMING_SNAKE_CASE_ = True elif char.isupper(): SCREAMING_SNAKE_CASE_ = True return all(__UpperCAmelCase ) def UpperCAmelCase_ ( __UpperCAmelCase : str = "The quick brown fox jumps over the lazy dog" , ) -> bool: return len({char for char in input_str.lower() if char.isalpha()} ) == 26 def UpperCAmelCase_ ( ) -> None: from timeit import timeit SCREAMING_SNAKE_CASE_ = 'from __main__ import is_pangram, is_pangram_faster, is_pangram_fastest' print(timeit('is_pangram()' , setup=__UpperCAmelCase ) ) print(timeit('is_pangram_faster()' , setup=__UpperCAmelCase ) ) print(timeit('is_pangram_fastest()' , setup=__UpperCAmelCase ) ) # 5.348480500048026, 2.6477354579837993, 1.8470395830227062 # 5.036091582966037, 2.644472333951853, 1.8869528750656173 if __name__ == "__main__": import doctest doctest.testmod() benchmark()
31
import unittest from typing import Tuple import torch from diffusers.utils import floats_tensor, randn_tensor, torch_all_close, torch_device from diffusers.utils.testing_utils import require_torch @require_torch class lowerCamelCase_ : '''simple docstring''' @property def lowerCAmelCase_ ( self : Optional[Any] ): return self.get_dummy_input() @property def lowerCAmelCase_ ( self : Union[str, Any] ): if self.block_type == "down": return (4, 32, 16, 16) elif self.block_type == "mid": return (4, 32, 32, 32) elif self.block_type == "up": return (4, 32, 64, 64) raise ValueError(F"'{self.block_type}' is not a supported block_type. Set it to 'up', 'mid', or 'down'." ) def lowerCAmelCase_ ( self : List[str] , _lowerCAmelCase : Optional[Any]=True , _lowerCAmelCase : str=False , _lowerCAmelCase : Optional[int]=False , _lowerCAmelCase : Dict=False , ): SCREAMING_SNAKE_CASE_ = 4 SCREAMING_SNAKE_CASE_ = 32 SCREAMING_SNAKE_CASE_ = (32, 32) SCREAMING_SNAKE_CASE_ = torch.manual_seed(0 ) SCREAMING_SNAKE_CASE_ = torch.device(_lowerCAmelCase ) SCREAMING_SNAKE_CASE_ = (batch_size, num_channels) + sizes SCREAMING_SNAKE_CASE_ = randn_tensor(_lowerCAmelCase , generator=_lowerCAmelCase , device=_lowerCAmelCase ) SCREAMING_SNAKE_CASE_ = {'hidden_states': hidden_states} if include_temb: SCREAMING_SNAKE_CASE_ = 128 SCREAMING_SNAKE_CASE_ = randn_tensor((batch_size, temb_channels) , generator=_lowerCAmelCase , device=_lowerCAmelCase ) if include_res_hidden_states_tuple: SCREAMING_SNAKE_CASE_ = torch.manual_seed(1 ) SCREAMING_SNAKE_CASE_ = (randn_tensor(_lowerCAmelCase , generator=_lowerCAmelCase , device=_lowerCAmelCase ),) if include_encoder_hidden_states: SCREAMING_SNAKE_CASE_ = floats_tensor((batch_size, 32, 32) ).to(_lowerCAmelCase ) if include_skip_sample: SCREAMING_SNAKE_CASE_ = randn_tensor(((batch_size, 3) + sizes) , generator=_lowerCAmelCase , device=_lowerCAmelCase ) return dummy_input def lowerCAmelCase_ ( self : Optional[int] ): SCREAMING_SNAKE_CASE_ = { 'in_channels': 32, 'out_channels': 32, 'temb_channels': 128, } if self.block_type == "up": SCREAMING_SNAKE_CASE_ = 32 if self.block_type == "mid": init_dict.pop('out_channels' ) SCREAMING_SNAKE_CASE_ = self.dummy_input return init_dict, inputs_dict def lowerCAmelCase_ ( self : Dict , _lowerCAmelCase : Optional[Any] ): SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = self.prepare_init_args_and_inputs_for_common() SCREAMING_SNAKE_CASE_ = self.block_class(**_lowerCAmelCase ) unet_block.to(_lowerCAmelCase ) unet_block.eval() with torch.no_grad(): SCREAMING_SNAKE_CASE_ = unet_block(**_lowerCAmelCase ) if isinstance(_lowerCAmelCase , _lowerCAmelCase ): SCREAMING_SNAKE_CASE_ = output[0] self.assertEqual(output.shape , self.output_shape ) SCREAMING_SNAKE_CASE_ = output[0, -1, -3:, -3:] SCREAMING_SNAKE_CASE_ = torch.tensor(_lowerCAmelCase ).to(_lowerCAmelCase ) assert torch_all_close(output_slice.flatten() , _lowerCAmelCase , atol=5E-3 ) @unittest.skipIf(torch_device == 'mps' , 'Training is not supported in mps' ) def lowerCAmelCase_ ( self : Any ): SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = self.prepare_init_args_and_inputs_for_common() SCREAMING_SNAKE_CASE_ = self.block_class(**_lowerCAmelCase ) model.to(_lowerCAmelCase ) model.train() SCREAMING_SNAKE_CASE_ = model(**_lowerCAmelCase ) if isinstance(_lowerCAmelCase , _lowerCAmelCase ): SCREAMING_SNAKE_CASE_ = output[0] SCREAMING_SNAKE_CASE_ = torch.device(_lowerCAmelCase ) SCREAMING_SNAKE_CASE_ = randn_tensor(output.shape , device=_lowerCAmelCase ) SCREAMING_SNAKE_CASE_ = torch.nn.functional.mse_loss(_lowerCAmelCase , _lowerCAmelCase ) loss.backward()
31
1
from __future__ import annotations from functools import lru_cache from math import ceil lowerCamelCase__ : Any = 100 lowerCamelCase__ : Optional[Any] = set(range(3, NUM_PRIMES, 2)) primes.add(2) lowerCamelCase__ : int for prime in range(3, ceil(NUM_PRIMES**0.5), 2): if prime not in primes: continue primes.difference_update(set(range(prime * prime, NUM_PRIMES, prime))) @lru_cache(maxsize=1_00 ) def UpperCAmelCase_ ( __UpperCAmelCase : int ) -> set[int]: if number_to_partition < 0: return set() elif number_to_partition == 0: return {1} SCREAMING_SNAKE_CASE_ = set() SCREAMING_SNAKE_CASE_ = 42 SCREAMING_SNAKE_CASE_ = 42 for prime in primes: if prime > number_to_partition: continue for sub in partition(number_to_partition - prime ): ret.add(sub * prime ) return ret def UpperCAmelCase_ ( __UpperCAmelCase : int = 50_00 ) -> int | None: for number_to_partition in range(1 , __UpperCAmelCase ): if len(partition(__UpperCAmelCase ) ) > number_unique_partitions: return number_to_partition return None if __name__ == "__main__": print(f'''{solution() = }''')
31
import operator as op def UpperCAmelCase_ ( __UpperCAmelCase : str ) -> Any: SCREAMING_SNAKE_CASE_ = [] SCREAMING_SNAKE_CASE_ = lambda __UpperCAmelCase , __UpperCAmelCase : int(x / y ) # noqa: E731 integer division operation SCREAMING_SNAKE_CASE_ = { '^': op.pow, '*': op.mul, '/': div, '+': op.add, '-': op.sub, } # operators & their respective operation # print table header print('Symbol'.center(8 ) , 'Action'.center(12 ) , 'Stack' , sep=' | ' ) print('-' * (30 + len(__UpperCAmelCase )) ) for x in post_fix: if x.isdigit(): # if x in digit stack.append(__UpperCAmelCase ) # append x to stack # output in tabular format print(x.rjust(8 ) , ('push(' + x + ')').ljust(12 ) , ','.join(__UpperCAmelCase ) , sep=' | ' ) else: SCREAMING_SNAKE_CASE_ = stack.pop() # pop stack # output in tabular format print(''.rjust(8 ) , ('pop(' + b + ')').ljust(12 ) , ','.join(__UpperCAmelCase ) , sep=' | ' ) SCREAMING_SNAKE_CASE_ = stack.pop() # pop stack # output in tabular format print(''.rjust(8 ) , ('pop(' + a + ')').ljust(12 ) , ','.join(__UpperCAmelCase ) , sep=' | ' ) stack.append( str(opr[x](int(__UpperCAmelCase ) , int(__UpperCAmelCase ) ) ) ) # evaluate the 2 values popped from stack & push result to stack # output in tabular format print( x.rjust(8 ) , ('push(' + a + x + b + ')').ljust(12 ) , ','.join(__UpperCAmelCase ) , sep=' | ' , ) return int(stack[0] ) if __name__ == "__main__": lowerCamelCase__ : Tuple = input('\n\nEnter a Postfix Equation (space separated) = ').split(' ') print('\n\tResult = ', solve(Postfix))
31
1
import dataclasses import json import sys import types from argparse import ArgumentDefaultsHelpFormatter, ArgumentParser, ArgumentTypeError from copy import copy from enum import Enum from inspect import isclass from pathlib import Path from typing import Any, Callable, Dict, Iterable, List, Literal, NewType, Optional, Tuple, Union, get_type_hints import yaml lowerCamelCase__ : Any = NewType('DataClass', Any) lowerCamelCase__ : Tuple = NewType('DataClassType', Any) def UpperCAmelCase_ ( __UpperCAmelCase : Tuple ) -> Tuple: if isinstance(__UpperCAmelCase , __UpperCAmelCase ): return v if v.lower() in ("yes", "true", "t", "y", "1"): return True elif v.lower() in ("no", "false", "f", "n", "0"): return False else: raise ArgumentTypeError( f"Truthy value expected: got {v} but expected one of yes/no, true/false, t/f, y/n, 1/0 (case insensitive)." ) def UpperCAmelCase_ ( __UpperCAmelCase : list ) -> Callable[[str], Any]: SCREAMING_SNAKE_CASE_ = {str(__UpperCAmelCase ): choice for choice in choices} return lambda __UpperCAmelCase : str_to_choice.get(__UpperCAmelCase , __UpperCAmelCase ) def UpperCAmelCase_ ( *, __UpperCAmelCase : Union[str, List[str]] = None , __UpperCAmelCase : str = None , __UpperCAmelCase : Any = dataclasses.MISSING , __UpperCAmelCase : Callable[[], Any] = dataclasses.MISSING , __UpperCAmelCase : dict = None , **__UpperCAmelCase : Dict , ) -> dataclasses.Field: if metadata is None: # Important, don't use as default param in function signature because dict is mutable and shared across function calls SCREAMING_SNAKE_CASE_ = {} if aliases is not None: SCREAMING_SNAKE_CASE_ = aliases if help is not None: SCREAMING_SNAKE_CASE_ = help return dataclasses.field(metadata=__UpperCAmelCase , default=__UpperCAmelCase , default_factory=__UpperCAmelCase , **__UpperCAmelCase ) class lowerCamelCase_ ( _SCREAMING_SNAKE_CASE ): '''simple docstring''' lowercase_ = 42 def __init__( self : Any , _lowerCAmelCase : Union[DataClassType, Iterable[DataClassType]] , **_lowerCAmelCase : Dict ): # To make the default appear when using --help if "formatter_class" not in kwargs: SCREAMING_SNAKE_CASE_ = ArgumentDefaultsHelpFormatter super().__init__(**_lowerCAmelCase ) if dataclasses.is_dataclass(_lowerCAmelCase ): SCREAMING_SNAKE_CASE_ = [dataclass_types] SCREAMING_SNAKE_CASE_ = list(_lowerCAmelCase ) for dtype in self.dataclass_types: self._add_dataclass_arguments(_lowerCAmelCase ) @staticmethod def lowerCAmelCase_ ( _lowerCAmelCase : ArgumentParser , _lowerCAmelCase : dataclasses.Field ): SCREAMING_SNAKE_CASE_ = F"--{field.name}" SCREAMING_SNAKE_CASE_ = field.metadata.copy() # field.metadata is not used at all by Data Classes, # it is provided as a third-party extension mechanism. if isinstance(field.type , _lowerCAmelCase ): raise RuntimeError( 'Unresolved type detected, which should have been done with the help of ' '`typing.get_type_hints` method by default' ) SCREAMING_SNAKE_CASE_ = kwargs.pop('aliases' , [] ) if isinstance(_lowerCAmelCase , _lowerCAmelCase ): SCREAMING_SNAKE_CASE_ = [aliases] SCREAMING_SNAKE_CASE_ = getattr(field.type , '__origin__' , field.type ) if origin_type is Union or (hasattr(_lowerCAmelCase , 'UnionType' ) and isinstance(_lowerCAmelCase , types.UnionType )): if str not in field.type.__args__ and ( len(field.type.__args__ ) != 2 or type(_lowerCAmelCase ) not in field.type.__args__ ): raise ValueError( 'Only `Union[X, NoneType]` (i.e., `Optional[X]`) is allowed for `Union` because' ' the argument parser only supports one type per argument.' F" Problem encountered in field '{field.name}'." ) if type(_lowerCAmelCase ) not in field.type.__args__: # filter `str` in Union SCREAMING_SNAKE_CASE_ = field.type.__args__[0] if field.type.__args__[1] == str else field.type.__args__[1] SCREAMING_SNAKE_CASE_ = getattr(field.type , '__origin__' , field.type ) elif bool not in field.type.__args__: # filter `NoneType` in Union (except for `Union[bool, NoneType]`) SCREAMING_SNAKE_CASE_ = ( field.type.__args__[0] if isinstance(_lowerCAmelCase , field.type.__args__[1] ) else field.type.__args__[1] ) SCREAMING_SNAKE_CASE_ = getattr(field.type , '__origin__' , field.type ) # A variable to store kwargs for a boolean field, if needed # so that we can init a `no_*` complement argument (see below) SCREAMING_SNAKE_CASE_ = {} if origin_type is Literal or (isinstance(field.type , _lowerCAmelCase ) and issubclass(field.type , _lowerCAmelCase )): if origin_type is Literal: SCREAMING_SNAKE_CASE_ = field.type.__args__ else: SCREAMING_SNAKE_CASE_ = [x.value for x in field.type] SCREAMING_SNAKE_CASE_ = make_choice_type_function(kwargs['choices'] ) if field.default is not dataclasses.MISSING: SCREAMING_SNAKE_CASE_ = field.default else: SCREAMING_SNAKE_CASE_ = True elif field.type is bool or field.type == Optional[bool]: # Copy the currect kwargs to use to instantiate a `no_*` complement argument below. # We do not initialize it here because the `no_*` alternative must be instantiated after the real argument SCREAMING_SNAKE_CASE_ = copy(_lowerCAmelCase ) # Hack because type=bool in argparse does not behave as we want. SCREAMING_SNAKE_CASE_ = string_to_bool if field.type is bool or (field.default is not None and field.default is not dataclasses.MISSING): # Default value is False if we have no default when of type bool. SCREAMING_SNAKE_CASE_ = False if field.default is dataclasses.MISSING else field.default # This is the value that will get picked if we don't include --field_name in any way SCREAMING_SNAKE_CASE_ = default # This tells argparse we accept 0 or 1 value after --field_name SCREAMING_SNAKE_CASE_ = '?' # This is the value that will get picked if we do --field_name (without value) SCREAMING_SNAKE_CASE_ = True elif isclass(_lowerCAmelCase ) and issubclass(_lowerCAmelCase , _lowerCAmelCase ): SCREAMING_SNAKE_CASE_ = field.type.__args__[0] SCREAMING_SNAKE_CASE_ = '+' if field.default_factory is not dataclasses.MISSING: SCREAMING_SNAKE_CASE_ = field.default_factory() elif field.default is dataclasses.MISSING: SCREAMING_SNAKE_CASE_ = True else: SCREAMING_SNAKE_CASE_ = field.type if field.default is not dataclasses.MISSING: SCREAMING_SNAKE_CASE_ = field.default elif field.default_factory is not dataclasses.MISSING: SCREAMING_SNAKE_CASE_ = field.default_factory() else: SCREAMING_SNAKE_CASE_ = True parser.add_argument(_lowerCAmelCase , *_lowerCAmelCase , **_lowerCAmelCase ) # Add a complement `no_*` argument for a boolean field AFTER the initial field has already been added. # Order is important for arguments with the same destination! # We use a copy of earlier kwargs because the original kwargs have changed a lot before reaching down # here and we do not need those changes/additional keys. if field.default is True and (field.type is bool or field.type == Optional[bool]): SCREAMING_SNAKE_CASE_ = False parser.add_argument(F"--no_{field.name}" , action='store_false' , dest=field.name , **_lowerCAmelCase ) def lowerCAmelCase_ ( self : Optional[Any] , _lowerCAmelCase : DataClassType ): if hasattr(_lowerCAmelCase , '_argument_group_name' ): SCREAMING_SNAKE_CASE_ = self.add_argument_group(dtype._argument_group_name ) else: SCREAMING_SNAKE_CASE_ = self try: SCREAMING_SNAKE_CASE_ = get_type_hints(_lowerCAmelCase ) except NameError: raise RuntimeError( F"Type resolution failed for {dtype}. Try declaring the class in global scope or " 'removing line of `from __future__ import annotations` which opts in Postponed ' 'Evaluation of Annotations (PEP 563)' ) except TypeError as ex: # Remove this block when we drop Python 3.9 support if sys.version_info[:2] < (3, 10) and "unsupported operand type(s) for |" in str(_lowerCAmelCase ): SCREAMING_SNAKE_CASE_ = '.'.join(map(_lowerCAmelCase , sys.version_info[:3] ) ) raise RuntimeError( F"Type resolution failed for {dtype} on Python {python_version}. Try removing " 'line of `from __future__ import annotations` which opts in union types as ' '`X | Y` (PEP 604) via Postponed Evaluation of Annotations (PEP 563). To ' 'support Python versions that lower than 3.10, you need to use ' '`typing.Union[X, Y]` instead of `X | Y` and `typing.Optional[X]` instead of ' '`X | None`.' ) from ex raise for field in dataclasses.fields(_lowerCAmelCase ): if not field.init: continue SCREAMING_SNAKE_CASE_ = type_hints[field.name] self._parse_dataclass_field(_lowerCAmelCase , _lowerCAmelCase ) def lowerCAmelCase_ ( self : Any , _lowerCAmelCase : int=None , _lowerCAmelCase : str=False , _lowerCAmelCase : Any=True , _lowerCAmelCase : Optional[Any]=None , _lowerCAmelCase : Any=None , ): if args_file_flag or args_filename or (look_for_args_file and len(sys.argv )): SCREAMING_SNAKE_CASE_ = [] if args_filename: args_files.append(Path(_lowerCAmelCase ) ) elif look_for_args_file and len(sys.argv ): args_files.append(Path(sys.argv[0] ).with_suffix('.args' ) ) # args files specified via command line flag should overwrite default args files so we add them last if args_file_flag: # Create special parser just to extract the args_file_flag values SCREAMING_SNAKE_CASE_ = ArgumentParser() args_file_parser.add_argument(_lowerCAmelCase , type=_lowerCAmelCase , action='append' ) # Use only remaining args for further parsing (remove the args_file_flag) SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = args_file_parser.parse_known_args(args=_lowerCAmelCase ) SCREAMING_SNAKE_CASE_ = vars(_lowerCAmelCase ).get(args_file_flag.lstrip('-' ) , _lowerCAmelCase ) if cmd_args_file_paths: args_files.extend([Path(_lowerCAmelCase ) for p in cmd_args_file_paths] ) SCREAMING_SNAKE_CASE_ = [] for args_file in args_files: if args_file.exists(): file_args += args_file.read_text().split() # in case of duplicate arguments the last one has precedence # args specified via the command line should overwrite args from files, so we add them last SCREAMING_SNAKE_CASE_ = file_args + args if args is not None else file_args + sys.argv[1:] SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = self.parse_known_args(args=_lowerCAmelCase ) SCREAMING_SNAKE_CASE_ = [] for dtype in self.dataclass_types: SCREAMING_SNAKE_CASE_ = {f.name for f in dataclasses.fields(_lowerCAmelCase ) if f.init} SCREAMING_SNAKE_CASE_ = {k: v for k, v in vars(_lowerCAmelCase ).items() if k in keys} for k in keys: delattr(_lowerCAmelCase , _lowerCAmelCase ) SCREAMING_SNAKE_CASE_ = dtype(**_lowerCAmelCase ) outputs.append(_lowerCAmelCase ) if len(namespace.__dict__ ) > 0: # additional namespace. outputs.append(_lowerCAmelCase ) if return_remaining_strings: return (*outputs, remaining_args) else: if remaining_args: raise ValueError(F"Some specified arguments are not used by the HfArgumentParser: {remaining_args}" ) return (*outputs,) def lowerCAmelCase_ ( self : Any , _lowerCAmelCase : Dict[str, Any] , _lowerCAmelCase : bool = False ): SCREAMING_SNAKE_CASE_ = set(args.keys() ) SCREAMING_SNAKE_CASE_ = [] for dtype in self.dataclass_types: SCREAMING_SNAKE_CASE_ = {f.name for f in dataclasses.fields(_lowerCAmelCase ) if f.init} SCREAMING_SNAKE_CASE_ = {k: v for k, v in args.items() if k in keys} unused_keys.difference_update(inputs.keys() ) SCREAMING_SNAKE_CASE_ = dtype(**_lowerCAmelCase ) outputs.append(_lowerCAmelCase ) if not allow_extra_keys and unused_keys: raise ValueError(F"Some keys are not used by the HfArgumentParser: {sorted(_lowerCAmelCase )}" ) return tuple(_lowerCAmelCase ) def lowerCAmelCase_ ( self : Tuple , _lowerCAmelCase : str , _lowerCAmelCase : bool = False ): with open(Path(_lowerCAmelCase ) , encoding='utf-8' ) as open_json_file: SCREAMING_SNAKE_CASE_ = json.loads(open_json_file.read() ) SCREAMING_SNAKE_CASE_ = self.parse_dict(_lowerCAmelCase , allow_extra_keys=_lowerCAmelCase ) return tuple(_lowerCAmelCase ) def lowerCAmelCase_ ( self : List[str] , _lowerCAmelCase : str , _lowerCAmelCase : bool = False ): SCREAMING_SNAKE_CASE_ = self.parse_dict(yaml.safe_load(Path(_lowerCAmelCase ).read_text() ) , allow_extra_keys=_lowerCAmelCase ) return tuple(_lowerCAmelCase )
31
def UpperCAmelCase_ ( __UpperCAmelCase : int ) -> int: assert isinstance(__UpperCAmelCase , __UpperCAmelCase ), f"The input value of [n={number}] is not an integer" if number == 1: return 2 elif number < 1: SCREAMING_SNAKE_CASE_ = f"The input value of [n={number}] has to be > 0" raise ValueError(__UpperCAmelCase ) else: SCREAMING_SNAKE_CASE_ = sylvester(number - 1 ) SCREAMING_SNAKE_CASE_ = num - 1 SCREAMING_SNAKE_CASE_ = num return lower * upper + 1 if __name__ == "__main__": print(f'''The 8th number in Sylvester\'s sequence: {sylvester(8)}''')
31
1
from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import rescale, resize, to_channel_dimension_format from ...image_utils import ( ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging if is_vision_available(): import PIL lowerCamelCase__ : Dict = logging.get_logger(__name__) def UpperCAmelCase_ ( __UpperCAmelCase : Optional[Any] , __UpperCAmelCase : List[Any] ) -> Union[str, Any]: SCREAMING_SNAKE_CASE_ = b.T SCREAMING_SNAKE_CASE_ = np.sum(np.square(__UpperCAmelCase ) , axis=1 ) SCREAMING_SNAKE_CASE_ = np.sum(np.square(__UpperCAmelCase ) , axis=0 ) SCREAMING_SNAKE_CASE_ = np.matmul(__UpperCAmelCase , __UpperCAmelCase ) SCREAMING_SNAKE_CASE_ = aa[:, None] - 2 * ab + ba[None, :] return d def UpperCAmelCase_ ( __UpperCAmelCase : Dict , __UpperCAmelCase : Optional[Any] ) -> Optional[int]: SCREAMING_SNAKE_CASE_ = x.reshape(-1 , 3 ) SCREAMING_SNAKE_CASE_ = squared_euclidean_distance(__UpperCAmelCase , __UpperCAmelCase ) return np.argmin(__UpperCAmelCase , axis=1 ) class lowerCamelCase_ ( _SCREAMING_SNAKE_CASE ): '''simple docstring''' lowercase_ = ["pixel_values"] def __init__( self : List[Any] , _lowerCAmelCase : Optional[Union[List[List[int]], np.ndarray]] = None , _lowerCAmelCase : bool = True , _lowerCAmelCase : Dict[str, int] = None , _lowerCAmelCase : PILImageResampling = PILImageResampling.BILINEAR , _lowerCAmelCase : bool = True , _lowerCAmelCase : bool = True , **_lowerCAmelCase : List[Any] , ): super().__init__(**_lowerCAmelCase ) SCREAMING_SNAKE_CASE_ = size if size is not None else {'height': 256, 'width': 256} SCREAMING_SNAKE_CASE_ = get_size_dict(_lowerCAmelCase ) SCREAMING_SNAKE_CASE_ = np.array(_lowerCAmelCase ) if clusters is not None else None SCREAMING_SNAKE_CASE_ = do_resize SCREAMING_SNAKE_CASE_ = size SCREAMING_SNAKE_CASE_ = resample SCREAMING_SNAKE_CASE_ = do_normalize SCREAMING_SNAKE_CASE_ = do_color_quantize def lowerCAmelCase_ ( self : str , _lowerCAmelCase : np.ndarray , _lowerCAmelCase : Dict[str, int] , _lowerCAmelCase : PILImageResampling = PILImageResampling.BILINEAR , _lowerCAmelCase : Optional[Union[str, ChannelDimension]] = None , **_lowerCAmelCase : Tuple , ): SCREAMING_SNAKE_CASE_ = get_size_dict(_lowerCAmelCase ) if "height" not in size or "width" not in size: raise ValueError(F"Size dictionary must contain both height and width keys. Got {size.keys()}" ) return resize( _lowerCAmelCase , size=(size['height'], size['width']) , resample=_lowerCAmelCase , data_format=_lowerCAmelCase , **_lowerCAmelCase ) def lowerCAmelCase_ ( self : Union[str, Any] , _lowerCAmelCase : np.ndarray , _lowerCAmelCase : Optional[Union[str, ChannelDimension]] = None , ): SCREAMING_SNAKE_CASE_ = rescale(image=_lowerCAmelCase , scale=1 / 127.5 , data_format=_lowerCAmelCase ) SCREAMING_SNAKE_CASE_ = image - 1 return image def lowerCAmelCase_ ( self : List[Any] , _lowerCAmelCase : ImageInput , _lowerCAmelCase : bool = None , _lowerCAmelCase : Dict[str, int] = None , _lowerCAmelCase : PILImageResampling = None , _lowerCAmelCase : bool = None , _lowerCAmelCase : Optional[bool] = None , _lowerCAmelCase : Optional[Union[List[List[int]], np.ndarray]] = None , _lowerCAmelCase : Optional[Union[str, TensorType]] = None , _lowerCAmelCase : Optional[Union[str, ChannelDimension]] = ChannelDimension.FIRST , **_lowerCAmelCase : Optional[Any] , ): SCREAMING_SNAKE_CASE_ = do_resize if do_resize is not None else self.do_resize SCREAMING_SNAKE_CASE_ = size if size is not None else self.size SCREAMING_SNAKE_CASE_ = get_size_dict(_lowerCAmelCase ) SCREAMING_SNAKE_CASE_ = resample if resample is not None else self.resample SCREAMING_SNAKE_CASE_ = do_normalize if do_normalize is not None else self.do_normalize SCREAMING_SNAKE_CASE_ = do_color_quantize if do_color_quantize is not None else self.do_color_quantize SCREAMING_SNAKE_CASE_ = clusters if clusters is not None else self.clusters SCREAMING_SNAKE_CASE_ = np.array(_lowerCAmelCase ) SCREAMING_SNAKE_CASE_ = make_list_of_images(_lowerCAmelCase ) if not valid_images(_lowerCAmelCase ): raise ValueError( 'Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ' 'torch.Tensor, tf.Tensor or jax.ndarray.' ) if do_resize and size is None or resample is None: raise ValueError('Size and resample must be specified if do_resize is True.' ) if do_color_quantize and clusters is None: raise ValueError('Clusters must be specified if do_color_quantize is True.' ) # All transformations expect numpy arrays. SCREAMING_SNAKE_CASE_ = [to_numpy_array(_lowerCAmelCase ) for image in images] if do_resize: SCREAMING_SNAKE_CASE_ = [self.resize(image=_lowerCAmelCase , size=_lowerCAmelCase , resample=_lowerCAmelCase ) for image in images] if do_normalize: SCREAMING_SNAKE_CASE_ = [self.normalize(image=_lowerCAmelCase ) for image in images] if do_color_quantize: SCREAMING_SNAKE_CASE_ = [to_channel_dimension_format(_lowerCAmelCase , ChannelDimension.LAST ) for image in images] # color quantize from (batch_size, height, width, 3) to (batch_size, height, width) SCREAMING_SNAKE_CASE_ = np.array(_lowerCAmelCase ) SCREAMING_SNAKE_CASE_ = color_quantize(_lowerCAmelCase , _lowerCAmelCase ).reshape(images.shape[:-1] ) # flatten to (batch_size, height*width) SCREAMING_SNAKE_CASE_ = images.shape[0] SCREAMING_SNAKE_CASE_ = images.reshape(_lowerCAmelCase , -1 ) # We need to convert back to a list of images to keep consistent behaviour across processors. SCREAMING_SNAKE_CASE_ = list(_lowerCAmelCase ) else: SCREAMING_SNAKE_CASE_ = [to_channel_dimension_format(_lowerCAmelCase , _lowerCAmelCase ) for image in images] SCREAMING_SNAKE_CASE_ = {'input_ids': images} return BatchFeature(data=_lowerCAmelCase , tensor_type=_lowerCAmelCase )
31
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_sentencepiece_available, is_tf_available, is_tokenizers_available, is_torch_available, ) if is_sentencepiece_available(): from ..ta.tokenization_ta import TaTokenizer else: from ...utils.dummy_sentencepiece_objects import TaTokenizer lowerCamelCase__ : List[Any] = TaTokenizer if is_tokenizers_available(): from ..ta.tokenization_ta_fast import TaTokenizerFast else: from ...utils.dummy_tokenizers_objects import TaTokenizerFast lowerCamelCase__ : Union[str, Any] = TaTokenizerFast lowerCamelCase__ : Dict = {'configuration_mt5': ['MT5Config', 'MT5OnnxConfig']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase__ : Tuple = [ 'MT5EncoderModel', 'MT5ForConditionalGeneration', 'MT5ForQuestionAnswering', 'MT5Model', 'MT5PreTrainedModel', 'MT5Stack', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase__ : Tuple = ['TFMT5EncoderModel', 'TFMT5ForConditionalGeneration', 'TFMT5Model'] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase__ : Tuple = ['FlaxMT5EncoderModel', 'FlaxMT5ForConditionalGeneration', 'FlaxMT5Model'] if TYPE_CHECKING: from .configuration_mta import MTaConfig, MTaOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mta import ( MTaEncoderModel, MTaForConditionalGeneration, MTaForQuestionAnswering, MTaModel, MTaPreTrainedModel, MTaStack, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_mta import TFMTaEncoderModel, TFMTaForConditionalGeneration, TFMTaModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_mta import FlaxMTaEncoderModel, FlaxMTaForConditionalGeneration, FlaxMTaModel else: import sys lowerCamelCase__ : int = _LazyModule( __name__, globals()['__file__'], _import_structure, extra_objects={'MT5Tokenizer': MTaTokenizer, 'MT5TokenizerFast': MTaTokenizerFast}, module_spec=__spec__, )
31
1
import math def UpperCAmelCase_ ( ) -> None: SCREAMING_SNAKE_CASE_ = input('Enter message: ' ) SCREAMING_SNAKE_CASE_ = int(input(f"Enter key [2-{len(__UpperCAmelCase ) - 1}]: " ) ) SCREAMING_SNAKE_CASE_ = input('Encryption/Decryption [e/d]: ' ) if mode.lower().startswith('e' ): SCREAMING_SNAKE_CASE_ = encrypt_message(__UpperCAmelCase , __UpperCAmelCase ) elif mode.lower().startswith('d' ): SCREAMING_SNAKE_CASE_ = decrypt_message(__UpperCAmelCase , __UpperCAmelCase ) # Append pipe symbol (vertical bar) to identify spaces at the end. print(f"Output:\n{text + '|'}" ) def UpperCAmelCase_ ( __UpperCAmelCase : int , __UpperCAmelCase : str ) -> str: SCREAMING_SNAKE_CASE_ = [''] * key for col in range(__UpperCAmelCase ): SCREAMING_SNAKE_CASE_ = col while pointer < len(__UpperCAmelCase ): cipher_text[col] += message[pointer] pointer += key return "".join(__UpperCAmelCase ) def UpperCAmelCase_ ( __UpperCAmelCase : int , __UpperCAmelCase : str ) -> str: SCREAMING_SNAKE_CASE_ = math.ceil(len(__UpperCAmelCase ) / key ) SCREAMING_SNAKE_CASE_ = key SCREAMING_SNAKE_CASE_ = (num_cols * num_rows) - len(__UpperCAmelCase ) SCREAMING_SNAKE_CASE_ = [''] * num_cols SCREAMING_SNAKE_CASE_ = 0 SCREAMING_SNAKE_CASE_ = 0 for symbol in message: plain_text[col] += symbol col += 1 if ( (col == num_cols) or (col == num_cols - 1) and (row >= num_rows - num_shaded_boxes) ): SCREAMING_SNAKE_CASE_ = 0 row += 1 return "".join(__UpperCAmelCase ) if __name__ == "__main__": import doctest doctest.testmod() main()
31
import subprocess import sys from transformers import BertConfig, BertModel, BertTokenizer, pipeline from transformers.testing_utils import TestCasePlus, require_torch class lowerCamelCase_ ( _SCREAMING_SNAKE_CASE ): '''simple docstring''' @require_torch def lowerCAmelCase_ ( self : int ): # this test is a bit tricky since TRANSFORMERS_OFFLINE can only be changed before # `transformers` is loaded, and it's too late for inside pytest - so we are changing it # while running an external program # python one-liner segments # this must be loaded before socket.socket is monkey-patched SCREAMING_SNAKE_CASE_ = '\nfrom transformers import BertConfig, BertModel, BertTokenizer, pipeline\n ' SCREAMING_SNAKE_CASE_ = '\nmname = "hf-internal-testing/tiny-random-bert"\nBertConfig.from_pretrained(mname)\nBertModel.from_pretrained(mname)\nBertTokenizer.from_pretrained(mname)\npipe = pipeline(task="fill-mask", model=mname)\nprint("success")\n ' SCREAMING_SNAKE_CASE_ = '\nimport socket\ndef offline_socket(*args, **kwargs): raise RuntimeError("Offline mode is enabled, we shouldn\'t access internet")\nsocket.socket = offline_socket\n ' # Force fetching the files so that we can use the cache SCREAMING_SNAKE_CASE_ = 'hf-internal-testing/tiny-random-bert' BertConfig.from_pretrained(_lowerCAmelCase ) BertModel.from_pretrained(_lowerCAmelCase ) BertTokenizer.from_pretrained(_lowerCAmelCase ) pipeline(task='fill-mask' , model=_lowerCAmelCase ) # baseline - just load from_pretrained with normal network SCREAMING_SNAKE_CASE_ = [sys.executable, '-c', '\n'.join([load, run, mock] )] # should succeed SCREAMING_SNAKE_CASE_ = self.get_env() # should succeed as TRANSFORMERS_OFFLINE=1 tells it to use local files SCREAMING_SNAKE_CASE_ = '1' SCREAMING_SNAKE_CASE_ = subprocess.run(_lowerCAmelCase , env=_lowerCAmelCase , check=_lowerCAmelCase , capture_output=_lowerCAmelCase ) self.assertEqual(result.returncode , 0 , result.stderr ) self.assertIn('success' , result.stdout.decode() ) @require_torch def lowerCAmelCase_ ( self : Tuple ): # python one-liner segments # this must be loaded before socket.socket is monkey-patched SCREAMING_SNAKE_CASE_ = '\nfrom transformers import BertConfig, BertModel, BertTokenizer, pipeline\n ' SCREAMING_SNAKE_CASE_ = '\nmname = "hf-internal-testing/tiny-random-bert"\nBertConfig.from_pretrained(mname)\nBertModel.from_pretrained(mname)\nBertTokenizer.from_pretrained(mname)\npipe = pipeline(task="fill-mask", model=mname)\nprint("success")\n ' SCREAMING_SNAKE_CASE_ = '\nimport socket\ndef offline_socket(*args, **kwargs): raise socket.error("Faking flaky internet")\nsocket.socket = offline_socket\n ' # Force fetching the files so that we can use the cache SCREAMING_SNAKE_CASE_ = 'hf-internal-testing/tiny-random-bert' BertConfig.from_pretrained(_lowerCAmelCase ) BertModel.from_pretrained(_lowerCAmelCase ) BertTokenizer.from_pretrained(_lowerCAmelCase ) pipeline(task='fill-mask' , model=_lowerCAmelCase ) # baseline - just load from_pretrained with normal network SCREAMING_SNAKE_CASE_ = [sys.executable, '-c', '\n'.join([load, run, mock] )] # should succeed SCREAMING_SNAKE_CASE_ = self.get_env() SCREAMING_SNAKE_CASE_ = subprocess.run(_lowerCAmelCase , env=_lowerCAmelCase , check=_lowerCAmelCase , capture_output=_lowerCAmelCase ) self.assertEqual(result.returncode , 0 , result.stderr ) self.assertIn('success' , result.stdout.decode() ) @require_torch def lowerCAmelCase_ ( self : List[str] ): # this test is a bit tricky since TRANSFORMERS_OFFLINE can only be changed before # `transformers` is loaded, and it's too late for inside pytest - so we are changing it # while running an external program # python one-liner segments # this must be loaded before socket.socket is monkey-patched SCREAMING_SNAKE_CASE_ = '\nfrom transformers import BertConfig, BertModel, BertTokenizer\n ' SCREAMING_SNAKE_CASE_ = '\nmname = "hf-internal-testing/tiny-random-bert-sharded"\nBertConfig.from_pretrained(mname)\nBertModel.from_pretrained(mname)\nprint("success")\n ' SCREAMING_SNAKE_CASE_ = '\nimport socket\ndef offline_socket(*args, **kwargs): raise ValueError("Offline mode is enabled")\nsocket.socket = offline_socket\n ' # baseline - just load from_pretrained with normal network SCREAMING_SNAKE_CASE_ = [sys.executable, '-c', '\n'.join([load, run] )] # should succeed SCREAMING_SNAKE_CASE_ = self.get_env() SCREAMING_SNAKE_CASE_ = subprocess.run(_lowerCAmelCase , env=_lowerCAmelCase , check=_lowerCAmelCase , capture_output=_lowerCAmelCase ) self.assertEqual(result.returncode , 0 , result.stderr ) self.assertIn('success' , result.stdout.decode() ) # next emulate no network SCREAMING_SNAKE_CASE_ = [sys.executable, '-c', '\n'.join([load, mock, run] )] # Doesn't fail anymore since the model is in the cache due to other tests, so commenting this. # env["TRANSFORMERS_OFFLINE"] = "0" # result = subprocess.run(cmd, env=env, check=False, capture_output=True) # self.assertEqual(result.returncode, 1, result.stderr) # should succeed as TRANSFORMERS_OFFLINE=1 tells it to use local files SCREAMING_SNAKE_CASE_ = '1' SCREAMING_SNAKE_CASE_ = subprocess.run(_lowerCAmelCase , env=_lowerCAmelCase , check=_lowerCAmelCase , capture_output=_lowerCAmelCase ) self.assertEqual(result.returncode , 0 , result.stderr ) self.assertIn('success' , result.stdout.decode() ) @require_torch def lowerCAmelCase_ ( self : Any ): SCREAMING_SNAKE_CASE_ = '\nfrom transformers import pipeline\n ' SCREAMING_SNAKE_CASE_ = '\nmname = "hf-internal-testing/tiny-random-bert"\npipe = pipeline(model=mname)\n ' SCREAMING_SNAKE_CASE_ = '\nimport socket\ndef offline_socket(*args, **kwargs): raise socket.error("Offline mode is enabled")\nsocket.socket = offline_socket\n ' SCREAMING_SNAKE_CASE_ = self.get_env() SCREAMING_SNAKE_CASE_ = '1' SCREAMING_SNAKE_CASE_ = [sys.executable, '-c', '\n'.join([load, mock, run] )] SCREAMING_SNAKE_CASE_ = subprocess.run(_lowerCAmelCase , env=_lowerCAmelCase , check=_lowerCAmelCase , capture_output=_lowerCAmelCase ) self.assertEqual(result.returncode , 1 , result.stderr ) self.assertIn( 'You cannot infer task automatically within `pipeline` when using offline mode' , result.stderr.decode().replace('\n' , '' ) , ) @require_torch def lowerCAmelCase_ ( self : Optional[int] ): SCREAMING_SNAKE_CASE_ = '\nfrom transformers import AutoModel\n ' SCREAMING_SNAKE_CASE_ = '\nmname = "hf-internal-testing/test_dynamic_model"\nAutoModel.from_pretrained(mname, trust_remote_code=True)\nprint("success")\n ' # baseline - just load from_pretrained with normal network SCREAMING_SNAKE_CASE_ = [sys.executable, '-c', '\n'.join([load, run] )] # should succeed SCREAMING_SNAKE_CASE_ = self.get_env() SCREAMING_SNAKE_CASE_ = subprocess.run(_lowerCAmelCase , env=_lowerCAmelCase , check=_lowerCAmelCase , capture_output=_lowerCAmelCase ) self.assertEqual(result.returncode , 0 , result.stderr ) self.assertIn('success' , result.stdout.decode() ) # should succeed as TRANSFORMERS_OFFLINE=1 tells it to use local files SCREAMING_SNAKE_CASE_ = '1' SCREAMING_SNAKE_CASE_ = subprocess.run(_lowerCAmelCase , env=_lowerCAmelCase , check=_lowerCAmelCase , capture_output=_lowerCAmelCase ) self.assertEqual(result.returncode , 0 , result.stderr ) self.assertIn('success' , result.stdout.decode() )
31
1
import argparse import shlex import runhouse as rh if __name__ == "__main__": # Refer to https://runhouse-docs.readthedocs-hosted.com/en/latest/api/python/cluster.html#hardware-setup for cloud access # setup instructions, if using on-demand hardware # If user passes --user <user> --host <host> --key_path <key_path> <example> <args>, fill them in as BYO cluster # If user passes --instance <instance> --provider <provider> <example> <args>, fill them in as on-demand cluster # Throw an error if user passes both BYO and on-demand cluster args # Otherwise, use default values lowerCamelCase__ : List[Any] = argparse.ArgumentParser() parser.add_argument('--user', type=str, default='ubuntu') parser.add_argument('--host', type=str, default='localhost') parser.add_argument('--key_path', type=str, default=None) parser.add_argument('--instance', type=str, default='V100:1') parser.add_argument('--provider', type=str, default='cheapest') parser.add_argument('--use_spot', type=bool, default=False) parser.add_argument('--example', type=str, default='pytorch/text-generation/run_generation.py') lowerCamelCase__ , lowerCamelCase__ : Optional[Any] = parser.parse_known_args() if args.host != "localhost": if args.instance != "V100:1" or args.provider != "cheapest": raise ValueError('Cannot specify both BYO and on-demand cluster args') lowerCamelCase__ : Any = rh.cluster( name='rh-cluster', ips=[args.host], ssh_creds={'ssh_user': args.user, 'ssh_private_key': args.key_path} ) else: lowerCamelCase__ : str = rh.cluster( name='rh-cluster', instance_type=args.instance, provider=args.provider, use_spot=args.use_spot ) lowerCamelCase__ : List[Any] = args.example.rsplit('/', 1)[0] # Set up remote environment cluster.install_packages(['pip:./']) # Installs transformers from local source # Note transformers is copied into the home directory on the remote machine, so we can install from there cluster.run([f'''pip install -r transformers/examples/{example_dir}/requirements.txt''']) cluster.run(['pip install torch --upgrade --extra-index-url https://download.pytorch.org/whl/cu117']) # Run example. You can bypass the CLI wrapper and paste your own code here. cluster.run([f'''python transformers/examples/{args.example} {' '.join(shlex.quote(arg) for arg in unknown)}''']) # Alternatively, we can just import and run a training function (especially if there's no wrapper CLI): # from my_script... import train # reqs = ['pip:./', 'torch', 'datasets', 'accelerate', 'evaluate', 'tqdm', 'scipy', 'scikit-learn', 'tensorboard'] # launch_train_gpu = rh.function(fn=train, # system=gpu, # reqs=reqs, # name='train_bert_glue') # # We can pass in arguments just like we would to a function: # launch_train_gpu(num_epochs = 3, lr = 2e-5, seed = 42, batch_size = 16 # stream_logs=True)
31
import torch from transformers import PreTrainedModel, XLMRobertaConfig, XLMRobertaModel class lowerCamelCase_ ( _SCREAMING_SNAKE_CASE ): '''simple docstring''' lowercase_ = "M-CLIP" def __init__( self : Tuple , _lowerCAmelCase : List[str]=1_024 , _lowerCAmelCase : str=768 , **_lowerCAmelCase : Union[str, Any] ): SCREAMING_SNAKE_CASE_ = transformerDimSize SCREAMING_SNAKE_CASE_ = imageDimSize super().__init__(**_lowerCAmelCase ) class lowerCamelCase_ ( _SCREAMING_SNAKE_CASE ): '''simple docstring''' lowercase_ = MCLIPConfig def __init__( self : Dict , _lowerCAmelCase : Union[str, Any] , *_lowerCAmelCase : str , **_lowerCAmelCase : str ): super().__init__(_lowerCAmelCase , *_lowerCAmelCase , **_lowerCAmelCase ) SCREAMING_SNAKE_CASE_ = XLMRobertaModel(_lowerCAmelCase ) SCREAMING_SNAKE_CASE_ = torch.nn.Linear( in_features=config.transformerDimensions , out_features=config.numDims ) def lowerCAmelCase_ ( self : List[Any] , _lowerCAmelCase : Any , _lowerCAmelCase : Union[str, Any] ): SCREAMING_SNAKE_CASE_ = self.transformer(input_ids=_lowerCAmelCase , attention_mask=_lowerCAmelCase )[0] SCREAMING_SNAKE_CASE_ = (embs * attention_mask.unsqueeze(2 )).sum(dim=1 ) / attention_mask.sum(dim=1 )[:, None] return self.LinearTransformation(_lowerCAmelCase ), embs
31
1
from __future__ import annotations import time lowerCamelCase__ : int = list[tuple[int, int]] lowerCamelCase__ : int = [ [0, 0, 0, 0, 0, 0, 0], [0, 1, 0, 0, 0, 0, 0], # 0 are free path whereas 1's are obstacles [0, 0, 0, 0, 0, 0, 0], [0, 0, 1, 0, 0, 0, 0], [1, 0, 1, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 1, 0, 0], ] lowerCamelCase__ : List[str] = [[-1, 0], [0, -1], [1, 0], [0, 1]] # up, left, down, right class lowerCamelCase_ : '''simple docstring''' def __init__( self : Optional[int] , _lowerCAmelCase : int , _lowerCAmelCase : int , _lowerCAmelCase : int , _lowerCAmelCase : int , _lowerCAmelCase : Node | None ): SCREAMING_SNAKE_CASE_ = pos_x SCREAMING_SNAKE_CASE_ = pos_y SCREAMING_SNAKE_CASE_ = (pos_y, pos_x) SCREAMING_SNAKE_CASE_ = goal_x SCREAMING_SNAKE_CASE_ = goal_y SCREAMING_SNAKE_CASE_ = parent class lowerCamelCase_ : '''simple docstring''' def __init__( self : Union[str, Any] , _lowerCAmelCase : tuple[int, int] , _lowerCAmelCase : tuple[int, int] ): SCREAMING_SNAKE_CASE_ = Node(start[1] , start[0] , goal[1] , goal[0] , _lowerCAmelCase ) SCREAMING_SNAKE_CASE_ = Node(goal[1] , goal[0] , goal[1] , goal[0] , _lowerCAmelCase ) SCREAMING_SNAKE_CASE_ = [self.start] SCREAMING_SNAKE_CASE_ = False def lowerCAmelCase_ ( self : List[str] ): while self.node_queue: SCREAMING_SNAKE_CASE_ = self.node_queue.pop(0 ) if current_node.pos == self.target.pos: SCREAMING_SNAKE_CASE_ = True return self.retrace_path(_lowerCAmelCase ) SCREAMING_SNAKE_CASE_ = self.get_successors(_lowerCAmelCase ) for node in successors: self.node_queue.append(_lowerCAmelCase ) if not self.reached: return [self.start.pos] return None def lowerCAmelCase_ ( self : Tuple , _lowerCAmelCase : Node ): SCREAMING_SNAKE_CASE_ = [] for action in delta: SCREAMING_SNAKE_CASE_ = parent.pos_x + action[1] SCREAMING_SNAKE_CASE_ = parent.pos_y + action[0] if not (0 <= pos_x <= len(grid[0] ) - 1 and 0 <= pos_y <= len(_lowerCAmelCase ) - 1): continue if grid[pos_y][pos_x] != 0: continue successors.append( Node(_lowerCAmelCase , _lowerCAmelCase , self.target.pos_y , self.target.pos_x , _lowerCAmelCase ) ) return successors def lowerCAmelCase_ ( self : List[str] , _lowerCAmelCase : Node | None ): SCREAMING_SNAKE_CASE_ = node SCREAMING_SNAKE_CASE_ = [] while current_node is not None: path.append((current_node.pos_y, current_node.pos_x) ) SCREAMING_SNAKE_CASE_ = current_node.parent path.reverse() return path class lowerCamelCase_ : '''simple docstring''' def __init__( self : List[Any] , _lowerCAmelCase : Optional[int] , _lowerCAmelCase : Optional[Any] ): SCREAMING_SNAKE_CASE_ = BreadthFirstSearch(_lowerCAmelCase , _lowerCAmelCase ) SCREAMING_SNAKE_CASE_ = BreadthFirstSearch(_lowerCAmelCase , _lowerCAmelCase ) SCREAMING_SNAKE_CASE_ = False def lowerCAmelCase_ ( self : List[Any] ): while self.fwd_bfs.node_queue or self.bwd_bfs.node_queue: SCREAMING_SNAKE_CASE_ = self.fwd_bfs.node_queue.pop(0 ) SCREAMING_SNAKE_CASE_ = self.bwd_bfs.node_queue.pop(0 ) if current_bwd_node.pos == current_fwd_node.pos: SCREAMING_SNAKE_CASE_ = True return self.retrace_bidirectional_path( _lowerCAmelCase , _lowerCAmelCase ) SCREAMING_SNAKE_CASE_ = current_bwd_node SCREAMING_SNAKE_CASE_ = current_fwd_node SCREAMING_SNAKE_CASE_ = { self.fwd_bfs: self.fwd_bfs.get_successors(_lowerCAmelCase ), self.bwd_bfs: self.bwd_bfs.get_successors(_lowerCAmelCase ), } for bfs in [self.fwd_bfs, self.bwd_bfs]: for node in successors[bfs]: bfs.node_queue.append(_lowerCAmelCase ) if not self.reached: return [self.fwd_bfs.start.pos] return None def lowerCAmelCase_ ( self : List[str] , _lowerCAmelCase : Node , _lowerCAmelCase : Node ): SCREAMING_SNAKE_CASE_ = self.fwd_bfs.retrace_path(_lowerCAmelCase ) SCREAMING_SNAKE_CASE_ = self.bwd_bfs.retrace_path(_lowerCAmelCase ) bwd_path.pop() bwd_path.reverse() SCREAMING_SNAKE_CASE_ = fwd_path + bwd_path return path if __name__ == "__main__": # all coordinates are given in format [y,x] import doctest doctest.testmod() lowerCamelCase__ : List[Any] = (0, 0) lowerCamelCase__ : Union[str, Any] = (len(grid) - 1, len(grid[0]) - 1) for elem in grid: print(elem) lowerCamelCase__ : Optional[int] = time.time() lowerCamelCase__ : Any = BreadthFirstSearch(init, goal) lowerCamelCase__ : Dict = bfs.search() lowerCamelCase__ : Optional[Any] = time.time() - start_bfs_time print('Unidirectional BFS computation time : ', bfs_time) lowerCamelCase__ : Tuple = time.time() lowerCamelCase__ : Optional[int] = BidirectionalBreadthFirstSearch(init, goal) lowerCamelCase__ : Optional[Any] = bd_bfs.search() lowerCamelCase__ : List[Any] = time.time() - start_bd_bfs_time print('Bidirectional BFS computation time : ', bd_bfs_time)
31
import gc import random import unittest import numpy as np import torch from transformers import XLMRobertaTokenizer from diffusers import ( AltDiffusionImgaImgPipeline, AutoencoderKL, PNDMScheduler, UNetaDConditionModel, ) from diffusers.image_processor import VaeImageProcessor from diffusers.pipelines.alt_diffusion.modeling_roberta_series import ( RobertaSeriesConfig, RobertaSeriesModelWithTransformation, ) from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu enable_full_determinism() class lowerCamelCase_ ( unittest.TestCase ): '''simple docstring''' def lowerCAmelCase_ ( self : str ): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() @property def lowerCAmelCase_ ( self : Union[str, Any] ): SCREAMING_SNAKE_CASE_ = 1 SCREAMING_SNAKE_CASE_ = 3 SCREAMING_SNAKE_CASE_ = (32, 32) SCREAMING_SNAKE_CASE_ = floats_tensor((batch_size, num_channels) + sizes , rng=random.Random(0 ) ).to(_lowerCAmelCase ) return image @property def lowerCAmelCase_ ( self : Union[str, Any] ): torch.manual_seed(0 ) SCREAMING_SNAKE_CASE_ = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=('DownBlock2D', 'CrossAttnDownBlock2D') , up_block_types=('CrossAttnUpBlock2D', 'UpBlock2D') , cross_attention_dim=32 , ) return model @property def lowerCAmelCase_ ( self : Tuple ): torch.manual_seed(0 ) SCREAMING_SNAKE_CASE_ = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=['DownEncoderBlock2D', 'DownEncoderBlock2D'] , up_block_types=['UpDecoderBlock2D', 'UpDecoderBlock2D'] , latent_channels=4 , ) return model @property def lowerCAmelCase_ ( self : Optional[int] ): torch.manual_seed(0 ) SCREAMING_SNAKE_CASE_ = RobertaSeriesConfig( hidden_size=32 , project_dim=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=5_006 , ) return RobertaSeriesModelWithTransformation(_lowerCAmelCase ) @property def lowerCAmelCase_ ( self : List[Any] ): def extract(*_lowerCAmelCase : Optional[int] , **_lowerCAmelCase : str ): class lowerCamelCase_ : '''simple docstring''' def __init__( self : str ): SCREAMING_SNAKE_CASE_ = torch.ones([0] ) def lowerCAmelCase_ ( self : Union[str, Any] , _lowerCAmelCase : int ): self.pixel_values.to(_lowerCAmelCase ) return self return Out() return extract def lowerCAmelCase_ ( self : Optional[Any] ): SCREAMING_SNAKE_CASE_ = 'cpu' # ensure determinism for the device-dependent torch.Generator SCREAMING_SNAKE_CASE_ = self.dummy_cond_unet SCREAMING_SNAKE_CASE_ = PNDMScheduler(skip_prk_steps=_lowerCAmelCase ) SCREAMING_SNAKE_CASE_ = self.dummy_vae SCREAMING_SNAKE_CASE_ = self.dummy_text_encoder SCREAMING_SNAKE_CASE_ = XLMRobertaTokenizer.from_pretrained('hf-internal-testing/tiny-xlm-roberta' ) SCREAMING_SNAKE_CASE_ = 77 SCREAMING_SNAKE_CASE_ = self.dummy_image.to(_lowerCAmelCase ) SCREAMING_SNAKE_CASE_ = init_image / 2 + 0.5 # make sure here that pndm scheduler skips prk SCREAMING_SNAKE_CASE_ = AltDiffusionImgaImgPipeline( unet=_lowerCAmelCase , scheduler=_lowerCAmelCase , vae=_lowerCAmelCase , text_encoder=_lowerCAmelCase , tokenizer=_lowerCAmelCase , safety_checker=_lowerCAmelCase , feature_extractor=self.dummy_extractor , ) SCREAMING_SNAKE_CASE_ = VaeImageProcessor(vae_scale_factor=alt_pipe.vae_scale_factor , do_normalize=_lowerCAmelCase ) SCREAMING_SNAKE_CASE_ = alt_pipe.to(_lowerCAmelCase ) alt_pipe.set_progress_bar_config(disable=_lowerCAmelCase ) SCREAMING_SNAKE_CASE_ = 'A painting of a squirrel eating a burger' SCREAMING_SNAKE_CASE_ = torch.Generator(device=_lowerCAmelCase ).manual_seed(0 ) SCREAMING_SNAKE_CASE_ = alt_pipe( [prompt] , generator=_lowerCAmelCase , guidance_scale=6.0 , num_inference_steps=2 , output_type='np' , image=_lowerCAmelCase , ) SCREAMING_SNAKE_CASE_ = output.images SCREAMING_SNAKE_CASE_ = torch.Generator(device=_lowerCAmelCase ).manual_seed(0 ) SCREAMING_SNAKE_CASE_ = alt_pipe( [prompt] , generator=_lowerCAmelCase , guidance_scale=6.0 , num_inference_steps=2 , output_type='np' , image=_lowerCAmelCase , return_dict=_lowerCAmelCase , )[0] SCREAMING_SNAKE_CASE_ = image[0, -3:, -3:, -1] SCREAMING_SNAKE_CASE_ = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) SCREAMING_SNAKE_CASE_ = np.array([0.4427, 0.3731, 0.4249, 0.4941, 0.4546, 0.4148, 0.4193, 0.4666, 0.4499] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 5E-3 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 5E-3 @unittest.skipIf(torch_device != 'cuda' , 'This test requires a GPU' ) def lowerCAmelCase_ ( self : Tuple ): SCREAMING_SNAKE_CASE_ = self.dummy_cond_unet SCREAMING_SNAKE_CASE_ = PNDMScheduler(skip_prk_steps=_lowerCAmelCase ) SCREAMING_SNAKE_CASE_ = self.dummy_vae SCREAMING_SNAKE_CASE_ = self.dummy_text_encoder SCREAMING_SNAKE_CASE_ = XLMRobertaTokenizer.from_pretrained('hf-internal-testing/tiny-xlm-roberta' ) SCREAMING_SNAKE_CASE_ = 77 SCREAMING_SNAKE_CASE_ = self.dummy_image.to(_lowerCAmelCase ) # put models in fp16 SCREAMING_SNAKE_CASE_ = unet.half() SCREAMING_SNAKE_CASE_ = vae.half() SCREAMING_SNAKE_CASE_ = bert.half() # make sure here that pndm scheduler skips prk SCREAMING_SNAKE_CASE_ = AltDiffusionImgaImgPipeline( unet=_lowerCAmelCase , scheduler=_lowerCAmelCase , vae=_lowerCAmelCase , text_encoder=_lowerCAmelCase , tokenizer=_lowerCAmelCase , safety_checker=_lowerCAmelCase , feature_extractor=self.dummy_extractor , ) SCREAMING_SNAKE_CASE_ = VaeImageProcessor(vae_scale_factor=alt_pipe.vae_scale_factor , do_normalize=_lowerCAmelCase ) SCREAMING_SNAKE_CASE_ = alt_pipe.to(_lowerCAmelCase ) alt_pipe.set_progress_bar_config(disable=_lowerCAmelCase ) SCREAMING_SNAKE_CASE_ = 'A painting of a squirrel eating a burger' SCREAMING_SNAKE_CASE_ = torch.manual_seed(0 ) SCREAMING_SNAKE_CASE_ = alt_pipe( [prompt] , generator=_lowerCAmelCase , num_inference_steps=2 , output_type='np' , image=_lowerCAmelCase , ).images assert image.shape == (1, 32, 32, 3) @unittest.skipIf(torch_device != 'cuda' , 'This test requires a GPU' ) def lowerCAmelCase_ ( self : str ): SCREAMING_SNAKE_CASE_ = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/img2img/sketch-mountains-input.jpg' ) # resize to resolution that is divisible by 8 but not 16 or 32 SCREAMING_SNAKE_CASE_ = init_image.resize((760, 504) ) SCREAMING_SNAKE_CASE_ = 'BAAI/AltDiffusion' SCREAMING_SNAKE_CASE_ = AltDiffusionImgaImgPipeline.from_pretrained( _lowerCAmelCase , safety_checker=_lowerCAmelCase , ) pipe.to(_lowerCAmelCase ) pipe.set_progress_bar_config(disable=_lowerCAmelCase ) pipe.enable_attention_slicing() SCREAMING_SNAKE_CASE_ = 'A fantasy landscape, trending on artstation' SCREAMING_SNAKE_CASE_ = torch.manual_seed(0 ) SCREAMING_SNAKE_CASE_ = pipe( prompt=_lowerCAmelCase , image=_lowerCAmelCase , strength=0.75 , guidance_scale=7.5 , generator=_lowerCAmelCase , output_type='np' , ) SCREAMING_SNAKE_CASE_ = output.images[0] SCREAMING_SNAKE_CASE_ = image[255:258, 383:386, -1] assert image.shape == (504, 760, 3) SCREAMING_SNAKE_CASE_ = np.array([0.9358, 0.9397, 0.9599, 0.9901, 1.0000, 1.0000, 0.9882, 1.0000, 1.0000] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 @slow @require_torch_gpu class lowerCamelCase_ ( unittest.TestCase ): '''simple docstring''' def lowerCAmelCase_ ( self : str ): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def lowerCAmelCase_ ( self : int ): SCREAMING_SNAKE_CASE_ = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/img2img/sketch-mountains-input.jpg' ) SCREAMING_SNAKE_CASE_ = init_image.resize((768, 512) ) SCREAMING_SNAKE_CASE_ = load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/img2img/fantasy_landscape_alt.npy' ) SCREAMING_SNAKE_CASE_ = 'BAAI/AltDiffusion' SCREAMING_SNAKE_CASE_ = AltDiffusionImgaImgPipeline.from_pretrained( _lowerCAmelCase , safety_checker=_lowerCAmelCase , ) pipe.to(_lowerCAmelCase ) pipe.set_progress_bar_config(disable=_lowerCAmelCase ) pipe.enable_attention_slicing() SCREAMING_SNAKE_CASE_ = 'A fantasy landscape, trending on artstation' SCREAMING_SNAKE_CASE_ = torch.manual_seed(0 ) SCREAMING_SNAKE_CASE_ = pipe( prompt=_lowerCAmelCase , image=_lowerCAmelCase , strength=0.75 , guidance_scale=7.5 , generator=_lowerCAmelCase , output_type='np' , ) SCREAMING_SNAKE_CASE_ = output.images[0] assert image.shape == (512, 768, 3) # img2img is flaky across GPUs even in fp32, so using MAE here assert np.abs(expected_image - image ).max() < 1E-2
31
1
def UpperCAmelCase_ ( __UpperCAmelCase : list[list] ) -> list[list]: SCREAMING_SNAKE_CASE_ = current_set.copy() for row_index, row in enumerate(__UpperCAmelCase ): SCREAMING_SNAKE_CASE_ = row[0] for column_index, column in enumerate(__UpperCAmelCase ): if magnitude == 0: SCREAMING_SNAKE_CASE_ = column continue SCREAMING_SNAKE_CASE_ = column / magnitude # Subtract to cancel term SCREAMING_SNAKE_CASE_ = current_set[0] SCREAMING_SNAKE_CASE_ = [first_row] SCREAMING_SNAKE_CASE_ = current_set[1::] for row in current_set: SCREAMING_SNAKE_CASE_ = [] # If first term is 0, it is already in form we want, so we preserve it if row[0] == 0: final_set.append(__UpperCAmelCase ) continue for column_index in range(len(__UpperCAmelCase ) ): temp_row.append(first_row[column_index] - row[column_index] ) final_set.append(__UpperCAmelCase ) # Create next recursion iteration set if len(final_set[0] ) != 3: SCREAMING_SNAKE_CASE_ = final_set[0] SCREAMING_SNAKE_CASE_ = [] SCREAMING_SNAKE_CASE_ = [] for row in final_set[1::]: current_first_column.append(row[0] ) next_iteration.append(row[1::] ) SCREAMING_SNAKE_CASE_ = simplify(__UpperCAmelCase ) for i in range(len(__UpperCAmelCase ) ): resultant[i].insert(0 , current_first_column[i] ) resultant.insert(0 , __UpperCAmelCase ) SCREAMING_SNAKE_CASE_ = resultant return final_set def UpperCAmelCase_ ( __UpperCAmelCase : list[list] ) -> list: if len(__UpperCAmelCase ) == 0: raise IndexError('solve_simultaneous() requires n lists of length n+1' ) SCREAMING_SNAKE_CASE_ = len(__UpperCAmelCase ) + 1 if any(len(__UpperCAmelCase ) != _length for item in equations ): raise IndexError('solve_simultaneous() requires n lists of length n+1' ) for row in equations: if any(not isinstance(__UpperCAmelCase , (int, float) ) for column in row ): raise ValueError('solve_simultaneous() requires lists of integers' ) if len(__UpperCAmelCase ) == 1: return [equations[0][-1] / equations[0][0]] SCREAMING_SNAKE_CASE_ = equations.copy() if any(0 in row for row in data_set ): SCREAMING_SNAKE_CASE_ = data_set.copy() SCREAMING_SNAKE_CASE_ = [] for row_index, row in enumerate(__UpperCAmelCase ): if 0 not in row: SCREAMING_SNAKE_CASE_ = data_set.pop(__UpperCAmelCase ) break if not full_row: raise ValueError('solve_simultaneous() requires at least 1 full equation' ) data_set.insert(0 , __UpperCAmelCase ) SCREAMING_SNAKE_CASE_ = data_set.copy() SCREAMING_SNAKE_CASE_ = simplify(__UpperCAmelCase ) SCREAMING_SNAKE_CASE_ = simplified[::-1] SCREAMING_SNAKE_CASE_ = [] for row in simplified: SCREAMING_SNAKE_CASE_ = row[-1] if not solutions: if row[-2] == 0: solutions.append(0 ) continue solutions.append(current_solution / row[-2] ) continue SCREAMING_SNAKE_CASE_ = row.copy()[: len(__UpperCAmelCase ) - 1 :] while temp_row[0] == 0: temp_row.pop(0 ) if len(__UpperCAmelCase ) == 0: solutions.append(0 ) continue SCREAMING_SNAKE_CASE_ = temp_row[1::] SCREAMING_SNAKE_CASE_ = temp_row[::-1] for column_index, column in enumerate(__UpperCAmelCase ): current_solution -= column * solutions[column_index] solutions.append(__UpperCAmelCase ) SCREAMING_SNAKE_CASE_ = [] for item in solutions: final.append(float(round(__UpperCAmelCase , 5 ) ) ) return final[::-1] if __name__ == "__main__": import doctest doctest.testmod() lowerCamelCase__ : List[str] = [ [2, 1, 1, 1, 1, 4], [1, 2, 1, 1, 1, 5], [1, 1, 2, 1, 1, 6], [1, 1, 1, 2, 1, 7], [1, 1, 1, 1, 2, 8], ] print(solve_simultaneous(eq)) print(solve_simultaneous([[4, 2]]))
31
from collections import OrderedDict from typing import TYPE_CHECKING, Any, List, Mapping, Optional, Union from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import TensorType, logging if TYPE_CHECKING: from ...onnx.config import PatchingSpec from ...tokenization_utils_base import PreTrainedTokenizerBase lowerCamelCase__ : Optional[int] = logging.get_logger(__name__) lowerCamelCase__ : Dict = { 'allenai/longformer-base-4096': 'https://huggingface.co/allenai/longformer-base-4096/resolve/main/config.json', 'allenai/longformer-large-4096': 'https://huggingface.co/allenai/longformer-large-4096/resolve/main/config.json', 'allenai/longformer-large-4096-finetuned-triviaqa': ( 'https://huggingface.co/allenai/longformer-large-4096-finetuned-triviaqa/resolve/main/config.json' ), 'allenai/longformer-base-4096-extra.pos.embd.only': ( 'https://huggingface.co/allenai/longformer-base-4096-extra.pos.embd.only/resolve/main/config.json' ), 'allenai/longformer-large-4096-extra.pos.embd.only': ( 'https://huggingface.co/allenai/longformer-large-4096-extra.pos.embd.only/resolve/main/config.json' ), } class lowerCamelCase_ ( _SCREAMING_SNAKE_CASE ): '''simple docstring''' lowercase_ = "longformer" def __init__( self : Union[str, Any] , _lowerCAmelCase : Union[List[int], int] = 512 , _lowerCAmelCase : int = 2 , _lowerCAmelCase : int = 1 , _lowerCAmelCase : int = 0 , _lowerCAmelCase : int = 2 , _lowerCAmelCase : int = 30_522 , _lowerCAmelCase : int = 768 , _lowerCAmelCase : int = 12 , _lowerCAmelCase : int = 12 , _lowerCAmelCase : int = 3_072 , _lowerCAmelCase : str = "gelu" , _lowerCAmelCase : float = 0.1 , _lowerCAmelCase : float = 0.1 , _lowerCAmelCase : int = 512 , _lowerCAmelCase : int = 2 , _lowerCAmelCase : float = 0.02 , _lowerCAmelCase : float = 1E-12 , _lowerCAmelCase : bool = False , **_lowerCAmelCase : Union[str, Any] , ): super().__init__(pad_token_id=_lowerCAmelCase , **_lowerCAmelCase ) SCREAMING_SNAKE_CASE_ = attention_window SCREAMING_SNAKE_CASE_ = sep_token_id SCREAMING_SNAKE_CASE_ = bos_token_id SCREAMING_SNAKE_CASE_ = eos_token_id SCREAMING_SNAKE_CASE_ = vocab_size SCREAMING_SNAKE_CASE_ = hidden_size SCREAMING_SNAKE_CASE_ = num_hidden_layers SCREAMING_SNAKE_CASE_ = num_attention_heads SCREAMING_SNAKE_CASE_ = hidden_act SCREAMING_SNAKE_CASE_ = intermediate_size SCREAMING_SNAKE_CASE_ = hidden_dropout_prob SCREAMING_SNAKE_CASE_ = attention_probs_dropout_prob SCREAMING_SNAKE_CASE_ = max_position_embeddings SCREAMING_SNAKE_CASE_ = type_vocab_size SCREAMING_SNAKE_CASE_ = initializer_range SCREAMING_SNAKE_CASE_ = layer_norm_eps SCREAMING_SNAKE_CASE_ = onnx_export class lowerCamelCase_ ( _SCREAMING_SNAKE_CASE ): '''simple docstring''' def __init__( self : Optional[Any] , _lowerCAmelCase : "PretrainedConfig" , _lowerCAmelCase : str = "default" , _lowerCAmelCase : "List[PatchingSpec]" = None ): super().__init__(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) SCREAMING_SNAKE_CASE_ = True @property def lowerCAmelCase_ ( self : Any ): if self.task == "multiple-choice": SCREAMING_SNAKE_CASE_ = {0: 'batch', 1: 'choice', 2: 'sequence'} else: SCREAMING_SNAKE_CASE_ = {0: 'batch', 1: 'sequence'} return OrderedDict( [ ('input_ids', dynamic_axis), ('attention_mask', dynamic_axis), ('global_attention_mask', dynamic_axis), ] ) @property def lowerCAmelCase_ ( self : Optional[int] ): SCREAMING_SNAKE_CASE_ = super().outputs if self.task == "default": SCREAMING_SNAKE_CASE_ = {0: 'batch'} return outputs @property def lowerCAmelCase_ ( self : str ): return 1E-4 @property def lowerCAmelCase_ ( self : Optional[Any] ): # needs to be >= 14 to support tril operator return max(super().default_onnx_opset , 14 ) def lowerCAmelCase_ ( self : str , _lowerCAmelCase : "PreTrainedTokenizerBase" , _lowerCAmelCase : int = -1 , _lowerCAmelCase : int = -1 , _lowerCAmelCase : bool = False , _lowerCAmelCase : Optional[TensorType] = None , ): SCREAMING_SNAKE_CASE_ = super().generate_dummy_inputs( preprocessor=_lowerCAmelCase , batch_size=_lowerCAmelCase , seq_length=_lowerCAmelCase , is_pair=_lowerCAmelCase , framework=_lowerCAmelCase ) import torch # for some reason, replacing this code by inputs["global_attention_mask"] = torch.randint(2, inputs["input_ids"].shape, dtype=torch.int64) # makes the export fail randomly SCREAMING_SNAKE_CASE_ = torch.zeros_like(inputs['input_ids'] ) # make every second token global SCREAMING_SNAKE_CASE_ = 1 return inputs
31
1
from __future__ import annotations import unittest from transformers import DistilBertConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers.models.distilbert.modeling_tf_distilbert import ( TF_DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST, TFDistilBertForMaskedLM, TFDistilBertForMultipleChoice, TFDistilBertForQuestionAnswering, TFDistilBertForSequenceClassification, TFDistilBertForTokenClassification, TFDistilBertModel, ) class lowerCamelCase_ : '''simple docstring''' def __init__( self : Union[str, Any] , _lowerCAmelCase : int , ): SCREAMING_SNAKE_CASE_ = parent SCREAMING_SNAKE_CASE_ = 13 SCREAMING_SNAKE_CASE_ = 7 SCREAMING_SNAKE_CASE_ = True SCREAMING_SNAKE_CASE_ = True SCREAMING_SNAKE_CASE_ = False SCREAMING_SNAKE_CASE_ = True SCREAMING_SNAKE_CASE_ = 99 SCREAMING_SNAKE_CASE_ = 32 SCREAMING_SNAKE_CASE_ = 2 SCREAMING_SNAKE_CASE_ = 4 SCREAMING_SNAKE_CASE_ = 37 SCREAMING_SNAKE_CASE_ = 'gelu' SCREAMING_SNAKE_CASE_ = 0.1 SCREAMING_SNAKE_CASE_ = 0.1 SCREAMING_SNAKE_CASE_ = 512 SCREAMING_SNAKE_CASE_ = 16 SCREAMING_SNAKE_CASE_ = 2 SCREAMING_SNAKE_CASE_ = 0.02 SCREAMING_SNAKE_CASE_ = 3 SCREAMING_SNAKE_CASE_ = 4 SCREAMING_SNAKE_CASE_ = None def lowerCAmelCase_ ( self : str ): SCREAMING_SNAKE_CASE_ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) SCREAMING_SNAKE_CASE_ = None if self.use_input_mask: SCREAMING_SNAKE_CASE_ = random_attention_mask([self.batch_size, self.seq_length] ) SCREAMING_SNAKE_CASE_ = None SCREAMING_SNAKE_CASE_ = None SCREAMING_SNAKE_CASE_ = None if self.use_labels: SCREAMING_SNAKE_CASE_ = ids_tensor([self.batch_size] , self.type_sequence_label_size ) SCREAMING_SNAKE_CASE_ = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) SCREAMING_SNAKE_CASE_ = ids_tensor([self.batch_size] , self.num_choices ) SCREAMING_SNAKE_CASE_ = DistilBertConfig( vocab_size=self.vocab_size , dim=self.hidden_size , n_layers=self.num_hidden_layers , n_heads=self.num_attention_heads , hidden_dim=self.intermediate_size , hidden_act=self.hidden_act , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , ) return config, input_ids, input_mask, sequence_labels, token_labels, choice_labels def lowerCAmelCase_ ( self : List[Any] , _lowerCAmelCase : int , _lowerCAmelCase : Union[str, Any] , _lowerCAmelCase : int , _lowerCAmelCase : Dict , _lowerCAmelCase : Union[str, Any] , _lowerCAmelCase : int ): SCREAMING_SNAKE_CASE_ = TFDistilBertModel(config=_lowerCAmelCase ) SCREAMING_SNAKE_CASE_ = {'input_ids': input_ids, 'attention_mask': input_mask} SCREAMING_SNAKE_CASE_ = model(_lowerCAmelCase ) SCREAMING_SNAKE_CASE_ = [input_ids, input_mask] SCREAMING_SNAKE_CASE_ = model(_lowerCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def lowerCAmelCase_ ( self : Dict , _lowerCAmelCase : Tuple , _lowerCAmelCase : List[str] , _lowerCAmelCase : Optional[Any] , _lowerCAmelCase : int , _lowerCAmelCase : Optional[Any] , _lowerCAmelCase : Dict ): SCREAMING_SNAKE_CASE_ = TFDistilBertForMaskedLM(config=_lowerCAmelCase ) SCREAMING_SNAKE_CASE_ = {'input_ids': input_ids, 'attention_mask': input_mask} SCREAMING_SNAKE_CASE_ = model(_lowerCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def lowerCAmelCase_ ( self : Dict , _lowerCAmelCase : Optional[Any] , _lowerCAmelCase : List[str] , _lowerCAmelCase : Union[str, Any] , _lowerCAmelCase : str , _lowerCAmelCase : List[str] , _lowerCAmelCase : int ): SCREAMING_SNAKE_CASE_ = TFDistilBertForQuestionAnswering(config=_lowerCAmelCase ) SCREAMING_SNAKE_CASE_ = { 'input_ids': input_ids, 'attention_mask': input_mask, } SCREAMING_SNAKE_CASE_ = model(_lowerCAmelCase ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def lowerCAmelCase_ ( self : Tuple , _lowerCAmelCase : List[str] , _lowerCAmelCase : List[Any] , _lowerCAmelCase : List[str] , _lowerCAmelCase : int , _lowerCAmelCase : Optional[int] , _lowerCAmelCase : Optional[int] ): SCREAMING_SNAKE_CASE_ = self.num_labels SCREAMING_SNAKE_CASE_ = TFDistilBertForSequenceClassification(_lowerCAmelCase ) SCREAMING_SNAKE_CASE_ = {'input_ids': input_ids, 'attention_mask': input_mask} SCREAMING_SNAKE_CASE_ = model(_lowerCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def lowerCAmelCase_ ( self : List[str] , _lowerCAmelCase : Tuple , _lowerCAmelCase : str , _lowerCAmelCase : Optional[Any] , _lowerCAmelCase : str , _lowerCAmelCase : int , _lowerCAmelCase : int ): SCREAMING_SNAKE_CASE_ = self.num_choices SCREAMING_SNAKE_CASE_ = TFDistilBertForMultipleChoice(_lowerCAmelCase ) SCREAMING_SNAKE_CASE_ = tf.tile(tf.expand_dims(_lowerCAmelCase , 1 ) , (1, self.num_choices, 1) ) SCREAMING_SNAKE_CASE_ = tf.tile(tf.expand_dims(_lowerCAmelCase , 1 ) , (1, self.num_choices, 1) ) SCREAMING_SNAKE_CASE_ = { 'input_ids': multiple_choice_inputs_ids, 'attention_mask': multiple_choice_input_mask, } SCREAMING_SNAKE_CASE_ = model(_lowerCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def lowerCAmelCase_ ( self : Union[str, Any] , _lowerCAmelCase : Optional[Any] , _lowerCAmelCase : Optional[int] , _lowerCAmelCase : Optional[Any] , _lowerCAmelCase : Optional[int] , _lowerCAmelCase : Optional[Any] , _lowerCAmelCase : str ): SCREAMING_SNAKE_CASE_ = self.num_labels SCREAMING_SNAKE_CASE_ = TFDistilBertForTokenClassification(_lowerCAmelCase ) SCREAMING_SNAKE_CASE_ = {'input_ids': input_ids, 'attention_mask': input_mask} SCREAMING_SNAKE_CASE_ = model(_lowerCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def lowerCAmelCase_ ( self : int ): SCREAMING_SNAKE_CASE_ = self.prepare_config_and_inputs() ((SCREAMING_SNAKE_CASE_) , (SCREAMING_SNAKE_CASE_) , (SCREAMING_SNAKE_CASE_) , (SCREAMING_SNAKE_CASE_) , (SCREAMING_SNAKE_CASE_) , (SCREAMING_SNAKE_CASE_)) = config_and_inputs SCREAMING_SNAKE_CASE_ = {'input_ids': input_ids, 'attention_mask': input_mask} return config, inputs_dict @require_tf class lowerCamelCase_ ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' lowercase_ = ( ( TFDistilBertModel, TFDistilBertForMaskedLM, TFDistilBertForQuestionAnswering, TFDistilBertForSequenceClassification, TFDistilBertForTokenClassification, TFDistilBertForMultipleChoice, ) if is_tf_available() else None ) lowercase_ = ( { "feature-extraction": TFDistilBertModel, "fill-mask": TFDistilBertForMaskedLM, "question-answering": TFDistilBertForQuestionAnswering, "text-classification": TFDistilBertForSequenceClassification, "token-classification": TFDistilBertForTokenClassification, "zero-shot": TFDistilBertForSequenceClassification, } if is_tf_available() else {} ) lowercase_ = False lowercase_ = False def lowerCAmelCase_ ( self : Optional[Any] ): SCREAMING_SNAKE_CASE_ = TFDistilBertModelTester(self ) SCREAMING_SNAKE_CASE_ = ConfigTester(self , config_class=_lowerCAmelCase , dim=37 ) def lowerCAmelCase_ ( self : int ): self.config_tester.run_common_tests() def lowerCAmelCase_ ( self : Union[str, Any] ): SCREAMING_SNAKE_CASE_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_model(*_lowerCAmelCase ) def lowerCAmelCase_ ( self : str ): SCREAMING_SNAKE_CASE_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_masked_lm(*_lowerCAmelCase ) def lowerCAmelCase_ ( self : Union[str, Any] ): SCREAMING_SNAKE_CASE_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_question_answering(*_lowerCAmelCase ) def lowerCAmelCase_ ( self : List[str] ): SCREAMING_SNAKE_CASE_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_sequence_classification(*_lowerCAmelCase ) def lowerCAmelCase_ ( self : Any ): SCREAMING_SNAKE_CASE_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_multiple_choice(*_lowerCAmelCase ) def lowerCAmelCase_ ( self : Any ): SCREAMING_SNAKE_CASE_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_token_classification(*_lowerCAmelCase ) @slow def lowerCAmelCase_ ( self : Dict ): for model_name in list(TF_DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1] ): SCREAMING_SNAKE_CASE_ = TFDistilBertModel.from_pretrained(_lowerCAmelCase ) self.assertIsNotNone(_lowerCAmelCase ) @require_tf class lowerCamelCase_ ( unittest.TestCase ): '''simple docstring''' @slow def lowerCAmelCase_ ( self : Tuple ): SCREAMING_SNAKE_CASE_ = TFDistilBertModel.from_pretrained('distilbert-base-uncased' ) SCREAMING_SNAKE_CASE_ = tf.constant([[0, 1, 2, 3, 4, 5]] ) SCREAMING_SNAKE_CASE_ = model(_lowerCAmelCase )[0] SCREAMING_SNAKE_CASE_ = [1, 6, 768] self.assertEqual(output.shape , _lowerCAmelCase ) SCREAMING_SNAKE_CASE_ = tf.constant( [ [ [0.1926_1885, -0.1373_2955, 0.411_9799], [0.2215_0156, -0.0742_2661, 0.3903_7204], [0.2275_6018, -0.089_6414, 0.370_1467], ] ] ) tf.debugging.assert_near(output[:, :3, :3] , _lowerCAmelCase , atol=1E-4 )
31
import warnings from ...utils import logging from .image_processing_mobilevit import MobileViTImageProcessor lowerCamelCase__ : Optional[int] = logging.get_logger(__name__) class lowerCamelCase_ ( _SCREAMING_SNAKE_CASE ): '''simple docstring''' def __init__( self : str , *_lowerCAmelCase : Tuple , **_lowerCAmelCase : int ): warnings.warn( 'The class MobileViTFeatureExtractor is deprecated and will be removed in version 5 of Transformers.' ' Please use MobileViTImageProcessor instead.' , _lowerCAmelCase , ) super().__init__(*_lowerCAmelCase , **_lowerCAmelCase )
31
1
import sys lowerCamelCase__ : Optional[int] = ( '73167176531330624919225119674426574742355349194934' '96983520312774506326239578318016984801869478851843' '85861560789112949495459501737958331952853208805511' '12540698747158523863050715693290963295227443043557' '66896648950445244523161731856403098711121722383113' '62229893423380308135336276614282806444486645238749' '30358907296290491560440772390713810515859307960866' '70172427121883998797908792274921901699720888093776' '65727333001053367881220235421809751254540594752243' '52584907711670556013604839586446706324415722155397' '53697817977846174064955149290862569321978468622482' '83972241375657056057490261407972968652414535100474' '82166370484403199890008895243450658541227588666881' '16427171479924442928230863465674813919123162824586' '17866458359124566529476545682848912883142607690042' '24219022671055626321111109370544217506941658960408' '07198403850962455444362981230987879927244284909188' '84580156166097919133875499200524063689912560717606' '05886116467109405077541002256983155200055935729725' '71636269561882670428252483600823257530420752963450' ) def UpperCAmelCase_ ( __UpperCAmelCase : str ) -> int: SCREAMING_SNAKE_CASE_ = 1 for digit in s: product *= int(__UpperCAmelCase ) return product def UpperCAmelCase_ ( __UpperCAmelCase : str = N ) -> int: SCREAMING_SNAKE_CASE_ = -sys.maxsize - 1 SCREAMING_SNAKE_CASE_ = n[:13] SCREAMING_SNAKE_CASE_ = 13 while cur_index < len(__UpperCAmelCase ) - 13: if int(n[cur_index] ) >= int(substr[0] ): SCREAMING_SNAKE_CASE_ = substr[1:] + n[cur_index] cur_index += 1 else: SCREAMING_SNAKE_CASE_ = max(__UpperCAmelCase , str_eval(__UpperCAmelCase ) ) SCREAMING_SNAKE_CASE_ = n[cur_index : cur_index + 13] cur_index += 13 return largest_product if __name__ == "__main__": print(f'''{solution() = }''')
31
from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCamelCase__ : Optional[int] = logging.get_logger(__name__) lowerCamelCase__ : Tuple = { 'microsoft/swinv2-tiny-patch4-window8-256': ( 'https://huggingface.co/microsoft/swinv2-tiny-patch4-window8-256/resolve/main/config.json' ), } class lowerCamelCase_ ( _SCREAMING_SNAKE_CASE ): '''simple docstring''' lowercase_ = "swinv2" lowercase_ = { "num_attention_heads": "num_heads", "num_hidden_layers": "num_layers", } def __init__( self : Dict , _lowerCAmelCase : Optional[Any]=224 , _lowerCAmelCase : Optional[int]=4 , _lowerCAmelCase : Tuple=3 , _lowerCAmelCase : Tuple=96 , _lowerCAmelCase : Dict=[2, 2, 6, 2] , _lowerCAmelCase : Optional[Any]=[3, 6, 12, 24] , _lowerCAmelCase : str=7 , _lowerCAmelCase : List[Any]=4.0 , _lowerCAmelCase : List[str]=True , _lowerCAmelCase : List[Any]=0.0 , _lowerCAmelCase : List[Any]=0.0 , _lowerCAmelCase : Any=0.1 , _lowerCAmelCase : List[Any]="gelu" , _lowerCAmelCase : str=False , _lowerCAmelCase : str=0.02 , _lowerCAmelCase : List[Any]=1E-5 , _lowerCAmelCase : str=32 , **_lowerCAmelCase : List[Any] , ): super().__init__(**_lowerCAmelCase ) SCREAMING_SNAKE_CASE_ = image_size SCREAMING_SNAKE_CASE_ = patch_size SCREAMING_SNAKE_CASE_ = num_channels SCREAMING_SNAKE_CASE_ = embed_dim SCREAMING_SNAKE_CASE_ = depths SCREAMING_SNAKE_CASE_ = len(_lowerCAmelCase ) SCREAMING_SNAKE_CASE_ = num_heads SCREAMING_SNAKE_CASE_ = window_size SCREAMING_SNAKE_CASE_ = mlp_ratio SCREAMING_SNAKE_CASE_ = qkv_bias SCREAMING_SNAKE_CASE_ = hidden_dropout_prob SCREAMING_SNAKE_CASE_ = attention_probs_dropout_prob SCREAMING_SNAKE_CASE_ = drop_path_rate SCREAMING_SNAKE_CASE_ = hidden_act SCREAMING_SNAKE_CASE_ = use_absolute_embeddings SCREAMING_SNAKE_CASE_ = layer_norm_eps SCREAMING_SNAKE_CASE_ = initializer_range SCREAMING_SNAKE_CASE_ = encoder_stride # we set the hidden_size attribute in order to make Swinv2 work with VisionEncoderDecoderModel # this indicates the channel dimension after the last stage of the model SCREAMING_SNAKE_CASE_ = int(embed_dim * 2 ** (len(_lowerCAmelCase ) - 1) ) SCREAMING_SNAKE_CASE_ = (0, 0, 0, 0)
31
1
from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging lowerCamelCase__ : Tuple = logging.get_logger(__name__) lowerCamelCase__ : Dict = { 'roberta-base': 'https://huggingface.co/roberta-base/resolve/main/config.json', 'roberta-large': 'https://huggingface.co/roberta-large/resolve/main/config.json', 'roberta-large-mnli': 'https://huggingface.co/roberta-large-mnli/resolve/main/config.json', 'distilroberta-base': 'https://huggingface.co/distilroberta-base/resolve/main/config.json', 'roberta-base-openai-detector': 'https://huggingface.co/roberta-base-openai-detector/resolve/main/config.json', 'roberta-large-openai-detector': 'https://huggingface.co/roberta-large-openai-detector/resolve/main/config.json', } class lowerCamelCase_ ( _SCREAMING_SNAKE_CASE ): '''simple docstring''' lowercase_ = "roberta" def __init__( self : Dict , _lowerCAmelCase : Union[str, Any]=50_265 , _lowerCAmelCase : List[Any]=768 , _lowerCAmelCase : List[str]=12 , _lowerCAmelCase : List[str]=12 , _lowerCAmelCase : str=3_072 , _lowerCAmelCase : Dict="gelu" , _lowerCAmelCase : Union[str, Any]=0.1 , _lowerCAmelCase : Tuple=0.1 , _lowerCAmelCase : Tuple=512 , _lowerCAmelCase : Union[str, Any]=2 , _lowerCAmelCase : Optional[Any]=0.02 , _lowerCAmelCase : Dict=1E-12 , _lowerCAmelCase : Optional[Any]=1 , _lowerCAmelCase : Union[str, Any]=0 , _lowerCAmelCase : List[Any]=2 , _lowerCAmelCase : Optional[Any]="absolute" , _lowerCAmelCase : Optional[Any]=True , _lowerCAmelCase : List[str]=None , **_lowerCAmelCase : Tuple , ): super().__init__(pad_token_id=_lowerCAmelCase , bos_token_id=_lowerCAmelCase , eos_token_id=_lowerCAmelCase , **_lowerCAmelCase ) SCREAMING_SNAKE_CASE_ = vocab_size SCREAMING_SNAKE_CASE_ = hidden_size SCREAMING_SNAKE_CASE_ = num_hidden_layers SCREAMING_SNAKE_CASE_ = num_attention_heads SCREAMING_SNAKE_CASE_ = hidden_act SCREAMING_SNAKE_CASE_ = intermediate_size SCREAMING_SNAKE_CASE_ = hidden_dropout_prob SCREAMING_SNAKE_CASE_ = attention_probs_dropout_prob SCREAMING_SNAKE_CASE_ = max_position_embeddings SCREAMING_SNAKE_CASE_ = type_vocab_size SCREAMING_SNAKE_CASE_ = initializer_range SCREAMING_SNAKE_CASE_ = layer_norm_eps SCREAMING_SNAKE_CASE_ = position_embedding_type SCREAMING_SNAKE_CASE_ = use_cache SCREAMING_SNAKE_CASE_ = classifier_dropout class lowerCamelCase_ ( _SCREAMING_SNAKE_CASE ): '''simple docstring''' @property def lowerCAmelCase_ ( self : Optional[Any] ): if self.task == "multiple-choice": SCREAMING_SNAKE_CASE_ = {0: 'batch', 1: 'choice', 2: 'sequence'} else: SCREAMING_SNAKE_CASE_ = {0: 'batch', 1: 'sequence'} return OrderedDict( [ ('input_ids', dynamic_axis), ('attention_mask', dynamic_axis), ] )
31
import itertools import random import unittest import numpy as np from transformers import BatchFeature, SpeechTaFeatureExtractor from transformers.testing_utils import require_torch from transformers.utils.import_utils import is_torch_available from ...test_sequence_feature_extraction_common import SequenceFeatureExtractionTestMixin if is_torch_available(): import torch lowerCamelCase__ : Dict = random.Random() def UpperCAmelCase_ ( __UpperCAmelCase : int , __UpperCAmelCase : Tuple=1.0 , __UpperCAmelCase : Dict=None , __UpperCAmelCase : Dict=None ) -> Tuple: if rng is None: SCREAMING_SNAKE_CASE_ = global_rng SCREAMING_SNAKE_CASE_ = [] for batch_idx in range(shape[0] ): values.append([] ) for _ in range(shape[1] ): values[-1].append(rng.random() * scale ) return values @require_torch class lowerCamelCase_ ( unittest.TestCase ): '''simple docstring''' def __init__( self : List[str] , _lowerCAmelCase : int , _lowerCAmelCase : Optional[Any]=7 , _lowerCAmelCase : Union[str, Any]=400 , _lowerCAmelCase : Tuple=2_000 , _lowerCAmelCase : str=1 , _lowerCAmelCase : int=0.0 , _lowerCAmelCase : Optional[Any]=16_000 , _lowerCAmelCase : Optional[Any]=True , _lowerCAmelCase : Any=80 , _lowerCAmelCase : Union[str, Any]=16 , _lowerCAmelCase : List[str]=64 , _lowerCAmelCase : List[Any]="hann_window" , _lowerCAmelCase : Any=80 , _lowerCAmelCase : List[Any]=7_600 , _lowerCAmelCase : List[Any]=1E-10 , _lowerCAmelCase : Optional[Any]=True , ): SCREAMING_SNAKE_CASE_ = parent SCREAMING_SNAKE_CASE_ = batch_size SCREAMING_SNAKE_CASE_ = min_seq_length SCREAMING_SNAKE_CASE_ = max_seq_length SCREAMING_SNAKE_CASE_ = (self.max_seq_length - self.min_seq_length) // (self.batch_size - 1) SCREAMING_SNAKE_CASE_ = feature_size SCREAMING_SNAKE_CASE_ = padding_value SCREAMING_SNAKE_CASE_ = sampling_rate SCREAMING_SNAKE_CASE_ = do_normalize SCREAMING_SNAKE_CASE_ = num_mel_bins SCREAMING_SNAKE_CASE_ = hop_length SCREAMING_SNAKE_CASE_ = win_length SCREAMING_SNAKE_CASE_ = win_function SCREAMING_SNAKE_CASE_ = fmin SCREAMING_SNAKE_CASE_ = fmax SCREAMING_SNAKE_CASE_ = mel_floor SCREAMING_SNAKE_CASE_ = return_attention_mask def lowerCAmelCase_ ( self : Union[str, Any] ): return { "feature_size": self.feature_size, "padding_value": self.padding_value, "sampling_rate": self.sampling_rate, "do_normalize": self.do_normalize, "num_mel_bins": self.num_mel_bins, "hop_length": self.hop_length, "win_length": self.win_length, "win_function": self.win_function, "fmin": self.fmin, "fmax": self.fmax, "mel_floor": self.mel_floor, "return_attention_mask": self.return_attention_mask, } def lowerCAmelCase_ ( self : Dict , _lowerCAmelCase : Optional[int]=False , _lowerCAmelCase : str=False ): def _flatten(_lowerCAmelCase : Dict ): return list(itertools.chain(*_lowerCAmelCase ) ) if equal_length: SCREAMING_SNAKE_CASE_ = floats_list((self.batch_size, self.max_seq_length) ) else: # make sure that inputs increase in size SCREAMING_SNAKE_CASE_ = [ _flatten(floats_list((x, self.feature_size) ) ) for x in range(self.min_seq_length , self.max_seq_length , self.seq_length_diff ) ] if numpify: SCREAMING_SNAKE_CASE_ = [np.asarray(_lowerCAmelCase ) for x in speech_inputs] return speech_inputs def lowerCAmelCase_ ( self : List[Any] , _lowerCAmelCase : Union[str, Any]=False , _lowerCAmelCase : Optional[int]=False ): if equal_length: SCREAMING_SNAKE_CASE_ = [floats_list((self.max_seq_length, self.num_mel_bins) ) for _ in range(self.batch_size )] else: # make sure that inputs increase in size SCREAMING_SNAKE_CASE_ = [ floats_list((x, self.num_mel_bins) ) for x in range(self.min_seq_length , self.max_seq_length , self.seq_length_diff ) ] if numpify: SCREAMING_SNAKE_CASE_ = [np.asarray(_lowerCAmelCase ) for x in speech_inputs] return speech_inputs @require_torch class lowerCamelCase_ ( _SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' lowercase_ = SpeechTaFeatureExtractor def lowerCAmelCase_ ( self : Any ): SCREAMING_SNAKE_CASE_ = SpeechTaFeatureExtractionTester(self ) def lowerCAmelCase_ ( self : Any , _lowerCAmelCase : int ): self.assertTrue(np.all(np.mean(_lowerCAmelCase , axis=0 ) < 1E-3 ) ) self.assertTrue(np.all(np.abs(np.var(_lowerCAmelCase , axis=0 ) - 1 ) < 1E-3 ) ) def lowerCAmelCase_ ( self : List[Any] ): # Tests that all call wrap to encode_plus and batch_encode_plus SCREAMING_SNAKE_CASE_ = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) # create three inputs of length 800, 1000, and 1200 SCREAMING_SNAKE_CASE_ = [floats_list((1, x) )[0] for x in range(800 , 1_400 , 200 )] SCREAMING_SNAKE_CASE_ = [np.asarray(_lowerCAmelCase ) for speech_input in speech_inputs] # Test not batched input SCREAMING_SNAKE_CASE_ = feat_extract(speech_inputs[0] , return_tensors='np' ).input_values SCREAMING_SNAKE_CASE_ = feat_extract(np_speech_inputs[0] , return_tensors='np' ).input_values self.assertTrue(np.allclose(_lowerCAmelCase , _lowerCAmelCase , atol=1E-3 ) ) # Test batched SCREAMING_SNAKE_CASE_ = feat_extract(_lowerCAmelCase , return_tensors='np' ).input_values SCREAMING_SNAKE_CASE_ = feat_extract(_lowerCAmelCase , return_tensors='np' ).input_values for enc_seq_a, enc_seq_a in zip(_lowerCAmelCase , _lowerCAmelCase ): self.assertTrue(np.allclose(_lowerCAmelCase , _lowerCAmelCase , atol=1E-3 ) ) def lowerCAmelCase_ ( self : Union[str, Any] ): SCREAMING_SNAKE_CASE_ = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) SCREAMING_SNAKE_CASE_ = [floats_list((1, x) )[0] for x in range(800 , 1_400 , 200 )] SCREAMING_SNAKE_CASE_ = ['longest', 'max_length', 'do_not_pad'] SCREAMING_SNAKE_CASE_ = [None, 1_600, None] for max_length, padding in zip(_lowerCAmelCase , _lowerCAmelCase ): SCREAMING_SNAKE_CASE_ = feat_extract(_lowerCAmelCase , padding=_lowerCAmelCase , max_length=_lowerCAmelCase , return_tensors='np' ) SCREAMING_SNAKE_CASE_ = processed.input_values self._check_zero_mean_unit_variance(input_values[0][:800] ) self.assertTrue(input_values[0][800:].sum() < 1E-6 ) self._check_zero_mean_unit_variance(input_values[1][:1_000] ) self.assertTrue(input_values[0][1_000:].sum() < 1E-6 ) self._check_zero_mean_unit_variance(input_values[2][:1_200] ) def lowerCAmelCase_ ( self : Optional[Any] ): SCREAMING_SNAKE_CASE_ = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) SCREAMING_SNAKE_CASE_ = range(800 , 1_400 , 200 ) SCREAMING_SNAKE_CASE_ = [floats_list((1, x) )[0] for x in lengths] SCREAMING_SNAKE_CASE_ = ['longest', 'max_length', 'do_not_pad'] SCREAMING_SNAKE_CASE_ = [None, 1_600, None] for max_length, padding in zip(_lowerCAmelCase , _lowerCAmelCase ): SCREAMING_SNAKE_CASE_ = feat_extract(_lowerCAmelCase , max_length=_lowerCAmelCase , padding=_lowerCAmelCase ) SCREAMING_SNAKE_CASE_ = processed.input_values self._check_zero_mean_unit_variance(input_values[0][:800] ) self._check_zero_mean_unit_variance(input_values[1][:1_000] ) self._check_zero_mean_unit_variance(input_values[2][:1_200] ) def lowerCAmelCase_ ( self : Dict ): SCREAMING_SNAKE_CASE_ = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) SCREAMING_SNAKE_CASE_ = [floats_list((1, x) )[0] for x in range(800 , 1_400 , 200 )] SCREAMING_SNAKE_CASE_ = feat_extract( _lowerCAmelCase , truncation=_lowerCAmelCase , max_length=1_000 , padding='max_length' , return_tensors='np' ) SCREAMING_SNAKE_CASE_ = processed.input_values self._check_zero_mean_unit_variance(input_values[0, :800] ) self._check_zero_mean_unit_variance(input_values[1] ) self._check_zero_mean_unit_variance(input_values[2] ) def lowerCAmelCase_ ( self : Dict ): SCREAMING_SNAKE_CASE_ = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) SCREAMING_SNAKE_CASE_ = [floats_list((1, x) )[0] for x in range(800 , 1_400 , 200 )] SCREAMING_SNAKE_CASE_ = feat_extract( _lowerCAmelCase , truncation=_lowerCAmelCase , max_length=1_000 , padding='longest' , return_tensors='np' ) SCREAMING_SNAKE_CASE_ = processed.input_values self._check_zero_mean_unit_variance(input_values[0, :800] ) self._check_zero_mean_unit_variance(input_values[1, :1_000] ) self._check_zero_mean_unit_variance(input_values[2] ) # make sure that if max_length < longest -> then pad to max_length self.assertTrue(input_values.shape == (3, 1_000) ) SCREAMING_SNAKE_CASE_ = [floats_list((1, x) )[0] for x in range(800 , 1_400 , 200 )] SCREAMING_SNAKE_CASE_ = feat_extract( _lowerCAmelCase , truncation=_lowerCAmelCase , max_length=2_000 , padding='longest' , return_tensors='np' ) SCREAMING_SNAKE_CASE_ = processed.input_values self._check_zero_mean_unit_variance(input_values[0, :800] ) self._check_zero_mean_unit_variance(input_values[1, :1_000] ) self._check_zero_mean_unit_variance(input_values[2] ) # make sure that if max_length > longest -> then pad to longest self.assertTrue(input_values.shape == (3, 1_200) ) def lowerCAmelCase_ ( self : Optional[int] ): SCREAMING_SNAKE_CASE_ = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) SCREAMING_SNAKE_CASE_ = np.random.rand(100 ).astype(np.floataa ) SCREAMING_SNAKE_CASE_ = np_speech_inputs.tolist() for inputs in [py_speech_inputs, np_speech_inputs]: SCREAMING_SNAKE_CASE_ = feature_extractor.pad([{'input_values': inputs}] , return_tensors='np' ) self.assertTrue(np_processed.input_values.dtype == np.floataa ) SCREAMING_SNAKE_CASE_ = feature_extractor.pad([{'input_values': inputs}] , return_tensors='pt' ) self.assertTrue(pt_processed.input_values.dtype == torch.floataa ) def lowerCAmelCase_ ( self : Tuple ): # Tests that all call wrap to encode_plus and batch_encode_plus SCREAMING_SNAKE_CASE_ = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) # create three inputs of length 800, 1000, and 1200 SCREAMING_SNAKE_CASE_ = [floats_list((1, x) )[0] for x in range(800 , 1_400 , 200 )] SCREAMING_SNAKE_CASE_ = [np.asarray(_lowerCAmelCase ) for speech_input in speech_inputs] # Test feature size SCREAMING_SNAKE_CASE_ = feature_extractor(audio_target=_lowerCAmelCase , padding=_lowerCAmelCase , return_tensors='np' ).input_values self.assertTrue(input_values.ndim == 3 ) self.assertTrue(input_values.shape[-1] == feature_extractor.num_mel_bins ) # Test not batched input SCREAMING_SNAKE_CASE_ = feature_extractor(speech_inputs[0] , return_tensors='np' ).input_values SCREAMING_SNAKE_CASE_ = feature_extractor(np_speech_inputs[0] , return_tensors='np' ).input_values self.assertTrue(np.allclose(_lowerCAmelCase , _lowerCAmelCase , atol=1E-3 ) ) # Test batched SCREAMING_SNAKE_CASE_ = feature_extractor(_lowerCAmelCase , return_tensors='np' ).input_values SCREAMING_SNAKE_CASE_ = feature_extractor(_lowerCAmelCase , return_tensors='np' ).input_values for enc_seq_a, enc_seq_a in zip(_lowerCAmelCase , _lowerCAmelCase ): self.assertTrue(np.allclose(_lowerCAmelCase , _lowerCAmelCase , atol=1E-3 ) ) # Test 2-D numpy arrays are batched. SCREAMING_SNAKE_CASE_ = [floats_list((1, x) )[0] for x in (800, 800, 800)] SCREAMING_SNAKE_CASE_ = np.asarray(_lowerCAmelCase ) SCREAMING_SNAKE_CASE_ = feature_extractor(_lowerCAmelCase , return_tensors='np' ).input_values SCREAMING_SNAKE_CASE_ = feature_extractor(_lowerCAmelCase , return_tensors='np' ).input_values for enc_seq_a, enc_seq_a in zip(_lowerCAmelCase , _lowerCAmelCase ): self.assertTrue(np.allclose(_lowerCAmelCase , _lowerCAmelCase , atol=1E-3 ) ) def lowerCAmelCase_ ( self : str ): SCREAMING_SNAKE_CASE_ = self.feat_extract_tester.prepare_inputs_for_target() SCREAMING_SNAKE_CASE_ = self.feature_extraction_class(**self.feat_extract_dict ) SCREAMING_SNAKE_CASE_ = feat_extract.model_input_names[0] SCREAMING_SNAKE_CASE_ = BatchFeature({input_name: speech_inputs} ) self.assertTrue(all(len(_lowerCAmelCase ) == len(_lowerCAmelCase ) for x, y in zip(_lowerCAmelCase , processed_features[input_name] ) ) ) SCREAMING_SNAKE_CASE_ = self.feat_extract_tester.prepare_inputs_for_target(equal_length=_lowerCAmelCase ) SCREAMING_SNAKE_CASE_ = BatchFeature({input_name: speech_inputs} , tensor_type='np' ) SCREAMING_SNAKE_CASE_ = processed_features[input_name] if len(batch_features_input.shape ) < 3: SCREAMING_SNAKE_CASE_ = batch_features_input[:, :, None] self.assertTrue( batch_features_input.shape == (self.feat_extract_tester.batch_size, len(speech_inputs[0] ), self.feat_extract_tester.num_mel_bins) ) @require_torch def lowerCAmelCase_ ( self : Dict ): SCREAMING_SNAKE_CASE_ = self.feat_extract_tester.prepare_inputs_for_target(equal_length=_lowerCAmelCase ) SCREAMING_SNAKE_CASE_ = self.feature_extraction_class(**self.feat_extract_dict ) SCREAMING_SNAKE_CASE_ = feat_extract.model_input_names[0] SCREAMING_SNAKE_CASE_ = BatchFeature({input_name: speech_inputs} , tensor_type='pt' ) SCREAMING_SNAKE_CASE_ = processed_features[input_name] if len(batch_features_input.shape ) < 3: SCREAMING_SNAKE_CASE_ = batch_features_input[:, :, None] self.assertTrue( batch_features_input.shape == (self.feat_extract_tester.batch_size, len(speech_inputs[0] ), self.feat_extract_tester.num_mel_bins) ) @require_torch def lowerCAmelCase_ ( self : Dict ): SCREAMING_SNAKE_CASE_ = self.feature_extraction_class(**self.feat_extract_dict ) SCREAMING_SNAKE_CASE_ = self.feat_extract_tester.prepare_inputs_for_target() SCREAMING_SNAKE_CASE_ = feat_extract.model_input_names[0] SCREAMING_SNAKE_CASE_ = BatchFeature({input_name: speech_inputs} ) SCREAMING_SNAKE_CASE_ = feat_extract.num_mel_bins # hack! SCREAMING_SNAKE_CASE_ = feat_extract.pad(_lowerCAmelCase , padding='longest' , return_tensors='np' )[input_name] SCREAMING_SNAKE_CASE_ = feat_extract.pad(_lowerCAmelCase , padding='longest' , return_tensors='pt' )[input_name] self.assertTrue(abs(input_np.astype(np.floataa ).sum() - input_pt.numpy().astype(np.floataa ).sum() ) < 1E-2 ) def lowerCAmelCase_ ( self : str ): SCREAMING_SNAKE_CASE_ = self.feat_extract_dict SCREAMING_SNAKE_CASE_ = True SCREAMING_SNAKE_CASE_ = self.feature_extraction_class(**_lowerCAmelCase ) SCREAMING_SNAKE_CASE_ = self.feat_extract_tester.prepare_inputs_for_target() SCREAMING_SNAKE_CASE_ = [len(_lowerCAmelCase ) for x in speech_inputs] SCREAMING_SNAKE_CASE_ = feat_extract.model_input_names[0] SCREAMING_SNAKE_CASE_ = BatchFeature({input_name: speech_inputs} ) SCREAMING_SNAKE_CASE_ = feat_extract.num_mel_bins # hack! SCREAMING_SNAKE_CASE_ = feat_extract.pad(_lowerCAmelCase , padding='longest' , return_tensors='np' ) self.assertIn('attention_mask' , _lowerCAmelCase ) self.assertListEqual(list(processed.attention_mask.shape ) , list(processed[input_name].shape[:2] ) ) self.assertListEqual(processed.attention_mask.sum(-1 ).tolist() , _lowerCAmelCase ) def lowerCAmelCase_ ( self : Any ): SCREAMING_SNAKE_CASE_ = self.feat_extract_dict SCREAMING_SNAKE_CASE_ = True SCREAMING_SNAKE_CASE_ = self.feature_extraction_class(**_lowerCAmelCase ) SCREAMING_SNAKE_CASE_ = self.feat_extract_tester.prepare_inputs_for_target() SCREAMING_SNAKE_CASE_ = [len(_lowerCAmelCase ) for x in speech_inputs] SCREAMING_SNAKE_CASE_ = feat_extract.model_input_names[0] SCREAMING_SNAKE_CASE_ = BatchFeature({input_name: speech_inputs} ) SCREAMING_SNAKE_CASE_ = min(_lowerCAmelCase ) SCREAMING_SNAKE_CASE_ = feat_extract.num_mel_bins # hack! SCREAMING_SNAKE_CASE_ = feat_extract.pad( _lowerCAmelCase , padding='max_length' , max_length=_lowerCAmelCase , truncation=_lowerCAmelCase , return_tensors='np' ) self.assertIn('attention_mask' , _lowerCAmelCase ) self.assertListEqual( list(processed_pad.attention_mask.shape ) , [processed_pad[input_name].shape[0], max_length] ) self.assertListEqual( processed_pad.attention_mask[:, :max_length].sum(-1 ).tolist() , [max_length for x in speech_inputs] ) def lowerCAmelCase_ ( self : List[Any] , _lowerCAmelCase : Tuple ): from datasets import load_dataset SCREAMING_SNAKE_CASE_ = load_dataset('hf-internal-testing/librispeech_asr_dummy' , 'clean' , split='validation' ) # automatic decoding with librispeech SCREAMING_SNAKE_CASE_ = ds.sort('id' ).select(range(_lowerCAmelCase ) )[:num_samples]['audio'] return [x["array"] for x in speech_samples] def lowerCAmelCase_ ( self : Any ): # fmt: off SCREAMING_SNAKE_CASE_ = torch.tensor( [2.3_804E-03, 2.0_752E-03, 1.9_836E-03, 2.1_057E-03, 1.6_174E-03, 3.0_518E-04, 9.1_553E-05, 3.3_569E-04, 9.7_656E-04, 1.8_311E-03, 2.0_142E-03, 2.1_057E-03, 1.7_395E-03, 4.5_776E-04, -3.9_673E-04, 4.5_776E-04, 1.0_071E-03, 9.1_553E-05, 4.8_828E-04, 1.1_597E-03, 7.3_242E-04, 9.4_604E-04, 1.8_005E-03, 1.8_311E-03, 8.8_501E-04, 4.2_725E-04, 4.8_828E-04, 7.3_242E-04, 1.0_986E-03, 2.1_057E-03] ) # fmt: on SCREAMING_SNAKE_CASE_ = self._load_datasamples(1 ) SCREAMING_SNAKE_CASE_ = SpeechTaFeatureExtractor() SCREAMING_SNAKE_CASE_ = feature_extractor(_lowerCAmelCase , return_tensors='pt' ).input_values self.assertEquals(input_values.shape , (1, 93_680) ) self.assertTrue(torch.allclose(input_values[0, :30] , _lowerCAmelCase , atol=1E-6 ) ) def lowerCAmelCase_ ( self : Optional[int] ): # fmt: off SCREAMING_SNAKE_CASE_ = torch.tensor( [-2.6870, -3.0104, -3.1356, -3.5352, -3.0044, -3.0353, -3.4719, -3.6777, -3.1520, -2.9435, -2.6553, -2.8795, -2.9944, -2.5921, -3.0279, -3.0386, -3.0864, -3.1291, -3.2353, -2.7444, -2.6831, -2.7287, -3.1761, -3.1571, -3.2726, -3.0582, -3.1007, -3.4533, -3.4695, -3.0998] ) # fmt: on SCREAMING_SNAKE_CASE_ = self._load_datasamples(1 ) SCREAMING_SNAKE_CASE_ = SpeechTaFeatureExtractor() SCREAMING_SNAKE_CASE_ = feature_extractor(audio_target=_lowerCAmelCase , return_tensors='pt' ).input_values self.assertEquals(input_values.shape , (1, 366, 80) ) self.assertTrue(torch.allclose(input_values[0, 0, :30] , _lowerCAmelCase , atol=1E-4 ) )
31
1
from typing import Optional, Tuple, Union import tensorflow as tf from ...activations_tf import ACTaFN from ...file_utils import add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward from ...modeling_tf_outputs import ( TFBaseModelOutputWithNoAttention, TFBaseModelOutputWithPoolingAndNoAttention, TFSequenceClassifierOutput, ) from ...modeling_tf_utils import TFPreTrainedModel, TFSequenceClassificationLoss, keras_serializable, unpack_inputs from ...tf_utils import shape_list from ...utils import logging from .configuration_regnet import RegNetConfig lowerCamelCase__ : List[Any] = logging.get_logger(__name__) # General docstring lowerCamelCase__ : Dict = 'RegNetConfig' # Base docstring lowerCamelCase__ : Union[str, Any] = 'facebook/regnet-y-040' lowerCamelCase__ : Dict = [1, 1_088, 7, 7] # Image classification docstring lowerCamelCase__ : List[Any] = 'facebook/regnet-y-040' lowerCamelCase__ : Any = 'tabby, tabby cat' lowerCamelCase__ : List[Any] = [ 'facebook/regnet-y-040', # See all regnet models at https://huggingface.co/models?filter=regnet ] class lowerCamelCase_ ( tf.keras.layers.Layer ): '''simple docstring''' def __init__( self : Optional[Any] , _lowerCAmelCase : int , _lowerCAmelCase : int = 3 , _lowerCAmelCase : int = 1 , _lowerCAmelCase : int = 1 , _lowerCAmelCase : Optional[str] = "relu" , **_lowerCAmelCase : Tuple , ): super().__init__(**_lowerCAmelCase ) # The padding and conv has been verified in # https://colab.research.google.com/gist/sayakpaul/854bc10eeaf21c9ee2119e0b9f3841a7/scratchpad.ipynb SCREAMING_SNAKE_CASE_ = tf.keras.layers.ZeroPaddingaD(padding=kernel_size // 2 ) SCREAMING_SNAKE_CASE_ = tf.keras.layers.ConvaD( filters=_lowerCAmelCase , kernel_size=_lowerCAmelCase , strides=_lowerCAmelCase , padding='VALID' , groups=_lowerCAmelCase , use_bias=_lowerCAmelCase , name='convolution' , ) SCREAMING_SNAKE_CASE_ = tf.keras.layers.BatchNormalization(epsilon=1E-5 , momentum=0.9 , name='normalization' ) SCREAMING_SNAKE_CASE_ = ACTaFN[activation] if activation is not None else tf.identity def lowerCAmelCase_ ( self : int , _lowerCAmelCase : Optional[Any] ): SCREAMING_SNAKE_CASE_ = self.convolution(self.padding(_lowerCAmelCase ) ) SCREAMING_SNAKE_CASE_ = self.normalization(_lowerCAmelCase ) SCREAMING_SNAKE_CASE_ = self.activation(_lowerCAmelCase ) return hidden_state class lowerCamelCase_ ( tf.keras.layers.Layer ): '''simple docstring''' def __init__( self : Optional[int] , _lowerCAmelCase : RegNetConfig , **_lowerCAmelCase : List[Any] ): super().__init__(**_lowerCAmelCase ) SCREAMING_SNAKE_CASE_ = config.num_channels SCREAMING_SNAKE_CASE_ = TFRegNetConvLayer( out_channels=config.embedding_size , kernel_size=3 , stride=2 , activation=config.hidden_act , name='embedder' , ) def lowerCAmelCase_ ( self : List[str] , _lowerCAmelCase : List[str] ): SCREAMING_SNAKE_CASE_ = shape_list(_lowerCAmelCase )[1] if tf.executing_eagerly() and num_channels != self.num_channels: raise ValueError( 'Make sure that the channel dimension of the pixel values match with the one set in the configuration.' ) # When running on CPU, `tf.keras.layers.Conv2D` doesn't support `NCHW` format. # So change the input format from `NCHW` to `NHWC`. # shape = (batch_size, in_height, in_width, in_channels=num_channels) SCREAMING_SNAKE_CASE_ = tf.transpose(_lowerCAmelCase , perm=(0, 2, 3, 1) ) SCREAMING_SNAKE_CASE_ = self.embedder(_lowerCAmelCase ) return hidden_state class lowerCamelCase_ ( tf.keras.layers.Layer ): '''simple docstring''' def __init__( self : int , _lowerCAmelCase : int , _lowerCAmelCase : int = 2 , **_lowerCAmelCase : Dict ): super().__init__(**_lowerCAmelCase ) SCREAMING_SNAKE_CASE_ = tf.keras.layers.ConvaD( filters=_lowerCAmelCase , kernel_size=1 , strides=_lowerCAmelCase , use_bias=_lowerCAmelCase , name='convolution' ) SCREAMING_SNAKE_CASE_ = tf.keras.layers.BatchNormalization(epsilon=1E-5 , momentum=0.9 , name='normalization' ) def lowerCAmelCase_ ( self : Union[str, Any] , _lowerCAmelCase : tf.Tensor , _lowerCAmelCase : bool = False ): return self.normalization(self.convolution(_lowerCAmelCase ) , training=_lowerCAmelCase ) class lowerCamelCase_ ( tf.keras.layers.Layer ): '''simple docstring''' def __init__( self : Union[str, Any] , _lowerCAmelCase : int , _lowerCAmelCase : int , **_lowerCAmelCase : Any ): super().__init__(**_lowerCAmelCase ) SCREAMING_SNAKE_CASE_ = tf.keras.layers.GlobalAveragePoolingaD(keepdims=_lowerCAmelCase , name='pooler' ) SCREAMING_SNAKE_CASE_ = [ tf.keras.layers.ConvaD(filters=_lowerCAmelCase , kernel_size=1 , activation='relu' , name='attention.0' ), tf.keras.layers.ConvaD(filters=_lowerCAmelCase , kernel_size=1 , activation='sigmoid' , name='attention.2' ), ] def lowerCAmelCase_ ( self : Union[str, Any] , _lowerCAmelCase : int ): # [batch_size, h, w, num_channels] -> [batch_size, 1, 1, num_channels] SCREAMING_SNAKE_CASE_ = self.pooler(_lowerCAmelCase ) for layer_module in self.attention: SCREAMING_SNAKE_CASE_ = layer_module(_lowerCAmelCase ) SCREAMING_SNAKE_CASE_ = hidden_state * pooled return hidden_state class lowerCamelCase_ ( tf.keras.layers.Layer ): '''simple docstring''' def __init__( self : str , _lowerCAmelCase : RegNetConfig , _lowerCAmelCase : int , _lowerCAmelCase : int , _lowerCAmelCase : int = 1 , **_lowerCAmelCase : str ): super().__init__(**_lowerCAmelCase ) SCREAMING_SNAKE_CASE_ = in_channels != out_channels or stride != 1 SCREAMING_SNAKE_CASE_ = max(1 , out_channels // config.groups_width ) SCREAMING_SNAKE_CASE_ = ( TFRegNetShortCut(_lowerCAmelCase , stride=_lowerCAmelCase , name='shortcut' ) if should_apply_shortcut else tf.keras.layers.Activation('linear' , name='shortcut' ) ) # `self.layers` instead of `self.layer` because that is a reserved argument. SCREAMING_SNAKE_CASE_ = [ TFRegNetConvLayer(_lowerCAmelCase , kernel_size=1 , activation=config.hidden_act , name='layer.0' ), TFRegNetConvLayer( _lowerCAmelCase , stride=_lowerCAmelCase , groups=_lowerCAmelCase , activation=config.hidden_act , name='layer.1' ), TFRegNetConvLayer(_lowerCAmelCase , kernel_size=1 , activation=_lowerCAmelCase , name='layer.2' ), ] SCREAMING_SNAKE_CASE_ = ACTaFN[config.hidden_act] def lowerCAmelCase_ ( self : Optional[int] , _lowerCAmelCase : Dict ): SCREAMING_SNAKE_CASE_ = hidden_state for layer_module in self.layers: SCREAMING_SNAKE_CASE_ = layer_module(_lowerCAmelCase ) SCREAMING_SNAKE_CASE_ = self.shortcut(_lowerCAmelCase ) hidden_state += residual SCREAMING_SNAKE_CASE_ = self.activation(_lowerCAmelCase ) return hidden_state class lowerCamelCase_ ( tf.keras.layers.Layer ): '''simple docstring''' def __init__( self : List[Any] , _lowerCAmelCase : RegNetConfig , _lowerCAmelCase : int , _lowerCAmelCase : int , _lowerCAmelCase : int = 1 , **_lowerCAmelCase : Dict ): super().__init__(**_lowerCAmelCase ) SCREAMING_SNAKE_CASE_ = in_channels != out_channels or stride != 1 SCREAMING_SNAKE_CASE_ = max(1 , out_channels // config.groups_width ) SCREAMING_SNAKE_CASE_ = ( TFRegNetShortCut(_lowerCAmelCase , stride=_lowerCAmelCase , name='shortcut' ) if should_apply_shortcut else tf.keras.layers.Activation('linear' , name='shortcut' ) ) SCREAMING_SNAKE_CASE_ = [ TFRegNetConvLayer(_lowerCAmelCase , kernel_size=1 , activation=config.hidden_act , name='layer.0' ), TFRegNetConvLayer( _lowerCAmelCase , stride=_lowerCAmelCase , groups=_lowerCAmelCase , activation=config.hidden_act , name='layer.1' ), TFRegNetSELayer(_lowerCAmelCase , reduced_channels=int(round(in_channels / 4 ) ) , name='layer.2' ), TFRegNetConvLayer(_lowerCAmelCase , kernel_size=1 , activation=_lowerCAmelCase , name='layer.3' ), ] SCREAMING_SNAKE_CASE_ = ACTaFN[config.hidden_act] def lowerCAmelCase_ ( self : Dict , _lowerCAmelCase : Dict ): SCREAMING_SNAKE_CASE_ = hidden_state for layer_module in self.layers: SCREAMING_SNAKE_CASE_ = layer_module(_lowerCAmelCase ) SCREAMING_SNAKE_CASE_ = self.shortcut(_lowerCAmelCase ) hidden_state += residual SCREAMING_SNAKE_CASE_ = self.activation(_lowerCAmelCase ) return hidden_state class lowerCamelCase_ ( tf.keras.layers.Layer ): '''simple docstring''' def __init__( self : str , _lowerCAmelCase : RegNetConfig , _lowerCAmelCase : int , _lowerCAmelCase : int , _lowerCAmelCase : int = 2 , _lowerCAmelCase : int = 2 , **_lowerCAmelCase : Optional[Any] ): super().__init__(**_lowerCAmelCase ) SCREAMING_SNAKE_CASE_ = TFRegNetXLayer if config.layer_type == 'x' else TFRegNetYLayer SCREAMING_SNAKE_CASE_ = [ # downsampling is done in the first layer with stride of 2 layer(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , stride=_lowerCAmelCase , name='layers.0' ), *[layer(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , name=F"layers.{i+1}" ) for i in range(depth - 1 )], ] def lowerCAmelCase_ ( self : List[Any] , _lowerCAmelCase : Optional[int] ): for layer_module in self.layers: SCREAMING_SNAKE_CASE_ = layer_module(_lowerCAmelCase ) return hidden_state class lowerCamelCase_ ( tf.keras.layers.Layer ): '''simple docstring''' def __init__( self : List[str] , _lowerCAmelCase : RegNetConfig , **_lowerCAmelCase : str ): super().__init__(**_lowerCAmelCase ) SCREAMING_SNAKE_CASE_ = [] # based on `downsample_in_first_stage`, the first layer of the first stage may or may not downsample the input self.stages.append( TFRegNetStage( _lowerCAmelCase , config.embedding_size , config.hidden_sizes[0] , stride=2 if config.downsample_in_first_stage else 1 , depth=config.depths[0] , name='stages.0' , ) ) SCREAMING_SNAKE_CASE_ = zip(config.hidden_sizes , config.hidden_sizes[1:] ) for i, ((in_channels, out_channels), depth) in enumerate(zip(_lowerCAmelCase , config.depths[1:] ) ): self.stages.append(TFRegNetStage(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , depth=_lowerCAmelCase , name=F"stages.{i+1}" ) ) def lowerCAmelCase_ ( self : List[str] , _lowerCAmelCase : tf.Tensor , _lowerCAmelCase : bool = False , _lowerCAmelCase : bool = True ): SCREAMING_SNAKE_CASE_ = () if output_hidden_states else None for stage_module in self.stages: if output_hidden_states: SCREAMING_SNAKE_CASE_ = hidden_states + (hidden_state,) SCREAMING_SNAKE_CASE_ = stage_module(_lowerCAmelCase ) if output_hidden_states: SCREAMING_SNAKE_CASE_ = hidden_states + (hidden_state,) if not return_dict: return tuple(v for v in [hidden_state, hidden_states] if v is not None ) return TFBaseModelOutputWithNoAttention(last_hidden_state=_lowerCAmelCase , hidden_states=_lowerCAmelCase ) @keras_serializable class lowerCamelCase_ ( tf.keras.layers.Layer ): '''simple docstring''' lowercase_ = RegNetConfig def __init__( self : int , _lowerCAmelCase : Optional[int] , **_lowerCAmelCase : Optional[int] ): super().__init__(**_lowerCAmelCase ) SCREAMING_SNAKE_CASE_ = config SCREAMING_SNAKE_CASE_ = TFRegNetEmbeddings(_lowerCAmelCase , name='embedder' ) SCREAMING_SNAKE_CASE_ = TFRegNetEncoder(_lowerCAmelCase , name='encoder' ) SCREAMING_SNAKE_CASE_ = tf.keras.layers.GlobalAveragePoolingaD(keepdims=_lowerCAmelCase , name='pooler' ) @unpack_inputs def lowerCAmelCase_ ( self : List[Any] , _lowerCAmelCase : tf.Tensor , _lowerCAmelCase : Optional[bool] = None , _lowerCAmelCase : Optional[bool] = None , _lowerCAmelCase : bool = False , ): SCREAMING_SNAKE_CASE_ = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) SCREAMING_SNAKE_CASE_ = return_dict if return_dict is not None else self.config.use_return_dict SCREAMING_SNAKE_CASE_ = self.embedder(_lowerCAmelCase , training=_lowerCAmelCase ) SCREAMING_SNAKE_CASE_ = self.encoder( _lowerCAmelCase , output_hidden_states=_lowerCAmelCase , return_dict=_lowerCAmelCase , training=_lowerCAmelCase ) SCREAMING_SNAKE_CASE_ = encoder_outputs[0] SCREAMING_SNAKE_CASE_ = self.pooler(_lowerCAmelCase ) # Change to NCHW output format have uniformity in the modules SCREAMING_SNAKE_CASE_ = tf.transpose(_lowerCAmelCase , perm=(0, 3, 1, 2) ) SCREAMING_SNAKE_CASE_ = tf.transpose(_lowerCAmelCase , perm=(0, 3, 1, 2) ) # Change the other hidden state outputs to NCHW as well if output_hidden_states: SCREAMING_SNAKE_CASE_ = tuple([tf.transpose(_lowerCAmelCase , perm=(0, 3, 1, 2) ) for h in encoder_outputs[1]] ) if not return_dict: return (last_hidden_state, pooled_output) + encoder_outputs[1:] return TFBaseModelOutputWithPoolingAndNoAttention( last_hidden_state=_lowerCAmelCase , pooler_output=_lowerCAmelCase , hidden_states=hidden_states if output_hidden_states else encoder_outputs.hidden_states , ) class lowerCamelCase_ ( _SCREAMING_SNAKE_CASE ): '''simple docstring''' lowercase_ = RegNetConfig lowercase_ = "regnet" lowercase_ = "pixel_values" @property def lowerCAmelCase_ ( self : List[str] ): return {"pixel_values": tf.TensorSpec(shape=(None, self.config.num_channels, 224, 224) , dtype=tf.floataa )} lowerCamelCase__ : int = r'\n Parameters:\n This model is a Tensorflow\n [tf.keras.layers.Layer](https://www.tensorflow.org/api_docs/python/tf/keras/layers/Layer) sub-class. Use it as a\n regular Tensorflow Module and refer to the Tensorflow documentation for all matter related to general usage and\n behavior.\n config ([`RegNetConfig`]): Model configuration class with all the parameters of the model.\n Initializing with a config file does not load the weights associated with the model, only the\n configuration. Check out the [`~TFPreTrainedModel.from_pretrained`] method to load the model weights.\n' lowerCamelCase__ : Any = r'\n Args:\n pixel_values (`tf.Tensor` of shape `(batch_size, num_channels, height, width)`):\n Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See\n [`ConveNextImageProcessor.__call__`] for details.\n output_hidden_states (`bool`, *optional*):\n Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for\n more detail.\n return_dict (`bool`, *optional*):\n Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.\n' @add_start_docstrings( "The bare RegNet model outputting raw features without any specific head on top." , _SCREAMING_SNAKE_CASE , ) class lowerCamelCase_ ( _SCREAMING_SNAKE_CASE ): '''simple docstring''' def __init__( self : Dict , _lowerCAmelCase : RegNetConfig , *_lowerCAmelCase : Optional[int] , **_lowerCAmelCase : Tuple ): super().__init__(_lowerCAmelCase , *_lowerCAmelCase , **_lowerCAmelCase ) SCREAMING_SNAKE_CASE_ = TFRegNetMainLayer(_lowerCAmelCase , name='regnet' ) @unpack_inputs @add_start_docstrings_to_model_forward(_lowerCAmelCase ) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC , output_type=_lowerCAmelCase , config_class=_CONFIG_FOR_DOC , modality='vision' , expected_output=_EXPECTED_OUTPUT_SHAPE , ) def lowerCAmelCase_ ( self : Union[str, Any] , _lowerCAmelCase : tf.Tensor , _lowerCAmelCase : Optional[bool] = None , _lowerCAmelCase : Optional[bool] = None , _lowerCAmelCase : str=False , ): SCREAMING_SNAKE_CASE_ = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) SCREAMING_SNAKE_CASE_ = return_dict if return_dict is not None else self.config.use_return_dict SCREAMING_SNAKE_CASE_ = self.regnet( pixel_values=_lowerCAmelCase , output_hidden_states=_lowerCAmelCase , return_dict=_lowerCAmelCase , training=_lowerCAmelCase , ) if not return_dict: return (outputs[0],) + outputs[1:] return TFBaseModelOutputWithPoolingAndNoAttention( last_hidden_state=outputs.last_hidden_state , pooler_output=outputs.pooler_output , hidden_states=outputs.hidden_states , ) @add_start_docstrings( "\n RegNet Model with an image classification head on top (a linear layer on top of the pooled features), e.g. for\n ImageNet.\n " , _SCREAMING_SNAKE_CASE , ) class lowerCamelCase_ ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): '''simple docstring''' def __init__( self : Tuple , _lowerCAmelCase : RegNetConfig , *_lowerCAmelCase : List[Any] , **_lowerCAmelCase : Optional[int] ): super().__init__(_lowerCAmelCase , *_lowerCAmelCase , **_lowerCAmelCase ) SCREAMING_SNAKE_CASE_ = config.num_labels SCREAMING_SNAKE_CASE_ = TFRegNetMainLayer(_lowerCAmelCase , name='regnet' ) # classification head SCREAMING_SNAKE_CASE_ = [ tf.keras.layers.Flatten(), tf.keras.layers.Dense(config.num_labels , name='classifier.1' ) if config.num_labels > 0 else tf.identity, ] @unpack_inputs @add_start_docstrings_to_model_forward(_lowerCAmelCase ) @add_code_sample_docstrings( checkpoint=_IMAGE_CLASS_CHECKPOINT , output_type=_lowerCAmelCase , config_class=_CONFIG_FOR_DOC , expected_output=_IMAGE_CLASS_EXPECTED_OUTPUT , ) def lowerCAmelCase_ ( self : List[Any] , _lowerCAmelCase : tf.Tensor = None , _lowerCAmelCase : tf.Tensor = None , _lowerCAmelCase : bool = None , _lowerCAmelCase : bool = None , _lowerCAmelCase : Dict=False , ): SCREAMING_SNAKE_CASE_ = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) SCREAMING_SNAKE_CASE_ = return_dict if return_dict is not None else self.config.use_return_dict SCREAMING_SNAKE_CASE_ = self.regnet( _lowerCAmelCase , output_hidden_states=_lowerCAmelCase , return_dict=_lowerCAmelCase , training=_lowerCAmelCase ) SCREAMING_SNAKE_CASE_ = outputs.pooler_output if return_dict else outputs[1] SCREAMING_SNAKE_CASE_ = self.classifier[0](_lowerCAmelCase ) SCREAMING_SNAKE_CASE_ = self.classifier[1](_lowerCAmelCase ) SCREAMING_SNAKE_CASE_ = None if labels is None else self.hf_compute_loss(labels=_lowerCAmelCase , logits=_lowerCAmelCase ) if not return_dict: SCREAMING_SNAKE_CASE_ = (logits,) + outputs[2:] return ((loss,) + output) if loss is not None else output return TFSequenceClassifierOutput(loss=_lowerCAmelCase , logits=_lowerCAmelCase , hidden_states=outputs.hidden_states )
31
from __future__ import annotations from typing import TypedDict class lowerCamelCase_ ( _SCREAMING_SNAKE_CASE ): '''simple docstring''' lowercase_ = 42 lowercase_ = 42 def UpperCAmelCase_ ( __UpperCAmelCase : str ) -> list[str]: if not isinstance(__UpperCAmelCase , __UpperCAmelCase ): raise TypeError('The parameter s type must be str.' ) return [s[i:] + s[:i] for i in range(len(__UpperCAmelCase ) )] def UpperCAmelCase_ ( __UpperCAmelCase : str ) -> BWTTransformDict: if not isinstance(__UpperCAmelCase , __UpperCAmelCase ): raise TypeError('The parameter s type must be str.' ) if not s: raise ValueError('The parameter s must not be empty.' ) SCREAMING_SNAKE_CASE_ = all_rotations(__UpperCAmelCase ) rotations.sort() # sort the list of rotations in alphabetically order # make a string composed of the last char of each rotation SCREAMING_SNAKE_CASE_ = { "bwt_string": "".join([word[-1] for word in rotations] ), "idx_original_string": rotations.index(__UpperCAmelCase ), } return response def UpperCAmelCase_ ( __UpperCAmelCase : str , __UpperCAmelCase : int ) -> str: if not isinstance(__UpperCAmelCase , __UpperCAmelCase ): raise TypeError('The parameter bwt_string type must be str.' ) if not bwt_string: raise ValueError('The parameter bwt_string must not be empty.' ) try: SCREAMING_SNAKE_CASE_ = int(__UpperCAmelCase ) except ValueError: raise TypeError( 'The parameter idx_original_string type must be int or passive' ' of cast to int.' ) if idx_original_string < 0: raise ValueError('The parameter idx_original_string must not be lower than 0.' ) if idx_original_string >= len(__UpperCAmelCase ): raise ValueError( 'The parameter idx_original_string must be lower than' ' len(bwt_string).' ) SCREAMING_SNAKE_CASE_ = [''] * len(__UpperCAmelCase ) for _ in range(len(__UpperCAmelCase ) ): for i in range(len(__UpperCAmelCase ) ): SCREAMING_SNAKE_CASE_ = bwt_string[i] + ordered_rotations[i] ordered_rotations.sort() return ordered_rotations[idx_original_string] if __name__ == "__main__": lowerCamelCase__ : Optional[int] = 'Provide a string that I will generate its BWT transform: ' lowerCamelCase__ : List[str] = input(entry_msg).strip() lowerCamelCase__ : int = bwt_transform(s) print( f'''Burrows Wheeler transform for string \'{s}\' results ''' f'''in \'{result['bwt_string']}\'''' ) lowerCamelCase__ : Dict = reverse_bwt(result['bwt_string'], result['idx_original_string']) print( f'''Reversing Burrows Wheeler transform for entry \'{result['bwt_string']}\' ''' f'''we get original string \'{original_string}\'''' )
31
1
import gc import unittest from transformers import CTRLConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( CTRL_PRETRAINED_MODEL_ARCHIVE_LIST, CTRLForSequenceClassification, CTRLLMHeadModel, CTRLModel, ) class lowerCamelCase_ : '''simple docstring''' def __init__( self : Optional[Any] , _lowerCAmelCase : Union[str, Any] , _lowerCAmelCase : List[Any]=14 , _lowerCAmelCase : int=7 , _lowerCAmelCase : Union[str, Any]=True , _lowerCAmelCase : Dict=True , _lowerCAmelCase : Optional[int]=True , _lowerCAmelCase : Optional[Any]=True , _lowerCAmelCase : Any=True , _lowerCAmelCase : List[Any]=99 , _lowerCAmelCase : Dict=32 , _lowerCAmelCase : Optional[int]=5 , _lowerCAmelCase : int=4 , _lowerCAmelCase : Union[str, Any]=37 , _lowerCAmelCase : List[str]="gelu" , _lowerCAmelCase : Any=0.1 , _lowerCAmelCase : str=0.1 , _lowerCAmelCase : Tuple=512 , _lowerCAmelCase : Dict=16 , _lowerCAmelCase : Any=2 , _lowerCAmelCase : Tuple=0.02 , _lowerCAmelCase : List[Any]=3 , _lowerCAmelCase : Union[str, Any]=4 , _lowerCAmelCase : List[str]=None , ): SCREAMING_SNAKE_CASE_ = parent SCREAMING_SNAKE_CASE_ = batch_size SCREAMING_SNAKE_CASE_ = seq_length SCREAMING_SNAKE_CASE_ = is_training SCREAMING_SNAKE_CASE_ = use_token_type_ids SCREAMING_SNAKE_CASE_ = use_input_mask SCREAMING_SNAKE_CASE_ = use_labels SCREAMING_SNAKE_CASE_ = use_mc_token_ids SCREAMING_SNAKE_CASE_ = vocab_size SCREAMING_SNAKE_CASE_ = hidden_size SCREAMING_SNAKE_CASE_ = num_hidden_layers SCREAMING_SNAKE_CASE_ = num_attention_heads SCREAMING_SNAKE_CASE_ = intermediate_size SCREAMING_SNAKE_CASE_ = hidden_act SCREAMING_SNAKE_CASE_ = hidden_dropout_prob SCREAMING_SNAKE_CASE_ = attention_probs_dropout_prob SCREAMING_SNAKE_CASE_ = max_position_embeddings SCREAMING_SNAKE_CASE_ = type_vocab_size SCREAMING_SNAKE_CASE_ = type_sequence_label_size SCREAMING_SNAKE_CASE_ = initializer_range SCREAMING_SNAKE_CASE_ = num_labels SCREAMING_SNAKE_CASE_ = num_choices SCREAMING_SNAKE_CASE_ = scope SCREAMING_SNAKE_CASE_ = self.vocab_size - 1 def lowerCAmelCase_ ( self : Any ): SCREAMING_SNAKE_CASE_ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) SCREAMING_SNAKE_CASE_ = None if self.use_input_mask: SCREAMING_SNAKE_CASE_ = random_attention_mask([self.batch_size, self.seq_length] ) SCREAMING_SNAKE_CASE_ = None if self.use_token_type_ids: SCREAMING_SNAKE_CASE_ = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) SCREAMING_SNAKE_CASE_ = None if self.use_mc_token_ids: SCREAMING_SNAKE_CASE_ = ids_tensor([self.batch_size, self.num_choices] , self.seq_length ) SCREAMING_SNAKE_CASE_ = None SCREAMING_SNAKE_CASE_ = None SCREAMING_SNAKE_CASE_ = None if self.use_labels: SCREAMING_SNAKE_CASE_ = ids_tensor([self.batch_size] , self.type_sequence_label_size ) SCREAMING_SNAKE_CASE_ = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) SCREAMING_SNAKE_CASE_ = ids_tensor([self.batch_size] , self.num_choices ) SCREAMING_SNAKE_CASE_ = self.get_config() SCREAMING_SNAKE_CASE_ = ids_tensor([self.num_hidden_layers, self.num_attention_heads] , 2 ) return ( config, input_ids, input_mask, head_mask, token_type_ids, mc_token_ids, sequence_labels, token_labels, choice_labels, ) def lowerCAmelCase_ ( self : Optional[int] ): return CTRLConfig( vocab_size=self.vocab_size , n_embd=self.hidden_size , n_layer=self.num_hidden_layers , n_head=self.num_attention_heads , n_positions=self.max_position_embeddings , pad_token_id=self.pad_token_id , ) def lowerCAmelCase_ ( self : str , _lowerCAmelCase : str , _lowerCAmelCase : Optional[int] , _lowerCAmelCase : List[str] , _lowerCAmelCase : str , _lowerCAmelCase : Optional[int] , *_lowerCAmelCase : int ): SCREAMING_SNAKE_CASE_ = CTRLModel(config=_lowerCAmelCase ) model.to(_lowerCAmelCase ) model.eval() model(_lowerCAmelCase , token_type_ids=_lowerCAmelCase , head_mask=_lowerCAmelCase ) model(_lowerCAmelCase , token_type_ids=_lowerCAmelCase ) SCREAMING_SNAKE_CASE_ = model(_lowerCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(len(result.past_key_values ) , config.n_layer ) def lowerCAmelCase_ ( self : str , _lowerCAmelCase : Any , _lowerCAmelCase : Any , _lowerCAmelCase : int , _lowerCAmelCase : Union[str, Any] , _lowerCAmelCase : Dict , *_lowerCAmelCase : Union[str, Any] ): SCREAMING_SNAKE_CASE_ = CTRLLMHeadModel(_lowerCAmelCase ) model.to(_lowerCAmelCase ) model.eval() SCREAMING_SNAKE_CASE_ = model(_lowerCAmelCase , token_type_ids=_lowerCAmelCase , labels=_lowerCAmelCase ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def lowerCAmelCase_ ( self : List[str] ): SCREAMING_SNAKE_CASE_ = self.prepare_config_and_inputs() ( ( SCREAMING_SNAKE_CASE_ ) , ( SCREAMING_SNAKE_CASE_ ) , ( SCREAMING_SNAKE_CASE_ ) , ( SCREAMING_SNAKE_CASE_ ) , ( SCREAMING_SNAKE_CASE_ ) , ( SCREAMING_SNAKE_CASE_ ) , ( SCREAMING_SNAKE_CASE_ ) , ( SCREAMING_SNAKE_CASE_ ) , ( SCREAMING_SNAKE_CASE_ ) , ) = config_and_inputs SCREAMING_SNAKE_CASE_ = {'input_ids': input_ids, 'token_type_ids': token_type_ids, 'head_mask': head_mask} return config, inputs_dict def lowerCAmelCase_ ( self : Union[str, Any] , _lowerCAmelCase : Any , _lowerCAmelCase : Optional[Any] , _lowerCAmelCase : Tuple , _lowerCAmelCase : str , *_lowerCAmelCase : List[str] ): SCREAMING_SNAKE_CASE_ = self.num_labels SCREAMING_SNAKE_CASE_ = CTRLForSequenceClassification(_lowerCAmelCase ) model.to(_lowerCAmelCase ) model.eval() SCREAMING_SNAKE_CASE_ = ids_tensor([self.batch_size] , self.type_sequence_label_size ) SCREAMING_SNAKE_CASE_ = model(_lowerCAmelCase , token_type_ids=_lowerCAmelCase , labels=_lowerCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) @require_torch class lowerCamelCase_ ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' lowercase_ = (CTRLModel, CTRLLMHeadModel, CTRLForSequenceClassification) if is_torch_available() else () lowercase_ = (CTRLLMHeadModel,) if is_torch_available() else () lowercase_ = ( { "feature-extraction": CTRLModel, "text-classification": CTRLForSequenceClassification, "text-generation": CTRLLMHeadModel, "zero-shot": CTRLForSequenceClassification, } if is_torch_available() else {} ) lowercase_ = True lowercase_ = False lowercase_ = False def lowerCAmelCase_ ( self : Dict , _lowerCAmelCase : List[str] , _lowerCAmelCase : Union[str, Any] , _lowerCAmelCase : str , _lowerCAmelCase : Optional[Any] , _lowerCAmelCase : Optional[Any] ): if pipeline_test_casse_name == "ZeroShotClassificationPipelineTests": # Get `tokenizer does not have a padding token` error for both fast/slow tokenizers. # `CTRLConfig` was never used in pipeline tests, either because of a missing checkpoint or because a tiny # config could not be created. return True return False def lowerCAmelCase_ ( self : Tuple ): SCREAMING_SNAKE_CASE_ = CTRLModelTester(self ) SCREAMING_SNAKE_CASE_ = ConfigTester(self , config_class=_lowerCAmelCase , n_embd=37 ) def lowerCAmelCase_ ( self : int ): super().tearDown() # clean-up as much as possible GPU memory occupied by PyTorch gc.collect() torch.cuda.empty_cache() def lowerCAmelCase_ ( self : Optional[Any] ): self.config_tester.run_common_tests() def lowerCAmelCase_ ( self : List[str] ): SCREAMING_SNAKE_CASE_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_ctrl_model(*_lowerCAmelCase ) def lowerCAmelCase_ ( self : List[str] ): SCREAMING_SNAKE_CASE_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_lm_head_model(*_lowerCAmelCase ) @unittest.skip('Will be fixed soon by reducing the size of the model used for common tests.' ) def lowerCAmelCase_ ( self : int ): pass @slow def lowerCAmelCase_ ( self : str ): for model_name in CTRL_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: SCREAMING_SNAKE_CASE_ = CTRLModel.from_pretrained(_lowerCAmelCase ) self.assertIsNotNone(_lowerCAmelCase ) @unittest.skip('The model doesn\'t support left padding' ) # and it's not used enough to be worth fixing :) def lowerCAmelCase_ ( self : int ): pass @require_torch class lowerCamelCase_ ( unittest.TestCase ): '''simple docstring''' def lowerCAmelCase_ ( self : str ): super().tearDown() # clean-up as much as possible GPU memory occupied by PyTorch gc.collect() torch.cuda.empty_cache() @slow def lowerCAmelCase_ ( self : int ): SCREAMING_SNAKE_CASE_ = CTRLLMHeadModel.from_pretrained('ctrl' ) model.to(_lowerCAmelCase ) SCREAMING_SNAKE_CASE_ = torch.tensor( [[11_859, 0, 1_611, 8]] , dtype=torch.long , device=_lowerCAmelCase ) # Legal the president is SCREAMING_SNAKE_CASE_ = [ 11_859, 0, 1_611, 8, 5, 150, 26_449, 2, 19, 348, 469, 3, 2_595, 48, 20_740, 246_533, 246_533, 19, 30, 5, ] # Legal the president is a good guy and I don't want to lose my job. \n \n I have a SCREAMING_SNAKE_CASE_ = model.generate(_lowerCAmelCase , do_sample=_lowerCAmelCase ) self.assertListEqual(output_ids[0].tolist() , _lowerCAmelCase )
31
class lowerCamelCase_ : '''simple docstring''' def __init__( self : str ): SCREAMING_SNAKE_CASE_ = {} def lowerCAmelCase_ ( self : List[str] ): print(self.vertex ) for i in self.vertex: print(_lowerCAmelCase , ' -> ' , ' -> '.join([str(_lowerCAmelCase ) for j in self.vertex[i]] ) ) def lowerCAmelCase_ ( self : Union[str, Any] , _lowerCAmelCase : int , _lowerCAmelCase : int ): # check if vertex is already present, if from_vertex in self.vertex: self.vertex[from_vertex].append(_lowerCAmelCase ) else: # else make a new vertex SCREAMING_SNAKE_CASE_ = [to_vertex] def lowerCAmelCase_ ( self : Optional[Any] ): # visited array for storing already visited nodes SCREAMING_SNAKE_CASE_ = [False] * len(self.vertex ) # call the recursive helper function for i in range(len(self.vertex ) ): if not visited[i]: self.dfs_recursive(_lowerCAmelCase , _lowerCAmelCase ) def lowerCAmelCase_ ( self : Tuple , _lowerCAmelCase : int , _lowerCAmelCase : list ): # mark start vertex as visited SCREAMING_SNAKE_CASE_ = True print(_lowerCAmelCase , end=' ' ) # Recur for all the vertices that are adjacent to this node for i in self.vertex: if not visited[i]: self.dfs_recursive(_lowerCAmelCase , _lowerCAmelCase ) if __name__ == "__main__": lowerCamelCase__ : List[Any] = Graph() g.add_edge(0, 1) g.add_edge(0, 2) g.add_edge(1, 2) g.add_edge(2, 0) g.add_edge(2, 3) g.add_edge(3, 3) g.print_graph() print('DFS:') g.dfs() # OUTPUT: # 0 -> 1 -> 2 # 1 -> 2 # 2 -> 0 -> 3 # 3 -> 3 # DFS: # 0 1 2 3
31
1
from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging lowerCamelCase__ : List[Any] = logging.get_logger(__name__) lowerCamelCase__ : Optional[Any] = { 'hustvl/yolos-small': 'https://huggingface.co/hustvl/yolos-small/resolve/main/config.json', # See all YOLOS models at https://huggingface.co/models?filter=yolos } class lowerCamelCase_ ( _SCREAMING_SNAKE_CASE ): '''simple docstring''' lowercase_ = "yolos" def __init__( self : int , _lowerCAmelCase : Any=768 , _lowerCAmelCase : Optional[Any]=12 , _lowerCAmelCase : Any=12 , _lowerCAmelCase : List[str]=3_072 , _lowerCAmelCase : List[Any]="gelu" , _lowerCAmelCase : Optional[int]=0.0 , _lowerCAmelCase : List[Any]=0.0 , _lowerCAmelCase : Union[str, Any]=0.02 , _lowerCAmelCase : Optional[int]=1E-12 , _lowerCAmelCase : List[str]=[512, 864] , _lowerCAmelCase : Optional[Any]=16 , _lowerCAmelCase : List[str]=3 , _lowerCAmelCase : str=True , _lowerCAmelCase : int=100 , _lowerCAmelCase : int=True , _lowerCAmelCase : Any=False , _lowerCAmelCase : List[Any]=1 , _lowerCAmelCase : Union[str, Any]=5 , _lowerCAmelCase : Optional[Any]=2 , _lowerCAmelCase : List[Any]=5 , _lowerCAmelCase : int=2 , _lowerCAmelCase : int=0.1 , **_lowerCAmelCase : Dict , ): super().__init__(**_lowerCAmelCase ) SCREAMING_SNAKE_CASE_ = hidden_size SCREAMING_SNAKE_CASE_ = num_hidden_layers SCREAMING_SNAKE_CASE_ = num_attention_heads SCREAMING_SNAKE_CASE_ = intermediate_size SCREAMING_SNAKE_CASE_ = hidden_act SCREAMING_SNAKE_CASE_ = hidden_dropout_prob SCREAMING_SNAKE_CASE_ = attention_probs_dropout_prob SCREAMING_SNAKE_CASE_ = initializer_range SCREAMING_SNAKE_CASE_ = layer_norm_eps SCREAMING_SNAKE_CASE_ = image_size SCREAMING_SNAKE_CASE_ = patch_size SCREAMING_SNAKE_CASE_ = num_channels SCREAMING_SNAKE_CASE_ = qkv_bias SCREAMING_SNAKE_CASE_ = num_detection_tokens SCREAMING_SNAKE_CASE_ = use_mid_position_embeddings SCREAMING_SNAKE_CASE_ = auxiliary_loss # Hungarian matcher SCREAMING_SNAKE_CASE_ = class_cost SCREAMING_SNAKE_CASE_ = bbox_cost SCREAMING_SNAKE_CASE_ = giou_cost # Loss coefficients SCREAMING_SNAKE_CASE_ = bbox_loss_coefficient SCREAMING_SNAKE_CASE_ = giou_loss_coefficient SCREAMING_SNAKE_CASE_ = eos_coefficient class lowerCamelCase_ ( _SCREAMING_SNAKE_CASE ): '''simple docstring''' lowercase_ = version.parse("1.11" ) @property def lowerCAmelCase_ ( self : List[Any] ): return OrderedDict( [ ('pixel_values', {0: 'batch', 1: 'num_channels', 2: 'height', 3: 'width'}), ] ) @property def lowerCAmelCase_ ( self : Tuple ): return 1E-4 @property def lowerCAmelCase_ ( self : List[str] ): return 12
31
from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCamelCase__ : str = logging.get_logger(__name__) lowerCamelCase__ : Tuple = { 'funnel-transformer/small': 'https://huggingface.co/funnel-transformer/small/resolve/main/config.json', 'funnel-transformer/small-base': 'https://huggingface.co/funnel-transformer/small-base/resolve/main/config.json', 'funnel-transformer/medium': 'https://huggingface.co/funnel-transformer/medium/resolve/main/config.json', 'funnel-transformer/medium-base': 'https://huggingface.co/funnel-transformer/medium-base/resolve/main/config.json', 'funnel-transformer/intermediate': ( 'https://huggingface.co/funnel-transformer/intermediate/resolve/main/config.json' ), 'funnel-transformer/intermediate-base': ( 'https://huggingface.co/funnel-transformer/intermediate-base/resolve/main/config.json' ), 'funnel-transformer/large': 'https://huggingface.co/funnel-transformer/large/resolve/main/config.json', 'funnel-transformer/large-base': 'https://huggingface.co/funnel-transformer/large-base/resolve/main/config.json', 'funnel-transformer/xlarge': 'https://huggingface.co/funnel-transformer/xlarge/resolve/main/config.json', 'funnel-transformer/xlarge-base': 'https://huggingface.co/funnel-transformer/xlarge-base/resolve/main/config.json', } class lowerCamelCase_ ( _SCREAMING_SNAKE_CASE ): '''simple docstring''' lowercase_ = "funnel" lowercase_ = { "hidden_size": "d_model", "num_attention_heads": "n_head", } def __init__( self : int , _lowerCAmelCase : Optional[int]=30_522 , _lowerCAmelCase : List[str]=[4, 4, 4] , _lowerCAmelCase : Tuple=None , _lowerCAmelCase : Optional[int]=2 , _lowerCAmelCase : int=768 , _lowerCAmelCase : Optional[Any]=12 , _lowerCAmelCase : Optional[Any]=64 , _lowerCAmelCase : Optional[Any]=3_072 , _lowerCAmelCase : List[str]="gelu_new" , _lowerCAmelCase : Any=0.1 , _lowerCAmelCase : int=0.1 , _lowerCAmelCase : Tuple=0.0 , _lowerCAmelCase : List[Any]=0.1 , _lowerCAmelCase : Dict=None , _lowerCAmelCase : str=1E-9 , _lowerCAmelCase : Any="mean" , _lowerCAmelCase : Union[str, Any]="relative_shift" , _lowerCAmelCase : Optional[Any]=True , _lowerCAmelCase : Dict=True , _lowerCAmelCase : Tuple=True , **_lowerCAmelCase : Optional[Any] , ): SCREAMING_SNAKE_CASE_ = vocab_size SCREAMING_SNAKE_CASE_ = block_sizes SCREAMING_SNAKE_CASE_ = [1] * len(_lowerCAmelCase ) if block_repeats is None else block_repeats assert len(_lowerCAmelCase ) == len( self.block_repeats ), "`block_sizes` and `block_repeats` should have the same length." SCREAMING_SNAKE_CASE_ = num_decoder_layers SCREAMING_SNAKE_CASE_ = d_model SCREAMING_SNAKE_CASE_ = n_head SCREAMING_SNAKE_CASE_ = d_head SCREAMING_SNAKE_CASE_ = d_inner SCREAMING_SNAKE_CASE_ = hidden_act SCREAMING_SNAKE_CASE_ = hidden_dropout SCREAMING_SNAKE_CASE_ = attention_dropout SCREAMING_SNAKE_CASE_ = activation_dropout SCREAMING_SNAKE_CASE_ = initializer_range SCREAMING_SNAKE_CASE_ = initializer_std SCREAMING_SNAKE_CASE_ = layer_norm_eps assert pooling_type in [ "mean", "max", ], F"Got {pooling_type} for `pooling_type` but only 'mean' and 'max' are supported." SCREAMING_SNAKE_CASE_ = pooling_type assert attention_type in [ "relative_shift", "factorized", ], F"Got {attention_type} for `attention_type` but only 'relative_shift' and 'factorized' are supported." SCREAMING_SNAKE_CASE_ = attention_type SCREAMING_SNAKE_CASE_ = separate_cls SCREAMING_SNAKE_CASE_ = truncate_seq SCREAMING_SNAKE_CASE_ = pool_q_only super().__init__(**_lowerCAmelCase ) @property def lowerCAmelCase_ ( self : Optional[int] ): return sum(self.block_sizes ) @num_hidden_layers.setter def lowerCAmelCase_ ( self : int , _lowerCAmelCase : List[Any] ): raise NotImplementedError( 'This model does not support the setting of `num_hidden_layers`. Please set `block_sizes`.' ) @property def lowerCAmelCase_ ( self : List[Any] ): return len(self.block_sizes ) @num_blocks.setter def lowerCAmelCase_ ( self : Dict , _lowerCAmelCase : Union[str, Any] ): raise NotImplementedError('This model does not support the setting of `num_blocks`. Please set `block_sizes`.' )
31
1
import json from typing import Iterator, List, Union from tokenizers import AddedToken, Regex, Tokenizer, decoders, normalizers, pre_tokenizers, trainers from tokenizers.implementations.base_tokenizer import BaseTokenizer from tokenizers.models import Unigram from tokenizers.processors import TemplateProcessing class lowerCamelCase_ ( _SCREAMING_SNAKE_CASE ): '''simple docstring''' def __init__( self : Optional[int] , _lowerCAmelCase : str = "▁" , _lowerCAmelCase : bool = True , _lowerCAmelCase : Union[str, AddedToken] = "<unk>" , _lowerCAmelCase : Union[str, AddedToken] = "</s>" , _lowerCAmelCase : Union[str, AddedToken] = "<pad>" , ): SCREAMING_SNAKE_CASE_ = { 'pad': {'id': 0, 'token': pad_token}, 'eos': {'id': 1, 'token': eos_token}, 'unk': {'id': 2, 'token': unk_token}, } SCREAMING_SNAKE_CASE_ = [None] * len(self.special_tokens ) for token_dict in self.special_tokens.values(): SCREAMING_SNAKE_CASE_ = token_dict['token'] SCREAMING_SNAKE_CASE_ = Tokenizer(Unigram() ) SCREAMING_SNAKE_CASE_ = normalizers.Sequence( [ normalizers.Nmt(), normalizers.NFKC(), normalizers.Replace(Regex(' {2,}' ) , ' ' ), normalizers.Lowercase(), ] ) SCREAMING_SNAKE_CASE_ = pre_tokenizers.Sequence( [ pre_tokenizers.Metaspace(replacement=_lowerCAmelCase , add_prefix_space=_lowerCAmelCase ), pre_tokenizers.Digits(individual_digits=_lowerCAmelCase ), pre_tokenizers.Punctuation(), ] ) SCREAMING_SNAKE_CASE_ = decoders.Metaspace(replacement=_lowerCAmelCase , add_prefix_space=_lowerCAmelCase ) SCREAMING_SNAKE_CASE_ = TemplateProcessing( single=F"$A {self.special_tokens['eos']['token']}" , special_tokens=[(self.special_tokens['eos']['token'], self.special_tokens['eos']['id'])] , ) SCREAMING_SNAKE_CASE_ = { 'model': 'SentencePieceUnigram', 'replacement': replacement, 'add_prefix_space': add_prefix_space, } super().__init__(_lowerCAmelCase , _lowerCAmelCase ) def lowerCAmelCase_ ( self : Tuple , _lowerCAmelCase : Union[str, List[str]] , _lowerCAmelCase : int = 8_000 , _lowerCAmelCase : bool = True , ): SCREAMING_SNAKE_CASE_ = trainers.UnigramTrainer( vocab_size=_lowerCAmelCase , special_tokens=self.special_tokens_list , show_progress=_lowerCAmelCase , ) if isinstance(_lowerCAmelCase , _lowerCAmelCase ): SCREAMING_SNAKE_CASE_ = [files] self._tokenizer.train(_lowerCAmelCase , trainer=_lowerCAmelCase ) self.add_unk_id() def lowerCAmelCase_ ( self : Union[str, Any] , _lowerCAmelCase : Union[Iterator[str], Iterator[Iterator[str]]] , _lowerCAmelCase : int = 8_000 , _lowerCAmelCase : bool = True , ): SCREAMING_SNAKE_CASE_ = trainers.UnigramTrainer( vocab_size=_lowerCAmelCase , special_tokens=self.special_tokens_list , show_progress=_lowerCAmelCase , ) self._tokenizer.train_from_iterator(_lowerCAmelCase , trainer=_lowerCAmelCase ) self.add_unk_id() def lowerCAmelCase_ ( self : List[Any] ): SCREAMING_SNAKE_CASE_ = json.loads(self._tokenizer.to_str() ) SCREAMING_SNAKE_CASE_ = self.special_tokens['unk']['id'] SCREAMING_SNAKE_CASE_ = Tokenizer.from_str(json.dumps(_lowerCAmelCase ) )
31
from __future__ import annotations from collections.abc import Iterator class lowerCamelCase_ : '''simple docstring''' def __init__( self : Union[str, Any] , _lowerCAmelCase : int ): SCREAMING_SNAKE_CASE_ = value SCREAMING_SNAKE_CASE_ = None SCREAMING_SNAKE_CASE_ = None class lowerCamelCase_ : '''simple docstring''' def __init__( self : int , _lowerCAmelCase : Node ): SCREAMING_SNAKE_CASE_ = tree def lowerCAmelCase_ ( self : Union[str, Any] , _lowerCAmelCase : Node | None ): if node is None: return 0 return node.value + ( self.depth_first_search(node.left ) + self.depth_first_search(node.right ) ) def __iter__( self : Dict ): yield self.depth_first_search(self.tree ) if __name__ == "__main__": import doctest doctest.testmod()
31
1
import json import os from functools import lru_cache from typing import Dict, List, Optional, Tuple, Union import regex as re from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...tokenization_utils_base import BatchEncoding, EncodedInput from ...utils import PaddingStrategy, logging lowerCamelCase__ : List[Any] = logging.get_logger(__name__) lowerCamelCase__ : int = {'vocab_file': 'vocab.json', 'merges_file': 'merges.txt'} # See all LED models at https://huggingface.co/models?filter=LED lowerCamelCase__ : int = { 'vocab_file': { 'allenai/led-base-16384': 'https://huggingface.co/allenai/led-base-16384/resolve/main/vocab.json', }, 'merges_file': { 'allenai/led-base-16384': 'https://huggingface.co/allenai/led-base-16384/resolve/main/merges.txt', }, 'tokenizer_file': { 'allenai/led-base-16384': 'https://huggingface.co/allenai/led-base-16384/resolve/main/tokenizer.json', }, } lowerCamelCase__ : List[Any] = { 'allenai/led-base-16384': 16_384, } @lru_cache() # Copied from transformers.models.bart.tokenization_bart.bytes_to_unicode def UpperCAmelCase_ ( ) -> int: SCREAMING_SNAKE_CASE_ = ( list(range(ord('!' ) , ord('~' ) + 1 ) ) + list(range(ord('¡' ) , ord('¬' ) + 1 ) ) + list(range(ord('®' ) , ord('ÿ' ) + 1 ) ) ) SCREAMING_SNAKE_CASE_ = bs[:] SCREAMING_SNAKE_CASE_ = 0 for b in range(2**8 ): if b not in bs: bs.append(__UpperCAmelCase ) cs.append(2**8 + n ) n += 1 SCREAMING_SNAKE_CASE_ = [chr(__UpperCAmelCase ) for n in cs] return dict(zip(__UpperCAmelCase , __UpperCAmelCase ) ) def UpperCAmelCase_ ( __UpperCAmelCase : Optional[Any] ) -> Optional[Any]: SCREAMING_SNAKE_CASE_ = set() SCREAMING_SNAKE_CASE_ = word[0] for char in word[1:]: pairs.add((prev_char, char) ) SCREAMING_SNAKE_CASE_ = char return pairs class lowerCamelCase_ ( _SCREAMING_SNAKE_CASE ): '''simple docstring''' lowercase_ = VOCAB_FILES_NAMES lowercase_ = PRETRAINED_VOCAB_FILES_MAP lowercase_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowercase_ = ["input_ids", "attention_mask"] def __init__( self : Union[str, Any] , _lowerCAmelCase : Optional[Any] , _lowerCAmelCase : List[Any] , _lowerCAmelCase : Dict="replace" , _lowerCAmelCase : List[str]="<s>" , _lowerCAmelCase : Union[str, Any]="</s>" , _lowerCAmelCase : Dict="</s>" , _lowerCAmelCase : Tuple="<s>" , _lowerCAmelCase : Any="<unk>" , _lowerCAmelCase : Optional[Any]="<pad>" , _lowerCAmelCase : List[str]="<mask>" , _lowerCAmelCase : Optional[Any]=False , **_lowerCAmelCase : Union[str, Any] , ): SCREAMING_SNAKE_CASE_ = AddedToken(_lowerCAmelCase , lstrip=_lowerCAmelCase , rstrip=_lowerCAmelCase ) if isinstance(_lowerCAmelCase , _lowerCAmelCase ) else bos_token SCREAMING_SNAKE_CASE_ = AddedToken(_lowerCAmelCase , lstrip=_lowerCAmelCase , rstrip=_lowerCAmelCase ) if isinstance(_lowerCAmelCase , _lowerCAmelCase ) else eos_token SCREAMING_SNAKE_CASE_ = AddedToken(_lowerCAmelCase , lstrip=_lowerCAmelCase , rstrip=_lowerCAmelCase ) if isinstance(_lowerCAmelCase , _lowerCAmelCase ) else sep_token SCREAMING_SNAKE_CASE_ = AddedToken(_lowerCAmelCase , lstrip=_lowerCAmelCase , rstrip=_lowerCAmelCase ) if isinstance(_lowerCAmelCase , _lowerCAmelCase ) else cls_token SCREAMING_SNAKE_CASE_ = AddedToken(_lowerCAmelCase , lstrip=_lowerCAmelCase , rstrip=_lowerCAmelCase ) if isinstance(_lowerCAmelCase , _lowerCAmelCase ) else unk_token SCREAMING_SNAKE_CASE_ = AddedToken(_lowerCAmelCase , lstrip=_lowerCAmelCase , rstrip=_lowerCAmelCase ) if isinstance(_lowerCAmelCase , _lowerCAmelCase ) else pad_token # Mask token behave like a normal word, i.e. include the space before it SCREAMING_SNAKE_CASE_ = AddedToken(_lowerCAmelCase , lstrip=_lowerCAmelCase , rstrip=_lowerCAmelCase ) if isinstance(_lowerCAmelCase , _lowerCAmelCase ) else mask_token super().__init__( errors=_lowerCAmelCase , bos_token=_lowerCAmelCase , eos_token=_lowerCAmelCase , unk_token=_lowerCAmelCase , sep_token=_lowerCAmelCase , cls_token=_lowerCAmelCase , pad_token=_lowerCAmelCase , mask_token=_lowerCAmelCase , add_prefix_space=_lowerCAmelCase , **_lowerCAmelCase , ) with open(_lowerCAmelCase , encoding='utf-8' ) as vocab_handle: SCREAMING_SNAKE_CASE_ = json.load(_lowerCAmelCase ) SCREAMING_SNAKE_CASE_ = {v: k for k, v in self.encoder.items()} SCREAMING_SNAKE_CASE_ = errors # how to handle errors in decoding SCREAMING_SNAKE_CASE_ = bytes_to_unicode() SCREAMING_SNAKE_CASE_ = {v: k for k, v in self.byte_encoder.items()} with open(_lowerCAmelCase , encoding='utf-8' ) as merges_handle: SCREAMING_SNAKE_CASE_ = merges_handle.read().split('\n' )[1:-1] SCREAMING_SNAKE_CASE_ = [tuple(merge.split() ) for merge in bpe_merges] SCREAMING_SNAKE_CASE_ = dict(zip(_lowerCAmelCase , range(len(_lowerCAmelCase ) ) ) ) SCREAMING_SNAKE_CASE_ = {} SCREAMING_SNAKE_CASE_ = add_prefix_space # Should have added re.IGNORECASE so BPE merges can happen for capitalized versions of contractions SCREAMING_SNAKE_CASE_ = re.compile(R'\'s|\'t|\'re|\'ve|\'m|\'ll|\'d| ?\p{L}+| ?\p{N}+| ?[^\s\p{L}\p{N}]+|\s+(?!\S)|\s+' ) @property # Copied from transformers.models.bart.tokenization_bart.BartTokenizer.vocab_size def lowerCAmelCase_ ( self : int ): return len(self.encoder ) def lowerCAmelCase_ ( self : Optional[int] ): return dict(self.encoder , **self.added_tokens_encoder ) def lowerCAmelCase_ ( self : Dict , _lowerCAmelCase : Optional[int] ): if token in self.cache: return self.cache[token] SCREAMING_SNAKE_CASE_ = tuple(_lowerCAmelCase ) SCREAMING_SNAKE_CASE_ = get_pairs(_lowerCAmelCase ) if not pairs: return token while True: SCREAMING_SNAKE_CASE_ = min(_lowerCAmelCase , key=lambda _lowerCAmelCase : self.bpe_ranks.get(_lowerCAmelCase , float('inf' ) ) ) if bigram not in self.bpe_ranks: break SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = bigram SCREAMING_SNAKE_CASE_ = [] SCREAMING_SNAKE_CASE_ = 0 while i < len(_lowerCAmelCase ): try: SCREAMING_SNAKE_CASE_ = word.index(_lowerCAmelCase , _lowerCAmelCase ) except ValueError: new_word.extend(word[i:] ) break else: new_word.extend(word[i:j] ) SCREAMING_SNAKE_CASE_ = j if word[i] == first and i < len(_lowerCAmelCase ) - 1 and word[i + 1] == second: new_word.append(first + second ) i += 2 else: new_word.append(word[i] ) i += 1 SCREAMING_SNAKE_CASE_ = tuple(_lowerCAmelCase ) SCREAMING_SNAKE_CASE_ = new_word if len(_lowerCAmelCase ) == 1: break else: SCREAMING_SNAKE_CASE_ = get_pairs(_lowerCAmelCase ) SCREAMING_SNAKE_CASE_ = ' '.join(_lowerCAmelCase ) SCREAMING_SNAKE_CASE_ = word return word def lowerCAmelCase_ ( self : str , _lowerCAmelCase : Dict ): SCREAMING_SNAKE_CASE_ = [] for token in re.findall(self.pat , _lowerCAmelCase ): SCREAMING_SNAKE_CASE_ = ''.join( self.byte_encoder[b] for b in token.encode('utf-8' ) ) # Maps all our bytes to unicode strings, avoiding control tokens of the BPE (spaces in our case) bpe_tokens.extend(bpe_token for bpe_token in self.bpe(_lowerCAmelCase ).split(' ' ) ) return bpe_tokens def lowerCAmelCase_ ( self : List[str] , _lowerCAmelCase : Union[str, Any] ): return self.encoder.get(_lowerCAmelCase , self.encoder.get(self.unk_token ) ) def lowerCAmelCase_ ( self : Any , _lowerCAmelCase : Optional[Any] ): return self.decoder.get(_lowerCAmelCase ) def lowerCAmelCase_ ( self : int , _lowerCAmelCase : Optional[int] ): SCREAMING_SNAKE_CASE_ = ''.join(_lowerCAmelCase ) SCREAMING_SNAKE_CASE_ = bytearray([self.byte_decoder[c] for c in text] ).decode('utf-8' , errors=self.errors ) return text def lowerCAmelCase_ ( self : Union[str, Any] , _lowerCAmelCase : str , _lowerCAmelCase : Optional[str] = None ): if not os.path.isdir(_lowerCAmelCase ): logger.error(F"Vocabulary path ({save_directory}) should be a directory" ) return SCREAMING_SNAKE_CASE_ = os.path.join( _lowerCAmelCase , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) SCREAMING_SNAKE_CASE_ = os.path.join( _lowerCAmelCase , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['merges_file'] ) with open(_lowerCAmelCase , 'w' , encoding='utf-8' ) as f: f.write(json.dumps(self.encoder , indent=2 , sort_keys=_lowerCAmelCase , ensure_ascii=_lowerCAmelCase ) + '\n' ) SCREAMING_SNAKE_CASE_ = 0 with open(_lowerCAmelCase , 'w' , encoding='utf-8' ) as writer: writer.write('#version: 0.2\n' ) for bpe_tokens, token_index in sorted(self.bpe_ranks.items() , key=lambda _lowerCAmelCase : kv[1] ): if index != token_index: logger.warning( F"Saving vocabulary to {merge_file}: BPE merge indices are not consecutive." ' Please check that the tokenizer is not corrupted!' ) SCREAMING_SNAKE_CASE_ = token_index writer.write(' '.join(_lowerCAmelCase ) + '\n' ) index += 1 return vocab_file, merge_file def lowerCAmelCase_ ( self : int , _lowerCAmelCase : List[int] , _lowerCAmelCase : Optional[List[int]] = None ): if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] SCREAMING_SNAKE_CASE_ = [self.cls_token_id] SCREAMING_SNAKE_CASE_ = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def lowerCAmelCase_ ( self : Optional[int] , _lowerCAmelCase : List[int] , _lowerCAmelCase : Optional[List[int]] = None , _lowerCAmelCase : bool = False ): if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=_lowerCAmelCase , token_ids_a=_lowerCAmelCase , already_has_special_tokens=_lowerCAmelCase ) if token_ids_a is None: return [1] + ([0] * len(_lowerCAmelCase )) + [1] return [1] + ([0] * len(_lowerCAmelCase )) + [1, 1] + ([0] * len(_lowerCAmelCase )) + [1] def lowerCAmelCase_ ( self : str , _lowerCAmelCase : List[int] , _lowerCAmelCase : Optional[List[int]] = None ): SCREAMING_SNAKE_CASE_ = [self.sep_token_id] SCREAMING_SNAKE_CASE_ = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def lowerCAmelCase_ ( self : str , _lowerCAmelCase : List[str] , _lowerCAmelCase : Any=False , **_lowerCAmelCase : Any ): SCREAMING_SNAKE_CASE_ = kwargs.pop('add_prefix_space' , self.add_prefix_space ) if (is_split_into_words or add_prefix_space) and (len(_lowerCAmelCase ) > 0 and not text[0].isspace()): SCREAMING_SNAKE_CASE_ = ' ' + text return (text, kwargs) def lowerCAmelCase_ ( self : List[str] , _lowerCAmelCase : Union[Dict[str, EncodedInput], BatchEncoding] , _lowerCAmelCase : Optional[int] = None , _lowerCAmelCase : PaddingStrategy = PaddingStrategy.DO_NOT_PAD , _lowerCAmelCase : Optional[int] = None , _lowerCAmelCase : Optional[bool] = None , ): SCREAMING_SNAKE_CASE_ = super()._pad( encoded_inputs=_lowerCAmelCase , max_length=_lowerCAmelCase , padding_strategy=_lowerCAmelCase , pad_to_multiple_of=_lowerCAmelCase , return_attention_mask=_lowerCAmelCase , ) # Load from model defaults if return_attention_mask is None: SCREAMING_SNAKE_CASE_ = 'attention_mask' in self.model_input_names if return_attention_mask and "global_attention_mask" in encoded_inputs: SCREAMING_SNAKE_CASE_ = encoded_inputs[self.model_input_names[0]] # `global_attention_mask` need to have the same length as other (sequential) inputs. SCREAMING_SNAKE_CASE_ = len(encoded_inputs['global_attention_mask'] ) != len(_lowerCAmelCase ) if needs_to_be_padded: SCREAMING_SNAKE_CASE_ = len(_lowerCAmelCase ) - len(encoded_inputs['global_attention_mask'] ) if self.padding_side == "right": # Use `-1` since `0` in `global_attention_mask` means `local attention` instead of `not to attend` SCREAMING_SNAKE_CASE_ = ( encoded_inputs['global_attention_mask'] + [-1] * difference ) elif self.padding_side == "left": SCREAMING_SNAKE_CASE_ = [-1] * difference + encoded_inputs[ 'global_attention_mask' ] else: raise ValueError('Invalid padding strategy:' + str(self.padding_side ) ) return encoded_inputs
31
def UpperCAmelCase_ ( __UpperCAmelCase : list , __UpperCAmelCase : int , __UpperCAmelCase : int = 0 , __UpperCAmelCase : int = 0 ) -> int: SCREAMING_SNAKE_CASE_ = right or len(__UpperCAmelCase ) - 1 if left > right: return -1 elif list_data[left] == key: return left elif list_data[right] == key: return right else: return search(__UpperCAmelCase , __UpperCAmelCase , left + 1 , right - 1 ) if __name__ == "__main__": import doctest doctest.testmod()
31
1
from typing import List, Optional, Union from ...image_utils import ImageInput from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType class lowerCamelCase_ ( _SCREAMING_SNAKE_CASE ): '''simple docstring''' lowercase_ = ["image_processor", "tokenizer"] lowercase_ = "BlipImageProcessor" lowercase_ = "AutoTokenizer" def __init__( self : str , _lowerCAmelCase : List[str] , _lowerCAmelCase : Optional[int] ): SCREAMING_SNAKE_CASE_ = False super().__init__(_lowerCAmelCase , _lowerCAmelCase ) SCREAMING_SNAKE_CASE_ = self.image_processor def __call__( self : Dict , _lowerCAmelCase : ImageInput = None , _lowerCAmelCase : Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]] = None , _lowerCAmelCase : bool = True , _lowerCAmelCase : Union[bool, str, PaddingStrategy] = False , _lowerCAmelCase : Union[bool, str, TruncationStrategy] = None , _lowerCAmelCase : Optional[int] = None , _lowerCAmelCase : int = 0 , _lowerCAmelCase : Optional[int] = None , _lowerCAmelCase : Optional[bool] = None , _lowerCAmelCase : bool = False , _lowerCAmelCase : bool = False , _lowerCAmelCase : bool = False , _lowerCAmelCase : bool = False , _lowerCAmelCase : bool = False , _lowerCAmelCase : bool = True , _lowerCAmelCase : Optional[Union[str, TensorType]] = None , **_lowerCAmelCase : Any , ): if images is None and text is None: raise ValueError('You have to specify either images or text.' ) # Get only text if images is None: SCREAMING_SNAKE_CASE_ = self.tokenizer SCREAMING_SNAKE_CASE_ = self.tokenizer( text=_lowerCAmelCase , add_special_tokens=_lowerCAmelCase , padding=_lowerCAmelCase , truncation=_lowerCAmelCase , max_length=_lowerCAmelCase , stride=_lowerCAmelCase , pad_to_multiple_of=_lowerCAmelCase , return_attention_mask=_lowerCAmelCase , return_overflowing_tokens=_lowerCAmelCase , return_special_tokens_mask=_lowerCAmelCase , return_offsets_mapping=_lowerCAmelCase , return_token_type_ids=_lowerCAmelCase , return_length=_lowerCAmelCase , verbose=_lowerCAmelCase , return_tensors=_lowerCAmelCase , **_lowerCAmelCase , ) return text_encoding # add pixel_values SCREAMING_SNAKE_CASE_ = self.image_processor(_lowerCAmelCase , return_tensors=_lowerCAmelCase ) if text is not None: SCREAMING_SNAKE_CASE_ = self.tokenizer( text=_lowerCAmelCase , add_special_tokens=_lowerCAmelCase , padding=_lowerCAmelCase , truncation=_lowerCAmelCase , max_length=_lowerCAmelCase , stride=_lowerCAmelCase , pad_to_multiple_of=_lowerCAmelCase , return_attention_mask=_lowerCAmelCase , return_overflowing_tokens=_lowerCAmelCase , return_special_tokens_mask=_lowerCAmelCase , return_offsets_mapping=_lowerCAmelCase , return_token_type_ids=_lowerCAmelCase , return_length=_lowerCAmelCase , verbose=_lowerCAmelCase , return_tensors=_lowerCAmelCase , **_lowerCAmelCase , ) else: SCREAMING_SNAKE_CASE_ = None if text_encoding is not None: encoding_image_processor.update(_lowerCAmelCase ) return encoding_image_processor def lowerCAmelCase_ ( self : int , *_lowerCAmelCase : int , **_lowerCAmelCase : Optional[int] ): return self.tokenizer.batch_decode(*_lowerCAmelCase , **_lowerCAmelCase ) def lowerCAmelCase_ ( self : Optional[Any] , *_lowerCAmelCase : List[Any] , **_lowerCAmelCase : Optional[Any] ): return self.tokenizer.decode(*_lowerCAmelCase , **_lowerCAmelCase ) @property # Copied from transformers.models.blip.processing_blip.BlipProcessor.model_input_names def lowerCAmelCase_ ( self : int ): SCREAMING_SNAKE_CASE_ = self.tokenizer.model_input_names SCREAMING_SNAKE_CASE_ = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) )
31
import os from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils import AddedToken from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_fnet import FNetTokenizer else: lowerCamelCase__ : Optional[Any] = None lowerCamelCase__ : List[str] = logging.get_logger(__name__) lowerCamelCase__ : List[str] = {'vocab_file': 'spiece.model', 'tokenizer_file': 'tokenizer.json'} lowerCamelCase__ : List[str] = { 'vocab_file': { 'google/fnet-base': 'https://huggingface.co/google/fnet-base/resolve/main/spiece.model', 'google/fnet-large': 'https://huggingface.co/google/fnet-large/resolve/main/spiece.model', }, 'tokenizer_file': { 'google/fnet-base': 'https://huggingface.co/google/fnet-base/resolve/main/tokenizer.json', 'google/fnet-large': 'https://huggingface.co/google/fnet-large/resolve/main/tokenizer.json', }, } lowerCamelCase__ : Optional[Any] = { 'google/fnet-base': 512, 'google/fnet-large': 512, } lowerCamelCase__ : List[Any] = '▁' class lowerCamelCase_ ( _SCREAMING_SNAKE_CASE ): '''simple docstring''' lowercase_ = VOCAB_FILES_NAMES lowercase_ = PRETRAINED_VOCAB_FILES_MAP lowercase_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowercase_ = ["input_ids", "token_type_ids"] lowercase_ = FNetTokenizer def __init__( self : List[Any] , _lowerCAmelCase : Dict=None , _lowerCAmelCase : Dict=None , _lowerCAmelCase : List[str]=False , _lowerCAmelCase : Optional[Any]=True , _lowerCAmelCase : Tuple=True , _lowerCAmelCase : List[Any]="<unk>" , _lowerCAmelCase : Optional[Any]="[SEP]" , _lowerCAmelCase : Optional[Any]="<pad>" , _lowerCAmelCase : Optional[int]="[CLS]" , _lowerCAmelCase : Optional[Any]="[MASK]" , **_lowerCAmelCase : Any , ): # Mask token behave like a normal word, i.e. include the space before it and # is included in the raw text, there should be a match in a non-normalized sentence. SCREAMING_SNAKE_CASE_ = ( AddedToken(_lowerCAmelCase , lstrip=_lowerCAmelCase , rstrip=_lowerCAmelCase , normalized=_lowerCAmelCase ) if isinstance(_lowerCAmelCase , _lowerCAmelCase ) else mask_token ) super().__init__( _lowerCAmelCase , tokenizer_file=_lowerCAmelCase , do_lower_case=_lowerCAmelCase , remove_space=_lowerCAmelCase , keep_accents=_lowerCAmelCase , unk_token=_lowerCAmelCase , sep_token=_lowerCAmelCase , pad_token=_lowerCAmelCase , cls_token=_lowerCAmelCase , mask_token=_lowerCAmelCase , **_lowerCAmelCase , ) SCREAMING_SNAKE_CASE_ = do_lower_case SCREAMING_SNAKE_CASE_ = remove_space SCREAMING_SNAKE_CASE_ = keep_accents SCREAMING_SNAKE_CASE_ = vocab_file SCREAMING_SNAKE_CASE_ = False if not self.vocab_file else True def lowerCAmelCase_ ( self : Any , _lowerCAmelCase : List[int] , _lowerCAmelCase : Optional[List[int]] = None ): SCREAMING_SNAKE_CASE_ = [self.sep_token_id] SCREAMING_SNAKE_CASE_ = [self.cls_token_id] if token_ids_a is None: return cls + token_ids_a + sep return cls + token_ids_a + sep + token_ids_a + sep def lowerCAmelCase_ ( self : Optional[int] , _lowerCAmelCase : List[int] , _lowerCAmelCase : Optional[List[int]] = None ): SCREAMING_SNAKE_CASE_ = [self.sep_token_id] SCREAMING_SNAKE_CASE_ = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def lowerCAmelCase_ ( self : Optional[Any] , _lowerCAmelCase : str , _lowerCAmelCase : Optional[str] = None ): if not os.path.isdir(_lowerCAmelCase ): logger.error(F"Vocabulary path ({save_directory}) should be a directory" ) return SCREAMING_SNAKE_CASE_ = os.path.join( _lowerCAmelCase , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(_lowerCAmelCase ): copyfile(self.vocab_file , _lowerCAmelCase ) return (out_vocab_file,)
31
1
import numpy as np from cva import destroyAllWindows, imread, imshow, waitKey class lowerCamelCase_ : '''simple docstring''' def __init__( self : str , _lowerCAmelCase : Tuple , _lowerCAmelCase : int , _lowerCAmelCase : int ): if dst_width < 0 or dst_height < 0: raise ValueError('Destination width/height should be > 0' ) SCREAMING_SNAKE_CASE_ = img SCREAMING_SNAKE_CASE_ = img.shape[1] SCREAMING_SNAKE_CASE_ = img.shape[0] SCREAMING_SNAKE_CASE_ = dst_width SCREAMING_SNAKE_CASE_ = dst_height SCREAMING_SNAKE_CASE_ = self.src_w / self.dst_w SCREAMING_SNAKE_CASE_ = self.src_h / self.dst_h SCREAMING_SNAKE_CASE_ = SCREAMING_SNAKE_CASE_ = ( np.ones((self.dst_h, self.dst_w, 3) , np.uinta ) * 255 ) def lowerCAmelCase_ ( self : Optional[int] ): for i in range(self.dst_h ): for j in range(self.dst_w ): SCREAMING_SNAKE_CASE_ = self.img[self.get_y(_lowerCAmelCase )][self.get_x(_lowerCAmelCase )] def lowerCAmelCase_ ( self : str , _lowerCAmelCase : int ): return int(self.ratio_x * x ) def lowerCAmelCase_ ( self : Tuple , _lowerCAmelCase : int ): return int(self.ratio_y * y ) if __name__ == "__main__": lowerCamelCase__ , lowerCamelCase__ : Optional[int] = 800, 600 lowerCamelCase__ : Any = imread('image_data/lena.jpg', 1) lowerCamelCase__ : List[str] = NearestNeighbour(im, dst_w, dst_h) n.process() imshow( f'''Image resized from: {im.shape[1]}x{im.shape[0]} to {dst_w}x{dst_h}''', n.output ) waitKey(0) destroyAllWindows()
31
from __future__ import annotations from collections.abc import Generator def UpperCAmelCase_ ( ) -> Generator[int, None, None]: SCREAMING_SNAKE_CASE_ = {} SCREAMING_SNAKE_CASE_ = 2 while True: SCREAMING_SNAKE_CASE_ = factor_map.pop(__UpperCAmelCase , __UpperCAmelCase ) if factor: SCREAMING_SNAKE_CASE_ = factor + prime while x in factor_map: x += factor SCREAMING_SNAKE_CASE_ = factor else: SCREAMING_SNAKE_CASE_ = prime yield prime prime += 1 def UpperCAmelCase_ ( __UpperCAmelCase : float = 1E10 ) -> int: SCREAMING_SNAKE_CASE_ = sieve() SCREAMING_SNAKE_CASE_ = 1 while True: SCREAMING_SNAKE_CASE_ = next(__UpperCAmelCase ) if (2 * prime * n) > limit: return n # Ignore the next prime as the reminder will be 2. next(__UpperCAmelCase ) n += 2 if __name__ == "__main__": print(solution())
31
1
import argparse import logging import os import time import timeit import datasets import numpy as np import pycuda.autoinit # noqa: F401 import pycuda.driver as cuda import tensorrt as trt import torch from absl import logging as absl_logging from accelerate import Accelerator from datasets import load_dataset, load_metric from torch.utils.data import DataLoader from utils_qa import postprocess_qa_predictions import transformers from transformers import AutoTokenizer, EvalPrediction, default_data_collator, set_seed from transformers.trainer_pt_utils import nested_concat, nested_truncate lowerCamelCase__ : Optional[int] = trt.Logger(trt.Logger.WARNING) lowerCamelCase__ : Tuple = absl_logging.get_absl_logger() absl_logger.setLevel(logging.WARNING) lowerCamelCase__ : str = logging.getLogger(__name__) lowerCamelCase__ : Any = argparse.ArgumentParser() # Required parameters parser.add_argument( '--onnx_model_path', default=None, type=str, required=True, help='Path to ONNX model: ', ) parser.add_argument( '--output_dir', default=None, type=str, required=True, help='The output directory where the model checkpoints and predictions will be written.', ) # Other parameters parser.add_argument( '--tokenizer_name', default='', type=str, required=True, help='Pretrained tokenizer name or path if not the same as model_name', ) parser.add_argument( '--version_2_with_negative', action='store_true', help='If true, the SQuAD examples contain some that do not have an answer.', ) parser.add_argument( '--null_score_diff_threshold', type=float, default=0.0, help='If null_score - best_non_null is greater than the threshold predict null.', ) parser.add_argument( '--max_seq_length', default=384, type=int, help=( 'The maximum total input sequence length after WordPiece tokenization. Sequences ' 'longer than this will be truncated, and sequences shorter than this will be padded.' ), ) parser.add_argument( '--doc_stride', default=128, type=int, help='When splitting up a long document into chunks, how much stride to take between chunks.', ) parser.add_argument('--per_device_eval_batch_size', default=8, type=int, help='Batch size per GPU/CPU for evaluation.') parser.add_argument( '--n_best_size', default=20, type=int, help='The total number of n-best predictions to generate in the nbest_predictions.json output file.', ) parser.add_argument( '--max_answer_length', default=30, type=int, help=( 'The maximum length of an answer that can be generated. This is needed because the start ' 'and end predictions are not conditioned on one another.' ), ) parser.add_argument('--seed', type=int, default=42, help='random seed for initialization') parser.add_argument( '--dataset_name', type=str, default=None, required=True, help='The name of the dataset to use (via the datasets library).', ) parser.add_argument( '--dataset_config_name', type=str, default=None, help='The configuration name of the dataset to use (via the datasets library).', ) parser.add_argument( '--preprocessing_num_workers', type=int, default=4, help='A csv or a json file containing the training data.' ) parser.add_argument('--overwrite_cache', action='store_true', help='Overwrite the cached training and evaluation sets') parser.add_argument( '--fp16', action='store_true', help='Whether to use 16-bit (mixed) precision instead of 32-bit', ) parser.add_argument( '--int8', action='store_true', help='Whether to use INT8', ) lowerCamelCase__ : Tuple = parser.parse_args() if args.tokenizer_name: lowerCamelCase__ : Union[str, Any] = AutoTokenizer.from_pretrained(args.tokenizer_name, use_fast=True) else: raise ValueError( 'You are instantiating a new tokenizer from scratch. This is not supported by this script.' 'You can do it from another script, save it, and load it from here, using --tokenizer_name.' ) logger.info('Training/evaluation parameters %s', args) lowerCamelCase__ : Dict = args.per_device_eval_batch_size lowerCamelCase__ : Dict = (args.eval_batch_size, args.max_seq_length) # TRT Engine properties lowerCamelCase__ : Dict = True lowerCamelCase__ : Union[str, Any] = 'temp_engine/bert-fp32.engine' if args.fpaa: lowerCamelCase__ : Any = 'temp_engine/bert-fp16.engine' if args.inta: lowerCamelCase__ : Dict = 'temp_engine/bert-int8.engine' # import ONNX file if not os.path.exists('temp_engine'): os.makedirs('temp_engine') lowerCamelCase__ : Dict = 1 << (int)(trt.NetworkDefinitionCreationFlag.EXPLICIT_BATCH) with trt.Builder(TRT_LOGGER) as builder, builder.create_network(EXPLICIT_BATCH) as network, trt.OnnxParser( network, TRT_LOGGER ) as parser: with open(args.onnx_model_path, 'rb') as model: if not parser.parse(model.read()): for error in range(parser.num_errors): print(parser.get_error(error)) # Query input names and shapes from parsed TensorRT network lowerCamelCase__ : Optional[Any] = [network.get_input(i) for i in range(network.num_inputs)] lowerCamelCase__ : Tuple = [_input.name for _input in network_inputs] # ex: ["actual_input1"] with builder.create_builder_config() as config: lowerCamelCase__ : List[Any] = 1 << 50 if STRICT_TYPES: config.set_flag(trt.BuilderFlag.STRICT_TYPES) if args.fpaa: config.set_flag(trt.BuilderFlag.FPaa) if args.inta: config.set_flag(trt.BuilderFlag.INTa) lowerCamelCase__ : Optional[Any] = builder.create_optimization_profile() config.add_optimization_profile(profile) for i in range(len(input_names)): profile.set_shape(input_names[i], INPUT_SHAPE, INPUT_SHAPE, INPUT_SHAPE) lowerCamelCase__ : Union[str, Any] = builder.build_engine(network, config) # serialize_engine and store in file (can be directly loaded and deserialized): with open(engine_name, 'wb') as f: f.write(engine.serialize()) def UpperCAmelCase_ ( __UpperCAmelCase : Dict , __UpperCAmelCase : List[str] , __UpperCAmelCase : Tuple , __UpperCAmelCase : Optional[Any] , __UpperCAmelCase : List[str] , __UpperCAmelCase : List[Any] , __UpperCAmelCase : List[Any] , __UpperCAmelCase : List[Any] ) -> Union[str, Any]: SCREAMING_SNAKE_CASE_ = np.asarray(inputs['input_ids'] , dtype=np.intaa ) SCREAMING_SNAKE_CASE_ = np.asarray(inputs['attention_mask'] , dtype=np.intaa ) SCREAMING_SNAKE_CASE_ = np.asarray(inputs['token_type_ids'] , dtype=np.intaa ) # Copy inputs cuda.memcpy_htod_async(d_inputs[0] , input_ids.ravel() , __UpperCAmelCase ) cuda.memcpy_htod_async(d_inputs[1] , attention_mask.ravel() , __UpperCAmelCase ) cuda.memcpy_htod_async(d_inputs[2] , token_type_ids.ravel() , __UpperCAmelCase ) # start time SCREAMING_SNAKE_CASE_ = time.time() # Run inference context.execute_async( bindings=[int(__UpperCAmelCase ) for d_inp in d_inputs] + [int(__UpperCAmelCase ), int(__UpperCAmelCase )] , stream_handle=stream.handle ) # Transfer predictions back from GPU cuda.memcpy_dtoh_async(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) cuda.memcpy_dtoh_async(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) # Synchronize the stream and take time stream.synchronize() # end time SCREAMING_SNAKE_CASE_ = time.time() SCREAMING_SNAKE_CASE_ = end_time - start_time SCREAMING_SNAKE_CASE_ = (h_outputa, h_outputa) # print(outputs) return outputs, infer_time # Initialize the accelerator. We will let the accelerator handle device placement for us in this example. lowerCamelCase__ : Optional[int] = Accelerator() # Make one log on every process with the configuration for debugging. logging.basicConfig( format='%(asctime)s - %(levelname)s - %(name)s - %(message)s', datefmt='%m/%d/%Y %H:%M:%S', level=logging.INFO, ) # Setup logging, we only want one process per machine to log things on the screen. # accelerator.is_local_main_process is only True for one process per machine. logger.setLevel(logging.INFO if accelerator.is_local_main_process else logging.ERROR) if accelerator.is_local_main_process: datasets.utils.logging.set_verbosity_warning() transformers.utils.logging.set_verbosity_info() else: datasets.utils.logging.set_verbosity_error() transformers.utils.logging.set_verbosity_error() # If passed along, set the training seed now. if args.seed is not None: set_seed(args.seed) # Get the datasets: you can either provide your own CSV/JSON/TXT training and evaluation files (see below) # or just provide the name of one of the public datasets available on the hub at https://huggingface.co/datasets/ # (the dataset will be downloaded automatically from the datasets Hub). # # For CSV/JSON files, this script will use the column called 'text' or the first column if no column called # 'text' is found. You can easily tweak this behavior (see below). if args.dataset_name is not None: # Downloading and loading a dataset from the hub. lowerCamelCase__ : Optional[Any] = load_dataset(args.dataset_name, args.dataset_config_name) else: raise ValueError('Evaluation requires a dataset name') # See more about loading any type of standard or custom dataset (from files, python dict, pandas DataFrame, etc) at # https://huggingface.co/docs/datasets/loading_datasets.html. # Preprocessing the datasets. # Preprocessing is slighlty different for training and evaluation. lowerCamelCase__ : Optional[int] = raw_datasets['validation'].column_names lowerCamelCase__ : Tuple = 'question' if 'question' in column_names else column_names[0] lowerCamelCase__ : str = 'context' if 'context' in column_names else column_names[1] lowerCamelCase__ : Union[str, Any] = 'answers' if 'answers' in column_names else column_names[2] # Padding side determines if we do (question|context) or (context|question). lowerCamelCase__ : str = tokenizer.padding_side == 'right' if args.max_seq_length > tokenizer.model_max_length: logger.warning( f'''The max_seq_length passed ({args.max_seq_length}) is larger than the maximum length for the''' f'''model ({tokenizer.model_max_length}). Using max_seq_length={tokenizer.model_max_length}.''' ) lowerCamelCase__ : Tuple = min(args.max_seq_length, tokenizer.model_max_length) def UpperCAmelCase_ ( __UpperCAmelCase : str ) -> Optional[Any]: # Some of the questions have lots of whitespace on the left, which is not useful and will make the # truncation of the context fail (the tokenized question will take a lots of space). So we remove that # left whitespace SCREAMING_SNAKE_CASE_ = [q.lstrip() for q in examples[question_column_name]] # Tokenize our examples with truncation and maybe padding, but keep the overflows using a stride. This results # in one example possible giving several features when a context is long, each of those features having a # context that overlaps a bit the context of the previous feature. SCREAMING_SNAKE_CASE_ = tokenizer( examples[question_column_name if pad_on_right else context_column_name] , examples[context_column_name if pad_on_right else question_column_name] , truncation='only_second' if pad_on_right else 'only_first' , max_length=__UpperCAmelCase , stride=args.doc_stride , return_overflowing_tokens=__UpperCAmelCase , return_offsets_mapping=__UpperCAmelCase , padding='max_length' , ) # Since one example might give us several features if it has a long context, we need a map from a feature to # its corresponding example. This key gives us just that. SCREAMING_SNAKE_CASE_ = tokenized_examples.pop('overflow_to_sample_mapping' ) # For evaluation, we will need to convert our predictions to substrings of the context, so we keep the # corresponding example_id and we will store the offset mappings. SCREAMING_SNAKE_CASE_ = [] for i in range(len(tokenized_examples['input_ids'] ) ): # Grab the sequence corresponding to that example (to know what is the context and what is the question). SCREAMING_SNAKE_CASE_ = tokenized_examples.sequence_ids(__UpperCAmelCase ) SCREAMING_SNAKE_CASE_ = 1 if pad_on_right else 0 # One example can give several spans, this is the index of the example containing this span of text. SCREAMING_SNAKE_CASE_ = sample_mapping[i] tokenized_examples["example_id"].append(examples['id'][sample_index] ) # Set to None the offset_mapping that are not part of the context so it's easy to determine if a token # position is part of the context or not. SCREAMING_SNAKE_CASE_ = [ (o if sequence_ids[k] == context_index else None) for k, o in enumerate(tokenized_examples['offset_mapping'][i] ) ] return tokenized_examples lowerCamelCase__ : Optional[Any] = raw_datasets['validation'] # Validation Feature Creation lowerCamelCase__ : Union[str, Any] = eval_examples.map( prepare_validation_features, batched=True, num_proc=args.preprocessing_num_workers, remove_columns=column_names, load_from_cache_file=not args.overwrite_cache, desc='Running tokenizer on validation dataset', ) lowerCamelCase__ : Any = default_data_collator lowerCamelCase__ : str = eval_dataset.remove_columns(['example_id', 'offset_mapping']) lowerCamelCase__ : Optional[Any] = DataLoader( eval_dataset_for_model, collate_fn=data_collator, batch_size=args.per_device_eval_batch_size ) def UpperCAmelCase_ ( __UpperCAmelCase : Optional[int] , __UpperCAmelCase : Tuple , __UpperCAmelCase : Tuple , __UpperCAmelCase : Tuple="eval" ) -> Tuple: # Post-processing: we match the start logits and end logits to answers in the original context. SCREAMING_SNAKE_CASE_ = postprocess_qa_predictions( examples=__UpperCAmelCase , features=__UpperCAmelCase , predictions=__UpperCAmelCase , version_2_with_negative=args.version_2_with_negative , n_best_size=args.n_best_size , max_answer_length=args.max_answer_length , null_score_diff_threshold=args.null_score_diff_threshold , output_dir=args.output_dir , prefix=__UpperCAmelCase , ) # Format the result to the format the metric expects. if args.version_2_with_negative: SCREAMING_SNAKE_CASE_ = [ {'id': k, 'prediction_text': v, 'no_answer_probability': 0.0} for k, v in predictions.items() ] else: SCREAMING_SNAKE_CASE_ = [{'id': k, 'prediction_text': v} for k, v in predictions.items()] SCREAMING_SNAKE_CASE_ = [{'id': ex['id'], 'answers': ex[answer_column_name]} for ex in examples] return EvalPrediction(predictions=__UpperCAmelCase , label_ids=__UpperCAmelCase ) lowerCamelCase__ : List[Any] = load_metric('squad_v2' if args.version_2_with_negative else 'squad') # Evaluation! logger.info('Loading ONNX model %s for evaluation', args.onnx_model_path) with open(engine_name, 'rb') as f, trt.Runtime(TRT_LOGGER) as runtime, runtime.deserialize_cuda_engine( f.read() ) as engine, engine.create_execution_context() as context: # setup for TRT inferrence for i in range(len(input_names)): context.set_binding_shape(i, INPUT_SHAPE) assert context.all_binding_shapes_specified def UpperCAmelCase_ ( __UpperCAmelCase : Tuple ) -> Union[str, Any]: return trt.volume(engine.get_binding_shape(__UpperCAmelCase ) ) * engine.get_binding_dtype(__UpperCAmelCase ).itemsize # Allocate device memory for inputs and outputs. lowerCamelCase__ : Union[str, Any] = [cuda.mem_alloc(binding_nbytes(binding)) for binding in engine if engine.binding_is_input(binding)] # Allocate output buffer lowerCamelCase__ : List[str] = cuda.pagelocked_empty(tuple(context.get_binding_shape(3)), dtype=np.floataa) lowerCamelCase__ : str = cuda.pagelocked_empty(tuple(context.get_binding_shape(4)), dtype=np.floataa) lowerCamelCase__ : Any = cuda.mem_alloc(h_outputa.nbytes) lowerCamelCase__ : Optional[Any] = cuda.mem_alloc(h_outputa.nbytes) # Create a stream in which to copy inputs/outputs and run inference. lowerCamelCase__ : Union[str, Any] = cuda.Stream() # Evaluation logger.info('***** Running Evaluation *****') logger.info(f''' Num examples = {len(eval_dataset)}''') logger.info(f''' Batch size = {args.per_device_eval_batch_size}''') lowerCamelCase__ : Optional[int] = 0.0 lowerCamelCase__ : Union[str, Any] = 0 lowerCamelCase__ : Union[str, Any] = timeit.default_timer() lowerCamelCase__ : int = None for step, batch in enumerate(eval_dataloader): lowerCamelCase__ , lowerCamelCase__ : Optional[Any] = model_infer(batch, context, d_inputs, h_outputa, h_outputa, d_outputa, d_outputa, stream) total_time += infer_time niter += 1 lowerCamelCase__ , lowerCamelCase__ : Dict = outputs lowerCamelCase__ : Union[str, Any] = torch.tensor(start_logits) lowerCamelCase__ : int = torch.tensor(end_logits) # necessary to pad predictions and labels for being gathered lowerCamelCase__ : Union[str, Any] = accelerator.pad_across_processes(start_logits, dim=1, pad_index=-100) lowerCamelCase__ : str = accelerator.pad_across_processes(end_logits, dim=1, pad_index=-100) lowerCamelCase__ : Any = (accelerator.gather(start_logits).cpu().numpy(), accelerator.gather(end_logits).cpu().numpy()) lowerCamelCase__ : Any = logits if all_preds is None else nested_concat(all_preds, logits, padding_index=-100) if all_preds is not None: lowerCamelCase__ : int = nested_truncate(all_preds, len(eval_dataset)) lowerCamelCase__ : Dict = timeit.default_timer() - start_time logger.info(' Evaluation done in total %f secs (%f sec per example)', evalTime, evalTime / len(eval_dataset)) # Inference time from TRT logger.info('Average Inference Time = {:.3f} ms'.format(total_time * 1_000 / niter)) logger.info('Total Inference Time = {:.3f} ms'.format(total_time * 1_000)) logger.info('Total Number of Inference = %d', niter) lowerCamelCase__ : Any = post_processing_function(eval_examples, eval_dataset, all_preds) lowerCamelCase__ : int = metric.compute(predictions=prediction.predictions, references=prediction.label_ids) logger.info(f'''Evaluation metrics: {eval_metric}''')
31
import numpy as np import torch from torch.utils.data import DataLoader from accelerate.utils.dataclasses import DistributedType class lowerCamelCase_ : '''simple docstring''' def __init__( self : Any , _lowerCAmelCase : Optional[int]=2 , _lowerCAmelCase : Any=3 , _lowerCAmelCase : Tuple=64 , _lowerCAmelCase : List[str]=None ): SCREAMING_SNAKE_CASE_ = np.random.default_rng(_lowerCAmelCase ) SCREAMING_SNAKE_CASE_ = length SCREAMING_SNAKE_CASE_ = rng.normal(size=(length,) ).astype(np.floataa ) SCREAMING_SNAKE_CASE_ = a * self.x + b + rng.normal(scale=0.1 , size=(length,) ).astype(np.floataa ) def __len__( self : Optional[int] ): return self.length def __getitem__( self : str , _lowerCAmelCase : Union[str, Any] ): return {"x": self.x[i], "y": self.y[i]} class lowerCamelCase_ ( torch.nn.Module ): '''simple docstring''' def __init__( self : Tuple , _lowerCAmelCase : Dict=0 , _lowerCAmelCase : List[str]=0 , _lowerCAmelCase : str=False ): super().__init__() SCREAMING_SNAKE_CASE_ = torch.nn.Parameter(torch.tensor([2, 3] ).float() ) SCREAMING_SNAKE_CASE_ = torch.nn.Parameter(torch.tensor([2, 3] ).float() ) SCREAMING_SNAKE_CASE_ = True def lowerCAmelCase_ ( self : Dict , _lowerCAmelCase : Union[str, Any]=None ): if self.first_batch: print(F"Model dtype: {self.a.dtype}, {self.b.dtype}. Input dtype: {x.dtype}" ) SCREAMING_SNAKE_CASE_ = False return x * self.a[0] + self.b[0] class lowerCamelCase_ ( torch.nn.Module ): '''simple docstring''' def __init__( self : Optional[int] , _lowerCAmelCase : Any=0 , _lowerCAmelCase : Any=0 , _lowerCAmelCase : Optional[Any]=False ): super().__init__() SCREAMING_SNAKE_CASE_ = torch.nn.Parameter(torch.tensor(_lowerCAmelCase ).float() ) SCREAMING_SNAKE_CASE_ = torch.nn.Parameter(torch.tensor(_lowerCAmelCase ).float() ) SCREAMING_SNAKE_CASE_ = True def lowerCAmelCase_ ( self : Optional[Any] , _lowerCAmelCase : Optional[int]=None ): if self.first_batch: print(F"Model dtype: {self.a.dtype}, {self.b.dtype}. Input dtype: {x.dtype}" ) SCREAMING_SNAKE_CASE_ = False return x * self.a + self.b def UpperCAmelCase_ ( __UpperCAmelCase : Dict , __UpperCAmelCase : int = 16 ) -> Union[str, Any]: from datasets import load_dataset from transformers import AutoTokenizer SCREAMING_SNAKE_CASE_ = AutoTokenizer.from_pretrained('bert-base-cased' ) SCREAMING_SNAKE_CASE_ = {'train': 'tests/test_samples/MRPC/train.csv', 'validation': 'tests/test_samples/MRPC/dev.csv'} SCREAMING_SNAKE_CASE_ = load_dataset('csv' , data_files=__UpperCAmelCase ) SCREAMING_SNAKE_CASE_ = datasets['train'].unique('label' ) SCREAMING_SNAKE_CASE_ = {v: i for i, v in enumerate(__UpperCAmelCase )} def tokenize_function(__UpperCAmelCase : Optional[int] ): # max_length=None => use the model max length (it's actually the default) SCREAMING_SNAKE_CASE_ = tokenizer( examples['sentence1'] , examples['sentence2'] , truncation=__UpperCAmelCase , max_length=__UpperCAmelCase , padding='max_length' ) if "label" in examples: SCREAMING_SNAKE_CASE_ = [label_to_id[l] for l in examples['label']] return outputs # Apply the method we just defined to all the examples in all the splits of the dataset SCREAMING_SNAKE_CASE_ = datasets.map( __UpperCAmelCase , batched=__UpperCAmelCase , remove_columns=['sentence1', 'sentence2', 'label'] , ) def collate_fn(__UpperCAmelCase : Dict ): # On TPU it's best to pad everything to the same length or training will be very slow. if accelerator.distributed_type == DistributedType.TPU: return tokenizer.pad(__UpperCAmelCase , padding='max_length' , max_length=1_28 , return_tensors='pt' ) return tokenizer.pad(__UpperCAmelCase , padding='longest' , return_tensors='pt' ) # Instantiate dataloaders. SCREAMING_SNAKE_CASE_ = DataLoader(tokenized_datasets['train'] , shuffle=__UpperCAmelCase , collate_fn=__UpperCAmelCase , batch_size=2 ) SCREAMING_SNAKE_CASE_ = DataLoader(tokenized_datasets['validation'] , shuffle=__UpperCAmelCase , collate_fn=__UpperCAmelCase , batch_size=1 ) return train_dataloader, eval_dataloader
31
1
import pytest from datasets import Dataset, DatasetDict, Features, NamedSplit, Value from datasets.io.text import TextDatasetReader from ..utils import assert_arrow_memory_doesnt_increase, assert_arrow_memory_increases def UpperCAmelCase_ ( __UpperCAmelCase : str , __UpperCAmelCase : Optional[int] ) -> List[Any]: assert isinstance(__UpperCAmelCase , __UpperCAmelCase ) assert dataset.num_rows == 4 assert dataset.num_columns == 1 assert dataset.column_names == ["text"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype @pytest.mark.parametrize('keep_in_memory' , [False, True] ) def UpperCAmelCase_ ( __UpperCAmelCase : Union[str, Any] , __UpperCAmelCase : Optional[int] , __UpperCAmelCase : Any ) -> Union[str, Any]: SCREAMING_SNAKE_CASE_ = tmp_path / 'cache' SCREAMING_SNAKE_CASE_ = {'text': 'string'} with assert_arrow_memory_increases() if keep_in_memory else assert_arrow_memory_doesnt_increase(): SCREAMING_SNAKE_CASE_ = TextDatasetReader(__UpperCAmelCase , cache_dir=__UpperCAmelCase , keep_in_memory=__UpperCAmelCase ).read() _check_text_dataset(__UpperCAmelCase , __UpperCAmelCase ) @pytest.mark.parametrize( 'features' , [ None, {'text': 'string'}, {'text': 'int32'}, {'text': 'float32'}, ] , ) def UpperCAmelCase_ ( __UpperCAmelCase : Any , __UpperCAmelCase : Optional[int] , __UpperCAmelCase : Optional[int] ) -> Tuple: SCREAMING_SNAKE_CASE_ = tmp_path / 'cache' SCREAMING_SNAKE_CASE_ = {'text': 'string'} SCREAMING_SNAKE_CASE_ = features.copy() if features else default_expected_features SCREAMING_SNAKE_CASE_ = ( Features({feature: Value(__UpperCAmelCase ) for feature, dtype in features.items()} ) if features is not None else None ) SCREAMING_SNAKE_CASE_ = TextDatasetReader(__UpperCAmelCase , features=__UpperCAmelCase , cache_dir=__UpperCAmelCase ).read() _check_text_dataset(__UpperCAmelCase , __UpperCAmelCase ) @pytest.mark.parametrize('split' , [None, NamedSplit('train' ), 'train', 'test'] ) def UpperCAmelCase_ ( __UpperCAmelCase : Union[str, Any] , __UpperCAmelCase : Optional[int] , __UpperCAmelCase : Optional[int] ) -> Union[str, Any]: SCREAMING_SNAKE_CASE_ = tmp_path / 'cache' SCREAMING_SNAKE_CASE_ = {'text': 'string'} SCREAMING_SNAKE_CASE_ = TextDatasetReader(__UpperCAmelCase , cache_dir=__UpperCAmelCase , split=__UpperCAmelCase ).read() _check_text_dataset(__UpperCAmelCase , __UpperCAmelCase ) assert dataset.split == split if split else "train" @pytest.mark.parametrize('path_type' , [str, list] ) def UpperCAmelCase_ ( __UpperCAmelCase : str , __UpperCAmelCase : int , __UpperCAmelCase : Optional[Any] ) -> List[str]: if issubclass(__UpperCAmelCase , __UpperCAmelCase ): SCREAMING_SNAKE_CASE_ = text_path elif issubclass(__UpperCAmelCase , __UpperCAmelCase ): SCREAMING_SNAKE_CASE_ = [text_path] SCREAMING_SNAKE_CASE_ = tmp_path / 'cache' SCREAMING_SNAKE_CASE_ = {'text': 'string'} SCREAMING_SNAKE_CASE_ = TextDatasetReader(__UpperCAmelCase , cache_dir=__UpperCAmelCase ).read() _check_text_dataset(__UpperCAmelCase , __UpperCAmelCase ) def UpperCAmelCase_ ( __UpperCAmelCase : Optional[Any] , __UpperCAmelCase : Union[str, Any] , __UpperCAmelCase : Tuple=("train",) ) -> Dict: assert isinstance(__UpperCAmelCase , __UpperCAmelCase ) for split in splits: SCREAMING_SNAKE_CASE_ = dataset_dict[split] assert dataset.num_rows == 4 assert dataset.num_columns == 1 assert dataset.column_names == ["text"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype @pytest.mark.parametrize('keep_in_memory' , [False, True] ) def UpperCAmelCase_ ( __UpperCAmelCase : List[str] , __UpperCAmelCase : Dict , __UpperCAmelCase : Optional[int] ) -> str: SCREAMING_SNAKE_CASE_ = tmp_path / 'cache' SCREAMING_SNAKE_CASE_ = {'text': 'string'} with assert_arrow_memory_increases() if keep_in_memory else assert_arrow_memory_doesnt_increase(): SCREAMING_SNAKE_CASE_ = TextDatasetReader({'train': text_path} , cache_dir=__UpperCAmelCase , keep_in_memory=__UpperCAmelCase ).read() _check_text_datasetdict(__UpperCAmelCase , __UpperCAmelCase ) @pytest.mark.parametrize( 'features' , [ None, {'text': 'string'}, {'text': 'int32'}, {'text': 'float32'}, ] , ) def UpperCAmelCase_ ( __UpperCAmelCase : Any , __UpperCAmelCase : str , __UpperCAmelCase : int ) -> List[Any]: SCREAMING_SNAKE_CASE_ = tmp_path / 'cache' # CSV file loses col_1 string dtype information: default now is "int64" instead of "string" SCREAMING_SNAKE_CASE_ = {'text': 'string'} SCREAMING_SNAKE_CASE_ = features.copy() if features else default_expected_features SCREAMING_SNAKE_CASE_ = ( Features({feature: Value(__UpperCAmelCase ) for feature, dtype in features.items()} ) if features is not None else None ) SCREAMING_SNAKE_CASE_ = TextDatasetReader({'train': text_path} , features=__UpperCAmelCase , cache_dir=__UpperCAmelCase ).read() _check_text_datasetdict(__UpperCAmelCase , __UpperCAmelCase ) @pytest.mark.parametrize('split' , [None, NamedSplit('train' ), 'train', 'test'] ) def UpperCAmelCase_ ( __UpperCAmelCase : Tuple , __UpperCAmelCase : str , __UpperCAmelCase : List[str] ) -> Union[str, Any]: if split: SCREAMING_SNAKE_CASE_ = {split: text_path} else: SCREAMING_SNAKE_CASE_ = 'train' SCREAMING_SNAKE_CASE_ = {'train': text_path, 'test': text_path} SCREAMING_SNAKE_CASE_ = tmp_path / 'cache' SCREAMING_SNAKE_CASE_ = {'text': 'string'} SCREAMING_SNAKE_CASE_ = TextDatasetReader(__UpperCAmelCase , cache_dir=__UpperCAmelCase ).read() _check_text_datasetdict(__UpperCAmelCase , __UpperCAmelCase , splits=list(path.keys() ) ) assert all(dataset[split].split == split for split in path.keys() )
31
import warnings from ...utils import logging from .image_processing_layoutlmva import LayoutLMvaImageProcessor lowerCamelCase__ : Union[str, Any] = logging.get_logger(__name__) class lowerCamelCase_ ( _SCREAMING_SNAKE_CASE ): '''simple docstring''' def __init__( self : Dict , *_lowerCAmelCase : Optional[Any] , **_lowerCAmelCase : Any ): warnings.warn( 'The class LayoutLMv2FeatureExtractor is deprecated and will be removed in version 5 of Transformers.' ' Please use LayoutLMv2ImageProcessor instead.' , _lowerCAmelCase , ) super().__init__(*_lowerCAmelCase , **_lowerCAmelCase )
31
1
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_sentencepiece_available, is_tf_available, is_tokenizers_available, is_torch_available, ) lowerCamelCase__ : List[Any] = {'configuration_mbart': ['MBART_PRETRAINED_CONFIG_ARCHIVE_MAP', 'MBartConfig', 'MBartOnnxConfig']} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase__ : Any = ['MBartTokenizer'] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase__ : Optional[int] = ['MBartTokenizerFast'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase__ : Optional[int] = [ 'MBART_PRETRAINED_MODEL_ARCHIVE_LIST', 'MBartForCausalLM', 'MBartForConditionalGeneration', 'MBartForQuestionAnswering', 'MBartForSequenceClassification', 'MBartModel', 'MBartPreTrainedModel', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase__ : str = [ 'TFMBartForConditionalGeneration', 'TFMBartModel', 'TFMBartPreTrainedModel', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase__ : Optional[int] = [ 'FlaxMBartForConditionalGeneration', 'FlaxMBartForQuestionAnswering', 'FlaxMBartForSequenceClassification', 'FlaxMBartModel', 'FlaxMBartPreTrainedModel', ] if TYPE_CHECKING: from .configuration_mbart import MBART_PRETRAINED_CONFIG_ARCHIVE_MAP, MBartConfig, MBartOnnxConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_mbart import MBartTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_mbart_fast import MBartTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mbart import ( MBART_PRETRAINED_MODEL_ARCHIVE_LIST, MBartForCausalLM, MBartForConditionalGeneration, MBartForQuestionAnswering, MBartForSequenceClassification, MBartModel, MBartPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_mbart import TFMBartForConditionalGeneration, TFMBartModel, TFMBartPreTrainedModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_mbart import ( FlaxMBartForConditionalGeneration, FlaxMBartForQuestionAnswering, FlaxMBartForSequenceClassification, FlaxMBartModel, FlaxMBartPreTrainedModel, ) else: import sys lowerCamelCase__ : List[str] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
31
def UpperCAmelCase_ ( ) -> list[list[int]]: return [list(range(10_00 - i , -10_00 - i , -1 ) ) for i in range(10_00 )] lowerCamelCase__ : List[Any] = generate_large_matrix() lowerCamelCase__ : List[Any] = ( [[4, 3, 2, -1], [3, 2, 1, -1], [1, 1, -1, -2], [-1, -1, -2, -3]], [[3, 2], [1, 0]], [[7, 7, 6]], [[7, 7, 6], [-1, -2, -3]], grid, ) def UpperCAmelCase_ ( __UpperCAmelCase : list[list[int]] ) -> None: assert all(row == sorted(__UpperCAmelCase , reverse=__UpperCAmelCase ) for row in grid ) assert all(list(__UpperCAmelCase ) == sorted(__UpperCAmelCase , reverse=__UpperCAmelCase ) for col in zip(*__UpperCAmelCase ) ) def UpperCAmelCase_ ( __UpperCAmelCase : list[int] ) -> int: SCREAMING_SNAKE_CASE_ = 0 SCREAMING_SNAKE_CASE_ = len(__UpperCAmelCase ) - 1 # Edge cases such as no values or all numbers are negative. if not array or array[0] < 0: return 0 while right + 1 > left: SCREAMING_SNAKE_CASE_ = (left + right) // 2 SCREAMING_SNAKE_CASE_ = array[mid] # Num must be negative and the index must be greater than or equal to 0. if num < 0 and array[mid - 1] >= 0: return mid if num >= 0: SCREAMING_SNAKE_CASE_ = mid + 1 else: SCREAMING_SNAKE_CASE_ = mid - 1 # No negative numbers so return the last index of the array + 1 which is the length. return len(__UpperCAmelCase ) def UpperCAmelCase_ ( __UpperCAmelCase : list[list[int]] ) -> int: SCREAMING_SNAKE_CASE_ = 0 SCREAMING_SNAKE_CASE_ = len(grid[0] ) for i in range(len(__UpperCAmelCase ) ): SCREAMING_SNAKE_CASE_ = find_negative_index(grid[i][:bound] ) total += bound return (len(__UpperCAmelCase ) * len(grid[0] )) - total def UpperCAmelCase_ ( __UpperCAmelCase : list[list[int]] ) -> int: return len([number for row in grid for number in row if number < 0] ) def UpperCAmelCase_ ( __UpperCAmelCase : list[list[int]] ) -> int: SCREAMING_SNAKE_CASE_ = 0 for row in grid: for i, number in enumerate(__UpperCAmelCase ): if number < 0: total += len(__UpperCAmelCase ) - i break return total def UpperCAmelCase_ ( ) -> None: from timeit import timeit print('Running benchmarks' ) SCREAMING_SNAKE_CASE_ = ( 'from __main__ import count_negatives_binary_search, ' 'count_negatives_brute_force, count_negatives_brute_force_with_break, grid' ) for func in ( "count_negatives_binary_search", # took 0.7727 seconds "count_negatives_brute_force_with_break", # took 4.6505 seconds "count_negatives_brute_force", # took 12.8160 seconds ): SCREAMING_SNAKE_CASE_ = timeit(f"{func}(grid=grid)" , setup=__UpperCAmelCase , number=5_00 ) print(f"{func}() took {time:0.4f} seconds" ) if __name__ == "__main__": import doctest doctest.testmod() benchmark()
31
1
from dataclasses import dataclass from typing import List, Optional, Union import numpy as np import PIL import torch from transformers import CLIPImageProcessor, CLIPVisionModel from ...models import PriorTransformer from ...pipelines import DiffusionPipeline from ...schedulers import HeunDiscreteScheduler from ...utils import ( BaseOutput, is_accelerate_available, logging, randn_tensor, replace_example_docstring, ) from .renderer import ShapERenderer lowerCamelCase__ : Union[str, Any] = logging.get_logger(__name__) # pylint: disable=invalid-name lowerCamelCase__ : Optional[Any] = '\n Examples:\n ```py\n >>> from PIL import Image\n >>> import torch\n >>> from diffusers import DiffusionPipeline\n >>> from diffusers.utils import export_to_gif, load_image\n\n >>> device = torch.device("cuda" if torch.cuda.is_available() else "cpu")\n\n >>> repo = "openai/shap-e-img2img"\n >>> pipe = DiffusionPipeline.from_pretrained(repo, torch_dtype=torch.float16)\n >>> pipe = pipe.to(device)\n\n >>> guidance_scale = 3.0\n >>> image_url = "https://hf.co/datasets/diffusers/docs-images/resolve/main/shap-e/corgi.png"\n >>> image = load_image(image_url).convert("RGB")\n\n >>> images = pipe(\n ... image,\n ... guidance_scale=guidance_scale,\n ... num_inference_steps=64,\n ... frame_size=256,\n ... ).images\n\n >>> gif_path = export_to_gif(images[0], "corgi_3d.gif")\n ```\n' @dataclass class lowerCamelCase_ ( _SCREAMING_SNAKE_CASE ): '''simple docstring''' lowercase_ = 42 class lowerCamelCase_ ( _SCREAMING_SNAKE_CASE ): '''simple docstring''' def __init__( self : Optional[Any] , _lowerCAmelCase : PriorTransformer , _lowerCAmelCase : CLIPVisionModel , _lowerCAmelCase : CLIPImageProcessor , _lowerCAmelCase : HeunDiscreteScheduler , _lowerCAmelCase : ShapERenderer , ): super().__init__() self.register_modules( prior=_lowerCAmelCase , image_encoder=_lowerCAmelCase , image_processor=_lowerCAmelCase , scheduler=_lowerCAmelCase , renderer=_lowerCAmelCase , ) def lowerCAmelCase_ ( self : Tuple , _lowerCAmelCase : List[Any] , _lowerCAmelCase : int , _lowerCAmelCase : Tuple , _lowerCAmelCase : List[Any] , _lowerCAmelCase : str , _lowerCAmelCase : List[Any] ): if latents is None: SCREAMING_SNAKE_CASE_ = randn_tensor(_lowerCAmelCase , generator=_lowerCAmelCase , device=_lowerCAmelCase , dtype=_lowerCAmelCase ) else: if latents.shape != shape: raise ValueError(F"Unexpected latents shape, got {latents.shape}, expected {shape}" ) SCREAMING_SNAKE_CASE_ = latents.to(_lowerCAmelCase ) SCREAMING_SNAKE_CASE_ = latents * scheduler.init_noise_sigma return latents def lowerCAmelCase_ ( self : Tuple , _lowerCAmelCase : List[Any]=0 ): if is_accelerate_available(): from accelerate import cpu_offload else: raise ImportError('Please install accelerate via `pip install accelerate`' ) SCREAMING_SNAKE_CASE_ = torch.device(F"cuda:{gpu_id}" ) SCREAMING_SNAKE_CASE_ = [self.image_encoder, self.prior] for cpu_offloaded_model in models: if cpu_offloaded_model is not None: cpu_offload(_lowerCAmelCase , _lowerCAmelCase ) @property def lowerCAmelCase_ ( self : int ): if self.device != torch.device('meta' ) or not hasattr(self.image_encoder , '_hf_hook' ): return self.device for module in self.image_encoder.modules(): if ( hasattr(_lowerCAmelCase , '_hf_hook' ) and hasattr(module._hf_hook , 'execution_device' ) and module._hf_hook.execution_device is not None ): return torch.device(module._hf_hook.execution_device ) return self.device def lowerCAmelCase_ ( self : Optional[Any] , _lowerCAmelCase : List[Any] , _lowerCAmelCase : str , _lowerCAmelCase : int , _lowerCAmelCase : List[str] , ): if isinstance(_lowerCAmelCase , _lowerCAmelCase ) and isinstance(image[0] , torch.Tensor ): SCREAMING_SNAKE_CASE_ = torch.cat(_lowerCAmelCase , axis=0 ) if image[0].ndim == 4 else torch.stack(_lowerCAmelCase , axis=0 ) if not isinstance(_lowerCAmelCase , torch.Tensor ): SCREAMING_SNAKE_CASE_ = self.image_processor(_lowerCAmelCase , return_tensors='pt' ).pixel_values[0].unsqueeze(0 ) SCREAMING_SNAKE_CASE_ = image.to(dtype=self.image_encoder.dtype , device=_lowerCAmelCase ) SCREAMING_SNAKE_CASE_ = self.image_encoder(_lowerCAmelCase )['last_hidden_state'] SCREAMING_SNAKE_CASE_ = image_embeds[:, 1:, :].contiguous() # batch_size, dim, 256 SCREAMING_SNAKE_CASE_ = image_embeds.repeat_interleave(_lowerCAmelCase , dim=0 ) if do_classifier_free_guidance: SCREAMING_SNAKE_CASE_ = torch.zeros_like(_lowerCAmelCase ) # For classifier free guidance, we need to do two forward passes. # Here we concatenate the unconditional and text embeddings into a single batch # to avoid doing two forward passes SCREAMING_SNAKE_CASE_ = torch.cat([negative_image_embeds, image_embeds] ) return image_embeds @torch.no_grad() @replace_example_docstring(_lowerCAmelCase ) def __call__( self : Tuple , _lowerCAmelCase : Union[PIL.Image.Image, List[PIL.Image.Image]] , _lowerCAmelCase : int = 1 , _lowerCAmelCase : int = 25 , _lowerCAmelCase : Optional[Union[torch.Generator, List[torch.Generator]]] = None , _lowerCAmelCase : Optional[torch.FloatTensor] = None , _lowerCAmelCase : float = 4.0 , _lowerCAmelCase : int = 64 , _lowerCAmelCase : Optional[str] = "pil" , _lowerCAmelCase : bool = True , ): if isinstance(_lowerCAmelCase , PIL.Image.Image ): SCREAMING_SNAKE_CASE_ = 1 elif isinstance(_lowerCAmelCase , torch.Tensor ): SCREAMING_SNAKE_CASE_ = image.shape[0] elif isinstance(_lowerCAmelCase , _lowerCAmelCase ) and isinstance(image[0] , (torch.Tensor, PIL.Image.Image) ): SCREAMING_SNAKE_CASE_ = len(_lowerCAmelCase ) else: raise ValueError( F"`image` has to be of type `PIL.Image.Image`, `torch.Tensor`, `List[PIL.Image.Image]` or `List[torch.Tensor]` but is {type(_lowerCAmelCase )}" ) SCREAMING_SNAKE_CASE_ = self._execution_device SCREAMING_SNAKE_CASE_ = batch_size * num_images_per_prompt SCREAMING_SNAKE_CASE_ = guidance_scale > 1.0 SCREAMING_SNAKE_CASE_ = self._encode_image(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) # prior self.scheduler.set_timesteps(_lowerCAmelCase , device=_lowerCAmelCase ) SCREAMING_SNAKE_CASE_ = self.scheduler.timesteps SCREAMING_SNAKE_CASE_ = self.prior.config.num_embeddings SCREAMING_SNAKE_CASE_ = self.prior.config.embedding_dim SCREAMING_SNAKE_CASE_ = self.prepare_latents( (batch_size, num_embeddings * embedding_dim) , image_embeds.dtype , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , self.scheduler , ) # YiYi notes: for testing only to match ldm, we can directly create a latents with desired shape: batch_size, num_embeddings, embedding_dim SCREAMING_SNAKE_CASE_ = latents.reshape(latents.shape[0] , _lowerCAmelCase , _lowerCAmelCase ) for i, t in enumerate(self.progress_bar(_lowerCAmelCase ) ): # expand the latents if we are doing classifier free guidance SCREAMING_SNAKE_CASE_ = torch.cat([latents] * 2 ) if do_classifier_free_guidance else latents SCREAMING_SNAKE_CASE_ = self.scheduler.scale_model_input(_lowerCAmelCase , _lowerCAmelCase ) SCREAMING_SNAKE_CASE_ = self.prior( _lowerCAmelCase , timestep=_lowerCAmelCase , proj_embedding=_lowerCAmelCase , ).predicted_image_embedding # remove the variance SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = noise_pred.split( scaled_model_input.shape[2] , dim=2 ) # batch_size, num_embeddings, embedding_dim if do_classifier_free_guidance is not None: SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = noise_pred.chunk(2 ) SCREAMING_SNAKE_CASE_ = noise_pred_uncond + guidance_scale * (noise_pred - noise_pred_uncond) SCREAMING_SNAKE_CASE_ = self.scheduler.step( _lowerCAmelCase , timestep=_lowerCAmelCase , sample=_lowerCAmelCase , ).prev_sample if output_type == "latent": return ShapEPipelineOutput(images=_lowerCAmelCase ) SCREAMING_SNAKE_CASE_ = [] for i, latent in enumerate(_lowerCAmelCase ): print() SCREAMING_SNAKE_CASE_ = self.renderer.decode( latent[None, :] , _lowerCAmelCase , size=_lowerCAmelCase , ray_batch_size=4_096 , n_coarse_samples=64 , n_fine_samples=128 , ) images.append(_lowerCAmelCase ) SCREAMING_SNAKE_CASE_ = torch.stack(_lowerCAmelCase ) if output_type not in ["np", "pil"]: raise ValueError(F"Only the output types `pil` and `np` are supported not output_type={output_type}" ) SCREAMING_SNAKE_CASE_ = images.cpu().numpy() if output_type == "pil": SCREAMING_SNAKE_CASE_ = [self.numpy_to_pil(_lowerCAmelCase ) for image in images] # Offload last model to CPU if hasattr(self , 'final_offload_hook' ) and self.final_offload_hook is not None: self.final_offload_hook.offload() if not return_dict: return (images,) return ShapEPipelineOutput(images=_lowerCAmelCase )
31
from typing import TYPE_CHECKING from ....utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available lowerCamelCase__ : Optional[int] = {'configuration_mmbt': ['MMBTConfig']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase__ : Any = ['MMBTForClassification', 'MMBTModel', 'ModalEmbeddings'] if TYPE_CHECKING: from .configuration_mmbt import MMBTConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mmbt import MMBTForClassification, MMBTModel, ModalEmbeddings else: import sys lowerCamelCase__ : str = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
31
1
def UpperCAmelCase_ ( __UpperCAmelCase : int = 4_00_00_00 ) -> int: SCREAMING_SNAKE_CASE_ = [] SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = 0, 1 while b <= n: if b % 2 == 0: even_fibs.append(__UpperCAmelCase ) SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = b, a + b return sum(__UpperCAmelCase ) if __name__ == "__main__": print(f'''{solution() = }''')
31
import unittest from typing import Tuple import torch from diffusers.utils import floats_tensor, randn_tensor, torch_all_close, torch_device from diffusers.utils.testing_utils import require_torch @require_torch class lowerCamelCase_ : '''simple docstring''' @property def lowerCAmelCase_ ( self : Optional[Any] ): return self.get_dummy_input() @property def lowerCAmelCase_ ( self : Union[str, Any] ): if self.block_type == "down": return (4, 32, 16, 16) elif self.block_type == "mid": return (4, 32, 32, 32) elif self.block_type == "up": return (4, 32, 64, 64) raise ValueError(F"'{self.block_type}' is not a supported block_type. Set it to 'up', 'mid', or 'down'." ) def lowerCAmelCase_ ( self : List[str] , _lowerCAmelCase : Optional[Any]=True , _lowerCAmelCase : str=False , _lowerCAmelCase : Optional[int]=False , _lowerCAmelCase : Dict=False , ): SCREAMING_SNAKE_CASE_ = 4 SCREAMING_SNAKE_CASE_ = 32 SCREAMING_SNAKE_CASE_ = (32, 32) SCREAMING_SNAKE_CASE_ = torch.manual_seed(0 ) SCREAMING_SNAKE_CASE_ = torch.device(_lowerCAmelCase ) SCREAMING_SNAKE_CASE_ = (batch_size, num_channels) + sizes SCREAMING_SNAKE_CASE_ = randn_tensor(_lowerCAmelCase , generator=_lowerCAmelCase , device=_lowerCAmelCase ) SCREAMING_SNAKE_CASE_ = {'hidden_states': hidden_states} if include_temb: SCREAMING_SNAKE_CASE_ = 128 SCREAMING_SNAKE_CASE_ = randn_tensor((batch_size, temb_channels) , generator=_lowerCAmelCase , device=_lowerCAmelCase ) if include_res_hidden_states_tuple: SCREAMING_SNAKE_CASE_ = torch.manual_seed(1 ) SCREAMING_SNAKE_CASE_ = (randn_tensor(_lowerCAmelCase , generator=_lowerCAmelCase , device=_lowerCAmelCase ),) if include_encoder_hidden_states: SCREAMING_SNAKE_CASE_ = floats_tensor((batch_size, 32, 32) ).to(_lowerCAmelCase ) if include_skip_sample: SCREAMING_SNAKE_CASE_ = randn_tensor(((batch_size, 3) + sizes) , generator=_lowerCAmelCase , device=_lowerCAmelCase ) return dummy_input def lowerCAmelCase_ ( self : Optional[int] ): SCREAMING_SNAKE_CASE_ = { 'in_channels': 32, 'out_channels': 32, 'temb_channels': 128, } if self.block_type == "up": SCREAMING_SNAKE_CASE_ = 32 if self.block_type == "mid": init_dict.pop('out_channels' ) SCREAMING_SNAKE_CASE_ = self.dummy_input return init_dict, inputs_dict def lowerCAmelCase_ ( self : Dict , _lowerCAmelCase : Optional[Any] ): SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = self.prepare_init_args_and_inputs_for_common() SCREAMING_SNAKE_CASE_ = self.block_class(**_lowerCAmelCase ) unet_block.to(_lowerCAmelCase ) unet_block.eval() with torch.no_grad(): SCREAMING_SNAKE_CASE_ = unet_block(**_lowerCAmelCase ) if isinstance(_lowerCAmelCase , _lowerCAmelCase ): SCREAMING_SNAKE_CASE_ = output[0] self.assertEqual(output.shape , self.output_shape ) SCREAMING_SNAKE_CASE_ = output[0, -1, -3:, -3:] SCREAMING_SNAKE_CASE_ = torch.tensor(_lowerCAmelCase ).to(_lowerCAmelCase ) assert torch_all_close(output_slice.flatten() , _lowerCAmelCase , atol=5E-3 ) @unittest.skipIf(torch_device == 'mps' , 'Training is not supported in mps' ) def lowerCAmelCase_ ( self : Any ): SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = self.prepare_init_args_and_inputs_for_common() SCREAMING_SNAKE_CASE_ = self.block_class(**_lowerCAmelCase ) model.to(_lowerCAmelCase ) model.train() SCREAMING_SNAKE_CASE_ = model(**_lowerCAmelCase ) if isinstance(_lowerCAmelCase , _lowerCAmelCase ): SCREAMING_SNAKE_CASE_ = output[0] SCREAMING_SNAKE_CASE_ = torch.device(_lowerCAmelCase ) SCREAMING_SNAKE_CASE_ = randn_tensor(output.shape , device=_lowerCAmelCase ) SCREAMING_SNAKE_CASE_ = torch.nn.functional.mse_loss(_lowerCAmelCase , _lowerCAmelCase ) loss.backward()
31
1
import inspect import unittest from transformers import MobileViTConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import MobileViTForImageClassification, MobileViTForSemanticSegmentation, MobileViTModel from transformers.models.mobilevit.modeling_mobilevit import MOBILEVIT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import MobileViTImageProcessor class lowerCamelCase_ ( _SCREAMING_SNAKE_CASE ): '''simple docstring''' def lowerCAmelCase_ ( self : Optional[Any] ): SCREAMING_SNAKE_CASE_ = self.config_class(**self.inputs_dict ) self.parent.assertTrue(hasattr(_lowerCAmelCase , 'hidden_sizes' ) ) self.parent.assertTrue(hasattr(_lowerCAmelCase , 'neck_hidden_sizes' ) ) self.parent.assertTrue(hasattr(_lowerCAmelCase , 'num_attention_heads' ) ) class lowerCamelCase_ : '''simple docstring''' def __init__( self : Any , _lowerCAmelCase : str , _lowerCAmelCase : List[Any]=13 , _lowerCAmelCase : str=32 , _lowerCAmelCase : str=2 , _lowerCAmelCase : List[Any]=3 , _lowerCAmelCase : List[str]=640 , _lowerCAmelCase : Union[str, Any]=4 , _lowerCAmelCase : Dict="silu" , _lowerCAmelCase : List[str]=3 , _lowerCAmelCase : str=32 , _lowerCAmelCase : Any=0.1 , _lowerCAmelCase : List[str]=0.1 , _lowerCAmelCase : Union[str, Any]=0.1 , _lowerCAmelCase : Optional[Any]=0.02 , _lowerCAmelCase : Union[str, Any]=True , _lowerCAmelCase : Optional[int]=True , _lowerCAmelCase : Any=10 , _lowerCAmelCase : str=None , ): SCREAMING_SNAKE_CASE_ = parent SCREAMING_SNAKE_CASE_ = batch_size SCREAMING_SNAKE_CASE_ = image_size SCREAMING_SNAKE_CASE_ = patch_size SCREAMING_SNAKE_CASE_ = num_channels SCREAMING_SNAKE_CASE_ = last_hidden_size SCREAMING_SNAKE_CASE_ = num_attention_heads SCREAMING_SNAKE_CASE_ = hidden_act SCREAMING_SNAKE_CASE_ = conv_kernel_size SCREAMING_SNAKE_CASE_ = output_stride SCREAMING_SNAKE_CASE_ = hidden_dropout_prob SCREAMING_SNAKE_CASE_ = attention_probs_dropout_prob SCREAMING_SNAKE_CASE_ = classifier_dropout_prob SCREAMING_SNAKE_CASE_ = use_labels SCREAMING_SNAKE_CASE_ = is_training SCREAMING_SNAKE_CASE_ = num_labels SCREAMING_SNAKE_CASE_ = initializer_range SCREAMING_SNAKE_CASE_ = scope def lowerCAmelCase_ ( self : Tuple ): SCREAMING_SNAKE_CASE_ = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) SCREAMING_SNAKE_CASE_ = None SCREAMING_SNAKE_CASE_ = None if self.use_labels: SCREAMING_SNAKE_CASE_ = ids_tensor([self.batch_size] , self.num_labels ) SCREAMING_SNAKE_CASE_ = ids_tensor([self.batch_size, self.image_size, self.image_size] , self.num_labels ) SCREAMING_SNAKE_CASE_ = self.get_config() return config, pixel_values, labels, pixel_labels def lowerCAmelCase_ ( self : Optional[int] ): return MobileViTConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , num_attention_heads=self.num_attention_heads , hidden_act=self.hidden_act , conv_kernel_size=self.conv_kernel_size , output_stride=self.output_stride , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , classifier_dropout_prob=self.classifier_dropout_prob , initializer_range=self.initializer_range , ) def lowerCAmelCase_ ( self : Dict , _lowerCAmelCase : Union[str, Any] , _lowerCAmelCase : str , _lowerCAmelCase : str , _lowerCAmelCase : List[str] ): SCREAMING_SNAKE_CASE_ = MobileViTModel(config=_lowerCAmelCase ) model.to(_lowerCAmelCase ) model.eval() SCREAMING_SNAKE_CASE_ = model(_lowerCAmelCase ) self.parent.assertEqual( result.last_hidden_state.shape , ( self.batch_size, self.last_hidden_size, self.image_size // self.output_stride, self.image_size // self.output_stride, ) , ) def lowerCAmelCase_ ( self : Union[str, Any] , _lowerCAmelCase : Union[str, Any] , _lowerCAmelCase : Union[str, Any] , _lowerCAmelCase : str , _lowerCAmelCase : str ): SCREAMING_SNAKE_CASE_ = self.num_labels SCREAMING_SNAKE_CASE_ = MobileViTForImageClassification(_lowerCAmelCase ) model.to(_lowerCAmelCase ) model.eval() SCREAMING_SNAKE_CASE_ = model(_lowerCAmelCase , labels=_lowerCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def lowerCAmelCase_ ( self : int , _lowerCAmelCase : Union[str, Any] , _lowerCAmelCase : Any , _lowerCAmelCase : Optional[Any] , _lowerCAmelCase : List[str] ): SCREAMING_SNAKE_CASE_ = self.num_labels SCREAMING_SNAKE_CASE_ = MobileViTForSemanticSegmentation(_lowerCAmelCase ) model.to(_lowerCAmelCase ) model.eval() SCREAMING_SNAKE_CASE_ = model(_lowerCAmelCase ) self.parent.assertEqual( result.logits.shape , ( self.batch_size, self.num_labels, self.image_size // self.output_stride, self.image_size // self.output_stride, ) , ) SCREAMING_SNAKE_CASE_ = model(_lowerCAmelCase , labels=_lowerCAmelCase ) self.parent.assertEqual( result.logits.shape , ( self.batch_size, self.num_labels, self.image_size // self.output_stride, self.image_size // self.output_stride, ) , ) def lowerCAmelCase_ ( self : Tuple ): SCREAMING_SNAKE_CASE_ = self.prepare_config_and_inputs() SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = config_and_inputs SCREAMING_SNAKE_CASE_ = {'pixel_values': pixel_values} return config, inputs_dict @require_torch class lowerCamelCase_ ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' lowercase_ = ( (MobileViTModel, MobileViTForImageClassification, MobileViTForSemanticSegmentation) if is_torch_available() else () ) lowercase_ = ( { "feature-extraction": MobileViTModel, "image-classification": MobileViTForImageClassification, "image-segmentation": MobileViTForSemanticSegmentation, } if is_torch_available() else {} ) lowercase_ = False lowercase_ = False lowercase_ = False lowercase_ = False def lowerCAmelCase_ ( self : Tuple ): SCREAMING_SNAKE_CASE_ = MobileViTModelTester(self ) SCREAMING_SNAKE_CASE_ = MobileViTConfigTester(self , config_class=_lowerCAmelCase , has_text_modality=_lowerCAmelCase ) def lowerCAmelCase_ ( self : Union[str, Any] ): self.config_tester.run_common_tests() @unittest.skip(reason='MobileViT does not use inputs_embeds' ) def lowerCAmelCase_ ( self : Tuple ): pass @unittest.skip(reason='MobileViT does not support input and output embeddings' ) def lowerCAmelCase_ ( self : Dict ): pass @unittest.skip(reason='MobileViT does not output attentions' ) def lowerCAmelCase_ ( self : List[str] ): pass def lowerCAmelCase_ ( self : int ): SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: SCREAMING_SNAKE_CASE_ = model_class(_lowerCAmelCase ) SCREAMING_SNAKE_CASE_ = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic SCREAMING_SNAKE_CASE_ = [*signature.parameters.keys()] SCREAMING_SNAKE_CASE_ = ['pixel_values'] self.assertListEqual(arg_names[:1] , _lowerCAmelCase ) @unittest.skip('Will be fixed soon by reducing the size of the model used for common tests.' ) def lowerCAmelCase_ ( self : int ): pass def lowerCAmelCase_ ( self : Tuple ): SCREAMING_SNAKE_CASE_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_lowerCAmelCase ) def lowerCAmelCase_ ( self : Optional[int] ): def check_hidden_states_output(_lowerCAmelCase : int , _lowerCAmelCase : Tuple , _lowerCAmelCase : List[str] ): SCREAMING_SNAKE_CASE_ = model_class(_lowerCAmelCase ) model.to(_lowerCAmelCase ) model.eval() with torch.no_grad(): SCREAMING_SNAKE_CASE_ = model(**self._prepare_for_class(_lowerCAmelCase , _lowerCAmelCase ) ) SCREAMING_SNAKE_CASE_ = outputs.hidden_states SCREAMING_SNAKE_CASE_ = 5 self.assertEqual(len(_lowerCAmelCase ) , _lowerCAmelCase ) # MobileViT's feature maps are of shape (batch_size, num_channels, height, width) # with the width and height being successively divided by 2. SCREAMING_SNAKE_CASE_ = 2 for i in range(len(_lowerCAmelCase ) ): self.assertListEqual( list(hidden_states[i].shape[-2:] ) , [self.model_tester.image_size // divisor, self.model_tester.image_size // divisor] , ) divisor *= 2 self.assertEqual(self.model_tester.output_stride , divisor // 2 ) SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: SCREAMING_SNAKE_CASE_ = True check_hidden_states_output(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] SCREAMING_SNAKE_CASE_ = True check_hidden_states_output(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) def lowerCAmelCase_ ( self : List[str] ): SCREAMING_SNAKE_CASE_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*_lowerCAmelCase ) def lowerCAmelCase_ ( self : List[str] ): SCREAMING_SNAKE_CASE_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_semantic_segmentation(*_lowerCAmelCase ) @slow def lowerCAmelCase_ ( self : Dict ): for model_name in MOBILEVIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: SCREAMING_SNAKE_CASE_ = MobileViTModel.from_pretrained(_lowerCAmelCase ) self.assertIsNotNone(_lowerCAmelCase ) def UpperCAmelCase_ ( ) -> Union[str, Any]: SCREAMING_SNAKE_CASE_ = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) return image @require_torch @require_vision class lowerCamelCase_ ( unittest.TestCase ): '''simple docstring''' @cached_property def lowerCAmelCase_ ( self : List[Any] ): return MobileViTImageProcessor.from_pretrained('apple/mobilevit-xx-small' ) if is_vision_available() else None @slow def lowerCAmelCase_ ( self : Optional[int] ): SCREAMING_SNAKE_CASE_ = MobileViTForImageClassification.from_pretrained('apple/mobilevit-xx-small' ).to(_lowerCAmelCase ) SCREAMING_SNAKE_CASE_ = self.default_image_processor SCREAMING_SNAKE_CASE_ = prepare_img() SCREAMING_SNAKE_CASE_ = image_processor(images=_lowerCAmelCase , return_tensors='pt' ).to(_lowerCAmelCase ) # forward pass with torch.no_grad(): SCREAMING_SNAKE_CASE_ = model(**_lowerCAmelCase ) # verify the logits SCREAMING_SNAKE_CASE_ = torch.Size((1, 1_000) ) self.assertEqual(outputs.logits.shape , _lowerCAmelCase ) SCREAMING_SNAKE_CASE_ = torch.tensor([-1.9364, -1.2327, -0.4653] ).to(_lowerCAmelCase ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , _lowerCAmelCase , atol=1E-4 ) ) @slow def lowerCAmelCase_ ( self : Any ): SCREAMING_SNAKE_CASE_ = MobileViTForSemanticSegmentation.from_pretrained('apple/deeplabv3-mobilevit-xx-small' ) SCREAMING_SNAKE_CASE_ = model.to(_lowerCAmelCase ) SCREAMING_SNAKE_CASE_ = MobileViTImageProcessor.from_pretrained('apple/deeplabv3-mobilevit-xx-small' ) SCREAMING_SNAKE_CASE_ = prepare_img() SCREAMING_SNAKE_CASE_ = image_processor(images=_lowerCAmelCase , return_tensors='pt' ).to(_lowerCAmelCase ) # forward pass with torch.no_grad(): SCREAMING_SNAKE_CASE_ = model(**_lowerCAmelCase ) SCREAMING_SNAKE_CASE_ = outputs.logits # verify the logits SCREAMING_SNAKE_CASE_ = torch.Size((1, 21, 32, 32) ) self.assertEqual(logits.shape , _lowerCAmelCase ) SCREAMING_SNAKE_CASE_ = torch.tensor( [ [[6.9713, 6.9786, 7.2422], [7.2893, 7.2825, 7.4446], [7.6580, 7.8797, 7.9420]], [[-10.6869, -10.3250, -10.3471], [-10.4228, -9.9868, -9.7132], [-11.0405, -11.0221, -10.7318]], [[-3.3089, -2.8539, -2.6740], [-3.2706, -2.5621, -2.5108], [-3.2534, -2.6615, -2.6651]], ] , device=_lowerCAmelCase , ) self.assertTrue(torch.allclose(logits[0, :3, :3, :3] , _lowerCAmelCase , atol=1E-4 ) ) @slow def lowerCAmelCase_ ( self : List[str] ): SCREAMING_SNAKE_CASE_ = MobileViTForSemanticSegmentation.from_pretrained('apple/deeplabv3-mobilevit-xx-small' ) SCREAMING_SNAKE_CASE_ = model.to(_lowerCAmelCase ) SCREAMING_SNAKE_CASE_ = MobileViTImageProcessor.from_pretrained('apple/deeplabv3-mobilevit-xx-small' ) SCREAMING_SNAKE_CASE_ = prepare_img() SCREAMING_SNAKE_CASE_ = image_processor(images=_lowerCAmelCase , return_tensors='pt' ).to(_lowerCAmelCase ) # forward pass with torch.no_grad(): SCREAMING_SNAKE_CASE_ = model(**_lowerCAmelCase ) SCREAMING_SNAKE_CASE_ = outputs.logits.detach().cpu() SCREAMING_SNAKE_CASE_ = image_processor.post_process_semantic_segmentation(outputs=_lowerCAmelCase , target_sizes=[(50, 60)] ) SCREAMING_SNAKE_CASE_ = torch.Size((50, 60) ) self.assertEqual(segmentation[0].shape , _lowerCAmelCase ) SCREAMING_SNAKE_CASE_ = image_processor.post_process_semantic_segmentation(outputs=_lowerCAmelCase ) SCREAMING_SNAKE_CASE_ = torch.Size((32, 32) ) self.assertEqual(segmentation[0].shape , _lowerCAmelCase )
31
import operator as op def UpperCAmelCase_ ( __UpperCAmelCase : str ) -> Any: SCREAMING_SNAKE_CASE_ = [] SCREAMING_SNAKE_CASE_ = lambda __UpperCAmelCase , __UpperCAmelCase : int(x / y ) # noqa: E731 integer division operation SCREAMING_SNAKE_CASE_ = { '^': op.pow, '*': op.mul, '/': div, '+': op.add, '-': op.sub, } # operators & their respective operation # print table header print('Symbol'.center(8 ) , 'Action'.center(12 ) , 'Stack' , sep=' | ' ) print('-' * (30 + len(__UpperCAmelCase )) ) for x in post_fix: if x.isdigit(): # if x in digit stack.append(__UpperCAmelCase ) # append x to stack # output in tabular format print(x.rjust(8 ) , ('push(' + x + ')').ljust(12 ) , ','.join(__UpperCAmelCase ) , sep=' | ' ) else: SCREAMING_SNAKE_CASE_ = stack.pop() # pop stack # output in tabular format print(''.rjust(8 ) , ('pop(' + b + ')').ljust(12 ) , ','.join(__UpperCAmelCase ) , sep=' | ' ) SCREAMING_SNAKE_CASE_ = stack.pop() # pop stack # output in tabular format print(''.rjust(8 ) , ('pop(' + a + ')').ljust(12 ) , ','.join(__UpperCAmelCase ) , sep=' | ' ) stack.append( str(opr[x](int(__UpperCAmelCase ) , int(__UpperCAmelCase ) ) ) ) # evaluate the 2 values popped from stack & push result to stack # output in tabular format print( x.rjust(8 ) , ('push(' + a + x + b + ')').ljust(12 ) , ','.join(__UpperCAmelCase ) , sep=' | ' , ) return int(stack[0] ) if __name__ == "__main__": lowerCamelCase__ : Tuple = input('\n\nEnter a Postfix Equation (space separated) = ').split(' ') print('\n\tResult = ', solve(Postfix))
31
1
import unittest from transformers import is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( OPENAI_GPT_PRETRAINED_MODEL_ARCHIVE_LIST, OpenAIGPTConfig, OpenAIGPTDoubleHeadsModel, OpenAIGPTForSequenceClassification, OpenAIGPTLMHeadModel, OpenAIGPTModel, ) class lowerCamelCase_ : '''simple docstring''' def __init__( self : List[Any] , _lowerCAmelCase : Union[str, Any] , _lowerCAmelCase : int=13 , _lowerCAmelCase : str=7 , _lowerCAmelCase : Optional[Any]=True , _lowerCAmelCase : Tuple=True , _lowerCAmelCase : Optional[int]=True , _lowerCAmelCase : str=99 , _lowerCAmelCase : List[Any]=32 , _lowerCAmelCase : int=5 , _lowerCAmelCase : Tuple=4 , _lowerCAmelCase : Any=37 , _lowerCAmelCase : Optional[Any]="gelu" , _lowerCAmelCase : List[Any]=0.1 , _lowerCAmelCase : str=0.1 , _lowerCAmelCase : List[str]=512 , _lowerCAmelCase : Tuple=16 , _lowerCAmelCase : Any=2 , _lowerCAmelCase : int=0.02 , _lowerCAmelCase : Any=3 , _lowerCAmelCase : Tuple=4 , _lowerCAmelCase : List[str]=None , ): SCREAMING_SNAKE_CASE_ = parent SCREAMING_SNAKE_CASE_ = batch_size SCREAMING_SNAKE_CASE_ = seq_length SCREAMING_SNAKE_CASE_ = is_training SCREAMING_SNAKE_CASE_ = use_token_type_ids SCREAMING_SNAKE_CASE_ = use_labels SCREAMING_SNAKE_CASE_ = vocab_size SCREAMING_SNAKE_CASE_ = hidden_size SCREAMING_SNAKE_CASE_ = num_hidden_layers SCREAMING_SNAKE_CASE_ = num_attention_heads SCREAMING_SNAKE_CASE_ = intermediate_size SCREAMING_SNAKE_CASE_ = hidden_act SCREAMING_SNAKE_CASE_ = hidden_dropout_prob SCREAMING_SNAKE_CASE_ = attention_probs_dropout_prob SCREAMING_SNAKE_CASE_ = max_position_embeddings SCREAMING_SNAKE_CASE_ = type_vocab_size SCREAMING_SNAKE_CASE_ = type_sequence_label_size SCREAMING_SNAKE_CASE_ = initializer_range SCREAMING_SNAKE_CASE_ = num_labels SCREAMING_SNAKE_CASE_ = num_choices SCREAMING_SNAKE_CASE_ = scope SCREAMING_SNAKE_CASE_ = self.vocab_size - 1 def lowerCAmelCase_ ( self : Optional[Any] ): SCREAMING_SNAKE_CASE_ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) SCREAMING_SNAKE_CASE_ = None if self.use_token_type_ids: SCREAMING_SNAKE_CASE_ = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) SCREAMING_SNAKE_CASE_ = None SCREAMING_SNAKE_CASE_ = None SCREAMING_SNAKE_CASE_ = None if self.use_labels: SCREAMING_SNAKE_CASE_ = ids_tensor([self.batch_size] , self.type_sequence_label_size ) SCREAMING_SNAKE_CASE_ = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) SCREAMING_SNAKE_CASE_ = ids_tensor([self.batch_size] , self.num_choices ) SCREAMING_SNAKE_CASE_ = OpenAIGPTConfig( vocab_size=self.vocab_size , n_embd=self.hidden_size , n_layer=self.num_hidden_layers , n_head=self.num_attention_heads , n_positions=self.max_position_embeddings , pad_token_id=self.pad_token_id , ) SCREAMING_SNAKE_CASE_ = ids_tensor([self.num_hidden_layers, self.num_attention_heads] , 2 ) return ( config, input_ids, head_mask, token_type_ids, sequence_labels, token_labels, choice_labels, ) def lowerCAmelCase_ ( self : str , _lowerCAmelCase : List[Any] , _lowerCAmelCase : int , _lowerCAmelCase : Dict , _lowerCAmelCase : Dict , *_lowerCAmelCase : Union[str, Any] ): SCREAMING_SNAKE_CASE_ = OpenAIGPTModel(config=_lowerCAmelCase ) model.to(_lowerCAmelCase ) model.eval() SCREAMING_SNAKE_CASE_ = model(_lowerCAmelCase , token_type_ids=_lowerCAmelCase , head_mask=_lowerCAmelCase ) SCREAMING_SNAKE_CASE_ = model(_lowerCAmelCase , token_type_ids=_lowerCAmelCase ) SCREAMING_SNAKE_CASE_ = model(_lowerCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def lowerCAmelCase_ ( self : List[str] , _lowerCAmelCase : Tuple , _lowerCAmelCase : Optional[Any] , _lowerCAmelCase : Tuple , _lowerCAmelCase : int , *_lowerCAmelCase : Dict ): SCREAMING_SNAKE_CASE_ = OpenAIGPTLMHeadModel(_lowerCAmelCase ) model.to(_lowerCAmelCase ) model.eval() SCREAMING_SNAKE_CASE_ = model(_lowerCAmelCase , token_type_ids=_lowerCAmelCase , labels=_lowerCAmelCase ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def lowerCAmelCase_ ( self : Tuple , _lowerCAmelCase : Any , _lowerCAmelCase : int , _lowerCAmelCase : Optional[Any] , _lowerCAmelCase : List[Any] , *_lowerCAmelCase : Any ): SCREAMING_SNAKE_CASE_ = OpenAIGPTDoubleHeadsModel(_lowerCAmelCase ) model.to(_lowerCAmelCase ) model.eval() SCREAMING_SNAKE_CASE_ = model(_lowerCAmelCase , token_type_ids=_lowerCAmelCase , labels=_lowerCAmelCase ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def lowerCAmelCase_ ( self : Any , _lowerCAmelCase : Optional[int] , _lowerCAmelCase : Dict , _lowerCAmelCase : List[str] , _lowerCAmelCase : Optional[int] , *_lowerCAmelCase : Tuple ): SCREAMING_SNAKE_CASE_ = self.num_labels SCREAMING_SNAKE_CASE_ = OpenAIGPTForSequenceClassification(_lowerCAmelCase ) model.to(_lowerCAmelCase ) model.eval() SCREAMING_SNAKE_CASE_ = ids_tensor([self.batch_size] , self.type_sequence_label_size ) SCREAMING_SNAKE_CASE_ = model(_lowerCAmelCase , token_type_ids=_lowerCAmelCase , labels=_lowerCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def lowerCAmelCase_ ( self : Any ): SCREAMING_SNAKE_CASE_ = self.prepare_config_and_inputs() ( ( SCREAMING_SNAKE_CASE_ ) , ( SCREAMING_SNAKE_CASE_ ) , ( SCREAMING_SNAKE_CASE_ ) , ( SCREAMING_SNAKE_CASE_ ) , ( SCREAMING_SNAKE_CASE_ ) , ( SCREAMING_SNAKE_CASE_ ) , ( SCREAMING_SNAKE_CASE_ ) , ) = config_and_inputs SCREAMING_SNAKE_CASE_ = { 'input_ids': input_ids, 'token_type_ids': token_type_ids, 'head_mask': head_mask, } return config, inputs_dict @require_torch class lowerCamelCase_ ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' lowercase_ = ( (OpenAIGPTModel, OpenAIGPTLMHeadModel, OpenAIGPTDoubleHeadsModel, OpenAIGPTForSequenceClassification) if is_torch_available() else () ) lowercase_ = ( (OpenAIGPTLMHeadModel,) if is_torch_available() else () ) # TODO (PVP): Add Double HeadsModel when generate() function is changed accordingly lowercase_ = ( { "feature-extraction": OpenAIGPTModel, "text-classification": OpenAIGPTForSequenceClassification, "text-generation": OpenAIGPTLMHeadModel, "zero-shot": OpenAIGPTForSequenceClassification, } if is_torch_available() else {} ) def lowerCAmelCase_ ( self : Tuple , _lowerCAmelCase : Optional[Any] , _lowerCAmelCase : Tuple , _lowerCAmelCase : List[Any] , _lowerCAmelCase : Union[str, Any] , _lowerCAmelCase : int ): if pipeline_test_casse_name == "ZeroShotClassificationPipelineTests": # Get `tokenizer does not have a padding token` error for both fast/slow tokenizers. # `OpenAIGPTConfig` was never used in pipeline tests, either because of a missing checkpoint or because a # tiny config could not be created. return True return False def lowerCAmelCase_ ( self : Dict , _lowerCAmelCase : Any , _lowerCAmelCase : Union[str, Any] , _lowerCAmelCase : Optional[int]=False ): SCREAMING_SNAKE_CASE_ = super()._prepare_for_class(_lowerCAmelCase , _lowerCAmelCase , return_labels=_lowerCAmelCase ) if return_labels: if model_class.__name__ == "OpenAIGPTDoubleHeadsModel": SCREAMING_SNAKE_CASE_ = torch.zeros( (self.model_tester.batch_size, self.model_tester.num_choices, self.model_tester.seq_length) , dtype=torch.long , device=_lowerCAmelCase , ) SCREAMING_SNAKE_CASE_ = inputs_dict['labels'] SCREAMING_SNAKE_CASE_ = inputs_dict['labels'] SCREAMING_SNAKE_CASE_ = torch.zeros( (self.model_tester.batch_size, self.model_tester.num_choices) , dtype=torch.long , device=_lowerCAmelCase , ) SCREAMING_SNAKE_CASE_ = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=_lowerCAmelCase ) return inputs_dict def lowerCAmelCase_ ( self : Optional[Any] ): SCREAMING_SNAKE_CASE_ = OpenAIGPTModelTester(self ) SCREAMING_SNAKE_CASE_ = ConfigTester(self , config_class=_lowerCAmelCase , n_embd=37 ) def lowerCAmelCase_ ( self : Dict ): self.config_tester.run_common_tests() def lowerCAmelCase_ ( self : str ): SCREAMING_SNAKE_CASE_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_openai_gpt_model(*_lowerCAmelCase ) def lowerCAmelCase_ ( self : Tuple ): SCREAMING_SNAKE_CASE_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_lm_head_model(*_lowerCAmelCase ) def lowerCAmelCase_ ( self : Optional[Any] ): SCREAMING_SNAKE_CASE_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_double_lm_head_model(*_lowerCAmelCase ) def lowerCAmelCase_ ( self : Tuple ): SCREAMING_SNAKE_CASE_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_openai_gpt_for_sequence_classification(*_lowerCAmelCase ) @slow def lowerCAmelCase_ ( self : Tuple ): for model_name in OPENAI_GPT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: SCREAMING_SNAKE_CASE_ = OpenAIGPTModel.from_pretrained(_lowerCAmelCase ) self.assertIsNotNone(_lowerCAmelCase ) @require_torch class lowerCamelCase_ ( unittest.TestCase ): '''simple docstring''' @slow def lowerCAmelCase_ ( self : Optional[Any] ): SCREAMING_SNAKE_CASE_ = OpenAIGPTLMHeadModel.from_pretrained('openai-gpt' ) model.to(_lowerCAmelCase ) SCREAMING_SNAKE_CASE_ = torch.tensor([[481, 4_735, 544]] , dtype=torch.long , device=_lowerCAmelCase ) # the president is SCREAMING_SNAKE_CASE_ = [ 481, 4_735, 544, 246, 963, 870, 762, 239, 244, 40_477, 244, 249, 719, 881, 487, 544, 240, 244, 603, 481, ] # the president is a very good man. " \n " i\'m sure he is, " said the SCREAMING_SNAKE_CASE_ = model.generate(_lowerCAmelCase , do_sample=_lowerCAmelCase ) self.assertListEqual(output_ids[0].tolist() , _lowerCAmelCase )
31
def UpperCAmelCase_ ( __UpperCAmelCase : int ) -> int: assert isinstance(__UpperCAmelCase , __UpperCAmelCase ), f"The input value of [n={number}] is not an integer" if number == 1: return 2 elif number < 1: SCREAMING_SNAKE_CASE_ = f"The input value of [n={number}] has to be > 0" raise ValueError(__UpperCAmelCase ) else: SCREAMING_SNAKE_CASE_ = sylvester(number - 1 ) SCREAMING_SNAKE_CASE_ = num - 1 SCREAMING_SNAKE_CASE_ = num return lower * upper + 1 if __name__ == "__main__": print(f'''The 8th number in Sylvester\'s sequence: {sylvester(8)}''')
31
1
import argparse from collections import defaultdict def UpperCAmelCase_ ( __UpperCAmelCase : List[Any] , __UpperCAmelCase : List[str] , __UpperCAmelCase : List[str] , __UpperCAmelCase : Any , __UpperCAmelCase : Any ) -> Dict: SCREAMING_SNAKE_CASE_ = f"{file}_{class_name}_{test_name}" done_test[_id] += 1 with open(__UpperCAmelCase , 'r' ) as f: SCREAMING_SNAKE_CASE_ = f.readlines() SCREAMING_SNAKE_CASE_ = f"class {class_name}(" SCREAMING_SNAKE_CASE_ = f"{4 * ' '}def {test_name}(" SCREAMING_SNAKE_CASE_ = f"{8 * ' '}{correct_line.split()[0]}" SCREAMING_SNAKE_CASE_ = f"{16 * ' '}{correct_line.split()[0]}" SCREAMING_SNAKE_CASE_ = False SCREAMING_SNAKE_CASE_ = False SCREAMING_SNAKE_CASE_ = False SCREAMING_SNAKE_CASE_ = False SCREAMING_SNAKE_CASE_ = 0 SCREAMING_SNAKE_CASE_ = 0 SCREAMING_SNAKE_CASE_ = [] for line in lines: if line.startswith(__UpperCAmelCase ): SCREAMING_SNAKE_CASE_ = True elif in_class and line.startswith(__UpperCAmelCase ): SCREAMING_SNAKE_CASE_ = True elif in_class and in_func and (line.startswith(__UpperCAmelCase ) or line.startswith(__UpperCAmelCase )): SCREAMING_SNAKE_CASE_ = len(line.split(correct_line.split()[0] )[0] ) count += 1 if count == done_test[_id]: SCREAMING_SNAKE_CASE_ = True if in_class and in_func and in_line: if ")" not in line: continue else: SCREAMING_SNAKE_CASE_ = True if in_class and in_func and in_line and insert_line: new_lines.append(f"{spaces * ' '}{correct_line}" ) SCREAMING_SNAKE_CASE_ = SCREAMING_SNAKE_CASE_ = SCREAMING_SNAKE_CASE_ = SCREAMING_SNAKE_CASE_ = False else: new_lines.append(__UpperCAmelCase ) with open(__UpperCAmelCase , 'w' ) as f: for line in new_lines: f.write(__UpperCAmelCase ) def UpperCAmelCase_ ( __UpperCAmelCase : Any , __UpperCAmelCase : str=None ) -> Tuple: if fail is not None: with open(__UpperCAmelCase , 'r' ) as f: SCREAMING_SNAKE_CASE_ = {l.strip() for l in f.readlines()} else: SCREAMING_SNAKE_CASE_ = None with open(__UpperCAmelCase , 'r' ) as f: SCREAMING_SNAKE_CASE_ = f.readlines() SCREAMING_SNAKE_CASE_ = defaultdict(__UpperCAmelCase ) for line in correct_lines: SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = line.split(';' ) if test_failures is None or "::".join([file, class_name, test_name] ) in test_failures: overwrite_file(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) if __name__ == "__main__": lowerCamelCase__ : Optional[Any] = argparse.ArgumentParser() parser.add_argument('--correct_filename', help='filename of tests with expected result') parser.add_argument('--fail_filename', help='filename of test failures', type=str, default=None) lowerCamelCase__ : int = parser.parse_args() main(args.correct_filename, args.fail_filename)
31
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_sentencepiece_available, is_tf_available, is_tokenizers_available, is_torch_available, ) if is_sentencepiece_available(): from ..ta.tokenization_ta import TaTokenizer else: from ...utils.dummy_sentencepiece_objects import TaTokenizer lowerCamelCase__ : List[Any] = TaTokenizer if is_tokenizers_available(): from ..ta.tokenization_ta_fast import TaTokenizerFast else: from ...utils.dummy_tokenizers_objects import TaTokenizerFast lowerCamelCase__ : Union[str, Any] = TaTokenizerFast lowerCamelCase__ : Dict = {'configuration_mt5': ['MT5Config', 'MT5OnnxConfig']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase__ : Tuple = [ 'MT5EncoderModel', 'MT5ForConditionalGeneration', 'MT5ForQuestionAnswering', 'MT5Model', 'MT5PreTrainedModel', 'MT5Stack', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase__ : Tuple = ['TFMT5EncoderModel', 'TFMT5ForConditionalGeneration', 'TFMT5Model'] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase__ : Tuple = ['FlaxMT5EncoderModel', 'FlaxMT5ForConditionalGeneration', 'FlaxMT5Model'] if TYPE_CHECKING: from .configuration_mta import MTaConfig, MTaOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mta import ( MTaEncoderModel, MTaForConditionalGeneration, MTaForQuestionAnswering, MTaModel, MTaPreTrainedModel, MTaStack, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_mta import TFMTaEncoderModel, TFMTaForConditionalGeneration, TFMTaModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_mta import FlaxMTaEncoderModel, FlaxMTaForConditionalGeneration, FlaxMTaModel else: import sys lowerCamelCase__ : int = _LazyModule( __name__, globals()['__file__'], _import_structure, extra_objects={'MT5Tokenizer': MTaTokenizer, 'MT5TokenizerFast': MTaTokenizerFast}, module_spec=__spec__, )
31
1
from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCamelCase__ : Optional[int] = logging.get_logger(__name__) lowerCamelCase__ : Tuple = { 'microsoft/swinv2-tiny-patch4-window8-256': ( 'https://huggingface.co/microsoft/swinv2-tiny-patch4-window8-256/resolve/main/config.json' ), } class lowerCamelCase_ ( _SCREAMING_SNAKE_CASE ): '''simple docstring''' lowercase_ = "swinv2" lowercase_ = { "num_attention_heads": "num_heads", "num_hidden_layers": "num_layers", } def __init__( self : Dict , _lowerCAmelCase : Optional[Any]=224 , _lowerCAmelCase : Optional[int]=4 , _lowerCAmelCase : Tuple=3 , _lowerCAmelCase : Tuple=96 , _lowerCAmelCase : Dict=[2, 2, 6, 2] , _lowerCAmelCase : Optional[Any]=[3, 6, 12, 24] , _lowerCAmelCase : str=7 , _lowerCAmelCase : List[Any]=4.0 , _lowerCAmelCase : List[str]=True , _lowerCAmelCase : List[Any]=0.0 , _lowerCAmelCase : List[Any]=0.0 , _lowerCAmelCase : Any=0.1 , _lowerCAmelCase : List[Any]="gelu" , _lowerCAmelCase : str=False , _lowerCAmelCase : str=0.02 , _lowerCAmelCase : List[Any]=1E-5 , _lowerCAmelCase : str=32 , **_lowerCAmelCase : List[Any] , ): super().__init__(**_lowerCAmelCase ) SCREAMING_SNAKE_CASE_ = image_size SCREAMING_SNAKE_CASE_ = patch_size SCREAMING_SNAKE_CASE_ = num_channels SCREAMING_SNAKE_CASE_ = embed_dim SCREAMING_SNAKE_CASE_ = depths SCREAMING_SNAKE_CASE_ = len(_lowerCAmelCase ) SCREAMING_SNAKE_CASE_ = num_heads SCREAMING_SNAKE_CASE_ = window_size SCREAMING_SNAKE_CASE_ = mlp_ratio SCREAMING_SNAKE_CASE_ = qkv_bias SCREAMING_SNAKE_CASE_ = hidden_dropout_prob SCREAMING_SNAKE_CASE_ = attention_probs_dropout_prob SCREAMING_SNAKE_CASE_ = drop_path_rate SCREAMING_SNAKE_CASE_ = hidden_act SCREAMING_SNAKE_CASE_ = use_absolute_embeddings SCREAMING_SNAKE_CASE_ = layer_norm_eps SCREAMING_SNAKE_CASE_ = initializer_range SCREAMING_SNAKE_CASE_ = encoder_stride # we set the hidden_size attribute in order to make Swinv2 work with VisionEncoderDecoderModel # this indicates the channel dimension after the last stage of the model SCREAMING_SNAKE_CASE_ = int(embed_dim * 2 ** (len(_lowerCAmelCase ) - 1) ) SCREAMING_SNAKE_CASE_ = (0, 0, 0, 0)
31
import subprocess import sys from transformers import BertConfig, BertModel, BertTokenizer, pipeline from transformers.testing_utils import TestCasePlus, require_torch class lowerCamelCase_ ( _SCREAMING_SNAKE_CASE ): '''simple docstring''' @require_torch def lowerCAmelCase_ ( self : int ): # this test is a bit tricky since TRANSFORMERS_OFFLINE can only be changed before # `transformers` is loaded, and it's too late for inside pytest - so we are changing it # while running an external program # python one-liner segments # this must be loaded before socket.socket is monkey-patched SCREAMING_SNAKE_CASE_ = '\nfrom transformers import BertConfig, BertModel, BertTokenizer, pipeline\n ' SCREAMING_SNAKE_CASE_ = '\nmname = "hf-internal-testing/tiny-random-bert"\nBertConfig.from_pretrained(mname)\nBertModel.from_pretrained(mname)\nBertTokenizer.from_pretrained(mname)\npipe = pipeline(task="fill-mask", model=mname)\nprint("success")\n ' SCREAMING_SNAKE_CASE_ = '\nimport socket\ndef offline_socket(*args, **kwargs): raise RuntimeError("Offline mode is enabled, we shouldn\'t access internet")\nsocket.socket = offline_socket\n ' # Force fetching the files so that we can use the cache SCREAMING_SNAKE_CASE_ = 'hf-internal-testing/tiny-random-bert' BertConfig.from_pretrained(_lowerCAmelCase ) BertModel.from_pretrained(_lowerCAmelCase ) BertTokenizer.from_pretrained(_lowerCAmelCase ) pipeline(task='fill-mask' , model=_lowerCAmelCase ) # baseline - just load from_pretrained with normal network SCREAMING_SNAKE_CASE_ = [sys.executable, '-c', '\n'.join([load, run, mock] )] # should succeed SCREAMING_SNAKE_CASE_ = self.get_env() # should succeed as TRANSFORMERS_OFFLINE=1 tells it to use local files SCREAMING_SNAKE_CASE_ = '1' SCREAMING_SNAKE_CASE_ = subprocess.run(_lowerCAmelCase , env=_lowerCAmelCase , check=_lowerCAmelCase , capture_output=_lowerCAmelCase ) self.assertEqual(result.returncode , 0 , result.stderr ) self.assertIn('success' , result.stdout.decode() ) @require_torch def lowerCAmelCase_ ( self : Tuple ): # python one-liner segments # this must be loaded before socket.socket is monkey-patched SCREAMING_SNAKE_CASE_ = '\nfrom transformers import BertConfig, BertModel, BertTokenizer, pipeline\n ' SCREAMING_SNAKE_CASE_ = '\nmname = "hf-internal-testing/tiny-random-bert"\nBertConfig.from_pretrained(mname)\nBertModel.from_pretrained(mname)\nBertTokenizer.from_pretrained(mname)\npipe = pipeline(task="fill-mask", model=mname)\nprint("success")\n ' SCREAMING_SNAKE_CASE_ = '\nimport socket\ndef offline_socket(*args, **kwargs): raise socket.error("Faking flaky internet")\nsocket.socket = offline_socket\n ' # Force fetching the files so that we can use the cache SCREAMING_SNAKE_CASE_ = 'hf-internal-testing/tiny-random-bert' BertConfig.from_pretrained(_lowerCAmelCase ) BertModel.from_pretrained(_lowerCAmelCase ) BertTokenizer.from_pretrained(_lowerCAmelCase ) pipeline(task='fill-mask' , model=_lowerCAmelCase ) # baseline - just load from_pretrained with normal network SCREAMING_SNAKE_CASE_ = [sys.executable, '-c', '\n'.join([load, run, mock] )] # should succeed SCREAMING_SNAKE_CASE_ = self.get_env() SCREAMING_SNAKE_CASE_ = subprocess.run(_lowerCAmelCase , env=_lowerCAmelCase , check=_lowerCAmelCase , capture_output=_lowerCAmelCase ) self.assertEqual(result.returncode , 0 , result.stderr ) self.assertIn('success' , result.stdout.decode() ) @require_torch def lowerCAmelCase_ ( self : List[str] ): # this test is a bit tricky since TRANSFORMERS_OFFLINE can only be changed before # `transformers` is loaded, and it's too late for inside pytest - so we are changing it # while running an external program # python one-liner segments # this must be loaded before socket.socket is monkey-patched SCREAMING_SNAKE_CASE_ = '\nfrom transformers import BertConfig, BertModel, BertTokenizer\n ' SCREAMING_SNAKE_CASE_ = '\nmname = "hf-internal-testing/tiny-random-bert-sharded"\nBertConfig.from_pretrained(mname)\nBertModel.from_pretrained(mname)\nprint("success")\n ' SCREAMING_SNAKE_CASE_ = '\nimport socket\ndef offline_socket(*args, **kwargs): raise ValueError("Offline mode is enabled")\nsocket.socket = offline_socket\n ' # baseline - just load from_pretrained with normal network SCREAMING_SNAKE_CASE_ = [sys.executable, '-c', '\n'.join([load, run] )] # should succeed SCREAMING_SNAKE_CASE_ = self.get_env() SCREAMING_SNAKE_CASE_ = subprocess.run(_lowerCAmelCase , env=_lowerCAmelCase , check=_lowerCAmelCase , capture_output=_lowerCAmelCase ) self.assertEqual(result.returncode , 0 , result.stderr ) self.assertIn('success' , result.stdout.decode() ) # next emulate no network SCREAMING_SNAKE_CASE_ = [sys.executable, '-c', '\n'.join([load, mock, run] )] # Doesn't fail anymore since the model is in the cache due to other tests, so commenting this. # env["TRANSFORMERS_OFFLINE"] = "0" # result = subprocess.run(cmd, env=env, check=False, capture_output=True) # self.assertEqual(result.returncode, 1, result.stderr) # should succeed as TRANSFORMERS_OFFLINE=1 tells it to use local files SCREAMING_SNAKE_CASE_ = '1' SCREAMING_SNAKE_CASE_ = subprocess.run(_lowerCAmelCase , env=_lowerCAmelCase , check=_lowerCAmelCase , capture_output=_lowerCAmelCase ) self.assertEqual(result.returncode , 0 , result.stderr ) self.assertIn('success' , result.stdout.decode() ) @require_torch def lowerCAmelCase_ ( self : Any ): SCREAMING_SNAKE_CASE_ = '\nfrom transformers import pipeline\n ' SCREAMING_SNAKE_CASE_ = '\nmname = "hf-internal-testing/tiny-random-bert"\npipe = pipeline(model=mname)\n ' SCREAMING_SNAKE_CASE_ = '\nimport socket\ndef offline_socket(*args, **kwargs): raise socket.error("Offline mode is enabled")\nsocket.socket = offline_socket\n ' SCREAMING_SNAKE_CASE_ = self.get_env() SCREAMING_SNAKE_CASE_ = '1' SCREAMING_SNAKE_CASE_ = [sys.executable, '-c', '\n'.join([load, mock, run] )] SCREAMING_SNAKE_CASE_ = subprocess.run(_lowerCAmelCase , env=_lowerCAmelCase , check=_lowerCAmelCase , capture_output=_lowerCAmelCase ) self.assertEqual(result.returncode , 1 , result.stderr ) self.assertIn( 'You cannot infer task automatically within `pipeline` when using offline mode' , result.stderr.decode().replace('\n' , '' ) , ) @require_torch def lowerCAmelCase_ ( self : Optional[int] ): SCREAMING_SNAKE_CASE_ = '\nfrom transformers import AutoModel\n ' SCREAMING_SNAKE_CASE_ = '\nmname = "hf-internal-testing/test_dynamic_model"\nAutoModel.from_pretrained(mname, trust_remote_code=True)\nprint("success")\n ' # baseline - just load from_pretrained with normal network SCREAMING_SNAKE_CASE_ = [sys.executable, '-c', '\n'.join([load, run] )] # should succeed SCREAMING_SNAKE_CASE_ = self.get_env() SCREAMING_SNAKE_CASE_ = subprocess.run(_lowerCAmelCase , env=_lowerCAmelCase , check=_lowerCAmelCase , capture_output=_lowerCAmelCase ) self.assertEqual(result.returncode , 0 , result.stderr ) self.assertIn('success' , result.stdout.decode() ) # should succeed as TRANSFORMERS_OFFLINE=1 tells it to use local files SCREAMING_SNAKE_CASE_ = '1' SCREAMING_SNAKE_CASE_ = subprocess.run(_lowerCAmelCase , env=_lowerCAmelCase , check=_lowerCAmelCase , capture_output=_lowerCAmelCase ) self.assertEqual(result.returncode , 0 , result.stderr ) self.assertIn('success' , result.stdout.decode() )
31
1
import json import os import tempfile from transformers.testing_utils import check_json_file_has_correct_format class lowerCamelCase_ : '''simple docstring''' lowercase_ = None def lowerCAmelCase_ ( self : Dict ): SCREAMING_SNAKE_CASE_ = self.feature_extraction_class(**self.feat_extract_dict ) SCREAMING_SNAKE_CASE_ = json.loads(feat_extract.to_json_string() ) for key, value in self.feat_extract_dict.items(): self.assertEqual(obj[key] , _lowerCAmelCase ) def lowerCAmelCase_ ( self : Any ): SCREAMING_SNAKE_CASE_ = self.feature_extraction_class(**self.feat_extract_dict ) with tempfile.TemporaryDirectory() as tmpdirname: SCREAMING_SNAKE_CASE_ = os.path.join(_lowerCAmelCase , 'feat_extract.json' ) feat_extract_first.to_json_file(_lowerCAmelCase ) SCREAMING_SNAKE_CASE_ = self.feature_extraction_class.from_json_file(_lowerCAmelCase ) self.assertEqual(feat_extract_second.to_dict() , feat_extract_first.to_dict() ) def lowerCAmelCase_ ( self : Optional[Any] ): SCREAMING_SNAKE_CASE_ = self.feature_extraction_class(**self.feat_extract_dict ) with tempfile.TemporaryDirectory() as tmpdirname: SCREAMING_SNAKE_CASE_ = feat_extract_first.save_pretrained(_lowerCAmelCase )[0] check_json_file_has_correct_format(_lowerCAmelCase ) SCREAMING_SNAKE_CASE_ = self.feature_extraction_class.from_pretrained(_lowerCAmelCase ) self.assertEqual(feat_extract_second.to_dict() , feat_extract_first.to_dict() ) def lowerCAmelCase_ ( self : Optional[int] ): SCREAMING_SNAKE_CASE_ = self.feature_extraction_class() self.assertIsNotNone(_lowerCAmelCase )
31
import torch from transformers import PreTrainedModel, XLMRobertaConfig, XLMRobertaModel class lowerCamelCase_ ( _SCREAMING_SNAKE_CASE ): '''simple docstring''' lowercase_ = "M-CLIP" def __init__( self : Tuple , _lowerCAmelCase : List[str]=1_024 , _lowerCAmelCase : str=768 , **_lowerCAmelCase : Union[str, Any] ): SCREAMING_SNAKE_CASE_ = transformerDimSize SCREAMING_SNAKE_CASE_ = imageDimSize super().__init__(**_lowerCAmelCase ) class lowerCamelCase_ ( _SCREAMING_SNAKE_CASE ): '''simple docstring''' lowercase_ = MCLIPConfig def __init__( self : Dict , _lowerCAmelCase : Union[str, Any] , *_lowerCAmelCase : str , **_lowerCAmelCase : str ): super().__init__(_lowerCAmelCase , *_lowerCAmelCase , **_lowerCAmelCase ) SCREAMING_SNAKE_CASE_ = XLMRobertaModel(_lowerCAmelCase ) SCREAMING_SNAKE_CASE_ = torch.nn.Linear( in_features=config.transformerDimensions , out_features=config.numDims ) def lowerCAmelCase_ ( self : List[Any] , _lowerCAmelCase : Any , _lowerCAmelCase : Union[str, Any] ): SCREAMING_SNAKE_CASE_ = self.transformer(input_ids=_lowerCAmelCase , attention_mask=_lowerCAmelCase )[0] SCREAMING_SNAKE_CASE_ = (embs * attention_mask.unsqueeze(2 )).sum(dim=1 ) / attention_mask.sum(dim=1 )[:, None] return self.LinearTransformation(_lowerCAmelCase ), embs
31
1
import unittest import numpy as np import timeout_decorator # noqa from transformers import BlenderbotConfig, is_flax_available from transformers.testing_utils import jax_device, require_flax, slow from ...generation.test_flax_utils import FlaxGenerationTesterMixin from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor if is_flax_available(): import os # The slow tests are often failing with OOM error on GPU # This makes JAX allocate exactly what is needed on demand, and deallocate memory that is no longer needed # but will be slower as stated here https://jax.readthedocs.io/en/latest/gpu_memory_allocation.html lowerCamelCase__ : List[str] = 'platform' import jax import jax.numpy as jnp from transformers import BlenderbotTokenizer from transformers.models.blenderbot.modeling_flax_blenderbot import ( FlaxBlenderbotForConditionalGeneration, FlaxBlenderbotModel, shift_tokens_right, ) def UpperCAmelCase_ ( __UpperCAmelCase : List[Any] , __UpperCAmelCase : Optional[int] , __UpperCAmelCase : str=None , __UpperCAmelCase : str=None , __UpperCAmelCase : str=None , __UpperCAmelCase : Union[str, Any]=None , __UpperCAmelCase : Optional[int]=None , __UpperCAmelCase : Optional[Any]=None , ) -> Tuple: if attention_mask is None: SCREAMING_SNAKE_CASE_ = np.where(input_ids != config.pad_token_id , 1 , 0 ) if decoder_attention_mask is None: SCREAMING_SNAKE_CASE_ = np.where(decoder_input_ids != config.pad_token_id , 1 , 0 ) if head_mask is None: SCREAMING_SNAKE_CASE_ = np.ones((config.encoder_layers, config.encoder_attention_heads) ) if decoder_head_mask is None: SCREAMING_SNAKE_CASE_ = np.ones((config.decoder_layers, config.decoder_attention_heads) ) if cross_attn_head_mask is None: SCREAMING_SNAKE_CASE_ = np.ones((config.decoder_layers, config.decoder_attention_heads) ) return { "input_ids": input_ids, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "decoder_attention_mask": attention_mask, } class lowerCamelCase_ : '''simple docstring''' def __init__( self : List[str] , _lowerCAmelCase : Any , _lowerCAmelCase : int=13 , _lowerCAmelCase : str=7 , _lowerCAmelCase : Optional[Any]=True , _lowerCAmelCase : List[str]=False , _lowerCAmelCase : Dict=99 , _lowerCAmelCase : Tuple=16 , _lowerCAmelCase : Optional[int]=2 , _lowerCAmelCase : int=4 , _lowerCAmelCase : int=4 , _lowerCAmelCase : str="gelu" , _lowerCAmelCase : List[Any]=0.1 , _lowerCAmelCase : Tuple=0.1 , _lowerCAmelCase : Tuple=32 , _lowerCAmelCase : List[Any]=2 , _lowerCAmelCase : Optional[int]=1 , _lowerCAmelCase : Dict=0 , _lowerCAmelCase : Any=0.02 , ): SCREAMING_SNAKE_CASE_ = parent SCREAMING_SNAKE_CASE_ = batch_size SCREAMING_SNAKE_CASE_ = seq_length SCREAMING_SNAKE_CASE_ = is_training SCREAMING_SNAKE_CASE_ = use_labels SCREAMING_SNAKE_CASE_ = vocab_size SCREAMING_SNAKE_CASE_ = hidden_size SCREAMING_SNAKE_CASE_ = num_hidden_layers SCREAMING_SNAKE_CASE_ = num_attention_heads SCREAMING_SNAKE_CASE_ = intermediate_size SCREAMING_SNAKE_CASE_ = hidden_act SCREAMING_SNAKE_CASE_ = hidden_dropout_prob SCREAMING_SNAKE_CASE_ = attention_probs_dropout_prob SCREAMING_SNAKE_CASE_ = max_position_embeddings SCREAMING_SNAKE_CASE_ = eos_token_id SCREAMING_SNAKE_CASE_ = pad_token_id SCREAMING_SNAKE_CASE_ = bos_token_id SCREAMING_SNAKE_CASE_ = initializer_range def lowerCAmelCase_ ( self : str ): SCREAMING_SNAKE_CASE_ = np.clip(ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size ) , 3 , self.vocab_size ) SCREAMING_SNAKE_CASE_ = np.concatenate((input_ids, 2 * np.ones((self.batch_size, 1) , dtype=np.intaa )) , -1 ) SCREAMING_SNAKE_CASE_ = shift_tokens_right(_lowerCAmelCase , 1 , 2 ) SCREAMING_SNAKE_CASE_ = BlenderbotConfig( vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_id=self.eos_token_id , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , initializer_range=self.initializer_range , use_cache=_lowerCAmelCase , ) SCREAMING_SNAKE_CASE_ = prepare_blenderbot_inputs_dict(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) return config, inputs_dict def lowerCAmelCase_ ( self : Optional[Any] ): SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = self.prepare_config_and_inputs() return config, inputs_dict def lowerCAmelCase_ ( self : List[str] , _lowerCAmelCase : Dict , _lowerCAmelCase : List[str] , _lowerCAmelCase : List[Any] ): SCREAMING_SNAKE_CASE_ = 20 SCREAMING_SNAKE_CASE_ = model_class_name(_lowerCAmelCase ) SCREAMING_SNAKE_CASE_ = model.encode(inputs_dict['input_ids'] ) SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = ( inputs_dict['decoder_input_ids'], inputs_dict['decoder_attention_mask'], ) SCREAMING_SNAKE_CASE_ = model.init_cache(decoder_input_ids.shape[0] , _lowerCAmelCase , _lowerCAmelCase ) SCREAMING_SNAKE_CASE_ = jnp.ones((decoder_input_ids.shape[0], max_decoder_length) , dtype='i4' ) SCREAMING_SNAKE_CASE_ = jnp.broadcast_to( jnp.arange(decoder_input_ids.shape[-1] - 1 )[None, :] , (decoder_input_ids.shape[0], decoder_input_ids.shape[-1] - 1) , ) SCREAMING_SNAKE_CASE_ = model.decode( decoder_input_ids[:, :-1] , _lowerCAmelCase , decoder_attention_mask=_lowerCAmelCase , past_key_values=_lowerCAmelCase , decoder_position_ids=_lowerCAmelCase , ) SCREAMING_SNAKE_CASE_ = jnp.array(decoder_input_ids.shape[0] * [[decoder_input_ids.shape[-1] - 1]] , dtype='i4' ) SCREAMING_SNAKE_CASE_ = model.decode( decoder_input_ids[:, -1:] , _lowerCAmelCase , decoder_attention_mask=_lowerCAmelCase , past_key_values=outputs_cache.past_key_values , decoder_position_ids=_lowerCAmelCase , ) SCREAMING_SNAKE_CASE_ = model.decode(_lowerCAmelCase , _lowerCAmelCase ) SCREAMING_SNAKE_CASE_ = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]) ) ) self.parent.assertTrue(diff < 1E-3 , msg=F"Max diff is {diff}" ) def lowerCAmelCase_ ( self : int , _lowerCAmelCase : List[str] , _lowerCAmelCase : Dict , _lowerCAmelCase : int ): SCREAMING_SNAKE_CASE_ = 20 SCREAMING_SNAKE_CASE_ = model_class_name(_lowerCAmelCase ) SCREAMING_SNAKE_CASE_ = model.encode(inputs_dict['input_ids'] ) SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = ( inputs_dict['decoder_input_ids'], inputs_dict['decoder_attention_mask'], ) SCREAMING_SNAKE_CASE_ = jnp.concatenate( [ decoder_attention_mask, jnp.zeros((decoder_attention_mask.shape[0], max_decoder_length - decoder_attention_mask.shape[1]) ), ] , axis=-1 , ) SCREAMING_SNAKE_CASE_ = model.init_cache(decoder_input_ids.shape[0] , _lowerCAmelCase , _lowerCAmelCase ) SCREAMING_SNAKE_CASE_ = jnp.broadcast_to( jnp.arange(decoder_input_ids.shape[-1] - 1 )[None, :] , (decoder_input_ids.shape[0], decoder_input_ids.shape[-1] - 1) , ) SCREAMING_SNAKE_CASE_ = model.decode( decoder_input_ids[:, :-1] , _lowerCAmelCase , decoder_attention_mask=_lowerCAmelCase , past_key_values=_lowerCAmelCase , decoder_position_ids=_lowerCAmelCase , ) SCREAMING_SNAKE_CASE_ = jnp.array(decoder_input_ids.shape[0] * [[decoder_input_ids.shape[-1] - 1]] , dtype='i4' ) SCREAMING_SNAKE_CASE_ = model.decode( decoder_input_ids[:, -1:] , _lowerCAmelCase , past_key_values=outputs_cache.past_key_values , decoder_attention_mask=_lowerCAmelCase , decoder_position_ids=_lowerCAmelCase , ) SCREAMING_SNAKE_CASE_ = model.decode(_lowerCAmelCase , _lowerCAmelCase , decoder_attention_mask=_lowerCAmelCase ) SCREAMING_SNAKE_CASE_ = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]) ) ) self.parent.assertTrue(diff < 1E-3 , msg=F"Max diff is {diff}" ) @require_flax class lowerCamelCase_ ( unittest.TestCase ): '''simple docstring''' lowercase_ = 99 def lowerCAmelCase_ ( self : Optional[Any] ): SCREAMING_SNAKE_CASE_ = np.array( [ [71, 82, 18, 33, 46, 91, 2], [68, 34, 26, 58, 30, 82, 2], [5, 97, 17, 39, 94, 40, 2], [76, 83, 94, 25, 70, 78, 2], [87, 59, 41, 35, 48, 66, 2], [55, 13, 16, 58, 5, 2, 1], # note padding [64, 27, 31, 51, 12, 75, 2], [52, 64, 86, 17, 83, 39, 2], [48, 61, 9, 24, 71, 82, 2], [26, 1, 60, 48, 22, 13, 2], [21, 5, 62, 28, 14, 76, 2], [45, 98, 37, 86, 59, 48, 2], [70, 70, 50, 9, 28, 0, 2], ] , dtype=np.intaa , ) SCREAMING_SNAKE_CASE_ = input_ids.shape[0] SCREAMING_SNAKE_CASE_ = BlenderbotConfig( vocab_size=self.vocab_size , d_model=24 , encoder_layers=2 , decoder_layers=2 , encoder_attention_heads=2 , decoder_attention_heads=2 , encoder_ffn_dim=32 , decoder_ffn_dim=32 , max_position_embeddings=48 , eos_token_id=2 , pad_token_id=1 , bos_token_id=0 , ) return config, input_ids, batch_size def lowerCAmelCase_ ( self : Optional[Any] ): SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = self._get_config_and_data() SCREAMING_SNAKE_CASE_ = FlaxBlenderbotForConditionalGeneration(_lowerCAmelCase ) SCREAMING_SNAKE_CASE_ = lm_model(input_ids=_lowerCAmelCase ) SCREAMING_SNAKE_CASE_ = (batch_size, input_ids.shape[1], config.vocab_size) self.assertEqual(outputs['logits'].shape , _lowerCAmelCase ) def lowerCAmelCase_ ( self : List[Any] ): SCREAMING_SNAKE_CASE_ = BlenderbotConfig( vocab_size=self.vocab_size , d_model=14 , encoder_layers=2 , decoder_layers=2 , encoder_attention_heads=2 , decoder_attention_heads=2 , encoder_ffn_dim=8 , decoder_ffn_dim=8 , max_position_embeddings=48 , ) SCREAMING_SNAKE_CASE_ = FlaxBlenderbotForConditionalGeneration(_lowerCAmelCase ) SCREAMING_SNAKE_CASE_ = np.array([[71, 82, 18, 33, 46, 91, 2], [68, 34, 26, 58, 30, 2, 1]] , dtype=np.intaa ) SCREAMING_SNAKE_CASE_ = np.array([[82, 71, 82, 18, 2], [58, 68, 2, 1, 1]] , dtype=np.intaa ) SCREAMING_SNAKE_CASE_ = lm_model(input_ids=_lowerCAmelCase , decoder_input_ids=_lowerCAmelCase ) SCREAMING_SNAKE_CASE_ = (*summary.shape, config.vocab_size) self.assertEqual(outputs['logits'].shape , _lowerCAmelCase ) def lowerCAmelCase_ ( self : Union[str, Any] ): SCREAMING_SNAKE_CASE_ = np.array([[71, 82, 18, 33, 2, 1, 1], [68, 34, 26, 58, 30, 82, 2]] , dtype=np.intaa ) SCREAMING_SNAKE_CASE_ = shift_tokens_right(_lowerCAmelCase , 1 , 2 ) SCREAMING_SNAKE_CASE_ = np.equal(_lowerCAmelCase , 1 ).astype(np.floataa ).sum() SCREAMING_SNAKE_CASE_ = np.equal(_lowerCAmelCase , 1 ).astype(np.floataa ).sum() self.assertEqual(shifted.shape , input_ids.shape ) self.assertEqual(_lowerCAmelCase , n_pad_before - 1 ) self.assertTrue(np.equal(shifted[:, 0] , 2 ).all() ) @require_flax class lowerCamelCase_ ( _SCREAMING_SNAKE_CASE , unittest.TestCase , _SCREAMING_SNAKE_CASE ): '''simple docstring''' lowercase_ = True lowercase_ = ( ( FlaxBlenderbotModel, FlaxBlenderbotForConditionalGeneration, ) if is_flax_available() else () ) lowercase_ = (FlaxBlenderbotForConditionalGeneration,) if is_flax_available() else () def lowerCAmelCase_ ( self : Union[str, Any] ): SCREAMING_SNAKE_CASE_ = FlaxBlenderbotModelTester(self ) def lowerCAmelCase_ ( self : Optional[Any] ): SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = self.model_tester.prepare_config_and_inputs() for model_class in self.all_model_classes: self.model_tester.check_use_cache_forward(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) def lowerCAmelCase_ ( self : str ): SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = self.model_tester.prepare_config_and_inputs() for model_class in self.all_model_classes: self.model_tester.check_use_cache_forward_with_attn_mask(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) def lowerCAmelCase_ ( self : Tuple ): SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): SCREAMING_SNAKE_CASE_ = self._prepare_for_class(_lowerCAmelCase , _lowerCAmelCase ) SCREAMING_SNAKE_CASE_ = model_class(_lowerCAmelCase ) @jax.jit def encode_jitted(_lowerCAmelCase : str , _lowerCAmelCase : Optional[Any]=None , **_lowerCAmelCase : str ): return model.encode(input_ids=_lowerCAmelCase , attention_mask=_lowerCAmelCase ) with self.subTest('JIT Enabled' ): SCREAMING_SNAKE_CASE_ = encode_jitted(**_lowerCAmelCase ).to_tuple() with self.subTest('JIT Disabled' ): with jax.disable_jit(): SCREAMING_SNAKE_CASE_ = encode_jitted(**_lowerCAmelCase ).to_tuple() self.assertEqual(len(_lowerCAmelCase ) , len(_lowerCAmelCase ) ) for jitted_output, output in zip(_lowerCAmelCase , _lowerCAmelCase ): self.assertEqual(jitted_output.shape , output.shape ) def lowerCAmelCase_ ( self : Union[str, Any] ): SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): SCREAMING_SNAKE_CASE_ = model_class(_lowerCAmelCase ) SCREAMING_SNAKE_CASE_ = model.encode(inputs_dict['input_ids'] , inputs_dict['attention_mask'] ) SCREAMING_SNAKE_CASE_ = { 'decoder_input_ids': inputs_dict['decoder_input_ids'], 'decoder_attention_mask': inputs_dict['decoder_attention_mask'], 'encoder_outputs': encoder_outputs, } @jax.jit def decode_jitted(_lowerCAmelCase : int , _lowerCAmelCase : List[Any] , _lowerCAmelCase : Dict ): return model.decode( decoder_input_ids=_lowerCAmelCase , decoder_attention_mask=_lowerCAmelCase , encoder_outputs=_lowerCAmelCase , ) with self.subTest('JIT Enabled' ): SCREAMING_SNAKE_CASE_ = decode_jitted(**_lowerCAmelCase ).to_tuple() with self.subTest('JIT Disabled' ): with jax.disable_jit(): SCREAMING_SNAKE_CASE_ = decode_jitted(**_lowerCAmelCase ).to_tuple() self.assertEqual(len(_lowerCAmelCase ) , len(_lowerCAmelCase ) ) for jitted_output, output in zip(_lowerCAmelCase , _lowerCAmelCase ): self.assertEqual(jitted_output.shape , output.shape ) @slow def lowerCAmelCase_ ( self : Union[str, Any] ): for model_class_name in self.all_model_classes: SCREAMING_SNAKE_CASE_ = model_class_name.from_pretrained('facebook/blenderbot-400M-distill' ) # FlaxBlenderbotForSequenceClassification expects eos token in input_ids SCREAMING_SNAKE_CASE_ = np.ones((1, 1) ) * model.config.eos_token_id SCREAMING_SNAKE_CASE_ = model(_lowerCAmelCase ) self.assertIsNotNone(_lowerCAmelCase ) @unittest.skipUnless(jax_device != 'cpu' , '3B test too slow on CPU.' ) @slow def lowerCAmelCase_ ( self : Optional[Any] ): SCREAMING_SNAKE_CASE_ = {'num_beams': 1, 'early_stopping': True, 'min_length': 15, 'max_length': 25} SCREAMING_SNAKE_CASE_ = {'skip_special_tokens': True, 'clean_up_tokenization_spaces': True} SCREAMING_SNAKE_CASE_ = FlaxBlenderbotForConditionalGeneration.from_pretrained('facebook/blenderbot-3B' , from_pt=_lowerCAmelCase ) SCREAMING_SNAKE_CASE_ = BlenderbotTokenizer.from_pretrained('facebook/blenderbot-3B' ) SCREAMING_SNAKE_CASE_ = ['Sam'] SCREAMING_SNAKE_CASE_ = tokenizer(_lowerCAmelCase , return_tensors='jax' ) SCREAMING_SNAKE_CASE_ = model.generate(**_lowerCAmelCase , **_lowerCAmelCase ) SCREAMING_SNAKE_CASE_ = 'Sam is a great name. It means "sun" in Gaelic.' SCREAMING_SNAKE_CASE_ = tokenizer.batch_decode(_lowerCAmelCase , **_lowerCAmelCase ) assert generated_txt[0].strip() == tgt_text
31
import gc import random import unittest import numpy as np import torch from transformers import XLMRobertaTokenizer from diffusers import ( AltDiffusionImgaImgPipeline, AutoencoderKL, PNDMScheduler, UNetaDConditionModel, ) from diffusers.image_processor import VaeImageProcessor from diffusers.pipelines.alt_diffusion.modeling_roberta_series import ( RobertaSeriesConfig, RobertaSeriesModelWithTransformation, ) from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu enable_full_determinism() class lowerCamelCase_ ( unittest.TestCase ): '''simple docstring''' def lowerCAmelCase_ ( self : str ): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() @property def lowerCAmelCase_ ( self : Union[str, Any] ): SCREAMING_SNAKE_CASE_ = 1 SCREAMING_SNAKE_CASE_ = 3 SCREAMING_SNAKE_CASE_ = (32, 32) SCREAMING_SNAKE_CASE_ = floats_tensor((batch_size, num_channels) + sizes , rng=random.Random(0 ) ).to(_lowerCAmelCase ) return image @property def lowerCAmelCase_ ( self : Union[str, Any] ): torch.manual_seed(0 ) SCREAMING_SNAKE_CASE_ = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=('DownBlock2D', 'CrossAttnDownBlock2D') , up_block_types=('CrossAttnUpBlock2D', 'UpBlock2D') , cross_attention_dim=32 , ) return model @property def lowerCAmelCase_ ( self : Tuple ): torch.manual_seed(0 ) SCREAMING_SNAKE_CASE_ = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=['DownEncoderBlock2D', 'DownEncoderBlock2D'] , up_block_types=['UpDecoderBlock2D', 'UpDecoderBlock2D'] , latent_channels=4 , ) return model @property def lowerCAmelCase_ ( self : Optional[int] ): torch.manual_seed(0 ) SCREAMING_SNAKE_CASE_ = RobertaSeriesConfig( hidden_size=32 , project_dim=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=5_006 , ) return RobertaSeriesModelWithTransformation(_lowerCAmelCase ) @property def lowerCAmelCase_ ( self : List[Any] ): def extract(*_lowerCAmelCase : Optional[int] , **_lowerCAmelCase : str ): class lowerCamelCase_ : '''simple docstring''' def __init__( self : str ): SCREAMING_SNAKE_CASE_ = torch.ones([0] ) def lowerCAmelCase_ ( self : Union[str, Any] , _lowerCAmelCase : int ): self.pixel_values.to(_lowerCAmelCase ) return self return Out() return extract def lowerCAmelCase_ ( self : Optional[Any] ): SCREAMING_SNAKE_CASE_ = 'cpu' # ensure determinism for the device-dependent torch.Generator SCREAMING_SNAKE_CASE_ = self.dummy_cond_unet SCREAMING_SNAKE_CASE_ = PNDMScheduler(skip_prk_steps=_lowerCAmelCase ) SCREAMING_SNAKE_CASE_ = self.dummy_vae SCREAMING_SNAKE_CASE_ = self.dummy_text_encoder SCREAMING_SNAKE_CASE_ = XLMRobertaTokenizer.from_pretrained('hf-internal-testing/tiny-xlm-roberta' ) SCREAMING_SNAKE_CASE_ = 77 SCREAMING_SNAKE_CASE_ = self.dummy_image.to(_lowerCAmelCase ) SCREAMING_SNAKE_CASE_ = init_image / 2 + 0.5 # make sure here that pndm scheduler skips prk SCREAMING_SNAKE_CASE_ = AltDiffusionImgaImgPipeline( unet=_lowerCAmelCase , scheduler=_lowerCAmelCase , vae=_lowerCAmelCase , text_encoder=_lowerCAmelCase , tokenizer=_lowerCAmelCase , safety_checker=_lowerCAmelCase , feature_extractor=self.dummy_extractor , ) SCREAMING_SNAKE_CASE_ = VaeImageProcessor(vae_scale_factor=alt_pipe.vae_scale_factor , do_normalize=_lowerCAmelCase ) SCREAMING_SNAKE_CASE_ = alt_pipe.to(_lowerCAmelCase ) alt_pipe.set_progress_bar_config(disable=_lowerCAmelCase ) SCREAMING_SNAKE_CASE_ = 'A painting of a squirrel eating a burger' SCREAMING_SNAKE_CASE_ = torch.Generator(device=_lowerCAmelCase ).manual_seed(0 ) SCREAMING_SNAKE_CASE_ = alt_pipe( [prompt] , generator=_lowerCAmelCase , guidance_scale=6.0 , num_inference_steps=2 , output_type='np' , image=_lowerCAmelCase , ) SCREAMING_SNAKE_CASE_ = output.images SCREAMING_SNAKE_CASE_ = torch.Generator(device=_lowerCAmelCase ).manual_seed(0 ) SCREAMING_SNAKE_CASE_ = alt_pipe( [prompt] , generator=_lowerCAmelCase , guidance_scale=6.0 , num_inference_steps=2 , output_type='np' , image=_lowerCAmelCase , return_dict=_lowerCAmelCase , )[0] SCREAMING_SNAKE_CASE_ = image[0, -3:, -3:, -1] SCREAMING_SNAKE_CASE_ = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) SCREAMING_SNAKE_CASE_ = np.array([0.4427, 0.3731, 0.4249, 0.4941, 0.4546, 0.4148, 0.4193, 0.4666, 0.4499] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 5E-3 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 5E-3 @unittest.skipIf(torch_device != 'cuda' , 'This test requires a GPU' ) def lowerCAmelCase_ ( self : Tuple ): SCREAMING_SNAKE_CASE_ = self.dummy_cond_unet SCREAMING_SNAKE_CASE_ = PNDMScheduler(skip_prk_steps=_lowerCAmelCase ) SCREAMING_SNAKE_CASE_ = self.dummy_vae SCREAMING_SNAKE_CASE_ = self.dummy_text_encoder SCREAMING_SNAKE_CASE_ = XLMRobertaTokenizer.from_pretrained('hf-internal-testing/tiny-xlm-roberta' ) SCREAMING_SNAKE_CASE_ = 77 SCREAMING_SNAKE_CASE_ = self.dummy_image.to(_lowerCAmelCase ) # put models in fp16 SCREAMING_SNAKE_CASE_ = unet.half() SCREAMING_SNAKE_CASE_ = vae.half() SCREAMING_SNAKE_CASE_ = bert.half() # make sure here that pndm scheduler skips prk SCREAMING_SNAKE_CASE_ = AltDiffusionImgaImgPipeline( unet=_lowerCAmelCase , scheduler=_lowerCAmelCase , vae=_lowerCAmelCase , text_encoder=_lowerCAmelCase , tokenizer=_lowerCAmelCase , safety_checker=_lowerCAmelCase , feature_extractor=self.dummy_extractor , ) SCREAMING_SNAKE_CASE_ = VaeImageProcessor(vae_scale_factor=alt_pipe.vae_scale_factor , do_normalize=_lowerCAmelCase ) SCREAMING_SNAKE_CASE_ = alt_pipe.to(_lowerCAmelCase ) alt_pipe.set_progress_bar_config(disable=_lowerCAmelCase ) SCREAMING_SNAKE_CASE_ = 'A painting of a squirrel eating a burger' SCREAMING_SNAKE_CASE_ = torch.manual_seed(0 ) SCREAMING_SNAKE_CASE_ = alt_pipe( [prompt] , generator=_lowerCAmelCase , num_inference_steps=2 , output_type='np' , image=_lowerCAmelCase , ).images assert image.shape == (1, 32, 32, 3) @unittest.skipIf(torch_device != 'cuda' , 'This test requires a GPU' ) def lowerCAmelCase_ ( self : str ): SCREAMING_SNAKE_CASE_ = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/img2img/sketch-mountains-input.jpg' ) # resize to resolution that is divisible by 8 but not 16 or 32 SCREAMING_SNAKE_CASE_ = init_image.resize((760, 504) ) SCREAMING_SNAKE_CASE_ = 'BAAI/AltDiffusion' SCREAMING_SNAKE_CASE_ = AltDiffusionImgaImgPipeline.from_pretrained( _lowerCAmelCase , safety_checker=_lowerCAmelCase , ) pipe.to(_lowerCAmelCase ) pipe.set_progress_bar_config(disable=_lowerCAmelCase ) pipe.enable_attention_slicing() SCREAMING_SNAKE_CASE_ = 'A fantasy landscape, trending on artstation' SCREAMING_SNAKE_CASE_ = torch.manual_seed(0 ) SCREAMING_SNAKE_CASE_ = pipe( prompt=_lowerCAmelCase , image=_lowerCAmelCase , strength=0.75 , guidance_scale=7.5 , generator=_lowerCAmelCase , output_type='np' , ) SCREAMING_SNAKE_CASE_ = output.images[0] SCREAMING_SNAKE_CASE_ = image[255:258, 383:386, -1] assert image.shape == (504, 760, 3) SCREAMING_SNAKE_CASE_ = np.array([0.9358, 0.9397, 0.9599, 0.9901, 1.0000, 1.0000, 0.9882, 1.0000, 1.0000] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 @slow @require_torch_gpu class lowerCamelCase_ ( unittest.TestCase ): '''simple docstring''' def lowerCAmelCase_ ( self : str ): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def lowerCAmelCase_ ( self : int ): SCREAMING_SNAKE_CASE_ = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/img2img/sketch-mountains-input.jpg' ) SCREAMING_SNAKE_CASE_ = init_image.resize((768, 512) ) SCREAMING_SNAKE_CASE_ = load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/img2img/fantasy_landscape_alt.npy' ) SCREAMING_SNAKE_CASE_ = 'BAAI/AltDiffusion' SCREAMING_SNAKE_CASE_ = AltDiffusionImgaImgPipeline.from_pretrained( _lowerCAmelCase , safety_checker=_lowerCAmelCase , ) pipe.to(_lowerCAmelCase ) pipe.set_progress_bar_config(disable=_lowerCAmelCase ) pipe.enable_attention_slicing() SCREAMING_SNAKE_CASE_ = 'A fantasy landscape, trending on artstation' SCREAMING_SNAKE_CASE_ = torch.manual_seed(0 ) SCREAMING_SNAKE_CASE_ = pipe( prompt=_lowerCAmelCase , image=_lowerCAmelCase , strength=0.75 , guidance_scale=7.5 , generator=_lowerCAmelCase , output_type='np' , ) SCREAMING_SNAKE_CASE_ = output.images[0] assert image.shape == (512, 768, 3) # img2img is flaky across GPUs even in fp32, so using MAE here assert np.abs(expected_image - image ).max() < 1E-2
31
1
import torch from diffusers import KDPMaDiscreteScheduler from diffusers.utils import torch_device from .test_schedulers import SchedulerCommonTest class lowerCamelCase_ ( _SCREAMING_SNAKE_CASE ): '''simple docstring''' lowercase_ = (KDPMaDiscreteScheduler,) lowercase_ = 10 def lowerCAmelCase_ ( self : List[Any] , **_lowerCAmelCase : List[Any] ): SCREAMING_SNAKE_CASE_ = { 'num_train_timesteps': 1_100, 'beta_start': 0.0001, 'beta_end': 0.02, 'beta_schedule': 'linear', } config.update(**_lowerCAmelCase ) return config def lowerCAmelCase_ ( self : Optional[int] ): for timesteps in [10, 50, 100, 1_000]: self.check_over_configs(num_train_timesteps=_lowerCAmelCase ) def lowerCAmelCase_ ( self : Optional[Any] ): for beta_start, beta_end in zip([0.0_0001, 0.0001, 0.001] , [0.0002, 0.002, 0.02] ): self.check_over_configs(beta_start=_lowerCAmelCase , beta_end=_lowerCAmelCase ) def lowerCAmelCase_ ( self : Optional[Any] ): for schedule in ["linear", "scaled_linear"]: self.check_over_configs(beta_schedule=_lowerCAmelCase ) def lowerCAmelCase_ ( self : int ): for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs(prediction_type=_lowerCAmelCase ) def lowerCAmelCase_ ( self : List[Any] ): SCREAMING_SNAKE_CASE_ = self.scheduler_classes[0] SCREAMING_SNAKE_CASE_ = self.get_scheduler_config(prediction_type='v_prediction' ) SCREAMING_SNAKE_CASE_ = scheduler_class(**_lowerCAmelCase ) scheduler.set_timesteps(self.num_inference_steps ) SCREAMING_SNAKE_CASE_ = self.dummy_model() SCREAMING_SNAKE_CASE_ = self.dummy_sample_deter * scheduler.init_noise_sigma SCREAMING_SNAKE_CASE_ = sample.to(_lowerCAmelCase ) for i, t in enumerate(scheduler.timesteps ): SCREAMING_SNAKE_CASE_ = scheduler.scale_model_input(_lowerCAmelCase , _lowerCAmelCase ) SCREAMING_SNAKE_CASE_ = model(_lowerCAmelCase , _lowerCAmelCase ) SCREAMING_SNAKE_CASE_ = scheduler.step(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) SCREAMING_SNAKE_CASE_ = output.prev_sample SCREAMING_SNAKE_CASE_ = torch.sum(torch.abs(_lowerCAmelCase ) ) SCREAMING_SNAKE_CASE_ = torch.mean(torch.abs(_lowerCAmelCase ) ) if torch_device in ["cpu", "mps"]: assert abs(result_sum.item() - 4.6_934E-07 ) < 1E-2 assert abs(result_mean.item() - 6.1_112E-10 ) < 1E-3 else: # CUDA assert abs(result_sum.item() - 4.693_428_650_170_972E-07 ) < 1E-2 assert abs(result_mean.item() - 0.0002 ) < 1E-3 def lowerCAmelCase_ ( self : List[Any] ): if torch_device == "mps": return SCREAMING_SNAKE_CASE_ = self.scheduler_classes[0] SCREAMING_SNAKE_CASE_ = self.get_scheduler_config() SCREAMING_SNAKE_CASE_ = scheduler_class(**_lowerCAmelCase ) scheduler.set_timesteps(self.num_inference_steps ) SCREAMING_SNAKE_CASE_ = self.dummy_model() SCREAMING_SNAKE_CASE_ = self.dummy_sample_deter * scheduler.init_noise_sigma SCREAMING_SNAKE_CASE_ = sample.to(_lowerCAmelCase ) for i, t in enumerate(scheduler.timesteps ): SCREAMING_SNAKE_CASE_ = scheduler.scale_model_input(_lowerCAmelCase , _lowerCAmelCase ) SCREAMING_SNAKE_CASE_ = model(_lowerCAmelCase , _lowerCAmelCase ) SCREAMING_SNAKE_CASE_ = scheduler.step(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) SCREAMING_SNAKE_CASE_ = output.prev_sample SCREAMING_SNAKE_CASE_ = torch.sum(torch.abs(_lowerCAmelCase ) ) SCREAMING_SNAKE_CASE_ = torch.mean(torch.abs(_lowerCAmelCase ) ) if torch_device in ["cpu", "mps"]: assert abs(result_sum.item() - 20.4125 ) < 1E-2 assert abs(result_mean.item() - 0.0266 ) < 1E-3 else: # CUDA assert abs(result_sum.item() - 20.4125 ) < 1E-2 assert abs(result_mean.item() - 0.0266 ) < 1E-3 def lowerCAmelCase_ ( self : Any ): if torch_device == "mps": return SCREAMING_SNAKE_CASE_ = self.scheduler_classes[0] SCREAMING_SNAKE_CASE_ = self.get_scheduler_config() SCREAMING_SNAKE_CASE_ = scheduler_class(**_lowerCAmelCase ) scheduler.set_timesteps(self.num_inference_steps , device=_lowerCAmelCase ) SCREAMING_SNAKE_CASE_ = self.dummy_model() SCREAMING_SNAKE_CASE_ = self.dummy_sample_deter.to(_lowerCAmelCase ) * scheduler.init_noise_sigma for t in scheduler.timesteps: SCREAMING_SNAKE_CASE_ = scheduler.scale_model_input(_lowerCAmelCase , _lowerCAmelCase ) SCREAMING_SNAKE_CASE_ = model(_lowerCAmelCase , _lowerCAmelCase ) SCREAMING_SNAKE_CASE_ = scheduler.step(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) SCREAMING_SNAKE_CASE_ = output.prev_sample SCREAMING_SNAKE_CASE_ = torch.sum(torch.abs(_lowerCAmelCase ) ) SCREAMING_SNAKE_CASE_ = torch.mean(torch.abs(_lowerCAmelCase ) ) if str(_lowerCAmelCase ).startswith('cpu' ): # The following sum varies between 148 and 156 on mps. Why? assert abs(result_sum.item() - 20.4125 ) < 1E-2 assert abs(result_mean.item() - 0.0266 ) < 1E-3 else: # CUDA assert abs(result_sum.item() - 20.4125 ) < 1E-2 assert abs(result_mean.item() - 0.0266 ) < 1E-3
31
from collections import OrderedDict from typing import TYPE_CHECKING, Any, List, Mapping, Optional, Union from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import TensorType, logging if TYPE_CHECKING: from ...onnx.config import PatchingSpec from ...tokenization_utils_base import PreTrainedTokenizerBase lowerCamelCase__ : Optional[int] = logging.get_logger(__name__) lowerCamelCase__ : Dict = { 'allenai/longformer-base-4096': 'https://huggingface.co/allenai/longformer-base-4096/resolve/main/config.json', 'allenai/longformer-large-4096': 'https://huggingface.co/allenai/longformer-large-4096/resolve/main/config.json', 'allenai/longformer-large-4096-finetuned-triviaqa': ( 'https://huggingface.co/allenai/longformer-large-4096-finetuned-triviaqa/resolve/main/config.json' ), 'allenai/longformer-base-4096-extra.pos.embd.only': ( 'https://huggingface.co/allenai/longformer-base-4096-extra.pos.embd.only/resolve/main/config.json' ), 'allenai/longformer-large-4096-extra.pos.embd.only': ( 'https://huggingface.co/allenai/longformer-large-4096-extra.pos.embd.only/resolve/main/config.json' ), } class lowerCamelCase_ ( _SCREAMING_SNAKE_CASE ): '''simple docstring''' lowercase_ = "longformer" def __init__( self : Union[str, Any] , _lowerCAmelCase : Union[List[int], int] = 512 , _lowerCAmelCase : int = 2 , _lowerCAmelCase : int = 1 , _lowerCAmelCase : int = 0 , _lowerCAmelCase : int = 2 , _lowerCAmelCase : int = 30_522 , _lowerCAmelCase : int = 768 , _lowerCAmelCase : int = 12 , _lowerCAmelCase : int = 12 , _lowerCAmelCase : int = 3_072 , _lowerCAmelCase : str = "gelu" , _lowerCAmelCase : float = 0.1 , _lowerCAmelCase : float = 0.1 , _lowerCAmelCase : int = 512 , _lowerCAmelCase : int = 2 , _lowerCAmelCase : float = 0.02 , _lowerCAmelCase : float = 1E-12 , _lowerCAmelCase : bool = False , **_lowerCAmelCase : Union[str, Any] , ): super().__init__(pad_token_id=_lowerCAmelCase , **_lowerCAmelCase ) SCREAMING_SNAKE_CASE_ = attention_window SCREAMING_SNAKE_CASE_ = sep_token_id SCREAMING_SNAKE_CASE_ = bos_token_id SCREAMING_SNAKE_CASE_ = eos_token_id SCREAMING_SNAKE_CASE_ = vocab_size SCREAMING_SNAKE_CASE_ = hidden_size SCREAMING_SNAKE_CASE_ = num_hidden_layers SCREAMING_SNAKE_CASE_ = num_attention_heads SCREAMING_SNAKE_CASE_ = hidden_act SCREAMING_SNAKE_CASE_ = intermediate_size SCREAMING_SNAKE_CASE_ = hidden_dropout_prob SCREAMING_SNAKE_CASE_ = attention_probs_dropout_prob SCREAMING_SNAKE_CASE_ = max_position_embeddings SCREAMING_SNAKE_CASE_ = type_vocab_size SCREAMING_SNAKE_CASE_ = initializer_range SCREAMING_SNAKE_CASE_ = layer_norm_eps SCREAMING_SNAKE_CASE_ = onnx_export class lowerCamelCase_ ( _SCREAMING_SNAKE_CASE ): '''simple docstring''' def __init__( self : Optional[Any] , _lowerCAmelCase : "PretrainedConfig" , _lowerCAmelCase : str = "default" , _lowerCAmelCase : "List[PatchingSpec]" = None ): super().__init__(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) SCREAMING_SNAKE_CASE_ = True @property def lowerCAmelCase_ ( self : Any ): if self.task == "multiple-choice": SCREAMING_SNAKE_CASE_ = {0: 'batch', 1: 'choice', 2: 'sequence'} else: SCREAMING_SNAKE_CASE_ = {0: 'batch', 1: 'sequence'} return OrderedDict( [ ('input_ids', dynamic_axis), ('attention_mask', dynamic_axis), ('global_attention_mask', dynamic_axis), ] ) @property def lowerCAmelCase_ ( self : Optional[int] ): SCREAMING_SNAKE_CASE_ = super().outputs if self.task == "default": SCREAMING_SNAKE_CASE_ = {0: 'batch'} return outputs @property def lowerCAmelCase_ ( self : str ): return 1E-4 @property def lowerCAmelCase_ ( self : Optional[Any] ): # needs to be >= 14 to support tril operator return max(super().default_onnx_opset , 14 ) def lowerCAmelCase_ ( self : str , _lowerCAmelCase : "PreTrainedTokenizerBase" , _lowerCAmelCase : int = -1 , _lowerCAmelCase : int = -1 , _lowerCAmelCase : bool = False , _lowerCAmelCase : Optional[TensorType] = None , ): SCREAMING_SNAKE_CASE_ = super().generate_dummy_inputs( preprocessor=_lowerCAmelCase , batch_size=_lowerCAmelCase , seq_length=_lowerCAmelCase , is_pair=_lowerCAmelCase , framework=_lowerCAmelCase ) import torch # for some reason, replacing this code by inputs["global_attention_mask"] = torch.randint(2, inputs["input_ids"].shape, dtype=torch.int64) # makes the export fail randomly SCREAMING_SNAKE_CASE_ = torch.zeros_like(inputs['input_ids'] ) # make every second token global SCREAMING_SNAKE_CASE_ = 1 return inputs
31
1
import os from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils import AddedToken from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_albert import AlbertTokenizer else: lowerCamelCase__ : List[str] = None lowerCamelCase__ : int = logging.get_logger(__name__) lowerCamelCase__ : Tuple = {'vocab_file': 'spiece.model', 'tokenizer_file': 'tokenizer.json'} lowerCamelCase__ : List[str] = { 'vocab_file': { 'albert-base-v1': 'https://huggingface.co/albert-base-v1/resolve/main/spiece.model', 'albert-large-v1': 'https://huggingface.co/albert-large-v1/resolve/main/spiece.model', 'albert-xlarge-v1': 'https://huggingface.co/albert-xlarge-v1/resolve/main/spiece.model', 'albert-xxlarge-v1': 'https://huggingface.co/albert-xxlarge-v1/resolve/main/spiece.model', 'albert-base-v2': 'https://huggingface.co/albert-base-v2/resolve/main/spiece.model', 'albert-large-v2': 'https://huggingface.co/albert-large-v2/resolve/main/spiece.model', 'albert-xlarge-v2': 'https://huggingface.co/albert-xlarge-v2/resolve/main/spiece.model', 'albert-xxlarge-v2': 'https://huggingface.co/albert-xxlarge-v2/resolve/main/spiece.model', }, 'tokenizer_file': { 'albert-base-v1': 'https://huggingface.co/albert-base-v1/resolve/main/tokenizer.json', 'albert-large-v1': 'https://huggingface.co/albert-large-v1/resolve/main/tokenizer.json', 'albert-xlarge-v1': 'https://huggingface.co/albert-xlarge-v1/resolve/main/tokenizer.json', 'albert-xxlarge-v1': 'https://huggingface.co/albert-xxlarge-v1/resolve/main/tokenizer.json', 'albert-base-v2': 'https://huggingface.co/albert-base-v2/resolve/main/tokenizer.json', 'albert-large-v2': 'https://huggingface.co/albert-large-v2/resolve/main/tokenizer.json', 'albert-xlarge-v2': 'https://huggingface.co/albert-xlarge-v2/resolve/main/tokenizer.json', 'albert-xxlarge-v2': 'https://huggingface.co/albert-xxlarge-v2/resolve/main/tokenizer.json', }, } lowerCamelCase__ : Optional[Any] = { 'albert-base-v1': 512, 'albert-large-v1': 512, 'albert-xlarge-v1': 512, 'albert-xxlarge-v1': 512, 'albert-base-v2': 512, 'albert-large-v2': 512, 'albert-xlarge-v2': 512, 'albert-xxlarge-v2': 512, } lowerCamelCase__ : Any = '▁' class lowerCamelCase_ ( _SCREAMING_SNAKE_CASE ): '''simple docstring''' lowercase_ = VOCAB_FILES_NAMES lowercase_ = PRETRAINED_VOCAB_FILES_MAP lowercase_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowercase_ = AlbertTokenizer def __init__( self : Union[str, Any] , _lowerCAmelCase : List[Any]=None , _lowerCAmelCase : Dict=None , _lowerCAmelCase : Any=True , _lowerCAmelCase : List[str]=True , _lowerCAmelCase : Tuple=False , _lowerCAmelCase : int="[CLS]" , _lowerCAmelCase : Any="[SEP]" , _lowerCAmelCase : List[str]="<unk>" , _lowerCAmelCase : int="[SEP]" , _lowerCAmelCase : Optional[Any]="<pad>" , _lowerCAmelCase : int="[CLS]" , _lowerCAmelCase : str="[MASK]" , **_lowerCAmelCase : Optional[int] , ): # Mask token behave like a normal word, i.e. include the space before it and # is included in the raw text, there should be a match in a non-normalized sentence. SCREAMING_SNAKE_CASE_ = ( AddedToken(_lowerCAmelCase , lstrip=_lowerCAmelCase , rstrip=_lowerCAmelCase , normalized=_lowerCAmelCase ) if isinstance(_lowerCAmelCase , _lowerCAmelCase ) else mask_token ) super().__init__( _lowerCAmelCase , tokenizer_file=_lowerCAmelCase , do_lower_case=_lowerCAmelCase , remove_space=_lowerCAmelCase , keep_accents=_lowerCAmelCase , bos_token=_lowerCAmelCase , eos_token=_lowerCAmelCase , unk_token=_lowerCAmelCase , sep_token=_lowerCAmelCase , pad_token=_lowerCAmelCase , cls_token=_lowerCAmelCase , mask_token=_lowerCAmelCase , **_lowerCAmelCase , ) SCREAMING_SNAKE_CASE_ = do_lower_case SCREAMING_SNAKE_CASE_ = remove_space SCREAMING_SNAKE_CASE_ = keep_accents SCREAMING_SNAKE_CASE_ = vocab_file SCREAMING_SNAKE_CASE_ = False if not self.vocab_file else True def lowerCAmelCase_ ( self : List[Any] , _lowerCAmelCase : List[int] , _lowerCAmelCase : Optional[List[int]] = None ): SCREAMING_SNAKE_CASE_ = [self.sep_token_id] SCREAMING_SNAKE_CASE_ = [self.cls_token_id] if token_ids_a is None: return cls + token_ids_a + sep return cls + token_ids_a + sep + token_ids_a + sep def lowerCAmelCase_ ( self : int , _lowerCAmelCase : List[int] , _lowerCAmelCase : Optional[List[int]] = None ): SCREAMING_SNAKE_CASE_ = [self.sep_token_id] SCREAMING_SNAKE_CASE_ = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def lowerCAmelCase_ ( self : List[str] , _lowerCAmelCase : str , _lowerCAmelCase : Optional[str] = None ): if not self.can_save_slow_tokenizer: raise ValueError( 'Your fast tokenizer does not have the necessary information to save the vocabulary for a slow ' 'tokenizer.' ) if not os.path.isdir(_lowerCAmelCase ): logger.error(F"Vocabulary path ({save_directory}) should be a directory" ) return SCREAMING_SNAKE_CASE_ = os.path.join( _lowerCAmelCase , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(_lowerCAmelCase ): copyfile(self.vocab_file , _lowerCAmelCase ) return (out_vocab_file,)
31
import warnings from ...utils import logging from .image_processing_mobilevit import MobileViTImageProcessor lowerCamelCase__ : Optional[int] = logging.get_logger(__name__) class lowerCamelCase_ ( _SCREAMING_SNAKE_CASE ): '''simple docstring''' def __init__( self : str , *_lowerCAmelCase : Tuple , **_lowerCAmelCase : int ): warnings.warn( 'The class MobileViTFeatureExtractor is deprecated and will be removed in version 5 of Transformers.' ' Please use MobileViTImageProcessor instead.' , _lowerCAmelCase , ) super().__init__(*_lowerCAmelCase , **_lowerCAmelCase )
31
1
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_sentencepiece_available, is_tf_available, is_tokenizers_available, is_torch_available, ) if is_sentencepiece_available(): from ..ta.tokenization_ta import TaTokenizer else: from ...utils.dummy_sentencepiece_objects import TaTokenizer lowerCamelCase__ : List[Any] = TaTokenizer if is_tokenizers_available(): from ..ta.tokenization_ta_fast import TaTokenizerFast else: from ...utils.dummy_tokenizers_objects import TaTokenizerFast lowerCamelCase__ : Union[str, Any] = TaTokenizerFast lowerCamelCase__ : Dict = {'configuration_mt5': ['MT5Config', 'MT5OnnxConfig']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase__ : Tuple = [ 'MT5EncoderModel', 'MT5ForConditionalGeneration', 'MT5ForQuestionAnswering', 'MT5Model', 'MT5PreTrainedModel', 'MT5Stack', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase__ : Tuple = ['TFMT5EncoderModel', 'TFMT5ForConditionalGeneration', 'TFMT5Model'] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase__ : Tuple = ['FlaxMT5EncoderModel', 'FlaxMT5ForConditionalGeneration', 'FlaxMT5Model'] if TYPE_CHECKING: from .configuration_mta import MTaConfig, MTaOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mta import ( MTaEncoderModel, MTaForConditionalGeneration, MTaForQuestionAnswering, MTaModel, MTaPreTrainedModel, MTaStack, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_mta import TFMTaEncoderModel, TFMTaForConditionalGeneration, TFMTaModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_mta import FlaxMTaEncoderModel, FlaxMTaForConditionalGeneration, FlaxMTaModel else: import sys lowerCamelCase__ : int = _LazyModule( __name__, globals()['__file__'], _import_structure, extra_objects={'MT5Tokenizer': MTaTokenizer, 'MT5TokenizerFast': MTaTokenizerFast}, module_spec=__spec__, )
31
from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCamelCase__ : Optional[int] = logging.get_logger(__name__) lowerCamelCase__ : Tuple = { 'microsoft/swinv2-tiny-patch4-window8-256': ( 'https://huggingface.co/microsoft/swinv2-tiny-patch4-window8-256/resolve/main/config.json' ), } class lowerCamelCase_ ( _SCREAMING_SNAKE_CASE ): '''simple docstring''' lowercase_ = "swinv2" lowercase_ = { "num_attention_heads": "num_heads", "num_hidden_layers": "num_layers", } def __init__( self : Dict , _lowerCAmelCase : Optional[Any]=224 , _lowerCAmelCase : Optional[int]=4 , _lowerCAmelCase : Tuple=3 , _lowerCAmelCase : Tuple=96 , _lowerCAmelCase : Dict=[2, 2, 6, 2] , _lowerCAmelCase : Optional[Any]=[3, 6, 12, 24] , _lowerCAmelCase : str=7 , _lowerCAmelCase : List[Any]=4.0 , _lowerCAmelCase : List[str]=True , _lowerCAmelCase : List[Any]=0.0 , _lowerCAmelCase : List[Any]=0.0 , _lowerCAmelCase : Any=0.1 , _lowerCAmelCase : List[Any]="gelu" , _lowerCAmelCase : str=False , _lowerCAmelCase : str=0.02 , _lowerCAmelCase : List[Any]=1E-5 , _lowerCAmelCase : str=32 , **_lowerCAmelCase : List[Any] , ): super().__init__(**_lowerCAmelCase ) SCREAMING_SNAKE_CASE_ = image_size SCREAMING_SNAKE_CASE_ = patch_size SCREAMING_SNAKE_CASE_ = num_channels SCREAMING_SNAKE_CASE_ = embed_dim SCREAMING_SNAKE_CASE_ = depths SCREAMING_SNAKE_CASE_ = len(_lowerCAmelCase ) SCREAMING_SNAKE_CASE_ = num_heads SCREAMING_SNAKE_CASE_ = window_size SCREAMING_SNAKE_CASE_ = mlp_ratio SCREAMING_SNAKE_CASE_ = qkv_bias SCREAMING_SNAKE_CASE_ = hidden_dropout_prob SCREAMING_SNAKE_CASE_ = attention_probs_dropout_prob SCREAMING_SNAKE_CASE_ = drop_path_rate SCREAMING_SNAKE_CASE_ = hidden_act SCREAMING_SNAKE_CASE_ = use_absolute_embeddings SCREAMING_SNAKE_CASE_ = layer_norm_eps SCREAMING_SNAKE_CASE_ = initializer_range SCREAMING_SNAKE_CASE_ = encoder_stride # we set the hidden_size attribute in order to make Swinv2 work with VisionEncoderDecoderModel # this indicates the channel dimension after the last stage of the model SCREAMING_SNAKE_CASE_ = int(embed_dim * 2 ** (len(_lowerCAmelCase ) - 1) ) SCREAMING_SNAKE_CASE_ = (0, 0, 0, 0)
31
1
from transformers import BertTokenizer, EncoderDecoderModel, SeqaSeqTrainer, SeqaSeqTrainingArguments from transformers.testing_utils import TestCasePlus, require_torch, slow from transformers.utils import is_datasets_available if is_datasets_available(): import datasets class lowerCamelCase_ ( _SCREAMING_SNAKE_CASE ): '''simple docstring''' @slow @require_torch def lowerCAmelCase_ ( self : Optional[int] ): SCREAMING_SNAKE_CASE_ = EncoderDecoderModel.from_encoder_decoder_pretrained('prajjwal1/bert-tiny' , 'prajjwal1/bert-tiny' ) SCREAMING_SNAKE_CASE_ = BertTokenizer.from_pretrained('bert-base-uncased' ) SCREAMING_SNAKE_CASE_ = bertabert.config.encoder.vocab_size SCREAMING_SNAKE_CASE_ = tokenizer.sep_token_id SCREAMING_SNAKE_CASE_ = tokenizer.cls_token_id SCREAMING_SNAKE_CASE_ = 128 SCREAMING_SNAKE_CASE_ = datasets.load_dataset('cnn_dailymail' , '3.0.0' , split='train[:1%]' ) SCREAMING_SNAKE_CASE_ = datasets.load_dataset('cnn_dailymail' , '3.0.0' , split='validation[:1%]' ) SCREAMING_SNAKE_CASE_ = train_dataset.select(range(32 ) ) SCREAMING_SNAKE_CASE_ = val_dataset.select(range(16 ) ) SCREAMING_SNAKE_CASE_ = 4 def _map_to_encoder_decoder_inputs(_lowerCAmelCase : Tuple ): # Tokenizer will automatically set [BOS] <text> [EOS] SCREAMING_SNAKE_CASE_ = tokenizer(batch['article'] , padding='max_length' , truncation=_lowerCAmelCase , max_length=512 ) SCREAMING_SNAKE_CASE_ = tokenizer(batch['highlights'] , padding='max_length' , truncation=_lowerCAmelCase , max_length=128 ) SCREAMING_SNAKE_CASE_ = inputs.input_ids SCREAMING_SNAKE_CASE_ = inputs.attention_mask SCREAMING_SNAKE_CASE_ = outputs.input_ids SCREAMING_SNAKE_CASE_ = outputs.input_ids.copy() SCREAMING_SNAKE_CASE_ = [ [-100 if token == tokenizer.pad_token_id else token for token in labels] for labels in batch['labels'] ] SCREAMING_SNAKE_CASE_ = outputs.attention_mask assert all(len(_lowerCAmelCase ) == 512 for x in inputs.input_ids ) assert all(len(_lowerCAmelCase ) == 128 for x in outputs.input_ids ) return batch def _compute_metrics(_lowerCAmelCase : int ): SCREAMING_SNAKE_CASE_ = pred.label_ids SCREAMING_SNAKE_CASE_ = pred.predictions # all unnecessary tokens are removed SCREAMING_SNAKE_CASE_ = tokenizer.batch_decode(_lowerCAmelCase , skip_special_tokens=_lowerCAmelCase ) SCREAMING_SNAKE_CASE_ = tokenizer.batch_decode(_lowerCAmelCase , skip_special_tokens=_lowerCAmelCase ) SCREAMING_SNAKE_CASE_ = sum([int(pred_str[i] == label_str[i] ) for i in range(len(_lowerCAmelCase ) )] ) / len(_lowerCAmelCase ) return {"accuracy": accuracy} # map train dataset SCREAMING_SNAKE_CASE_ = train_dataset.map( _map_to_encoder_decoder_inputs , batched=_lowerCAmelCase , batch_size=_lowerCAmelCase , remove_columns=['article', 'highlights'] , ) train_dataset.set_format( type='torch' , columns=['input_ids', 'attention_mask', 'decoder_input_ids', 'decoder_attention_mask', 'labels'] , ) # same for validation dataset SCREAMING_SNAKE_CASE_ = val_dataset.map( _map_to_encoder_decoder_inputs , batched=_lowerCAmelCase , batch_size=_lowerCAmelCase , remove_columns=['article', 'highlights'] , ) val_dataset.set_format( type='torch' , columns=['input_ids', 'attention_mask', 'decoder_input_ids', 'decoder_attention_mask', 'labels'] , ) SCREAMING_SNAKE_CASE_ = self.get_auto_remove_tmp_dir() SCREAMING_SNAKE_CASE_ = SeqaSeqTrainingArguments( output_dir=_lowerCAmelCase , per_device_train_batch_size=_lowerCAmelCase , per_device_eval_batch_size=_lowerCAmelCase , predict_with_generate=_lowerCAmelCase , evaluation_strategy='steps' , do_train=_lowerCAmelCase , do_eval=_lowerCAmelCase , warmup_steps=0 , eval_steps=2 , logging_steps=2 , ) # instantiate trainer SCREAMING_SNAKE_CASE_ = SeqaSeqTrainer( model=_lowerCAmelCase , args=_lowerCAmelCase , compute_metrics=_compute_metrics , train_dataset=_lowerCAmelCase , eval_dataset=_lowerCAmelCase , tokenizer=_lowerCAmelCase , ) # start training trainer.train()
31
import itertools import random import unittest import numpy as np from transformers import BatchFeature, SpeechTaFeatureExtractor from transformers.testing_utils import require_torch from transformers.utils.import_utils import is_torch_available from ...test_sequence_feature_extraction_common import SequenceFeatureExtractionTestMixin if is_torch_available(): import torch lowerCamelCase__ : Dict = random.Random() def UpperCAmelCase_ ( __UpperCAmelCase : int , __UpperCAmelCase : Tuple=1.0 , __UpperCAmelCase : Dict=None , __UpperCAmelCase : Dict=None ) -> Tuple: if rng is None: SCREAMING_SNAKE_CASE_ = global_rng SCREAMING_SNAKE_CASE_ = [] for batch_idx in range(shape[0] ): values.append([] ) for _ in range(shape[1] ): values[-1].append(rng.random() * scale ) return values @require_torch class lowerCamelCase_ ( unittest.TestCase ): '''simple docstring''' def __init__( self : List[str] , _lowerCAmelCase : int , _lowerCAmelCase : Optional[Any]=7 , _lowerCAmelCase : Union[str, Any]=400 , _lowerCAmelCase : Tuple=2_000 , _lowerCAmelCase : str=1 , _lowerCAmelCase : int=0.0 , _lowerCAmelCase : Optional[Any]=16_000 , _lowerCAmelCase : Optional[Any]=True , _lowerCAmelCase : Any=80 , _lowerCAmelCase : Union[str, Any]=16 , _lowerCAmelCase : List[str]=64 , _lowerCAmelCase : List[Any]="hann_window" , _lowerCAmelCase : Any=80 , _lowerCAmelCase : List[Any]=7_600 , _lowerCAmelCase : List[Any]=1E-10 , _lowerCAmelCase : Optional[Any]=True , ): SCREAMING_SNAKE_CASE_ = parent SCREAMING_SNAKE_CASE_ = batch_size SCREAMING_SNAKE_CASE_ = min_seq_length SCREAMING_SNAKE_CASE_ = max_seq_length SCREAMING_SNAKE_CASE_ = (self.max_seq_length - self.min_seq_length) // (self.batch_size - 1) SCREAMING_SNAKE_CASE_ = feature_size SCREAMING_SNAKE_CASE_ = padding_value SCREAMING_SNAKE_CASE_ = sampling_rate SCREAMING_SNAKE_CASE_ = do_normalize SCREAMING_SNAKE_CASE_ = num_mel_bins SCREAMING_SNAKE_CASE_ = hop_length SCREAMING_SNAKE_CASE_ = win_length SCREAMING_SNAKE_CASE_ = win_function SCREAMING_SNAKE_CASE_ = fmin SCREAMING_SNAKE_CASE_ = fmax SCREAMING_SNAKE_CASE_ = mel_floor SCREAMING_SNAKE_CASE_ = return_attention_mask def lowerCAmelCase_ ( self : Union[str, Any] ): return { "feature_size": self.feature_size, "padding_value": self.padding_value, "sampling_rate": self.sampling_rate, "do_normalize": self.do_normalize, "num_mel_bins": self.num_mel_bins, "hop_length": self.hop_length, "win_length": self.win_length, "win_function": self.win_function, "fmin": self.fmin, "fmax": self.fmax, "mel_floor": self.mel_floor, "return_attention_mask": self.return_attention_mask, } def lowerCAmelCase_ ( self : Dict , _lowerCAmelCase : Optional[int]=False , _lowerCAmelCase : str=False ): def _flatten(_lowerCAmelCase : Dict ): return list(itertools.chain(*_lowerCAmelCase ) ) if equal_length: SCREAMING_SNAKE_CASE_ = floats_list((self.batch_size, self.max_seq_length) ) else: # make sure that inputs increase in size SCREAMING_SNAKE_CASE_ = [ _flatten(floats_list((x, self.feature_size) ) ) for x in range(self.min_seq_length , self.max_seq_length , self.seq_length_diff ) ] if numpify: SCREAMING_SNAKE_CASE_ = [np.asarray(_lowerCAmelCase ) for x in speech_inputs] return speech_inputs def lowerCAmelCase_ ( self : List[Any] , _lowerCAmelCase : Union[str, Any]=False , _lowerCAmelCase : Optional[int]=False ): if equal_length: SCREAMING_SNAKE_CASE_ = [floats_list((self.max_seq_length, self.num_mel_bins) ) for _ in range(self.batch_size )] else: # make sure that inputs increase in size SCREAMING_SNAKE_CASE_ = [ floats_list((x, self.num_mel_bins) ) for x in range(self.min_seq_length , self.max_seq_length , self.seq_length_diff ) ] if numpify: SCREAMING_SNAKE_CASE_ = [np.asarray(_lowerCAmelCase ) for x in speech_inputs] return speech_inputs @require_torch class lowerCamelCase_ ( _SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' lowercase_ = SpeechTaFeatureExtractor def lowerCAmelCase_ ( self : Any ): SCREAMING_SNAKE_CASE_ = SpeechTaFeatureExtractionTester(self ) def lowerCAmelCase_ ( self : Any , _lowerCAmelCase : int ): self.assertTrue(np.all(np.mean(_lowerCAmelCase , axis=0 ) < 1E-3 ) ) self.assertTrue(np.all(np.abs(np.var(_lowerCAmelCase , axis=0 ) - 1 ) < 1E-3 ) ) def lowerCAmelCase_ ( self : List[Any] ): # Tests that all call wrap to encode_plus and batch_encode_plus SCREAMING_SNAKE_CASE_ = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) # create three inputs of length 800, 1000, and 1200 SCREAMING_SNAKE_CASE_ = [floats_list((1, x) )[0] for x in range(800 , 1_400 , 200 )] SCREAMING_SNAKE_CASE_ = [np.asarray(_lowerCAmelCase ) for speech_input in speech_inputs] # Test not batched input SCREAMING_SNAKE_CASE_ = feat_extract(speech_inputs[0] , return_tensors='np' ).input_values SCREAMING_SNAKE_CASE_ = feat_extract(np_speech_inputs[0] , return_tensors='np' ).input_values self.assertTrue(np.allclose(_lowerCAmelCase , _lowerCAmelCase , atol=1E-3 ) ) # Test batched SCREAMING_SNAKE_CASE_ = feat_extract(_lowerCAmelCase , return_tensors='np' ).input_values SCREAMING_SNAKE_CASE_ = feat_extract(_lowerCAmelCase , return_tensors='np' ).input_values for enc_seq_a, enc_seq_a in zip(_lowerCAmelCase , _lowerCAmelCase ): self.assertTrue(np.allclose(_lowerCAmelCase , _lowerCAmelCase , atol=1E-3 ) ) def lowerCAmelCase_ ( self : Union[str, Any] ): SCREAMING_SNAKE_CASE_ = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) SCREAMING_SNAKE_CASE_ = [floats_list((1, x) )[0] for x in range(800 , 1_400 , 200 )] SCREAMING_SNAKE_CASE_ = ['longest', 'max_length', 'do_not_pad'] SCREAMING_SNAKE_CASE_ = [None, 1_600, None] for max_length, padding in zip(_lowerCAmelCase , _lowerCAmelCase ): SCREAMING_SNAKE_CASE_ = feat_extract(_lowerCAmelCase , padding=_lowerCAmelCase , max_length=_lowerCAmelCase , return_tensors='np' ) SCREAMING_SNAKE_CASE_ = processed.input_values self._check_zero_mean_unit_variance(input_values[0][:800] ) self.assertTrue(input_values[0][800:].sum() < 1E-6 ) self._check_zero_mean_unit_variance(input_values[1][:1_000] ) self.assertTrue(input_values[0][1_000:].sum() < 1E-6 ) self._check_zero_mean_unit_variance(input_values[2][:1_200] ) def lowerCAmelCase_ ( self : Optional[Any] ): SCREAMING_SNAKE_CASE_ = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) SCREAMING_SNAKE_CASE_ = range(800 , 1_400 , 200 ) SCREAMING_SNAKE_CASE_ = [floats_list((1, x) )[0] for x in lengths] SCREAMING_SNAKE_CASE_ = ['longest', 'max_length', 'do_not_pad'] SCREAMING_SNAKE_CASE_ = [None, 1_600, None] for max_length, padding in zip(_lowerCAmelCase , _lowerCAmelCase ): SCREAMING_SNAKE_CASE_ = feat_extract(_lowerCAmelCase , max_length=_lowerCAmelCase , padding=_lowerCAmelCase ) SCREAMING_SNAKE_CASE_ = processed.input_values self._check_zero_mean_unit_variance(input_values[0][:800] ) self._check_zero_mean_unit_variance(input_values[1][:1_000] ) self._check_zero_mean_unit_variance(input_values[2][:1_200] ) def lowerCAmelCase_ ( self : Dict ): SCREAMING_SNAKE_CASE_ = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) SCREAMING_SNAKE_CASE_ = [floats_list((1, x) )[0] for x in range(800 , 1_400 , 200 )] SCREAMING_SNAKE_CASE_ = feat_extract( _lowerCAmelCase , truncation=_lowerCAmelCase , max_length=1_000 , padding='max_length' , return_tensors='np' ) SCREAMING_SNAKE_CASE_ = processed.input_values self._check_zero_mean_unit_variance(input_values[0, :800] ) self._check_zero_mean_unit_variance(input_values[1] ) self._check_zero_mean_unit_variance(input_values[2] ) def lowerCAmelCase_ ( self : Dict ): SCREAMING_SNAKE_CASE_ = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) SCREAMING_SNAKE_CASE_ = [floats_list((1, x) )[0] for x in range(800 , 1_400 , 200 )] SCREAMING_SNAKE_CASE_ = feat_extract( _lowerCAmelCase , truncation=_lowerCAmelCase , max_length=1_000 , padding='longest' , return_tensors='np' ) SCREAMING_SNAKE_CASE_ = processed.input_values self._check_zero_mean_unit_variance(input_values[0, :800] ) self._check_zero_mean_unit_variance(input_values[1, :1_000] ) self._check_zero_mean_unit_variance(input_values[2] ) # make sure that if max_length < longest -> then pad to max_length self.assertTrue(input_values.shape == (3, 1_000) ) SCREAMING_SNAKE_CASE_ = [floats_list((1, x) )[0] for x in range(800 , 1_400 , 200 )] SCREAMING_SNAKE_CASE_ = feat_extract( _lowerCAmelCase , truncation=_lowerCAmelCase , max_length=2_000 , padding='longest' , return_tensors='np' ) SCREAMING_SNAKE_CASE_ = processed.input_values self._check_zero_mean_unit_variance(input_values[0, :800] ) self._check_zero_mean_unit_variance(input_values[1, :1_000] ) self._check_zero_mean_unit_variance(input_values[2] ) # make sure that if max_length > longest -> then pad to longest self.assertTrue(input_values.shape == (3, 1_200) ) def lowerCAmelCase_ ( self : Optional[int] ): SCREAMING_SNAKE_CASE_ = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) SCREAMING_SNAKE_CASE_ = np.random.rand(100 ).astype(np.floataa ) SCREAMING_SNAKE_CASE_ = np_speech_inputs.tolist() for inputs in [py_speech_inputs, np_speech_inputs]: SCREAMING_SNAKE_CASE_ = feature_extractor.pad([{'input_values': inputs}] , return_tensors='np' ) self.assertTrue(np_processed.input_values.dtype == np.floataa ) SCREAMING_SNAKE_CASE_ = feature_extractor.pad([{'input_values': inputs}] , return_tensors='pt' ) self.assertTrue(pt_processed.input_values.dtype == torch.floataa ) def lowerCAmelCase_ ( self : Tuple ): # Tests that all call wrap to encode_plus and batch_encode_plus SCREAMING_SNAKE_CASE_ = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) # create three inputs of length 800, 1000, and 1200 SCREAMING_SNAKE_CASE_ = [floats_list((1, x) )[0] for x in range(800 , 1_400 , 200 )] SCREAMING_SNAKE_CASE_ = [np.asarray(_lowerCAmelCase ) for speech_input in speech_inputs] # Test feature size SCREAMING_SNAKE_CASE_ = feature_extractor(audio_target=_lowerCAmelCase , padding=_lowerCAmelCase , return_tensors='np' ).input_values self.assertTrue(input_values.ndim == 3 ) self.assertTrue(input_values.shape[-1] == feature_extractor.num_mel_bins ) # Test not batched input SCREAMING_SNAKE_CASE_ = feature_extractor(speech_inputs[0] , return_tensors='np' ).input_values SCREAMING_SNAKE_CASE_ = feature_extractor(np_speech_inputs[0] , return_tensors='np' ).input_values self.assertTrue(np.allclose(_lowerCAmelCase , _lowerCAmelCase , atol=1E-3 ) ) # Test batched SCREAMING_SNAKE_CASE_ = feature_extractor(_lowerCAmelCase , return_tensors='np' ).input_values SCREAMING_SNAKE_CASE_ = feature_extractor(_lowerCAmelCase , return_tensors='np' ).input_values for enc_seq_a, enc_seq_a in zip(_lowerCAmelCase , _lowerCAmelCase ): self.assertTrue(np.allclose(_lowerCAmelCase , _lowerCAmelCase , atol=1E-3 ) ) # Test 2-D numpy arrays are batched. SCREAMING_SNAKE_CASE_ = [floats_list((1, x) )[0] for x in (800, 800, 800)] SCREAMING_SNAKE_CASE_ = np.asarray(_lowerCAmelCase ) SCREAMING_SNAKE_CASE_ = feature_extractor(_lowerCAmelCase , return_tensors='np' ).input_values SCREAMING_SNAKE_CASE_ = feature_extractor(_lowerCAmelCase , return_tensors='np' ).input_values for enc_seq_a, enc_seq_a in zip(_lowerCAmelCase , _lowerCAmelCase ): self.assertTrue(np.allclose(_lowerCAmelCase , _lowerCAmelCase , atol=1E-3 ) ) def lowerCAmelCase_ ( self : str ): SCREAMING_SNAKE_CASE_ = self.feat_extract_tester.prepare_inputs_for_target() SCREAMING_SNAKE_CASE_ = self.feature_extraction_class(**self.feat_extract_dict ) SCREAMING_SNAKE_CASE_ = feat_extract.model_input_names[0] SCREAMING_SNAKE_CASE_ = BatchFeature({input_name: speech_inputs} ) self.assertTrue(all(len(_lowerCAmelCase ) == len(_lowerCAmelCase ) for x, y in zip(_lowerCAmelCase , processed_features[input_name] ) ) ) SCREAMING_SNAKE_CASE_ = self.feat_extract_tester.prepare_inputs_for_target(equal_length=_lowerCAmelCase ) SCREAMING_SNAKE_CASE_ = BatchFeature({input_name: speech_inputs} , tensor_type='np' ) SCREAMING_SNAKE_CASE_ = processed_features[input_name] if len(batch_features_input.shape ) < 3: SCREAMING_SNAKE_CASE_ = batch_features_input[:, :, None] self.assertTrue( batch_features_input.shape == (self.feat_extract_tester.batch_size, len(speech_inputs[0] ), self.feat_extract_tester.num_mel_bins) ) @require_torch def lowerCAmelCase_ ( self : Dict ): SCREAMING_SNAKE_CASE_ = self.feat_extract_tester.prepare_inputs_for_target(equal_length=_lowerCAmelCase ) SCREAMING_SNAKE_CASE_ = self.feature_extraction_class(**self.feat_extract_dict ) SCREAMING_SNAKE_CASE_ = feat_extract.model_input_names[0] SCREAMING_SNAKE_CASE_ = BatchFeature({input_name: speech_inputs} , tensor_type='pt' ) SCREAMING_SNAKE_CASE_ = processed_features[input_name] if len(batch_features_input.shape ) < 3: SCREAMING_SNAKE_CASE_ = batch_features_input[:, :, None] self.assertTrue( batch_features_input.shape == (self.feat_extract_tester.batch_size, len(speech_inputs[0] ), self.feat_extract_tester.num_mel_bins) ) @require_torch def lowerCAmelCase_ ( self : Dict ): SCREAMING_SNAKE_CASE_ = self.feature_extraction_class(**self.feat_extract_dict ) SCREAMING_SNAKE_CASE_ = self.feat_extract_tester.prepare_inputs_for_target() SCREAMING_SNAKE_CASE_ = feat_extract.model_input_names[0] SCREAMING_SNAKE_CASE_ = BatchFeature({input_name: speech_inputs} ) SCREAMING_SNAKE_CASE_ = feat_extract.num_mel_bins # hack! SCREAMING_SNAKE_CASE_ = feat_extract.pad(_lowerCAmelCase , padding='longest' , return_tensors='np' )[input_name] SCREAMING_SNAKE_CASE_ = feat_extract.pad(_lowerCAmelCase , padding='longest' , return_tensors='pt' )[input_name] self.assertTrue(abs(input_np.astype(np.floataa ).sum() - input_pt.numpy().astype(np.floataa ).sum() ) < 1E-2 ) def lowerCAmelCase_ ( self : str ): SCREAMING_SNAKE_CASE_ = self.feat_extract_dict SCREAMING_SNAKE_CASE_ = True SCREAMING_SNAKE_CASE_ = self.feature_extraction_class(**_lowerCAmelCase ) SCREAMING_SNAKE_CASE_ = self.feat_extract_tester.prepare_inputs_for_target() SCREAMING_SNAKE_CASE_ = [len(_lowerCAmelCase ) for x in speech_inputs] SCREAMING_SNAKE_CASE_ = feat_extract.model_input_names[0] SCREAMING_SNAKE_CASE_ = BatchFeature({input_name: speech_inputs} ) SCREAMING_SNAKE_CASE_ = feat_extract.num_mel_bins # hack! SCREAMING_SNAKE_CASE_ = feat_extract.pad(_lowerCAmelCase , padding='longest' , return_tensors='np' ) self.assertIn('attention_mask' , _lowerCAmelCase ) self.assertListEqual(list(processed.attention_mask.shape ) , list(processed[input_name].shape[:2] ) ) self.assertListEqual(processed.attention_mask.sum(-1 ).tolist() , _lowerCAmelCase ) def lowerCAmelCase_ ( self : Any ): SCREAMING_SNAKE_CASE_ = self.feat_extract_dict SCREAMING_SNAKE_CASE_ = True SCREAMING_SNAKE_CASE_ = self.feature_extraction_class(**_lowerCAmelCase ) SCREAMING_SNAKE_CASE_ = self.feat_extract_tester.prepare_inputs_for_target() SCREAMING_SNAKE_CASE_ = [len(_lowerCAmelCase ) for x in speech_inputs] SCREAMING_SNAKE_CASE_ = feat_extract.model_input_names[0] SCREAMING_SNAKE_CASE_ = BatchFeature({input_name: speech_inputs} ) SCREAMING_SNAKE_CASE_ = min(_lowerCAmelCase ) SCREAMING_SNAKE_CASE_ = feat_extract.num_mel_bins # hack! SCREAMING_SNAKE_CASE_ = feat_extract.pad( _lowerCAmelCase , padding='max_length' , max_length=_lowerCAmelCase , truncation=_lowerCAmelCase , return_tensors='np' ) self.assertIn('attention_mask' , _lowerCAmelCase ) self.assertListEqual( list(processed_pad.attention_mask.shape ) , [processed_pad[input_name].shape[0], max_length] ) self.assertListEqual( processed_pad.attention_mask[:, :max_length].sum(-1 ).tolist() , [max_length for x in speech_inputs] ) def lowerCAmelCase_ ( self : List[Any] , _lowerCAmelCase : Tuple ): from datasets import load_dataset SCREAMING_SNAKE_CASE_ = load_dataset('hf-internal-testing/librispeech_asr_dummy' , 'clean' , split='validation' ) # automatic decoding with librispeech SCREAMING_SNAKE_CASE_ = ds.sort('id' ).select(range(_lowerCAmelCase ) )[:num_samples]['audio'] return [x["array"] for x in speech_samples] def lowerCAmelCase_ ( self : Any ): # fmt: off SCREAMING_SNAKE_CASE_ = torch.tensor( [2.3_804E-03, 2.0_752E-03, 1.9_836E-03, 2.1_057E-03, 1.6_174E-03, 3.0_518E-04, 9.1_553E-05, 3.3_569E-04, 9.7_656E-04, 1.8_311E-03, 2.0_142E-03, 2.1_057E-03, 1.7_395E-03, 4.5_776E-04, -3.9_673E-04, 4.5_776E-04, 1.0_071E-03, 9.1_553E-05, 4.8_828E-04, 1.1_597E-03, 7.3_242E-04, 9.4_604E-04, 1.8_005E-03, 1.8_311E-03, 8.8_501E-04, 4.2_725E-04, 4.8_828E-04, 7.3_242E-04, 1.0_986E-03, 2.1_057E-03] ) # fmt: on SCREAMING_SNAKE_CASE_ = self._load_datasamples(1 ) SCREAMING_SNAKE_CASE_ = SpeechTaFeatureExtractor() SCREAMING_SNAKE_CASE_ = feature_extractor(_lowerCAmelCase , return_tensors='pt' ).input_values self.assertEquals(input_values.shape , (1, 93_680) ) self.assertTrue(torch.allclose(input_values[0, :30] , _lowerCAmelCase , atol=1E-6 ) ) def lowerCAmelCase_ ( self : Optional[int] ): # fmt: off SCREAMING_SNAKE_CASE_ = torch.tensor( [-2.6870, -3.0104, -3.1356, -3.5352, -3.0044, -3.0353, -3.4719, -3.6777, -3.1520, -2.9435, -2.6553, -2.8795, -2.9944, -2.5921, -3.0279, -3.0386, -3.0864, -3.1291, -3.2353, -2.7444, -2.6831, -2.7287, -3.1761, -3.1571, -3.2726, -3.0582, -3.1007, -3.4533, -3.4695, -3.0998] ) # fmt: on SCREAMING_SNAKE_CASE_ = self._load_datasamples(1 ) SCREAMING_SNAKE_CASE_ = SpeechTaFeatureExtractor() SCREAMING_SNAKE_CASE_ = feature_extractor(audio_target=_lowerCAmelCase , return_tensors='pt' ).input_values self.assertEquals(input_values.shape , (1, 366, 80) ) self.assertTrue(torch.allclose(input_values[0, 0, :30] , _lowerCAmelCase , atol=1E-4 ) )
31
1
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available lowerCamelCase__ : List[str] = { 'configuration_graphormer': ['GRAPHORMER_PRETRAINED_CONFIG_ARCHIVE_MAP', 'GraphormerConfig'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase__ : str = [ 'GRAPHORMER_PRETRAINED_MODEL_ARCHIVE_LIST', 'GraphormerForGraphClassification', 'GraphormerModel', 'GraphormerPreTrainedModel', ] if TYPE_CHECKING: from .configuration_graphormer import GRAPHORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, GraphormerConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_graphormer import ( GRAPHORMER_PRETRAINED_MODEL_ARCHIVE_LIST, GraphormerForGraphClassification, GraphormerModel, GraphormerPreTrainedModel, ) else: import sys lowerCamelCase__ : List[Any] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
31
from __future__ import annotations from typing import TypedDict class lowerCamelCase_ ( _SCREAMING_SNAKE_CASE ): '''simple docstring''' lowercase_ = 42 lowercase_ = 42 def UpperCAmelCase_ ( __UpperCAmelCase : str ) -> list[str]: if not isinstance(__UpperCAmelCase , __UpperCAmelCase ): raise TypeError('The parameter s type must be str.' ) return [s[i:] + s[:i] for i in range(len(__UpperCAmelCase ) )] def UpperCAmelCase_ ( __UpperCAmelCase : str ) -> BWTTransformDict: if not isinstance(__UpperCAmelCase , __UpperCAmelCase ): raise TypeError('The parameter s type must be str.' ) if not s: raise ValueError('The parameter s must not be empty.' ) SCREAMING_SNAKE_CASE_ = all_rotations(__UpperCAmelCase ) rotations.sort() # sort the list of rotations in alphabetically order # make a string composed of the last char of each rotation SCREAMING_SNAKE_CASE_ = { "bwt_string": "".join([word[-1] for word in rotations] ), "idx_original_string": rotations.index(__UpperCAmelCase ), } return response def UpperCAmelCase_ ( __UpperCAmelCase : str , __UpperCAmelCase : int ) -> str: if not isinstance(__UpperCAmelCase , __UpperCAmelCase ): raise TypeError('The parameter bwt_string type must be str.' ) if not bwt_string: raise ValueError('The parameter bwt_string must not be empty.' ) try: SCREAMING_SNAKE_CASE_ = int(__UpperCAmelCase ) except ValueError: raise TypeError( 'The parameter idx_original_string type must be int or passive' ' of cast to int.' ) if idx_original_string < 0: raise ValueError('The parameter idx_original_string must not be lower than 0.' ) if idx_original_string >= len(__UpperCAmelCase ): raise ValueError( 'The parameter idx_original_string must be lower than' ' len(bwt_string).' ) SCREAMING_SNAKE_CASE_ = [''] * len(__UpperCAmelCase ) for _ in range(len(__UpperCAmelCase ) ): for i in range(len(__UpperCAmelCase ) ): SCREAMING_SNAKE_CASE_ = bwt_string[i] + ordered_rotations[i] ordered_rotations.sort() return ordered_rotations[idx_original_string] if __name__ == "__main__": lowerCamelCase__ : Optional[int] = 'Provide a string that I will generate its BWT transform: ' lowerCamelCase__ : List[str] = input(entry_msg).strip() lowerCamelCase__ : int = bwt_transform(s) print( f'''Burrows Wheeler transform for string \'{s}\' results ''' f'''in \'{result['bwt_string']}\'''' ) lowerCamelCase__ : Dict = reverse_bwt(result['bwt_string'], result['idx_original_string']) print( f'''Reversing Burrows Wheeler transform for entry \'{result['bwt_string']}\' ''' f'''we get original string \'{original_string}\'''' )
31
1
from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, convert_to_rgb, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( OPENAI_CLIP_MEAN, OPENAI_CLIP_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging lowerCamelCase__ : int = logging.get_logger(__name__) if is_vision_available(): import PIL class lowerCamelCase_ ( _SCREAMING_SNAKE_CASE ): '''simple docstring''' lowercase_ = ["pixel_values"] def __init__( self : List[str] , _lowerCAmelCase : bool = True , _lowerCAmelCase : Dict[str, int] = None , _lowerCAmelCase : PILImageResampling = PILImageResampling.BICUBIC , _lowerCAmelCase : bool = True , _lowerCAmelCase : Dict[str, int] = None , _lowerCAmelCase : bool = True , _lowerCAmelCase : Union[int, float] = 1 / 255 , _lowerCAmelCase : bool = True , _lowerCAmelCase : Optional[Union[float, List[float]]] = None , _lowerCAmelCase : Optional[Union[float, List[float]]] = None , _lowerCAmelCase : bool = True , **_lowerCAmelCase : Optional[Any] , ): super().__init__(**_lowerCAmelCase ) SCREAMING_SNAKE_CASE_ = size if size is not None else {'shortest_edge': 224} SCREAMING_SNAKE_CASE_ = get_size_dict(_lowerCAmelCase , default_to_square=_lowerCAmelCase ) SCREAMING_SNAKE_CASE_ = crop_size if crop_size is not None else {'height': 224, 'width': 224} SCREAMING_SNAKE_CASE_ = get_size_dict(_lowerCAmelCase , default_to_square=_lowerCAmelCase , param_name='crop_size' ) SCREAMING_SNAKE_CASE_ = do_resize SCREAMING_SNAKE_CASE_ = size SCREAMING_SNAKE_CASE_ = resample SCREAMING_SNAKE_CASE_ = do_center_crop SCREAMING_SNAKE_CASE_ = crop_size SCREAMING_SNAKE_CASE_ = do_rescale SCREAMING_SNAKE_CASE_ = rescale_factor SCREAMING_SNAKE_CASE_ = do_normalize SCREAMING_SNAKE_CASE_ = image_mean if image_mean is not None else OPENAI_CLIP_MEAN SCREAMING_SNAKE_CASE_ = image_std if image_std is not None else OPENAI_CLIP_STD SCREAMING_SNAKE_CASE_ = do_convert_rgb def lowerCAmelCase_ ( self : Tuple , _lowerCAmelCase : np.ndarray , _lowerCAmelCase : Dict[str, int] , _lowerCAmelCase : PILImageResampling = PILImageResampling.BICUBIC , _lowerCAmelCase : Optional[Union[str, ChannelDimension]] = None , **_lowerCAmelCase : List[str] , ): SCREAMING_SNAKE_CASE_ = get_size_dict(_lowerCAmelCase , default_to_square=_lowerCAmelCase ) if "shortest_edge" not in size: raise ValueError(F"The `size` parameter must contain the key `shortest_edge`. Got {size.keys()}" ) SCREAMING_SNAKE_CASE_ = get_resize_output_image_size(_lowerCAmelCase , size=size['shortest_edge'] , default_to_square=_lowerCAmelCase ) return resize(_lowerCAmelCase , size=_lowerCAmelCase , resample=_lowerCAmelCase , data_format=_lowerCAmelCase , **_lowerCAmelCase ) def lowerCAmelCase_ ( self : Union[str, Any] , _lowerCAmelCase : np.ndarray , _lowerCAmelCase : Dict[str, int] , _lowerCAmelCase : Optional[Union[str, ChannelDimension]] = None , **_lowerCAmelCase : Any , ): SCREAMING_SNAKE_CASE_ = get_size_dict(_lowerCAmelCase ) if "height" not in size or "width" not in size: raise ValueError(F"The `size` parameter must contain the keys (height, width). Got {size.keys()}" ) return center_crop(_lowerCAmelCase , size=(size['height'], size['width']) , data_format=_lowerCAmelCase , **_lowerCAmelCase ) def lowerCAmelCase_ ( self : Tuple , _lowerCAmelCase : np.ndarray , _lowerCAmelCase : Union[int, float] , _lowerCAmelCase : Optional[Union[str, ChannelDimension]] = None , **_lowerCAmelCase : Any , ): return rescale(_lowerCAmelCase , scale=_lowerCAmelCase , data_format=_lowerCAmelCase , **_lowerCAmelCase ) def lowerCAmelCase_ ( self : List[Any] , _lowerCAmelCase : np.ndarray , _lowerCAmelCase : Union[float, List[float]] , _lowerCAmelCase : Union[float, List[float]] , _lowerCAmelCase : Optional[Union[str, ChannelDimension]] = None , **_lowerCAmelCase : List[Any] , ): return normalize(_lowerCAmelCase , mean=_lowerCAmelCase , std=_lowerCAmelCase , data_format=_lowerCAmelCase , **_lowerCAmelCase ) def lowerCAmelCase_ ( self : Any , _lowerCAmelCase : ImageInput , _lowerCAmelCase : bool = None , _lowerCAmelCase : Dict[str, int] = None , _lowerCAmelCase : PILImageResampling = None , _lowerCAmelCase : bool = None , _lowerCAmelCase : int = None , _lowerCAmelCase : bool = None , _lowerCAmelCase : float = None , _lowerCAmelCase : bool = None , _lowerCAmelCase : Optional[Union[float, List[float]]] = None , _lowerCAmelCase : Optional[Union[float, List[float]]] = None , _lowerCAmelCase : bool = None , _lowerCAmelCase : Optional[Union[str, TensorType]] = None , _lowerCAmelCase : Optional[ChannelDimension] = ChannelDimension.FIRST , **_lowerCAmelCase : Union[str, Any] , ): SCREAMING_SNAKE_CASE_ = do_resize if do_resize is not None else self.do_resize SCREAMING_SNAKE_CASE_ = size if size is not None else self.size SCREAMING_SNAKE_CASE_ = get_size_dict(_lowerCAmelCase , param_name='size' , default_to_square=_lowerCAmelCase ) SCREAMING_SNAKE_CASE_ = resample if resample is not None else self.resample SCREAMING_SNAKE_CASE_ = do_center_crop if do_center_crop is not None else self.do_center_crop SCREAMING_SNAKE_CASE_ = crop_size if crop_size is not None else self.crop_size SCREAMING_SNAKE_CASE_ = get_size_dict(_lowerCAmelCase , param_name='crop_size' , default_to_square=_lowerCAmelCase ) SCREAMING_SNAKE_CASE_ = do_rescale if do_rescale is not None else self.do_rescale SCREAMING_SNAKE_CASE_ = rescale_factor if rescale_factor is not None else self.rescale_factor SCREAMING_SNAKE_CASE_ = do_normalize if do_normalize is not None else self.do_normalize SCREAMING_SNAKE_CASE_ = image_mean if image_mean is not None else self.image_mean SCREAMING_SNAKE_CASE_ = image_std if image_std is not None else self.image_std SCREAMING_SNAKE_CASE_ = do_convert_rgb if do_convert_rgb is not None else self.do_convert_rgb SCREAMING_SNAKE_CASE_ = make_list_of_images(_lowerCAmelCase ) if not valid_images(_lowerCAmelCase ): raise ValueError( 'Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ' 'torch.Tensor, tf.Tensor or jax.ndarray.' ) if do_resize and size is None: raise ValueError('Size must be specified if do_resize is True.' ) if do_center_crop and crop_size is None: raise ValueError('Crop size must be specified if do_center_crop is True.' ) if do_rescale and rescale_factor is None: raise ValueError('Rescale factor must be specified if do_rescale is True.' ) if do_normalize and (image_mean is None or image_std is None): raise ValueError('Image mean and std must be specified if do_normalize is True.' ) # PIL RGBA images are converted to RGB if do_convert_rgb: SCREAMING_SNAKE_CASE_ = [convert_to_rgb(_lowerCAmelCase ) for image in images] # All transformations expect numpy arrays. SCREAMING_SNAKE_CASE_ = [to_numpy_array(_lowerCAmelCase ) for image in images] if do_resize: SCREAMING_SNAKE_CASE_ = [self.resize(image=_lowerCAmelCase , size=_lowerCAmelCase , resample=_lowerCAmelCase ) for image in images] if do_center_crop: SCREAMING_SNAKE_CASE_ = [self.center_crop(image=_lowerCAmelCase , size=_lowerCAmelCase ) for image in images] if do_rescale: SCREAMING_SNAKE_CASE_ = [self.rescale(image=_lowerCAmelCase , scale=_lowerCAmelCase ) for image in images] if do_normalize: SCREAMING_SNAKE_CASE_ = [self.normalize(image=_lowerCAmelCase , mean=_lowerCAmelCase , std=_lowerCAmelCase ) for image in images] SCREAMING_SNAKE_CASE_ = [to_channel_dimension_format(_lowerCAmelCase , _lowerCAmelCase ) for image in images] SCREAMING_SNAKE_CASE_ = {'pixel_values': images} return BatchFeature(data=_lowerCAmelCase , tensor_type=_lowerCAmelCase )
31
class lowerCamelCase_ : '''simple docstring''' def __init__( self : str ): SCREAMING_SNAKE_CASE_ = {} def lowerCAmelCase_ ( self : List[str] ): print(self.vertex ) for i in self.vertex: print(_lowerCAmelCase , ' -> ' , ' -> '.join([str(_lowerCAmelCase ) for j in self.vertex[i]] ) ) def lowerCAmelCase_ ( self : Union[str, Any] , _lowerCAmelCase : int , _lowerCAmelCase : int ): # check if vertex is already present, if from_vertex in self.vertex: self.vertex[from_vertex].append(_lowerCAmelCase ) else: # else make a new vertex SCREAMING_SNAKE_CASE_ = [to_vertex] def lowerCAmelCase_ ( self : Optional[Any] ): # visited array for storing already visited nodes SCREAMING_SNAKE_CASE_ = [False] * len(self.vertex ) # call the recursive helper function for i in range(len(self.vertex ) ): if not visited[i]: self.dfs_recursive(_lowerCAmelCase , _lowerCAmelCase ) def lowerCAmelCase_ ( self : Tuple , _lowerCAmelCase : int , _lowerCAmelCase : list ): # mark start vertex as visited SCREAMING_SNAKE_CASE_ = True print(_lowerCAmelCase , end=' ' ) # Recur for all the vertices that are adjacent to this node for i in self.vertex: if not visited[i]: self.dfs_recursive(_lowerCAmelCase , _lowerCAmelCase ) if __name__ == "__main__": lowerCamelCase__ : List[Any] = Graph() g.add_edge(0, 1) g.add_edge(0, 2) g.add_edge(1, 2) g.add_edge(2, 0) g.add_edge(2, 3) g.add_edge(3, 3) g.print_graph() print('DFS:') g.dfs() # OUTPUT: # 0 -> 1 -> 2 # 1 -> 2 # 2 -> 0 -> 3 # 3 -> 3 # DFS: # 0 1 2 3
31
1
import math def UpperCAmelCase_ ( __UpperCAmelCase : float , __UpperCAmelCase : float ) -> float: if initial_intensity < 0: raise ValueError('The value of intensity cannot be negative' ) # handling of negative values of initial intensity if angle < 0 or angle > 3_60: raise ValueError('In Malus Law, the angle is in the range 0-360 degrees' ) # handling of values out of allowed range return initial_intensity * (math.cos(math.radians(__UpperCAmelCase ) ) ** 2) if __name__ == "__main__": import doctest doctest.testmod(name='malus_law')
31
from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCamelCase__ : str = logging.get_logger(__name__) lowerCamelCase__ : Tuple = { 'funnel-transformer/small': 'https://huggingface.co/funnel-transformer/small/resolve/main/config.json', 'funnel-transformer/small-base': 'https://huggingface.co/funnel-transformer/small-base/resolve/main/config.json', 'funnel-transformer/medium': 'https://huggingface.co/funnel-transformer/medium/resolve/main/config.json', 'funnel-transformer/medium-base': 'https://huggingface.co/funnel-transformer/medium-base/resolve/main/config.json', 'funnel-transformer/intermediate': ( 'https://huggingface.co/funnel-transformer/intermediate/resolve/main/config.json' ), 'funnel-transformer/intermediate-base': ( 'https://huggingface.co/funnel-transformer/intermediate-base/resolve/main/config.json' ), 'funnel-transformer/large': 'https://huggingface.co/funnel-transformer/large/resolve/main/config.json', 'funnel-transformer/large-base': 'https://huggingface.co/funnel-transformer/large-base/resolve/main/config.json', 'funnel-transformer/xlarge': 'https://huggingface.co/funnel-transformer/xlarge/resolve/main/config.json', 'funnel-transformer/xlarge-base': 'https://huggingface.co/funnel-transformer/xlarge-base/resolve/main/config.json', } class lowerCamelCase_ ( _SCREAMING_SNAKE_CASE ): '''simple docstring''' lowercase_ = "funnel" lowercase_ = { "hidden_size": "d_model", "num_attention_heads": "n_head", } def __init__( self : int , _lowerCAmelCase : Optional[int]=30_522 , _lowerCAmelCase : List[str]=[4, 4, 4] , _lowerCAmelCase : Tuple=None , _lowerCAmelCase : Optional[int]=2 , _lowerCAmelCase : int=768 , _lowerCAmelCase : Optional[Any]=12 , _lowerCAmelCase : Optional[Any]=64 , _lowerCAmelCase : Optional[Any]=3_072 , _lowerCAmelCase : List[str]="gelu_new" , _lowerCAmelCase : Any=0.1 , _lowerCAmelCase : int=0.1 , _lowerCAmelCase : Tuple=0.0 , _lowerCAmelCase : List[Any]=0.1 , _lowerCAmelCase : Dict=None , _lowerCAmelCase : str=1E-9 , _lowerCAmelCase : Any="mean" , _lowerCAmelCase : Union[str, Any]="relative_shift" , _lowerCAmelCase : Optional[Any]=True , _lowerCAmelCase : Dict=True , _lowerCAmelCase : Tuple=True , **_lowerCAmelCase : Optional[Any] , ): SCREAMING_SNAKE_CASE_ = vocab_size SCREAMING_SNAKE_CASE_ = block_sizes SCREAMING_SNAKE_CASE_ = [1] * len(_lowerCAmelCase ) if block_repeats is None else block_repeats assert len(_lowerCAmelCase ) == len( self.block_repeats ), "`block_sizes` and `block_repeats` should have the same length." SCREAMING_SNAKE_CASE_ = num_decoder_layers SCREAMING_SNAKE_CASE_ = d_model SCREAMING_SNAKE_CASE_ = n_head SCREAMING_SNAKE_CASE_ = d_head SCREAMING_SNAKE_CASE_ = d_inner SCREAMING_SNAKE_CASE_ = hidden_act SCREAMING_SNAKE_CASE_ = hidden_dropout SCREAMING_SNAKE_CASE_ = attention_dropout SCREAMING_SNAKE_CASE_ = activation_dropout SCREAMING_SNAKE_CASE_ = initializer_range SCREAMING_SNAKE_CASE_ = initializer_std SCREAMING_SNAKE_CASE_ = layer_norm_eps assert pooling_type in [ "mean", "max", ], F"Got {pooling_type} for `pooling_type` but only 'mean' and 'max' are supported." SCREAMING_SNAKE_CASE_ = pooling_type assert attention_type in [ "relative_shift", "factorized", ], F"Got {attention_type} for `attention_type` but only 'relative_shift' and 'factorized' are supported." SCREAMING_SNAKE_CASE_ = attention_type SCREAMING_SNAKE_CASE_ = separate_cls SCREAMING_SNAKE_CASE_ = truncate_seq SCREAMING_SNAKE_CASE_ = pool_q_only super().__init__(**_lowerCAmelCase ) @property def lowerCAmelCase_ ( self : Optional[int] ): return sum(self.block_sizes ) @num_hidden_layers.setter def lowerCAmelCase_ ( self : int , _lowerCAmelCase : List[Any] ): raise NotImplementedError( 'This model does not support the setting of `num_hidden_layers`. Please set `block_sizes`.' ) @property def lowerCAmelCase_ ( self : List[Any] ): return len(self.block_sizes ) @num_blocks.setter def lowerCAmelCase_ ( self : Dict , _lowerCAmelCase : Union[str, Any] ): raise NotImplementedError('This model does not support the setting of `num_blocks`. Please set `block_sizes`.' )
31
1
import logging import os from typing import Dict, List, Optional, Union import torch import torch.nn as nn from accelerate.utils.imports import ( is_abit_bnb_available, is_abit_bnb_available, is_bnb_available, ) from ..big_modeling import dispatch_model, init_empty_weights from .dataclasses import BnbQuantizationConfig from .modeling import ( find_tied_parameters, get_balanced_memory, infer_auto_device_map, load_checkpoint_in_model, offload_weight, set_module_tensor_to_device, ) if is_bnb_available(): import bitsandbytes as bnb from copy import deepcopy lowerCamelCase__ : Dict = logging.getLogger(__name__) def UpperCAmelCase_ ( __UpperCAmelCase : torch.nn.Module , __UpperCAmelCase : BnbQuantizationConfig , __UpperCAmelCase : Union[str, os.PathLike] = None , __UpperCAmelCase : Optional[Dict[str, Union[int, str, torch.device]]] = None , __UpperCAmelCase : Optional[List[str]] = None , __UpperCAmelCase : Optional[Dict[Union[int, str], Union[int, str]]] = None , __UpperCAmelCase : Optional[Union[str, os.PathLike]] = None , __UpperCAmelCase : bool = False , ) -> List[Any]: SCREAMING_SNAKE_CASE_ = bnb_quantization_config.load_in_abit SCREAMING_SNAKE_CASE_ = bnb_quantization_config.load_in_abit if load_in_abit and not is_abit_bnb_available(): raise ImportError( 'You have a version of `bitsandbytes` that is not compatible with 8bit quantization,' ' make sure you have the latest version of `bitsandbytes` installed.' ) if load_in_abit and not is_abit_bnb_available(): raise ValueError( 'You have a version of `bitsandbytes` that is not compatible with 4bit quantization,' 'make sure you have the latest version of `bitsandbytes` installed.' ) SCREAMING_SNAKE_CASE_ = [] # custom device map if isinstance(__UpperCAmelCase , __UpperCAmelCase ) and len(device_map.keys() ) > 1: SCREAMING_SNAKE_CASE_ = [key for key, value in device_map.items() if value in ['disk', 'cpu']] # We keep some modules such as the lm_head in their original dtype for numerical stability reasons if bnb_quantization_config.skip_modules is None: SCREAMING_SNAKE_CASE_ = get_keys_to_not_convert(__UpperCAmelCase ) # add cpu modules to skip modules only for 4-bit modules if load_in_abit: bnb_quantization_config.skip_modules.extend(__UpperCAmelCase ) SCREAMING_SNAKE_CASE_ = bnb_quantization_config.skip_modules # We add the modules we want to keep in full precision if bnb_quantization_config.keep_in_fpaa_modules is None: SCREAMING_SNAKE_CASE_ = [] SCREAMING_SNAKE_CASE_ = bnb_quantization_config.keep_in_fpaa_modules modules_to_not_convert.extend(__UpperCAmelCase ) # compatibility with peft SCREAMING_SNAKE_CASE_ = load_in_abit SCREAMING_SNAKE_CASE_ = load_in_abit SCREAMING_SNAKE_CASE_ = get_parameter_device(__UpperCAmelCase ) if model_device.type != "meta": # quantization of an already loaded model logger.warning( 'It is not recommended to quantize a loaded model. ' 'The model should be instantiated under the `init_empty_weights` context manager.' ) SCREAMING_SNAKE_CASE_ = replace_with_bnb_layers(__UpperCAmelCase , __UpperCAmelCase , modules_to_not_convert=__UpperCAmelCase ) # convert param to the right dtype SCREAMING_SNAKE_CASE_ = bnb_quantization_config.torch_dtype for name, param in model.state_dict().items(): if any(module_to_keep_in_fpaa in name for module_to_keep_in_fpaa in keep_in_fpaa_modules ): param.to(torch.floataa ) if param.dtype != torch.floataa: SCREAMING_SNAKE_CASE_ = name.replace('.weight' , '' ).replace('.bias' , '' ) SCREAMING_SNAKE_CASE_ = getattr(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) if param is not None: param.to(torch.floataa ) elif torch.is_floating_point(__UpperCAmelCase ): param.to(__UpperCAmelCase ) if model_device.type == "cuda": # move everything to cpu in the first place because we can't do quantization if the weights are already on cuda model.cuda(torch.cuda.current_device() ) torch.cuda.empty_cache() elif torch.cuda.is_available(): model.to(torch.cuda.current_device() ) else: raise RuntimeError('No GPU found. A GPU is needed for quantization.' ) logger.info( f"The model device type is {model_device.type}. However, cuda is needed for quantization." 'We move the model to cuda.' ) return model elif weights_location is None: raise RuntimeError( f"`weights_location` needs to be the folder path containing the weights of the model, but we found {weights_location} " ) else: with init_empty_weights(): SCREAMING_SNAKE_CASE_ = replace_with_bnb_layers( __UpperCAmelCase , __UpperCAmelCase , modules_to_not_convert=__UpperCAmelCase ) SCREAMING_SNAKE_CASE_ = get_quantized_model_device_map( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , max_memory=__UpperCAmelCase , no_split_module_classes=__UpperCAmelCase , ) if offload_state_dict is None and device_map is not None and "disk" in device_map.values(): SCREAMING_SNAKE_CASE_ = True SCREAMING_SNAKE_CASE_ = any(x in list(device_map.values() ) for x in ['cpu', 'disk'] ) load_checkpoint_in_model( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , dtype=bnb_quantization_config.torch_dtype , offload_folder=__UpperCAmelCase , offload_state_dict=__UpperCAmelCase , keep_in_fpaa_modules=bnb_quantization_config.keep_in_fpaa_modules , offload_abit_bnb=load_in_abit and offload , ) return dispatch_model(__UpperCAmelCase , device_map=__UpperCAmelCase , offload_dir=__UpperCAmelCase ) def UpperCAmelCase_ ( __UpperCAmelCase : int , __UpperCAmelCase : Any , __UpperCAmelCase : Optional[Any]=None , __UpperCAmelCase : Dict=None , __UpperCAmelCase : Optional[int]=None ) -> Any: if device_map is None: if torch.cuda.is_available(): SCREAMING_SNAKE_CASE_ = {'': torch.cuda.current_device()} else: raise RuntimeError('No GPU found. A GPU is needed for quantization.' ) logger.info('The device_map was not initialized.' 'Setting device_map to `{\'\':torch.cuda.current_device()}`.' ) if isinstance(__UpperCAmelCase , __UpperCAmelCase ): if device_map not in ["auto", "balanced", "balanced_low_0", "sequential"]: raise ValueError( 'If passing a string for `device_map`, please choose \'auto\', \'balanced\', \'balanced_low_0\' or ' '\'sequential\'.' ) SCREAMING_SNAKE_CASE_ = {} special_dtypes.update( { name: bnb_quantization_config.torch_dtype for name, _ in model.named_parameters() if any(m in name for m in bnb_quantization_config.skip_modules ) } ) special_dtypes.update( { name: torch.floataa for name, _ in model.named_parameters() if any(m in name for m in bnb_quantization_config.keep_in_fpaa_modules ) } ) SCREAMING_SNAKE_CASE_ = {} SCREAMING_SNAKE_CASE_ = special_dtypes SCREAMING_SNAKE_CASE_ = no_split_module_classes SCREAMING_SNAKE_CASE_ = bnb_quantization_config.target_dtype # get max_memory for each device. if device_map != "sequential": SCREAMING_SNAKE_CASE_ = get_balanced_memory( __UpperCAmelCase , low_zero=(device_map == 'balanced_low_0') , max_memory=__UpperCAmelCase , **__UpperCAmelCase , ) SCREAMING_SNAKE_CASE_ = max_memory SCREAMING_SNAKE_CASE_ = infer_auto_device_map(__UpperCAmelCase , **__UpperCAmelCase ) if isinstance(__UpperCAmelCase , __UpperCAmelCase ): # check if don't have any quantized module on the cpu SCREAMING_SNAKE_CASE_ = bnb_quantization_config.skip_modules + bnb_quantization_config.keep_in_fpaa_modules SCREAMING_SNAKE_CASE_ = { key: device_map[key] for key in device_map.keys() if key not in modules_not_to_convert } for device in ["cpu", "disk"]: if device in device_map_without_some_modules.values(): if bnb_quantization_config.load_in_abit: raise ValueError( '\n Some modules are dispatched on the CPU or the disk. Make sure you have enough GPU RAM to fit\n the quantized model. If you want to dispatch the model on the CPU or the disk while keeping\n these modules in `torch_dtype`, you need to pass a custom `device_map` to\n `load_and_quantize_model`. Check\n https://huggingface.co/docs/accelerate/main/en/usage_guides/quantization#offload-modules-to-cpu-and-disk\n for more details.\n ' ) else: logger.info( 'Some modules are are offloaded to the CPU or the disk. Note that these modules will be converted to 8-bit' ) del device_map_without_some_modules return device_map def UpperCAmelCase_ ( __UpperCAmelCase : int , __UpperCAmelCase : Tuple , __UpperCAmelCase : Optional[Any]=None , __UpperCAmelCase : List[str]=None ) -> str: if modules_to_not_convert is None: SCREAMING_SNAKE_CASE_ = [] SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = _replace_with_bnb_layers( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) if not has_been_replaced: logger.warning( 'You are loading your model in 8bit or 4bit but no linear modules were found in your model.' ' this can happen for some architectures such as gpt2 that uses Conv1D instead of Linear layers.' ' Please double check your model architecture, or submit an issue on github if you think this is' ' a bug.' ) return model def UpperCAmelCase_ ( __UpperCAmelCase : Dict , __UpperCAmelCase : List[str] , __UpperCAmelCase : Any=None , __UpperCAmelCase : Any=None , ) -> str: SCREAMING_SNAKE_CASE_ = False for name, module in model.named_children(): if current_key_name is None: SCREAMING_SNAKE_CASE_ = [] current_key_name.append(__UpperCAmelCase ) if isinstance(__UpperCAmelCase , nn.Linear ) and name not in modules_to_not_convert: # Check if the current key is not in the `modules_to_not_convert` SCREAMING_SNAKE_CASE_ = '.'.join(__UpperCAmelCase ) SCREAMING_SNAKE_CASE_ = True for key in modules_to_not_convert: if ( (key in current_key_name_str) and (key + "." in current_key_name_str) ) or key == current_key_name_str: SCREAMING_SNAKE_CASE_ = False break if proceed: # Load bnb module with empty weight and replace ``nn.Linear` module if bnb_quantization_config.load_in_abit: SCREAMING_SNAKE_CASE_ = bnb.nn.LinearabitLt( module.in_features , module.out_features , module.bias is not None , has_fpaa_weights=__UpperCAmelCase , threshold=bnb_quantization_config.llm_inta_threshold , ) elif bnb_quantization_config.load_in_abit: SCREAMING_SNAKE_CASE_ = bnb.nn.Linearabit( module.in_features , module.out_features , module.bias is not None , bnb_quantization_config.bnb_abit_compute_dtype , compress_statistics=bnb_quantization_config.bnb_abit_use_double_quant , quant_type=bnb_quantization_config.bnb_abit_quant_type , ) else: raise ValueError('load_in_8bit and load_in_4bit can\'t be both False' ) SCREAMING_SNAKE_CASE_ = module.weight.data if module.bias is not None: SCREAMING_SNAKE_CASE_ = module.bias.data bnb_module.requires_grad_(__UpperCAmelCase ) setattr(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) SCREAMING_SNAKE_CASE_ = True if len(list(module.children() ) ) > 0: SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = _replace_with_bnb_layers( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) SCREAMING_SNAKE_CASE_ = has_been_replaced | _has_been_replaced # Remove the last key for recursion current_key_name.pop(-1 ) return model, has_been_replaced def UpperCAmelCase_ ( __UpperCAmelCase : List[str] ) -> List[str]: # Create a copy of the model with init_empty_weights(): SCREAMING_SNAKE_CASE_ = deepcopy(__UpperCAmelCase ) # this has 0 cost since it is done inside `init_empty_weights` context manager` SCREAMING_SNAKE_CASE_ = find_tied_parameters(__UpperCAmelCase ) # For compatibility with Accelerate < 0.18 if isinstance(__UpperCAmelCase , __UpperCAmelCase ): SCREAMING_SNAKE_CASE_ = sum(list(tied_params.values() ) , [] ) + list(tied_params.keys() ) else: SCREAMING_SNAKE_CASE_ = sum(__UpperCAmelCase , [] ) SCREAMING_SNAKE_CASE_ = len(__UpperCAmelCase ) > 0 # Check if it is a base model SCREAMING_SNAKE_CASE_ = False if hasattr(__UpperCAmelCase , 'base_model_prefix' ): SCREAMING_SNAKE_CASE_ = not hasattr(__UpperCAmelCase , model.base_model_prefix ) # Ignore this for base models (BertModel, GPT2Model, etc.) if (not has_tied_params) and is_base_model: return [] # otherwise they have an attached head SCREAMING_SNAKE_CASE_ = list(model.named_children() ) SCREAMING_SNAKE_CASE_ = [list_modules[-1][0]] # add last module together with tied weights SCREAMING_SNAKE_CASE_ = set(__UpperCAmelCase ) - set(__UpperCAmelCase ) SCREAMING_SNAKE_CASE_ = list(set(__UpperCAmelCase ) ) + list(__UpperCAmelCase ) # remove ".weight" from the keys SCREAMING_SNAKE_CASE_ = ['.weight', '.bias'] SCREAMING_SNAKE_CASE_ = [] for name in list_untouched: for name_to_remove in names_to_remove: if name_to_remove in name: SCREAMING_SNAKE_CASE_ = name.replace(__UpperCAmelCase , '' ) filtered_module_names.append(__UpperCAmelCase ) return filtered_module_names def UpperCAmelCase_ ( __UpperCAmelCase : Optional[int] ) -> Optional[Any]: for m in model.modules(): if isinstance(__UpperCAmelCase , bnb.nn.Linearabit ): return True return False def UpperCAmelCase_ ( __UpperCAmelCase : nn.Module ) -> List[str]: return next(parameter.parameters() ).device def UpperCAmelCase_ ( __UpperCAmelCase : List[Any] , __UpperCAmelCase : List[Any] , __UpperCAmelCase : Tuple , __UpperCAmelCase : Union[str, Any] , __UpperCAmelCase : Optional[Any] , __UpperCAmelCase : Dict , __UpperCAmelCase : List[Any] ) -> Any: # if it is not quantized, we quantize and offload the quantized weights and the SCB stats if fpaa_statistics is None: set_module_tensor_to_device(__UpperCAmelCase , __UpperCAmelCase , 0 , dtype=__UpperCAmelCase , value=__UpperCAmelCase ) SCREAMING_SNAKE_CASE_ = param_name SCREAMING_SNAKE_CASE_ = model if "." in tensor_name: SCREAMING_SNAKE_CASE_ = tensor_name.split('.' ) for split in splits[:-1]: SCREAMING_SNAKE_CASE_ = getattr(__UpperCAmelCase , __UpperCAmelCase ) if new_module is None: raise ValueError(f"{module} has no attribute {split}." ) SCREAMING_SNAKE_CASE_ = new_module SCREAMING_SNAKE_CASE_ = splits[-1] # offload weights SCREAMING_SNAKE_CASE_ = False offload_weight(module._parameters[tensor_name] , __UpperCAmelCase , __UpperCAmelCase , index=__UpperCAmelCase ) if hasattr(module._parameters[tensor_name] , 'SCB' ): offload_weight( module._parameters[tensor_name].SCB , param_name.replace('weight' , 'SCB' ) , __UpperCAmelCase , index=__UpperCAmelCase , ) else: offload_weight(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , index=__UpperCAmelCase ) offload_weight(__UpperCAmelCase , param_name.replace('weight' , 'SCB' ) , __UpperCAmelCase , index=__UpperCAmelCase ) set_module_tensor_to_device(__UpperCAmelCase , __UpperCAmelCase , 'meta' , dtype=__UpperCAmelCase , value=torch.empty(*param.size() ) )
31
from __future__ import annotations from collections.abc import Iterator class lowerCamelCase_ : '''simple docstring''' def __init__( self : Union[str, Any] , _lowerCAmelCase : int ): SCREAMING_SNAKE_CASE_ = value SCREAMING_SNAKE_CASE_ = None SCREAMING_SNAKE_CASE_ = None class lowerCamelCase_ : '''simple docstring''' def __init__( self : int , _lowerCAmelCase : Node ): SCREAMING_SNAKE_CASE_ = tree def lowerCAmelCase_ ( self : Union[str, Any] , _lowerCAmelCase : Node | None ): if node is None: return 0 return node.value + ( self.depth_first_search(node.left ) + self.depth_first_search(node.right ) ) def __iter__( self : Dict ): yield self.depth_first_search(self.tree ) if __name__ == "__main__": import doctest doctest.testmod()
31
1
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_tokenizers_available, is_torch_available, ) lowerCamelCase__ : Dict = { 'configuration_longformer': [ 'LONGFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP', 'LongformerConfig', 'LongformerOnnxConfig', ], 'tokenization_longformer': ['LongformerTokenizer'], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase__ : List[Any] = ['LongformerTokenizerFast'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase__ : Any = [ 'LONGFORMER_PRETRAINED_MODEL_ARCHIVE_LIST', 'LongformerForMaskedLM', 'LongformerForMultipleChoice', 'LongformerForQuestionAnswering', 'LongformerForSequenceClassification', 'LongformerForTokenClassification', 'LongformerModel', 'LongformerPreTrainedModel', 'LongformerSelfAttention', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase__ : int = [ 'TF_LONGFORMER_PRETRAINED_MODEL_ARCHIVE_LIST', 'TFLongformerForMaskedLM', 'TFLongformerForMultipleChoice', 'TFLongformerForQuestionAnswering', 'TFLongformerForSequenceClassification', 'TFLongformerForTokenClassification', 'TFLongformerModel', 'TFLongformerPreTrainedModel', 'TFLongformerSelfAttention', ] if TYPE_CHECKING: from .configuration_longformer import ( LONGFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, LongformerConfig, LongformerOnnxConfig, ) from .tokenization_longformer import LongformerTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_longformer_fast import LongformerTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_longformer import ( LONGFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, LongformerForMaskedLM, LongformerForMultipleChoice, LongformerForQuestionAnswering, LongformerForSequenceClassification, LongformerForTokenClassification, LongformerModel, LongformerPreTrainedModel, LongformerSelfAttention, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_longformer import ( TF_LONGFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, TFLongformerForMaskedLM, TFLongformerForMultipleChoice, TFLongformerForQuestionAnswering, TFLongformerForSequenceClassification, TFLongformerForTokenClassification, TFLongformerModel, TFLongformerPreTrainedModel, TFLongformerSelfAttention, ) else: import sys lowerCamelCase__ : Union[str, Any] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
31
def UpperCAmelCase_ ( __UpperCAmelCase : list , __UpperCAmelCase : int , __UpperCAmelCase : int = 0 , __UpperCAmelCase : int = 0 ) -> int: SCREAMING_SNAKE_CASE_ = right or len(__UpperCAmelCase ) - 1 if left > right: return -1 elif list_data[left] == key: return left elif list_data[right] == key: return right else: return search(__UpperCAmelCase , __UpperCAmelCase , left + 1 , right - 1 ) if __name__ == "__main__": import doctest doctest.testmod()
31
1
class lowerCamelCase_ : # Public class to implement a graph '''simple docstring''' def __init__( self : Union[str, Any] , _lowerCAmelCase : int , _lowerCAmelCase : int , _lowerCAmelCase : list[list[bool]] ): SCREAMING_SNAKE_CASE_ = row SCREAMING_SNAKE_CASE_ = col SCREAMING_SNAKE_CASE_ = graph def lowerCAmelCase_ ( self : List[str] , _lowerCAmelCase : int , _lowerCAmelCase : int , _lowerCAmelCase : list[list[bool]] ): return ( 0 <= i < self.ROW and 0 <= j < self.COL and not visited[i][j] and self.graph[i][j] ) def lowerCAmelCase_ ( self : List[str] , _lowerCAmelCase : int , _lowerCAmelCase : int , _lowerCAmelCase : list[list[bool]] ): # Checking all 8 elements surrounding nth element SCREAMING_SNAKE_CASE_ = [-1, -1, -1, 0, 0, 1, 1, 1] # Coordinate order SCREAMING_SNAKE_CASE_ = [-1, 0, 1, -1, 1, -1, 0, 1] SCREAMING_SNAKE_CASE_ = True # Make those cells visited for k in range(8 ): if self.is_safe(i + row_nbr[k] , j + col_nbr[k] , _lowerCAmelCase ): self.diffs(i + row_nbr[k] , j + col_nbr[k] , _lowerCAmelCase ) def lowerCAmelCase_ ( self : str ): # And finally, count all islands. SCREAMING_SNAKE_CASE_ = [[False for j in range(self.COL )] for i in range(self.ROW )] SCREAMING_SNAKE_CASE_ = 0 for i in range(self.ROW ): for j in range(self.COL ): if visited[i][j] is False and self.graph[i][j] == 1: self.diffs(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) count += 1 return count
31
import os from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils import AddedToken from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_fnet import FNetTokenizer else: lowerCamelCase__ : Optional[Any] = None lowerCamelCase__ : List[str] = logging.get_logger(__name__) lowerCamelCase__ : List[str] = {'vocab_file': 'spiece.model', 'tokenizer_file': 'tokenizer.json'} lowerCamelCase__ : List[str] = { 'vocab_file': { 'google/fnet-base': 'https://huggingface.co/google/fnet-base/resolve/main/spiece.model', 'google/fnet-large': 'https://huggingface.co/google/fnet-large/resolve/main/spiece.model', }, 'tokenizer_file': { 'google/fnet-base': 'https://huggingface.co/google/fnet-base/resolve/main/tokenizer.json', 'google/fnet-large': 'https://huggingface.co/google/fnet-large/resolve/main/tokenizer.json', }, } lowerCamelCase__ : Optional[Any] = { 'google/fnet-base': 512, 'google/fnet-large': 512, } lowerCamelCase__ : List[Any] = '▁' class lowerCamelCase_ ( _SCREAMING_SNAKE_CASE ): '''simple docstring''' lowercase_ = VOCAB_FILES_NAMES lowercase_ = PRETRAINED_VOCAB_FILES_MAP lowercase_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowercase_ = ["input_ids", "token_type_ids"] lowercase_ = FNetTokenizer def __init__( self : List[Any] , _lowerCAmelCase : Dict=None , _lowerCAmelCase : Dict=None , _lowerCAmelCase : List[str]=False , _lowerCAmelCase : Optional[Any]=True , _lowerCAmelCase : Tuple=True , _lowerCAmelCase : List[Any]="<unk>" , _lowerCAmelCase : Optional[Any]="[SEP]" , _lowerCAmelCase : Optional[Any]="<pad>" , _lowerCAmelCase : Optional[int]="[CLS]" , _lowerCAmelCase : Optional[Any]="[MASK]" , **_lowerCAmelCase : Any , ): # Mask token behave like a normal word, i.e. include the space before it and # is included in the raw text, there should be a match in a non-normalized sentence. SCREAMING_SNAKE_CASE_ = ( AddedToken(_lowerCAmelCase , lstrip=_lowerCAmelCase , rstrip=_lowerCAmelCase , normalized=_lowerCAmelCase ) if isinstance(_lowerCAmelCase , _lowerCAmelCase ) else mask_token ) super().__init__( _lowerCAmelCase , tokenizer_file=_lowerCAmelCase , do_lower_case=_lowerCAmelCase , remove_space=_lowerCAmelCase , keep_accents=_lowerCAmelCase , unk_token=_lowerCAmelCase , sep_token=_lowerCAmelCase , pad_token=_lowerCAmelCase , cls_token=_lowerCAmelCase , mask_token=_lowerCAmelCase , **_lowerCAmelCase , ) SCREAMING_SNAKE_CASE_ = do_lower_case SCREAMING_SNAKE_CASE_ = remove_space SCREAMING_SNAKE_CASE_ = keep_accents SCREAMING_SNAKE_CASE_ = vocab_file SCREAMING_SNAKE_CASE_ = False if not self.vocab_file else True def lowerCAmelCase_ ( self : Any , _lowerCAmelCase : List[int] , _lowerCAmelCase : Optional[List[int]] = None ): SCREAMING_SNAKE_CASE_ = [self.sep_token_id] SCREAMING_SNAKE_CASE_ = [self.cls_token_id] if token_ids_a is None: return cls + token_ids_a + sep return cls + token_ids_a + sep + token_ids_a + sep def lowerCAmelCase_ ( self : Optional[int] , _lowerCAmelCase : List[int] , _lowerCAmelCase : Optional[List[int]] = None ): SCREAMING_SNAKE_CASE_ = [self.sep_token_id] SCREAMING_SNAKE_CASE_ = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def lowerCAmelCase_ ( self : Optional[Any] , _lowerCAmelCase : str , _lowerCAmelCase : Optional[str] = None ): if not os.path.isdir(_lowerCAmelCase ): logger.error(F"Vocabulary path ({save_directory}) should be a directory" ) return SCREAMING_SNAKE_CASE_ = os.path.join( _lowerCAmelCase , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(_lowerCAmelCase ): copyfile(self.vocab_file , _lowerCAmelCase ) return (out_vocab_file,)
31
1
import gc import unittest import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTextModelWithProjection, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, DDPMScheduler, PriorTransformer, StableUnCLIPPipeline, UNetaDConditionModel, ) from diffusers.pipelines.stable_diffusion.stable_unclip_image_normalizer import StableUnCLIPImageNormalizer from diffusers.utils.testing_utils import enable_full_determinism, load_numpy, require_torch_gpu, slow, torch_device from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_IMAGE_PARAMS, TEXT_TO_IMAGE_PARAMS from ..test_pipelines_common import ( PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin, assert_mean_pixel_difference, ) enable_full_determinism() class lowerCamelCase_ ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' lowercase_ = StableUnCLIPPipeline lowercase_ = TEXT_TO_IMAGE_PARAMS lowercase_ = TEXT_TO_IMAGE_BATCH_PARAMS lowercase_ = TEXT_TO_IMAGE_IMAGE_PARAMS lowercase_ = TEXT_TO_IMAGE_IMAGE_PARAMS # TODO(will) Expected attn_bias.stride(1) == 0 to be true, but got false lowercase_ = False def lowerCAmelCase_ ( self : str ): SCREAMING_SNAKE_CASE_ = 32 SCREAMING_SNAKE_CASE_ = embedder_hidden_size # prior components torch.manual_seed(0 ) SCREAMING_SNAKE_CASE_ = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip' ) torch.manual_seed(0 ) SCREAMING_SNAKE_CASE_ = CLIPTextModelWithProjection( CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=_lowerCAmelCase , projection_dim=_lowerCAmelCase , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_000 , ) ) torch.manual_seed(0 ) SCREAMING_SNAKE_CASE_ = PriorTransformer( num_attention_heads=2 , attention_head_dim=12 , embedding_dim=_lowerCAmelCase , num_layers=1 , ) torch.manual_seed(0 ) SCREAMING_SNAKE_CASE_ = DDPMScheduler( variance_type='fixed_small_log' , prediction_type='sample' , num_train_timesteps=1_000 , clip_sample=_lowerCAmelCase , clip_sample_range=5.0 , beta_schedule='squaredcos_cap_v2' , ) # regular denoising components torch.manual_seed(0 ) SCREAMING_SNAKE_CASE_ = StableUnCLIPImageNormalizer(embedding_dim=_lowerCAmelCase ) SCREAMING_SNAKE_CASE_ = DDPMScheduler(beta_schedule='squaredcos_cap_v2' ) torch.manual_seed(0 ) SCREAMING_SNAKE_CASE_ = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip' ) torch.manual_seed(0 ) SCREAMING_SNAKE_CASE_ = CLIPTextModel( CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=_lowerCAmelCase , projection_dim=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_000 , ) ) torch.manual_seed(0 ) SCREAMING_SNAKE_CASE_ = UNetaDConditionModel( sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=('CrossAttnDownBlock2D', 'DownBlock2D') , up_block_types=('UpBlock2D', 'CrossAttnUpBlock2D') , block_out_channels=(32, 64) , attention_head_dim=(2, 4) , class_embed_type='projection' , projection_class_embeddings_input_dim=embedder_projection_dim * 2 , cross_attention_dim=_lowerCAmelCase , layers_per_block=1 , upcast_attention=_lowerCAmelCase , use_linear_projection=_lowerCAmelCase , ) torch.manual_seed(0 ) SCREAMING_SNAKE_CASE_ = DDIMScheduler( beta_schedule='scaled_linear' , beta_start=0.0_0085 , beta_end=0.012 , prediction_type='v_prediction' , set_alpha_to_one=_lowerCAmelCase , steps_offset=1 , ) torch.manual_seed(0 ) SCREAMING_SNAKE_CASE_ = AutoencoderKL() SCREAMING_SNAKE_CASE_ = { # prior components 'prior_tokenizer': prior_tokenizer, 'prior_text_encoder': prior_text_encoder, 'prior': prior, 'prior_scheduler': prior_scheduler, # image noising components 'image_normalizer': image_normalizer, 'image_noising_scheduler': image_noising_scheduler, # regular denoising components 'tokenizer': tokenizer, 'text_encoder': text_encoder, 'unet': unet, 'scheduler': scheduler, 'vae': vae, } return components def lowerCAmelCase_ ( self : str , _lowerCAmelCase : Tuple , _lowerCAmelCase : List[Any]=0 ): if str(_lowerCAmelCase ).startswith('mps' ): SCREAMING_SNAKE_CASE_ = torch.manual_seed(_lowerCAmelCase ) else: SCREAMING_SNAKE_CASE_ = torch.Generator(device=_lowerCAmelCase ).manual_seed(_lowerCAmelCase ) SCREAMING_SNAKE_CASE_ = { 'prompt': 'A painting of a squirrel eating a burger', 'generator': generator, 'num_inference_steps': 2, 'prior_num_inference_steps': 2, 'output_type': 'numpy', } return inputs def lowerCAmelCase_ ( self : Optional[int] ): SCREAMING_SNAKE_CASE_ = torch_device == 'cpu' self._test_attention_slicing_forward_pass(test_max_difference=_lowerCAmelCase ) def lowerCAmelCase_ ( self : Tuple ): SCREAMING_SNAKE_CASE_ = torch_device in ['cpu', 'mps'] self._test_inference_batch_single_identical(test_max_difference=_lowerCAmelCase ) @slow @require_torch_gpu class lowerCamelCase_ ( unittest.TestCase ): '''simple docstring''' def lowerCAmelCase_ ( self : int ): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def lowerCAmelCase_ ( self : int ): SCREAMING_SNAKE_CASE_ = load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/stable_unclip/stable_unclip_2_1_l_anime_turtle_fp16.npy' ) SCREAMING_SNAKE_CASE_ = StableUnCLIPPipeline.from_pretrained('fusing/stable-unclip-2-1-l' , torch_dtype=torch.floataa ) pipe.to(_lowerCAmelCase ) pipe.set_progress_bar_config(disable=_lowerCAmelCase ) # stable unclip will oom when integration tests are run on a V100, # so turn on memory savings pipe.enable_attention_slicing() pipe.enable_sequential_cpu_offload() SCREAMING_SNAKE_CASE_ = torch.Generator(device='cpu' ).manual_seed(0 ) SCREAMING_SNAKE_CASE_ = pipe('anime turle' , generator=_lowerCAmelCase , output_type='np' ) SCREAMING_SNAKE_CASE_ = output.images[0] assert image.shape == (768, 768, 3) assert_mean_pixel_difference(_lowerCAmelCase , _lowerCAmelCase ) def lowerCAmelCase_ ( self : Any ): torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() torch.cuda.reset_peak_memory_stats() SCREAMING_SNAKE_CASE_ = StableUnCLIPPipeline.from_pretrained('fusing/stable-unclip-2-1-l' , torch_dtype=torch.floataa ) SCREAMING_SNAKE_CASE_ = pipe.to(_lowerCAmelCase ) pipe.set_progress_bar_config(disable=_lowerCAmelCase ) pipe.enable_attention_slicing() pipe.enable_sequential_cpu_offload() SCREAMING_SNAKE_CASE_ = pipe( 'anime turtle' , prior_num_inference_steps=2 , num_inference_steps=2 , output_type='np' , ) SCREAMING_SNAKE_CASE_ = torch.cuda.max_memory_allocated() # make sure that less than 7 GB is allocated assert mem_bytes < 7 * 10**9
31
from __future__ import annotations from collections.abc import Generator def UpperCAmelCase_ ( ) -> Generator[int, None, None]: SCREAMING_SNAKE_CASE_ = {} SCREAMING_SNAKE_CASE_ = 2 while True: SCREAMING_SNAKE_CASE_ = factor_map.pop(__UpperCAmelCase , __UpperCAmelCase ) if factor: SCREAMING_SNAKE_CASE_ = factor + prime while x in factor_map: x += factor SCREAMING_SNAKE_CASE_ = factor else: SCREAMING_SNAKE_CASE_ = prime yield prime prime += 1 def UpperCAmelCase_ ( __UpperCAmelCase : float = 1E10 ) -> int: SCREAMING_SNAKE_CASE_ = sieve() SCREAMING_SNAKE_CASE_ = 1 while True: SCREAMING_SNAKE_CASE_ = next(__UpperCAmelCase ) if (2 * prime * n) > limit: return n # Ignore the next prime as the reminder will be 2. next(__UpperCAmelCase ) n += 2 if __name__ == "__main__": print(solution())
31
1
def UpperCAmelCase_ ( __UpperCAmelCase : Tuple , __UpperCAmelCase : List[Any] , __UpperCAmelCase : List[Any] , __UpperCAmelCase : Optional[int] ) -> str: if height >= 1: move_tower(height - 1 , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) move_disk(__UpperCAmelCase , __UpperCAmelCase ) move_tower(height - 1 , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) def UpperCAmelCase_ ( __UpperCAmelCase : str , __UpperCAmelCase : Optional[int] ) -> Optional[Any]: print('moving disk from' , __UpperCAmelCase , 'to' , __UpperCAmelCase ) def UpperCAmelCase_ ( ) -> int: SCREAMING_SNAKE_CASE_ = int(input('Height of hanoi: ' ).strip() ) move_tower(__UpperCAmelCase , 'A' , 'B' , 'C' ) if __name__ == "__main__": main()
31
import numpy as np import torch from torch.utils.data import DataLoader from accelerate.utils.dataclasses import DistributedType class lowerCamelCase_ : '''simple docstring''' def __init__( self : Any , _lowerCAmelCase : Optional[int]=2 , _lowerCAmelCase : Any=3 , _lowerCAmelCase : Tuple=64 , _lowerCAmelCase : List[str]=None ): SCREAMING_SNAKE_CASE_ = np.random.default_rng(_lowerCAmelCase ) SCREAMING_SNAKE_CASE_ = length SCREAMING_SNAKE_CASE_ = rng.normal(size=(length,) ).astype(np.floataa ) SCREAMING_SNAKE_CASE_ = a * self.x + b + rng.normal(scale=0.1 , size=(length,) ).astype(np.floataa ) def __len__( self : Optional[int] ): return self.length def __getitem__( self : str , _lowerCAmelCase : Union[str, Any] ): return {"x": self.x[i], "y": self.y[i]} class lowerCamelCase_ ( torch.nn.Module ): '''simple docstring''' def __init__( self : Tuple , _lowerCAmelCase : Dict=0 , _lowerCAmelCase : List[str]=0 , _lowerCAmelCase : str=False ): super().__init__() SCREAMING_SNAKE_CASE_ = torch.nn.Parameter(torch.tensor([2, 3] ).float() ) SCREAMING_SNAKE_CASE_ = torch.nn.Parameter(torch.tensor([2, 3] ).float() ) SCREAMING_SNAKE_CASE_ = True def lowerCAmelCase_ ( self : Dict , _lowerCAmelCase : Union[str, Any]=None ): if self.first_batch: print(F"Model dtype: {self.a.dtype}, {self.b.dtype}. Input dtype: {x.dtype}" ) SCREAMING_SNAKE_CASE_ = False return x * self.a[0] + self.b[0] class lowerCamelCase_ ( torch.nn.Module ): '''simple docstring''' def __init__( self : Optional[int] , _lowerCAmelCase : Any=0 , _lowerCAmelCase : Any=0 , _lowerCAmelCase : Optional[Any]=False ): super().__init__() SCREAMING_SNAKE_CASE_ = torch.nn.Parameter(torch.tensor(_lowerCAmelCase ).float() ) SCREAMING_SNAKE_CASE_ = torch.nn.Parameter(torch.tensor(_lowerCAmelCase ).float() ) SCREAMING_SNAKE_CASE_ = True def lowerCAmelCase_ ( self : Optional[Any] , _lowerCAmelCase : Optional[int]=None ): if self.first_batch: print(F"Model dtype: {self.a.dtype}, {self.b.dtype}. Input dtype: {x.dtype}" ) SCREAMING_SNAKE_CASE_ = False return x * self.a + self.b def UpperCAmelCase_ ( __UpperCAmelCase : Dict , __UpperCAmelCase : int = 16 ) -> Union[str, Any]: from datasets import load_dataset from transformers import AutoTokenizer SCREAMING_SNAKE_CASE_ = AutoTokenizer.from_pretrained('bert-base-cased' ) SCREAMING_SNAKE_CASE_ = {'train': 'tests/test_samples/MRPC/train.csv', 'validation': 'tests/test_samples/MRPC/dev.csv'} SCREAMING_SNAKE_CASE_ = load_dataset('csv' , data_files=__UpperCAmelCase ) SCREAMING_SNAKE_CASE_ = datasets['train'].unique('label' ) SCREAMING_SNAKE_CASE_ = {v: i for i, v in enumerate(__UpperCAmelCase )} def tokenize_function(__UpperCAmelCase : Optional[int] ): # max_length=None => use the model max length (it's actually the default) SCREAMING_SNAKE_CASE_ = tokenizer( examples['sentence1'] , examples['sentence2'] , truncation=__UpperCAmelCase , max_length=__UpperCAmelCase , padding='max_length' ) if "label" in examples: SCREAMING_SNAKE_CASE_ = [label_to_id[l] for l in examples['label']] return outputs # Apply the method we just defined to all the examples in all the splits of the dataset SCREAMING_SNAKE_CASE_ = datasets.map( __UpperCAmelCase , batched=__UpperCAmelCase , remove_columns=['sentence1', 'sentence2', 'label'] , ) def collate_fn(__UpperCAmelCase : Dict ): # On TPU it's best to pad everything to the same length or training will be very slow. if accelerator.distributed_type == DistributedType.TPU: return tokenizer.pad(__UpperCAmelCase , padding='max_length' , max_length=1_28 , return_tensors='pt' ) return tokenizer.pad(__UpperCAmelCase , padding='longest' , return_tensors='pt' ) # Instantiate dataloaders. SCREAMING_SNAKE_CASE_ = DataLoader(tokenized_datasets['train'] , shuffle=__UpperCAmelCase , collate_fn=__UpperCAmelCase , batch_size=2 ) SCREAMING_SNAKE_CASE_ = DataLoader(tokenized_datasets['validation'] , shuffle=__UpperCAmelCase , collate_fn=__UpperCAmelCase , batch_size=1 ) return train_dataloader, eval_dataloader
31
1
def UpperCAmelCase_ ( __UpperCAmelCase : dict ) -> set: SCREAMING_SNAKE_CASE_ = set() # edges = list of graph's edges SCREAMING_SNAKE_CASE_ = get_edges(__UpperCAmelCase ) # While there are still elements in edges list, take an arbitrary edge # (from_node, to_node) and add his extremity to chosen_vertices and then # remove all arcs adjacent to the from_node and to_node while edges: SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = edges.pop() chosen_vertices.add(__UpperCAmelCase ) chosen_vertices.add(__UpperCAmelCase ) for edge in edges.copy(): if from_node in edge or to_node in edge: edges.discard(__UpperCAmelCase ) return chosen_vertices def UpperCAmelCase_ ( __UpperCAmelCase : dict ) -> set: SCREAMING_SNAKE_CASE_ = set() for from_node, to_nodes in graph.items(): for to_node in to_nodes: edges.add((from_node, to_node) ) return edges if __name__ == "__main__": import doctest doctest.testmod() # graph = {0: [1, 3], 1: [0, 3], 2: [0, 3, 4], 3: [0, 1, 2], 4: [2, 3]} # print(f"Matching vertex cover:\n{matching_min_vertex_cover(graph)}")
31
import warnings from ...utils import logging from .image_processing_layoutlmva import LayoutLMvaImageProcessor lowerCamelCase__ : Union[str, Any] = logging.get_logger(__name__) class lowerCamelCase_ ( _SCREAMING_SNAKE_CASE ): '''simple docstring''' def __init__( self : Dict , *_lowerCAmelCase : Optional[Any] , **_lowerCAmelCase : Any ): warnings.warn( 'The class LayoutLMv2FeatureExtractor is deprecated and will be removed in version 5 of Transformers.' ' Please use LayoutLMv2ImageProcessor instead.' , _lowerCAmelCase , ) super().__init__(*_lowerCAmelCase , **_lowerCAmelCase )
31
1
from pickle import UnpicklingError import jax import jax.numpy as jnp import numpy as np from flax.serialization import from_bytes from flax.traverse_util import flatten_dict from ..utils import logging lowerCamelCase__ : List[str] = logging.get_logger(__name__) def UpperCAmelCase_ ( __UpperCAmelCase : Optional[Any] , __UpperCAmelCase : Union[str, Any] ) -> Union[str, Any]: try: with open(__UpperCAmelCase , 'rb' ) as flax_state_f: SCREAMING_SNAKE_CASE_ = from_bytes(__UpperCAmelCase , flax_state_f.read() ) except UnpicklingError as e: try: with open(__UpperCAmelCase ) as f: if f.read().startswith('version' ): raise OSError( 'You seem to have cloned a repository without having git-lfs installed. Please' ' install git-lfs and run `git lfs install` followed by `git lfs pull` in the' ' folder you cloned.' ) else: raise ValueError from e except (UnicodeDecodeError, ValueError): raise EnvironmentError(f"Unable to convert {model_file} to Flax deserializable object. " ) return load_flax_weights_in_pytorch_model(__UpperCAmelCase , __UpperCAmelCase ) def UpperCAmelCase_ ( __UpperCAmelCase : str , __UpperCAmelCase : Optional[int] ) -> Dict: try: import torch # noqa: F401 except ImportError: logger.error( 'Loading Flax weights in PyTorch requires both PyTorch and Flax to be installed. Please see' ' https://pytorch.org/ and https://flax.readthedocs.io/en/latest/installation.html for installation' ' instructions.' ) raise # check if we have bf16 weights SCREAMING_SNAKE_CASE_ = flatten_dict(jax.tree_util.tree_map(lambda __UpperCAmelCase : x.dtype == jnp.bfloataa , __UpperCAmelCase ) ).values() if any(__UpperCAmelCase ): # convert all weights to fp32 if they are bf16 since torch.from_numpy can-not handle bf16 # and bf16 is not fully supported in PT yet. logger.warning( 'Found ``bfloat16`` weights in Flax model. Casting all ``bfloat16`` weights to ``float32`` ' 'before loading those in PyTorch model.' ) SCREAMING_SNAKE_CASE_ = jax.tree_util.tree_map( lambda __UpperCAmelCase : params.astype(np.floataa ) if params.dtype == jnp.bfloataa else params , __UpperCAmelCase ) SCREAMING_SNAKE_CASE_ = '' SCREAMING_SNAKE_CASE_ = flatten_dict(__UpperCAmelCase , sep='.' ) SCREAMING_SNAKE_CASE_ = pt_model.state_dict() # keep track of unexpected & missing keys SCREAMING_SNAKE_CASE_ = [] SCREAMING_SNAKE_CASE_ = set(pt_model_dict.keys() ) for flax_key_tuple, flax_tensor in flax_state_dict.items(): SCREAMING_SNAKE_CASE_ = flax_key_tuple.split('.' ) if flax_key_tuple_array[-1] == "kernel" and flax_tensor.ndim == 4: SCREAMING_SNAKE_CASE_ = flax_key_tuple_array[:-1] + ['weight'] SCREAMING_SNAKE_CASE_ = jnp.transpose(__UpperCAmelCase , (3, 2, 0, 1) ) elif flax_key_tuple_array[-1] == "kernel": SCREAMING_SNAKE_CASE_ = flax_key_tuple_array[:-1] + ['weight'] SCREAMING_SNAKE_CASE_ = flax_tensor.T elif flax_key_tuple_array[-1] == "scale": SCREAMING_SNAKE_CASE_ = flax_key_tuple_array[:-1] + ['weight'] if "time_embedding" not in flax_key_tuple_array: for i, flax_key_tuple_string in enumerate(__UpperCAmelCase ): SCREAMING_SNAKE_CASE_ = ( flax_key_tuple_string.replace('_0' , '.0' ) .replace('_1' , '.1' ) .replace('_2' , '.2' ) .replace('_3' , '.3' ) .replace('_4' , '.4' ) .replace('_5' , '.5' ) .replace('_6' , '.6' ) .replace('_7' , '.7' ) .replace('_8' , '.8' ) .replace('_9' , '.9' ) ) SCREAMING_SNAKE_CASE_ = '.'.join(__UpperCAmelCase ) if flax_key in pt_model_dict: if flax_tensor.shape != pt_model_dict[flax_key].shape: raise ValueError( f"Flax checkpoint seems to be incorrect. Weight {flax_key_tuple} was expected " f"to be of shape {pt_model_dict[flax_key].shape}, but is {flax_tensor.shape}." ) else: # add weight to pytorch dict SCREAMING_SNAKE_CASE_ = np.asarray(__UpperCAmelCase ) if not isinstance(__UpperCAmelCase , np.ndarray ) else flax_tensor SCREAMING_SNAKE_CASE_ = torch.from_numpy(__UpperCAmelCase ) # remove from missing keys missing_keys.remove(__UpperCAmelCase ) else: # weight is not expected by PyTorch model unexpected_keys.append(__UpperCAmelCase ) pt_model.load_state_dict(__UpperCAmelCase ) # re-transform missing_keys to list SCREAMING_SNAKE_CASE_ = list(__UpperCAmelCase ) if len(__UpperCAmelCase ) > 0: logger.warning( 'Some weights of the Flax model were not used when initializing the PyTorch model' f" {pt_model.__class__.__name__}: {unexpected_keys}\n- This IS expected if you are initializing" f" {pt_model.__class__.__name__} from a Flax model trained on another task or with another architecture" ' (e.g. initializing a BertForSequenceClassification model from a FlaxBertForPreTraining model).\n- This' f" IS NOT expected if you are initializing {pt_model.__class__.__name__} from a Flax model that you expect" ' to be exactly identical (e.g. initializing a BertForSequenceClassification model from a' ' FlaxBertForSequenceClassification model).' ) if len(__UpperCAmelCase ) > 0: logger.warning( f"Some weights of {pt_model.__class__.__name__} were not initialized from the Flax model and are newly" f" initialized: {missing_keys}\nYou should probably TRAIN this model on a down-stream task to be able to" ' use it for predictions and inference.' ) return pt_model
31
def UpperCAmelCase_ ( ) -> list[list[int]]: return [list(range(10_00 - i , -10_00 - i , -1 ) ) for i in range(10_00 )] lowerCamelCase__ : List[Any] = generate_large_matrix() lowerCamelCase__ : List[Any] = ( [[4, 3, 2, -1], [3, 2, 1, -1], [1, 1, -1, -2], [-1, -1, -2, -3]], [[3, 2], [1, 0]], [[7, 7, 6]], [[7, 7, 6], [-1, -2, -3]], grid, ) def UpperCAmelCase_ ( __UpperCAmelCase : list[list[int]] ) -> None: assert all(row == sorted(__UpperCAmelCase , reverse=__UpperCAmelCase ) for row in grid ) assert all(list(__UpperCAmelCase ) == sorted(__UpperCAmelCase , reverse=__UpperCAmelCase ) for col in zip(*__UpperCAmelCase ) ) def UpperCAmelCase_ ( __UpperCAmelCase : list[int] ) -> int: SCREAMING_SNAKE_CASE_ = 0 SCREAMING_SNAKE_CASE_ = len(__UpperCAmelCase ) - 1 # Edge cases such as no values or all numbers are negative. if not array or array[0] < 0: return 0 while right + 1 > left: SCREAMING_SNAKE_CASE_ = (left + right) // 2 SCREAMING_SNAKE_CASE_ = array[mid] # Num must be negative and the index must be greater than or equal to 0. if num < 0 and array[mid - 1] >= 0: return mid if num >= 0: SCREAMING_SNAKE_CASE_ = mid + 1 else: SCREAMING_SNAKE_CASE_ = mid - 1 # No negative numbers so return the last index of the array + 1 which is the length. return len(__UpperCAmelCase ) def UpperCAmelCase_ ( __UpperCAmelCase : list[list[int]] ) -> int: SCREAMING_SNAKE_CASE_ = 0 SCREAMING_SNAKE_CASE_ = len(grid[0] ) for i in range(len(__UpperCAmelCase ) ): SCREAMING_SNAKE_CASE_ = find_negative_index(grid[i][:bound] ) total += bound return (len(__UpperCAmelCase ) * len(grid[0] )) - total def UpperCAmelCase_ ( __UpperCAmelCase : list[list[int]] ) -> int: return len([number for row in grid for number in row if number < 0] ) def UpperCAmelCase_ ( __UpperCAmelCase : list[list[int]] ) -> int: SCREAMING_SNAKE_CASE_ = 0 for row in grid: for i, number in enumerate(__UpperCAmelCase ): if number < 0: total += len(__UpperCAmelCase ) - i break return total def UpperCAmelCase_ ( ) -> None: from timeit import timeit print('Running benchmarks' ) SCREAMING_SNAKE_CASE_ = ( 'from __main__ import count_negatives_binary_search, ' 'count_negatives_brute_force, count_negatives_brute_force_with_break, grid' ) for func in ( "count_negatives_binary_search", # took 0.7727 seconds "count_negatives_brute_force_with_break", # took 4.6505 seconds "count_negatives_brute_force", # took 12.8160 seconds ): SCREAMING_SNAKE_CASE_ = timeit(f"{func}(grid=grid)" , setup=__UpperCAmelCase , number=5_00 ) print(f"{func}() took {time:0.4f} seconds" ) if __name__ == "__main__": import doctest doctest.testmod() benchmark()
31
1
import unittest import numpy as np from transformers import is_flax_available from transformers.testing_utils import require_flax from ..test_modeling_flax_common import ids_tensor if is_flax_available(): import jax import jax.numpy as jnp from transformers.generation import ( FlaxForcedBOSTokenLogitsProcessor, FlaxForcedEOSTokenLogitsProcessor, FlaxLogitsProcessorList, FlaxMinLengthLogitsProcessor, FlaxTemperatureLogitsWarper, FlaxTopKLogitsWarper, FlaxTopPLogitsWarper, ) @require_flax class lowerCamelCase_ ( unittest.TestCase ): '''simple docstring''' def lowerCAmelCase_ ( self : Optional[int] , _lowerCAmelCase : int , _lowerCAmelCase : int ): SCREAMING_SNAKE_CASE_ = jnp.ones((batch_size, length) ) / length return scores def lowerCAmelCase_ ( self : Any ): SCREAMING_SNAKE_CASE_ = None SCREAMING_SNAKE_CASE_ = 20 SCREAMING_SNAKE_CASE_ = self._get_uniform_logits(batch_size=2 , length=_lowerCAmelCase ) # tweak scores to not be uniform anymore SCREAMING_SNAKE_CASE_ = scores.at[1, 5].set((1 / length) + 0.1 ) # peak, 1st batch SCREAMING_SNAKE_CASE_ = scores.at[1, 10].set((1 / length) - 0.4 ) # valley, 1st batch # compute softmax SCREAMING_SNAKE_CASE_ = jax.nn.softmax(_lowerCAmelCase , axis=-1 ) SCREAMING_SNAKE_CASE_ = FlaxTemperatureLogitsWarper(temperature=0.5 ) SCREAMING_SNAKE_CASE_ = FlaxTemperatureLogitsWarper(temperature=1.3 ) SCREAMING_SNAKE_CASE_ = jax.nn.softmax(temp_dist_warper_sharper(_lowerCAmelCase , scores.copy() , cur_len=_lowerCAmelCase ) , axis=-1 ) SCREAMING_SNAKE_CASE_ = jax.nn.softmax(temp_dist_warper_smoother(_lowerCAmelCase , scores.copy() , cur_len=_lowerCAmelCase ) , axis=-1 ) # uniform distribution stays uniform self.assertTrue(jnp.allclose(probs[0, :] , warped_prob_sharp[0, :] , atol=1E-3 ) ) self.assertTrue(jnp.allclose(probs[0, :] , warped_prob_smooth[0, :] , atol=1E-3 ) ) # sharp peaks get higher, valleys get lower self.assertLess(probs[1, :].max() , warped_prob_sharp[1, :].max() ) self.assertGreater(probs[1, :].min() , warped_prob_sharp[1, :].min() ) # smooth peaks get lower, valleys get higher self.assertGreater(probs[1, :].max() , warped_prob_smooth[1, :].max() ) self.assertLess(probs[1, :].min() , warped_prob_smooth[1, :].min() ) def lowerCAmelCase_ ( self : List[Any] ): SCREAMING_SNAKE_CASE_ = None SCREAMING_SNAKE_CASE_ = 10 SCREAMING_SNAKE_CASE_ = 2 # create ramp distribution SCREAMING_SNAKE_CASE_ = np.broadcast_to(np.arange(_lowerCAmelCase )[None, :] , (batch_size, vocab_size) ).copy() SCREAMING_SNAKE_CASE_ = ramp_logits[1:, : vocab_size // 2] + vocab_size SCREAMING_SNAKE_CASE_ = FlaxTopKLogitsWarper(3 ) SCREAMING_SNAKE_CASE_ = top_k_warp(_lowerCAmelCase , _lowerCAmelCase , cur_len=_lowerCAmelCase ) # check that correct tokens are filtered self.assertListEqual(jnp.isinf(scores[0] ).tolist() , 7 * [True] + 3 * [False] ) self.assertListEqual(jnp.isinf(scores[1] ).tolist() , 2 * [True] + 3 * [False] + 5 * [True] ) # check special case SCREAMING_SNAKE_CASE_ = 5 SCREAMING_SNAKE_CASE_ = FlaxTopKLogitsWarper(top_k=1 , filter_value=0.0 , min_tokens_to_keep=3 ) SCREAMING_SNAKE_CASE_ = np.broadcast_to(np.arange(_lowerCAmelCase )[None, :] , (batch_size, length) ).copy() SCREAMING_SNAKE_CASE_ = top_k_warp_safety_check(_lowerCAmelCase , _lowerCAmelCase , cur_len=_lowerCAmelCase ) # min_tokens overwrites k: 3 tokens are kept => 2 tokens are nullified self.assertListEqual((scores == 0.0).sum(axis=-1 ).tolist() , [2, 2] ) def lowerCAmelCase_ ( self : Tuple ): SCREAMING_SNAKE_CASE_ = None SCREAMING_SNAKE_CASE_ = 10 SCREAMING_SNAKE_CASE_ = 2 # create distribution and take log (inverse to Softmax as taken in TopPLogitsWarper) SCREAMING_SNAKE_CASE_ = np.log(np.array([[0.3, 0.1, 0.1, 0.5], [0.15, 0.3, 0.3, 0.25]] ) ) SCREAMING_SNAKE_CASE_ = FlaxTopPLogitsWarper(0.8 ) SCREAMING_SNAKE_CASE_ = np.exp(top_p_warp(_lowerCAmelCase , _lowerCAmelCase , cur_len=_lowerCAmelCase ) ) # dist should be filtered to keep min num values so that sum is >= top_p # exp (-inf) => 0 SCREAMING_SNAKE_CASE_ = np.array([[0.3, 0.0, 0.0, 0.5], [0.0, 0.3, 0.3, 0.25]] ) self.assertTrue(np.allclose(_lowerCAmelCase , _lowerCAmelCase , atol=1E-3 ) ) # check edge cases with negative and extreme logits SCREAMING_SNAKE_CASE_ = np.broadcast_to(np.arange(_lowerCAmelCase )[None, :] , (batch_size, vocab_size) ).copy() - ( vocab_size // 2 ) # make ramp_logits more extreme SCREAMING_SNAKE_CASE_ = ramp_logits[1] * 100.0 # make sure at least 2 tokens are kept SCREAMING_SNAKE_CASE_ = FlaxTopPLogitsWarper(0.9 , min_tokens_to_keep=2 , filter_value=0.0 ) SCREAMING_SNAKE_CASE_ = top_p_warp(_lowerCAmelCase , _lowerCAmelCase , cur_len=_lowerCAmelCase ) # first batch should keep three tokens, second batch would keep only 1, but due to `min_tokens_to_keep=2` keeps 2. self.assertListEqual((filtered_dist != 0.0).sum(axis=-1 ).tolist() , [3, 2] ) def lowerCAmelCase_ ( self : Tuple ): SCREAMING_SNAKE_CASE_ = 20 SCREAMING_SNAKE_CASE_ = 4 SCREAMING_SNAKE_CASE_ = 0 SCREAMING_SNAKE_CASE_ = FlaxMinLengthLogitsProcessor(min_length=10 , eos_token_id=_lowerCAmelCase ) # check that min length is applied at length 5 SCREAMING_SNAKE_CASE_ = ids_tensor((batch_size, 20) , vocab_size=20 ) SCREAMING_SNAKE_CASE_ = 5 SCREAMING_SNAKE_CASE_ = self._get_uniform_logits(_lowerCAmelCase , _lowerCAmelCase ) SCREAMING_SNAKE_CASE_ = min_dist_processor(_lowerCAmelCase , _lowerCAmelCase , cur_len=_lowerCAmelCase ) self.assertListEqual(scores_before_min_length[:, eos_token_id].tolist() , 4 * [-float('inf' )] ) # check that min length is not applied anymore at length 15 SCREAMING_SNAKE_CASE_ = self._get_uniform_logits(_lowerCAmelCase , _lowerCAmelCase ) SCREAMING_SNAKE_CASE_ = 15 SCREAMING_SNAKE_CASE_ = min_dist_processor(_lowerCAmelCase , _lowerCAmelCase , cur_len=_lowerCAmelCase ) self.assertFalse(jnp.isinf(_lowerCAmelCase ).any() ) def lowerCAmelCase_ ( self : List[str] ): SCREAMING_SNAKE_CASE_ = 20 SCREAMING_SNAKE_CASE_ = 4 SCREAMING_SNAKE_CASE_ = 0 SCREAMING_SNAKE_CASE_ = FlaxForcedBOSTokenLogitsProcessor(bos_token_id=_lowerCAmelCase ) # check that all scores are -inf except the bos_token_id score SCREAMING_SNAKE_CASE_ = ids_tensor((batch_size, 1) , vocab_size=20 ) SCREAMING_SNAKE_CASE_ = 1 SCREAMING_SNAKE_CASE_ = self._get_uniform_logits(_lowerCAmelCase , _lowerCAmelCase ) SCREAMING_SNAKE_CASE_ = logits_processor(_lowerCAmelCase , _lowerCAmelCase , cur_len=_lowerCAmelCase ) self.assertTrue(jnp.isneginf(scores[:, bos_token_id + 1 :] ).all() ) self.assertListEqual(scores[:, bos_token_id].tolist() , 4 * [0] ) # score for bos_token_id shold be zero # check that bos_token_id is not forced if current length is greater than 1 SCREAMING_SNAKE_CASE_ = 3 SCREAMING_SNAKE_CASE_ = self._get_uniform_logits(_lowerCAmelCase , _lowerCAmelCase ) SCREAMING_SNAKE_CASE_ = logits_processor(_lowerCAmelCase , _lowerCAmelCase , cur_len=_lowerCAmelCase ) self.assertFalse(jnp.isinf(_lowerCAmelCase ).any() ) def lowerCAmelCase_ ( self : Dict ): SCREAMING_SNAKE_CASE_ = 20 SCREAMING_SNAKE_CASE_ = 4 SCREAMING_SNAKE_CASE_ = 0 SCREAMING_SNAKE_CASE_ = 5 SCREAMING_SNAKE_CASE_ = FlaxForcedEOSTokenLogitsProcessor(max_length=_lowerCAmelCase , eos_token_id=_lowerCAmelCase ) # check that all scores are -inf except the eos_token_id when max_length is reached SCREAMING_SNAKE_CASE_ = ids_tensor((batch_size, 4) , vocab_size=20 ) SCREAMING_SNAKE_CASE_ = 4 SCREAMING_SNAKE_CASE_ = self._get_uniform_logits(_lowerCAmelCase , _lowerCAmelCase ) SCREAMING_SNAKE_CASE_ = logits_processor(_lowerCAmelCase , _lowerCAmelCase , cur_len=_lowerCAmelCase ) self.assertTrue(jnp.isneginf(scores[:, eos_token_id + 1 :] ).all() ) self.assertListEqual(scores[:, eos_token_id].tolist() , 4 * [0] ) # score for eos_token_id should be zero # check that eos_token_id is not forced if max_length is not reached SCREAMING_SNAKE_CASE_ = 3 SCREAMING_SNAKE_CASE_ = self._get_uniform_logits(_lowerCAmelCase , _lowerCAmelCase ) SCREAMING_SNAKE_CASE_ = logits_processor(_lowerCAmelCase , _lowerCAmelCase , cur_len=_lowerCAmelCase ) self.assertFalse(jnp.isinf(_lowerCAmelCase ).any() ) def lowerCAmelCase_ ( self : Union[str, Any] ): SCREAMING_SNAKE_CASE_ = 4 SCREAMING_SNAKE_CASE_ = 10 SCREAMING_SNAKE_CASE_ = 15 SCREAMING_SNAKE_CASE_ = 2 SCREAMING_SNAKE_CASE_ = 1 SCREAMING_SNAKE_CASE_ = 15 # dummy input_ids and scores SCREAMING_SNAKE_CASE_ = ids_tensor((batch_size, sequence_length) , _lowerCAmelCase ) SCREAMING_SNAKE_CASE_ = input_ids.copy() SCREAMING_SNAKE_CASE_ = self._get_uniform_logits(_lowerCAmelCase , _lowerCAmelCase ) SCREAMING_SNAKE_CASE_ = scores.copy() # instantiate all dist processors SCREAMING_SNAKE_CASE_ = FlaxTemperatureLogitsWarper(temperature=0.5 ) SCREAMING_SNAKE_CASE_ = FlaxTopKLogitsWarper(3 ) SCREAMING_SNAKE_CASE_ = FlaxTopPLogitsWarper(0.8 ) # instantiate all logits processors SCREAMING_SNAKE_CASE_ = FlaxMinLengthLogitsProcessor(min_length=10 , eos_token_id=_lowerCAmelCase ) SCREAMING_SNAKE_CASE_ = FlaxForcedBOSTokenLogitsProcessor(bos_token_id=_lowerCAmelCase ) SCREAMING_SNAKE_CASE_ = FlaxForcedEOSTokenLogitsProcessor(max_length=_lowerCAmelCase , eos_token_id=_lowerCAmelCase ) SCREAMING_SNAKE_CASE_ = 10 # no processor list SCREAMING_SNAKE_CASE_ = temp_dist_warp(_lowerCAmelCase , _lowerCAmelCase , cur_len=_lowerCAmelCase ) SCREAMING_SNAKE_CASE_ = top_k_warp(_lowerCAmelCase , _lowerCAmelCase , cur_len=_lowerCAmelCase ) SCREAMING_SNAKE_CASE_ = top_p_warp(_lowerCAmelCase , _lowerCAmelCase , cur_len=_lowerCAmelCase ) SCREAMING_SNAKE_CASE_ = min_dist_proc(_lowerCAmelCase , _lowerCAmelCase , cur_len=_lowerCAmelCase ) SCREAMING_SNAKE_CASE_ = bos_dist_proc(_lowerCAmelCase , _lowerCAmelCase , cur_len=_lowerCAmelCase ) SCREAMING_SNAKE_CASE_ = eos_dist_proc(_lowerCAmelCase , _lowerCAmelCase , cur_len=_lowerCAmelCase ) # with processor list SCREAMING_SNAKE_CASE_ = FlaxLogitsProcessorList( [temp_dist_warp, top_k_warp, top_p_warp, min_dist_proc, bos_dist_proc, eos_dist_proc] ) SCREAMING_SNAKE_CASE_ = processor(_lowerCAmelCase , _lowerCAmelCase , cur_len=_lowerCAmelCase ) # scores should be equal self.assertTrue(jnp.allclose(_lowerCAmelCase , _lowerCAmelCase , atol=1E-3 ) ) # input_ids should never be changed self.assertListEqual(input_ids.tolist() , input_ids_comp.tolist() ) def lowerCAmelCase_ ( self : int ): SCREAMING_SNAKE_CASE_ = 4 SCREAMING_SNAKE_CASE_ = 10 SCREAMING_SNAKE_CASE_ = 15 SCREAMING_SNAKE_CASE_ = 2 SCREAMING_SNAKE_CASE_ = 1 SCREAMING_SNAKE_CASE_ = 15 # dummy input_ids and scores SCREAMING_SNAKE_CASE_ = ids_tensor((batch_size, sequence_length) , _lowerCAmelCase ) SCREAMING_SNAKE_CASE_ = input_ids.copy() SCREAMING_SNAKE_CASE_ = self._get_uniform_logits(_lowerCAmelCase , _lowerCAmelCase ) SCREAMING_SNAKE_CASE_ = scores.copy() # instantiate all dist processors SCREAMING_SNAKE_CASE_ = FlaxTemperatureLogitsWarper(temperature=0.5 ) SCREAMING_SNAKE_CASE_ = FlaxTopKLogitsWarper(3 ) SCREAMING_SNAKE_CASE_ = FlaxTopPLogitsWarper(0.8 ) # instantiate all logits processors SCREAMING_SNAKE_CASE_ = FlaxMinLengthLogitsProcessor(min_length=10 , eos_token_id=_lowerCAmelCase ) SCREAMING_SNAKE_CASE_ = FlaxForcedBOSTokenLogitsProcessor(bos_token_id=_lowerCAmelCase ) SCREAMING_SNAKE_CASE_ = FlaxForcedEOSTokenLogitsProcessor(max_length=_lowerCAmelCase , eos_token_id=_lowerCAmelCase ) SCREAMING_SNAKE_CASE_ = 10 # no processor list def run_no_processor_list(_lowerCAmelCase : str , _lowerCAmelCase : Union[str, Any] , _lowerCAmelCase : int ): SCREAMING_SNAKE_CASE_ = temp_dist_warp(_lowerCAmelCase , _lowerCAmelCase , cur_len=_lowerCAmelCase ) SCREAMING_SNAKE_CASE_ = top_k_warp(_lowerCAmelCase , _lowerCAmelCase , cur_len=_lowerCAmelCase ) SCREAMING_SNAKE_CASE_ = top_p_warp(_lowerCAmelCase , _lowerCAmelCase , cur_len=_lowerCAmelCase ) SCREAMING_SNAKE_CASE_ = min_dist_proc(_lowerCAmelCase , _lowerCAmelCase , cur_len=_lowerCAmelCase ) SCREAMING_SNAKE_CASE_ = bos_dist_proc(_lowerCAmelCase , _lowerCAmelCase , cur_len=_lowerCAmelCase ) SCREAMING_SNAKE_CASE_ = eos_dist_proc(_lowerCAmelCase , _lowerCAmelCase , cur_len=_lowerCAmelCase ) return scores # with processor list def run_processor_list(_lowerCAmelCase : List[Any] , _lowerCAmelCase : Dict , _lowerCAmelCase : Union[str, Any] ): SCREAMING_SNAKE_CASE_ = FlaxLogitsProcessorList( [temp_dist_warp, top_k_warp, top_p_warp, min_dist_proc, bos_dist_proc, eos_dist_proc] ) SCREAMING_SNAKE_CASE_ = processor(_lowerCAmelCase , _lowerCAmelCase , cur_len=_lowerCAmelCase ) return scores SCREAMING_SNAKE_CASE_ = jax.jit(_lowerCAmelCase ) SCREAMING_SNAKE_CASE_ = jax.jit(_lowerCAmelCase ) SCREAMING_SNAKE_CASE_ = jitted_run_no_processor_list(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) SCREAMING_SNAKE_CASE_ = jitted_run_processor_list(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) # scores should be equal self.assertTrue(jnp.allclose(_lowerCAmelCase , _lowerCAmelCase , atol=1E-3 ) ) # input_ids should never be changed self.assertListEqual(input_ids.tolist() , input_ids_comp.tolist() )
31
from typing import TYPE_CHECKING from ....utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available lowerCamelCase__ : Optional[int] = {'configuration_mmbt': ['MMBTConfig']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase__ : Any = ['MMBTForClassification', 'MMBTModel', 'ModalEmbeddings'] if TYPE_CHECKING: from .configuration_mmbt import MMBTConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mmbt import MMBTForClassification, MMBTModel, ModalEmbeddings else: import sys lowerCamelCase__ : str = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
31
1
import unittest import numpy as np from transformers import DistilBertConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor, random_attention_mask if is_flax_available(): import jax.numpy as jnp from transformers.models.distilbert.modeling_flax_distilbert import ( FlaxDistilBertForMaskedLM, FlaxDistilBertForMultipleChoice, FlaxDistilBertForQuestionAnswering, FlaxDistilBertForSequenceClassification, FlaxDistilBertForTokenClassification, FlaxDistilBertModel, ) class lowerCamelCase_ ( unittest.TestCase ): '''simple docstring''' def __init__( self : str , _lowerCAmelCase : Optional[Any] , _lowerCAmelCase : Optional[int]=13 , _lowerCAmelCase : Any=7 , _lowerCAmelCase : Tuple=True , _lowerCAmelCase : List[str]=True , _lowerCAmelCase : Optional[Any]=True , _lowerCAmelCase : Any=True , _lowerCAmelCase : Optional[Any]=99 , _lowerCAmelCase : Union[str, Any]=32 , _lowerCAmelCase : str=5 , _lowerCAmelCase : Dict=4 , _lowerCAmelCase : Any=37 , _lowerCAmelCase : int="gelu" , _lowerCAmelCase : Dict=0.1 , _lowerCAmelCase : Optional[Any]=0.1 , _lowerCAmelCase : Any=512 , _lowerCAmelCase : Dict=16 , _lowerCAmelCase : Union[str, Any]=2 , _lowerCAmelCase : Dict=0.02 , _lowerCAmelCase : List[str]=4 , ): SCREAMING_SNAKE_CASE_ = parent SCREAMING_SNAKE_CASE_ = batch_size SCREAMING_SNAKE_CASE_ = seq_length SCREAMING_SNAKE_CASE_ = is_training SCREAMING_SNAKE_CASE_ = use_attention_mask SCREAMING_SNAKE_CASE_ = use_token_type_ids SCREAMING_SNAKE_CASE_ = use_labels SCREAMING_SNAKE_CASE_ = vocab_size SCREAMING_SNAKE_CASE_ = hidden_size SCREAMING_SNAKE_CASE_ = num_hidden_layers SCREAMING_SNAKE_CASE_ = num_attention_heads SCREAMING_SNAKE_CASE_ = intermediate_size SCREAMING_SNAKE_CASE_ = hidden_act SCREAMING_SNAKE_CASE_ = hidden_dropout_prob SCREAMING_SNAKE_CASE_ = attention_probs_dropout_prob SCREAMING_SNAKE_CASE_ = max_position_embeddings SCREAMING_SNAKE_CASE_ = type_vocab_size SCREAMING_SNAKE_CASE_ = type_sequence_label_size SCREAMING_SNAKE_CASE_ = initializer_range SCREAMING_SNAKE_CASE_ = num_choices def lowerCAmelCase_ ( self : Optional[Any] ): SCREAMING_SNAKE_CASE_ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) SCREAMING_SNAKE_CASE_ = None if self.use_attention_mask: SCREAMING_SNAKE_CASE_ = random_attention_mask([self.batch_size, self.seq_length] ) SCREAMING_SNAKE_CASE_ = DistilBertConfig( vocab_size=self.vocab_size , dim=self.hidden_size , n_layers=self.num_hidden_layers , n_heads=self.num_attention_heads , hidden_dim=self.intermediate_size , hidden_act=self.hidden_act , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , tie_weights_=_lowerCAmelCase , ) return config, input_ids, attention_mask def lowerCAmelCase_ ( self : Union[str, Any] ): SCREAMING_SNAKE_CASE_ = self.prepare_config_and_inputs() SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = config_and_inputs SCREAMING_SNAKE_CASE_ = {'input_ids': input_ids, 'attention_mask': attention_mask} return config, inputs_dict @require_flax class lowerCamelCase_ ( _SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' lowercase_ = ( ( FlaxDistilBertModel, FlaxDistilBertForMaskedLM, FlaxDistilBertForMultipleChoice, FlaxDistilBertForQuestionAnswering, FlaxDistilBertForSequenceClassification, FlaxDistilBertForTokenClassification, FlaxDistilBertForQuestionAnswering, ) if is_flax_available() else () ) def lowerCAmelCase_ ( self : Dict ): SCREAMING_SNAKE_CASE_ = FlaxDistilBertModelTester(self ) @slow def lowerCAmelCase_ ( self : Optional[Any] ): for model_class_name in self.all_model_classes: SCREAMING_SNAKE_CASE_ = model_class_name.from_pretrained('distilbert-base-uncased' ) SCREAMING_SNAKE_CASE_ = model(np.ones((1, 1) ) ) self.assertIsNotNone(_lowerCAmelCase ) @require_flax class lowerCamelCase_ ( unittest.TestCase ): '''simple docstring''' @slow def lowerCAmelCase_ ( self : List[Any] ): SCREAMING_SNAKE_CASE_ = FlaxDistilBertModel.from_pretrained('distilbert-base-uncased' ) SCREAMING_SNAKE_CASE_ = np.array([[0, 345, 232, 328, 740, 140, 1_695, 69, 6_078, 1_588, 2]] ) SCREAMING_SNAKE_CASE_ = np.array([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] ) SCREAMING_SNAKE_CASE_ = model(_lowerCAmelCase , attention_mask=_lowerCAmelCase )[0] SCREAMING_SNAKE_CASE_ = (1, 11, 768) self.assertEqual(output.shape , _lowerCAmelCase ) SCREAMING_SNAKE_CASE_ = np.array([[[-0.1639, 0.3299, 0.1648], [-0.1746, 0.3289, 0.1710], [-0.1884, 0.3357, 0.1810]]] ) self.assertTrue(jnp.allclose(output[:, 1:4, 1:4] , _lowerCAmelCase , atol=1E-4 ) )
31
import unittest from typing import Tuple import torch from diffusers.utils import floats_tensor, randn_tensor, torch_all_close, torch_device from diffusers.utils.testing_utils import require_torch @require_torch class lowerCamelCase_ : '''simple docstring''' @property def lowerCAmelCase_ ( self : Optional[Any] ): return self.get_dummy_input() @property def lowerCAmelCase_ ( self : Union[str, Any] ): if self.block_type == "down": return (4, 32, 16, 16) elif self.block_type == "mid": return (4, 32, 32, 32) elif self.block_type == "up": return (4, 32, 64, 64) raise ValueError(F"'{self.block_type}' is not a supported block_type. Set it to 'up', 'mid', or 'down'." ) def lowerCAmelCase_ ( self : List[str] , _lowerCAmelCase : Optional[Any]=True , _lowerCAmelCase : str=False , _lowerCAmelCase : Optional[int]=False , _lowerCAmelCase : Dict=False , ): SCREAMING_SNAKE_CASE_ = 4 SCREAMING_SNAKE_CASE_ = 32 SCREAMING_SNAKE_CASE_ = (32, 32) SCREAMING_SNAKE_CASE_ = torch.manual_seed(0 ) SCREAMING_SNAKE_CASE_ = torch.device(_lowerCAmelCase ) SCREAMING_SNAKE_CASE_ = (batch_size, num_channels) + sizes SCREAMING_SNAKE_CASE_ = randn_tensor(_lowerCAmelCase , generator=_lowerCAmelCase , device=_lowerCAmelCase ) SCREAMING_SNAKE_CASE_ = {'hidden_states': hidden_states} if include_temb: SCREAMING_SNAKE_CASE_ = 128 SCREAMING_SNAKE_CASE_ = randn_tensor((batch_size, temb_channels) , generator=_lowerCAmelCase , device=_lowerCAmelCase ) if include_res_hidden_states_tuple: SCREAMING_SNAKE_CASE_ = torch.manual_seed(1 ) SCREAMING_SNAKE_CASE_ = (randn_tensor(_lowerCAmelCase , generator=_lowerCAmelCase , device=_lowerCAmelCase ),) if include_encoder_hidden_states: SCREAMING_SNAKE_CASE_ = floats_tensor((batch_size, 32, 32) ).to(_lowerCAmelCase ) if include_skip_sample: SCREAMING_SNAKE_CASE_ = randn_tensor(((batch_size, 3) + sizes) , generator=_lowerCAmelCase , device=_lowerCAmelCase ) return dummy_input def lowerCAmelCase_ ( self : Optional[int] ): SCREAMING_SNAKE_CASE_ = { 'in_channels': 32, 'out_channels': 32, 'temb_channels': 128, } if self.block_type == "up": SCREAMING_SNAKE_CASE_ = 32 if self.block_type == "mid": init_dict.pop('out_channels' ) SCREAMING_SNAKE_CASE_ = self.dummy_input return init_dict, inputs_dict def lowerCAmelCase_ ( self : Dict , _lowerCAmelCase : Optional[Any] ): SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = self.prepare_init_args_and_inputs_for_common() SCREAMING_SNAKE_CASE_ = self.block_class(**_lowerCAmelCase ) unet_block.to(_lowerCAmelCase ) unet_block.eval() with torch.no_grad(): SCREAMING_SNAKE_CASE_ = unet_block(**_lowerCAmelCase ) if isinstance(_lowerCAmelCase , _lowerCAmelCase ): SCREAMING_SNAKE_CASE_ = output[0] self.assertEqual(output.shape , self.output_shape ) SCREAMING_SNAKE_CASE_ = output[0, -1, -3:, -3:] SCREAMING_SNAKE_CASE_ = torch.tensor(_lowerCAmelCase ).to(_lowerCAmelCase ) assert torch_all_close(output_slice.flatten() , _lowerCAmelCase , atol=5E-3 ) @unittest.skipIf(torch_device == 'mps' , 'Training is not supported in mps' ) def lowerCAmelCase_ ( self : Any ): SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = self.prepare_init_args_and_inputs_for_common() SCREAMING_SNAKE_CASE_ = self.block_class(**_lowerCAmelCase ) model.to(_lowerCAmelCase ) model.train() SCREAMING_SNAKE_CASE_ = model(**_lowerCAmelCase ) if isinstance(_lowerCAmelCase , _lowerCAmelCase ): SCREAMING_SNAKE_CASE_ = output[0] SCREAMING_SNAKE_CASE_ = torch.device(_lowerCAmelCase ) SCREAMING_SNAKE_CASE_ = randn_tensor(output.shape , device=_lowerCAmelCase ) SCREAMING_SNAKE_CASE_ = torch.nn.functional.mse_loss(_lowerCAmelCase , _lowerCAmelCase ) loss.backward()
31
1
from __future__ import annotations import requests def UpperCAmelCase_ ( __UpperCAmelCase : str ) -> dict: SCREAMING_SNAKE_CASE_ = f"https://hacker-news.firebaseio.com/v0/item/{story_id}.json?print=pretty" return requests.get(__UpperCAmelCase ).json() def UpperCAmelCase_ ( __UpperCAmelCase : int = 10 ) -> list[dict]: SCREAMING_SNAKE_CASE_ = 'https://hacker-news.firebaseio.com/v0/topstories.json?print=pretty' SCREAMING_SNAKE_CASE_ = requests.get(__UpperCAmelCase ).json()[:max_stories] return [get_hackernews_story(__UpperCAmelCase ) for story_id in story_ids] def UpperCAmelCase_ ( __UpperCAmelCase : int = 10 ) -> str: SCREAMING_SNAKE_CASE_ = hackernews_top_stories(__UpperCAmelCase ) return "\n".join('* [{title}]({url})'.format(**__UpperCAmelCase ) for story in stories ) if __name__ == "__main__": print(hackernews_top_stories_as_markdown())
31
import operator as op def UpperCAmelCase_ ( __UpperCAmelCase : str ) -> Any: SCREAMING_SNAKE_CASE_ = [] SCREAMING_SNAKE_CASE_ = lambda __UpperCAmelCase , __UpperCAmelCase : int(x / y ) # noqa: E731 integer division operation SCREAMING_SNAKE_CASE_ = { '^': op.pow, '*': op.mul, '/': div, '+': op.add, '-': op.sub, } # operators & their respective operation # print table header print('Symbol'.center(8 ) , 'Action'.center(12 ) , 'Stack' , sep=' | ' ) print('-' * (30 + len(__UpperCAmelCase )) ) for x in post_fix: if x.isdigit(): # if x in digit stack.append(__UpperCAmelCase ) # append x to stack # output in tabular format print(x.rjust(8 ) , ('push(' + x + ')').ljust(12 ) , ','.join(__UpperCAmelCase ) , sep=' | ' ) else: SCREAMING_SNAKE_CASE_ = stack.pop() # pop stack # output in tabular format print(''.rjust(8 ) , ('pop(' + b + ')').ljust(12 ) , ','.join(__UpperCAmelCase ) , sep=' | ' ) SCREAMING_SNAKE_CASE_ = stack.pop() # pop stack # output in tabular format print(''.rjust(8 ) , ('pop(' + a + ')').ljust(12 ) , ','.join(__UpperCAmelCase ) , sep=' | ' ) stack.append( str(opr[x](int(__UpperCAmelCase ) , int(__UpperCAmelCase ) ) ) ) # evaluate the 2 values popped from stack & push result to stack # output in tabular format print( x.rjust(8 ) , ('push(' + a + x + b + ')').ljust(12 ) , ','.join(__UpperCAmelCase ) , sep=' | ' , ) return int(stack[0] ) if __name__ == "__main__": lowerCamelCase__ : Tuple = input('\n\nEnter a Postfix Equation (space separated) = ').split(' ') print('\n\tResult = ', solve(Postfix))
31
1
def UpperCAmelCase_ ( ) -> Tuple: for n in range(1 , 1_00_00_00 ): yield n * (n + 1) // 2 def UpperCAmelCase_ ( __UpperCAmelCase : Union[str, Any] ) -> Union[str, Any]: SCREAMING_SNAKE_CASE_ = 1 SCREAMING_SNAKE_CASE_ = 2 while i * i <= n: SCREAMING_SNAKE_CASE_ = 0 while n % i == 0: n //= i multiplicity += 1 divisors_count *= multiplicity + 1 i += 1 if n > 1: divisors_count *= 2 return divisors_count def UpperCAmelCase_ ( ) -> Union[str, Any]: return next(i for i in triangle_number_generator() if count_divisors(__UpperCAmelCase ) > 5_00 ) if __name__ == "__main__": print(solution())
31
def UpperCAmelCase_ ( __UpperCAmelCase : int ) -> int: assert isinstance(__UpperCAmelCase , __UpperCAmelCase ), f"The input value of [n={number}] is not an integer" if number == 1: return 2 elif number < 1: SCREAMING_SNAKE_CASE_ = f"The input value of [n={number}] has to be > 0" raise ValueError(__UpperCAmelCase ) else: SCREAMING_SNAKE_CASE_ = sylvester(number - 1 ) SCREAMING_SNAKE_CASE_ = num - 1 SCREAMING_SNAKE_CASE_ = num return lower * upper + 1 if __name__ == "__main__": print(f'''The 8th number in Sylvester\'s sequence: {sylvester(8)}''')
31
1
import unittest from transformers import is_torch_available from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow if is_torch_available(): import torch from transformers import XLMRobertaModel @require_sentencepiece @require_tokenizers @require_torch class lowerCamelCase_ ( unittest.TestCase ): '''simple docstring''' @slow def lowerCAmelCase_ ( self : Any ): SCREAMING_SNAKE_CASE_ = XLMRobertaModel.from_pretrained('xlm-roberta-base' ) SCREAMING_SNAKE_CASE_ = torch.tensor([[0, 581, 10_269, 83, 99_942, 136, 60_742, 23, 70, 80_583, 18_276, 2]] ) # The dog is cute and lives in the garden house SCREAMING_SNAKE_CASE_ = torch.Size((1, 12, 768) ) # batch_size, sequence_length, embedding_vector_dim SCREAMING_SNAKE_CASE_ = torch.tensor( [[-0.0101, 0.1218, -0.0803, 0.0801, 0.1327, 0.0776, -0.1215, 0.2383, 0.3338, 0.3106, 0.0300, 0.0252]] ) # xlmr = torch.hub.load('pytorch/fairseq', 'xlmr.base') # xlmr.eval() # expected_output_values_last_dim = xlmr.extract_features(input_ids[0])[:, :, -1] with torch.no_grad(): SCREAMING_SNAKE_CASE_ = model(_lowerCAmelCase )['last_hidden_state'].detach() self.assertEqual(output.shape , _lowerCAmelCase ) # compare the actual values for a slice of last dim self.assertTrue(torch.allclose(output[:, :, -1] , _lowerCAmelCase , atol=1E-3 ) ) @slow def lowerCAmelCase_ ( self : Tuple ): SCREAMING_SNAKE_CASE_ = XLMRobertaModel.from_pretrained('xlm-roberta-large' ) SCREAMING_SNAKE_CASE_ = torch.tensor([[0, 581, 10_269, 83, 99_942, 136, 60_742, 23, 70, 80_583, 18_276, 2]] ) # The dog is cute and lives in the garden house SCREAMING_SNAKE_CASE_ = torch.Size((1, 12, 1_024) ) # batch_size, sequence_length, embedding_vector_dim SCREAMING_SNAKE_CASE_ = torch.tensor( [[-0.0699, -0.0318, 0.0705, -0.1241, 0.0999, -0.0520, 0.1004, -0.1838, -0.4704, 0.1437, 0.0821, 0.0126]] ) # xlmr = torch.hub.load('pytorch/fairseq', 'xlmr.large') # xlmr.eval() # expected_output_values_last_dim = xlmr.extract_features(input_ids[0])[:, :, -1] with torch.no_grad(): SCREAMING_SNAKE_CASE_ = model(_lowerCAmelCase )['last_hidden_state'].detach() self.assertEqual(output.shape , _lowerCAmelCase ) # compare the actual values for a slice of last dim self.assertTrue(torch.allclose(output[:, :, -1] , _lowerCAmelCase , atol=1E-3 ) )
31
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_sentencepiece_available, is_tf_available, is_tokenizers_available, is_torch_available, ) if is_sentencepiece_available(): from ..ta.tokenization_ta import TaTokenizer else: from ...utils.dummy_sentencepiece_objects import TaTokenizer lowerCamelCase__ : List[Any] = TaTokenizer if is_tokenizers_available(): from ..ta.tokenization_ta_fast import TaTokenizerFast else: from ...utils.dummy_tokenizers_objects import TaTokenizerFast lowerCamelCase__ : Union[str, Any] = TaTokenizerFast lowerCamelCase__ : Dict = {'configuration_mt5': ['MT5Config', 'MT5OnnxConfig']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase__ : Tuple = [ 'MT5EncoderModel', 'MT5ForConditionalGeneration', 'MT5ForQuestionAnswering', 'MT5Model', 'MT5PreTrainedModel', 'MT5Stack', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase__ : Tuple = ['TFMT5EncoderModel', 'TFMT5ForConditionalGeneration', 'TFMT5Model'] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase__ : Tuple = ['FlaxMT5EncoderModel', 'FlaxMT5ForConditionalGeneration', 'FlaxMT5Model'] if TYPE_CHECKING: from .configuration_mta import MTaConfig, MTaOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mta import ( MTaEncoderModel, MTaForConditionalGeneration, MTaForQuestionAnswering, MTaModel, MTaPreTrainedModel, MTaStack, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_mta import TFMTaEncoderModel, TFMTaForConditionalGeneration, TFMTaModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_mta import FlaxMTaEncoderModel, FlaxMTaForConditionalGeneration, FlaxMTaModel else: import sys lowerCamelCase__ : int = _LazyModule( __name__, globals()['__file__'], _import_structure, extra_objects={'MT5Tokenizer': MTaTokenizer, 'MT5TokenizerFast': MTaTokenizerFast}, module_spec=__spec__, )
31
1
import colorsys from PIL import Image # type: ignore def UpperCAmelCase_ ( __UpperCAmelCase : float , __UpperCAmelCase : float , __UpperCAmelCase : int ) -> float: SCREAMING_SNAKE_CASE_ = x SCREAMING_SNAKE_CASE_ = y for step in range(__UpperCAmelCase ): # noqa: B007 SCREAMING_SNAKE_CASE_ = a * a - b * b + x SCREAMING_SNAKE_CASE_ = 2 * a * b + y SCREAMING_SNAKE_CASE_ = a_new # divergence happens for all complex number with an absolute value # greater than 4 if a * a + b * b > 4: break return step / (max_step - 1) def UpperCAmelCase_ ( __UpperCAmelCase : float ) -> tuple: if distance == 1: return (0, 0, 0) else: return (2_55, 2_55, 2_55) def UpperCAmelCase_ ( __UpperCAmelCase : float ) -> tuple: if distance == 1: return (0, 0, 0) else: return tuple(round(i * 2_55 ) for i in colorsys.hsv_to_rgb(__UpperCAmelCase , 1 , 1 ) ) def UpperCAmelCase_ ( __UpperCAmelCase : int = 8_00 , __UpperCAmelCase : int = 6_00 , __UpperCAmelCase : float = -0.6 , __UpperCAmelCase : float = 0 , __UpperCAmelCase : float = 3.2 , __UpperCAmelCase : int = 50 , __UpperCAmelCase : bool = True , ) -> Image.Image: SCREAMING_SNAKE_CASE_ = Image.new('RGB' , (image_width, image_height) ) SCREAMING_SNAKE_CASE_ = img.load() # loop through the image-coordinates for image_x in range(__UpperCAmelCase ): for image_y in range(__UpperCAmelCase ): # determine the figure-coordinates based on the image-coordinates SCREAMING_SNAKE_CASE_ = figure_width / image_width * image_height SCREAMING_SNAKE_CASE_ = figure_center_x + (image_x / image_width - 0.5) * figure_width SCREAMING_SNAKE_CASE_ = figure_center_y + (image_y / image_height - 0.5) * figure_height SCREAMING_SNAKE_CASE_ = get_distance(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) # color the corresponding pixel based on the selected coloring-function if use_distance_color_coding: SCREAMING_SNAKE_CASE_ = get_color_coded_rgb(__UpperCAmelCase ) else: SCREAMING_SNAKE_CASE_ = get_black_and_white_rgb(__UpperCAmelCase ) return img if __name__ == "__main__": import doctest doctest.testmod() # colored version, full figure lowerCamelCase__ : Optional[int] = get_image() # uncomment for colored version, different section, zoomed in # img = get_image(figure_center_x = -0.6, figure_center_y = -0.4, # figure_width = 0.8) # uncomment for black and white version, full figure # img = get_image(use_distance_color_coding = False) # uncomment to save the image # img.save("mandelbrot.png") img.show()
31
import subprocess import sys from transformers import BertConfig, BertModel, BertTokenizer, pipeline from transformers.testing_utils import TestCasePlus, require_torch class lowerCamelCase_ ( _SCREAMING_SNAKE_CASE ): '''simple docstring''' @require_torch def lowerCAmelCase_ ( self : int ): # this test is a bit tricky since TRANSFORMERS_OFFLINE can only be changed before # `transformers` is loaded, and it's too late for inside pytest - so we are changing it # while running an external program # python one-liner segments # this must be loaded before socket.socket is monkey-patched SCREAMING_SNAKE_CASE_ = '\nfrom transformers import BertConfig, BertModel, BertTokenizer, pipeline\n ' SCREAMING_SNAKE_CASE_ = '\nmname = "hf-internal-testing/tiny-random-bert"\nBertConfig.from_pretrained(mname)\nBertModel.from_pretrained(mname)\nBertTokenizer.from_pretrained(mname)\npipe = pipeline(task="fill-mask", model=mname)\nprint("success")\n ' SCREAMING_SNAKE_CASE_ = '\nimport socket\ndef offline_socket(*args, **kwargs): raise RuntimeError("Offline mode is enabled, we shouldn\'t access internet")\nsocket.socket = offline_socket\n ' # Force fetching the files so that we can use the cache SCREAMING_SNAKE_CASE_ = 'hf-internal-testing/tiny-random-bert' BertConfig.from_pretrained(_lowerCAmelCase ) BertModel.from_pretrained(_lowerCAmelCase ) BertTokenizer.from_pretrained(_lowerCAmelCase ) pipeline(task='fill-mask' , model=_lowerCAmelCase ) # baseline - just load from_pretrained with normal network SCREAMING_SNAKE_CASE_ = [sys.executable, '-c', '\n'.join([load, run, mock] )] # should succeed SCREAMING_SNAKE_CASE_ = self.get_env() # should succeed as TRANSFORMERS_OFFLINE=1 tells it to use local files SCREAMING_SNAKE_CASE_ = '1' SCREAMING_SNAKE_CASE_ = subprocess.run(_lowerCAmelCase , env=_lowerCAmelCase , check=_lowerCAmelCase , capture_output=_lowerCAmelCase ) self.assertEqual(result.returncode , 0 , result.stderr ) self.assertIn('success' , result.stdout.decode() ) @require_torch def lowerCAmelCase_ ( self : Tuple ): # python one-liner segments # this must be loaded before socket.socket is monkey-patched SCREAMING_SNAKE_CASE_ = '\nfrom transformers import BertConfig, BertModel, BertTokenizer, pipeline\n ' SCREAMING_SNAKE_CASE_ = '\nmname = "hf-internal-testing/tiny-random-bert"\nBertConfig.from_pretrained(mname)\nBertModel.from_pretrained(mname)\nBertTokenizer.from_pretrained(mname)\npipe = pipeline(task="fill-mask", model=mname)\nprint("success")\n ' SCREAMING_SNAKE_CASE_ = '\nimport socket\ndef offline_socket(*args, **kwargs): raise socket.error("Faking flaky internet")\nsocket.socket = offline_socket\n ' # Force fetching the files so that we can use the cache SCREAMING_SNAKE_CASE_ = 'hf-internal-testing/tiny-random-bert' BertConfig.from_pretrained(_lowerCAmelCase ) BertModel.from_pretrained(_lowerCAmelCase ) BertTokenizer.from_pretrained(_lowerCAmelCase ) pipeline(task='fill-mask' , model=_lowerCAmelCase ) # baseline - just load from_pretrained with normal network SCREAMING_SNAKE_CASE_ = [sys.executable, '-c', '\n'.join([load, run, mock] )] # should succeed SCREAMING_SNAKE_CASE_ = self.get_env() SCREAMING_SNAKE_CASE_ = subprocess.run(_lowerCAmelCase , env=_lowerCAmelCase , check=_lowerCAmelCase , capture_output=_lowerCAmelCase ) self.assertEqual(result.returncode , 0 , result.stderr ) self.assertIn('success' , result.stdout.decode() ) @require_torch def lowerCAmelCase_ ( self : List[str] ): # this test is a bit tricky since TRANSFORMERS_OFFLINE can only be changed before # `transformers` is loaded, and it's too late for inside pytest - so we are changing it # while running an external program # python one-liner segments # this must be loaded before socket.socket is monkey-patched SCREAMING_SNAKE_CASE_ = '\nfrom transformers import BertConfig, BertModel, BertTokenizer\n ' SCREAMING_SNAKE_CASE_ = '\nmname = "hf-internal-testing/tiny-random-bert-sharded"\nBertConfig.from_pretrained(mname)\nBertModel.from_pretrained(mname)\nprint("success")\n ' SCREAMING_SNAKE_CASE_ = '\nimport socket\ndef offline_socket(*args, **kwargs): raise ValueError("Offline mode is enabled")\nsocket.socket = offline_socket\n ' # baseline - just load from_pretrained with normal network SCREAMING_SNAKE_CASE_ = [sys.executable, '-c', '\n'.join([load, run] )] # should succeed SCREAMING_SNAKE_CASE_ = self.get_env() SCREAMING_SNAKE_CASE_ = subprocess.run(_lowerCAmelCase , env=_lowerCAmelCase , check=_lowerCAmelCase , capture_output=_lowerCAmelCase ) self.assertEqual(result.returncode , 0 , result.stderr ) self.assertIn('success' , result.stdout.decode() ) # next emulate no network SCREAMING_SNAKE_CASE_ = [sys.executable, '-c', '\n'.join([load, mock, run] )] # Doesn't fail anymore since the model is in the cache due to other tests, so commenting this. # env["TRANSFORMERS_OFFLINE"] = "0" # result = subprocess.run(cmd, env=env, check=False, capture_output=True) # self.assertEqual(result.returncode, 1, result.stderr) # should succeed as TRANSFORMERS_OFFLINE=1 tells it to use local files SCREAMING_SNAKE_CASE_ = '1' SCREAMING_SNAKE_CASE_ = subprocess.run(_lowerCAmelCase , env=_lowerCAmelCase , check=_lowerCAmelCase , capture_output=_lowerCAmelCase ) self.assertEqual(result.returncode , 0 , result.stderr ) self.assertIn('success' , result.stdout.decode() ) @require_torch def lowerCAmelCase_ ( self : Any ): SCREAMING_SNAKE_CASE_ = '\nfrom transformers import pipeline\n ' SCREAMING_SNAKE_CASE_ = '\nmname = "hf-internal-testing/tiny-random-bert"\npipe = pipeline(model=mname)\n ' SCREAMING_SNAKE_CASE_ = '\nimport socket\ndef offline_socket(*args, **kwargs): raise socket.error("Offline mode is enabled")\nsocket.socket = offline_socket\n ' SCREAMING_SNAKE_CASE_ = self.get_env() SCREAMING_SNAKE_CASE_ = '1' SCREAMING_SNAKE_CASE_ = [sys.executable, '-c', '\n'.join([load, mock, run] )] SCREAMING_SNAKE_CASE_ = subprocess.run(_lowerCAmelCase , env=_lowerCAmelCase , check=_lowerCAmelCase , capture_output=_lowerCAmelCase ) self.assertEqual(result.returncode , 1 , result.stderr ) self.assertIn( 'You cannot infer task automatically within `pipeline` when using offline mode' , result.stderr.decode().replace('\n' , '' ) , ) @require_torch def lowerCAmelCase_ ( self : Optional[int] ): SCREAMING_SNAKE_CASE_ = '\nfrom transformers import AutoModel\n ' SCREAMING_SNAKE_CASE_ = '\nmname = "hf-internal-testing/test_dynamic_model"\nAutoModel.from_pretrained(mname, trust_remote_code=True)\nprint("success")\n ' # baseline - just load from_pretrained with normal network SCREAMING_SNAKE_CASE_ = [sys.executable, '-c', '\n'.join([load, run] )] # should succeed SCREAMING_SNAKE_CASE_ = self.get_env() SCREAMING_SNAKE_CASE_ = subprocess.run(_lowerCAmelCase , env=_lowerCAmelCase , check=_lowerCAmelCase , capture_output=_lowerCAmelCase ) self.assertEqual(result.returncode , 0 , result.stderr ) self.assertIn('success' , result.stdout.decode() ) # should succeed as TRANSFORMERS_OFFLINE=1 tells it to use local files SCREAMING_SNAKE_CASE_ = '1' SCREAMING_SNAKE_CASE_ = subprocess.run(_lowerCAmelCase , env=_lowerCAmelCase , check=_lowerCAmelCase , capture_output=_lowerCAmelCase ) self.assertEqual(result.returncode , 0 , result.stderr ) self.assertIn('success' , result.stdout.decode() )
31
1
import math import flax.linen as nn import jax.numpy as jnp def UpperCAmelCase_ ( __UpperCAmelCase : jnp.ndarray , __UpperCAmelCase : int , __UpperCAmelCase : float = 1 , __UpperCAmelCase : float = 1 , __UpperCAmelCase : float = 1.0E4 , __UpperCAmelCase : bool = False , __UpperCAmelCase : float = 1.0 , ) -> jnp.ndarray: assert timesteps.ndim == 1, "Timesteps should be a 1d-array" assert embedding_dim % 2 == 0, f"Embedding dimension {embedding_dim} should be even" SCREAMING_SNAKE_CASE_ = float(embedding_dim // 2 ) SCREAMING_SNAKE_CASE_ = math.log(max_timescale / min_timescale ) / (num_timescales - freq_shift) SCREAMING_SNAKE_CASE_ = min_timescale * jnp.exp(jnp.arange(__UpperCAmelCase , dtype=jnp.floataa ) * -log_timescale_increment ) SCREAMING_SNAKE_CASE_ = jnp.expand_dims(__UpperCAmelCase , 1 ) * jnp.expand_dims(__UpperCAmelCase , 0 ) # scale embeddings SCREAMING_SNAKE_CASE_ = scale * emb if flip_sin_to_cos: SCREAMING_SNAKE_CASE_ = jnp.concatenate([jnp.cos(__UpperCAmelCase ), jnp.sin(__UpperCAmelCase )] , axis=1 ) else: SCREAMING_SNAKE_CASE_ = jnp.concatenate([jnp.sin(__UpperCAmelCase ), jnp.cos(__UpperCAmelCase )] , axis=1 ) SCREAMING_SNAKE_CASE_ = jnp.reshape(__UpperCAmelCase , [jnp.shape(__UpperCAmelCase )[0], embedding_dim] ) return signal class lowerCamelCase_ ( nn.Module ): '''simple docstring''' lowercase_ = 32 lowercase_ = jnp.floataa @nn.compact def __call__( self : int , _lowerCAmelCase : Any ): SCREAMING_SNAKE_CASE_ = nn.Dense(self.time_embed_dim , dtype=self.dtype , name='linear_1' )(_lowerCAmelCase ) SCREAMING_SNAKE_CASE_ = nn.silu(_lowerCAmelCase ) SCREAMING_SNAKE_CASE_ = nn.Dense(self.time_embed_dim , dtype=self.dtype , name='linear_2' )(_lowerCAmelCase ) return temb class lowerCamelCase_ ( nn.Module ): '''simple docstring''' lowercase_ = 32 lowercase_ = False lowercase_ = 1 @nn.compact def __call__( self : Union[str, Any] , _lowerCAmelCase : int ): return get_sinusoidal_embeddings( _lowerCAmelCase , embedding_dim=self.dim , flip_sin_to_cos=self.flip_sin_to_cos , freq_shift=self.freq_shift )
31
import torch from transformers import PreTrainedModel, XLMRobertaConfig, XLMRobertaModel class lowerCamelCase_ ( _SCREAMING_SNAKE_CASE ): '''simple docstring''' lowercase_ = "M-CLIP" def __init__( self : Tuple , _lowerCAmelCase : List[str]=1_024 , _lowerCAmelCase : str=768 , **_lowerCAmelCase : Union[str, Any] ): SCREAMING_SNAKE_CASE_ = transformerDimSize SCREAMING_SNAKE_CASE_ = imageDimSize super().__init__(**_lowerCAmelCase ) class lowerCamelCase_ ( _SCREAMING_SNAKE_CASE ): '''simple docstring''' lowercase_ = MCLIPConfig def __init__( self : Dict , _lowerCAmelCase : Union[str, Any] , *_lowerCAmelCase : str , **_lowerCAmelCase : str ): super().__init__(_lowerCAmelCase , *_lowerCAmelCase , **_lowerCAmelCase ) SCREAMING_SNAKE_CASE_ = XLMRobertaModel(_lowerCAmelCase ) SCREAMING_SNAKE_CASE_ = torch.nn.Linear( in_features=config.transformerDimensions , out_features=config.numDims ) def lowerCAmelCase_ ( self : List[Any] , _lowerCAmelCase : Any , _lowerCAmelCase : Union[str, Any] ): SCREAMING_SNAKE_CASE_ = self.transformer(input_ids=_lowerCAmelCase , attention_mask=_lowerCAmelCase )[0] SCREAMING_SNAKE_CASE_ = (embs * attention_mask.unsqueeze(2 )).sum(dim=1 ) / attention_mask.sum(dim=1 )[:, None] return self.LinearTransformation(_lowerCAmelCase ), embs
31
1
from __future__ import annotations from collections.abc import Generator def UpperCAmelCase_ ( ) -> Generator[int, None, None]: SCREAMING_SNAKE_CASE_ = {} SCREAMING_SNAKE_CASE_ = 2 while True: SCREAMING_SNAKE_CASE_ = factor_map.pop(__UpperCAmelCase , __UpperCAmelCase ) if factor: SCREAMING_SNAKE_CASE_ = factor + prime while x in factor_map: x += factor SCREAMING_SNAKE_CASE_ = factor else: SCREAMING_SNAKE_CASE_ = prime yield prime prime += 1 def UpperCAmelCase_ ( __UpperCAmelCase : float = 1E10 ) -> int: SCREAMING_SNAKE_CASE_ = sieve() SCREAMING_SNAKE_CASE_ = 1 while True: SCREAMING_SNAKE_CASE_ = next(__UpperCAmelCase ) if (2 * prime * n) > limit: return n # Ignore the next prime as the reminder will be 2. next(__UpperCAmelCase ) n += 2 if __name__ == "__main__": print(solution())
31
import gc import random import unittest import numpy as np import torch from transformers import XLMRobertaTokenizer from diffusers import ( AltDiffusionImgaImgPipeline, AutoencoderKL, PNDMScheduler, UNetaDConditionModel, ) from diffusers.image_processor import VaeImageProcessor from diffusers.pipelines.alt_diffusion.modeling_roberta_series import ( RobertaSeriesConfig, RobertaSeriesModelWithTransformation, ) from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu enable_full_determinism() class lowerCamelCase_ ( unittest.TestCase ): '''simple docstring''' def lowerCAmelCase_ ( self : str ): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() @property def lowerCAmelCase_ ( self : Union[str, Any] ): SCREAMING_SNAKE_CASE_ = 1 SCREAMING_SNAKE_CASE_ = 3 SCREAMING_SNAKE_CASE_ = (32, 32) SCREAMING_SNAKE_CASE_ = floats_tensor((batch_size, num_channels) + sizes , rng=random.Random(0 ) ).to(_lowerCAmelCase ) return image @property def lowerCAmelCase_ ( self : Union[str, Any] ): torch.manual_seed(0 ) SCREAMING_SNAKE_CASE_ = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=('DownBlock2D', 'CrossAttnDownBlock2D') , up_block_types=('CrossAttnUpBlock2D', 'UpBlock2D') , cross_attention_dim=32 , ) return model @property def lowerCAmelCase_ ( self : Tuple ): torch.manual_seed(0 ) SCREAMING_SNAKE_CASE_ = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=['DownEncoderBlock2D', 'DownEncoderBlock2D'] , up_block_types=['UpDecoderBlock2D', 'UpDecoderBlock2D'] , latent_channels=4 , ) return model @property def lowerCAmelCase_ ( self : Optional[int] ): torch.manual_seed(0 ) SCREAMING_SNAKE_CASE_ = RobertaSeriesConfig( hidden_size=32 , project_dim=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=5_006 , ) return RobertaSeriesModelWithTransformation(_lowerCAmelCase ) @property def lowerCAmelCase_ ( self : List[Any] ): def extract(*_lowerCAmelCase : Optional[int] , **_lowerCAmelCase : str ): class lowerCamelCase_ : '''simple docstring''' def __init__( self : str ): SCREAMING_SNAKE_CASE_ = torch.ones([0] ) def lowerCAmelCase_ ( self : Union[str, Any] , _lowerCAmelCase : int ): self.pixel_values.to(_lowerCAmelCase ) return self return Out() return extract def lowerCAmelCase_ ( self : Optional[Any] ): SCREAMING_SNAKE_CASE_ = 'cpu' # ensure determinism for the device-dependent torch.Generator SCREAMING_SNAKE_CASE_ = self.dummy_cond_unet SCREAMING_SNAKE_CASE_ = PNDMScheduler(skip_prk_steps=_lowerCAmelCase ) SCREAMING_SNAKE_CASE_ = self.dummy_vae SCREAMING_SNAKE_CASE_ = self.dummy_text_encoder SCREAMING_SNAKE_CASE_ = XLMRobertaTokenizer.from_pretrained('hf-internal-testing/tiny-xlm-roberta' ) SCREAMING_SNAKE_CASE_ = 77 SCREAMING_SNAKE_CASE_ = self.dummy_image.to(_lowerCAmelCase ) SCREAMING_SNAKE_CASE_ = init_image / 2 + 0.5 # make sure here that pndm scheduler skips prk SCREAMING_SNAKE_CASE_ = AltDiffusionImgaImgPipeline( unet=_lowerCAmelCase , scheduler=_lowerCAmelCase , vae=_lowerCAmelCase , text_encoder=_lowerCAmelCase , tokenizer=_lowerCAmelCase , safety_checker=_lowerCAmelCase , feature_extractor=self.dummy_extractor , ) SCREAMING_SNAKE_CASE_ = VaeImageProcessor(vae_scale_factor=alt_pipe.vae_scale_factor , do_normalize=_lowerCAmelCase ) SCREAMING_SNAKE_CASE_ = alt_pipe.to(_lowerCAmelCase ) alt_pipe.set_progress_bar_config(disable=_lowerCAmelCase ) SCREAMING_SNAKE_CASE_ = 'A painting of a squirrel eating a burger' SCREAMING_SNAKE_CASE_ = torch.Generator(device=_lowerCAmelCase ).manual_seed(0 ) SCREAMING_SNAKE_CASE_ = alt_pipe( [prompt] , generator=_lowerCAmelCase , guidance_scale=6.0 , num_inference_steps=2 , output_type='np' , image=_lowerCAmelCase , ) SCREAMING_SNAKE_CASE_ = output.images SCREAMING_SNAKE_CASE_ = torch.Generator(device=_lowerCAmelCase ).manual_seed(0 ) SCREAMING_SNAKE_CASE_ = alt_pipe( [prompt] , generator=_lowerCAmelCase , guidance_scale=6.0 , num_inference_steps=2 , output_type='np' , image=_lowerCAmelCase , return_dict=_lowerCAmelCase , )[0] SCREAMING_SNAKE_CASE_ = image[0, -3:, -3:, -1] SCREAMING_SNAKE_CASE_ = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) SCREAMING_SNAKE_CASE_ = np.array([0.4427, 0.3731, 0.4249, 0.4941, 0.4546, 0.4148, 0.4193, 0.4666, 0.4499] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 5E-3 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 5E-3 @unittest.skipIf(torch_device != 'cuda' , 'This test requires a GPU' ) def lowerCAmelCase_ ( self : Tuple ): SCREAMING_SNAKE_CASE_ = self.dummy_cond_unet SCREAMING_SNAKE_CASE_ = PNDMScheduler(skip_prk_steps=_lowerCAmelCase ) SCREAMING_SNAKE_CASE_ = self.dummy_vae SCREAMING_SNAKE_CASE_ = self.dummy_text_encoder SCREAMING_SNAKE_CASE_ = XLMRobertaTokenizer.from_pretrained('hf-internal-testing/tiny-xlm-roberta' ) SCREAMING_SNAKE_CASE_ = 77 SCREAMING_SNAKE_CASE_ = self.dummy_image.to(_lowerCAmelCase ) # put models in fp16 SCREAMING_SNAKE_CASE_ = unet.half() SCREAMING_SNAKE_CASE_ = vae.half() SCREAMING_SNAKE_CASE_ = bert.half() # make sure here that pndm scheduler skips prk SCREAMING_SNAKE_CASE_ = AltDiffusionImgaImgPipeline( unet=_lowerCAmelCase , scheduler=_lowerCAmelCase , vae=_lowerCAmelCase , text_encoder=_lowerCAmelCase , tokenizer=_lowerCAmelCase , safety_checker=_lowerCAmelCase , feature_extractor=self.dummy_extractor , ) SCREAMING_SNAKE_CASE_ = VaeImageProcessor(vae_scale_factor=alt_pipe.vae_scale_factor , do_normalize=_lowerCAmelCase ) SCREAMING_SNAKE_CASE_ = alt_pipe.to(_lowerCAmelCase ) alt_pipe.set_progress_bar_config(disable=_lowerCAmelCase ) SCREAMING_SNAKE_CASE_ = 'A painting of a squirrel eating a burger' SCREAMING_SNAKE_CASE_ = torch.manual_seed(0 ) SCREAMING_SNAKE_CASE_ = alt_pipe( [prompt] , generator=_lowerCAmelCase , num_inference_steps=2 , output_type='np' , image=_lowerCAmelCase , ).images assert image.shape == (1, 32, 32, 3) @unittest.skipIf(torch_device != 'cuda' , 'This test requires a GPU' ) def lowerCAmelCase_ ( self : str ): SCREAMING_SNAKE_CASE_ = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/img2img/sketch-mountains-input.jpg' ) # resize to resolution that is divisible by 8 but not 16 or 32 SCREAMING_SNAKE_CASE_ = init_image.resize((760, 504) ) SCREAMING_SNAKE_CASE_ = 'BAAI/AltDiffusion' SCREAMING_SNAKE_CASE_ = AltDiffusionImgaImgPipeline.from_pretrained( _lowerCAmelCase , safety_checker=_lowerCAmelCase , ) pipe.to(_lowerCAmelCase ) pipe.set_progress_bar_config(disable=_lowerCAmelCase ) pipe.enable_attention_slicing() SCREAMING_SNAKE_CASE_ = 'A fantasy landscape, trending on artstation' SCREAMING_SNAKE_CASE_ = torch.manual_seed(0 ) SCREAMING_SNAKE_CASE_ = pipe( prompt=_lowerCAmelCase , image=_lowerCAmelCase , strength=0.75 , guidance_scale=7.5 , generator=_lowerCAmelCase , output_type='np' , ) SCREAMING_SNAKE_CASE_ = output.images[0] SCREAMING_SNAKE_CASE_ = image[255:258, 383:386, -1] assert image.shape == (504, 760, 3) SCREAMING_SNAKE_CASE_ = np.array([0.9358, 0.9397, 0.9599, 0.9901, 1.0000, 1.0000, 0.9882, 1.0000, 1.0000] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 @slow @require_torch_gpu class lowerCamelCase_ ( unittest.TestCase ): '''simple docstring''' def lowerCAmelCase_ ( self : str ): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def lowerCAmelCase_ ( self : int ): SCREAMING_SNAKE_CASE_ = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/img2img/sketch-mountains-input.jpg' ) SCREAMING_SNAKE_CASE_ = init_image.resize((768, 512) ) SCREAMING_SNAKE_CASE_ = load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/img2img/fantasy_landscape_alt.npy' ) SCREAMING_SNAKE_CASE_ = 'BAAI/AltDiffusion' SCREAMING_SNAKE_CASE_ = AltDiffusionImgaImgPipeline.from_pretrained( _lowerCAmelCase , safety_checker=_lowerCAmelCase , ) pipe.to(_lowerCAmelCase ) pipe.set_progress_bar_config(disable=_lowerCAmelCase ) pipe.enable_attention_slicing() SCREAMING_SNAKE_CASE_ = 'A fantasy landscape, trending on artstation' SCREAMING_SNAKE_CASE_ = torch.manual_seed(0 ) SCREAMING_SNAKE_CASE_ = pipe( prompt=_lowerCAmelCase , image=_lowerCAmelCase , strength=0.75 , guidance_scale=7.5 , generator=_lowerCAmelCase , output_type='np' , ) SCREAMING_SNAKE_CASE_ = output.images[0] assert image.shape == (512, 768, 3) # img2img is flaky across GPUs even in fp32, so using MAE here assert np.abs(expected_image - image ).max() < 1E-2
31
1
import cva import numpy as np class lowerCamelCase_ : '''simple docstring''' def __init__( self : Any , _lowerCAmelCase : float , _lowerCAmelCase : int ): if k in (0.04, 0.06): SCREAMING_SNAKE_CASE_ = k SCREAMING_SNAKE_CASE_ = window_size else: raise ValueError('invalid k value' ) def __str__( self : Dict ): return str(self.k ) def lowerCAmelCase_ ( self : str , _lowerCAmelCase : str ): SCREAMING_SNAKE_CASE_ = cva.imread(_lowerCAmelCase , 0 ) SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = img.shape SCREAMING_SNAKE_CASE_ = [] SCREAMING_SNAKE_CASE_ = img.copy() SCREAMING_SNAKE_CASE_ = cva.cvtColor(_lowerCAmelCase , cva.COLOR_GRAY2RGB ) SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = np.gradient(_lowerCAmelCase ) SCREAMING_SNAKE_CASE_ = dx**2 SCREAMING_SNAKE_CASE_ = dy**2 SCREAMING_SNAKE_CASE_ = dx * dy SCREAMING_SNAKE_CASE_ = 0.04 SCREAMING_SNAKE_CASE_ = self.window_size // 2 for y in range(_lowerCAmelCase , h - offset ): for x in range(_lowerCAmelCase , w - offset ): SCREAMING_SNAKE_CASE_ = ixx[ y - offset : y + offset + 1, x - offset : x + offset + 1 ].sum() SCREAMING_SNAKE_CASE_ = iyy[ y - offset : y + offset + 1, x - offset : x + offset + 1 ].sum() SCREAMING_SNAKE_CASE_ = ixy[ y - offset : y + offset + 1, x - offset : x + offset + 1 ].sum() SCREAMING_SNAKE_CASE_ = (wxx * wyy) - (wxy**2) SCREAMING_SNAKE_CASE_ = wxx + wyy SCREAMING_SNAKE_CASE_ = det - k * (trace**2) # Can change the value if r > 0.5: corner_list.append([x, y, r] ) color_img.itemset((y, x, 0) , 0 ) color_img.itemset((y, x, 1) , 0 ) color_img.itemset((y, x, 2) , 255 ) return color_img, corner_list if __name__ == "__main__": lowerCamelCase__ : Union[str, Any] = HarrisCorner(0.04, 3) lowerCamelCase__ , lowerCamelCase__ : Union[str, Any] = edge_detect.detect('path_to_image') cva.imwrite('detect.png', color_img)
31
from collections import OrderedDict from typing import TYPE_CHECKING, Any, List, Mapping, Optional, Union from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import TensorType, logging if TYPE_CHECKING: from ...onnx.config import PatchingSpec from ...tokenization_utils_base import PreTrainedTokenizerBase lowerCamelCase__ : Optional[int] = logging.get_logger(__name__) lowerCamelCase__ : Dict = { 'allenai/longformer-base-4096': 'https://huggingface.co/allenai/longformer-base-4096/resolve/main/config.json', 'allenai/longformer-large-4096': 'https://huggingface.co/allenai/longformer-large-4096/resolve/main/config.json', 'allenai/longformer-large-4096-finetuned-triviaqa': ( 'https://huggingface.co/allenai/longformer-large-4096-finetuned-triviaqa/resolve/main/config.json' ), 'allenai/longformer-base-4096-extra.pos.embd.only': ( 'https://huggingface.co/allenai/longformer-base-4096-extra.pos.embd.only/resolve/main/config.json' ), 'allenai/longformer-large-4096-extra.pos.embd.only': ( 'https://huggingface.co/allenai/longformer-large-4096-extra.pos.embd.only/resolve/main/config.json' ), } class lowerCamelCase_ ( _SCREAMING_SNAKE_CASE ): '''simple docstring''' lowercase_ = "longformer" def __init__( self : Union[str, Any] , _lowerCAmelCase : Union[List[int], int] = 512 , _lowerCAmelCase : int = 2 , _lowerCAmelCase : int = 1 , _lowerCAmelCase : int = 0 , _lowerCAmelCase : int = 2 , _lowerCAmelCase : int = 30_522 , _lowerCAmelCase : int = 768 , _lowerCAmelCase : int = 12 , _lowerCAmelCase : int = 12 , _lowerCAmelCase : int = 3_072 , _lowerCAmelCase : str = "gelu" , _lowerCAmelCase : float = 0.1 , _lowerCAmelCase : float = 0.1 , _lowerCAmelCase : int = 512 , _lowerCAmelCase : int = 2 , _lowerCAmelCase : float = 0.02 , _lowerCAmelCase : float = 1E-12 , _lowerCAmelCase : bool = False , **_lowerCAmelCase : Union[str, Any] , ): super().__init__(pad_token_id=_lowerCAmelCase , **_lowerCAmelCase ) SCREAMING_SNAKE_CASE_ = attention_window SCREAMING_SNAKE_CASE_ = sep_token_id SCREAMING_SNAKE_CASE_ = bos_token_id SCREAMING_SNAKE_CASE_ = eos_token_id SCREAMING_SNAKE_CASE_ = vocab_size SCREAMING_SNAKE_CASE_ = hidden_size SCREAMING_SNAKE_CASE_ = num_hidden_layers SCREAMING_SNAKE_CASE_ = num_attention_heads SCREAMING_SNAKE_CASE_ = hidden_act SCREAMING_SNAKE_CASE_ = intermediate_size SCREAMING_SNAKE_CASE_ = hidden_dropout_prob SCREAMING_SNAKE_CASE_ = attention_probs_dropout_prob SCREAMING_SNAKE_CASE_ = max_position_embeddings SCREAMING_SNAKE_CASE_ = type_vocab_size SCREAMING_SNAKE_CASE_ = initializer_range SCREAMING_SNAKE_CASE_ = layer_norm_eps SCREAMING_SNAKE_CASE_ = onnx_export class lowerCamelCase_ ( _SCREAMING_SNAKE_CASE ): '''simple docstring''' def __init__( self : Optional[Any] , _lowerCAmelCase : "PretrainedConfig" , _lowerCAmelCase : str = "default" , _lowerCAmelCase : "List[PatchingSpec]" = None ): super().__init__(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) SCREAMING_SNAKE_CASE_ = True @property def lowerCAmelCase_ ( self : Any ): if self.task == "multiple-choice": SCREAMING_SNAKE_CASE_ = {0: 'batch', 1: 'choice', 2: 'sequence'} else: SCREAMING_SNAKE_CASE_ = {0: 'batch', 1: 'sequence'} return OrderedDict( [ ('input_ids', dynamic_axis), ('attention_mask', dynamic_axis), ('global_attention_mask', dynamic_axis), ] ) @property def lowerCAmelCase_ ( self : Optional[int] ): SCREAMING_SNAKE_CASE_ = super().outputs if self.task == "default": SCREAMING_SNAKE_CASE_ = {0: 'batch'} return outputs @property def lowerCAmelCase_ ( self : str ): return 1E-4 @property def lowerCAmelCase_ ( self : Optional[Any] ): # needs to be >= 14 to support tril operator return max(super().default_onnx_opset , 14 ) def lowerCAmelCase_ ( self : str , _lowerCAmelCase : "PreTrainedTokenizerBase" , _lowerCAmelCase : int = -1 , _lowerCAmelCase : int = -1 , _lowerCAmelCase : bool = False , _lowerCAmelCase : Optional[TensorType] = None , ): SCREAMING_SNAKE_CASE_ = super().generate_dummy_inputs( preprocessor=_lowerCAmelCase , batch_size=_lowerCAmelCase , seq_length=_lowerCAmelCase , is_pair=_lowerCAmelCase , framework=_lowerCAmelCase ) import torch # for some reason, replacing this code by inputs["global_attention_mask"] = torch.randint(2, inputs["input_ids"].shape, dtype=torch.int64) # makes the export fail randomly SCREAMING_SNAKE_CASE_ = torch.zeros_like(inputs['input_ids'] ) # make every second token global SCREAMING_SNAKE_CASE_ = 1 return inputs
31
1
# Copyright 2022 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse import os import subprocess from packaging.version import Version, parse from accelerate.commands.config.config_args import default_config_file, load_config_from_file lowerCamelCase__ : Optional[Any] = 'Run commands across TPU VMs for initial setup before running `accelerate launch`.' def UpperCAmelCase_ ( __UpperCAmelCase : List[str]=None ) -> Optional[int]: if subparsers is not None: SCREAMING_SNAKE_CASE_ = subparsers.add_parser('tpu-config' , description=_description ) else: SCREAMING_SNAKE_CASE_ = argparse.ArgumentParser('Accelerate tpu-config command' , description=_description ) # Core arguments SCREAMING_SNAKE_CASE_ = parser.add_argument_group( 'Config Arguments' , 'Arguments that can be configured through `accelerate config`.' ) config_args.add_argument( '--config_file' , type=__UpperCAmelCase , default=__UpperCAmelCase , help='Path to the config file to use for accelerate.' , ) config_args.add_argument( '--tpu_name' , default=__UpperCAmelCase , help='The name of the TPU to use. If not specified, will use the TPU specified in the config file.' , ) config_args.add_argument( '--tpu_zone' , default=__UpperCAmelCase , help='The zone of the TPU to use. If not specified, will use the zone specified in the config file.' , ) SCREAMING_SNAKE_CASE_ = parser.add_argument_group('TPU Arguments' , 'Arguments for options ran inside the TPU.' ) pod_args.add_argument( '--use_alpha' , action='store_true' , help='Whether to use `gcloud alpha` when running the TPU training script instead of `gcloud`.' , ) pod_args.add_argument( '--command_file' , default=__UpperCAmelCase , help='The path to the file containing the commands to run on the pod on startup.' , ) pod_args.add_argument( '--command' , action='append' , nargs='+' , help='A command to run on the pod. Can be passed multiple times.' , ) pod_args.add_argument( '--install_accelerate' , action='store_true' , help='Whether to install accelerate on the pod. Defaults to False.' , ) pod_args.add_argument( '--accelerate_version' , default='latest' , help='The version of accelerate to install on the pod. If not specified, will use the latest pypi version. Specify \'dev\' to install from GitHub.' , ) pod_args.add_argument( '--debug' , action='store_true' , help='If set, will print the command that would be run instead of running it.' ) if subparsers is not None: parser.set_defaults(func=__UpperCAmelCase ) return parser def UpperCAmelCase_ ( __UpperCAmelCase : str ) -> Dict: SCREAMING_SNAKE_CASE_ = None # Get the default from the config file if it exists. if args.config_file is not None or os.path.isfile(__UpperCAmelCase ): SCREAMING_SNAKE_CASE_ = load_config_from_file(args.config_file ) if not args.command_file and defaults.command_file is not None and not args.command: SCREAMING_SNAKE_CASE_ = defaults.command_file if not args.command and defaults.commands is not None: SCREAMING_SNAKE_CASE_ = defaults.commands if not args.tpu_name: SCREAMING_SNAKE_CASE_ = defaults.tpu_name if not args.tpu_zone: SCREAMING_SNAKE_CASE_ = defaults.tpu_zone if args.accelerate_version == "dev": SCREAMING_SNAKE_CASE_ = 'git+https://github.com/huggingface/accelerate.git' elif args.accelerate_version == "latest": SCREAMING_SNAKE_CASE_ = 'accelerate -U' elif isinstance(parse(args.accelerate_version ) , __UpperCAmelCase ): SCREAMING_SNAKE_CASE_ = f"accelerate=={args.accelerate_version}" if not args.command_file and not args.command: raise ValueError('You must specify either a command file or a command to run on the pod.' ) if args.command_file: with open(args.command_file , 'r' ) as f: SCREAMING_SNAKE_CASE_ = [f.read().splitlines()] # To turn list of lists into list of strings if isinstance(args.command[0] , __UpperCAmelCase ): SCREAMING_SNAKE_CASE_ = [line for cmd in args.command for line in cmd] # Default to the shared folder and install accelerate SCREAMING_SNAKE_CASE_ = ['cd /usr/share'] if args.install_accelerate: new_cmd += [f"pip install {args.accelerate_version}"] new_cmd += args.command SCREAMING_SNAKE_CASE_ = '; '.join(__UpperCAmelCase ) # Then send it to gcloud # Eventually try to use google-api-core to do this instead of subprocess SCREAMING_SNAKE_CASE_ = ['gcloud'] if args.use_alpha: cmd += ["alpha"] cmd += [ "compute", "tpus", "tpu-vm", "ssh", args.tpu_name, "--zone", args.tpu_zone, "--command", args.command, "--worker", "all", ] if args.debug: print(f"Running {' '.join(__UpperCAmelCase )}" ) return subprocess.run(__UpperCAmelCase ) print('Successfully setup pod.' ) def UpperCAmelCase_ ( ) -> Union[str, Any]: SCREAMING_SNAKE_CASE_ = tpu_command_parser() SCREAMING_SNAKE_CASE_ = parser.parse_args() tpu_command_launcher(__UpperCAmelCase )
31
import warnings from ...utils import logging from .image_processing_mobilevit import MobileViTImageProcessor lowerCamelCase__ : Optional[int] = logging.get_logger(__name__) class lowerCamelCase_ ( _SCREAMING_SNAKE_CASE ): '''simple docstring''' def __init__( self : str , *_lowerCAmelCase : Tuple , **_lowerCAmelCase : int ): warnings.warn( 'The class MobileViTFeatureExtractor is deprecated and will be removed in version 5 of Transformers.' ' Please use MobileViTImageProcessor instead.' , _lowerCAmelCase , ) super().__init__(*_lowerCAmelCase , **_lowerCAmelCase )
31
1
import warnings from ...utils import logging from .image_processing_mobilevit import MobileViTImageProcessor lowerCamelCase__ : Optional[int] = logging.get_logger(__name__) class lowerCamelCase_ ( _SCREAMING_SNAKE_CASE ): '''simple docstring''' def __init__( self : str , *_lowerCAmelCase : Tuple , **_lowerCAmelCase : int ): warnings.warn( 'The class MobileViTFeatureExtractor is deprecated and will be removed in version 5 of Transformers.' ' Please use MobileViTImageProcessor instead.' , _lowerCAmelCase , ) super().__init__(*_lowerCAmelCase , **_lowerCAmelCase )
31
from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCamelCase__ : Optional[int] = logging.get_logger(__name__) lowerCamelCase__ : Tuple = { 'microsoft/swinv2-tiny-patch4-window8-256': ( 'https://huggingface.co/microsoft/swinv2-tiny-patch4-window8-256/resolve/main/config.json' ), } class lowerCamelCase_ ( _SCREAMING_SNAKE_CASE ): '''simple docstring''' lowercase_ = "swinv2" lowercase_ = { "num_attention_heads": "num_heads", "num_hidden_layers": "num_layers", } def __init__( self : Dict , _lowerCAmelCase : Optional[Any]=224 , _lowerCAmelCase : Optional[int]=4 , _lowerCAmelCase : Tuple=3 , _lowerCAmelCase : Tuple=96 , _lowerCAmelCase : Dict=[2, 2, 6, 2] , _lowerCAmelCase : Optional[Any]=[3, 6, 12, 24] , _lowerCAmelCase : str=7 , _lowerCAmelCase : List[Any]=4.0 , _lowerCAmelCase : List[str]=True , _lowerCAmelCase : List[Any]=0.0 , _lowerCAmelCase : List[Any]=0.0 , _lowerCAmelCase : Any=0.1 , _lowerCAmelCase : List[Any]="gelu" , _lowerCAmelCase : str=False , _lowerCAmelCase : str=0.02 , _lowerCAmelCase : List[Any]=1E-5 , _lowerCAmelCase : str=32 , **_lowerCAmelCase : List[Any] , ): super().__init__(**_lowerCAmelCase ) SCREAMING_SNAKE_CASE_ = image_size SCREAMING_SNAKE_CASE_ = patch_size SCREAMING_SNAKE_CASE_ = num_channels SCREAMING_SNAKE_CASE_ = embed_dim SCREAMING_SNAKE_CASE_ = depths SCREAMING_SNAKE_CASE_ = len(_lowerCAmelCase ) SCREAMING_SNAKE_CASE_ = num_heads SCREAMING_SNAKE_CASE_ = window_size SCREAMING_SNAKE_CASE_ = mlp_ratio SCREAMING_SNAKE_CASE_ = qkv_bias SCREAMING_SNAKE_CASE_ = hidden_dropout_prob SCREAMING_SNAKE_CASE_ = attention_probs_dropout_prob SCREAMING_SNAKE_CASE_ = drop_path_rate SCREAMING_SNAKE_CASE_ = hidden_act SCREAMING_SNAKE_CASE_ = use_absolute_embeddings SCREAMING_SNAKE_CASE_ = layer_norm_eps SCREAMING_SNAKE_CASE_ = initializer_range SCREAMING_SNAKE_CASE_ = encoder_stride # we set the hidden_size attribute in order to make Swinv2 work with VisionEncoderDecoderModel # this indicates the channel dimension after the last stage of the model SCREAMING_SNAKE_CASE_ = int(embed_dim * 2 ** (len(_lowerCAmelCase ) - 1) ) SCREAMING_SNAKE_CASE_ = (0, 0, 0, 0)
31
1
import itertools from dataclasses import dataclass from typing import Any, Callable, Dict, List, Optional, Union import pandas as pd import pyarrow as pa import datasets import datasets.config from datasets.features.features import require_storage_cast from datasets.table import table_cast from datasets.utils.py_utils import Literal lowerCamelCase__ : int = datasets.utils.logging.get_logger(__name__) lowerCamelCase__ : str = ['names', 'prefix'] lowerCamelCase__ : List[Any] = ['warn_bad_lines', 'error_bad_lines', 'mangle_dupe_cols'] lowerCamelCase__ : Optional[int] = ['encoding_errors', 'on_bad_lines'] lowerCamelCase__ : str = ['date_format'] @dataclass class lowerCamelCase_ ( datasets.BuilderConfig ): '''simple docstring''' lowercase_ = "," lowercase_ = None lowercase_ = "infer" lowercase_ = None lowercase_ = None lowercase_ = None lowercase_ = None lowercase_ = None lowercase_ = True lowercase_ = None lowercase_ = None lowercase_ = None lowercase_ = None lowercase_ = False lowercase_ = None lowercase_ = None lowercase_ = None lowercase_ = True lowercase_ = True lowercase_ = False lowercase_ = True lowercase_ = None lowercase_ = "." lowercase_ = None lowercase_ = '"' lowercase_ = 0 lowercase_ = None lowercase_ = None lowercase_ = None lowercase_ = None lowercase_ = True lowercase_ = True lowercase_ = 0 lowercase_ = True lowercase_ = False lowercase_ = None lowercase_ = 10_000 lowercase_ = None lowercase_ = "strict" lowercase_ = "error" lowercase_ = None def lowerCAmelCase_ ( self : Any ): if self.delimiter is not None: SCREAMING_SNAKE_CASE_ = self.delimiter if self.column_names is not None: SCREAMING_SNAKE_CASE_ = self.column_names @property def lowerCAmelCase_ ( self : Dict ): SCREAMING_SNAKE_CASE_ = { 'sep': self.sep, 'header': self.header, 'names': self.names, 'index_col': self.index_col, 'usecols': self.usecols, 'prefix': self.prefix, 'mangle_dupe_cols': self.mangle_dupe_cols, 'engine': self.engine, 'converters': self.converters, 'true_values': self.true_values, 'false_values': self.false_values, 'skipinitialspace': self.skipinitialspace, 'skiprows': self.skiprows, 'nrows': self.nrows, 'na_values': self.na_values, 'keep_default_na': self.keep_default_na, 'na_filter': self.na_filter, 'verbose': self.verbose, 'skip_blank_lines': self.skip_blank_lines, 'thousands': self.thousands, 'decimal': self.decimal, 'lineterminator': self.lineterminator, 'quotechar': self.quotechar, 'quoting': self.quoting, 'escapechar': self.escapechar, 'comment': self.comment, 'encoding': self.encoding, 'dialect': self.dialect, 'error_bad_lines': self.error_bad_lines, 'warn_bad_lines': self.warn_bad_lines, 'skipfooter': self.skipfooter, 'doublequote': self.doublequote, 'memory_map': self.memory_map, 'float_precision': self.float_precision, 'chunksize': self.chunksize, 'encoding_errors': self.encoding_errors, 'on_bad_lines': self.on_bad_lines, 'date_format': self.date_format, } # some kwargs must not be passed if they don't have a default value # some others are deprecated and we can also not pass them if they are the default value for pd_read_csv_parameter in _PANDAS_READ_CSV_NO_DEFAULT_PARAMETERS + _PANDAS_READ_CSV_DEPRECATED_PARAMETERS: if pd_read_csv_kwargs[pd_read_csv_parameter] == getattr(CsvConfig() , _lowerCAmelCase ): del pd_read_csv_kwargs[pd_read_csv_parameter] # Remove 2.0 new arguments if not (datasets.config.PANDAS_VERSION.major >= 2): for pd_read_csv_parameter in _PANDAS_READ_CSV_NEW_2_0_0_PARAMETERS: del pd_read_csv_kwargs[pd_read_csv_parameter] # Remove 1.3 new arguments if not (datasets.config.PANDAS_VERSION.major >= 1 and datasets.config.PANDAS_VERSION.minor >= 3): for pd_read_csv_parameter in _PANDAS_READ_CSV_NEW_1_3_0_PARAMETERS: del pd_read_csv_kwargs[pd_read_csv_parameter] return pd_read_csv_kwargs class lowerCamelCase_ ( datasets.ArrowBasedBuilder ): '''simple docstring''' lowercase_ = CsvConfig def lowerCAmelCase_ ( self : Tuple ): return datasets.DatasetInfo(features=self.config.features ) def lowerCAmelCase_ ( self : str , _lowerCAmelCase : Optional[int] ): if not self.config.data_files: raise ValueError(F"At least one data file must be specified, but got data_files={self.config.data_files}" ) SCREAMING_SNAKE_CASE_ = dl_manager.download_and_extract(self.config.data_files ) if isinstance(_lowerCAmelCase , (str, list, tuple) ): SCREAMING_SNAKE_CASE_ = data_files if isinstance(_lowerCAmelCase , _lowerCAmelCase ): SCREAMING_SNAKE_CASE_ = [files] SCREAMING_SNAKE_CASE_ = [dl_manager.iter_files(_lowerCAmelCase ) for file in files] return [datasets.SplitGenerator(name=datasets.Split.TRAIN , gen_kwargs={'files': files} )] SCREAMING_SNAKE_CASE_ = [] for split_name, files in data_files.items(): if isinstance(_lowerCAmelCase , _lowerCAmelCase ): SCREAMING_SNAKE_CASE_ = [files] SCREAMING_SNAKE_CASE_ = [dl_manager.iter_files(_lowerCAmelCase ) for file in files] splits.append(datasets.SplitGenerator(name=_lowerCAmelCase , gen_kwargs={'files': files} ) ) return splits def lowerCAmelCase_ ( self : List[Any] , _lowerCAmelCase : pa.Table ): if self.config.features is not None: SCREAMING_SNAKE_CASE_ = self.config.features.arrow_schema if all(not require_storage_cast(_lowerCAmelCase ) for feature in self.config.features.values() ): # cheaper cast SCREAMING_SNAKE_CASE_ = pa.Table.from_arrays([pa_table[field.name] for field in schema] , schema=_lowerCAmelCase ) else: # more expensive cast; allows str <-> int/float or str to Audio for example SCREAMING_SNAKE_CASE_ = table_cast(_lowerCAmelCase , _lowerCAmelCase ) return pa_table def lowerCAmelCase_ ( self : List[str] , _lowerCAmelCase : Optional[Any] ): SCREAMING_SNAKE_CASE_ = self.config.features.arrow_schema if self.config.features else None # dtype allows reading an int column as str SCREAMING_SNAKE_CASE_ = ( { name: dtype.to_pandas_dtype() if not require_storage_cast(_lowerCAmelCase ) else object for name, dtype, feature in zip(schema.names , schema.types , self.config.features.values() ) } if schema is not None else None ) for file_idx, file in enumerate(itertools.chain.from_iterable(_lowerCAmelCase ) ): SCREAMING_SNAKE_CASE_ = pd.read_csv(_lowerCAmelCase , iterator=_lowerCAmelCase , dtype=_lowerCAmelCase , **self.config.pd_read_csv_kwargs ) try: for batch_idx, df in enumerate(_lowerCAmelCase ): SCREAMING_SNAKE_CASE_ = pa.Table.from_pandas(_lowerCAmelCase ) # Uncomment for debugging (will print the Arrow table size and elements) # logger.warning(f"pa_table: {pa_table} num rows: {pa_table.num_rows}") # logger.warning('\n'.join(str(pa_table.slice(i, 1).to_pydict()) for i in range(pa_table.num_rows))) yield (file_idx, batch_idx), self._cast_table(_lowerCAmelCase ) except ValueError as e: logger.error(F"Failed to read file '{file}' with error {type(_lowerCAmelCase )}: {e}" ) raise
31
import itertools import random import unittest import numpy as np from transformers import BatchFeature, SpeechTaFeatureExtractor from transformers.testing_utils import require_torch from transformers.utils.import_utils import is_torch_available from ...test_sequence_feature_extraction_common import SequenceFeatureExtractionTestMixin if is_torch_available(): import torch lowerCamelCase__ : Dict = random.Random() def UpperCAmelCase_ ( __UpperCAmelCase : int , __UpperCAmelCase : Tuple=1.0 , __UpperCAmelCase : Dict=None , __UpperCAmelCase : Dict=None ) -> Tuple: if rng is None: SCREAMING_SNAKE_CASE_ = global_rng SCREAMING_SNAKE_CASE_ = [] for batch_idx in range(shape[0] ): values.append([] ) for _ in range(shape[1] ): values[-1].append(rng.random() * scale ) return values @require_torch class lowerCamelCase_ ( unittest.TestCase ): '''simple docstring''' def __init__( self : List[str] , _lowerCAmelCase : int , _lowerCAmelCase : Optional[Any]=7 , _lowerCAmelCase : Union[str, Any]=400 , _lowerCAmelCase : Tuple=2_000 , _lowerCAmelCase : str=1 , _lowerCAmelCase : int=0.0 , _lowerCAmelCase : Optional[Any]=16_000 , _lowerCAmelCase : Optional[Any]=True , _lowerCAmelCase : Any=80 , _lowerCAmelCase : Union[str, Any]=16 , _lowerCAmelCase : List[str]=64 , _lowerCAmelCase : List[Any]="hann_window" , _lowerCAmelCase : Any=80 , _lowerCAmelCase : List[Any]=7_600 , _lowerCAmelCase : List[Any]=1E-10 , _lowerCAmelCase : Optional[Any]=True , ): SCREAMING_SNAKE_CASE_ = parent SCREAMING_SNAKE_CASE_ = batch_size SCREAMING_SNAKE_CASE_ = min_seq_length SCREAMING_SNAKE_CASE_ = max_seq_length SCREAMING_SNAKE_CASE_ = (self.max_seq_length - self.min_seq_length) // (self.batch_size - 1) SCREAMING_SNAKE_CASE_ = feature_size SCREAMING_SNAKE_CASE_ = padding_value SCREAMING_SNAKE_CASE_ = sampling_rate SCREAMING_SNAKE_CASE_ = do_normalize SCREAMING_SNAKE_CASE_ = num_mel_bins SCREAMING_SNAKE_CASE_ = hop_length SCREAMING_SNAKE_CASE_ = win_length SCREAMING_SNAKE_CASE_ = win_function SCREAMING_SNAKE_CASE_ = fmin SCREAMING_SNAKE_CASE_ = fmax SCREAMING_SNAKE_CASE_ = mel_floor SCREAMING_SNAKE_CASE_ = return_attention_mask def lowerCAmelCase_ ( self : Union[str, Any] ): return { "feature_size": self.feature_size, "padding_value": self.padding_value, "sampling_rate": self.sampling_rate, "do_normalize": self.do_normalize, "num_mel_bins": self.num_mel_bins, "hop_length": self.hop_length, "win_length": self.win_length, "win_function": self.win_function, "fmin": self.fmin, "fmax": self.fmax, "mel_floor": self.mel_floor, "return_attention_mask": self.return_attention_mask, } def lowerCAmelCase_ ( self : Dict , _lowerCAmelCase : Optional[int]=False , _lowerCAmelCase : str=False ): def _flatten(_lowerCAmelCase : Dict ): return list(itertools.chain(*_lowerCAmelCase ) ) if equal_length: SCREAMING_SNAKE_CASE_ = floats_list((self.batch_size, self.max_seq_length) ) else: # make sure that inputs increase in size SCREAMING_SNAKE_CASE_ = [ _flatten(floats_list((x, self.feature_size) ) ) for x in range(self.min_seq_length , self.max_seq_length , self.seq_length_diff ) ] if numpify: SCREAMING_SNAKE_CASE_ = [np.asarray(_lowerCAmelCase ) for x in speech_inputs] return speech_inputs def lowerCAmelCase_ ( self : List[Any] , _lowerCAmelCase : Union[str, Any]=False , _lowerCAmelCase : Optional[int]=False ): if equal_length: SCREAMING_SNAKE_CASE_ = [floats_list((self.max_seq_length, self.num_mel_bins) ) for _ in range(self.batch_size )] else: # make sure that inputs increase in size SCREAMING_SNAKE_CASE_ = [ floats_list((x, self.num_mel_bins) ) for x in range(self.min_seq_length , self.max_seq_length , self.seq_length_diff ) ] if numpify: SCREAMING_SNAKE_CASE_ = [np.asarray(_lowerCAmelCase ) for x in speech_inputs] return speech_inputs @require_torch class lowerCamelCase_ ( _SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' lowercase_ = SpeechTaFeatureExtractor def lowerCAmelCase_ ( self : Any ): SCREAMING_SNAKE_CASE_ = SpeechTaFeatureExtractionTester(self ) def lowerCAmelCase_ ( self : Any , _lowerCAmelCase : int ): self.assertTrue(np.all(np.mean(_lowerCAmelCase , axis=0 ) < 1E-3 ) ) self.assertTrue(np.all(np.abs(np.var(_lowerCAmelCase , axis=0 ) - 1 ) < 1E-3 ) ) def lowerCAmelCase_ ( self : List[Any] ): # Tests that all call wrap to encode_plus and batch_encode_plus SCREAMING_SNAKE_CASE_ = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) # create three inputs of length 800, 1000, and 1200 SCREAMING_SNAKE_CASE_ = [floats_list((1, x) )[0] for x in range(800 , 1_400 , 200 )] SCREAMING_SNAKE_CASE_ = [np.asarray(_lowerCAmelCase ) for speech_input in speech_inputs] # Test not batched input SCREAMING_SNAKE_CASE_ = feat_extract(speech_inputs[0] , return_tensors='np' ).input_values SCREAMING_SNAKE_CASE_ = feat_extract(np_speech_inputs[0] , return_tensors='np' ).input_values self.assertTrue(np.allclose(_lowerCAmelCase , _lowerCAmelCase , atol=1E-3 ) ) # Test batched SCREAMING_SNAKE_CASE_ = feat_extract(_lowerCAmelCase , return_tensors='np' ).input_values SCREAMING_SNAKE_CASE_ = feat_extract(_lowerCAmelCase , return_tensors='np' ).input_values for enc_seq_a, enc_seq_a in zip(_lowerCAmelCase , _lowerCAmelCase ): self.assertTrue(np.allclose(_lowerCAmelCase , _lowerCAmelCase , atol=1E-3 ) ) def lowerCAmelCase_ ( self : Union[str, Any] ): SCREAMING_SNAKE_CASE_ = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) SCREAMING_SNAKE_CASE_ = [floats_list((1, x) )[0] for x in range(800 , 1_400 , 200 )] SCREAMING_SNAKE_CASE_ = ['longest', 'max_length', 'do_not_pad'] SCREAMING_SNAKE_CASE_ = [None, 1_600, None] for max_length, padding in zip(_lowerCAmelCase , _lowerCAmelCase ): SCREAMING_SNAKE_CASE_ = feat_extract(_lowerCAmelCase , padding=_lowerCAmelCase , max_length=_lowerCAmelCase , return_tensors='np' ) SCREAMING_SNAKE_CASE_ = processed.input_values self._check_zero_mean_unit_variance(input_values[0][:800] ) self.assertTrue(input_values[0][800:].sum() < 1E-6 ) self._check_zero_mean_unit_variance(input_values[1][:1_000] ) self.assertTrue(input_values[0][1_000:].sum() < 1E-6 ) self._check_zero_mean_unit_variance(input_values[2][:1_200] ) def lowerCAmelCase_ ( self : Optional[Any] ): SCREAMING_SNAKE_CASE_ = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) SCREAMING_SNAKE_CASE_ = range(800 , 1_400 , 200 ) SCREAMING_SNAKE_CASE_ = [floats_list((1, x) )[0] for x in lengths] SCREAMING_SNAKE_CASE_ = ['longest', 'max_length', 'do_not_pad'] SCREAMING_SNAKE_CASE_ = [None, 1_600, None] for max_length, padding in zip(_lowerCAmelCase , _lowerCAmelCase ): SCREAMING_SNAKE_CASE_ = feat_extract(_lowerCAmelCase , max_length=_lowerCAmelCase , padding=_lowerCAmelCase ) SCREAMING_SNAKE_CASE_ = processed.input_values self._check_zero_mean_unit_variance(input_values[0][:800] ) self._check_zero_mean_unit_variance(input_values[1][:1_000] ) self._check_zero_mean_unit_variance(input_values[2][:1_200] ) def lowerCAmelCase_ ( self : Dict ): SCREAMING_SNAKE_CASE_ = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) SCREAMING_SNAKE_CASE_ = [floats_list((1, x) )[0] for x in range(800 , 1_400 , 200 )] SCREAMING_SNAKE_CASE_ = feat_extract( _lowerCAmelCase , truncation=_lowerCAmelCase , max_length=1_000 , padding='max_length' , return_tensors='np' ) SCREAMING_SNAKE_CASE_ = processed.input_values self._check_zero_mean_unit_variance(input_values[0, :800] ) self._check_zero_mean_unit_variance(input_values[1] ) self._check_zero_mean_unit_variance(input_values[2] ) def lowerCAmelCase_ ( self : Dict ): SCREAMING_SNAKE_CASE_ = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) SCREAMING_SNAKE_CASE_ = [floats_list((1, x) )[0] for x in range(800 , 1_400 , 200 )] SCREAMING_SNAKE_CASE_ = feat_extract( _lowerCAmelCase , truncation=_lowerCAmelCase , max_length=1_000 , padding='longest' , return_tensors='np' ) SCREAMING_SNAKE_CASE_ = processed.input_values self._check_zero_mean_unit_variance(input_values[0, :800] ) self._check_zero_mean_unit_variance(input_values[1, :1_000] ) self._check_zero_mean_unit_variance(input_values[2] ) # make sure that if max_length < longest -> then pad to max_length self.assertTrue(input_values.shape == (3, 1_000) ) SCREAMING_SNAKE_CASE_ = [floats_list((1, x) )[0] for x in range(800 , 1_400 , 200 )] SCREAMING_SNAKE_CASE_ = feat_extract( _lowerCAmelCase , truncation=_lowerCAmelCase , max_length=2_000 , padding='longest' , return_tensors='np' ) SCREAMING_SNAKE_CASE_ = processed.input_values self._check_zero_mean_unit_variance(input_values[0, :800] ) self._check_zero_mean_unit_variance(input_values[1, :1_000] ) self._check_zero_mean_unit_variance(input_values[2] ) # make sure that if max_length > longest -> then pad to longest self.assertTrue(input_values.shape == (3, 1_200) ) def lowerCAmelCase_ ( self : Optional[int] ): SCREAMING_SNAKE_CASE_ = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) SCREAMING_SNAKE_CASE_ = np.random.rand(100 ).astype(np.floataa ) SCREAMING_SNAKE_CASE_ = np_speech_inputs.tolist() for inputs in [py_speech_inputs, np_speech_inputs]: SCREAMING_SNAKE_CASE_ = feature_extractor.pad([{'input_values': inputs}] , return_tensors='np' ) self.assertTrue(np_processed.input_values.dtype == np.floataa ) SCREAMING_SNAKE_CASE_ = feature_extractor.pad([{'input_values': inputs}] , return_tensors='pt' ) self.assertTrue(pt_processed.input_values.dtype == torch.floataa ) def lowerCAmelCase_ ( self : Tuple ): # Tests that all call wrap to encode_plus and batch_encode_plus SCREAMING_SNAKE_CASE_ = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) # create three inputs of length 800, 1000, and 1200 SCREAMING_SNAKE_CASE_ = [floats_list((1, x) )[0] for x in range(800 , 1_400 , 200 )] SCREAMING_SNAKE_CASE_ = [np.asarray(_lowerCAmelCase ) for speech_input in speech_inputs] # Test feature size SCREAMING_SNAKE_CASE_ = feature_extractor(audio_target=_lowerCAmelCase , padding=_lowerCAmelCase , return_tensors='np' ).input_values self.assertTrue(input_values.ndim == 3 ) self.assertTrue(input_values.shape[-1] == feature_extractor.num_mel_bins ) # Test not batched input SCREAMING_SNAKE_CASE_ = feature_extractor(speech_inputs[0] , return_tensors='np' ).input_values SCREAMING_SNAKE_CASE_ = feature_extractor(np_speech_inputs[0] , return_tensors='np' ).input_values self.assertTrue(np.allclose(_lowerCAmelCase , _lowerCAmelCase , atol=1E-3 ) ) # Test batched SCREAMING_SNAKE_CASE_ = feature_extractor(_lowerCAmelCase , return_tensors='np' ).input_values SCREAMING_SNAKE_CASE_ = feature_extractor(_lowerCAmelCase , return_tensors='np' ).input_values for enc_seq_a, enc_seq_a in zip(_lowerCAmelCase , _lowerCAmelCase ): self.assertTrue(np.allclose(_lowerCAmelCase , _lowerCAmelCase , atol=1E-3 ) ) # Test 2-D numpy arrays are batched. SCREAMING_SNAKE_CASE_ = [floats_list((1, x) )[0] for x in (800, 800, 800)] SCREAMING_SNAKE_CASE_ = np.asarray(_lowerCAmelCase ) SCREAMING_SNAKE_CASE_ = feature_extractor(_lowerCAmelCase , return_tensors='np' ).input_values SCREAMING_SNAKE_CASE_ = feature_extractor(_lowerCAmelCase , return_tensors='np' ).input_values for enc_seq_a, enc_seq_a in zip(_lowerCAmelCase , _lowerCAmelCase ): self.assertTrue(np.allclose(_lowerCAmelCase , _lowerCAmelCase , atol=1E-3 ) ) def lowerCAmelCase_ ( self : str ): SCREAMING_SNAKE_CASE_ = self.feat_extract_tester.prepare_inputs_for_target() SCREAMING_SNAKE_CASE_ = self.feature_extraction_class(**self.feat_extract_dict ) SCREAMING_SNAKE_CASE_ = feat_extract.model_input_names[0] SCREAMING_SNAKE_CASE_ = BatchFeature({input_name: speech_inputs} ) self.assertTrue(all(len(_lowerCAmelCase ) == len(_lowerCAmelCase ) for x, y in zip(_lowerCAmelCase , processed_features[input_name] ) ) ) SCREAMING_SNAKE_CASE_ = self.feat_extract_tester.prepare_inputs_for_target(equal_length=_lowerCAmelCase ) SCREAMING_SNAKE_CASE_ = BatchFeature({input_name: speech_inputs} , tensor_type='np' ) SCREAMING_SNAKE_CASE_ = processed_features[input_name] if len(batch_features_input.shape ) < 3: SCREAMING_SNAKE_CASE_ = batch_features_input[:, :, None] self.assertTrue( batch_features_input.shape == (self.feat_extract_tester.batch_size, len(speech_inputs[0] ), self.feat_extract_tester.num_mel_bins) ) @require_torch def lowerCAmelCase_ ( self : Dict ): SCREAMING_SNAKE_CASE_ = self.feat_extract_tester.prepare_inputs_for_target(equal_length=_lowerCAmelCase ) SCREAMING_SNAKE_CASE_ = self.feature_extraction_class(**self.feat_extract_dict ) SCREAMING_SNAKE_CASE_ = feat_extract.model_input_names[0] SCREAMING_SNAKE_CASE_ = BatchFeature({input_name: speech_inputs} , tensor_type='pt' ) SCREAMING_SNAKE_CASE_ = processed_features[input_name] if len(batch_features_input.shape ) < 3: SCREAMING_SNAKE_CASE_ = batch_features_input[:, :, None] self.assertTrue( batch_features_input.shape == (self.feat_extract_tester.batch_size, len(speech_inputs[0] ), self.feat_extract_tester.num_mel_bins) ) @require_torch def lowerCAmelCase_ ( self : Dict ): SCREAMING_SNAKE_CASE_ = self.feature_extraction_class(**self.feat_extract_dict ) SCREAMING_SNAKE_CASE_ = self.feat_extract_tester.prepare_inputs_for_target() SCREAMING_SNAKE_CASE_ = feat_extract.model_input_names[0] SCREAMING_SNAKE_CASE_ = BatchFeature({input_name: speech_inputs} ) SCREAMING_SNAKE_CASE_ = feat_extract.num_mel_bins # hack! SCREAMING_SNAKE_CASE_ = feat_extract.pad(_lowerCAmelCase , padding='longest' , return_tensors='np' )[input_name] SCREAMING_SNAKE_CASE_ = feat_extract.pad(_lowerCAmelCase , padding='longest' , return_tensors='pt' )[input_name] self.assertTrue(abs(input_np.astype(np.floataa ).sum() - input_pt.numpy().astype(np.floataa ).sum() ) < 1E-2 ) def lowerCAmelCase_ ( self : str ): SCREAMING_SNAKE_CASE_ = self.feat_extract_dict SCREAMING_SNAKE_CASE_ = True SCREAMING_SNAKE_CASE_ = self.feature_extraction_class(**_lowerCAmelCase ) SCREAMING_SNAKE_CASE_ = self.feat_extract_tester.prepare_inputs_for_target() SCREAMING_SNAKE_CASE_ = [len(_lowerCAmelCase ) for x in speech_inputs] SCREAMING_SNAKE_CASE_ = feat_extract.model_input_names[0] SCREAMING_SNAKE_CASE_ = BatchFeature({input_name: speech_inputs} ) SCREAMING_SNAKE_CASE_ = feat_extract.num_mel_bins # hack! SCREAMING_SNAKE_CASE_ = feat_extract.pad(_lowerCAmelCase , padding='longest' , return_tensors='np' ) self.assertIn('attention_mask' , _lowerCAmelCase ) self.assertListEqual(list(processed.attention_mask.shape ) , list(processed[input_name].shape[:2] ) ) self.assertListEqual(processed.attention_mask.sum(-1 ).tolist() , _lowerCAmelCase ) def lowerCAmelCase_ ( self : Any ): SCREAMING_SNAKE_CASE_ = self.feat_extract_dict SCREAMING_SNAKE_CASE_ = True SCREAMING_SNAKE_CASE_ = self.feature_extraction_class(**_lowerCAmelCase ) SCREAMING_SNAKE_CASE_ = self.feat_extract_tester.prepare_inputs_for_target() SCREAMING_SNAKE_CASE_ = [len(_lowerCAmelCase ) for x in speech_inputs] SCREAMING_SNAKE_CASE_ = feat_extract.model_input_names[0] SCREAMING_SNAKE_CASE_ = BatchFeature({input_name: speech_inputs} ) SCREAMING_SNAKE_CASE_ = min(_lowerCAmelCase ) SCREAMING_SNAKE_CASE_ = feat_extract.num_mel_bins # hack! SCREAMING_SNAKE_CASE_ = feat_extract.pad( _lowerCAmelCase , padding='max_length' , max_length=_lowerCAmelCase , truncation=_lowerCAmelCase , return_tensors='np' ) self.assertIn('attention_mask' , _lowerCAmelCase ) self.assertListEqual( list(processed_pad.attention_mask.shape ) , [processed_pad[input_name].shape[0], max_length] ) self.assertListEqual( processed_pad.attention_mask[:, :max_length].sum(-1 ).tolist() , [max_length for x in speech_inputs] ) def lowerCAmelCase_ ( self : List[Any] , _lowerCAmelCase : Tuple ): from datasets import load_dataset SCREAMING_SNAKE_CASE_ = load_dataset('hf-internal-testing/librispeech_asr_dummy' , 'clean' , split='validation' ) # automatic decoding with librispeech SCREAMING_SNAKE_CASE_ = ds.sort('id' ).select(range(_lowerCAmelCase ) )[:num_samples]['audio'] return [x["array"] for x in speech_samples] def lowerCAmelCase_ ( self : Any ): # fmt: off SCREAMING_SNAKE_CASE_ = torch.tensor( [2.3_804E-03, 2.0_752E-03, 1.9_836E-03, 2.1_057E-03, 1.6_174E-03, 3.0_518E-04, 9.1_553E-05, 3.3_569E-04, 9.7_656E-04, 1.8_311E-03, 2.0_142E-03, 2.1_057E-03, 1.7_395E-03, 4.5_776E-04, -3.9_673E-04, 4.5_776E-04, 1.0_071E-03, 9.1_553E-05, 4.8_828E-04, 1.1_597E-03, 7.3_242E-04, 9.4_604E-04, 1.8_005E-03, 1.8_311E-03, 8.8_501E-04, 4.2_725E-04, 4.8_828E-04, 7.3_242E-04, 1.0_986E-03, 2.1_057E-03] ) # fmt: on SCREAMING_SNAKE_CASE_ = self._load_datasamples(1 ) SCREAMING_SNAKE_CASE_ = SpeechTaFeatureExtractor() SCREAMING_SNAKE_CASE_ = feature_extractor(_lowerCAmelCase , return_tensors='pt' ).input_values self.assertEquals(input_values.shape , (1, 93_680) ) self.assertTrue(torch.allclose(input_values[0, :30] , _lowerCAmelCase , atol=1E-6 ) ) def lowerCAmelCase_ ( self : Optional[int] ): # fmt: off SCREAMING_SNAKE_CASE_ = torch.tensor( [-2.6870, -3.0104, -3.1356, -3.5352, -3.0044, -3.0353, -3.4719, -3.6777, -3.1520, -2.9435, -2.6553, -2.8795, -2.9944, -2.5921, -3.0279, -3.0386, -3.0864, -3.1291, -3.2353, -2.7444, -2.6831, -2.7287, -3.1761, -3.1571, -3.2726, -3.0582, -3.1007, -3.4533, -3.4695, -3.0998] ) # fmt: on SCREAMING_SNAKE_CASE_ = self._load_datasamples(1 ) SCREAMING_SNAKE_CASE_ = SpeechTaFeatureExtractor() SCREAMING_SNAKE_CASE_ = feature_extractor(audio_target=_lowerCAmelCase , return_tensors='pt' ).input_values self.assertEquals(input_values.shape , (1, 366, 80) ) self.assertTrue(torch.allclose(input_values[0, 0, :30] , _lowerCAmelCase , atol=1E-4 ) )
31
1
from ...utils import logging from ..ta.modeling_tf_ta import TFTaEncoderModel, TFTaForConditionalGeneration, TFTaModel from .configuration_mta import MTaConfig lowerCamelCase__ : Union[str, Any] = logging.get_logger(__name__) lowerCamelCase__ : str = 'T5Config' class lowerCamelCase_ ( _SCREAMING_SNAKE_CASE ): '''simple docstring''' lowercase_ = "mt5" lowercase_ = MTaConfig class lowerCamelCase_ ( _SCREAMING_SNAKE_CASE ): '''simple docstring''' lowercase_ = "mt5" lowercase_ = MTaConfig class lowerCamelCase_ ( _SCREAMING_SNAKE_CASE ): '''simple docstring''' lowercase_ = "mt5" lowercase_ = MTaConfig
31
from __future__ import annotations from typing import TypedDict class lowerCamelCase_ ( _SCREAMING_SNAKE_CASE ): '''simple docstring''' lowercase_ = 42 lowercase_ = 42 def UpperCAmelCase_ ( __UpperCAmelCase : str ) -> list[str]: if not isinstance(__UpperCAmelCase , __UpperCAmelCase ): raise TypeError('The parameter s type must be str.' ) return [s[i:] + s[:i] for i in range(len(__UpperCAmelCase ) )] def UpperCAmelCase_ ( __UpperCAmelCase : str ) -> BWTTransformDict: if not isinstance(__UpperCAmelCase , __UpperCAmelCase ): raise TypeError('The parameter s type must be str.' ) if not s: raise ValueError('The parameter s must not be empty.' ) SCREAMING_SNAKE_CASE_ = all_rotations(__UpperCAmelCase ) rotations.sort() # sort the list of rotations in alphabetically order # make a string composed of the last char of each rotation SCREAMING_SNAKE_CASE_ = { "bwt_string": "".join([word[-1] for word in rotations] ), "idx_original_string": rotations.index(__UpperCAmelCase ), } return response def UpperCAmelCase_ ( __UpperCAmelCase : str , __UpperCAmelCase : int ) -> str: if not isinstance(__UpperCAmelCase , __UpperCAmelCase ): raise TypeError('The parameter bwt_string type must be str.' ) if not bwt_string: raise ValueError('The parameter bwt_string must not be empty.' ) try: SCREAMING_SNAKE_CASE_ = int(__UpperCAmelCase ) except ValueError: raise TypeError( 'The parameter idx_original_string type must be int or passive' ' of cast to int.' ) if idx_original_string < 0: raise ValueError('The parameter idx_original_string must not be lower than 0.' ) if idx_original_string >= len(__UpperCAmelCase ): raise ValueError( 'The parameter idx_original_string must be lower than' ' len(bwt_string).' ) SCREAMING_SNAKE_CASE_ = [''] * len(__UpperCAmelCase ) for _ in range(len(__UpperCAmelCase ) ): for i in range(len(__UpperCAmelCase ) ): SCREAMING_SNAKE_CASE_ = bwt_string[i] + ordered_rotations[i] ordered_rotations.sort() return ordered_rotations[idx_original_string] if __name__ == "__main__": lowerCamelCase__ : Optional[int] = 'Provide a string that I will generate its BWT transform: ' lowerCamelCase__ : List[str] = input(entry_msg).strip() lowerCamelCase__ : int = bwt_transform(s) print( f'''Burrows Wheeler transform for string \'{s}\' results ''' f'''in \'{result['bwt_string']}\'''' ) lowerCamelCase__ : Dict = reverse_bwt(result['bwt_string'], result['idx_original_string']) print( f'''Reversing Burrows Wheeler transform for entry \'{result['bwt_string']}\' ''' f'''we get original string \'{original_string}\'''' )
31
1
import argparse import shutil import time from json import JSONDecodeError from logging import getLogger from pathlib import Path from typing import Dict, List import torch from torch.utils.data import DataLoader from tqdm import tqdm from transformers import AutoModelForSeqaSeqLM, AutoTokenizer from utils import ( SeqaSeqDataset, calculate_bleu, calculate_rouge, chunks, lmap, load_json, parse_numeric_n_bool_cl_kwargs, save_json, use_task_specific_params, write_txt_file, ) lowerCamelCase__ : Tuple = getLogger(__name__) def UpperCAmelCase_ ( __UpperCAmelCase : Optional[int] , __UpperCAmelCase : str , __UpperCAmelCase : str , __UpperCAmelCase : int = 8 , __UpperCAmelCase : int = 10_24 , __UpperCAmelCase : Tuple="val" , __UpperCAmelCase : List[Any]=None , __UpperCAmelCase : Any=False , __UpperCAmelCase : List[Any]="summarization" , __UpperCAmelCase : Any=None , __UpperCAmelCase : Any=1 , __UpperCAmelCase : Dict = None , __UpperCAmelCase : Any="" , **__UpperCAmelCase : List[Any] , ) -> Dict: SCREAMING_SNAKE_CASE_ = str(__UpperCAmelCase ) assert local_rank is not None torch.distributed.init_process_group(backend='nccl' , rank=__UpperCAmelCase ) SCREAMING_SNAKE_CASE_ = Path(__UpperCAmelCase ) SCREAMING_SNAKE_CASE_ = save_dir.joinpath(f"rank_{local_rank}_output.json" ) torch.cuda.set_device(__UpperCAmelCase ) SCREAMING_SNAKE_CASE_ = AutoModelForSeqaSeqLM.from_pretrained(__UpperCAmelCase ).cuda() if fpaa: SCREAMING_SNAKE_CASE_ = model.half() # determine if we need to increase num_beams use_task_specific_params(__UpperCAmelCase , __UpperCAmelCase ) # update config with task specific params SCREAMING_SNAKE_CASE_ = generate_kwargs.pop('num_beams' , model.config.num_beams ) # AttributeError risk? if num_return_sequences > num_beams: SCREAMING_SNAKE_CASE_ = num_return_sequences SCREAMING_SNAKE_CASE_ = AutoTokenizer.from_pretrained(__UpperCAmelCase ) logger.info(f"Inferred tokenizer type: {tokenizer.__class__}" ) # if this is wrong, check config.model_type. if max_source_length is None: SCREAMING_SNAKE_CASE_ = tokenizer.model_max_length if prefix is None: SCREAMING_SNAKE_CASE_ = prefix or getattr(model.config , 'prefix' , '' ) or '' SCREAMING_SNAKE_CASE_ = SeqaSeqDataset( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , max_target_length=10_24 , type_path=__UpperCAmelCase , n_obs=__UpperCAmelCase , prefix=__UpperCAmelCase , **__UpperCAmelCase , ) # I set shuffle=True for a more accurate progress bar. # If all the longest samples are first, the prog bar estimate is too high at the beginning. SCREAMING_SNAKE_CASE_ = ds.make_sortish_sampler(__UpperCAmelCase , distributed=__UpperCAmelCase , add_extra_examples=__UpperCAmelCase , shuffle=__UpperCAmelCase ) SCREAMING_SNAKE_CASE_ = DataLoader(__UpperCAmelCase , sampler=__UpperCAmelCase , batch_size=__UpperCAmelCase , collate_fn=ds.collate_fn ) SCREAMING_SNAKE_CASE_ = [] for batch in tqdm(__UpperCAmelCase ): SCREAMING_SNAKE_CASE_ = model.generate( input_ids=batch['input_ids'].to(model.device ) , attention_mask=batch['attention_mask'].to(model.device ) , num_return_sequences=__UpperCAmelCase , num_beams=__UpperCAmelCase , **__UpperCAmelCase , ) SCREAMING_SNAKE_CASE_ = tokenizer.batch_decode(__UpperCAmelCase , skip_special_tokens=__UpperCAmelCase , clean_up_tokenization_spaces=__UpperCAmelCase ) SCREAMING_SNAKE_CASE_ = batch['ids'] if num_return_sequences > 1: SCREAMING_SNAKE_CASE_ = chunks(__UpperCAmelCase , __UpperCAmelCase ) # batch size chunks, each of size num_return_seq for i, pred in enumerate(__UpperCAmelCase ): results.append({'pred': pred, 'id': ids[i].item()} ) save_json(__UpperCAmelCase , __UpperCAmelCase ) return results, sampler.num_replicas def UpperCAmelCase_ ( ) -> Dict: SCREAMING_SNAKE_CASE_ = argparse.ArgumentParser( epilog='Unspecified args like --num_beams=2 --decoder_start_token_id=4 are passed to model.generate' ) parser.add_argument('--data_dir' , type=__UpperCAmelCase , help='like cnn_dm/test.source' ) parser.add_argument( '--model_name' , type=__UpperCAmelCase , help='like facebook/bart-large-cnn,t5-base, etc.' , default='sshleifer/distilbart-xsum-12-3' , ) parser.add_argument('--save_dir' , type=__UpperCAmelCase , help='where to save' , default='tmp_gen' ) parser.add_argument('--max_source_length' , type=__UpperCAmelCase , default=__UpperCAmelCase ) parser.add_argument( '--type_path' , type=__UpperCAmelCase , default='test' , help='which subset to evaluate typically train/val/test' ) parser.add_argument('--task' , type=__UpperCAmelCase , default='summarization' , help='used for task_specific_params + metrics' ) parser.add_argument('--bs' , type=__UpperCAmelCase , default=8 , required=__UpperCAmelCase , help='batch size' ) parser.add_argument( '--local_rank' , type=__UpperCAmelCase , default=-1 , required=__UpperCAmelCase , help='should be passed by distributed.launch' ) parser.add_argument( '--n_obs' , type=__UpperCAmelCase , default=__UpperCAmelCase , required=__UpperCAmelCase , help='How many observations. Defaults to all.' ) parser.add_argument( '--num_return_sequences' , type=__UpperCAmelCase , default=1 , required=__UpperCAmelCase , help='How many sequences to return' ) parser.add_argument( '--sync_timeout' , type=__UpperCAmelCase , default=6_00 , required=__UpperCAmelCase , help='How long should master process wait for other processes to finish.' , ) parser.add_argument('--src_lang' , type=__UpperCAmelCase , default=__UpperCAmelCase , required=__UpperCAmelCase ) parser.add_argument('--tgt_lang' , type=__UpperCAmelCase , default=__UpperCAmelCase , required=__UpperCAmelCase ) parser.add_argument( '--prefix' , type=__UpperCAmelCase , required=__UpperCAmelCase , default=__UpperCAmelCase , help='will be added to the begininng of src examples' ) parser.add_argument('--fp16' , action='store_true' ) parser.add_argument('--debug' , action='store_true' ) SCREAMING_SNAKE_CASE_ = time.time() SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = parser.parse_known_args() SCREAMING_SNAKE_CASE_ = parse_numeric_n_bool_cl_kwargs(__UpperCAmelCase ) if generate_kwargs and args.local_rank <= 0: print(f"parsed the following generate kwargs: {generate_kwargs}" ) SCREAMING_SNAKE_CASE_ = Path(args.save_dir + '_tmp' ) Path(__UpperCAmelCase ).mkdir(exist_ok=__UpperCAmelCase ) # this handles locking. SCREAMING_SNAKE_CASE_ = list(json_save_dir.glob('rank_*.json' ) ) if intermediate_files: raise ValueError(f"Found files at {json_save_dir} please move or remove them." ) # In theory, a node could finish and save before another node hits this. If this happens, we can address later. SCREAMING_SNAKE_CASE_ = {} if args.src_lang is not None: SCREAMING_SNAKE_CASE_ = args.src_lang if args.tgt_lang is not None: SCREAMING_SNAKE_CASE_ = args.tgt_lang Path(args.save_dir ).mkdir(exist_ok=__UpperCAmelCase ) SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = eval_data_dir( args.data_dir , __UpperCAmelCase , args.model_name , type_path=args.type_path , bs=args.bs , fpaa=args.fpaa , task=args.task , local_rank=args.local_rank , n_obs=args.n_obs , max_source_length=args.max_source_length , num_return_sequences=args.num_return_sequences , prefix=args.prefix , dataset_kwargs=__UpperCAmelCase , **__UpperCAmelCase , ) if args.local_rank <= 0: SCREAMING_SNAKE_CASE_ = Path(args.save_dir ) save_dir.mkdir(exist_ok=__UpperCAmelCase ) SCREAMING_SNAKE_CASE_ = gather_results_from_each_node(__UpperCAmelCase , __UpperCAmelCase , args.sync_timeout ) SCREAMING_SNAKE_CASE_ = combine_partial_results(__UpperCAmelCase ) if args.num_return_sequences > 1: SCREAMING_SNAKE_CASE_ = save_dir.joinpath('pseudolabel_results.json' ) print(f"Saving aggregated results at {save_path}, intermediate in {json_save_dir}/" ) save_json(__UpperCAmelCase , __UpperCAmelCase ) return SCREAMING_SNAKE_CASE_ = Path(args.data_dir ).joinpath(args.type_path + '.target' ) with open(__UpperCAmelCase ) as f: SCREAMING_SNAKE_CASE_ = [x.rstrip() for x in f.readlines()][: len(__UpperCAmelCase )] # Calculate metrics, save metrics, and save _generations.txt SCREAMING_SNAKE_CASE_ = 'translation' in args.task SCREAMING_SNAKE_CASE_ = calculate_bleu if calc_bleu else calculate_rouge SCREAMING_SNAKE_CASE_ = 'bleu' if calc_bleu else 'rouge' SCREAMING_SNAKE_CASE_ = score_fn(__UpperCAmelCase , __UpperCAmelCase ) SCREAMING_SNAKE_CASE_ = len(__UpperCAmelCase ) SCREAMING_SNAKE_CASE_ = time.time() - start_time SCREAMING_SNAKE_CASE_ = round(runtime / metrics['n_obs'] , 4 ) SCREAMING_SNAKE_CASE_ = num_replicas # TODO(@stas00): add whatever metadata to metrics SCREAMING_SNAKE_CASE_ = save_dir.joinpath(f"{args.type_path}_{metric_name}.json" ) save_json(__UpperCAmelCase , __UpperCAmelCase , indent=__UpperCAmelCase ) print(__UpperCAmelCase ) write_txt_file(__UpperCAmelCase , save_dir.joinpath(f"{args.type_path}_generations.txt" ) ) if args.debug: write_txt_file(__UpperCAmelCase , save_dir.joinpath(f"{args.type_path}.target" ) ) else: shutil.rmtree(__UpperCAmelCase ) def UpperCAmelCase_ ( __UpperCAmelCase : Optional[int] ) -> List: SCREAMING_SNAKE_CASE_ = [] for partial_result in partial_results: records.extend(__UpperCAmelCase ) SCREAMING_SNAKE_CASE_ = sorted(__UpperCAmelCase , key=lambda __UpperCAmelCase : x["id"] ) SCREAMING_SNAKE_CASE_ = [x['pred'] for x in records] return preds def UpperCAmelCase_ ( __UpperCAmelCase : int , __UpperCAmelCase : List[str] , __UpperCAmelCase : List[Any] ) -> List[Dict[str, List]]: # WAIT FOR lots of .json files SCREAMING_SNAKE_CASE_ = time.time() logger.info('waiting for all nodes to finish' ) SCREAMING_SNAKE_CASE_ = None while (time.time() - start_wait) < timeout: SCREAMING_SNAKE_CASE_ = list(save_dir.glob('rank_*.json' ) ) if len(__UpperCAmelCase ) < num_replicas: continue try: # make sure all json files are fully saved SCREAMING_SNAKE_CASE_ = lmap(__UpperCAmelCase , __UpperCAmelCase ) return json_data except JSONDecodeError: continue else: raise TimeoutError('Rank 0 gave up on waiting for other processes' ) # Unreachable if __name__ == "__main__": # Usage for MT: run_generate()
31
class lowerCamelCase_ : '''simple docstring''' def __init__( self : str ): SCREAMING_SNAKE_CASE_ = {} def lowerCAmelCase_ ( self : List[str] ): print(self.vertex ) for i in self.vertex: print(_lowerCAmelCase , ' -> ' , ' -> '.join([str(_lowerCAmelCase ) for j in self.vertex[i]] ) ) def lowerCAmelCase_ ( self : Union[str, Any] , _lowerCAmelCase : int , _lowerCAmelCase : int ): # check if vertex is already present, if from_vertex in self.vertex: self.vertex[from_vertex].append(_lowerCAmelCase ) else: # else make a new vertex SCREAMING_SNAKE_CASE_ = [to_vertex] def lowerCAmelCase_ ( self : Optional[Any] ): # visited array for storing already visited nodes SCREAMING_SNAKE_CASE_ = [False] * len(self.vertex ) # call the recursive helper function for i in range(len(self.vertex ) ): if not visited[i]: self.dfs_recursive(_lowerCAmelCase , _lowerCAmelCase ) def lowerCAmelCase_ ( self : Tuple , _lowerCAmelCase : int , _lowerCAmelCase : list ): # mark start vertex as visited SCREAMING_SNAKE_CASE_ = True print(_lowerCAmelCase , end=' ' ) # Recur for all the vertices that are adjacent to this node for i in self.vertex: if not visited[i]: self.dfs_recursive(_lowerCAmelCase , _lowerCAmelCase ) if __name__ == "__main__": lowerCamelCase__ : List[Any] = Graph() g.add_edge(0, 1) g.add_edge(0, 2) g.add_edge(1, 2) g.add_edge(2, 0) g.add_edge(2, 3) g.add_edge(3, 3) g.print_graph() print('DFS:') g.dfs() # OUTPUT: # 0 -> 1 -> 2 # 1 -> 2 # 2 -> 0 -> 3 # 3 -> 3 # DFS: # 0 1 2 3
31
1
import gc import unittest from parameterized import parameterized from diffusers import FlaxUNetaDConditionModel from diffusers.utils import is_flax_available from diffusers.utils.testing_utils import load_hf_numpy, require_flax, slow if is_flax_available(): import jax import jax.numpy as jnp @slow @require_flax class lowerCamelCase_ ( unittest.TestCase ): '''simple docstring''' def lowerCAmelCase_ ( self : List[str] , _lowerCAmelCase : Dict , _lowerCAmelCase : Optional[int] ): return F"gaussian_noise_s={seed}_shape={'_'.join([str(_lowerCAmelCase ) for s in shape] )}.npy" def lowerCAmelCase_ ( self : Tuple ): # clean up the VRAM after each test super().tearDown() gc.collect() def lowerCAmelCase_ ( self : int , _lowerCAmelCase : int=0 , _lowerCAmelCase : Dict=(4, 4, 64, 64) , _lowerCAmelCase : List[str]=False ): SCREAMING_SNAKE_CASE_ = jnp.bfloataa if fpaa else jnp.floataa SCREAMING_SNAKE_CASE_ = jnp.array(load_hf_numpy(self.get_file_format(_lowerCAmelCase , _lowerCAmelCase ) ) , dtype=_lowerCAmelCase ) return image def lowerCAmelCase_ ( self : List[str] , _lowerCAmelCase : List[Any]=False , _lowerCAmelCase : Optional[Any]="CompVis/stable-diffusion-v1-4" ): SCREAMING_SNAKE_CASE_ = jnp.bfloataa if fpaa else jnp.floataa SCREAMING_SNAKE_CASE_ = 'bf16' if fpaa else None SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = FlaxUNetaDConditionModel.from_pretrained( _lowerCAmelCase , subfolder='unet' , dtype=_lowerCAmelCase , revision=_lowerCAmelCase ) return model, params def lowerCAmelCase_ ( self : List[Any] , _lowerCAmelCase : Tuple=0 , _lowerCAmelCase : List[str]=(4, 77, 768) , _lowerCAmelCase : List[str]=False ): SCREAMING_SNAKE_CASE_ = jnp.bfloataa if fpaa else jnp.floataa SCREAMING_SNAKE_CASE_ = jnp.array(load_hf_numpy(self.get_file_format(_lowerCAmelCase , _lowerCAmelCase ) ) , dtype=_lowerCAmelCase ) return hidden_states @parameterized.expand( [ # fmt: off [83, 4, [-0.2323, -0.1304, 0.0813, -0.3093, -0.0919, -0.1571, -0.1125, -0.5806]], [17, 0.55, [-0.0831, -0.2443, 0.0901, -0.0919, 0.3396, 0.0103, -0.3743, 0.0701]], [8, 0.89, [-0.4863, 0.0859, 0.0875, -0.1658, 0.9199, -0.0114, 0.4839, 0.4639]], [3, 1_000, [-0.5649, 0.2402, -0.5518, 0.1248, 1.1328, -0.2443, -0.0325, -1.0078]], # fmt: on ] ) def lowerCAmelCase_ ( self : List[str] , _lowerCAmelCase : Optional[Any] , _lowerCAmelCase : Any , _lowerCAmelCase : Optional[Any] ): SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = self.get_unet_model(model_id='CompVis/stable-diffusion-v1-4' , fpaa=_lowerCAmelCase ) SCREAMING_SNAKE_CASE_ = self.get_latents(_lowerCAmelCase , fpaa=_lowerCAmelCase ) SCREAMING_SNAKE_CASE_ = self.get_encoder_hidden_states(_lowerCAmelCase , fpaa=_lowerCAmelCase ) SCREAMING_SNAKE_CASE_ = model.apply( {'params': params} , _lowerCAmelCase , jnp.array(_lowerCAmelCase , dtype=jnp.intaa ) , encoder_hidden_states=_lowerCAmelCase , ).sample assert sample.shape == latents.shape SCREAMING_SNAKE_CASE_ = jnp.asarray(jax.device_get((sample[-1, -2:, -2:, :2].flatten()) ) , dtype=jnp.floataa ) SCREAMING_SNAKE_CASE_ = jnp.array(_lowerCAmelCase , dtype=jnp.floataa ) # Found torch (float16) and flax (bfloat16) outputs to be within this tolerance, in the same hardware assert jnp.allclose(_lowerCAmelCase , _lowerCAmelCase , atol=1E-2 ) @parameterized.expand( [ # fmt: off [83, 4, [0.1514, 0.0807, 0.1624, 0.1016, -0.1896, 0.0263, 0.0677, 0.2310]], [17, 0.55, [0.1164, -0.0216, 0.0170, 0.1589, -0.3120, 0.1005, -0.0581, -0.1458]], [8, 0.89, [-0.1758, -0.0169, 0.1004, -0.1411, 0.1312, 0.1103, -0.1996, 0.2139]], [3, 1_000, [0.1214, 0.0352, -0.0731, -0.1562, -0.0994, -0.0906, -0.2340, -0.0539]], # fmt: on ] ) def lowerCAmelCase_ ( self : Optional[int] , _lowerCAmelCase : Union[str, Any] , _lowerCAmelCase : Dict , _lowerCAmelCase : Dict ): SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = self.get_unet_model(model_id='stabilityai/stable-diffusion-2' , fpaa=_lowerCAmelCase ) SCREAMING_SNAKE_CASE_ = self.get_latents(_lowerCAmelCase , shape=(4, 4, 96, 96) , fpaa=_lowerCAmelCase ) SCREAMING_SNAKE_CASE_ = self.get_encoder_hidden_states(_lowerCAmelCase , shape=(4, 77, 1_024) , fpaa=_lowerCAmelCase ) SCREAMING_SNAKE_CASE_ = model.apply( {'params': params} , _lowerCAmelCase , jnp.array(_lowerCAmelCase , dtype=jnp.intaa ) , encoder_hidden_states=_lowerCAmelCase , ).sample assert sample.shape == latents.shape SCREAMING_SNAKE_CASE_ = jnp.asarray(jax.device_get((sample[-1, -2:, -2:, :2].flatten()) ) , dtype=jnp.floataa ) SCREAMING_SNAKE_CASE_ = jnp.array(_lowerCAmelCase , dtype=jnp.floataa ) # Found torch (float16) and flax (bfloat16) outputs to be within this tolerance, on the same hardware assert jnp.allclose(_lowerCAmelCase , _lowerCAmelCase , atol=1E-2 )
31
from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCamelCase__ : str = logging.get_logger(__name__) lowerCamelCase__ : Tuple = { 'funnel-transformer/small': 'https://huggingface.co/funnel-transformer/small/resolve/main/config.json', 'funnel-transformer/small-base': 'https://huggingface.co/funnel-transformer/small-base/resolve/main/config.json', 'funnel-transformer/medium': 'https://huggingface.co/funnel-transformer/medium/resolve/main/config.json', 'funnel-transformer/medium-base': 'https://huggingface.co/funnel-transformer/medium-base/resolve/main/config.json', 'funnel-transformer/intermediate': ( 'https://huggingface.co/funnel-transformer/intermediate/resolve/main/config.json' ), 'funnel-transformer/intermediate-base': ( 'https://huggingface.co/funnel-transformer/intermediate-base/resolve/main/config.json' ), 'funnel-transformer/large': 'https://huggingface.co/funnel-transformer/large/resolve/main/config.json', 'funnel-transformer/large-base': 'https://huggingface.co/funnel-transformer/large-base/resolve/main/config.json', 'funnel-transformer/xlarge': 'https://huggingface.co/funnel-transformer/xlarge/resolve/main/config.json', 'funnel-transformer/xlarge-base': 'https://huggingface.co/funnel-transformer/xlarge-base/resolve/main/config.json', } class lowerCamelCase_ ( _SCREAMING_SNAKE_CASE ): '''simple docstring''' lowercase_ = "funnel" lowercase_ = { "hidden_size": "d_model", "num_attention_heads": "n_head", } def __init__( self : int , _lowerCAmelCase : Optional[int]=30_522 , _lowerCAmelCase : List[str]=[4, 4, 4] , _lowerCAmelCase : Tuple=None , _lowerCAmelCase : Optional[int]=2 , _lowerCAmelCase : int=768 , _lowerCAmelCase : Optional[Any]=12 , _lowerCAmelCase : Optional[Any]=64 , _lowerCAmelCase : Optional[Any]=3_072 , _lowerCAmelCase : List[str]="gelu_new" , _lowerCAmelCase : Any=0.1 , _lowerCAmelCase : int=0.1 , _lowerCAmelCase : Tuple=0.0 , _lowerCAmelCase : List[Any]=0.1 , _lowerCAmelCase : Dict=None , _lowerCAmelCase : str=1E-9 , _lowerCAmelCase : Any="mean" , _lowerCAmelCase : Union[str, Any]="relative_shift" , _lowerCAmelCase : Optional[Any]=True , _lowerCAmelCase : Dict=True , _lowerCAmelCase : Tuple=True , **_lowerCAmelCase : Optional[Any] , ): SCREAMING_SNAKE_CASE_ = vocab_size SCREAMING_SNAKE_CASE_ = block_sizes SCREAMING_SNAKE_CASE_ = [1] * len(_lowerCAmelCase ) if block_repeats is None else block_repeats assert len(_lowerCAmelCase ) == len( self.block_repeats ), "`block_sizes` and `block_repeats` should have the same length." SCREAMING_SNAKE_CASE_ = num_decoder_layers SCREAMING_SNAKE_CASE_ = d_model SCREAMING_SNAKE_CASE_ = n_head SCREAMING_SNAKE_CASE_ = d_head SCREAMING_SNAKE_CASE_ = d_inner SCREAMING_SNAKE_CASE_ = hidden_act SCREAMING_SNAKE_CASE_ = hidden_dropout SCREAMING_SNAKE_CASE_ = attention_dropout SCREAMING_SNAKE_CASE_ = activation_dropout SCREAMING_SNAKE_CASE_ = initializer_range SCREAMING_SNAKE_CASE_ = initializer_std SCREAMING_SNAKE_CASE_ = layer_norm_eps assert pooling_type in [ "mean", "max", ], F"Got {pooling_type} for `pooling_type` but only 'mean' and 'max' are supported." SCREAMING_SNAKE_CASE_ = pooling_type assert attention_type in [ "relative_shift", "factorized", ], F"Got {attention_type} for `attention_type` but only 'relative_shift' and 'factorized' are supported." SCREAMING_SNAKE_CASE_ = attention_type SCREAMING_SNAKE_CASE_ = separate_cls SCREAMING_SNAKE_CASE_ = truncate_seq SCREAMING_SNAKE_CASE_ = pool_q_only super().__init__(**_lowerCAmelCase ) @property def lowerCAmelCase_ ( self : Optional[int] ): return sum(self.block_sizes ) @num_hidden_layers.setter def lowerCAmelCase_ ( self : int , _lowerCAmelCase : List[Any] ): raise NotImplementedError( 'This model does not support the setting of `num_hidden_layers`. Please set `block_sizes`.' ) @property def lowerCAmelCase_ ( self : List[Any] ): return len(self.block_sizes ) @num_blocks.setter def lowerCAmelCase_ ( self : Dict , _lowerCAmelCase : Union[str, Any] ): raise NotImplementedError('This model does not support the setting of `num_blocks`. Please set `block_sizes`.' )
31
1
def UpperCAmelCase_ ( __UpperCAmelCase : int = 10 , __UpperCAmelCase : int = 22 ) -> int: SCREAMING_SNAKE_CASE_ = range(1 , __UpperCAmelCase ) SCREAMING_SNAKE_CASE_ = range(1 , __UpperCAmelCase ) return sum( 1 for power in powers for base in bases if len(str(base**power ) ) == power ) if __name__ == "__main__": print(f'''{solution(10, 22) = }''')
31
from __future__ import annotations from collections.abc import Iterator class lowerCamelCase_ : '''simple docstring''' def __init__( self : Union[str, Any] , _lowerCAmelCase : int ): SCREAMING_SNAKE_CASE_ = value SCREAMING_SNAKE_CASE_ = None SCREAMING_SNAKE_CASE_ = None class lowerCamelCase_ : '''simple docstring''' def __init__( self : int , _lowerCAmelCase : Node ): SCREAMING_SNAKE_CASE_ = tree def lowerCAmelCase_ ( self : Union[str, Any] , _lowerCAmelCase : Node | None ): if node is None: return 0 return node.value + ( self.depth_first_search(node.left ) + self.depth_first_search(node.right ) ) def __iter__( self : Dict ): yield self.depth_first_search(self.tree ) if __name__ == "__main__": import doctest doctest.testmod()
31
1
from __future__ import annotations from typing import TypedDict class lowerCamelCase_ ( _SCREAMING_SNAKE_CASE ): '''simple docstring''' lowercase_ = 42 lowercase_ = 42 def UpperCAmelCase_ ( __UpperCAmelCase : str ) -> list[str]: if not isinstance(__UpperCAmelCase , __UpperCAmelCase ): raise TypeError('The parameter s type must be str.' ) return [s[i:] + s[:i] for i in range(len(__UpperCAmelCase ) )] def UpperCAmelCase_ ( __UpperCAmelCase : str ) -> BWTTransformDict: if not isinstance(__UpperCAmelCase , __UpperCAmelCase ): raise TypeError('The parameter s type must be str.' ) if not s: raise ValueError('The parameter s must not be empty.' ) SCREAMING_SNAKE_CASE_ = all_rotations(__UpperCAmelCase ) rotations.sort() # sort the list of rotations in alphabetically order # make a string composed of the last char of each rotation SCREAMING_SNAKE_CASE_ = { "bwt_string": "".join([word[-1] for word in rotations] ), "idx_original_string": rotations.index(__UpperCAmelCase ), } return response def UpperCAmelCase_ ( __UpperCAmelCase : str , __UpperCAmelCase : int ) -> str: if not isinstance(__UpperCAmelCase , __UpperCAmelCase ): raise TypeError('The parameter bwt_string type must be str.' ) if not bwt_string: raise ValueError('The parameter bwt_string must not be empty.' ) try: SCREAMING_SNAKE_CASE_ = int(__UpperCAmelCase ) except ValueError: raise TypeError( 'The parameter idx_original_string type must be int or passive' ' of cast to int.' ) if idx_original_string < 0: raise ValueError('The parameter idx_original_string must not be lower than 0.' ) if idx_original_string >= len(__UpperCAmelCase ): raise ValueError( 'The parameter idx_original_string must be lower than' ' len(bwt_string).' ) SCREAMING_SNAKE_CASE_ = [''] * len(__UpperCAmelCase ) for _ in range(len(__UpperCAmelCase ) ): for i in range(len(__UpperCAmelCase ) ): SCREAMING_SNAKE_CASE_ = bwt_string[i] + ordered_rotations[i] ordered_rotations.sort() return ordered_rotations[idx_original_string] if __name__ == "__main__": lowerCamelCase__ : Optional[int] = 'Provide a string that I will generate its BWT transform: ' lowerCamelCase__ : List[str] = input(entry_msg).strip() lowerCamelCase__ : int = bwt_transform(s) print( f'''Burrows Wheeler transform for string \'{s}\' results ''' f'''in \'{result['bwt_string']}\'''' ) lowerCamelCase__ : Dict = reverse_bwt(result['bwt_string'], result['idx_original_string']) print( f'''Reversing Burrows Wheeler transform for entry \'{result['bwt_string']}\' ''' f'''we get original string \'{original_string}\'''' )
31
def UpperCAmelCase_ ( __UpperCAmelCase : list , __UpperCAmelCase : int , __UpperCAmelCase : int = 0 , __UpperCAmelCase : int = 0 ) -> int: SCREAMING_SNAKE_CASE_ = right or len(__UpperCAmelCase ) - 1 if left > right: return -1 elif list_data[left] == key: return left elif list_data[right] == key: return right else: return search(__UpperCAmelCase , __UpperCAmelCase , left + 1 , right - 1 ) if __name__ == "__main__": import doctest doctest.testmod()
31
1
from __future__ import annotations import unittest from transformers import is_tf_available from transformers.testing_utils import require_sentencepiece, require_tf, require_tokenizers, slow if is_tf_available(): import numpy as np import tensorflow as tf from transformers import TFXLMRobertaModel @require_tf @require_sentencepiece @require_tokenizers class lowerCamelCase_ ( unittest.TestCase ): '''simple docstring''' @slow def lowerCAmelCase_ ( self : int ): SCREAMING_SNAKE_CASE_ = TFXLMRobertaModel.from_pretrained('jplu/tf-xlm-roberta-base' ) SCREAMING_SNAKE_CASE_ = { 'input_ids': tf.convert_to_tensor([[0, 2_646, 10_269, 83, 99_942, 2]] , dtype=tf.intaa ), # "My dog is cute" 'attention_mask': tf.convert_to_tensor([[1, 1, 1, 1, 1, 1]] , dtype=tf.intaa ), } SCREAMING_SNAKE_CASE_ = model(_lowerCAmelCase )['last_hidden_state'] SCREAMING_SNAKE_CASE_ = tf.TensorShape((1, 6, 768) ) self.assertEqual(output.shape , _lowerCAmelCase ) # compare the actual values for a slice. SCREAMING_SNAKE_CASE_ = tf.convert_to_tensor( [ [ [0.068_1762, 0.1089_4451, 0.0677_2504], [-0.0642_3668, 0.0236_6615, 0.0432_9344], [-0.0605_7295, 0.0997_4135, -0.0007_0584], ] ] , dtype=tf.floataa , ) self.assertTrue(np.allclose(output[:, :3, :3].numpy() , expected_slice.numpy() , atol=1E-4 ) )
31
import os from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils import AddedToken from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_fnet import FNetTokenizer else: lowerCamelCase__ : Optional[Any] = None lowerCamelCase__ : List[str] = logging.get_logger(__name__) lowerCamelCase__ : List[str] = {'vocab_file': 'spiece.model', 'tokenizer_file': 'tokenizer.json'} lowerCamelCase__ : List[str] = { 'vocab_file': { 'google/fnet-base': 'https://huggingface.co/google/fnet-base/resolve/main/spiece.model', 'google/fnet-large': 'https://huggingface.co/google/fnet-large/resolve/main/spiece.model', }, 'tokenizer_file': { 'google/fnet-base': 'https://huggingface.co/google/fnet-base/resolve/main/tokenizer.json', 'google/fnet-large': 'https://huggingface.co/google/fnet-large/resolve/main/tokenizer.json', }, } lowerCamelCase__ : Optional[Any] = { 'google/fnet-base': 512, 'google/fnet-large': 512, } lowerCamelCase__ : List[Any] = '▁' class lowerCamelCase_ ( _SCREAMING_SNAKE_CASE ): '''simple docstring''' lowercase_ = VOCAB_FILES_NAMES lowercase_ = PRETRAINED_VOCAB_FILES_MAP lowercase_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowercase_ = ["input_ids", "token_type_ids"] lowercase_ = FNetTokenizer def __init__( self : List[Any] , _lowerCAmelCase : Dict=None , _lowerCAmelCase : Dict=None , _lowerCAmelCase : List[str]=False , _lowerCAmelCase : Optional[Any]=True , _lowerCAmelCase : Tuple=True , _lowerCAmelCase : List[Any]="<unk>" , _lowerCAmelCase : Optional[Any]="[SEP]" , _lowerCAmelCase : Optional[Any]="<pad>" , _lowerCAmelCase : Optional[int]="[CLS]" , _lowerCAmelCase : Optional[Any]="[MASK]" , **_lowerCAmelCase : Any , ): # Mask token behave like a normal word, i.e. include the space before it and # is included in the raw text, there should be a match in a non-normalized sentence. SCREAMING_SNAKE_CASE_ = ( AddedToken(_lowerCAmelCase , lstrip=_lowerCAmelCase , rstrip=_lowerCAmelCase , normalized=_lowerCAmelCase ) if isinstance(_lowerCAmelCase , _lowerCAmelCase ) else mask_token ) super().__init__( _lowerCAmelCase , tokenizer_file=_lowerCAmelCase , do_lower_case=_lowerCAmelCase , remove_space=_lowerCAmelCase , keep_accents=_lowerCAmelCase , unk_token=_lowerCAmelCase , sep_token=_lowerCAmelCase , pad_token=_lowerCAmelCase , cls_token=_lowerCAmelCase , mask_token=_lowerCAmelCase , **_lowerCAmelCase , ) SCREAMING_SNAKE_CASE_ = do_lower_case SCREAMING_SNAKE_CASE_ = remove_space SCREAMING_SNAKE_CASE_ = keep_accents SCREAMING_SNAKE_CASE_ = vocab_file SCREAMING_SNAKE_CASE_ = False if not self.vocab_file else True def lowerCAmelCase_ ( self : Any , _lowerCAmelCase : List[int] , _lowerCAmelCase : Optional[List[int]] = None ): SCREAMING_SNAKE_CASE_ = [self.sep_token_id] SCREAMING_SNAKE_CASE_ = [self.cls_token_id] if token_ids_a is None: return cls + token_ids_a + sep return cls + token_ids_a + sep + token_ids_a + sep def lowerCAmelCase_ ( self : Optional[int] , _lowerCAmelCase : List[int] , _lowerCAmelCase : Optional[List[int]] = None ): SCREAMING_SNAKE_CASE_ = [self.sep_token_id] SCREAMING_SNAKE_CASE_ = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def lowerCAmelCase_ ( self : Optional[Any] , _lowerCAmelCase : str , _lowerCAmelCase : Optional[str] = None ): if not os.path.isdir(_lowerCAmelCase ): logger.error(F"Vocabulary path ({save_directory}) should be a directory" ) return SCREAMING_SNAKE_CASE_ = os.path.join( _lowerCAmelCase , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(_lowerCAmelCase ): copyfile(self.vocab_file , _lowerCAmelCase ) return (out_vocab_file,)
31
1
import unittest import torch from diffusers import VQModel from diffusers.utils import floats_tensor, torch_device from diffusers.utils.testing_utils import enable_full_determinism from .test_modeling_common import ModelTesterMixin, UNetTesterMixin enable_full_determinism() class lowerCamelCase_ ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' lowercase_ = VQModel lowercase_ = "sample" @property def lowerCAmelCase_ ( self : Dict , _lowerCAmelCase : str=(32, 32) ): SCREAMING_SNAKE_CASE_ = 4 SCREAMING_SNAKE_CASE_ = 3 SCREAMING_SNAKE_CASE_ = floats_tensor((batch_size, num_channels) + sizes ).to(_lowerCAmelCase ) return {"sample": image} @property def lowerCAmelCase_ ( self : str ): return (3, 32, 32) @property def lowerCAmelCase_ ( self : List[str] ): return (3, 32, 32) def lowerCAmelCase_ ( self : Optional[Any] ): SCREAMING_SNAKE_CASE_ = { 'block_out_channels': [32, 64], 'in_channels': 3, 'out_channels': 3, 'down_block_types': ['DownEncoderBlock2D', 'DownEncoderBlock2D'], 'up_block_types': ['UpDecoderBlock2D', 'UpDecoderBlock2D'], 'latent_channels': 3, } SCREAMING_SNAKE_CASE_ = self.dummy_input return init_dict, inputs_dict def lowerCAmelCase_ ( self : Tuple ): pass def lowerCAmelCase_ ( self : List[str] ): pass def lowerCAmelCase_ ( self : List[Any] ): SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = VQModel.from_pretrained('fusing/vqgan-dummy' , output_loading_info=_lowerCAmelCase ) self.assertIsNotNone(_lowerCAmelCase ) self.assertEqual(len(loading_info['missing_keys'] ) , 0 ) model.to(_lowerCAmelCase ) SCREAMING_SNAKE_CASE_ = model(**self.dummy_input ) assert image is not None, "Make sure output is not None" def lowerCAmelCase_ ( self : List[Any] ): SCREAMING_SNAKE_CASE_ = VQModel.from_pretrained('fusing/vqgan-dummy' ) model.to(_lowerCAmelCase ).eval() torch.manual_seed(0 ) if torch.cuda.is_available(): torch.cuda.manual_seed_all(0 ) SCREAMING_SNAKE_CASE_ = torch.randn(1 , model.config.in_channels , model.config.sample_size , model.config.sample_size ) SCREAMING_SNAKE_CASE_ = image.to(_lowerCAmelCase ) with torch.no_grad(): SCREAMING_SNAKE_CASE_ = model(_lowerCAmelCase ).sample SCREAMING_SNAKE_CASE_ = output[0, -1, -3:, -3:].flatten().cpu() # fmt: off SCREAMING_SNAKE_CASE_ = torch.tensor([-0.0153, -0.4044, -0.1880, -0.5161, -0.2418, -0.4072, -0.1612, -0.0633, -0.0143] ) # fmt: on self.assertTrue(torch.allclose(_lowerCAmelCase , _lowerCAmelCase , atol=1E-3 ) )
31
from __future__ import annotations from collections.abc import Generator def UpperCAmelCase_ ( ) -> Generator[int, None, None]: SCREAMING_SNAKE_CASE_ = {} SCREAMING_SNAKE_CASE_ = 2 while True: SCREAMING_SNAKE_CASE_ = factor_map.pop(__UpperCAmelCase , __UpperCAmelCase ) if factor: SCREAMING_SNAKE_CASE_ = factor + prime while x in factor_map: x += factor SCREAMING_SNAKE_CASE_ = factor else: SCREAMING_SNAKE_CASE_ = prime yield prime prime += 1 def UpperCAmelCase_ ( __UpperCAmelCase : float = 1E10 ) -> int: SCREAMING_SNAKE_CASE_ = sieve() SCREAMING_SNAKE_CASE_ = 1 while True: SCREAMING_SNAKE_CASE_ = next(__UpperCAmelCase ) if (2 * prime * n) > limit: return n # Ignore the next prime as the reminder will be 2. next(__UpperCAmelCase ) n += 2 if __name__ == "__main__": print(solution())
31
1
from __future__ import annotations import unittest from transformers import is_tf_available from transformers.testing_utils import require_sentencepiece, require_tf, require_tokenizers, slow if is_tf_available(): import numpy as np import tensorflow as tf from transformers import TFCamembertModel @require_tf @require_sentencepiece @require_tokenizers class lowerCamelCase_ ( unittest.TestCase ): '''simple docstring''' @slow def lowerCAmelCase_ ( self : List[Any] ): SCREAMING_SNAKE_CASE_ = TFCamembertModel.from_pretrained('jplu/tf-camembert-base' ) SCREAMING_SNAKE_CASE_ = tf.convert_to_tensor( [[5, 121, 11, 660, 16, 730, 25_543, 110, 83, 6]] , dtype=tf.intaa , ) # J'aime le camembert !" SCREAMING_SNAKE_CASE_ = model(_lowerCAmelCase )['last_hidden_state'] SCREAMING_SNAKE_CASE_ = tf.TensorShape((1, 10, 768) ) self.assertEqual(output.shape , _lowerCAmelCase ) # compare the actual values for a slice. SCREAMING_SNAKE_CASE_ = tf.convert_to_tensor( [[[-0.0254, 0.0235, 0.1027], [0.0606, -0.1811, -0.0418], [-0.1561, -0.1127, 0.2687]]] , dtype=tf.floataa , ) # camembert = torch.hub.load('pytorch/fairseq', 'camembert.v0') # camembert.eval() # expected_slice = roberta.model.forward(input_ids)[0][:, :3, :3].detach() self.assertTrue(np.allclose(output[:, :3, :3].numpy() , expected_slice.numpy() , atol=1E-4 ) )
31
import numpy as np import torch from torch.utils.data import DataLoader from accelerate.utils.dataclasses import DistributedType class lowerCamelCase_ : '''simple docstring''' def __init__( self : Any , _lowerCAmelCase : Optional[int]=2 , _lowerCAmelCase : Any=3 , _lowerCAmelCase : Tuple=64 , _lowerCAmelCase : List[str]=None ): SCREAMING_SNAKE_CASE_ = np.random.default_rng(_lowerCAmelCase ) SCREAMING_SNAKE_CASE_ = length SCREAMING_SNAKE_CASE_ = rng.normal(size=(length,) ).astype(np.floataa ) SCREAMING_SNAKE_CASE_ = a * self.x + b + rng.normal(scale=0.1 , size=(length,) ).astype(np.floataa ) def __len__( self : Optional[int] ): return self.length def __getitem__( self : str , _lowerCAmelCase : Union[str, Any] ): return {"x": self.x[i], "y": self.y[i]} class lowerCamelCase_ ( torch.nn.Module ): '''simple docstring''' def __init__( self : Tuple , _lowerCAmelCase : Dict=0 , _lowerCAmelCase : List[str]=0 , _lowerCAmelCase : str=False ): super().__init__() SCREAMING_SNAKE_CASE_ = torch.nn.Parameter(torch.tensor([2, 3] ).float() ) SCREAMING_SNAKE_CASE_ = torch.nn.Parameter(torch.tensor([2, 3] ).float() ) SCREAMING_SNAKE_CASE_ = True def lowerCAmelCase_ ( self : Dict , _lowerCAmelCase : Union[str, Any]=None ): if self.first_batch: print(F"Model dtype: {self.a.dtype}, {self.b.dtype}. Input dtype: {x.dtype}" ) SCREAMING_SNAKE_CASE_ = False return x * self.a[0] + self.b[0] class lowerCamelCase_ ( torch.nn.Module ): '''simple docstring''' def __init__( self : Optional[int] , _lowerCAmelCase : Any=0 , _lowerCAmelCase : Any=0 , _lowerCAmelCase : Optional[Any]=False ): super().__init__() SCREAMING_SNAKE_CASE_ = torch.nn.Parameter(torch.tensor(_lowerCAmelCase ).float() ) SCREAMING_SNAKE_CASE_ = torch.nn.Parameter(torch.tensor(_lowerCAmelCase ).float() ) SCREAMING_SNAKE_CASE_ = True def lowerCAmelCase_ ( self : Optional[Any] , _lowerCAmelCase : Optional[int]=None ): if self.first_batch: print(F"Model dtype: {self.a.dtype}, {self.b.dtype}. Input dtype: {x.dtype}" ) SCREAMING_SNAKE_CASE_ = False return x * self.a + self.b def UpperCAmelCase_ ( __UpperCAmelCase : Dict , __UpperCAmelCase : int = 16 ) -> Union[str, Any]: from datasets import load_dataset from transformers import AutoTokenizer SCREAMING_SNAKE_CASE_ = AutoTokenizer.from_pretrained('bert-base-cased' ) SCREAMING_SNAKE_CASE_ = {'train': 'tests/test_samples/MRPC/train.csv', 'validation': 'tests/test_samples/MRPC/dev.csv'} SCREAMING_SNAKE_CASE_ = load_dataset('csv' , data_files=__UpperCAmelCase ) SCREAMING_SNAKE_CASE_ = datasets['train'].unique('label' ) SCREAMING_SNAKE_CASE_ = {v: i for i, v in enumerate(__UpperCAmelCase )} def tokenize_function(__UpperCAmelCase : Optional[int] ): # max_length=None => use the model max length (it's actually the default) SCREAMING_SNAKE_CASE_ = tokenizer( examples['sentence1'] , examples['sentence2'] , truncation=__UpperCAmelCase , max_length=__UpperCAmelCase , padding='max_length' ) if "label" in examples: SCREAMING_SNAKE_CASE_ = [label_to_id[l] for l in examples['label']] return outputs # Apply the method we just defined to all the examples in all the splits of the dataset SCREAMING_SNAKE_CASE_ = datasets.map( __UpperCAmelCase , batched=__UpperCAmelCase , remove_columns=['sentence1', 'sentence2', 'label'] , ) def collate_fn(__UpperCAmelCase : Dict ): # On TPU it's best to pad everything to the same length or training will be very slow. if accelerator.distributed_type == DistributedType.TPU: return tokenizer.pad(__UpperCAmelCase , padding='max_length' , max_length=1_28 , return_tensors='pt' ) return tokenizer.pad(__UpperCAmelCase , padding='longest' , return_tensors='pt' ) # Instantiate dataloaders. SCREAMING_SNAKE_CASE_ = DataLoader(tokenized_datasets['train'] , shuffle=__UpperCAmelCase , collate_fn=__UpperCAmelCase , batch_size=2 ) SCREAMING_SNAKE_CASE_ = DataLoader(tokenized_datasets['validation'] , shuffle=__UpperCAmelCase , collate_fn=__UpperCAmelCase , batch_size=1 ) return train_dataloader, eval_dataloader
31
1
from __future__ import annotations from collections.abc import Iterator class lowerCamelCase_ : '''simple docstring''' def __init__( self : Union[str, Any] , _lowerCAmelCase : int ): SCREAMING_SNAKE_CASE_ = value SCREAMING_SNAKE_CASE_ = None SCREAMING_SNAKE_CASE_ = None class lowerCamelCase_ : '''simple docstring''' def __init__( self : int , _lowerCAmelCase : Node ): SCREAMING_SNAKE_CASE_ = tree def lowerCAmelCase_ ( self : Union[str, Any] , _lowerCAmelCase : Node | None ): if node is None: return 0 return node.value + ( self.depth_first_search(node.left ) + self.depth_first_search(node.right ) ) def __iter__( self : Dict ): yield self.depth_first_search(self.tree ) if __name__ == "__main__": import doctest doctest.testmod()
31
import warnings from ...utils import logging from .image_processing_layoutlmva import LayoutLMvaImageProcessor lowerCamelCase__ : Union[str, Any] = logging.get_logger(__name__) class lowerCamelCase_ ( _SCREAMING_SNAKE_CASE ): '''simple docstring''' def __init__( self : Dict , *_lowerCAmelCase : Optional[Any] , **_lowerCAmelCase : Any ): warnings.warn( 'The class LayoutLMv2FeatureExtractor is deprecated and will be removed in version 5 of Transformers.' ' Please use LayoutLMv2ImageProcessor instead.' , _lowerCAmelCase , ) super().__init__(*_lowerCAmelCase , **_lowerCAmelCase )
31
1
from __future__ import annotations from collections import namedtuple def UpperCAmelCase_ ( __UpperCAmelCase : float , __UpperCAmelCase : float , __UpperCAmelCase : float ) -> tuple: SCREAMING_SNAKE_CASE_ = namedtuple('result' , 'name value' ) if (voltage, current, power).count(0 ) != 1: raise ValueError('Only one argument must be 0' ) elif power < 0: raise ValueError( 'Power cannot be negative in any electrical/electronics system' ) elif voltage == 0: return result('voltage' , power / current ) elif current == 0: return result('current' , power / voltage ) elif power == 0: return result('power' , float(round(abs(voltage * current ) , 2 ) ) ) else: raise ValueError('Exactly one argument must be 0' ) if __name__ == "__main__": import doctest doctest.testmod()
31
def UpperCAmelCase_ ( ) -> list[list[int]]: return [list(range(10_00 - i , -10_00 - i , -1 ) ) for i in range(10_00 )] lowerCamelCase__ : List[Any] = generate_large_matrix() lowerCamelCase__ : List[Any] = ( [[4, 3, 2, -1], [3, 2, 1, -1], [1, 1, -1, -2], [-1, -1, -2, -3]], [[3, 2], [1, 0]], [[7, 7, 6]], [[7, 7, 6], [-1, -2, -3]], grid, ) def UpperCAmelCase_ ( __UpperCAmelCase : list[list[int]] ) -> None: assert all(row == sorted(__UpperCAmelCase , reverse=__UpperCAmelCase ) for row in grid ) assert all(list(__UpperCAmelCase ) == sorted(__UpperCAmelCase , reverse=__UpperCAmelCase ) for col in zip(*__UpperCAmelCase ) ) def UpperCAmelCase_ ( __UpperCAmelCase : list[int] ) -> int: SCREAMING_SNAKE_CASE_ = 0 SCREAMING_SNAKE_CASE_ = len(__UpperCAmelCase ) - 1 # Edge cases such as no values or all numbers are negative. if not array or array[0] < 0: return 0 while right + 1 > left: SCREAMING_SNAKE_CASE_ = (left + right) // 2 SCREAMING_SNAKE_CASE_ = array[mid] # Num must be negative and the index must be greater than or equal to 0. if num < 0 and array[mid - 1] >= 0: return mid if num >= 0: SCREAMING_SNAKE_CASE_ = mid + 1 else: SCREAMING_SNAKE_CASE_ = mid - 1 # No negative numbers so return the last index of the array + 1 which is the length. return len(__UpperCAmelCase ) def UpperCAmelCase_ ( __UpperCAmelCase : list[list[int]] ) -> int: SCREAMING_SNAKE_CASE_ = 0 SCREAMING_SNAKE_CASE_ = len(grid[0] ) for i in range(len(__UpperCAmelCase ) ): SCREAMING_SNAKE_CASE_ = find_negative_index(grid[i][:bound] ) total += bound return (len(__UpperCAmelCase ) * len(grid[0] )) - total def UpperCAmelCase_ ( __UpperCAmelCase : list[list[int]] ) -> int: return len([number for row in grid for number in row if number < 0] ) def UpperCAmelCase_ ( __UpperCAmelCase : list[list[int]] ) -> int: SCREAMING_SNAKE_CASE_ = 0 for row in grid: for i, number in enumerate(__UpperCAmelCase ): if number < 0: total += len(__UpperCAmelCase ) - i break return total def UpperCAmelCase_ ( ) -> None: from timeit import timeit print('Running benchmarks' ) SCREAMING_SNAKE_CASE_ = ( 'from __main__ import count_negatives_binary_search, ' 'count_negatives_brute_force, count_negatives_brute_force_with_break, grid' ) for func in ( "count_negatives_binary_search", # took 0.7727 seconds "count_negatives_brute_force_with_break", # took 4.6505 seconds "count_negatives_brute_force", # took 12.8160 seconds ): SCREAMING_SNAKE_CASE_ = timeit(f"{func}(grid=grid)" , setup=__UpperCAmelCase , number=5_00 ) print(f"{func}() took {time:0.4f} seconds" ) if __name__ == "__main__": import doctest doctest.testmod() benchmark()
31
1
import pytest from datasets.parallel import ParallelBackendConfig, parallel_backend from datasets.utils.py_utils import map_nested from .utils import require_dill_gt_0_3_2, require_joblibspark, require_not_windows def UpperCAmelCase_ ( __UpperCAmelCase : str ) -> Tuple: # picklable for multiprocessing return i + 1 @require_dill_gt_0_3_2 @require_joblibspark @require_not_windows def UpperCAmelCase_ ( ) -> str: with parallel_backend('spark' ): assert ParallelBackendConfig.backend_name == "spark" SCREAMING_SNAKE_CASE_ = [1, 2, 3] with pytest.raises(__UpperCAmelCase ): with parallel_backend('unsupported backend' ): map_nested(__UpperCAmelCase , __UpperCAmelCase , num_proc=2 ) with pytest.raises(__UpperCAmelCase ): with parallel_backend('unsupported backend' ): map_nested(__UpperCAmelCase , __UpperCAmelCase , num_proc=-1 ) @require_dill_gt_0_3_2 @require_joblibspark @require_not_windows @pytest.mark.parametrize('num_proc' , [2, -1] ) def UpperCAmelCase_ ( __UpperCAmelCase : Tuple ) -> List[Any]: SCREAMING_SNAKE_CASE_ = [1, 2] SCREAMING_SNAKE_CASE_ = {'a': 1, 'b': 2} SCREAMING_SNAKE_CASE_ = {'a': [1, 2], 'b': [3, 4]} SCREAMING_SNAKE_CASE_ = {'a': {'1': 1}, 'b': 2} SCREAMING_SNAKE_CASE_ = {'a': 1, 'b': 2, 'c': 3, 'd': 4} SCREAMING_SNAKE_CASE_ = [2, 3] SCREAMING_SNAKE_CASE_ = {'a': 2, 'b': 3} SCREAMING_SNAKE_CASE_ = {'a': [2, 3], 'b': [4, 5]} SCREAMING_SNAKE_CASE_ = {'a': {'1': 2}, 'b': 3} SCREAMING_SNAKE_CASE_ = {'a': 2, 'b': 3, 'c': 4, 'd': 5} with parallel_backend('spark' ): assert map_nested(__UpperCAmelCase , __UpperCAmelCase , num_proc=__UpperCAmelCase ) == expected_map_nested_sa assert map_nested(__UpperCAmelCase , __UpperCAmelCase , num_proc=__UpperCAmelCase ) == expected_map_nested_sa assert map_nested(__UpperCAmelCase , __UpperCAmelCase , num_proc=__UpperCAmelCase ) == expected_map_nested_sa assert map_nested(__UpperCAmelCase , __UpperCAmelCase , num_proc=__UpperCAmelCase ) == expected_map_nested_sa assert map_nested(__UpperCAmelCase , __UpperCAmelCase , num_proc=__UpperCAmelCase ) == expected_map_nested_sa
31
from typing import TYPE_CHECKING from ....utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available lowerCamelCase__ : Optional[int] = {'configuration_mmbt': ['MMBTConfig']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase__ : Any = ['MMBTForClassification', 'MMBTModel', 'ModalEmbeddings'] if TYPE_CHECKING: from .configuration_mmbt import MMBTConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mmbt import MMBTForClassification, MMBTModel, ModalEmbeddings else: import sys lowerCamelCase__ : str = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
31
1
def UpperCAmelCase_ ( __UpperCAmelCase : str , __UpperCAmelCase : Union[str, Any] ) -> Any: SCREAMING_SNAKE_CASE_ = [1] for i in range(2 , __UpperCAmelCase ): factorials.append(factorials[-1] * i ) assert 0 <= k < factorials[-1] * n, "k out of bounds" SCREAMING_SNAKE_CASE_ = [] SCREAMING_SNAKE_CASE_ = list(range(__UpperCAmelCase ) ) # Find permutation while factorials: SCREAMING_SNAKE_CASE_ = factorials.pop() SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = divmod(__UpperCAmelCase , __UpperCAmelCase ) permutation.append(elements[number] ) elements.remove(elements[number] ) permutation.append(elements[0] ) return permutation if __name__ == "__main__": import doctest doctest.testmod()
31
import unittest from typing import Tuple import torch from diffusers.utils import floats_tensor, randn_tensor, torch_all_close, torch_device from diffusers.utils.testing_utils import require_torch @require_torch class lowerCamelCase_ : '''simple docstring''' @property def lowerCAmelCase_ ( self : Optional[Any] ): return self.get_dummy_input() @property def lowerCAmelCase_ ( self : Union[str, Any] ): if self.block_type == "down": return (4, 32, 16, 16) elif self.block_type == "mid": return (4, 32, 32, 32) elif self.block_type == "up": return (4, 32, 64, 64) raise ValueError(F"'{self.block_type}' is not a supported block_type. Set it to 'up', 'mid', or 'down'." ) def lowerCAmelCase_ ( self : List[str] , _lowerCAmelCase : Optional[Any]=True , _lowerCAmelCase : str=False , _lowerCAmelCase : Optional[int]=False , _lowerCAmelCase : Dict=False , ): SCREAMING_SNAKE_CASE_ = 4 SCREAMING_SNAKE_CASE_ = 32 SCREAMING_SNAKE_CASE_ = (32, 32) SCREAMING_SNAKE_CASE_ = torch.manual_seed(0 ) SCREAMING_SNAKE_CASE_ = torch.device(_lowerCAmelCase ) SCREAMING_SNAKE_CASE_ = (batch_size, num_channels) + sizes SCREAMING_SNAKE_CASE_ = randn_tensor(_lowerCAmelCase , generator=_lowerCAmelCase , device=_lowerCAmelCase ) SCREAMING_SNAKE_CASE_ = {'hidden_states': hidden_states} if include_temb: SCREAMING_SNAKE_CASE_ = 128 SCREAMING_SNAKE_CASE_ = randn_tensor((batch_size, temb_channels) , generator=_lowerCAmelCase , device=_lowerCAmelCase ) if include_res_hidden_states_tuple: SCREAMING_SNAKE_CASE_ = torch.manual_seed(1 ) SCREAMING_SNAKE_CASE_ = (randn_tensor(_lowerCAmelCase , generator=_lowerCAmelCase , device=_lowerCAmelCase ),) if include_encoder_hidden_states: SCREAMING_SNAKE_CASE_ = floats_tensor((batch_size, 32, 32) ).to(_lowerCAmelCase ) if include_skip_sample: SCREAMING_SNAKE_CASE_ = randn_tensor(((batch_size, 3) + sizes) , generator=_lowerCAmelCase , device=_lowerCAmelCase ) return dummy_input def lowerCAmelCase_ ( self : Optional[int] ): SCREAMING_SNAKE_CASE_ = { 'in_channels': 32, 'out_channels': 32, 'temb_channels': 128, } if self.block_type == "up": SCREAMING_SNAKE_CASE_ = 32 if self.block_type == "mid": init_dict.pop('out_channels' ) SCREAMING_SNAKE_CASE_ = self.dummy_input return init_dict, inputs_dict def lowerCAmelCase_ ( self : Dict , _lowerCAmelCase : Optional[Any] ): SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = self.prepare_init_args_and_inputs_for_common() SCREAMING_SNAKE_CASE_ = self.block_class(**_lowerCAmelCase ) unet_block.to(_lowerCAmelCase ) unet_block.eval() with torch.no_grad(): SCREAMING_SNAKE_CASE_ = unet_block(**_lowerCAmelCase ) if isinstance(_lowerCAmelCase , _lowerCAmelCase ): SCREAMING_SNAKE_CASE_ = output[0] self.assertEqual(output.shape , self.output_shape ) SCREAMING_SNAKE_CASE_ = output[0, -1, -3:, -3:] SCREAMING_SNAKE_CASE_ = torch.tensor(_lowerCAmelCase ).to(_lowerCAmelCase ) assert torch_all_close(output_slice.flatten() , _lowerCAmelCase , atol=5E-3 ) @unittest.skipIf(torch_device == 'mps' , 'Training is not supported in mps' ) def lowerCAmelCase_ ( self : Any ): SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = self.prepare_init_args_and_inputs_for_common() SCREAMING_SNAKE_CASE_ = self.block_class(**_lowerCAmelCase ) model.to(_lowerCAmelCase ) model.train() SCREAMING_SNAKE_CASE_ = model(**_lowerCAmelCase ) if isinstance(_lowerCAmelCase , _lowerCAmelCase ): SCREAMING_SNAKE_CASE_ = output[0] SCREAMING_SNAKE_CASE_ = torch.device(_lowerCAmelCase ) SCREAMING_SNAKE_CASE_ = randn_tensor(output.shape , device=_lowerCAmelCase ) SCREAMING_SNAKE_CASE_ = torch.nn.functional.mse_loss(_lowerCAmelCase , _lowerCAmelCase ) loss.backward()
31
1
# Lint as: python3 # pylint: enable=line-too-long # pylint: disable=g-import-not-at-top,g-bad-import-order,wrong-import-position lowerCamelCase__ : int = '2.13.1' import platform import pyarrow from packaging import version if version.parse(platform.python_version()) < version.parse('3.7'): raise ImportWarning( 'To use `datasets`, Python>=3.7 is required, and the current version of Python doesn\'t match this condition.' ) if version.parse(pyarrow.__version__).major < 8: raise ImportWarning( 'To use `datasets`, the module `pyarrow>=8.0.0` is required, and the current version of `pyarrow` doesn\'t match this condition.\n' 'If you are running this in a Google Colab, you should probably just restart the runtime to use the right version of `pyarrow`.' ) del platform del pyarrow del version from .arrow_dataset import Dataset from .arrow_reader import ReadInstruction from .builder import ArrowBasedBuilder, BeamBasedBuilder, BuilderConfig, DatasetBuilder, GeneratorBasedBuilder from .combine import concatenate_datasets, interleave_datasets from .dataset_dict import DatasetDict, IterableDatasetDict from .download import * from .features import * from .fingerprint import disable_caching, enable_caching, is_caching_enabled, set_caching_enabled from .info import DatasetInfo, MetricInfo from .inspect import ( get_dataset_config_info, get_dataset_config_names, get_dataset_infos, get_dataset_split_names, inspect_dataset, inspect_metric, list_datasets, list_metrics, ) from .iterable_dataset import IterableDataset from .load import load_dataset, load_dataset_builder, load_from_disk, load_metric from .metric import Metric from .splits import ( NamedSplit, NamedSplitAll, Split, SplitBase, SplitDict, SplitGenerator, SplitInfo, SubSplitInfo, percent, ) from .tasks import * from .utils import * from .utils import logging # deprecated modules from datasets import arrow_dataset as _arrow_dataset # isort:skip from datasets import utils as _utils # isort:skip from datasets.utils import download_manager as _deprecated_download_manager # isort:skip lowerCamelCase__ : int = concatenate_datasets lowerCamelCase__ : List[Any] = DownloadConfig lowerCamelCase__ : int = DownloadManager lowerCamelCase__ : List[str] = DownloadMode lowerCamelCase__ : List[str] = DownloadConfig lowerCamelCase__ : int = DownloadMode lowerCamelCase__ : List[Any] = DownloadManager del _arrow_dataset, _utils, _deprecated_download_manager
31
import operator as op def UpperCAmelCase_ ( __UpperCAmelCase : str ) -> Any: SCREAMING_SNAKE_CASE_ = [] SCREAMING_SNAKE_CASE_ = lambda __UpperCAmelCase , __UpperCAmelCase : int(x / y ) # noqa: E731 integer division operation SCREAMING_SNAKE_CASE_ = { '^': op.pow, '*': op.mul, '/': div, '+': op.add, '-': op.sub, } # operators & their respective operation # print table header print('Symbol'.center(8 ) , 'Action'.center(12 ) , 'Stack' , sep=' | ' ) print('-' * (30 + len(__UpperCAmelCase )) ) for x in post_fix: if x.isdigit(): # if x in digit stack.append(__UpperCAmelCase ) # append x to stack # output in tabular format print(x.rjust(8 ) , ('push(' + x + ')').ljust(12 ) , ','.join(__UpperCAmelCase ) , sep=' | ' ) else: SCREAMING_SNAKE_CASE_ = stack.pop() # pop stack # output in tabular format print(''.rjust(8 ) , ('pop(' + b + ')').ljust(12 ) , ','.join(__UpperCAmelCase ) , sep=' | ' ) SCREAMING_SNAKE_CASE_ = stack.pop() # pop stack # output in tabular format print(''.rjust(8 ) , ('pop(' + a + ')').ljust(12 ) , ','.join(__UpperCAmelCase ) , sep=' | ' ) stack.append( str(opr[x](int(__UpperCAmelCase ) , int(__UpperCAmelCase ) ) ) ) # evaluate the 2 values popped from stack & push result to stack # output in tabular format print( x.rjust(8 ) , ('push(' + a + x + b + ')').ljust(12 ) , ','.join(__UpperCAmelCase ) , sep=' | ' , ) return int(stack[0] ) if __name__ == "__main__": lowerCamelCase__ : Tuple = input('\n\nEnter a Postfix Equation (space separated) = ').split(' ') print('\n\tResult = ', solve(Postfix))
31
1
from ..utils import DummyObject, requires_backends class lowerCamelCase_ ( metaclass=_SCREAMING_SNAKE_CASE ): '''simple docstring''' lowercase_ = ["transformers", "torch", "note_seq"] def __init__( self : Tuple , *_lowerCAmelCase : List[str] , **_lowerCAmelCase : Optional[int] ): requires_backends(self , ['transformers', 'torch', 'note_seq'] ) @classmethod def lowerCAmelCase_ ( cls : List[Any] , *_lowerCAmelCase : Any , **_lowerCAmelCase : Union[str, Any] ): requires_backends(cls , ['transformers', 'torch', 'note_seq'] ) @classmethod def lowerCAmelCase_ ( cls : List[str] , *_lowerCAmelCase : List[str] , **_lowerCAmelCase : Optional[Any] ): requires_backends(cls , ['transformers', 'torch', 'note_seq'] )
31
def UpperCAmelCase_ ( __UpperCAmelCase : int ) -> int: assert isinstance(__UpperCAmelCase , __UpperCAmelCase ), f"The input value of [n={number}] is not an integer" if number == 1: return 2 elif number < 1: SCREAMING_SNAKE_CASE_ = f"The input value of [n={number}] has to be > 0" raise ValueError(__UpperCAmelCase ) else: SCREAMING_SNAKE_CASE_ = sylvester(number - 1 ) SCREAMING_SNAKE_CASE_ = num - 1 SCREAMING_SNAKE_CASE_ = num return lower * upper + 1 if __name__ == "__main__": print(f'''The 8th number in Sylvester\'s sequence: {sylvester(8)}''')
31
1
lowerCamelCase__ : int = tuple[float, float, float] lowerCamelCase__ : Optional[Any] = tuple[float, float, float] def UpperCAmelCase_ ( __UpperCAmelCase : Pointad , __UpperCAmelCase : Pointad ) -> Vectorad: SCREAMING_SNAKE_CASE_ = end_pointa[0] - end_pointa[0] SCREAMING_SNAKE_CASE_ = end_pointa[1] - end_pointa[1] SCREAMING_SNAKE_CASE_ = end_pointa[2] - end_pointa[2] return (x, y, z) def UpperCAmelCase_ ( __UpperCAmelCase : Vectorad , __UpperCAmelCase : Vectorad ) -> Vectorad: SCREAMING_SNAKE_CASE_ = ab[1] * ac[2] - ab[2] * ac[1] # *i SCREAMING_SNAKE_CASE_ = (ab[0] * ac[2] - ab[2] * ac[0]) * -1 # *j SCREAMING_SNAKE_CASE_ = ab[0] * ac[1] - ab[1] * ac[0] # *k return (x, y, z) def UpperCAmelCase_ ( __UpperCAmelCase : Vectorad , __UpperCAmelCase : int ) -> bool: return tuple(round(__UpperCAmelCase , __UpperCAmelCase ) for x in vector ) == (0, 0, 0) def UpperCAmelCase_ ( __UpperCAmelCase : Pointad , __UpperCAmelCase : Pointad , __UpperCAmelCase : Pointad , __UpperCAmelCase : int = 10 ) -> bool: SCREAMING_SNAKE_CASE_ = create_vector(__UpperCAmelCase , __UpperCAmelCase ) SCREAMING_SNAKE_CASE_ = create_vector(__UpperCAmelCase , __UpperCAmelCase ) return is_zero_vector(get_ad_vectors_cross(__UpperCAmelCase , __UpperCAmelCase ) , __UpperCAmelCase )
31
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_sentencepiece_available, is_tf_available, is_tokenizers_available, is_torch_available, ) if is_sentencepiece_available(): from ..ta.tokenization_ta import TaTokenizer else: from ...utils.dummy_sentencepiece_objects import TaTokenizer lowerCamelCase__ : List[Any] = TaTokenizer if is_tokenizers_available(): from ..ta.tokenization_ta_fast import TaTokenizerFast else: from ...utils.dummy_tokenizers_objects import TaTokenizerFast lowerCamelCase__ : Union[str, Any] = TaTokenizerFast lowerCamelCase__ : Dict = {'configuration_mt5': ['MT5Config', 'MT5OnnxConfig']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase__ : Tuple = [ 'MT5EncoderModel', 'MT5ForConditionalGeneration', 'MT5ForQuestionAnswering', 'MT5Model', 'MT5PreTrainedModel', 'MT5Stack', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase__ : Tuple = ['TFMT5EncoderModel', 'TFMT5ForConditionalGeneration', 'TFMT5Model'] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase__ : Tuple = ['FlaxMT5EncoderModel', 'FlaxMT5ForConditionalGeneration', 'FlaxMT5Model'] if TYPE_CHECKING: from .configuration_mta import MTaConfig, MTaOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mta import ( MTaEncoderModel, MTaForConditionalGeneration, MTaForQuestionAnswering, MTaModel, MTaPreTrainedModel, MTaStack, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_mta import TFMTaEncoderModel, TFMTaForConditionalGeneration, TFMTaModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_mta import FlaxMTaEncoderModel, FlaxMTaForConditionalGeneration, FlaxMTaModel else: import sys lowerCamelCase__ : int = _LazyModule( __name__, globals()['__file__'], _import_structure, extra_objects={'MT5Tokenizer': MTaTokenizer, 'MT5TokenizerFast': MTaTokenizerFast}, module_spec=__spec__, )
31
1
import argparse import json import os import torch from transformers.file_utils import has_file from diffusers import UNetaDConditionModel, UNetaDModel lowerCamelCase__ : Union[str, Any] = False lowerCamelCase__ : List[str] = True lowerCamelCase__ : Optional[Any] = False if __name__ == "__main__": lowerCamelCase__ : Optional[Any] = argparse.ArgumentParser() parser.add_argument( '--repo_path', default=None, type=str, required=True, help='The config json file corresponding to the architecture.', ) parser.add_argument('--dump_path', default=None, type=str, required=True, help='Path to the output model.') lowerCamelCase__ : Optional[Any] = parser.parse_args() lowerCamelCase__ : List[Any] = { 'image_size': 'sample_size', 'num_res_blocks': 'layers_per_block', 'block_channels': 'block_out_channels', 'down_blocks': 'down_block_types', 'up_blocks': 'up_block_types', 'downscale_freq_shift': 'freq_shift', 'resnet_num_groups': 'norm_num_groups', 'resnet_act_fn': 'act_fn', 'resnet_eps': 'norm_eps', 'num_head_channels': 'attention_head_dim', } lowerCamelCase__ : str = { 'time_steps': 'time_proj', 'mid': 'mid_block', 'downsample_blocks': 'down_blocks', 'upsample_blocks': 'up_blocks', } lowerCamelCase__ : str = '' if has_file(args.repo_path, 'config.json') else 'unet' with open(os.path.join(args.repo_path, subfolder, 'config.json'), 'r', encoding='utf-8') as reader: lowerCamelCase__ : Optional[int] = reader.read() lowerCamelCase__ : Optional[int] = json.loads(text) if do_only_config: for key in config_parameters_to_change.keys(): config.pop(key, None) if has_file(args.repo_path, 'config.json'): lowerCamelCase__ : Any = UNetaDModel(**config) else: lowerCamelCase__ : Optional[Any] = UNetaDConditionModel if 'ldm-text2im-large-256' in args.repo_path else UNetaDModel lowerCamelCase__ : Optional[Any] = class_name(**config) if do_only_config: model.save_config(os.path.join(args.repo_path, subfolder)) lowerCamelCase__ : Optional[Any] = dict(model.config) if do_only_renaming: for key, value in config_parameters_to_change.items(): if key in config: lowerCamelCase__ : List[str] = config[key] del config[key] lowerCamelCase__ : str = [k.replace('UNetRes', '') for k in config['down_block_types']] lowerCamelCase__ : List[str] = [k.replace('UNetRes', '') for k in config['up_block_types']] if do_only_weights: lowerCamelCase__ : Optional[Any] = torch.load(os.path.join(args.repo_path, subfolder, 'diffusion_pytorch_model.bin')) lowerCamelCase__ : Dict = {} for param_key, param_value in state_dict.items(): if param_key.endswith('.op.bias') or param_key.endswith('.op.weight'): continue lowerCamelCase__ : int = False for key, new_key in key_parameters_to_change.items(): if not has_changed and param_key.split('.')[0] == key: lowerCamelCase__ : Dict = param_value lowerCamelCase__ : str = True if not has_changed: lowerCamelCase__ : Dict = param_value model.load_state_dict(new_state_dict) model.save_pretrained(os.path.join(args.repo_path, subfolder))
31
import subprocess import sys from transformers import BertConfig, BertModel, BertTokenizer, pipeline from transformers.testing_utils import TestCasePlus, require_torch class lowerCamelCase_ ( _SCREAMING_SNAKE_CASE ): '''simple docstring''' @require_torch def lowerCAmelCase_ ( self : int ): # this test is a bit tricky since TRANSFORMERS_OFFLINE can only be changed before # `transformers` is loaded, and it's too late for inside pytest - so we are changing it # while running an external program # python one-liner segments # this must be loaded before socket.socket is monkey-patched SCREAMING_SNAKE_CASE_ = '\nfrom transformers import BertConfig, BertModel, BertTokenizer, pipeline\n ' SCREAMING_SNAKE_CASE_ = '\nmname = "hf-internal-testing/tiny-random-bert"\nBertConfig.from_pretrained(mname)\nBertModel.from_pretrained(mname)\nBertTokenizer.from_pretrained(mname)\npipe = pipeline(task="fill-mask", model=mname)\nprint("success")\n ' SCREAMING_SNAKE_CASE_ = '\nimport socket\ndef offline_socket(*args, **kwargs): raise RuntimeError("Offline mode is enabled, we shouldn\'t access internet")\nsocket.socket = offline_socket\n ' # Force fetching the files so that we can use the cache SCREAMING_SNAKE_CASE_ = 'hf-internal-testing/tiny-random-bert' BertConfig.from_pretrained(_lowerCAmelCase ) BertModel.from_pretrained(_lowerCAmelCase ) BertTokenizer.from_pretrained(_lowerCAmelCase ) pipeline(task='fill-mask' , model=_lowerCAmelCase ) # baseline - just load from_pretrained with normal network SCREAMING_SNAKE_CASE_ = [sys.executable, '-c', '\n'.join([load, run, mock] )] # should succeed SCREAMING_SNAKE_CASE_ = self.get_env() # should succeed as TRANSFORMERS_OFFLINE=1 tells it to use local files SCREAMING_SNAKE_CASE_ = '1' SCREAMING_SNAKE_CASE_ = subprocess.run(_lowerCAmelCase , env=_lowerCAmelCase , check=_lowerCAmelCase , capture_output=_lowerCAmelCase ) self.assertEqual(result.returncode , 0 , result.stderr ) self.assertIn('success' , result.stdout.decode() ) @require_torch def lowerCAmelCase_ ( self : Tuple ): # python one-liner segments # this must be loaded before socket.socket is monkey-patched SCREAMING_SNAKE_CASE_ = '\nfrom transformers import BertConfig, BertModel, BertTokenizer, pipeline\n ' SCREAMING_SNAKE_CASE_ = '\nmname = "hf-internal-testing/tiny-random-bert"\nBertConfig.from_pretrained(mname)\nBertModel.from_pretrained(mname)\nBertTokenizer.from_pretrained(mname)\npipe = pipeline(task="fill-mask", model=mname)\nprint("success")\n ' SCREAMING_SNAKE_CASE_ = '\nimport socket\ndef offline_socket(*args, **kwargs): raise socket.error("Faking flaky internet")\nsocket.socket = offline_socket\n ' # Force fetching the files so that we can use the cache SCREAMING_SNAKE_CASE_ = 'hf-internal-testing/tiny-random-bert' BertConfig.from_pretrained(_lowerCAmelCase ) BertModel.from_pretrained(_lowerCAmelCase ) BertTokenizer.from_pretrained(_lowerCAmelCase ) pipeline(task='fill-mask' , model=_lowerCAmelCase ) # baseline - just load from_pretrained with normal network SCREAMING_SNAKE_CASE_ = [sys.executable, '-c', '\n'.join([load, run, mock] )] # should succeed SCREAMING_SNAKE_CASE_ = self.get_env() SCREAMING_SNAKE_CASE_ = subprocess.run(_lowerCAmelCase , env=_lowerCAmelCase , check=_lowerCAmelCase , capture_output=_lowerCAmelCase ) self.assertEqual(result.returncode , 0 , result.stderr ) self.assertIn('success' , result.stdout.decode() ) @require_torch def lowerCAmelCase_ ( self : List[str] ): # this test is a bit tricky since TRANSFORMERS_OFFLINE can only be changed before # `transformers` is loaded, and it's too late for inside pytest - so we are changing it # while running an external program # python one-liner segments # this must be loaded before socket.socket is monkey-patched SCREAMING_SNAKE_CASE_ = '\nfrom transformers import BertConfig, BertModel, BertTokenizer\n ' SCREAMING_SNAKE_CASE_ = '\nmname = "hf-internal-testing/tiny-random-bert-sharded"\nBertConfig.from_pretrained(mname)\nBertModel.from_pretrained(mname)\nprint("success")\n ' SCREAMING_SNAKE_CASE_ = '\nimport socket\ndef offline_socket(*args, **kwargs): raise ValueError("Offline mode is enabled")\nsocket.socket = offline_socket\n ' # baseline - just load from_pretrained with normal network SCREAMING_SNAKE_CASE_ = [sys.executable, '-c', '\n'.join([load, run] )] # should succeed SCREAMING_SNAKE_CASE_ = self.get_env() SCREAMING_SNAKE_CASE_ = subprocess.run(_lowerCAmelCase , env=_lowerCAmelCase , check=_lowerCAmelCase , capture_output=_lowerCAmelCase ) self.assertEqual(result.returncode , 0 , result.stderr ) self.assertIn('success' , result.stdout.decode() ) # next emulate no network SCREAMING_SNAKE_CASE_ = [sys.executable, '-c', '\n'.join([load, mock, run] )] # Doesn't fail anymore since the model is in the cache due to other tests, so commenting this. # env["TRANSFORMERS_OFFLINE"] = "0" # result = subprocess.run(cmd, env=env, check=False, capture_output=True) # self.assertEqual(result.returncode, 1, result.stderr) # should succeed as TRANSFORMERS_OFFLINE=1 tells it to use local files SCREAMING_SNAKE_CASE_ = '1' SCREAMING_SNAKE_CASE_ = subprocess.run(_lowerCAmelCase , env=_lowerCAmelCase , check=_lowerCAmelCase , capture_output=_lowerCAmelCase ) self.assertEqual(result.returncode , 0 , result.stderr ) self.assertIn('success' , result.stdout.decode() ) @require_torch def lowerCAmelCase_ ( self : Any ): SCREAMING_SNAKE_CASE_ = '\nfrom transformers import pipeline\n ' SCREAMING_SNAKE_CASE_ = '\nmname = "hf-internal-testing/tiny-random-bert"\npipe = pipeline(model=mname)\n ' SCREAMING_SNAKE_CASE_ = '\nimport socket\ndef offline_socket(*args, **kwargs): raise socket.error("Offline mode is enabled")\nsocket.socket = offline_socket\n ' SCREAMING_SNAKE_CASE_ = self.get_env() SCREAMING_SNAKE_CASE_ = '1' SCREAMING_SNAKE_CASE_ = [sys.executable, '-c', '\n'.join([load, mock, run] )] SCREAMING_SNAKE_CASE_ = subprocess.run(_lowerCAmelCase , env=_lowerCAmelCase , check=_lowerCAmelCase , capture_output=_lowerCAmelCase ) self.assertEqual(result.returncode , 1 , result.stderr ) self.assertIn( 'You cannot infer task automatically within `pipeline` when using offline mode' , result.stderr.decode().replace('\n' , '' ) , ) @require_torch def lowerCAmelCase_ ( self : Optional[int] ): SCREAMING_SNAKE_CASE_ = '\nfrom transformers import AutoModel\n ' SCREAMING_SNAKE_CASE_ = '\nmname = "hf-internal-testing/test_dynamic_model"\nAutoModel.from_pretrained(mname, trust_remote_code=True)\nprint("success")\n ' # baseline - just load from_pretrained with normal network SCREAMING_SNAKE_CASE_ = [sys.executable, '-c', '\n'.join([load, run] )] # should succeed SCREAMING_SNAKE_CASE_ = self.get_env() SCREAMING_SNAKE_CASE_ = subprocess.run(_lowerCAmelCase , env=_lowerCAmelCase , check=_lowerCAmelCase , capture_output=_lowerCAmelCase ) self.assertEqual(result.returncode , 0 , result.stderr ) self.assertIn('success' , result.stdout.decode() ) # should succeed as TRANSFORMERS_OFFLINE=1 tells it to use local files SCREAMING_SNAKE_CASE_ = '1' SCREAMING_SNAKE_CASE_ = subprocess.run(_lowerCAmelCase , env=_lowerCAmelCase , check=_lowerCAmelCase , capture_output=_lowerCAmelCase ) self.assertEqual(result.returncode , 0 , result.stderr ) self.assertIn('success' , result.stdout.decode() )
31
1