code
stringlengths 82
54.1k
| code_codestyle
int64 0
699
| style_context
stringlengths 111
35.6k
| style_context_codestyle
int64 0
699
| label
int64 0
1
|
---|---|---|---|---|
'''simple docstring'''
from collections.abc import Iterator, MutableMapping
from dataclasses import dataclass
from typing import Generic, TypeVar
lowerCAmelCase__ = TypeVar('''KEY''')
lowerCAmelCase__ = TypeVar('''VAL''')
@dataclass(frozen=lowerCamelCase__ , slots=lowerCamelCase__ )
class lowercase_ (Generic[KEY, VAL] ):
"""simple docstring"""
SCREAMING_SNAKE_CASE : KEY
SCREAMING_SNAKE_CASE : VAL
class lowercase_ (_Item ):
"""simple docstring"""
def __init__( self : Optional[int] ):
super().__init__(lowercase__ ,lowercase__ )
def __bool__( self : List[str] ):
return False
lowerCAmelCase__ = _DeletedItem()
class lowercase_ (MutableMapping[KEY, VAL] ):
"""simple docstring"""
def __init__( self : Dict ,lowercase__ : int = 8 ,lowercase__ : float = 0.7_5 ):
__lowercase = initial_block_size
__lowercase = [None] * initial_block_size
assert 0.0 < capacity_factor < 1.0
__lowercase = capacity_factor
__lowercase = 0
def SCREAMING_SNAKE_CASE ( self : Dict ,lowercase__ : KEY ):
return hash(lowercase__ ) % len(self._buckets )
def SCREAMING_SNAKE_CASE ( self : Dict ,lowercase__ : int ):
return (ind + 1) % len(self._buckets )
def SCREAMING_SNAKE_CASE ( self : str ,lowercase__ : int ,lowercase__ : KEY ,lowercase__ : VAL ):
__lowercase = self._buckets[ind]
if not stored:
__lowercase = _Item(lowercase__ ,lowercase__ )
self._len += 1
return True
elif stored.key == key:
__lowercase = _Item(lowercase__ ,lowercase__ )
return True
else:
return False
def SCREAMING_SNAKE_CASE ( self : Dict ):
__lowercase = len(self._buckets ) * self._capacity_factor
return len(self ) >= int(lowercase__ )
def SCREAMING_SNAKE_CASE ( self : int ):
if len(self._buckets ) <= self._initial_block_size:
return False
__lowercase = len(self._buckets ) * self._capacity_factor / 2
return len(self ) < limit
def SCREAMING_SNAKE_CASE ( self : Any ,lowercase__ : int ):
__lowercase = self._buckets
__lowercase = [None] * new_size
__lowercase = 0
for item in old_buckets:
if item:
self._add_item(item.key ,item.val )
def SCREAMING_SNAKE_CASE ( self : str ):
self._resize(len(self._buckets ) * 2 )
def SCREAMING_SNAKE_CASE ( self : Tuple ):
self._resize(len(self._buckets ) // 2 )
def SCREAMING_SNAKE_CASE ( self : int ,lowercase__ : KEY ):
__lowercase = self._get_bucket_index(lowercase__ )
for _ in range(len(self._buckets ) ):
yield ind
__lowercase = self._get_next_ind(lowercase__ )
def SCREAMING_SNAKE_CASE ( self : str ,lowercase__ : KEY ,lowercase__ : VAL ):
for ind in self._iterate_buckets(lowercase__ ):
if self._try_set(lowercase__ ,lowercase__ ,lowercase__ ):
break
def __setitem__( self : str ,lowercase__ : KEY ,lowercase__ : VAL ):
if self._is_full():
self._size_up()
self._add_item(lowercase__ ,lowercase__ )
def __delitem__( self : Tuple ,lowercase__ : KEY ):
for ind in self._iterate_buckets(lowercase__ ):
__lowercase = self._buckets[ind]
if item is None:
raise KeyError(lowercase__ )
if item is _deleted:
continue
if item.key == key:
__lowercase = _deleted
self._len -= 1
break
if self._is_sparse():
self._size_down()
def __getitem__( self : Tuple ,lowercase__ : KEY ):
for ind in self._iterate_buckets(lowercase__ ):
__lowercase = self._buckets[ind]
if item is None:
break
if item is _deleted:
continue
if item.key == key:
return item.val
raise KeyError(lowercase__ )
def __len__( self : Optional[int] ):
return self._len
def __iter__( self : str ):
yield from (item.key for item in self._buckets if item)
def __repr__( self : Optional[Any] ):
__lowercase = ''' ,'''.join(
F"{item.key}: {item.val}" for item in self._buckets if item )
return F"HashMap({val_string})"
| 41 |
from __future__ import annotations
from collections.abc import Generator
def UpperCAmelCase_ ( ) -> Generator[int, None, None]:
SCREAMING_SNAKE_CASE_ = {}
SCREAMING_SNAKE_CASE_ = 2
while True:
SCREAMING_SNAKE_CASE_ = factor_map.pop(__UpperCAmelCase , __UpperCAmelCase )
if factor:
SCREAMING_SNAKE_CASE_ = factor + prime
while x in factor_map:
x += factor
SCREAMING_SNAKE_CASE_ = factor
else:
SCREAMING_SNAKE_CASE_ = prime
yield prime
prime += 1
def UpperCAmelCase_ ( __UpperCAmelCase : float = 1E10 ) -> int:
SCREAMING_SNAKE_CASE_ = sieve()
SCREAMING_SNAKE_CASE_ = 1
while True:
SCREAMING_SNAKE_CASE_ = next(__UpperCAmelCase )
if (2 * prime * n) > limit:
return n
# Ignore the next prime as the reminder will be 2.
next(__UpperCAmelCase )
n += 2
if __name__ == "__main__":
print(solution()) | 31 | 0 |
'''simple docstring'''
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_tf_available,
is_torch_available,
is_vision_available,
)
A_ = {
"configuration_efficientformer": [
"EFFICIENTFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP",
"EfficientFormerConfig",
]
}
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
A_ = ["EfficientFormerImageProcessor"]
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
A_ = [
"EFFICIENTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST",
"EfficientFormerForImageClassification",
"EfficientFormerForImageClassificationWithTeacher",
"EfficientFormerModel",
"EfficientFormerPreTrainedModel",
]
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
A_ = [
"TF_EFFICIENTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST",
"TFEfficientFormerForImageClassification",
"TFEfficientFormerForImageClassificationWithTeacher",
"TFEfficientFormerModel",
"TFEfficientFormerPreTrainedModel",
]
if TYPE_CHECKING:
from .configuration_efficientformer import EFFICIENTFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, EfficientFormerConfig
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .image_processing_efficientformer import EfficientFormerImageProcessor
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_efficientformer import (
EFFICIENTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST,
EfficientFormerForImageClassification,
EfficientFormerForImageClassificationWithTeacher,
EfficientFormerModel,
EfficientFormerPreTrainedModel,
)
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_efficientformer import (
TF_EFFICIENTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST,
TFEfficientFormerForImageClassification,
TFEfficientFormerForImageClassificationWithTeacher,
TFEfficientFormerModel,
TFEfficientFormerPreTrainedModel,
)
else:
import sys
A_ = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
| 42 |
import numpy as np
import torch
from torch.utils.data import DataLoader
from accelerate.utils.dataclasses import DistributedType
class lowerCamelCase_ :
'''simple docstring'''
def __init__( self : Any , _lowerCAmelCase : Optional[int]=2 , _lowerCAmelCase : Any=3 , _lowerCAmelCase : Tuple=64 , _lowerCAmelCase : List[str]=None ):
SCREAMING_SNAKE_CASE_ = np.random.default_rng(_lowerCAmelCase )
SCREAMING_SNAKE_CASE_ = length
SCREAMING_SNAKE_CASE_ = rng.normal(size=(length,) ).astype(np.floataa )
SCREAMING_SNAKE_CASE_ = a * self.x + b + rng.normal(scale=0.1 , size=(length,) ).astype(np.floataa )
def __len__( self : Optional[int] ):
return self.length
def __getitem__( self : str , _lowerCAmelCase : Union[str, Any] ):
return {"x": self.x[i], "y": self.y[i]}
class lowerCamelCase_ ( torch.nn.Module ):
'''simple docstring'''
def __init__( self : Tuple , _lowerCAmelCase : Dict=0 , _lowerCAmelCase : List[str]=0 , _lowerCAmelCase : str=False ):
super().__init__()
SCREAMING_SNAKE_CASE_ = torch.nn.Parameter(torch.tensor([2, 3] ).float() )
SCREAMING_SNAKE_CASE_ = torch.nn.Parameter(torch.tensor([2, 3] ).float() )
SCREAMING_SNAKE_CASE_ = True
def lowerCAmelCase_ ( self : Dict , _lowerCAmelCase : Union[str, Any]=None ):
if self.first_batch:
print(F"Model dtype: {self.a.dtype}, {self.b.dtype}. Input dtype: {x.dtype}" )
SCREAMING_SNAKE_CASE_ = False
return x * self.a[0] + self.b[0]
class lowerCamelCase_ ( torch.nn.Module ):
'''simple docstring'''
def __init__( self : Optional[int] , _lowerCAmelCase : Any=0 , _lowerCAmelCase : Any=0 , _lowerCAmelCase : Optional[Any]=False ):
super().__init__()
SCREAMING_SNAKE_CASE_ = torch.nn.Parameter(torch.tensor(_lowerCAmelCase ).float() )
SCREAMING_SNAKE_CASE_ = torch.nn.Parameter(torch.tensor(_lowerCAmelCase ).float() )
SCREAMING_SNAKE_CASE_ = True
def lowerCAmelCase_ ( self : Optional[Any] , _lowerCAmelCase : Optional[int]=None ):
if self.first_batch:
print(F"Model dtype: {self.a.dtype}, {self.b.dtype}. Input dtype: {x.dtype}" )
SCREAMING_SNAKE_CASE_ = False
return x * self.a + self.b
def UpperCAmelCase_ ( __UpperCAmelCase : Dict , __UpperCAmelCase : int = 16 ) -> Union[str, Any]:
from datasets import load_dataset
from transformers import AutoTokenizer
SCREAMING_SNAKE_CASE_ = AutoTokenizer.from_pretrained('bert-base-cased' )
SCREAMING_SNAKE_CASE_ = {'train': 'tests/test_samples/MRPC/train.csv', 'validation': 'tests/test_samples/MRPC/dev.csv'}
SCREAMING_SNAKE_CASE_ = load_dataset('csv' , data_files=__UpperCAmelCase )
SCREAMING_SNAKE_CASE_ = datasets['train'].unique('label' )
SCREAMING_SNAKE_CASE_ = {v: i for i, v in enumerate(__UpperCAmelCase )}
def tokenize_function(__UpperCAmelCase : Optional[int] ):
# max_length=None => use the model max length (it's actually the default)
SCREAMING_SNAKE_CASE_ = tokenizer(
examples['sentence1'] , examples['sentence2'] , truncation=__UpperCAmelCase , max_length=__UpperCAmelCase , padding='max_length' )
if "label" in examples:
SCREAMING_SNAKE_CASE_ = [label_to_id[l] for l in examples['label']]
return outputs
# Apply the method we just defined to all the examples in all the splits of the dataset
SCREAMING_SNAKE_CASE_ = datasets.map(
__UpperCAmelCase , batched=__UpperCAmelCase , remove_columns=['sentence1', 'sentence2', 'label'] , )
def collate_fn(__UpperCAmelCase : Dict ):
# On TPU it's best to pad everything to the same length or training will be very slow.
if accelerator.distributed_type == DistributedType.TPU:
return tokenizer.pad(__UpperCAmelCase , padding='max_length' , max_length=1_28 , return_tensors='pt' )
return tokenizer.pad(__UpperCAmelCase , padding='longest' , return_tensors='pt' )
# Instantiate dataloaders.
SCREAMING_SNAKE_CASE_ = DataLoader(tokenized_datasets['train'] , shuffle=__UpperCAmelCase , collate_fn=__UpperCAmelCase , batch_size=2 )
SCREAMING_SNAKE_CASE_ = DataLoader(tokenized_datasets['validation'] , shuffle=__UpperCAmelCase , collate_fn=__UpperCAmelCase , batch_size=1 )
return train_dataloader, eval_dataloader | 31 | 0 |
from typing import List, Optional, Union
import numpy as np
import torch
import torchaudio.compliance.kaldi as ta_kaldi
from ...feature_extraction_sequence_utils import SequenceFeatureExtractor
from ...feature_extraction_utils import BatchFeature
from ...utils import PaddingStrategy, TensorType, logging
lowerCAmelCase = logging.get_logger(__name__)
class _a ( UpperCamelCase__ ):
_lowercase : Any = ['''input_features''', '''attention_mask''']
def __init__( self: Dict , UpperCamelCase_: str=80 , UpperCamelCase_: Any=16_000 , UpperCamelCase_: Union[str, Any]=80 , UpperCamelCase_: List[str]=0.0 , UpperCamelCase_: int=True , UpperCamelCase_: Optional[Any]=True , UpperCamelCase_: Optional[Any]=True , **UpperCamelCase_: List[str] , ) -> int:
"""simple docstring"""
super().__init__(feature_size=UpperCamelCase_ , sampling_rate=UpperCamelCase_ , padding_value=UpperCamelCase_ , **UpperCamelCase_ )
lowercase__ = num_mel_bins
lowercase__ = do_ceptral_normalize
lowercase__ = normalize_means
lowercase__ = normalize_vars
lowercase__ = True
def lowerCamelCase_ ( self: Union[str, Any] , UpperCamelCase_: np.ndarray , ) -> np.ndarray:
"""simple docstring"""
lowercase__ = waveform * (2**15) # Kaldi compliance: 16-bit signed integers
lowercase__ = torch.from_numpy(UpperCamelCase_ ).unsqueeze(0 )
lowercase__ = ta_kaldi.fbank(UpperCamelCase_ , num_mel_bins=self.num_mel_bins , sample_frequency=self.sampling_rate )
return features.numpy()
@staticmethod
def lowerCamelCase_ ( UpperCamelCase_: np.ndarray , UpperCamelCase_: int , UpperCamelCase_: Optional[bool] = True , UpperCamelCase_: Optional[bool] = True , UpperCamelCase_: float = 0.0 , ) -> np.ndarray:
"""simple docstring"""
if normalize_means:
lowercase__ = x[:input_length].mean(axis=0 )
lowercase__ = np.subtract(UpperCamelCase_ , UpperCamelCase_ )
if normalize_vars:
lowercase__ = x[:input_length].std(axis=0 )
lowercase__ = np.divide(UpperCamelCase_ , UpperCamelCase_ )
if input_length < x.shape[0]:
lowercase__ = padding_value
# make sure array is in float32
lowercase__ = x.astype(np.floataa )
return x
def lowerCamelCase_ ( self: int , UpperCamelCase_: List[np.ndarray] , UpperCamelCase_: Optional[np.ndarray] = None ) -> List[np.ndarray]:
"""simple docstring"""
lowercase__ = attention_mask.sum(-1 ) if attention_mask is not None else [x.shape[0] for x in input_features]
return [
self.utterance_cmvn(UpperCamelCase_ , UpperCamelCase_ , self.normalize_means , self.normalize_vars , self.padding_value )
for x, n in zip(UpperCamelCase_ , UpperCamelCase_ )
]
def __call__( self: List[Any] , UpperCamelCase_: Union[np.ndarray, List[float], List[np.ndarray], List[List[float]]] , UpperCamelCase_: Union[bool, str, PaddingStrategy] = False , UpperCamelCase_: Optional[int] = None , UpperCamelCase_: bool = False , UpperCamelCase_: Optional[int] = None , UpperCamelCase_: Optional[Union[str, TensorType]] = None , UpperCamelCase_: Optional[int] = None , UpperCamelCase_: Optional[bool] = None , **UpperCamelCase_: List[Any] , ) -> BatchFeature:
"""simple docstring"""
if sampling_rate is not None:
if sampling_rate != self.sampling_rate:
raise ValueError(
f'The model corresponding to this feature extractor: {self} was trained using a sampling rate of'
f' {self.sampling_rate}. Please make sure that the provided `raw_speech` input was sampled with'
f' {self.sampling_rate} and not {sampling_rate}.' )
else:
logger.warning(
'''It is strongly recommended to pass the `sampling_rate` argument to this function. '''
'''Failing to do so can result in silent errors that might be hard to debug.''' )
lowercase__ = isinstance(UpperCamelCase_ , np.ndarray ) and len(raw_speech.shape ) > 1
if is_batched_numpy and len(raw_speech.shape ) > 2:
raise ValueError(f'Only mono-channel audio is supported for input to {self}' )
lowercase__ = is_batched_numpy or (
isinstance(UpperCamelCase_ , (list, tuple) ) and (isinstance(raw_speech[0] , (np.ndarray, tuple, list) ))
)
if is_batched:
lowercase__ = [np.asarray(UpperCamelCase_ , dtype=np.floataa ) for speech in raw_speech]
elif not is_batched and not isinstance(UpperCamelCase_ , np.ndarray ):
lowercase__ = np.asarray(UpperCamelCase_ , dtype=np.floataa )
elif isinstance(UpperCamelCase_ , np.ndarray ) and raw_speech.dtype is np.dtype(np.floataa ):
lowercase__ = raw_speech.astype(np.floataa )
# always return batch
if not is_batched:
lowercase__ = [raw_speech]
# extract fbank features
lowercase__ = [self._extract_fbank_features(UpperCamelCase_ ) for waveform in raw_speech]
# convert into correct format for padding
lowercase__ = BatchFeature({'''input_features''': features} )
lowercase__ = self.pad(
UpperCamelCase_ , padding=UpperCamelCase_ , max_length=UpperCamelCase_ , truncation=UpperCamelCase_ , pad_to_multiple_of=UpperCamelCase_ , return_attention_mask=UpperCamelCase_ , **UpperCamelCase_ , )
# make sure list is in array format
lowercase__ = padded_inputs.get('''input_features''' )
if isinstance(input_features[0] , UpperCamelCase_ ):
lowercase__ = [np.asarray(UpperCamelCase_ , dtype=np.floataa ) for feature in input_features]
lowercase__ = padded_inputs.get('''attention_mask''' )
if attention_mask is not None:
lowercase__ = [np.asarray(UpperCamelCase_ , dtype=np.intaa ) for array in attention_mask]
# Utterance-level cepstral mean and variance normalization
if self.do_ceptral_normalize:
lowercase__ = (
np.array(UpperCamelCase_ , dtype=np.intaa )
if self._get_padding_strategies(UpperCamelCase_ , max_length=UpperCamelCase_ ) is not PaddingStrategy.DO_NOT_PAD
else None
)
lowercase__ = self.normalize(
padded_inputs['''input_features'''] , attention_mask=UpperCamelCase_ )
if return_tensors is not None:
lowercase__ = padded_inputs.convert_to_tensors(UpperCamelCase_ )
return padded_inputs
| 43 |
import warnings
from ...utils import logging
from .image_processing_layoutlmva import LayoutLMvaImageProcessor
lowerCamelCase__ : Union[str, Any] = logging.get_logger(__name__)
class lowerCamelCase_ ( _SCREAMING_SNAKE_CASE ):
'''simple docstring'''
def __init__( self : Dict , *_lowerCAmelCase : Optional[Any] , **_lowerCAmelCase : Any ):
warnings.warn(
'The class LayoutLMv2FeatureExtractor is deprecated and will be removed in version 5 of Transformers.'
' Please use LayoutLMv2ImageProcessor instead.' , _lowerCAmelCase , )
super().__init__(*_lowerCAmelCase , **_lowerCAmelCase ) | 31 | 0 |
'''simple docstring'''
import argparse
import os
import torch
from transformers import FlavaConfig, FlavaForPreTraining
from transformers.models.flava.convert_dalle_to_flava_codebook import convert_dalle_checkpoint
def A_ ( _lowerCAmelCase : str ):
"""simple docstring"""
return sum(param.float().sum() if "encoder.embeddings" not in key else 0 for key, param in state_dict.items() )
def A_ ( _lowerCAmelCase : Optional[Any] , _lowerCAmelCase : Dict ):
"""simple docstring"""
_lowerCamelCase : str = {}
for key, value in state_dict.items():
if "text_encoder.embeddings" in key or "image_encoder.embeddings" in key:
continue
_lowerCamelCase : int = key.replace("heads.cmd.mim_head.cls.predictions" , "mmm_image_head" )
_lowerCamelCase : List[Any] = key.replace("heads.cmd.mlm_head.cls.predictions" , "mmm_text_head" )
_lowerCamelCase : List[str] = key.replace("heads.cmd.itm_head.cls" , "itm_head" )
_lowerCamelCase : int = key.replace("heads.cmd.itm_head.pooler" , "itm_head.pooler" )
_lowerCamelCase : Union[str, Any] = key.replace("heads.cmd.clip_head.logit_scale" , "flava.logit_scale" )
_lowerCamelCase : Any = key.replace("heads.fairseq_mlm.cls.predictions" , "mlm_head" )
_lowerCamelCase : str = key.replace("heads.imagenet.mim_head.cls.predictions" , "mim_head" )
_lowerCamelCase : Optional[Any] = key.replace("mm_text_projection" , "flava.text_to_mm_projection" )
_lowerCamelCase : int = key.replace("mm_image_projection" , "flava.image_to_mm_projection" )
_lowerCamelCase : Union[str, Any] = key.replace("image_encoder.module" , "flava.image_model" )
_lowerCamelCase : List[Any] = key.replace("text_encoder.module" , "flava.text_model" )
_lowerCamelCase : Union[str, Any] = key.replace("mm_encoder.module.encoder.cls_token" , "flava.multimodal_model.cls_token" )
_lowerCamelCase : Any = key.replace("mm_encoder.module" , "flava.multimodal_model" )
_lowerCamelCase : Optional[Any] = key.replace("text_projection" , "flava.text_projection" )
_lowerCamelCase : Union[str, Any] = key.replace("image_projection" , "flava.image_projection" )
_lowerCamelCase : Dict = value.float()
for key, value in codebook_state_dict.items():
_lowerCamelCase : Union[str, Any] = value
return upgrade
@torch.no_grad()
def A_ ( _lowerCAmelCase : Union[str, Any] , _lowerCAmelCase : int , _lowerCAmelCase : Optional[int] , _lowerCAmelCase : Any=None ):
"""simple docstring"""
if config_path is not None:
_lowerCamelCase : Optional[Any] = FlavaConfig.from_pretrained(_lowerCAmelCase )
else:
_lowerCamelCase : List[Any] = FlavaConfig()
_lowerCamelCase : Union[str, Any] = FlavaForPreTraining(_lowerCAmelCase ).eval()
_lowerCamelCase : List[Any] = convert_dalle_checkpoint(_lowerCAmelCase , _lowerCAmelCase , save_checkpoint=_lowerCAmelCase )
if os.path.exists(_lowerCAmelCase ):
_lowerCamelCase : str = torch.load(_lowerCAmelCase , map_location="cpu" )
else:
_lowerCamelCase : Tuple = torch.hub.load_state_dict_from_url(_lowerCAmelCase , map_location="cpu" )
_lowerCamelCase : Union[str, Any] = upgrade_state_dict(_lowerCAmelCase , _lowerCAmelCase )
hf_model.load_state_dict(_lowerCAmelCase )
_lowerCamelCase : Optional[Any] = hf_model.state_dict()
_lowerCamelCase : Dict = count_parameters(_lowerCAmelCase )
_lowerCamelCase : Tuple = count_parameters(_lowerCAmelCase ) + count_parameters(_lowerCAmelCase )
assert torch.allclose(_lowerCAmelCase , _lowerCAmelCase , atol=1E-3 )
hf_model.save_pretrained(_lowerCAmelCase )
if __name__ == "__main__":
UpperCAmelCase_ : Optional[Any] = argparse.ArgumentParser()
parser.add_argument('--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model.')
parser.add_argument('--checkpoint_path', default=None, type=str, help='Path to flava checkpoint')
parser.add_argument('--codebook_path', default=None, type=str, help='Path to flava codebook checkpoint')
parser.add_argument('--config_path', default=None, type=str, help='Path to hf config.json of model to convert')
UpperCAmelCase_ : Tuple = parser.parse_args()
convert_flava_checkpoint(args.checkpoint_path, args.codebook_path, args.pytorch_dump_folder_path, args.config_path) | 44 |
def UpperCAmelCase_ ( ) -> list[list[int]]:
return [list(range(10_00 - i , -10_00 - i , -1 ) ) for i in range(10_00 )]
lowerCamelCase__ : List[Any] = generate_large_matrix()
lowerCamelCase__ : List[Any] = (
[[4, 3, 2, -1], [3, 2, 1, -1], [1, 1, -1, -2], [-1, -1, -2, -3]],
[[3, 2], [1, 0]],
[[7, 7, 6]],
[[7, 7, 6], [-1, -2, -3]],
grid,
)
def UpperCAmelCase_ ( __UpperCAmelCase : list[list[int]] ) -> None:
assert all(row == sorted(__UpperCAmelCase , reverse=__UpperCAmelCase ) for row in grid )
assert all(list(__UpperCAmelCase ) == sorted(__UpperCAmelCase , reverse=__UpperCAmelCase ) for col in zip(*__UpperCAmelCase ) )
def UpperCAmelCase_ ( __UpperCAmelCase : list[int] ) -> int:
SCREAMING_SNAKE_CASE_ = 0
SCREAMING_SNAKE_CASE_ = len(__UpperCAmelCase ) - 1
# Edge cases such as no values or all numbers are negative.
if not array or array[0] < 0:
return 0
while right + 1 > left:
SCREAMING_SNAKE_CASE_ = (left + right) // 2
SCREAMING_SNAKE_CASE_ = array[mid]
# Num must be negative and the index must be greater than or equal to 0.
if num < 0 and array[mid - 1] >= 0:
return mid
if num >= 0:
SCREAMING_SNAKE_CASE_ = mid + 1
else:
SCREAMING_SNAKE_CASE_ = mid - 1
# No negative numbers so return the last index of the array + 1 which is the length.
return len(__UpperCAmelCase )
def UpperCAmelCase_ ( __UpperCAmelCase : list[list[int]] ) -> int:
SCREAMING_SNAKE_CASE_ = 0
SCREAMING_SNAKE_CASE_ = len(grid[0] )
for i in range(len(__UpperCAmelCase ) ):
SCREAMING_SNAKE_CASE_ = find_negative_index(grid[i][:bound] )
total += bound
return (len(__UpperCAmelCase ) * len(grid[0] )) - total
def UpperCAmelCase_ ( __UpperCAmelCase : list[list[int]] ) -> int:
return len([number for row in grid for number in row if number < 0] )
def UpperCAmelCase_ ( __UpperCAmelCase : list[list[int]] ) -> int:
SCREAMING_SNAKE_CASE_ = 0
for row in grid:
for i, number in enumerate(__UpperCAmelCase ):
if number < 0:
total += len(__UpperCAmelCase ) - i
break
return total
def UpperCAmelCase_ ( ) -> None:
from timeit import timeit
print('Running benchmarks' )
SCREAMING_SNAKE_CASE_ = (
'from __main__ import count_negatives_binary_search, '
'count_negatives_brute_force, count_negatives_brute_force_with_break, grid'
)
for func in (
"count_negatives_binary_search", # took 0.7727 seconds
"count_negatives_brute_force_with_break", # took 4.6505 seconds
"count_negatives_brute_force", # took 12.8160 seconds
):
SCREAMING_SNAKE_CASE_ = timeit(f"{func}(grid=grid)" , setup=__UpperCAmelCase , number=5_00 )
print(f"{func}() took {time:0.4f} seconds" )
if __name__ == "__main__":
import doctest
doctest.testmod()
benchmark() | 31 | 0 |
import numpy as np
import torch
import torch.nn as nn
from transformers import CLIPConfig, CLIPVisionModelWithProjection, PreTrainedModel
from ...utils import logging
UpperCamelCase = logging.get_logger(__name__)
class lowerCAmelCase_ ( lowercase ):
"""simple docstring"""
_snake_case : Any = CLIPConfig
_snake_case : List[Any] = ["""CLIPEncoderLayer"""]
def __init__( self :Union[str, Any] , lowerCamelCase__ :CLIPConfig ):
super().__init__(lowerCamelCase__ )
UpperCamelCase__ :List[str] = CLIPVisionModelWithProjection(config.vision_config )
UpperCamelCase__ :Optional[int] = nn.Linear(config.vision_config.projection_dim , 1 )
UpperCamelCase__ :Optional[Any] = nn.Linear(config.vision_config.projection_dim , 1 )
@torch.no_grad()
def __a ( self :Optional[Any] , lowerCamelCase__ :Any , lowerCamelCase__ :Tuple , lowerCamelCase__ :Optional[int]=0.5 , lowerCamelCase__ :Tuple=0.5 ):
UpperCamelCase__ :Optional[int] = self.vision_model(lowerCamelCase__ )[0]
UpperCamelCase__ :str = self.p_head(lowerCamelCase__ )
UpperCamelCase__ :List[Any] = nsfw_detected.flatten()
UpperCamelCase__ :Optional[int] = nsfw_detected > p_threshold
UpperCamelCase__ :Dict = nsfw_detected.tolist()
if any(lowerCamelCase__ ):
logger.warning(
"""Potential NSFW content was detected in one or more images. A black image will be returned instead."""
""" Try again with a different prompt and/or seed.""" )
for idx, nsfw_detected_ in enumerate(lowerCamelCase__ ):
if nsfw_detected_:
UpperCamelCase__ :List[str] = np.zeros(images[idx].shape )
UpperCamelCase__ :Optional[Any] = self.w_head(lowerCamelCase__ )
UpperCamelCase__ :Dict = watermark_detected.flatten()
UpperCamelCase__ :List[str] = watermark_detected > w_threshold
UpperCamelCase__ :str = watermark_detected.tolist()
if any(lowerCamelCase__ ):
logger.warning(
"""Potential watermarked content was detected in one or more images. A black image will be returned instead."""
""" Try again with a different prompt and/or seed.""" )
for idx, watermark_detected_ in enumerate(lowerCamelCase__ ):
if watermark_detected_:
UpperCamelCase__ :Any = np.zeros(images[idx].shape )
return images, nsfw_detected, watermark_detected | 45 |
from typing import TYPE_CHECKING
from ....utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available
lowerCamelCase__ : Optional[int] = {'configuration_mmbt': ['MMBTConfig']}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowerCamelCase__ : Any = ['MMBTForClassification', 'MMBTModel', 'ModalEmbeddings']
if TYPE_CHECKING:
from .configuration_mmbt import MMBTConfig
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_mmbt import MMBTForClassification, MMBTModel, ModalEmbeddings
else:
import sys
lowerCamelCase__ : str = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__) | 31 | 0 |
"""simple docstring"""
import argparse
import torch
from transformers import OpenAIGPTConfig, OpenAIGPTModel, load_tf_weights_in_openai_gpt
from transformers.utils import CONFIG_NAME, WEIGHTS_NAME, logging
logging.set_verbosity_info()
def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> List[str]:
'''simple docstring'''
if openai_config_file == "":
_lowerCamelCase : Optional[Any] = OpenAIGPTConfig()
else:
_lowerCamelCase : Tuple = OpenAIGPTConfig.from_json_file(_lowerCamelCase )
_lowerCamelCase : List[Any] = OpenAIGPTModel(_lowerCamelCase )
# Load weights from numpy
load_tf_weights_in_openai_gpt(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase )
# Save pytorch-model
_lowerCamelCase : Optional[int] = pytorch_dump_folder_path + "/" + WEIGHTS_NAME
_lowerCamelCase : List[str] = pytorch_dump_folder_path + "/" + CONFIG_NAME
print(F"""Save PyTorch model to {pytorch_weights_dump_path}""" )
torch.save(model.state_dict() , _lowerCamelCase )
print(F"""Save configuration file to {pytorch_config_dump_path}""" )
with open(_lowerCamelCase , "w" , encoding="utf-8" ) as f:
f.write(config.to_json_string() )
if __name__ == "__main__":
_lowerCAmelCase : str = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
'''--openai_checkpoint_folder_path''',
default=None,
type=str,
required=True,
help='''Path to the TensorFlow checkpoint path.''',
)
parser.add_argument(
'''--pytorch_dump_folder_path''', default=None, type=str, required=True, help='''Path to the output PyTorch model.'''
)
parser.add_argument(
'''--openai_config_file''',
default='''''',
type=str,
help=(
'''An optional config json file corresponding to the pre-trained OpenAI model. \n'''
'''This specifies the model architecture.'''
),
)
_lowerCAmelCase : str = parser.parse_args()
convert_openai_checkpoint_to_pytorch(
args.openai_checkpoint_folder_path, args.openai_config_file, args.pytorch_dump_folder_path
) | 46 |
import unittest
from typing import Tuple
import torch
from diffusers.utils import floats_tensor, randn_tensor, torch_all_close, torch_device
from diffusers.utils.testing_utils import require_torch
@require_torch
class lowerCamelCase_ :
'''simple docstring'''
@property
def lowerCAmelCase_ ( self : Optional[Any] ):
return self.get_dummy_input()
@property
def lowerCAmelCase_ ( self : Union[str, Any] ):
if self.block_type == "down":
return (4, 32, 16, 16)
elif self.block_type == "mid":
return (4, 32, 32, 32)
elif self.block_type == "up":
return (4, 32, 64, 64)
raise ValueError(F"'{self.block_type}' is not a supported block_type. Set it to 'up', 'mid', or 'down'." )
def lowerCAmelCase_ ( self : List[str] , _lowerCAmelCase : Optional[Any]=True , _lowerCAmelCase : str=False , _lowerCAmelCase : Optional[int]=False , _lowerCAmelCase : Dict=False , ):
SCREAMING_SNAKE_CASE_ = 4
SCREAMING_SNAKE_CASE_ = 32
SCREAMING_SNAKE_CASE_ = (32, 32)
SCREAMING_SNAKE_CASE_ = torch.manual_seed(0 )
SCREAMING_SNAKE_CASE_ = torch.device(_lowerCAmelCase )
SCREAMING_SNAKE_CASE_ = (batch_size, num_channels) + sizes
SCREAMING_SNAKE_CASE_ = randn_tensor(_lowerCAmelCase , generator=_lowerCAmelCase , device=_lowerCAmelCase )
SCREAMING_SNAKE_CASE_ = {'hidden_states': hidden_states}
if include_temb:
SCREAMING_SNAKE_CASE_ = 128
SCREAMING_SNAKE_CASE_ = randn_tensor((batch_size, temb_channels) , generator=_lowerCAmelCase , device=_lowerCAmelCase )
if include_res_hidden_states_tuple:
SCREAMING_SNAKE_CASE_ = torch.manual_seed(1 )
SCREAMING_SNAKE_CASE_ = (randn_tensor(_lowerCAmelCase , generator=_lowerCAmelCase , device=_lowerCAmelCase ),)
if include_encoder_hidden_states:
SCREAMING_SNAKE_CASE_ = floats_tensor((batch_size, 32, 32) ).to(_lowerCAmelCase )
if include_skip_sample:
SCREAMING_SNAKE_CASE_ = randn_tensor(((batch_size, 3) + sizes) , generator=_lowerCAmelCase , device=_lowerCAmelCase )
return dummy_input
def lowerCAmelCase_ ( self : Optional[int] ):
SCREAMING_SNAKE_CASE_ = {
'in_channels': 32,
'out_channels': 32,
'temb_channels': 128,
}
if self.block_type == "up":
SCREAMING_SNAKE_CASE_ = 32
if self.block_type == "mid":
init_dict.pop('out_channels' )
SCREAMING_SNAKE_CASE_ = self.dummy_input
return init_dict, inputs_dict
def lowerCAmelCase_ ( self : Dict , _lowerCAmelCase : Optional[Any] ):
SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = self.prepare_init_args_and_inputs_for_common()
SCREAMING_SNAKE_CASE_ = self.block_class(**_lowerCAmelCase )
unet_block.to(_lowerCAmelCase )
unet_block.eval()
with torch.no_grad():
SCREAMING_SNAKE_CASE_ = unet_block(**_lowerCAmelCase )
if isinstance(_lowerCAmelCase , _lowerCAmelCase ):
SCREAMING_SNAKE_CASE_ = output[0]
self.assertEqual(output.shape , self.output_shape )
SCREAMING_SNAKE_CASE_ = output[0, -1, -3:, -3:]
SCREAMING_SNAKE_CASE_ = torch.tensor(_lowerCAmelCase ).to(_lowerCAmelCase )
assert torch_all_close(output_slice.flatten() , _lowerCAmelCase , atol=5E-3 )
@unittest.skipIf(torch_device == 'mps' , 'Training is not supported in mps' )
def lowerCAmelCase_ ( self : Any ):
SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = self.prepare_init_args_and_inputs_for_common()
SCREAMING_SNAKE_CASE_ = self.block_class(**_lowerCAmelCase )
model.to(_lowerCAmelCase )
model.train()
SCREAMING_SNAKE_CASE_ = model(**_lowerCAmelCase )
if isinstance(_lowerCAmelCase , _lowerCAmelCase ):
SCREAMING_SNAKE_CASE_ = output[0]
SCREAMING_SNAKE_CASE_ = torch.device(_lowerCAmelCase )
SCREAMING_SNAKE_CASE_ = randn_tensor(output.shape , device=_lowerCAmelCase )
SCREAMING_SNAKE_CASE_ = torch.nn.functional.mse_loss(_lowerCAmelCase , _lowerCAmelCase )
loss.backward() | 31 | 0 |
import torch
from diffusers import DDPMParallelScheduler
from .test_schedulers import SchedulerCommonTest
class _UpperCamelCase( __lowerCamelCase ):
__SCREAMING_SNAKE_CASE : Dict = (DDPMParallelScheduler,)
def __lowerCAmelCase ( self : Optional[int] , **SCREAMING_SNAKE_CASE__ : str ):
'''simple docstring'''
__a : str = {
'num_train_timesteps': 1_0_0_0,
'beta_start': 0.0_001,
'beta_end': 0.02,
'beta_schedule': 'linear',
'variance_type': 'fixed_small',
'clip_sample': True,
}
config.update(**SCREAMING_SNAKE_CASE__ )
return config
def __lowerCAmelCase ( self : List[str] ):
'''simple docstring'''
for timesteps in [1, 5, 1_0_0, 1_0_0_0]:
self.check_over_configs(num_train_timesteps=SCREAMING_SNAKE_CASE__ )
def __lowerCAmelCase ( self : Union[str, Any] ):
'''simple docstring'''
for beta_start, beta_end in zip([0.0_001, 0.001, 0.01, 0.1] , [0.002, 0.02, 0.2, 2] ):
self.check_over_configs(beta_start=SCREAMING_SNAKE_CASE__ , beta_end=SCREAMING_SNAKE_CASE__ )
def __lowerCAmelCase ( self : Optional[int] ):
'''simple docstring'''
for schedule in ["linear", "squaredcos_cap_v2"]:
self.check_over_configs(beta_schedule=SCREAMING_SNAKE_CASE__ )
def __lowerCAmelCase ( self : Union[str, Any] ):
'''simple docstring'''
for variance in ["fixed_small", "fixed_large", "other"]:
self.check_over_configs(variance_type=SCREAMING_SNAKE_CASE__ )
def __lowerCAmelCase ( self : int ):
'''simple docstring'''
for clip_sample in [True, False]:
self.check_over_configs(clip_sample=SCREAMING_SNAKE_CASE__ )
def __lowerCAmelCase ( self : str ):
'''simple docstring'''
self.check_over_configs(thresholding=SCREAMING_SNAKE_CASE__ )
for threshold in [0.5, 1.0, 2.0]:
for prediction_type in ["epsilon", "sample", "v_prediction"]:
self.check_over_configs(
thresholding=SCREAMING_SNAKE_CASE__ , prediction_type=SCREAMING_SNAKE_CASE__ , sample_max_value=SCREAMING_SNAKE_CASE__ , )
def __lowerCAmelCase ( self : Dict ):
'''simple docstring'''
for prediction_type in ["epsilon", "sample", "v_prediction"]:
self.check_over_configs(prediction_type=SCREAMING_SNAKE_CASE__ )
def __lowerCAmelCase ( self : Dict ):
'''simple docstring'''
for t in [0, 5_0_0, 9_9_9]:
self.check_over_forward(time_step=SCREAMING_SNAKE_CASE__ )
def __lowerCAmelCase ( self : str ):
'''simple docstring'''
__a : Union[str, Any] = self.scheduler_classes[0]
__a : Dict = self.get_scheduler_config()
__a : Optional[int] = scheduler_class(**SCREAMING_SNAKE_CASE__ )
assert torch.sum(torch.abs(scheduler._get_variance(0 ) - 0.0 ) ) < 1e-5
assert torch.sum(torch.abs(scheduler._get_variance(4_8_7 ) - 0.00_979 ) ) < 1e-5
assert torch.sum(torch.abs(scheduler._get_variance(9_9_9 ) - 0.02 ) ) < 1e-5
def __lowerCAmelCase ( self : str ):
'''simple docstring'''
__a : int = self.scheduler_classes[0]
__a : Dict = self.get_scheduler_config()
__a : Union[str, Any] = scheduler_class(**SCREAMING_SNAKE_CASE__ )
__a : Optional[int] = len(SCREAMING_SNAKE_CASE__ )
__a : Dict = self.dummy_model()
__a : Optional[int] = self.dummy_sample_deter
__a : Any = self.dummy_sample_deter + 0.1
__a : Any = self.dummy_sample_deter - 0.1
__a : Optional[int] = samplea.shape[0]
__a : int = torch.stack([samplea, samplea, samplea] , dim=0 )
__a : Dict = torch.arange(SCREAMING_SNAKE_CASE__ )[0:3, None].repeat(1 , SCREAMING_SNAKE_CASE__ )
__a : List[Any] = model(samples.flatten(0 , 1 ) , timesteps.flatten(0 , 1 ) )
__a : Optional[int] = scheduler.batch_step_no_noise(SCREAMING_SNAKE_CASE__ , timesteps.flatten(0 , 1 ) , samples.flatten(0 , 1 ) )
__a : Tuple = torch.sum(torch.abs(SCREAMING_SNAKE_CASE__ ) )
__a : Dict = torch.mean(torch.abs(SCREAMING_SNAKE_CASE__ ) )
assert abs(result_sum.item() - 1_153.1_833 ) < 1e-2
assert abs(result_mean.item() - 0.5_005 ) < 1e-3
def __lowerCAmelCase ( self : Any ):
'''simple docstring'''
__a : Union[str, Any] = self.scheduler_classes[0]
__a : int = self.get_scheduler_config()
__a : Dict = scheduler_class(**SCREAMING_SNAKE_CASE__ )
__a : List[str] = len(SCREAMING_SNAKE_CASE__ )
__a : Dict = self.dummy_model()
__a : Any = self.dummy_sample_deter
__a : List[str] = torch.manual_seed(0 )
for t in reversed(range(SCREAMING_SNAKE_CASE__ ) ):
# 1. predict noise residual
__a : str = model(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )
# 2. predict previous mean of sample x_t-1
__a : int = scheduler.step(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , generator=SCREAMING_SNAKE_CASE__ ).prev_sample
__a : List[Any] = pred_prev_sample
__a : List[Any] = torch.sum(torch.abs(SCREAMING_SNAKE_CASE__ ) )
__a : Optional[int] = torch.mean(torch.abs(SCREAMING_SNAKE_CASE__ ) )
assert abs(result_sum.item() - 258.9_606 ) < 1e-2
assert abs(result_mean.item() - 0.3_372 ) < 1e-3
def __lowerCAmelCase ( self : List[Any] ):
'''simple docstring'''
__a : Tuple = self.scheduler_classes[0]
__a : int = self.get_scheduler_config(prediction_type='v_prediction' )
__a : str = scheduler_class(**SCREAMING_SNAKE_CASE__ )
__a : str = len(SCREAMING_SNAKE_CASE__ )
__a : Optional[int] = self.dummy_model()
__a : Optional[Any] = self.dummy_sample_deter
__a : int = torch.manual_seed(0 )
for t in reversed(range(SCREAMING_SNAKE_CASE__ ) ):
# 1. predict noise residual
__a : Dict = model(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )
# 2. predict previous mean of sample x_t-1
__a : str = scheduler.step(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , generator=SCREAMING_SNAKE_CASE__ ).prev_sample
__a : List[Any] = pred_prev_sample
__a : Optional[int] = torch.sum(torch.abs(SCREAMING_SNAKE_CASE__ ) )
__a : List[str] = torch.mean(torch.abs(SCREAMING_SNAKE_CASE__ ) )
assert abs(result_sum.item() - 202.0_296 ) < 1e-2
assert abs(result_mean.item() - 0.2_631 ) < 1e-3
def __lowerCAmelCase ( self : List[Any] ):
'''simple docstring'''
__a : List[Any] = self.scheduler_classes[0]
__a : Tuple = self.get_scheduler_config()
__a : List[Any] = scheduler_class(**SCREAMING_SNAKE_CASE__ )
__a : List[str] = [1_0_0, 8_7, 5_0, 1, 0]
scheduler.set_timesteps(timesteps=SCREAMING_SNAKE_CASE__ )
__a : Any = scheduler.timesteps
for i, timestep in enumerate(SCREAMING_SNAKE_CASE__ ):
if i == len(SCREAMING_SNAKE_CASE__ ) - 1:
__a : List[str] = -1
else:
__a : Dict = timesteps[i + 1]
__a : Any = scheduler.previous_timestep(SCREAMING_SNAKE_CASE__ )
__a : Optional[Any] = prev_t.item()
self.assertEqual(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )
def __lowerCAmelCase ( self : int ):
'''simple docstring'''
__a : List[str] = self.scheduler_classes[0]
__a : Union[str, Any] = self.get_scheduler_config()
__a : Union[str, Any] = scheduler_class(**SCREAMING_SNAKE_CASE__ )
__a : int = [1_0_0, 8_7, 5_0, 5_1, 0]
with self.assertRaises(SCREAMING_SNAKE_CASE__ , msg='`custom_timesteps` must be in descending order.' ):
scheduler.set_timesteps(timesteps=SCREAMING_SNAKE_CASE__ )
def __lowerCAmelCase ( self : List[str] ):
'''simple docstring'''
__a : Tuple = self.scheduler_classes[0]
__a : Dict = self.get_scheduler_config()
__a : List[Any] = scheduler_class(**SCREAMING_SNAKE_CASE__ )
__a : str = [1_0_0, 8_7, 5_0, 1, 0]
__a : int = len(SCREAMING_SNAKE_CASE__ )
with self.assertRaises(SCREAMING_SNAKE_CASE__ , msg='Can only pass one of `num_inference_steps` or `custom_timesteps`.' ):
scheduler.set_timesteps(num_inference_steps=SCREAMING_SNAKE_CASE__ , timesteps=SCREAMING_SNAKE_CASE__ )
def __lowerCAmelCase ( self : str ):
'''simple docstring'''
__a : str = self.scheduler_classes[0]
__a : Optional[int] = self.get_scheduler_config()
__a : Any = scheduler_class(**SCREAMING_SNAKE_CASE__ )
__a : Tuple = [scheduler.config.num_train_timesteps]
with self.assertRaises(
SCREAMING_SNAKE_CASE__ , msg='`timesteps` must start before `self.config.train_timesteps`: {scheduler.config.num_train_timesteps}}' , ):
scheduler.set_timesteps(timesteps=SCREAMING_SNAKE_CASE__ )
| 47 |
import operator as op
def UpperCAmelCase_ ( __UpperCAmelCase : str ) -> Any:
SCREAMING_SNAKE_CASE_ = []
SCREAMING_SNAKE_CASE_ = lambda __UpperCAmelCase , __UpperCAmelCase : int(x / y ) # noqa: E731 integer division operation
SCREAMING_SNAKE_CASE_ = {
'^': op.pow,
'*': op.mul,
'/': div,
'+': op.add,
'-': op.sub,
} # operators & their respective operation
# print table header
print('Symbol'.center(8 ) , 'Action'.center(12 ) , 'Stack' , sep=' | ' )
print('-' * (30 + len(__UpperCAmelCase )) )
for x in post_fix:
if x.isdigit(): # if x in digit
stack.append(__UpperCAmelCase ) # append x to stack
# output in tabular format
print(x.rjust(8 ) , ('push(' + x + ')').ljust(12 ) , ','.join(__UpperCAmelCase ) , sep=' | ' )
else:
SCREAMING_SNAKE_CASE_ = stack.pop() # pop stack
# output in tabular format
print(''.rjust(8 ) , ('pop(' + b + ')').ljust(12 ) , ','.join(__UpperCAmelCase ) , sep=' | ' )
SCREAMING_SNAKE_CASE_ = stack.pop() # pop stack
# output in tabular format
print(''.rjust(8 ) , ('pop(' + a + ')').ljust(12 ) , ','.join(__UpperCAmelCase ) , sep=' | ' )
stack.append(
str(opr[x](int(__UpperCAmelCase ) , int(__UpperCAmelCase ) ) ) ) # evaluate the 2 values popped from stack & push result to stack
# output in tabular format
print(
x.rjust(8 ) , ('push(' + a + x + b + ')').ljust(12 ) , ','.join(__UpperCAmelCase ) , sep=' | ' , )
return int(stack[0] )
if __name__ == "__main__":
lowerCamelCase__ : Tuple = input('\n\nEnter a Postfix Equation (space separated) = ').split(' ')
print('\n\tResult = ', solve(Postfix)) | 31 | 0 |
'''simple docstring'''
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available
UpperCAmelCase__ : Optional[Any] = {
"configuration_git": ["GIT_PRETRAINED_CONFIG_ARCHIVE_MAP", "GitConfig", "GitVisionConfig"],
"processing_git": ["GitProcessor"],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
UpperCAmelCase__ : Union[str, Any] = [
"GIT_PRETRAINED_MODEL_ARCHIVE_LIST",
"GitForCausalLM",
"GitModel",
"GitPreTrainedModel",
"GitVisionModel",
]
if TYPE_CHECKING:
from .configuration_git import GIT_PRETRAINED_CONFIG_ARCHIVE_MAP, GitConfig, GitVisionConfig
from .processing_git import GitProcessor
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_git import (
GIT_PRETRAINED_MODEL_ARCHIVE_LIST,
GitForCausalLM,
GitModel,
GitPreTrainedModel,
GitVisionModel,
)
else:
import sys
UpperCAmelCase__ : Any = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
| 48 |
def UpperCAmelCase_ ( __UpperCAmelCase : int ) -> int:
assert isinstance(__UpperCAmelCase , __UpperCAmelCase ), f"The input value of [n={number}] is not an integer"
if number == 1:
return 2
elif number < 1:
SCREAMING_SNAKE_CASE_ = f"The input value of [n={number}] has to be > 0"
raise ValueError(__UpperCAmelCase )
else:
SCREAMING_SNAKE_CASE_ = sylvester(number - 1 )
SCREAMING_SNAKE_CASE_ = num - 1
SCREAMING_SNAKE_CASE_ = num
return lower * upper + 1
if __name__ == "__main__":
print(f'''The 8th number in Sylvester\'s sequence: {sylvester(8)}''') | 31 | 0 |
"""simple docstring"""
from typing import List, Optional
from ...configuration_utils import PretrainedConfig
from ...utils import logging
_lowercase : str = logging.get_logger(__name__)
_lowercase : Optional[Any] = {
'huggingface/autoformer-tourism-monthly': 'https://huggingface.co/huggingface/autoformer-tourism-monthly/resolve/main/config.json',
}
class _UpperCAmelCase ( _lowerCAmelCase ):
a__ : Tuple = "autoformer"
a__ : Union[str, Any] = {
"hidden_size": "d_model",
"num_attention_heads": "encoder_attention_heads",
"num_hidden_layers": "encoder_layers",
}
def __init__( self : Tuple , _lowercase : Optional[int] = None , _lowercase : Optional[int] = None , _lowercase : str = "student_t" , _lowercase : str = "nll" , _lowercase : int = 1 , _lowercase : List[int] = [1, 2, 3, 4, 5, 6, 7] , _lowercase : bool = True , _lowercase : int = 0 , _lowercase : int = 0 , _lowercase : int = 0 , _lowercase : int = 0 , _lowercase : Optional[List[int]] = None , _lowercase : Optional[List[int]] = None , _lowercase : int = 64 , _lowercase : int = 2 , _lowercase : int = 2 , _lowercase : int = 2 , _lowercase : int = 2 , _lowercase : int = 32 , _lowercase : int = 32 , _lowercase : str = "gelu" , _lowercase : float = 0.1 , _lowercase : float = 0.1 , _lowercase : float = 0.1 , _lowercase : float = 0.1 , _lowercase : float = 0.1 , _lowercase : int = 1_00 , _lowercase : float = 0.02 , _lowercase : bool = True , _lowercase : Optional[Any]=True , _lowercase : int = 10 , _lowercase : int = 25 , _lowercase : int = 3 , **_lowercase : List[Any] , ):
# time series specific configuration
__UpperCAmelCase = prediction_length
__UpperCAmelCase = context_length if context_length is not None else prediction_length
__UpperCAmelCase = distribution_output
__UpperCAmelCase = loss
__UpperCAmelCase = input_size
__UpperCAmelCase = num_time_features
__UpperCAmelCase = lags_sequence
__UpperCAmelCase = scaling
__UpperCAmelCase = num_dynamic_real_features
__UpperCAmelCase = num_static_real_features
__UpperCAmelCase = num_static_categorical_features
if cardinality is not None and num_static_categorical_features > 0:
if len(_lowercase ) != num_static_categorical_features:
raise ValueError(
'''The cardinality should be a list of the same length as `num_static_categorical_features`''' )
__UpperCAmelCase = cardinality
else:
__UpperCAmelCase = [0]
if embedding_dimension is not None and num_static_categorical_features > 0:
if len(_lowercase ) != num_static_categorical_features:
raise ValueError(
'''The embedding dimension should be a list of the same length as `num_static_categorical_features`''' )
__UpperCAmelCase = embedding_dimension
else:
__UpperCAmelCase = [min(50 , (cat + 1) // 2 ) for cat in self.cardinality]
__UpperCAmelCase = num_parallel_samples
# Transformer architecture configuration
__UpperCAmelCase = input_size * len(self.lags_sequence ) + self._number_of_features
__UpperCAmelCase = d_model
__UpperCAmelCase = encoder_attention_heads
__UpperCAmelCase = decoder_attention_heads
__UpperCAmelCase = encoder_ffn_dim
__UpperCAmelCase = decoder_ffn_dim
__UpperCAmelCase = encoder_layers
__UpperCAmelCase = decoder_layers
__UpperCAmelCase = dropout
__UpperCAmelCase = attention_dropout
__UpperCAmelCase = activation_dropout
__UpperCAmelCase = encoder_layerdrop
__UpperCAmelCase = decoder_layerdrop
__UpperCAmelCase = activation_function
__UpperCAmelCase = init_std
__UpperCAmelCase = use_cache
# Autoformer
__UpperCAmelCase = label_length
__UpperCAmelCase = moving_average
__UpperCAmelCase = autocorrelation_factor
super().__init__(is_encoder_decoder=_lowercase , **_lowercase )
@property
def a ( self : int ):
return (
sum(self.embedding_dimension )
+ self.num_dynamic_real_features
+ self.num_time_features
+ self.num_static_real_features
+ self.input_size * 2 # the log1p(abs(loc)) and log(scale) features
)
| 49 |
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_flax_available,
is_sentencepiece_available,
is_tf_available,
is_tokenizers_available,
is_torch_available,
)
if is_sentencepiece_available():
from ..ta.tokenization_ta import TaTokenizer
else:
from ...utils.dummy_sentencepiece_objects import TaTokenizer
lowerCamelCase__ : List[Any] = TaTokenizer
if is_tokenizers_available():
from ..ta.tokenization_ta_fast import TaTokenizerFast
else:
from ...utils.dummy_tokenizers_objects import TaTokenizerFast
lowerCamelCase__ : Union[str, Any] = TaTokenizerFast
lowerCamelCase__ : Dict = {'configuration_mt5': ['MT5Config', 'MT5OnnxConfig']}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowerCamelCase__ : Tuple = [
'MT5EncoderModel',
'MT5ForConditionalGeneration',
'MT5ForQuestionAnswering',
'MT5Model',
'MT5PreTrainedModel',
'MT5Stack',
]
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowerCamelCase__ : Tuple = ['TFMT5EncoderModel', 'TFMT5ForConditionalGeneration', 'TFMT5Model']
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowerCamelCase__ : Tuple = ['FlaxMT5EncoderModel', 'FlaxMT5ForConditionalGeneration', 'FlaxMT5Model']
if TYPE_CHECKING:
from .configuration_mta import MTaConfig, MTaOnnxConfig
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_mta import (
MTaEncoderModel,
MTaForConditionalGeneration,
MTaForQuestionAnswering,
MTaModel,
MTaPreTrainedModel,
MTaStack,
)
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_mta import TFMTaEncoderModel, TFMTaForConditionalGeneration, TFMTaModel
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_flax_mta import FlaxMTaEncoderModel, FlaxMTaForConditionalGeneration, FlaxMTaModel
else:
import sys
lowerCamelCase__ : int = _LazyModule(
__name__,
globals()['__file__'],
_import_structure,
extra_objects={'MT5Tokenizer': MTaTokenizer, 'MT5TokenizerFast': MTaTokenizerFast},
module_spec=__spec__,
) | 31 | 0 |
'''simple docstring'''
from typing import Union
import fire
import torch
from tqdm import tqdm
def A__ ( __lowerCAmelCase : str , __lowerCAmelCase : str = "cpu" , __lowerCAmelCase : Union[str, None] = None ):
lowerCamelCase__ = torch.load(__lowerCAmelCase , map_location=__lowerCAmelCase )
for k, v in tqdm(state_dict.items() ):
if not isinstance(__lowerCAmelCase , torch.Tensor ):
raise TypeError("""FP16 conversion only works on paths that are saved state dicts, like pytorch_model.bin""" )
lowerCamelCase__ = v.half()
if save_path is None: # overwrite src_path
lowerCamelCase__ = src_path
torch.save(__lowerCAmelCase , __lowerCAmelCase )
if __name__ == "__main__":
fire.Fire(convert)
| 50 |
import subprocess
import sys
from transformers import BertConfig, BertModel, BertTokenizer, pipeline
from transformers.testing_utils import TestCasePlus, require_torch
class lowerCamelCase_ ( _SCREAMING_SNAKE_CASE ):
'''simple docstring'''
@require_torch
def lowerCAmelCase_ ( self : int ):
# this test is a bit tricky since TRANSFORMERS_OFFLINE can only be changed before
# `transformers` is loaded, and it's too late for inside pytest - so we are changing it
# while running an external program
# python one-liner segments
# this must be loaded before socket.socket is monkey-patched
SCREAMING_SNAKE_CASE_ = '\nfrom transformers import BertConfig, BertModel, BertTokenizer, pipeline\n '
SCREAMING_SNAKE_CASE_ = '\nmname = "hf-internal-testing/tiny-random-bert"\nBertConfig.from_pretrained(mname)\nBertModel.from_pretrained(mname)\nBertTokenizer.from_pretrained(mname)\npipe = pipeline(task="fill-mask", model=mname)\nprint("success")\n '
SCREAMING_SNAKE_CASE_ = '\nimport socket\ndef offline_socket(*args, **kwargs): raise RuntimeError("Offline mode is enabled, we shouldn\'t access internet")\nsocket.socket = offline_socket\n '
# Force fetching the files so that we can use the cache
SCREAMING_SNAKE_CASE_ = 'hf-internal-testing/tiny-random-bert'
BertConfig.from_pretrained(_lowerCAmelCase )
BertModel.from_pretrained(_lowerCAmelCase )
BertTokenizer.from_pretrained(_lowerCAmelCase )
pipeline(task='fill-mask' , model=_lowerCAmelCase )
# baseline - just load from_pretrained with normal network
SCREAMING_SNAKE_CASE_ = [sys.executable, '-c', '\n'.join([load, run, mock] )]
# should succeed
SCREAMING_SNAKE_CASE_ = self.get_env()
# should succeed as TRANSFORMERS_OFFLINE=1 tells it to use local files
SCREAMING_SNAKE_CASE_ = '1'
SCREAMING_SNAKE_CASE_ = subprocess.run(_lowerCAmelCase , env=_lowerCAmelCase , check=_lowerCAmelCase , capture_output=_lowerCAmelCase )
self.assertEqual(result.returncode , 0 , result.stderr )
self.assertIn('success' , result.stdout.decode() )
@require_torch
def lowerCAmelCase_ ( self : Tuple ):
# python one-liner segments
# this must be loaded before socket.socket is monkey-patched
SCREAMING_SNAKE_CASE_ = '\nfrom transformers import BertConfig, BertModel, BertTokenizer, pipeline\n '
SCREAMING_SNAKE_CASE_ = '\nmname = "hf-internal-testing/tiny-random-bert"\nBertConfig.from_pretrained(mname)\nBertModel.from_pretrained(mname)\nBertTokenizer.from_pretrained(mname)\npipe = pipeline(task="fill-mask", model=mname)\nprint("success")\n '
SCREAMING_SNAKE_CASE_ = '\nimport socket\ndef offline_socket(*args, **kwargs): raise socket.error("Faking flaky internet")\nsocket.socket = offline_socket\n '
# Force fetching the files so that we can use the cache
SCREAMING_SNAKE_CASE_ = 'hf-internal-testing/tiny-random-bert'
BertConfig.from_pretrained(_lowerCAmelCase )
BertModel.from_pretrained(_lowerCAmelCase )
BertTokenizer.from_pretrained(_lowerCAmelCase )
pipeline(task='fill-mask' , model=_lowerCAmelCase )
# baseline - just load from_pretrained with normal network
SCREAMING_SNAKE_CASE_ = [sys.executable, '-c', '\n'.join([load, run, mock] )]
# should succeed
SCREAMING_SNAKE_CASE_ = self.get_env()
SCREAMING_SNAKE_CASE_ = subprocess.run(_lowerCAmelCase , env=_lowerCAmelCase , check=_lowerCAmelCase , capture_output=_lowerCAmelCase )
self.assertEqual(result.returncode , 0 , result.stderr )
self.assertIn('success' , result.stdout.decode() )
@require_torch
def lowerCAmelCase_ ( self : List[str] ):
# this test is a bit tricky since TRANSFORMERS_OFFLINE can only be changed before
# `transformers` is loaded, and it's too late for inside pytest - so we are changing it
# while running an external program
# python one-liner segments
# this must be loaded before socket.socket is monkey-patched
SCREAMING_SNAKE_CASE_ = '\nfrom transformers import BertConfig, BertModel, BertTokenizer\n '
SCREAMING_SNAKE_CASE_ = '\nmname = "hf-internal-testing/tiny-random-bert-sharded"\nBertConfig.from_pretrained(mname)\nBertModel.from_pretrained(mname)\nprint("success")\n '
SCREAMING_SNAKE_CASE_ = '\nimport socket\ndef offline_socket(*args, **kwargs): raise ValueError("Offline mode is enabled")\nsocket.socket = offline_socket\n '
# baseline - just load from_pretrained with normal network
SCREAMING_SNAKE_CASE_ = [sys.executable, '-c', '\n'.join([load, run] )]
# should succeed
SCREAMING_SNAKE_CASE_ = self.get_env()
SCREAMING_SNAKE_CASE_ = subprocess.run(_lowerCAmelCase , env=_lowerCAmelCase , check=_lowerCAmelCase , capture_output=_lowerCAmelCase )
self.assertEqual(result.returncode , 0 , result.stderr )
self.assertIn('success' , result.stdout.decode() )
# next emulate no network
SCREAMING_SNAKE_CASE_ = [sys.executable, '-c', '\n'.join([load, mock, run] )]
# Doesn't fail anymore since the model is in the cache due to other tests, so commenting this.
# env["TRANSFORMERS_OFFLINE"] = "0"
# result = subprocess.run(cmd, env=env, check=False, capture_output=True)
# self.assertEqual(result.returncode, 1, result.stderr)
# should succeed as TRANSFORMERS_OFFLINE=1 tells it to use local files
SCREAMING_SNAKE_CASE_ = '1'
SCREAMING_SNAKE_CASE_ = subprocess.run(_lowerCAmelCase , env=_lowerCAmelCase , check=_lowerCAmelCase , capture_output=_lowerCAmelCase )
self.assertEqual(result.returncode , 0 , result.stderr )
self.assertIn('success' , result.stdout.decode() )
@require_torch
def lowerCAmelCase_ ( self : Any ):
SCREAMING_SNAKE_CASE_ = '\nfrom transformers import pipeline\n '
SCREAMING_SNAKE_CASE_ = '\nmname = "hf-internal-testing/tiny-random-bert"\npipe = pipeline(model=mname)\n '
SCREAMING_SNAKE_CASE_ = '\nimport socket\ndef offline_socket(*args, **kwargs): raise socket.error("Offline mode is enabled")\nsocket.socket = offline_socket\n '
SCREAMING_SNAKE_CASE_ = self.get_env()
SCREAMING_SNAKE_CASE_ = '1'
SCREAMING_SNAKE_CASE_ = [sys.executable, '-c', '\n'.join([load, mock, run] )]
SCREAMING_SNAKE_CASE_ = subprocess.run(_lowerCAmelCase , env=_lowerCAmelCase , check=_lowerCAmelCase , capture_output=_lowerCAmelCase )
self.assertEqual(result.returncode , 1 , result.stderr )
self.assertIn(
'You cannot infer task automatically within `pipeline` when using offline mode' , result.stderr.decode().replace('\n' , '' ) , )
@require_torch
def lowerCAmelCase_ ( self : Optional[int] ):
SCREAMING_SNAKE_CASE_ = '\nfrom transformers import AutoModel\n '
SCREAMING_SNAKE_CASE_ = '\nmname = "hf-internal-testing/test_dynamic_model"\nAutoModel.from_pretrained(mname, trust_remote_code=True)\nprint("success")\n '
# baseline - just load from_pretrained with normal network
SCREAMING_SNAKE_CASE_ = [sys.executable, '-c', '\n'.join([load, run] )]
# should succeed
SCREAMING_SNAKE_CASE_ = self.get_env()
SCREAMING_SNAKE_CASE_ = subprocess.run(_lowerCAmelCase , env=_lowerCAmelCase , check=_lowerCAmelCase , capture_output=_lowerCAmelCase )
self.assertEqual(result.returncode , 0 , result.stderr )
self.assertIn('success' , result.stdout.decode() )
# should succeed as TRANSFORMERS_OFFLINE=1 tells it to use local files
SCREAMING_SNAKE_CASE_ = '1'
SCREAMING_SNAKE_CASE_ = subprocess.run(_lowerCAmelCase , env=_lowerCAmelCase , check=_lowerCAmelCase , capture_output=_lowerCAmelCase )
self.assertEqual(result.returncode , 0 , result.stderr )
self.assertIn('success' , result.stdout.decode() ) | 31 | 0 |
'''simple docstring'''
def __snake_case ( ) -> list[list[int]]:
"""simple docstring"""
return [list(range(1_000 - i , -1_000 - i , -1 ) ) for i in range(1_000 )]
a__ : str = generate_large_matrix()
a__ : Any = (
[[4, 3, 2, -1], [3, 2, 1, -1], [1, 1, -1, -2], [-1, -1, -2, -3]],
[[3, 2], [1, 0]],
[[7, 7, 6]],
[[7, 7, 6], [-1, -2, -3]],
grid,
)
def __snake_case ( SCREAMING_SNAKE_CASE_ : list[list[int]] ) -> None:
"""simple docstring"""
assert all(row == sorted(SCREAMING_SNAKE_CASE_ , reverse=SCREAMING_SNAKE_CASE_ ) for row in grid )
assert all(list(SCREAMING_SNAKE_CASE_ ) == sorted(SCREAMING_SNAKE_CASE_ , reverse=SCREAMING_SNAKE_CASE_ ) for col in zip(*SCREAMING_SNAKE_CASE_ ) )
def __snake_case ( SCREAMING_SNAKE_CASE_ : list[int] ) -> int:
"""simple docstring"""
UpperCAmelCase = 0
UpperCAmelCase = len(SCREAMING_SNAKE_CASE_ ) - 1
# Edge cases such as no values or all numbers are negative.
if not array or array[0] < 0:
return 0
while right + 1 > left:
UpperCAmelCase = (left + right) // 2
UpperCAmelCase = array[mid]
# Num must be negative and the index must be greater than or equal to 0.
if num < 0 and array[mid - 1] >= 0:
return mid
if num >= 0:
UpperCAmelCase = mid + 1
else:
UpperCAmelCase = mid - 1
# No negative numbers so return the last index of the array + 1 which is the length.
return len(SCREAMING_SNAKE_CASE_ )
def __snake_case ( SCREAMING_SNAKE_CASE_ : list[list[int]] ) -> int:
"""simple docstring"""
UpperCAmelCase = 0
UpperCAmelCase = len(grid[0] )
for i in range(len(SCREAMING_SNAKE_CASE_ ) ):
UpperCAmelCase = find_negative_index(grid[i][:bound] )
total += bound
return (len(SCREAMING_SNAKE_CASE_ ) * len(grid[0] )) - total
def __snake_case ( SCREAMING_SNAKE_CASE_ : list[list[int]] ) -> int:
"""simple docstring"""
return len([number for row in grid for number in row if number < 0] )
def __snake_case ( SCREAMING_SNAKE_CASE_ : list[list[int]] ) -> int:
"""simple docstring"""
UpperCAmelCase = 0
for row in grid:
for i, number in enumerate(SCREAMING_SNAKE_CASE_ ):
if number < 0:
total += len(SCREAMING_SNAKE_CASE_ ) - i
break
return total
def __snake_case ( ) -> None:
"""simple docstring"""
from timeit import timeit
print('''Running benchmarks''' )
UpperCAmelCase = (
'''from __main__ import count_negatives_binary_search, '''
'''count_negatives_brute_force, count_negatives_brute_force_with_break, grid'''
)
for func in (
"count_negatives_binary_search", # took 0.7727 seconds
"count_negatives_brute_force_with_break", # took 4.6505 seconds
"count_negatives_brute_force", # took 12.8160 seconds
):
UpperCAmelCase = timeit(f"{func}(grid=grid)" , setup=SCREAMING_SNAKE_CASE_ , number=500 )
print(f"{func}() took {time:0.4f} seconds" )
if __name__ == "__main__":
import doctest
doctest.testmod()
benchmark()
| 51 |
import torch
from transformers import PreTrainedModel, XLMRobertaConfig, XLMRobertaModel
class lowerCamelCase_ ( _SCREAMING_SNAKE_CASE ):
'''simple docstring'''
lowercase_ = "M-CLIP"
def __init__( self : Tuple , _lowerCAmelCase : List[str]=1_024 , _lowerCAmelCase : str=768 , **_lowerCAmelCase : Union[str, Any] ):
SCREAMING_SNAKE_CASE_ = transformerDimSize
SCREAMING_SNAKE_CASE_ = imageDimSize
super().__init__(**_lowerCAmelCase )
class lowerCamelCase_ ( _SCREAMING_SNAKE_CASE ):
'''simple docstring'''
lowercase_ = MCLIPConfig
def __init__( self : Dict , _lowerCAmelCase : Union[str, Any] , *_lowerCAmelCase : str , **_lowerCAmelCase : str ):
super().__init__(_lowerCAmelCase , *_lowerCAmelCase , **_lowerCAmelCase )
SCREAMING_SNAKE_CASE_ = XLMRobertaModel(_lowerCAmelCase )
SCREAMING_SNAKE_CASE_ = torch.nn.Linear(
in_features=config.transformerDimensions , out_features=config.numDims )
def lowerCAmelCase_ ( self : List[Any] , _lowerCAmelCase : Any , _lowerCAmelCase : Union[str, Any] ):
SCREAMING_SNAKE_CASE_ = self.transformer(input_ids=_lowerCAmelCase , attention_mask=_lowerCAmelCase )[0]
SCREAMING_SNAKE_CASE_ = (embs * attention_mask.unsqueeze(2 )).sum(dim=1 ) / attention_mask.sum(dim=1 )[:, None]
return self.LinearTransformation(_lowerCAmelCase ), embs | 31 | 0 |
"""simple docstring"""
from collections import defaultdict
def __A ( a_ :int) -> int:
__a : Dict = 1
__a : Any = True
for v in tree[start]:
if v not in visited:
ret += dfs(a_)
if ret % 2 == 0:
cuts.append(a_)
return ret
def __A ( ) -> List[Any]:
dfs(1)
if __name__ == "__main__":
A , A = 10, 9
A = defaultdict(list)
A = {}
A = []
A = 0
A = [(2, 1), (3, 1), (4, 3), (5, 2), (6, 1), (7, 2), (8, 6), (9, 8), (10, 8)]
for u, v in edges:
tree[u].append(v)
tree[v].append(u)
even_tree()
print(len(cuts) - 1) | 52 |
import gc
import random
import unittest
import numpy as np
import torch
from transformers import XLMRobertaTokenizer
from diffusers import (
AltDiffusionImgaImgPipeline,
AutoencoderKL,
PNDMScheduler,
UNetaDConditionModel,
)
from diffusers.image_processor import VaeImageProcessor
from diffusers.pipelines.alt_diffusion.modeling_roberta_series import (
RobertaSeriesConfig,
RobertaSeriesModelWithTransformation,
)
from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device
from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu
enable_full_determinism()
class lowerCamelCase_ ( unittest.TestCase ):
'''simple docstring'''
def lowerCAmelCase_ ( self : str ):
# clean up the VRAM after each test
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
@property
def lowerCAmelCase_ ( self : Union[str, Any] ):
SCREAMING_SNAKE_CASE_ = 1
SCREAMING_SNAKE_CASE_ = 3
SCREAMING_SNAKE_CASE_ = (32, 32)
SCREAMING_SNAKE_CASE_ = floats_tensor((batch_size, num_channels) + sizes , rng=random.Random(0 ) ).to(_lowerCAmelCase )
return image
@property
def lowerCAmelCase_ ( self : Union[str, Any] ):
torch.manual_seed(0 )
SCREAMING_SNAKE_CASE_ = UNetaDConditionModel(
block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=('DownBlock2D', 'CrossAttnDownBlock2D') , up_block_types=('CrossAttnUpBlock2D', 'UpBlock2D') , cross_attention_dim=32 , )
return model
@property
def lowerCAmelCase_ ( self : Tuple ):
torch.manual_seed(0 )
SCREAMING_SNAKE_CASE_ = AutoencoderKL(
block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=['DownEncoderBlock2D', 'DownEncoderBlock2D'] , up_block_types=['UpDecoderBlock2D', 'UpDecoderBlock2D'] , latent_channels=4 , )
return model
@property
def lowerCAmelCase_ ( self : Optional[int] ):
torch.manual_seed(0 )
SCREAMING_SNAKE_CASE_ = RobertaSeriesConfig(
hidden_size=32 , project_dim=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=5_006 , )
return RobertaSeriesModelWithTransformation(_lowerCAmelCase )
@property
def lowerCAmelCase_ ( self : List[Any] ):
def extract(*_lowerCAmelCase : Optional[int] , **_lowerCAmelCase : str ):
class lowerCamelCase_ :
'''simple docstring'''
def __init__( self : str ):
SCREAMING_SNAKE_CASE_ = torch.ones([0] )
def lowerCAmelCase_ ( self : Union[str, Any] , _lowerCAmelCase : int ):
self.pixel_values.to(_lowerCAmelCase )
return self
return Out()
return extract
def lowerCAmelCase_ ( self : Optional[Any] ):
SCREAMING_SNAKE_CASE_ = 'cpu' # ensure determinism for the device-dependent torch.Generator
SCREAMING_SNAKE_CASE_ = self.dummy_cond_unet
SCREAMING_SNAKE_CASE_ = PNDMScheduler(skip_prk_steps=_lowerCAmelCase )
SCREAMING_SNAKE_CASE_ = self.dummy_vae
SCREAMING_SNAKE_CASE_ = self.dummy_text_encoder
SCREAMING_SNAKE_CASE_ = XLMRobertaTokenizer.from_pretrained('hf-internal-testing/tiny-xlm-roberta' )
SCREAMING_SNAKE_CASE_ = 77
SCREAMING_SNAKE_CASE_ = self.dummy_image.to(_lowerCAmelCase )
SCREAMING_SNAKE_CASE_ = init_image / 2 + 0.5
# make sure here that pndm scheduler skips prk
SCREAMING_SNAKE_CASE_ = AltDiffusionImgaImgPipeline(
unet=_lowerCAmelCase , scheduler=_lowerCAmelCase , vae=_lowerCAmelCase , text_encoder=_lowerCAmelCase , tokenizer=_lowerCAmelCase , safety_checker=_lowerCAmelCase , feature_extractor=self.dummy_extractor , )
SCREAMING_SNAKE_CASE_ = VaeImageProcessor(vae_scale_factor=alt_pipe.vae_scale_factor , do_normalize=_lowerCAmelCase )
SCREAMING_SNAKE_CASE_ = alt_pipe.to(_lowerCAmelCase )
alt_pipe.set_progress_bar_config(disable=_lowerCAmelCase )
SCREAMING_SNAKE_CASE_ = 'A painting of a squirrel eating a burger'
SCREAMING_SNAKE_CASE_ = torch.Generator(device=_lowerCAmelCase ).manual_seed(0 )
SCREAMING_SNAKE_CASE_ = alt_pipe(
[prompt] , generator=_lowerCAmelCase , guidance_scale=6.0 , num_inference_steps=2 , output_type='np' , image=_lowerCAmelCase , )
SCREAMING_SNAKE_CASE_ = output.images
SCREAMING_SNAKE_CASE_ = torch.Generator(device=_lowerCAmelCase ).manual_seed(0 )
SCREAMING_SNAKE_CASE_ = alt_pipe(
[prompt] , generator=_lowerCAmelCase , guidance_scale=6.0 , num_inference_steps=2 , output_type='np' , image=_lowerCAmelCase , return_dict=_lowerCAmelCase , )[0]
SCREAMING_SNAKE_CASE_ = image[0, -3:, -3:, -1]
SCREAMING_SNAKE_CASE_ = image_from_tuple[0, -3:, -3:, -1]
assert image.shape == (1, 32, 32, 3)
SCREAMING_SNAKE_CASE_ = np.array([0.4427, 0.3731, 0.4249, 0.4941, 0.4546, 0.4148, 0.4193, 0.4666, 0.4499] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 5E-3
assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 5E-3
@unittest.skipIf(torch_device != 'cuda' , 'This test requires a GPU' )
def lowerCAmelCase_ ( self : Tuple ):
SCREAMING_SNAKE_CASE_ = self.dummy_cond_unet
SCREAMING_SNAKE_CASE_ = PNDMScheduler(skip_prk_steps=_lowerCAmelCase )
SCREAMING_SNAKE_CASE_ = self.dummy_vae
SCREAMING_SNAKE_CASE_ = self.dummy_text_encoder
SCREAMING_SNAKE_CASE_ = XLMRobertaTokenizer.from_pretrained('hf-internal-testing/tiny-xlm-roberta' )
SCREAMING_SNAKE_CASE_ = 77
SCREAMING_SNAKE_CASE_ = self.dummy_image.to(_lowerCAmelCase )
# put models in fp16
SCREAMING_SNAKE_CASE_ = unet.half()
SCREAMING_SNAKE_CASE_ = vae.half()
SCREAMING_SNAKE_CASE_ = bert.half()
# make sure here that pndm scheduler skips prk
SCREAMING_SNAKE_CASE_ = AltDiffusionImgaImgPipeline(
unet=_lowerCAmelCase , scheduler=_lowerCAmelCase , vae=_lowerCAmelCase , text_encoder=_lowerCAmelCase , tokenizer=_lowerCAmelCase , safety_checker=_lowerCAmelCase , feature_extractor=self.dummy_extractor , )
SCREAMING_SNAKE_CASE_ = VaeImageProcessor(vae_scale_factor=alt_pipe.vae_scale_factor , do_normalize=_lowerCAmelCase )
SCREAMING_SNAKE_CASE_ = alt_pipe.to(_lowerCAmelCase )
alt_pipe.set_progress_bar_config(disable=_lowerCAmelCase )
SCREAMING_SNAKE_CASE_ = 'A painting of a squirrel eating a burger'
SCREAMING_SNAKE_CASE_ = torch.manual_seed(0 )
SCREAMING_SNAKE_CASE_ = alt_pipe(
[prompt] , generator=_lowerCAmelCase , num_inference_steps=2 , output_type='np' , image=_lowerCAmelCase , ).images
assert image.shape == (1, 32, 32, 3)
@unittest.skipIf(torch_device != 'cuda' , 'This test requires a GPU' )
def lowerCAmelCase_ ( self : str ):
SCREAMING_SNAKE_CASE_ = load_image(
'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main'
'/img2img/sketch-mountains-input.jpg' )
# resize to resolution that is divisible by 8 but not 16 or 32
SCREAMING_SNAKE_CASE_ = init_image.resize((760, 504) )
SCREAMING_SNAKE_CASE_ = 'BAAI/AltDiffusion'
SCREAMING_SNAKE_CASE_ = AltDiffusionImgaImgPipeline.from_pretrained(
_lowerCAmelCase , safety_checker=_lowerCAmelCase , )
pipe.to(_lowerCAmelCase )
pipe.set_progress_bar_config(disable=_lowerCAmelCase )
pipe.enable_attention_slicing()
SCREAMING_SNAKE_CASE_ = 'A fantasy landscape, trending on artstation'
SCREAMING_SNAKE_CASE_ = torch.manual_seed(0 )
SCREAMING_SNAKE_CASE_ = pipe(
prompt=_lowerCAmelCase , image=_lowerCAmelCase , strength=0.75 , guidance_scale=7.5 , generator=_lowerCAmelCase , output_type='np' , )
SCREAMING_SNAKE_CASE_ = output.images[0]
SCREAMING_SNAKE_CASE_ = image[255:258, 383:386, -1]
assert image.shape == (504, 760, 3)
SCREAMING_SNAKE_CASE_ = np.array([0.9358, 0.9397, 0.9599, 0.9901, 1.0000, 1.0000, 0.9882, 1.0000, 1.0000] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
@slow
@require_torch_gpu
class lowerCamelCase_ ( unittest.TestCase ):
'''simple docstring'''
def lowerCAmelCase_ ( self : str ):
# clean up the VRAM after each test
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def lowerCAmelCase_ ( self : int ):
SCREAMING_SNAKE_CASE_ = load_image(
'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main'
'/img2img/sketch-mountains-input.jpg' )
SCREAMING_SNAKE_CASE_ = init_image.resize((768, 512) )
SCREAMING_SNAKE_CASE_ = load_numpy(
'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/img2img/fantasy_landscape_alt.npy' )
SCREAMING_SNAKE_CASE_ = 'BAAI/AltDiffusion'
SCREAMING_SNAKE_CASE_ = AltDiffusionImgaImgPipeline.from_pretrained(
_lowerCAmelCase , safety_checker=_lowerCAmelCase , )
pipe.to(_lowerCAmelCase )
pipe.set_progress_bar_config(disable=_lowerCAmelCase )
pipe.enable_attention_slicing()
SCREAMING_SNAKE_CASE_ = 'A fantasy landscape, trending on artstation'
SCREAMING_SNAKE_CASE_ = torch.manual_seed(0 )
SCREAMING_SNAKE_CASE_ = pipe(
prompt=_lowerCAmelCase , image=_lowerCAmelCase , strength=0.75 , guidance_scale=7.5 , generator=_lowerCAmelCase , output_type='np' , )
SCREAMING_SNAKE_CASE_ = output.images[0]
assert image.shape == (512, 768, 3)
# img2img is flaky across GPUs even in fp32, so using MAE here
assert np.abs(expected_image - image ).max() < 1E-2 | 31 | 0 |
import warnings
from typing import Dict
import numpy as np
from ..utils import ExplicitEnum, add_end_docstrings, is_tf_available, is_torch_available
from .base import PIPELINE_INIT_ARGS, GenericTensor, Pipeline
if is_tf_available():
from ..models.auto.modeling_tf_auto import TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING
if is_torch_available():
from ..models.auto.modeling_auto import MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING
def a_ ( lowerCAmelCase_ : int ):
return 1.0 / (1.0 + np.exp(-_outputs ))
def a_ ( lowerCAmelCase_ : List[str] ):
__lowerCAmelCase = np.max(_outputs, axis=-1, keepdims=lowerCAmelCase_ )
__lowerCAmelCase = np.exp(_outputs - maxes )
return shifted_exp / shifted_exp.sum(axis=-1, keepdims=lowerCAmelCase_ )
class _UpperCAmelCase ( _UpperCamelCase ):
"""simple docstring"""
a_ = """sigmoid"""
a_ = """softmax"""
a_ = """none"""
@add_end_docstrings(
_UpperCamelCase , R"""
return_all_scores (`bool`, *optional*, defaults to `False`):
Whether to return all prediction scores or just the one of the predicted class.
function_to_apply (`str`, *optional*, defaults to `\"default\"`):
The function to apply to the model outputs in order to retrieve the scores. Accepts four different values:
- `\"default\"`: if the model has a single label, will apply the sigmoid function on the output. If the model
has several labels, will apply the softmax function on the output.
- `\"sigmoid\"`: Applies the sigmoid function on the output.
- `\"softmax\"`: Applies the softmax function on the output.
- `\"none\"`: Does not apply any function on the output.
""" , )
class _UpperCAmelCase ( _UpperCamelCase ):
"""simple docstring"""
a_ = False
a_ = ClassificationFunction.NONE
def __init__( self : str , **lowerCAmelCase_ : Any ) -> Any:
super().__init__(**lowerCAmelCase_ )
self.check_model_type(
TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING
if self.framework == 'tf'
else MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING )
def lowercase ( self : Any , lowerCAmelCase_ : str=None , lowerCAmelCase_ : Union[str, Any]=None , lowerCAmelCase_ : Any="" , **lowerCAmelCase_ : List[Any] ) -> Union[str, Any]:
# Using "" as default argument because we're going to use `top_k=None` in user code to declare
# "No top_k"
__lowerCAmelCase = tokenizer_kwargs
__lowerCAmelCase = {}
if hasattr(self.model.config , 'return_all_scores' ) and return_all_scores is None:
__lowerCAmelCase = self.model.config.return_all_scores
if isinstance(lowerCAmelCase_ , lowerCAmelCase_ ) or top_k is None:
__lowerCAmelCase = top_k
__lowerCAmelCase = False
elif return_all_scores is not None:
warnings.warn(
'`return_all_scores` is now deprecated, if want a similar functionality use `top_k=None` instead of'
' `return_all_scores=True` or `top_k=1` instead of `return_all_scores=False`.' , lowerCAmelCase_ , )
if return_all_scores:
__lowerCAmelCase = None
else:
__lowerCAmelCase = 1
if isinstance(lowerCAmelCase_ , lowerCAmelCase_ ):
__lowerCAmelCase = ClassificationFunction[function_to_apply.upper()]
if function_to_apply is not None:
__lowerCAmelCase = function_to_apply
return preprocess_params, {}, postprocess_params
def __call__( self : Union[str, Any] , *lowerCAmelCase_ : Tuple , **lowerCAmelCase_ : Any ) -> List[Any]:
__lowerCAmelCase = super().__call__(*lowerCAmelCase_ , **lowerCAmelCase_ )
# TODO try and retrieve it in a nicer way from _sanitize_parameters.
__lowerCAmelCase = 'top_k' not in kwargs
if isinstance(args[0] , lowerCAmelCase_ ) and _legacy:
# This pipeline is odd, and return a list when single item is run
return [result]
else:
return result
def lowercase ( self : List[str] , lowerCAmelCase_ : Any , **lowerCAmelCase_ : Optional[Any] ) -> Dict[str, GenericTensor]:
__lowerCAmelCase = self.framework
if isinstance(lowerCAmelCase_ , lowerCAmelCase_ ):
return self.tokenizer(**lowerCAmelCase_ , return_tensors=lowerCAmelCase_ , **lowerCAmelCase_ )
elif isinstance(lowerCAmelCase_ , lowerCAmelCase_ ) and len(lowerCAmelCase_ ) == 1 and isinstance(inputs[0] , lowerCAmelCase_ ) and len(inputs[0] ) == 2:
# It used to be valid to use a list of list of list for text pairs, keeping this path for BC
return self.tokenizer(
text=inputs[0][0] , text_pair=inputs[0][1] , return_tensors=lowerCAmelCase_ , **lowerCAmelCase_ )
elif isinstance(lowerCAmelCase_ , lowerCAmelCase_ ):
# This is likely an invalid usage of the pipeline attempting to pass text pairs.
raise ValueError(
'The pipeline received invalid inputs, if you are trying to send text pairs, you can try to send a'
' dictionary `{"text": "My text", "text_pair": "My pair"}` in order to send a text pair.' )
return self.tokenizer(lowerCAmelCase_ , return_tensors=lowerCAmelCase_ , **lowerCAmelCase_ )
def lowercase ( self : Union[str, Any] , lowerCAmelCase_ : Any ) -> Union[str, Any]:
return self.model(**lowerCAmelCase_ )
def lowercase ( self : List[Any] , lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : Tuple=None , lowerCAmelCase_ : Optional[Any]=1 , lowerCAmelCase_ : List[str]=True ) -> Optional[Any]:
# `_legacy` is used to determine if we're running the naked pipeline and in backward
# compatibility mode, or if running the pipeline with `pipeline(..., top_k=1)` we're running
# the more natural result containing the list.
# Default value before `set_parameters`
if function_to_apply is None:
if self.model.config.problem_type == "multi_label_classification" or self.model.config.num_labels == 1:
__lowerCAmelCase = ClassificationFunction.SIGMOID
elif self.model.config.problem_type == "single_label_classification" or self.model.config.num_labels > 1:
__lowerCAmelCase = ClassificationFunction.SOFTMAX
elif hasattr(self.model.config , 'function_to_apply' ) and function_to_apply is None:
__lowerCAmelCase = self.model.config.function_to_apply
else:
__lowerCAmelCase = ClassificationFunction.NONE
__lowerCAmelCase = model_outputs['logits'][0]
__lowerCAmelCase = outputs.numpy()
if function_to_apply == ClassificationFunction.SIGMOID:
__lowerCAmelCase = sigmoid(lowerCAmelCase_ )
elif function_to_apply == ClassificationFunction.SOFTMAX:
__lowerCAmelCase = softmax(lowerCAmelCase_ )
elif function_to_apply == ClassificationFunction.NONE:
__lowerCAmelCase = outputs
else:
raise ValueError(f"""Unrecognized `function_to_apply` argument: {function_to_apply}""" )
if top_k == 1 and _legacy:
return {"label": self.model.config.idalabel[scores.argmax().item()], "score": scores.max().item()}
__lowerCAmelCase = [
{'label': self.model.config.idalabel[i], 'score': score.item()} for i, score in enumerate(lowerCAmelCase_ )
]
if not _legacy:
dict_scores.sort(key=lambda lowerCAmelCase_ : x["score"] , reverse=lowerCAmelCase_ )
if top_k is not None:
__lowerCAmelCase = dict_scores[:top_k]
return dict_scores
| 53 |
from collections import OrderedDict
from typing import TYPE_CHECKING, Any, List, Mapping, Optional, Union
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig
from ...utils import TensorType, logging
if TYPE_CHECKING:
from ...onnx.config import PatchingSpec
from ...tokenization_utils_base import PreTrainedTokenizerBase
lowerCamelCase__ : Optional[int] = logging.get_logger(__name__)
lowerCamelCase__ : Dict = {
'allenai/longformer-base-4096': 'https://huggingface.co/allenai/longformer-base-4096/resolve/main/config.json',
'allenai/longformer-large-4096': 'https://huggingface.co/allenai/longformer-large-4096/resolve/main/config.json',
'allenai/longformer-large-4096-finetuned-triviaqa': (
'https://huggingface.co/allenai/longformer-large-4096-finetuned-triviaqa/resolve/main/config.json'
),
'allenai/longformer-base-4096-extra.pos.embd.only': (
'https://huggingface.co/allenai/longformer-base-4096-extra.pos.embd.only/resolve/main/config.json'
),
'allenai/longformer-large-4096-extra.pos.embd.only': (
'https://huggingface.co/allenai/longformer-large-4096-extra.pos.embd.only/resolve/main/config.json'
),
}
class lowerCamelCase_ ( _SCREAMING_SNAKE_CASE ):
'''simple docstring'''
lowercase_ = "longformer"
def __init__( self : Union[str, Any] , _lowerCAmelCase : Union[List[int], int] = 512 , _lowerCAmelCase : int = 2 , _lowerCAmelCase : int = 1 , _lowerCAmelCase : int = 0 , _lowerCAmelCase : int = 2 , _lowerCAmelCase : int = 30_522 , _lowerCAmelCase : int = 768 , _lowerCAmelCase : int = 12 , _lowerCAmelCase : int = 12 , _lowerCAmelCase : int = 3_072 , _lowerCAmelCase : str = "gelu" , _lowerCAmelCase : float = 0.1 , _lowerCAmelCase : float = 0.1 , _lowerCAmelCase : int = 512 , _lowerCAmelCase : int = 2 , _lowerCAmelCase : float = 0.02 , _lowerCAmelCase : float = 1E-12 , _lowerCAmelCase : bool = False , **_lowerCAmelCase : Union[str, Any] , ):
super().__init__(pad_token_id=_lowerCAmelCase , **_lowerCAmelCase )
SCREAMING_SNAKE_CASE_ = attention_window
SCREAMING_SNAKE_CASE_ = sep_token_id
SCREAMING_SNAKE_CASE_ = bos_token_id
SCREAMING_SNAKE_CASE_ = eos_token_id
SCREAMING_SNAKE_CASE_ = vocab_size
SCREAMING_SNAKE_CASE_ = hidden_size
SCREAMING_SNAKE_CASE_ = num_hidden_layers
SCREAMING_SNAKE_CASE_ = num_attention_heads
SCREAMING_SNAKE_CASE_ = hidden_act
SCREAMING_SNAKE_CASE_ = intermediate_size
SCREAMING_SNAKE_CASE_ = hidden_dropout_prob
SCREAMING_SNAKE_CASE_ = attention_probs_dropout_prob
SCREAMING_SNAKE_CASE_ = max_position_embeddings
SCREAMING_SNAKE_CASE_ = type_vocab_size
SCREAMING_SNAKE_CASE_ = initializer_range
SCREAMING_SNAKE_CASE_ = layer_norm_eps
SCREAMING_SNAKE_CASE_ = onnx_export
class lowerCamelCase_ ( _SCREAMING_SNAKE_CASE ):
'''simple docstring'''
def __init__( self : Optional[Any] , _lowerCAmelCase : "PretrainedConfig" , _lowerCAmelCase : str = "default" , _lowerCAmelCase : "List[PatchingSpec]" = None ):
super().__init__(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase )
SCREAMING_SNAKE_CASE_ = True
@property
def lowerCAmelCase_ ( self : Any ):
if self.task == "multiple-choice":
SCREAMING_SNAKE_CASE_ = {0: 'batch', 1: 'choice', 2: 'sequence'}
else:
SCREAMING_SNAKE_CASE_ = {0: 'batch', 1: 'sequence'}
return OrderedDict(
[
('input_ids', dynamic_axis),
('attention_mask', dynamic_axis),
('global_attention_mask', dynamic_axis),
] )
@property
def lowerCAmelCase_ ( self : Optional[int] ):
SCREAMING_SNAKE_CASE_ = super().outputs
if self.task == "default":
SCREAMING_SNAKE_CASE_ = {0: 'batch'}
return outputs
@property
def lowerCAmelCase_ ( self : str ):
return 1E-4
@property
def lowerCAmelCase_ ( self : Optional[Any] ):
# needs to be >= 14 to support tril operator
return max(super().default_onnx_opset , 14 )
def lowerCAmelCase_ ( self : str , _lowerCAmelCase : "PreTrainedTokenizerBase" , _lowerCAmelCase : int = -1 , _lowerCAmelCase : int = -1 , _lowerCAmelCase : bool = False , _lowerCAmelCase : Optional[TensorType] = None , ):
SCREAMING_SNAKE_CASE_ = super().generate_dummy_inputs(
preprocessor=_lowerCAmelCase , batch_size=_lowerCAmelCase , seq_length=_lowerCAmelCase , is_pair=_lowerCAmelCase , framework=_lowerCAmelCase )
import torch
# for some reason, replacing this code by inputs["global_attention_mask"] = torch.randint(2, inputs["input_ids"].shape, dtype=torch.int64)
# makes the export fail randomly
SCREAMING_SNAKE_CASE_ = torch.zeros_like(inputs['input_ids'] )
# make every second token global
SCREAMING_SNAKE_CASE_ = 1
return inputs | 31 | 0 |
def a__ ( lowercase__ , lowercase__ , lowercase__ = 0 , lowercase__ = 0 ):
'''simple docstring'''
UpperCAmelCase_ =right or len(lowercase__ ) - 1
if left > right:
return -1
elif list_data[left] == key:
return left
elif list_data[right] == key:
return right
else:
return search(lowercase__ , lowercase__ , left + 1 , right - 1 )
if __name__ == "__main__":
import doctest
doctest.testmod()
| 54 |
import warnings
from ...utils import logging
from .image_processing_mobilevit import MobileViTImageProcessor
lowerCamelCase__ : Optional[int] = logging.get_logger(__name__)
class lowerCamelCase_ ( _SCREAMING_SNAKE_CASE ):
'''simple docstring'''
def __init__( self : str , *_lowerCAmelCase : Tuple , **_lowerCAmelCase : int ):
warnings.warn(
'The class MobileViTFeatureExtractor is deprecated and will be removed in version 5 of Transformers.'
' Please use MobileViTImageProcessor instead.' , _lowerCAmelCase , )
super().__init__(*_lowerCAmelCase , **_lowerCAmelCase ) | 31 | 0 |
from ...configuration_utils import PretrainedConfig
from ...utils import logging
SCREAMING_SNAKE_CASE :List[Any] = logging.get_logger(__name__)
SCREAMING_SNAKE_CASE :Optional[int] = {
'tiiuae/falcon-40b': 'https://huggingface.co/tiiuae/falcon-40b/resolve/main/config.json',
'tiiuae/falcon-7b': 'https://huggingface.co/tiiuae/falcon-7b/resolve/main/config.json',
}
class UpperCAmelCase ( __SCREAMING_SNAKE_CASE ):
'''simple docstring'''
snake_case_ = "falcon"
snake_case_ = ["past_key_values"]
def __init__( self : Optional[int] ,A : Tuple=6_50_24 ,A : int=45_44 ,A : int=32 ,A : str=71 ,A : Optional[int]=1E-5 ,A : List[Any]=0.02 ,A : str=True ,A : str=0.0 ,A : Any=0.0 ,A : Any=None ,A : List[str]=False ,A : Dict=False ,A : Union[str, Any]=True ,A : List[Any]=True ,A : Optional[int]=False ,A : Optional[Any]=11 ,A : str=11 ,**A : Union[str, Any] ,):
__A = vocab_size
# Backward compatibility with n_embed kwarg
__A = kwargs.pop("n_embed" ,A )
__A = hidden_size if n_embed is None else n_embed
__A = num_hidden_layers
__A = num_attention_heads
__A = layer_norm_epsilon
__A = initializer_range
__A = use_cache
__A = hidden_dropout
__A = attention_dropout
__A = bos_token_id
__A = eos_token_id
__A = num_attention_heads if num_kv_heads is None else num_kv_heads
__A = alibi
__A = new_decoder_architecture
__A = multi_query # Ignored when new_decoder_architecture is True
__A = parallel_attn
__A = bias
super().__init__(bos_token_id=A ,eos_token_id=A ,**A )
@property
def UpperCamelCase_ ( self : Optional[int] ):
return self.hidden_size // self.num_attention_heads
@property
def UpperCamelCase_ ( self : List[str] ):
return not self.alibi
| 55 |
from ...configuration_utils import PretrainedConfig
from ...utils import logging
lowerCamelCase__ : Optional[int] = logging.get_logger(__name__)
lowerCamelCase__ : Tuple = {
'microsoft/swinv2-tiny-patch4-window8-256': (
'https://huggingface.co/microsoft/swinv2-tiny-patch4-window8-256/resolve/main/config.json'
),
}
class lowerCamelCase_ ( _SCREAMING_SNAKE_CASE ):
'''simple docstring'''
lowercase_ = "swinv2"
lowercase_ = {
"num_attention_heads": "num_heads",
"num_hidden_layers": "num_layers",
}
def __init__( self : Dict , _lowerCAmelCase : Optional[Any]=224 , _lowerCAmelCase : Optional[int]=4 , _lowerCAmelCase : Tuple=3 , _lowerCAmelCase : Tuple=96 , _lowerCAmelCase : Dict=[2, 2, 6, 2] , _lowerCAmelCase : Optional[Any]=[3, 6, 12, 24] , _lowerCAmelCase : str=7 , _lowerCAmelCase : List[Any]=4.0 , _lowerCAmelCase : List[str]=True , _lowerCAmelCase : List[Any]=0.0 , _lowerCAmelCase : List[Any]=0.0 , _lowerCAmelCase : Any=0.1 , _lowerCAmelCase : List[Any]="gelu" , _lowerCAmelCase : str=False , _lowerCAmelCase : str=0.02 , _lowerCAmelCase : List[Any]=1E-5 , _lowerCAmelCase : str=32 , **_lowerCAmelCase : List[Any] , ):
super().__init__(**_lowerCAmelCase )
SCREAMING_SNAKE_CASE_ = image_size
SCREAMING_SNAKE_CASE_ = patch_size
SCREAMING_SNAKE_CASE_ = num_channels
SCREAMING_SNAKE_CASE_ = embed_dim
SCREAMING_SNAKE_CASE_ = depths
SCREAMING_SNAKE_CASE_ = len(_lowerCAmelCase )
SCREAMING_SNAKE_CASE_ = num_heads
SCREAMING_SNAKE_CASE_ = window_size
SCREAMING_SNAKE_CASE_ = mlp_ratio
SCREAMING_SNAKE_CASE_ = qkv_bias
SCREAMING_SNAKE_CASE_ = hidden_dropout_prob
SCREAMING_SNAKE_CASE_ = attention_probs_dropout_prob
SCREAMING_SNAKE_CASE_ = drop_path_rate
SCREAMING_SNAKE_CASE_ = hidden_act
SCREAMING_SNAKE_CASE_ = use_absolute_embeddings
SCREAMING_SNAKE_CASE_ = layer_norm_eps
SCREAMING_SNAKE_CASE_ = initializer_range
SCREAMING_SNAKE_CASE_ = encoder_stride
# we set the hidden_size attribute in order to make Swinv2 work with VisionEncoderDecoderModel
# this indicates the channel dimension after the last stage of the model
SCREAMING_SNAKE_CASE_ = int(embed_dim * 2 ** (len(_lowerCAmelCase ) - 1) )
SCREAMING_SNAKE_CASE_ = (0, 0, 0, 0) | 31 | 0 |
'''simple docstring'''
import json
from typing import Iterator, List, Union
from tokenizers import AddedToken, Regex, Tokenizer, decoders, normalizers, pre_tokenizers, trainers
from tokenizers.implementations.base_tokenizer import BaseTokenizer
from tokenizers.models import Unigram
from tokenizers.processors import TemplateProcessing
class _lowercase ( __lowercase ):
def __init__( self : Optional[int] , SCREAMING_SNAKE_CASE_ : str = "▁" , SCREAMING_SNAKE_CASE_ : bool = True , SCREAMING_SNAKE_CASE_ : Union[str, AddedToken] = "<unk>" , SCREAMING_SNAKE_CASE_ : Union[str, AddedToken] = "</s>" , SCREAMING_SNAKE_CASE_ : Union[str, AddedToken] = "<pad>" , ) -> str:
__snake_case = {
'pad': {'id': 0, 'token': pad_token},
'eos': {'id': 1, 'token': eos_token},
'unk': {'id': 2, 'token': unk_token},
}
__snake_case = [None] * len(self.special_tokens )
for token_dict in self.special_tokens.values():
__snake_case = token_dict['token']
__snake_case = Tokenizer(Unigram() )
__snake_case = normalizers.Sequence(
[
normalizers.Nmt(),
normalizers.NFKC(),
normalizers.Replace(Regex(' {2,}' ) , ' ' ),
normalizers.Lowercase(),
] )
__snake_case = pre_tokenizers.Sequence(
[
pre_tokenizers.Metaspace(replacement=SCREAMING_SNAKE_CASE_ , add_prefix_space=SCREAMING_SNAKE_CASE_ ),
pre_tokenizers.Digits(individual_digits=SCREAMING_SNAKE_CASE_ ),
pre_tokenizers.Punctuation(),
] )
__snake_case = decoders.Metaspace(replacement=SCREAMING_SNAKE_CASE_ , add_prefix_space=SCREAMING_SNAKE_CASE_ )
__snake_case = TemplateProcessing(
single=f'$A {self.special_tokens["eos"]["token"]}' , special_tokens=[(self.special_tokens['eos']['token'], self.special_tokens['eos']['id'])] , )
__snake_case = {
'model': 'SentencePieceUnigram',
'replacement': replacement,
'add_prefix_space': add_prefix_space,
}
super().__init__(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
def a ( self : Optional[Any] , SCREAMING_SNAKE_CASE_ : Union[str, List[str]] , SCREAMING_SNAKE_CASE_ : int = 8000 , SCREAMING_SNAKE_CASE_ : bool = True , ) -> Tuple:
__snake_case = trainers.UnigramTrainer(
vocab_size=SCREAMING_SNAKE_CASE_ , special_tokens=self.special_tokens_list , show_progress=SCREAMING_SNAKE_CASE_ , )
if isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ):
__snake_case = [files]
self._tokenizer.train(SCREAMING_SNAKE_CASE_ , trainer=SCREAMING_SNAKE_CASE_ )
self.add_unk_id()
def a ( self : str , SCREAMING_SNAKE_CASE_ : Union[Iterator[str], Iterator[Iterator[str]]] , SCREAMING_SNAKE_CASE_ : int = 8000 , SCREAMING_SNAKE_CASE_ : bool = True , ) -> str:
__snake_case = trainers.UnigramTrainer(
vocab_size=SCREAMING_SNAKE_CASE_ , special_tokens=self.special_tokens_list , show_progress=SCREAMING_SNAKE_CASE_ , )
self._tokenizer.train_from_iterator(SCREAMING_SNAKE_CASE_ , trainer=SCREAMING_SNAKE_CASE_ )
self.add_unk_id()
def a ( self : Dict ) -> str:
__snake_case = json.loads(self._tokenizer.to_str() )
__snake_case = self.special_tokens['unk']['id']
__snake_case = Tokenizer.from_str(json.dumps(SCREAMING_SNAKE_CASE_ ) )
| 56 |
import itertools
import random
import unittest
import numpy as np
from transformers import BatchFeature, SpeechTaFeatureExtractor
from transformers.testing_utils import require_torch
from transformers.utils.import_utils import is_torch_available
from ...test_sequence_feature_extraction_common import SequenceFeatureExtractionTestMixin
if is_torch_available():
import torch
lowerCamelCase__ : Dict = random.Random()
def UpperCAmelCase_ ( __UpperCAmelCase : int , __UpperCAmelCase : Tuple=1.0 , __UpperCAmelCase : Dict=None , __UpperCAmelCase : Dict=None ) -> Tuple:
if rng is None:
SCREAMING_SNAKE_CASE_ = global_rng
SCREAMING_SNAKE_CASE_ = []
for batch_idx in range(shape[0] ):
values.append([] )
for _ in range(shape[1] ):
values[-1].append(rng.random() * scale )
return values
@require_torch
class lowerCamelCase_ ( unittest.TestCase ):
'''simple docstring'''
def __init__( self : List[str] , _lowerCAmelCase : int , _lowerCAmelCase : Optional[Any]=7 , _lowerCAmelCase : Union[str, Any]=400 , _lowerCAmelCase : Tuple=2_000 , _lowerCAmelCase : str=1 , _lowerCAmelCase : int=0.0 , _lowerCAmelCase : Optional[Any]=16_000 , _lowerCAmelCase : Optional[Any]=True , _lowerCAmelCase : Any=80 , _lowerCAmelCase : Union[str, Any]=16 , _lowerCAmelCase : List[str]=64 , _lowerCAmelCase : List[Any]="hann_window" , _lowerCAmelCase : Any=80 , _lowerCAmelCase : List[Any]=7_600 , _lowerCAmelCase : List[Any]=1E-10 , _lowerCAmelCase : Optional[Any]=True , ):
SCREAMING_SNAKE_CASE_ = parent
SCREAMING_SNAKE_CASE_ = batch_size
SCREAMING_SNAKE_CASE_ = min_seq_length
SCREAMING_SNAKE_CASE_ = max_seq_length
SCREAMING_SNAKE_CASE_ = (self.max_seq_length - self.min_seq_length) // (self.batch_size - 1)
SCREAMING_SNAKE_CASE_ = feature_size
SCREAMING_SNAKE_CASE_ = padding_value
SCREAMING_SNAKE_CASE_ = sampling_rate
SCREAMING_SNAKE_CASE_ = do_normalize
SCREAMING_SNAKE_CASE_ = num_mel_bins
SCREAMING_SNAKE_CASE_ = hop_length
SCREAMING_SNAKE_CASE_ = win_length
SCREAMING_SNAKE_CASE_ = win_function
SCREAMING_SNAKE_CASE_ = fmin
SCREAMING_SNAKE_CASE_ = fmax
SCREAMING_SNAKE_CASE_ = mel_floor
SCREAMING_SNAKE_CASE_ = return_attention_mask
def lowerCAmelCase_ ( self : Union[str, Any] ):
return {
"feature_size": self.feature_size,
"padding_value": self.padding_value,
"sampling_rate": self.sampling_rate,
"do_normalize": self.do_normalize,
"num_mel_bins": self.num_mel_bins,
"hop_length": self.hop_length,
"win_length": self.win_length,
"win_function": self.win_function,
"fmin": self.fmin,
"fmax": self.fmax,
"mel_floor": self.mel_floor,
"return_attention_mask": self.return_attention_mask,
}
def lowerCAmelCase_ ( self : Dict , _lowerCAmelCase : Optional[int]=False , _lowerCAmelCase : str=False ):
def _flatten(_lowerCAmelCase : Dict ):
return list(itertools.chain(*_lowerCAmelCase ) )
if equal_length:
SCREAMING_SNAKE_CASE_ = floats_list((self.batch_size, self.max_seq_length) )
else:
# make sure that inputs increase in size
SCREAMING_SNAKE_CASE_ = [
_flatten(floats_list((x, self.feature_size) ) )
for x in range(self.min_seq_length , self.max_seq_length , self.seq_length_diff )
]
if numpify:
SCREAMING_SNAKE_CASE_ = [np.asarray(_lowerCAmelCase ) for x in speech_inputs]
return speech_inputs
def lowerCAmelCase_ ( self : List[Any] , _lowerCAmelCase : Union[str, Any]=False , _lowerCAmelCase : Optional[int]=False ):
if equal_length:
SCREAMING_SNAKE_CASE_ = [floats_list((self.max_seq_length, self.num_mel_bins) ) for _ in range(self.batch_size )]
else:
# make sure that inputs increase in size
SCREAMING_SNAKE_CASE_ = [
floats_list((x, self.num_mel_bins) )
for x in range(self.min_seq_length , self.max_seq_length , self.seq_length_diff )
]
if numpify:
SCREAMING_SNAKE_CASE_ = [np.asarray(_lowerCAmelCase ) for x in speech_inputs]
return speech_inputs
@require_torch
class lowerCamelCase_ ( _SCREAMING_SNAKE_CASE , unittest.TestCase ):
'''simple docstring'''
lowercase_ = SpeechTaFeatureExtractor
def lowerCAmelCase_ ( self : Any ):
SCREAMING_SNAKE_CASE_ = SpeechTaFeatureExtractionTester(self )
def lowerCAmelCase_ ( self : Any , _lowerCAmelCase : int ):
self.assertTrue(np.all(np.mean(_lowerCAmelCase , axis=0 ) < 1E-3 ) )
self.assertTrue(np.all(np.abs(np.var(_lowerCAmelCase , axis=0 ) - 1 ) < 1E-3 ) )
def lowerCAmelCase_ ( self : List[Any] ):
# Tests that all call wrap to encode_plus and batch_encode_plus
SCREAMING_SNAKE_CASE_ = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() )
# create three inputs of length 800, 1000, and 1200
SCREAMING_SNAKE_CASE_ = [floats_list((1, x) )[0] for x in range(800 , 1_400 , 200 )]
SCREAMING_SNAKE_CASE_ = [np.asarray(_lowerCAmelCase ) for speech_input in speech_inputs]
# Test not batched input
SCREAMING_SNAKE_CASE_ = feat_extract(speech_inputs[0] , return_tensors='np' ).input_values
SCREAMING_SNAKE_CASE_ = feat_extract(np_speech_inputs[0] , return_tensors='np' ).input_values
self.assertTrue(np.allclose(_lowerCAmelCase , _lowerCAmelCase , atol=1E-3 ) )
# Test batched
SCREAMING_SNAKE_CASE_ = feat_extract(_lowerCAmelCase , return_tensors='np' ).input_values
SCREAMING_SNAKE_CASE_ = feat_extract(_lowerCAmelCase , return_tensors='np' ).input_values
for enc_seq_a, enc_seq_a in zip(_lowerCAmelCase , _lowerCAmelCase ):
self.assertTrue(np.allclose(_lowerCAmelCase , _lowerCAmelCase , atol=1E-3 ) )
def lowerCAmelCase_ ( self : Union[str, Any] ):
SCREAMING_SNAKE_CASE_ = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() )
SCREAMING_SNAKE_CASE_ = [floats_list((1, x) )[0] for x in range(800 , 1_400 , 200 )]
SCREAMING_SNAKE_CASE_ = ['longest', 'max_length', 'do_not_pad']
SCREAMING_SNAKE_CASE_ = [None, 1_600, None]
for max_length, padding in zip(_lowerCAmelCase , _lowerCAmelCase ):
SCREAMING_SNAKE_CASE_ = feat_extract(_lowerCAmelCase , padding=_lowerCAmelCase , max_length=_lowerCAmelCase , return_tensors='np' )
SCREAMING_SNAKE_CASE_ = processed.input_values
self._check_zero_mean_unit_variance(input_values[0][:800] )
self.assertTrue(input_values[0][800:].sum() < 1E-6 )
self._check_zero_mean_unit_variance(input_values[1][:1_000] )
self.assertTrue(input_values[0][1_000:].sum() < 1E-6 )
self._check_zero_mean_unit_variance(input_values[2][:1_200] )
def lowerCAmelCase_ ( self : Optional[Any] ):
SCREAMING_SNAKE_CASE_ = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() )
SCREAMING_SNAKE_CASE_ = range(800 , 1_400 , 200 )
SCREAMING_SNAKE_CASE_ = [floats_list((1, x) )[0] for x in lengths]
SCREAMING_SNAKE_CASE_ = ['longest', 'max_length', 'do_not_pad']
SCREAMING_SNAKE_CASE_ = [None, 1_600, None]
for max_length, padding in zip(_lowerCAmelCase , _lowerCAmelCase ):
SCREAMING_SNAKE_CASE_ = feat_extract(_lowerCAmelCase , max_length=_lowerCAmelCase , padding=_lowerCAmelCase )
SCREAMING_SNAKE_CASE_ = processed.input_values
self._check_zero_mean_unit_variance(input_values[0][:800] )
self._check_zero_mean_unit_variance(input_values[1][:1_000] )
self._check_zero_mean_unit_variance(input_values[2][:1_200] )
def lowerCAmelCase_ ( self : Dict ):
SCREAMING_SNAKE_CASE_ = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() )
SCREAMING_SNAKE_CASE_ = [floats_list((1, x) )[0] for x in range(800 , 1_400 , 200 )]
SCREAMING_SNAKE_CASE_ = feat_extract(
_lowerCAmelCase , truncation=_lowerCAmelCase , max_length=1_000 , padding='max_length' , return_tensors='np' )
SCREAMING_SNAKE_CASE_ = processed.input_values
self._check_zero_mean_unit_variance(input_values[0, :800] )
self._check_zero_mean_unit_variance(input_values[1] )
self._check_zero_mean_unit_variance(input_values[2] )
def lowerCAmelCase_ ( self : Dict ):
SCREAMING_SNAKE_CASE_ = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() )
SCREAMING_SNAKE_CASE_ = [floats_list((1, x) )[0] for x in range(800 , 1_400 , 200 )]
SCREAMING_SNAKE_CASE_ = feat_extract(
_lowerCAmelCase , truncation=_lowerCAmelCase , max_length=1_000 , padding='longest' , return_tensors='np' )
SCREAMING_SNAKE_CASE_ = processed.input_values
self._check_zero_mean_unit_variance(input_values[0, :800] )
self._check_zero_mean_unit_variance(input_values[1, :1_000] )
self._check_zero_mean_unit_variance(input_values[2] )
# make sure that if max_length < longest -> then pad to max_length
self.assertTrue(input_values.shape == (3, 1_000) )
SCREAMING_SNAKE_CASE_ = [floats_list((1, x) )[0] for x in range(800 , 1_400 , 200 )]
SCREAMING_SNAKE_CASE_ = feat_extract(
_lowerCAmelCase , truncation=_lowerCAmelCase , max_length=2_000 , padding='longest' , return_tensors='np' )
SCREAMING_SNAKE_CASE_ = processed.input_values
self._check_zero_mean_unit_variance(input_values[0, :800] )
self._check_zero_mean_unit_variance(input_values[1, :1_000] )
self._check_zero_mean_unit_variance(input_values[2] )
# make sure that if max_length > longest -> then pad to longest
self.assertTrue(input_values.shape == (3, 1_200) )
def lowerCAmelCase_ ( self : Optional[int] ):
SCREAMING_SNAKE_CASE_ = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() )
SCREAMING_SNAKE_CASE_ = np.random.rand(100 ).astype(np.floataa )
SCREAMING_SNAKE_CASE_ = np_speech_inputs.tolist()
for inputs in [py_speech_inputs, np_speech_inputs]:
SCREAMING_SNAKE_CASE_ = feature_extractor.pad([{'input_values': inputs}] , return_tensors='np' )
self.assertTrue(np_processed.input_values.dtype == np.floataa )
SCREAMING_SNAKE_CASE_ = feature_extractor.pad([{'input_values': inputs}] , return_tensors='pt' )
self.assertTrue(pt_processed.input_values.dtype == torch.floataa )
def lowerCAmelCase_ ( self : Tuple ):
# Tests that all call wrap to encode_plus and batch_encode_plus
SCREAMING_SNAKE_CASE_ = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() )
# create three inputs of length 800, 1000, and 1200
SCREAMING_SNAKE_CASE_ = [floats_list((1, x) )[0] for x in range(800 , 1_400 , 200 )]
SCREAMING_SNAKE_CASE_ = [np.asarray(_lowerCAmelCase ) for speech_input in speech_inputs]
# Test feature size
SCREAMING_SNAKE_CASE_ = feature_extractor(audio_target=_lowerCAmelCase , padding=_lowerCAmelCase , return_tensors='np' ).input_values
self.assertTrue(input_values.ndim == 3 )
self.assertTrue(input_values.shape[-1] == feature_extractor.num_mel_bins )
# Test not batched input
SCREAMING_SNAKE_CASE_ = feature_extractor(speech_inputs[0] , return_tensors='np' ).input_values
SCREAMING_SNAKE_CASE_ = feature_extractor(np_speech_inputs[0] , return_tensors='np' ).input_values
self.assertTrue(np.allclose(_lowerCAmelCase , _lowerCAmelCase , atol=1E-3 ) )
# Test batched
SCREAMING_SNAKE_CASE_ = feature_extractor(_lowerCAmelCase , return_tensors='np' ).input_values
SCREAMING_SNAKE_CASE_ = feature_extractor(_lowerCAmelCase , return_tensors='np' ).input_values
for enc_seq_a, enc_seq_a in zip(_lowerCAmelCase , _lowerCAmelCase ):
self.assertTrue(np.allclose(_lowerCAmelCase , _lowerCAmelCase , atol=1E-3 ) )
# Test 2-D numpy arrays are batched.
SCREAMING_SNAKE_CASE_ = [floats_list((1, x) )[0] for x in (800, 800, 800)]
SCREAMING_SNAKE_CASE_ = np.asarray(_lowerCAmelCase )
SCREAMING_SNAKE_CASE_ = feature_extractor(_lowerCAmelCase , return_tensors='np' ).input_values
SCREAMING_SNAKE_CASE_ = feature_extractor(_lowerCAmelCase , return_tensors='np' ).input_values
for enc_seq_a, enc_seq_a in zip(_lowerCAmelCase , _lowerCAmelCase ):
self.assertTrue(np.allclose(_lowerCAmelCase , _lowerCAmelCase , atol=1E-3 ) )
def lowerCAmelCase_ ( self : str ):
SCREAMING_SNAKE_CASE_ = self.feat_extract_tester.prepare_inputs_for_target()
SCREAMING_SNAKE_CASE_ = self.feature_extraction_class(**self.feat_extract_dict )
SCREAMING_SNAKE_CASE_ = feat_extract.model_input_names[0]
SCREAMING_SNAKE_CASE_ = BatchFeature({input_name: speech_inputs} )
self.assertTrue(all(len(_lowerCAmelCase ) == len(_lowerCAmelCase ) for x, y in zip(_lowerCAmelCase , processed_features[input_name] ) ) )
SCREAMING_SNAKE_CASE_ = self.feat_extract_tester.prepare_inputs_for_target(equal_length=_lowerCAmelCase )
SCREAMING_SNAKE_CASE_ = BatchFeature({input_name: speech_inputs} , tensor_type='np' )
SCREAMING_SNAKE_CASE_ = processed_features[input_name]
if len(batch_features_input.shape ) < 3:
SCREAMING_SNAKE_CASE_ = batch_features_input[:, :, None]
self.assertTrue(
batch_features_input.shape
== (self.feat_extract_tester.batch_size, len(speech_inputs[0] ), self.feat_extract_tester.num_mel_bins) )
@require_torch
def lowerCAmelCase_ ( self : Dict ):
SCREAMING_SNAKE_CASE_ = self.feat_extract_tester.prepare_inputs_for_target(equal_length=_lowerCAmelCase )
SCREAMING_SNAKE_CASE_ = self.feature_extraction_class(**self.feat_extract_dict )
SCREAMING_SNAKE_CASE_ = feat_extract.model_input_names[0]
SCREAMING_SNAKE_CASE_ = BatchFeature({input_name: speech_inputs} , tensor_type='pt' )
SCREAMING_SNAKE_CASE_ = processed_features[input_name]
if len(batch_features_input.shape ) < 3:
SCREAMING_SNAKE_CASE_ = batch_features_input[:, :, None]
self.assertTrue(
batch_features_input.shape
== (self.feat_extract_tester.batch_size, len(speech_inputs[0] ), self.feat_extract_tester.num_mel_bins) )
@require_torch
def lowerCAmelCase_ ( self : Dict ):
SCREAMING_SNAKE_CASE_ = self.feature_extraction_class(**self.feat_extract_dict )
SCREAMING_SNAKE_CASE_ = self.feat_extract_tester.prepare_inputs_for_target()
SCREAMING_SNAKE_CASE_ = feat_extract.model_input_names[0]
SCREAMING_SNAKE_CASE_ = BatchFeature({input_name: speech_inputs} )
SCREAMING_SNAKE_CASE_ = feat_extract.num_mel_bins # hack!
SCREAMING_SNAKE_CASE_ = feat_extract.pad(_lowerCAmelCase , padding='longest' , return_tensors='np' )[input_name]
SCREAMING_SNAKE_CASE_ = feat_extract.pad(_lowerCAmelCase , padding='longest' , return_tensors='pt' )[input_name]
self.assertTrue(abs(input_np.astype(np.floataa ).sum() - input_pt.numpy().astype(np.floataa ).sum() ) < 1E-2 )
def lowerCAmelCase_ ( self : str ):
SCREAMING_SNAKE_CASE_ = self.feat_extract_dict
SCREAMING_SNAKE_CASE_ = True
SCREAMING_SNAKE_CASE_ = self.feature_extraction_class(**_lowerCAmelCase )
SCREAMING_SNAKE_CASE_ = self.feat_extract_tester.prepare_inputs_for_target()
SCREAMING_SNAKE_CASE_ = [len(_lowerCAmelCase ) for x in speech_inputs]
SCREAMING_SNAKE_CASE_ = feat_extract.model_input_names[0]
SCREAMING_SNAKE_CASE_ = BatchFeature({input_name: speech_inputs} )
SCREAMING_SNAKE_CASE_ = feat_extract.num_mel_bins # hack!
SCREAMING_SNAKE_CASE_ = feat_extract.pad(_lowerCAmelCase , padding='longest' , return_tensors='np' )
self.assertIn('attention_mask' , _lowerCAmelCase )
self.assertListEqual(list(processed.attention_mask.shape ) , list(processed[input_name].shape[:2] ) )
self.assertListEqual(processed.attention_mask.sum(-1 ).tolist() , _lowerCAmelCase )
def lowerCAmelCase_ ( self : Any ):
SCREAMING_SNAKE_CASE_ = self.feat_extract_dict
SCREAMING_SNAKE_CASE_ = True
SCREAMING_SNAKE_CASE_ = self.feature_extraction_class(**_lowerCAmelCase )
SCREAMING_SNAKE_CASE_ = self.feat_extract_tester.prepare_inputs_for_target()
SCREAMING_SNAKE_CASE_ = [len(_lowerCAmelCase ) for x in speech_inputs]
SCREAMING_SNAKE_CASE_ = feat_extract.model_input_names[0]
SCREAMING_SNAKE_CASE_ = BatchFeature({input_name: speech_inputs} )
SCREAMING_SNAKE_CASE_ = min(_lowerCAmelCase )
SCREAMING_SNAKE_CASE_ = feat_extract.num_mel_bins # hack!
SCREAMING_SNAKE_CASE_ = feat_extract.pad(
_lowerCAmelCase , padding='max_length' , max_length=_lowerCAmelCase , truncation=_lowerCAmelCase , return_tensors='np' )
self.assertIn('attention_mask' , _lowerCAmelCase )
self.assertListEqual(
list(processed_pad.attention_mask.shape ) , [processed_pad[input_name].shape[0], max_length] )
self.assertListEqual(
processed_pad.attention_mask[:, :max_length].sum(-1 ).tolist() , [max_length for x in speech_inputs] )
def lowerCAmelCase_ ( self : List[Any] , _lowerCAmelCase : Tuple ):
from datasets import load_dataset
SCREAMING_SNAKE_CASE_ = load_dataset('hf-internal-testing/librispeech_asr_dummy' , 'clean' , split='validation' )
# automatic decoding with librispeech
SCREAMING_SNAKE_CASE_ = ds.sort('id' ).select(range(_lowerCAmelCase ) )[:num_samples]['audio']
return [x["array"] for x in speech_samples]
def lowerCAmelCase_ ( self : Any ):
# fmt: off
SCREAMING_SNAKE_CASE_ = torch.tensor(
[2.3_804E-03, 2.0_752E-03, 1.9_836E-03, 2.1_057E-03, 1.6_174E-03,
3.0_518E-04, 9.1_553E-05, 3.3_569E-04, 9.7_656E-04, 1.8_311E-03,
2.0_142E-03, 2.1_057E-03, 1.7_395E-03, 4.5_776E-04, -3.9_673E-04,
4.5_776E-04, 1.0_071E-03, 9.1_553E-05, 4.8_828E-04, 1.1_597E-03,
7.3_242E-04, 9.4_604E-04, 1.8_005E-03, 1.8_311E-03, 8.8_501E-04,
4.2_725E-04, 4.8_828E-04, 7.3_242E-04, 1.0_986E-03, 2.1_057E-03] )
# fmt: on
SCREAMING_SNAKE_CASE_ = self._load_datasamples(1 )
SCREAMING_SNAKE_CASE_ = SpeechTaFeatureExtractor()
SCREAMING_SNAKE_CASE_ = feature_extractor(_lowerCAmelCase , return_tensors='pt' ).input_values
self.assertEquals(input_values.shape , (1, 93_680) )
self.assertTrue(torch.allclose(input_values[0, :30] , _lowerCAmelCase , atol=1E-6 ) )
def lowerCAmelCase_ ( self : Optional[int] ):
# fmt: off
SCREAMING_SNAKE_CASE_ = torch.tensor(
[-2.6870, -3.0104, -3.1356, -3.5352, -3.0044, -3.0353, -3.4719, -3.6777,
-3.1520, -2.9435, -2.6553, -2.8795, -2.9944, -2.5921, -3.0279, -3.0386,
-3.0864, -3.1291, -3.2353, -2.7444, -2.6831, -2.7287, -3.1761, -3.1571,
-3.2726, -3.0582, -3.1007, -3.4533, -3.4695, -3.0998] )
# fmt: on
SCREAMING_SNAKE_CASE_ = self._load_datasamples(1 )
SCREAMING_SNAKE_CASE_ = SpeechTaFeatureExtractor()
SCREAMING_SNAKE_CASE_ = feature_extractor(audio_target=_lowerCAmelCase , return_tensors='pt' ).input_values
self.assertEquals(input_values.shape , (1, 366, 80) )
self.assertTrue(torch.allclose(input_values[0, 0, :30] , _lowerCAmelCase , atol=1E-4 ) ) | 31 | 0 |
import doctest
import glob
import importlib
import inspect
import os
import re
from contextlib import contextmanager
from functools import wraps
from unittest.mock import patch
import numpy as np
import pytest
from absl.testing import parameterized
import datasets
from datasets import load_metric
from .utils import for_all_test_methods, local, slow
# mark all tests as integration
A_ : Union[str, Any] = pytest.mark.integration
A_ : Any = {'comet'}
A_ : Tuple = importlib.util.find_spec('fairseq') is not None
A_ : List[Any] = {'code_eval'}
A_ : Union[str, Any] = os.name == 'nt'
A_ : Union[str, Any] = {'bertscore', 'frugalscore', 'perplexity'}
A_ : List[str] = importlib.util.find_spec('transformers') is not None
def snake_case (UpperCAmelCase__ ) -> Tuple:
@wraps(UpperCAmelCase__ )
def wrapper(self , UpperCAmelCase__ ):
if not _has_fairseq and metric_name in REQUIRE_FAIRSEQ:
self.skipTest('"test requires Fairseq"' )
else:
test_case(self , UpperCAmelCase__ )
return wrapper
def snake_case (UpperCAmelCase__ ) -> Any:
@wraps(UpperCAmelCase__ )
def wrapper(self , UpperCAmelCase__ ):
if not _has_transformers and metric_name in REQUIRE_TRANSFORMERS:
self.skipTest('"test requires transformers"' )
else:
test_case(self , UpperCAmelCase__ )
return wrapper
def snake_case (UpperCAmelCase__ ) -> Optional[int]:
@wraps(UpperCAmelCase__ )
def wrapper(self , UpperCAmelCase__ ):
if _on_windows and metric_name in UNSUPPORTED_ON_WINDOWS:
self.skipTest('"test not supported on Windows"' )
else:
test_case(self , UpperCAmelCase__ )
return wrapper
def snake_case () -> List[Any]:
UpperCamelCase_: Optional[int] = [metric_dir.split(os.sep )[-2] for metric_dir in glob.glob('./metrics/*/' )]
return [{"testcase_name": x, "metric_name": x} for x in metrics if x != "gleu"] # gleu is unfinished
@parameterized.named_parameters(get_local_metric_names() )
@for_all_test_methods(
UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ )
@local
class _lowerCAmelCase( parameterized.TestCase ):
"""simple docstring"""
a : Tuple ={}
a : str =None
@pytest.mark.filterwarnings('ignore:metric_module_factory is deprecated:FutureWarning' )
@pytest.mark.filterwarnings('ignore:load_metric is deprecated:FutureWarning' )
def _a ( self , _lowerCamelCase ):
UpperCamelCase_: Any = '[...]'
UpperCamelCase_: int = importlib.import_module(
datasets.load.metric_module_factory(os.path.join('metrics' , _lowerCamelCase ) ).module_path )
UpperCamelCase_: List[Any] = datasets.load.import_main_class(metric_module.__name__ , dataset=_lowerCamelCase )
# check parameters
UpperCamelCase_: Optional[Any] = inspect.signature(metric._compute ).parameters
self.assertTrue(all(p.kind != p.VAR_KEYWORD for p in parameters.values() ) ) # no **kwargs
# run doctest
with self.patch_intensive_calls(_lowerCamelCase , metric_module.__name__ ):
with self.use_local_metrics():
try:
UpperCamelCase_: Union[str, Any] = doctest.testmod(_lowerCamelCase , verbose=_lowerCamelCase , raise_on_error=_lowerCamelCase )
except doctest.UnexpectedException as e:
raise e.exc_info[1] # raise the exception that doctest caught
self.assertEqual(results.failed , 0 )
self.assertGreater(results.attempted , 1 )
@slow
def _a ( self , _lowerCamelCase ):
UpperCamelCase_: Optional[Any] = '[...]'
UpperCamelCase_: Optional[int] = importlib.import_module(
datasets.load.metric_module_factory(os.path.join('metrics' , _lowerCamelCase ) ).module_path )
# run doctest
with self.use_local_metrics():
UpperCamelCase_: Union[str, Any] = doctest.testmod(_lowerCamelCase , verbose=_lowerCamelCase , raise_on_error=_lowerCamelCase )
self.assertEqual(results.failed , 0 )
self.assertGreater(results.attempted , 1 )
@contextmanager
def _a ( self , _lowerCamelCase , _lowerCamelCase ):
if metric_name in self.INTENSIVE_CALLS_PATCHER:
with self.INTENSIVE_CALLS_PATCHER[metric_name](_lowerCamelCase ):
yield
else:
yield
@contextmanager
def _a ( self ):
def load_local_metric(_lowerCamelCase , *_lowerCamelCase , **_lowerCamelCase ):
return load_metric(os.path.join('metrics' , _lowerCamelCase ) , *_lowerCamelCase , **_lowerCamelCase )
with patch('datasets.load_metric' ) as mock_load_metric:
UpperCamelCase_: List[Any] = load_local_metric
yield
@classmethod
def _a ( cls , _lowerCamelCase ):
def wrapper(_lowerCamelCase ):
UpperCamelCase_: Optional[Any] = contextmanager(_lowerCamelCase )
UpperCamelCase_: int = patcher
return patcher
return wrapper
@LocalMetricTest.register_intensive_calls_patcher('bleurt' )
def snake_case (UpperCAmelCase__ ) -> Dict:
import tensorflow.compat.va as tf
from bleurt.score import Predictor
tf.flags.DEFINE_string('sv' , '' , '' ) # handle pytest cli flags
class _lowerCAmelCase( UpperCAmelCase_ ):
"""simple docstring"""
def _a ( self , _lowerCamelCase ):
assert len(input_dict['input_ids'] ) == 2
return np.array([1.0_3, 1.0_4] )
# mock predict_fn which is supposed to do a forward pass with a bleurt model
with patch('bleurt.score._create_predictor' ) as mock_create_predictor:
UpperCamelCase_: Dict = MockedPredictor()
yield
@LocalMetricTest.register_intensive_calls_patcher('bertscore' )
def snake_case (UpperCAmelCase__ ) -> Optional[Any]:
import torch
def bert_cos_score_idf(UpperCAmelCase__ , UpperCAmelCase__ , *UpperCAmelCase__ , **UpperCAmelCase__ ):
return torch.tensor([[1.0, 1.0, 1.0]] * len(UpperCAmelCase__ ) )
# mock get_model which is supposed to do download a bert model
# mock bert_cos_score_idf which is supposed to do a forward pass with a bert model
with patch('bert_score.scorer.get_model' ), patch(
'bert_score.scorer.bert_cos_score_idf' ) as mock_bert_cos_score_idf:
UpperCamelCase_: Dict = bert_cos_score_idf
yield
@LocalMetricTest.register_intensive_calls_patcher('comet' )
def snake_case (UpperCAmelCase__ ) -> List[str]:
def load_from_checkpoint(UpperCAmelCase__ ):
class _lowerCAmelCase:
"""simple docstring"""
def _a ( self , _lowerCamelCase , *_lowerCamelCase , **_lowerCamelCase ):
assert len(_lowerCamelCase ) == 2
UpperCamelCase_: List[Any] = [0.1_9, 0.9_2]
return scores, sum(_lowerCamelCase ) / len(_lowerCamelCase )
return Model()
# mock load_from_checkpoint which is supposed to do download a bert model
# mock load_from_checkpoint which is supposed to do download a bert model
with patch('comet.download_model' ) as mock_download_model:
UpperCamelCase_: Union[str, Any] = None
with patch('comet.load_from_checkpoint' ) as mock_load_from_checkpoint:
UpperCamelCase_: int = load_from_checkpoint
yield
def snake_case () -> str:
UpperCamelCase_: Union[str, Any] = load_metric(os.path.join('metrics' , 'seqeval' ) )
UpperCamelCase_: Any = 'ERROR'
UpperCamelCase_: List[Any] = F'''Scheme should be one of [IOB1, IOB2, IOE1, IOE2, IOBES, BILOU], got {wrong_scheme}'''
with pytest.raises(UpperCAmelCase__ , match=re.escape(UpperCAmelCase__ ) ):
metric.compute(predictions=[] , references=[] , scheme=UpperCAmelCase__ ) | 57 |
from __future__ import annotations
from typing import TypedDict
class lowerCamelCase_ ( _SCREAMING_SNAKE_CASE ):
'''simple docstring'''
lowercase_ = 42
lowercase_ = 42
def UpperCAmelCase_ ( __UpperCAmelCase : str ) -> list[str]:
if not isinstance(__UpperCAmelCase , __UpperCAmelCase ):
raise TypeError('The parameter s type must be str.' )
return [s[i:] + s[:i] for i in range(len(__UpperCAmelCase ) )]
def UpperCAmelCase_ ( __UpperCAmelCase : str ) -> BWTTransformDict:
if not isinstance(__UpperCAmelCase , __UpperCAmelCase ):
raise TypeError('The parameter s type must be str.' )
if not s:
raise ValueError('The parameter s must not be empty.' )
SCREAMING_SNAKE_CASE_ = all_rotations(__UpperCAmelCase )
rotations.sort() # sort the list of rotations in alphabetically order
# make a string composed of the last char of each rotation
SCREAMING_SNAKE_CASE_ = {
"bwt_string": "".join([word[-1] for word in rotations] ),
"idx_original_string": rotations.index(__UpperCAmelCase ),
}
return response
def UpperCAmelCase_ ( __UpperCAmelCase : str , __UpperCAmelCase : int ) -> str:
if not isinstance(__UpperCAmelCase , __UpperCAmelCase ):
raise TypeError('The parameter bwt_string type must be str.' )
if not bwt_string:
raise ValueError('The parameter bwt_string must not be empty.' )
try:
SCREAMING_SNAKE_CASE_ = int(__UpperCAmelCase )
except ValueError:
raise TypeError(
'The parameter idx_original_string type must be int or passive'
' of cast to int.' )
if idx_original_string < 0:
raise ValueError('The parameter idx_original_string must not be lower than 0.' )
if idx_original_string >= len(__UpperCAmelCase ):
raise ValueError(
'The parameter idx_original_string must be lower than' ' len(bwt_string).' )
SCREAMING_SNAKE_CASE_ = [''] * len(__UpperCAmelCase )
for _ in range(len(__UpperCAmelCase ) ):
for i in range(len(__UpperCAmelCase ) ):
SCREAMING_SNAKE_CASE_ = bwt_string[i] + ordered_rotations[i]
ordered_rotations.sort()
return ordered_rotations[idx_original_string]
if __name__ == "__main__":
lowerCamelCase__ : Optional[int] = 'Provide a string that I will generate its BWT transform: '
lowerCamelCase__ : List[str] = input(entry_msg).strip()
lowerCamelCase__ : int = bwt_transform(s)
print(
f'''Burrows Wheeler transform for string \'{s}\' results '''
f'''in \'{result['bwt_string']}\''''
)
lowerCamelCase__ : Dict = reverse_bwt(result['bwt_string'], result['idx_original_string'])
print(
f'''Reversing Burrows Wheeler transform for entry \'{result['bwt_string']}\' '''
f'''we get original string \'{original_string}\''''
) | 31 | 0 |
"""simple docstring"""
import gc
import random
import unittest
import torch
from diffusers import (
IFImgaImgPipeline,
IFImgaImgSuperResolutionPipeline,
IFInpaintingPipeline,
IFInpaintingSuperResolutionPipeline,
IFPipeline,
IFSuperResolutionPipeline,
)
from diffusers.models.attention_processor import AttnAddedKVProcessor
from diffusers.utils.import_utils import is_xformers_available
from diffusers.utils.testing_utils import floats_tensor, load_numpy, require_torch_gpu, skip_mps, slow, torch_device
from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_PARAMS
from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference
from . import IFPipelineTesterMixin
@skip_mps
class _lowerCAmelCase ( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , unittest.TestCase ):
"""simple docstring"""
_lowerCamelCase = IFPipeline
_lowerCamelCase = TEXT_TO_IMAGE_PARAMS - {'''width''', '''height''', '''latents'''}
_lowerCamelCase = TEXT_TO_IMAGE_BATCH_PARAMS
_lowerCamelCase = PipelineTesterMixin.required_optional_params - {'''latents'''}
def UpperCAmelCase__ ( self ) -> List[Any]:
'''simple docstring'''
return self._get_dummy_components()
def UpperCAmelCase__ ( self , _lowercase , _lowercase=0 ) -> List[str]:
'''simple docstring'''
if str(_lowercase ).startswith("""mps""" ):
snake_case_ : Optional[Any] = torch.manual_seed(_lowercase )
else:
snake_case_ : int = torch.Generator(device=_lowercase ).manual_seed(_lowercase )
snake_case_ : str = {
"""prompt""": """A painting of a squirrel eating a burger""",
"""generator""": generator,
"""num_inference_steps""": 2,
"""output_type""": """numpy""",
}
return inputs
def UpperCAmelCase__ ( self ) -> Optional[int]:
'''simple docstring'''
self._test_save_load_optional_components()
@unittest.skipIf(torch_device != """cuda""" , reason="""float16 requires CUDA""" )
def UpperCAmelCase__ ( self ) -> int:
'''simple docstring'''
super().test_save_load_floataa(expected_max_diff=1E-1 )
def UpperCAmelCase__ ( self ) -> int:
'''simple docstring'''
self._test_attention_slicing_forward_pass(expected_max_diff=1E-2 )
def UpperCAmelCase__ ( self ) -> Optional[int]:
'''simple docstring'''
self._test_save_load_local()
def UpperCAmelCase__ ( self ) -> Dict:
'''simple docstring'''
self._test_inference_batch_single_identical(
expected_max_diff=1E-2 , )
@unittest.skipIf(
torch_device != """cuda""" or not is_xformers_available() , reason="""XFormers attention is only available with CUDA and `xformers` installed""" , )
def UpperCAmelCase__ ( self ) -> List[str]:
'''simple docstring'''
self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=1E-3 )
@slow
@require_torch_gpu
class _lowerCAmelCase ( unittest.TestCase ):
"""simple docstring"""
def UpperCAmelCase__ ( self ) -> int:
'''simple docstring'''
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def UpperCAmelCase__ ( self ) -> Optional[Any]:
'''simple docstring'''
snake_case_ : Union[str, Any] = IFPipeline.from_pretrained("""DeepFloyd/IF-I-XL-v1.0""" , variant="""fp16""" , torch_dtype=torch.floataa )
snake_case_ : Optional[int] = IFSuperResolutionPipeline.from_pretrained(
"""DeepFloyd/IF-II-L-v1.0""" , variant="""fp16""" , torch_dtype=torch.floataa , text_encoder=_lowercase , tokenizer=_lowercase )
# pre compute text embeddings and remove T5 to save memory
pipe_a.text_encoder.to("""cuda""" )
snake_case_ , snake_case_ : int = pipe_a.encode_prompt("""anime turtle""" , device="""cuda""" )
del pipe_a.tokenizer
del pipe_a.text_encoder
gc.collect()
snake_case_ : Union[str, Any] = None
snake_case_ : int = None
pipe_a.enable_model_cpu_offload()
pipe_a.enable_model_cpu_offload()
pipe_a.unet.set_attn_processor(AttnAddedKVProcessor() )
pipe_a.unet.set_attn_processor(AttnAddedKVProcessor() )
self._test_if(_lowercase , _lowercase , _lowercase , _lowercase )
pipe_a.remove_all_hooks()
pipe_a.remove_all_hooks()
# img2img
snake_case_ : int = IFImgaImgPipeline(**pipe_a.components )
snake_case_ : int = IFImgaImgSuperResolutionPipeline(**pipe_a.components )
pipe_a.enable_model_cpu_offload()
pipe_a.enable_model_cpu_offload()
pipe_a.unet.set_attn_processor(AttnAddedKVProcessor() )
pipe_a.unet.set_attn_processor(AttnAddedKVProcessor() )
self._test_if_imgaimg(_lowercase , _lowercase , _lowercase , _lowercase )
pipe_a.remove_all_hooks()
pipe_a.remove_all_hooks()
# inpainting
snake_case_ : int = IFInpaintingPipeline(**pipe_a.components )
snake_case_ : List[str] = IFInpaintingSuperResolutionPipeline(**pipe_a.components )
pipe_a.enable_model_cpu_offload()
pipe_a.enable_model_cpu_offload()
pipe_a.unet.set_attn_processor(AttnAddedKVProcessor() )
pipe_a.unet.set_attn_processor(AttnAddedKVProcessor() )
self._test_if_inpainting(_lowercase , _lowercase , _lowercase , _lowercase )
def UpperCAmelCase__ ( self , _lowercase , _lowercase , _lowercase , _lowercase ) -> List[str]:
'''simple docstring'''
_start_torch_memory_measurement()
snake_case_ : Union[str, Any] = torch.Generator(device="""cpu""" ).manual_seed(0 )
snake_case_ : int = pipe_a(
prompt_embeds=_lowercase , negative_prompt_embeds=_lowercase , num_inference_steps=2 , generator=_lowercase , output_type="""np""" , )
snake_case_ : Dict = output.images[0]
assert image.shape == (6_4, 6_4, 3)
snake_case_ : Any = torch.cuda.max_memory_allocated()
assert mem_bytes < 1_3 * 1_0**9
snake_case_ : Dict = load_numpy(
"""https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if.npy""" )
assert_mean_pixel_difference(_lowercase , _lowercase )
# pipeline 2
_start_torch_memory_measurement()
snake_case_ : Union[str, Any] = torch.Generator(device="""cpu""" ).manual_seed(0 )
snake_case_ : Optional[int] = floats_tensor((1, 3, 6_4, 6_4) , rng=random.Random(0 ) ).to(_lowercase )
snake_case_ : str = pipe_a(
prompt_embeds=_lowercase , negative_prompt_embeds=_lowercase , image=_lowercase , generator=_lowercase , num_inference_steps=2 , output_type="""np""" , )
snake_case_ : Union[str, Any] = output.images[0]
assert image.shape == (2_5_6, 2_5_6, 3)
snake_case_ : Optional[Any] = torch.cuda.max_memory_allocated()
assert mem_bytes < 4 * 1_0**9
snake_case_ : Any = load_numpy(
"""https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if_superresolution_stage_II.npy""" )
assert_mean_pixel_difference(_lowercase , _lowercase )
def UpperCAmelCase__ ( self , _lowercase , _lowercase , _lowercase , _lowercase ) -> Any:
'''simple docstring'''
_start_torch_memory_measurement()
snake_case_ : List[str] = floats_tensor((1, 3, 6_4, 6_4) , rng=random.Random(0 ) ).to(_lowercase )
snake_case_ : str = torch.Generator(device="""cpu""" ).manual_seed(0 )
snake_case_ : Union[str, Any] = pipe_a(
prompt_embeds=_lowercase , negative_prompt_embeds=_lowercase , image=_lowercase , num_inference_steps=2 , generator=_lowercase , output_type="""np""" , )
snake_case_ : List[str] = output.images[0]
assert image.shape == (6_4, 6_4, 3)
snake_case_ : str = torch.cuda.max_memory_allocated()
assert mem_bytes < 1_0 * 1_0**9
snake_case_ : Dict = load_numpy(
"""https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if_img2img.npy""" )
assert_mean_pixel_difference(_lowercase , _lowercase )
# pipeline 2
_start_torch_memory_measurement()
snake_case_ : Optional[int] = torch.Generator(device="""cpu""" ).manual_seed(0 )
snake_case_ : Union[str, Any] = floats_tensor((1, 3, 2_5_6, 2_5_6) , rng=random.Random(0 ) ).to(_lowercase )
snake_case_ : Optional[int] = floats_tensor((1, 3, 6_4, 6_4) , rng=random.Random(0 ) ).to(_lowercase )
snake_case_ : Union[str, Any] = pipe_a(
prompt_embeds=_lowercase , negative_prompt_embeds=_lowercase , image=_lowercase , original_image=_lowercase , generator=_lowercase , num_inference_steps=2 , output_type="""np""" , )
snake_case_ : Optional[int] = output.images[0]
assert image.shape == (2_5_6, 2_5_6, 3)
snake_case_ : int = torch.cuda.max_memory_allocated()
assert mem_bytes < 4 * 1_0**9
snake_case_ : str = load_numpy(
"""https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if_img2img_superresolution_stage_II.npy""" )
assert_mean_pixel_difference(_lowercase , _lowercase )
def UpperCAmelCase__ ( self , _lowercase , _lowercase , _lowercase , _lowercase ) -> List[str]:
'''simple docstring'''
_start_torch_memory_measurement()
snake_case_ : List[Any] = floats_tensor((1, 3, 6_4, 6_4) , rng=random.Random(0 ) ).to(_lowercase )
snake_case_ : List[str] = floats_tensor((1, 3, 6_4, 6_4) , rng=random.Random(1 ) ).to(_lowercase )
snake_case_ : Optional[Any] = torch.Generator(device="""cpu""" ).manual_seed(0 )
snake_case_ : int = pipe_a(
prompt_embeds=_lowercase , negative_prompt_embeds=_lowercase , image=_lowercase , mask_image=_lowercase , num_inference_steps=2 , generator=_lowercase , output_type="""np""" , )
snake_case_ : Any = output.images[0]
assert image.shape == (6_4, 6_4, 3)
snake_case_ : List[Any] = torch.cuda.max_memory_allocated()
assert mem_bytes < 1_0 * 1_0**9
snake_case_ : Any = load_numpy(
"""https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if_inpainting.npy""" )
assert_mean_pixel_difference(_lowercase , _lowercase )
# pipeline 2
_start_torch_memory_measurement()
snake_case_ : Optional[int] = torch.Generator(device="""cpu""" ).manual_seed(0 )
snake_case_ : Optional[int] = floats_tensor((1, 3, 6_4, 6_4) , rng=random.Random(0 ) ).to(_lowercase )
snake_case_ : Dict = floats_tensor((1, 3, 2_5_6, 2_5_6) , rng=random.Random(0 ) ).to(_lowercase )
snake_case_ : List[Any] = floats_tensor((1, 3, 2_5_6, 2_5_6) , rng=random.Random(1 ) ).to(_lowercase )
snake_case_ : int = pipe_a(
prompt_embeds=_lowercase , negative_prompt_embeds=_lowercase , image=_lowercase , mask_image=_lowercase , original_image=_lowercase , generator=_lowercase , num_inference_steps=2 , output_type="""np""" , )
snake_case_ : Dict = output.images[0]
assert image.shape == (2_5_6, 2_5_6, 3)
snake_case_ : List[str] = torch.cuda.max_memory_allocated()
assert mem_bytes < 4 * 1_0**9
snake_case_ : Optional[Any] = load_numpy(
"""https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if_inpainting_superresolution_stage_II.npy""" )
assert_mean_pixel_difference(_lowercase , _lowercase )
def __lowerCAmelCase ( ):
'''simple docstring'''
torch.cuda.empty_cache()
torch.cuda.reset_max_memory_allocated()
torch.cuda.reset_peak_memory_stats()
| 58 |
class lowerCamelCase_ :
'''simple docstring'''
def __init__( self : str ):
SCREAMING_SNAKE_CASE_ = {}
def lowerCAmelCase_ ( self : List[str] ):
print(self.vertex )
for i in self.vertex:
print(_lowerCAmelCase , ' -> ' , ' -> '.join([str(_lowerCAmelCase ) for j in self.vertex[i]] ) )
def lowerCAmelCase_ ( self : Union[str, Any] , _lowerCAmelCase : int , _lowerCAmelCase : int ):
# check if vertex is already present,
if from_vertex in self.vertex:
self.vertex[from_vertex].append(_lowerCAmelCase )
else:
# else make a new vertex
SCREAMING_SNAKE_CASE_ = [to_vertex]
def lowerCAmelCase_ ( self : Optional[Any] ):
# visited array for storing already visited nodes
SCREAMING_SNAKE_CASE_ = [False] * len(self.vertex )
# call the recursive helper function
for i in range(len(self.vertex ) ):
if not visited[i]:
self.dfs_recursive(_lowerCAmelCase , _lowerCAmelCase )
def lowerCAmelCase_ ( self : Tuple , _lowerCAmelCase : int , _lowerCAmelCase : list ):
# mark start vertex as visited
SCREAMING_SNAKE_CASE_ = True
print(_lowerCAmelCase , end=' ' )
# Recur for all the vertices that are adjacent to this node
for i in self.vertex:
if not visited[i]:
self.dfs_recursive(_lowerCAmelCase , _lowerCAmelCase )
if __name__ == "__main__":
lowerCamelCase__ : List[Any] = Graph()
g.add_edge(0, 1)
g.add_edge(0, 2)
g.add_edge(1, 2)
g.add_edge(2, 0)
g.add_edge(2, 3)
g.add_edge(3, 3)
g.print_graph()
print('DFS:')
g.dfs()
# OUTPUT:
# 0 -> 1 -> 2
# 1 -> 2
# 2 -> 0 -> 3
# 3 -> 3
# DFS:
# 0 1 2 3 | 31 | 0 |
def lowerCAmelCase_ ( __a ) -> None:
"""simple docstring"""
lowerCamelCase__: List[Any] =generate_pascal_triangle(__a )
for row_idx in range(__a ):
# Print left spaces
for _ in range(num_rows - row_idx - 1 ):
print(end=" " )
# Print row values
for col_idx in range(row_idx + 1 ):
if col_idx != row_idx:
print(triangle[row_idx][col_idx] , end=" " )
else:
print(triangle[row_idx][col_idx] , end="" )
print()
def lowerCAmelCase_ ( __a ) -> list[list[int]]:
"""simple docstring"""
if not isinstance(__a , __a ):
raise TypeError("The input value of 'num_rows' should be 'int'" )
if num_rows == 0:
return []
elif num_rows < 0:
raise ValueError(
"The input value of 'num_rows' should be greater than or equal to 0" )
lowerCamelCase__: list[list[int]] =[]
for current_row_idx in range(__a ):
lowerCamelCase__: Any =populate_current_row(__a , __a )
triangle.append(__a )
return triangle
def lowerCAmelCase_ ( __a , __a ) -> list[int]:
"""simple docstring"""
lowerCamelCase__: Dict =[-1] * (current_row_idx + 1)
# first and last elements of current row are equal to 1
lowerCamelCase__ , lowerCamelCase__: Dict =1, 1
for current_col_idx in range(1 , __a ):
calculate_current_element(
__a , __a , __a , __a )
return current_row
def lowerCAmelCase_ ( __a , __a , __a , __a , ) -> None:
"""simple docstring"""
lowerCamelCase__: Dict =triangle[current_row_idx - 1][current_col_idx - 1]
lowerCamelCase__: List[Any] =triangle[current_row_idx - 1][current_col_idx]
lowerCamelCase__: int =above_to_left_elt + above_to_right_elt
def lowerCAmelCase_ ( __a ) -> list[list[int]]:
"""simple docstring"""
if not isinstance(__a , __a ):
raise TypeError("The input value of 'num_rows' should be 'int'" )
if num_rows == 0:
return []
elif num_rows < 0:
raise ValueError(
"The input value of 'num_rows' should be greater than or equal to 0" )
lowerCamelCase__: list[list[int]] =[[1]]
for row_index in range(1 , __a ):
lowerCamelCase__: str =[0] + result[-1] + [0]
lowerCamelCase__: List[str] =row_index + 1
# Calculate the number of distinct elements in a row
lowerCamelCase__: str =sum(divmod(__a , 2 ) )
lowerCamelCase__: Union[str, Any] =[
temp_row[i - 1] + temp_row[i] for i in range(1 , distinct_elements + 1 )
]
lowerCamelCase__: Optional[int] =row_first_half[: (row_index + 1) // 2]
row_second_half.reverse()
lowerCamelCase__: Optional[int] =row_first_half + row_second_half
result.append(__a )
return result
def lowerCAmelCase_ ( ) -> None:
"""simple docstring"""
from collections.abc import Callable
from timeit import timeit
def benchmark_a_function(__a , __a ) -> None:
lowerCamelCase__: Union[str, Any] =F"""{func.__name__}({value})"""
lowerCamelCase__: Any =timeit(F"""__main__.{call}""" , setup="import __main__" )
# print(f"{call:38} = {func(value)} -- {timing:.4f} seconds")
print(F"""{call:38} -- {timing:.4f} seconds""" )
for value in range(15 ): # (1, 7, 14):
for func in (generate_pascal_triangle, generate_pascal_triangle_optimized):
benchmark_a_function(__a , __a )
print()
if __name__ == "__main__":
import doctest
doctest.testmod()
benchmark()
| 59 |
from ...configuration_utils import PretrainedConfig
from ...utils import logging
lowerCamelCase__ : str = logging.get_logger(__name__)
lowerCamelCase__ : Tuple = {
'funnel-transformer/small': 'https://huggingface.co/funnel-transformer/small/resolve/main/config.json',
'funnel-transformer/small-base': 'https://huggingface.co/funnel-transformer/small-base/resolve/main/config.json',
'funnel-transformer/medium': 'https://huggingface.co/funnel-transformer/medium/resolve/main/config.json',
'funnel-transformer/medium-base': 'https://huggingface.co/funnel-transformer/medium-base/resolve/main/config.json',
'funnel-transformer/intermediate': (
'https://huggingface.co/funnel-transformer/intermediate/resolve/main/config.json'
),
'funnel-transformer/intermediate-base': (
'https://huggingface.co/funnel-transformer/intermediate-base/resolve/main/config.json'
),
'funnel-transformer/large': 'https://huggingface.co/funnel-transformer/large/resolve/main/config.json',
'funnel-transformer/large-base': 'https://huggingface.co/funnel-transformer/large-base/resolve/main/config.json',
'funnel-transformer/xlarge': 'https://huggingface.co/funnel-transformer/xlarge/resolve/main/config.json',
'funnel-transformer/xlarge-base': 'https://huggingface.co/funnel-transformer/xlarge-base/resolve/main/config.json',
}
class lowerCamelCase_ ( _SCREAMING_SNAKE_CASE ):
'''simple docstring'''
lowercase_ = "funnel"
lowercase_ = {
"hidden_size": "d_model",
"num_attention_heads": "n_head",
}
def __init__( self : int , _lowerCAmelCase : Optional[int]=30_522 , _lowerCAmelCase : List[str]=[4, 4, 4] , _lowerCAmelCase : Tuple=None , _lowerCAmelCase : Optional[int]=2 , _lowerCAmelCase : int=768 , _lowerCAmelCase : Optional[Any]=12 , _lowerCAmelCase : Optional[Any]=64 , _lowerCAmelCase : Optional[Any]=3_072 , _lowerCAmelCase : List[str]="gelu_new" , _lowerCAmelCase : Any=0.1 , _lowerCAmelCase : int=0.1 , _lowerCAmelCase : Tuple=0.0 , _lowerCAmelCase : List[Any]=0.1 , _lowerCAmelCase : Dict=None , _lowerCAmelCase : str=1E-9 , _lowerCAmelCase : Any="mean" , _lowerCAmelCase : Union[str, Any]="relative_shift" , _lowerCAmelCase : Optional[Any]=True , _lowerCAmelCase : Dict=True , _lowerCAmelCase : Tuple=True , **_lowerCAmelCase : Optional[Any] , ):
SCREAMING_SNAKE_CASE_ = vocab_size
SCREAMING_SNAKE_CASE_ = block_sizes
SCREAMING_SNAKE_CASE_ = [1] * len(_lowerCAmelCase ) if block_repeats is None else block_repeats
assert len(_lowerCAmelCase ) == len(
self.block_repeats ), "`block_sizes` and `block_repeats` should have the same length."
SCREAMING_SNAKE_CASE_ = num_decoder_layers
SCREAMING_SNAKE_CASE_ = d_model
SCREAMING_SNAKE_CASE_ = n_head
SCREAMING_SNAKE_CASE_ = d_head
SCREAMING_SNAKE_CASE_ = d_inner
SCREAMING_SNAKE_CASE_ = hidden_act
SCREAMING_SNAKE_CASE_ = hidden_dropout
SCREAMING_SNAKE_CASE_ = attention_dropout
SCREAMING_SNAKE_CASE_ = activation_dropout
SCREAMING_SNAKE_CASE_ = initializer_range
SCREAMING_SNAKE_CASE_ = initializer_std
SCREAMING_SNAKE_CASE_ = layer_norm_eps
assert pooling_type in [
"mean",
"max",
], F"Got {pooling_type} for `pooling_type` but only 'mean' and 'max' are supported."
SCREAMING_SNAKE_CASE_ = pooling_type
assert attention_type in [
"relative_shift",
"factorized",
], F"Got {attention_type} for `attention_type` but only 'relative_shift' and 'factorized' are supported."
SCREAMING_SNAKE_CASE_ = attention_type
SCREAMING_SNAKE_CASE_ = separate_cls
SCREAMING_SNAKE_CASE_ = truncate_seq
SCREAMING_SNAKE_CASE_ = pool_q_only
super().__init__(**_lowerCAmelCase )
@property
def lowerCAmelCase_ ( self : Optional[int] ):
return sum(self.block_sizes )
@num_hidden_layers.setter
def lowerCAmelCase_ ( self : int , _lowerCAmelCase : List[Any] ):
raise NotImplementedError(
'This model does not support the setting of `num_hidden_layers`. Please set `block_sizes`.' )
@property
def lowerCAmelCase_ ( self : List[Any] ):
return len(self.block_sizes )
@num_blocks.setter
def lowerCAmelCase_ ( self : Dict , _lowerCAmelCase : Union[str, Any] ):
raise NotImplementedError('This model does not support the setting of `num_blocks`. Please set `block_sizes`.' ) | 31 | 0 |
import contextlib
import importlib
import io
import unittest
import transformers
# Try to import everything from transformers to ensure every object can be loaded.
from transformers import * # noqa F406
from transformers.testing_utils import DUMMY_UNKNOWN_IDENTIFIER, require_flax, require_tf, require_torch
from transformers.utils import ContextManagers, find_labels, is_flax_available, is_tf_available, is_torch_available
if is_torch_available():
from transformers import BertForPreTraining, BertForQuestionAnswering, BertForSequenceClassification
if is_tf_available():
from transformers import TFBertForPreTraining, TFBertForQuestionAnswering, TFBertForSequenceClassification
if is_flax_available():
from transformers import FlaxBertForPreTraining, FlaxBertForQuestionAnswering, FlaxBertForSequenceClassification
lowerCAmelCase_ = DUMMY_UNKNOWN_IDENTIFIER
# An actual model hosted on huggingface.co
lowerCAmelCase_ = '''main'''
# Default branch name
lowerCAmelCase_ = '''f2c752cfc5c0ab6f4bdec59acea69eefbee381c2'''
# One particular commit (not the top of `main`)
lowerCAmelCase_ = '''aaaaaaa'''
# This commit does not exist, so we should 404.
lowerCAmelCase_ = '''d9e9f15bc825e4b2c9249e9578f884bbcb5e3684'''
# Sha-1 of config.json on the top of `main`, for checking purposes
lowerCAmelCase_ = '''4b243c475af8d0a7754e87d7d096c92e5199ec2fe168a2ee7998e3b8e9bcb1d3'''
@contextlib.contextmanager
def lowerCamelCase_ ( ) -> Any:
"""simple docstring"""
print('''Welcome!''' )
yield
print('''Bye!''' )
@contextlib.contextmanager
def lowerCamelCase_ ( ) -> Any:
"""simple docstring"""
print('''Bonjour!''' )
yield
print('''Au revoir!''' )
class __lowerCAmelCase ( unittest.TestCase ):
def lowerCamelCase (self ) -> Tuple:
'''simple docstring'''
assert transformers.__spec__ is not None
assert importlib.util.find_spec('''transformers''' ) is not None
class __lowerCAmelCase ( unittest.TestCase ):
@unittest.mock.patch('''sys.stdout''' , new_callable=io.StringIO )
def lowerCamelCase (self , __magic_name__ ) -> Any:
'''simple docstring'''
with ContextManagers([] ):
print('''Transformers are awesome!''' )
# The print statement adds a new line at the end of the output
self.assertEqual(mock_stdout.getvalue() , '''Transformers are awesome!\n''' )
@unittest.mock.patch('''sys.stdout''' , new_callable=io.StringIO )
def lowerCamelCase (self , __magic_name__ ) -> List[str]:
'''simple docstring'''
with ContextManagers([context_en()] ):
print('''Transformers are awesome!''' )
# The output should be wrapped with an English welcome and goodbye
self.assertEqual(mock_stdout.getvalue() , '''Welcome!\nTransformers are awesome!\nBye!\n''' )
@unittest.mock.patch('''sys.stdout''' , new_callable=io.StringIO )
def lowerCamelCase (self , __magic_name__ ) -> Tuple:
'''simple docstring'''
with ContextManagers([context_fr(), context_en()] ):
print('''Transformers are awesome!''' )
# The output should be wrapped with an English and French welcome and goodbye
self.assertEqual(mock_stdout.getvalue() , '''Bonjour!\nWelcome!\nTransformers are awesome!\nBye!\nAu revoir!\n''' )
@require_torch
def lowerCamelCase (self ) -> Union[str, Any]:
'''simple docstring'''
self.assertEqual(find_labels(__magic_name__ ) , ['''labels'''] )
self.assertEqual(find_labels(__magic_name__ ) , ['''labels''', '''next_sentence_label'''] )
self.assertEqual(find_labels(__magic_name__ ) , ['''start_positions''', '''end_positions'''] )
class __lowerCAmelCase ( _a ):
pass
self.assertEqual(find_labels(__magic_name__ ) , ['''labels'''] )
@require_tf
def lowerCamelCase (self ) -> str:
'''simple docstring'''
self.assertEqual(find_labels(__magic_name__ ) , ['''labels'''] )
self.assertEqual(find_labels(__magic_name__ ) , ['''labels''', '''next_sentence_label'''] )
self.assertEqual(find_labels(__magic_name__ ) , ['''start_positions''', '''end_positions'''] )
class __lowerCAmelCase ( _a ):
pass
self.assertEqual(find_labels(__magic_name__ ) , ['''labels'''] )
@require_flax
def lowerCamelCase (self ) -> str:
'''simple docstring'''
self.assertEqual(find_labels(__magic_name__ ) , [] )
self.assertEqual(find_labels(__magic_name__ ) , [] )
self.assertEqual(find_labels(__magic_name__ ) , [] )
class __lowerCAmelCase ( _a ):
pass
self.assertEqual(find_labels(__magic_name__ ) , [] )
| 60 |
from __future__ import annotations
from collections.abc import Iterator
class lowerCamelCase_ :
'''simple docstring'''
def __init__( self : Union[str, Any] , _lowerCAmelCase : int ):
SCREAMING_SNAKE_CASE_ = value
SCREAMING_SNAKE_CASE_ = None
SCREAMING_SNAKE_CASE_ = None
class lowerCamelCase_ :
'''simple docstring'''
def __init__( self : int , _lowerCAmelCase : Node ):
SCREAMING_SNAKE_CASE_ = tree
def lowerCAmelCase_ ( self : Union[str, Any] , _lowerCAmelCase : Node | None ):
if node is None:
return 0
return node.value + (
self.depth_first_search(node.left ) + self.depth_first_search(node.right )
)
def __iter__( self : Dict ):
yield self.depth_first_search(self.tree )
if __name__ == "__main__":
import doctest
doctest.testmod() | 31 | 0 |
import argparse
import json
import os
import torch
from torch import nn
from transformers import NllbMoeConfig, NllbMoeModel
from transformers.modeling_utils import dtype_byte_size
from transformers.utils import WEIGHTS_INDEX_NAME, WEIGHTS_NAME
def _A ( lowerCAmelCase_ : Any ):
"""simple docstring"""
lowerCAmelCase__ = [
"encoder.version",
"decoder.version",
"model.encoder.version",
"model.decoder.version",
"decoder.output_projection.weight",
"_float_tensor",
"encoder.embed_positions._float_tensor",
"decoder.embed_positions._float_tensor",
]
for k in ignore_keys:
state_dict.pop(lowerCAmelCase_ , lowerCAmelCase_ )
def _A ( lowerCAmelCase_ : str ):
"""simple docstring"""
lowerCAmelCase__ , lowerCAmelCase__ = emb.weight.shape
lowerCAmelCase__ = nn.Linear(lowerCAmelCase_ , lowerCAmelCase_ , bias=lowerCAmelCase_ )
lowerCAmelCase__ = emb.weight.data
return lin_layer
def _A ( lowerCAmelCase_ : Optional[Any] , lowerCAmelCase_ : Dict=None ):
"""simple docstring"""
lowerCAmelCase__ = {}
for old_key in state_dict.keys():
lowerCAmelCase__ = old_key
if "moe_layer.experts." in key:
if expert_idx is not None:
lowerCAmelCase__ = key.replace("moe_layer.experts.0" , F'ffn.experts.expert_{expert_idx}' )
else:
lowerCAmelCase__ = key.replace("moe_layer.experts." , "ffn.experts.expert_" )
if "gate" in key:
lowerCAmelCase__ = key.replace(".moe_layer.gate.wg" , ".ffn.router.classifier" )
if "fc2" and "experts" not in key:
lowerCAmelCase__ = key.replace(".fc2." , ".ffn.fc2." )
if "fc1" and "experts" not in key:
lowerCAmelCase__ = key.replace(".fc1." , ".ffn.fc1." )
if ".encoder_attn." in key:
lowerCAmelCase__ = key.replace(".encoder_attn." , ".cross_attention." )
if "encoder_attn_layer_norm" in key:
lowerCAmelCase__ = key.replace("encoder_attn_layer_norm" , "cross_attention_layer_norm" )
if "final_layer_norm" in key:
lowerCAmelCase__ = key.replace("final_layer_norm" , "ff_layer_norm" )
lowerCAmelCase__ = state_dict[old_key]
return new_dict
def _A ( lowerCAmelCase_ : int , lowerCAmelCase_ : Optional[Any] , lowerCAmelCase_ : Tuple , lowerCAmelCase_ : List[str] , lowerCAmelCase_ : str = WEIGHTS_NAME ):
"""simple docstring"""
lowerCAmelCase__ = []
lowerCAmelCase__ = 0
os.makedirs(lowerCAmelCase_ , exist_ok=lowerCAmelCase_ )
for expert in range(lowerCAmelCase_ ):
lowerCAmelCase__ = switch_checkpoint_path + F'-rank-{expert}.pt'
if os.path.isfile(lowerCAmelCase_ ):
lowerCAmelCase__ = torch.load(lowerCAmelCase_ )["model"]
remove_ignore_keys_(lowerCAmelCase_ )
lowerCAmelCase__ = rename_fairseq_keys(lowerCAmelCase_ , lowerCAmelCase_ )
lowerCAmelCase__ = os.path.join(
lowerCAmelCase_ , weights_name.replace(".bin" , F'-{len(lowerCAmelCase_ )+1:05d}-of-???.bin' ) )
torch.save(lowerCAmelCase_ , lowerCAmelCase_ )
sharded_state_dicts.append(expert_state.keys() )
total_size += sum([value.numel() for key, value in expert_state.items()] ) * dtype_byte_size(
expert_state[list(lowerCAmelCase_ )[0]].dtype )
# Add the last block
lowerCAmelCase__ = os.path.join(lowerCAmelCase_ , weights_name.replace(".bin" , F'-{len(lowerCAmelCase_ )+1:05d}-of-???.bin' ) )
lowerCAmelCase__ = torch.load(switch_checkpoint_path + "-shared.pt" )["model"]
remove_ignore_keys_(lowerCAmelCase_ )
lowerCAmelCase__ = rename_fairseq_keys(lowerCAmelCase_ , lowerCAmelCase_ )
lowerCAmelCase__ = shared_weights["decoder.embed_tokens.weight"]
sharded_state_dicts.append(shared_weights.keys() )
# If we only have the shared weights (dummy model/experts saved on the same file)
if len(lowerCAmelCase_ ) == 1:
lowerCAmelCase__ = os.path.join(lowerCAmelCase_ , lowerCAmelCase_ )
torch.save(lowerCAmelCase_ , lowerCAmelCase_ )
return {weights_name: sharded_state_dicts[0]}, None
else:
torch.save(lowerCAmelCase_ , lowerCAmelCase_ )
# Otherwise, let's build the index
lowerCAmelCase__ = {}
for idx, shard in enumerate(lowerCAmelCase_ ):
lowerCAmelCase__ = weights_name.replace(".bin" , F'-{idx+1:05d}-of-{len(lowerCAmelCase_ ):05d}.bin' )
lowerCAmelCase__ = os.path.join(lowerCAmelCase_ , weights_name.replace(".bin" , F'-{idx+1:05d}-of-???.bin' ) )
os.rename(lowerCAmelCase_ , os.path.join(lowerCAmelCase_ , lowerCAmelCase_ ) )
for key in shard:
lowerCAmelCase__ = shard_file
# Add the metadata
lowerCAmelCase__ = {"total_size": total_size}
lowerCAmelCase__ = {"metadata": metadata, "weight_map": weight_map}
with open(os.path.join(lowerCAmelCase_ , lowerCAmelCase_ ) , "w" , encoding="utf-8" ) as f:
lowerCAmelCase__ = json.dumps(lowerCAmelCase_ , indent=2 , sort_keys=lowerCAmelCase_ ) + "\n"
f.write(lowerCAmelCase_ )
return metadata, index
if __name__ == "__main__":
UpperCamelCase = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
'--nllb_moe_checkpoint_path',
default='/home/arthur_huggingface_co/fairseq/weights/checkpoints/model_moe_54b/checkpoint_2_300000',
type=str,
required=False,
help='Path to a directory containing a folder per layer. Follows the original Google format.',
)
parser.add_argument('--dtype', default='float32', type=str, required=False, help='dtype of the saved model')
parser.add_argument(
'--pytorch_dump_folder_path',
default='/home/arthur_huggingface_co/fairseq/weights/checkpoints/hf-converted-moe-54b',
type=str,
required=False,
help='Path to the output pytorch model.',
)
UpperCamelCase = parser.parse_args()
UpperCamelCase , UpperCamelCase = shard_on_the_fly(
args.nllb_moe_checkpoint_path,
args.pytorch_dump_folder_path,
128,
args.dtype,
)
UpperCamelCase = NllbMoeConfig.from_pretrained(
'facebook/nllb-200-3.3B', encoder_sparse_step=4, decoder_sparse_step=4, num_experts=128
)
config.save_pretrained(args.pytorch_dump_folder_path)
UpperCamelCase = NllbMoeModel.from_pretrained(args.pytorch_dump_folder_path)
print('Done')
model.save_pretrained(args.pytorch_dump_folder_path)
| 61 |
def UpperCAmelCase_ ( __UpperCAmelCase : list , __UpperCAmelCase : int , __UpperCAmelCase : int = 0 , __UpperCAmelCase : int = 0 ) -> int:
SCREAMING_SNAKE_CASE_ = right or len(__UpperCAmelCase ) - 1
if left > right:
return -1
elif list_data[left] == key:
return left
elif list_data[right] == key:
return right
else:
return search(__UpperCAmelCase , __UpperCAmelCase , left + 1 , right - 1 )
if __name__ == "__main__":
import doctest
doctest.testmod() | 31 | 0 |
import os
def lowerCamelCase__ ( lowercase = "input.txt" ):
"""simple docstring"""
with open(os.path.join(os.path.dirname(lowercase ) , lowercase ) ) as input_file:
SCREAMING_SNAKE_CASE : List[str] = [
[int(lowercase ) for element in line.split("," )]
for line in input_file.readlines()
]
SCREAMING_SNAKE_CASE : Optional[Any] = len(lowercase )
SCREAMING_SNAKE_CASE : Dict = len(matrix[0] )
SCREAMING_SNAKE_CASE : Dict = [[-1 for _ in range(lowercase )] for _ in range(lowercase )]
for i in range(lowercase ):
SCREAMING_SNAKE_CASE : List[Any] = matrix[i][0]
for j in range(1 , lowercase ):
for i in range(lowercase ):
SCREAMING_SNAKE_CASE : List[str] = minimal_path_sums[i][j - 1] + matrix[i][j]
for i in range(1 , lowercase ):
SCREAMING_SNAKE_CASE : Optional[int] = min(
minimal_path_sums[i][j] , minimal_path_sums[i - 1][j] + matrix[i][j] )
for i in range(rows - 2 , -1 , -1 ):
SCREAMING_SNAKE_CASE : List[str] = min(
minimal_path_sums[i][j] , minimal_path_sums[i + 1][j] + matrix[i][j] )
return min(minimal_path_sums_row[-1] for minimal_path_sums_row in minimal_path_sums )
if __name__ == "__main__":
print(F"""{solution() = }""")
| 62 |
import os
from shutil import copyfile
from typing import List, Optional, Tuple
from ...tokenization_utils import AddedToken
from ...tokenization_utils_fast import PreTrainedTokenizerFast
from ...utils import is_sentencepiece_available, logging
if is_sentencepiece_available():
from .tokenization_fnet import FNetTokenizer
else:
lowerCamelCase__ : Optional[Any] = None
lowerCamelCase__ : List[str] = logging.get_logger(__name__)
lowerCamelCase__ : List[str] = {'vocab_file': 'spiece.model', 'tokenizer_file': 'tokenizer.json'}
lowerCamelCase__ : List[str] = {
'vocab_file': {
'google/fnet-base': 'https://huggingface.co/google/fnet-base/resolve/main/spiece.model',
'google/fnet-large': 'https://huggingface.co/google/fnet-large/resolve/main/spiece.model',
},
'tokenizer_file': {
'google/fnet-base': 'https://huggingface.co/google/fnet-base/resolve/main/tokenizer.json',
'google/fnet-large': 'https://huggingface.co/google/fnet-large/resolve/main/tokenizer.json',
},
}
lowerCamelCase__ : Optional[Any] = {
'google/fnet-base': 512,
'google/fnet-large': 512,
}
lowerCamelCase__ : List[Any] = '▁'
class lowerCamelCase_ ( _SCREAMING_SNAKE_CASE ):
'''simple docstring'''
lowercase_ = VOCAB_FILES_NAMES
lowercase_ = PRETRAINED_VOCAB_FILES_MAP
lowercase_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
lowercase_ = ["input_ids", "token_type_ids"]
lowercase_ = FNetTokenizer
def __init__( self : List[Any] , _lowerCAmelCase : Dict=None , _lowerCAmelCase : Dict=None , _lowerCAmelCase : List[str]=False , _lowerCAmelCase : Optional[Any]=True , _lowerCAmelCase : Tuple=True , _lowerCAmelCase : List[Any]="<unk>" , _lowerCAmelCase : Optional[Any]="[SEP]" , _lowerCAmelCase : Optional[Any]="<pad>" , _lowerCAmelCase : Optional[int]="[CLS]" , _lowerCAmelCase : Optional[Any]="[MASK]" , **_lowerCAmelCase : Any , ):
# Mask token behave like a normal word, i.e. include the space before it and
# is included in the raw text, there should be a match in a non-normalized sentence.
SCREAMING_SNAKE_CASE_ = (
AddedToken(_lowerCAmelCase , lstrip=_lowerCAmelCase , rstrip=_lowerCAmelCase , normalized=_lowerCAmelCase )
if isinstance(_lowerCAmelCase , _lowerCAmelCase )
else mask_token
)
super().__init__(
_lowerCAmelCase , tokenizer_file=_lowerCAmelCase , do_lower_case=_lowerCAmelCase , remove_space=_lowerCAmelCase , keep_accents=_lowerCAmelCase , unk_token=_lowerCAmelCase , sep_token=_lowerCAmelCase , pad_token=_lowerCAmelCase , cls_token=_lowerCAmelCase , mask_token=_lowerCAmelCase , **_lowerCAmelCase , )
SCREAMING_SNAKE_CASE_ = do_lower_case
SCREAMING_SNAKE_CASE_ = remove_space
SCREAMING_SNAKE_CASE_ = keep_accents
SCREAMING_SNAKE_CASE_ = vocab_file
SCREAMING_SNAKE_CASE_ = False if not self.vocab_file else True
def lowerCAmelCase_ ( self : Any , _lowerCAmelCase : List[int] , _lowerCAmelCase : Optional[List[int]] = None ):
SCREAMING_SNAKE_CASE_ = [self.sep_token_id]
SCREAMING_SNAKE_CASE_ = [self.cls_token_id]
if token_ids_a is None:
return cls + token_ids_a + sep
return cls + token_ids_a + sep + token_ids_a + sep
def lowerCAmelCase_ ( self : Optional[int] , _lowerCAmelCase : List[int] , _lowerCAmelCase : Optional[List[int]] = None ):
SCREAMING_SNAKE_CASE_ = [self.sep_token_id]
SCREAMING_SNAKE_CASE_ = [self.cls_token_id]
if token_ids_a is None:
return len(cls + token_ids_a + sep ) * [0]
return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1]
def lowerCAmelCase_ ( self : Optional[Any] , _lowerCAmelCase : str , _lowerCAmelCase : Optional[str] = None ):
if not os.path.isdir(_lowerCAmelCase ):
logger.error(F"Vocabulary path ({save_directory}) should be a directory" )
return
SCREAMING_SNAKE_CASE_ = os.path.join(
_lowerCAmelCase , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] )
if os.path.abspath(self.vocab_file ) != os.path.abspath(_lowerCAmelCase ):
copyfile(self.vocab_file , _lowerCAmelCase )
return (out_vocab_file,) | 31 | 0 |
a : Optional[int] = 9.8_06_65
def lowerCamelCase__ ( __lowerCamelCase : float , __lowerCamelCase : float , __lowerCamelCase : float = g ):
if fluid_density <= 0:
raise ValueError("""Impossible fluid density""" )
if volume < 0:
raise ValueError("""Impossible Object volume""" )
if gravity <= 0:
raise ValueError("""Impossible Gravity""" )
return fluid_density * gravity * volume
if __name__ == "__main__":
import doctest
# run doctest
doctest.testmod()
| 63 |
from __future__ import annotations
from collections.abc import Generator
def UpperCAmelCase_ ( ) -> Generator[int, None, None]:
SCREAMING_SNAKE_CASE_ = {}
SCREAMING_SNAKE_CASE_ = 2
while True:
SCREAMING_SNAKE_CASE_ = factor_map.pop(__UpperCAmelCase , __UpperCAmelCase )
if factor:
SCREAMING_SNAKE_CASE_ = factor + prime
while x in factor_map:
x += factor
SCREAMING_SNAKE_CASE_ = factor
else:
SCREAMING_SNAKE_CASE_ = prime
yield prime
prime += 1
def UpperCAmelCase_ ( __UpperCAmelCase : float = 1E10 ) -> int:
SCREAMING_SNAKE_CASE_ = sieve()
SCREAMING_SNAKE_CASE_ = 1
while True:
SCREAMING_SNAKE_CASE_ = next(__UpperCAmelCase )
if (2 * prime * n) > limit:
return n
# Ignore the next prime as the reminder will be 2.
next(__UpperCAmelCase )
n += 2
if __name__ == "__main__":
print(solution()) | 31 | 0 |
from .imports import is_rich_available
if is_rich_available():
from rich.traceback import install
install(show_locals=False)
else:
raise ModuleNotFoundError('To use the rich extension, install rich with `pip install rich`')
| 64 |
import numpy as np
import torch
from torch.utils.data import DataLoader
from accelerate.utils.dataclasses import DistributedType
class lowerCamelCase_ :
'''simple docstring'''
def __init__( self : Any , _lowerCAmelCase : Optional[int]=2 , _lowerCAmelCase : Any=3 , _lowerCAmelCase : Tuple=64 , _lowerCAmelCase : List[str]=None ):
SCREAMING_SNAKE_CASE_ = np.random.default_rng(_lowerCAmelCase )
SCREAMING_SNAKE_CASE_ = length
SCREAMING_SNAKE_CASE_ = rng.normal(size=(length,) ).astype(np.floataa )
SCREAMING_SNAKE_CASE_ = a * self.x + b + rng.normal(scale=0.1 , size=(length,) ).astype(np.floataa )
def __len__( self : Optional[int] ):
return self.length
def __getitem__( self : str , _lowerCAmelCase : Union[str, Any] ):
return {"x": self.x[i], "y": self.y[i]}
class lowerCamelCase_ ( torch.nn.Module ):
'''simple docstring'''
def __init__( self : Tuple , _lowerCAmelCase : Dict=0 , _lowerCAmelCase : List[str]=0 , _lowerCAmelCase : str=False ):
super().__init__()
SCREAMING_SNAKE_CASE_ = torch.nn.Parameter(torch.tensor([2, 3] ).float() )
SCREAMING_SNAKE_CASE_ = torch.nn.Parameter(torch.tensor([2, 3] ).float() )
SCREAMING_SNAKE_CASE_ = True
def lowerCAmelCase_ ( self : Dict , _lowerCAmelCase : Union[str, Any]=None ):
if self.first_batch:
print(F"Model dtype: {self.a.dtype}, {self.b.dtype}. Input dtype: {x.dtype}" )
SCREAMING_SNAKE_CASE_ = False
return x * self.a[0] + self.b[0]
class lowerCamelCase_ ( torch.nn.Module ):
'''simple docstring'''
def __init__( self : Optional[int] , _lowerCAmelCase : Any=0 , _lowerCAmelCase : Any=0 , _lowerCAmelCase : Optional[Any]=False ):
super().__init__()
SCREAMING_SNAKE_CASE_ = torch.nn.Parameter(torch.tensor(_lowerCAmelCase ).float() )
SCREAMING_SNAKE_CASE_ = torch.nn.Parameter(torch.tensor(_lowerCAmelCase ).float() )
SCREAMING_SNAKE_CASE_ = True
def lowerCAmelCase_ ( self : Optional[Any] , _lowerCAmelCase : Optional[int]=None ):
if self.first_batch:
print(F"Model dtype: {self.a.dtype}, {self.b.dtype}. Input dtype: {x.dtype}" )
SCREAMING_SNAKE_CASE_ = False
return x * self.a + self.b
def UpperCAmelCase_ ( __UpperCAmelCase : Dict , __UpperCAmelCase : int = 16 ) -> Union[str, Any]:
from datasets import load_dataset
from transformers import AutoTokenizer
SCREAMING_SNAKE_CASE_ = AutoTokenizer.from_pretrained('bert-base-cased' )
SCREAMING_SNAKE_CASE_ = {'train': 'tests/test_samples/MRPC/train.csv', 'validation': 'tests/test_samples/MRPC/dev.csv'}
SCREAMING_SNAKE_CASE_ = load_dataset('csv' , data_files=__UpperCAmelCase )
SCREAMING_SNAKE_CASE_ = datasets['train'].unique('label' )
SCREAMING_SNAKE_CASE_ = {v: i for i, v in enumerate(__UpperCAmelCase )}
def tokenize_function(__UpperCAmelCase : Optional[int] ):
# max_length=None => use the model max length (it's actually the default)
SCREAMING_SNAKE_CASE_ = tokenizer(
examples['sentence1'] , examples['sentence2'] , truncation=__UpperCAmelCase , max_length=__UpperCAmelCase , padding='max_length' )
if "label" in examples:
SCREAMING_SNAKE_CASE_ = [label_to_id[l] for l in examples['label']]
return outputs
# Apply the method we just defined to all the examples in all the splits of the dataset
SCREAMING_SNAKE_CASE_ = datasets.map(
__UpperCAmelCase , batched=__UpperCAmelCase , remove_columns=['sentence1', 'sentence2', 'label'] , )
def collate_fn(__UpperCAmelCase : Dict ):
# On TPU it's best to pad everything to the same length or training will be very slow.
if accelerator.distributed_type == DistributedType.TPU:
return tokenizer.pad(__UpperCAmelCase , padding='max_length' , max_length=1_28 , return_tensors='pt' )
return tokenizer.pad(__UpperCAmelCase , padding='longest' , return_tensors='pt' )
# Instantiate dataloaders.
SCREAMING_SNAKE_CASE_ = DataLoader(tokenized_datasets['train'] , shuffle=__UpperCAmelCase , collate_fn=__UpperCAmelCase , batch_size=2 )
SCREAMING_SNAKE_CASE_ = DataLoader(tokenized_datasets['validation'] , shuffle=__UpperCAmelCase , collate_fn=__UpperCAmelCase , batch_size=1 )
return train_dataloader, eval_dataloader | 31 | 0 |
"""simple docstring"""
from typing import Tuple, Union
from ...modeling_outputs import BackboneOutput
from ...modeling_utils import PreTrainedModel
from ...utils import is_timm_available, is_torch_available, requires_backends
from ...utils.backbone_utils import BackboneMixin
from .configuration_timm_backbone import TimmBackboneConfig
if is_timm_available():
import timm
if is_torch_available():
from torch import Tensor
class __lowercase ( __lowerCamelCase , __lowerCamelCase ):
snake_case_ = """pixel_values"""
snake_case_ = False
snake_case_ = TimmBackboneConfig
def __init__( self : Union[str, Any] ,A : Optional[int] ,**A : Union[str, Any] ):
'''simple docstring'''
requires_backends(self ,"""timm""" )
super().__init__(A )
UpperCAmelCase__ : List[Any] = config
if config.backbone is None:
raise ValueError("""backbone is not set in the config. Please set it to a timm model name.""" )
if config.backbone not in timm.list_models():
raise ValueError(f"backbone {config.backbone} is not supported by timm." )
if hasattr(A ,"""out_features""" ) and config.out_features is not None:
raise ValueError("""out_features is not supported by TimmBackbone. Please use out_indices instead.""" )
UpperCAmelCase__ : List[Any] = getattr(A ,"""use_pretrained_backbone""" ,A )
if pretrained is None:
raise ValueError("""use_pretrained_backbone is not set in the config. Please set it to True or False.""" )
# We just take the final layer by default. This matches the default for the transformers models.
UpperCAmelCase__ : List[str] = config.out_indices if getattr(A ,"""out_indices""" ,A ) is not None else (-1,)
UpperCAmelCase__ : Dict = timm.create_model(
config.backbone ,pretrained=A ,features_only=config.features_only ,in_chans=config.num_channels ,out_indices=A ,**A ,)
# These are used to control the output of the model when called. If output_hidden_states is True, then
# return_layers is modified to include all layers.
UpperCAmelCase__ : Union[str, Any] = self._backbone.return_layers
UpperCAmelCase__ : int = {layer["""module"""]: str(A ) for i, layer in enumerate(self._backbone.feature_info.info )}
super()._init_backbone(A )
@classmethod
def __lowercase ( cls : int ,A : Optional[Any] ,*A : int ,**A : Optional[Any] ):
'''simple docstring'''
requires_backends(cls ,["""vision""", """timm"""] )
from ...models.timm_backbone import TimmBackboneConfig
UpperCAmelCase__ : str = kwargs.pop("""config""" ,TimmBackboneConfig() )
UpperCAmelCase__ : Optional[Any] = kwargs.pop("""use_timm_backbone""" ,A )
if not use_timm:
raise ValueError("""use_timm_backbone must be True for timm backbones""" )
UpperCAmelCase__ : Union[str, Any] = kwargs.pop("""num_channels""" ,config.num_channels )
UpperCAmelCase__ : Tuple = kwargs.pop("""features_only""" ,config.features_only )
UpperCAmelCase__ : List[str] = kwargs.pop("""use_pretrained_backbone""" ,config.use_pretrained_backbone )
UpperCAmelCase__ : Union[str, Any] = kwargs.pop("""out_indices""" ,config.out_indices )
UpperCAmelCase__ : Any = TimmBackboneConfig(
backbone=A ,num_channels=A ,features_only=A ,use_pretrained_backbone=A ,out_indices=A ,)
return super()._from_config(A ,**A )
def __lowercase ( self : Optional[int] ,A : Optional[Any] ):
'''simple docstring'''
pass
def __lowercase ( self : Optional[Any] ,A : Optional[Any] ,A : Optional[Any]=None ,A : Any=None ,A : int=None ,**A : int ):
'''simple docstring'''
UpperCAmelCase__ : str = return_dict if return_dict is not None else self.config.use_return_dict
UpperCAmelCase__ : str = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
UpperCAmelCase__ : Tuple = output_attentions if output_attentions is not None else self.config.output_attentions
if output_attentions:
raise ValueError("""Cannot output attentions for timm backbones at the moment""" )
if output_hidden_states:
# We modify the return layers to include all the stages of the backbone
UpperCAmelCase__ : Tuple = self._all_layers
UpperCAmelCase__ : Tuple = self._backbone(A ,**A )
UpperCAmelCase__ : Tuple = self._return_layers
UpperCAmelCase__ : Union[str, Any] = tuple(hidden_states[i] for i in self.out_indices )
else:
UpperCAmelCase__ : List[str] = self._backbone(A ,**A )
UpperCAmelCase__ : Any = None
UpperCAmelCase__ : List[Any] = tuple(A )
UpperCAmelCase__ : Dict = tuple(A ) if hidden_states is not None else None
if not return_dict:
UpperCAmelCase__ : str = (feature_maps,)
if output_hidden_states:
UpperCAmelCase__ : Optional[Any] = output + (hidden_states,)
return output
return BackboneOutput(feature_maps=A ,hidden_states=A ,attentions=A )
| 65 |
import warnings
from ...utils import logging
from .image_processing_layoutlmva import LayoutLMvaImageProcessor
lowerCamelCase__ : Union[str, Any] = logging.get_logger(__name__)
class lowerCamelCase_ ( _SCREAMING_SNAKE_CASE ):
'''simple docstring'''
def __init__( self : Dict , *_lowerCAmelCase : Optional[Any] , **_lowerCAmelCase : Any ):
warnings.warn(
'The class LayoutLMv2FeatureExtractor is deprecated and will be removed in version 5 of Transformers.'
' Please use LayoutLMv2ImageProcessor instead.' , _lowerCAmelCase , )
super().__init__(*_lowerCAmelCase , **_lowerCAmelCase ) | 31 | 0 |
import gc
import random
import unittest
import numpy as np
import torch
from PIL import Image
from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer
from diffusers import (
AutoencoderKL,
DDIMScheduler,
EulerAncestralDiscreteScheduler,
LMSDiscreteScheduler,
PNDMScheduler,
StableDiffusionInstructPixaPixPipeline,
UNetaDConditionModel,
)
from diffusers.image_processor import VaeImageProcessor
from diffusers.utils import floats_tensor, load_image, slow, torch_device
from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu
from ..pipeline_params import (
IMAGE_TO_IMAGE_IMAGE_PARAMS,
TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS,
TEXT_GUIDED_IMAGE_VARIATION_PARAMS,
)
from ..test_pipelines_common import PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin
enable_full_determinism()
class lowerCAmelCase_ ( __snake_case , __snake_case , __snake_case , unittest.TestCase ):
_UpperCamelCase : Dict = StableDiffusionInstructPixaPixPipeline
_UpperCamelCase : Optional[int] = TEXT_GUIDED_IMAGE_VARIATION_PARAMS - {"height", "width", "cross_attention_kwargs"}
_UpperCamelCase : Dict = TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS
_UpperCamelCase : List[Any] = IMAGE_TO_IMAGE_IMAGE_PARAMS
_UpperCamelCase : Optional[Any] = IMAGE_TO_IMAGE_IMAGE_PARAMS
def __a ( self ):
torch.manual_seed(0 )
_lowercase : Optional[Any] = UNetaDConditionModel(
block_out_channels=(3_2, 6_4) , layers_per_block=2 , sample_size=3_2 , in_channels=8 , out_channels=4 , down_block_types=('DownBlock2D', 'CrossAttnDownBlock2D') , up_block_types=('CrossAttnUpBlock2D', 'UpBlock2D') , cross_attention_dim=3_2 , )
_lowercase : Optional[int] = PNDMScheduler(skip_prk_steps=_lowerCAmelCase )
torch.manual_seed(0 )
_lowercase : List[Any] = AutoencoderKL(
block_out_channels=[3_2, 6_4] , in_channels=3 , out_channels=3 , down_block_types=['DownEncoderBlock2D', 'DownEncoderBlock2D'] , up_block_types=['UpDecoderBlock2D', 'UpDecoderBlock2D'] , latent_channels=4 , )
torch.manual_seed(0 )
_lowercase : int = CLIPTextConfig(
bos_token_id=0 , eos_token_id=2 , hidden_size=3_2 , intermediate_size=3_7 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_0_0_0 , )
_lowercase : Any = CLIPTextModel(_lowerCAmelCase )
_lowercase : Tuple = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip' )
_lowercase : List[str] = {
'unet': unet,
'scheduler': scheduler,
'vae': vae,
'text_encoder': text_encoder,
'tokenizer': tokenizer,
'safety_checker': None,
'feature_extractor': None,
}
return components
def __a ( self , _lowerCAmelCase , _lowerCAmelCase=0 ):
_lowercase : Tuple = floats_tensor((1, 3, 3_2, 3_2) , rng=random.Random(_lowerCAmelCase ) ).to(_lowerCAmelCase )
_lowercase : Optional[int] = image.cpu().permute(0 , 2 , 3 , 1 )[0]
_lowercase : Dict = Image.fromarray(np.uinta(_lowerCAmelCase ) ).convert('RGB' )
if str(_lowerCAmelCase ).startswith('mps' ):
_lowercase : List[Any] = torch.manual_seed(_lowerCAmelCase )
else:
_lowercase : int = torch.Generator(device=_lowerCAmelCase ).manual_seed(_lowerCAmelCase )
_lowercase : Any = {
'prompt': 'A painting of a squirrel eating a burger',
'image': image,
'generator': generator,
'num_inference_steps': 2,
'guidance_scale': 6.0,
'image_guidance_scale': 1,
'output_type': 'numpy',
}
return inputs
def __a ( self ):
_lowercase : str = 'cpu' # ensure determinism for the device-dependent torch.Generator
_lowercase : List[Any] = self.get_dummy_components()
_lowercase : Optional[int] = StableDiffusionInstructPixaPixPipeline(**_lowerCAmelCase )
_lowercase : List[str] = sd_pipe.to(_lowerCAmelCase )
sd_pipe.set_progress_bar_config(disable=_lowerCAmelCase )
_lowercase : List[Any] = self.get_dummy_inputs(_lowerCAmelCase )
_lowercase : Any = sd_pipe(**_lowerCAmelCase ).images
_lowercase : Dict = image[0, -3:, -3:, -1]
assert image.shape == (1, 3_2, 3_2, 3)
_lowercase : List[str] = np.array([0.75_26, 0.37_50, 0.45_47, 0.61_17, 0.58_66, 0.50_16, 0.43_27, 0.56_42, 0.48_15] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-3
def __a ( self ):
_lowercase : Any = 'cpu' # ensure determinism for the device-dependent torch.Generator
_lowercase : int = self.get_dummy_components()
_lowercase : Union[str, Any] = StableDiffusionInstructPixaPixPipeline(**_lowerCAmelCase )
_lowercase : List[Any] = sd_pipe.to(_lowerCAmelCase )
sd_pipe.set_progress_bar_config(disable=_lowerCAmelCase )
_lowercase : Tuple = self.get_dummy_inputs(_lowerCAmelCase )
_lowercase : Optional[Any] = 'french fries'
_lowercase : Dict = sd_pipe(**_lowerCAmelCase , negative_prompt=_lowerCAmelCase )
_lowercase : Optional[Any] = output.images
_lowercase : Union[str, Any] = image[0, -3:, -3:, -1]
assert image.shape == (1, 3_2, 3_2, 3)
_lowercase : Any = np.array([0.75_11, 0.36_42, 0.45_53, 0.62_36, 0.57_97, 0.50_13, 0.43_43, 0.56_11, 0.48_31] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-3
def __a ( self ):
_lowercase : Union[str, Any] = 'cpu' # ensure determinism for the device-dependent torch.Generator
_lowercase : Dict = self.get_dummy_components()
_lowercase : int = StableDiffusionInstructPixaPixPipeline(**_lowerCAmelCase )
_lowercase : Any = sd_pipe.to(_lowerCAmelCase )
sd_pipe.set_progress_bar_config(disable=_lowerCAmelCase )
_lowercase : Any = self.get_dummy_inputs(_lowerCAmelCase )
_lowercase : Union[str, Any] = [inputs['prompt']] * 2
_lowercase : Union[str, Any] = np.array(inputs['image'] ).astype(np.floataa ) / 2_55.0
_lowercase : Tuple = torch.from_numpy(_lowerCAmelCase ).unsqueeze(0 ).to(_lowerCAmelCase )
_lowercase : Optional[int] = image / 2 + 0.5
_lowercase : List[Any] = image.permute(0 , 3 , 1 , 2 )
_lowercase : Optional[int] = image.repeat(2 , 1 , 1 , 1 )
_lowercase : Any = sd_pipe(**_lowerCAmelCase ).images
_lowercase : List[str] = image[-1, -3:, -3:, -1]
assert image.shape == (2, 3_2, 3_2, 3)
_lowercase : Optional[int] = np.array([0.58_12, 0.57_48, 0.52_22, 0.59_08, 0.56_95, 0.71_74, 0.68_04, 0.55_23, 0.55_79] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-3
def __a ( self ):
_lowercase : Optional[Any] = 'cpu' # ensure determinism for the device-dependent torch.Generator
_lowercase : Dict = self.get_dummy_components()
_lowercase : Any = EulerAncestralDiscreteScheduler(
beta_start=0.0_00_85 , beta_end=0.0_12 , beta_schedule='scaled_linear' )
_lowercase : Optional[Any] = StableDiffusionInstructPixaPixPipeline(**_lowerCAmelCase )
_lowercase : List[str] = sd_pipe.to(_lowerCAmelCase )
sd_pipe.set_progress_bar_config(disable=_lowerCAmelCase )
_lowercase : Dict = self.get_dummy_inputs(_lowerCAmelCase )
_lowercase : List[str] = sd_pipe(**_lowerCAmelCase ).images
_lowercase : List[Any] = image[0, -3:, -3:, -1]
_lowercase : Optional[int] = [round(_lowerCAmelCase , 4 ) for x in image_slice.flatten().tolist()]
print(','.join([str(_lowerCAmelCase ) for x in slice] ) )
assert image.shape == (1, 3_2, 3_2, 3)
_lowercase : str = np.array([0.74_17, 0.38_42, 0.47_32, 0.57_76, 0.58_91, 0.51_39, 0.40_52, 0.56_73, 0.49_86] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-3
def __a ( self ):
super().test_inference_batch_single_identical(expected_max_diff=3E-3 )
def __a ( self ):
_lowercase : Union[str, Any] = self.get_dummy_components()
_lowercase : Dict = StableDiffusionInstructPixaPixPipeline(**_lowerCAmelCase )
_lowercase : List[str] = VaeImageProcessor(do_resize=_lowerCAmelCase , do_normalize=_lowerCAmelCase )
_lowercase : Dict = pipe.to(_lowerCAmelCase )
pipe.set_progress_bar_config(disable=_lowerCAmelCase )
_lowercase : str = pipe(**self.get_dummy_inputs_by_type(_lowerCAmelCase , input_image_type='pt' ) )[0]
_lowercase : List[str] = components['vae']
_lowercase : Optional[Any] = self.get_dummy_inputs_by_type(_lowerCAmelCase , input_image_type='pt' )
for image_param in self.image_latents_params:
if image_param in inputs.keys():
_lowercase : Optional[int] = vae.encode(inputs[image_param] ).latent_dist.mode()
_lowercase : Optional[Any] = pipe(**_lowerCAmelCase )[0]
_lowercase : List[str] = np.abs(out - out_latents_inputs ).max()
self.assertLess(_lowerCAmelCase , 1E-4 , 'passing latents as image input generate different result from passing image' )
@slow
@require_torch_gpu
class lowerCAmelCase_ ( unittest.TestCase ):
def __a ( self ):
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def __a ( self , _lowerCAmelCase=0 ):
_lowercase : Tuple = torch.manual_seed(_lowerCAmelCase )
_lowercase : List[str] = load_image(
'https://huggingface.co/datasets/diffusers/test-arrays/resolve/main/stable_diffusion_pix2pix/example.jpg' )
_lowercase : Optional[int] = {
'prompt': 'turn him into a cyborg',
'image': image,
'generator': generator,
'num_inference_steps': 3,
'guidance_scale': 7.5,
'image_guidance_scale': 1.0,
'output_type': 'numpy',
}
return inputs
def __a ( self ):
_lowercase : Optional[Any] = StableDiffusionInstructPixaPixPipeline.from_pretrained(
'timbrooks/instruct-pix2pix' , safety_checker=_lowerCAmelCase )
pipe.to(_lowerCAmelCase )
pipe.set_progress_bar_config(disable=_lowerCAmelCase )
pipe.enable_attention_slicing()
_lowercase : Tuple = self.get_inputs()
_lowercase : Dict = pipe(**_lowerCAmelCase ).images
_lowercase : Any = image[0, -3:, -3:, -1].flatten()
assert image.shape == (1, 5_1_2, 5_1_2, 3)
_lowercase : Optional[Any] = np.array([0.59_02, 0.60_15, 0.60_27, 0.59_83, 0.60_92, 0.60_61, 0.57_65, 0.57_85, 0.55_55] )
assert np.abs(expected_slice - image_slice ).max() < 1E-3
def __a ( self ):
_lowercase : str = StableDiffusionInstructPixaPixPipeline.from_pretrained(
'timbrooks/instruct-pix2pix' , safety_checker=_lowerCAmelCase )
_lowercase : Dict = LMSDiscreteScheduler.from_config(pipe.scheduler.config )
pipe.to(_lowerCAmelCase )
pipe.set_progress_bar_config(disable=_lowerCAmelCase )
pipe.enable_attention_slicing()
_lowercase : Optional[int] = self.get_inputs()
_lowercase : Optional[int] = pipe(**_lowerCAmelCase ).images
_lowercase : Any = image[0, -3:, -3:, -1].flatten()
assert image.shape == (1, 5_1_2, 5_1_2, 3)
_lowercase : List[Any] = np.array([0.65_78, 0.68_17, 0.69_72, 0.67_61, 0.68_56, 0.69_16, 0.64_28, 0.65_16, 0.63_01] )
assert np.abs(expected_slice - image_slice ).max() < 1E-3
def __a ( self ):
_lowercase : Tuple = StableDiffusionInstructPixaPixPipeline.from_pretrained(
'timbrooks/instruct-pix2pix' , safety_checker=_lowerCAmelCase )
_lowercase : Optional[int] = DDIMScheduler.from_config(pipe.scheduler.config )
pipe.to(_lowerCAmelCase )
pipe.set_progress_bar_config(disable=_lowerCAmelCase )
pipe.enable_attention_slicing()
_lowercase : Tuple = self.get_inputs()
_lowercase : int = pipe(**_lowerCAmelCase ).images
_lowercase : Tuple = image[0, -3:, -3:, -1].flatten()
assert image.shape == (1, 5_1_2, 5_1_2, 3)
_lowercase : str = np.array([0.38_28, 0.38_34, 0.38_18, 0.37_92, 0.38_65, 0.37_52, 0.37_92, 0.38_47, 0.37_53] )
assert np.abs(expected_slice - image_slice ).max() < 1E-3
def __a ( self ):
_lowercase : Dict = 0
def callback_fn(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) -> None:
_lowercase : Any = True
nonlocal number_of_steps
number_of_steps += 1
if step == 1:
_lowercase : Optional[int] = latents.detach().cpu().numpy()
assert latents.shape == (1, 4, 6_4, 6_4)
_lowercase : Dict = latents[0, -3:, -3:, -1]
_lowercase : Any = np.array([-0.24_63, -0.46_44, -0.97_56, 1.51_76, 1.44_14, 0.78_66, 0.98_97, 0.85_21, 0.79_83] )
assert np.abs(latents_slice.flatten() - expected_slice ).max() < 5E-2
elif step == 2:
_lowercase : List[str] = latents.detach().cpu().numpy()
assert latents.shape == (1, 4, 6_4, 6_4)
_lowercase : List[Any] = latents[0, -3:, -3:, -1]
_lowercase : str = np.array([-0.26_44, -0.46_26, -0.96_53, 1.51_76, 1.45_51, 0.76_86, 0.98_05, 0.84_52, 0.81_15] )
assert np.abs(latents_slice.flatten() - expected_slice ).max() < 5E-2
_lowercase : Tuple = False
_lowercase : Union[str, Any] = StableDiffusionInstructPixaPixPipeline.from_pretrained(
'timbrooks/instruct-pix2pix' , safety_checker=_lowerCAmelCase , torch_dtype=torch.floataa )
_lowercase : str = pipe.to(_lowerCAmelCase )
pipe.set_progress_bar_config(disable=_lowerCAmelCase )
pipe.enable_attention_slicing()
_lowercase : Any = self.get_inputs()
pipe(**_lowerCAmelCase , callback=_lowerCAmelCase , callback_steps=1 )
assert callback_fn.has_been_called
assert number_of_steps == 3
def __a ( self ):
torch.cuda.empty_cache()
torch.cuda.reset_max_memory_allocated()
torch.cuda.reset_peak_memory_stats()
_lowercase : Dict = StableDiffusionInstructPixaPixPipeline.from_pretrained(
'timbrooks/instruct-pix2pix' , safety_checker=_lowerCAmelCase , torch_dtype=torch.floataa )
_lowercase : Dict = pipe.to(_lowerCAmelCase )
pipe.set_progress_bar_config(disable=_lowerCAmelCase )
pipe.enable_attention_slicing(1 )
pipe.enable_sequential_cpu_offload()
_lowercase : List[Any] = self.get_inputs()
_lowercase : List[Any] = pipe(**_lowerCAmelCase )
_lowercase : Optional[int] = torch.cuda.max_memory_allocated()
# make sure that less than 2.2 GB is allocated
assert mem_bytes < 2.2 * 1_0**9
def __a ( self ):
_lowercase : Union[str, Any] = self.get_inputs()
# resize to resolution that is divisible by 8 but not 16 or 32
_lowercase : Union[str, Any] = inputs['image'].resize((5_0_4, 5_0_4) )
_lowercase : List[str] = 'timbrooks/instruct-pix2pix'
_lowercase : Dict = StableDiffusionInstructPixaPixPipeline.from_pretrained(
_lowerCAmelCase , safety_checker=_lowerCAmelCase , )
pipe.to(_lowerCAmelCase )
pipe.set_progress_bar_config(disable=_lowerCAmelCase )
pipe.enable_attention_slicing()
_lowercase : Any = pipe(**_lowerCAmelCase )
_lowercase : List[str] = output.images[0]
_lowercase : List[Any] = image[2_5_5:2_5_8, 3_8_3:3_8_6, -1]
assert image.shape == (5_0_4, 5_0_4, 3)
_lowercase : Tuple = np.array([0.27_26, 0.25_29, 0.26_64, 0.26_55, 0.26_41, 0.26_42, 0.25_91, 0.26_49, 0.25_90] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 5E-3
| 66 |
def UpperCAmelCase_ ( ) -> list[list[int]]:
return [list(range(10_00 - i , -10_00 - i , -1 ) ) for i in range(10_00 )]
lowerCamelCase__ : List[Any] = generate_large_matrix()
lowerCamelCase__ : List[Any] = (
[[4, 3, 2, -1], [3, 2, 1, -1], [1, 1, -1, -2], [-1, -1, -2, -3]],
[[3, 2], [1, 0]],
[[7, 7, 6]],
[[7, 7, 6], [-1, -2, -3]],
grid,
)
def UpperCAmelCase_ ( __UpperCAmelCase : list[list[int]] ) -> None:
assert all(row == sorted(__UpperCAmelCase , reverse=__UpperCAmelCase ) for row in grid )
assert all(list(__UpperCAmelCase ) == sorted(__UpperCAmelCase , reverse=__UpperCAmelCase ) for col in zip(*__UpperCAmelCase ) )
def UpperCAmelCase_ ( __UpperCAmelCase : list[int] ) -> int:
SCREAMING_SNAKE_CASE_ = 0
SCREAMING_SNAKE_CASE_ = len(__UpperCAmelCase ) - 1
# Edge cases such as no values or all numbers are negative.
if not array or array[0] < 0:
return 0
while right + 1 > left:
SCREAMING_SNAKE_CASE_ = (left + right) // 2
SCREAMING_SNAKE_CASE_ = array[mid]
# Num must be negative and the index must be greater than or equal to 0.
if num < 0 and array[mid - 1] >= 0:
return mid
if num >= 0:
SCREAMING_SNAKE_CASE_ = mid + 1
else:
SCREAMING_SNAKE_CASE_ = mid - 1
# No negative numbers so return the last index of the array + 1 which is the length.
return len(__UpperCAmelCase )
def UpperCAmelCase_ ( __UpperCAmelCase : list[list[int]] ) -> int:
SCREAMING_SNAKE_CASE_ = 0
SCREAMING_SNAKE_CASE_ = len(grid[0] )
for i in range(len(__UpperCAmelCase ) ):
SCREAMING_SNAKE_CASE_ = find_negative_index(grid[i][:bound] )
total += bound
return (len(__UpperCAmelCase ) * len(grid[0] )) - total
def UpperCAmelCase_ ( __UpperCAmelCase : list[list[int]] ) -> int:
return len([number for row in grid for number in row if number < 0] )
def UpperCAmelCase_ ( __UpperCAmelCase : list[list[int]] ) -> int:
SCREAMING_SNAKE_CASE_ = 0
for row in grid:
for i, number in enumerate(__UpperCAmelCase ):
if number < 0:
total += len(__UpperCAmelCase ) - i
break
return total
def UpperCAmelCase_ ( ) -> None:
from timeit import timeit
print('Running benchmarks' )
SCREAMING_SNAKE_CASE_ = (
'from __main__ import count_negatives_binary_search, '
'count_negatives_brute_force, count_negatives_brute_force_with_break, grid'
)
for func in (
"count_negatives_binary_search", # took 0.7727 seconds
"count_negatives_brute_force_with_break", # took 4.6505 seconds
"count_negatives_brute_force", # took 12.8160 seconds
):
SCREAMING_SNAKE_CASE_ = timeit(f"{func}(grid=grid)" , setup=__UpperCAmelCase , number=5_00 )
print(f"{func}() took {time:0.4f} seconds" )
if __name__ == "__main__":
import doctest
doctest.testmod()
benchmark() | 31 | 0 |
snake_case = {
"""Pillow""": """Pillow""",
"""accelerate""": """accelerate>=0.11.0""",
"""compel""": """compel==0.1.8""",
"""black""": """black~=23.1""",
"""datasets""": """datasets""",
"""filelock""": """filelock""",
"""flax""": """flax>=0.4.1""",
"""hf-doc-builder""": """hf-doc-builder>=0.3.0""",
"""huggingface-hub""": """huggingface-hub>=0.13.2""",
"""requests-mock""": """requests-mock==1.10.0""",
"""importlib_metadata""": """importlib_metadata""",
"""invisible-watermark""": """invisible-watermark""",
"""isort""": """isort>=5.5.4""",
"""jax""": """jax>=0.2.8,!=0.3.2""",
"""jaxlib""": """jaxlib>=0.1.65""",
"""Jinja2""": """Jinja2""",
"""k-diffusion""": """k-diffusion>=0.0.12""",
"""torchsde""": """torchsde""",
"""note_seq""": """note_seq""",
"""librosa""": """librosa""",
"""numpy""": """numpy""",
"""omegaconf""": """omegaconf""",
"""parameterized""": """parameterized""",
"""protobuf""": """protobuf>=3.20.3,<4""",
"""pytest""": """pytest""",
"""pytest-timeout""": """pytest-timeout""",
"""pytest-xdist""": """pytest-xdist""",
"""ruff""": """ruff>=0.0.241""",
"""safetensors""": """safetensors""",
"""sentencepiece""": """sentencepiece>=0.1.91,!=0.1.92""",
"""scipy""": """scipy""",
"""onnx""": """onnx""",
"""regex""": """regex!=2019.12.17""",
"""requests""": """requests""",
"""tensorboard""": """tensorboard""",
"""torch""": """torch>=1.4""",
"""torchvision""": """torchvision""",
"""transformers""": """transformers>=4.25.1""",
"""urllib3""": """urllib3<=2.0.0""",
} | 67 |
from typing import TYPE_CHECKING
from ....utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available
lowerCamelCase__ : Optional[int] = {'configuration_mmbt': ['MMBTConfig']}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowerCamelCase__ : Any = ['MMBTForClassification', 'MMBTModel', 'ModalEmbeddings']
if TYPE_CHECKING:
from .configuration_mmbt import MMBTConfig
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_mmbt import MMBTForClassification, MMBTModel, ModalEmbeddings
else:
import sys
lowerCamelCase__ : str = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__) | 31 | 0 |
import shutil
import tempfile
import unittest
from transformers import SPIECE_UNDERLINE, BatchEncoding, MBartTokenizer, MBartTokenizerFast, is_torch_available
from transformers.testing_utils import (
get_tests_dir,
nested_simplify,
require_sentencepiece,
require_tokenizers,
require_torch,
)
from ...test_tokenization_common import TokenizerTesterMixin
__A = get_tests_dir("fixtures/test_sentencepiece.model")
if is_torch_available():
from transformers.models.mbart.modeling_mbart import shift_tokens_right
__A = 25_00_04
__A = 25_00_20
@require_sentencepiece
@require_tokenizers
class _A ( UpperCamelCase , unittest.TestCase ):
"""simple docstring"""
lowerCamelCase : Tuple = MBartTokenizer
lowerCamelCase : List[str] = MBartTokenizerFast
lowerCamelCase : int = True
lowerCamelCase : List[str] = True
def _a ( self : List[Any] ) -> Union[str, Any]:
super().setUp()
# We have a SentencePiece fixture for testing
__UpperCAmelCase =MBartTokenizer(__SCREAMING_SNAKE_CASE , keep_accents=__SCREAMING_SNAKE_CASE )
tokenizer.save_pretrained(self.tmpdirname )
def _a ( self : Tuple ) -> Optional[int]:
__UpperCAmelCase =MBartTokenizer(__SCREAMING_SNAKE_CASE , keep_accents=__SCREAMING_SNAKE_CASE )
__UpperCAmelCase =tokenizer.tokenize("""This is a test""" )
self.assertListEqual(__SCREAMING_SNAKE_CASE , ["""▁This""", """▁is""", """▁a""", """▁t""", """est"""] )
self.assertListEqual(
tokenizer.convert_tokens_to_ids(__SCREAMING_SNAKE_CASE ) , [value + tokenizer.fairseq_offset for value in [285, 46, 10, 170, 382]] , )
__UpperCAmelCase =tokenizer.tokenize("""I was born in 92000, and this is falsé.""" )
self.assertListEqual(
__SCREAMING_SNAKE_CASE , [
SPIECE_UNDERLINE + """I""",
SPIECE_UNDERLINE + """was""",
SPIECE_UNDERLINE + """b""",
"""or""",
"""n""",
SPIECE_UNDERLINE + """in""",
SPIECE_UNDERLINE + """""",
"""9""",
"""2""",
"""0""",
"""0""",
"""0""",
""",""",
SPIECE_UNDERLINE + """and""",
SPIECE_UNDERLINE + """this""",
SPIECE_UNDERLINE + """is""",
SPIECE_UNDERLINE + """f""",
"""al""",
"""s""",
"""é""",
""".""",
] , )
__UpperCAmelCase =tokenizer.convert_tokens_to_ids(__SCREAMING_SNAKE_CASE )
self.assertListEqual(
__SCREAMING_SNAKE_CASE , [
value + tokenizer.fairseq_offset
for value in [8, 21, 84, 55, 24, 19, 7, 2, 602, 347, 347, 347, 3, 12, 66, 46, 72, 80, 6, 2, 4]
# ^ unk: 2 + 1 = 3 unk: 2 + 1 = 3 ^
] , )
__UpperCAmelCase =tokenizer.convert_ids_to_tokens(__SCREAMING_SNAKE_CASE )
self.assertListEqual(
__SCREAMING_SNAKE_CASE , [
SPIECE_UNDERLINE + """I""",
SPIECE_UNDERLINE + """was""",
SPIECE_UNDERLINE + """b""",
"""or""",
"""n""",
SPIECE_UNDERLINE + """in""",
SPIECE_UNDERLINE + """""",
"""<unk>""",
"""2""",
"""0""",
"""0""",
"""0""",
""",""",
SPIECE_UNDERLINE + """and""",
SPIECE_UNDERLINE + """this""",
SPIECE_UNDERLINE + """is""",
SPIECE_UNDERLINE + """f""",
"""al""",
"""s""",
"""<unk>""",
""".""",
] , )
def _a ( self : Optional[Any] ) -> Optional[Any]:
if not self.test_slow_tokenizer:
# as we don't have a slow version, we can't compare the outputs between slow and fast versions
return
__UpperCAmelCase =(self.rust_tokenizer_class, """hf-internal-testing/tiny-random-mbart""", {})
for tokenizer, pretrained_name, kwargs in self.tokenizers_list:
with self.subTest(f'''{tokenizer.__class__.__name__} ({pretrained_name})''' ):
__UpperCAmelCase =self.rust_tokenizer_class.from_pretrained(__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE )
__UpperCAmelCase =self.tokenizer_class.from_pretrained(__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE )
__UpperCAmelCase =tempfile.mkdtemp()
__UpperCAmelCase =tokenizer_r.save_pretrained(__SCREAMING_SNAKE_CASE )
__UpperCAmelCase =tokenizer_p.save_pretrained(__SCREAMING_SNAKE_CASE )
# Checks it save with the same files + the tokenizer.json file for the fast one
self.assertTrue(any("""tokenizer.json""" in f for f in tokenizer_r_files ) )
__UpperCAmelCase =tuple(f for f in tokenizer_r_files if """tokenizer.json""" not in f )
self.assertSequenceEqual(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )
# Checks everything loads correctly in the same way
__UpperCAmelCase =tokenizer_r.from_pretrained(__SCREAMING_SNAKE_CASE )
__UpperCAmelCase =tokenizer_p.from_pretrained(__SCREAMING_SNAKE_CASE )
# Check special tokens are set accordingly on Rust and Python
for key in tokenizer_pp.special_tokens_map:
self.assertTrue(hasattr(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) )
# self.assertEqual(getattr(tokenizer_rp, key), getattr(tokenizer_pp, key))
# self.assertEqual(getattr(tokenizer_rp, key + "_id"), getattr(tokenizer_pp, key + "_id"))
shutil.rmtree(__SCREAMING_SNAKE_CASE )
# Save tokenizer rust, legacy_format=True
__UpperCAmelCase =tempfile.mkdtemp()
__UpperCAmelCase =tokenizer_r.save_pretrained(__SCREAMING_SNAKE_CASE , legacy_format=__SCREAMING_SNAKE_CASE )
__UpperCAmelCase =tokenizer_p.save_pretrained(__SCREAMING_SNAKE_CASE )
# Checks it save with the same files
self.assertSequenceEqual(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )
# Checks everything loads correctly in the same way
__UpperCAmelCase =tokenizer_r.from_pretrained(__SCREAMING_SNAKE_CASE )
__UpperCAmelCase =tokenizer_p.from_pretrained(__SCREAMING_SNAKE_CASE )
# Check special tokens are set accordingly on Rust and Python
for key in tokenizer_pp.special_tokens_map:
self.assertTrue(hasattr(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) )
shutil.rmtree(__SCREAMING_SNAKE_CASE )
# Save tokenizer rust, legacy_format=False
__UpperCAmelCase =tempfile.mkdtemp()
__UpperCAmelCase =tokenizer_r.save_pretrained(__SCREAMING_SNAKE_CASE , legacy_format=__SCREAMING_SNAKE_CASE )
__UpperCAmelCase =tokenizer_p.save_pretrained(__SCREAMING_SNAKE_CASE )
# Checks it saved the tokenizer.json file
self.assertTrue(any("""tokenizer.json""" in f for f in tokenizer_r_files ) )
# Checks everything loads correctly in the same way
__UpperCAmelCase =tokenizer_r.from_pretrained(__SCREAMING_SNAKE_CASE )
__UpperCAmelCase =tokenizer_p.from_pretrained(__SCREAMING_SNAKE_CASE )
# Check special tokens are set accordingly on Rust and Python
for key in tokenizer_pp.special_tokens_map:
self.assertTrue(hasattr(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) )
shutil.rmtree(__SCREAMING_SNAKE_CASE )
@require_torch
@require_sentencepiece
@require_tokenizers
class _A ( unittest.TestCase ):
"""simple docstring"""
lowerCamelCase : List[str] = 'facebook/mbart-large-en-ro'
lowerCamelCase : Tuple = [
' UN Chief Says There Is No Military Solution in Syria',
' Secretary-General Ban Ki-moon says his response to Russia\'s stepped up military support for Syria is that "there is no military solution" to the nearly five-year conflict and more weapons will only worsen the violence and misery for millions of people.',
]
lowerCamelCase : List[str] = [
'Şeful ONU declară că nu există o soluţie militară în Siria',
'Secretarul General Ban Ki-moon declară că răspunsul său la intensificarea sprijinului militar al Rusiei'
' pentru Siria este că "nu există o soluţie militară" la conflictul de aproape cinci ani şi că noi arme nu vor'
' face decât să înrăutăţească violenţele şi mizeria pentru milioane de oameni.',
]
lowerCamelCase : str = [8_274, 127_873, 25_916, 7, 8_622, 2_071, 438, 67_485, 53, 187_895, 23, 51_712, 2, EN_CODE]
@classmethod
def _a ( cls : int ) -> Union[str, Any]:
__UpperCAmelCase =MBartTokenizer.from_pretrained(
cls.checkpoint_name , src_lang="""en_XX""" , tgt_lang="""ro_RO""" )
__UpperCAmelCase =1
return cls
def _a ( self : Union[str, Any] ) -> int:
self.assertEqual(self.tokenizer.fairseq_tokens_to_ids["""ar_AR"""] , 250001 )
self.assertEqual(self.tokenizer.fairseq_tokens_to_ids["""en_EN"""] , 250004 )
self.assertEqual(self.tokenizer.fairseq_tokens_to_ids["""ro_RO"""] , 250020 )
def _a ( self : Dict ) -> str:
__UpperCAmelCase =self.tokenizer.batch_encode_plus(self.src_text ).input_ids[0]
self.assertListEqual(self.expected_src_tokens , __SCREAMING_SNAKE_CASE )
def _a ( self : Optional[Any] ) -> Any:
self.assertIn(__SCREAMING_SNAKE_CASE , self.tokenizer.all_special_ids )
__UpperCAmelCase =[RO_CODE, 884, 9019, 96, 9, 916, 86792, 36, 18743, 15596, 5, 2]
__UpperCAmelCase =self.tokenizer.decode(__SCREAMING_SNAKE_CASE , skip_special_tokens=__SCREAMING_SNAKE_CASE )
__UpperCAmelCase =self.tokenizer.decode(generated_ids[1:] , skip_special_tokens=__SCREAMING_SNAKE_CASE )
self.assertEqual(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )
self.assertNotIn(self.tokenizer.eos_token , __SCREAMING_SNAKE_CASE )
def _a ( self : List[str] ) -> Tuple:
__UpperCAmelCase =["""this is gunna be a long sentence """ * 20]
assert isinstance(src_text[0] , __SCREAMING_SNAKE_CASE )
__UpperCAmelCase =10
__UpperCAmelCase =self.tokenizer(__SCREAMING_SNAKE_CASE , max_length=__SCREAMING_SNAKE_CASE , truncation=__SCREAMING_SNAKE_CASE ).input_ids[0]
self.assertEqual(ids[-2] , 2 )
self.assertEqual(ids[-1] , __SCREAMING_SNAKE_CASE )
self.assertEqual(len(__SCREAMING_SNAKE_CASE ) , __SCREAMING_SNAKE_CASE )
def _a ( self : int ) -> int:
self.assertListEqual(self.tokenizer.convert_tokens_to_ids(["""<mask>""", """ar_AR"""] ) , [250026, 250001] )
def _a ( self : Optional[Any] ) -> Optional[int]:
__UpperCAmelCase =tempfile.mkdtemp()
__UpperCAmelCase =self.tokenizer.fairseq_tokens_to_ids
self.tokenizer.save_pretrained(__SCREAMING_SNAKE_CASE )
__UpperCAmelCase =MBartTokenizer.from_pretrained(__SCREAMING_SNAKE_CASE )
self.assertDictEqual(new_tok.fairseq_tokens_to_ids , __SCREAMING_SNAKE_CASE )
@require_torch
def _a ( self : Optional[int] ) -> Any:
__UpperCAmelCase =self.tokenizer(self.src_text , text_target=self.tgt_text , padding=__SCREAMING_SNAKE_CASE , return_tensors="""pt""" )
__UpperCAmelCase =shift_tokens_right(batch["""labels"""] , self.tokenizer.pad_token_id )
# fairseq batch: https://gist.github.com/sshleifer/cba08bc2109361a74ac3760a7e30e4f4
assert batch.input_ids[1][-2:].tolist() == [2, EN_CODE]
assert batch.decoder_input_ids[1][0].tolist() == RO_CODE
assert batch.decoder_input_ids[1][-1] == 2
assert batch.labels[1][-2:].tolist() == [2, RO_CODE]
@require_torch
def _a ( self : Optional[Any] ) -> Optional[Any]:
__UpperCAmelCase =self.tokenizer(
self.src_text , text_target=self.tgt_text , padding=__SCREAMING_SNAKE_CASE , truncation=__SCREAMING_SNAKE_CASE , max_length=len(self.expected_src_tokens ) , return_tensors="""pt""" , )
__UpperCAmelCase =shift_tokens_right(batch["""labels"""] , self.tokenizer.pad_token_id )
self.assertIsInstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )
self.assertEqual((2, 14) , batch.input_ids.shape )
self.assertEqual((2, 14) , batch.attention_mask.shape )
__UpperCAmelCase =batch.input_ids.tolist()[0]
self.assertListEqual(self.expected_src_tokens , __SCREAMING_SNAKE_CASE )
self.assertEqual(2 , batch.decoder_input_ids[0, -1] ) # EOS
# Test that special tokens are reset
self.assertEqual(self.tokenizer.prefix_tokens , [] )
self.assertEqual(self.tokenizer.suffix_tokens , [self.tokenizer.eos_token_id, EN_CODE] )
def _a ( self : Optional[Any] ) -> Dict:
__UpperCAmelCase =self.tokenizer(self.src_text , padding=__SCREAMING_SNAKE_CASE , truncation=__SCREAMING_SNAKE_CASE , max_length=3 , return_tensors="""pt""" )
__UpperCAmelCase =self.tokenizer(
text_target=self.tgt_text , padding=__SCREAMING_SNAKE_CASE , truncation=__SCREAMING_SNAKE_CASE , max_length=10 , return_tensors="""pt""" )
__UpperCAmelCase =targets["""input_ids"""]
__UpperCAmelCase =shift_tokens_right(__SCREAMING_SNAKE_CASE , self.tokenizer.pad_token_id )
self.assertEqual(batch.input_ids.shape[1] , 3 )
self.assertEqual(batch.decoder_input_ids.shape[1] , 10 )
@require_torch
def _a ( self : int ) -> Any:
__UpperCAmelCase =self.tokenizer._build_translation_inputs(
"""A test""" , return_tensors="""pt""" , src_lang="""en_XX""" , tgt_lang="""ar_AR""" )
self.assertEqual(
nested_simplify(__SCREAMING_SNAKE_CASE ) , {
# A, test, EOS, en_XX
"""input_ids""": [[62, 3034, 2, 250004]],
"""attention_mask""": [[1, 1, 1, 1]],
# ar_AR
"""forced_bos_token_id""": 250001,
} , )
| 68 |
import unittest
from typing import Tuple
import torch
from diffusers.utils import floats_tensor, randn_tensor, torch_all_close, torch_device
from diffusers.utils.testing_utils import require_torch
@require_torch
class lowerCamelCase_ :
'''simple docstring'''
@property
def lowerCAmelCase_ ( self : Optional[Any] ):
return self.get_dummy_input()
@property
def lowerCAmelCase_ ( self : Union[str, Any] ):
if self.block_type == "down":
return (4, 32, 16, 16)
elif self.block_type == "mid":
return (4, 32, 32, 32)
elif self.block_type == "up":
return (4, 32, 64, 64)
raise ValueError(F"'{self.block_type}' is not a supported block_type. Set it to 'up', 'mid', or 'down'." )
def lowerCAmelCase_ ( self : List[str] , _lowerCAmelCase : Optional[Any]=True , _lowerCAmelCase : str=False , _lowerCAmelCase : Optional[int]=False , _lowerCAmelCase : Dict=False , ):
SCREAMING_SNAKE_CASE_ = 4
SCREAMING_SNAKE_CASE_ = 32
SCREAMING_SNAKE_CASE_ = (32, 32)
SCREAMING_SNAKE_CASE_ = torch.manual_seed(0 )
SCREAMING_SNAKE_CASE_ = torch.device(_lowerCAmelCase )
SCREAMING_SNAKE_CASE_ = (batch_size, num_channels) + sizes
SCREAMING_SNAKE_CASE_ = randn_tensor(_lowerCAmelCase , generator=_lowerCAmelCase , device=_lowerCAmelCase )
SCREAMING_SNAKE_CASE_ = {'hidden_states': hidden_states}
if include_temb:
SCREAMING_SNAKE_CASE_ = 128
SCREAMING_SNAKE_CASE_ = randn_tensor((batch_size, temb_channels) , generator=_lowerCAmelCase , device=_lowerCAmelCase )
if include_res_hidden_states_tuple:
SCREAMING_SNAKE_CASE_ = torch.manual_seed(1 )
SCREAMING_SNAKE_CASE_ = (randn_tensor(_lowerCAmelCase , generator=_lowerCAmelCase , device=_lowerCAmelCase ),)
if include_encoder_hidden_states:
SCREAMING_SNAKE_CASE_ = floats_tensor((batch_size, 32, 32) ).to(_lowerCAmelCase )
if include_skip_sample:
SCREAMING_SNAKE_CASE_ = randn_tensor(((batch_size, 3) + sizes) , generator=_lowerCAmelCase , device=_lowerCAmelCase )
return dummy_input
def lowerCAmelCase_ ( self : Optional[int] ):
SCREAMING_SNAKE_CASE_ = {
'in_channels': 32,
'out_channels': 32,
'temb_channels': 128,
}
if self.block_type == "up":
SCREAMING_SNAKE_CASE_ = 32
if self.block_type == "mid":
init_dict.pop('out_channels' )
SCREAMING_SNAKE_CASE_ = self.dummy_input
return init_dict, inputs_dict
def lowerCAmelCase_ ( self : Dict , _lowerCAmelCase : Optional[Any] ):
SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = self.prepare_init_args_and_inputs_for_common()
SCREAMING_SNAKE_CASE_ = self.block_class(**_lowerCAmelCase )
unet_block.to(_lowerCAmelCase )
unet_block.eval()
with torch.no_grad():
SCREAMING_SNAKE_CASE_ = unet_block(**_lowerCAmelCase )
if isinstance(_lowerCAmelCase , _lowerCAmelCase ):
SCREAMING_SNAKE_CASE_ = output[0]
self.assertEqual(output.shape , self.output_shape )
SCREAMING_SNAKE_CASE_ = output[0, -1, -3:, -3:]
SCREAMING_SNAKE_CASE_ = torch.tensor(_lowerCAmelCase ).to(_lowerCAmelCase )
assert torch_all_close(output_slice.flatten() , _lowerCAmelCase , atol=5E-3 )
@unittest.skipIf(torch_device == 'mps' , 'Training is not supported in mps' )
def lowerCAmelCase_ ( self : Any ):
SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = self.prepare_init_args_and_inputs_for_common()
SCREAMING_SNAKE_CASE_ = self.block_class(**_lowerCAmelCase )
model.to(_lowerCAmelCase )
model.train()
SCREAMING_SNAKE_CASE_ = model(**_lowerCAmelCase )
if isinstance(_lowerCAmelCase , _lowerCAmelCase ):
SCREAMING_SNAKE_CASE_ = output[0]
SCREAMING_SNAKE_CASE_ = torch.device(_lowerCAmelCase )
SCREAMING_SNAKE_CASE_ = randn_tensor(output.shape , device=_lowerCAmelCase )
SCREAMING_SNAKE_CASE_ = torch.nn.functional.mse_loss(_lowerCAmelCase , _lowerCAmelCase )
loss.backward() | 31 | 0 |
'''simple docstring'''
def __UpperCAmelCase ( _UpperCAmelCase : str ) -> list:
__snake_case = [0] * len(_UpperCAmelCase )
for i in range(1 , len(_UpperCAmelCase ) ):
# use last results for better performance - dynamic programming
__snake_case = prefix_result[i - 1]
while j > 0 and input_string[i] != input_string[j]:
__snake_case = prefix_result[j - 1]
if input_string[i] == input_string[j]:
j += 1
__snake_case = j
return prefix_result
def __UpperCAmelCase ( _UpperCAmelCase : str ) -> int:
return max(prefix_function(_UpperCAmelCase ) )
if __name__ == "__main__":
import doctest
doctest.testmod()
| 69 |
import operator as op
def UpperCAmelCase_ ( __UpperCAmelCase : str ) -> Any:
SCREAMING_SNAKE_CASE_ = []
SCREAMING_SNAKE_CASE_ = lambda __UpperCAmelCase , __UpperCAmelCase : int(x / y ) # noqa: E731 integer division operation
SCREAMING_SNAKE_CASE_ = {
'^': op.pow,
'*': op.mul,
'/': div,
'+': op.add,
'-': op.sub,
} # operators & their respective operation
# print table header
print('Symbol'.center(8 ) , 'Action'.center(12 ) , 'Stack' , sep=' | ' )
print('-' * (30 + len(__UpperCAmelCase )) )
for x in post_fix:
if x.isdigit(): # if x in digit
stack.append(__UpperCAmelCase ) # append x to stack
# output in tabular format
print(x.rjust(8 ) , ('push(' + x + ')').ljust(12 ) , ','.join(__UpperCAmelCase ) , sep=' | ' )
else:
SCREAMING_SNAKE_CASE_ = stack.pop() # pop stack
# output in tabular format
print(''.rjust(8 ) , ('pop(' + b + ')').ljust(12 ) , ','.join(__UpperCAmelCase ) , sep=' | ' )
SCREAMING_SNAKE_CASE_ = stack.pop() # pop stack
# output in tabular format
print(''.rjust(8 ) , ('pop(' + a + ')').ljust(12 ) , ','.join(__UpperCAmelCase ) , sep=' | ' )
stack.append(
str(opr[x](int(__UpperCAmelCase ) , int(__UpperCAmelCase ) ) ) ) # evaluate the 2 values popped from stack & push result to stack
# output in tabular format
print(
x.rjust(8 ) , ('push(' + a + x + b + ')').ljust(12 ) , ','.join(__UpperCAmelCase ) , sep=' | ' , )
return int(stack[0] )
if __name__ == "__main__":
lowerCamelCase__ : Tuple = input('\n\nEnter a Postfix Equation (space separated) = ').split(' ')
print('\n\tResult = ', solve(Postfix)) | 31 | 0 |
import unittest
from transformers import XLMConfig, is_torch_available
from transformers.testing_utils import require_torch, slow, torch_device
from ...generation.test_utils import GenerationTesterMixin
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers import (
XLMForMultipleChoice,
XLMForQuestionAnswering,
XLMForQuestionAnsweringSimple,
XLMForSequenceClassification,
XLMForTokenClassification,
XLMModel,
XLMWithLMHeadModel,
)
from transformers.models.xlm.modeling_xlm import XLM_PRETRAINED_MODEL_ARCHIVE_LIST
class A:
'''simple docstring'''
def __init__( self : Dict , A_ : str , A_ : Any=13 , A_ : Any=7 , A_ : List[Any]=True , A_ : List[Any]=True , A_ : List[str]=True , A_ : Any=True , A_ : Union[str, Any]=True , A_ : List[str]=False , A_ : Any=False , A_ : List[Any]=False , A_ : Optional[int]=2 , A_ : Any=99 , A_ : List[Any]=0 , A_ : List[Any]=32 , A_ : List[Any]=5 , A_ : Optional[int]=4 , A_ : List[Any]=0.1 , A_ : Optional[int]=0.1 , A_ : Tuple=512 , A_ : Union[str, Any]=2 , A_ : List[Any]=0.02 , A_ : int=2 , A_ : str=4 , A_ : Optional[Any]="last" , A_ : Tuple=True , A_ : Any=None , A_ : List[Any]=0 , ) -> List[Any]:
"""simple docstring"""
lowerCamelCase_ = parent
lowerCamelCase_ = batch_size
lowerCamelCase_ = seq_length
lowerCamelCase_ = is_training
lowerCamelCase_ = use_input_lengths
lowerCamelCase_ = use_token_type_ids
lowerCamelCase_ = use_labels
lowerCamelCase_ = gelu_activation
lowerCamelCase_ = sinusoidal_embeddings
lowerCamelCase_ = causal
lowerCamelCase_ = asm
lowerCamelCase_ = n_langs
lowerCamelCase_ = vocab_size
lowerCamelCase_ = n_special
lowerCamelCase_ = hidden_size
lowerCamelCase_ = num_hidden_layers
lowerCamelCase_ = num_attention_heads
lowerCamelCase_ = hidden_dropout_prob
lowerCamelCase_ = attention_probs_dropout_prob
lowerCamelCase_ = max_position_embeddings
lowerCamelCase_ = type_sequence_label_size
lowerCamelCase_ = initializer_range
lowerCamelCase_ = num_labels
lowerCamelCase_ = num_choices
lowerCamelCase_ = summary_type
lowerCamelCase_ = use_proj
lowerCamelCase_ = scope
lowerCamelCase_ = bos_token_id
def a__ ( self : int ) -> Optional[Any]:
"""simple docstring"""
lowerCamelCase_ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
lowerCamelCase_ = random_attention_mask([self.batch_size, self.seq_length] )
lowerCamelCase_ = None
if self.use_input_lengths:
lowerCamelCase_ = (
ids_tensor([self.batch_size] , vocab_size=2 ) + self.seq_length - 2
) # small variation of seq_length
lowerCamelCase_ = None
if self.use_token_type_ids:
lowerCamelCase_ = ids_tensor([self.batch_size, self.seq_length] , self.n_langs )
lowerCamelCase_ = None
lowerCamelCase_ = None
lowerCamelCase_ = None
if self.use_labels:
lowerCamelCase_ = ids_tensor([self.batch_size] , self.type_sequence_label_size )
lowerCamelCase_ = ids_tensor([self.batch_size, self.seq_length] , self.num_labels )
lowerCamelCase_ = ids_tensor([self.batch_size] , 2 ).float()
lowerCamelCase_ = ids_tensor([self.batch_size] , self.num_choices )
lowerCamelCase_ = self.get_config()
return (
config,
input_ids,
token_type_ids,
input_lengths,
sequence_labels,
token_labels,
is_impossible_labels,
choice_labels,
input_mask,
)
def a__ ( self : Tuple ) -> Optional[Any]:
"""simple docstring"""
return XLMConfig(
vocab_size=self.vocab_size , n_special=self.n_special , emb_dim=self.hidden_size , n_layers=self.num_hidden_layers , n_heads=self.num_attention_heads , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , gelu_activation=self.gelu_activation , sinusoidal_embeddings=self.sinusoidal_embeddings , asm=self.asm , causal=self.causal , n_langs=self.n_langs , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , summary_type=self.summary_type , use_proj=self.use_proj , num_labels=self.num_labels , bos_token_id=self.bos_token_id , )
def a__ ( self : List[str] , A_ : List[str] , A_ : List[Any] , A_ : Union[str, Any] , A_ : Optional[int] , A_ : Any , A_ : str , A_ : str , A_ : List[str] , A_ : List[Any] , ) -> List[Any]:
"""simple docstring"""
lowerCamelCase_ = XLMModel(config=A_ )
model.to(A_ )
model.eval()
lowerCamelCase_ = model(A_ , lengths=A_ , langs=A_ )
lowerCamelCase_ = model(A_ , langs=A_ )
lowerCamelCase_ = model(A_ )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) )
def a__ ( self : Optional[Any] , A_ : Any , A_ : Any , A_ : Optional[int] , A_ : int , A_ : List[Any] , A_ : Tuple , A_ : Any , A_ : str , A_ : List[Any] , ) -> List[Any]:
"""simple docstring"""
lowerCamelCase_ = XLMWithLMHeadModel(A_ )
model.to(A_ )
model.eval()
lowerCamelCase_ = model(A_ , token_type_ids=A_ , labels=A_ )
self.parent.assertEqual(result.loss.shape , () )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) )
def a__ ( self : List[str] , A_ : Tuple , A_ : str , A_ : List[Any] , A_ : List[str] , A_ : Any , A_ : List[Any] , A_ : List[str] , A_ : Any , A_ : List[Any] , ) -> List[Any]:
"""simple docstring"""
lowerCamelCase_ = XLMForQuestionAnsweringSimple(A_ )
model.to(A_ )
model.eval()
lowerCamelCase_ = model(A_ )
lowerCamelCase_ = model(A_ , start_positions=A_ , end_positions=A_ )
lowerCamelCase_ = outputs
self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) )
self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) )
def a__ ( self : List[str] , A_ : Union[str, Any] , A_ : Tuple , A_ : int , A_ : Any , A_ : int , A_ : str , A_ : Union[str, Any] , A_ : Union[str, Any] , A_ : Union[str, Any] , ) -> Optional[int]:
"""simple docstring"""
lowerCamelCase_ = XLMForQuestionAnswering(A_ )
model.to(A_ )
model.eval()
lowerCamelCase_ = model(A_ )
lowerCamelCase_ = model(
A_ , start_positions=A_ , end_positions=A_ , cls_index=A_ , is_impossible=A_ , p_mask=A_ , )
lowerCamelCase_ = model(
A_ , start_positions=A_ , end_positions=A_ , cls_index=A_ , is_impossible=A_ , )
((lowerCamelCase_) , ) = result_with_labels.to_tuple()
lowerCamelCase_ = model(A_ , start_positions=A_ , end_positions=A_ )
((lowerCamelCase_) , ) = result_with_labels.to_tuple()
self.parent.assertEqual(result_with_labels.loss.shape , () )
self.parent.assertEqual(result.start_top_log_probs.shape , (self.batch_size, model.config.start_n_top) )
self.parent.assertEqual(result.start_top_index.shape , (self.batch_size, model.config.start_n_top) )
self.parent.assertEqual(
result.end_top_log_probs.shape , (self.batch_size, model.config.start_n_top * model.config.end_n_top) )
self.parent.assertEqual(
result.end_top_index.shape , (self.batch_size, model.config.start_n_top * model.config.end_n_top) )
self.parent.assertEqual(result.cls_logits.shape , (self.batch_size,) )
def a__ ( self : Dict , A_ : List[str] , A_ : str , A_ : List[Any] , A_ : Union[str, Any] , A_ : Optional[int] , A_ : Dict , A_ : Tuple , A_ : Union[str, Any] , A_ : int , ) -> str:
"""simple docstring"""
lowerCamelCase_ = XLMForSequenceClassification(A_ )
model.to(A_ )
model.eval()
lowerCamelCase_ = model(A_ )
lowerCamelCase_ = model(A_ , labels=A_ )
self.parent.assertEqual(result.loss.shape , () )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) )
def a__ ( self : Optional[Any] , A_ : str , A_ : List[str] , A_ : str , A_ : str , A_ : Any , A_ : Union[str, Any] , A_ : Tuple , A_ : Optional[Any] , A_ : Optional[int] , ) -> int:
"""simple docstring"""
lowerCamelCase_ = self.num_labels
lowerCamelCase_ = XLMForTokenClassification(A_ )
model.to(A_ )
model.eval()
lowerCamelCase_ = model(A_ , attention_mask=A_ , labels=A_ )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) )
def a__ ( self : Union[str, Any] , A_ : int , A_ : Union[str, Any] , A_ : int , A_ : List[Any] , A_ : List[str] , A_ : List[str] , A_ : List[Any] , A_ : str , A_ : str , ) -> Tuple:
"""simple docstring"""
lowerCamelCase_ = self.num_choices
lowerCamelCase_ = XLMForMultipleChoice(config=A_ )
model.to(A_ )
model.eval()
lowerCamelCase_ = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous()
lowerCamelCase_ = token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous()
lowerCamelCase_ = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous()
lowerCamelCase_ = model(
A_ , attention_mask=A_ , token_type_ids=A_ , labels=A_ , )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) )
def a__ ( self : int ) -> int:
"""simple docstring"""
lowerCamelCase_ = self.prepare_config_and_inputs()
(
(
lowerCamelCase_
) , (
lowerCamelCase_
) , (
lowerCamelCase_
) , (
lowerCamelCase_
) , (
lowerCamelCase_
) , (
lowerCamelCase_
) , (
lowerCamelCase_
) , (
lowerCamelCase_
) , (
lowerCamelCase_
) ,
) = config_and_inputs
lowerCamelCase_ = {'input_ids': input_ids, 'token_type_ids': token_type_ids, 'lengths': input_lengths}
return config, inputs_dict
@require_torch
class A( UpperCamelCase , UpperCamelCase , UpperCamelCase , unittest.TestCase ):
'''simple docstring'''
UpperCamelCase = (
(
XLMModel,
XLMWithLMHeadModel,
XLMForQuestionAnswering,
XLMForSequenceClassification,
XLMForQuestionAnsweringSimple,
XLMForTokenClassification,
XLMForMultipleChoice,
)
if is_torch_available()
else ()
)
UpperCamelCase = (
(XLMWithLMHeadModel,) if is_torch_available() else ()
) # TODO (PVP): Check other models whether language generation is also applicable
UpperCamelCase = (
{
'''feature-extraction''': XLMModel,
'''fill-mask''': XLMWithLMHeadModel,
'''question-answering''': XLMForQuestionAnsweringSimple,
'''text-classification''': XLMForSequenceClassification,
'''text-generation''': XLMWithLMHeadModel,
'''token-classification''': XLMForTokenClassification,
'''zero-shot''': XLMForSequenceClassification,
}
if is_torch_available()
else {}
)
def a__ ( self : Optional[Any] , A_ : Optional[Any] , A_ : Optional[Any] , A_ : List[Any] , A_ : Dict , A_ : List[str] ) -> Dict:
"""simple docstring"""
if (
pipeline_test_casse_name == "QAPipelineTests"
and tokenizer_name is not None
and not tokenizer_name.endswith('Fast' )
):
# `QAPipelineTests` fails for a few models when the slower tokenizer are used.
# (The slower tokenizers were never used for pipeline tests before the pipeline testing rework)
# TODO: check (and possibly fix) the `QAPipelineTests` with slower tokenizer
return True
return False
def a__ ( self : List[str] , A_ : List[Any] , A_ : List[str] , A_ : Tuple=False ) -> Optional[Any]:
"""simple docstring"""
lowerCamelCase_ = super()._prepare_for_class(A_ , A_ , return_labels=A_ )
if return_labels:
if model_class.__name__ == "XLMForQuestionAnswering":
lowerCamelCase_ = torch.zeros(
self.model_tester.batch_size , dtype=torch.long , device=A_ )
lowerCamelCase_ = torch.zeros(
self.model_tester.batch_size , dtype=torch.long , device=A_ )
return inputs_dict
def a__ ( self : Tuple ) -> List[Any]:
"""simple docstring"""
lowerCamelCase_ = XLMModelTester(self )
lowerCamelCase_ = ConfigTester(self , config_class=A_ , emb_dim=37 )
def a__ ( self : int ) -> Optional[Any]:
"""simple docstring"""
self.config_tester.run_common_tests()
def a__ ( self : List[str] ) -> Optional[int]:
"""simple docstring"""
lowerCamelCase_ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_xlm_model(*A_ )
def a__ ( self : Optional[Any] ) -> int:
"""simple docstring"""
lowerCamelCase_ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_xlm_lm_head(*A_ )
def a__ ( self : Tuple ) -> Optional[int]:
"""simple docstring"""
lowerCamelCase_ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_xlm_simple_qa(*A_ )
def a__ ( self : List[Any] ) -> Any:
"""simple docstring"""
lowerCamelCase_ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_xlm_qa(*A_ )
def a__ ( self : str ) -> Tuple:
"""simple docstring"""
lowerCamelCase_ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_xlm_sequence_classif(*A_ )
def a__ ( self : Optional[Any] ) -> Optional[int]:
"""simple docstring"""
lowerCamelCase_ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_xlm_token_classif(*A_ )
def a__ ( self : int ) -> Dict:
"""simple docstring"""
lowerCamelCase_ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_xlm_for_multiple_choice(*A_ )
def a__ ( self : List[str] , A_ : Tuple , A_ : List[str] , A_ : Optional[int] , A_ : Optional[Any] , A_ : str , A_ : Tuple=False , A_ : Optional[int]=1 ) -> Optional[Any]:
"""simple docstring"""
self.assertIsInstance(A_ , A_ )
self.assertListEqual(
[isinstance(A_ , A_ ) for iter_attentions in attentions] , [True] * len(A_ ) )
self.assertEqual(len(A_ ) , (max_length - min_length) * num_beam_groups )
for idx, iter_attentions in enumerate(A_ ):
# adds PAD dummy token
lowerCamelCase_ = min_length + idx + 1
lowerCamelCase_ = min_length + idx + 1
lowerCamelCase_ = (
batch_size * num_beam_groups,
config.num_attention_heads,
tgt_len,
src_len,
)
# check attn size
self.assertListEqual(
[layer_attention.shape for layer_attention in iter_attentions] , [expected_shape] * len(A_ ) )
def a__ ( self : Union[str, Any] , A_ : Tuple , A_ : List[str] , A_ : str , A_ : Any , A_ : str , A_ : Any=False , A_ : List[str]=1 ) -> int:
"""simple docstring"""
self.assertIsInstance(A_ , A_ )
self.assertListEqual(
[isinstance(A_ , A_ ) for iter_hidden_states in hidden_states] , [True] * len(A_ ) , )
self.assertEqual(len(A_ ) , (max_length - min_length) * num_beam_groups )
for idx, iter_hidden_states in enumerate(A_ ):
# adds PAD dummy token
lowerCamelCase_ = min_length + idx + 1
lowerCamelCase_ = (batch_size * num_beam_groups, seq_len, config.hidden_size)
# check hidden size
self.assertListEqual(
[layer_hidden_states.shape for layer_hidden_states in iter_hidden_states] , [expected_shape] * len(A_ ) , )
pass
@slow
def a__ ( self : Tuple ) -> Any:
"""simple docstring"""
for model_name in XLM_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
lowerCamelCase_ = XLMModel.from_pretrained(A_ )
self.assertIsNotNone(A_ )
@require_torch
class A( unittest.TestCase ):
'''simple docstring'''
@slow
def a__ ( self : str ) -> str:
"""simple docstring"""
lowerCamelCase_ = XLMWithLMHeadModel.from_pretrained('xlm-mlm-en-2048' )
model.to(A_ )
lowerCamelCase_ = torch.tensor([[14, 447]] , dtype=torch.long , device=A_ ) # the president
lowerCamelCase_ = [
14,
447,
14,
447,
14,
447,
14,
447,
14,
447,
14,
447,
14,
447,
14,
447,
14,
447,
14,
447,
] # the president the president the president the president the president the president the president the president the president the president
# TODO(PVP): this and other input_ids I tried for generation give pretty bad results. Not sure why. Model might just not be made for auto-regressive inference
lowerCamelCase_ = model.generate(A_ , do_sample=A_ )
self.assertListEqual(output_ids[0].cpu().numpy().tolist() , A_ )
| 70 |
def UpperCAmelCase_ ( __UpperCAmelCase : int ) -> int:
assert isinstance(__UpperCAmelCase , __UpperCAmelCase ), f"The input value of [n={number}] is not an integer"
if number == 1:
return 2
elif number < 1:
SCREAMING_SNAKE_CASE_ = f"The input value of [n={number}] has to be > 0"
raise ValueError(__UpperCAmelCase )
else:
SCREAMING_SNAKE_CASE_ = sylvester(number - 1 )
SCREAMING_SNAKE_CASE_ = num - 1
SCREAMING_SNAKE_CASE_ = num
return lower * upper + 1
if __name__ == "__main__":
print(f'''The 8th number in Sylvester\'s sequence: {sylvester(8)}''') | 31 | 0 |
'''simple docstring'''
import unittest
from transformers import is_torch_available, is_vision_available
from transformers.testing_utils import require_torch, require_vision, slow, torch_device
if is_torch_available():
import torch
from transformers import AutoModelForImageClassification
if is_vision_available():
from transformers import AutoImageProcessor
@require_torch
@require_vision
class _snake_case (unittest.TestCase):
@slow
def UpperCamelCase__ ( self ):
UpperCAmelCase_ : int = AutoImageProcessor.from_pretrained("microsoft/dit-base-finetuned-rvlcdip" )
UpperCAmelCase_ : Tuple = AutoModelForImageClassification.from_pretrained("microsoft/dit-base-finetuned-rvlcdip" )
model.to(_snake_case )
from datasets import load_dataset
UpperCAmelCase_ : Tuple = load_dataset("nielsr/rvlcdip-demo" )
UpperCAmelCase_ : Dict = dataset["train"][0]["image"].convert("RGB" )
UpperCAmelCase_ : Optional[Any] = image_processor(_snake_case ,return_tensors="pt" ).to(_snake_case )
# forward pass
with torch.no_grad():
UpperCAmelCase_ : Optional[int] = model(**_snake_case )
UpperCAmelCase_ : Any = outputs.logits
UpperCAmelCase_ : List[Any] = torch.Size((1, 16) )
self.assertEqual(logits.shape ,_snake_case )
UpperCAmelCase_ : Dict = torch.tensor(
[-0.4158, -0.4092, -0.4347] ,device=_snake_case ,dtype=torch.float ,)
self.assertTrue(torch.allclose(logits[0, :3] ,_snake_case ,atol=1E-4 ) )
| 71 |
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_flax_available,
is_sentencepiece_available,
is_tf_available,
is_tokenizers_available,
is_torch_available,
)
if is_sentencepiece_available():
from ..ta.tokenization_ta import TaTokenizer
else:
from ...utils.dummy_sentencepiece_objects import TaTokenizer
lowerCamelCase__ : List[Any] = TaTokenizer
if is_tokenizers_available():
from ..ta.tokenization_ta_fast import TaTokenizerFast
else:
from ...utils.dummy_tokenizers_objects import TaTokenizerFast
lowerCamelCase__ : Union[str, Any] = TaTokenizerFast
lowerCamelCase__ : Dict = {'configuration_mt5': ['MT5Config', 'MT5OnnxConfig']}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowerCamelCase__ : Tuple = [
'MT5EncoderModel',
'MT5ForConditionalGeneration',
'MT5ForQuestionAnswering',
'MT5Model',
'MT5PreTrainedModel',
'MT5Stack',
]
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowerCamelCase__ : Tuple = ['TFMT5EncoderModel', 'TFMT5ForConditionalGeneration', 'TFMT5Model']
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowerCamelCase__ : Tuple = ['FlaxMT5EncoderModel', 'FlaxMT5ForConditionalGeneration', 'FlaxMT5Model']
if TYPE_CHECKING:
from .configuration_mta import MTaConfig, MTaOnnxConfig
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_mta import (
MTaEncoderModel,
MTaForConditionalGeneration,
MTaForQuestionAnswering,
MTaModel,
MTaPreTrainedModel,
MTaStack,
)
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_mta import TFMTaEncoderModel, TFMTaForConditionalGeneration, TFMTaModel
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_flax_mta import FlaxMTaEncoderModel, FlaxMTaForConditionalGeneration, FlaxMTaModel
else:
import sys
lowerCamelCase__ : int = _LazyModule(
__name__,
globals()['__file__'],
_import_structure,
extra_objects={'MT5Tokenizer': MTaTokenizer, 'MT5TokenizerFast': MTaTokenizerFast},
module_spec=__spec__,
) | 31 | 0 |
'''simple docstring'''
import json
from typing import TYPE_CHECKING, List, Optional, Tuple
from tokenizers import pre_tokenizers
from ...tokenization_utils_fast import PreTrainedTokenizerFast
from ...utils import logging
if TYPE_CHECKING:
from transformers.pipelines.conversational import Conversation
_UpperCAmelCase : List[Any] = logging.get_logger(__name__)
_UpperCAmelCase : int = {'''vocab_file''': '''vocab.json''', '''merges_file''': '''merges.txt''', '''tokenizer_file''': '''tokenizer.json'''}
_UpperCAmelCase : List[str] = {
'''tokenizer_file''': {
'''EleutherAI/gpt-neox-20b''': '''https://huggingface.co/EleutherAI/gpt-neox-20b/resolve/main/tokenizer.json''',
},
}
_UpperCAmelCase : int = {
'''gpt-neox-20b''': 20_48,
}
class __magic_name__ ( __SCREAMING_SNAKE_CASE ):
UpperCamelCase__ = VOCAB_FILES_NAMES
UpperCamelCase__ = PRETRAINED_VOCAB_FILES_MAP
UpperCamelCase__ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
UpperCamelCase__ = ['input_ids', 'attention_mask']
def __init__( self , snake_case_=None , snake_case_=None , snake_case_=None , snake_case_="<|endoftext|>" , snake_case_="<|endoftext|>" , snake_case_="<|endoftext|>" , snake_case_=False , **snake_case_ , ):
super().__init__(
snake_case_ , snake_case_ , tokenizer_file=snake_case_ , unk_token=snake_case_ , bos_token=snake_case_ , eos_token=snake_case_ , add_prefix_space=snake_case_ , **snake_case_ , )
lowercase =json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() )
if pre_tok_state.get('''add_prefix_space''' , snake_case_ ) != add_prefix_space:
lowercase =getattr(snake_case_ , pre_tok_state.pop('''type''' ) )
lowercase =add_prefix_space
lowercase =pre_tok_class(**snake_case_ )
lowercase =add_prefix_space
def _A( self , snake_case_ , snake_case_ = None ):
lowercase =self._tokenizer.model.save(snake_case_ , name=snake_case_ )
return tuple(snake_case_ )
def _A( self , snake_case_ ):
lowercase =[]
for is_user, text in conversation.iter_texts():
input_ids.extend(self.encode(snake_case_ , add_special_tokens=snake_case_ ) + [self.eos_token_id] )
if len(snake_case_ ) > self.model_max_length:
lowercase =input_ids[-self.model_max_length :]
return input_ids
| 72 |
import subprocess
import sys
from transformers import BertConfig, BertModel, BertTokenizer, pipeline
from transformers.testing_utils import TestCasePlus, require_torch
class lowerCamelCase_ ( _SCREAMING_SNAKE_CASE ):
'''simple docstring'''
@require_torch
def lowerCAmelCase_ ( self : int ):
# this test is a bit tricky since TRANSFORMERS_OFFLINE can only be changed before
# `transformers` is loaded, and it's too late for inside pytest - so we are changing it
# while running an external program
# python one-liner segments
# this must be loaded before socket.socket is monkey-patched
SCREAMING_SNAKE_CASE_ = '\nfrom transformers import BertConfig, BertModel, BertTokenizer, pipeline\n '
SCREAMING_SNAKE_CASE_ = '\nmname = "hf-internal-testing/tiny-random-bert"\nBertConfig.from_pretrained(mname)\nBertModel.from_pretrained(mname)\nBertTokenizer.from_pretrained(mname)\npipe = pipeline(task="fill-mask", model=mname)\nprint("success")\n '
SCREAMING_SNAKE_CASE_ = '\nimport socket\ndef offline_socket(*args, **kwargs): raise RuntimeError("Offline mode is enabled, we shouldn\'t access internet")\nsocket.socket = offline_socket\n '
# Force fetching the files so that we can use the cache
SCREAMING_SNAKE_CASE_ = 'hf-internal-testing/tiny-random-bert'
BertConfig.from_pretrained(_lowerCAmelCase )
BertModel.from_pretrained(_lowerCAmelCase )
BertTokenizer.from_pretrained(_lowerCAmelCase )
pipeline(task='fill-mask' , model=_lowerCAmelCase )
# baseline - just load from_pretrained with normal network
SCREAMING_SNAKE_CASE_ = [sys.executable, '-c', '\n'.join([load, run, mock] )]
# should succeed
SCREAMING_SNAKE_CASE_ = self.get_env()
# should succeed as TRANSFORMERS_OFFLINE=1 tells it to use local files
SCREAMING_SNAKE_CASE_ = '1'
SCREAMING_SNAKE_CASE_ = subprocess.run(_lowerCAmelCase , env=_lowerCAmelCase , check=_lowerCAmelCase , capture_output=_lowerCAmelCase )
self.assertEqual(result.returncode , 0 , result.stderr )
self.assertIn('success' , result.stdout.decode() )
@require_torch
def lowerCAmelCase_ ( self : Tuple ):
# python one-liner segments
# this must be loaded before socket.socket is monkey-patched
SCREAMING_SNAKE_CASE_ = '\nfrom transformers import BertConfig, BertModel, BertTokenizer, pipeline\n '
SCREAMING_SNAKE_CASE_ = '\nmname = "hf-internal-testing/tiny-random-bert"\nBertConfig.from_pretrained(mname)\nBertModel.from_pretrained(mname)\nBertTokenizer.from_pretrained(mname)\npipe = pipeline(task="fill-mask", model=mname)\nprint("success")\n '
SCREAMING_SNAKE_CASE_ = '\nimport socket\ndef offline_socket(*args, **kwargs): raise socket.error("Faking flaky internet")\nsocket.socket = offline_socket\n '
# Force fetching the files so that we can use the cache
SCREAMING_SNAKE_CASE_ = 'hf-internal-testing/tiny-random-bert'
BertConfig.from_pretrained(_lowerCAmelCase )
BertModel.from_pretrained(_lowerCAmelCase )
BertTokenizer.from_pretrained(_lowerCAmelCase )
pipeline(task='fill-mask' , model=_lowerCAmelCase )
# baseline - just load from_pretrained with normal network
SCREAMING_SNAKE_CASE_ = [sys.executable, '-c', '\n'.join([load, run, mock] )]
# should succeed
SCREAMING_SNAKE_CASE_ = self.get_env()
SCREAMING_SNAKE_CASE_ = subprocess.run(_lowerCAmelCase , env=_lowerCAmelCase , check=_lowerCAmelCase , capture_output=_lowerCAmelCase )
self.assertEqual(result.returncode , 0 , result.stderr )
self.assertIn('success' , result.stdout.decode() )
@require_torch
def lowerCAmelCase_ ( self : List[str] ):
# this test is a bit tricky since TRANSFORMERS_OFFLINE can only be changed before
# `transformers` is loaded, and it's too late for inside pytest - so we are changing it
# while running an external program
# python one-liner segments
# this must be loaded before socket.socket is monkey-patched
SCREAMING_SNAKE_CASE_ = '\nfrom transformers import BertConfig, BertModel, BertTokenizer\n '
SCREAMING_SNAKE_CASE_ = '\nmname = "hf-internal-testing/tiny-random-bert-sharded"\nBertConfig.from_pretrained(mname)\nBertModel.from_pretrained(mname)\nprint("success")\n '
SCREAMING_SNAKE_CASE_ = '\nimport socket\ndef offline_socket(*args, **kwargs): raise ValueError("Offline mode is enabled")\nsocket.socket = offline_socket\n '
# baseline - just load from_pretrained with normal network
SCREAMING_SNAKE_CASE_ = [sys.executable, '-c', '\n'.join([load, run] )]
# should succeed
SCREAMING_SNAKE_CASE_ = self.get_env()
SCREAMING_SNAKE_CASE_ = subprocess.run(_lowerCAmelCase , env=_lowerCAmelCase , check=_lowerCAmelCase , capture_output=_lowerCAmelCase )
self.assertEqual(result.returncode , 0 , result.stderr )
self.assertIn('success' , result.stdout.decode() )
# next emulate no network
SCREAMING_SNAKE_CASE_ = [sys.executable, '-c', '\n'.join([load, mock, run] )]
# Doesn't fail anymore since the model is in the cache due to other tests, so commenting this.
# env["TRANSFORMERS_OFFLINE"] = "0"
# result = subprocess.run(cmd, env=env, check=False, capture_output=True)
# self.assertEqual(result.returncode, 1, result.stderr)
# should succeed as TRANSFORMERS_OFFLINE=1 tells it to use local files
SCREAMING_SNAKE_CASE_ = '1'
SCREAMING_SNAKE_CASE_ = subprocess.run(_lowerCAmelCase , env=_lowerCAmelCase , check=_lowerCAmelCase , capture_output=_lowerCAmelCase )
self.assertEqual(result.returncode , 0 , result.stderr )
self.assertIn('success' , result.stdout.decode() )
@require_torch
def lowerCAmelCase_ ( self : Any ):
SCREAMING_SNAKE_CASE_ = '\nfrom transformers import pipeline\n '
SCREAMING_SNAKE_CASE_ = '\nmname = "hf-internal-testing/tiny-random-bert"\npipe = pipeline(model=mname)\n '
SCREAMING_SNAKE_CASE_ = '\nimport socket\ndef offline_socket(*args, **kwargs): raise socket.error("Offline mode is enabled")\nsocket.socket = offline_socket\n '
SCREAMING_SNAKE_CASE_ = self.get_env()
SCREAMING_SNAKE_CASE_ = '1'
SCREAMING_SNAKE_CASE_ = [sys.executable, '-c', '\n'.join([load, mock, run] )]
SCREAMING_SNAKE_CASE_ = subprocess.run(_lowerCAmelCase , env=_lowerCAmelCase , check=_lowerCAmelCase , capture_output=_lowerCAmelCase )
self.assertEqual(result.returncode , 1 , result.stderr )
self.assertIn(
'You cannot infer task automatically within `pipeline` when using offline mode' , result.stderr.decode().replace('\n' , '' ) , )
@require_torch
def lowerCAmelCase_ ( self : Optional[int] ):
SCREAMING_SNAKE_CASE_ = '\nfrom transformers import AutoModel\n '
SCREAMING_SNAKE_CASE_ = '\nmname = "hf-internal-testing/test_dynamic_model"\nAutoModel.from_pretrained(mname, trust_remote_code=True)\nprint("success")\n '
# baseline - just load from_pretrained with normal network
SCREAMING_SNAKE_CASE_ = [sys.executable, '-c', '\n'.join([load, run] )]
# should succeed
SCREAMING_SNAKE_CASE_ = self.get_env()
SCREAMING_SNAKE_CASE_ = subprocess.run(_lowerCAmelCase , env=_lowerCAmelCase , check=_lowerCAmelCase , capture_output=_lowerCAmelCase )
self.assertEqual(result.returncode , 0 , result.stderr )
self.assertIn('success' , result.stdout.decode() )
# should succeed as TRANSFORMERS_OFFLINE=1 tells it to use local files
SCREAMING_SNAKE_CASE_ = '1'
SCREAMING_SNAKE_CASE_ = subprocess.run(_lowerCAmelCase , env=_lowerCAmelCase , check=_lowerCAmelCase , capture_output=_lowerCAmelCase )
self.assertEqual(result.returncode , 0 , result.stderr )
self.assertIn('success' , result.stdout.decode() ) | 31 | 0 |
import unittest
from transformers import is_torch_available
from transformers.testing_utils import require_torch
if is_torch_available():
import torch
from transformers.generation import DisjunctiveConstraint
@require_torch
class _snake_case ( unittest.TestCase ):
def SCREAMING_SNAKE_CASE__ ( self) -> Dict:
# For consistency across different places the DisjunctiveConstraint is called,
# dc.token_ids is a list of integers. It is also initialized only by integers.
SCREAMING_SNAKE_CASE = [[1, 2, 4], [1, 2, 3, 4]]
SCREAMING_SNAKE_CASE = DisjunctiveConstraint(a)
self.assertTrue(isinstance(dc.token_ids , a))
with self.assertRaises(a):
DisjunctiveConstraint(torch.LongTensor([[1, 2, 4], [1, 2, 3]]))
with self.assertRaises(a):
DisjunctiveConstraint([torch.LongTensor([1, 2, 4]), torch.LongTensor([1, 2, 3, 4, 5])])
def SCREAMING_SNAKE_CASE__ ( self) -> int:
# We can't have constraints that are complete subsets of another. This leads to a preverse
# interpretation of "constraint fulfillment": does generating [1,2,3] fulfill the constraint?
# It would mean that it generated [1,2] which fulfills it, but it's in the middle of potentially
# fulfilling [1,2,3,4]. If we believe that [1,2,3] does fulfill the constraint, then the algorithm
# will necessarily never reach [1,2,3,4], giving users a false sense of control (better to just not allow it).
SCREAMING_SNAKE_CASE = [[1, 2], [1, 2, 3, 4]]
with self.assertRaises(a):
DisjunctiveConstraint(a) # fails here
def SCREAMING_SNAKE_CASE__ ( self) -> Union[str, Any]:
SCREAMING_SNAKE_CASE = [[1, 2, 3], [1, 2, 4]]
SCREAMING_SNAKE_CASE = DisjunctiveConstraint(a)
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = dc.update(1)
SCREAMING_SNAKE_CASE = stepped is True and completed is False and reset is False
self.assertTrue(a)
self.assertTrue(not dc.completed)
self.assertTrue(dc.current_seq == [1])
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = dc.update(2)
SCREAMING_SNAKE_CASE = stepped is True and completed is False and reset is False
self.assertTrue(a)
self.assertTrue(not dc.completed)
self.assertTrue(dc.current_seq == [1, 2])
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = dc.update(3)
SCREAMING_SNAKE_CASE = stepped is True and completed is True and reset is False
self.assertTrue(a)
self.assertTrue(dc.completed) # Completed!
self.assertTrue(dc.current_seq == [1, 2, 3])
def SCREAMING_SNAKE_CASE__ ( self) -> List[str]:
SCREAMING_SNAKE_CASE = [[1, 2, 3], [1, 2, 4, 5], [1, 2, 5]]
SCREAMING_SNAKE_CASE = DisjunctiveConstraint(a)
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = dc.update(1)
self.assertTrue(not dc.completed)
self.assertTrue(dc.current_seq == [1])
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = dc.update(2)
self.assertTrue(not dc.completed)
self.assertTrue(dc.current_seq == [1, 2])
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = dc.update(4)
self.assertTrue(not dc.completed)
self.assertTrue(dc.current_seq == [1, 2, 4])
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = dc.update(5)
self.assertTrue(dc.completed) # Completed!
self.assertTrue(dc.current_seq == [1, 2, 4, 5])
dc.reset()
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = dc.update(1)
self.assertTrue(not dc.completed)
self.assertTrue(dc.remaining() == 3)
self.assertTrue(dc.current_seq == [1])
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = dc.update(2)
self.assertTrue(not dc.completed)
self.assertTrue(dc.remaining() == 2)
self.assertTrue(dc.current_seq == [1, 2])
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = dc.update(5)
self.assertTrue(dc.completed) # Completed!
self.assertTrue(dc.remaining() == 0)
self.assertTrue(dc.current_seq == [1, 2, 5])
| 73 |
import torch
from transformers import PreTrainedModel, XLMRobertaConfig, XLMRobertaModel
class lowerCamelCase_ ( _SCREAMING_SNAKE_CASE ):
'''simple docstring'''
lowercase_ = "M-CLIP"
def __init__( self : Tuple , _lowerCAmelCase : List[str]=1_024 , _lowerCAmelCase : str=768 , **_lowerCAmelCase : Union[str, Any] ):
SCREAMING_SNAKE_CASE_ = transformerDimSize
SCREAMING_SNAKE_CASE_ = imageDimSize
super().__init__(**_lowerCAmelCase )
class lowerCamelCase_ ( _SCREAMING_SNAKE_CASE ):
'''simple docstring'''
lowercase_ = MCLIPConfig
def __init__( self : Dict , _lowerCAmelCase : Union[str, Any] , *_lowerCAmelCase : str , **_lowerCAmelCase : str ):
super().__init__(_lowerCAmelCase , *_lowerCAmelCase , **_lowerCAmelCase )
SCREAMING_SNAKE_CASE_ = XLMRobertaModel(_lowerCAmelCase )
SCREAMING_SNAKE_CASE_ = torch.nn.Linear(
in_features=config.transformerDimensions , out_features=config.numDims )
def lowerCAmelCase_ ( self : List[Any] , _lowerCAmelCase : Any , _lowerCAmelCase : Union[str, Any] ):
SCREAMING_SNAKE_CASE_ = self.transformer(input_ids=_lowerCAmelCase , attention_mask=_lowerCAmelCase )[0]
SCREAMING_SNAKE_CASE_ = (embs * attention_mask.unsqueeze(2 )).sum(dim=1 ) / attention_mask.sum(dim=1 )[:, None]
return self.LinearTransformation(_lowerCAmelCase ), embs | 31 | 0 |
import warnings
from typing import Any, Dict, List, Optional, Union
import numpy as np
from ...audio_utils import mel_filter_bank, optimal_fft_length, spectrogram, window_function
from ...feature_extraction_sequence_utils import SequenceFeatureExtractor
from ...feature_extraction_utils import BatchFeature
from ...utils import PaddingStrategy, TensorType, logging
lowercase_ = logging.get_logger(__name__)
class __UpperCamelCase ( lowerCAmelCase__ ):
"""simple docstring"""
lowerCAmelCase_ = ['''input_values''', '''attention_mask''']
def __init__( self : Tuple , _A : int = 1 , _A : int = 1_6000 , _A : float = 0.0 , _A : bool = False , _A : int = 80 , _A : int = 16 , _A : int = 64 , _A : str = "hann_window" , _A : float = 1.0 , _A : float = 80 , _A : float = 7600 , _A : float = 1e-10 , _A : int = 2 , _A : bool = True , **_A : Optional[Any] , ):
"""simple docstring"""
super().__init__(feature_size=_A , sampling_rate=_A , padding_value=_A , **_A )
__SCREAMING_SNAKE_CASE : List[Any] = do_normalize
__SCREAMING_SNAKE_CASE : Optional[Any] = return_attention_mask
__SCREAMING_SNAKE_CASE : Optional[Any] = num_mel_bins
__SCREAMING_SNAKE_CASE : Dict = hop_length
__SCREAMING_SNAKE_CASE : Any = win_length
__SCREAMING_SNAKE_CASE : Union[str, Any] = win_function
__SCREAMING_SNAKE_CASE : str = frame_signal_scale
__SCREAMING_SNAKE_CASE : Tuple = fmin
__SCREAMING_SNAKE_CASE : Any = fmax
__SCREAMING_SNAKE_CASE : Dict = mel_floor
__SCREAMING_SNAKE_CASE : Union[str, Any] = reduction_factor
__SCREAMING_SNAKE_CASE : List[str] = win_length * sampling_rate // 1000
__SCREAMING_SNAKE_CASE : List[Any] = hop_length * sampling_rate // 1000
__SCREAMING_SNAKE_CASE : Union[str, Any] = optimal_fft_length(self.sample_size )
__SCREAMING_SNAKE_CASE : str = (self.n_fft // 2) + 1
__SCREAMING_SNAKE_CASE : Optional[int] = window_function(window_length=self.sample_size , name=self.win_function , periodic=_A )
__SCREAMING_SNAKE_CASE : Optional[int] = mel_filter_bank(
num_frequency_bins=self.n_freqs , num_mel_filters=self.num_mel_bins , min_frequency=self.fmin , max_frequency=self.fmax , sampling_rate=self.sampling_rate , norm='''slaney''' , mel_scale='''slaney''' , )
if frame_signal_scale != 1.0:
warnings.warn(
'''The argument `frame_signal_scale` is deprecated and will be removed in version 4.30.0 of Transformers''' , _A , )
if reduction_factor != 2.0:
warnings.warn(
'''The argument `reduction_factor` is deprecated and will be removed in version 4.30.0 of Transformers''' , _A , )
@staticmethod
# Copied from transformers.models.wav2vec2.feature_extraction_wav2vec2.Wav2Vec2FeatureExtractor.zero_mean_unit_var_norm
def UpperCAmelCase__ ( _A : List[np.ndarray] , _A : List[np.ndarray] , _A : float = 0.0 ):
"""simple docstring"""
if attention_mask is not None:
__SCREAMING_SNAKE_CASE : Optional[int] = np.array(_A , np.intaa )
__SCREAMING_SNAKE_CASE : List[Any] = []
for vector, length in zip(_A , attention_mask.sum(-1 ) ):
__SCREAMING_SNAKE_CASE : Tuple = (vector - vector[:length].mean()) / np.sqrt(vector[:length].var() + 1e-7 )
if length < normed_slice.shape[0]:
__SCREAMING_SNAKE_CASE : Any = padding_value
normed_input_values.append(_A )
else:
__SCREAMING_SNAKE_CASE : int = [(x - x.mean()) / np.sqrt(x.var() + 1e-7 ) for x in input_values]
return normed_input_values
def UpperCAmelCase__ ( self : Any , _A : np.ndarray , ):
"""simple docstring"""
__SCREAMING_SNAKE_CASE : str = spectrogram(
_A , window=self.window , frame_length=self.sample_size , hop_length=self.sample_stride , fft_length=self.n_fft , mel_filters=self.mel_filters , mel_floor=self.mel_floor , log_mel='''log10''' , )
return log_mel_spec.T
def __call__( self : Dict , _A : Optional[Union[np.ndarray, List[float], List[np.ndarray], List[List[float]]]] = None , _A : Optional[Union[np.ndarray, List[float], List[np.ndarray], List[List[float]]]] = None , _A : Union[bool, str, PaddingStrategy] = False , _A : Optional[int] = None , _A : bool = False , _A : Optional[int] = None , _A : Optional[bool] = None , _A : Optional[Union[str, TensorType]] = None , _A : Optional[int] = None , **_A : str , ):
"""simple docstring"""
if audio is None and audio_target is None:
raise ValueError('''You must provide either `audio` or `audio_target` values.''' )
if sampling_rate is not None:
if sampling_rate != self.sampling_rate:
raise ValueError(
F'''The model corresponding to this feature extractor: {self} was trained using a sampling rate of'''
F''' {self.sampling_rate}. Please make sure that the provided audio input was sampled with'''
F''' {self.sampling_rate} and not {sampling_rate}.''' )
else:
logger.warning(
'''It is strongly recommended to pass the ``sampling_rate`` argument to this function. '''
'''Failing to do so can result in silent errors that might be hard to debug.''' )
if audio is not None:
__SCREAMING_SNAKE_CASE : str = self._process_audio(
_A , _A , _A , _A , _A , _A , _A , _A , **_A , )
else:
__SCREAMING_SNAKE_CASE : Union[str, Any] = None
if audio_target is not None:
__SCREAMING_SNAKE_CASE : List[Any] = self._process_audio(
_A , _A , _A , _A , _A , _A , _A , _A , **_A , )
if inputs is None:
return inputs_target
else:
__SCREAMING_SNAKE_CASE : str = inputs_target['''input_values''']
__SCREAMING_SNAKE_CASE : Dict = inputs_target.get('''attention_mask''' )
if decoder_attention_mask is not None:
__SCREAMING_SNAKE_CASE : Tuple = decoder_attention_mask
return inputs
def UpperCAmelCase__ ( self : Tuple , _A : Union[np.ndarray, List[float], List[np.ndarray], List[List[float]]] , _A : bool = False , _A : Union[bool, str, PaddingStrategy] = False , _A : Optional[int] = None , _A : bool = False , _A : Optional[int] = None , _A : Optional[bool] = None , _A : Optional[Union[str, TensorType]] = None , **_A : str , ):
"""simple docstring"""
__SCREAMING_SNAKE_CASE : List[str] = isinstance(_A , np.ndarray ) and len(speech.shape ) > 1
if is_batched_numpy and len(speech.shape ) > 2:
raise ValueError(F'''Only mono-channel audio is supported for input to {self}''' )
__SCREAMING_SNAKE_CASE : int = is_batched_numpy or (
isinstance(_A , (list, tuple) ) and (isinstance(speech[0] , (np.ndarray, tuple, list) ))
)
if is_batched:
__SCREAMING_SNAKE_CASE : Tuple = [np.asarray(_A , dtype=np.floataa ) for speech in speech]
elif not is_batched and not isinstance(_A , np.ndarray ):
__SCREAMING_SNAKE_CASE : Any = np.asarray(_A , dtype=np.floataa )
elif isinstance(_A , np.ndarray ) and speech.dtype is np.dtype(np.floataa ):
__SCREAMING_SNAKE_CASE : Tuple = speech.astype(np.floataa )
# always return batch
if not is_batched:
__SCREAMING_SNAKE_CASE : Optional[int] = [speech]
# needed to make pad() work on spectrogram inputs
__SCREAMING_SNAKE_CASE : Union[str, Any] = self.feature_size
# convert into correct format for padding
if is_target:
__SCREAMING_SNAKE_CASE : Tuple = [self._extract_mel_features(_A ) for waveform in speech]
__SCREAMING_SNAKE_CASE : Tuple = BatchFeature({'''input_values''': features} )
__SCREAMING_SNAKE_CASE : Any = self.num_mel_bins
else:
__SCREAMING_SNAKE_CASE : Dict = BatchFeature({'''input_values''': speech} )
__SCREAMING_SNAKE_CASE : Dict = self.pad(
_A , padding=_A , max_length=_A , truncation=_A , pad_to_multiple_of=_A , return_attention_mask=_A , **_A , )
__SCREAMING_SNAKE_CASE : List[Any] = feature_size_hack
# convert input values to correct format
__SCREAMING_SNAKE_CASE : str = padded_inputs['''input_values''']
if not isinstance(input_values[0] , np.ndarray ):
__SCREAMING_SNAKE_CASE : Any = [np.asarray(_A , dtype=np.floataa ) for array in input_values]
elif (
not isinstance(_A , np.ndarray )
and isinstance(input_values[0] , np.ndarray )
and input_values[0].dtype is np.dtype(np.floataa )
):
__SCREAMING_SNAKE_CASE : List[Any] = [array.astype(np.floataa ) for array in input_values]
elif isinstance(_A , np.ndarray ) and input_values.dtype is np.dtype(np.floataa ):
__SCREAMING_SNAKE_CASE : Any = input_values.astype(np.floataa )
# convert attention_mask to correct format
__SCREAMING_SNAKE_CASE : List[str] = padded_inputs.get('''attention_mask''' )
if attention_mask is not None:
__SCREAMING_SNAKE_CASE : Union[str, Any] = [np.asarray(_A , dtype=np.intaa ) for array in attention_mask]
# zero-mean and unit-variance normalization
if not is_target and self.do_normalize:
__SCREAMING_SNAKE_CASE : Optional[Any] = (
attention_mask
if self._get_padding_strategies(_A , max_length=_A ) is not PaddingStrategy.DO_NOT_PAD
else None
)
__SCREAMING_SNAKE_CASE : List[str] = self.zero_mean_unit_var_norm(
padded_inputs['''input_values'''] , attention_mask=_A , padding_value=self.padding_value )
if return_tensors is not None:
__SCREAMING_SNAKE_CASE : str = padded_inputs.convert_to_tensors(_A )
return padded_inputs
def UpperCAmelCase__ ( self : Union[str, Any] ):
"""simple docstring"""
__SCREAMING_SNAKE_CASE : str = super().to_dict()
# Don't serialize these as they are derived from the other properties.
__SCREAMING_SNAKE_CASE : int = ['''window''', '''mel_filters''', '''sample_size''', '''sample_stride''', '''n_fft''', '''n_freqs''']
for name in names:
if name in output:
del output[name]
return output
| 74 |
import gc
import random
import unittest
import numpy as np
import torch
from transformers import XLMRobertaTokenizer
from diffusers import (
AltDiffusionImgaImgPipeline,
AutoencoderKL,
PNDMScheduler,
UNetaDConditionModel,
)
from diffusers.image_processor import VaeImageProcessor
from diffusers.pipelines.alt_diffusion.modeling_roberta_series import (
RobertaSeriesConfig,
RobertaSeriesModelWithTransformation,
)
from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device
from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu
enable_full_determinism()
class lowerCamelCase_ ( unittest.TestCase ):
'''simple docstring'''
def lowerCAmelCase_ ( self : str ):
# clean up the VRAM after each test
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
@property
def lowerCAmelCase_ ( self : Union[str, Any] ):
SCREAMING_SNAKE_CASE_ = 1
SCREAMING_SNAKE_CASE_ = 3
SCREAMING_SNAKE_CASE_ = (32, 32)
SCREAMING_SNAKE_CASE_ = floats_tensor((batch_size, num_channels) + sizes , rng=random.Random(0 ) ).to(_lowerCAmelCase )
return image
@property
def lowerCAmelCase_ ( self : Union[str, Any] ):
torch.manual_seed(0 )
SCREAMING_SNAKE_CASE_ = UNetaDConditionModel(
block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=('DownBlock2D', 'CrossAttnDownBlock2D') , up_block_types=('CrossAttnUpBlock2D', 'UpBlock2D') , cross_attention_dim=32 , )
return model
@property
def lowerCAmelCase_ ( self : Tuple ):
torch.manual_seed(0 )
SCREAMING_SNAKE_CASE_ = AutoencoderKL(
block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=['DownEncoderBlock2D', 'DownEncoderBlock2D'] , up_block_types=['UpDecoderBlock2D', 'UpDecoderBlock2D'] , latent_channels=4 , )
return model
@property
def lowerCAmelCase_ ( self : Optional[int] ):
torch.manual_seed(0 )
SCREAMING_SNAKE_CASE_ = RobertaSeriesConfig(
hidden_size=32 , project_dim=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=5_006 , )
return RobertaSeriesModelWithTransformation(_lowerCAmelCase )
@property
def lowerCAmelCase_ ( self : List[Any] ):
def extract(*_lowerCAmelCase : Optional[int] , **_lowerCAmelCase : str ):
class lowerCamelCase_ :
'''simple docstring'''
def __init__( self : str ):
SCREAMING_SNAKE_CASE_ = torch.ones([0] )
def lowerCAmelCase_ ( self : Union[str, Any] , _lowerCAmelCase : int ):
self.pixel_values.to(_lowerCAmelCase )
return self
return Out()
return extract
def lowerCAmelCase_ ( self : Optional[Any] ):
SCREAMING_SNAKE_CASE_ = 'cpu' # ensure determinism for the device-dependent torch.Generator
SCREAMING_SNAKE_CASE_ = self.dummy_cond_unet
SCREAMING_SNAKE_CASE_ = PNDMScheduler(skip_prk_steps=_lowerCAmelCase )
SCREAMING_SNAKE_CASE_ = self.dummy_vae
SCREAMING_SNAKE_CASE_ = self.dummy_text_encoder
SCREAMING_SNAKE_CASE_ = XLMRobertaTokenizer.from_pretrained('hf-internal-testing/tiny-xlm-roberta' )
SCREAMING_SNAKE_CASE_ = 77
SCREAMING_SNAKE_CASE_ = self.dummy_image.to(_lowerCAmelCase )
SCREAMING_SNAKE_CASE_ = init_image / 2 + 0.5
# make sure here that pndm scheduler skips prk
SCREAMING_SNAKE_CASE_ = AltDiffusionImgaImgPipeline(
unet=_lowerCAmelCase , scheduler=_lowerCAmelCase , vae=_lowerCAmelCase , text_encoder=_lowerCAmelCase , tokenizer=_lowerCAmelCase , safety_checker=_lowerCAmelCase , feature_extractor=self.dummy_extractor , )
SCREAMING_SNAKE_CASE_ = VaeImageProcessor(vae_scale_factor=alt_pipe.vae_scale_factor , do_normalize=_lowerCAmelCase )
SCREAMING_SNAKE_CASE_ = alt_pipe.to(_lowerCAmelCase )
alt_pipe.set_progress_bar_config(disable=_lowerCAmelCase )
SCREAMING_SNAKE_CASE_ = 'A painting of a squirrel eating a burger'
SCREAMING_SNAKE_CASE_ = torch.Generator(device=_lowerCAmelCase ).manual_seed(0 )
SCREAMING_SNAKE_CASE_ = alt_pipe(
[prompt] , generator=_lowerCAmelCase , guidance_scale=6.0 , num_inference_steps=2 , output_type='np' , image=_lowerCAmelCase , )
SCREAMING_SNAKE_CASE_ = output.images
SCREAMING_SNAKE_CASE_ = torch.Generator(device=_lowerCAmelCase ).manual_seed(0 )
SCREAMING_SNAKE_CASE_ = alt_pipe(
[prompt] , generator=_lowerCAmelCase , guidance_scale=6.0 , num_inference_steps=2 , output_type='np' , image=_lowerCAmelCase , return_dict=_lowerCAmelCase , )[0]
SCREAMING_SNAKE_CASE_ = image[0, -3:, -3:, -1]
SCREAMING_SNAKE_CASE_ = image_from_tuple[0, -3:, -3:, -1]
assert image.shape == (1, 32, 32, 3)
SCREAMING_SNAKE_CASE_ = np.array([0.4427, 0.3731, 0.4249, 0.4941, 0.4546, 0.4148, 0.4193, 0.4666, 0.4499] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 5E-3
assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 5E-3
@unittest.skipIf(torch_device != 'cuda' , 'This test requires a GPU' )
def lowerCAmelCase_ ( self : Tuple ):
SCREAMING_SNAKE_CASE_ = self.dummy_cond_unet
SCREAMING_SNAKE_CASE_ = PNDMScheduler(skip_prk_steps=_lowerCAmelCase )
SCREAMING_SNAKE_CASE_ = self.dummy_vae
SCREAMING_SNAKE_CASE_ = self.dummy_text_encoder
SCREAMING_SNAKE_CASE_ = XLMRobertaTokenizer.from_pretrained('hf-internal-testing/tiny-xlm-roberta' )
SCREAMING_SNAKE_CASE_ = 77
SCREAMING_SNAKE_CASE_ = self.dummy_image.to(_lowerCAmelCase )
# put models in fp16
SCREAMING_SNAKE_CASE_ = unet.half()
SCREAMING_SNAKE_CASE_ = vae.half()
SCREAMING_SNAKE_CASE_ = bert.half()
# make sure here that pndm scheduler skips prk
SCREAMING_SNAKE_CASE_ = AltDiffusionImgaImgPipeline(
unet=_lowerCAmelCase , scheduler=_lowerCAmelCase , vae=_lowerCAmelCase , text_encoder=_lowerCAmelCase , tokenizer=_lowerCAmelCase , safety_checker=_lowerCAmelCase , feature_extractor=self.dummy_extractor , )
SCREAMING_SNAKE_CASE_ = VaeImageProcessor(vae_scale_factor=alt_pipe.vae_scale_factor , do_normalize=_lowerCAmelCase )
SCREAMING_SNAKE_CASE_ = alt_pipe.to(_lowerCAmelCase )
alt_pipe.set_progress_bar_config(disable=_lowerCAmelCase )
SCREAMING_SNAKE_CASE_ = 'A painting of a squirrel eating a burger'
SCREAMING_SNAKE_CASE_ = torch.manual_seed(0 )
SCREAMING_SNAKE_CASE_ = alt_pipe(
[prompt] , generator=_lowerCAmelCase , num_inference_steps=2 , output_type='np' , image=_lowerCAmelCase , ).images
assert image.shape == (1, 32, 32, 3)
@unittest.skipIf(torch_device != 'cuda' , 'This test requires a GPU' )
def lowerCAmelCase_ ( self : str ):
SCREAMING_SNAKE_CASE_ = load_image(
'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main'
'/img2img/sketch-mountains-input.jpg' )
# resize to resolution that is divisible by 8 but not 16 or 32
SCREAMING_SNAKE_CASE_ = init_image.resize((760, 504) )
SCREAMING_SNAKE_CASE_ = 'BAAI/AltDiffusion'
SCREAMING_SNAKE_CASE_ = AltDiffusionImgaImgPipeline.from_pretrained(
_lowerCAmelCase , safety_checker=_lowerCAmelCase , )
pipe.to(_lowerCAmelCase )
pipe.set_progress_bar_config(disable=_lowerCAmelCase )
pipe.enable_attention_slicing()
SCREAMING_SNAKE_CASE_ = 'A fantasy landscape, trending on artstation'
SCREAMING_SNAKE_CASE_ = torch.manual_seed(0 )
SCREAMING_SNAKE_CASE_ = pipe(
prompt=_lowerCAmelCase , image=_lowerCAmelCase , strength=0.75 , guidance_scale=7.5 , generator=_lowerCAmelCase , output_type='np' , )
SCREAMING_SNAKE_CASE_ = output.images[0]
SCREAMING_SNAKE_CASE_ = image[255:258, 383:386, -1]
assert image.shape == (504, 760, 3)
SCREAMING_SNAKE_CASE_ = np.array([0.9358, 0.9397, 0.9599, 0.9901, 1.0000, 1.0000, 0.9882, 1.0000, 1.0000] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
@slow
@require_torch_gpu
class lowerCamelCase_ ( unittest.TestCase ):
'''simple docstring'''
def lowerCAmelCase_ ( self : str ):
# clean up the VRAM after each test
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def lowerCAmelCase_ ( self : int ):
SCREAMING_SNAKE_CASE_ = load_image(
'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main'
'/img2img/sketch-mountains-input.jpg' )
SCREAMING_SNAKE_CASE_ = init_image.resize((768, 512) )
SCREAMING_SNAKE_CASE_ = load_numpy(
'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/img2img/fantasy_landscape_alt.npy' )
SCREAMING_SNAKE_CASE_ = 'BAAI/AltDiffusion'
SCREAMING_SNAKE_CASE_ = AltDiffusionImgaImgPipeline.from_pretrained(
_lowerCAmelCase , safety_checker=_lowerCAmelCase , )
pipe.to(_lowerCAmelCase )
pipe.set_progress_bar_config(disable=_lowerCAmelCase )
pipe.enable_attention_slicing()
SCREAMING_SNAKE_CASE_ = 'A fantasy landscape, trending on artstation'
SCREAMING_SNAKE_CASE_ = torch.manual_seed(0 )
SCREAMING_SNAKE_CASE_ = pipe(
prompt=_lowerCAmelCase , image=_lowerCAmelCase , strength=0.75 , guidance_scale=7.5 , generator=_lowerCAmelCase , output_type='np' , )
SCREAMING_SNAKE_CASE_ = output.images[0]
assert image.shape == (512, 768, 3)
# img2img is flaky across GPUs even in fp32, so using MAE here
assert np.abs(expected_image - image ).max() < 1E-2 | 31 | 0 |
'''simple docstring'''
import unittest
from transformers import JukeboxTokenizer
from transformers.testing_utils import require_torch
class lowerCamelCase_ ( unittest.TestCase ):
lowerCAmelCase__ = JukeboxTokenizer
lowerCAmelCase__ = {
'artist': 'Zac Brown Band',
'genres': 'Country',
'lyrics': 'I met a traveller from an antique land,\n Who said "Two vast and trunkless legs of stone\n Stand in the desert. . . . Near them, on the sand,\n Half sunk a shattered visage lies, whose frown,\n And wrinkled lip, and sneer of cold command,\n Tell that its sculptor well those passions read\n Which yet survive, stamped on these lifeless things,\n The hand that mocked them, and the heart that fed;\n And on the pedestal, these words appear:\n My name is Ozymandias, King of Kings;\n Look on my Works, ye Mighty, and despair!\n Nothing beside remains. Round the decay\n Of that colossal Wreck, boundless and bare\n The lone and level sands stretch far away\n ',
}
@require_torch
def lowercase_ ( self : Optional[Any] ):
'''simple docstring'''
import torch
UpperCAmelCase__ : Optional[int] = JukeboxTokenizer.from_pretrained('''openai/jukebox-1b-lyrics''' )
UpperCAmelCase__ : List[Any] = tokenizer(**self.metas )['''input_ids''']
# fmt: off
UpperCAmelCase__ : List[str] = [
torch.tensor([[
0, 0, 0, 7_169, 507, 9, 76, 39, 31, 46, 76, 27,
76, 46, 44, 27, 48, 31, 38, 38, 31, 44, 76, 32,
44, 41, 39, 76, 27, 40, 76, 27, 40, 46, 35, 43,
47, 31, 76, 38, 27, 40, 30, 64, 78, 76, 76, 76,
76, 76, 76, 76, 76, 23, 34, 41, 76, 45, 27, 35,
30, 76, 71, 20, 49, 41, 76, 48, 27, 45, 46, 76,
27, 40, 30, 76, 46, 44, 47, 40, 37, 38, 31, 45,
45, 76, 38, 31, 33, 45, 76, 41, 32, 76, 45, 46,
41, 40, 31, 78, 76, 76, 76, 76, 76, 76, 76, 76,
19, 46, 27, 40, 30, 76, 35, 40, 76, 46, 34, 31,
76, 30, 31, 45, 31, 44, 46, 63, 76, 63, 76, 63,
76, 63, 76, 14, 31, 27, 44, 76, 46, 34, 31, 39,
64, 76, 41, 40, 76, 46, 34, 31, 76, 45, 27, 40,
30, 64, 78, 76, 76, 76, 76, 76, 76, 76, 76, 8,
27, 38, 32, 76, 45, 47, 40, 37, 76, 27, 76, 45,
34, 27, 46, 46, 31, 44, 31, 30, 76, 48, 35, 45,
27, 33, 31, 76, 38, 35, 31, 45, 64, 76, 49, 34,
41, 45, 31, 76, 32, 44, 41, 49, 40, 64, 78, 76,
76, 76, 76, 76, 76, 76, 76, 1, 40, 30, 76, 49,
44, 35, 40, 37, 38, 31, 30, 76, 38, 35, 42, 64,
76, 27, 40, 30, 76, 45, 40, 31, 31, 44, 76, 41,
32, 76, 29, 41, 38, 30, 76, 29, 41, 39, 39, 27,
40, 30, 64, 78, 76, 76, 76, 76, 76, 76, 76, 76,
20, 31, 38, 38, 76, 46, 34, 27, 46, 76, 35, 46,
45, 76, 45, 29, 47, 38, 42, 46, 41, 44, 76, 49,
31, 38, 38, 76, 46, 34, 41, 45, 31, 76, 42, 27,
45, 45, 35, 41, 40, 45, 76, 44, 31, 27, 30, 78,
76, 76, 76, 76, 76, 76, 76, 76, 23, 34, 35, 29,
34, 76, 51, 31, 46, 76, 45, 47, 44, 48, 35, 48,
31, 64, 76, 45, 46, 27, 39, 42, 31, 30, 76, 41,
40, 76, 46, 34, 31, 45, 31, 76, 38, 35, 32, 31,
38, 31, 45, 45, 76, 46, 34, 35, 40, 33, 45, 64,
78, 76, 76, 76, 76, 76, 76, 76, 76, 20, 34, 31,
76, 34, 27, 40, 30, 76, 46, 34, 27, 46, 76, 39,
41, 29, 37, 31, 30, 76, 46, 34, 31, 39, 64, 76,
27, 40, 30, 76, 46, 34, 31, 76, 34, 31, 27, 44,
46, 76, 46, 34, 27, 46, 76, 32, 31, 30, 66, 78,
76, 76, 76, 76, 76, 76, 76, 76, 1, 40, 30, 76,
41, 40, 76, 46, 34, 31, 76, 42, 31, 30, 31, 45,
46, 27, 38, 64, 76, 46, 34, 31, 45, 31, 76, 49,
41, 44, 30, 45, 76, 27, 42, 42, 31, 27, 44, 65,
78, 76, 76, 76, 76, 76, 76, 76, 76, 13, 51, 76,
40, 27, 39, 31, 76, 35, 45, 76, 15, 52, 51, 39,
27, 40, 30, 35, 27, 45, 64, 76, 11, 35, 40, 33,
76, 41, 32, 76, 11, 35, 40, 33, 45, 66, 78, 76,
76, 76, 76, 76, 76, 76, 76, 12, 41, 41, 37, 76,
41, 40, 76, 39, 51, 76, 23, 41, 44, 37, 45, 64,
76, 51, 31, 76, 13, 35, 33, 34, 46, 51, 64, 76,
27, 40, 30, 76, 30, 31, 45, 42, 27, 35, 44, 67,
78, 76, 76, 76, 76, 76, 76, 76, 76, 14, 41, 46,
34, 35, 40, 33, 76, 28, 31, 45, 35, 30, 31, 76,
44, 31, 39, 27, 35, 40, 45, 63, 76, 18, 41, 47,
40, 30, 76, 46, 34, 31, 76, 30, 31, 29, 27, 51,
78, 76, 76, 76, 76, 76, 76, 76, 76, 15, 32, 76,
46, 34, 27, 46, 76, 29, 41, 38, 41, 45, 45, 27,
38, 76, 23, 44, 31, 29, 37, 64, 76, 28, 41, 47,
40, 30, 38, 31, 45, 45, 76, 27, 40, 30, 76, 28,
27, 44, 31, 78, 76, 76, 76, 76, 76, 76, 76, 76,
20, 34, 31, 76, 38, 41, 40, 31, 76, 27, 40, 30,
76, 38, 31, 48, 31, 38, 76, 45, 27, 40, 30, 45,
76, 45, 46, 44, 31, 46, 29, 34, 76, 32, 27, 44,
76, 27, 49, 27, 51, 78, 76, 76, 76, 76, 76, 76,
76, 76]] ),
torch.tensor([[0, 0, 0, 1_069, 11]] ),
torch.tensor([[0, 0, 0, 1_069, 11]] ),
]
# fmt: on
self.assertTrue(torch.allclose(tokens[0] , EXPECTED_OUTPUT[0] ) )
self.assertTrue(torch.allclose(tokens[1] , EXPECTED_OUTPUT[1] ) )
self.assertTrue(torch.allclose(tokens[2] , EXPECTED_OUTPUT[2] ) )
@require_torch
def lowercase_ ( self : Dict ):
'''simple docstring'''
import torch
UpperCAmelCase__ : Union[str, Any] = JukeboxTokenizer.from_pretrained('''openai/jukebox-5b-lyrics''' )
UpperCAmelCase__ : Optional[Any] = tokenizer(**self.metas )['''input_ids''']
# fmt: off
UpperCAmelCase__ : str = [
torch.tensor([[
0, 0, 0, 1_069, 11, -1, -1, -1, -1, 9, 77, 39,
31, 46, 77, 27, 77, 46, 44, 27, 48, 31, 38, 38,
31, 44, 77, 32, 44, 41, 39, 77, 27, 40, 77, 27,
40, 46, 35, 43, 47, 31, 77, 38, 27, 40, 30, 64,
79, 77, 77, 77, 77, 77, 77, 77, 77, 23, 34, 41,
77, 45, 27, 35, 30, 77, 72, 20, 49, 41, 77, 48,
27, 45, 46, 77, 27, 40, 30, 77, 46, 44, 47, 40,
37, 38, 31, 45, 45, 77, 38, 31, 33, 45, 77, 41,
32, 77, 45, 46, 41, 40, 31, 79, 77, 77, 77, 77,
77, 77, 77, 77, 19, 46, 27, 40, 30, 77, 35, 40,
77, 46, 34, 31, 77, 30, 31, 45, 31, 44, 46, 63,
77, 63, 77, 63, 77, 63, 77, 14, 31, 27, 44, 77,
46, 34, 31, 39, 64, 77, 41, 40, 77, 46, 34, 31,
77, 45, 27, 40, 30, 64, 79, 77, 77, 77, 77, 77,
77, 77, 77, 8, 27, 38, 32, 77, 45, 47, 40, 37,
77, 27, 77, 45, 34, 27, 46, 46, 31, 44, 31, 30,
77, 48, 35, 45, 27, 33, 31, 77, 38, 35, 31, 45,
64, 77, 49, 34, 41, 45, 31, 77, 32, 44, 41, 49,
40, 64, 79, 77, 77, 77, 77, 77, 77, 77, 77, 1,
40, 30, 77, 49, 44, 35, 40, 37, 38, 31, 30, 77,
38, 35, 42, 64, 77, 27, 40, 30, 77, 45, 40, 31,
31, 44, 77, 41, 32, 77, 29, 41, 38, 30, 77, 29,
41, 39, 39, 27, 40, 30, 64, 79, 77, 77, 77, 77,
77, 77, 77, 77, 20, 31, 38, 38, 77, 46, 34, 27,
46, 77, 35, 46, 45, 77, 45, 29, 47, 38, 42, 46,
41, 44, 77, 49, 31, 38, 38, 77, 46, 34, 41, 45,
31, 77, 42, 27, 45, 45, 35, 41, 40, 45, 77, 44,
31, 27, 30, 79, 77, 77, 77, 77, 77, 77, 77, 77,
23, 34, 35, 29, 34, 77, 51, 31, 46, 77, 45, 47,
44, 48, 35, 48, 31, 64, 77, 45, 46, 27, 39, 42,
31, 30, 77, 41, 40, 77, 46, 34, 31, 45, 31, 77,
38, 35, 32, 31, 38, 31, 45, 45, 77, 46, 34, 35,
40, 33, 45, 64, 79, 77, 77, 77, 77, 77, 77, 77,
77, 20, 34, 31, 77, 34, 27, 40, 30, 77, 46, 34,
27, 46, 77, 39, 41, 29, 37, 31, 30, 77, 46, 34,
31, 39, 64, 77, 27, 40, 30, 77, 46, 34, 31, 77,
34, 31, 27, 44, 46, 77, 46, 34, 27, 46, 77, 32,
31, 30, 66, 79, 77, 77, 77, 77, 77, 77, 77, 77,
1, 40, 30, 77, 41, 40, 77, 46, 34, 31, 77, 42,
31, 30, 31, 45, 46, 27, 38, 64, 77, 46, 34, 31,
45, 31, 77, 49, 41, 44, 30, 45, 77, 27, 42, 42,
31, 27, 44, 65, 79, 77, 77, 77, 77, 77, 77, 77,
77, 13, 51, 77, 40, 27, 39, 31, 77, 35, 45, 77,
15, 52, 51, 39, 27, 40, 30, 35, 27, 45, 64, 77,
11, 35, 40, 33, 77, 41, 32, 77, 11, 35, 40, 33,
45, 66, 79, 77, 77, 77, 77, 77, 77, 77, 77, 12,
41, 41, 37, 77, 41, 40, 77, 39, 51, 77, 23, 41,
44, 37, 45, 64, 77, 51, 31, 77, 13, 35, 33, 34,
46, 51, 64, 77, 27, 40, 30, 77, 30, 31, 45, 42,
27, 35, 44, 67, 79, 77, 77, 77, 77, 77, 77, 77,
77, 14, 41, 46, 34, 35, 40, 33, 77, 28, 31, 45,
35, 30, 31, 77, 44, 31, 39, 27, 35, 40, 45, 63,
77, 18, 41, 47, 40, 30, 77, 46, 34, 31, 77, 30,
31, 29, 27, 51, 79, 77, 77, 77, 77, 77, 77, 77,
77, 15, 32, 77, 46, 34, 27, 46, 77, 29, 41, 38,
41, 45, 45, 27, 38, 77, 23, 44, 31, 29, 37, 64,
77, 28, 41, 47, 40, 30, 38, 31, 45, 45, 77, 27,
40, 30, 77, 28, 27, 44, 31, 79, 77, 77, 77, 77,
77, 77, 77, 77, 20, 34, 31, 77, 38, 41, 40, 31,
77, 27, 40, 30, 77, 38, 31, 48, 31, 38, 77, 45,
27, 40, 30, 45, 77, 45, 46, 44, 31, 46, 29, 34,
77, 32, 27, 44, 77, 27, 49, 27, 51, 79, 77, 77,
77, 77, 77, 77, 77, 77]] ),
torch.tensor([[0, 0, 0, 1_069, 11, -1, -1, -1, -1]] ),
torch.tensor([[0, 0, 0, 1_069, 11, -1, -1, -1, -1]] ),
]
# fmt: on
self.assertTrue(torch.allclose(tokens[0] , EXPECTED_OUTPUT[0] ) )
self.assertTrue(torch.allclose(tokens[1] , EXPECTED_OUTPUT[1] ) )
self.assertTrue(torch.allclose(tokens[2] , EXPECTED_OUTPUT[2] ) )
| 75 |
from collections import OrderedDict
from typing import TYPE_CHECKING, Any, List, Mapping, Optional, Union
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig
from ...utils import TensorType, logging
if TYPE_CHECKING:
from ...onnx.config import PatchingSpec
from ...tokenization_utils_base import PreTrainedTokenizerBase
lowerCamelCase__ : Optional[int] = logging.get_logger(__name__)
lowerCamelCase__ : Dict = {
'allenai/longformer-base-4096': 'https://huggingface.co/allenai/longformer-base-4096/resolve/main/config.json',
'allenai/longformer-large-4096': 'https://huggingface.co/allenai/longformer-large-4096/resolve/main/config.json',
'allenai/longformer-large-4096-finetuned-triviaqa': (
'https://huggingface.co/allenai/longformer-large-4096-finetuned-triviaqa/resolve/main/config.json'
),
'allenai/longformer-base-4096-extra.pos.embd.only': (
'https://huggingface.co/allenai/longformer-base-4096-extra.pos.embd.only/resolve/main/config.json'
),
'allenai/longformer-large-4096-extra.pos.embd.only': (
'https://huggingface.co/allenai/longformer-large-4096-extra.pos.embd.only/resolve/main/config.json'
),
}
class lowerCamelCase_ ( _SCREAMING_SNAKE_CASE ):
'''simple docstring'''
lowercase_ = "longformer"
def __init__( self : Union[str, Any] , _lowerCAmelCase : Union[List[int], int] = 512 , _lowerCAmelCase : int = 2 , _lowerCAmelCase : int = 1 , _lowerCAmelCase : int = 0 , _lowerCAmelCase : int = 2 , _lowerCAmelCase : int = 30_522 , _lowerCAmelCase : int = 768 , _lowerCAmelCase : int = 12 , _lowerCAmelCase : int = 12 , _lowerCAmelCase : int = 3_072 , _lowerCAmelCase : str = "gelu" , _lowerCAmelCase : float = 0.1 , _lowerCAmelCase : float = 0.1 , _lowerCAmelCase : int = 512 , _lowerCAmelCase : int = 2 , _lowerCAmelCase : float = 0.02 , _lowerCAmelCase : float = 1E-12 , _lowerCAmelCase : bool = False , **_lowerCAmelCase : Union[str, Any] , ):
super().__init__(pad_token_id=_lowerCAmelCase , **_lowerCAmelCase )
SCREAMING_SNAKE_CASE_ = attention_window
SCREAMING_SNAKE_CASE_ = sep_token_id
SCREAMING_SNAKE_CASE_ = bos_token_id
SCREAMING_SNAKE_CASE_ = eos_token_id
SCREAMING_SNAKE_CASE_ = vocab_size
SCREAMING_SNAKE_CASE_ = hidden_size
SCREAMING_SNAKE_CASE_ = num_hidden_layers
SCREAMING_SNAKE_CASE_ = num_attention_heads
SCREAMING_SNAKE_CASE_ = hidden_act
SCREAMING_SNAKE_CASE_ = intermediate_size
SCREAMING_SNAKE_CASE_ = hidden_dropout_prob
SCREAMING_SNAKE_CASE_ = attention_probs_dropout_prob
SCREAMING_SNAKE_CASE_ = max_position_embeddings
SCREAMING_SNAKE_CASE_ = type_vocab_size
SCREAMING_SNAKE_CASE_ = initializer_range
SCREAMING_SNAKE_CASE_ = layer_norm_eps
SCREAMING_SNAKE_CASE_ = onnx_export
class lowerCamelCase_ ( _SCREAMING_SNAKE_CASE ):
'''simple docstring'''
def __init__( self : Optional[Any] , _lowerCAmelCase : "PretrainedConfig" , _lowerCAmelCase : str = "default" , _lowerCAmelCase : "List[PatchingSpec]" = None ):
super().__init__(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase )
SCREAMING_SNAKE_CASE_ = True
@property
def lowerCAmelCase_ ( self : Any ):
if self.task == "multiple-choice":
SCREAMING_SNAKE_CASE_ = {0: 'batch', 1: 'choice', 2: 'sequence'}
else:
SCREAMING_SNAKE_CASE_ = {0: 'batch', 1: 'sequence'}
return OrderedDict(
[
('input_ids', dynamic_axis),
('attention_mask', dynamic_axis),
('global_attention_mask', dynamic_axis),
] )
@property
def lowerCAmelCase_ ( self : Optional[int] ):
SCREAMING_SNAKE_CASE_ = super().outputs
if self.task == "default":
SCREAMING_SNAKE_CASE_ = {0: 'batch'}
return outputs
@property
def lowerCAmelCase_ ( self : str ):
return 1E-4
@property
def lowerCAmelCase_ ( self : Optional[Any] ):
# needs to be >= 14 to support tril operator
return max(super().default_onnx_opset , 14 )
def lowerCAmelCase_ ( self : str , _lowerCAmelCase : "PreTrainedTokenizerBase" , _lowerCAmelCase : int = -1 , _lowerCAmelCase : int = -1 , _lowerCAmelCase : bool = False , _lowerCAmelCase : Optional[TensorType] = None , ):
SCREAMING_SNAKE_CASE_ = super().generate_dummy_inputs(
preprocessor=_lowerCAmelCase , batch_size=_lowerCAmelCase , seq_length=_lowerCAmelCase , is_pair=_lowerCAmelCase , framework=_lowerCAmelCase )
import torch
# for some reason, replacing this code by inputs["global_attention_mask"] = torch.randint(2, inputs["input_ids"].shape, dtype=torch.int64)
# makes the export fail randomly
SCREAMING_SNAKE_CASE_ = torch.zeros_like(inputs['input_ids'] )
# make every second token global
SCREAMING_SNAKE_CASE_ = 1
return inputs | 31 | 0 |
"""simple docstring"""
from functools import lru_cache
def __UpperCAmelCase ( __UpperCamelCase ):
__lowercase : str = 2
__lowercase : int = set()
while i * i <= n:
if n % i:
i += 1
else:
n //= i
factors.add(__UpperCamelCase )
if n > 1:
factors.add(__UpperCamelCase )
return factors
@lru_cache
def __UpperCAmelCase ( __UpperCamelCase ):
return len(unique_prime_factors(__UpperCamelCase ) )
def __UpperCAmelCase ( __UpperCamelCase ):
return len(set(__UpperCamelCase ) ) in (0, 1)
def __UpperCAmelCase ( __UpperCamelCase ):
__lowercase : Optional[Any] = 2
while True:
# Increment each value of a generated range
__lowercase : Dict = [base + i for i in range(__UpperCamelCase )]
# Run elements through out unique_prime_factors function
# Append our target number to the end.
__lowercase : Optional[int] = [upf_len(__UpperCamelCase ) for x in group]
checker.append(__UpperCamelCase )
# If all numbers in the list are equal, return the group variable.
if equality(__UpperCamelCase ):
return group
# Increment our base variable by 1
base += 1
def __UpperCAmelCase ( __UpperCamelCase = 4 ):
__lowercase : int = run(__UpperCamelCase )
return results[0] if len(__UpperCamelCase ) else None
if __name__ == "__main__":
print(solution())
| 76 |
import warnings
from ...utils import logging
from .image_processing_mobilevit import MobileViTImageProcessor
lowerCamelCase__ : Optional[int] = logging.get_logger(__name__)
class lowerCamelCase_ ( _SCREAMING_SNAKE_CASE ):
'''simple docstring'''
def __init__( self : str , *_lowerCAmelCase : Tuple , **_lowerCAmelCase : int ):
warnings.warn(
'The class MobileViTFeatureExtractor is deprecated and will be removed in version 5 of Transformers.'
' Please use MobileViTImageProcessor instead.' , _lowerCAmelCase , )
super().__init__(*_lowerCAmelCase , **_lowerCAmelCase ) | 31 | 0 |
"""simple docstring"""
def _UpperCamelCase ( UpperCamelCase , UpperCamelCase ) -> int:
"""simple docstring"""
if len(UpperCamelCase ) != len(UpperCamelCase ):
raise ValueError("String lengths must match!" )
__UpperCAmelCase : str = 0
for chara, chara in zip(UpperCamelCase , UpperCamelCase ):
if chara != chara:
count += 1
return count
if __name__ == "__main__":
import doctest
doctest.testmod()
| 77 |
from ...configuration_utils import PretrainedConfig
from ...utils import logging
lowerCamelCase__ : Optional[int] = logging.get_logger(__name__)
lowerCamelCase__ : Tuple = {
'microsoft/swinv2-tiny-patch4-window8-256': (
'https://huggingface.co/microsoft/swinv2-tiny-patch4-window8-256/resolve/main/config.json'
),
}
class lowerCamelCase_ ( _SCREAMING_SNAKE_CASE ):
'''simple docstring'''
lowercase_ = "swinv2"
lowercase_ = {
"num_attention_heads": "num_heads",
"num_hidden_layers": "num_layers",
}
def __init__( self : Dict , _lowerCAmelCase : Optional[Any]=224 , _lowerCAmelCase : Optional[int]=4 , _lowerCAmelCase : Tuple=3 , _lowerCAmelCase : Tuple=96 , _lowerCAmelCase : Dict=[2, 2, 6, 2] , _lowerCAmelCase : Optional[Any]=[3, 6, 12, 24] , _lowerCAmelCase : str=7 , _lowerCAmelCase : List[Any]=4.0 , _lowerCAmelCase : List[str]=True , _lowerCAmelCase : List[Any]=0.0 , _lowerCAmelCase : List[Any]=0.0 , _lowerCAmelCase : Any=0.1 , _lowerCAmelCase : List[Any]="gelu" , _lowerCAmelCase : str=False , _lowerCAmelCase : str=0.02 , _lowerCAmelCase : List[Any]=1E-5 , _lowerCAmelCase : str=32 , **_lowerCAmelCase : List[Any] , ):
super().__init__(**_lowerCAmelCase )
SCREAMING_SNAKE_CASE_ = image_size
SCREAMING_SNAKE_CASE_ = patch_size
SCREAMING_SNAKE_CASE_ = num_channels
SCREAMING_SNAKE_CASE_ = embed_dim
SCREAMING_SNAKE_CASE_ = depths
SCREAMING_SNAKE_CASE_ = len(_lowerCAmelCase )
SCREAMING_SNAKE_CASE_ = num_heads
SCREAMING_SNAKE_CASE_ = window_size
SCREAMING_SNAKE_CASE_ = mlp_ratio
SCREAMING_SNAKE_CASE_ = qkv_bias
SCREAMING_SNAKE_CASE_ = hidden_dropout_prob
SCREAMING_SNAKE_CASE_ = attention_probs_dropout_prob
SCREAMING_SNAKE_CASE_ = drop_path_rate
SCREAMING_SNAKE_CASE_ = hidden_act
SCREAMING_SNAKE_CASE_ = use_absolute_embeddings
SCREAMING_SNAKE_CASE_ = layer_norm_eps
SCREAMING_SNAKE_CASE_ = initializer_range
SCREAMING_SNAKE_CASE_ = encoder_stride
# we set the hidden_size attribute in order to make Swinv2 work with VisionEncoderDecoderModel
# this indicates the channel dimension after the last stage of the model
SCREAMING_SNAKE_CASE_ = int(embed_dim * 2 ** (len(_lowerCAmelCase ) - 1) )
SCREAMING_SNAKE_CASE_ = (0, 0, 0, 0) | 31 | 0 |
'''simple docstring'''
from collections import OrderedDict
from typing import Any, Mapping, Optional
from ... import PreTrainedTokenizer, TensorType, is_torch_available
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfigWithPast
from ...utils import logging
SCREAMING_SNAKE_CASE_: int =logging.get_logger(__name__)
SCREAMING_SNAKE_CASE_: Tuple ={
'EleutherAI/gpt-neo-1.3B': 'https://huggingface.co/EleutherAI/gpt-neo-1.3B/resolve/main/config.json',
# See all GPTNeo models at https://huggingface.co/models?filter=gpt_neo
}
class __A ( UpperCamelCase__ ):
a__ : str = """gpt_neo"""
a__ : Union[str, Any] = ["""past_key_values"""]
a__ : List[str] = {"""num_attention_heads""": """num_heads""", """num_hidden_layers""": """num_layers"""}
def __init__(self : str , __a : List[Any]=50257 , __a : Tuple=2048 , __a : Optional[Any]=2048 , __a : Dict=24 , __a : List[Any]=[[["global", "local"], 12]] , __a : List[Any]=16 , __a : Optional[int]=None , __a : Tuple=256 , __a : Optional[Any]="gelu_new" , __a : List[str]=0.0 , __a : int=0.0 , __a : Any=0.0 , __a : List[Any]=0.1 , __a : Optional[int]=1E-5 , __a : List[Any]=0.02 , __a : str=True , __a : int=50256 , __a : int=50256 , **__a : Dict , ):
UpperCAmelCase_ = vocab_size
UpperCAmelCase_ = max_position_embeddings
UpperCAmelCase_ = hidden_size
UpperCAmelCase_ = num_layers
UpperCAmelCase_ = num_heads
UpperCAmelCase_ = intermediate_size
UpperCAmelCase_ = window_size
UpperCAmelCase_ = activation_function
UpperCAmelCase_ = resid_dropout
UpperCAmelCase_ = embed_dropout
UpperCAmelCase_ = attention_dropout
UpperCAmelCase_ = classifier_dropout
UpperCAmelCase_ = layer_norm_epsilon
UpperCAmelCase_ = initializer_range
UpperCAmelCase_ = use_cache
UpperCAmelCase_ = bos_token_id
UpperCAmelCase_ = eos_token_id
UpperCAmelCase_ = attention_types
UpperCAmelCase_ = self.expand_attention_types_params(__a )
if len(self.attention_layers ) != self.num_layers:
raise ValueError(
"Configuration for convolutional module is incorrect. "
"It is required that `len(config.attention_layers)` == `config.num_layers` "
f"""but is `len(config.attention_layers) = {len(self.attention_layers )}`, """
f"""`config.num_layers = {self.num_layers}`. """
"`config.attention_layers` is prepared using `config.attention_types`. "
"Please verify the value of `config.attention_types` argument." )
super().__init__(bos_token_id=__a , eos_token_id=__a , **__a )
@staticmethod
def _lowercase (__a : int ):
UpperCAmelCase_ = []
for item in attention_types:
for _ in range(item[1] ):
attentions.extend(item[0] )
return attentions
def lowerCAmelCase_ ( snake_case_ : str , snake_case_ : str , snake_case_ : Union[str, Any] , snake_case_ : List[Any] ) -> Tuple:
'''simple docstring'''
import torch
UpperCAmelCase_ = input.size()
UpperCAmelCase_ = len(snake_case_ )
UpperCAmelCase_ = shape[dimension]
UpperCAmelCase_ = torch.arange(0 , snake_case_ , snake_case_ )
UpperCAmelCase_ = torch.div(sizedim - size , snake_case_ , rounding_mode="floor" ) + 1
UpperCAmelCase_ = torch.arange(snake_case_ ) + low_indices[:min_length][:, None]
UpperCAmelCase_ = [slice(snake_case_ )] * rank
UpperCAmelCase_ = indices
UpperCAmelCase_ = input[s]
UpperCAmelCase_ = list(range(0 , rank + 1 ) )
perm.append(perm.pop(dimension + 1 ) )
return sliced.permute(snake_case_ )
def lowerCAmelCase_ ( snake_case_ : Optional[int] , snake_case_ : str ) -> str:
'''simple docstring'''
import torch
UpperCAmelCase_ = torch.arange(1 , snake_case_ )
UpperCAmelCase_ = torch.remainder(snake_case_ , snake_case_ )
UpperCAmelCase_ = remainders == 0
UpperCAmelCase_ = candidates[divisor_indices]
UpperCAmelCase_ = torch.max(snake_case_ )
return largest_divisor, torch.div(snake_case_ , snake_case_ , rounding_mode="floor" )
class __A ( UpperCamelCase__ ):
@property
def _lowercase (self : Union[str, Any] ):
UpperCAmelCase_ = OrderedDict({"input_ids": {0: "batch", 1: "sequence"}} )
if self.use_past:
self.fill_with_past_key_values_(__a , direction="inputs" )
UpperCAmelCase_ = {0: "batch", 1: "past_sequence + sequence"}
else:
UpperCAmelCase_ = {0: "batch", 1: "sequence"}
return common_inputs
@property
def _lowercase (self : Tuple ):
return self._config.num_heads
def _lowercase (self : int , __a : PreTrainedTokenizer , __a : int = -1 , __a : int = -1 , __a : bool = False , __a : Optional[TensorType] = None , ):
UpperCAmelCase_ = super(__a , self ).generate_dummy_inputs(
__a , batch_size=__a , seq_length=__a , is_pair=__a , framework=__a )
# We need to order the input in the way they appears in the forward()
UpperCAmelCase_ = OrderedDict({"input_ids": common_inputs["input_ids"]} )
# Need to add the past_keys
if self.use_past:
if not is_torch_available():
raise ValueError("Cannot generate dummy past_keys inputs without PyTorch installed." )
else:
import torch
UpperCAmelCase_ , UpperCAmelCase_ = common_inputs["input_ids"].shape
# Not using the same length for past_key_values
UpperCAmelCase_ = seqlen + 2
UpperCAmelCase_ = (
batch,
self.num_attention_heads,
past_key_values_length,
self._config.hidden_size // self.num_attention_heads,
)
UpperCAmelCase_ = [
(torch.zeros(__a ), torch.zeros(__a )) for _ in range(self.num_layers )
]
UpperCAmelCase_ = common_inputs["attention_mask"]
if self.use_past:
UpperCAmelCase_ = ordered_inputs["attention_mask"].dtype
UpperCAmelCase_ = torch.cat(
[ordered_inputs["attention_mask"], torch.ones(__a , __a , dtype=__a )] , dim=1 )
return ordered_inputs
@property
def _lowercase (self : Dict ):
return 13
| 78 |
import itertools
import random
import unittest
import numpy as np
from transformers import BatchFeature, SpeechTaFeatureExtractor
from transformers.testing_utils import require_torch
from transformers.utils.import_utils import is_torch_available
from ...test_sequence_feature_extraction_common import SequenceFeatureExtractionTestMixin
if is_torch_available():
import torch
lowerCamelCase__ : Dict = random.Random()
def UpperCAmelCase_ ( __UpperCAmelCase : int , __UpperCAmelCase : Tuple=1.0 , __UpperCAmelCase : Dict=None , __UpperCAmelCase : Dict=None ) -> Tuple:
if rng is None:
SCREAMING_SNAKE_CASE_ = global_rng
SCREAMING_SNAKE_CASE_ = []
for batch_idx in range(shape[0] ):
values.append([] )
for _ in range(shape[1] ):
values[-1].append(rng.random() * scale )
return values
@require_torch
class lowerCamelCase_ ( unittest.TestCase ):
'''simple docstring'''
def __init__( self : List[str] , _lowerCAmelCase : int , _lowerCAmelCase : Optional[Any]=7 , _lowerCAmelCase : Union[str, Any]=400 , _lowerCAmelCase : Tuple=2_000 , _lowerCAmelCase : str=1 , _lowerCAmelCase : int=0.0 , _lowerCAmelCase : Optional[Any]=16_000 , _lowerCAmelCase : Optional[Any]=True , _lowerCAmelCase : Any=80 , _lowerCAmelCase : Union[str, Any]=16 , _lowerCAmelCase : List[str]=64 , _lowerCAmelCase : List[Any]="hann_window" , _lowerCAmelCase : Any=80 , _lowerCAmelCase : List[Any]=7_600 , _lowerCAmelCase : List[Any]=1E-10 , _lowerCAmelCase : Optional[Any]=True , ):
SCREAMING_SNAKE_CASE_ = parent
SCREAMING_SNAKE_CASE_ = batch_size
SCREAMING_SNAKE_CASE_ = min_seq_length
SCREAMING_SNAKE_CASE_ = max_seq_length
SCREAMING_SNAKE_CASE_ = (self.max_seq_length - self.min_seq_length) // (self.batch_size - 1)
SCREAMING_SNAKE_CASE_ = feature_size
SCREAMING_SNAKE_CASE_ = padding_value
SCREAMING_SNAKE_CASE_ = sampling_rate
SCREAMING_SNAKE_CASE_ = do_normalize
SCREAMING_SNAKE_CASE_ = num_mel_bins
SCREAMING_SNAKE_CASE_ = hop_length
SCREAMING_SNAKE_CASE_ = win_length
SCREAMING_SNAKE_CASE_ = win_function
SCREAMING_SNAKE_CASE_ = fmin
SCREAMING_SNAKE_CASE_ = fmax
SCREAMING_SNAKE_CASE_ = mel_floor
SCREAMING_SNAKE_CASE_ = return_attention_mask
def lowerCAmelCase_ ( self : Union[str, Any] ):
return {
"feature_size": self.feature_size,
"padding_value": self.padding_value,
"sampling_rate": self.sampling_rate,
"do_normalize": self.do_normalize,
"num_mel_bins": self.num_mel_bins,
"hop_length": self.hop_length,
"win_length": self.win_length,
"win_function": self.win_function,
"fmin": self.fmin,
"fmax": self.fmax,
"mel_floor": self.mel_floor,
"return_attention_mask": self.return_attention_mask,
}
def lowerCAmelCase_ ( self : Dict , _lowerCAmelCase : Optional[int]=False , _lowerCAmelCase : str=False ):
def _flatten(_lowerCAmelCase : Dict ):
return list(itertools.chain(*_lowerCAmelCase ) )
if equal_length:
SCREAMING_SNAKE_CASE_ = floats_list((self.batch_size, self.max_seq_length) )
else:
# make sure that inputs increase in size
SCREAMING_SNAKE_CASE_ = [
_flatten(floats_list((x, self.feature_size) ) )
for x in range(self.min_seq_length , self.max_seq_length , self.seq_length_diff )
]
if numpify:
SCREAMING_SNAKE_CASE_ = [np.asarray(_lowerCAmelCase ) for x in speech_inputs]
return speech_inputs
def lowerCAmelCase_ ( self : List[Any] , _lowerCAmelCase : Union[str, Any]=False , _lowerCAmelCase : Optional[int]=False ):
if equal_length:
SCREAMING_SNAKE_CASE_ = [floats_list((self.max_seq_length, self.num_mel_bins) ) for _ in range(self.batch_size )]
else:
# make sure that inputs increase in size
SCREAMING_SNAKE_CASE_ = [
floats_list((x, self.num_mel_bins) )
for x in range(self.min_seq_length , self.max_seq_length , self.seq_length_diff )
]
if numpify:
SCREAMING_SNAKE_CASE_ = [np.asarray(_lowerCAmelCase ) for x in speech_inputs]
return speech_inputs
@require_torch
class lowerCamelCase_ ( _SCREAMING_SNAKE_CASE , unittest.TestCase ):
'''simple docstring'''
lowercase_ = SpeechTaFeatureExtractor
def lowerCAmelCase_ ( self : Any ):
SCREAMING_SNAKE_CASE_ = SpeechTaFeatureExtractionTester(self )
def lowerCAmelCase_ ( self : Any , _lowerCAmelCase : int ):
self.assertTrue(np.all(np.mean(_lowerCAmelCase , axis=0 ) < 1E-3 ) )
self.assertTrue(np.all(np.abs(np.var(_lowerCAmelCase , axis=0 ) - 1 ) < 1E-3 ) )
def lowerCAmelCase_ ( self : List[Any] ):
# Tests that all call wrap to encode_plus and batch_encode_plus
SCREAMING_SNAKE_CASE_ = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() )
# create three inputs of length 800, 1000, and 1200
SCREAMING_SNAKE_CASE_ = [floats_list((1, x) )[0] for x in range(800 , 1_400 , 200 )]
SCREAMING_SNAKE_CASE_ = [np.asarray(_lowerCAmelCase ) for speech_input in speech_inputs]
# Test not batched input
SCREAMING_SNAKE_CASE_ = feat_extract(speech_inputs[0] , return_tensors='np' ).input_values
SCREAMING_SNAKE_CASE_ = feat_extract(np_speech_inputs[0] , return_tensors='np' ).input_values
self.assertTrue(np.allclose(_lowerCAmelCase , _lowerCAmelCase , atol=1E-3 ) )
# Test batched
SCREAMING_SNAKE_CASE_ = feat_extract(_lowerCAmelCase , return_tensors='np' ).input_values
SCREAMING_SNAKE_CASE_ = feat_extract(_lowerCAmelCase , return_tensors='np' ).input_values
for enc_seq_a, enc_seq_a in zip(_lowerCAmelCase , _lowerCAmelCase ):
self.assertTrue(np.allclose(_lowerCAmelCase , _lowerCAmelCase , atol=1E-3 ) )
def lowerCAmelCase_ ( self : Union[str, Any] ):
SCREAMING_SNAKE_CASE_ = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() )
SCREAMING_SNAKE_CASE_ = [floats_list((1, x) )[0] for x in range(800 , 1_400 , 200 )]
SCREAMING_SNAKE_CASE_ = ['longest', 'max_length', 'do_not_pad']
SCREAMING_SNAKE_CASE_ = [None, 1_600, None]
for max_length, padding in zip(_lowerCAmelCase , _lowerCAmelCase ):
SCREAMING_SNAKE_CASE_ = feat_extract(_lowerCAmelCase , padding=_lowerCAmelCase , max_length=_lowerCAmelCase , return_tensors='np' )
SCREAMING_SNAKE_CASE_ = processed.input_values
self._check_zero_mean_unit_variance(input_values[0][:800] )
self.assertTrue(input_values[0][800:].sum() < 1E-6 )
self._check_zero_mean_unit_variance(input_values[1][:1_000] )
self.assertTrue(input_values[0][1_000:].sum() < 1E-6 )
self._check_zero_mean_unit_variance(input_values[2][:1_200] )
def lowerCAmelCase_ ( self : Optional[Any] ):
SCREAMING_SNAKE_CASE_ = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() )
SCREAMING_SNAKE_CASE_ = range(800 , 1_400 , 200 )
SCREAMING_SNAKE_CASE_ = [floats_list((1, x) )[0] for x in lengths]
SCREAMING_SNAKE_CASE_ = ['longest', 'max_length', 'do_not_pad']
SCREAMING_SNAKE_CASE_ = [None, 1_600, None]
for max_length, padding in zip(_lowerCAmelCase , _lowerCAmelCase ):
SCREAMING_SNAKE_CASE_ = feat_extract(_lowerCAmelCase , max_length=_lowerCAmelCase , padding=_lowerCAmelCase )
SCREAMING_SNAKE_CASE_ = processed.input_values
self._check_zero_mean_unit_variance(input_values[0][:800] )
self._check_zero_mean_unit_variance(input_values[1][:1_000] )
self._check_zero_mean_unit_variance(input_values[2][:1_200] )
def lowerCAmelCase_ ( self : Dict ):
SCREAMING_SNAKE_CASE_ = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() )
SCREAMING_SNAKE_CASE_ = [floats_list((1, x) )[0] for x in range(800 , 1_400 , 200 )]
SCREAMING_SNAKE_CASE_ = feat_extract(
_lowerCAmelCase , truncation=_lowerCAmelCase , max_length=1_000 , padding='max_length' , return_tensors='np' )
SCREAMING_SNAKE_CASE_ = processed.input_values
self._check_zero_mean_unit_variance(input_values[0, :800] )
self._check_zero_mean_unit_variance(input_values[1] )
self._check_zero_mean_unit_variance(input_values[2] )
def lowerCAmelCase_ ( self : Dict ):
SCREAMING_SNAKE_CASE_ = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() )
SCREAMING_SNAKE_CASE_ = [floats_list((1, x) )[0] for x in range(800 , 1_400 , 200 )]
SCREAMING_SNAKE_CASE_ = feat_extract(
_lowerCAmelCase , truncation=_lowerCAmelCase , max_length=1_000 , padding='longest' , return_tensors='np' )
SCREAMING_SNAKE_CASE_ = processed.input_values
self._check_zero_mean_unit_variance(input_values[0, :800] )
self._check_zero_mean_unit_variance(input_values[1, :1_000] )
self._check_zero_mean_unit_variance(input_values[2] )
# make sure that if max_length < longest -> then pad to max_length
self.assertTrue(input_values.shape == (3, 1_000) )
SCREAMING_SNAKE_CASE_ = [floats_list((1, x) )[0] for x in range(800 , 1_400 , 200 )]
SCREAMING_SNAKE_CASE_ = feat_extract(
_lowerCAmelCase , truncation=_lowerCAmelCase , max_length=2_000 , padding='longest' , return_tensors='np' )
SCREAMING_SNAKE_CASE_ = processed.input_values
self._check_zero_mean_unit_variance(input_values[0, :800] )
self._check_zero_mean_unit_variance(input_values[1, :1_000] )
self._check_zero_mean_unit_variance(input_values[2] )
# make sure that if max_length > longest -> then pad to longest
self.assertTrue(input_values.shape == (3, 1_200) )
def lowerCAmelCase_ ( self : Optional[int] ):
SCREAMING_SNAKE_CASE_ = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() )
SCREAMING_SNAKE_CASE_ = np.random.rand(100 ).astype(np.floataa )
SCREAMING_SNAKE_CASE_ = np_speech_inputs.tolist()
for inputs in [py_speech_inputs, np_speech_inputs]:
SCREAMING_SNAKE_CASE_ = feature_extractor.pad([{'input_values': inputs}] , return_tensors='np' )
self.assertTrue(np_processed.input_values.dtype == np.floataa )
SCREAMING_SNAKE_CASE_ = feature_extractor.pad([{'input_values': inputs}] , return_tensors='pt' )
self.assertTrue(pt_processed.input_values.dtype == torch.floataa )
def lowerCAmelCase_ ( self : Tuple ):
# Tests that all call wrap to encode_plus and batch_encode_plus
SCREAMING_SNAKE_CASE_ = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() )
# create three inputs of length 800, 1000, and 1200
SCREAMING_SNAKE_CASE_ = [floats_list((1, x) )[0] for x in range(800 , 1_400 , 200 )]
SCREAMING_SNAKE_CASE_ = [np.asarray(_lowerCAmelCase ) for speech_input in speech_inputs]
# Test feature size
SCREAMING_SNAKE_CASE_ = feature_extractor(audio_target=_lowerCAmelCase , padding=_lowerCAmelCase , return_tensors='np' ).input_values
self.assertTrue(input_values.ndim == 3 )
self.assertTrue(input_values.shape[-1] == feature_extractor.num_mel_bins )
# Test not batched input
SCREAMING_SNAKE_CASE_ = feature_extractor(speech_inputs[0] , return_tensors='np' ).input_values
SCREAMING_SNAKE_CASE_ = feature_extractor(np_speech_inputs[0] , return_tensors='np' ).input_values
self.assertTrue(np.allclose(_lowerCAmelCase , _lowerCAmelCase , atol=1E-3 ) )
# Test batched
SCREAMING_SNAKE_CASE_ = feature_extractor(_lowerCAmelCase , return_tensors='np' ).input_values
SCREAMING_SNAKE_CASE_ = feature_extractor(_lowerCAmelCase , return_tensors='np' ).input_values
for enc_seq_a, enc_seq_a in zip(_lowerCAmelCase , _lowerCAmelCase ):
self.assertTrue(np.allclose(_lowerCAmelCase , _lowerCAmelCase , atol=1E-3 ) )
# Test 2-D numpy arrays are batched.
SCREAMING_SNAKE_CASE_ = [floats_list((1, x) )[0] for x in (800, 800, 800)]
SCREAMING_SNAKE_CASE_ = np.asarray(_lowerCAmelCase )
SCREAMING_SNAKE_CASE_ = feature_extractor(_lowerCAmelCase , return_tensors='np' ).input_values
SCREAMING_SNAKE_CASE_ = feature_extractor(_lowerCAmelCase , return_tensors='np' ).input_values
for enc_seq_a, enc_seq_a in zip(_lowerCAmelCase , _lowerCAmelCase ):
self.assertTrue(np.allclose(_lowerCAmelCase , _lowerCAmelCase , atol=1E-3 ) )
def lowerCAmelCase_ ( self : str ):
SCREAMING_SNAKE_CASE_ = self.feat_extract_tester.prepare_inputs_for_target()
SCREAMING_SNAKE_CASE_ = self.feature_extraction_class(**self.feat_extract_dict )
SCREAMING_SNAKE_CASE_ = feat_extract.model_input_names[0]
SCREAMING_SNAKE_CASE_ = BatchFeature({input_name: speech_inputs} )
self.assertTrue(all(len(_lowerCAmelCase ) == len(_lowerCAmelCase ) for x, y in zip(_lowerCAmelCase , processed_features[input_name] ) ) )
SCREAMING_SNAKE_CASE_ = self.feat_extract_tester.prepare_inputs_for_target(equal_length=_lowerCAmelCase )
SCREAMING_SNAKE_CASE_ = BatchFeature({input_name: speech_inputs} , tensor_type='np' )
SCREAMING_SNAKE_CASE_ = processed_features[input_name]
if len(batch_features_input.shape ) < 3:
SCREAMING_SNAKE_CASE_ = batch_features_input[:, :, None]
self.assertTrue(
batch_features_input.shape
== (self.feat_extract_tester.batch_size, len(speech_inputs[0] ), self.feat_extract_tester.num_mel_bins) )
@require_torch
def lowerCAmelCase_ ( self : Dict ):
SCREAMING_SNAKE_CASE_ = self.feat_extract_tester.prepare_inputs_for_target(equal_length=_lowerCAmelCase )
SCREAMING_SNAKE_CASE_ = self.feature_extraction_class(**self.feat_extract_dict )
SCREAMING_SNAKE_CASE_ = feat_extract.model_input_names[0]
SCREAMING_SNAKE_CASE_ = BatchFeature({input_name: speech_inputs} , tensor_type='pt' )
SCREAMING_SNAKE_CASE_ = processed_features[input_name]
if len(batch_features_input.shape ) < 3:
SCREAMING_SNAKE_CASE_ = batch_features_input[:, :, None]
self.assertTrue(
batch_features_input.shape
== (self.feat_extract_tester.batch_size, len(speech_inputs[0] ), self.feat_extract_tester.num_mel_bins) )
@require_torch
def lowerCAmelCase_ ( self : Dict ):
SCREAMING_SNAKE_CASE_ = self.feature_extraction_class(**self.feat_extract_dict )
SCREAMING_SNAKE_CASE_ = self.feat_extract_tester.prepare_inputs_for_target()
SCREAMING_SNAKE_CASE_ = feat_extract.model_input_names[0]
SCREAMING_SNAKE_CASE_ = BatchFeature({input_name: speech_inputs} )
SCREAMING_SNAKE_CASE_ = feat_extract.num_mel_bins # hack!
SCREAMING_SNAKE_CASE_ = feat_extract.pad(_lowerCAmelCase , padding='longest' , return_tensors='np' )[input_name]
SCREAMING_SNAKE_CASE_ = feat_extract.pad(_lowerCAmelCase , padding='longest' , return_tensors='pt' )[input_name]
self.assertTrue(abs(input_np.astype(np.floataa ).sum() - input_pt.numpy().astype(np.floataa ).sum() ) < 1E-2 )
def lowerCAmelCase_ ( self : str ):
SCREAMING_SNAKE_CASE_ = self.feat_extract_dict
SCREAMING_SNAKE_CASE_ = True
SCREAMING_SNAKE_CASE_ = self.feature_extraction_class(**_lowerCAmelCase )
SCREAMING_SNAKE_CASE_ = self.feat_extract_tester.prepare_inputs_for_target()
SCREAMING_SNAKE_CASE_ = [len(_lowerCAmelCase ) for x in speech_inputs]
SCREAMING_SNAKE_CASE_ = feat_extract.model_input_names[0]
SCREAMING_SNAKE_CASE_ = BatchFeature({input_name: speech_inputs} )
SCREAMING_SNAKE_CASE_ = feat_extract.num_mel_bins # hack!
SCREAMING_SNAKE_CASE_ = feat_extract.pad(_lowerCAmelCase , padding='longest' , return_tensors='np' )
self.assertIn('attention_mask' , _lowerCAmelCase )
self.assertListEqual(list(processed.attention_mask.shape ) , list(processed[input_name].shape[:2] ) )
self.assertListEqual(processed.attention_mask.sum(-1 ).tolist() , _lowerCAmelCase )
def lowerCAmelCase_ ( self : Any ):
SCREAMING_SNAKE_CASE_ = self.feat_extract_dict
SCREAMING_SNAKE_CASE_ = True
SCREAMING_SNAKE_CASE_ = self.feature_extraction_class(**_lowerCAmelCase )
SCREAMING_SNAKE_CASE_ = self.feat_extract_tester.prepare_inputs_for_target()
SCREAMING_SNAKE_CASE_ = [len(_lowerCAmelCase ) for x in speech_inputs]
SCREAMING_SNAKE_CASE_ = feat_extract.model_input_names[0]
SCREAMING_SNAKE_CASE_ = BatchFeature({input_name: speech_inputs} )
SCREAMING_SNAKE_CASE_ = min(_lowerCAmelCase )
SCREAMING_SNAKE_CASE_ = feat_extract.num_mel_bins # hack!
SCREAMING_SNAKE_CASE_ = feat_extract.pad(
_lowerCAmelCase , padding='max_length' , max_length=_lowerCAmelCase , truncation=_lowerCAmelCase , return_tensors='np' )
self.assertIn('attention_mask' , _lowerCAmelCase )
self.assertListEqual(
list(processed_pad.attention_mask.shape ) , [processed_pad[input_name].shape[0], max_length] )
self.assertListEqual(
processed_pad.attention_mask[:, :max_length].sum(-1 ).tolist() , [max_length for x in speech_inputs] )
def lowerCAmelCase_ ( self : List[Any] , _lowerCAmelCase : Tuple ):
from datasets import load_dataset
SCREAMING_SNAKE_CASE_ = load_dataset('hf-internal-testing/librispeech_asr_dummy' , 'clean' , split='validation' )
# automatic decoding with librispeech
SCREAMING_SNAKE_CASE_ = ds.sort('id' ).select(range(_lowerCAmelCase ) )[:num_samples]['audio']
return [x["array"] for x in speech_samples]
def lowerCAmelCase_ ( self : Any ):
# fmt: off
SCREAMING_SNAKE_CASE_ = torch.tensor(
[2.3_804E-03, 2.0_752E-03, 1.9_836E-03, 2.1_057E-03, 1.6_174E-03,
3.0_518E-04, 9.1_553E-05, 3.3_569E-04, 9.7_656E-04, 1.8_311E-03,
2.0_142E-03, 2.1_057E-03, 1.7_395E-03, 4.5_776E-04, -3.9_673E-04,
4.5_776E-04, 1.0_071E-03, 9.1_553E-05, 4.8_828E-04, 1.1_597E-03,
7.3_242E-04, 9.4_604E-04, 1.8_005E-03, 1.8_311E-03, 8.8_501E-04,
4.2_725E-04, 4.8_828E-04, 7.3_242E-04, 1.0_986E-03, 2.1_057E-03] )
# fmt: on
SCREAMING_SNAKE_CASE_ = self._load_datasamples(1 )
SCREAMING_SNAKE_CASE_ = SpeechTaFeatureExtractor()
SCREAMING_SNAKE_CASE_ = feature_extractor(_lowerCAmelCase , return_tensors='pt' ).input_values
self.assertEquals(input_values.shape , (1, 93_680) )
self.assertTrue(torch.allclose(input_values[0, :30] , _lowerCAmelCase , atol=1E-6 ) )
def lowerCAmelCase_ ( self : Optional[int] ):
# fmt: off
SCREAMING_SNAKE_CASE_ = torch.tensor(
[-2.6870, -3.0104, -3.1356, -3.5352, -3.0044, -3.0353, -3.4719, -3.6777,
-3.1520, -2.9435, -2.6553, -2.8795, -2.9944, -2.5921, -3.0279, -3.0386,
-3.0864, -3.1291, -3.2353, -2.7444, -2.6831, -2.7287, -3.1761, -3.1571,
-3.2726, -3.0582, -3.1007, -3.4533, -3.4695, -3.0998] )
# fmt: on
SCREAMING_SNAKE_CASE_ = self._load_datasamples(1 )
SCREAMING_SNAKE_CASE_ = SpeechTaFeatureExtractor()
SCREAMING_SNAKE_CASE_ = feature_extractor(audio_target=_lowerCAmelCase , return_tensors='pt' ).input_values
self.assertEquals(input_values.shape , (1, 366, 80) )
self.assertTrue(torch.allclose(input_values[0, 0, :30] , _lowerCAmelCase , atol=1E-4 ) ) | 31 | 0 |
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_tokenizers_available,
is_torch_available,
is_vision_available,
)
SCREAMING_SNAKE_CASE__ : int = {
"""configuration_layoutlmv2""": ["""LAYOUTLMV2_PRETRAINED_CONFIG_ARCHIVE_MAP""", """LayoutLMv2Config"""],
"""processing_layoutlmv2""": ["""LayoutLMv2Processor"""],
"""tokenization_layoutlmv2""": ["""LayoutLMv2Tokenizer"""],
}
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
SCREAMING_SNAKE_CASE__ : List[str] = ["""LayoutLMv2TokenizerFast"""]
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
SCREAMING_SNAKE_CASE__ : List[str] = ["""LayoutLMv2FeatureExtractor"""]
SCREAMING_SNAKE_CASE__ : str = ["""LayoutLMv2ImageProcessor"""]
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
SCREAMING_SNAKE_CASE__ : int = [
"""LAYOUTLMV2_PRETRAINED_MODEL_ARCHIVE_LIST""",
"""LayoutLMv2ForQuestionAnswering""",
"""LayoutLMv2ForSequenceClassification""",
"""LayoutLMv2ForTokenClassification""",
"""LayoutLMv2Layer""",
"""LayoutLMv2Model""",
"""LayoutLMv2PreTrainedModel""",
]
if TYPE_CHECKING:
from .configuration_layoutlmva import LAYOUTLMV2_PRETRAINED_CONFIG_ARCHIVE_MAP, LayoutLMvaConfig
from .processing_layoutlmva import LayoutLMvaProcessor
from .tokenization_layoutlmva import LayoutLMvaTokenizer
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_layoutlmva_fast import LayoutLMvaTokenizerFast
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .feature_extraction_layoutlmva import LayoutLMvaFeatureExtractor, LayoutLMvaImageProcessor
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_layoutlmva import (
LAYOUTLMV2_PRETRAINED_MODEL_ARCHIVE_LIST,
LayoutLMvaForQuestionAnswering,
LayoutLMvaForSequenceClassification,
LayoutLMvaForTokenClassification,
LayoutLMvaLayer,
LayoutLMvaModel,
LayoutLMvaPreTrainedModel,
)
else:
import sys
SCREAMING_SNAKE_CASE__ : Optional[int] = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
| 79 |
from __future__ import annotations
from typing import TypedDict
class lowerCamelCase_ ( _SCREAMING_SNAKE_CASE ):
'''simple docstring'''
lowercase_ = 42
lowercase_ = 42
def UpperCAmelCase_ ( __UpperCAmelCase : str ) -> list[str]:
if not isinstance(__UpperCAmelCase , __UpperCAmelCase ):
raise TypeError('The parameter s type must be str.' )
return [s[i:] + s[:i] for i in range(len(__UpperCAmelCase ) )]
def UpperCAmelCase_ ( __UpperCAmelCase : str ) -> BWTTransformDict:
if not isinstance(__UpperCAmelCase , __UpperCAmelCase ):
raise TypeError('The parameter s type must be str.' )
if not s:
raise ValueError('The parameter s must not be empty.' )
SCREAMING_SNAKE_CASE_ = all_rotations(__UpperCAmelCase )
rotations.sort() # sort the list of rotations in alphabetically order
# make a string composed of the last char of each rotation
SCREAMING_SNAKE_CASE_ = {
"bwt_string": "".join([word[-1] for word in rotations] ),
"idx_original_string": rotations.index(__UpperCAmelCase ),
}
return response
def UpperCAmelCase_ ( __UpperCAmelCase : str , __UpperCAmelCase : int ) -> str:
if not isinstance(__UpperCAmelCase , __UpperCAmelCase ):
raise TypeError('The parameter bwt_string type must be str.' )
if not bwt_string:
raise ValueError('The parameter bwt_string must not be empty.' )
try:
SCREAMING_SNAKE_CASE_ = int(__UpperCAmelCase )
except ValueError:
raise TypeError(
'The parameter idx_original_string type must be int or passive'
' of cast to int.' )
if idx_original_string < 0:
raise ValueError('The parameter idx_original_string must not be lower than 0.' )
if idx_original_string >= len(__UpperCAmelCase ):
raise ValueError(
'The parameter idx_original_string must be lower than' ' len(bwt_string).' )
SCREAMING_SNAKE_CASE_ = [''] * len(__UpperCAmelCase )
for _ in range(len(__UpperCAmelCase ) ):
for i in range(len(__UpperCAmelCase ) ):
SCREAMING_SNAKE_CASE_ = bwt_string[i] + ordered_rotations[i]
ordered_rotations.sort()
return ordered_rotations[idx_original_string]
if __name__ == "__main__":
lowerCamelCase__ : Optional[int] = 'Provide a string that I will generate its BWT transform: '
lowerCamelCase__ : List[str] = input(entry_msg).strip()
lowerCamelCase__ : int = bwt_transform(s)
print(
f'''Burrows Wheeler transform for string \'{s}\' results '''
f'''in \'{result['bwt_string']}\''''
)
lowerCamelCase__ : Dict = reverse_bwt(result['bwt_string'], result['idx_original_string'])
print(
f'''Reversing Burrows Wheeler transform for entry \'{result['bwt_string']}\' '''
f'''we get original string \'{original_string}\''''
) | 31 | 0 |
from sklearn.metrics import matthews_corrcoef
import datasets
__UpperCamelCase : Union[str, Any] = """
Compute the Matthews correlation coefficient (MCC)
The Matthews correlation coefficient is used in machine learning as a
measure of the quality of binary and multiclass classifications. It takes
into account true and false positives and negatives and is generally
regarded as a balanced measure which can be used even if the classes are of
very different sizes. The MCC is in essence a correlation coefficient value
between -1 and +1. A coefficient of +1 represents a perfect prediction, 0
an average random prediction and -1 an inverse prediction. The statistic
is also known as the phi coefficient. [source: Wikipedia]
"""
__UpperCamelCase : List[str] = """
Args:
predictions (list of int): Predicted labels, as returned by a model.
references (list of int): Ground truth labels.
sample_weight (list of int, float, or bool): Sample weights. Defaults to `None`.
Returns:
matthews_correlation (dict containing float): Matthews correlation.
Examples:
Example 1, a basic example with only predictions and references as inputs:
>>> matthews_metric = datasets.load_metric(\"matthews_correlation\")
>>> results = matthews_metric.compute(references=[1, 3, 2, 0, 3, 2],
... predictions=[1, 2, 2, 0, 3, 3])
>>> print(round(results['matthews_correlation'], 2))
0.54
Example 2, the same example as above, but also including sample weights:
>>> matthews_metric = datasets.load_metric(\"matthews_correlation\")
>>> results = matthews_metric.compute(references=[1, 3, 2, 0, 3, 2],
... predictions=[1, 2, 2, 0, 3, 3],
... sample_weight=[0.5, 3, 1, 1, 1, 2])
>>> print(round(results['matthews_correlation'], 2))
0.1
Example 3, the same example as above, but with sample weights that cause a negative correlation:
>>> matthews_metric = datasets.load_metric(\"matthews_correlation\")
>>> results = matthews_metric.compute(references=[1, 3, 2, 0, 3, 2],
... predictions=[1, 2, 2, 0, 3, 3],
... sample_weight=[0.5, 1, 0, 0, 0, 1])
>>> print(round(results['matthews_correlation'], 2))
-0.25
"""
__UpperCamelCase : Tuple = """\
@article{scikit-learn,
title={Scikit-learn: Machine Learning in {P}ython},
author={Pedregosa, F. and Varoquaux, G. and Gramfort, A. and Michel, V.
and Thirion, B. and Grisel, O. and Blondel, M. and Prettenhofer, P.
and Weiss, R. and Dubourg, V. and Vanderplas, J. and Passos, A. and
Cournapeau, D. and Brucher, M. and Perrot, M. and Duchesnay, E.},
journal={Journal of Machine Learning Research},
volume={12},
pages={2825--2830},
year={2011}
}
"""
@datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION )
class __UpperCamelCase ( datasets.Metric ):
def _a ( self : List[str] ) -> Optional[int]:
"""simple docstring"""
return datasets.MetricInfo(
description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features(
{
"""predictions""": datasets.Value("""int32""" ),
"""references""": datasets.Value("""int32""" ),
} ) , reference_urls=[
"""https://scikit-learn.org/stable/modules/generated/sklearn.metrics.matthews_corrcoef.html"""
] , )
def _a ( self : Union[str, Any] , _lowerCAmelCase : str , _lowerCAmelCase : Optional[Any] , _lowerCAmelCase : Optional[Any]=None ) -> Optional[Any]:
"""simple docstring"""
return {
"matthews_correlation": float(matthews_corrcoef(_lowerCAmelCase , _lowerCAmelCase , sample_weight=_lowerCAmelCase ) ),
}
| 80 |
class lowerCamelCase_ :
'''simple docstring'''
def __init__( self : str ):
SCREAMING_SNAKE_CASE_ = {}
def lowerCAmelCase_ ( self : List[str] ):
print(self.vertex )
for i in self.vertex:
print(_lowerCAmelCase , ' -> ' , ' -> '.join([str(_lowerCAmelCase ) for j in self.vertex[i]] ) )
def lowerCAmelCase_ ( self : Union[str, Any] , _lowerCAmelCase : int , _lowerCAmelCase : int ):
# check if vertex is already present,
if from_vertex in self.vertex:
self.vertex[from_vertex].append(_lowerCAmelCase )
else:
# else make a new vertex
SCREAMING_SNAKE_CASE_ = [to_vertex]
def lowerCAmelCase_ ( self : Optional[Any] ):
# visited array for storing already visited nodes
SCREAMING_SNAKE_CASE_ = [False] * len(self.vertex )
# call the recursive helper function
for i in range(len(self.vertex ) ):
if not visited[i]:
self.dfs_recursive(_lowerCAmelCase , _lowerCAmelCase )
def lowerCAmelCase_ ( self : Tuple , _lowerCAmelCase : int , _lowerCAmelCase : list ):
# mark start vertex as visited
SCREAMING_SNAKE_CASE_ = True
print(_lowerCAmelCase , end=' ' )
# Recur for all the vertices that are adjacent to this node
for i in self.vertex:
if not visited[i]:
self.dfs_recursive(_lowerCAmelCase , _lowerCAmelCase )
if __name__ == "__main__":
lowerCamelCase__ : List[Any] = Graph()
g.add_edge(0, 1)
g.add_edge(0, 2)
g.add_edge(1, 2)
g.add_edge(2, 0)
g.add_edge(2, 3)
g.add_edge(3, 3)
g.print_graph()
print('DFS:')
g.dfs()
# OUTPUT:
# 0 -> 1 -> 2
# 1 -> 2
# 2 -> 0 -> 3
# 3 -> 3
# DFS:
# 0 1 2 3 | 31 | 0 |
import inspect
import unittest
import numpy as np
from tests.test_modeling_common import floats_tensor
from transformers import DetrConfig, MaskFormerConfig, SwinConfig, is_torch_available, is_vision_available
from transformers.testing_utils import require_torch, require_torch_multi_gpu, require_vision, slow, torch_device
from transformers.utils import cached_property
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers import MaskFormerForInstanceSegmentation, MaskFormerModel
if is_vision_available():
from transformers import MaskFormerImageProcessor
if is_vision_available():
from PIL import Image
class a :
"""simple docstring"""
def __init__( self : Optional[int] , lowerCamelCase : Union[str, Any] , lowerCamelCase : Tuple=2 , lowerCamelCase : Any=True , lowerCamelCase : Tuple=False , lowerCamelCase : str=10 , lowerCamelCase : Optional[Any]=3 , lowerCamelCase : Tuple=32 * 4 , lowerCamelCase : List[Any]=32 * 6 , lowerCamelCase : Tuple=4 , lowerCamelCase : Tuple=32 , ) -> int:
__snake_case : List[str] = parent
__snake_case : int = batch_size
__snake_case : List[str] = is_training
__snake_case : Dict = use_auxiliary_loss
__snake_case : Dict = num_queries
__snake_case : List[str] = num_channels
__snake_case : Tuple = min_size
__snake_case : Optional[int] = max_size
__snake_case : int = num_labels
__snake_case : int = mask_feature_size
def __snake_case ( self : List[Any] ) -> int:
__snake_case : List[Any] = floats_tensor([self.batch_size, self.num_channels, self.min_size, self.max_size] ).to(
lowerCamelCase )
__snake_case : List[str] = torch.ones([self.batch_size, self.min_size, self.max_size] , device=lowerCamelCase )
__snake_case : List[str] = (
torch.rand([self.batch_size, self.num_labels, self.min_size, self.max_size] , device=lowerCamelCase ) > 0.5
).float()
__snake_case : Dict = (torch.rand((self.batch_size, self.num_labels) , device=lowerCamelCase ) > 0.5).long()
__snake_case : int = self.get_config()
return config, pixel_values, pixel_mask, mask_labels, class_labels
def __snake_case ( self : Any ) -> Tuple:
return MaskFormerConfig.from_backbone_and_decoder_configs(
backbone_config=SwinConfig(
depths=[1, 1, 1, 1] , ) , decoder_config=DetrConfig(
decoder_ffn_dim=128 , num_queries=self.num_queries , decoder_attention_heads=2 , d_model=self.mask_feature_size , ) , mask_feature_size=self.mask_feature_size , fpn_feature_size=self.mask_feature_size , num_channels=self.num_channels , num_labels=self.num_labels , )
def __snake_case ( self : int ) -> Dict:
__snake_case , __snake_case , __snake_case , __snake_case , __snake_case : Dict = self.prepare_config_and_inputs()
__snake_case : Tuple = {"pixel_values": pixel_values, "pixel_mask": pixel_mask}
return config, inputs_dict
def __snake_case ( self : Tuple , lowerCamelCase : Tuple , lowerCamelCase : List[str] ) -> List[str]:
__snake_case : Any = output.encoder_hidden_states
__snake_case : List[str] = output.pixel_decoder_hidden_states
__snake_case : Dict = output.transformer_decoder_hidden_states
self.parent.assertTrue(len(lowerCamelCase ) , len(config.backbone_config.depths ) )
self.parent.assertTrue(len(lowerCamelCase ) , len(config.backbone_config.depths ) )
self.parent.assertTrue(len(lowerCamelCase ) , config.decoder_config.decoder_layers )
def __snake_case ( self : Union[str, Any] , lowerCamelCase : List[str] , lowerCamelCase : List[Any] , lowerCamelCase : Union[str, Any] , lowerCamelCase : Dict=False ) -> Dict:
with torch.no_grad():
__snake_case : int = MaskFormerModel(config=lowerCamelCase )
model.to(lowerCamelCase )
model.eval()
__snake_case : List[Any] = model(pixel_values=lowerCamelCase , pixel_mask=lowerCamelCase )
__snake_case : Union[str, Any] = model(lowerCamelCase , output_hidden_states=lowerCamelCase )
# the correct shape of output.transformer_decoder_hidden_states ensure the correcteness of the
# encoder and pixel decoder
self.parent.assertEqual(
output.transformer_decoder_last_hidden_state.shape , (self.batch_size, self.num_queries, self.mask_feature_size) , )
# let's ensure the other two hidden state exists
self.parent.assertTrue(output.pixel_decoder_last_hidden_state is not None )
self.parent.assertTrue(output.encoder_last_hidden_state is not None )
if output_hidden_states:
self.check_output_hidden_state(lowerCamelCase , lowerCamelCase )
def __snake_case ( self : Optional[int] , lowerCamelCase : Any , lowerCamelCase : Dict , lowerCamelCase : Optional[int] , lowerCamelCase : int , lowerCamelCase : Union[str, Any] ) -> Optional[Any]:
__snake_case : Union[str, Any] = MaskFormerForInstanceSegmentation(config=lowerCamelCase )
model.to(lowerCamelCase )
model.eval()
def comm_check_on_output(lowerCamelCase : Union[str, Any] ):
# let's still check that all the required stuff is there
self.parent.assertTrue(result.transformer_decoder_last_hidden_state is not None )
self.parent.assertTrue(result.pixel_decoder_last_hidden_state is not None )
self.parent.assertTrue(result.encoder_last_hidden_state is not None )
# okay, now we need to check the logits shape
# due to the encoder compression, masks have a //4 spatial size
self.parent.assertEqual(
result.masks_queries_logits.shape , (self.batch_size, self.num_queries, self.min_size // 4, self.max_size // 4) , )
# + 1 for null class
self.parent.assertEqual(
result.class_queries_logits.shape , (self.batch_size, self.num_queries, self.num_labels + 1) )
with torch.no_grad():
__snake_case : Dict = model(pixel_values=lowerCamelCase , pixel_mask=lowerCamelCase )
__snake_case : Optional[Any] = model(lowerCamelCase )
comm_check_on_output(lowerCamelCase )
__snake_case : str = model(
pixel_values=lowerCamelCase , pixel_mask=lowerCamelCase , mask_labels=lowerCamelCase , class_labels=lowerCamelCase )
comm_check_on_output(lowerCamelCase )
self.parent.assertTrue(result.loss is not None )
self.parent.assertEqual(result.loss.shape , torch.Size([1] ) )
@require_torch
class a (_lowerCAmelCase , _lowerCAmelCase , unittest.TestCase ):
"""simple docstring"""
__UpperCAmelCase : Tuple = (MaskFormerModel, MaskFormerForInstanceSegmentation) if is_torch_available() else ()
__UpperCAmelCase : Dict = (
{"feature-extraction": MaskFormerModel, "image-segmentation": MaskFormerForInstanceSegmentation}
if is_torch_available()
else {}
)
__UpperCAmelCase : Dict = False
__UpperCAmelCase : int = False
__UpperCAmelCase : List[str] = False
__UpperCAmelCase : str = False
def __snake_case ( self : Optional[int] ) -> List[str]:
__snake_case : Union[str, Any] = MaskFormerModelTester(self )
__snake_case : Dict = ConfigTester(self , config_class=lowerCamelCase , has_text_modality=lowerCamelCase )
def __snake_case ( self : int ) -> Dict:
self.config_tester.run_common_tests()
def __snake_case ( self : Any ) -> Union[str, Any]:
__snake_case , __snake_case : Dict = self.model_tester.prepare_config_and_inputs_for_common()
self.model_tester.create_and_check_maskformer_model(lowerCamelCase , **lowerCamelCase , output_hidden_states=lowerCamelCase )
def __snake_case ( self : Any ) -> Optional[Any]:
__snake_case : Optional[int] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_maskformer_instance_segmentation_head_model(*lowerCamelCase )
@unittest.skip(reason="MaskFormer does not use inputs_embeds" )
def __snake_case ( self : List[Any] ) -> Tuple:
pass
@unittest.skip(reason="MaskFormer does not have a get_input_embeddings method" )
def __snake_case ( self : Optional[int] ) -> List[str]:
pass
@unittest.skip(reason="MaskFormer is not a generative model" )
def __snake_case ( self : Union[str, Any] ) -> Tuple:
pass
@unittest.skip(reason="MaskFormer does not use token embeddings" )
def __snake_case ( self : List[Any] ) -> Union[str, Any]:
pass
@require_torch_multi_gpu
@unittest.skip(
reason="MaskFormer has some layers using `add_module` which doesn't work well with `nn.DataParallel`" )
def __snake_case ( self : str ) -> List[Any]:
pass
@unittest.skip("Will be fixed soon by reducing the size of the model used for common tests." )
def __snake_case ( self : int ) -> Dict:
pass
def __snake_case ( self : int ) -> List[Any]:
__snake_case , __snake_case : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
__snake_case : List[Any] = model_class(lowerCamelCase )
__snake_case : Optional[Any] = inspect.signature(model.forward )
# signature.parameters is an OrderedDict => so arg_names order is deterministic
__snake_case : Any = [*signature.parameters.keys()]
__snake_case : Dict = ["pixel_values"]
self.assertListEqual(arg_names[:1] , lowerCamelCase )
@slow
def __snake_case ( self : List[Any] ) -> int:
for model_name in ["facebook/maskformer-swin-small-coco"]:
__snake_case : int = MaskFormerModel.from_pretrained(lowerCamelCase )
self.assertIsNotNone(lowerCamelCase )
def __snake_case ( self : Union[str, Any] ) -> str:
__snake_case : Union[str, Any] = (self.model_tester.min_size,) * 2
__snake_case : List[Any] = {
"pixel_values": torch.randn((2, 3, *size) , device=lowerCamelCase ),
"mask_labels": torch.randn((2, 10, *size) , device=lowerCamelCase ),
"class_labels": torch.zeros(2 , 10 , device=lowerCamelCase ).long(),
}
__snake_case : Optional[int] = MaskFormerForInstanceSegmentation(MaskFormerConfig() ).to(lowerCamelCase )
__snake_case : Dict = model(**lowerCamelCase )
self.assertTrue(outputs.loss is not None )
def __snake_case ( self : Any ) -> Optional[Any]:
__snake_case , __snake_case : int = self.model_tester.prepare_config_and_inputs_for_common()
self.model_tester.create_and_check_maskformer_model(lowerCamelCase , **lowerCamelCase , output_hidden_states=lowerCamelCase )
def __snake_case ( self : Any ) -> List[str]:
__snake_case , __snake_case : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
__snake_case : int = model_class(lowerCamelCase ).to(lowerCamelCase )
__snake_case : Dict = model(**lowerCamelCase , output_attentions=lowerCamelCase )
self.assertTrue(outputs.attentions is not None )
def __snake_case ( self : Optional[int] ) -> str:
if not self.model_tester.is_training:
return
# only MaskFormerForInstanceSegmentation has the loss
__snake_case : int = self.all_model_classes[1]
__snake_case , __snake_case , __snake_case , __snake_case , __snake_case : List[str] = self.model_tester.prepare_config_and_inputs()
__snake_case : Optional[Any] = model_class(lowerCamelCase )
model.to(lowerCamelCase )
model.train()
__snake_case : str = model(lowerCamelCase , mask_labels=lowerCamelCase , class_labels=lowerCamelCase ).loss
loss.backward()
def __snake_case ( self : Any ) -> str:
# only MaskFormerForInstanceSegmentation has the loss
__snake_case : List[Any] = self.all_model_classes[1]
__snake_case , __snake_case , __snake_case , __snake_case , __snake_case : Tuple = self.model_tester.prepare_config_and_inputs()
__snake_case : Union[str, Any] = True
__snake_case : Optional[int] = True
__snake_case : Any = model_class(lowerCamelCase )
model.to(lowerCamelCase )
model.train()
__snake_case : str = model(lowerCamelCase , mask_labels=lowerCamelCase , class_labels=lowerCamelCase )
__snake_case : Optional[Any] = outputs.encoder_hidden_states[0]
encoder_hidden_states.retain_grad()
__snake_case : str = outputs.pixel_decoder_hidden_states[0]
pixel_decoder_hidden_states.retain_grad()
# we requires_grad=True in inputs_embeds (line 2152), the original implementation don't
__snake_case : Any = outputs.transformer_decoder_hidden_states[0]
transformer_decoder_hidden_states.retain_grad()
__snake_case : Tuple = outputs.attentions[0]
attentions.retain_grad()
outputs.loss.backward(retain_graph=lowerCamelCase )
self.assertIsNotNone(encoder_hidden_states.grad )
self.assertIsNotNone(pixel_decoder_hidden_states.grad )
self.assertIsNotNone(transformer_decoder_hidden_states.grad )
self.assertIsNotNone(attentions.grad )
_snake_case : int = 1E-4
def lowerCAmelCase_ ( ):
__snake_case : List[str] = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" )
return image
@require_vision
@slow
class a (unittest.TestCase ):
"""simple docstring"""
@cached_property
def __snake_case ( self : Optional[Any] ) -> List[str]:
return (
MaskFormerImageProcessor.from_pretrained("facebook/maskformer-swin-small-coco" )
if is_vision_available()
else None
)
def __snake_case ( self : Dict ) -> Optional[int]:
__snake_case : Tuple = MaskFormerModel.from_pretrained("facebook/maskformer-swin-small-coco" ).to(lowerCamelCase )
__snake_case : Dict = self.default_image_processor
__snake_case : Optional[int] = prepare_img()
__snake_case : Optional[int] = image_processor(lowerCamelCase , return_tensors="pt" ).to(lowerCamelCase )
__snake_case : Optional[Any] = inputs["pixel_values"].shape
# check size is divisible by 32
self.assertTrue((inputs_shape[-1] % 32) == 0 and (inputs_shape[-2] % 32) == 0 )
# check size
self.assertEqual(lowerCamelCase , (1, 3, 800, 1088) )
with torch.no_grad():
__snake_case : Optional[int] = model(**lowerCamelCase )
__snake_case : str = torch.tensor(
[[-0.04_82, 0.92_28, 0.49_51], [-0.25_47, 0.80_17, 0.85_27], [-0.00_69, 0.33_85, -0.00_89]] ).to(lowerCamelCase )
self.assertTrue(
torch.allclose(
outputs.encoder_last_hidden_state[0, 0, :3, :3] , lowerCamelCase , atol=lowerCamelCase ) )
__snake_case : Optional[int] = torch.tensor(
[[-0.84_22, -0.84_34, -0.97_18], [-1.01_44, -0.55_65, -0.41_95], [-1.00_38, -0.44_84, -0.19_61]] ).to(lowerCamelCase )
self.assertTrue(
torch.allclose(
outputs.pixel_decoder_last_hidden_state[0, 0, :3, :3] , lowerCamelCase , atol=lowerCamelCase ) )
__snake_case : Tuple = torch.tensor(
[[0.28_52, -0.01_59, 0.97_35], [0.62_54, 0.18_58, 0.85_29], [-0.06_80, -0.41_16, 1.84_13]] ).to(lowerCamelCase )
self.assertTrue(
torch.allclose(
outputs.transformer_decoder_last_hidden_state[0, :3, :3] , lowerCamelCase , atol=lowerCamelCase ) )
def __snake_case ( self : Dict ) -> List[Any]:
__snake_case : Any = (
MaskFormerForInstanceSegmentation.from_pretrained("facebook/maskformer-swin-small-coco" )
.to(lowerCamelCase )
.eval()
)
__snake_case : Any = self.default_image_processor
__snake_case : str = prepare_img()
__snake_case : Tuple = image_processor(lowerCamelCase , return_tensors="pt" ).to(lowerCamelCase )
__snake_case : int = inputs["pixel_values"].shape
# check size is divisible by 32
self.assertTrue((inputs_shape[-1] % 32) == 0 and (inputs_shape[-2] % 32) == 0 )
# check size
self.assertEqual(lowerCamelCase , (1, 3, 800, 1088) )
with torch.no_grad():
__snake_case : str = model(**lowerCamelCase )
# masks_queries_logits
__snake_case : Optional[int] = outputs.masks_queries_logits
self.assertEqual(
masks_queries_logits.shape , (1, model.config.decoder_config.num_queries, inputs_shape[-2] // 4, inputs_shape[-1] // 4) , )
__snake_case : Union[str, Any] = [
[-1.3_73_71_24, -1.7_72_49_37, -1.9_36_42_33],
[-1.5_97_72_81, -1.9_86_79_39, -2.1_52_36_95],
[-1.5_79_53_98, -1.9_26_98_32, -2.09_39_42],
]
__snake_case : Optional[Any] = torch.tensor(lowerCamelCase ).to(lowerCamelCase )
self.assertTrue(torch.allclose(masks_queries_logits[0, 0, :3, :3] , lowerCamelCase , atol=lowerCamelCase ) )
# class_queries_logits
__snake_case : Tuple = outputs.class_queries_logits
self.assertEqual(
class_queries_logits.shape , (1, model.config.decoder_config.num_queries, model.config.num_labels + 1) )
__snake_case : Optional[int] = torch.tensor(
[
[1.6512E00, -5.2572E00, -3.3519E00],
[3.6169E-02, -5.9025E00, -2.9313E00],
[1.0766E-04, -7.7630E00, -5.1263E00],
] ).to(lowerCamelCase )
self.assertTrue(torch.allclose(outputs.class_queries_logits[0, :3, :3] , lowerCamelCase , atol=lowerCamelCase ) )
def __snake_case ( self : Any ) -> int:
__snake_case : int = (
MaskFormerForInstanceSegmentation.from_pretrained("facebook/maskformer-resnet101-coco-stuff" )
.to(lowerCamelCase )
.eval()
)
__snake_case : Tuple = self.default_image_processor
__snake_case : List[str] = prepare_img()
__snake_case : List[str] = image_processor(lowerCamelCase , return_tensors="pt" ).to(lowerCamelCase )
__snake_case : List[str] = inputs["pixel_values"].shape
# check size is divisible by 32
self.assertTrue((inputs_shape[-1] % 32) == 0 and (inputs_shape[-2] % 32) == 0 )
# check size
self.assertEqual(lowerCamelCase , (1, 3, 800, 1088) )
with torch.no_grad():
__snake_case : Optional[Any] = model(**lowerCamelCase )
# masks_queries_logits
__snake_case : str = outputs.masks_queries_logits
self.assertEqual(
masks_queries_logits.shape , (1, model.config.decoder_config.num_queries, inputs_shape[-2] // 4, inputs_shape[-1] // 4) , )
__snake_case : Optional[int] = [[-0.90_46, -2.63_66, -4.60_62], [-3.41_79, -5.78_90, -8.80_57], [-4.91_79, -7.65_60, -10.77_11]]
__snake_case : List[Any] = torch.tensor(lowerCamelCase ).to(lowerCamelCase )
self.assertTrue(torch.allclose(masks_queries_logits[0, 0, :3, :3] , lowerCamelCase , atol=lowerCamelCase ) )
# class_queries_logits
__snake_case : Dict = outputs.class_queries_logits
self.assertEqual(
class_queries_logits.shape , (1, model.config.decoder_config.num_queries, model.config.num_labels + 1) )
__snake_case : Any = torch.tensor(
[[4.71_88, -3.25_85, -2.88_57], [6.68_71, -2.91_81, -1.24_87], [7.24_49, -2.27_64, -2.18_74]] ).to(lowerCamelCase )
self.assertTrue(torch.allclose(outputs.class_queries_logits[0, :3, :3] , lowerCamelCase , atol=lowerCamelCase ) )
def __snake_case ( self : Optional[Any] ) -> List[str]:
__snake_case : List[Any] = (
MaskFormerForInstanceSegmentation.from_pretrained("facebook/maskformer-swin-small-coco" )
.to(lowerCamelCase )
.eval()
)
__snake_case : Optional[int] = self.default_image_processor
__snake_case : List[str] = image_processor(
[np.zeros((3, 800, 1333) ), np.zeros((3, 800, 1333) )] , segmentation_maps=[np.zeros((384, 384) ).astype(np.floataa ), np.zeros((384, 384) ).astype(np.floataa )] , return_tensors="pt" , )
__snake_case : str = inputs["pixel_values"].to(lowerCamelCase )
__snake_case : Tuple = [el.to(lowerCamelCase ) for el in inputs["mask_labels"]]
__snake_case : Tuple = [el.to(lowerCamelCase ) for el in inputs["class_labels"]]
with torch.no_grad():
__snake_case : Dict = model(**lowerCamelCase )
self.assertTrue(outputs.loss is not None )
| 81 |
from ...configuration_utils import PretrainedConfig
from ...utils import logging
lowerCamelCase__ : str = logging.get_logger(__name__)
lowerCamelCase__ : Tuple = {
'funnel-transformer/small': 'https://huggingface.co/funnel-transformer/small/resolve/main/config.json',
'funnel-transformer/small-base': 'https://huggingface.co/funnel-transformer/small-base/resolve/main/config.json',
'funnel-transformer/medium': 'https://huggingface.co/funnel-transformer/medium/resolve/main/config.json',
'funnel-transformer/medium-base': 'https://huggingface.co/funnel-transformer/medium-base/resolve/main/config.json',
'funnel-transformer/intermediate': (
'https://huggingface.co/funnel-transformer/intermediate/resolve/main/config.json'
),
'funnel-transformer/intermediate-base': (
'https://huggingface.co/funnel-transformer/intermediate-base/resolve/main/config.json'
),
'funnel-transformer/large': 'https://huggingface.co/funnel-transformer/large/resolve/main/config.json',
'funnel-transformer/large-base': 'https://huggingface.co/funnel-transformer/large-base/resolve/main/config.json',
'funnel-transformer/xlarge': 'https://huggingface.co/funnel-transformer/xlarge/resolve/main/config.json',
'funnel-transformer/xlarge-base': 'https://huggingface.co/funnel-transformer/xlarge-base/resolve/main/config.json',
}
class lowerCamelCase_ ( _SCREAMING_SNAKE_CASE ):
'''simple docstring'''
lowercase_ = "funnel"
lowercase_ = {
"hidden_size": "d_model",
"num_attention_heads": "n_head",
}
def __init__( self : int , _lowerCAmelCase : Optional[int]=30_522 , _lowerCAmelCase : List[str]=[4, 4, 4] , _lowerCAmelCase : Tuple=None , _lowerCAmelCase : Optional[int]=2 , _lowerCAmelCase : int=768 , _lowerCAmelCase : Optional[Any]=12 , _lowerCAmelCase : Optional[Any]=64 , _lowerCAmelCase : Optional[Any]=3_072 , _lowerCAmelCase : List[str]="gelu_new" , _lowerCAmelCase : Any=0.1 , _lowerCAmelCase : int=0.1 , _lowerCAmelCase : Tuple=0.0 , _lowerCAmelCase : List[Any]=0.1 , _lowerCAmelCase : Dict=None , _lowerCAmelCase : str=1E-9 , _lowerCAmelCase : Any="mean" , _lowerCAmelCase : Union[str, Any]="relative_shift" , _lowerCAmelCase : Optional[Any]=True , _lowerCAmelCase : Dict=True , _lowerCAmelCase : Tuple=True , **_lowerCAmelCase : Optional[Any] , ):
SCREAMING_SNAKE_CASE_ = vocab_size
SCREAMING_SNAKE_CASE_ = block_sizes
SCREAMING_SNAKE_CASE_ = [1] * len(_lowerCAmelCase ) if block_repeats is None else block_repeats
assert len(_lowerCAmelCase ) == len(
self.block_repeats ), "`block_sizes` and `block_repeats` should have the same length."
SCREAMING_SNAKE_CASE_ = num_decoder_layers
SCREAMING_SNAKE_CASE_ = d_model
SCREAMING_SNAKE_CASE_ = n_head
SCREAMING_SNAKE_CASE_ = d_head
SCREAMING_SNAKE_CASE_ = d_inner
SCREAMING_SNAKE_CASE_ = hidden_act
SCREAMING_SNAKE_CASE_ = hidden_dropout
SCREAMING_SNAKE_CASE_ = attention_dropout
SCREAMING_SNAKE_CASE_ = activation_dropout
SCREAMING_SNAKE_CASE_ = initializer_range
SCREAMING_SNAKE_CASE_ = initializer_std
SCREAMING_SNAKE_CASE_ = layer_norm_eps
assert pooling_type in [
"mean",
"max",
], F"Got {pooling_type} for `pooling_type` but only 'mean' and 'max' are supported."
SCREAMING_SNAKE_CASE_ = pooling_type
assert attention_type in [
"relative_shift",
"factorized",
], F"Got {attention_type} for `attention_type` but only 'relative_shift' and 'factorized' are supported."
SCREAMING_SNAKE_CASE_ = attention_type
SCREAMING_SNAKE_CASE_ = separate_cls
SCREAMING_SNAKE_CASE_ = truncate_seq
SCREAMING_SNAKE_CASE_ = pool_q_only
super().__init__(**_lowerCAmelCase )
@property
def lowerCAmelCase_ ( self : Optional[int] ):
return sum(self.block_sizes )
@num_hidden_layers.setter
def lowerCAmelCase_ ( self : int , _lowerCAmelCase : List[Any] ):
raise NotImplementedError(
'This model does not support the setting of `num_hidden_layers`. Please set `block_sizes`.' )
@property
def lowerCAmelCase_ ( self : List[Any] ):
return len(self.block_sizes )
@num_blocks.setter
def lowerCAmelCase_ ( self : Dict , _lowerCAmelCase : Union[str, Any] ):
raise NotImplementedError('This model does not support the setting of `num_blocks`. Please set `block_sizes`.' ) | 31 | 0 |
"""simple docstring"""
import datasets
from .nmt_bleu import compute_bleu # From: https://github.com/tensorflow/nmt/blob/master/nmt/scripts/bleu.py
lowerCamelCase = """\
@INPROCEEDINGS{Papineni02bleu:a,
author = {Kishore Papineni and Salim Roukos and Todd Ward and Wei-jing Zhu},
title = {BLEU: a Method for Automatic Evaluation of Machine Translation},
booktitle = {},
year = {2002},
pages = {311--318}
}
@inproceedings{lin-och-2004-orange,
title = \"{ORANGE}: a Method for Evaluating Automatic Evaluation Metrics for Machine Translation\",
author = \"Lin, Chin-Yew and
Och, Franz Josef\",
booktitle = \"{COLING} 2004: Proceedings of the 20th International Conference on Computational Linguistics\",
month = \"aug 23{--}aug 27\",
year = \"2004\",
address = \"Geneva, Switzerland\",
publisher = \"COLING\",
url = \"https://www.aclweb.org/anthology/C04-1072\",
pages = \"501--507\",
}
"""
lowerCamelCase = """\
BLEU (bilingual evaluation understudy) is an algorithm for evaluating the quality of text which has been machine-translated from one natural language to another.
Quality is considered to be the correspondence between a machine's output and that of a human: \"the closer a machine translation is to a professional human translation,
the better it is\" – this is the central idea behind BLEU. BLEU was one of the first metrics to claim a high correlation with human judgements of quality, and
remains one of the most popular automated and inexpensive metrics.
Scores are calculated for individual translated segments—generally sentences—by comparing them with a set of good quality reference translations.
Those scores are then averaged over the whole corpus to reach an estimate of the translation's overall quality. Intelligibility or grammatical correctness
are not taken into account[citation needed].
BLEU's output is always a number between 0 and 1. This value indicates how similar the candidate text is to the reference texts, with values closer to 1
representing more similar texts. Few human translations will attain a score of 1, since this would indicate that the candidate is identical to one of the
reference translations. For this reason, it is not necessary to attain a score of 1. Because there are more opportunities to match, adding additional
reference translations will increase the BLEU score.
"""
lowerCamelCase = """
Computes BLEU score of translated segments against one or more references.
Args:
predictions: list of translations to score.
Each translation should be tokenized into a list of tokens.
references: list of lists of references for each translation.
Each reference should be tokenized into a list of tokens.
max_order: Maximum n-gram order to use when computing BLEU score.
smooth: Whether or not to apply Lin et al. 2004 smoothing.
Returns:
'bleu': bleu score,
'precisions': geometric mean of n-gram precisions,
'brevity_penalty': brevity penalty,
'length_ratio': ratio of lengths,
'translation_length': translation_length,
'reference_length': reference_length
Examples:
>>> predictions = [
... [\"hello\", \"there\", \"general\", \"kenobi\"], # tokenized prediction of the first sample
... [\"foo\", \"bar\", \"foobar\"] # tokenized prediction of the second sample
... ]
>>> references = [
... [[\"hello\", \"there\", \"general\", \"kenobi\"], [\"hello\", \"there\", \"!\"]], # tokenized references for the first sample (2 references)
... [[\"foo\", \"bar\", \"foobar\"]] # tokenized references for the second sample (1 reference)
... ]
>>> bleu = datasets.load_metric(\"bleu\")
>>> results = bleu.compute(predictions=predictions, references=references)
>>> print(results[\"bleu\"])
1.0
"""
@datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION )
class lowercase__ ( datasets.Metric ):
'''simple docstring'''
def lowercase__ ( self : List[str] ) -> List[Any]:
'''simple docstring'''
return datasets.MetricInfo(
description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features(
{
"predictions": datasets.Sequence(datasets.Value("string" , id="token" ) , id="sequence" ),
"references": datasets.Sequence(
datasets.Sequence(datasets.Value("string" , id="token" ) , id="sequence" ) , id="references" ),
} ) , codebase_urls=["https://github.com/tensorflow/nmt/blob/master/nmt/scripts/bleu.py"] , reference_urls=[
"https://en.wikipedia.org/wiki/BLEU",
"https://towardsdatascience.com/evaluating-text-output-in-nlp-bleu-at-your-own-risk-e8609665a213",
] , )
def lowercase__ ( self : Optional[int] , _UpperCAmelCase : List[str] , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : Optional[Any]=4 , _UpperCAmelCase : Dict=False ) -> List[str]:
'''simple docstring'''
UpperCAmelCase_ = compute_bleu(
reference_corpus=_UpperCAmelCase , translation_corpus=_UpperCAmelCase , max_order=_UpperCAmelCase , smooth=_UpperCAmelCase )
((UpperCAmelCase_) , (UpperCAmelCase_) , (UpperCAmelCase_) , (UpperCAmelCase_) , (UpperCAmelCase_) , (UpperCAmelCase_)) = score
return {
"bleu": bleu,
"precisions": precisions,
"brevity_penalty": bp,
"length_ratio": ratio,
"translation_length": translation_length,
"reference_length": reference_length,
}
| 82 |
from __future__ import annotations
from collections.abc import Iterator
class lowerCamelCase_ :
'''simple docstring'''
def __init__( self : Union[str, Any] , _lowerCAmelCase : int ):
SCREAMING_SNAKE_CASE_ = value
SCREAMING_SNAKE_CASE_ = None
SCREAMING_SNAKE_CASE_ = None
class lowerCamelCase_ :
'''simple docstring'''
def __init__( self : int , _lowerCAmelCase : Node ):
SCREAMING_SNAKE_CASE_ = tree
def lowerCAmelCase_ ( self : Union[str, Any] , _lowerCAmelCase : Node | None ):
if node is None:
return 0
return node.value + (
self.depth_first_search(node.left ) + self.depth_first_search(node.right )
)
def __iter__( self : Dict ):
yield self.depth_first_search(self.tree )
if __name__ == "__main__":
import doctest
doctest.testmod() | 31 | 0 |
"""simple docstring"""
import math
import sys
import cva
import numpy as np
def snake_case_ ( A_ : np.ndarray, A_ : float ):
'''simple docstring'''
_lowerCamelCase : Dict = math.sqrt(A_ )
_lowerCamelCase : Dict = 1 / (sigma * math.sqrt(2 * math.pi ))
return cons * np.exp(-((img / sigma) ** 2) * 0.5 )
def snake_case_ ( A_ : np.ndarray, A_ : int, A_ : int, A_ : int ):
'''simple docstring'''
_lowerCamelCase : int = kernel_size // 2
return img[x - half : x + half + 1, y - half : y + half + 1]
def snake_case_ ( A_ : int, A_ : float ):
'''simple docstring'''
_lowerCamelCase : List[str] = np.zeros((kernel_size, kernel_size) )
for i in range(0, A_ ):
for j in range(0, A_ ):
_lowerCamelCase : Optional[int] = math.sqrt(
abs(i - kernel_size // 2 ) ** 2 + abs(j - kernel_size // 2 ) ** 2 )
return vec_gaussian(A_, A_ )
def snake_case_ ( A_ : np.ndarray, A_ : float, A_ : float, A_ : int, ):
'''simple docstring'''
_lowerCamelCase : str = np.zeros(img.shape )
_lowerCamelCase : List[str] = get_gauss_kernel(A_, A_ )
_lowerCamelCase , _lowerCamelCase : str = img.shape
for i in range(kernel_size // 2, size_x - kernel_size // 2 ):
for j in range(kernel_size // 2, size_y - kernel_size // 2 ):
_lowerCamelCase : List[str] = get_slice(A_, A_, A_, A_ )
_lowerCamelCase : Optional[int] = img_s - img_s[kernel_size // 2, kernel_size // 2]
_lowerCamelCase : List[Any] = vec_gaussian(A_, A_ )
_lowerCamelCase : Dict = np.multiply(A_, A_ )
_lowerCamelCase : List[Any] = np.multiply(A_, A_ )
_lowerCamelCase : int = np.sum(A_ ) / np.sum(A_ )
_lowerCamelCase : Tuple = val
return imga
def snake_case_ ( A_ : list ):
'''simple docstring'''
_lowerCamelCase : int = args[1] if args[1:] else '''../image_data/lena.jpg'''
_lowerCamelCase : Optional[int] = float(args[2] ) if args[2:] else 1.0
_lowerCamelCase : int = float(args[3] ) if args[3:] else 1.0
if args[4:]:
_lowerCamelCase : Any = int(args[4] )
_lowerCamelCase : Optional[int] = kernel_size + abs(kernel_size % 2 - 1 )
else:
_lowerCamelCase : List[str] = 5
return filename, spatial_variance, intensity_variance, kernel_size
if __name__ == "__main__":
lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ = parse_args(sys.argv)
lowerCAmelCase__ = cva.imread(filename, 0)
cva.imshow('''input image''', img)
lowerCAmelCase__ = img / 255
lowerCAmelCase__ = out.astype('''float32''')
lowerCAmelCase__ = bilateral_filter(out, spatial_variance, intensity_variance, kernel_size)
lowerCAmelCase__ = out * 255
lowerCAmelCase__ = np.uinta(out)
cva.imshow('''output image''', out)
cva.waitKey(0)
cva.destroyAllWindows()
| 83 |
def UpperCAmelCase_ ( __UpperCAmelCase : list , __UpperCAmelCase : int , __UpperCAmelCase : int = 0 , __UpperCAmelCase : int = 0 ) -> int:
SCREAMING_SNAKE_CASE_ = right or len(__UpperCAmelCase ) - 1
if left > right:
return -1
elif list_data[left] == key:
return left
elif list_data[right] == key:
return right
else:
return search(__UpperCAmelCase , __UpperCAmelCase , left + 1 , right - 1 )
if __name__ == "__main__":
import doctest
doctest.testmod() | 31 | 0 |
from collections import OrderedDict
from typing import List, Mapping
from packaging import version
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig
from ...utils import logging
UpperCAmelCase = logging.get_logger(__name__)
UpperCAmelCase = {
'''google/efficientnet-b7''': '''https://huggingface.co/google/efficientnet-b7/resolve/main/config.json''',
}
class A_ ( __lowerCamelCase ):
'''simple docstring'''
_UpperCamelCase : int = """efficientnet"""
def __init__( self , snake_case = 3 , snake_case = 600 , snake_case = 2.0 , snake_case = 3.1 , snake_case = 8 , snake_case = [3, 3, 5, 3, 5, 5, 3] , snake_case = [32, 16, 24, 40, 80, 112, 192] , snake_case = [16, 24, 40, 80, 112, 192, 320] , snake_case = [] , snake_case = [1, 2, 2, 2, 1, 2, 1] , snake_case = [1, 2, 2, 3, 3, 4, 1] , snake_case = [1, 6, 6, 6, 6, 6, 6] , snake_case = 0.25 , snake_case = "swish" , snake_case = 2560 , snake_case = "mean" , snake_case = 0.02 , snake_case = 0.001 , snake_case = 0.99 , snake_case = 0.5 , snake_case = 0.2 , **snake_case , ):
super().__init__(**snake_case )
lowercase = num_channels
lowercase = image_size
lowercase = width_coefficient
lowercase = depth_coefficient
lowercase = depth_divisor
lowercase = kernel_sizes
lowercase = in_channels
lowercase = out_channels
lowercase = depthwise_padding
lowercase = strides
lowercase = num_block_repeats
lowercase = expand_ratios
lowercase = squeeze_expansion_ratio
lowercase = hidden_act
lowercase = hidden_dim
lowercase = pooling_type
lowercase = initializer_range
lowercase = batch_norm_eps
lowercase = batch_norm_momentum
lowercase = dropout_rate
lowercase = drop_connect_rate
lowercase = sum(snake_case ) * 4
class A_ ( __lowerCamelCase ):
'''simple docstring'''
_UpperCamelCase : int = version.parse("""1.11""" )
@property
def SCREAMING_SNAKE_CASE__ ( self ):
return OrderedDict(
[
('pixel_values', {0: 'batch', 1: 'num_channels', 2: 'height', 3: 'width'}),
] )
@property
def SCREAMING_SNAKE_CASE__ ( self ):
return 1E-5
| 84 |
import os
from shutil import copyfile
from typing import List, Optional, Tuple
from ...tokenization_utils import AddedToken
from ...tokenization_utils_fast import PreTrainedTokenizerFast
from ...utils import is_sentencepiece_available, logging
if is_sentencepiece_available():
from .tokenization_fnet import FNetTokenizer
else:
lowerCamelCase__ : Optional[Any] = None
lowerCamelCase__ : List[str] = logging.get_logger(__name__)
lowerCamelCase__ : List[str] = {'vocab_file': 'spiece.model', 'tokenizer_file': 'tokenizer.json'}
lowerCamelCase__ : List[str] = {
'vocab_file': {
'google/fnet-base': 'https://huggingface.co/google/fnet-base/resolve/main/spiece.model',
'google/fnet-large': 'https://huggingface.co/google/fnet-large/resolve/main/spiece.model',
},
'tokenizer_file': {
'google/fnet-base': 'https://huggingface.co/google/fnet-base/resolve/main/tokenizer.json',
'google/fnet-large': 'https://huggingface.co/google/fnet-large/resolve/main/tokenizer.json',
},
}
lowerCamelCase__ : Optional[Any] = {
'google/fnet-base': 512,
'google/fnet-large': 512,
}
lowerCamelCase__ : List[Any] = '▁'
class lowerCamelCase_ ( _SCREAMING_SNAKE_CASE ):
'''simple docstring'''
lowercase_ = VOCAB_FILES_NAMES
lowercase_ = PRETRAINED_VOCAB_FILES_MAP
lowercase_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
lowercase_ = ["input_ids", "token_type_ids"]
lowercase_ = FNetTokenizer
def __init__( self : List[Any] , _lowerCAmelCase : Dict=None , _lowerCAmelCase : Dict=None , _lowerCAmelCase : List[str]=False , _lowerCAmelCase : Optional[Any]=True , _lowerCAmelCase : Tuple=True , _lowerCAmelCase : List[Any]="<unk>" , _lowerCAmelCase : Optional[Any]="[SEP]" , _lowerCAmelCase : Optional[Any]="<pad>" , _lowerCAmelCase : Optional[int]="[CLS]" , _lowerCAmelCase : Optional[Any]="[MASK]" , **_lowerCAmelCase : Any , ):
# Mask token behave like a normal word, i.e. include the space before it and
# is included in the raw text, there should be a match in a non-normalized sentence.
SCREAMING_SNAKE_CASE_ = (
AddedToken(_lowerCAmelCase , lstrip=_lowerCAmelCase , rstrip=_lowerCAmelCase , normalized=_lowerCAmelCase )
if isinstance(_lowerCAmelCase , _lowerCAmelCase )
else mask_token
)
super().__init__(
_lowerCAmelCase , tokenizer_file=_lowerCAmelCase , do_lower_case=_lowerCAmelCase , remove_space=_lowerCAmelCase , keep_accents=_lowerCAmelCase , unk_token=_lowerCAmelCase , sep_token=_lowerCAmelCase , pad_token=_lowerCAmelCase , cls_token=_lowerCAmelCase , mask_token=_lowerCAmelCase , **_lowerCAmelCase , )
SCREAMING_SNAKE_CASE_ = do_lower_case
SCREAMING_SNAKE_CASE_ = remove_space
SCREAMING_SNAKE_CASE_ = keep_accents
SCREAMING_SNAKE_CASE_ = vocab_file
SCREAMING_SNAKE_CASE_ = False if not self.vocab_file else True
def lowerCAmelCase_ ( self : Any , _lowerCAmelCase : List[int] , _lowerCAmelCase : Optional[List[int]] = None ):
SCREAMING_SNAKE_CASE_ = [self.sep_token_id]
SCREAMING_SNAKE_CASE_ = [self.cls_token_id]
if token_ids_a is None:
return cls + token_ids_a + sep
return cls + token_ids_a + sep + token_ids_a + sep
def lowerCAmelCase_ ( self : Optional[int] , _lowerCAmelCase : List[int] , _lowerCAmelCase : Optional[List[int]] = None ):
SCREAMING_SNAKE_CASE_ = [self.sep_token_id]
SCREAMING_SNAKE_CASE_ = [self.cls_token_id]
if token_ids_a is None:
return len(cls + token_ids_a + sep ) * [0]
return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1]
def lowerCAmelCase_ ( self : Optional[Any] , _lowerCAmelCase : str , _lowerCAmelCase : Optional[str] = None ):
if not os.path.isdir(_lowerCAmelCase ):
logger.error(F"Vocabulary path ({save_directory}) should be a directory" )
return
SCREAMING_SNAKE_CASE_ = os.path.join(
_lowerCAmelCase , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] )
if os.path.abspath(self.vocab_file ) != os.path.abspath(_lowerCAmelCase ):
copyfile(self.vocab_file , _lowerCAmelCase )
return (out_vocab_file,) | 31 | 0 |
from ...configuration_utils import PretrainedConfig
from ...utils import logging
SCREAMING_SNAKE_CASE__ : Tuple = logging.get_logger(__name__)
SCREAMING_SNAKE_CASE__ : Union[str, Any] = {
"microsoft/markuplm-base": "https://huggingface.co/microsoft/markuplm-base/resolve/main/config.json",
"microsoft/markuplm-large": "https://huggingface.co/microsoft/markuplm-large/resolve/main/config.json",
}
class snake_case ( UpperCamelCase_ ):
lowercase_ = 'markuplm'
def __init__( self : List[Any] , a_ : List[Any]=3_0522 , a_ : int=768 , a_ : Union[str, Any]=12 , a_ : str=12 , a_ : Any=3072 , a_ : Tuple="gelu" , a_ : Any=0.1 , a_ : Optional[Any]=0.1 , a_ : Optional[Any]=512 , a_ : int=2 , a_ : List[Any]=0.02 , a_ : str=1e-1_2 , a_ : Optional[int]=0 , a_ : List[str]=0 , a_ : Optional[Any]=2 , a_ : str=256 , a_ : List[str]=1024 , a_ : Optional[int]=216 , a_ : Tuple=1001 , a_ : Any=32 , a_ : Optional[int]=50 , a_ : Optional[int]="absolute" , a_ : Optional[int]=True , a_ : str=None , **a_ : Tuple , )-> Optional[Any]:
"""simple docstring"""
super().__init__(
pad_token_id=a_ , bos_token_id=a_ , eos_token_id=a_ , **a_ , )
SCREAMING_SNAKE_CASE__ : int = vocab_size
SCREAMING_SNAKE_CASE__ : List[str] = hidden_size
SCREAMING_SNAKE_CASE__ : Any = num_hidden_layers
SCREAMING_SNAKE_CASE__ : Tuple = num_attention_heads
SCREAMING_SNAKE_CASE__ : Optional[int] = hidden_act
SCREAMING_SNAKE_CASE__ : Optional[Any] = intermediate_size
SCREAMING_SNAKE_CASE__ : Any = hidden_dropout_prob
SCREAMING_SNAKE_CASE__ : str = attention_probs_dropout_prob
SCREAMING_SNAKE_CASE__ : Union[str, Any] = max_position_embeddings
SCREAMING_SNAKE_CASE__ : Dict = type_vocab_size
SCREAMING_SNAKE_CASE__ : Union[str, Any] = initializer_range
SCREAMING_SNAKE_CASE__ : Any = layer_norm_eps
SCREAMING_SNAKE_CASE__ : str = position_embedding_type
SCREAMING_SNAKE_CASE__ : Any = use_cache
SCREAMING_SNAKE_CASE__ : Optional[int] = classifier_dropout
# additional properties
SCREAMING_SNAKE_CASE__ : Optional[Any] = max_depth
SCREAMING_SNAKE_CASE__ : Tuple = max_xpath_tag_unit_embeddings
SCREAMING_SNAKE_CASE__ : int = max_xpath_subs_unit_embeddings
SCREAMING_SNAKE_CASE__ : Optional[Any] = tag_pad_id
SCREAMING_SNAKE_CASE__ : str = subs_pad_id
SCREAMING_SNAKE_CASE__ : Optional[int] = xpath_unit_hidden_size
| 85 |
from __future__ import annotations
from collections.abc import Generator
def UpperCAmelCase_ ( ) -> Generator[int, None, None]:
SCREAMING_SNAKE_CASE_ = {}
SCREAMING_SNAKE_CASE_ = 2
while True:
SCREAMING_SNAKE_CASE_ = factor_map.pop(__UpperCAmelCase , __UpperCAmelCase )
if factor:
SCREAMING_SNAKE_CASE_ = factor + prime
while x in factor_map:
x += factor
SCREAMING_SNAKE_CASE_ = factor
else:
SCREAMING_SNAKE_CASE_ = prime
yield prime
prime += 1
def UpperCAmelCase_ ( __UpperCAmelCase : float = 1E10 ) -> int:
SCREAMING_SNAKE_CASE_ = sieve()
SCREAMING_SNAKE_CASE_ = 1
while True:
SCREAMING_SNAKE_CASE_ = next(__UpperCAmelCase )
if (2 * prime * n) > limit:
return n
# Ignore the next prime as the reminder will be 2.
next(__UpperCAmelCase )
n += 2
if __name__ == "__main__":
print(solution()) | 31 | 0 |
from queue import PriorityQueue
from typing import Any
import numpy as np
def __snake_case ( __UpperCamelCase : dict ,__UpperCamelCase : str ,__UpperCamelCase : set ,__UpperCamelCase : set ,__UpperCamelCase : dict ,__UpperCamelCase : dict ,__UpperCamelCase : PriorityQueue ,__UpperCamelCase : dict ,__UpperCamelCase : float | int ,):
"""simple docstring"""
for nxt, d in graph[v]:
if nxt in visited_forward:
continue
A_ = cst_fwd.get(__UpperCamelCase ,np.inf )
A_ = cst_fwd[v] + d
if new_cost_f < old_cost_f:
queue.put((new_cost_f, nxt) )
A_ = new_cost_f
A_ = v
if nxt in visited_backward:
if cst_fwd[v] + d + cst_bwd[nxt] < shortest_distance:
A_ = cst_fwd[v] + d + cst_bwd[nxt]
return shortest_distance
def __snake_case ( __UpperCamelCase : str ,__UpperCamelCase : str ,__UpperCamelCase : dict ,__UpperCamelCase : dict ):
"""simple docstring"""
A_ = -1
A_ = set()
A_ = set()
A_ = {source: 0}
A_ = {destination: 0}
A_ = {source: None}
A_ = {destination: None}
A_ = PriorityQueue()
A_ = PriorityQueue()
A_ = np.inf
queue_forward.put((0, source) )
queue_backward.put((0, destination) )
if source == destination:
return 0
while not queue_forward.empty() and not queue_backward.empty():
A_ , A_ = queue_forward.get()
visited_forward.add(__UpperCamelCase )
A_ , A_ = queue_backward.get()
visited_backward.add(__UpperCamelCase )
A_ = pass_and_relaxation(
__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,)
A_ = pass_and_relaxation(
__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,)
if cst_fwd[v_fwd] + cst_bwd[v_bwd] >= shortest_distance:
break
if shortest_distance != np.inf:
A_ = shortest_distance
return shortest_path_distance
__a :List[str] = {
'B': [['C', 1]],
'C': [['D', 1]],
'D': [['F', 1]],
'E': [['B', 1], ['G', 2]],
'F': [],
'G': [['F', 1]],
}
__a :Union[str, Any] = {
'B': [['E', 1]],
'C': [['B', 1]],
'D': [['C', 1]],
'F': [['D', 1], ['G', 1]],
'E': [[None, np.inf]],
'G': [['E', 2]],
}
if __name__ == "__main__":
import doctest
doctest.testmod() | 86 |
import numpy as np
import torch
from torch.utils.data import DataLoader
from accelerate.utils.dataclasses import DistributedType
class lowerCamelCase_ :
'''simple docstring'''
def __init__( self : Any , _lowerCAmelCase : Optional[int]=2 , _lowerCAmelCase : Any=3 , _lowerCAmelCase : Tuple=64 , _lowerCAmelCase : List[str]=None ):
SCREAMING_SNAKE_CASE_ = np.random.default_rng(_lowerCAmelCase )
SCREAMING_SNAKE_CASE_ = length
SCREAMING_SNAKE_CASE_ = rng.normal(size=(length,) ).astype(np.floataa )
SCREAMING_SNAKE_CASE_ = a * self.x + b + rng.normal(scale=0.1 , size=(length,) ).astype(np.floataa )
def __len__( self : Optional[int] ):
return self.length
def __getitem__( self : str , _lowerCAmelCase : Union[str, Any] ):
return {"x": self.x[i], "y": self.y[i]}
class lowerCamelCase_ ( torch.nn.Module ):
'''simple docstring'''
def __init__( self : Tuple , _lowerCAmelCase : Dict=0 , _lowerCAmelCase : List[str]=0 , _lowerCAmelCase : str=False ):
super().__init__()
SCREAMING_SNAKE_CASE_ = torch.nn.Parameter(torch.tensor([2, 3] ).float() )
SCREAMING_SNAKE_CASE_ = torch.nn.Parameter(torch.tensor([2, 3] ).float() )
SCREAMING_SNAKE_CASE_ = True
def lowerCAmelCase_ ( self : Dict , _lowerCAmelCase : Union[str, Any]=None ):
if self.first_batch:
print(F"Model dtype: {self.a.dtype}, {self.b.dtype}. Input dtype: {x.dtype}" )
SCREAMING_SNAKE_CASE_ = False
return x * self.a[0] + self.b[0]
class lowerCamelCase_ ( torch.nn.Module ):
'''simple docstring'''
def __init__( self : Optional[int] , _lowerCAmelCase : Any=0 , _lowerCAmelCase : Any=0 , _lowerCAmelCase : Optional[Any]=False ):
super().__init__()
SCREAMING_SNAKE_CASE_ = torch.nn.Parameter(torch.tensor(_lowerCAmelCase ).float() )
SCREAMING_SNAKE_CASE_ = torch.nn.Parameter(torch.tensor(_lowerCAmelCase ).float() )
SCREAMING_SNAKE_CASE_ = True
def lowerCAmelCase_ ( self : Optional[Any] , _lowerCAmelCase : Optional[int]=None ):
if self.first_batch:
print(F"Model dtype: {self.a.dtype}, {self.b.dtype}. Input dtype: {x.dtype}" )
SCREAMING_SNAKE_CASE_ = False
return x * self.a + self.b
def UpperCAmelCase_ ( __UpperCAmelCase : Dict , __UpperCAmelCase : int = 16 ) -> Union[str, Any]:
from datasets import load_dataset
from transformers import AutoTokenizer
SCREAMING_SNAKE_CASE_ = AutoTokenizer.from_pretrained('bert-base-cased' )
SCREAMING_SNAKE_CASE_ = {'train': 'tests/test_samples/MRPC/train.csv', 'validation': 'tests/test_samples/MRPC/dev.csv'}
SCREAMING_SNAKE_CASE_ = load_dataset('csv' , data_files=__UpperCAmelCase )
SCREAMING_SNAKE_CASE_ = datasets['train'].unique('label' )
SCREAMING_SNAKE_CASE_ = {v: i for i, v in enumerate(__UpperCAmelCase )}
def tokenize_function(__UpperCAmelCase : Optional[int] ):
# max_length=None => use the model max length (it's actually the default)
SCREAMING_SNAKE_CASE_ = tokenizer(
examples['sentence1'] , examples['sentence2'] , truncation=__UpperCAmelCase , max_length=__UpperCAmelCase , padding='max_length' )
if "label" in examples:
SCREAMING_SNAKE_CASE_ = [label_to_id[l] for l in examples['label']]
return outputs
# Apply the method we just defined to all the examples in all the splits of the dataset
SCREAMING_SNAKE_CASE_ = datasets.map(
__UpperCAmelCase , batched=__UpperCAmelCase , remove_columns=['sentence1', 'sentence2', 'label'] , )
def collate_fn(__UpperCAmelCase : Dict ):
# On TPU it's best to pad everything to the same length or training will be very slow.
if accelerator.distributed_type == DistributedType.TPU:
return tokenizer.pad(__UpperCAmelCase , padding='max_length' , max_length=1_28 , return_tensors='pt' )
return tokenizer.pad(__UpperCAmelCase , padding='longest' , return_tensors='pt' )
# Instantiate dataloaders.
SCREAMING_SNAKE_CASE_ = DataLoader(tokenized_datasets['train'] , shuffle=__UpperCAmelCase , collate_fn=__UpperCAmelCase , batch_size=2 )
SCREAMING_SNAKE_CASE_ = DataLoader(tokenized_datasets['validation'] , shuffle=__UpperCAmelCase , collate_fn=__UpperCAmelCase , batch_size=1 )
return train_dataloader, eval_dataloader | 31 | 0 |
import argparse
import os
from . import (
ALBERT_PRETRAINED_CONFIG_ARCHIVE_MAP,
BART_PRETRAINED_MODEL_ARCHIVE_LIST,
BERT_PRETRAINED_CONFIG_ARCHIVE_MAP,
CAMEMBERT_PRETRAINED_CONFIG_ARCHIVE_MAP,
CTRL_PRETRAINED_CONFIG_ARCHIVE_MAP,
DISTILBERT_PRETRAINED_CONFIG_ARCHIVE_MAP,
DPR_CONTEXT_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST,
DPR_QUESTION_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST,
DPR_READER_PRETRAINED_MODEL_ARCHIVE_LIST,
ELECTRA_PRETRAINED_CONFIG_ARCHIVE_MAP,
FLAUBERT_PRETRAINED_CONFIG_ARCHIVE_MAP,
GPT2_PRETRAINED_CONFIG_ARCHIVE_MAP,
LAYOUTLM_PRETRAINED_MODEL_ARCHIVE_LIST,
LXMERT_PRETRAINED_CONFIG_ARCHIVE_MAP,
OPENAI_GPT_PRETRAINED_CONFIG_ARCHIVE_MAP,
ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP,
T5_PRETRAINED_CONFIG_ARCHIVE_MAP,
TRANSFO_XL_PRETRAINED_CONFIG_ARCHIVE_MAP,
WAV_2_VEC_2_PRETRAINED_CONFIG_ARCHIVE_MAP,
XLM_PRETRAINED_CONFIG_ARCHIVE_MAP,
XLM_ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP,
XLNET_PRETRAINED_CONFIG_ARCHIVE_MAP,
AlbertConfig,
BartConfig,
BertConfig,
CamembertConfig,
CTRLConfig,
DistilBertConfig,
DPRConfig,
ElectraConfig,
FlaubertConfig,
GPTaConfig,
LayoutLMConfig,
LxmertConfig,
OpenAIGPTConfig,
RobertaConfig,
TaConfig,
TFAlbertForPreTraining,
TFBartForConditionalGeneration,
TFBartForSequenceClassification,
TFBertForPreTraining,
TFBertForQuestionAnswering,
TFBertForSequenceClassification,
TFCamembertForMaskedLM,
TFCTRLLMHeadModel,
TFDistilBertForMaskedLM,
TFDistilBertForQuestionAnswering,
TFDPRContextEncoder,
TFDPRQuestionEncoder,
TFDPRReader,
TFElectraForPreTraining,
TFFlaubertWithLMHeadModel,
TFGPTaLMHeadModel,
TFLayoutLMForMaskedLM,
TFLxmertForPreTraining,
TFLxmertVisualFeatureEncoder,
TFOpenAIGPTLMHeadModel,
TFRobertaForCausalLM,
TFRobertaForMaskedLM,
TFRobertaForSequenceClassification,
TFTaForConditionalGeneration,
TFTransfoXLLMHeadModel,
TFWavaVecaModel,
TFXLMRobertaForMaskedLM,
TFXLMWithLMHeadModel,
TFXLNetLMHeadModel,
TransfoXLConfig,
WavaVecaConfig,
WavaVecaModel,
XLMConfig,
XLMRobertaConfig,
XLNetConfig,
is_torch_available,
load_pytorch_checkpoint_in_tfa_model,
)
from .utils import CONFIG_NAME, WEIGHTS_NAME, cached_file, logging
if is_torch_available():
import numpy as np
import torch
from . import (
AlbertForPreTraining,
BartForConditionalGeneration,
BertForPreTraining,
BertForQuestionAnswering,
BertForSequenceClassification,
CamembertForMaskedLM,
CTRLLMHeadModel,
DistilBertForMaskedLM,
DistilBertForQuestionAnswering,
DPRContextEncoder,
DPRQuestionEncoder,
DPRReader,
ElectraForPreTraining,
FlaubertWithLMHeadModel,
GPTaLMHeadModel,
LayoutLMForMaskedLM,
LxmertForPreTraining,
LxmertVisualFeatureEncoder,
OpenAIGPTLMHeadModel,
RobertaForMaskedLM,
RobertaForSequenceClassification,
TaForConditionalGeneration,
TransfoXLLMHeadModel,
XLMRobertaForMaskedLM,
XLMWithLMHeadModel,
XLNetLMHeadModel,
)
logging.set_verbosity_info()
_lowerCamelCase : List[str] = {
"""bart""": (
BartConfig,
TFBartForConditionalGeneration,
TFBartForSequenceClassification,
BartForConditionalGeneration,
BART_PRETRAINED_MODEL_ARCHIVE_LIST,
),
"""bert""": (
BertConfig,
TFBertForPreTraining,
BertForPreTraining,
BERT_PRETRAINED_CONFIG_ARCHIVE_MAP,
),
"""bert-large-uncased-whole-word-masking-finetuned-squad""": (
BertConfig,
TFBertForQuestionAnswering,
BertForQuestionAnswering,
BERT_PRETRAINED_CONFIG_ARCHIVE_MAP,
),
"""bert-large-cased-whole-word-masking-finetuned-squad""": (
BertConfig,
TFBertForQuestionAnswering,
BertForQuestionAnswering,
BERT_PRETRAINED_CONFIG_ARCHIVE_MAP,
),
"""bert-base-cased-finetuned-mrpc""": (
BertConfig,
TFBertForSequenceClassification,
BertForSequenceClassification,
BERT_PRETRAINED_CONFIG_ARCHIVE_MAP,
),
"""dpr""": (
DPRConfig,
TFDPRQuestionEncoder,
TFDPRContextEncoder,
TFDPRReader,
DPRQuestionEncoder,
DPRContextEncoder,
DPRReader,
DPR_CONTEXT_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST,
DPR_QUESTION_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST,
DPR_READER_PRETRAINED_MODEL_ARCHIVE_LIST,
),
"""gpt2""": (
GPTaConfig,
TFGPTaLMHeadModel,
GPTaLMHeadModel,
GPT2_PRETRAINED_CONFIG_ARCHIVE_MAP,
),
"""xlnet""": (
XLNetConfig,
TFXLNetLMHeadModel,
XLNetLMHeadModel,
XLNET_PRETRAINED_CONFIG_ARCHIVE_MAP,
),
"""xlm""": (
XLMConfig,
TFXLMWithLMHeadModel,
XLMWithLMHeadModel,
XLM_PRETRAINED_CONFIG_ARCHIVE_MAP,
),
"""xlm-roberta""": (
XLMRobertaConfig,
TFXLMRobertaForMaskedLM,
XLMRobertaForMaskedLM,
XLM_ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP,
),
"""transfo-xl""": (
TransfoXLConfig,
TFTransfoXLLMHeadModel,
TransfoXLLMHeadModel,
TRANSFO_XL_PRETRAINED_CONFIG_ARCHIVE_MAP,
),
"""openai-gpt""": (
OpenAIGPTConfig,
TFOpenAIGPTLMHeadModel,
OpenAIGPTLMHeadModel,
OPENAI_GPT_PRETRAINED_CONFIG_ARCHIVE_MAP,
),
"""roberta""": (
RobertaConfig,
TFRobertaForCausalLM,
TFRobertaForMaskedLM,
RobertaForMaskedLM,
ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP,
),
"""layoutlm""": (
LayoutLMConfig,
TFLayoutLMForMaskedLM,
LayoutLMForMaskedLM,
LAYOUTLM_PRETRAINED_MODEL_ARCHIVE_LIST,
),
"""roberta-large-mnli""": (
RobertaConfig,
TFRobertaForSequenceClassification,
RobertaForSequenceClassification,
ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP,
),
"""camembert""": (
CamembertConfig,
TFCamembertForMaskedLM,
CamembertForMaskedLM,
CAMEMBERT_PRETRAINED_CONFIG_ARCHIVE_MAP,
),
"""flaubert""": (
FlaubertConfig,
TFFlaubertWithLMHeadModel,
FlaubertWithLMHeadModel,
FLAUBERT_PRETRAINED_CONFIG_ARCHIVE_MAP,
),
"""distilbert""": (
DistilBertConfig,
TFDistilBertForMaskedLM,
DistilBertForMaskedLM,
DISTILBERT_PRETRAINED_CONFIG_ARCHIVE_MAP,
),
"""distilbert-base-distilled-squad""": (
DistilBertConfig,
TFDistilBertForQuestionAnswering,
DistilBertForQuestionAnswering,
DISTILBERT_PRETRAINED_CONFIG_ARCHIVE_MAP,
),
"""lxmert""": (
LxmertConfig,
TFLxmertForPreTraining,
LxmertForPreTraining,
LXMERT_PRETRAINED_CONFIG_ARCHIVE_MAP,
),
"""lxmert-visual-feature-encoder""": (
LxmertConfig,
TFLxmertVisualFeatureEncoder,
LxmertVisualFeatureEncoder,
LXMERT_PRETRAINED_CONFIG_ARCHIVE_MAP,
),
"""ctrl""": (
CTRLConfig,
TFCTRLLMHeadModel,
CTRLLMHeadModel,
CTRL_PRETRAINED_CONFIG_ARCHIVE_MAP,
),
"""albert""": (
AlbertConfig,
TFAlbertForPreTraining,
AlbertForPreTraining,
ALBERT_PRETRAINED_CONFIG_ARCHIVE_MAP,
),
"""t5""": (
TaConfig,
TFTaForConditionalGeneration,
TaForConditionalGeneration,
T5_PRETRAINED_CONFIG_ARCHIVE_MAP,
),
"""electra""": (
ElectraConfig,
TFElectraForPreTraining,
ElectraForPreTraining,
ELECTRA_PRETRAINED_CONFIG_ARCHIVE_MAP,
),
"""wav2vec2""": (
WavaVecaConfig,
TFWavaVecaModel,
WavaVecaModel,
WAV_2_VEC_2_PRETRAINED_CONFIG_ARCHIVE_MAP,
),
}
def SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_=False , lowercase_=True ) -> List[Any]:
"""simple docstring"""
if model_type not in MODEL_CLASSES:
raise ValueError(f"""Unrecognized model type, should be one of {list(MODEL_CLASSES.keys() )}.""" )
A__ , A__ , A__ , A__ = MODEL_CLASSES[model_type]
# Initialise TF model
if config_file in aws_config_map:
A__ = cached_file(lowercase_ , lowercase_ , force_download=not use_cached_models )
A__ = config_class.from_json_file(lowercase_ )
A__ = True
A__ = True
print(f"""Building TensorFlow model from configuration: {config}""" )
A__ = model_class(lowercase_ )
# Load weights from tf checkpoint
if pytorch_checkpoint_path in aws_config_map.keys():
A__ = cached_file(
lowercase_ , lowercase_ , force_download=not use_cached_models )
# Load PyTorch checkpoint in tf2 model:
A__ = load_pytorch_checkpoint_in_tfa_model(lowercase_ , lowercase_ )
if compare_with_pt_model:
A__ = tf_model(tf_model.dummy_inputs , training=lowercase_ ) # build the network
A__ = torch.load(lowercase_ , map_location='''cpu''' )
A__ = pt_model_class.from_pretrained(
pretrained_model_name_or_path=lowercase_ , config=lowercase_ , state_dict=lowercase_ )
with torch.no_grad():
A__ = pt_model(**pt_model.dummy_inputs )
A__ = pto[0].numpy()
A__ = tfo[0].numpy()
A__ = np.amax(np.abs(np_pt - np_tf ) )
print(f"""Max absolute difference between models outputs {diff}""" )
assert diff <= 2E-2, f"""Error, model absolute difference is >2e-2: {diff}"""
# Save pytorch-model
print(f"""Save TensorFlow model to {tf_dump_path}""" )
tf_model.save_weights(lowercase_ , save_format='''h5''' )
def SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ , lowercase_=None , lowercase_=None , lowercase_=False , lowercase_=False , lowercase_=False , lowercase_=False , ) -> int:
"""simple docstring"""
if args_model_type is None:
A__ = list(MODEL_CLASSES.keys() )
else:
A__ = [args_model_type]
for j, model_type in enumerate(lowercase_ , start=1 ):
print('''=''' * 100 )
print(f""" Converting model type {j}/{len(lowercase_ )}: {model_type}""" )
print('''=''' * 100 )
if model_type not in MODEL_CLASSES:
raise ValueError(f"""Unrecognized model type {model_type}, should be one of {list(MODEL_CLASSES.keys() )}.""" )
A__ , A__ , A__ , A__ , A__ = MODEL_CLASSES[model_type]
if model_shortcut_names_or_path is None:
A__ = list(aws_model_maps.keys() )
if config_shortcut_names_or_path is None:
A__ = model_shortcut_names_or_path
for i, (model_shortcut_name, config_shortcut_name) in enumerate(
zip(lowercase_ , lowercase_ ) , start=1 ):
print('''-''' * 100 )
if "-squad" in model_shortcut_name or "-mrpc" in model_shortcut_name or "-mnli" in model_shortcut_name:
if not only_convert_finetuned_models:
print(f""" Skipping finetuned checkpoint {model_shortcut_name}""" )
continue
A__ = model_shortcut_name
elif only_convert_finetuned_models:
print(f""" Skipping not finetuned checkpoint {model_shortcut_name}""" )
continue
print(
f""" Converting checkpoint {i}/{len(lowercase_ )}: {model_shortcut_name} - model_type {model_type}""" )
print('''-''' * 100 )
if config_shortcut_name in aws_config_map:
A__ = cached_file(lowercase_ , lowercase_ , force_download=not use_cached_models )
else:
A__ = config_shortcut_name
if model_shortcut_name in aws_model_maps:
A__ = cached_file(lowercase_ , lowercase_ , force_download=not use_cached_models )
else:
A__ = model_shortcut_name
if os.path.isfile(lowercase_ ):
A__ = '''converted_model'''
convert_pt_checkpoint_to_tf(
model_type=lowercase_ , pytorch_checkpoint_path=lowercase_ , config_file=lowercase_ , tf_dump_path=os.path.join(lowercase_ , model_shortcut_name + '''-tf_model.h5''' ) , compare_with_pt_model=lowercase_ , )
if remove_cached_files:
os.remove(lowercase_ )
os.remove(lowercase_ )
if __name__ == "__main__":
_lowerCamelCase : Union[str, Any] = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
"""--tf_dump_path""", default=None, type=str, required=True, help="""Path to the output Tensorflow dump file."""
)
parser.add_argument(
"""--model_type""",
default=None,
type=str,
help=(
F'''Model type selected in the list of {list(MODEL_CLASSES.keys())}. If not given, will download and '''
"""convert all the models from AWS."""
),
)
parser.add_argument(
"""--pytorch_checkpoint_path""",
default=None,
type=str,
help=(
"""Path to the PyTorch checkpoint path or shortcut name to download from AWS. """
"""If not given, will download and convert all the checkpoints from AWS."""
),
)
parser.add_argument(
"""--config_file""",
default=None,
type=str,
help=(
"""The config json file corresponding to the pre-trained model. \n"""
"""This specifies the model architecture. If not given and """
"""--pytorch_checkpoint_path is not given or is a shortcut name """
"""use the configuration associated to the shortcut name on the AWS"""
),
)
parser.add_argument(
"""--compare_with_pt_model""", action="""store_true""", help="""Compare Tensorflow and PyTorch model predictions."""
)
parser.add_argument(
"""--use_cached_models""",
action="""store_true""",
help="""Use cached models if possible instead of updating to latest checkpoint versions.""",
)
parser.add_argument(
"""--remove_cached_files""",
action="""store_true""",
help="""Remove pytorch models after conversion (save memory when converting in batches).""",
)
parser.add_argument("""--only_convert_finetuned_models""", action="""store_true""", help="""Only convert finetuned models.""")
_lowerCamelCase : List[Any] = parser.parse_args()
# if args.pytorch_checkpoint_path is not None:
# convert_pt_checkpoint_to_tf(args.model_type.lower(),
# args.pytorch_checkpoint_path,
# args.config_file if args.config_file is not None else args.pytorch_checkpoint_path,
# args.tf_dump_path,
# compare_with_pt_model=args.compare_with_pt_model,
# use_cached_models=args.use_cached_models)
# else:
convert_all_pt_checkpoints_to_tf(
args.model_type.lower() if args.model_type is not None else None,
args.tf_dump_path,
model_shortcut_names_or_path=[args.pytorch_checkpoint_path]
if args.pytorch_checkpoint_path is not None
else None,
config_shortcut_names_or_path=[args.config_file] if args.config_file is not None else None,
compare_with_pt_model=args.compare_with_pt_model,
use_cached_models=args.use_cached_models,
remove_cached_files=args.remove_cached_files,
only_convert_finetuned_models=args.only_convert_finetuned_models,
)
| 87 |
import warnings
from ...utils import logging
from .image_processing_layoutlmva import LayoutLMvaImageProcessor
lowerCamelCase__ : Union[str, Any] = logging.get_logger(__name__)
class lowerCamelCase_ ( _SCREAMING_SNAKE_CASE ):
'''simple docstring'''
def __init__( self : Dict , *_lowerCAmelCase : Optional[Any] , **_lowerCAmelCase : Any ):
warnings.warn(
'The class LayoutLMv2FeatureExtractor is deprecated and will be removed in version 5 of Transformers.'
' Please use LayoutLMv2ImageProcessor instead.' , _lowerCAmelCase , )
super().__init__(*_lowerCAmelCase , **_lowerCAmelCase ) | 31 | 0 |
"""simple docstring"""
import argparse
import shlex
import runhouse as rh
if __name__ == "__main__":
# Refer to https://runhouse-docs.readthedocs-hosted.com/en/latest/api/python/cluster.html#hardware-setup for cloud access
# setup instructions, if using on-demand hardware
# If user passes --user <user> --host <host> --key_path <key_path> <example> <args>, fill them in as BYO cluster
# If user passes --instance <instance> --provider <provider> <example> <args>, fill them in as on-demand cluster
# Throw an error if user passes both BYO and on-demand cluster args
# Otherwise, use default values
UpperCAmelCase = argparse.ArgumentParser()
parser.add_argument("""--user""", type=str, default="""ubuntu""")
parser.add_argument("""--host""", type=str, default="""localhost""")
parser.add_argument("""--key_path""", type=str, default=None)
parser.add_argument("""--instance""", type=str, default="""V100:1""")
parser.add_argument("""--provider""", type=str, default="""cheapest""")
parser.add_argument("""--use_spot""", type=bool, default=False)
parser.add_argument("""--example""", type=str, default="""pytorch/text-generation/run_generation.py""")
UpperCAmelCase , UpperCAmelCase = parser.parse_known_args()
if args.host != "localhost":
if args.instance != "V100:1" or args.provider != "cheapest":
raise ValueError("""Cannot specify both BYO and on-demand cluster args""")
UpperCAmelCase = rh.cluster(
name="""rh-cluster""", ips=[args.host], ssh_creds={"""ssh_user""": args.user, """ssh_private_key""": args.key_path}
)
else:
UpperCAmelCase = rh.cluster(
name="""rh-cluster""", instance_type=args.instance, provider=args.provider, use_spot=args.use_spot
)
UpperCAmelCase = args.example.rsplit("""/""", 1)[0]
# Set up remote environment
cluster.install_packages(["""pip:./"""]) # Installs transformers from local source
# Note transformers is copied into the home directory on the remote machine, so we can install from there
cluster.run([f'''pip install -r transformers/examples/{example_dir}/requirements.txt'''])
cluster.run(["""pip install torch --upgrade --extra-index-url https://download.pytorch.org/whl/cu117"""])
# Run example. You can bypass the CLI wrapper and paste your own code here.
cluster.run([f'''python transformers/examples/{args.example} {" ".join(shlex.quote(arg) for arg in unknown)}'''])
# Alternatively, we can just import and run a training function (especially if there's no wrapper CLI):
# from my_script... import train
# reqs = ['pip:./', 'torch', 'datasets', 'accelerate', 'evaluate', 'tqdm', 'scipy', 'scikit-learn', 'tensorboard']
# launch_train_gpu = rh.function(fn=train,
# system=gpu,
# reqs=reqs,
# name='train_bert_glue')
#
# We can pass in arguments just like we would to a function:
# launch_train_gpu(num_epochs = 3, lr = 2e-5, seed = 42, batch_size = 16
# stream_logs=True)
| 88 |
def UpperCAmelCase_ ( ) -> list[list[int]]:
return [list(range(10_00 - i , -10_00 - i , -1 ) ) for i in range(10_00 )]
lowerCamelCase__ : List[Any] = generate_large_matrix()
lowerCamelCase__ : List[Any] = (
[[4, 3, 2, -1], [3, 2, 1, -1], [1, 1, -1, -2], [-1, -1, -2, -3]],
[[3, 2], [1, 0]],
[[7, 7, 6]],
[[7, 7, 6], [-1, -2, -3]],
grid,
)
def UpperCAmelCase_ ( __UpperCAmelCase : list[list[int]] ) -> None:
assert all(row == sorted(__UpperCAmelCase , reverse=__UpperCAmelCase ) for row in grid )
assert all(list(__UpperCAmelCase ) == sorted(__UpperCAmelCase , reverse=__UpperCAmelCase ) for col in zip(*__UpperCAmelCase ) )
def UpperCAmelCase_ ( __UpperCAmelCase : list[int] ) -> int:
SCREAMING_SNAKE_CASE_ = 0
SCREAMING_SNAKE_CASE_ = len(__UpperCAmelCase ) - 1
# Edge cases such as no values or all numbers are negative.
if not array or array[0] < 0:
return 0
while right + 1 > left:
SCREAMING_SNAKE_CASE_ = (left + right) // 2
SCREAMING_SNAKE_CASE_ = array[mid]
# Num must be negative and the index must be greater than or equal to 0.
if num < 0 and array[mid - 1] >= 0:
return mid
if num >= 0:
SCREAMING_SNAKE_CASE_ = mid + 1
else:
SCREAMING_SNAKE_CASE_ = mid - 1
# No negative numbers so return the last index of the array + 1 which is the length.
return len(__UpperCAmelCase )
def UpperCAmelCase_ ( __UpperCAmelCase : list[list[int]] ) -> int:
SCREAMING_SNAKE_CASE_ = 0
SCREAMING_SNAKE_CASE_ = len(grid[0] )
for i in range(len(__UpperCAmelCase ) ):
SCREAMING_SNAKE_CASE_ = find_negative_index(grid[i][:bound] )
total += bound
return (len(__UpperCAmelCase ) * len(grid[0] )) - total
def UpperCAmelCase_ ( __UpperCAmelCase : list[list[int]] ) -> int:
return len([number for row in grid for number in row if number < 0] )
def UpperCAmelCase_ ( __UpperCAmelCase : list[list[int]] ) -> int:
SCREAMING_SNAKE_CASE_ = 0
for row in grid:
for i, number in enumerate(__UpperCAmelCase ):
if number < 0:
total += len(__UpperCAmelCase ) - i
break
return total
def UpperCAmelCase_ ( ) -> None:
from timeit import timeit
print('Running benchmarks' )
SCREAMING_SNAKE_CASE_ = (
'from __main__ import count_negatives_binary_search, '
'count_negatives_brute_force, count_negatives_brute_force_with_break, grid'
)
for func in (
"count_negatives_binary_search", # took 0.7727 seconds
"count_negatives_brute_force_with_break", # took 4.6505 seconds
"count_negatives_brute_force", # took 12.8160 seconds
):
SCREAMING_SNAKE_CASE_ = timeit(f"{func}(grid=grid)" , setup=__UpperCAmelCase , number=5_00 )
print(f"{func}() took {time:0.4f} seconds" )
if __name__ == "__main__":
import doctest
doctest.testmod()
benchmark() | 31 | 0 |
from packaging import version
from .import_utils import is_accelerate_available
if is_accelerate_available():
import accelerate
def UpperCamelCase_( lowerCamelCase_ ) -> Union[str, Any]:
if not is_accelerate_available():
return method
_lowercase : int = version.parse(accelerate.__version__ ).base_version
if version.parse(lowerCamelCase_ ) < version.parse('0.17.0' ):
return method
def wrapper(self , *lowerCamelCase_ , **lowerCamelCase_ ):
if hasattr(self , '_hf_hook' ) and hasattr(self._hf_hook , 'pre_forward' ):
self._hf_hook.pre_forward(self )
return method(self , *lowerCamelCase_ , **lowerCamelCase_ )
return wrapper
| 89 |
from typing import TYPE_CHECKING
from ....utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available
lowerCamelCase__ : Optional[int] = {'configuration_mmbt': ['MMBTConfig']}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowerCamelCase__ : Any = ['MMBTForClassification', 'MMBTModel', 'ModalEmbeddings']
if TYPE_CHECKING:
from .configuration_mmbt import MMBTConfig
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_mmbt import MMBTForClassification, MMBTModel, ModalEmbeddings
else:
import sys
lowerCamelCase__ : str = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__) | 31 | 0 |
'''simple docstring'''
from ..utils import DummyObject, requires_backends
class a__ ( metaclass=a__ ):
'''simple docstring'''
lowercase__ : List[str] = ["transformers", "torch", "note_seq"]
def __init__( self , *lowerCamelCase_ , **lowerCamelCase_ ) -> Any:
requires_backends(self , ['''transformers''', '''torch''', '''note_seq'''] )
@classmethod
def __SCREAMING_SNAKE_CASE ( cls , *lowerCamelCase_ , **lowerCamelCase_ ) -> Tuple:
requires_backends(cls , ['''transformers''', '''torch''', '''note_seq'''] )
@classmethod
def __SCREAMING_SNAKE_CASE ( cls , *lowerCamelCase_ , **lowerCamelCase_ ) -> Optional[int]:
requires_backends(cls , ['''transformers''', '''torch''', '''note_seq'''] ) | 90 |
import unittest
from typing import Tuple
import torch
from diffusers.utils import floats_tensor, randn_tensor, torch_all_close, torch_device
from diffusers.utils.testing_utils import require_torch
@require_torch
class lowerCamelCase_ :
'''simple docstring'''
@property
def lowerCAmelCase_ ( self : Optional[Any] ):
return self.get_dummy_input()
@property
def lowerCAmelCase_ ( self : Union[str, Any] ):
if self.block_type == "down":
return (4, 32, 16, 16)
elif self.block_type == "mid":
return (4, 32, 32, 32)
elif self.block_type == "up":
return (4, 32, 64, 64)
raise ValueError(F"'{self.block_type}' is not a supported block_type. Set it to 'up', 'mid', or 'down'." )
def lowerCAmelCase_ ( self : List[str] , _lowerCAmelCase : Optional[Any]=True , _lowerCAmelCase : str=False , _lowerCAmelCase : Optional[int]=False , _lowerCAmelCase : Dict=False , ):
SCREAMING_SNAKE_CASE_ = 4
SCREAMING_SNAKE_CASE_ = 32
SCREAMING_SNAKE_CASE_ = (32, 32)
SCREAMING_SNAKE_CASE_ = torch.manual_seed(0 )
SCREAMING_SNAKE_CASE_ = torch.device(_lowerCAmelCase )
SCREAMING_SNAKE_CASE_ = (batch_size, num_channels) + sizes
SCREAMING_SNAKE_CASE_ = randn_tensor(_lowerCAmelCase , generator=_lowerCAmelCase , device=_lowerCAmelCase )
SCREAMING_SNAKE_CASE_ = {'hidden_states': hidden_states}
if include_temb:
SCREAMING_SNAKE_CASE_ = 128
SCREAMING_SNAKE_CASE_ = randn_tensor((batch_size, temb_channels) , generator=_lowerCAmelCase , device=_lowerCAmelCase )
if include_res_hidden_states_tuple:
SCREAMING_SNAKE_CASE_ = torch.manual_seed(1 )
SCREAMING_SNAKE_CASE_ = (randn_tensor(_lowerCAmelCase , generator=_lowerCAmelCase , device=_lowerCAmelCase ),)
if include_encoder_hidden_states:
SCREAMING_SNAKE_CASE_ = floats_tensor((batch_size, 32, 32) ).to(_lowerCAmelCase )
if include_skip_sample:
SCREAMING_SNAKE_CASE_ = randn_tensor(((batch_size, 3) + sizes) , generator=_lowerCAmelCase , device=_lowerCAmelCase )
return dummy_input
def lowerCAmelCase_ ( self : Optional[int] ):
SCREAMING_SNAKE_CASE_ = {
'in_channels': 32,
'out_channels': 32,
'temb_channels': 128,
}
if self.block_type == "up":
SCREAMING_SNAKE_CASE_ = 32
if self.block_type == "mid":
init_dict.pop('out_channels' )
SCREAMING_SNAKE_CASE_ = self.dummy_input
return init_dict, inputs_dict
def lowerCAmelCase_ ( self : Dict , _lowerCAmelCase : Optional[Any] ):
SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = self.prepare_init_args_and_inputs_for_common()
SCREAMING_SNAKE_CASE_ = self.block_class(**_lowerCAmelCase )
unet_block.to(_lowerCAmelCase )
unet_block.eval()
with torch.no_grad():
SCREAMING_SNAKE_CASE_ = unet_block(**_lowerCAmelCase )
if isinstance(_lowerCAmelCase , _lowerCAmelCase ):
SCREAMING_SNAKE_CASE_ = output[0]
self.assertEqual(output.shape , self.output_shape )
SCREAMING_SNAKE_CASE_ = output[0, -1, -3:, -3:]
SCREAMING_SNAKE_CASE_ = torch.tensor(_lowerCAmelCase ).to(_lowerCAmelCase )
assert torch_all_close(output_slice.flatten() , _lowerCAmelCase , atol=5E-3 )
@unittest.skipIf(torch_device == 'mps' , 'Training is not supported in mps' )
def lowerCAmelCase_ ( self : Any ):
SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = self.prepare_init_args_and_inputs_for_common()
SCREAMING_SNAKE_CASE_ = self.block_class(**_lowerCAmelCase )
model.to(_lowerCAmelCase )
model.train()
SCREAMING_SNAKE_CASE_ = model(**_lowerCAmelCase )
if isinstance(_lowerCAmelCase , _lowerCAmelCase ):
SCREAMING_SNAKE_CASE_ = output[0]
SCREAMING_SNAKE_CASE_ = torch.device(_lowerCAmelCase )
SCREAMING_SNAKE_CASE_ = randn_tensor(output.shape , device=_lowerCAmelCase )
SCREAMING_SNAKE_CASE_ = torch.nn.functional.mse_loss(_lowerCAmelCase , _lowerCAmelCase )
loss.backward() | 31 | 0 |
"""simple docstring"""
def _snake_case ( snake_case__ : list[int] ):
A = len(snake_case__ )
for i in range(snake_case__ ):
for j in range(i + 1 , snake_case__ ):
if numbers[j] < numbers[i]:
A , A = numbers[j], numbers[i]
return numbers
if __name__ == "__main__":
_lowercase = input('''Enter numbers separated by a comma:\n''').strip()
_lowercase = [int(item) for item in user_input.split(''',''')]
print(exchange_sort(unsorted)) | 91 |
import operator as op
def UpperCAmelCase_ ( __UpperCAmelCase : str ) -> Any:
SCREAMING_SNAKE_CASE_ = []
SCREAMING_SNAKE_CASE_ = lambda __UpperCAmelCase , __UpperCAmelCase : int(x / y ) # noqa: E731 integer division operation
SCREAMING_SNAKE_CASE_ = {
'^': op.pow,
'*': op.mul,
'/': div,
'+': op.add,
'-': op.sub,
} # operators & their respective operation
# print table header
print('Symbol'.center(8 ) , 'Action'.center(12 ) , 'Stack' , sep=' | ' )
print('-' * (30 + len(__UpperCAmelCase )) )
for x in post_fix:
if x.isdigit(): # if x in digit
stack.append(__UpperCAmelCase ) # append x to stack
# output in tabular format
print(x.rjust(8 ) , ('push(' + x + ')').ljust(12 ) , ','.join(__UpperCAmelCase ) , sep=' | ' )
else:
SCREAMING_SNAKE_CASE_ = stack.pop() # pop stack
# output in tabular format
print(''.rjust(8 ) , ('pop(' + b + ')').ljust(12 ) , ','.join(__UpperCAmelCase ) , sep=' | ' )
SCREAMING_SNAKE_CASE_ = stack.pop() # pop stack
# output in tabular format
print(''.rjust(8 ) , ('pop(' + a + ')').ljust(12 ) , ','.join(__UpperCAmelCase ) , sep=' | ' )
stack.append(
str(opr[x](int(__UpperCAmelCase ) , int(__UpperCAmelCase ) ) ) ) # evaluate the 2 values popped from stack & push result to stack
# output in tabular format
print(
x.rjust(8 ) , ('push(' + a + x + b + ')').ljust(12 ) , ','.join(__UpperCAmelCase ) , sep=' | ' , )
return int(stack[0] )
if __name__ == "__main__":
lowerCamelCase__ : Tuple = input('\n\nEnter a Postfix Equation (space separated) = ').split(' ')
print('\n\tResult = ', solve(Postfix)) | 31 | 0 |
'''simple docstring'''
from typing import List, Optional, TypeVar
from .arrow_dataset import Dataset, _concatenate_map_style_datasets, _interleave_map_style_datasets
from .dataset_dict import DatasetDict, IterableDatasetDict
from .info import DatasetInfo
from .iterable_dataset import IterableDataset, _concatenate_iterable_datasets, _interleave_iterable_datasets
from .splits import NamedSplit
from .utils import logging
from .utils.py_utils import Literal
UpperCamelCase_ = logging.get_logger(__name__)
UpperCamelCase_ = TypeVar("""DatasetType""", Dataset, IterableDataset)
def _lowerCAmelCase ( __magic_name__ : List[DatasetType] , __magic_name__ : Optional[List[float]] = None , __magic_name__ : Optional[int] = None , __magic_name__ : Optional[DatasetInfo] = None , __magic_name__ : Optional[NamedSplit] = None , __magic_name__ : Literal["first_exhausted", "all_exhausted"] = "first_exhausted" , ) -> DatasetType:
from .arrow_dataset import Dataset
from .iterable_dataset import IterableDataset
if not datasets:
raise ValueError('''Unable to interleave an empty list of datasets.''' )
for i, dataset in enumerate(__magic_name__ ):
if not isinstance(__magic_name__ , (Dataset, IterableDataset) ):
if isinstance(__magic_name__ , (DatasetDict, IterableDatasetDict) ):
if not dataset:
raise ValueError(
f'''Expected a list of Dataset objects or a list of IterableDataset objects, but element at position {i} '''
'''is an empty dataset dictionary.''' )
raise ValueError(
f'''Dataset at position {i} has at least one split: {list(__magic_name__ )}\n'''
f'''Please pick one to interleave with the other datasets, for example: dataset[\'{next(iter(__magic_name__ ) )}\']''' )
raise ValueError(
f'''Expected a list of Dataset objects or a list of IterableDataset objects, but element at position {i} is a {type(__magic_name__ ).__name__}.''' )
if i == 0:
lowercase , lowercase : str =(
(Dataset, IterableDataset) if isinstance(__magic_name__ , __magic_name__ ) else (IterableDataset, Dataset)
)
elif not isinstance(__magic_name__ , __magic_name__ ):
raise ValueError(
f'''Unable to interleave a {dataset_type.__name__} (at position 0) with a {other_type.__name__} (at position {i}). Expected a list of Dataset objects or a list of IterableDataset objects.''' )
if stopping_strategy not in ["first_exhausted", "all_exhausted"]:
raise ValueError(f'''{stopping_strategy} is not supported. Please enter a valid stopping_strategy.''' )
if dataset_type is Dataset:
return _interleave_map_style_datasets(
__magic_name__ , __magic_name__ , __magic_name__ , info=__magic_name__ , split=__magic_name__ , stopping_strategy=__magic_name__ )
else:
return _interleave_iterable_datasets(
__magic_name__ , __magic_name__ , __magic_name__ , info=__magic_name__ , split=__magic_name__ , stopping_strategy=__magic_name__ )
def _lowerCAmelCase ( __magic_name__ : List[DatasetType] , __magic_name__ : Optional[DatasetInfo] = None , __magic_name__ : Optional[NamedSplit] = None , __magic_name__ : int = 0 , ) -> DatasetType:
if not dsets:
raise ValueError('''Unable to concatenate an empty list of datasets.''' )
for i, dataset in enumerate(__magic_name__ ):
if not isinstance(__magic_name__ , (Dataset, IterableDataset) ):
if isinstance(__magic_name__ , (DatasetDict, IterableDatasetDict) ):
if not dataset:
raise ValueError(
f'''Expected a list of Dataset objects or a list of IterableDataset objects, but element at position {i} '''
'''is an empty dataset dictionary.''' )
raise ValueError(
f'''Dataset at position {i} has at least one split: {list(__magic_name__ )}\n'''
f'''Please pick one to interleave with the other datasets, for example: dataset[\'{next(iter(__magic_name__ ) )}\']''' )
raise ValueError(
f'''Expected a list of Dataset objects or a list of IterableDataset objects, but element at position {i} is a {type(__magic_name__ ).__name__}.''' )
if i == 0:
lowercase , lowercase : Optional[int] =(
(Dataset, IterableDataset) if isinstance(__magic_name__ , __magic_name__ ) else (IterableDataset, Dataset)
)
elif not isinstance(__magic_name__ , __magic_name__ ):
raise ValueError(
f'''Unable to interleave a {dataset_type.__name__} (at position 0) with a {other_type.__name__} (at position {i}). Expected a list of Dataset objects or a list of IterableDataset objects.''' )
if dataset_type is Dataset:
return _concatenate_map_style_datasets(__magic_name__ , info=__magic_name__ , split=__magic_name__ , axis=__magic_name__ )
else:
return _concatenate_iterable_datasets(__magic_name__ , info=__magic_name__ , split=__magic_name__ , axis=__magic_name__ )
| 92 |
def UpperCAmelCase_ ( __UpperCAmelCase : int ) -> int:
assert isinstance(__UpperCAmelCase , __UpperCAmelCase ), f"The input value of [n={number}] is not an integer"
if number == 1:
return 2
elif number < 1:
SCREAMING_SNAKE_CASE_ = f"The input value of [n={number}] has to be > 0"
raise ValueError(__UpperCAmelCase )
else:
SCREAMING_SNAKE_CASE_ = sylvester(number - 1 )
SCREAMING_SNAKE_CASE_ = num - 1
SCREAMING_SNAKE_CASE_ = num
return lower * upper + 1
if __name__ == "__main__":
print(f'''The 8th number in Sylvester\'s sequence: {sylvester(8)}''') | 31 | 0 |
"""simple docstring"""
import warnings
from ...configuration_utils import PretrainedConfig
from ...utils import logging
__A = logging.get_logger(__name__)
__A = {
"""RUCAIBox/mvp""": """https://huggingface.co/RUCAIBox/mvp/resolve/main/config.json""",
}
class _lowerCAmelCase ( a ):
"""simple docstring"""
__magic_name__ :Tuple = """mvp"""
__magic_name__ :Optional[Any] = ["""past_key_values"""]
__magic_name__ :str = {"""num_attention_heads""": """encoder_attention_heads""", """hidden_size""": """d_model"""}
def __init__( self , __UpperCAmelCase=5_0_2_6_7 , __UpperCAmelCase=1_0_2_4 , __UpperCAmelCase=1_2 , __UpperCAmelCase=4_0_9_6 , __UpperCAmelCase=1_6 , __UpperCAmelCase=1_2 , __UpperCAmelCase=4_0_9_6 , __UpperCAmelCase=1_6 , __UpperCAmelCase=0.0 , __UpperCAmelCase=0.0 , __UpperCAmelCase="gelu" , __UpperCAmelCase=1_0_2_4 , __UpperCAmelCase=0.1 , __UpperCAmelCase=0.0 , __UpperCAmelCase=0.0 , __UpperCAmelCase=0.02 , __UpperCAmelCase=0.0 , __UpperCAmelCase=False , __UpperCAmelCase=True , __UpperCAmelCase=1 , __UpperCAmelCase=0 , __UpperCAmelCase=2 , __UpperCAmelCase=True , __UpperCAmelCase=2 , __UpperCAmelCase=2 , __UpperCAmelCase=False , __UpperCAmelCase=1_0_0 , __UpperCAmelCase=8_0_0 , **__UpperCAmelCase , ):
'''simple docstring'''
lowerCAmelCase__ :str = vocab_size
lowerCAmelCase__ :List[Any] = max_position_embeddings
lowerCAmelCase__ :List[str] = d_model
lowerCAmelCase__ :Optional[int] = encoder_ffn_dim
lowerCAmelCase__ :Dict = encoder_layers
lowerCAmelCase__ :Optional[int] = encoder_attention_heads
lowerCAmelCase__ :Dict = decoder_ffn_dim
lowerCAmelCase__ :Optional[int] = decoder_layers
lowerCAmelCase__ :List[Any] = decoder_attention_heads
lowerCAmelCase__ :List[Any] = dropout
lowerCAmelCase__ :Optional[Any] = attention_dropout
lowerCAmelCase__ :int = activation_dropout
lowerCAmelCase__ :List[str] = activation_function
lowerCAmelCase__ :Any = init_std
lowerCAmelCase__ :List[str] = encoder_layerdrop
lowerCAmelCase__ :Optional[Any] = decoder_layerdrop
lowerCAmelCase__ :Tuple = classifier_dropout
lowerCAmelCase__ :Any = use_cache
lowerCAmelCase__ :Tuple = encoder_layers
lowerCAmelCase__ :str = scale_embedding # scale factor will be sqrt(d_model) if True
lowerCAmelCase__ :Any = use_prompt
lowerCAmelCase__ :List[Any] = prompt_length
lowerCAmelCase__ :Dict = prompt_mid_dim
super().__init__(
pad_token_id=__UpperCAmelCase , bos_token_id=__UpperCAmelCase , eos_token_id=__UpperCAmelCase , is_encoder_decoder=__UpperCAmelCase , decoder_start_token_id=__UpperCAmelCase , forced_eos_token_id=__UpperCAmelCase , **__UpperCAmelCase , )
if self.forced_bos_token_id is None and kwargs.get('force_bos_token_to_be_generated' , __UpperCAmelCase ):
lowerCAmelCase__ :str = self.bos_token_id
warnings.warn(
F"Please make sure the config includes `forced_bos_token_id={self.bos_token_id}` in future versions. "
'The config can simply be saved and uploaded again to be fixed.' )
| 93 |
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_flax_available,
is_sentencepiece_available,
is_tf_available,
is_tokenizers_available,
is_torch_available,
)
if is_sentencepiece_available():
from ..ta.tokenization_ta import TaTokenizer
else:
from ...utils.dummy_sentencepiece_objects import TaTokenizer
lowerCamelCase__ : List[Any] = TaTokenizer
if is_tokenizers_available():
from ..ta.tokenization_ta_fast import TaTokenizerFast
else:
from ...utils.dummy_tokenizers_objects import TaTokenizerFast
lowerCamelCase__ : Union[str, Any] = TaTokenizerFast
lowerCamelCase__ : Dict = {'configuration_mt5': ['MT5Config', 'MT5OnnxConfig']}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowerCamelCase__ : Tuple = [
'MT5EncoderModel',
'MT5ForConditionalGeneration',
'MT5ForQuestionAnswering',
'MT5Model',
'MT5PreTrainedModel',
'MT5Stack',
]
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowerCamelCase__ : Tuple = ['TFMT5EncoderModel', 'TFMT5ForConditionalGeneration', 'TFMT5Model']
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowerCamelCase__ : Tuple = ['FlaxMT5EncoderModel', 'FlaxMT5ForConditionalGeneration', 'FlaxMT5Model']
if TYPE_CHECKING:
from .configuration_mta import MTaConfig, MTaOnnxConfig
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_mta import (
MTaEncoderModel,
MTaForConditionalGeneration,
MTaForQuestionAnswering,
MTaModel,
MTaPreTrainedModel,
MTaStack,
)
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_mta import TFMTaEncoderModel, TFMTaForConditionalGeneration, TFMTaModel
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_flax_mta import FlaxMTaEncoderModel, FlaxMTaForConditionalGeneration, FlaxMTaModel
else:
import sys
lowerCamelCase__ : int = _LazyModule(
__name__,
globals()['__file__'],
_import_structure,
extra_objects={'MT5Tokenizer': MTaTokenizer, 'MT5TokenizerFast': MTaTokenizerFast},
module_spec=__spec__,
) | 31 | 0 |
'''simple docstring'''
import math
import tensorflow as tf
from packaging import version
def lowercase_ ( __A : str ) -> List[Any]:
"""simple docstring"""
lowercase : int =tf.convert_to_tensor(__A )
lowercase : Dict =0.5 * (1.0 + tf.math.erf(x / tf.cast(tf.sqrt(2.0 ) , x.dtype ) ))
return x * cdf
def lowercase_ ( __A : Any ) -> int:
"""simple docstring"""
lowercase : Optional[Any] =tf.convert_to_tensor(__A )
lowercase : Tuple =tf.cast(math.pi , x.dtype )
lowercase : List[Any] =tf.cast(0.044715 , x.dtype )
lowercase : Optional[Any] =0.5 * (1.0 + tf.tanh(tf.sqrt(2.0 / pi ) * (x + coeff * tf.pow(__A , 3 )) ))
return x * cdf
def lowercase_ ( __A : List[str] ) -> Optional[Any]:
"""simple docstring"""
lowercase : Optional[int] =tf.convert_to_tensor(__A )
return x * tf.tanh(tf.math.softplus(__A ) )
def lowercase_ ( __A : Dict ) -> Union[str, Any]:
"""simple docstring"""
lowercase : Union[str, Any] =tf.convert_to_tensor(__A )
lowercase : Tuple =tf.cast(0.044715 , x.dtype )
lowercase : Any =tf.cast(0.7978845608 , x.dtype )
return 0.5 * x * (1.0 + tf.tanh(x * coeffa * (1.0 + coeffa * x * x) ))
def lowercase_ ( __A : Optional[Any] ) -> Dict:
"""simple docstring"""
lowercase : List[str] =tf.convert_to_tensor(__A )
lowercase : Optional[int] =tf.cast(1.702 , x.dtype )
return x * tf.math.sigmoid(coeff * x )
def lowercase_ ( __A : Dict ) -> Union[str, Any]:
"""simple docstring"""
return tf.clip_by_value(_gelu(__A ) , -1_0 , 1_0 )
def lowercase_ ( __A : Optional[Any] , __A : int=-1 ) -> Tuple:
"""simple docstring"""
lowercase , lowercase : List[Any] =tf.split(__A , 2 , axis=__A )
return a * tf.math.sigmoid(__A )
if version.parse(tf.version.VERSION) >= version.parse('2.4'):
def lowercase_ ( __A : str ) -> Optional[int]:
"""simple docstring"""
return tf.keras.activations.gelu(__A , approximate=__A )
SCREAMING_SNAKE_CASE = tf.keras.activations.gelu
SCREAMING_SNAKE_CASE = approximate_gelu_wrap
else:
SCREAMING_SNAKE_CASE = _gelu
SCREAMING_SNAKE_CASE = _gelu_new
SCREAMING_SNAKE_CASE = {
'gelu': gelu,
'gelu_10': gelu_aa,
'gelu_fast': gelu_fast,
'gelu_new': gelu_new,
'glu': glu,
'mish': mish,
'quick_gelu': quick_gelu,
'relu': tf.keras.activations.relu,
'sigmoid': tf.keras.activations.sigmoid,
'silu': tf.keras.activations.swish,
'swish': tf.keras.activations.swish,
'tanh': tf.keras.activations.tanh,
}
def lowercase_ ( __A : Optional[int] ) -> Optional[int]:
"""simple docstring"""
if activation_string in ACTaFN:
return ACTaFN[activation_string]
else:
raise KeyError(F'function {activation_string} not found in ACT2FN mapping {list(ACTaFN.keys() )}' )
| 94 |
import subprocess
import sys
from transformers import BertConfig, BertModel, BertTokenizer, pipeline
from transformers.testing_utils import TestCasePlus, require_torch
class lowerCamelCase_ ( _SCREAMING_SNAKE_CASE ):
'''simple docstring'''
@require_torch
def lowerCAmelCase_ ( self : int ):
# this test is a bit tricky since TRANSFORMERS_OFFLINE can only be changed before
# `transformers` is loaded, and it's too late for inside pytest - so we are changing it
# while running an external program
# python one-liner segments
# this must be loaded before socket.socket is monkey-patched
SCREAMING_SNAKE_CASE_ = '\nfrom transformers import BertConfig, BertModel, BertTokenizer, pipeline\n '
SCREAMING_SNAKE_CASE_ = '\nmname = "hf-internal-testing/tiny-random-bert"\nBertConfig.from_pretrained(mname)\nBertModel.from_pretrained(mname)\nBertTokenizer.from_pretrained(mname)\npipe = pipeline(task="fill-mask", model=mname)\nprint("success")\n '
SCREAMING_SNAKE_CASE_ = '\nimport socket\ndef offline_socket(*args, **kwargs): raise RuntimeError("Offline mode is enabled, we shouldn\'t access internet")\nsocket.socket = offline_socket\n '
# Force fetching the files so that we can use the cache
SCREAMING_SNAKE_CASE_ = 'hf-internal-testing/tiny-random-bert'
BertConfig.from_pretrained(_lowerCAmelCase )
BertModel.from_pretrained(_lowerCAmelCase )
BertTokenizer.from_pretrained(_lowerCAmelCase )
pipeline(task='fill-mask' , model=_lowerCAmelCase )
# baseline - just load from_pretrained with normal network
SCREAMING_SNAKE_CASE_ = [sys.executable, '-c', '\n'.join([load, run, mock] )]
# should succeed
SCREAMING_SNAKE_CASE_ = self.get_env()
# should succeed as TRANSFORMERS_OFFLINE=1 tells it to use local files
SCREAMING_SNAKE_CASE_ = '1'
SCREAMING_SNAKE_CASE_ = subprocess.run(_lowerCAmelCase , env=_lowerCAmelCase , check=_lowerCAmelCase , capture_output=_lowerCAmelCase )
self.assertEqual(result.returncode , 0 , result.stderr )
self.assertIn('success' , result.stdout.decode() )
@require_torch
def lowerCAmelCase_ ( self : Tuple ):
# python one-liner segments
# this must be loaded before socket.socket is monkey-patched
SCREAMING_SNAKE_CASE_ = '\nfrom transformers import BertConfig, BertModel, BertTokenizer, pipeline\n '
SCREAMING_SNAKE_CASE_ = '\nmname = "hf-internal-testing/tiny-random-bert"\nBertConfig.from_pretrained(mname)\nBertModel.from_pretrained(mname)\nBertTokenizer.from_pretrained(mname)\npipe = pipeline(task="fill-mask", model=mname)\nprint("success")\n '
SCREAMING_SNAKE_CASE_ = '\nimport socket\ndef offline_socket(*args, **kwargs): raise socket.error("Faking flaky internet")\nsocket.socket = offline_socket\n '
# Force fetching the files so that we can use the cache
SCREAMING_SNAKE_CASE_ = 'hf-internal-testing/tiny-random-bert'
BertConfig.from_pretrained(_lowerCAmelCase )
BertModel.from_pretrained(_lowerCAmelCase )
BertTokenizer.from_pretrained(_lowerCAmelCase )
pipeline(task='fill-mask' , model=_lowerCAmelCase )
# baseline - just load from_pretrained with normal network
SCREAMING_SNAKE_CASE_ = [sys.executable, '-c', '\n'.join([load, run, mock] )]
# should succeed
SCREAMING_SNAKE_CASE_ = self.get_env()
SCREAMING_SNAKE_CASE_ = subprocess.run(_lowerCAmelCase , env=_lowerCAmelCase , check=_lowerCAmelCase , capture_output=_lowerCAmelCase )
self.assertEqual(result.returncode , 0 , result.stderr )
self.assertIn('success' , result.stdout.decode() )
@require_torch
def lowerCAmelCase_ ( self : List[str] ):
# this test is a bit tricky since TRANSFORMERS_OFFLINE can only be changed before
# `transformers` is loaded, and it's too late for inside pytest - so we are changing it
# while running an external program
# python one-liner segments
# this must be loaded before socket.socket is monkey-patched
SCREAMING_SNAKE_CASE_ = '\nfrom transformers import BertConfig, BertModel, BertTokenizer\n '
SCREAMING_SNAKE_CASE_ = '\nmname = "hf-internal-testing/tiny-random-bert-sharded"\nBertConfig.from_pretrained(mname)\nBertModel.from_pretrained(mname)\nprint("success")\n '
SCREAMING_SNAKE_CASE_ = '\nimport socket\ndef offline_socket(*args, **kwargs): raise ValueError("Offline mode is enabled")\nsocket.socket = offline_socket\n '
# baseline - just load from_pretrained with normal network
SCREAMING_SNAKE_CASE_ = [sys.executable, '-c', '\n'.join([load, run] )]
# should succeed
SCREAMING_SNAKE_CASE_ = self.get_env()
SCREAMING_SNAKE_CASE_ = subprocess.run(_lowerCAmelCase , env=_lowerCAmelCase , check=_lowerCAmelCase , capture_output=_lowerCAmelCase )
self.assertEqual(result.returncode , 0 , result.stderr )
self.assertIn('success' , result.stdout.decode() )
# next emulate no network
SCREAMING_SNAKE_CASE_ = [sys.executable, '-c', '\n'.join([load, mock, run] )]
# Doesn't fail anymore since the model is in the cache due to other tests, so commenting this.
# env["TRANSFORMERS_OFFLINE"] = "0"
# result = subprocess.run(cmd, env=env, check=False, capture_output=True)
# self.assertEqual(result.returncode, 1, result.stderr)
# should succeed as TRANSFORMERS_OFFLINE=1 tells it to use local files
SCREAMING_SNAKE_CASE_ = '1'
SCREAMING_SNAKE_CASE_ = subprocess.run(_lowerCAmelCase , env=_lowerCAmelCase , check=_lowerCAmelCase , capture_output=_lowerCAmelCase )
self.assertEqual(result.returncode , 0 , result.stderr )
self.assertIn('success' , result.stdout.decode() )
@require_torch
def lowerCAmelCase_ ( self : Any ):
SCREAMING_SNAKE_CASE_ = '\nfrom transformers import pipeline\n '
SCREAMING_SNAKE_CASE_ = '\nmname = "hf-internal-testing/tiny-random-bert"\npipe = pipeline(model=mname)\n '
SCREAMING_SNAKE_CASE_ = '\nimport socket\ndef offline_socket(*args, **kwargs): raise socket.error("Offline mode is enabled")\nsocket.socket = offline_socket\n '
SCREAMING_SNAKE_CASE_ = self.get_env()
SCREAMING_SNAKE_CASE_ = '1'
SCREAMING_SNAKE_CASE_ = [sys.executable, '-c', '\n'.join([load, mock, run] )]
SCREAMING_SNAKE_CASE_ = subprocess.run(_lowerCAmelCase , env=_lowerCAmelCase , check=_lowerCAmelCase , capture_output=_lowerCAmelCase )
self.assertEqual(result.returncode , 1 , result.stderr )
self.assertIn(
'You cannot infer task automatically within `pipeline` when using offline mode' , result.stderr.decode().replace('\n' , '' ) , )
@require_torch
def lowerCAmelCase_ ( self : Optional[int] ):
SCREAMING_SNAKE_CASE_ = '\nfrom transformers import AutoModel\n '
SCREAMING_SNAKE_CASE_ = '\nmname = "hf-internal-testing/test_dynamic_model"\nAutoModel.from_pretrained(mname, trust_remote_code=True)\nprint("success")\n '
# baseline - just load from_pretrained with normal network
SCREAMING_SNAKE_CASE_ = [sys.executable, '-c', '\n'.join([load, run] )]
# should succeed
SCREAMING_SNAKE_CASE_ = self.get_env()
SCREAMING_SNAKE_CASE_ = subprocess.run(_lowerCAmelCase , env=_lowerCAmelCase , check=_lowerCAmelCase , capture_output=_lowerCAmelCase )
self.assertEqual(result.returncode , 0 , result.stderr )
self.assertIn('success' , result.stdout.decode() )
# should succeed as TRANSFORMERS_OFFLINE=1 tells it to use local files
SCREAMING_SNAKE_CASE_ = '1'
SCREAMING_SNAKE_CASE_ = subprocess.run(_lowerCAmelCase , env=_lowerCAmelCase , check=_lowerCAmelCase , capture_output=_lowerCAmelCase )
self.assertEqual(result.returncode , 0 , result.stderr )
self.assertIn('success' , result.stdout.decode() ) | 31 | 0 |
"""simple docstring"""
import timeit
import numpy as np
import datasets
from datasets.arrow_writer import ArrowWriter
from datasets.features.features import _ArrayXD
def snake_case ( A__ ):
def wrapper(*A__ ,**A__ ):
UpperCAmelCase_ : Union[str, Any] = timeit.default_timer()
UpperCAmelCase_ : Union[str, Any] = func(*A__ ,**A__ )
UpperCAmelCase_ : Dict = timeit.default_timer() - starttime
return delta
UpperCAmelCase_ : Optional[Any] = func.__name__
return wrapper
def snake_case ( A__ ,A__=1_00 ,A__=None ):
UpperCAmelCase_ : str = []
UpperCAmelCase_ : List[str] = seq_shapes or {}
for i in range(A__ ):
UpperCAmelCase_ : int = {}
for col_id, (k, v) in enumerate(features.items() ):
if isinstance(A__ ,_ArrayXD ):
UpperCAmelCase_ : Optional[int] = np.random.rand(*v.shape ).astype(v.dtype )
elif isinstance(A__ ,datasets.Value ):
if v.dtype == "string":
UpperCAmelCase_ : List[str] = "The small grey turtle was surprisingly fast when challenged."
else:
UpperCAmelCase_ : List[str] = np.random.randint(10 ,size=1 ).astype(v.dtype ).item()
elif isinstance(A__ ,datasets.Sequence ):
while isinstance(A__ ,datasets.Sequence ):
UpperCAmelCase_ : List[str] = v.feature
UpperCAmelCase_ : List[Any] = seq_shapes[k]
UpperCAmelCase_ : Dict = np.random.rand(*A__ ).astype(v.dtype )
UpperCAmelCase_ : Dict = data
dummy_data.append((i, example) )
return dummy_data
def snake_case ( A__ ,A__ ,A__=1_00 ,A__=None ):
UpperCAmelCase_ : Optional[Any] = generate_examples(A__ ,num_examples=A__ ,seq_shapes=A__ )
with ArrowWriter(features=A__ ,path=A__ ) as writer:
for key, record in dummy_data:
UpperCAmelCase_ : Any = features.encode_example(A__ )
writer.write(A__ )
UpperCAmelCase_ , UpperCAmelCase_ : Optional[int] = writer.finalize()
if not num_final_examples == num_examples:
raise ValueError(
F"""Error writing the dataset, wrote {num_final_examples} examples but should have written {num_examples}.""" )
UpperCAmelCase_ : List[Any] = datasets.Dataset.from_file(filename=A__ ,info=datasets.DatasetInfo(features=A__ ) )
return dataset
| 95 |
import torch
from transformers import PreTrainedModel, XLMRobertaConfig, XLMRobertaModel
class lowerCamelCase_ ( _SCREAMING_SNAKE_CASE ):
'''simple docstring'''
lowercase_ = "M-CLIP"
def __init__( self : Tuple , _lowerCAmelCase : List[str]=1_024 , _lowerCAmelCase : str=768 , **_lowerCAmelCase : Union[str, Any] ):
SCREAMING_SNAKE_CASE_ = transformerDimSize
SCREAMING_SNAKE_CASE_ = imageDimSize
super().__init__(**_lowerCAmelCase )
class lowerCamelCase_ ( _SCREAMING_SNAKE_CASE ):
'''simple docstring'''
lowercase_ = MCLIPConfig
def __init__( self : Dict , _lowerCAmelCase : Union[str, Any] , *_lowerCAmelCase : str , **_lowerCAmelCase : str ):
super().__init__(_lowerCAmelCase , *_lowerCAmelCase , **_lowerCAmelCase )
SCREAMING_SNAKE_CASE_ = XLMRobertaModel(_lowerCAmelCase )
SCREAMING_SNAKE_CASE_ = torch.nn.Linear(
in_features=config.transformerDimensions , out_features=config.numDims )
def lowerCAmelCase_ ( self : List[Any] , _lowerCAmelCase : Any , _lowerCAmelCase : Union[str, Any] ):
SCREAMING_SNAKE_CASE_ = self.transformer(input_ids=_lowerCAmelCase , attention_mask=_lowerCAmelCase )[0]
SCREAMING_SNAKE_CASE_ = (embs * attention_mask.unsqueeze(2 )).sum(dim=1 ) / attention_mask.sum(dim=1 )[:, None]
return self.LinearTransformation(_lowerCAmelCase ), embs | 31 | 0 |
"""simple docstring"""
import os
import sys
import unittest
__lowerCamelCase = os.path.abspath(os.path.dirname(os.path.dirname(os.path.dirname(__file__))))
sys.path.append(os.path.join(git_repo_path, 'utils'))
import get_test_info # noqa: E402
from get_test_info import ( # noqa: E402
get_model_to_test_mapping,
get_model_to_tester_mapping,
get_test_to_tester_mapping,
)
__lowerCamelCase = os.path.join('tests', 'models', 'bert', 'test_modeling_bert.py')
__lowerCamelCase = os.path.join('tests', 'models', 'blip', 'test_modeling_blip.py')
class __A ( unittest.TestCase ):
def lowerCamelCase__ ( self : int ) -> Optional[Any]:
__magic_name__: str = get_test_to_tester_mapping(__snake_case )
__magic_name__: Optional[int] = get_test_to_tester_mapping(__snake_case )
__magic_name__: List[str] = {"""BertModelTest""": """BertModelTester"""}
__magic_name__: Any = {
"""BlipModelTest""": """BlipModelTester""",
"""BlipTextImageModelTest""": """BlipTextImageModelsModelTester""",
"""BlipTextModelTest""": """BlipTextModelTester""",
"""BlipTextRetrievalModelTest""": """BlipTextRetrievalModelTester""",
"""BlipVQAModelTest""": """BlipVQAModelTester""",
"""BlipVisionModelTest""": """BlipVisionModelTester""",
}
self.assertEqual(get_test_info.to_json(__snake_case ) , __snake_case )
self.assertEqual(get_test_info.to_json(__snake_case ) , __snake_case )
def lowerCamelCase__ ( self : int ) -> Tuple:
__magic_name__: List[Any] = get_model_to_test_mapping(__snake_case )
__magic_name__: List[Any] = get_model_to_test_mapping(__snake_case )
__magic_name__: Optional[int] = {
"""BertForMaskedLM""": ["""BertModelTest"""],
"""BertForMultipleChoice""": ["""BertModelTest"""],
"""BertForNextSentencePrediction""": ["""BertModelTest"""],
"""BertForPreTraining""": ["""BertModelTest"""],
"""BertForQuestionAnswering""": ["""BertModelTest"""],
"""BertForSequenceClassification""": ["""BertModelTest"""],
"""BertForTokenClassification""": ["""BertModelTest"""],
"""BertLMHeadModel""": ["""BertModelTest"""],
"""BertModel""": ["""BertModelTest"""],
}
__magic_name__: Optional[int] = {
"""BlipForConditionalGeneration""": ["""BlipTextImageModelTest"""],
"""BlipForImageTextRetrieval""": ["""BlipTextRetrievalModelTest"""],
"""BlipForQuestionAnswering""": ["""BlipVQAModelTest"""],
"""BlipModel""": ["""BlipModelTest"""],
"""BlipTextModel""": ["""BlipTextModelTest"""],
"""BlipVisionModel""": ["""BlipVisionModelTest"""],
}
self.assertEqual(get_test_info.to_json(__snake_case ) , __snake_case )
self.assertEqual(get_test_info.to_json(__snake_case ) , __snake_case )
def lowerCamelCase__ ( self : Optional[Any] ) -> Union[str, Any]:
__magic_name__: Tuple = get_model_to_tester_mapping(__snake_case )
__magic_name__: int = get_model_to_tester_mapping(__snake_case )
__magic_name__: Union[str, Any] = {
"""BertForMaskedLM""": ["""BertModelTester"""],
"""BertForMultipleChoice""": ["""BertModelTester"""],
"""BertForNextSentencePrediction""": ["""BertModelTester"""],
"""BertForPreTraining""": ["""BertModelTester"""],
"""BertForQuestionAnswering""": ["""BertModelTester"""],
"""BertForSequenceClassification""": ["""BertModelTester"""],
"""BertForTokenClassification""": ["""BertModelTester"""],
"""BertLMHeadModel""": ["""BertModelTester"""],
"""BertModel""": ["""BertModelTester"""],
}
__magic_name__: List[Any] = {
"""BlipForConditionalGeneration""": ["""BlipTextImageModelsModelTester"""],
"""BlipForImageTextRetrieval""": ["""BlipTextRetrievalModelTester"""],
"""BlipForQuestionAnswering""": ["""BlipVQAModelTester"""],
"""BlipModel""": ["""BlipModelTester"""],
"""BlipTextModel""": ["""BlipTextModelTester"""],
"""BlipVisionModel""": ["""BlipVisionModelTester"""],
}
self.assertEqual(get_test_info.to_json(__snake_case ) , __snake_case )
self.assertEqual(get_test_info.to_json(__snake_case ) , __snake_case )
| 96 |
import gc
import random
import unittest
import numpy as np
import torch
from transformers import XLMRobertaTokenizer
from diffusers import (
AltDiffusionImgaImgPipeline,
AutoencoderKL,
PNDMScheduler,
UNetaDConditionModel,
)
from diffusers.image_processor import VaeImageProcessor
from diffusers.pipelines.alt_diffusion.modeling_roberta_series import (
RobertaSeriesConfig,
RobertaSeriesModelWithTransformation,
)
from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device
from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu
enable_full_determinism()
class lowerCamelCase_ ( unittest.TestCase ):
'''simple docstring'''
def lowerCAmelCase_ ( self : str ):
# clean up the VRAM after each test
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
@property
def lowerCAmelCase_ ( self : Union[str, Any] ):
SCREAMING_SNAKE_CASE_ = 1
SCREAMING_SNAKE_CASE_ = 3
SCREAMING_SNAKE_CASE_ = (32, 32)
SCREAMING_SNAKE_CASE_ = floats_tensor((batch_size, num_channels) + sizes , rng=random.Random(0 ) ).to(_lowerCAmelCase )
return image
@property
def lowerCAmelCase_ ( self : Union[str, Any] ):
torch.manual_seed(0 )
SCREAMING_SNAKE_CASE_ = UNetaDConditionModel(
block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=('DownBlock2D', 'CrossAttnDownBlock2D') , up_block_types=('CrossAttnUpBlock2D', 'UpBlock2D') , cross_attention_dim=32 , )
return model
@property
def lowerCAmelCase_ ( self : Tuple ):
torch.manual_seed(0 )
SCREAMING_SNAKE_CASE_ = AutoencoderKL(
block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=['DownEncoderBlock2D', 'DownEncoderBlock2D'] , up_block_types=['UpDecoderBlock2D', 'UpDecoderBlock2D'] , latent_channels=4 , )
return model
@property
def lowerCAmelCase_ ( self : Optional[int] ):
torch.manual_seed(0 )
SCREAMING_SNAKE_CASE_ = RobertaSeriesConfig(
hidden_size=32 , project_dim=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=5_006 , )
return RobertaSeriesModelWithTransformation(_lowerCAmelCase )
@property
def lowerCAmelCase_ ( self : List[Any] ):
def extract(*_lowerCAmelCase : Optional[int] , **_lowerCAmelCase : str ):
class lowerCamelCase_ :
'''simple docstring'''
def __init__( self : str ):
SCREAMING_SNAKE_CASE_ = torch.ones([0] )
def lowerCAmelCase_ ( self : Union[str, Any] , _lowerCAmelCase : int ):
self.pixel_values.to(_lowerCAmelCase )
return self
return Out()
return extract
def lowerCAmelCase_ ( self : Optional[Any] ):
SCREAMING_SNAKE_CASE_ = 'cpu' # ensure determinism for the device-dependent torch.Generator
SCREAMING_SNAKE_CASE_ = self.dummy_cond_unet
SCREAMING_SNAKE_CASE_ = PNDMScheduler(skip_prk_steps=_lowerCAmelCase )
SCREAMING_SNAKE_CASE_ = self.dummy_vae
SCREAMING_SNAKE_CASE_ = self.dummy_text_encoder
SCREAMING_SNAKE_CASE_ = XLMRobertaTokenizer.from_pretrained('hf-internal-testing/tiny-xlm-roberta' )
SCREAMING_SNAKE_CASE_ = 77
SCREAMING_SNAKE_CASE_ = self.dummy_image.to(_lowerCAmelCase )
SCREAMING_SNAKE_CASE_ = init_image / 2 + 0.5
# make sure here that pndm scheduler skips prk
SCREAMING_SNAKE_CASE_ = AltDiffusionImgaImgPipeline(
unet=_lowerCAmelCase , scheduler=_lowerCAmelCase , vae=_lowerCAmelCase , text_encoder=_lowerCAmelCase , tokenizer=_lowerCAmelCase , safety_checker=_lowerCAmelCase , feature_extractor=self.dummy_extractor , )
SCREAMING_SNAKE_CASE_ = VaeImageProcessor(vae_scale_factor=alt_pipe.vae_scale_factor , do_normalize=_lowerCAmelCase )
SCREAMING_SNAKE_CASE_ = alt_pipe.to(_lowerCAmelCase )
alt_pipe.set_progress_bar_config(disable=_lowerCAmelCase )
SCREAMING_SNAKE_CASE_ = 'A painting of a squirrel eating a burger'
SCREAMING_SNAKE_CASE_ = torch.Generator(device=_lowerCAmelCase ).manual_seed(0 )
SCREAMING_SNAKE_CASE_ = alt_pipe(
[prompt] , generator=_lowerCAmelCase , guidance_scale=6.0 , num_inference_steps=2 , output_type='np' , image=_lowerCAmelCase , )
SCREAMING_SNAKE_CASE_ = output.images
SCREAMING_SNAKE_CASE_ = torch.Generator(device=_lowerCAmelCase ).manual_seed(0 )
SCREAMING_SNAKE_CASE_ = alt_pipe(
[prompt] , generator=_lowerCAmelCase , guidance_scale=6.0 , num_inference_steps=2 , output_type='np' , image=_lowerCAmelCase , return_dict=_lowerCAmelCase , )[0]
SCREAMING_SNAKE_CASE_ = image[0, -3:, -3:, -1]
SCREAMING_SNAKE_CASE_ = image_from_tuple[0, -3:, -3:, -1]
assert image.shape == (1, 32, 32, 3)
SCREAMING_SNAKE_CASE_ = np.array([0.4427, 0.3731, 0.4249, 0.4941, 0.4546, 0.4148, 0.4193, 0.4666, 0.4499] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 5E-3
assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 5E-3
@unittest.skipIf(torch_device != 'cuda' , 'This test requires a GPU' )
def lowerCAmelCase_ ( self : Tuple ):
SCREAMING_SNAKE_CASE_ = self.dummy_cond_unet
SCREAMING_SNAKE_CASE_ = PNDMScheduler(skip_prk_steps=_lowerCAmelCase )
SCREAMING_SNAKE_CASE_ = self.dummy_vae
SCREAMING_SNAKE_CASE_ = self.dummy_text_encoder
SCREAMING_SNAKE_CASE_ = XLMRobertaTokenizer.from_pretrained('hf-internal-testing/tiny-xlm-roberta' )
SCREAMING_SNAKE_CASE_ = 77
SCREAMING_SNAKE_CASE_ = self.dummy_image.to(_lowerCAmelCase )
# put models in fp16
SCREAMING_SNAKE_CASE_ = unet.half()
SCREAMING_SNAKE_CASE_ = vae.half()
SCREAMING_SNAKE_CASE_ = bert.half()
# make sure here that pndm scheduler skips prk
SCREAMING_SNAKE_CASE_ = AltDiffusionImgaImgPipeline(
unet=_lowerCAmelCase , scheduler=_lowerCAmelCase , vae=_lowerCAmelCase , text_encoder=_lowerCAmelCase , tokenizer=_lowerCAmelCase , safety_checker=_lowerCAmelCase , feature_extractor=self.dummy_extractor , )
SCREAMING_SNAKE_CASE_ = VaeImageProcessor(vae_scale_factor=alt_pipe.vae_scale_factor , do_normalize=_lowerCAmelCase )
SCREAMING_SNAKE_CASE_ = alt_pipe.to(_lowerCAmelCase )
alt_pipe.set_progress_bar_config(disable=_lowerCAmelCase )
SCREAMING_SNAKE_CASE_ = 'A painting of a squirrel eating a burger'
SCREAMING_SNAKE_CASE_ = torch.manual_seed(0 )
SCREAMING_SNAKE_CASE_ = alt_pipe(
[prompt] , generator=_lowerCAmelCase , num_inference_steps=2 , output_type='np' , image=_lowerCAmelCase , ).images
assert image.shape == (1, 32, 32, 3)
@unittest.skipIf(torch_device != 'cuda' , 'This test requires a GPU' )
def lowerCAmelCase_ ( self : str ):
SCREAMING_SNAKE_CASE_ = load_image(
'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main'
'/img2img/sketch-mountains-input.jpg' )
# resize to resolution that is divisible by 8 but not 16 or 32
SCREAMING_SNAKE_CASE_ = init_image.resize((760, 504) )
SCREAMING_SNAKE_CASE_ = 'BAAI/AltDiffusion'
SCREAMING_SNAKE_CASE_ = AltDiffusionImgaImgPipeline.from_pretrained(
_lowerCAmelCase , safety_checker=_lowerCAmelCase , )
pipe.to(_lowerCAmelCase )
pipe.set_progress_bar_config(disable=_lowerCAmelCase )
pipe.enable_attention_slicing()
SCREAMING_SNAKE_CASE_ = 'A fantasy landscape, trending on artstation'
SCREAMING_SNAKE_CASE_ = torch.manual_seed(0 )
SCREAMING_SNAKE_CASE_ = pipe(
prompt=_lowerCAmelCase , image=_lowerCAmelCase , strength=0.75 , guidance_scale=7.5 , generator=_lowerCAmelCase , output_type='np' , )
SCREAMING_SNAKE_CASE_ = output.images[0]
SCREAMING_SNAKE_CASE_ = image[255:258, 383:386, -1]
assert image.shape == (504, 760, 3)
SCREAMING_SNAKE_CASE_ = np.array([0.9358, 0.9397, 0.9599, 0.9901, 1.0000, 1.0000, 0.9882, 1.0000, 1.0000] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
@slow
@require_torch_gpu
class lowerCamelCase_ ( unittest.TestCase ):
'''simple docstring'''
def lowerCAmelCase_ ( self : str ):
# clean up the VRAM after each test
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def lowerCAmelCase_ ( self : int ):
SCREAMING_SNAKE_CASE_ = load_image(
'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main'
'/img2img/sketch-mountains-input.jpg' )
SCREAMING_SNAKE_CASE_ = init_image.resize((768, 512) )
SCREAMING_SNAKE_CASE_ = load_numpy(
'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/img2img/fantasy_landscape_alt.npy' )
SCREAMING_SNAKE_CASE_ = 'BAAI/AltDiffusion'
SCREAMING_SNAKE_CASE_ = AltDiffusionImgaImgPipeline.from_pretrained(
_lowerCAmelCase , safety_checker=_lowerCAmelCase , )
pipe.to(_lowerCAmelCase )
pipe.set_progress_bar_config(disable=_lowerCAmelCase )
pipe.enable_attention_slicing()
SCREAMING_SNAKE_CASE_ = 'A fantasy landscape, trending on artstation'
SCREAMING_SNAKE_CASE_ = torch.manual_seed(0 )
SCREAMING_SNAKE_CASE_ = pipe(
prompt=_lowerCAmelCase , image=_lowerCAmelCase , strength=0.75 , guidance_scale=7.5 , generator=_lowerCAmelCase , output_type='np' , )
SCREAMING_SNAKE_CASE_ = output.images[0]
assert image.shape == (512, 768, 3)
# img2img is flaky across GPUs even in fp32, so using MAE here
assert np.abs(expected_image - image ).max() < 1E-2 | 31 | 0 |
import unittest
from transformers import is_torch_available
from transformers.testing_utils import require_torch, slow, torch_device
from ...generation.test_utils import GenerationTesterMixin
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers import (
OPENAI_GPT_PRETRAINED_MODEL_ARCHIVE_LIST,
OpenAIGPTConfig,
OpenAIGPTDoubleHeadsModel,
OpenAIGPTForSequenceClassification,
OpenAIGPTLMHeadModel,
OpenAIGPTModel,
)
class lowercase__:
"""simple docstring"""
def __init__( self : Optional[int] , SCREAMING_SNAKE_CASE_ : str , SCREAMING_SNAKE_CASE_ : Tuple=1_3 , SCREAMING_SNAKE_CASE_ : Optional[Any]=7 , SCREAMING_SNAKE_CASE_ : Dict=True , SCREAMING_SNAKE_CASE_ : str=True , SCREAMING_SNAKE_CASE_ : Union[str, Any]=True , SCREAMING_SNAKE_CASE_ : Union[str, Any]=9_9 , SCREAMING_SNAKE_CASE_ : Union[str, Any]=3_2 , SCREAMING_SNAKE_CASE_ : Dict=5 , SCREAMING_SNAKE_CASE_ : int=4 , SCREAMING_SNAKE_CASE_ : Any=3_7 , SCREAMING_SNAKE_CASE_ : Any="gelu" , SCREAMING_SNAKE_CASE_ : Tuple=0.1 , SCREAMING_SNAKE_CASE_ : Dict=0.1 , SCREAMING_SNAKE_CASE_ : Tuple=5_1_2 , SCREAMING_SNAKE_CASE_ : List[Any]=1_6 , SCREAMING_SNAKE_CASE_ : Dict=2 , SCREAMING_SNAKE_CASE_ : int=0.02 , SCREAMING_SNAKE_CASE_ : Tuple=3 , SCREAMING_SNAKE_CASE_ : str=4 , SCREAMING_SNAKE_CASE_ : Tuple=None , ) -> List[str]:
lowercase_ = parent
lowercase_ = batch_size
lowercase_ = seq_length
lowercase_ = is_training
lowercase_ = use_token_type_ids
lowercase_ = use_labels
lowercase_ = vocab_size
lowercase_ = hidden_size
lowercase_ = num_hidden_layers
lowercase_ = num_attention_heads
lowercase_ = intermediate_size
lowercase_ = hidden_act
lowercase_ = hidden_dropout_prob
lowercase_ = attention_probs_dropout_prob
lowercase_ = max_position_embeddings
lowercase_ = type_vocab_size
lowercase_ = type_sequence_label_size
lowercase_ = initializer_range
lowercase_ = num_labels
lowercase_ = num_choices
lowercase_ = scope
lowercase_ = self.vocab_size - 1
def _lowercase ( self : str ) -> List[str]:
lowercase_ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
lowercase_ = None
if self.use_token_type_ids:
lowercase_ = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size )
lowercase_ = None
lowercase_ = None
lowercase_ = None
if self.use_labels:
lowercase_ = ids_tensor([self.batch_size] , self.type_sequence_label_size )
lowercase_ = ids_tensor([self.batch_size, self.seq_length] , self.num_labels )
lowercase_ = ids_tensor([self.batch_size] , self.num_choices )
lowercase_ = OpenAIGPTConfig(
vocab_size=self.vocab_size , n_embd=self.hidden_size , n_layer=self.num_hidden_layers , n_head=self.num_attention_heads , n_positions=self.max_position_embeddings , pad_token_id=self.pad_token_id , )
lowercase_ = ids_tensor([self.num_hidden_layers, self.num_attention_heads] , 2 )
return (
config,
input_ids,
head_mask,
token_type_ids,
sequence_labels,
token_labels,
choice_labels,
)
def _lowercase ( self : str , SCREAMING_SNAKE_CASE_ : str , SCREAMING_SNAKE_CASE_ : Union[str, Any] , SCREAMING_SNAKE_CASE_ : List[Any] , SCREAMING_SNAKE_CASE_ : int , *SCREAMING_SNAKE_CASE_ : Optional[Any] ) -> Union[str, Any]:
lowercase_ = OpenAIGPTModel(config=SCREAMING_SNAKE_CASE_ )
model.to(SCREAMING_SNAKE_CASE_ )
model.eval()
lowercase_ = model(SCREAMING_SNAKE_CASE_ , token_type_ids=SCREAMING_SNAKE_CASE_ , head_mask=SCREAMING_SNAKE_CASE_ )
lowercase_ = model(SCREAMING_SNAKE_CASE_ , token_type_ids=SCREAMING_SNAKE_CASE_ )
lowercase_ = model(SCREAMING_SNAKE_CASE_ )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) )
def _lowercase ( self : int , SCREAMING_SNAKE_CASE_ : Union[str, Any] , SCREAMING_SNAKE_CASE_ : Dict , SCREAMING_SNAKE_CASE_ : Tuple , SCREAMING_SNAKE_CASE_ : str , *SCREAMING_SNAKE_CASE_ : List[Any] ) -> List[Any]:
lowercase_ = OpenAIGPTLMHeadModel(SCREAMING_SNAKE_CASE_ )
model.to(SCREAMING_SNAKE_CASE_ )
model.eval()
lowercase_ = model(SCREAMING_SNAKE_CASE_ , token_type_ids=SCREAMING_SNAKE_CASE_ , labels=SCREAMING_SNAKE_CASE_ )
self.parent.assertEqual(result.loss.shape , () )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) )
def _lowercase ( self : Optional[Any] , SCREAMING_SNAKE_CASE_ : List[str] , SCREAMING_SNAKE_CASE_ : str , SCREAMING_SNAKE_CASE_ : Optional[int] , SCREAMING_SNAKE_CASE_ : Optional[Any] , *SCREAMING_SNAKE_CASE_ : List[Any] ) -> Optional[int]:
lowercase_ = OpenAIGPTDoubleHeadsModel(SCREAMING_SNAKE_CASE_ )
model.to(SCREAMING_SNAKE_CASE_ )
model.eval()
lowercase_ = model(SCREAMING_SNAKE_CASE_ , token_type_ids=SCREAMING_SNAKE_CASE_ , labels=SCREAMING_SNAKE_CASE_ )
self.parent.assertEqual(result.loss.shape , () )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) )
def _lowercase ( self : Any , SCREAMING_SNAKE_CASE_ : Union[str, Any] , SCREAMING_SNAKE_CASE_ : List[Any] , SCREAMING_SNAKE_CASE_ : List[str] , SCREAMING_SNAKE_CASE_ : Optional[int] , *SCREAMING_SNAKE_CASE_ : Tuple ) -> List[str]:
lowercase_ = self.num_labels
lowercase_ = OpenAIGPTForSequenceClassification(SCREAMING_SNAKE_CASE_ )
model.to(SCREAMING_SNAKE_CASE_ )
model.eval()
lowercase_ = ids_tensor([self.batch_size] , self.type_sequence_label_size )
lowercase_ = model(SCREAMING_SNAKE_CASE_ , token_type_ids=SCREAMING_SNAKE_CASE_ , labels=SCREAMING_SNAKE_CASE_ )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) )
def _lowercase ( self : Optional[Any] ) -> Optional[Any]:
lowercase_ = self.prepare_config_and_inputs()
(
(
lowercase_
) , (
lowercase_
) , (
lowercase_
) , (
lowercase_
) , (
lowercase_
) , (
lowercase_
) , (
lowercase_
) ,
) = config_and_inputs
lowercase_ = {
'''input_ids''': input_ids,
'''token_type_ids''': token_type_ids,
'''head_mask''': head_mask,
}
return config, inputs_dict
@require_torch
class lowercase__( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , unittest.TestCase ):
"""simple docstring"""
a :Dict = (
(OpenAIGPTModel, OpenAIGPTLMHeadModel, OpenAIGPTDoubleHeadsModel, OpenAIGPTForSequenceClassification)
if is_torch_available()
else ()
)
a :Optional[Any] = (
(OpenAIGPTLMHeadModel,) if is_torch_available() else ()
) # TODO (PVP): Add Double HeadsModel when generate() function is changed accordingly
a :int = (
{
'feature-extraction': OpenAIGPTModel,
'text-classification': OpenAIGPTForSequenceClassification,
'text-generation': OpenAIGPTLMHeadModel,
'zero-shot': OpenAIGPTForSequenceClassification,
}
if is_torch_available()
else {}
)
def _lowercase ( self : str , SCREAMING_SNAKE_CASE_ : Union[str, Any] , SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : Tuple , SCREAMING_SNAKE_CASE_ : List[str] , SCREAMING_SNAKE_CASE_ : Dict ) -> int:
if pipeline_test_casse_name == "ZeroShotClassificationPipelineTests":
# Get `tokenizer does not have a padding token` error for both fast/slow tokenizers.
# `OpenAIGPTConfig` was never used in pipeline tests, either because of a missing checkpoint or because a
# tiny config could not be created.
return True
return False
def _lowercase ( self : Optional[int] , SCREAMING_SNAKE_CASE_ : Tuple , SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : List[Any]=False ) -> List[str]:
lowercase_ = super()._prepare_for_class(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , return_labels=SCREAMING_SNAKE_CASE_ )
if return_labels:
if model_class.__name__ == "OpenAIGPTDoubleHeadsModel":
lowercase_ = torch.zeros(
(self.model_tester.batch_size, self.model_tester.num_choices, self.model_tester.seq_length) , dtype=torch.long , device=SCREAMING_SNAKE_CASE_ , )
lowercase_ = inputs_dict['''labels''']
lowercase_ = inputs_dict['''labels''']
lowercase_ = torch.zeros(
(self.model_tester.batch_size, self.model_tester.num_choices) , dtype=torch.long , device=SCREAMING_SNAKE_CASE_ , )
lowercase_ = torch.zeros(
self.model_tester.batch_size , dtype=torch.long , device=SCREAMING_SNAKE_CASE_ )
return inputs_dict
def _lowercase ( self : Optional[Any] ) -> int:
lowercase_ = OpenAIGPTModelTester(self )
lowercase_ = ConfigTester(self , config_class=SCREAMING_SNAKE_CASE_ , n_embd=3_7 )
def _lowercase ( self : List[str] ) -> Any:
self.config_tester.run_common_tests()
def _lowercase ( self : str ) -> Dict:
lowercase_ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_openai_gpt_model(*SCREAMING_SNAKE_CASE_ )
def _lowercase ( self : List[str] ) -> Tuple:
lowercase_ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_lm_head_model(*SCREAMING_SNAKE_CASE_ )
def _lowercase ( self : Optional[int] ) -> Optional[Any]:
lowercase_ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_double_lm_head_model(*SCREAMING_SNAKE_CASE_ )
def _lowercase ( self : Tuple ) -> Union[str, Any]:
lowercase_ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_openai_gpt_for_sequence_classification(*SCREAMING_SNAKE_CASE_ )
@slow
def _lowercase ( self : Any ) -> List[Any]:
for model_name in OPENAI_GPT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
lowercase_ = OpenAIGPTModel.from_pretrained(SCREAMING_SNAKE_CASE_ )
self.assertIsNotNone(SCREAMING_SNAKE_CASE_ )
@require_torch
class lowercase__( unittest.TestCase ):
"""simple docstring"""
@slow
def _lowercase ( self : List[Any] ) -> str:
lowercase_ = OpenAIGPTLMHeadModel.from_pretrained('''openai-gpt''' )
model.to(SCREAMING_SNAKE_CASE_ )
lowercase_ = torch.tensor([[4_8_1, 4_7_3_5, 5_4_4]] , dtype=torch.long , device=SCREAMING_SNAKE_CASE_ ) # the president is
lowercase_ = [
4_8_1,
4_7_3_5,
5_4_4,
2_4_6,
9_6_3,
8_7_0,
7_6_2,
2_3_9,
2_4_4,
4_0_4_7_7,
2_4_4,
2_4_9,
7_1_9,
8_8_1,
4_8_7,
5_4_4,
2_4_0,
2_4_4,
6_0_3,
4_8_1,
] # the president is a very good man. " \n " i\'m sure he is, " said the
lowercase_ = model.generate(SCREAMING_SNAKE_CASE_ , do_sample=SCREAMING_SNAKE_CASE_ )
self.assertListEqual(output_ids[0].tolist() , SCREAMING_SNAKE_CASE_ )
| 97 |
from collections import OrderedDict
from typing import TYPE_CHECKING, Any, List, Mapping, Optional, Union
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig
from ...utils import TensorType, logging
if TYPE_CHECKING:
from ...onnx.config import PatchingSpec
from ...tokenization_utils_base import PreTrainedTokenizerBase
lowerCamelCase__ : Optional[int] = logging.get_logger(__name__)
lowerCamelCase__ : Dict = {
'allenai/longformer-base-4096': 'https://huggingface.co/allenai/longformer-base-4096/resolve/main/config.json',
'allenai/longformer-large-4096': 'https://huggingface.co/allenai/longformer-large-4096/resolve/main/config.json',
'allenai/longformer-large-4096-finetuned-triviaqa': (
'https://huggingface.co/allenai/longformer-large-4096-finetuned-triviaqa/resolve/main/config.json'
),
'allenai/longformer-base-4096-extra.pos.embd.only': (
'https://huggingface.co/allenai/longformer-base-4096-extra.pos.embd.only/resolve/main/config.json'
),
'allenai/longformer-large-4096-extra.pos.embd.only': (
'https://huggingface.co/allenai/longformer-large-4096-extra.pos.embd.only/resolve/main/config.json'
),
}
class lowerCamelCase_ ( _SCREAMING_SNAKE_CASE ):
'''simple docstring'''
lowercase_ = "longformer"
def __init__( self : Union[str, Any] , _lowerCAmelCase : Union[List[int], int] = 512 , _lowerCAmelCase : int = 2 , _lowerCAmelCase : int = 1 , _lowerCAmelCase : int = 0 , _lowerCAmelCase : int = 2 , _lowerCAmelCase : int = 30_522 , _lowerCAmelCase : int = 768 , _lowerCAmelCase : int = 12 , _lowerCAmelCase : int = 12 , _lowerCAmelCase : int = 3_072 , _lowerCAmelCase : str = "gelu" , _lowerCAmelCase : float = 0.1 , _lowerCAmelCase : float = 0.1 , _lowerCAmelCase : int = 512 , _lowerCAmelCase : int = 2 , _lowerCAmelCase : float = 0.02 , _lowerCAmelCase : float = 1E-12 , _lowerCAmelCase : bool = False , **_lowerCAmelCase : Union[str, Any] , ):
super().__init__(pad_token_id=_lowerCAmelCase , **_lowerCAmelCase )
SCREAMING_SNAKE_CASE_ = attention_window
SCREAMING_SNAKE_CASE_ = sep_token_id
SCREAMING_SNAKE_CASE_ = bos_token_id
SCREAMING_SNAKE_CASE_ = eos_token_id
SCREAMING_SNAKE_CASE_ = vocab_size
SCREAMING_SNAKE_CASE_ = hidden_size
SCREAMING_SNAKE_CASE_ = num_hidden_layers
SCREAMING_SNAKE_CASE_ = num_attention_heads
SCREAMING_SNAKE_CASE_ = hidden_act
SCREAMING_SNAKE_CASE_ = intermediate_size
SCREAMING_SNAKE_CASE_ = hidden_dropout_prob
SCREAMING_SNAKE_CASE_ = attention_probs_dropout_prob
SCREAMING_SNAKE_CASE_ = max_position_embeddings
SCREAMING_SNAKE_CASE_ = type_vocab_size
SCREAMING_SNAKE_CASE_ = initializer_range
SCREAMING_SNAKE_CASE_ = layer_norm_eps
SCREAMING_SNAKE_CASE_ = onnx_export
class lowerCamelCase_ ( _SCREAMING_SNAKE_CASE ):
'''simple docstring'''
def __init__( self : Optional[Any] , _lowerCAmelCase : "PretrainedConfig" , _lowerCAmelCase : str = "default" , _lowerCAmelCase : "List[PatchingSpec]" = None ):
super().__init__(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase )
SCREAMING_SNAKE_CASE_ = True
@property
def lowerCAmelCase_ ( self : Any ):
if self.task == "multiple-choice":
SCREAMING_SNAKE_CASE_ = {0: 'batch', 1: 'choice', 2: 'sequence'}
else:
SCREAMING_SNAKE_CASE_ = {0: 'batch', 1: 'sequence'}
return OrderedDict(
[
('input_ids', dynamic_axis),
('attention_mask', dynamic_axis),
('global_attention_mask', dynamic_axis),
] )
@property
def lowerCAmelCase_ ( self : Optional[int] ):
SCREAMING_SNAKE_CASE_ = super().outputs
if self.task == "default":
SCREAMING_SNAKE_CASE_ = {0: 'batch'}
return outputs
@property
def lowerCAmelCase_ ( self : str ):
return 1E-4
@property
def lowerCAmelCase_ ( self : Optional[Any] ):
# needs to be >= 14 to support tril operator
return max(super().default_onnx_opset , 14 )
def lowerCAmelCase_ ( self : str , _lowerCAmelCase : "PreTrainedTokenizerBase" , _lowerCAmelCase : int = -1 , _lowerCAmelCase : int = -1 , _lowerCAmelCase : bool = False , _lowerCAmelCase : Optional[TensorType] = None , ):
SCREAMING_SNAKE_CASE_ = super().generate_dummy_inputs(
preprocessor=_lowerCAmelCase , batch_size=_lowerCAmelCase , seq_length=_lowerCAmelCase , is_pair=_lowerCAmelCase , framework=_lowerCAmelCase )
import torch
# for some reason, replacing this code by inputs["global_attention_mask"] = torch.randint(2, inputs["input_ids"].shape, dtype=torch.int64)
# makes the export fail randomly
SCREAMING_SNAKE_CASE_ = torch.zeros_like(inputs['input_ids'] )
# make every second token global
SCREAMING_SNAKE_CASE_ = 1
return inputs | 31 | 0 |
'''simple docstring'''
def a__ ( lowercase : int ) -> int:
"""simple docstring"""
return 1 if digit in (0, 1) else (digit * factorial(digit - 1 ))
def a__ ( lowercase : int ) -> bool:
"""simple docstring"""
_UpperCamelCase = 0
_UpperCamelCase = number
while duplicate > 0:
_UpperCamelCase , _UpperCamelCase = divmod(lowercase, 10 )
fact_sum += factorial(lowercase )
return fact_sum == number
if __name__ == "__main__":
print('Program to check whether a number is a Krisnamurthy Number or not.')
lowercase__ : Any = int(input('Enter number: ').strip())
print(
F"""{number} is {'' if krishnamurthy(number) else 'not '}a Krishnamurthy Number."""
)
| 98 |
import warnings
from ...utils import logging
from .image_processing_mobilevit import MobileViTImageProcessor
lowerCamelCase__ : Optional[int] = logging.get_logger(__name__)
class lowerCamelCase_ ( _SCREAMING_SNAKE_CASE ):
'''simple docstring'''
def __init__( self : str , *_lowerCAmelCase : Tuple , **_lowerCAmelCase : int ):
warnings.warn(
'The class MobileViTFeatureExtractor is deprecated and will be removed in version 5 of Transformers.'
' Please use MobileViTImageProcessor instead.' , _lowerCAmelCase , )
super().__init__(*_lowerCAmelCase , **_lowerCAmelCase ) | 31 | 0 |
import unittest
from transformers import MobileBertConfig, is_torch_available
from transformers.models.auto import get_values
from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow, torch_device
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers import (
MODEL_FOR_PRETRAINING_MAPPING,
MobileBertForMaskedLM,
MobileBertForMultipleChoice,
MobileBertForNextSentencePrediction,
MobileBertForPreTraining,
MobileBertForQuestionAnswering,
MobileBertForSequenceClassification,
MobileBertForTokenClassification,
MobileBertModel,
)
class __UpperCAmelCase :
"""simple docstring"""
def __init__( self , __A , __A=13 , __A=7 , __A=True , __A=True , __A=True , __A=True , __A=99 , __A=64 , __A=32 , __A=5 , __A=4 , __A=37 , __A="gelu" , __A=0.1 , __A=0.1 , __A=512 , __A=16 , __A=2 , __A=0.02 , __A=3 , __A=4 , __A=None , ):
__a = parent
__a = batch_size
__a = seq_length
__a = is_training
__a = use_input_mask
__a = use_token_type_ids
__a = use_labels
__a = vocab_size
__a = hidden_size
__a = embedding_size
__a = num_hidden_layers
__a = num_attention_heads
__a = intermediate_size
__a = hidden_act
__a = hidden_dropout_prob
__a = attention_probs_dropout_prob
__a = max_position_embeddings
__a = type_vocab_size
__a = type_sequence_label_size
__a = initializer_range
__a = num_labels
__a = num_choices
__a = scope
def snake_case_ ( self ):
__a = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
__a = None
if self.use_input_mask:
__a = random_attention_mask([self.batch_size, self.seq_length] )
__a = None
if self.use_token_type_ids:
__a = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size )
__a = None
__a = None
__a = None
if self.use_labels:
__a = ids_tensor([self.batch_size] , self.type_sequence_label_size )
__a = ids_tensor([self.batch_size, self.seq_length] , self.num_labels )
__a = ids_tensor([self.batch_size] , self.num_choices )
__a = self.get_config()
return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
def snake_case_ ( self ):
return MobileBertConfig(
vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , embedding_size=self.embedding_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=__A , initializer_range=self.initializer_range , )
def snake_case_ ( self , __A , __A , __A , __A , __A , __A , __A ):
__a = MobileBertModel(config=__A )
model.to(__A )
model.eval()
__a = model(__A , attention_mask=__A , token_type_ids=__A )
__a = model(__A , token_type_ids=__A )
__a = model(__A )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) )
self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) )
def snake_case_ ( self , __A , __A , __A , __A , __A , __A , __A ):
__a = MobileBertForMaskedLM(config=__A )
model.to(__A )
model.eval()
__a = model(__A , attention_mask=__A , token_type_ids=__A , labels=__A )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) )
def snake_case_ ( self , __A , __A , __A , __A , __A , __A , __A ):
__a = MobileBertForNextSentencePrediction(config=__A )
model.to(__A )
model.eval()
__a = model(
__A , attention_mask=__A , token_type_ids=__A , labels=__A , )
self.parent.assertEqual(result.logits.shape , (self.batch_size, 2) )
def snake_case_ ( self , __A , __A , __A , __A , __A , __A , __A ):
__a = MobileBertForPreTraining(config=__A )
model.to(__A )
model.eval()
__a = model(
__A , attention_mask=__A , token_type_ids=__A , labels=__A , next_sentence_label=__A , )
self.parent.assertEqual(result.prediction_logits.shape , (self.batch_size, self.seq_length, self.vocab_size) )
self.parent.assertEqual(result.seq_relationship_logits.shape , (self.batch_size, 2) )
def snake_case_ ( self , __A , __A , __A , __A , __A , __A , __A ):
__a = MobileBertForQuestionAnswering(config=__A )
model.to(__A )
model.eval()
__a = model(
__A , attention_mask=__A , token_type_ids=__A , start_positions=__A , end_positions=__A , )
self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) )
self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) )
def snake_case_ ( self , __A , __A , __A , __A , __A , __A , __A ):
__a = self.num_labels
__a = MobileBertForSequenceClassification(__A )
model.to(__A )
model.eval()
__a = model(__A , attention_mask=__A , token_type_ids=__A , labels=__A )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) )
def snake_case_ ( self , __A , __A , __A , __A , __A , __A , __A ):
__a = self.num_labels
__a = MobileBertForTokenClassification(config=__A )
model.to(__A )
model.eval()
__a = model(__A , attention_mask=__A , token_type_ids=__A , labels=__A )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) )
def snake_case_ ( self , __A , __A , __A , __A , __A , __A , __A ):
__a = self.num_choices
__a = MobileBertForMultipleChoice(config=__A )
model.to(__A )
model.eval()
__a = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous()
__a = token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous()
__a = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous()
__a = model(
__A , attention_mask=__A , token_type_ids=__A , labels=__A , )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) )
def snake_case_ ( self ):
__a = self.prepare_config_and_inputs()
(
(
__a
) , (
__a
) , (
__a
) , (
__a
) , (
__a
) , (
__a
) , (
__a
) ,
) = config_and_inputs
__a = {"""input_ids""": input_ids, """token_type_ids""": token_type_ids, """attention_mask""": input_mask}
return config, inputs_dict
@require_torch
class __UpperCAmelCase ( __A , __A , unittest.TestCase ):
"""simple docstring"""
_lowerCamelCase = (
(
MobileBertModel,
MobileBertForMaskedLM,
MobileBertForMultipleChoice,
MobileBertForNextSentencePrediction,
MobileBertForPreTraining,
MobileBertForQuestionAnswering,
MobileBertForSequenceClassification,
MobileBertForTokenClassification,
)
if is_torch_available()
else ()
)
_lowerCamelCase = (
{
"""feature-extraction""": MobileBertModel,
"""fill-mask""": MobileBertForMaskedLM,
"""question-answering""": MobileBertForQuestionAnswering,
"""text-classification""": MobileBertForSequenceClassification,
"""token-classification""": MobileBertForTokenClassification,
"""zero-shot""": MobileBertForSequenceClassification,
}
if is_torch_available()
else {}
)
_lowerCamelCase = True
def snake_case_ ( self , __A , __A , __A=False ):
__a = super()._prepare_for_class(__A , __A , return_labels=__A )
if return_labels:
if model_class in get_values(__A ):
__a = torch.zeros(
(self.model_tester.batch_size, self.model_tester.seq_length) , dtype=torch.long , device=__A )
__a = torch.zeros(
self.model_tester.batch_size , dtype=torch.long , device=__A )
return inputs_dict
def snake_case_ ( self ):
__a = MobileBertModelTester(self )
__a = ConfigTester(self , config_class=__A , hidden_size=37 )
def snake_case_ ( self ):
self.config_tester.run_common_tests()
def snake_case_ ( self ):
__a = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_mobilebert_model(*__A )
def snake_case_ ( self ):
__a = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_mobilebert_for_masked_lm(*__A )
def snake_case_ ( self ):
__a = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_mobilebert_for_multiple_choice(*__A )
def snake_case_ ( self ):
__a = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_mobilebert_for_next_sequence_prediction(*__A )
def snake_case_ ( self ):
__a = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_mobilebert_for_pretraining(*__A )
def snake_case_ ( self ):
__a = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_mobilebert_for_question_answering(*__A )
def snake_case_ ( self ):
__a = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_mobilebert_for_sequence_classification(*__A )
def snake_case_ ( self ):
__a = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_mobilebert_for_token_classification(*__A )
def a (lowerCAmelCase__ ):
return torch.tensor(
lowerCAmelCase__ , dtype=torch.long , device=lowerCAmelCase__ , )
SCREAMING_SNAKE_CASE = 1E-3
@require_torch
@require_sentencepiece
@require_tokenizers
class __UpperCAmelCase ( unittest.TestCase ):
"""simple docstring"""
@slow
def snake_case_ ( self ):
__a = MobileBertModel.from_pretrained("""google/mobilebert-uncased""" ).to(__A )
__a = _long_tensor([[101, 7110, 1005, 1056, 2023, 11333, 17413, 1029, 102]] )
with torch.no_grad():
__a = model(__A )[0]
__a = torch.Size((1, 9, 512) )
self.assertEqual(output.shape , __A )
__a = torch.tensor(
[
[
[-2.473_6526E07, 8.269_1656E04, 1.652_1838E05],
[-5.754_1704E-01, 3.905_6022E00, 4.401_1507E00],
[2.604_7359E00, 1.567_7652E00, -1.732_4188E-01],
]
] , device=__A , )
# MobileBERT results range from 10e0 to 10e8. Even a 0.0000001% difference with a value of 10e8 results in a
# ~1 difference, it's therefore not a good idea to measure using addition.
# Here, we instead divide the expected result with the result in order to obtain ~1. We then check that the
# result is held between bounds: 1 - TOLERANCE < expected_result / result < 1 + TOLERANCE
__a = torch.all((expected_slice / output[..., :3, :3]) >= 1 - TOLERANCE )
__a = torch.all((expected_slice / output[..., :3, :3]) <= 1 + TOLERANCE )
self.assertTrue(lower_bound and upper_bound )
| 99 |
from ...configuration_utils import PretrainedConfig
from ...utils import logging
lowerCamelCase__ : Optional[int] = logging.get_logger(__name__)
lowerCamelCase__ : Tuple = {
'microsoft/swinv2-tiny-patch4-window8-256': (
'https://huggingface.co/microsoft/swinv2-tiny-patch4-window8-256/resolve/main/config.json'
),
}
class lowerCamelCase_ ( _SCREAMING_SNAKE_CASE ):
'''simple docstring'''
lowercase_ = "swinv2"
lowercase_ = {
"num_attention_heads": "num_heads",
"num_hidden_layers": "num_layers",
}
def __init__( self : Dict , _lowerCAmelCase : Optional[Any]=224 , _lowerCAmelCase : Optional[int]=4 , _lowerCAmelCase : Tuple=3 , _lowerCAmelCase : Tuple=96 , _lowerCAmelCase : Dict=[2, 2, 6, 2] , _lowerCAmelCase : Optional[Any]=[3, 6, 12, 24] , _lowerCAmelCase : str=7 , _lowerCAmelCase : List[Any]=4.0 , _lowerCAmelCase : List[str]=True , _lowerCAmelCase : List[Any]=0.0 , _lowerCAmelCase : List[Any]=0.0 , _lowerCAmelCase : Any=0.1 , _lowerCAmelCase : List[Any]="gelu" , _lowerCAmelCase : str=False , _lowerCAmelCase : str=0.02 , _lowerCAmelCase : List[Any]=1E-5 , _lowerCAmelCase : str=32 , **_lowerCAmelCase : List[Any] , ):
super().__init__(**_lowerCAmelCase )
SCREAMING_SNAKE_CASE_ = image_size
SCREAMING_SNAKE_CASE_ = patch_size
SCREAMING_SNAKE_CASE_ = num_channels
SCREAMING_SNAKE_CASE_ = embed_dim
SCREAMING_SNAKE_CASE_ = depths
SCREAMING_SNAKE_CASE_ = len(_lowerCAmelCase )
SCREAMING_SNAKE_CASE_ = num_heads
SCREAMING_SNAKE_CASE_ = window_size
SCREAMING_SNAKE_CASE_ = mlp_ratio
SCREAMING_SNAKE_CASE_ = qkv_bias
SCREAMING_SNAKE_CASE_ = hidden_dropout_prob
SCREAMING_SNAKE_CASE_ = attention_probs_dropout_prob
SCREAMING_SNAKE_CASE_ = drop_path_rate
SCREAMING_SNAKE_CASE_ = hidden_act
SCREAMING_SNAKE_CASE_ = use_absolute_embeddings
SCREAMING_SNAKE_CASE_ = layer_norm_eps
SCREAMING_SNAKE_CASE_ = initializer_range
SCREAMING_SNAKE_CASE_ = encoder_stride
# we set the hidden_size attribute in order to make Swinv2 work with VisionEncoderDecoderModel
# this indicates the channel dimension after the last stage of the model
SCREAMING_SNAKE_CASE_ = int(embed_dim * 2 ** (len(_lowerCAmelCase ) - 1) )
SCREAMING_SNAKE_CASE_ = (0, 0, 0, 0) | 31 | 0 |
def __snake_case ( lowerCAmelCase_ ) -> list[int]:
if num <= 0:
raise ValueError('''Input must be a positive integer''' )
SCREAMING_SNAKE_CASE__ = [True] * (num + 1)
SCREAMING_SNAKE_CASE__ = 2
while p * p <= num:
if primes[p]:
for i in range(p * p , num + 1 , lowerCAmelCase_ ):
SCREAMING_SNAKE_CASE__ = False
p += 1
return [prime for prime in range(2 , num + 1 ) if primes[prime]]
if __name__ == "__main__":
import doctest
doctest.testmod()
_A : Any = int(input("""Enter a positive integer: """).strip())
print(prime_sieve_eratosthenes(user_num))
| 100 |
import itertools
import random
import unittest
import numpy as np
from transformers import BatchFeature, SpeechTaFeatureExtractor
from transformers.testing_utils import require_torch
from transformers.utils.import_utils import is_torch_available
from ...test_sequence_feature_extraction_common import SequenceFeatureExtractionTestMixin
if is_torch_available():
import torch
lowerCamelCase__ : Dict = random.Random()
def UpperCAmelCase_ ( __UpperCAmelCase : int , __UpperCAmelCase : Tuple=1.0 , __UpperCAmelCase : Dict=None , __UpperCAmelCase : Dict=None ) -> Tuple:
if rng is None:
SCREAMING_SNAKE_CASE_ = global_rng
SCREAMING_SNAKE_CASE_ = []
for batch_idx in range(shape[0] ):
values.append([] )
for _ in range(shape[1] ):
values[-1].append(rng.random() * scale )
return values
@require_torch
class lowerCamelCase_ ( unittest.TestCase ):
'''simple docstring'''
def __init__( self : List[str] , _lowerCAmelCase : int , _lowerCAmelCase : Optional[Any]=7 , _lowerCAmelCase : Union[str, Any]=400 , _lowerCAmelCase : Tuple=2_000 , _lowerCAmelCase : str=1 , _lowerCAmelCase : int=0.0 , _lowerCAmelCase : Optional[Any]=16_000 , _lowerCAmelCase : Optional[Any]=True , _lowerCAmelCase : Any=80 , _lowerCAmelCase : Union[str, Any]=16 , _lowerCAmelCase : List[str]=64 , _lowerCAmelCase : List[Any]="hann_window" , _lowerCAmelCase : Any=80 , _lowerCAmelCase : List[Any]=7_600 , _lowerCAmelCase : List[Any]=1E-10 , _lowerCAmelCase : Optional[Any]=True , ):
SCREAMING_SNAKE_CASE_ = parent
SCREAMING_SNAKE_CASE_ = batch_size
SCREAMING_SNAKE_CASE_ = min_seq_length
SCREAMING_SNAKE_CASE_ = max_seq_length
SCREAMING_SNAKE_CASE_ = (self.max_seq_length - self.min_seq_length) // (self.batch_size - 1)
SCREAMING_SNAKE_CASE_ = feature_size
SCREAMING_SNAKE_CASE_ = padding_value
SCREAMING_SNAKE_CASE_ = sampling_rate
SCREAMING_SNAKE_CASE_ = do_normalize
SCREAMING_SNAKE_CASE_ = num_mel_bins
SCREAMING_SNAKE_CASE_ = hop_length
SCREAMING_SNAKE_CASE_ = win_length
SCREAMING_SNAKE_CASE_ = win_function
SCREAMING_SNAKE_CASE_ = fmin
SCREAMING_SNAKE_CASE_ = fmax
SCREAMING_SNAKE_CASE_ = mel_floor
SCREAMING_SNAKE_CASE_ = return_attention_mask
def lowerCAmelCase_ ( self : Union[str, Any] ):
return {
"feature_size": self.feature_size,
"padding_value": self.padding_value,
"sampling_rate": self.sampling_rate,
"do_normalize": self.do_normalize,
"num_mel_bins": self.num_mel_bins,
"hop_length": self.hop_length,
"win_length": self.win_length,
"win_function": self.win_function,
"fmin": self.fmin,
"fmax": self.fmax,
"mel_floor": self.mel_floor,
"return_attention_mask": self.return_attention_mask,
}
def lowerCAmelCase_ ( self : Dict , _lowerCAmelCase : Optional[int]=False , _lowerCAmelCase : str=False ):
def _flatten(_lowerCAmelCase : Dict ):
return list(itertools.chain(*_lowerCAmelCase ) )
if equal_length:
SCREAMING_SNAKE_CASE_ = floats_list((self.batch_size, self.max_seq_length) )
else:
# make sure that inputs increase in size
SCREAMING_SNAKE_CASE_ = [
_flatten(floats_list((x, self.feature_size) ) )
for x in range(self.min_seq_length , self.max_seq_length , self.seq_length_diff )
]
if numpify:
SCREAMING_SNAKE_CASE_ = [np.asarray(_lowerCAmelCase ) for x in speech_inputs]
return speech_inputs
def lowerCAmelCase_ ( self : List[Any] , _lowerCAmelCase : Union[str, Any]=False , _lowerCAmelCase : Optional[int]=False ):
if equal_length:
SCREAMING_SNAKE_CASE_ = [floats_list((self.max_seq_length, self.num_mel_bins) ) for _ in range(self.batch_size )]
else:
# make sure that inputs increase in size
SCREAMING_SNAKE_CASE_ = [
floats_list((x, self.num_mel_bins) )
for x in range(self.min_seq_length , self.max_seq_length , self.seq_length_diff )
]
if numpify:
SCREAMING_SNAKE_CASE_ = [np.asarray(_lowerCAmelCase ) for x in speech_inputs]
return speech_inputs
@require_torch
class lowerCamelCase_ ( _SCREAMING_SNAKE_CASE , unittest.TestCase ):
'''simple docstring'''
lowercase_ = SpeechTaFeatureExtractor
def lowerCAmelCase_ ( self : Any ):
SCREAMING_SNAKE_CASE_ = SpeechTaFeatureExtractionTester(self )
def lowerCAmelCase_ ( self : Any , _lowerCAmelCase : int ):
self.assertTrue(np.all(np.mean(_lowerCAmelCase , axis=0 ) < 1E-3 ) )
self.assertTrue(np.all(np.abs(np.var(_lowerCAmelCase , axis=0 ) - 1 ) < 1E-3 ) )
def lowerCAmelCase_ ( self : List[Any] ):
# Tests that all call wrap to encode_plus and batch_encode_plus
SCREAMING_SNAKE_CASE_ = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() )
# create three inputs of length 800, 1000, and 1200
SCREAMING_SNAKE_CASE_ = [floats_list((1, x) )[0] for x in range(800 , 1_400 , 200 )]
SCREAMING_SNAKE_CASE_ = [np.asarray(_lowerCAmelCase ) for speech_input in speech_inputs]
# Test not batched input
SCREAMING_SNAKE_CASE_ = feat_extract(speech_inputs[0] , return_tensors='np' ).input_values
SCREAMING_SNAKE_CASE_ = feat_extract(np_speech_inputs[0] , return_tensors='np' ).input_values
self.assertTrue(np.allclose(_lowerCAmelCase , _lowerCAmelCase , atol=1E-3 ) )
# Test batched
SCREAMING_SNAKE_CASE_ = feat_extract(_lowerCAmelCase , return_tensors='np' ).input_values
SCREAMING_SNAKE_CASE_ = feat_extract(_lowerCAmelCase , return_tensors='np' ).input_values
for enc_seq_a, enc_seq_a in zip(_lowerCAmelCase , _lowerCAmelCase ):
self.assertTrue(np.allclose(_lowerCAmelCase , _lowerCAmelCase , atol=1E-3 ) )
def lowerCAmelCase_ ( self : Union[str, Any] ):
SCREAMING_SNAKE_CASE_ = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() )
SCREAMING_SNAKE_CASE_ = [floats_list((1, x) )[0] for x in range(800 , 1_400 , 200 )]
SCREAMING_SNAKE_CASE_ = ['longest', 'max_length', 'do_not_pad']
SCREAMING_SNAKE_CASE_ = [None, 1_600, None]
for max_length, padding in zip(_lowerCAmelCase , _lowerCAmelCase ):
SCREAMING_SNAKE_CASE_ = feat_extract(_lowerCAmelCase , padding=_lowerCAmelCase , max_length=_lowerCAmelCase , return_tensors='np' )
SCREAMING_SNAKE_CASE_ = processed.input_values
self._check_zero_mean_unit_variance(input_values[0][:800] )
self.assertTrue(input_values[0][800:].sum() < 1E-6 )
self._check_zero_mean_unit_variance(input_values[1][:1_000] )
self.assertTrue(input_values[0][1_000:].sum() < 1E-6 )
self._check_zero_mean_unit_variance(input_values[2][:1_200] )
def lowerCAmelCase_ ( self : Optional[Any] ):
SCREAMING_SNAKE_CASE_ = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() )
SCREAMING_SNAKE_CASE_ = range(800 , 1_400 , 200 )
SCREAMING_SNAKE_CASE_ = [floats_list((1, x) )[0] for x in lengths]
SCREAMING_SNAKE_CASE_ = ['longest', 'max_length', 'do_not_pad']
SCREAMING_SNAKE_CASE_ = [None, 1_600, None]
for max_length, padding in zip(_lowerCAmelCase , _lowerCAmelCase ):
SCREAMING_SNAKE_CASE_ = feat_extract(_lowerCAmelCase , max_length=_lowerCAmelCase , padding=_lowerCAmelCase )
SCREAMING_SNAKE_CASE_ = processed.input_values
self._check_zero_mean_unit_variance(input_values[0][:800] )
self._check_zero_mean_unit_variance(input_values[1][:1_000] )
self._check_zero_mean_unit_variance(input_values[2][:1_200] )
def lowerCAmelCase_ ( self : Dict ):
SCREAMING_SNAKE_CASE_ = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() )
SCREAMING_SNAKE_CASE_ = [floats_list((1, x) )[0] for x in range(800 , 1_400 , 200 )]
SCREAMING_SNAKE_CASE_ = feat_extract(
_lowerCAmelCase , truncation=_lowerCAmelCase , max_length=1_000 , padding='max_length' , return_tensors='np' )
SCREAMING_SNAKE_CASE_ = processed.input_values
self._check_zero_mean_unit_variance(input_values[0, :800] )
self._check_zero_mean_unit_variance(input_values[1] )
self._check_zero_mean_unit_variance(input_values[2] )
def lowerCAmelCase_ ( self : Dict ):
SCREAMING_SNAKE_CASE_ = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() )
SCREAMING_SNAKE_CASE_ = [floats_list((1, x) )[0] for x in range(800 , 1_400 , 200 )]
SCREAMING_SNAKE_CASE_ = feat_extract(
_lowerCAmelCase , truncation=_lowerCAmelCase , max_length=1_000 , padding='longest' , return_tensors='np' )
SCREAMING_SNAKE_CASE_ = processed.input_values
self._check_zero_mean_unit_variance(input_values[0, :800] )
self._check_zero_mean_unit_variance(input_values[1, :1_000] )
self._check_zero_mean_unit_variance(input_values[2] )
# make sure that if max_length < longest -> then pad to max_length
self.assertTrue(input_values.shape == (3, 1_000) )
SCREAMING_SNAKE_CASE_ = [floats_list((1, x) )[0] for x in range(800 , 1_400 , 200 )]
SCREAMING_SNAKE_CASE_ = feat_extract(
_lowerCAmelCase , truncation=_lowerCAmelCase , max_length=2_000 , padding='longest' , return_tensors='np' )
SCREAMING_SNAKE_CASE_ = processed.input_values
self._check_zero_mean_unit_variance(input_values[0, :800] )
self._check_zero_mean_unit_variance(input_values[1, :1_000] )
self._check_zero_mean_unit_variance(input_values[2] )
# make sure that if max_length > longest -> then pad to longest
self.assertTrue(input_values.shape == (3, 1_200) )
def lowerCAmelCase_ ( self : Optional[int] ):
SCREAMING_SNAKE_CASE_ = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() )
SCREAMING_SNAKE_CASE_ = np.random.rand(100 ).astype(np.floataa )
SCREAMING_SNAKE_CASE_ = np_speech_inputs.tolist()
for inputs in [py_speech_inputs, np_speech_inputs]:
SCREAMING_SNAKE_CASE_ = feature_extractor.pad([{'input_values': inputs}] , return_tensors='np' )
self.assertTrue(np_processed.input_values.dtype == np.floataa )
SCREAMING_SNAKE_CASE_ = feature_extractor.pad([{'input_values': inputs}] , return_tensors='pt' )
self.assertTrue(pt_processed.input_values.dtype == torch.floataa )
def lowerCAmelCase_ ( self : Tuple ):
# Tests that all call wrap to encode_plus and batch_encode_plus
SCREAMING_SNAKE_CASE_ = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() )
# create three inputs of length 800, 1000, and 1200
SCREAMING_SNAKE_CASE_ = [floats_list((1, x) )[0] for x in range(800 , 1_400 , 200 )]
SCREAMING_SNAKE_CASE_ = [np.asarray(_lowerCAmelCase ) for speech_input in speech_inputs]
# Test feature size
SCREAMING_SNAKE_CASE_ = feature_extractor(audio_target=_lowerCAmelCase , padding=_lowerCAmelCase , return_tensors='np' ).input_values
self.assertTrue(input_values.ndim == 3 )
self.assertTrue(input_values.shape[-1] == feature_extractor.num_mel_bins )
# Test not batched input
SCREAMING_SNAKE_CASE_ = feature_extractor(speech_inputs[0] , return_tensors='np' ).input_values
SCREAMING_SNAKE_CASE_ = feature_extractor(np_speech_inputs[0] , return_tensors='np' ).input_values
self.assertTrue(np.allclose(_lowerCAmelCase , _lowerCAmelCase , atol=1E-3 ) )
# Test batched
SCREAMING_SNAKE_CASE_ = feature_extractor(_lowerCAmelCase , return_tensors='np' ).input_values
SCREAMING_SNAKE_CASE_ = feature_extractor(_lowerCAmelCase , return_tensors='np' ).input_values
for enc_seq_a, enc_seq_a in zip(_lowerCAmelCase , _lowerCAmelCase ):
self.assertTrue(np.allclose(_lowerCAmelCase , _lowerCAmelCase , atol=1E-3 ) )
# Test 2-D numpy arrays are batched.
SCREAMING_SNAKE_CASE_ = [floats_list((1, x) )[0] for x in (800, 800, 800)]
SCREAMING_SNAKE_CASE_ = np.asarray(_lowerCAmelCase )
SCREAMING_SNAKE_CASE_ = feature_extractor(_lowerCAmelCase , return_tensors='np' ).input_values
SCREAMING_SNAKE_CASE_ = feature_extractor(_lowerCAmelCase , return_tensors='np' ).input_values
for enc_seq_a, enc_seq_a in zip(_lowerCAmelCase , _lowerCAmelCase ):
self.assertTrue(np.allclose(_lowerCAmelCase , _lowerCAmelCase , atol=1E-3 ) )
def lowerCAmelCase_ ( self : str ):
SCREAMING_SNAKE_CASE_ = self.feat_extract_tester.prepare_inputs_for_target()
SCREAMING_SNAKE_CASE_ = self.feature_extraction_class(**self.feat_extract_dict )
SCREAMING_SNAKE_CASE_ = feat_extract.model_input_names[0]
SCREAMING_SNAKE_CASE_ = BatchFeature({input_name: speech_inputs} )
self.assertTrue(all(len(_lowerCAmelCase ) == len(_lowerCAmelCase ) for x, y in zip(_lowerCAmelCase , processed_features[input_name] ) ) )
SCREAMING_SNAKE_CASE_ = self.feat_extract_tester.prepare_inputs_for_target(equal_length=_lowerCAmelCase )
SCREAMING_SNAKE_CASE_ = BatchFeature({input_name: speech_inputs} , tensor_type='np' )
SCREAMING_SNAKE_CASE_ = processed_features[input_name]
if len(batch_features_input.shape ) < 3:
SCREAMING_SNAKE_CASE_ = batch_features_input[:, :, None]
self.assertTrue(
batch_features_input.shape
== (self.feat_extract_tester.batch_size, len(speech_inputs[0] ), self.feat_extract_tester.num_mel_bins) )
@require_torch
def lowerCAmelCase_ ( self : Dict ):
SCREAMING_SNAKE_CASE_ = self.feat_extract_tester.prepare_inputs_for_target(equal_length=_lowerCAmelCase )
SCREAMING_SNAKE_CASE_ = self.feature_extraction_class(**self.feat_extract_dict )
SCREAMING_SNAKE_CASE_ = feat_extract.model_input_names[0]
SCREAMING_SNAKE_CASE_ = BatchFeature({input_name: speech_inputs} , tensor_type='pt' )
SCREAMING_SNAKE_CASE_ = processed_features[input_name]
if len(batch_features_input.shape ) < 3:
SCREAMING_SNAKE_CASE_ = batch_features_input[:, :, None]
self.assertTrue(
batch_features_input.shape
== (self.feat_extract_tester.batch_size, len(speech_inputs[0] ), self.feat_extract_tester.num_mel_bins) )
@require_torch
def lowerCAmelCase_ ( self : Dict ):
SCREAMING_SNAKE_CASE_ = self.feature_extraction_class(**self.feat_extract_dict )
SCREAMING_SNAKE_CASE_ = self.feat_extract_tester.prepare_inputs_for_target()
SCREAMING_SNAKE_CASE_ = feat_extract.model_input_names[0]
SCREAMING_SNAKE_CASE_ = BatchFeature({input_name: speech_inputs} )
SCREAMING_SNAKE_CASE_ = feat_extract.num_mel_bins # hack!
SCREAMING_SNAKE_CASE_ = feat_extract.pad(_lowerCAmelCase , padding='longest' , return_tensors='np' )[input_name]
SCREAMING_SNAKE_CASE_ = feat_extract.pad(_lowerCAmelCase , padding='longest' , return_tensors='pt' )[input_name]
self.assertTrue(abs(input_np.astype(np.floataa ).sum() - input_pt.numpy().astype(np.floataa ).sum() ) < 1E-2 )
def lowerCAmelCase_ ( self : str ):
SCREAMING_SNAKE_CASE_ = self.feat_extract_dict
SCREAMING_SNAKE_CASE_ = True
SCREAMING_SNAKE_CASE_ = self.feature_extraction_class(**_lowerCAmelCase )
SCREAMING_SNAKE_CASE_ = self.feat_extract_tester.prepare_inputs_for_target()
SCREAMING_SNAKE_CASE_ = [len(_lowerCAmelCase ) for x in speech_inputs]
SCREAMING_SNAKE_CASE_ = feat_extract.model_input_names[0]
SCREAMING_SNAKE_CASE_ = BatchFeature({input_name: speech_inputs} )
SCREAMING_SNAKE_CASE_ = feat_extract.num_mel_bins # hack!
SCREAMING_SNAKE_CASE_ = feat_extract.pad(_lowerCAmelCase , padding='longest' , return_tensors='np' )
self.assertIn('attention_mask' , _lowerCAmelCase )
self.assertListEqual(list(processed.attention_mask.shape ) , list(processed[input_name].shape[:2] ) )
self.assertListEqual(processed.attention_mask.sum(-1 ).tolist() , _lowerCAmelCase )
def lowerCAmelCase_ ( self : Any ):
SCREAMING_SNAKE_CASE_ = self.feat_extract_dict
SCREAMING_SNAKE_CASE_ = True
SCREAMING_SNAKE_CASE_ = self.feature_extraction_class(**_lowerCAmelCase )
SCREAMING_SNAKE_CASE_ = self.feat_extract_tester.prepare_inputs_for_target()
SCREAMING_SNAKE_CASE_ = [len(_lowerCAmelCase ) for x in speech_inputs]
SCREAMING_SNAKE_CASE_ = feat_extract.model_input_names[0]
SCREAMING_SNAKE_CASE_ = BatchFeature({input_name: speech_inputs} )
SCREAMING_SNAKE_CASE_ = min(_lowerCAmelCase )
SCREAMING_SNAKE_CASE_ = feat_extract.num_mel_bins # hack!
SCREAMING_SNAKE_CASE_ = feat_extract.pad(
_lowerCAmelCase , padding='max_length' , max_length=_lowerCAmelCase , truncation=_lowerCAmelCase , return_tensors='np' )
self.assertIn('attention_mask' , _lowerCAmelCase )
self.assertListEqual(
list(processed_pad.attention_mask.shape ) , [processed_pad[input_name].shape[0], max_length] )
self.assertListEqual(
processed_pad.attention_mask[:, :max_length].sum(-1 ).tolist() , [max_length for x in speech_inputs] )
def lowerCAmelCase_ ( self : List[Any] , _lowerCAmelCase : Tuple ):
from datasets import load_dataset
SCREAMING_SNAKE_CASE_ = load_dataset('hf-internal-testing/librispeech_asr_dummy' , 'clean' , split='validation' )
# automatic decoding with librispeech
SCREAMING_SNAKE_CASE_ = ds.sort('id' ).select(range(_lowerCAmelCase ) )[:num_samples]['audio']
return [x["array"] for x in speech_samples]
def lowerCAmelCase_ ( self : Any ):
# fmt: off
SCREAMING_SNAKE_CASE_ = torch.tensor(
[2.3_804E-03, 2.0_752E-03, 1.9_836E-03, 2.1_057E-03, 1.6_174E-03,
3.0_518E-04, 9.1_553E-05, 3.3_569E-04, 9.7_656E-04, 1.8_311E-03,
2.0_142E-03, 2.1_057E-03, 1.7_395E-03, 4.5_776E-04, -3.9_673E-04,
4.5_776E-04, 1.0_071E-03, 9.1_553E-05, 4.8_828E-04, 1.1_597E-03,
7.3_242E-04, 9.4_604E-04, 1.8_005E-03, 1.8_311E-03, 8.8_501E-04,
4.2_725E-04, 4.8_828E-04, 7.3_242E-04, 1.0_986E-03, 2.1_057E-03] )
# fmt: on
SCREAMING_SNAKE_CASE_ = self._load_datasamples(1 )
SCREAMING_SNAKE_CASE_ = SpeechTaFeatureExtractor()
SCREAMING_SNAKE_CASE_ = feature_extractor(_lowerCAmelCase , return_tensors='pt' ).input_values
self.assertEquals(input_values.shape , (1, 93_680) )
self.assertTrue(torch.allclose(input_values[0, :30] , _lowerCAmelCase , atol=1E-6 ) )
def lowerCAmelCase_ ( self : Optional[int] ):
# fmt: off
SCREAMING_SNAKE_CASE_ = torch.tensor(
[-2.6870, -3.0104, -3.1356, -3.5352, -3.0044, -3.0353, -3.4719, -3.6777,
-3.1520, -2.9435, -2.6553, -2.8795, -2.9944, -2.5921, -3.0279, -3.0386,
-3.0864, -3.1291, -3.2353, -2.7444, -2.6831, -2.7287, -3.1761, -3.1571,
-3.2726, -3.0582, -3.1007, -3.4533, -3.4695, -3.0998] )
# fmt: on
SCREAMING_SNAKE_CASE_ = self._load_datasamples(1 )
SCREAMING_SNAKE_CASE_ = SpeechTaFeatureExtractor()
SCREAMING_SNAKE_CASE_ = feature_extractor(audio_target=_lowerCAmelCase , return_tensors='pt' ).input_values
self.assertEquals(input_values.shape , (1, 366, 80) )
self.assertTrue(torch.allclose(input_values[0, 0, :30] , _lowerCAmelCase , atol=1E-4 ) ) | 31 | 0 |
def a__ ( A__, A__, A__, A__, A__ ):
if index == number_of_items:
return 0
SCREAMING_SNAKE_CASE_ : Dict = 0
SCREAMING_SNAKE_CASE_ : Dict = 0
SCREAMING_SNAKE_CASE_ : List[Any] = knapsack(A__, A__, A__, A__, index + 1 )
if weights[index] <= max_weight:
SCREAMING_SNAKE_CASE_ : Tuple = values[index] + knapsack(
A__, A__, A__, max_weight - weights[index], index + 1 )
return max(A__, A__ )
if __name__ == "__main__":
import doctest
doctest.testmod()
| 101 |
from __future__ import annotations
from typing import TypedDict
class lowerCamelCase_ ( _SCREAMING_SNAKE_CASE ):
'''simple docstring'''
lowercase_ = 42
lowercase_ = 42
def UpperCAmelCase_ ( __UpperCAmelCase : str ) -> list[str]:
if not isinstance(__UpperCAmelCase , __UpperCAmelCase ):
raise TypeError('The parameter s type must be str.' )
return [s[i:] + s[:i] for i in range(len(__UpperCAmelCase ) )]
def UpperCAmelCase_ ( __UpperCAmelCase : str ) -> BWTTransformDict:
if not isinstance(__UpperCAmelCase , __UpperCAmelCase ):
raise TypeError('The parameter s type must be str.' )
if not s:
raise ValueError('The parameter s must not be empty.' )
SCREAMING_SNAKE_CASE_ = all_rotations(__UpperCAmelCase )
rotations.sort() # sort the list of rotations in alphabetically order
# make a string composed of the last char of each rotation
SCREAMING_SNAKE_CASE_ = {
"bwt_string": "".join([word[-1] for word in rotations] ),
"idx_original_string": rotations.index(__UpperCAmelCase ),
}
return response
def UpperCAmelCase_ ( __UpperCAmelCase : str , __UpperCAmelCase : int ) -> str:
if not isinstance(__UpperCAmelCase , __UpperCAmelCase ):
raise TypeError('The parameter bwt_string type must be str.' )
if not bwt_string:
raise ValueError('The parameter bwt_string must not be empty.' )
try:
SCREAMING_SNAKE_CASE_ = int(__UpperCAmelCase )
except ValueError:
raise TypeError(
'The parameter idx_original_string type must be int or passive'
' of cast to int.' )
if idx_original_string < 0:
raise ValueError('The parameter idx_original_string must not be lower than 0.' )
if idx_original_string >= len(__UpperCAmelCase ):
raise ValueError(
'The parameter idx_original_string must be lower than' ' len(bwt_string).' )
SCREAMING_SNAKE_CASE_ = [''] * len(__UpperCAmelCase )
for _ in range(len(__UpperCAmelCase ) ):
for i in range(len(__UpperCAmelCase ) ):
SCREAMING_SNAKE_CASE_ = bwt_string[i] + ordered_rotations[i]
ordered_rotations.sort()
return ordered_rotations[idx_original_string]
if __name__ == "__main__":
lowerCamelCase__ : Optional[int] = 'Provide a string that I will generate its BWT transform: '
lowerCamelCase__ : List[str] = input(entry_msg).strip()
lowerCamelCase__ : int = bwt_transform(s)
print(
f'''Burrows Wheeler transform for string \'{s}\' results '''
f'''in \'{result['bwt_string']}\''''
)
lowerCamelCase__ : Dict = reverse_bwt(result['bwt_string'], result['idx_original_string'])
print(
f'''Reversing Burrows Wheeler transform for entry \'{result['bwt_string']}\' '''
f'''we get original string \'{original_string}\''''
) | 31 | 0 |
"""simple docstring"""
from collections import UserDict
from typing import Union
import numpy as np
import requests
from ..utils import (
add_end_docstrings,
logging,
)
from .audio_classification import ffmpeg_read
from .base import PIPELINE_INIT_ARGS, Pipeline
__magic_name__ : Dict = logging.get_logger(__name__)
@add_end_docstrings(__SCREAMING_SNAKE_CASE )
class lowercase__ ( __SCREAMING_SNAKE_CASE ):
"""simple docstring"""
def __init__( self , **_A ):
'''simple docstring'''
super().__init__(**_A )
if self.framework != "pt":
raise ValueError(f"""The {self.__class__} is only available in PyTorch.""" )
# No specific FOR_XXX available yet
def __call__( self , _A , **_A ):
'''simple docstring'''
return super().__call__(_A , **_A )
def _a ( self , **_A ):
'''simple docstring'''
UpperCamelCase : str = {}
if "candidate_labels" in kwargs:
UpperCamelCase : Optional[int] = kwargs["""candidate_labels"""]
if "hypothesis_template" in kwargs:
UpperCamelCase : Optional[int] = kwargs["""hypothesis_template"""]
return preprocess_params, {}, {}
def _a ( self , _A , _A=None , _A="This is a sound of {}." ):
'''simple docstring'''
if isinstance(_A , _A ):
if audio.startswith("""http://""" ) or audio.startswith("""https://""" ):
# We need to actually check for a real protocol, otherwise it's impossible to use a local file
# like http_huggingface_co.png
UpperCamelCase : Optional[Any] = requests.get(_A ).content
else:
with open(_A , """rb""" ) as f:
UpperCamelCase : Any = f.read()
if isinstance(_A , _A ):
UpperCamelCase : Any = ffmpeg_read(_A , self.feature_extractor.sampling_rate )
if not isinstance(_A , np.ndarray ):
raise ValueError("""We expect a numpy ndarray as input""" )
if len(audio.shape ) != 1:
raise ValueError("""We expect a single channel audio input for ZeroShotAudioClassificationPipeline""" )
UpperCamelCase : Any = self.feature_extractor(
[audio] , sampling_rate=self.feature_extractor.sampling_rate , return_tensors="""pt""" )
UpperCamelCase : List[Any] = candidate_labels
UpperCamelCase : Optional[int] = [hypothesis_template.format(_A ) for x in candidate_labels]
UpperCamelCase : Optional[int] = self.tokenizer(_A , return_tensors=self.framework , padding=_A )
UpperCamelCase : Optional[Any] = [text_inputs]
return inputs
def _a ( self , _A ):
'''simple docstring'''
UpperCamelCase : Optional[int] = model_inputs.pop("""candidate_labels""" )
UpperCamelCase : Optional[Any] = model_inputs.pop("""text_inputs""" )
if isinstance(text_inputs[0] , _A ):
UpperCamelCase : str = text_inputs[0]
else:
# Batching case.
UpperCamelCase : Tuple = text_inputs[0][0]
UpperCamelCase : Optional[Any] = self.model(**_A , **_A )
UpperCamelCase : Tuple = {
"""candidate_labels""": candidate_labels,
"""logits""": outputs.logits_per_audio,
}
return model_outputs
def _a ( self , _A ):
'''simple docstring'''
UpperCamelCase : Tuple = model_outputs.pop("""candidate_labels""" )
UpperCamelCase : Optional[int] = model_outputs["""logits"""][0]
if self.framework == "pt":
UpperCamelCase : Optional[int] = logits.softmax(dim=0 )
UpperCamelCase : Tuple = probs.tolist()
else:
raise ValueError("""`tf` framework not supported.""" )
UpperCamelCase : int = [
{"""score""": score, """label""": candidate_label}
for score, candidate_label in sorted(zip(_A , _A ) , key=lambda _A : -x[0] )
]
return result
| 102 |
class lowerCamelCase_ :
'''simple docstring'''
def __init__( self : str ):
SCREAMING_SNAKE_CASE_ = {}
def lowerCAmelCase_ ( self : List[str] ):
print(self.vertex )
for i in self.vertex:
print(_lowerCAmelCase , ' -> ' , ' -> '.join([str(_lowerCAmelCase ) for j in self.vertex[i]] ) )
def lowerCAmelCase_ ( self : Union[str, Any] , _lowerCAmelCase : int , _lowerCAmelCase : int ):
# check if vertex is already present,
if from_vertex in self.vertex:
self.vertex[from_vertex].append(_lowerCAmelCase )
else:
# else make a new vertex
SCREAMING_SNAKE_CASE_ = [to_vertex]
def lowerCAmelCase_ ( self : Optional[Any] ):
# visited array for storing already visited nodes
SCREAMING_SNAKE_CASE_ = [False] * len(self.vertex )
# call the recursive helper function
for i in range(len(self.vertex ) ):
if not visited[i]:
self.dfs_recursive(_lowerCAmelCase , _lowerCAmelCase )
def lowerCAmelCase_ ( self : Tuple , _lowerCAmelCase : int , _lowerCAmelCase : list ):
# mark start vertex as visited
SCREAMING_SNAKE_CASE_ = True
print(_lowerCAmelCase , end=' ' )
# Recur for all the vertices that are adjacent to this node
for i in self.vertex:
if not visited[i]:
self.dfs_recursive(_lowerCAmelCase , _lowerCAmelCase )
if __name__ == "__main__":
lowerCamelCase__ : List[Any] = Graph()
g.add_edge(0, 1)
g.add_edge(0, 2)
g.add_edge(1, 2)
g.add_edge(2, 0)
g.add_edge(2, 3)
g.add_edge(3, 3)
g.print_graph()
print('DFS:')
g.dfs()
# OUTPUT:
# 0 -> 1 -> 2
# 1 -> 2
# 2 -> 0 -> 3
# 3 -> 3
# DFS:
# 0 1 2 3 | 31 | 0 |
"""simple docstring"""
from typing import TYPE_CHECKING
# rely on isort to merge the imports
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available
snake_case = {
'''configuration_informer''': [
'''INFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP''',
'''InformerConfig''',
],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
snake_case = [
'''INFORMER_PRETRAINED_MODEL_ARCHIVE_LIST''',
'''InformerForPrediction''',
'''InformerModel''',
'''InformerPreTrainedModel''',
]
if TYPE_CHECKING:
from .configuration_informer import INFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, InformerConfig
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_informer import (
INFORMER_PRETRAINED_MODEL_ARCHIVE_LIST,
InformerForPrediction,
InformerModel,
InformerPreTrainedModel,
)
else:
import sys
snake_case = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
| 103 |
from ...configuration_utils import PretrainedConfig
from ...utils import logging
lowerCamelCase__ : str = logging.get_logger(__name__)
lowerCamelCase__ : Tuple = {
'funnel-transformer/small': 'https://huggingface.co/funnel-transformer/small/resolve/main/config.json',
'funnel-transformer/small-base': 'https://huggingface.co/funnel-transformer/small-base/resolve/main/config.json',
'funnel-transformer/medium': 'https://huggingface.co/funnel-transformer/medium/resolve/main/config.json',
'funnel-transformer/medium-base': 'https://huggingface.co/funnel-transformer/medium-base/resolve/main/config.json',
'funnel-transformer/intermediate': (
'https://huggingface.co/funnel-transformer/intermediate/resolve/main/config.json'
),
'funnel-transformer/intermediate-base': (
'https://huggingface.co/funnel-transformer/intermediate-base/resolve/main/config.json'
),
'funnel-transformer/large': 'https://huggingface.co/funnel-transformer/large/resolve/main/config.json',
'funnel-transformer/large-base': 'https://huggingface.co/funnel-transformer/large-base/resolve/main/config.json',
'funnel-transformer/xlarge': 'https://huggingface.co/funnel-transformer/xlarge/resolve/main/config.json',
'funnel-transformer/xlarge-base': 'https://huggingface.co/funnel-transformer/xlarge-base/resolve/main/config.json',
}
class lowerCamelCase_ ( _SCREAMING_SNAKE_CASE ):
'''simple docstring'''
lowercase_ = "funnel"
lowercase_ = {
"hidden_size": "d_model",
"num_attention_heads": "n_head",
}
def __init__( self : int , _lowerCAmelCase : Optional[int]=30_522 , _lowerCAmelCase : List[str]=[4, 4, 4] , _lowerCAmelCase : Tuple=None , _lowerCAmelCase : Optional[int]=2 , _lowerCAmelCase : int=768 , _lowerCAmelCase : Optional[Any]=12 , _lowerCAmelCase : Optional[Any]=64 , _lowerCAmelCase : Optional[Any]=3_072 , _lowerCAmelCase : List[str]="gelu_new" , _lowerCAmelCase : Any=0.1 , _lowerCAmelCase : int=0.1 , _lowerCAmelCase : Tuple=0.0 , _lowerCAmelCase : List[Any]=0.1 , _lowerCAmelCase : Dict=None , _lowerCAmelCase : str=1E-9 , _lowerCAmelCase : Any="mean" , _lowerCAmelCase : Union[str, Any]="relative_shift" , _lowerCAmelCase : Optional[Any]=True , _lowerCAmelCase : Dict=True , _lowerCAmelCase : Tuple=True , **_lowerCAmelCase : Optional[Any] , ):
SCREAMING_SNAKE_CASE_ = vocab_size
SCREAMING_SNAKE_CASE_ = block_sizes
SCREAMING_SNAKE_CASE_ = [1] * len(_lowerCAmelCase ) if block_repeats is None else block_repeats
assert len(_lowerCAmelCase ) == len(
self.block_repeats ), "`block_sizes` and `block_repeats` should have the same length."
SCREAMING_SNAKE_CASE_ = num_decoder_layers
SCREAMING_SNAKE_CASE_ = d_model
SCREAMING_SNAKE_CASE_ = n_head
SCREAMING_SNAKE_CASE_ = d_head
SCREAMING_SNAKE_CASE_ = d_inner
SCREAMING_SNAKE_CASE_ = hidden_act
SCREAMING_SNAKE_CASE_ = hidden_dropout
SCREAMING_SNAKE_CASE_ = attention_dropout
SCREAMING_SNAKE_CASE_ = activation_dropout
SCREAMING_SNAKE_CASE_ = initializer_range
SCREAMING_SNAKE_CASE_ = initializer_std
SCREAMING_SNAKE_CASE_ = layer_norm_eps
assert pooling_type in [
"mean",
"max",
], F"Got {pooling_type} for `pooling_type` but only 'mean' and 'max' are supported."
SCREAMING_SNAKE_CASE_ = pooling_type
assert attention_type in [
"relative_shift",
"factorized",
], F"Got {attention_type} for `attention_type` but only 'relative_shift' and 'factorized' are supported."
SCREAMING_SNAKE_CASE_ = attention_type
SCREAMING_SNAKE_CASE_ = separate_cls
SCREAMING_SNAKE_CASE_ = truncate_seq
SCREAMING_SNAKE_CASE_ = pool_q_only
super().__init__(**_lowerCAmelCase )
@property
def lowerCAmelCase_ ( self : Optional[int] ):
return sum(self.block_sizes )
@num_hidden_layers.setter
def lowerCAmelCase_ ( self : int , _lowerCAmelCase : List[Any] ):
raise NotImplementedError(
'This model does not support the setting of `num_hidden_layers`. Please set `block_sizes`.' )
@property
def lowerCAmelCase_ ( self : List[Any] ):
return len(self.block_sizes )
@num_blocks.setter
def lowerCAmelCase_ ( self : Dict , _lowerCAmelCase : Union[str, Any] ):
raise NotImplementedError('This model does not support the setting of `num_blocks`. Please set `block_sizes`.' ) | 31 | 0 |
"""simple docstring"""
def _lowerCamelCase ( UpperCAmelCase_ : str, UpperCAmelCase_ : str ) -> bool:
"""simple docstring"""
A__ = len(UpperCAmelCase_ )
A__ = len(UpperCAmelCase_ )
A__ = [[False for _ in range(m + 1 )] for _ in range(n + 1 )]
A__ = True
for i in range(UpperCAmelCase_ ):
for j in range(m + 1 ):
if dp[i][j]:
if j < m and a[i].upper() == b[j]:
A__ = True
if a[i].islower():
A__ = True
return dp[n][m]
if __name__ == "__main__":
import doctest
doctest.testmod()
| 104 |
from __future__ import annotations
from collections.abc import Iterator
class lowerCamelCase_ :
'''simple docstring'''
def __init__( self : Union[str, Any] , _lowerCAmelCase : int ):
SCREAMING_SNAKE_CASE_ = value
SCREAMING_SNAKE_CASE_ = None
SCREAMING_SNAKE_CASE_ = None
class lowerCamelCase_ :
'''simple docstring'''
def __init__( self : int , _lowerCAmelCase : Node ):
SCREAMING_SNAKE_CASE_ = tree
def lowerCAmelCase_ ( self : Union[str, Any] , _lowerCAmelCase : Node | None ):
if node is None:
return 0
return node.value + (
self.depth_first_search(node.left ) + self.depth_first_search(node.right )
)
def __iter__( self : Dict ):
yield self.depth_first_search(self.tree )
if __name__ == "__main__":
import doctest
doctest.testmod() | 31 | 0 |
import math
def __UpperCAmelCase ( lowerCamelCase_ : float , lowerCamelCase_ : float ) -> float:
"""simple docstring"""
if initial_intensity < 0:
raise ValueError('The value of intensity cannot be negative' )
# handling of negative values of initial intensity
if angle < 0 or angle > 3_60:
raise ValueError('In Malus Law, the angle is in the range 0-360 degrees' )
# handling of values out of allowed range
return initial_intensity * (math.cos(math.radians(lowerCamelCase_ ) ) ** 2)
if __name__ == "__main__":
import doctest
doctest.testmod(name='''malus_law''')
| 105 |
def UpperCAmelCase_ ( __UpperCAmelCase : list , __UpperCAmelCase : int , __UpperCAmelCase : int = 0 , __UpperCAmelCase : int = 0 ) -> int:
SCREAMING_SNAKE_CASE_ = right or len(__UpperCAmelCase ) - 1
if left > right:
return -1
elif list_data[left] == key:
return left
elif list_data[right] == key:
return right
else:
return search(__UpperCAmelCase , __UpperCAmelCase , left + 1 , right - 1 )
if __name__ == "__main__":
import doctest
doctest.testmod() | 31 | 0 |
import random
import timeit
from functools import wraps
from typing import Callable, Optional
from ..configuration_utils import PretrainedConfig
from ..models.auto.modeling_tf_auto import TF_MODEL_MAPPING, TF_MODEL_WITH_LM_HEAD_MAPPING
from ..utils import is_pyanvml_available, is_tf_available, logging
from .benchmark_utils import (
Benchmark,
Memory,
MemorySummary,
measure_peak_memory_cpu,
start_memory_tracing,
stop_memory_tracing,
)
if is_tf_available():
import tensorflow as tf
from tensorflow.python.framework.errors_impl import ResourceExhaustedError
from .benchmark_args_tf import TensorFlowBenchmarkArguments
if is_pyanvml_available():
import pyanvml.pyanvml as nvml
__snake_case :List[str] =logging.get_logger(__name__)
def lowerCamelCase_ ( lowerCAmelCase__ : bool , lowerCAmelCase__ : bool ) -> str:
'''simple docstring'''
def run_func(lowerCAmelCase__ : Tuple ):
@wraps(lowerCAmelCase__ )
def run_in_eager_mode(*lowerCAmelCase__ : int , **lowerCAmelCase__ : Optional[Any] ):
return func(*lowerCAmelCase__ , **lowerCAmelCase__ )
@wraps(lowerCAmelCase__ )
@tf.function(experimental_compile=lowerCAmelCase__ )
def run_in_graph_mode(*lowerCAmelCase__ : Tuple , **lowerCAmelCase__ : List[Any] ):
return func(*lowerCAmelCase__ , **lowerCAmelCase__ )
if do_eager_mode is True:
if use_xla is not False:
raise ValueError(
'Cannot run model in XLA, if `args.eager_mode` is set to `True`. Please set `args.eager_mode=False`.' )
return run_in_eager_mode
else:
return run_in_graph_mode
return run_func
def lowerCamelCase_ ( lowerCAmelCase__ : int , lowerCAmelCase__ : int , lowerCAmelCase__ : int ) -> ["tf.Tensor"]:
'''simple docstring'''
A = random.Random()
A = [rng.randint(0 , vocab_size - 1 ) for i in range(batch_size * sequence_length )]
return tf.constant(lowerCAmelCase__ , shape=(batch_size, sequence_length) , dtype=tf.intaa )
class lowerCAmelCase__ ( _lowerCamelCase ):
A_ : TensorFlowBenchmarkArguments
A_ : PretrainedConfig
A_ : str = "TensorFlow"
@property
def __UpperCamelCase ( self : Optional[int] ) -> Optional[Any]:
return tf.__version__
def __UpperCamelCase ( self : int , __UpperCamelCase : str , __UpperCamelCase : int , __UpperCamelCase : int ) -> float:
# initialize GPU on separate process
A = self.args.strategy
if strategy is None:
raise ValueError('A device strategy has to be initialized before using TensorFlow.' )
A = self._prepare_inference_func(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase )
return self._measure_speed(_inference )
def __UpperCamelCase ( self : Dict , __UpperCamelCase : str , __UpperCamelCase : int , __UpperCamelCase : int ) -> float:
A = self.args.strategy
if strategy is None:
raise ValueError('A device strategy has to be initialized before using TensorFlow.' )
A = self._prepare_train_func(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase )
return self._measure_speed(_train )
def __UpperCamelCase ( self : Optional[Any] , __UpperCamelCase : str , __UpperCamelCase : int , __UpperCamelCase : int ) -> [Memory, Optional[MemorySummary]]:
# initialize GPU on separate process
if self.args.is_gpu:
tf.config.experimental.set_memory_growth(self.args.gpu_list[self.args.device_idx] , __UpperCamelCase )
A = self.args.strategy
if strategy is None:
raise ValueError('A device strategy has to be initialized before using TensorFlow.' )
A = self._prepare_inference_func(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase )
return self._measure_memory(_inference )
def __UpperCamelCase ( self : Optional[int] , __UpperCamelCase : str , __UpperCamelCase : int , __UpperCamelCase : int ) -> [Memory, Optional[MemorySummary]]:
if self.args.is_gpu:
tf.config.experimental.set_memory_growth(self.args.gpu_list[self.args.device_idx] , __UpperCamelCase )
A = self.args.strategy
if strategy is None:
raise ValueError('A device strategy has to be initialized before using TensorFlow.' )
A = self._prepare_train_func(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase )
return self._measure_memory(_train )
def __UpperCamelCase ( self : List[str] , __UpperCamelCase : str , __UpperCamelCase : int , __UpperCamelCase : int ) -> Callable[[], None]:
A = self.config_dict[model_name]
if self.args.fpaa:
raise NotImplementedError('Mixed precision is currently not supported.' )
A = (
hasattr(__UpperCamelCase , 'architectures' )
and isinstance(config.architectures , __UpperCamelCase )
and len(config.architectures ) > 0
)
if not self.args.only_pretrain_model and has_model_class_in_config:
try:
A = 'TF' + config.architectures[0] # prepend 'TF' for tensorflow model
A = __import__('transformers' , fromlist=[model_class] )
A = getattr(__UpperCamelCase , __UpperCamelCase )
A = model_cls(__UpperCamelCase )
except ImportError:
raise ImportError(
f'''{model_class} does not exist. If you just want to test the pretrained model, you might want to'''
' set `--only_pretrain_model` or `args.only_pretrain_model=True`.' )
else:
A = TF_MODEL_MAPPING[config.__class__](__UpperCamelCase )
# encoder-decoder has vocab size saved differently
A = config.vocab_size if hasattr(__UpperCamelCase , 'vocab_size' ) else config.encoder.vocab_size
A = random_input_ids(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase )
@run_with_tf_optimizations(self.args.eager_mode , self.args.use_xla )
def encoder_decoder_forward():
return model(__UpperCamelCase , decoder_input_ids=__UpperCamelCase , training=__UpperCamelCase )
@run_with_tf_optimizations(self.args.eager_mode , self.args.use_xla )
def encoder_forward():
return model(__UpperCamelCase , training=__UpperCamelCase )
A = encoder_decoder_forward if config.is_encoder_decoder else encoder_forward
return _inference
def __UpperCamelCase ( self : Tuple , __UpperCamelCase : str , __UpperCamelCase : int , __UpperCamelCase : int ) -> Callable[[], None]:
A = self.config_dict[model_name]
if self.args.eager_mode is not False:
raise ValueError('Training cannot be done in eager mode. Please make sure that `args.eager_mode = False`.' )
if self.args.fpaa:
raise NotImplementedError('Mixed precision is currently not supported.' )
A = (
hasattr(__UpperCamelCase , 'architectures' )
and isinstance(config.architectures , __UpperCamelCase )
and len(config.architectures ) > 0
)
if not self.args.only_pretrain_model and has_model_class_in_config:
try:
A = 'TF' + config.architectures[0] # prepend 'TF' for tensorflow model
A = __import__('transformers' , fromlist=[model_class] )
A = getattr(__UpperCamelCase , __UpperCamelCase )
A = model_cls(__UpperCamelCase )
except ImportError:
raise ImportError(
f'''{model_class} does not exist. If you just want to test the pretrained model, you might want to'''
' set `--only_pretrain_model` or `args.only_pretrain_model=True`.' )
else:
A = TF_MODEL_WITH_LM_HEAD_MAPPING[config.__class__](__UpperCamelCase )
# encoder-decoder has vocab size saved differently
A = config.vocab_size if hasattr(__UpperCamelCase , 'vocab_size' ) else config.encoder.vocab_size
A = random_input_ids(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase )
@run_with_tf_optimizations(self.args.eager_mode , self.args.use_xla )
def encoder_decoder_train():
A = model(__UpperCamelCase , decoder_input_ids=__UpperCamelCase , labels=__UpperCamelCase , training=__UpperCamelCase )[0]
A = tf.gradients(__UpperCamelCase , model.trainable_variables )
return gradients
@run_with_tf_optimizations(self.args.eager_mode , self.args.use_xla )
def encoder_train():
A = model(__UpperCamelCase , labels=__UpperCamelCase , training=__UpperCamelCase )[0]
A = tf.gradients(__UpperCamelCase , model.trainable_variables )
return gradients
A = encoder_decoder_train if config.is_encoder_decoder else encoder_train
return _train
def __UpperCamelCase ( self : Optional[Any] , __UpperCamelCase : List[str] ) -> float:
with self.args.strategy.scope():
try:
if self.args.is_tpu or self.args.use_xla:
# run additional 10 times to stabilize compilation for tpu
logger.info('Do inference on TPU. Running model 5 times to stabilize compilation' )
timeit.repeat(__UpperCamelCase , repeat=1 , number=5 )
# as written in https://docs.python.org/2/library/timeit.html#timeit.Timer.repeat, min should be taken rather than the average
A = timeit.repeat(
__UpperCamelCase , repeat=self.args.repeat , number=10 , )
return min(__UpperCamelCase ) / 1_0.0
except ResourceExhaustedError as e:
self.print_fn(f'''Doesn\'t fit on GPU. {e}''' )
def __UpperCamelCase ( self : Dict , __UpperCamelCase : Callable[[], None] ) -> [Memory, MemorySummary]:
logger.info(
'Note that TensorFlow allocates more memory than '
'it might need to speed up computation. '
'The memory reported here corresponds to the memory '
'reported by `nvidia-smi`, which can vary depending '
'on total available memory on the GPU that is used.' )
with self.args.strategy.scope():
try:
if self.args.trace_memory_line_by_line:
if not self.args.eager_mode:
raise ValueError(
'`args.eager_mode` is set to `False`. Make sure to run model in eager mode to measure memory'
' consumption line by line.' )
A = start_memory_tracing('transformers' )
if self.args.is_tpu:
# tpu
raise NotImplementedError(
'Memory Benchmarking is currently not implemented for TPU. Please disable memory benchmarking'
' with `args.memory=False`' )
elif self.args.is_gpu:
# gpu
if not is_pyanvml_available():
logger.warning(
'py3nvml not installed, we won\'t log GPU memory usage. '
'Install py3nvml (pip install py3nvml) to log information about GPU.' )
A = 'N/A'
else:
logger.info(
'Measuring total GPU usage on GPU device. Make sure to not have additional processes'
' running on the same GPU.' )
# init nvml
nvml.nvmlInit()
func()
A = nvml.nvmlDeviceGetHandleByIndex(self.args.device_idx )
A = nvml.nvmlDeviceGetMemoryInfo(__UpperCamelCase )
A = meminfo.used
A = Memory(__UpperCamelCase )
# shutdown nvml
nvml.nvmlShutdown()
else:
# cpu
if self.args.trace_memory_line_by_line:
logger.info(
'When enabling line by line tracing, the max peak memory for CPU is inaccurate in'
' TensorFlow.' )
A = None
else:
A = measure_peak_memory_cpu(__UpperCamelCase )
A = Memory(__UpperCamelCase ) if isinstance(__UpperCamelCase , __UpperCamelCase ) else memory_bytes
if self.args.trace_memory_line_by_line:
A = stop_memory_tracing(__UpperCamelCase )
if memory is None:
A = summary.total
else:
A = None
return memory, summary
except ResourceExhaustedError as e:
self.print_fn(f'''Doesn\'t fit on GPU. {e}''' )
return "N/A", None | 106 |
import os
from shutil import copyfile
from typing import List, Optional, Tuple
from ...tokenization_utils import AddedToken
from ...tokenization_utils_fast import PreTrainedTokenizerFast
from ...utils import is_sentencepiece_available, logging
if is_sentencepiece_available():
from .tokenization_fnet import FNetTokenizer
else:
lowerCamelCase__ : Optional[Any] = None
lowerCamelCase__ : List[str] = logging.get_logger(__name__)
lowerCamelCase__ : List[str] = {'vocab_file': 'spiece.model', 'tokenizer_file': 'tokenizer.json'}
lowerCamelCase__ : List[str] = {
'vocab_file': {
'google/fnet-base': 'https://huggingface.co/google/fnet-base/resolve/main/spiece.model',
'google/fnet-large': 'https://huggingface.co/google/fnet-large/resolve/main/spiece.model',
},
'tokenizer_file': {
'google/fnet-base': 'https://huggingface.co/google/fnet-base/resolve/main/tokenizer.json',
'google/fnet-large': 'https://huggingface.co/google/fnet-large/resolve/main/tokenizer.json',
},
}
lowerCamelCase__ : Optional[Any] = {
'google/fnet-base': 512,
'google/fnet-large': 512,
}
lowerCamelCase__ : List[Any] = '▁'
class lowerCamelCase_ ( _SCREAMING_SNAKE_CASE ):
'''simple docstring'''
lowercase_ = VOCAB_FILES_NAMES
lowercase_ = PRETRAINED_VOCAB_FILES_MAP
lowercase_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
lowercase_ = ["input_ids", "token_type_ids"]
lowercase_ = FNetTokenizer
def __init__( self : List[Any] , _lowerCAmelCase : Dict=None , _lowerCAmelCase : Dict=None , _lowerCAmelCase : List[str]=False , _lowerCAmelCase : Optional[Any]=True , _lowerCAmelCase : Tuple=True , _lowerCAmelCase : List[Any]="<unk>" , _lowerCAmelCase : Optional[Any]="[SEP]" , _lowerCAmelCase : Optional[Any]="<pad>" , _lowerCAmelCase : Optional[int]="[CLS]" , _lowerCAmelCase : Optional[Any]="[MASK]" , **_lowerCAmelCase : Any , ):
# Mask token behave like a normal word, i.e. include the space before it and
# is included in the raw text, there should be a match in a non-normalized sentence.
SCREAMING_SNAKE_CASE_ = (
AddedToken(_lowerCAmelCase , lstrip=_lowerCAmelCase , rstrip=_lowerCAmelCase , normalized=_lowerCAmelCase )
if isinstance(_lowerCAmelCase , _lowerCAmelCase )
else mask_token
)
super().__init__(
_lowerCAmelCase , tokenizer_file=_lowerCAmelCase , do_lower_case=_lowerCAmelCase , remove_space=_lowerCAmelCase , keep_accents=_lowerCAmelCase , unk_token=_lowerCAmelCase , sep_token=_lowerCAmelCase , pad_token=_lowerCAmelCase , cls_token=_lowerCAmelCase , mask_token=_lowerCAmelCase , **_lowerCAmelCase , )
SCREAMING_SNAKE_CASE_ = do_lower_case
SCREAMING_SNAKE_CASE_ = remove_space
SCREAMING_SNAKE_CASE_ = keep_accents
SCREAMING_SNAKE_CASE_ = vocab_file
SCREAMING_SNAKE_CASE_ = False if not self.vocab_file else True
def lowerCAmelCase_ ( self : Any , _lowerCAmelCase : List[int] , _lowerCAmelCase : Optional[List[int]] = None ):
SCREAMING_SNAKE_CASE_ = [self.sep_token_id]
SCREAMING_SNAKE_CASE_ = [self.cls_token_id]
if token_ids_a is None:
return cls + token_ids_a + sep
return cls + token_ids_a + sep + token_ids_a + sep
def lowerCAmelCase_ ( self : Optional[int] , _lowerCAmelCase : List[int] , _lowerCAmelCase : Optional[List[int]] = None ):
SCREAMING_SNAKE_CASE_ = [self.sep_token_id]
SCREAMING_SNAKE_CASE_ = [self.cls_token_id]
if token_ids_a is None:
return len(cls + token_ids_a + sep ) * [0]
return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1]
def lowerCAmelCase_ ( self : Optional[Any] , _lowerCAmelCase : str , _lowerCAmelCase : Optional[str] = None ):
if not os.path.isdir(_lowerCAmelCase ):
logger.error(F"Vocabulary path ({save_directory}) should be a directory" )
return
SCREAMING_SNAKE_CASE_ = os.path.join(
_lowerCAmelCase , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] )
if os.path.abspath(self.vocab_file ) != os.path.abspath(_lowerCAmelCase ):
copyfile(self.vocab_file , _lowerCAmelCase )
return (out_vocab_file,) | 31 | 0 |
'''simple docstring'''
def _SCREAMING_SNAKE_CASE ( __snake_case : int = 4_0_0_0_0_0_0 ):
_A = []
_A , _A = 0, 1
while b <= n:
if b % 2 == 0:
even_fibs.append(__snake_case )
_A , _A = b, a + b
return sum(__snake_case )
if __name__ == "__main__":
print(F'''{solution() = }''')
| 107 |
from __future__ import annotations
from collections.abc import Generator
def UpperCAmelCase_ ( ) -> Generator[int, None, None]:
SCREAMING_SNAKE_CASE_ = {}
SCREAMING_SNAKE_CASE_ = 2
while True:
SCREAMING_SNAKE_CASE_ = factor_map.pop(__UpperCAmelCase , __UpperCAmelCase )
if factor:
SCREAMING_SNAKE_CASE_ = factor + prime
while x in factor_map:
x += factor
SCREAMING_SNAKE_CASE_ = factor
else:
SCREAMING_SNAKE_CASE_ = prime
yield prime
prime += 1
def UpperCAmelCase_ ( __UpperCAmelCase : float = 1E10 ) -> int:
SCREAMING_SNAKE_CASE_ = sieve()
SCREAMING_SNAKE_CASE_ = 1
while True:
SCREAMING_SNAKE_CASE_ = next(__UpperCAmelCase )
if (2 * prime * n) > limit:
return n
# Ignore the next prime as the reminder will be 2.
next(__UpperCAmelCase )
n += 2
if __name__ == "__main__":
print(solution()) | 31 | 0 |
from collections.abc import Iterable
from typing import Any
class SCREAMING_SNAKE_CASE__ :
'''simple docstring'''
def __init__( self : int , lowerCamelCase : int | None = None ) -> Union[str, Any]:
"""simple docstring"""
_UpperCAmelCase = value
_UpperCAmelCase = None # Added in order to delete a node easier
_UpperCAmelCase = None
_UpperCAmelCase = None
def __repr__( self : Any ) -> str:
"""simple docstring"""
from pprint import pformat
if self.left is None and self.right is None:
return str(self.value )
return pformat({f"""{self.value}""": (self.left, self.right)} , indent=1 )
class SCREAMING_SNAKE_CASE__ :
'''simple docstring'''
def __init__( self : List[Any] , lowerCamelCase : Node | None = None ) -> Dict:
"""simple docstring"""
_UpperCAmelCase = root
def __str__( self : Union[str, Any] ) -> str:
"""simple docstring"""
return str(self.root )
def lowerCamelCase ( self : Any , lowerCamelCase : Node , lowerCamelCase : Node | None ) -> None:
"""simple docstring"""
if new_children is not None: # reset its kids
_UpperCAmelCase = node.parent
if node.parent is not None: # reset its parent
if self.is_right(lowerCamelCase ): # If it is the right children
_UpperCAmelCase = new_children
else:
_UpperCAmelCase = new_children
else:
_UpperCAmelCase = new_children
def lowerCamelCase ( self : Optional[Any] , lowerCamelCase : Node ) -> bool:
"""simple docstring"""
if node.parent and node.parent.right:
return node == node.parent.right
return False
def lowerCamelCase ( self : int ) -> bool:
"""simple docstring"""
return self.root is None
def lowerCamelCase ( self : List[str] , lowerCamelCase : int ) -> None:
"""simple docstring"""
_UpperCAmelCase = Node(lowerCamelCase ) # create a new Node
if self.empty(): # if Tree is empty
_UpperCAmelCase = new_node # set its root
else: # Tree is not empty
_UpperCAmelCase = self.root # from root
if parent_node is None:
return
while True: # While we don't get to a leaf
if value < parent_node.value: # We go left
if parent_node.left is None:
_UpperCAmelCase = new_node # We insert the new node in a leaf
break
else:
_UpperCAmelCase = parent_node.left
else:
if parent_node.right is None:
_UpperCAmelCase = new_node
break
else:
_UpperCAmelCase = parent_node.right
_UpperCAmelCase = parent_node
def lowerCamelCase ( self : int , *lowerCamelCase : List[str] ) -> None:
"""simple docstring"""
for value in values:
self.__insert(lowerCamelCase )
def lowerCamelCase ( self : List[str] , lowerCamelCase : Optional[Any] ) -> Node | None:
"""simple docstring"""
if self.empty():
raise IndexError("""Warning: Tree is empty! please use another.""" )
else:
_UpperCAmelCase = self.root
# use lazy evaluation here to avoid NoneType Attribute error
while node is not None and node.value is not value:
_UpperCAmelCase = node.left if value < node.value else node.right
return node
def lowerCamelCase ( self : str , lowerCamelCase : Node | None = None ) -> Node | None:
"""simple docstring"""
if node is None:
if self.root is None:
return None
_UpperCAmelCase = self.root
if not self.empty():
while node.right is not None:
_UpperCAmelCase = node.right
return node
def lowerCamelCase ( self : Any , lowerCamelCase : Node | None = None ) -> Node | None:
"""simple docstring"""
if node is None:
_UpperCAmelCase = self.root
if self.root is None:
return None
if not self.empty():
_UpperCAmelCase = self.root
while node.left is not None:
_UpperCAmelCase = node.left
return node
def lowerCamelCase ( self : Any , lowerCamelCase : int ) -> None:
"""simple docstring"""
_UpperCAmelCase = self.search(lowerCamelCase ) # Look for the node with that label
if node is not None:
if node.left is None and node.right is None: # If it has no children
self.__reassign_nodes(lowerCamelCase , lowerCamelCase )
elif node.left is None: # Has only right children
self.__reassign_nodes(lowerCamelCase , node.right )
elif node.right is None: # Has only left children
self.__reassign_nodes(lowerCamelCase , node.left )
else:
_UpperCAmelCase = self.get_max(
node.left ) # Gets the max value of the left branch
self.remove(tmp_node.value ) # type: ignore
_UpperCAmelCase = (
tmp_node.value # type: ignore
) # Assigns the value to the node to delete and keep tree structure
def lowerCamelCase ( self : Optional[Any] , lowerCamelCase : Node | None ) -> Iterable:
"""simple docstring"""
if node is not None:
yield node # Preorder Traversal
yield from self.preorder_traverse(node.left )
yield from self.preorder_traverse(node.right )
def lowerCamelCase ( self : Optional[Any] , lowerCamelCase : Any=None ) -> Any:
"""simple docstring"""
if traversal_function is None:
return self.preorder_traverse(self.root )
else:
return traversal_function(self.root )
def lowerCamelCase ( self : Any , lowerCamelCase : list , lowerCamelCase : Node | None ) -> None:
"""simple docstring"""
if node:
self.inorder(lowerCamelCase , node.left )
arr.append(node.value )
self.inorder(lowerCamelCase , node.right )
def lowerCamelCase ( self : List[str] , lowerCamelCase : int , lowerCamelCase : Node ) -> int:
"""simple docstring"""
_UpperCAmelCase = []
self.inorder(lowerCamelCase , lowerCamelCase ) # append all values to list using inorder traversal
return arr[k - 1]
def _SCREAMING_SNAKE_CASE ( __snake_case ) -> list[Node]:
_UpperCAmelCase = []
if curr_node is not None:
_UpperCAmelCase = postorder(curr_node.left ) + postorder(curr_node.right ) + [curr_node]
return node_list
def _SCREAMING_SNAKE_CASE ( ) -> None:
_UpperCAmelCase = (8, 3, 6, 1, 1_0, 1_4, 1_3, 4, 7)
_UpperCAmelCase = BinarySearchTree()
for i in testlist:
t.insert(__snake_case )
# Prints all the elements of the list in order traversal
print(__snake_case )
if t.search(6 ) is not None:
print("""The value 6 exists""" )
else:
print("""The value 6 doesn't exist""" )
if t.search(-1 ) is not None:
print("""The value -1 exists""" )
else:
print("""The value -1 doesn't exist""" )
if not t.empty():
print("""Max Value: """ , t.get_max().value ) # type: ignore
print("""Min Value: """ , t.get_min().value ) # type: ignore
for i in testlist:
t.remove(__snake_case )
print(__snake_case )
if __name__ == "__main__":
import doctest
doctest.testmod(verbose=True) | 108 |
import numpy as np
import torch
from torch.utils.data import DataLoader
from accelerate.utils.dataclasses import DistributedType
class lowerCamelCase_ :
'''simple docstring'''
def __init__( self : Any , _lowerCAmelCase : Optional[int]=2 , _lowerCAmelCase : Any=3 , _lowerCAmelCase : Tuple=64 , _lowerCAmelCase : List[str]=None ):
SCREAMING_SNAKE_CASE_ = np.random.default_rng(_lowerCAmelCase )
SCREAMING_SNAKE_CASE_ = length
SCREAMING_SNAKE_CASE_ = rng.normal(size=(length,) ).astype(np.floataa )
SCREAMING_SNAKE_CASE_ = a * self.x + b + rng.normal(scale=0.1 , size=(length,) ).astype(np.floataa )
def __len__( self : Optional[int] ):
return self.length
def __getitem__( self : str , _lowerCAmelCase : Union[str, Any] ):
return {"x": self.x[i], "y": self.y[i]}
class lowerCamelCase_ ( torch.nn.Module ):
'''simple docstring'''
def __init__( self : Tuple , _lowerCAmelCase : Dict=0 , _lowerCAmelCase : List[str]=0 , _lowerCAmelCase : str=False ):
super().__init__()
SCREAMING_SNAKE_CASE_ = torch.nn.Parameter(torch.tensor([2, 3] ).float() )
SCREAMING_SNAKE_CASE_ = torch.nn.Parameter(torch.tensor([2, 3] ).float() )
SCREAMING_SNAKE_CASE_ = True
def lowerCAmelCase_ ( self : Dict , _lowerCAmelCase : Union[str, Any]=None ):
if self.first_batch:
print(F"Model dtype: {self.a.dtype}, {self.b.dtype}. Input dtype: {x.dtype}" )
SCREAMING_SNAKE_CASE_ = False
return x * self.a[0] + self.b[0]
class lowerCamelCase_ ( torch.nn.Module ):
'''simple docstring'''
def __init__( self : Optional[int] , _lowerCAmelCase : Any=0 , _lowerCAmelCase : Any=0 , _lowerCAmelCase : Optional[Any]=False ):
super().__init__()
SCREAMING_SNAKE_CASE_ = torch.nn.Parameter(torch.tensor(_lowerCAmelCase ).float() )
SCREAMING_SNAKE_CASE_ = torch.nn.Parameter(torch.tensor(_lowerCAmelCase ).float() )
SCREAMING_SNAKE_CASE_ = True
def lowerCAmelCase_ ( self : Optional[Any] , _lowerCAmelCase : Optional[int]=None ):
if self.first_batch:
print(F"Model dtype: {self.a.dtype}, {self.b.dtype}. Input dtype: {x.dtype}" )
SCREAMING_SNAKE_CASE_ = False
return x * self.a + self.b
def UpperCAmelCase_ ( __UpperCAmelCase : Dict , __UpperCAmelCase : int = 16 ) -> Union[str, Any]:
from datasets import load_dataset
from transformers import AutoTokenizer
SCREAMING_SNAKE_CASE_ = AutoTokenizer.from_pretrained('bert-base-cased' )
SCREAMING_SNAKE_CASE_ = {'train': 'tests/test_samples/MRPC/train.csv', 'validation': 'tests/test_samples/MRPC/dev.csv'}
SCREAMING_SNAKE_CASE_ = load_dataset('csv' , data_files=__UpperCAmelCase )
SCREAMING_SNAKE_CASE_ = datasets['train'].unique('label' )
SCREAMING_SNAKE_CASE_ = {v: i for i, v in enumerate(__UpperCAmelCase )}
def tokenize_function(__UpperCAmelCase : Optional[int] ):
# max_length=None => use the model max length (it's actually the default)
SCREAMING_SNAKE_CASE_ = tokenizer(
examples['sentence1'] , examples['sentence2'] , truncation=__UpperCAmelCase , max_length=__UpperCAmelCase , padding='max_length' )
if "label" in examples:
SCREAMING_SNAKE_CASE_ = [label_to_id[l] for l in examples['label']]
return outputs
# Apply the method we just defined to all the examples in all the splits of the dataset
SCREAMING_SNAKE_CASE_ = datasets.map(
__UpperCAmelCase , batched=__UpperCAmelCase , remove_columns=['sentence1', 'sentence2', 'label'] , )
def collate_fn(__UpperCAmelCase : Dict ):
# On TPU it's best to pad everything to the same length or training will be very slow.
if accelerator.distributed_type == DistributedType.TPU:
return tokenizer.pad(__UpperCAmelCase , padding='max_length' , max_length=1_28 , return_tensors='pt' )
return tokenizer.pad(__UpperCAmelCase , padding='longest' , return_tensors='pt' )
# Instantiate dataloaders.
SCREAMING_SNAKE_CASE_ = DataLoader(tokenized_datasets['train'] , shuffle=__UpperCAmelCase , collate_fn=__UpperCAmelCase , batch_size=2 )
SCREAMING_SNAKE_CASE_ = DataLoader(tokenized_datasets['validation'] , shuffle=__UpperCAmelCase , collate_fn=__UpperCAmelCase , batch_size=1 )
return train_dataloader, eval_dataloader | 31 | 0 |
'''simple docstring'''
from __future__ import annotations
import requests
a = set(
"approved_at_utc approved_by author_flair_background_color\nauthor_flair_css_class author_flair_richtext author_flair_template_id author_fullname\nauthor_premium can_mod_post category clicked content_categories created_utc downs\nedited gilded gildings hidden hide_score is_created_from_ads_ui is_meta\nis_original_content is_reddit_media_domain is_video link_flair_css_class\nlink_flair_richtext link_flair_text link_flair_text_color media_embed mod_reason_title\nname permalink pwls quarantine saved score secure_media secure_media_embed selftext\nsubreddit subreddit_name_prefixed subreddit_type thumbnail title top_awarded_type\ntotal_awards_received ups upvote_ratio url user_reports".split()
)
def __magic_name__ ( __UpperCAmelCase , __UpperCAmelCase = 1 , __UpperCAmelCase = "new" , __UpperCAmelCase = None ) -> dict:
'''simple docstring'''
__SCREAMING_SNAKE_CASE = wanted_data or []
if invalid_search_terms := ", ".join(sorted(set(__UpperCAmelCase ) - valid_terms ) ):
__SCREAMING_SNAKE_CASE = f"""Invalid search term: {invalid_search_terms}"""
raise ValueError(__UpperCAmelCase )
__SCREAMING_SNAKE_CASE = requests.get(
f"""https://reddit.com/r/{subreddit}/{age}.json?limit={limit}""" , headers={"""User-agent""": """A random string"""} , )
if response.status_code == 429:
raise requests.HTTPError
__SCREAMING_SNAKE_CASE = response.json()
if not wanted_data:
return {id_: data["data"]["children"][id_] for id_ in range(__UpperCAmelCase )}
__SCREAMING_SNAKE_CASE = {}
for id_ in range(__UpperCAmelCase ):
__SCREAMING_SNAKE_CASE = {
item: data["""data"""]["""children"""][id_]["""data"""][item] for item in wanted_data
}
return data_dict
if __name__ == "__main__":
# If you get Error 429, that means you are rate limited.Try after some time
print(get_subreddit_data("learnpython", wanted_data=["title", "url", "selftext"]))
| 109 |
import warnings
from ...utils import logging
from .image_processing_layoutlmva import LayoutLMvaImageProcessor
lowerCamelCase__ : Union[str, Any] = logging.get_logger(__name__)
class lowerCamelCase_ ( _SCREAMING_SNAKE_CASE ):
'''simple docstring'''
def __init__( self : Dict , *_lowerCAmelCase : Optional[Any] , **_lowerCAmelCase : Any ):
warnings.warn(
'The class LayoutLMv2FeatureExtractor is deprecated and will be removed in version 5 of Transformers.'
' Please use LayoutLMv2ImageProcessor instead.' , _lowerCAmelCase , )
super().__init__(*_lowerCAmelCase , **_lowerCAmelCase ) | 31 | 0 |
"""simple docstring"""
import inspect
import re
from transformers.utils import direct_transformers_import
# All paths are set with the intent you should run this script from the root of the repo with the command
# python utils/check_config_docstrings.py
UpperCamelCase__ = 'src/transformers'
# This is to make sure the transformers module imported is the one in the repo.
UpperCamelCase__ = direct_transformers_import(PATH_TO_TRANSFORMERS)
UpperCamelCase__ = transformers.models.auto.configuration_auto.CONFIG_MAPPING
# Regex pattern used to find the checkpoint mentioned in the docstring of `config_class`.
# For example, `[bert-base-uncased](https://huggingface.co/bert-base-uncased)`
UpperCamelCase__ = re.compile(r'\[(.+?)\]\((https://huggingface\.co/.+?)\)')
UpperCamelCase__ = {
'DecisionTransformerConfig',
'EncoderDecoderConfig',
'MusicgenConfig',
'RagConfig',
'SpeechEncoderDecoderConfig',
'TimmBackboneConfig',
'VisionEncoderDecoderConfig',
'VisionTextDualEncoderConfig',
'LlamaConfig',
}
def lowerCamelCase ( _snake_case ):
UpperCAmelCase__ : int = None
# source code of `config_class`
UpperCAmelCase__ : List[str] = inspect.getsource(_snake_case )
UpperCAmelCase__ : Tuple = _re_checkpoint.findall(_snake_case )
# Each `checkpoint` is a tuple of a checkpoint name and a checkpoint link.
# For example, `('bert-base-uncased', 'https://huggingface.co/bert-base-uncased')`
for ckpt_name, ckpt_link in checkpoints:
# allow the link to end with `/`
if ckpt_link.endswith('/' ):
UpperCAmelCase__ : Any = ckpt_link[:-1]
# verify the checkpoint name corresponds to the checkpoint link
UpperCAmelCase__ : List[str] = F'''https://huggingface.co/{ckpt_name}'''
if ckpt_link == ckpt_link_from_name:
UpperCAmelCase__ : Dict = ckpt_name
break
return checkpoint
def lowerCamelCase ( ):
UpperCAmelCase__ : Dict = []
for config_class in list(CONFIG_MAPPING.values() ):
# Skip deprecated models
if "models.deprecated" in config_class.__module__:
continue
UpperCAmelCase__ : int = get_checkpoint_from_config_class(_snake_case )
UpperCAmelCase__ : Dict = config_class.__name__
if checkpoint is None and name not in CONFIG_CLASSES_TO_IGNORE_FOR_DOCSTRING_CHECKPOINT_CHECK:
configs_without_checkpoint.append(_snake_case )
if len(_snake_case ) > 0:
UpperCAmelCase__ : Dict = '\n'.join(sorted(_snake_case ) )
raise ValueError(F'''The following configurations don\'t contain any valid checkpoint:\n{message}''' )
if __name__ == "__main__":
check_config_docstrings_have_checkpoints()
| 110 |
def UpperCAmelCase_ ( ) -> list[list[int]]:
return [list(range(10_00 - i , -10_00 - i , -1 ) ) for i in range(10_00 )]
lowerCamelCase__ : List[Any] = generate_large_matrix()
lowerCamelCase__ : List[Any] = (
[[4, 3, 2, -1], [3, 2, 1, -1], [1, 1, -1, -2], [-1, -1, -2, -3]],
[[3, 2], [1, 0]],
[[7, 7, 6]],
[[7, 7, 6], [-1, -2, -3]],
grid,
)
def UpperCAmelCase_ ( __UpperCAmelCase : list[list[int]] ) -> None:
assert all(row == sorted(__UpperCAmelCase , reverse=__UpperCAmelCase ) for row in grid )
assert all(list(__UpperCAmelCase ) == sorted(__UpperCAmelCase , reverse=__UpperCAmelCase ) for col in zip(*__UpperCAmelCase ) )
def UpperCAmelCase_ ( __UpperCAmelCase : list[int] ) -> int:
SCREAMING_SNAKE_CASE_ = 0
SCREAMING_SNAKE_CASE_ = len(__UpperCAmelCase ) - 1
# Edge cases such as no values or all numbers are negative.
if not array or array[0] < 0:
return 0
while right + 1 > left:
SCREAMING_SNAKE_CASE_ = (left + right) // 2
SCREAMING_SNAKE_CASE_ = array[mid]
# Num must be negative and the index must be greater than or equal to 0.
if num < 0 and array[mid - 1] >= 0:
return mid
if num >= 0:
SCREAMING_SNAKE_CASE_ = mid + 1
else:
SCREAMING_SNAKE_CASE_ = mid - 1
# No negative numbers so return the last index of the array + 1 which is the length.
return len(__UpperCAmelCase )
def UpperCAmelCase_ ( __UpperCAmelCase : list[list[int]] ) -> int:
SCREAMING_SNAKE_CASE_ = 0
SCREAMING_SNAKE_CASE_ = len(grid[0] )
for i in range(len(__UpperCAmelCase ) ):
SCREAMING_SNAKE_CASE_ = find_negative_index(grid[i][:bound] )
total += bound
return (len(__UpperCAmelCase ) * len(grid[0] )) - total
def UpperCAmelCase_ ( __UpperCAmelCase : list[list[int]] ) -> int:
return len([number for row in grid for number in row if number < 0] )
def UpperCAmelCase_ ( __UpperCAmelCase : list[list[int]] ) -> int:
SCREAMING_SNAKE_CASE_ = 0
for row in grid:
for i, number in enumerate(__UpperCAmelCase ):
if number < 0:
total += len(__UpperCAmelCase ) - i
break
return total
def UpperCAmelCase_ ( ) -> None:
from timeit import timeit
print('Running benchmarks' )
SCREAMING_SNAKE_CASE_ = (
'from __main__ import count_negatives_binary_search, '
'count_negatives_brute_force, count_negatives_brute_force_with_break, grid'
)
for func in (
"count_negatives_binary_search", # took 0.7727 seconds
"count_negatives_brute_force_with_break", # took 4.6505 seconds
"count_negatives_brute_force", # took 12.8160 seconds
):
SCREAMING_SNAKE_CASE_ = timeit(f"{func}(grid=grid)" , setup=__UpperCAmelCase , number=5_00 )
print(f"{func}() took {time:0.4f} seconds" )
if __name__ == "__main__":
import doctest
doctest.testmod()
benchmark() | 31 | 0 |
from __future__ import annotations
import unittest
from transformers import AutoTokenizer, MBartConfig, is_tf_available
from transformers.testing_utils import require_sentencepiece, require_tf, require_tokenizers, slow
from transformers.utils import cached_property
from ...test_configuration_common import ConfigTester
from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_tf_available():
import tensorflow as tf
from transformers import TFAutoModelForSeqaSeqLM, TFMBartForConditionalGeneration, TFMBartModel
@require_tf
class _lowercase :
lowercase = MBartConfig
lowercase = {}
lowercase = 'gelu'
def __init__( self : List[Any] , snake_case : List[str] , snake_case : List[Any]=1_3 , snake_case : List[str]=7 , snake_case : List[str]=True , snake_case : Optional[Any]=False , snake_case : Dict=9_9 , snake_case : str=3_2 , snake_case : int=2 , snake_case : Any=4 , snake_case : List[Any]=3_7 , snake_case : List[str]=0.1 , snake_case : Union[str, Any]=0.1 , snake_case : int=2_0 , snake_case : Optional[Any]=2 , snake_case : Optional[Any]=1 , snake_case : Dict=0 , ) -> Dict:
"""simple docstring"""
UpperCamelCase_ : str = parent
UpperCamelCase_ : Any = batch_size
UpperCamelCase_ : int = seq_length
UpperCamelCase_ : int = is_training
UpperCamelCase_ : Optional[int] = use_labels
UpperCamelCase_ : Dict = vocab_size
UpperCamelCase_ : List[str] = hidden_size
UpperCamelCase_ : Optional[Any] = num_hidden_layers
UpperCamelCase_ : List[Any] = num_attention_heads
UpperCamelCase_ : List[str] = intermediate_size
UpperCamelCase_ : Optional[int] = hidden_dropout_prob
UpperCamelCase_ : List[Any] = attention_probs_dropout_prob
UpperCamelCase_ : Dict = max_position_embeddings
UpperCamelCase_ : Optional[Any] = eos_token_id
UpperCamelCase_ : Optional[int] = pad_token_id
UpperCamelCase_ : Union[str, Any] = bos_token_id
def SCREAMING_SNAKE_CASE__ ( self : Tuple ) -> Dict:
"""simple docstring"""
UpperCamelCase_ : Optional[Any] = ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size )
UpperCamelCase_ : Union[str, Any] = tf.expand_dims(tf.constant([self.eos_token_id] * self.batch_size ) , 1 )
UpperCamelCase_ : Tuple = tf.concat([input_ids, eos_tensor] , axis=1 )
UpperCamelCase_ : Any = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
UpperCamelCase_ : Optional[Any] = self.config_cls(
vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_ids=[2] , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.pad_token_id , **self.config_updates , )
UpperCamelCase_ : int = prepare_mbart_inputs_dict(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase )
return config, inputs_dict
def SCREAMING_SNAKE_CASE__ ( self : str , snake_case : Tuple , snake_case : int ) -> List[str]:
"""simple docstring"""
UpperCamelCase_ : Optional[int] = TFMBartModel(config=_lowerCAmelCase ).get_decoder()
UpperCamelCase_ : Optional[int] = inputs_dict['input_ids']
UpperCamelCase_ : Tuple = input_ids[:1, :]
UpperCamelCase_ : List[Any] = inputs_dict['attention_mask'][:1, :]
UpperCamelCase_ : Tuple = inputs_dict['head_mask']
UpperCamelCase_ : Optional[int] = 1
# first forward pass
UpperCamelCase_ : str = model(_lowerCAmelCase , attention_mask=_lowerCAmelCase , head_mask=_lowerCAmelCase , use_cache=_lowerCAmelCase )
UpperCamelCase_, UpperCamelCase_ : Tuple = outputs.to_tuple()
UpperCamelCase_ : Optional[int] = past_key_values[1]
def __lowercase ( lowerCamelCase : Optional[Any] , lowerCamelCase : Dict , lowerCamelCase : Union[str, Any] , lowerCamelCase : Dict=None , lowerCamelCase : Union[str, Any]=None , lowerCamelCase : Optional[int]=None , lowerCamelCase : Any=None , lowerCamelCase : Optional[Any]=None , ):
if attention_mask is None:
UpperCamelCase_ : Optional[int] = tf.cast(tf.math.not_equal(__UpperCAmelCase , config.pad_token_id ) , tf.inta )
if decoder_attention_mask is None:
UpperCamelCase_ : int = tf.concat(
[
tf.ones(decoder_input_ids[:, :1].shape , dtype=tf.inta ),
tf.cast(tf.math.not_equal(decoder_input_ids[:, 1:] , config.pad_token_id ) , tf.inta ),
] , axis=-1 , )
if head_mask is None:
UpperCamelCase_ : Union[str, Any] = tf.ones((config.encoder_layers, config.encoder_attention_heads) )
if decoder_head_mask is None:
UpperCamelCase_ : Any = tf.ones((config.decoder_layers, config.decoder_attention_heads) )
if cross_attn_head_mask is None:
UpperCamelCase_ : int = tf.ones((config.decoder_layers, config.decoder_attention_heads) )
return {
"input_ids": input_ids,
"decoder_input_ids": decoder_input_ids,
"attention_mask": attention_mask,
"decoder_attention_mask": decoder_attention_mask,
"head_mask": head_mask,
"decoder_head_mask": decoder_head_mask,
"cross_attn_head_mask": cross_attn_head_mask,
}
@require_tf
class _lowercase ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , unittest.TestCase ):
lowercase = (TFMBartForConditionalGeneration, TFMBartModel) if is_tf_available() else ()
lowercase = (TFMBartForConditionalGeneration,) if is_tf_available() else ()
lowercase = (
{
'conversational': TFMBartForConditionalGeneration,
'feature-extraction': TFMBartModel,
'summarization': TFMBartForConditionalGeneration,
'text2text-generation': TFMBartForConditionalGeneration,
'translation': TFMBartForConditionalGeneration,
}
if is_tf_available()
else {}
)
lowercase = True
lowercase = False
lowercase = False
def SCREAMING_SNAKE_CASE__ ( self : Optional[Any] , snake_case : Dict , snake_case : Any , snake_case : List[str] , snake_case : Optional[int] , snake_case : str ) -> Dict:
"""simple docstring"""
if pipeline_test_casse_name != "FeatureExtractionPipelineTests":
# Exception encountered when calling layer '...'
return True
return False
def SCREAMING_SNAKE_CASE__ ( self : List[Any] ) -> Optional[int]:
"""simple docstring"""
UpperCamelCase_ : List[Any] = TFMBartModelTester(self )
UpperCamelCase_ : Union[str, Any] = ConfigTester(self , config_class=_lowerCAmelCase )
def SCREAMING_SNAKE_CASE__ ( self : Optional[Any] ) -> List[str]:
"""simple docstring"""
self.config_tester.run_common_tests()
def SCREAMING_SNAKE_CASE__ ( self : Optional[Any] ) -> Optional[Any]:
"""simple docstring"""
UpperCamelCase_ : int = self.model_tester.prepare_config_and_inputs_for_common()
self.model_tester.check_decoder_model_past_large_inputs(*_lowerCAmelCase )
@require_sentencepiece
@require_tokenizers
@require_tf
class _lowercase ( unittest.TestCase ):
lowercase = [
' UN Chief Says There Is No Military Solution in Syria',
]
lowercase = [
'Şeful ONU declară că nu există o soluţie militară în Siria',
]
lowercase = 'facebook/mbart-large-en-ro'
@cached_property
def SCREAMING_SNAKE_CASE__ ( self : Tuple ) -> Optional[int]:
"""simple docstring"""
return AutoTokenizer.from_pretrained(self.model_name )
@cached_property
def SCREAMING_SNAKE_CASE__ ( self : Optional[int] ) -> List[str]:
"""simple docstring"""
UpperCamelCase_ : List[str] = TFAutoModelForSeqaSeqLM.from_pretrained(self.model_name )
return model
def SCREAMING_SNAKE_CASE__ ( self : int , **snake_case : Optional[Any] ) -> Optional[Any]:
"""simple docstring"""
UpperCamelCase_ : int = self.translate_src_text(**_lowerCAmelCase )
self.assertListEqual(self.expected_text , _lowerCAmelCase )
def SCREAMING_SNAKE_CASE__ ( self : str , **snake_case : Any ) -> Tuple:
"""simple docstring"""
UpperCamelCase_ : Optional[Any] = self.tokenizer(self.src_text , **_lowerCAmelCase , return_tensors='tf' )
UpperCamelCase_ : Optional[int] = self.model.generate(
model_inputs.input_ids , attention_mask=model_inputs.attention_mask , num_beams=2 )
UpperCamelCase_ : Optional[int] = self.tokenizer.batch_decode(_lowerCAmelCase , skip_special_tokens=_lowerCAmelCase )
return generated_words
@slow
def SCREAMING_SNAKE_CASE__ ( self : Any ) -> int:
"""simple docstring"""
self._assert_generated_batch_equal_expected()
| 417 |
from typing import TYPE_CHECKING
from ....utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available
lowerCamelCase__ : Optional[int] = {'configuration_mmbt': ['MMBTConfig']}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowerCamelCase__ : Any = ['MMBTForClassification', 'MMBTModel', 'ModalEmbeddings']
if TYPE_CHECKING:
from .configuration_mmbt import MMBTConfig
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_mmbt import MMBTForClassification, MMBTModel, ModalEmbeddings
else:
import sys
lowerCamelCase__ : str = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__) | 31 | 0 |
from __future__ import annotations
def a_ (__A , __A , __A , __A ) -> None:
"""simple docstring"""
if (direction == 1 and array[indexa] > array[indexa]) or (
direction == 0 and array[indexa] < array[indexa]
):
__a , __a : Dict = array[indexa], array[indexa]
def a_ (__A , __A , __A , __A ) -> None:
"""simple docstring"""
if length > 1:
__a : Any = int(length / 2 )
for i in range(__UpperCAmelCase , low + middle ):
comp_and_swap(__UpperCAmelCase , __UpperCAmelCase , i + middle , __UpperCAmelCase )
bitonic_merge(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase )
bitonic_merge(__UpperCAmelCase , low + middle , __UpperCAmelCase , __UpperCAmelCase )
def a_ (__A , __A , __A , __A ) -> None:
"""simple docstring"""
if length > 1:
__a : Union[str, Any] = int(length / 2 )
bitonic_sort(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , 1 )
bitonic_sort(__UpperCAmelCase , low + middle , __UpperCAmelCase , 0 )
bitonic_merge(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase )
if __name__ == "__main__":
UpperCAmelCase__ = input('''Enter numbers separated by a comma:\n''').strip()
UpperCAmelCase__ = [int(item.strip()) for item in user_input.split(''',''')]
bitonic_sort(unsorted, 0, len(unsorted), 1)
print('''\nSorted array in ascending order is: ''', end='''''')
print(*unsorted, sep=''', ''')
bitonic_merge(unsorted, 0, len(unsorted), 0)
print('''Sorted array in descending order is: ''', end='''''')
print(*unsorted, sep=''', ''')
| 351 |
import unittest
from typing import Tuple
import torch
from diffusers.utils import floats_tensor, randn_tensor, torch_all_close, torch_device
from diffusers.utils.testing_utils import require_torch
@require_torch
class lowerCamelCase_ :
'''simple docstring'''
@property
def lowerCAmelCase_ ( self : Optional[Any] ):
return self.get_dummy_input()
@property
def lowerCAmelCase_ ( self : Union[str, Any] ):
if self.block_type == "down":
return (4, 32, 16, 16)
elif self.block_type == "mid":
return (4, 32, 32, 32)
elif self.block_type == "up":
return (4, 32, 64, 64)
raise ValueError(F"'{self.block_type}' is not a supported block_type. Set it to 'up', 'mid', or 'down'." )
def lowerCAmelCase_ ( self : List[str] , _lowerCAmelCase : Optional[Any]=True , _lowerCAmelCase : str=False , _lowerCAmelCase : Optional[int]=False , _lowerCAmelCase : Dict=False , ):
SCREAMING_SNAKE_CASE_ = 4
SCREAMING_SNAKE_CASE_ = 32
SCREAMING_SNAKE_CASE_ = (32, 32)
SCREAMING_SNAKE_CASE_ = torch.manual_seed(0 )
SCREAMING_SNAKE_CASE_ = torch.device(_lowerCAmelCase )
SCREAMING_SNAKE_CASE_ = (batch_size, num_channels) + sizes
SCREAMING_SNAKE_CASE_ = randn_tensor(_lowerCAmelCase , generator=_lowerCAmelCase , device=_lowerCAmelCase )
SCREAMING_SNAKE_CASE_ = {'hidden_states': hidden_states}
if include_temb:
SCREAMING_SNAKE_CASE_ = 128
SCREAMING_SNAKE_CASE_ = randn_tensor((batch_size, temb_channels) , generator=_lowerCAmelCase , device=_lowerCAmelCase )
if include_res_hidden_states_tuple:
SCREAMING_SNAKE_CASE_ = torch.manual_seed(1 )
SCREAMING_SNAKE_CASE_ = (randn_tensor(_lowerCAmelCase , generator=_lowerCAmelCase , device=_lowerCAmelCase ),)
if include_encoder_hidden_states:
SCREAMING_SNAKE_CASE_ = floats_tensor((batch_size, 32, 32) ).to(_lowerCAmelCase )
if include_skip_sample:
SCREAMING_SNAKE_CASE_ = randn_tensor(((batch_size, 3) + sizes) , generator=_lowerCAmelCase , device=_lowerCAmelCase )
return dummy_input
def lowerCAmelCase_ ( self : Optional[int] ):
SCREAMING_SNAKE_CASE_ = {
'in_channels': 32,
'out_channels': 32,
'temb_channels': 128,
}
if self.block_type == "up":
SCREAMING_SNAKE_CASE_ = 32
if self.block_type == "mid":
init_dict.pop('out_channels' )
SCREAMING_SNAKE_CASE_ = self.dummy_input
return init_dict, inputs_dict
def lowerCAmelCase_ ( self : Dict , _lowerCAmelCase : Optional[Any] ):
SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = self.prepare_init_args_and_inputs_for_common()
SCREAMING_SNAKE_CASE_ = self.block_class(**_lowerCAmelCase )
unet_block.to(_lowerCAmelCase )
unet_block.eval()
with torch.no_grad():
SCREAMING_SNAKE_CASE_ = unet_block(**_lowerCAmelCase )
if isinstance(_lowerCAmelCase , _lowerCAmelCase ):
SCREAMING_SNAKE_CASE_ = output[0]
self.assertEqual(output.shape , self.output_shape )
SCREAMING_SNAKE_CASE_ = output[0, -1, -3:, -3:]
SCREAMING_SNAKE_CASE_ = torch.tensor(_lowerCAmelCase ).to(_lowerCAmelCase )
assert torch_all_close(output_slice.flatten() , _lowerCAmelCase , atol=5E-3 )
@unittest.skipIf(torch_device == 'mps' , 'Training is not supported in mps' )
def lowerCAmelCase_ ( self : Any ):
SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = self.prepare_init_args_and_inputs_for_common()
SCREAMING_SNAKE_CASE_ = self.block_class(**_lowerCAmelCase )
model.to(_lowerCAmelCase )
model.train()
SCREAMING_SNAKE_CASE_ = model(**_lowerCAmelCase )
if isinstance(_lowerCAmelCase , _lowerCAmelCase ):
SCREAMING_SNAKE_CASE_ = output[0]
SCREAMING_SNAKE_CASE_ = torch.device(_lowerCAmelCase )
SCREAMING_SNAKE_CASE_ = randn_tensor(output.shape , device=_lowerCAmelCase )
SCREAMING_SNAKE_CASE_ = torch.nn.functional.mse_loss(_lowerCAmelCase , _lowerCAmelCase )
loss.backward() | 31 | 0 |
'''simple docstring'''
import multiprocessing
import time
from arguments import PretokenizationArguments
from datasets import load_dataset
from transformers import AutoTokenizer, HfArgumentParser
def _lowerCAmelCase ( lowercase : Any ) ->Optional[int]:
"""simple docstring"""
lowercase__ = {}
lowercase__ = tokenizer(example['''content'''] , truncation=__UpperCAmelCase )['''input_ids''']
lowercase__ = len(example['''content'''] ) / len(output['''input_ids'''] )
return output
_lowerCAmelCase = HfArgumentParser(PretokenizationArguments)
_lowerCAmelCase = parser.parse_args()
if args.num_workers is None:
_lowerCAmelCase = multiprocessing.cpu_count()
_lowerCAmelCase = AutoTokenizer.from_pretrained(args.tokenizer_dir)
_lowerCAmelCase = time.time()
_lowerCAmelCase = load_dataset(args.dataset_name, split="train")
print(f'''Dataset loaded in {time.time()-t_start:.2f}s''')
_lowerCAmelCase = time.time()
_lowerCAmelCase = ds.map(
tokenize,
num_proc=args.num_workers,
remove_columns=[
"repo_name",
"path",
"copies",
"size",
"content",
"license",
"hash",
"line_mean",
"line_max",
"alpha_frac",
"autogenerated",
],
)
print(f'''Dataset tokenized in {time.time()-t_start:.2f}s''')
_lowerCAmelCase = time.time()
ds.push_to_hub(args.tokenized_data_repo)
print(f'''Data pushed to the hub in {time.time()-t_start:.2f}s''')
| 161 |
import operator as op
def UpperCAmelCase_ ( __UpperCAmelCase : str ) -> Any:
SCREAMING_SNAKE_CASE_ = []
SCREAMING_SNAKE_CASE_ = lambda __UpperCAmelCase , __UpperCAmelCase : int(x / y ) # noqa: E731 integer division operation
SCREAMING_SNAKE_CASE_ = {
'^': op.pow,
'*': op.mul,
'/': div,
'+': op.add,
'-': op.sub,
} # operators & their respective operation
# print table header
print('Symbol'.center(8 ) , 'Action'.center(12 ) , 'Stack' , sep=' | ' )
print('-' * (30 + len(__UpperCAmelCase )) )
for x in post_fix:
if x.isdigit(): # if x in digit
stack.append(__UpperCAmelCase ) # append x to stack
# output in tabular format
print(x.rjust(8 ) , ('push(' + x + ')').ljust(12 ) , ','.join(__UpperCAmelCase ) , sep=' | ' )
else:
SCREAMING_SNAKE_CASE_ = stack.pop() # pop stack
# output in tabular format
print(''.rjust(8 ) , ('pop(' + b + ')').ljust(12 ) , ','.join(__UpperCAmelCase ) , sep=' | ' )
SCREAMING_SNAKE_CASE_ = stack.pop() # pop stack
# output in tabular format
print(''.rjust(8 ) , ('pop(' + a + ')').ljust(12 ) , ','.join(__UpperCAmelCase ) , sep=' | ' )
stack.append(
str(opr[x](int(__UpperCAmelCase ) , int(__UpperCAmelCase ) ) ) ) # evaluate the 2 values popped from stack & push result to stack
# output in tabular format
print(
x.rjust(8 ) , ('push(' + a + x + b + ')').ljust(12 ) , ','.join(__UpperCAmelCase ) , sep=' | ' , )
return int(stack[0] )
if __name__ == "__main__":
lowerCamelCase__ : Tuple = input('\n\nEnter a Postfix Equation (space separated) = ').split(' ')
print('\n\tResult = ', solve(Postfix)) | 31 | 0 |
"""simple docstring"""
import warnings
from ..trainer import Trainer
from ..utils import logging
A_ : Union[str, Any] =logging.get_logger(__name__)
class __a ( _SCREAMING_SNAKE_CASE ):
def __init__( self , a__=None , **a__ ):
warnings.warn(
'`SageMakerTrainer` is deprecated and will be removed in v5 of Transformers. You can use `Trainer` '
'instead.' , _lowerCAmelCase , )
super().__init__(args=_lowerCAmelCase , **_lowerCAmelCase )
| 650 |
def UpperCAmelCase_ ( __UpperCAmelCase : int ) -> int:
assert isinstance(__UpperCAmelCase , __UpperCAmelCase ), f"The input value of [n={number}] is not an integer"
if number == 1:
return 2
elif number < 1:
SCREAMING_SNAKE_CASE_ = f"The input value of [n={number}] has to be > 0"
raise ValueError(__UpperCAmelCase )
else:
SCREAMING_SNAKE_CASE_ = sylvester(number - 1 )
SCREAMING_SNAKE_CASE_ = num - 1
SCREAMING_SNAKE_CASE_ = num
return lower * upper + 1
if __name__ == "__main__":
print(f'''The 8th number in Sylvester\'s sequence: {sylvester(8)}''') | 31 | 0 |
"""simple docstring"""
__SCREAMING_SNAKE_CASE : int = 8.314_4598
def lowerCAmelCase_( lowercase_ : float , lowercase_ : float ) -> float:
if temperature < 0:
raise Exception('''Temperature cannot be less than 0 K''' )
if molar_mass <= 0:
raise Exception('''Molar mass cannot be less than or equal to 0 kg/mol''' )
else:
return (3 * UNIVERSAL_GAS_CONSTANT * temperature / molar_mass) ** 0.5
if __name__ == "__main__":
import doctest
# run doctest
doctest.testmod()
# example
__SCREAMING_SNAKE_CASE : str = 3_0_0
__SCREAMING_SNAKE_CASE : int = 2_8
__SCREAMING_SNAKE_CASE : Optional[int] = rms_speed_of_molecule(temperature, molar_mass)
print(F"""Vrms of Nitrogen gas at 300 K is {vrms} m/s""")
| 661 |
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_flax_available,
is_sentencepiece_available,
is_tf_available,
is_tokenizers_available,
is_torch_available,
)
if is_sentencepiece_available():
from ..ta.tokenization_ta import TaTokenizer
else:
from ...utils.dummy_sentencepiece_objects import TaTokenizer
lowerCamelCase__ : List[Any] = TaTokenizer
if is_tokenizers_available():
from ..ta.tokenization_ta_fast import TaTokenizerFast
else:
from ...utils.dummy_tokenizers_objects import TaTokenizerFast
lowerCamelCase__ : Union[str, Any] = TaTokenizerFast
lowerCamelCase__ : Dict = {'configuration_mt5': ['MT5Config', 'MT5OnnxConfig']}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowerCamelCase__ : Tuple = [
'MT5EncoderModel',
'MT5ForConditionalGeneration',
'MT5ForQuestionAnswering',
'MT5Model',
'MT5PreTrainedModel',
'MT5Stack',
]
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowerCamelCase__ : Tuple = ['TFMT5EncoderModel', 'TFMT5ForConditionalGeneration', 'TFMT5Model']
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowerCamelCase__ : Tuple = ['FlaxMT5EncoderModel', 'FlaxMT5ForConditionalGeneration', 'FlaxMT5Model']
if TYPE_CHECKING:
from .configuration_mta import MTaConfig, MTaOnnxConfig
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_mta import (
MTaEncoderModel,
MTaForConditionalGeneration,
MTaForQuestionAnswering,
MTaModel,
MTaPreTrainedModel,
MTaStack,
)
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_mta import TFMTaEncoderModel, TFMTaForConditionalGeneration, TFMTaModel
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_flax_mta import FlaxMTaEncoderModel, FlaxMTaForConditionalGeneration, FlaxMTaModel
else:
import sys
lowerCamelCase__ : int = _LazyModule(
__name__,
globals()['__file__'],
_import_structure,
extra_objects={'MT5Tokenizer': MTaTokenizer, 'MT5TokenizerFast': MTaTokenizerFast},
module_spec=__spec__,
) | 31 | 0 |
"""simple docstring"""
import argparse
import logging
import os
import time
import timeit
import datasets
import numpy as np
import pycuda.autoinit # noqa: F401
import pycuda.driver as cuda
import tensorrt as trt
import torch
from absl import logging as absl_logging
from accelerate import Accelerator
from datasets import load_dataset, load_metric
from torch.utils.data import DataLoader
from utils_qa import postprocess_qa_predictions
import transformers
from transformers import AutoTokenizer, EvalPrediction, default_data_collator, set_seed
from transformers.trainer_pt_utils import nested_concat, nested_truncate
A = trt.Logger(trt.Logger.WARNING)
A = absl_logging.get_absl_logger()
absl_logger.setLevel(logging.WARNING)
A = logging.getLogger(__name__)
A = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
"""--onnx_model_path""",
default=None,
type=str,
required=True,
help="""Path to ONNX model: """,
)
parser.add_argument(
"""--output_dir""",
default=None,
type=str,
required=True,
help="""The output directory where the model checkpoints and predictions will be written.""",
)
# Other parameters
parser.add_argument(
"""--tokenizer_name""",
default="""""",
type=str,
required=True,
help="""Pretrained tokenizer name or path if not the same as model_name""",
)
parser.add_argument(
"""--version_2_with_negative""",
action="""store_true""",
help="""If true, the SQuAD examples contain some that do not have an answer.""",
)
parser.add_argument(
"""--null_score_diff_threshold""",
type=float,
default=0.0,
help="""If null_score - best_non_null is greater than the threshold predict null.""",
)
parser.add_argument(
"""--max_seq_length""",
default=384,
type=int,
help=(
"""The maximum total input sequence length after WordPiece tokenization. Sequences """
"""longer than this will be truncated, and sequences shorter than this will be padded."""
),
)
parser.add_argument(
"""--doc_stride""",
default=128,
type=int,
help="""When splitting up a long document into chunks, how much stride to take between chunks.""",
)
parser.add_argument("""--per_device_eval_batch_size""", default=8, type=int, help="""Batch size per GPU/CPU for evaluation.""")
parser.add_argument(
"""--n_best_size""",
default=20,
type=int,
help="""The total number of n-best predictions to generate in the nbest_predictions.json output file.""",
)
parser.add_argument(
"""--max_answer_length""",
default=30,
type=int,
help=(
"""The maximum length of an answer that can be generated. This is needed because the start """
"""and end predictions are not conditioned on one another."""
),
)
parser.add_argument("""--seed""", type=int, default=42, help="""random seed for initialization""")
parser.add_argument(
"""--dataset_name""",
type=str,
default=None,
required=True,
help="""The name of the dataset to use (via the datasets library).""",
)
parser.add_argument(
"""--dataset_config_name""",
type=str,
default=None,
help="""The configuration name of the dataset to use (via the datasets library).""",
)
parser.add_argument(
"""--preprocessing_num_workers""", type=int, default=4, help="""A csv or a json file containing the training data."""
)
parser.add_argument("""--overwrite_cache""", action="""store_true""", help="""Overwrite the cached training and evaluation sets""")
parser.add_argument(
"""--fp16""",
action="""store_true""",
help="""Whether to use 16-bit (mixed) precision instead of 32-bit""",
)
parser.add_argument(
"""--int8""",
action="""store_true""",
help="""Whether to use INT8""",
)
A = parser.parse_args()
if args.tokenizer_name:
A = AutoTokenizer.from_pretrained(args.tokenizer_name, use_fast=True)
else:
raise ValueError(
"""You are instantiating a new tokenizer from scratch. This is not supported by this script."""
"""You can do it from another script, save it, and load it from here, using --tokenizer_name."""
)
logger.info("""Training/evaluation parameters %s""", args)
A = args.per_device_eval_batch_size
A = (args.eval_batch_size, args.max_seq_length)
# TRT Engine properties
A = True
A = 'temp_engine/bert-fp32.engine'
if args.fpaa:
A = 'temp_engine/bert-fp16.engine'
if args.inta:
A = 'temp_engine/bert-int8.engine'
# import ONNX file
if not os.path.exists("""temp_engine"""):
os.makedirs("""temp_engine""")
A = 1 << (int)(trt.NetworkDefinitionCreationFlag.EXPLICIT_BATCH)
with trt.Builder(TRT_LOGGER) as builder, builder.create_network(EXPLICIT_BATCH) as network, trt.OnnxParser(
network, TRT_LOGGER
) as parser:
with open(args.onnx_model_path, """rb""") as model:
if not parser.parse(model.read()):
for error in range(parser.num_errors):
print(parser.get_error(error))
# Query input names and shapes from parsed TensorRT network
A = [network.get_input(i) for i in range(network.num_inputs)]
A = [_input.name for _input in network_inputs] # ex: ["actual_input1"]
with builder.create_builder_config() as config:
A = 1 << 50
if STRICT_TYPES:
config.set_flag(trt.BuilderFlag.STRICT_TYPES)
if args.fpaa:
config.set_flag(trt.BuilderFlag.FPaa)
if args.inta:
config.set_flag(trt.BuilderFlag.INTa)
A = builder.create_optimization_profile()
config.add_optimization_profile(profile)
for i in range(len(input_names)):
profile.set_shape(input_names[i], INPUT_SHAPE, INPUT_SHAPE, INPUT_SHAPE)
A = builder.build_engine(network, config)
# serialize_engine and store in file (can be directly loaded and deserialized):
with open(engine_name, """wb""") as f:
f.write(engine.serialize())
def _UpperCamelCase ( UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase ) -> Union[str, Any]:
"""simple docstring"""
__UpperCAmelCase : Dict = np.asarray(inputs["input_ids"] , dtype=np.intaa )
__UpperCAmelCase : Tuple = np.asarray(inputs["attention_mask"] , dtype=np.intaa )
__UpperCAmelCase : Union[str, Any] = np.asarray(inputs["token_type_ids"] , dtype=np.intaa )
# Copy inputs
cuda.memcpy_htod_async(d_inputs[0] , input_ids.ravel() , __UpperCAmelCase )
cuda.memcpy_htod_async(d_inputs[1] , attention_mask.ravel() , __UpperCAmelCase )
cuda.memcpy_htod_async(d_inputs[2] , token_type_ids.ravel() , __UpperCAmelCase )
# start time
__UpperCAmelCase : List[str] = time.time()
# Run inference
context.execute_async(
bindings=[int(__UpperCAmelCase ) for d_inp in d_inputs] + [int(__UpperCAmelCase ), int(__UpperCAmelCase )] , stream_handle=stream.handle )
# Transfer predictions back from GPU
cuda.memcpy_dtoh_async(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase )
cuda.memcpy_dtoh_async(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase )
# Synchronize the stream and take time
stream.synchronize()
# end time
__UpperCAmelCase : Union[str, Any] = time.time()
__UpperCAmelCase : str = end_time - start_time
__UpperCAmelCase : Union[str, Any] = (h_outputa, h_outputa)
# print(outputs)
return outputs, infer_time
# Initialize the accelerator. We will let the accelerator handle device placement for us in this example.
A = Accelerator()
# Make one log on every process with the configuration for debugging.
logging.basicConfig(
format="""%(asctime)s - %(levelname)s - %(name)s - %(message)s""",
datefmt="""%m/%d/%Y %H:%M:%S""",
level=logging.INFO,
)
# Setup logging, we only want one process per machine to log things on the screen.
# accelerator.is_local_main_process is only True for one process per machine.
logger.setLevel(logging.INFO if accelerator.is_local_main_process else logging.ERROR)
if accelerator.is_local_main_process:
datasets.utils.logging.set_verbosity_warning()
transformers.utils.logging.set_verbosity_info()
else:
datasets.utils.logging.set_verbosity_error()
transformers.utils.logging.set_verbosity_error()
# If passed along, set the training seed now.
if args.seed is not None:
set_seed(args.seed)
# Get the datasets: you can either provide your own CSV/JSON/TXT training and evaluation files (see below)
# or just provide the name of one of the public datasets available on the hub at https://huggingface.co/datasets/
# (the dataset will be downloaded automatically from the datasets Hub).
#
# For CSV/JSON files, this script will use the column called 'text' or the first column if no column called
# 'text' is found. You can easily tweak this behavior (see below).
if args.dataset_name is not None:
# Downloading and loading a dataset from the hub.
A = load_dataset(args.dataset_name, args.dataset_config_name)
else:
raise ValueError("""Evaluation requires a dataset name""")
# See more about loading any type of standard or custom dataset (from files, python dict, pandas DataFrame, etc) at
# https://huggingface.co/docs/datasets/loading_datasets.html.
# Preprocessing the datasets.
# Preprocessing is slighlty different for training and evaluation.
A = raw_datasets['validation'].column_names
A = 'question' if 'question' in column_names else column_names[0]
A = 'context' if 'context' in column_names else column_names[1]
A = 'answers' if 'answers' in column_names else column_names[2]
# Padding side determines if we do (question|context) or (context|question).
A = tokenizer.padding_side == 'right'
if args.max_seq_length > tokenizer.model_max_length:
logger.warning(
f'''The max_seq_length passed ({args.max_seq_length}) is larger than the maximum length for the'''
f'''model ({tokenizer.model_max_length}). Using max_seq_length={tokenizer.model_max_length}.'''
)
A = min(args.max_seq_length, tokenizer.model_max_length)
def _UpperCamelCase ( UpperCamelCase ) -> Optional[Any]:
"""simple docstring"""
# Some of the questions have lots of whitespace on the left, which is not useful and will make the
# truncation of the context fail (the tokenized question will take a lots of space). So we remove that
# left whitespace
__UpperCAmelCase : Union[str, Any] = [q.lstrip() for q in examples[question_column_name]]
# Tokenize our examples with truncation and maybe padding, but keep the overflows using a stride. This results
# in one example possible giving several features when a context is long, each of those features having a
# context that overlaps a bit the context of the previous feature.
__UpperCAmelCase : int = tokenizer(
examples[question_column_name if pad_on_right else context_column_name] , examples[context_column_name if pad_on_right else question_column_name] , truncation="only_second" if pad_on_right else "only_first" , max_length=__UpperCAmelCase , stride=args.doc_stride , return_overflowing_tokens=__UpperCAmelCase , return_offsets_mapping=__UpperCAmelCase , padding="max_length" , )
# Since one example might give us several features if it has a long context, we need a map from a feature to
# its corresponding example. This key gives us just that.
__UpperCAmelCase : str = tokenized_examples.pop("overflow_to_sample_mapping" )
# For evaluation, we will need to convert our predictions to substrings of the context, so we keep the
# corresponding example_id and we will store the offset mappings.
__UpperCAmelCase : Union[str, Any] = []
for i in range(len(tokenized_examples["input_ids"] ) ):
# Grab the sequence corresponding to that example (to know what is the context and what is the question).
__UpperCAmelCase : Dict = tokenized_examples.sequence_ids(__UpperCAmelCase )
__UpperCAmelCase : int = 1 if pad_on_right else 0
# One example can give several spans, this is the index of the example containing this span of text.
__UpperCAmelCase : List[Any] = sample_mapping[i]
tokenized_examples["example_id"].append(examples["id"][sample_index] )
# Set to None the offset_mapping that are not part of the context so it's easy to determine if a token
# position is part of the context or not.
__UpperCAmelCase : List[Any] = [
(o if sequence_ids[k] == context_index else None)
for k, o in enumerate(tokenized_examples["offset_mapping"][i] )
]
return tokenized_examples
A = raw_datasets['validation']
# Validation Feature Creation
A = eval_examples.map(
prepare_validation_features,
batched=True,
num_proc=args.preprocessing_num_workers,
remove_columns=column_names,
load_from_cache_file=not args.overwrite_cache,
desc="""Running tokenizer on validation dataset""",
)
A = default_data_collator
A = eval_dataset.remove_columns(["""example_id""", """offset_mapping"""])
A = DataLoader(
eval_dataset_for_model, collate_fn=data_collator, batch_size=args.per_device_eval_batch_size
)
def _UpperCamelCase ( UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase="eval" ) -> Tuple:
"""simple docstring"""
# Post-processing: we match the start logits and end logits to answers in the original context.
__UpperCAmelCase : Tuple = postprocess_qa_predictions(
examples=__UpperCAmelCase , features=__UpperCAmelCase , predictions=__UpperCAmelCase , version_2_with_negative=args.version_2_with_negative , n_best_size=args.n_best_size , max_answer_length=args.max_answer_length , null_score_diff_threshold=args.null_score_diff_threshold , output_dir=args.output_dir , prefix=__UpperCAmelCase , )
# Format the result to the format the metric expects.
if args.version_2_with_negative:
__UpperCAmelCase : int = [
{"id": k, "prediction_text": v, "no_answer_probability": 0.0} for k, v in predictions.items()
]
else:
__UpperCAmelCase : List[Any] = [{"id": k, "prediction_text": v} for k, v in predictions.items()]
__UpperCAmelCase : List[Any] = [{"id": ex["id"], "answers": ex[answer_column_name]} for ex in examples]
return EvalPrediction(predictions=__UpperCAmelCase , label_ids=__UpperCAmelCase )
A = load_metric("""squad_v2""" if args.version_2_with_negative else """squad""")
# Evaluation!
logger.info("""Loading ONNX model %s for evaluation""", args.onnx_model_path)
with open(engine_name, """rb""") as f, trt.Runtime(TRT_LOGGER) as runtime, runtime.deserialize_cuda_engine(
f.read()
) as engine, engine.create_execution_context() as context:
# setup for TRT inferrence
for i in range(len(input_names)):
context.set_binding_shape(i, INPUT_SHAPE)
assert context.all_binding_shapes_specified
def _UpperCamelCase ( UpperCamelCase ) -> Union[str, Any]:
"""simple docstring"""
return trt.volume(engine.get_binding_shape(__UpperCAmelCase ) ) * engine.get_binding_dtype(__UpperCAmelCase ).itemsize
# Allocate device memory for inputs and outputs.
A = [cuda.mem_alloc(binding_nbytes(binding)) for binding in engine if engine.binding_is_input(binding)]
# Allocate output buffer
A = cuda.pagelocked_empty(tuple(context.get_binding_shape(3)), dtype=np.floataa)
A = cuda.pagelocked_empty(tuple(context.get_binding_shape(4)), dtype=np.floataa)
A = cuda.mem_alloc(h_outputa.nbytes)
A = cuda.mem_alloc(h_outputa.nbytes)
# Create a stream in which to copy inputs/outputs and run inference.
A = cuda.Stream()
# Evaluation
logger.info("""***** Running Evaluation *****""")
logger.info(f''' Num examples = {len(eval_dataset)}''')
logger.info(f''' Batch size = {args.per_device_eval_batch_size}''')
A = 0.0
A = 0
A = timeit.default_timer()
A = None
for step, batch in enumerate(eval_dataloader):
A = model_infer(batch, context, d_inputs, h_outputa, h_outputa, d_outputa, d_outputa, stream)
total_time += infer_time
niter += 1
A = outputs
A = torch.tensor(start_logits)
A = torch.tensor(end_logits)
# necessary to pad predictions and labels for being gathered
A = accelerator.pad_across_processes(start_logits, dim=1, pad_index=-100)
A = accelerator.pad_across_processes(end_logits, dim=1, pad_index=-100)
A = (accelerator.gather(start_logits).cpu().numpy(), accelerator.gather(end_logits).cpu().numpy())
A = logits if all_preds is None else nested_concat(all_preds, logits, padding_index=-100)
if all_preds is not None:
A = nested_truncate(all_preds, len(eval_dataset))
A = timeit.default_timer() - start_time
logger.info(""" Evaluation done in total %f secs (%f sec per example)""", evalTime, evalTime / len(eval_dataset))
# Inference time from TRT
logger.info("""Average Inference Time = {:.3f} ms""".format(total_time * 1_000 / niter))
logger.info("""Total Inference Time = {:.3f} ms""".format(total_time * 1_000))
logger.info("""Total Number of Inference = %d""", niter)
A = post_processing_function(eval_examples, eval_dataset, all_preds)
A = metric.compute(predictions=prediction.predictions, references=prediction.label_ids)
logger.info(f'''Evaluation metrics: {eval_metric}''')
| 77 |
import subprocess
import sys
from transformers import BertConfig, BertModel, BertTokenizer, pipeline
from transformers.testing_utils import TestCasePlus, require_torch
class lowerCamelCase_ ( _SCREAMING_SNAKE_CASE ):
'''simple docstring'''
@require_torch
def lowerCAmelCase_ ( self : int ):
# this test is a bit tricky since TRANSFORMERS_OFFLINE can only be changed before
# `transformers` is loaded, and it's too late for inside pytest - so we are changing it
# while running an external program
# python one-liner segments
# this must be loaded before socket.socket is monkey-patched
SCREAMING_SNAKE_CASE_ = '\nfrom transformers import BertConfig, BertModel, BertTokenizer, pipeline\n '
SCREAMING_SNAKE_CASE_ = '\nmname = "hf-internal-testing/tiny-random-bert"\nBertConfig.from_pretrained(mname)\nBertModel.from_pretrained(mname)\nBertTokenizer.from_pretrained(mname)\npipe = pipeline(task="fill-mask", model=mname)\nprint("success")\n '
SCREAMING_SNAKE_CASE_ = '\nimport socket\ndef offline_socket(*args, **kwargs): raise RuntimeError("Offline mode is enabled, we shouldn\'t access internet")\nsocket.socket = offline_socket\n '
# Force fetching the files so that we can use the cache
SCREAMING_SNAKE_CASE_ = 'hf-internal-testing/tiny-random-bert'
BertConfig.from_pretrained(_lowerCAmelCase )
BertModel.from_pretrained(_lowerCAmelCase )
BertTokenizer.from_pretrained(_lowerCAmelCase )
pipeline(task='fill-mask' , model=_lowerCAmelCase )
# baseline - just load from_pretrained with normal network
SCREAMING_SNAKE_CASE_ = [sys.executable, '-c', '\n'.join([load, run, mock] )]
# should succeed
SCREAMING_SNAKE_CASE_ = self.get_env()
# should succeed as TRANSFORMERS_OFFLINE=1 tells it to use local files
SCREAMING_SNAKE_CASE_ = '1'
SCREAMING_SNAKE_CASE_ = subprocess.run(_lowerCAmelCase , env=_lowerCAmelCase , check=_lowerCAmelCase , capture_output=_lowerCAmelCase )
self.assertEqual(result.returncode , 0 , result.stderr )
self.assertIn('success' , result.stdout.decode() )
@require_torch
def lowerCAmelCase_ ( self : Tuple ):
# python one-liner segments
# this must be loaded before socket.socket is monkey-patched
SCREAMING_SNAKE_CASE_ = '\nfrom transformers import BertConfig, BertModel, BertTokenizer, pipeline\n '
SCREAMING_SNAKE_CASE_ = '\nmname = "hf-internal-testing/tiny-random-bert"\nBertConfig.from_pretrained(mname)\nBertModel.from_pretrained(mname)\nBertTokenizer.from_pretrained(mname)\npipe = pipeline(task="fill-mask", model=mname)\nprint("success")\n '
SCREAMING_SNAKE_CASE_ = '\nimport socket\ndef offline_socket(*args, **kwargs): raise socket.error("Faking flaky internet")\nsocket.socket = offline_socket\n '
# Force fetching the files so that we can use the cache
SCREAMING_SNAKE_CASE_ = 'hf-internal-testing/tiny-random-bert'
BertConfig.from_pretrained(_lowerCAmelCase )
BertModel.from_pretrained(_lowerCAmelCase )
BertTokenizer.from_pretrained(_lowerCAmelCase )
pipeline(task='fill-mask' , model=_lowerCAmelCase )
# baseline - just load from_pretrained with normal network
SCREAMING_SNAKE_CASE_ = [sys.executable, '-c', '\n'.join([load, run, mock] )]
# should succeed
SCREAMING_SNAKE_CASE_ = self.get_env()
SCREAMING_SNAKE_CASE_ = subprocess.run(_lowerCAmelCase , env=_lowerCAmelCase , check=_lowerCAmelCase , capture_output=_lowerCAmelCase )
self.assertEqual(result.returncode , 0 , result.stderr )
self.assertIn('success' , result.stdout.decode() )
@require_torch
def lowerCAmelCase_ ( self : List[str] ):
# this test is a bit tricky since TRANSFORMERS_OFFLINE can only be changed before
# `transformers` is loaded, and it's too late for inside pytest - so we are changing it
# while running an external program
# python one-liner segments
# this must be loaded before socket.socket is monkey-patched
SCREAMING_SNAKE_CASE_ = '\nfrom transformers import BertConfig, BertModel, BertTokenizer\n '
SCREAMING_SNAKE_CASE_ = '\nmname = "hf-internal-testing/tiny-random-bert-sharded"\nBertConfig.from_pretrained(mname)\nBertModel.from_pretrained(mname)\nprint("success")\n '
SCREAMING_SNAKE_CASE_ = '\nimport socket\ndef offline_socket(*args, **kwargs): raise ValueError("Offline mode is enabled")\nsocket.socket = offline_socket\n '
# baseline - just load from_pretrained with normal network
SCREAMING_SNAKE_CASE_ = [sys.executable, '-c', '\n'.join([load, run] )]
# should succeed
SCREAMING_SNAKE_CASE_ = self.get_env()
SCREAMING_SNAKE_CASE_ = subprocess.run(_lowerCAmelCase , env=_lowerCAmelCase , check=_lowerCAmelCase , capture_output=_lowerCAmelCase )
self.assertEqual(result.returncode , 0 , result.stderr )
self.assertIn('success' , result.stdout.decode() )
# next emulate no network
SCREAMING_SNAKE_CASE_ = [sys.executable, '-c', '\n'.join([load, mock, run] )]
# Doesn't fail anymore since the model is in the cache due to other tests, so commenting this.
# env["TRANSFORMERS_OFFLINE"] = "0"
# result = subprocess.run(cmd, env=env, check=False, capture_output=True)
# self.assertEqual(result.returncode, 1, result.stderr)
# should succeed as TRANSFORMERS_OFFLINE=1 tells it to use local files
SCREAMING_SNAKE_CASE_ = '1'
SCREAMING_SNAKE_CASE_ = subprocess.run(_lowerCAmelCase , env=_lowerCAmelCase , check=_lowerCAmelCase , capture_output=_lowerCAmelCase )
self.assertEqual(result.returncode , 0 , result.stderr )
self.assertIn('success' , result.stdout.decode() )
@require_torch
def lowerCAmelCase_ ( self : Any ):
SCREAMING_SNAKE_CASE_ = '\nfrom transformers import pipeline\n '
SCREAMING_SNAKE_CASE_ = '\nmname = "hf-internal-testing/tiny-random-bert"\npipe = pipeline(model=mname)\n '
SCREAMING_SNAKE_CASE_ = '\nimport socket\ndef offline_socket(*args, **kwargs): raise socket.error("Offline mode is enabled")\nsocket.socket = offline_socket\n '
SCREAMING_SNAKE_CASE_ = self.get_env()
SCREAMING_SNAKE_CASE_ = '1'
SCREAMING_SNAKE_CASE_ = [sys.executable, '-c', '\n'.join([load, mock, run] )]
SCREAMING_SNAKE_CASE_ = subprocess.run(_lowerCAmelCase , env=_lowerCAmelCase , check=_lowerCAmelCase , capture_output=_lowerCAmelCase )
self.assertEqual(result.returncode , 1 , result.stderr )
self.assertIn(
'You cannot infer task automatically within `pipeline` when using offline mode' , result.stderr.decode().replace('\n' , '' ) , )
@require_torch
def lowerCAmelCase_ ( self : Optional[int] ):
SCREAMING_SNAKE_CASE_ = '\nfrom transformers import AutoModel\n '
SCREAMING_SNAKE_CASE_ = '\nmname = "hf-internal-testing/test_dynamic_model"\nAutoModel.from_pretrained(mname, trust_remote_code=True)\nprint("success")\n '
# baseline - just load from_pretrained with normal network
SCREAMING_SNAKE_CASE_ = [sys.executable, '-c', '\n'.join([load, run] )]
# should succeed
SCREAMING_SNAKE_CASE_ = self.get_env()
SCREAMING_SNAKE_CASE_ = subprocess.run(_lowerCAmelCase , env=_lowerCAmelCase , check=_lowerCAmelCase , capture_output=_lowerCAmelCase )
self.assertEqual(result.returncode , 0 , result.stderr )
self.assertIn('success' , result.stdout.decode() )
# should succeed as TRANSFORMERS_OFFLINE=1 tells it to use local files
SCREAMING_SNAKE_CASE_ = '1'
SCREAMING_SNAKE_CASE_ = subprocess.run(_lowerCAmelCase , env=_lowerCAmelCase , check=_lowerCAmelCase , capture_output=_lowerCAmelCase )
self.assertEqual(result.returncode , 0 , result.stderr )
self.assertIn('success' , result.stdout.decode() ) | 31 | 0 |
from ...utils import logging
from ..ta.modeling_tf_ta import TFTaEncoderModel, TFTaForConditionalGeneration, TFTaModel
from .configuration_mta import MTaConfig
lowerCAmelCase : Union[str, Any] = logging.get_logger(__name__)
lowerCAmelCase : str = 'T5Config'
class a ( _SCREAMING_SNAKE_CASE ):
SCREAMING_SNAKE_CASE__ : List[Any] = '''mt5'''
SCREAMING_SNAKE_CASE__ : List[Any] = MTaConfig
class a ( _SCREAMING_SNAKE_CASE ):
SCREAMING_SNAKE_CASE__ : Union[str, Any] = '''mt5'''
SCREAMING_SNAKE_CASE__ : List[str] = MTaConfig
class a ( _SCREAMING_SNAKE_CASE ):
SCREAMING_SNAKE_CASE__ : List[str] = '''mt5'''
SCREAMING_SNAKE_CASE__ : Any = MTaConfig
| 202 |
import torch
from transformers import PreTrainedModel, XLMRobertaConfig, XLMRobertaModel
class lowerCamelCase_ ( _SCREAMING_SNAKE_CASE ):
'''simple docstring'''
lowercase_ = "M-CLIP"
def __init__( self : Tuple , _lowerCAmelCase : List[str]=1_024 , _lowerCAmelCase : str=768 , **_lowerCAmelCase : Union[str, Any] ):
SCREAMING_SNAKE_CASE_ = transformerDimSize
SCREAMING_SNAKE_CASE_ = imageDimSize
super().__init__(**_lowerCAmelCase )
class lowerCamelCase_ ( _SCREAMING_SNAKE_CASE ):
'''simple docstring'''
lowercase_ = MCLIPConfig
def __init__( self : Dict , _lowerCAmelCase : Union[str, Any] , *_lowerCAmelCase : str , **_lowerCAmelCase : str ):
super().__init__(_lowerCAmelCase , *_lowerCAmelCase , **_lowerCAmelCase )
SCREAMING_SNAKE_CASE_ = XLMRobertaModel(_lowerCAmelCase )
SCREAMING_SNAKE_CASE_ = torch.nn.Linear(
in_features=config.transformerDimensions , out_features=config.numDims )
def lowerCAmelCase_ ( self : List[Any] , _lowerCAmelCase : Any , _lowerCAmelCase : Union[str, Any] ):
SCREAMING_SNAKE_CASE_ = self.transformer(input_ids=_lowerCAmelCase , attention_mask=_lowerCAmelCase )[0]
SCREAMING_SNAKE_CASE_ = (embs * attention_mask.unsqueeze(2 )).sum(dim=1 ) / attention_mask.sum(dim=1 )[:, None]
return self.LinearTransformation(_lowerCAmelCase ), embs | 31 | 0 |
'''simple docstring'''
import json
import os
from typing import Optional, Tuple
import regex as re
from ...tokenization_utils import PreTrainedTokenizer
from ...utils import logging
__A = logging.get_logger(__name__)
__A = {
'vocab_file': 'vocab.json',
'merges_file': 'merges.txt',
}
__A = {
'vocab_file': {'ctrl': 'https://raw.githubusercontent.com/salesforce/ctrl/master/ctrl-vocab.json'},
'merges_file': {'ctrl': 'https://raw.githubusercontent.com/salesforce/ctrl/master/ctrl-merges.txt'},
}
__A = {
'ctrl': 256,
}
__A = {
'Pregnancy': 168_629,
'Christianity': 7_675,
'Explain': 106_423,
'Fitness': 63_440,
'Saving': 63_163,
'Ask': 27_171,
'Ass': 95_985,
'Joke': 163_509,
'Questions': 45_622,
'Thoughts': 49_605,
'Retail': 52_342,
'Feminism': 164_338,
'Writing': 11_992,
'Atheism': 192_263,
'Netflix': 48_616,
'Computing': 39_639,
'Opinion': 43_213,
'Alone': 44_967,
'Funny': 58_917,
'Gaming': 40_358,
'Human': 4_088,
'India': 1_331,
'Joker': 77_138,
'Diet': 36_206,
'Legal': 11_859,
'Norman': 4_939,
'Tip': 72_689,
'Weight': 52_343,
'Movies': 46_273,
'Running': 23_425,
'Science': 2_090,
'Horror': 37_793,
'Confession': 60_572,
'Finance': 12_250,
'Politics': 16_360,
'Scary': 191_985,
'Support': 12_654,
'Technologies': 32_516,
'Teenage': 66_160,
'Event': 32_769,
'Learned': 67_460,
'Notion': 182_770,
'Wikipedia': 37_583,
'Books': 6_665,
'Extract': 76_050,
'Confessions': 102_701,
'Conspiracy': 75_932,
'Links': 63_674,
'Narcissus': 150_425,
'Relationship': 54_766,
'Relationships': 134_796,
'Reviews': 41_671,
'News': 4_256,
'Translation': 26_820,
'multilingual': 128_406,
}
def _A ( lowercase__ ):
lowercase__ = set()
lowercase__ = word[0]
for char in word[1:]:
pairs.add((prev_char, char) )
lowercase__ = char
lowercase__ = set(__UpperCAmelCase )
return pairs
class A ( _SCREAMING_SNAKE_CASE ):
lowerCamelCase : Tuple = VOCAB_FILES_NAMES
lowerCamelCase : Any = PRETRAINED_VOCAB_FILES_MAP
lowerCamelCase : Optional[Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
lowerCamelCase : Dict = CONTROL_CODES
def __init__( self , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__="<unk>" , **lowerCamelCase__ ) -> Optional[int]:
'''simple docstring'''
super().__init__(unk_token=_lowerCAmelCase , **_lowerCAmelCase )
with open(_lowerCAmelCase , encoding="""utf-8""" ) as vocab_handle:
lowercase__ = json.load(_lowerCAmelCase )
lowercase__ = {v: k for k, v in self.encoder.items()}
with open(_lowerCAmelCase , encoding="""utf-8""" ) as merges_handle:
lowercase__ = merges_handle.read().split("""\n""" )[1:-1]
lowercase__ = [tuple(merge.split() ) for merge in merges]
lowercase__ = dict(zip(_lowerCAmelCase , range(len(_lowerCAmelCase ) ) ) )
lowercase__ = {}
@property
def A__ ( self ) -> List[str]:
'''simple docstring'''
return len(self.encoder )
def A__ ( self ) -> List[str]:
'''simple docstring'''
return dict(self.encoder , **self.added_tokens_encoder )
def A__ ( self , lowerCamelCase__ ) -> Union[str, Any]:
'''simple docstring'''
if token in self.cache:
return self.cache[token]
lowercase__ = tuple(_lowerCAmelCase )
lowercase__ = tuple(list(word[:-1] ) + [word[-1] + """</w>"""] )
lowercase__ = get_pairs(_lowerCAmelCase )
if not pairs:
return token
while True:
lowercase__ = min(_lowerCAmelCase , key=lambda lowerCamelCase__ : self.bpe_ranks.get(_lowerCAmelCase , float("""inf""" ) ) )
if bigram not in self.bpe_ranks:
break
lowercase__ , lowercase__ = bigram
lowercase__ = []
lowercase__ = 0
while i < len(_lowerCAmelCase ):
try:
lowercase__ = word.index(_lowerCAmelCase , _lowerCAmelCase )
except ValueError:
new_word.extend(word[i:] )
break
else:
new_word.extend(word[i:j] )
lowercase__ = j
if word[i] == first and i < len(_lowerCAmelCase ) - 1 and word[i + 1] == second:
new_word.append(first + second )
i += 2
else:
new_word.append(word[i] )
i += 1
lowercase__ = tuple(_lowerCAmelCase )
lowercase__ = new_word
if len(_lowerCAmelCase ) == 1:
break
else:
lowercase__ = get_pairs(_lowerCAmelCase )
lowercase__ = """@@ """.join(_lowerCAmelCase )
lowercase__ = word[:-4]
lowercase__ = word
return word
def A__ ( self , lowerCamelCase__ ) -> Optional[Any]:
'''simple docstring'''
lowercase__ = []
lowercase__ = re.findall(R"""\S+\n?""" , _lowerCAmelCase )
for token in words:
split_tokens.extend(list(self.bpe(_lowerCAmelCase ).split(""" """ ) ) )
return split_tokens
def A__ ( self , lowerCamelCase__ ) -> str:
'''simple docstring'''
return self.encoder.get(_lowerCAmelCase , self.encoder.get(self.unk_token ) )
def A__ ( self , lowerCamelCase__ ) -> List[str]:
'''simple docstring'''
return self.decoder.get(_lowerCAmelCase , self.unk_token )
def A__ ( self , lowerCamelCase__ ) -> Any:
'''simple docstring'''
lowercase__ = """ """.join(_lowerCAmelCase ).replace("""@@ """ , """""" ).strip()
return out_string
def A__ ( self , lowerCamelCase__ , lowerCamelCase__ = None ) -> Any:
'''simple docstring'''
if not os.path.isdir(_lowerCAmelCase ):
logger.error(F'''Vocabulary path ({save_directory}) should be a directory''' )
return
lowercase__ = os.path.join(
_lowerCAmelCase , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] )
lowercase__ = os.path.join(
_lowerCAmelCase , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""merges_file"""] )
with open(_lowerCAmelCase , """w""" , encoding="""utf-8""" ) as f:
f.write(json.dumps(self.encoder , indent=2 , sort_keys=_lowerCAmelCase , ensure_ascii=_lowerCAmelCase ) + """\n""" )
lowercase__ = 0
with open(_lowerCAmelCase , """w""" , encoding="""utf-8""" ) as writer:
writer.write("""#version: 0.2\n""" )
for bpe_tokens, token_index in sorted(self.bpe_ranks.items() , key=lambda lowerCamelCase__ : kv[1] ):
if index != token_index:
logger.warning(
F'''Saving vocabulary to {merge_file}: BPE merge indices are not consecutive.'''
""" Please check that the tokenizer is not corrupted!""" )
lowercase__ = token_index
writer.write(""" """.join(_lowerCAmelCase ) + """\n""" )
index += 1
return vocab_file, merge_file
# def decode(self, token_ids, skip_special_tokens=False, clean_up_tokenization_spaces=True):
# filtered_tokens = ' '.join(self.convert_ids_to_tokens(token_ids, skip_special_tokens=skip_special_tokens))
# tokens_generated_so_far = re.sub('(@@ )', '', string=filtered_tokens)
# tokens_generated_so_far = re.sub('(@@ ?$)', '', string=tokens_generated_so_far)
# return ''.join(tokens_generated_so_far)
| 325 |
import gc
import random
import unittest
import numpy as np
import torch
from transformers import XLMRobertaTokenizer
from diffusers import (
AltDiffusionImgaImgPipeline,
AutoencoderKL,
PNDMScheduler,
UNetaDConditionModel,
)
from diffusers.image_processor import VaeImageProcessor
from diffusers.pipelines.alt_diffusion.modeling_roberta_series import (
RobertaSeriesConfig,
RobertaSeriesModelWithTransformation,
)
from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device
from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu
enable_full_determinism()
class lowerCamelCase_ ( unittest.TestCase ):
'''simple docstring'''
def lowerCAmelCase_ ( self : str ):
# clean up the VRAM after each test
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
@property
def lowerCAmelCase_ ( self : Union[str, Any] ):
SCREAMING_SNAKE_CASE_ = 1
SCREAMING_SNAKE_CASE_ = 3
SCREAMING_SNAKE_CASE_ = (32, 32)
SCREAMING_SNAKE_CASE_ = floats_tensor((batch_size, num_channels) + sizes , rng=random.Random(0 ) ).to(_lowerCAmelCase )
return image
@property
def lowerCAmelCase_ ( self : Union[str, Any] ):
torch.manual_seed(0 )
SCREAMING_SNAKE_CASE_ = UNetaDConditionModel(
block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=('DownBlock2D', 'CrossAttnDownBlock2D') , up_block_types=('CrossAttnUpBlock2D', 'UpBlock2D') , cross_attention_dim=32 , )
return model
@property
def lowerCAmelCase_ ( self : Tuple ):
torch.manual_seed(0 )
SCREAMING_SNAKE_CASE_ = AutoencoderKL(
block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=['DownEncoderBlock2D', 'DownEncoderBlock2D'] , up_block_types=['UpDecoderBlock2D', 'UpDecoderBlock2D'] , latent_channels=4 , )
return model
@property
def lowerCAmelCase_ ( self : Optional[int] ):
torch.manual_seed(0 )
SCREAMING_SNAKE_CASE_ = RobertaSeriesConfig(
hidden_size=32 , project_dim=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=5_006 , )
return RobertaSeriesModelWithTransformation(_lowerCAmelCase )
@property
def lowerCAmelCase_ ( self : List[Any] ):
def extract(*_lowerCAmelCase : Optional[int] , **_lowerCAmelCase : str ):
class lowerCamelCase_ :
'''simple docstring'''
def __init__( self : str ):
SCREAMING_SNAKE_CASE_ = torch.ones([0] )
def lowerCAmelCase_ ( self : Union[str, Any] , _lowerCAmelCase : int ):
self.pixel_values.to(_lowerCAmelCase )
return self
return Out()
return extract
def lowerCAmelCase_ ( self : Optional[Any] ):
SCREAMING_SNAKE_CASE_ = 'cpu' # ensure determinism for the device-dependent torch.Generator
SCREAMING_SNAKE_CASE_ = self.dummy_cond_unet
SCREAMING_SNAKE_CASE_ = PNDMScheduler(skip_prk_steps=_lowerCAmelCase )
SCREAMING_SNAKE_CASE_ = self.dummy_vae
SCREAMING_SNAKE_CASE_ = self.dummy_text_encoder
SCREAMING_SNAKE_CASE_ = XLMRobertaTokenizer.from_pretrained('hf-internal-testing/tiny-xlm-roberta' )
SCREAMING_SNAKE_CASE_ = 77
SCREAMING_SNAKE_CASE_ = self.dummy_image.to(_lowerCAmelCase )
SCREAMING_SNAKE_CASE_ = init_image / 2 + 0.5
# make sure here that pndm scheduler skips prk
SCREAMING_SNAKE_CASE_ = AltDiffusionImgaImgPipeline(
unet=_lowerCAmelCase , scheduler=_lowerCAmelCase , vae=_lowerCAmelCase , text_encoder=_lowerCAmelCase , tokenizer=_lowerCAmelCase , safety_checker=_lowerCAmelCase , feature_extractor=self.dummy_extractor , )
SCREAMING_SNAKE_CASE_ = VaeImageProcessor(vae_scale_factor=alt_pipe.vae_scale_factor , do_normalize=_lowerCAmelCase )
SCREAMING_SNAKE_CASE_ = alt_pipe.to(_lowerCAmelCase )
alt_pipe.set_progress_bar_config(disable=_lowerCAmelCase )
SCREAMING_SNAKE_CASE_ = 'A painting of a squirrel eating a burger'
SCREAMING_SNAKE_CASE_ = torch.Generator(device=_lowerCAmelCase ).manual_seed(0 )
SCREAMING_SNAKE_CASE_ = alt_pipe(
[prompt] , generator=_lowerCAmelCase , guidance_scale=6.0 , num_inference_steps=2 , output_type='np' , image=_lowerCAmelCase , )
SCREAMING_SNAKE_CASE_ = output.images
SCREAMING_SNAKE_CASE_ = torch.Generator(device=_lowerCAmelCase ).manual_seed(0 )
SCREAMING_SNAKE_CASE_ = alt_pipe(
[prompt] , generator=_lowerCAmelCase , guidance_scale=6.0 , num_inference_steps=2 , output_type='np' , image=_lowerCAmelCase , return_dict=_lowerCAmelCase , )[0]
SCREAMING_SNAKE_CASE_ = image[0, -3:, -3:, -1]
SCREAMING_SNAKE_CASE_ = image_from_tuple[0, -3:, -3:, -1]
assert image.shape == (1, 32, 32, 3)
SCREAMING_SNAKE_CASE_ = np.array([0.4427, 0.3731, 0.4249, 0.4941, 0.4546, 0.4148, 0.4193, 0.4666, 0.4499] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 5E-3
assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 5E-3
@unittest.skipIf(torch_device != 'cuda' , 'This test requires a GPU' )
def lowerCAmelCase_ ( self : Tuple ):
SCREAMING_SNAKE_CASE_ = self.dummy_cond_unet
SCREAMING_SNAKE_CASE_ = PNDMScheduler(skip_prk_steps=_lowerCAmelCase )
SCREAMING_SNAKE_CASE_ = self.dummy_vae
SCREAMING_SNAKE_CASE_ = self.dummy_text_encoder
SCREAMING_SNAKE_CASE_ = XLMRobertaTokenizer.from_pretrained('hf-internal-testing/tiny-xlm-roberta' )
SCREAMING_SNAKE_CASE_ = 77
SCREAMING_SNAKE_CASE_ = self.dummy_image.to(_lowerCAmelCase )
# put models in fp16
SCREAMING_SNAKE_CASE_ = unet.half()
SCREAMING_SNAKE_CASE_ = vae.half()
SCREAMING_SNAKE_CASE_ = bert.half()
# make sure here that pndm scheduler skips prk
SCREAMING_SNAKE_CASE_ = AltDiffusionImgaImgPipeline(
unet=_lowerCAmelCase , scheduler=_lowerCAmelCase , vae=_lowerCAmelCase , text_encoder=_lowerCAmelCase , tokenizer=_lowerCAmelCase , safety_checker=_lowerCAmelCase , feature_extractor=self.dummy_extractor , )
SCREAMING_SNAKE_CASE_ = VaeImageProcessor(vae_scale_factor=alt_pipe.vae_scale_factor , do_normalize=_lowerCAmelCase )
SCREAMING_SNAKE_CASE_ = alt_pipe.to(_lowerCAmelCase )
alt_pipe.set_progress_bar_config(disable=_lowerCAmelCase )
SCREAMING_SNAKE_CASE_ = 'A painting of a squirrel eating a burger'
SCREAMING_SNAKE_CASE_ = torch.manual_seed(0 )
SCREAMING_SNAKE_CASE_ = alt_pipe(
[prompt] , generator=_lowerCAmelCase , num_inference_steps=2 , output_type='np' , image=_lowerCAmelCase , ).images
assert image.shape == (1, 32, 32, 3)
@unittest.skipIf(torch_device != 'cuda' , 'This test requires a GPU' )
def lowerCAmelCase_ ( self : str ):
SCREAMING_SNAKE_CASE_ = load_image(
'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main'
'/img2img/sketch-mountains-input.jpg' )
# resize to resolution that is divisible by 8 but not 16 or 32
SCREAMING_SNAKE_CASE_ = init_image.resize((760, 504) )
SCREAMING_SNAKE_CASE_ = 'BAAI/AltDiffusion'
SCREAMING_SNAKE_CASE_ = AltDiffusionImgaImgPipeline.from_pretrained(
_lowerCAmelCase , safety_checker=_lowerCAmelCase , )
pipe.to(_lowerCAmelCase )
pipe.set_progress_bar_config(disable=_lowerCAmelCase )
pipe.enable_attention_slicing()
SCREAMING_SNAKE_CASE_ = 'A fantasy landscape, trending on artstation'
SCREAMING_SNAKE_CASE_ = torch.manual_seed(0 )
SCREAMING_SNAKE_CASE_ = pipe(
prompt=_lowerCAmelCase , image=_lowerCAmelCase , strength=0.75 , guidance_scale=7.5 , generator=_lowerCAmelCase , output_type='np' , )
SCREAMING_SNAKE_CASE_ = output.images[0]
SCREAMING_SNAKE_CASE_ = image[255:258, 383:386, -1]
assert image.shape == (504, 760, 3)
SCREAMING_SNAKE_CASE_ = np.array([0.9358, 0.9397, 0.9599, 0.9901, 1.0000, 1.0000, 0.9882, 1.0000, 1.0000] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
@slow
@require_torch_gpu
class lowerCamelCase_ ( unittest.TestCase ):
'''simple docstring'''
def lowerCAmelCase_ ( self : str ):
# clean up the VRAM after each test
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def lowerCAmelCase_ ( self : int ):
SCREAMING_SNAKE_CASE_ = load_image(
'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main'
'/img2img/sketch-mountains-input.jpg' )
SCREAMING_SNAKE_CASE_ = init_image.resize((768, 512) )
SCREAMING_SNAKE_CASE_ = load_numpy(
'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/img2img/fantasy_landscape_alt.npy' )
SCREAMING_SNAKE_CASE_ = 'BAAI/AltDiffusion'
SCREAMING_SNAKE_CASE_ = AltDiffusionImgaImgPipeline.from_pretrained(
_lowerCAmelCase , safety_checker=_lowerCAmelCase , )
pipe.to(_lowerCAmelCase )
pipe.set_progress_bar_config(disable=_lowerCAmelCase )
pipe.enable_attention_slicing()
SCREAMING_SNAKE_CASE_ = 'A fantasy landscape, trending on artstation'
SCREAMING_SNAKE_CASE_ = torch.manual_seed(0 )
SCREAMING_SNAKE_CASE_ = pipe(
prompt=_lowerCAmelCase , image=_lowerCAmelCase , strength=0.75 , guidance_scale=7.5 , generator=_lowerCAmelCase , output_type='np' , )
SCREAMING_SNAKE_CASE_ = output.images[0]
assert image.shape == (512, 768, 3)
# img2img is flaky across GPUs even in fp32, so using MAE here
assert np.abs(expected_image - image ).max() < 1E-2 | 31 | 0 |
import unittest
import numpy as np
from transformers import AlbertConfig, is_flax_available
from transformers.testing_utils import require_flax, slow
from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor, random_attention_mask
if is_flax_available():
import jax.numpy as jnp
from transformers.models.albert.modeling_flax_albert import (
FlaxAlbertForMaskedLM,
FlaxAlbertForMultipleChoice,
FlaxAlbertForPreTraining,
FlaxAlbertForQuestionAnswering,
FlaxAlbertForSequenceClassification,
FlaxAlbertForTokenClassification,
FlaxAlbertModel,
)
class __a( unittest.TestCase ):
"""simple docstring"""
def __init__( self ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE=13 ,_SCREAMING_SNAKE_CASE=7 ,_SCREAMING_SNAKE_CASE=True ,_SCREAMING_SNAKE_CASE=True ,_SCREAMING_SNAKE_CASE=True ,_SCREAMING_SNAKE_CASE=True ,_SCREAMING_SNAKE_CASE=99 ,_SCREAMING_SNAKE_CASE=32 ,_SCREAMING_SNAKE_CASE=5 ,_SCREAMING_SNAKE_CASE=4 ,_SCREAMING_SNAKE_CASE=37 ,_SCREAMING_SNAKE_CASE="gelu" ,_SCREAMING_SNAKE_CASE=0.1 ,_SCREAMING_SNAKE_CASE=0.1 ,_SCREAMING_SNAKE_CASE=512 ,_SCREAMING_SNAKE_CASE=16 ,_SCREAMING_SNAKE_CASE=2 ,_SCREAMING_SNAKE_CASE=0.02 ,_SCREAMING_SNAKE_CASE=4 ,) -> List[str]:
UpperCAmelCase_ : Dict = parent
UpperCAmelCase_ : List[str] = batch_size
UpperCAmelCase_ : Optional[Any] = seq_length
UpperCAmelCase_ : str = is_training
UpperCAmelCase_ : Union[str, Any] = use_attention_mask
UpperCAmelCase_ : Optional[int] = use_token_type_ids
UpperCAmelCase_ : int = use_labels
UpperCAmelCase_ : str = vocab_size
UpperCAmelCase_ : Optional[int] = hidden_size
UpperCAmelCase_ : Optional[Any] = num_hidden_layers
UpperCAmelCase_ : Optional[Any] = num_attention_heads
UpperCAmelCase_ : Union[str, Any] = intermediate_size
UpperCAmelCase_ : Optional[Any] = hidden_act
UpperCAmelCase_ : Optional[int] = hidden_dropout_prob
UpperCAmelCase_ : List[Any] = attention_probs_dropout_prob
UpperCAmelCase_ : Optional[Any] = max_position_embeddings
UpperCAmelCase_ : Optional[int] = type_vocab_size
UpperCAmelCase_ : Tuple = type_sequence_label_size
UpperCAmelCase_ : Optional[Any] = initializer_range
UpperCAmelCase_ : Tuple = num_choices
def a__ ( self ) -> List[Any]:
UpperCAmelCase_ : int = ids_tensor([self.batch_size, self.seq_length] ,self.vocab_size )
UpperCAmelCase_ : Optional[int] = None
if self.use_attention_mask:
UpperCAmelCase_ : Union[str, Any] = random_attention_mask([self.batch_size, self.seq_length] )
UpperCAmelCase_ : Union[str, Any] = None
if self.use_token_type_ids:
UpperCAmelCase_ : Dict = ids_tensor([self.batch_size, self.seq_length] ,self.type_vocab_size )
UpperCAmelCase_ : Any = AlbertConfig(
vocab_size=self.vocab_size ,hidden_size=self.hidden_size ,num_hidden_layers=self.num_hidden_layers ,num_attention_heads=self.num_attention_heads ,intermediate_size=self.intermediate_size ,hidden_act=self.hidden_act ,hidden_dropout_prob=self.hidden_dropout_prob ,attention_probs_dropout_prob=self.attention_probs_dropout_prob ,max_position_embeddings=self.max_position_embeddings ,type_vocab_size=self.type_vocab_size ,is_decoder=_lowerCAmelCase ,initializer_range=self.initializer_range ,)
return config, input_ids, token_type_ids, attention_mask
def a__ ( self ) -> Optional[int]:
UpperCAmelCase_ : str = self.prepare_config_and_inputs()
UpperCAmelCase_, UpperCAmelCase_, UpperCAmelCase_, UpperCAmelCase_ : Union[str, Any] = config_and_inputs
UpperCAmelCase_ : int = {'''input_ids''': input_ids, '''token_type_ids''': token_type_ids, '''attention_mask''': attention_mask}
return config, inputs_dict
@require_flax
class __a( _SCREAMING_SNAKE_CASE , unittest.TestCase ):
"""simple docstring"""
lowerCAmelCase = (
(
FlaxAlbertModel,
FlaxAlbertForPreTraining,
FlaxAlbertForMaskedLM,
FlaxAlbertForMultipleChoice,
FlaxAlbertForQuestionAnswering,
FlaxAlbertForSequenceClassification,
FlaxAlbertForTokenClassification,
FlaxAlbertForQuestionAnswering,
)
if is_flax_available()
else ()
)
def a__ ( self ) -> Dict:
UpperCAmelCase_ : Union[str, Any] = FlaxAlbertModelTester(self )
@slow
def a__ ( self ) -> List[Any]:
for model_class_name in self.all_model_classes:
UpperCAmelCase_ : int = model_class_name.from_pretrained('''albert-base-v2''' )
UpperCAmelCase_ : Dict = model(np.ones((1, 1) ) )
self.assertIsNotNone(_lowerCAmelCase )
@require_flax
class __a( unittest.TestCase ):
"""simple docstring"""
@slow
def a__ ( self ) -> int:
UpperCAmelCase_ : int = FlaxAlbertModel.from_pretrained('''albert-base-v2''' )
UpperCAmelCase_ : str = np.array([[0, 345, 232, 328, 740, 140, 1_695, 69, 6_078, 1_588, 2]] )
UpperCAmelCase_ : Dict = np.array([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] )
UpperCAmelCase_ : Union[str, Any] = model(_lowerCAmelCase ,attention_mask=_lowerCAmelCase )[0]
UpperCAmelCase_ : Any = (1, 11, 768)
self.assertEqual(output.shape ,_lowerCAmelCase )
UpperCAmelCase_ : Tuple = np.array(
[[[-0.65_13, 1.50_35, -0.27_66], [-0.65_15, 1.50_46, -0.27_80], [-0.65_12, 1.50_49, -0.27_84]]] )
self.assertTrue(jnp.allclose(output[:, 1:4, 1:4] ,_lowerCAmelCase ,atol=1e-4 ) ) | 30 |
from collections import OrderedDict
from typing import TYPE_CHECKING, Any, List, Mapping, Optional, Union
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig
from ...utils import TensorType, logging
if TYPE_CHECKING:
from ...onnx.config import PatchingSpec
from ...tokenization_utils_base import PreTrainedTokenizerBase
lowerCamelCase__ : Optional[int] = logging.get_logger(__name__)
lowerCamelCase__ : Dict = {
'allenai/longformer-base-4096': 'https://huggingface.co/allenai/longformer-base-4096/resolve/main/config.json',
'allenai/longformer-large-4096': 'https://huggingface.co/allenai/longformer-large-4096/resolve/main/config.json',
'allenai/longformer-large-4096-finetuned-triviaqa': (
'https://huggingface.co/allenai/longformer-large-4096-finetuned-triviaqa/resolve/main/config.json'
),
'allenai/longformer-base-4096-extra.pos.embd.only': (
'https://huggingface.co/allenai/longformer-base-4096-extra.pos.embd.only/resolve/main/config.json'
),
'allenai/longformer-large-4096-extra.pos.embd.only': (
'https://huggingface.co/allenai/longformer-large-4096-extra.pos.embd.only/resolve/main/config.json'
),
}
class lowerCamelCase_ ( _SCREAMING_SNAKE_CASE ):
'''simple docstring'''
lowercase_ = "longformer"
def __init__( self : Union[str, Any] , _lowerCAmelCase : Union[List[int], int] = 512 , _lowerCAmelCase : int = 2 , _lowerCAmelCase : int = 1 , _lowerCAmelCase : int = 0 , _lowerCAmelCase : int = 2 , _lowerCAmelCase : int = 30_522 , _lowerCAmelCase : int = 768 , _lowerCAmelCase : int = 12 , _lowerCAmelCase : int = 12 , _lowerCAmelCase : int = 3_072 , _lowerCAmelCase : str = "gelu" , _lowerCAmelCase : float = 0.1 , _lowerCAmelCase : float = 0.1 , _lowerCAmelCase : int = 512 , _lowerCAmelCase : int = 2 , _lowerCAmelCase : float = 0.02 , _lowerCAmelCase : float = 1E-12 , _lowerCAmelCase : bool = False , **_lowerCAmelCase : Union[str, Any] , ):
super().__init__(pad_token_id=_lowerCAmelCase , **_lowerCAmelCase )
SCREAMING_SNAKE_CASE_ = attention_window
SCREAMING_SNAKE_CASE_ = sep_token_id
SCREAMING_SNAKE_CASE_ = bos_token_id
SCREAMING_SNAKE_CASE_ = eos_token_id
SCREAMING_SNAKE_CASE_ = vocab_size
SCREAMING_SNAKE_CASE_ = hidden_size
SCREAMING_SNAKE_CASE_ = num_hidden_layers
SCREAMING_SNAKE_CASE_ = num_attention_heads
SCREAMING_SNAKE_CASE_ = hidden_act
SCREAMING_SNAKE_CASE_ = intermediate_size
SCREAMING_SNAKE_CASE_ = hidden_dropout_prob
SCREAMING_SNAKE_CASE_ = attention_probs_dropout_prob
SCREAMING_SNAKE_CASE_ = max_position_embeddings
SCREAMING_SNAKE_CASE_ = type_vocab_size
SCREAMING_SNAKE_CASE_ = initializer_range
SCREAMING_SNAKE_CASE_ = layer_norm_eps
SCREAMING_SNAKE_CASE_ = onnx_export
class lowerCamelCase_ ( _SCREAMING_SNAKE_CASE ):
'''simple docstring'''
def __init__( self : Optional[Any] , _lowerCAmelCase : "PretrainedConfig" , _lowerCAmelCase : str = "default" , _lowerCAmelCase : "List[PatchingSpec]" = None ):
super().__init__(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase )
SCREAMING_SNAKE_CASE_ = True
@property
def lowerCAmelCase_ ( self : Any ):
if self.task == "multiple-choice":
SCREAMING_SNAKE_CASE_ = {0: 'batch', 1: 'choice', 2: 'sequence'}
else:
SCREAMING_SNAKE_CASE_ = {0: 'batch', 1: 'sequence'}
return OrderedDict(
[
('input_ids', dynamic_axis),
('attention_mask', dynamic_axis),
('global_attention_mask', dynamic_axis),
] )
@property
def lowerCAmelCase_ ( self : Optional[int] ):
SCREAMING_SNAKE_CASE_ = super().outputs
if self.task == "default":
SCREAMING_SNAKE_CASE_ = {0: 'batch'}
return outputs
@property
def lowerCAmelCase_ ( self : str ):
return 1E-4
@property
def lowerCAmelCase_ ( self : Optional[Any] ):
# needs to be >= 14 to support tril operator
return max(super().default_onnx_opset , 14 )
def lowerCAmelCase_ ( self : str , _lowerCAmelCase : "PreTrainedTokenizerBase" , _lowerCAmelCase : int = -1 , _lowerCAmelCase : int = -1 , _lowerCAmelCase : bool = False , _lowerCAmelCase : Optional[TensorType] = None , ):
SCREAMING_SNAKE_CASE_ = super().generate_dummy_inputs(
preprocessor=_lowerCAmelCase , batch_size=_lowerCAmelCase , seq_length=_lowerCAmelCase , is_pair=_lowerCAmelCase , framework=_lowerCAmelCase )
import torch
# for some reason, replacing this code by inputs["global_attention_mask"] = torch.randint(2, inputs["input_ids"].shape, dtype=torch.int64)
# makes the export fail randomly
SCREAMING_SNAKE_CASE_ = torch.zeros_like(inputs['input_ids'] )
# make every second token global
SCREAMING_SNAKE_CASE_ = 1
return inputs | 31 | 0 |
'''simple docstring'''
import unittest
import numpy as np
import requests
from transformers.testing_utils import require_torch, require_vision
from transformers.utils import is_torch_available, is_vision_available
from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs
if is_torch_available():
import torch
from transformers.pytorch_utils import is_torch_greater_or_equal_than_1_11
else:
A_ = False
if is_vision_available():
from PIL import Image
from transformers import PixaStructImageProcessor
class lowercase_ ( unittest.TestCase ):
def __init__( self : Tuple , __lowerCamelCase : Tuple , __lowerCamelCase : Optional[Any]=7 , __lowerCamelCase : List[Any]=3 , __lowerCamelCase : Tuple=18 , __lowerCamelCase : str=30 , __lowerCamelCase : str=400 , __lowerCamelCase : Union[str, Any]=None , __lowerCamelCase : int=True , __lowerCamelCase : List[Any]=True , __lowerCamelCase : Any=None , ):
snake_case__ : Optional[int] = size if size is not None else {'height': 20, 'width': 20}
snake_case__ : int = parent
snake_case__ : int = batch_size
snake_case__ : str = num_channels
snake_case__ : Union[str, Any] = image_size
snake_case__ : Optional[Any] = min_resolution
snake_case__ : Optional[Any] = max_resolution
snake_case__ : Optional[Any] = size
snake_case__ : int = do_normalize
snake_case__ : List[Any] = do_convert_rgb
snake_case__ : Union[str, Any] = [512, 1024, 2048, 4096]
snake_case__ : Optional[Any] = patch_size if patch_size is not None else {'height': 16, 'width': 16}
def _lowerCAmelCase ( self : List[str] ):
return {"do_normalize": self.do_normalize, "do_convert_rgb": self.do_convert_rgb}
def _lowerCAmelCase ( self : List[Any] ):
snake_case__ : List[Any] = 'https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/tasks/australia.jpg'
snake_case__ : Union[str, Any] = Image.open(requests.get(_lowerCAmelCase , stream=_lowerCAmelCase ).raw ).convert('RGB' )
return raw_image
@unittest.skipIf(
not is_torch_greater_or_equal_than_1_11 , reason="`Pix2StructImageProcessor` requires `torch>=1.11.0`." , )
@require_torch
@require_vision
class lowercase_ ( _SCREAMING_SNAKE_CASE , unittest.TestCase ):
A_ = PixaStructImageProcessor if is_vision_available() else None
def _lowerCAmelCase ( self : Union[str, Any] ):
snake_case__ : List[str] = PixaStructImageProcessingTester(self )
@property
def _lowerCAmelCase ( self : int ):
return self.image_processor_tester.prepare_image_processor_dict()
def _lowerCAmelCase ( self : Any ):
snake_case__ : Tuple = self.image_processing_class(**self.image_processor_dict )
self.assertTrue(hasattr(_lowerCAmelCase , 'do_normalize' ) )
self.assertTrue(hasattr(_lowerCAmelCase , 'do_convert_rgb' ) )
def _lowerCAmelCase ( self : Optional[Any] ):
snake_case__ : str = self.image_processor_tester.prepare_dummy_image()
snake_case__ : Optional[Any] = self.image_processing_class(**self.image_processor_dict )
snake_case__ : List[str] = 2048
snake_case__ : Any = image_processor(_lowerCAmelCase , return_tensors='pt' , max_patches=_lowerCAmelCase )
self.assertTrue(torch.allclose(inputs.flattened_patches.mean() , torch.tensor(0.0_6_0_6 ) , atol=1E-3 , rtol=1E-3 ) )
def _lowerCAmelCase ( self : str ):
# Initialize image_processor
snake_case__ : int = self.image_processing_class(**self.image_processor_dict )
# create random PIL images
snake_case__ : List[Any] = prepare_image_inputs(self.image_processor_tester , equal_resolution=_lowerCAmelCase )
for image in image_inputs:
self.assertIsInstance(_lowerCAmelCase , Image.Image )
# Test not batched input
snake_case__ : Union[str, Any] = (
(self.image_processor_tester.patch_size['height'] * self.image_processor_tester.patch_size['width'])
* self.image_processor_tester.num_channels
) + 2
for max_patch in self.image_processor_tester.max_patches:
# Test not batched input
snake_case__ : List[Any] = image_processor(
image_inputs[0] , return_tensors='pt' , max_patches=_lowerCAmelCase ).flattened_patches
self.assertEqual(
encoded_images.shape , (1, max_patch, expected_hidden_dim) , )
# Test batched
snake_case__ : List[str] = image_processor(
_lowerCAmelCase , return_tensors='pt' , max_patches=_lowerCAmelCase ).flattened_patches
self.assertEqual(
encoded_images.shape , (self.image_processor_tester.batch_size, max_patch, expected_hidden_dim) , )
def _lowerCAmelCase ( self : int ):
# Initialize image_processor
snake_case__ : Any = self.image_processing_class(**self.image_processor_dict )
# create random PIL images
snake_case__ : Optional[int] = prepare_image_inputs(self.image_processor_tester , equal_resolution=_lowerCAmelCase )
for image in image_inputs:
self.assertIsInstance(_lowerCAmelCase , Image.Image )
# Test not batched input
snake_case__ : Tuple = (
(self.image_processor_tester.patch_size['height'] * self.image_processor_tester.patch_size['width'])
* self.image_processor_tester.num_channels
) + 2
snake_case__ : Optional[int] = True
for max_patch in self.image_processor_tester.max_patches:
# Test not batched input
with self.assertRaises(_lowerCAmelCase ):
snake_case__ : int = image_processor(
image_inputs[0] , return_tensors='pt' , max_patches=_lowerCAmelCase ).flattened_patches
snake_case__ : int = 'Hello'
snake_case__ : int = image_processor(
image_inputs[0] , return_tensors='pt' , max_patches=_lowerCAmelCase , header_text=_lowerCAmelCase ).flattened_patches
self.assertEqual(
encoded_images.shape , (1, max_patch, expected_hidden_dim) , )
# Test batched
snake_case__ : List[str] = image_processor(
_lowerCAmelCase , return_tensors='pt' , max_patches=_lowerCAmelCase , header_text=_lowerCAmelCase ).flattened_patches
self.assertEqual(
encoded_images.shape , (self.image_processor_tester.batch_size, max_patch, expected_hidden_dim) , )
def _lowerCAmelCase ( self : str ):
# Initialize image_processor
snake_case__ : int = self.image_processing_class(**self.image_processor_dict )
# create random numpy tensors
snake_case__ : Any = prepare_image_inputs(self.image_processor_tester , equal_resolution=_lowerCAmelCase , numpify=_lowerCAmelCase )
for image in image_inputs:
self.assertIsInstance(_lowerCAmelCase , np.ndarray )
snake_case__ : List[str] = (
(self.image_processor_tester.patch_size['height'] * self.image_processor_tester.patch_size['width'])
* self.image_processor_tester.num_channels
) + 2
for max_patch in self.image_processor_tester.max_patches:
# Test not batched input
snake_case__ : str = image_processor(
image_inputs[0] , return_tensors='pt' , max_patches=_lowerCAmelCase ).flattened_patches
self.assertEqual(
encoded_images.shape , (1, max_patch, expected_hidden_dim) , )
# Test batched
snake_case__ : str = image_processor(
_lowerCAmelCase , return_tensors='pt' , max_patches=_lowerCAmelCase ).flattened_patches
self.assertEqual(
encoded_images.shape , (self.image_processor_tester.batch_size, max_patch, expected_hidden_dim) , )
def _lowerCAmelCase ( self : str ):
# Initialize image_processor
snake_case__ : Tuple = self.image_processing_class(**self.image_processor_dict )
# create random PyTorch tensors
snake_case__ : Union[str, Any] = prepare_image_inputs(self.image_processor_tester , equal_resolution=_lowerCAmelCase , torchify=_lowerCAmelCase )
for image in image_inputs:
self.assertIsInstance(_lowerCAmelCase , torch.Tensor )
# Test not batched input
snake_case__ : Tuple = (
(self.image_processor_tester.patch_size['height'] * self.image_processor_tester.patch_size['width'])
* self.image_processor_tester.num_channels
) + 2
for max_patch in self.image_processor_tester.max_patches:
# Test not batched input
snake_case__ : int = image_processor(
image_inputs[0] , return_tensors='pt' , max_patches=_lowerCAmelCase ).flattened_patches
self.assertEqual(
encoded_images.shape , (1, max_patch, expected_hidden_dim) , )
# Test batched
snake_case__ : Any = image_processor(
_lowerCAmelCase , return_tensors='pt' , max_patches=_lowerCAmelCase ).flattened_patches
self.assertEqual(
encoded_images.shape , (self.image_processor_tester.batch_size, max_patch, expected_hidden_dim) , )
@unittest.skipIf(
not is_torch_greater_or_equal_than_1_11 , reason="`Pix2StructImageProcessor` requires `torch>=1.11.0`." , )
@require_torch
@require_vision
class lowercase_ ( _SCREAMING_SNAKE_CASE , unittest.TestCase ):
A_ = PixaStructImageProcessor if is_vision_available() else None
def _lowerCAmelCase ( self : List[Any] ):
snake_case__ : List[Any] = PixaStructImageProcessingTester(self , num_channels=4 )
snake_case__ : Dict = 3
@property
def _lowerCAmelCase ( self : Any ):
return self.image_processor_tester.prepare_image_processor_dict()
def _lowerCAmelCase ( self : str ):
snake_case__ : Dict = self.image_processing_class(**self.image_processor_dict )
self.assertTrue(hasattr(_lowerCAmelCase , 'do_normalize' ) )
self.assertTrue(hasattr(_lowerCAmelCase , 'do_convert_rgb' ) )
def _lowerCAmelCase ( self : List[str] ):
# Initialize image_processor
snake_case__ : Any = self.image_processing_class(**self.image_processor_dict )
# create random PIL images
snake_case__ : int = prepare_image_inputs(self.image_processor_tester , equal_resolution=_lowerCAmelCase )
for image in image_inputs:
self.assertIsInstance(_lowerCAmelCase , Image.Image )
# Test not batched input
snake_case__ : Tuple = (
(self.image_processor_tester.patch_size['height'] * self.image_processor_tester.patch_size['width'])
* (self.image_processor_tester.num_channels - 1)
) + 2
for max_patch in self.image_processor_tester.max_patches:
# Test not batched input
snake_case__ : str = image_processor(
image_inputs[0] , return_tensors='pt' , max_patches=_lowerCAmelCase ).flattened_patches
self.assertEqual(
encoded_images.shape , (1, max_patch, expected_hidden_dim) , )
# Test batched
snake_case__ : List[Any] = image_processor(
_lowerCAmelCase , return_tensors='pt' , max_patches=_lowerCAmelCase ).flattened_patches
self.assertEqual(
encoded_images.shape , (self.image_processor_tester.batch_size, max_patch, expected_hidden_dim) , )
| 270 |
import warnings
from ...utils import logging
from .image_processing_mobilevit import MobileViTImageProcessor
lowerCamelCase__ : Optional[int] = logging.get_logger(__name__)
class lowerCamelCase_ ( _SCREAMING_SNAKE_CASE ):
'''simple docstring'''
def __init__( self : str , *_lowerCAmelCase : Tuple , **_lowerCAmelCase : int ):
warnings.warn(
'The class MobileViTFeatureExtractor is deprecated and will be removed in version 5 of Transformers.'
' Please use MobileViTImageProcessor instead.' , _lowerCAmelCase , )
super().__init__(*_lowerCAmelCase , **_lowerCAmelCase ) | 31 | 0 |
'''simple docstring'''
import warnings
from diffusers import StableDiffusionImgaImgPipeline # noqa F401
warnings.warn(
"The `image_to_image.py` script is outdated. Please use directly `from diffusers import"
" StableDiffusionImg2ImgPipeline` instead."
)
| 591 |
from ...configuration_utils import PretrainedConfig
from ...utils import logging
lowerCamelCase__ : Optional[int] = logging.get_logger(__name__)
lowerCamelCase__ : Tuple = {
'microsoft/swinv2-tiny-patch4-window8-256': (
'https://huggingface.co/microsoft/swinv2-tiny-patch4-window8-256/resolve/main/config.json'
),
}
class lowerCamelCase_ ( _SCREAMING_SNAKE_CASE ):
'''simple docstring'''
lowercase_ = "swinv2"
lowercase_ = {
"num_attention_heads": "num_heads",
"num_hidden_layers": "num_layers",
}
def __init__( self : Dict , _lowerCAmelCase : Optional[Any]=224 , _lowerCAmelCase : Optional[int]=4 , _lowerCAmelCase : Tuple=3 , _lowerCAmelCase : Tuple=96 , _lowerCAmelCase : Dict=[2, 2, 6, 2] , _lowerCAmelCase : Optional[Any]=[3, 6, 12, 24] , _lowerCAmelCase : str=7 , _lowerCAmelCase : List[Any]=4.0 , _lowerCAmelCase : List[str]=True , _lowerCAmelCase : List[Any]=0.0 , _lowerCAmelCase : List[Any]=0.0 , _lowerCAmelCase : Any=0.1 , _lowerCAmelCase : List[Any]="gelu" , _lowerCAmelCase : str=False , _lowerCAmelCase : str=0.02 , _lowerCAmelCase : List[Any]=1E-5 , _lowerCAmelCase : str=32 , **_lowerCAmelCase : List[Any] , ):
super().__init__(**_lowerCAmelCase )
SCREAMING_SNAKE_CASE_ = image_size
SCREAMING_SNAKE_CASE_ = patch_size
SCREAMING_SNAKE_CASE_ = num_channels
SCREAMING_SNAKE_CASE_ = embed_dim
SCREAMING_SNAKE_CASE_ = depths
SCREAMING_SNAKE_CASE_ = len(_lowerCAmelCase )
SCREAMING_SNAKE_CASE_ = num_heads
SCREAMING_SNAKE_CASE_ = window_size
SCREAMING_SNAKE_CASE_ = mlp_ratio
SCREAMING_SNAKE_CASE_ = qkv_bias
SCREAMING_SNAKE_CASE_ = hidden_dropout_prob
SCREAMING_SNAKE_CASE_ = attention_probs_dropout_prob
SCREAMING_SNAKE_CASE_ = drop_path_rate
SCREAMING_SNAKE_CASE_ = hidden_act
SCREAMING_SNAKE_CASE_ = use_absolute_embeddings
SCREAMING_SNAKE_CASE_ = layer_norm_eps
SCREAMING_SNAKE_CASE_ = initializer_range
SCREAMING_SNAKE_CASE_ = encoder_stride
# we set the hidden_size attribute in order to make Swinv2 work with VisionEncoderDecoderModel
# this indicates the channel dimension after the last stage of the model
SCREAMING_SNAKE_CASE_ = int(embed_dim * 2 ** (len(_lowerCAmelCase ) - 1) )
SCREAMING_SNAKE_CASE_ = (0, 0, 0, 0) | 31 | 0 |
import gc
import unittest
from parameterized import parameterized
from diffusers import FlaxUNetaDConditionModel
from diffusers.utils import is_flax_available
from diffusers.utils.testing_utils import load_hf_numpy, require_flax, slow
if is_flax_available():
import jax
import jax.numpy as jnp
@slow
@require_flax
class _lowercase ( unittest.TestCase ):
def SCREAMING_SNAKE_CASE__ ( self : List[str] , snake_case : Dict , snake_case : Optional[int] ) -> Optional[int]:
"""simple docstring"""
return f"gaussian_noise_s={seed}_shape={'_'.join([str(_lowerCAmelCase ) for s in shape] )}.npy"
def SCREAMING_SNAKE_CASE__ ( self : Tuple ) -> List[Any]:
"""simple docstring"""
super().tearDown()
gc.collect()
def SCREAMING_SNAKE_CASE__ ( self : int , snake_case : int=0 , snake_case : Dict=(4, 4, 6_4, 6_4) , snake_case : List[str]=False ) -> List[Any]:
"""simple docstring"""
UpperCamelCase_ : int = jnp.bfloataa if fpaa else jnp.floataa
UpperCamelCase_ : str = jnp.array(load_hf_numpy(self.get_file_format(_lowerCAmelCase , _lowerCAmelCase ) ) , dtype=_lowerCAmelCase )
return image
def SCREAMING_SNAKE_CASE__ ( self : List[str] , snake_case : List[Any]=False , snake_case : Optional[Any]="CompVis/stable-diffusion-v1-4" ) -> str:
"""simple docstring"""
UpperCamelCase_ : Union[str, Any] = jnp.bfloataa if fpaa else jnp.floataa
UpperCamelCase_ : int = 'bf16' if fpaa else None
UpperCamelCase_, UpperCamelCase_ : Dict = FlaxUNetaDConditionModel.from_pretrained(
_lowerCAmelCase , subfolder='unet' , dtype=_lowerCAmelCase , revision=_lowerCAmelCase )
return model, params
def SCREAMING_SNAKE_CASE__ ( self : List[Any] , snake_case : Tuple=0 , snake_case : List[str]=(4, 7_7, 7_6_8) , snake_case : List[str]=False ) -> Tuple:
"""simple docstring"""
UpperCamelCase_ : int = jnp.bfloataa if fpaa else jnp.floataa
UpperCamelCase_ : Optional[Any] = jnp.array(load_hf_numpy(self.get_file_format(_lowerCAmelCase , _lowerCAmelCase ) ) , dtype=_lowerCAmelCase )
return hidden_states
@parameterized.expand(
[
# fmt: off
[8_3, 4, [-0.2323, -0.1304, 0.0813, -0.3093, -0.0919, -0.1571, -0.1125, -0.5806]],
[1_7, 0.55, [-0.0831, -0.2443, 0.0901, -0.0919, 0.3396, 0.0103, -0.3743, 0.0701]],
[8, 0.89, [-0.4863, 0.0859, 0.0875, -0.1658, 0.9199, -0.0114, 0.4839, 0.4639]],
[3, 1_0_0_0, [-0.5649, 0.2402, -0.5518, 0.1248, 1.1328, -0.2443, -0.0325, -1.0078]],
# fmt: on
] )
def SCREAMING_SNAKE_CASE__ ( self : List[str] , snake_case : Optional[Any] , snake_case : Any , snake_case : Optional[Any] ) -> str:
"""simple docstring"""
UpperCamelCase_, UpperCamelCase_ : int = self.get_unet_model(model_id='CompVis/stable-diffusion-v1-4' , fpaa=_lowerCAmelCase )
UpperCamelCase_ : Tuple = self.get_latents(_lowerCAmelCase , fpaa=_lowerCAmelCase )
UpperCamelCase_ : List[Any] = self.get_encoder_hidden_states(_lowerCAmelCase , fpaa=_lowerCAmelCase )
UpperCamelCase_ : str = model.apply(
{'params': params} , _lowerCAmelCase , jnp.array(_lowerCAmelCase , dtype=jnp.intaa ) , encoder_hidden_states=_lowerCAmelCase , ).sample
assert sample.shape == latents.shape
UpperCamelCase_ : Union[str, Any] = jnp.asarray(jax.device_get((sample[-1, -2:, -2:, :2].flatten()) ) , dtype=jnp.floataa )
UpperCamelCase_ : Dict = jnp.array(_lowerCAmelCase , dtype=jnp.floataa )
# Found torch (float16) and flax (bfloat16) outputs to be within this tolerance, in the same hardware
assert jnp.allclose(_lowerCAmelCase , _lowerCAmelCase , atol=1e-2 )
@parameterized.expand(
[
# fmt: off
[8_3, 4, [0.1514, 0.0807, 0.1624, 0.1016, -0.1896, 0.0263, 0.0677, 0.2310]],
[1_7, 0.55, [0.1164, -0.0216, 0.0170, 0.1589, -0.3120, 0.1005, -0.0581, -0.1458]],
[8, 0.89, [-0.1758, -0.0169, 0.1004, -0.1411, 0.1312, 0.1103, -0.1996, 0.2139]],
[3, 1_0_0_0, [0.1214, 0.0352, -0.0731, -0.1562, -0.0994, -0.0906, -0.2340, -0.0539]],
# fmt: on
] )
def SCREAMING_SNAKE_CASE__ ( self : Optional[int] , snake_case : Union[str, Any] , snake_case : Dict , snake_case : Dict ) -> Optional[Any]:
"""simple docstring"""
UpperCamelCase_, UpperCamelCase_ : Dict = self.get_unet_model(model_id='stabilityai/stable-diffusion-2' , fpaa=_lowerCAmelCase )
UpperCamelCase_ : Union[str, Any] = self.get_latents(_lowerCAmelCase , shape=(4, 4, 9_6, 9_6) , fpaa=_lowerCAmelCase )
UpperCamelCase_ : Dict = self.get_encoder_hidden_states(_lowerCAmelCase , shape=(4, 7_7, 1_0_2_4) , fpaa=_lowerCAmelCase )
UpperCamelCase_ : Tuple = model.apply(
{'params': params} , _lowerCAmelCase , jnp.array(_lowerCAmelCase , dtype=jnp.intaa ) , encoder_hidden_states=_lowerCAmelCase , ).sample
assert sample.shape == latents.shape
UpperCamelCase_ : List[str] = jnp.asarray(jax.device_get((sample[-1, -2:, -2:, :2].flatten()) ) , dtype=jnp.floataa )
UpperCamelCase_ : Union[str, Any] = jnp.array(_lowerCAmelCase , dtype=jnp.floataa )
# Found torch (float16) and flax (bfloat16) outputs to be within this tolerance, on the same hardware
assert jnp.allclose(_lowerCAmelCase , _lowerCAmelCase , atol=1e-2 )
| 417 |
import itertools
import random
import unittest
import numpy as np
from transformers import BatchFeature, SpeechTaFeatureExtractor
from transformers.testing_utils import require_torch
from transformers.utils.import_utils import is_torch_available
from ...test_sequence_feature_extraction_common import SequenceFeatureExtractionTestMixin
if is_torch_available():
import torch
lowerCamelCase__ : Dict = random.Random()
def UpperCAmelCase_ ( __UpperCAmelCase : int , __UpperCAmelCase : Tuple=1.0 , __UpperCAmelCase : Dict=None , __UpperCAmelCase : Dict=None ) -> Tuple:
if rng is None:
SCREAMING_SNAKE_CASE_ = global_rng
SCREAMING_SNAKE_CASE_ = []
for batch_idx in range(shape[0] ):
values.append([] )
for _ in range(shape[1] ):
values[-1].append(rng.random() * scale )
return values
@require_torch
class lowerCamelCase_ ( unittest.TestCase ):
'''simple docstring'''
def __init__( self : List[str] , _lowerCAmelCase : int , _lowerCAmelCase : Optional[Any]=7 , _lowerCAmelCase : Union[str, Any]=400 , _lowerCAmelCase : Tuple=2_000 , _lowerCAmelCase : str=1 , _lowerCAmelCase : int=0.0 , _lowerCAmelCase : Optional[Any]=16_000 , _lowerCAmelCase : Optional[Any]=True , _lowerCAmelCase : Any=80 , _lowerCAmelCase : Union[str, Any]=16 , _lowerCAmelCase : List[str]=64 , _lowerCAmelCase : List[Any]="hann_window" , _lowerCAmelCase : Any=80 , _lowerCAmelCase : List[Any]=7_600 , _lowerCAmelCase : List[Any]=1E-10 , _lowerCAmelCase : Optional[Any]=True , ):
SCREAMING_SNAKE_CASE_ = parent
SCREAMING_SNAKE_CASE_ = batch_size
SCREAMING_SNAKE_CASE_ = min_seq_length
SCREAMING_SNAKE_CASE_ = max_seq_length
SCREAMING_SNAKE_CASE_ = (self.max_seq_length - self.min_seq_length) // (self.batch_size - 1)
SCREAMING_SNAKE_CASE_ = feature_size
SCREAMING_SNAKE_CASE_ = padding_value
SCREAMING_SNAKE_CASE_ = sampling_rate
SCREAMING_SNAKE_CASE_ = do_normalize
SCREAMING_SNAKE_CASE_ = num_mel_bins
SCREAMING_SNAKE_CASE_ = hop_length
SCREAMING_SNAKE_CASE_ = win_length
SCREAMING_SNAKE_CASE_ = win_function
SCREAMING_SNAKE_CASE_ = fmin
SCREAMING_SNAKE_CASE_ = fmax
SCREAMING_SNAKE_CASE_ = mel_floor
SCREAMING_SNAKE_CASE_ = return_attention_mask
def lowerCAmelCase_ ( self : Union[str, Any] ):
return {
"feature_size": self.feature_size,
"padding_value": self.padding_value,
"sampling_rate": self.sampling_rate,
"do_normalize": self.do_normalize,
"num_mel_bins": self.num_mel_bins,
"hop_length": self.hop_length,
"win_length": self.win_length,
"win_function": self.win_function,
"fmin": self.fmin,
"fmax": self.fmax,
"mel_floor": self.mel_floor,
"return_attention_mask": self.return_attention_mask,
}
def lowerCAmelCase_ ( self : Dict , _lowerCAmelCase : Optional[int]=False , _lowerCAmelCase : str=False ):
def _flatten(_lowerCAmelCase : Dict ):
return list(itertools.chain(*_lowerCAmelCase ) )
if equal_length:
SCREAMING_SNAKE_CASE_ = floats_list((self.batch_size, self.max_seq_length) )
else:
# make sure that inputs increase in size
SCREAMING_SNAKE_CASE_ = [
_flatten(floats_list((x, self.feature_size) ) )
for x in range(self.min_seq_length , self.max_seq_length , self.seq_length_diff )
]
if numpify:
SCREAMING_SNAKE_CASE_ = [np.asarray(_lowerCAmelCase ) for x in speech_inputs]
return speech_inputs
def lowerCAmelCase_ ( self : List[Any] , _lowerCAmelCase : Union[str, Any]=False , _lowerCAmelCase : Optional[int]=False ):
if equal_length:
SCREAMING_SNAKE_CASE_ = [floats_list((self.max_seq_length, self.num_mel_bins) ) for _ in range(self.batch_size )]
else:
# make sure that inputs increase in size
SCREAMING_SNAKE_CASE_ = [
floats_list((x, self.num_mel_bins) )
for x in range(self.min_seq_length , self.max_seq_length , self.seq_length_diff )
]
if numpify:
SCREAMING_SNAKE_CASE_ = [np.asarray(_lowerCAmelCase ) for x in speech_inputs]
return speech_inputs
@require_torch
class lowerCamelCase_ ( _SCREAMING_SNAKE_CASE , unittest.TestCase ):
'''simple docstring'''
lowercase_ = SpeechTaFeatureExtractor
def lowerCAmelCase_ ( self : Any ):
SCREAMING_SNAKE_CASE_ = SpeechTaFeatureExtractionTester(self )
def lowerCAmelCase_ ( self : Any , _lowerCAmelCase : int ):
self.assertTrue(np.all(np.mean(_lowerCAmelCase , axis=0 ) < 1E-3 ) )
self.assertTrue(np.all(np.abs(np.var(_lowerCAmelCase , axis=0 ) - 1 ) < 1E-3 ) )
def lowerCAmelCase_ ( self : List[Any] ):
# Tests that all call wrap to encode_plus and batch_encode_plus
SCREAMING_SNAKE_CASE_ = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() )
# create three inputs of length 800, 1000, and 1200
SCREAMING_SNAKE_CASE_ = [floats_list((1, x) )[0] for x in range(800 , 1_400 , 200 )]
SCREAMING_SNAKE_CASE_ = [np.asarray(_lowerCAmelCase ) for speech_input in speech_inputs]
# Test not batched input
SCREAMING_SNAKE_CASE_ = feat_extract(speech_inputs[0] , return_tensors='np' ).input_values
SCREAMING_SNAKE_CASE_ = feat_extract(np_speech_inputs[0] , return_tensors='np' ).input_values
self.assertTrue(np.allclose(_lowerCAmelCase , _lowerCAmelCase , atol=1E-3 ) )
# Test batched
SCREAMING_SNAKE_CASE_ = feat_extract(_lowerCAmelCase , return_tensors='np' ).input_values
SCREAMING_SNAKE_CASE_ = feat_extract(_lowerCAmelCase , return_tensors='np' ).input_values
for enc_seq_a, enc_seq_a in zip(_lowerCAmelCase , _lowerCAmelCase ):
self.assertTrue(np.allclose(_lowerCAmelCase , _lowerCAmelCase , atol=1E-3 ) )
def lowerCAmelCase_ ( self : Union[str, Any] ):
SCREAMING_SNAKE_CASE_ = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() )
SCREAMING_SNAKE_CASE_ = [floats_list((1, x) )[0] for x in range(800 , 1_400 , 200 )]
SCREAMING_SNAKE_CASE_ = ['longest', 'max_length', 'do_not_pad']
SCREAMING_SNAKE_CASE_ = [None, 1_600, None]
for max_length, padding in zip(_lowerCAmelCase , _lowerCAmelCase ):
SCREAMING_SNAKE_CASE_ = feat_extract(_lowerCAmelCase , padding=_lowerCAmelCase , max_length=_lowerCAmelCase , return_tensors='np' )
SCREAMING_SNAKE_CASE_ = processed.input_values
self._check_zero_mean_unit_variance(input_values[0][:800] )
self.assertTrue(input_values[0][800:].sum() < 1E-6 )
self._check_zero_mean_unit_variance(input_values[1][:1_000] )
self.assertTrue(input_values[0][1_000:].sum() < 1E-6 )
self._check_zero_mean_unit_variance(input_values[2][:1_200] )
def lowerCAmelCase_ ( self : Optional[Any] ):
SCREAMING_SNAKE_CASE_ = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() )
SCREAMING_SNAKE_CASE_ = range(800 , 1_400 , 200 )
SCREAMING_SNAKE_CASE_ = [floats_list((1, x) )[0] for x in lengths]
SCREAMING_SNAKE_CASE_ = ['longest', 'max_length', 'do_not_pad']
SCREAMING_SNAKE_CASE_ = [None, 1_600, None]
for max_length, padding in zip(_lowerCAmelCase , _lowerCAmelCase ):
SCREAMING_SNAKE_CASE_ = feat_extract(_lowerCAmelCase , max_length=_lowerCAmelCase , padding=_lowerCAmelCase )
SCREAMING_SNAKE_CASE_ = processed.input_values
self._check_zero_mean_unit_variance(input_values[0][:800] )
self._check_zero_mean_unit_variance(input_values[1][:1_000] )
self._check_zero_mean_unit_variance(input_values[2][:1_200] )
def lowerCAmelCase_ ( self : Dict ):
SCREAMING_SNAKE_CASE_ = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() )
SCREAMING_SNAKE_CASE_ = [floats_list((1, x) )[0] for x in range(800 , 1_400 , 200 )]
SCREAMING_SNAKE_CASE_ = feat_extract(
_lowerCAmelCase , truncation=_lowerCAmelCase , max_length=1_000 , padding='max_length' , return_tensors='np' )
SCREAMING_SNAKE_CASE_ = processed.input_values
self._check_zero_mean_unit_variance(input_values[0, :800] )
self._check_zero_mean_unit_variance(input_values[1] )
self._check_zero_mean_unit_variance(input_values[2] )
def lowerCAmelCase_ ( self : Dict ):
SCREAMING_SNAKE_CASE_ = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() )
SCREAMING_SNAKE_CASE_ = [floats_list((1, x) )[0] for x in range(800 , 1_400 , 200 )]
SCREAMING_SNAKE_CASE_ = feat_extract(
_lowerCAmelCase , truncation=_lowerCAmelCase , max_length=1_000 , padding='longest' , return_tensors='np' )
SCREAMING_SNAKE_CASE_ = processed.input_values
self._check_zero_mean_unit_variance(input_values[0, :800] )
self._check_zero_mean_unit_variance(input_values[1, :1_000] )
self._check_zero_mean_unit_variance(input_values[2] )
# make sure that if max_length < longest -> then pad to max_length
self.assertTrue(input_values.shape == (3, 1_000) )
SCREAMING_SNAKE_CASE_ = [floats_list((1, x) )[0] for x in range(800 , 1_400 , 200 )]
SCREAMING_SNAKE_CASE_ = feat_extract(
_lowerCAmelCase , truncation=_lowerCAmelCase , max_length=2_000 , padding='longest' , return_tensors='np' )
SCREAMING_SNAKE_CASE_ = processed.input_values
self._check_zero_mean_unit_variance(input_values[0, :800] )
self._check_zero_mean_unit_variance(input_values[1, :1_000] )
self._check_zero_mean_unit_variance(input_values[2] )
# make sure that if max_length > longest -> then pad to longest
self.assertTrue(input_values.shape == (3, 1_200) )
def lowerCAmelCase_ ( self : Optional[int] ):
SCREAMING_SNAKE_CASE_ = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() )
SCREAMING_SNAKE_CASE_ = np.random.rand(100 ).astype(np.floataa )
SCREAMING_SNAKE_CASE_ = np_speech_inputs.tolist()
for inputs in [py_speech_inputs, np_speech_inputs]:
SCREAMING_SNAKE_CASE_ = feature_extractor.pad([{'input_values': inputs}] , return_tensors='np' )
self.assertTrue(np_processed.input_values.dtype == np.floataa )
SCREAMING_SNAKE_CASE_ = feature_extractor.pad([{'input_values': inputs}] , return_tensors='pt' )
self.assertTrue(pt_processed.input_values.dtype == torch.floataa )
def lowerCAmelCase_ ( self : Tuple ):
# Tests that all call wrap to encode_plus and batch_encode_plus
SCREAMING_SNAKE_CASE_ = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() )
# create three inputs of length 800, 1000, and 1200
SCREAMING_SNAKE_CASE_ = [floats_list((1, x) )[0] for x in range(800 , 1_400 , 200 )]
SCREAMING_SNAKE_CASE_ = [np.asarray(_lowerCAmelCase ) for speech_input in speech_inputs]
# Test feature size
SCREAMING_SNAKE_CASE_ = feature_extractor(audio_target=_lowerCAmelCase , padding=_lowerCAmelCase , return_tensors='np' ).input_values
self.assertTrue(input_values.ndim == 3 )
self.assertTrue(input_values.shape[-1] == feature_extractor.num_mel_bins )
# Test not batched input
SCREAMING_SNAKE_CASE_ = feature_extractor(speech_inputs[0] , return_tensors='np' ).input_values
SCREAMING_SNAKE_CASE_ = feature_extractor(np_speech_inputs[0] , return_tensors='np' ).input_values
self.assertTrue(np.allclose(_lowerCAmelCase , _lowerCAmelCase , atol=1E-3 ) )
# Test batched
SCREAMING_SNAKE_CASE_ = feature_extractor(_lowerCAmelCase , return_tensors='np' ).input_values
SCREAMING_SNAKE_CASE_ = feature_extractor(_lowerCAmelCase , return_tensors='np' ).input_values
for enc_seq_a, enc_seq_a in zip(_lowerCAmelCase , _lowerCAmelCase ):
self.assertTrue(np.allclose(_lowerCAmelCase , _lowerCAmelCase , atol=1E-3 ) )
# Test 2-D numpy arrays are batched.
SCREAMING_SNAKE_CASE_ = [floats_list((1, x) )[0] for x in (800, 800, 800)]
SCREAMING_SNAKE_CASE_ = np.asarray(_lowerCAmelCase )
SCREAMING_SNAKE_CASE_ = feature_extractor(_lowerCAmelCase , return_tensors='np' ).input_values
SCREAMING_SNAKE_CASE_ = feature_extractor(_lowerCAmelCase , return_tensors='np' ).input_values
for enc_seq_a, enc_seq_a in zip(_lowerCAmelCase , _lowerCAmelCase ):
self.assertTrue(np.allclose(_lowerCAmelCase , _lowerCAmelCase , atol=1E-3 ) )
def lowerCAmelCase_ ( self : str ):
SCREAMING_SNAKE_CASE_ = self.feat_extract_tester.prepare_inputs_for_target()
SCREAMING_SNAKE_CASE_ = self.feature_extraction_class(**self.feat_extract_dict )
SCREAMING_SNAKE_CASE_ = feat_extract.model_input_names[0]
SCREAMING_SNAKE_CASE_ = BatchFeature({input_name: speech_inputs} )
self.assertTrue(all(len(_lowerCAmelCase ) == len(_lowerCAmelCase ) for x, y in zip(_lowerCAmelCase , processed_features[input_name] ) ) )
SCREAMING_SNAKE_CASE_ = self.feat_extract_tester.prepare_inputs_for_target(equal_length=_lowerCAmelCase )
SCREAMING_SNAKE_CASE_ = BatchFeature({input_name: speech_inputs} , tensor_type='np' )
SCREAMING_SNAKE_CASE_ = processed_features[input_name]
if len(batch_features_input.shape ) < 3:
SCREAMING_SNAKE_CASE_ = batch_features_input[:, :, None]
self.assertTrue(
batch_features_input.shape
== (self.feat_extract_tester.batch_size, len(speech_inputs[0] ), self.feat_extract_tester.num_mel_bins) )
@require_torch
def lowerCAmelCase_ ( self : Dict ):
SCREAMING_SNAKE_CASE_ = self.feat_extract_tester.prepare_inputs_for_target(equal_length=_lowerCAmelCase )
SCREAMING_SNAKE_CASE_ = self.feature_extraction_class(**self.feat_extract_dict )
SCREAMING_SNAKE_CASE_ = feat_extract.model_input_names[0]
SCREAMING_SNAKE_CASE_ = BatchFeature({input_name: speech_inputs} , tensor_type='pt' )
SCREAMING_SNAKE_CASE_ = processed_features[input_name]
if len(batch_features_input.shape ) < 3:
SCREAMING_SNAKE_CASE_ = batch_features_input[:, :, None]
self.assertTrue(
batch_features_input.shape
== (self.feat_extract_tester.batch_size, len(speech_inputs[0] ), self.feat_extract_tester.num_mel_bins) )
@require_torch
def lowerCAmelCase_ ( self : Dict ):
SCREAMING_SNAKE_CASE_ = self.feature_extraction_class(**self.feat_extract_dict )
SCREAMING_SNAKE_CASE_ = self.feat_extract_tester.prepare_inputs_for_target()
SCREAMING_SNAKE_CASE_ = feat_extract.model_input_names[0]
SCREAMING_SNAKE_CASE_ = BatchFeature({input_name: speech_inputs} )
SCREAMING_SNAKE_CASE_ = feat_extract.num_mel_bins # hack!
SCREAMING_SNAKE_CASE_ = feat_extract.pad(_lowerCAmelCase , padding='longest' , return_tensors='np' )[input_name]
SCREAMING_SNAKE_CASE_ = feat_extract.pad(_lowerCAmelCase , padding='longest' , return_tensors='pt' )[input_name]
self.assertTrue(abs(input_np.astype(np.floataa ).sum() - input_pt.numpy().astype(np.floataa ).sum() ) < 1E-2 )
def lowerCAmelCase_ ( self : str ):
SCREAMING_SNAKE_CASE_ = self.feat_extract_dict
SCREAMING_SNAKE_CASE_ = True
SCREAMING_SNAKE_CASE_ = self.feature_extraction_class(**_lowerCAmelCase )
SCREAMING_SNAKE_CASE_ = self.feat_extract_tester.prepare_inputs_for_target()
SCREAMING_SNAKE_CASE_ = [len(_lowerCAmelCase ) for x in speech_inputs]
SCREAMING_SNAKE_CASE_ = feat_extract.model_input_names[0]
SCREAMING_SNAKE_CASE_ = BatchFeature({input_name: speech_inputs} )
SCREAMING_SNAKE_CASE_ = feat_extract.num_mel_bins # hack!
SCREAMING_SNAKE_CASE_ = feat_extract.pad(_lowerCAmelCase , padding='longest' , return_tensors='np' )
self.assertIn('attention_mask' , _lowerCAmelCase )
self.assertListEqual(list(processed.attention_mask.shape ) , list(processed[input_name].shape[:2] ) )
self.assertListEqual(processed.attention_mask.sum(-1 ).tolist() , _lowerCAmelCase )
def lowerCAmelCase_ ( self : Any ):
SCREAMING_SNAKE_CASE_ = self.feat_extract_dict
SCREAMING_SNAKE_CASE_ = True
SCREAMING_SNAKE_CASE_ = self.feature_extraction_class(**_lowerCAmelCase )
SCREAMING_SNAKE_CASE_ = self.feat_extract_tester.prepare_inputs_for_target()
SCREAMING_SNAKE_CASE_ = [len(_lowerCAmelCase ) for x in speech_inputs]
SCREAMING_SNAKE_CASE_ = feat_extract.model_input_names[0]
SCREAMING_SNAKE_CASE_ = BatchFeature({input_name: speech_inputs} )
SCREAMING_SNAKE_CASE_ = min(_lowerCAmelCase )
SCREAMING_SNAKE_CASE_ = feat_extract.num_mel_bins # hack!
SCREAMING_SNAKE_CASE_ = feat_extract.pad(
_lowerCAmelCase , padding='max_length' , max_length=_lowerCAmelCase , truncation=_lowerCAmelCase , return_tensors='np' )
self.assertIn('attention_mask' , _lowerCAmelCase )
self.assertListEqual(
list(processed_pad.attention_mask.shape ) , [processed_pad[input_name].shape[0], max_length] )
self.assertListEqual(
processed_pad.attention_mask[:, :max_length].sum(-1 ).tolist() , [max_length for x in speech_inputs] )
def lowerCAmelCase_ ( self : List[Any] , _lowerCAmelCase : Tuple ):
from datasets import load_dataset
SCREAMING_SNAKE_CASE_ = load_dataset('hf-internal-testing/librispeech_asr_dummy' , 'clean' , split='validation' )
# automatic decoding with librispeech
SCREAMING_SNAKE_CASE_ = ds.sort('id' ).select(range(_lowerCAmelCase ) )[:num_samples]['audio']
return [x["array"] for x in speech_samples]
def lowerCAmelCase_ ( self : Any ):
# fmt: off
SCREAMING_SNAKE_CASE_ = torch.tensor(
[2.3_804E-03, 2.0_752E-03, 1.9_836E-03, 2.1_057E-03, 1.6_174E-03,
3.0_518E-04, 9.1_553E-05, 3.3_569E-04, 9.7_656E-04, 1.8_311E-03,
2.0_142E-03, 2.1_057E-03, 1.7_395E-03, 4.5_776E-04, -3.9_673E-04,
4.5_776E-04, 1.0_071E-03, 9.1_553E-05, 4.8_828E-04, 1.1_597E-03,
7.3_242E-04, 9.4_604E-04, 1.8_005E-03, 1.8_311E-03, 8.8_501E-04,
4.2_725E-04, 4.8_828E-04, 7.3_242E-04, 1.0_986E-03, 2.1_057E-03] )
# fmt: on
SCREAMING_SNAKE_CASE_ = self._load_datasamples(1 )
SCREAMING_SNAKE_CASE_ = SpeechTaFeatureExtractor()
SCREAMING_SNAKE_CASE_ = feature_extractor(_lowerCAmelCase , return_tensors='pt' ).input_values
self.assertEquals(input_values.shape , (1, 93_680) )
self.assertTrue(torch.allclose(input_values[0, :30] , _lowerCAmelCase , atol=1E-6 ) )
def lowerCAmelCase_ ( self : Optional[int] ):
# fmt: off
SCREAMING_SNAKE_CASE_ = torch.tensor(
[-2.6870, -3.0104, -3.1356, -3.5352, -3.0044, -3.0353, -3.4719, -3.6777,
-3.1520, -2.9435, -2.6553, -2.8795, -2.9944, -2.5921, -3.0279, -3.0386,
-3.0864, -3.1291, -3.2353, -2.7444, -2.6831, -2.7287, -3.1761, -3.1571,
-3.2726, -3.0582, -3.1007, -3.4533, -3.4695, -3.0998] )
# fmt: on
SCREAMING_SNAKE_CASE_ = self._load_datasamples(1 )
SCREAMING_SNAKE_CASE_ = SpeechTaFeatureExtractor()
SCREAMING_SNAKE_CASE_ = feature_extractor(audio_target=_lowerCAmelCase , return_tensors='pt' ).input_values
self.assertEquals(input_values.shape , (1, 366, 80) )
self.assertTrue(torch.allclose(input_values[0, 0, :30] , _lowerCAmelCase , atol=1E-4 ) ) | 31 | 0 |
def a_ () -> list[list[int]]:
"""simple docstring"""
return [list(range(1_000 - i , -1_000 - i , -1 ) ) for i in range(1_000 )]
UpperCAmelCase__ = generate_large_matrix()
UpperCAmelCase__ = (
[[4, 3, 2, -1], [3, 2, 1, -1], [1, 1, -1, -2], [-1, -1, -2, -3]],
[[3, 2], [1, 0]],
[[7, 7, 6]],
[[7, 7, 6], [-1, -2, -3]],
grid,
)
def a_ (__A ) -> None:
"""simple docstring"""
assert all(row == sorted(__UpperCAmelCase , reverse=__UpperCAmelCase ) for row in grid )
assert all(list(__UpperCAmelCase ) == sorted(__UpperCAmelCase , reverse=__UpperCAmelCase ) for col in zip(*__UpperCAmelCase ) )
def a_ (__A ) -> int:
"""simple docstring"""
__a : Optional[int] = 0
__a : Optional[int] = len(__UpperCAmelCase ) - 1
# Edge cases such as no values or all numbers are negative.
if not array or array[0] < 0:
return 0
while right + 1 > left:
__a : int = (left + right) // 2
__a : List[Any] = array[mid]
# Num must be negative and the index must be greater than or equal to 0.
if num < 0 and array[mid - 1] >= 0:
return mid
if num >= 0:
__a : List[str] = mid + 1
else:
__a : List[str] = mid - 1
# No negative numbers so return the last index of the array + 1 which is the length.
return len(__UpperCAmelCase )
def a_ (__A ) -> int:
"""simple docstring"""
__a : str = 0
__a : List[Any] = len(grid[0] )
for i in range(len(__UpperCAmelCase ) ):
__a : Tuple = find_negative_index(grid[i][:bound] )
total += bound
return (len(__UpperCAmelCase ) * len(grid[0] )) - total
def a_ (__A ) -> int:
"""simple docstring"""
return len([number for row in grid for number in row if number < 0] )
def a_ (__A ) -> int:
"""simple docstring"""
__a : int = 0
for row in grid:
for i, number in enumerate(__UpperCAmelCase ):
if number < 0:
total += len(__UpperCAmelCase ) - i
break
return total
def a_ () -> None:
"""simple docstring"""
from timeit import timeit
print("Running benchmarks" )
__a : int = (
"from __main__ import count_negatives_binary_search, "
"count_negatives_brute_force, count_negatives_brute_force_with_break, grid"
)
for func in (
"count_negatives_binary_search", # took 0.7727 seconds
"count_negatives_brute_force_with_break", # took 4.6505 seconds
"count_negatives_brute_force", # took 12.8160 seconds
):
__a : Any = timeit(f'{func}(grid=grid)' , setup=__UpperCAmelCase , number=500 )
print(f'{func}() took {time:0.4f} seconds' )
if __name__ == "__main__":
import doctest
doctest.testmod()
benchmark()
| 351 |
from __future__ import annotations
from typing import TypedDict
class lowerCamelCase_ ( _SCREAMING_SNAKE_CASE ):
'''simple docstring'''
lowercase_ = 42
lowercase_ = 42
def UpperCAmelCase_ ( __UpperCAmelCase : str ) -> list[str]:
if not isinstance(__UpperCAmelCase , __UpperCAmelCase ):
raise TypeError('The parameter s type must be str.' )
return [s[i:] + s[:i] for i in range(len(__UpperCAmelCase ) )]
def UpperCAmelCase_ ( __UpperCAmelCase : str ) -> BWTTransformDict:
if not isinstance(__UpperCAmelCase , __UpperCAmelCase ):
raise TypeError('The parameter s type must be str.' )
if not s:
raise ValueError('The parameter s must not be empty.' )
SCREAMING_SNAKE_CASE_ = all_rotations(__UpperCAmelCase )
rotations.sort() # sort the list of rotations in alphabetically order
# make a string composed of the last char of each rotation
SCREAMING_SNAKE_CASE_ = {
"bwt_string": "".join([word[-1] for word in rotations] ),
"idx_original_string": rotations.index(__UpperCAmelCase ),
}
return response
def UpperCAmelCase_ ( __UpperCAmelCase : str , __UpperCAmelCase : int ) -> str:
if not isinstance(__UpperCAmelCase , __UpperCAmelCase ):
raise TypeError('The parameter bwt_string type must be str.' )
if not bwt_string:
raise ValueError('The parameter bwt_string must not be empty.' )
try:
SCREAMING_SNAKE_CASE_ = int(__UpperCAmelCase )
except ValueError:
raise TypeError(
'The parameter idx_original_string type must be int or passive'
' of cast to int.' )
if idx_original_string < 0:
raise ValueError('The parameter idx_original_string must not be lower than 0.' )
if idx_original_string >= len(__UpperCAmelCase ):
raise ValueError(
'The parameter idx_original_string must be lower than' ' len(bwt_string).' )
SCREAMING_SNAKE_CASE_ = [''] * len(__UpperCAmelCase )
for _ in range(len(__UpperCAmelCase ) ):
for i in range(len(__UpperCAmelCase ) ):
SCREAMING_SNAKE_CASE_ = bwt_string[i] + ordered_rotations[i]
ordered_rotations.sort()
return ordered_rotations[idx_original_string]
if __name__ == "__main__":
lowerCamelCase__ : Optional[int] = 'Provide a string that I will generate its BWT transform: '
lowerCamelCase__ : List[str] = input(entry_msg).strip()
lowerCamelCase__ : int = bwt_transform(s)
print(
f'''Burrows Wheeler transform for string \'{s}\' results '''
f'''in \'{result['bwt_string']}\''''
)
lowerCamelCase__ : Dict = reverse_bwt(result['bwt_string'], result['idx_original_string'])
print(
f'''Reversing Burrows Wheeler transform for entry \'{result['bwt_string']}\' '''
f'''we get original string \'{original_string}\''''
) | 31 | 0 |
'''simple docstring'''
from collections import OrderedDict
from typing import Mapping
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig
from ...utils import logging
_lowerCAmelCase = logging.get_logger(__name__)
_lowerCAmelCase = {
'roberta-base': 'https://huggingface.co/roberta-base/resolve/main/config.json',
'roberta-large': 'https://huggingface.co/roberta-large/resolve/main/config.json',
'roberta-large-mnli': 'https://huggingface.co/roberta-large-mnli/resolve/main/config.json',
'distilroberta-base': 'https://huggingface.co/distilroberta-base/resolve/main/config.json',
'roberta-base-openai-detector': 'https://huggingface.co/roberta-base-openai-detector/resolve/main/config.json',
'roberta-large-openai-detector': 'https://huggingface.co/roberta-large-openai-detector/resolve/main/config.json',
}
class __A ( _SCREAMING_SNAKE_CASE ):
"""simple docstring"""
A_ = 'roberta'
def __init__( self , _lowerCamelCase=5_0_2_6_5 , _lowerCamelCase=7_6_8 , _lowerCamelCase=1_2 , _lowerCamelCase=1_2 , _lowerCamelCase=3_0_7_2 , _lowerCamelCase="gelu" , _lowerCamelCase=0.1 , _lowerCamelCase=0.1 , _lowerCamelCase=5_1_2 , _lowerCamelCase=2 , _lowerCamelCase=0.0_2 , _lowerCamelCase=1e-12 , _lowerCamelCase=1 , _lowerCamelCase=0 , _lowerCamelCase=2 , _lowerCamelCase="absolute" , _lowerCamelCase=True , _lowerCamelCase=None , **_lowerCamelCase , )-> List[str]:
super().__init__(pad_token_id=_lowerCAmelCase , bos_token_id=_lowerCAmelCase , eos_token_id=_lowerCAmelCase , **_lowerCAmelCase )
lowercase__ = vocab_size
lowercase__ = hidden_size
lowercase__ = num_hidden_layers
lowercase__ = num_attention_heads
lowercase__ = hidden_act
lowercase__ = intermediate_size
lowercase__ = hidden_dropout_prob
lowercase__ = attention_probs_dropout_prob
lowercase__ = max_position_embeddings
lowercase__ = type_vocab_size
lowercase__ = initializer_range
lowercase__ = layer_norm_eps
lowercase__ = position_embedding_type
lowercase__ = use_cache
lowercase__ = classifier_dropout
class __A ( _SCREAMING_SNAKE_CASE ):
"""simple docstring"""
@property
def snake_case_( self )-> Dict:
if self.task == "multiple-choice":
lowercase__ = {0: '''batch''', 1: '''choice''', 2: '''sequence'''}
else:
lowercase__ = {0: '''batch''', 1: '''sequence'''}
return OrderedDict(
[
('''input_ids''', dynamic_axis),
('''attention_mask''', dynamic_axis),
] )
| 161 |
class lowerCamelCase_ :
'''simple docstring'''
def __init__( self : str ):
SCREAMING_SNAKE_CASE_ = {}
def lowerCAmelCase_ ( self : List[str] ):
print(self.vertex )
for i in self.vertex:
print(_lowerCAmelCase , ' -> ' , ' -> '.join([str(_lowerCAmelCase ) for j in self.vertex[i]] ) )
def lowerCAmelCase_ ( self : Union[str, Any] , _lowerCAmelCase : int , _lowerCAmelCase : int ):
# check if vertex is already present,
if from_vertex in self.vertex:
self.vertex[from_vertex].append(_lowerCAmelCase )
else:
# else make a new vertex
SCREAMING_SNAKE_CASE_ = [to_vertex]
def lowerCAmelCase_ ( self : Optional[Any] ):
# visited array for storing already visited nodes
SCREAMING_SNAKE_CASE_ = [False] * len(self.vertex )
# call the recursive helper function
for i in range(len(self.vertex ) ):
if not visited[i]:
self.dfs_recursive(_lowerCAmelCase , _lowerCAmelCase )
def lowerCAmelCase_ ( self : Tuple , _lowerCAmelCase : int , _lowerCAmelCase : list ):
# mark start vertex as visited
SCREAMING_SNAKE_CASE_ = True
print(_lowerCAmelCase , end=' ' )
# Recur for all the vertices that are adjacent to this node
for i in self.vertex:
if not visited[i]:
self.dfs_recursive(_lowerCAmelCase , _lowerCAmelCase )
if __name__ == "__main__":
lowerCamelCase__ : List[Any] = Graph()
g.add_edge(0, 1)
g.add_edge(0, 2)
g.add_edge(1, 2)
g.add_edge(2, 0)
g.add_edge(2, 3)
g.add_edge(3, 3)
g.print_graph()
print('DFS:')
g.dfs()
# OUTPUT:
# 0 -> 1 -> 2
# 1 -> 2
# 2 -> 0 -> 3
# 3 -> 3
# DFS:
# 0 1 2 3 | 31 | 0 |
"""simple docstring"""
import torch
from torch import nn
from torch.nn import CrossEntropyLoss, MSELoss
from transformers.file_utils import add_start_docstrings, add_start_docstrings_to_model_forward
from transformers.models.bert.modeling_bert import (
BERT_INPUTS_DOCSTRING,
BERT_START_DOCSTRING,
BertEmbeddings,
BertLayer,
BertPooler,
BertPreTrainedModel,
)
def SCREAMING_SNAKE_CASE_ ( snake_case : Optional[Any] )-> Optional[Any]:
_lowerCamelCase = torch.exp(__UpperCAmelCase )
_lowerCamelCase = torch.sum(__UpperCAmelCase , dim=1 ) # sum of exp(x_i)
_lowerCamelCase = torch.sum(x * exp_x , dim=1 ) # sum of x_i * exp(x_i)
return torch.log(__UpperCAmelCase ) - B / A
class __a ( nn.Module ):
def __init__( self , a__ ):
super().__init__()
_lowerCamelCase = config.output_attentions
_lowerCamelCase = config.output_hidden_states
_lowerCamelCase = nn.ModuleList([BertLayer(_lowerCAmelCase ) for _ in range(config.num_hidden_layers )] )
_lowerCamelCase = nn.ModuleList([BertHighway(_lowerCAmelCase ) for _ in range(config.num_hidden_layers )] )
_lowerCamelCase = [-1 for _ in range(config.num_hidden_layers )]
def snake_case_ ( self , a__ ):
if (type(_lowerCAmelCase ) is float) or (type(_lowerCAmelCase ) is int):
for i in range(len(self.early_exit_entropy ) ):
_lowerCamelCase = x
else:
_lowerCamelCase = x
def snake_case_ ( self , a__ ):
_lowerCamelCase = pooler.state_dict()
for highway in self.highway:
for name, param in highway.pooler.state_dict().items():
param.copy_(loaded_model[name] )
def snake_case_ ( self , a__ , a__=None , a__=None , a__=None , a__=None , ):
_lowerCamelCase = ()
_lowerCamelCase = ()
_lowerCamelCase = ()
for i, layer_module in enumerate(self.layer ):
if self.output_hidden_states:
_lowerCamelCase = all_hidden_states + (hidden_states,)
_lowerCamelCase = layer_module(
_lowerCAmelCase , _lowerCAmelCase , head_mask[i] , _lowerCAmelCase , _lowerCAmelCase )
_lowerCamelCase = layer_outputs[0]
if self.output_attentions:
_lowerCamelCase = all_attentions + (layer_outputs[1],)
_lowerCamelCase = (hidden_states,)
if self.output_hidden_states:
_lowerCamelCase = current_outputs + (all_hidden_states,)
if self.output_attentions:
_lowerCamelCase = current_outputs + (all_attentions,)
_lowerCamelCase = self.highway[i](_lowerCAmelCase )
# logits, pooled_output
if not self.training:
_lowerCamelCase = highway_exit[0]
_lowerCamelCase = entropy(_lowerCAmelCase )
_lowerCamelCase = highway_exit + (highway_entropy,) # logits, hidden_states(?), entropy
_lowerCamelCase = all_highway_exits + (highway_exit,)
if highway_entropy < self.early_exit_entropy[i]:
_lowerCamelCase = (highway_logits,) + current_outputs[1:] + (all_highway_exits,)
raise HighwayException(_lowerCAmelCase , i + 1 )
else:
_lowerCamelCase = all_highway_exits + (highway_exit,)
# Add last layer
if self.output_hidden_states:
_lowerCamelCase = all_hidden_states + (hidden_states,)
_lowerCamelCase = (hidden_states,)
if self.output_hidden_states:
_lowerCamelCase = outputs + (all_hidden_states,)
if self.output_attentions:
_lowerCamelCase = outputs + (all_attentions,)
_lowerCamelCase = outputs + (all_highway_exits,)
return outputs # last-layer hidden state, (all hidden states), (all attentions), all highway exits
@add_start_docstrings(
"The Bert Model transformer with early exiting (DeeBERT). " , _SCREAMING_SNAKE_CASE , )
class __a ( _SCREAMING_SNAKE_CASE ):
def __init__( self , a__ ):
super().__init__(_lowerCAmelCase )
_lowerCamelCase = config
_lowerCamelCase = BertEmbeddings(_lowerCAmelCase )
_lowerCamelCase = DeeBertEncoder(_lowerCAmelCase )
_lowerCamelCase = BertPooler(_lowerCAmelCase )
self.init_weights()
def snake_case_ ( self ):
self.encoder.init_highway_pooler(self.pooler )
def snake_case_ ( self ):
return self.embeddings.word_embeddings
def snake_case_ ( self , a__ ):
_lowerCamelCase = value
def snake_case_ ( self , a__ ):
for layer, heads in heads_to_prune.items():
self.encoder.layer[layer].attention.prune_heads(_lowerCAmelCase )
@add_start_docstrings_to_model_forward(_lowerCAmelCase )
def snake_case_ ( self , a__=None , a__=None , a__=None , a__=None , a__=None , a__=None , a__=None , a__=None , ):
if input_ids is not None and inputs_embeds is not None:
raise ValueError('You cannot specify both input_ids and inputs_embeds at the same time' )
elif input_ids is not None:
_lowerCamelCase = input_ids.size()
elif inputs_embeds is not None:
_lowerCamelCase = inputs_embeds.size()[:-1]
else:
raise ValueError('You have to specify either input_ids or inputs_embeds' )
_lowerCamelCase = input_ids.device if input_ids is not None else inputs_embeds.device
if attention_mask is None:
_lowerCamelCase = torch.ones(_lowerCAmelCase , device=_lowerCAmelCase )
if encoder_attention_mask is None:
_lowerCamelCase = torch.ones(_lowerCAmelCase , device=_lowerCAmelCase )
if token_type_ids is None:
_lowerCamelCase = torch.zeros(_lowerCAmelCase , dtype=torch.long , device=_lowerCAmelCase )
# We can provide a self-attention mask of dimensions [batch_size, from_seq_length, to_seq_length]
# ourselves in which case we just need to make it broadcastable to all heads.
_lowerCamelCase = self.get_extended_attention_mask(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase )
# If a 2D ou 3D attention mask is provided for the cross-attention
# we need to make broadcastable to [batch_size, num_heads, seq_length, seq_length]
if encoder_attention_mask.dim() == 3:
_lowerCamelCase = encoder_attention_mask[:, None, :, :]
if encoder_attention_mask.dim() == 2:
_lowerCamelCase = encoder_attention_mask[:, None, None, :]
_lowerCamelCase = encoder_extended_attention_mask.to(
dtype=next(self.parameters() ).dtype ) # fp16 compatibility
_lowerCamelCase = (1.0 - encoder_extended_attention_mask) * -1_00_00.0
# Prepare head mask if needed
# 1.0 in head_mask indicate we keep the head
# attention_probs has shape bsz x n_heads x N x N
# input head_mask has shape [num_heads] or [num_hidden_layers x num_heads]
# and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length]
_lowerCamelCase = self.get_head_mask(_lowerCAmelCase , self.config.num_hidden_layers )
_lowerCamelCase = self.embeddings(
input_ids=_lowerCAmelCase , position_ids=_lowerCAmelCase , token_type_ids=_lowerCAmelCase , inputs_embeds=_lowerCAmelCase )
_lowerCamelCase = self.encoder(
_lowerCAmelCase , attention_mask=_lowerCAmelCase , head_mask=_lowerCAmelCase , encoder_hidden_states=_lowerCAmelCase , encoder_attention_mask=_lowerCAmelCase , )
_lowerCamelCase = encoder_outputs[0]
_lowerCamelCase = self.pooler(_lowerCAmelCase )
_lowerCamelCase = (
sequence_output,
pooled_output,
) + encoder_outputs[
1:
] # add hidden_states and attentions if they are here
return outputs # sequence_output, pooled_output, (hidden_states), (attentions), highway exits
class __a ( _SCREAMING_SNAKE_CASE ):
def __init__( self , a__ , a__ ):
_lowerCamelCase = message
_lowerCamelCase = exit_layer # start from 1!
class __a ( nn.Module ):
def __init__( self , a__ ):
super().__init__()
_lowerCamelCase = BertPooler(_lowerCAmelCase )
_lowerCamelCase = nn.Dropout(config.hidden_dropout_prob )
_lowerCamelCase = nn.Linear(config.hidden_size , config.num_labels )
def snake_case_ ( self , a__ ):
# Pooler
_lowerCamelCase = encoder_outputs[0]
_lowerCamelCase = self.pooler(_lowerCAmelCase )
# "return" pooler_output
# BertModel
_lowerCamelCase = (pooler_input, pooler_output) + encoder_outputs[1:]
# "return" bmodel_output
# Dropout and classification
_lowerCamelCase = bmodel_output[1]
_lowerCamelCase = self.dropout(_lowerCAmelCase )
_lowerCamelCase = self.classifier(_lowerCAmelCase )
return logits, pooled_output
@add_start_docstrings(
"Bert Model (with early exiting - DeeBERT) with a classifier on top,\n also takes care of multi-layer training. " , _SCREAMING_SNAKE_CASE , )
class __a ( _SCREAMING_SNAKE_CASE ):
def __init__( self , a__ ):
super().__init__(_lowerCAmelCase )
_lowerCamelCase = config.num_labels
_lowerCamelCase = config.num_hidden_layers
_lowerCamelCase = DeeBertModel(_lowerCAmelCase )
_lowerCamelCase = nn.Dropout(config.hidden_dropout_prob )
_lowerCamelCase = nn.Linear(config.hidden_size , self.config.num_labels )
self.init_weights()
@add_start_docstrings_to_model_forward(_lowerCAmelCase )
def snake_case_ ( self , a__=None , a__=None , a__=None , a__=None , a__=None , a__=None , a__=None , a__=-1 , a__=False , ):
_lowerCamelCase = self.num_layers
try:
_lowerCamelCase = self.bert(
_lowerCAmelCase , attention_mask=_lowerCAmelCase , token_type_ids=_lowerCAmelCase , position_ids=_lowerCAmelCase , head_mask=_lowerCAmelCase , inputs_embeds=_lowerCAmelCase , )
# sequence_output, pooled_output, (hidden_states), (attentions), highway exits
_lowerCamelCase = outputs[1]
_lowerCamelCase = self.dropout(_lowerCAmelCase )
_lowerCamelCase = self.classifier(_lowerCAmelCase )
_lowerCamelCase = (logits,) + outputs[2:] # add hidden states and attention if they are here
except HighwayException as e:
_lowerCamelCase = e.message
_lowerCamelCase = e.exit_layer
_lowerCamelCase = outputs[0]
if not self.training:
_lowerCamelCase = entropy(_lowerCAmelCase )
_lowerCamelCase = []
_lowerCamelCase = []
if labels is not None:
if self.num_labels == 1:
# We are doing regression
_lowerCamelCase = MSELoss()
_lowerCamelCase = loss_fct(logits.view(-1 ) , labels.view(-1 ) )
else:
_lowerCamelCase = CrossEntropyLoss()
_lowerCamelCase = loss_fct(logits.view(-1 , self.num_labels ) , labels.view(-1 ) )
# work with highway exits
_lowerCamelCase = []
for highway_exit in outputs[-1]:
_lowerCamelCase = highway_exit[0]
if not self.training:
highway_logits_all.append(_lowerCAmelCase )
highway_entropy.append(highway_exit[2] )
if self.num_labels == 1:
# We are doing regression
_lowerCamelCase = MSELoss()
_lowerCamelCase = loss_fct(highway_logits.view(-1 ) , labels.view(-1 ) )
else:
_lowerCamelCase = CrossEntropyLoss()
_lowerCamelCase = loss_fct(highway_logits.view(-1 , self.num_labels ) , labels.view(-1 ) )
highway_losses.append(_lowerCAmelCase )
if train_highway:
_lowerCamelCase = (sum(highway_losses[:-1] ),) + outputs
# exclude the final highway, of course
else:
_lowerCamelCase = (loss,) + outputs
if not self.training:
_lowerCamelCase = outputs + ((original_entropy, highway_entropy), exit_layer)
if output_layer >= 0:
_lowerCamelCase = (
(outputs[0],) + (highway_logits_all[output_layer],) + outputs[2:]
) # use the highway of the last layer
return outputs # (loss), logits, (hidden_states), (attentions), (highway_exits)
| 650 |
from ...configuration_utils import PretrainedConfig
from ...utils import logging
lowerCamelCase__ : str = logging.get_logger(__name__)
lowerCamelCase__ : Tuple = {
'funnel-transformer/small': 'https://huggingface.co/funnel-transformer/small/resolve/main/config.json',
'funnel-transformer/small-base': 'https://huggingface.co/funnel-transformer/small-base/resolve/main/config.json',
'funnel-transformer/medium': 'https://huggingface.co/funnel-transformer/medium/resolve/main/config.json',
'funnel-transformer/medium-base': 'https://huggingface.co/funnel-transformer/medium-base/resolve/main/config.json',
'funnel-transformer/intermediate': (
'https://huggingface.co/funnel-transformer/intermediate/resolve/main/config.json'
),
'funnel-transformer/intermediate-base': (
'https://huggingface.co/funnel-transformer/intermediate-base/resolve/main/config.json'
),
'funnel-transformer/large': 'https://huggingface.co/funnel-transformer/large/resolve/main/config.json',
'funnel-transformer/large-base': 'https://huggingface.co/funnel-transformer/large-base/resolve/main/config.json',
'funnel-transformer/xlarge': 'https://huggingface.co/funnel-transformer/xlarge/resolve/main/config.json',
'funnel-transformer/xlarge-base': 'https://huggingface.co/funnel-transformer/xlarge-base/resolve/main/config.json',
}
class lowerCamelCase_ ( _SCREAMING_SNAKE_CASE ):
'''simple docstring'''
lowercase_ = "funnel"
lowercase_ = {
"hidden_size": "d_model",
"num_attention_heads": "n_head",
}
def __init__( self : int , _lowerCAmelCase : Optional[int]=30_522 , _lowerCAmelCase : List[str]=[4, 4, 4] , _lowerCAmelCase : Tuple=None , _lowerCAmelCase : Optional[int]=2 , _lowerCAmelCase : int=768 , _lowerCAmelCase : Optional[Any]=12 , _lowerCAmelCase : Optional[Any]=64 , _lowerCAmelCase : Optional[Any]=3_072 , _lowerCAmelCase : List[str]="gelu_new" , _lowerCAmelCase : Any=0.1 , _lowerCAmelCase : int=0.1 , _lowerCAmelCase : Tuple=0.0 , _lowerCAmelCase : List[Any]=0.1 , _lowerCAmelCase : Dict=None , _lowerCAmelCase : str=1E-9 , _lowerCAmelCase : Any="mean" , _lowerCAmelCase : Union[str, Any]="relative_shift" , _lowerCAmelCase : Optional[Any]=True , _lowerCAmelCase : Dict=True , _lowerCAmelCase : Tuple=True , **_lowerCAmelCase : Optional[Any] , ):
SCREAMING_SNAKE_CASE_ = vocab_size
SCREAMING_SNAKE_CASE_ = block_sizes
SCREAMING_SNAKE_CASE_ = [1] * len(_lowerCAmelCase ) if block_repeats is None else block_repeats
assert len(_lowerCAmelCase ) == len(
self.block_repeats ), "`block_sizes` and `block_repeats` should have the same length."
SCREAMING_SNAKE_CASE_ = num_decoder_layers
SCREAMING_SNAKE_CASE_ = d_model
SCREAMING_SNAKE_CASE_ = n_head
SCREAMING_SNAKE_CASE_ = d_head
SCREAMING_SNAKE_CASE_ = d_inner
SCREAMING_SNAKE_CASE_ = hidden_act
SCREAMING_SNAKE_CASE_ = hidden_dropout
SCREAMING_SNAKE_CASE_ = attention_dropout
SCREAMING_SNAKE_CASE_ = activation_dropout
SCREAMING_SNAKE_CASE_ = initializer_range
SCREAMING_SNAKE_CASE_ = initializer_std
SCREAMING_SNAKE_CASE_ = layer_norm_eps
assert pooling_type in [
"mean",
"max",
], F"Got {pooling_type} for `pooling_type` but only 'mean' and 'max' are supported."
SCREAMING_SNAKE_CASE_ = pooling_type
assert attention_type in [
"relative_shift",
"factorized",
], F"Got {attention_type} for `attention_type` but only 'relative_shift' and 'factorized' are supported."
SCREAMING_SNAKE_CASE_ = attention_type
SCREAMING_SNAKE_CASE_ = separate_cls
SCREAMING_SNAKE_CASE_ = truncate_seq
SCREAMING_SNAKE_CASE_ = pool_q_only
super().__init__(**_lowerCAmelCase )
@property
def lowerCAmelCase_ ( self : Optional[int] ):
return sum(self.block_sizes )
@num_hidden_layers.setter
def lowerCAmelCase_ ( self : int , _lowerCAmelCase : List[Any] ):
raise NotImplementedError(
'This model does not support the setting of `num_hidden_layers`. Please set `block_sizes`.' )
@property
def lowerCAmelCase_ ( self : List[Any] ):
return len(self.block_sizes )
@num_blocks.setter
def lowerCAmelCase_ ( self : Dict , _lowerCAmelCase : Union[str, Any] ):
raise NotImplementedError('This model does not support the setting of `num_blocks`. Please set `block_sizes`.' ) | 31 | 0 |
"""simple docstring"""
from random import randint
from tempfile import TemporaryFile
import numpy as np
def lowerCAmelCase_( lowercase_ : Tuple , lowercase_ : Union[str, Any] , lowercase_ : int ) -> Dict:
_lowerCamelCase = 0
if start < end:
_lowerCamelCase = randint(__UpperCAmelCase , __UpperCAmelCase )
_lowerCamelCase = a[end]
_lowerCamelCase = a[pivot]
_lowerCamelCase = temp
_lowerCamelCase , _lowerCamelCase = _in_place_partition(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase )
count += _in_place_quick_sort(__UpperCAmelCase , __UpperCAmelCase , p - 1 )
count += _in_place_quick_sort(__UpperCAmelCase , p + 1 , __UpperCAmelCase )
return count
def lowerCAmelCase_( lowercase_ : List[Any] , lowercase_ : str , lowercase_ : Optional[int] ) -> Union[str, Any]:
_lowerCamelCase = 0
_lowerCamelCase = randint(__UpperCAmelCase , __UpperCAmelCase )
_lowerCamelCase = a[end]
_lowerCamelCase = a[pivot]
_lowerCamelCase = temp
_lowerCamelCase = start - 1
for index in range(__UpperCAmelCase , __UpperCAmelCase ):
count += 1
if a[index] < a[end]: # check if current val is less than pivot value
_lowerCamelCase = new_pivot_index + 1
_lowerCamelCase = a[new_pivot_index]
_lowerCamelCase = a[index]
_lowerCamelCase = temp
_lowerCamelCase = a[new_pivot_index + 1]
_lowerCamelCase = a[end]
_lowerCamelCase = temp
return new_pivot_index + 1, count
__SCREAMING_SNAKE_CASE : List[Any] = TemporaryFile()
__SCREAMING_SNAKE_CASE : Optional[Any] = 1_0_0 # 1000 elements are to be sorted
__SCREAMING_SNAKE_CASE : List[str] = 0, 1 # mean and standard deviation
__SCREAMING_SNAKE_CASE : Tuple = np.random.normal(mu, sigma, p)
np.save(outfile, X)
print('''The array is''')
print(X)
outfile.seek(0) # using the same array
__SCREAMING_SNAKE_CASE : Union[str, Any] = np.load(outfile)
__SCREAMING_SNAKE_CASE : Union[str, Any] = len(M) - 1
__SCREAMING_SNAKE_CASE : Dict = _in_place_quick_sort(M, 0, r)
print(
'''No of Comparisons for 100 elements selected from a standard normal distribution'''
'''is :'''
)
print(z)
| 661 |
from __future__ import annotations
from collections.abc import Iterator
class lowerCamelCase_ :
'''simple docstring'''
def __init__( self : Union[str, Any] , _lowerCAmelCase : int ):
SCREAMING_SNAKE_CASE_ = value
SCREAMING_SNAKE_CASE_ = None
SCREAMING_SNAKE_CASE_ = None
class lowerCamelCase_ :
'''simple docstring'''
def __init__( self : int , _lowerCAmelCase : Node ):
SCREAMING_SNAKE_CASE_ = tree
def lowerCAmelCase_ ( self : Union[str, Any] , _lowerCAmelCase : Node | None ):
if node is None:
return 0
return node.value + (
self.depth_first_search(node.left ) + self.depth_first_search(node.right )
)
def __iter__( self : Dict ):
yield self.depth_first_search(self.tree )
if __name__ == "__main__":
import doctest
doctest.testmod() | 31 | 0 |
"""simple docstring"""
def _UpperCamelCase ( UpperCamelCase , UpperCamelCase ) -> float:
"""simple docstring"""
_validate_point(__UpperCAmelCase )
_validate_point(__UpperCAmelCase )
if len(__UpperCAmelCase ) != len(__UpperCAmelCase ):
raise ValueError("Both points must be in the same n-dimensional space" )
return float(sum(abs(a - b ) for a, b in zip(__UpperCAmelCase , __UpperCAmelCase ) ) )
def _UpperCamelCase ( UpperCamelCase ) -> None:
"""simple docstring"""
if point:
if isinstance(__UpperCAmelCase , __UpperCAmelCase ):
for item in point:
if not isinstance(__UpperCAmelCase , (int, float) ):
__UpperCAmelCase : Any = (
"Expected a list of numbers as input, found "
f"{type(__UpperCAmelCase ).__name__}"
)
raise TypeError(__UpperCAmelCase )
else:
__UpperCAmelCase : List[Any] = f"Expected a list of numbers as input, found {type(__UpperCAmelCase ).__name__}"
raise TypeError(__UpperCAmelCase )
else:
raise ValueError("Missing an input" )
def _UpperCamelCase ( UpperCamelCase , UpperCamelCase ) -> float:
"""simple docstring"""
_validate_point(__UpperCAmelCase )
_validate_point(__UpperCAmelCase )
if len(__UpperCAmelCase ) != len(__UpperCAmelCase ):
raise ValueError("Both points must be in the same n-dimensional space" )
return float(sum(abs(x - y ) for x, y in zip(__UpperCAmelCase , __UpperCAmelCase ) ) )
if __name__ == "__main__":
import doctest
doctest.testmod()
| 77 |
def UpperCAmelCase_ ( __UpperCAmelCase : list , __UpperCAmelCase : int , __UpperCAmelCase : int = 0 , __UpperCAmelCase : int = 0 ) -> int:
SCREAMING_SNAKE_CASE_ = right or len(__UpperCAmelCase ) - 1
if left > right:
return -1
elif list_data[left] == key:
return left
elif list_data[right] == key:
return right
else:
return search(__UpperCAmelCase , __UpperCAmelCase , left + 1 , right - 1 )
if __name__ == "__main__":
import doctest
doctest.testmod() | 31 | 0 |
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_flax_available,
is_sentencepiece_available,
is_tf_available,
is_tokenizers_available,
is_torch_available,
)
if is_sentencepiece_available():
from ..ta.tokenization_ta import TaTokenizer
else:
from ...utils.dummy_sentencepiece_objects import TaTokenizer
lowerCAmelCase : List[Any] = TaTokenizer
if is_tokenizers_available():
from ..ta.tokenization_ta_fast import TaTokenizerFast
else:
from ...utils.dummy_tokenizers_objects import TaTokenizerFast
lowerCAmelCase : Union[str, Any] = TaTokenizerFast
lowerCAmelCase : Dict = {'configuration_mt5': ['MT5Config', 'MT5OnnxConfig']}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowerCAmelCase : Tuple = [
'MT5EncoderModel',
'MT5ForConditionalGeneration',
'MT5ForQuestionAnswering',
'MT5Model',
'MT5PreTrainedModel',
'MT5Stack',
]
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowerCAmelCase : Tuple = ['TFMT5EncoderModel', 'TFMT5ForConditionalGeneration', 'TFMT5Model']
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowerCAmelCase : Tuple = ['FlaxMT5EncoderModel', 'FlaxMT5ForConditionalGeneration', 'FlaxMT5Model']
if TYPE_CHECKING:
from .configuration_mta import MTaConfig, MTaOnnxConfig
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_mta import (
MTaEncoderModel,
MTaForConditionalGeneration,
MTaForQuestionAnswering,
MTaModel,
MTaPreTrainedModel,
MTaStack,
)
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_mta import TFMTaEncoderModel, TFMTaForConditionalGeneration, TFMTaModel
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_flax_mta import FlaxMTaEncoderModel, FlaxMTaForConditionalGeneration, FlaxMTaModel
else:
import sys
lowerCAmelCase : int = _LazyModule(
__name__,
globals()["""__file__"""],
_import_structure,
extra_objects={"""MT5Tokenizer""": MTaTokenizer, """MT5TokenizerFast""": MTaTokenizerFast},
module_spec=__spec__,
)
| 202 |
import os
from shutil import copyfile
from typing import List, Optional, Tuple
from ...tokenization_utils import AddedToken
from ...tokenization_utils_fast import PreTrainedTokenizerFast
from ...utils import is_sentencepiece_available, logging
if is_sentencepiece_available():
from .tokenization_fnet import FNetTokenizer
else:
lowerCamelCase__ : Optional[Any] = None
lowerCamelCase__ : List[str] = logging.get_logger(__name__)
lowerCamelCase__ : List[str] = {'vocab_file': 'spiece.model', 'tokenizer_file': 'tokenizer.json'}
lowerCamelCase__ : List[str] = {
'vocab_file': {
'google/fnet-base': 'https://huggingface.co/google/fnet-base/resolve/main/spiece.model',
'google/fnet-large': 'https://huggingface.co/google/fnet-large/resolve/main/spiece.model',
},
'tokenizer_file': {
'google/fnet-base': 'https://huggingface.co/google/fnet-base/resolve/main/tokenizer.json',
'google/fnet-large': 'https://huggingface.co/google/fnet-large/resolve/main/tokenizer.json',
},
}
lowerCamelCase__ : Optional[Any] = {
'google/fnet-base': 512,
'google/fnet-large': 512,
}
lowerCamelCase__ : List[Any] = '▁'
class lowerCamelCase_ ( _SCREAMING_SNAKE_CASE ):
'''simple docstring'''
lowercase_ = VOCAB_FILES_NAMES
lowercase_ = PRETRAINED_VOCAB_FILES_MAP
lowercase_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
lowercase_ = ["input_ids", "token_type_ids"]
lowercase_ = FNetTokenizer
def __init__( self : List[Any] , _lowerCAmelCase : Dict=None , _lowerCAmelCase : Dict=None , _lowerCAmelCase : List[str]=False , _lowerCAmelCase : Optional[Any]=True , _lowerCAmelCase : Tuple=True , _lowerCAmelCase : List[Any]="<unk>" , _lowerCAmelCase : Optional[Any]="[SEP]" , _lowerCAmelCase : Optional[Any]="<pad>" , _lowerCAmelCase : Optional[int]="[CLS]" , _lowerCAmelCase : Optional[Any]="[MASK]" , **_lowerCAmelCase : Any , ):
# Mask token behave like a normal word, i.e. include the space before it and
# is included in the raw text, there should be a match in a non-normalized sentence.
SCREAMING_SNAKE_CASE_ = (
AddedToken(_lowerCAmelCase , lstrip=_lowerCAmelCase , rstrip=_lowerCAmelCase , normalized=_lowerCAmelCase )
if isinstance(_lowerCAmelCase , _lowerCAmelCase )
else mask_token
)
super().__init__(
_lowerCAmelCase , tokenizer_file=_lowerCAmelCase , do_lower_case=_lowerCAmelCase , remove_space=_lowerCAmelCase , keep_accents=_lowerCAmelCase , unk_token=_lowerCAmelCase , sep_token=_lowerCAmelCase , pad_token=_lowerCAmelCase , cls_token=_lowerCAmelCase , mask_token=_lowerCAmelCase , **_lowerCAmelCase , )
SCREAMING_SNAKE_CASE_ = do_lower_case
SCREAMING_SNAKE_CASE_ = remove_space
SCREAMING_SNAKE_CASE_ = keep_accents
SCREAMING_SNAKE_CASE_ = vocab_file
SCREAMING_SNAKE_CASE_ = False if not self.vocab_file else True
def lowerCAmelCase_ ( self : Any , _lowerCAmelCase : List[int] , _lowerCAmelCase : Optional[List[int]] = None ):
SCREAMING_SNAKE_CASE_ = [self.sep_token_id]
SCREAMING_SNAKE_CASE_ = [self.cls_token_id]
if token_ids_a is None:
return cls + token_ids_a + sep
return cls + token_ids_a + sep + token_ids_a + sep
def lowerCAmelCase_ ( self : Optional[int] , _lowerCAmelCase : List[int] , _lowerCAmelCase : Optional[List[int]] = None ):
SCREAMING_SNAKE_CASE_ = [self.sep_token_id]
SCREAMING_SNAKE_CASE_ = [self.cls_token_id]
if token_ids_a is None:
return len(cls + token_ids_a + sep ) * [0]
return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1]
def lowerCAmelCase_ ( self : Optional[Any] , _lowerCAmelCase : str , _lowerCAmelCase : Optional[str] = None ):
if not os.path.isdir(_lowerCAmelCase ):
logger.error(F"Vocabulary path ({save_directory}) should be a directory" )
return
SCREAMING_SNAKE_CASE_ = os.path.join(
_lowerCAmelCase , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] )
if os.path.abspath(self.vocab_file ) != os.path.abspath(_lowerCAmelCase ):
copyfile(self.vocab_file , _lowerCAmelCase )
return (out_vocab_file,) | 31 | 0 |
'''simple docstring'''
class A :
def __init__( self , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) -> List[Any]:
'''simple docstring'''
lowercase__ = name
lowercase__ = value
lowercase__ = weight
def __repr__( self ) -> Any:
'''simple docstring'''
return F'''{self.__class__.__name__}({self.name}, {self.value}, {self.weight})'''
def A__ ( self ) -> Dict:
'''simple docstring'''
return self.value
def A__ ( self ) -> List[str]:
'''simple docstring'''
return self.name
def A__ ( self ) -> Union[str, Any]:
'''simple docstring'''
return self.weight
def A__ ( self ) -> Union[str, Any]:
'''simple docstring'''
return self.value / self.weight
def _A ( lowercase__ , lowercase__ , lowercase__ ):
lowercase__ = []
for i in range(len(__UpperCAmelCase ) ):
menu.append(Things(name[i] , value[i] , weight[i] ) )
return menu
def _A ( lowercase__ , lowercase__ , lowercase__ ):
lowercase__ = sorted(__UpperCAmelCase , key=__UpperCAmelCase , reverse=__UpperCAmelCase )
lowercase__ = []
lowercase__ , lowercase__ = 0.0, 0.0
for i in range(len(__UpperCAmelCase ) ):
if (total_cost + items_copy[i].get_weight()) <= max_cost:
result.append(items_copy[i] )
total_cost += items_copy[i].get_weight()
total_value += items_copy[i].get_value()
return (result, total_value)
def _A ( ):
pass
if __name__ == "__main__":
import doctest
doctest.testmod()
| 325 |
from __future__ import annotations
from collections.abc import Generator
def UpperCAmelCase_ ( ) -> Generator[int, None, None]:
SCREAMING_SNAKE_CASE_ = {}
SCREAMING_SNAKE_CASE_ = 2
while True:
SCREAMING_SNAKE_CASE_ = factor_map.pop(__UpperCAmelCase , __UpperCAmelCase )
if factor:
SCREAMING_SNAKE_CASE_ = factor + prime
while x in factor_map:
x += factor
SCREAMING_SNAKE_CASE_ = factor
else:
SCREAMING_SNAKE_CASE_ = prime
yield prime
prime += 1
def UpperCAmelCase_ ( __UpperCAmelCase : float = 1E10 ) -> int:
SCREAMING_SNAKE_CASE_ = sieve()
SCREAMING_SNAKE_CASE_ = 1
while True:
SCREAMING_SNAKE_CASE_ = next(__UpperCAmelCase )
if (2 * prime * n) > limit:
return n
# Ignore the next prime as the reminder will be 2.
next(__UpperCAmelCase )
n += 2
if __name__ == "__main__":
print(solution()) | 31 | 0 |
from __future__ import annotations
from typing import TypedDict
class __a( _SCREAMING_SNAKE_CASE ):
"""simple docstring"""
lowerCAmelCase = 42
lowerCAmelCase = 42
def lowerCamelCase__ ( _lowercase ):
'''simple docstring'''
if not isinstance(__UpperCAmelCase , __UpperCAmelCase ):
raise TypeError('''The parameter s type must be str.''' )
return [s[i:] + s[:i] for i in range(len(__UpperCAmelCase ) )]
def lowerCamelCase__ ( _lowercase ):
'''simple docstring'''
if not isinstance(__UpperCAmelCase , __UpperCAmelCase ):
raise TypeError('''The parameter s type must be str.''' )
if not s:
raise ValueError('''The parameter s must not be empty.''' )
UpperCAmelCase_ : Optional[int] = all_rotations(__UpperCAmelCase )
rotations.sort() # sort the list of rotations in alphabetically order
# make a string composed of the last char of each rotation
UpperCAmelCase_ : List[str] = {
'''bwt_string''': ''''''.join([word[-1] for word in rotations] ),
'''idx_original_string''': rotations.index(__UpperCAmelCase ),
}
return response
def lowerCamelCase__ ( _lowercase , _lowercase ):
'''simple docstring'''
if not isinstance(__UpperCAmelCase , __UpperCAmelCase ):
raise TypeError('''The parameter bwt_string type must be str.''' )
if not bwt_string:
raise ValueError('''The parameter bwt_string must not be empty.''' )
try:
UpperCAmelCase_ : Dict = int(__UpperCAmelCase )
except ValueError:
raise TypeError(
'''The parameter idx_original_string type must be int or passive'''
''' of cast to int.''' )
if idx_original_string < 0:
raise ValueError('''The parameter idx_original_string must not be lower than 0.''' )
if idx_original_string >= len(__UpperCAmelCase ):
raise ValueError(
'''The parameter idx_original_string must be lower than''' ''' len(bwt_string).''' )
UpperCAmelCase_ : List[str] = [''''''] * len(__UpperCAmelCase )
for _ in range(len(__UpperCAmelCase ) ):
for i in range(len(__UpperCAmelCase ) ):
UpperCAmelCase_ : List[Any] = bwt_string[i] + ordered_rotations[i]
ordered_rotations.sort()
return ordered_rotations[idx_original_string]
if __name__ == "__main__":
__a = 'Provide a string that I will generate its BWT transform: '
__a = input(entry_msg).strip()
__a = bwt_transform(s)
print(
F"""Burrows Wheeler transform for string \'{s}\' results """
F"""in \'{result["bwt_string"]}\'"""
)
__a = reverse_bwt(result['bwt_string'], result['idx_original_string'])
print(
F"""Reversing Burrows Wheeler transform for entry \'{result["bwt_string"]}\' """
F"""we get original string \'{original_string}\'"""
) | 30 |
import numpy as np
import torch
from torch.utils.data import DataLoader
from accelerate.utils.dataclasses import DistributedType
class lowerCamelCase_ :
'''simple docstring'''
def __init__( self : Any , _lowerCAmelCase : Optional[int]=2 , _lowerCAmelCase : Any=3 , _lowerCAmelCase : Tuple=64 , _lowerCAmelCase : List[str]=None ):
SCREAMING_SNAKE_CASE_ = np.random.default_rng(_lowerCAmelCase )
SCREAMING_SNAKE_CASE_ = length
SCREAMING_SNAKE_CASE_ = rng.normal(size=(length,) ).astype(np.floataa )
SCREAMING_SNAKE_CASE_ = a * self.x + b + rng.normal(scale=0.1 , size=(length,) ).astype(np.floataa )
def __len__( self : Optional[int] ):
return self.length
def __getitem__( self : str , _lowerCAmelCase : Union[str, Any] ):
return {"x": self.x[i], "y": self.y[i]}
class lowerCamelCase_ ( torch.nn.Module ):
'''simple docstring'''
def __init__( self : Tuple , _lowerCAmelCase : Dict=0 , _lowerCAmelCase : List[str]=0 , _lowerCAmelCase : str=False ):
super().__init__()
SCREAMING_SNAKE_CASE_ = torch.nn.Parameter(torch.tensor([2, 3] ).float() )
SCREAMING_SNAKE_CASE_ = torch.nn.Parameter(torch.tensor([2, 3] ).float() )
SCREAMING_SNAKE_CASE_ = True
def lowerCAmelCase_ ( self : Dict , _lowerCAmelCase : Union[str, Any]=None ):
if self.first_batch:
print(F"Model dtype: {self.a.dtype}, {self.b.dtype}. Input dtype: {x.dtype}" )
SCREAMING_SNAKE_CASE_ = False
return x * self.a[0] + self.b[0]
class lowerCamelCase_ ( torch.nn.Module ):
'''simple docstring'''
def __init__( self : Optional[int] , _lowerCAmelCase : Any=0 , _lowerCAmelCase : Any=0 , _lowerCAmelCase : Optional[Any]=False ):
super().__init__()
SCREAMING_SNAKE_CASE_ = torch.nn.Parameter(torch.tensor(_lowerCAmelCase ).float() )
SCREAMING_SNAKE_CASE_ = torch.nn.Parameter(torch.tensor(_lowerCAmelCase ).float() )
SCREAMING_SNAKE_CASE_ = True
def lowerCAmelCase_ ( self : Optional[Any] , _lowerCAmelCase : Optional[int]=None ):
if self.first_batch:
print(F"Model dtype: {self.a.dtype}, {self.b.dtype}. Input dtype: {x.dtype}" )
SCREAMING_SNAKE_CASE_ = False
return x * self.a + self.b
def UpperCAmelCase_ ( __UpperCAmelCase : Dict , __UpperCAmelCase : int = 16 ) -> Union[str, Any]:
from datasets import load_dataset
from transformers import AutoTokenizer
SCREAMING_SNAKE_CASE_ = AutoTokenizer.from_pretrained('bert-base-cased' )
SCREAMING_SNAKE_CASE_ = {'train': 'tests/test_samples/MRPC/train.csv', 'validation': 'tests/test_samples/MRPC/dev.csv'}
SCREAMING_SNAKE_CASE_ = load_dataset('csv' , data_files=__UpperCAmelCase )
SCREAMING_SNAKE_CASE_ = datasets['train'].unique('label' )
SCREAMING_SNAKE_CASE_ = {v: i for i, v in enumerate(__UpperCAmelCase )}
def tokenize_function(__UpperCAmelCase : Optional[int] ):
# max_length=None => use the model max length (it's actually the default)
SCREAMING_SNAKE_CASE_ = tokenizer(
examples['sentence1'] , examples['sentence2'] , truncation=__UpperCAmelCase , max_length=__UpperCAmelCase , padding='max_length' )
if "label" in examples:
SCREAMING_SNAKE_CASE_ = [label_to_id[l] for l in examples['label']]
return outputs
# Apply the method we just defined to all the examples in all the splits of the dataset
SCREAMING_SNAKE_CASE_ = datasets.map(
__UpperCAmelCase , batched=__UpperCAmelCase , remove_columns=['sentence1', 'sentence2', 'label'] , )
def collate_fn(__UpperCAmelCase : Dict ):
# On TPU it's best to pad everything to the same length or training will be very slow.
if accelerator.distributed_type == DistributedType.TPU:
return tokenizer.pad(__UpperCAmelCase , padding='max_length' , max_length=1_28 , return_tensors='pt' )
return tokenizer.pad(__UpperCAmelCase , padding='longest' , return_tensors='pt' )
# Instantiate dataloaders.
SCREAMING_SNAKE_CASE_ = DataLoader(tokenized_datasets['train'] , shuffle=__UpperCAmelCase , collate_fn=__UpperCAmelCase , batch_size=2 )
SCREAMING_SNAKE_CASE_ = DataLoader(tokenized_datasets['validation'] , shuffle=__UpperCAmelCase , collate_fn=__UpperCAmelCase , batch_size=1 )
return train_dataloader, eval_dataloader | 31 | 0 |
'''simple docstring'''
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available
A_ = {
'configuration_pix2struct': [
'PIX2STRUCT_PRETRAINED_CONFIG_ARCHIVE_MAP',
'Pix2StructConfig',
'Pix2StructTextConfig',
'Pix2StructVisionConfig',
],
'processing_pix2struct': ['Pix2StructProcessor'],
}
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
A_ = ['Pix2StructImageProcessor']
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
A_ = [
'PIX2STRUCT_PRETRAINED_MODEL_ARCHIVE_LIST',
'Pix2StructPreTrainedModel',
'Pix2StructForConditionalGeneration',
'Pix2StructVisionModel',
'Pix2StructTextModel',
]
if TYPE_CHECKING:
from .configuration_pixastruct import (
PIX2STRUCT_PRETRAINED_CONFIG_ARCHIVE_MAP,
PixaStructConfig,
PixaStructTextConfig,
PixaStructVisionConfig,
)
from .processing_pixastruct import PixaStructProcessor
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .image_processing_pixastruct import PixaStructImageProcessor
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_pixastruct import (
PIX2STRUCT_PRETRAINED_MODEL_ARCHIVE_LIST,
PixaStructForConditionalGeneration,
PixaStructPreTrainedModel,
PixaStructTextModel,
PixaStructVisionModel,
)
else:
import sys
A_ = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
| 270 |
import warnings
from ...utils import logging
from .image_processing_layoutlmva import LayoutLMvaImageProcessor
lowerCamelCase__ : Union[str, Any] = logging.get_logger(__name__)
class lowerCamelCase_ ( _SCREAMING_SNAKE_CASE ):
'''simple docstring'''
def __init__( self : Dict , *_lowerCAmelCase : Optional[Any] , **_lowerCAmelCase : Any ):
warnings.warn(
'The class LayoutLMv2FeatureExtractor is deprecated and will be removed in version 5 of Transformers.'
' Please use LayoutLMv2ImageProcessor instead.' , _lowerCAmelCase , )
super().__init__(*_lowerCAmelCase , **_lowerCAmelCase ) | 31 | 0 |
'''simple docstring'''
# Copyright 2021 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import argparse
import os
from accelerate.test_utils import execute_subprocess_async
def lowerCAmelCase_ ( SCREAMING_SNAKE_CASE_=None ) -> Any:
"""simple docstring"""
if subparsers is not None:
_SCREAMING_SNAKE_CASE = subparsers.add_parser("""test""" )
else:
_SCREAMING_SNAKE_CASE = argparse.ArgumentParser("""Accelerate test command""" )
parser.add_argument(
"""--config_file""" , default=__UpperCAmelCase , help=(
"""The path to use to store the config file. Will default to a file named default_config.yaml in the cache """
"""location, which is the content of the environment `HF_HOME` suffixed with \'accelerate\', or if you don\'t have """
"""such an environment variable, your cache directory (\'~/.cache\' or the content of `XDG_CACHE_HOME`) suffixed """
"""with \'huggingface\'."""
) , )
if subparsers is not None:
parser.set_defaults(func=__UpperCAmelCase )
return parser
def lowerCAmelCase_ ( SCREAMING_SNAKE_CASE_ ) -> List[Any]:
"""simple docstring"""
_SCREAMING_SNAKE_CASE = os.path.sep.join(__file__.split(os.path.sep )[:-2] + ["""test_utils""", """scripts""", """test_script.py"""] )
if args.config_file is None:
_SCREAMING_SNAKE_CASE = script_name
else:
_SCREAMING_SNAKE_CASE = F"--config_file={args.config_file} {script_name}"
_SCREAMING_SNAKE_CASE = ["""accelerate-launch"""] + test_args.split()
_SCREAMING_SNAKE_CASE = execute_subprocess_async(__UpperCAmelCase , env=os.environ.copy() )
if result.returncode == 0:
print("""Test is a success! You are ready for your distributed training!""" )
def lowerCAmelCase_ ( ) -> Optional[int]:
"""simple docstring"""
_SCREAMING_SNAKE_CASE = test_command_parser()
_SCREAMING_SNAKE_CASE = parser.parse_args()
test_command(__UpperCAmelCase )
if __name__ == "__main__":
main()
| 591 |
def UpperCAmelCase_ ( ) -> list[list[int]]:
return [list(range(10_00 - i , -10_00 - i , -1 ) ) for i in range(10_00 )]
lowerCamelCase__ : List[Any] = generate_large_matrix()
lowerCamelCase__ : List[Any] = (
[[4, 3, 2, -1], [3, 2, 1, -1], [1, 1, -1, -2], [-1, -1, -2, -3]],
[[3, 2], [1, 0]],
[[7, 7, 6]],
[[7, 7, 6], [-1, -2, -3]],
grid,
)
def UpperCAmelCase_ ( __UpperCAmelCase : list[list[int]] ) -> None:
assert all(row == sorted(__UpperCAmelCase , reverse=__UpperCAmelCase ) for row in grid )
assert all(list(__UpperCAmelCase ) == sorted(__UpperCAmelCase , reverse=__UpperCAmelCase ) for col in zip(*__UpperCAmelCase ) )
def UpperCAmelCase_ ( __UpperCAmelCase : list[int] ) -> int:
SCREAMING_SNAKE_CASE_ = 0
SCREAMING_SNAKE_CASE_ = len(__UpperCAmelCase ) - 1
# Edge cases such as no values or all numbers are negative.
if not array or array[0] < 0:
return 0
while right + 1 > left:
SCREAMING_SNAKE_CASE_ = (left + right) // 2
SCREAMING_SNAKE_CASE_ = array[mid]
# Num must be negative and the index must be greater than or equal to 0.
if num < 0 and array[mid - 1] >= 0:
return mid
if num >= 0:
SCREAMING_SNAKE_CASE_ = mid + 1
else:
SCREAMING_SNAKE_CASE_ = mid - 1
# No negative numbers so return the last index of the array + 1 which is the length.
return len(__UpperCAmelCase )
def UpperCAmelCase_ ( __UpperCAmelCase : list[list[int]] ) -> int:
SCREAMING_SNAKE_CASE_ = 0
SCREAMING_SNAKE_CASE_ = len(grid[0] )
for i in range(len(__UpperCAmelCase ) ):
SCREAMING_SNAKE_CASE_ = find_negative_index(grid[i][:bound] )
total += bound
return (len(__UpperCAmelCase ) * len(grid[0] )) - total
def UpperCAmelCase_ ( __UpperCAmelCase : list[list[int]] ) -> int:
return len([number for row in grid for number in row if number < 0] )
def UpperCAmelCase_ ( __UpperCAmelCase : list[list[int]] ) -> int:
SCREAMING_SNAKE_CASE_ = 0
for row in grid:
for i, number in enumerate(__UpperCAmelCase ):
if number < 0:
total += len(__UpperCAmelCase ) - i
break
return total
def UpperCAmelCase_ ( ) -> None:
from timeit import timeit
print('Running benchmarks' )
SCREAMING_SNAKE_CASE_ = (
'from __main__ import count_negatives_binary_search, '
'count_negatives_brute_force, count_negatives_brute_force_with_break, grid'
)
for func in (
"count_negatives_binary_search", # took 0.7727 seconds
"count_negatives_brute_force_with_break", # took 4.6505 seconds
"count_negatives_brute_force", # took 12.8160 seconds
):
SCREAMING_SNAKE_CASE_ = timeit(f"{func}(grid=grid)" , setup=__UpperCAmelCase , number=5_00 )
print(f"{func}() took {time:0.4f} seconds" )
if __name__ == "__main__":
import doctest
doctest.testmod()
benchmark() | 31 | 0 |
import torch
from transformers import PreTrainedModel, XLMRobertaConfig, XLMRobertaModel
class _lowercase ( _SCREAMING_SNAKE_CASE ):
lowercase = 'M-CLIP'
def __init__( self : Tuple , snake_case : List[str]=1_0_2_4 , snake_case : str=7_6_8 , **snake_case : Union[str, Any] ) -> int:
"""simple docstring"""
UpperCamelCase_ : str = transformerDimSize
UpperCamelCase_ : List[str] = imageDimSize
super().__init__(**_lowerCAmelCase )
class _lowercase ( _SCREAMING_SNAKE_CASE ):
lowercase = MCLIPConfig
def __init__( self : Dict , snake_case : Union[str, Any] , *snake_case : str , **snake_case : str ) -> Optional[int]:
"""simple docstring"""
super().__init__(_lowerCAmelCase , *_lowerCAmelCase , **_lowerCAmelCase )
UpperCamelCase_ : int = XLMRobertaModel(_lowerCAmelCase )
UpperCamelCase_ : Union[str, Any] = torch.nn.Linear(
in_features=config.transformerDimensions , out_features=config.numDims )
def SCREAMING_SNAKE_CASE__ ( self : List[Any] , snake_case : Any , snake_case : Union[str, Any] ) -> Dict:
"""simple docstring"""
UpperCamelCase_ : Union[str, Any] = self.transformer(input_ids=_lowerCAmelCase , attention_mask=_lowerCAmelCase )[0]
UpperCamelCase_ : str = (embs * attention_mask.unsqueeze(2 )).sum(dim=1 ) / attention_mask.sum(dim=1 )[:, None]
return self.LinearTransformation(_lowerCAmelCase ), embs
| 417 |
from typing import TYPE_CHECKING
from ....utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available
lowerCamelCase__ : Optional[int] = {'configuration_mmbt': ['MMBTConfig']}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowerCamelCase__ : Any = ['MMBTForClassification', 'MMBTModel', 'ModalEmbeddings']
if TYPE_CHECKING:
from .configuration_mmbt import MMBTConfig
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_mmbt import MMBTForClassification, MMBTModel, ModalEmbeddings
else:
import sys
lowerCamelCase__ : str = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__) | 31 | 0 |
import argparse
import shutil
import time
from json import JSONDecodeError
from logging import getLogger
from pathlib import Path
from typing import Dict, List
import torch
from torch.utils.data import DataLoader
from tqdm import tqdm
from transformers import AutoModelForSeqaSeqLM, AutoTokenizer
from utils import (
SeqaSeqDataset,
calculate_bleu,
calculate_rouge,
chunks,
lmap,
load_json,
parse_numeric_n_bool_cl_kwargs,
save_json,
use_task_specific_params,
write_txt_file,
)
UpperCAmelCase__ = getLogger(__name__)
def a_ (__A , __A , __A , __A = 8 , __A = 1_024 , __A="val" , __A=None , __A=False , __A="summarization" , __A=None , __A=1 , __A = None , __A="" , **__A , ) -> Dict:
"""simple docstring"""
__a : Optional[Any] = str(__UpperCAmelCase )
assert local_rank is not None
torch.distributed.init_process_group(backend="nccl" , rank=__UpperCAmelCase )
__a : Optional[Any] = Path(__UpperCAmelCase )
__a : Tuple = save_dir.joinpath(f'rank_{local_rank}_output.json' )
torch.cuda.set_device(__UpperCAmelCase )
__a : List[Any] = AutoModelForSeqaSeqLM.from_pretrained(__UpperCAmelCase ).cuda()
if fpaa:
__a : Union[str, Any] = model.half()
# determine if we need to increase num_beams
use_task_specific_params(__UpperCAmelCase , __UpperCAmelCase ) # update config with task specific params
__a : List[str] = generate_kwargs.pop("num_beams" , model.config.num_beams ) # AttributeError risk?
if num_return_sequences > num_beams:
__a : Dict = num_return_sequences
__a : Union[str, Any] = AutoTokenizer.from_pretrained(__UpperCAmelCase )
logger.info(f'Inferred tokenizer type: {tokenizer.__class__}' ) # if this is wrong, check config.model_type.
if max_source_length is None:
__a : List[Any] = tokenizer.model_max_length
if prefix is None:
__a : Dict = prefix or getattr(model.config , "prefix" , "" ) or ""
__a : str = SeqaSeqDataset(
__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , max_target_length=1_024 , type_path=__UpperCAmelCase , n_obs=__UpperCAmelCase , prefix=__UpperCAmelCase , **__UpperCAmelCase , )
# I set shuffle=True for a more accurate progress bar.
# If all the longest samples are first, the prog bar estimate is too high at the beginning.
__a : Union[str, Any] = ds.make_sortish_sampler(__UpperCAmelCase , distributed=__UpperCAmelCase , add_extra_examples=__UpperCAmelCase , shuffle=__UpperCAmelCase )
__a : Optional[int] = DataLoader(__UpperCAmelCase , sampler=__UpperCAmelCase , batch_size=__UpperCAmelCase , collate_fn=ds.collate_fn )
__a : Any = []
for batch in tqdm(__UpperCAmelCase ):
__a : Union[str, Any] = model.generate(
input_ids=batch["input_ids"].to(model.device ) , attention_mask=batch["attention_mask"].to(model.device ) , num_return_sequences=__UpperCAmelCase , num_beams=__UpperCAmelCase , **__UpperCAmelCase , )
__a : Optional[int] = tokenizer.batch_decode(__UpperCAmelCase , skip_special_tokens=__UpperCAmelCase , clean_up_tokenization_spaces=__UpperCAmelCase )
__a : List[Any] = batch["ids"]
if num_return_sequences > 1:
__a : Tuple = chunks(__UpperCAmelCase , __UpperCAmelCase ) # batch size chunks, each of size num_return_seq
for i, pred in enumerate(__UpperCAmelCase ):
results.append({"pred": pred, "id": ids[i].item()} )
save_json(__UpperCAmelCase , __UpperCAmelCase )
return results, sampler.num_replicas
def a_ () -> Dict:
"""simple docstring"""
__a : Dict = argparse.ArgumentParser(
epilog="Unspecified args like --num_beams=2 --decoder_start_token_id=4 are passed to model.generate" )
parser.add_argument("--data_dir" , type=__UpperCAmelCase , help="like cnn_dm/test.source" )
parser.add_argument(
"--model_name" , type=__UpperCAmelCase , help="like facebook/bart-large-cnn,t5-base, etc." , default="sshleifer/distilbart-xsum-12-3" , )
parser.add_argument("--save_dir" , type=__UpperCAmelCase , help="where to save" , default="tmp_gen" )
parser.add_argument("--max_source_length" , type=__UpperCAmelCase , default=__UpperCAmelCase )
parser.add_argument(
"--type_path" , type=__UpperCAmelCase , default="test" , help="which subset to evaluate typically train/val/test" )
parser.add_argument("--task" , type=__UpperCAmelCase , default="summarization" , help="used for task_specific_params + metrics" )
parser.add_argument("--bs" , type=__UpperCAmelCase , default=8 , required=__UpperCAmelCase , help="batch size" )
parser.add_argument(
"--local_rank" , type=__UpperCAmelCase , default=-1 , required=__UpperCAmelCase , help="should be passed by distributed.launch" )
parser.add_argument(
"--n_obs" , type=__UpperCAmelCase , default=__UpperCAmelCase , required=__UpperCAmelCase , help="How many observations. Defaults to all." )
parser.add_argument(
"--num_return_sequences" , type=__UpperCAmelCase , default=1 , required=__UpperCAmelCase , help="How many sequences to return" )
parser.add_argument(
"--sync_timeout" , type=__UpperCAmelCase , default=600 , required=__UpperCAmelCase , help="How long should master process wait for other processes to finish." , )
parser.add_argument("--src_lang" , type=__UpperCAmelCase , default=__UpperCAmelCase , required=__UpperCAmelCase )
parser.add_argument("--tgt_lang" , type=__UpperCAmelCase , default=__UpperCAmelCase , required=__UpperCAmelCase )
parser.add_argument(
"--prefix" , type=__UpperCAmelCase , required=__UpperCAmelCase , default=__UpperCAmelCase , help="will be added to the begininng of src examples" )
parser.add_argument("--fp16" , action="store_true" )
parser.add_argument("--debug" , action="store_true" )
__a : Dict = time.time()
__a , __a : Any = parser.parse_known_args()
__a : int = parse_numeric_n_bool_cl_kwargs(__UpperCAmelCase )
if generate_kwargs and args.local_rank <= 0:
print(f'parsed the following generate kwargs: {generate_kwargs}' )
__a : List[str] = Path(args.save_dir + "_tmp" )
Path(__UpperCAmelCase ).mkdir(exist_ok=__UpperCAmelCase ) # this handles locking.
__a : List[str] = list(json_save_dir.glob("rank_*.json" ) )
if intermediate_files:
raise ValueError(f'Found files at {json_save_dir} please move or remove them.' )
# In theory, a node could finish and save before another node hits this. If this happens, we can address later.
__a : Optional[int] = {}
if args.src_lang is not None:
__a : Tuple = args.src_lang
if args.tgt_lang is not None:
__a : Optional[int] = args.tgt_lang
Path(args.save_dir ).mkdir(exist_ok=__UpperCAmelCase )
__a , __a : Dict = eval_data_dir(
args.data_dir , __UpperCAmelCase , args.model_name , type_path=args.type_path , bs=args.bs , fpaa=args.fpaa , task=args.task , local_rank=args.local_rank , n_obs=args.n_obs , max_source_length=args.max_source_length , num_return_sequences=args.num_return_sequences , prefix=args.prefix , dataset_kwargs=__UpperCAmelCase , **__UpperCAmelCase , )
if args.local_rank <= 0:
__a : Optional[Any] = Path(args.save_dir )
save_dir.mkdir(exist_ok=__UpperCAmelCase )
__a : List[Any] = gather_results_from_each_node(__UpperCAmelCase , __UpperCAmelCase , args.sync_timeout )
__a : Optional[Any] = combine_partial_results(__UpperCAmelCase )
if args.num_return_sequences > 1:
__a : List[Any] = save_dir.joinpath("pseudolabel_results.json" )
print(f'Saving aggregated results at {save_path}, intermediate in {json_save_dir}/' )
save_json(__UpperCAmelCase , __UpperCAmelCase )
return
__a : Dict = Path(args.data_dir ).joinpath(args.type_path + ".target" )
with open(__UpperCAmelCase ) as f:
__a : Union[str, Any] = [x.rstrip() for x in f.readlines()][: len(__UpperCAmelCase )]
# Calculate metrics, save metrics, and save _generations.txt
__a : Tuple = "translation" in args.task
__a : List[str] = calculate_bleu if calc_bleu else calculate_rouge
__a : Any = "bleu" if calc_bleu else "rouge"
__a : List[Any] = score_fn(__UpperCAmelCase , __UpperCAmelCase )
__a : List[str] = len(__UpperCAmelCase )
__a : Optional[Any] = time.time() - start_time
__a : Any = round(runtime / metrics["n_obs"] , 4 )
__a : Optional[int] = num_replicas
# TODO(@stas00): add whatever metadata to metrics
__a : Optional[int] = save_dir.joinpath(f'{args.type_path}_{metric_name}.json' )
save_json(__UpperCAmelCase , __UpperCAmelCase , indent=__UpperCAmelCase )
print(__UpperCAmelCase )
write_txt_file(__UpperCAmelCase , save_dir.joinpath(f'{args.type_path}_generations.txt' ) )
if args.debug:
write_txt_file(__UpperCAmelCase , save_dir.joinpath(f'{args.type_path}.target' ) )
else:
shutil.rmtree(__UpperCAmelCase )
def a_ (__A ) -> List:
"""simple docstring"""
__a : List[str] = []
for partial_result in partial_results:
records.extend(__UpperCAmelCase )
__a : Union[str, Any] = sorted(__UpperCAmelCase , key=lambda __A : x["id"] )
__a : Any = [x["pred"] for x in records]
return preds
def a_ (__A , __A , __A ) -> List[Dict[str, List]]:
"""simple docstring"""
# WAIT FOR lots of .json files
__a : Any = time.time()
logger.info("waiting for all nodes to finish" )
__a : Union[str, Any] = None
while (time.time() - start_wait) < timeout:
__a : List[Any] = list(save_dir.glob("rank_*.json" ) )
if len(__UpperCAmelCase ) < num_replicas:
continue
try:
# make sure all json files are fully saved
__a : Any = lmap(__UpperCAmelCase , __UpperCAmelCase )
return json_data
except JSONDecodeError:
continue
else:
raise TimeoutError("Rank 0 gave up on waiting for other processes" )
# Unreachable
if __name__ == "__main__":
# Usage for MT:
run_generate()
| 351 |
import unittest
from typing import Tuple
import torch
from diffusers.utils import floats_tensor, randn_tensor, torch_all_close, torch_device
from diffusers.utils.testing_utils import require_torch
@require_torch
class lowerCamelCase_ :
'''simple docstring'''
@property
def lowerCAmelCase_ ( self : Optional[Any] ):
return self.get_dummy_input()
@property
def lowerCAmelCase_ ( self : Union[str, Any] ):
if self.block_type == "down":
return (4, 32, 16, 16)
elif self.block_type == "mid":
return (4, 32, 32, 32)
elif self.block_type == "up":
return (4, 32, 64, 64)
raise ValueError(F"'{self.block_type}' is not a supported block_type. Set it to 'up', 'mid', or 'down'." )
def lowerCAmelCase_ ( self : List[str] , _lowerCAmelCase : Optional[Any]=True , _lowerCAmelCase : str=False , _lowerCAmelCase : Optional[int]=False , _lowerCAmelCase : Dict=False , ):
SCREAMING_SNAKE_CASE_ = 4
SCREAMING_SNAKE_CASE_ = 32
SCREAMING_SNAKE_CASE_ = (32, 32)
SCREAMING_SNAKE_CASE_ = torch.manual_seed(0 )
SCREAMING_SNAKE_CASE_ = torch.device(_lowerCAmelCase )
SCREAMING_SNAKE_CASE_ = (batch_size, num_channels) + sizes
SCREAMING_SNAKE_CASE_ = randn_tensor(_lowerCAmelCase , generator=_lowerCAmelCase , device=_lowerCAmelCase )
SCREAMING_SNAKE_CASE_ = {'hidden_states': hidden_states}
if include_temb:
SCREAMING_SNAKE_CASE_ = 128
SCREAMING_SNAKE_CASE_ = randn_tensor((batch_size, temb_channels) , generator=_lowerCAmelCase , device=_lowerCAmelCase )
if include_res_hidden_states_tuple:
SCREAMING_SNAKE_CASE_ = torch.manual_seed(1 )
SCREAMING_SNAKE_CASE_ = (randn_tensor(_lowerCAmelCase , generator=_lowerCAmelCase , device=_lowerCAmelCase ),)
if include_encoder_hidden_states:
SCREAMING_SNAKE_CASE_ = floats_tensor((batch_size, 32, 32) ).to(_lowerCAmelCase )
if include_skip_sample:
SCREAMING_SNAKE_CASE_ = randn_tensor(((batch_size, 3) + sizes) , generator=_lowerCAmelCase , device=_lowerCAmelCase )
return dummy_input
def lowerCAmelCase_ ( self : Optional[int] ):
SCREAMING_SNAKE_CASE_ = {
'in_channels': 32,
'out_channels': 32,
'temb_channels': 128,
}
if self.block_type == "up":
SCREAMING_SNAKE_CASE_ = 32
if self.block_type == "mid":
init_dict.pop('out_channels' )
SCREAMING_SNAKE_CASE_ = self.dummy_input
return init_dict, inputs_dict
def lowerCAmelCase_ ( self : Dict , _lowerCAmelCase : Optional[Any] ):
SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = self.prepare_init_args_and_inputs_for_common()
SCREAMING_SNAKE_CASE_ = self.block_class(**_lowerCAmelCase )
unet_block.to(_lowerCAmelCase )
unet_block.eval()
with torch.no_grad():
SCREAMING_SNAKE_CASE_ = unet_block(**_lowerCAmelCase )
if isinstance(_lowerCAmelCase , _lowerCAmelCase ):
SCREAMING_SNAKE_CASE_ = output[0]
self.assertEqual(output.shape , self.output_shape )
SCREAMING_SNAKE_CASE_ = output[0, -1, -3:, -3:]
SCREAMING_SNAKE_CASE_ = torch.tensor(_lowerCAmelCase ).to(_lowerCAmelCase )
assert torch_all_close(output_slice.flatten() , _lowerCAmelCase , atol=5E-3 )
@unittest.skipIf(torch_device == 'mps' , 'Training is not supported in mps' )
def lowerCAmelCase_ ( self : Any ):
SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = self.prepare_init_args_and_inputs_for_common()
SCREAMING_SNAKE_CASE_ = self.block_class(**_lowerCAmelCase )
model.to(_lowerCAmelCase )
model.train()
SCREAMING_SNAKE_CASE_ = model(**_lowerCAmelCase )
if isinstance(_lowerCAmelCase , _lowerCAmelCase ):
SCREAMING_SNAKE_CASE_ = output[0]
SCREAMING_SNAKE_CASE_ = torch.device(_lowerCAmelCase )
SCREAMING_SNAKE_CASE_ = randn_tensor(output.shape , device=_lowerCAmelCase )
SCREAMING_SNAKE_CASE_ = torch.nn.functional.mse_loss(_lowerCAmelCase , _lowerCAmelCase )
loss.backward() | 31 | 0 |
'''simple docstring'''
def _lowerCAmelCase ( lowercase : dict ) ->set:
"""simple docstring"""
lowercase__ = set()
# edges = list of graph's edges
lowercase__ = get_edges(__UpperCAmelCase )
# While there are still elements in edges list, take an arbitrary edge
# (from_node, to_node) and add his extremity to chosen_vertices and then
# remove all arcs adjacent to the from_node and to_node
while edges:
lowercase__ , lowercase__ = edges.pop()
chosen_vertices.add(__UpperCAmelCase )
chosen_vertices.add(__UpperCAmelCase )
for edge in edges.copy():
if from_node in edge or to_node in edge:
edges.discard(__UpperCAmelCase )
return chosen_vertices
def _lowerCAmelCase ( lowercase : dict ) ->set:
"""simple docstring"""
lowercase__ = set()
for from_node, to_nodes in graph.items():
for to_node in to_nodes:
edges.add((from_node, to_node) )
return edges
if __name__ == "__main__":
import doctest
doctest.testmod()
# graph = {0: [1, 3], 1: [0, 3], 2: [0, 3, 4], 3: [0, 1, 2], 4: [2, 3]}
# print(f"Matching vertex cover:\n{matching_min_vertex_cover(graph)}")
| 161 |
import operator as op
def UpperCAmelCase_ ( __UpperCAmelCase : str ) -> Any:
SCREAMING_SNAKE_CASE_ = []
SCREAMING_SNAKE_CASE_ = lambda __UpperCAmelCase , __UpperCAmelCase : int(x / y ) # noqa: E731 integer division operation
SCREAMING_SNAKE_CASE_ = {
'^': op.pow,
'*': op.mul,
'/': div,
'+': op.add,
'-': op.sub,
} # operators & their respective operation
# print table header
print('Symbol'.center(8 ) , 'Action'.center(12 ) , 'Stack' , sep=' | ' )
print('-' * (30 + len(__UpperCAmelCase )) )
for x in post_fix:
if x.isdigit(): # if x in digit
stack.append(__UpperCAmelCase ) # append x to stack
# output in tabular format
print(x.rjust(8 ) , ('push(' + x + ')').ljust(12 ) , ','.join(__UpperCAmelCase ) , sep=' | ' )
else:
SCREAMING_SNAKE_CASE_ = stack.pop() # pop stack
# output in tabular format
print(''.rjust(8 ) , ('pop(' + b + ')').ljust(12 ) , ','.join(__UpperCAmelCase ) , sep=' | ' )
SCREAMING_SNAKE_CASE_ = stack.pop() # pop stack
# output in tabular format
print(''.rjust(8 ) , ('pop(' + a + ')').ljust(12 ) , ','.join(__UpperCAmelCase ) , sep=' | ' )
stack.append(
str(opr[x](int(__UpperCAmelCase ) , int(__UpperCAmelCase ) ) ) ) # evaluate the 2 values popped from stack & push result to stack
# output in tabular format
print(
x.rjust(8 ) , ('push(' + a + x + b + ')').ljust(12 ) , ','.join(__UpperCAmelCase ) , sep=' | ' , )
return int(stack[0] )
if __name__ == "__main__":
lowerCamelCase__ : Tuple = input('\n\nEnter a Postfix Equation (space separated) = ').split(' ')
print('\n\tResult = ', solve(Postfix)) | 31 | 0 |
"""simple docstring"""
import gc
import unittest
import torch
from transformers import CLIPTextConfig, CLIPTextModel, CLIPTextModelWithProjection, CLIPTokenizer
from diffusers import (
AutoencoderKL,
DDIMScheduler,
DDPMScheduler,
PriorTransformer,
StableUnCLIPPipeline,
UNetaDConditionModel,
)
from diffusers.pipelines.stable_diffusion.stable_unclip_image_normalizer import StableUnCLIPImageNormalizer
from diffusers.utils.testing_utils import enable_full_determinism, load_numpy, require_torch_gpu, slow, torch_device
from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_IMAGE_PARAMS, TEXT_TO_IMAGE_PARAMS
from ..test_pipelines_common import (
PipelineKarrasSchedulerTesterMixin,
PipelineLatentTesterMixin,
PipelineTesterMixin,
assert_mean_pixel_difference,
)
enable_full_determinism()
class __a ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , unittest.TestCase ):
SCREAMING_SNAKE_CASE__ : Optional[Any] = StableUnCLIPPipeline
SCREAMING_SNAKE_CASE__ : Dict = TEXT_TO_IMAGE_PARAMS
SCREAMING_SNAKE_CASE__ : str = TEXT_TO_IMAGE_BATCH_PARAMS
SCREAMING_SNAKE_CASE__ : Tuple = TEXT_TO_IMAGE_IMAGE_PARAMS
SCREAMING_SNAKE_CASE__ : List[Any] = TEXT_TO_IMAGE_IMAGE_PARAMS
# TODO(will) Expected attn_bias.stride(1) == 0 to be true, but got false
SCREAMING_SNAKE_CASE__ : Optional[Any] = False
def snake_case_ ( self ):
_lowerCamelCase = 32
_lowerCamelCase = embedder_hidden_size
# prior components
torch.manual_seed(0 )
_lowerCamelCase = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip' )
torch.manual_seed(0 )
_lowerCamelCase = CLIPTextModelWithProjection(
CLIPTextConfig(
bos_token_id=0 , eos_token_id=2 , hidden_size=_lowerCAmelCase , projection_dim=_lowerCAmelCase , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=10_00 , ) )
torch.manual_seed(0 )
_lowerCamelCase = PriorTransformer(
num_attention_heads=2 , attention_head_dim=12 , embedding_dim=_lowerCAmelCase , num_layers=1 , )
torch.manual_seed(0 )
_lowerCamelCase = DDPMScheduler(
variance_type='fixed_small_log' , prediction_type='sample' , num_train_timesteps=10_00 , clip_sample=_lowerCAmelCase , clip_sample_range=5.0 , beta_schedule='squaredcos_cap_v2' , )
# regular denoising components
torch.manual_seed(0 )
_lowerCamelCase = StableUnCLIPImageNormalizer(embedding_dim=_lowerCAmelCase )
_lowerCamelCase = DDPMScheduler(beta_schedule='squaredcos_cap_v2' )
torch.manual_seed(0 )
_lowerCamelCase = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip' )
torch.manual_seed(0 )
_lowerCamelCase = CLIPTextModel(
CLIPTextConfig(
bos_token_id=0 , eos_token_id=2 , hidden_size=_lowerCAmelCase , projection_dim=32 , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=10_00 , ) )
torch.manual_seed(0 )
_lowerCamelCase = UNetaDConditionModel(
sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=('CrossAttnDownBlock2D', 'DownBlock2D') , up_block_types=('UpBlock2D', 'CrossAttnUpBlock2D') , block_out_channels=(32, 64) , attention_head_dim=(2, 4) , class_embed_type='projection' , projection_class_embeddings_input_dim=embedder_projection_dim * 2 , cross_attention_dim=_lowerCAmelCase , layers_per_block=1 , upcast_attention=_lowerCAmelCase , use_linear_projection=_lowerCAmelCase , )
torch.manual_seed(0 )
_lowerCamelCase = DDIMScheduler(
beta_schedule='scaled_linear' , beta_start=0.00085 , beta_end=0.012 , prediction_type='v_prediction' , set_alpha_to_one=_lowerCAmelCase , steps_offset=1 , )
torch.manual_seed(0 )
_lowerCamelCase = AutoencoderKL()
_lowerCamelCase = {
# prior components
'prior_tokenizer': prior_tokenizer,
'prior_text_encoder': prior_text_encoder,
'prior': prior,
'prior_scheduler': prior_scheduler,
# image noising components
'image_normalizer': image_normalizer,
'image_noising_scheduler': image_noising_scheduler,
# regular denoising components
'tokenizer': tokenizer,
'text_encoder': text_encoder,
'unet': unet,
'scheduler': scheduler,
'vae': vae,
}
return components
def snake_case_ ( self , a__ , a__=0 ):
if str(_lowerCAmelCase ).startswith('mps' ):
_lowerCamelCase = torch.manual_seed(_lowerCAmelCase )
else:
_lowerCamelCase = torch.Generator(device=_lowerCAmelCase ).manual_seed(_lowerCAmelCase )
_lowerCamelCase = {
'prompt': 'A painting of a squirrel eating a burger',
'generator': generator,
'num_inference_steps': 2,
'prior_num_inference_steps': 2,
'output_type': 'numpy',
}
return inputs
def snake_case_ ( self ):
_lowerCamelCase = torch_device == 'cpu'
self._test_attention_slicing_forward_pass(test_max_difference=_lowerCAmelCase )
def snake_case_ ( self ):
_lowerCamelCase = torch_device in ['cpu', 'mps']
self._test_inference_batch_single_identical(test_max_difference=_lowerCAmelCase )
@slow
@require_torch_gpu
class __a ( unittest.TestCase ):
def snake_case_ ( self ):
# clean up the VRAM after each test
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def snake_case_ ( self ):
_lowerCamelCase = load_numpy(
'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/stable_unclip/stable_unclip_2_1_l_anime_turtle_fp16.npy' )
_lowerCamelCase = StableUnCLIPPipeline.from_pretrained('fusing/stable-unclip-2-1-l' , torch_dtype=torch.floataa )
pipe.to(_lowerCAmelCase )
pipe.set_progress_bar_config(disable=_lowerCAmelCase )
# stable unclip will oom when integration tests are run on a V100,
# so turn on memory savings
pipe.enable_attention_slicing()
pipe.enable_sequential_cpu_offload()
_lowerCamelCase = torch.Generator(device='cpu' ).manual_seed(0 )
_lowerCamelCase = pipe('anime turle' , generator=_lowerCAmelCase , output_type='np' )
_lowerCamelCase = output.images[0]
assert image.shape == (7_68, 7_68, 3)
assert_mean_pixel_difference(_lowerCAmelCase , _lowerCAmelCase )
def snake_case_ ( self ):
torch.cuda.empty_cache()
torch.cuda.reset_max_memory_allocated()
torch.cuda.reset_peak_memory_stats()
_lowerCamelCase = StableUnCLIPPipeline.from_pretrained('fusing/stable-unclip-2-1-l' , torch_dtype=torch.floataa )
_lowerCamelCase = pipe.to(_lowerCAmelCase )
pipe.set_progress_bar_config(disable=_lowerCAmelCase )
pipe.enable_attention_slicing()
pipe.enable_sequential_cpu_offload()
_lowerCamelCase = pipe(
'anime turtle' , prior_num_inference_steps=2 , num_inference_steps=2 , output_type='np' , )
_lowerCamelCase = torch.cuda.max_memory_allocated()
# make sure that less than 7 GB is allocated
assert mem_bytes < 7 * 10**9
| 650 |
def UpperCAmelCase_ ( __UpperCAmelCase : int ) -> int:
assert isinstance(__UpperCAmelCase , __UpperCAmelCase ), f"The input value of [n={number}] is not an integer"
if number == 1:
return 2
elif number < 1:
SCREAMING_SNAKE_CASE_ = f"The input value of [n={number}] has to be > 0"
raise ValueError(__UpperCAmelCase )
else:
SCREAMING_SNAKE_CASE_ = sylvester(number - 1 )
SCREAMING_SNAKE_CASE_ = num - 1
SCREAMING_SNAKE_CASE_ = num
return lower * upper + 1
if __name__ == "__main__":
print(f'''The 8th number in Sylvester\'s sequence: {sylvester(8)}''') | 31 | 0 |
"""simple docstring"""
from typing import Dict
from transformers import EvalPrediction, HfArgumentParser, TrainingArguments, is_torch_available
from transformers.testing_utils import (
TestCasePlus,
execute_subprocess_async,
get_torch_dist_unique_port,
require_torch_multi_gpu,
require_torch_neuroncore,
)
from transformers.training_args import ParallelMode
from transformers.utils import logging
__SCREAMING_SNAKE_CASE : Any = logging.get_logger(__name__)
if is_torch_available():
import torch
from torch import nn
from torch.utils.data import Dataset
from transformers import Trainer
class lowerCamelCase_( _SCREAMING_SNAKE_CASE ):
'''simple docstring'''
def __init__( self , lowerCamelCase__ = 1_0_1 ):
_lowerCamelCase = length
def __len__( self ):
return self.length
def __getitem__( self , lowerCamelCase__ ):
return i
class lowerCamelCase_:
'''simple docstring'''
def __call__( self , lowerCamelCase__ ):
return {"input_ids": torch.tensor(_lowerCAmelCase ), "labels": torch.tensor(_lowerCAmelCase )}
class lowerCamelCase_( nn.Module ):
'''simple docstring'''
def __init__( self ):
super().__init__()
# Add some (unused) params otherwise DDP will complain.
_lowerCamelCase = nn.Linear(1_2_0 , 8_0 )
def snake_case__ ( self , lowerCamelCase__ , lowerCamelCase__=None ):
if labels is not None:
return torch.tensor(0.0 , device=input_ids.device ), input_ids
else:
return input_ids
class lowerCamelCase_( _SCREAMING_SNAKE_CASE ):
'''simple docstring'''
@require_torch_neuroncore
def snake_case__ ( self ):
_lowerCamelCase = F"""--nproc_per_node=2\n --master_port={get_torch_dist_unique_port()}\n {self.test_file_dir}/test_trainer_distributed.py\n """.split()
_lowerCamelCase = self.get_auto_remove_tmp_dir()
_lowerCamelCase = F"""--output_dir {output_dir}""".split()
_lowerCamelCase = ['''torchrun'''] + distributed_args + args
execute_subprocess_async(_lowerCAmelCase , env=self.get_env() )
# successful return here == success - any errors would have caused an error in the sub-call
class lowerCamelCase_( _SCREAMING_SNAKE_CASE ):
'''simple docstring'''
@require_torch_multi_gpu
def snake_case__ ( self ):
_lowerCamelCase = F"""--nproc_per_node={torch.cuda.device_count()}\n --master_port={get_torch_dist_unique_port()}\n {self.test_file_dir}/test_trainer_distributed.py\n """.split()
_lowerCamelCase = self.get_auto_remove_tmp_dir()
_lowerCamelCase = F"""--output_dir {output_dir}""".split()
_lowerCamelCase = ['''torchrun'''] + distributed_args + args
execute_subprocess_async(_lowerCAmelCase , env=self.get_env() )
# successful return here == success - any errors would have caused an error in the sub-call
if __name__ == "__main__":
# The script below is meant to be run under torch.distributed, on a machine with multiple GPUs:
#
# PYTHONPATH="src" python -m torch.distributed.run --nproc_per_node 2 --output_dir output_dir ./tests/test_trainer_distributed.py
__SCREAMING_SNAKE_CASE : int = HfArgumentParser((TrainingArguments,))
__SCREAMING_SNAKE_CASE : Optional[int] = parser.parse_args_into_dataclasses()[0]
logger.warning(
F"""Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}, """
F"""distributed training: {training_args.parallel_mode != ParallelMode.NOT_DISTRIBUTED}"""
)
# Essentially, what we want to verify in the distributed case is that we get all samples back,
# in the right order. (this is crucial for prediction for instance)
for dataset_length in [1_0_1, 4_0, 7]:
__SCREAMING_SNAKE_CASE : str = DummyDataset(dataset_length)
def lowerCAmelCase_( lowercase_ : EvalPrediction ) -> Dict:
_lowerCamelCase = list(range(len(__UpperCAmelCase ) ) )
_lowerCamelCase = p.predictions.tolist() == sequential and p.label_ids.tolist() == sequential
if not success and training_args.local_rank == 0:
logger.warning(
'''Predictions and/or labels do not match expected results:\n - predictions: '''
F"""{p.predictions.tolist()}\n - labels: {p.label_ids.tolist()}\n - expected: {sequential}""" )
return {"success": success}
__SCREAMING_SNAKE_CASE : Tuple = Trainer(
model=DummyModel(),
args=training_args,
data_collator=DummyDataCollator(),
eval_dataset=dataset,
compute_metrics=compute_metrics,
)
__SCREAMING_SNAKE_CASE : List[Any] = trainer.evaluate()
logger.info(metrics)
if metrics["eval_success"] is not True:
logger.error(metrics)
exit(1)
__SCREAMING_SNAKE_CASE : Dict = trainer.predict(dataset)
logger.info(p.metrics)
if p.metrics["test_success"] is not True:
logger.error(p.metrics)
exit(1)
__SCREAMING_SNAKE_CASE : List[str] = 2
__SCREAMING_SNAKE_CASE : Tuple = trainer.evaluate()
logger.info(metrics)
if metrics["eval_success"] is not True:
logger.error(metrics)
exit(1)
__SCREAMING_SNAKE_CASE : int = trainer.predict(dataset)
logger.info(p.metrics)
if p.metrics["test_success"] is not True:
logger.error(p.metrics)
exit(1)
__SCREAMING_SNAKE_CASE : Union[str, Any] = None
| 661 |
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_flax_available,
is_sentencepiece_available,
is_tf_available,
is_tokenizers_available,
is_torch_available,
)
if is_sentencepiece_available():
from ..ta.tokenization_ta import TaTokenizer
else:
from ...utils.dummy_sentencepiece_objects import TaTokenizer
lowerCamelCase__ : List[Any] = TaTokenizer
if is_tokenizers_available():
from ..ta.tokenization_ta_fast import TaTokenizerFast
else:
from ...utils.dummy_tokenizers_objects import TaTokenizerFast
lowerCamelCase__ : Union[str, Any] = TaTokenizerFast
lowerCamelCase__ : Dict = {'configuration_mt5': ['MT5Config', 'MT5OnnxConfig']}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowerCamelCase__ : Tuple = [
'MT5EncoderModel',
'MT5ForConditionalGeneration',
'MT5ForQuestionAnswering',
'MT5Model',
'MT5PreTrainedModel',
'MT5Stack',
]
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowerCamelCase__ : Tuple = ['TFMT5EncoderModel', 'TFMT5ForConditionalGeneration', 'TFMT5Model']
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowerCamelCase__ : Tuple = ['FlaxMT5EncoderModel', 'FlaxMT5ForConditionalGeneration', 'FlaxMT5Model']
if TYPE_CHECKING:
from .configuration_mta import MTaConfig, MTaOnnxConfig
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_mta import (
MTaEncoderModel,
MTaForConditionalGeneration,
MTaForQuestionAnswering,
MTaModel,
MTaPreTrainedModel,
MTaStack,
)
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_mta import TFMTaEncoderModel, TFMTaForConditionalGeneration, TFMTaModel
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_flax_mta import FlaxMTaEncoderModel, FlaxMTaForConditionalGeneration, FlaxMTaModel
else:
import sys
lowerCamelCase__ : int = _LazyModule(
__name__,
globals()['__file__'],
_import_structure,
extra_objects={'MT5Tokenizer': MTaTokenizer, 'MT5TokenizerFast': MTaTokenizerFast},
module_spec=__spec__,
) | 31 | 0 |
"""simple docstring"""
from math import isqrt
def _UpperCamelCase ( UpperCamelCase ) -> bool:
"""simple docstring"""
return all(number % divisor != 0 for divisor in range(2 , isqrt(__UpperCAmelCase ) + 1 ) )
def _UpperCamelCase ( UpperCamelCase = 10**6 ) -> int:
"""simple docstring"""
__UpperCAmelCase : List[Any] = 0
__UpperCAmelCase : Tuple = 1
__UpperCAmelCase : List[Any] = 7
while prime_candidate < max_prime:
primes_count += is_prime(__UpperCAmelCase )
cube_index += 1
prime_candidate += 6 * cube_index
return primes_count
if __name__ == "__main__":
print(f'''{solution() = }''')
| 77 |
import subprocess
import sys
from transformers import BertConfig, BertModel, BertTokenizer, pipeline
from transformers.testing_utils import TestCasePlus, require_torch
class lowerCamelCase_ ( _SCREAMING_SNAKE_CASE ):
'''simple docstring'''
@require_torch
def lowerCAmelCase_ ( self : int ):
# this test is a bit tricky since TRANSFORMERS_OFFLINE can only be changed before
# `transformers` is loaded, and it's too late for inside pytest - so we are changing it
# while running an external program
# python one-liner segments
# this must be loaded before socket.socket is monkey-patched
SCREAMING_SNAKE_CASE_ = '\nfrom transformers import BertConfig, BertModel, BertTokenizer, pipeline\n '
SCREAMING_SNAKE_CASE_ = '\nmname = "hf-internal-testing/tiny-random-bert"\nBertConfig.from_pretrained(mname)\nBertModel.from_pretrained(mname)\nBertTokenizer.from_pretrained(mname)\npipe = pipeline(task="fill-mask", model=mname)\nprint("success")\n '
SCREAMING_SNAKE_CASE_ = '\nimport socket\ndef offline_socket(*args, **kwargs): raise RuntimeError("Offline mode is enabled, we shouldn\'t access internet")\nsocket.socket = offline_socket\n '
# Force fetching the files so that we can use the cache
SCREAMING_SNAKE_CASE_ = 'hf-internal-testing/tiny-random-bert'
BertConfig.from_pretrained(_lowerCAmelCase )
BertModel.from_pretrained(_lowerCAmelCase )
BertTokenizer.from_pretrained(_lowerCAmelCase )
pipeline(task='fill-mask' , model=_lowerCAmelCase )
# baseline - just load from_pretrained with normal network
SCREAMING_SNAKE_CASE_ = [sys.executable, '-c', '\n'.join([load, run, mock] )]
# should succeed
SCREAMING_SNAKE_CASE_ = self.get_env()
# should succeed as TRANSFORMERS_OFFLINE=1 tells it to use local files
SCREAMING_SNAKE_CASE_ = '1'
SCREAMING_SNAKE_CASE_ = subprocess.run(_lowerCAmelCase , env=_lowerCAmelCase , check=_lowerCAmelCase , capture_output=_lowerCAmelCase )
self.assertEqual(result.returncode , 0 , result.stderr )
self.assertIn('success' , result.stdout.decode() )
@require_torch
def lowerCAmelCase_ ( self : Tuple ):
# python one-liner segments
# this must be loaded before socket.socket is monkey-patched
SCREAMING_SNAKE_CASE_ = '\nfrom transformers import BertConfig, BertModel, BertTokenizer, pipeline\n '
SCREAMING_SNAKE_CASE_ = '\nmname = "hf-internal-testing/tiny-random-bert"\nBertConfig.from_pretrained(mname)\nBertModel.from_pretrained(mname)\nBertTokenizer.from_pretrained(mname)\npipe = pipeline(task="fill-mask", model=mname)\nprint("success")\n '
SCREAMING_SNAKE_CASE_ = '\nimport socket\ndef offline_socket(*args, **kwargs): raise socket.error("Faking flaky internet")\nsocket.socket = offline_socket\n '
# Force fetching the files so that we can use the cache
SCREAMING_SNAKE_CASE_ = 'hf-internal-testing/tiny-random-bert'
BertConfig.from_pretrained(_lowerCAmelCase )
BertModel.from_pretrained(_lowerCAmelCase )
BertTokenizer.from_pretrained(_lowerCAmelCase )
pipeline(task='fill-mask' , model=_lowerCAmelCase )
# baseline - just load from_pretrained with normal network
SCREAMING_SNAKE_CASE_ = [sys.executable, '-c', '\n'.join([load, run, mock] )]
# should succeed
SCREAMING_SNAKE_CASE_ = self.get_env()
SCREAMING_SNAKE_CASE_ = subprocess.run(_lowerCAmelCase , env=_lowerCAmelCase , check=_lowerCAmelCase , capture_output=_lowerCAmelCase )
self.assertEqual(result.returncode , 0 , result.stderr )
self.assertIn('success' , result.stdout.decode() )
@require_torch
def lowerCAmelCase_ ( self : List[str] ):
# this test is a bit tricky since TRANSFORMERS_OFFLINE can only be changed before
# `transformers` is loaded, and it's too late for inside pytest - so we are changing it
# while running an external program
# python one-liner segments
# this must be loaded before socket.socket is monkey-patched
SCREAMING_SNAKE_CASE_ = '\nfrom transformers import BertConfig, BertModel, BertTokenizer\n '
SCREAMING_SNAKE_CASE_ = '\nmname = "hf-internal-testing/tiny-random-bert-sharded"\nBertConfig.from_pretrained(mname)\nBertModel.from_pretrained(mname)\nprint("success")\n '
SCREAMING_SNAKE_CASE_ = '\nimport socket\ndef offline_socket(*args, **kwargs): raise ValueError("Offline mode is enabled")\nsocket.socket = offline_socket\n '
# baseline - just load from_pretrained with normal network
SCREAMING_SNAKE_CASE_ = [sys.executable, '-c', '\n'.join([load, run] )]
# should succeed
SCREAMING_SNAKE_CASE_ = self.get_env()
SCREAMING_SNAKE_CASE_ = subprocess.run(_lowerCAmelCase , env=_lowerCAmelCase , check=_lowerCAmelCase , capture_output=_lowerCAmelCase )
self.assertEqual(result.returncode , 0 , result.stderr )
self.assertIn('success' , result.stdout.decode() )
# next emulate no network
SCREAMING_SNAKE_CASE_ = [sys.executable, '-c', '\n'.join([load, mock, run] )]
# Doesn't fail anymore since the model is in the cache due to other tests, so commenting this.
# env["TRANSFORMERS_OFFLINE"] = "0"
# result = subprocess.run(cmd, env=env, check=False, capture_output=True)
# self.assertEqual(result.returncode, 1, result.stderr)
# should succeed as TRANSFORMERS_OFFLINE=1 tells it to use local files
SCREAMING_SNAKE_CASE_ = '1'
SCREAMING_SNAKE_CASE_ = subprocess.run(_lowerCAmelCase , env=_lowerCAmelCase , check=_lowerCAmelCase , capture_output=_lowerCAmelCase )
self.assertEqual(result.returncode , 0 , result.stderr )
self.assertIn('success' , result.stdout.decode() )
@require_torch
def lowerCAmelCase_ ( self : Any ):
SCREAMING_SNAKE_CASE_ = '\nfrom transformers import pipeline\n '
SCREAMING_SNAKE_CASE_ = '\nmname = "hf-internal-testing/tiny-random-bert"\npipe = pipeline(model=mname)\n '
SCREAMING_SNAKE_CASE_ = '\nimport socket\ndef offline_socket(*args, **kwargs): raise socket.error("Offline mode is enabled")\nsocket.socket = offline_socket\n '
SCREAMING_SNAKE_CASE_ = self.get_env()
SCREAMING_SNAKE_CASE_ = '1'
SCREAMING_SNAKE_CASE_ = [sys.executable, '-c', '\n'.join([load, mock, run] )]
SCREAMING_SNAKE_CASE_ = subprocess.run(_lowerCAmelCase , env=_lowerCAmelCase , check=_lowerCAmelCase , capture_output=_lowerCAmelCase )
self.assertEqual(result.returncode , 1 , result.stderr )
self.assertIn(
'You cannot infer task automatically within `pipeline` when using offline mode' , result.stderr.decode().replace('\n' , '' ) , )
@require_torch
def lowerCAmelCase_ ( self : Optional[int] ):
SCREAMING_SNAKE_CASE_ = '\nfrom transformers import AutoModel\n '
SCREAMING_SNAKE_CASE_ = '\nmname = "hf-internal-testing/test_dynamic_model"\nAutoModel.from_pretrained(mname, trust_remote_code=True)\nprint("success")\n '
# baseline - just load from_pretrained with normal network
SCREAMING_SNAKE_CASE_ = [sys.executable, '-c', '\n'.join([load, run] )]
# should succeed
SCREAMING_SNAKE_CASE_ = self.get_env()
SCREAMING_SNAKE_CASE_ = subprocess.run(_lowerCAmelCase , env=_lowerCAmelCase , check=_lowerCAmelCase , capture_output=_lowerCAmelCase )
self.assertEqual(result.returncode , 0 , result.stderr )
self.assertIn('success' , result.stdout.decode() )
# should succeed as TRANSFORMERS_OFFLINE=1 tells it to use local files
SCREAMING_SNAKE_CASE_ = '1'
SCREAMING_SNAKE_CASE_ = subprocess.run(_lowerCAmelCase , env=_lowerCAmelCase , check=_lowerCAmelCase , capture_output=_lowerCAmelCase )
self.assertEqual(result.returncode , 0 , result.stderr )
self.assertIn('success' , result.stdout.decode() ) | 31 | 0 |
import argparse
import json
import os
from tensorflow.core.protobuf.saved_model_pba import SavedModel
# All paths are set with the intent you should run this script from the root of the repo with the command
# python utils/check_copies.py
lowerCAmelCase : Dict = '.'
# Internal TensorFlow ops that can be safely ignored (mostly specific to a saved model)
lowerCAmelCase : List[str] = [
'Assert',
'AssignVariableOp',
'EmptyTensorList',
'MergeV2Checkpoints',
'ReadVariableOp',
'ResourceGather',
'RestoreV2',
'SaveV2',
'ShardedFilename',
'StatefulPartitionedCall',
'StaticRegexFullMatch',
'VarHandleOp',
]
def lowerCAmelCase ( UpperCamelCase__ : Tuple , UpperCamelCase__ : Union[str, Any] , UpperCamelCase__ : Union[str, Any] ) -> str:
"""simple docstring"""
__SCREAMING_SNAKE_CASE: List[str] = SavedModel()
__SCREAMING_SNAKE_CASE: int = []
with open(os.path.join(__UpperCAmelCase , '''utils''' , '''tf_ops''' , '''onnx.json''' ) ) as f:
__SCREAMING_SNAKE_CASE: List[Any] = json.load(__UpperCAmelCase )['''opsets''']
for i in range(1 , opset + 1 ):
onnx_ops.extend(onnx_opsets[str(__UpperCAmelCase )] )
with open(__UpperCAmelCase , '''rb''' ) as f:
saved_model.ParseFromString(f.read() )
__SCREAMING_SNAKE_CASE: int = set()
# Iterate over every metagraph in case there is more than one (a saved model can contain multiple graphs)
for meta_graph in saved_model.meta_graphs:
# Add operations in the graph definition
model_op_names.update(node.op for node in meta_graph.graph_def.node )
# Go through the functions in the graph definition
for func in meta_graph.graph_def.library.function:
# Add operations in each function
model_op_names.update(node.op for node in func.node_def )
# Convert to list, sorted if you want
__SCREAMING_SNAKE_CASE: List[Any] = sorted(__UpperCAmelCase )
__SCREAMING_SNAKE_CASE: Optional[Any] = []
for op in model_op_names:
if op not in onnx_ops and op not in INTERNAL_OPS:
incompatible_ops.append(__UpperCAmelCase )
if strict and len(__UpperCAmelCase ) > 0:
raise Exception(F"""Found the following incompatible ops for the opset {opset}:\n""" + incompatible_ops )
elif len(__UpperCAmelCase ) > 0:
print(F"""Found the following incompatible ops for the opset {opset}:""" )
print(*__UpperCAmelCase , sep='''\n''' )
else:
print(F"""The saved model {saved_model_path} can properly be converted with ONNX.""" )
if __name__ == "__main__":
lowerCAmelCase : List[Any] = argparse.ArgumentParser()
parser.add_argument("""--saved_model_path""", help="""Path of the saved model to check (the .pb file).""")
parser.add_argument(
"""--opset""", default=12, type=int, help="""The ONNX opset against which the model has to be tested."""
)
parser.add_argument(
"""--framework""", choices=["""onnx"""], default="""onnx""", help="""Frameworks against which to test the saved model."""
)
parser.add_argument(
"""--strict""", action="""store_true""", help="""Whether make the checking strict (raise errors) or not (raise warnings)"""
)
lowerCAmelCase : str = parser.parse_args()
if args.framework == "onnx":
onnx_compliancy(args.saved_model_path, args.strict, args.opset)
| 202 |
import torch
from transformers import PreTrainedModel, XLMRobertaConfig, XLMRobertaModel
class lowerCamelCase_ ( _SCREAMING_SNAKE_CASE ):
'''simple docstring'''
lowercase_ = "M-CLIP"
def __init__( self : Tuple , _lowerCAmelCase : List[str]=1_024 , _lowerCAmelCase : str=768 , **_lowerCAmelCase : Union[str, Any] ):
SCREAMING_SNAKE_CASE_ = transformerDimSize
SCREAMING_SNAKE_CASE_ = imageDimSize
super().__init__(**_lowerCAmelCase )
class lowerCamelCase_ ( _SCREAMING_SNAKE_CASE ):
'''simple docstring'''
lowercase_ = MCLIPConfig
def __init__( self : Dict , _lowerCAmelCase : Union[str, Any] , *_lowerCAmelCase : str , **_lowerCAmelCase : str ):
super().__init__(_lowerCAmelCase , *_lowerCAmelCase , **_lowerCAmelCase )
SCREAMING_SNAKE_CASE_ = XLMRobertaModel(_lowerCAmelCase )
SCREAMING_SNAKE_CASE_ = torch.nn.Linear(
in_features=config.transformerDimensions , out_features=config.numDims )
def lowerCAmelCase_ ( self : List[Any] , _lowerCAmelCase : Any , _lowerCAmelCase : Union[str, Any] ):
SCREAMING_SNAKE_CASE_ = self.transformer(input_ids=_lowerCAmelCase , attention_mask=_lowerCAmelCase )[0]
SCREAMING_SNAKE_CASE_ = (embs * attention_mask.unsqueeze(2 )).sum(dim=1 ) / attention_mask.sum(dim=1 )[:, None]
return self.LinearTransformation(_lowerCAmelCase ), embs | 31 | 0 |
'''simple docstring'''
import argparse
import shlex
import runhouse as rh
if __name__ == "__main__":
# Refer to https://runhouse-docs.readthedocs-hosted.com/en/latest/api/python/cluster.html#hardware-setup for cloud access
# setup instructions, if using on-demand hardware
# If user passes --user <user> --host <host> --key_path <key_path> <example> <args>, fill them in as BYO cluster
# If user passes --instance <instance> --provider <provider> <example> <args>, fill them in as on-demand cluster
# Throw an error if user passes both BYO and on-demand cluster args
# Otherwise, use default values
__A = argparse.ArgumentParser()
parser.add_argument("--user", type=str, default="ubuntu")
parser.add_argument("--host", type=str, default="localhost")
parser.add_argument("--key_path", type=str, default=None)
parser.add_argument("--instance", type=str, default="V100:1")
parser.add_argument("--provider", type=str, default="cheapest")
parser.add_argument("--use_spot", type=bool, default=False)
parser.add_argument("--example", type=str, default="pytorch/text-generation/run_generation.py")
__A = parser.parse_known_args()
if args.host != "localhost":
if args.instance != "V100:1" or args.provider != "cheapest":
raise ValueError("Cannot specify both BYO and on-demand cluster args")
__A = rh.cluster(
name="rh-cluster", ips=[args.host], ssh_creds={"ssh_user": args.user, "ssh_private_key": args.key_path}
)
else:
__A = rh.cluster(
name="rh-cluster", instance_type=args.instance, provider=args.provider, use_spot=args.use_spot
)
__A = args.example.rsplit("/", 1)[0]
# Set up remote environment
cluster.install_packages(["pip:./"]) # Installs transformers from local source
# Note transformers is copied into the home directory on the remote machine, so we can install from there
cluster.run([F'''pip install -r transformers/examples/{example_dir}/requirements.txt'''])
cluster.run(["pip install torch --upgrade --extra-index-url https://download.pytorch.org/whl/cu117"])
# Run example. You can bypass the CLI wrapper and paste your own code here.
cluster.run([F'''python transformers/examples/{args.example} {" ".join(shlex.quote(arg) for arg in unknown)}'''])
# Alternatively, we can just import and run a training function (especially if there's no wrapper CLI):
# from my_script... import train
# reqs = ['pip:./', 'torch', 'datasets', 'accelerate', 'evaluate', 'tqdm', 'scipy', 'scikit-learn', 'tensorboard']
# launch_train_gpu = rh.function(fn=train,
# system=gpu,
# reqs=reqs,
# name='train_bert_glue')
#
# We can pass in arguments just like we would to a function:
# launch_train_gpu(num_epochs = 3, lr = 2e-5, seed = 42, batch_size = 16
# stream_logs=True)
| 325 |
import gc
import random
import unittest
import numpy as np
import torch
from transformers import XLMRobertaTokenizer
from diffusers import (
AltDiffusionImgaImgPipeline,
AutoencoderKL,
PNDMScheduler,
UNetaDConditionModel,
)
from diffusers.image_processor import VaeImageProcessor
from diffusers.pipelines.alt_diffusion.modeling_roberta_series import (
RobertaSeriesConfig,
RobertaSeriesModelWithTransformation,
)
from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device
from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu
enable_full_determinism()
class lowerCamelCase_ ( unittest.TestCase ):
'''simple docstring'''
def lowerCAmelCase_ ( self : str ):
# clean up the VRAM after each test
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
@property
def lowerCAmelCase_ ( self : Union[str, Any] ):
SCREAMING_SNAKE_CASE_ = 1
SCREAMING_SNAKE_CASE_ = 3
SCREAMING_SNAKE_CASE_ = (32, 32)
SCREAMING_SNAKE_CASE_ = floats_tensor((batch_size, num_channels) + sizes , rng=random.Random(0 ) ).to(_lowerCAmelCase )
return image
@property
def lowerCAmelCase_ ( self : Union[str, Any] ):
torch.manual_seed(0 )
SCREAMING_SNAKE_CASE_ = UNetaDConditionModel(
block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=('DownBlock2D', 'CrossAttnDownBlock2D') , up_block_types=('CrossAttnUpBlock2D', 'UpBlock2D') , cross_attention_dim=32 , )
return model
@property
def lowerCAmelCase_ ( self : Tuple ):
torch.manual_seed(0 )
SCREAMING_SNAKE_CASE_ = AutoencoderKL(
block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=['DownEncoderBlock2D', 'DownEncoderBlock2D'] , up_block_types=['UpDecoderBlock2D', 'UpDecoderBlock2D'] , latent_channels=4 , )
return model
@property
def lowerCAmelCase_ ( self : Optional[int] ):
torch.manual_seed(0 )
SCREAMING_SNAKE_CASE_ = RobertaSeriesConfig(
hidden_size=32 , project_dim=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=5_006 , )
return RobertaSeriesModelWithTransformation(_lowerCAmelCase )
@property
def lowerCAmelCase_ ( self : List[Any] ):
def extract(*_lowerCAmelCase : Optional[int] , **_lowerCAmelCase : str ):
class lowerCamelCase_ :
'''simple docstring'''
def __init__( self : str ):
SCREAMING_SNAKE_CASE_ = torch.ones([0] )
def lowerCAmelCase_ ( self : Union[str, Any] , _lowerCAmelCase : int ):
self.pixel_values.to(_lowerCAmelCase )
return self
return Out()
return extract
def lowerCAmelCase_ ( self : Optional[Any] ):
SCREAMING_SNAKE_CASE_ = 'cpu' # ensure determinism for the device-dependent torch.Generator
SCREAMING_SNAKE_CASE_ = self.dummy_cond_unet
SCREAMING_SNAKE_CASE_ = PNDMScheduler(skip_prk_steps=_lowerCAmelCase )
SCREAMING_SNAKE_CASE_ = self.dummy_vae
SCREAMING_SNAKE_CASE_ = self.dummy_text_encoder
SCREAMING_SNAKE_CASE_ = XLMRobertaTokenizer.from_pretrained('hf-internal-testing/tiny-xlm-roberta' )
SCREAMING_SNAKE_CASE_ = 77
SCREAMING_SNAKE_CASE_ = self.dummy_image.to(_lowerCAmelCase )
SCREAMING_SNAKE_CASE_ = init_image / 2 + 0.5
# make sure here that pndm scheduler skips prk
SCREAMING_SNAKE_CASE_ = AltDiffusionImgaImgPipeline(
unet=_lowerCAmelCase , scheduler=_lowerCAmelCase , vae=_lowerCAmelCase , text_encoder=_lowerCAmelCase , tokenizer=_lowerCAmelCase , safety_checker=_lowerCAmelCase , feature_extractor=self.dummy_extractor , )
SCREAMING_SNAKE_CASE_ = VaeImageProcessor(vae_scale_factor=alt_pipe.vae_scale_factor , do_normalize=_lowerCAmelCase )
SCREAMING_SNAKE_CASE_ = alt_pipe.to(_lowerCAmelCase )
alt_pipe.set_progress_bar_config(disable=_lowerCAmelCase )
SCREAMING_SNAKE_CASE_ = 'A painting of a squirrel eating a burger'
SCREAMING_SNAKE_CASE_ = torch.Generator(device=_lowerCAmelCase ).manual_seed(0 )
SCREAMING_SNAKE_CASE_ = alt_pipe(
[prompt] , generator=_lowerCAmelCase , guidance_scale=6.0 , num_inference_steps=2 , output_type='np' , image=_lowerCAmelCase , )
SCREAMING_SNAKE_CASE_ = output.images
SCREAMING_SNAKE_CASE_ = torch.Generator(device=_lowerCAmelCase ).manual_seed(0 )
SCREAMING_SNAKE_CASE_ = alt_pipe(
[prompt] , generator=_lowerCAmelCase , guidance_scale=6.0 , num_inference_steps=2 , output_type='np' , image=_lowerCAmelCase , return_dict=_lowerCAmelCase , )[0]
SCREAMING_SNAKE_CASE_ = image[0, -3:, -3:, -1]
SCREAMING_SNAKE_CASE_ = image_from_tuple[0, -3:, -3:, -1]
assert image.shape == (1, 32, 32, 3)
SCREAMING_SNAKE_CASE_ = np.array([0.4427, 0.3731, 0.4249, 0.4941, 0.4546, 0.4148, 0.4193, 0.4666, 0.4499] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 5E-3
assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 5E-3
@unittest.skipIf(torch_device != 'cuda' , 'This test requires a GPU' )
def lowerCAmelCase_ ( self : Tuple ):
SCREAMING_SNAKE_CASE_ = self.dummy_cond_unet
SCREAMING_SNAKE_CASE_ = PNDMScheduler(skip_prk_steps=_lowerCAmelCase )
SCREAMING_SNAKE_CASE_ = self.dummy_vae
SCREAMING_SNAKE_CASE_ = self.dummy_text_encoder
SCREAMING_SNAKE_CASE_ = XLMRobertaTokenizer.from_pretrained('hf-internal-testing/tiny-xlm-roberta' )
SCREAMING_SNAKE_CASE_ = 77
SCREAMING_SNAKE_CASE_ = self.dummy_image.to(_lowerCAmelCase )
# put models in fp16
SCREAMING_SNAKE_CASE_ = unet.half()
SCREAMING_SNAKE_CASE_ = vae.half()
SCREAMING_SNAKE_CASE_ = bert.half()
# make sure here that pndm scheduler skips prk
SCREAMING_SNAKE_CASE_ = AltDiffusionImgaImgPipeline(
unet=_lowerCAmelCase , scheduler=_lowerCAmelCase , vae=_lowerCAmelCase , text_encoder=_lowerCAmelCase , tokenizer=_lowerCAmelCase , safety_checker=_lowerCAmelCase , feature_extractor=self.dummy_extractor , )
SCREAMING_SNAKE_CASE_ = VaeImageProcessor(vae_scale_factor=alt_pipe.vae_scale_factor , do_normalize=_lowerCAmelCase )
SCREAMING_SNAKE_CASE_ = alt_pipe.to(_lowerCAmelCase )
alt_pipe.set_progress_bar_config(disable=_lowerCAmelCase )
SCREAMING_SNAKE_CASE_ = 'A painting of a squirrel eating a burger'
SCREAMING_SNAKE_CASE_ = torch.manual_seed(0 )
SCREAMING_SNAKE_CASE_ = alt_pipe(
[prompt] , generator=_lowerCAmelCase , num_inference_steps=2 , output_type='np' , image=_lowerCAmelCase , ).images
assert image.shape == (1, 32, 32, 3)
@unittest.skipIf(torch_device != 'cuda' , 'This test requires a GPU' )
def lowerCAmelCase_ ( self : str ):
SCREAMING_SNAKE_CASE_ = load_image(
'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main'
'/img2img/sketch-mountains-input.jpg' )
# resize to resolution that is divisible by 8 but not 16 or 32
SCREAMING_SNAKE_CASE_ = init_image.resize((760, 504) )
SCREAMING_SNAKE_CASE_ = 'BAAI/AltDiffusion'
SCREAMING_SNAKE_CASE_ = AltDiffusionImgaImgPipeline.from_pretrained(
_lowerCAmelCase , safety_checker=_lowerCAmelCase , )
pipe.to(_lowerCAmelCase )
pipe.set_progress_bar_config(disable=_lowerCAmelCase )
pipe.enable_attention_slicing()
SCREAMING_SNAKE_CASE_ = 'A fantasy landscape, trending on artstation'
SCREAMING_SNAKE_CASE_ = torch.manual_seed(0 )
SCREAMING_SNAKE_CASE_ = pipe(
prompt=_lowerCAmelCase , image=_lowerCAmelCase , strength=0.75 , guidance_scale=7.5 , generator=_lowerCAmelCase , output_type='np' , )
SCREAMING_SNAKE_CASE_ = output.images[0]
SCREAMING_SNAKE_CASE_ = image[255:258, 383:386, -1]
assert image.shape == (504, 760, 3)
SCREAMING_SNAKE_CASE_ = np.array([0.9358, 0.9397, 0.9599, 0.9901, 1.0000, 1.0000, 0.9882, 1.0000, 1.0000] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
@slow
@require_torch_gpu
class lowerCamelCase_ ( unittest.TestCase ):
'''simple docstring'''
def lowerCAmelCase_ ( self : str ):
# clean up the VRAM after each test
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def lowerCAmelCase_ ( self : int ):
SCREAMING_SNAKE_CASE_ = load_image(
'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main'
'/img2img/sketch-mountains-input.jpg' )
SCREAMING_SNAKE_CASE_ = init_image.resize((768, 512) )
SCREAMING_SNAKE_CASE_ = load_numpy(
'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/img2img/fantasy_landscape_alt.npy' )
SCREAMING_SNAKE_CASE_ = 'BAAI/AltDiffusion'
SCREAMING_SNAKE_CASE_ = AltDiffusionImgaImgPipeline.from_pretrained(
_lowerCAmelCase , safety_checker=_lowerCAmelCase , )
pipe.to(_lowerCAmelCase )
pipe.set_progress_bar_config(disable=_lowerCAmelCase )
pipe.enable_attention_slicing()
SCREAMING_SNAKE_CASE_ = 'A fantasy landscape, trending on artstation'
SCREAMING_SNAKE_CASE_ = torch.manual_seed(0 )
SCREAMING_SNAKE_CASE_ = pipe(
prompt=_lowerCAmelCase , image=_lowerCAmelCase , strength=0.75 , guidance_scale=7.5 , generator=_lowerCAmelCase , output_type='np' , )
SCREAMING_SNAKE_CASE_ = output.images[0]
assert image.shape == (512, 768, 3)
# img2img is flaky across GPUs even in fp32, so using MAE here
assert np.abs(expected_image - image ).max() < 1E-2 | 31 | 0 |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.