code
stringlengths
82
54.1k
code_codestyle
int64
0
699
style_context
stringlengths
111
35.6k
style_context_codestyle
int64
0
699
label
int64
0
1
'''simple docstring''' from collections.abc import Iterator, MutableMapping from dataclasses import dataclass from typing import Generic, TypeVar lowerCAmelCase__ = TypeVar('''KEY''') lowerCAmelCase__ = TypeVar('''VAL''') @dataclass(frozen=lowerCamelCase__ , slots=lowerCamelCase__ ) class lowercase_ (Generic[KEY, VAL] ): """simple docstring""" SCREAMING_SNAKE_CASE : KEY SCREAMING_SNAKE_CASE : VAL class lowercase_ (_Item ): """simple docstring""" def __init__( self : Optional[int] ): super().__init__(lowercase__ ,lowercase__ ) def __bool__( self : List[str] ): return False lowerCAmelCase__ = _DeletedItem() class lowercase_ (MutableMapping[KEY, VAL] ): """simple docstring""" def __init__( self : Dict ,lowercase__ : int = 8 ,lowercase__ : float = 0.7_5 ): __lowercase = initial_block_size __lowercase = [None] * initial_block_size assert 0.0 < capacity_factor < 1.0 __lowercase = capacity_factor __lowercase = 0 def SCREAMING_SNAKE_CASE ( self : Dict ,lowercase__ : KEY ): return hash(lowercase__ ) % len(self._buckets ) def SCREAMING_SNAKE_CASE ( self : Dict ,lowercase__ : int ): return (ind + 1) % len(self._buckets ) def SCREAMING_SNAKE_CASE ( self : str ,lowercase__ : int ,lowercase__ : KEY ,lowercase__ : VAL ): __lowercase = self._buckets[ind] if not stored: __lowercase = _Item(lowercase__ ,lowercase__ ) self._len += 1 return True elif stored.key == key: __lowercase = _Item(lowercase__ ,lowercase__ ) return True else: return False def SCREAMING_SNAKE_CASE ( self : Dict ): __lowercase = len(self._buckets ) * self._capacity_factor return len(self ) >= int(lowercase__ ) def SCREAMING_SNAKE_CASE ( self : int ): if len(self._buckets ) <= self._initial_block_size: return False __lowercase = len(self._buckets ) * self._capacity_factor / 2 return len(self ) < limit def SCREAMING_SNAKE_CASE ( self : Any ,lowercase__ : int ): __lowercase = self._buckets __lowercase = [None] * new_size __lowercase = 0 for item in old_buckets: if item: self._add_item(item.key ,item.val ) def SCREAMING_SNAKE_CASE ( self : str ): self._resize(len(self._buckets ) * 2 ) def SCREAMING_SNAKE_CASE ( self : Tuple ): self._resize(len(self._buckets ) // 2 ) def SCREAMING_SNAKE_CASE ( self : int ,lowercase__ : KEY ): __lowercase = self._get_bucket_index(lowercase__ ) for _ in range(len(self._buckets ) ): yield ind __lowercase = self._get_next_ind(lowercase__ ) def SCREAMING_SNAKE_CASE ( self : str ,lowercase__ : KEY ,lowercase__ : VAL ): for ind in self._iterate_buckets(lowercase__ ): if self._try_set(lowercase__ ,lowercase__ ,lowercase__ ): break def __setitem__( self : str ,lowercase__ : KEY ,lowercase__ : VAL ): if self._is_full(): self._size_up() self._add_item(lowercase__ ,lowercase__ ) def __delitem__( self : Tuple ,lowercase__ : KEY ): for ind in self._iterate_buckets(lowercase__ ): __lowercase = self._buckets[ind] if item is None: raise KeyError(lowercase__ ) if item is _deleted: continue if item.key == key: __lowercase = _deleted self._len -= 1 break if self._is_sparse(): self._size_down() def __getitem__( self : Tuple ,lowercase__ : KEY ): for ind in self._iterate_buckets(lowercase__ ): __lowercase = self._buckets[ind] if item is None: break if item is _deleted: continue if item.key == key: return item.val raise KeyError(lowercase__ ) def __len__( self : Optional[int] ): return self._len def __iter__( self : str ): yield from (item.key for item in self._buckets if item) def __repr__( self : Optional[Any] ): __lowercase = ''' ,'''.join( F"{item.key}: {item.val}" for item in self._buckets if item ) return F"HashMap({val_string})"
41
from __future__ import annotations from collections.abc import Generator def UpperCAmelCase_ ( ) -> Generator[int, None, None]: SCREAMING_SNAKE_CASE_ = {} SCREAMING_SNAKE_CASE_ = 2 while True: SCREAMING_SNAKE_CASE_ = factor_map.pop(__UpperCAmelCase , __UpperCAmelCase ) if factor: SCREAMING_SNAKE_CASE_ = factor + prime while x in factor_map: x += factor SCREAMING_SNAKE_CASE_ = factor else: SCREAMING_SNAKE_CASE_ = prime yield prime prime += 1 def UpperCAmelCase_ ( __UpperCAmelCase : float = 1E10 ) -> int: SCREAMING_SNAKE_CASE_ = sieve() SCREAMING_SNAKE_CASE_ = 1 while True: SCREAMING_SNAKE_CASE_ = next(__UpperCAmelCase ) if (2 * prime * n) > limit: return n # Ignore the next prime as the reminder will be 2. next(__UpperCAmelCase ) n += 2 if __name__ == "__main__": print(solution())
31
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available, is_vision_available, ) A_ = { "configuration_efficientformer": [ "EFFICIENTFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP", "EfficientFormerConfig", ] } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A_ = ["EfficientFormerImageProcessor"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A_ = [ "EFFICIENTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST", "EfficientFormerForImageClassification", "EfficientFormerForImageClassificationWithTeacher", "EfficientFormerModel", "EfficientFormerPreTrainedModel", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A_ = [ "TF_EFFICIENTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST", "TFEfficientFormerForImageClassification", "TFEfficientFormerForImageClassificationWithTeacher", "TFEfficientFormerModel", "TFEfficientFormerPreTrainedModel", ] if TYPE_CHECKING: from .configuration_efficientformer import EFFICIENTFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, EfficientFormerConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .image_processing_efficientformer import EfficientFormerImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_efficientformer import ( EFFICIENTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, EfficientFormerForImageClassification, EfficientFormerForImageClassificationWithTeacher, EfficientFormerModel, EfficientFormerPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_efficientformer import ( TF_EFFICIENTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, TFEfficientFormerForImageClassification, TFEfficientFormerForImageClassificationWithTeacher, TFEfficientFormerModel, TFEfficientFormerPreTrainedModel, ) else: import sys A_ = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
42
import numpy as np import torch from torch.utils.data import DataLoader from accelerate.utils.dataclasses import DistributedType class lowerCamelCase_ : '''simple docstring''' def __init__( self : Any , _lowerCAmelCase : Optional[int]=2 , _lowerCAmelCase : Any=3 , _lowerCAmelCase : Tuple=64 , _lowerCAmelCase : List[str]=None ): SCREAMING_SNAKE_CASE_ = np.random.default_rng(_lowerCAmelCase ) SCREAMING_SNAKE_CASE_ = length SCREAMING_SNAKE_CASE_ = rng.normal(size=(length,) ).astype(np.floataa ) SCREAMING_SNAKE_CASE_ = a * self.x + b + rng.normal(scale=0.1 , size=(length,) ).astype(np.floataa ) def __len__( self : Optional[int] ): return self.length def __getitem__( self : str , _lowerCAmelCase : Union[str, Any] ): return {"x": self.x[i], "y": self.y[i]} class lowerCamelCase_ ( torch.nn.Module ): '''simple docstring''' def __init__( self : Tuple , _lowerCAmelCase : Dict=0 , _lowerCAmelCase : List[str]=0 , _lowerCAmelCase : str=False ): super().__init__() SCREAMING_SNAKE_CASE_ = torch.nn.Parameter(torch.tensor([2, 3] ).float() ) SCREAMING_SNAKE_CASE_ = torch.nn.Parameter(torch.tensor([2, 3] ).float() ) SCREAMING_SNAKE_CASE_ = True def lowerCAmelCase_ ( self : Dict , _lowerCAmelCase : Union[str, Any]=None ): if self.first_batch: print(F"Model dtype: {self.a.dtype}, {self.b.dtype}. Input dtype: {x.dtype}" ) SCREAMING_SNAKE_CASE_ = False return x * self.a[0] + self.b[0] class lowerCamelCase_ ( torch.nn.Module ): '''simple docstring''' def __init__( self : Optional[int] , _lowerCAmelCase : Any=0 , _lowerCAmelCase : Any=0 , _lowerCAmelCase : Optional[Any]=False ): super().__init__() SCREAMING_SNAKE_CASE_ = torch.nn.Parameter(torch.tensor(_lowerCAmelCase ).float() ) SCREAMING_SNAKE_CASE_ = torch.nn.Parameter(torch.tensor(_lowerCAmelCase ).float() ) SCREAMING_SNAKE_CASE_ = True def lowerCAmelCase_ ( self : Optional[Any] , _lowerCAmelCase : Optional[int]=None ): if self.first_batch: print(F"Model dtype: {self.a.dtype}, {self.b.dtype}. Input dtype: {x.dtype}" ) SCREAMING_SNAKE_CASE_ = False return x * self.a + self.b def UpperCAmelCase_ ( __UpperCAmelCase : Dict , __UpperCAmelCase : int = 16 ) -> Union[str, Any]: from datasets import load_dataset from transformers import AutoTokenizer SCREAMING_SNAKE_CASE_ = AutoTokenizer.from_pretrained('bert-base-cased' ) SCREAMING_SNAKE_CASE_ = {'train': 'tests/test_samples/MRPC/train.csv', 'validation': 'tests/test_samples/MRPC/dev.csv'} SCREAMING_SNAKE_CASE_ = load_dataset('csv' , data_files=__UpperCAmelCase ) SCREAMING_SNAKE_CASE_ = datasets['train'].unique('label' ) SCREAMING_SNAKE_CASE_ = {v: i for i, v in enumerate(__UpperCAmelCase )} def tokenize_function(__UpperCAmelCase : Optional[int] ): # max_length=None => use the model max length (it's actually the default) SCREAMING_SNAKE_CASE_ = tokenizer( examples['sentence1'] , examples['sentence2'] , truncation=__UpperCAmelCase , max_length=__UpperCAmelCase , padding='max_length' ) if "label" in examples: SCREAMING_SNAKE_CASE_ = [label_to_id[l] for l in examples['label']] return outputs # Apply the method we just defined to all the examples in all the splits of the dataset SCREAMING_SNAKE_CASE_ = datasets.map( __UpperCAmelCase , batched=__UpperCAmelCase , remove_columns=['sentence1', 'sentence2', 'label'] , ) def collate_fn(__UpperCAmelCase : Dict ): # On TPU it's best to pad everything to the same length or training will be very slow. if accelerator.distributed_type == DistributedType.TPU: return tokenizer.pad(__UpperCAmelCase , padding='max_length' , max_length=1_28 , return_tensors='pt' ) return tokenizer.pad(__UpperCAmelCase , padding='longest' , return_tensors='pt' ) # Instantiate dataloaders. SCREAMING_SNAKE_CASE_ = DataLoader(tokenized_datasets['train'] , shuffle=__UpperCAmelCase , collate_fn=__UpperCAmelCase , batch_size=2 ) SCREAMING_SNAKE_CASE_ = DataLoader(tokenized_datasets['validation'] , shuffle=__UpperCAmelCase , collate_fn=__UpperCAmelCase , batch_size=1 ) return train_dataloader, eval_dataloader
31
0
from typing import List, Optional, Union import numpy as np import torch import torchaudio.compliance.kaldi as ta_kaldi from ...feature_extraction_sequence_utils import SequenceFeatureExtractor from ...feature_extraction_utils import BatchFeature from ...utils import PaddingStrategy, TensorType, logging lowerCAmelCase = logging.get_logger(__name__) class _a ( UpperCamelCase__ ): _lowercase : Any = ['''input_features''', '''attention_mask'''] def __init__( self: Dict , UpperCamelCase_: str=80 , UpperCamelCase_: Any=16_000 , UpperCamelCase_: Union[str, Any]=80 , UpperCamelCase_: List[str]=0.0 , UpperCamelCase_: int=True , UpperCamelCase_: Optional[Any]=True , UpperCamelCase_: Optional[Any]=True , **UpperCamelCase_: List[str] , ) -> int: """simple docstring""" super().__init__(feature_size=UpperCamelCase_ , sampling_rate=UpperCamelCase_ , padding_value=UpperCamelCase_ , **UpperCamelCase_ ) lowercase__ = num_mel_bins lowercase__ = do_ceptral_normalize lowercase__ = normalize_means lowercase__ = normalize_vars lowercase__ = True def lowerCamelCase_ ( self: Union[str, Any] , UpperCamelCase_: np.ndarray , ) -> np.ndarray: """simple docstring""" lowercase__ = waveform * (2**15) # Kaldi compliance: 16-bit signed integers lowercase__ = torch.from_numpy(UpperCamelCase_ ).unsqueeze(0 ) lowercase__ = ta_kaldi.fbank(UpperCamelCase_ , num_mel_bins=self.num_mel_bins , sample_frequency=self.sampling_rate ) return features.numpy() @staticmethod def lowerCamelCase_ ( UpperCamelCase_: np.ndarray , UpperCamelCase_: int , UpperCamelCase_: Optional[bool] = True , UpperCamelCase_: Optional[bool] = True , UpperCamelCase_: float = 0.0 , ) -> np.ndarray: """simple docstring""" if normalize_means: lowercase__ = x[:input_length].mean(axis=0 ) lowercase__ = np.subtract(UpperCamelCase_ , UpperCamelCase_ ) if normalize_vars: lowercase__ = x[:input_length].std(axis=0 ) lowercase__ = np.divide(UpperCamelCase_ , UpperCamelCase_ ) if input_length < x.shape[0]: lowercase__ = padding_value # make sure array is in float32 lowercase__ = x.astype(np.floataa ) return x def lowerCamelCase_ ( self: int , UpperCamelCase_: List[np.ndarray] , UpperCamelCase_: Optional[np.ndarray] = None ) -> List[np.ndarray]: """simple docstring""" lowercase__ = attention_mask.sum(-1 ) if attention_mask is not None else [x.shape[0] for x in input_features] return [ self.utterance_cmvn(UpperCamelCase_ , UpperCamelCase_ , self.normalize_means , self.normalize_vars , self.padding_value ) for x, n in zip(UpperCamelCase_ , UpperCamelCase_ ) ] def __call__( self: List[Any] , UpperCamelCase_: Union[np.ndarray, List[float], List[np.ndarray], List[List[float]]] , UpperCamelCase_: Union[bool, str, PaddingStrategy] = False , UpperCamelCase_: Optional[int] = None , UpperCamelCase_: bool = False , UpperCamelCase_: Optional[int] = None , UpperCamelCase_: Optional[Union[str, TensorType]] = None , UpperCamelCase_: Optional[int] = None , UpperCamelCase_: Optional[bool] = None , **UpperCamelCase_: List[Any] , ) -> BatchFeature: """simple docstring""" if sampling_rate is not None: if sampling_rate != self.sampling_rate: raise ValueError( f'The model corresponding to this feature extractor: {self} was trained using a sampling rate of' f' {self.sampling_rate}. Please make sure that the provided `raw_speech` input was sampled with' f' {self.sampling_rate} and not {sampling_rate}.' ) else: logger.warning( '''It is strongly recommended to pass the `sampling_rate` argument to this function. ''' '''Failing to do so can result in silent errors that might be hard to debug.''' ) lowercase__ = isinstance(UpperCamelCase_ , np.ndarray ) and len(raw_speech.shape ) > 1 if is_batched_numpy and len(raw_speech.shape ) > 2: raise ValueError(f'Only mono-channel audio is supported for input to {self}' ) lowercase__ = is_batched_numpy or ( isinstance(UpperCamelCase_ , (list, tuple) ) and (isinstance(raw_speech[0] , (np.ndarray, tuple, list) )) ) if is_batched: lowercase__ = [np.asarray(UpperCamelCase_ , dtype=np.floataa ) for speech in raw_speech] elif not is_batched and not isinstance(UpperCamelCase_ , np.ndarray ): lowercase__ = np.asarray(UpperCamelCase_ , dtype=np.floataa ) elif isinstance(UpperCamelCase_ , np.ndarray ) and raw_speech.dtype is np.dtype(np.floataa ): lowercase__ = raw_speech.astype(np.floataa ) # always return batch if not is_batched: lowercase__ = [raw_speech] # extract fbank features lowercase__ = [self._extract_fbank_features(UpperCamelCase_ ) for waveform in raw_speech] # convert into correct format for padding lowercase__ = BatchFeature({'''input_features''': features} ) lowercase__ = self.pad( UpperCamelCase_ , padding=UpperCamelCase_ , max_length=UpperCamelCase_ , truncation=UpperCamelCase_ , pad_to_multiple_of=UpperCamelCase_ , return_attention_mask=UpperCamelCase_ , **UpperCamelCase_ , ) # make sure list is in array format lowercase__ = padded_inputs.get('''input_features''' ) if isinstance(input_features[0] , UpperCamelCase_ ): lowercase__ = [np.asarray(UpperCamelCase_ , dtype=np.floataa ) for feature in input_features] lowercase__ = padded_inputs.get('''attention_mask''' ) if attention_mask is not None: lowercase__ = [np.asarray(UpperCamelCase_ , dtype=np.intaa ) for array in attention_mask] # Utterance-level cepstral mean and variance normalization if self.do_ceptral_normalize: lowercase__ = ( np.array(UpperCamelCase_ , dtype=np.intaa ) if self._get_padding_strategies(UpperCamelCase_ , max_length=UpperCamelCase_ ) is not PaddingStrategy.DO_NOT_PAD else None ) lowercase__ = self.normalize( padded_inputs['''input_features'''] , attention_mask=UpperCamelCase_ ) if return_tensors is not None: lowercase__ = padded_inputs.convert_to_tensors(UpperCamelCase_ ) return padded_inputs
43
import warnings from ...utils import logging from .image_processing_layoutlmva import LayoutLMvaImageProcessor lowerCamelCase__ : Union[str, Any] = logging.get_logger(__name__) class lowerCamelCase_ ( _SCREAMING_SNAKE_CASE ): '''simple docstring''' def __init__( self : Dict , *_lowerCAmelCase : Optional[Any] , **_lowerCAmelCase : Any ): warnings.warn( 'The class LayoutLMv2FeatureExtractor is deprecated and will be removed in version 5 of Transformers.' ' Please use LayoutLMv2ImageProcessor instead.' , _lowerCAmelCase , ) super().__init__(*_lowerCAmelCase , **_lowerCAmelCase )
31
0
'''simple docstring''' import argparse import os import torch from transformers import FlavaConfig, FlavaForPreTraining from transformers.models.flava.convert_dalle_to_flava_codebook import convert_dalle_checkpoint def A_ ( _lowerCAmelCase : str ): """simple docstring""" return sum(param.float().sum() if "encoder.embeddings" not in key else 0 for key, param in state_dict.items() ) def A_ ( _lowerCAmelCase : Optional[Any] , _lowerCAmelCase : Dict ): """simple docstring""" _lowerCamelCase : str = {} for key, value in state_dict.items(): if "text_encoder.embeddings" in key or "image_encoder.embeddings" in key: continue _lowerCamelCase : int = key.replace("heads.cmd.mim_head.cls.predictions" , "mmm_image_head" ) _lowerCamelCase : List[Any] = key.replace("heads.cmd.mlm_head.cls.predictions" , "mmm_text_head" ) _lowerCamelCase : List[str] = key.replace("heads.cmd.itm_head.cls" , "itm_head" ) _lowerCamelCase : int = key.replace("heads.cmd.itm_head.pooler" , "itm_head.pooler" ) _lowerCamelCase : Union[str, Any] = key.replace("heads.cmd.clip_head.logit_scale" , "flava.logit_scale" ) _lowerCamelCase : Any = key.replace("heads.fairseq_mlm.cls.predictions" , "mlm_head" ) _lowerCamelCase : str = key.replace("heads.imagenet.mim_head.cls.predictions" , "mim_head" ) _lowerCamelCase : Optional[Any] = key.replace("mm_text_projection" , "flava.text_to_mm_projection" ) _lowerCamelCase : int = key.replace("mm_image_projection" , "flava.image_to_mm_projection" ) _lowerCamelCase : Union[str, Any] = key.replace("image_encoder.module" , "flava.image_model" ) _lowerCamelCase : List[Any] = key.replace("text_encoder.module" , "flava.text_model" ) _lowerCamelCase : Union[str, Any] = key.replace("mm_encoder.module.encoder.cls_token" , "flava.multimodal_model.cls_token" ) _lowerCamelCase : Any = key.replace("mm_encoder.module" , "flava.multimodal_model" ) _lowerCamelCase : Optional[Any] = key.replace("text_projection" , "flava.text_projection" ) _lowerCamelCase : Union[str, Any] = key.replace("image_projection" , "flava.image_projection" ) _lowerCamelCase : Dict = value.float() for key, value in codebook_state_dict.items(): _lowerCamelCase : Union[str, Any] = value return upgrade @torch.no_grad() def A_ ( _lowerCAmelCase : Union[str, Any] , _lowerCAmelCase : int , _lowerCAmelCase : Optional[int] , _lowerCAmelCase : Any=None ): """simple docstring""" if config_path is not None: _lowerCamelCase : Optional[Any] = FlavaConfig.from_pretrained(_lowerCAmelCase ) else: _lowerCamelCase : List[Any] = FlavaConfig() _lowerCamelCase : Union[str, Any] = FlavaForPreTraining(_lowerCAmelCase ).eval() _lowerCamelCase : List[Any] = convert_dalle_checkpoint(_lowerCAmelCase , _lowerCAmelCase , save_checkpoint=_lowerCAmelCase ) if os.path.exists(_lowerCAmelCase ): _lowerCamelCase : str = torch.load(_lowerCAmelCase , map_location="cpu" ) else: _lowerCamelCase : Tuple = torch.hub.load_state_dict_from_url(_lowerCAmelCase , map_location="cpu" ) _lowerCamelCase : Union[str, Any] = upgrade_state_dict(_lowerCAmelCase , _lowerCAmelCase ) hf_model.load_state_dict(_lowerCAmelCase ) _lowerCamelCase : Optional[Any] = hf_model.state_dict() _lowerCamelCase : Dict = count_parameters(_lowerCAmelCase ) _lowerCamelCase : Tuple = count_parameters(_lowerCAmelCase ) + count_parameters(_lowerCAmelCase ) assert torch.allclose(_lowerCAmelCase , _lowerCAmelCase , atol=1E-3 ) hf_model.save_pretrained(_lowerCAmelCase ) if __name__ == "__main__": UpperCAmelCase_ : Optional[Any] = argparse.ArgumentParser() parser.add_argument('--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model.') parser.add_argument('--checkpoint_path', default=None, type=str, help='Path to flava checkpoint') parser.add_argument('--codebook_path', default=None, type=str, help='Path to flava codebook checkpoint') parser.add_argument('--config_path', default=None, type=str, help='Path to hf config.json of model to convert') UpperCAmelCase_ : Tuple = parser.parse_args() convert_flava_checkpoint(args.checkpoint_path, args.codebook_path, args.pytorch_dump_folder_path, args.config_path)
44
def UpperCAmelCase_ ( ) -> list[list[int]]: return [list(range(10_00 - i , -10_00 - i , -1 ) ) for i in range(10_00 )] lowerCamelCase__ : List[Any] = generate_large_matrix() lowerCamelCase__ : List[Any] = ( [[4, 3, 2, -1], [3, 2, 1, -1], [1, 1, -1, -2], [-1, -1, -2, -3]], [[3, 2], [1, 0]], [[7, 7, 6]], [[7, 7, 6], [-1, -2, -3]], grid, ) def UpperCAmelCase_ ( __UpperCAmelCase : list[list[int]] ) -> None: assert all(row == sorted(__UpperCAmelCase , reverse=__UpperCAmelCase ) for row in grid ) assert all(list(__UpperCAmelCase ) == sorted(__UpperCAmelCase , reverse=__UpperCAmelCase ) for col in zip(*__UpperCAmelCase ) ) def UpperCAmelCase_ ( __UpperCAmelCase : list[int] ) -> int: SCREAMING_SNAKE_CASE_ = 0 SCREAMING_SNAKE_CASE_ = len(__UpperCAmelCase ) - 1 # Edge cases such as no values or all numbers are negative. if not array or array[0] < 0: return 0 while right + 1 > left: SCREAMING_SNAKE_CASE_ = (left + right) // 2 SCREAMING_SNAKE_CASE_ = array[mid] # Num must be negative and the index must be greater than or equal to 0. if num < 0 and array[mid - 1] >= 0: return mid if num >= 0: SCREAMING_SNAKE_CASE_ = mid + 1 else: SCREAMING_SNAKE_CASE_ = mid - 1 # No negative numbers so return the last index of the array + 1 which is the length. return len(__UpperCAmelCase ) def UpperCAmelCase_ ( __UpperCAmelCase : list[list[int]] ) -> int: SCREAMING_SNAKE_CASE_ = 0 SCREAMING_SNAKE_CASE_ = len(grid[0] ) for i in range(len(__UpperCAmelCase ) ): SCREAMING_SNAKE_CASE_ = find_negative_index(grid[i][:bound] ) total += bound return (len(__UpperCAmelCase ) * len(grid[0] )) - total def UpperCAmelCase_ ( __UpperCAmelCase : list[list[int]] ) -> int: return len([number for row in grid for number in row if number < 0] ) def UpperCAmelCase_ ( __UpperCAmelCase : list[list[int]] ) -> int: SCREAMING_SNAKE_CASE_ = 0 for row in grid: for i, number in enumerate(__UpperCAmelCase ): if number < 0: total += len(__UpperCAmelCase ) - i break return total def UpperCAmelCase_ ( ) -> None: from timeit import timeit print('Running benchmarks' ) SCREAMING_SNAKE_CASE_ = ( 'from __main__ import count_negatives_binary_search, ' 'count_negatives_brute_force, count_negatives_brute_force_with_break, grid' ) for func in ( "count_negatives_binary_search", # took 0.7727 seconds "count_negatives_brute_force_with_break", # took 4.6505 seconds "count_negatives_brute_force", # took 12.8160 seconds ): SCREAMING_SNAKE_CASE_ = timeit(f"{func}(grid=grid)" , setup=__UpperCAmelCase , number=5_00 ) print(f"{func}() took {time:0.4f} seconds" ) if __name__ == "__main__": import doctest doctest.testmod() benchmark()
31
0
import numpy as np import torch import torch.nn as nn from transformers import CLIPConfig, CLIPVisionModelWithProjection, PreTrainedModel from ...utils import logging UpperCamelCase = logging.get_logger(__name__) class lowerCAmelCase_ ( lowercase ): """simple docstring""" _snake_case : Any = CLIPConfig _snake_case : List[Any] = ["""CLIPEncoderLayer"""] def __init__( self :Union[str, Any] , lowerCamelCase__ :CLIPConfig ): super().__init__(lowerCamelCase__ ) UpperCamelCase__ :List[str] = CLIPVisionModelWithProjection(config.vision_config ) UpperCamelCase__ :Optional[int] = nn.Linear(config.vision_config.projection_dim , 1 ) UpperCamelCase__ :Optional[Any] = nn.Linear(config.vision_config.projection_dim , 1 ) @torch.no_grad() def __a ( self :Optional[Any] , lowerCamelCase__ :Any , lowerCamelCase__ :Tuple , lowerCamelCase__ :Optional[int]=0.5 , lowerCamelCase__ :Tuple=0.5 ): UpperCamelCase__ :Optional[int] = self.vision_model(lowerCamelCase__ )[0] UpperCamelCase__ :str = self.p_head(lowerCamelCase__ ) UpperCamelCase__ :List[Any] = nsfw_detected.flatten() UpperCamelCase__ :Optional[int] = nsfw_detected > p_threshold UpperCamelCase__ :Dict = nsfw_detected.tolist() if any(lowerCamelCase__ ): logger.warning( """Potential NSFW content was detected in one or more images. A black image will be returned instead.""" """ Try again with a different prompt and/or seed.""" ) for idx, nsfw_detected_ in enumerate(lowerCamelCase__ ): if nsfw_detected_: UpperCamelCase__ :List[str] = np.zeros(images[idx].shape ) UpperCamelCase__ :Optional[Any] = self.w_head(lowerCamelCase__ ) UpperCamelCase__ :Dict = watermark_detected.flatten() UpperCamelCase__ :List[str] = watermark_detected > w_threshold UpperCamelCase__ :str = watermark_detected.tolist() if any(lowerCamelCase__ ): logger.warning( """Potential watermarked content was detected in one or more images. A black image will be returned instead.""" """ Try again with a different prompt and/or seed.""" ) for idx, watermark_detected_ in enumerate(lowerCamelCase__ ): if watermark_detected_: UpperCamelCase__ :Any = np.zeros(images[idx].shape ) return images, nsfw_detected, watermark_detected
45
from typing import TYPE_CHECKING from ....utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available lowerCamelCase__ : Optional[int] = {'configuration_mmbt': ['MMBTConfig']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase__ : Any = ['MMBTForClassification', 'MMBTModel', 'ModalEmbeddings'] if TYPE_CHECKING: from .configuration_mmbt import MMBTConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mmbt import MMBTForClassification, MMBTModel, ModalEmbeddings else: import sys lowerCamelCase__ : str = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
31
0
"""simple docstring""" import argparse import torch from transformers import OpenAIGPTConfig, OpenAIGPTModel, load_tf_weights_in_openai_gpt from transformers.utils import CONFIG_NAME, WEIGHTS_NAME, logging logging.set_verbosity_info() def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> List[str]: '''simple docstring''' if openai_config_file == "": _lowerCamelCase : Optional[Any] = OpenAIGPTConfig() else: _lowerCamelCase : Tuple = OpenAIGPTConfig.from_json_file(_lowerCamelCase ) _lowerCamelCase : List[Any] = OpenAIGPTModel(_lowerCamelCase ) # Load weights from numpy load_tf_weights_in_openai_gpt(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) # Save pytorch-model _lowerCamelCase : Optional[int] = pytorch_dump_folder_path + "/" + WEIGHTS_NAME _lowerCamelCase : List[str] = pytorch_dump_folder_path + "/" + CONFIG_NAME print(F"""Save PyTorch model to {pytorch_weights_dump_path}""" ) torch.save(model.state_dict() , _lowerCamelCase ) print(F"""Save configuration file to {pytorch_config_dump_path}""" ) with open(_lowerCamelCase , "w" , encoding="utf-8" ) as f: f.write(config.to_json_string() ) if __name__ == "__main__": _lowerCAmelCase : str = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--openai_checkpoint_folder_path''', default=None, type=str, required=True, help='''Path to the TensorFlow checkpoint path.''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, required=True, help='''Path to the output PyTorch model.''' ) parser.add_argument( '''--openai_config_file''', default='''''', type=str, help=( '''An optional config json file corresponding to the pre-trained OpenAI model. \n''' '''This specifies the model architecture.''' ), ) _lowerCAmelCase : str = parser.parse_args() convert_openai_checkpoint_to_pytorch( args.openai_checkpoint_folder_path, args.openai_config_file, args.pytorch_dump_folder_path )
46
import unittest from typing import Tuple import torch from diffusers.utils import floats_tensor, randn_tensor, torch_all_close, torch_device from diffusers.utils.testing_utils import require_torch @require_torch class lowerCamelCase_ : '''simple docstring''' @property def lowerCAmelCase_ ( self : Optional[Any] ): return self.get_dummy_input() @property def lowerCAmelCase_ ( self : Union[str, Any] ): if self.block_type == "down": return (4, 32, 16, 16) elif self.block_type == "mid": return (4, 32, 32, 32) elif self.block_type == "up": return (4, 32, 64, 64) raise ValueError(F"'{self.block_type}' is not a supported block_type. Set it to 'up', 'mid', or 'down'." ) def lowerCAmelCase_ ( self : List[str] , _lowerCAmelCase : Optional[Any]=True , _lowerCAmelCase : str=False , _lowerCAmelCase : Optional[int]=False , _lowerCAmelCase : Dict=False , ): SCREAMING_SNAKE_CASE_ = 4 SCREAMING_SNAKE_CASE_ = 32 SCREAMING_SNAKE_CASE_ = (32, 32) SCREAMING_SNAKE_CASE_ = torch.manual_seed(0 ) SCREAMING_SNAKE_CASE_ = torch.device(_lowerCAmelCase ) SCREAMING_SNAKE_CASE_ = (batch_size, num_channels) + sizes SCREAMING_SNAKE_CASE_ = randn_tensor(_lowerCAmelCase , generator=_lowerCAmelCase , device=_lowerCAmelCase ) SCREAMING_SNAKE_CASE_ = {'hidden_states': hidden_states} if include_temb: SCREAMING_SNAKE_CASE_ = 128 SCREAMING_SNAKE_CASE_ = randn_tensor((batch_size, temb_channels) , generator=_lowerCAmelCase , device=_lowerCAmelCase ) if include_res_hidden_states_tuple: SCREAMING_SNAKE_CASE_ = torch.manual_seed(1 ) SCREAMING_SNAKE_CASE_ = (randn_tensor(_lowerCAmelCase , generator=_lowerCAmelCase , device=_lowerCAmelCase ),) if include_encoder_hidden_states: SCREAMING_SNAKE_CASE_ = floats_tensor((batch_size, 32, 32) ).to(_lowerCAmelCase ) if include_skip_sample: SCREAMING_SNAKE_CASE_ = randn_tensor(((batch_size, 3) + sizes) , generator=_lowerCAmelCase , device=_lowerCAmelCase ) return dummy_input def lowerCAmelCase_ ( self : Optional[int] ): SCREAMING_SNAKE_CASE_ = { 'in_channels': 32, 'out_channels': 32, 'temb_channels': 128, } if self.block_type == "up": SCREAMING_SNAKE_CASE_ = 32 if self.block_type == "mid": init_dict.pop('out_channels' ) SCREAMING_SNAKE_CASE_ = self.dummy_input return init_dict, inputs_dict def lowerCAmelCase_ ( self : Dict , _lowerCAmelCase : Optional[Any] ): SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = self.prepare_init_args_and_inputs_for_common() SCREAMING_SNAKE_CASE_ = self.block_class(**_lowerCAmelCase ) unet_block.to(_lowerCAmelCase ) unet_block.eval() with torch.no_grad(): SCREAMING_SNAKE_CASE_ = unet_block(**_lowerCAmelCase ) if isinstance(_lowerCAmelCase , _lowerCAmelCase ): SCREAMING_SNAKE_CASE_ = output[0] self.assertEqual(output.shape , self.output_shape ) SCREAMING_SNAKE_CASE_ = output[0, -1, -3:, -3:] SCREAMING_SNAKE_CASE_ = torch.tensor(_lowerCAmelCase ).to(_lowerCAmelCase ) assert torch_all_close(output_slice.flatten() , _lowerCAmelCase , atol=5E-3 ) @unittest.skipIf(torch_device == 'mps' , 'Training is not supported in mps' ) def lowerCAmelCase_ ( self : Any ): SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = self.prepare_init_args_and_inputs_for_common() SCREAMING_SNAKE_CASE_ = self.block_class(**_lowerCAmelCase ) model.to(_lowerCAmelCase ) model.train() SCREAMING_SNAKE_CASE_ = model(**_lowerCAmelCase ) if isinstance(_lowerCAmelCase , _lowerCAmelCase ): SCREAMING_SNAKE_CASE_ = output[0] SCREAMING_SNAKE_CASE_ = torch.device(_lowerCAmelCase ) SCREAMING_SNAKE_CASE_ = randn_tensor(output.shape , device=_lowerCAmelCase ) SCREAMING_SNAKE_CASE_ = torch.nn.functional.mse_loss(_lowerCAmelCase , _lowerCAmelCase ) loss.backward()
31
0
import torch from diffusers import DDPMParallelScheduler from .test_schedulers import SchedulerCommonTest class _UpperCamelCase( __lowerCamelCase ): __SCREAMING_SNAKE_CASE : Dict = (DDPMParallelScheduler,) def __lowerCAmelCase ( self : Optional[int] , **SCREAMING_SNAKE_CASE__ : str ): '''simple docstring''' __a : str = { 'num_train_timesteps': 1_0_0_0, 'beta_start': 0.0_001, 'beta_end': 0.02, 'beta_schedule': 'linear', 'variance_type': 'fixed_small', 'clip_sample': True, } config.update(**SCREAMING_SNAKE_CASE__ ) return config def __lowerCAmelCase ( self : List[str] ): '''simple docstring''' for timesteps in [1, 5, 1_0_0, 1_0_0_0]: self.check_over_configs(num_train_timesteps=SCREAMING_SNAKE_CASE__ ) def __lowerCAmelCase ( self : Union[str, Any] ): '''simple docstring''' for beta_start, beta_end in zip([0.0_001, 0.001, 0.01, 0.1] , [0.002, 0.02, 0.2, 2] ): self.check_over_configs(beta_start=SCREAMING_SNAKE_CASE__ , beta_end=SCREAMING_SNAKE_CASE__ ) def __lowerCAmelCase ( self : Optional[int] ): '''simple docstring''' for schedule in ["linear", "squaredcos_cap_v2"]: self.check_over_configs(beta_schedule=SCREAMING_SNAKE_CASE__ ) def __lowerCAmelCase ( self : Union[str, Any] ): '''simple docstring''' for variance in ["fixed_small", "fixed_large", "other"]: self.check_over_configs(variance_type=SCREAMING_SNAKE_CASE__ ) def __lowerCAmelCase ( self : int ): '''simple docstring''' for clip_sample in [True, False]: self.check_over_configs(clip_sample=SCREAMING_SNAKE_CASE__ ) def __lowerCAmelCase ( self : str ): '''simple docstring''' self.check_over_configs(thresholding=SCREAMING_SNAKE_CASE__ ) for threshold in [0.5, 1.0, 2.0]: for prediction_type in ["epsilon", "sample", "v_prediction"]: self.check_over_configs( thresholding=SCREAMING_SNAKE_CASE__ , prediction_type=SCREAMING_SNAKE_CASE__ , sample_max_value=SCREAMING_SNAKE_CASE__ , ) def __lowerCAmelCase ( self : Dict ): '''simple docstring''' for prediction_type in ["epsilon", "sample", "v_prediction"]: self.check_over_configs(prediction_type=SCREAMING_SNAKE_CASE__ ) def __lowerCAmelCase ( self : Dict ): '''simple docstring''' for t in [0, 5_0_0, 9_9_9]: self.check_over_forward(time_step=SCREAMING_SNAKE_CASE__ ) def __lowerCAmelCase ( self : str ): '''simple docstring''' __a : Union[str, Any] = self.scheduler_classes[0] __a : Dict = self.get_scheduler_config() __a : Optional[int] = scheduler_class(**SCREAMING_SNAKE_CASE__ ) assert torch.sum(torch.abs(scheduler._get_variance(0 ) - 0.0 ) ) < 1e-5 assert torch.sum(torch.abs(scheduler._get_variance(4_8_7 ) - 0.00_979 ) ) < 1e-5 assert torch.sum(torch.abs(scheduler._get_variance(9_9_9 ) - 0.02 ) ) < 1e-5 def __lowerCAmelCase ( self : str ): '''simple docstring''' __a : int = self.scheduler_classes[0] __a : Dict = self.get_scheduler_config() __a : Union[str, Any] = scheduler_class(**SCREAMING_SNAKE_CASE__ ) __a : Optional[int] = len(SCREAMING_SNAKE_CASE__ ) __a : Dict = self.dummy_model() __a : Optional[int] = self.dummy_sample_deter __a : Any = self.dummy_sample_deter + 0.1 __a : Any = self.dummy_sample_deter - 0.1 __a : Optional[int] = samplea.shape[0] __a : int = torch.stack([samplea, samplea, samplea] , dim=0 ) __a : Dict = torch.arange(SCREAMING_SNAKE_CASE__ )[0:3, None].repeat(1 , SCREAMING_SNAKE_CASE__ ) __a : List[Any] = model(samples.flatten(0 , 1 ) , timesteps.flatten(0 , 1 ) ) __a : Optional[int] = scheduler.batch_step_no_noise(SCREAMING_SNAKE_CASE__ , timesteps.flatten(0 , 1 ) , samples.flatten(0 , 1 ) ) __a : Tuple = torch.sum(torch.abs(SCREAMING_SNAKE_CASE__ ) ) __a : Dict = torch.mean(torch.abs(SCREAMING_SNAKE_CASE__ ) ) assert abs(result_sum.item() - 1_153.1_833 ) < 1e-2 assert abs(result_mean.item() - 0.5_005 ) < 1e-3 def __lowerCAmelCase ( self : Any ): '''simple docstring''' __a : Union[str, Any] = self.scheduler_classes[0] __a : int = self.get_scheduler_config() __a : Dict = scheduler_class(**SCREAMING_SNAKE_CASE__ ) __a : List[str] = len(SCREAMING_SNAKE_CASE__ ) __a : Dict = self.dummy_model() __a : Any = self.dummy_sample_deter __a : List[str] = torch.manual_seed(0 ) for t in reversed(range(SCREAMING_SNAKE_CASE__ ) ): # 1. predict noise residual __a : str = model(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) # 2. predict previous mean of sample x_t-1 __a : int = scheduler.step(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , generator=SCREAMING_SNAKE_CASE__ ).prev_sample __a : List[Any] = pred_prev_sample __a : List[Any] = torch.sum(torch.abs(SCREAMING_SNAKE_CASE__ ) ) __a : Optional[int] = torch.mean(torch.abs(SCREAMING_SNAKE_CASE__ ) ) assert abs(result_sum.item() - 258.9_606 ) < 1e-2 assert abs(result_mean.item() - 0.3_372 ) < 1e-3 def __lowerCAmelCase ( self : List[Any] ): '''simple docstring''' __a : Tuple = self.scheduler_classes[0] __a : int = self.get_scheduler_config(prediction_type='v_prediction' ) __a : str = scheduler_class(**SCREAMING_SNAKE_CASE__ ) __a : str = len(SCREAMING_SNAKE_CASE__ ) __a : Optional[int] = self.dummy_model() __a : Optional[Any] = self.dummy_sample_deter __a : int = torch.manual_seed(0 ) for t in reversed(range(SCREAMING_SNAKE_CASE__ ) ): # 1. predict noise residual __a : Dict = model(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) # 2. predict previous mean of sample x_t-1 __a : str = scheduler.step(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , generator=SCREAMING_SNAKE_CASE__ ).prev_sample __a : List[Any] = pred_prev_sample __a : Optional[int] = torch.sum(torch.abs(SCREAMING_SNAKE_CASE__ ) ) __a : List[str] = torch.mean(torch.abs(SCREAMING_SNAKE_CASE__ ) ) assert abs(result_sum.item() - 202.0_296 ) < 1e-2 assert abs(result_mean.item() - 0.2_631 ) < 1e-3 def __lowerCAmelCase ( self : List[Any] ): '''simple docstring''' __a : List[Any] = self.scheduler_classes[0] __a : Tuple = self.get_scheduler_config() __a : List[Any] = scheduler_class(**SCREAMING_SNAKE_CASE__ ) __a : List[str] = [1_0_0, 8_7, 5_0, 1, 0] scheduler.set_timesteps(timesteps=SCREAMING_SNAKE_CASE__ ) __a : Any = scheduler.timesteps for i, timestep in enumerate(SCREAMING_SNAKE_CASE__ ): if i == len(SCREAMING_SNAKE_CASE__ ) - 1: __a : List[str] = -1 else: __a : Dict = timesteps[i + 1] __a : Any = scheduler.previous_timestep(SCREAMING_SNAKE_CASE__ ) __a : Optional[Any] = prev_t.item() self.assertEqual(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) def __lowerCAmelCase ( self : int ): '''simple docstring''' __a : List[str] = self.scheduler_classes[0] __a : Union[str, Any] = self.get_scheduler_config() __a : Union[str, Any] = scheduler_class(**SCREAMING_SNAKE_CASE__ ) __a : int = [1_0_0, 8_7, 5_0, 5_1, 0] with self.assertRaises(SCREAMING_SNAKE_CASE__ , msg='`custom_timesteps` must be in descending order.' ): scheduler.set_timesteps(timesteps=SCREAMING_SNAKE_CASE__ ) def __lowerCAmelCase ( self : List[str] ): '''simple docstring''' __a : Tuple = self.scheduler_classes[0] __a : Dict = self.get_scheduler_config() __a : List[Any] = scheduler_class(**SCREAMING_SNAKE_CASE__ ) __a : str = [1_0_0, 8_7, 5_0, 1, 0] __a : int = len(SCREAMING_SNAKE_CASE__ ) with self.assertRaises(SCREAMING_SNAKE_CASE__ , msg='Can only pass one of `num_inference_steps` or `custom_timesteps`.' ): scheduler.set_timesteps(num_inference_steps=SCREAMING_SNAKE_CASE__ , timesteps=SCREAMING_SNAKE_CASE__ ) def __lowerCAmelCase ( self : str ): '''simple docstring''' __a : str = self.scheduler_classes[0] __a : Optional[int] = self.get_scheduler_config() __a : Any = scheduler_class(**SCREAMING_SNAKE_CASE__ ) __a : Tuple = [scheduler.config.num_train_timesteps] with self.assertRaises( SCREAMING_SNAKE_CASE__ , msg='`timesteps` must start before `self.config.train_timesteps`: {scheduler.config.num_train_timesteps}}' , ): scheduler.set_timesteps(timesteps=SCREAMING_SNAKE_CASE__ )
47
import operator as op def UpperCAmelCase_ ( __UpperCAmelCase : str ) -> Any: SCREAMING_SNAKE_CASE_ = [] SCREAMING_SNAKE_CASE_ = lambda __UpperCAmelCase , __UpperCAmelCase : int(x / y ) # noqa: E731 integer division operation SCREAMING_SNAKE_CASE_ = { '^': op.pow, '*': op.mul, '/': div, '+': op.add, '-': op.sub, } # operators & their respective operation # print table header print('Symbol'.center(8 ) , 'Action'.center(12 ) , 'Stack' , sep=' | ' ) print('-' * (30 + len(__UpperCAmelCase )) ) for x in post_fix: if x.isdigit(): # if x in digit stack.append(__UpperCAmelCase ) # append x to stack # output in tabular format print(x.rjust(8 ) , ('push(' + x + ')').ljust(12 ) , ','.join(__UpperCAmelCase ) , sep=' | ' ) else: SCREAMING_SNAKE_CASE_ = stack.pop() # pop stack # output in tabular format print(''.rjust(8 ) , ('pop(' + b + ')').ljust(12 ) , ','.join(__UpperCAmelCase ) , sep=' | ' ) SCREAMING_SNAKE_CASE_ = stack.pop() # pop stack # output in tabular format print(''.rjust(8 ) , ('pop(' + a + ')').ljust(12 ) , ','.join(__UpperCAmelCase ) , sep=' | ' ) stack.append( str(opr[x](int(__UpperCAmelCase ) , int(__UpperCAmelCase ) ) ) ) # evaluate the 2 values popped from stack & push result to stack # output in tabular format print( x.rjust(8 ) , ('push(' + a + x + b + ')').ljust(12 ) , ','.join(__UpperCAmelCase ) , sep=' | ' , ) return int(stack[0] ) if __name__ == "__main__": lowerCamelCase__ : Tuple = input('\n\nEnter a Postfix Equation (space separated) = ').split(' ') print('\n\tResult = ', solve(Postfix))
31
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available UpperCAmelCase__ : Optional[Any] = { "configuration_git": ["GIT_PRETRAINED_CONFIG_ARCHIVE_MAP", "GitConfig", "GitVisionConfig"], "processing_git": ["GitProcessor"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase__ : Union[str, Any] = [ "GIT_PRETRAINED_MODEL_ARCHIVE_LIST", "GitForCausalLM", "GitModel", "GitPreTrainedModel", "GitVisionModel", ] if TYPE_CHECKING: from .configuration_git import GIT_PRETRAINED_CONFIG_ARCHIVE_MAP, GitConfig, GitVisionConfig from .processing_git import GitProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_git import ( GIT_PRETRAINED_MODEL_ARCHIVE_LIST, GitForCausalLM, GitModel, GitPreTrainedModel, GitVisionModel, ) else: import sys UpperCAmelCase__ : Any = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
48
def UpperCAmelCase_ ( __UpperCAmelCase : int ) -> int: assert isinstance(__UpperCAmelCase , __UpperCAmelCase ), f"The input value of [n={number}] is not an integer" if number == 1: return 2 elif number < 1: SCREAMING_SNAKE_CASE_ = f"The input value of [n={number}] has to be > 0" raise ValueError(__UpperCAmelCase ) else: SCREAMING_SNAKE_CASE_ = sylvester(number - 1 ) SCREAMING_SNAKE_CASE_ = num - 1 SCREAMING_SNAKE_CASE_ = num return lower * upper + 1 if __name__ == "__main__": print(f'''The 8th number in Sylvester\'s sequence: {sylvester(8)}''')
31
0
"""simple docstring""" from typing import List, Optional from ...configuration_utils import PretrainedConfig from ...utils import logging _lowercase : str = logging.get_logger(__name__) _lowercase : Optional[Any] = { 'huggingface/autoformer-tourism-monthly': 'https://huggingface.co/huggingface/autoformer-tourism-monthly/resolve/main/config.json', } class _UpperCAmelCase ( _lowerCAmelCase ): a__ : Tuple = "autoformer" a__ : Union[str, Any] = { "hidden_size": "d_model", "num_attention_heads": "encoder_attention_heads", "num_hidden_layers": "encoder_layers", } def __init__( self : Tuple , _lowercase : Optional[int] = None , _lowercase : Optional[int] = None , _lowercase : str = "student_t" , _lowercase : str = "nll" , _lowercase : int = 1 , _lowercase : List[int] = [1, 2, 3, 4, 5, 6, 7] , _lowercase : bool = True , _lowercase : int = 0 , _lowercase : int = 0 , _lowercase : int = 0 , _lowercase : int = 0 , _lowercase : Optional[List[int]] = None , _lowercase : Optional[List[int]] = None , _lowercase : int = 64 , _lowercase : int = 2 , _lowercase : int = 2 , _lowercase : int = 2 , _lowercase : int = 2 , _lowercase : int = 32 , _lowercase : int = 32 , _lowercase : str = "gelu" , _lowercase : float = 0.1 , _lowercase : float = 0.1 , _lowercase : float = 0.1 , _lowercase : float = 0.1 , _lowercase : float = 0.1 , _lowercase : int = 1_00 , _lowercase : float = 0.02 , _lowercase : bool = True , _lowercase : Optional[Any]=True , _lowercase : int = 10 , _lowercase : int = 25 , _lowercase : int = 3 , **_lowercase : List[Any] , ): # time series specific configuration __UpperCAmelCase = prediction_length __UpperCAmelCase = context_length if context_length is not None else prediction_length __UpperCAmelCase = distribution_output __UpperCAmelCase = loss __UpperCAmelCase = input_size __UpperCAmelCase = num_time_features __UpperCAmelCase = lags_sequence __UpperCAmelCase = scaling __UpperCAmelCase = num_dynamic_real_features __UpperCAmelCase = num_static_real_features __UpperCAmelCase = num_static_categorical_features if cardinality is not None and num_static_categorical_features > 0: if len(_lowercase ) != num_static_categorical_features: raise ValueError( '''The cardinality should be a list of the same length as `num_static_categorical_features`''' ) __UpperCAmelCase = cardinality else: __UpperCAmelCase = [0] if embedding_dimension is not None and num_static_categorical_features > 0: if len(_lowercase ) != num_static_categorical_features: raise ValueError( '''The embedding dimension should be a list of the same length as `num_static_categorical_features`''' ) __UpperCAmelCase = embedding_dimension else: __UpperCAmelCase = [min(50 , (cat + 1) // 2 ) for cat in self.cardinality] __UpperCAmelCase = num_parallel_samples # Transformer architecture configuration __UpperCAmelCase = input_size * len(self.lags_sequence ) + self._number_of_features __UpperCAmelCase = d_model __UpperCAmelCase = encoder_attention_heads __UpperCAmelCase = decoder_attention_heads __UpperCAmelCase = encoder_ffn_dim __UpperCAmelCase = decoder_ffn_dim __UpperCAmelCase = encoder_layers __UpperCAmelCase = decoder_layers __UpperCAmelCase = dropout __UpperCAmelCase = attention_dropout __UpperCAmelCase = activation_dropout __UpperCAmelCase = encoder_layerdrop __UpperCAmelCase = decoder_layerdrop __UpperCAmelCase = activation_function __UpperCAmelCase = init_std __UpperCAmelCase = use_cache # Autoformer __UpperCAmelCase = label_length __UpperCAmelCase = moving_average __UpperCAmelCase = autocorrelation_factor super().__init__(is_encoder_decoder=_lowercase , **_lowercase ) @property def a ( self : int ): return ( sum(self.embedding_dimension ) + self.num_dynamic_real_features + self.num_time_features + self.num_static_real_features + self.input_size * 2 # the log1p(abs(loc)) and log(scale) features )
49
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_sentencepiece_available, is_tf_available, is_tokenizers_available, is_torch_available, ) if is_sentencepiece_available(): from ..ta.tokenization_ta import TaTokenizer else: from ...utils.dummy_sentencepiece_objects import TaTokenizer lowerCamelCase__ : List[Any] = TaTokenizer if is_tokenizers_available(): from ..ta.tokenization_ta_fast import TaTokenizerFast else: from ...utils.dummy_tokenizers_objects import TaTokenizerFast lowerCamelCase__ : Union[str, Any] = TaTokenizerFast lowerCamelCase__ : Dict = {'configuration_mt5': ['MT5Config', 'MT5OnnxConfig']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase__ : Tuple = [ 'MT5EncoderModel', 'MT5ForConditionalGeneration', 'MT5ForQuestionAnswering', 'MT5Model', 'MT5PreTrainedModel', 'MT5Stack', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase__ : Tuple = ['TFMT5EncoderModel', 'TFMT5ForConditionalGeneration', 'TFMT5Model'] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase__ : Tuple = ['FlaxMT5EncoderModel', 'FlaxMT5ForConditionalGeneration', 'FlaxMT5Model'] if TYPE_CHECKING: from .configuration_mta import MTaConfig, MTaOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mta import ( MTaEncoderModel, MTaForConditionalGeneration, MTaForQuestionAnswering, MTaModel, MTaPreTrainedModel, MTaStack, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_mta import TFMTaEncoderModel, TFMTaForConditionalGeneration, TFMTaModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_mta import FlaxMTaEncoderModel, FlaxMTaForConditionalGeneration, FlaxMTaModel else: import sys lowerCamelCase__ : int = _LazyModule( __name__, globals()['__file__'], _import_structure, extra_objects={'MT5Tokenizer': MTaTokenizer, 'MT5TokenizerFast': MTaTokenizerFast}, module_spec=__spec__, )
31
0
'''simple docstring''' from typing import Union import fire import torch from tqdm import tqdm def A__ ( __lowerCAmelCase : str , __lowerCAmelCase : str = "cpu" , __lowerCAmelCase : Union[str, None] = None ): lowerCamelCase__ = torch.load(__lowerCAmelCase , map_location=__lowerCAmelCase ) for k, v in tqdm(state_dict.items() ): if not isinstance(__lowerCAmelCase , torch.Tensor ): raise TypeError("""FP16 conversion only works on paths that are saved state dicts, like pytorch_model.bin""" ) lowerCamelCase__ = v.half() if save_path is None: # overwrite src_path lowerCamelCase__ = src_path torch.save(__lowerCAmelCase , __lowerCAmelCase ) if __name__ == "__main__": fire.Fire(convert)
50
import subprocess import sys from transformers import BertConfig, BertModel, BertTokenizer, pipeline from transformers.testing_utils import TestCasePlus, require_torch class lowerCamelCase_ ( _SCREAMING_SNAKE_CASE ): '''simple docstring''' @require_torch def lowerCAmelCase_ ( self : int ): # this test is a bit tricky since TRANSFORMERS_OFFLINE can only be changed before # `transformers` is loaded, and it's too late for inside pytest - so we are changing it # while running an external program # python one-liner segments # this must be loaded before socket.socket is monkey-patched SCREAMING_SNAKE_CASE_ = '\nfrom transformers import BertConfig, BertModel, BertTokenizer, pipeline\n ' SCREAMING_SNAKE_CASE_ = '\nmname = "hf-internal-testing/tiny-random-bert"\nBertConfig.from_pretrained(mname)\nBertModel.from_pretrained(mname)\nBertTokenizer.from_pretrained(mname)\npipe = pipeline(task="fill-mask", model=mname)\nprint("success")\n ' SCREAMING_SNAKE_CASE_ = '\nimport socket\ndef offline_socket(*args, **kwargs): raise RuntimeError("Offline mode is enabled, we shouldn\'t access internet")\nsocket.socket = offline_socket\n ' # Force fetching the files so that we can use the cache SCREAMING_SNAKE_CASE_ = 'hf-internal-testing/tiny-random-bert' BertConfig.from_pretrained(_lowerCAmelCase ) BertModel.from_pretrained(_lowerCAmelCase ) BertTokenizer.from_pretrained(_lowerCAmelCase ) pipeline(task='fill-mask' , model=_lowerCAmelCase ) # baseline - just load from_pretrained with normal network SCREAMING_SNAKE_CASE_ = [sys.executable, '-c', '\n'.join([load, run, mock] )] # should succeed SCREAMING_SNAKE_CASE_ = self.get_env() # should succeed as TRANSFORMERS_OFFLINE=1 tells it to use local files SCREAMING_SNAKE_CASE_ = '1' SCREAMING_SNAKE_CASE_ = subprocess.run(_lowerCAmelCase , env=_lowerCAmelCase , check=_lowerCAmelCase , capture_output=_lowerCAmelCase ) self.assertEqual(result.returncode , 0 , result.stderr ) self.assertIn('success' , result.stdout.decode() ) @require_torch def lowerCAmelCase_ ( self : Tuple ): # python one-liner segments # this must be loaded before socket.socket is monkey-patched SCREAMING_SNAKE_CASE_ = '\nfrom transformers import BertConfig, BertModel, BertTokenizer, pipeline\n ' SCREAMING_SNAKE_CASE_ = '\nmname = "hf-internal-testing/tiny-random-bert"\nBertConfig.from_pretrained(mname)\nBertModel.from_pretrained(mname)\nBertTokenizer.from_pretrained(mname)\npipe = pipeline(task="fill-mask", model=mname)\nprint("success")\n ' SCREAMING_SNAKE_CASE_ = '\nimport socket\ndef offline_socket(*args, **kwargs): raise socket.error("Faking flaky internet")\nsocket.socket = offline_socket\n ' # Force fetching the files so that we can use the cache SCREAMING_SNAKE_CASE_ = 'hf-internal-testing/tiny-random-bert' BertConfig.from_pretrained(_lowerCAmelCase ) BertModel.from_pretrained(_lowerCAmelCase ) BertTokenizer.from_pretrained(_lowerCAmelCase ) pipeline(task='fill-mask' , model=_lowerCAmelCase ) # baseline - just load from_pretrained with normal network SCREAMING_SNAKE_CASE_ = [sys.executable, '-c', '\n'.join([load, run, mock] )] # should succeed SCREAMING_SNAKE_CASE_ = self.get_env() SCREAMING_SNAKE_CASE_ = subprocess.run(_lowerCAmelCase , env=_lowerCAmelCase , check=_lowerCAmelCase , capture_output=_lowerCAmelCase ) self.assertEqual(result.returncode , 0 , result.stderr ) self.assertIn('success' , result.stdout.decode() ) @require_torch def lowerCAmelCase_ ( self : List[str] ): # this test is a bit tricky since TRANSFORMERS_OFFLINE can only be changed before # `transformers` is loaded, and it's too late for inside pytest - so we are changing it # while running an external program # python one-liner segments # this must be loaded before socket.socket is monkey-patched SCREAMING_SNAKE_CASE_ = '\nfrom transformers import BertConfig, BertModel, BertTokenizer\n ' SCREAMING_SNAKE_CASE_ = '\nmname = "hf-internal-testing/tiny-random-bert-sharded"\nBertConfig.from_pretrained(mname)\nBertModel.from_pretrained(mname)\nprint("success")\n ' SCREAMING_SNAKE_CASE_ = '\nimport socket\ndef offline_socket(*args, **kwargs): raise ValueError("Offline mode is enabled")\nsocket.socket = offline_socket\n ' # baseline - just load from_pretrained with normal network SCREAMING_SNAKE_CASE_ = [sys.executable, '-c', '\n'.join([load, run] )] # should succeed SCREAMING_SNAKE_CASE_ = self.get_env() SCREAMING_SNAKE_CASE_ = subprocess.run(_lowerCAmelCase , env=_lowerCAmelCase , check=_lowerCAmelCase , capture_output=_lowerCAmelCase ) self.assertEqual(result.returncode , 0 , result.stderr ) self.assertIn('success' , result.stdout.decode() ) # next emulate no network SCREAMING_SNAKE_CASE_ = [sys.executable, '-c', '\n'.join([load, mock, run] )] # Doesn't fail anymore since the model is in the cache due to other tests, so commenting this. # env["TRANSFORMERS_OFFLINE"] = "0" # result = subprocess.run(cmd, env=env, check=False, capture_output=True) # self.assertEqual(result.returncode, 1, result.stderr) # should succeed as TRANSFORMERS_OFFLINE=1 tells it to use local files SCREAMING_SNAKE_CASE_ = '1' SCREAMING_SNAKE_CASE_ = subprocess.run(_lowerCAmelCase , env=_lowerCAmelCase , check=_lowerCAmelCase , capture_output=_lowerCAmelCase ) self.assertEqual(result.returncode , 0 , result.stderr ) self.assertIn('success' , result.stdout.decode() ) @require_torch def lowerCAmelCase_ ( self : Any ): SCREAMING_SNAKE_CASE_ = '\nfrom transformers import pipeline\n ' SCREAMING_SNAKE_CASE_ = '\nmname = "hf-internal-testing/tiny-random-bert"\npipe = pipeline(model=mname)\n ' SCREAMING_SNAKE_CASE_ = '\nimport socket\ndef offline_socket(*args, **kwargs): raise socket.error("Offline mode is enabled")\nsocket.socket = offline_socket\n ' SCREAMING_SNAKE_CASE_ = self.get_env() SCREAMING_SNAKE_CASE_ = '1' SCREAMING_SNAKE_CASE_ = [sys.executable, '-c', '\n'.join([load, mock, run] )] SCREAMING_SNAKE_CASE_ = subprocess.run(_lowerCAmelCase , env=_lowerCAmelCase , check=_lowerCAmelCase , capture_output=_lowerCAmelCase ) self.assertEqual(result.returncode , 1 , result.stderr ) self.assertIn( 'You cannot infer task automatically within `pipeline` when using offline mode' , result.stderr.decode().replace('\n' , '' ) , ) @require_torch def lowerCAmelCase_ ( self : Optional[int] ): SCREAMING_SNAKE_CASE_ = '\nfrom transformers import AutoModel\n ' SCREAMING_SNAKE_CASE_ = '\nmname = "hf-internal-testing/test_dynamic_model"\nAutoModel.from_pretrained(mname, trust_remote_code=True)\nprint("success")\n ' # baseline - just load from_pretrained with normal network SCREAMING_SNAKE_CASE_ = [sys.executable, '-c', '\n'.join([load, run] )] # should succeed SCREAMING_SNAKE_CASE_ = self.get_env() SCREAMING_SNAKE_CASE_ = subprocess.run(_lowerCAmelCase , env=_lowerCAmelCase , check=_lowerCAmelCase , capture_output=_lowerCAmelCase ) self.assertEqual(result.returncode , 0 , result.stderr ) self.assertIn('success' , result.stdout.decode() ) # should succeed as TRANSFORMERS_OFFLINE=1 tells it to use local files SCREAMING_SNAKE_CASE_ = '1' SCREAMING_SNAKE_CASE_ = subprocess.run(_lowerCAmelCase , env=_lowerCAmelCase , check=_lowerCAmelCase , capture_output=_lowerCAmelCase ) self.assertEqual(result.returncode , 0 , result.stderr ) self.assertIn('success' , result.stdout.decode() )
31
0
'''simple docstring''' def __snake_case ( ) -> list[list[int]]: """simple docstring""" return [list(range(1_000 - i , -1_000 - i , -1 ) ) for i in range(1_000 )] a__ : str = generate_large_matrix() a__ : Any = ( [[4, 3, 2, -1], [3, 2, 1, -1], [1, 1, -1, -2], [-1, -1, -2, -3]], [[3, 2], [1, 0]], [[7, 7, 6]], [[7, 7, 6], [-1, -2, -3]], grid, ) def __snake_case ( SCREAMING_SNAKE_CASE_ : list[list[int]] ) -> None: """simple docstring""" assert all(row == sorted(SCREAMING_SNAKE_CASE_ , reverse=SCREAMING_SNAKE_CASE_ ) for row in grid ) assert all(list(SCREAMING_SNAKE_CASE_ ) == sorted(SCREAMING_SNAKE_CASE_ , reverse=SCREAMING_SNAKE_CASE_ ) for col in zip(*SCREAMING_SNAKE_CASE_ ) ) def __snake_case ( SCREAMING_SNAKE_CASE_ : list[int] ) -> int: """simple docstring""" UpperCAmelCase = 0 UpperCAmelCase = len(SCREAMING_SNAKE_CASE_ ) - 1 # Edge cases such as no values or all numbers are negative. if not array or array[0] < 0: return 0 while right + 1 > left: UpperCAmelCase = (left + right) // 2 UpperCAmelCase = array[mid] # Num must be negative and the index must be greater than or equal to 0. if num < 0 and array[mid - 1] >= 0: return mid if num >= 0: UpperCAmelCase = mid + 1 else: UpperCAmelCase = mid - 1 # No negative numbers so return the last index of the array + 1 which is the length. return len(SCREAMING_SNAKE_CASE_ ) def __snake_case ( SCREAMING_SNAKE_CASE_ : list[list[int]] ) -> int: """simple docstring""" UpperCAmelCase = 0 UpperCAmelCase = len(grid[0] ) for i in range(len(SCREAMING_SNAKE_CASE_ ) ): UpperCAmelCase = find_negative_index(grid[i][:bound] ) total += bound return (len(SCREAMING_SNAKE_CASE_ ) * len(grid[0] )) - total def __snake_case ( SCREAMING_SNAKE_CASE_ : list[list[int]] ) -> int: """simple docstring""" return len([number for row in grid for number in row if number < 0] ) def __snake_case ( SCREAMING_SNAKE_CASE_ : list[list[int]] ) -> int: """simple docstring""" UpperCAmelCase = 0 for row in grid: for i, number in enumerate(SCREAMING_SNAKE_CASE_ ): if number < 0: total += len(SCREAMING_SNAKE_CASE_ ) - i break return total def __snake_case ( ) -> None: """simple docstring""" from timeit import timeit print('''Running benchmarks''' ) UpperCAmelCase = ( '''from __main__ import count_negatives_binary_search, ''' '''count_negatives_brute_force, count_negatives_brute_force_with_break, grid''' ) for func in ( "count_negatives_binary_search", # took 0.7727 seconds "count_negatives_brute_force_with_break", # took 4.6505 seconds "count_negatives_brute_force", # took 12.8160 seconds ): UpperCAmelCase = timeit(f"{func}(grid=grid)" , setup=SCREAMING_SNAKE_CASE_ , number=500 ) print(f"{func}() took {time:0.4f} seconds" ) if __name__ == "__main__": import doctest doctest.testmod() benchmark()
51
import torch from transformers import PreTrainedModel, XLMRobertaConfig, XLMRobertaModel class lowerCamelCase_ ( _SCREAMING_SNAKE_CASE ): '''simple docstring''' lowercase_ = "M-CLIP" def __init__( self : Tuple , _lowerCAmelCase : List[str]=1_024 , _lowerCAmelCase : str=768 , **_lowerCAmelCase : Union[str, Any] ): SCREAMING_SNAKE_CASE_ = transformerDimSize SCREAMING_SNAKE_CASE_ = imageDimSize super().__init__(**_lowerCAmelCase ) class lowerCamelCase_ ( _SCREAMING_SNAKE_CASE ): '''simple docstring''' lowercase_ = MCLIPConfig def __init__( self : Dict , _lowerCAmelCase : Union[str, Any] , *_lowerCAmelCase : str , **_lowerCAmelCase : str ): super().__init__(_lowerCAmelCase , *_lowerCAmelCase , **_lowerCAmelCase ) SCREAMING_SNAKE_CASE_ = XLMRobertaModel(_lowerCAmelCase ) SCREAMING_SNAKE_CASE_ = torch.nn.Linear( in_features=config.transformerDimensions , out_features=config.numDims ) def lowerCAmelCase_ ( self : List[Any] , _lowerCAmelCase : Any , _lowerCAmelCase : Union[str, Any] ): SCREAMING_SNAKE_CASE_ = self.transformer(input_ids=_lowerCAmelCase , attention_mask=_lowerCAmelCase )[0] SCREAMING_SNAKE_CASE_ = (embs * attention_mask.unsqueeze(2 )).sum(dim=1 ) / attention_mask.sum(dim=1 )[:, None] return self.LinearTransformation(_lowerCAmelCase ), embs
31
0
"""simple docstring""" from collections import defaultdict def __A ( a_ :int) -> int: __a : Dict = 1 __a : Any = True for v in tree[start]: if v not in visited: ret += dfs(a_) if ret % 2 == 0: cuts.append(a_) return ret def __A ( ) -> List[Any]: dfs(1) if __name__ == "__main__": A , A = 10, 9 A = defaultdict(list) A = {} A = [] A = 0 A = [(2, 1), (3, 1), (4, 3), (5, 2), (6, 1), (7, 2), (8, 6), (9, 8), (10, 8)] for u, v in edges: tree[u].append(v) tree[v].append(u) even_tree() print(len(cuts) - 1)
52
import gc import random import unittest import numpy as np import torch from transformers import XLMRobertaTokenizer from diffusers import ( AltDiffusionImgaImgPipeline, AutoencoderKL, PNDMScheduler, UNetaDConditionModel, ) from diffusers.image_processor import VaeImageProcessor from diffusers.pipelines.alt_diffusion.modeling_roberta_series import ( RobertaSeriesConfig, RobertaSeriesModelWithTransformation, ) from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu enable_full_determinism() class lowerCamelCase_ ( unittest.TestCase ): '''simple docstring''' def lowerCAmelCase_ ( self : str ): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() @property def lowerCAmelCase_ ( self : Union[str, Any] ): SCREAMING_SNAKE_CASE_ = 1 SCREAMING_SNAKE_CASE_ = 3 SCREAMING_SNAKE_CASE_ = (32, 32) SCREAMING_SNAKE_CASE_ = floats_tensor((batch_size, num_channels) + sizes , rng=random.Random(0 ) ).to(_lowerCAmelCase ) return image @property def lowerCAmelCase_ ( self : Union[str, Any] ): torch.manual_seed(0 ) SCREAMING_SNAKE_CASE_ = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=('DownBlock2D', 'CrossAttnDownBlock2D') , up_block_types=('CrossAttnUpBlock2D', 'UpBlock2D') , cross_attention_dim=32 , ) return model @property def lowerCAmelCase_ ( self : Tuple ): torch.manual_seed(0 ) SCREAMING_SNAKE_CASE_ = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=['DownEncoderBlock2D', 'DownEncoderBlock2D'] , up_block_types=['UpDecoderBlock2D', 'UpDecoderBlock2D'] , latent_channels=4 , ) return model @property def lowerCAmelCase_ ( self : Optional[int] ): torch.manual_seed(0 ) SCREAMING_SNAKE_CASE_ = RobertaSeriesConfig( hidden_size=32 , project_dim=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=5_006 , ) return RobertaSeriesModelWithTransformation(_lowerCAmelCase ) @property def lowerCAmelCase_ ( self : List[Any] ): def extract(*_lowerCAmelCase : Optional[int] , **_lowerCAmelCase : str ): class lowerCamelCase_ : '''simple docstring''' def __init__( self : str ): SCREAMING_SNAKE_CASE_ = torch.ones([0] ) def lowerCAmelCase_ ( self : Union[str, Any] , _lowerCAmelCase : int ): self.pixel_values.to(_lowerCAmelCase ) return self return Out() return extract def lowerCAmelCase_ ( self : Optional[Any] ): SCREAMING_SNAKE_CASE_ = 'cpu' # ensure determinism for the device-dependent torch.Generator SCREAMING_SNAKE_CASE_ = self.dummy_cond_unet SCREAMING_SNAKE_CASE_ = PNDMScheduler(skip_prk_steps=_lowerCAmelCase ) SCREAMING_SNAKE_CASE_ = self.dummy_vae SCREAMING_SNAKE_CASE_ = self.dummy_text_encoder SCREAMING_SNAKE_CASE_ = XLMRobertaTokenizer.from_pretrained('hf-internal-testing/tiny-xlm-roberta' ) SCREAMING_SNAKE_CASE_ = 77 SCREAMING_SNAKE_CASE_ = self.dummy_image.to(_lowerCAmelCase ) SCREAMING_SNAKE_CASE_ = init_image / 2 + 0.5 # make sure here that pndm scheduler skips prk SCREAMING_SNAKE_CASE_ = AltDiffusionImgaImgPipeline( unet=_lowerCAmelCase , scheduler=_lowerCAmelCase , vae=_lowerCAmelCase , text_encoder=_lowerCAmelCase , tokenizer=_lowerCAmelCase , safety_checker=_lowerCAmelCase , feature_extractor=self.dummy_extractor , ) SCREAMING_SNAKE_CASE_ = VaeImageProcessor(vae_scale_factor=alt_pipe.vae_scale_factor , do_normalize=_lowerCAmelCase ) SCREAMING_SNAKE_CASE_ = alt_pipe.to(_lowerCAmelCase ) alt_pipe.set_progress_bar_config(disable=_lowerCAmelCase ) SCREAMING_SNAKE_CASE_ = 'A painting of a squirrel eating a burger' SCREAMING_SNAKE_CASE_ = torch.Generator(device=_lowerCAmelCase ).manual_seed(0 ) SCREAMING_SNAKE_CASE_ = alt_pipe( [prompt] , generator=_lowerCAmelCase , guidance_scale=6.0 , num_inference_steps=2 , output_type='np' , image=_lowerCAmelCase , ) SCREAMING_SNAKE_CASE_ = output.images SCREAMING_SNAKE_CASE_ = torch.Generator(device=_lowerCAmelCase ).manual_seed(0 ) SCREAMING_SNAKE_CASE_ = alt_pipe( [prompt] , generator=_lowerCAmelCase , guidance_scale=6.0 , num_inference_steps=2 , output_type='np' , image=_lowerCAmelCase , return_dict=_lowerCAmelCase , )[0] SCREAMING_SNAKE_CASE_ = image[0, -3:, -3:, -1] SCREAMING_SNAKE_CASE_ = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) SCREAMING_SNAKE_CASE_ = np.array([0.4427, 0.3731, 0.4249, 0.4941, 0.4546, 0.4148, 0.4193, 0.4666, 0.4499] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 5E-3 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 5E-3 @unittest.skipIf(torch_device != 'cuda' , 'This test requires a GPU' ) def lowerCAmelCase_ ( self : Tuple ): SCREAMING_SNAKE_CASE_ = self.dummy_cond_unet SCREAMING_SNAKE_CASE_ = PNDMScheduler(skip_prk_steps=_lowerCAmelCase ) SCREAMING_SNAKE_CASE_ = self.dummy_vae SCREAMING_SNAKE_CASE_ = self.dummy_text_encoder SCREAMING_SNAKE_CASE_ = XLMRobertaTokenizer.from_pretrained('hf-internal-testing/tiny-xlm-roberta' ) SCREAMING_SNAKE_CASE_ = 77 SCREAMING_SNAKE_CASE_ = self.dummy_image.to(_lowerCAmelCase ) # put models in fp16 SCREAMING_SNAKE_CASE_ = unet.half() SCREAMING_SNAKE_CASE_ = vae.half() SCREAMING_SNAKE_CASE_ = bert.half() # make sure here that pndm scheduler skips prk SCREAMING_SNAKE_CASE_ = AltDiffusionImgaImgPipeline( unet=_lowerCAmelCase , scheduler=_lowerCAmelCase , vae=_lowerCAmelCase , text_encoder=_lowerCAmelCase , tokenizer=_lowerCAmelCase , safety_checker=_lowerCAmelCase , feature_extractor=self.dummy_extractor , ) SCREAMING_SNAKE_CASE_ = VaeImageProcessor(vae_scale_factor=alt_pipe.vae_scale_factor , do_normalize=_lowerCAmelCase ) SCREAMING_SNAKE_CASE_ = alt_pipe.to(_lowerCAmelCase ) alt_pipe.set_progress_bar_config(disable=_lowerCAmelCase ) SCREAMING_SNAKE_CASE_ = 'A painting of a squirrel eating a burger' SCREAMING_SNAKE_CASE_ = torch.manual_seed(0 ) SCREAMING_SNAKE_CASE_ = alt_pipe( [prompt] , generator=_lowerCAmelCase , num_inference_steps=2 , output_type='np' , image=_lowerCAmelCase , ).images assert image.shape == (1, 32, 32, 3) @unittest.skipIf(torch_device != 'cuda' , 'This test requires a GPU' ) def lowerCAmelCase_ ( self : str ): SCREAMING_SNAKE_CASE_ = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/img2img/sketch-mountains-input.jpg' ) # resize to resolution that is divisible by 8 but not 16 or 32 SCREAMING_SNAKE_CASE_ = init_image.resize((760, 504) ) SCREAMING_SNAKE_CASE_ = 'BAAI/AltDiffusion' SCREAMING_SNAKE_CASE_ = AltDiffusionImgaImgPipeline.from_pretrained( _lowerCAmelCase , safety_checker=_lowerCAmelCase , ) pipe.to(_lowerCAmelCase ) pipe.set_progress_bar_config(disable=_lowerCAmelCase ) pipe.enable_attention_slicing() SCREAMING_SNAKE_CASE_ = 'A fantasy landscape, trending on artstation' SCREAMING_SNAKE_CASE_ = torch.manual_seed(0 ) SCREAMING_SNAKE_CASE_ = pipe( prompt=_lowerCAmelCase , image=_lowerCAmelCase , strength=0.75 , guidance_scale=7.5 , generator=_lowerCAmelCase , output_type='np' , ) SCREAMING_SNAKE_CASE_ = output.images[0] SCREAMING_SNAKE_CASE_ = image[255:258, 383:386, -1] assert image.shape == (504, 760, 3) SCREAMING_SNAKE_CASE_ = np.array([0.9358, 0.9397, 0.9599, 0.9901, 1.0000, 1.0000, 0.9882, 1.0000, 1.0000] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 @slow @require_torch_gpu class lowerCamelCase_ ( unittest.TestCase ): '''simple docstring''' def lowerCAmelCase_ ( self : str ): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def lowerCAmelCase_ ( self : int ): SCREAMING_SNAKE_CASE_ = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/img2img/sketch-mountains-input.jpg' ) SCREAMING_SNAKE_CASE_ = init_image.resize((768, 512) ) SCREAMING_SNAKE_CASE_ = load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/img2img/fantasy_landscape_alt.npy' ) SCREAMING_SNAKE_CASE_ = 'BAAI/AltDiffusion' SCREAMING_SNAKE_CASE_ = AltDiffusionImgaImgPipeline.from_pretrained( _lowerCAmelCase , safety_checker=_lowerCAmelCase , ) pipe.to(_lowerCAmelCase ) pipe.set_progress_bar_config(disable=_lowerCAmelCase ) pipe.enable_attention_slicing() SCREAMING_SNAKE_CASE_ = 'A fantasy landscape, trending on artstation' SCREAMING_SNAKE_CASE_ = torch.manual_seed(0 ) SCREAMING_SNAKE_CASE_ = pipe( prompt=_lowerCAmelCase , image=_lowerCAmelCase , strength=0.75 , guidance_scale=7.5 , generator=_lowerCAmelCase , output_type='np' , ) SCREAMING_SNAKE_CASE_ = output.images[0] assert image.shape == (512, 768, 3) # img2img is flaky across GPUs even in fp32, so using MAE here assert np.abs(expected_image - image ).max() < 1E-2
31
0
import warnings from typing import Dict import numpy as np from ..utils import ExplicitEnum, add_end_docstrings, is_tf_available, is_torch_available from .base import PIPELINE_INIT_ARGS, GenericTensor, Pipeline if is_tf_available(): from ..models.auto.modeling_tf_auto import TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING if is_torch_available(): from ..models.auto.modeling_auto import MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING def a_ ( lowerCAmelCase_ : int ): return 1.0 / (1.0 + np.exp(-_outputs )) def a_ ( lowerCAmelCase_ : List[str] ): __lowerCAmelCase = np.max(_outputs, axis=-1, keepdims=lowerCAmelCase_ ) __lowerCAmelCase = np.exp(_outputs - maxes ) return shifted_exp / shifted_exp.sum(axis=-1, keepdims=lowerCAmelCase_ ) class _UpperCAmelCase ( _UpperCamelCase ): """simple docstring""" a_ = """sigmoid""" a_ = """softmax""" a_ = """none""" @add_end_docstrings( _UpperCamelCase , R""" return_all_scores (`bool`, *optional*, defaults to `False`): Whether to return all prediction scores or just the one of the predicted class. function_to_apply (`str`, *optional*, defaults to `\"default\"`): The function to apply to the model outputs in order to retrieve the scores. Accepts four different values: - `\"default\"`: if the model has a single label, will apply the sigmoid function on the output. If the model has several labels, will apply the softmax function on the output. - `\"sigmoid\"`: Applies the sigmoid function on the output. - `\"softmax\"`: Applies the softmax function on the output. - `\"none\"`: Does not apply any function on the output. """ , ) class _UpperCAmelCase ( _UpperCamelCase ): """simple docstring""" a_ = False a_ = ClassificationFunction.NONE def __init__( self : str , **lowerCAmelCase_ : Any ) -> Any: super().__init__(**lowerCAmelCase_ ) self.check_model_type( TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING if self.framework == 'tf' else MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING ) def lowercase ( self : Any , lowerCAmelCase_ : str=None , lowerCAmelCase_ : Union[str, Any]=None , lowerCAmelCase_ : Any="" , **lowerCAmelCase_ : List[Any] ) -> Union[str, Any]: # Using "" as default argument because we're going to use `top_k=None` in user code to declare # "No top_k" __lowerCAmelCase = tokenizer_kwargs __lowerCAmelCase = {} if hasattr(self.model.config , 'return_all_scores' ) and return_all_scores is None: __lowerCAmelCase = self.model.config.return_all_scores if isinstance(lowerCAmelCase_ , lowerCAmelCase_ ) or top_k is None: __lowerCAmelCase = top_k __lowerCAmelCase = False elif return_all_scores is not None: warnings.warn( '`return_all_scores` is now deprecated, if want a similar functionality use `top_k=None` instead of' ' `return_all_scores=True` or `top_k=1` instead of `return_all_scores=False`.' , lowerCAmelCase_ , ) if return_all_scores: __lowerCAmelCase = None else: __lowerCAmelCase = 1 if isinstance(lowerCAmelCase_ , lowerCAmelCase_ ): __lowerCAmelCase = ClassificationFunction[function_to_apply.upper()] if function_to_apply is not None: __lowerCAmelCase = function_to_apply return preprocess_params, {}, postprocess_params def __call__( self : Union[str, Any] , *lowerCAmelCase_ : Tuple , **lowerCAmelCase_ : Any ) -> List[Any]: __lowerCAmelCase = super().__call__(*lowerCAmelCase_ , **lowerCAmelCase_ ) # TODO try and retrieve it in a nicer way from _sanitize_parameters. __lowerCAmelCase = 'top_k' not in kwargs if isinstance(args[0] , lowerCAmelCase_ ) and _legacy: # This pipeline is odd, and return a list when single item is run return [result] else: return result def lowercase ( self : List[str] , lowerCAmelCase_ : Any , **lowerCAmelCase_ : Optional[Any] ) -> Dict[str, GenericTensor]: __lowerCAmelCase = self.framework if isinstance(lowerCAmelCase_ , lowerCAmelCase_ ): return self.tokenizer(**lowerCAmelCase_ , return_tensors=lowerCAmelCase_ , **lowerCAmelCase_ ) elif isinstance(lowerCAmelCase_ , lowerCAmelCase_ ) and len(lowerCAmelCase_ ) == 1 and isinstance(inputs[0] , lowerCAmelCase_ ) and len(inputs[0] ) == 2: # It used to be valid to use a list of list of list for text pairs, keeping this path for BC return self.tokenizer( text=inputs[0][0] , text_pair=inputs[0][1] , return_tensors=lowerCAmelCase_ , **lowerCAmelCase_ ) elif isinstance(lowerCAmelCase_ , lowerCAmelCase_ ): # This is likely an invalid usage of the pipeline attempting to pass text pairs. raise ValueError( 'The pipeline received invalid inputs, if you are trying to send text pairs, you can try to send a' ' dictionary `{"text": "My text", "text_pair": "My pair"}` in order to send a text pair.' ) return self.tokenizer(lowerCAmelCase_ , return_tensors=lowerCAmelCase_ , **lowerCAmelCase_ ) def lowercase ( self : Union[str, Any] , lowerCAmelCase_ : Any ) -> Union[str, Any]: return self.model(**lowerCAmelCase_ ) def lowercase ( self : List[Any] , lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : Tuple=None , lowerCAmelCase_ : Optional[Any]=1 , lowerCAmelCase_ : List[str]=True ) -> Optional[Any]: # `_legacy` is used to determine if we're running the naked pipeline and in backward # compatibility mode, or if running the pipeline with `pipeline(..., top_k=1)` we're running # the more natural result containing the list. # Default value before `set_parameters` if function_to_apply is None: if self.model.config.problem_type == "multi_label_classification" or self.model.config.num_labels == 1: __lowerCAmelCase = ClassificationFunction.SIGMOID elif self.model.config.problem_type == "single_label_classification" or self.model.config.num_labels > 1: __lowerCAmelCase = ClassificationFunction.SOFTMAX elif hasattr(self.model.config , 'function_to_apply' ) and function_to_apply is None: __lowerCAmelCase = self.model.config.function_to_apply else: __lowerCAmelCase = ClassificationFunction.NONE __lowerCAmelCase = model_outputs['logits'][0] __lowerCAmelCase = outputs.numpy() if function_to_apply == ClassificationFunction.SIGMOID: __lowerCAmelCase = sigmoid(lowerCAmelCase_ ) elif function_to_apply == ClassificationFunction.SOFTMAX: __lowerCAmelCase = softmax(lowerCAmelCase_ ) elif function_to_apply == ClassificationFunction.NONE: __lowerCAmelCase = outputs else: raise ValueError(f"""Unrecognized `function_to_apply` argument: {function_to_apply}""" ) if top_k == 1 and _legacy: return {"label": self.model.config.idalabel[scores.argmax().item()], "score": scores.max().item()} __lowerCAmelCase = [ {'label': self.model.config.idalabel[i], 'score': score.item()} for i, score in enumerate(lowerCAmelCase_ ) ] if not _legacy: dict_scores.sort(key=lambda lowerCAmelCase_ : x["score"] , reverse=lowerCAmelCase_ ) if top_k is not None: __lowerCAmelCase = dict_scores[:top_k] return dict_scores
53
from collections import OrderedDict from typing import TYPE_CHECKING, Any, List, Mapping, Optional, Union from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import TensorType, logging if TYPE_CHECKING: from ...onnx.config import PatchingSpec from ...tokenization_utils_base import PreTrainedTokenizerBase lowerCamelCase__ : Optional[int] = logging.get_logger(__name__) lowerCamelCase__ : Dict = { 'allenai/longformer-base-4096': 'https://huggingface.co/allenai/longformer-base-4096/resolve/main/config.json', 'allenai/longformer-large-4096': 'https://huggingface.co/allenai/longformer-large-4096/resolve/main/config.json', 'allenai/longformer-large-4096-finetuned-triviaqa': ( 'https://huggingface.co/allenai/longformer-large-4096-finetuned-triviaqa/resolve/main/config.json' ), 'allenai/longformer-base-4096-extra.pos.embd.only': ( 'https://huggingface.co/allenai/longformer-base-4096-extra.pos.embd.only/resolve/main/config.json' ), 'allenai/longformer-large-4096-extra.pos.embd.only': ( 'https://huggingface.co/allenai/longformer-large-4096-extra.pos.embd.only/resolve/main/config.json' ), } class lowerCamelCase_ ( _SCREAMING_SNAKE_CASE ): '''simple docstring''' lowercase_ = "longformer" def __init__( self : Union[str, Any] , _lowerCAmelCase : Union[List[int], int] = 512 , _lowerCAmelCase : int = 2 , _lowerCAmelCase : int = 1 , _lowerCAmelCase : int = 0 , _lowerCAmelCase : int = 2 , _lowerCAmelCase : int = 30_522 , _lowerCAmelCase : int = 768 , _lowerCAmelCase : int = 12 , _lowerCAmelCase : int = 12 , _lowerCAmelCase : int = 3_072 , _lowerCAmelCase : str = "gelu" , _lowerCAmelCase : float = 0.1 , _lowerCAmelCase : float = 0.1 , _lowerCAmelCase : int = 512 , _lowerCAmelCase : int = 2 , _lowerCAmelCase : float = 0.02 , _lowerCAmelCase : float = 1E-12 , _lowerCAmelCase : bool = False , **_lowerCAmelCase : Union[str, Any] , ): super().__init__(pad_token_id=_lowerCAmelCase , **_lowerCAmelCase ) SCREAMING_SNAKE_CASE_ = attention_window SCREAMING_SNAKE_CASE_ = sep_token_id SCREAMING_SNAKE_CASE_ = bos_token_id SCREAMING_SNAKE_CASE_ = eos_token_id SCREAMING_SNAKE_CASE_ = vocab_size SCREAMING_SNAKE_CASE_ = hidden_size SCREAMING_SNAKE_CASE_ = num_hidden_layers SCREAMING_SNAKE_CASE_ = num_attention_heads SCREAMING_SNAKE_CASE_ = hidden_act SCREAMING_SNAKE_CASE_ = intermediate_size SCREAMING_SNAKE_CASE_ = hidden_dropout_prob SCREAMING_SNAKE_CASE_ = attention_probs_dropout_prob SCREAMING_SNAKE_CASE_ = max_position_embeddings SCREAMING_SNAKE_CASE_ = type_vocab_size SCREAMING_SNAKE_CASE_ = initializer_range SCREAMING_SNAKE_CASE_ = layer_norm_eps SCREAMING_SNAKE_CASE_ = onnx_export class lowerCamelCase_ ( _SCREAMING_SNAKE_CASE ): '''simple docstring''' def __init__( self : Optional[Any] , _lowerCAmelCase : "PretrainedConfig" , _lowerCAmelCase : str = "default" , _lowerCAmelCase : "List[PatchingSpec]" = None ): super().__init__(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) SCREAMING_SNAKE_CASE_ = True @property def lowerCAmelCase_ ( self : Any ): if self.task == "multiple-choice": SCREAMING_SNAKE_CASE_ = {0: 'batch', 1: 'choice', 2: 'sequence'} else: SCREAMING_SNAKE_CASE_ = {0: 'batch', 1: 'sequence'} return OrderedDict( [ ('input_ids', dynamic_axis), ('attention_mask', dynamic_axis), ('global_attention_mask', dynamic_axis), ] ) @property def lowerCAmelCase_ ( self : Optional[int] ): SCREAMING_SNAKE_CASE_ = super().outputs if self.task == "default": SCREAMING_SNAKE_CASE_ = {0: 'batch'} return outputs @property def lowerCAmelCase_ ( self : str ): return 1E-4 @property def lowerCAmelCase_ ( self : Optional[Any] ): # needs to be >= 14 to support tril operator return max(super().default_onnx_opset , 14 ) def lowerCAmelCase_ ( self : str , _lowerCAmelCase : "PreTrainedTokenizerBase" , _lowerCAmelCase : int = -1 , _lowerCAmelCase : int = -1 , _lowerCAmelCase : bool = False , _lowerCAmelCase : Optional[TensorType] = None , ): SCREAMING_SNAKE_CASE_ = super().generate_dummy_inputs( preprocessor=_lowerCAmelCase , batch_size=_lowerCAmelCase , seq_length=_lowerCAmelCase , is_pair=_lowerCAmelCase , framework=_lowerCAmelCase ) import torch # for some reason, replacing this code by inputs["global_attention_mask"] = torch.randint(2, inputs["input_ids"].shape, dtype=torch.int64) # makes the export fail randomly SCREAMING_SNAKE_CASE_ = torch.zeros_like(inputs['input_ids'] ) # make every second token global SCREAMING_SNAKE_CASE_ = 1 return inputs
31
0
def a__ ( lowercase__ , lowercase__ , lowercase__ = 0 , lowercase__ = 0 ): '''simple docstring''' UpperCAmelCase_ =right or len(lowercase__ ) - 1 if left > right: return -1 elif list_data[left] == key: return left elif list_data[right] == key: return right else: return search(lowercase__ , lowercase__ , left + 1 , right - 1 ) if __name__ == "__main__": import doctest doctest.testmod()
54
import warnings from ...utils import logging from .image_processing_mobilevit import MobileViTImageProcessor lowerCamelCase__ : Optional[int] = logging.get_logger(__name__) class lowerCamelCase_ ( _SCREAMING_SNAKE_CASE ): '''simple docstring''' def __init__( self : str , *_lowerCAmelCase : Tuple , **_lowerCAmelCase : int ): warnings.warn( 'The class MobileViTFeatureExtractor is deprecated and will be removed in version 5 of Transformers.' ' Please use MobileViTImageProcessor instead.' , _lowerCAmelCase , ) super().__init__(*_lowerCAmelCase , **_lowerCAmelCase )
31
0
from ...configuration_utils import PretrainedConfig from ...utils import logging SCREAMING_SNAKE_CASE :List[Any] = logging.get_logger(__name__) SCREAMING_SNAKE_CASE :Optional[int] = { 'tiiuae/falcon-40b': 'https://huggingface.co/tiiuae/falcon-40b/resolve/main/config.json', 'tiiuae/falcon-7b': 'https://huggingface.co/tiiuae/falcon-7b/resolve/main/config.json', } class UpperCAmelCase ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' snake_case_ = "falcon" snake_case_ = ["past_key_values"] def __init__( self : Optional[int] ,A : Tuple=6_50_24 ,A : int=45_44 ,A : int=32 ,A : str=71 ,A : Optional[int]=1E-5 ,A : List[Any]=0.02 ,A : str=True ,A : str=0.0 ,A : Any=0.0 ,A : Any=None ,A : List[str]=False ,A : Dict=False ,A : Union[str, Any]=True ,A : List[Any]=True ,A : Optional[int]=False ,A : Optional[Any]=11 ,A : str=11 ,**A : Union[str, Any] ,): __A = vocab_size # Backward compatibility with n_embed kwarg __A = kwargs.pop("n_embed" ,A ) __A = hidden_size if n_embed is None else n_embed __A = num_hidden_layers __A = num_attention_heads __A = layer_norm_epsilon __A = initializer_range __A = use_cache __A = hidden_dropout __A = attention_dropout __A = bos_token_id __A = eos_token_id __A = num_attention_heads if num_kv_heads is None else num_kv_heads __A = alibi __A = new_decoder_architecture __A = multi_query # Ignored when new_decoder_architecture is True __A = parallel_attn __A = bias super().__init__(bos_token_id=A ,eos_token_id=A ,**A ) @property def UpperCamelCase_ ( self : Optional[int] ): return self.hidden_size // self.num_attention_heads @property def UpperCamelCase_ ( self : List[str] ): return not self.alibi
55
from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCamelCase__ : Optional[int] = logging.get_logger(__name__) lowerCamelCase__ : Tuple = { 'microsoft/swinv2-tiny-patch4-window8-256': ( 'https://huggingface.co/microsoft/swinv2-tiny-patch4-window8-256/resolve/main/config.json' ), } class lowerCamelCase_ ( _SCREAMING_SNAKE_CASE ): '''simple docstring''' lowercase_ = "swinv2" lowercase_ = { "num_attention_heads": "num_heads", "num_hidden_layers": "num_layers", } def __init__( self : Dict , _lowerCAmelCase : Optional[Any]=224 , _lowerCAmelCase : Optional[int]=4 , _lowerCAmelCase : Tuple=3 , _lowerCAmelCase : Tuple=96 , _lowerCAmelCase : Dict=[2, 2, 6, 2] , _lowerCAmelCase : Optional[Any]=[3, 6, 12, 24] , _lowerCAmelCase : str=7 , _lowerCAmelCase : List[Any]=4.0 , _lowerCAmelCase : List[str]=True , _lowerCAmelCase : List[Any]=0.0 , _lowerCAmelCase : List[Any]=0.0 , _lowerCAmelCase : Any=0.1 , _lowerCAmelCase : List[Any]="gelu" , _lowerCAmelCase : str=False , _lowerCAmelCase : str=0.02 , _lowerCAmelCase : List[Any]=1E-5 , _lowerCAmelCase : str=32 , **_lowerCAmelCase : List[Any] , ): super().__init__(**_lowerCAmelCase ) SCREAMING_SNAKE_CASE_ = image_size SCREAMING_SNAKE_CASE_ = patch_size SCREAMING_SNAKE_CASE_ = num_channels SCREAMING_SNAKE_CASE_ = embed_dim SCREAMING_SNAKE_CASE_ = depths SCREAMING_SNAKE_CASE_ = len(_lowerCAmelCase ) SCREAMING_SNAKE_CASE_ = num_heads SCREAMING_SNAKE_CASE_ = window_size SCREAMING_SNAKE_CASE_ = mlp_ratio SCREAMING_SNAKE_CASE_ = qkv_bias SCREAMING_SNAKE_CASE_ = hidden_dropout_prob SCREAMING_SNAKE_CASE_ = attention_probs_dropout_prob SCREAMING_SNAKE_CASE_ = drop_path_rate SCREAMING_SNAKE_CASE_ = hidden_act SCREAMING_SNAKE_CASE_ = use_absolute_embeddings SCREAMING_SNAKE_CASE_ = layer_norm_eps SCREAMING_SNAKE_CASE_ = initializer_range SCREAMING_SNAKE_CASE_ = encoder_stride # we set the hidden_size attribute in order to make Swinv2 work with VisionEncoderDecoderModel # this indicates the channel dimension after the last stage of the model SCREAMING_SNAKE_CASE_ = int(embed_dim * 2 ** (len(_lowerCAmelCase ) - 1) ) SCREAMING_SNAKE_CASE_ = (0, 0, 0, 0)
31
0
'''simple docstring''' import json from typing import Iterator, List, Union from tokenizers import AddedToken, Regex, Tokenizer, decoders, normalizers, pre_tokenizers, trainers from tokenizers.implementations.base_tokenizer import BaseTokenizer from tokenizers.models import Unigram from tokenizers.processors import TemplateProcessing class _lowercase ( __lowercase ): def __init__( self : Optional[int] , SCREAMING_SNAKE_CASE_ : str = "▁" , SCREAMING_SNAKE_CASE_ : bool = True , SCREAMING_SNAKE_CASE_ : Union[str, AddedToken] = "<unk>" , SCREAMING_SNAKE_CASE_ : Union[str, AddedToken] = "</s>" , SCREAMING_SNAKE_CASE_ : Union[str, AddedToken] = "<pad>" , ) -> str: __snake_case = { 'pad': {'id': 0, 'token': pad_token}, 'eos': {'id': 1, 'token': eos_token}, 'unk': {'id': 2, 'token': unk_token}, } __snake_case = [None] * len(self.special_tokens ) for token_dict in self.special_tokens.values(): __snake_case = token_dict['token'] __snake_case = Tokenizer(Unigram() ) __snake_case = normalizers.Sequence( [ normalizers.Nmt(), normalizers.NFKC(), normalizers.Replace(Regex(' {2,}' ) , ' ' ), normalizers.Lowercase(), ] ) __snake_case = pre_tokenizers.Sequence( [ pre_tokenizers.Metaspace(replacement=SCREAMING_SNAKE_CASE_ , add_prefix_space=SCREAMING_SNAKE_CASE_ ), pre_tokenizers.Digits(individual_digits=SCREAMING_SNAKE_CASE_ ), pre_tokenizers.Punctuation(), ] ) __snake_case = decoders.Metaspace(replacement=SCREAMING_SNAKE_CASE_ , add_prefix_space=SCREAMING_SNAKE_CASE_ ) __snake_case = TemplateProcessing( single=f'$A {self.special_tokens["eos"]["token"]}' , special_tokens=[(self.special_tokens['eos']['token'], self.special_tokens['eos']['id'])] , ) __snake_case = { 'model': 'SentencePieceUnigram', 'replacement': replacement, 'add_prefix_space': add_prefix_space, } super().__init__(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) def a ( self : Optional[Any] , SCREAMING_SNAKE_CASE_ : Union[str, List[str]] , SCREAMING_SNAKE_CASE_ : int = 8000 , SCREAMING_SNAKE_CASE_ : bool = True , ) -> Tuple: __snake_case = trainers.UnigramTrainer( vocab_size=SCREAMING_SNAKE_CASE_ , special_tokens=self.special_tokens_list , show_progress=SCREAMING_SNAKE_CASE_ , ) if isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): __snake_case = [files] self._tokenizer.train(SCREAMING_SNAKE_CASE_ , trainer=SCREAMING_SNAKE_CASE_ ) self.add_unk_id() def a ( self : str , SCREAMING_SNAKE_CASE_ : Union[Iterator[str], Iterator[Iterator[str]]] , SCREAMING_SNAKE_CASE_ : int = 8000 , SCREAMING_SNAKE_CASE_ : bool = True , ) -> str: __snake_case = trainers.UnigramTrainer( vocab_size=SCREAMING_SNAKE_CASE_ , special_tokens=self.special_tokens_list , show_progress=SCREAMING_SNAKE_CASE_ , ) self._tokenizer.train_from_iterator(SCREAMING_SNAKE_CASE_ , trainer=SCREAMING_SNAKE_CASE_ ) self.add_unk_id() def a ( self : Dict ) -> str: __snake_case = json.loads(self._tokenizer.to_str() ) __snake_case = self.special_tokens['unk']['id'] __snake_case = Tokenizer.from_str(json.dumps(SCREAMING_SNAKE_CASE_ ) )
56
import itertools import random import unittest import numpy as np from transformers import BatchFeature, SpeechTaFeatureExtractor from transformers.testing_utils import require_torch from transformers.utils.import_utils import is_torch_available from ...test_sequence_feature_extraction_common import SequenceFeatureExtractionTestMixin if is_torch_available(): import torch lowerCamelCase__ : Dict = random.Random() def UpperCAmelCase_ ( __UpperCAmelCase : int , __UpperCAmelCase : Tuple=1.0 , __UpperCAmelCase : Dict=None , __UpperCAmelCase : Dict=None ) -> Tuple: if rng is None: SCREAMING_SNAKE_CASE_ = global_rng SCREAMING_SNAKE_CASE_ = [] for batch_idx in range(shape[0] ): values.append([] ) for _ in range(shape[1] ): values[-1].append(rng.random() * scale ) return values @require_torch class lowerCamelCase_ ( unittest.TestCase ): '''simple docstring''' def __init__( self : List[str] , _lowerCAmelCase : int , _lowerCAmelCase : Optional[Any]=7 , _lowerCAmelCase : Union[str, Any]=400 , _lowerCAmelCase : Tuple=2_000 , _lowerCAmelCase : str=1 , _lowerCAmelCase : int=0.0 , _lowerCAmelCase : Optional[Any]=16_000 , _lowerCAmelCase : Optional[Any]=True , _lowerCAmelCase : Any=80 , _lowerCAmelCase : Union[str, Any]=16 , _lowerCAmelCase : List[str]=64 , _lowerCAmelCase : List[Any]="hann_window" , _lowerCAmelCase : Any=80 , _lowerCAmelCase : List[Any]=7_600 , _lowerCAmelCase : List[Any]=1E-10 , _lowerCAmelCase : Optional[Any]=True , ): SCREAMING_SNAKE_CASE_ = parent SCREAMING_SNAKE_CASE_ = batch_size SCREAMING_SNAKE_CASE_ = min_seq_length SCREAMING_SNAKE_CASE_ = max_seq_length SCREAMING_SNAKE_CASE_ = (self.max_seq_length - self.min_seq_length) // (self.batch_size - 1) SCREAMING_SNAKE_CASE_ = feature_size SCREAMING_SNAKE_CASE_ = padding_value SCREAMING_SNAKE_CASE_ = sampling_rate SCREAMING_SNAKE_CASE_ = do_normalize SCREAMING_SNAKE_CASE_ = num_mel_bins SCREAMING_SNAKE_CASE_ = hop_length SCREAMING_SNAKE_CASE_ = win_length SCREAMING_SNAKE_CASE_ = win_function SCREAMING_SNAKE_CASE_ = fmin SCREAMING_SNAKE_CASE_ = fmax SCREAMING_SNAKE_CASE_ = mel_floor SCREAMING_SNAKE_CASE_ = return_attention_mask def lowerCAmelCase_ ( self : Union[str, Any] ): return { "feature_size": self.feature_size, "padding_value": self.padding_value, "sampling_rate": self.sampling_rate, "do_normalize": self.do_normalize, "num_mel_bins": self.num_mel_bins, "hop_length": self.hop_length, "win_length": self.win_length, "win_function": self.win_function, "fmin": self.fmin, "fmax": self.fmax, "mel_floor": self.mel_floor, "return_attention_mask": self.return_attention_mask, } def lowerCAmelCase_ ( self : Dict , _lowerCAmelCase : Optional[int]=False , _lowerCAmelCase : str=False ): def _flatten(_lowerCAmelCase : Dict ): return list(itertools.chain(*_lowerCAmelCase ) ) if equal_length: SCREAMING_SNAKE_CASE_ = floats_list((self.batch_size, self.max_seq_length) ) else: # make sure that inputs increase in size SCREAMING_SNAKE_CASE_ = [ _flatten(floats_list((x, self.feature_size) ) ) for x in range(self.min_seq_length , self.max_seq_length , self.seq_length_diff ) ] if numpify: SCREAMING_SNAKE_CASE_ = [np.asarray(_lowerCAmelCase ) for x in speech_inputs] return speech_inputs def lowerCAmelCase_ ( self : List[Any] , _lowerCAmelCase : Union[str, Any]=False , _lowerCAmelCase : Optional[int]=False ): if equal_length: SCREAMING_SNAKE_CASE_ = [floats_list((self.max_seq_length, self.num_mel_bins) ) for _ in range(self.batch_size )] else: # make sure that inputs increase in size SCREAMING_SNAKE_CASE_ = [ floats_list((x, self.num_mel_bins) ) for x in range(self.min_seq_length , self.max_seq_length , self.seq_length_diff ) ] if numpify: SCREAMING_SNAKE_CASE_ = [np.asarray(_lowerCAmelCase ) for x in speech_inputs] return speech_inputs @require_torch class lowerCamelCase_ ( _SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' lowercase_ = SpeechTaFeatureExtractor def lowerCAmelCase_ ( self : Any ): SCREAMING_SNAKE_CASE_ = SpeechTaFeatureExtractionTester(self ) def lowerCAmelCase_ ( self : Any , _lowerCAmelCase : int ): self.assertTrue(np.all(np.mean(_lowerCAmelCase , axis=0 ) < 1E-3 ) ) self.assertTrue(np.all(np.abs(np.var(_lowerCAmelCase , axis=0 ) - 1 ) < 1E-3 ) ) def lowerCAmelCase_ ( self : List[Any] ): # Tests that all call wrap to encode_plus and batch_encode_plus SCREAMING_SNAKE_CASE_ = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) # create three inputs of length 800, 1000, and 1200 SCREAMING_SNAKE_CASE_ = [floats_list((1, x) )[0] for x in range(800 , 1_400 , 200 )] SCREAMING_SNAKE_CASE_ = [np.asarray(_lowerCAmelCase ) for speech_input in speech_inputs] # Test not batched input SCREAMING_SNAKE_CASE_ = feat_extract(speech_inputs[0] , return_tensors='np' ).input_values SCREAMING_SNAKE_CASE_ = feat_extract(np_speech_inputs[0] , return_tensors='np' ).input_values self.assertTrue(np.allclose(_lowerCAmelCase , _lowerCAmelCase , atol=1E-3 ) ) # Test batched SCREAMING_SNAKE_CASE_ = feat_extract(_lowerCAmelCase , return_tensors='np' ).input_values SCREAMING_SNAKE_CASE_ = feat_extract(_lowerCAmelCase , return_tensors='np' ).input_values for enc_seq_a, enc_seq_a in zip(_lowerCAmelCase , _lowerCAmelCase ): self.assertTrue(np.allclose(_lowerCAmelCase , _lowerCAmelCase , atol=1E-3 ) ) def lowerCAmelCase_ ( self : Union[str, Any] ): SCREAMING_SNAKE_CASE_ = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) SCREAMING_SNAKE_CASE_ = [floats_list((1, x) )[0] for x in range(800 , 1_400 , 200 )] SCREAMING_SNAKE_CASE_ = ['longest', 'max_length', 'do_not_pad'] SCREAMING_SNAKE_CASE_ = [None, 1_600, None] for max_length, padding in zip(_lowerCAmelCase , _lowerCAmelCase ): SCREAMING_SNAKE_CASE_ = feat_extract(_lowerCAmelCase , padding=_lowerCAmelCase , max_length=_lowerCAmelCase , return_tensors='np' ) SCREAMING_SNAKE_CASE_ = processed.input_values self._check_zero_mean_unit_variance(input_values[0][:800] ) self.assertTrue(input_values[0][800:].sum() < 1E-6 ) self._check_zero_mean_unit_variance(input_values[1][:1_000] ) self.assertTrue(input_values[0][1_000:].sum() < 1E-6 ) self._check_zero_mean_unit_variance(input_values[2][:1_200] ) def lowerCAmelCase_ ( self : Optional[Any] ): SCREAMING_SNAKE_CASE_ = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) SCREAMING_SNAKE_CASE_ = range(800 , 1_400 , 200 ) SCREAMING_SNAKE_CASE_ = [floats_list((1, x) )[0] for x in lengths] SCREAMING_SNAKE_CASE_ = ['longest', 'max_length', 'do_not_pad'] SCREAMING_SNAKE_CASE_ = [None, 1_600, None] for max_length, padding in zip(_lowerCAmelCase , _lowerCAmelCase ): SCREAMING_SNAKE_CASE_ = feat_extract(_lowerCAmelCase , max_length=_lowerCAmelCase , padding=_lowerCAmelCase ) SCREAMING_SNAKE_CASE_ = processed.input_values self._check_zero_mean_unit_variance(input_values[0][:800] ) self._check_zero_mean_unit_variance(input_values[1][:1_000] ) self._check_zero_mean_unit_variance(input_values[2][:1_200] ) def lowerCAmelCase_ ( self : Dict ): SCREAMING_SNAKE_CASE_ = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) SCREAMING_SNAKE_CASE_ = [floats_list((1, x) )[0] for x in range(800 , 1_400 , 200 )] SCREAMING_SNAKE_CASE_ = feat_extract( _lowerCAmelCase , truncation=_lowerCAmelCase , max_length=1_000 , padding='max_length' , return_tensors='np' ) SCREAMING_SNAKE_CASE_ = processed.input_values self._check_zero_mean_unit_variance(input_values[0, :800] ) self._check_zero_mean_unit_variance(input_values[1] ) self._check_zero_mean_unit_variance(input_values[2] ) def lowerCAmelCase_ ( self : Dict ): SCREAMING_SNAKE_CASE_ = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) SCREAMING_SNAKE_CASE_ = [floats_list((1, x) )[0] for x in range(800 , 1_400 , 200 )] SCREAMING_SNAKE_CASE_ = feat_extract( _lowerCAmelCase , truncation=_lowerCAmelCase , max_length=1_000 , padding='longest' , return_tensors='np' ) SCREAMING_SNAKE_CASE_ = processed.input_values self._check_zero_mean_unit_variance(input_values[0, :800] ) self._check_zero_mean_unit_variance(input_values[1, :1_000] ) self._check_zero_mean_unit_variance(input_values[2] ) # make sure that if max_length < longest -> then pad to max_length self.assertTrue(input_values.shape == (3, 1_000) ) SCREAMING_SNAKE_CASE_ = [floats_list((1, x) )[0] for x in range(800 , 1_400 , 200 )] SCREAMING_SNAKE_CASE_ = feat_extract( _lowerCAmelCase , truncation=_lowerCAmelCase , max_length=2_000 , padding='longest' , return_tensors='np' ) SCREAMING_SNAKE_CASE_ = processed.input_values self._check_zero_mean_unit_variance(input_values[0, :800] ) self._check_zero_mean_unit_variance(input_values[1, :1_000] ) self._check_zero_mean_unit_variance(input_values[2] ) # make sure that if max_length > longest -> then pad to longest self.assertTrue(input_values.shape == (3, 1_200) ) def lowerCAmelCase_ ( self : Optional[int] ): SCREAMING_SNAKE_CASE_ = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) SCREAMING_SNAKE_CASE_ = np.random.rand(100 ).astype(np.floataa ) SCREAMING_SNAKE_CASE_ = np_speech_inputs.tolist() for inputs in [py_speech_inputs, np_speech_inputs]: SCREAMING_SNAKE_CASE_ = feature_extractor.pad([{'input_values': inputs}] , return_tensors='np' ) self.assertTrue(np_processed.input_values.dtype == np.floataa ) SCREAMING_SNAKE_CASE_ = feature_extractor.pad([{'input_values': inputs}] , return_tensors='pt' ) self.assertTrue(pt_processed.input_values.dtype == torch.floataa ) def lowerCAmelCase_ ( self : Tuple ): # Tests that all call wrap to encode_plus and batch_encode_plus SCREAMING_SNAKE_CASE_ = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) # create three inputs of length 800, 1000, and 1200 SCREAMING_SNAKE_CASE_ = [floats_list((1, x) )[0] for x in range(800 , 1_400 , 200 )] SCREAMING_SNAKE_CASE_ = [np.asarray(_lowerCAmelCase ) for speech_input in speech_inputs] # Test feature size SCREAMING_SNAKE_CASE_ = feature_extractor(audio_target=_lowerCAmelCase , padding=_lowerCAmelCase , return_tensors='np' ).input_values self.assertTrue(input_values.ndim == 3 ) self.assertTrue(input_values.shape[-1] == feature_extractor.num_mel_bins ) # Test not batched input SCREAMING_SNAKE_CASE_ = feature_extractor(speech_inputs[0] , return_tensors='np' ).input_values SCREAMING_SNAKE_CASE_ = feature_extractor(np_speech_inputs[0] , return_tensors='np' ).input_values self.assertTrue(np.allclose(_lowerCAmelCase , _lowerCAmelCase , atol=1E-3 ) ) # Test batched SCREAMING_SNAKE_CASE_ = feature_extractor(_lowerCAmelCase , return_tensors='np' ).input_values SCREAMING_SNAKE_CASE_ = feature_extractor(_lowerCAmelCase , return_tensors='np' ).input_values for enc_seq_a, enc_seq_a in zip(_lowerCAmelCase , _lowerCAmelCase ): self.assertTrue(np.allclose(_lowerCAmelCase , _lowerCAmelCase , atol=1E-3 ) ) # Test 2-D numpy arrays are batched. SCREAMING_SNAKE_CASE_ = [floats_list((1, x) )[0] for x in (800, 800, 800)] SCREAMING_SNAKE_CASE_ = np.asarray(_lowerCAmelCase ) SCREAMING_SNAKE_CASE_ = feature_extractor(_lowerCAmelCase , return_tensors='np' ).input_values SCREAMING_SNAKE_CASE_ = feature_extractor(_lowerCAmelCase , return_tensors='np' ).input_values for enc_seq_a, enc_seq_a in zip(_lowerCAmelCase , _lowerCAmelCase ): self.assertTrue(np.allclose(_lowerCAmelCase , _lowerCAmelCase , atol=1E-3 ) ) def lowerCAmelCase_ ( self : str ): SCREAMING_SNAKE_CASE_ = self.feat_extract_tester.prepare_inputs_for_target() SCREAMING_SNAKE_CASE_ = self.feature_extraction_class(**self.feat_extract_dict ) SCREAMING_SNAKE_CASE_ = feat_extract.model_input_names[0] SCREAMING_SNAKE_CASE_ = BatchFeature({input_name: speech_inputs} ) self.assertTrue(all(len(_lowerCAmelCase ) == len(_lowerCAmelCase ) for x, y in zip(_lowerCAmelCase , processed_features[input_name] ) ) ) SCREAMING_SNAKE_CASE_ = self.feat_extract_tester.prepare_inputs_for_target(equal_length=_lowerCAmelCase ) SCREAMING_SNAKE_CASE_ = BatchFeature({input_name: speech_inputs} , tensor_type='np' ) SCREAMING_SNAKE_CASE_ = processed_features[input_name] if len(batch_features_input.shape ) < 3: SCREAMING_SNAKE_CASE_ = batch_features_input[:, :, None] self.assertTrue( batch_features_input.shape == (self.feat_extract_tester.batch_size, len(speech_inputs[0] ), self.feat_extract_tester.num_mel_bins) ) @require_torch def lowerCAmelCase_ ( self : Dict ): SCREAMING_SNAKE_CASE_ = self.feat_extract_tester.prepare_inputs_for_target(equal_length=_lowerCAmelCase ) SCREAMING_SNAKE_CASE_ = self.feature_extraction_class(**self.feat_extract_dict ) SCREAMING_SNAKE_CASE_ = feat_extract.model_input_names[0] SCREAMING_SNAKE_CASE_ = BatchFeature({input_name: speech_inputs} , tensor_type='pt' ) SCREAMING_SNAKE_CASE_ = processed_features[input_name] if len(batch_features_input.shape ) < 3: SCREAMING_SNAKE_CASE_ = batch_features_input[:, :, None] self.assertTrue( batch_features_input.shape == (self.feat_extract_tester.batch_size, len(speech_inputs[0] ), self.feat_extract_tester.num_mel_bins) ) @require_torch def lowerCAmelCase_ ( self : Dict ): SCREAMING_SNAKE_CASE_ = self.feature_extraction_class(**self.feat_extract_dict ) SCREAMING_SNAKE_CASE_ = self.feat_extract_tester.prepare_inputs_for_target() SCREAMING_SNAKE_CASE_ = feat_extract.model_input_names[0] SCREAMING_SNAKE_CASE_ = BatchFeature({input_name: speech_inputs} ) SCREAMING_SNAKE_CASE_ = feat_extract.num_mel_bins # hack! SCREAMING_SNAKE_CASE_ = feat_extract.pad(_lowerCAmelCase , padding='longest' , return_tensors='np' )[input_name] SCREAMING_SNAKE_CASE_ = feat_extract.pad(_lowerCAmelCase , padding='longest' , return_tensors='pt' )[input_name] self.assertTrue(abs(input_np.astype(np.floataa ).sum() - input_pt.numpy().astype(np.floataa ).sum() ) < 1E-2 ) def lowerCAmelCase_ ( self : str ): SCREAMING_SNAKE_CASE_ = self.feat_extract_dict SCREAMING_SNAKE_CASE_ = True SCREAMING_SNAKE_CASE_ = self.feature_extraction_class(**_lowerCAmelCase ) SCREAMING_SNAKE_CASE_ = self.feat_extract_tester.prepare_inputs_for_target() SCREAMING_SNAKE_CASE_ = [len(_lowerCAmelCase ) for x in speech_inputs] SCREAMING_SNAKE_CASE_ = feat_extract.model_input_names[0] SCREAMING_SNAKE_CASE_ = BatchFeature({input_name: speech_inputs} ) SCREAMING_SNAKE_CASE_ = feat_extract.num_mel_bins # hack! SCREAMING_SNAKE_CASE_ = feat_extract.pad(_lowerCAmelCase , padding='longest' , return_tensors='np' ) self.assertIn('attention_mask' , _lowerCAmelCase ) self.assertListEqual(list(processed.attention_mask.shape ) , list(processed[input_name].shape[:2] ) ) self.assertListEqual(processed.attention_mask.sum(-1 ).tolist() , _lowerCAmelCase ) def lowerCAmelCase_ ( self : Any ): SCREAMING_SNAKE_CASE_ = self.feat_extract_dict SCREAMING_SNAKE_CASE_ = True SCREAMING_SNAKE_CASE_ = self.feature_extraction_class(**_lowerCAmelCase ) SCREAMING_SNAKE_CASE_ = self.feat_extract_tester.prepare_inputs_for_target() SCREAMING_SNAKE_CASE_ = [len(_lowerCAmelCase ) for x in speech_inputs] SCREAMING_SNAKE_CASE_ = feat_extract.model_input_names[0] SCREAMING_SNAKE_CASE_ = BatchFeature({input_name: speech_inputs} ) SCREAMING_SNAKE_CASE_ = min(_lowerCAmelCase ) SCREAMING_SNAKE_CASE_ = feat_extract.num_mel_bins # hack! SCREAMING_SNAKE_CASE_ = feat_extract.pad( _lowerCAmelCase , padding='max_length' , max_length=_lowerCAmelCase , truncation=_lowerCAmelCase , return_tensors='np' ) self.assertIn('attention_mask' , _lowerCAmelCase ) self.assertListEqual( list(processed_pad.attention_mask.shape ) , [processed_pad[input_name].shape[0], max_length] ) self.assertListEqual( processed_pad.attention_mask[:, :max_length].sum(-1 ).tolist() , [max_length for x in speech_inputs] ) def lowerCAmelCase_ ( self : List[Any] , _lowerCAmelCase : Tuple ): from datasets import load_dataset SCREAMING_SNAKE_CASE_ = load_dataset('hf-internal-testing/librispeech_asr_dummy' , 'clean' , split='validation' ) # automatic decoding with librispeech SCREAMING_SNAKE_CASE_ = ds.sort('id' ).select(range(_lowerCAmelCase ) )[:num_samples]['audio'] return [x["array"] for x in speech_samples] def lowerCAmelCase_ ( self : Any ): # fmt: off SCREAMING_SNAKE_CASE_ = torch.tensor( [2.3_804E-03, 2.0_752E-03, 1.9_836E-03, 2.1_057E-03, 1.6_174E-03, 3.0_518E-04, 9.1_553E-05, 3.3_569E-04, 9.7_656E-04, 1.8_311E-03, 2.0_142E-03, 2.1_057E-03, 1.7_395E-03, 4.5_776E-04, -3.9_673E-04, 4.5_776E-04, 1.0_071E-03, 9.1_553E-05, 4.8_828E-04, 1.1_597E-03, 7.3_242E-04, 9.4_604E-04, 1.8_005E-03, 1.8_311E-03, 8.8_501E-04, 4.2_725E-04, 4.8_828E-04, 7.3_242E-04, 1.0_986E-03, 2.1_057E-03] ) # fmt: on SCREAMING_SNAKE_CASE_ = self._load_datasamples(1 ) SCREAMING_SNAKE_CASE_ = SpeechTaFeatureExtractor() SCREAMING_SNAKE_CASE_ = feature_extractor(_lowerCAmelCase , return_tensors='pt' ).input_values self.assertEquals(input_values.shape , (1, 93_680) ) self.assertTrue(torch.allclose(input_values[0, :30] , _lowerCAmelCase , atol=1E-6 ) ) def lowerCAmelCase_ ( self : Optional[int] ): # fmt: off SCREAMING_SNAKE_CASE_ = torch.tensor( [-2.6870, -3.0104, -3.1356, -3.5352, -3.0044, -3.0353, -3.4719, -3.6777, -3.1520, -2.9435, -2.6553, -2.8795, -2.9944, -2.5921, -3.0279, -3.0386, -3.0864, -3.1291, -3.2353, -2.7444, -2.6831, -2.7287, -3.1761, -3.1571, -3.2726, -3.0582, -3.1007, -3.4533, -3.4695, -3.0998] ) # fmt: on SCREAMING_SNAKE_CASE_ = self._load_datasamples(1 ) SCREAMING_SNAKE_CASE_ = SpeechTaFeatureExtractor() SCREAMING_SNAKE_CASE_ = feature_extractor(audio_target=_lowerCAmelCase , return_tensors='pt' ).input_values self.assertEquals(input_values.shape , (1, 366, 80) ) self.assertTrue(torch.allclose(input_values[0, 0, :30] , _lowerCAmelCase , atol=1E-4 ) )
31
0
import doctest import glob import importlib import inspect import os import re from contextlib import contextmanager from functools import wraps from unittest.mock import patch import numpy as np import pytest from absl.testing import parameterized import datasets from datasets import load_metric from .utils import for_all_test_methods, local, slow # mark all tests as integration A_ : Union[str, Any] = pytest.mark.integration A_ : Any = {'comet'} A_ : Tuple = importlib.util.find_spec('fairseq') is not None A_ : List[Any] = {'code_eval'} A_ : Union[str, Any] = os.name == 'nt' A_ : Union[str, Any] = {'bertscore', 'frugalscore', 'perplexity'} A_ : List[str] = importlib.util.find_spec('transformers') is not None def snake_case (UpperCAmelCase__ ) -> Tuple: @wraps(UpperCAmelCase__ ) def wrapper(self , UpperCAmelCase__ ): if not _has_fairseq and metric_name in REQUIRE_FAIRSEQ: self.skipTest('"test requires Fairseq"' ) else: test_case(self , UpperCAmelCase__ ) return wrapper def snake_case (UpperCAmelCase__ ) -> Any: @wraps(UpperCAmelCase__ ) def wrapper(self , UpperCAmelCase__ ): if not _has_transformers and metric_name in REQUIRE_TRANSFORMERS: self.skipTest('"test requires transformers"' ) else: test_case(self , UpperCAmelCase__ ) return wrapper def snake_case (UpperCAmelCase__ ) -> Optional[int]: @wraps(UpperCAmelCase__ ) def wrapper(self , UpperCAmelCase__ ): if _on_windows and metric_name in UNSUPPORTED_ON_WINDOWS: self.skipTest('"test not supported on Windows"' ) else: test_case(self , UpperCAmelCase__ ) return wrapper def snake_case () -> List[Any]: UpperCamelCase_: Optional[int] = [metric_dir.split(os.sep )[-2] for metric_dir in glob.glob('./metrics/*/' )] return [{"testcase_name": x, "metric_name": x} for x in metrics if x != "gleu"] # gleu is unfinished @parameterized.named_parameters(get_local_metric_names() ) @for_all_test_methods( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) @local class _lowerCAmelCase( parameterized.TestCase ): """simple docstring""" a : Tuple ={} a : str =None @pytest.mark.filterwarnings('ignore:metric_module_factory is deprecated:FutureWarning' ) @pytest.mark.filterwarnings('ignore:load_metric is deprecated:FutureWarning' ) def _a ( self , _lowerCamelCase ): UpperCamelCase_: Any = '[...]' UpperCamelCase_: int = importlib.import_module( datasets.load.metric_module_factory(os.path.join('metrics' , _lowerCamelCase ) ).module_path ) UpperCamelCase_: List[Any] = datasets.load.import_main_class(metric_module.__name__ , dataset=_lowerCamelCase ) # check parameters UpperCamelCase_: Optional[Any] = inspect.signature(metric._compute ).parameters self.assertTrue(all(p.kind != p.VAR_KEYWORD for p in parameters.values() ) ) # no **kwargs # run doctest with self.patch_intensive_calls(_lowerCamelCase , metric_module.__name__ ): with self.use_local_metrics(): try: UpperCamelCase_: Union[str, Any] = doctest.testmod(_lowerCamelCase , verbose=_lowerCamelCase , raise_on_error=_lowerCamelCase ) except doctest.UnexpectedException as e: raise e.exc_info[1] # raise the exception that doctest caught self.assertEqual(results.failed , 0 ) self.assertGreater(results.attempted , 1 ) @slow def _a ( self , _lowerCamelCase ): UpperCamelCase_: Optional[Any] = '[...]' UpperCamelCase_: Optional[int] = importlib.import_module( datasets.load.metric_module_factory(os.path.join('metrics' , _lowerCamelCase ) ).module_path ) # run doctest with self.use_local_metrics(): UpperCamelCase_: Union[str, Any] = doctest.testmod(_lowerCamelCase , verbose=_lowerCamelCase , raise_on_error=_lowerCamelCase ) self.assertEqual(results.failed , 0 ) self.assertGreater(results.attempted , 1 ) @contextmanager def _a ( self , _lowerCamelCase , _lowerCamelCase ): if metric_name in self.INTENSIVE_CALLS_PATCHER: with self.INTENSIVE_CALLS_PATCHER[metric_name](_lowerCamelCase ): yield else: yield @contextmanager def _a ( self ): def load_local_metric(_lowerCamelCase , *_lowerCamelCase , **_lowerCamelCase ): return load_metric(os.path.join('metrics' , _lowerCamelCase ) , *_lowerCamelCase , **_lowerCamelCase ) with patch('datasets.load_metric' ) as mock_load_metric: UpperCamelCase_: List[Any] = load_local_metric yield @classmethod def _a ( cls , _lowerCamelCase ): def wrapper(_lowerCamelCase ): UpperCamelCase_: Optional[Any] = contextmanager(_lowerCamelCase ) UpperCamelCase_: int = patcher return patcher return wrapper @LocalMetricTest.register_intensive_calls_patcher('bleurt' ) def snake_case (UpperCAmelCase__ ) -> Dict: import tensorflow.compat.va as tf from bleurt.score import Predictor tf.flags.DEFINE_string('sv' , '' , '' ) # handle pytest cli flags class _lowerCAmelCase( UpperCAmelCase_ ): """simple docstring""" def _a ( self , _lowerCamelCase ): assert len(input_dict['input_ids'] ) == 2 return np.array([1.0_3, 1.0_4] ) # mock predict_fn which is supposed to do a forward pass with a bleurt model with patch('bleurt.score._create_predictor' ) as mock_create_predictor: UpperCamelCase_: Dict = MockedPredictor() yield @LocalMetricTest.register_intensive_calls_patcher('bertscore' ) def snake_case (UpperCAmelCase__ ) -> Optional[Any]: import torch def bert_cos_score_idf(UpperCAmelCase__ , UpperCAmelCase__ , *UpperCAmelCase__ , **UpperCAmelCase__ ): return torch.tensor([[1.0, 1.0, 1.0]] * len(UpperCAmelCase__ ) ) # mock get_model which is supposed to do download a bert model # mock bert_cos_score_idf which is supposed to do a forward pass with a bert model with patch('bert_score.scorer.get_model' ), patch( 'bert_score.scorer.bert_cos_score_idf' ) as mock_bert_cos_score_idf: UpperCamelCase_: Dict = bert_cos_score_idf yield @LocalMetricTest.register_intensive_calls_patcher('comet' ) def snake_case (UpperCAmelCase__ ) -> List[str]: def load_from_checkpoint(UpperCAmelCase__ ): class _lowerCAmelCase: """simple docstring""" def _a ( self , _lowerCamelCase , *_lowerCamelCase , **_lowerCamelCase ): assert len(_lowerCamelCase ) == 2 UpperCamelCase_: List[Any] = [0.1_9, 0.9_2] return scores, sum(_lowerCamelCase ) / len(_lowerCamelCase ) return Model() # mock load_from_checkpoint which is supposed to do download a bert model # mock load_from_checkpoint which is supposed to do download a bert model with patch('comet.download_model' ) as mock_download_model: UpperCamelCase_: Union[str, Any] = None with patch('comet.load_from_checkpoint' ) as mock_load_from_checkpoint: UpperCamelCase_: int = load_from_checkpoint yield def snake_case () -> str: UpperCamelCase_: Union[str, Any] = load_metric(os.path.join('metrics' , 'seqeval' ) ) UpperCamelCase_: Any = 'ERROR' UpperCamelCase_: List[Any] = F'''Scheme should be one of [IOB1, IOB2, IOE1, IOE2, IOBES, BILOU], got {wrong_scheme}''' with pytest.raises(UpperCAmelCase__ , match=re.escape(UpperCAmelCase__ ) ): metric.compute(predictions=[] , references=[] , scheme=UpperCAmelCase__ )
57
from __future__ import annotations from typing import TypedDict class lowerCamelCase_ ( _SCREAMING_SNAKE_CASE ): '''simple docstring''' lowercase_ = 42 lowercase_ = 42 def UpperCAmelCase_ ( __UpperCAmelCase : str ) -> list[str]: if not isinstance(__UpperCAmelCase , __UpperCAmelCase ): raise TypeError('The parameter s type must be str.' ) return [s[i:] + s[:i] for i in range(len(__UpperCAmelCase ) )] def UpperCAmelCase_ ( __UpperCAmelCase : str ) -> BWTTransformDict: if not isinstance(__UpperCAmelCase , __UpperCAmelCase ): raise TypeError('The parameter s type must be str.' ) if not s: raise ValueError('The parameter s must not be empty.' ) SCREAMING_SNAKE_CASE_ = all_rotations(__UpperCAmelCase ) rotations.sort() # sort the list of rotations in alphabetically order # make a string composed of the last char of each rotation SCREAMING_SNAKE_CASE_ = { "bwt_string": "".join([word[-1] for word in rotations] ), "idx_original_string": rotations.index(__UpperCAmelCase ), } return response def UpperCAmelCase_ ( __UpperCAmelCase : str , __UpperCAmelCase : int ) -> str: if not isinstance(__UpperCAmelCase , __UpperCAmelCase ): raise TypeError('The parameter bwt_string type must be str.' ) if not bwt_string: raise ValueError('The parameter bwt_string must not be empty.' ) try: SCREAMING_SNAKE_CASE_ = int(__UpperCAmelCase ) except ValueError: raise TypeError( 'The parameter idx_original_string type must be int or passive' ' of cast to int.' ) if idx_original_string < 0: raise ValueError('The parameter idx_original_string must not be lower than 0.' ) if idx_original_string >= len(__UpperCAmelCase ): raise ValueError( 'The parameter idx_original_string must be lower than' ' len(bwt_string).' ) SCREAMING_SNAKE_CASE_ = [''] * len(__UpperCAmelCase ) for _ in range(len(__UpperCAmelCase ) ): for i in range(len(__UpperCAmelCase ) ): SCREAMING_SNAKE_CASE_ = bwt_string[i] + ordered_rotations[i] ordered_rotations.sort() return ordered_rotations[idx_original_string] if __name__ == "__main__": lowerCamelCase__ : Optional[int] = 'Provide a string that I will generate its BWT transform: ' lowerCamelCase__ : List[str] = input(entry_msg).strip() lowerCamelCase__ : int = bwt_transform(s) print( f'''Burrows Wheeler transform for string \'{s}\' results ''' f'''in \'{result['bwt_string']}\'''' ) lowerCamelCase__ : Dict = reverse_bwt(result['bwt_string'], result['idx_original_string']) print( f'''Reversing Burrows Wheeler transform for entry \'{result['bwt_string']}\' ''' f'''we get original string \'{original_string}\'''' )
31
0
"""simple docstring""" import gc import random import unittest import torch from diffusers import ( IFImgaImgPipeline, IFImgaImgSuperResolutionPipeline, IFInpaintingPipeline, IFInpaintingSuperResolutionPipeline, IFPipeline, IFSuperResolutionPipeline, ) from diffusers.models.attention_processor import AttnAddedKVProcessor from diffusers.utils.import_utils import is_xformers_available from diffusers.utils.testing_utils import floats_tensor, load_numpy, require_torch_gpu, skip_mps, slow, torch_device from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_PARAMS from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference from . import IFPipelineTesterMixin @skip_mps class _lowerCAmelCase ( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , unittest.TestCase ): """simple docstring""" _lowerCamelCase = IFPipeline _lowerCamelCase = TEXT_TO_IMAGE_PARAMS - {'''width''', '''height''', '''latents'''} _lowerCamelCase = TEXT_TO_IMAGE_BATCH_PARAMS _lowerCamelCase = PipelineTesterMixin.required_optional_params - {'''latents'''} def UpperCAmelCase__ ( self ) -> List[Any]: '''simple docstring''' return self._get_dummy_components() def UpperCAmelCase__ ( self , _lowercase , _lowercase=0 ) -> List[str]: '''simple docstring''' if str(_lowercase ).startswith("""mps""" ): snake_case_ : Optional[Any] = torch.manual_seed(_lowercase ) else: snake_case_ : int = torch.Generator(device=_lowercase ).manual_seed(_lowercase ) snake_case_ : str = { """prompt""": """A painting of a squirrel eating a burger""", """generator""": generator, """num_inference_steps""": 2, """output_type""": """numpy""", } return inputs def UpperCAmelCase__ ( self ) -> Optional[int]: '''simple docstring''' self._test_save_load_optional_components() @unittest.skipIf(torch_device != """cuda""" , reason="""float16 requires CUDA""" ) def UpperCAmelCase__ ( self ) -> int: '''simple docstring''' super().test_save_load_floataa(expected_max_diff=1E-1 ) def UpperCAmelCase__ ( self ) -> int: '''simple docstring''' self._test_attention_slicing_forward_pass(expected_max_diff=1E-2 ) def UpperCAmelCase__ ( self ) -> Optional[int]: '''simple docstring''' self._test_save_load_local() def UpperCAmelCase__ ( self ) -> Dict: '''simple docstring''' self._test_inference_batch_single_identical( expected_max_diff=1E-2 , ) @unittest.skipIf( torch_device != """cuda""" or not is_xformers_available() , reason="""XFormers attention is only available with CUDA and `xformers` installed""" , ) def UpperCAmelCase__ ( self ) -> List[str]: '''simple docstring''' self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=1E-3 ) @slow @require_torch_gpu class _lowerCAmelCase ( unittest.TestCase ): """simple docstring""" def UpperCAmelCase__ ( self ) -> int: '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def UpperCAmelCase__ ( self ) -> Optional[Any]: '''simple docstring''' snake_case_ : Union[str, Any] = IFPipeline.from_pretrained("""DeepFloyd/IF-I-XL-v1.0""" , variant="""fp16""" , torch_dtype=torch.floataa ) snake_case_ : Optional[int] = IFSuperResolutionPipeline.from_pretrained( """DeepFloyd/IF-II-L-v1.0""" , variant="""fp16""" , torch_dtype=torch.floataa , text_encoder=_lowercase , tokenizer=_lowercase ) # pre compute text embeddings and remove T5 to save memory pipe_a.text_encoder.to("""cuda""" ) snake_case_ , snake_case_ : int = pipe_a.encode_prompt("""anime turtle""" , device="""cuda""" ) del pipe_a.tokenizer del pipe_a.text_encoder gc.collect() snake_case_ : Union[str, Any] = None snake_case_ : int = None pipe_a.enable_model_cpu_offload() pipe_a.enable_model_cpu_offload() pipe_a.unet.set_attn_processor(AttnAddedKVProcessor() ) pipe_a.unet.set_attn_processor(AttnAddedKVProcessor() ) self._test_if(_lowercase , _lowercase , _lowercase , _lowercase ) pipe_a.remove_all_hooks() pipe_a.remove_all_hooks() # img2img snake_case_ : int = IFImgaImgPipeline(**pipe_a.components ) snake_case_ : int = IFImgaImgSuperResolutionPipeline(**pipe_a.components ) pipe_a.enable_model_cpu_offload() pipe_a.enable_model_cpu_offload() pipe_a.unet.set_attn_processor(AttnAddedKVProcessor() ) pipe_a.unet.set_attn_processor(AttnAddedKVProcessor() ) self._test_if_imgaimg(_lowercase , _lowercase , _lowercase , _lowercase ) pipe_a.remove_all_hooks() pipe_a.remove_all_hooks() # inpainting snake_case_ : int = IFInpaintingPipeline(**pipe_a.components ) snake_case_ : List[str] = IFInpaintingSuperResolutionPipeline(**pipe_a.components ) pipe_a.enable_model_cpu_offload() pipe_a.enable_model_cpu_offload() pipe_a.unet.set_attn_processor(AttnAddedKVProcessor() ) pipe_a.unet.set_attn_processor(AttnAddedKVProcessor() ) self._test_if_inpainting(_lowercase , _lowercase , _lowercase , _lowercase ) def UpperCAmelCase__ ( self , _lowercase , _lowercase , _lowercase , _lowercase ) -> List[str]: '''simple docstring''' _start_torch_memory_measurement() snake_case_ : Union[str, Any] = torch.Generator(device="""cpu""" ).manual_seed(0 ) snake_case_ : int = pipe_a( prompt_embeds=_lowercase , negative_prompt_embeds=_lowercase , num_inference_steps=2 , generator=_lowercase , output_type="""np""" , ) snake_case_ : Dict = output.images[0] assert image.shape == (6_4, 6_4, 3) snake_case_ : Any = torch.cuda.max_memory_allocated() assert mem_bytes < 1_3 * 1_0**9 snake_case_ : Dict = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if.npy""" ) assert_mean_pixel_difference(_lowercase , _lowercase ) # pipeline 2 _start_torch_memory_measurement() snake_case_ : Union[str, Any] = torch.Generator(device="""cpu""" ).manual_seed(0 ) snake_case_ : Optional[int] = floats_tensor((1, 3, 6_4, 6_4) , rng=random.Random(0 ) ).to(_lowercase ) snake_case_ : str = pipe_a( prompt_embeds=_lowercase , negative_prompt_embeds=_lowercase , image=_lowercase , generator=_lowercase , num_inference_steps=2 , output_type="""np""" , ) snake_case_ : Union[str, Any] = output.images[0] assert image.shape == (2_5_6, 2_5_6, 3) snake_case_ : Optional[Any] = torch.cuda.max_memory_allocated() assert mem_bytes < 4 * 1_0**9 snake_case_ : Any = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if_superresolution_stage_II.npy""" ) assert_mean_pixel_difference(_lowercase , _lowercase ) def UpperCAmelCase__ ( self , _lowercase , _lowercase , _lowercase , _lowercase ) -> Any: '''simple docstring''' _start_torch_memory_measurement() snake_case_ : List[str] = floats_tensor((1, 3, 6_4, 6_4) , rng=random.Random(0 ) ).to(_lowercase ) snake_case_ : str = torch.Generator(device="""cpu""" ).manual_seed(0 ) snake_case_ : Union[str, Any] = pipe_a( prompt_embeds=_lowercase , negative_prompt_embeds=_lowercase , image=_lowercase , num_inference_steps=2 , generator=_lowercase , output_type="""np""" , ) snake_case_ : List[str] = output.images[0] assert image.shape == (6_4, 6_4, 3) snake_case_ : str = torch.cuda.max_memory_allocated() assert mem_bytes < 1_0 * 1_0**9 snake_case_ : Dict = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if_img2img.npy""" ) assert_mean_pixel_difference(_lowercase , _lowercase ) # pipeline 2 _start_torch_memory_measurement() snake_case_ : Optional[int] = torch.Generator(device="""cpu""" ).manual_seed(0 ) snake_case_ : Union[str, Any] = floats_tensor((1, 3, 2_5_6, 2_5_6) , rng=random.Random(0 ) ).to(_lowercase ) snake_case_ : Optional[int] = floats_tensor((1, 3, 6_4, 6_4) , rng=random.Random(0 ) ).to(_lowercase ) snake_case_ : Union[str, Any] = pipe_a( prompt_embeds=_lowercase , negative_prompt_embeds=_lowercase , image=_lowercase , original_image=_lowercase , generator=_lowercase , num_inference_steps=2 , output_type="""np""" , ) snake_case_ : Optional[int] = output.images[0] assert image.shape == (2_5_6, 2_5_6, 3) snake_case_ : int = torch.cuda.max_memory_allocated() assert mem_bytes < 4 * 1_0**9 snake_case_ : str = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if_img2img_superresolution_stage_II.npy""" ) assert_mean_pixel_difference(_lowercase , _lowercase ) def UpperCAmelCase__ ( self , _lowercase , _lowercase , _lowercase , _lowercase ) -> List[str]: '''simple docstring''' _start_torch_memory_measurement() snake_case_ : List[Any] = floats_tensor((1, 3, 6_4, 6_4) , rng=random.Random(0 ) ).to(_lowercase ) snake_case_ : List[str] = floats_tensor((1, 3, 6_4, 6_4) , rng=random.Random(1 ) ).to(_lowercase ) snake_case_ : Optional[Any] = torch.Generator(device="""cpu""" ).manual_seed(0 ) snake_case_ : int = pipe_a( prompt_embeds=_lowercase , negative_prompt_embeds=_lowercase , image=_lowercase , mask_image=_lowercase , num_inference_steps=2 , generator=_lowercase , output_type="""np""" , ) snake_case_ : Any = output.images[0] assert image.shape == (6_4, 6_4, 3) snake_case_ : List[Any] = torch.cuda.max_memory_allocated() assert mem_bytes < 1_0 * 1_0**9 snake_case_ : Any = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if_inpainting.npy""" ) assert_mean_pixel_difference(_lowercase , _lowercase ) # pipeline 2 _start_torch_memory_measurement() snake_case_ : Optional[int] = torch.Generator(device="""cpu""" ).manual_seed(0 ) snake_case_ : Optional[int] = floats_tensor((1, 3, 6_4, 6_4) , rng=random.Random(0 ) ).to(_lowercase ) snake_case_ : Dict = floats_tensor((1, 3, 2_5_6, 2_5_6) , rng=random.Random(0 ) ).to(_lowercase ) snake_case_ : List[Any] = floats_tensor((1, 3, 2_5_6, 2_5_6) , rng=random.Random(1 ) ).to(_lowercase ) snake_case_ : int = pipe_a( prompt_embeds=_lowercase , negative_prompt_embeds=_lowercase , image=_lowercase , mask_image=_lowercase , original_image=_lowercase , generator=_lowercase , num_inference_steps=2 , output_type="""np""" , ) snake_case_ : Dict = output.images[0] assert image.shape == (2_5_6, 2_5_6, 3) snake_case_ : List[str] = torch.cuda.max_memory_allocated() assert mem_bytes < 4 * 1_0**9 snake_case_ : Optional[Any] = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if_inpainting_superresolution_stage_II.npy""" ) assert_mean_pixel_difference(_lowercase , _lowercase ) def __lowerCAmelCase ( ): '''simple docstring''' torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() torch.cuda.reset_peak_memory_stats()
58
class lowerCamelCase_ : '''simple docstring''' def __init__( self : str ): SCREAMING_SNAKE_CASE_ = {} def lowerCAmelCase_ ( self : List[str] ): print(self.vertex ) for i in self.vertex: print(_lowerCAmelCase , ' -> ' , ' -> '.join([str(_lowerCAmelCase ) for j in self.vertex[i]] ) ) def lowerCAmelCase_ ( self : Union[str, Any] , _lowerCAmelCase : int , _lowerCAmelCase : int ): # check if vertex is already present, if from_vertex in self.vertex: self.vertex[from_vertex].append(_lowerCAmelCase ) else: # else make a new vertex SCREAMING_SNAKE_CASE_ = [to_vertex] def lowerCAmelCase_ ( self : Optional[Any] ): # visited array for storing already visited nodes SCREAMING_SNAKE_CASE_ = [False] * len(self.vertex ) # call the recursive helper function for i in range(len(self.vertex ) ): if not visited[i]: self.dfs_recursive(_lowerCAmelCase , _lowerCAmelCase ) def lowerCAmelCase_ ( self : Tuple , _lowerCAmelCase : int , _lowerCAmelCase : list ): # mark start vertex as visited SCREAMING_SNAKE_CASE_ = True print(_lowerCAmelCase , end=' ' ) # Recur for all the vertices that are adjacent to this node for i in self.vertex: if not visited[i]: self.dfs_recursive(_lowerCAmelCase , _lowerCAmelCase ) if __name__ == "__main__": lowerCamelCase__ : List[Any] = Graph() g.add_edge(0, 1) g.add_edge(0, 2) g.add_edge(1, 2) g.add_edge(2, 0) g.add_edge(2, 3) g.add_edge(3, 3) g.print_graph() print('DFS:') g.dfs() # OUTPUT: # 0 -> 1 -> 2 # 1 -> 2 # 2 -> 0 -> 3 # 3 -> 3 # DFS: # 0 1 2 3
31
0
def lowerCAmelCase_ ( __a ) -> None: """simple docstring""" lowerCamelCase__: List[Any] =generate_pascal_triangle(__a ) for row_idx in range(__a ): # Print left spaces for _ in range(num_rows - row_idx - 1 ): print(end=" " ) # Print row values for col_idx in range(row_idx + 1 ): if col_idx != row_idx: print(triangle[row_idx][col_idx] , end=" " ) else: print(triangle[row_idx][col_idx] , end="" ) print() def lowerCAmelCase_ ( __a ) -> list[list[int]]: """simple docstring""" if not isinstance(__a , __a ): raise TypeError("The input value of 'num_rows' should be 'int'" ) if num_rows == 0: return [] elif num_rows < 0: raise ValueError( "The input value of 'num_rows' should be greater than or equal to 0" ) lowerCamelCase__: list[list[int]] =[] for current_row_idx in range(__a ): lowerCamelCase__: Any =populate_current_row(__a , __a ) triangle.append(__a ) return triangle def lowerCAmelCase_ ( __a , __a ) -> list[int]: """simple docstring""" lowerCamelCase__: Dict =[-1] * (current_row_idx + 1) # first and last elements of current row are equal to 1 lowerCamelCase__ , lowerCamelCase__: Dict =1, 1 for current_col_idx in range(1 , __a ): calculate_current_element( __a , __a , __a , __a ) return current_row def lowerCAmelCase_ ( __a , __a , __a , __a , ) -> None: """simple docstring""" lowerCamelCase__: Dict =triangle[current_row_idx - 1][current_col_idx - 1] lowerCamelCase__: List[Any] =triangle[current_row_idx - 1][current_col_idx] lowerCamelCase__: int =above_to_left_elt + above_to_right_elt def lowerCAmelCase_ ( __a ) -> list[list[int]]: """simple docstring""" if not isinstance(__a , __a ): raise TypeError("The input value of 'num_rows' should be 'int'" ) if num_rows == 0: return [] elif num_rows < 0: raise ValueError( "The input value of 'num_rows' should be greater than or equal to 0" ) lowerCamelCase__: list[list[int]] =[[1]] for row_index in range(1 , __a ): lowerCamelCase__: str =[0] + result[-1] + [0] lowerCamelCase__: List[str] =row_index + 1 # Calculate the number of distinct elements in a row lowerCamelCase__: str =sum(divmod(__a , 2 ) ) lowerCamelCase__: Union[str, Any] =[ temp_row[i - 1] + temp_row[i] for i in range(1 , distinct_elements + 1 ) ] lowerCamelCase__: Optional[int] =row_first_half[: (row_index + 1) // 2] row_second_half.reverse() lowerCamelCase__: Optional[int] =row_first_half + row_second_half result.append(__a ) return result def lowerCAmelCase_ ( ) -> None: """simple docstring""" from collections.abc import Callable from timeit import timeit def benchmark_a_function(__a , __a ) -> None: lowerCamelCase__: Union[str, Any] =F"""{func.__name__}({value})""" lowerCamelCase__: Any =timeit(F"""__main__.{call}""" , setup="import __main__" ) # print(f"{call:38} = {func(value)} -- {timing:.4f} seconds") print(F"""{call:38} -- {timing:.4f} seconds""" ) for value in range(15 ): # (1, 7, 14): for func in (generate_pascal_triangle, generate_pascal_triangle_optimized): benchmark_a_function(__a , __a ) print() if __name__ == "__main__": import doctest doctest.testmod() benchmark()
59
from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCamelCase__ : str = logging.get_logger(__name__) lowerCamelCase__ : Tuple = { 'funnel-transformer/small': 'https://huggingface.co/funnel-transformer/small/resolve/main/config.json', 'funnel-transformer/small-base': 'https://huggingface.co/funnel-transformer/small-base/resolve/main/config.json', 'funnel-transformer/medium': 'https://huggingface.co/funnel-transformer/medium/resolve/main/config.json', 'funnel-transformer/medium-base': 'https://huggingface.co/funnel-transformer/medium-base/resolve/main/config.json', 'funnel-transformer/intermediate': ( 'https://huggingface.co/funnel-transformer/intermediate/resolve/main/config.json' ), 'funnel-transformer/intermediate-base': ( 'https://huggingface.co/funnel-transformer/intermediate-base/resolve/main/config.json' ), 'funnel-transformer/large': 'https://huggingface.co/funnel-transformer/large/resolve/main/config.json', 'funnel-transformer/large-base': 'https://huggingface.co/funnel-transformer/large-base/resolve/main/config.json', 'funnel-transformer/xlarge': 'https://huggingface.co/funnel-transformer/xlarge/resolve/main/config.json', 'funnel-transformer/xlarge-base': 'https://huggingface.co/funnel-transformer/xlarge-base/resolve/main/config.json', } class lowerCamelCase_ ( _SCREAMING_SNAKE_CASE ): '''simple docstring''' lowercase_ = "funnel" lowercase_ = { "hidden_size": "d_model", "num_attention_heads": "n_head", } def __init__( self : int , _lowerCAmelCase : Optional[int]=30_522 , _lowerCAmelCase : List[str]=[4, 4, 4] , _lowerCAmelCase : Tuple=None , _lowerCAmelCase : Optional[int]=2 , _lowerCAmelCase : int=768 , _lowerCAmelCase : Optional[Any]=12 , _lowerCAmelCase : Optional[Any]=64 , _lowerCAmelCase : Optional[Any]=3_072 , _lowerCAmelCase : List[str]="gelu_new" , _lowerCAmelCase : Any=0.1 , _lowerCAmelCase : int=0.1 , _lowerCAmelCase : Tuple=0.0 , _lowerCAmelCase : List[Any]=0.1 , _lowerCAmelCase : Dict=None , _lowerCAmelCase : str=1E-9 , _lowerCAmelCase : Any="mean" , _lowerCAmelCase : Union[str, Any]="relative_shift" , _lowerCAmelCase : Optional[Any]=True , _lowerCAmelCase : Dict=True , _lowerCAmelCase : Tuple=True , **_lowerCAmelCase : Optional[Any] , ): SCREAMING_SNAKE_CASE_ = vocab_size SCREAMING_SNAKE_CASE_ = block_sizes SCREAMING_SNAKE_CASE_ = [1] * len(_lowerCAmelCase ) if block_repeats is None else block_repeats assert len(_lowerCAmelCase ) == len( self.block_repeats ), "`block_sizes` and `block_repeats` should have the same length." SCREAMING_SNAKE_CASE_ = num_decoder_layers SCREAMING_SNAKE_CASE_ = d_model SCREAMING_SNAKE_CASE_ = n_head SCREAMING_SNAKE_CASE_ = d_head SCREAMING_SNAKE_CASE_ = d_inner SCREAMING_SNAKE_CASE_ = hidden_act SCREAMING_SNAKE_CASE_ = hidden_dropout SCREAMING_SNAKE_CASE_ = attention_dropout SCREAMING_SNAKE_CASE_ = activation_dropout SCREAMING_SNAKE_CASE_ = initializer_range SCREAMING_SNAKE_CASE_ = initializer_std SCREAMING_SNAKE_CASE_ = layer_norm_eps assert pooling_type in [ "mean", "max", ], F"Got {pooling_type} for `pooling_type` but only 'mean' and 'max' are supported." SCREAMING_SNAKE_CASE_ = pooling_type assert attention_type in [ "relative_shift", "factorized", ], F"Got {attention_type} for `attention_type` but only 'relative_shift' and 'factorized' are supported." SCREAMING_SNAKE_CASE_ = attention_type SCREAMING_SNAKE_CASE_ = separate_cls SCREAMING_SNAKE_CASE_ = truncate_seq SCREAMING_SNAKE_CASE_ = pool_q_only super().__init__(**_lowerCAmelCase ) @property def lowerCAmelCase_ ( self : Optional[int] ): return sum(self.block_sizes ) @num_hidden_layers.setter def lowerCAmelCase_ ( self : int , _lowerCAmelCase : List[Any] ): raise NotImplementedError( 'This model does not support the setting of `num_hidden_layers`. Please set `block_sizes`.' ) @property def lowerCAmelCase_ ( self : List[Any] ): return len(self.block_sizes ) @num_blocks.setter def lowerCAmelCase_ ( self : Dict , _lowerCAmelCase : Union[str, Any] ): raise NotImplementedError('This model does not support the setting of `num_blocks`. Please set `block_sizes`.' )
31
0
import contextlib import importlib import io import unittest import transformers # Try to import everything from transformers to ensure every object can be loaded. from transformers import * # noqa F406 from transformers.testing_utils import DUMMY_UNKNOWN_IDENTIFIER, require_flax, require_tf, require_torch from transformers.utils import ContextManagers, find_labels, is_flax_available, is_tf_available, is_torch_available if is_torch_available(): from transformers import BertForPreTraining, BertForQuestionAnswering, BertForSequenceClassification if is_tf_available(): from transformers import TFBertForPreTraining, TFBertForQuestionAnswering, TFBertForSequenceClassification if is_flax_available(): from transformers import FlaxBertForPreTraining, FlaxBertForQuestionAnswering, FlaxBertForSequenceClassification lowerCAmelCase_ = DUMMY_UNKNOWN_IDENTIFIER # An actual model hosted on huggingface.co lowerCAmelCase_ = '''main''' # Default branch name lowerCAmelCase_ = '''f2c752cfc5c0ab6f4bdec59acea69eefbee381c2''' # One particular commit (not the top of `main`) lowerCAmelCase_ = '''aaaaaaa''' # This commit does not exist, so we should 404. lowerCAmelCase_ = '''d9e9f15bc825e4b2c9249e9578f884bbcb5e3684''' # Sha-1 of config.json on the top of `main`, for checking purposes lowerCAmelCase_ = '''4b243c475af8d0a7754e87d7d096c92e5199ec2fe168a2ee7998e3b8e9bcb1d3''' @contextlib.contextmanager def lowerCamelCase_ ( ) -> Any: """simple docstring""" print('''Welcome!''' ) yield print('''Bye!''' ) @contextlib.contextmanager def lowerCamelCase_ ( ) -> Any: """simple docstring""" print('''Bonjour!''' ) yield print('''Au revoir!''' ) class __lowerCAmelCase ( unittest.TestCase ): def lowerCamelCase (self ) -> Tuple: '''simple docstring''' assert transformers.__spec__ is not None assert importlib.util.find_spec('''transformers''' ) is not None class __lowerCAmelCase ( unittest.TestCase ): @unittest.mock.patch('''sys.stdout''' , new_callable=io.StringIO ) def lowerCamelCase (self , __magic_name__ ) -> Any: '''simple docstring''' with ContextManagers([] ): print('''Transformers are awesome!''' ) # The print statement adds a new line at the end of the output self.assertEqual(mock_stdout.getvalue() , '''Transformers are awesome!\n''' ) @unittest.mock.patch('''sys.stdout''' , new_callable=io.StringIO ) def lowerCamelCase (self , __magic_name__ ) -> List[str]: '''simple docstring''' with ContextManagers([context_en()] ): print('''Transformers are awesome!''' ) # The output should be wrapped with an English welcome and goodbye self.assertEqual(mock_stdout.getvalue() , '''Welcome!\nTransformers are awesome!\nBye!\n''' ) @unittest.mock.patch('''sys.stdout''' , new_callable=io.StringIO ) def lowerCamelCase (self , __magic_name__ ) -> Tuple: '''simple docstring''' with ContextManagers([context_fr(), context_en()] ): print('''Transformers are awesome!''' ) # The output should be wrapped with an English and French welcome and goodbye self.assertEqual(mock_stdout.getvalue() , '''Bonjour!\nWelcome!\nTransformers are awesome!\nBye!\nAu revoir!\n''' ) @require_torch def lowerCamelCase (self ) -> Union[str, Any]: '''simple docstring''' self.assertEqual(find_labels(__magic_name__ ) , ['''labels'''] ) self.assertEqual(find_labels(__magic_name__ ) , ['''labels''', '''next_sentence_label'''] ) self.assertEqual(find_labels(__magic_name__ ) , ['''start_positions''', '''end_positions'''] ) class __lowerCAmelCase ( _a ): pass self.assertEqual(find_labels(__magic_name__ ) , ['''labels'''] ) @require_tf def lowerCamelCase (self ) -> str: '''simple docstring''' self.assertEqual(find_labels(__magic_name__ ) , ['''labels'''] ) self.assertEqual(find_labels(__magic_name__ ) , ['''labels''', '''next_sentence_label'''] ) self.assertEqual(find_labels(__magic_name__ ) , ['''start_positions''', '''end_positions'''] ) class __lowerCAmelCase ( _a ): pass self.assertEqual(find_labels(__magic_name__ ) , ['''labels'''] ) @require_flax def lowerCamelCase (self ) -> str: '''simple docstring''' self.assertEqual(find_labels(__magic_name__ ) , [] ) self.assertEqual(find_labels(__magic_name__ ) , [] ) self.assertEqual(find_labels(__magic_name__ ) , [] ) class __lowerCAmelCase ( _a ): pass self.assertEqual(find_labels(__magic_name__ ) , [] )
60
from __future__ import annotations from collections.abc import Iterator class lowerCamelCase_ : '''simple docstring''' def __init__( self : Union[str, Any] , _lowerCAmelCase : int ): SCREAMING_SNAKE_CASE_ = value SCREAMING_SNAKE_CASE_ = None SCREAMING_SNAKE_CASE_ = None class lowerCamelCase_ : '''simple docstring''' def __init__( self : int , _lowerCAmelCase : Node ): SCREAMING_SNAKE_CASE_ = tree def lowerCAmelCase_ ( self : Union[str, Any] , _lowerCAmelCase : Node | None ): if node is None: return 0 return node.value + ( self.depth_first_search(node.left ) + self.depth_first_search(node.right ) ) def __iter__( self : Dict ): yield self.depth_first_search(self.tree ) if __name__ == "__main__": import doctest doctest.testmod()
31
0
import argparse import json import os import torch from torch import nn from transformers import NllbMoeConfig, NllbMoeModel from transformers.modeling_utils import dtype_byte_size from transformers.utils import WEIGHTS_INDEX_NAME, WEIGHTS_NAME def _A ( lowerCAmelCase_ : Any ): """simple docstring""" lowerCAmelCase__ = [ "encoder.version", "decoder.version", "model.encoder.version", "model.decoder.version", "decoder.output_projection.weight", "_float_tensor", "encoder.embed_positions._float_tensor", "decoder.embed_positions._float_tensor", ] for k in ignore_keys: state_dict.pop(lowerCAmelCase_ , lowerCAmelCase_ ) def _A ( lowerCAmelCase_ : str ): """simple docstring""" lowerCAmelCase__ , lowerCAmelCase__ = emb.weight.shape lowerCAmelCase__ = nn.Linear(lowerCAmelCase_ , lowerCAmelCase_ , bias=lowerCAmelCase_ ) lowerCAmelCase__ = emb.weight.data return lin_layer def _A ( lowerCAmelCase_ : Optional[Any] , lowerCAmelCase_ : Dict=None ): """simple docstring""" lowerCAmelCase__ = {} for old_key in state_dict.keys(): lowerCAmelCase__ = old_key if "moe_layer.experts." in key: if expert_idx is not None: lowerCAmelCase__ = key.replace("moe_layer.experts.0" , F'ffn.experts.expert_{expert_idx}' ) else: lowerCAmelCase__ = key.replace("moe_layer.experts." , "ffn.experts.expert_" ) if "gate" in key: lowerCAmelCase__ = key.replace(".moe_layer.gate.wg" , ".ffn.router.classifier" ) if "fc2" and "experts" not in key: lowerCAmelCase__ = key.replace(".fc2." , ".ffn.fc2." ) if "fc1" and "experts" not in key: lowerCAmelCase__ = key.replace(".fc1." , ".ffn.fc1." ) if ".encoder_attn." in key: lowerCAmelCase__ = key.replace(".encoder_attn." , ".cross_attention." ) if "encoder_attn_layer_norm" in key: lowerCAmelCase__ = key.replace("encoder_attn_layer_norm" , "cross_attention_layer_norm" ) if "final_layer_norm" in key: lowerCAmelCase__ = key.replace("final_layer_norm" , "ff_layer_norm" ) lowerCAmelCase__ = state_dict[old_key] return new_dict def _A ( lowerCAmelCase_ : int , lowerCAmelCase_ : Optional[Any] , lowerCAmelCase_ : Tuple , lowerCAmelCase_ : List[str] , lowerCAmelCase_ : str = WEIGHTS_NAME ): """simple docstring""" lowerCAmelCase__ = [] lowerCAmelCase__ = 0 os.makedirs(lowerCAmelCase_ , exist_ok=lowerCAmelCase_ ) for expert in range(lowerCAmelCase_ ): lowerCAmelCase__ = switch_checkpoint_path + F'-rank-{expert}.pt' if os.path.isfile(lowerCAmelCase_ ): lowerCAmelCase__ = torch.load(lowerCAmelCase_ )["model"] remove_ignore_keys_(lowerCAmelCase_ ) lowerCAmelCase__ = rename_fairseq_keys(lowerCAmelCase_ , lowerCAmelCase_ ) lowerCAmelCase__ = os.path.join( lowerCAmelCase_ , weights_name.replace(".bin" , F'-{len(lowerCAmelCase_ )+1:05d}-of-???.bin' ) ) torch.save(lowerCAmelCase_ , lowerCAmelCase_ ) sharded_state_dicts.append(expert_state.keys() ) total_size += sum([value.numel() for key, value in expert_state.items()] ) * dtype_byte_size( expert_state[list(lowerCAmelCase_ )[0]].dtype ) # Add the last block lowerCAmelCase__ = os.path.join(lowerCAmelCase_ , weights_name.replace(".bin" , F'-{len(lowerCAmelCase_ )+1:05d}-of-???.bin' ) ) lowerCAmelCase__ = torch.load(switch_checkpoint_path + "-shared.pt" )["model"] remove_ignore_keys_(lowerCAmelCase_ ) lowerCAmelCase__ = rename_fairseq_keys(lowerCAmelCase_ , lowerCAmelCase_ ) lowerCAmelCase__ = shared_weights["decoder.embed_tokens.weight"] sharded_state_dicts.append(shared_weights.keys() ) # If we only have the shared weights (dummy model/experts saved on the same file) if len(lowerCAmelCase_ ) == 1: lowerCAmelCase__ = os.path.join(lowerCAmelCase_ , lowerCAmelCase_ ) torch.save(lowerCAmelCase_ , lowerCAmelCase_ ) return {weights_name: sharded_state_dicts[0]}, None else: torch.save(lowerCAmelCase_ , lowerCAmelCase_ ) # Otherwise, let's build the index lowerCAmelCase__ = {} for idx, shard in enumerate(lowerCAmelCase_ ): lowerCAmelCase__ = weights_name.replace(".bin" , F'-{idx+1:05d}-of-{len(lowerCAmelCase_ ):05d}.bin' ) lowerCAmelCase__ = os.path.join(lowerCAmelCase_ , weights_name.replace(".bin" , F'-{idx+1:05d}-of-???.bin' ) ) os.rename(lowerCAmelCase_ , os.path.join(lowerCAmelCase_ , lowerCAmelCase_ ) ) for key in shard: lowerCAmelCase__ = shard_file # Add the metadata lowerCAmelCase__ = {"total_size": total_size} lowerCAmelCase__ = {"metadata": metadata, "weight_map": weight_map} with open(os.path.join(lowerCAmelCase_ , lowerCAmelCase_ ) , "w" , encoding="utf-8" ) as f: lowerCAmelCase__ = json.dumps(lowerCAmelCase_ , indent=2 , sort_keys=lowerCAmelCase_ ) + "\n" f.write(lowerCAmelCase_ ) return metadata, index if __name__ == "__main__": UpperCamelCase = argparse.ArgumentParser() # Required parameters parser.add_argument( '--nllb_moe_checkpoint_path', default='/home/arthur_huggingface_co/fairseq/weights/checkpoints/model_moe_54b/checkpoint_2_300000', type=str, required=False, help='Path to a directory containing a folder per layer. Follows the original Google format.', ) parser.add_argument('--dtype', default='float32', type=str, required=False, help='dtype of the saved model') parser.add_argument( '--pytorch_dump_folder_path', default='/home/arthur_huggingface_co/fairseq/weights/checkpoints/hf-converted-moe-54b', type=str, required=False, help='Path to the output pytorch model.', ) UpperCamelCase = parser.parse_args() UpperCamelCase , UpperCamelCase = shard_on_the_fly( args.nllb_moe_checkpoint_path, args.pytorch_dump_folder_path, 128, args.dtype, ) UpperCamelCase = NllbMoeConfig.from_pretrained( 'facebook/nllb-200-3.3B', encoder_sparse_step=4, decoder_sparse_step=4, num_experts=128 ) config.save_pretrained(args.pytorch_dump_folder_path) UpperCamelCase = NllbMoeModel.from_pretrained(args.pytorch_dump_folder_path) print('Done') model.save_pretrained(args.pytorch_dump_folder_path)
61
def UpperCAmelCase_ ( __UpperCAmelCase : list , __UpperCAmelCase : int , __UpperCAmelCase : int = 0 , __UpperCAmelCase : int = 0 ) -> int: SCREAMING_SNAKE_CASE_ = right or len(__UpperCAmelCase ) - 1 if left > right: return -1 elif list_data[left] == key: return left elif list_data[right] == key: return right else: return search(__UpperCAmelCase , __UpperCAmelCase , left + 1 , right - 1 ) if __name__ == "__main__": import doctest doctest.testmod()
31
0
import os def lowerCamelCase__ ( lowercase = "input.txt" ): """simple docstring""" with open(os.path.join(os.path.dirname(lowercase ) , lowercase ) ) as input_file: SCREAMING_SNAKE_CASE : List[str] = [ [int(lowercase ) for element in line.split("," )] for line in input_file.readlines() ] SCREAMING_SNAKE_CASE : Optional[Any] = len(lowercase ) SCREAMING_SNAKE_CASE : Dict = len(matrix[0] ) SCREAMING_SNAKE_CASE : Dict = [[-1 for _ in range(lowercase )] for _ in range(lowercase )] for i in range(lowercase ): SCREAMING_SNAKE_CASE : List[Any] = matrix[i][0] for j in range(1 , lowercase ): for i in range(lowercase ): SCREAMING_SNAKE_CASE : List[str] = minimal_path_sums[i][j - 1] + matrix[i][j] for i in range(1 , lowercase ): SCREAMING_SNAKE_CASE : Optional[int] = min( minimal_path_sums[i][j] , minimal_path_sums[i - 1][j] + matrix[i][j] ) for i in range(rows - 2 , -1 , -1 ): SCREAMING_SNAKE_CASE : List[str] = min( minimal_path_sums[i][j] , minimal_path_sums[i + 1][j] + matrix[i][j] ) return min(minimal_path_sums_row[-1] for minimal_path_sums_row in minimal_path_sums ) if __name__ == "__main__": print(F"""{solution() = }""")
62
import os from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils import AddedToken from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_fnet import FNetTokenizer else: lowerCamelCase__ : Optional[Any] = None lowerCamelCase__ : List[str] = logging.get_logger(__name__) lowerCamelCase__ : List[str] = {'vocab_file': 'spiece.model', 'tokenizer_file': 'tokenizer.json'} lowerCamelCase__ : List[str] = { 'vocab_file': { 'google/fnet-base': 'https://huggingface.co/google/fnet-base/resolve/main/spiece.model', 'google/fnet-large': 'https://huggingface.co/google/fnet-large/resolve/main/spiece.model', }, 'tokenizer_file': { 'google/fnet-base': 'https://huggingface.co/google/fnet-base/resolve/main/tokenizer.json', 'google/fnet-large': 'https://huggingface.co/google/fnet-large/resolve/main/tokenizer.json', }, } lowerCamelCase__ : Optional[Any] = { 'google/fnet-base': 512, 'google/fnet-large': 512, } lowerCamelCase__ : List[Any] = '▁' class lowerCamelCase_ ( _SCREAMING_SNAKE_CASE ): '''simple docstring''' lowercase_ = VOCAB_FILES_NAMES lowercase_ = PRETRAINED_VOCAB_FILES_MAP lowercase_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowercase_ = ["input_ids", "token_type_ids"] lowercase_ = FNetTokenizer def __init__( self : List[Any] , _lowerCAmelCase : Dict=None , _lowerCAmelCase : Dict=None , _lowerCAmelCase : List[str]=False , _lowerCAmelCase : Optional[Any]=True , _lowerCAmelCase : Tuple=True , _lowerCAmelCase : List[Any]="<unk>" , _lowerCAmelCase : Optional[Any]="[SEP]" , _lowerCAmelCase : Optional[Any]="<pad>" , _lowerCAmelCase : Optional[int]="[CLS]" , _lowerCAmelCase : Optional[Any]="[MASK]" , **_lowerCAmelCase : Any , ): # Mask token behave like a normal word, i.e. include the space before it and # is included in the raw text, there should be a match in a non-normalized sentence. SCREAMING_SNAKE_CASE_ = ( AddedToken(_lowerCAmelCase , lstrip=_lowerCAmelCase , rstrip=_lowerCAmelCase , normalized=_lowerCAmelCase ) if isinstance(_lowerCAmelCase , _lowerCAmelCase ) else mask_token ) super().__init__( _lowerCAmelCase , tokenizer_file=_lowerCAmelCase , do_lower_case=_lowerCAmelCase , remove_space=_lowerCAmelCase , keep_accents=_lowerCAmelCase , unk_token=_lowerCAmelCase , sep_token=_lowerCAmelCase , pad_token=_lowerCAmelCase , cls_token=_lowerCAmelCase , mask_token=_lowerCAmelCase , **_lowerCAmelCase , ) SCREAMING_SNAKE_CASE_ = do_lower_case SCREAMING_SNAKE_CASE_ = remove_space SCREAMING_SNAKE_CASE_ = keep_accents SCREAMING_SNAKE_CASE_ = vocab_file SCREAMING_SNAKE_CASE_ = False if not self.vocab_file else True def lowerCAmelCase_ ( self : Any , _lowerCAmelCase : List[int] , _lowerCAmelCase : Optional[List[int]] = None ): SCREAMING_SNAKE_CASE_ = [self.sep_token_id] SCREAMING_SNAKE_CASE_ = [self.cls_token_id] if token_ids_a is None: return cls + token_ids_a + sep return cls + token_ids_a + sep + token_ids_a + sep def lowerCAmelCase_ ( self : Optional[int] , _lowerCAmelCase : List[int] , _lowerCAmelCase : Optional[List[int]] = None ): SCREAMING_SNAKE_CASE_ = [self.sep_token_id] SCREAMING_SNAKE_CASE_ = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def lowerCAmelCase_ ( self : Optional[Any] , _lowerCAmelCase : str , _lowerCAmelCase : Optional[str] = None ): if not os.path.isdir(_lowerCAmelCase ): logger.error(F"Vocabulary path ({save_directory}) should be a directory" ) return SCREAMING_SNAKE_CASE_ = os.path.join( _lowerCAmelCase , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(_lowerCAmelCase ): copyfile(self.vocab_file , _lowerCAmelCase ) return (out_vocab_file,)
31
0
a : Optional[int] = 9.8_06_65 def lowerCamelCase__ ( __lowerCamelCase : float , __lowerCamelCase : float , __lowerCamelCase : float = g ): if fluid_density <= 0: raise ValueError("""Impossible fluid density""" ) if volume < 0: raise ValueError("""Impossible Object volume""" ) if gravity <= 0: raise ValueError("""Impossible Gravity""" ) return fluid_density * gravity * volume if __name__ == "__main__": import doctest # run doctest doctest.testmod()
63
from __future__ import annotations from collections.abc import Generator def UpperCAmelCase_ ( ) -> Generator[int, None, None]: SCREAMING_SNAKE_CASE_ = {} SCREAMING_SNAKE_CASE_ = 2 while True: SCREAMING_SNAKE_CASE_ = factor_map.pop(__UpperCAmelCase , __UpperCAmelCase ) if factor: SCREAMING_SNAKE_CASE_ = factor + prime while x in factor_map: x += factor SCREAMING_SNAKE_CASE_ = factor else: SCREAMING_SNAKE_CASE_ = prime yield prime prime += 1 def UpperCAmelCase_ ( __UpperCAmelCase : float = 1E10 ) -> int: SCREAMING_SNAKE_CASE_ = sieve() SCREAMING_SNAKE_CASE_ = 1 while True: SCREAMING_SNAKE_CASE_ = next(__UpperCAmelCase ) if (2 * prime * n) > limit: return n # Ignore the next prime as the reminder will be 2. next(__UpperCAmelCase ) n += 2 if __name__ == "__main__": print(solution())
31
0
from .imports import is_rich_available if is_rich_available(): from rich.traceback import install install(show_locals=False) else: raise ModuleNotFoundError('To use the rich extension, install rich with `pip install rich`')
64
import numpy as np import torch from torch.utils.data import DataLoader from accelerate.utils.dataclasses import DistributedType class lowerCamelCase_ : '''simple docstring''' def __init__( self : Any , _lowerCAmelCase : Optional[int]=2 , _lowerCAmelCase : Any=3 , _lowerCAmelCase : Tuple=64 , _lowerCAmelCase : List[str]=None ): SCREAMING_SNAKE_CASE_ = np.random.default_rng(_lowerCAmelCase ) SCREAMING_SNAKE_CASE_ = length SCREAMING_SNAKE_CASE_ = rng.normal(size=(length,) ).astype(np.floataa ) SCREAMING_SNAKE_CASE_ = a * self.x + b + rng.normal(scale=0.1 , size=(length,) ).astype(np.floataa ) def __len__( self : Optional[int] ): return self.length def __getitem__( self : str , _lowerCAmelCase : Union[str, Any] ): return {"x": self.x[i], "y": self.y[i]} class lowerCamelCase_ ( torch.nn.Module ): '''simple docstring''' def __init__( self : Tuple , _lowerCAmelCase : Dict=0 , _lowerCAmelCase : List[str]=0 , _lowerCAmelCase : str=False ): super().__init__() SCREAMING_SNAKE_CASE_ = torch.nn.Parameter(torch.tensor([2, 3] ).float() ) SCREAMING_SNAKE_CASE_ = torch.nn.Parameter(torch.tensor([2, 3] ).float() ) SCREAMING_SNAKE_CASE_ = True def lowerCAmelCase_ ( self : Dict , _lowerCAmelCase : Union[str, Any]=None ): if self.first_batch: print(F"Model dtype: {self.a.dtype}, {self.b.dtype}. Input dtype: {x.dtype}" ) SCREAMING_SNAKE_CASE_ = False return x * self.a[0] + self.b[0] class lowerCamelCase_ ( torch.nn.Module ): '''simple docstring''' def __init__( self : Optional[int] , _lowerCAmelCase : Any=0 , _lowerCAmelCase : Any=0 , _lowerCAmelCase : Optional[Any]=False ): super().__init__() SCREAMING_SNAKE_CASE_ = torch.nn.Parameter(torch.tensor(_lowerCAmelCase ).float() ) SCREAMING_SNAKE_CASE_ = torch.nn.Parameter(torch.tensor(_lowerCAmelCase ).float() ) SCREAMING_SNAKE_CASE_ = True def lowerCAmelCase_ ( self : Optional[Any] , _lowerCAmelCase : Optional[int]=None ): if self.first_batch: print(F"Model dtype: {self.a.dtype}, {self.b.dtype}. Input dtype: {x.dtype}" ) SCREAMING_SNAKE_CASE_ = False return x * self.a + self.b def UpperCAmelCase_ ( __UpperCAmelCase : Dict , __UpperCAmelCase : int = 16 ) -> Union[str, Any]: from datasets import load_dataset from transformers import AutoTokenizer SCREAMING_SNAKE_CASE_ = AutoTokenizer.from_pretrained('bert-base-cased' ) SCREAMING_SNAKE_CASE_ = {'train': 'tests/test_samples/MRPC/train.csv', 'validation': 'tests/test_samples/MRPC/dev.csv'} SCREAMING_SNAKE_CASE_ = load_dataset('csv' , data_files=__UpperCAmelCase ) SCREAMING_SNAKE_CASE_ = datasets['train'].unique('label' ) SCREAMING_SNAKE_CASE_ = {v: i for i, v in enumerate(__UpperCAmelCase )} def tokenize_function(__UpperCAmelCase : Optional[int] ): # max_length=None => use the model max length (it's actually the default) SCREAMING_SNAKE_CASE_ = tokenizer( examples['sentence1'] , examples['sentence2'] , truncation=__UpperCAmelCase , max_length=__UpperCAmelCase , padding='max_length' ) if "label" in examples: SCREAMING_SNAKE_CASE_ = [label_to_id[l] for l in examples['label']] return outputs # Apply the method we just defined to all the examples in all the splits of the dataset SCREAMING_SNAKE_CASE_ = datasets.map( __UpperCAmelCase , batched=__UpperCAmelCase , remove_columns=['sentence1', 'sentence2', 'label'] , ) def collate_fn(__UpperCAmelCase : Dict ): # On TPU it's best to pad everything to the same length or training will be very slow. if accelerator.distributed_type == DistributedType.TPU: return tokenizer.pad(__UpperCAmelCase , padding='max_length' , max_length=1_28 , return_tensors='pt' ) return tokenizer.pad(__UpperCAmelCase , padding='longest' , return_tensors='pt' ) # Instantiate dataloaders. SCREAMING_SNAKE_CASE_ = DataLoader(tokenized_datasets['train'] , shuffle=__UpperCAmelCase , collate_fn=__UpperCAmelCase , batch_size=2 ) SCREAMING_SNAKE_CASE_ = DataLoader(tokenized_datasets['validation'] , shuffle=__UpperCAmelCase , collate_fn=__UpperCAmelCase , batch_size=1 ) return train_dataloader, eval_dataloader
31
0
"""simple docstring""" from typing import Tuple, Union from ...modeling_outputs import BackboneOutput from ...modeling_utils import PreTrainedModel from ...utils import is_timm_available, is_torch_available, requires_backends from ...utils.backbone_utils import BackboneMixin from .configuration_timm_backbone import TimmBackboneConfig if is_timm_available(): import timm if is_torch_available(): from torch import Tensor class __lowercase ( __lowerCamelCase , __lowerCamelCase ): snake_case_ = """pixel_values""" snake_case_ = False snake_case_ = TimmBackboneConfig def __init__( self : Union[str, Any] ,A : Optional[int] ,**A : Union[str, Any] ): '''simple docstring''' requires_backends(self ,"""timm""" ) super().__init__(A ) UpperCAmelCase__ : List[Any] = config if config.backbone is None: raise ValueError("""backbone is not set in the config. Please set it to a timm model name.""" ) if config.backbone not in timm.list_models(): raise ValueError(f"backbone {config.backbone} is not supported by timm." ) if hasattr(A ,"""out_features""" ) and config.out_features is not None: raise ValueError("""out_features is not supported by TimmBackbone. Please use out_indices instead.""" ) UpperCAmelCase__ : List[Any] = getattr(A ,"""use_pretrained_backbone""" ,A ) if pretrained is None: raise ValueError("""use_pretrained_backbone is not set in the config. Please set it to True or False.""" ) # We just take the final layer by default. This matches the default for the transformers models. UpperCAmelCase__ : List[str] = config.out_indices if getattr(A ,"""out_indices""" ,A ) is not None else (-1,) UpperCAmelCase__ : Dict = timm.create_model( config.backbone ,pretrained=A ,features_only=config.features_only ,in_chans=config.num_channels ,out_indices=A ,**A ,) # These are used to control the output of the model when called. If output_hidden_states is True, then # return_layers is modified to include all layers. UpperCAmelCase__ : Union[str, Any] = self._backbone.return_layers UpperCAmelCase__ : int = {layer["""module"""]: str(A ) for i, layer in enumerate(self._backbone.feature_info.info )} super()._init_backbone(A ) @classmethod def __lowercase ( cls : int ,A : Optional[Any] ,*A : int ,**A : Optional[Any] ): '''simple docstring''' requires_backends(cls ,["""vision""", """timm"""] ) from ...models.timm_backbone import TimmBackboneConfig UpperCAmelCase__ : str = kwargs.pop("""config""" ,TimmBackboneConfig() ) UpperCAmelCase__ : Optional[Any] = kwargs.pop("""use_timm_backbone""" ,A ) if not use_timm: raise ValueError("""use_timm_backbone must be True for timm backbones""" ) UpperCAmelCase__ : Union[str, Any] = kwargs.pop("""num_channels""" ,config.num_channels ) UpperCAmelCase__ : Tuple = kwargs.pop("""features_only""" ,config.features_only ) UpperCAmelCase__ : List[str] = kwargs.pop("""use_pretrained_backbone""" ,config.use_pretrained_backbone ) UpperCAmelCase__ : Union[str, Any] = kwargs.pop("""out_indices""" ,config.out_indices ) UpperCAmelCase__ : Any = TimmBackboneConfig( backbone=A ,num_channels=A ,features_only=A ,use_pretrained_backbone=A ,out_indices=A ,) return super()._from_config(A ,**A ) def __lowercase ( self : Optional[int] ,A : Optional[Any] ): '''simple docstring''' pass def __lowercase ( self : Optional[Any] ,A : Optional[Any] ,A : Optional[Any]=None ,A : Any=None ,A : int=None ,**A : int ): '''simple docstring''' UpperCAmelCase__ : str = return_dict if return_dict is not None else self.config.use_return_dict UpperCAmelCase__ : str = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) UpperCAmelCase__ : Tuple = output_attentions if output_attentions is not None else self.config.output_attentions if output_attentions: raise ValueError("""Cannot output attentions for timm backbones at the moment""" ) if output_hidden_states: # We modify the return layers to include all the stages of the backbone UpperCAmelCase__ : Tuple = self._all_layers UpperCAmelCase__ : Tuple = self._backbone(A ,**A ) UpperCAmelCase__ : Tuple = self._return_layers UpperCAmelCase__ : Union[str, Any] = tuple(hidden_states[i] for i in self.out_indices ) else: UpperCAmelCase__ : List[str] = self._backbone(A ,**A ) UpperCAmelCase__ : Any = None UpperCAmelCase__ : List[Any] = tuple(A ) UpperCAmelCase__ : Dict = tuple(A ) if hidden_states is not None else None if not return_dict: UpperCAmelCase__ : str = (feature_maps,) if output_hidden_states: UpperCAmelCase__ : Optional[Any] = output + (hidden_states,) return output return BackboneOutput(feature_maps=A ,hidden_states=A ,attentions=A )
65
import warnings from ...utils import logging from .image_processing_layoutlmva import LayoutLMvaImageProcessor lowerCamelCase__ : Union[str, Any] = logging.get_logger(__name__) class lowerCamelCase_ ( _SCREAMING_SNAKE_CASE ): '''simple docstring''' def __init__( self : Dict , *_lowerCAmelCase : Optional[Any] , **_lowerCAmelCase : Any ): warnings.warn( 'The class LayoutLMv2FeatureExtractor is deprecated and will be removed in version 5 of Transformers.' ' Please use LayoutLMv2ImageProcessor instead.' , _lowerCAmelCase , ) super().__init__(*_lowerCAmelCase , **_lowerCAmelCase )
31
0
import gc import random import unittest import numpy as np import torch from PIL import Image from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, EulerAncestralDiscreteScheduler, LMSDiscreteScheduler, PNDMScheduler, StableDiffusionInstructPixaPixPipeline, UNetaDConditionModel, ) from diffusers.image_processor import VaeImageProcessor from diffusers.utils import floats_tensor, load_image, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..pipeline_params import ( IMAGE_TO_IMAGE_IMAGE_PARAMS, TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_PARAMS, ) from ..test_pipelines_common import PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() class lowerCAmelCase_ ( __snake_case , __snake_case , __snake_case , unittest.TestCase ): _UpperCamelCase : Dict = StableDiffusionInstructPixaPixPipeline _UpperCamelCase : Optional[int] = TEXT_GUIDED_IMAGE_VARIATION_PARAMS - {"height", "width", "cross_attention_kwargs"} _UpperCamelCase : Dict = TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS _UpperCamelCase : List[Any] = IMAGE_TO_IMAGE_IMAGE_PARAMS _UpperCamelCase : Optional[Any] = IMAGE_TO_IMAGE_IMAGE_PARAMS def __a ( self ): torch.manual_seed(0 ) _lowercase : Optional[Any] = UNetaDConditionModel( block_out_channels=(3_2, 6_4) , layers_per_block=2 , sample_size=3_2 , in_channels=8 , out_channels=4 , down_block_types=('DownBlock2D', 'CrossAttnDownBlock2D') , up_block_types=('CrossAttnUpBlock2D', 'UpBlock2D') , cross_attention_dim=3_2 , ) _lowercase : Optional[int] = PNDMScheduler(skip_prk_steps=_lowerCAmelCase ) torch.manual_seed(0 ) _lowercase : List[Any] = AutoencoderKL( block_out_channels=[3_2, 6_4] , in_channels=3 , out_channels=3 , down_block_types=['DownEncoderBlock2D', 'DownEncoderBlock2D'] , up_block_types=['UpDecoderBlock2D', 'UpDecoderBlock2D'] , latent_channels=4 , ) torch.manual_seed(0 ) _lowercase : int = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=3_2 , intermediate_size=3_7 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_0_0_0 , ) _lowercase : Any = CLIPTextModel(_lowerCAmelCase ) _lowercase : Tuple = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip' ) _lowercase : List[str] = { 'unet': unet, 'scheduler': scheduler, 'vae': vae, 'text_encoder': text_encoder, 'tokenizer': tokenizer, 'safety_checker': None, 'feature_extractor': None, } return components def __a ( self , _lowerCAmelCase , _lowerCAmelCase=0 ): _lowercase : Tuple = floats_tensor((1, 3, 3_2, 3_2) , rng=random.Random(_lowerCAmelCase ) ).to(_lowerCAmelCase ) _lowercase : Optional[int] = image.cpu().permute(0 , 2 , 3 , 1 )[0] _lowercase : Dict = Image.fromarray(np.uinta(_lowerCAmelCase ) ).convert('RGB' ) if str(_lowerCAmelCase ).startswith('mps' ): _lowercase : List[Any] = torch.manual_seed(_lowerCAmelCase ) else: _lowercase : int = torch.Generator(device=_lowerCAmelCase ).manual_seed(_lowerCAmelCase ) _lowercase : Any = { 'prompt': 'A painting of a squirrel eating a burger', 'image': image, 'generator': generator, 'num_inference_steps': 2, 'guidance_scale': 6.0, 'image_guidance_scale': 1, 'output_type': 'numpy', } return inputs def __a ( self ): _lowercase : str = 'cpu' # ensure determinism for the device-dependent torch.Generator _lowercase : List[Any] = self.get_dummy_components() _lowercase : Optional[int] = StableDiffusionInstructPixaPixPipeline(**_lowerCAmelCase ) _lowercase : List[str] = sd_pipe.to(_lowerCAmelCase ) sd_pipe.set_progress_bar_config(disable=_lowerCAmelCase ) _lowercase : List[Any] = self.get_dummy_inputs(_lowerCAmelCase ) _lowercase : Any = sd_pipe(**_lowerCAmelCase ).images _lowercase : Dict = image[0, -3:, -3:, -1] assert image.shape == (1, 3_2, 3_2, 3) _lowercase : List[str] = np.array([0.75_26, 0.37_50, 0.45_47, 0.61_17, 0.58_66, 0.50_16, 0.43_27, 0.56_42, 0.48_15] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-3 def __a ( self ): _lowercase : Any = 'cpu' # ensure determinism for the device-dependent torch.Generator _lowercase : int = self.get_dummy_components() _lowercase : Union[str, Any] = StableDiffusionInstructPixaPixPipeline(**_lowerCAmelCase ) _lowercase : List[Any] = sd_pipe.to(_lowerCAmelCase ) sd_pipe.set_progress_bar_config(disable=_lowerCAmelCase ) _lowercase : Tuple = self.get_dummy_inputs(_lowerCAmelCase ) _lowercase : Optional[Any] = 'french fries' _lowercase : Dict = sd_pipe(**_lowerCAmelCase , negative_prompt=_lowerCAmelCase ) _lowercase : Optional[Any] = output.images _lowercase : Union[str, Any] = image[0, -3:, -3:, -1] assert image.shape == (1, 3_2, 3_2, 3) _lowercase : Any = np.array([0.75_11, 0.36_42, 0.45_53, 0.62_36, 0.57_97, 0.50_13, 0.43_43, 0.56_11, 0.48_31] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-3 def __a ( self ): _lowercase : Union[str, Any] = 'cpu' # ensure determinism for the device-dependent torch.Generator _lowercase : Dict = self.get_dummy_components() _lowercase : int = StableDiffusionInstructPixaPixPipeline(**_lowerCAmelCase ) _lowercase : Any = sd_pipe.to(_lowerCAmelCase ) sd_pipe.set_progress_bar_config(disable=_lowerCAmelCase ) _lowercase : Any = self.get_dummy_inputs(_lowerCAmelCase ) _lowercase : Union[str, Any] = [inputs['prompt']] * 2 _lowercase : Union[str, Any] = np.array(inputs['image'] ).astype(np.floataa ) / 2_55.0 _lowercase : Tuple = torch.from_numpy(_lowerCAmelCase ).unsqueeze(0 ).to(_lowerCAmelCase ) _lowercase : Optional[int] = image / 2 + 0.5 _lowercase : List[Any] = image.permute(0 , 3 , 1 , 2 ) _lowercase : Optional[int] = image.repeat(2 , 1 , 1 , 1 ) _lowercase : Any = sd_pipe(**_lowerCAmelCase ).images _lowercase : List[str] = image[-1, -3:, -3:, -1] assert image.shape == (2, 3_2, 3_2, 3) _lowercase : Optional[int] = np.array([0.58_12, 0.57_48, 0.52_22, 0.59_08, 0.56_95, 0.71_74, 0.68_04, 0.55_23, 0.55_79] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-3 def __a ( self ): _lowercase : Optional[Any] = 'cpu' # ensure determinism for the device-dependent torch.Generator _lowercase : Dict = self.get_dummy_components() _lowercase : Any = EulerAncestralDiscreteScheduler( beta_start=0.0_00_85 , beta_end=0.0_12 , beta_schedule='scaled_linear' ) _lowercase : Optional[Any] = StableDiffusionInstructPixaPixPipeline(**_lowerCAmelCase ) _lowercase : List[str] = sd_pipe.to(_lowerCAmelCase ) sd_pipe.set_progress_bar_config(disable=_lowerCAmelCase ) _lowercase : Dict = self.get_dummy_inputs(_lowerCAmelCase ) _lowercase : List[str] = sd_pipe(**_lowerCAmelCase ).images _lowercase : List[Any] = image[0, -3:, -3:, -1] _lowercase : Optional[int] = [round(_lowerCAmelCase , 4 ) for x in image_slice.flatten().tolist()] print(','.join([str(_lowerCAmelCase ) for x in slice] ) ) assert image.shape == (1, 3_2, 3_2, 3) _lowercase : str = np.array([0.74_17, 0.38_42, 0.47_32, 0.57_76, 0.58_91, 0.51_39, 0.40_52, 0.56_73, 0.49_86] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-3 def __a ( self ): super().test_inference_batch_single_identical(expected_max_diff=3E-3 ) def __a ( self ): _lowercase : Union[str, Any] = self.get_dummy_components() _lowercase : Dict = StableDiffusionInstructPixaPixPipeline(**_lowerCAmelCase ) _lowercase : List[str] = VaeImageProcessor(do_resize=_lowerCAmelCase , do_normalize=_lowerCAmelCase ) _lowercase : Dict = pipe.to(_lowerCAmelCase ) pipe.set_progress_bar_config(disable=_lowerCAmelCase ) _lowercase : str = pipe(**self.get_dummy_inputs_by_type(_lowerCAmelCase , input_image_type='pt' ) )[0] _lowercase : List[str] = components['vae'] _lowercase : Optional[Any] = self.get_dummy_inputs_by_type(_lowerCAmelCase , input_image_type='pt' ) for image_param in self.image_latents_params: if image_param in inputs.keys(): _lowercase : Optional[int] = vae.encode(inputs[image_param] ).latent_dist.mode() _lowercase : Optional[Any] = pipe(**_lowerCAmelCase )[0] _lowercase : List[str] = np.abs(out - out_latents_inputs ).max() self.assertLess(_lowerCAmelCase , 1E-4 , 'passing latents as image input generate different result from passing image' ) @slow @require_torch_gpu class lowerCAmelCase_ ( unittest.TestCase ): def __a ( self ): super().tearDown() gc.collect() torch.cuda.empty_cache() def __a ( self , _lowerCAmelCase=0 ): _lowercase : Tuple = torch.manual_seed(_lowerCAmelCase ) _lowercase : List[str] = load_image( 'https://huggingface.co/datasets/diffusers/test-arrays/resolve/main/stable_diffusion_pix2pix/example.jpg' ) _lowercase : Optional[int] = { 'prompt': 'turn him into a cyborg', 'image': image, 'generator': generator, 'num_inference_steps': 3, 'guidance_scale': 7.5, 'image_guidance_scale': 1.0, 'output_type': 'numpy', } return inputs def __a ( self ): _lowercase : Optional[Any] = StableDiffusionInstructPixaPixPipeline.from_pretrained( 'timbrooks/instruct-pix2pix' , safety_checker=_lowerCAmelCase ) pipe.to(_lowerCAmelCase ) pipe.set_progress_bar_config(disable=_lowerCAmelCase ) pipe.enable_attention_slicing() _lowercase : Tuple = self.get_inputs() _lowercase : Dict = pipe(**_lowerCAmelCase ).images _lowercase : Any = image[0, -3:, -3:, -1].flatten() assert image.shape == (1, 5_1_2, 5_1_2, 3) _lowercase : Optional[Any] = np.array([0.59_02, 0.60_15, 0.60_27, 0.59_83, 0.60_92, 0.60_61, 0.57_65, 0.57_85, 0.55_55] ) assert np.abs(expected_slice - image_slice ).max() < 1E-3 def __a ( self ): _lowercase : str = StableDiffusionInstructPixaPixPipeline.from_pretrained( 'timbrooks/instruct-pix2pix' , safety_checker=_lowerCAmelCase ) _lowercase : Dict = LMSDiscreteScheduler.from_config(pipe.scheduler.config ) pipe.to(_lowerCAmelCase ) pipe.set_progress_bar_config(disable=_lowerCAmelCase ) pipe.enable_attention_slicing() _lowercase : Optional[int] = self.get_inputs() _lowercase : Optional[int] = pipe(**_lowerCAmelCase ).images _lowercase : Any = image[0, -3:, -3:, -1].flatten() assert image.shape == (1, 5_1_2, 5_1_2, 3) _lowercase : List[Any] = np.array([0.65_78, 0.68_17, 0.69_72, 0.67_61, 0.68_56, 0.69_16, 0.64_28, 0.65_16, 0.63_01] ) assert np.abs(expected_slice - image_slice ).max() < 1E-3 def __a ( self ): _lowercase : Tuple = StableDiffusionInstructPixaPixPipeline.from_pretrained( 'timbrooks/instruct-pix2pix' , safety_checker=_lowerCAmelCase ) _lowercase : Optional[int] = DDIMScheduler.from_config(pipe.scheduler.config ) pipe.to(_lowerCAmelCase ) pipe.set_progress_bar_config(disable=_lowerCAmelCase ) pipe.enable_attention_slicing() _lowercase : Tuple = self.get_inputs() _lowercase : int = pipe(**_lowerCAmelCase ).images _lowercase : Tuple = image[0, -3:, -3:, -1].flatten() assert image.shape == (1, 5_1_2, 5_1_2, 3) _lowercase : str = np.array([0.38_28, 0.38_34, 0.38_18, 0.37_92, 0.38_65, 0.37_52, 0.37_92, 0.38_47, 0.37_53] ) assert np.abs(expected_slice - image_slice ).max() < 1E-3 def __a ( self ): _lowercase : Dict = 0 def callback_fn(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) -> None: _lowercase : Any = True nonlocal number_of_steps number_of_steps += 1 if step == 1: _lowercase : Optional[int] = latents.detach().cpu().numpy() assert latents.shape == (1, 4, 6_4, 6_4) _lowercase : Dict = latents[0, -3:, -3:, -1] _lowercase : Any = np.array([-0.24_63, -0.46_44, -0.97_56, 1.51_76, 1.44_14, 0.78_66, 0.98_97, 0.85_21, 0.79_83] ) assert np.abs(latents_slice.flatten() - expected_slice ).max() < 5E-2 elif step == 2: _lowercase : List[str] = latents.detach().cpu().numpy() assert latents.shape == (1, 4, 6_4, 6_4) _lowercase : List[Any] = latents[0, -3:, -3:, -1] _lowercase : str = np.array([-0.26_44, -0.46_26, -0.96_53, 1.51_76, 1.45_51, 0.76_86, 0.98_05, 0.84_52, 0.81_15] ) assert np.abs(latents_slice.flatten() - expected_slice ).max() < 5E-2 _lowercase : Tuple = False _lowercase : Union[str, Any] = StableDiffusionInstructPixaPixPipeline.from_pretrained( 'timbrooks/instruct-pix2pix' , safety_checker=_lowerCAmelCase , torch_dtype=torch.floataa ) _lowercase : str = pipe.to(_lowerCAmelCase ) pipe.set_progress_bar_config(disable=_lowerCAmelCase ) pipe.enable_attention_slicing() _lowercase : Any = self.get_inputs() pipe(**_lowerCAmelCase , callback=_lowerCAmelCase , callback_steps=1 ) assert callback_fn.has_been_called assert number_of_steps == 3 def __a ( self ): torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() torch.cuda.reset_peak_memory_stats() _lowercase : Dict = StableDiffusionInstructPixaPixPipeline.from_pretrained( 'timbrooks/instruct-pix2pix' , safety_checker=_lowerCAmelCase , torch_dtype=torch.floataa ) _lowercase : Dict = pipe.to(_lowerCAmelCase ) pipe.set_progress_bar_config(disable=_lowerCAmelCase ) pipe.enable_attention_slicing(1 ) pipe.enable_sequential_cpu_offload() _lowercase : List[Any] = self.get_inputs() _lowercase : List[Any] = pipe(**_lowerCAmelCase ) _lowercase : Optional[int] = torch.cuda.max_memory_allocated() # make sure that less than 2.2 GB is allocated assert mem_bytes < 2.2 * 1_0**9 def __a ( self ): _lowercase : Union[str, Any] = self.get_inputs() # resize to resolution that is divisible by 8 but not 16 or 32 _lowercase : Union[str, Any] = inputs['image'].resize((5_0_4, 5_0_4) ) _lowercase : List[str] = 'timbrooks/instruct-pix2pix' _lowercase : Dict = StableDiffusionInstructPixaPixPipeline.from_pretrained( _lowerCAmelCase , safety_checker=_lowerCAmelCase , ) pipe.to(_lowerCAmelCase ) pipe.set_progress_bar_config(disable=_lowerCAmelCase ) pipe.enable_attention_slicing() _lowercase : Any = pipe(**_lowerCAmelCase ) _lowercase : List[str] = output.images[0] _lowercase : List[Any] = image[2_5_5:2_5_8, 3_8_3:3_8_6, -1] assert image.shape == (5_0_4, 5_0_4, 3) _lowercase : Tuple = np.array([0.27_26, 0.25_29, 0.26_64, 0.26_55, 0.26_41, 0.26_42, 0.25_91, 0.26_49, 0.25_90] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 5E-3
66
def UpperCAmelCase_ ( ) -> list[list[int]]: return [list(range(10_00 - i , -10_00 - i , -1 ) ) for i in range(10_00 )] lowerCamelCase__ : List[Any] = generate_large_matrix() lowerCamelCase__ : List[Any] = ( [[4, 3, 2, -1], [3, 2, 1, -1], [1, 1, -1, -2], [-1, -1, -2, -3]], [[3, 2], [1, 0]], [[7, 7, 6]], [[7, 7, 6], [-1, -2, -3]], grid, ) def UpperCAmelCase_ ( __UpperCAmelCase : list[list[int]] ) -> None: assert all(row == sorted(__UpperCAmelCase , reverse=__UpperCAmelCase ) for row in grid ) assert all(list(__UpperCAmelCase ) == sorted(__UpperCAmelCase , reverse=__UpperCAmelCase ) for col in zip(*__UpperCAmelCase ) ) def UpperCAmelCase_ ( __UpperCAmelCase : list[int] ) -> int: SCREAMING_SNAKE_CASE_ = 0 SCREAMING_SNAKE_CASE_ = len(__UpperCAmelCase ) - 1 # Edge cases such as no values or all numbers are negative. if not array or array[0] < 0: return 0 while right + 1 > left: SCREAMING_SNAKE_CASE_ = (left + right) // 2 SCREAMING_SNAKE_CASE_ = array[mid] # Num must be negative and the index must be greater than or equal to 0. if num < 0 and array[mid - 1] >= 0: return mid if num >= 0: SCREAMING_SNAKE_CASE_ = mid + 1 else: SCREAMING_SNAKE_CASE_ = mid - 1 # No negative numbers so return the last index of the array + 1 which is the length. return len(__UpperCAmelCase ) def UpperCAmelCase_ ( __UpperCAmelCase : list[list[int]] ) -> int: SCREAMING_SNAKE_CASE_ = 0 SCREAMING_SNAKE_CASE_ = len(grid[0] ) for i in range(len(__UpperCAmelCase ) ): SCREAMING_SNAKE_CASE_ = find_negative_index(grid[i][:bound] ) total += bound return (len(__UpperCAmelCase ) * len(grid[0] )) - total def UpperCAmelCase_ ( __UpperCAmelCase : list[list[int]] ) -> int: return len([number for row in grid for number in row if number < 0] ) def UpperCAmelCase_ ( __UpperCAmelCase : list[list[int]] ) -> int: SCREAMING_SNAKE_CASE_ = 0 for row in grid: for i, number in enumerate(__UpperCAmelCase ): if number < 0: total += len(__UpperCAmelCase ) - i break return total def UpperCAmelCase_ ( ) -> None: from timeit import timeit print('Running benchmarks' ) SCREAMING_SNAKE_CASE_ = ( 'from __main__ import count_negatives_binary_search, ' 'count_negatives_brute_force, count_negatives_brute_force_with_break, grid' ) for func in ( "count_negatives_binary_search", # took 0.7727 seconds "count_negatives_brute_force_with_break", # took 4.6505 seconds "count_negatives_brute_force", # took 12.8160 seconds ): SCREAMING_SNAKE_CASE_ = timeit(f"{func}(grid=grid)" , setup=__UpperCAmelCase , number=5_00 ) print(f"{func}() took {time:0.4f} seconds" ) if __name__ == "__main__": import doctest doctest.testmod() benchmark()
31
0
snake_case = { """Pillow""": """Pillow""", """accelerate""": """accelerate>=0.11.0""", """compel""": """compel==0.1.8""", """black""": """black~=23.1""", """datasets""": """datasets""", """filelock""": """filelock""", """flax""": """flax>=0.4.1""", """hf-doc-builder""": """hf-doc-builder>=0.3.0""", """huggingface-hub""": """huggingface-hub>=0.13.2""", """requests-mock""": """requests-mock==1.10.0""", """importlib_metadata""": """importlib_metadata""", """invisible-watermark""": """invisible-watermark""", """isort""": """isort>=5.5.4""", """jax""": """jax>=0.2.8,!=0.3.2""", """jaxlib""": """jaxlib>=0.1.65""", """Jinja2""": """Jinja2""", """k-diffusion""": """k-diffusion>=0.0.12""", """torchsde""": """torchsde""", """note_seq""": """note_seq""", """librosa""": """librosa""", """numpy""": """numpy""", """omegaconf""": """omegaconf""", """parameterized""": """parameterized""", """protobuf""": """protobuf>=3.20.3,<4""", """pytest""": """pytest""", """pytest-timeout""": """pytest-timeout""", """pytest-xdist""": """pytest-xdist""", """ruff""": """ruff>=0.0.241""", """safetensors""": """safetensors""", """sentencepiece""": """sentencepiece>=0.1.91,!=0.1.92""", """scipy""": """scipy""", """onnx""": """onnx""", """regex""": """regex!=2019.12.17""", """requests""": """requests""", """tensorboard""": """tensorboard""", """torch""": """torch>=1.4""", """torchvision""": """torchvision""", """transformers""": """transformers>=4.25.1""", """urllib3""": """urllib3<=2.0.0""", }
67
from typing import TYPE_CHECKING from ....utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available lowerCamelCase__ : Optional[int] = {'configuration_mmbt': ['MMBTConfig']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase__ : Any = ['MMBTForClassification', 'MMBTModel', 'ModalEmbeddings'] if TYPE_CHECKING: from .configuration_mmbt import MMBTConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mmbt import MMBTForClassification, MMBTModel, ModalEmbeddings else: import sys lowerCamelCase__ : str = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
31
0
import shutil import tempfile import unittest from transformers import SPIECE_UNDERLINE, BatchEncoding, MBartTokenizer, MBartTokenizerFast, is_torch_available from transformers.testing_utils import ( get_tests_dir, nested_simplify, require_sentencepiece, require_tokenizers, require_torch, ) from ...test_tokenization_common import TokenizerTesterMixin __A = get_tests_dir("fixtures/test_sentencepiece.model") if is_torch_available(): from transformers.models.mbart.modeling_mbart import shift_tokens_right __A = 25_00_04 __A = 25_00_20 @require_sentencepiece @require_tokenizers class _A ( UpperCamelCase , unittest.TestCase ): """simple docstring""" lowerCamelCase : Tuple = MBartTokenizer lowerCamelCase : List[str] = MBartTokenizerFast lowerCamelCase : int = True lowerCamelCase : List[str] = True def _a ( self : List[Any] ) -> Union[str, Any]: super().setUp() # We have a SentencePiece fixture for testing __UpperCAmelCase =MBartTokenizer(__SCREAMING_SNAKE_CASE , keep_accents=__SCREAMING_SNAKE_CASE ) tokenizer.save_pretrained(self.tmpdirname ) def _a ( self : Tuple ) -> Optional[int]: __UpperCAmelCase =MBartTokenizer(__SCREAMING_SNAKE_CASE , keep_accents=__SCREAMING_SNAKE_CASE ) __UpperCAmelCase =tokenizer.tokenize("""This is a test""" ) self.assertListEqual(__SCREAMING_SNAKE_CASE , ["""▁This""", """▁is""", """▁a""", """▁t""", """est"""] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(__SCREAMING_SNAKE_CASE ) , [value + tokenizer.fairseq_offset for value in [285, 46, 10, 170, 382]] , ) __UpperCAmelCase =tokenizer.tokenize("""I was born in 92000, and this is falsé.""" ) self.assertListEqual( __SCREAMING_SNAKE_CASE , [ SPIECE_UNDERLINE + """I""", SPIECE_UNDERLINE + """was""", SPIECE_UNDERLINE + """b""", """or""", """n""", SPIECE_UNDERLINE + """in""", SPIECE_UNDERLINE + """""", """9""", """2""", """0""", """0""", """0""", """,""", SPIECE_UNDERLINE + """and""", SPIECE_UNDERLINE + """this""", SPIECE_UNDERLINE + """is""", SPIECE_UNDERLINE + """f""", """al""", """s""", """é""", """.""", ] , ) __UpperCAmelCase =tokenizer.convert_tokens_to_ids(__SCREAMING_SNAKE_CASE ) self.assertListEqual( __SCREAMING_SNAKE_CASE , [ value + tokenizer.fairseq_offset for value in [8, 21, 84, 55, 24, 19, 7, 2, 602, 347, 347, 347, 3, 12, 66, 46, 72, 80, 6, 2, 4] # ^ unk: 2 + 1 = 3 unk: 2 + 1 = 3 ^ ] , ) __UpperCAmelCase =tokenizer.convert_ids_to_tokens(__SCREAMING_SNAKE_CASE ) self.assertListEqual( __SCREAMING_SNAKE_CASE , [ SPIECE_UNDERLINE + """I""", SPIECE_UNDERLINE + """was""", SPIECE_UNDERLINE + """b""", """or""", """n""", SPIECE_UNDERLINE + """in""", SPIECE_UNDERLINE + """""", """<unk>""", """2""", """0""", """0""", """0""", """,""", SPIECE_UNDERLINE + """and""", SPIECE_UNDERLINE + """this""", SPIECE_UNDERLINE + """is""", SPIECE_UNDERLINE + """f""", """al""", """s""", """<unk>""", """.""", ] , ) def _a ( self : Optional[Any] ) -> Optional[Any]: if not self.test_slow_tokenizer: # as we don't have a slow version, we can't compare the outputs between slow and fast versions return __UpperCAmelCase =(self.rust_tokenizer_class, """hf-internal-testing/tiny-random-mbart""", {}) for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f'''{tokenizer.__class__.__name__} ({pretrained_name})''' ): __UpperCAmelCase =self.rust_tokenizer_class.from_pretrained(__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ) __UpperCAmelCase =self.tokenizer_class.from_pretrained(__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ) __UpperCAmelCase =tempfile.mkdtemp() __UpperCAmelCase =tokenizer_r.save_pretrained(__SCREAMING_SNAKE_CASE ) __UpperCAmelCase =tokenizer_p.save_pretrained(__SCREAMING_SNAKE_CASE ) # Checks it save with the same files + the tokenizer.json file for the fast one self.assertTrue(any("""tokenizer.json""" in f for f in tokenizer_r_files ) ) __UpperCAmelCase =tuple(f for f in tokenizer_r_files if """tokenizer.json""" not in f ) self.assertSequenceEqual(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) # Checks everything loads correctly in the same way __UpperCAmelCase =tokenizer_r.from_pretrained(__SCREAMING_SNAKE_CASE ) __UpperCAmelCase =tokenizer_p.from_pretrained(__SCREAMING_SNAKE_CASE ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) ) # self.assertEqual(getattr(tokenizer_rp, key), getattr(tokenizer_pp, key)) # self.assertEqual(getattr(tokenizer_rp, key + "_id"), getattr(tokenizer_pp, key + "_id")) shutil.rmtree(__SCREAMING_SNAKE_CASE ) # Save tokenizer rust, legacy_format=True __UpperCAmelCase =tempfile.mkdtemp() __UpperCAmelCase =tokenizer_r.save_pretrained(__SCREAMING_SNAKE_CASE , legacy_format=__SCREAMING_SNAKE_CASE ) __UpperCAmelCase =tokenizer_p.save_pretrained(__SCREAMING_SNAKE_CASE ) # Checks it save with the same files self.assertSequenceEqual(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) # Checks everything loads correctly in the same way __UpperCAmelCase =tokenizer_r.from_pretrained(__SCREAMING_SNAKE_CASE ) __UpperCAmelCase =tokenizer_p.from_pretrained(__SCREAMING_SNAKE_CASE ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) ) shutil.rmtree(__SCREAMING_SNAKE_CASE ) # Save tokenizer rust, legacy_format=False __UpperCAmelCase =tempfile.mkdtemp() __UpperCAmelCase =tokenizer_r.save_pretrained(__SCREAMING_SNAKE_CASE , legacy_format=__SCREAMING_SNAKE_CASE ) __UpperCAmelCase =tokenizer_p.save_pretrained(__SCREAMING_SNAKE_CASE ) # Checks it saved the tokenizer.json file self.assertTrue(any("""tokenizer.json""" in f for f in tokenizer_r_files ) ) # Checks everything loads correctly in the same way __UpperCAmelCase =tokenizer_r.from_pretrained(__SCREAMING_SNAKE_CASE ) __UpperCAmelCase =tokenizer_p.from_pretrained(__SCREAMING_SNAKE_CASE ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) ) shutil.rmtree(__SCREAMING_SNAKE_CASE ) @require_torch @require_sentencepiece @require_tokenizers class _A ( unittest.TestCase ): """simple docstring""" lowerCamelCase : List[str] = 'facebook/mbart-large-en-ro' lowerCamelCase : Tuple = [ ' UN Chief Says There Is No Military Solution in Syria', ' Secretary-General Ban Ki-moon says his response to Russia\'s stepped up military support for Syria is that "there is no military solution" to the nearly five-year conflict and more weapons will only worsen the violence and misery for millions of people.', ] lowerCamelCase : List[str] = [ 'Şeful ONU declară că nu există o soluţie militară în Siria', 'Secretarul General Ban Ki-moon declară că răspunsul său la intensificarea sprijinului militar al Rusiei' ' pentru Siria este că "nu există o soluţie militară" la conflictul de aproape cinci ani şi că noi arme nu vor' ' face decât să înrăutăţească violenţele şi mizeria pentru milioane de oameni.', ] lowerCamelCase : str = [8_274, 127_873, 25_916, 7, 8_622, 2_071, 438, 67_485, 53, 187_895, 23, 51_712, 2, EN_CODE] @classmethod def _a ( cls : int ) -> Union[str, Any]: __UpperCAmelCase =MBartTokenizer.from_pretrained( cls.checkpoint_name , src_lang="""en_XX""" , tgt_lang="""ro_RO""" ) __UpperCAmelCase =1 return cls def _a ( self : Union[str, Any] ) -> int: self.assertEqual(self.tokenizer.fairseq_tokens_to_ids["""ar_AR"""] , 250001 ) self.assertEqual(self.tokenizer.fairseq_tokens_to_ids["""en_EN"""] , 250004 ) self.assertEqual(self.tokenizer.fairseq_tokens_to_ids["""ro_RO"""] , 250020 ) def _a ( self : Dict ) -> str: __UpperCAmelCase =self.tokenizer.batch_encode_plus(self.src_text ).input_ids[0] self.assertListEqual(self.expected_src_tokens , __SCREAMING_SNAKE_CASE ) def _a ( self : Optional[Any] ) -> Any: self.assertIn(__SCREAMING_SNAKE_CASE , self.tokenizer.all_special_ids ) __UpperCAmelCase =[RO_CODE, 884, 9019, 96, 9, 916, 86792, 36, 18743, 15596, 5, 2] __UpperCAmelCase =self.tokenizer.decode(__SCREAMING_SNAKE_CASE , skip_special_tokens=__SCREAMING_SNAKE_CASE ) __UpperCAmelCase =self.tokenizer.decode(generated_ids[1:] , skip_special_tokens=__SCREAMING_SNAKE_CASE ) self.assertEqual(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) self.assertNotIn(self.tokenizer.eos_token , __SCREAMING_SNAKE_CASE ) def _a ( self : List[str] ) -> Tuple: __UpperCAmelCase =["""this is gunna be a long sentence """ * 20] assert isinstance(src_text[0] , __SCREAMING_SNAKE_CASE ) __UpperCAmelCase =10 __UpperCAmelCase =self.tokenizer(__SCREAMING_SNAKE_CASE , max_length=__SCREAMING_SNAKE_CASE , truncation=__SCREAMING_SNAKE_CASE ).input_ids[0] self.assertEqual(ids[-2] , 2 ) self.assertEqual(ids[-1] , __SCREAMING_SNAKE_CASE ) self.assertEqual(len(__SCREAMING_SNAKE_CASE ) , __SCREAMING_SNAKE_CASE ) def _a ( self : int ) -> int: self.assertListEqual(self.tokenizer.convert_tokens_to_ids(["""<mask>""", """ar_AR"""] ) , [250026, 250001] ) def _a ( self : Optional[Any] ) -> Optional[int]: __UpperCAmelCase =tempfile.mkdtemp() __UpperCAmelCase =self.tokenizer.fairseq_tokens_to_ids self.tokenizer.save_pretrained(__SCREAMING_SNAKE_CASE ) __UpperCAmelCase =MBartTokenizer.from_pretrained(__SCREAMING_SNAKE_CASE ) self.assertDictEqual(new_tok.fairseq_tokens_to_ids , __SCREAMING_SNAKE_CASE ) @require_torch def _a ( self : Optional[int] ) -> Any: __UpperCAmelCase =self.tokenizer(self.src_text , text_target=self.tgt_text , padding=__SCREAMING_SNAKE_CASE , return_tensors="""pt""" ) __UpperCAmelCase =shift_tokens_right(batch["""labels"""] , self.tokenizer.pad_token_id ) # fairseq batch: https://gist.github.com/sshleifer/cba08bc2109361a74ac3760a7e30e4f4 assert batch.input_ids[1][-2:].tolist() == [2, EN_CODE] assert batch.decoder_input_ids[1][0].tolist() == RO_CODE assert batch.decoder_input_ids[1][-1] == 2 assert batch.labels[1][-2:].tolist() == [2, RO_CODE] @require_torch def _a ( self : Optional[Any] ) -> Optional[Any]: __UpperCAmelCase =self.tokenizer( self.src_text , text_target=self.tgt_text , padding=__SCREAMING_SNAKE_CASE , truncation=__SCREAMING_SNAKE_CASE , max_length=len(self.expected_src_tokens ) , return_tensors="""pt""" , ) __UpperCAmelCase =shift_tokens_right(batch["""labels"""] , self.tokenizer.pad_token_id ) self.assertIsInstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) self.assertEqual((2, 14) , batch.input_ids.shape ) self.assertEqual((2, 14) , batch.attention_mask.shape ) __UpperCAmelCase =batch.input_ids.tolist()[0] self.assertListEqual(self.expected_src_tokens , __SCREAMING_SNAKE_CASE ) self.assertEqual(2 , batch.decoder_input_ids[0, -1] ) # EOS # Test that special tokens are reset self.assertEqual(self.tokenizer.prefix_tokens , [] ) self.assertEqual(self.tokenizer.suffix_tokens , [self.tokenizer.eos_token_id, EN_CODE] ) def _a ( self : Optional[Any] ) -> Dict: __UpperCAmelCase =self.tokenizer(self.src_text , padding=__SCREAMING_SNAKE_CASE , truncation=__SCREAMING_SNAKE_CASE , max_length=3 , return_tensors="""pt""" ) __UpperCAmelCase =self.tokenizer( text_target=self.tgt_text , padding=__SCREAMING_SNAKE_CASE , truncation=__SCREAMING_SNAKE_CASE , max_length=10 , return_tensors="""pt""" ) __UpperCAmelCase =targets["""input_ids"""] __UpperCAmelCase =shift_tokens_right(__SCREAMING_SNAKE_CASE , self.tokenizer.pad_token_id ) self.assertEqual(batch.input_ids.shape[1] , 3 ) self.assertEqual(batch.decoder_input_ids.shape[1] , 10 ) @require_torch def _a ( self : int ) -> Any: __UpperCAmelCase =self.tokenizer._build_translation_inputs( """A test""" , return_tensors="""pt""" , src_lang="""en_XX""" , tgt_lang="""ar_AR""" ) self.assertEqual( nested_simplify(__SCREAMING_SNAKE_CASE ) , { # A, test, EOS, en_XX """input_ids""": [[62, 3034, 2, 250004]], """attention_mask""": [[1, 1, 1, 1]], # ar_AR """forced_bos_token_id""": 250001, } , )
68
import unittest from typing import Tuple import torch from diffusers.utils import floats_tensor, randn_tensor, torch_all_close, torch_device from diffusers.utils.testing_utils import require_torch @require_torch class lowerCamelCase_ : '''simple docstring''' @property def lowerCAmelCase_ ( self : Optional[Any] ): return self.get_dummy_input() @property def lowerCAmelCase_ ( self : Union[str, Any] ): if self.block_type == "down": return (4, 32, 16, 16) elif self.block_type == "mid": return (4, 32, 32, 32) elif self.block_type == "up": return (4, 32, 64, 64) raise ValueError(F"'{self.block_type}' is not a supported block_type. Set it to 'up', 'mid', or 'down'." ) def lowerCAmelCase_ ( self : List[str] , _lowerCAmelCase : Optional[Any]=True , _lowerCAmelCase : str=False , _lowerCAmelCase : Optional[int]=False , _lowerCAmelCase : Dict=False , ): SCREAMING_SNAKE_CASE_ = 4 SCREAMING_SNAKE_CASE_ = 32 SCREAMING_SNAKE_CASE_ = (32, 32) SCREAMING_SNAKE_CASE_ = torch.manual_seed(0 ) SCREAMING_SNAKE_CASE_ = torch.device(_lowerCAmelCase ) SCREAMING_SNAKE_CASE_ = (batch_size, num_channels) + sizes SCREAMING_SNAKE_CASE_ = randn_tensor(_lowerCAmelCase , generator=_lowerCAmelCase , device=_lowerCAmelCase ) SCREAMING_SNAKE_CASE_ = {'hidden_states': hidden_states} if include_temb: SCREAMING_SNAKE_CASE_ = 128 SCREAMING_SNAKE_CASE_ = randn_tensor((batch_size, temb_channels) , generator=_lowerCAmelCase , device=_lowerCAmelCase ) if include_res_hidden_states_tuple: SCREAMING_SNAKE_CASE_ = torch.manual_seed(1 ) SCREAMING_SNAKE_CASE_ = (randn_tensor(_lowerCAmelCase , generator=_lowerCAmelCase , device=_lowerCAmelCase ),) if include_encoder_hidden_states: SCREAMING_SNAKE_CASE_ = floats_tensor((batch_size, 32, 32) ).to(_lowerCAmelCase ) if include_skip_sample: SCREAMING_SNAKE_CASE_ = randn_tensor(((batch_size, 3) + sizes) , generator=_lowerCAmelCase , device=_lowerCAmelCase ) return dummy_input def lowerCAmelCase_ ( self : Optional[int] ): SCREAMING_SNAKE_CASE_ = { 'in_channels': 32, 'out_channels': 32, 'temb_channels': 128, } if self.block_type == "up": SCREAMING_SNAKE_CASE_ = 32 if self.block_type == "mid": init_dict.pop('out_channels' ) SCREAMING_SNAKE_CASE_ = self.dummy_input return init_dict, inputs_dict def lowerCAmelCase_ ( self : Dict , _lowerCAmelCase : Optional[Any] ): SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = self.prepare_init_args_and_inputs_for_common() SCREAMING_SNAKE_CASE_ = self.block_class(**_lowerCAmelCase ) unet_block.to(_lowerCAmelCase ) unet_block.eval() with torch.no_grad(): SCREAMING_SNAKE_CASE_ = unet_block(**_lowerCAmelCase ) if isinstance(_lowerCAmelCase , _lowerCAmelCase ): SCREAMING_SNAKE_CASE_ = output[0] self.assertEqual(output.shape , self.output_shape ) SCREAMING_SNAKE_CASE_ = output[0, -1, -3:, -3:] SCREAMING_SNAKE_CASE_ = torch.tensor(_lowerCAmelCase ).to(_lowerCAmelCase ) assert torch_all_close(output_slice.flatten() , _lowerCAmelCase , atol=5E-3 ) @unittest.skipIf(torch_device == 'mps' , 'Training is not supported in mps' ) def lowerCAmelCase_ ( self : Any ): SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = self.prepare_init_args_and_inputs_for_common() SCREAMING_SNAKE_CASE_ = self.block_class(**_lowerCAmelCase ) model.to(_lowerCAmelCase ) model.train() SCREAMING_SNAKE_CASE_ = model(**_lowerCAmelCase ) if isinstance(_lowerCAmelCase , _lowerCAmelCase ): SCREAMING_SNAKE_CASE_ = output[0] SCREAMING_SNAKE_CASE_ = torch.device(_lowerCAmelCase ) SCREAMING_SNAKE_CASE_ = randn_tensor(output.shape , device=_lowerCAmelCase ) SCREAMING_SNAKE_CASE_ = torch.nn.functional.mse_loss(_lowerCAmelCase , _lowerCAmelCase ) loss.backward()
31
0
'''simple docstring''' def __UpperCAmelCase ( _UpperCAmelCase : str ) -> list: __snake_case = [0] * len(_UpperCAmelCase ) for i in range(1 , len(_UpperCAmelCase ) ): # use last results for better performance - dynamic programming __snake_case = prefix_result[i - 1] while j > 0 and input_string[i] != input_string[j]: __snake_case = prefix_result[j - 1] if input_string[i] == input_string[j]: j += 1 __snake_case = j return prefix_result def __UpperCAmelCase ( _UpperCAmelCase : str ) -> int: return max(prefix_function(_UpperCAmelCase ) ) if __name__ == "__main__": import doctest doctest.testmod()
69
import operator as op def UpperCAmelCase_ ( __UpperCAmelCase : str ) -> Any: SCREAMING_SNAKE_CASE_ = [] SCREAMING_SNAKE_CASE_ = lambda __UpperCAmelCase , __UpperCAmelCase : int(x / y ) # noqa: E731 integer division operation SCREAMING_SNAKE_CASE_ = { '^': op.pow, '*': op.mul, '/': div, '+': op.add, '-': op.sub, } # operators & their respective operation # print table header print('Symbol'.center(8 ) , 'Action'.center(12 ) , 'Stack' , sep=' | ' ) print('-' * (30 + len(__UpperCAmelCase )) ) for x in post_fix: if x.isdigit(): # if x in digit stack.append(__UpperCAmelCase ) # append x to stack # output in tabular format print(x.rjust(8 ) , ('push(' + x + ')').ljust(12 ) , ','.join(__UpperCAmelCase ) , sep=' | ' ) else: SCREAMING_SNAKE_CASE_ = stack.pop() # pop stack # output in tabular format print(''.rjust(8 ) , ('pop(' + b + ')').ljust(12 ) , ','.join(__UpperCAmelCase ) , sep=' | ' ) SCREAMING_SNAKE_CASE_ = stack.pop() # pop stack # output in tabular format print(''.rjust(8 ) , ('pop(' + a + ')').ljust(12 ) , ','.join(__UpperCAmelCase ) , sep=' | ' ) stack.append( str(opr[x](int(__UpperCAmelCase ) , int(__UpperCAmelCase ) ) ) ) # evaluate the 2 values popped from stack & push result to stack # output in tabular format print( x.rjust(8 ) , ('push(' + a + x + b + ')').ljust(12 ) , ','.join(__UpperCAmelCase ) , sep=' | ' , ) return int(stack[0] ) if __name__ == "__main__": lowerCamelCase__ : Tuple = input('\n\nEnter a Postfix Equation (space separated) = ').split(' ') print('\n\tResult = ', solve(Postfix))
31
0
import unittest from transformers import XLMConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( XLMForMultipleChoice, XLMForQuestionAnswering, XLMForQuestionAnsweringSimple, XLMForSequenceClassification, XLMForTokenClassification, XLMModel, XLMWithLMHeadModel, ) from transformers.models.xlm.modeling_xlm import XLM_PRETRAINED_MODEL_ARCHIVE_LIST class A: '''simple docstring''' def __init__( self : Dict , A_ : str , A_ : Any=13 , A_ : Any=7 , A_ : List[Any]=True , A_ : List[Any]=True , A_ : List[str]=True , A_ : Any=True , A_ : Union[str, Any]=True , A_ : List[str]=False , A_ : Any=False , A_ : List[Any]=False , A_ : Optional[int]=2 , A_ : Any=99 , A_ : List[Any]=0 , A_ : List[Any]=32 , A_ : List[Any]=5 , A_ : Optional[int]=4 , A_ : List[Any]=0.1 , A_ : Optional[int]=0.1 , A_ : Tuple=512 , A_ : Union[str, Any]=2 , A_ : List[Any]=0.02 , A_ : int=2 , A_ : str=4 , A_ : Optional[Any]="last" , A_ : Tuple=True , A_ : Any=None , A_ : List[Any]=0 , ) -> List[Any]: """simple docstring""" lowerCamelCase_ = parent lowerCamelCase_ = batch_size lowerCamelCase_ = seq_length lowerCamelCase_ = is_training lowerCamelCase_ = use_input_lengths lowerCamelCase_ = use_token_type_ids lowerCamelCase_ = use_labels lowerCamelCase_ = gelu_activation lowerCamelCase_ = sinusoidal_embeddings lowerCamelCase_ = causal lowerCamelCase_ = asm lowerCamelCase_ = n_langs lowerCamelCase_ = vocab_size lowerCamelCase_ = n_special lowerCamelCase_ = hidden_size lowerCamelCase_ = num_hidden_layers lowerCamelCase_ = num_attention_heads lowerCamelCase_ = hidden_dropout_prob lowerCamelCase_ = attention_probs_dropout_prob lowerCamelCase_ = max_position_embeddings lowerCamelCase_ = type_sequence_label_size lowerCamelCase_ = initializer_range lowerCamelCase_ = num_labels lowerCamelCase_ = num_choices lowerCamelCase_ = summary_type lowerCamelCase_ = use_proj lowerCamelCase_ = scope lowerCamelCase_ = bos_token_id def a__ ( self : int ) -> Optional[Any]: """simple docstring""" lowerCamelCase_ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) lowerCamelCase_ = random_attention_mask([self.batch_size, self.seq_length] ) lowerCamelCase_ = None if self.use_input_lengths: lowerCamelCase_ = ( ids_tensor([self.batch_size] , vocab_size=2 ) + self.seq_length - 2 ) # small variation of seq_length lowerCamelCase_ = None if self.use_token_type_ids: lowerCamelCase_ = ids_tensor([self.batch_size, self.seq_length] , self.n_langs ) lowerCamelCase_ = None lowerCamelCase_ = None lowerCamelCase_ = None if self.use_labels: lowerCamelCase_ = ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowerCamelCase_ = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) lowerCamelCase_ = ids_tensor([self.batch_size] , 2 ).float() lowerCamelCase_ = ids_tensor([self.batch_size] , self.num_choices ) lowerCamelCase_ = self.get_config() return ( config, input_ids, token_type_ids, input_lengths, sequence_labels, token_labels, is_impossible_labels, choice_labels, input_mask, ) def a__ ( self : Tuple ) -> Optional[Any]: """simple docstring""" return XLMConfig( vocab_size=self.vocab_size , n_special=self.n_special , emb_dim=self.hidden_size , n_layers=self.num_hidden_layers , n_heads=self.num_attention_heads , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , gelu_activation=self.gelu_activation , sinusoidal_embeddings=self.sinusoidal_embeddings , asm=self.asm , causal=self.causal , n_langs=self.n_langs , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , summary_type=self.summary_type , use_proj=self.use_proj , num_labels=self.num_labels , bos_token_id=self.bos_token_id , ) def a__ ( self : List[str] , A_ : List[str] , A_ : List[Any] , A_ : Union[str, Any] , A_ : Optional[int] , A_ : Any , A_ : str , A_ : str , A_ : List[str] , A_ : List[Any] , ) -> List[Any]: """simple docstring""" lowerCamelCase_ = XLMModel(config=A_ ) model.to(A_ ) model.eval() lowerCamelCase_ = model(A_ , lengths=A_ , langs=A_ ) lowerCamelCase_ = model(A_ , langs=A_ ) lowerCamelCase_ = model(A_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def a__ ( self : Optional[Any] , A_ : Any , A_ : Any , A_ : Optional[int] , A_ : int , A_ : List[Any] , A_ : Tuple , A_ : Any , A_ : str , A_ : List[Any] , ) -> List[Any]: """simple docstring""" lowerCamelCase_ = XLMWithLMHeadModel(A_ ) model.to(A_ ) model.eval() lowerCamelCase_ = model(A_ , token_type_ids=A_ , labels=A_ ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def a__ ( self : List[str] , A_ : Tuple , A_ : str , A_ : List[Any] , A_ : List[str] , A_ : Any , A_ : List[Any] , A_ : List[str] , A_ : Any , A_ : List[Any] , ) -> List[Any]: """simple docstring""" lowerCamelCase_ = XLMForQuestionAnsweringSimple(A_ ) model.to(A_ ) model.eval() lowerCamelCase_ = model(A_ ) lowerCamelCase_ = model(A_ , start_positions=A_ , end_positions=A_ ) lowerCamelCase_ = outputs self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def a__ ( self : List[str] , A_ : Union[str, Any] , A_ : Tuple , A_ : int , A_ : Any , A_ : int , A_ : str , A_ : Union[str, Any] , A_ : Union[str, Any] , A_ : Union[str, Any] , ) -> Optional[int]: """simple docstring""" lowerCamelCase_ = XLMForQuestionAnswering(A_ ) model.to(A_ ) model.eval() lowerCamelCase_ = model(A_ ) lowerCamelCase_ = model( A_ , start_positions=A_ , end_positions=A_ , cls_index=A_ , is_impossible=A_ , p_mask=A_ , ) lowerCamelCase_ = model( A_ , start_positions=A_ , end_positions=A_ , cls_index=A_ , is_impossible=A_ , ) ((lowerCamelCase_) , ) = result_with_labels.to_tuple() lowerCamelCase_ = model(A_ , start_positions=A_ , end_positions=A_ ) ((lowerCamelCase_) , ) = result_with_labels.to_tuple() self.parent.assertEqual(result_with_labels.loss.shape , () ) self.parent.assertEqual(result.start_top_log_probs.shape , (self.batch_size, model.config.start_n_top) ) self.parent.assertEqual(result.start_top_index.shape , (self.batch_size, model.config.start_n_top) ) self.parent.assertEqual( result.end_top_log_probs.shape , (self.batch_size, model.config.start_n_top * model.config.end_n_top) ) self.parent.assertEqual( result.end_top_index.shape , (self.batch_size, model.config.start_n_top * model.config.end_n_top) ) self.parent.assertEqual(result.cls_logits.shape , (self.batch_size,) ) def a__ ( self : Dict , A_ : List[str] , A_ : str , A_ : List[Any] , A_ : Union[str, Any] , A_ : Optional[int] , A_ : Dict , A_ : Tuple , A_ : Union[str, Any] , A_ : int , ) -> str: """simple docstring""" lowerCamelCase_ = XLMForSequenceClassification(A_ ) model.to(A_ ) model.eval() lowerCamelCase_ = model(A_ ) lowerCamelCase_ = model(A_ , labels=A_ ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def a__ ( self : Optional[Any] , A_ : str , A_ : List[str] , A_ : str , A_ : str , A_ : Any , A_ : Union[str, Any] , A_ : Tuple , A_ : Optional[Any] , A_ : Optional[int] , ) -> int: """simple docstring""" lowerCamelCase_ = self.num_labels lowerCamelCase_ = XLMForTokenClassification(A_ ) model.to(A_ ) model.eval() lowerCamelCase_ = model(A_ , attention_mask=A_ , labels=A_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def a__ ( self : Union[str, Any] , A_ : int , A_ : Union[str, Any] , A_ : int , A_ : List[Any] , A_ : List[str] , A_ : List[str] , A_ : List[Any] , A_ : str , A_ : str , ) -> Tuple: """simple docstring""" lowerCamelCase_ = self.num_choices lowerCamelCase_ = XLMForMultipleChoice(config=A_ ) model.to(A_ ) model.eval() lowerCamelCase_ = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() lowerCamelCase_ = token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() lowerCamelCase_ = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() lowerCamelCase_ = model( A_ , attention_mask=A_ , token_type_ids=A_ , labels=A_ , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def a__ ( self : int ) -> int: """simple docstring""" lowerCamelCase_ = self.prepare_config_and_inputs() ( ( lowerCamelCase_ ) , ( lowerCamelCase_ ) , ( lowerCamelCase_ ) , ( lowerCamelCase_ ) , ( lowerCamelCase_ ) , ( lowerCamelCase_ ) , ( lowerCamelCase_ ) , ( lowerCamelCase_ ) , ( lowerCamelCase_ ) , ) = config_and_inputs lowerCamelCase_ = {'input_ids': input_ids, 'token_type_ids': token_type_ids, 'lengths': input_lengths} return config, inputs_dict @require_torch class A( UpperCamelCase , UpperCamelCase , UpperCamelCase , unittest.TestCase ): '''simple docstring''' UpperCamelCase = ( ( XLMModel, XLMWithLMHeadModel, XLMForQuestionAnswering, XLMForSequenceClassification, XLMForQuestionAnsweringSimple, XLMForTokenClassification, XLMForMultipleChoice, ) if is_torch_available() else () ) UpperCamelCase = ( (XLMWithLMHeadModel,) if is_torch_available() else () ) # TODO (PVP): Check other models whether language generation is also applicable UpperCamelCase = ( { '''feature-extraction''': XLMModel, '''fill-mask''': XLMWithLMHeadModel, '''question-answering''': XLMForQuestionAnsweringSimple, '''text-classification''': XLMForSequenceClassification, '''text-generation''': XLMWithLMHeadModel, '''token-classification''': XLMForTokenClassification, '''zero-shot''': XLMForSequenceClassification, } if is_torch_available() else {} ) def a__ ( self : Optional[Any] , A_ : Optional[Any] , A_ : Optional[Any] , A_ : List[Any] , A_ : Dict , A_ : List[str] ) -> Dict: """simple docstring""" if ( pipeline_test_casse_name == "QAPipelineTests" and tokenizer_name is not None and not tokenizer_name.endswith('Fast' ) ): # `QAPipelineTests` fails for a few models when the slower tokenizer are used. # (The slower tokenizers were never used for pipeline tests before the pipeline testing rework) # TODO: check (and possibly fix) the `QAPipelineTests` with slower tokenizer return True return False def a__ ( self : List[str] , A_ : List[Any] , A_ : List[str] , A_ : Tuple=False ) -> Optional[Any]: """simple docstring""" lowerCamelCase_ = super()._prepare_for_class(A_ , A_ , return_labels=A_ ) if return_labels: if model_class.__name__ == "XLMForQuestionAnswering": lowerCamelCase_ = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=A_ ) lowerCamelCase_ = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=A_ ) return inputs_dict def a__ ( self : Tuple ) -> List[Any]: """simple docstring""" lowerCamelCase_ = XLMModelTester(self ) lowerCamelCase_ = ConfigTester(self , config_class=A_ , emb_dim=37 ) def a__ ( self : int ) -> Optional[Any]: """simple docstring""" self.config_tester.run_common_tests() def a__ ( self : List[str] ) -> Optional[int]: """simple docstring""" lowerCamelCase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_model(*A_ ) def a__ ( self : Optional[Any] ) -> int: """simple docstring""" lowerCamelCase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_lm_head(*A_ ) def a__ ( self : Tuple ) -> Optional[int]: """simple docstring""" lowerCamelCase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_simple_qa(*A_ ) def a__ ( self : List[Any] ) -> Any: """simple docstring""" lowerCamelCase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_qa(*A_ ) def a__ ( self : str ) -> Tuple: """simple docstring""" lowerCamelCase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_sequence_classif(*A_ ) def a__ ( self : Optional[Any] ) -> Optional[int]: """simple docstring""" lowerCamelCase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_token_classif(*A_ ) def a__ ( self : int ) -> Dict: """simple docstring""" lowerCamelCase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_for_multiple_choice(*A_ ) def a__ ( self : List[str] , A_ : Tuple , A_ : List[str] , A_ : Optional[int] , A_ : Optional[Any] , A_ : str , A_ : Tuple=False , A_ : Optional[int]=1 ) -> Optional[Any]: """simple docstring""" self.assertIsInstance(A_ , A_ ) self.assertListEqual( [isinstance(A_ , A_ ) for iter_attentions in attentions] , [True] * len(A_ ) ) self.assertEqual(len(A_ ) , (max_length - min_length) * num_beam_groups ) for idx, iter_attentions in enumerate(A_ ): # adds PAD dummy token lowerCamelCase_ = min_length + idx + 1 lowerCamelCase_ = min_length + idx + 1 lowerCamelCase_ = ( batch_size * num_beam_groups, config.num_attention_heads, tgt_len, src_len, ) # check attn size self.assertListEqual( [layer_attention.shape for layer_attention in iter_attentions] , [expected_shape] * len(A_ ) ) def a__ ( self : Union[str, Any] , A_ : Tuple , A_ : List[str] , A_ : str , A_ : Any , A_ : str , A_ : Any=False , A_ : List[str]=1 ) -> int: """simple docstring""" self.assertIsInstance(A_ , A_ ) self.assertListEqual( [isinstance(A_ , A_ ) for iter_hidden_states in hidden_states] , [True] * len(A_ ) , ) self.assertEqual(len(A_ ) , (max_length - min_length) * num_beam_groups ) for idx, iter_hidden_states in enumerate(A_ ): # adds PAD dummy token lowerCamelCase_ = min_length + idx + 1 lowerCamelCase_ = (batch_size * num_beam_groups, seq_len, config.hidden_size) # check hidden size self.assertListEqual( [layer_hidden_states.shape for layer_hidden_states in iter_hidden_states] , [expected_shape] * len(A_ ) , ) pass @slow def a__ ( self : Tuple ) -> Any: """simple docstring""" for model_name in XLM_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowerCamelCase_ = XLMModel.from_pretrained(A_ ) self.assertIsNotNone(A_ ) @require_torch class A( unittest.TestCase ): '''simple docstring''' @slow def a__ ( self : str ) -> str: """simple docstring""" lowerCamelCase_ = XLMWithLMHeadModel.from_pretrained('xlm-mlm-en-2048' ) model.to(A_ ) lowerCamelCase_ = torch.tensor([[14, 447]] , dtype=torch.long , device=A_ ) # the president lowerCamelCase_ = [ 14, 447, 14, 447, 14, 447, 14, 447, 14, 447, 14, 447, 14, 447, 14, 447, 14, 447, 14, 447, ] # the president the president the president the president the president the president the president the president the president the president # TODO(PVP): this and other input_ids I tried for generation give pretty bad results. Not sure why. Model might just not be made for auto-regressive inference lowerCamelCase_ = model.generate(A_ , do_sample=A_ ) self.assertListEqual(output_ids[0].cpu().numpy().tolist() , A_ )
70
def UpperCAmelCase_ ( __UpperCAmelCase : int ) -> int: assert isinstance(__UpperCAmelCase , __UpperCAmelCase ), f"The input value of [n={number}] is not an integer" if number == 1: return 2 elif number < 1: SCREAMING_SNAKE_CASE_ = f"The input value of [n={number}] has to be > 0" raise ValueError(__UpperCAmelCase ) else: SCREAMING_SNAKE_CASE_ = sylvester(number - 1 ) SCREAMING_SNAKE_CASE_ = num - 1 SCREAMING_SNAKE_CASE_ = num return lower * upper + 1 if __name__ == "__main__": print(f'''The 8th number in Sylvester\'s sequence: {sylvester(8)}''')
31
0
'''simple docstring''' import unittest from transformers import is_torch_available, is_vision_available from transformers.testing_utils import require_torch, require_vision, slow, torch_device if is_torch_available(): import torch from transformers import AutoModelForImageClassification if is_vision_available(): from transformers import AutoImageProcessor @require_torch @require_vision class _snake_case (unittest.TestCase): @slow def UpperCamelCase__ ( self ): UpperCAmelCase_ : int = AutoImageProcessor.from_pretrained("microsoft/dit-base-finetuned-rvlcdip" ) UpperCAmelCase_ : Tuple = AutoModelForImageClassification.from_pretrained("microsoft/dit-base-finetuned-rvlcdip" ) model.to(_snake_case ) from datasets import load_dataset UpperCAmelCase_ : Tuple = load_dataset("nielsr/rvlcdip-demo" ) UpperCAmelCase_ : Dict = dataset["train"][0]["image"].convert("RGB" ) UpperCAmelCase_ : Optional[Any] = image_processor(_snake_case ,return_tensors="pt" ).to(_snake_case ) # forward pass with torch.no_grad(): UpperCAmelCase_ : Optional[int] = model(**_snake_case ) UpperCAmelCase_ : Any = outputs.logits UpperCAmelCase_ : List[Any] = torch.Size((1, 16) ) self.assertEqual(logits.shape ,_snake_case ) UpperCAmelCase_ : Dict = torch.tensor( [-0.4158, -0.4092, -0.4347] ,device=_snake_case ,dtype=torch.float ,) self.assertTrue(torch.allclose(logits[0, :3] ,_snake_case ,atol=1E-4 ) )
71
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_sentencepiece_available, is_tf_available, is_tokenizers_available, is_torch_available, ) if is_sentencepiece_available(): from ..ta.tokenization_ta import TaTokenizer else: from ...utils.dummy_sentencepiece_objects import TaTokenizer lowerCamelCase__ : List[Any] = TaTokenizer if is_tokenizers_available(): from ..ta.tokenization_ta_fast import TaTokenizerFast else: from ...utils.dummy_tokenizers_objects import TaTokenizerFast lowerCamelCase__ : Union[str, Any] = TaTokenizerFast lowerCamelCase__ : Dict = {'configuration_mt5': ['MT5Config', 'MT5OnnxConfig']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase__ : Tuple = [ 'MT5EncoderModel', 'MT5ForConditionalGeneration', 'MT5ForQuestionAnswering', 'MT5Model', 'MT5PreTrainedModel', 'MT5Stack', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase__ : Tuple = ['TFMT5EncoderModel', 'TFMT5ForConditionalGeneration', 'TFMT5Model'] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase__ : Tuple = ['FlaxMT5EncoderModel', 'FlaxMT5ForConditionalGeneration', 'FlaxMT5Model'] if TYPE_CHECKING: from .configuration_mta import MTaConfig, MTaOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mta import ( MTaEncoderModel, MTaForConditionalGeneration, MTaForQuestionAnswering, MTaModel, MTaPreTrainedModel, MTaStack, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_mta import TFMTaEncoderModel, TFMTaForConditionalGeneration, TFMTaModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_mta import FlaxMTaEncoderModel, FlaxMTaForConditionalGeneration, FlaxMTaModel else: import sys lowerCamelCase__ : int = _LazyModule( __name__, globals()['__file__'], _import_structure, extra_objects={'MT5Tokenizer': MTaTokenizer, 'MT5TokenizerFast': MTaTokenizerFast}, module_spec=__spec__, )
31
0
'''simple docstring''' import json from typing import TYPE_CHECKING, List, Optional, Tuple from tokenizers import pre_tokenizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging if TYPE_CHECKING: from transformers.pipelines.conversational import Conversation _UpperCAmelCase : List[Any] = logging.get_logger(__name__) _UpperCAmelCase : int = {'''vocab_file''': '''vocab.json''', '''merges_file''': '''merges.txt''', '''tokenizer_file''': '''tokenizer.json'''} _UpperCAmelCase : List[str] = { '''tokenizer_file''': { '''EleutherAI/gpt-neox-20b''': '''https://huggingface.co/EleutherAI/gpt-neox-20b/resolve/main/tokenizer.json''', }, } _UpperCAmelCase : int = { '''gpt-neox-20b''': 20_48, } class __magic_name__ ( __SCREAMING_SNAKE_CASE ): UpperCamelCase__ = VOCAB_FILES_NAMES UpperCamelCase__ = PRETRAINED_VOCAB_FILES_MAP UpperCamelCase__ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCamelCase__ = ['input_ids', 'attention_mask'] def __init__( self , snake_case_=None , snake_case_=None , snake_case_=None , snake_case_="<|endoftext|>" , snake_case_="<|endoftext|>" , snake_case_="<|endoftext|>" , snake_case_=False , **snake_case_ , ): super().__init__( snake_case_ , snake_case_ , tokenizer_file=snake_case_ , unk_token=snake_case_ , bos_token=snake_case_ , eos_token=snake_case_ , add_prefix_space=snake_case_ , **snake_case_ , ) lowercase =json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() ) if pre_tok_state.get('''add_prefix_space''' , snake_case_ ) != add_prefix_space: lowercase =getattr(snake_case_ , pre_tok_state.pop('''type''' ) ) lowercase =add_prefix_space lowercase =pre_tok_class(**snake_case_ ) lowercase =add_prefix_space def _A( self , snake_case_ , snake_case_ = None ): lowercase =self._tokenizer.model.save(snake_case_ , name=snake_case_ ) return tuple(snake_case_ ) def _A( self , snake_case_ ): lowercase =[] for is_user, text in conversation.iter_texts(): input_ids.extend(self.encode(snake_case_ , add_special_tokens=snake_case_ ) + [self.eos_token_id] ) if len(snake_case_ ) > self.model_max_length: lowercase =input_ids[-self.model_max_length :] return input_ids
72
import subprocess import sys from transformers import BertConfig, BertModel, BertTokenizer, pipeline from transformers.testing_utils import TestCasePlus, require_torch class lowerCamelCase_ ( _SCREAMING_SNAKE_CASE ): '''simple docstring''' @require_torch def lowerCAmelCase_ ( self : int ): # this test is a bit tricky since TRANSFORMERS_OFFLINE can only be changed before # `transformers` is loaded, and it's too late for inside pytest - so we are changing it # while running an external program # python one-liner segments # this must be loaded before socket.socket is monkey-patched SCREAMING_SNAKE_CASE_ = '\nfrom transformers import BertConfig, BertModel, BertTokenizer, pipeline\n ' SCREAMING_SNAKE_CASE_ = '\nmname = "hf-internal-testing/tiny-random-bert"\nBertConfig.from_pretrained(mname)\nBertModel.from_pretrained(mname)\nBertTokenizer.from_pretrained(mname)\npipe = pipeline(task="fill-mask", model=mname)\nprint("success")\n ' SCREAMING_SNAKE_CASE_ = '\nimport socket\ndef offline_socket(*args, **kwargs): raise RuntimeError("Offline mode is enabled, we shouldn\'t access internet")\nsocket.socket = offline_socket\n ' # Force fetching the files so that we can use the cache SCREAMING_SNAKE_CASE_ = 'hf-internal-testing/tiny-random-bert' BertConfig.from_pretrained(_lowerCAmelCase ) BertModel.from_pretrained(_lowerCAmelCase ) BertTokenizer.from_pretrained(_lowerCAmelCase ) pipeline(task='fill-mask' , model=_lowerCAmelCase ) # baseline - just load from_pretrained with normal network SCREAMING_SNAKE_CASE_ = [sys.executable, '-c', '\n'.join([load, run, mock] )] # should succeed SCREAMING_SNAKE_CASE_ = self.get_env() # should succeed as TRANSFORMERS_OFFLINE=1 tells it to use local files SCREAMING_SNAKE_CASE_ = '1' SCREAMING_SNAKE_CASE_ = subprocess.run(_lowerCAmelCase , env=_lowerCAmelCase , check=_lowerCAmelCase , capture_output=_lowerCAmelCase ) self.assertEqual(result.returncode , 0 , result.stderr ) self.assertIn('success' , result.stdout.decode() ) @require_torch def lowerCAmelCase_ ( self : Tuple ): # python one-liner segments # this must be loaded before socket.socket is monkey-patched SCREAMING_SNAKE_CASE_ = '\nfrom transformers import BertConfig, BertModel, BertTokenizer, pipeline\n ' SCREAMING_SNAKE_CASE_ = '\nmname = "hf-internal-testing/tiny-random-bert"\nBertConfig.from_pretrained(mname)\nBertModel.from_pretrained(mname)\nBertTokenizer.from_pretrained(mname)\npipe = pipeline(task="fill-mask", model=mname)\nprint("success")\n ' SCREAMING_SNAKE_CASE_ = '\nimport socket\ndef offline_socket(*args, **kwargs): raise socket.error("Faking flaky internet")\nsocket.socket = offline_socket\n ' # Force fetching the files so that we can use the cache SCREAMING_SNAKE_CASE_ = 'hf-internal-testing/tiny-random-bert' BertConfig.from_pretrained(_lowerCAmelCase ) BertModel.from_pretrained(_lowerCAmelCase ) BertTokenizer.from_pretrained(_lowerCAmelCase ) pipeline(task='fill-mask' , model=_lowerCAmelCase ) # baseline - just load from_pretrained with normal network SCREAMING_SNAKE_CASE_ = [sys.executable, '-c', '\n'.join([load, run, mock] )] # should succeed SCREAMING_SNAKE_CASE_ = self.get_env() SCREAMING_SNAKE_CASE_ = subprocess.run(_lowerCAmelCase , env=_lowerCAmelCase , check=_lowerCAmelCase , capture_output=_lowerCAmelCase ) self.assertEqual(result.returncode , 0 , result.stderr ) self.assertIn('success' , result.stdout.decode() ) @require_torch def lowerCAmelCase_ ( self : List[str] ): # this test is a bit tricky since TRANSFORMERS_OFFLINE can only be changed before # `transformers` is loaded, and it's too late for inside pytest - so we are changing it # while running an external program # python one-liner segments # this must be loaded before socket.socket is monkey-patched SCREAMING_SNAKE_CASE_ = '\nfrom transformers import BertConfig, BertModel, BertTokenizer\n ' SCREAMING_SNAKE_CASE_ = '\nmname = "hf-internal-testing/tiny-random-bert-sharded"\nBertConfig.from_pretrained(mname)\nBertModel.from_pretrained(mname)\nprint("success")\n ' SCREAMING_SNAKE_CASE_ = '\nimport socket\ndef offline_socket(*args, **kwargs): raise ValueError("Offline mode is enabled")\nsocket.socket = offline_socket\n ' # baseline - just load from_pretrained with normal network SCREAMING_SNAKE_CASE_ = [sys.executable, '-c', '\n'.join([load, run] )] # should succeed SCREAMING_SNAKE_CASE_ = self.get_env() SCREAMING_SNAKE_CASE_ = subprocess.run(_lowerCAmelCase , env=_lowerCAmelCase , check=_lowerCAmelCase , capture_output=_lowerCAmelCase ) self.assertEqual(result.returncode , 0 , result.stderr ) self.assertIn('success' , result.stdout.decode() ) # next emulate no network SCREAMING_SNAKE_CASE_ = [sys.executable, '-c', '\n'.join([load, mock, run] )] # Doesn't fail anymore since the model is in the cache due to other tests, so commenting this. # env["TRANSFORMERS_OFFLINE"] = "0" # result = subprocess.run(cmd, env=env, check=False, capture_output=True) # self.assertEqual(result.returncode, 1, result.stderr) # should succeed as TRANSFORMERS_OFFLINE=1 tells it to use local files SCREAMING_SNAKE_CASE_ = '1' SCREAMING_SNAKE_CASE_ = subprocess.run(_lowerCAmelCase , env=_lowerCAmelCase , check=_lowerCAmelCase , capture_output=_lowerCAmelCase ) self.assertEqual(result.returncode , 0 , result.stderr ) self.assertIn('success' , result.stdout.decode() ) @require_torch def lowerCAmelCase_ ( self : Any ): SCREAMING_SNAKE_CASE_ = '\nfrom transformers import pipeline\n ' SCREAMING_SNAKE_CASE_ = '\nmname = "hf-internal-testing/tiny-random-bert"\npipe = pipeline(model=mname)\n ' SCREAMING_SNAKE_CASE_ = '\nimport socket\ndef offline_socket(*args, **kwargs): raise socket.error("Offline mode is enabled")\nsocket.socket = offline_socket\n ' SCREAMING_SNAKE_CASE_ = self.get_env() SCREAMING_SNAKE_CASE_ = '1' SCREAMING_SNAKE_CASE_ = [sys.executable, '-c', '\n'.join([load, mock, run] )] SCREAMING_SNAKE_CASE_ = subprocess.run(_lowerCAmelCase , env=_lowerCAmelCase , check=_lowerCAmelCase , capture_output=_lowerCAmelCase ) self.assertEqual(result.returncode , 1 , result.stderr ) self.assertIn( 'You cannot infer task automatically within `pipeline` when using offline mode' , result.stderr.decode().replace('\n' , '' ) , ) @require_torch def lowerCAmelCase_ ( self : Optional[int] ): SCREAMING_SNAKE_CASE_ = '\nfrom transformers import AutoModel\n ' SCREAMING_SNAKE_CASE_ = '\nmname = "hf-internal-testing/test_dynamic_model"\nAutoModel.from_pretrained(mname, trust_remote_code=True)\nprint("success")\n ' # baseline - just load from_pretrained with normal network SCREAMING_SNAKE_CASE_ = [sys.executable, '-c', '\n'.join([load, run] )] # should succeed SCREAMING_SNAKE_CASE_ = self.get_env() SCREAMING_SNAKE_CASE_ = subprocess.run(_lowerCAmelCase , env=_lowerCAmelCase , check=_lowerCAmelCase , capture_output=_lowerCAmelCase ) self.assertEqual(result.returncode , 0 , result.stderr ) self.assertIn('success' , result.stdout.decode() ) # should succeed as TRANSFORMERS_OFFLINE=1 tells it to use local files SCREAMING_SNAKE_CASE_ = '1' SCREAMING_SNAKE_CASE_ = subprocess.run(_lowerCAmelCase , env=_lowerCAmelCase , check=_lowerCAmelCase , capture_output=_lowerCAmelCase ) self.assertEqual(result.returncode , 0 , result.stderr ) self.assertIn('success' , result.stdout.decode() )
31
0
import unittest from transformers import is_torch_available from transformers.testing_utils import require_torch if is_torch_available(): import torch from transformers.generation import DisjunctiveConstraint @require_torch class _snake_case ( unittest.TestCase ): def SCREAMING_SNAKE_CASE__ ( self) -> Dict: # For consistency across different places the DisjunctiveConstraint is called, # dc.token_ids is a list of integers. It is also initialized only by integers. SCREAMING_SNAKE_CASE = [[1, 2, 4], [1, 2, 3, 4]] SCREAMING_SNAKE_CASE = DisjunctiveConstraint(a) self.assertTrue(isinstance(dc.token_ids , a)) with self.assertRaises(a): DisjunctiveConstraint(torch.LongTensor([[1, 2, 4], [1, 2, 3]])) with self.assertRaises(a): DisjunctiveConstraint([torch.LongTensor([1, 2, 4]), torch.LongTensor([1, 2, 3, 4, 5])]) def SCREAMING_SNAKE_CASE__ ( self) -> int: # We can't have constraints that are complete subsets of another. This leads to a preverse # interpretation of "constraint fulfillment": does generating [1,2,3] fulfill the constraint? # It would mean that it generated [1,2] which fulfills it, but it's in the middle of potentially # fulfilling [1,2,3,4]. If we believe that [1,2,3] does fulfill the constraint, then the algorithm # will necessarily never reach [1,2,3,4], giving users a false sense of control (better to just not allow it). SCREAMING_SNAKE_CASE = [[1, 2], [1, 2, 3, 4]] with self.assertRaises(a): DisjunctiveConstraint(a) # fails here def SCREAMING_SNAKE_CASE__ ( self) -> Union[str, Any]: SCREAMING_SNAKE_CASE = [[1, 2, 3], [1, 2, 4]] SCREAMING_SNAKE_CASE = DisjunctiveConstraint(a) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = dc.update(1) SCREAMING_SNAKE_CASE = stepped is True and completed is False and reset is False self.assertTrue(a) self.assertTrue(not dc.completed) self.assertTrue(dc.current_seq == [1]) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = dc.update(2) SCREAMING_SNAKE_CASE = stepped is True and completed is False and reset is False self.assertTrue(a) self.assertTrue(not dc.completed) self.assertTrue(dc.current_seq == [1, 2]) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = dc.update(3) SCREAMING_SNAKE_CASE = stepped is True and completed is True and reset is False self.assertTrue(a) self.assertTrue(dc.completed) # Completed! self.assertTrue(dc.current_seq == [1, 2, 3]) def SCREAMING_SNAKE_CASE__ ( self) -> List[str]: SCREAMING_SNAKE_CASE = [[1, 2, 3], [1, 2, 4, 5], [1, 2, 5]] SCREAMING_SNAKE_CASE = DisjunctiveConstraint(a) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = dc.update(1) self.assertTrue(not dc.completed) self.assertTrue(dc.current_seq == [1]) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = dc.update(2) self.assertTrue(not dc.completed) self.assertTrue(dc.current_seq == [1, 2]) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = dc.update(4) self.assertTrue(not dc.completed) self.assertTrue(dc.current_seq == [1, 2, 4]) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = dc.update(5) self.assertTrue(dc.completed) # Completed! self.assertTrue(dc.current_seq == [1, 2, 4, 5]) dc.reset() SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = dc.update(1) self.assertTrue(not dc.completed) self.assertTrue(dc.remaining() == 3) self.assertTrue(dc.current_seq == [1]) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = dc.update(2) self.assertTrue(not dc.completed) self.assertTrue(dc.remaining() == 2) self.assertTrue(dc.current_seq == [1, 2]) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = dc.update(5) self.assertTrue(dc.completed) # Completed! self.assertTrue(dc.remaining() == 0) self.assertTrue(dc.current_seq == [1, 2, 5])
73
import torch from transformers import PreTrainedModel, XLMRobertaConfig, XLMRobertaModel class lowerCamelCase_ ( _SCREAMING_SNAKE_CASE ): '''simple docstring''' lowercase_ = "M-CLIP" def __init__( self : Tuple , _lowerCAmelCase : List[str]=1_024 , _lowerCAmelCase : str=768 , **_lowerCAmelCase : Union[str, Any] ): SCREAMING_SNAKE_CASE_ = transformerDimSize SCREAMING_SNAKE_CASE_ = imageDimSize super().__init__(**_lowerCAmelCase ) class lowerCamelCase_ ( _SCREAMING_SNAKE_CASE ): '''simple docstring''' lowercase_ = MCLIPConfig def __init__( self : Dict , _lowerCAmelCase : Union[str, Any] , *_lowerCAmelCase : str , **_lowerCAmelCase : str ): super().__init__(_lowerCAmelCase , *_lowerCAmelCase , **_lowerCAmelCase ) SCREAMING_SNAKE_CASE_ = XLMRobertaModel(_lowerCAmelCase ) SCREAMING_SNAKE_CASE_ = torch.nn.Linear( in_features=config.transformerDimensions , out_features=config.numDims ) def lowerCAmelCase_ ( self : List[Any] , _lowerCAmelCase : Any , _lowerCAmelCase : Union[str, Any] ): SCREAMING_SNAKE_CASE_ = self.transformer(input_ids=_lowerCAmelCase , attention_mask=_lowerCAmelCase )[0] SCREAMING_SNAKE_CASE_ = (embs * attention_mask.unsqueeze(2 )).sum(dim=1 ) / attention_mask.sum(dim=1 )[:, None] return self.LinearTransformation(_lowerCAmelCase ), embs
31
0
import warnings from typing import Any, Dict, List, Optional, Union import numpy as np from ...audio_utils import mel_filter_bank, optimal_fft_length, spectrogram, window_function from ...feature_extraction_sequence_utils import SequenceFeatureExtractor from ...feature_extraction_utils import BatchFeature from ...utils import PaddingStrategy, TensorType, logging lowercase_ = logging.get_logger(__name__) class __UpperCamelCase ( lowerCAmelCase__ ): """simple docstring""" lowerCAmelCase_ = ['''input_values''', '''attention_mask'''] def __init__( self : Tuple , _A : int = 1 , _A : int = 1_6000 , _A : float = 0.0 , _A : bool = False , _A : int = 80 , _A : int = 16 , _A : int = 64 , _A : str = "hann_window" , _A : float = 1.0 , _A : float = 80 , _A : float = 7600 , _A : float = 1e-10 , _A : int = 2 , _A : bool = True , **_A : Optional[Any] , ): """simple docstring""" super().__init__(feature_size=_A , sampling_rate=_A , padding_value=_A , **_A ) __SCREAMING_SNAKE_CASE : List[Any] = do_normalize __SCREAMING_SNAKE_CASE : Optional[Any] = return_attention_mask __SCREAMING_SNAKE_CASE : Optional[Any] = num_mel_bins __SCREAMING_SNAKE_CASE : Dict = hop_length __SCREAMING_SNAKE_CASE : Any = win_length __SCREAMING_SNAKE_CASE : Union[str, Any] = win_function __SCREAMING_SNAKE_CASE : str = frame_signal_scale __SCREAMING_SNAKE_CASE : Tuple = fmin __SCREAMING_SNAKE_CASE : Any = fmax __SCREAMING_SNAKE_CASE : Dict = mel_floor __SCREAMING_SNAKE_CASE : Union[str, Any] = reduction_factor __SCREAMING_SNAKE_CASE : List[str] = win_length * sampling_rate // 1000 __SCREAMING_SNAKE_CASE : List[Any] = hop_length * sampling_rate // 1000 __SCREAMING_SNAKE_CASE : Union[str, Any] = optimal_fft_length(self.sample_size ) __SCREAMING_SNAKE_CASE : str = (self.n_fft // 2) + 1 __SCREAMING_SNAKE_CASE : Optional[int] = window_function(window_length=self.sample_size , name=self.win_function , periodic=_A ) __SCREAMING_SNAKE_CASE : Optional[int] = mel_filter_bank( num_frequency_bins=self.n_freqs , num_mel_filters=self.num_mel_bins , min_frequency=self.fmin , max_frequency=self.fmax , sampling_rate=self.sampling_rate , norm='''slaney''' , mel_scale='''slaney''' , ) if frame_signal_scale != 1.0: warnings.warn( '''The argument `frame_signal_scale` is deprecated and will be removed in version 4.30.0 of Transformers''' , _A , ) if reduction_factor != 2.0: warnings.warn( '''The argument `reduction_factor` is deprecated and will be removed in version 4.30.0 of Transformers''' , _A , ) @staticmethod # Copied from transformers.models.wav2vec2.feature_extraction_wav2vec2.Wav2Vec2FeatureExtractor.zero_mean_unit_var_norm def UpperCAmelCase__ ( _A : List[np.ndarray] , _A : List[np.ndarray] , _A : float = 0.0 ): """simple docstring""" if attention_mask is not None: __SCREAMING_SNAKE_CASE : Optional[int] = np.array(_A , np.intaa ) __SCREAMING_SNAKE_CASE : List[Any] = [] for vector, length in zip(_A , attention_mask.sum(-1 ) ): __SCREAMING_SNAKE_CASE : Tuple = (vector - vector[:length].mean()) / np.sqrt(vector[:length].var() + 1e-7 ) if length < normed_slice.shape[0]: __SCREAMING_SNAKE_CASE : Any = padding_value normed_input_values.append(_A ) else: __SCREAMING_SNAKE_CASE : int = [(x - x.mean()) / np.sqrt(x.var() + 1e-7 ) for x in input_values] return normed_input_values def UpperCAmelCase__ ( self : Any , _A : np.ndarray , ): """simple docstring""" __SCREAMING_SNAKE_CASE : str = spectrogram( _A , window=self.window , frame_length=self.sample_size , hop_length=self.sample_stride , fft_length=self.n_fft , mel_filters=self.mel_filters , mel_floor=self.mel_floor , log_mel='''log10''' , ) return log_mel_spec.T def __call__( self : Dict , _A : Optional[Union[np.ndarray, List[float], List[np.ndarray], List[List[float]]]] = None , _A : Optional[Union[np.ndarray, List[float], List[np.ndarray], List[List[float]]]] = None , _A : Union[bool, str, PaddingStrategy] = False , _A : Optional[int] = None , _A : bool = False , _A : Optional[int] = None , _A : Optional[bool] = None , _A : Optional[Union[str, TensorType]] = None , _A : Optional[int] = None , **_A : str , ): """simple docstring""" if audio is None and audio_target is None: raise ValueError('''You must provide either `audio` or `audio_target` values.''' ) if sampling_rate is not None: if sampling_rate != self.sampling_rate: raise ValueError( F'''The model corresponding to this feature extractor: {self} was trained using a sampling rate of''' F''' {self.sampling_rate}. Please make sure that the provided audio input was sampled with''' F''' {self.sampling_rate} and not {sampling_rate}.''' ) else: logger.warning( '''It is strongly recommended to pass the ``sampling_rate`` argument to this function. ''' '''Failing to do so can result in silent errors that might be hard to debug.''' ) if audio is not None: __SCREAMING_SNAKE_CASE : str = self._process_audio( _A , _A , _A , _A , _A , _A , _A , _A , **_A , ) else: __SCREAMING_SNAKE_CASE : Union[str, Any] = None if audio_target is not None: __SCREAMING_SNAKE_CASE : List[Any] = self._process_audio( _A , _A , _A , _A , _A , _A , _A , _A , **_A , ) if inputs is None: return inputs_target else: __SCREAMING_SNAKE_CASE : str = inputs_target['''input_values'''] __SCREAMING_SNAKE_CASE : Dict = inputs_target.get('''attention_mask''' ) if decoder_attention_mask is not None: __SCREAMING_SNAKE_CASE : Tuple = decoder_attention_mask return inputs def UpperCAmelCase__ ( self : Tuple , _A : Union[np.ndarray, List[float], List[np.ndarray], List[List[float]]] , _A : bool = False , _A : Union[bool, str, PaddingStrategy] = False , _A : Optional[int] = None , _A : bool = False , _A : Optional[int] = None , _A : Optional[bool] = None , _A : Optional[Union[str, TensorType]] = None , **_A : str , ): """simple docstring""" __SCREAMING_SNAKE_CASE : List[str] = isinstance(_A , np.ndarray ) and len(speech.shape ) > 1 if is_batched_numpy and len(speech.shape ) > 2: raise ValueError(F'''Only mono-channel audio is supported for input to {self}''' ) __SCREAMING_SNAKE_CASE : int = is_batched_numpy or ( isinstance(_A , (list, tuple) ) and (isinstance(speech[0] , (np.ndarray, tuple, list) )) ) if is_batched: __SCREAMING_SNAKE_CASE : Tuple = [np.asarray(_A , dtype=np.floataa ) for speech in speech] elif not is_batched and not isinstance(_A , np.ndarray ): __SCREAMING_SNAKE_CASE : Any = np.asarray(_A , dtype=np.floataa ) elif isinstance(_A , np.ndarray ) and speech.dtype is np.dtype(np.floataa ): __SCREAMING_SNAKE_CASE : Tuple = speech.astype(np.floataa ) # always return batch if not is_batched: __SCREAMING_SNAKE_CASE : Optional[int] = [speech] # needed to make pad() work on spectrogram inputs __SCREAMING_SNAKE_CASE : Union[str, Any] = self.feature_size # convert into correct format for padding if is_target: __SCREAMING_SNAKE_CASE : Tuple = [self._extract_mel_features(_A ) for waveform in speech] __SCREAMING_SNAKE_CASE : Tuple = BatchFeature({'''input_values''': features} ) __SCREAMING_SNAKE_CASE : Any = self.num_mel_bins else: __SCREAMING_SNAKE_CASE : Dict = BatchFeature({'''input_values''': speech} ) __SCREAMING_SNAKE_CASE : Dict = self.pad( _A , padding=_A , max_length=_A , truncation=_A , pad_to_multiple_of=_A , return_attention_mask=_A , **_A , ) __SCREAMING_SNAKE_CASE : List[Any] = feature_size_hack # convert input values to correct format __SCREAMING_SNAKE_CASE : str = padded_inputs['''input_values'''] if not isinstance(input_values[0] , np.ndarray ): __SCREAMING_SNAKE_CASE : Any = [np.asarray(_A , dtype=np.floataa ) for array in input_values] elif ( not isinstance(_A , np.ndarray ) and isinstance(input_values[0] , np.ndarray ) and input_values[0].dtype is np.dtype(np.floataa ) ): __SCREAMING_SNAKE_CASE : List[Any] = [array.astype(np.floataa ) for array in input_values] elif isinstance(_A , np.ndarray ) and input_values.dtype is np.dtype(np.floataa ): __SCREAMING_SNAKE_CASE : Any = input_values.astype(np.floataa ) # convert attention_mask to correct format __SCREAMING_SNAKE_CASE : List[str] = padded_inputs.get('''attention_mask''' ) if attention_mask is not None: __SCREAMING_SNAKE_CASE : Union[str, Any] = [np.asarray(_A , dtype=np.intaa ) for array in attention_mask] # zero-mean and unit-variance normalization if not is_target and self.do_normalize: __SCREAMING_SNAKE_CASE : Optional[Any] = ( attention_mask if self._get_padding_strategies(_A , max_length=_A ) is not PaddingStrategy.DO_NOT_PAD else None ) __SCREAMING_SNAKE_CASE : List[str] = self.zero_mean_unit_var_norm( padded_inputs['''input_values'''] , attention_mask=_A , padding_value=self.padding_value ) if return_tensors is not None: __SCREAMING_SNAKE_CASE : str = padded_inputs.convert_to_tensors(_A ) return padded_inputs def UpperCAmelCase__ ( self : Union[str, Any] ): """simple docstring""" __SCREAMING_SNAKE_CASE : str = super().to_dict() # Don't serialize these as they are derived from the other properties. __SCREAMING_SNAKE_CASE : int = ['''window''', '''mel_filters''', '''sample_size''', '''sample_stride''', '''n_fft''', '''n_freqs'''] for name in names: if name in output: del output[name] return output
74
import gc import random import unittest import numpy as np import torch from transformers import XLMRobertaTokenizer from diffusers import ( AltDiffusionImgaImgPipeline, AutoencoderKL, PNDMScheduler, UNetaDConditionModel, ) from diffusers.image_processor import VaeImageProcessor from diffusers.pipelines.alt_diffusion.modeling_roberta_series import ( RobertaSeriesConfig, RobertaSeriesModelWithTransformation, ) from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu enable_full_determinism() class lowerCamelCase_ ( unittest.TestCase ): '''simple docstring''' def lowerCAmelCase_ ( self : str ): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() @property def lowerCAmelCase_ ( self : Union[str, Any] ): SCREAMING_SNAKE_CASE_ = 1 SCREAMING_SNAKE_CASE_ = 3 SCREAMING_SNAKE_CASE_ = (32, 32) SCREAMING_SNAKE_CASE_ = floats_tensor((batch_size, num_channels) + sizes , rng=random.Random(0 ) ).to(_lowerCAmelCase ) return image @property def lowerCAmelCase_ ( self : Union[str, Any] ): torch.manual_seed(0 ) SCREAMING_SNAKE_CASE_ = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=('DownBlock2D', 'CrossAttnDownBlock2D') , up_block_types=('CrossAttnUpBlock2D', 'UpBlock2D') , cross_attention_dim=32 , ) return model @property def lowerCAmelCase_ ( self : Tuple ): torch.manual_seed(0 ) SCREAMING_SNAKE_CASE_ = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=['DownEncoderBlock2D', 'DownEncoderBlock2D'] , up_block_types=['UpDecoderBlock2D', 'UpDecoderBlock2D'] , latent_channels=4 , ) return model @property def lowerCAmelCase_ ( self : Optional[int] ): torch.manual_seed(0 ) SCREAMING_SNAKE_CASE_ = RobertaSeriesConfig( hidden_size=32 , project_dim=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=5_006 , ) return RobertaSeriesModelWithTransformation(_lowerCAmelCase ) @property def lowerCAmelCase_ ( self : List[Any] ): def extract(*_lowerCAmelCase : Optional[int] , **_lowerCAmelCase : str ): class lowerCamelCase_ : '''simple docstring''' def __init__( self : str ): SCREAMING_SNAKE_CASE_ = torch.ones([0] ) def lowerCAmelCase_ ( self : Union[str, Any] , _lowerCAmelCase : int ): self.pixel_values.to(_lowerCAmelCase ) return self return Out() return extract def lowerCAmelCase_ ( self : Optional[Any] ): SCREAMING_SNAKE_CASE_ = 'cpu' # ensure determinism for the device-dependent torch.Generator SCREAMING_SNAKE_CASE_ = self.dummy_cond_unet SCREAMING_SNAKE_CASE_ = PNDMScheduler(skip_prk_steps=_lowerCAmelCase ) SCREAMING_SNAKE_CASE_ = self.dummy_vae SCREAMING_SNAKE_CASE_ = self.dummy_text_encoder SCREAMING_SNAKE_CASE_ = XLMRobertaTokenizer.from_pretrained('hf-internal-testing/tiny-xlm-roberta' ) SCREAMING_SNAKE_CASE_ = 77 SCREAMING_SNAKE_CASE_ = self.dummy_image.to(_lowerCAmelCase ) SCREAMING_SNAKE_CASE_ = init_image / 2 + 0.5 # make sure here that pndm scheduler skips prk SCREAMING_SNAKE_CASE_ = AltDiffusionImgaImgPipeline( unet=_lowerCAmelCase , scheduler=_lowerCAmelCase , vae=_lowerCAmelCase , text_encoder=_lowerCAmelCase , tokenizer=_lowerCAmelCase , safety_checker=_lowerCAmelCase , feature_extractor=self.dummy_extractor , ) SCREAMING_SNAKE_CASE_ = VaeImageProcessor(vae_scale_factor=alt_pipe.vae_scale_factor , do_normalize=_lowerCAmelCase ) SCREAMING_SNAKE_CASE_ = alt_pipe.to(_lowerCAmelCase ) alt_pipe.set_progress_bar_config(disable=_lowerCAmelCase ) SCREAMING_SNAKE_CASE_ = 'A painting of a squirrel eating a burger' SCREAMING_SNAKE_CASE_ = torch.Generator(device=_lowerCAmelCase ).manual_seed(0 ) SCREAMING_SNAKE_CASE_ = alt_pipe( [prompt] , generator=_lowerCAmelCase , guidance_scale=6.0 , num_inference_steps=2 , output_type='np' , image=_lowerCAmelCase , ) SCREAMING_SNAKE_CASE_ = output.images SCREAMING_SNAKE_CASE_ = torch.Generator(device=_lowerCAmelCase ).manual_seed(0 ) SCREAMING_SNAKE_CASE_ = alt_pipe( [prompt] , generator=_lowerCAmelCase , guidance_scale=6.0 , num_inference_steps=2 , output_type='np' , image=_lowerCAmelCase , return_dict=_lowerCAmelCase , )[0] SCREAMING_SNAKE_CASE_ = image[0, -3:, -3:, -1] SCREAMING_SNAKE_CASE_ = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) SCREAMING_SNAKE_CASE_ = np.array([0.4427, 0.3731, 0.4249, 0.4941, 0.4546, 0.4148, 0.4193, 0.4666, 0.4499] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 5E-3 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 5E-3 @unittest.skipIf(torch_device != 'cuda' , 'This test requires a GPU' ) def lowerCAmelCase_ ( self : Tuple ): SCREAMING_SNAKE_CASE_ = self.dummy_cond_unet SCREAMING_SNAKE_CASE_ = PNDMScheduler(skip_prk_steps=_lowerCAmelCase ) SCREAMING_SNAKE_CASE_ = self.dummy_vae SCREAMING_SNAKE_CASE_ = self.dummy_text_encoder SCREAMING_SNAKE_CASE_ = XLMRobertaTokenizer.from_pretrained('hf-internal-testing/tiny-xlm-roberta' ) SCREAMING_SNAKE_CASE_ = 77 SCREAMING_SNAKE_CASE_ = self.dummy_image.to(_lowerCAmelCase ) # put models in fp16 SCREAMING_SNAKE_CASE_ = unet.half() SCREAMING_SNAKE_CASE_ = vae.half() SCREAMING_SNAKE_CASE_ = bert.half() # make sure here that pndm scheduler skips prk SCREAMING_SNAKE_CASE_ = AltDiffusionImgaImgPipeline( unet=_lowerCAmelCase , scheduler=_lowerCAmelCase , vae=_lowerCAmelCase , text_encoder=_lowerCAmelCase , tokenizer=_lowerCAmelCase , safety_checker=_lowerCAmelCase , feature_extractor=self.dummy_extractor , ) SCREAMING_SNAKE_CASE_ = VaeImageProcessor(vae_scale_factor=alt_pipe.vae_scale_factor , do_normalize=_lowerCAmelCase ) SCREAMING_SNAKE_CASE_ = alt_pipe.to(_lowerCAmelCase ) alt_pipe.set_progress_bar_config(disable=_lowerCAmelCase ) SCREAMING_SNAKE_CASE_ = 'A painting of a squirrel eating a burger' SCREAMING_SNAKE_CASE_ = torch.manual_seed(0 ) SCREAMING_SNAKE_CASE_ = alt_pipe( [prompt] , generator=_lowerCAmelCase , num_inference_steps=2 , output_type='np' , image=_lowerCAmelCase , ).images assert image.shape == (1, 32, 32, 3) @unittest.skipIf(torch_device != 'cuda' , 'This test requires a GPU' ) def lowerCAmelCase_ ( self : str ): SCREAMING_SNAKE_CASE_ = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/img2img/sketch-mountains-input.jpg' ) # resize to resolution that is divisible by 8 but not 16 or 32 SCREAMING_SNAKE_CASE_ = init_image.resize((760, 504) ) SCREAMING_SNAKE_CASE_ = 'BAAI/AltDiffusion' SCREAMING_SNAKE_CASE_ = AltDiffusionImgaImgPipeline.from_pretrained( _lowerCAmelCase , safety_checker=_lowerCAmelCase , ) pipe.to(_lowerCAmelCase ) pipe.set_progress_bar_config(disable=_lowerCAmelCase ) pipe.enable_attention_slicing() SCREAMING_SNAKE_CASE_ = 'A fantasy landscape, trending on artstation' SCREAMING_SNAKE_CASE_ = torch.manual_seed(0 ) SCREAMING_SNAKE_CASE_ = pipe( prompt=_lowerCAmelCase , image=_lowerCAmelCase , strength=0.75 , guidance_scale=7.5 , generator=_lowerCAmelCase , output_type='np' , ) SCREAMING_SNAKE_CASE_ = output.images[0] SCREAMING_SNAKE_CASE_ = image[255:258, 383:386, -1] assert image.shape == (504, 760, 3) SCREAMING_SNAKE_CASE_ = np.array([0.9358, 0.9397, 0.9599, 0.9901, 1.0000, 1.0000, 0.9882, 1.0000, 1.0000] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 @slow @require_torch_gpu class lowerCamelCase_ ( unittest.TestCase ): '''simple docstring''' def lowerCAmelCase_ ( self : str ): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def lowerCAmelCase_ ( self : int ): SCREAMING_SNAKE_CASE_ = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/img2img/sketch-mountains-input.jpg' ) SCREAMING_SNAKE_CASE_ = init_image.resize((768, 512) ) SCREAMING_SNAKE_CASE_ = load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/img2img/fantasy_landscape_alt.npy' ) SCREAMING_SNAKE_CASE_ = 'BAAI/AltDiffusion' SCREAMING_SNAKE_CASE_ = AltDiffusionImgaImgPipeline.from_pretrained( _lowerCAmelCase , safety_checker=_lowerCAmelCase , ) pipe.to(_lowerCAmelCase ) pipe.set_progress_bar_config(disable=_lowerCAmelCase ) pipe.enable_attention_slicing() SCREAMING_SNAKE_CASE_ = 'A fantasy landscape, trending on artstation' SCREAMING_SNAKE_CASE_ = torch.manual_seed(0 ) SCREAMING_SNAKE_CASE_ = pipe( prompt=_lowerCAmelCase , image=_lowerCAmelCase , strength=0.75 , guidance_scale=7.5 , generator=_lowerCAmelCase , output_type='np' , ) SCREAMING_SNAKE_CASE_ = output.images[0] assert image.shape == (512, 768, 3) # img2img is flaky across GPUs even in fp32, so using MAE here assert np.abs(expected_image - image ).max() < 1E-2
31
0
'''simple docstring''' import unittest from transformers import JukeboxTokenizer from transformers.testing_utils import require_torch class lowerCamelCase_ ( unittest.TestCase ): lowerCAmelCase__ = JukeboxTokenizer lowerCAmelCase__ = { 'artist': 'Zac Brown Band', 'genres': 'Country', 'lyrics': 'I met a traveller from an antique land,\n Who said "Two vast and trunkless legs of stone\n Stand in the desert. . . . Near them, on the sand,\n Half sunk a shattered visage lies, whose frown,\n And wrinkled lip, and sneer of cold command,\n Tell that its sculptor well those passions read\n Which yet survive, stamped on these lifeless things,\n The hand that mocked them, and the heart that fed;\n And on the pedestal, these words appear:\n My name is Ozymandias, King of Kings;\n Look on my Works, ye Mighty, and despair!\n Nothing beside remains. Round the decay\n Of that colossal Wreck, boundless and bare\n The lone and level sands stretch far away\n ', } @require_torch def lowercase_ ( self : Optional[Any] ): '''simple docstring''' import torch UpperCAmelCase__ : Optional[int] = JukeboxTokenizer.from_pretrained('''openai/jukebox-1b-lyrics''' ) UpperCAmelCase__ : List[Any] = tokenizer(**self.metas )['''input_ids'''] # fmt: off UpperCAmelCase__ : List[str] = [ torch.tensor([[ 0, 0, 0, 7_169, 507, 9, 76, 39, 31, 46, 76, 27, 76, 46, 44, 27, 48, 31, 38, 38, 31, 44, 76, 32, 44, 41, 39, 76, 27, 40, 76, 27, 40, 46, 35, 43, 47, 31, 76, 38, 27, 40, 30, 64, 78, 76, 76, 76, 76, 76, 76, 76, 76, 23, 34, 41, 76, 45, 27, 35, 30, 76, 71, 20, 49, 41, 76, 48, 27, 45, 46, 76, 27, 40, 30, 76, 46, 44, 47, 40, 37, 38, 31, 45, 45, 76, 38, 31, 33, 45, 76, 41, 32, 76, 45, 46, 41, 40, 31, 78, 76, 76, 76, 76, 76, 76, 76, 76, 19, 46, 27, 40, 30, 76, 35, 40, 76, 46, 34, 31, 76, 30, 31, 45, 31, 44, 46, 63, 76, 63, 76, 63, 76, 63, 76, 14, 31, 27, 44, 76, 46, 34, 31, 39, 64, 76, 41, 40, 76, 46, 34, 31, 76, 45, 27, 40, 30, 64, 78, 76, 76, 76, 76, 76, 76, 76, 76, 8, 27, 38, 32, 76, 45, 47, 40, 37, 76, 27, 76, 45, 34, 27, 46, 46, 31, 44, 31, 30, 76, 48, 35, 45, 27, 33, 31, 76, 38, 35, 31, 45, 64, 76, 49, 34, 41, 45, 31, 76, 32, 44, 41, 49, 40, 64, 78, 76, 76, 76, 76, 76, 76, 76, 76, 1, 40, 30, 76, 49, 44, 35, 40, 37, 38, 31, 30, 76, 38, 35, 42, 64, 76, 27, 40, 30, 76, 45, 40, 31, 31, 44, 76, 41, 32, 76, 29, 41, 38, 30, 76, 29, 41, 39, 39, 27, 40, 30, 64, 78, 76, 76, 76, 76, 76, 76, 76, 76, 20, 31, 38, 38, 76, 46, 34, 27, 46, 76, 35, 46, 45, 76, 45, 29, 47, 38, 42, 46, 41, 44, 76, 49, 31, 38, 38, 76, 46, 34, 41, 45, 31, 76, 42, 27, 45, 45, 35, 41, 40, 45, 76, 44, 31, 27, 30, 78, 76, 76, 76, 76, 76, 76, 76, 76, 23, 34, 35, 29, 34, 76, 51, 31, 46, 76, 45, 47, 44, 48, 35, 48, 31, 64, 76, 45, 46, 27, 39, 42, 31, 30, 76, 41, 40, 76, 46, 34, 31, 45, 31, 76, 38, 35, 32, 31, 38, 31, 45, 45, 76, 46, 34, 35, 40, 33, 45, 64, 78, 76, 76, 76, 76, 76, 76, 76, 76, 20, 34, 31, 76, 34, 27, 40, 30, 76, 46, 34, 27, 46, 76, 39, 41, 29, 37, 31, 30, 76, 46, 34, 31, 39, 64, 76, 27, 40, 30, 76, 46, 34, 31, 76, 34, 31, 27, 44, 46, 76, 46, 34, 27, 46, 76, 32, 31, 30, 66, 78, 76, 76, 76, 76, 76, 76, 76, 76, 1, 40, 30, 76, 41, 40, 76, 46, 34, 31, 76, 42, 31, 30, 31, 45, 46, 27, 38, 64, 76, 46, 34, 31, 45, 31, 76, 49, 41, 44, 30, 45, 76, 27, 42, 42, 31, 27, 44, 65, 78, 76, 76, 76, 76, 76, 76, 76, 76, 13, 51, 76, 40, 27, 39, 31, 76, 35, 45, 76, 15, 52, 51, 39, 27, 40, 30, 35, 27, 45, 64, 76, 11, 35, 40, 33, 76, 41, 32, 76, 11, 35, 40, 33, 45, 66, 78, 76, 76, 76, 76, 76, 76, 76, 76, 12, 41, 41, 37, 76, 41, 40, 76, 39, 51, 76, 23, 41, 44, 37, 45, 64, 76, 51, 31, 76, 13, 35, 33, 34, 46, 51, 64, 76, 27, 40, 30, 76, 30, 31, 45, 42, 27, 35, 44, 67, 78, 76, 76, 76, 76, 76, 76, 76, 76, 14, 41, 46, 34, 35, 40, 33, 76, 28, 31, 45, 35, 30, 31, 76, 44, 31, 39, 27, 35, 40, 45, 63, 76, 18, 41, 47, 40, 30, 76, 46, 34, 31, 76, 30, 31, 29, 27, 51, 78, 76, 76, 76, 76, 76, 76, 76, 76, 15, 32, 76, 46, 34, 27, 46, 76, 29, 41, 38, 41, 45, 45, 27, 38, 76, 23, 44, 31, 29, 37, 64, 76, 28, 41, 47, 40, 30, 38, 31, 45, 45, 76, 27, 40, 30, 76, 28, 27, 44, 31, 78, 76, 76, 76, 76, 76, 76, 76, 76, 20, 34, 31, 76, 38, 41, 40, 31, 76, 27, 40, 30, 76, 38, 31, 48, 31, 38, 76, 45, 27, 40, 30, 45, 76, 45, 46, 44, 31, 46, 29, 34, 76, 32, 27, 44, 76, 27, 49, 27, 51, 78, 76, 76, 76, 76, 76, 76, 76, 76]] ), torch.tensor([[0, 0, 0, 1_069, 11]] ), torch.tensor([[0, 0, 0, 1_069, 11]] ), ] # fmt: on self.assertTrue(torch.allclose(tokens[0] , EXPECTED_OUTPUT[0] ) ) self.assertTrue(torch.allclose(tokens[1] , EXPECTED_OUTPUT[1] ) ) self.assertTrue(torch.allclose(tokens[2] , EXPECTED_OUTPUT[2] ) ) @require_torch def lowercase_ ( self : Dict ): '''simple docstring''' import torch UpperCAmelCase__ : Union[str, Any] = JukeboxTokenizer.from_pretrained('''openai/jukebox-5b-lyrics''' ) UpperCAmelCase__ : Optional[Any] = tokenizer(**self.metas )['''input_ids'''] # fmt: off UpperCAmelCase__ : str = [ torch.tensor([[ 0, 0, 0, 1_069, 11, -1, -1, -1, -1, 9, 77, 39, 31, 46, 77, 27, 77, 46, 44, 27, 48, 31, 38, 38, 31, 44, 77, 32, 44, 41, 39, 77, 27, 40, 77, 27, 40, 46, 35, 43, 47, 31, 77, 38, 27, 40, 30, 64, 79, 77, 77, 77, 77, 77, 77, 77, 77, 23, 34, 41, 77, 45, 27, 35, 30, 77, 72, 20, 49, 41, 77, 48, 27, 45, 46, 77, 27, 40, 30, 77, 46, 44, 47, 40, 37, 38, 31, 45, 45, 77, 38, 31, 33, 45, 77, 41, 32, 77, 45, 46, 41, 40, 31, 79, 77, 77, 77, 77, 77, 77, 77, 77, 19, 46, 27, 40, 30, 77, 35, 40, 77, 46, 34, 31, 77, 30, 31, 45, 31, 44, 46, 63, 77, 63, 77, 63, 77, 63, 77, 14, 31, 27, 44, 77, 46, 34, 31, 39, 64, 77, 41, 40, 77, 46, 34, 31, 77, 45, 27, 40, 30, 64, 79, 77, 77, 77, 77, 77, 77, 77, 77, 8, 27, 38, 32, 77, 45, 47, 40, 37, 77, 27, 77, 45, 34, 27, 46, 46, 31, 44, 31, 30, 77, 48, 35, 45, 27, 33, 31, 77, 38, 35, 31, 45, 64, 77, 49, 34, 41, 45, 31, 77, 32, 44, 41, 49, 40, 64, 79, 77, 77, 77, 77, 77, 77, 77, 77, 1, 40, 30, 77, 49, 44, 35, 40, 37, 38, 31, 30, 77, 38, 35, 42, 64, 77, 27, 40, 30, 77, 45, 40, 31, 31, 44, 77, 41, 32, 77, 29, 41, 38, 30, 77, 29, 41, 39, 39, 27, 40, 30, 64, 79, 77, 77, 77, 77, 77, 77, 77, 77, 20, 31, 38, 38, 77, 46, 34, 27, 46, 77, 35, 46, 45, 77, 45, 29, 47, 38, 42, 46, 41, 44, 77, 49, 31, 38, 38, 77, 46, 34, 41, 45, 31, 77, 42, 27, 45, 45, 35, 41, 40, 45, 77, 44, 31, 27, 30, 79, 77, 77, 77, 77, 77, 77, 77, 77, 23, 34, 35, 29, 34, 77, 51, 31, 46, 77, 45, 47, 44, 48, 35, 48, 31, 64, 77, 45, 46, 27, 39, 42, 31, 30, 77, 41, 40, 77, 46, 34, 31, 45, 31, 77, 38, 35, 32, 31, 38, 31, 45, 45, 77, 46, 34, 35, 40, 33, 45, 64, 79, 77, 77, 77, 77, 77, 77, 77, 77, 20, 34, 31, 77, 34, 27, 40, 30, 77, 46, 34, 27, 46, 77, 39, 41, 29, 37, 31, 30, 77, 46, 34, 31, 39, 64, 77, 27, 40, 30, 77, 46, 34, 31, 77, 34, 31, 27, 44, 46, 77, 46, 34, 27, 46, 77, 32, 31, 30, 66, 79, 77, 77, 77, 77, 77, 77, 77, 77, 1, 40, 30, 77, 41, 40, 77, 46, 34, 31, 77, 42, 31, 30, 31, 45, 46, 27, 38, 64, 77, 46, 34, 31, 45, 31, 77, 49, 41, 44, 30, 45, 77, 27, 42, 42, 31, 27, 44, 65, 79, 77, 77, 77, 77, 77, 77, 77, 77, 13, 51, 77, 40, 27, 39, 31, 77, 35, 45, 77, 15, 52, 51, 39, 27, 40, 30, 35, 27, 45, 64, 77, 11, 35, 40, 33, 77, 41, 32, 77, 11, 35, 40, 33, 45, 66, 79, 77, 77, 77, 77, 77, 77, 77, 77, 12, 41, 41, 37, 77, 41, 40, 77, 39, 51, 77, 23, 41, 44, 37, 45, 64, 77, 51, 31, 77, 13, 35, 33, 34, 46, 51, 64, 77, 27, 40, 30, 77, 30, 31, 45, 42, 27, 35, 44, 67, 79, 77, 77, 77, 77, 77, 77, 77, 77, 14, 41, 46, 34, 35, 40, 33, 77, 28, 31, 45, 35, 30, 31, 77, 44, 31, 39, 27, 35, 40, 45, 63, 77, 18, 41, 47, 40, 30, 77, 46, 34, 31, 77, 30, 31, 29, 27, 51, 79, 77, 77, 77, 77, 77, 77, 77, 77, 15, 32, 77, 46, 34, 27, 46, 77, 29, 41, 38, 41, 45, 45, 27, 38, 77, 23, 44, 31, 29, 37, 64, 77, 28, 41, 47, 40, 30, 38, 31, 45, 45, 77, 27, 40, 30, 77, 28, 27, 44, 31, 79, 77, 77, 77, 77, 77, 77, 77, 77, 20, 34, 31, 77, 38, 41, 40, 31, 77, 27, 40, 30, 77, 38, 31, 48, 31, 38, 77, 45, 27, 40, 30, 45, 77, 45, 46, 44, 31, 46, 29, 34, 77, 32, 27, 44, 77, 27, 49, 27, 51, 79, 77, 77, 77, 77, 77, 77, 77, 77]] ), torch.tensor([[0, 0, 0, 1_069, 11, -1, -1, -1, -1]] ), torch.tensor([[0, 0, 0, 1_069, 11, -1, -1, -1, -1]] ), ] # fmt: on self.assertTrue(torch.allclose(tokens[0] , EXPECTED_OUTPUT[0] ) ) self.assertTrue(torch.allclose(tokens[1] , EXPECTED_OUTPUT[1] ) ) self.assertTrue(torch.allclose(tokens[2] , EXPECTED_OUTPUT[2] ) )
75
from collections import OrderedDict from typing import TYPE_CHECKING, Any, List, Mapping, Optional, Union from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import TensorType, logging if TYPE_CHECKING: from ...onnx.config import PatchingSpec from ...tokenization_utils_base import PreTrainedTokenizerBase lowerCamelCase__ : Optional[int] = logging.get_logger(__name__) lowerCamelCase__ : Dict = { 'allenai/longformer-base-4096': 'https://huggingface.co/allenai/longformer-base-4096/resolve/main/config.json', 'allenai/longformer-large-4096': 'https://huggingface.co/allenai/longformer-large-4096/resolve/main/config.json', 'allenai/longformer-large-4096-finetuned-triviaqa': ( 'https://huggingface.co/allenai/longformer-large-4096-finetuned-triviaqa/resolve/main/config.json' ), 'allenai/longformer-base-4096-extra.pos.embd.only': ( 'https://huggingface.co/allenai/longformer-base-4096-extra.pos.embd.only/resolve/main/config.json' ), 'allenai/longformer-large-4096-extra.pos.embd.only': ( 'https://huggingface.co/allenai/longformer-large-4096-extra.pos.embd.only/resolve/main/config.json' ), } class lowerCamelCase_ ( _SCREAMING_SNAKE_CASE ): '''simple docstring''' lowercase_ = "longformer" def __init__( self : Union[str, Any] , _lowerCAmelCase : Union[List[int], int] = 512 , _lowerCAmelCase : int = 2 , _lowerCAmelCase : int = 1 , _lowerCAmelCase : int = 0 , _lowerCAmelCase : int = 2 , _lowerCAmelCase : int = 30_522 , _lowerCAmelCase : int = 768 , _lowerCAmelCase : int = 12 , _lowerCAmelCase : int = 12 , _lowerCAmelCase : int = 3_072 , _lowerCAmelCase : str = "gelu" , _lowerCAmelCase : float = 0.1 , _lowerCAmelCase : float = 0.1 , _lowerCAmelCase : int = 512 , _lowerCAmelCase : int = 2 , _lowerCAmelCase : float = 0.02 , _lowerCAmelCase : float = 1E-12 , _lowerCAmelCase : bool = False , **_lowerCAmelCase : Union[str, Any] , ): super().__init__(pad_token_id=_lowerCAmelCase , **_lowerCAmelCase ) SCREAMING_SNAKE_CASE_ = attention_window SCREAMING_SNAKE_CASE_ = sep_token_id SCREAMING_SNAKE_CASE_ = bos_token_id SCREAMING_SNAKE_CASE_ = eos_token_id SCREAMING_SNAKE_CASE_ = vocab_size SCREAMING_SNAKE_CASE_ = hidden_size SCREAMING_SNAKE_CASE_ = num_hidden_layers SCREAMING_SNAKE_CASE_ = num_attention_heads SCREAMING_SNAKE_CASE_ = hidden_act SCREAMING_SNAKE_CASE_ = intermediate_size SCREAMING_SNAKE_CASE_ = hidden_dropout_prob SCREAMING_SNAKE_CASE_ = attention_probs_dropout_prob SCREAMING_SNAKE_CASE_ = max_position_embeddings SCREAMING_SNAKE_CASE_ = type_vocab_size SCREAMING_SNAKE_CASE_ = initializer_range SCREAMING_SNAKE_CASE_ = layer_norm_eps SCREAMING_SNAKE_CASE_ = onnx_export class lowerCamelCase_ ( _SCREAMING_SNAKE_CASE ): '''simple docstring''' def __init__( self : Optional[Any] , _lowerCAmelCase : "PretrainedConfig" , _lowerCAmelCase : str = "default" , _lowerCAmelCase : "List[PatchingSpec]" = None ): super().__init__(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) SCREAMING_SNAKE_CASE_ = True @property def lowerCAmelCase_ ( self : Any ): if self.task == "multiple-choice": SCREAMING_SNAKE_CASE_ = {0: 'batch', 1: 'choice', 2: 'sequence'} else: SCREAMING_SNAKE_CASE_ = {0: 'batch', 1: 'sequence'} return OrderedDict( [ ('input_ids', dynamic_axis), ('attention_mask', dynamic_axis), ('global_attention_mask', dynamic_axis), ] ) @property def lowerCAmelCase_ ( self : Optional[int] ): SCREAMING_SNAKE_CASE_ = super().outputs if self.task == "default": SCREAMING_SNAKE_CASE_ = {0: 'batch'} return outputs @property def lowerCAmelCase_ ( self : str ): return 1E-4 @property def lowerCAmelCase_ ( self : Optional[Any] ): # needs to be >= 14 to support tril operator return max(super().default_onnx_opset , 14 ) def lowerCAmelCase_ ( self : str , _lowerCAmelCase : "PreTrainedTokenizerBase" , _lowerCAmelCase : int = -1 , _lowerCAmelCase : int = -1 , _lowerCAmelCase : bool = False , _lowerCAmelCase : Optional[TensorType] = None , ): SCREAMING_SNAKE_CASE_ = super().generate_dummy_inputs( preprocessor=_lowerCAmelCase , batch_size=_lowerCAmelCase , seq_length=_lowerCAmelCase , is_pair=_lowerCAmelCase , framework=_lowerCAmelCase ) import torch # for some reason, replacing this code by inputs["global_attention_mask"] = torch.randint(2, inputs["input_ids"].shape, dtype=torch.int64) # makes the export fail randomly SCREAMING_SNAKE_CASE_ = torch.zeros_like(inputs['input_ids'] ) # make every second token global SCREAMING_SNAKE_CASE_ = 1 return inputs
31
0
"""simple docstring""" from functools import lru_cache def __UpperCAmelCase ( __UpperCamelCase ): __lowercase : str = 2 __lowercase : int = set() while i * i <= n: if n % i: i += 1 else: n //= i factors.add(__UpperCamelCase ) if n > 1: factors.add(__UpperCamelCase ) return factors @lru_cache def __UpperCAmelCase ( __UpperCamelCase ): return len(unique_prime_factors(__UpperCamelCase ) ) def __UpperCAmelCase ( __UpperCamelCase ): return len(set(__UpperCamelCase ) ) in (0, 1) def __UpperCAmelCase ( __UpperCamelCase ): __lowercase : Optional[Any] = 2 while True: # Increment each value of a generated range __lowercase : Dict = [base + i for i in range(__UpperCamelCase )] # Run elements through out unique_prime_factors function # Append our target number to the end. __lowercase : Optional[int] = [upf_len(__UpperCamelCase ) for x in group] checker.append(__UpperCamelCase ) # If all numbers in the list are equal, return the group variable. if equality(__UpperCamelCase ): return group # Increment our base variable by 1 base += 1 def __UpperCAmelCase ( __UpperCamelCase = 4 ): __lowercase : int = run(__UpperCamelCase ) return results[0] if len(__UpperCamelCase ) else None if __name__ == "__main__": print(solution())
76
import warnings from ...utils import logging from .image_processing_mobilevit import MobileViTImageProcessor lowerCamelCase__ : Optional[int] = logging.get_logger(__name__) class lowerCamelCase_ ( _SCREAMING_SNAKE_CASE ): '''simple docstring''' def __init__( self : str , *_lowerCAmelCase : Tuple , **_lowerCAmelCase : int ): warnings.warn( 'The class MobileViTFeatureExtractor is deprecated and will be removed in version 5 of Transformers.' ' Please use MobileViTImageProcessor instead.' , _lowerCAmelCase , ) super().__init__(*_lowerCAmelCase , **_lowerCAmelCase )
31
0
"""simple docstring""" def _UpperCamelCase ( UpperCamelCase , UpperCamelCase ) -> int: """simple docstring""" if len(UpperCamelCase ) != len(UpperCamelCase ): raise ValueError("String lengths must match!" ) __UpperCAmelCase : str = 0 for chara, chara in zip(UpperCamelCase , UpperCamelCase ): if chara != chara: count += 1 return count if __name__ == "__main__": import doctest doctest.testmod()
77
from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCamelCase__ : Optional[int] = logging.get_logger(__name__) lowerCamelCase__ : Tuple = { 'microsoft/swinv2-tiny-patch4-window8-256': ( 'https://huggingface.co/microsoft/swinv2-tiny-patch4-window8-256/resolve/main/config.json' ), } class lowerCamelCase_ ( _SCREAMING_SNAKE_CASE ): '''simple docstring''' lowercase_ = "swinv2" lowercase_ = { "num_attention_heads": "num_heads", "num_hidden_layers": "num_layers", } def __init__( self : Dict , _lowerCAmelCase : Optional[Any]=224 , _lowerCAmelCase : Optional[int]=4 , _lowerCAmelCase : Tuple=3 , _lowerCAmelCase : Tuple=96 , _lowerCAmelCase : Dict=[2, 2, 6, 2] , _lowerCAmelCase : Optional[Any]=[3, 6, 12, 24] , _lowerCAmelCase : str=7 , _lowerCAmelCase : List[Any]=4.0 , _lowerCAmelCase : List[str]=True , _lowerCAmelCase : List[Any]=0.0 , _lowerCAmelCase : List[Any]=0.0 , _lowerCAmelCase : Any=0.1 , _lowerCAmelCase : List[Any]="gelu" , _lowerCAmelCase : str=False , _lowerCAmelCase : str=0.02 , _lowerCAmelCase : List[Any]=1E-5 , _lowerCAmelCase : str=32 , **_lowerCAmelCase : List[Any] , ): super().__init__(**_lowerCAmelCase ) SCREAMING_SNAKE_CASE_ = image_size SCREAMING_SNAKE_CASE_ = patch_size SCREAMING_SNAKE_CASE_ = num_channels SCREAMING_SNAKE_CASE_ = embed_dim SCREAMING_SNAKE_CASE_ = depths SCREAMING_SNAKE_CASE_ = len(_lowerCAmelCase ) SCREAMING_SNAKE_CASE_ = num_heads SCREAMING_SNAKE_CASE_ = window_size SCREAMING_SNAKE_CASE_ = mlp_ratio SCREAMING_SNAKE_CASE_ = qkv_bias SCREAMING_SNAKE_CASE_ = hidden_dropout_prob SCREAMING_SNAKE_CASE_ = attention_probs_dropout_prob SCREAMING_SNAKE_CASE_ = drop_path_rate SCREAMING_SNAKE_CASE_ = hidden_act SCREAMING_SNAKE_CASE_ = use_absolute_embeddings SCREAMING_SNAKE_CASE_ = layer_norm_eps SCREAMING_SNAKE_CASE_ = initializer_range SCREAMING_SNAKE_CASE_ = encoder_stride # we set the hidden_size attribute in order to make Swinv2 work with VisionEncoderDecoderModel # this indicates the channel dimension after the last stage of the model SCREAMING_SNAKE_CASE_ = int(embed_dim * 2 ** (len(_lowerCAmelCase ) - 1) ) SCREAMING_SNAKE_CASE_ = (0, 0, 0, 0)
31
0
'''simple docstring''' from collections import OrderedDict from typing import Any, Mapping, Optional from ... import PreTrainedTokenizer, TensorType, is_torch_available from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfigWithPast from ...utils import logging SCREAMING_SNAKE_CASE_: int =logging.get_logger(__name__) SCREAMING_SNAKE_CASE_: Tuple ={ 'EleutherAI/gpt-neo-1.3B': 'https://huggingface.co/EleutherAI/gpt-neo-1.3B/resolve/main/config.json', # See all GPTNeo models at https://huggingface.co/models?filter=gpt_neo } class __A ( UpperCamelCase__ ): a__ : str = """gpt_neo""" a__ : Union[str, Any] = ["""past_key_values"""] a__ : List[str] = {"""num_attention_heads""": """num_heads""", """num_hidden_layers""": """num_layers"""} def __init__(self : str , __a : List[Any]=50257 , __a : Tuple=2048 , __a : Optional[Any]=2048 , __a : Dict=24 , __a : List[Any]=[[["global", "local"], 12]] , __a : List[Any]=16 , __a : Optional[int]=None , __a : Tuple=256 , __a : Optional[Any]="gelu_new" , __a : List[str]=0.0 , __a : int=0.0 , __a : Any=0.0 , __a : List[Any]=0.1 , __a : Optional[int]=1E-5 , __a : List[Any]=0.02 , __a : str=True , __a : int=50256 , __a : int=50256 , **__a : Dict , ): UpperCAmelCase_ = vocab_size UpperCAmelCase_ = max_position_embeddings UpperCAmelCase_ = hidden_size UpperCAmelCase_ = num_layers UpperCAmelCase_ = num_heads UpperCAmelCase_ = intermediate_size UpperCAmelCase_ = window_size UpperCAmelCase_ = activation_function UpperCAmelCase_ = resid_dropout UpperCAmelCase_ = embed_dropout UpperCAmelCase_ = attention_dropout UpperCAmelCase_ = classifier_dropout UpperCAmelCase_ = layer_norm_epsilon UpperCAmelCase_ = initializer_range UpperCAmelCase_ = use_cache UpperCAmelCase_ = bos_token_id UpperCAmelCase_ = eos_token_id UpperCAmelCase_ = attention_types UpperCAmelCase_ = self.expand_attention_types_params(__a ) if len(self.attention_layers ) != self.num_layers: raise ValueError( "Configuration for convolutional module is incorrect. " "It is required that `len(config.attention_layers)` == `config.num_layers` " f"""but is `len(config.attention_layers) = {len(self.attention_layers )}`, """ f"""`config.num_layers = {self.num_layers}`. """ "`config.attention_layers` is prepared using `config.attention_types`. " "Please verify the value of `config.attention_types` argument." ) super().__init__(bos_token_id=__a , eos_token_id=__a , **__a ) @staticmethod def _lowercase (__a : int ): UpperCAmelCase_ = [] for item in attention_types: for _ in range(item[1] ): attentions.extend(item[0] ) return attentions def lowerCAmelCase_ ( snake_case_ : str , snake_case_ : str , snake_case_ : Union[str, Any] , snake_case_ : List[Any] ) -> Tuple: '''simple docstring''' import torch UpperCAmelCase_ = input.size() UpperCAmelCase_ = len(snake_case_ ) UpperCAmelCase_ = shape[dimension] UpperCAmelCase_ = torch.arange(0 , snake_case_ , snake_case_ ) UpperCAmelCase_ = torch.div(sizedim - size , snake_case_ , rounding_mode="floor" ) + 1 UpperCAmelCase_ = torch.arange(snake_case_ ) + low_indices[:min_length][:, None] UpperCAmelCase_ = [slice(snake_case_ )] * rank UpperCAmelCase_ = indices UpperCAmelCase_ = input[s] UpperCAmelCase_ = list(range(0 , rank + 1 ) ) perm.append(perm.pop(dimension + 1 ) ) return sliced.permute(snake_case_ ) def lowerCAmelCase_ ( snake_case_ : Optional[int] , snake_case_ : str ) -> str: '''simple docstring''' import torch UpperCAmelCase_ = torch.arange(1 , snake_case_ ) UpperCAmelCase_ = torch.remainder(snake_case_ , snake_case_ ) UpperCAmelCase_ = remainders == 0 UpperCAmelCase_ = candidates[divisor_indices] UpperCAmelCase_ = torch.max(snake_case_ ) return largest_divisor, torch.div(snake_case_ , snake_case_ , rounding_mode="floor" ) class __A ( UpperCamelCase__ ): @property def _lowercase (self : Union[str, Any] ): UpperCAmelCase_ = OrderedDict({"input_ids": {0: "batch", 1: "sequence"}} ) if self.use_past: self.fill_with_past_key_values_(__a , direction="inputs" ) UpperCAmelCase_ = {0: "batch", 1: "past_sequence + sequence"} else: UpperCAmelCase_ = {0: "batch", 1: "sequence"} return common_inputs @property def _lowercase (self : Tuple ): return self._config.num_heads def _lowercase (self : int , __a : PreTrainedTokenizer , __a : int = -1 , __a : int = -1 , __a : bool = False , __a : Optional[TensorType] = None , ): UpperCAmelCase_ = super(__a , self ).generate_dummy_inputs( __a , batch_size=__a , seq_length=__a , is_pair=__a , framework=__a ) # We need to order the input in the way they appears in the forward() UpperCAmelCase_ = OrderedDict({"input_ids": common_inputs["input_ids"]} ) # Need to add the past_keys if self.use_past: if not is_torch_available(): raise ValueError("Cannot generate dummy past_keys inputs without PyTorch installed." ) else: import torch UpperCAmelCase_ , UpperCAmelCase_ = common_inputs["input_ids"].shape # Not using the same length for past_key_values UpperCAmelCase_ = seqlen + 2 UpperCAmelCase_ = ( batch, self.num_attention_heads, past_key_values_length, self._config.hidden_size // self.num_attention_heads, ) UpperCAmelCase_ = [ (torch.zeros(__a ), torch.zeros(__a )) for _ in range(self.num_layers ) ] UpperCAmelCase_ = common_inputs["attention_mask"] if self.use_past: UpperCAmelCase_ = ordered_inputs["attention_mask"].dtype UpperCAmelCase_ = torch.cat( [ordered_inputs["attention_mask"], torch.ones(__a , __a , dtype=__a )] , dim=1 ) return ordered_inputs @property def _lowercase (self : Dict ): return 13
78
import itertools import random import unittest import numpy as np from transformers import BatchFeature, SpeechTaFeatureExtractor from transformers.testing_utils import require_torch from transformers.utils.import_utils import is_torch_available from ...test_sequence_feature_extraction_common import SequenceFeatureExtractionTestMixin if is_torch_available(): import torch lowerCamelCase__ : Dict = random.Random() def UpperCAmelCase_ ( __UpperCAmelCase : int , __UpperCAmelCase : Tuple=1.0 , __UpperCAmelCase : Dict=None , __UpperCAmelCase : Dict=None ) -> Tuple: if rng is None: SCREAMING_SNAKE_CASE_ = global_rng SCREAMING_SNAKE_CASE_ = [] for batch_idx in range(shape[0] ): values.append([] ) for _ in range(shape[1] ): values[-1].append(rng.random() * scale ) return values @require_torch class lowerCamelCase_ ( unittest.TestCase ): '''simple docstring''' def __init__( self : List[str] , _lowerCAmelCase : int , _lowerCAmelCase : Optional[Any]=7 , _lowerCAmelCase : Union[str, Any]=400 , _lowerCAmelCase : Tuple=2_000 , _lowerCAmelCase : str=1 , _lowerCAmelCase : int=0.0 , _lowerCAmelCase : Optional[Any]=16_000 , _lowerCAmelCase : Optional[Any]=True , _lowerCAmelCase : Any=80 , _lowerCAmelCase : Union[str, Any]=16 , _lowerCAmelCase : List[str]=64 , _lowerCAmelCase : List[Any]="hann_window" , _lowerCAmelCase : Any=80 , _lowerCAmelCase : List[Any]=7_600 , _lowerCAmelCase : List[Any]=1E-10 , _lowerCAmelCase : Optional[Any]=True , ): SCREAMING_SNAKE_CASE_ = parent SCREAMING_SNAKE_CASE_ = batch_size SCREAMING_SNAKE_CASE_ = min_seq_length SCREAMING_SNAKE_CASE_ = max_seq_length SCREAMING_SNAKE_CASE_ = (self.max_seq_length - self.min_seq_length) // (self.batch_size - 1) SCREAMING_SNAKE_CASE_ = feature_size SCREAMING_SNAKE_CASE_ = padding_value SCREAMING_SNAKE_CASE_ = sampling_rate SCREAMING_SNAKE_CASE_ = do_normalize SCREAMING_SNAKE_CASE_ = num_mel_bins SCREAMING_SNAKE_CASE_ = hop_length SCREAMING_SNAKE_CASE_ = win_length SCREAMING_SNAKE_CASE_ = win_function SCREAMING_SNAKE_CASE_ = fmin SCREAMING_SNAKE_CASE_ = fmax SCREAMING_SNAKE_CASE_ = mel_floor SCREAMING_SNAKE_CASE_ = return_attention_mask def lowerCAmelCase_ ( self : Union[str, Any] ): return { "feature_size": self.feature_size, "padding_value": self.padding_value, "sampling_rate": self.sampling_rate, "do_normalize": self.do_normalize, "num_mel_bins": self.num_mel_bins, "hop_length": self.hop_length, "win_length": self.win_length, "win_function": self.win_function, "fmin": self.fmin, "fmax": self.fmax, "mel_floor": self.mel_floor, "return_attention_mask": self.return_attention_mask, } def lowerCAmelCase_ ( self : Dict , _lowerCAmelCase : Optional[int]=False , _lowerCAmelCase : str=False ): def _flatten(_lowerCAmelCase : Dict ): return list(itertools.chain(*_lowerCAmelCase ) ) if equal_length: SCREAMING_SNAKE_CASE_ = floats_list((self.batch_size, self.max_seq_length) ) else: # make sure that inputs increase in size SCREAMING_SNAKE_CASE_ = [ _flatten(floats_list((x, self.feature_size) ) ) for x in range(self.min_seq_length , self.max_seq_length , self.seq_length_diff ) ] if numpify: SCREAMING_SNAKE_CASE_ = [np.asarray(_lowerCAmelCase ) for x in speech_inputs] return speech_inputs def lowerCAmelCase_ ( self : List[Any] , _lowerCAmelCase : Union[str, Any]=False , _lowerCAmelCase : Optional[int]=False ): if equal_length: SCREAMING_SNAKE_CASE_ = [floats_list((self.max_seq_length, self.num_mel_bins) ) for _ in range(self.batch_size )] else: # make sure that inputs increase in size SCREAMING_SNAKE_CASE_ = [ floats_list((x, self.num_mel_bins) ) for x in range(self.min_seq_length , self.max_seq_length , self.seq_length_diff ) ] if numpify: SCREAMING_SNAKE_CASE_ = [np.asarray(_lowerCAmelCase ) for x in speech_inputs] return speech_inputs @require_torch class lowerCamelCase_ ( _SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' lowercase_ = SpeechTaFeatureExtractor def lowerCAmelCase_ ( self : Any ): SCREAMING_SNAKE_CASE_ = SpeechTaFeatureExtractionTester(self ) def lowerCAmelCase_ ( self : Any , _lowerCAmelCase : int ): self.assertTrue(np.all(np.mean(_lowerCAmelCase , axis=0 ) < 1E-3 ) ) self.assertTrue(np.all(np.abs(np.var(_lowerCAmelCase , axis=0 ) - 1 ) < 1E-3 ) ) def lowerCAmelCase_ ( self : List[Any] ): # Tests that all call wrap to encode_plus and batch_encode_plus SCREAMING_SNAKE_CASE_ = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) # create three inputs of length 800, 1000, and 1200 SCREAMING_SNAKE_CASE_ = [floats_list((1, x) )[0] for x in range(800 , 1_400 , 200 )] SCREAMING_SNAKE_CASE_ = [np.asarray(_lowerCAmelCase ) for speech_input in speech_inputs] # Test not batched input SCREAMING_SNAKE_CASE_ = feat_extract(speech_inputs[0] , return_tensors='np' ).input_values SCREAMING_SNAKE_CASE_ = feat_extract(np_speech_inputs[0] , return_tensors='np' ).input_values self.assertTrue(np.allclose(_lowerCAmelCase , _lowerCAmelCase , atol=1E-3 ) ) # Test batched SCREAMING_SNAKE_CASE_ = feat_extract(_lowerCAmelCase , return_tensors='np' ).input_values SCREAMING_SNAKE_CASE_ = feat_extract(_lowerCAmelCase , return_tensors='np' ).input_values for enc_seq_a, enc_seq_a in zip(_lowerCAmelCase , _lowerCAmelCase ): self.assertTrue(np.allclose(_lowerCAmelCase , _lowerCAmelCase , atol=1E-3 ) ) def lowerCAmelCase_ ( self : Union[str, Any] ): SCREAMING_SNAKE_CASE_ = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) SCREAMING_SNAKE_CASE_ = [floats_list((1, x) )[0] for x in range(800 , 1_400 , 200 )] SCREAMING_SNAKE_CASE_ = ['longest', 'max_length', 'do_not_pad'] SCREAMING_SNAKE_CASE_ = [None, 1_600, None] for max_length, padding in zip(_lowerCAmelCase , _lowerCAmelCase ): SCREAMING_SNAKE_CASE_ = feat_extract(_lowerCAmelCase , padding=_lowerCAmelCase , max_length=_lowerCAmelCase , return_tensors='np' ) SCREAMING_SNAKE_CASE_ = processed.input_values self._check_zero_mean_unit_variance(input_values[0][:800] ) self.assertTrue(input_values[0][800:].sum() < 1E-6 ) self._check_zero_mean_unit_variance(input_values[1][:1_000] ) self.assertTrue(input_values[0][1_000:].sum() < 1E-6 ) self._check_zero_mean_unit_variance(input_values[2][:1_200] ) def lowerCAmelCase_ ( self : Optional[Any] ): SCREAMING_SNAKE_CASE_ = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) SCREAMING_SNAKE_CASE_ = range(800 , 1_400 , 200 ) SCREAMING_SNAKE_CASE_ = [floats_list((1, x) )[0] for x in lengths] SCREAMING_SNAKE_CASE_ = ['longest', 'max_length', 'do_not_pad'] SCREAMING_SNAKE_CASE_ = [None, 1_600, None] for max_length, padding in zip(_lowerCAmelCase , _lowerCAmelCase ): SCREAMING_SNAKE_CASE_ = feat_extract(_lowerCAmelCase , max_length=_lowerCAmelCase , padding=_lowerCAmelCase ) SCREAMING_SNAKE_CASE_ = processed.input_values self._check_zero_mean_unit_variance(input_values[0][:800] ) self._check_zero_mean_unit_variance(input_values[1][:1_000] ) self._check_zero_mean_unit_variance(input_values[2][:1_200] ) def lowerCAmelCase_ ( self : Dict ): SCREAMING_SNAKE_CASE_ = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) SCREAMING_SNAKE_CASE_ = [floats_list((1, x) )[0] for x in range(800 , 1_400 , 200 )] SCREAMING_SNAKE_CASE_ = feat_extract( _lowerCAmelCase , truncation=_lowerCAmelCase , max_length=1_000 , padding='max_length' , return_tensors='np' ) SCREAMING_SNAKE_CASE_ = processed.input_values self._check_zero_mean_unit_variance(input_values[0, :800] ) self._check_zero_mean_unit_variance(input_values[1] ) self._check_zero_mean_unit_variance(input_values[2] ) def lowerCAmelCase_ ( self : Dict ): SCREAMING_SNAKE_CASE_ = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) SCREAMING_SNAKE_CASE_ = [floats_list((1, x) )[0] for x in range(800 , 1_400 , 200 )] SCREAMING_SNAKE_CASE_ = feat_extract( _lowerCAmelCase , truncation=_lowerCAmelCase , max_length=1_000 , padding='longest' , return_tensors='np' ) SCREAMING_SNAKE_CASE_ = processed.input_values self._check_zero_mean_unit_variance(input_values[0, :800] ) self._check_zero_mean_unit_variance(input_values[1, :1_000] ) self._check_zero_mean_unit_variance(input_values[2] ) # make sure that if max_length < longest -> then pad to max_length self.assertTrue(input_values.shape == (3, 1_000) ) SCREAMING_SNAKE_CASE_ = [floats_list((1, x) )[0] for x in range(800 , 1_400 , 200 )] SCREAMING_SNAKE_CASE_ = feat_extract( _lowerCAmelCase , truncation=_lowerCAmelCase , max_length=2_000 , padding='longest' , return_tensors='np' ) SCREAMING_SNAKE_CASE_ = processed.input_values self._check_zero_mean_unit_variance(input_values[0, :800] ) self._check_zero_mean_unit_variance(input_values[1, :1_000] ) self._check_zero_mean_unit_variance(input_values[2] ) # make sure that if max_length > longest -> then pad to longest self.assertTrue(input_values.shape == (3, 1_200) ) def lowerCAmelCase_ ( self : Optional[int] ): SCREAMING_SNAKE_CASE_ = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) SCREAMING_SNAKE_CASE_ = np.random.rand(100 ).astype(np.floataa ) SCREAMING_SNAKE_CASE_ = np_speech_inputs.tolist() for inputs in [py_speech_inputs, np_speech_inputs]: SCREAMING_SNAKE_CASE_ = feature_extractor.pad([{'input_values': inputs}] , return_tensors='np' ) self.assertTrue(np_processed.input_values.dtype == np.floataa ) SCREAMING_SNAKE_CASE_ = feature_extractor.pad([{'input_values': inputs}] , return_tensors='pt' ) self.assertTrue(pt_processed.input_values.dtype == torch.floataa ) def lowerCAmelCase_ ( self : Tuple ): # Tests that all call wrap to encode_plus and batch_encode_plus SCREAMING_SNAKE_CASE_ = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) # create three inputs of length 800, 1000, and 1200 SCREAMING_SNAKE_CASE_ = [floats_list((1, x) )[0] for x in range(800 , 1_400 , 200 )] SCREAMING_SNAKE_CASE_ = [np.asarray(_lowerCAmelCase ) for speech_input in speech_inputs] # Test feature size SCREAMING_SNAKE_CASE_ = feature_extractor(audio_target=_lowerCAmelCase , padding=_lowerCAmelCase , return_tensors='np' ).input_values self.assertTrue(input_values.ndim == 3 ) self.assertTrue(input_values.shape[-1] == feature_extractor.num_mel_bins ) # Test not batched input SCREAMING_SNAKE_CASE_ = feature_extractor(speech_inputs[0] , return_tensors='np' ).input_values SCREAMING_SNAKE_CASE_ = feature_extractor(np_speech_inputs[0] , return_tensors='np' ).input_values self.assertTrue(np.allclose(_lowerCAmelCase , _lowerCAmelCase , atol=1E-3 ) ) # Test batched SCREAMING_SNAKE_CASE_ = feature_extractor(_lowerCAmelCase , return_tensors='np' ).input_values SCREAMING_SNAKE_CASE_ = feature_extractor(_lowerCAmelCase , return_tensors='np' ).input_values for enc_seq_a, enc_seq_a in zip(_lowerCAmelCase , _lowerCAmelCase ): self.assertTrue(np.allclose(_lowerCAmelCase , _lowerCAmelCase , atol=1E-3 ) ) # Test 2-D numpy arrays are batched. SCREAMING_SNAKE_CASE_ = [floats_list((1, x) )[0] for x in (800, 800, 800)] SCREAMING_SNAKE_CASE_ = np.asarray(_lowerCAmelCase ) SCREAMING_SNAKE_CASE_ = feature_extractor(_lowerCAmelCase , return_tensors='np' ).input_values SCREAMING_SNAKE_CASE_ = feature_extractor(_lowerCAmelCase , return_tensors='np' ).input_values for enc_seq_a, enc_seq_a in zip(_lowerCAmelCase , _lowerCAmelCase ): self.assertTrue(np.allclose(_lowerCAmelCase , _lowerCAmelCase , atol=1E-3 ) ) def lowerCAmelCase_ ( self : str ): SCREAMING_SNAKE_CASE_ = self.feat_extract_tester.prepare_inputs_for_target() SCREAMING_SNAKE_CASE_ = self.feature_extraction_class(**self.feat_extract_dict ) SCREAMING_SNAKE_CASE_ = feat_extract.model_input_names[0] SCREAMING_SNAKE_CASE_ = BatchFeature({input_name: speech_inputs} ) self.assertTrue(all(len(_lowerCAmelCase ) == len(_lowerCAmelCase ) for x, y in zip(_lowerCAmelCase , processed_features[input_name] ) ) ) SCREAMING_SNAKE_CASE_ = self.feat_extract_tester.prepare_inputs_for_target(equal_length=_lowerCAmelCase ) SCREAMING_SNAKE_CASE_ = BatchFeature({input_name: speech_inputs} , tensor_type='np' ) SCREAMING_SNAKE_CASE_ = processed_features[input_name] if len(batch_features_input.shape ) < 3: SCREAMING_SNAKE_CASE_ = batch_features_input[:, :, None] self.assertTrue( batch_features_input.shape == (self.feat_extract_tester.batch_size, len(speech_inputs[0] ), self.feat_extract_tester.num_mel_bins) ) @require_torch def lowerCAmelCase_ ( self : Dict ): SCREAMING_SNAKE_CASE_ = self.feat_extract_tester.prepare_inputs_for_target(equal_length=_lowerCAmelCase ) SCREAMING_SNAKE_CASE_ = self.feature_extraction_class(**self.feat_extract_dict ) SCREAMING_SNAKE_CASE_ = feat_extract.model_input_names[0] SCREAMING_SNAKE_CASE_ = BatchFeature({input_name: speech_inputs} , tensor_type='pt' ) SCREAMING_SNAKE_CASE_ = processed_features[input_name] if len(batch_features_input.shape ) < 3: SCREAMING_SNAKE_CASE_ = batch_features_input[:, :, None] self.assertTrue( batch_features_input.shape == (self.feat_extract_tester.batch_size, len(speech_inputs[0] ), self.feat_extract_tester.num_mel_bins) ) @require_torch def lowerCAmelCase_ ( self : Dict ): SCREAMING_SNAKE_CASE_ = self.feature_extraction_class(**self.feat_extract_dict ) SCREAMING_SNAKE_CASE_ = self.feat_extract_tester.prepare_inputs_for_target() SCREAMING_SNAKE_CASE_ = feat_extract.model_input_names[0] SCREAMING_SNAKE_CASE_ = BatchFeature({input_name: speech_inputs} ) SCREAMING_SNAKE_CASE_ = feat_extract.num_mel_bins # hack! SCREAMING_SNAKE_CASE_ = feat_extract.pad(_lowerCAmelCase , padding='longest' , return_tensors='np' )[input_name] SCREAMING_SNAKE_CASE_ = feat_extract.pad(_lowerCAmelCase , padding='longest' , return_tensors='pt' )[input_name] self.assertTrue(abs(input_np.astype(np.floataa ).sum() - input_pt.numpy().astype(np.floataa ).sum() ) < 1E-2 ) def lowerCAmelCase_ ( self : str ): SCREAMING_SNAKE_CASE_ = self.feat_extract_dict SCREAMING_SNAKE_CASE_ = True SCREAMING_SNAKE_CASE_ = self.feature_extraction_class(**_lowerCAmelCase ) SCREAMING_SNAKE_CASE_ = self.feat_extract_tester.prepare_inputs_for_target() SCREAMING_SNAKE_CASE_ = [len(_lowerCAmelCase ) for x in speech_inputs] SCREAMING_SNAKE_CASE_ = feat_extract.model_input_names[0] SCREAMING_SNAKE_CASE_ = BatchFeature({input_name: speech_inputs} ) SCREAMING_SNAKE_CASE_ = feat_extract.num_mel_bins # hack! SCREAMING_SNAKE_CASE_ = feat_extract.pad(_lowerCAmelCase , padding='longest' , return_tensors='np' ) self.assertIn('attention_mask' , _lowerCAmelCase ) self.assertListEqual(list(processed.attention_mask.shape ) , list(processed[input_name].shape[:2] ) ) self.assertListEqual(processed.attention_mask.sum(-1 ).tolist() , _lowerCAmelCase ) def lowerCAmelCase_ ( self : Any ): SCREAMING_SNAKE_CASE_ = self.feat_extract_dict SCREAMING_SNAKE_CASE_ = True SCREAMING_SNAKE_CASE_ = self.feature_extraction_class(**_lowerCAmelCase ) SCREAMING_SNAKE_CASE_ = self.feat_extract_tester.prepare_inputs_for_target() SCREAMING_SNAKE_CASE_ = [len(_lowerCAmelCase ) for x in speech_inputs] SCREAMING_SNAKE_CASE_ = feat_extract.model_input_names[0] SCREAMING_SNAKE_CASE_ = BatchFeature({input_name: speech_inputs} ) SCREAMING_SNAKE_CASE_ = min(_lowerCAmelCase ) SCREAMING_SNAKE_CASE_ = feat_extract.num_mel_bins # hack! SCREAMING_SNAKE_CASE_ = feat_extract.pad( _lowerCAmelCase , padding='max_length' , max_length=_lowerCAmelCase , truncation=_lowerCAmelCase , return_tensors='np' ) self.assertIn('attention_mask' , _lowerCAmelCase ) self.assertListEqual( list(processed_pad.attention_mask.shape ) , [processed_pad[input_name].shape[0], max_length] ) self.assertListEqual( processed_pad.attention_mask[:, :max_length].sum(-1 ).tolist() , [max_length for x in speech_inputs] ) def lowerCAmelCase_ ( self : List[Any] , _lowerCAmelCase : Tuple ): from datasets import load_dataset SCREAMING_SNAKE_CASE_ = load_dataset('hf-internal-testing/librispeech_asr_dummy' , 'clean' , split='validation' ) # automatic decoding with librispeech SCREAMING_SNAKE_CASE_ = ds.sort('id' ).select(range(_lowerCAmelCase ) )[:num_samples]['audio'] return [x["array"] for x in speech_samples] def lowerCAmelCase_ ( self : Any ): # fmt: off SCREAMING_SNAKE_CASE_ = torch.tensor( [2.3_804E-03, 2.0_752E-03, 1.9_836E-03, 2.1_057E-03, 1.6_174E-03, 3.0_518E-04, 9.1_553E-05, 3.3_569E-04, 9.7_656E-04, 1.8_311E-03, 2.0_142E-03, 2.1_057E-03, 1.7_395E-03, 4.5_776E-04, -3.9_673E-04, 4.5_776E-04, 1.0_071E-03, 9.1_553E-05, 4.8_828E-04, 1.1_597E-03, 7.3_242E-04, 9.4_604E-04, 1.8_005E-03, 1.8_311E-03, 8.8_501E-04, 4.2_725E-04, 4.8_828E-04, 7.3_242E-04, 1.0_986E-03, 2.1_057E-03] ) # fmt: on SCREAMING_SNAKE_CASE_ = self._load_datasamples(1 ) SCREAMING_SNAKE_CASE_ = SpeechTaFeatureExtractor() SCREAMING_SNAKE_CASE_ = feature_extractor(_lowerCAmelCase , return_tensors='pt' ).input_values self.assertEquals(input_values.shape , (1, 93_680) ) self.assertTrue(torch.allclose(input_values[0, :30] , _lowerCAmelCase , atol=1E-6 ) ) def lowerCAmelCase_ ( self : Optional[int] ): # fmt: off SCREAMING_SNAKE_CASE_ = torch.tensor( [-2.6870, -3.0104, -3.1356, -3.5352, -3.0044, -3.0353, -3.4719, -3.6777, -3.1520, -2.9435, -2.6553, -2.8795, -2.9944, -2.5921, -3.0279, -3.0386, -3.0864, -3.1291, -3.2353, -2.7444, -2.6831, -2.7287, -3.1761, -3.1571, -3.2726, -3.0582, -3.1007, -3.4533, -3.4695, -3.0998] ) # fmt: on SCREAMING_SNAKE_CASE_ = self._load_datasamples(1 ) SCREAMING_SNAKE_CASE_ = SpeechTaFeatureExtractor() SCREAMING_SNAKE_CASE_ = feature_extractor(audio_target=_lowerCAmelCase , return_tensors='pt' ).input_values self.assertEquals(input_values.shape , (1, 366, 80) ) self.assertTrue(torch.allclose(input_values[0, 0, :30] , _lowerCAmelCase , atol=1E-4 ) )
31
0
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available, is_vision_available, ) SCREAMING_SNAKE_CASE__ : int = { """configuration_layoutlmv2""": ["""LAYOUTLMV2_PRETRAINED_CONFIG_ARCHIVE_MAP""", """LayoutLMv2Config"""], """processing_layoutlmv2""": ["""LayoutLMv2Processor"""], """tokenization_layoutlmv2""": ["""LayoutLMv2Tokenizer"""], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE__ : List[str] = ["""LayoutLMv2TokenizerFast"""] try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE__ : List[str] = ["""LayoutLMv2FeatureExtractor"""] SCREAMING_SNAKE_CASE__ : str = ["""LayoutLMv2ImageProcessor"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE__ : int = [ """LAYOUTLMV2_PRETRAINED_MODEL_ARCHIVE_LIST""", """LayoutLMv2ForQuestionAnswering""", """LayoutLMv2ForSequenceClassification""", """LayoutLMv2ForTokenClassification""", """LayoutLMv2Layer""", """LayoutLMv2Model""", """LayoutLMv2PreTrainedModel""", ] if TYPE_CHECKING: from .configuration_layoutlmva import LAYOUTLMV2_PRETRAINED_CONFIG_ARCHIVE_MAP, LayoutLMvaConfig from .processing_layoutlmva import LayoutLMvaProcessor from .tokenization_layoutlmva import LayoutLMvaTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_layoutlmva_fast import LayoutLMvaTokenizerFast try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_layoutlmva import LayoutLMvaFeatureExtractor, LayoutLMvaImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_layoutlmva import ( LAYOUTLMV2_PRETRAINED_MODEL_ARCHIVE_LIST, LayoutLMvaForQuestionAnswering, LayoutLMvaForSequenceClassification, LayoutLMvaForTokenClassification, LayoutLMvaLayer, LayoutLMvaModel, LayoutLMvaPreTrainedModel, ) else: import sys SCREAMING_SNAKE_CASE__ : Optional[int] = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
79
from __future__ import annotations from typing import TypedDict class lowerCamelCase_ ( _SCREAMING_SNAKE_CASE ): '''simple docstring''' lowercase_ = 42 lowercase_ = 42 def UpperCAmelCase_ ( __UpperCAmelCase : str ) -> list[str]: if not isinstance(__UpperCAmelCase , __UpperCAmelCase ): raise TypeError('The parameter s type must be str.' ) return [s[i:] + s[:i] for i in range(len(__UpperCAmelCase ) )] def UpperCAmelCase_ ( __UpperCAmelCase : str ) -> BWTTransformDict: if not isinstance(__UpperCAmelCase , __UpperCAmelCase ): raise TypeError('The parameter s type must be str.' ) if not s: raise ValueError('The parameter s must not be empty.' ) SCREAMING_SNAKE_CASE_ = all_rotations(__UpperCAmelCase ) rotations.sort() # sort the list of rotations in alphabetically order # make a string composed of the last char of each rotation SCREAMING_SNAKE_CASE_ = { "bwt_string": "".join([word[-1] for word in rotations] ), "idx_original_string": rotations.index(__UpperCAmelCase ), } return response def UpperCAmelCase_ ( __UpperCAmelCase : str , __UpperCAmelCase : int ) -> str: if not isinstance(__UpperCAmelCase , __UpperCAmelCase ): raise TypeError('The parameter bwt_string type must be str.' ) if not bwt_string: raise ValueError('The parameter bwt_string must not be empty.' ) try: SCREAMING_SNAKE_CASE_ = int(__UpperCAmelCase ) except ValueError: raise TypeError( 'The parameter idx_original_string type must be int or passive' ' of cast to int.' ) if idx_original_string < 0: raise ValueError('The parameter idx_original_string must not be lower than 0.' ) if idx_original_string >= len(__UpperCAmelCase ): raise ValueError( 'The parameter idx_original_string must be lower than' ' len(bwt_string).' ) SCREAMING_SNAKE_CASE_ = [''] * len(__UpperCAmelCase ) for _ in range(len(__UpperCAmelCase ) ): for i in range(len(__UpperCAmelCase ) ): SCREAMING_SNAKE_CASE_ = bwt_string[i] + ordered_rotations[i] ordered_rotations.sort() return ordered_rotations[idx_original_string] if __name__ == "__main__": lowerCamelCase__ : Optional[int] = 'Provide a string that I will generate its BWT transform: ' lowerCamelCase__ : List[str] = input(entry_msg).strip() lowerCamelCase__ : int = bwt_transform(s) print( f'''Burrows Wheeler transform for string \'{s}\' results ''' f'''in \'{result['bwt_string']}\'''' ) lowerCamelCase__ : Dict = reverse_bwt(result['bwt_string'], result['idx_original_string']) print( f'''Reversing Burrows Wheeler transform for entry \'{result['bwt_string']}\' ''' f'''we get original string \'{original_string}\'''' )
31
0
from sklearn.metrics import matthews_corrcoef import datasets __UpperCamelCase : Union[str, Any] = """ Compute the Matthews correlation coefficient (MCC) The Matthews correlation coefficient is used in machine learning as a measure of the quality of binary and multiclass classifications. It takes into account true and false positives and negatives and is generally regarded as a balanced measure which can be used even if the classes are of very different sizes. The MCC is in essence a correlation coefficient value between -1 and +1. A coefficient of +1 represents a perfect prediction, 0 an average random prediction and -1 an inverse prediction. The statistic is also known as the phi coefficient. [source: Wikipedia] """ __UpperCamelCase : List[str] = """ Args: predictions (list of int): Predicted labels, as returned by a model. references (list of int): Ground truth labels. sample_weight (list of int, float, or bool): Sample weights. Defaults to `None`. Returns: matthews_correlation (dict containing float): Matthews correlation. Examples: Example 1, a basic example with only predictions and references as inputs: >>> matthews_metric = datasets.load_metric(\"matthews_correlation\") >>> results = matthews_metric.compute(references=[1, 3, 2, 0, 3, 2], ... predictions=[1, 2, 2, 0, 3, 3]) >>> print(round(results['matthews_correlation'], 2)) 0.54 Example 2, the same example as above, but also including sample weights: >>> matthews_metric = datasets.load_metric(\"matthews_correlation\") >>> results = matthews_metric.compute(references=[1, 3, 2, 0, 3, 2], ... predictions=[1, 2, 2, 0, 3, 3], ... sample_weight=[0.5, 3, 1, 1, 1, 2]) >>> print(round(results['matthews_correlation'], 2)) 0.1 Example 3, the same example as above, but with sample weights that cause a negative correlation: >>> matthews_metric = datasets.load_metric(\"matthews_correlation\") >>> results = matthews_metric.compute(references=[1, 3, 2, 0, 3, 2], ... predictions=[1, 2, 2, 0, 3, 3], ... sample_weight=[0.5, 1, 0, 0, 0, 1]) >>> print(round(results['matthews_correlation'], 2)) -0.25 """ __UpperCamelCase : Tuple = """\ @article{scikit-learn, title={Scikit-learn: Machine Learning in {P}ython}, author={Pedregosa, F. and Varoquaux, G. and Gramfort, A. and Michel, V. and Thirion, B. and Grisel, O. and Blondel, M. and Prettenhofer, P. and Weiss, R. and Dubourg, V. and Vanderplas, J. and Passos, A. and Cournapeau, D. and Brucher, M. and Perrot, M. and Duchesnay, E.}, journal={Journal of Machine Learning Research}, volume={12}, pages={2825--2830}, year={2011} } """ @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class __UpperCamelCase ( datasets.Metric ): def _a ( self : List[str] ) -> Optional[int]: """simple docstring""" return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { """predictions""": datasets.Value("""int32""" ), """references""": datasets.Value("""int32""" ), } ) , reference_urls=[ """https://scikit-learn.org/stable/modules/generated/sklearn.metrics.matthews_corrcoef.html""" ] , ) def _a ( self : Union[str, Any] , _lowerCAmelCase : str , _lowerCAmelCase : Optional[Any] , _lowerCAmelCase : Optional[Any]=None ) -> Optional[Any]: """simple docstring""" return { "matthews_correlation": float(matthews_corrcoef(_lowerCAmelCase , _lowerCAmelCase , sample_weight=_lowerCAmelCase ) ), }
80
class lowerCamelCase_ : '''simple docstring''' def __init__( self : str ): SCREAMING_SNAKE_CASE_ = {} def lowerCAmelCase_ ( self : List[str] ): print(self.vertex ) for i in self.vertex: print(_lowerCAmelCase , ' -> ' , ' -> '.join([str(_lowerCAmelCase ) for j in self.vertex[i]] ) ) def lowerCAmelCase_ ( self : Union[str, Any] , _lowerCAmelCase : int , _lowerCAmelCase : int ): # check if vertex is already present, if from_vertex in self.vertex: self.vertex[from_vertex].append(_lowerCAmelCase ) else: # else make a new vertex SCREAMING_SNAKE_CASE_ = [to_vertex] def lowerCAmelCase_ ( self : Optional[Any] ): # visited array for storing already visited nodes SCREAMING_SNAKE_CASE_ = [False] * len(self.vertex ) # call the recursive helper function for i in range(len(self.vertex ) ): if not visited[i]: self.dfs_recursive(_lowerCAmelCase , _lowerCAmelCase ) def lowerCAmelCase_ ( self : Tuple , _lowerCAmelCase : int , _lowerCAmelCase : list ): # mark start vertex as visited SCREAMING_SNAKE_CASE_ = True print(_lowerCAmelCase , end=' ' ) # Recur for all the vertices that are adjacent to this node for i in self.vertex: if not visited[i]: self.dfs_recursive(_lowerCAmelCase , _lowerCAmelCase ) if __name__ == "__main__": lowerCamelCase__ : List[Any] = Graph() g.add_edge(0, 1) g.add_edge(0, 2) g.add_edge(1, 2) g.add_edge(2, 0) g.add_edge(2, 3) g.add_edge(3, 3) g.print_graph() print('DFS:') g.dfs() # OUTPUT: # 0 -> 1 -> 2 # 1 -> 2 # 2 -> 0 -> 3 # 3 -> 3 # DFS: # 0 1 2 3
31
0
import inspect import unittest import numpy as np from tests.test_modeling_common import floats_tensor from transformers import DetrConfig, MaskFormerConfig, SwinConfig, is_torch_available, is_vision_available from transformers.testing_utils import require_torch, require_torch_multi_gpu, require_vision, slow, torch_device from transformers.utils import cached_property from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import MaskFormerForInstanceSegmentation, MaskFormerModel if is_vision_available(): from transformers import MaskFormerImageProcessor if is_vision_available(): from PIL import Image class a : """simple docstring""" def __init__( self : Optional[int] , lowerCamelCase : Union[str, Any] , lowerCamelCase : Tuple=2 , lowerCamelCase : Any=True , lowerCamelCase : Tuple=False , lowerCamelCase : str=10 , lowerCamelCase : Optional[Any]=3 , lowerCamelCase : Tuple=32 * 4 , lowerCamelCase : List[Any]=32 * 6 , lowerCamelCase : Tuple=4 , lowerCamelCase : Tuple=32 , ) -> int: __snake_case : List[str] = parent __snake_case : int = batch_size __snake_case : List[str] = is_training __snake_case : Dict = use_auxiliary_loss __snake_case : Dict = num_queries __snake_case : List[str] = num_channels __snake_case : Tuple = min_size __snake_case : Optional[int] = max_size __snake_case : int = num_labels __snake_case : int = mask_feature_size def __snake_case ( self : List[Any] ) -> int: __snake_case : List[Any] = floats_tensor([self.batch_size, self.num_channels, self.min_size, self.max_size] ).to( lowerCamelCase ) __snake_case : List[str] = torch.ones([self.batch_size, self.min_size, self.max_size] , device=lowerCamelCase ) __snake_case : List[str] = ( torch.rand([self.batch_size, self.num_labels, self.min_size, self.max_size] , device=lowerCamelCase ) > 0.5 ).float() __snake_case : Dict = (torch.rand((self.batch_size, self.num_labels) , device=lowerCamelCase ) > 0.5).long() __snake_case : int = self.get_config() return config, pixel_values, pixel_mask, mask_labels, class_labels def __snake_case ( self : Any ) -> Tuple: return MaskFormerConfig.from_backbone_and_decoder_configs( backbone_config=SwinConfig( depths=[1, 1, 1, 1] , ) , decoder_config=DetrConfig( decoder_ffn_dim=128 , num_queries=self.num_queries , decoder_attention_heads=2 , d_model=self.mask_feature_size , ) , mask_feature_size=self.mask_feature_size , fpn_feature_size=self.mask_feature_size , num_channels=self.num_channels , num_labels=self.num_labels , ) def __snake_case ( self : int ) -> Dict: __snake_case , __snake_case , __snake_case , __snake_case , __snake_case : Dict = self.prepare_config_and_inputs() __snake_case : Tuple = {"pixel_values": pixel_values, "pixel_mask": pixel_mask} return config, inputs_dict def __snake_case ( self : Tuple , lowerCamelCase : Tuple , lowerCamelCase : List[str] ) -> List[str]: __snake_case : Any = output.encoder_hidden_states __snake_case : List[str] = output.pixel_decoder_hidden_states __snake_case : Dict = output.transformer_decoder_hidden_states self.parent.assertTrue(len(lowerCamelCase ) , len(config.backbone_config.depths ) ) self.parent.assertTrue(len(lowerCamelCase ) , len(config.backbone_config.depths ) ) self.parent.assertTrue(len(lowerCamelCase ) , config.decoder_config.decoder_layers ) def __snake_case ( self : Union[str, Any] , lowerCamelCase : List[str] , lowerCamelCase : List[Any] , lowerCamelCase : Union[str, Any] , lowerCamelCase : Dict=False ) -> Dict: with torch.no_grad(): __snake_case : int = MaskFormerModel(config=lowerCamelCase ) model.to(lowerCamelCase ) model.eval() __snake_case : List[Any] = model(pixel_values=lowerCamelCase , pixel_mask=lowerCamelCase ) __snake_case : Union[str, Any] = model(lowerCamelCase , output_hidden_states=lowerCamelCase ) # the correct shape of output.transformer_decoder_hidden_states ensure the correcteness of the # encoder and pixel decoder self.parent.assertEqual( output.transformer_decoder_last_hidden_state.shape , (self.batch_size, self.num_queries, self.mask_feature_size) , ) # let's ensure the other two hidden state exists self.parent.assertTrue(output.pixel_decoder_last_hidden_state is not None ) self.parent.assertTrue(output.encoder_last_hidden_state is not None ) if output_hidden_states: self.check_output_hidden_state(lowerCamelCase , lowerCamelCase ) def __snake_case ( self : Optional[int] , lowerCamelCase : Any , lowerCamelCase : Dict , lowerCamelCase : Optional[int] , lowerCamelCase : int , lowerCamelCase : Union[str, Any] ) -> Optional[Any]: __snake_case : Union[str, Any] = MaskFormerForInstanceSegmentation(config=lowerCamelCase ) model.to(lowerCamelCase ) model.eval() def comm_check_on_output(lowerCamelCase : Union[str, Any] ): # let's still check that all the required stuff is there self.parent.assertTrue(result.transformer_decoder_last_hidden_state is not None ) self.parent.assertTrue(result.pixel_decoder_last_hidden_state is not None ) self.parent.assertTrue(result.encoder_last_hidden_state is not None ) # okay, now we need to check the logits shape # due to the encoder compression, masks have a //4 spatial size self.parent.assertEqual( result.masks_queries_logits.shape , (self.batch_size, self.num_queries, self.min_size // 4, self.max_size // 4) , ) # + 1 for null class self.parent.assertEqual( result.class_queries_logits.shape , (self.batch_size, self.num_queries, self.num_labels + 1) ) with torch.no_grad(): __snake_case : Dict = model(pixel_values=lowerCamelCase , pixel_mask=lowerCamelCase ) __snake_case : Optional[Any] = model(lowerCamelCase ) comm_check_on_output(lowerCamelCase ) __snake_case : str = model( pixel_values=lowerCamelCase , pixel_mask=lowerCamelCase , mask_labels=lowerCamelCase , class_labels=lowerCamelCase ) comm_check_on_output(lowerCamelCase ) self.parent.assertTrue(result.loss is not None ) self.parent.assertEqual(result.loss.shape , torch.Size([1] ) ) @require_torch class a (_lowerCAmelCase , _lowerCAmelCase , unittest.TestCase ): """simple docstring""" __UpperCAmelCase : Tuple = (MaskFormerModel, MaskFormerForInstanceSegmentation) if is_torch_available() else () __UpperCAmelCase : Dict = ( {"feature-extraction": MaskFormerModel, "image-segmentation": MaskFormerForInstanceSegmentation} if is_torch_available() else {} ) __UpperCAmelCase : Dict = False __UpperCAmelCase : int = False __UpperCAmelCase : List[str] = False __UpperCAmelCase : str = False def __snake_case ( self : Optional[int] ) -> List[str]: __snake_case : Union[str, Any] = MaskFormerModelTester(self ) __snake_case : Dict = ConfigTester(self , config_class=lowerCamelCase , has_text_modality=lowerCamelCase ) def __snake_case ( self : int ) -> Dict: self.config_tester.run_common_tests() def __snake_case ( self : Any ) -> Union[str, Any]: __snake_case , __snake_case : Dict = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.create_and_check_maskformer_model(lowerCamelCase , **lowerCamelCase , output_hidden_states=lowerCamelCase ) def __snake_case ( self : Any ) -> Optional[Any]: __snake_case : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_maskformer_instance_segmentation_head_model(*lowerCamelCase ) @unittest.skip(reason="MaskFormer does not use inputs_embeds" ) def __snake_case ( self : List[Any] ) -> Tuple: pass @unittest.skip(reason="MaskFormer does not have a get_input_embeddings method" ) def __snake_case ( self : Optional[int] ) -> List[str]: pass @unittest.skip(reason="MaskFormer is not a generative model" ) def __snake_case ( self : Union[str, Any] ) -> Tuple: pass @unittest.skip(reason="MaskFormer does not use token embeddings" ) def __snake_case ( self : List[Any] ) -> Union[str, Any]: pass @require_torch_multi_gpu @unittest.skip( reason="MaskFormer has some layers using `add_module` which doesn't work well with `nn.DataParallel`" ) def __snake_case ( self : str ) -> List[Any]: pass @unittest.skip("Will be fixed soon by reducing the size of the model used for common tests." ) def __snake_case ( self : int ) -> Dict: pass def __snake_case ( self : int ) -> List[Any]: __snake_case , __snake_case : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __snake_case : List[Any] = model_class(lowerCamelCase ) __snake_case : Optional[Any] = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __snake_case : Any = [*signature.parameters.keys()] __snake_case : Dict = ["pixel_values"] self.assertListEqual(arg_names[:1] , lowerCamelCase ) @slow def __snake_case ( self : List[Any] ) -> int: for model_name in ["facebook/maskformer-swin-small-coco"]: __snake_case : int = MaskFormerModel.from_pretrained(lowerCamelCase ) self.assertIsNotNone(lowerCamelCase ) def __snake_case ( self : Union[str, Any] ) -> str: __snake_case : Union[str, Any] = (self.model_tester.min_size,) * 2 __snake_case : List[Any] = { "pixel_values": torch.randn((2, 3, *size) , device=lowerCamelCase ), "mask_labels": torch.randn((2, 10, *size) , device=lowerCamelCase ), "class_labels": torch.zeros(2 , 10 , device=lowerCamelCase ).long(), } __snake_case : Optional[int] = MaskFormerForInstanceSegmentation(MaskFormerConfig() ).to(lowerCamelCase ) __snake_case : Dict = model(**lowerCamelCase ) self.assertTrue(outputs.loss is not None ) def __snake_case ( self : Any ) -> Optional[Any]: __snake_case , __snake_case : int = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.create_and_check_maskformer_model(lowerCamelCase , **lowerCamelCase , output_hidden_states=lowerCamelCase ) def __snake_case ( self : Any ) -> List[str]: __snake_case , __snake_case : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __snake_case : int = model_class(lowerCamelCase ).to(lowerCamelCase ) __snake_case : Dict = model(**lowerCamelCase , output_attentions=lowerCamelCase ) self.assertTrue(outputs.attentions is not None ) def __snake_case ( self : Optional[int] ) -> str: if not self.model_tester.is_training: return # only MaskFormerForInstanceSegmentation has the loss __snake_case : int = self.all_model_classes[1] __snake_case , __snake_case , __snake_case , __snake_case , __snake_case : List[str] = self.model_tester.prepare_config_and_inputs() __snake_case : Optional[Any] = model_class(lowerCamelCase ) model.to(lowerCamelCase ) model.train() __snake_case : str = model(lowerCamelCase , mask_labels=lowerCamelCase , class_labels=lowerCamelCase ).loss loss.backward() def __snake_case ( self : Any ) -> str: # only MaskFormerForInstanceSegmentation has the loss __snake_case : List[Any] = self.all_model_classes[1] __snake_case , __snake_case , __snake_case , __snake_case , __snake_case : Tuple = self.model_tester.prepare_config_and_inputs() __snake_case : Union[str, Any] = True __snake_case : Optional[int] = True __snake_case : Any = model_class(lowerCamelCase ) model.to(lowerCamelCase ) model.train() __snake_case : str = model(lowerCamelCase , mask_labels=lowerCamelCase , class_labels=lowerCamelCase ) __snake_case : Optional[Any] = outputs.encoder_hidden_states[0] encoder_hidden_states.retain_grad() __snake_case : str = outputs.pixel_decoder_hidden_states[0] pixel_decoder_hidden_states.retain_grad() # we requires_grad=True in inputs_embeds (line 2152), the original implementation don't __snake_case : Any = outputs.transformer_decoder_hidden_states[0] transformer_decoder_hidden_states.retain_grad() __snake_case : Tuple = outputs.attentions[0] attentions.retain_grad() outputs.loss.backward(retain_graph=lowerCamelCase ) self.assertIsNotNone(encoder_hidden_states.grad ) self.assertIsNotNone(pixel_decoder_hidden_states.grad ) self.assertIsNotNone(transformer_decoder_hidden_states.grad ) self.assertIsNotNone(attentions.grad ) _snake_case : int = 1E-4 def lowerCAmelCase_ ( ): __snake_case : List[str] = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) return image @require_vision @slow class a (unittest.TestCase ): """simple docstring""" @cached_property def __snake_case ( self : Optional[Any] ) -> List[str]: return ( MaskFormerImageProcessor.from_pretrained("facebook/maskformer-swin-small-coco" ) if is_vision_available() else None ) def __snake_case ( self : Dict ) -> Optional[int]: __snake_case : Tuple = MaskFormerModel.from_pretrained("facebook/maskformer-swin-small-coco" ).to(lowerCamelCase ) __snake_case : Dict = self.default_image_processor __snake_case : Optional[int] = prepare_img() __snake_case : Optional[int] = image_processor(lowerCamelCase , return_tensors="pt" ).to(lowerCamelCase ) __snake_case : Optional[Any] = inputs["pixel_values"].shape # check size is divisible by 32 self.assertTrue((inputs_shape[-1] % 32) == 0 and (inputs_shape[-2] % 32) == 0 ) # check size self.assertEqual(lowerCamelCase , (1, 3, 800, 1088) ) with torch.no_grad(): __snake_case : Optional[int] = model(**lowerCamelCase ) __snake_case : str = torch.tensor( [[-0.04_82, 0.92_28, 0.49_51], [-0.25_47, 0.80_17, 0.85_27], [-0.00_69, 0.33_85, -0.00_89]] ).to(lowerCamelCase ) self.assertTrue( torch.allclose( outputs.encoder_last_hidden_state[0, 0, :3, :3] , lowerCamelCase , atol=lowerCamelCase ) ) __snake_case : Optional[int] = torch.tensor( [[-0.84_22, -0.84_34, -0.97_18], [-1.01_44, -0.55_65, -0.41_95], [-1.00_38, -0.44_84, -0.19_61]] ).to(lowerCamelCase ) self.assertTrue( torch.allclose( outputs.pixel_decoder_last_hidden_state[0, 0, :3, :3] , lowerCamelCase , atol=lowerCamelCase ) ) __snake_case : Tuple = torch.tensor( [[0.28_52, -0.01_59, 0.97_35], [0.62_54, 0.18_58, 0.85_29], [-0.06_80, -0.41_16, 1.84_13]] ).to(lowerCamelCase ) self.assertTrue( torch.allclose( outputs.transformer_decoder_last_hidden_state[0, :3, :3] , lowerCamelCase , atol=lowerCamelCase ) ) def __snake_case ( self : Dict ) -> List[Any]: __snake_case : Any = ( MaskFormerForInstanceSegmentation.from_pretrained("facebook/maskformer-swin-small-coco" ) .to(lowerCamelCase ) .eval() ) __snake_case : Any = self.default_image_processor __snake_case : str = prepare_img() __snake_case : Tuple = image_processor(lowerCamelCase , return_tensors="pt" ).to(lowerCamelCase ) __snake_case : int = inputs["pixel_values"].shape # check size is divisible by 32 self.assertTrue((inputs_shape[-1] % 32) == 0 and (inputs_shape[-2] % 32) == 0 ) # check size self.assertEqual(lowerCamelCase , (1, 3, 800, 1088) ) with torch.no_grad(): __snake_case : str = model(**lowerCamelCase ) # masks_queries_logits __snake_case : Optional[int] = outputs.masks_queries_logits self.assertEqual( masks_queries_logits.shape , (1, model.config.decoder_config.num_queries, inputs_shape[-2] // 4, inputs_shape[-1] // 4) , ) __snake_case : Union[str, Any] = [ [-1.3_73_71_24, -1.7_72_49_37, -1.9_36_42_33], [-1.5_97_72_81, -1.9_86_79_39, -2.1_52_36_95], [-1.5_79_53_98, -1.9_26_98_32, -2.09_39_42], ] __snake_case : Optional[Any] = torch.tensor(lowerCamelCase ).to(lowerCamelCase ) self.assertTrue(torch.allclose(masks_queries_logits[0, 0, :3, :3] , lowerCamelCase , atol=lowerCamelCase ) ) # class_queries_logits __snake_case : Tuple = outputs.class_queries_logits self.assertEqual( class_queries_logits.shape , (1, model.config.decoder_config.num_queries, model.config.num_labels + 1) ) __snake_case : Optional[int] = torch.tensor( [ [1.6512E00, -5.2572E00, -3.3519E00], [3.6169E-02, -5.9025E00, -2.9313E00], [1.0766E-04, -7.7630E00, -5.1263E00], ] ).to(lowerCamelCase ) self.assertTrue(torch.allclose(outputs.class_queries_logits[0, :3, :3] , lowerCamelCase , atol=lowerCamelCase ) ) def __snake_case ( self : Any ) -> int: __snake_case : int = ( MaskFormerForInstanceSegmentation.from_pretrained("facebook/maskformer-resnet101-coco-stuff" ) .to(lowerCamelCase ) .eval() ) __snake_case : Tuple = self.default_image_processor __snake_case : List[str] = prepare_img() __snake_case : List[str] = image_processor(lowerCamelCase , return_tensors="pt" ).to(lowerCamelCase ) __snake_case : List[str] = inputs["pixel_values"].shape # check size is divisible by 32 self.assertTrue((inputs_shape[-1] % 32) == 0 and (inputs_shape[-2] % 32) == 0 ) # check size self.assertEqual(lowerCamelCase , (1, 3, 800, 1088) ) with torch.no_grad(): __snake_case : Optional[Any] = model(**lowerCamelCase ) # masks_queries_logits __snake_case : str = outputs.masks_queries_logits self.assertEqual( masks_queries_logits.shape , (1, model.config.decoder_config.num_queries, inputs_shape[-2] // 4, inputs_shape[-1] // 4) , ) __snake_case : Optional[int] = [[-0.90_46, -2.63_66, -4.60_62], [-3.41_79, -5.78_90, -8.80_57], [-4.91_79, -7.65_60, -10.77_11]] __snake_case : List[Any] = torch.tensor(lowerCamelCase ).to(lowerCamelCase ) self.assertTrue(torch.allclose(masks_queries_logits[0, 0, :3, :3] , lowerCamelCase , atol=lowerCamelCase ) ) # class_queries_logits __snake_case : Dict = outputs.class_queries_logits self.assertEqual( class_queries_logits.shape , (1, model.config.decoder_config.num_queries, model.config.num_labels + 1) ) __snake_case : Any = torch.tensor( [[4.71_88, -3.25_85, -2.88_57], [6.68_71, -2.91_81, -1.24_87], [7.24_49, -2.27_64, -2.18_74]] ).to(lowerCamelCase ) self.assertTrue(torch.allclose(outputs.class_queries_logits[0, :3, :3] , lowerCamelCase , atol=lowerCamelCase ) ) def __snake_case ( self : Optional[Any] ) -> List[str]: __snake_case : List[Any] = ( MaskFormerForInstanceSegmentation.from_pretrained("facebook/maskformer-swin-small-coco" ) .to(lowerCamelCase ) .eval() ) __snake_case : Optional[int] = self.default_image_processor __snake_case : List[str] = image_processor( [np.zeros((3, 800, 1333) ), np.zeros((3, 800, 1333) )] , segmentation_maps=[np.zeros((384, 384) ).astype(np.floataa ), np.zeros((384, 384) ).astype(np.floataa )] , return_tensors="pt" , ) __snake_case : str = inputs["pixel_values"].to(lowerCamelCase ) __snake_case : Tuple = [el.to(lowerCamelCase ) for el in inputs["mask_labels"]] __snake_case : Tuple = [el.to(lowerCamelCase ) for el in inputs["class_labels"]] with torch.no_grad(): __snake_case : Dict = model(**lowerCamelCase ) self.assertTrue(outputs.loss is not None )
81
from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCamelCase__ : str = logging.get_logger(__name__) lowerCamelCase__ : Tuple = { 'funnel-transformer/small': 'https://huggingface.co/funnel-transformer/small/resolve/main/config.json', 'funnel-transformer/small-base': 'https://huggingface.co/funnel-transformer/small-base/resolve/main/config.json', 'funnel-transformer/medium': 'https://huggingface.co/funnel-transformer/medium/resolve/main/config.json', 'funnel-transformer/medium-base': 'https://huggingface.co/funnel-transformer/medium-base/resolve/main/config.json', 'funnel-transformer/intermediate': ( 'https://huggingface.co/funnel-transformer/intermediate/resolve/main/config.json' ), 'funnel-transformer/intermediate-base': ( 'https://huggingface.co/funnel-transformer/intermediate-base/resolve/main/config.json' ), 'funnel-transformer/large': 'https://huggingface.co/funnel-transformer/large/resolve/main/config.json', 'funnel-transformer/large-base': 'https://huggingface.co/funnel-transformer/large-base/resolve/main/config.json', 'funnel-transformer/xlarge': 'https://huggingface.co/funnel-transformer/xlarge/resolve/main/config.json', 'funnel-transformer/xlarge-base': 'https://huggingface.co/funnel-transformer/xlarge-base/resolve/main/config.json', } class lowerCamelCase_ ( _SCREAMING_SNAKE_CASE ): '''simple docstring''' lowercase_ = "funnel" lowercase_ = { "hidden_size": "d_model", "num_attention_heads": "n_head", } def __init__( self : int , _lowerCAmelCase : Optional[int]=30_522 , _lowerCAmelCase : List[str]=[4, 4, 4] , _lowerCAmelCase : Tuple=None , _lowerCAmelCase : Optional[int]=2 , _lowerCAmelCase : int=768 , _lowerCAmelCase : Optional[Any]=12 , _lowerCAmelCase : Optional[Any]=64 , _lowerCAmelCase : Optional[Any]=3_072 , _lowerCAmelCase : List[str]="gelu_new" , _lowerCAmelCase : Any=0.1 , _lowerCAmelCase : int=0.1 , _lowerCAmelCase : Tuple=0.0 , _lowerCAmelCase : List[Any]=0.1 , _lowerCAmelCase : Dict=None , _lowerCAmelCase : str=1E-9 , _lowerCAmelCase : Any="mean" , _lowerCAmelCase : Union[str, Any]="relative_shift" , _lowerCAmelCase : Optional[Any]=True , _lowerCAmelCase : Dict=True , _lowerCAmelCase : Tuple=True , **_lowerCAmelCase : Optional[Any] , ): SCREAMING_SNAKE_CASE_ = vocab_size SCREAMING_SNAKE_CASE_ = block_sizes SCREAMING_SNAKE_CASE_ = [1] * len(_lowerCAmelCase ) if block_repeats is None else block_repeats assert len(_lowerCAmelCase ) == len( self.block_repeats ), "`block_sizes` and `block_repeats` should have the same length." SCREAMING_SNAKE_CASE_ = num_decoder_layers SCREAMING_SNAKE_CASE_ = d_model SCREAMING_SNAKE_CASE_ = n_head SCREAMING_SNAKE_CASE_ = d_head SCREAMING_SNAKE_CASE_ = d_inner SCREAMING_SNAKE_CASE_ = hidden_act SCREAMING_SNAKE_CASE_ = hidden_dropout SCREAMING_SNAKE_CASE_ = attention_dropout SCREAMING_SNAKE_CASE_ = activation_dropout SCREAMING_SNAKE_CASE_ = initializer_range SCREAMING_SNAKE_CASE_ = initializer_std SCREAMING_SNAKE_CASE_ = layer_norm_eps assert pooling_type in [ "mean", "max", ], F"Got {pooling_type} for `pooling_type` but only 'mean' and 'max' are supported." SCREAMING_SNAKE_CASE_ = pooling_type assert attention_type in [ "relative_shift", "factorized", ], F"Got {attention_type} for `attention_type` but only 'relative_shift' and 'factorized' are supported." SCREAMING_SNAKE_CASE_ = attention_type SCREAMING_SNAKE_CASE_ = separate_cls SCREAMING_SNAKE_CASE_ = truncate_seq SCREAMING_SNAKE_CASE_ = pool_q_only super().__init__(**_lowerCAmelCase ) @property def lowerCAmelCase_ ( self : Optional[int] ): return sum(self.block_sizes ) @num_hidden_layers.setter def lowerCAmelCase_ ( self : int , _lowerCAmelCase : List[Any] ): raise NotImplementedError( 'This model does not support the setting of `num_hidden_layers`. Please set `block_sizes`.' ) @property def lowerCAmelCase_ ( self : List[Any] ): return len(self.block_sizes ) @num_blocks.setter def lowerCAmelCase_ ( self : Dict , _lowerCAmelCase : Union[str, Any] ): raise NotImplementedError('This model does not support the setting of `num_blocks`. Please set `block_sizes`.' )
31
0
"""simple docstring""" import datasets from .nmt_bleu import compute_bleu # From: https://github.com/tensorflow/nmt/blob/master/nmt/scripts/bleu.py lowerCamelCase = """\ @INPROCEEDINGS{Papineni02bleu:a, author = {Kishore Papineni and Salim Roukos and Todd Ward and Wei-jing Zhu}, title = {BLEU: a Method for Automatic Evaluation of Machine Translation}, booktitle = {}, year = {2002}, pages = {311--318} } @inproceedings{lin-och-2004-orange, title = \"{ORANGE}: a Method for Evaluating Automatic Evaluation Metrics for Machine Translation\", author = \"Lin, Chin-Yew and Och, Franz Josef\", booktitle = \"{COLING} 2004: Proceedings of the 20th International Conference on Computational Linguistics\", month = \"aug 23{--}aug 27\", year = \"2004\", address = \"Geneva, Switzerland\", publisher = \"COLING\", url = \"https://www.aclweb.org/anthology/C04-1072\", pages = \"501--507\", } """ lowerCamelCase = """\ BLEU (bilingual evaluation understudy) is an algorithm for evaluating the quality of text which has been machine-translated from one natural language to another. Quality is considered to be the correspondence between a machine's output and that of a human: \"the closer a machine translation is to a professional human translation, the better it is\" – this is the central idea behind BLEU. BLEU was one of the first metrics to claim a high correlation with human judgements of quality, and remains one of the most popular automated and inexpensive metrics. Scores are calculated for individual translated segments—generally sentences—by comparing them with a set of good quality reference translations. Those scores are then averaged over the whole corpus to reach an estimate of the translation's overall quality. Intelligibility or grammatical correctness are not taken into account[citation needed]. BLEU's output is always a number between 0 and 1. This value indicates how similar the candidate text is to the reference texts, with values closer to 1 representing more similar texts. Few human translations will attain a score of 1, since this would indicate that the candidate is identical to one of the reference translations. For this reason, it is not necessary to attain a score of 1. Because there are more opportunities to match, adding additional reference translations will increase the BLEU score. """ lowerCamelCase = """ Computes BLEU score of translated segments against one or more references. Args: predictions: list of translations to score. Each translation should be tokenized into a list of tokens. references: list of lists of references for each translation. Each reference should be tokenized into a list of tokens. max_order: Maximum n-gram order to use when computing BLEU score. smooth: Whether or not to apply Lin et al. 2004 smoothing. Returns: 'bleu': bleu score, 'precisions': geometric mean of n-gram precisions, 'brevity_penalty': brevity penalty, 'length_ratio': ratio of lengths, 'translation_length': translation_length, 'reference_length': reference_length Examples: >>> predictions = [ ... [\"hello\", \"there\", \"general\", \"kenobi\"], # tokenized prediction of the first sample ... [\"foo\", \"bar\", \"foobar\"] # tokenized prediction of the second sample ... ] >>> references = [ ... [[\"hello\", \"there\", \"general\", \"kenobi\"], [\"hello\", \"there\", \"!\"]], # tokenized references for the first sample (2 references) ... [[\"foo\", \"bar\", \"foobar\"]] # tokenized references for the second sample (1 reference) ... ] >>> bleu = datasets.load_metric(\"bleu\") >>> results = bleu.compute(predictions=predictions, references=references) >>> print(results[\"bleu\"]) 1.0 """ @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class lowercase__ ( datasets.Metric ): '''simple docstring''' def lowercase__ ( self : List[str] ) -> List[Any]: '''simple docstring''' return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { "predictions": datasets.Sequence(datasets.Value("string" , id="token" ) , id="sequence" ), "references": datasets.Sequence( datasets.Sequence(datasets.Value("string" , id="token" ) , id="sequence" ) , id="references" ), } ) , codebase_urls=["https://github.com/tensorflow/nmt/blob/master/nmt/scripts/bleu.py"] , reference_urls=[ "https://en.wikipedia.org/wiki/BLEU", "https://towardsdatascience.com/evaluating-text-output-in-nlp-bleu-at-your-own-risk-e8609665a213", ] , ) def lowercase__ ( self : Optional[int] , _UpperCAmelCase : List[str] , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : Optional[Any]=4 , _UpperCAmelCase : Dict=False ) -> List[str]: '''simple docstring''' UpperCAmelCase_ = compute_bleu( reference_corpus=_UpperCAmelCase , translation_corpus=_UpperCAmelCase , max_order=_UpperCAmelCase , smooth=_UpperCAmelCase ) ((UpperCAmelCase_) , (UpperCAmelCase_) , (UpperCAmelCase_) , (UpperCAmelCase_) , (UpperCAmelCase_) , (UpperCAmelCase_)) = score return { "bleu": bleu, "precisions": precisions, "brevity_penalty": bp, "length_ratio": ratio, "translation_length": translation_length, "reference_length": reference_length, }
82
from __future__ import annotations from collections.abc import Iterator class lowerCamelCase_ : '''simple docstring''' def __init__( self : Union[str, Any] , _lowerCAmelCase : int ): SCREAMING_SNAKE_CASE_ = value SCREAMING_SNAKE_CASE_ = None SCREAMING_SNAKE_CASE_ = None class lowerCamelCase_ : '''simple docstring''' def __init__( self : int , _lowerCAmelCase : Node ): SCREAMING_SNAKE_CASE_ = tree def lowerCAmelCase_ ( self : Union[str, Any] , _lowerCAmelCase : Node | None ): if node is None: return 0 return node.value + ( self.depth_first_search(node.left ) + self.depth_first_search(node.right ) ) def __iter__( self : Dict ): yield self.depth_first_search(self.tree ) if __name__ == "__main__": import doctest doctest.testmod()
31
0
"""simple docstring""" import math import sys import cva import numpy as np def snake_case_ ( A_ : np.ndarray, A_ : float ): '''simple docstring''' _lowerCamelCase : Dict = math.sqrt(A_ ) _lowerCamelCase : Dict = 1 / (sigma * math.sqrt(2 * math.pi )) return cons * np.exp(-((img / sigma) ** 2) * 0.5 ) def snake_case_ ( A_ : np.ndarray, A_ : int, A_ : int, A_ : int ): '''simple docstring''' _lowerCamelCase : int = kernel_size // 2 return img[x - half : x + half + 1, y - half : y + half + 1] def snake_case_ ( A_ : int, A_ : float ): '''simple docstring''' _lowerCamelCase : List[str] = np.zeros((kernel_size, kernel_size) ) for i in range(0, A_ ): for j in range(0, A_ ): _lowerCamelCase : Optional[int] = math.sqrt( abs(i - kernel_size // 2 ) ** 2 + abs(j - kernel_size // 2 ) ** 2 ) return vec_gaussian(A_, A_ ) def snake_case_ ( A_ : np.ndarray, A_ : float, A_ : float, A_ : int, ): '''simple docstring''' _lowerCamelCase : str = np.zeros(img.shape ) _lowerCamelCase : List[str] = get_gauss_kernel(A_, A_ ) _lowerCamelCase , _lowerCamelCase : str = img.shape for i in range(kernel_size // 2, size_x - kernel_size // 2 ): for j in range(kernel_size // 2, size_y - kernel_size // 2 ): _lowerCamelCase : List[str] = get_slice(A_, A_, A_, A_ ) _lowerCamelCase : Optional[int] = img_s - img_s[kernel_size // 2, kernel_size // 2] _lowerCamelCase : List[Any] = vec_gaussian(A_, A_ ) _lowerCamelCase : Dict = np.multiply(A_, A_ ) _lowerCamelCase : List[Any] = np.multiply(A_, A_ ) _lowerCamelCase : int = np.sum(A_ ) / np.sum(A_ ) _lowerCamelCase : Tuple = val return imga def snake_case_ ( A_ : list ): '''simple docstring''' _lowerCamelCase : int = args[1] if args[1:] else '''../image_data/lena.jpg''' _lowerCamelCase : Optional[int] = float(args[2] ) if args[2:] else 1.0 _lowerCamelCase : int = float(args[3] ) if args[3:] else 1.0 if args[4:]: _lowerCamelCase : Any = int(args[4] ) _lowerCamelCase : Optional[int] = kernel_size + abs(kernel_size % 2 - 1 ) else: _lowerCamelCase : List[str] = 5 return filename, spatial_variance, intensity_variance, kernel_size if __name__ == "__main__": lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ = parse_args(sys.argv) lowerCAmelCase__ = cva.imread(filename, 0) cva.imshow('''input image''', img) lowerCAmelCase__ = img / 255 lowerCAmelCase__ = out.astype('''float32''') lowerCAmelCase__ = bilateral_filter(out, spatial_variance, intensity_variance, kernel_size) lowerCAmelCase__ = out * 255 lowerCAmelCase__ = np.uinta(out) cva.imshow('''output image''', out) cva.waitKey(0) cva.destroyAllWindows()
83
def UpperCAmelCase_ ( __UpperCAmelCase : list , __UpperCAmelCase : int , __UpperCAmelCase : int = 0 , __UpperCAmelCase : int = 0 ) -> int: SCREAMING_SNAKE_CASE_ = right or len(__UpperCAmelCase ) - 1 if left > right: return -1 elif list_data[left] == key: return left elif list_data[right] == key: return right else: return search(__UpperCAmelCase , __UpperCAmelCase , left + 1 , right - 1 ) if __name__ == "__main__": import doctest doctest.testmod()
31
0
from collections import OrderedDict from typing import List, Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging UpperCAmelCase = logging.get_logger(__name__) UpperCAmelCase = { '''google/efficientnet-b7''': '''https://huggingface.co/google/efficientnet-b7/resolve/main/config.json''', } class A_ ( __lowerCamelCase ): '''simple docstring''' _UpperCamelCase : int = """efficientnet""" def __init__( self , snake_case = 3 , snake_case = 600 , snake_case = 2.0 , snake_case = 3.1 , snake_case = 8 , snake_case = [3, 3, 5, 3, 5, 5, 3] , snake_case = [32, 16, 24, 40, 80, 112, 192] , snake_case = [16, 24, 40, 80, 112, 192, 320] , snake_case = [] , snake_case = [1, 2, 2, 2, 1, 2, 1] , snake_case = [1, 2, 2, 3, 3, 4, 1] , snake_case = [1, 6, 6, 6, 6, 6, 6] , snake_case = 0.25 , snake_case = "swish" , snake_case = 2560 , snake_case = "mean" , snake_case = 0.02 , snake_case = 0.001 , snake_case = 0.99 , snake_case = 0.5 , snake_case = 0.2 , **snake_case , ): super().__init__(**snake_case ) lowercase = num_channels lowercase = image_size lowercase = width_coefficient lowercase = depth_coefficient lowercase = depth_divisor lowercase = kernel_sizes lowercase = in_channels lowercase = out_channels lowercase = depthwise_padding lowercase = strides lowercase = num_block_repeats lowercase = expand_ratios lowercase = squeeze_expansion_ratio lowercase = hidden_act lowercase = hidden_dim lowercase = pooling_type lowercase = initializer_range lowercase = batch_norm_eps lowercase = batch_norm_momentum lowercase = dropout_rate lowercase = drop_connect_rate lowercase = sum(snake_case ) * 4 class A_ ( __lowerCamelCase ): '''simple docstring''' _UpperCamelCase : int = version.parse("""1.11""" ) @property def SCREAMING_SNAKE_CASE__ ( self ): return OrderedDict( [ ('pixel_values', {0: 'batch', 1: 'num_channels', 2: 'height', 3: 'width'}), ] ) @property def SCREAMING_SNAKE_CASE__ ( self ): return 1E-5
84
import os from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils import AddedToken from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_fnet import FNetTokenizer else: lowerCamelCase__ : Optional[Any] = None lowerCamelCase__ : List[str] = logging.get_logger(__name__) lowerCamelCase__ : List[str] = {'vocab_file': 'spiece.model', 'tokenizer_file': 'tokenizer.json'} lowerCamelCase__ : List[str] = { 'vocab_file': { 'google/fnet-base': 'https://huggingface.co/google/fnet-base/resolve/main/spiece.model', 'google/fnet-large': 'https://huggingface.co/google/fnet-large/resolve/main/spiece.model', }, 'tokenizer_file': { 'google/fnet-base': 'https://huggingface.co/google/fnet-base/resolve/main/tokenizer.json', 'google/fnet-large': 'https://huggingface.co/google/fnet-large/resolve/main/tokenizer.json', }, } lowerCamelCase__ : Optional[Any] = { 'google/fnet-base': 512, 'google/fnet-large': 512, } lowerCamelCase__ : List[Any] = '▁' class lowerCamelCase_ ( _SCREAMING_SNAKE_CASE ): '''simple docstring''' lowercase_ = VOCAB_FILES_NAMES lowercase_ = PRETRAINED_VOCAB_FILES_MAP lowercase_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowercase_ = ["input_ids", "token_type_ids"] lowercase_ = FNetTokenizer def __init__( self : List[Any] , _lowerCAmelCase : Dict=None , _lowerCAmelCase : Dict=None , _lowerCAmelCase : List[str]=False , _lowerCAmelCase : Optional[Any]=True , _lowerCAmelCase : Tuple=True , _lowerCAmelCase : List[Any]="<unk>" , _lowerCAmelCase : Optional[Any]="[SEP]" , _lowerCAmelCase : Optional[Any]="<pad>" , _lowerCAmelCase : Optional[int]="[CLS]" , _lowerCAmelCase : Optional[Any]="[MASK]" , **_lowerCAmelCase : Any , ): # Mask token behave like a normal word, i.e. include the space before it and # is included in the raw text, there should be a match in a non-normalized sentence. SCREAMING_SNAKE_CASE_ = ( AddedToken(_lowerCAmelCase , lstrip=_lowerCAmelCase , rstrip=_lowerCAmelCase , normalized=_lowerCAmelCase ) if isinstance(_lowerCAmelCase , _lowerCAmelCase ) else mask_token ) super().__init__( _lowerCAmelCase , tokenizer_file=_lowerCAmelCase , do_lower_case=_lowerCAmelCase , remove_space=_lowerCAmelCase , keep_accents=_lowerCAmelCase , unk_token=_lowerCAmelCase , sep_token=_lowerCAmelCase , pad_token=_lowerCAmelCase , cls_token=_lowerCAmelCase , mask_token=_lowerCAmelCase , **_lowerCAmelCase , ) SCREAMING_SNAKE_CASE_ = do_lower_case SCREAMING_SNAKE_CASE_ = remove_space SCREAMING_SNAKE_CASE_ = keep_accents SCREAMING_SNAKE_CASE_ = vocab_file SCREAMING_SNAKE_CASE_ = False if not self.vocab_file else True def lowerCAmelCase_ ( self : Any , _lowerCAmelCase : List[int] , _lowerCAmelCase : Optional[List[int]] = None ): SCREAMING_SNAKE_CASE_ = [self.sep_token_id] SCREAMING_SNAKE_CASE_ = [self.cls_token_id] if token_ids_a is None: return cls + token_ids_a + sep return cls + token_ids_a + sep + token_ids_a + sep def lowerCAmelCase_ ( self : Optional[int] , _lowerCAmelCase : List[int] , _lowerCAmelCase : Optional[List[int]] = None ): SCREAMING_SNAKE_CASE_ = [self.sep_token_id] SCREAMING_SNAKE_CASE_ = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def lowerCAmelCase_ ( self : Optional[Any] , _lowerCAmelCase : str , _lowerCAmelCase : Optional[str] = None ): if not os.path.isdir(_lowerCAmelCase ): logger.error(F"Vocabulary path ({save_directory}) should be a directory" ) return SCREAMING_SNAKE_CASE_ = os.path.join( _lowerCAmelCase , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(_lowerCAmelCase ): copyfile(self.vocab_file , _lowerCAmelCase ) return (out_vocab_file,)
31
0
from ...configuration_utils import PretrainedConfig from ...utils import logging SCREAMING_SNAKE_CASE__ : Tuple = logging.get_logger(__name__) SCREAMING_SNAKE_CASE__ : Union[str, Any] = { "microsoft/markuplm-base": "https://huggingface.co/microsoft/markuplm-base/resolve/main/config.json", "microsoft/markuplm-large": "https://huggingface.co/microsoft/markuplm-large/resolve/main/config.json", } class snake_case ( UpperCamelCase_ ): lowercase_ = 'markuplm' def __init__( self : List[Any] , a_ : List[Any]=3_0522 , a_ : int=768 , a_ : Union[str, Any]=12 , a_ : str=12 , a_ : Any=3072 , a_ : Tuple="gelu" , a_ : Any=0.1 , a_ : Optional[Any]=0.1 , a_ : Optional[Any]=512 , a_ : int=2 , a_ : List[Any]=0.02 , a_ : str=1e-1_2 , a_ : Optional[int]=0 , a_ : List[str]=0 , a_ : Optional[Any]=2 , a_ : str=256 , a_ : List[str]=1024 , a_ : Optional[int]=216 , a_ : Tuple=1001 , a_ : Any=32 , a_ : Optional[int]=50 , a_ : Optional[int]="absolute" , a_ : Optional[int]=True , a_ : str=None , **a_ : Tuple , )-> Optional[Any]: """simple docstring""" super().__init__( pad_token_id=a_ , bos_token_id=a_ , eos_token_id=a_ , **a_ , ) SCREAMING_SNAKE_CASE__ : int = vocab_size SCREAMING_SNAKE_CASE__ : List[str] = hidden_size SCREAMING_SNAKE_CASE__ : Any = num_hidden_layers SCREAMING_SNAKE_CASE__ : Tuple = num_attention_heads SCREAMING_SNAKE_CASE__ : Optional[int] = hidden_act SCREAMING_SNAKE_CASE__ : Optional[Any] = intermediate_size SCREAMING_SNAKE_CASE__ : Any = hidden_dropout_prob SCREAMING_SNAKE_CASE__ : str = attention_probs_dropout_prob SCREAMING_SNAKE_CASE__ : Union[str, Any] = max_position_embeddings SCREAMING_SNAKE_CASE__ : Dict = type_vocab_size SCREAMING_SNAKE_CASE__ : Union[str, Any] = initializer_range SCREAMING_SNAKE_CASE__ : Any = layer_norm_eps SCREAMING_SNAKE_CASE__ : str = position_embedding_type SCREAMING_SNAKE_CASE__ : Any = use_cache SCREAMING_SNAKE_CASE__ : Optional[int] = classifier_dropout # additional properties SCREAMING_SNAKE_CASE__ : Optional[Any] = max_depth SCREAMING_SNAKE_CASE__ : Tuple = max_xpath_tag_unit_embeddings SCREAMING_SNAKE_CASE__ : int = max_xpath_subs_unit_embeddings SCREAMING_SNAKE_CASE__ : Optional[Any] = tag_pad_id SCREAMING_SNAKE_CASE__ : str = subs_pad_id SCREAMING_SNAKE_CASE__ : Optional[int] = xpath_unit_hidden_size
85
from __future__ import annotations from collections.abc import Generator def UpperCAmelCase_ ( ) -> Generator[int, None, None]: SCREAMING_SNAKE_CASE_ = {} SCREAMING_SNAKE_CASE_ = 2 while True: SCREAMING_SNAKE_CASE_ = factor_map.pop(__UpperCAmelCase , __UpperCAmelCase ) if factor: SCREAMING_SNAKE_CASE_ = factor + prime while x in factor_map: x += factor SCREAMING_SNAKE_CASE_ = factor else: SCREAMING_SNAKE_CASE_ = prime yield prime prime += 1 def UpperCAmelCase_ ( __UpperCAmelCase : float = 1E10 ) -> int: SCREAMING_SNAKE_CASE_ = sieve() SCREAMING_SNAKE_CASE_ = 1 while True: SCREAMING_SNAKE_CASE_ = next(__UpperCAmelCase ) if (2 * prime * n) > limit: return n # Ignore the next prime as the reminder will be 2. next(__UpperCAmelCase ) n += 2 if __name__ == "__main__": print(solution())
31
0
from queue import PriorityQueue from typing import Any import numpy as np def __snake_case ( __UpperCamelCase : dict ,__UpperCamelCase : str ,__UpperCamelCase : set ,__UpperCamelCase : set ,__UpperCamelCase : dict ,__UpperCamelCase : dict ,__UpperCamelCase : PriorityQueue ,__UpperCamelCase : dict ,__UpperCamelCase : float | int ,): """simple docstring""" for nxt, d in graph[v]: if nxt in visited_forward: continue A_ = cst_fwd.get(__UpperCamelCase ,np.inf ) A_ = cst_fwd[v] + d if new_cost_f < old_cost_f: queue.put((new_cost_f, nxt) ) A_ = new_cost_f A_ = v if nxt in visited_backward: if cst_fwd[v] + d + cst_bwd[nxt] < shortest_distance: A_ = cst_fwd[v] + d + cst_bwd[nxt] return shortest_distance def __snake_case ( __UpperCamelCase : str ,__UpperCamelCase : str ,__UpperCamelCase : dict ,__UpperCamelCase : dict ): """simple docstring""" A_ = -1 A_ = set() A_ = set() A_ = {source: 0} A_ = {destination: 0} A_ = {source: None} A_ = {destination: None} A_ = PriorityQueue() A_ = PriorityQueue() A_ = np.inf queue_forward.put((0, source) ) queue_backward.put((0, destination) ) if source == destination: return 0 while not queue_forward.empty() and not queue_backward.empty(): A_ , A_ = queue_forward.get() visited_forward.add(__UpperCamelCase ) A_ , A_ = queue_backward.get() visited_backward.add(__UpperCamelCase ) A_ = pass_and_relaxation( __UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,) A_ = pass_and_relaxation( __UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,) if cst_fwd[v_fwd] + cst_bwd[v_bwd] >= shortest_distance: break if shortest_distance != np.inf: A_ = shortest_distance return shortest_path_distance __a :List[str] = { 'B': [['C', 1]], 'C': [['D', 1]], 'D': [['F', 1]], 'E': [['B', 1], ['G', 2]], 'F': [], 'G': [['F', 1]], } __a :Union[str, Any] = { 'B': [['E', 1]], 'C': [['B', 1]], 'D': [['C', 1]], 'F': [['D', 1], ['G', 1]], 'E': [[None, np.inf]], 'G': [['E', 2]], } if __name__ == "__main__": import doctest doctest.testmod()
86
import numpy as np import torch from torch.utils.data import DataLoader from accelerate.utils.dataclasses import DistributedType class lowerCamelCase_ : '''simple docstring''' def __init__( self : Any , _lowerCAmelCase : Optional[int]=2 , _lowerCAmelCase : Any=3 , _lowerCAmelCase : Tuple=64 , _lowerCAmelCase : List[str]=None ): SCREAMING_SNAKE_CASE_ = np.random.default_rng(_lowerCAmelCase ) SCREAMING_SNAKE_CASE_ = length SCREAMING_SNAKE_CASE_ = rng.normal(size=(length,) ).astype(np.floataa ) SCREAMING_SNAKE_CASE_ = a * self.x + b + rng.normal(scale=0.1 , size=(length,) ).astype(np.floataa ) def __len__( self : Optional[int] ): return self.length def __getitem__( self : str , _lowerCAmelCase : Union[str, Any] ): return {"x": self.x[i], "y": self.y[i]} class lowerCamelCase_ ( torch.nn.Module ): '''simple docstring''' def __init__( self : Tuple , _lowerCAmelCase : Dict=0 , _lowerCAmelCase : List[str]=0 , _lowerCAmelCase : str=False ): super().__init__() SCREAMING_SNAKE_CASE_ = torch.nn.Parameter(torch.tensor([2, 3] ).float() ) SCREAMING_SNAKE_CASE_ = torch.nn.Parameter(torch.tensor([2, 3] ).float() ) SCREAMING_SNAKE_CASE_ = True def lowerCAmelCase_ ( self : Dict , _lowerCAmelCase : Union[str, Any]=None ): if self.first_batch: print(F"Model dtype: {self.a.dtype}, {self.b.dtype}. Input dtype: {x.dtype}" ) SCREAMING_SNAKE_CASE_ = False return x * self.a[0] + self.b[0] class lowerCamelCase_ ( torch.nn.Module ): '''simple docstring''' def __init__( self : Optional[int] , _lowerCAmelCase : Any=0 , _lowerCAmelCase : Any=0 , _lowerCAmelCase : Optional[Any]=False ): super().__init__() SCREAMING_SNAKE_CASE_ = torch.nn.Parameter(torch.tensor(_lowerCAmelCase ).float() ) SCREAMING_SNAKE_CASE_ = torch.nn.Parameter(torch.tensor(_lowerCAmelCase ).float() ) SCREAMING_SNAKE_CASE_ = True def lowerCAmelCase_ ( self : Optional[Any] , _lowerCAmelCase : Optional[int]=None ): if self.first_batch: print(F"Model dtype: {self.a.dtype}, {self.b.dtype}. Input dtype: {x.dtype}" ) SCREAMING_SNAKE_CASE_ = False return x * self.a + self.b def UpperCAmelCase_ ( __UpperCAmelCase : Dict , __UpperCAmelCase : int = 16 ) -> Union[str, Any]: from datasets import load_dataset from transformers import AutoTokenizer SCREAMING_SNAKE_CASE_ = AutoTokenizer.from_pretrained('bert-base-cased' ) SCREAMING_SNAKE_CASE_ = {'train': 'tests/test_samples/MRPC/train.csv', 'validation': 'tests/test_samples/MRPC/dev.csv'} SCREAMING_SNAKE_CASE_ = load_dataset('csv' , data_files=__UpperCAmelCase ) SCREAMING_SNAKE_CASE_ = datasets['train'].unique('label' ) SCREAMING_SNAKE_CASE_ = {v: i for i, v in enumerate(__UpperCAmelCase )} def tokenize_function(__UpperCAmelCase : Optional[int] ): # max_length=None => use the model max length (it's actually the default) SCREAMING_SNAKE_CASE_ = tokenizer( examples['sentence1'] , examples['sentence2'] , truncation=__UpperCAmelCase , max_length=__UpperCAmelCase , padding='max_length' ) if "label" in examples: SCREAMING_SNAKE_CASE_ = [label_to_id[l] for l in examples['label']] return outputs # Apply the method we just defined to all the examples in all the splits of the dataset SCREAMING_SNAKE_CASE_ = datasets.map( __UpperCAmelCase , batched=__UpperCAmelCase , remove_columns=['sentence1', 'sentence2', 'label'] , ) def collate_fn(__UpperCAmelCase : Dict ): # On TPU it's best to pad everything to the same length or training will be very slow. if accelerator.distributed_type == DistributedType.TPU: return tokenizer.pad(__UpperCAmelCase , padding='max_length' , max_length=1_28 , return_tensors='pt' ) return tokenizer.pad(__UpperCAmelCase , padding='longest' , return_tensors='pt' ) # Instantiate dataloaders. SCREAMING_SNAKE_CASE_ = DataLoader(tokenized_datasets['train'] , shuffle=__UpperCAmelCase , collate_fn=__UpperCAmelCase , batch_size=2 ) SCREAMING_SNAKE_CASE_ = DataLoader(tokenized_datasets['validation'] , shuffle=__UpperCAmelCase , collate_fn=__UpperCAmelCase , batch_size=1 ) return train_dataloader, eval_dataloader
31
0
import argparse import os from . import ( ALBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, BART_PRETRAINED_MODEL_ARCHIVE_LIST, BERT_PRETRAINED_CONFIG_ARCHIVE_MAP, CAMEMBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, CTRL_PRETRAINED_CONFIG_ARCHIVE_MAP, DISTILBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, DPR_CONTEXT_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST, DPR_QUESTION_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST, DPR_READER_PRETRAINED_MODEL_ARCHIVE_LIST, ELECTRA_PRETRAINED_CONFIG_ARCHIVE_MAP, FLAUBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, GPT2_PRETRAINED_CONFIG_ARCHIVE_MAP, LAYOUTLM_PRETRAINED_MODEL_ARCHIVE_LIST, LXMERT_PRETRAINED_CONFIG_ARCHIVE_MAP, OPENAI_GPT_PRETRAINED_CONFIG_ARCHIVE_MAP, ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP, T5_PRETRAINED_CONFIG_ARCHIVE_MAP, TRANSFO_XL_PRETRAINED_CONFIG_ARCHIVE_MAP, WAV_2_VEC_2_PRETRAINED_CONFIG_ARCHIVE_MAP, XLM_PRETRAINED_CONFIG_ARCHIVE_MAP, XLM_ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP, XLNET_PRETRAINED_CONFIG_ARCHIVE_MAP, AlbertConfig, BartConfig, BertConfig, CamembertConfig, CTRLConfig, DistilBertConfig, DPRConfig, ElectraConfig, FlaubertConfig, GPTaConfig, LayoutLMConfig, LxmertConfig, OpenAIGPTConfig, RobertaConfig, TaConfig, TFAlbertForPreTraining, TFBartForConditionalGeneration, TFBartForSequenceClassification, TFBertForPreTraining, TFBertForQuestionAnswering, TFBertForSequenceClassification, TFCamembertForMaskedLM, TFCTRLLMHeadModel, TFDistilBertForMaskedLM, TFDistilBertForQuestionAnswering, TFDPRContextEncoder, TFDPRQuestionEncoder, TFDPRReader, TFElectraForPreTraining, TFFlaubertWithLMHeadModel, TFGPTaLMHeadModel, TFLayoutLMForMaskedLM, TFLxmertForPreTraining, TFLxmertVisualFeatureEncoder, TFOpenAIGPTLMHeadModel, TFRobertaForCausalLM, TFRobertaForMaskedLM, TFRobertaForSequenceClassification, TFTaForConditionalGeneration, TFTransfoXLLMHeadModel, TFWavaVecaModel, TFXLMRobertaForMaskedLM, TFXLMWithLMHeadModel, TFXLNetLMHeadModel, TransfoXLConfig, WavaVecaConfig, WavaVecaModel, XLMConfig, XLMRobertaConfig, XLNetConfig, is_torch_available, load_pytorch_checkpoint_in_tfa_model, ) from .utils import CONFIG_NAME, WEIGHTS_NAME, cached_file, logging if is_torch_available(): import numpy as np import torch from . import ( AlbertForPreTraining, BartForConditionalGeneration, BertForPreTraining, BertForQuestionAnswering, BertForSequenceClassification, CamembertForMaskedLM, CTRLLMHeadModel, DistilBertForMaskedLM, DistilBertForQuestionAnswering, DPRContextEncoder, DPRQuestionEncoder, DPRReader, ElectraForPreTraining, FlaubertWithLMHeadModel, GPTaLMHeadModel, LayoutLMForMaskedLM, LxmertForPreTraining, LxmertVisualFeatureEncoder, OpenAIGPTLMHeadModel, RobertaForMaskedLM, RobertaForSequenceClassification, TaForConditionalGeneration, TransfoXLLMHeadModel, XLMRobertaForMaskedLM, XLMWithLMHeadModel, XLNetLMHeadModel, ) logging.set_verbosity_info() _lowerCamelCase : List[str] = { """bart""": ( BartConfig, TFBartForConditionalGeneration, TFBartForSequenceClassification, BartForConditionalGeneration, BART_PRETRAINED_MODEL_ARCHIVE_LIST, ), """bert""": ( BertConfig, TFBertForPreTraining, BertForPreTraining, BERT_PRETRAINED_CONFIG_ARCHIVE_MAP, ), """bert-large-uncased-whole-word-masking-finetuned-squad""": ( BertConfig, TFBertForQuestionAnswering, BertForQuestionAnswering, BERT_PRETRAINED_CONFIG_ARCHIVE_MAP, ), """bert-large-cased-whole-word-masking-finetuned-squad""": ( BertConfig, TFBertForQuestionAnswering, BertForQuestionAnswering, BERT_PRETRAINED_CONFIG_ARCHIVE_MAP, ), """bert-base-cased-finetuned-mrpc""": ( BertConfig, TFBertForSequenceClassification, BertForSequenceClassification, BERT_PRETRAINED_CONFIG_ARCHIVE_MAP, ), """dpr""": ( DPRConfig, TFDPRQuestionEncoder, TFDPRContextEncoder, TFDPRReader, DPRQuestionEncoder, DPRContextEncoder, DPRReader, DPR_CONTEXT_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST, DPR_QUESTION_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST, DPR_READER_PRETRAINED_MODEL_ARCHIVE_LIST, ), """gpt2""": ( GPTaConfig, TFGPTaLMHeadModel, GPTaLMHeadModel, GPT2_PRETRAINED_CONFIG_ARCHIVE_MAP, ), """xlnet""": ( XLNetConfig, TFXLNetLMHeadModel, XLNetLMHeadModel, XLNET_PRETRAINED_CONFIG_ARCHIVE_MAP, ), """xlm""": ( XLMConfig, TFXLMWithLMHeadModel, XLMWithLMHeadModel, XLM_PRETRAINED_CONFIG_ARCHIVE_MAP, ), """xlm-roberta""": ( XLMRobertaConfig, TFXLMRobertaForMaskedLM, XLMRobertaForMaskedLM, XLM_ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP, ), """transfo-xl""": ( TransfoXLConfig, TFTransfoXLLMHeadModel, TransfoXLLMHeadModel, TRANSFO_XL_PRETRAINED_CONFIG_ARCHIVE_MAP, ), """openai-gpt""": ( OpenAIGPTConfig, TFOpenAIGPTLMHeadModel, OpenAIGPTLMHeadModel, OPENAI_GPT_PRETRAINED_CONFIG_ARCHIVE_MAP, ), """roberta""": ( RobertaConfig, TFRobertaForCausalLM, TFRobertaForMaskedLM, RobertaForMaskedLM, ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP, ), """layoutlm""": ( LayoutLMConfig, TFLayoutLMForMaskedLM, LayoutLMForMaskedLM, LAYOUTLM_PRETRAINED_MODEL_ARCHIVE_LIST, ), """roberta-large-mnli""": ( RobertaConfig, TFRobertaForSequenceClassification, RobertaForSequenceClassification, ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP, ), """camembert""": ( CamembertConfig, TFCamembertForMaskedLM, CamembertForMaskedLM, CAMEMBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, ), """flaubert""": ( FlaubertConfig, TFFlaubertWithLMHeadModel, FlaubertWithLMHeadModel, FLAUBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, ), """distilbert""": ( DistilBertConfig, TFDistilBertForMaskedLM, DistilBertForMaskedLM, DISTILBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, ), """distilbert-base-distilled-squad""": ( DistilBertConfig, TFDistilBertForQuestionAnswering, DistilBertForQuestionAnswering, DISTILBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, ), """lxmert""": ( LxmertConfig, TFLxmertForPreTraining, LxmertForPreTraining, LXMERT_PRETRAINED_CONFIG_ARCHIVE_MAP, ), """lxmert-visual-feature-encoder""": ( LxmertConfig, TFLxmertVisualFeatureEncoder, LxmertVisualFeatureEncoder, LXMERT_PRETRAINED_CONFIG_ARCHIVE_MAP, ), """ctrl""": ( CTRLConfig, TFCTRLLMHeadModel, CTRLLMHeadModel, CTRL_PRETRAINED_CONFIG_ARCHIVE_MAP, ), """albert""": ( AlbertConfig, TFAlbertForPreTraining, AlbertForPreTraining, ALBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, ), """t5""": ( TaConfig, TFTaForConditionalGeneration, TaForConditionalGeneration, T5_PRETRAINED_CONFIG_ARCHIVE_MAP, ), """electra""": ( ElectraConfig, TFElectraForPreTraining, ElectraForPreTraining, ELECTRA_PRETRAINED_CONFIG_ARCHIVE_MAP, ), """wav2vec2""": ( WavaVecaConfig, TFWavaVecaModel, WavaVecaModel, WAV_2_VEC_2_PRETRAINED_CONFIG_ARCHIVE_MAP, ), } def SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_=False , lowercase_=True ) -> List[Any]: """simple docstring""" if model_type not in MODEL_CLASSES: raise ValueError(f"""Unrecognized model type, should be one of {list(MODEL_CLASSES.keys() )}.""" ) A__ , A__ , A__ , A__ = MODEL_CLASSES[model_type] # Initialise TF model if config_file in aws_config_map: A__ = cached_file(lowercase_ , lowercase_ , force_download=not use_cached_models ) A__ = config_class.from_json_file(lowercase_ ) A__ = True A__ = True print(f"""Building TensorFlow model from configuration: {config}""" ) A__ = model_class(lowercase_ ) # Load weights from tf checkpoint if pytorch_checkpoint_path in aws_config_map.keys(): A__ = cached_file( lowercase_ , lowercase_ , force_download=not use_cached_models ) # Load PyTorch checkpoint in tf2 model: A__ = load_pytorch_checkpoint_in_tfa_model(lowercase_ , lowercase_ ) if compare_with_pt_model: A__ = tf_model(tf_model.dummy_inputs , training=lowercase_ ) # build the network A__ = torch.load(lowercase_ , map_location='''cpu''' ) A__ = pt_model_class.from_pretrained( pretrained_model_name_or_path=lowercase_ , config=lowercase_ , state_dict=lowercase_ ) with torch.no_grad(): A__ = pt_model(**pt_model.dummy_inputs ) A__ = pto[0].numpy() A__ = tfo[0].numpy() A__ = np.amax(np.abs(np_pt - np_tf ) ) print(f"""Max absolute difference between models outputs {diff}""" ) assert diff <= 2E-2, f"""Error, model absolute difference is >2e-2: {diff}""" # Save pytorch-model print(f"""Save TensorFlow model to {tf_dump_path}""" ) tf_model.save_weights(lowercase_ , save_format='''h5''' ) def SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ , lowercase_=None , lowercase_=None , lowercase_=False , lowercase_=False , lowercase_=False , lowercase_=False , ) -> int: """simple docstring""" if args_model_type is None: A__ = list(MODEL_CLASSES.keys() ) else: A__ = [args_model_type] for j, model_type in enumerate(lowercase_ , start=1 ): print('''=''' * 100 ) print(f""" Converting model type {j}/{len(lowercase_ )}: {model_type}""" ) print('''=''' * 100 ) if model_type not in MODEL_CLASSES: raise ValueError(f"""Unrecognized model type {model_type}, should be one of {list(MODEL_CLASSES.keys() )}.""" ) A__ , A__ , A__ , A__ , A__ = MODEL_CLASSES[model_type] if model_shortcut_names_or_path is None: A__ = list(aws_model_maps.keys() ) if config_shortcut_names_or_path is None: A__ = model_shortcut_names_or_path for i, (model_shortcut_name, config_shortcut_name) in enumerate( zip(lowercase_ , lowercase_ ) , start=1 ): print('''-''' * 100 ) if "-squad" in model_shortcut_name or "-mrpc" in model_shortcut_name or "-mnli" in model_shortcut_name: if not only_convert_finetuned_models: print(f""" Skipping finetuned checkpoint {model_shortcut_name}""" ) continue A__ = model_shortcut_name elif only_convert_finetuned_models: print(f""" Skipping not finetuned checkpoint {model_shortcut_name}""" ) continue print( f""" Converting checkpoint {i}/{len(lowercase_ )}: {model_shortcut_name} - model_type {model_type}""" ) print('''-''' * 100 ) if config_shortcut_name in aws_config_map: A__ = cached_file(lowercase_ , lowercase_ , force_download=not use_cached_models ) else: A__ = config_shortcut_name if model_shortcut_name in aws_model_maps: A__ = cached_file(lowercase_ , lowercase_ , force_download=not use_cached_models ) else: A__ = model_shortcut_name if os.path.isfile(lowercase_ ): A__ = '''converted_model''' convert_pt_checkpoint_to_tf( model_type=lowercase_ , pytorch_checkpoint_path=lowercase_ , config_file=lowercase_ , tf_dump_path=os.path.join(lowercase_ , model_shortcut_name + '''-tf_model.h5''' ) , compare_with_pt_model=lowercase_ , ) if remove_cached_files: os.remove(lowercase_ ) os.remove(lowercase_ ) if __name__ == "__main__": _lowerCamelCase : Union[str, Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( """--tf_dump_path""", default=None, type=str, required=True, help="""Path to the output Tensorflow dump file.""" ) parser.add_argument( """--model_type""", default=None, type=str, help=( F'''Model type selected in the list of {list(MODEL_CLASSES.keys())}. If not given, will download and ''' """convert all the models from AWS.""" ), ) parser.add_argument( """--pytorch_checkpoint_path""", default=None, type=str, help=( """Path to the PyTorch checkpoint path or shortcut name to download from AWS. """ """If not given, will download and convert all the checkpoints from AWS.""" ), ) parser.add_argument( """--config_file""", default=None, type=str, help=( """The config json file corresponding to the pre-trained model. \n""" """This specifies the model architecture. If not given and """ """--pytorch_checkpoint_path is not given or is a shortcut name """ """use the configuration associated to the shortcut name on the AWS""" ), ) parser.add_argument( """--compare_with_pt_model""", action="""store_true""", help="""Compare Tensorflow and PyTorch model predictions.""" ) parser.add_argument( """--use_cached_models""", action="""store_true""", help="""Use cached models if possible instead of updating to latest checkpoint versions.""", ) parser.add_argument( """--remove_cached_files""", action="""store_true""", help="""Remove pytorch models after conversion (save memory when converting in batches).""", ) parser.add_argument("""--only_convert_finetuned_models""", action="""store_true""", help="""Only convert finetuned models.""") _lowerCamelCase : List[Any] = parser.parse_args() # if args.pytorch_checkpoint_path is not None: # convert_pt_checkpoint_to_tf(args.model_type.lower(), # args.pytorch_checkpoint_path, # args.config_file if args.config_file is not None else args.pytorch_checkpoint_path, # args.tf_dump_path, # compare_with_pt_model=args.compare_with_pt_model, # use_cached_models=args.use_cached_models) # else: convert_all_pt_checkpoints_to_tf( args.model_type.lower() if args.model_type is not None else None, args.tf_dump_path, model_shortcut_names_or_path=[args.pytorch_checkpoint_path] if args.pytorch_checkpoint_path is not None else None, config_shortcut_names_or_path=[args.config_file] if args.config_file is not None else None, compare_with_pt_model=args.compare_with_pt_model, use_cached_models=args.use_cached_models, remove_cached_files=args.remove_cached_files, only_convert_finetuned_models=args.only_convert_finetuned_models, )
87
import warnings from ...utils import logging from .image_processing_layoutlmva import LayoutLMvaImageProcessor lowerCamelCase__ : Union[str, Any] = logging.get_logger(__name__) class lowerCamelCase_ ( _SCREAMING_SNAKE_CASE ): '''simple docstring''' def __init__( self : Dict , *_lowerCAmelCase : Optional[Any] , **_lowerCAmelCase : Any ): warnings.warn( 'The class LayoutLMv2FeatureExtractor is deprecated and will be removed in version 5 of Transformers.' ' Please use LayoutLMv2ImageProcessor instead.' , _lowerCAmelCase , ) super().__init__(*_lowerCAmelCase , **_lowerCAmelCase )
31
0
"""simple docstring""" import argparse import shlex import runhouse as rh if __name__ == "__main__": # Refer to https://runhouse-docs.readthedocs-hosted.com/en/latest/api/python/cluster.html#hardware-setup for cloud access # setup instructions, if using on-demand hardware # If user passes --user <user> --host <host> --key_path <key_path> <example> <args>, fill them in as BYO cluster # If user passes --instance <instance> --provider <provider> <example> <args>, fill them in as on-demand cluster # Throw an error if user passes both BYO and on-demand cluster args # Otherwise, use default values UpperCAmelCase = argparse.ArgumentParser() parser.add_argument("""--user""", type=str, default="""ubuntu""") parser.add_argument("""--host""", type=str, default="""localhost""") parser.add_argument("""--key_path""", type=str, default=None) parser.add_argument("""--instance""", type=str, default="""V100:1""") parser.add_argument("""--provider""", type=str, default="""cheapest""") parser.add_argument("""--use_spot""", type=bool, default=False) parser.add_argument("""--example""", type=str, default="""pytorch/text-generation/run_generation.py""") UpperCAmelCase , UpperCAmelCase = parser.parse_known_args() if args.host != "localhost": if args.instance != "V100:1" or args.provider != "cheapest": raise ValueError("""Cannot specify both BYO and on-demand cluster args""") UpperCAmelCase = rh.cluster( name="""rh-cluster""", ips=[args.host], ssh_creds={"""ssh_user""": args.user, """ssh_private_key""": args.key_path} ) else: UpperCAmelCase = rh.cluster( name="""rh-cluster""", instance_type=args.instance, provider=args.provider, use_spot=args.use_spot ) UpperCAmelCase = args.example.rsplit("""/""", 1)[0] # Set up remote environment cluster.install_packages(["""pip:./"""]) # Installs transformers from local source # Note transformers is copied into the home directory on the remote machine, so we can install from there cluster.run([f'''pip install -r transformers/examples/{example_dir}/requirements.txt''']) cluster.run(["""pip install torch --upgrade --extra-index-url https://download.pytorch.org/whl/cu117"""]) # Run example. You can bypass the CLI wrapper and paste your own code here. cluster.run([f'''python transformers/examples/{args.example} {" ".join(shlex.quote(arg) for arg in unknown)}''']) # Alternatively, we can just import and run a training function (especially if there's no wrapper CLI): # from my_script... import train # reqs = ['pip:./', 'torch', 'datasets', 'accelerate', 'evaluate', 'tqdm', 'scipy', 'scikit-learn', 'tensorboard'] # launch_train_gpu = rh.function(fn=train, # system=gpu, # reqs=reqs, # name='train_bert_glue') # # We can pass in arguments just like we would to a function: # launch_train_gpu(num_epochs = 3, lr = 2e-5, seed = 42, batch_size = 16 # stream_logs=True)
88
def UpperCAmelCase_ ( ) -> list[list[int]]: return [list(range(10_00 - i , -10_00 - i , -1 ) ) for i in range(10_00 )] lowerCamelCase__ : List[Any] = generate_large_matrix() lowerCamelCase__ : List[Any] = ( [[4, 3, 2, -1], [3, 2, 1, -1], [1, 1, -1, -2], [-1, -1, -2, -3]], [[3, 2], [1, 0]], [[7, 7, 6]], [[7, 7, 6], [-1, -2, -3]], grid, ) def UpperCAmelCase_ ( __UpperCAmelCase : list[list[int]] ) -> None: assert all(row == sorted(__UpperCAmelCase , reverse=__UpperCAmelCase ) for row in grid ) assert all(list(__UpperCAmelCase ) == sorted(__UpperCAmelCase , reverse=__UpperCAmelCase ) for col in zip(*__UpperCAmelCase ) ) def UpperCAmelCase_ ( __UpperCAmelCase : list[int] ) -> int: SCREAMING_SNAKE_CASE_ = 0 SCREAMING_SNAKE_CASE_ = len(__UpperCAmelCase ) - 1 # Edge cases such as no values or all numbers are negative. if not array or array[0] < 0: return 0 while right + 1 > left: SCREAMING_SNAKE_CASE_ = (left + right) // 2 SCREAMING_SNAKE_CASE_ = array[mid] # Num must be negative and the index must be greater than or equal to 0. if num < 0 and array[mid - 1] >= 0: return mid if num >= 0: SCREAMING_SNAKE_CASE_ = mid + 1 else: SCREAMING_SNAKE_CASE_ = mid - 1 # No negative numbers so return the last index of the array + 1 which is the length. return len(__UpperCAmelCase ) def UpperCAmelCase_ ( __UpperCAmelCase : list[list[int]] ) -> int: SCREAMING_SNAKE_CASE_ = 0 SCREAMING_SNAKE_CASE_ = len(grid[0] ) for i in range(len(__UpperCAmelCase ) ): SCREAMING_SNAKE_CASE_ = find_negative_index(grid[i][:bound] ) total += bound return (len(__UpperCAmelCase ) * len(grid[0] )) - total def UpperCAmelCase_ ( __UpperCAmelCase : list[list[int]] ) -> int: return len([number for row in grid for number in row if number < 0] ) def UpperCAmelCase_ ( __UpperCAmelCase : list[list[int]] ) -> int: SCREAMING_SNAKE_CASE_ = 0 for row in grid: for i, number in enumerate(__UpperCAmelCase ): if number < 0: total += len(__UpperCAmelCase ) - i break return total def UpperCAmelCase_ ( ) -> None: from timeit import timeit print('Running benchmarks' ) SCREAMING_SNAKE_CASE_ = ( 'from __main__ import count_negatives_binary_search, ' 'count_negatives_brute_force, count_negatives_brute_force_with_break, grid' ) for func in ( "count_negatives_binary_search", # took 0.7727 seconds "count_negatives_brute_force_with_break", # took 4.6505 seconds "count_negatives_brute_force", # took 12.8160 seconds ): SCREAMING_SNAKE_CASE_ = timeit(f"{func}(grid=grid)" , setup=__UpperCAmelCase , number=5_00 ) print(f"{func}() took {time:0.4f} seconds" ) if __name__ == "__main__": import doctest doctest.testmod() benchmark()
31
0
from packaging import version from .import_utils import is_accelerate_available if is_accelerate_available(): import accelerate def UpperCamelCase_( lowerCamelCase_ ) -> Union[str, Any]: if not is_accelerate_available(): return method _lowercase : int = version.parse(accelerate.__version__ ).base_version if version.parse(lowerCamelCase_ ) < version.parse('0.17.0' ): return method def wrapper(self , *lowerCamelCase_ , **lowerCamelCase_ ): if hasattr(self , '_hf_hook' ) and hasattr(self._hf_hook , 'pre_forward' ): self._hf_hook.pre_forward(self ) return method(self , *lowerCamelCase_ , **lowerCamelCase_ ) return wrapper
89
from typing import TYPE_CHECKING from ....utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available lowerCamelCase__ : Optional[int] = {'configuration_mmbt': ['MMBTConfig']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase__ : Any = ['MMBTForClassification', 'MMBTModel', 'ModalEmbeddings'] if TYPE_CHECKING: from .configuration_mmbt import MMBTConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mmbt import MMBTForClassification, MMBTModel, ModalEmbeddings else: import sys lowerCamelCase__ : str = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
31
0
'''simple docstring''' from ..utils import DummyObject, requires_backends class a__ ( metaclass=a__ ): '''simple docstring''' lowercase__ : List[str] = ["transformers", "torch", "note_seq"] def __init__( self , *lowerCamelCase_ , **lowerCamelCase_ ) -> Any: requires_backends(self , ['''transformers''', '''torch''', '''note_seq'''] ) @classmethod def __SCREAMING_SNAKE_CASE ( cls , *lowerCamelCase_ , **lowerCamelCase_ ) -> Tuple: requires_backends(cls , ['''transformers''', '''torch''', '''note_seq'''] ) @classmethod def __SCREAMING_SNAKE_CASE ( cls , *lowerCamelCase_ , **lowerCamelCase_ ) -> Optional[int]: requires_backends(cls , ['''transformers''', '''torch''', '''note_seq'''] )
90
import unittest from typing import Tuple import torch from diffusers.utils import floats_tensor, randn_tensor, torch_all_close, torch_device from diffusers.utils.testing_utils import require_torch @require_torch class lowerCamelCase_ : '''simple docstring''' @property def lowerCAmelCase_ ( self : Optional[Any] ): return self.get_dummy_input() @property def lowerCAmelCase_ ( self : Union[str, Any] ): if self.block_type == "down": return (4, 32, 16, 16) elif self.block_type == "mid": return (4, 32, 32, 32) elif self.block_type == "up": return (4, 32, 64, 64) raise ValueError(F"'{self.block_type}' is not a supported block_type. Set it to 'up', 'mid', or 'down'." ) def lowerCAmelCase_ ( self : List[str] , _lowerCAmelCase : Optional[Any]=True , _lowerCAmelCase : str=False , _lowerCAmelCase : Optional[int]=False , _lowerCAmelCase : Dict=False , ): SCREAMING_SNAKE_CASE_ = 4 SCREAMING_SNAKE_CASE_ = 32 SCREAMING_SNAKE_CASE_ = (32, 32) SCREAMING_SNAKE_CASE_ = torch.manual_seed(0 ) SCREAMING_SNAKE_CASE_ = torch.device(_lowerCAmelCase ) SCREAMING_SNAKE_CASE_ = (batch_size, num_channels) + sizes SCREAMING_SNAKE_CASE_ = randn_tensor(_lowerCAmelCase , generator=_lowerCAmelCase , device=_lowerCAmelCase ) SCREAMING_SNAKE_CASE_ = {'hidden_states': hidden_states} if include_temb: SCREAMING_SNAKE_CASE_ = 128 SCREAMING_SNAKE_CASE_ = randn_tensor((batch_size, temb_channels) , generator=_lowerCAmelCase , device=_lowerCAmelCase ) if include_res_hidden_states_tuple: SCREAMING_SNAKE_CASE_ = torch.manual_seed(1 ) SCREAMING_SNAKE_CASE_ = (randn_tensor(_lowerCAmelCase , generator=_lowerCAmelCase , device=_lowerCAmelCase ),) if include_encoder_hidden_states: SCREAMING_SNAKE_CASE_ = floats_tensor((batch_size, 32, 32) ).to(_lowerCAmelCase ) if include_skip_sample: SCREAMING_SNAKE_CASE_ = randn_tensor(((batch_size, 3) + sizes) , generator=_lowerCAmelCase , device=_lowerCAmelCase ) return dummy_input def lowerCAmelCase_ ( self : Optional[int] ): SCREAMING_SNAKE_CASE_ = { 'in_channels': 32, 'out_channels': 32, 'temb_channels': 128, } if self.block_type == "up": SCREAMING_SNAKE_CASE_ = 32 if self.block_type == "mid": init_dict.pop('out_channels' ) SCREAMING_SNAKE_CASE_ = self.dummy_input return init_dict, inputs_dict def lowerCAmelCase_ ( self : Dict , _lowerCAmelCase : Optional[Any] ): SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = self.prepare_init_args_and_inputs_for_common() SCREAMING_SNAKE_CASE_ = self.block_class(**_lowerCAmelCase ) unet_block.to(_lowerCAmelCase ) unet_block.eval() with torch.no_grad(): SCREAMING_SNAKE_CASE_ = unet_block(**_lowerCAmelCase ) if isinstance(_lowerCAmelCase , _lowerCAmelCase ): SCREAMING_SNAKE_CASE_ = output[0] self.assertEqual(output.shape , self.output_shape ) SCREAMING_SNAKE_CASE_ = output[0, -1, -3:, -3:] SCREAMING_SNAKE_CASE_ = torch.tensor(_lowerCAmelCase ).to(_lowerCAmelCase ) assert torch_all_close(output_slice.flatten() , _lowerCAmelCase , atol=5E-3 ) @unittest.skipIf(torch_device == 'mps' , 'Training is not supported in mps' ) def lowerCAmelCase_ ( self : Any ): SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = self.prepare_init_args_and_inputs_for_common() SCREAMING_SNAKE_CASE_ = self.block_class(**_lowerCAmelCase ) model.to(_lowerCAmelCase ) model.train() SCREAMING_SNAKE_CASE_ = model(**_lowerCAmelCase ) if isinstance(_lowerCAmelCase , _lowerCAmelCase ): SCREAMING_SNAKE_CASE_ = output[0] SCREAMING_SNAKE_CASE_ = torch.device(_lowerCAmelCase ) SCREAMING_SNAKE_CASE_ = randn_tensor(output.shape , device=_lowerCAmelCase ) SCREAMING_SNAKE_CASE_ = torch.nn.functional.mse_loss(_lowerCAmelCase , _lowerCAmelCase ) loss.backward()
31
0
"""simple docstring""" def _snake_case ( snake_case__ : list[int] ): A = len(snake_case__ ) for i in range(snake_case__ ): for j in range(i + 1 , snake_case__ ): if numbers[j] < numbers[i]: A , A = numbers[j], numbers[i] return numbers if __name__ == "__main__": _lowercase = input('''Enter numbers separated by a comma:\n''').strip() _lowercase = [int(item) for item in user_input.split(''',''')] print(exchange_sort(unsorted))
91
import operator as op def UpperCAmelCase_ ( __UpperCAmelCase : str ) -> Any: SCREAMING_SNAKE_CASE_ = [] SCREAMING_SNAKE_CASE_ = lambda __UpperCAmelCase , __UpperCAmelCase : int(x / y ) # noqa: E731 integer division operation SCREAMING_SNAKE_CASE_ = { '^': op.pow, '*': op.mul, '/': div, '+': op.add, '-': op.sub, } # operators & their respective operation # print table header print('Symbol'.center(8 ) , 'Action'.center(12 ) , 'Stack' , sep=' | ' ) print('-' * (30 + len(__UpperCAmelCase )) ) for x in post_fix: if x.isdigit(): # if x in digit stack.append(__UpperCAmelCase ) # append x to stack # output in tabular format print(x.rjust(8 ) , ('push(' + x + ')').ljust(12 ) , ','.join(__UpperCAmelCase ) , sep=' | ' ) else: SCREAMING_SNAKE_CASE_ = stack.pop() # pop stack # output in tabular format print(''.rjust(8 ) , ('pop(' + b + ')').ljust(12 ) , ','.join(__UpperCAmelCase ) , sep=' | ' ) SCREAMING_SNAKE_CASE_ = stack.pop() # pop stack # output in tabular format print(''.rjust(8 ) , ('pop(' + a + ')').ljust(12 ) , ','.join(__UpperCAmelCase ) , sep=' | ' ) stack.append( str(opr[x](int(__UpperCAmelCase ) , int(__UpperCAmelCase ) ) ) ) # evaluate the 2 values popped from stack & push result to stack # output in tabular format print( x.rjust(8 ) , ('push(' + a + x + b + ')').ljust(12 ) , ','.join(__UpperCAmelCase ) , sep=' | ' , ) return int(stack[0] ) if __name__ == "__main__": lowerCamelCase__ : Tuple = input('\n\nEnter a Postfix Equation (space separated) = ').split(' ') print('\n\tResult = ', solve(Postfix))
31
0
'''simple docstring''' from typing import List, Optional, TypeVar from .arrow_dataset import Dataset, _concatenate_map_style_datasets, _interleave_map_style_datasets from .dataset_dict import DatasetDict, IterableDatasetDict from .info import DatasetInfo from .iterable_dataset import IterableDataset, _concatenate_iterable_datasets, _interleave_iterable_datasets from .splits import NamedSplit from .utils import logging from .utils.py_utils import Literal UpperCamelCase_ = logging.get_logger(__name__) UpperCamelCase_ = TypeVar("""DatasetType""", Dataset, IterableDataset) def _lowerCAmelCase ( __magic_name__ : List[DatasetType] , __magic_name__ : Optional[List[float]] = None , __magic_name__ : Optional[int] = None , __magic_name__ : Optional[DatasetInfo] = None , __magic_name__ : Optional[NamedSplit] = None , __magic_name__ : Literal["first_exhausted", "all_exhausted"] = "first_exhausted" , ) -> DatasetType: from .arrow_dataset import Dataset from .iterable_dataset import IterableDataset if not datasets: raise ValueError('''Unable to interleave an empty list of datasets.''' ) for i, dataset in enumerate(__magic_name__ ): if not isinstance(__magic_name__ , (Dataset, IterableDataset) ): if isinstance(__magic_name__ , (DatasetDict, IterableDatasetDict) ): if not dataset: raise ValueError( f'''Expected a list of Dataset objects or a list of IterableDataset objects, but element at position {i} ''' '''is an empty dataset dictionary.''' ) raise ValueError( f'''Dataset at position {i} has at least one split: {list(__magic_name__ )}\n''' f'''Please pick one to interleave with the other datasets, for example: dataset[\'{next(iter(__magic_name__ ) )}\']''' ) raise ValueError( f'''Expected a list of Dataset objects or a list of IterableDataset objects, but element at position {i} is a {type(__magic_name__ ).__name__}.''' ) if i == 0: lowercase , lowercase : str =( (Dataset, IterableDataset) if isinstance(__magic_name__ , __magic_name__ ) else (IterableDataset, Dataset) ) elif not isinstance(__magic_name__ , __magic_name__ ): raise ValueError( f'''Unable to interleave a {dataset_type.__name__} (at position 0) with a {other_type.__name__} (at position {i}). Expected a list of Dataset objects or a list of IterableDataset objects.''' ) if stopping_strategy not in ["first_exhausted", "all_exhausted"]: raise ValueError(f'''{stopping_strategy} is not supported. Please enter a valid stopping_strategy.''' ) if dataset_type is Dataset: return _interleave_map_style_datasets( __magic_name__ , __magic_name__ , __magic_name__ , info=__magic_name__ , split=__magic_name__ , stopping_strategy=__magic_name__ ) else: return _interleave_iterable_datasets( __magic_name__ , __magic_name__ , __magic_name__ , info=__magic_name__ , split=__magic_name__ , stopping_strategy=__magic_name__ ) def _lowerCAmelCase ( __magic_name__ : List[DatasetType] , __magic_name__ : Optional[DatasetInfo] = None , __magic_name__ : Optional[NamedSplit] = None , __magic_name__ : int = 0 , ) -> DatasetType: if not dsets: raise ValueError('''Unable to concatenate an empty list of datasets.''' ) for i, dataset in enumerate(__magic_name__ ): if not isinstance(__magic_name__ , (Dataset, IterableDataset) ): if isinstance(__magic_name__ , (DatasetDict, IterableDatasetDict) ): if not dataset: raise ValueError( f'''Expected a list of Dataset objects or a list of IterableDataset objects, but element at position {i} ''' '''is an empty dataset dictionary.''' ) raise ValueError( f'''Dataset at position {i} has at least one split: {list(__magic_name__ )}\n''' f'''Please pick one to interleave with the other datasets, for example: dataset[\'{next(iter(__magic_name__ ) )}\']''' ) raise ValueError( f'''Expected a list of Dataset objects or a list of IterableDataset objects, but element at position {i} is a {type(__magic_name__ ).__name__}.''' ) if i == 0: lowercase , lowercase : Optional[int] =( (Dataset, IterableDataset) if isinstance(__magic_name__ , __magic_name__ ) else (IterableDataset, Dataset) ) elif not isinstance(__magic_name__ , __magic_name__ ): raise ValueError( f'''Unable to interleave a {dataset_type.__name__} (at position 0) with a {other_type.__name__} (at position {i}). Expected a list of Dataset objects or a list of IterableDataset objects.''' ) if dataset_type is Dataset: return _concatenate_map_style_datasets(__magic_name__ , info=__magic_name__ , split=__magic_name__ , axis=__magic_name__ ) else: return _concatenate_iterable_datasets(__magic_name__ , info=__magic_name__ , split=__magic_name__ , axis=__magic_name__ )
92
def UpperCAmelCase_ ( __UpperCAmelCase : int ) -> int: assert isinstance(__UpperCAmelCase , __UpperCAmelCase ), f"The input value of [n={number}] is not an integer" if number == 1: return 2 elif number < 1: SCREAMING_SNAKE_CASE_ = f"The input value of [n={number}] has to be > 0" raise ValueError(__UpperCAmelCase ) else: SCREAMING_SNAKE_CASE_ = sylvester(number - 1 ) SCREAMING_SNAKE_CASE_ = num - 1 SCREAMING_SNAKE_CASE_ = num return lower * upper + 1 if __name__ == "__main__": print(f'''The 8th number in Sylvester\'s sequence: {sylvester(8)}''')
31
0
"""simple docstring""" import warnings from ...configuration_utils import PretrainedConfig from ...utils import logging __A = logging.get_logger(__name__) __A = { """RUCAIBox/mvp""": """https://huggingface.co/RUCAIBox/mvp/resolve/main/config.json""", } class _lowerCAmelCase ( a ): """simple docstring""" __magic_name__ :Tuple = """mvp""" __magic_name__ :Optional[Any] = ["""past_key_values"""] __magic_name__ :str = {"""num_attention_heads""": """encoder_attention_heads""", """hidden_size""": """d_model"""} def __init__( self , __UpperCAmelCase=5_0_2_6_7 , __UpperCAmelCase=1_0_2_4 , __UpperCAmelCase=1_2 , __UpperCAmelCase=4_0_9_6 , __UpperCAmelCase=1_6 , __UpperCAmelCase=1_2 , __UpperCAmelCase=4_0_9_6 , __UpperCAmelCase=1_6 , __UpperCAmelCase=0.0 , __UpperCAmelCase=0.0 , __UpperCAmelCase="gelu" , __UpperCAmelCase=1_0_2_4 , __UpperCAmelCase=0.1 , __UpperCAmelCase=0.0 , __UpperCAmelCase=0.0 , __UpperCAmelCase=0.02 , __UpperCAmelCase=0.0 , __UpperCAmelCase=False , __UpperCAmelCase=True , __UpperCAmelCase=1 , __UpperCAmelCase=0 , __UpperCAmelCase=2 , __UpperCAmelCase=True , __UpperCAmelCase=2 , __UpperCAmelCase=2 , __UpperCAmelCase=False , __UpperCAmelCase=1_0_0 , __UpperCAmelCase=8_0_0 , **__UpperCAmelCase , ): '''simple docstring''' lowerCAmelCase__ :str = vocab_size lowerCAmelCase__ :List[Any] = max_position_embeddings lowerCAmelCase__ :List[str] = d_model lowerCAmelCase__ :Optional[int] = encoder_ffn_dim lowerCAmelCase__ :Dict = encoder_layers lowerCAmelCase__ :Optional[int] = encoder_attention_heads lowerCAmelCase__ :Dict = decoder_ffn_dim lowerCAmelCase__ :Optional[int] = decoder_layers lowerCAmelCase__ :List[Any] = decoder_attention_heads lowerCAmelCase__ :List[Any] = dropout lowerCAmelCase__ :Optional[Any] = attention_dropout lowerCAmelCase__ :int = activation_dropout lowerCAmelCase__ :List[str] = activation_function lowerCAmelCase__ :Any = init_std lowerCAmelCase__ :List[str] = encoder_layerdrop lowerCAmelCase__ :Optional[Any] = decoder_layerdrop lowerCAmelCase__ :Tuple = classifier_dropout lowerCAmelCase__ :Any = use_cache lowerCAmelCase__ :Tuple = encoder_layers lowerCAmelCase__ :str = scale_embedding # scale factor will be sqrt(d_model) if True lowerCAmelCase__ :Any = use_prompt lowerCAmelCase__ :List[Any] = prompt_length lowerCAmelCase__ :Dict = prompt_mid_dim super().__init__( pad_token_id=__UpperCAmelCase , bos_token_id=__UpperCAmelCase , eos_token_id=__UpperCAmelCase , is_encoder_decoder=__UpperCAmelCase , decoder_start_token_id=__UpperCAmelCase , forced_eos_token_id=__UpperCAmelCase , **__UpperCAmelCase , ) if self.forced_bos_token_id is None and kwargs.get('force_bos_token_to_be_generated' , __UpperCAmelCase ): lowerCAmelCase__ :str = self.bos_token_id warnings.warn( F"Please make sure the config includes `forced_bos_token_id={self.bos_token_id}` in future versions. " 'The config can simply be saved and uploaded again to be fixed.' )
93
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_sentencepiece_available, is_tf_available, is_tokenizers_available, is_torch_available, ) if is_sentencepiece_available(): from ..ta.tokenization_ta import TaTokenizer else: from ...utils.dummy_sentencepiece_objects import TaTokenizer lowerCamelCase__ : List[Any] = TaTokenizer if is_tokenizers_available(): from ..ta.tokenization_ta_fast import TaTokenizerFast else: from ...utils.dummy_tokenizers_objects import TaTokenizerFast lowerCamelCase__ : Union[str, Any] = TaTokenizerFast lowerCamelCase__ : Dict = {'configuration_mt5': ['MT5Config', 'MT5OnnxConfig']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase__ : Tuple = [ 'MT5EncoderModel', 'MT5ForConditionalGeneration', 'MT5ForQuestionAnswering', 'MT5Model', 'MT5PreTrainedModel', 'MT5Stack', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase__ : Tuple = ['TFMT5EncoderModel', 'TFMT5ForConditionalGeneration', 'TFMT5Model'] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase__ : Tuple = ['FlaxMT5EncoderModel', 'FlaxMT5ForConditionalGeneration', 'FlaxMT5Model'] if TYPE_CHECKING: from .configuration_mta import MTaConfig, MTaOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mta import ( MTaEncoderModel, MTaForConditionalGeneration, MTaForQuestionAnswering, MTaModel, MTaPreTrainedModel, MTaStack, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_mta import TFMTaEncoderModel, TFMTaForConditionalGeneration, TFMTaModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_mta import FlaxMTaEncoderModel, FlaxMTaForConditionalGeneration, FlaxMTaModel else: import sys lowerCamelCase__ : int = _LazyModule( __name__, globals()['__file__'], _import_structure, extra_objects={'MT5Tokenizer': MTaTokenizer, 'MT5TokenizerFast': MTaTokenizerFast}, module_spec=__spec__, )
31
0
'''simple docstring''' import math import tensorflow as tf from packaging import version def lowercase_ ( __A : str ) -> List[Any]: """simple docstring""" lowercase : int =tf.convert_to_tensor(__A ) lowercase : Dict =0.5 * (1.0 + tf.math.erf(x / tf.cast(tf.sqrt(2.0 ) , x.dtype ) )) return x * cdf def lowercase_ ( __A : Any ) -> int: """simple docstring""" lowercase : Optional[Any] =tf.convert_to_tensor(__A ) lowercase : Tuple =tf.cast(math.pi , x.dtype ) lowercase : List[Any] =tf.cast(0.044715 , x.dtype ) lowercase : Optional[Any] =0.5 * (1.0 + tf.tanh(tf.sqrt(2.0 / pi ) * (x + coeff * tf.pow(__A , 3 )) )) return x * cdf def lowercase_ ( __A : List[str] ) -> Optional[Any]: """simple docstring""" lowercase : Optional[int] =tf.convert_to_tensor(__A ) return x * tf.tanh(tf.math.softplus(__A ) ) def lowercase_ ( __A : Dict ) -> Union[str, Any]: """simple docstring""" lowercase : Union[str, Any] =tf.convert_to_tensor(__A ) lowercase : Tuple =tf.cast(0.044715 , x.dtype ) lowercase : Any =tf.cast(0.7978845608 , x.dtype ) return 0.5 * x * (1.0 + tf.tanh(x * coeffa * (1.0 + coeffa * x * x) )) def lowercase_ ( __A : Optional[Any] ) -> Dict: """simple docstring""" lowercase : List[str] =tf.convert_to_tensor(__A ) lowercase : Optional[int] =tf.cast(1.702 , x.dtype ) return x * tf.math.sigmoid(coeff * x ) def lowercase_ ( __A : Dict ) -> Union[str, Any]: """simple docstring""" return tf.clip_by_value(_gelu(__A ) , -1_0 , 1_0 ) def lowercase_ ( __A : Optional[Any] , __A : int=-1 ) -> Tuple: """simple docstring""" lowercase , lowercase : List[Any] =tf.split(__A , 2 , axis=__A ) return a * tf.math.sigmoid(__A ) if version.parse(tf.version.VERSION) >= version.parse('2.4'): def lowercase_ ( __A : str ) -> Optional[int]: """simple docstring""" return tf.keras.activations.gelu(__A , approximate=__A ) SCREAMING_SNAKE_CASE = tf.keras.activations.gelu SCREAMING_SNAKE_CASE = approximate_gelu_wrap else: SCREAMING_SNAKE_CASE = _gelu SCREAMING_SNAKE_CASE = _gelu_new SCREAMING_SNAKE_CASE = { 'gelu': gelu, 'gelu_10': gelu_aa, 'gelu_fast': gelu_fast, 'gelu_new': gelu_new, 'glu': glu, 'mish': mish, 'quick_gelu': quick_gelu, 'relu': tf.keras.activations.relu, 'sigmoid': tf.keras.activations.sigmoid, 'silu': tf.keras.activations.swish, 'swish': tf.keras.activations.swish, 'tanh': tf.keras.activations.tanh, } def lowercase_ ( __A : Optional[int] ) -> Optional[int]: """simple docstring""" if activation_string in ACTaFN: return ACTaFN[activation_string] else: raise KeyError(F'function {activation_string} not found in ACT2FN mapping {list(ACTaFN.keys() )}' )
94
import subprocess import sys from transformers import BertConfig, BertModel, BertTokenizer, pipeline from transformers.testing_utils import TestCasePlus, require_torch class lowerCamelCase_ ( _SCREAMING_SNAKE_CASE ): '''simple docstring''' @require_torch def lowerCAmelCase_ ( self : int ): # this test is a bit tricky since TRANSFORMERS_OFFLINE can only be changed before # `transformers` is loaded, and it's too late for inside pytest - so we are changing it # while running an external program # python one-liner segments # this must be loaded before socket.socket is monkey-patched SCREAMING_SNAKE_CASE_ = '\nfrom transformers import BertConfig, BertModel, BertTokenizer, pipeline\n ' SCREAMING_SNAKE_CASE_ = '\nmname = "hf-internal-testing/tiny-random-bert"\nBertConfig.from_pretrained(mname)\nBertModel.from_pretrained(mname)\nBertTokenizer.from_pretrained(mname)\npipe = pipeline(task="fill-mask", model=mname)\nprint("success")\n ' SCREAMING_SNAKE_CASE_ = '\nimport socket\ndef offline_socket(*args, **kwargs): raise RuntimeError("Offline mode is enabled, we shouldn\'t access internet")\nsocket.socket = offline_socket\n ' # Force fetching the files so that we can use the cache SCREAMING_SNAKE_CASE_ = 'hf-internal-testing/tiny-random-bert' BertConfig.from_pretrained(_lowerCAmelCase ) BertModel.from_pretrained(_lowerCAmelCase ) BertTokenizer.from_pretrained(_lowerCAmelCase ) pipeline(task='fill-mask' , model=_lowerCAmelCase ) # baseline - just load from_pretrained with normal network SCREAMING_SNAKE_CASE_ = [sys.executable, '-c', '\n'.join([load, run, mock] )] # should succeed SCREAMING_SNAKE_CASE_ = self.get_env() # should succeed as TRANSFORMERS_OFFLINE=1 tells it to use local files SCREAMING_SNAKE_CASE_ = '1' SCREAMING_SNAKE_CASE_ = subprocess.run(_lowerCAmelCase , env=_lowerCAmelCase , check=_lowerCAmelCase , capture_output=_lowerCAmelCase ) self.assertEqual(result.returncode , 0 , result.stderr ) self.assertIn('success' , result.stdout.decode() ) @require_torch def lowerCAmelCase_ ( self : Tuple ): # python one-liner segments # this must be loaded before socket.socket is monkey-patched SCREAMING_SNAKE_CASE_ = '\nfrom transformers import BertConfig, BertModel, BertTokenizer, pipeline\n ' SCREAMING_SNAKE_CASE_ = '\nmname = "hf-internal-testing/tiny-random-bert"\nBertConfig.from_pretrained(mname)\nBertModel.from_pretrained(mname)\nBertTokenizer.from_pretrained(mname)\npipe = pipeline(task="fill-mask", model=mname)\nprint("success")\n ' SCREAMING_SNAKE_CASE_ = '\nimport socket\ndef offline_socket(*args, **kwargs): raise socket.error("Faking flaky internet")\nsocket.socket = offline_socket\n ' # Force fetching the files so that we can use the cache SCREAMING_SNAKE_CASE_ = 'hf-internal-testing/tiny-random-bert' BertConfig.from_pretrained(_lowerCAmelCase ) BertModel.from_pretrained(_lowerCAmelCase ) BertTokenizer.from_pretrained(_lowerCAmelCase ) pipeline(task='fill-mask' , model=_lowerCAmelCase ) # baseline - just load from_pretrained with normal network SCREAMING_SNAKE_CASE_ = [sys.executable, '-c', '\n'.join([load, run, mock] )] # should succeed SCREAMING_SNAKE_CASE_ = self.get_env() SCREAMING_SNAKE_CASE_ = subprocess.run(_lowerCAmelCase , env=_lowerCAmelCase , check=_lowerCAmelCase , capture_output=_lowerCAmelCase ) self.assertEqual(result.returncode , 0 , result.stderr ) self.assertIn('success' , result.stdout.decode() ) @require_torch def lowerCAmelCase_ ( self : List[str] ): # this test is a bit tricky since TRANSFORMERS_OFFLINE can only be changed before # `transformers` is loaded, and it's too late for inside pytest - so we are changing it # while running an external program # python one-liner segments # this must be loaded before socket.socket is monkey-patched SCREAMING_SNAKE_CASE_ = '\nfrom transformers import BertConfig, BertModel, BertTokenizer\n ' SCREAMING_SNAKE_CASE_ = '\nmname = "hf-internal-testing/tiny-random-bert-sharded"\nBertConfig.from_pretrained(mname)\nBertModel.from_pretrained(mname)\nprint("success")\n ' SCREAMING_SNAKE_CASE_ = '\nimport socket\ndef offline_socket(*args, **kwargs): raise ValueError("Offline mode is enabled")\nsocket.socket = offline_socket\n ' # baseline - just load from_pretrained with normal network SCREAMING_SNAKE_CASE_ = [sys.executable, '-c', '\n'.join([load, run] )] # should succeed SCREAMING_SNAKE_CASE_ = self.get_env() SCREAMING_SNAKE_CASE_ = subprocess.run(_lowerCAmelCase , env=_lowerCAmelCase , check=_lowerCAmelCase , capture_output=_lowerCAmelCase ) self.assertEqual(result.returncode , 0 , result.stderr ) self.assertIn('success' , result.stdout.decode() ) # next emulate no network SCREAMING_SNAKE_CASE_ = [sys.executable, '-c', '\n'.join([load, mock, run] )] # Doesn't fail anymore since the model is in the cache due to other tests, so commenting this. # env["TRANSFORMERS_OFFLINE"] = "0" # result = subprocess.run(cmd, env=env, check=False, capture_output=True) # self.assertEqual(result.returncode, 1, result.stderr) # should succeed as TRANSFORMERS_OFFLINE=1 tells it to use local files SCREAMING_SNAKE_CASE_ = '1' SCREAMING_SNAKE_CASE_ = subprocess.run(_lowerCAmelCase , env=_lowerCAmelCase , check=_lowerCAmelCase , capture_output=_lowerCAmelCase ) self.assertEqual(result.returncode , 0 , result.stderr ) self.assertIn('success' , result.stdout.decode() ) @require_torch def lowerCAmelCase_ ( self : Any ): SCREAMING_SNAKE_CASE_ = '\nfrom transformers import pipeline\n ' SCREAMING_SNAKE_CASE_ = '\nmname = "hf-internal-testing/tiny-random-bert"\npipe = pipeline(model=mname)\n ' SCREAMING_SNAKE_CASE_ = '\nimport socket\ndef offline_socket(*args, **kwargs): raise socket.error("Offline mode is enabled")\nsocket.socket = offline_socket\n ' SCREAMING_SNAKE_CASE_ = self.get_env() SCREAMING_SNAKE_CASE_ = '1' SCREAMING_SNAKE_CASE_ = [sys.executable, '-c', '\n'.join([load, mock, run] )] SCREAMING_SNAKE_CASE_ = subprocess.run(_lowerCAmelCase , env=_lowerCAmelCase , check=_lowerCAmelCase , capture_output=_lowerCAmelCase ) self.assertEqual(result.returncode , 1 , result.stderr ) self.assertIn( 'You cannot infer task automatically within `pipeline` when using offline mode' , result.stderr.decode().replace('\n' , '' ) , ) @require_torch def lowerCAmelCase_ ( self : Optional[int] ): SCREAMING_SNAKE_CASE_ = '\nfrom transformers import AutoModel\n ' SCREAMING_SNAKE_CASE_ = '\nmname = "hf-internal-testing/test_dynamic_model"\nAutoModel.from_pretrained(mname, trust_remote_code=True)\nprint("success")\n ' # baseline - just load from_pretrained with normal network SCREAMING_SNAKE_CASE_ = [sys.executable, '-c', '\n'.join([load, run] )] # should succeed SCREAMING_SNAKE_CASE_ = self.get_env() SCREAMING_SNAKE_CASE_ = subprocess.run(_lowerCAmelCase , env=_lowerCAmelCase , check=_lowerCAmelCase , capture_output=_lowerCAmelCase ) self.assertEqual(result.returncode , 0 , result.stderr ) self.assertIn('success' , result.stdout.decode() ) # should succeed as TRANSFORMERS_OFFLINE=1 tells it to use local files SCREAMING_SNAKE_CASE_ = '1' SCREAMING_SNAKE_CASE_ = subprocess.run(_lowerCAmelCase , env=_lowerCAmelCase , check=_lowerCAmelCase , capture_output=_lowerCAmelCase ) self.assertEqual(result.returncode , 0 , result.stderr ) self.assertIn('success' , result.stdout.decode() )
31
0
"""simple docstring""" import timeit import numpy as np import datasets from datasets.arrow_writer import ArrowWriter from datasets.features.features import _ArrayXD def snake_case ( A__ ): def wrapper(*A__ ,**A__ ): UpperCAmelCase_ : Union[str, Any] = timeit.default_timer() UpperCAmelCase_ : Union[str, Any] = func(*A__ ,**A__ ) UpperCAmelCase_ : Dict = timeit.default_timer() - starttime return delta UpperCAmelCase_ : Optional[Any] = func.__name__ return wrapper def snake_case ( A__ ,A__=1_00 ,A__=None ): UpperCAmelCase_ : str = [] UpperCAmelCase_ : List[str] = seq_shapes or {} for i in range(A__ ): UpperCAmelCase_ : int = {} for col_id, (k, v) in enumerate(features.items() ): if isinstance(A__ ,_ArrayXD ): UpperCAmelCase_ : Optional[int] = np.random.rand(*v.shape ).astype(v.dtype ) elif isinstance(A__ ,datasets.Value ): if v.dtype == "string": UpperCAmelCase_ : List[str] = "The small grey turtle was surprisingly fast when challenged." else: UpperCAmelCase_ : List[str] = np.random.randint(10 ,size=1 ).astype(v.dtype ).item() elif isinstance(A__ ,datasets.Sequence ): while isinstance(A__ ,datasets.Sequence ): UpperCAmelCase_ : List[str] = v.feature UpperCAmelCase_ : List[Any] = seq_shapes[k] UpperCAmelCase_ : Dict = np.random.rand(*A__ ).astype(v.dtype ) UpperCAmelCase_ : Dict = data dummy_data.append((i, example) ) return dummy_data def snake_case ( A__ ,A__ ,A__=1_00 ,A__=None ): UpperCAmelCase_ : Optional[Any] = generate_examples(A__ ,num_examples=A__ ,seq_shapes=A__ ) with ArrowWriter(features=A__ ,path=A__ ) as writer: for key, record in dummy_data: UpperCAmelCase_ : Any = features.encode_example(A__ ) writer.write(A__ ) UpperCAmelCase_ , UpperCAmelCase_ : Optional[int] = writer.finalize() if not num_final_examples == num_examples: raise ValueError( F"""Error writing the dataset, wrote {num_final_examples} examples but should have written {num_examples}.""" ) UpperCAmelCase_ : List[Any] = datasets.Dataset.from_file(filename=A__ ,info=datasets.DatasetInfo(features=A__ ) ) return dataset
95
import torch from transformers import PreTrainedModel, XLMRobertaConfig, XLMRobertaModel class lowerCamelCase_ ( _SCREAMING_SNAKE_CASE ): '''simple docstring''' lowercase_ = "M-CLIP" def __init__( self : Tuple , _lowerCAmelCase : List[str]=1_024 , _lowerCAmelCase : str=768 , **_lowerCAmelCase : Union[str, Any] ): SCREAMING_SNAKE_CASE_ = transformerDimSize SCREAMING_SNAKE_CASE_ = imageDimSize super().__init__(**_lowerCAmelCase ) class lowerCamelCase_ ( _SCREAMING_SNAKE_CASE ): '''simple docstring''' lowercase_ = MCLIPConfig def __init__( self : Dict , _lowerCAmelCase : Union[str, Any] , *_lowerCAmelCase : str , **_lowerCAmelCase : str ): super().__init__(_lowerCAmelCase , *_lowerCAmelCase , **_lowerCAmelCase ) SCREAMING_SNAKE_CASE_ = XLMRobertaModel(_lowerCAmelCase ) SCREAMING_SNAKE_CASE_ = torch.nn.Linear( in_features=config.transformerDimensions , out_features=config.numDims ) def lowerCAmelCase_ ( self : List[Any] , _lowerCAmelCase : Any , _lowerCAmelCase : Union[str, Any] ): SCREAMING_SNAKE_CASE_ = self.transformer(input_ids=_lowerCAmelCase , attention_mask=_lowerCAmelCase )[0] SCREAMING_SNAKE_CASE_ = (embs * attention_mask.unsqueeze(2 )).sum(dim=1 ) / attention_mask.sum(dim=1 )[:, None] return self.LinearTransformation(_lowerCAmelCase ), embs
31
0
"""simple docstring""" import os import sys import unittest __lowerCamelCase = os.path.abspath(os.path.dirname(os.path.dirname(os.path.dirname(__file__)))) sys.path.append(os.path.join(git_repo_path, 'utils')) import get_test_info # noqa: E402 from get_test_info import ( # noqa: E402 get_model_to_test_mapping, get_model_to_tester_mapping, get_test_to_tester_mapping, ) __lowerCamelCase = os.path.join('tests', 'models', 'bert', 'test_modeling_bert.py') __lowerCamelCase = os.path.join('tests', 'models', 'blip', 'test_modeling_blip.py') class __A ( unittest.TestCase ): def lowerCamelCase__ ( self : int ) -> Optional[Any]: __magic_name__: str = get_test_to_tester_mapping(__snake_case ) __magic_name__: Optional[int] = get_test_to_tester_mapping(__snake_case ) __magic_name__: List[str] = {"""BertModelTest""": """BertModelTester"""} __magic_name__: Any = { """BlipModelTest""": """BlipModelTester""", """BlipTextImageModelTest""": """BlipTextImageModelsModelTester""", """BlipTextModelTest""": """BlipTextModelTester""", """BlipTextRetrievalModelTest""": """BlipTextRetrievalModelTester""", """BlipVQAModelTest""": """BlipVQAModelTester""", """BlipVisionModelTest""": """BlipVisionModelTester""", } self.assertEqual(get_test_info.to_json(__snake_case ) , __snake_case ) self.assertEqual(get_test_info.to_json(__snake_case ) , __snake_case ) def lowerCamelCase__ ( self : int ) -> Tuple: __magic_name__: List[Any] = get_model_to_test_mapping(__snake_case ) __magic_name__: List[Any] = get_model_to_test_mapping(__snake_case ) __magic_name__: Optional[int] = { """BertForMaskedLM""": ["""BertModelTest"""], """BertForMultipleChoice""": ["""BertModelTest"""], """BertForNextSentencePrediction""": ["""BertModelTest"""], """BertForPreTraining""": ["""BertModelTest"""], """BertForQuestionAnswering""": ["""BertModelTest"""], """BertForSequenceClassification""": ["""BertModelTest"""], """BertForTokenClassification""": ["""BertModelTest"""], """BertLMHeadModel""": ["""BertModelTest"""], """BertModel""": ["""BertModelTest"""], } __magic_name__: Optional[int] = { """BlipForConditionalGeneration""": ["""BlipTextImageModelTest"""], """BlipForImageTextRetrieval""": ["""BlipTextRetrievalModelTest"""], """BlipForQuestionAnswering""": ["""BlipVQAModelTest"""], """BlipModel""": ["""BlipModelTest"""], """BlipTextModel""": ["""BlipTextModelTest"""], """BlipVisionModel""": ["""BlipVisionModelTest"""], } self.assertEqual(get_test_info.to_json(__snake_case ) , __snake_case ) self.assertEqual(get_test_info.to_json(__snake_case ) , __snake_case ) def lowerCamelCase__ ( self : Optional[Any] ) -> Union[str, Any]: __magic_name__: Tuple = get_model_to_tester_mapping(__snake_case ) __magic_name__: int = get_model_to_tester_mapping(__snake_case ) __magic_name__: Union[str, Any] = { """BertForMaskedLM""": ["""BertModelTester"""], """BertForMultipleChoice""": ["""BertModelTester"""], """BertForNextSentencePrediction""": ["""BertModelTester"""], """BertForPreTraining""": ["""BertModelTester"""], """BertForQuestionAnswering""": ["""BertModelTester"""], """BertForSequenceClassification""": ["""BertModelTester"""], """BertForTokenClassification""": ["""BertModelTester"""], """BertLMHeadModel""": ["""BertModelTester"""], """BertModel""": ["""BertModelTester"""], } __magic_name__: List[Any] = { """BlipForConditionalGeneration""": ["""BlipTextImageModelsModelTester"""], """BlipForImageTextRetrieval""": ["""BlipTextRetrievalModelTester"""], """BlipForQuestionAnswering""": ["""BlipVQAModelTester"""], """BlipModel""": ["""BlipModelTester"""], """BlipTextModel""": ["""BlipTextModelTester"""], """BlipVisionModel""": ["""BlipVisionModelTester"""], } self.assertEqual(get_test_info.to_json(__snake_case ) , __snake_case ) self.assertEqual(get_test_info.to_json(__snake_case ) , __snake_case )
96
import gc import random import unittest import numpy as np import torch from transformers import XLMRobertaTokenizer from diffusers import ( AltDiffusionImgaImgPipeline, AutoencoderKL, PNDMScheduler, UNetaDConditionModel, ) from diffusers.image_processor import VaeImageProcessor from diffusers.pipelines.alt_diffusion.modeling_roberta_series import ( RobertaSeriesConfig, RobertaSeriesModelWithTransformation, ) from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu enable_full_determinism() class lowerCamelCase_ ( unittest.TestCase ): '''simple docstring''' def lowerCAmelCase_ ( self : str ): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() @property def lowerCAmelCase_ ( self : Union[str, Any] ): SCREAMING_SNAKE_CASE_ = 1 SCREAMING_SNAKE_CASE_ = 3 SCREAMING_SNAKE_CASE_ = (32, 32) SCREAMING_SNAKE_CASE_ = floats_tensor((batch_size, num_channels) + sizes , rng=random.Random(0 ) ).to(_lowerCAmelCase ) return image @property def lowerCAmelCase_ ( self : Union[str, Any] ): torch.manual_seed(0 ) SCREAMING_SNAKE_CASE_ = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=('DownBlock2D', 'CrossAttnDownBlock2D') , up_block_types=('CrossAttnUpBlock2D', 'UpBlock2D') , cross_attention_dim=32 , ) return model @property def lowerCAmelCase_ ( self : Tuple ): torch.manual_seed(0 ) SCREAMING_SNAKE_CASE_ = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=['DownEncoderBlock2D', 'DownEncoderBlock2D'] , up_block_types=['UpDecoderBlock2D', 'UpDecoderBlock2D'] , latent_channels=4 , ) return model @property def lowerCAmelCase_ ( self : Optional[int] ): torch.manual_seed(0 ) SCREAMING_SNAKE_CASE_ = RobertaSeriesConfig( hidden_size=32 , project_dim=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=5_006 , ) return RobertaSeriesModelWithTransformation(_lowerCAmelCase ) @property def lowerCAmelCase_ ( self : List[Any] ): def extract(*_lowerCAmelCase : Optional[int] , **_lowerCAmelCase : str ): class lowerCamelCase_ : '''simple docstring''' def __init__( self : str ): SCREAMING_SNAKE_CASE_ = torch.ones([0] ) def lowerCAmelCase_ ( self : Union[str, Any] , _lowerCAmelCase : int ): self.pixel_values.to(_lowerCAmelCase ) return self return Out() return extract def lowerCAmelCase_ ( self : Optional[Any] ): SCREAMING_SNAKE_CASE_ = 'cpu' # ensure determinism for the device-dependent torch.Generator SCREAMING_SNAKE_CASE_ = self.dummy_cond_unet SCREAMING_SNAKE_CASE_ = PNDMScheduler(skip_prk_steps=_lowerCAmelCase ) SCREAMING_SNAKE_CASE_ = self.dummy_vae SCREAMING_SNAKE_CASE_ = self.dummy_text_encoder SCREAMING_SNAKE_CASE_ = XLMRobertaTokenizer.from_pretrained('hf-internal-testing/tiny-xlm-roberta' ) SCREAMING_SNAKE_CASE_ = 77 SCREAMING_SNAKE_CASE_ = self.dummy_image.to(_lowerCAmelCase ) SCREAMING_SNAKE_CASE_ = init_image / 2 + 0.5 # make sure here that pndm scheduler skips prk SCREAMING_SNAKE_CASE_ = AltDiffusionImgaImgPipeline( unet=_lowerCAmelCase , scheduler=_lowerCAmelCase , vae=_lowerCAmelCase , text_encoder=_lowerCAmelCase , tokenizer=_lowerCAmelCase , safety_checker=_lowerCAmelCase , feature_extractor=self.dummy_extractor , ) SCREAMING_SNAKE_CASE_ = VaeImageProcessor(vae_scale_factor=alt_pipe.vae_scale_factor , do_normalize=_lowerCAmelCase ) SCREAMING_SNAKE_CASE_ = alt_pipe.to(_lowerCAmelCase ) alt_pipe.set_progress_bar_config(disable=_lowerCAmelCase ) SCREAMING_SNAKE_CASE_ = 'A painting of a squirrel eating a burger' SCREAMING_SNAKE_CASE_ = torch.Generator(device=_lowerCAmelCase ).manual_seed(0 ) SCREAMING_SNAKE_CASE_ = alt_pipe( [prompt] , generator=_lowerCAmelCase , guidance_scale=6.0 , num_inference_steps=2 , output_type='np' , image=_lowerCAmelCase , ) SCREAMING_SNAKE_CASE_ = output.images SCREAMING_SNAKE_CASE_ = torch.Generator(device=_lowerCAmelCase ).manual_seed(0 ) SCREAMING_SNAKE_CASE_ = alt_pipe( [prompt] , generator=_lowerCAmelCase , guidance_scale=6.0 , num_inference_steps=2 , output_type='np' , image=_lowerCAmelCase , return_dict=_lowerCAmelCase , )[0] SCREAMING_SNAKE_CASE_ = image[0, -3:, -3:, -1] SCREAMING_SNAKE_CASE_ = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) SCREAMING_SNAKE_CASE_ = np.array([0.4427, 0.3731, 0.4249, 0.4941, 0.4546, 0.4148, 0.4193, 0.4666, 0.4499] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 5E-3 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 5E-3 @unittest.skipIf(torch_device != 'cuda' , 'This test requires a GPU' ) def lowerCAmelCase_ ( self : Tuple ): SCREAMING_SNAKE_CASE_ = self.dummy_cond_unet SCREAMING_SNAKE_CASE_ = PNDMScheduler(skip_prk_steps=_lowerCAmelCase ) SCREAMING_SNAKE_CASE_ = self.dummy_vae SCREAMING_SNAKE_CASE_ = self.dummy_text_encoder SCREAMING_SNAKE_CASE_ = XLMRobertaTokenizer.from_pretrained('hf-internal-testing/tiny-xlm-roberta' ) SCREAMING_SNAKE_CASE_ = 77 SCREAMING_SNAKE_CASE_ = self.dummy_image.to(_lowerCAmelCase ) # put models in fp16 SCREAMING_SNAKE_CASE_ = unet.half() SCREAMING_SNAKE_CASE_ = vae.half() SCREAMING_SNAKE_CASE_ = bert.half() # make sure here that pndm scheduler skips prk SCREAMING_SNAKE_CASE_ = AltDiffusionImgaImgPipeline( unet=_lowerCAmelCase , scheduler=_lowerCAmelCase , vae=_lowerCAmelCase , text_encoder=_lowerCAmelCase , tokenizer=_lowerCAmelCase , safety_checker=_lowerCAmelCase , feature_extractor=self.dummy_extractor , ) SCREAMING_SNAKE_CASE_ = VaeImageProcessor(vae_scale_factor=alt_pipe.vae_scale_factor , do_normalize=_lowerCAmelCase ) SCREAMING_SNAKE_CASE_ = alt_pipe.to(_lowerCAmelCase ) alt_pipe.set_progress_bar_config(disable=_lowerCAmelCase ) SCREAMING_SNAKE_CASE_ = 'A painting of a squirrel eating a burger' SCREAMING_SNAKE_CASE_ = torch.manual_seed(0 ) SCREAMING_SNAKE_CASE_ = alt_pipe( [prompt] , generator=_lowerCAmelCase , num_inference_steps=2 , output_type='np' , image=_lowerCAmelCase , ).images assert image.shape == (1, 32, 32, 3) @unittest.skipIf(torch_device != 'cuda' , 'This test requires a GPU' ) def lowerCAmelCase_ ( self : str ): SCREAMING_SNAKE_CASE_ = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/img2img/sketch-mountains-input.jpg' ) # resize to resolution that is divisible by 8 but not 16 or 32 SCREAMING_SNAKE_CASE_ = init_image.resize((760, 504) ) SCREAMING_SNAKE_CASE_ = 'BAAI/AltDiffusion' SCREAMING_SNAKE_CASE_ = AltDiffusionImgaImgPipeline.from_pretrained( _lowerCAmelCase , safety_checker=_lowerCAmelCase , ) pipe.to(_lowerCAmelCase ) pipe.set_progress_bar_config(disable=_lowerCAmelCase ) pipe.enable_attention_slicing() SCREAMING_SNAKE_CASE_ = 'A fantasy landscape, trending on artstation' SCREAMING_SNAKE_CASE_ = torch.manual_seed(0 ) SCREAMING_SNAKE_CASE_ = pipe( prompt=_lowerCAmelCase , image=_lowerCAmelCase , strength=0.75 , guidance_scale=7.5 , generator=_lowerCAmelCase , output_type='np' , ) SCREAMING_SNAKE_CASE_ = output.images[0] SCREAMING_SNAKE_CASE_ = image[255:258, 383:386, -1] assert image.shape == (504, 760, 3) SCREAMING_SNAKE_CASE_ = np.array([0.9358, 0.9397, 0.9599, 0.9901, 1.0000, 1.0000, 0.9882, 1.0000, 1.0000] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 @slow @require_torch_gpu class lowerCamelCase_ ( unittest.TestCase ): '''simple docstring''' def lowerCAmelCase_ ( self : str ): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def lowerCAmelCase_ ( self : int ): SCREAMING_SNAKE_CASE_ = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/img2img/sketch-mountains-input.jpg' ) SCREAMING_SNAKE_CASE_ = init_image.resize((768, 512) ) SCREAMING_SNAKE_CASE_ = load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/img2img/fantasy_landscape_alt.npy' ) SCREAMING_SNAKE_CASE_ = 'BAAI/AltDiffusion' SCREAMING_SNAKE_CASE_ = AltDiffusionImgaImgPipeline.from_pretrained( _lowerCAmelCase , safety_checker=_lowerCAmelCase , ) pipe.to(_lowerCAmelCase ) pipe.set_progress_bar_config(disable=_lowerCAmelCase ) pipe.enable_attention_slicing() SCREAMING_SNAKE_CASE_ = 'A fantasy landscape, trending on artstation' SCREAMING_SNAKE_CASE_ = torch.manual_seed(0 ) SCREAMING_SNAKE_CASE_ = pipe( prompt=_lowerCAmelCase , image=_lowerCAmelCase , strength=0.75 , guidance_scale=7.5 , generator=_lowerCAmelCase , output_type='np' , ) SCREAMING_SNAKE_CASE_ = output.images[0] assert image.shape == (512, 768, 3) # img2img is flaky across GPUs even in fp32, so using MAE here assert np.abs(expected_image - image ).max() < 1E-2
31
0
import unittest from transformers import is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( OPENAI_GPT_PRETRAINED_MODEL_ARCHIVE_LIST, OpenAIGPTConfig, OpenAIGPTDoubleHeadsModel, OpenAIGPTForSequenceClassification, OpenAIGPTLMHeadModel, OpenAIGPTModel, ) class lowercase__: """simple docstring""" def __init__( self : Optional[int] , SCREAMING_SNAKE_CASE_ : str , SCREAMING_SNAKE_CASE_ : Tuple=1_3 , SCREAMING_SNAKE_CASE_ : Optional[Any]=7 , SCREAMING_SNAKE_CASE_ : Dict=True , SCREAMING_SNAKE_CASE_ : str=True , SCREAMING_SNAKE_CASE_ : Union[str, Any]=True , SCREAMING_SNAKE_CASE_ : Union[str, Any]=9_9 , SCREAMING_SNAKE_CASE_ : Union[str, Any]=3_2 , SCREAMING_SNAKE_CASE_ : Dict=5 , SCREAMING_SNAKE_CASE_ : int=4 , SCREAMING_SNAKE_CASE_ : Any=3_7 , SCREAMING_SNAKE_CASE_ : Any="gelu" , SCREAMING_SNAKE_CASE_ : Tuple=0.1 , SCREAMING_SNAKE_CASE_ : Dict=0.1 , SCREAMING_SNAKE_CASE_ : Tuple=5_1_2 , SCREAMING_SNAKE_CASE_ : List[Any]=1_6 , SCREAMING_SNAKE_CASE_ : Dict=2 , SCREAMING_SNAKE_CASE_ : int=0.02 , SCREAMING_SNAKE_CASE_ : Tuple=3 , SCREAMING_SNAKE_CASE_ : str=4 , SCREAMING_SNAKE_CASE_ : Tuple=None , ) -> List[str]: lowercase_ = parent lowercase_ = batch_size lowercase_ = seq_length lowercase_ = is_training lowercase_ = use_token_type_ids lowercase_ = use_labels lowercase_ = vocab_size lowercase_ = hidden_size lowercase_ = num_hidden_layers lowercase_ = num_attention_heads lowercase_ = intermediate_size lowercase_ = hidden_act lowercase_ = hidden_dropout_prob lowercase_ = attention_probs_dropout_prob lowercase_ = max_position_embeddings lowercase_ = type_vocab_size lowercase_ = type_sequence_label_size lowercase_ = initializer_range lowercase_ = num_labels lowercase_ = num_choices lowercase_ = scope lowercase_ = self.vocab_size - 1 def _lowercase ( self : str ) -> List[str]: lowercase_ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) lowercase_ = None if self.use_token_type_ids: lowercase_ = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) lowercase_ = None lowercase_ = None lowercase_ = None if self.use_labels: lowercase_ = ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowercase_ = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) lowercase_ = ids_tensor([self.batch_size] , self.num_choices ) lowercase_ = OpenAIGPTConfig( vocab_size=self.vocab_size , n_embd=self.hidden_size , n_layer=self.num_hidden_layers , n_head=self.num_attention_heads , n_positions=self.max_position_embeddings , pad_token_id=self.pad_token_id , ) lowercase_ = ids_tensor([self.num_hidden_layers, self.num_attention_heads] , 2 ) return ( config, input_ids, head_mask, token_type_ids, sequence_labels, token_labels, choice_labels, ) def _lowercase ( self : str , SCREAMING_SNAKE_CASE_ : str , SCREAMING_SNAKE_CASE_ : Union[str, Any] , SCREAMING_SNAKE_CASE_ : List[Any] , SCREAMING_SNAKE_CASE_ : int , *SCREAMING_SNAKE_CASE_ : Optional[Any] ) -> Union[str, Any]: lowercase_ = OpenAIGPTModel(config=SCREAMING_SNAKE_CASE_ ) model.to(SCREAMING_SNAKE_CASE_ ) model.eval() lowercase_ = model(SCREAMING_SNAKE_CASE_ , token_type_ids=SCREAMING_SNAKE_CASE_ , head_mask=SCREAMING_SNAKE_CASE_ ) lowercase_ = model(SCREAMING_SNAKE_CASE_ , token_type_ids=SCREAMING_SNAKE_CASE_ ) lowercase_ = model(SCREAMING_SNAKE_CASE_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def _lowercase ( self : int , SCREAMING_SNAKE_CASE_ : Union[str, Any] , SCREAMING_SNAKE_CASE_ : Dict , SCREAMING_SNAKE_CASE_ : Tuple , SCREAMING_SNAKE_CASE_ : str , *SCREAMING_SNAKE_CASE_ : List[Any] ) -> List[Any]: lowercase_ = OpenAIGPTLMHeadModel(SCREAMING_SNAKE_CASE_ ) model.to(SCREAMING_SNAKE_CASE_ ) model.eval() lowercase_ = model(SCREAMING_SNAKE_CASE_ , token_type_ids=SCREAMING_SNAKE_CASE_ , labels=SCREAMING_SNAKE_CASE_ ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def _lowercase ( self : Optional[Any] , SCREAMING_SNAKE_CASE_ : List[str] , SCREAMING_SNAKE_CASE_ : str , SCREAMING_SNAKE_CASE_ : Optional[int] , SCREAMING_SNAKE_CASE_ : Optional[Any] , *SCREAMING_SNAKE_CASE_ : List[Any] ) -> Optional[int]: lowercase_ = OpenAIGPTDoubleHeadsModel(SCREAMING_SNAKE_CASE_ ) model.to(SCREAMING_SNAKE_CASE_ ) model.eval() lowercase_ = model(SCREAMING_SNAKE_CASE_ , token_type_ids=SCREAMING_SNAKE_CASE_ , labels=SCREAMING_SNAKE_CASE_ ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def _lowercase ( self : Any , SCREAMING_SNAKE_CASE_ : Union[str, Any] , SCREAMING_SNAKE_CASE_ : List[Any] , SCREAMING_SNAKE_CASE_ : List[str] , SCREAMING_SNAKE_CASE_ : Optional[int] , *SCREAMING_SNAKE_CASE_ : Tuple ) -> List[str]: lowercase_ = self.num_labels lowercase_ = OpenAIGPTForSequenceClassification(SCREAMING_SNAKE_CASE_ ) model.to(SCREAMING_SNAKE_CASE_ ) model.eval() lowercase_ = ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowercase_ = model(SCREAMING_SNAKE_CASE_ , token_type_ids=SCREAMING_SNAKE_CASE_ , labels=SCREAMING_SNAKE_CASE_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def _lowercase ( self : Optional[Any] ) -> Optional[Any]: lowercase_ = self.prepare_config_and_inputs() ( ( lowercase_ ) , ( lowercase_ ) , ( lowercase_ ) , ( lowercase_ ) , ( lowercase_ ) , ( lowercase_ ) , ( lowercase_ ) , ) = config_and_inputs lowercase_ = { '''input_ids''': input_ids, '''token_type_ids''': token_type_ids, '''head_mask''': head_mask, } return config, inputs_dict @require_torch class lowercase__( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , unittest.TestCase ): """simple docstring""" a :Dict = ( (OpenAIGPTModel, OpenAIGPTLMHeadModel, OpenAIGPTDoubleHeadsModel, OpenAIGPTForSequenceClassification) if is_torch_available() else () ) a :Optional[Any] = ( (OpenAIGPTLMHeadModel,) if is_torch_available() else () ) # TODO (PVP): Add Double HeadsModel when generate() function is changed accordingly a :int = ( { 'feature-extraction': OpenAIGPTModel, 'text-classification': OpenAIGPTForSequenceClassification, 'text-generation': OpenAIGPTLMHeadModel, 'zero-shot': OpenAIGPTForSequenceClassification, } if is_torch_available() else {} ) def _lowercase ( self : str , SCREAMING_SNAKE_CASE_ : Union[str, Any] , SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : Tuple , SCREAMING_SNAKE_CASE_ : List[str] , SCREAMING_SNAKE_CASE_ : Dict ) -> int: if pipeline_test_casse_name == "ZeroShotClassificationPipelineTests": # Get `tokenizer does not have a padding token` error for both fast/slow tokenizers. # `OpenAIGPTConfig` was never used in pipeline tests, either because of a missing checkpoint or because a # tiny config could not be created. return True return False def _lowercase ( self : Optional[int] , SCREAMING_SNAKE_CASE_ : Tuple , SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : List[Any]=False ) -> List[str]: lowercase_ = super()._prepare_for_class(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , return_labels=SCREAMING_SNAKE_CASE_ ) if return_labels: if model_class.__name__ == "OpenAIGPTDoubleHeadsModel": lowercase_ = torch.zeros( (self.model_tester.batch_size, self.model_tester.num_choices, self.model_tester.seq_length) , dtype=torch.long , device=SCREAMING_SNAKE_CASE_ , ) lowercase_ = inputs_dict['''labels'''] lowercase_ = inputs_dict['''labels'''] lowercase_ = torch.zeros( (self.model_tester.batch_size, self.model_tester.num_choices) , dtype=torch.long , device=SCREAMING_SNAKE_CASE_ , ) lowercase_ = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=SCREAMING_SNAKE_CASE_ ) return inputs_dict def _lowercase ( self : Optional[Any] ) -> int: lowercase_ = OpenAIGPTModelTester(self ) lowercase_ = ConfigTester(self , config_class=SCREAMING_SNAKE_CASE_ , n_embd=3_7 ) def _lowercase ( self : List[str] ) -> Any: self.config_tester.run_common_tests() def _lowercase ( self : str ) -> Dict: lowercase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_openai_gpt_model(*SCREAMING_SNAKE_CASE_ ) def _lowercase ( self : List[str] ) -> Tuple: lowercase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_lm_head_model(*SCREAMING_SNAKE_CASE_ ) def _lowercase ( self : Optional[int] ) -> Optional[Any]: lowercase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_double_lm_head_model(*SCREAMING_SNAKE_CASE_ ) def _lowercase ( self : Tuple ) -> Union[str, Any]: lowercase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_openai_gpt_for_sequence_classification(*SCREAMING_SNAKE_CASE_ ) @slow def _lowercase ( self : Any ) -> List[Any]: for model_name in OPENAI_GPT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowercase_ = OpenAIGPTModel.from_pretrained(SCREAMING_SNAKE_CASE_ ) self.assertIsNotNone(SCREAMING_SNAKE_CASE_ ) @require_torch class lowercase__( unittest.TestCase ): """simple docstring""" @slow def _lowercase ( self : List[Any] ) -> str: lowercase_ = OpenAIGPTLMHeadModel.from_pretrained('''openai-gpt''' ) model.to(SCREAMING_SNAKE_CASE_ ) lowercase_ = torch.tensor([[4_8_1, 4_7_3_5, 5_4_4]] , dtype=torch.long , device=SCREAMING_SNAKE_CASE_ ) # the president is lowercase_ = [ 4_8_1, 4_7_3_5, 5_4_4, 2_4_6, 9_6_3, 8_7_0, 7_6_2, 2_3_9, 2_4_4, 4_0_4_7_7, 2_4_4, 2_4_9, 7_1_9, 8_8_1, 4_8_7, 5_4_4, 2_4_0, 2_4_4, 6_0_3, 4_8_1, ] # the president is a very good man. " \n " i\'m sure he is, " said the lowercase_ = model.generate(SCREAMING_SNAKE_CASE_ , do_sample=SCREAMING_SNAKE_CASE_ ) self.assertListEqual(output_ids[0].tolist() , SCREAMING_SNAKE_CASE_ )
97
from collections import OrderedDict from typing import TYPE_CHECKING, Any, List, Mapping, Optional, Union from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import TensorType, logging if TYPE_CHECKING: from ...onnx.config import PatchingSpec from ...tokenization_utils_base import PreTrainedTokenizerBase lowerCamelCase__ : Optional[int] = logging.get_logger(__name__) lowerCamelCase__ : Dict = { 'allenai/longformer-base-4096': 'https://huggingface.co/allenai/longformer-base-4096/resolve/main/config.json', 'allenai/longformer-large-4096': 'https://huggingface.co/allenai/longformer-large-4096/resolve/main/config.json', 'allenai/longformer-large-4096-finetuned-triviaqa': ( 'https://huggingface.co/allenai/longformer-large-4096-finetuned-triviaqa/resolve/main/config.json' ), 'allenai/longformer-base-4096-extra.pos.embd.only': ( 'https://huggingface.co/allenai/longformer-base-4096-extra.pos.embd.only/resolve/main/config.json' ), 'allenai/longformer-large-4096-extra.pos.embd.only': ( 'https://huggingface.co/allenai/longformer-large-4096-extra.pos.embd.only/resolve/main/config.json' ), } class lowerCamelCase_ ( _SCREAMING_SNAKE_CASE ): '''simple docstring''' lowercase_ = "longformer" def __init__( self : Union[str, Any] , _lowerCAmelCase : Union[List[int], int] = 512 , _lowerCAmelCase : int = 2 , _lowerCAmelCase : int = 1 , _lowerCAmelCase : int = 0 , _lowerCAmelCase : int = 2 , _lowerCAmelCase : int = 30_522 , _lowerCAmelCase : int = 768 , _lowerCAmelCase : int = 12 , _lowerCAmelCase : int = 12 , _lowerCAmelCase : int = 3_072 , _lowerCAmelCase : str = "gelu" , _lowerCAmelCase : float = 0.1 , _lowerCAmelCase : float = 0.1 , _lowerCAmelCase : int = 512 , _lowerCAmelCase : int = 2 , _lowerCAmelCase : float = 0.02 , _lowerCAmelCase : float = 1E-12 , _lowerCAmelCase : bool = False , **_lowerCAmelCase : Union[str, Any] , ): super().__init__(pad_token_id=_lowerCAmelCase , **_lowerCAmelCase ) SCREAMING_SNAKE_CASE_ = attention_window SCREAMING_SNAKE_CASE_ = sep_token_id SCREAMING_SNAKE_CASE_ = bos_token_id SCREAMING_SNAKE_CASE_ = eos_token_id SCREAMING_SNAKE_CASE_ = vocab_size SCREAMING_SNAKE_CASE_ = hidden_size SCREAMING_SNAKE_CASE_ = num_hidden_layers SCREAMING_SNAKE_CASE_ = num_attention_heads SCREAMING_SNAKE_CASE_ = hidden_act SCREAMING_SNAKE_CASE_ = intermediate_size SCREAMING_SNAKE_CASE_ = hidden_dropout_prob SCREAMING_SNAKE_CASE_ = attention_probs_dropout_prob SCREAMING_SNAKE_CASE_ = max_position_embeddings SCREAMING_SNAKE_CASE_ = type_vocab_size SCREAMING_SNAKE_CASE_ = initializer_range SCREAMING_SNAKE_CASE_ = layer_norm_eps SCREAMING_SNAKE_CASE_ = onnx_export class lowerCamelCase_ ( _SCREAMING_SNAKE_CASE ): '''simple docstring''' def __init__( self : Optional[Any] , _lowerCAmelCase : "PretrainedConfig" , _lowerCAmelCase : str = "default" , _lowerCAmelCase : "List[PatchingSpec]" = None ): super().__init__(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) SCREAMING_SNAKE_CASE_ = True @property def lowerCAmelCase_ ( self : Any ): if self.task == "multiple-choice": SCREAMING_SNAKE_CASE_ = {0: 'batch', 1: 'choice', 2: 'sequence'} else: SCREAMING_SNAKE_CASE_ = {0: 'batch', 1: 'sequence'} return OrderedDict( [ ('input_ids', dynamic_axis), ('attention_mask', dynamic_axis), ('global_attention_mask', dynamic_axis), ] ) @property def lowerCAmelCase_ ( self : Optional[int] ): SCREAMING_SNAKE_CASE_ = super().outputs if self.task == "default": SCREAMING_SNAKE_CASE_ = {0: 'batch'} return outputs @property def lowerCAmelCase_ ( self : str ): return 1E-4 @property def lowerCAmelCase_ ( self : Optional[Any] ): # needs to be >= 14 to support tril operator return max(super().default_onnx_opset , 14 ) def lowerCAmelCase_ ( self : str , _lowerCAmelCase : "PreTrainedTokenizerBase" , _lowerCAmelCase : int = -1 , _lowerCAmelCase : int = -1 , _lowerCAmelCase : bool = False , _lowerCAmelCase : Optional[TensorType] = None , ): SCREAMING_SNAKE_CASE_ = super().generate_dummy_inputs( preprocessor=_lowerCAmelCase , batch_size=_lowerCAmelCase , seq_length=_lowerCAmelCase , is_pair=_lowerCAmelCase , framework=_lowerCAmelCase ) import torch # for some reason, replacing this code by inputs["global_attention_mask"] = torch.randint(2, inputs["input_ids"].shape, dtype=torch.int64) # makes the export fail randomly SCREAMING_SNAKE_CASE_ = torch.zeros_like(inputs['input_ids'] ) # make every second token global SCREAMING_SNAKE_CASE_ = 1 return inputs
31
0
'''simple docstring''' def a__ ( lowercase : int ) -> int: """simple docstring""" return 1 if digit in (0, 1) else (digit * factorial(digit - 1 )) def a__ ( lowercase : int ) -> bool: """simple docstring""" _UpperCamelCase = 0 _UpperCamelCase = number while duplicate > 0: _UpperCamelCase , _UpperCamelCase = divmod(lowercase, 10 ) fact_sum += factorial(lowercase ) return fact_sum == number if __name__ == "__main__": print('Program to check whether a number is a Krisnamurthy Number or not.') lowercase__ : Any = int(input('Enter number: ').strip()) print( F"""{number} is {'' if krishnamurthy(number) else 'not '}a Krishnamurthy Number.""" )
98
import warnings from ...utils import logging from .image_processing_mobilevit import MobileViTImageProcessor lowerCamelCase__ : Optional[int] = logging.get_logger(__name__) class lowerCamelCase_ ( _SCREAMING_SNAKE_CASE ): '''simple docstring''' def __init__( self : str , *_lowerCAmelCase : Tuple , **_lowerCAmelCase : int ): warnings.warn( 'The class MobileViTFeatureExtractor is deprecated and will be removed in version 5 of Transformers.' ' Please use MobileViTImageProcessor instead.' , _lowerCAmelCase , ) super().__init__(*_lowerCAmelCase , **_lowerCAmelCase )
31
0
import unittest from transformers import MobileBertConfig, is_torch_available from transformers.models.auto import get_values from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( MODEL_FOR_PRETRAINING_MAPPING, MobileBertForMaskedLM, MobileBertForMultipleChoice, MobileBertForNextSentencePrediction, MobileBertForPreTraining, MobileBertForQuestionAnswering, MobileBertForSequenceClassification, MobileBertForTokenClassification, MobileBertModel, ) class __UpperCAmelCase : """simple docstring""" def __init__( self , __A , __A=13 , __A=7 , __A=True , __A=True , __A=True , __A=True , __A=99 , __A=64 , __A=32 , __A=5 , __A=4 , __A=37 , __A="gelu" , __A=0.1 , __A=0.1 , __A=512 , __A=16 , __A=2 , __A=0.02 , __A=3 , __A=4 , __A=None , ): __a = parent __a = batch_size __a = seq_length __a = is_training __a = use_input_mask __a = use_token_type_ids __a = use_labels __a = vocab_size __a = hidden_size __a = embedding_size __a = num_hidden_layers __a = num_attention_heads __a = intermediate_size __a = hidden_act __a = hidden_dropout_prob __a = attention_probs_dropout_prob __a = max_position_embeddings __a = type_vocab_size __a = type_sequence_label_size __a = initializer_range __a = num_labels __a = num_choices __a = scope def snake_case_ ( self ): __a = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __a = None if self.use_input_mask: __a = random_attention_mask([self.batch_size, self.seq_length] ) __a = None if self.use_token_type_ids: __a = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) __a = None __a = None __a = None if self.use_labels: __a = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __a = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) __a = ids_tensor([self.batch_size] , self.num_choices ) __a = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def snake_case_ ( self ): return MobileBertConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , embedding_size=self.embedding_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=__A , initializer_range=self.initializer_range , ) def snake_case_ ( self , __A , __A , __A , __A , __A , __A , __A ): __a = MobileBertModel(config=__A ) model.to(__A ) model.eval() __a = model(__A , attention_mask=__A , token_type_ids=__A ) __a = model(__A , token_type_ids=__A ) __a = model(__A ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) ) def snake_case_ ( self , __A , __A , __A , __A , __A , __A , __A ): __a = MobileBertForMaskedLM(config=__A ) model.to(__A ) model.eval() __a = model(__A , attention_mask=__A , token_type_ids=__A , labels=__A ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def snake_case_ ( self , __A , __A , __A , __A , __A , __A , __A ): __a = MobileBertForNextSentencePrediction(config=__A ) model.to(__A ) model.eval() __a = model( __A , attention_mask=__A , token_type_ids=__A , labels=__A , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, 2) ) def snake_case_ ( self , __A , __A , __A , __A , __A , __A , __A ): __a = MobileBertForPreTraining(config=__A ) model.to(__A ) model.eval() __a = model( __A , attention_mask=__A , token_type_ids=__A , labels=__A , next_sentence_label=__A , ) self.parent.assertEqual(result.prediction_logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) self.parent.assertEqual(result.seq_relationship_logits.shape , (self.batch_size, 2) ) def snake_case_ ( self , __A , __A , __A , __A , __A , __A , __A ): __a = MobileBertForQuestionAnswering(config=__A ) model.to(__A ) model.eval() __a = model( __A , attention_mask=__A , token_type_ids=__A , start_positions=__A , end_positions=__A , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def snake_case_ ( self , __A , __A , __A , __A , __A , __A , __A ): __a = self.num_labels __a = MobileBertForSequenceClassification(__A ) model.to(__A ) model.eval() __a = model(__A , attention_mask=__A , token_type_ids=__A , labels=__A ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def snake_case_ ( self , __A , __A , __A , __A , __A , __A , __A ): __a = self.num_labels __a = MobileBertForTokenClassification(config=__A ) model.to(__A ) model.eval() __a = model(__A , attention_mask=__A , token_type_ids=__A , labels=__A ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def snake_case_ ( self , __A , __A , __A , __A , __A , __A , __A ): __a = self.num_choices __a = MobileBertForMultipleChoice(config=__A ) model.to(__A ) model.eval() __a = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() __a = token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() __a = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() __a = model( __A , attention_mask=__A , token_type_ids=__A , labels=__A , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def snake_case_ ( self ): __a = self.prepare_config_and_inputs() ( ( __a ) , ( __a ) , ( __a ) , ( __a ) , ( __a ) , ( __a ) , ( __a ) , ) = config_and_inputs __a = {"""input_ids""": input_ids, """token_type_ids""": token_type_ids, """attention_mask""": input_mask} return config, inputs_dict @require_torch class __UpperCAmelCase ( __A , __A , unittest.TestCase ): """simple docstring""" _lowerCamelCase = ( ( MobileBertModel, MobileBertForMaskedLM, MobileBertForMultipleChoice, MobileBertForNextSentencePrediction, MobileBertForPreTraining, MobileBertForQuestionAnswering, MobileBertForSequenceClassification, MobileBertForTokenClassification, ) if is_torch_available() else () ) _lowerCamelCase = ( { """feature-extraction""": MobileBertModel, """fill-mask""": MobileBertForMaskedLM, """question-answering""": MobileBertForQuestionAnswering, """text-classification""": MobileBertForSequenceClassification, """token-classification""": MobileBertForTokenClassification, """zero-shot""": MobileBertForSequenceClassification, } if is_torch_available() else {} ) _lowerCamelCase = True def snake_case_ ( self , __A , __A , __A=False ): __a = super()._prepare_for_class(__A , __A , return_labels=__A ) if return_labels: if model_class in get_values(__A ): __a = torch.zeros( (self.model_tester.batch_size, self.model_tester.seq_length) , dtype=torch.long , device=__A ) __a = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=__A ) return inputs_dict def snake_case_ ( self ): __a = MobileBertModelTester(self ) __a = ConfigTester(self , config_class=__A , hidden_size=37 ) def snake_case_ ( self ): self.config_tester.run_common_tests() def snake_case_ ( self ): __a = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_model(*__A ) def snake_case_ ( self ): __a = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_masked_lm(*__A ) def snake_case_ ( self ): __a = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_multiple_choice(*__A ) def snake_case_ ( self ): __a = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_next_sequence_prediction(*__A ) def snake_case_ ( self ): __a = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_pretraining(*__A ) def snake_case_ ( self ): __a = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_question_answering(*__A ) def snake_case_ ( self ): __a = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_sequence_classification(*__A ) def snake_case_ ( self ): __a = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_token_classification(*__A ) def a (lowerCAmelCase__ ): return torch.tensor( lowerCAmelCase__ , dtype=torch.long , device=lowerCAmelCase__ , ) SCREAMING_SNAKE_CASE = 1E-3 @require_torch @require_sentencepiece @require_tokenizers class __UpperCAmelCase ( unittest.TestCase ): """simple docstring""" @slow def snake_case_ ( self ): __a = MobileBertModel.from_pretrained("""google/mobilebert-uncased""" ).to(__A ) __a = _long_tensor([[101, 7110, 1005, 1056, 2023, 11333, 17413, 1029, 102]] ) with torch.no_grad(): __a = model(__A )[0] __a = torch.Size((1, 9, 512) ) self.assertEqual(output.shape , __A ) __a = torch.tensor( [ [ [-2.473_6526E07, 8.269_1656E04, 1.652_1838E05], [-5.754_1704E-01, 3.905_6022E00, 4.401_1507E00], [2.604_7359E00, 1.567_7652E00, -1.732_4188E-01], ] ] , device=__A , ) # MobileBERT results range from 10e0 to 10e8. Even a 0.0000001% difference with a value of 10e8 results in a # ~1 difference, it's therefore not a good idea to measure using addition. # Here, we instead divide the expected result with the result in order to obtain ~1. We then check that the # result is held between bounds: 1 - TOLERANCE < expected_result / result < 1 + TOLERANCE __a = torch.all((expected_slice / output[..., :3, :3]) >= 1 - TOLERANCE ) __a = torch.all((expected_slice / output[..., :3, :3]) <= 1 + TOLERANCE ) self.assertTrue(lower_bound and upper_bound )
99
from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCamelCase__ : Optional[int] = logging.get_logger(__name__) lowerCamelCase__ : Tuple = { 'microsoft/swinv2-tiny-patch4-window8-256': ( 'https://huggingface.co/microsoft/swinv2-tiny-patch4-window8-256/resolve/main/config.json' ), } class lowerCamelCase_ ( _SCREAMING_SNAKE_CASE ): '''simple docstring''' lowercase_ = "swinv2" lowercase_ = { "num_attention_heads": "num_heads", "num_hidden_layers": "num_layers", } def __init__( self : Dict , _lowerCAmelCase : Optional[Any]=224 , _lowerCAmelCase : Optional[int]=4 , _lowerCAmelCase : Tuple=3 , _lowerCAmelCase : Tuple=96 , _lowerCAmelCase : Dict=[2, 2, 6, 2] , _lowerCAmelCase : Optional[Any]=[3, 6, 12, 24] , _lowerCAmelCase : str=7 , _lowerCAmelCase : List[Any]=4.0 , _lowerCAmelCase : List[str]=True , _lowerCAmelCase : List[Any]=0.0 , _lowerCAmelCase : List[Any]=0.0 , _lowerCAmelCase : Any=0.1 , _lowerCAmelCase : List[Any]="gelu" , _lowerCAmelCase : str=False , _lowerCAmelCase : str=0.02 , _lowerCAmelCase : List[Any]=1E-5 , _lowerCAmelCase : str=32 , **_lowerCAmelCase : List[Any] , ): super().__init__(**_lowerCAmelCase ) SCREAMING_SNAKE_CASE_ = image_size SCREAMING_SNAKE_CASE_ = patch_size SCREAMING_SNAKE_CASE_ = num_channels SCREAMING_SNAKE_CASE_ = embed_dim SCREAMING_SNAKE_CASE_ = depths SCREAMING_SNAKE_CASE_ = len(_lowerCAmelCase ) SCREAMING_SNAKE_CASE_ = num_heads SCREAMING_SNAKE_CASE_ = window_size SCREAMING_SNAKE_CASE_ = mlp_ratio SCREAMING_SNAKE_CASE_ = qkv_bias SCREAMING_SNAKE_CASE_ = hidden_dropout_prob SCREAMING_SNAKE_CASE_ = attention_probs_dropout_prob SCREAMING_SNAKE_CASE_ = drop_path_rate SCREAMING_SNAKE_CASE_ = hidden_act SCREAMING_SNAKE_CASE_ = use_absolute_embeddings SCREAMING_SNAKE_CASE_ = layer_norm_eps SCREAMING_SNAKE_CASE_ = initializer_range SCREAMING_SNAKE_CASE_ = encoder_stride # we set the hidden_size attribute in order to make Swinv2 work with VisionEncoderDecoderModel # this indicates the channel dimension after the last stage of the model SCREAMING_SNAKE_CASE_ = int(embed_dim * 2 ** (len(_lowerCAmelCase ) - 1) ) SCREAMING_SNAKE_CASE_ = (0, 0, 0, 0)
31
0
def __snake_case ( lowerCAmelCase_ ) -> list[int]: if num <= 0: raise ValueError('''Input must be a positive integer''' ) SCREAMING_SNAKE_CASE__ = [True] * (num + 1) SCREAMING_SNAKE_CASE__ = 2 while p * p <= num: if primes[p]: for i in range(p * p , num + 1 , lowerCAmelCase_ ): SCREAMING_SNAKE_CASE__ = False p += 1 return [prime for prime in range(2 , num + 1 ) if primes[prime]] if __name__ == "__main__": import doctest doctest.testmod() _A : Any = int(input("""Enter a positive integer: """).strip()) print(prime_sieve_eratosthenes(user_num))
100
import itertools import random import unittest import numpy as np from transformers import BatchFeature, SpeechTaFeatureExtractor from transformers.testing_utils import require_torch from transformers.utils.import_utils import is_torch_available from ...test_sequence_feature_extraction_common import SequenceFeatureExtractionTestMixin if is_torch_available(): import torch lowerCamelCase__ : Dict = random.Random() def UpperCAmelCase_ ( __UpperCAmelCase : int , __UpperCAmelCase : Tuple=1.0 , __UpperCAmelCase : Dict=None , __UpperCAmelCase : Dict=None ) -> Tuple: if rng is None: SCREAMING_SNAKE_CASE_ = global_rng SCREAMING_SNAKE_CASE_ = [] for batch_idx in range(shape[0] ): values.append([] ) for _ in range(shape[1] ): values[-1].append(rng.random() * scale ) return values @require_torch class lowerCamelCase_ ( unittest.TestCase ): '''simple docstring''' def __init__( self : List[str] , _lowerCAmelCase : int , _lowerCAmelCase : Optional[Any]=7 , _lowerCAmelCase : Union[str, Any]=400 , _lowerCAmelCase : Tuple=2_000 , _lowerCAmelCase : str=1 , _lowerCAmelCase : int=0.0 , _lowerCAmelCase : Optional[Any]=16_000 , _lowerCAmelCase : Optional[Any]=True , _lowerCAmelCase : Any=80 , _lowerCAmelCase : Union[str, Any]=16 , _lowerCAmelCase : List[str]=64 , _lowerCAmelCase : List[Any]="hann_window" , _lowerCAmelCase : Any=80 , _lowerCAmelCase : List[Any]=7_600 , _lowerCAmelCase : List[Any]=1E-10 , _lowerCAmelCase : Optional[Any]=True , ): SCREAMING_SNAKE_CASE_ = parent SCREAMING_SNAKE_CASE_ = batch_size SCREAMING_SNAKE_CASE_ = min_seq_length SCREAMING_SNAKE_CASE_ = max_seq_length SCREAMING_SNAKE_CASE_ = (self.max_seq_length - self.min_seq_length) // (self.batch_size - 1) SCREAMING_SNAKE_CASE_ = feature_size SCREAMING_SNAKE_CASE_ = padding_value SCREAMING_SNAKE_CASE_ = sampling_rate SCREAMING_SNAKE_CASE_ = do_normalize SCREAMING_SNAKE_CASE_ = num_mel_bins SCREAMING_SNAKE_CASE_ = hop_length SCREAMING_SNAKE_CASE_ = win_length SCREAMING_SNAKE_CASE_ = win_function SCREAMING_SNAKE_CASE_ = fmin SCREAMING_SNAKE_CASE_ = fmax SCREAMING_SNAKE_CASE_ = mel_floor SCREAMING_SNAKE_CASE_ = return_attention_mask def lowerCAmelCase_ ( self : Union[str, Any] ): return { "feature_size": self.feature_size, "padding_value": self.padding_value, "sampling_rate": self.sampling_rate, "do_normalize": self.do_normalize, "num_mel_bins": self.num_mel_bins, "hop_length": self.hop_length, "win_length": self.win_length, "win_function": self.win_function, "fmin": self.fmin, "fmax": self.fmax, "mel_floor": self.mel_floor, "return_attention_mask": self.return_attention_mask, } def lowerCAmelCase_ ( self : Dict , _lowerCAmelCase : Optional[int]=False , _lowerCAmelCase : str=False ): def _flatten(_lowerCAmelCase : Dict ): return list(itertools.chain(*_lowerCAmelCase ) ) if equal_length: SCREAMING_SNAKE_CASE_ = floats_list((self.batch_size, self.max_seq_length) ) else: # make sure that inputs increase in size SCREAMING_SNAKE_CASE_ = [ _flatten(floats_list((x, self.feature_size) ) ) for x in range(self.min_seq_length , self.max_seq_length , self.seq_length_diff ) ] if numpify: SCREAMING_SNAKE_CASE_ = [np.asarray(_lowerCAmelCase ) for x in speech_inputs] return speech_inputs def lowerCAmelCase_ ( self : List[Any] , _lowerCAmelCase : Union[str, Any]=False , _lowerCAmelCase : Optional[int]=False ): if equal_length: SCREAMING_SNAKE_CASE_ = [floats_list((self.max_seq_length, self.num_mel_bins) ) for _ in range(self.batch_size )] else: # make sure that inputs increase in size SCREAMING_SNAKE_CASE_ = [ floats_list((x, self.num_mel_bins) ) for x in range(self.min_seq_length , self.max_seq_length , self.seq_length_diff ) ] if numpify: SCREAMING_SNAKE_CASE_ = [np.asarray(_lowerCAmelCase ) for x in speech_inputs] return speech_inputs @require_torch class lowerCamelCase_ ( _SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' lowercase_ = SpeechTaFeatureExtractor def lowerCAmelCase_ ( self : Any ): SCREAMING_SNAKE_CASE_ = SpeechTaFeatureExtractionTester(self ) def lowerCAmelCase_ ( self : Any , _lowerCAmelCase : int ): self.assertTrue(np.all(np.mean(_lowerCAmelCase , axis=0 ) < 1E-3 ) ) self.assertTrue(np.all(np.abs(np.var(_lowerCAmelCase , axis=0 ) - 1 ) < 1E-3 ) ) def lowerCAmelCase_ ( self : List[Any] ): # Tests that all call wrap to encode_plus and batch_encode_plus SCREAMING_SNAKE_CASE_ = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) # create three inputs of length 800, 1000, and 1200 SCREAMING_SNAKE_CASE_ = [floats_list((1, x) )[0] for x in range(800 , 1_400 , 200 )] SCREAMING_SNAKE_CASE_ = [np.asarray(_lowerCAmelCase ) for speech_input in speech_inputs] # Test not batched input SCREAMING_SNAKE_CASE_ = feat_extract(speech_inputs[0] , return_tensors='np' ).input_values SCREAMING_SNAKE_CASE_ = feat_extract(np_speech_inputs[0] , return_tensors='np' ).input_values self.assertTrue(np.allclose(_lowerCAmelCase , _lowerCAmelCase , atol=1E-3 ) ) # Test batched SCREAMING_SNAKE_CASE_ = feat_extract(_lowerCAmelCase , return_tensors='np' ).input_values SCREAMING_SNAKE_CASE_ = feat_extract(_lowerCAmelCase , return_tensors='np' ).input_values for enc_seq_a, enc_seq_a in zip(_lowerCAmelCase , _lowerCAmelCase ): self.assertTrue(np.allclose(_lowerCAmelCase , _lowerCAmelCase , atol=1E-3 ) ) def lowerCAmelCase_ ( self : Union[str, Any] ): SCREAMING_SNAKE_CASE_ = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) SCREAMING_SNAKE_CASE_ = [floats_list((1, x) )[0] for x in range(800 , 1_400 , 200 )] SCREAMING_SNAKE_CASE_ = ['longest', 'max_length', 'do_not_pad'] SCREAMING_SNAKE_CASE_ = [None, 1_600, None] for max_length, padding in zip(_lowerCAmelCase , _lowerCAmelCase ): SCREAMING_SNAKE_CASE_ = feat_extract(_lowerCAmelCase , padding=_lowerCAmelCase , max_length=_lowerCAmelCase , return_tensors='np' ) SCREAMING_SNAKE_CASE_ = processed.input_values self._check_zero_mean_unit_variance(input_values[0][:800] ) self.assertTrue(input_values[0][800:].sum() < 1E-6 ) self._check_zero_mean_unit_variance(input_values[1][:1_000] ) self.assertTrue(input_values[0][1_000:].sum() < 1E-6 ) self._check_zero_mean_unit_variance(input_values[2][:1_200] ) def lowerCAmelCase_ ( self : Optional[Any] ): SCREAMING_SNAKE_CASE_ = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) SCREAMING_SNAKE_CASE_ = range(800 , 1_400 , 200 ) SCREAMING_SNAKE_CASE_ = [floats_list((1, x) )[0] for x in lengths] SCREAMING_SNAKE_CASE_ = ['longest', 'max_length', 'do_not_pad'] SCREAMING_SNAKE_CASE_ = [None, 1_600, None] for max_length, padding in zip(_lowerCAmelCase , _lowerCAmelCase ): SCREAMING_SNAKE_CASE_ = feat_extract(_lowerCAmelCase , max_length=_lowerCAmelCase , padding=_lowerCAmelCase ) SCREAMING_SNAKE_CASE_ = processed.input_values self._check_zero_mean_unit_variance(input_values[0][:800] ) self._check_zero_mean_unit_variance(input_values[1][:1_000] ) self._check_zero_mean_unit_variance(input_values[2][:1_200] ) def lowerCAmelCase_ ( self : Dict ): SCREAMING_SNAKE_CASE_ = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) SCREAMING_SNAKE_CASE_ = [floats_list((1, x) )[0] for x in range(800 , 1_400 , 200 )] SCREAMING_SNAKE_CASE_ = feat_extract( _lowerCAmelCase , truncation=_lowerCAmelCase , max_length=1_000 , padding='max_length' , return_tensors='np' ) SCREAMING_SNAKE_CASE_ = processed.input_values self._check_zero_mean_unit_variance(input_values[0, :800] ) self._check_zero_mean_unit_variance(input_values[1] ) self._check_zero_mean_unit_variance(input_values[2] ) def lowerCAmelCase_ ( self : Dict ): SCREAMING_SNAKE_CASE_ = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) SCREAMING_SNAKE_CASE_ = [floats_list((1, x) )[0] for x in range(800 , 1_400 , 200 )] SCREAMING_SNAKE_CASE_ = feat_extract( _lowerCAmelCase , truncation=_lowerCAmelCase , max_length=1_000 , padding='longest' , return_tensors='np' ) SCREAMING_SNAKE_CASE_ = processed.input_values self._check_zero_mean_unit_variance(input_values[0, :800] ) self._check_zero_mean_unit_variance(input_values[1, :1_000] ) self._check_zero_mean_unit_variance(input_values[2] ) # make sure that if max_length < longest -> then pad to max_length self.assertTrue(input_values.shape == (3, 1_000) ) SCREAMING_SNAKE_CASE_ = [floats_list((1, x) )[0] for x in range(800 , 1_400 , 200 )] SCREAMING_SNAKE_CASE_ = feat_extract( _lowerCAmelCase , truncation=_lowerCAmelCase , max_length=2_000 , padding='longest' , return_tensors='np' ) SCREAMING_SNAKE_CASE_ = processed.input_values self._check_zero_mean_unit_variance(input_values[0, :800] ) self._check_zero_mean_unit_variance(input_values[1, :1_000] ) self._check_zero_mean_unit_variance(input_values[2] ) # make sure that if max_length > longest -> then pad to longest self.assertTrue(input_values.shape == (3, 1_200) ) def lowerCAmelCase_ ( self : Optional[int] ): SCREAMING_SNAKE_CASE_ = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) SCREAMING_SNAKE_CASE_ = np.random.rand(100 ).astype(np.floataa ) SCREAMING_SNAKE_CASE_ = np_speech_inputs.tolist() for inputs in [py_speech_inputs, np_speech_inputs]: SCREAMING_SNAKE_CASE_ = feature_extractor.pad([{'input_values': inputs}] , return_tensors='np' ) self.assertTrue(np_processed.input_values.dtype == np.floataa ) SCREAMING_SNAKE_CASE_ = feature_extractor.pad([{'input_values': inputs}] , return_tensors='pt' ) self.assertTrue(pt_processed.input_values.dtype == torch.floataa ) def lowerCAmelCase_ ( self : Tuple ): # Tests that all call wrap to encode_plus and batch_encode_plus SCREAMING_SNAKE_CASE_ = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) # create three inputs of length 800, 1000, and 1200 SCREAMING_SNAKE_CASE_ = [floats_list((1, x) )[0] for x in range(800 , 1_400 , 200 )] SCREAMING_SNAKE_CASE_ = [np.asarray(_lowerCAmelCase ) for speech_input in speech_inputs] # Test feature size SCREAMING_SNAKE_CASE_ = feature_extractor(audio_target=_lowerCAmelCase , padding=_lowerCAmelCase , return_tensors='np' ).input_values self.assertTrue(input_values.ndim == 3 ) self.assertTrue(input_values.shape[-1] == feature_extractor.num_mel_bins ) # Test not batched input SCREAMING_SNAKE_CASE_ = feature_extractor(speech_inputs[0] , return_tensors='np' ).input_values SCREAMING_SNAKE_CASE_ = feature_extractor(np_speech_inputs[0] , return_tensors='np' ).input_values self.assertTrue(np.allclose(_lowerCAmelCase , _lowerCAmelCase , atol=1E-3 ) ) # Test batched SCREAMING_SNAKE_CASE_ = feature_extractor(_lowerCAmelCase , return_tensors='np' ).input_values SCREAMING_SNAKE_CASE_ = feature_extractor(_lowerCAmelCase , return_tensors='np' ).input_values for enc_seq_a, enc_seq_a in zip(_lowerCAmelCase , _lowerCAmelCase ): self.assertTrue(np.allclose(_lowerCAmelCase , _lowerCAmelCase , atol=1E-3 ) ) # Test 2-D numpy arrays are batched. SCREAMING_SNAKE_CASE_ = [floats_list((1, x) )[0] for x in (800, 800, 800)] SCREAMING_SNAKE_CASE_ = np.asarray(_lowerCAmelCase ) SCREAMING_SNAKE_CASE_ = feature_extractor(_lowerCAmelCase , return_tensors='np' ).input_values SCREAMING_SNAKE_CASE_ = feature_extractor(_lowerCAmelCase , return_tensors='np' ).input_values for enc_seq_a, enc_seq_a in zip(_lowerCAmelCase , _lowerCAmelCase ): self.assertTrue(np.allclose(_lowerCAmelCase , _lowerCAmelCase , atol=1E-3 ) ) def lowerCAmelCase_ ( self : str ): SCREAMING_SNAKE_CASE_ = self.feat_extract_tester.prepare_inputs_for_target() SCREAMING_SNAKE_CASE_ = self.feature_extraction_class(**self.feat_extract_dict ) SCREAMING_SNAKE_CASE_ = feat_extract.model_input_names[0] SCREAMING_SNAKE_CASE_ = BatchFeature({input_name: speech_inputs} ) self.assertTrue(all(len(_lowerCAmelCase ) == len(_lowerCAmelCase ) for x, y in zip(_lowerCAmelCase , processed_features[input_name] ) ) ) SCREAMING_SNAKE_CASE_ = self.feat_extract_tester.prepare_inputs_for_target(equal_length=_lowerCAmelCase ) SCREAMING_SNAKE_CASE_ = BatchFeature({input_name: speech_inputs} , tensor_type='np' ) SCREAMING_SNAKE_CASE_ = processed_features[input_name] if len(batch_features_input.shape ) < 3: SCREAMING_SNAKE_CASE_ = batch_features_input[:, :, None] self.assertTrue( batch_features_input.shape == (self.feat_extract_tester.batch_size, len(speech_inputs[0] ), self.feat_extract_tester.num_mel_bins) ) @require_torch def lowerCAmelCase_ ( self : Dict ): SCREAMING_SNAKE_CASE_ = self.feat_extract_tester.prepare_inputs_for_target(equal_length=_lowerCAmelCase ) SCREAMING_SNAKE_CASE_ = self.feature_extraction_class(**self.feat_extract_dict ) SCREAMING_SNAKE_CASE_ = feat_extract.model_input_names[0] SCREAMING_SNAKE_CASE_ = BatchFeature({input_name: speech_inputs} , tensor_type='pt' ) SCREAMING_SNAKE_CASE_ = processed_features[input_name] if len(batch_features_input.shape ) < 3: SCREAMING_SNAKE_CASE_ = batch_features_input[:, :, None] self.assertTrue( batch_features_input.shape == (self.feat_extract_tester.batch_size, len(speech_inputs[0] ), self.feat_extract_tester.num_mel_bins) ) @require_torch def lowerCAmelCase_ ( self : Dict ): SCREAMING_SNAKE_CASE_ = self.feature_extraction_class(**self.feat_extract_dict ) SCREAMING_SNAKE_CASE_ = self.feat_extract_tester.prepare_inputs_for_target() SCREAMING_SNAKE_CASE_ = feat_extract.model_input_names[0] SCREAMING_SNAKE_CASE_ = BatchFeature({input_name: speech_inputs} ) SCREAMING_SNAKE_CASE_ = feat_extract.num_mel_bins # hack! SCREAMING_SNAKE_CASE_ = feat_extract.pad(_lowerCAmelCase , padding='longest' , return_tensors='np' )[input_name] SCREAMING_SNAKE_CASE_ = feat_extract.pad(_lowerCAmelCase , padding='longest' , return_tensors='pt' )[input_name] self.assertTrue(abs(input_np.astype(np.floataa ).sum() - input_pt.numpy().astype(np.floataa ).sum() ) < 1E-2 ) def lowerCAmelCase_ ( self : str ): SCREAMING_SNAKE_CASE_ = self.feat_extract_dict SCREAMING_SNAKE_CASE_ = True SCREAMING_SNAKE_CASE_ = self.feature_extraction_class(**_lowerCAmelCase ) SCREAMING_SNAKE_CASE_ = self.feat_extract_tester.prepare_inputs_for_target() SCREAMING_SNAKE_CASE_ = [len(_lowerCAmelCase ) for x in speech_inputs] SCREAMING_SNAKE_CASE_ = feat_extract.model_input_names[0] SCREAMING_SNAKE_CASE_ = BatchFeature({input_name: speech_inputs} ) SCREAMING_SNAKE_CASE_ = feat_extract.num_mel_bins # hack! SCREAMING_SNAKE_CASE_ = feat_extract.pad(_lowerCAmelCase , padding='longest' , return_tensors='np' ) self.assertIn('attention_mask' , _lowerCAmelCase ) self.assertListEqual(list(processed.attention_mask.shape ) , list(processed[input_name].shape[:2] ) ) self.assertListEqual(processed.attention_mask.sum(-1 ).tolist() , _lowerCAmelCase ) def lowerCAmelCase_ ( self : Any ): SCREAMING_SNAKE_CASE_ = self.feat_extract_dict SCREAMING_SNAKE_CASE_ = True SCREAMING_SNAKE_CASE_ = self.feature_extraction_class(**_lowerCAmelCase ) SCREAMING_SNAKE_CASE_ = self.feat_extract_tester.prepare_inputs_for_target() SCREAMING_SNAKE_CASE_ = [len(_lowerCAmelCase ) for x in speech_inputs] SCREAMING_SNAKE_CASE_ = feat_extract.model_input_names[0] SCREAMING_SNAKE_CASE_ = BatchFeature({input_name: speech_inputs} ) SCREAMING_SNAKE_CASE_ = min(_lowerCAmelCase ) SCREAMING_SNAKE_CASE_ = feat_extract.num_mel_bins # hack! SCREAMING_SNAKE_CASE_ = feat_extract.pad( _lowerCAmelCase , padding='max_length' , max_length=_lowerCAmelCase , truncation=_lowerCAmelCase , return_tensors='np' ) self.assertIn('attention_mask' , _lowerCAmelCase ) self.assertListEqual( list(processed_pad.attention_mask.shape ) , [processed_pad[input_name].shape[0], max_length] ) self.assertListEqual( processed_pad.attention_mask[:, :max_length].sum(-1 ).tolist() , [max_length for x in speech_inputs] ) def lowerCAmelCase_ ( self : List[Any] , _lowerCAmelCase : Tuple ): from datasets import load_dataset SCREAMING_SNAKE_CASE_ = load_dataset('hf-internal-testing/librispeech_asr_dummy' , 'clean' , split='validation' ) # automatic decoding with librispeech SCREAMING_SNAKE_CASE_ = ds.sort('id' ).select(range(_lowerCAmelCase ) )[:num_samples]['audio'] return [x["array"] for x in speech_samples] def lowerCAmelCase_ ( self : Any ): # fmt: off SCREAMING_SNAKE_CASE_ = torch.tensor( [2.3_804E-03, 2.0_752E-03, 1.9_836E-03, 2.1_057E-03, 1.6_174E-03, 3.0_518E-04, 9.1_553E-05, 3.3_569E-04, 9.7_656E-04, 1.8_311E-03, 2.0_142E-03, 2.1_057E-03, 1.7_395E-03, 4.5_776E-04, -3.9_673E-04, 4.5_776E-04, 1.0_071E-03, 9.1_553E-05, 4.8_828E-04, 1.1_597E-03, 7.3_242E-04, 9.4_604E-04, 1.8_005E-03, 1.8_311E-03, 8.8_501E-04, 4.2_725E-04, 4.8_828E-04, 7.3_242E-04, 1.0_986E-03, 2.1_057E-03] ) # fmt: on SCREAMING_SNAKE_CASE_ = self._load_datasamples(1 ) SCREAMING_SNAKE_CASE_ = SpeechTaFeatureExtractor() SCREAMING_SNAKE_CASE_ = feature_extractor(_lowerCAmelCase , return_tensors='pt' ).input_values self.assertEquals(input_values.shape , (1, 93_680) ) self.assertTrue(torch.allclose(input_values[0, :30] , _lowerCAmelCase , atol=1E-6 ) ) def lowerCAmelCase_ ( self : Optional[int] ): # fmt: off SCREAMING_SNAKE_CASE_ = torch.tensor( [-2.6870, -3.0104, -3.1356, -3.5352, -3.0044, -3.0353, -3.4719, -3.6777, -3.1520, -2.9435, -2.6553, -2.8795, -2.9944, -2.5921, -3.0279, -3.0386, -3.0864, -3.1291, -3.2353, -2.7444, -2.6831, -2.7287, -3.1761, -3.1571, -3.2726, -3.0582, -3.1007, -3.4533, -3.4695, -3.0998] ) # fmt: on SCREAMING_SNAKE_CASE_ = self._load_datasamples(1 ) SCREAMING_SNAKE_CASE_ = SpeechTaFeatureExtractor() SCREAMING_SNAKE_CASE_ = feature_extractor(audio_target=_lowerCAmelCase , return_tensors='pt' ).input_values self.assertEquals(input_values.shape , (1, 366, 80) ) self.assertTrue(torch.allclose(input_values[0, 0, :30] , _lowerCAmelCase , atol=1E-4 ) )
31
0
def a__ ( A__, A__, A__, A__, A__ ): if index == number_of_items: return 0 SCREAMING_SNAKE_CASE_ : Dict = 0 SCREAMING_SNAKE_CASE_ : Dict = 0 SCREAMING_SNAKE_CASE_ : List[Any] = knapsack(A__, A__, A__, A__, index + 1 ) if weights[index] <= max_weight: SCREAMING_SNAKE_CASE_ : Tuple = values[index] + knapsack( A__, A__, A__, max_weight - weights[index], index + 1 ) return max(A__, A__ ) if __name__ == "__main__": import doctest doctest.testmod()
101
from __future__ import annotations from typing import TypedDict class lowerCamelCase_ ( _SCREAMING_SNAKE_CASE ): '''simple docstring''' lowercase_ = 42 lowercase_ = 42 def UpperCAmelCase_ ( __UpperCAmelCase : str ) -> list[str]: if not isinstance(__UpperCAmelCase , __UpperCAmelCase ): raise TypeError('The parameter s type must be str.' ) return [s[i:] + s[:i] for i in range(len(__UpperCAmelCase ) )] def UpperCAmelCase_ ( __UpperCAmelCase : str ) -> BWTTransformDict: if not isinstance(__UpperCAmelCase , __UpperCAmelCase ): raise TypeError('The parameter s type must be str.' ) if not s: raise ValueError('The parameter s must not be empty.' ) SCREAMING_SNAKE_CASE_ = all_rotations(__UpperCAmelCase ) rotations.sort() # sort the list of rotations in alphabetically order # make a string composed of the last char of each rotation SCREAMING_SNAKE_CASE_ = { "bwt_string": "".join([word[-1] for word in rotations] ), "idx_original_string": rotations.index(__UpperCAmelCase ), } return response def UpperCAmelCase_ ( __UpperCAmelCase : str , __UpperCAmelCase : int ) -> str: if not isinstance(__UpperCAmelCase , __UpperCAmelCase ): raise TypeError('The parameter bwt_string type must be str.' ) if not bwt_string: raise ValueError('The parameter bwt_string must not be empty.' ) try: SCREAMING_SNAKE_CASE_ = int(__UpperCAmelCase ) except ValueError: raise TypeError( 'The parameter idx_original_string type must be int or passive' ' of cast to int.' ) if idx_original_string < 0: raise ValueError('The parameter idx_original_string must not be lower than 0.' ) if idx_original_string >= len(__UpperCAmelCase ): raise ValueError( 'The parameter idx_original_string must be lower than' ' len(bwt_string).' ) SCREAMING_SNAKE_CASE_ = [''] * len(__UpperCAmelCase ) for _ in range(len(__UpperCAmelCase ) ): for i in range(len(__UpperCAmelCase ) ): SCREAMING_SNAKE_CASE_ = bwt_string[i] + ordered_rotations[i] ordered_rotations.sort() return ordered_rotations[idx_original_string] if __name__ == "__main__": lowerCamelCase__ : Optional[int] = 'Provide a string that I will generate its BWT transform: ' lowerCamelCase__ : List[str] = input(entry_msg).strip() lowerCamelCase__ : int = bwt_transform(s) print( f'''Burrows Wheeler transform for string \'{s}\' results ''' f'''in \'{result['bwt_string']}\'''' ) lowerCamelCase__ : Dict = reverse_bwt(result['bwt_string'], result['idx_original_string']) print( f'''Reversing Burrows Wheeler transform for entry \'{result['bwt_string']}\' ''' f'''we get original string \'{original_string}\'''' )
31
0
"""simple docstring""" from collections import UserDict from typing import Union import numpy as np import requests from ..utils import ( add_end_docstrings, logging, ) from .audio_classification import ffmpeg_read from .base import PIPELINE_INIT_ARGS, Pipeline __magic_name__ : Dict = logging.get_logger(__name__) @add_end_docstrings(__SCREAMING_SNAKE_CASE ) class lowercase__ ( __SCREAMING_SNAKE_CASE ): """simple docstring""" def __init__( self , **_A ): '''simple docstring''' super().__init__(**_A ) if self.framework != "pt": raise ValueError(f"""The {self.__class__} is only available in PyTorch.""" ) # No specific FOR_XXX available yet def __call__( self , _A , **_A ): '''simple docstring''' return super().__call__(_A , **_A ) def _a ( self , **_A ): '''simple docstring''' UpperCamelCase : str = {} if "candidate_labels" in kwargs: UpperCamelCase : Optional[int] = kwargs["""candidate_labels"""] if "hypothesis_template" in kwargs: UpperCamelCase : Optional[int] = kwargs["""hypothesis_template"""] return preprocess_params, {}, {} def _a ( self , _A , _A=None , _A="This is a sound of {}." ): '''simple docstring''' if isinstance(_A , _A ): if audio.startswith("""http://""" ) or audio.startswith("""https://""" ): # We need to actually check for a real protocol, otherwise it's impossible to use a local file # like http_huggingface_co.png UpperCamelCase : Optional[Any] = requests.get(_A ).content else: with open(_A , """rb""" ) as f: UpperCamelCase : Any = f.read() if isinstance(_A , _A ): UpperCamelCase : Any = ffmpeg_read(_A , self.feature_extractor.sampling_rate ) if not isinstance(_A , np.ndarray ): raise ValueError("""We expect a numpy ndarray as input""" ) if len(audio.shape ) != 1: raise ValueError("""We expect a single channel audio input for ZeroShotAudioClassificationPipeline""" ) UpperCamelCase : Any = self.feature_extractor( [audio] , sampling_rate=self.feature_extractor.sampling_rate , return_tensors="""pt""" ) UpperCamelCase : List[Any] = candidate_labels UpperCamelCase : Optional[int] = [hypothesis_template.format(_A ) for x in candidate_labels] UpperCamelCase : Optional[int] = self.tokenizer(_A , return_tensors=self.framework , padding=_A ) UpperCamelCase : Optional[Any] = [text_inputs] return inputs def _a ( self , _A ): '''simple docstring''' UpperCamelCase : Optional[int] = model_inputs.pop("""candidate_labels""" ) UpperCamelCase : Optional[Any] = model_inputs.pop("""text_inputs""" ) if isinstance(text_inputs[0] , _A ): UpperCamelCase : str = text_inputs[0] else: # Batching case. UpperCamelCase : Tuple = text_inputs[0][0] UpperCamelCase : Optional[Any] = self.model(**_A , **_A ) UpperCamelCase : Tuple = { """candidate_labels""": candidate_labels, """logits""": outputs.logits_per_audio, } return model_outputs def _a ( self , _A ): '''simple docstring''' UpperCamelCase : Tuple = model_outputs.pop("""candidate_labels""" ) UpperCamelCase : Optional[int] = model_outputs["""logits"""][0] if self.framework == "pt": UpperCamelCase : Optional[int] = logits.softmax(dim=0 ) UpperCamelCase : Tuple = probs.tolist() else: raise ValueError("""`tf` framework not supported.""" ) UpperCamelCase : int = [ {"""score""": score, """label""": candidate_label} for score, candidate_label in sorted(zip(_A , _A ) , key=lambda _A : -x[0] ) ] return result
102
class lowerCamelCase_ : '''simple docstring''' def __init__( self : str ): SCREAMING_SNAKE_CASE_ = {} def lowerCAmelCase_ ( self : List[str] ): print(self.vertex ) for i in self.vertex: print(_lowerCAmelCase , ' -> ' , ' -> '.join([str(_lowerCAmelCase ) for j in self.vertex[i]] ) ) def lowerCAmelCase_ ( self : Union[str, Any] , _lowerCAmelCase : int , _lowerCAmelCase : int ): # check if vertex is already present, if from_vertex in self.vertex: self.vertex[from_vertex].append(_lowerCAmelCase ) else: # else make a new vertex SCREAMING_SNAKE_CASE_ = [to_vertex] def lowerCAmelCase_ ( self : Optional[Any] ): # visited array for storing already visited nodes SCREAMING_SNAKE_CASE_ = [False] * len(self.vertex ) # call the recursive helper function for i in range(len(self.vertex ) ): if not visited[i]: self.dfs_recursive(_lowerCAmelCase , _lowerCAmelCase ) def lowerCAmelCase_ ( self : Tuple , _lowerCAmelCase : int , _lowerCAmelCase : list ): # mark start vertex as visited SCREAMING_SNAKE_CASE_ = True print(_lowerCAmelCase , end=' ' ) # Recur for all the vertices that are adjacent to this node for i in self.vertex: if not visited[i]: self.dfs_recursive(_lowerCAmelCase , _lowerCAmelCase ) if __name__ == "__main__": lowerCamelCase__ : List[Any] = Graph() g.add_edge(0, 1) g.add_edge(0, 2) g.add_edge(1, 2) g.add_edge(2, 0) g.add_edge(2, 3) g.add_edge(3, 3) g.print_graph() print('DFS:') g.dfs() # OUTPUT: # 0 -> 1 -> 2 # 1 -> 2 # 2 -> 0 -> 3 # 3 -> 3 # DFS: # 0 1 2 3
31
0
"""simple docstring""" from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available snake_case = { '''configuration_informer''': [ '''INFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''InformerConfig''', ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case = [ '''INFORMER_PRETRAINED_MODEL_ARCHIVE_LIST''', '''InformerForPrediction''', '''InformerModel''', '''InformerPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_informer import INFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, InformerConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_informer import ( INFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, InformerForPrediction, InformerModel, InformerPreTrainedModel, ) else: import sys snake_case = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
103
from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCamelCase__ : str = logging.get_logger(__name__) lowerCamelCase__ : Tuple = { 'funnel-transformer/small': 'https://huggingface.co/funnel-transformer/small/resolve/main/config.json', 'funnel-transformer/small-base': 'https://huggingface.co/funnel-transformer/small-base/resolve/main/config.json', 'funnel-transformer/medium': 'https://huggingface.co/funnel-transformer/medium/resolve/main/config.json', 'funnel-transformer/medium-base': 'https://huggingface.co/funnel-transformer/medium-base/resolve/main/config.json', 'funnel-transformer/intermediate': ( 'https://huggingface.co/funnel-transformer/intermediate/resolve/main/config.json' ), 'funnel-transformer/intermediate-base': ( 'https://huggingface.co/funnel-transformer/intermediate-base/resolve/main/config.json' ), 'funnel-transformer/large': 'https://huggingface.co/funnel-transformer/large/resolve/main/config.json', 'funnel-transformer/large-base': 'https://huggingface.co/funnel-transformer/large-base/resolve/main/config.json', 'funnel-transformer/xlarge': 'https://huggingface.co/funnel-transformer/xlarge/resolve/main/config.json', 'funnel-transformer/xlarge-base': 'https://huggingface.co/funnel-transformer/xlarge-base/resolve/main/config.json', } class lowerCamelCase_ ( _SCREAMING_SNAKE_CASE ): '''simple docstring''' lowercase_ = "funnel" lowercase_ = { "hidden_size": "d_model", "num_attention_heads": "n_head", } def __init__( self : int , _lowerCAmelCase : Optional[int]=30_522 , _lowerCAmelCase : List[str]=[4, 4, 4] , _lowerCAmelCase : Tuple=None , _lowerCAmelCase : Optional[int]=2 , _lowerCAmelCase : int=768 , _lowerCAmelCase : Optional[Any]=12 , _lowerCAmelCase : Optional[Any]=64 , _lowerCAmelCase : Optional[Any]=3_072 , _lowerCAmelCase : List[str]="gelu_new" , _lowerCAmelCase : Any=0.1 , _lowerCAmelCase : int=0.1 , _lowerCAmelCase : Tuple=0.0 , _lowerCAmelCase : List[Any]=0.1 , _lowerCAmelCase : Dict=None , _lowerCAmelCase : str=1E-9 , _lowerCAmelCase : Any="mean" , _lowerCAmelCase : Union[str, Any]="relative_shift" , _lowerCAmelCase : Optional[Any]=True , _lowerCAmelCase : Dict=True , _lowerCAmelCase : Tuple=True , **_lowerCAmelCase : Optional[Any] , ): SCREAMING_SNAKE_CASE_ = vocab_size SCREAMING_SNAKE_CASE_ = block_sizes SCREAMING_SNAKE_CASE_ = [1] * len(_lowerCAmelCase ) if block_repeats is None else block_repeats assert len(_lowerCAmelCase ) == len( self.block_repeats ), "`block_sizes` and `block_repeats` should have the same length." SCREAMING_SNAKE_CASE_ = num_decoder_layers SCREAMING_SNAKE_CASE_ = d_model SCREAMING_SNAKE_CASE_ = n_head SCREAMING_SNAKE_CASE_ = d_head SCREAMING_SNAKE_CASE_ = d_inner SCREAMING_SNAKE_CASE_ = hidden_act SCREAMING_SNAKE_CASE_ = hidden_dropout SCREAMING_SNAKE_CASE_ = attention_dropout SCREAMING_SNAKE_CASE_ = activation_dropout SCREAMING_SNAKE_CASE_ = initializer_range SCREAMING_SNAKE_CASE_ = initializer_std SCREAMING_SNAKE_CASE_ = layer_norm_eps assert pooling_type in [ "mean", "max", ], F"Got {pooling_type} for `pooling_type` but only 'mean' and 'max' are supported." SCREAMING_SNAKE_CASE_ = pooling_type assert attention_type in [ "relative_shift", "factorized", ], F"Got {attention_type} for `attention_type` but only 'relative_shift' and 'factorized' are supported." SCREAMING_SNAKE_CASE_ = attention_type SCREAMING_SNAKE_CASE_ = separate_cls SCREAMING_SNAKE_CASE_ = truncate_seq SCREAMING_SNAKE_CASE_ = pool_q_only super().__init__(**_lowerCAmelCase ) @property def lowerCAmelCase_ ( self : Optional[int] ): return sum(self.block_sizes ) @num_hidden_layers.setter def lowerCAmelCase_ ( self : int , _lowerCAmelCase : List[Any] ): raise NotImplementedError( 'This model does not support the setting of `num_hidden_layers`. Please set `block_sizes`.' ) @property def lowerCAmelCase_ ( self : List[Any] ): return len(self.block_sizes ) @num_blocks.setter def lowerCAmelCase_ ( self : Dict , _lowerCAmelCase : Union[str, Any] ): raise NotImplementedError('This model does not support the setting of `num_blocks`. Please set `block_sizes`.' )
31
0
"""simple docstring""" def _lowerCamelCase ( UpperCAmelCase_ : str, UpperCAmelCase_ : str ) -> bool: """simple docstring""" A__ = len(UpperCAmelCase_ ) A__ = len(UpperCAmelCase_ ) A__ = [[False for _ in range(m + 1 )] for _ in range(n + 1 )] A__ = True for i in range(UpperCAmelCase_ ): for j in range(m + 1 ): if dp[i][j]: if j < m and a[i].upper() == b[j]: A__ = True if a[i].islower(): A__ = True return dp[n][m] if __name__ == "__main__": import doctest doctest.testmod()
104
from __future__ import annotations from collections.abc import Iterator class lowerCamelCase_ : '''simple docstring''' def __init__( self : Union[str, Any] , _lowerCAmelCase : int ): SCREAMING_SNAKE_CASE_ = value SCREAMING_SNAKE_CASE_ = None SCREAMING_SNAKE_CASE_ = None class lowerCamelCase_ : '''simple docstring''' def __init__( self : int , _lowerCAmelCase : Node ): SCREAMING_SNAKE_CASE_ = tree def lowerCAmelCase_ ( self : Union[str, Any] , _lowerCAmelCase : Node | None ): if node is None: return 0 return node.value + ( self.depth_first_search(node.left ) + self.depth_first_search(node.right ) ) def __iter__( self : Dict ): yield self.depth_first_search(self.tree ) if __name__ == "__main__": import doctest doctest.testmod()
31
0
import math def __UpperCAmelCase ( lowerCamelCase_ : float , lowerCamelCase_ : float ) -> float: """simple docstring""" if initial_intensity < 0: raise ValueError('The value of intensity cannot be negative' ) # handling of negative values of initial intensity if angle < 0 or angle > 3_60: raise ValueError('In Malus Law, the angle is in the range 0-360 degrees' ) # handling of values out of allowed range return initial_intensity * (math.cos(math.radians(lowerCamelCase_ ) ) ** 2) if __name__ == "__main__": import doctest doctest.testmod(name='''malus_law''')
105
def UpperCAmelCase_ ( __UpperCAmelCase : list , __UpperCAmelCase : int , __UpperCAmelCase : int = 0 , __UpperCAmelCase : int = 0 ) -> int: SCREAMING_SNAKE_CASE_ = right or len(__UpperCAmelCase ) - 1 if left > right: return -1 elif list_data[left] == key: return left elif list_data[right] == key: return right else: return search(__UpperCAmelCase , __UpperCAmelCase , left + 1 , right - 1 ) if __name__ == "__main__": import doctest doctest.testmod()
31
0
import random import timeit from functools import wraps from typing import Callable, Optional from ..configuration_utils import PretrainedConfig from ..models.auto.modeling_tf_auto import TF_MODEL_MAPPING, TF_MODEL_WITH_LM_HEAD_MAPPING from ..utils import is_pyanvml_available, is_tf_available, logging from .benchmark_utils import ( Benchmark, Memory, MemorySummary, measure_peak_memory_cpu, start_memory_tracing, stop_memory_tracing, ) if is_tf_available(): import tensorflow as tf from tensorflow.python.framework.errors_impl import ResourceExhaustedError from .benchmark_args_tf import TensorFlowBenchmarkArguments if is_pyanvml_available(): import pyanvml.pyanvml as nvml __snake_case :List[str] =logging.get_logger(__name__) def lowerCamelCase_ ( lowerCAmelCase__ : bool , lowerCAmelCase__ : bool ) -> str: '''simple docstring''' def run_func(lowerCAmelCase__ : Tuple ): @wraps(lowerCAmelCase__ ) def run_in_eager_mode(*lowerCAmelCase__ : int , **lowerCAmelCase__ : Optional[Any] ): return func(*lowerCAmelCase__ , **lowerCAmelCase__ ) @wraps(lowerCAmelCase__ ) @tf.function(experimental_compile=lowerCAmelCase__ ) def run_in_graph_mode(*lowerCAmelCase__ : Tuple , **lowerCAmelCase__ : List[Any] ): return func(*lowerCAmelCase__ , **lowerCAmelCase__ ) if do_eager_mode is True: if use_xla is not False: raise ValueError( 'Cannot run model in XLA, if `args.eager_mode` is set to `True`. Please set `args.eager_mode=False`.' ) return run_in_eager_mode else: return run_in_graph_mode return run_func def lowerCamelCase_ ( lowerCAmelCase__ : int , lowerCAmelCase__ : int , lowerCAmelCase__ : int ) -> ["tf.Tensor"]: '''simple docstring''' A = random.Random() A = [rng.randint(0 , vocab_size - 1 ) for i in range(batch_size * sequence_length )] return tf.constant(lowerCAmelCase__ , shape=(batch_size, sequence_length) , dtype=tf.intaa ) class lowerCAmelCase__ ( _lowerCamelCase ): A_ : TensorFlowBenchmarkArguments A_ : PretrainedConfig A_ : str = "TensorFlow" @property def __UpperCamelCase ( self : Optional[int] ) -> Optional[Any]: return tf.__version__ def __UpperCamelCase ( self : int , __UpperCamelCase : str , __UpperCamelCase : int , __UpperCamelCase : int ) -> float: # initialize GPU on separate process A = self.args.strategy if strategy is None: raise ValueError('A device strategy has to be initialized before using TensorFlow.' ) A = self._prepare_inference_func(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) return self._measure_speed(_inference ) def __UpperCamelCase ( self : Dict , __UpperCamelCase : str , __UpperCamelCase : int , __UpperCamelCase : int ) -> float: A = self.args.strategy if strategy is None: raise ValueError('A device strategy has to be initialized before using TensorFlow.' ) A = self._prepare_train_func(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) return self._measure_speed(_train ) def __UpperCamelCase ( self : Optional[Any] , __UpperCamelCase : str , __UpperCamelCase : int , __UpperCamelCase : int ) -> [Memory, Optional[MemorySummary]]: # initialize GPU on separate process if self.args.is_gpu: tf.config.experimental.set_memory_growth(self.args.gpu_list[self.args.device_idx] , __UpperCamelCase ) A = self.args.strategy if strategy is None: raise ValueError('A device strategy has to be initialized before using TensorFlow.' ) A = self._prepare_inference_func(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) return self._measure_memory(_inference ) def __UpperCamelCase ( self : Optional[int] , __UpperCamelCase : str , __UpperCamelCase : int , __UpperCamelCase : int ) -> [Memory, Optional[MemorySummary]]: if self.args.is_gpu: tf.config.experimental.set_memory_growth(self.args.gpu_list[self.args.device_idx] , __UpperCamelCase ) A = self.args.strategy if strategy is None: raise ValueError('A device strategy has to be initialized before using TensorFlow.' ) A = self._prepare_train_func(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) return self._measure_memory(_train ) def __UpperCamelCase ( self : List[str] , __UpperCamelCase : str , __UpperCamelCase : int , __UpperCamelCase : int ) -> Callable[[], None]: A = self.config_dict[model_name] if self.args.fpaa: raise NotImplementedError('Mixed precision is currently not supported.' ) A = ( hasattr(__UpperCamelCase , 'architectures' ) and isinstance(config.architectures , __UpperCamelCase ) and len(config.architectures ) > 0 ) if not self.args.only_pretrain_model and has_model_class_in_config: try: A = 'TF' + config.architectures[0] # prepend 'TF' for tensorflow model A = __import__('transformers' , fromlist=[model_class] ) A = getattr(__UpperCamelCase , __UpperCamelCase ) A = model_cls(__UpperCamelCase ) except ImportError: raise ImportError( f'''{model_class} does not exist. If you just want to test the pretrained model, you might want to''' ' set `--only_pretrain_model` or `args.only_pretrain_model=True`.' ) else: A = TF_MODEL_MAPPING[config.__class__](__UpperCamelCase ) # encoder-decoder has vocab size saved differently A = config.vocab_size if hasattr(__UpperCamelCase , 'vocab_size' ) else config.encoder.vocab_size A = random_input_ids(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) @run_with_tf_optimizations(self.args.eager_mode , self.args.use_xla ) def encoder_decoder_forward(): return model(__UpperCamelCase , decoder_input_ids=__UpperCamelCase , training=__UpperCamelCase ) @run_with_tf_optimizations(self.args.eager_mode , self.args.use_xla ) def encoder_forward(): return model(__UpperCamelCase , training=__UpperCamelCase ) A = encoder_decoder_forward if config.is_encoder_decoder else encoder_forward return _inference def __UpperCamelCase ( self : Tuple , __UpperCamelCase : str , __UpperCamelCase : int , __UpperCamelCase : int ) -> Callable[[], None]: A = self.config_dict[model_name] if self.args.eager_mode is not False: raise ValueError('Training cannot be done in eager mode. Please make sure that `args.eager_mode = False`.' ) if self.args.fpaa: raise NotImplementedError('Mixed precision is currently not supported.' ) A = ( hasattr(__UpperCamelCase , 'architectures' ) and isinstance(config.architectures , __UpperCamelCase ) and len(config.architectures ) > 0 ) if not self.args.only_pretrain_model and has_model_class_in_config: try: A = 'TF' + config.architectures[0] # prepend 'TF' for tensorflow model A = __import__('transformers' , fromlist=[model_class] ) A = getattr(__UpperCamelCase , __UpperCamelCase ) A = model_cls(__UpperCamelCase ) except ImportError: raise ImportError( f'''{model_class} does not exist. If you just want to test the pretrained model, you might want to''' ' set `--only_pretrain_model` or `args.only_pretrain_model=True`.' ) else: A = TF_MODEL_WITH_LM_HEAD_MAPPING[config.__class__](__UpperCamelCase ) # encoder-decoder has vocab size saved differently A = config.vocab_size if hasattr(__UpperCamelCase , 'vocab_size' ) else config.encoder.vocab_size A = random_input_ids(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) @run_with_tf_optimizations(self.args.eager_mode , self.args.use_xla ) def encoder_decoder_train(): A = model(__UpperCamelCase , decoder_input_ids=__UpperCamelCase , labels=__UpperCamelCase , training=__UpperCamelCase )[0] A = tf.gradients(__UpperCamelCase , model.trainable_variables ) return gradients @run_with_tf_optimizations(self.args.eager_mode , self.args.use_xla ) def encoder_train(): A = model(__UpperCamelCase , labels=__UpperCamelCase , training=__UpperCamelCase )[0] A = tf.gradients(__UpperCamelCase , model.trainable_variables ) return gradients A = encoder_decoder_train if config.is_encoder_decoder else encoder_train return _train def __UpperCamelCase ( self : Optional[Any] , __UpperCamelCase : List[str] ) -> float: with self.args.strategy.scope(): try: if self.args.is_tpu or self.args.use_xla: # run additional 10 times to stabilize compilation for tpu logger.info('Do inference on TPU. Running model 5 times to stabilize compilation' ) timeit.repeat(__UpperCamelCase , repeat=1 , number=5 ) # as written in https://docs.python.org/2/library/timeit.html#timeit.Timer.repeat, min should be taken rather than the average A = timeit.repeat( __UpperCamelCase , repeat=self.args.repeat , number=10 , ) return min(__UpperCamelCase ) / 1_0.0 except ResourceExhaustedError as e: self.print_fn(f'''Doesn\'t fit on GPU. {e}''' ) def __UpperCamelCase ( self : Dict , __UpperCamelCase : Callable[[], None] ) -> [Memory, MemorySummary]: logger.info( 'Note that TensorFlow allocates more memory than ' 'it might need to speed up computation. ' 'The memory reported here corresponds to the memory ' 'reported by `nvidia-smi`, which can vary depending ' 'on total available memory on the GPU that is used.' ) with self.args.strategy.scope(): try: if self.args.trace_memory_line_by_line: if not self.args.eager_mode: raise ValueError( '`args.eager_mode` is set to `False`. Make sure to run model in eager mode to measure memory' ' consumption line by line.' ) A = start_memory_tracing('transformers' ) if self.args.is_tpu: # tpu raise NotImplementedError( 'Memory Benchmarking is currently not implemented for TPU. Please disable memory benchmarking' ' with `args.memory=False`' ) elif self.args.is_gpu: # gpu if not is_pyanvml_available(): logger.warning( 'py3nvml not installed, we won\'t log GPU memory usage. ' 'Install py3nvml (pip install py3nvml) to log information about GPU.' ) A = 'N/A' else: logger.info( 'Measuring total GPU usage on GPU device. Make sure to not have additional processes' ' running on the same GPU.' ) # init nvml nvml.nvmlInit() func() A = nvml.nvmlDeviceGetHandleByIndex(self.args.device_idx ) A = nvml.nvmlDeviceGetMemoryInfo(__UpperCamelCase ) A = meminfo.used A = Memory(__UpperCamelCase ) # shutdown nvml nvml.nvmlShutdown() else: # cpu if self.args.trace_memory_line_by_line: logger.info( 'When enabling line by line tracing, the max peak memory for CPU is inaccurate in' ' TensorFlow.' ) A = None else: A = measure_peak_memory_cpu(__UpperCamelCase ) A = Memory(__UpperCamelCase ) if isinstance(__UpperCamelCase , __UpperCamelCase ) else memory_bytes if self.args.trace_memory_line_by_line: A = stop_memory_tracing(__UpperCamelCase ) if memory is None: A = summary.total else: A = None return memory, summary except ResourceExhaustedError as e: self.print_fn(f'''Doesn\'t fit on GPU. {e}''' ) return "N/A", None
106
import os from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils import AddedToken from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_fnet import FNetTokenizer else: lowerCamelCase__ : Optional[Any] = None lowerCamelCase__ : List[str] = logging.get_logger(__name__) lowerCamelCase__ : List[str] = {'vocab_file': 'spiece.model', 'tokenizer_file': 'tokenizer.json'} lowerCamelCase__ : List[str] = { 'vocab_file': { 'google/fnet-base': 'https://huggingface.co/google/fnet-base/resolve/main/spiece.model', 'google/fnet-large': 'https://huggingface.co/google/fnet-large/resolve/main/spiece.model', }, 'tokenizer_file': { 'google/fnet-base': 'https://huggingface.co/google/fnet-base/resolve/main/tokenizer.json', 'google/fnet-large': 'https://huggingface.co/google/fnet-large/resolve/main/tokenizer.json', }, } lowerCamelCase__ : Optional[Any] = { 'google/fnet-base': 512, 'google/fnet-large': 512, } lowerCamelCase__ : List[Any] = '▁' class lowerCamelCase_ ( _SCREAMING_SNAKE_CASE ): '''simple docstring''' lowercase_ = VOCAB_FILES_NAMES lowercase_ = PRETRAINED_VOCAB_FILES_MAP lowercase_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowercase_ = ["input_ids", "token_type_ids"] lowercase_ = FNetTokenizer def __init__( self : List[Any] , _lowerCAmelCase : Dict=None , _lowerCAmelCase : Dict=None , _lowerCAmelCase : List[str]=False , _lowerCAmelCase : Optional[Any]=True , _lowerCAmelCase : Tuple=True , _lowerCAmelCase : List[Any]="<unk>" , _lowerCAmelCase : Optional[Any]="[SEP]" , _lowerCAmelCase : Optional[Any]="<pad>" , _lowerCAmelCase : Optional[int]="[CLS]" , _lowerCAmelCase : Optional[Any]="[MASK]" , **_lowerCAmelCase : Any , ): # Mask token behave like a normal word, i.e. include the space before it and # is included in the raw text, there should be a match in a non-normalized sentence. SCREAMING_SNAKE_CASE_ = ( AddedToken(_lowerCAmelCase , lstrip=_lowerCAmelCase , rstrip=_lowerCAmelCase , normalized=_lowerCAmelCase ) if isinstance(_lowerCAmelCase , _lowerCAmelCase ) else mask_token ) super().__init__( _lowerCAmelCase , tokenizer_file=_lowerCAmelCase , do_lower_case=_lowerCAmelCase , remove_space=_lowerCAmelCase , keep_accents=_lowerCAmelCase , unk_token=_lowerCAmelCase , sep_token=_lowerCAmelCase , pad_token=_lowerCAmelCase , cls_token=_lowerCAmelCase , mask_token=_lowerCAmelCase , **_lowerCAmelCase , ) SCREAMING_SNAKE_CASE_ = do_lower_case SCREAMING_SNAKE_CASE_ = remove_space SCREAMING_SNAKE_CASE_ = keep_accents SCREAMING_SNAKE_CASE_ = vocab_file SCREAMING_SNAKE_CASE_ = False if not self.vocab_file else True def lowerCAmelCase_ ( self : Any , _lowerCAmelCase : List[int] , _lowerCAmelCase : Optional[List[int]] = None ): SCREAMING_SNAKE_CASE_ = [self.sep_token_id] SCREAMING_SNAKE_CASE_ = [self.cls_token_id] if token_ids_a is None: return cls + token_ids_a + sep return cls + token_ids_a + sep + token_ids_a + sep def lowerCAmelCase_ ( self : Optional[int] , _lowerCAmelCase : List[int] , _lowerCAmelCase : Optional[List[int]] = None ): SCREAMING_SNAKE_CASE_ = [self.sep_token_id] SCREAMING_SNAKE_CASE_ = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def lowerCAmelCase_ ( self : Optional[Any] , _lowerCAmelCase : str , _lowerCAmelCase : Optional[str] = None ): if not os.path.isdir(_lowerCAmelCase ): logger.error(F"Vocabulary path ({save_directory}) should be a directory" ) return SCREAMING_SNAKE_CASE_ = os.path.join( _lowerCAmelCase , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(_lowerCAmelCase ): copyfile(self.vocab_file , _lowerCAmelCase ) return (out_vocab_file,)
31
0
'''simple docstring''' def _SCREAMING_SNAKE_CASE ( __snake_case : int = 4_0_0_0_0_0_0 ): _A = [] _A , _A = 0, 1 while b <= n: if b % 2 == 0: even_fibs.append(__snake_case ) _A , _A = b, a + b return sum(__snake_case ) if __name__ == "__main__": print(F'''{solution() = }''')
107
from __future__ import annotations from collections.abc import Generator def UpperCAmelCase_ ( ) -> Generator[int, None, None]: SCREAMING_SNAKE_CASE_ = {} SCREAMING_SNAKE_CASE_ = 2 while True: SCREAMING_SNAKE_CASE_ = factor_map.pop(__UpperCAmelCase , __UpperCAmelCase ) if factor: SCREAMING_SNAKE_CASE_ = factor + prime while x in factor_map: x += factor SCREAMING_SNAKE_CASE_ = factor else: SCREAMING_SNAKE_CASE_ = prime yield prime prime += 1 def UpperCAmelCase_ ( __UpperCAmelCase : float = 1E10 ) -> int: SCREAMING_SNAKE_CASE_ = sieve() SCREAMING_SNAKE_CASE_ = 1 while True: SCREAMING_SNAKE_CASE_ = next(__UpperCAmelCase ) if (2 * prime * n) > limit: return n # Ignore the next prime as the reminder will be 2. next(__UpperCAmelCase ) n += 2 if __name__ == "__main__": print(solution())
31
0
from collections.abc import Iterable from typing import Any class SCREAMING_SNAKE_CASE__ : '''simple docstring''' def __init__( self : int , lowerCamelCase : int | None = None ) -> Union[str, Any]: """simple docstring""" _UpperCAmelCase = value _UpperCAmelCase = None # Added in order to delete a node easier _UpperCAmelCase = None _UpperCAmelCase = None def __repr__( self : Any ) -> str: """simple docstring""" from pprint import pformat if self.left is None and self.right is None: return str(self.value ) return pformat({f"""{self.value}""": (self.left, self.right)} , indent=1 ) class SCREAMING_SNAKE_CASE__ : '''simple docstring''' def __init__( self : List[Any] , lowerCamelCase : Node | None = None ) -> Dict: """simple docstring""" _UpperCAmelCase = root def __str__( self : Union[str, Any] ) -> str: """simple docstring""" return str(self.root ) def lowerCamelCase ( self : Any , lowerCamelCase : Node , lowerCamelCase : Node | None ) -> None: """simple docstring""" if new_children is not None: # reset its kids _UpperCAmelCase = node.parent if node.parent is not None: # reset its parent if self.is_right(lowerCamelCase ): # If it is the right children _UpperCAmelCase = new_children else: _UpperCAmelCase = new_children else: _UpperCAmelCase = new_children def lowerCamelCase ( self : Optional[Any] , lowerCamelCase : Node ) -> bool: """simple docstring""" if node.parent and node.parent.right: return node == node.parent.right return False def lowerCamelCase ( self : int ) -> bool: """simple docstring""" return self.root is None def lowerCamelCase ( self : List[str] , lowerCamelCase : int ) -> None: """simple docstring""" _UpperCAmelCase = Node(lowerCamelCase ) # create a new Node if self.empty(): # if Tree is empty _UpperCAmelCase = new_node # set its root else: # Tree is not empty _UpperCAmelCase = self.root # from root if parent_node is None: return while True: # While we don't get to a leaf if value < parent_node.value: # We go left if parent_node.left is None: _UpperCAmelCase = new_node # We insert the new node in a leaf break else: _UpperCAmelCase = parent_node.left else: if parent_node.right is None: _UpperCAmelCase = new_node break else: _UpperCAmelCase = parent_node.right _UpperCAmelCase = parent_node def lowerCamelCase ( self : int , *lowerCamelCase : List[str] ) -> None: """simple docstring""" for value in values: self.__insert(lowerCamelCase ) def lowerCamelCase ( self : List[str] , lowerCamelCase : Optional[Any] ) -> Node | None: """simple docstring""" if self.empty(): raise IndexError("""Warning: Tree is empty! please use another.""" ) else: _UpperCAmelCase = self.root # use lazy evaluation here to avoid NoneType Attribute error while node is not None and node.value is not value: _UpperCAmelCase = node.left if value < node.value else node.right return node def lowerCamelCase ( self : str , lowerCamelCase : Node | None = None ) -> Node | None: """simple docstring""" if node is None: if self.root is None: return None _UpperCAmelCase = self.root if not self.empty(): while node.right is not None: _UpperCAmelCase = node.right return node def lowerCamelCase ( self : Any , lowerCamelCase : Node | None = None ) -> Node | None: """simple docstring""" if node is None: _UpperCAmelCase = self.root if self.root is None: return None if not self.empty(): _UpperCAmelCase = self.root while node.left is not None: _UpperCAmelCase = node.left return node def lowerCamelCase ( self : Any , lowerCamelCase : int ) -> None: """simple docstring""" _UpperCAmelCase = self.search(lowerCamelCase ) # Look for the node with that label if node is not None: if node.left is None and node.right is None: # If it has no children self.__reassign_nodes(lowerCamelCase , lowerCamelCase ) elif node.left is None: # Has only right children self.__reassign_nodes(lowerCamelCase , node.right ) elif node.right is None: # Has only left children self.__reassign_nodes(lowerCamelCase , node.left ) else: _UpperCAmelCase = self.get_max( node.left ) # Gets the max value of the left branch self.remove(tmp_node.value ) # type: ignore _UpperCAmelCase = ( tmp_node.value # type: ignore ) # Assigns the value to the node to delete and keep tree structure def lowerCamelCase ( self : Optional[Any] , lowerCamelCase : Node | None ) -> Iterable: """simple docstring""" if node is not None: yield node # Preorder Traversal yield from self.preorder_traverse(node.left ) yield from self.preorder_traverse(node.right ) def lowerCamelCase ( self : Optional[Any] , lowerCamelCase : Any=None ) -> Any: """simple docstring""" if traversal_function is None: return self.preorder_traverse(self.root ) else: return traversal_function(self.root ) def lowerCamelCase ( self : Any , lowerCamelCase : list , lowerCamelCase : Node | None ) -> None: """simple docstring""" if node: self.inorder(lowerCamelCase , node.left ) arr.append(node.value ) self.inorder(lowerCamelCase , node.right ) def lowerCamelCase ( self : List[str] , lowerCamelCase : int , lowerCamelCase : Node ) -> int: """simple docstring""" _UpperCAmelCase = [] self.inorder(lowerCamelCase , lowerCamelCase ) # append all values to list using inorder traversal return arr[k - 1] def _SCREAMING_SNAKE_CASE ( __snake_case ) -> list[Node]: _UpperCAmelCase = [] if curr_node is not None: _UpperCAmelCase = postorder(curr_node.left ) + postorder(curr_node.right ) + [curr_node] return node_list def _SCREAMING_SNAKE_CASE ( ) -> None: _UpperCAmelCase = (8, 3, 6, 1, 1_0, 1_4, 1_3, 4, 7) _UpperCAmelCase = BinarySearchTree() for i in testlist: t.insert(__snake_case ) # Prints all the elements of the list in order traversal print(__snake_case ) if t.search(6 ) is not None: print("""The value 6 exists""" ) else: print("""The value 6 doesn't exist""" ) if t.search(-1 ) is not None: print("""The value -1 exists""" ) else: print("""The value -1 doesn't exist""" ) if not t.empty(): print("""Max Value: """ , t.get_max().value ) # type: ignore print("""Min Value: """ , t.get_min().value ) # type: ignore for i in testlist: t.remove(__snake_case ) print(__snake_case ) if __name__ == "__main__": import doctest doctest.testmod(verbose=True)
108
import numpy as np import torch from torch.utils.data import DataLoader from accelerate.utils.dataclasses import DistributedType class lowerCamelCase_ : '''simple docstring''' def __init__( self : Any , _lowerCAmelCase : Optional[int]=2 , _lowerCAmelCase : Any=3 , _lowerCAmelCase : Tuple=64 , _lowerCAmelCase : List[str]=None ): SCREAMING_SNAKE_CASE_ = np.random.default_rng(_lowerCAmelCase ) SCREAMING_SNAKE_CASE_ = length SCREAMING_SNAKE_CASE_ = rng.normal(size=(length,) ).astype(np.floataa ) SCREAMING_SNAKE_CASE_ = a * self.x + b + rng.normal(scale=0.1 , size=(length,) ).astype(np.floataa ) def __len__( self : Optional[int] ): return self.length def __getitem__( self : str , _lowerCAmelCase : Union[str, Any] ): return {"x": self.x[i], "y": self.y[i]} class lowerCamelCase_ ( torch.nn.Module ): '''simple docstring''' def __init__( self : Tuple , _lowerCAmelCase : Dict=0 , _lowerCAmelCase : List[str]=0 , _lowerCAmelCase : str=False ): super().__init__() SCREAMING_SNAKE_CASE_ = torch.nn.Parameter(torch.tensor([2, 3] ).float() ) SCREAMING_SNAKE_CASE_ = torch.nn.Parameter(torch.tensor([2, 3] ).float() ) SCREAMING_SNAKE_CASE_ = True def lowerCAmelCase_ ( self : Dict , _lowerCAmelCase : Union[str, Any]=None ): if self.first_batch: print(F"Model dtype: {self.a.dtype}, {self.b.dtype}. Input dtype: {x.dtype}" ) SCREAMING_SNAKE_CASE_ = False return x * self.a[0] + self.b[0] class lowerCamelCase_ ( torch.nn.Module ): '''simple docstring''' def __init__( self : Optional[int] , _lowerCAmelCase : Any=0 , _lowerCAmelCase : Any=0 , _lowerCAmelCase : Optional[Any]=False ): super().__init__() SCREAMING_SNAKE_CASE_ = torch.nn.Parameter(torch.tensor(_lowerCAmelCase ).float() ) SCREAMING_SNAKE_CASE_ = torch.nn.Parameter(torch.tensor(_lowerCAmelCase ).float() ) SCREAMING_SNAKE_CASE_ = True def lowerCAmelCase_ ( self : Optional[Any] , _lowerCAmelCase : Optional[int]=None ): if self.first_batch: print(F"Model dtype: {self.a.dtype}, {self.b.dtype}. Input dtype: {x.dtype}" ) SCREAMING_SNAKE_CASE_ = False return x * self.a + self.b def UpperCAmelCase_ ( __UpperCAmelCase : Dict , __UpperCAmelCase : int = 16 ) -> Union[str, Any]: from datasets import load_dataset from transformers import AutoTokenizer SCREAMING_SNAKE_CASE_ = AutoTokenizer.from_pretrained('bert-base-cased' ) SCREAMING_SNAKE_CASE_ = {'train': 'tests/test_samples/MRPC/train.csv', 'validation': 'tests/test_samples/MRPC/dev.csv'} SCREAMING_SNAKE_CASE_ = load_dataset('csv' , data_files=__UpperCAmelCase ) SCREAMING_SNAKE_CASE_ = datasets['train'].unique('label' ) SCREAMING_SNAKE_CASE_ = {v: i for i, v in enumerate(__UpperCAmelCase )} def tokenize_function(__UpperCAmelCase : Optional[int] ): # max_length=None => use the model max length (it's actually the default) SCREAMING_SNAKE_CASE_ = tokenizer( examples['sentence1'] , examples['sentence2'] , truncation=__UpperCAmelCase , max_length=__UpperCAmelCase , padding='max_length' ) if "label" in examples: SCREAMING_SNAKE_CASE_ = [label_to_id[l] for l in examples['label']] return outputs # Apply the method we just defined to all the examples in all the splits of the dataset SCREAMING_SNAKE_CASE_ = datasets.map( __UpperCAmelCase , batched=__UpperCAmelCase , remove_columns=['sentence1', 'sentence2', 'label'] , ) def collate_fn(__UpperCAmelCase : Dict ): # On TPU it's best to pad everything to the same length or training will be very slow. if accelerator.distributed_type == DistributedType.TPU: return tokenizer.pad(__UpperCAmelCase , padding='max_length' , max_length=1_28 , return_tensors='pt' ) return tokenizer.pad(__UpperCAmelCase , padding='longest' , return_tensors='pt' ) # Instantiate dataloaders. SCREAMING_SNAKE_CASE_ = DataLoader(tokenized_datasets['train'] , shuffle=__UpperCAmelCase , collate_fn=__UpperCAmelCase , batch_size=2 ) SCREAMING_SNAKE_CASE_ = DataLoader(tokenized_datasets['validation'] , shuffle=__UpperCAmelCase , collate_fn=__UpperCAmelCase , batch_size=1 ) return train_dataloader, eval_dataloader
31
0
'''simple docstring''' from __future__ import annotations import requests a = set( "approved_at_utc approved_by author_flair_background_color\nauthor_flair_css_class author_flair_richtext author_flair_template_id author_fullname\nauthor_premium can_mod_post category clicked content_categories created_utc downs\nedited gilded gildings hidden hide_score is_created_from_ads_ui is_meta\nis_original_content is_reddit_media_domain is_video link_flair_css_class\nlink_flair_richtext link_flair_text link_flair_text_color media_embed mod_reason_title\nname permalink pwls quarantine saved score secure_media secure_media_embed selftext\nsubreddit subreddit_name_prefixed subreddit_type thumbnail title top_awarded_type\ntotal_awards_received ups upvote_ratio url user_reports".split() ) def __magic_name__ ( __UpperCAmelCase , __UpperCAmelCase = 1 , __UpperCAmelCase = "new" , __UpperCAmelCase = None ) -> dict: '''simple docstring''' __SCREAMING_SNAKE_CASE = wanted_data or [] if invalid_search_terms := ", ".join(sorted(set(__UpperCAmelCase ) - valid_terms ) ): __SCREAMING_SNAKE_CASE = f"""Invalid search term: {invalid_search_terms}""" raise ValueError(__UpperCAmelCase ) __SCREAMING_SNAKE_CASE = requests.get( f"""https://reddit.com/r/{subreddit}/{age}.json?limit={limit}""" , headers={"""User-agent""": """A random string"""} , ) if response.status_code == 429: raise requests.HTTPError __SCREAMING_SNAKE_CASE = response.json() if not wanted_data: return {id_: data["data"]["children"][id_] for id_ in range(__UpperCAmelCase )} __SCREAMING_SNAKE_CASE = {} for id_ in range(__UpperCAmelCase ): __SCREAMING_SNAKE_CASE = { item: data["""data"""]["""children"""][id_]["""data"""][item] for item in wanted_data } return data_dict if __name__ == "__main__": # If you get Error 429, that means you are rate limited.Try after some time print(get_subreddit_data("learnpython", wanted_data=["title", "url", "selftext"]))
109
import warnings from ...utils import logging from .image_processing_layoutlmva import LayoutLMvaImageProcessor lowerCamelCase__ : Union[str, Any] = logging.get_logger(__name__) class lowerCamelCase_ ( _SCREAMING_SNAKE_CASE ): '''simple docstring''' def __init__( self : Dict , *_lowerCAmelCase : Optional[Any] , **_lowerCAmelCase : Any ): warnings.warn( 'The class LayoutLMv2FeatureExtractor is deprecated and will be removed in version 5 of Transformers.' ' Please use LayoutLMv2ImageProcessor instead.' , _lowerCAmelCase , ) super().__init__(*_lowerCAmelCase , **_lowerCAmelCase )
31
0
"""simple docstring""" import inspect import re from transformers.utils import direct_transformers_import # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_config_docstrings.py UpperCamelCase__ = 'src/transformers' # This is to make sure the transformers module imported is the one in the repo. UpperCamelCase__ = direct_transformers_import(PATH_TO_TRANSFORMERS) UpperCamelCase__ = transformers.models.auto.configuration_auto.CONFIG_MAPPING # Regex pattern used to find the checkpoint mentioned in the docstring of `config_class`. # For example, `[bert-base-uncased](https://huggingface.co/bert-base-uncased)` UpperCamelCase__ = re.compile(r'\[(.+?)\]\((https://huggingface\.co/.+?)\)') UpperCamelCase__ = { 'DecisionTransformerConfig', 'EncoderDecoderConfig', 'MusicgenConfig', 'RagConfig', 'SpeechEncoderDecoderConfig', 'TimmBackboneConfig', 'VisionEncoderDecoderConfig', 'VisionTextDualEncoderConfig', 'LlamaConfig', } def lowerCamelCase ( _snake_case ): UpperCAmelCase__ : int = None # source code of `config_class` UpperCAmelCase__ : List[str] = inspect.getsource(_snake_case ) UpperCAmelCase__ : Tuple = _re_checkpoint.findall(_snake_case ) # Each `checkpoint` is a tuple of a checkpoint name and a checkpoint link. # For example, `('bert-base-uncased', 'https://huggingface.co/bert-base-uncased')` for ckpt_name, ckpt_link in checkpoints: # allow the link to end with `/` if ckpt_link.endswith('/' ): UpperCAmelCase__ : Any = ckpt_link[:-1] # verify the checkpoint name corresponds to the checkpoint link UpperCAmelCase__ : List[str] = F'''https://huggingface.co/{ckpt_name}''' if ckpt_link == ckpt_link_from_name: UpperCAmelCase__ : Dict = ckpt_name break return checkpoint def lowerCamelCase ( ): UpperCAmelCase__ : Dict = [] for config_class in list(CONFIG_MAPPING.values() ): # Skip deprecated models if "models.deprecated" in config_class.__module__: continue UpperCAmelCase__ : int = get_checkpoint_from_config_class(_snake_case ) UpperCAmelCase__ : Dict = config_class.__name__ if checkpoint is None and name not in CONFIG_CLASSES_TO_IGNORE_FOR_DOCSTRING_CHECKPOINT_CHECK: configs_without_checkpoint.append(_snake_case ) if len(_snake_case ) > 0: UpperCAmelCase__ : Dict = '\n'.join(sorted(_snake_case ) ) raise ValueError(F'''The following configurations don\'t contain any valid checkpoint:\n{message}''' ) if __name__ == "__main__": check_config_docstrings_have_checkpoints()
110
def UpperCAmelCase_ ( ) -> list[list[int]]: return [list(range(10_00 - i , -10_00 - i , -1 ) ) for i in range(10_00 )] lowerCamelCase__ : List[Any] = generate_large_matrix() lowerCamelCase__ : List[Any] = ( [[4, 3, 2, -1], [3, 2, 1, -1], [1, 1, -1, -2], [-1, -1, -2, -3]], [[3, 2], [1, 0]], [[7, 7, 6]], [[7, 7, 6], [-1, -2, -3]], grid, ) def UpperCAmelCase_ ( __UpperCAmelCase : list[list[int]] ) -> None: assert all(row == sorted(__UpperCAmelCase , reverse=__UpperCAmelCase ) for row in grid ) assert all(list(__UpperCAmelCase ) == sorted(__UpperCAmelCase , reverse=__UpperCAmelCase ) for col in zip(*__UpperCAmelCase ) ) def UpperCAmelCase_ ( __UpperCAmelCase : list[int] ) -> int: SCREAMING_SNAKE_CASE_ = 0 SCREAMING_SNAKE_CASE_ = len(__UpperCAmelCase ) - 1 # Edge cases such as no values or all numbers are negative. if not array or array[0] < 0: return 0 while right + 1 > left: SCREAMING_SNAKE_CASE_ = (left + right) // 2 SCREAMING_SNAKE_CASE_ = array[mid] # Num must be negative and the index must be greater than or equal to 0. if num < 0 and array[mid - 1] >= 0: return mid if num >= 0: SCREAMING_SNAKE_CASE_ = mid + 1 else: SCREAMING_SNAKE_CASE_ = mid - 1 # No negative numbers so return the last index of the array + 1 which is the length. return len(__UpperCAmelCase ) def UpperCAmelCase_ ( __UpperCAmelCase : list[list[int]] ) -> int: SCREAMING_SNAKE_CASE_ = 0 SCREAMING_SNAKE_CASE_ = len(grid[0] ) for i in range(len(__UpperCAmelCase ) ): SCREAMING_SNAKE_CASE_ = find_negative_index(grid[i][:bound] ) total += bound return (len(__UpperCAmelCase ) * len(grid[0] )) - total def UpperCAmelCase_ ( __UpperCAmelCase : list[list[int]] ) -> int: return len([number for row in grid for number in row if number < 0] ) def UpperCAmelCase_ ( __UpperCAmelCase : list[list[int]] ) -> int: SCREAMING_SNAKE_CASE_ = 0 for row in grid: for i, number in enumerate(__UpperCAmelCase ): if number < 0: total += len(__UpperCAmelCase ) - i break return total def UpperCAmelCase_ ( ) -> None: from timeit import timeit print('Running benchmarks' ) SCREAMING_SNAKE_CASE_ = ( 'from __main__ import count_negatives_binary_search, ' 'count_negatives_brute_force, count_negatives_brute_force_with_break, grid' ) for func in ( "count_negatives_binary_search", # took 0.7727 seconds "count_negatives_brute_force_with_break", # took 4.6505 seconds "count_negatives_brute_force", # took 12.8160 seconds ): SCREAMING_SNAKE_CASE_ = timeit(f"{func}(grid=grid)" , setup=__UpperCAmelCase , number=5_00 ) print(f"{func}() took {time:0.4f} seconds" ) if __name__ == "__main__": import doctest doctest.testmod() benchmark()
31
0
from __future__ import annotations import unittest from transformers import AutoTokenizer, MBartConfig, is_tf_available from transformers.testing_utils import require_sentencepiece, require_tf, require_tokenizers, slow from transformers.utils import cached_property from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFAutoModelForSeqaSeqLM, TFMBartForConditionalGeneration, TFMBartModel @require_tf class _lowercase : lowercase = MBartConfig lowercase = {} lowercase = 'gelu' def __init__( self : List[Any] , snake_case : List[str] , snake_case : List[Any]=1_3 , snake_case : List[str]=7 , snake_case : List[str]=True , snake_case : Optional[Any]=False , snake_case : Dict=9_9 , snake_case : str=3_2 , snake_case : int=2 , snake_case : Any=4 , snake_case : List[Any]=3_7 , snake_case : List[str]=0.1 , snake_case : Union[str, Any]=0.1 , snake_case : int=2_0 , snake_case : Optional[Any]=2 , snake_case : Optional[Any]=1 , snake_case : Dict=0 , ) -> Dict: """simple docstring""" UpperCamelCase_ : str = parent UpperCamelCase_ : Any = batch_size UpperCamelCase_ : int = seq_length UpperCamelCase_ : int = is_training UpperCamelCase_ : Optional[int] = use_labels UpperCamelCase_ : Dict = vocab_size UpperCamelCase_ : List[str] = hidden_size UpperCamelCase_ : Optional[Any] = num_hidden_layers UpperCamelCase_ : List[Any] = num_attention_heads UpperCamelCase_ : List[str] = intermediate_size UpperCamelCase_ : Optional[int] = hidden_dropout_prob UpperCamelCase_ : List[Any] = attention_probs_dropout_prob UpperCamelCase_ : Dict = max_position_embeddings UpperCamelCase_ : Optional[Any] = eos_token_id UpperCamelCase_ : Optional[int] = pad_token_id UpperCamelCase_ : Union[str, Any] = bos_token_id def SCREAMING_SNAKE_CASE__ ( self : Tuple ) -> Dict: """simple docstring""" UpperCamelCase_ : Optional[Any] = ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size ) UpperCamelCase_ : Union[str, Any] = tf.expand_dims(tf.constant([self.eos_token_id] * self.batch_size ) , 1 ) UpperCamelCase_ : Tuple = tf.concat([input_ids, eos_tensor] , axis=1 ) UpperCamelCase_ : Any = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) UpperCamelCase_ : Optional[Any] = self.config_cls( vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_ids=[2] , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.pad_token_id , **self.config_updates , ) UpperCamelCase_ : int = prepare_mbart_inputs_dict(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) return config, inputs_dict def SCREAMING_SNAKE_CASE__ ( self : str , snake_case : Tuple , snake_case : int ) -> List[str]: """simple docstring""" UpperCamelCase_ : Optional[int] = TFMBartModel(config=_lowerCAmelCase ).get_decoder() UpperCamelCase_ : Optional[int] = inputs_dict['input_ids'] UpperCamelCase_ : Tuple = input_ids[:1, :] UpperCamelCase_ : List[Any] = inputs_dict['attention_mask'][:1, :] UpperCamelCase_ : Tuple = inputs_dict['head_mask'] UpperCamelCase_ : Optional[int] = 1 # first forward pass UpperCamelCase_ : str = model(_lowerCAmelCase , attention_mask=_lowerCAmelCase , head_mask=_lowerCAmelCase , use_cache=_lowerCAmelCase ) UpperCamelCase_, UpperCamelCase_ : Tuple = outputs.to_tuple() UpperCamelCase_ : Optional[int] = past_key_values[1] def __lowercase ( lowerCamelCase : Optional[Any] , lowerCamelCase : Dict , lowerCamelCase : Union[str, Any] , lowerCamelCase : Dict=None , lowerCamelCase : Union[str, Any]=None , lowerCamelCase : Optional[int]=None , lowerCamelCase : Any=None , lowerCamelCase : Optional[Any]=None , ): if attention_mask is None: UpperCamelCase_ : Optional[int] = tf.cast(tf.math.not_equal(__UpperCAmelCase , config.pad_token_id ) , tf.inta ) if decoder_attention_mask is None: UpperCamelCase_ : int = tf.concat( [ tf.ones(decoder_input_ids[:, :1].shape , dtype=tf.inta ), tf.cast(tf.math.not_equal(decoder_input_ids[:, 1:] , config.pad_token_id ) , tf.inta ), ] , axis=-1 , ) if head_mask is None: UpperCamelCase_ : Union[str, Any] = tf.ones((config.encoder_layers, config.encoder_attention_heads) ) if decoder_head_mask is None: UpperCamelCase_ : Any = tf.ones((config.decoder_layers, config.decoder_attention_heads) ) if cross_attn_head_mask is None: UpperCamelCase_ : int = tf.ones((config.decoder_layers, config.decoder_attention_heads) ) return { "input_ids": input_ids, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "decoder_attention_mask": decoder_attention_mask, "head_mask": head_mask, "decoder_head_mask": decoder_head_mask, "cross_attn_head_mask": cross_attn_head_mask, } @require_tf class _lowercase ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , unittest.TestCase ): lowercase = (TFMBartForConditionalGeneration, TFMBartModel) if is_tf_available() else () lowercase = (TFMBartForConditionalGeneration,) if is_tf_available() else () lowercase = ( { 'conversational': TFMBartForConditionalGeneration, 'feature-extraction': TFMBartModel, 'summarization': TFMBartForConditionalGeneration, 'text2text-generation': TFMBartForConditionalGeneration, 'translation': TFMBartForConditionalGeneration, } if is_tf_available() else {} ) lowercase = True lowercase = False lowercase = False def SCREAMING_SNAKE_CASE__ ( self : Optional[Any] , snake_case : Dict , snake_case : Any , snake_case : List[str] , snake_case : Optional[int] , snake_case : str ) -> Dict: """simple docstring""" if pipeline_test_casse_name != "FeatureExtractionPipelineTests": # Exception encountered when calling layer '...' return True return False def SCREAMING_SNAKE_CASE__ ( self : List[Any] ) -> Optional[int]: """simple docstring""" UpperCamelCase_ : List[Any] = TFMBartModelTester(self ) UpperCamelCase_ : Union[str, Any] = ConfigTester(self , config_class=_lowerCAmelCase ) def SCREAMING_SNAKE_CASE__ ( self : Optional[Any] ) -> List[str]: """simple docstring""" self.config_tester.run_common_tests() def SCREAMING_SNAKE_CASE__ ( self : Optional[Any] ) -> Optional[Any]: """simple docstring""" UpperCamelCase_ : int = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.check_decoder_model_past_large_inputs(*_lowerCAmelCase ) @require_sentencepiece @require_tokenizers @require_tf class _lowercase ( unittest.TestCase ): lowercase = [ ' UN Chief Says There Is No Military Solution in Syria', ] lowercase = [ 'Şeful ONU declară că nu există o soluţie militară în Siria', ] lowercase = 'facebook/mbart-large-en-ro' @cached_property def SCREAMING_SNAKE_CASE__ ( self : Tuple ) -> Optional[int]: """simple docstring""" return AutoTokenizer.from_pretrained(self.model_name ) @cached_property def SCREAMING_SNAKE_CASE__ ( self : Optional[int] ) -> List[str]: """simple docstring""" UpperCamelCase_ : List[str] = TFAutoModelForSeqaSeqLM.from_pretrained(self.model_name ) return model def SCREAMING_SNAKE_CASE__ ( self : int , **snake_case : Optional[Any] ) -> Optional[Any]: """simple docstring""" UpperCamelCase_ : int = self.translate_src_text(**_lowerCAmelCase ) self.assertListEqual(self.expected_text , _lowerCAmelCase ) def SCREAMING_SNAKE_CASE__ ( self : str , **snake_case : Any ) -> Tuple: """simple docstring""" UpperCamelCase_ : Optional[Any] = self.tokenizer(self.src_text , **_lowerCAmelCase , return_tensors='tf' ) UpperCamelCase_ : Optional[int] = self.model.generate( model_inputs.input_ids , attention_mask=model_inputs.attention_mask , num_beams=2 ) UpperCamelCase_ : Optional[int] = self.tokenizer.batch_decode(_lowerCAmelCase , skip_special_tokens=_lowerCAmelCase ) return generated_words @slow def SCREAMING_SNAKE_CASE__ ( self : Any ) -> int: """simple docstring""" self._assert_generated_batch_equal_expected()
417
from typing import TYPE_CHECKING from ....utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available lowerCamelCase__ : Optional[int] = {'configuration_mmbt': ['MMBTConfig']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase__ : Any = ['MMBTForClassification', 'MMBTModel', 'ModalEmbeddings'] if TYPE_CHECKING: from .configuration_mmbt import MMBTConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mmbt import MMBTForClassification, MMBTModel, ModalEmbeddings else: import sys lowerCamelCase__ : str = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
31
0
from __future__ import annotations def a_ (__A , __A , __A , __A ) -> None: """simple docstring""" if (direction == 1 and array[indexa] > array[indexa]) or ( direction == 0 and array[indexa] < array[indexa] ): __a , __a : Dict = array[indexa], array[indexa] def a_ (__A , __A , __A , __A ) -> None: """simple docstring""" if length > 1: __a : Any = int(length / 2 ) for i in range(__UpperCAmelCase , low + middle ): comp_and_swap(__UpperCAmelCase , __UpperCAmelCase , i + middle , __UpperCAmelCase ) bitonic_merge(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) bitonic_merge(__UpperCAmelCase , low + middle , __UpperCAmelCase , __UpperCAmelCase ) def a_ (__A , __A , __A , __A ) -> None: """simple docstring""" if length > 1: __a : Union[str, Any] = int(length / 2 ) bitonic_sort(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , 1 ) bitonic_sort(__UpperCAmelCase , low + middle , __UpperCAmelCase , 0 ) bitonic_merge(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) if __name__ == "__main__": UpperCAmelCase__ = input('''Enter numbers separated by a comma:\n''').strip() UpperCAmelCase__ = [int(item.strip()) for item in user_input.split(''',''')] bitonic_sort(unsorted, 0, len(unsorted), 1) print('''\nSorted array in ascending order is: ''', end='''''') print(*unsorted, sep=''', ''') bitonic_merge(unsorted, 0, len(unsorted), 0) print('''Sorted array in descending order is: ''', end='''''') print(*unsorted, sep=''', ''')
351
import unittest from typing import Tuple import torch from diffusers.utils import floats_tensor, randn_tensor, torch_all_close, torch_device from diffusers.utils.testing_utils import require_torch @require_torch class lowerCamelCase_ : '''simple docstring''' @property def lowerCAmelCase_ ( self : Optional[Any] ): return self.get_dummy_input() @property def lowerCAmelCase_ ( self : Union[str, Any] ): if self.block_type == "down": return (4, 32, 16, 16) elif self.block_type == "mid": return (4, 32, 32, 32) elif self.block_type == "up": return (4, 32, 64, 64) raise ValueError(F"'{self.block_type}' is not a supported block_type. Set it to 'up', 'mid', or 'down'." ) def lowerCAmelCase_ ( self : List[str] , _lowerCAmelCase : Optional[Any]=True , _lowerCAmelCase : str=False , _lowerCAmelCase : Optional[int]=False , _lowerCAmelCase : Dict=False , ): SCREAMING_SNAKE_CASE_ = 4 SCREAMING_SNAKE_CASE_ = 32 SCREAMING_SNAKE_CASE_ = (32, 32) SCREAMING_SNAKE_CASE_ = torch.manual_seed(0 ) SCREAMING_SNAKE_CASE_ = torch.device(_lowerCAmelCase ) SCREAMING_SNAKE_CASE_ = (batch_size, num_channels) + sizes SCREAMING_SNAKE_CASE_ = randn_tensor(_lowerCAmelCase , generator=_lowerCAmelCase , device=_lowerCAmelCase ) SCREAMING_SNAKE_CASE_ = {'hidden_states': hidden_states} if include_temb: SCREAMING_SNAKE_CASE_ = 128 SCREAMING_SNAKE_CASE_ = randn_tensor((batch_size, temb_channels) , generator=_lowerCAmelCase , device=_lowerCAmelCase ) if include_res_hidden_states_tuple: SCREAMING_SNAKE_CASE_ = torch.manual_seed(1 ) SCREAMING_SNAKE_CASE_ = (randn_tensor(_lowerCAmelCase , generator=_lowerCAmelCase , device=_lowerCAmelCase ),) if include_encoder_hidden_states: SCREAMING_SNAKE_CASE_ = floats_tensor((batch_size, 32, 32) ).to(_lowerCAmelCase ) if include_skip_sample: SCREAMING_SNAKE_CASE_ = randn_tensor(((batch_size, 3) + sizes) , generator=_lowerCAmelCase , device=_lowerCAmelCase ) return dummy_input def lowerCAmelCase_ ( self : Optional[int] ): SCREAMING_SNAKE_CASE_ = { 'in_channels': 32, 'out_channels': 32, 'temb_channels': 128, } if self.block_type == "up": SCREAMING_SNAKE_CASE_ = 32 if self.block_type == "mid": init_dict.pop('out_channels' ) SCREAMING_SNAKE_CASE_ = self.dummy_input return init_dict, inputs_dict def lowerCAmelCase_ ( self : Dict , _lowerCAmelCase : Optional[Any] ): SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = self.prepare_init_args_and_inputs_for_common() SCREAMING_SNAKE_CASE_ = self.block_class(**_lowerCAmelCase ) unet_block.to(_lowerCAmelCase ) unet_block.eval() with torch.no_grad(): SCREAMING_SNAKE_CASE_ = unet_block(**_lowerCAmelCase ) if isinstance(_lowerCAmelCase , _lowerCAmelCase ): SCREAMING_SNAKE_CASE_ = output[0] self.assertEqual(output.shape , self.output_shape ) SCREAMING_SNAKE_CASE_ = output[0, -1, -3:, -3:] SCREAMING_SNAKE_CASE_ = torch.tensor(_lowerCAmelCase ).to(_lowerCAmelCase ) assert torch_all_close(output_slice.flatten() , _lowerCAmelCase , atol=5E-3 ) @unittest.skipIf(torch_device == 'mps' , 'Training is not supported in mps' ) def lowerCAmelCase_ ( self : Any ): SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = self.prepare_init_args_and_inputs_for_common() SCREAMING_SNAKE_CASE_ = self.block_class(**_lowerCAmelCase ) model.to(_lowerCAmelCase ) model.train() SCREAMING_SNAKE_CASE_ = model(**_lowerCAmelCase ) if isinstance(_lowerCAmelCase , _lowerCAmelCase ): SCREAMING_SNAKE_CASE_ = output[0] SCREAMING_SNAKE_CASE_ = torch.device(_lowerCAmelCase ) SCREAMING_SNAKE_CASE_ = randn_tensor(output.shape , device=_lowerCAmelCase ) SCREAMING_SNAKE_CASE_ = torch.nn.functional.mse_loss(_lowerCAmelCase , _lowerCAmelCase ) loss.backward()
31
0
'''simple docstring''' import multiprocessing import time from arguments import PretokenizationArguments from datasets import load_dataset from transformers import AutoTokenizer, HfArgumentParser def _lowerCAmelCase ( lowercase : Any ) ->Optional[int]: """simple docstring""" lowercase__ = {} lowercase__ = tokenizer(example['''content'''] , truncation=__UpperCAmelCase )['''input_ids'''] lowercase__ = len(example['''content'''] ) / len(output['''input_ids'''] ) return output _lowerCAmelCase = HfArgumentParser(PretokenizationArguments) _lowerCAmelCase = parser.parse_args() if args.num_workers is None: _lowerCAmelCase = multiprocessing.cpu_count() _lowerCAmelCase = AutoTokenizer.from_pretrained(args.tokenizer_dir) _lowerCAmelCase = time.time() _lowerCAmelCase = load_dataset(args.dataset_name, split="train") print(f'''Dataset loaded in {time.time()-t_start:.2f}s''') _lowerCAmelCase = time.time() _lowerCAmelCase = ds.map( tokenize, num_proc=args.num_workers, remove_columns=[ "repo_name", "path", "copies", "size", "content", "license", "hash", "line_mean", "line_max", "alpha_frac", "autogenerated", ], ) print(f'''Dataset tokenized in {time.time()-t_start:.2f}s''') _lowerCAmelCase = time.time() ds.push_to_hub(args.tokenized_data_repo) print(f'''Data pushed to the hub in {time.time()-t_start:.2f}s''')
161
import operator as op def UpperCAmelCase_ ( __UpperCAmelCase : str ) -> Any: SCREAMING_SNAKE_CASE_ = [] SCREAMING_SNAKE_CASE_ = lambda __UpperCAmelCase , __UpperCAmelCase : int(x / y ) # noqa: E731 integer division operation SCREAMING_SNAKE_CASE_ = { '^': op.pow, '*': op.mul, '/': div, '+': op.add, '-': op.sub, } # operators & their respective operation # print table header print('Symbol'.center(8 ) , 'Action'.center(12 ) , 'Stack' , sep=' | ' ) print('-' * (30 + len(__UpperCAmelCase )) ) for x in post_fix: if x.isdigit(): # if x in digit stack.append(__UpperCAmelCase ) # append x to stack # output in tabular format print(x.rjust(8 ) , ('push(' + x + ')').ljust(12 ) , ','.join(__UpperCAmelCase ) , sep=' | ' ) else: SCREAMING_SNAKE_CASE_ = stack.pop() # pop stack # output in tabular format print(''.rjust(8 ) , ('pop(' + b + ')').ljust(12 ) , ','.join(__UpperCAmelCase ) , sep=' | ' ) SCREAMING_SNAKE_CASE_ = stack.pop() # pop stack # output in tabular format print(''.rjust(8 ) , ('pop(' + a + ')').ljust(12 ) , ','.join(__UpperCAmelCase ) , sep=' | ' ) stack.append( str(opr[x](int(__UpperCAmelCase ) , int(__UpperCAmelCase ) ) ) ) # evaluate the 2 values popped from stack & push result to stack # output in tabular format print( x.rjust(8 ) , ('push(' + a + x + b + ')').ljust(12 ) , ','.join(__UpperCAmelCase ) , sep=' | ' , ) return int(stack[0] ) if __name__ == "__main__": lowerCamelCase__ : Tuple = input('\n\nEnter a Postfix Equation (space separated) = ').split(' ') print('\n\tResult = ', solve(Postfix))
31
0
"""simple docstring""" import warnings from ..trainer import Trainer from ..utils import logging A_ : Union[str, Any] =logging.get_logger(__name__) class __a ( _SCREAMING_SNAKE_CASE ): def __init__( self , a__=None , **a__ ): warnings.warn( '`SageMakerTrainer` is deprecated and will be removed in v5 of Transformers. You can use `Trainer` ' 'instead.' , _lowerCAmelCase , ) super().__init__(args=_lowerCAmelCase , **_lowerCAmelCase )
650
def UpperCAmelCase_ ( __UpperCAmelCase : int ) -> int: assert isinstance(__UpperCAmelCase , __UpperCAmelCase ), f"The input value of [n={number}] is not an integer" if number == 1: return 2 elif number < 1: SCREAMING_SNAKE_CASE_ = f"The input value of [n={number}] has to be > 0" raise ValueError(__UpperCAmelCase ) else: SCREAMING_SNAKE_CASE_ = sylvester(number - 1 ) SCREAMING_SNAKE_CASE_ = num - 1 SCREAMING_SNAKE_CASE_ = num return lower * upper + 1 if __name__ == "__main__": print(f'''The 8th number in Sylvester\'s sequence: {sylvester(8)}''')
31
0
"""simple docstring""" __SCREAMING_SNAKE_CASE : int = 8.314_4598 def lowerCAmelCase_( lowercase_ : float , lowercase_ : float ) -> float: if temperature < 0: raise Exception('''Temperature cannot be less than 0 K''' ) if molar_mass <= 0: raise Exception('''Molar mass cannot be less than or equal to 0 kg/mol''' ) else: return (3 * UNIVERSAL_GAS_CONSTANT * temperature / molar_mass) ** 0.5 if __name__ == "__main__": import doctest # run doctest doctest.testmod() # example __SCREAMING_SNAKE_CASE : str = 3_0_0 __SCREAMING_SNAKE_CASE : int = 2_8 __SCREAMING_SNAKE_CASE : Optional[int] = rms_speed_of_molecule(temperature, molar_mass) print(F"""Vrms of Nitrogen gas at 300 K is {vrms} m/s""")
661
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_sentencepiece_available, is_tf_available, is_tokenizers_available, is_torch_available, ) if is_sentencepiece_available(): from ..ta.tokenization_ta import TaTokenizer else: from ...utils.dummy_sentencepiece_objects import TaTokenizer lowerCamelCase__ : List[Any] = TaTokenizer if is_tokenizers_available(): from ..ta.tokenization_ta_fast import TaTokenizerFast else: from ...utils.dummy_tokenizers_objects import TaTokenizerFast lowerCamelCase__ : Union[str, Any] = TaTokenizerFast lowerCamelCase__ : Dict = {'configuration_mt5': ['MT5Config', 'MT5OnnxConfig']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase__ : Tuple = [ 'MT5EncoderModel', 'MT5ForConditionalGeneration', 'MT5ForQuestionAnswering', 'MT5Model', 'MT5PreTrainedModel', 'MT5Stack', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase__ : Tuple = ['TFMT5EncoderModel', 'TFMT5ForConditionalGeneration', 'TFMT5Model'] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase__ : Tuple = ['FlaxMT5EncoderModel', 'FlaxMT5ForConditionalGeneration', 'FlaxMT5Model'] if TYPE_CHECKING: from .configuration_mta import MTaConfig, MTaOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mta import ( MTaEncoderModel, MTaForConditionalGeneration, MTaForQuestionAnswering, MTaModel, MTaPreTrainedModel, MTaStack, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_mta import TFMTaEncoderModel, TFMTaForConditionalGeneration, TFMTaModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_mta import FlaxMTaEncoderModel, FlaxMTaForConditionalGeneration, FlaxMTaModel else: import sys lowerCamelCase__ : int = _LazyModule( __name__, globals()['__file__'], _import_structure, extra_objects={'MT5Tokenizer': MTaTokenizer, 'MT5TokenizerFast': MTaTokenizerFast}, module_spec=__spec__, )
31
0
"""simple docstring""" import argparse import logging import os import time import timeit import datasets import numpy as np import pycuda.autoinit # noqa: F401 import pycuda.driver as cuda import tensorrt as trt import torch from absl import logging as absl_logging from accelerate import Accelerator from datasets import load_dataset, load_metric from torch.utils.data import DataLoader from utils_qa import postprocess_qa_predictions import transformers from transformers import AutoTokenizer, EvalPrediction, default_data_collator, set_seed from transformers.trainer_pt_utils import nested_concat, nested_truncate A = trt.Logger(trt.Logger.WARNING) A = absl_logging.get_absl_logger() absl_logger.setLevel(logging.WARNING) A = logging.getLogger(__name__) A = argparse.ArgumentParser() # Required parameters parser.add_argument( """--onnx_model_path""", default=None, type=str, required=True, help="""Path to ONNX model: """, ) parser.add_argument( """--output_dir""", default=None, type=str, required=True, help="""The output directory where the model checkpoints and predictions will be written.""", ) # Other parameters parser.add_argument( """--tokenizer_name""", default="""""", type=str, required=True, help="""Pretrained tokenizer name or path if not the same as model_name""", ) parser.add_argument( """--version_2_with_negative""", action="""store_true""", help="""If true, the SQuAD examples contain some that do not have an answer.""", ) parser.add_argument( """--null_score_diff_threshold""", type=float, default=0.0, help="""If null_score - best_non_null is greater than the threshold predict null.""", ) parser.add_argument( """--max_seq_length""", default=384, type=int, help=( """The maximum total input sequence length after WordPiece tokenization. Sequences """ """longer than this will be truncated, and sequences shorter than this will be padded.""" ), ) parser.add_argument( """--doc_stride""", default=128, type=int, help="""When splitting up a long document into chunks, how much stride to take between chunks.""", ) parser.add_argument("""--per_device_eval_batch_size""", default=8, type=int, help="""Batch size per GPU/CPU for evaluation.""") parser.add_argument( """--n_best_size""", default=20, type=int, help="""The total number of n-best predictions to generate in the nbest_predictions.json output file.""", ) parser.add_argument( """--max_answer_length""", default=30, type=int, help=( """The maximum length of an answer that can be generated. This is needed because the start """ """and end predictions are not conditioned on one another.""" ), ) parser.add_argument("""--seed""", type=int, default=42, help="""random seed for initialization""") parser.add_argument( """--dataset_name""", type=str, default=None, required=True, help="""The name of the dataset to use (via the datasets library).""", ) parser.add_argument( """--dataset_config_name""", type=str, default=None, help="""The configuration name of the dataset to use (via the datasets library).""", ) parser.add_argument( """--preprocessing_num_workers""", type=int, default=4, help="""A csv or a json file containing the training data.""" ) parser.add_argument("""--overwrite_cache""", action="""store_true""", help="""Overwrite the cached training and evaluation sets""") parser.add_argument( """--fp16""", action="""store_true""", help="""Whether to use 16-bit (mixed) precision instead of 32-bit""", ) parser.add_argument( """--int8""", action="""store_true""", help="""Whether to use INT8""", ) A = parser.parse_args() if args.tokenizer_name: A = AutoTokenizer.from_pretrained(args.tokenizer_name, use_fast=True) else: raise ValueError( """You are instantiating a new tokenizer from scratch. This is not supported by this script.""" """You can do it from another script, save it, and load it from here, using --tokenizer_name.""" ) logger.info("""Training/evaluation parameters %s""", args) A = args.per_device_eval_batch_size A = (args.eval_batch_size, args.max_seq_length) # TRT Engine properties A = True A = 'temp_engine/bert-fp32.engine' if args.fpaa: A = 'temp_engine/bert-fp16.engine' if args.inta: A = 'temp_engine/bert-int8.engine' # import ONNX file if not os.path.exists("""temp_engine"""): os.makedirs("""temp_engine""") A = 1 << (int)(trt.NetworkDefinitionCreationFlag.EXPLICIT_BATCH) with trt.Builder(TRT_LOGGER) as builder, builder.create_network(EXPLICIT_BATCH) as network, trt.OnnxParser( network, TRT_LOGGER ) as parser: with open(args.onnx_model_path, """rb""") as model: if not parser.parse(model.read()): for error in range(parser.num_errors): print(parser.get_error(error)) # Query input names and shapes from parsed TensorRT network A = [network.get_input(i) for i in range(network.num_inputs)] A = [_input.name for _input in network_inputs] # ex: ["actual_input1"] with builder.create_builder_config() as config: A = 1 << 50 if STRICT_TYPES: config.set_flag(trt.BuilderFlag.STRICT_TYPES) if args.fpaa: config.set_flag(trt.BuilderFlag.FPaa) if args.inta: config.set_flag(trt.BuilderFlag.INTa) A = builder.create_optimization_profile() config.add_optimization_profile(profile) for i in range(len(input_names)): profile.set_shape(input_names[i], INPUT_SHAPE, INPUT_SHAPE, INPUT_SHAPE) A = builder.build_engine(network, config) # serialize_engine and store in file (can be directly loaded and deserialized): with open(engine_name, """wb""") as f: f.write(engine.serialize()) def _UpperCamelCase ( UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase ) -> Union[str, Any]: """simple docstring""" __UpperCAmelCase : Dict = np.asarray(inputs["input_ids"] , dtype=np.intaa ) __UpperCAmelCase : Tuple = np.asarray(inputs["attention_mask"] , dtype=np.intaa ) __UpperCAmelCase : Union[str, Any] = np.asarray(inputs["token_type_ids"] , dtype=np.intaa ) # Copy inputs cuda.memcpy_htod_async(d_inputs[0] , input_ids.ravel() , __UpperCAmelCase ) cuda.memcpy_htod_async(d_inputs[1] , attention_mask.ravel() , __UpperCAmelCase ) cuda.memcpy_htod_async(d_inputs[2] , token_type_ids.ravel() , __UpperCAmelCase ) # start time __UpperCAmelCase : List[str] = time.time() # Run inference context.execute_async( bindings=[int(__UpperCAmelCase ) for d_inp in d_inputs] + [int(__UpperCAmelCase ), int(__UpperCAmelCase )] , stream_handle=stream.handle ) # Transfer predictions back from GPU cuda.memcpy_dtoh_async(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) cuda.memcpy_dtoh_async(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) # Synchronize the stream and take time stream.synchronize() # end time __UpperCAmelCase : Union[str, Any] = time.time() __UpperCAmelCase : str = end_time - start_time __UpperCAmelCase : Union[str, Any] = (h_outputa, h_outputa) # print(outputs) return outputs, infer_time # Initialize the accelerator. We will let the accelerator handle device placement for us in this example. A = Accelerator() # Make one log on every process with the configuration for debugging. logging.basicConfig( format="""%(asctime)s - %(levelname)s - %(name)s - %(message)s""", datefmt="""%m/%d/%Y %H:%M:%S""", level=logging.INFO, ) # Setup logging, we only want one process per machine to log things on the screen. # accelerator.is_local_main_process is only True for one process per machine. logger.setLevel(logging.INFO if accelerator.is_local_main_process else logging.ERROR) if accelerator.is_local_main_process: datasets.utils.logging.set_verbosity_warning() transformers.utils.logging.set_verbosity_info() else: datasets.utils.logging.set_verbosity_error() transformers.utils.logging.set_verbosity_error() # If passed along, set the training seed now. if args.seed is not None: set_seed(args.seed) # Get the datasets: you can either provide your own CSV/JSON/TXT training and evaluation files (see below) # or just provide the name of one of the public datasets available on the hub at https://huggingface.co/datasets/ # (the dataset will be downloaded automatically from the datasets Hub). # # For CSV/JSON files, this script will use the column called 'text' or the first column if no column called # 'text' is found. You can easily tweak this behavior (see below). if args.dataset_name is not None: # Downloading and loading a dataset from the hub. A = load_dataset(args.dataset_name, args.dataset_config_name) else: raise ValueError("""Evaluation requires a dataset name""") # See more about loading any type of standard or custom dataset (from files, python dict, pandas DataFrame, etc) at # https://huggingface.co/docs/datasets/loading_datasets.html. # Preprocessing the datasets. # Preprocessing is slighlty different for training and evaluation. A = raw_datasets['validation'].column_names A = 'question' if 'question' in column_names else column_names[0] A = 'context' if 'context' in column_names else column_names[1] A = 'answers' if 'answers' in column_names else column_names[2] # Padding side determines if we do (question|context) or (context|question). A = tokenizer.padding_side == 'right' if args.max_seq_length > tokenizer.model_max_length: logger.warning( f'''The max_seq_length passed ({args.max_seq_length}) is larger than the maximum length for the''' f'''model ({tokenizer.model_max_length}). Using max_seq_length={tokenizer.model_max_length}.''' ) A = min(args.max_seq_length, tokenizer.model_max_length) def _UpperCamelCase ( UpperCamelCase ) -> Optional[Any]: """simple docstring""" # Some of the questions have lots of whitespace on the left, which is not useful and will make the # truncation of the context fail (the tokenized question will take a lots of space). So we remove that # left whitespace __UpperCAmelCase : Union[str, Any] = [q.lstrip() for q in examples[question_column_name]] # Tokenize our examples with truncation and maybe padding, but keep the overflows using a stride. This results # in one example possible giving several features when a context is long, each of those features having a # context that overlaps a bit the context of the previous feature. __UpperCAmelCase : int = tokenizer( examples[question_column_name if pad_on_right else context_column_name] , examples[context_column_name if pad_on_right else question_column_name] , truncation="only_second" if pad_on_right else "only_first" , max_length=__UpperCAmelCase , stride=args.doc_stride , return_overflowing_tokens=__UpperCAmelCase , return_offsets_mapping=__UpperCAmelCase , padding="max_length" , ) # Since one example might give us several features if it has a long context, we need a map from a feature to # its corresponding example. This key gives us just that. __UpperCAmelCase : str = tokenized_examples.pop("overflow_to_sample_mapping" ) # For evaluation, we will need to convert our predictions to substrings of the context, so we keep the # corresponding example_id and we will store the offset mappings. __UpperCAmelCase : Union[str, Any] = [] for i in range(len(tokenized_examples["input_ids"] ) ): # Grab the sequence corresponding to that example (to know what is the context and what is the question). __UpperCAmelCase : Dict = tokenized_examples.sequence_ids(__UpperCAmelCase ) __UpperCAmelCase : int = 1 if pad_on_right else 0 # One example can give several spans, this is the index of the example containing this span of text. __UpperCAmelCase : List[Any] = sample_mapping[i] tokenized_examples["example_id"].append(examples["id"][sample_index] ) # Set to None the offset_mapping that are not part of the context so it's easy to determine if a token # position is part of the context or not. __UpperCAmelCase : List[Any] = [ (o if sequence_ids[k] == context_index else None) for k, o in enumerate(tokenized_examples["offset_mapping"][i] ) ] return tokenized_examples A = raw_datasets['validation'] # Validation Feature Creation A = eval_examples.map( prepare_validation_features, batched=True, num_proc=args.preprocessing_num_workers, remove_columns=column_names, load_from_cache_file=not args.overwrite_cache, desc="""Running tokenizer on validation dataset""", ) A = default_data_collator A = eval_dataset.remove_columns(["""example_id""", """offset_mapping"""]) A = DataLoader( eval_dataset_for_model, collate_fn=data_collator, batch_size=args.per_device_eval_batch_size ) def _UpperCamelCase ( UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase="eval" ) -> Tuple: """simple docstring""" # Post-processing: we match the start logits and end logits to answers in the original context. __UpperCAmelCase : Tuple = postprocess_qa_predictions( examples=__UpperCAmelCase , features=__UpperCAmelCase , predictions=__UpperCAmelCase , version_2_with_negative=args.version_2_with_negative , n_best_size=args.n_best_size , max_answer_length=args.max_answer_length , null_score_diff_threshold=args.null_score_diff_threshold , output_dir=args.output_dir , prefix=__UpperCAmelCase , ) # Format the result to the format the metric expects. if args.version_2_with_negative: __UpperCAmelCase : int = [ {"id": k, "prediction_text": v, "no_answer_probability": 0.0} for k, v in predictions.items() ] else: __UpperCAmelCase : List[Any] = [{"id": k, "prediction_text": v} for k, v in predictions.items()] __UpperCAmelCase : List[Any] = [{"id": ex["id"], "answers": ex[answer_column_name]} for ex in examples] return EvalPrediction(predictions=__UpperCAmelCase , label_ids=__UpperCAmelCase ) A = load_metric("""squad_v2""" if args.version_2_with_negative else """squad""") # Evaluation! logger.info("""Loading ONNX model %s for evaluation""", args.onnx_model_path) with open(engine_name, """rb""") as f, trt.Runtime(TRT_LOGGER) as runtime, runtime.deserialize_cuda_engine( f.read() ) as engine, engine.create_execution_context() as context: # setup for TRT inferrence for i in range(len(input_names)): context.set_binding_shape(i, INPUT_SHAPE) assert context.all_binding_shapes_specified def _UpperCamelCase ( UpperCamelCase ) -> Union[str, Any]: """simple docstring""" return trt.volume(engine.get_binding_shape(__UpperCAmelCase ) ) * engine.get_binding_dtype(__UpperCAmelCase ).itemsize # Allocate device memory for inputs and outputs. A = [cuda.mem_alloc(binding_nbytes(binding)) for binding in engine if engine.binding_is_input(binding)] # Allocate output buffer A = cuda.pagelocked_empty(tuple(context.get_binding_shape(3)), dtype=np.floataa) A = cuda.pagelocked_empty(tuple(context.get_binding_shape(4)), dtype=np.floataa) A = cuda.mem_alloc(h_outputa.nbytes) A = cuda.mem_alloc(h_outputa.nbytes) # Create a stream in which to copy inputs/outputs and run inference. A = cuda.Stream() # Evaluation logger.info("""***** Running Evaluation *****""") logger.info(f''' Num examples = {len(eval_dataset)}''') logger.info(f''' Batch size = {args.per_device_eval_batch_size}''') A = 0.0 A = 0 A = timeit.default_timer() A = None for step, batch in enumerate(eval_dataloader): A = model_infer(batch, context, d_inputs, h_outputa, h_outputa, d_outputa, d_outputa, stream) total_time += infer_time niter += 1 A = outputs A = torch.tensor(start_logits) A = torch.tensor(end_logits) # necessary to pad predictions and labels for being gathered A = accelerator.pad_across_processes(start_logits, dim=1, pad_index=-100) A = accelerator.pad_across_processes(end_logits, dim=1, pad_index=-100) A = (accelerator.gather(start_logits).cpu().numpy(), accelerator.gather(end_logits).cpu().numpy()) A = logits if all_preds is None else nested_concat(all_preds, logits, padding_index=-100) if all_preds is not None: A = nested_truncate(all_preds, len(eval_dataset)) A = timeit.default_timer() - start_time logger.info(""" Evaluation done in total %f secs (%f sec per example)""", evalTime, evalTime / len(eval_dataset)) # Inference time from TRT logger.info("""Average Inference Time = {:.3f} ms""".format(total_time * 1_000 / niter)) logger.info("""Total Inference Time = {:.3f} ms""".format(total_time * 1_000)) logger.info("""Total Number of Inference = %d""", niter) A = post_processing_function(eval_examples, eval_dataset, all_preds) A = metric.compute(predictions=prediction.predictions, references=prediction.label_ids) logger.info(f'''Evaluation metrics: {eval_metric}''')
77
import subprocess import sys from transformers import BertConfig, BertModel, BertTokenizer, pipeline from transformers.testing_utils import TestCasePlus, require_torch class lowerCamelCase_ ( _SCREAMING_SNAKE_CASE ): '''simple docstring''' @require_torch def lowerCAmelCase_ ( self : int ): # this test is a bit tricky since TRANSFORMERS_OFFLINE can only be changed before # `transformers` is loaded, and it's too late for inside pytest - so we are changing it # while running an external program # python one-liner segments # this must be loaded before socket.socket is monkey-patched SCREAMING_SNAKE_CASE_ = '\nfrom transformers import BertConfig, BertModel, BertTokenizer, pipeline\n ' SCREAMING_SNAKE_CASE_ = '\nmname = "hf-internal-testing/tiny-random-bert"\nBertConfig.from_pretrained(mname)\nBertModel.from_pretrained(mname)\nBertTokenizer.from_pretrained(mname)\npipe = pipeline(task="fill-mask", model=mname)\nprint("success")\n ' SCREAMING_SNAKE_CASE_ = '\nimport socket\ndef offline_socket(*args, **kwargs): raise RuntimeError("Offline mode is enabled, we shouldn\'t access internet")\nsocket.socket = offline_socket\n ' # Force fetching the files so that we can use the cache SCREAMING_SNAKE_CASE_ = 'hf-internal-testing/tiny-random-bert' BertConfig.from_pretrained(_lowerCAmelCase ) BertModel.from_pretrained(_lowerCAmelCase ) BertTokenizer.from_pretrained(_lowerCAmelCase ) pipeline(task='fill-mask' , model=_lowerCAmelCase ) # baseline - just load from_pretrained with normal network SCREAMING_SNAKE_CASE_ = [sys.executable, '-c', '\n'.join([load, run, mock] )] # should succeed SCREAMING_SNAKE_CASE_ = self.get_env() # should succeed as TRANSFORMERS_OFFLINE=1 tells it to use local files SCREAMING_SNAKE_CASE_ = '1' SCREAMING_SNAKE_CASE_ = subprocess.run(_lowerCAmelCase , env=_lowerCAmelCase , check=_lowerCAmelCase , capture_output=_lowerCAmelCase ) self.assertEqual(result.returncode , 0 , result.stderr ) self.assertIn('success' , result.stdout.decode() ) @require_torch def lowerCAmelCase_ ( self : Tuple ): # python one-liner segments # this must be loaded before socket.socket is monkey-patched SCREAMING_SNAKE_CASE_ = '\nfrom transformers import BertConfig, BertModel, BertTokenizer, pipeline\n ' SCREAMING_SNAKE_CASE_ = '\nmname = "hf-internal-testing/tiny-random-bert"\nBertConfig.from_pretrained(mname)\nBertModel.from_pretrained(mname)\nBertTokenizer.from_pretrained(mname)\npipe = pipeline(task="fill-mask", model=mname)\nprint("success")\n ' SCREAMING_SNAKE_CASE_ = '\nimport socket\ndef offline_socket(*args, **kwargs): raise socket.error("Faking flaky internet")\nsocket.socket = offline_socket\n ' # Force fetching the files so that we can use the cache SCREAMING_SNAKE_CASE_ = 'hf-internal-testing/tiny-random-bert' BertConfig.from_pretrained(_lowerCAmelCase ) BertModel.from_pretrained(_lowerCAmelCase ) BertTokenizer.from_pretrained(_lowerCAmelCase ) pipeline(task='fill-mask' , model=_lowerCAmelCase ) # baseline - just load from_pretrained with normal network SCREAMING_SNAKE_CASE_ = [sys.executable, '-c', '\n'.join([load, run, mock] )] # should succeed SCREAMING_SNAKE_CASE_ = self.get_env() SCREAMING_SNAKE_CASE_ = subprocess.run(_lowerCAmelCase , env=_lowerCAmelCase , check=_lowerCAmelCase , capture_output=_lowerCAmelCase ) self.assertEqual(result.returncode , 0 , result.stderr ) self.assertIn('success' , result.stdout.decode() ) @require_torch def lowerCAmelCase_ ( self : List[str] ): # this test is a bit tricky since TRANSFORMERS_OFFLINE can only be changed before # `transformers` is loaded, and it's too late for inside pytest - so we are changing it # while running an external program # python one-liner segments # this must be loaded before socket.socket is monkey-patched SCREAMING_SNAKE_CASE_ = '\nfrom transformers import BertConfig, BertModel, BertTokenizer\n ' SCREAMING_SNAKE_CASE_ = '\nmname = "hf-internal-testing/tiny-random-bert-sharded"\nBertConfig.from_pretrained(mname)\nBertModel.from_pretrained(mname)\nprint("success")\n ' SCREAMING_SNAKE_CASE_ = '\nimport socket\ndef offline_socket(*args, **kwargs): raise ValueError("Offline mode is enabled")\nsocket.socket = offline_socket\n ' # baseline - just load from_pretrained with normal network SCREAMING_SNAKE_CASE_ = [sys.executable, '-c', '\n'.join([load, run] )] # should succeed SCREAMING_SNAKE_CASE_ = self.get_env() SCREAMING_SNAKE_CASE_ = subprocess.run(_lowerCAmelCase , env=_lowerCAmelCase , check=_lowerCAmelCase , capture_output=_lowerCAmelCase ) self.assertEqual(result.returncode , 0 , result.stderr ) self.assertIn('success' , result.stdout.decode() ) # next emulate no network SCREAMING_SNAKE_CASE_ = [sys.executable, '-c', '\n'.join([load, mock, run] )] # Doesn't fail anymore since the model is in the cache due to other tests, so commenting this. # env["TRANSFORMERS_OFFLINE"] = "0" # result = subprocess.run(cmd, env=env, check=False, capture_output=True) # self.assertEqual(result.returncode, 1, result.stderr) # should succeed as TRANSFORMERS_OFFLINE=1 tells it to use local files SCREAMING_SNAKE_CASE_ = '1' SCREAMING_SNAKE_CASE_ = subprocess.run(_lowerCAmelCase , env=_lowerCAmelCase , check=_lowerCAmelCase , capture_output=_lowerCAmelCase ) self.assertEqual(result.returncode , 0 , result.stderr ) self.assertIn('success' , result.stdout.decode() ) @require_torch def lowerCAmelCase_ ( self : Any ): SCREAMING_SNAKE_CASE_ = '\nfrom transformers import pipeline\n ' SCREAMING_SNAKE_CASE_ = '\nmname = "hf-internal-testing/tiny-random-bert"\npipe = pipeline(model=mname)\n ' SCREAMING_SNAKE_CASE_ = '\nimport socket\ndef offline_socket(*args, **kwargs): raise socket.error("Offline mode is enabled")\nsocket.socket = offline_socket\n ' SCREAMING_SNAKE_CASE_ = self.get_env() SCREAMING_SNAKE_CASE_ = '1' SCREAMING_SNAKE_CASE_ = [sys.executable, '-c', '\n'.join([load, mock, run] )] SCREAMING_SNAKE_CASE_ = subprocess.run(_lowerCAmelCase , env=_lowerCAmelCase , check=_lowerCAmelCase , capture_output=_lowerCAmelCase ) self.assertEqual(result.returncode , 1 , result.stderr ) self.assertIn( 'You cannot infer task automatically within `pipeline` when using offline mode' , result.stderr.decode().replace('\n' , '' ) , ) @require_torch def lowerCAmelCase_ ( self : Optional[int] ): SCREAMING_SNAKE_CASE_ = '\nfrom transformers import AutoModel\n ' SCREAMING_SNAKE_CASE_ = '\nmname = "hf-internal-testing/test_dynamic_model"\nAutoModel.from_pretrained(mname, trust_remote_code=True)\nprint("success")\n ' # baseline - just load from_pretrained with normal network SCREAMING_SNAKE_CASE_ = [sys.executable, '-c', '\n'.join([load, run] )] # should succeed SCREAMING_SNAKE_CASE_ = self.get_env() SCREAMING_SNAKE_CASE_ = subprocess.run(_lowerCAmelCase , env=_lowerCAmelCase , check=_lowerCAmelCase , capture_output=_lowerCAmelCase ) self.assertEqual(result.returncode , 0 , result.stderr ) self.assertIn('success' , result.stdout.decode() ) # should succeed as TRANSFORMERS_OFFLINE=1 tells it to use local files SCREAMING_SNAKE_CASE_ = '1' SCREAMING_SNAKE_CASE_ = subprocess.run(_lowerCAmelCase , env=_lowerCAmelCase , check=_lowerCAmelCase , capture_output=_lowerCAmelCase ) self.assertEqual(result.returncode , 0 , result.stderr ) self.assertIn('success' , result.stdout.decode() )
31
0
from ...utils import logging from ..ta.modeling_tf_ta import TFTaEncoderModel, TFTaForConditionalGeneration, TFTaModel from .configuration_mta import MTaConfig lowerCAmelCase : Union[str, Any] = logging.get_logger(__name__) lowerCAmelCase : str = 'T5Config' class a ( _SCREAMING_SNAKE_CASE ): SCREAMING_SNAKE_CASE__ : List[Any] = '''mt5''' SCREAMING_SNAKE_CASE__ : List[Any] = MTaConfig class a ( _SCREAMING_SNAKE_CASE ): SCREAMING_SNAKE_CASE__ : Union[str, Any] = '''mt5''' SCREAMING_SNAKE_CASE__ : List[str] = MTaConfig class a ( _SCREAMING_SNAKE_CASE ): SCREAMING_SNAKE_CASE__ : List[str] = '''mt5''' SCREAMING_SNAKE_CASE__ : Any = MTaConfig
202
import torch from transformers import PreTrainedModel, XLMRobertaConfig, XLMRobertaModel class lowerCamelCase_ ( _SCREAMING_SNAKE_CASE ): '''simple docstring''' lowercase_ = "M-CLIP" def __init__( self : Tuple , _lowerCAmelCase : List[str]=1_024 , _lowerCAmelCase : str=768 , **_lowerCAmelCase : Union[str, Any] ): SCREAMING_SNAKE_CASE_ = transformerDimSize SCREAMING_SNAKE_CASE_ = imageDimSize super().__init__(**_lowerCAmelCase ) class lowerCamelCase_ ( _SCREAMING_SNAKE_CASE ): '''simple docstring''' lowercase_ = MCLIPConfig def __init__( self : Dict , _lowerCAmelCase : Union[str, Any] , *_lowerCAmelCase : str , **_lowerCAmelCase : str ): super().__init__(_lowerCAmelCase , *_lowerCAmelCase , **_lowerCAmelCase ) SCREAMING_SNAKE_CASE_ = XLMRobertaModel(_lowerCAmelCase ) SCREAMING_SNAKE_CASE_ = torch.nn.Linear( in_features=config.transformerDimensions , out_features=config.numDims ) def lowerCAmelCase_ ( self : List[Any] , _lowerCAmelCase : Any , _lowerCAmelCase : Union[str, Any] ): SCREAMING_SNAKE_CASE_ = self.transformer(input_ids=_lowerCAmelCase , attention_mask=_lowerCAmelCase )[0] SCREAMING_SNAKE_CASE_ = (embs * attention_mask.unsqueeze(2 )).sum(dim=1 ) / attention_mask.sum(dim=1 )[:, None] return self.LinearTransformation(_lowerCAmelCase ), embs
31
0
'''simple docstring''' import json import os from typing import Optional, Tuple import regex as re from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging __A = logging.get_logger(__name__) __A = { 'vocab_file': 'vocab.json', 'merges_file': 'merges.txt', } __A = { 'vocab_file': {'ctrl': 'https://raw.githubusercontent.com/salesforce/ctrl/master/ctrl-vocab.json'}, 'merges_file': {'ctrl': 'https://raw.githubusercontent.com/salesforce/ctrl/master/ctrl-merges.txt'}, } __A = { 'ctrl': 256, } __A = { 'Pregnancy': 168_629, 'Christianity': 7_675, 'Explain': 106_423, 'Fitness': 63_440, 'Saving': 63_163, 'Ask': 27_171, 'Ass': 95_985, 'Joke': 163_509, 'Questions': 45_622, 'Thoughts': 49_605, 'Retail': 52_342, 'Feminism': 164_338, 'Writing': 11_992, 'Atheism': 192_263, 'Netflix': 48_616, 'Computing': 39_639, 'Opinion': 43_213, 'Alone': 44_967, 'Funny': 58_917, 'Gaming': 40_358, 'Human': 4_088, 'India': 1_331, 'Joker': 77_138, 'Diet': 36_206, 'Legal': 11_859, 'Norman': 4_939, 'Tip': 72_689, 'Weight': 52_343, 'Movies': 46_273, 'Running': 23_425, 'Science': 2_090, 'Horror': 37_793, 'Confession': 60_572, 'Finance': 12_250, 'Politics': 16_360, 'Scary': 191_985, 'Support': 12_654, 'Technologies': 32_516, 'Teenage': 66_160, 'Event': 32_769, 'Learned': 67_460, 'Notion': 182_770, 'Wikipedia': 37_583, 'Books': 6_665, 'Extract': 76_050, 'Confessions': 102_701, 'Conspiracy': 75_932, 'Links': 63_674, 'Narcissus': 150_425, 'Relationship': 54_766, 'Relationships': 134_796, 'Reviews': 41_671, 'News': 4_256, 'Translation': 26_820, 'multilingual': 128_406, } def _A ( lowercase__ ): lowercase__ = set() lowercase__ = word[0] for char in word[1:]: pairs.add((prev_char, char) ) lowercase__ = char lowercase__ = set(__UpperCAmelCase ) return pairs class A ( _SCREAMING_SNAKE_CASE ): lowerCamelCase : Tuple = VOCAB_FILES_NAMES lowerCamelCase : Any = PRETRAINED_VOCAB_FILES_MAP lowerCamelCase : Optional[Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCamelCase : Dict = CONTROL_CODES def __init__( self , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__="<unk>" , **lowerCamelCase__ ) -> Optional[int]: '''simple docstring''' super().__init__(unk_token=_lowerCAmelCase , **_lowerCAmelCase ) with open(_lowerCAmelCase , encoding="""utf-8""" ) as vocab_handle: lowercase__ = json.load(_lowerCAmelCase ) lowercase__ = {v: k for k, v in self.encoder.items()} with open(_lowerCAmelCase , encoding="""utf-8""" ) as merges_handle: lowercase__ = merges_handle.read().split("""\n""" )[1:-1] lowercase__ = [tuple(merge.split() ) for merge in merges] lowercase__ = dict(zip(_lowerCAmelCase , range(len(_lowerCAmelCase ) ) ) ) lowercase__ = {} @property def A__ ( self ) -> List[str]: '''simple docstring''' return len(self.encoder ) def A__ ( self ) -> List[str]: '''simple docstring''' return dict(self.encoder , **self.added_tokens_encoder ) def A__ ( self , lowerCamelCase__ ) -> Union[str, Any]: '''simple docstring''' if token in self.cache: return self.cache[token] lowercase__ = tuple(_lowerCAmelCase ) lowercase__ = tuple(list(word[:-1] ) + [word[-1] + """</w>"""] ) lowercase__ = get_pairs(_lowerCAmelCase ) if not pairs: return token while True: lowercase__ = min(_lowerCAmelCase , key=lambda lowerCamelCase__ : self.bpe_ranks.get(_lowerCAmelCase , float("""inf""" ) ) ) if bigram not in self.bpe_ranks: break lowercase__ , lowercase__ = bigram lowercase__ = [] lowercase__ = 0 while i < len(_lowerCAmelCase ): try: lowercase__ = word.index(_lowerCAmelCase , _lowerCAmelCase ) except ValueError: new_word.extend(word[i:] ) break else: new_word.extend(word[i:j] ) lowercase__ = j if word[i] == first and i < len(_lowerCAmelCase ) - 1 and word[i + 1] == second: new_word.append(first + second ) i += 2 else: new_word.append(word[i] ) i += 1 lowercase__ = tuple(_lowerCAmelCase ) lowercase__ = new_word if len(_lowerCAmelCase ) == 1: break else: lowercase__ = get_pairs(_lowerCAmelCase ) lowercase__ = """@@ """.join(_lowerCAmelCase ) lowercase__ = word[:-4] lowercase__ = word return word def A__ ( self , lowerCamelCase__ ) -> Optional[Any]: '''simple docstring''' lowercase__ = [] lowercase__ = re.findall(R"""\S+\n?""" , _lowerCAmelCase ) for token in words: split_tokens.extend(list(self.bpe(_lowerCAmelCase ).split(""" """ ) ) ) return split_tokens def A__ ( self , lowerCamelCase__ ) -> str: '''simple docstring''' return self.encoder.get(_lowerCAmelCase , self.encoder.get(self.unk_token ) ) def A__ ( self , lowerCamelCase__ ) -> List[str]: '''simple docstring''' return self.decoder.get(_lowerCAmelCase , self.unk_token ) def A__ ( self , lowerCamelCase__ ) -> Any: '''simple docstring''' lowercase__ = """ """.join(_lowerCAmelCase ).replace("""@@ """ , """""" ).strip() return out_string def A__ ( self , lowerCamelCase__ , lowerCamelCase__ = None ) -> Any: '''simple docstring''' if not os.path.isdir(_lowerCAmelCase ): logger.error(F'''Vocabulary path ({save_directory}) should be a directory''' ) return lowercase__ = os.path.join( _lowerCAmelCase , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) lowercase__ = os.path.join( _lowerCAmelCase , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""merges_file"""] ) with open(_lowerCAmelCase , """w""" , encoding="""utf-8""" ) as f: f.write(json.dumps(self.encoder , indent=2 , sort_keys=_lowerCAmelCase , ensure_ascii=_lowerCAmelCase ) + """\n""" ) lowercase__ = 0 with open(_lowerCAmelCase , """w""" , encoding="""utf-8""" ) as writer: writer.write("""#version: 0.2\n""" ) for bpe_tokens, token_index in sorted(self.bpe_ranks.items() , key=lambda lowerCamelCase__ : kv[1] ): if index != token_index: logger.warning( F'''Saving vocabulary to {merge_file}: BPE merge indices are not consecutive.''' """ Please check that the tokenizer is not corrupted!""" ) lowercase__ = token_index writer.write(""" """.join(_lowerCAmelCase ) + """\n""" ) index += 1 return vocab_file, merge_file # def decode(self, token_ids, skip_special_tokens=False, clean_up_tokenization_spaces=True): # filtered_tokens = ' '.join(self.convert_ids_to_tokens(token_ids, skip_special_tokens=skip_special_tokens)) # tokens_generated_so_far = re.sub('(@@ )', '', string=filtered_tokens) # tokens_generated_so_far = re.sub('(@@ ?$)', '', string=tokens_generated_so_far) # return ''.join(tokens_generated_so_far)
325
import gc import random import unittest import numpy as np import torch from transformers import XLMRobertaTokenizer from diffusers import ( AltDiffusionImgaImgPipeline, AutoencoderKL, PNDMScheduler, UNetaDConditionModel, ) from diffusers.image_processor import VaeImageProcessor from diffusers.pipelines.alt_diffusion.modeling_roberta_series import ( RobertaSeriesConfig, RobertaSeriesModelWithTransformation, ) from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu enable_full_determinism() class lowerCamelCase_ ( unittest.TestCase ): '''simple docstring''' def lowerCAmelCase_ ( self : str ): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() @property def lowerCAmelCase_ ( self : Union[str, Any] ): SCREAMING_SNAKE_CASE_ = 1 SCREAMING_SNAKE_CASE_ = 3 SCREAMING_SNAKE_CASE_ = (32, 32) SCREAMING_SNAKE_CASE_ = floats_tensor((batch_size, num_channels) + sizes , rng=random.Random(0 ) ).to(_lowerCAmelCase ) return image @property def lowerCAmelCase_ ( self : Union[str, Any] ): torch.manual_seed(0 ) SCREAMING_SNAKE_CASE_ = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=('DownBlock2D', 'CrossAttnDownBlock2D') , up_block_types=('CrossAttnUpBlock2D', 'UpBlock2D') , cross_attention_dim=32 , ) return model @property def lowerCAmelCase_ ( self : Tuple ): torch.manual_seed(0 ) SCREAMING_SNAKE_CASE_ = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=['DownEncoderBlock2D', 'DownEncoderBlock2D'] , up_block_types=['UpDecoderBlock2D', 'UpDecoderBlock2D'] , latent_channels=4 , ) return model @property def lowerCAmelCase_ ( self : Optional[int] ): torch.manual_seed(0 ) SCREAMING_SNAKE_CASE_ = RobertaSeriesConfig( hidden_size=32 , project_dim=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=5_006 , ) return RobertaSeriesModelWithTransformation(_lowerCAmelCase ) @property def lowerCAmelCase_ ( self : List[Any] ): def extract(*_lowerCAmelCase : Optional[int] , **_lowerCAmelCase : str ): class lowerCamelCase_ : '''simple docstring''' def __init__( self : str ): SCREAMING_SNAKE_CASE_ = torch.ones([0] ) def lowerCAmelCase_ ( self : Union[str, Any] , _lowerCAmelCase : int ): self.pixel_values.to(_lowerCAmelCase ) return self return Out() return extract def lowerCAmelCase_ ( self : Optional[Any] ): SCREAMING_SNAKE_CASE_ = 'cpu' # ensure determinism for the device-dependent torch.Generator SCREAMING_SNAKE_CASE_ = self.dummy_cond_unet SCREAMING_SNAKE_CASE_ = PNDMScheduler(skip_prk_steps=_lowerCAmelCase ) SCREAMING_SNAKE_CASE_ = self.dummy_vae SCREAMING_SNAKE_CASE_ = self.dummy_text_encoder SCREAMING_SNAKE_CASE_ = XLMRobertaTokenizer.from_pretrained('hf-internal-testing/tiny-xlm-roberta' ) SCREAMING_SNAKE_CASE_ = 77 SCREAMING_SNAKE_CASE_ = self.dummy_image.to(_lowerCAmelCase ) SCREAMING_SNAKE_CASE_ = init_image / 2 + 0.5 # make sure here that pndm scheduler skips prk SCREAMING_SNAKE_CASE_ = AltDiffusionImgaImgPipeline( unet=_lowerCAmelCase , scheduler=_lowerCAmelCase , vae=_lowerCAmelCase , text_encoder=_lowerCAmelCase , tokenizer=_lowerCAmelCase , safety_checker=_lowerCAmelCase , feature_extractor=self.dummy_extractor , ) SCREAMING_SNAKE_CASE_ = VaeImageProcessor(vae_scale_factor=alt_pipe.vae_scale_factor , do_normalize=_lowerCAmelCase ) SCREAMING_SNAKE_CASE_ = alt_pipe.to(_lowerCAmelCase ) alt_pipe.set_progress_bar_config(disable=_lowerCAmelCase ) SCREAMING_SNAKE_CASE_ = 'A painting of a squirrel eating a burger' SCREAMING_SNAKE_CASE_ = torch.Generator(device=_lowerCAmelCase ).manual_seed(0 ) SCREAMING_SNAKE_CASE_ = alt_pipe( [prompt] , generator=_lowerCAmelCase , guidance_scale=6.0 , num_inference_steps=2 , output_type='np' , image=_lowerCAmelCase , ) SCREAMING_SNAKE_CASE_ = output.images SCREAMING_SNAKE_CASE_ = torch.Generator(device=_lowerCAmelCase ).manual_seed(0 ) SCREAMING_SNAKE_CASE_ = alt_pipe( [prompt] , generator=_lowerCAmelCase , guidance_scale=6.0 , num_inference_steps=2 , output_type='np' , image=_lowerCAmelCase , return_dict=_lowerCAmelCase , )[0] SCREAMING_SNAKE_CASE_ = image[0, -3:, -3:, -1] SCREAMING_SNAKE_CASE_ = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) SCREAMING_SNAKE_CASE_ = np.array([0.4427, 0.3731, 0.4249, 0.4941, 0.4546, 0.4148, 0.4193, 0.4666, 0.4499] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 5E-3 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 5E-3 @unittest.skipIf(torch_device != 'cuda' , 'This test requires a GPU' ) def lowerCAmelCase_ ( self : Tuple ): SCREAMING_SNAKE_CASE_ = self.dummy_cond_unet SCREAMING_SNAKE_CASE_ = PNDMScheduler(skip_prk_steps=_lowerCAmelCase ) SCREAMING_SNAKE_CASE_ = self.dummy_vae SCREAMING_SNAKE_CASE_ = self.dummy_text_encoder SCREAMING_SNAKE_CASE_ = XLMRobertaTokenizer.from_pretrained('hf-internal-testing/tiny-xlm-roberta' ) SCREAMING_SNAKE_CASE_ = 77 SCREAMING_SNAKE_CASE_ = self.dummy_image.to(_lowerCAmelCase ) # put models in fp16 SCREAMING_SNAKE_CASE_ = unet.half() SCREAMING_SNAKE_CASE_ = vae.half() SCREAMING_SNAKE_CASE_ = bert.half() # make sure here that pndm scheduler skips prk SCREAMING_SNAKE_CASE_ = AltDiffusionImgaImgPipeline( unet=_lowerCAmelCase , scheduler=_lowerCAmelCase , vae=_lowerCAmelCase , text_encoder=_lowerCAmelCase , tokenizer=_lowerCAmelCase , safety_checker=_lowerCAmelCase , feature_extractor=self.dummy_extractor , ) SCREAMING_SNAKE_CASE_ = VaeImageProcessor(vae_scale_factor=alt_pipe.vae_scale_factor , do_normalize=_lowerCAmelCase ) SCREAMING_SNAKE_CASE_ = alt_pipe.to(_lowerCAmelCase ) alt_pipe.set_progress_bar_config(disable=_lowerCAmelCase ) SCREAMING_SNAKE_CASE_ = 'A painting of a squirrel eating a burger' SCREAMING_SNAKE_CASE_ = torch.manual_seed(0 ) SCREAMING_SNAKE_CASE_ = alt_pipe( [prompt] , generator=_lowerCAmelCase , num_inference_steps=2 , output_type='np' , image=_lowerCAmelCase , ).images assert image.shape == (1, 32, 32, 3) @unittest.skipIf(torch_device != 'cuda' , 'This test requires a GPU' ) def lowerCAmelCase_ ( self : str ): SCREAMING_SNAKE_CASE_ = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/img2img/sketch-mountains-input.jpg' ) # resize to resolution that is divisible by 8 but not 16 or 32 SCREAMING_SNAKE_CASE_ = init_image.resize((760, 504) ) SCREAMING_SNAKE_CASE_ = 'BAAI/AltDiffusion' SCREAMING_SNAKE_CASE_ = AltDiffusionImgaImgPipeline.from_pretrained( _lowerCAmelCase , safety_checker=_lowerCAmelCase , ) pipe.to(_lowerCAmelCase ) pipe.set_progress_bar_config(disable=_lowerCAmelCase ) pipe.enable_attention_slicing() SCREAMING_SNAKE_CASE_ = 'A fantasy landscape, trending on artstation' SCREAMING_SNAKE_CASE_ = torch.manual_seed(0 ) SCREAMING_SNAKE_CASE_ = pipe( prompt=_lowerCAmelCase , image=_lowerCAmelCase , strength=0.75 , guidance_scale=7.5 , generator=_lowerCAmelCase , output_type='np' , ) SCREAMING_SNAKE_CASE_ = output.images[0] SCREAMING_SNAKE_CASE_ = image[255:258, 383:386, -1] assert image.shape == (504, 760, 3) SCREAMING_SNAKE_CASE_ = np.array([0.9358, 0.9397, 0.9599, 0.9901, 1.0000, 1.0000, 0.9882, 1.0000, 1.0000] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 @slow @require_torch_gpu class lowerCamelCase_ ( unittest.TestCase ): '''simple docstring''' def lowerCAmelCase_ ( self : str ): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def lowerCAmelCase_ ( self : int ): SCREAMING_SNAKE_CASE_ = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/img2img/sketch-mountains-input.jpg' ) SCREAMING_SNAKE_CASE_ = init_image.resize((768, 512) ) SCREAMING_SNAKE_CASE_ = load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/img2img/fantasy_landscape_alt.npy' ) SCREAMING_SNAKE_CASE_ = 'BAAI/AltDiffusion' SCREAMING_SNAKE_CASE_ = AltDiffusionImgaImgPipeline.from_pretrained( _lowerCAmelCase , safety_checker=_lowerCAmelCase , ) pipe.to(_lowerCAmelCase ) pipe.set_progress_bar_config(disable=_lowerCAmelCase ) pipe.enable_attention_slicing() SCREAMING_SNAKE_CASE_ = 'A fantasy landscape, trending on artstation' SCREAMING_SNAKE_CASE_ = torch.manual_seed(0 ) SCREAMING_SNAKE_CASE_ = pipe( prompt=_lowerCAmelCase , image=_lowerCAmelCase , strength=0.75 , guidance_scale=7.5 , generator=_lowerCAmelCase , output_type='np' , ) SCREAMING_SNAKE_CASE_ = output.images[0] assert image.shape == (512, 768, 3) # img2img is flaky across GPUs even in fp32, so using MAE here assert np.abs(expected_image - image ).max() < 1E-2
31
0
import unittest import numpy as np from transformers import AlbertConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor, random_attention_mask if is_flax_available(): import jax.numpy as jnp from transformers.models.albert.modeling_flax_albert import ( FlaxAlbertForMaskedLM, FlaxAlbertForMultipleChoice, FlaxAlbertForPreTraining, FlaxAlbertForQuestionAnswering, FlaxAlbertForSequenceClassification, FlaxAlbertForTokenClassification, FlaxAlbertModel, ) class __a( unittest.TestCase ): """simple docstring""" def __init__( self ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE=13 ,_SCREAMING_SNAKE_CASE=7 ,_SCREAMING_SNAKE_CASE=True ,_SCREAMING_SNAKE_CASE=True ,_SCREAMING_SNAKE_CASE=True ,_SCREAMING_SNAKE_CASE=True ,_SCREAMING_SNAKE_CASE=99 ,_SCREAMING_SNAKE_CASE=32 ,_SCREAMING_SNAKE_CASE=5 ,_SCREAMING_SNAKE_CASE=4 ,_SCREAMING_SNAKE_CASE=37 ,_SCREAMING_SNAKE_CASE="gelu" ,_SCREAMING_SNAKE_CASE=0.1 ,_SCREAMING_SNAKE_CASE=0.1 ,_SCREAMING_SNAKE_CASE=512 ,_SCREAMING_SNAKE_CASE=16 ,_SCREAMING_SNAKE_CASE=2 ,_SCREAMING_SNAKE_CASE=0.02 ,_SCREAMING_SNAKE_CASE=4 ,) -> List[str]: UpperCAmelCase_ : Dict = parent UpperCAmelCase_ : List[str] = batch_size UpperCAmelCase_ : Optional[Any] = seq_length UpperCAmelCase_ : str = is_training UpperCAmelCase_ : Union[str, Any] = use_attention_mask UpperCAmelCase_ : Optional[int] = use_token_type_ids UpperCAmelCase_ : int = use_labels UpperCAmelCase_ : str = vocab_size UpperCAmelCase_ : Optional[int] = hidden_size UpperCAmelCase_ : Optional[Any] = num_hidden_layers UpperCAmelCase_ : Optional[Any] = num_attention_heads UpperCAmelCase_ : Union[str, Any] = intermediate_size UpperCAmelCase_ : Optional[Any] = hidden_act UpperCAmelCase_ : Optional[int] = hidden_dropout_prob UpperCAmelCase_ : List[Any] = attention_probs_dropout_prob UpperCAmelCase_ : Optional[Any] = max_position_embeddings UpperCAmelCase_ : Optional[int] = type_vocab_size UpperCAmelCase_ : Tuple = type_sequence_label_size UpperCAmelCase_ : Optional[Any] = initializer_range UpperCAmelCase_ : Tuple = num_choices def a__ ( self ) -> List[Any]: UpperCAmelCase_ : int = ids_tensor([self.batch_size, self.seq_length] ,self.vocab_size ) UpperCAmelCase_ : Optional[int] = None if self.use_attention_mask: UpperCAmelCase_ : Union[str, Any] = random_attention_mask([self.batch_size, self.seq_length] ) UpperCAmelCase_ : Union[str, Any] = None if self.use_token_type_ids: UpperCAmelCase_ : Dict = ids_tensor([self.batch_size, self.seq_length] ,self.type_vocab_size ) UpperCAmelCase_ : Any = AlbertConfig( vocab_size=self.vocab_size ,hidden_size=self.hidden_size ,num_hidden_layers=self.num_hidden_layers ,num_attention_heads=self.num_attention_heads ,intermediate_size=self.intermediate_size ,hidden_act=self.hidden_act ,hidden_dropout_prob=self.hidden_dropout_prob ,attention_probs_dropout_prob=self.attention_probs_dropout_prob ,max_position_embeddings=self.max_position_embeddings ,type_vocab_size=self.type_vocab_size ,is_decoder=_lowerCAmelCase ,initializer_range=self.initializer_range ,) return config, input_ids, token_type_ids, attention_mask def a__ ( self ) -> Optional[int]: UpperCAmelCase_ : str = self.prepare_config_and_inputs() UpperCAmelCase_, UpperCAmelCase_, UpperCAmelCase_, UpperCAmelCase_ : Union[str, Any] = config_and_inputs UpperCAmelCase_ : int = {'''input_ids''': input_ids, '''token_type_ids''': token_type_ids, '''attention_mask''': attention_mask} return config, inputs_dict @require_flax class __a( _SCREAMING_SNAKE_CASE , unittest.TestCase ): """simple docstring""" lowerCAmelCase = ( ( FlaxAlbertModel, FlaxAlbertForPreTraining, FlaxAlbertForMaskedLM, FlaxAlbertForMultipleChoice, FlaxAlbertForQuestionAnswering, FlaxAlbertForSequenceClassification, FlaxAlbertForTokenClassification, FlaxAlbertForQuestionAnswering, ) if is_flax_available() else () ) def a__ ( self ) -> Dict: UpperCAmelCase_ : Union[str, Any] = FlaxAlbertModelTester(self ) @slow def a__ ( self ) -> List[Any]: for model_class_name in self.all_model_classes: UpperCAmelCase_ : int = model_class_name.from_pretrained('''albert-base-v2''' ) UpperCAmelCase_ : Dict = model(np.ones((1, 1) ) ) self.assertIsNotNone(_lowerCAmelCase ) @require_flax class __a( unittest.TestCase ): """simple docstring""" @slow def a__ ( self ) -> int: UpperCAmelCase_ : int = FlaxAlbertModel.from_pretrained('''albert-base-v2''' ) UpperCAmelCase_ : str = np.array([[0, 345, 232, 328, 740, 140, 1_695, 69, 6_078, 1_588, 2]] ) UpperCAmelCase_ : Dict = np.array([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] ) UpperCAmelCase_ : Union[str, Any] = model(_lowerCAmelCase ,attention_mask=_lowerCAmelCase )[0] UpperCAmelCase_ : Any = (1, 11, 768) self.assertEqual(output.shape ,_lowerCAmelCase ) UpperCAmelCase_ : Tuple = np.array( [[[-0.65_13, 1.50_35, -0.27_66], [-0.65_15, 1.50_46, -0.27_80], [-0.65_12, 1.50_49, -0.27_84]]] ) self.assertTrue(jnp.allclose(output[:, 1:4, 1:4] ,_lowerCAmelCase ,atol=1e-4 ) )
30
from collections import OrderedDict from typing import TYPE_CHECKING, Any, List, Mapping, Optional, Union from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import TensorType, logging if TYPE_CHECKING: from ...onnx.config import PatchingSpec from ...tokenization_utils_base import PreTrainedTokenizerBase lowerCamelCase__ : Optional[int] = logging.get_logger(__name__) lowerCamelCase__ : Dict = { 'allenai/longformer-base-4096': 'https://huggingface.co/allenai/longformer-base-4096/resolve/main/config.json', 'allenai/longformer-large-4096': 'https://huggingface.co/allenai/longformer-large-4096/resolve/main/config.json', 'allenai/longformer-large-4096-finetuned-triviaqa': ( 'https://huggingface.co/allenai/longformer-large-4096-finetuned-triviaqa/resolve/main/config.json' ), 'allenai/longformer-base-4096-extra.pos.embd.only': ( 'https://huggingface.co/allenai/longformer-base-4096-extra.pos.embd.only/resolve/main/config.json' ), 'allenai/longformer-large-4096-extra.pos.embd.only': ( 'https://huggingface.co/allenai/longformer-large-4096-extra.pos.embd.only/resolve/main/config.json' ), } class lowerCamelCase_ ( _SCREAMING_SNAKE_CASE ): '''simple docstring''' lowercase_ = "longformer" def __init__( self : Union[str, Any] , _lowerCAmelCase : Union[List[int], int] = 512 , _lowerCAmelCase : int = 2 , _lowerCAmelCase : int = 1 , _lowerCAmelCase : int = 0 , _lowerCAmelCase : int = 2 , _lowerCAmelCase : int = 30_522 , _lowerCAmelCase : int = 768 , _lowerCAmelCase : int = 12 , _lowerCAmelCase : int = 12 , _lowerCAmelCase : int = 3_072 , _lowerCAmelCase : str = "gelu" , _lowerCAmelCase : float = 0.1 , _lowerCAmelCase : float = 0.1 , _lowerCAmelCase : int = 512 , _lowerCAmelCase : int = 2 , _lowerCAmelCase : float = 0.02 , _lowerCAmelCase : float = 1E-12 , _lowerCAmelCase : bool = False , **_lowerCAmelCase : Union[str, Any] , ): super().__init__(pad_token_id=_lowerCAmelCase , **_lowerCAmelCase ) SCREAMING_SNAKE_CASE_ = attention_window SCREAMING_SNAKE_CASE_ = sep_token_id SCREAMING_SNAKE_CASE_ = bos_token_id SCREAMING_SNAKE_CASE_ = eos_token_id SCREAMING_SNAKE_CASE_ = vocab_size SCREAMING_SNAKE_CASE_ = hidden_size SCREAMING_SNAKE_CASE_ = num_hidden_layers SCREAMING_SNAKE_CASE_ = num_attention_heads SCREAMING_SNAKE_CASE_ = hidden_act SCREAMING_SNAKE_CASE_ = intermediate_size SCREAMING_SNAKE_CASE_ = hidden_dropout_prob SCREAMING_SNAKE_CASE_ = attention_probs_dropout_prob SCREAMING_SNAKE_CASE_ = max_position_embeddings SCREAMING_SNAKE_CASE_ = type_vocab_size SCREAMING_SNAKE_CASE_ = initializer_range SCREAMING_SNAKE_CASE_ = layer_norm_eps SCREAMING_SNAKE_CASE_ = onnx_export class lowerCamelCase_ ( _SCREAMING_SNAKE_CASE ): '''simple docstring''' def __init__( self : Optional[Any] , _lowerCAmelCase : "PretrainedConfig" , _lowerCAmelCase : str = "default" , _lowerCAmelCase : "List[PatchingSpec]" = None ): super().__init__(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) SCREAMING_SNAKE_CASE_ = True @property def lowerCAmelCase_ ( self : Any ): if self.task == "multiple-choice": SCREAMING_SNAKE_CASE_ = {0: 'batch', 1: 'choice', 2: 'sequence'} else: SCREAMING_SNAKE_CASE_ = {0: 'batch', 1: 'sequence'} return OrderedDict( [ ('input_ids', dynamic_axis), ('attention_mask', dynamic_axis), ('global_attention_mask', dynamic_axis), ] ) @property def lowerCAmelCase_ ( self : Optional[int] ): SCREAMING_SNAKE_CASE_ = super().outputs if self.task == "default": SCREAMING_SNAKE_CASE_ = {0: 'batch'} return outputs @property def lowerCAmelCase_ ( self : str ): return 1E-4 @property def lowerCAmelCase_ ( self : Optional[Any] ): # needs to be >= 14 to support tril operator return max(super().default_onnx_opset , 14 ) def lowerCAmelCase_ ( self : str , _lowerCAmelCase : "PreTrainedTokenizerBase" , _lowerCAmelCase : int = -1 , _lowerCAmelCase : int = -1 , _lowerCAmelCase : bool = False , _lowerCAmelCase : Optional[TensorType] = None , ): SCREAMING_SNAKE_CASE_ = super().generate_dummy_inputs( preprocessor=_lowerCAmelCase , batch_size=_lowerCAmelCase , seq_length=_lowerCAmelCase , is_pair=_lowerCAmelCase , framework=_lowerCAmelCase ) import torch # for some reason, replacing this code by inputs["global_attention_mask"] = torch.randint(2, inputs["input_ids"].shape, dtype=torch.int64) # makes the export fail randomly SCREAMING_SNAKE_CASE_ = torch.zeros_like(inputs['input_ids'] ) # make every second token global SCREAMING_SNAKE_CASE_ = 1 return inputs
31
0
'''simple docstring''' import unittest import numpy as np import requests from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch from transformers.pytorch_utils import is_torch_greater_or_equal_than_1_11 else: A_ = False if is_vision_available(): from PIL import Image from transformers import PixaStructImageProcessor class lowercase_ ( unittest.TestCase ): def __init__( self : Tuple , __lowerCamelCase : Tuple , __lowerCamelCase : Optional[Any]=7 , __lowerCamelCase : List[Any]=3 , __lowerCamelCase : Tuple=18 , __lowerCamelCase : str=30 , __lowerCamelCase : str=400 , __lowerCamelCase : Union[str, Any]=None , __lowerCamelCase : int=True , __lowerCamelCase : List[Any]=True , __lowerCamelCase : Any=None , ): snake_case__ : Optional[int] = size if size is not None else {'height': 20, 'width': 20} snake_case__ : int = parent snake_case__ : int = batch_size snake_case__ : str = num_channels snake_case__ : Union[str, Any] = image_size snake_case__ : Optional[Any] = min_resolution snake_case__ : Optional[Any] = max_resolution snake_case__ : Optional[Any] = size snake_case__ : int = do_normalize snake_case__ : List[Any] = do_convert_rgb snake_case__ : Union[str, Any] = [512, 1024, 2048, 4096] snake_case__ : Optional[Any] = patch_size if patch_size is not None else {'height': 16, 'width': 16} def _lowerCAmelCase ( self : List[str] ): return {"do_normalize": self.do_normalize, "do_convert_rgb": self.do_convert_rgb} def _lowerCAmelCase ( self : List[Any] ): snake_case__ : List[Any] = 'https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/tasks/australia.jpg' snake_case__ : Union[str, Any] = Image.open(requests.get(_lowerCAmelCase , stream=_lowerCAmelCase ).raw ).convert('RGB' ) return raw_image @unittest.skipIf( not is_torch_greater_or_equal_than_1_11 , reason="`Pix2StructImageProcessor` requires `torch>=1.11.0`." , ) @require_torch @require_vision class lowercase_ ( _SCREAMING_SNAKE_CASE , unittest.TestCase ): A_ = PixaStructImageProcessor if is_vision_available() else None def _lowerCAmelCase ( self : Union[str, Any] ): snake_case__ : List[str] = PixaStructImageProcessingTester(self ) @property def _lowerCAmelCase ( self : int ): return self.image_processor_tester.prepare_image_processor_dict() def _lowerCAmelCase ( self : Any ): snake_case__ : Tuple = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(_lowerCAmelCase , 'do_normalize' ) ) self.assertTrue(hasattr(_lowerCAmelCase , 'do_convert_rgb' ) ) def _lowerCAmelCase ( self : Optional[Any] ): snake_case__ : str = self.image_processor_tester.prepare_dummy_image() snake_case__ : Optional[Any] = self.image_processing_class(**self.image_processor_dict ) snake_case__ : List[str] = 2048 snake_case__ : Any = image_processor(_lowerCAmelCase , return_tensors='pt' , max_patches=_lowerCAmelCase ) self.assertTrue(torch.allclose(inputs.flattened_patches.mean() , torch.tensor(0.0_6_0_6 ) , atol=1E-3 , rtol=1E-3 ) ) def _lowerCAmelCase ( self : str ): # Initialize image_processor snake_case__ : int = self.image_processing_class(**self.image_processor_dict ) # create random PIL images snake_case__ : List[Any] = prepare_image_inputs(self.image_processor_tester , equal_resolution=_lowerCAmelCase ) for image in image_inputs: self.assertIsInstance(_lowerCAmelCase , Image.Image ) # Test not batched input snake_case__ : Union[str, Any] = ( (self.image_processor_tester.patch_size['height'] * self.image_processor_tester.patch_size['width']) * self.image_processor_tester.num_channels ) + 2 for max_patch in self.image_processor_tester.max_patches: # Test not batched input snake_case__ : List[Any] = image_processor( image_inputs[0] , return_tensors='pt' , max_patches=_lowerCAmelCase ).flattened_patches self.assertEqual( encoded_images.shape , (1, max_patch, expected_hidden_dim) , ) # Test batched snake_case__ : List[str] = image_processor( _lowerCAmelCase , return_tensors='pt' , max_patches=_lowerCAmelCase ).flattened_patches self.assertEqual( encoded_images.shape , (self.image_processor_tester.batch_size, max_patch, expected_hidden_dim) , ) def _lowerCAmelCase ( self : int ): # Initialize image_processor snake_case__ : Any = self.image_processing_class(**self.image_processor_dict ) # create random PIL images snake_case__ : Optional[int] = prepare_image_inputs(self.image_processor_tester , equal_resolution=_lowerCAmelCase ) for image in image_inputs: self.assertIsInstance(_lowerCAmelCase , Image.Image ) # Test not batched input snake_case__ : Tuple = ( (self.image_processor_tester.patch_size['height'] * self.image_processor_tester.patch_size['width']) * self.image_processor_tester.num_channels ) + 2 snake_case__ : Optional[int] = True for max_patch in self.image_processor_tester.max_patches: # Test not batched input with self.assertRaises(_lowerCAmelCase ): snake_case__ : int = image_processor( image_inputs[0] , return_tensors='pt' , max_patches=_lowerCAmelCase ).flattened_patches snake_case__ : int = 'Hello' snake_case__ : int = image_processor( image_inputs[0] , return_tensors='pt' , max_patches=_lowerCAmelCase , header_text=_lowerCAmelCase ).flattened_patches self.assertEqual( encoded_images.shape , (1, max_patch, expected_hidden_dim) , ) # Test batched snake_case__ : List[str] = image_processor( _lowerCAmelCase , return_tensors='pt' , max_patches=_lowerCAmelCase , header_text=_lowerCAmelCase ).flattened_patches self.assertEqual( encoded_images.shape , (self.image_processor_tester.batch_size, max_patch, expected_hidden_dim) , ) def _lowerCAmelCase ( self : str ): # Initialize image_processor snake_case__ : int = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors snake_case__ : Any = prepare_image_inputs(self.image_processor_tester , equal_resolution=_lowerCAmelCase , numpify=_lowerCAmelCase ) for image in image_inputs: self.assertIsInstance(_lowerCAmelCase , np.ndarray ) snake_case__ : List[str] = ( (self.image_processor_tester.patch_size['height'] * self.image_processor_tester.patch_size['width']) * self.image_processor_tester.num_channels ) + 2 for max_patch in self.image_processor_tester.max_patches: # Test not batched input snake_case__ : str = image_processor( image_inputs[0] , return_tensors='pt' , max_patches=_lowerCAmelCase ).flattened_patches self.assertEqual( encoded_images.shape , (1, max_patch, expected_hidden_dim) , ) # Test batched snake_case__ : str = image_processor( _lowerCAmelCase , return_tensors='pt' , max_patches=_lowerCAmelCase ).flattened_patches self.assertEqual( encoded_images.shape , (self.image_processor_tester.batch_size, max_patch, expected_hidden_dim) , ) def _lowerCAmelCase ( self : str ): # Initialize image_processor snake_case__ : Tuple = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors snake_case__ : Union[str, Any] = prepare_image_inputs(self.image_processor_tester , equal_resolution=_lowerCAmelCase , torchify=_lowerCAmelCase ) for image in image_inputs: self.assertIsInstance(_lowerCAmelCase , torch.Tensor ) # Test not batched input snake_case__ : Tuple = ( (self.image_processor_tester.patch_size['height'] * self.image_processor_tester.patch_size['width']) * self.image_processor_tester.num_channels ) + 2 for max_patch in self.image_processor_tester.max_patches: # Test not batched input snake_case__ : int = image_processor( image_inputs[0] , return_tensors='pt' , max_patches=_lowerCAmelCase ).flattened_patches self.assertEqual( encoded_images.shape , (1, max_patch, expected_hidden_dim) , ) # Test batched snake_case__ : Any = image_processor( _lowerCAmelCase , return_tensors='pt' , max_patches=_lowerCAmelCase ).flattened_patches self.assertEqual( encoded_images.shape , (self.image_processor_tester.batch_size, max_patch, expected_hidden_dim) , ) @unittest.skipIf( not is_torch_greater_or_equal_than_1_11 , reason="`Pix2StructImageProcessor` requires `torch>=1.11.0`." , ) @require_torch @require_vision class lowercase_ ( _SCREAMING_SNAKE_CASE , unittest.TestCase ): A_ = PixaStructImageProcessor if is_vision_available() else None def _lowerCAmelCase ( self : List[Any] ): snake_case__ : List[Any] = PixaStructImageProcessingTester(self , num_channels=4 ) snake_case__ : Dict = 3 @property def _lowerCAmelCase ( self : Any ): return self.image_processor_tester.prepare_image_processor_dict() def _lowerCAmelCase ( self : str ): snake_case__ : Dict = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(_lowerCAmelCase , 'do_normalize' ) ) self.assertTrue(hasattr(_lowerCAmelCase , 'do_convert_rgb' ) ) def _lowerCAmelCase ( self : List[str] ): # Initialize image_processor snake_case__ : Any = self.image_processing_class(**self.image_processor_dict ) # create random PIL images snake_case__ : int = prepare_image_inputs(self.image_processor_tester , equal_resolution=_lowerCAmelCase ) for image in image_inputs: self.assertIsInstance(_lowerCAmelCase , Image.Image ) # Test not batched input snake_case__ : Tuple = ( (self.image_processor_tester.patch_size['height'] * self.image_processor_tester.patch_size['width']) * (self.image_processor_tester.num_channels - 1) ) + 2 for max_patch in self.image_processor_tester.max_patches: # Test not batched input snake_case__ : str = image_processor( image_inputs[0] , return_tensors='pt' , max_patches=_lowerCAmelCase ).flattened_patches self.assertEqual( encoded_images.shape , (1, max_patch, expected_hidden_dim) , ) # Test batched snake_case__ : List[Any] = image_processor( _lowerCAmelCase , return_tensors='pt' , max_patches=_lowerCAmelCase ).flattened_patches self.assertEqual( encoded_images.shape , (self.image_processor_tester.batch_size, max_patch, expected_hidden_dim) , )
270
import warnings from ...utils import logging from .image_processing_mobilevit import MobileViTImageProcessor lowerCamelCase__ : Optional[int] = logging.get_logger(__name__) class lowerCamelCase_ ( _SCREAMING_SNAKE_CASE ): '''simple docstring''' def __init__( self : str , *_lowerCAmelCase : Tuple , **_lowerCAmelCase : int ): warnings.warn( 'The class MobileViTFeatureExtractor is deprecated and will be removed in version 5 of Transformers.' ' Please use MobileViTImageProcessor instead.' , _lowerCAmelCase , ) super().__init__(*_lowerCAmelCase , **_lowerCAmelCase )
31
0
'''simple docstring''' import warnings from diffusers import StableDiffusionImgaImgPipeline # noqa F401 warnings.warn( "The `image_to_image.py` script is outdated. Please use directly `from diffusers import" " StableDiffusionImg2ImgPipeline` instead." )
591
from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCamelCase__ : Optional[int] = logging.get_logger(__name__) lowerCamelCase__ : Tuple = { 'microsoft/swinv2-tiny-patch4-window8-256': ( 'https://huggingface.co/microsoft/swinv2-tiny-patch4-window8-256/resolve/main/config.json' ), } class lowerCamelCase_ ( _SCREAMING_SNAKE_CASE ): '''simple docstring''' lowercase_ = "swinv2" lowercase_ = { "num_attention_heads": "num_heads", "num_hidden_layers": "num_layers", } def __init__( self : Dict , _lowerCAmelCase : Optional[Any]=224 , _lowerCAmelCase : Optional[int]=4 , _lowerCAmelCase : Tuple=3 , _lowerCAmelCase : Tuple=96 , _lowerCAmelCase : Dict=[2, 2, 6, 2] , _lowerCAmelCase : Optional[Any]=[3, 6, 12, 24] , _lowerCAmelCase : str=7 , _lowerCAmelCase : List[Any]=4.0 , _lowerCAmelCase : List[str]=True , _lowerCAmelCase : List[Any]=0.0 , _lowerCAmelCase : List[Any]=0.0 , _lowerCAmelCase : Any=0.1 , _lowerCAmelCase : List[Any]="gelu" , _lowerCAmelCase : str=False , _lowerCAmelCase : str=0.02 , _lowerCAmelCase : List[Any]=1E-5 , _lowerCAmelCase : str=32 , **_lowerCAmelCase : List[Any] , ): super().__init__(**_lowerCAmelCase ) SCREAMING_SNAKE_CASE_ = image_size SCREAMING_SNAKE_CASE_ = patch_size SCREAMING_SNAKE_CASE_ = num_channels SCREAMING_SNAKE_CASE_ = embed_dim SCREAMING_SNAKE_CASE_ = depths SCREAMING_SNAKE_CASE_ = len(_lowerCAmelCase ) SCREAMING_SNAKE_CASE_ = num_heads SCREAMING_SNAKE_CASE_ = window_size SCREAMING_SNAKE_CASE_ = mlp_ratio SCREAMING_SNAKE_CASE_ = qkv_bias SCREAMING_SNAKE_CASE_ = hidden_dropout_prob SCREAMING_SNAKE_CASE_ = attention_probs_dropout_prob SCREAMING_SNAKE_CASE_ = drop_path_rate SCREAMING_SNAKE_CASE_ = hidden_act SCREAMING_SNAKE_CASE_ = use_absolute_embeddings SCREAMING_SNAKE_CASE_ = layer_norm_eps SCREAMING_SNAKE_CASE_ = initializer_range SCREAMING_SNAKE_CASE_ = encoder_stride # we set the hidden_size attribute in order to make Swinv2 work with VisionEncoderDecoderModel # this indicates the channel dimension after the last stage of the model SCREAMING_SNAKE_CASE_ = int(embed_dim * 2 ** (len(_lowerCAmelCase ) - 1) ) SCREAMING_SNAKE_CASE_ = (0, 0, 0, 0)
31
0
import gc import unittest from parameterized import parameterized from diffusers import FlaxUNetaDConditionModel from diffusers.utils import is_flax_available from diffusers.utils.testing_utils import load_hf_numpy, require_flax, slow if is_flax_available(): import jax import jax.numpy as jnp @slow @require_flax class _lowercase ( unittest.TestCase ): def SCREAMING_SNAKE_CASE__ ( self : List[str] , snake_case : Dict , snake_case : Optional[int] ) -> Optional[int]: """simple docstring""" return f"gaussian_noise_s={seed}_shape={'_'.join([str(_lowerCAmelCase ) for s in shape] )}.npy" def SCREAMING_SNAKE_CASE__ ( self : Tuple ) -> List[Any]: """simple docstring""" super().tearDown() gc.collect() def SCREAMING_SNAKE_CASE__ ( self : int , snake_case : int=0 , snake_case : Dict=(4, 4, 6_4, 6_4) , snake_case : List[str]=False ) -> List[Any]: """simple docstring""" UpperCamelCase_ : int = jnp.bfloataa if fpaa else jnp.floataa UpperCamelCase_ : str = jnp.array(load_hf_numpy(self.get_file_format(_lowerCAmelCase , _lowerCAmelCase ) ) , dtype=_lowerCAmelCase ) return image def SCREAMING_SNAKE_CASE__ ( self : List[str] , snake_case : List[Any]=False , snake_case : Optional[Any]="CompVis/stable-diffusion-v1-4" ) -> str: """simple docstring""" UpperCamelCase_ : Union[str, Any] = jnp.bfloataa if fpaa else jnp.floataa UpperCamelCase_ : int = 'bf16' if fpaa else None UpperCamelCase_, UpperCamelCase_ : Dict = FlaxUNetaDConditionModel.from_pretrained( _lowerCAmelCase , subfolder='unet' , dtype=_lowerCAmelCase , revision=_lowerCAmelCase ) return model, params def SCREAMING_SNAKE_CASE__ ( self : List[Any] , snake_case : Tuple=0 , snake_case : List[str]=(4, 7_7, 7_6_8) , snake_case : List[str]=False ) -> Tuple: """simple docstring""" UpperCamelCase_ : int = jnp.bfloataa if fpaa else jnp.floataa UpperCamelCase_ : Optional[Any] = jnp.array(load_hf_numpy(self.get_file_format(_lowerCAmelCase , _lowerCAmelCase ) ) , dtype=_lowerCAmelCase ) return hidden_states @parameterized.expand( [ # fmt: off [8_3, 4, [-0.2323, -0.1304, 0.0813, -0.3093, -0.0919, -0.1571, -0.1125, -0.5806]], [1_7, 0.55, [-0.0831, -0.2443, 0.0901, -0.0919, 0.3396, 0.0103, -0.3743, 0.0701]], [8, 0.89, [-0.4863, 0.0859, 0.0875, -0.1658, 0.9199, -0.0114, 0.4839, 0.4639]], [3, 1_0_0_0, [-0.5649, 0.2402, -0.5518, 0.1248, 1.1328, -0.2443, -0.0325, -1.0078]], # fmt: on ] ) def SCREAMING_SNAKE_CASE__ ( self : List[str] , snake_case : Optional[Any] , snake_case : Any , snake_case : Optional[Any] ) -> str: """simple docstring""" UpperCamelCase_, UpperCamelCase_ : int = self.get_unet_model(model_id='CompVis/stable-diffusion-v1-4' , fpaa=_lowerCAmelCase ) UpperCamelCase_ : Tuple = self.get_latents(_lowerCAmelCase , fpaa=_lowerCAmelCase ) UpperCamelCase_ : List[Any] = self.get_encoder_hidden_states(_lowerCAmelCase , fpaa=_lowerCAmelCase ) UpperCamelCase_ : str = model.apply( {'params': params} , _lowerCAmelCase , jnp.array(_lowerCAmelCase , dtype=jnp.intaa ) , encoder_hidden_states=_lowerCAmelCase , ).sample assert sample.shape == latents.shape UpperCamelCase_ : Union[str, Any] = jnp.asarray(jax.device_get((sample[-1, -2:, -2:, :2].flatten()) ) , dtype=jnp.floataa ) UpperCamelCase_ : Dict = jnp.array(_lowerCAmelCase , dtype=jnp.floataa ) # Found torch (float16) and flax (bfloat16) outputs to be within this tolerance, in the same hardware assert jnp.allclose(_lowerCAmelCase , _lowerCAmelCase , atol=1e-2 ) @parameterized.expand( [ # fmt: off [8_3, 4, [0.1514, 0.0807, 0.1624, 0.1016, -0.1896, 0.0263, 0.0677, 0.2310]], [1_7, 0.55, [0.1164, -0.0216, 0.0170, 0.1589, -0.3120, 0.1005, -0.0581, -0.1458]], [8, 0.89, [-0.1758, -0.0169, 0.1004, -0.1411, 0.1312, 0.1103, -0.1996, 0.2139]], [3, 1_0_0_0, [0.1214, 0.0352, -0.0731, -0.1562, -0.0994, -0.0906, -0.2340, -0.0539]], # fmt: on ] ) def SCREAMING_SNAKE_CASE__ ( self : Optional[int] , snake_case : Union[str, Any] , snake_case : Dict , snake_case : Dict ) -> Optional[Any]: """simple docstring""" UpperCamelCase_, UpperCamelCase_ : Dict = self.get_unet_model(model_id='stabilityai/stable-diffusion-2' , fpaa=_lowerCAmelCase ) UpperCamelCase_ : Union[str, Any] = self.get_latents(_lowerCAmelCase , shape=(4, 4, 9_6, 9_6) , fpaa=_lowerCAmelCase ) UpperCamelCase_ : Dict = self.get_encoder_hidden_states(_lowerCAmelCase , shape=(4, 7_7, 1_0_2_4) , fpaa=_lowerCAmelCase ) UpperCamelCase_ : Tuple = model.apply( {'params': params} , _lowerCAmelCase , jnp.array(_lowerCAmelCase , dtype=jnp.intaa ) , encoder_hidden_states=_lowerCAmelCase , ).sample assert sample.shape == latents.shape UpperCamelCase_ : List[str] = jnp.asarray(jax.device_get((sample[-1, -2:, -2:, :2].flatten()) ) , dtype=jnp.floataa ) UpperCamelCase_ : Union[str, Any] = jnp.array(_lowerCAmelCase , dtype=jnp.floataa ) # Found torch (float16) and flax (bfloat16) outputs to be within this tolerance, on the same hardware assert jnp.allclose(_lowerCAmelCase , _lowerCAmelCase , atol=1e-2 )
417
import itertools import random import unittest import numpy as np from transformers import BatchFeature, SpeechTaFeatureExtractor from transformers.testing_utils import require_torch from transformers.utils.import_utils import is_torch_available from ...test_sequence_feature_extraction_common import SequenceFeatureExtractionTestMixin if is_torch_available(): import torch lowerCamelCase__ : Dict = random.Random() def UpperCAmelCase_ ( __UpperCAmelCase : int , __UpperCAmelCase : Tuple=1.0 , __UpperCAmelCase : Dict=None , __UpperCAmelCase : Dict=None ) -> Tuple: if rng is None: SCREAMING_SNAKE_CASE_ = global_rng SCREAMING_SNAKE_CASE_ = [] for batch_idx in range(shape[0] ): values.append([] ) for _ in range(shape[1] ): values[-1].append(rng.random() * scale ) return values @require_torch class lowerCamelCase_ ( unittest.TestCase ): '''simple docstring''' def __init__( self : List[str] , _lowerCAmelCase : int , _lowerCAmelCase : Optional[Any]=7 , _lowerCAmelCase : Union[str, Any]=400 , _lowerCAmelCase : Tuple=2_000 , _lowerCAmelCase : str=1 , _lowerCAmelCase : int=0.0 , _lowerCAmelCase : Optional[Any]=16_000 , _lowerCAmelCase : Optional[Any]=True , _lowerCAmelCase : Any=80 , _lowerCAmelCase : Union[str, Any]=16 , _lowerCAmelCase : List[str]=64 , _lowerCAmelCase : List[Any]="hann_window" , _lowerCAmelCase : Any=80 , _lowerCAmelCase : List[Any]=7_600 , _lowerCAmelCase : List[Any]=1E-10 , _lowerCAmelCase : Optional[Any]=True , ): SCREAMING_SNAKE_CASE_ = parent SCREAMING_SNAKE_CASE_ = batch_size SCREAMING_SNAKE_CASE_ = min_seq_length SCREAMING_SNAKE_CASE_ = max_seq_length SCREAMING_SNAKE_CASE_ = (self.max_seq_length - self.min_seq_length) // (self.batch_size - 1) SCREAMING_SNAKE_CASE_ = feature_size SCREAMING_SNAKE_CASE_ = padding_value SCREAMING_SNAKE_CASE_ = sampling_rate SCREAMING_SNAKE_CASE_ = do_normalize SCREAMING_SNAKE_CASE_ = num_mel_bins SCREAMING_SNAKE_CASE_ = hop_length SCREAMING_SNAKE_CASE_ = win_length SCREAMING_SNAKE_CASE_ = win_function SCREAMING_SNAKE_CASE_ = fmin SCREAMING_SNAKE_CASE_ = fmax SCREAMING_SNAKE_CASE_ = mel_floor SCREAMING_SNAKE_CASE_ = return_attention_mask def lowerCAmelCase_ ( self : Union[str, Any] ): return { "feature_size": self.feature_size, "padding_value": self.padding_value, "sampling_rate": self.sampling_rate, "do_normalize": self.do_normalize, "num_mel_bins": self.num_mel_bins, "hop_length": self.hop_length, "win_length": self.win_length, "win_function": self.win_function, "fmin": self.fmin, "fmax": self.fmax, "mel_floor": self.mel_floor, "return_attention_mask": self.return_attention_mask, } def lowerCAmelCase_ ( self : Dict , _lowerCAmelCase : Optional[int]=False , _lowerCAmelCase : str=False ): def _flatten(_lowerCAmelCase : Dict ): return list(itertools.chain(*_lowerCAmelCase ) ) if equal_length: SCREAMING_SNAKE_CASE_ = floats_list((self.batch_size, self.max_seq_length) ) else: # make sure that inputs increase in size SCREAMING_SNAKE_CASE_ = [ _flatten(floats_list((x, self.feature_size) ) ) for x in range(self.min_seq_length , self.max_seq_length , self.seq_length_diff ) ] if numpify: SCREAMING_SNAKE_CASE_ = [np.asarray(_lowerCAmelCase ) for x in speech_inputs] return speech_inputs def lowerCAmelCase_ ( self : List[Any] , _lowerCAmelCase : Union[str, Any]=False , _lowerCAmelCase : Optional[int]=False ): if equal_length: SCREAMING_SNAKE_CASE_ = [floats_list((self.max_seq_length, self.num_mel_bins) ) for _ in range(self.batch_size )] else: # make sure that inputs increase in size SCREAMING_SNAKE_CASE_ = [ floats_list((x, self.num_mel_bins) ) for x in range(self.min_seq_length , self.max_seq_length , self.seq_length_diff ) ] if numpify: SCREAMING_SNAKE_CASE_ = [np.asarray(_lowerCAmelCase ) for x in speech_inputs] return speech_inputs @require_torch class lowerCamelCase_ ( _SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' lowercase_ = SpeechTaFeatureExtractor def lowerCAmelCase_ ( self : Any ): SCREAMING_SNAKE_CASE_ = SpeechTaFeatureExtractionTester(self ) def lowerCAmelCase_ ( self : Any , _lowerCAmelCase : int ): self.assertTrue(np.all(np.mean(_lowerCAmelCase , axis=0 ) < 1E-3 ) ) self.assertTrue(np.all(np.abs(np.var(_lowerCAmelCase , axis=0 ) - 1 ) < 1E-3 ) ) def lowerCAmelCase_ ( self : List[Any] ): # Tests that all call wrap to encode_plus and batch_encode_plus SCREAMING_SNAKE_CASE_ = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) # create three inputs of length 800, 1000, and 1200 SCREAMING_SNAKE_CASE_ = [floats_list((1, x) )[0] for x in range(800 , 1_400 , 200 )] SCREAMING_SNAKE_CASE_ = [np.asarray(_lowerCAmelCase ) for speech_input in speech_inputs] # Test not batched input SCREAMING_SNAKE_CASE_ = feat_extract(speech_inputs[0] , return_tensors='np' ).input_values SCREAMING_SNAKE_CASE_ = feat_extract(np_speech_inputs[0] , return_tensors='np' ).input_values self.assertTrue(np.allclose(_lowerCAmelCase , _lowerCAmelCase , atol=1E-3 ) ) # Test batched SCREAMING_SNAKE_CASE_ = feat_extract(_lowerCAmelCase , return_tensors='np' ).input_values SCREAMING_SNAKE_CASE_ = feat_extract(_lowerCAmelCase , return_tensors='np' ).input_values for enc_seq_a, enc_seq_a in zip(_lowerCAmelCase , _lowerCAmelCase ): self.assertTrue(np.allclose(_lowerCAmelCase , _lowerCAmelCase , atol=1E-3 ) ) def lowerCAmelCase_ ( self : Union[str, Any] ): SCREAMING_SNAKE_CASE_ = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) SCREAMING_SNAKE_CASE_ = [floats_list((1, x) )[0] for x in range(800 , 1_400 , 200 )] SCREAMING_SNAKE_CASE_ = ['longest', 'max_length', 'do_not_pad'] SCREAMING_SNAKE_CASE_ = [None, 1_600, None] for max_length, padding in zip(_lowerCAmelCase , _lowerCAmelCase ): SCREAMING_SNAKE_CASE_ = feat_extract(_lowerCAmelCase , padding=_lowerCAmelCase , max_length=_lowerCAmelCase , return_tensors='np' ) SCREAMING_SNAKE_CASE_ = processed.input_values self._check_zero_mean_unit_variance(input_values[0][:800] ) self.assertTrue(input_values[0][800:].sum() < 1E-6 ) self._check_zero_mean_unit_variance(input_values[1][:1_000] ) self.assertTrue(input_values[0][1_000:].sum() < 1E-6 ) self._check_zero_mean_unit_variance(input_values[2][:1_200] ) def lowerCAmelCase_ ( self : Optional[Any] ): SCREAMING_SNAKE_CASE_ = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) SCREAMING_SNAKE_CASE_ = range(800 , 1_400 , 200 ) SCREAMING_SNAKE_CASE_ = [floats_list((1, x) )[0] for x in lengths] SCREAMING_SNAKE_CASE_ = ['longest', 'max_length', 'do_not_pad'] SCREAMING_SNAKE_CASE_ = [None, 1_600, None] for max_length, padding in zip(_lowerCAmelCase , _lowerCAmelCase ): SCREAMING_SNAKE_CASE_ = feat_extract(_lowerCAmelCase , max_length=_lowerCAmelCase , padding=_lowerCAmelCase ) SCREAMING_SNAKE_CASE_ = processed.input_values self._check_zero_mean_unit_variance(input_values[0][:800] ) self._check_zero_mean_unit_variance(input_values[1][:1_000] ) self._check_zero_mean_unit_variance(input_values[2][:1_200] ) def lowerCAmelCase_ ( self : Dict ): SCREAMING_SNAKE_CASE_ = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) SCREAMING_SNAKE_CASE_ = [floats_list((1, x) )[0] for x in range(800 , 1_400 , 200 )] SCREAMING_SNAKE_CASE_ = feat_extract( _lowerCAmelCase , truncation=_lowerCAmelCase , max_length=1_000 , padding='max_length' , return_tensors='np' ) SCREAMING_SNAKE_CASE_ = processed.input_values self._check_zero_mean_unit_variance(input_values[0, :800] ) self._check_zero_mean_unit_variance(input_values[1] ) self._check_zero_mean_unit_variance(input_values[2] ) def lowerCAmelCase_ ( self : Dict ): SCREAMING_SNAKE_CASE_ = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) SCREAMING_SNAKE_CASE_ = [floats_list((1, x) )[0] for x in range(800 , 1_400 , 200 )] SCREAMING_SNAKE_CASE_ = feat_extract( _lowerCAmelCase , truncation=_lowerCAmelCase , max_length=1_000 , padding='longest' , return_tensors='np' ) SCREAMING_SNAKE_CASE_ = processed.input_values self._check_zero_mean_unit_variance(input_values[0, :800] ) self._check_zero_mean_unit_variance(input_values[1, :1_000] ) self._check_zero_mean_unit_variance(input_values[2] ) # make sure that if max_length < longest -> then pad to max_length self.assertTrue(input_values.shape == (3, 1_000) ) SCREAMING_SNAKE_CASE_ = [floats_list((1, x) )[0] for x in range(800 , 1_400 , 200 )] SCREAMING_SNAKE_CASE_ = feat_extract( _lowerCAmelCase , truncation=_lowerCAmelCase , max_length=2_000 , padding='longest' , return_tensors='np' ) SCREAMING_SNAKE_CASE_ = processed.input_values self._check_zero_mean_unit_variance(input_values[0, :800] ) self._check_zero_mean_unit_variance(input_values[1, :1_000] ) self._check_zero_mean_unit_variance(input_values[2] ) # make sure that if max_length > longest -> then pad to longest self.assertTrue(input_values.shape == (3, 1_200) ) def lowerCAmelCase_ ( self : Optional[int] ): SCREAMING_SNAKE_CASE_ = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) SCREAMING_SNAKE_CASE_ = np.random.rand(100 ).astype(np.floataa ) SCREAMING_SNAKE_CASE_ = np_speech_inputs.tolist() for inputs in [py_speech_inputs, np_speech_inputs]: SCREAMING_SNAKE_CASE_ = feature_extractor.pad([{'input_values': inputs}] , return_tensors='np' ) self.assertTrue(np_processed.input_values.dtype == np.floataa ) SCREAMING_SNAKE_CASE_ = feature_extractor.pad([{'input_values': inputs}] , return_tensors='pt' ) self.assertTrue(pt_processed.input_values.dtype == torch.floataa ) def lowerCAmelCase_ ( self : Tuple ): # Tests that all call wrap to encode_plus and batch_encode_plus SCREAMING_SNAKE_CASE_ = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) # create three inputs of length 800, 1000, and 1200 SCREAMING_SNAKE_CASE_ = [floats_list((1, x) )[0] for x in range(800 , 1_400 , 200 )] SCREAMING_SNAKE_CASE_ = [np.asarray(_lowerCAmelCase ) for speech_input in speech_inputs] # Test feature size SCREAMING_SNAKE_CASE_ = feature_extractor(audio_target=_lowerCAmelCase , padding=_lowerCAmelCase , return_tensors='np' ).input_values self.assertTrue(input_values.ndim == 3 ) self.assertTrue(input_values.shape[-1] == feature_extractor.num_mel_bins ) # Test not batched input SCREAMING_SNAKE_CASE_ = feature_extractor(speech_inputs[0] , return_tensors='np' ).input_values SCREAMING_SNAKE_CASE_ = feature_extractor(np_speech_inputs[0] , return_tensors='np' ).input_values self.assertTrue(np.allclose(_lowerCAmelCase , _lowerCAmelCase , atol=1E-3 ) ) # Test batched SCREAMING_SNAKE_CASE_ = feature_extractor(_lowerCAmelCase , return_tensors='np' ).input_values SCREAMING_SNAKE_CASE_ = feature_extractor(_lowerCAmelCase , return_tensors='np' ).input_values for enc_seq_a, enc_seq_a in zip(_lowerCAmelCase , _lowerCAmelCase ): self.assertTrue(np.allclose(_lowerCAmelCase , _lowerCAmelCase , atol=1E-3 ) ) # Test 2-D numpy arrays are batched. SCREAMING_SNAKE_CASE_ = [floats_list((1, x) )[0] for x in (800, 800, 800)] SCREAMING_SNAKE_CASE_ = np.asarray(_lowerCAmelCase ) SCREAMING_SNAKE_CASE_ = feature_extractor(_lowerCAmelCase , return_tensors='np' ).input_values SCREAMING_SNAKE_CASE_ = feature_extractor(_lowerCAmelCase , return_tensors='np' ).input_values for enc_seq_a, enc_seq_a in zip(_lowerCAmelCase , _lowerCAmelCase ): self.assertTrue(np.allclose(_lowerCAmelCase , _lowerCAmelCase , atol=1E-3 ) ) def lowerCAmelCase_ ( self : str ): SCREAMING_SNAKE_CASE_ = self.feat_extract_tester.prepare_inputs_for_target() SCREAMING_SNAKE_CASE_ = self.feature_extraction_class(**self.feat_extract_dict ) SCREAMING_SNAKE_CASE_ = feat_extract.model_input_names[0] SCREAMING_SNAKE_CASE_ = BatchFeature({input_name: speech_inputs} ) self.assertTrue(all(len(_lowerCAmelCase ) == len(_lowerCAmelCase ) for x, y in zip(_lowerCAmelCase , processed_features[input_name] ) ) ) SCREAMING_SNAKE_CASE_ = self.feat_extract_tester.prepare_inputs_for_target(equal_length=_lowerCAmelCase ) SCREAMING_SNAKE_CASE_ = BatchFeature({input_name: speech_inputs} , tensor_type='np' ) SCREAMING_SNAKE_CASE_ = processed_features[input_name] if len(batch_features_input.shape ) < 3: SCREAMING_SNAKE_CASE_ = batch_features_input[:, :, None] self.assertTrue( batch_features_input.shape == (self.feat_extract_tester.batch_size, len(speech_inputs[0] ), self.feat_extract_tester.num_mel_bins) ) @require_torch def lowerCAmelCase_ ( self : Dict ): SCREAMING_SNAKE_CASE_ = self.feat_extract_tester.prepare_inputs_for_target(equal_length=_lowerCAmelCase ) SCREAMING_SNAKE_CASE_ = self.feature_extraction_class(**self.feat_extract_dict ) SCREAMING_SNAKE_CASE_ = feat_extract.model_input_names[0] SCREAMING_SNAKE_CASE_ = BatchFeature({input_name: speech_inputs} , tensor_type='pt' ) SCREAMING_SNAKE_CASE_ = processed_features[input_name] if len(batch_features_input.shape ) < 3: SCREAMING_SNAKE_CASE_ = batch_features_input[:, :, None] self.assertTrue( batch_features_input.shape == (self.feat_extract_tester.batch_size, len(speech_inputs[0] ), self.feat_extract_tester.num_mel_bins) ) @require_torch def lowerCAmelCase_ ( self : Dict ): SCREAMING_SNAKE_CASE_ = self.feature_extraction_class(**self.feat_extract_dict ) SCREAMING_SNAKE_CASE_ = self.feat_extract_tester.prepare_inputs_for_target() SCREAMING_SNAKE_CASE_ = feat_extract.model_input_names[0] SCREAMING_SNAKE_CASE_ = BatchFeature({input_name: speech_inputs} ) SCREAMING_SNAKE_CASE_ = feat_extract.num_mel_bins # hack! SCREAMING_SNAKE_CASE_ = feat_extract.pad(_lowerCAmelCase , padding='longest' , return_tensors='np' )[input_name] SCREAMING_SNAKE_CASE_ = feat_extract.pad(_lowerCAmelCase , padding='longest' , return_tensors='pt' )[input_name] self.assertTrue(abs(input_np.astype(np.floataa ).sum() - input_pt.numpy().astype(np.floataa ).sum() ) < 1E-2 ) def lowerCAmelCase_ ( self : str ): SCREAMING_SNAKE_CASE_ = self.feat_extract_dict SCREAMING_SNAKE_CASE_ = True SCREAMING_SNAKE_CASE_ = self.feature_extraction_class(**_lowerCAmelCase ) SCREAMING_SNAKE_CASE_ = self.feat_extract_tester.prepare_inputs_for_target() SCREAMING_SNAKE_CASE_ = [len(_lowerCAmelCase ) for x in speech_inputs] SCREAMING_SNAKE_CASE_ = feat_extract.model_input_names[0] SCREAMING_SNAKE_CASE_ = BatchFeature({input_name: speech_inputs} ) SCREAMING_SNAKE_CASE_ = feat_extract.num_mel_bins # hack! SCREAMING_SNAKE_CASE_ = feat_extract.pad(_lowerCAmelCase , padding='longest' , return_tensors='np' ) self.assertIn('attention_mask' , _lowerCAmelCase ) self.assertListEqual(list(processed.attention_mask.shape ) , list(processed[input_name].shape[:2] ) ) self.assertListEqual(processed.attention_mask.sum(-1 ).tolist() , _lowerCAmelCase ) def lowerCAmelCase_ ( self : Any ): SCREAMING_SNAKE_CASE_ = self.feat_extract_dict SCREAMING_SNAKE_CASE_ = True SCREAMING_SNAKE_CASE_ = self.feature_extraction_class(**_lowerCAmelCase ) SCREAMING_SNAKE_CASE_ = self.feat_extract_tester.prepare_inputs_for_target() SCREAMING_SNAKE_CASE_ = [len(_lowerCAmelCase ) for x in speech_inputs] SCREAMING_SNAKE_CASE_ = feat_extract.model_input_names[0] SCREAMING_SNAKE_CASE_ = BatchFeature({input_name: speech_inputs} ) SCREAMING_SNAKE_CASE_ = min(_lowerCAmelCase ) SCREAMING_SNAKE_CASE_ = feat_extract.num_mel_bins # hack! SCREAMING_SNAKE_CASE_ = feat_extract.pad( _lowerCAmelCase , padding='max_length' , max_length=_lowerCAmelCase , truncation=_lowerCAmelCase , return_tensors='np' ) self.assertIn('attention_mask' , _lowerCAmelCase ) self.assertListEqual( list(processed_pad.attention_mask.shape ) , [processed_pad[input_name].shape[0], max_length] ) self.assertListEqual( processed_pad.attention_mask[:, :max_length].sum(-1 ).tolist() , [max_length for x in speech_inputs] ) def lowerCAmelCase_ ( self : List[Any] , _lowerCAmelCase : Tuple ): from datasets import load_dataset SCREAMING_SNAKE_CASE_ = load_dataset('hf-internal-testing/librispeech_asr_dummy' , 'clean' , split='validation' ) # automatic decoding with librispeech SCREAMING_SNAKE_CASE_ = ds.sort('id' ).select(range(_lowerCAmelCase ) )[:num_samples]['audio'] return [x["array"] for x in speech_samples] def lowerCAmelCase_ ( self : Any ): # fmt: off SCREAMING_SNAKE_CASE_ = torch.tensor( [2.3_804E-03, 2.0_752E-03, 1.9_836E-03, 2.1_057E-03, 1.6_174E-03, 3.0_518E-04, 9.1_553E-05, 3.3_569E-04, 9.7_656E-04, 1.8_311E-03, 2.0_142E-03, 2.1_057E-03, 1.7_395E-03, 4.5_776E-04, -3.9_673E-04, 4.5_776E-04, 1.0_071E-03, 9.1_553E-05, 4.8_828E-04, 1.1_597E-03, 7.3_242E-04, 9.4_604E-04, 1.8_005E-03, 1.8_311E-03, 8.8_501E-04, 4.2_725E-04, 4.8_828E-04, 7.3_242E-04, 1.0_986E-03, 2.1_057E-03] ) # fmt: on SCREAMING_SNAKE_CASE_ = self._load_datasamples(1 ) SCREAMING_SNAKE_CASE_ = SpeechTaFeatureExtractor() SCREAMING_SNAKE_CASE_ = feature_extractor(_lowerCAmelCase , return_tensors='pt' ).input_values self.assertEquals(input_values.shape , (1, 93_680) ) self.assertTrue(torch.allclose(input_values[0, :30] , _lowerCAmelCase , atol=1E-6 ) ) def lowerCAmelCase_ ( self : Optional[int] ): # fmt: off SCREAMING_SNAKE_CASE_ = torch.tensor( [-2.6870, -3.0104, -3.1356, -3.5352, -3.0044, -3.0353, -3.4719, -3.6777, -3.1520, -2.9435, -2.6553, -2.8795, -2.9944, -2.5921, -3.0279, -3.0386, -3.0864, -3.1291, -3.2353, -2.7444, -2.6831, -2.7287, -3.1761, -3.1571, -3.2726, -3.0582, -3.1007, -3.4533, -3.4695, -3.0998] ) # fmt: on SCREAMING_SNAKE_CASE_ = self._load_datasamples(1 ) SCREAMING_SNAKE_CASE_ = SpeechTaFeatureExtractor() SCREAMING_SNAKE_CASE_ = feature_extractor(audio_target=_lowerCAmelCase , return_tensors='pt' ).input_values self.assertEquals(input_values.shape , (1, 366, 80) ) self.assertTrue(torch.allclose(input_values[0, 0, :30] , _lowerCAmelCase , atol=1E-4 ) )
31
0
def a_ () -> list[list[int]]: """simple docstring""" return [list(range(1_000 - i , -1_000 - i , -1 ) ) for i in range(1_000 )] UpperCAmelCase__ = generate_large_matrix() UpperCAmelCase__ = ( [[4, 3, 2, -1], [3, 2, 1, -1], [1, 1, -1, -2], [-1, -1, -2, -3]], [[3, 2], [1, 0]], [[7, 7, 6]], [[7, 7, 6], [-1, -2, -3]], grid, ) def a_ (__A ) -> None: """simple docstring""" assert all(row == sorted(__UpperCAmelCase , reverse=__UpperCAmelCase ) for row in grid ) assert all(list(__UpperCAmelCase ) == sorted(__UpperCAmelCase , reverse=__UpperCAmelCase ) for col in zip(*__UpperCAmelCase ) ) def a_ (__A ) -> int: """simple docstring""" __a : Optional[int] = 0 __a : Optional[int] = len(__UpperCAmelCase ) - 1 # Edge cases such as no values or all numbers are negative. if not array or array[0] < 0: return 0 while right + 1 > left: __a : int = (left + right) // 2 __a : List[Any] = array[mid] # Num must be negative and the index must be greater than or equal to 0. if num < 0 and array[mid - 1] >= 0: return mid if num >= 0: __a : List[str] = mid + 1 else: __a : List[str] = mid - 1 # No negative numbers so return the last index of the array + 1 which is the length. return len(__UpperCAmelCase ) def a_ (__A ) -> int: """simple docstring""" __a : str = 0 __a : List[Any] = len(grid[0] ) for i in range(len(__UpperCAmelCase ) ): __a : Tuple = find_negative_index(grid[i][:bound] ) total += bound return (len(__UpperCAmelCase ) * len(grid[0] )) - total def a_ (__A ) -> int: """simple docstring""" return len([number for row in grid for number in row if number < 0] ) def a_ (__A ) -> int: """simple docstring""" __a : int = 0 for row in grid: for i, number in enumerate(__UpperCAmelCase ): if number < 0: total += len(__UpperCAmelCase ) - i break return total def a_ () -> None: """simple docstring""" from timeit import timeit print("Running benchmarks" ) __a : int = ( "from __main__ import count_negatives_binary_search, " "count_negatives_brute_force, count_negatives_brute_force_with_break, grid" ) for func in ( "count_negatives_binary_search", # took 0.7727 seconds "count_negatives_brute_force_with_break", # took 4.6505 seconds "count_negatives_brute_force", # took 12.8160 seconds ): __a : Any = timeit(f'{func}(grid=grid)' , setup=__UpperCAmelCase , number=500 ) print(f'{func}() took {time:0.4f} seconds' ) if __name__ == "__main__": import doctest doctest.testmod() benchmark()
351
from __future__ import annotations from typing import TypedDict class lowerCamelCase_ ( _SCREAMING_SNAKE_CASE ): '''simple docstring''' lowercase_ = 42 lowercase_ = 42 def UpperCAmelCase_ ( __UpperCAmelCase : str ) -> list[str]: if not isinstance(__UpperCAmelCase , __UpperCAmelCase ): raise TypeError('The parameter s type must be str.' ) return [s[i:] + s[:i] for i in range(len(__UpperCAmelCase ) )] def UpperCAmelCase_ ( __UpperCAmelCase : str ) -> BWTTransformDict: if not isinstance(__UpperCAmelCase , __UpperCAmelCase ): raise TypeError('The parameter s type must be str.' ) if not s: raise ValueError('The parameter s must not be empty.' ) SCREAMING_SNAKE_CASE_ = all_rotations(__UpperCAmelCase ) rotations.sort() # sort the list of rotations in alphabetically order # make a string composed of the last char of each rotation SCREAMING_SNAKE_CASE_ = { "bwt_string": "".join([word[-1] for word in rotations] ), "idx_original_string": rotations.index(__UpperCAmelCase ), } return response def UpperCAmelCase_ ( __UpperCAmelCase : str , __UpperCAmelCase : int ) -> str: if not isinstance(__UpperCAmelCase , __UpperCAmelCase ): raise TypeError('The parameter bwt_string type must be str.' ) if not bwt_string: raise ValueError('The parameter bwt_string must not be empty.' ) try: SCREAMING_SNAKE_CASE_ = int(__UpperCAmelCase ) except ValueError: raise TypeError( 'The parameter idx_original_string type must be int or passive' ' of cast to int.' ) if idx_original_string < 0: raise ValueError('The parameter idx_original_string must not be lower than 0.' ) if idx_original_string >= len(__UpperCAmelCase ): raise ValueError( 'The parameter idx_original_string must be lower than' ' len(bwt_string).' ) SCREAMING_SNAKE_CASE_ = [''] * len(__UpperCAmelCase ) for _ in range(len(__UpperCAmelCase ) ): for i in range(len(__UpperCAmelCase ) ): SCREAMING_SNAKE_CASE_ = bwt_string[i] + ordered_rotations[i] ordered_rotations.sort() return ordered_rotations[idx_original_string] if __name__ == "__main__": lowerCamelCase__ : Optional[int] = 'Provide a string that I will generate its BWT transform: ' lowerCamelCase__ : List[str] = input(entry_msg).strip() lowerCamelCase__ : int = bwt_transform(s) print( f'''Burrows Wheeler transform for string \'{s}\' results ''' f'''in \'{result['bwt_string']}\'''' ) lowerCamelCase__ : Dict = reverse_bwt(result['bwt_string'], result['idx_original_string']) print( f'''Reversing Burrows Wheeler transform for entry \'{result['bwt_string']}\' ''' f'''we get original string \'{original_string}\'''' )
31
0
'''simple docstring''' from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging _lowerCAmelCase = logging.get_logger(__name__) _lowerCAmelCase = { 'roberta-base': 'https://huggingface.co/roberta-base/resolve/main/config.json', 'roberta-large': 'https://huggingface.co/roberta-large/resolve/main/config.json', 'roberta-large-mnli': 'https://huggingface.co/roberta-large-mnli/resolve/main/config.json', 'distilroberta-base': 'https://huggingface.co/distilroberta-base/resolve/main/config.json', 'roberta-base-openai-detector': 'https://huggingface.co/roberta-base-openai-detector/resolve/main/config.json', 'roberta-large-openai-detector': 'https://huggingface.co/roberta-large-openai-detector/resolve/main/config.json', } class __A ( _SCREAMING_SNAKE_CASE ): """simple docstring""" A_ = 'roberta' def __init__( self , _lowerCamelCase=5_0_2_6_5 , _lowerCamelCase=7_6_8 , _lowerCamelCase=1_2 , _lowerCamelCase=1_2 , _lowerCamelCase=3_0_7_2 , _lowerCamelCase="gelu" , _lowerCamelCase=0.1 , _lowerCamelCase=0.1 , _lowerCamelCase=5_1_2 , _lowerCamelCase=2 , _lowerCamelCase=0.0_2 , _lowerCamelCase=1e-12 , _lowerCamelCase=1 , _lowerCamelCase=0 , _lowerCamelCase=2 , _lowerCamelCase="absolute" , _lowerCamelCase=True , _lowerCamelCase=None , **_lowerCamelCase , )-> List[str]: super().__init__(pad_token_id=_lowerCAmelCase , bos_token_id=_lowerCAmelCase , eos_token_id=_lowerCAmelCase , **_lowerCAmelCase ) lowercase__ = vocab_size lowercase__ = hidden_size lowercase__ = num_hidden_layers lowercase__ = num_attention_heads lowercase__ = hidden_act lowercase__ = intermediate_size lowercase__ = hidden_dropout_prob lowercase__ = attention_probs_dropout_prob lowercase__ = max_position_embeddings lowercase__ = type_vocab_size lowercase__ = initializer_range lowercase__ = layer_norm_eps lowercase__ = position_embedding_type lowercase__ = use_cache lowercase__ = classifier_dropout class __A ( _SCREAMING_SNAKE_CASE ): """simple docstring""" @property def snake_case_( self )-> Dict: if self.task == "multiple-choice": lowercase__ = {0: '''batch''', 1: '''choice''', 2: '''sequence'''} else: lowercase__ = {0: '''batch''', 1: '''sequence'''} return OrderedDict( [ ('''input_ids''', dynamic_axis), ('''attention_mask''', dynamic_axis), ] )
161
class lowerCamelCase_ : '''simple docstring''' def __init__( self : str ): SCREAMING_SNAKE_CASE_ = {} def lowerCAmelCase_ ( self : List[str] ): print(self.vertex ) for i in self.vertex: print(_lowerCAmelCase , ' -> ' , ' -> '.join([str(_lowerCAmelCase ) for j in self.vertex[i]] ) ) def lowerCAmelCase_ ( self : Union[str, Any] , _lowerCAmelCase : int , _lowerCAmelCase : int ): # check if vertex is already present, if from_vertex in self.vertex: self.vertex[from_vertex].append(_lowerCAmelCase ) else: # else make a new vertex SCREAMING_SNAKE_CASE_ = [to_vertex] def lowerCAmelCase_ ( self : Optional[Any] ): # visited array for storing already visited nodes SCREAMING_SNAKE_CASE_ = [False] * len(self.vertex ) # call the recursive helper function for i in range(len(self.vertex ) ): if not visited[i]: self.dfs_recursive(_lowerCAmelCase , _lowerCAmelCase ) def lowerCAmelCase_ ( self : Tuple , _lowerCAmelCase : int , _lowerCAmelCase : list ): # mark start vertex as visited SCREAMING_SNAKE_CASE_ = True print(_lowerCAmelCase , end=' ' ) # Recur for all the vertices that are adjacent to this node for i in self.vertex: if not visited[i]: self.dfs_recursive(_lowerCAmelCase , _lowerCAmelCase ) if __name__ == "__main__": lowerCamelCase__ : List[Any] = Graph() g.add_edge(0, 1) g.add_edge(0, 2) g.add_edge(1, 2) g.add_edge(2, 0) g.add_edge(2, 3) g.add_edge(3, 3) g.print_graph() print('DFS:') g.dfs() # OUTPUT: # 0 -> 1 -> 2 # 1 -> 2 # 2 -> 0 -> 3 # 3 -> 3 # DFS: # 0 1 2 3
31
0
"""simple docstring""" import torch from torch import nn from torch.nn import CrossEntropyLoss, MSELoss from transformers.file_utils import add_start_docstrings, add_start_docstrings_to_model_forward from transformers.models.bert.modeling_bert import ( BERT_INPUTS_DOCSTRING, BERT_START_DOCSTRING, BertEmbeddings, BertLayer, BertPooler, BertPreTrainedModel, ) def SCREAMING_SNAKE_CASE_ ( snake_case : Optional[Any] )-> Optional[Any]: _lowerCamelCase = torch.exp(__UpperCAmelCase ) _lowerCamelCase = torch.sum(__UpperCAmelCase , dim=1 ) # sum of exp(x_i) _lowerCamelCase = torch.sum(x * exp_x , dim=1 ) # sum of x_i * exp(x_i) return torch.log(__UpperCAmelCase ) - B / A class __a ( nn.Module ): def __init__( self , a__ ): super().__init__() _lowerCamelCase = config.output_attentions _lowerCamelCase = config.output_hidden_states _lowerCamelCase = nn.ModuleList([BertLayer(_lowerCAmelCase ) for _ in range(config.num_hidden_layers )] ) _lowerCamelCase = nn.ModuleList([BertHighway(_lowerCAmelCase ) for _ in range(config.num_hidden_layers )] ) _lowerCamelCase = [-1 for _ in range(config.num_hidden_layers )] def snake_case_ ( self , a__ ): if (type(_lowerCAmelCase ) is float) or (type(_lowerCAmelCase ) is int): for i in range(len(self.early_exit_entropy ) ): _lowerCamelCase = x else: _lowerCamelCase = x def snake_case_ ( self , a__ ): _lowerCamelCase = pooler.state_dict() for highway in self.highway: for name, param in highway.pooler.state_dict().items(): param.copy_(loaded_model[name] ) def snake_case_ ( self , a__ , a__=None , a__=None , a__=None , a__=None , ): _lowerCamelCase = () _lowerCamelCase = () _lowerCamelCase = () for i, layer_module in enumerate(self.layer ): if self.output_hidden_states: _lowerCamelCase = all_hidden_states + (hidden_states,) _lowerCamelCase = layer_module( _lowerCAmelCase , _lowerCAmelCase , head_mask[i] , _lowerCAmelCase , _lowerCAmelCase ) _lowerCamelCase = layer_outputs[0] if self.output_attentions: _lowerCamelCase = all_attentions + (layer_outputs[1],) _lowerCamelCase = (hidden_states,) if self.output_hidden_states: _lowerCamelCase = current_outputs + (all_hidden_states,) if self.output_attentions: _lowerCamelCase = current_outputs + (all_attentions,) _lowerCamelCase = self.highway[i](_lowerCAmelCase ) # logits, pooled_output if not self.training: _lowerCamelCase = highway_exit[0] _lowerCamelCase = entropy(_lowerCAmelCase ) _lowerCamelCase = highway_exit + (highway_entropy,) # logits, hidden_states(?), entropy _lowerCamelCase = all_highway_exits + (highway_exit,) if highway_entropy < self.early_exit_entropy[i]: _lowerCamelCase = (highway_logits,) + current_outputs[1:] + (all_highway_exits,) raise HighwayException(_lowerCAmelCase , i + 1 ) else: _lowerCamelCase = all_highway_exits + (highway_exit,) # Add last layer if self.output_hidden_states: _lowerCamelCase = all_hidden_states + (hidden_states,) _lowerCamelCase = (hidden_states,) if self.output_hidden_states: _lowerCamelCase = outputs + (all_hidden_states,) if self.output_attentions: _lowerCamelCase = outputs + (all_attentions,) _lowerCamelCase = outputs + (all_highway_exits,) return outputs # last-layer hidden state, (all hidden states), (all attentions), all highway exits @add_start_docstrings( "The Bert Model transformer with early exiting (DeeBERT). " , _SCREAMING_SNAKE_CASE , ) class __a ( _SCREAMING_SNAKE_CASE ): def __init__( self , a__ ): super().__init__(_lowerCAmelCase ) _lowerCamelCase = config _lowerCamelCase = BertEmbeddings(_lowerCAmelCase ) _lowerCamelCase = DeeBertEncoder(_lowerCAmelCase ) _lowerCamelCase = BertPooler(_lowerCAmelCase ) self.init_weights() def snake_case_ ( self ): self.encoder.init_highway_pooler(self.pooler ) def snake_case_ ( self ): return self.embeddings.word_embeddings def snake_case_ ( self , a__ ): _lowerCamelCase = value def snake_case_ ( self , a__ ): for layer, heads in heads_to_prune.items(): self.encoder.layer[layer].attention.prune_heads(_lowerCAmelCase ) @add_start_docstrings_to_model_forward(_lowerCAmelCase ) def snake_case_ ( self , a__=None , a__=None , a__=None , a__=None , a__=None , a__=None , a__=None , a__=None , ): if input_ids is not None and inputs_embeds is not None: raise ValueError('You cannot specify both input_ids and inputs_embeds at the same time' ) elif input_ids is not None: _lowerCamelCase = input_ids.size() elif inputs_embeds is not None: _lowerCamelCase = inputs_embeds.size()[:-1] else: raise ValueError('You have to specify either input_ids or inputs_embeds' ) _lowerCamelCase = input_ids.device if input_ids is not None else inputs_embeds.device if attention_mask is None: _lowerCamelCase = torch.ones(_lowerCAmelCase , device=_lowerCAmelCase ) if encoder_attention_mask is None: _lowerCamelCase = torch.ones(_lowerCAmelCase , device=_lowerCAmelCase ) if token_type_ids is None: _lowerCamelCase = torch.zeros(_lowerCAmelCase , dtype=torch.long , device=_lowerCAmelCase ) # We can provide a self-attention mask of dimensions [batch_size, from_seq_length, to_seq_length] # ourselves in which case we just need to make it broadcastable to all heads. _lowerCamelCase = self.get_extended_attention_mask(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) # If a 2D ou 3D attention mask is provided for the cross-attention # we need to make broadcastable to [batch_size, num_heads, seq_length, seq_length] if encoder_attention_mask.dim() == 3: _lowerCamelCase = encoder_attention_mask[:, None, :, :] if encoder_attention_mask.dim() == 2: _lowerCamelCase = encoder_attention_mask[:, None, None, :] _lowerCamelCase = encoder_extended_attention_mask.to( dtype=next(self.parameters() ).dtype ) # fp16 compatibility _lowerCamelCase = (1.0 - encoder_extended_attention_mask) * -1_00_00.0 # Prepare head mask if needed # 1.0 in head_mask indicate we keep the head # attention_probs has shape bsz x n_heads x N x N # input head_mask has shape [num_heads] or [num_hidden_layers x num_heads] # and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length] _lowerCamelCase = self.get_head_mask(_lowerCAmelCase , self.config.num_hidden_layers ) _lowerCamelCase = self.embeddings( input_ids=_lowerCAmelCase , position_ids=_lowerCAmelCase , token_type_ids=_lowerCAmelCase , inputs_embeds=_lowerCAmelCase ) _lowerCamelCase = self.encoder( _lowerCAmelCase , attention_mask=_lowerCAmelCase , head_mask=_lowerCAmelCase , encoder_hidden_states=_lowerCAmelCase , encoder_attention_mask=_lowerCAmelCase , ) _lowerCamelCase = encoder_outputs[0] _lowerCamelCase = self.pooler(_lowerCAmelCase ) _lowerCamelCase = ( sequence_output, pooled_output, ) + encoder_outputs[ 1: ] # add hidden_states and attentions if they are here return outputs # sequence_output, pooled_output, (hidden_states), (attentions), highway exits class __a ( _SCREAMING_SNAKE_CASE ): def __init__( self , a__ , a__ ): _lowerCamelCase = message _lowerCamelCase = exit_layer # start from 1! class __a ( nn.Module ): def __init__( self , a__ ): super().__init__() _lowerCamelCase = BertPooler(_lowerCAmelCase ) _lowerCamelCase = nn.Dropout(config.hidden_dropout_prob ) _lowerCamelCase = nn.Linear(config.hidden_size , config.num_labels ) def snake_case_ ( self , a__ ): # Pooler _lowerCamelCase = encoder_outputs[0] _lowerCamelCase = self.pooler(_lowerCAmelCase ) # "return" pooler_output # BertModel _lowerCamelCase = (pooler_input, pooler_output) + encoder_outputs[1:] # "return" bmodel_output # Dropout and classification _lowerCamelCase = bmodel_output[1] _lowerCamelCase = self.dropout(_lowerCAmelCase ) _lowerCamelCase = self.classifier(_lowerCAmelCase ) return logits, pooled_output @add_start_docstrings( "Bert Model (with early exiting - DeeBERT) with a classifier on top,\n also takes care of multi-layer training. " , _SCREAMING_SNAKE_CASE , ) class __a ( _SCREAMING_SNAKE_CASE ): def __init__( self , a__ ): super().__init__(_lowerCAmelCase ) _lowerCamelCase = config.num_labels _lowerCamelCase = config.num_hidden_layers _lowerCamelCase = DeeBertModel(_lowerCAmelCase ) _lowerCamelCase = nn.Dropout(config.hidden_dropout_prob ) _lowerCamelCase = nn.Linear(config.hidden_size , self.config.num_labels ) self.init_weights() @add_start_docstrings_to_model_forward(_lowerCAmelCase ) def snake_case_ ( self , a__=None , a__=None , a__=None , a__=None , a__=None , a__=None , a__=None , a__=-1 , a__=False , ): _lowerCamelCase = self.num_layers try: _lowerCamelCase = self.bert( _lowerCAmelCase , attention_mask=_lowerCAmelCase , token_type_ids=_lowerCAmelCase , position_ids=_lowerCAmelCase , head_mask=_lowerCAmelCase , inputs_embeds=_lowerCAmelCase , ) # sequence_output, pooled_output, (hidden_states), (attentions), highway exits _lowerCamelCase = outputs[1] _lowerCamelCase = self.dropout(_lowerCAmelCase ) _lowerCamelCase = self.classifier(_lowerCAmelCase ) _lowerCamelCase = (logits,) + outputs[2:] # add hidden states and attention if they are here except HighwayException as e: _lowerCamelCase = e.message _lowerCamelCase = e.exit_layer _lowerCamelCase = outputs[0] if not self.training: _lowerCamelCase = entropy(_lowerCAmelCase ) _lowerCamelCase = [] _lowerCamelCase = [] if labels is not None: if self.num_labels == 1: # We are doing regression _lowerCamelCase = MSELoss() _lowerCamelCase = loss_fct(logits.view(-1 ) , labels.view(-1 ) ) else: _lowerCamelCase = CrossEntropyLoss() _lowerCamelCase = loss_fct(logits.view(-1 , self.num_labels ) , labels.view(-1 ) ) # work with highway exits _lowerCamelCase = [] for highway_exit in outputs[-1]: _lowerCamelCase = highway_exit[0] if not self.training: highway_logits_all.append(_lowerCAmelCase ) highway_entropy.append(highway_exit[2] ) if self.num_labels == 1: # We are doing regression _lowerCamelCase = MSELoss() _lowerCamelCase = loss_fct(highway_logits.view(-1 ) , labels.view(-1 ) ) else: _lowerCamelCase = CrossEntropyLoss() _lowerCamelCase = loss_fct(highway_logits.view(-1 , self.num_labels ) , labels.view(-1 ) ) highway_losses.append(_lowerCAmelCase ) if train_highway: _lowerCamelCase = (sum(highway_losses[:-1] ),) + outputs # exclude the final highway, of course else: _lowerCamelCase = (loss,) + outputs if not self.training: _lowerCamelCase = outputs + ((original_entropy, highway_entropy), exit_layer) if output_layer >= 0: _lowerCamelCase = ( (outputs[0],) + (highway_logits_all[output_layer],) + outputs[2:] ) # use the highway of the last layer return outputs # (loss), logits, (hidden_states), (attentions), (highway_exits)
650
from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCamelCase__ : str = logging.get_logger(__name__) lowerCamelCase__ : Tuple = { 'funnel-transformer/small': 'https://huggingface.co/funnel-transformer/small/resolve/main/config.json', 'funnel-transformer/small-base': 'https://huggingface.co/funnel-transformer/small-base/resolve/main/config.json', 'funnel-transformer/medium': 'https://huggingface.co/funnel-transformer/medium/resolve/main/config.json', 'funnel-transformer/medium-base': 'https://huggingface.co/funnel-transformer/medium-base/resolve/main/config.json', 'funnel-transformer/intermediate': ( 'https://huggingface.co/funnel-transformer/intermediate/resolve/main/config.json' ), 'funnel-transformer/intermediate-base': ( 'https://huggingface.co/funnel-transformer/intermediate-base/resolve/main/config.json' ), 'funnel-transformer/large': 'https://huggingface.co/funnel-transformer/large/resolve/main/config.json', 'funnel-transformer/large-base': 'https://huggingface.co/funnel-transformer/large-base/resolve/main/config.json', 'funnel-transformer/xlarge': 'https://huggingface.co/funnel-transformer/xlarge/resolve/main/config.json', 'funnel-transformer/xlarge-base': 'https://huggingface.co/funnel-transformer/xlarge-base/resolve/main/config.json', } class lowerCamelCase_ ( _SCREAMING_SNAKE_CASE ): '''simple docstring''' lowercase_ = "funnel" lowercase_ = { "hidden_size": "d_model", "num_attention_heads": "n_head", } def __init__( self : int , _lowerCAmelCase : Optional[int]=30_522 , _lowerCAmelCase : List[str]=[4, 4, 4] , _lowerCAmelCase : Tuple=None , _lowerCAmelCase : Optional[int]=2 , _lowerCAmelCase : int=768 , _lowerCAmelCase : Optional[Any]=12 , _lowerCAmelCase : Optional[Any]=64 , _lowerCAmelCase : Optional[Any]=3_072 , _lowerCAmelCase : List[str]="gelu_new" , _lowerCAmelCase : Any=0.1 , _lowerCAmelCase : int=0.1 , _lowerCAmelCase : Tuple=0.0 , _lowerCAmelCase : List[Any]=0.1 , _lowerCAmelCase : Dict=None , _lowerCAmelCase : str=1E-9 , _lowerCAmelCase : Any="mean" , _lowerCAmelCase : Union[str, Any]="relative_shift" , _lowerCAmelCase : Optional[Any]=True , _lowerCAmelCase : Dict=True , _lowerCAmelCase : Tuple=True , **_lowerCAmelCase : Optional[Any] , ): SCREAMING_SNAKE_CASE_ = vocab_size SCREAMING_SNAKE_CASE_ = block_sizes SCREAMING_SNAKE_CASE_ = [1] * len(_lowerCAmelCase ) if block_repeats is None else block_repeats assert len(_lowerCAmelCase ) == len( self.block_repeats ), "`block_sizes` and `block_repeats` should have the same length." SCREAMING_SNAKE_CASE_ = num_decoder_layers SCREAMING_SNAKE_CASE_ = d_model SCREAMING_SNAKE_CASE_ = n_head SCREAMING_SNAKE_CASE_ = d_head SCREAMING_SNAKE_CASE_ = d_inner SCREAMING_SNAKE_CASE_ = hidden_act SCREAMING_SNAKE_CASE_ = hidden_dropout SCREAMING_SNAKE_CASE_ = attention_dropout SCREAMING_SNAKE_CASE_ = activation_dropout SCREAMING_SNAKE_CASE_ = initializer_range SCREAMING_SNAKE_CASE_ = initializer_std SCREAMING_SNAKE_CASE_ = layer_norm_eps assert pooling_type in [ "mean", "max", ], F"Got {pooling_type} for `pooling_type` but only 'mean' and 'max' are supported." SCREAMING_SNAKE_CASE_ = pooling_type assert attention_type in [ "relative_shift", "factorized", ], F"Got {attention_type} for `attention_type` but only 'relative_shift' and 'factorized' are supported." SCREAMING_SNAKE_CASE_ = attention_type SCREAMING_SNAKE_CASE_ = separate_cls SCREAMING_SNAKE_CASE_ = truncate_seq SCREAMING_SNAKE_CASE_ = pool_q_only super().__init__(**_lowerCAmelCase ) @property def lowerCAmelCase_ ( self : Optional[int] ): return sum(self.block_sizes ) @num_hidden_layers.setter def lowerCAmelCase_ ( self : int , _lowerCAmelCase : List[Any] ): raise NotImplementedError( 'This model does not support the setting of `num_hidden_layers`. Please set `block_sizes`.' ) @property def lowerCAmelCase_ ( self : List[Any] ): return len(self.block_sizes ) @num_blocks.setter def lowerCAmelCase_ ( self : Dict , _lowerCAmelCase : Union[str, Any] ): raise NotImplementedError('This model does not support the setting of `num_blocks`. Please set `block_sizes`.' )
31
0
"""simple docstring""" from random import randint from tempfile import TemporaryFile import numpy as np def lowerCAmelCase_( lowercase_ : Tuple , lowercase_ : Union[str, Any] , lowercase_ : int ) -> Dict: _lowerCamelCase = 0 if start < end: _lowerCamelCase = randint(__UpperCAmelCase , __UpperCAmelCase ) _lowerCamelCase = a[end] _lowerCamelCase = a[pivot] _lowerCamelCase = temp _lowerCamelCase , _lowerCamelCase = _in_place_partition(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) count += _in_place_quick_sort(__UpperCAmelCase , __UpperCAmelCase , p - 1 ) count += _in_place_quick_sort(__UpperCAmelCase , p + 1 , __UpperCAmelCase ) return count def lowerCAmelCase_( lowercase_ : List[Any] , lowercase_ : str , lowercase_ : Optional[int] ) -> Union[str, Any]: _lowerCamelCase = 0 _lowerCamelCase = randint(__UpperCAmelCase , __UpperCAmelCase ) _lowerCamelCase = a[end] _lowerCamelCase = a[pivot] _lowerCamelCase = temp _lowerCamelCase = start - 1 for index in range(__UpperCAmelCase , __UpperCAmelCase ): count += 1 if a[index] < a[end]: # check if current val is less than pivot value _lowerCamelCase = new_pivot_index + 1 _lowerCamelCase = a[new_pivot_index] _lowerCamelCase = a[index] _lowerCamelCase = temp _lowerCamelCase = a[new_pivot_index + 1] _lowerCamelCase = a[end] _lowerCamelCase = temp return new_pivot_index + 1, count __SCREAMING_SNAKE_CASE : List[Any] = TemporaryFile() __SCREAMING_SNAKE_CASE : Optional[Any] = 1_0_0 # 1000 elements are to be sorted __SCREAMING_SNAKE_CASE : List[str] = 0, 1 # mean and standard deviation __SCREAMING_SNAKE_CASE : Tuple = np.random.normal(mu, sigma, p) np.save(outfile, X) print('''The array is''') print(X) outfile.seek(0) # using the same array __SCREAMING_SNAKE_CASE : Union[str, Any] = np.load(outfile) __SCREAMING_SNAKE_CASE : Union[str, Any] = len(M) - 1 __SCREAMING_SNAKE_CASE : Dict = _in_place_quick_sort(M, 0, r) print( '''No of Comparisons for 100 elements selected from a standard normal distribution''' '''is :''' ) print(z)
661
from __future__ import annotations from collections.abc import Iterator class lowerCamelCase_ : '''simple docstring''' def __init__( self : Union[str, Any] , _lowerCAmelCase : int ): SCREAMING_SNAKE_CASE_ = value SCREAMING_SNAKE_CASE_ = None SCREAMING_SNAKE_CASE_ = None class lowerCamelCase_ : '''simple docstring''' def __init__( self : int , _lowerCAmelCase : Node ): SCREAMING_SNAKE_CASE_ = tree def lowerCAmelCase_ ( self : Union[str, Any] , _lowerCAmelCase : Node | None ): if node is None: return 0 return node.value + ( self.depth_first_search(node.left ) + self.depth_first_search(node.right ) ) def __iter__( self : Dict ): yield self.depth_first_search(self.tree ) if __name__ == "__main__": import doctest doctest.testmod()
31
0
"""simple docstring""" def _UpperCamelCase ( UpperCamelCase , UpperCamelCase ) -> float: """simple docstring""" _validate_point(__UpperCAmelCase ) _validate_point(__UpperCAmelCase ) if len(__UpperCAmelCase ) != len(__UpperCAmelCase ): raise ValueError("Both points must be in the same n-dimensional space" ) return float(sum(abs(a - b ) for a, b in zip(__UpperCAmelCase , __UpperCAmelCase ) ) ) def _UpperCamelCase ( UpperCamelCase ) -> None: """simple docstring""" if point: if isinstance(__UpperCAmelCase , __UpperCAmelCase ): for item in point: if not isinstance(__UpperCAmelCase , (int, float) ): __UpperCAmelCase : Any = ( "Expected a list of numbers as input, found " f"{type(__UpperCAmelCase ).__name__}" ) raise TypeError(__UpperCAmelCase ) else: __UpperCAmelCase : List[Any] = f"Expected a list of numbers as input, found {type(__UpperCAmelCase ).__name__}" raise TypeError(__UpperCAmelCase ) else: raise ValueError("Missing an input" ) def _UpperCamelCase ( UpperCamelCase , UpperCamelCase ) -> float: """simple docstring""" _validate_point(__UpperCAmelCase ) _validate_point(__UpperCAmelCase ) if len(__UpperCAmelCase ) != len(__UpperCAmelCase ): raise ValueError("Both points must be in the same n-dimensional space" ) return float(sum(abs(x - y ) for x, y in zip(__UpperCAmelCase , __UpperCAmelCase ) ) ) if __name__ == "__main__": import doctest doctest.testmod()
77
def UpperCAmelCase_ ( __UpperCAmelCase : list , __UpperCAmelCase : int , __UpperCAmelCase : int = 0 , __UpperCAmelCase : int = 0 ) -> int: SCREAMING_SNAKE_CASE_ = right or len(__UpperCAmelCase ) - 1 if left > right: return -1 elif list_data[left] == key: return left elif list_data[right] == key: return right else: return search(__UpperCAmelCase , __UpperCAmelCase , left + 1 , right - 1 ) if __name__ == "__main__": import doctest doctest.testmod()
31
0
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_sentencepiece_available, is_tf_available, is_tokenizers_available, is_torch_available, ) if is_sentencepiece_available(): from ..ta.tokenization_ta import TaTokenizer else: from ...utils.dummy_sentencepiece_objects import TaTokenizer lowerCAmelCase : List[Any] = TaTokenizer if is_tokenizers_available(): from ..ta.tokenization_ta_fast import TaTokenizerFast else: from ...utils.dummy_tokenizers_objects import TaTokenizerFast lowerCAmelCase : Union[str, Any] = TaTokenizerFast lowerCAmelCase : Dict = {'configuration_mt5': ['MT5Config', 'MT5OnnxConfig']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase : Tuple = [ 'MT5EncoderModel', 'MT5ForConditionalGeneration', 'MT5ForQuestionAnswering', 'MT5Model', 'MT5PreTrainedModel', 'MT5Stack', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase : Tuple = ['TFMT5EncoderModel', 'TFMT5ForConditionalGeneration', 'TFMT5Model'] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase : Tuple = ['FlaxMT5EncoderModel', 'FlaxMT5ForConditionalGeneration', 'FlaxMT5Model'] if TYPE_CHECKING: from .configuration_mta import MTaConfig, MTaOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mta import ( MTaEncoderModel, MTaForConditionalGeneration, MTaForQuestionAnswering, MTaModel, MTaPreTrainedModel, MTaStack, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_mta import TFMTaEncoderModel, TFMTaForConditionalGeneration, TFMTaModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_mta import FlaxMTaEncoderModel, FlaxMTaForConditionalGeneration, FlaxMTaModel else: import sys lowerCAmelCase : int = _LazyModule( __name__, globals()["""__file__"""], _import_structure, extra_objects={"""MT5Tokenizer""": MTaTokenizer, """MT5TokenizerFast""": MTaTokenizerFast}, module_spec=__spec__, )
202
import os from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils import AddedToken from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_fnet import FNetTokenizer else: lowerCamelCase__ : Optional[Any] = None lowerCamelCase__ : List[str] = logging.get_logger(__name__) lowerCamelCase__ : List[str] = {'vocab_file': 'spiece.model', 'tokenizer_file': 'tokenizer.json'} lowerCamelCase__ : List[str] = { 'vocab_file': { 'google/fnet-base': 'https://huggingface.co/google/fnet-base/resolve/main/spiece.model', 'google/fnet-large': 'https://huggingface.co/google/fnet-large/resolve/main/spiece.model', }, 'tokenizer_file': { 'google/fnet-base': 'https://huggingface.co/google/fnet-base/resolve/main/tokenizer.json', 'google/fnet-large': 'https://huggingface.co/google/fnet-large/resolve/main/tokenizer.json', }, } lowerCamelCase__ : Optional[Any] = { 'google/fnet-base': 512, 'google/fnet-large': 512, } lowerCamelCase__ : List[Any] = '▁' class lowerCamelCase_ ( _SCREAMING_SNAKE_CASE ): '''simple docstring''' lowercase_ = VOCAB_FILES_NAMES lowercase_ = PRETRAINED_VOCAB_FILES_MAP lowercase_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowercase_ = ["input_ids", "token_type_ids"] lowercase_ = FNetTokenizer def __init__( self : List[Any] , _lowerCAmelCase : Dict=None , _lowerCAmelCase : Dict=None , _lowerCAmelCase : List[str]=False , _lowerCAmelCase : Optional[Any]=True , _lowerCAmelCase : Tuple=True , _lowerCAmelCase : List[Any]="<unk>" , _lowerCAmelCase : Optional[Any]="[SEP]" , _lowerCAmelCase : Optional[Any]="<pad>" , _lowerCAmelCase : Optional[int]="[CLS]" , _lowerCAmelCase : Optional[Any]="[MASK]" , **_lowerCAmelCase : Any , ): # Mask token behave like a normal word, i.e. include the space before it and # is included in the raw text, there should be a match in a non-normalized sentence. SCREAMING_SNAKE_CASE_ = ( AddedToken(_lowerCAmelCase , lstrip=_lowerCAmelCase , rstrip=_lowerCAmelCase , normalized=_lowerCAmelCase ) if isinstance(_lowerCAmelCase , _lowerCAmelCase ) else mask_token ) super().__init__( _lowerCAmelCase , tokenizer_file=_lowerCAmelCase , do_lower_case=_lowerCAmelCase , remove_space=_lowerCAmelCase , keep_accents=_lowerCAmelCase , unk_token=_lowerCAmelCase , sep_token=_lowerCAmelCase , pad_token=_lowerCAmelCase , cls_token=_lowerCAmelCase , mask_token=_lowerCAmelCase , **_lowerCAmelCase , ) SCREAMING_SNAKE_CASE_ = do_lower_case SCREAMING_SNAKE_CASE_ = remove_space SCREAMING_SNAKE_CASE_ = keep_accents SCREAMING_SNAKE_CASE_ = vocab_file SCREAMING_SNAKE_CASE_ = False if not self.vocab_file else True def lowerCAmelCase_ ( self : Any , _lowerCAmelCase : List[int] , _lowerCAmelCase : Optional[List[int]] = None ): SCREAMING_SNAKE_CASE_ = [self.sep_token_id] SCREAMING_SNAKE_CASE_ = [self.cls_token_id] if token_ids_a is None: return cls + token_ids_a + sep return cls + token_ids_a + sep + token_ids_a + sep def lowerCAmelCase_ ( self : Optional[int] , _lowerCAmelCase : List[int] , _lowerCAmelCase : Optional[List[int]] = None ): SCREAMING_SNAKE_CASE_ = [self.sep_token_id] SCREAMING_SNAKE_CASE_ = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def lowerCAmelCase_ ( self : Optional[Any] , _lowerCAmelCase : str , _lowerCAmelCase : Optional[str] = None ): if not os.path.isdir(_lowerCAmelCase ): logger.error(F"Vocabulary path ({save_directory}) should be a directory" ) return SCREAMING_SNAKE_CASE_ = os.path.join( _lowerCAmelCase , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(_lowerCAmelCase ): copyfile(self.vocab_file , _lowerCAmelCase ) return (out_vocab_file,)
31
0
'''simple docstring''' class A : def __init__( self , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) -> List[Any]: '''simple docstring''' lowercase__ = name lowercase__ = value lowercase__ = weight def __repr__( self ) -> Any: '''simple docstring''' return F'''{self.__class__.__name__}({self.name}, {self.value}, {self.weight})''' def A__ ( self ) -> Dict: '''simple docstring''' return self.value def A__ ( self ) -> List[str]: '''simple docstring''' return self.name def A__ ( self ) -> Union[str, Any]: '''simple docstring''' return self.weight def A__ ( self ) -> Union[str, Any]: '''simple docstring''' return self.value / self.weight def _A ( lowercase__ , lowercase__ , lowercase__ ): lowercase__ = [] for i in range(len(__UpperCAmelCase ) ): menu.append(Things(name[i] , value[i] , weight[i] ) ) return menu def _A ( lowercase__ , lowercase__ , lowercase__ ): lowercase__ = sorted(__UpperCAmelCase , key=__UpperCAmelCase , reverse=__UpperCAmelCase ) lowercase__ = [] lowercase__ , lowercase__ = 0.0, 0.0 for i in range(len(__UpperCAmelCase ) ): if (total_cost + items_copy[i].get_weight()) <= max_cost: result.append(items_copy[i] ) total_cost += items_copy[i].get_weight() total_value += items_copy[i].get_value() return (result, total_value) def _A ( ): pass if __name__ == "__main__": import doctest doctest.testmod()
325
from __future__ import annotations from collections.abc import Generator def UpperCAmelCase_ ( ) -> Generator[int, None, None]: SCREAMING_SNAKE_CASE_ = {} SCREAMING_SNAKE_CASE_ = 2 while True: SCREAMING_SNAKE_CASE_ = factor_map.pop(__UpperCAmelCase , __UpperCAmelCase ) if factor: SCREAMING_SNAKE_CASE_ = factor + prime while x in factor_map: x += factor SCREAMING_SNAKE_CASE_ = factor else: SCREAMING_SNAKE_CASE_ = prime yield prime prime += 1 def UpperCAmelCase_ ( __UpperCAmelCase : float = 1E10 ) -> int: SCREAMING_SNAKE_CASE_ = sieve() SCREAMING_SNAKE_CASE_ = 1 while True: SCREAMING_SNAKE_CASE_ = next(__UpperCAmelCase ) if (2 * prime * n) > limit: return n # Ignore the next prime as the reminder will be 2. next(__UpperCAmelCase ) n += 2 if __name__ == "__main__": print(solution())
31
0
from __future__ import annotations from typing import TypedDict class __a( _SCREAMING_SNAKE_CASE ): """simple docstring""" lowerCAmelCase = 42 lowerCAmelCase = 42 def lowerCamelCase__ ( _lowercase ): '''simple docstring''' if not isinstance(__UpperCAmelCase , __UpperCAmelCase ): raise TypeError('''The parameter s type must be str.''' ) return [s[i:] + s[:i] for i in range(len(__UpperCAmelCase ) )] def lowerCamelCase__ ( _lowercase ): '''simple docstring''' if not isinstance(__UpperCAmelCase , __UpperCAmelCase ): raise TypeError('''The parameter s type must be str.''' ) if not s: raise ValueError('''The parameter s must not be empty.''' ) UpperCAmelCase_ : Optional[int] = all_rotations(__UpperCAmelCase ) rotations.sort() # sort the list of rotations in alphabetically order # make a string composed of the last char of each rotation UpperCAmelCase_ : List[str] = { '''bwt_string''': ''''''.join([word[-1] for word in rotations] ), '''idx_original_string''': rotations.index(__UpperCAmelCase ), } return response def lowerCamelCase__ ( _lowercase , _lowercase ): '''simple docstring''' if not isinstance(__UpperCAmelCase , __UpperCAmelCase ): raise TypeError('''The parameter bwt_string type must be str.''' ) if not bwt_string: raise ValueError('''The parameter bwt_string must not be empty.''' ) try: UpperCAmelCase_ : Dict = int(__UpperCAmelCase ) except ValueError: raise TypeError( '''The parameter idx_original_string type must be int or passive''' ''' of cast to int.''' ) if idx_original_string < 0: raise ValueError('''The parameter idx_original_string must not be lower than 0.''' ) if idx_original_string >= len(__UpperCAmelCase ): raise ValueError( '''The parameter idx_original_string must be lower than''' ''' len(bwt_string).''' ) UpperCAmelCase_ : List[str] = [''''''] * len(__UpperCAmelCase ) for _ in range(len(__UpperCAmelCase ) ): for i in range(len(__UpperCAmelCase ) ): UpperCAmelCase_ : List[Any] = bwt_string[i] + ordered_rotations[i] ordered_rotations.sort() return ordered_rotations[idx_original_string] if __name__ == "__main__": __a = 'Provide a string that I will generate its BWT transform: ' __a = input(entry_msg).strip() __a = bwt_transform(s) print( F"""Burrows Wheeler transform for string \'{s}\' results """ F"""in \'{result["bwt_string"]}\'""" ) __a = reverse_bwt(result['bwt_string'], result['idx_original_string']) print( F"""Reversing Burrows Wheeler transform for entry \'{result["bwt_string"]}\' """ F"""we get original string \'{original_string}\'""" )
30
import numpy as np import torch from torch.utils.data import DataLoader from accelerate.utils.dataclasses import DistributedType class lowerCamelCase_ : '''simple docstring''' def __init__( self : Any , _lowerCAmelCase : Optional[int]=2 , _lowerCAmelCase : Any=3 , _lowerCAmelCase : Tuple=64 , _lowerCAmelCase : List[str]=None ): SCREAMING_SNAKE_CASE_ = np.random.default_rng(_lowerCAmelCase ) SCREAMING_SNAKE_CASE_ = length SCREAMING_SNAKE_CASE_ = rng.normal(size=(length,) ).astype(np.floataa ) SCREAMING_SNAKE_CASE_ = a * self.x + b + rng.normal(scale=0.1 , size=(length,) ).astype(np.floataa ) def __len__( self : Optional[int] ): return self.length def __getitem__( self : str , _lowerCAmelCase : Union[str, Any] ): return {"x": self.x[i], "y": self.y[i]} class lowerCamelCase_ ( torch.nn.Module ): '''simple docstring''' def __init__( self : Tuple , _lowerCAmelCase : Dict=0 , _lowerCAmelCase : List[str]=0 , _lowerCAmelCase : str=False ): super().__init__() SCREAMING_SNAKE_CASE_ = torch.nn.Parameter(torch.tensor([2, 3] ).float() ) SCREAMING_SNAKE_CASE_ = torch.nn.Parameter(torch.tensor([2, 3] ).float() ) SCREAMING_SNAKE_CASE_ = True def lowerCAmelCase_ ( self : Dict , _lowerCAmelCase : Union[str, Any]=None ): if self.first_batch: print(F"Model dtype: {self.a.dtype}, {self.b.dtype}. Input dtype: {x.dtype}" ) SCREAMING_SNAKE_CASE_ = False return x * self.a[0] + self.b[0] class lowerCamelCase_ ( torch.nn.Module ): '''simple docstring''' def __init__( self : Optional[int] , _lowerCAmelCase : Any=0 , _lowerCAmelCase : Any=0 , _lowerCAmelCase : Optional[Any]=False ): super().__init__() SCREAMING_SNAKE_CASE_ = torch.nn.Parameter(torch.tensor(_lowerCAmelCase ).float() ) SCREAMING_SNAKE_CASE_ = torch.nn.Parameter(torch.tensor(_lowerCAmelCase ).float() ) SCREAMING_SNAKE_CASE_ = True def lowerCAmelCase_ ( self : Optional[Any] , _lowerCAmelCase : Optional[int]=None ): if self.first_batch: print(F"Model dtype: {self.a.dtype}, {self.b.dtype}. Input dtype: {x.dtype}" ) SCREAMING_SNAKE_CASE_ = False return x * self.a + self.b def UpperCAmelCase_ ( __UpperCAmelCase : Dict , __UpperCAmelCase : int = 16 ) -> Union[str, Any]: from datasets import load_dataset from transformers import AutoTokenizer SCREAMING_SNAKE_CASE_ = AutoTokenizer.from_pretrained('bert-base-cased' ) SCREAMING_SNAKE_CASE_ = {'train': 'tests/test_samples/MRPC/train.csv', 'validation': 'tests/test_samples/MRPC/dev.csv'} SCREAMING_SNAKE_CASE_ = load_dataset('csv' , data_files=__UpperCAmelCase ) SCREAMING_SNAKE_CASE_ = datasets['train'].unique('label' ) SCREAMING_SNAKE_CASE_ = {v: i for i, v in enumerate(__UpperCAmelCase )} def tokenize_function(__UpperCAmelCase : Optional[int] ): # max_length=None => use the model max length (it's actually the default) SCREAMING_SNAKE_CASE_ = tokenizer( examples['sentence1'] , examples['sentence2'] , truncation=__UpperCAmelCase , max_length=__UpperCAmelCase , padding='max_length' ) if "label" in examples: SCREAMING_SNAKE_CASE_ = [label_to_id[l] for l in examples['label']] return outputs # Apply the method we just defined to all the examples in all the splits of the dataset SCREAMING_SNAKE_CASE_ = datasets.map( __UpperCAmelCase , batched=__UpperCAmelCase , remove_columns=['sentence1', 'sentence2', 'label'] , ) def collate_fn(__UpperCAmelCase : Dict ): # On TPU it's best to pad everything to the same length or training will be very slow. if accelerator.distributed_type == DistributedType.TPU: return tokenizer.pad(__UpperCAmelCase , padding='max_length' , max_length=1_28 , return_tensors='pt' ) return tokenizer.pad(__UpperCAmelCase , padding='longest' , return_tensors='pt' ) # Instantiate dataloaders. SCREAMING_SNAKE_CASE_ = DataLoader(tokenized_datasets['train'] , shuffle=__UpperCAmelCase , collate_fn=__UpperCAmelCase , batch_size=2 ) SCREAMING_SNAKE_CASE_ = DataLoader(tokenized_datasets['validation'] , shuffle=__UpperCAmelCase , collate_fn=__UpperCAmelCase , batch_size=1 ) return train_dataloader, eval_dataloader
31
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available A_ = { 'configuration_pix2struct': [ 'PIX2STRUCT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'Pix2StructConfig', 'Pix2StructTextConfig', 'Pix2StructVisionConfig', ], 'processing_pix2struct': ['Pix2StructProcessor'], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A_ = ['Pix2StructImageProcessor'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A_ = [ 'PIX2STRUCT_PRETRAINED_MODEL_ARCHIVE_LIST', 'Pix2StructPreTrainedModel', 'Pix2StructForConditionalGeneration', 'Pix2StructVisionModel', 'Pix2StructTextModel', ] if TYPE_CHECKING: from .configuration_pixastruct import ( PIX2STRUCT_PRETRAINED_CONFIG_ARCHIVE_MAP, PixaStructConfig, PixaStructTextConfig, PixaStructVisionConfig, ) from .processing_pixastruct import PixaStructProcessor try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .image_processing_pixastruct import PixaStructImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_pixastruct import ( PIX2STRUCT_PRETRAINED_MODEL_ARCHIVE_LIST, PixaStructForConditionalGeneration, PixaStructPreTrainedModel, PixaStructTextModel, PixaStructVisionModel, ) else: import sys A_ = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
270
import warnings from ...utils import logging from .image_processing_layoutlmva import LayoutLMvaImageProcessor lowerCamelCase__ : Union[str, Any] = logging.get_logger(__name__) class lowerCamelCase_ ( _SCREAMING_SNAKE_CASE ): '''simple docstring''' def __init__( self : Dict , *_lowerCAmelCase : Optional[Any] , **_lowerCAmelCase : Any ): warnings.warn( 'The class LayoutLMv2FeatureExtractor is deprecated and will be removed in version 5 of Transformers.' ' Please use LayoutLMv2ImageProcessor instead.' , _lowerCAmelCase , ) super().__init__(*_lowerCAmelCase , **_lowerCAmelCase )
31
0
'''simple docstring''' # Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse import os from accelerate.test_utils import execute_subprocess_async def lowerCAmelCase_ ( SCREAMING_SNAKE_CASE_=None ) -> Any: """simple docstring""" if subparsers is not None: _SCREAMING_SNAKE_CASE = subparsers.add_parser("""test""" ) else: _SCREAMING_SNAKE_CASE = argparse.ArgumentParser("""Accelerate test command""" ) parser.add_argument( """--config_file""" , default=__UpperCAmelCase , help=( """The path to use to store the config file. Will default to a file named default_config.yaml in the cache """ """location, which is the content of the environment `HF_HOME` suffixed with \'accelerate\', or if you don\'t have """ """such an environment variable, your cache directory (\'~/.cache\' or the content of `XDG_CACHE_HOME`) suffixed """ """with \'huggingface\'.""" ) , ) if subparsers is not None: parser.set_defaults(func=__UpperCAmelCase ) return parser def lowerCAmelCase_ ( SCREAMING_SNAKE_CASE_ ) -> List[Any]: """simple docstring""" _SCREAMING_SNAKE_CASE = os.path.sep.join(__file__.split(os.path.sep )[:-2] + ["""test_utils""", """scripts""", """test_script.py"""] ) if args.config_file is None: _SCREAMING_SNAKE_CASE = script_name else: _SCREAMING_SNAKE_CASE = F"--config_file={args.config_file} {script_name}" _SCREAMING_SNAKE_CASE = ["""accelerate-launch"""] + test_args.split() _SCREAMING_SNAKE_CASE = execute_subprocess_async(__UpperCAmelCase , env=os.environ.copy() ) if result.returncode == 0: print("""Test is a success! You are ready for your distributed training!""" ) def lowerCAmelCase_ ( ) -> Optional[int]: """simple docstring""" _SCREAMING_SNAKE_CASE = test_command_parser() _SCREAMING_SNAKE_CASE = parser.parse_args() test_command(__UpperCAmelCase ) if __name__ == "__main__": main()
591
def UpperCAmelCase_ ( ) -> list[list[int]]: return [list(range(10_00 - i , -10_00 - i , -1 ) ) for i in range(10_00 )] lowerCamelCase__ : List[Any] = generate_large_matrix() lowerCamelCase__ : List[Any] = ( [[4, 3, 2, -1], [3, 2, 1, -1], [1, 1, -1, -2], [-1, -1, -2, -3]], [[3, 2], [1, 0]], [[7, 7, 6]], [[7, 7, 6], [-1, -2, -3]], grid, ) def UpperCAmelCase_ ( __UpperCAmelCase : list[list[int]] ) -> None: assert all(row == sorted(__UpperCAmelCase , reverse=__UpperCAmelCase ) for row in grid ) assert all(list(__UpperCAmelCase ) == sorted(__UpperCAmelCase , reverse=__UpperCAmelCase ) for col in zip(*__UpperCAmelCase ) ) def UpperCAmelCase_ ( __UpperCAmelCase : list[int] ) -> int: SCREAMING_SNAKE_CASE_ = 0 SCREAMING_SNAKE_CASE_ = len(__UpperCAmelCase ) - 1 # Edge cases such as no values or all numbers are negative. if not array or array[0] < 0: return 0 while right + 1 > left: SCREAMING_SNAKE_CASE_ = (left + right) // 2 SCREAMING_SNAKE_CASE_ = array[mid] # Num must be negative and the index must be greater than or equal to 0. if num < 0 and array[mid - 1] >= 0: return mid if num >= 0: SCREAMING_SNAKE_CASE_ = mid + 1 else: SCREAMING_SNAKE_CASE_ = mid - 1 # No negative numbers so return the last index of the array + 1 which is the length. return len(__UpperCAmelCase ) def UpperCAmelCase_ ( __UpperCAmelCase : list[list[int]] ) -> int: SCREAMING_SNAKE_CASE_ = 0 SCREAMING_SNAKE_CASE_ = len(grid[0] ) for i in range(len(__UpperCAmelCase ) ): SCREAMING_SNAKE_CASE_ = find_negative_index(grid[i][:bound] ) total += bound return (len(__UpperCAmelCase ) * len(grid[0] )) - total def UpperCAmelCase_ ( __UpperCAmelCase : list[list[int]] ) -> int: return len([number for row in grid for number in row if number < 0] ) def UpperCAmelCase_ ( __UpperCAmelCase : list[list[int]] ) -> int: SCREAMING_SNAKE_CASE_ = 0 for row in grid: for i, number in enumerate(__UpperCAmelCase ): if number < 0: total += len(__UpperCAmelCase ) - i break return total def UpperCAmelCase_ ( ) -> None: from timeit import timeit print('Running benchmarks' ) SCREAMING_SNAKE_CASE_ = ( 'from __main__ import count_negatives_binary_search, ' 'count_negatives_brute_force, count_negatives_brute_force_with_break, grid' ) for func in ( "count_negatives_binary_search", # took 0.7727 seconds "count_negatives_brute_force_with_break", # took 4.6505 seconds "count_negatives_brute_force", # took 12.8160 seconds ): SCREAMING_SNAKE_CASE_ = timeit(f"{func}(grid=grid)" , setup=__UpperCAmelCase , number=5_00 ) print(f"{func}() took {time:0.4f} seconds" ) if __name__ == "__main__": import doctest doctest.testmod() benchmark()
31
0
import torch from transformers import PreTrainedModel, XLMRobertaConfig, XLMRobertaModel class _lowercase ( _SCREAMING_SNAKE_CASE ): lowercase = 'M-CLIP' def __init__( self : Tuple , snake_case : List[str]=1_0_2_4 , snake_case : str=7_6_8 , **snake_case : Union[str, Any] ) -> int: """simple docstring""" UpperCamelCase_ : str = transformerDimSize UpperCamelCase_ : List[str] = imageDimSize super().__init__(**_lowerCAmelCase ) class _lowercase ( _SCREAMING_SNAKE_CASE ): lowercase = MCLIPConfig def __init__( self : Dict , snake_case : Union[str, Any] , *snake_case : str , **snake_case : str ) -> Optional[int]: """simple docstring""" super().__init__(_lowerCAmelCase , *_lowerCAmelCase , **_lowerCAmelCase ) UpperCamelCase_ : int = XLMRobertaModel(_lowerCAmelCase ) UpperCamelCase_ : Union[str, Any] = torch.nn.Linear( in_features=config.transformerDimensions , out_features=config.numDims ) def SCREAMING_SNAKE_CASE__ ( self : List[Any] , snake_case : Any , snake_case : Union[str, Any] ) -> Dict: """simple docstring""" UpperCamelCase_ : Union[str, Any] = self.transformer(input_ids=_lowerCAmelCase , attention_mask=_lowerCAmelCase )[0] UpperCamelCase_ : str = (embs * attention_mask.unsqueeze(2 )).sum(dim=1 ) / attention_mask.sum(dim=1 )[:, None] return self.LinearTransformation(_lowerCAmelCase ), embs
417
from typing import TYPE_CHECKING from ....utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available lowerCamelCase__ : Optional[int] = {'configuration_mmbt': ['MMBTConfig']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase__ : Any = ['MMBTForClassification', 'MMBTModel', 'ModalEmbeddings'] if TYPE_CHECKING: from .configuration_mmbt import MMBTConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mmbt import MMBTForClassification, MMBTModel, ModalEmbeddings else: import sys lowerCamelCase__ : str = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
31
0
import argparse import shutil import time from json import JSONDecodeError from logging import getLogger from pathlib import Path from typing import Dict, List import torch from torch.utils.data import DataLoader from tqdm import tqdm from transformers import AutoModelForSeqaSeqLM, AutoTokenizer from utils import ( SeqaSeqDataset, calculate_bleu, calculate_rouge, chunks, lmap, load_json, parse_numeric_n_bool_cl_kwargs, save_json, use_task_specific_params, write_txt_file, ) UpperCAmelCase__ = getLogger(__name__) def a_ (__A , __A , __A , __A = 8 , __A = 1_024 , __A="val" , __A=None , __A=False , __A="summarization" , __A=None , __A=1 , __A = None , __A="" , **__A , ) -> Dict: """simple docstring""" __a : Optional[Any] = str(__UpperCAmelCase ) assert local_rank is not None torch.distributed.init_process_group(backend="nccl" , rank=__UpperCAmelCase ) __a : Optional[Any] = Path(__UpperCAmelCase ) __a : Tuple = save_dir.joinpath(f'rank_{local_rank}_output.json' ) torch.cuda.set_device(__UpperCAmelCase ) __a : List[Any] = AutoModelForSeqaSeqLM.from_pretrained(__UpperCAmelCase ).cuda() if fpaa: __a : Union[str, Any] = model.half() # determine if we need to increase num_beams use_task_specific_params(__UpperCAmelCase , __UpperCAmelCase ) # update config with task specific params __a : List[str] = generate_kwargs.pop("num_beams" , model.config.num_beams ) # AttributeError risk? if num_return_sequences > num_beams: __a : Dict = num_return_sequences __a : Union[str, Any] = AutoTokenizer.from_pretrained(__UpperCAmelCase ) logger.info(f'Inferred tokenizer type: {tokenizer.__class__}' ) # if this is wrong, check config.model_type. if max_source_length is None: __a : List[Any] = tokenizer.model_max_length if prefix is None: __a : Dict = prefix or getattr(model.config , "prefix" , "" ) or "" __a : str = SeqaSeqDataset( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , max_target_length=1_024 , type_path=__UpperCAmelCase , n_obs=__UpperCAmelCase , prefix=__UpperCAmelCase , **__UpperCAmelCase , ) # I set shuffle=True for a more accurate progress bar. # If all the longest samples are first, the prog bar estimate is too high at the beginning. __a : Union[str, Any] = ds.make_sortish_sampler(__UpperCAmelCase , distributed=__UpperCAmelCase , add_extra_examples=__UpperCAmelCase , shuffle=__UpperCAmelCase ) __a : Optional[int] = DataLoader(__UpperCAmelCase , sampler=__UpperCAmelCase , batch_size=__UpperCAmelCase , collate_fn=ds.collate_fn ) __a : Any = [] for batch in tqdm(__UpperCAmelCase ): __a : Union[str, Any] = model.generate( input_ids=batch["input_ids"].to(model.device ) , attention_mask=batch["attention_mask"].to(model.device ) , num_return_sequences=__UpperCAmelCase , num_beams=__UpperCAmelCase , **__UpperCAmelCase , ) __a : Optional[int] = tokenizer.batch_decode(__UpperCAmelCase , skip_special_tokens=__UpperCAmelCase , clean_up_tokenization_spaces=__UpperCAmelCase ) __a : List[Any] = batch["ids"] if num_return_sequences > 1: __a : Tuple = chunks(__UpperCAmelCase , __UpperCAmelCase ) # batch size chunks, each of size num_return_seq for i, pred in enumerate(__UpperCAmelCase ): results.append({"pred": pred, "id": ids[i].item()} ) save_json(__UpperCAmelCase , __UpperCAmelCase ) return results, sampler.num_replicas def a_ () -> Dict: """simple docstring""" __a : Dict = argparse.ArgumentParser( epilog="Unspecified args like --num_beams=2 --decoder_start_token_id=4 are passed to model.generate" ) parser.add_argument("--data_dir" , type=__UpperCAmelCase , help="like cnn_dm/test.source" ) parser.add_argument( "--model_name" , type=__UpperCAmelCase , help="like facebook/bart-large-cnn,t5-base, etc." , default="sshleifer/distilbart-xsum-12-3" , ) parser.add_argument("--save_dir" , type=__UpperCAmelCase , help="where to save" , default="tmp_gen" ) parser.add_argument("--max_source_length" , type=__UpperCAmelCase , default=__UpperCAmelCase ) parser.add_argument( "--type_path" , type=__UpperCAmelCase , default="test" , help="which subset to evaluate typically train/val/test" ) parser.add_argument("--task" , type=__UpperCAmelCase , default="summarization" , help="used for task_specific_params + metrics" ) parser.add_argument("--bs" , type=__UpperCAmelCase , default=8 , required=__UpperCAmelCase , help="batch size" ) parser.add_argument( "--local_rank" , type=__UpperCAmelCase , default=-1 , required=__UpperCAmelCase , help="should be passed by distributed.launch" ) parser.add_argument( "--n_obs" , type=__UpperCAmelCase , default=__UpperCAmelCase , required=__UpperCAmelCase , help="How many observations. Defaults to all." ) parser.add_argument( "--num_return_sequences" , type=__UpperCAmelCase , default=1 , required=__UpperCAmelCase , help="How many sequences to return" ) parser.add_argument( "--sync_timeout" , type=__UpperCAmelCase , default=600 , required=__UpperCAmelCase , help="How long should master process wait for other processes to finish." , ) parser.add_argument("--src_lang" , type=__UpperCAmelCase , default=__UpperCAmelCase , required=__UpperCAmelCase ) parser.add_argument("--tgt_lang" , type=__UpperCAmelCase , default=__UpperCAmelCase , required=__UpperCAmelCase ) parser.add_argument( "--prefix" , type=__UpperCAmelCase , required=__UpperCAmelCase , default=__UpperCAmelCase , help="will be added to the begininng of src examples" ) parser.add_argument("--fp16" , action="store_true" ) parser.add_argument("--debug" , action="store_true" ) __a : Dict = time.time() __a , __a : Any = parser.parse_known_args() __a : int = parse_numeric_n_bool_cl_kwargs(__UpperCAmelCase ) if generate_kwargs and args.local_rank <= 0: print(f'parsed the following generate kwargs: {generate_kwargs}' ) __a : List[str] = Path(args.save_dir + "_tmp" ) Path(__UpperCAmelCase ).mkdir(exist_ok=__UpperCAmelCase ) # this handles locking. __a : List[str] = list(json_save_dir.glob("rank_*.json" ) ) if intermediate_files: raise ValueError(f'Found files at {json_save_dir} please move or remove them.' ) # In theory, a node could finish and save before another node hits this. If this happens, we can address later. __a : Optional[int] = {} if args.src_lang is not None: __a : Tuple = args.src_lang if args.tgt_lang is not None: __a : Optional[int] = args.tgt_lang Path(args.save_dir ).mkdir(exist_ok=__UpperCAmelCase ) __a , __a : Dict = eval_data_dir( args.data_dir , __UpperCAmelCase , args.model_name , type_path=args.type_path , bs=args.bs , fpaa=args.fpaa , task=args.task , local_rank=args.local_rank , n_obs=args.n_obs , max_source_length=args.max_source_length , num_return_sequences=args.num_return_sequences , prefix=args.prefix , dataset_kwargs=__UpperCAmelCase , **__UpperCAmelCase , ) if args.local_rank <= 0: __a : Optional[Any] = Path(args.save_dir ) save_dir.mkdir(exist_ok=__UpperCAmelCase ) __a : List[Any] = gather_results_from_each_node(__UpperCAmelCase , __UpperCAmelCase , args.sync_timeout ) __a : Optional[Any] = combine_partial_results(__UpperCAmelCase ) if args.num_return_sequences > 1: __a : List[Any] = save_dir.joinpath("pseudolabel_results.json" ) print(f'Saving aggregated results at {save_path}, intermediate in {json_save_dir}/' ) save_json(__UpperCAmelCase , __UpperCAmelCase ) return __a : Dict = Path(args.data_dir ).joinpath(args.type_path + ".target" ) with open(__UpperCAmelCase ) as f: __a : Union[str, Any] = [x.rstrip() for x in f.readlines()][: len(__UpperCAmelCase )] # Calculate metrics, save metrics, and save _generations.txt __a : Tuple = "translation" in args.task __a : List[str] = calculate_bleu if calc_bleu else calculate_rouge __a : Any = "bleu" if calc_bleu else "rouge" __a : List[Any] = score_fn(__UpperCAmelCase , __UpperCAmelCase ) __a : List[str] = len(__UpperCAmelCase ) __a : Optional[Any] = time.time() - start_time __a : Any = round(runtime / metrics["n_obs"] , 4 ) __a : Optional[int] = num_replicas # TODO(@stas00): add whatever metadata to metrics __a : Optional[int] = save_dir.joinpath(f'{args.type_path}_{metric_name}.json' ) save_json(__UpperCAmelCase , __UpperCAmelCase , indent=__UpperCAmelCase ) print(__UpperCAmelCase ) write_txt_file(__UpperCAmelCase , save_dir.joinpath(f'{args.type_path}_generations.txt' ) ) if args.debug: write_txt_file(__UpperCAmelCase , save_dir.joinpath(f'{args.type_path}.target' ) ) else: shutil.rmtree(__UpperCAmelCase ) def a_ (__A ) -> List: """simple docstring""" __a : List[str] = [] for partial_result in partial_results: records.extend(__UpperCAmelCase ) __a : Union[str, Any] = sorted(__UpperCAmelCase , key=lambda __A : x["id"] ) __a : Any = [x["pred"] for x in records] return preds def a_ (__A , __A , __A ) -> List[Dict[str, List]]: """simple docstring""" # WAIT FOR lots of .json files __a : Any = time.time() logger.info("waiting for all nodes to finish" ) __a : Union[str, Any] = None while (time.time() - start_wait) < timeout: __a : List[Any] = list(save_dir.glob("rank_*.json" ) ) if len(__UpperCAmelCase ) < num_replicas: continue try: # make sure all json files are fully saved __a : Any = lmap(__UpperCAmelCase , __UpperCAmelCase ) return json_data except JSONDecodeError: continue else: raise TimeoutError("Rank 0 gave up on waiting for other processes" ) # Unreachable if __name__ == "__main__": # Usage for MT: run_generate()
351
import unittest from typing import Tuple import torch from diffusers.utils import floats_tensor, randn_tensor, torch_all_close, torch_device from diffusers.utils.testing_utils import require_torch @require_torch class lowerCamelCase_ : '''simple docstring''' @property def lowerCAmelCase_ ( self : Optional[Any] ): return self.get_dummy_input() @property def lowerCAmelCase_ ( self : Union[str, Any] ): if self.block_type == "down": return (4, 32, 16, 16) elif self.block_type == "mid": return (4, 32, 32, 32) elif self.block_type == "up": return (4, 32, 64, 64) raise ValueError(F"'{self.block_type}' is not a supported block_type. Set it to 'up', 'mid', or 'down'." ) def lowerCAmelCase_ ( self : List[str] , _lowerCAmelCase : Optional[Any]=True , _lowerCAmelCase : str=False , _lowerCAmelCase : Optional[int]=False , _lowerCAmelCase : Dict=False , ): SCREAMING_SNAKE_CASE_ = 4 SCREAMING_SNAKE_CASE_ = 32 SCREAMING_SNAKE_CASE_ = (32, 32) SCREAMING_SNAKE_CASE_ = torch.manual_seed(0 ) SCREAMING_SNAKE_CASE_ = torch.device(_lowerCAmelCase ) SCREAMING_SNAKE_CASE_ = (batch_size, num_channels) + sizes SCREAMING_SNAKE_CASE_ = randn_tensor(_lowerCAmelCase , generator=_lowerCAmelCase , device=_lowerCAmelCase ) SCREAMING_SNAKE_CASE_ = {'hidden_states': hidden_states} if include_temb: SCREAMING_SNAKE_CASE_ = 128 SCREAMING_SNAKE_CASE_ = randn_tensor((batch_size, temb_channels) , generator=_lowerCAmelCase , device=_lowerCAmelCase ) if include_res_hidden_states_tuple: SCREAMING_SNAKE_CASE_ = torch.manual_seed(1 ) SCREAMING_SNAKE_CASE_ = (randn_tensor(_lowerCAmelCase , generator=_lowerCAmelCase , device=_lowerCAmelCase ),) if include_encoder_hidden_states: SCREAMING_SNAKE_CASE_ = floats_tensor((batch_size, 32, 32) ).to(_lowerCAmelCase ) if include_skip_sample: SCREAMING_SNAKE_CASE_ = randn_tensor(((batch_size, 3) + sizes) , generator=_lowerCAmelCase , device=_lowerCAmelCase ) return dummy_input def lowerCAmelCase_ ( self : Optional[int] ): SCREAMING_SNAKE_CASE_ = { 'in_channels': 32, 'out_channels': 32, 'temb_channels': 128, } if self.block_type == "up": SCREAMING_SNAKE_CASE_ = 32 if self.block_type == "mid": init_dict.pop('out_channels' ) SCREAMING_SNAKE_CASE_ = self.dummy_input return init_dict, inputs_dict def lowerCAmelCase_ ( self : Dict , _lowerCAmelCase : Optional[Any] ): SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = self.prepare_init_args_and_inputs_for_common() SCREAMING_SNAKE_CASE_ = self.block_class(**_lowerCAmelCase ) unet_block.to(_lowerCAmelCase ) unet_block.eval() with torch.no_grad(): SCREAMING_SNAKE_CASE_ = unet_block(**_lowerCAmelCase ) if isinstance(_lowerCAmelCase , _lowerCAmelCase ): SCREAMING_SNAKE_CASE_ = output[0] self.assertEqual(output.shape , self.output_shape ) SCREAMING_SNAKE_CASE_ = output[0, -1, -3:, -3:] SCREAMING_SNAKE_CASE_ = torch.tensor(_lowerCAmelCase ).to(_lowerCAmelCase ) assert torch_all_close(output_slice.flatten() , _lowerCAmelCase , atol=5E-3 ) @unittest.skipIf(torch_device == 'mps' , 'Training is not supported in mps' ) def lowerCAmelCase_ ( self : Any ): SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = self.prepare_init_args_and_inputs_for_common() SCREAMING_SNAKE_CASE_ = self.block_class(**_lowerCAmelCase ) model.to(_lowerCAmelCase ) model.train() SCREAMING_SNAKE_CASE_ = model(**_lowerCAmelCase ) if isinstance(_lowerCAmelCase , _lowerCAmelCase ): SCREAMING_SNAKE_CASE_ = output[0] SCREAMING_SNAKE_CASE_ = torch.device(_lowerCAmelCase ) SCREAMING_SNAKE_CASE_ = randn_tensor(output.shape , device=_lowerCAmelCase ) SCREAMING_SNAKE_CASE_ = torch.nn.functional.mse_loss(_lowerCAmelCase , _lowerCAmelCase ) loss.backward()
31
0
'''simple docstring''' def _lowerCAmelCase ( lowercase : dict ) ->set: """simple docstring""" lowercase__ = set() # edges = list of graph's edges lowercase__ = get_edges(__UpperCAmelCase ) # While there are still elements in edges list, take an arbitrary edge # (from_node, to_node) and add his extremity to chosen_vertices and then # remove all arcs adjacent to the from_node and to_node while edges: lowercase__ , lowercase__ = edges.pop() chosen_vertices.add(__UpperCAmelCase ) chosen_vertices.add(__UpperCAmelCase ) for edge in edges.copy(): if from_node in edge or to_node in edge: edges.discard(__UpperCAmelCase ) return chosen_vertices def _lowerCAmelCase ( lowercase : dict ) ->set: """simple docstring""" lowercase__ = set() for from_node, to_nodes in graph.items(): for to_node in to_nodes: edges.add((from_node, to_node) ) return edges if __name__ == "__main__": import doctest doctest.testmod() # graph = {0: [1, 3], 1: [0, 3], 2: [0, 3, 4], 3: [0, 1, 2], 4: [2, 3]} # print(f"Matching vertex cover:\n{matching_min_vertex_cover(graph)}")
161
import operator as op def UpperCAmelCase_ ( __UpperCAmelCase : str ) -> Any: SCREAMING_SNAKE_CASE_ = [] SCREAMING_SNAKE_CASE_ = lambda __UpperCAmelCase , __UpperCAmelCase : int(x / y ) # noqa: E731 integer division operation SCREAMING_SNAKE_CASE_ = { '^': op.pow, '*': op.mul, '/': div, '+': op.add, '-': op.sub, } # operators & their respective operation # print table header print('Symbol'.center(8 ) , 'Action'.center(12 ) , 'Stack' , sep=' | ' ) print('-' * (30 + len(__UpperCAmelCase )) ) for x in post_fix: if x.isdigit(): # if x in digit stack.append(__UpperCAmelCase ) # append x to stack # output in tabular format print(x.rjust(8 ) , ('push(' + x + ')').ljust(12 ) , ','.join(__UpperCAmelCase ) , sep=' | ' ) else: SCREAMING_SNAKE_CASE_ = stack.pop() # pop stack # output in tabular format print(''.rjust(8 ) , ('pop(' + b + ')').ljust(12 ) , ','.join(__UpperCAmelCase ) , sep=' | ' ) SCREAMING_SNAKE_CASE_ = stack.pop() # pop stack # output in tabular format print(''.rjust(8 ) , ('pop(' + a + ')').ljust(12 ) , ','.join(__UpperCAmelCase ) , sep=' | ' ) stack.append( str(opr[x](int(__UpperCAmelCase ) , int(__UpperCAmelCase ) ) ) ) # evaluate the 2 values popped from stack & push result to stack # output in tabular format print( x.rjust(8 ) , ('push(' + a + x + b + ')').ljust(12 ) , ','.join(__UpperCAmelCase ) , sep=' | ' , ) return int(stack[0] ) if __name__ == "__main__": lowerCamelCase__ : Tuple = input('\n\nEnter a Postfix Equation (space separated) = ').split(' ') print('\n\tResult = ', solve(Postfix))
31
0
"""simple docstring""" import gc import unittest import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTextModelWithProjection, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, DDPMScheduler, PriorTransformer, StableUnCLIPPipeline, UNetaDConditionModel, ) from diffusers.pipelines.stable_diffusion.stable_unclip_image_normalizer import StableUnCLIPImageNormalizer from diffusers.utils.testing_utils import enable_full_determinism, load_numpy, require_torch_gpu, slow, torch_device from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_IMAGE_PARAMS, TEXT_TO_IMAGE_PARAMS from ..test_pipelines_common import ( PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin, assert_mean_pixel_difference, ) enable_full_determinism() class __a ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , unittest.TestCase ): SCREAMING_SNAKE_CASE__ : Optional[Any] = StableUnCLIPPipeline SCREAMING_SNAKE_CASE__ : Dict = TEXT_TO_IMAGE_PARAMS SCREAMING_SNAKE_CASE__ : str = TEXT_TO_IMAGE_BATCH_PARAMS SCREAMING_SNAKE_CASE__ : Tuple = TEXT_TO_IMAGE_IMAGE_PARAMS SCREAMING_SNAKE_CASE__ : List[Any] = TEXT_TO_IMAGE_IMAGE_PARAMS # TODO(will) Expected attn_bias.stride(1) == 0 to be true, but got false SCREAMING_SNAKE_CASE__ : Optional[Any] = False def snake_case_ ( self ): _lowerCamelCase = 32 _lowerCamelCase = embedder_hidden_size # prior components torch.manual_seed(0 ) _lowerCamelCase = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip' ) torch.manual_seed(0 ) _lowerCamelCase = CLIPTextModelWithProjection( CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=_lowerCAmelCase , projection_dim=_lowerCAmelCase , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=10_00 , ) ) torch.manual_seed(0 ) _lowerCamelCase = PriorTransformer( num_attention_heads=2 , attention_head_dim=12 , embedding_dim=_lowerCAmelCase , num_layers=1 , ) torch.manual_seed(0 ) _lowerCamelCase = DDPMScheduler( variance_type='fixed_small_log' , prediction_type='sample' , num_train_timesteps=10_00 , clip_sample=_lowerCAmelCase , clip_sample_range=5.0 , beta_schedule='squaredcos_cap_v2' , ) # regular denoising components torch.manual_seed(0 ) _lowerCamelCase = StableUnCLIPImageNormalizer(embedding_dim=_lowerCAmelCase ) _lowerCamelCase = DDPMScheduler(beta_schedule='squaredcos_cap_v2' ) torch.manual_seed(0 ) _lowerCamelCase = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip' ) torch.manual_seed(0 ) _lowerCamelCase = CLIPTextModel( CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=_lowerCAmelCase , projection_dim=32 , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=10_00 , ) ) torch.manual_seed(0 ) _lowerCamelCase = UNetaDConditionModel( sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=('CrossAttnDownBlock2D', 'DownBlock2D') , up_block_types=('UpBlock2D', 'CrossAttnUpBlock2D') , block_out_channels=(32, 64) , attention_head_dim=(2, 4) , class_embed_type='projection' , projection_class_embeddings_input_dim=embedder_projection_dim * 2 , cross_attention_dim=_lowerCAmelCase , layers_per_block=1 , upcast_attention=_lowerCAmelCase , use_linear_projection=_lowerCAmelCase , ) torch.manual_seed(0 ) _lowerCamelCase = DDIMScheduler( beta_schedule='scaled_linear' , beta_start=0.00085 , beta_end=0.012 , prediction_type='v_prediction' , set_alpha_to_one=_lowerCAmelCase , steps_offset=1 , ) torch.manual_seed(0 ) _lowerCamelCase = AutoencoderKL() _lowerCamelCase = { # prior components 'prior_tokenizer': prior_tokenizer, 'prior_text_encoder': prior_text_encoder, 'prior': prior, 'prior_scheduler': prior_scheduler, # image noising components 'image_normalizer': image_normalizer, 'image_noising_scheduler': image_noising_scheduler, # regular denoising components 'tokenizer': tokenizer, 'text_encoder': text_encoder, 'unet': unet, 'scheduler': scheduler, 'vae': vae, } return components def snake_case_ ( self , a__ , a__=0 ): if str(_lowerCAmelCase ).startswith('mps' ): _lowerCamelCase = torch.manual_seed(_lowerCAmelCase ) else: _lowerCamelCase = torch.Generator(device=_lowerCAmelCase ).manual_seed(_lowerCAmelCase ) _lowerCamelCase = { 'prompt': 'A painting of a squirrel eating a burger', 'generator': generator, 'num_inference_steps': 2, 'prior_num_inference_steps': 2, 'output_type': 'numpy', } return inputs def snake_case_ ( self ): _lowerCamelCase = torch_device == 'cpu' self._test_attention_slicing_forward_pass(test_max_difference=_lowerCAmelCase ) def snake_case_ ( self ): _lowerCamelCase = torch_device in ['cpu', 'mps'] self._test_inference_batch_single_identical(test_max_difference=_lowerCAmelCase ) @slow @require_torch_gpu class __a ( unittest.TestCase ): def snake_case_ ( self ): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def snake_case_ ( self ): _lowerCamelCase = load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/stable_unclip/stable_unclip_2_1_l_anime_turtle_fp16.npy' ) _lowerCamelCase = StableUnCLIPPipeline.from_pretrained('fusing/stable-unclip-2-1-l' , torch_dtype=torch.floataa ) pipe.to(_lowerCAmelCase ) pipe.set_progress_bar_config(disable=_lowerCAmelCase ) # stable unclip will oom when integration tests are run on a V100, # so turn on memory savings pipe.enable_attention_slicing() pipe.enable_sequential_cpu_offload() _lowerCamelCase = torch.Generator(device='cpu' ).manual_seed(0 ) _lowerCamelCase = pipe('anime turle' , generator=_lowerCAmelCase , output_type='np' ) _lowerCamelCase = output.images[0] assert image.shape == (7_68, 7_68, 3) assert_mean_pixel_difference(_lowerCAmelCase , _lowerCAmelCase ) def snake_case_ ( self ): torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() torch.cuda.reset_peak_memory_stats() _lowerCamelCase = StableUnCLIPPipeline.from_pretrained('fusing/stable-unclip-2-1-l' , torch_dtype=torch.floataa ) _lowerCamelCase = pipe.to(_lowerCAmelCase ) pipe.set_progress_bar_config(disable=_lowerCAmelCase ) pipe.enable_attention_slicing() pipe.enable_sequential_cpu_offload() _lowerCamelCase = pipe( 'anime turtle' , prior_num_inference_steps=2 , num_inference_steps=2 , output_type='np' , ) _lowerCamelCase = torch.cuda.max_memory_allocated() # make sure that less than 7 GB is allocated assert mem_bytes < 7 * 10**9
650
def UpperCAmelCase_ ( __UpperCAmelCase : int ) -> int: assert isinstance(__UpperCAmelCase , __UpperCAmelCase ), f"The input value of [n={number}] is not an integer" if number == 1: return 2 elif number < 1: SCREAMING_SNAKE_CASE_ = f"The input value of [n={number}] has to be > 0" raise ValueError(__UpperCAmelCase ) else: SCREAMING_SNAKE_CASE_ = sylvester(number - 1 ) SCREAMING_SNAKE_CASE_ = num - 1 SCREAMING_SNAKE_CASE_ = num return lower * upper + 1 if __name__ == "__main__": print(f'''The 8th number in Sylvester\'s sequence: {sylvester(8)}''')
31
0
"""simple docstring""" from typing import Dict from transformers import EvalPrediction, HfArgumentParser, TrainingArguments, is_torch_available from transformers.testing_utils import ( TestCasePlus, execute_subprocess_async, get_torch_dist_unique_port, require_torch_multi_gpu, require_torch_neuroncore, ) from transformers.training_args import ParallelMode from transformers.utils import logging __SCREAMING_SNAKE_CASE : Any = logging.get_logger(__name__) if is_torch_available(): import torch from torch import nn from torch.utils.data import Dataset from transformers import Trainer class lowerCamelCase_( _SCREAMING_SNAKE_CASE ): '''simple docstring''' def __init__( self , lowerCamelCase__ = 1_0_1 ): _lowerCamelCase = length def __len__( self ): return self.length def __getitem__( self , lowerCamelCase__ ): return i class lowerCamelCase_: '''simple docstring''' def __call__( self , lowerCamelCase__ ): return {"input_ids": torch.tensor(_lowerCAmelCase ), "labels": torch.tensor(_lowerCAmelCase )} class lowerCamelCase_( nn.Module ): '''simple docstring''' def __init__( self ): super().__init__() # Add some (unused) params otherwise DDP will complain. _lowerCamelCase = nn.Linear(1_2_0 , 8_0 ) def snake_case__ ( self , lowerCamelCase__ , lowerCamelCase__=None ): if labels is not None: return torch.tensor(0.0 , device=input_ids.device ), input_ids else: return input_ids class lowerCamelCase_( _SCREAMING_SNAKE_CASE ): '''simple docstring''' @require_torch_neuroncore def snake_case__ ( self ): _lowerCamelCase = F"""--nproc_per_node=2\n --master_port={get_torch_dist_unique_port()}\n {self.test_file_dir}/test_trainer_distributed.py\n """.split() _lowerCamelCase = self.get_auto_remove_tmp_dir() _lowerCamelCase = F"""--output_dir {output_dir}""".split() _lowerCamelCase = ['''torchrun'''] + distributed_args + args execute_subprocess_async(_lowerCAmelCase , env=self.get_env() ) # successful return here == success - any errors would have caused an error in the sub-call class lowerCamelCase_( _SCREAMING_SNAKE_CASE ): '''simple docstring''' @require_torch_multi_gpu def snake_case__ ( self ): _lowerCamelCase = F"""--nproc_per_node={torch.cuda.device_count()}\n --master_port={get_torch_dist_unique_port()}\n {self.test_file_dir}/test_trainer_distributed.py\n """.split() _lowerCamelCase = self.get_auto_remove_tmp_dir() _lowerCamelCase = F"""--output_dir {output_dir}""".split() _lowerCamelCase = ['''torchrun'''] + distributed_args + args execute_subprocess_async(_lowerCAmelCase , env=self.get_env() ) # successful return here == success - any errors would have caused an error in the sub-call if __name__ == "__main__": # The script below is meant to be run under torch.distributed, on a machine with multiple GPUs: # # PYTHONPATH="src" python -m torch.distributed.run --nproc_per_node 2 --output_dir output_dir ./tests/test_trainer_distributed.py __SCREAMING_SNAKE_CASE : int = HfArgumentParser((TrainingArguments,)) __SCREAMING_SNAKE_CASE : Optional[int] = parser.parse_args_into_dataclasses()[0] logger.warning( F"""Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}, """ F"""distributed training: {training_args.parallel_mode != ParallelMode.NOT_DISTRIBUTED}""" ) # Essentially, what we want to verify in the distributed case is that we get all samples back, # in the right order. (this is crucial for prediction for instance) for dataset_length in [1_0_1, 4_0, 7]: __SCREAMING_SNAKE_CASE : str = DummyDataset(dataset_length) def lowerCAmelCase_( lowercase_ : EvalPrediction ) -> Dict: _lowerCamelCase = list(range(len(__UpperCAmelCase ) ) ) _lowerCamelCase = p.predictions.tolist() == sequential and p.label_ids.tolist() == sequential if not success and training_args.local_rank == 0: logger.warning( '''Predictions and/or labels do not match expected results:\n - predictions: ''' F"""{p.predictions.tolist()}\n - labels: {p.label_ids.tolist()}\n - expected: {sequential}""" ) return {"success": success} __SCREAMING_SNAKE_CASE : Tuple = Trainer( model=DummyModel(), args=training_args, data_collator=DummyDataCollator(), eval_dataset=dataset, compute_metrics=compute_metrics, ) __SCREAMING_SNAKE_CASE : List[Any] = trainer.evaluate() logger.info(metrics) if metrics["eval_success"] is not True: logger.error(metrics) exit(1) __SCREAMING_SNAKE_CASE : Dict = trainer.predict(dataset) logger.info(p.metrics) if p.metrics["test_success"] is not True: logger.error(p.metrics) exit(1) __SCREAMING_SNAKE_CASE : List[str] = 2 __SCREAMING_SNAKE_CASE : Tuple = trainer.evaluate() logger.info(metrics) if metrics["eval_success"] is not True: logger.error(metrics) exit(1) __SCREAMING_SNAKE_CASE : int = trainer.predict(dataset) logger.info(p.metrics) if p.metrics["test_success"] is not True: logger.error(p.metrics) exit(1) __SCREAMING_SNAKE_CASE : Union[str, Any] = None
661
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_sentencepiece_available, is_tf_available, is_tokenizers_available, is_torch_available, ) if is_sentencepiece_available(): from ..ta.tokenization_ta import TaTokenizer else: from ...utils.dummy_sentencepiece_objects import TaTokenizer lowerCamelCase__ : List[Any] = TaTokenizer if is_tokenizers_available(): from ..ta.tokenization_ta_fast import TaTokenizerFast else: from ...utils.dummy_tokenizers_objects import TaTokenizerFast lowerCamelCase__ : Union[str, Any] = TaTokenizerFast lowerCamelCase__ : Dict = {'configuration_mt5': ['MT5Config', 'MT5OnnxConfig']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase__ : Tuple = [ 'MT5EncoderModel', 'MT5ForConditionalGeneration', 'MT5ForQuestionAnswering', 'MT5Model', 'MT5PreTrainedModel', 'MT5Stack', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase__ : Tuple = ['TFMT5EncoderModel', 'TFMT5ForConditionalGeneration', 'TFMT5Model'] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase__ : Tuple = ['FlaxMT5EncoderModel', 'FlaxMT5ForConditionalGeneration', 'FlaxMT5Model'] if TYPE_CHECKING: from .configuration_mta import MTaConfig, MTaOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mta import ( MTaEncoderModel, MTaForConditionalGeneration, MTaForQuestionAnswering, MTaModel, MTaPreTrainedModel, MTaStack, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_mta import TFMTaEncoderModel, TFMTaForConditionalGeneration, TFMTaModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_mta import FlaxMTaEncoderModel, FlaxMTaForConditionalGeneration, FlaxMTaModel else: import sys lowerCamelCase__ : int = _LazyModule( __name__, globals()['__file__'], _import_structure, extra_objects={'MT5Tokenizer': MTaTokenizer, 'MT5TokenizerFast': MTaTokenizerFast}, module_spec=__spec__, )
31
0
"""simple docstring""" from math import isqrt def _UpperCamelCase ( UpperCamelCase ) -> bool: """simple docstring""" return all(number % divisor != 0 for divisor in range(2 , isqrt(__UpperCAmelCase ) + 1 ) ) def _UpperCamelCase ( UpperCamelCase = 10**6 ) -> int: """simple docstring""" __UpperCAmelCase : List[Any] = 0 __UpperCAmelCase : Tuple = 1 __UpperCAmelCase : List[Any] = 7 while prime_candidate < max_prime: primes_count += is_prime(__UpperCAmelCase ) cube_index += 1 prime_candidate += 6 * cube_index return primes_count if __name__ == "__main__": print(f'''{solution() = }''')
77
import subprocess import sys from transformers import BertConfig, BertModel, BertTokenizer, pipeline from transformers.testing_utils import TestCasePlus, require_torch class lowerCamelCase_ ( _SCREAMING_SNAKE_CASE ): '''simple docstring''' @require_torch def lowerCAmelCase_ ( self : int ): # this test is a bit tricky since TRANSFORMERS_OFFLINE can only be changed before # `transformers` is loaded, and it's too late for inside pytest - so we are changing it # while running an external program # python one-liner segments # this must be loaded before socket.socket is monkey-patched SCREAMING_SNAKE_CASE_ = '\nfrom transformers import BertConfig, BertModel, BertTokenizer, pipeline\n ' SCREAMING_SNAKE_CASE_ = '\nmname = "hf-internal-testing/tiny-random-bert"\nBertConfig.from_pretrained(mname)\nBertModel.from_pretrained(mname)\nBertTokenizer.from_pretrained(mname)\npipe = pipeline(task="fill-mask", model=mname)\nprint("success")\n ' SCREAMING_SNAKE_CASE_ = '\nimport socket\ndef offline_socket(*args, **kwargs): raise RuntimeError("Offline mode is enabled, we shouldn\'t access internet")\nsocket.socket = offline_socket\n ' # Force fetching the files so that we can use the cache SCREAMING_SNAKE_CASE_ = 'hf-internal-testing/tiny-random-bert' BertConfig.from_pretrained(_lowerCAmelCase ) BertModel.from_pretrained(_lowerCAmelCase ) BertTokenizer.from_pretrained(_lowerCAmelCase ) pipeline(task='fill-mask' , model=_lowerCAmelCase ) # baseline - just load from_pretrained with normal network SCREAMING_SNAKE_CASE_ = [sys.executable, '-c', '\n'.join([load, run, mock] )] # should succeed SCREAMING_SNAKE_CASE_ = self.get_env() # should succeed as TRANSFORMERS_OFFLINE=1 tells it to use local files SCREAMING_SNAKE_CASE_ = '1' SCREAMING_SNAKE_CASE_ = subprocess.run(_lowerCAmelCase , env=_lowerCAmelCase , check=_lowerCAmelCase , capture_output=_lowerCAmelCase ) self.assertEqual(result.returncode , 0 , result.stderr ) self.assertIn('success' , result.stdout.decode() ) @require_torch def lowerCAmelCase_ ( self : Tuple ): # python one-liner segments # this must be loaded before socket.socket is monkey-patched SCREAMING_SNAKE_CASE_ = '\nfrom transformers import BertConfig, BertModel, BertTokenizer, pipeline\n ' SCREAMING_SNAKE_CASE_ = '\nmname = "hf-internal-testing/tiny-random-bert"\nBertConfig.from_pretrained(mname)\nBertModel.from_pretrained(mname)\nBertTokenizer.from_pretrained(mname)\npipe = pipeline(task="fill-mask", model=mname)\nprint("success")\n ' SCREAMING_SNAKE_CASE_ = '\nimport socket\ndef offline_socket(*args, **kwargs): raise socket.error("Faking flaky internet")\nsocket.socket = offline_socket\n ' # Force fetching the files so that we can use the cache SCREAMING_SNAKE_CASE_ = 'hf-internal-testing/tiny-random-bert' BertConfig.from_pretrained(_lowerCAmelCase ) BertModel.from_pretrained(_lowerCAmelCase ) BertTokenizer.from_pretrained(_lowerCAmelCase ) pipeline(task='fill-mask' , model=_lowerCAmelCase ) # baseline - just load from_pretrained with normal network SCREAMING_SNAKE_CASE_ = [sys.executable, '-c', '\n'.join([load, run, mock] )] # should succeed SCREAMING_SNAKE_CASE_ = self.get_env() SCREAMING_SNAKE_CASE_ = subprocess.run(_lowerCAmelCase , env=_lowerCAmelCase , check=_lowerCAmelCase , capture_output=_lowerCAmelCase ) self.assertEqual(result.returncode , 0 , result.stderr ) self.assertIn('success' , result.stdout.decode() ) @require_torch def lowerCAmelCase_ ( self : List[str] ): # this test is a bit tricky since TRANSFORMERS_OFFLINE can only be changed before # `transformers` is loaded, and it's too late for inside pytest - so we are changing it # while running an external program # python one-liner segments # this must be loaded before socket.socket is monkey-patched SCREAMING_SNAKE_CASE_ = '\nfrom transformers import BertConfig, BertModel, BertTokenizer\n ' SCREAMING_SNAKE_CASE_ = '\nmname = "hf-internal-testing/tiny-random-bert-sharded"\nBertConfig.from_pretrained(mname)\nBertModel.from_pretrained(mname)\nprint("success")\n ' SCREAMING_SNAKE_CASE_ = '\nimport socket\ndef offline_socket(*args, **kwargs): raise ValueError("Offline mode is enabled")\nsocket.socket = offline_socket\n ' # baseline - just load from_pretrained with normal network SCREAMING_SNAKE_CASE_ = [sys.executable, '-c', '\n'.join([load, run] )] # should succeed SCREAMING_SNAKE_CASE_ = self.get_env() SCREAMING_SNAKE_CASE_ = subprocess.run(_lowerCAmelCase , env=_lowerCAmelCase , check=_lowerCAmelCase , capture_output=_lowerCAmelCase ) self.assertEqual(result.returncode , 0 , result.stderr ) self.assertIn('success' , result.stdout.decode() ) # next emulate no network SCREAMING_SNAKE_CASE_ = [sys.executable, '-c', '\n'.join([load, mock, run] )] # Doesn't fail anymore since the model is in the cache due to other tests, so commenting this. # env["TRANSFORMERS_OFFLINE"] = "0" # result = subprocess.run(cmd, env=env, check=False, capture_output=True) # self.assertEqual(result.returncode, 1, result.stderr) # should succeed as TRANSFORMERS_OFFLINE=1 tells it to use local files SCREAMING_SNAKE_CASE_ = '1' SCREAMING_SNAKE_CASE_ = subprocess.run(_lowerCAmelCase , env=_lowerCAmelCase , check=_lowerCAmelCase , capture_output=_lowerCAmelCase ) self.assertEqual(result.returncode , 0 , result.stderr ) self.assertIn('success' , result.stdout.decode() ) @require_torch def lowerCAmelCase_ ( self : Any ): SCREAMING_SNAKE_CASE_ = '\nfrom transformers import pipeline\n ' SCREAMING_SNAKE_CASE_ = '\nmname = "hf-internal-testing/tiny-random-bert"\npipe = pipeline(model=mname)\n ' SCREAMING_SNAKE_CASE_ = '\nimport socket\ndef offline_socket(*args, **kwargs): raise socket.error("Offline mode is enabled")\nsocket.socket = offline_socket\n ' SCREAMING_SNAKE_CASE_ = self.get_env() SCREAMING_SNAKE_CASE_ = '1' SCREAMING_SNAKE_CASE_ = [sys.executable, '-c', '\n'.join([load, mock, run] )] SCREAMING_SNAKE_CASE_ = subprocess.run(_lowerCAmelCase , env=_lowerCAmelCase , check=_lowerCAmelCase , capture_output=_lowerCAmelCase ) self.assertEqual(result.returncode , 1 , result.stderr ) self.assertIn( 'You cannot infer task automatically within `pipeline` when using offline mode' , result.stderr.decode().replace('\n' , '' ) , ) @require_torch def lowerCAmelCase_ ( self : Optional[int] ): SCREAMING_SNAKE_CASE_ = '\nfrom transformers import AutoModel\n ' SCREAMING_SNAKE_CASE_ = '\nmname = "hf-internal-testing/test_dynamic_model"\nAutoModel.from_pretrained(mname, trust_remote_code=True)\nprint("success")\n ' # baseline - just load from_pretrained with normal network SCREAMING_SNAKE_CASE_ = [sys.executable, '-c', '\n'.join([load, run] )] # should succeed SCREAMING_SNAKE_CASE_ = self.get_env() SCREAMING_SNAKE_CASE_ = subprocess.run(_lowerCAmelCase , env=_lowerCAmelCase , check=_lowerCAmelCase , capture_output=_lowerCAmelCase ) self.assertEqual(result.returncode , 0 , result.stderr ) self.assertIn('success' , result.stdout.decode() ) # should succeed as TRANSFORMERS_OFFLINE=1 tells it to use local files SCREAMING_SNAKE_CASE_ = '1' SCREAMING_SNAKE_CASE_ = subprocess.run(_lowerCAmelCase , env=_lowerCAmelCase , check=_lowerCAmelCase , capture_output=_lowerCAmelCase ) self.assertEqual(result.returncode , 0 , result.stderr ) self.assertIn('success' , result.stdout.decode() )
31
0
import argparse import json import os from tensorflow.core.protobuf.saved_model_pba import SavedModel # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_copies.py lowerCAmelCase : Dict = '.' # Internal TensorFlow ops that can be safely ignored (mostly specific to a saved model) lowerCAmelCase : List[str] = [ 'Assert', 'AssignVariableOp', 'EmptyTensorList', 'MergeV2Checkpoints', 'ReadVariableOp', 'ResourceGather', 'RestoreV2', 'SaveV2', 'ShardedFilename', 'StatefulPartitionedCall', 'StaticRegexFullMatch', 'VarHandleOp', ] def lowerCAmelCase ( UpperCamelCase__ : Tuple , UpperCamelCase__ : Union[str, Any] , UpperCamelCase__ : Union[str, Any] ) -> str: """simple docstring""" __SCREAMING_SNAKE_CASE: List[str] = SavedModel() __SCREAMING_SNAKE_CASE: int = [] with open(os.path.join(__UpperCAmelCase , '''utils''' , '''tf_ops''' , '''onnx.json''' ) ) as f: __SCREAMING_SNAKE_CASE: List[Any] = json.load(__UpperCAmelCase )['''opsets'''] for i in range(1 , opset + 1 ): onnx_ops.extend(onnx_opsets[str(__UpperCAmelCase )] ) with open(__UpperCAmelCase , '''rb''' ) as f: saved_model.ParseFromString(f.read() ) __SCREAMING_SNAKE_CASE: int = set() # Iterate over every metagraph in case there is more than one (a saved model can contain multiple graphs) for meta_graph in saved_model.meta_graphs: # Add operations in the graph definition model_op_names.update(node.op for node in meta_graph.graph_def.node ) # Go through the functions in the graph definition for func in meta_graph.graph_def.library.function: # Add operations in each function model_op_names.update(node.op for node in func.node_def ) # Convert to list, sorted if you want __SCREAMING_SNAKE_CASE: List[Any] = sorted(__UpperCAmelCase ) __SCREAMING_SNAKE_CASE: Optional[Any] = [] for op in model_op_names: if op not in onnx_ops and op not in INTERNAL_OPS: incompatible_ops.append(__UpperCAmelCase ) if strict and len(__UpperCAmelCase ) > 0: raise Exception(F"""Found the following incompatible ops for the opset {opset}:\n""" + incompatible_ops ) elif len(__UpperCAmelCase ) > 0: print(F"""Found the following incompatible ops for the opset {opset}:""" ) print(*__UpperCAmelCase , sep='''\n''' ) else: print(F"""The saved model {saved_model_path} can properly be converted with ONNX.""" ) if __name__ == "__main__": lowerCAmelCase : List[Any] = argparse.ArgumentParser() parser.add_argument("""--saved_model_path""", help="""Path of the saved model to check (the .pb file).""") parser.add_argument( """--opset""", default=12, type=int, help="""The ONNX opset against which the model has to be tested.""" ) parser.add_argument( """--framework""", choices=["""onnx"""], default="""onnx""", help="""Frameworks against which to test the saved model.""" ) parser.add_argument( """--strict""", action="""store_true""", help="""Whether make the checking strict (raise errors) or not (raise warnings)""" ) lowerCAmelCase : str = parser.parse_args() if args.framework == "onnx": onnx_compliancy(args.saved_model_path, args.strict, args.opset)
202
import torch from transformers import PreTrainedModel, XLMRobertaConfig, XLMRobertaModel class lowerCamelCase_ ( _SCREAMING_SNAKE_CASE ): '''simple docstring''' lowercase_ = "M-CLIP" def __init__( self : Tuple , _lowerCAmelCase : List[str]=1_024 , _lowerCAmelCase : str=768 , **_lowerCAmelCase : Union[str, Any] ): SCREAMING_SNAKE_CASE_ = transformerDimSize SCREAMING_SNAKE_CASE_ = imageDimSize super().__init__(**_lowerCAmelCase ) class lowerCamelCase_ ( _SCREAMING_SNAKE_CASE ): '''simple docstring''' lowercase_ = MCLIPConfig def __init__( self : Dict , _lowerCAmelCase : Union[str, Any] , *_lowerCAmelCase : str , **_lowerCAmelCase : str ): super().__init__(_lowerCAmelCase , *_lowerCAmelCase , **_lowerCAmelCase ) SCREAMING_SNAKE_CASE_ = XLMRobertaModel(_lowerCAmelCase ) SCREAMING_SNAKE_CASE_ = torch.nn.Linear( in_features=config.transformerDimensions , out_features=config.numDims ) def lowerCAmelCase_ ( self : List[Any] , _lowerCAmelCase : Any , _lowerCAmelCase : Union[str, Any] ): SCREAMING_SNAKE_CASE_ = self.transformer(input_ids=_lowerCAmelCase , attention_mask=_lowerCAmelCase )[0] SCREAMING_SNAKE_CASE_ = (embs * attention_mask.unsqueeze(2 )).sum(dim=1 ) / attention_mask.sum(dim=1 )[:, None] return self.LinearTransformation(_lowerCAmelCase ), embs
31
0
'''simple docstring''' import argparse import shlex import runhouse as rh if __name__ == "__main__": # Refer to https://runhouse-docs.readthedocs-hosted.com/en/latest/api/python/cluster.html#hardware-setup for cloud access # setup instructions, if using on-demand hardware # If user passes --user <user> --host <host> --key_path <key_path> <example> <args>, fill them in as BYO cluster # If user passes --instance <instance> --provider <provider> <example> <args>, fill them in as on-demand cluster # Throw an error if user passes both BYO and on-demand cluster args # Otherwise, use default values __A = argparse.ArgumentParser() parser.add_argument("--user", type=str, default="ubuntu") parser.add_argument("--host", type=str, default="localhost") parser.add_argument("--key_path", type=str, default=None) parser.add_argument("--instance", type=str, default="V100:1") parser.add_argument("--provider", type=str, default="cheapest") parser.add_argument("--use_spot", type=bool, default=False) parser.add_argument("--example", type=str, default="pytorch/text-generation/run_generation.py") __A = parser.parse_known_args() if args.host != "localhost": if args.instance != "V100:1" or args.provider != "cheapest": raise ValueError("Cannot specify both BYO and on-demand cluster args") __A = rh.cluster( name="rh-cluster", ips=[args.host], ssh_creds={"ssh_user": args.user, "ssh_private_key": args.key_path} ) else: __A = rh.cluster( name="rh-cluster", instance_type=args.instance, provider=args.provider, use_spot=args.use_spot ) __A = args.example.rsplit("/", 1)[0] # Set up remote environment cluster.install_packages(["pip:./"]) # Installs transformers from local source # Note transformers is copied into the home directory on the remote machine, so we can install from there cluster.run([F'''pip install -r transformers/examples/{example_dir}/requirements.txt''']) cluster.run(["pip install torch --upgrade --extra-index-url https://download.pytorch.org/whl/cu117"]) # Run example. You can bypass the CLI wrapper and paste your own code here. cluster.run([F'''python transformers/examples/{args.example} {" ".join(shlex.quote(arg) for arg in unknown)}''']) # Alternatively, we can just import and run a training function (especially if there's no wrapper CLI): # from my_script... import train # reqs = ['pip:./', 'torch', 'datasets', 'accelerate', 'evaluate', 'tqdm', 'scipy', 'scikit-learn', 'tensorboard'] # launch_train_gpu = rh.function(fn=train, # system=gpu, # reqs=reqs, # name='train_bert_glue') # # We can pass in arguments just like we would to a function: # launch_train_gpu(num_epochs = 3, lr = 2e-5, seed = 42, batch_size = 16 # stream_logs=True)
325
import gc import random import unittest import numpy as np import torch from transformers import XLMRobertaTokenizer from diffusers import ( AltDiffusionImgaImgPipeline, AutoencoderKL, PNDMScheduler, UNetaDConditionModel, ) from diffusers.image_processor import VaeImageProcessor from diffusers.pipelines.alt_diffusion.modeling_roberta_series import ( RobertaSeriesConfig, RobertaSeriesModelWithTransformation, ) from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu enable_full_determinism() class lowerCamelCase_ ( unittest.TestCase ): '''simple docstring''' def lowerCAmelCase_ ( self : str ): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() @property def lowerCAmelCase_ ( self : Union[str, Any] ): SCREAMING_SNAKE_CASE_ = 1 SCREAMING_SNAKE_CASE_ = 3 SCREAMING_SNAKE_CASE_ = (32, 32) SCREAMING_SNAKE_CASE_ = floats_tensor((batch_size, num_channels) + sizes , rng=random.Random(0 ) ).to(_lowerCAmelCase ) return image @property def lowerCAmelCase_ ( self : Union[str, Any] ): torch.manual_seed(0 ) SCREAMING_SNAKE_CASE_ = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=('DownBlock2D', 'CrossAttnDownBlock2D') , up_block_types=('CrossAttnUpBlock2D', 'UpBlock2D') , cross_attention_dim=32 , ) return model @property def lowerCAmelCase_ ( self : Tuple ): torch.manual_seed(0 ) SCREAMING_SNAKE_CASE_ = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=['DownEncoderBlock2D', 'DownEncoderBlock2D'] , up_block_types=['UpDecoderBlock2D', 'UpDecoderBlock2D'] , latent_channels=4 , ) return model @property def lowerCAmelCase_ ( self : Optional[int] ): torch.manual_seed(0 ) SCREAMING_SNAKE_CASE_ = RobertaSeriesConfig( hidden_size=32 , project_dim=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=5_006 , ) return RobertaSeriesModelWithTransformation(_lowerCAmelCase ) @property def lowerCAmelCase_ ( self : List[Any] ): def extract(*_lowerCAmelCase : Optional[int] , **_lowerCAmelCase : str ): class lowerCamelCase_ : '''simple docstring''' def __init__( self : str ): SCREAMING_SNAKE_CASE_ = torch.ones([0] ) def lowerCAmelCase_ ( self : Union[str, Any] , _lowerCAmelCase : int ): self.pixel_values.to(_lowerCAmelCase ) return self return Out() return extract def lowerCAmelCase_ ( self : Optional[Any] ): SCREAMING_SNAKE_CASE_ = 'cpu' # ensure determinism for the device-dependent torch.Generator SCREAMING_SNAKE_CASE_ = self.dummy_cond_unet SCREAMING_SNAKE_CASE_ = PNDMScheduler(skip_prk_steps=_lowerCAmelCase ) SCREAMING_SNAKE_CASE_ = self.dummy_vae SCREAMING_SNAKE_CASE_ = self.dummy_text_encoder SCREAMING_SNAKE_CASE_ = XLMRobertaTokenizer.from_pretrained('hf-internal-testing/tiny-xlm-roberta' ) SCREAMING_SNAKE_CASE_ = 77 SCREAMING_SNAKE_CASE_ = self.dummy_image.to(_lowerCAmelCase ) SCREAMING_SNAKE_CASE_ = init_image / 2 + 0.5 # make sure here that pndm scheduler skips prk SCREAMING_SNAKE_CASE_ = AltDiffusionImgaImgPipeline( unet=_lowerCAmelCase , scheduler=_lowerCAmelCase , vae=_lowerCAmelCase , text_encoder=_lowerCAmelCase , tokenizer=_lowerCAmelCase , safety_checker=_lowerCAmelCase , feature_extractor=self.dummy_extractor , ) SCREAMING_SNAKE_CASE_ = VaeImageProcessor(vae_scale_factor=alt_pipe.vae_scale_factor , do_normalize=_lowerCAmelCase ) SCREAMING_SNAKE_CASE_ = alt_pipe.to(_lowerCAmelCase ) alt_pipe.set_progress_bar_config(disable=_lowerCAmelCase ) SCREAMING_SNAKE_CASE_ = 'A painting of a squirrel eating a burger' SCREAMING_SNAKE_CASE_ = torch.Generator(device=_lowerCAmelCase ).manual_seed(0 ) SCREAMING_SNAKE_CASE_ = alt_pipe( [prompt] , generator=_lowerCAmelCase , guidance_scale=6.0 , num_inference_steps=2 , output_type='np' , image=_lowerCAmelCase , ) SCREAMING_SNAKE_CASE_ = output.images SCREAMING_SNAKE_CASE_ = torch.Generator(device=_lowerCAmelCase ).manual_seed(0 ) SCREAMING_SNAKE_CASE_ = alt_pipe( [prompt] , generator=_lowerCAmelCase , guidance_scale=6.0 , num_inference_steps=2 , output_type='np' , image=_lowerCAmelCase , return_dict=_lowerCAmelCase , )[0] SCREAMING_SNAKE_CASE_ = image[0, -3:, -3:, -1] SCREAMING_SNAKE_CASE_ = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) SCREAMING_SNAKE_CASE_ = np.array([0.4427, 0.3731, 0.4249, 0.4941, 0.4546, 0.4148, 0.4193, 0.4666, 0.4499] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 5E-3 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 5E-3 @unittest.skipIf(torch_device != 'cuda' , 'This test requires a GPU' ) def lowerCAmelCase_ ( self : Tuple ): SCREAMING_SNAKE_CASE_ = self.dummy_cond_unet SCREAMING_SNAKE_CASE_ = PNDMScheduler(skip_prk_steps=_lowerCAmelCase ) SCREAMING_SNAKE_CASE_ = self.dummy_vae SCREAMING_SNAKE_CASE_ = self.dummy_text_encoder SCREAMING_SNAKE_CASE_ = XLMRobertaTokenizer.from_pretrained('hf-internal-testing/tiny-xlm-roberta' ) SCREAMING_SNAKE_CASE_ = 77 SCREAMING_SNAKE_CASE_ = self.dummy_image.to(_lowerCAmelCase ) # put models in fp16 SCREAMING_SNAKE_CASE_ = unet.half() SCREAMING_SNAKE_CASE_ = vae.half() SCREAMING_SNAKE_CASE_ = bert.half() # make sure here that pndm scheduler skips prk SCREAMING_SNAKE_CASE_ = AltDiffusionImgaImgPipeline( unet=_lowerCAmelCase , scheduler=_lowerCAmelCase , vae=_lowerCAmelCase , text_encoder=_lowerCAmelCase , tokenizer=_lowerCAmelCase , safety_checker=_lowerCAmelCase , feature_extractor=self.dummy_extractor , ) SCREAMING_SNAKE_CASE_ = VaeImageProcessor(vae_scale_factor=alt_pipe.vae_scale_factor , do_normalize=_lowerCAmelCase ) SCREAMING_SNAKE_CASE_ = alt_pipe.to(_lowerCAmelCase ) alt_pipe.set_progress_bar_config(disable=_lowerCAmelCase ) SCREAMING_SNAKE_CASE_ = 'A painting of a squirrel eating a burger' SCREAMING_SNAKE_CASE_ = torch.manual_seed(0 ) SCREAMING_SNAKE_CASE_ = alt_pipe( [prompt] , generator=_lowerCAmelCase , num_inference_steps=2 , output_type='np' , image=_lowerCAmelCase , ).images assert image.shape == (1, 32, 32, 3) @unittest.skipIf(torch_device != 'cuda' , 'This test requires a GPU' ) def lowerCAmelCase_ ( self : str ): SCREAMING_SNAKE_CASE_ = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/img2img/sketch-mountains-input.jpg' ) # resize to resolution that is divisible by 8 but not 16 or 32 SCREAMING_SNAKE_CASE_ = init_image.resize((760, 504) ) SCREAMING_SNAKE_CASE_ = 'BAAI/AltDiffusion' SCREAMING_SNAKE_CASE_ = AltDiffusionImgaImgPipeline.from_pretrained( _lowerCAmelCase , safety_checker=_lowerCAmelCase , ) pipe.to(_lowerCAmelCase ) pipe.set_progress_bar_config(disable=_lowerCAmelCase ) pipe.enable_attention_slicing() SCREAMING_SNAKE_CASE_ = 'A fantasy landscape, trending on artstation' SCREAMING_SNAKE_CASE_ = torch.manual_seed(0 ) SCREAMING_SNAKE_CASE_ = pipe( prompt=_lowerCAmelCase , image=_lowerCAmelCase , strength=0.75 , guidance_scale=7.5 , generator=_lowerCAmelCase , output_type='np' , ) SCREAMING_SNAKE_CASE_ = output.images[0] SCREAMING_SNAKE_CASE_ = image[255:258, 383:386, -1] assert image.shape == (504, 760, 3) SCREAMING_SNAKE_CASE_ = np.array([0.9358, 0.9397, 0.9599, 0.9901, 1.0000, 1.0000, 0.9882, 1.0000, 1.0000] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 @slow @require_torch_gpu class lowerCamelCase_ ( unittest.TestCase ): '''simple docstring''' def lowerCAmelCase_ ( self : str ): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def lowerCAmelCase_ ( self : int ): SCREAMING_SNAKE_CASE_ = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/img2img/sketch-mountains-input.jpg' ) SCREAMING_SNAKE_CASE_ = init_image.resize((768, 512) ) SCREAMING_SNAKE_CASE_ = load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/img2img/fantasy_landscape_alt.npy' ) SCREAMING_SNAKE_CASE_ = 'BAAI/AltDiffusion' SCREAMING_SNAKE_CASE_ = AltDiffusionImgaImgPipeline.from_pretrained( _lowerCAmelCase , safety_checker=_lowerCAmelCase , ) pipe.to(_lowerCAmelCase ) pipe.set_progress_bar_config(disable=_lowerCAmelCase ) pipe.enable_attention_slicing() SCREAMING_SNAKE_CASE_ = 'A fantasy landscape, trending on artstation' SCREAMING_SNAKE_CASE_ = torch.manual_seed(0 ) SCREAMING_SNAKE_CASE_ = pipe( prompt=_lowerCAmelCase , image=_lowerCAmelCase , strength=0.75 , guidance_scale=7.5 , generator=_lowerCAmelCase , output_type='np' , ) SCREAMING_SNAKE_CASE_ = output.images[0] assert image.shape == (512, 768, 3) # img2img is flaky across GPUs even in fp32, so using MAE here assert np.abs(expected_image - image ).max() < 1E-2
31
0