code
stringlengths
82
54.1k
code_codestyle
int64
0
699
style_context
stringlengths
111
35.6k
style_context_codestyle
int64
0
699
label
int64
0
1
from __future__ import annotations def lowerCamelCase__ ( _lowercase ): '''simple docstring''' if len(__UpperCAmelCase ) == 0: return [] UpperCAmelCase_, UpperCAmelCase_ : int = min(__UpperCAmelCase ), max(__UpperCAmelCase ) UpperCAmelCase_ : int = int(max_value - min_value ) + 1 UpperCAmelCase_ : List[Any] = [[] for _ in range(__UpperCAmelCase )] for i in my_list: buckets[int(i - min_value )].append(__UpperCAmelCase ) return [v for bucket in buckets for v in sorted(__UpperCAmelCase )] if __name__ == "__main__": from doctest import testmod testmod() assert bucket_sort([4, 5, 3, 2, 1]) == [1, 2, 3, 4, 5] assert bucket_sort([0, 1, -10, 15, 2, -2]) == [-10, -2, 0, 1, 2, 15]
30
from collections import OrderedDict from typing import TYPE_CHECKING, Any, List, Mapping, Optional, Union from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import TensorType, logging if TYPE_CHECKING: from ...onnx.config import PatchingSpec from ...tokenization_utils_base import PreTrainedTokenizerBase lowerCamelCase__ : Optional[int] = logging.get_logger(__name__) lowerCamelCase__ : Dict = { 'allenai/longformer-base-4096': 'https://huggingface.co/allenai/longformer-base-4096/resolve/main/config.json', 'allenai/longformer-large-4096': 'https://huggingface.co/allenai/longformer-large-4096/resolve/main/config.json', 'allenai/longformer-large-4096-finetuned-triviaqa': ( 'https://huggingface.co/allenai/longformer-large-4096-finetuned-triviaqa/resolve/main/config.json' ), 'allenai/longformer-base-4096-extra.pos.embd.only': ( 'https://huggingface.co/allenai/longformer-base-4096-extra.pos.embd.only/resolve/main/config.json' ), 'allenai/longformer-large-4096-extra.pos.embd.only': ( 'https://huggingface.co/allenai/longformer-large-4096-extra.pos.embd.only/resolve/main/config.json' ), } class lowerCamelCase_ ( _SCREAMING_SNAKE_CASE ): '''simple docstring''' lowercase_ = "longformer" def __init__( self : Union[str, Any] , _lowerCAmelCase : Union[List[int], int] = 512 , _lowerCAmelCase : int = 2 , _lowerCAmelCase : int = 1 , _lowerCAmelCase : int = 0 , _lowerCAmelCase : int = 2 , _lowerCAmelCase : int = 30_522 , _lowerCAmelCase : int = 768 , _lowerCAmelCase : int = 12 , _lowerCAmelCase : int = 12 , _lowerCAmelCase : int = 3_072 , _lowerCAmelCase : str = "gelu" , _lowerCAmelCase : float = 0.1 , _lowerCAmelCase : float = 0.1 , _lowerCAmelCase : int = 512 , _lowerCAmelCase : int = 2 , _lowerCAmelCase : float = 0.02 , _lowerCAmelCase : float = 1E-12 , _lowerCAmelCase : bool = False , **_lowerCAmelCase : Union[str, Any] , ): super().__init__(pad_token_id=_lowerCAmelCase , **_lowerCAmelCase ) SCREAMING_SNAKE_CASE_ = attention_window SCREAMING_SNAKE_CASE_ = sep_token_id SCREAMING_SNAKE_CASE_ = bos_token_id SCREAMING_SNAKE_CASE_ = eos_token_id SCREAMING_SNAKE_CASE_ = vocab_size SCREAMING_SNAKE_CASE_ = hidden_size SCREAMING_SNAKE_CASE_ = num_hidden_layers SCREAMING_SNAKE_CASE_ = num_attention_heads SCREAMING_SNAKE_CASE_ = hidden_act SCREAMING_SNAKE_CASE_ = intermediate_size SCREAMING_SNAKE_CASE_ = hidden_dropout_prob SCREAMING_SNAKE_CASE_ = attention_probs_dropout_prob SCREAMING_SNAKE_CASE_ = max_position_embeddings SCREAMING_SNAKE_CASE_ = type_vocab_size SCREAMING_SNAKE_CASE_ = initializer_range SCREAMING_SNAKE_CASE_ = layer_norm_eps SCREAMING_SNAKE_CASE_ = onnx_export class lowerCamelCase_ ( _SCREAMING_SNAKE_CASE ): '''simple docstring''' def __init__( self : Optional[Any] , _lowerCAmelCase : "PretrainedConfig" , _lowerCAmelCase : str = "default" , _lowerCAmelCase : "List[PatchingSpec]" = None ): super().__init__(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) SCREAMING_SNAKE_CASE_ = True @property def lowerCAmelCase_ ( self : Any ): if self.task == "multiple-choice": SCREAMING_SNAKE_CASE_ = {0: 'batch', 1: 'choice', 2: 'sequence'} else: SCREAMING_SNAKE_CASE_ = {0: 'batch', 1: 'sequence'} return OrderedDict( [ ('input_ids', dynamic_axis), ('attention_mask', dynamic_axis), ('global_attention_mask', dynamic_axis), ] ) @property def lowerCAmelCase_ ( self : Optional[int] ): SCREAMING_SNAKE_CASE_ = super().outputs if self.task == "default": SCREAMING_SNAKE_CASE_ = {0: 'batch'} return outputs @property def lowerCAmelCase_ ( self : str ): return 1E-4 @property def lowerCAmelCase_ ( self : Optional[Any] ): # needs to be >= 14 to support tril operator return max(super().default_onnx_opset , 14 ) def lowerCAmelCase_ ( self : str , _lowerCAmelCase : "PreTrainedTokenizerBase" , _lowerCAmelCase : int = -1 , _lowerCAmelCase : int = -1 , _lowerCAmelCase : bool = False , _lowerCAmelCase : Optional[TensorType] = None , ): SCREAMING_SNAKE_CASE_ = super().generate_dummy_inputs( preprocessor=_lowerCAmelCase , batch_size=_lowerCAmelCase , seq_length=_lowerCAmelCase , is_pair=_lowerCAmelCase , framework=_lowerCAmelCase ) import torch # for some reason, replacing this code by inputs["global_attention_mask"] = torch.randint(2, inputs["input_ids"].shape, dtype=torch.int64) # makes the export fail randomly SCREAMING_SNAKE_CASE_ = torch.zeros_like(inputs['input_ids'] ) # make every second token global SCREAMING_SNAKE_CASE_ = 1 return inputs
31
0
'''simple docstring''' import os import zipfile import pytest from datasets.utils.extract import ( BzipaExtractor, Extractor, GzipExtractor, LzaExtractor, SevenZipExtractor, TarExtractor, XzExtractor, ZipExtractor, ZstdExtractor, ) from .utils import require_lza, require_pyazr, require_zstandard @pytest.mark.parametrize( 'compression_format, is_archive' , [ ('7z', True), ('bz2', False), ('gzip', False), ('lz4', False), ('tar', True), ('xz', False), ('zip', True), ('zstd', False), ] , ) def UpperCamelCase__ ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , ) -> Union[str, Any]: snake_case__ : Tuple = { '7z': (seven_zip_file, SevenZipExtractor), 'bz2': (bza_file, BzipaExtractor), 'gzip': (gz_file, GzipExtractor), 'lz4': (lza_file, LzaExtractor), 'tar': (tar_file, TarExtractor), 'xz': (xz_file, XzExtractor), 'zip': (zip_file, ZipExtractor), 'zstd': (zstd_file, ZstdExtractor), } snake_case__ , snake_case__ : str = input_paths_and_base_extractors[compression_format] if input_path is None: snake_case__ : int = f"for '{compression_format}' compression_format, " if compression_format == "7z": reason += require_pyazr.kwargs["reason"] elif compression_format == "lz4": reason += require_lza.kwargs["reason"] elif compression_format == "zstd": reason += require_zstandard.kwargs["reason"] pytest.skip(__UpperCAmelCase ) assert base_extractor.is_extractable(__UpperCAmelCase ) snake_case__ : Dict = tmp_path / ('extracted' if is_archive else 'extracted.txt') base_extractor.extract(__UpperCAmelCase , __UpperCAmelCase ) if is_archive: assert output_path.is_dir() for file_path in output_path.iterdir(): assert file_path.name == text_file.name snake_case__ : Dict = file_path.read_text(encoding='utf-8' ) else: snake_case__ : List[Any] = output_path.read_text(encoding='utf-8' ) snake_case__ : Optional[Any] = text_file.read_text(encoding='utf-8' ) assert extracted_file_content == expected_file_content @pytest.mark.parametrize( 'compression_format, is_archive' , [ ('7z', True), ('bz2', False), ('gzip', False), ('lz4', False), ('tar', True), ('xz', False), ('zip', True), ('zstd', False), ] , ) def UpperCamelCase__ ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , ) -> Optional[int]: snake_case__ : Tuple = { '7z': seven_zip_file, 'bz2': bza_file, 'gzip': gz_file, 'lz4': lza_file, 'tar': tar_file, 'xz': xz_file, 'zip': zip_file, 'zstd': zstd_file, } snake_case__ : Union[str, Any] = input_paths[compression_format] if input_path is None: snake_case__ : Optional[int] = f"for '{compression_format}' compression_format, " if compression_format == "7z": reason += require_pyazr.kwargs["reason"] elif compression_format == "lz4": reason += require_lza.kwargs["reason"] elif compression_format == "zstd": reason += require_zstandard.kwargs["reason"] pytest.skip(__UpperCAmelCase ) snake_case__ : List[str] = Extractor.infer_extractor_format(__UpperCAmelCase ) assert extractor_format is not None snake_case__ : Any = tmp_path / ('extracted' if is_archive else 'extracted.txt') Extractor.extract(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) if is_archive: assert output_path.is_dir() for file_path in output_path.iterdir(): assert file_path.name == text_file.name snake_case__ : Dict = file_path.read_text(encoding='utf-8' ) else: snake_case__ : Optional[Any] = output_path.read_text(encoding='utf-8' ) snake_case__ : List[str] = text_file.read_text(encoding='utf-8' ) assert extracted_file_content == expected_file_content @pytest.fixture def UpperCamelCase__ ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) -> int: import tarfile snake_case__ : Optional[int] = tmp_path / 'data_dot_dot' directory.mkdir() snake_case__ : Dict = directory / 'tar_file_with_dot_dot.tar' with tarfile.TarFile(__UpperCAmelCase , 'w' ) as f: f.add(__UpperCAmelCase , arcname=os.path.join('..' , text_file.name ) ) return path @pytest.fixture def UpperCamelCase__ ( __SCREAMING_SNAKE_CASE ) -> str: import tarfile snake_case__ : Dict = tmp_path / 'data_sym_link' directory.mkdir() snake_case__ : Union[str, Any] = directory / 'tar_file_with_sym_link.tar' os.symlink('..' , directory / 'subdir' , target_is_directory=__UpperCAmelCase ) with tarfile.TarFile(__UpperCAmelCase , 'w' ) as f: f.add(str(directory / 'subdir' ) , arcname='subdir' ) # str required by os.readlink on Windows and Python < 3.8 return path @pytest.mark.parametrize( 'insecure_tar_file, error_log' , [('tar_file_with_dot_dot', 'illegal path'), ('tar_file_with_sym_link', 'Symlink')] , ) def UpperCamelCase__ ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) -> Dict: snake_case__ : Union[str, Any] = { 'tar_file_with_dot_dot': tar_file_with_dot_dot, 'tar_file_with_sym_link': tar_file_with_sym_link, } snake_case__ : Optional[int] = insecure_tar_files[insecure_tar_file] snake_case__ : Optional[int] = tmp_path / 'extracted' TarExtractor.extract(__UpperCAmelCase , __UpperCAmelCase ) assert caplog.text for record in caplog.records: assert record.levelname == "ERROR" assert error_log in record.msg def UpperCamelCase__ ( __SCREAMING_SNAKE_CASE ) -> int: # We should have less false positives than zipfile.is_zipfile # We do that by checking only the magic number snake_case__ : int = tmpdir / 'not_a_zip_file' # From: https://github.com/python/cpython/pull/5053 snake_case__ : List[str] = ( b'\x89PNG\r\n\x1a\n\x00\x00\x00\rIHDR\x00\x00\x00\x01\x00\x00' b'\x00\x02\x08\x06\x00\x00\x00\x99\x81\xb6\'\x00\x00\x00\x15I' b'DATx\x01\x01\n\x00\xf5\xff\x00PK\x05\x06\x00PK\x06\x06\x07' b'\xac\x01N\xc6|a\r\x00\x00\x00\x00IEND\xaeB`\x82' ) with not_a_zip_file.open('wb' ) as f: f.write(__UpperCAmelCase ) assert zipfile.is_zipfile(str(__UpperCAmelCase ) ) # is a false positive for `zipfile` assert not ZipExtractor.is_extractable(__UpperCAmelCase ) # but we're right
270
import warnings from ...utils import logging from .image_processing_mobilevit import MobileViTImageProcessor lowerCamelCase__ : Optional[int] = logging.get_logger(__name__) class lowerCamelCase_ ( _SCREAMING_SNAKE_CASE ): '''simple docstring''' def __init__( self : str , *_lowerCAmelCase : Tuple , **_lowerCAmelCase : int ): warnings.warn( 'The class MobileViTFeatureExtractor is deprecated and will be removed in version 5 of Transformers.' ' Please use MobileViTImageProcessor instead.' , _lowerCAmelCase , ) super().__init__(*_lowerCAmelCase , **_lowerCAmelCase )
31
0
'''simple docstring''' import unittest from transformers import is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( OPENAI_GPT_PRETRAINED_MODEL_ARCHIVE_LIST, OpenAIGPTConfig, OpenAIGPTDoubleHeadsModel, OpenAIGPTForSequenceClassification, OpenAIGPTLMHeadModel, OpenAIGPTModel, ) class _a : """simple docstring""" def __init__( self , A__ , A__=13 , A__=7 , A__=True , A__=True , A__=True , A__=99 , A__=32 , A__=5 , A__=4 , A__=37 , A__="gelu" , A__=0.1 , A__=0.1 , A__=5_12 , A__=16 , A__=2 , A__=0.02 , A__=3 , A__=4 , A__=None , ) -> Optional[int]: _SCREAMING_SNAKE_CASE = parent _SCREAMING_SNAKE_CASE = batch_size _SCREAMING_SNAKE_CASE = seq_length _SCREAMING_SNAKE_CASE = is_training _SCREAMING_SNAKE_CASE = use_token_type_ids _SCREAMING_SNAKE_CASE = use_labels _SCREAMING_SNAKE_CASE = vocab_size _SCREAMING_SNAKE_CASE = hidden_size _SCREAMING_SNAKE_CASE = num_hidden_layers _SCREAMING_SNAKE_CASE = num_attention_heads _SCREAMING_SNAKE_CASE = intermediate_size _SCREAMING_SNAKE_CASE = hidden_act _SCREAMING_SNAKE_CASE = hidden_dropout_prob _SCREAMING_SNAKE_CASE = attention_probs_dropout_prob _SCREAMING_SNAKE_CASE = max_position_embeddings _SCREAMING_SNAKE_CASE = type_vocab_size _SCREAMING_SNAKE_CASE = type_sequence_label_size _SCREAMING_SNAKE_CASE = initializer_range _SCREAMING_SNAKE_CASE = num_labels _SCREAMING_SNAKE_CASE = num_choices _SCREAMING_SNAKE_CASE = scope _SCREAMING_SNAKE_CASE = self.vocab_size - 1 def UpperCamelCase ( self ) -> List[str]: _SCREAMING_SNAKE_CASE = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _SCREAMING_SNAKE_CASE = None if self.use_token_type_ids: _SCREAMING_SNAKE_CASE = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) _SCREAMING_SNAKE_CASE = None _SCREAMING_SNAKE_CASE = None _SCREAMING_SNAKE_CASE = None if self.use_labels: _SCREAMING_SNAKE_CASE = ids_tensor([self.batch_size] , self.type_sequence_label_size ) _SCREAMING_SNAKE_CASE = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) _SCREAMING_SNAKE_CASE = ids_tensor([self.batch_size] , self.num_choices ) _SCREAMING_SNAKE_CASE = OpenAIGPTConfig( vocab_size=self.vocab_size , n_embd=self.hidden_size , n_layer=self.num_hidden_layers , n_head=self.num_attention_heads , n_positions=self.max_position_embeddings , pad_token_id=self.pad_token_id , ) _SCREAMING_SNAKE_CASE = ids_tensor([self.num_hidden_layers, self.num_attention_heads] , 2 ) return ( config, input_ids, head_mask, token_type_ids, sequence_labels, token_labels, choice_labels, ) def UpperCamelCase ( self , A__ , A__ , A__ , A__ , *A__ ) -> Dict: _SCREAMING_SNAKE_CASE = OpenAIGPTModel(config=_lowerCAmelCase ) model.to(_lowerCAmelCase ) model.eval() _SCREAMING_SNAKE_CASE = model(_lowerCAmelCase , token_type_ids=_lowerCAmelCase , head_mask=_lowerCAmelCase ) _SCREAMING_SNAKE_CASE = model(_lowerCAmelCase , token_type_ids=_lowerCAmelCase ) _SCREAMING_SNAKE_CASE = model(_lowerCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def UpperCamelCase ( self , A__ , A__ , A__ , A__ , *A__ ) -> Dict: _SCREAMING_SNAKE_CASE = OpenAIGPTLMHeadModel(_lowerCAmelCase ) model.to(_lowerCAmelCase ) model.eval() _SCREAMING_SNAKE_CASE = model(_lowerCAmelCase , token_type_ids=_lowerCAmelCase , labels=_lowerCAmelCase ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def UpperCamelCase ( self , A__ , A__ , A__ , A__ , *A__ ) -> Optional[int]: _SCREAMING_SNAKE_CASE = OpenAIGPTDoubleHeadsModel(_lowerCAmelCase ) model.to(_lowerCAmelCase ) model.eval() _SCREAMING_SNAKE_CASE = model(_lowerCAmelCase , token_type_ids=_lowerCAmelCase , labels=_lowerCAmelCase ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def UpperCamelCase ( self , A__ , A__ , A__ , A__ , *A__ ) -> int: _SCREAMING_SNAKE_CASE = self.num_labels _SCREAMING_SNAKE_CASE = OpenAIGPTForSequenceClassification(_lowerCAmelCase ) model.to(_lowerCAmelCase ) model.eval() _SCREAMING_SNAKE_CASE = ids_tensor([self.batch_size] , self.type_sequence_label_size ) _SCREAMING_SNAKE_CASE = model(_lowerCAmelCase , token_type_ids=_lowerCAmelCase , labels=_lowerCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def UpperCamelCase ( self ) -> int: _SCREAMING_SNAKE_CASE = self.prepare_config_and_inputs() ( ( _SCREAMING_SNAKE_CASE ) , ( _SCREAMING_SNAKE_CASE ) , ( _SCREAMING_SNAKE_CASE ) , ( _SCREAMING_SNAKE_CASE ) , ( _SCREAMING_SNAKE_CASE ) , ( _SCREAMING_SNAKE_CASE ) , ( _SCREAMING_SNAKE_CASE ) , ) = config_and_inputs _SCREAMING_SNAKE_CASE = { """input_ids""": input_ids, """token_type_ids""": token_type_ids, """head_mask""": head_mask, } return config, inputs_dict @require_torch class _a (_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , unittest.TestCase): """simple docstring""" SCREAMING_SNAKE_CASE = ( (OpenAIGPTModel, OpenAIGPTLMHeadModel, OpenAIGPTDoubleHeadsModel, OpenAIGPTForSequenceClassification) if is_torch_available() else () ) SCREAMING_SNAKE_CASE = ( (OpenAIGPTLMHeadModel,) if is_torch_available() else () ) # TODO (PVP): Add Double HeadsModel when generate() function is changed accordingly SCREAMING_SNAKE_CASE = ( { 'feature-extraction': OpenAIGPTModel, 'text-classification': OpenAIGPTForSequenceClassification, 'text-generation': OpenAIGPTLMHeadModel, 'zero-shot': OpenAIGPTForSequenceClassification, } if is_torch_available() else {} ) def UpperCamelCase ( self , A__ , A__ , A__ , A__ , A__ ) -> Dict: if pipeline_test_casse_name == "ZeroShotClassificationPipelineTests": # Get `tokenizer does not have a padding token` error for both fast/slow tokenizers. # `OpenAIGPTConfig` was never used in pipeline tests, either because of a missing checkpoint or because a # tiny config could not be created. return True return False def UpperCamelCase ( self , A__ , A__ , A__=False ) -> Optional[int]: _SCREAMING_SNAKE_CASE = super()._prepare_for_class(_lowerCAmelCase , _lowerCAmelCase , return_labels=_lowerCAmelCase ) if return_labels: if model_class.__name__ == "OpenAIGPTDoubleHeadsModel": _SCREAMING_SNAKE_CASE = torch.zeros( (self.model_tester.batch_size, self.model_tester.num_choices, self.model_tester.seq_length) , dtype=torch.long , device=_lowerCAmelCase , ) _SCREAMING_SNAKE_CASE = inputs_dict["""labels"""] _SCREAMING_SNAKE_CASE = inputs_dict["""labels"""] _SCREAMING_SNAKE_CASE = torch.zeros( (self.model_tester.batch_size, self.model_tester.num_choices) , dtype=torch.long , device=_lowerCAmelCase , ) _SCREAMING_SNAKE_CASE = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=_lowerCAmelCase ) return inputs_dict def UpperCamelCase ( self ) -> str: _SCREAMING_SNAKE_CASE = OpenAIGPTModelTester(self ) _SCREAMING_SNAKE_CASE = ConfigTester(self , config_class=_lowerCAmelCase , n_embd=37 ) def UpperCamelCase ( self ) -> int: self.config_tester.run_common_tests() def UpperCamelCase ( self ) -> Optional[int]: _SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_openai_gpt_model(*_lowerCAmelCase ) def UpperCamelCase ( self ) -> Optional[Any]: _SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_lm_head_model(*_lowerCAmelCase ) def UpperCamelCase ( self ) -> Union[str, Any]: _SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_double_lm_head_model(*_lowerCAmelCase ) def UpperCamelCase ( self ) -> Optional[Any]: _SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_openai_gpt_for_sequence_classification(*_lowerCAmelCase ) @slow def UpperCamelCase ( self ) -> Optional[Any]: for model_name in OPENAI_GPT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _SCREAMING_SNAKE_CASE = OpenAIGPTModel.from_pretrained(_lowerCAmelCase ) self.assertIsNotNone(_lowerCAmelCase ) @require_torch class _a (unittest.TestCase): """simple docstring""" @slow def UpperCamelCase ( self ) -> int: _SCREAMING_SNAKE_CASE = OpenAIGPTLMHeadModel.from_pretrained("""openai-gpt""" ) model.to(_lowerCAmelCase ) _SCREAMING_SNAKE_CASE = torch.tensor([[4_81, 47_35, 5_44]] , dtype=torch.long , device=_lowerCAmelCase ) # the president is _SCREAMING_SNAKE_CASE = [ 4_81, 47_35, 5_44, 2_46, 9_63, 8_70, 7_62, 2_39, 2_44, 4_04_77, 2_44, 2_49, 7_19, 8_81, 4_87, 5_44, 2_40, 2_44, 6_03, 4_81, ] # the president is a very good man. " \n " i\'m sure he is, " said the _SCREAMING_SNAKE_CASE = model.generate(_lowerCAmelCase , do_sample=_lowerCAmelCase ) self.assertListEqual(output_ids[0].tolist() , _lowerCAmelCase )
591
from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCamelCase__ : Optional[int] = logging.get_logger(__name__) lowerCamelCase__ : Tuple = { 'microsoft/swinv2-tiny-patch4-window8-256': ( 'https://huggingface.co/microsoft/swinv2-tiny-patch4-window8-256/resolve/main/config.json' ), } class lowerCamelCase_ ( _SCREAMING_SNAKE_CASE ): '''simple docstring''' lowercase_ = "swinv2" lowercase_ = { "num_attention_heads": "num_heads", "num_hidden_layers": "num_layers", } def __init__( self : Dict , _lowerCAmelCase : Optional[Any]=224 , _lowerCAmelCase : Optional[int]=4 , _lowerCAmelCase : Tuple=3 , _lowerCAmelCase : Tuple=96 , _lowerCAmelCase : Dict=[2, 2, 6, 2] , _lowerCAmelCase : Optional[Any]=[3, 6, 12, 24] , _lowerCAmelCase : str=7 , _lowerCAmelCase : List[Any]=4.0 , _lowerCAmelCase : List[str]=True , _lowerCAmelCase : List[Any]=0.0 , _lowerCAmelCase : List[Any]=0.0 , _lowerCAmelCase : Any=0.1 , _lowerCAmelCase : List[Any]="gelu" , _lowerCAmelCase : str=False , _lowerCAmelCase : str=0.02 , _lowerCAmelCase : List[Any]=1E-5 , _lowerCAmelCase : str=32 , **_lowerCAmelCase : List[Any] , ): super().__init__(**_lowerCAmelCase ) SCREAMING_SNAKE_CASE_ = image_size SCREAMING_SNAKE_CASE_ = patch_size SCREAMING_SNAKE_CASE_ = num_channels SCREAMING_SNAKE_CASE_ = embed_dim SCREAMING_SNAKE_CASE_ = depths SCREAMING_SNAKE_CASE_ = len(_lowerCAmelCase ) SCREAMING_SNAKE_CASE_ = num_heads SCREAMING_SNAKE_CASE_ = window_size SCREAMING_SNAKE_CASE_ = mlp_ratio SCREAMING_SNAKE_CASE_ = qkv_bias SCREAMING_SNAKE_CASE_ = hidden_dropout_prob SCREAMING_SNAKE_CASE_ = attention_probs_dropout_prob SCREAMING_SNAKE_CASE_ = drop_path_rate SCREAMING_SNAKE_CASE_ = hidden_act SCREAMING_SNAKE_CASE_ = use_absolute_embeddings SCREAMING_SNAKE_CASE_ = layer_norm_eps SCREAMING_SNAKE_CASE_ = initializer_range SCREAMING_SNAKE_CASE_ = encoder_stride # we set the hidden_size attribute in order to make Swinv2 work with VisionEncoderDecoderModel # this indicates the channel dimension after the last stage of the model SCREAMING_SNAKE_CASE_ = int(embed_dim * 2 ** (len(_lowerCAmelCase ) - 1) ) SCREAMING_SNAKE_CASE_ = (0, 0, 0, 0)
31
0
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, is_vision_available, ) a_ = {'configuration_vit': ['VIT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'ViTConfig', 'ViTOnnxConfig']} try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a_ = ['ViTFeatureExtractor'] a_ = ['ViTImageProcessor'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a_ = [ 'VIT_PRETRAINED_MODEL_ARCHIVE_LIST', 'ViTForImageClassification', 'ViTForMaskedImageModeling', 'ViTModel', 'ViTPreTrainedModel', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a_ = [ 'TFViTForImageClassification', 'TFViTModel', 'TFViTPreTrainedModel', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a_ = [ 'FlaxViTForImageClassification', 'FlaxViTModel', 'FlaxViTPreTrainedModel', ] if TYPE_CHECKING: from .configuration_vit import VIT_PRETRAINED_CONFIG_ARCHIVE_MAP, ViTConfig, ViTOnnxConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_vit import ViTFeatureExtractor from .image_processing_vit import ViTImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_vit import ( VIT_PRETRAINED_MODEL_ARCHIVE_LIST, ViTForImageClassification, ViTForMaskedImageModeling, ViTModel, ViTPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_vit import TFViTForImageClassification, TFViTModel, TFViTPreTrainedModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_vit import FlaxViTForImageClassification, FlaxViTModel, FlaxViTPreTrainedModel else: import sys a_ = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
417
import itertools import random import unittest import numpy as np from transformers import BatchFeature, SpeechTaFeatureExtractor from transformers.testing_utils import require_torch from transformers.utils.import_utils import is_torch_available from ...test_sequence_feature_extraction_common import SequenceFeatureExtractionTestMixin if is_torch_available(): import torch lowerCamelCase__ : Dict = random.Random() def UpperCAmelCase_ ( __UpperCAmelCase : int , __UpperCAmelCase : Tuple=1.0 , __UpperCAmelCase : Dict=None , __UpperCAmelCase : Dict=None ) -> Tuple: if rng is None: SCREAMING_SNAKE_CASE_ = global_rng SCREAMING_SNAKE_CASE_ = [] for batch_idx in range(shape[0] ): values.append([] ) for _ in range(shape[1] ): values[-1].append(rng.random() * scale ) return values @require_torch class lowerCamelCase_ ( unittest.TestCase ): '''simple docstring''' def __init__( self : List[str] , _lowerCAmelCase : int , _lowerCAmelCase : Optional[Any]=7 , _lowerCAmelCase : Union[str, Any]=400 , _lowerCAmelCase : Tuple=2_000 , _lowerCAmelCase : str=1 , _lowerCAmelCase : int=0.0 , _lowerCAmelCase : Optional[Any]=16_000 , _lowerCAmelCase : Optional[Any]=True , _lowerCAmelCase : Any=80 , _lowerCAmelCase : Union[str, Any]=16 , _lowerCAmelCase : List[str]=64 , _lowerCAmelCase : List[Any]="hann_window" , _lowerCAmelCase : Any=80 , _lowerCAmelCase : List[Any]=7_600 , _lowerCAmelCase : List[Any]=1E-10 , _lowerCAmelCase : Optional[Any]=True , ): SCREAMING_SNAKE_CASE_ = parent SCREAMING_SNAKE_CASE_ = batch_size SCREAMING_SNAKE_CASE_ = min_seq_length SCREAMING_SNAKE_CASE_ = max_seq_length SCREAMING_SNAKE_CASE_ = (self.max_seq_length - self.min_seq_length) // (self.batch_size - 1) SCREAMING_SNAKE_CASE_ = feature_size SCREAMING_SNAKE_CASE_ = padding_value SCREAMING_SNAKE_CASE_ = sampling_rate SCREAMING_SNAKE_CASE_ = do_normalize SCREAMING_SNAKE_CASE_ = num_mel_bins SCREAMING_SNAKE_CASE_ = hop_length SCREAMING_SNAKE_CASE_ = win_length SCREAMING_SNAKE_CASE_ = win_function SCREAMING_SNAKE_CASE_ = fmin SCREAMING_SNAKE_CASE_ = fmax SCREAMING_SNAKE_CASE_ = mel_floor SCREAMING_SNAKE_CASE_ = return_attention_mask def lowerCAmelCase_ ( self : Union[str, Any] ): return { "feature_size": self.feature_size, "padding_value": self.padding_value, "sampling_rate": self.sampling_rate, "do_normalize": self.do_normalize, "num_mel_bins": self.num_mel_bins, "hop_length": self.hop_length, "win_length": self.win_length, "win_function": self.win_function, "fmin": self.fmin, "fmax": self.fmax, "mel_floor": self.mel_floor, "return_attention_mask": self.return_attention_mask, } def lowerCAmelCase_ ( self : Dict , _lowerCAmelCase : Optional[int]=False , _lowerCAmelCase : str=False ): def _flatten(_lowerCAmelCase : Dict ): return list(itertools.chain(*_lowerCAmelCase ) ) if equal_length: SCREAMING_SNAKE_CASE_ = floats_list((self.batch_size, self.max_seq_length) ) else: # make sure that inputs increase in size SCREAMING_SNAKE_CASE_ = [ _flatten(floats_list((x, self.feature_size) ) ) for x in range(self.min_seq_length , self.max_seq_length , self.seq_length_diff ) ] if numpify: SCREAMING_SNAKE_CASE_ = [np.asarray(_lowerCAmelCase ) for x in speech_inputs] return speech_inputs def lowerCAmelCase_ ( self : List[Any] , _lowerCAmelCase : Union[str, Any]=False , _lowerCAmelCase : Optional[int]=False ): if equal_length: SCREAMING_SNAKE_CASE_ = [floats_list((self.max_seq_length, self.num_mel_bins) ) for _ in range(self.batch_size )] else: # make sure that inputs increase in size SCREAMING_SNAKE_CASE_ = [ floats_list((x, self.num_mel_bins) ) for x in range(self.min_seq_length , self.max_seq_length , self.seq_length_diff ) ] if numpify: SCREAMING_SNAKE_CASE_ = [np.asarray(_lowerCAmelCase ) for x in speech_inputs] return speech_inputs @require_torch class lowerCamelCase_ ( _SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' lowercase_ = SpeechTaFeatureExtractor def lowerCAmelCase_ ( self : Any ): SCREAMING_SNAKE_CASE_ = SpeechTaFeatureExtractionTester(self ) def lowerCAmelCase_ ( self : Any , _lowerCAmelCase : int ): self.assertTrue(np.all(np.mean(_lowerCAmelCase , axis=0 ) < 1E-3 ) ) self.assertTrue(np.all(np.abs(np.var(_lowerCAmelCase , axis=0 ) - 1 ) < 1E-3 ) ) def lowerCAmelCase_ ( self : List[Any] ): # Tests that all call wrap to encode_plus and batch_encode_plus SCREAMING_SNAKE_CASE_ = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) # create three inputs of length 800, 1000, and 1200 SCREAMING_SNAKE_CASE_ = [floats_list((1, x) )[0] for x in range(800 , 1_400 , 200 )] SCREAMING_SNAKE_CASE_ = [np.asarray(_lowerCAmelCase ) for speech_input in speech_inputs] # Test not batched input SCREAMING_SNAKE_CASE_ = feat_extract(speech_inputs[0] , return_tensors='np' ).input_values SCREAMING_SNAKE_CASE_ = feat_extract(np_speech_inputs[0] , return_tensors='np' ).input_values self.assertTrue(np.allclose(_lowerCAmelCase , _lowerCAmelCase , atol=1E-3 ) ) # Test batched SCREAMING_SNAKE_CASE_ = feat_extract(_lowerCAmelCase , return_tensors='np' ).input_values SCREAMING_SNAKE_CASE_ = feat_extract(_lowerCAmelCase , return_tensors='np' ).input_values for enc_seq_a, enc_seq_a in zip(_lowerCAmelCase , _lowerCAmelCase ): self.assertTrue(np.allclose(_lowerCAmelCase , _lowerCAmelCase , atol=1E-3 ) ) def lowerCAmelCase_ ( self : Union[str, Any] ): SCREAMING_SNAKE_CASE_ = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) SCREAMING_SNAKE_CASE_ = [floats_list((1, x) )[0] for x in range(800 , 1_400 , 200 )] SCREAMING_SNAKE_CASE_ = ['longest', 'max_length', 'do_not_pad'] SCREAMING_SNAKE_CASE_ = [None, 1_600, None] for max_length, padding in zip(_lowerCAmelCase , _lowerCAmelCase ): SCREAMING_SNAKE_CASE_ = feat_extract(_lowerCAmelCase , padding=_lowerCAmelCase , max_length=_lowerCAmelCase , return_tensors='np' ) SCREAMING_SNAKE_CASE_ = processed.input_values self._check_zero_mean_unit_variance(input_values[0][:800] ) self.assertTrue(input_values[0][800:].sum() < 1E-6 ) self._check_zero_mean_unit_variance(input_values[1][:1_000] ) self.assertTrue(input_values[0][1_000:].sum() < 1E-6 ) self._check_zero_mean_unit_variance(input_values[2][:1_200] ) def lowerCAmelCase_ ( self : Optional[Any] ): SCREAMING_SNAKE_CASE_ = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) SCREAMING_SNAKE_CASE_ = range(800 , 1_400 , 200 ) SCREAMING_SNAKE_CASE_ = [floats_list((1, x) )[0] for x in lengths] SCREAMING_SNAKE_CASE_ = ['longest', 'max_length', 'do_not_pad'] SCREAMING_SNAKE_CASE_ = [None, 1_600, None] for max_length, padding in zip(_lowerCAmelCase , _lowerCAmelCase ): SCREAMING_SNAKE_CASE_ = feat_extract(_lowerCAmelCase , max_length=_lowerCAmelCase , padding=_lowerCAmelCase ) SCREAMING_SNAKE_CASE_ = processed.input_values self._check_zero_mean_unit_variance(input_values[0][:800] ) self._check_zero_mean_unit_variance(input_values[1][:1_000] ) self._check_zero_mean_unit_variance(input_values[2][:1_200] ) def lowerCAmelCase_ ( self : Dict ): SCREAMING_SNAKE_CASE_ = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) SCREAMING_SNAKE_CASE_ = [floats_list((1, x) )[0] for x in range(800 , 1_400 , 200 )] SCREAMING_SNAKE_CASE_ = feat_extract( _lowerCAmelCase , truncation=_lowerCAmelCase , max_length=1_000 , padding='max_length' , return_tensors='np' ) SCREAMING_SNAKE_CASE_ = processed.input_values self._check_zero_mean_unit_variance(input_values[0, :800] ) self._check_zero_mean_unit_variance(input_values[1] ) self._check_zero_mean_unit_variance(input_values[2] ) def lowerCAmelCase_ ( self : Dict ): SCREAMING_SNAKE_CASE_ = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) SCREAMING_SNAKE_CASE_ = [floats_list((1, x) )[0] for x in range(800 , 1_400 , 200 )] SCREAMING_SNAKE_CASE_ = feat_extract( _lowerCAmelCase , truncation=_lowerCAmelCase , max_length=1_000 , padding='longest' , return_tensors='np' ) SCREAMING_SNAKE_CASE_ = processed.input_values self._check_zero_mean_unit_variance(input_values[0, :800] ) self._check_zero_mean_unit_variance(input_values[1, :1_000] ) self._check_zero_mean_unit_variance(input_values[2] ) # make sure that if max_length < longest -> then pad to max_length self.assertTrue(input_values.shape == (3, 1_000) ) SCREAMING_SNAKE_CASE_ = [floats_list((1, x) )[0] for x in range(800 , 1_400 , 200 )] SCREAMING_SNAKE_CASE_ = feat_extract( _lowerCAmelCase , truncation=_lowerCAmelCase , max_length=2_000 , padding='longest' , return_tensors='np' ) SCREAMING_SNAKE_CASE_ = processed.input_values self._check_zero_mean_unit_variance(input_values[0, :800] ) self._check_zero_mean_unit_variance(input_values[1, :1_000] ) self._check_zero_mean_unit_variance(input_values[2] ) # make sure that if max_length > longest -> then pad to longest self.assertTrue(input_values.shape == (3, 1_200) ) def lowerCAmelCase_ ( self : Optional[int] ): SCREAMING_SNAKE_CASE_ = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) SCREAMING_SNAKE_CASE_ = np.random.rand(100 ).astype(np.floataa ) SCREAMING_SNAKE_CASE_ = np_speech_inputs.tolist() for inputs in [py_speech_inputs, np_speech_inputs]: SCREAMING_SNAKE_CASE_ = feature_extractor.pad([{'input_values': inputs}] , return_tensors='np' ) self.assertTrue(np_processed.input_values.dtype == np.floataa ) SCREAMING_SNAKE_CASE_ = feature_extractor.pad([{'input_values': inputs}] , return_tensors='pt' ) self.assertTrue(pt_processed.input_values.dtype == torch.floataa ) def lowerCAmelCase_ ( self : Tuple ): # Tests that all call wrap to encode_plus and batch_encode_plus SCREAMING_SNAKE_CASE_ = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) # create three inputs of length 800, 1000, and 1200 SCREAMING_SNAKE_CASE_ = [floats_list((1, x) )[0] for x in range(800 , 1_400 , 200 )] SCREAMING_SNAKE_CASE_ = [np.asarray(_lowerCAmelCase ) for speech_input in speech_inputs] # Test feature size SCREAMING_SNAKE_CASE_ = feature_extractor(audio_target=_lowerCAmelCase , padding=_lowerCAmelCase , return_tensors='np' ).input_values self.assertTrue(input_values.ndim == 3 ) self.assertTrue(input_values.shape[-1] == feature_extractor.num_mel_bins ) # Test not batched input SCREAMING_SNAKE_CASE_ = feature_extractor(speech_inputs[0] , return_tensors='np' ).input_values SCREAMING_SNAKE_CASE_ = feature_extractor(np_speech_inputs[0] , return_tensors='np' ).input_values self.assertTrue(np.allclose(_lowerCAmelCase , _lowerCAmelCase , atol=1E-3 ) ) # Test batched SCREAMING_SNAKE_CASE_ = feature_extractor(_lowerCAmelCase , return_tensors='np' ).input_values SCREAMING_SNAKE_CASE_ = feature_extractor(_lowerCAmelCase , return_tensors='np' ).input_values for enc_seq_a, enc_seq_a in zip(_lowerCAmelCase , _lowerCAmelCase ): self.assertTrue(np.allclose(_lowerCAmelCase , _lowerCAmelCase , atol=1E-3 ) ) # Test 2-D numpy arrays are batched. SCREAMING_SNAKE_CASE_ = [floats_list((1, x) )[0] for x in (800, 800, 800)] SCREAMING_SNAKE_CASE_ = np.asarray(_lowerCAmelCase ) SCREAMING_SNAKE_CASE_ = feature_extractor(_lowerCAmelCase , return_tensors='np' ).input_values SCREAMING_SNAKE_CASE_ = feature_extractor(_lowerCAmelCase , return_tensors='np' ).input_values for enc_seq_a, enc_seq_a in zip(_lowerCAmelCase , _lowerCAmelCase ): self.assertTrue(np.allclose(_lowerCAmelCase , _lowerCAmelCase , atol=1E-3 ) ) def lowerCAmelCase_ ( self : str ): SCREAMING_SNAKE_CASE_ = self.feat_extract_tester.prepare_inputs_for_target() SCREAMING_SNAKE_CASE_ = self.feature_extraction_class(**self.feat_extract_dict ) SCREAMING_SNAKE_CASE_ = feat_extract.model_input_names[0] SCREAMING_SNAKE_CASE_ = BatchFeature({input_name: speech_inputs} ) self.assertTrue(all(len(_lowerCAmelCase ) == len(_lowerCAmelCase ) for x, y in zip(_lowerCAmelCase , processed_features[input_name] ) ) ) SCREAMING_SNAKE_CASE_ = self.feat_extract_tester.prepare_inputs_for_target(equal_length=_lowerCAmelCase ) SCREAMING_SNAKE_CASE_ = BatchFeature({input_name: speech_inputs} , tensor_type='np' ) SCREAMING_SNAKE_CASE_ = processed_features[input_name] if len(batch_features_input.shape ) < 3: SCREAMING_SNAKE_CASE_ = batch_features_input[:, :, None] self.assertTrue( batch_features_input.shape == (self.feat_extract_tester.batch_size, len(speech_inputs[0] ), self.feat_extract_tester.num_mel_bins) ) @require_torch def lowerCAmelCase_ ( self : Dict ): SCREAMING_SNAKE_CASE_ = self.feat_extract_tester.prepare_inputs_for_target(equal_length=_lowerCAmelCase ) SCREAMING_SNAKE_CASE_ = self.feature_extraction_class(**self.feat_extract_dict ) SCREAMING_SNAKE_CASE_ = feat_extract.model_input_names[0] SCREAMING_SNAKE_CASE_ = BatchFeature({input_name: speech_inputs} , tensor_type='pt' ) SCREAMING_SNAKE_CASE_ = processed_features[input_name] if len(batch_features_input.shape ) < 3: SCREAMING_SNAKE_CASE_ = batch_features_input[:, :, None] self.assertTrue( batch_features_input.shape == (self.feat_extract_tester.batch_size, len(speech_inputs[0] ), self.feat_extract_tester.num_mel_bins) ) @require_torch def lowerCAmelCase_ ( self : Dict ): SCREAMING_SNAKE_CASE_ = self.feature_extraction_class(**self.feat_extract_dict ) SCREAMING_SNAKE_CASE_ = self.feat_extract_tester.prepare_inputs_for_target() SCREAMING_SNAKE_CASE_ = feat_extract.model_input_names[0] SCREAMING_SNAKE_CASE_ = BatchFeature({input_name: speech_inputs} ) SCREAMING_SNAKE_CASE_ = feat_extract.num_mel_bins # hack! SCREAMING_SNAKE_CASE_ = feat_extract.pad(_lowerCAmelCase , padding='longest' , return_tensors='np' )[input_name] SCREAMING_SNAKE_CASE_ = feat_extract.pad(_lowerCAmelCase , padding='longest' , return_tensors='pt' )[input_name] self.assertTrue(abs(input_np.astype(np.floataa ).sum() - input_pt.numpy().astype(np.floataa ).sum() ) < 1E-2 ) def lowerCAmelCase_ ( self : str ): SCREAMING_SNAKE_CASE_ = self.feat_extract_dict SCREAMING_SNAKE_CASE_ = True SCREAMING_SNAKE_CASE_ = self.feature_extraction_class(**_lowerCAmelCase ) SCREAMING_SNAKE_CASE_ = self.feat_extract_tester.prepare_inputs_for_target() SCREAMING_SNAKE_CASE_ = [len(_lowerCAmelCase ) for x in speech_inputs] SCREAMING_SNAKE_CASE_ = feat_extract.model_input_names[0] SCREAMING_SNAKE_CASE_ = BatchFeature({input_name: speech_inputs} ) SCREAMING_SNAKE_CASE_ = feat_extract.num_mel_bins # hack! SCREAMING_SNAKE_CASE_ = feat_extract.pad(_lowerCAmelCase , padding='longest' , return_tensors='np' ) self.assertIn('attention_mask' , _lowerCAmelCase ) self.assertListEqual(list(processed.attention_mask.shape ) , list(processed[input_name].shape[:2] ) ) self.assertListEqual(processed.attention_mask.sum(-1 ).tolist() , _lowerCAmelCase ) def lowerCAmelCase_ ( self : Any ): SCREAMING_SNAKE_CASE_ = self.feat_extract_dict SCREAMING_SNAKE_CASE_ = True SCREAMING_SNAKE_CASE_ = self.feature_extraction_class(**_lowerCAmelCase ) SCREAMING_SNAKE_CASE_ = self.feat_extract_tester.prepare_inputs_for_target() SCREAMING_SNAKE_CASE_ = [len(_lowerCAmelCase ) for x in speech_inputs] SCREAMING_SNAKE_CASE_ = feat_extract.model_input_names[0] SCREAMING_SNAKE_CASE_ = BatchFeature({input_name: speech_inputs} ) SCREAMING_SNAKE_CASE_ = min(_lowerCAmelCase ) SCREAMING_SNAKE_CASE_ = feat_extract.num_mel_bins # hack! SCREAMING_SNAKE_CASE_ = feat_extract.pad( _lowerCAmelCase , padding='max_length' , max_length=_lowerCAmelCase , truncation=_lowerCAmelCase , return_tensors='np' ) self.assertIn('attention_mask' , _lowerCAmelCase ) self.assertListEqual( list(processed_pad.attention_mask.shape ) , [processed_pad[input_name].shape[0], max_length] ) self.assertListEqual( processed_pad.attention_mask[:, :max_length].sum(-1 ).tolist() , [max_length for x in speech_inputs] ) def lowerCAmelCase_ ( self : List[Any] , _lowerCAmelCase : Tuple ): from datasets import load_dataset SCREAMING_SNAKE_CASE_ = load_dataset('hf-internal-testing/librispeech_asr_dummy' , 'clean' , split='validation' ) # automatic decoding with librispeech SCREAMING_SNAKE_CASE_ = ds.sort('id' ).select(range(_lowerCAmelCase ) )[:num_samples]['audio'] return [x["array"] for x in speech_samples] def lowerCAmelCase_ ( self : Any ): # fmt: off SCREAMING_SNAKE_CASE_ = torch.tensor( [2.3_804E-03, 2.0_752E-03, 1.9_836E-03, 2.1_057E-03, 1.6_174E-03, 3.0_518E-04, 9.1_553E-05, 3.3_569E-04, 9.7_656E-04, 1.8_311E-03, 2.0_142E-03, 2.1_057E-03, 1.7_395E-03, 4.5_776E-04, -3.9_673E-04, 4.5_776E-04, 1.0_071E-03, 9.1_553E-05, 4.8_828E-04, 1.1_597E-03, 7.3_242E-04, 9.4_604E-04, 1.8_005E-03, 1.8_311E-03, 8.8_501E-04, 4.2_725E-04, 4.8_828E-04, 7.3_242E-04, 1.0_986E-03, 2.1_057E-03] ) # fmt: on SCREAMING_SNAKE_CASE_ = self._load_datasamples(1 ) SCREAMING_SNAKE_CASE_ = SpeechTaFeatureExtractor() SCREAMING_SNAKE_CASE_ = feature_extractor(_lowerCAmelCase , return_tensors='pt' ).input_values self.assertEquals(input_values.shape , (1, 93_680) ) self.assertTrue(torch.allclose(input_values[0, :30] , _lowerCAmelCase , atol=1E-6 ) ) def lowerCAmelCase_ ( self : Optional[int] ): # fmt: off SCREAMING_SNAKE_CASE_ = torch.tensor( [-2.6870, -3.0104, -3.1356, -3.5352, -3.0044, -3.0353, -3.4719, -3.6777, -3.1520, -2.9435, -2.6553, -2.8795, -2.9944, -2.5921, -3.0279, -3.0386, -3.0864, -3.1291, -3.2353, -2.7444, -2.6831, -2.7287, -3.1761, -3.1571, -3.2726, -3.0582, -3.1007, -3.4533, -3.4695, -3.0998] ) # fmt: on SCREAMING_SNAKE_CASE_ = self._load_datasamples(1 ) SCREAMING_SNAKE_CASE_ = SpeechTaFeatureExtractor() SCREAMING_SNAKE_CASE_ = feature_extractor(audio_target=_lowerCAmelCase , return_tensors='pt' ).input_values self.assertEquals(input_values.shape , (1, 366, 80) ) self.assertTrue(torch.allclose(input_values[0, 0, :30] , _lowerCAmelCase , atol=1E-4 ) )
31
0
import math import qiskit def a_ (__A = 1 , __A = 1 , __A = 1 ) -> qiskit.result.counts.Counts: """simple docstring""" if ( isinstance(__UpperCAmelCase , __UpperCAmelCase ) or isinstance(__UpperCAmelCase , __UpperCAmelCase ) or isinstance(__UpperCAmelCase , __UpperCAmelCase ) ): raise TypeError("inputs must be integers." ) if (input_a < 0) or (input_a < 0) or (carry_in < 0): raise ValueError("inputs must be positive." ) if ( (math.floor(__UpperCAmelCase ) != input_a) or (math.floor(__UpperCAmelCase ) != input_a) or (math.floor(__UpperCAmelCase ) != carry_in) ): raise ValueError("inputs must be exact integers." ) if (input_a > 2) or (input_a > 2) or (carry_in > 2): raise ValueError("inputs must be less or equal to 2." ) # build registers __a : Optional[int] = qiskit.QuantumRegister(4 , "qr" ) __a : int = qiskit.ClassicalRegister(2 , "cr" ) # list the entries __a : Optional[int] = [input_a, input_a, carry_in] __a : str = qiskit.QuantumCircuit(__UpperCAmelCase , __UpperCAmelCase ) for i in range(0 , 3 ): if entry[i] == 2: quantum_circuit.h(__UpperCAmelCase ) # for hadamard entries elif entry[i] == 1: quantum_circuit.x(__UpperCAmelCase ) # for 1 entries elif entry[i] == 0: quantum_circuit.i(__UpperCAmelCase ) # for 0 entries # build the circuit quantum_circuit.ccx(0 , 1 , 3 ) # ccx = toffoli gate quantum_circuit.cx(0 , 1 ) quantum_circuit.ccx(1 , 2 , 3 ) quantum_circuit.cx(1 , 2 ) quantum_circuit.cx(0 , 1 ) quantum_circuit.measure([2, 3] , __UpperCAmelCase ) # measure the last two qbits __a : Any = qiskit.Aer.get_backend("aer_simulator" ) __a : Union[str, Any] = qiskit.execute(__UpperCAmelCase , __UpperCAmelCase , shots=1_000 ) return job.result().get_counts(__UpperCAmelCase ) if __name__ == "__main__": print(F"Total sum count for state is: {quantum_full_adder(1, 1, 1)}")
351
from __future__ import annotations from typing import TypedDict class lowerCamelCase_ ( _SCREAMING_SNAKE_CASE ): '''simple docstring''' lowercase_ = 42 lowercase_ = 42 def UpperCAmelCase_ ( __UpperCAmelCase : str ) -> list[str]: if not isinstance(__UpperCAmelCase , __UpperCAmelCase ): raise TypeError('The parameter s type must be str.' ) return [s[i:] + s[:i] for i in range(len(__UpperCAmelCase ) )] def UpperCAmelCase_ ( __UpperCAmelCase : str ) -> BWTTransformDict: if not isinstance(__UpperCAmelCase , __UpperCAmelCase ): raise TypeError('The parameter s type must be str.' ) if not s: raise ValueError('The parameter s must not be empty.' ) SCREAMING_SNAKE_CASE_ = all_rotations(__UpperCAmelCase ) rotations.sort() # sort the list of rotations in alphabetically order # make a string composed of the last char of each rotation SCREAMING_SNAKE_CASE_ = { "bwt_string": "".join([word[-1] for word in rotations] ), "idx_original_string": rotations.index(__UpperCAmelCase ), } return response def UpperCAmelCase_ ( __UpperCAmelCase : str , __UpperCAmelCase : int ) -> str: if not isinstance(__UpperCAmelCase , __UpperCAmelCase ): raise TypeError('The parameter bwt_string type must be str.' ) if not bwt_string: raise ValueError('The parameter bwt_string must not be empty.' ) try: SCREAMING_SNAKE_CASE_ = int(__UpperCAmelCase ) except ValueError: raise TypeError( 'The parameter idx_original_string type must be int or passive' ' of cast to int.' ) if idx_original_string < 0: raise ValueError('The parameter idx_original_string must not be lower than 0.' ) if idx_original_string >= len(__UpperCAmelCase ): raise ValueError( 'The parameter idx_original_string must be lower than' ' len(bwt_string).' ) SCREAMING_SNAKE_CASE_ = [''] * len(__UpperCAmelCase ) for _ in range(len(__UpperCAmelCase ) ): for i in range(len(__UpperCAmelCase ) ): SCREAMING_SNAKE_CASE_ = bwt_string[i] + ordered_rotations[i] ordered_rotations.sort() return ordered_rotations[idx_original_string] if __name__ == "__main__": lowerCamelCase__ : Optional[int] = 'Provide a string that I will generate its BWT transform: ' lowerCamelCase__ : List[str] = input(entry_msg).strip() lowerCamelCase__ : int = bwt_transform(s) print( f'''Burrows Wheeler transform for string \'{s}\' results ''' f'''in \'{result['bwt_string']}\'''' ) lowerCamelCase__ : Dict = reverse_bwt(result['bwt_string'], result['idx_original_string']) print( f'''Reversing Burrows Wheeler transform for entry \'{result['bwt_string']}\' ''' f'''we get original string \'{original_string}\'''' )
31
0
'''simple docstring''' from __future__ import annotations import unittest from transformers import is_tf_available from transformers.testing_utils import require_sentencepiece, require_tf, require_tokenizers, slow if is_tf_available(): import numpy as np import tensorflow as tf from transformers import TFXLMRobertaModel @require_tf @require_sentencepiece @require_tokenizers class __A ( unittest.TestCase ): """simple docstring""" @slow def snake_case_( self )-> Tuple: lowercase__ = TFXLMRobertaModel.from_pretrained('''jplu/tf-xlm-roberta-base''' ) lowercase__ = { '''input_ids''': tf.convert_to_tensor([[0, 2_6_4_6, 1_0_2_6_9, 8_3, 9_9_9_4_2, 2]] , dtype=tf.intaa ), # "My dog is cute" '''attention_mask''': tf.convert_to_tensor([[1, 1, 1, 1, 1, 1]] , dtype=tf.intaa ), } lowercase__ = model(_lowerCAmelCase )['''last_hidden_state'''] lowercase__ = tf.TensorShape((1, 6, 7_6_8) ) self.assertEqual(output.shape , _lowerCAmelCase ) # compare the actual values for a slice. lowercase__ = tf.convert_to_tensor( [ [ [0.0_6_8_1_7_6_2, 0.1_0_8_9_4_4_5_1, 0.0_6_7_7_2_5_0_4], [-0.0_6_4_2_3_6_6_8, 0.0_2_3_6_6_6_1_5, 0.0_4_3_2_9_3_4_4], [-0.0_6_0_5_7_2_9_5, 0.0_9_9_7_4_1_3_5, -0.0_0_0_7_0_5_8_4], ] ] , dtype=tf.floataa , ) self.assertTrue(np.allclose(output[:, :3, :3].numpy() , expected_slice.numpy() , atol=1e-4 ) )
161
class lowerCamelCase_ : '''simple docstring''' def __init__( self : str ): SCREAMING_SNAKE_CASE_ = {} def lowerCAmelCase_ ( self : List[str] ): print(self.vertex ) for i in self.vertex: print(_lowerCAmelCase , ' -> ' , ' -> '.join([str(_lowerCAmelCase ) for j in self.vertex[i]] ) ) def lowerCAmelCase_ ( self : Union[str, Any] , _lowerCAmelCase : int , _lowerCAmelCase : int ): # check if vertex is already present, if from_vertex in self.vertex: self.vertex[from_vertex].append(_lowerCAmelCase ) else: # else make a new vertex SCREAMING_SNAKE_CASE_ = [to_vertex] def lowerCAmelCase_ ( self : Optional[Any] ): # visited array for storing already visited nodes SCREAMING_SNAKE_CASE_ = [False] * len(self.vertex ) # call the recursive helper function for i in range(len(self.vertex ) ): if not visited[i]: self.dfs_recursive(_lowerCAmelCase , _lowerCAmelCase ) def lowerCAmelCase_ ( self : Tuple , _lowerCAmelCase : int , _lowerCAmelCase : list ): # mark start vertex as visited SCREAMING_SNAKE_CASE_ = True print(_lowerCAmelCase , end=' ' ) # Recur for all the vertices that are adjacent to this node for i in self.vertex: if not visited[i]: self.dfs_recursive(_lowerCAmelCase , _lowerCAmelCase ) if __name__ == "__main__": lowerCamelCase__ : List[Any] = Graph() g.add_edge(0, 1) g.add_edge(0, 2) g.add_edge(1, 2) g.add_edge(2, 0) g.add_edge(2, 3) g.add_edge(3, 3) g.print_graph() print('DFS:') g.dfs() # OUTPUT: # 0 -> 1 -> 2 # 1 -> 2 # 2 -> 0 -> 3 # 3 -> 3 # DFS: # 0 1 2 3
31
0
"""simple docstring""" from __future__ import annotations import inspect import unittest from math import floor import numpy as np from transformers import CvtConfig from transformers.testing_utils import require_tf, require_vision, slow from transformers.utils import cached_property, is_tf_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFCvtForImageClassification, TFCvtModel from transformers.models.cvt.modeling_tf_cvt import TF_CVT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class __a ( _SCREAMING_SNAKE_CASE ): def snake_case_ ( self ): _lowerCamelCase = self.config_class(**self.inputs_dict ) self.parent.assertTrue(hasattr(_lowerCAmelCase , 'embed_dim' ) ) self.parent.assertTrue(hasattr(_lowerCAmelCase , 'num_heads' ) ) class __a : def __init__( self , a__ , a__=13 , a__=64 , a__=3 , a__=[16, 48, 96] , a__=[1, 3, 6] , a__=[1, 2, 10] , a__=[7, 3, 3] , a__=[4, 2, 2] , a__=[2, 1, 1] , a__=[2, 2, 2] , a__=[False, False, True] , a__=[0.0, 0.0, 0.0] , a__=0.02 , a__=1e-12 , a__=True , a__=True , a__=2 , ): _lowerCamelCase = parent _lowerCamelCase = batch_size _lowerCamelCase = image_size _lowerCamelCase = patch_sizes _lowerCamelCase = patch_stride _lowerCamelCase = patch_padding _lowerCamelCase = is_training _lowerCamelCase = use_labels _lowerCamelCase = num_labels _lowerCamelCase = num_channels _lowerCamelCase = embed_dim _lowerCamelCase = num_heads _lowerCamelCase = stride_kv _lowerCamelCase = depth _lowerCamelCase = cls_token _lowerCamelCase = attention_drop_rate _lowerCamelCase = initializer_range _lowerCamelCase = layer_norm_eps def snake_case_ ( self ): _lowerCamelCase = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) _lowerCamelCase = None if self.use_labels: # create a random int32 tensor of given shape _lowerCamelCase = ids_tensor([self.batch_size] , self.num_labels ) _lowerCamelCase = self.get_config() return config, pixel_values, labels def snake_case_ ( self ): return CvtConfig( image_size=self.image_size , num_labels=self.num_labels , num_channels=self.num_channels , embed_dim=self.embed_dim , num_heads=self.num_heads , patch_sizes=self.patch_sizes , patch_padding=self.patch_padding , patch_stride=self.patch_stride , stride_kv=self.stride_kv , depth=self.depth , cls_token=self.cls_token , attention_drop_rate=self.attention_drop_rate , initializer_range=self.initializer_range , ) def snake_case_ ( self , a__ , a__ , a__ ): _lowerCamelCase = TFCvtModel(config=_lowerCAmelCase ) _lowerCamelCase = model(_lowerCAmelCase , training=_lowerCAmelCase ) _lowerCamelCase = (self.image_size, self.image_size) _lowerCamelCase , _lowerCamelCase = image_size[0], image_size[1] for i in range(len(self.depth ) ): _lowerCamelCase = floor(((height + 2 * self.patch_padding[i] - self.patch_sizes[i]) / self.patch_stride[i]) + 1 ) _lowerCamelCase = floor(((width + 2 * self.patch_padding[i] - self.patch_sizes[i]) / self.patch_stride[i]) + 1 ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.embed_dim[-1], height, width) ) def snake_case_ ( self , a__ , a__ , a__ ): _lowerCamelCase = self.num_labels _lowerCamelCase = TFCvtForImageClassification(_lowerCAmelCase ) _lowerCamelCase = model(_lowerCAmelCase , labels=_lowerCAmelCase , training=_lowerCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def snake_case_ ( self ): _lowerCamelCase = self.prepare_config_and_inputs() _lowerCamelCase , _lowerCamelCase , _lowerCamelCase = config_and_inputs _lowerCamelCase = {'pixel_values': pixel_values} return config, inputs_dict @require_tf class __a ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , unittest.TestCase ): SCREAMING_SNAKE_CASE__ : int = (TFCvtModel, TFCvtForImageClassification) if is_tf_available() else () SCREAMING_SNAKE_CASE__ : int = ( {"feature-extraction": TFCvtModel, "image-classification": TFCvtForImageClassification} if is_tf_available() else {} ) SCREAMING_SNAKE_CASE__ : List[str] = False SCREAMING_SNAKE_CASE__ : Union[str, Any] = False SCREAMING_SNAKE_CASE__ : Optional[int] = False SCREAMING_SNAKE_CASE__ : Dict = False SCREAMING_SNAKE_CASE__ : Dict = False def snake_case_ ( self ): _lowerCamelCase = TFCvtModelTester(self ) _lowerCamelCase = TFCvtConfigTester(self , config_class=_lowerCAmelCase , has_text_modality=_lowerCAmelCase , hidden_size=37 ) def snake_case_ ( self ): self.config_tester.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() @unittest.skip(reason='Cvt does not output attentions' ) def snake_case_ ( self ): pass @unittest.skip(reason='Cvt does not use inputs_embeds' ) def snake_case_ ( self ): pass @unittest.skip(reason='Cvt does not support input and output embeddings' ) def snake_case_ ( self ): pass @unittest.skipIf( not is_tf_available() or len(tf.config.list_physical_devices('GPU' ) ) == 0 , reason='TF does not support backprop for grouped convolutions on CPU.' , ) def snake_case_ ( self ): super().test_dataset_conversion() @unittest.skipIf( not is_tf_available() or len(tf.config.list_physical_devices('GPU' ) ) == 0 , reason='TF does not support backprop for grouped convolutions on CPU.' , ) @slow def snake_case_ ( self ): super().test_keras_fit() @unittest.skip(reason='Get `Failed to determine best cudnn convolution algo.` error after using TF 2.12+cuda 11.8' ) def snake_case_ ( self ): _lowerCamelCase = tf.keras.mixed_precision.Policy('mixed_float16' ) tf.keras.mixed_precision.set_global_policy(_lowerCAmelCase ) super().test_keras_fit() tf.keras.mixed_precision.set_global_policy('float32' ) def snake_case_ ( self ): _lowerCamelCase , _lowerCamelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _lowerCamelCase = model_class(_lowerCAmelCase ) _lowerCamelCase = inspect.signature(model.call ) # signature.parameters is an OrderedDict => so arg_names order is deterministic _lowerCamelCase = [*signature.parameters.keys()] _lowerCamelCase = ['pixel_values'] self.assertListEqual(arg_names[:1] , _lowerCAmelCase ) def snake_case_ ( self ): def check_hidden_states_output(a__ , a__ , a__ ): _lowerCamelCase = model_class(_lowerCAmelCase ) _lowerCamelCase = model(**self._prepare_for_class(_lowerCAmelCase , _lowerCAmelCase ) ) _lowerCamelCase = outputs.hidden_states _lowerCamelCase = len(self.model_tester.depth ) self.assertEqual(len(_lowerCAmelCase ) , _lowerCAmelCase ) # verify the first hidden states (first block) self.assertListEqual( list(hidden_states[0].shape[-3:] ) , [ self.model_tester.embed_dim[0], self.model_tester.image_size // 4, self.model_tester.image_size // 4, ] , ) _lowerCamelCase , _lowerCamelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _lowerCamelCase = True check_hidden_states_output(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] _lowerCamelCase = True check_hidden_states_output(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) def snake_case_ ( self ): _lowerCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_lowerCAmelCase ) def snake_case_ ( self ): _lowerCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*_lowerCAmelCase ) @slow def snake_case_ ( self ): for model_name in TF_CVT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _lowerCamelCase = TFCvtModel.from_pretrained(_lowerCAmelCase ) self.assertIsNotNone(_lowerCAmelCase ) def SCREAMING_SNAKE_CASE_ ( )-> str: _lowerCamelCase = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) return image @require_tf @require_vision class __a ( unittest.TestCase ): @cached_property def snake_case_ ( self ): return AutoImageProcessor.from_pretrained(TF_CVT_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) @slow def snake_case_ ( self ): _lowerCamelCase = TFCvtForImageClassification.from_pretrained(TF_CVT_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) _lowerCamelCase = self.default_image_processor _lowerCamelCase = prepare_img() _lowerCamelCase = image_processor(images=_lowerCAmelCase , return_tensors='tf' ) # forward pass _lowerCamelCase = model(**_lowerCAmelCase ) # verify the logits _lowerCamelCase = tf.TensorShape((1, 10_00) ) self.assertEqual(outputs.logits.shape , _lowerCAmelCase ) _lowerCamelCase = tf.constant([0.9285, 0.9015, -0.3150] ) self.assertTrue(np.allclose(outputs.logits[0, :3].numpy() , _lowerCAmelCase , atol=1e-4 ) )
650
from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCamelCase__ : str = logging.get_logger(__name__) lowerCamelCase__ : Tuple = { 'funnel-transformer/small': 'https://huggingface.co/funnel-transformer/small/resolve/main/config.json', 'funnel-transformer/small-base': 'https://huggingface.co/funnel-transformer/small-base/resolve/main/config.json', 'funnel-transformer/medium': 'https://huggingface.co/funnel-transformer/medium/resolve/main/config.json', 'funnel-transformer/medium-base': 'https://huggingface.co/funnel-transformer/medium-base/resolve/main/config.json', 'funnel-transformer/intermediate': ( 'https://huggingface.co/funnel-transformer/intermediate/resolve/main/config.json' ), 'funnel-transformer/intermediate-base': ( 'https://huggingface.co/funnel-transformer/intermediate-base/resolve/main/config.json' ), 'funnel-transformer/large': 'https://huggingface.co/funnel-transformer/large/resolve/main/config.json', 'funnel-transformer/large-base': 'https://huggingface.co/funnel-transformer/large-base/resolve/main/config.json', 'funnel-transformer/xlarge': 'https://huggingface.co/funnel-transformer/xlarge/resolve/main/config.json', 'funnel-transformer/xlarge-base': 'https://huggingface.co/funnel-transformer/xlarge-base/resolve/main/config.json', } class lowerCamelCase_ ( _SCREAMING_SNAKE_CASE ): '''simple docstring''' lowercase_ = "funnel" lowercase_ = { "hidden_size": "d_model", "num_attention_heads": "n_head", } def __init__( self : int , _lowerCAmelCase : Optional[int]=30_522 , _lowerCAmelCase : List[str]=[4, 4, 4] , _lowerCAmelCase : Tuple=None , _lowerCAmelCase : Optional[int]=2 , _lowerCAmelCase : int=768 , _lowerCAmelCase : Optional[Any]=12 , _lowerCAmelCase : Optional[Any]=64 , _lowerCAmelCase : Optional[Any]=3_072 , _lowerCAmelCase : List[str]="gelu_new" , _lowerCAmelCase : Any=0.1 , _lowerCAmelCase : int=0.1 , _lowerCAmelCase : Tuple=0.0 , _lowerCAmelCase : List[Any]=0.1 , _lowerCAmelCase : Dict=None , _lowerCAmelCase : str=1E-9 , _lowerCAmelCase : Any="mean" , _lowerCAmelCase : Union[str, Any]="relative_shift" , _lowerCAmelCase : Optional[Any]=True , _lowerCAmelCase : Dict=True , _lowerCAmelCase : Tuple=True , **_lowerCAmelCase : Optional[Any] , ): SCREAMING_SNAKE_CASE_ = vocab_size SCREAMING_SNAKE_CASE_ = block_sizes SCREAMING_SNAKE_CASE_ = [1] * len(_lowerCAmelCase ) if block_repeats is None else block_repeats assert len(_lowerCAmelCase ) == len( self.block_repeats ), "`block_sizes` and `block_repeats` should have the same length." SCREAMING_SNAKE_CASE_ = num_decoder_layers SCREAMING_SNAKE_CASE_ = d_model SCREAMING_SNAKE_CASE_ = n_head SCREAMING_SNAKE_CASE_ = d_head SCREAMING_SNAKE_CASE_ = d_inner SCREAMING_SNAKE_CASE_ = hidden_act SCREAMING_SNAKE_CASE_ = hidden_dropout SCREAMING_SNAKE_CASE_ = attention_dropout SCREAMING_SNAKE_CASE_ = activation_dropout SCREAMING_SNAKE_CASE_ = initializer_range SCREAMING_SNAKE_CASE_ = initializer_std SCREAMING_SNAKE_CASE_ = layer_norm_eps assert pooling_type in [ "mean", "max", ], F"Got {pooling_type} for `pooling_type` but only 'mean' and 'max' are supported." SCREAMING_SNAKE_CASE_ = pooling_type assert attention_type in [ "relative_shift", "factorized", ], F"Got {attention_type} for `attention_type` but only 'relative_shift' and 'factorized' are supported." SCREAMING_SNAKE_CASE_ = attention_type SCREAMING_SNAKE_CASE_ = separate_cls SCREAMING_SNAKE_CASE_ = truncate_seq SCREAMING_SNAKE_CASE_ = pool_q_only super().__init__(**_lowerCAmelCase ) @property def lowerCAmelCase_ ( self : Optional[int] ): return sum(self.block_sizes ) @num_hidden_layers.setter def lowerCAmelCase_ ( self : int , _lowerCAmelCase : List[Any] ): raise NotImplementedError( 'This model does not support the setting of `num_hidden_layers`. Please set `block_sizes`.' ) @property def lowerCAmelCase_ ( self : List[Any] ): return len(self.block_sizes ) @num_blocks.setter def lowerCAmelCase_ ( self : Dict , _lowerCAmelCase : Union[str, Any] ): raise NotImplementedError('This model does not support the setting of `num_blocks`. Please set `block_sizes`.' )
31
0
"""simple docstring""" from typing import Callable, Optional from .. import Features from ..packaged_modules.generator.generator import Generator from .abc import AbstractDatasetInputStream class lowerCamelCase_( _SCREAMING_SNAKE_CASE ): '''simple docstring''' def __init__( self , lowerCamelCase__ , lowerCamelCase__ = None , lowerCamelCase__ = None , lowerCamelCase__ = False , lowerCamelCase__ = False , lowerCamelCase__ = None , lowerCamelCase__ = None , **lowerCamelCase__ , ): super().__init__( features=_lowerCAmelCase , cache_dir=_lowerCAmelCase , keep_in_memory=_lowerCAmelCase , streaming=_lowerCAmelCase , num_proc=_lowerCAmelCase , **_lowerCAmelCase , ) _lowerCamelCase = Generator( cache_dir=_lowerCAmelCase , features=_lowerCAmelCase , generator=_lowerCAmelCase , gen_kwargs=_lowerCAmelCase , **_lowerCAmelCase , ) def snake_case__ ( self ): # Build iterable dataset if self.streaming: _lowerCamelCase = self.builder.as_streaming_dataset(split='''train''' ) # Build regular (map-style) dataset else: _lowerCamelCase = None _lowerCamelCase = None _lowerCamelCase = None _lowerCamelCase = None self.builder.download_and_prepare( download_config=_lowerCAmelCase , download_mode=_lowerCAmelCase , verification_mode=_lowerCAmelCase , base_path=_lowerCAmelCase , num_proc=self.num_proc , ) _lowerCamelCase = self.builder.as_dataset( split='''train''' , verification_mode=_lowerCAmelCase , in_memory=self.keep_in_memory ) return dataset
661
from __future__ import annotations from collections.abc import Iterator class lowerCamelCase_ : '''simple docstring''' def __init__( self : Union[str, Any] , _lowerCAmelCase : int ): SCREAMING_SNAKE_CASE_ = value SCREAMING_SNAKE_CASE_ = None SCREAMING_SNAKE_CASE_ = None class lowerCamelCase_ : '''simple docstring''' def __init__( self : int , _lowerCAmelCase : Node ): SCREAMING_SNAKE_CASE_ = tree def lowerCAmelCase_ ( self : Union[str, Any] , _lowerCAmelCase : Node | None ): if node is None: return 0 return node.value + ( self.depth_first_search(node.left ) + self.depth_first_search(node.right ) ) def __iter__( self : Dict ): yield self.depth_first_search(self.tree ) if __name__ == "__main__": import doctest doctest.testmod()
31
0
"""simple docstring""" from collections.abc import Sequence from queue import Queue class a__ : def __init__( self : List[Any] , UpperCamelCase_ : Dict , UpperCamelCase_ : Any , UpperCamelCase_ : Union[str, Any] , UpperCamelCase_ : int=None , UpperCamelCase_ : Optional[Any]=None): """simple docstring""" __UpperCAmelCase : int = start __UpperCAmelCase : Tuple = end __UpperCAmelCase : Optional[int] = val __UpperCAmelCase : Union[str, Any] = (start + end) // 2 __UpperCAmelCase : Dict = left __UpperCAmelCase : str = right def __repr__( self : List[str]): """simple docstring""" return F"SegmentTreeNode(start={self.start}, end={self.end}, val={self.val})" class a__ : def __init__( self : Union[str, Any] , UpperCamelCase_ : Sequence , UpperCamelCase_ : int): """simple docstring""" __UpperCAmelCase : Any = collection __UpperCAmelCase : Any = function if self.collection: __UpperCAmelCase : Optional[int] = self._build_tree(0 , len(_lowerCAmelCase) - 1) def a_ ( self : Union[str, Any] , UpperCamelCase_ : Union[str, Any] , UpperCamelCase_ : Optional[Any]): """simple docstring""" self._update_tree(self.root , _lowerCAmelCase , _lowerCAmelCase) def a_ ( self : Optional[int] , UpperCamelCase_ : int , UpperCamelCase_ : List[Any]): """simple docstring""" return self._query_range(self.root , _lowerCAmelCase , _lowerCAmelCase) def a_ ( self : List[str] , UpperCamelCase_ : Optional[Any] , UpperCamelCase_ : Tuple): """simple docstring""" if start == end: return SegmentTreeNode(_lowerCAmelCase , _lowerCAmelCase , self.collection[start]) __UpperCAmelCase : int = (start + end) // 2 __UpperCAmelCase : Dict = self._build_tree(_lowerCAmelCase , _lowerCAmelCase) __UpperCAmelCase : List[Any] = self._build_tree(mid + 1 , _lowerCAmelCase) return SegmentTreeNode(_lowerCAmelCase , _lowerCAmelCase , self.fn(left.val , right.val) , _lowerCAmelCase , _lowerCAmelCase) def a_ ( self : List[str] , UpperCamelCase_ : List[Any] , UpperCamelCase_ : str , UpperCamelCase_ : List[str]): """simple docstring""" if node.start == i and node.end == i: __UpperCAmelCase : List[str] = val return if i <= node.mid: self._update_tree(node.left , _lowerCAmelCase , _lowerCAmelCase) else: self._update_tree(node.right , _lowerCAmelCase , _lowerCAmelCase) __UpperCAmelCase : Optional[int] = self.fn(node.left.val , node.right.val) def a_ ( self : int , UpperCamelCase_ : Union[str, Any] , UpperCamelCase_ : List[str] , UpperCamelCase_ : int): """simple docstring""" if node.start == i and node.end == j: return node.val if i <= node.mid: if j <= node.mid: # range in left child tree return self._query_range(node.left , _lowerCAmelCase , _lowerCAmelCase) else: # range in left child tree and right child tree return self.fn( self._query_range(node.left , _lowerCAmelCase , node.mid) , self._query_range(node.right , node.mid + 1 , _lowerCAmelCase) , ) else: # range in right child tree return self._query_range(node.right , _lowerCAmelCase , _lowerCAmelCase) def a_ ( self : Optional[int]): """simple docstring""" if self.root is not None: __UpperCAmelCase : List[str] = Queue() queue.put(self.root) while not queue.empty(): __UpperCAmelCase : Optional[Any] = queue.get() yield node if node.left is not None: queue.put(node.left) if node.right is not None: queue.put(node.right) if __name__ == "__main__": import operator for fn in [operator.add, max, min]: print("""*""" * 50) A = SegmentTree([2, 1, 5, 3, 4], fn) for node in arr.traverse(): print(node) print() arr.update(1, 5) for node in arr.traverse(): print(node) print() print(arr.query_range(3, 4)) # 7 print(arr.query_range(2, 2)) # 5 print(arr.query_range(1, 3)) # 13 print()
77
def UpperCAmelCase_ ( __UpperCAmelCase : list , __UpperCAmelCase : int , __UpperCAmelCase : int = 0 , __UpperCAmelCase : int = 0 ) -> int: SCREAMING_SNAKE_CASE_ = right or len(__UpperCAmelCase ) - 1 if left > right: return -1 elif list_data[left] == key: return left elif list_data[right] == key: return right else: return search(__UpperCAmelCase , __UpperCAmelCase , left + 1 , right - 1 ) if __name__ == "__main__": import doctest doctest.testmod()
31
0
from transformers import BertTokenizer, EncoderDecoderModel, SeqaSeqTrainer, SeqaSeqTrainingArguments from transformers.testing_utils import TestCasePlus, require_torch, slow from transformers.utils import is_datasets_available if is_datasets_available(): import datasets class a ( _SCREAMING_SNAKE_CASE ): @slow @require_torch def snake_case_ ( self ): """simple docstring""" __SCREAMING_SNAKE_CASE: List[str] = EncoderDecoderModel.from_encoder_decoder_pretrained('''prajjwal1/bert-tiny''' , '''prajjwal1/bert-tiny''' ) __SCREAMING_SNAKE_CASE: Dict = BertTokenizer.from_pretrained('''bert-base-uncased''' ) __SCREAMING_SNAKE_CASE: Union[str, Any] = bertabert.config.encoder.vocab_size __SCREAMING_SNAKE_CASE: Union[str, Any] = tokenizer.sep_token_id __SCREAMING_SNAKE_CASE: Optional[int] = tokenizer.cls_token_id __SCREAMING_SNAKE_CASE: Optional[Any] = 128 __SCREAMING_SNAKE_CASE: str = datasets.load_dataset('''cnn_dailymail''' , '''3.0.0''' , split='''train[:1%]''' ) __SCREAMING_SNAKE_CASE: Union[str, Any] = datasets.load_dataset('''cnn_dailymail''' , '''3.0.0''' , split='''validation[:1%]''' ) __SCREAMING_SNAKE_CASE: Optional[Any] = train_dataset.select(range(32 ) ) __SCREAMING_SNAKE_CASE: List[Any] = val_dataset.select(range(16 ) ) __SCREAMING_SNAKE_CASE: List[Any] = 4 def _map_to_encoder_decoder_inputs(_lowerCAmelCase ): # Tokenizer will automatically set [BOS] <text> [EOS] __SCREAMING_SNAKE_CASE: List[Any] = tokenizer(batch['''article'''] , padding='''max_length''' , truncation=_lowerCAmelCase , max_length=512 ) __SCREAMING_SNAKE_CASE: List[str] = tokenizer(batch['''highlights'''] , padding='''max_length''' , truncation=_lowerCAmelCase , max_length=128 ) __SCREAMING_SNAKE_CASE: Dict = inputs.input_ids __SCREAMING_SNAKE_CASE: Dict = inputs.attention_mask __SCREAMING_SNAKE_CASE: List[str] = outputs.input_ids __SCREAMING_SNAKE_CASE: str = outputs.input_ids.copy() __SCREAMING_SNAKE_CASE: Any = [ [-100 if token == tokenizer.pad_token_id else token for token in labels] for labels in batch['''labels'''] ] __SCREAMING_SNAKE_CASE: List[str] = outputs.attention_mask assert all(len(_lowerCAmelCase ) == 512 for x in inputs.input_ids ) assert all(len(_lowerCAmelCase ) == 128 for x in outputs.input_ids ) return batch def _compute_metrics(_lowerCAmelCase ): __SCREAMING_SNAKE_CASE: Dict = pred.label_ids __SCREAMING_SNAKE_CASE: Union[str, Any] = pred.predictions # all unnecessary tokens are removed __SCREAMING_SNAKE_CASE: Any = tokenizer.batch_decode(_lowerCAmelCase , skip_special_tokens=_lowerCAmelCase ) __SCREAMING_SNAKE_CASE: List[str] = tokenizer.batch_decode(_lowerCAmelCase , skip_special_tokens=_lowerCAmelCase ) __SCREAMING_SNAKE_CASE: Union[str, Any] = sum([int(pred_str[i] == label_str[i] ) for i in range(len(_lowerCAmelCase ) )] ) / len(_lowerCAmelCase ) return {"accuracy": accuracy} # map train dataset __SCREAMING_SNAKE_CASE: Dict = train_dataset.map( _map_to_encoder_decoder_inputs , batched=_lowerCAmelCase , batch_size=_lowerCAmelCase , remove_columns=['''article''', '''highlights'''] , ) train_dataset.set_format( type='''torch''' , columns=['''input_ids''', '''attention_mask''', '''decoder_input_ids''', '''decoder_attention_mask''', '''labels'''] , ) # same for validation dataset __SCREAMING_SNAKE_CASE: Optional[Any] = val_dataset.map( _map_to_encoder_decoder_inputs , batched=_lowerCAmelCase , batch_size=_lowerCAmelCase , remove_columns=['''article''', '''highlights'''] , ) val_dataset.set_format( type='''torch''' , columns=['''input_ids''', '''attention_mask''', '''decoder_input_ids''', '''decoder_attention_mask''', '''labels'''] , ) __SCREAMING_SNAKE_CASE: Dict = self.get_auto_remove_tmp_dir() __SCREAMING_SNAKE_CASE: int = SeqaSeqTrainingArguments( output_dir=_lowerCAmelCase , per_device_train_batch_size=_lowerCAmelCase , per_device_eval_batch_size=_lowerCAmelCase , predict_with_generate=_lowerCAmelCase , evaluation_strategy='''steps''' , do_train=_lowerCAmelCase , do_eval=_lowerCAmelCase , warmup_steps=0 , eval_steps=2 , logging_steps=2 , ) # instantiate trainer __SCREAMING_SNAKE_CASE: int = SeqaSeqTrainer( model=_lowerCAmelCase , args=_lowerCAmelCase , compute_metrics=_compute_metrics , train_dataset=_lowerCAmelCase , eval_dataset=_lowerCAmelCase , tokenizer=_lowerCAmelCase , ) # start training trainer.train()
202
import os from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils import AddedToken from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_fnet import FNetTokenizer else: lowerCamelCase__ : Optional[Any] = None lowerCamelCase__ : List[str] = logging.get_logger(__name__) lowerCamelCase__ : List[str] = {'vocab_file': 'spiece.model', 'tokenizer_file': 'tokenizer.json'} lowerCamelCase__ : List[str] = { 'vocab_file': { 'google/fnet-base': 'https://huggingface.co/google/fnet-base/resolve/main/spiece.model', 'google/fnet-large': 'https://huggingface.co/google/fnet-large/resolve/main/spiece.model', }, 'tokenizer_file': { 'google/fnet-base': 'https://huggingface.co/google/fnet-base/resolve/main/tokenizer.json', 'google/fnet-large': 'https://huggingface.co/google/fnet-large/resolve/main/tokenizer.json', }, } lowerCamelCase__ : Optional[Any] = { 'google/fnet-base': 512, 'google/fnet-large': 512, } lowerCamelCase__ : List[Any] = '▁' class lowerCamelCase_ ( _SCREAMING_SNAKE_CASE ): '''simple docstring''' lowercase_ = VOCAB_FILES_NAMES lowercase_ = PRETRAINED_VOCAB_FILES_MAP lowercase_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowercase_ = ["input_ids", "token_type_ids"] lowercase_ = FNetTokenizer def __init__( self : List[Any] , _lowerCAmelCase : Dict=None , _lowerCAmelCase : Dict=None , _lowerCAmelCase : List[str]=False , _lowerCAmelCase : Optional[Any]=True , _lowerCAmelCase : Tuple=True , _lowerCAmelCase : List[Any]="<unk>" , _lowerCAmelCase : Optional[Any]="[SEP]" , _lowerCAmelCase : Optional[Any]="<pad>" , _lowerCAmelCase : Optional[int]="[CLS]" , _lowerCAmelCase : Optional[Any]="[MASK]" , **_lowerCAmelCase : Any , ): # Mask token behave like a normal word, i.e. include the space before it and # is included in the raw text, there should be a match in a non-normalized sentence. SCREAMING_SNAKE_CASE_ = ( AddedToken(_lowerCAmelCase , lstrip=_lowerCAmelCase , rstrip=_lowerCAmelCase , normalized=_lowerCAmelCase ) if isinstance(_lowerCAmelCase , _lowerCAmelCase ) else mask_token ) super().__init__( _lowerCAmelCase , tokenizer_file=_lowerCAmelCase , do_lower_case=_lowerCAmelCase , remove_space=_lowerCAmelCase , keep_accents=_lowerCAmelCase , unk_token=_lowerCAmelCase , sep_token=_lowerCAmelCase , pad_token=_lowerCAmelCase , cls_token=_lowerCAmelCase , mask_token=_lowerCAmelCase , **_lowerCAmelCase , ) SCREAMING_SNAKE_CASE_ = do_lower_case SCREAMING_SNAKE_CASE_ = remove_space SCREAMING_SNAKE_CASE_ = keep_accents SCREAMING_SNAKE_CASE_ = vocab_file SCREAMING_SNAKE_CASE_ = False if not self.vocab_file else True def lowerCAmelCase_ ( self : Any , _lowerCAmelCase : List[int] , _lowerCAmelCase : Optional[List[int]] = None ): SCREAMING_SNAKE_CASE_ = [self.sep_token_id] SCREAMING_SNAKE_CASE_ = [self.cls_token_id] if token_ids_a is None: return cls + token_ids_a + sep return cls + token_ids_a + sep + token_ids_a + sep def lowerCAmelCase_ ( self : Optional[int] , _lowerCAmelCase : List[int] , _lowerCAmelCase : Optional[List[int]] = None ): SCREAMING_SNAKE_CASE_ = [self.sep_token_id] SCREAMING_SNAKE_CASE_ = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def lowerCAmelCase_ ( self : Optional[Any] , _lowerCAmelCase : str , _lowerCAmelCase : Optional[str] = None ): if not os.path.isdir(_lowerCAmelCase ): logger.error(F"Vocabulary path ({save_directory}) should be a directory" ) return SCREAMING_SNAKE_CASE_ = os.path.join( _lowerCAmelCase , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(_lowerCAmelCase ): copyfile(self.vocab_file , _lowerCAmelCase ) return (out_vocab_file,)
31
0
'''simple docstring''' import json import os from functools import lru_cache from typing import Dict, List, Optional, Tuple, Union import regex as re from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...tokenization_utils_base import BatchEncoding, EncodedInput from ...utils import PaddingStrategy, logging __A = logging.get_logger(__name__) __A = {'vocab_file': 'vocab.json', 'merges_file': 'merges.txt'} # See all LED models at https://huggingface.co/models?filter=LED __A = { 'vocab_file': { 'allenai/led-base-16384': 'https://huggingface.co/allenai/led-base-16384/resolve/main/vocab.json', }, 'merges_file': { 'allenai/led-base-16384': 'https://huggingface.co/allenai/led-base-16384/resolve/main/merges.txt', }, 'tokenizer_file': { 'allenai/led-base-16384': 'https://huggingface.co/allenai/led-base-16384/resolve/main/tokenizer.json', }, } __A = { 'allenai/led-base-16384': 16_384, } @lru_cache() # Copied from transformers.models.bart.tokenization_bart.bytes_to_unicode def _A ( ): lowercase__ = ( list(range(ord("""!""" ) , ord("""~""" ) + 1 ) ) + list(range(ord("""¡""" ) , ord("""¬""" ) + 1 ) ) + list(range(ord("""®""" ) , ord("""ÿ""" ) + 1 ) ) ) lowercase__ = bs[:] lowercase__ = 0 for b in range(2**8 ): if b not in bs: bs.append(__UpperCAmelCase ) cs.append(2**8 + n ) n += 1 lowercase__ = [chr(__UpperCAmelCase ) for n in cs] return dict(zip(__UpperCAmelCase , __UpperCAmelCase ) ) def _A ( lowercase__ ): lowercase__ = set() lowercase__ = word[0] for char in word[1:]: pairs.add((prev_char, char) ) lowercase__ = char return pairs class A ( _SCREAMING_SNAKE_CASE ): lowerCamelCase : str = VOCAB_FILES_NAMES lowerCamelCase : int = PRETRAINED_VOCAB_FILES_MAP lowerCamelCase : List[Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCamelCase : List[str] = ["""input_ids""", """attention_mask"""] def __init__( self , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__="replace" , lowerCamelCase__="<s>" , lowerCamelCase__="</s>" , lowerCamelCase__="</s>" , lowerCamelCase__="<s>" , lowerCamelCase__="<unk>" , lowerCamelCase__="<pad>" , lowerCamelCase__="<mask>" , lowerCamelCase__=False , **lowerCamelCase__ , ) -> List[Any]: '''simple docstring''' lowercase__ = AddedToken(_lowerCAmelCase , lstrip=_lowerCAmelCase , rstrip=_lowerCAmelCase ) if isinstance(_lowerCAmelCase , _lowerCAmelCase ) else bos_token lowercase__ = AddedToken(_lowerCAmelCase , lstrip=_lowerCAmelCase , rstrip=_lowerCAmelCase ) if isinstance(_lowerCAmelCase , _lowerCAmelCase ) else eos_token lowercase__ = AddedToken(_lowerCAmelCase , lstrip=_lowerCAmelCase , rstrip=_lowerCAmelCase ) if isinstance(_lowerCAmelCase , _lowerCAmelCase ) else sep_token lowercase__ = AddedToken(_lowerCAmelCase , lstrip=_lowerCAmelCase , rstrip=_lowerCAmelCase ) if isinstance(_lowerCAmelCase , _lowerCAmelCase ) else cls_token lowercase__ = AddedToken(_lowerCAmelCase , lstrip=_lowerCAmelCase , rstrip=_lowerCAmelCase ) if isinstance(_lowerCAmelCase , _lowerCAmelCase ) else unk_token lowercase__ = AddedToken(_lowerCAmelCase , lstrip=_lowerCAmelCase , rstrip=_lowerCAmelCase ) if isinstance(_lowerCAmelCase , _lowerCAmelCase ) else pad_token # Mask token behave like a normal word, i.e. include the space before it lowercase__ = AddedToken(_lowerCAmelCase , lstrip=_lowerCAmelCase , rstrip=_lowerCAmelCase ) if isinstance(_lowerCAmelCase , _lowerCAmelCase ) else mask_token super().__init__( errors=_lowerCAmelCase , bos_token=_lowerCAmelCase , eos_token=_lowerCAmelCase , unk_token=_lowerCAmelCase , sep_token=_lowerCAmelCase , cls_token=_lowerCAmelCase , pad_token=_lowerCAmelCase , mask_token=_lowerCAmelCase , add_prefix_space=_lowerCAmelCase , **_lowerCAmelCase , ) with open(_lowerCAmelCase , encoding="""utf-8""" ) as vocab_handle: lowercase__ = json.load(_lowerCAmelCase ) lowercase__ = {v: k for k, v in self.encoder.items()} lowercase__ = errors # how to handle errors in decoding lowercase__ = bytes_to_unicode() lowercase__ = {v: k for k, v in self.byte_encoder.items()} with open(_lowerCAmelCase , encoding="""utf-8""" ) as merges_handle: lowercase__ = merges_handle.read().split("""\n""" )[1:-1] lowercase__ = [tuple(merge.split() ) for merge in bpe_merges] lowercase__ = dict(zip(_lowerCAmelCase , range(len(_lowerCAmelCase ) ) ) ) lowercase__ = {} lowercase__ = add_prefix_space # Should have added re.IGNORECASE so BPE merges can happen for capitalized versions of contractions lowercase__ = re.compile(R"""\'s|\'t|\'re|\'ve|\'m|\'ll|\'d| ?\p{L}+| ?\p{N}+| ?[^\s\p{L}\p{N}]+|\s+(?!\S)|\s+""" ) @property # Copied from transformers.models.bart.tokenization_bart.BartTokenizer.vocab_size def A__ ( self ) -> List[Any]: '''simple docstring''' return len(self.encoder ) def A__ ( self ) -> Tuple: '''simple docstring''' return dict(self.encoder , **self.added_tokens_encoder ) def A__ ( self , lowerCamelCase__ ) -> List[Any]: '''simple docstring''' if token in self.cache: return self.cache[token] lowercase__ = tuple(_lowerCAmelCase ) lowercase__ = get_pairs(_lowerCAmelCase ) if not pairs: return token while True: lowercase__ = min(_lowerCAmelCase , key=lambda lowerCamelCase__ : self.bpe_ranks.get(_lowerCAmelCase , float("""inf""" ) ) ) if bigram not in self.bpe_ranks: break lowercase__ , lowercase__ = bigram lowercase__ = [] lowercase__ = 0 while i < len(_lowerCAmelCase ): try: lowercase__ = word.index(_lowerCAmelCase , _lowerCAmelCase ) except ValueError: new_word.extend(word[i:] ) break else: new_word.extend(word[i:j] ) lowercase__ = j if word[i] == first and i < len(_lowerCAmelCase ) - 1 and word[i + 1] == second: new_word.append(first + second ) i += 2 else: new_word.append(word[i] ) i += 1 lowercase__ = tuple(_lowerCAmelCase ) lowercase__ = new_word if len(_lowerCAmelCase ) == 1: break else: lowercase__ = get_pairs(_lowerCAmelCase ) lowercase__ = """ """.join(_lowerCAmelCase ) lowercase__ = word return word def A__ ( self , lowerCamelCase__ ) -> Tuple: '''simple docstring''' lowercase__ = [] for token in re.findall(self.pat , _lowerCAmelCase ): lowercase__ = """""".join( self.byte_encoder[b] for b in token.encode("""utf-8""" ) ) # Maps all our bytes to unicode strings, avoiding control tokens of the BPE (spaces in our case) bpe_tokens.extend(bpe_token for bpe_token in self.bpe(_lowerCAmelCase ).split(""" """ ) ) return bpe_tokens def A__ ( self , lowerCamelCase__ ) -> Optional[Any]: '''simple docstring''' return self.encoder.get(_lowerCAmelCase , self.encoder.get(self.unk_token ) ) def A__ ( self , lowerCamelCase__ ) -> Dict: '''simple docstring''' return self.decoder.get(_lowerCAmelCase ) def A__ ( self , lowerCamelCase__ ) -> Dict: '''simple docstring''' lowercase__ = """""".join(_lowerCAmelCase ) lowercase__ = bytearray([self.byte_decoder[c] for c in text] ).decode("""utf-8""" , errors=self.errors ) return text def A__ ( self , lowerCamelCase__ , lowerCamelCase__ = None ) -> int: '''simple docstring''' if not os.path.isdir(_lowerCAmelCase ): logger.error(F'''Vocabulary path ({save_directory}) should be a directory''' ) return lowercase__ = os.path.join( _lowerCAmelCase , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) lowercase__ = os.path.join( _lowerCAmelCase , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""merges_file"""] ) with open(_lowerCAmelCase , """w""" , encoding="""utf-8""" ) as f: f.write(json.dumps(self.encoder , indent=2 , sort_keys=_lowerCAmelCase , ensure_ascii=_lowerCAmelCase ) + """\n""" ) lowercase__ = 0 with open(_lowerCAmelCase , """w""" , encoding="""utf-8""" ) as writer: writer.write("""#version: 0.2\n""" ) for bpe_tokens, token_index in sorted(self.bpe_ranks.items() , key=lambda lowerCamelCase__ : kv[1] ): if index != token_index: logger.warning( F'''Saving vocabulary to {merge_file}: BPE merge indices are not consecutive.''' """ Please check that the tokenizer is not corrupted!""" ) lowercase__ = token_index writer.write(""" """.join(_lowerCAmelCase ) + """\n""" ) index += 1 return vocab_file, merge_file def A__ ( self , lowerCamelCase__ , lowerCamelCase__ = None ) -> List[str]: '''simple docstring''' if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] lowercase__ = [self.cls_token_id] lowercase__ = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def A__ ( self , lowerCamelCase__ , lowerCamelCase__ = None , lowerCamelCase__ = False ) -> Any: '''simple docstring''' if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=_lowerCAmelCase , token_ids_a=_lowerCAmelCase , already_has_special_tokens=_lowerCAmelCase ) if token_ids_a is None: return [1] + ([0] * len(_lowerCAmelCase )) + [1] return [1] + ([0] * len(_lowerCAmelCase )) + [1, 1] + ([0] * len(_lowerCAmelCase )) + [1] def A__ ( self , lowerCamelCase__ , lowerCamelCase__ = None ) -> int: '''simple docstring''' lowercase__ = [self.sep_token_id] lowercase__ = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def A__ ( self , lowerCamelCase__ , lowerCamelCase__=False , **lowerCamelCase__ ) -> Any: '''simple docstring''' lowercase__ = kwargs.pop("""add_prefix_space""" , self.add_prefix_space ) if (is_split_into_words or add_prefix_space) and (len(_lowerCAmelCase ) > 0 and not text[0].isspace()): lowercase__ = """ """ + text return (text, kwargs) def A__ ( self , lowerCamelCase__ , lowerCamelCase__ = None , lowerCamelCase__ = PaddingStrategy.DO_NOT_PAD , lowerCamelCase__ = None , lowerCamelCase__ = None , ) -> Tuple: '''simple docstring''' lowercase__ = super()._pad( encoded_inputs=_lowerCAmelCase , max_length=_lowerCAmelCase , padding_strategy=_lowerCAmelCase , pad_to_multiple_of=_lowerCAmelCase , return_attention_mask=_lowerCAmelCase , ) # Load from model defaults if return_attention_mask is None: lowercase__ = """attention_mask""" in self.model_input_names if return_attention_mask and "global_attention_mask" in encoded_inputs: lowercase__ = encoded_inputs[self.model_input_names[0]] # `global_attention_mask` need to have the same length as other (sequential) inputs. lowercase__ = len(encoded_inputs["""global_attention_mask"""] ) != len(_lowerCAmelCase ) if needs_to_be_padded: lowercase__ = len(_lowerCAmelCase ) - len(encoded_inputs["""global_attention_mask"""] ) if self.padding_side == "right": # Use `-1` since `0` in `global_attention_mask` means `local attention` instead of `not to attend` lowercase__ = ( encoded_inputs["""global_attention_mask"""] + [-1] * difference ) elif self.padding_side == "left": lowercase__ = [-1] * difference + encoded_inputs[ """global_attention_mask""" ] else: raise ValueError("""Invalid padding strategy:""" + str(self.padding_side ) ) return encoded_inputs
325
from __future__ import annotations from collections.abc import Generator def UpperCAmelCase_ ( ) -> Generator[int, None, None]: SCREAMING_SNAKE_CASE_ = {} SCREAMING_SNAKE_CASE_ = 2 while True: SCREAMING_SNAKE_CASE_ = factor_map.pop(__UpperCAmelCase , __UpperCAmelCase ) if factor: SCREAMING_SNAKE_CASE_ = factor + prime while x in factor_map: x += factor SCREAMING_SNAKE_CASE_ = factor else: SCREAMING_SNAKE_CASE_ = prime yield prime prime += 1 def UpperCAmelCase_ ( __UpperCAmelCase : float = 1E10 ) -> int: SCREAMING_SNAKE_CASE_ = sieve() SCREAMING_SNAKE_CASE_ = 1 while True: SCREAMING_SNAKE_CASE_ = next(__UpperCAmelCase ) if (2 * prime * n) > limit: return n # Ignore the next prime as the reminder will be 2. next(__UpperCAmelCase ) n += 2 if __name__ == "__main__": print(solution())
31
0
def lowerCamelCase__ ( _lowercase = 4000000 ): '''simple docstring''' UpperCAmelCase_ : Tuple = [] UpperCAmelCase_, UpperCAmelCase_ : int = 0, 1 while b <= n: if b % 2 == 0: even_fibs.append(__UpperCAmelCase ) UpperCAmelCase_, UpperCAmelCase_ : Optional[int] = b, a + b return sum(__UpperCAmelCase ) if __name__ == "__main__": print(F"""{solution() = }""")
30
import numpy as np import torch from torch.utils.data import DataLoader from accelerate.utils.dataclasses import DistributedType class lowerCamelCase_ : '''simple docstring''' def __init__( self : Any , _lowerCAmelCase : Optional[int]=2 , _lowerCAmelCase : Any=3 , _lowerCAmelCase : Tuple=64 , _lowerCAmelCase : List[str]=None ): SCREAMING_SNAKE_CASE_ = np.random.default_rng(_lowerCAmelCase ) SCREAMING_SNAKE_CASE_ = length SCREAMING_SNAKE_CASE_ = rng.normal(size=(length,) ).astype(np.floataa ) SCREAMING_SNAKE_CASE_ = a * self.x + b + rng.normal(scale=0.1 , size=(length,) ).astype(np.floataa ) def __len__( self : Optional[int] ): return self.length def __getitem__( self : str , _lowerCAmelCase : Union[str, Any] ): return {"x": self.x[i], "y": self.y[i]} class lowerCamelCase_ ( torch.nn.Module ): '''simple docstring''' def __init__( self : Tuple , _lowerCAmelCase : Dict=0 , _lowerCAmelCase : List[str]=0 , _lowerCAmelCase : str=False ): super().__init__() SCREAMING_SNAKE_CASE_ = torch.nn.Parameter(torch.tensor([2, 3] ).float() ) SCREAMING_SNAKE_CASE_ = torch.nn.Parameter(torch.tensor([2, 3] ).float() ) SCREAMING_SNAKE_CASE_ = True def lowerCAmelCase_ ( self : Dict , _lowerCAmelCase : Union[str, Any]=None ): if self.first_batch: print(F"Model dtype: {self.a.dtype}, {self.b.dtype}. Input dtype: {x.dtype}" ) SCREAMING_SNAKE_CASE_ = False return x * self.a[0] + self.b[0] class lowerCamelCase_ ( torch.nn.Module ): '''simple docstring''' def __init__( self : Optional[int] , _lowerCAmelCase : Any=0 , _lowerCAmelCase : Any=0 , _lowerCAmelCase : Optional[Any]=False ): super().__init__() SCREAMING_SNAKE_CASE_ = torch.nn.Parameter(torch.tensor(_lowerCAmelCase ).float() ) SCREAMING_SNAKE_CASE_ = torch.nn.Parameter(torch.tensor(_lowerCAmelCase ).float() ) SCREAMING_SNAKE_CASE_ = True def lowerCAmelCase_ ( self : Optional[Any] , _lowerCAmelCase : Optional[int]=None ): if self.first_batch: print(F"Model dtype: {self.a.dtype}, {self.b.dtype}. Input dtype: {x.dtype}" ) SCREAMING_SNAKE_CASE_ = False return x * self.a + self.b def UpperCAmelCase_ ( __UpperCAmelCase : Dict , __UpperCAmelCase : int = 16 ) -> Union[str, Any]: from datasets import load_dataset from transformers import AutoTokenizer SCREAMING_SNAKE_CASE_ = AutoTokenizer.from_pretrained('bert-base-cased' ) SCREAMING_SNAKE_CASE_ = {'train': 'tests/test_samples/MRPC/train.csv', 'validation': 'tests/test_samples/MRPC/dev.csv'} SCREAMING_SNAKE_CASE_ = load_dataset('csv' , data_files=__UpperCAmelCase ) SCREAMING_SNAKE_CASE_ = datasets['train'].unique('label' ) SCREAMING_SNAKE_CASE_ = {v: i for i, v in enumerate(__UpperCAmelCase )} def tokenize_function(__UpperCAmelCase : Optional[int] ): # max_length=None => use the model max length (it's actually the default) SCREAMING_SNAKE_CASE_ = tokenizer( examples['sentence1'] , examples['sentence2'] , truncation=__UpperCAmelCase , max_length=__UpperCAmelCase , padding='max_length' ) if "label" in examples: SCREAMING_SNAKE_CASE_ = [label_to_id[l] for l in examples['label']] return outputs # Apply the method we just defined to all the examples in all the splits of the dataset SCREAMING_SNAKE_CASE_ = datasets.map( __UpperCAmelCase , batched=__UpperCAmelCase , remove_columns=['sentence1', 'sentence2', 'label'] , ) def collate_fn(__UpperCAmelCase : Dict ): # On TPU it's best to pad everything to the same length or training will be very slow. if accelerator.distributed_type == DistributedType.TPU: return tokenizer.pad(__UpperCAmelCase , padding='max_length' , max_length=1_28 , return_tensors='pt' ) return tokenizer.pad(__UpperCAmelCase , padding='longest' , return_tensors='pt' ) # Instantiate dataloaders. SCREAMING_SNAKE_CASE_ = DataLoader(tokenized_datasets['train'] , shuffle=__UpperCAmelCase , collate_fn=__UpperCAmelCase , batch_size=2 ) SCREAMING_SNAKE_CASE_ = DataLoader(tokenized_datasets['validation'] , shuffle=__UpperCAmelCase , collate_fn=__UpperCAmelCase , batch_size=1 ) return train_dataloader, eval_dataloader
31
0
'''simple docstring''' import dataclasses import json import sys import types from argparse import ArgumentDefaultsHelpFormatter, ArgumentParser, ArgumentTypeError from copy import copy from enum import Enum from inspect import isclass from pathlib import Path from typing import Any, Callable, Dict, Iterable, List, Literal, NewType, Optional, Tuple, Union, get_type_hints import yaml A_ = NewType("DataClass", Any) A_ = NewType("DataClassType", Any) def UpperCamelCase__ ( __SCREAMING_SNAKE_CASE ) -> Tuple: if isinstance(__UpperCAmelCase , __UpperCAmelCase ): return v if v.lower() in ("yes", "true", "t", "y", "1"): return True elif v.lower() in ("no", "false", "f", "n", "0"): return False else: raise ArgumentTypeError( f"Truthy value expected: got {v} but expected one of yes/no, true/false, t/f, y/n, 1/0 (case insensitive)." ) def UpperCamelCase__ ( __SCREAMING_SNAKE_CASE ) -> Callable[[str], Any]: snake_case__ : List[Any] = {str(__UpperCAmelCase ): choice for choice in choices} return lambda __SCREAMING_SNAKE_CASE : str_to_choice.get(__UpperCAmelCase , __UpperCAmelCase ) def UpperCamelCase__ ( *, __SCREAMING_SNAKE_CASE = None , __SCREAMING_SNAKE_CASE = None , __SCREAMING_SNAKE_CASE = dataclasses.MISSING , __SCREAMING_SNAKE_CASE = dataclasses.MISSING , __SCREAMING_SNAKE_CASE = None , **__SCREAMING_SNAKE_CASE , ) -> dataclasses.Field: if metadata is None: # Important, don't use as default param in function signature because dict is mutable and shared across function calls snake_case__ : Any = {} if aliases is not None: snake_case__ : int = aliases if help is not None: snake_case__ : Dict = help return dataclasses.field(metadata=__UpperCAmelCase , default=__UpperCAmelCase , default_factory=__UpperCAmelCase , **__UpperCAmelCase ) class lowercase_ ( _SCREAMING_SNAKE_CASE ): A_ = 4_2 def __init__( self : Any , __lowerCamelCase : Union[DataClassType, Iterable[DataClassType]] , **__lowerCamelCase : Dict ): # To make the default appear when using --help if "formatter_class" not in kwargs: snake_case__ : Optional[Any] = ArgumentDefaultsHelpFormatter super().__init__(**_lowerCAmelCase ) if dataclasses.is_dataclass(_lowerCAmelCase ): snake_case__ : Tuple = [dataclass_types] snake_case__ : Optional[Any] = list(_lowerCAmelCase ) for dtype in self.dataclass_types: self._add_dataclass_arguments(_lowerCAmelCase ) @staticmethod def _lowerCAmelCase ( __lowerCamelCase : ArgumentParser , __lowerCamelCase : dataclasses.Field ): snake_case__ : Tuple = F"--{field.name}" snake_case__ : List[str] = field.metadata.copy() # field.metadata is not used at all by Data Classes, # it is provided as a third-party extension mechanism. if isinstance(field.type , _lowerCAmelCase ): raise RuntimeError( 'Unresolved type detected, which should have been done with the help of ' '`typing.get_type_hints` method by default' ) snake_case__ : Dict = kwargs.pop('aliases' , [] ) if isinstance(_lowerCAmelCase , _lowerCAmelCase ): snake_case__ : str = [aliases] snake_case__ : List[str] = getattr(field.type , '__origin__' , field.type ) if origin_type is Union or (hasattr(_lowerCAmelCase , 'UnionType' ) and isinstance(_lowerCAmelCase , types.UnionType )): if str not in field.type.__args__ and ( len(field.type.__args__ ) != 2 or type(_lowerCAmelCase ) not in field.type.__args__ ): raise ValueError( 'Only `Union[X, NoneType]` (i.e., `Optional[X]`) is allowed for `Union` because' ' the argument parser only supports one type per argument.' F" Problem encountered in field '{field.name}'." ) if type(_lowerCAmelCase ) not in field.type.__args__: # filter `str` in Union snake_case__ : Optional[int] = field.type.__args__[0] if field.type.__args__[1] == str else field.type.__args__[1] snake_case__ : Optional[int] = getattr(field.type , '__origin__' , field.type ) elif bool not in field.type.__args__: # filter `NoneType` in Union (except for `Union[bool, NoneType]`) snake_case__ : Union[str, Any] = ( field.type.__args__[0] if isinstance(_lowerCAmelCase , field.type.__args__[1] ) else field.type.__args__[1] ) snake_case__ : Dict = getattr(field.type , '__origin__' , field.type ) # A variable to store kwargs for a boolean field, if needed # so that we can init a `no_*` complement argument (see below) snake_case__ : Dict = {} if origin_type is Literal or (isinstance(field.type , _lowerCAmelCase ) and issubclass(field.type , _lowerCAmelCase )): if origin_type is Literal: snake_case__ : Union[str, Any] = field.type.__args__ else: snake_case__ : List[str] = [x.value for x in field.type] snake_case__ : Any = make_choice_type_function(kwargs['choices'] ) if field.default is not dataclasses.MISSING: snake_case__ : Optional[Any] = field.default else: snake_case__ : Optional[int] = True elif field.type is bool or field.type == Optional[bool]: # Copy the currect kwargs to use to instantiate a `no_*` complement argument below. # We do not initialize it here because the `no_*` alternative must be instantiated after the real argument snake_case__ : Tuple = copy(_lowerCAmelCase ) # Hack because type=bool in argparse does not behave as we want. snake_case__ : int = string_to_bool if field.type is bool or (field.default is not None and field.default is not dataclasses.MISSING): # Default value is False if we have no default when of type bool. snake_case__ : Tuple = False if field.default is dataclasses.MISSING else field.default # This is the value that will get picked if we don't include --field_name in any way snake_case__ : List[str] = default # This tells argparse we accept 0 or 1 value after --field_name snake_case__ : Tuple = '?' # This is the value that will get picked if we do --field_name (without value) snake_case__ : Tuple = True elif isclass(_lowerCAmelCase ) and issubclass(_lowerCAmelCase , _lowerCAmelCase ): snake_case__ : Any = field.type.__args__[0] snake_case__ : List[Any] = '+' if field.default_factory is not dataclasses.MISSING: snake_case__ : str = field.default_factory() elif field.default is dataclasses.MISSING: snake_case__ : str = True else: snake_case__ : List[str] = field.type if field.default is not dataclasses.MISSING: snake_case__ : Union[str, Any] = field.default elif field.default_factory is not dataclasses.MISSING: snake_case__ : str = field.default_factory() else: snake_case__ : List[Any] = True parser.add_argument(_lowerCAmelCase , *_lowerCAmelCase , **_lowerCAmelCase ) # Add a complement `no_*` argument for a boolean field AFTER the initial field has already been added. # Order is important for arguments with the same destination! # We use a copy of earlier kwargs because the original kwargs have changed a lot before reaching down # here and we do not need those changes/additional keys. if field.default is True and (field.type is bool or field.type == Optional[bool]): snake_case__ : Union[str, Any] = False parser.add_argument(F"--no_{field.name}" , action='store_false' , dest=field.name , **_lowerCAmelCase ) def _lowerCAmelCase ( self : Optional[Any] , __lowerCamelCase : DataClassType ): if hasattr(_lowerCAmelCase , '_argument_group_name' ): snake_case__ : Dict = self.add_argument_group(dtype._argument_group_name ) else: snake_case__ : Optional[Any] = self try: snake_case__ : int = get_type_hints(_lowerCAmelCase ) except NameError: raise RuntimeError( F"Type resolution failed for {dtype}. Try declaring the class in global scope or " 'removing line of `from __future__ import annotations` which opts in Postponed ' 'Evaluation of Annotations (PEP 563)' ) except TypeError as ex: # Remove this block when we drop Python 3.9 support if sys.version_info[:2] < (3, 10) and "unsupported operand type(s) for |" in str(_lowerCAmelCase ): snake_case__ : Dict = '.'.join(map(_lowerCAmelCase , sys.version_info[:3] ) ) raise RuntimeError( F"Type resolution failed for {dtype} on Python {python_version}. Try removing " 'line of `from __future__ import annotations` which opts in union types as ' '`X | Y` (PEP 604) via Postponed Evaluation of Annotations (PEP 563). To ' 'support Python versions that lower than 3.10, you need to use ' '`typing.Union[X, Y]` instead of `X | Y` and `typing.Optional[X]` instead of ' '`X | None`.' ) from ex raise for field in dataclasses.fields(_lowerCAmelCase ): if not field.init: continue snake_case__ : Optional[int] = type_hints[field.name] self._parse_dataclass_field(_lowerCAmelCase , _lowerCAmelCase ) def _lowerCAmelCase ( self : Any , __lowerCamelCase : int=None , __lowerCamelCase : str=False , __lowerCamelCase : Any=True , __lowerCamelCase : Optional[Any]=None , __lowerCamelCase : Any=None , ): if args_file_flag or args_filename or (look_for_args_file and len(sys.argv )): snake_case__ : int = [] if args_filename: args_files.append(Path(_lowerCAmelCase ) ) elif look_for_args_file and len(sys.argv ): args_files.append(Path(sys.argv[0] ).with_suffix('.args' ) ) # args files specified via command line flag should overwrite default args files so we add them last if args_file_flag: # Create special parser just to extract the args_file_flag values snake_case__ : List[str] = ArgumentParser() args_file_parser.add_argument(_lowerCAmelCase , type=_lowerCAmelCase , action='append' ) # Use only remaining args for further parsing (remove the args_file_flag) snake_case__ , snake_case__ : Dict = args_file_parser.parse_known_args(args=_lowerCAmelCase ) snake_case__ : Optional[Any] = vars(_lowerCAmelCase ).get(args_file_flag.lstrip('-' ) , _lowerCAmelCase ) if cmd_args_file_paths: args_files.extend([Path(_lowerCAmelCase ) for p in cmd_args_file_paths] ) snake_case__ : Tuple = [] for args_file in args_files: if args_file.exists(): file_args += args_file.read_text().split() # in case of duplicate arguments the last one has precedence # args specified via the command line should overwrite args from files, so we add them last snake_case__ : Union[str, Any] = file_args + args if args is not None else file_args + sys.argv[1:] snake_case__ , snake_case__ : Optional[Any] = self.parse_known_args(args=_lowerCAmelCase ) snake_case__ : Optional[Any] = [] for dtype in self.dataclass_types: snake_case__ : Optional[int] = {f.name for f in dataclasses.fields(_lowerCAmelCase ) if f.init} snake_case__ : Optional[Any] = {k: v for k, v in vars(_lowerCAmelCase ).items() if k in keys} for k in keys: delattr(_lowerCAmelCase , _lowerCAmelCase ) snake_case__ : Any = dtype(**_lowerCAmelCase ) outputs.append(_lowerCAmelCase ) if len(namespace.__dict__ ) > 0: # additional namespace. outputs.append(_lowerCAmelCase ) if return_remaining_strings: return (*outputs, remaining_args) else: if remaining_args: raise ValueError(F"Some specified arguments are not used by the HfArgumentParser: {remaining_args}" ) return (*outputs,) def _lowerCAmelCase ( self : Any , __lowerCamelCase : Dict[str, Any] , __lowerCamelCase : bool = False ): snake_case__ : Tuple = set(args.keys() ) snake_case__ : Optional[int] = [] for dtype in self.dataclass_types: snake_case__ : List[Any] = {f.name for f in dataclasses.fields(_lowerCAmelCase ) if f.init} snake_case__ : Optional[int] = {k: v for k, v in args.items() if k in keys} unused_keys.difference_update(inputs.keys() ) snake_case__ : List[Any] = dtype(**_lowerCAmelCase ) outputs.append(_lowerCAmelCase ) if not allow_extra_keys and unused_keys: raise ValueError(F"Some keys are not used by the HfArgumentParser: {sorted(_lowerCAmelCase )}" ) return tuple(_lowerCAmelCase ) def _lowerCAmelCase ( self : Tuple , __lowerCamelCase : str , __lowerCamelCase : bool = False ): with open(Path(_lowerCAmelCase ) , encoding='utf-8' ) as open_json_file: snake_case__ : Optional[Any] = json.loads(open_json_file.read() ) snake_case__ : Dict = self.parse_dict(_lowerCAmelCase , allow_extra_keys=_lowerCAmelCase ) return tuple(_lowerCAmelCase ) def _lowerCAmelCase ( self : List[str] , __lowerCamelCase : str , __lowerCamelCase : bool = False ): snake_case__ : Dict = self.parse_dict(yaml.safe_load(Path(_lowerCAmelCase ).read_text() ) , allow_extra_keys=_lowerCAmelCase ) return tuple(_lowerCAmelCase )
270
import warnings from ...utils import logging from .image_processing_layoutlmva import LayoutLMvaImageProcessor lowerCamelCase__ : Union[str, Any] = logging.get_logger(__name__) class lowerCamelCase_ ( _SCREAMING_SNAKE_CASE ): '''simple docstring''' def __init__( self : Dict , *_lowerCAmelCase : Optional[Any] , **_lowerCAmelCase : Any ): warnings.warn( 'The class LayoutLMv2FeatureExtractor is deprecated and will be removed in version 5 of Transformers.' ' Please use LayoutLMv2ImageProcessor instead.' , _lowerCAmelCase , ) super().__init__(*_lowerCAmelCase , **_lowerCAmelCase )
31
0
'''simple docstring''' import json from typing import Iterator, List, Union from tokenizers import AddedToken, Regex, Tokenizer, decoders, normalizers, pre_tokenizers, trainers from tokenizers.implementations.base_tokenizer import BaseTokenizer from tokenizers.models import Unigram from tokenizers.processors import TemplateProcessing class _a (_SCREAMING_SNAKE_CASE): """simple docstring""" def __init__( self , A__ = "▁" , A__ = True , A__ = "<unk>" , A__ = "</s>" , A__ = "<pad>" , ) -> Any: _SCREAMING_SNAKE_CASE = { """pad""": {"""id""": 0, """token""": pad_token}, """eos""": {"""id""": 1, """token""": eos_token}, """unk""": {"""id""": 2, """token""": unk_token}, } _SCREAMING_SNAKE_CASE = [None] * len(self.special_tokens ) for token_dict in self.special_tokens.values(): _SCREAMING_SNAKE_CASE = token_dict["""token"""] _SCREAMING_SNAKE_CASE = Tokenizer(Unigram() ) _SCREAMING_SNAKE_CASE = normalizers.Sequence( [ normalizers.Nmt(), normalizers.NFKC(), normalizers.Replace(Regex(""" {2,}""" ) , """ """ ), normalizers.Lowercase(), ] ) _SCREAMING_SNAKE_CASE = pre_tokenizers.Sequence( [ pre_tokenizers.Metaspace(replacement=_lowerCAmelCase , add_prefix_space=_lowerCAmelCase ), pre_tokenizers.Digits(individual_digits=_lowerCAmelCase ), pre_tokenizers.Punctuation(), ] ) _SCREAMING_SNAKE_CASE = decoders.Metaspace(replacement=_lowerCAmelCase , add_prefix_space=_lowerCAmelCase ) _SCREAMING_SNAKE_CASE = TemplateProcessing( single=F"$A {self.special_tokens['eos']['token']}" , special_tokens=[(self.special_tokens["""eos"""]["""token"""], self.special_tokens["""eos"""]["""id"""])] , ) _SCREAMING_SNAKE_CASE = { """model""": """SentencePieceUnigram""", """replacement""": replacement, """add_prefix_space""": add_prefix_space, } super().__init__(_lowerCAmelCase , _lowerCAmelCase ) def UpperCamelCase ( self , A__ , A__ = 80_00 , A__ = True , ) -> int: _SCREAMING_SNAKE_CASE = trainers.UnigramTrainer( vocab_size=_lowerCAmelCase , special_tokens=self.special_tokens_list , show_progress=_lowerCAmelCase , ) if isinstance(_lowerCAmelCase , _lowerCAmelCase ): _SCREAMING_SNAKE_CASE = [files] self._tokenizer.train(_lowerCAmelCase , trainer=_lowerCAmelCase ) self.add_unk_id() def UpperCamelCase ( self , A__ , A__ = 80_00 , A__ = True , ) -> Tuple: _SCREAMING_SNAKE_CASE = trainers.UnigramTrainer( vocab_size=_lowerCAmelCase , special_tokens=self.special_tokens_list , show_progress=_lowerCAmelCase , ) self._tokenizer.train_from_iterator(_lowerCAmelCase , trainer=_lowerCAmelCase ) self.add_unk_id() def UpperCamelCase ( self ) -> Optional[int]: _SCREAMING_SNAKE_CASE = json.loads(self._tokenizer.to_str() ) _SCREAMING_SNAKE_CASE = self.special_tokens["""unk"""]["""id"""] _SCREAMING_SNAKE_CASE = Tokenizer.from_str(json.dumps(_lowerCAmelCase ) )
591
def UpperCAmelCase_ ( ) -> list[list[int]]: return [list(range(10_00 - i , -10_00 - i , -1 ) ) for i in range(10_00 )] lowerCamelCase__ : List[Any] = generate_large_matrix() lowerCamelCase__ : List[Any] = ( [[4, 3, 2, -1], [3, 2, 1, -1], [1, 1, -1, -2], [-1, -1, -2, -3]], [[3, 2], [1, 0]], [[7, 7, 6]], [[7, 7, 6], [-1, -2, -3]], grid, ) def UpperCAmelCase_ ( __UpperCAmelCase : list[list[int]] ) -> None: assert all(row == sorted(__UpperCAmelCase , reverse=__UpperCAmelCase ) for row in grid ) assert all(list(__UpperCAmelCase ) == sorted(__UpperCAmelCase , reverse=__UpperCAmelCase ) for col in zip(*__UpperCAmelCase ) ) def UpperCAmelCase_ ( __UpperCAmelCase : list[int] ) -> int: SCREAMING_SNAKE_CASE_ = 0 SCREAMING_SNAKE_CASE_ = len(__UpperCAmelCase ) - 1 # Edge cases such as no values or all numbers are negative. if not array or array[0] < 0: return 0 while right + 1 > left: SCREAMING_SNAKE_CASE_ = (left + right) // 2 SCREAMING_SNAKE_CASE_ = array[mid] # Num must be negative and the index must be greater than or equal to 0. if num < 0 and array[mid - 1] >= 0: return mid if num >= 0: SCREAMING_SNAKE_CASE_ = mid + 1 else: SCREAMING_SNAKE_CASE_ = mid - 1 # No negative numbers so return the last index of the array + 1 which is the length. return len(__UpperCAmelCase ) def UpperCAmelCase_ ( __UpperCAmelCase : list[list[int]] ) -> int: SCREAMING_SNAKE_CASE_ = 0 SCREAMING_SNAKE_CASE_ = len(grid[0] ) for i in range(len(__UpperCAmelCase ) ): SCREAMING_SNAKE_CASE_ = find_negative_index(grid[i][:bound] ) total += bound return (len(__UpperCAmelCase ) * len(grid[0] )) - total def UpperCAmelCase_ ( __UpperCAmelCase : list[list[int]] ) -> int: return len([number for row in grid for number in row if number < 0] ) def UpperCAmelCase_ ( __UpperCAmelCase : list[list[int]] ) -> int: SCREAMING_SNAKE_CASE_ = 0 for row in grid: for i, number in enumerate(__UpperCAmelCase ): if number < 0: total += len(__UpperCAmelCase ) - i break return total def UpperCAmelCase_ ( ) -> None: from timeit import timeit print('Running benchmarks' ) SCREAMING_SNAKE_CASE_ = ( 'from __main__ import count_negatives_binary_search, ' 'count_negatives_brute_force, count_negatives_brute_force_with_break, grid' ) for func in ( "count_negatives_binary_search", # took 0.7727 seconds "count_negatives_brute_force_with_break", # took 4.6505 seconds "count_negatives_brute_force", # took 12.8160 seconds ): SCREAMING_SNAKE_CASE_ = timeit(f"{func}(grid=grid)" , setup=__UpperCAmelCase , number=5_00 ) print(f"{func}() took {time:0.4f} seconds" ) if __name__ == "__main__": import doctest doctest.testmod() benchmark()
31
0
# Lint as: python3 # pylint: enable=line-too-long # pylint: disable=g-import-not-at-top,g-bad-import-order,wrong-import-position a_ = '2.13.1' import platform import pyarrow from packaging import version if version.parse(platform.python_version()) < version.parse('3.7'): raise ImportWarning( 'To use `datasets`, Python>=3.7 is required, and the current version of Python doesn\'t match this condition.' ) if version.parse(pyarrow.__version__).major < 8: raise ImportWarning( 'To use `datasets`, the module `pyarrow>=8.0.0` is required, and the current version of `pyarrow` doesn\'t match this condition.\n' 'If you are running this in a Google Colab, you should probably just restart the runtime to use the right version of `pyarrow`.' ) del platform del pyarrow del version from .arrow_dataset import Dataset from .arrow_reader import ReadInstruction from .builder import ArrowBasedBuilder, BeamBasedBuilder, BuilderConfig, DatasetBuilder, GeneratorBasedBuilder from .combine import concatenate_datasets, interleave_datasets from .dataset_dict import DatasetDict, IterableDatasetDict from .download import * from .features import * from .fingerprint import disable_caching, enable_caching, is_caching_enabled, set_caching_enabled from .info import DatasetInfo, MetricInfo from .inspect import ( get_dataset_config_info, get_dataset_config_names, get_dataset_infos, get_dataset_split_names, inspect_dataset, inspect_metric, list_datasets, list_metrics, ) from .iterable_dataset import IterableDataset from .load import load_dataset, load_dataset_builder, load_from_disk, load_metric from .metric import Metric from .splits import ( NamedSplit, NamedSplitAll, Split, SplitBase, SplitDict, SplitGenerator, SplitInfo, SubSplitInfo, percent, ) from .tasks import * from .utils import * from .utils import logging # deprecated modules from datasets import arrow_dataset as _arrow_dataset # isort:skip from datasets import utils as _utils # isort:skip from datasets.utils import download_manager as _deprecated_download_manager # isort:skip a_ = concatenate_datasets a_ = DownloadConfig a_ = DownloadManager a_ = DownloadMode a_ = DownloadConfig a_ = DownloadMode a_ = DownloadManager del _arrow_dataset, _utils, _deprecated_download_manager
417
from typing import TYPE_CHECKING from ....utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available lowerCamelCase__ : Optional[int] = {'configuration_mmbt': ['MMBTConfig']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase__ : Any = ['MMBTForClassification', 'MMBTModel', 'ModalEmbeddings'] if TYPE_CHECKING: from .configuration_mmbt import MMBTConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mmbt import MMBTForClassification, MMBTModel, ModalEmbeddings else: import sys lowerCamelCase__ : str = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
31
0
import math def a_ (__A , __A ) -> float: """simple docstring""" if initial_intensity < 0: raise ValueError("The value of intensity cannot be negative" ) # handling of negative values of initial intensity if angle < 0 or angle > 360: raise ValueError("In Malus Law, the angle is in the range 0-360 degrees" ) # handling of values out of allowed range return initial_intensity * (math.cos(math.radians(__UpperCAmelCase ) ) ** 2) if __name__ == "__main__": import doctest doctest.testmod(name='''malus_law''')
351
import unittest from typing import Tuple import torch from diffusers.utils import floats_tensor, randn_tensor, torch_all_close, torch_device from diffusers.utils.testing_utils import require_torch @require_torch class lowerCamelCase_ : '''simple docstring''' @property def lowerCAmelCase_ ( self : Optional[Any] ): return self.get_dummy_input() @property def lowerCAmelCase_ ( self : Union[str, Any] ): if self.block_type == "down": return (4, 32, 16, 16) elif self.block_type == "mid": return (4, 32, 32, 32) elif self.block_type == "up": return (4, 32, 64, 64) raise ValueError(F"'{self.block_type}' is not a supported block_type. Set it to 'up', 'mid', or 'down'." ) def lowerCAmelCase_ ( self : List[str] , _lowerCAmelCase : Optional[Any]=True , _lowerCAmelCase : str=False , _lowerCAmelCase : Optional[int]=False , _lowerCAmelCase : Dict=False , ): SCREAMING_SNAKE_CASE_ = 4 SCREAMING_SNAKE_CASE_ = 32 SCREAMING_SNAKE_CASE_ = (32, 32) SCREAMING_SNAKE_CASE_ = torch.manual_seed(0 ) SCREAMING_SNAKE_CASE_ = torch.device(_lowerCAmelCase ) SCREAMING_SNAKE_CASE_ = (batch_size, num_channels) + sizes SCREAMING_SNAKE_CASE_ = randn_tensor(_lowerCAmelCase , generator=_lowerCAmelCase , device=_lowerCAmelCase ) SCREAMING_SNAKE_CASE_ = {'hidden_states': hidden_states} if include_temb: SCREAMING_SNAKE_CASE_ = 128 SCREAMING_SNAKE_CASE_ = randn_tensor((batch_size, temb_channels) , generator=_lowerCAmelCase , device=_lowerCAmelCase ) if include_res_hidden_states_tuple: SCREAMING_SNAKE_CASE_ = torch.manual_seed(1 ) SCREAMING_SNAKE_CASE_ = (randn_tensor(_lowerCAmelCase , generator=_lowerCAmelCase , device=_lowerCAmelCase ),) if include_encoder_hidden_states: SCREAMING_SNAKE_CASE_ = floats_tensor((batch_size, 32, 32) ).to(_lowerCAmelCase ) if include_skip_sample: SCREAMING_SNAKE_CASE_ = randn_tensor(((batch_size, 3) + sizes) , generator=_lowerCAmelCase , device=_lowerCAmelCase ) return dummy_input def lowerCAmelCase_ ( self : Optional[int] ): SCREAMING_SNAKE_CASE_ = { 'in_channels': 32, 'out_channels': 32, 'temb_channels': 128, } if self.block_type == "up": SCREAMING_SNAKE_CASE_ = 32 if self.block_type == "mid": init_dict.pop('out_channels' ) SCREAMING_SNAKE_CASE_ = self.dummy_input return init_dict, inputs_dict def lowerCAmelCase_ ( self : Dict , _lowerCAmelCase : Optional[Any] ): SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = self.prepare_init_args_and_inputs_for_common() SCREAMING_SNAKE_CASE_ = self.block_class(**_lowerCAmelCase ) unet_block.to(_lowerCAmelCase ) unet_block.eval() with torch.no_grad(): SCREAMING_SNAKE_CASE_ = unet_block(**_lowerCAmelCase ) if isinstance(_lowerCAmelCase , _lowerCAmelCase ): SCREAMING_SNAKE_CASE_ = output[0] self.assertEqual(output.shape , self.output_shape ) SCREAMING_SNAKE_CASE_ = output[0, -1, -3:, -3:] SCREAMING_SNAKE_CASE_ = torch.tensor(_lowerCAmelCase ).to(_lowerCAmelCase ) assert torch_all_close(output_slice.flatten() , _lowerCAmelCase , atol=5E-3 ) @unittest.skipIf(torch_device == 'mps' , 'Training is not supported in mps' ) def lowerCAmelCase_ ( self : Any ): SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = self.prepare_init_args_and_inputs_for_common() SCREAMING_SNAKE_CASE_ = self.block_class(**_lowerCAmelCase ) model.to(_lowerCAmelCase ) model.train() SCREAMING_SNAKE_CASE_ = model(**_lowerCAmelCase ) if isinstance(_lowerCAmelCase , _lowerCAmelCase ): SCREAMING_SNAKE_CASE_ = output[0] SCREAMING_SNAKE_CASE_ = torch.device(_lowerCAmelCase ) SCREAMING_SNAKE_CASE_ = randn_tensor(output.shape , device=_lowerCAmelCase ) SCREAMING_SNAKE_CASE_ = torch.nn.functional.mse_loss(_lowerCAmelCase , _lowerCAmelCase ) loss.backward()
31
0
'''simple docstring''' def _lowerCAmelCase ( lowercase : int = 1_0 , lowercase : int = 1_0_0_0 , lowercase : bool = True ) ->int: """simple docstring""" assert ( isinstance(__UpperCAmelCase , __UpperCAmelCase ) and isinstance(__UpperCAmelCase , __UpperCAmelCase ) and isinstance(__UpperCAmelCase , __UpperCAmelCase ) ), "Invalid type of value(s) specified to function!" if min_val > max_val: raise ValueError('''Invalid value for min_val or max_val (min_value < max_value)''' ) return min_val if option else max_val def _lowerCAmelCase ( lowercase : int , lowercase : int ) ->int: """simple docstring""" return int((number_a + number_a) / 2 ) def _lowerCAmelCase ( lowercase : int , lowercase : int , lowercase : int ) ->None: """simple docstring""" assert ( isinstance(__UpperCAmelCase , __UpperCAmelCase ) and isinstance(__UpperCAmelCase , __UpperCAmelCase ) and isinstance(__UpperCAmelCase , __UpperCAmelCase ) ), 'argument values must be type of "int"' if lower > higher: raise ValueError('''argument value for lower and higher must be(lower > higher)''' ) if not lower < to_guess < higher: raise ValueError( '''guess value must be within the range of lower and higher value''' ) def answer(lowercase : int ) -> str: if number > to_guess: return "high" elif number < to_guess: return "low" else: return "same" print('''started...''' ) lowercase__ = lower lowercase__ = higher lowercase__ = [] while True: lowercase__ = get_avg(__UpperCAmelCase , __UpperCAmelCase ) last_numbers.append(__UpperCAmelCase ) if answer(__UpperCAmelCase ) == "low": lowercase__ = number elif answer(__UpperCAmelCase ) == "high": lowercase__ = number else: break print(F'''guess the number : {last_numbers[-1]}''' ) print(F'''details : {last_numbers!s}''' ) def _lowerCAmelCase ( ) ->None: """simple docstring""" lowercase__ = int(input('''Enter lower value : ''' ).strip() ) lowercase__ = int(input('''Enter high value : ''' ).strip() ) lowercase__ = int(input('''Enter value to guess : ''' ).strip() ) guess_the_number(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) if __name__ == "__main__": main()
161
import operator as op def UpperCAmelCase_ ( __UpperCAmelCase : str ) -> Any: SCREAMING_SNAKE_CASE_ = [] SCREAMING_SNAKE_CASE_ = lambda __UpperCAmelCase , __UpperCAmelCase : int(x / y ) # noqa: E731 integer division operation SCREAMING_SNAKE_CASE_ = { '^': op.pow, '*': op.mul, '/': div, '+': op.add, '-': op.sub, } # operators & their respective operation # print table header print('Symbol'.center(8 ) , 'Action'.center(12 ) , 'Stack' , sep=' | ' ) print('-' * (30 + len(__UpperCAmelCase )) ) for x in post_fix: if x.isdigit(): # if x in digit stack.append(__UpperCAmelCase ) # append x to stack # output in tabular format print(x.rjust(8 ) , ('push(' + x + ')').ljust(12 ) , ','.join(__UpperCAmelCase ) , sep=' | ' ) else: SCREAMING_SNAKE_CASE_ = stack.pop() # pop stack # output in tabular format print(''.rjust(8 ) , ('pop(' + b + ')').ljust(12 ) , ','.join(__UpperCAmelCase ) , sep=' | ' ) SCREAMING_SNAKE_CASE_ = stack.pop() # pop stack # output in tabular format print(''.rjust(8 ) , ('pop(' + a + ')').ljust(12 ) , ','.join(__UpperCAmelCase ) , sep=' | ' ) stack.append( str(opr[x](int(__UpperCAmelCase ) , int(__UpperCAmelCase ) ) ) ) # evaluate the 2 values popped from stack & push result to stack # output in tabular format print( x.rjust(8 ) , ('push(' + a + x + b + ')').ljust(12 ) , ','.join(__UpperCAmelCase ) , sep=' | ' , ) return int(stack[0] ) if __name__ == "__main__": lowerCamelCase__ : Tuple = input('\n\nEnter a Postfix Equation (space separated) = ').split(' ') print('\n\tResult = ', solve(Postfix))
31
0
"""simple docstring""" from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available A_ : Optional[Any] ={ 'configuration_autoformer': [ 'AUTOFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP', 'AutoformerConfig', ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A_ : List[str] =[ 'AUTOFORMER_PRETRAINED_MODEL_ARCHIVE_LIST', 'AutoformerForPrediction', 'AutoformerModel', 'AutoformerPreTrainedModel', ] if TYPE_CHECKING: from .configuration_autoformer import ( AUTOFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, AutoformerConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_autoformer import ( AUTOFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, AutoformerForPrediction, AutoformerModel, AutoformerPreTrainedModel, ) else: import sys A_ : Optional[int] =_LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
650
def UpperCAmelCase_ ( __UpperCAmelCase : int ) -> int: assert isinstance(__UpperCAmelCase , __UpperCAmelCase ), f"The input value of [n={number}] is not an integer" if number == 1: return 2 elif number < 1: SCREAMING_SNAKE_CASE_ = f"The input value of [n={number}] has to be > 0" raise ValueError(__UpperCAmelCase ) else: SCREAMING_SNAKE_CASE_ = sylvester(number - 1 ) SCREAMING_SNAKE_CASE_ = num - 1 SCREAMING_SNAKE_CASE_ = num return lower * upper + 1 if __name__ == "__main__": print(f'''The 8th number in Sylvester\'s sequence: {sylvester(8)}''')
31
0
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices __SCREAMING_SNAKE_CASE : List[str] = logging.get_logger(__name__) __SCREAMING_SNAKE_CASE : List[str] = { 'shi-labs/nat-mini-in1k-224': 'https://huggingface.co/shi-labs/nat-mini-in1k-224/resolve/main/config.json', # See all Nat models at https://huggingface.co/models?filter=nat } class lowerCamelCase_( _SCREAMING_SNAKE_CASE, _SCREAMING_SNAKE_CASE ): '''simple docstring''' lowercase__ : Optional[int] = 'nat' lowercase__ : Union[str, Any] = { 'num_attention_heads': 'num_heads', 'num_hidden_layers': 'num_layers', } def __init__( self , lowerCamelCase__=4 , lowerCamelCase__=3 , lowerCamelCase__=6_4 , lowerCamelCase__=[3, 4, 6, 5] , lowerCamelCase__=[2, 4, 8, 1_6] , lowerCamelCase__=7 , lowerCamelCase__=3.0 , lowerCamelCase__=True , lowerCamelCase__=0.0 , lowerCamelCase__=0.0 , lowerCamelCase__=0.1 , lowerCamelCase__="gelu" , lowerCamelCase__=0.0_2 , lowerCamelCase__=1e-5 , lowerCamelCase__=0.0 , lowerCamelCase__=None , lowerCamelCase__=None , **lowerCamelCase__ , ): super().__init__(**_lowerCAmelCase ) _lowerCamelCase = patch_size _lowerCamelCase = num_channels _lowerCamelCase = embed_dim _lowerCamelCase = depths _lowerCamelCase = len(_lowerCAmelCase ) _lowerCamelCase = num_heads _lowerCamelCase = kernel_size _lowerCamelCase = mlp_ratio _lowerCamelCase = qkv_bias _lowerCamelCase = hidden_dropout_prob _lowerCamelCase = attention_probs_dropout_prob _lowerCamelCase = drop_path_rate _lowerCamelCase = hidden_act _lowerCamelCase = layer_norm_eps _lowerCamelCase = initializer_range # we set the hidden_size attribute in order to make Nat work with VisionEncoderDecoderModel # this indicates the channel dimension after the last stage of the model _lowerCamelCase = int(embed_dim * 2 ** (len(_lowerCAmelCase ) - 1) ) _lowerCamelCase = layer_scale_init_value _lowerCamelCase = ['''stem'''] + [F"""stage{idx}""" for idx in range(1 , len(_lowerCAmelCase ) + 1 )] _lowerCamelCase , _lowerCamelCase = get_aligned_output_features_output_indices( out_features=_lowerCAmelCase , out_indices=_lowerCAmelCase , stage_names=self.stage_names )
661
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_sentencepiece_available, is_tf_available, is_tokenizers_available, is_torch_available, ) if is_sentencepiece_available(): from ..ta.tokenization_ta import TaTokenizer else: from ...utils.dummy_sentencepiece_objects import TaTokenizer lowerCamelCase__ : List[Any] = TaTokenizer if is_tokenizers_available(): from ..ta.tokenization_ta_fast import TaTokenizerFast else: from ...utils.dummy_tokenizers_objects import TaTokenizerFast lowerCamelCase__ : Union[str, Any] = TaTokenizerFast lowerCamelCase__ : Dict = {'configuration_mt5': ['MT5Config', 'MT5OnnxConfig']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase__ : Tuple = [ 'MT5EncoderModel', 'MT5ForConditionalGeneration', 'MT5ForQuestionAnswering', 'MT5Model', 'MT5PreTrainedModel', 'MT5Stack', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase__ : Tuple = ['TFMT5EncoderModel', 'TFMT5ForConditionalGeneration', 'TFMT5Model'] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase__ : Tuple = ['FlaxMT5EncoderModel', 'FlaxMT5ForConditionalGeneration', 'FlaxMT5Model'] if TYPE_CHECKING: from .configuration_mta import MTaConfig, MTaOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mta import ( MTaEncoderModel, MTaForConditionalGeneration, MTaForQuestionAnswering, MTaModel, MTaPreTrainedModel, MTaStack, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_mta import TFMTaEncoderModel, TFMTaForConditionalGeneration, TFMTaModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_mta import FlaxMTaEncoderModel, FlaxMTaForConditionalGeneration, FlaxMTaModel else: import sys lowerCamelCase__ : int = _LazyModule( __name__, globals()['__file__'], _import_structure, extra_objects={'MT5Tokenizer': MTaTokenizer, 'MT5TokenizerFast': MTaTokenizerFast}, module_spec=__spec__, )
31
0
"""simple docstring""" from functools import reduce A = ( '73167176531330624919225119674426574742355349194934' '96983520312774506326239578318016984801869478851843' '85861560789112949495459501737958331952853208805511' '12540698747158523863050715693290963295227443043557' '66896648950445244523161731856403098711121722383113' '62229893423380308135336276614282806444486645238749' '30358907296290491560440772390713810515859307960866' '70172427121883998797908792274921901699720888093776' '65727333001053367881220235421809751254540594752243' '52584907711670556013604839586446706324415722155397' '53697817977846174064955149290862569321978468622482' '83972241375657056057490261407972968652414535100474' '82166370484403199890008895243450658541227588666881' '16427171479924442928230863465674813919123162824586' '17866458359124566529476545682848912883142607690042' '24219022671055626321111109370544217506941658960408' '07198403850962455444362981230987879927244284909188' '84580156166097919133875499200524063689912560717606' '05886116467109405077541002256983155200055935729725' '71636269561882670428252483600823257530420752963450' ) def _UpperCamelCase ( UpperCamelCase = N ) -> int: """simple docstring""" return max( # mypy cannot properly interpret reduce int(reduce(lambda UpperCamelCase , UpperCamelCase : str(int(__UpperCAmelCase ) * int(__UpperCAmelCase ) ) , n[i : i + 13] ) ) for i in range(len(__UpperCAmelCase ) - 12 ) ) if __name__ == "__main__": print(f'''{solution() = }''')
77
import subprocess import sys from transformers import BertConfig, BertModel, BertTokenizer, pipeline from transformers.testing_utils import TestCasePlus, require_torch class lowerCamelCase_ ( _SCREAMING_SNAKE_CASE ): '''simple docstring''' @require_torch def lowerCAmelCase_ ( self : int ): # this test is a bit tricky since TRANSFORMERS_OFFLINE can only be changed before # `transformers` is loaded, and it's too late for inside pytest - so we are changing it # while running an external program # python one-liner segments # this must be loaded before socket.socket is monkey-patched SCREAMING_SNAKE_CASE_ = '\nfrom transformers import BertConfig, BertModel, BertTokenizer, pipeline\n ' SCREAMING_SNAKE_CASE_ = '\nmname = "hf-internal-testing/tiny-random-bert"\nBertConfig.from_pretrained(mname)\nBertModel.from_pretrained(mname)\nBertTokenizer.from_pretrained(mname)\npipe = pipeline(task="fill-mask", model=mname)\nprint("success")\n ' SCREAMING_SNAKE_CASE_ = '\nimport socket\ndef offline_socket(*args, **kwargs): raise RuntimeError("Offline mode is enabled, we shouldn\'t access internet")\nsocket.socket = offline_socket\n ' # Force fetching the files so that we can use the cache SCREAMING_SNAKE_CASE_ = 'hf-internal-testing/tiny-random-bert' BertConfig.from_pretrained(_lowerCAmelCase ) BertModel.from_pretrained(_lowerCAmelCase ) BertTokenizer.from_pretrained(_lowerCAmelCase ) pipeline(task='fill-mask' , model=_lowerCAmelCase ) # baseline - just load from_pretrained with normal network SCREAMING_SNAKE_CASE_ = [sys.executable, '-c', '\n'.join([load, run, mock] )] # should succeed SCREAMING_SNAKE_CASE_ = self.get_env() # should succeed as TRANSFORMERS_OFFLINE=1 tells it to use local files SCREAMING_SNAKE_CASE_ = '1' SCREAMING_SNAKE_CASE_ = subprocess.run(_lowerCAmelCase , env=_lowerCAmelCase , check=_lowerCAmelCase , capture_output=_lowerCAmelCase ) self.assertEqual(result.returncode , 0 , result.stderr ) self.assertIn('success' , result.stdout.decode() ) @require_torch def lowerCAmelCase_ ( self : Tuple ): # python one-liner segments # this must be loaded before socket.socket is monkey-patched SCREAMING_SNAKE_CASE_ = '\nfrom transformers import BertConfig, BertModel, BertTokenizer, pipeline\n ' SCREAMING_SNAKE_CASE_ = '\nmname = "hf-internal-testing/tiny-random-bert"\nBertConfig.from_pretrained(mname)\nBertModel.from_pretrained(mname)\nBertTokenizer.from_pretrained(mname)\npipe = pipeline(task="fill-mask", model=mname)\nprint("success")\n ' SCREAMING_SNAKE_CASE_ = '\nimport socket\ndef offline_socket(*args, **kwargs): raise socket.error("Faking flaky internet")\nsocket.socket = offline_socket\n ' # Force fetching the files so that we can use the cache SCREAMING_SNAKE_CASE_ = 'hf-internal-testing/tiny-random-bert' BertConfig.from_pretrained(_lowerCAmelCase ) BertModel.from_pretrained(_lowerCAmelCase ) BertTokenizer.from_pretrained(_lowerCAmelCase ) pipeline(task='fill-mask' , model=_lowerCAmelCase ) # baseline - just load from_pretrained with normal network SCREAMING_SNAKE_CASE_ = [sys.executable, '-c', '\n'.join([load, run, mock] )] # should succeed SCREAMING_SNAKE_CASE_ = self.get_env() SCREAMING_SNAKE_CASE_ = subprocess.run(_lowerCAmelCase , env=_lowerCAmelCase , check=_lowerCAmelCase , capture_output=_lowerCAmelCase ) self.assertEqual(result.returncode , 0 , result.stderr ) self.assertIn('success' , result.stdout.decode() ) @require_torch def lowerCAmelCase_ ( self : List[str] ): # this test is a bit tricky since TRANSFORMERS_OFFLINE can only be changed before # `transformers` is loaded, and it's too late for inside pytest - so we are changing it # while running an external program # python one-liner segments # this must be loaded before socket.socket is monkey-patched SCREAMING_SNAKE_CASE_ = '\nfrom transformers import BertConfig, BertModel, BertTokenizer\n ' SCREAMING_SNAKE_CASE_ = '\nmname = "hf-internal-testing/tiny-random-bert-sharded"\nBertConfig.from_pretrained(mname)\nBertModel.from_pretrained(mname)\nprint("success")\n ' SCREAMING_SNAKE_CASE_ = '\nimport socket\ndef offline_socket(*args, **kwargs): raise ValueError("Offline mode is enabled")\nsocket.socket = offline_socket\n ' # baseline - just load from_pretrained with normal network SCREAMING_SNAKE_CASE_ = [sys.executable, '-c', '\n'.join([load, run] )] # should succeed SCREAMING_SNAKE_CASE_ = self.get_env() SCREAMING_SNAKE_CASE_ = subprocess.run(_lowerCAmelCase , env=_lowerCAmelCase , check=_lowerCAmelCase , capture_output=_lowerCAmelCase ) self.assertEqual(result.returncode , 0 , result.stderr ) self.assertIn('success' , result.stdout.decode() ) # next emulate no network SCREAMING_SNAKE_CASE_ = [sys.executable, '-c', '\n'.join([load, mock, run] )] # Doesn't fail anymore since the model is in the cache due to other tests, so commenting this. # env["TRANSFORMERS_OFFLINE"] = "0" # result = subprocess.run(cmd, env=env, check=False, capture_output=True) # self.assertEqual(result.returncode, 1, result.stderr) # should succeed as TRANSFORMERS_OFFLINE=1 tells it to use local files SCREAMING_SNAKE_CASE_ = '1' SCREAMING_SNAKE_CASE_ = subprocess.run(_lowerCAmelCase , env=_lowerCAmelCase , check=_lowerCAmelCase , capture_output=_lowerCAmelCase ) self.assertEqual(result.returncode , 0 , result.stderr ) self.assertIn('success' , result.stdout.decode() ) @require_torch def lowerCAmelCase_ ( self : Any ): SCREAMING_SNAKE_CASE_ = '\nfrom transformers import pipeline\n ' SCREAMING_SNAKE_CASE_ = '\nmname = "hf-internal-testing/tiny-random-bert"\npipe = pipeline(model=mname)\n ' SCREAMING_SNAKE_CASE_ = '\nimport socket\ndef offline_socket(*args, **kwargs): raise socket.error("Offline mode is enabled")\nsocket.socket = offline_socket\n ' SCREAMING_SNAKE_CASE_ = self.get_env() SCREAMING_SNAKE_CASE_ = '1' SCREAMING_SNAKE_CASE_ = [sys.executable, '-c', '\n'.join([load, mock, run] )] SCREAMING_SNAKE_CASE_ = subprocess.run(_lowerCAmelCase , env=_lowerCAmelCase , check=_lowerCAmelCase , capture_output=_lowerCAmelCase ) self.assertEqual(result.returncode , 1 , result.stderr ) self.assertIn( 'You cannot infer task automatically within `pipeline` when using offline mode' , result.stderr.decode().replace('\n' , '' ) , ) @require_torch def lowerCAmelCase_ ( self : Optional[int] ): SCREAMING_SNAKE_CASE_ = '\nfrom transformers import AutoModel\n ' SCREAMING_SNAKE_CASE_ = '\nmname = "hf-internal-testing/test_dynamic_model"\nAutoModel.from_pretrained(mname, trust_remote_code=True)\nprint("success")\n ' # baseline - just load from_pretrained with normal network SCREAMING_SNAKE_CASE_ = [sys.executable, '-c', '\n'.join([load, run] )] # should succeed SCREAMING_SNAKE_CASE_ = self.get_env() SCREAMING_SNAKE_CASE_ = subprocess.run(_lowerCAmelCase , env=_lowerCAmelCase , check=_lowerCAmelCase , capture_output=_lowerCAmelCase ) self.assertEqual(result.returncode , 0 , result.stderr ) self.assertIn('success' , result.stdout.decode() ) # should succeed as TRANSFORMERS_OFFLINE=1 tells it to use local files SCREAMING_SNAKE_CASE_ = '1' SCREAMING_SNAKE_CASE_ = subprocess.run(_lowerCAmelCase , env=_lowerCAmelCase , check=_lowerCAmelCase , capture_output=_lowerCAmelCase ) self.assertEqual(result.returncode , 0 , result.stderr ) self.assertIn('success' , result.stdout.decode() )
31
0
def lowerCAmelCase ( UpperCamelCase__ : int , UpperCamelCase__ : int ) -> int: """simple docstring""" return number | (1 << position) def lowerCAmelCase ( UpperCamelCase__ : int , UpperCamelCase__ : int ) -> int: """simple docstring""" return number & ~(1 << position) def lowerCAmelCase ( UpperCamelCase__ : int , UpperCamelCase__ : int ) -> int: """simple docstring""" return number ^ (1 << position) def lowerCAmelCase ( UpperCamelCase__ : int , UpperCamelCase__ : int ) -> bool: """simple docstring""" return ((number >> position) & 1) == 1 def lowerCAmelCase ( UpperCamelCase__ : int , UpperCamelCase__ : int ) -> int: """simple docstring""" return int((number & (1 << position)) != 0 ) if __name__ == "__main__": import doctest doctest.testmod()
202
import torch from transformers import PreTrainedModel, XLMRobertaConfig, XLMRobertaModel class lowerCamelCase_ ( _SCREAMING_SNAKE_CASE ): '''simple docstring''' lowercase_ = "M-CLIP" def __init__( self : Tuple , _lowerCAmelCase : List[str]=1_024 , _lowerCAmelCase : str=768 , **_lowerCAmelCase : Union[str, Any] ): SCREAMING_SNAKE_CASE_ = transformerDimSize SCREAMING_SNAKE_CASE_ = imageDimSize super().__init__(**_lowerCAmelCase ) class lowerCamelCase_ ( _SCREAMING_SNAKE_CASE ): '''simple docstring''' lowercase_ = MCLIPConfig def __init__( self : Dict , _lowerCAmelCase : Union[str, Any] , *_lowerCAmelCase : str , **_lowerCAmelCase : str ): super().__init__(_lowerCAmelCase , *_lowerCAmelCase , **_lowerCAmelCase ) SCREAMING_SNAKE_CASE_ = XLMRobertaModel(_lowerCAmelCase ) SCREAMING_SNAKE_CASE_ = torch.nn.Linear( in_features=config.transformerDimensions , out_features=config.numDims ) def lowerCAmelCase_ ( self : List[Any] , _lowerCAmelCase : Any , _lowerCAmelCase : Union[str, Any] ): SCREAMING_SNAKE_CASE_ = self.transformer(input_ids=_lowerCAmelCase , attention_mask=_lowerCAmelCase )[0] SCREAMING_SNAKE_CASE_ = (embs * attention_mask.unsqueeze(2 )).sum(dim=1 ) / attention_mask.sum(dim=1 )[:, None] return self.LinearTransformation(_lowerCAmelCase ), embs
31
0
'''simple docstring''' def _A ( lowercase__ = 10 , lowercase__ = 22 ): lowercase__ = range(1 , __UpperCAmelCase ) lowercase__ = range(1 , __UpperCAmelCase ) return sum( 1 for power in powers for base in bases if len(str(base**power ) ) == power ) if __name__ == "__main__": print(F'''{solution(10, 22) = }''')
325
import gc import random import unittest import numpy as np import torch from transformers import XLMRobertaTokenizer from diffusers import ( AltDiffusionImgaImgPipeline, AutoencoderKL, PNDMScheduler, UNetaDConditionModel, ) from diffusers.image_processor import VaeImageProcessor from diffusers.pipelines.alt_diffusion.modeling_roberta_series import ( RobertaSeriesConfig, RobertaSeriesModelWithTransformation, ) from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu enable_full_determinism() class lowerCamelCase_ ( unittest.TestCase ): '''simple docstring''' def lowerCAmelCase_ ( self : str ): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() @property def lowerCAmelCase_ ( self : Union[str, Any] ): SCREAMING_SNAKE_CASE_ = 1 SCREAMING_SNAKE_CASE_ = 3 SCREAMING_SNAKE_CASE_ = (32, 32) SCREAMING_SNAKE_CASE_ = floats_tensor((batch_size, num_channels) + sizes , rng=random.Random(0 ) ).to(_lowerCAmelCase ) return image @property def lowerCAmelCase_ ( self : Union[str, Any] ): torch.manual_seed(0 ) SCREAMING_SNAKE_CASE_ = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=('DownBlock2D', 'CrossAttnDownBlock2D') , up_block_types=('CrossAttnUpBlock2D', 'UpBlock2D') , cross_attention_dim=32 , ) return model @property def lowerCAmelCase_ ( self : Tuple ): torch.manual_seed(0 ) SCREAMING_SNAKE_CASE_ = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=['DownEncoderBlock2D', 'DownEncoderBlock2D'] , up_block_types=['UpDecoderBlock2D', 'UpDecoderBlock2D'] , latent_channels=4 , ) return model @property def lowerCAmelCase_ ( self : Optional[int] ): torch.manual_seed(0 ) SCREAMING_SNAKE_CASE_ = RobertaSeriesConfig( hidden_size=32 , project_dim=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=5_006 , ) return RobertaSeriesModelWithTransformation(_lowerCAmelCase ) @property def lowerCAmelCase_ ( self : List[Any] ): def extract(*_lowerCAmelCase : Optional[int] , **_lowerCAmelCase : str ): class lowerCamelCase_ : '''simple docstring''' def __init__( self : str ): SCREAMING_SNAKE_CASE_ = torch.ones([0] ) def lowerCAmelCase_ ( self : Union[str, Any] , _lowerCAmelCase : int ): self.pixel_values.to(_lowerCAmelCase ) return self return Out() return extract def lowerCAmelCase_ ( self : Optional[Any] ): SCREAMING_SNAKE_CASE_ = 'cpu' # ensure determinism for the device-dependent torch.Generator SCREAMING_SNAKE_CASE_ = self.dummy_cond_unet SCREAMING_SNAKE_CASE_ = PNDMScheduler(skip_prk_steps=_lowerCAmelCase ) SCREAMING_SNAKE_CASE_ = self.dummy_vae SCREAMING_SNAKE_CASE_ = self.dummy_text_encoder SCREAMING_SNAKE_CASE_ = XLMRobertaTokenizer.from_pretrained('hf-internal-testing/tiny-xlm-roberta' ) SCREAMING_SNAKE_CASE_ = 77 SCREAMING_SNAKE_CASE_ = self.dummy_image.to(_lowerCAmelCase ) SCREAMING_SNAKE_CASE_ = init_image / 2 + 0.5 # make sure here that pndm scheduler skips prk SCREAMING_SNAKE_CASE_ = AltDiffusionImgaImgPipeline( unet=_lowerCAmelCase , scheduler=_lowerCAmelCase , vae=_lowerCAmelCase , text_encoder=_lowerCAmelCase , tokenizer=_lowerCAmelCase , safety_checker=_lowerCAmelCase , feature_extractor=self.dummy_extractor , ) SCREAMING_SNAKE_CASE_ = VaeImageProcessor(vae_scale_factor=alt_pipe.vae_scale_factor , do_normalize=_lowerCAmelCase ) SCREAMING_SNAKE_CASE_ = alt_pipe.to(_lowerCAmelCase ) alt_pipe.set_progress_bar_config(disable=_lowerCAmelCase ) SCREAMING_SNAKE_CASE_ = 'A painting of a squirrel eating a burger' SCREAMING_SNAKE_CASE_ = torch.Generator(device=_lowerCAmelCase ).manual_seed(0 ) SCREAMING_SNAKE_CASE_ = alt_pipe( [prompt] , generator=_lowerCAmelCase , guidance_scale=6.0 , num_inference_steps=2 , output_type='np' , image=_lowerCAmelCase , ) SCREAMING_SNAKE_CASE_ = output.images SCREAMING_SNAKE_CASE_ = torch.Generator(device=_lowerCAmelCase ).manual_seed(0 ) SCREAMING_SNAKE_CASE_ = alt_pipe( [prompt] , generator=_lowerCAmelCase , guidance_scale=6.0 , num_inference_steps=2 , output_type='np' , image=_lowerCAmelCase , return_dict=_lowerCAmelCase , )[0] SCREAMING_SNAKE_CASE_ = image[0, -3:, -3:, -1] SCREAMING_SNAKE_CASE_ = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) SCREAMING_SNAKE_CASE_ = np.array([0.4427, 0.3731, 0.4249, 0.4941, 0.4546, 0.4148, 0.4193, 0.4666, 0.4499] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 5E-3 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 5E-3 @unittest.skipIf(torch_device != 'cuda' , 'This test requires a GPU' ) def lowerCAmelCase_ ( self : Tuple ): SCREAMING_SNAKE_CASE_ = self.dummy_cond_unet SCREAMING_SNAKE_CASE_ = PNDMScheduler(skip_prk_steps=_lowerCAmelCase ) SCREAMING_SNAKE_CASE_ = self.dummy_vae SCREAMING_SNAKE_CASE_ = self.dummy_text_encoder SCREAMING_SNAKE_CASE_ = XLMRobertaTokenizer.from_pretrained('hf-internal-testing/tiny-xlm-roberta' ) SCREAMING_SNAKE_CASE_ = 77 SCREAMING_SNAKE_CASE_ = self.dummy_image.to(_lowerCAmelCase ) # put models in fp16 SCREAMING_SNAKE_CASE_ = unet.half() SCREAMING_SNAKE_CASE_ = vae.half() SCREAMING_SNAKE_CASE_ = bert.half() # make sure here that pndm scheduler skips prk SCREAMING_SNAKE_CASE_ = AltDiffusionImgaImgPipeline( unet=_lowerCAmelCase , scheduler=_lowerCAmelCase , vae=_lowerCAmelCase , text_encoder=_lowerCAmelCase , tokenizer=_lowerCAmelCase , safety_checker=_lowerCAmelCase , feature_extractor=self.dummy_extractor , ) SCREAMING_SNAKE_CASE_ = VaeImageProcessor(vae_scale_factor=alt_pipe.vae_scale_factor , do_normalize=_lowerCAmelCase ) SCREAMING_SNAKE_CASE_ = alt_pipe.to(_lowerCAmelCase ) alt_pipe.set_progress_bar_config(disable=_lowerCAmelCase ) SCREAMING_SNAKE_CASE_ = 'A painting of a squirrel eating a burger' SCREAMING_SNAKE_CASE_ = torch.manual_seed(0 ) SCREAMING_SNAKE_CASE_ = alt_pipe( [prompt] , generator=_lowerCAmelCase , num_inference_steps=2 , output_type='np' , image=_lowerCAmelCase , ).images assert image.shape == (1, 32, 32, 3) @unittest.skipIf(torch_device != 'cuda' , 'This test requires a GPU' ) def lowerCAmelCase_ ( self : str ): SCREAMING_SNAKE_CASE_ = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/img2img/sketch-mountains-input.jpg' ) # resize to resolution that is divisible by 8 but not 16 or 32 SCREAMING_SNAKE_CASE_ = init_image.resize((760, 504) ) SCREAMING_SNAKE_CASE_ = 'BAAI/AltDiffusion' SCREAMING_SNAKE_CASE_ = AltDiffusionImgaImgPipeline.from_pretrained( _lowerCAmelCase , safety_checker=_lowerCAmelCase , ) pipe.to(_lowerCAmelCase ) pipe.set_progress_bar_config(disable=_lowerCAmelCase ) pipe.enable_attention_slicing() SCREAMING_SNAKE_CASE_ = 'A fantasy landscape, trending on artstation' SCREAMING_SNAKE_CASE_ = torch.manual_seed(0 ) SCREAMING_SNAKE_CASE_ = pipe( prompt=_lowerCAmelCase , image=_lowerCAmelCase , strength=0.75 , guidance_scale=7.5 , generator=_lowerCAmelCase , output_type='np' , ) SCREAMING_SNAKE_CASE_ = output.images[0] SCREAMING_SNAKE_CASE_ = image[255:258, 383:386, -1] assert image.shape == (504, 760, 3) SCREAMING_SNAKE_CASE_ = np.array([0.9358, 0.9397, 0.9599, 0.9901, 1.0000, 1.0000, 0.9882, 1.0000, 1.0000] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 @slow @require_torch_gpu class lowerCamelCase_ ( unittest.TestCase ): '''simple docstring''' def lowerCAmelCase_ ( self : str ): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def lowerCAmelCase_ ( self : int ): SCREAMING_SNAKE_CASE_ = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/img2img/sketch-mountains-input.jpg' ) SCREAMING_SNAKE_CASE_ = init_image.resize((768, 512) ) SCREAMING_SNAKE_CASE_ = load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/img2img/fantasy_landscape_alt.npy' ) SCREAMING_SNAKE_CASE_ = 'BAAI/AltDiffusion' SCREAMING_SNAKE_CASE_ = AltDiffusionImgaImgPipeline.from_pretrained( _lowerCAmelCase , safety_checker=_lowerCAmelCase , ) pipe.to(_lowerCAmelCase ) pipe.set_progress_bar_config(disable=_lowerCAmelCase ) pipe.enable_attention_slicing() SCREAMING_SNAKE_CASE_ = 'A fantasy landscape, trending on artstation' SCREAMING_SNAKE_CASE_ = torch.manual_seed(0 ) SCREAMING_SNAKE_CASE_ = pipe( prompt=_lowerCAmelCase , image=_lowerCAmelCase , strength=0.75 , guidance_scale=7.5 , generator=_lowerCAmelCase , output_type='np' , ) SCREAMING_SNAKE_CASE_ = output.images[0] assert image.shape == (512, 768, 3) # img2img is flaky across GPUs even in fp32, so using MAE here assert np.abs(expected_image - image ).max() < 1E-2
31
0
from pathlib import Path import fire def lowerCamelCase__ ( _lowercase , _lowercase , _lowercase ): '''simple docstring''' UpperCAmelCase_ : Optional[int] = Path(__UpperCAmelCase ) UpperCAmelCase_ : str = Path(__UpperCAmelCase ) dest_dir.mkdir(exist_ok=__UpperCAmelCase ) for path in src_dir.iterdir(): UpperCAmelCase_ : Dict = [x.rstrip() for x in list(path.open().readlines() )][:n] UpperCAmelCase_ : Optional[Any] = dest_dir.joinpath(path.name ) print(__UpperCAmelCase ) dest_path.open('''w''' ).write('''\n'''.join(__UpperCAmelCase ) ) if __name__ == "__main__": fire.Fire(minify)
30
from collections import OrderedDict from typing import TYPE_CHECKING, Any, List, Mapping, Optional, Union from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import TensorType, logging if TYPE_CHECKING: from ...onnx.config import PatchingSpec from ...tokenization_utils_base import PreTrainedTokenizerBase lowerCamelCase__ : Optional[int] = logging.get_logger(__name__) lowerCamelCase__ : Dict = { 'allenai/longformer-base-4096': 'https://huggingface.co/allenai/longformer-base-4096/resolve/main/config.json', 'allenai/longformer-large-4096': 'https://huggingface.co/allenai/longformer-large-4096/resolve/main/config.json', 'allenai/longformer-large-4096-finetuned-triviaqa': ( 'https://huggingface.co/allenai/longformer-large-4096-finetuned-triviaqa/resolve/main/config.json' ), 'allenai/longformer-base-4096-extra.pos.embd.only': ( 'https://huggingface.co/allenai/longformer-base-4096-extra.pos.embd.only/resolve/main/config.json' ), 'allenai/longformer-large-4096-extra.pos.embd.only': ( 'https://huggingface.co/allenai/longformer-large-4096-extra.pos.embd.only/resolve/main/config.json' ), } class lowerCamelCase_ ( _SCREAMING_SNAKE_CASE ): '''simple docstring''' lowercase_ = "longformer" def __init__( self : Union[str, Any] , _lowerCAmelCase : Union[List[int], int] = 512 , _lowerCAmelCase : int = 2 , _lowerCAmelCase : int = 1 , _lowerCAmelCase : int = 0 , _lowerCAmelCase : int = 2 , _lowerCAmelCase : int = 30_522 , _lowerCAmelCase : int = 768 , _lowerCAmelCase : int = 12 , _lowerCAmelCase : int = 12 , _lowerCAmelCase : int = 3_072 , _lowerCAmelCase : str = "gelu" , _lowerCAmelCase : float = 0.1 , _lowerCAmelCase : float = 0.1 , _lowerCAmelCase : int = 512 , _lowerCAmelCase : int = 2 , _lowerCAmelCase : float = 0.02 , _lowerCAmelCase : float = 1E-12 , _lowerCAmelCase : bool = False , **_lowerCAmelCase : Union[str, Any] , ): super().__init__(pad_token_id=_lowerCAmelCase , **_lowerCAmelCase ) SCREAMING_SNAKE_CASE_ = attention_window SCREAMING_SNAKE_CASE_ = sep_token_id SCREAMING_SNAKE_CASE_ = bos_token_id SCREAMING_SNAKE_CASE_ = eos_token_id SCREAMING_SNAKE_CASE_ = vocab_size SCREAMING_SNAKE_CASE_ = hidden_size SCREAMING_SNAKE_CASE_ = num_hidden_layers SCREAMING_SNAKE_CASE_ = num_attention_heads SCREAMING_SNAKE_CASE_ = hidden_act SCREAMING_SNAKE_CASE_ = intermediate_size SCREAMING_SNAKE_CASE_ = hidden_dropout_prob SCREAMING_SNAKE_CASE_ = attention_probs_dropout_prob SCREAMING_SNAKE_CASE_ = max_position_embeddings SCREAMING_SNAKE_CASE_ = type_vocab_size SCREAMING_SNAKE_CASE_ = initializer_range SCREAMING_SNAKE_CASE_ = layer_norm_eps SCREAMING_SNAKE_CASE_ = onnx_export class lowerCamelCase_ ( _SCREAMING_SNAKE_CASE ): '''simple docstring''' def __init__( self : Optional[Any] , _lowerCAmelCase : "PretrainedConfig" , _lowerCAmelCase : str = "default" , _lowerCAmelCase : "List[PatchingSpec]" = None ): super().__init__(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) SCREAMING_SNAKE_CASE_ = True @property def lowerCAmelCase_ ( self : Any ): if self.task == "multiple-choice": SCREAMING_SNAKE_CASE_ = {0: 'batch', 1: 'choice', 2: 'sequence'} else: SCREAMING_SNAKE_CASE_ = {0: 'batch', 1: 'sequence'} return OrderedDict( [ ('input_ids', dynamic_axis), ('attention_mask', dynamic_axis), ('global_attention_mask', dynamic_axis), ] ) @property def lowerCAmelCase_ ( self : Optional[int] ): SCREAMING_SNAKE_CASE_ = super().outputs if self.task == "default": SCREAMING_SNAKE_CASE_ = {0: 'batch'} return outputs @property def lowerCAmelCase_ ( self : str ): return 1E-4 @property def lowerCAmelCase_ ( self : Optional[Any] ): # needs to be >= 14 to support tril operator return max(super().default_onnx_opset , 14 ) def lowerCAmelCase_ ( self : str , _lowerCAmelCase : "PreTrainedTokenizerBase" , _lowerCAmelCase : int = -1 , _lowerCAmelCase : int = -1 , _lowerCAmelCase : bool = False , _lowerCAmelCase : Optional[TensorType] = None , ): SCREAMING_SNAKE_CASE_ = super().generate_dummy_inputs( preprocessor=_lowerCAmelCase , batch_size=_lowerCAmelCase , seq_length=_lowerCAmelCase , is_pair=_lowerCAmelCase , framework=_lowerCAmelCase ) import torch # for some reason, replacing this code by inputs["global_attention_mask"] = torch.randint(2, inputs["input_ids"].shape, dtype=torch.int64) # makes the export fail randomly SCREAMING_SNAKE_CASE_ = torch.zeros_like(inputs['input_ids'] ) # make every second token global SCREAMING_SNAKE_CASE_ = 1 return inputs
31
0
'''simple docstring''' import unittest from diffusers.models.unet_ad_blocks import * # noqa F403 from diffusers.utils import torch_device from .test_unet_blocks_common import UNetBlockTesterMixin class lowercase_ ( _SCREAMING_SNAKE_CASE , unittest.TestCase ): A_ = DownBlockaD # noqa F405 A_ = "down" def _lowerCAmelCase ( self : Tuple ): snake_case__ : List[Any] = [-0.0_2_3_2, -0.9_8_6_9, 0.8_0_5_4, -0.0_6_3_7, -0.1_6_8_8, -1.4_2_6_4, 0.4_4_7_0, -1.3_3_9_4, 0.0_9_0_4] super().test_output(_lowerCAmelCase ) class lowercase_ ( _SCREAMING_SNAKE_CASE , unittest.TestCase ): A_ = ResnetDownsampleBlockaD # noqa F405 A_ = "down" def _lowerCAmelCase ( self : List[Any] ): snake_case__ : Union[str, Any] = [0.0_7_1_0, 0.2_4_1_0, -0.7_3_2_0, -1.0_7_5_7, -1.1_3_4_3, 0.3_5_4_0, -0.0_1_3_3, -0.2_5_7_6, 0.0_9_4_8] super().test_output(_lowerCAmelCase ) class lowercase_ ( _SCREAMING_SNAKE_CASE , unittest.TestCase ): A_ = AttnDownBlockaD # noqa F405 A_ = "down" def _lowerCAmelCase ( self : List[Any] ): snake_case__ : str = [0.0_6_3_6, 0.8_9_6_4, -0.6_2_3_4, -1.0_1_3_1, 0.0_8_4_4, 0.4_9_3_5, 0.3_4_3_7, 0.0_9_1_1, -0.2_9_5_7] super().test_output(_lowerCAmelCase ) class lowercase_ ( _SCREAMING_SNAKE_CASE , unittest.TestCase ): A_ = CrossAttnDownBlockaD # noqa F405 A_ = "down" def _lowerCAmelCase ( self : Tuple ): snake_case__ , snake_case__ : List[Any] = super().prepare_init_args_and_inputs_for_common() snake_case__ : Any = 32 return init_dict, inputs_dict def _lowerCAmelCase ( self : Dict ): snake_case__ : Tuple = [0.2_2_3_8, -0.7_3_9_6, -0.2_2_5_5, -0.3_8_2_9, 0.1_9_2_5, 1.1_6_6_5, 0.0_6_0_3, -0.7_2_9_5, 0.1_9_8_3] super().test_output(_lowerCAmelCase ) class lowercase_ ( _SCREAMING_SNAKE_CASE , unittest.TestCase ): A_ = SimpleCrossAttnDownBlockaD # noqa F405 A_ = "down" @property def _lowerCAmelCase ( self : Optional[int] ): return super().get_dummy_input(include_encoder_hidden_states=_lowerCAmelCase ) def _lowerCAmelCase ( self : Any ): snake_case__ , snake_case__ : int = super().prepare_init_args_and_inputs_for_common() snake_case__ : Tuple = 32 return init_dict, inputs_dict @unittest.skipIf(torch_device == 'mps' , 'MPS result is not consistent' ) def _lowerCAmelCase ( self : Union[str, Any] ): snake_case__ : Dict = [0.7_9_2_1, -0.0_9_9_2, -0.1_9_6_2, -0.7_6_9_5, -0.4_2_4_2, 0.7_8_0_4, 0.4_7_3_7, 0.2_7_6_5, 0.3_3_3_8] super().test_output(_lowerCAmelCase ) class lowercase_ ( _SCREAMING_SNAKE_CASE , unittest.TestCase ): A_ = SkipDownBlockaD # noqa F405 A_ = "down" @property def _lowerCAmelCase ( self : Optional[Any] ): return super().get_dummy_input(include_skip_sample=_lowerCAmelCase ) def _lowerCAmelCase ( self : Dict ): snake_case__ : int = [-0.0_8_4_5, -0.2_0_8_7, -0.2_4_6_5, 0.0_9_7_1, 0.1_9_0_0, -0.0_4_8_4, 0.2_6_6_4, 0.4_1_7_9, 0.5_0_6_9] super().test_output(_lowerCAmelCase ) class lowercase_ ( _SCREAMING_SNAKE_CASE , unittest.TestCase ): A_ = AttnSkipDownBlockaD # noqa F405 A_ = "down" @property def _lowerCAmelCase ( self : int ): return super().get_dummy_input(include_skip_sample=_lowerCAmelCase ) def _lowerCAmelCase ( self : Any ): snake_case__ : List[Any] = [0.5_5_3_9, 0.1_6_0_9, 0.4_9_2_4, 0.0_5_3_7, -0.1_9_9_5, 0.4_0_5_0, 0.0_9_7_9, -0.2_7_2_1, -0.0_6_4_2] super().test_output(_lowerCAmelCase ) class lowercase_ ( _SCREAMING_SNAKE_CASE , unittest.TestCase ): A_ = DownEncoderBlockaD # noqa F405 A_ = "down" @property def _lowerCAmelCase ( self : List[str] ): return super().get_dummy_input(include_temb=_lowerCAmelCase ) def _lowerCAmelCase ( self : Union[str, Any] ): snake_case__ : Optional[int] = { 'in_channels': 32, 'out_channels': 32, } snake_case__ : Optional[Any] = self.dummy_input return init_dict, inputs_dict def _lowerCAmelCase ( self : Optional[Any] ): snake_case__ : Dict = [1.1_1_0_2, 0.5_3_0_2, 0.4_8_7_2, -0.0_0_2_3, -0.8_0_4_2, 0.0_4_8_3, -0.3_4_8_9, -0.5_6_3_2, 0.7_6_2_6] super().test_output(_lowerCAmelCase ) class lowercase_ ( _SCREAMING_SNAKE_CASE , unittest.TestCase ): A_ = AttnDownEncoderBlockaD # noqa F405 A_ = "down" @property def _lowerCAmelCase ( self : Union[str, Any] ): return super().get_dummy_input(include_temb=_lowerCAmelCase ) def _lowerCAmelCase ( self : Tuple ): snake_case__ : str = { 'in_channels': 32, 'out_channels': 32, } snake_case__ : List[str] = self.dummy_input return init_dict, inputs_dict def _lowerCAmelCase ( self : Dict ): snake_case__ : Dict = [0.8_9_6_6, -0.1_4_8_6, 0.8_5_6_8, 0.8_1_4_1, -0.9_0_4_6, -0.1_3_4_2, -0.0_9_7_2, -0.7_4_1_7, 0.1_5_3_8] super().test_output(_lowerCAmelCase ) class lowercase_ ( _SCREAMING_SNAKE_CASE , unittest.TestCase ): A_ = UNetMidBlockaD # noqa F405 A_ = "mid" def _lowerCAmelCase ( self : Optional[int] ): snake_case__ : int = { 'in_channels': 32, 'temb_channels': 128, } snake_case__ : Optional[Any] = self.dummy_input return init_dict, inputs_dict def _lowerCAmelCase ( self : Any ): snake_case__ : Optional[int] = [-0.1_0_6_2, 1.7_2_4_8, 0.3_4_9_4, 1.4_5_6_9, -0.0_9_1_0, -1.2_4_2_1, -0.9_9_8_4, 0.6_7_3_6, 1.0_0_2_8] super().test_output(_lowerCAmelCase ) class lowercase_ ( _SCREAMING_SNAKE_CASE , unittest.TestCase ): A_ = UNetMidBlockaDCrossAttn # noqa F405 A_ = "mid" def _lowerCAmelCase ( self : Optional[int] ): snake_case__ , snake_case__ : Tuple = super().prepare_init_args_and_inputs_for_common() snake_case__ : Optional[Any] = 32 return init_dict, inputs_dict def _lowerCAmelCase ( self : List[Any] ): snake_case__ : Optional[int] = [0.0_1_8_7, 2.4_2_2_0, 0.4_4_8_4, 1.1_2_0_3, -0.6_1_2_1, -1.5_1_2_2, -0.8_2_7_0, 0.7_8_5_1, 1.8_3_3_5] super().test_output(_lowerCAmelCase ) class lowercase_ ( _SCREAMING_SNAKE_CASE , unittest.TestCase ): A_ = UNetMidBlockaDSimpleCrossAttn # noqa F405 A_ = "mid" @property def _lowerCAmelCase ( self : List[Any] ): return super().get_dummy_input(include_encoder_hidden_states=_lowerCAmelCase ) def _lowerCAmelCase ( self : Any ): snake_case__ , snake_case__ : int = super().prepare_init_args_and_inputs_for_common() snake_case__ : Tuple = 32 return init_dict, inputs_dict def _lowerCAmelCase ( self : Optional[int] ): snake_case__ : Any = [0.7_1_4_3, 1.9_9_7_4, 0.5_4_4_8, 1.3_9_7_7, 0.1_2_8_2, -1.1_2_3_7, -1.4_2_3_8, 0.5_5_3_0, 0.8_8_8_0] super().test_output(_lowerCAmelCase ) class lowercase_ ( _SCREAMING_SNAKE_CASE , unittest.TestCase ): A_ = UpBlockaD # noqa F405 A_ = "up" @property def _lowerCAmelCase ( self : List[Any] ): return super().get_dummy_input(include_res_hidden_states_tuple=_lowerCAmelCase ) def _lowerCAmelCase ( self : List[Any] ): snake_case__ : Dict = [-0.2_0_4_1, -0.4_1_6_5, -0.3_0_2_2, 0.0_0_4_1, -0.6_6_2_8, -0.7_0_5_3, 0.1_9_2_8, -0.0_3_2_5, 0.0_5_2_3] super().test_output(_lowerCAmelCase ) class lowercase_ ( _SCREAMING_SNAKE_CASE , unittest.TestCase ): A_ = ResnetUpsampleBlockaD # noqa F405 A_ = "up" @property def _lowerCAmelCase ( self : Union[str, Any] ): return super().get_dummy_input(include_res_hidden_states_tuple=_lowerCAmelCase ) def _lowerCAmelCase ( self : Optional[Any] ): snake_case__ : int = [0.2_2_8_7, 0.3_5_4_9, -0.1_3_4_6, 0.4_7_9_7, -0.1_7_1_5, -0.9_6_4_9, 0.7_3_0_5, -0.5_8_6_4, -0.6_2_4_4] super().test_output(_lowerCAmelCase ) class lowercase_ ( _SCREAMING_SNAKE_CASE , unittest.TestCase ): A_ = CrossAttnUpBlockaD # noqa F405 A_ = "up" @property def _lowerCAmelCase ( self : int ): return super().get_dummy_input(include_res_hidden_states_tuple=_lowerCAmelCase ) def _lowerCAmelCase ( self : List[str] ): snake_case__ , snake_case__ : Any = super().prepare_init_args_and_inputs_for_common() snake_case__ : List[Any] = 32 return init_dict, inputs_dict def _lowerCAmelCase ( self : Optional[int] ): snake_case__ : int = [-0.1_4_0_3, -0.3_5_1_5, -0.0_4_2_0, -0.1_4_2_5, 0.3_1_6_7, 0.5_0_9_4, -0.2_1_8_1, 0.5_9_3_1, 0.5_5_8_2] super().test_output(_lowerCAmelCase ) class lowercase_ ( _SCREAMING_SNAKE_CASE , unittest.TestCase ): A_ = SimpleCrossAttnUpBlockaD # noqa F405 A_ = "up" @property def _lowerCAmelCase ( self : Tuple ): return super().get_dummy_input(include_res_hidden_states_tuple=_lowerCAmelCase , include_encoder_hidden_states=_lowerCAmelCase ) def _lowerCAmelCase ( self : Dict ): snake_case__ , snake_case__ : Tuple = super().prepare_init_args_and_inputs_for_common() snake_case__ : Union[str, Any] = 32 return init_dict, inputs_dict def _lowerCAmelCase ( self : Union[str, Any] ): snake_case__ : Optional[Any] = [0.2_6_4_5, 0.1_4_8_0, 0.0_9_0_9, 0.8_0_4_4, -0.9_7_5_8, -0.9_0_8_3, 0.0_9_9_4, -1.1_4_5_3, -0.7_4_0_2] super().test_output(_lowerCAmelCase ) class lowercase_ ( _SCREAMING_SNAKE_CASE , unittest.TestCase ): A_ = AttnUpBlockaD # noqa F405 A_ = "up" @property def _lowerCAmelCase ( self : Optional[Any] ): return super().get_dummy_input(include_res_hidden_states_tuple=_lowerCAmelCase ) @unittest.skipIf(torch_device == 'mps' , 'MPS result is not consistent' ) def _lowerCAmelCase ( self : Any ): snake_case__ : Any = [0.0_9_7_9, 0.1_3_2_6, 0.0_0_2_1, 0.0_6_5_9, 0.2_2_4_9, 0.0_0_5_9, 0.1_1_3_2, 0.5_9_5_2, 0.1_0_3_3] super().test_output(_lowerCAmelCase ) class lowercase_ ( _SCREAMING_SNAKE_CASE , unittest.TestCase ): A_ = SkipUpBlockaD # noqa F405 A_ = "up" @property def _lowerCAmelCase ( self : Union[str, Any] ): return super().get_dummy_input(include_res_hidden_states_tuple=_lowerCAmelCase ) def _lowerCAmelCase ( self : Tuple ): snake_case__ : Tuple = [-0.0_8_9_3, -0.1_2_3_4, -0.1_5_0_6, -0.0_3_3_2, 0.0_1_2_3, -0.0_2_1_1, 0.0_5_6_6, 0.0_1_4_3, 0.0_3_6_2] super().test_output(_lowerCAmelCase ) class lowercase_ ( _SCREAMING_SNAKE_CASE , unittest.TestCase ): A_ = AttnSkipUpBlockaD # noqa F405 A_ = "up" @property def _lowerCAmelCase ( self : Dict ): return super().get_dummy_input(include_res_hidden_states_tuple=_lowerCAmelCase ) def _lowerCAmelCase ( self : Dict ): snake_case__ : Optional[int] = [0.0_3_6_1, 0.0_6_1_7, 0.2_7_8_7, -0.0_3_5_0, 0.0_3_4_2, 0.3_4_2_1, -0.0_8_4_3, 0.0_9_1_3, 0.3_0_1_5] super().test_output(_lowerCAmelCase ) class lowercase_ ( _SCREAMING_SNAKE_CASE , unittest.TestCase ): A_ = UpDecoderBlockaD # noqa F405 A_ = "up" @property def _lowerCAmelCase ( self : List[str] ): return super().get_dummy_input(include_temb=_lowerCAmelCase ) def _lowerCAmelCase ( self : Any ): snake_case__ : Any = {'in_channels': 32, 'out_channels': 32} snake_case__ : str = self.dummy_input return init_dict, inputs_dict def _lowerCAmelCase ( self : Optional[Any] ): snake_case__ : Dict = [0.4_4_0_4, 0.1_9_9_8, -0.9_8_8_6, -0.3_3_2_0, -0.3_1_2_8, -0.7_0_3_4, -0.6_9_5_5, -0.2_3_3_8, -0.3_1_3_7] super().test_output(_lowerCAmelCase ) class lowercase_ ( _SCREAMING_SNAKE_CASE , unittest.TestCase ): A_ = AttnUpDecoderBlockaD # noqa F405 A_ = "up" @property def _lowerCAmelCase ( self : Optional[int] ): return super().get_dummy_input(include_temb=_lowerCAmelCase ) def _lowerCAmelCase ( self : Dict ): snake_case__ : List[Any] = {'in_channels': 32, 'out_channels': 32} snake_case__ : str = self.dummy_input return init_dict, inputs_dict def _lowerCAmelCase ( self : int ): snake_case__ : Any = [0.6_7_3_8, 0.4_4_9_1, 0.1_0_5_5, 1.0_7_1_0, 0.7_3_1_6, 0.3_3_3_9, 0.3_3_5_2, 0.1_0_2_3, 0.3_5_6_8] super().test_output(_lowerCAmelCase )
270
import warnings from ...utils import logging from .image_processing_mobilevit import MobileViTImageProcessor lowerCamelCase__ : Optional[int] = logging.get_logger(__name__) class lowerCamelCase_ ( _SCREAMING_SNAKE_CASE ): '''simple docstring''' def __init__( self : str , *_lowerCAmelCase : Tuple , **_lowerCAmelCase : int ): warnings.warn( 'The class MobileViTFeatureExtractor is deprecated and will be removed in version 5 of Transformers.' ' Please use MobileViTImageProcessor instead.' , _lowerCAmelCase , ) super().__init__(*_lowerCAmelCase , **_lowerCAmelCase )
31
0
'''simple docstring''' from __future__ import annotations from functools import lru_cache from math import ceil UpperCamelCase__ : Any = 100 UpperCamelCase__ : Optional[Any] = set(range(3, NUM_PRIMES, 2)) primes.add(2) UpperCamelCase__ : int for prime in range(3, ceil(NUM_PRIMES**0.5), 2): if prime not in primes: continue primes.difference_update(set(range(prime * prime, NUM_PRIMES, prime))) @lru_cache(maxsize=1_00 ) def lowerCAmelCase_ ( SCREAMING_SNAKE_CASE_ ) -> set[int]: """simple docstring""" if number_to_partition < 0: return set() elif number_to_partition == 0: return {1} _SCREAMING_SNAKE_CASE = set() _SCREAMING_SNAKE_CASE = 42 _SCREAMING_SNAKE_CASE = 42 for prime in primes: if prime > number_to_partition: continue for sub in partition(number_to_partition - prime ): ret.add(sub * prime ) return ret def lowerCAmelCase_ ( SCREAMING_SNAKE_CASE_ = 50_00 ) -> int | None: """simple docstring""" for number_to_partition in range(1 , __UpperCAmelCase ): if len(partition(__UpperCAmelCase ) ) > number_unique_partitions: return number_to_partition return None if __name__ == "__main__": print(f"""{solution() = }""")
591
from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCamelCase__ : Optional[int] = logging.get_logger(__name__) lowerCamelCase__ : Tuple = { 'microsoft/swinv2-tiny-patch4-window8-256': ( 'https://huggingface.co/microsoft/swinv2-tiny-patch4-window8-256/resolve/main/config.json' ), } class lowerCamelCase_ ( _SCREAMING_SNAKE_CASE ): '''simple docstring''' lowercase_ = "swinv2" lowercase_ = { "num_attention_heads": "num_heads", "num_hidden_layers": "num_layers", } def __init__( self : Dict , _lowerCAmelCase : Optional[Any]=224 , _lowerCAmelCase : Optional[int]=4 , _lowerCAmelCase : Tuple=3 , _lowerCAmelCase : Tuple=96 , _lowerCAmelCase : Dict=[2, 2, 6, 2] , _lowerCAmelCase : Optional[Any]=[3, 6, 12, 24] , _lowerCAmelCase : str=7 , _lowerCAmelCase : List[Any]=4.0 , _lowerCAmelCase : List[str]=True , _lowerCAmelCase : List[Any]=0.0 , _lowerCAmelCase : List[Any]=0.0 , _lowerCAmelCase : Any=0.1 , _lowerCAmelCase : List[Any]="gelu" , _lowerCAmelCase : str=False , _lowerCAmelCase : str=0.02 , _lowerCAmelCase : List[Any]=1E-5 , _lowerCAmelCase : str=32 , **_lowerCAmelCase : List[Any] , ): super().__init__(**_lowerCAmelCase ) SCREAMING_SNAKE_CASE_ = image_size SCREAMING_SNAKE_CASE_ = patch_size SCREAMING_SNAKE_CASE_ = num_channels SCREAMING_SNAKE_CASE_ = embed_dim SCREAMING_SNAKE_CASE_ = depths SCREAMING_SNAKE_CASE_ = len(_lowerCAmelCase ) SCREAMING_SNAKE_CASE_ = num_heads SCREAMING_SNAKE_CASE_ = window_size SCREAMING_SNAKE_CASE_ = mlp_ratio SCREAMING_SNAKE_CASE_ = qkv_bias SCREAMING_SNAKE_CASE_ = hidden_dropout_prob SCREAMING_SNAKE_CASE_ = attention_probs_dropout_prob SCREAMING_SNAKE_CASE_ = drop_path_rate SCREAMING_SNAKE_CASE_ = hidden_act SCREAMING_SNAKE_CASE_ = use_absolute_embeddings SCREAMING_SNAKE_CASE_ = layer_norm_eps SCREAMING_SNAKE_CASE_ = initializer_range SCREAMING_SNAKE_CASE_ = encoder_stride # we set the hidden_size attribute in order to make Swinv2 work with VisionEncoderDecoderModel # this indicates the channel dimension after the last stage of the model SCREAMING_SNAKE_CASE_ = int(embed_dim * 2 ** (len(_lowerCAmelCase ) - 1) ) SCREAMING_SNAKE_CASE_ = (0, 0, 0, 0)
31
0
import pytest from datasets.parallel import ParallelBackendConfig, parallel_backend from datasets.utils.py_utils import map_nested from .utils import require_dill_gt_0_3_2, require_joblibspark, require_not_windows def __lowercase ( lowerCamelCase : str ): # picklable for multiprocessing return i + 1 @require_dill_gt_0_3_2 @require_joblibspark @require_not_windows def __lowercase ( ): with parallel_backend('spark' ): assert ParallelBackendConfig.backend_name == "spark" UpperCamelCase_ : Optional[int] = [1, 2, 3] with pytest.raises(__UpperCAmelCase ): with parallel_backend('unsupported backend' ): map_nested(__UpperCAmelCase , __UpperCAmelCase , num_proc=2 ) with pytest.raises(__UpperCAmelCase ): with parallel_backend('unsupported backend' ): map_nested(__UpperCAmelCase , __UpperCAmelCase , num_proc=-1 ) @require_dill_gt_0_3_2 @require_joblibspark @require_not_windows @pytest.mark.parametrize('num_proc' , [2, -1] ) def __lowercase ( lowerCamelCase : Tuple ): UpperCamelCase_ : Optional[int] = [1, 2] UpperCamelCase_ : Dict = {'a': 1, 'b': 2} UpperCamelCase_ : Union[str, Any] = {'a': [1, 2], 'b': [3, 4]} UpperCamelCase_ : List[str] = {'a': {'1': 1}, 'b': 2} UpperCamelCase_ : Union[str, Any] = {'a': 1, 'b': 2, 'c': 3, 'd': 4} UpperCamelCase_ : Any = [2, 3] UpperCamelCase_ : Any = {'a': 2, 'b': 3} UpperCamelCase_ : List[Any] = {'a': [2, 3], 'b': [4, 5]} UpperCamelCase_ : Optional[int] = {'a': {'1': 2}, 'b': 3} UpperCamelCase_ : List[str] = {'a': 2, 'b': 3, 'c': 4, 'd': 5} with parallel_backend('spark' ): assert map_nested(__UpperCAmelCase , __UpperCAmelCase , num_proc=__UpperCAmelCase ) == expected_map_nested_sa assert map_nested(__UpperCAmelCase , __UpperCAmelCase , num_proc=__UpperCAmelCase ) == expected_map_nested_sa assert map_nested(__UpperCAmelCase , __UpperCAmelCase , num_proc=__UpperCAmelCase ) == expected_map_nested_sa assert map_nested(__UpperCAmelCase , __UpperCAmelCase , num_proc=__UpperCAmelCase ) == expected_map_nested_sa assert map_nested(__UpperCAmelCase , __UpperCAmelCase , num_proc=__UpperCAmelCase ) == expected_map_nested_sa
417
import itertools import random import unittest import numpy as np from transformers import BatchFeature, SpeechTaFeatureExtractor from transformers.testing_utils import require_torch from transformers.utils.import_utils import is_torch_available from ...test_sequence_feature_extraction_common import SequenceFeatureExtractionTestMixin if is_torch_available(): import torch lowerCamelCase__ : Dict = random.Random() def UpperCAmelCase_ ( __UpperCAmelCase : int , __UpperCAmelCase : Tuple=1.0 , __UpperCAmelCase : Dict=None , __UpperCAmelCase : Dict=None ) -> Tuple: if rng is None: SCREAMING_SNAKE_CASE_ = global_rng SCREAMING_SNAKE_CASE_ = [] for batch_idx in range(shape[0] ): values.append([] ) for _ in range(shape[1] ): values[-1].append(rng.random() * scale ) return values @require_torch class lowerCamelCase_ ( unittest.TestCase ): '''simple docstring''' def __init__( self : List[str] , _lowerCAmelCase : int , _lowerCAmelCase : Optional[Any]=7 , _lowerCAmelCase : Union[str, Any]=400 , _lowerCAmelCase : Tuple=2_000 , _lowerCAmelCase : str=1 , _lowerCAmelCase : int=0.0 , _lowerCAmelCase : Optional[Any]=16_000 , _lowerCAmelCase : Optional[Any]=True , _lowerCAmelCase : Any=80 , _lowerCAmelCase : Union[str, Any]=16 , _lowerCAmelCase : List[str]=64 , _lowerCAmelCase : List[Any]="hann_window" , _lowerCAmelCase : Any=80 , _lowerCAmelCase : List[Any]=7_600 , _lowerCAmelCase : List[Any]=1E-10 , _lowerCAmelCase : Optional[Any]=True , ): SCREAMING_SNAKE_CASE_ = parent SCREAMING_SNAKE_CASE_ = batch_size SCREAMING_SNAKE_CASE_ = min_seq_length SCREAMING_SNAKE_CASE_ = max_seq_length SCREAMING_SNAKE_CASE_ = (self.max_seq_length - self.min_seq_length) // (self.batch_size - 1) SCREAMING_SNAKE_CASE_ = feature_size SCREAMING_SNAKE_CASE_ = padding_value SCREAMING_SNAKE_CASE_ = sampling_rate SCREAMING_SNAKE_CASE_ = do_normalize SCREAMING_SNAKE_CASE_ = num_mel_bins SCREAMING_SNAKE_CASE_ = hop_length SCREAMING_SNAKE_CASE_ = win_length SCREAMING_SNAKE_CASE_ = win_function SCREAMING_SNAKE_CASE_ = fmin SCREAMING_SNAKE_CASE_ = fmax SCREAMING_SNAKE_CASE_ = mel_floor SCREAMING_SNAKE_CASE_ = return_attention_mask def lowerCAmelCase_ ( self : Union[str, Any] ): return { "feature_size": self.feature_size, "padding_value": self.padding_value, "sampling_rate": self.sampling_rate, "do_normalize": self.do_normalize, "num_mel_bins": self.num_mel_bins, "hop_length": self.hop_length, "win_length": self.win_length, "win_function": self.win_function, "fmin": self.fmin, "fmax": self.fmax, "mel_floor": self.mel_floor, "return_attention_mask": self.return_attention_mask, } def lowerCAmelCase_ ( self : Dict , _lowerCAmelCase : Optional[int]=False , _lowerCAmelCase : str=False ): def _flatten(_lowerCAmelCase : Dict ): return list(itertools.chain(*_lowerCAmelCase ) ) if equal_length: SCREAMING_SNAKE_CASE_ = floats_list((self.batch_size, self.max_seq_length) ) else: # make sure that inputs increase in size SCREAMING_SNAKE_CASE_ = [ _flatten(floats_list((x, self.feature_size) ) ) for x in range(self.min_seq_length , self.max_seq_length , self.seq_length_diff ) ] if numpify: SCREAMING_SNAKE_CASE_ = [np.asarray(_lowerCAmelCase ) for x in speech_inputs] return speech_inputs def lowerCAmelCase_ ( self : List[Any] , _lowerCAmelCase : Union[str, Any]=False , _lowerCAmelCase : Optional[int]=False ): if equal_length: SCREAMING_SNAKE_CASE_ = [floats_list((self.max_seq_length, self.num_mel_bins) ) for _ in range(self.batch_size )] else: # make sure that inputs increase in size SCREAMING_SNAKE_CASE_ = [ floats_list((x, self.num_mel_bins) ) for x in range(self.min_seq_length , self.max_seq_length , self.seq_length_diff ) ] if numpify: SCREAMING_SNAKE_CASE_ = [np.asarray(_lowerCAmelCase ) for x in speech_inputs] return speech_inputs @require_torch class lowerCamelCase_ ( _SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' lowercase_ = SpeechTaFeatureExtractor def lowerCAmelCase_ ( self : Any ): SCREAMING_SNAKE_CASE_ = SpeechTaFeatureExtractionTester(self ) def lowerCAmelCase_ ( self : Any , _lowerCAmelCase : int ): self.assertTrue(np.all(np.mean(_lowerCAmelCase , axis=0 ) < 1E-3 ) ) self.assertTrue(np.all(np.abs(np.var(_lowerCAmelCase , axis=0 ) - 1 ) < 1E-3 ) ) def lowerCAmelCase_ ( self : List[Any] ): # Tests that all call wrap to encode_plus and batch_encode_plus SCREAMING_SNAKE_CASE_ = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) # create three inputs of length 800, 1000, and 1200 SCREAMING_SNAKE_CASE_ = [floats_list((1, x) )[0] for x in range(800 , 1_400 , 200 )] SCREAMING_SNAKE_CASE_ = [np.asarray(_lowerCAmelCase ) for speech_input in speech_inputs] # Test not batched input SCREAMING_SNAKE_CASE_ = feat_extract(speech_inputs[0] , return_tensors='np' ).input_values SCREAMING_SNAKE_CASE_ = feat_extract(np_speech_inputs[0] , return_tensors='np' ).input_values self.assertTrue(np.allclose(_lowerCAmelCase , _lowerCAmelCase , atol=1E-3 ) ) # Test batched SCREAMING_SNAKE_CASE_ = feat_extract(_lowerCAmelCase , return_tensors='np' ).input_values SCREAMING_SNAKE_CASE_ = feat_extract(_lowerCAmelCase , return_tensors='np' ).input_values for enc_seq_a, enc_seq_a in zip(_lowerCAmelCase , _lowerCAmelCase ): self.assertTrue(np.allclose(_lowerCAmelCase , _lowerCAmelCase , atol=1E-3 ) ) def lowerCAmelCase_ ( self : Union[str, Any] ): SCREAMING_SNAKE_CASE_ = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) SCREAMING_SNAKE_CASE_ = [floats_list((1, x) )[0] for x in range(800 , 1_400 , 200 )] SCREAMING_SNAKE_CASE_ = ['longest', 'max_length', 'do_not_pad'] SCREAMING_SNAKE_CASE_ = [None, 1_600, None] for max_length, padding in zip(_lowerCAmelCase , _lowerCAmelCase ): SCREAMING_SNAKE_CASE_ = feat_extract(_lowerCAmelCase , padding=_lowerCAmelCase , max_length=_lowerCAmelCase , return_tensors='np' ) SCREAMING_SNAKE_CASE_ = processed.input_values self._check_zero_mean_unit_variance(input_values[0][:800] ) self.assertTrue(input_values[0][800:].sum() < 1E-6 ) self._check_zero_mean_unit_variance(input_values[1][:1_000] ) self.assertTrue(input_values[0][1_000:].sum() < 1E-6 ) self._check_zero_mean_unit_variance(input_values[2][:1_200] ) def lowerCAmelCase_ ( self : Optional[Any] ): SCREAMING_SNAKE_CASE_ = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) SCREAMING_SNAKE_CASE_ = range(800 , 1_400 , 200 ) SCREAMING_SNAKE_CASE_ = [floats_list((1, x) )[0] for x in lengths] SCREAMING_SNAKE_CASE_ = ['longest', 'max_length', 'do_not_pad'] SCREAMING_SNAKE_CASE_ = [None, 1_600, None] for max_length, padding in zip(_lowerCAmelCase , _lowerCAmelCase ): SCREAMING_SNAKE_CASE_ = feat_extract(_lowerCAmelCase , max_length=_lowerCAmelCase , padding=_lowerCAmelCase ) SCREAMING_SNAKE_CASE_ = processed.input_values self._check_zero_mean_unit_variance(input_values[0][:800] ) self._check_zero_mean_unit_variance(input_values[1][:1_000] ) self._check_zero_mean_unit_variance(input_values[2][:1_200] ) def lowerCAmelCase_ ( self : Dict ): SCREAMING_SNAKE_CASE_ = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) SCREAMING_SNAKE_CASE_ = [floats_list((1, x) )[0] for x in range(800 , 1_400 , 200 )] SCREAMING_SNAKE_CASE_ = feat_extract( _lowerCAmelCase , truncation=_lowerCAmelCase , max_length=1_000 , padding='max_length' , return_tensors='np' ) SCREAMING_SNAKE_CASE_ = processed.input_values self._check_zero_mean_unit_variance(input_values[0, :800] ) self._check_zero_mean_unit_variance(input_values[1] ) self._check_zero_mean_unit_variance(input_values[2] ) def lowerCAmelCase_ ( self : Dict ): SCREAMING_SNAKE_CASE_ = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) SCREAMING_SNAKE_CASE_ = [floats_list((1, x) )[0] for x in range(800 , 1_400 , 200 )] SCREAMING_SNAKE_CASE_ = feat_extract( _lowerCAmelCase , truncation=_lowerCAmelCase , max_length=1_000 , padding='longest' , return_tensors='np' ) SCREAMING_SNAKE_CASE_ = processed.input_values self._check_zero_mean_unit_variance(input_values[0, :800] ) self._check_zero_mean_unit_variance(input_values[1, :1_000] ) self._check_zero_mean_unit_variance(input_values[2] ) # make sure that if max_length < longest -> then pad to max_length self.assertTrue(input_values.shape == (3, 1_000) ) SCREAMING_SNAKE_CASE_ = [floats_list((1, x) )[0] for x in range(800 , 1_400 , 200 )] SCREAMING_SNAKE_CASE_ = feat_extract( _lowerCAmelCase , truncation=_lowerCAmelCase , max_length=2_000 , padding='longest' , return_tensors='np' ) SCREAMING_SNAKE_CASE_ = processed.input_values self._check_zero_mean_unit_variance(input_values[0, :800] ) self._check_zero_mean_unit_variance(input_values[1, :1_000] ) self._check_zero_mean_unit_variance(input_values[2] ) # make sure that if max_length > longest -> then pad to longest self.assertTrue(input_values.shape == (3, 1_200) ) def lowerCAmelCase_ ( self : Optional[int] ): SCREAMING_SNAKE_CASE_ = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) SCREAMING_SNAKE_CASE_ = np.random.rand(100 ).astype(np.floataa ) SCREAMING_SNAKE_CASE_ = np_speech_inputs.tolist() for inputs in [py_speech_inputs, np_speech_inputs]: SCREAMING_SNAKE_CASE_ = feature_extractor.pad([{'input_values': inputs}] , return_tensors='np' ) self.assertTrue(np_processed.input_values.dtype == np.floataa ) SCREAMING_SNAKE_CASE_ = feature_extractor.pad([{'input_values': inputs}] , return_tensors='pt' ) self.assertTrue(pt_processed.input_values.dtype == torch.floataa ) def lowerCAmelCase_ ( self : Tuple ): # Tests that all call wrap to encode_plus and batch_encode_plus SCREAMING_SNAKE_CASE_ = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) # create three inputs of length 800, 1000, and 1200 SCREAMING_SNAKE_CASE_ = [floats_list((1, x) )[0] for x in range(800 , 1_400 , 200 )] SCREAMING_SNAKE_CASE_ = [np.asarray(_lowerCAmelCase ) for speech_input in speech_inputs] # Test feature size SCREAMING_SNAKE_CASE_ = feature_extractor(audio_target=_lowerCAmelCase , padding=_lowerCAmelCase , return_tensors='np' ).input_values self.assertTrue(input_values.ndim == 3 ) self.assertTrue(input_values.shape[-1] == feature_extractor.num_mel_bins ) # Test not batched input SCREAMING_SNAKE_CASE_ = feature_extractor(speech_inputs[0] , return_tensors='np' ).input_values SCREAMING_SNAKE_CASE_ = feature_extractor(np_speech_inputs[0] , return_tensors='np' ).input_values self.assertTrue(np.allclose(_lowerCAmelCase , _lowerCAmelCase , atol=1E-3 ) ) # Test batched SCREAMING_SNAKE_CASE_ = feature_extractor(_lowerCAmelCase , return_tensors='np' ).input_values SCREAMING_SNAKE_CASE_ = feature_extractor(_lowerCAmelCase , return_tensors='np' ).input_values for enc_seq_a, enc_seq_a in zip(_lowerCAmelCase , _lowerCAmelCase ): self.assertTrue(np.allclose(_lowerCAmelCase , _lowerCAmelCase , atol=1E-3 ) ) # Test 2-D numpy arrays are batched. SCREAMING_SNAKE_CASE_ = [floats_list((1, x) )[0] for x in (800, 800, 800)] SCREAMING_SNAKE_CASE_ = np.asarray(_lowerCAmelCase ) SCREAMING_SNAKE_CASE_ = feature_extractor(_lowerCAmelCase , return_tensors='np' ).input_values SCREAMING_SNAKE_CASE_ = feature_extractor(_lowerCAmelCase , return_tensors='np' ).input_values for enc_seq_a, enc_seq_a in zip(_lowerCAmelCase , _lowerCAmelCase ): self.assertTrue(np.allclose(_lowerCAmelCase , _lowerCAmelCase , atol=1E-3 ) ) def lowerCAmelCase_ ( self : str ): SCREAMING_SNAKE_CASE_ = self.feat_extract_tester.prepare_inputs_for_target() SCREAMING_SNAKE_CASE_ = self.feature_extraction_class(**self.feat_extract_dict ) SCREAMING_SNAKE_CASE_ = feat_extract.model_input_names[0] SCREAMING_SNAKE_CASE_ = BatchFeature({input_name: speech_inputs} ) self.assertTrue(all(len(_lowerCAmelCase ) == len(_lowerCAmelCase ) for x, y in zip(_lowerCAmelCase , processed_features[input_name] ) ) ) SCREAMING_SNAKE_CASE_ = self.feat_extract_tester.prepare_inputs_for_target(equal_length=_lowerCAmelCase ) SCREAMING_SNAKE_CASE_ = BatchFeature({input_name: speech_inputs} , tensor_type='np' ) SCREAMING_SNAKE_CASE_ = processed_features[input_name] if len(batch_features_input.shape ) < 3: SCREAMING_SNAKE_CASE_ = batch_features_input[:, :, None] self.assertTrue( batch_features_input.shape == (self.feat_extract_tester.batch_size, len(speech_inputs[0] ), self.feat_extract_tester.num_mel_bins) ) @require_torch def lowerCAmelCase_ ( self : Dict ): SCREAMING_SNAKE_CASE_ = self.feat_extract_tester.prepare_inputs_for_target(equal_length=_lowerCAmelCase ) SCREAMING_SNAKE_CASE_ = self.feature_extraction_class(**self.feat_extract_dict ) SCREAMING_SNAKE_CASE_ = feat_extract.model_input_names[0] SCREAMING_SNAKE_CASE_ = BatchFeature({input_name: speech_inputs} , tensor_type='pt' ) SCREAMING_SNAKE_CASE_ = processed_features[input_name] if len(batch_features_input.shape ) < 3: SCREAMING_SNAKE_CASE_ = batch_features_input[:, :, None] self.assertTrue( batch_features_input.shape == (self.feat_extract_tester.batch_size, len(speech_inputs[0] ), self.feat_extract_tester.num_mel_bins) ) @require_torch def lowerCAmelCase_ ( self : Dict ): SCREAMING_SNAKE_CASE_ = self.feature_extraction_class(**self.feat_extract_dict ) SCREAMING_SNAKE_CASE_ = self.feat_extract_tester.prepare_inputs_for_target() SCREAMING_SNAKE_CASE_ = feat_extract.model_input_names[0] SCREAMING_SNAKE_CASE_ = BatchFeature({input_name: speech_inputs} ) SCREAMING_SNAKE_CASE_ = feat_extract.num_mel_bins # hack! SCREAMING_SNAKE_CASE_ = feat_extract.pad(_lowerCAmelCase , padding='longest' , return_tensors='np' )[input_name] SCREAMING_SNAKE_CASE_ = feat_extract.pad(_lowerCAmelCase , padding='longest' , return_tensors='pt' )[input_name] self.assertTrue(abs(input_np.astype(np.floataa ).sum() - input_pt.numpy().astype(np.floataa ).sum() ) < 1E-2 ) def lowerCAmelCase_ ( self : str ): SCREAMING_SNAKE_CASE_ = self.feat_extract_dict SCREAMING_SNAKE_CASE_ = True SCREAMING_SNAKE_CASE_ = self.feature_extraction_class(**_lowerCAmelCase ) SCREAMING_SNAKE_CASE_ = self.feat_extract_tester.prepare_inputs_for_target() SCREAMING_SNAKE_CASE_ = [len(_lowerCAmelCase ) for x in speech_inputs] SCREAMING_SNAKE_CASE_ = feat_extract.model_input_names[0] SCREAMING_SNAKE_CASE_ = BatchFeature({input_name: speech_inputs} ) SCREAMING_SNAKE_CASE_ = feat_extract.num_mel_bins # hack! SCREAMING_SNAKE_CASE_ = feat_extract.pad(_lowerCAmelCase , padding='longest' , return_tensors='np' ) self.assertIn('attention_mask' , _lowerCAmelCase ) self.assertListEqual(list(processed.attention_mask.shape ) , list(processed[input_name].shape[:2] ) ) self.assertListEqual(processed.attention_mask.sum(-1 ).tolist() , _lowerCAmelCase ) def lowerCAmelCase_ ( self : Any ): SCREAMING_SNAKE_CASE_ = self.feat_extract_dict SCREAMING_SNAKE_CASE_ = True SCREAMING_SNAKE_CASE_ = self.feature_extraction_class(**_lowerCAmelCase ) SCREAMING_SNAKE_CASE_ = self.feat_extract_tester.prepare_inputs_for_target() SCREAMING_SNAKE_CASE_ = [len(_lowerCAmelCase ) for x in speech_inputs] SCREAMING_SNAKE_CASE_ = feat_extract.model_input_names[0] SCREAMING_SNAKE_CASE_ = BatchFeature({input_name: speech_inputs} ) SCREAMING_SNAKE_CASE_ = min(_lowerCAmelCase ) SCREAMING_SNAKE_CASE_ = feat_extract.num_mel_bins # hack! SCREAMING_SNAKE_CASE_ = feat_extract.pad( _lowerCAmelCase , padding='max_length' , max_length=_lowerCAmelCase , truncation=_lowerCAmelCase , return_tensors='np' ) self.assertIn('attention_mask' , _lowerCAmelCase ) self.assertListEqual( list(processed_pad.attention_mask.shape ) , [processed_pad[input_name].shape[0], max_length] ) self.assertListEqual( processed_pad.attention_mask[:, :max_length].sum(-1 ).tolist() , [max_length for x in speech_inputs] ) def lowerCAmelCase_ ( self : List[Any] , _lowerCAmelCase : Tuple ): from datasets import load_dataset SCREAMING_SNAKE_CASE_ = load_dataset('hf-internal-testing/librispeech_asr_dummy' , 'clean' , split='validation' ) # automatic decoding with librispeech SCREAMING_SNAKE_CASE_ = ds.sort('id' ).select(range(_lowerCAmelCase ) )[:num_samples]['audio'] return [x["array"] for x in speech_samples] def lowerCAmelCase_ ( self : Any ): # fmt: off SCREAMING_SNAKE_CASE_ = torch.tensor( [2.3_804E-03, 2.0_752E-03, 1.9_836E-03, 2.1_057E-03, 1.6_174E-03, 3.0_518E-04, 9.1_553E-05, 3.3_569E-04, 9.7_656E-04, 1.8_311E-03, 2.0_142E-03, 2.1_057E-03, 1.7_395E-03, 4.5_776E-04, -3.9_673E-04, 4.5_776E-04, 1.0_071E-03, 9.1_553E-05, 4.8_828E-04, 1.1_597E-03, 7.3_242E-04, 9.4_604E-04, 1.8_005E-03, 1.8_311E-03, 8.8_501E-04, 4.2_725E-04, 4.8_828E-04, 7.3_242E-04, 1.0_986E-03, 2.1_057E-03] ) # fmt: on SCREAMING_SNAKE_CASE_ = self._load_datasamples(1 ) SCREAMING_SNAKE_CASE_ = SpeechTaFeatureExtractor() SCREAMING_SNAKE_CASE_ = feature_extractor(_lowerCAmelCase , return_tensors='pt' ).input_values self.assertEquals(input_values.shape , (1, 93_680) ) self.assertTrue(torch.allclose(input_values[0, :30] , _lowerCAmelCase , atol=1E-6 ) ) def lowerCAmelCase_ ( self : Optional[int] ): # fmt: off SCREAMING_SNAKE_CASE_ = torch.tensor( [-2.6870, -3.0104, -3.1356, -3.5352, -3.0044, -3.0353, -3.4719, -3.6777, -3.1520, -2.9435, -2.6553, -2.8795, -2.9944, -2.5921, -3.0279, -3.0386, -3.0864, -3.1291, -3.2353, -2.7444, -2.6831, -2.7287, -3.1761, -3.1571, -3.2726, -3.0582, -3.1007, -3.4533, -3.4695, -3.0998] ) # fmt: on SCREAMING_SNAKE_CASE_ = self._load_datasamples(1 ) SCREAMING_SNAKE_CASE_ = SpeechTaFeatureExtractor() SCREAMING_SNAKE_CASE_ = feature_extractor(audio_target=_lowerCAmelCase , return_tensors='pt' ).input_values self.assertEquals(input_values.shape , (1, 366, 80) ) self.assertTrue(torch.allclose(input_values[0, 0, :30] , _lowerCAmelCase , atol=1E-4 ) )
31
0
import dataclasses import json import warnings from dataclasses import dataclass, field from time import time from typing import List from ..utils import logging UpperCAmelCase__ = logging.get_logger(__name__) def a_ (__A=None , __A=None ) -> str: """simple docstring""" return field(default_factory=lambda: default , metadata=__UpperCAmelCase ) @dataclass class snake_case_ : """simple docstring""" snake_case__ = list_field( default=[] , metadata={ """help""": ( """Model checkpoints to be provided to the AutoModel classes. Leave blank to benchmark the base version""" """ of all available models""" ) } , ) snake_case__ = list_field( default=[8] , metadata={"""help""": """List of batch sizes for which memory and time performance will be evaluated"""} ) snake_case__ = list_field( default=[8, 32, 128, 512] , metadata={"""help""": """List of sequence lengths for which memory and time performance will be evaluated"""} , ) snake_case__ = field( default=_SCREAMING_SNAKE_CASE , metadata={"""help""": """Whether to benchmark inference of model. Inference can be disabled via --no-inference."""} , ) snake_case__ = field( default=_SCREAMING_SNAKE_CASE , metadata={"""help""": """Whether to run on available cuda devices. Cuda can be disabled via --no-cuda."""} , ) snake_case__ = field( default=_SCREAMING_SNAKE_CASE , metadata={"""help""": """Whether to run on available tpu devices. TPU can be disabled via --no-tpu."""} ) snake_case__ = field(default=_SCREAMING_SNAKE_CASE , metadata={"""help""": """Use FP16 to accelerate inference."""} ) snake_case__ = field(default=_SCREAMING_SNAKE_CASE , metadata={"""help""": """Benchmark training of model"""} ) snake_case__ = field(default=_SCREAMING_SNAKE_CASE , metadata={"""help""": """Verbose memory tracing"""} ) snake_case__ = field( default=_SCREAMING_SNAKE_CASE , metadata={"""help""": """Whether to perform speed measurements. Speed measurements can be disabled via --no-speed."""} , ) snake_case__ = field( default=_SCREAMING_SNAKE_CASE , metadata={ """help""": """Whether to perform memory measurements. Memory measurements can be disabled via --no-memory""" } , ) snake_case__ = field(default=_SCREAMING_SNAKE_CASE , metadata={"""help""": """Trace memory line by line"""} ) snake_case__ = field(default=_SCREAMING_SNAKE_CASE , metadata={"""help""": """Save result to a CSV file"""} ) snake_case__ = field(default=_SCREAMING_SNAKE_CASE , metadata={"""help""": """Save all print statements in a log file"""} ) snake_case__ = field(default=_SCREAMING_SNAKE_CASE , metadata={"""help""": """Whether to print environment information"""} ) snake_case__ = field( default=_SCREAMING_SNAKE_CASE , metadata={ """help""": ( """Whether to use multiprocessing for memory and speed measurement. It is highly recommended to use""" """ multiprocessing for accurate CPU and GPU memory measurements. This option should only be disabled""" """ for debugging / testing and on TPU.""" ) } , ) snake_case__ = field( default=F'''inference_time_{round(time() )}.csv''' , metadata={"""help""": """CSV filename used if saving time results to csv."""} , ) snake_case__ = field( default=F'''inference_memory_{round(time() )}.csv''' , metadata={"""help""": """CSV filename used if saving memory results to csv."""} , ) snake_case__ = field( default=F'''train_time_{round(time() )}.csv''' , metadata={"""help""": """CSV filename used if saving time results to csv for training."""} , ) snake_case__ = field( default=F'''train_memory_{round(time() )}.csv''' , metadata={"""help""": """CSV filename used if saving memory results to csv for training."""} , ) snake_case__ = field( default=F'''env_info_{round(time() )}.csv''' , metadata={"""help""": """CSV filename used if saving environment information."""} , ) snake_case__ = field( default=F'''log_{round(time() )}.csv''' , metadata={"""help""": """Log filename used if print statements are saved in log."""} , ) snake_case__ = field(default=3 , metadata={"""help""": """Times an experiment will be run."""} ) snake_case__ = field( default=_SCREAMING_SNAKE_CASE , metadata={ """help""": ( """Instead of loading the model as defined in `config.architectures` if exists, just load the pretrain""" """ model weights.""" ) } , ) def UpperCAmelCase__ (self: List[str] ) -> int: '''simple docstring''' warnings.warn( f'The class {self.__class__} is deprecated. Hugging Face Benchmarking utils' " are deprecated in general and it is advised to use external Benchmarking libraries " " to benchmark Transformer models." , _lowerCAmelCase , ) def UpperCAmelCase__ (self: str ) -> Optional[int]: '''simple docstring''' return json.dumps(dataclasses.asdict(self ) , indent=2 ) @property def UpperCAmelCase__ (self: Dict ) -> Optional[int]: '''simple docstring''' if len(self.models ) <= 0: raise ValueError( "Please make sure you provide at least one model name / model identifier, *e.g.* `--models" " bert-base-cased` or `args.models = [\'bert-base-cased\']." ) return self.models @property def UpperCAmelCase__ (self: Any ) -> int: '''simple docstring''' if not self.multi_process: return False elif self.is_tpu: logger.info("Multiprocessing is currently not possible on TPU." ) return False else: return True
351
from __future__ import annotations from typing import TypedDict class lowerCamelCase_ ( _SCREAMING_SNAKE_CASE ): '''simple docstring''' lowercase_ = 42 lowercase_ = 42 def UpperCAmelCase_ ( __UpperCAmelCase : str ) -> list[str]: if not isinstance(__UpperCAmelCase , __UpperCAmelCase ): raise TypeError('The parameter s type must be str.' ) return [s[i:] + s[:i] for i in range(len(__UpperCAmelCase ) )] def UpperCAmelCase_ ( __UpperCAmelCase : str ) -> BWTTransformDict: if not isinstance(__UpperCAmelCase , __UpperCAmelCase ): raise TypeError('The parameter s type must be str.' ) if not s: raise ValueError('The parameter s must not be empty.' ) SCREAMING_SNAKE_CASE_ = all_rotations(__UpperCAmelCase ) rotations.sort() # sort the list of rotations in alphabetically order # make a string composed of the last char of each rotation SCREAMING_SNAKE_CASE_ = { "bwt_string": "".join([word[-1] for word in rotations] ), "idx_original_string": rotations.index(__UpperCAmelCase ), } return response def UpperCAmelCase_ ( __UpperCAmelCase : str , __UpperCAmelCase : int ) -> str: if not isinstance(__UpperCAmelCase , __UpperCAmelCase ): raise TypeError('The parameter bwt_string type must be str.' ) if not bwt_string: raise ValueError('The parameter bwt_string must not be empty.' ) try: SCREAMING_SNAKE_CASE_ = int(__UpperCAmelCase ) except ValueError: raise TypeError( 'The parameter idx_original_string type must be int or passive' ' of cast to int.' ) if idx_original_string < 0: raise ValueError('The parameter idx_original_string must not be lower than 0.' ) if idx_original_string >= len(__UpperCAmelCase ): raise ValueError( 'The parameter idx_original_string must be lower than' ' len(bwt_string).' ) SCREAMING_SNAKE_CASE_ = [''] * len(__UpperCAmelCase ) for _ in range(len(__UpperCAmelCase ) ): for i in range(len(__UpperCAmelCase ) ): SCREAMING_SNAKE_CASE_ = bwt_string[i] + ordered_rotations[i] ordered_rotations.sort() return ordered_rotations[idx_original_string] if __name__ == "__main__": lowerCamelCase__ : Optional[int] = 'Provide a string that I will generate its BWT transform: ' lowerCamelCase__ : List[str] = input(entry_msg).strip() lowerCamelCase__ : int = bwt_transform(s) print( f'''Burrows Wheeler transform for string \'{s}\' results ''' f'''in \'{result['bwt_string']}\'''' ) lowerCamelCase__ : Dict = reverse_bwt(result['bwt_string'], result['idx_original_string']) print( f'''Reversing Burrows Wheeler transform for entry \'{result['bwt_string']}\' ''' f'''we get original string \'{original_string}\'''' )
31
0
'''simple docstring''' from collections import OrderedDict from typing import List, Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging _lowerCAmelCase = logging.get_logger(__name__) _lowerCAmelCase = { 'google/efficientnet-b7': 'https://huggingface.co/google/efficientnet-b7/resolve/main/config.json', } class __A ( _SCREAMING_SNAKE_CASE ): """simple docstring""" A_ = 'efficientnet' def __init__( self , _lowerCamelCase = 3 , _lowerCamelCase = 6_0_0 , _lowerCamelCase = 2.0 , _lowerCamelCase = 3.1 , _lowerCamelCase = 8 , _lowerCamelCase = [3, 3, 5, 3, 5, 5, 3] , _lowerCamelCase = [3_2, 1_6, 2_4, 4_0, 8_0, 1_1_2, 1_9_2] , _lowerCamelCase = [1_6, 2_4, 4_0, 8_0, 1_1_2, 1_9_2, 3_2_0] , _lowerCamelCase = [] , _lowerCamelCase = [1, 2, 2, 2, 1, 2, 1] , _lowerCamelCase = [1, 2, 2, 3, 3, 4, 1] , _lowerCamelCase = [1, 6, 6, 6, 6, 6, 6] , _lowerCamelCase = 0.2_5 , _lowerCamelCase = "swish" , _lowerCamelCase = 2_5_6_0 , _lowerCamelCase = "mean" , _lowerCamelCase = 0.0_2 , _lowerCamelCase = 0.0_0_1 , _lowerCamelCase = 0.9_9 , _lowerCamelCase = 0.5 , _lowerCamelCase = 0.2 , **_lowerCamelCase , )-> Dict: super().__init__(**_lowerCAmelCase ) lowercase__ = num_channels lowercase__ = image_size lowercase__ = width_coefficient lowercase__ = depth_coefficient lowercase__ = depth_divisor lowercase__ = kernel_sizes lowercase__ = in_channels lowercase__ = out_channels lowercase__ = depthwise_padding lowercase__ = strides lowercase__ = num_block_repeats lowercase__ = expand_ratios lowercase__ = squeeze_expansion_ratio lowercase__ = hidden_act lowercase__ = hidden_dim lowercase__ = pooling_type lowercase__ = initializer_range lowercase__ = batch_norm_eps lowercase__ = batch_norm_momentum lowercase__ = dropout_rate lowercase__ = drop_connect_rate lowercase__ = sum(_lowerCAmelCase ) * 4 class __A ( _SCREAMING_SNAKE_CASE ): """simple docstring""" A_ = version.parse('1.11' ) @property def snake_case_( self )-> int: return OrderedDict( [ ('''pixel_values''', {0: '''batch''', 1: '''num_channels''', 2: '''height''', 3: '''width'''}), ] ) @property def snake_case_( self )-> Any: return 1e-5
161
class lowerCamelCase_ : '''simple docstring''' def __init__( self : str ): SCREAMING_SNAKE_CASE_ = {} def lowerCAmelCase_ ( self : List[str] ): print(self.vertex ) for i in self.vertex: print(_lowerCAmelCase , ' -> ' , ' -> '.join([str(_lowerCAmelCase ) for j in self.vertex[i]] ) ) def lowerCAmelCase_ ( self : Union[str, Any] , _lowerCAmelCase : int , _lowerCAmelCase : int ): # check if vertex is already present, if from_vertex in self.vertex: self.vertex[from_vertex].append(_lowerCAmelCase ) else: # else make a new vertex SCREAMING_SNAKE_CASE_ = [to_vertex] def lowerCAmelCase_ ( self : Optional[Any] ): # visited array for storing already visited nodes SCREAMING_SNAKE_CASE_ = [False] * len(self.vertex ) # call the recursive helper function for i in range(len(self.vertex ) ): if not visited[i]: self.dfs_recursive(_lowerCAmelCase , _lowerCAmelCase ) def lowerCAmelCase_ ( self : Tuple , _lowerCAmelCase : int , _lowerCAmelCase : list ): # mark start vertex as visited SCREAMING_SNAKE_CASE_ = True print(_lowerCAmelCase , end=' ' ) # Recur for all the vertices that are adjacent to this node for i in self.vertex: if not visited[i]: self.dfs_recursive(_lowerCAmelCase , _lowerCAmelCase ) if __name__ == "__main__": lowerCamelCase__ : List[Any] = Graph() g.add_edge(0, 1) g.add_edge(0, 2) g.add_edge(1, 2) g.add_edge(2, 0) g.add_edge(2, 3) g.add_edge(3, 3) g.print_graph() print('DFS:') g.dfs() # OUTPUT: # 0 -> 1 -> 2 # 1 -> 2 # 2 -> 0 -> 3 # 3 -> 3 # DFS: # 0 1 2 3
31
0
"""simple docstring""" def SCREAMING_SNAKE_CASE_ ( snake_case : int = 200 )-> int: _lowerCamelCase = [1, 2, 5, 10, 20, 50, 100, 200] _lowerCamelCase = [0] * (pence + 1) _lowerCamelCase = 1 # base case: 1 way to make 0 pence for coin in coins: for i in range(__UpperCAmelCase , pence + 1 , 1 ): number_of_ways[i] += number_of_ways[i - coin] return number_of_ways[pence] if __name__ == "__main__": assert solution(2_0_0) == 7_3_6_8_2
650
from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCamelCase__ : str = logging.get_logger(__name__) lowerCamelCase__ : Tuple = { 'funnel-transformer/small': 'https://huggingface.co/funnel-transformer/small/resolve/main/config.json', 'funnel-transformer/small-base': 'https://huggingface.co/funnel-transformer/small-base/resolve/main/config.json', 'funnel-transformer/medium': 'https://huggingface.co/funnel-transformer/medium/resolve/main/config.json', 'funnel-transformer/medium-base': 'https://huggingface.co/funnel-transformer/medium-base/resolve/main/config.json', 'funnel-transformer/intermediate': ( 'https://huggingface.co/funnel-transformer/intermediate/resolve/main/config.json' ), 'funnel-transformer/intermediate-base': ( 'https://huggingface.co/funnel-transformer/intermediate-base/resolve/main/config.json' ), 'funnel-transformer/large': 'https://huggingface.co/funnel-transformer/large/resolve/main/config.json', 'funnel-transformer/large-base': 'https://huggingface.co/funnel-transformer/large-base/resolve/main/config.json', 'funnel-transformer/xlarge': 'https://huggingface.co/funnel-transformer/xlarge/resolve/main/config.json', 'funnel-transformer/xlarge-base': 'https://huggingface.co/funnel-transformer/xlarge-base/resolve/main/config.json', } class lowerCamelCase_ ( _SCREAMING_SNAKE_CASE ): '''simple docstring''' lowercase_ = "funnel" lowercase_ = { "hidden_size": "d_model", "num_attention_heads": "n_head", } def __init__( self : int , _lowerCAmelCase : Optional[int]=30_522 , _lowerCAmelCase : List[str]=[4, 4, 4] , _lowerCAmelCase : Tuple=None , _lowerCAmelCase : Optional[int]=2 , _lowerCAmelCase : int=768 , _lowerCAmelCase : Optional[Any]=12 , _lowerCAmelCase : Optional[Any]=64 , _lowerCAmelCase : Optional[Any]=3_072 , _lowerCAmelCase : List[str]="gelu_new" , _lowerCAmelCase : Any=0.1 , _lowerCAmelCase : int=0.1 , _lowerCAmelCase : Tuple=0.0 , _lowerCAmelCase : List[Any]=0.1 , _lowerCAmelCase : Dict=None , _lowerCAmelCase : str=1E-9 , _lowerCAmelCase : Any="mean" , _lowerCAmelCase : Union[str, Any]="relative_shift" , _lowerCAmelCase : Optional[Any]=True , _lowerCAmelCase : Dict=True , _lowerCAmelCase : Tuple=True , **_lowerCAmelCase : Optional[Any] , ): SCREAMING_SNAKE_CASE_ = vocab_size SCREAMING_SNAKE_CASE_ = block_sizes SCREAMING_SNAKE_CASE_ = [1] * len(_lowerCAmelCase ) if block_repeats is None else block_repeats assert len(_lowerCAmelCase ) == len( self.block_repeats ), "`block_sizes` and `block_repeats` should have the same length." SCREAMING_SNAKE_CASE_ = num_decoder_layers SCREAMING_SNAKE_CASE_ = d_model SCREAMING_SNAKE_CASE_ = n_head SCREAMING_SNAKE_CASE_ = d_head SCREAMING_SNAKE_CASE_ = d_inner SCREAMING_SNAKE_CASE_ = hidden_act SCREAMING_SNAKE_CASE_ = hidden_dropout SCREAMING_SNAKE_CASE_ = attention_dropout SCREAMING_SNAKE_CASE_ = activation_dropout SCREAMING_SNAKE_CASE_ = initializer_range SCREAMING_SNAKE_CASE_ = initializer_std SCREAMING_SNAKE_CASE_ = layer_norm_eps assert pooling_type in [ "mean", "max", ], F"Got {pooling_type} for `pooling_type` but only 'mean' and 'max' are supported." SCREAMING_SNAKE_CASE_ = pooling_type assert attention_type in [ "relative_shift", "factorized", ], F"Got {attention_type} for `attention_type` but only 'relative_shift' and 'factorized' are supported." SCREAMING_SNAKE_CASE_ = attention_type SCREAMING_SNAKE_CASE_ = separate_cls SCREAMING_SNAKE_CASE_ = truncate_seq SCREAMING_SNAKE_CASE_ = pool_q_only super().__init__(**_lowerCAmelCase ) @property def lowerCAmelCase_ ( self : Optional[int] ): return sum(self.block_sizes ) @num_hidden_layers.setter def lowerCAmelCase_ ( self : int , _lowerCAmelCase : List[Any] ): raise NotImplementedError( 'This model does not support the setting of `num_hidden_layers`. Please set `block_sizes`.' ) @property def lowerCAmelCase_ ( self : List[Any] ): return len(self.block_sizes ) @num_blocks.setter def lowerCAmelCase_ ( self : Dict , _lowerCAmelCase : Union[str, Any] ): raise NotImplementedError('This model does not support the setting of `num_blocks`. Please set `block_sizes`.' )
31
0
"""simple docstring""" import itertools from dataclasses import dataclass from typing import Any, Callable, Dict, List, Optional, Union import pandas as pd import pyarrow as pa import datasets import datasets.config from datasets.features.features import require_storage_cast from datasets.table import table_cast from datasets.utils.py_utils import Literal __SCREAMING_SNAKE_CASE : int = datasets.utils.logging.get_logger(__name__) __SCREAMING_SNAKE_CASE : str = ['names', 'prefix'] __SCREAMING_SNAKE_CASE : List[Any] = ['warn_bad_lines', 'error_bad_lines', 'mangle_dupe_cols'] __SCREAMING_SNAKE_CASE : Optional[int] = ['encoding_errors', 'on_bad_lines'] __SCREAMING_SNAKE_CASE : str = ['date_format'] @dataclass class lowerCamelCase_( datasets.BuilderConfig ): '''simple docstring''' lowercase__ : Optional[int] = ',' lowercase__ : Union[str, Any] = None lowercase__ : List[Any] = 'infer' lowercase__ : Any = None lowercase__ : Optional[int] = None lowercase__ : Optional[int] = None lowercase__ : Union[str, Any] = None lowercase__ : Optional[Any] = None lowercase__ : List[Any] = True lowercase__ : str = None lowercase__ : Dict = None lowercase__ : str = None lowercase__ : Dict = None lowercase__ : Optional[int] = False lowercase__ : int = None lowercase__ : List[str] = None lowercase__ : Union[str, Any] = None lowercase__ : Optional[int] = True lowercase__ : Union[str, Any] = True lowercase__ : List[Any] = False lowercase__ : str = True lowercase__ : List[Any] = None lowercase__ : Dict = '.' lowercase__ : int = None lowercase__ : Tuple = '"' lowercase__ : Union[str, Any] = 0 lowercase__ : List[Any] = None lowercase__ : Any = None lowercase__ : Optional[int] = None lowercase__ : List[Any] = None lowercase__ : str = True lowercase__ : Dict = True lowercase__ : int = 0 lowercase__ : int = True lowercase__ : List[Any] = False lowercase__ : Tuple = None lowercase__ : str = 10_000 lowercase__ : str = None lowercase__ : int = 'strict' lowercase__ : Optional[int] = 'error' lowercase__ : Tuple = None def snake_case__ ( self ): if self.delimiter is not None: _lowerCamelCase = self.delimiter if self.column_names is not None: _lowerCamelCase = self.column_names @property def snake_case__ ( self ): _lowerCamelCase = { '''sep''': self.sep, '''header''': self.header, '''names''': self.names, '''index_col''': self.index_col, '''usecols''': self.usecols, '''prefix''': self.prefix, '''mangle_dupe_cols''': self.mangle_dupe_cols, '''engine''': self.engine, '''converters''': self.converters, '''true_values''': self.true_values, '''false_values''': self.false_values, '''skipinitialspace''': self.skipinitialspace, '''skiprows''': self.skiprows, '''nrows''': self.nrows, '''na_values''': self.na_values, '''keep_default_na''': self.keep_default_na, '''na_filter''': self.na_filter, '''verbose''': self.verbose, '''skip_blank_lines''': self.skip_blank_lines, '''thousands''': self.thousands, '''decimal''': self.decimal, '''lineterminator''': self.lineterminator, '''quotechar''': self.quotechar, '''quoting''': self.quoting, '''escapechar''': self.escapechar, '''comment''': self.comment, '''encoding''': self.encoding, '''dialect''': self.dialect, '''error_bad_lines''': self.error_bad_lines, '''warn_bad_lines''': self.warn_bad_lines, '''skipfooter''': self.skipfooter, '''doublequote''': self.doublequote, '''memory_map''': self.memory_map, '''float_precision''': self.float_precision, '''chunksize''': self.chunksize, '''encoding_errors''': self.encoding_errors, '''on_bad_lines''': self.on_bad_lines, '''date_format''': self.date_format, } # some kwargs must not be passed if they don't have a default value # some others are deprecated and we can also not pass them if they are the default value for pd_read_csv_parameter in _PANDAS_READ_CSV_NO_DEFAULT_PARAMETERS + _PANDAS_READ_CSV_DEPRECATED_PARAMETERS: if pd_read_csv_kwargs[pd_read_csv_parameter] == getattr(CsvConfig() , _lowerCAmelCase ): del pd_read_csv_kwargs[pd_read_csv_parameter] # Remove 2.0 new arguments if not (datasets.config.PANDAS_VERSION.major >= 2): for pd_read_csv_parameter in _PANDAS_READ_CSV_NEW_2_0_0_PARAMETERS: del pd_read_csv_kwargs[pd_read_csv_parameter] # Remove 1.3 new arguments if not (datasets.config.PANDAS_VERSION.major >= 1 and datasets.config.PANDAS_VERSION.minor >= 3): for pd_read_csv_parameter in _PANDAS_READ_CSV_NEW_1_3_0_PARAMETERS: del pd_read_csv_kwargs[pd_read_csv_parameter] return pd_read_csv_kwargs class lowerCamelCase_( datasets.ArrowBasedBuilder ): '''simple docstring''' lowercase__ : Any = CsvConfig def snake_case__ ( self ): return datasets.DatasetInfo(features=self.config.features ) def snake_case__ ( self , lowerCamelCase__ ): if not self.config.data_files: raise ValueError(F"""At least one data file must be specified, but got data_files={self.config.data_files}""" ) _lowerCamelCase = dl_manager.download_and_extract(self.config.data_files ) if isinstance(_lowerCAmelCase , (str, list, tuple) ): _lowerCamelCase = data_files if isinstance(_lowerCAmelCase , _lowerCAmelCase ): _lowerCamelCase = [files] _lowerCamelCase = [dl_manager.iter_files(_lowerCAmelCase ) for file in files] return [datasets.SplitGenerator(name=datasets.Split.TRAIN , gen_kwargs={'''files''': files} )] _lowerCamelCase = [] for split_name, files in data_files.items(): if isinstance(_lowerCAmelCase , _lowerCAmelCase ): _lowerCamelCase = [files] _lowerCamelCase = [dl_manager.iter_files(_lowerCAmelCase ) for file in files] splits.append(datasets.SplitGenerator(name=_lowerCAmelCase , gen_kwargs={'''files''': files} ) ) return splits def snake_case__ ( self , lowerCamelCase__ ): if self.config.features is not None: _lowerCamelCase = self.config.features.arrow_schema if all(not require_storage_cast(_lowerCAmelCase ) for feature in self.config.features.values() ): # cheaper cast _lowerCamelCase = pa.Table.from_arrays([pa_table[field.name] for field in schema] , schema=_lowerCAmelCase ) else: # more expensive cast; allows str <-> int/float or str to Audio for example _lowerCamelCase = table_cast(_lowerCAmelCase , _lowerCAmelCase ) return pa_table def snake_case__ ( self , lowerCamelCase__ ): _lowerCamelCase = self.config.features.arrow_schema if self.config.features else None # dtype allows reading an int column as str _lowerCamelCase = ( { name: dtype.to_pandas_dtype() if not require_storage_cast(_lowerCAmelCase ) else object for name, dtype, feature in zip(schema.names , schema.types , self.config.features.values() ) } if schema is not None else None ) for file_idx, file in enumerate(itertools.chain.from_iterable(_lowerCAmelCase ) ): _lowerCamelCase = pd.read_csv(_lowerCAmelCase , iterator=_lowerCAmelCase , dtype=_lowerCAmelCase , **self.config.pd_read_csv_kwargs ) try: for batch_idx, df in enumerate(_lowerCAmelCase ): _lowerCamelCase = pa.Table.from_pandas(_lowerCAmelCase ) # Uncomment for debugging (will print the Arrow table size and elements) # logger.warning(f"pa_table: {pa_table} num rows: {pa_table.num_rows}") # logger.warning('\n'.join(str(pa_table.slice(i, 1).to_pydict()) for i in range(pa_table.num_rows))) yield (file_idx, batch_idx), self._cast_table(_lowerCAmelCase ) except ValueError as e: logger.error(F"""Failed to read file '{file}' with error {type(_lowerCAmelCase )}: {e}""" ) raise
661
from __future__ import annotations from collections.abc import Iterator class lowerCamelCase_ : '''simple docstring''' def __init__( self : Union[str, Any] , _lowerCAmelCase : int ): SCREAMING_SNAKE_CASE_ = value SCREAMING_SNAKE_CASE_ = None SCREAMING_SNAKE_CASE_ = None class lowerCamelCase_ : '''simple docstring''' def __init__( self : int , _lowerCAmelCase : Node ): SCREAMING_SNAKE_CASE_ = tree def lowerCAmelCase_ ( self : Union[str, Any] , _lowerCAmelCase : Node | None ): if node is None: return 0 return node.value + ( self.depth_first_search(node.left ) + self.depth_first_search(node.right ) ) def __iter__( self : Dict ): yield self.depth_first_search(self.tree ) if __name__ == "__main__": import doctest doctest.testmod()
31
0
"""simple docstring""" import unittest import torch from diffusers import VQModel from diffusers.utils import floats_tensor, torch_device from diffusers.utils.testing_utils import enable_full_determinism from .test_modeling_common import ModelTesterMixin, UNetTesterMixin enable_full_determinism() class a__ ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , unittest.TestCase ): lowercase_ = VQModel lowercase_ = "sample" @property def a_ ( self : Dict , UpperCamelCase_ : str=(32, 32)): """simple docstring""" __UpperCAmelCase : Any = 4 __UpperCAmelCase : int = 3 __UpperCAmelCase : int = floats_tensor((batch_size, num_channels) + sizes).to(_lowerCAmelCase) return {"sample": image} @property def a_ ( self : str): """simple docstring""" return (3, 32, 32) @property def a_ ( self : List[str]): """simple docstring""" return (3, 32, 32) def a_ ( self : Optional[Any]): """simple docstring""" __UpperCAmelCase : List[Any] = { "block_out_channels": [32, 64], "in_channels": 3, "out_channels": 3, "down_block_types": ["DownEncoderBlock2D", "DownEncoderBlock2D"], "up_block_types": ["UpDecoderBlock2D", "UpDecoderBlock2D"], "latent_channels": 3, } __UpperCAmelCase : List[str] = self.dummy_input return init_dict, inputs_dict def a_ ( self : Tuple): """simple docstring""" pass def a_ ( self : List[str]): """simple docstring""" pass def a_ ( self : List[Any]): """simple docstring""" __UpperCAmelCase , __UpperCAmelCase : List[str] = VQModel.from_pretrained("fusing/vqgan-dummy" , output_loading_info=_lowerCAmelCase) self.assertIsNotNone(_lowerCAmelCase) self.assertEqual(len(loading_info["missing_keys"]) , 0) model.to(_lowerCAmelCase) __UpperCAmelCase : Optional[int] = model(**self.dummy_input) assert image is not None, "Make sure output is not None" def a_ ( self : List[Any]): """simple docstring""" __UpperCAmelCase : List[Any] = VQModel.from_pretrained("fusing/vqgan-dummy") model.to(_lowerCAmelCase).eval() torch.manual_seed(0) if torch.cuda.is_available(): torch.cuda.manual_seed_all(0) __UpperCAmelCase : List[str] = torch.randn(1 , model.config.in_channels , model.config.sample_size , model.config.sample_size) __UpperCAmelCase : str = image.to(_lowerCAmelCase) with torch.no_grad(): __UpperCAmelCase : Dict = model(_lowerCAmelCase).sample __UpperCAmelCase : Any = output[0, -1, -3:, -3:].flatten().cpu() # fmt: off __UpperCAmelCase : List[Any] = torch.tensor([-0.0153, -0.4044, -0.1880, -0.5161, -0.2418, -0.4072, -0.1612, -0.0633, -0.0143]) # fmt: on self.assertTrue(torch.allclose(_lowerCAmelCase , _lowerCAmelCase , atol=1e-3))
77
def UpperCAmelCase_ ( __UpperCAmelCase : list , __UpperCAmelCase : int , __UpperCAmelCase : int = 0 , __UpperCAmelCase : int = 0 ) -> int: SCREAMING_SNAKE_CASE_ = right or len(__UpperCAmelCase ) - 1 if left > right: return -1 elif list_data[left] == key: return left elif list_data[right] == key: return right else: return search(__UpperCAmelCase , __UpperCAmelCase , left + 1 , right - 1 ) if __name__ == "__main__": import doctest doctest.testmod()
31
0
import warnings from ...utils import logging from .image_processing_layoutlmva import LayoutLMvaImageProcessor lowerCAmelCase : Union[str, Any] = logging.get_logger(__name__) class a ( _SCREAMING_SNAKE_CASE ): def __init__( self , *_lowerCAmelCase , **_lowerCAmelCase ): """simple docstring""" warnings.warn( '''The class LayoutLMv2FeatureExtractor is deprecated and will be removed in version 5 of Transformers.''' ''' Please use LayoutLMv2ImageProcessor instead.''' , _lowerCAmelCase , ) super().__init__(*_lowerCAmelCase , **_lowerCAmelCase )
202
import os from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils import AddedToken from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_fnet import FNetTokenizer else: lowerCamelCase__ : Optional[Any] = None lowerCamelCase__ : List[str] = logging.get_logger(__name__) lowerCamelCase__ : List[str] = {'vocab_file': 'spiece.model', 'tokenizer_file': 'tokenizer.json'} lowerCamelCase__ : List[str] = { 'vocab_file': { 'google/fnet-base': 'https://huggingface.co/google/fnet-base/resolve/main/spiece.model', 'google/fnet-large': 'https://huggingface.co/google/fnet-large/resolve/main/spiece.model', }, 'tokenizer_file': { 'google/fnet-base': 'https://huggingface.co/google/fnet-base/resolve/main/tokenizer.json', 'google/fnet-large': 'https://huggingface.co/google/fnet-large/resolve/main/tokenizer.json', }, } lowerCamelCase__ : Optional[Any] = { 'google/fnet-base': 512, 'google/fnet-large': 512, } lowerCamelCase__ : List[Any] = '▁' class lowerCamelCase_ ( _SCREAMING_SNAKE_CASE ): '''simple docstring''' lowercase_ = VOCAB_FILES_NAMES lowercase_ = PRETRAINED_VOCAB_FILES_MAP lowercase_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowercase_ = ["input_ids", "token_type_ids"] lowercase_ = FNetTokenizer def __init__( self : List[Any] , _lowerCAmelCase : Dict=None , _lowerCAmelCase : Dict=None , _lowerCAmelCase : List[str]=False , _lowerCAmelCase : Optional[Any]=True , _lowerCAmelCase : Tuple=True , _lowerCAmelCase : List[Any]="<unk>" , _lowerCAmelCase : Optional[Any]="[SEP]" , _lowerCAmelCase : Optional[Any]="<pad>" , _lowerCAmelCase : Optional[int]="[CLS]" , _lowerCAmelCase : Optional[Any]="[MASK]" , **_lowerCAmelCase : Any , ): # Mask token behave like a normal word, i.e. include the space before it and # is included in the raw text, there should be a match in a non-normalized sentence. SCREAMING_SNAKE_CASE_ = ( AddedToken(_lowerCAmelCase , lstrip=_lowerCAmelCase , rstrip=_lowerCAmelCase , normalized=_lowerCAmelCase ) if isinstance(_lowerCAmelCase , _lowerCAmelCase ) else mask_token ) super().__init__( _lowerCAmelCase , tokenizer_file=_lowerCAmelCase , do_lower_case=_lowerCAmelCase , remove_space=_lowerCAmelCase , keep_accents=_lowerCAmelCase , unk_token=_lowerCAmelCase , sep_token=_lowerCAmelCase , pad_token=_lowerCAmelCase , cls_token=_lowerCAmelCase , mask_token=_lowerCAmelCase , **_lowerCAmelCase , ) SCREAMING_SNAKE_CASE_ = do_lower_case SCREAMING_SNAKE_CASE_ = remove_space SCREAMING_SNAKE_CASE_ = keep_accents SCREAMING_SNAKE_CASE_ = vocab_file SCREAMING_SNAKE_CASE_ = False if not self.vocab_file else True def lowerCAmelCase_ ( self : Any , _lowerCAmelCase : List[int] , _lowerCAmelCase : Optional[List[int]] = None ): SCREAMING_SNAKE_CASE_ = [self.sep_token_id] SCREAMING_SNAKE_CASE_ = [self.cls_token_id] if token_ids_a is None: return cls + token_ids_a + sep return cls + token_ids_a + sep + token_ids_a + sep def lowerCAmelCase_ ( self : Optional[int] , _lowerCAmelCase : List[int] , _lowerCAmelCase : Optional[List[int]] = None ): SCREAMING_SNAKE_CASE_ = [self.sep_token_id] SCREAMING_SNAKE_CASE_ = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def lowerCAmelCase_ ( self : Optional[Any] , _lowerCAmelCase : str , _lowerCAmelCase : Optional[str] = None ): if not os.path.isdir(_lowerCAmelCase ): logger.error(F"Vocabulary path ({save_directory}) should be a directory" ) return SCREAMING_SNAKE_CASE_ = os.path.join( _lowerCAmelCase , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(_lowerCAmelCase ): copyfile(self.vocab_file , _lowerCAmelCase ) return (out_vocab_file,)
31
0
'''simple docstring''' import copy import os from typing import Union from ...configuration_utils import PretrainedConfig from ...utils import logging __A = logging.get_logger(__name__) __A = { 'microsoft/git-base': 'https://huggingface.co/microsoft/git-base/resolve/main/config.json', } class A ( _SCREAMING_SNAKE_CASE ): lowerCamelCase : Optional[Any] = """git_vision_model""" def __init__( self , lowerCamelCase__=768 , lowerCamelCase__=3_072 , lowerCamelCase__=12 , lowerCamelCase__=12 , lowerCamelCase__=3 , lowerCamelCase__=224 , lowerCamelCase__=16 , lowerCamelCase__="quick_gelu" , lowerCamelCase__=1e-5 , lowerCamelCase__=0.0 , lowerCamelCase__=0.02 , **lowerCamelCase__ , ) -> List[Any]: '''simple docstring''' super().__init__(**_lowerCAmelCase ) lowercase__ = hidden_size lowercase__ = intermediate_size lowercase__ = num_hidden_layers lowercase__ = num_attention_heads lowercase__ = num_channels lowercase__ = patch_size lowercase__ = image_size lowercase__ = initializer_range lowercase__ = attention_dropout lowercase__ = layer_norm_eps lowercase__ = hidden_act @classmethod def A__ ( cls , lowerCamelCase__ , **lowerCamelCase__ ) -> Any: '''simple docstring''' cls._set_token_in_kwargs(_lowerCAmelCase ) lowercase__ , lowercase__ = cls.get_config_dict(_lowerCAmelCase , **_lowerCAmelCase ) # get the vision config dict if we are loading from GITConfig if config_dict.get("""model_type""" ) == "git": lowercase__ = config_dict["""vision_config"""] if "model_type" in config_dict and hasattr(cls , """model_type""" ) and config_dict["model_type"] != cls.model_type: logger.warning( F'''You are using a model of type {config_dict['model_type']} to instantiate a model of type ''' F'''{cls.model_type}. This is not supported for all configurations of models and can yield errors.''' ) return cls.from_dict(_lowerCAmelCase , **_lowerCAmelCase ) class A ( _SCREAMING_SNAKE_CASE ): lowerCamelCase : int = """git""" def __init__( self , lowerCamelCase__=None , lowerCamelCase__=30_522 , lowerCamelCase__=768 , lowerCamelCase__=6 , lowerCamelCase__=12 , lowerCamelCase__=3_072 , lowerCamelCase__="gelu" , lowerCamelCase__=0.1 , lowerCamelCase__=0.1 , lowerCamelCase__=1_024 , lowerCamelCase__=0.02 , lowerCamelCase__=1e-12 , lowerCamelCase__=0 , lowerCamelCase__="absolute" , lowerCamelCase__=True , lowerCamelCase__=False , lowerCamelCase__=101 , lowerCamelCase__=102 , lowerCamelCase__=None , **lowerCamelCase__ , ) -> Optional[int]: '''simple docstring''' super().__init__(bos_token_id=_lowerCAmelCase , eos_token_id=_lowerCAmelCase , pad_token_id=_lowerCAmelCase , **_lowerCAmelCase ) if vision_config is None: lowercase__ = {} logger.info("""vision_config is None. initializing the GitVisionConfig with default values.""" ) lowercase__ = GitVisionConfig(**_lowerCAmelCase ) lowercase__ = vocab_size lowercase__ = hidden_size lowercase__ = num_hidden_layers lowercase__ = num_attention_heads lowercase__ = hidden_act lowercase__ = intermediate_size lowercase__ = hidden_dropout_prob lowercase__ = attention_probs_dropout_prob lowercase__ = max_position_embeddings lowercase__ = initializer_range lowercase__ = layer_norm_eps lowercase__ = position_embedding_type lowercase__ = use_cache lowercase__ = tie_word_embeddings lowercase__ = num_image_with_embedding lowercase__ = bos_token_id lowercase__ = eos_token_id def A__ ( self ) -> List[Any]: '''simple docstring''' lowercase__ = copy.deepcopy(self.__dict__ ) lowercase__ = self.vision_config.to_dict() lowercase__ = self.__class__.model_type return output
325
from __future__ import annotations from collections.abc import Generator def UpperCAmelCase_ ( ) -> Generator[int, None, None]: SCREAMING_SNAKE_CASE_ = {} SCREAMING_SNAKE_CASE_ = 2 while True: SCREAMING_SNAKE_CASE_ = factor_map.pop(__UpperCAmelCase , __UpperCAmelCase ) if factor: SCREAMING_SNAKE_CASE_ = factor + prime while x in factor_map: x += factor SCREAMING_SNAKE_CASE_ = factor else: SCREAMING_SNAKE_CASE_ = prime yield prime prime += 1 def UpperCAmelCase_ ( __UpperCAmelCase : float = 1E10 ) -> int: SCREAMING_SNAKE_CASE_ = sieve() SCREAMING_SNAKE_CASE_ = 1 while True: SCREAMING_SNAKE_CASE_ = next(__UpperCAmelCase ) if (2 * prime * n) > limit: return n # Ignore the next prime as the reminder will be 2. next(__UpperCAmelCase ) n += 2 if __name__ == "__main__": print(solution())
31
0
class __a: # Public class to implement a graph """simple docstring""" def __init__( self ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ) -> Optional[int]: UpperCAmelCase_ : Any = row UpperCAmelCase_ : List[str] = col UpperCAmelCase_ : List[str] = graph def a__ ( self ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ) -> int: return ( 0 <= i < self.ROW and 0 <= j < self.COL and not visited[i][j] and self.graph[i][j] ) def a__ ( self ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ) -> int: # Checking all 8 elements surrounding nth element UpperCAmelCase_ : Optional[Any] = [-1, -1, -1, 0, 0, 1, 1, 1] # Coordinate order UpperCAmelCase_ : Optional[int] = [-1, 0, 1, -1, 1, -1, 0, 1] UpperCAmelCase_ : Dict = True # Make those cells visited for k in range(8 ): if self.is_safe(i + row_nbr[k] ,j + col_nbr[k] ,_lowerCAmelCase ): self.diffs(i + row_nbr[k] ,j + col_nbr[k] ,_lowerCAmelCase ) def a__ ( self ) -> Dict: # And finally, count all islands. UpperCAmelCase_ : Dict = [[False for j in range(self.COL )] for i in range(self.ROW )] UpperCAmelCase_ : List[Any] = 0 for i in range(self.ROW ): for j in range(self.COL ): if visited[i][j] is False and self.graph[i][j] == 1: self.diffs(_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ) count += 1 return count
30
import numpy as np import torch from torch.utils.data import DataLoader from accelerate.utils.dataclasses import DistributedType class lowerCamelCase_ : '''simple docstring''' def __init__( self : Any , _lowerCAmelCase : Optional[int]=2 , _lowerCAmelCase : Any=3 , _lowerCAmelCase : Tuple=64 , _lowerCAmelCase : List[str]=None ): SCREAMING_SNAKE_CASE_ = np.random.default_rng(_lowerCAmelCase ) SCREAMING_SNAKE_CASE_ = length SCREAMING_SNAKE_CASE_ = rng.normal(size=(length,) ).astype(np.floataa ) SCREAMING_SNAKE_CASE_ = a * self.x + b + rng.normal(scale=0.1 , size=(length,) ).astype(np.floataa ) def __len__( self : Optional[int] ): return self.length def __getitem__( self : str , _lowerCAmelCase : Union[str, Any] ): return {"x": self.x[i], "y": self.y[i]} class lowerCamelCase_ ( torch.nn.Module ): '''simple docstring''' def __init__( self : Tuple , _lowerCAmelCase : Dict=0 , _lowerCAmelCase : List[str]=0 , _lowerCAmelCase : str=False ): super().__init__() SCREAMING_SNAKE_CASE_ = torch.nn.Parameter(torch.tensor([2, 3] ).float() ) SCREAMING_SNAKE_CASE_ = torch.nn.Parameter(torch.tensor([2, 3] ).float() ) SCREAMING_SNAKE_CASE_ = True def lowerCAmelCase_ ( self : Dict , _lowerCAmelCase : Union[str, Any]=None ): if self.first_batch: print(F"Model dtype: {self.a.dtype}, {self.b.dtype}. Input dtype: {x.dtype}" ) SCREAMING_SNAKE_CASE_ = False return x * self.a[0] + self.b[0] class lowerCamelCase_ ( torch.nn.Module ): '''simple docstring''' def __init__( self : Optional[int] , _lowerCAmelCase : Any=0 , _lowerCAmelCase : Any=0 , _lowerCAmelCase : Optional[Any]=False ): super().__init__() SCREAMING_SNAKE_CASE_ = torch.nn.Parameter(torch.tensor(_lowerCAmelCase ).float() ) SCREAMING_SNAKE_CASE_ = torch.nn.Parameter(torch.tensor(_lowerCAmelCase ).float() ) SCREAMING_SNAKE_CASE_ = True def lowerCAmelCase_ ( self : Optional[Any] , _lowerCAmelCase : Optional[int]=None ): if self.first_batch: print(F"Model dtype: {self.a.dtype}, {self.b.dtype}. Input dtype: {x.dtype}" ) SCREAMING_SNAKE_CASE_ = False return x * self.a + self.b def UpperCAmelCase_ ( __UpperCAmelCase : Dict , __UpperCAmelCase : int = 16 ) -> Union[str, Any]: from datasets import load_dataset from transformers import AutoTokenizer SCREAMING_SNAKE_CASE_ = AutoTokenizer.from_pretrained('bert-base-cased' ) SCREAMING_SNAKE_CASE_ = {'train': 'tests/test_samples/MRPC/train.csv', 'validation': 'tests/test_samples/MRPC/dev.csv'} SCREAMING_SNAKE_CASE_ = load_dataset('csv' , data_files=__UpperCAmelCase ) SCREAMING_SNAKE_CASE_ = datasets['train'].unique('label' ) SCREAMING_SNAKE_CASE_ = {v: i for i, v in enumerate(__UpperCAmelCase )} def tokenize_function(__UpperCAmelCase : Optional[int] ): # max_length=None => use the model max length (it's actually the default) SCREAMING_SNAKE_CASE_ = tokenizer( examples['sentence1'] , examples['sentence2'] , truncation=__UpperCAmelCase , max_length=__UpperCAmelCase , padding='max_length' ) if "label" in examples: SCREAMING_SNAKE_CASE_ = [label_to_id[l] for l in examples['label']] return outputs # Apply the method we just defined to all the examples in all the splits of the dataset SCREAMING_SNAKE_CASE_ = datasets.map( __UpperCAmelCase , batched=__UpperCAmelCase , remove_columns=['sentence1', 'sentence2', 'label'] , ) def collate_fn(__UpperCAmelCase : Dict ): # On TPU it's best to pad everything to the same length or training will be very slow. if accelerator.distributed_type == DistributedType.TPU: return tokenizer.pad(__UpperCAmelCase , padding='max_length' , max_length=1_28 , return_tensors='pt' ) return tokenizer.pad(__UpperCAmelCase , padding='longest' , return_tensors='pt' ) # Instantiate dataloaders. SCREAMING_SNAKE_CASE_ = DataLoader(tokenized_datasets['train'] , shuffle=__UpperCAmelCase , collate_fn=__UpperCAmelCase , batch_size=2 ) SCREAMING_SNAKE_CASE_ = DataLoader(tokenized_datasets['validation'] , shuffle=__UpperCAmelCase , collate_fn=__UpperCAmelCase , batch_size=1 ) return train_dataloader, eval_dataloader
31
0
'''simple docstring''' import inspect import unittest from transformers import MobileViTConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import MobileViTForImageClassification, MobileViTForSemanticSegmentation, MobileViTModel from transformers.models.mobilevit.modeling_mobilevit import MOBILEVIT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import MobileViTImageProcessor class lowercase_ ( _SCREAMING_SNAKE_CASE ): def _lowerCAmelCase ( self : Optional[Any] ): snake_case__ : Union[str, Any] = self.config_class(**self.inputs_dict ) self.parent.assertTrue(hasattr(_lowerCAmelCase , 'hidden_sizes' ) ) self.parent.assertTrue(hasattr(_lowerCAmelCase , 'neck_hidden_sizes' ) ) self.parent.assertTrue(hasattr(_lowerCAmelCase , 'num_attention_heads' ) ) class lowercase_ : def __init__( self : Any , __lowerCamelCase : str , __lowerCamelCase : List[Any]=13 , __lowerCamelCase : str=32 , __lowerCamelCase : str=2 , __lowerCamelCase : List[Any]=3 , __lowerCamelCase : List[str]=640 , __lowerCamelCase : Union[str, Any]=4 , __lowerCamelCase : Dict="silu" , __lowerCamelCase : List[str]=3 , __lowerCamelCase : str=32 , __lowerCamelCase : Any=0.1 , __lowerCamelCase : List[str]=0.1 , __lowerCamelCase : Union[str, Any]=0.1 , __lowerCamelCase : Optional[Any]=0.0_2 , __lowerCamelCase : Union[str, Any]=True , __lowerCamelCase : Optional[int]=True , __lowerCamelCase : Any=10 , __lowerCamelCase : str=None , ): snake_case__ : Union[str, Any] = parent snake_case__ : Union[str, Any] = batch_size snake_case__ : Tuple = image_size snake_case__ : int = patch_size snake_case__ : Optional[int] = num_channels snake_case__ : Optional[Any] = last_hidden_size snake_case__ : Optional[int] = num_attention_heads snake_case__ : Any = hidden_act snake_case__ : Dict = conv_kernel_size snake_case__ : List[Any] = output_stride snake_case__ : List[str] = hidden_dropout_prob snake_case__ : List[str] = attention_probs_dropout_prob snake_case__ : int = classifier_dropout_prob snake_case__ : str = use_labels snake_case__ : Any = is_training snake_case__ : int = num_labels snake_case__ : int = initializer_range snake_case__ : Tuple = scope def _lowerCAmelCase ( self : Tuple ): snake_case__ : int = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) snake_case__ : Optional[Any] = None snake_case__ : List[Any] = None if self.use_labels: snake_case__ : Optional[int] = ids_tensor([self.batch_size] , self.num_labels ) snake_case__ : Optional[int] = ids_tensor([self.batch_size, self.image_size, self.image_size] , self.num_labels ) snake_case__ : List[str] = self.get_config() return config, pixel_values, labels, pixel_labels def _lowerCAmelCase ( self : Optional[int] ): return MobileViTConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , num_attention_heads=self.num_attention_heads , hidden_act=self.hidden_act , conv_kernel_size=self.conv_kernel_size , output_stride=self.output_stride , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , classifier_dropout_prob=self.classifier_dropout_prob , initializer_range=self.initializer_range , ) def _lowerCAmelCase ( self : Dict , __lowerCamelCase : Union[str, Any] , __lowerCamelCase : str , __lowerCamelCase : str , __lowerCamelCase : List[str] ): snake_case__ : Optional[int] = MobileViTModel(config=_lowerCAmelCase ) model.to(_lowerCAmelCase ) model.eval() snake_case__ : int = model(_lowerCAmelCase ) self.parent.assertEqual( result.last_hidden_state.shape , ( self.batch_size, self.last_hidden_size, self.image_size // self.output_stride, self.image_size // self.output_stride, ) , ) def _lowerCAmelCase ( self : Union[str, Any] , __lowerCamelCase : Union[str, Any] , __lowerCamelCase : Union[str, Any] , __lowerCamelCase : str , __lowerCamelCase : str ): snake_case__ : str = self.num_labels snake_case__ : List[str] = MobileViTForImageClassification(_lowerCAmelCase ) model.to(_lowerCAmelCase ) model.eval() snake_case__ : Union[str, Any] = model(_lowerCAmelCase , labels=_lowerCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def _lowerCAmelCase ( self : int , __lowerCamelCase : Union[str, Any] , __lowerCamelCase : Any , __lowerCamelCase : Optional[Any] , __lowerCamelCase : List[str] ): snake_case__ : Optional[Any] = self.num_labels snake_case__ : List[Any] = MobileViTForSemanticSegmentation(_lowerCAmelCase ) model.to(_lowerCAmelCase ) model.eval() snake_case__ : List[str] = model(_lowerCAmelCase ) self.parent.assertEqual( result.logits.shape , ( self.batch_size, self.num_labels, self.image_size // self.output_stride, self.image_size // self.output_stride, ) , ) snake_case__ : int = model(_lowerCAmelCase , labels=_lowerCAmelCase ) self.parent.assertEqual( result.logits.shape , ( self.batch_size, self.num_labels, self.image_size // self.output_stride, self.image_size // self.output_stride, ) , ) def _lowerCAmelCase ( self : Tuple ): snake_case__ : Tuple = self.prepare_config_and_inputs() snake_case__ , snake_case__ , snake_case__ , snake_case__ : List[str] = config_and_inputs snake_case__ : Optional[Any] = {'pixel_values': pixel_values} return config, inputs_dict @require_torch class lowercase_ ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , unittest.TestCase ): A_ = ( (MobileViTModel, MobileViTForImageClassification, MobileViTForSemanticSegmentation) if is_torch_available() else () ) A_ = ( { "feature-extraction": MobileViTModel, "image-classification": MobileViTForImageClassification, "image-segmentation": MobileViTForSemanticSegmentation, } if is_torch_available() else {} ) A_ = False A_ = False A_ = False A_ = False def _lowerCAmelCase ( self : Tuple ): snake_case__ : Tuple = MobileViTModelTester(self ) snake_case__ : List[str] = MobileViTConfigTester(self , config_class=_lowerCAmelCase , has_text_modality=_lowerCAmelCase ) def _lowerCAmelCase ( self : Union[str, Any] ): self.config_tester.run_common_tests() @unittest.skip(reason='MobileViT does not use inputs_embeds' ) def _lowerCAmelCase ( self : Tuple ): pass @unittest.skip(reason='MobileViT does not support input and output embeddings' ) def _lowerCAmelCase ( self : Dict ): pass @unittest.skip(reason='MobileViT does not output attentions' ) def _lowerCAmelCase ( self : List[str] ): pass def _lowerCAmelCase ( self : int ): snake_case__ , snake_case__ : Any = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: snake_case__ : int = model_class(_lowerCAmelCase ) snake_case__ : Dict = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic snake_case__ : Optional[int] = [*signature.parameters.keys()] snake_case__ : int = ['pixel_values'] self.assertListEqual(arg_names[:1] , _lowerCAmelCase ) @unittest.skip('Will be fixed soon by reducing the size of the model used for common tests.' ) def _lowerCAmelCase ( self : int ): pass def _lowerCAmelCase ( self : Tuple ): snake_case__ : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_lowerCAmelCase ) def _lowerCAmelCase ( self : Optional[int] ): def check_hidden_states_output(__lowerCamelCase : int , __lowerCamelCase : Tuple , __lowerCamelCase : List[str] ): snake_case__ : List[Any] = model_class(_lowerCAmelCase ) model.to(_lowerCAmelCase ) model.eval() with torch.no_grad(): snake_case__ : Dict = model(**self._prepare_for_class(_lowerCAmelCase , _lowerCAmelCase ) ) snake_case__ : Any = outputs.hidden_states snake_case__ : Any = 5 self.assertEqual(len(_lowerCAmelCase ) , _lowerCAmelCase ) # MobileViT's feature maps are of shape (batch_size, num_channels, height, width) # with the width and height being successively divided by 2. snake_case__ : Tuple = 2 for i in range(len(_lowerCAmelCase ) ): self.assertListEqual( list(hidden_states[i].shape[-2:] ) , [self.model_tester.image_size // divisor, self.model_tester.image_size // divisor] , ) divisor *= 2 self.assertEqual(self.model_tester.output_stride , divisor // 2 ) snake_case__ , snake_case__ : int = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: snake_case__ : Any = True check_hidden_states_output(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] snake_case__ : Any = True check_hidden_states_output(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) def _lowerCAmelCase ( self : List[str] ): snake_case__ : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*_lowerCAmelCase ) def _lowerCAmelCase ( self : List[str] ): snake_case__ : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_semantic_segmentation(*_lowerCAmelCase ) @slow def _lowerCAmelCase ( self : Dict ): for model_name in MOBILEVIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: snake_case__ : Optional[Any] = MobileViTModel.from_pretrained(_lowerCAmelCase ) self.assertIsNotNone(_lowerCAmelCase ) def UpperCamelCase__ ( ) -> Union[str, Any]: snake_case__ : Any = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) return image @require_torch @require_vision class lowercase_ ( unittest.TestCase ): @cached_property def _lowerCAmelCase ( self : List[Any] ): return MobileViTImageProcessor.from_pretrained('apple/mobilevit-xx-small' ) if is_vision_available() else None @slow def _lowerCAmelCase ( self : Optional[int] ): snake_case__ : List[str] = MobileViTForImageClassification.from_pretrained('apple/mobilevit-xx-small' ).to(_lowerCAmelCase ) snake_case__ : Dict = self.default_image_processor snake_case__ : int = prepare_img() snake_case__ : Optional[Any] = image_processor(images=_lowerCAmelCase , return_tensors='pt' ).to(_lowerCAmelCase ) # forward pass with torch.no_grad(): snake_case__ : List[str] = model(**_lowerCAmelCase ) # verify the logits snake_case__ : int = torch.Size((1, 1000) ) self.assertEqual(outputs.logits.shape , _lowerCAmelCase ) snake_case__ : List[str] = torch.tensor([-1.9_3_6_4, -1.2_3_2_7, -0.4_6_5_3] ).to(_lowerCAmelCase ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , _lowerCAmelCase , atol=1E-4 ) ) @slow def _lowerCAmelCase ( self : Any ): snake_case__ : int = MobileViTForSemanticSegmentation.from_pretrained('apple/deeplabv3-mobilevit-xx-small' ) snake_case__ : List[Any] = model.to(_lowerCAmelCase ) snake_case__ : Union[str, Any] = MobileViTImageProcessor.from_pretrained('apple/deeplabv3-mobilevit-xx-small' ) snake_case__ : str = prepare_img() snake_case__ : Optional[int] = image_processor(images=_lowerCAmelCase , return_tensors='pt' ).to(_lowerCAmelCase ) # forward pass with torch.no_grad(): snake_case__ : Any = model(**_lowerCAmelCase ) snake_case__ : List[Any] = outputs.logits # verify the logits snake_case__ : Optional[int] = torch.Size((1, 21, 32, 32) ) self.assertEqual(logits.shape , _lowerCAmelCase ) snake_case__ : Any = torch.tensor( [ [[6.9_7_1_3, 6.9_7_8_6, 7.2_4_2_2], [7.2_8_9_3, 7.2_8_2_5, 7.4_4_4_6], [7.6_5_8_0, 7.8_7_9_7, 7.9_4_2_0]], [[-1_0.6_8_6_9, -1_0.3_2_5_0, -1_0.3_4_7_1], [-1_0.4_2_2_8, -9.9_8_6_8, -9.7_1_3_2], [-1_1.0_4_0_5, -1_1.0_2_2_1, -1_0.7_3_1_8]], [[-3.3_0_8_9, -2.8_5_3_9, -2.6_7_4_0], [-3.2_7_0_6, -2.5_6_2_1, -2.5_1_0_8], [-3.2_5_3_4, -2.6_6_1_5, -2.6_6_5_1]], ] , device=_lowerCAmelCase , ) self.assertTrue(torch.allclose(logits[0, :3, :3, :3] , _lowerCAmelCase , atol=1E-4 ) ) @slow def _lowerCAmelCase ( self : List[str] ): snake_case__ : Optional[int] = MobileViTForSemanticSegmentation.from_pretrained('apple/deeplabv3-mobilevit-xx-small' ) snake_case__ : Union[str, Any] = model.to(_lowerCAmelCase ) snake_case__ : Optional[Any] = MobileViTImageProcessor.from_pretrained('apple/deeplabv3-mobilevit-xx-small' ) snake_case__ : Optional[Any] = prepare_img() snake_case__ : Tuple = image_processor(images=_lowerCAmelCase , return_tensors='pt' ).to(_lowerCAmelCase ) # forward pass with torch.no_grad(): snake_case__ : List[Any] = model(**_lowerCAmelCase ) snake_case__ : Dict = outputs.logits.detach().cpu() snake_case__ : Union[str, Any] = image_processor.post_process_semantic_segmentation(outputs=_lowerCAmelCase , target_sizes=[(50, 60)] ) snake_case__ : int = torch.Size((50, 60) ) self.assertEqual(segmentation[0].shape , _lowerCAmelCase ) snake_case__ : str = image_processor.post_process_semantic_segmentation(outputs=_lowerCAmelCase ) snake_case__ : List[Any] = torch.Size((32, 32) ) self.assertEqual(segmentation[0].shape , _lowerCAmelCase )
270
import warnings from ...utils import logging from .image_processing_layoutlmva import LayoutLMvaImageProcessor lowerCamelCase__ : Union[str, Any] = logging.get_logger(__name__) class lowerCamelCase_ ( _SCREAMING_SNAKE_CASE ): '''simple docstring''' def __init__( self : Dict , *_lowerCAmelCase : Optional[Any] , **_lowerCAmelCase : Any ): warnings.warn( 'The class LayoutLMv2FeatureExtractor is deprecated and will be removed in version 5 of Transformers.' ' Please use LayoutLMv2ImageProcessor instead.' , _lowerCAmelCase , ) super().__init__(*_lowerCAmelCase , **_lowerCAmelCase )
31
0
'''simple docstring''' from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging UpperCamelCase__ : List[Any] = logging.get_logger(__name__) UpperCamelCase__ : Optional[Any] = { 'hustvl/yolos-small': 'https://huggingface.co/hustvl/yolos-small/resolve/main/config.json', # See all YOLOS models at https://huggingface.co/models?filter=yolos } class _a (_SCREAMING_SNAKE_CASE): """simple docstring""" SCREAMING_SNAKE_CASE = 'yolos' def __init__( self , A__=7_68 , A__=12 , A__=12 , A__=30_72 , A__="gelu" , A__=0.0 , A__=0.0 , A__=0.02 , A__=1E-12 , A__=[5_12, 8_64] , A__=16 , A__=3 , A__=True , A__=1_00 , A__=True , A__=False , A__=1 , A__=5 , A__=2 , A__=5 , A__=2 , A__=0.1 , **A__ , ) -> int: super().__init__(**_lowerCAmelCase ) _SCREAMING_SNAKE_CASE = hidden_size _SCREAMING_SNAKE_CASE = num_hidden_layers _SCREAMING_SNAKE_CASE = num_attention_heads _SCREAMING_SNAKE_CASE = intermediate_size _SCREAMING_SNAKE_CASE = hidden_act _SCREAMING_SNAKE_CASE = hidden_dropout_prob _SCREAMING_SNAKE_CASE = attention_probs_dropout_prob _SCREAMING_SNAKE_CASE = initializer_range _SCREAMING_SNAKE_CASE = layer_norm_eps _SCREAMING_SNAKE_CASE = image_size _SCREAMING_SNAKE_CASE = patch_size _SCREAMING_SNAKE_CASE = num_channels _SCREAMING_SNAKE_CASE = qkv_bias _SCREAMING_SNAKE_CASE = num_detection_tokens _SCREAMING_SNAKE_CASE = use_mid_position_embeddings _SCREAMING_SNAKE_CASE = auxiliary_loss # Hungarian matcher _SCREAMING_SNAKE_CASE = class_cost _SCREAMING_SNAKE_CASE = bbox_cost _SCREAMING_SNAKE_CASE = giou_cost # Loss coefficients _SCREAMING_SNAKE_CASE = bbox_loss_coefficient _SCREAMING_SNAKE_CASE = giou_loss_coefficient _SCREAMING_SNAKE_CASE = eos_coefficient class _a (_SCREAMING_SNAKE_CASE): """simple docstring""" SCREAMING_SNAKE_CASE = version.parse('1.11') @property def UpperCamelCase ( self ) -> List[Any]: return OrderedDict( [ ("""pixel_values""", {0: """batch""", 1: """num_channels""", 2: """height""", 3: """width"""}), ] ) @property def UpperCamelCase ( self ) -> List[str]: return 1E-4 @property def UpperCamelCase ( self ) -> List[Any]: return 12
591
def UpperCAmelCase_ ( ) -> list[list[int]]: return [list(range(10_00 - i , -10_00 - i , -1 ) ) for i in range(10_00 )] lowerCamelCase__ : List[Any] = generate_large_matrix() lowerCamelCase__ : List[Any] = ( [[4, 3, 2, -1], [3, 2, 1, -1], [1, 1, -1, -2], [-1, -1, -2, -3]], [[3, 2], [1, 0]], [[7, 7, 6]], [[7, 7, 6], [-1, -2, -3]], grid, ) def UpperCAmelCase_ ( __UpperCAmelCase : list[list[int]] ) -> None: assert all(row == sorted(__UpperCAmelCase , reverse=__UpperCAmelCase ) for row in grid ) assert all(list(__UpperCAmelCase ) == sorted(__UpperCAmelCase , reverse=__UpperCAmelCase ) for col in zip(*__UpperCAmelCase ) ) def UpperCAmelCase_ ( __UpperCAmelCase : list[int] ) -> int: SCREAMING_SNAKE_CASE_ = 0 SCREAMING_SNAKE_CASE_ = len(__UpperCAmelCase ) - 1 # Edge cases such as no values or all numbers are negative. if not array or array[0] < 0: return 0 while right + 1 > left: SCREAMING_SNAKE_CASE_ = (left + right) // 2 SCREAMING_SNAKE_CASE_ = array[mid] # Num must be negative and the index must be greater than or equal to 0. if num < 0 and array[mid - 1] >= 0: return mid if num >= 0: SCREAMING_SNAKE_CASE_ = mid + 1 else: SCREAMING_SNAKE_CASE_ = mid - 1 # No negative numbers so return the last index of the array + 1 which is the length. return len(__UpperCAmelCase ) def UpperCAmelCase_ ( __UpperCAmelCase : list[list[int]] ) -> int: SCREAMING_SNAKE_CASE_ = 0 SCREAMING_SNAKE_CASE_ = len(grid[0] ) for i in range(len(__UpperCAmelCase ) ): SCREAMING_SNAKE_CASE_ = find_negative_index(grid[i][:bound] ) total += bound return (len(__UpperCAmelCase ) * len(grid[0] )) - total def UpperCAmelCase_ ( __UpperCAmelCase : list[list[int]] ) -> int: return len([number for row in grid for number in row if number < 0] ) def UpperCAmelCase_ ( __UpperCAmelCase : list[list[int]] ) -> int: SCREAMING_SNAKE_CASE_ = 0 for row in grid: for i, number in enumerate(__UpperCAmelCase ): if number < 0: total += len(__UpperCAmelCase ) - i break return total def UpperCAmelCase_ ( ) -> None: from timeit import timeit print('Running benchmarks' ) SCREAMING_SNAKE_CASE_ = ( 'from __main__ import count_negatives_binary_search, ' 'count_negatives_brute_force, count_negatives_brute_force_with_break, grid' ) for func in ( "count_negatives_binary_search", # took 0.7727 seconds "count_negatives_brute_force_with_break", # took 4.6505 seconds "count_negatives_brute_force", # took 12.8160 seconds ): SCREAMING_SNAKE_CASE_ = timeit(f"{func}(grid=grid)" , setup=__UpperCAmelCase , number=5_00 ) print(f"{func}() took {time:0.4f} seconds" ) if __name__ == "__main__": import doctest doctest.testmod() benchmark()
31
0
def __lowercase ( lowerCamelCase : list[list[int | float]] ): UpperCamelCase_ : Optional[Any] = len(__UpperCAmelCase ) UpperCamelCase_ : Dict = len(matrix[0] ) UpperCamelCase_ : List[Any] = min(__UpperCAmelCase , __UpperCAmelCase ) for row in range(__UpperCAmelCase ): # Check if diagonal element is not zero if matrix[row][row] != 0: # Eliminate all the elements below the diagonal for col in range(row + 1 , __UpperCAmelCase ): UpperCamelCase_ : Tuple = matrix[col][row] / matrix[row][row] for i in range(__UpperCAmelCase , __UpperCAmelCase ): matrix[col][i] -= multiplier * matrix[row][i] else: # Find a non-zero diagonal element to swap rows UpperCamelCase_ : Optional[Any] = True for i in range(row + 1 , __UpperCAmelCase ): if matrix[i][row] != 0: UpperCamelCase_, UpperCamelCase_ : List[str] = matrix[i], matrix[row] UpperCamelCase_ : Tuple = False break if reduce: rank -= 1 for i in range(__UpperCAmelCase ): UpperCamelCase_ : List[str] = matrix[i][rank] # Reduce the row pointer by one to stay on the same row row -= 1 return rank if __name__ == "__main__": import doctest doctest.testmod()
417
from typing import TYPE_CHECKING from ....utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available lowerCamelCase__ : Optional[int] = {'configuration_mmbt': ['MMBTConfig']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase__ : Any = ['MMBTForClassification', 'MMBTModel', 'ModalEmbeddings'] if TYPE_CHECKING: from .configuration_mmbt import MMBTConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mmbt import MMBTForClassification, MMBTModel, ModalEmbeddings else: import sys lowerCamelCase__ : str = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
31
0
import io import os import unicodedata from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging UpperCAmelCase__ = logging.get_logger(__name__) UpperCAmelCase__ = '▁' UpperCAmelCase__ = {'vocab_file': 'vocab.txt', 'sentencepiece_model_ckpt': 'sentencepiece.bpe.model'} UpperCAmelCase__ = { 'sentencepiece_model_file': 'sentencepiece.bpe.model', 'vocab_file': 'vocab.txt', } UpperCAmelCase__ = { 'vocab_file': { 'ernie-m-base': 'https://huggingface.co/susnato/ernie-m-base_pytorch/blob/main/vocab.txt', 'ernie-m-large': 'https://huggingface.co/susnato/ernie-m-base_pytorch/blob/main/vocab.txt', }, 'sentencepiece_model_file': { 'ernie-m-base': 'https://huggingface.co/susnato/ernie-m-base_pytorch/blob/main/sentencepiece.bpe.model', 'ernie-m-large': 'https://huggingface.co/susnato/ernie-m-base_pytorch/blob/main/sentencepiece.bpe.model', }, } UpperCAmelCase__ = { 'ernie-m-base': 514, 'ernie-m-large': 514, } UpperCAmelCase__ = { 'ernie-m-base': {'do_lower_case': False}, 'ernie-m-large': {'do_lower_case': False}, } class snake_case_ ( _SCREAMING_SNAKE_CASE ): """simple docstring""" snake_case__ = ["""input_ids"""] snake_case__ = VOCAB_FILES_NAMES snake_case__ = PRETRAINED_INIT_CONFIGURATION snake_case__ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES snake_case__ = PRETRAINED_VOCAB_FILES_MAP snake_case__ = RESOURCE_FILES_NAMES def __init__(self: List[str] , __UpperCAmelCase: Union[str, Any] , __UpperCAmelCase: int=None , __UpperCAmelCase: Tuple=False , __UpperCAmelCase: List[Any]="utf8" , __UpperCAmelCase: Tuple="[UNK]" , __UpperCAmelCase: Tuple="[SEP]" , __UpperCAmelCase: Dict="[PAD]" , __UpperCAmelCase: str="[CLS]" , __UpperCAmelCase: Dict="[MASK]" , __UpperCAmelCase: Optional[Dict[str, Any]] = None , **__UpperCAmelCase: Tuple , ) -> Optional[int]: '''simple docstring''' __a : int = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( do_lower_case=_lowerCAmelCase , unk_token=_lowerCAmelCase , sep_token=_lowerCAmelCase , pad_token=_lowerCAmelCase , cls_token=_lowerCAmelCase , mask_token=_lowerCAmelCase , vocab_file=_lowerCAmelCase , encoding=_lowerCAmelCase , sp_model_kwargs=self.sp_model_kwargs , **_lowerCAmelCase , ) __a : Optional[Any] = do_lower_case __a : int = sentencepiece_model_ckpt __a : Optional[Any] = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(_lowerCAmelCase ) # to mimic paddlenlp.transformers.ernie_m.tokenizer.ErnieMTokenizer functioning if vocab_file is not None: __a : Tuple = self.load_vocab(filepath=_lowerCAmelCase ) else: __a : Any = {self.sp_model.id_to_piece(_lowerCAmelCase ): id for id in range(self.sp_model.get_piece_size() )} __a : Optional[Any] = {v: k for k, v in self.vocab.items()} def UpperCAmelCase__ (self: List[Any] , __UpperCAmelCase: Tuple ) -> List[str]: '''simple docstring''' if text is None: return None __a : Dict = self.tokenize(_lowerCAmelCase ) __a , __a : Dict = "", [] for i, ch in enumerate(_lowerCAmelCase ): if ch in self.SP_CHAR_MAPPING: __a : Any = self.SP_CHAR_MAPPING.get(_lowerCAmelCase ) else: __a : Optional[Any] = unicodedata.normalize("NFKC" , _lowerCAmelCase ) if self.is_whitespace(_lowerCAmelCase ): continue normalized_text += ch char_mapping.extend([i] * len(_lowerCAmelCase ) ) __a , __a , __a : Optional[Any] = normalized_text, [], 0 if self.do_lower_case: __a : Optional[Any] = text.lower() for token in split_tokens: if token[:1] == "▁": __a : str = token[1:] __a : Dict = text[offset:].index(_lowerCAmelCase ) + offset __a : str = start + len(_lowerCAmelCase ) token_mapping.append((char_mapping[start], char_mapping[end - 1] + 1) ) __a : Optional[Any] = end return token_mapping @property def UpperCAmelCase__ (self: Optional[Any] ) -> Dict: '''simple docstring''' return len(self.vocab ) def UpperCAmelCase__ (self: Optional[int] ) -> Optional[Any]: '''simple docstring''' return dict(self.vocab , **self.added_tokens_encoder ) def __getstate__(self: List[str] ) -> List[Any]: '''simple docstring''' __a : Optional[int] = self.__dict__.copy() __a : str = None return state def __setstate__(self: int , __UpperCAmelCase: Union[str, Any] ) -> Dict: '''simple docstring''' __a : Any = d # for backward compatibility if not hasattr(self , "sp_model_kwargs" ): __a : Dict = {} __a : List[str] = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.sentencepiece_model_ckpt ) def UpperCAmelCase__ (self: Tuple , __UpperCAmelCase: List[Any] ) -> int: '''simple docstring''' return "".join((self.SP_CHAR_MAPPING.get(_lowerCAmelCase , _lowerCAmelCase ) for c in text) ) def UpperCAmelCase__ (self: List[str] , __UpperCAmelCase: List[Any] , __UpperCAmelCase: Optional[int]=False , __UpperCAmelCase: int=64 , __UpperCAmelCase: Tuple=0.1 ) -> str: '''simple docstring''' if self.sp_model_kwargs.get("enable_sampling" ) is True: __a : Tuple = True if self.sp_model_kwargs.get("alpha" ) is not None: __a : Dict = self.sp_model_kwargs.get("alpha" ) if self.sp_model_kwargs.get("nbest_size" ) is not None: __a : Tuple = self.sp_model_kwargs.get("nbest_size" ) if not enable_sampling: __a : Optional[Any] = self.sp_model.EncodeAsPieces(_lowerCAmelCase ) else: __a : str = self.sp_model.SampleEncodeAsPieces(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) __a : Tuple = [] for pi, piece in enumerate(_lowerCAmelCase ): if piece == SPIECE_UNDERLINE: if not pieces[pi + 1].startswith(_lowerCAmelCase ) and pi != 0: new_pieces.append(_lowerCAmelCase ) continue else: continue __a : str = 0 for i, chunk in enumerate(_lowerCAmelCase ): if chunk == SPIECE_UNDERLINE: continue if self.is_ch_char(_lowerCAmelCase ) or self.is_punct(_lowerCAmelCase ): if i > lst_i and piece[lst_i:i] != SPIECE_UNDERLINE: new_pieces.append(piece[lst_i:i] ) new_pieces.append(_lowerCAmelCase ) __a : Tuple = i + 1 elif chunk.isdigit() and i > 0 and not piece[i - 1].isdigit(): if i > lst_i and piece[lst_i:i] != SPIECE_UNDERLINE: new_pieces.append(piece[lst_i:i] ) __a : int = i elif not chunk.isdigit() and i > 0 and piece[i - 1].isdigit(): if i > lst_i and piece[lst_i:i] != SPIECE_UNDERLINE: new_pieces.append(piece[lst_i:i] ) __a : List[Any] = i if len(_lowerCAmelCase ) > lst_i: new_pieces.append(piece[lst_i:] ) return new_pieces def UpperCAmelCase__ (self: Union[str, Any] , __UpperCAmelCase: Optional[Any] ) -> str: '''simple docstring''' __a : List[Any] = "".join(_lowerCAmelCase ).replace(_lowerCAmelCase , " " ).strip() return out_string def UpperCAmelCase__ (self: Optional[Any] , __UpperCAmelCase: Any ) -> Union[str, Any]: '''simple docstring''' __a : int = self.convert_ids_to_tokens(_lowerCAmelCase ) __a : List[str] = "".join(_lowerCAmelCase ).replace(_lowerCAmelCase , " " ).strip() return out_string def UpperCAmelCase__ (self: Union[str, Any] , __UpperCAmelCase: Any ) -> Optional[int]: '''simple docstring''' return self.vocab.get(_lowerCAmelCase , self.vocab.get(self.unk_token ) ) def UpperCAmelCase__ (self: Optional[int] , __UpperCAmelCase: List[str] ) -> int: '''simple docstring''' return self.reverse_vocab.get(_lowerCAmelCase , self.unk_token ) def UpperCAmelCase__ (self: Optional[int] , __UpperCAmelCase: Optional[Any] , __UpperCAmelCase: List[Any]=None ) -> Union[str, Any]: '''simple docstring''' if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] __a : Union[str, Any] = [self.cls_token_id] __a : Optional[Any] = [self.sep_token_id] return _cls + token_ids_a + _sep + _sep + token_ids_a + _sep def UpperCAmelCase__ (self: Any , __UpperCAmelCase: Optional[Any] , __UpperCAmelCase: str=None ) -> Optional[Any]: '''simple docstring''' if offset_mapping_a is None: return [(0, 0)] + offset_mapping_a + [(0, 0)] return [(0, 0)] + offset_mapping_a + [(0, 0), (0, 0)] + offset_mapping_a + [(0, 0)] def UpperCAmelCase__ (self: Dict , __UpperCAmelCase: List[str] , __UpperCAmelCase: str=None , __UpperCAmelCase: Any=False ) -> Dict: '''simple docstring''' if already_has_special_tokens: if token_ids_a is not None: raise ValueError( "You should not supply a second sequence if the provided sequence of " "ids is already formatted with special tokens for the model." ) return [1 if x in [self.sep_token_id, self.cls_token_id] else 0 for x in token_ids_a] if token_ids_a is not None: return [1] + ([0] * len(_lowerCAmelCase )) + [1, 1] + ([0] * len(_lowerCAmelCase )) + [1] return [1] + ([0] * len(_lowerCAmelCase )) + [1] def UpperCAmelCase__ (self: List[str] , __UpperCAmelCase: List[int] , __UpperCAmelCase: Optional[List[int]] = None ) -> Any: '''simple docstring''' if token_ids_a is None: # [CLS] X [SEP] return (len(_lowerCAmelCase ) + 2) * [0] # [CLS] A [SEP] [SEP] B [SEP] return [0] * (len(_lowerCAmelCase ) + 1) + [1] * (len(_lowerCAmelCase ) + 3) def UpperCAmelCase__ (self: List[str] , __UpperCAmelCase: Any ) -> Any: '''simple docstring''' if "\u4e00" <= char <= "\u9fff": return True return False def UpperCAmelCase__ (self: List[str] , __UpperCAmelCase: Dict ) -> List[str]: '''simple docstring''' if ("a" <= char <= "z") or ("A" <= char <= "Z"): return True return False def UpperCAmelCase__ (self: str , __UpperCAmelCase: Union[str, Any] ) -> Tuple: '''simple docstring''' if char in ",;:.?!~,;:。?!《》【】": return True return False def UpperCAmelCase__ (self: Dict , __UpperCAmelCase: Optional[int] ) -> Optional[int]: '''simple docstring''' if char == " " or char == "\t" or char == "\n" or char == "\r": return True if len(_lowerCAmelCase ) == 1: __a : int = unicodedata.category(_lowerCAmelCase ) if cat == "Zs": return True return False def UpperCAmelCase__ (self: int , __UpperCAmelCase: Tuple ) -> Optional[Any]: '''simple docstring''' __a : Any = {} with io.open(_lowerCAmelCase , "r" , encoding="utf-8" ) as f: for index, line in enumerate(_lowerCAmelCase ): __a : Dict = line.rstrip("\n" ) __a : List[Any] = int(_lowerCAmelCase ) return token_to_idx def UpperCAmelCase__ (self: str , __UpperCAmelCase: str , __UpperCAmelCase: Optional[str] = None ) -> str: '''simple docstring''' __a : Dict = 0 if os.path.isdir(_lowerCAmelCase ): __a : Union[str, Any] = os.path.join( _lowerCAmelCase , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) else: __a : Any = (filename_prefix + "-" if filename_prefix else "") + save_directory with open(_lowerCAmelCase , "w" , encoding="utf-8" ) as writer: for token, token_index in sorted(self.vocab.items() , key=lambda __UpperCAmelCase : kv[1] ): if index != token_index: logger.warning( f'Saving vocabulary to {vocab_file}: vocabulary indices are not consecutive.' " Please check that the vocabulary is not corrupted!" ) __a : Union[str, Any] = token_index writer.write(token + "\n" ) index += 1 __a : List[Any] = os.path.join(_lowerCAmelCase , "sentencepiece.bpe.model" ) with open(_lowerCAmelCase , "wb" ) as fi: __a : Union[str, Any] = self.sp_model.serialized_model_proto() fi.write(_lowerCAmelCase ) return (vocab_file,)
351
import unittest from typing import Tuple import torch from diffusers.utils import floats_tensor, randn_tensor, torch_all_close, torch_device from diffusers.utils.testing_utils import require_torch @require_torch class lowerCamelCase_ : '''simple docstring''' @property def lowerCAmelCase_ ( self : Optional[Any] ): return self.get_dummy_input() @property def lowerCAmelCase_ ( self : Union[str, Any] ): if self.block_type == "down": return (4, 32, 16, 16) elif self.block_type == "mid": return (4, 32, 32, 32) elif self.block_type == "up": return (4, 32, 64, 64) raise ValueError(F"'{self.block_type}' is not a supported block_type. Set it to 'up', 'mid', or 'down'." ) def lowerCAmelCase_ ( self : List[str] , _lowerCAmelCase : Optional[Any]=True , _lowerCAmelCase : str=False , _lowerCAmelCase : Optional[int]=False , _lowerCAmelCase : Dict=False , ): SCREAMING_SNAKE_CASE_ = 4 SCREAMING_SNAKE_CASE_ = 32 SCREAMING_SNAKE_CASE_ = (32, 32) SCREAMING_SNAKE_CASE_ = torch.manual_seed(0 ) SCREAMING_SNAKE_CASE_ = torch.device(_lowerCAmelCase ) SCREAMING_SNAKE_CASE_ = (batch_size, num_channels) + sizes SCREAMING_SNAKE_CASE_ = randn_tensor(_lowerCAmelCase , generator=_lowerCAmelCase , device=_lowerCAmelCase ) SCREAMING_SNAKE_CASE_ = {'hidden_states': hidden_states} if include_temb: SCREAMING_SNAKE_CASE_ = 128 SCREAMING_SNAKE_CASE_ = randn_tensor((batch_size, temb_channels) , generator=_lowerCAmelCase , device=_lowerCAmelCase ) if include_res_hidden_states_tuple: SCREAMING_SNAKE_CASE_ = torch.manual_seed(1 ) SCREAMING_SNAKE_CASE_ = (randn_tensor(_lowerCAmelCase , generator=_lowerCAmelCase , device=_lowerCAmelCase ),) if include_encoder_hidden_states: SCREAMING_SNAKE_CASE_ = floats_tensor((batch_size, 32, 32) ).to(_lowerCAmelCase ) if include_skip_sample: SCREAMING_SNAKE_CASE_ = randn_tensor(((batch_size, 3) + sizes) , generator=_lowerCAmelCase , device=_lowerCAmelCase ) return dummy_input def lowerCAmelCase_ ( self : Optional[int] ): SCREAMING_SNAKE_CASE_ = { 'in_channels': 32, 'out_channels': 32, 'temb_channels': 128, } if self.block_type == "up": SCREAMING_SNAKE_CASE_ = 32 if self.block_type == "mid": init_dict.pop('out_channels' ) SCREAMING_SNAKE_CASE_ = self.dummy_input return init_dict, inputs_dict def lowerCAmelCase_ ( self : Dict , _lowerCAmelCase : Optional[Any] ): SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = self.prepare_init_args_and_inputs_for_common() SCREAMING_SNAKE_CASE_ = self.block_class(**_lowerCAmelCase ) unet_block.to(_lowerCAmelCase ) unet_block.eval() with torch.no_grad(): SCREAMING_SNAKE_CASE_ = unet_block(**_lowerCAmelCase ) if isinstance(_lowerCAmelCase , _lowerCAmelCase ): SCREAMING_SNAKE_CASE_ = output[0] self.assertEqual(output.shape , self.output_shape ) SCREAMING_SNAKE_CASE_ = output[0, -1, -3:, -3:] SCREAMING_SNAKE_CASE_ = torch.tensor(_lowerCAmelCase ).to(_lowerCAmelCase ) assert torch_all_close(output_slice.flatten() , _lowerCAmelCase , atol=5E-3 ) @unittest.skipIf(torch_device == 'mps' , 'Training is not supported in mps' ) def lowerCAmelCase_ ( self : Any ): SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = self.prepare_init_args_and_inputs_for_common() SCREAMING_SNAKE_CASE_ = self.block_class(**_lowerCAmelCase ) model.to(_lowerCAmelCase ) model.train() SCREAMING_SNAKE_CASE_ = model(**_lowerCAmelCase ) if isinstance(_lowerCAmelCase , _lowerCAmelCase ): SCREAMING_SNAKE_CASE_ = output[0] SCREAMING_SNAKE_CASE_ = torch.device(_lowerCAmelCase ) SCREAMING_SNAKE_CASE_ = randn_tensor(output.shape , device=_lowerCAmelCase ) SCREAMING_SNAKE_CASE_ = torch.nn.functional.mse_loss(_lowerCAmelCase , _lowerCAmelCase ) loss.backward()
31
0
'''simple docstring''' def _lowerCAmelCase ( lowercase : list , lowercase : int , lowercase : int = 0 , lowercase : int = 0 ) ->int: """simple docstring""" lowercase__ = right or len(__UpperCAmelCase ) - 1 if left > right: return -1 elif list_data[left] == key: return left elif list_data[right] == key: return right else: return search(__UpperCAmelCase , __UpperCAmelCase , left + 1 , right - 1 ) if __name__ == "__main__": import doctest doctest.testmod()
161
import operator as op def UpperCAmelCase_ ( __UpperCAmelCase : str ) -> Any: SCREAMING_SNAKE_CASE_ = [] SCREAMING_SNAKE_CASE_ = lambda __UpperCAmelCase , __UpperCAmelCase : int(x / y ) # noqa: E731 integer division operation SCREAMING_SNAKE_CASE_ = { '^': op.pow, '*': op.mul, '/': div, '+': op.add, '-': op.sub, } # operators & their respective operation # print table header print('Symbol'.center(8 ) , 'Action'.center(12 ) , 'Stack' , sep=' | ' ) print('-' * (30 + len(__UpperCAmelCase )) ) for x in post_fix: if x.isdigit(): # if x in digit stack.append(__UpperCAmelCase ) # append x to stack # output in tabular format print(x.rjust(8 ) , ('push(' + x + ')').ljust(12 ) , ','.join(__UpperCAmelCase ) , sep=' | ' ) else: SCREAMING_SNAKE_CASE_ = stack.pop() # pop stack # output in tabular format print(''.rjust(8 ) , ('pop(' + b + ')').ljust(12 ) , ','.join(__UpperCAmelCase ) , sep=' | ' ) SCREAMING_SNAKE_CASE_ = stack.pop() # pop stack # output in tabular format print(''.rjust(8 ) , ('pop(' + a + ')').ljust(12 ) , ','.join(__UpperCAmelCase ) , sep=' | ' ) stack.append( str(opr[x](int(__UpperCAmelCase ) , int(__UpperCAmelCase ) ) ) ) # evaluate the 2 values popped from stack & push result to stack # output in tabular format print( x.rjust(8 ) , ('push(' + a + x + b + ')').ljust(12 ) , ','.join(__UpperCAmelCase ) , sep=' | ' , ) return int(stack[0] ) if __name__ == "__main__": lowerCamelCase__ : Tuple = input('\n\nEnter a Postfix Equation (space separated) = ').split(' ') print('\n\tResult = ', solve(Postfix))
31
0
"""simple docstring""" from dataclasses import dataclass from typing import List, Optional, Union import numpy as np import PIL import torch from transformers import CLIPImageProcessor, CLIPVisionModel from ...models import PriorTransformer from ...pipelines import DiffusionPipeline from ...schedulers import HeunDiscreteScheduler from ...utils import ( BaseOutput, is_accelerate_available, logging, randn_tensor, replace_example_docstring, ) from .renderer import ShapERenderer A_ : Union[str, Any] =logging.get_logger(__name__) # pylint: disable=invalid-name A_ : Optional[Any] ='\n Examples:\n ```py\n >>> from PIL import Image\n >>> import torch\n >>> from diffusers import DiffusionPipeline\n >>> from diffusers.utils import export_to_gif, load_image\n\n >>> device = torch.device("cuda" if torch.cuda.is_available() else "cpu")\n\n >>> repo = "openai/shap-e-img2img"\n >>> pipe = DiffusionPipeline.from_pretrained(repo, torch_dtype=torch.float16)\n >>> pipe = pipe.to(device)\n\n >>> guidance_scale = 3.0\n >>> image_url = "https://hf.co/datasets/diffusers/docs-images/resolve/main/shap-e/corgi.png"\n >>> image = load_image(image_url).convert("RGB")\n\n >>> images = pipe(\n ... image,\n ... guidance_scale=guidance_scale,\n ... num_inference_steps=64,\n ... frame_size=256,\n ... ).images\n\n >>> gif_path = export_to_gif(images[0], "corgi_3d.gif")\n ```\n' @dataclass class __a ( _SCREAMING_SNAKE_CASE ): SCREAMING_SNAKE_CASE__ : Any = 42 class __a ( _SCREAMING_SNAKE_CASE ): def __init__( self , a__ , a__ , a__ , a__ , a__ , ): super().__init__() self.register_modules( prior=_lowerCAmelCase , image_encoder=_lowerCAmelCase , image_processor=_lowerCAmelCase , scheduler=_lowerCAmelCase , renderer=_lowerCAmelCase , ) def snake_case_ ( self , a__ , a__ , a__ , a__ , a__ , a__ ): if latents is None: _lowerCamelCase = randn_tensor(_lowerCAmelCase , generator=_lowerCAmelCase , device=_lowerCAmelCase , dtype=_lowerCAmelCase ) else: if latents.shape != shape: raise ValueError(F'Unexpected latents shape, got {latents.shape}, expected {shape}' ) _lowerCamelCase = latents.to(_lowerCAmelCase ) _lowerCamelCase = latents * scheduler.init_noise_sigma return latents def snake_case_ ( self , a__=0 ): if is_accelerate_available(): from accelerate import cpu_offload else: raise ImportError('Please install accelerate via `pip install accelerate`' ) _lowerCamelCase = torch.device(F'cuda:{gpu_id}' ) _lowerCamelCase = [self.image_encoder, self.prior] for cpu_offloaded_model in models: if cpu_offloaded_model is not None: cpu_offload(_lowerCAmelCase , _lowerCAmelCase ) @property def snake_case_ ( self ): if self.device != torch.device('meta' ) or not hasattr(self.image_encoder , '_hf_hook' ): return self.device for module in self.image_encoder.modules(): if ( hasattr(_lowerCAmelCase , '_hf_hook' ) and hasattr(module._hf_hook , 'execution_device' ) and module._hf_hook.execution_device is not None ): return torch.device(module._hf_hook.execution_device ) return self.device def snake_case_ ( self , a__ , a__ , a__ , a__ , ): if isinstance(_lowerCAmelCase , _lowerCAmelCase ) and isinstance(image[0] , torch.Tensor ): _lowerCamelCase = torch.cat(_lowerCAmelCase , axis=0 ) if image[0].ndim == 4 else torch.stack(_lowerCAmelCase , axis=0 ) if not isinstance(_lowerCAmelCase , torch.Tensor ): _lowerCamelCase = self.image_processor(_lowerCAmelCase , return_tensors='pt' ).pixel_values[0].unsqueeze(0 ) _lowerCamelCase = image.to(dtype=self.image_encoder.dtype , device=_lowerCAmelCase ) _lowerCamelCase = self.image_encoder(_lowerCAmelCase )['last_hidden_state'] _lowerCamelCase = image_embeds[:, 1:, :].contiguous() # batch_size, dim, 256 _lowerCamelCase = image_embeds.repeat_interleave(_lowerCAmelCase , dim=0 ) if do_classifier_free_guidance: _lowerCamelCase = torch.zeros_like(_lowerCAmelCase ) # For classifier free guidance, we need to do two forward passes. # Here we concatenate the unconditional and text embeddings into a single batch # to avoid doing two forward passes _lowerCamelCase = torch.cat([negative_image_embeds, image_embeds] ) return image_embeds @torch.no_grad() @replace_example_docstring(_lowerCAmelCase ) def __call__( self , a__ , a__ = 1 , a__ = 25 , a__ = None , a__ = None , a__ = 4.0 , a__ = 64 , a__ = "pil" , a__ = True , ): if isinstance(_lowerCAmelCase , PIL.Image.Image ): _lowerCamelCase = 1 elif isinstance(_lowerCAmelCase , torch.Tensor ): _lowerCamelCase = image.shape[0] elif isinstance(_lowerCAmelCase , _lowerCAmelCase ) and isinstance(image[0] , (torch.Tensor, PIL.Image.Image) ): _lowerCamelCase = len(_lowerCAmelCase ) else: raise ValueError( F'`image` has to be of type `PIL.Image.Image`, `torch.Tensor`, `List[PIL.Image.Image]` or `List[torch.Tensor]` but is {type(_lowerCAmelCase )}' ) _lowerCamelCase = self._execution_device _lowerCamelCase = batch_size * num_images_per_prompt _lowerCamelCase = guidance_scale > 1.0 _lowerCamelCase = self._encode_image(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) # prior self.scheduler.set_timesteps(_lowerCAmelCase , device=_lowerCAmelCase ) _lowerCamelCase = self.scheduler.timesteps _lowerCamelCase = self.prior.config.num_embeddings _lowerCamelCase = self.prior.config.embedding_dim _lowerCamelCase = self.prepare_latents( (batch_size, num_embeddings * embedding_dim) , image_embeds.dtype , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , self.scheduler , ) # YiYi notes: for testing only to match ldm, we can directly create a latents with desired shape: batch_size, num_embeddings, embedding_dim _lowerCamelCase = latents.reshape(latents.shape[0] , _lowerCAmelCase , _lowerCAmelCase ) for i, t in enumerate(self.progress_bar(_lowerCAmelCase ) ): # expand the latents if we are doing classifier free guidance _lowerCamelCase = torch.cat([latents] * 2 ) if do_classifier_free_guidance else latents _lowerCamelCase = self.scheduler.scale_model_input(_lowerCAmelCase , _lowerCAmelCase ) _lowerCamelCase = self.prior( _lowerCAmelCase , timestep=_lowerCAmelCase , proj_embedding=_lowerCAmelCase , ).predicted_image_embedding # remove the variance _lowerCamelCase , _lowerCamelCase = noise_pred.split( scaled_model_input.shape[2] , dim=2 ) # batch_size, num_embeddings, embedding_dim if do_classifier_free_guidance is not None: _lowerCamelCase , _lowerCamelCase = noise_pred.chunk(2 ) _lowerCamelCase = noise_pred_uncond + guidance_scale * (noise_pred - noise_pred_uncond) _lowerCamelCase = self.scheduler.step( _lowerCAmelCase , timestep=_lowerCAmelCase , sample=_lowerCAmelCase , ).prev_sample if output_type == "latent": return ShapEPipelineOutput(images=_lowerCAmelCase ) _lowerCamelCase = [] for i, latent in enumerate(_lowerCAmelCase ): print() _lowerCamelCase = self.renderer.decode( latent[None, :] , _lowerCAmelCase , size=_lowerCAmelCase , ray_batch_size=40_96 , n_coarse_samples=64 , n_fine_samples=1_28 , ) images.append(_lowerCAmelCase ) _lowerCamelCase = torch.stack(_lowerCAmelCase ) if output_type not in ["np", "pil"]: raise ValueError(F'Only the output types `pil` and `np` are supported not output_type={output_type}' ) _lowerCamelCase = images.cpu().numpy() if output_type == "pil": _lowerCamelCase = [self.numpy_to_pil(_lowerCAmelCase ) for image in images] # Offload last model to CPU if hasattr(self , 'final_offload_hook' ) and self.final_offload_hook is not None: self.final_offload_hook.offload() if not return_dict: return (images,) return ShapEPipelineOutput(images=_lowerCAmelCase )
650
def UpperCAmelCase_ ( __UpperCAmelCase : int ) -> int: assert isinstance(__UpperCAmelCase , __UpperCAmelCase ), f"The input value of [n={number}] is not an integer" if number == 1: return 2 elif number < 1: SCREAMING_SNAKE_CASE_ = f"The input value of [n={number}] has to be > 0" raise ValueError(__UpperCAmelCase ) else: SCREAMING_SNAKE_CASE_ = sylvester(number - 1 ) SCREAMING_SNAKE_CASE_ = num - 1 SCREAMING_SNAKE_CASE_ = num return lower * upper + 1 if __name__ == "__main__": print(f'''The 8th number in Sylvester\'s sequence: {sylvester(8)}''')
31
0
"""simple docstring""" import unittest import numpy as np from transformers import is_flax_available from transformers.testing_utils import require_flax from ..test_modeling_flax_common import ids_tensor if is_flax_available(): import jax import jax.numpy as jnp from transformers.generation import ( FlaxForcedBOSTokenLogitsProcessor, FlaxForcedEOSTokenLogitsProcessor, FlaxLogitsProcessorList, FlaxMinLengthLogitsProcessor, FlaxTemperatureLogitsWarper, FlaxTopKLogitsWarper, FlaxTopPLogitsWarper, ) @require_flax class lowerCamelCase_( unittest.TestCase ): '''simple docstring''' def snake_case__ ( self , lowerCamelCase__ , lowerCamelCase__ ): _lowerCamelCase = jnp.ones((batch_size, length) ) / length return scores def snake_case__ ( self ): _lowerCamelCase = None _lowerCamelCase = 2_0 _lowerCamelCase = self._get_uniform_logits(batch_size=2 , length=_lowerCAmelCase ) # tweak scores to not be uniform anymore _lowerCamelCase = scores.at[1, 5].set((1 / length) + 0.1 ) # peak, 1st batch _lowerCamelCase = scores.at[1, 1_0].set((1 / length) - 0.4 ) # valley, 1st batch # compute softmax _lowerCamelCase = jax.nn.softmax(_lowerCAmelCase , axis=-1 ) _lowerCamelCase = FlaxTemperatureLogitsWarper(temperature=0.5 ) _lowerCamelCase = FlaxTemperatureLogitsWarper(temperature=1.3 ) _lowerCamelCase = jax.nn.softmax(temp_dist_warper_sharper(_lowerCAmelCase , scores.copy() , cur_len=_lowerCAmelCase ) , axis=-1 ) _lowerCamelCase = jax.nn.softmax(temp_dist_warper_smoother(_lowerCAmelCase , scores.copy() , cur_len=_lowerCAmelCase ) , axis=-1 ) # uniform distribution stays uniform self.assertTrue(jnp.allclose(probs[0, :] , warped_prob_sharp[0, :] , atol=1e-3 ) ) self.assertTrue(jnp.allclose(probs[0, :] , warped_prob_smooth[0, :] , atol=1e-3 ) ) # sharp peaks get higher, valleys get lower self.assertLess(probs[1, :].max() , warped_prob_sharp[1, :].max() ) self.assertGreater(probs[1, :].min() , warped_prob_sharp[1, :].min() ) # smooth peaks get lower, valleys get higher self.assertGreater(probs[1, :].max() , warped_prob_smooth[1, :].max() ) self.assertLess(probs[1, :].min() , warped_prob_smooth[1, :].min() ) def snake_case__ ( self ): _lowerCamelCase = None _lowerCamelCase = 1_0 _lowerCamelCase = 2 # create ramp distribution _lowerCamelCase = np.broadcast_to(np.arange(_lowerCAmelCase )[None, :] , (batch_size, vocab_size) ).copy() _lowerCamelCase = ramp_logits[1:, : vocab_size // 2] + vocab_size _lowerCamelCase = FlaxTopKLogitsWarper(3 ) _lowerCamelCase = top_k_warp(_lowerCAmelCase , _lowerCAmelCase , cur_len=_lowerCAmelCase ) # check that correct tokens are filtered self.assertListEqual(jnp.isinf(scores[0] ).tolist() , 7 * [True] + 3 * [False] ) self.assertListEqual(jnp.isinf(scores[1] ).tolist() , 2 * [True] + 3 * [False] + 5 * [True] ) # check special case _lowerCamelCase = 5 _lowerCamelCase = FlaxTopKLogitsWarper(top_k=1 , filter_value=0.0 , min_tokens_to_keep=3 ) _lowerCamelCase = np.broadcast_to(np.arange(_lowerCAmelCase )[None, :] , (batch_size, length) ).copy() _lowerCamelCase = top_k_warp_safety_check(_lowerCAmelCase , _lowerCAmelCase , cur_len=_lowerCAmelCase ) # min_tokens overwrites k: 3 tokens are kept => 2 tokens are nullified self.assertListEqual((scores == 0.0).sum(axis=-1 ).tolist() , [2, 2] ) def snake_case__ ( self ): _lowerCamelCase = None _lowerCamelCase = 1_0 _lowerCamelCase = 2 # create distribution and take log (inverse to Softmax as taken in TopPLogitsWarper) _lowerCamelCase = np.log(np.array([[0.3, 0.1, 0.1, 0.5], [0.1_5, 0.3, 0.3, 0.2_5]] ) ) _lowerCamelCase = FlaxTopPLogitsWarper(0.8 ) _lowerCamelCase = np.exp(top_p_warp(_lowerCAmelCase , _lowerCAmelCase , cur_len=_lowerCAmelCase ) ) # dist should be filtered to keep min num values so that sum is >= top_p # exp (-inf) => 0 _lowerCamelCase = np.array([[0.3, 0.0, 0.0, 0.5], [0.0, 0.3, 0.3, 0.2_5]] ) self.assertTrue(np.allclose(_lowerCAmelCase , _lowerCAmelCase , atol=1e-3 ) ) # check edge cases with negative and extreme logits _lowerCamelCase = np.broadcast_to(np.arange(_lowerCAmelCase )[None, :] , (batch_size, vocab_size) ).copy() - ( vocab_size // 2 ) # make ramp_logits more extreme _lowerCamelCase = ramp_logits[1] * 1_0_0.0 # make sure at least 2 tokens are kept _lowerCamelCase = FlaxTopPLogitsWarper(0.9 , min_tokens_to_keep=2 , filter_value=0.0 ) _lowerCamelCase = top_p_warp(_lowerCAmelCase , _lowerCAmelCase , cur_len=_lowerCAmelCase ) # first batch should keep three tokens, second batch would keep only 1, but due to `min_tokens_to_keep=2` keeps 2. self.assertListEqual((filtered_dist != 0.0).sum(axis=-1 ).tolist() , [3, 2] ) def snake_case__ ( self ): _lowerCamelCase = 2_0 _lowerCamelCase = 4 _lowerCamelCase = 0 _lowerCamelCase = FlaxMinLengthLogitsProcessor(min_length=1_0 , eos_token_id=_lowerCAmelCase ) # check that min length is applied at length 5 _lowerCamelCase = ids_tensor((batch_size, 2_0) , vocab_size=2_0 ) _lowerCamelCase = 5 _lowerCamelCase = self._get_uniform_logits(_lowerCAmelCase , _lowerCAmelCase ) _lowerCamelCase = min_dist_processor(_lowerCAmelCase , _lowerCAmelCase , cur_len=_lowerCAmelCase ) self.assertListEqual(scores_before_min_length[:, eos_token_id].tolist() , 4 * [-float('''inf''' )] ) # check that min length is not applied anymore at length 15 _lowerCamelCase = self._get_uniform_logits(_lowerCAmelCase , _lowerCAmelCase ) _lowerCamelCase = 1_5 _lowerCamelCase = min_dist_processor(_lowerCAmelCase , _lowerCAmelCase , cur_len=_lowerCAmelCase ) self.assertFalse(jnp.isinf(_lowerCAmelCase ).any() ) def snake_case__ ( self ): _lowerCamelCase = 2_0 _lowerCamelCase = 4 _lowerCamelCase = 0 _lowerCamelCase = FlaxForcedBOSTokenLogitsProcessor(bos_token_id=_lowerCAmelCase ) # check that all scores are -inf except the bos_token_id score _lowerCamelCase = ids_tensor((batch_size, 1) , vocab_size=2_0 ) _lowerCamelCase = 1 _lowerCamelCase = self._get_uniform_logits(_lowerCAmelCase , _lowerCAmelCase ) _lowerCamelCase = logits_processor(_lowerCAmelCase , _lowerCAmelCase , cur_len=_lowerCAmelCase ) self.assertTrue(jnp.isneginf(scores[:, bos_token_id + 1 :] ).all() ) self.assertListEqual(scores[:, bos_token_id].tolist() , 4 * [0] ) # score for bos_token_id shold be zero # check that bos_token_id is not forced if current length is greater than 1 _lowerCamelCase = 3 _lowerCamelCase = self._get_uniform_logits(_lowerCAmelCase , _lowerCAmelCase ) _lowerCamelCase = logits_processor(_lowerCAmelCase , _lowerCAmelCase , cur_len=_lowerCAmelCase ) self.assertFalse(jnp.isinf(_lowerCAmelCase ).any() ) def snake_case__ ( self ): _lowerCamelCase = 2_0 _lowerCamelCase = 4 _lowerCamelCase = 0 _lowerCamelCase = 5 _lowerCamelCase = FlaxForcedEOSTokenLogitsProcessor(max_length=_lowerCAmelCase , eos_token_id=_lowerCAmelCase ) # check that all scores are -inf except the eos_token_id when max_length is reached _lowerCamelCase = ids_tensor((batch_size, 4) , vocab_size=2_0 ) _lowerCamelCase = 4 _lowerCamelCase = self._get_uniform_logits(_lowerCAmelCase , _lowerCAmelCase ) _lowerCamelCase = logits_processor(_lowerCAmelCase , _lowerCAmelCase , cur_len=_lowerCAmelCase ) self.assertTrue(jnp.isneginf(scores[:, eos_token_id + 1 :] ).all() ) self.assertListEqual(scores[:, eos_token_id].tolist() , 4 * [0] ) # score for eos_token_id should be zero # check that eos_token_id is not forced if max_length is not reached _lowerCamelCase = 3 _lowerCamelCase = self._get_uniform_logits(_lowerCAmelCase , _lowerCAmelCase ) _lowerCamelCase = logits_processor(_lowerCAmelCase , _lowerCAmelCase , cur_len=_lowerCAmelCase ) self.assertFalse(jnp.isinf(_lowerCAmelCase ).any() ) def snake_case__ ( self ): _lowerCamelCase = 4 _lowerCamelCase = 1_0 _lowerCamelCase = 1_5 _lowerCamelCase = 2 _lowerCamelCase = 1 _lowerCamelCase = 1_5 # dummy input_ids and scores _lowerCamelCase = ids_tensor((batch_size, sequence_length) , _lowerCAmelCase ) _lowerCamelCase = input_ids.copy() _lowerCamelCase = self._get_uniform_logits(_lowerCAmelCase , _lowerCAmelCase ) _lowerCamelCase = scores.copy() # instantiate all dist processors _lowerCamelCase = FlaxTemperatureLogitsWarper(temperature=0.5 ) _lowerCamelCase = FlaxTopKLogitsWarper(3 ) _lowerCamelCase = FlaxTopPLogitsWarper(0.8 ) # instantiate all logits processors _lowerCamelCase = FlaxMinLengthLogitsProcessor(min_length=1_0 , eos_token_id=_lowerCAmelCase ) _lowerCamelCase = FlaxForcedBOSTokenLogitsProcessor(bos_token_id=_lowerCAmelCase ) _lowerCamelCase = FlaxForcedEOSTokenLogitsProcessor(max_length=_lowerCAmelCase , eos_token_id=_lowerCAmelCase ) _lowerCamelCase = 1_0 # no processor list _lowerCamelCase = temp_dist_warp(_lowerCAmelCase , _lowerCAmelCase , cur_len=_lowerCAmelCase ) _lowerCamelCase = top_k_warp(_lowerCAmelCase , _lowerCAmelCase , cur_len=_lowerCAmelCase ) _lowerCamelCase = top_p_warp(_lowerCAmelCase , _lowerCAmelCase , cur_len=_lowerCAmelCase ) _lowerCamelCase = min_dist_proc(_lowerCAmelCase , _lowerCAmelCase , cur_len=_lowerCAmelCase ) _lowerCamelCase = bos_dist_proc(_lowerCAmelCase , _lowerCAmelCase , cur_len=_lowerCAmelCase ) _lowerCamelCase = eos_dist_proc(_lowerCAmelCase , _lowerCAmelCase , cur_len=_lowerCAmelCase ) # with processor list _lowerCamelCase = FlaxLogitsProcessorList( [temp_dist_warp, top_k_warp, top_p_warp, min_dist_proc, bos_dist_proc, eos_dist_proc] ) _lowerCamelCase = processor(_lowerCAmelCase , _lowerCAmelCase , cur_len=_lowerCAmelCase ) # scores should be equal self.assertTrue(jnp.allclose(_lowerCAmelCase , _lowerCAmelCase , atol=1e-3 ) ) # input_ids should never be changed self.assertListEqual(input_ids.tolist() , input_ids_comp.tolist() ) def snake_case__ ( self ): _lowerCamelCase = 4 _lowerCamelCase = 1_0 _lowerCamelCase = 1_5 _lowerCamelCase = 2 _lowerCamelCase = 1 _lowerCamelCase = 1_5 # dummy input_ids and scores _lowerCamelCase = ids_tensor((batch_size, sequence_length) , _lowerCAmelCase ) _lowerCamelCase = input_ids.copy() _lowerCamelCase = self._get_uniform_logits(_lowerCAmelCase , _lowerCAmelCase ) _lowerCamelCase = scores.copy() # instantiate all dist processors _lowerCamelCase = FlaxTemperatureLogitsWarper(temperature=0.5 ) _lowerCamelCase = FlaxTopKLogitsWarper(3 ) _lowerCamelCase = FlaxTopPLogitsWarper(0.8 ) # instantiate all logits processors _lowerCamelCase = FlaxMinLengthLogitsProcessor(min_length=1_0 , eos_token_id=_lowerCAmelCase ) _lowerCamelCase = FlaxForcedBOSTokenLogitsProcessor(bos_token_id=_lowerCAmelCase ) _lowerCamelCase = FlaxForcedEOSTokenLogitsProcessor(max_length=_lowerCAmelCase , eos_token_id=_lowerCAmelCase ) _lowerCamelCase = 1_0 # no processor list def run_no_processor_list(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ): _lowerCamelCase = temp_dist_warp(_lowerCAmelCase , _lowerCAmelCase , cur_len=_lowerCAmelCase ) _lowerCamelCase = top_k_warp(_lowerCAmelCase , _lowerCAmelCase , cur_len=_lowerCAmelCase ) _lowerCamelCase = top_p_warp(_lowerCAmelCase , _lowerCAmelCase , cur_len=_lowerCAmelCase ) _lowerCamelCase = min_dist_proc(_lowerCAmelCase , _lowerCAmelCase , cur_len=_lowerCAmelCase ) _lowerCamelCase = bos_dist_proc(_lowerCAmelCase , _lowerCAmelCase , cur_len=_lowerCAmelCase ) _lowerCamelCase = eos_dist_proc(_lowerCAmelCase , _lowerCAmelCase , cur_len=_lowerCAmelCase ) return scores # with processor list def run_processor_list(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ): _lowerCamelCase = FlaxLogitsProcessorList( [temp_dist_warp, top_k_warp, top_p_warp, min_dist_proc, bos_dist_proc, eos_dist_proc] ) _lowerCamelCase = processor(_lowerCAmelCase , _lowerCAmelCase , cur_len=_lowerCAmelCase ) return scores _lowerCamelCase = jax.jit(_lowerCAmelCase ) _lowerCamelCase = jax.jit(_lowerCAmelCase ) _lowerCamelCase = jitted_run_no_processor_list(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) _lowerCamelCase = jitted_run_processor_list(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) # scores should be equal self.assertTrue(jnp.allclose(_lowerCAmelCase , _lowerCAmelCase , atol=1e-3 ) ) # input_ids should never be changed self.assertListEqual(input_ids.tolist() , input_ids_comp.tolist() )
661
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_sentencepiece_available, is_tf_available, is_tokenizers_available, is_torch_available, ) if is_sentencepiece_available(): from ..ta.tokenization_ta import TaTokenizer else: from ...utils.dummy_sentencepiece_objects import TaTokenizer lowerCamelCase__ : List[Any] = TaTokenizer if is_tokenizers_available(): from ..ta.tokenization_ta_fast import TaTokenizerFast else: from ...utils.dummy_tokenizers_objects import TaTokenizerFast lowerCamelCase__ : Union[str, Any] = TaTokenizerFast lowerCamelCase__ : Dict = {'configuration_mt5': ['MT5Config', 'MT5OnnxConfig']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase__ : Tuple = [ 'MT5EncoderModel', 'MT5ForConditionalGeneration', 'MT5ForQuestionAnswering', 'MT5Model', 'MT5PreTrainedModel', 'MT5Stack', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase__ : Tuple = ['TFMT5EncoderModel', 'TFMT5ForConditionalGeneration', 'TFMT5Model'] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase__ : Tuple = ['FlaxMT5EncoderModel', 'FlaxMT5ForConditionalGeneration', 'FlaxMT5Model'] if TYPE_CHECKING: from .configuration_mta import MTaConfig, MTaOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mta import ( MTaEncoderModel, MTaForConditionalGeneration, MTaForQuestionAnswering, MTaModel, MTaPreTrainedModel, MTaStack, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_mta import TFMTaEncoderModel, TFMTaForConditionalGeneration, TFMTaModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_mta import FlaxMTaEncoderModel, FlaxMTaForConditionalGeneration, FlaxMTaModel else: import sys lowerCamelCase__ : int = _LazyModule( __name__, globals()['__file__'], _import_structure, extra_objects={'MT5Tokenizer': MTaTokenizer, 'MT5TokenizerFast': MTaTokenizerFast}, module_spec=__spec__, )
31
0
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging A = logging.get_logger(__name__) A = {'openai-gpt': 'https://huggingface.co/openai-gpt/resolve/main/config.json'} class a__ ( _SCREAMING_SNAKE_CASE ): lowercase_ = "openai-gpt" lowercase_ = { "max_position_embeddings": "n_positions", "hidden_size": "n_embd", "num_attention_heads": "n_head", "num_hidden_layers": "n_layer", } def __init__( self : Optional[int] , UpperCamelCase_ : Union[str, Any]=40478 , UpperCamelCase_ : Union[str, Any]=512 , UpperCamelCase_ : int=768 , UpperCamelCase_ : str=12 , UpperCamelCase_ : Optional[int]=12 , UpperCamelCase_ : List[Any]="gelu" , UpperCamelCase_ : List[str]=0.1 , UpperCamelCase_ : int=0.1 , UpperCamelCase_ : Optional[int]=0.1 , UpperCamelCase_ : Tuple=1e-5 , UpperCamelCase_ : Union[str, Any]=0.02 , UpperCamelCase_ : Any="cls_index" , UpperCamelCase_ : List[str]=True , UpperCamelCase_ : Dict=None , UpperCamelCase_ : List[Any]=True , UpperCamelCase_ : List[str]=0.1 , **UpperCamelCase_ : Optional[int] , ): """simple docstring""" __UpperCAmelCase : List[Any] = vocab_size __UpperCAmelCase : List[str] = n_positions __UpperCAmelCase : Union[str, Any] = n_embd __UpperCAmelCase : str = n_layer __UpperCAmelCase : Any = n_head __UpperCAmelCase : List[Any] = afn __UpperCAmelCase : Tuple = resid_pdrop __UpperCAmelCase : Union[str, Any] = embd_pdrop __UpperCAmelCase : Tuple = attn_pdrop __UpperCAmelCase : List[str] = layer_norm_epsilon __UpperCAmelCase : str = initializer_range __UpperCAmelCase : Union[str, Any] = summary_type __UpperCAmelCase : List[Any] = summary_use_proj __UpperCAmelCase : List[str] = summary_activation __UpperCAmelCase : List[Any] = summary_first_dropout __UpperCAmelCase : Optional[Any] = summary_proj_to_labels super().__init__(**_lowerCAmelCase)
77
import subprocess import sys from transformers import BertConfig, BertModel, BertTokenizer, pipeline from transformers.testing_utils import TestCasePlus, require_torch class lowerCamelCase_ ( _SCREAMING_SNAKE_CASE ): '''simple docstring''' @require_torch def lowerCAmelCase_ ( self : int ): # this test is a bit tricky since TRANSFORMERS_OFFLINE can only be changed before # `transformers` is loaded, and it's too late for inside pytest - so we are changing it # while running an external program # python one-liner segments # this must be loaded before socket.socket is monkey-patched SCREAMING_SNAKE_CASE_ = '\nfrom transformers import BertConfig, BertModel, BertTokenizer, pipeline\n ' SCREAMING_SNAKE_CASE_ = '\nmname = "hf-internal-testing/tiny-random-bert"\nBertConfig.from_pretrained(mname)\nBertModel.from_pretrained(mname)\nBertTokenizer.from_pretrained(mname)\npipe = pipeline(task="fill-mask", model=mname)\nprint("success")\n ' SCREAMING_SNAKE_CASE_ = '\nimport socket\ndef offline_socket(*args, **kwargs): raise RuntimeError("Offline mode is enabled, we shouldn\'t access internet")\nsocket.socket = offline_socket\n ' # Force fetching the files so that we can use the cache SCREAMING_SNAKE_CASE_ = 'hf-internal-testing/tiny-random-bert' BertConfig.from_pretrained(_lowerCAmelCase ) BertModel.from_pretrained(_lowerCAmelCase ) BertTokenizer.from_pretrained(_lowerCAmelCase ) pipeline(task='fill-mask' , model=_lowerCAmelCase ) # baseline - just load from_pretrained with normal network SCREAMING_SNAKE_CASE_ = [sys.executable, '-c', '\n'.join([load, run, mock] )] # should succeed SCREAMING_SNAKE_CASE_ = self.get_env() # should succeed as TRANSFORMERS_OFFLINE=1 tells it to use local files SCREAMING_SNAKE_CASE_ = '1' SCREAMING_SNAKE_CASE_ = subprocess.run(_lowerCAmelCase , env=_lowerCAmelCase , check=_lowerCAmelCase , capture_output=_lowerCAmelCase ) self.assertEqual(result.returncode , 0 , result.stderr ) self.assertIn('success' , result.stdout.decode() ) @require_torch def lowerCAmelCase_ ( self : Tuple ): # python one-liner segments # this must be loaded before socket.socket is monkey-patched SCREAMING_SNAKE_CASE_ = '\nfrom transformers import BertConfig, BertModel, BertTokenizer, pipeline\n ' SCREAMING_SNAKE_CASE_ = '\nmname = "hf-internal-testing/tiny-random-bert"\nBertConfig.from_pretrained(mname)\nBertModel.from_pretrained(mname)\nBertTokenizer.from_pretrained(mname)\npipe = pipeline(task="fill-mask", model=mname)\nprint("success")\n ' SCREAMING_SNAKE_CASE_ = '\nimport socket\ndef offline_socket(*args, **kwargs): raise socket.error("Faking flaky internet")\nsocket.socket = offline_socket\n ' # Force fetching the files so that we can use the cache SCREAMING_SNAKE_CASE_ = 'hf-internal-testing/tiny-random-bert' BertConfig.from_pretrained(_lowerCAmelCase ) BertModel.from_pretrained(_lowerCAmelCase ) BertTokenizer.from_pretrained(_lowerCAmelCase ) pipeline(task='fill-mask' , model=_lowerCAmelCase ) # baseline - just load from_pretrained with normal network SCREAMING_SNAKE_CASE_ = [sys.executable, '-c', '\n'.join([load, run, mock] )] # should succeed SCREAMING_SNAKE_CASE_ = self.get_env() SCREAMING_SNAKE_CASE_ = subprocess.run(_lowerCAmelCase , env=_lowerCAmelCase , check=_lowerCAmelCase , capture_output=_lowerCAmelCase ) self.assertEqual(result.returncode , 0 , result.stderr ) self.assertIn('success' , result.stdout.decode() ) @require_torch def lowerCAmelCase_ ( self : List[str] ): # this test is a bit tricky since TRANSFORMERS_OFFLINE can only be changed before # `transformers` is loaded, and it's too late for inside pytest - so we are changing it # while running an external program # python one-liner segments # this must be loaded before socket.socket is monkey-patched SCREAMING_SNAKE_CASE_ = '\nfrom transformers import BertConfig, BertModel, BertTokenizer\n ' SCREAMING_SNAKE_CASE_ = '\nmname = "hf-internal-testing/tiny-random-bert-sharded"\nBertConfig.from_pretrained(mname)\nBertModel.from_pretrained(mname)\nprint("success")\n ' SCREAMING_SNAKE_CASE_ = '\nimport socket\ndef offline_socket(*args, **kwargs): raise ValueError("Offline mode is enabled")\nsocket.socket = offline_socket\n ' # baseline - just load from_pretrained with normal network SCREAMING_SNAKE_CASE_ = [sys.executable, '-c', '\n'.join([load, run] )] # should succeed SCREAMING_SNAKE_CASE_ = self.get_env() SCREAMING_SNAKE_CASE_ = subprocess.run(_lowerCAmelCase , env=_lowerCAmelCase , check=_lowerCAmelCase , capture_output=_lowerCAmelCase ) self.assertEqual(result.returncode , 0 , result.stderr ) self.assertIn('success' , result.stdout.decode() ) # next emulate no network SCREAMING_SNAKE_CASE_ = [sys.executable, '-c', '\n'.join([load, mock, run] )] # Doesn't fail anymore since the model is in the cache due to other tests, so commenting this. # env["TRANSFORMERS_OFFLINE"] = "0" # result = subprocess.run(cmd, env=env, check=False, capture_output=True) # self.assertEqual(result.returncode, 1, result.stderr) # should succeed as TRANSFORMERS_OFFLINE=1 tells it to use local files SCREAMING_SNAKE_CASE_ = '1' SCREAMING_SNAKE_CASE_ = subprocess.run(_lowerCAmelCase , env=_lowerCAmelCase , check=_lowerCAmelCase , capture_output=_lowerCAmelCase ) self.assertEqual(result.returncode , 0 , result.stderr ) self.assertIn('success' , result.stdout.decode() ) @require_torch def lowerCAmelCase_ ( self : Any ): SCREAMING_SNAKE_CASE_ = '\nfrom transformers import pipeline\n ' SCREAMING_SNAKE_CASE_ = '\nmname = "hf-internal-testing/tiny-random-bert"\npipe = pipeline(model=mname)\n ' SCREAMING_SNAKE_CASE_ = '\nimport socket\ndef offline_socket(*args, **kwargs): raise socket.error("Offline mode is enabled")\nsocket.socket = offline_socket\n ' SCREAMING_SNAKE_CASE_ = self.get_env() SCREAMING_SNAKE_CASE_ = '1' SCREAMING_SNAKE_CASE_ = [sys.executable, '-c', '\n'.join([load, mock, run] )] SCREAMING_SNAKE_CASE_ = subprocess.run(_lowerCAmelCase , env=_lowerCAmelCase , check=_lowerCAmelCase , capture_output=_lowerCAmelCase ) self.assertEqual(result.returncode , 1 , result.stderr ) self.assertIn( 'You cannot infer task automatically within `pipeline` when using offline mode' , result.stderr.decode().replace('\n' , '' ) , ) @require_torch def lowerCAmelCase_ ( self : Optional[int] ): SCREAMING_SNAKE_CASE_ = '\nfrom transformers import AutoModel\n ' SCREAMING_SNAKE_CASE_ = '\nmname = "hf-internal-testing/test_dynamic_model"\nAutoModel.from_pretrained(mname, trust_remote_code=True)\nprint("success")\n ' # baseline - just load from_pretrained with normal network SCREAMING_SNAKE_CASE_ = [sys.executable, '-c', '\n'.join([load, run] )] # should succeed SCREAMING_SNAKE_CASE_ = self.get_env() SCREAMING_SNAKE_CASE_ = subprocess.run(_lowerCAmelCase , env=_lowerCAmelCase , check=_lowerCAmelCase , capture_output=_lowerCAmelCase ) self.assertEqual(result.returncode , 0 , result.stderr ) self.assertIn('success' , result.stdout.decode() ) # should succeed as TRANSFORMERS_OFFLINE=1 tells it to use local files SCREAMING_SNAKE_CASE_ = '1' SCREAMING_SNAKE_CASE_ = subprocess.run(_lowerCAmelCase , env=_lowerCAmelCase , check=_lowerCAmelCase , capture_output=_lowerCAmelCase ) self.assertEqual(result.returncode , 0 , result.stderr ) self.assertIn('success' , result.stdout.decode() )
31
0
import inspect import unittest from transformers import MobileNetVaConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import MobileNetVaForImageClassification, MobileNetVaForSemanticSegmentation, MobileNetVaModel from transformers.models.mobilenet_va.modeling_mobilenet_va import MOBILENET_V2_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import MobileNetVaImageProcessor class a ( _SCREAMING_SNAKE_CASE ): def snake_case_ ( self ): """simple docstring""" __SCREAMING_SNAKE_CASE: Dict = self.config_class(**self.inputs_dict ) self.parent.assertTrue(hasattr(_lowerCAmelCase , '''tf_padding''' ) ) self.parent.assertTrue(hasattr(_lowerCAmelCase , '''depth_multiplier''' ) ) class a : def __init__( self , _lowerCAmelCase , _lowerCAmelCase=13 , _lowerCAmelCase=3 , _lowerCAmelCase=32 , _lowerCAmelCase=0.25 , _lowerCAmelCase=8 , _lowerCAmelCase=8 , _lowerCAmelCase=6 , _lowerCAmelCase=32 , _lowerCAmelCase=True , _lowerCAmelCase=True , _lowerCAmelCase=True , _lowerCAmelCase="relu6" , _lowerCAmelCase=1280 , _lowerCAmelCase=0.1 , _lowerCAmelCase=0.02 , _lowerCAmelCase=True , _lowerCAmelCase=True , _lowerCAmelCase=10 , _lowerCAmelCase=None , ): """simple docstring""" __SCREAMING_SNAKE_CASE: int = parent __SCREAMING_SNAKE_CASE: str = batch_size __SCREAMING_SNAKE_CASE: Tuple = num_channels __SCREAMING_SNAKE_CASE: List[str] = image_size __SCREAMING_SNAKE_CASE: List[str] = depth_multiplier __SCREAMING_SNAKE_CASE: str = depth_divisible_by __SCREAMING_SNAKE_CASE: Union[str, Any] = min_depth __SCREAMING_SNAKE_CASE: Union[str, Any] = expand_ratio __SCREAMING_SNAKE_CASE: Optional[int] = tf_padding __SCREAMING_SNAKE_CASE: Tuple = output_stride __SCREAMING_SNAKE_CASE: Tuple = first_layer_is_expansion __SCREAMING_SNAKE_CASE: Optional[Any] = finegrained_output __SCREAMING_SNAKE_CASE: List[str] = hidden_act __SCREAMING_SNAKE_CASE: List[Any] = last_hidden_size if finegrained_output else int(last_hidden_size * depth_multiplier ) __SCREAMING_SNAKE_CASE: str = classifier_dropout_prob __SCREAMING_SNAKE_CASE: List[str] = use_labels __SCREAMING_SNAKE_CASE: Union[str, Any] = is_training __SCREAMING_SNAKE_CASE: List[Any] = num_labels __SCREAMING_SNAKE_CASE: List[Any] = initializer_range __SCREAMING_SNAKE_CASE: Tuple = scope def snake_case_ ( self ): """simple docstring""" __SCREAMING_SNAKE_CASE: List[str] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) __SCREAMING_SNAKE_CASE: Dict = None __SCREAMING_SNAKE_CASE: str = None if self.use_labels: __SCREAMING_SNAKE_CASE: Union[str, Any] = ids_tensor([self.batch_size] , self.num_labels ) __SCREAMING_SNAKE_CASE: int = ids_tensor([self.batch_size, self.image_size, self.image_size] , self.num_labels ) __SCREAMING_SNAKE_CASE: List[str] = self.get_config() return config, pixel_values, labels, pixel_labels def snake_case_ ( self ): """simple docstring""" return MobileNetVaConfig( num_channels=self.num_channels , image_size=self.image_size , depth_multiplier=self.depth_multiplier , depth_divisible_by=self.depth_divisible_by , min_depth=self.min_depth , expand_ratio=self.expand_ratio , output_stride=self.output_stride , first_layer_is_expansion=self.first_layer_is_expansion , finegrained_output=self.finegrained_output , hidden_act=self.hidden_act , tf_padding=self.tf_padding , classifier_dropout_prob=self.classifier_dropout_prob , initializer_range=self.initializer_range , ) def snake_case_ ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ): """simple docstring""" __SCREAMING_SNAKE_CASE: str = MobileNetVaModel(config=_lowerCAmelCase ) model.to(_lowerCAmelCase ) model.eval() __SCREAMING_SNAKE_CASE: Tuple = model(_lowerCAmelCase ) self.parent.assertEqual( result.last_hidden_state.shape , ( self.batch_size, self.last_hidden_size, self.image_size // self.output_stride, self.image_size // self.output_stride, ) , ) self.parent.assertEqual( result.pooler_output.shape , (self.batch_size, self.last_hidden_size) , ) def snake_case_ ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ): """simple docstring""" __SCREAMING_SNAKE_CASE: Dict = self.num_labels __SCREAMING_SNAKE_CASE: List[str] = MobileNetVaForImageClassification(_lowerCAmelCase ) model.to(_lowerCAmelCase ) model.eval() __SCREAMING_SNAKE_CASE: Optional[Any] = model(_lowerCAmelCase , labels=_lowerCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def snake_case_ ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ): """simple docstring""" __SCREAMING_SNAKE_CASE: List[Any] = self.num_labels __SCREAMING_SNAKE_CASE: List[str] = MobileNetVaForSemanticSegmentation(_lowerCAmelCase ) model.to(_lowerCAmelCase ) model.eval() __SCREAMING_SNAKE_CASE: Union[str, Any] = model(_lowerCAmelCase ) self.parent.assertEqual( result.logits.shape , ( self.batch_size, self.num_labels, self.image_size // self.output_stride, self.image_size // self.output_stride, ) , ) __SCREAMING_SNAKE_CASE: Optional[Any] = model(_lowerCAmelCase , labels=_lowerCAmelCase ) self.parent.assertEqual( result.logits.shape , ( self.batch_size, self.num_labels, self.image_size // self.output_stride, self.image_size // self.output_stride, ) , ) def snake_case_ ( self ): """simple docstring""" __SCREAMING_SNAKE_CASE: Optional[Any] = self.prepare_config_and_inputs() __SCREAMING_SNAKE_CASE ,__SCREAMING_SNAKE_CASE ,__SCREAMING_SNAKE_CASE ,__SCREAMING_SNAKE_CASE: Dict = config_and_inputs __SCREAMING_SNAKE_CASE: Tuple = {'''pixel_values''': pixel_values} return config, inputs_dict @require_torch class a ( _SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ,unittest.TestCase ): SCREAMING_SNAKE_CASE__ : Optional[int] = ( (MobileNetVaModel, MobileNetVaForImageClassification, MobileNetVaForSemanticSegmentation) if is_torch_available() else () ) SCREAMING_SNAKE_CASE__ : Optional[Any] = ( { '''feature-extraction''': MobileNetVaModel, '''image-classification''': MobileNetVaForImageClassification, '''image-segmentation''': MobileNetVaForSemanticSegmentation, } if is_torch_available() else {} ) SCREAMING_SNAKE_CASE__ : str = False SCREAMING_SNAKE_CASE__ : int = False SCREAMING_SNAKE_CASE__ : Optional[int] = False SCREAMING_SNAKE_CASE__ : Optional[Any] = False def snake_case_ ( self ): """simple docstring""" __SCREAMING_SNAKE_CASE: Optional[int] = MobileNetVaModelTester(self ) __SCREAMING_SNAKE_CASE: Optional[Any] = MobileNetVaConfigTester(self , config_class=_lowerCAmelCase , has_text_modality=_lowerCAmelCase ) def snake_case_ ( self ): """simple docstring""" self.config_tester.run_common_tests() @unittest.skip(reason='''MobileNetV2 does not use inputs_embeds''' ) def snake_case_ ( self ): """simple docstring""" pass @unittest.skip(reason='''MobileNetV2 does not support input and output embeddings''' ) def snake_case_ ( self ): """simple docstring""" pass @unittest.skip(reason='''MobileNetV2 does not output attentions''' ) def snake_case_ ( self ): """simple docstring""" pass def snake_case_ ( self ): """simple docstring""" __SCREAMING_SNAKE_CASE ,__SCREAMING_SNAKE_CASE: int = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __SCREAMING_SNAKE_CASE: List[str] = model_class(_lowerCAmelCase ) __SCREAMING_SNAKE_CASE: Any = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __SCREAMING_SNAKE_CASE: Optional[Any] = [*signature.parameters.keys()] __SCREAMING_SNAKE_CASE: Tuple = ['''pixel_values'''] self.assertListEqual(arg_names[:1] , _lowerCAmelCase ) def snake_case_ ( self ): """simple docstring""" __SCREAMING_SNAKE_CASE: Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_lowerCAmelCase ) def snake_case_ ( self ): """simple docstring""" def check_hidden_states_output(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ): __SCREAMING_SNAKE_CASE: Optional[Any] = model_class(_lowerCAmelCase ) model.to(_lowerCAmelCase ) model.eval() with torch.no_grad(): __SCREAMING_SNAKE_CASE: Union[str, Any] = model(**self._prepare_for_class(_lowerCAmelCase , _lowerCAmelCase ) ) __SCREAMING_SNAKE_CASE: str = outputs.hidden_states __SCREAMING_SNAKE_CASE: str = 16 self.assertEqual(len(_lowerCAmelCase ) , _lowerCAmelCase ) __SCREAMING_SNAKE_CASE ,__SCREAMING_SNAKE_CASE: int = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __SCREAMING_SNAKE_CASE: str = True check_hidden_states_output(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] __SCREAMING_SNAKE_CASE: List[str] = True check_hidden_states_output(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) def snake_case_ ( self ): """simple docstring""" __SCREAMING_SNAKE_CASE: Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*_lowerCAmelCase ) def snake_case_ ( self ): """simple docstring""" __SCREAMING_SNAKE_CASE: List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_semantic_segmentation(*_lowerCAmelCase ) @slow def snake_case_ ( self ): """simple docstring""" for model_name in MOBILENET_V2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __SCREAMING_SNAKE_CASE: Tuple = MobileNetVaModel.from_pretrained(_lowerCAmelCase ) self.assertIsNotNone(_lowerCAmelCase ) def lowerCAmelCase ( ) -> Dict: """simple docstring""" __SCREAMING_SNAKE_CASE: Optional[Any] = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) return image @require_torch @require_vision class a ( unittest.TestCase ): @cached_property def snake_case_ ( self ): """simple docstring""" return ( MobileNetVaImageProcessor.from_pretrained('''google/mobilenet_v2_1.0_224''' ) if is_vision_available() else None ) @slow def snake_case_ ( self ): """simple docstring""" __SCREAMING_SNAKE_CASE: Optional[Any] = MobileNetVaForImageClassification.from_pretrained('''google/mobilenet_v2_1.0_224''' ).to(_lowerCAmelCase ) __SCREAMING_SNAKE_CASE: Optional[Any] = self.default_image_processor __SCREAMING_SNAKE_CASE: str = prepare_img() __SCREAMING_SNAKE_CASE: List[Any] = image_processor(images=_lowerCAmelCase , return_tensors='''pt''' ).to(_lowerCAmelCase ) # forward pass with torch.no_grad(): __SCREAMING_SNAKE_CASE: str = model(**_lowerCAmelCase ) # verify the logits __SCREAMING_SNAKE_CASE: Union[str, Any] = torch.Size((1, 1001) ) self.assertEqual(outputs.logits.shape , _lowerCAmelCase ) __SCREAMING_SNAKE_CASE: Any = torch.tensor([0.2445, -1.1993, 0.1905] ).to(_lowerCAmelCase ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , _lowerCAmelCase , atol=1e-4 ) ) @slow def snake_case_ ( self ): """simple docstring""" __SCREAMING_SNAKE_CASE: Tuple = MobileNetVaForSemanticSegmentation.from_pretrained('''google/deeplabv3_mobilenet_v2_1.0_513''' ) __SCREAMING_SNAKE_CASE: Dict = model.to(_lowerCAmelCase ) __SCREAMING_SNAKE_CASE: int = MobileNetVaImageProcessor.from_pretrained('''google/deeplabv3_mobilenet_v2_1.0_513''' ) __SCREAMING_SNAKE_CASE: Optional[Any] = prepare_img() __SCREAMING_SNAKE_CASE: List[str] = image_processor(images=_lowerCAmelCase , return_tensors='''pt''' ).to(_lowerCAmelCase ) # forward pass with torch.no_grad(): __SCREAMING_SNAKE_CASE: List[Any] = model(**_lowerCAmelCase ) __SCREAMING_SNAKE_CASE: Tuple = outputs.logits # verify the logits __SCREAMING_SNAKE_CASE: str = torch.Size((1, 21, 65, 65) ) self.assertEqual(logits.shape , _lowerCAmelCase ) __SCREAMING_SNAKE_CASE: List[Any] = torch.tensor( [ [[17.5790, 17.7581, 18.3355], [18.3257, 18.4230, 18.8973], [18.6169, 18.8650, 19.2187]], [[-2.1595, -2.0977, -2.3741], [-2.4226, -2.3028, -2.6835], [-2.7819, -2.5991, -2.7706]], [[4.2058, 4.8317, 4.7638], [4.4136, 5.0361, 4.9383], [4.5028, 4.9644, 4.8734]], ] , device=_lowerCAmelCase , ) self.assertTrue(torch.allclose(logits[0, :3, :3, :3] , _lowerCAmelCase , atol=1e-4 ) )
202
import torch from transformers import PreTrainedModel, XLMRobertaConfig, XLMRobertaModel class lowerCamelCase_ ( _SCREAMING_SNAKE_CASE ): '''simple docstring''' lowercase_ = "M-CLIP" def __init__( self : Tuple , _lowerCAmelCase : List[str]=1_024 , _lowerCAmelCase : str=768 , **_lowerCAmelCase : Union[str, Any] ): SCREAMING_SNAKE_CASE_ = transformerDimSize SCREAMING_SNAKE_CASE_ = imageDimSize super().__init__(**_lowerCAmelCase ) class lowerCamelCase_ ( _SCREAMING_SNAKE_CASE ): '''simple docstring''' lowercase_ = MCLIPConfig def __init__( self : Dict , _lowerCAmelCase : Union[str, Any] , *_lowerCAmelCase : str , **_lowerCAmelCase : str ): super().__init__(_lowerCAmelCase , *_lowerCAmelCase , **_lowerCAmelCase ) SCREAMING_SNAKE_CASE_ = XLMRobertaModel(_lowerCAmelCase ) SCREAMING_SNAKE_CASE_ = torch.nn.Linear( in_features=config.transformerDimensions , out_features=config.numDims ) def lowerCAmelCase_ ( self : List[Any] , _lowerCAmelCase : Any , _lowerCAmelCase : Union[str, Any] ): SCREAMING_SNAKE_CASE_ = self.transformer(input_ids=_lowerCAmelCase , attention_mask=_lowerCAmelCase )[0] SCREAMING_SNAKE_CASE_ = (embs * attention_mask.unsqueeze(2 )).sum(dim=1 ) / attention_mask.sum(dim=1 )[:, None] return self.LinearTransformation(_lowerCAmelCase ), embs
31
0
'''simple docstring''' def _A ( lowercase__ , lowercase__ ): lowercase__ = word.split() def justify(lowercase__ , lowercase__ , lowercase__ ) -> str: lowercase__ = max_width - width lowercase__ = len(__UpperCAmelCase ) if len(__UpperCAmelCase ) == 1: # if there is only word in line # just insert overall_spaces_count for the remainder of line return line[0] + " " * overall_spaces_count else: lowercase__ = words_count - 1 # num_spaces_between_words_list[i] : tells you to insert # num_spaces_between_words_list[i] spaces # after word on line[i] lowercase__ = spaces_to_insert_between_words * [ overall_spaces_count // spaces_to_insert_between_words ] lowercase__ = ( overall_spaces_count % spaces_to_insert_between_words ) # distribute spaces via round robin to the left words for i in range(__UpperCAmelCase ): num_spaces_between_words_list[i] += 1 lowercase__ = [] for i in range(__UpperCAmelCase ): # add the word aligned_words_list.append(line[i] ) # add the spaces to insert aligned_words_list.append(num_spaces_between_words_list[i] * """ """ ) # just add the last word to the sentence aligned_words_list.append(line[-1] ) # join the aligned words list to form a justified line return "".join(__UpperCAmelCase ) lowercase__ = [] lowercase__ = [] lowercase__ = 0 for word in words: if width + len(__UpperCAmelCase ) + len(__UpperCAmelCase ) <= max_width: # keep adding words until we can fill out max_width # width = sum of length of all words (without overall_spaces_count) # len(word) = length of current word # len(line) = number of overall_spaces_count to insert between words line.append(__UpperCAmelCase ) width += len(__UpperCAmelCase ) else: # justify the line and add it to result answer.append(justify(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) ) # reset new line and new width lowercase__ , lowercase__ = [word], len(__UpperCAmelCase ) lowercase__ = max_width - width - len(__UpperCAmelCase ) answer.append(""" """.join(__UpperCAmelCase ) + (remaining_spaces + 1) * """ """ ) return answer if __name__ == "__main__": from doctest import testmod testmod()
325
import gc import random import unittest import numpy as np import torch from transformers import XLMRobertaTokenizer from diffusers import ( AltDiffusionImgaImgPipeline, AutoencoderKL, PNDMScheduler, UNetaDConditionModel, ) from diffusers.image_processor import VaeImageProcessor from diffusers.pipelines.alt_diffusion.modeling_roberta_series import ( RobertaSeriesConfig, RobertaSeriesModelWithTransformation, ) from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu enable_full_determinism() class lowerCamelCase_ ( unittest.TestCase ): '''simple docstring''' def lowerCAmelCase_ ( self : str ): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() @property def lowerCAmelCase_ ( self : Union[str, Any] ): SCREAMING_SNAKE_CASE_ = 1 SCREAMING_SNAKE_CASE_ = 3 SCREAMING_SNAKE_CASE_ = (32, 32) SCREAMING_SNAKE_CASE_ = floats_tensor((batch_size, num_channels) + sizes , rng=random.Random(0 ) ).to(_lowerCAmelCase ) return image @property def lowerCAmelCase_ ( self : Union[str, Any] ): torch.manual_seed(0 ) SCREAMING_SNAKE_CASE_ = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=('DownBlock2D', 'CrossAttnDownBlock2D') , up_block_types=('CrossAttnUpBlock2D', 'UpBlock2D') , cross_attention_dim=32 , ) return model @property def lowerCAmelCase_ ( self : Tuple ): torch.manual_seed(0 ) SCREAMING_SNAKE_CASE_ = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=['DownEncoderBlock2D', 'DownEncoderBlock2D'] , up_block_types=['UpDecoderBlock2D', 'UpDecoderBlock2D'] , latent_channels=4 , ) return model @property def lowerCAmelCase_ ( self : Optional[int] ): torch.manual_seed(0 ) SCREAMING_SNAKE_CASE_ = RobertaSeriesConfig( hidden_size=32 , project_dim=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=5_006 , ) return RobertaSeriesModelWithTransformation(_lowerCAmelCase ) @property def lowerCAmelCase_ ( self : List[Any] ): def extract(*_lowerCAmelCase : Optional[int] , **_lowerCAmelCase : str ): class lowerCamelCase_ : '''simple docstring''' def __init__( self : str ): SCREAMING_SNAKE_CASE_ = torch.ones([0] ) def lowerCAmelCase_ ( self : Union[str, Any] , _lowerCAmelCase : int ): self.pixel_values.to(_lowerCAmelCase ) return self return Out() return extract def lowerCAmelCase_ ( self : Optional[Any] ): SCREAMING_SNAKE_CASE_ = 'cpu' # ensure determinism for the device-dependent torch.Generator SCREAMING_SNAKE_CASE_ = self.dummy_cond_unet SCREAMING_SNAKE_CASE_ = PNDMScheduler(skip_prk_steps=_lowerCAmelCase ) SCREAMING_SNAKE_CASE_ = self.dummy_vae SCREAMING_SNAKE_CASE_ = self.dummy_text_encoder SCREAMING_SNAKE_CASE_ = XLMRobertaTokenizer.from_pretrained('hf-internal-testing/tiny-xlm-roberta' ) SCREAMING_SNAKE_CASE_ = 77 SCREAMING_SNAKE_CASE_ = self.dummy_image.to(_lowerCAmelCase ) SCREAMING_SNAKE_CASE_ = init_image / 2 + 0.5 # make sure here that pndm scheduler skips prk SCREAMING_SNAKE_CASE_ = AltDiffusionImgaImgPipeline( unet=_lowerCAmelCase , scheduler=_lowerCAmelCase , vae=_lowerCAmelCase , text_encoder=_lowerCAmelCase , tokenizer=_lowerCAmelCase , safety_checker=_lowerCAmelCase , feature_extractor=self.dummy_extractor , ) SCREAMING_SNAKE_CASE_ = VaeImageProcessor(vae_scale_factor=alt_pipe.vae_scale_factor , do_normalize=_lowerCAmelCase ) SCREAMING_SNAKE_CASE_ = alt_pipe.to(_lowerCAmelCase ) alt_pipe.set_progress_bar_config(disable=_lowerCAmelCase ) SCREAMING_SNAKE_CASE_ = 'A painting of a squirrel eating a burger' SCREAMING_SNAKE_CASE_ = torch.Generator(device=_lowerCAmelCase ).manual_seed(0 ) SCREAMING_SNAKE_CASE_ = alt_pipe( [prompt] , generator=_lowerCAmelCase , guidance_scale=6.0 , num_inference_steps=2 , output_type='np' , image=_lowerCAmelCase , ) SCREAMING_SNAKE_CASE_ = output.images SCREAMING_SNAKE_CASE_ = torch.Generator(device=_lowerCAmelCase ).manual_seed(0 ) SCREAMING_SNAKE_CASE_ = alt_pipe( [prompt] , generator=_lowerCAmelCase , guidance_scale=6.0 , num_inference_steps=2 , output_type='np' , image=_lowerCAmelCase , return_dict=_lowerCAmelCase , )[0] SCREAMING_SNAKE_CASE_ = image[0, -3:, -3:, -1] SCREAMING_SNAKE_CASE_ = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) SCREAMING_SNAKE_CASE_ = np.array([0.4427, 0.3731, 0.4249, 0.4941, 0.4546, 0.4148, 0.4193, 0.4666, 0.4499] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 5E-3 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 5E-3 @unittest.skipIf(torch_device != 'cuda' , 'This test requires a GPU' ) def lowerCAmelCase_ ( self : Tuple ): SCREAMING_SNAKE_CASE_ = self.dummy_cond_unet SCREAMING_SNAKE_CASE_ = PNDMScheduler(skip_prk_steps=_lowerCAmelCase ) SCREAMING_SNAKE_CASE_ = self.dummy_vae SCREAMING_SNAKE_CASE_ = self.dummy_text_encoder SCREAMING_SNAKE_CASE_ = XLMRobertaTokenizer.from_pretrained('hf-internal-testing/tiny-xlm-roberta' ) SCREAMING_SNAKE_CASE_ = 77 SCREAMING_SNAKE_CASE_ = self.dummy_image.to(_lowerCAmelCase ) # put models in fp16 SCREAMING_SNAKE_CASE_ = unet.half() SCREAMING_SNAKE_CASE_ = vae.half() SCREAMING_SNAKE_CASE_ = bert.half() # make sure here that pndm scheduler skips prk SCREAMING_SNAKE_CASE_ = AltDiffusionImgaImgPipeline( unet=_lowerCAmelCase , scheduler=_lowerCAmelCase , vae=_lowerCAmelCase , text_encoder=_lowerCAmelCase , tokenizer=_lowerCAmelCase , safety_checker=_lowerCAmelCase , feature_extractor=self.dummy_extractor , ) SCREAMING_SNAKE_CASE_ = VaeImageProcessor(vae_scale_factor=alt_pipe.vae_scale_factor , do_normalize=_lowerCAmelCase ) SCREAMING_SNAKE_CASE_ = alt_pipe.to(_lowerCAmelCase ) alt_pipe.set_progress_bar_config(disable=_lowerCAmelCase ) SCREAMING_SNAKE_CASE_ = 'A painting of a squirrel eating a burger' SCREAMING_SNAKE_CASE_ = torch.manual_seed(0 ) SCREAMING_SNAKE_CASE_ = alt_pipe( [prompt] , generator=_lowerCAmelCase , num_inference_steps=2 , output_type='np' , image=_lowerCAmelCase , ).images assert image.shape == (1, 32, 32, 3) @unittest.skipIf(torch_device != 'cuda' , 'This test requires a GPU' ) def lowerCAmelCase_ ( self : str ): SCREAMING_SNAKE_CASE_ = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/img2img/sketch-mountains-input.jpg' ) # resize to resolution that is divisible by 8 but not 16 or 32 SCREAMING_SNAKE_CASE_ = init_image.resize((760, 504) ) SCREAMING_SNAKE_CASE_ = 'BAAI/AltDiffusion' SCREAMING_SNAKE_CASE_ = AltDiffusionImgaImgPipeline.from_pretrained( _lowerCAmelCase , safety_checker=_lowerCAmelCase , ) pipe.to(_lowerCAmelCase ) pipe.set_progress_bar_config(disable=_lowerCAmelCase ) pipe.enable_attention_slicing() SCREAMING_SNAKE_CASE_ = 'A fantasy landscape, trending on artstation' SCREAMING_SNAKE_CASE_ = torch.manual_seed(0 ) SCREAMING_SNAKE_CASE_ = pipe( prompt=_lowerCAmelCase , image=_lowerCAmelCase , strength=0.75 , guidance_scale=7.5 , generator=_lowerCAmelCase , output_type='np' , ) SCREAMING_SNAKE_CASE_ = output.images[0] SCREAMING_SNAKE_CASE_ = image[255:258, 383:386, -1] assert image.shape == (504, 760, 3) SCREAMING_SNAKE_CASE_ = np.array([0.9358, 0.9397, 0.9599, 0.9901, 1.0000, 1.0000, 0.9882, 1.0000, 1.0000] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 @slow @require_torch_gpu class lowerCamelCase_ ( unittest.TestCase ): '''simple docstring''' def lowerCAmelCase_ ( self : str ): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def lowerCAmelCase_ ( self : int ): SCREAMING_SNAKE_CASE_ = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/img2img/sketch-mountains-input.jpg' ) SCREAMING_SNAKE_CASE_ = init_image.resize((768, 512) ) SCREAMING_SNAKE_CASE_ = load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/img2img/fantasy_landscape_alt.npy' ) SCREAMING_SNAKE_CASE_ = 'BAAI/AltDiffusion' SCREAMING_SNAKE_CASE_ = AltDiffusionImgaImgPipeline.from_pretrained( _lowerCAmelCase , safety_checker=_lowerCAmelCase , ) pipe.to(_lowerCAmelCase ) pipe.set_progress_bar_config(disable=_lowerCAmelCase ) pipe.enable_attention_slicing() SCREAMING_SNAKE_CASE_ = 'A fantasy landscape, trending on artstation' SCREAMING_SNAKE_CASE_ = torch.manual_seed(0 ) SCREAMING_SNAKE_CASE_ = pipe( prompt=_lowerCAmelCase , image=_lowerCAmelCase , strength=0.75 , guidance_scale=7.5 , generator=_lowerCAmelCase , output_type='np' , ) SCREAMING_SNAKE_CASE_ = output.images[0] assert image.shape == (512, 768, 3) # img2img is flaky across GPUs even in fp32, so using MAE here assert np.abs(expected_image - image ).max() < 1E-2
31
0
import os import tempfile import unittest from pathlib import Path from transformers import AutoConfig, is_tf_available from transformers.testing_utils import require_tf if is_tf_available(): import tensorflow as tf from transformers import TensorFlowBenchmark, TensorFlowBenchmarkArguments @require_tf class __a( unittest.TestCase ): """simple docstring""" def a__ ( self ,_SCREAMING_SNAKE_CASE ) -> int: for model_result in results.values(): for batch_size, sequence_length in zip(model_result['''bs'''] ,model_result['''ss'''] ): UpperCAmelCase_ : Dict = model_result['''result'''][batch_size][sequence_length] self.assertIsNotNone(_lowerCAmelCase ) def a__ ( self ) -> str: UpperCAmelCase_ : Optional[Any] = '''sshleifer/tiny-gpt2''' UpperCAmelCase_ : Optional[int] = TensorFlowBenchmarkArguments( models=[MODEL_ID] ,training=_lowerCAmelCase ,inference=_lowerCAmelCase ,sequence_lengths=[8] ,batch_sizes=[1] ,eager_mode=_lowerCAmelCase ,multi_process=_lowerCAmelCase ,) UpperCAmelCase_ : Optional[Any] = TensorFlowBenchmark(_lowerCAmelCase ) UpperCAmelCase_ : str = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def a__ ( self ) -> List[Any]: UpperCAmelCase_ : Union[str, Any] = '''sgugger/tiny-distilbert-classification''' UpperCAmelCase_ : List[str] = TensorFlowBenchmarkArguments( models=[MODEL_ID] ,training=_lowerCAmelCase ,inference=_lowerCAmelCase ,sequence_lengths=[8] ,batch_sizes=[1] ,multi_process=_lowerCAmelCase ,only_pretrain_model=_lowerCAmelCase ,) UpperCAmelCase_ : Any = TensorFlowBenchmark(_lowerCAmelCase ) UpperCAmelCase_ : Dict = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def a__ ( self ) -> Optional[int]: UpperCAmelCase_ : int = '''sshleifer/tiny-gpt2''' UpperCAmelCase_ : Union[str, Any] = TensorFlowBenchmarkArguments( models=[MODEL_ID] ,training=_lowerCAmelCase ,inference=_lowerCAmelCase ,sequence_lengths=[8] ,batch_sizes=[1] ,multi_process=_lowerCAmelCase ,) UpperCAmelCase_ : Optional[Any] = TensorFlowBenchmark(_lowerCAmelCase ) UpperCAmelCase_ : Union[str, Any] = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def a__ ( self ) -> Optional[int]: UpperCAmelCase_ : int = '''sshleifer/tiny-gpt2''' UpperCAmelCase_ : Dict = AutoConfig.from_pretrained(_lowerCAmelCase ) UpperCAmelCase_ : List[Any] = TensorFlowBenchmarkArguments( models=[MODEL_ID] ,training=_lowerCAmelCase ,inference=_lowerCAmelCase ,sequence_lengths=[8] ,batch_sizes=[1] ,eager_mode=_lowerCAmelCase ,multi_process=_lowerCAmelCase ,) UpperCAmelCase_ : List[Any] = TensorFlowBenchmark(_lowerCAmelCase ,[config] ) UpperCAmelCase_ : Tuple = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def a__ ( self ) -> Optional[Any]: UpperCAmelCase_ : Tuple = '''sshleifer/tiny-gpt2''' UpperCAmelCase_ : Optional[int] = AutoConfig.from_pretrained(_lowerCAmelCase ) UpperCAmelCase_ : str = TensorFlowBenchmarkArguments( models=[MODEL_ID] ,training=_lowerCAmelCase ,inference=_lowerCAmelCase ,sequence_lengths=[8] ,batch_sizes=[1] ,multi_process=_lowerCAmelCase ,) UpperCAmelCase_ : List[str] = TensorFlowBenchmark(_lowerCAmelCase ,[config] ) UpperCAmelCase_ : Optional[int] = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def a__ ( self ) -> int: UpperCAmelCase_ : str = '''sshleifer/tiny-gpt2''' UpperCAmelCase_ : Optional[Any] = TensorFlowBenchmarkArguments( models=[MODEL_ID] ,training=_lowerCAmelCase ,inference=_lowerCAmelCase ,sequence_lengths=[8] ,batch_sizes=[1] ,multi_process=_lowerCAmelCase ,) UpperCAmelCase_ : Any = TensorFlowBenchmark(_lowerCAmelCase ) UpperCAmelCase_ : str = benchmark.run() self.check_results_dict_not_empty(results.time_train_result ) self.check_results_dict_not_empty(results.memory_train_result ) def a__ ( self ) -> int: UpperCAmelCase_ : Union[str, Any] = '''sshleifer/tiny-gpt2''' UpperCAmelCase_ : Dict = AutoConfig.from_pretrained(_lowerCAmelCase ) UpperCAmelCase_ : Any = TensorFlowBenchmarkArguments( models=[MODEL_ID] ,training=_lowerCAmelCase ,inference=_lowerCAmelCase ,sequence_lengths=[8] ,batch_sizes=[1] ,multi_process=_lowerCAmelCase ,) UpperCAmelCase_ : int = TensorFlowBenchmark(_lowerCAmelCase ,[config] ) UpperCAmelCase_ : Optional[Any] = benchmark.run() self.check_results_dict_not_empty(results.time_train_result ) self.check_results_dict_not_empty(results.memory_train_result ) def a__ ( self ) -> int: UpperCAmelCase_ : Any = '''patrickvonplaten/t5-tiny-random''' UpperCAmelCase_ : Dict = AutoConfig.from_pretrained(_lowerCAmelCase ) UpperCAmelCase_ : int = TensorFlowBenchmarkArguments( models=[MODEL_ID] ,training=_lowerCAmelCase ,inference=_lowerCAmelCase ,sequence_lengths=[8] ,batch_sizes=[1] ,multi_process=_lowerCAmelCase ,) UpperCAmelCase_ : Any = TensorFlowBenchmark(_lowerCAmelCase ,configs=[config] ) UpperCAmelCase_ : Optional[int] = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) @unittest.skipIf(is_tf_available() and len(tf.config.list_physical_devices('''GPU''' ) ) == 0 ,'''Cannot do xla on CPU.''' ) def a__ ( self ) -> Tuple: UpperCAmelCase_ : Optional[Any] = '''sshleifer/tiny-gpt2''' UpperCAmelCase_ : List[Any] = TensorFlowBenchmarkArguments( models=[MODEL_ID] ,training=_lowerCAmelCase ,inference=_lowerCAmelCase ,sequence_lengths=[8] ,batch_sizes=[1] ,use_xla=_lowerCAmelCase ,multi_process=_lowerCAmelCase ,) UpperCAmelCase_ : Optional[int] = TensorFlowBenchmark(_lowerCAmelCase ) UpperCAmelCase_ : Any = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def a__ ( self ) -> Union[str, Any]: UpperCAmelCase_ : int = '''sshleifer/tiny-gpt2''' with tempfile.TemporaryDirectory() as tmp_dir: UpperCAmelCase_ : Optional[int] = TensorFlowBenchmarkArguments( models=[MODEL_ID] ,inference=_lowerCAmelCase ,save_to_csv=_lowerCAmelCase ,sequence_lengths=[8] ,batch_sizes=[1] ,inference_time_csv_file=os.path.join(_lowerCAmelCase ,'''inf_time.csv''' ) ,inference_memory_csv_file=os.path.join(_lowerCAmelCase ,'''inf_mem.csv''' ) ,env_info_csv_file=os.path.join(_lowerCAmelCase ,'''env.csv''' ) ,multi_process=_lowerCAmelCase ,) UpperCAmelCase_ : Optional[int] = TensorFlowBenchmark(_lowerCAmelCase ) benchmark.run() self.assertTrue(Path(os.path.join(_lowerCAmelCase ,'''inf_time.csv''' ) ).exists() ) self.assertTrue(Path(os.path.join(_lowerCAmelCase ,'''inf_mem.csv''' ) ).exists() ) self.assertTrue(Path(os.path.join(_lowerCAmelCase ,'''env.csv''' ) ).exists() ) def a__ ( self ) -> Union[str, Any]: UpperCAmelCase_ : List[str] = '''sshleifer/tiny-gpt2''' def _check_summary_is_not_empty(_SCREAMING_SNAKE_CASE ): self.assertTrue(hasattr(_lowerCAmelCase ,'''sequential''' ) ) self.assertTrue(hasattr(_lowerCAmelCase ,'''cumulative''' ) ) self.assertTrue(hasattr(_lowerCAmelCase ,'''current''' ) ) self.assertTrue(hasattr(_lowerCAmelCase ,'''total''' ) ) with tempfile.TemporaryDirectory() as tmp_dir: UpperCAmelCase_ : Dict = TensorFlowBenchmarkArguments( models=[MODEL_ID] ,inference=_lowerCAmelCase ,sequence_lengths=[8] ,batch_sizes=[1] ,log_filename=os.path.join(_lowerCAmelCase ,'''log.txt''' ) ,log_print=_lowerCAmelCase ,trace_memory_line_by_line=_lowerCAmelCase ,eager_mode=_lowerCAmelCase ,multi_process=_lowerCAmelCase ,) UpperCAmelCase_ : Union[str, Any] = TensorFlowBenchmark(_lowerCAmelCase ) UpperCAmelCase_ : str = benchmark.run() _check_summary_is_not_empty(result.inference_summary ) self.assertTrue(Path(os.path.join(_lowerCAmelCase ,'''log.txt''' ) ).exists() )
30
from collections import OrderedDict from typing import TYPE_CHECKING, Any, List, Mapping, Optional, Union from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import TensorType, logging if TYPE_CHECKING: from ...onnx.config import PatchingSpec from ...tokenization_utils_base import PreTrainedTokenizerBase lowerCamelCase__ : Optional[int] = logging.get_logger(__name__) lowerCamelCase__ : Dict = { 'allenai/longformer-base-4096': 'https://huggingface.co/allenai/longformer-base-4096/resolve/main/config.json', 'allenai/longformer-large-4096': 'https://huggingface.co/allenai/longformer-large-4096/resolve/main/config.json', 'allenai/longformer-large-4096-finetuned-triviaqa': ( 'https://huggingface.co/allenai/longformer-large-4096-finetuned-triviaqa/resolve/main/config.json' ), 'allenai/longformer-base-4096-extra.pos.embd.only': ( 'https://huggingface.co/allenai/longformer-base-4096-extra.pos.embd.only/resolve/main/config.json' ), 'allenai/longformer-large-4096-extra.pos.embd.only': ( 'https://huggingface.co/allenai/longformer-large-4096-extra.pos.embd.only/resolve/main/config.json' ), } class lowerCamelCase_ ( _SCREAMING_SNAKE_CASE ): '''simple docstring''' lowercase_ = "longformer" def __init__( self : Union[str, Any] , _lowerCAmelCase : Union[List[int], int] = 512 , _lowerCAmelCase : int = 2 , _lowerCAmelCase : int = 1 , _lowerCAmelCase : int = 0 , _lowerCAmelCase : int = 2 , _lowerCAmelCase : int = 30_522 , _lowerCAmelCase : int = 768 , _lowerCAmelCase : int = 12 , _lowerCAmelCase : int = 12 , _lowerCAmelCase : int = 3_072 , _lowerCAmelCase : str = "gelu" , _lowerCAmelCase : float = 0.1 , _lowerCAmelCase : float = 0.1 , _lowerCAmelCase : int = 512 , _lowerCAmelCase : int = 2 , _lowerCAmelCase : float = 0.02 , _lowerCAmelCase : float = 1E-12 , _lowerCAmelCase : bool = False , **_lowerCAmelCase : Union[str, Any] , ): super().__init__(pad_token_id=_lowerCAmelCase , **_lowerCAmelCase ) SCREAMING_SNAKE_CASE_ = attention_window SCREAMING_SNAKE_CASE_ = sep_token_id SCREAMING_SNAKE_CASE_ = bos_token_id SCREAMING_SNAKE_CASE_ = eos_token_id SCREAMING_SNAKE_CASE_ = vocab_size SCREAMING_SNAKE_CASE_ = hidden_size SCREAMING_SNAKE_CASE_ = num_hidden_layers SCREAMING_SNAKE_CASE_ = num_attention_heads SCREAMING_SNAKE_CASE_ = hidden_act SCREAMING_SNAKE_CASE_ = intermediate_size SCREAMING_SNAKE_CASE_ = hidden_dropout_prob SCREAMING_SNAKE_CASE_ = attention_probs_dropout_prob SCREAMING_SNAKE_CASE_ = max_position_embeddings SCREAMING_SNAKE_CASE_ = type_vocab_size SCREAMING_SNAKE_CASE_ = initializer_range SCREAMING_SNAKE_CASE_ = layer_norm_eps SCREAMING_SNAKE_CASE_ = onnx_export class lowerCamelCase_ ( _SCREAMING_SNAKE_CASE ): '''simple docstring''' def __init__( self : Optional[Any] , _lowerCAmelCase : "PretrainedConfig" , _lowerCAmelCase : str = "default" , _lowerCAmelCase : "List[PatchingSpec]" = None ): super().__init__(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) SCREAMING_SNAKE_CASE_ = True @property def lowerCAmelCase_ ( self : Any ): if self.task == "multiple-choice": SCREAMING_SNAKE_CASE_ = {0: 'batch', 1: 'choice', 2: 'sequence'} else: SCREAMING_SNAKE_CASE_ = {0: 'batch', 1: 'sequence'} return OrderedDict( [ ('input_ids', dynamic_axis), ('attention_mask', dynamic_axis), ('global_attention_mask', dynamic_axis), ] ) @property def lowerCAmelCase_ ( self : Optional[int] ): SCREAMING_SNAKE_CASE_ = super().outputs if self.task == "default": SCREAMING_SNAKE_CASE_ = {0: 'batch'} return outputs @property def lowerCAmelCase_ ( self : str ): return 1E-4 @property def lowerCAmelCase_ ( self : Optional[Any] ): # needs to be >= 14 to support tril operator return max(super().default_onnx_opset , 14 ) def lowerCAmelCase_ ( self : str , _lowerCAmelCase : "PreTrainedTokenizerBase" , _lowerCAmelCase : int = -1 , _lowerCAmelCase : int = -1 , _lowerCAmelCase : bool = False , _lowerCAmelCase : Optional[TensorType] = None , ): SCREAMING_SNAKE_CASE_ = super().generate_dummy_inputs( preprocessor=_lowerCAmelCase , batch_size=_lowerCAmelCase , seq_length=_lowerCAmelCase , is_pair=_lowerCAmelCase , framework=_lowerCAmelCase ) import torch # for some reason, replacing this code by inputs["global_attention_mask"] = torch.randint(2, inputs["input_ids"].shape, dtype=torch.int64) # makes the export fail randomly SCREAMING_SNAKE_CASE_ = torch.zeros_like(inputs['input_ids'] ) # make every second token global SCREAMING_SNAKE_CASE_ = 1 return inputs
31
0
'''simple docstring''' import unittest from typing import Tuple import torch from diffusers.utils import floats_tensor, randn_tensor, torch_all_close, torch_device from diffusers.utils.testing_utils import require_torch @require_torch class lowercase_ : @property def _lowerCAmelCase ( self : Optional[Any] ): return self.get_dummy_input() @property def _lowerCAmelCase ( self : Union[str, Any] ): if self.block_type == "down": return (4, 32, 16, 16) elif self.block_type == "mid": return (4, 32, 32, 32) elif self.block_type == "up": return (4, 32, 64, 64) raise ValueError(F"'{self.block_type}' is not a supported block_type. Set it to 'up', 'mid', or 'down'." ) def _lowerCAmelCase ( self : List[str] , __lowerCamelCase : Optional[Any]=True , __lowerCamelCase : str=False , __lowerCamelCase : Optional[int]=False , __lowerCamelCase : Dict=False , ): snake_case__ : Union[str, Any] = 4 snake_case__ : Optional[Any] = 32 snake_case__ : Tuple = (32, 32) snake_case__ : int = torch.manual_seed(0 ) snake_case__ : List[Any] = torch.device(_lowerCAmelCase ) snake_case__ : Any = (batch_size, num_channels) + sizes snake_case__ : Union[str, Any] = randn_tensor(_lowerCAmelCase , generator=_lowerCAmelCase , device=_lowerCAmelCase ) snake_case__ : Any = {'hidden_states': hidden_states} if include_temb: snake_case__ : Tuple = 128 snake_case__ : int = randn_tensor((batch_size, temb_channels) , generator=_lowerCAmelCase , device=_lowerCAmelCase ) if include_res_hidden_states_tuple: snake_case__ : Any = torch.manual_seed(1 ) snake_case__ : List[str] = (randn_tensor(_lowerCAmelCase , generator=_lowerCAmelCase , device=_lowerCAmelCase ),) if include_encoder_hidden_states: snake_case__ : str = floats_tensor((batch_size, 32, 32) ).to(_lowerCAmelCase ) if include_skip_sample: snake_case__ : Optional[Any] = randn_tensor(((batch_size, 3) + sizes) , generator=_lowerCAmelCase , device=_lowerCAmelCase ) return dummy_input def _lowerCAmelCase ( self : Optional[int] ): snake_case__ : Dict = { 'in_channels': 32, 'out_channels': 32, 'temb_channels': 128, } if self.block_type == "up": snake_case__ : Any = 32 if self.block_type == "mid": init_dict.pop('out_channels' ) snake_case__ : Dict = self.dummy_input return init_dict, inputs_dict def _lowerCAmelCase ( self : Dict , __lowerCamelCase : Optional[Any] ): snake_case__ , snake_case__ : Optional[int] = self.prepare_init_args_and_inputs_for_common() snake_case__ : Union[str, Any] = self.block_class(**_lowerCAmelCase ) unet_block.to(_lowerCAmelCase ) unet_block.eval() with torch.no_grad(): snake_case__ : List[str] = unet_block(**_lowerCAmelCase ) if isinstance(_lowerCAmelCase , _lowerCAmelCase ): snake_case__ : Tuple = output[0] self.assertEqual(output.shape , self.output_shape ) snake_case__ : int = output[0, -1, -3:, -3:] snake_case__ : int = torch.tensor(_lowerCAmelCase ).to(_lowerCAmelCase ) assert torch_all_close(output_slice.flatten() , _lowerCAmelCase , atol=5E-3 ) @unittest.skipIf(torch_device == 'mps' , 'Training is not supported in mps' ) def _lowerCAmelCase ( self : Any ): snake_case__ , snake_case__ : Optional[Any] = self.prepare_init_args_and_inputs_for_common() snake_case__ : int = self.block_class(**_lowerCAmelCase ) model.to(_lowerCAmelCase ) model.train() snake_case__ : Optional[Any] = model(**_lowerCAmelCase ) if isinstance(_lowerCAmelCase , _lowerCAmelCase ): snake_case__ : Tuple = output[0] snake_case__ : Dict = torch.device(_lowerCAmelCase ) snake_case__ : str = randn_tensor(output.shape , device=_lowerCAmelCase ) snake_case__ : Optional[int] = torch.nn.functional.mse_loss(_lowerCAmelCase , _lowerCAmelCase ) loss.backward()
270
import warnings from ...utils import logging from .image_processing_mobilevit import MobileViTImageProcessor lowerCamelCase__ : Optional[int] = logging.get_logger(__name__) class lowerCamelCase_ ( _SCREAMING_SNAKE_CASE ): '''simple docstring''' def __init__( self : str , *_lowerCAmelCase : Tuple , **_lowerCAmelCase : int ): warnings.warn( 'The class MobileViTFeatureExtractor is deprecated and will be removed in version 5 of Transformers.' ' Please use MobileViTImageProcessor instead.' , _lowerCAmelCase , ) super().__init__(*_lowerCAmelCase , **_lowerCAmelCase )
31
0
'''simple docstring''' from ..utils import DummyObject, requires_backends class _a (metaclass=_SCREAMING_SNAKE_CASE): """simple docstring""" SCREAMING_SNAKE_CASE = ['transformers', 'torch', 'note_seq'] def __init__( self , *A__ , **A__ ) -> Optional[int]: requires_backends(self , ["""transformers""", """torch""", """note_seq"""] ) @classmethod def UpperCamelCase ( cls , *A__ , **A__ ) -> int: requires_backends(cls , ["""transformers""", """torch""", """note_seq"""] ) @classmethod def UpperCamelCase ( cls , *A__ , **A__ ) -> Tuple: requires_backends(cls , ["""transformers""", """torch""", """note_seq"""] )
591
from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCamelCase__ : Optional[int] = logging.get_logger(__name__) lowerCamelCase__ : Tuple = { 'microsoft/swinv2-tiny-patch4-window8-256': ( 'https://huggingface.co/microsoft/swinv2-tiny-patch4-window8-256/resolve/main/config.json' ), } class lowerCamelCase_ ( _SCREAMING_SNAKE_CASE ): '''simple docstring''' lowercase_ = "swinv2" lowercase_ = { "num_attention_heads": "num_heads", "num_hidden_layers": "num_layers", } def __init__( self : Dict , _lowerCAmelCase : Optional[Any]=224 , _lowerCAmelCase : Optional[int]=4 , _lowerCAmelCase : Tuple=3 , _lowerCAmelCase : Tuple=96 , _lowerCAmelCase : Dict=[2, 2, 6, 2] , _lowerCAmelCase : Optional[Any]=[3, 6, 12, 24] , _lowerCAmelCase : str=7 , _lowerCAmelCase : List[Any]=4.0 , _lowerCAmelCase : List[str]=True , _lowerCAmelCase : List[Any]=0.0 , _lowerCAmelCase : List[Any]=0.0 , _lowerCAmelCase : Any=0.1 , _lowerCAmelCase : List[Any]="gelu" , _lowerCAmelCase : str=False , _lowerCAmelCase : str=0.02 , _lowerCAmelCase : List[Any]=1E-5 , _lowerCAmelCase : str=32 , **_lowerCAmelCase : List[Any] , ): super().__init__(**_lowerCAmelCase ) SCREAMING_SNAKE_CASE_ = image_size SCREAMING_SNAKE_CASE_ = patch_size SCREAMING_SNAKE_CASE_ = num_channels SCREAMING_SNAKE_CASE_ = embed_dim SCREAMING_SNAKE_CASE_ = depths SCREAMING_SNAKE_CASE_ = len(_lowerCAmelCase ) SCREAMING_SNAKE_CASE_ = num_heads SCREAMING_SNAKE_CASE_ = window_size SCREAMING_SNAKE_CASE_ = mlp_ratio SCREAMING_SNAKE_CASE_ = qkv_bias SCREAMING_SNAKE_CASE_ = hidden_dropout_prob SCREAMING_SNAKE_CASE_ = attention_probs_dropout_prob SCREAMING_SNAKE_CASE_ = drop_path_rate SCREAMING_SNAKE_CASE_ = hidden_act SCREAMING_SNAKE_CASE_ = use_absolute_embeddings SCREAMING_SNAKE_CASE_ = layer_norm_eps SCREAMING_SNAKE_CASE_ = initializer_range SCREAMING_SNAKE_CASE_ = encoder_stride # we set the hidden_size attribute in order to make Swinv2 work with VisionEncoderDecoderModel # this indicates the channel dimension after the last stage of the model SCREAMING_SNAKE_CASE_ = int(embed_dim * 2 ** (len(_lowerCAmelCase ) - 1) ) SCREAMING_SNAKE_CASE_ = (0, 0, 0, 0)
31
0
from __future__ import annotations from collections import namedtuple def __lowercase ( lowerCamelCase : float , lowerCamelCase : float , lowerCamelCase : float ): UpperCamelCase_ : Any = namedtuple('result' , 'name value' ) if (voltage, current, power).count(0 ) != 1: raise ValueError('Only one argument must be 0' ) elif power < 0: raise ValueError( 'Power cannot be negative in any electrical/electronics system' ) elif voltage == 0: return result('voltage' , power / current ) elif current == 0: return result('current' , power / voltage ) elif power == 0: return result('power' , float(round(abs(voltage * current ) , 2 ) ) ) else: raise ValueError('Exactly one argument must be 0' ) if __name__ == "__main__": import doctest doctest.testmod()
417
import itertools import random import unittest import numpy as np from transformers import BatchFeature, SpeechTaFeatureExtractor from transformers.testing_utils import require_torch from transformers.utils.import_utils import is_torch_available from ...test_sequence_feature_extraction_common import SequenceFeatureExtractionTestMixin if is_torch_available(): import torch lowerCamelCase__ : Dict = random.Random() def UpperCAmelCase_ ( __UpperCAmelCase : int , __UpperCAmelCase : Tuple=1.0 , __UpperCAmelCase : Dict=None , __UpperCAmelCase : Dict=None ) -> Tuple: if rng is None: SCREAMING_SNAKE_CASE_ = global_rng SCREAMING_SNAKE_CASE_ = [] for batch_idx in range(shape[0] ): values.append([] ) for _ in range(shape[1] ): values[-1].append(rng.random() * scale ) return values @require_torch class lowerCamelCase_ ( unittest.TestCase ): '''simple docstring''' def __init__( self : List[str] , _lowerCAmelCase : int , _lowerCAmelCase : Optional[Any]=7 , _lowerCAmelCase : Union[str, Any]=400 , _lowerCAmelCase : Tuple=2_000 , _lowerCAmelCase : str=1 , _lowerCAmelCase : int=0.0 , _lowerCAmelCase : Optional[Any]=16_000 , _lowerCAmelCase : Optional[Any]=True , _lowerCAmelCase : Any=80 , _lowerCAmelCase : Union[str, Any]=16 , _lowerCAmelCase : List[str]=64 , _lowerCAmelCase : List[Any]="hann_window" , _lowerCAmelCase : Any=80 , _lowerCAmelCase : List[Any]=7_600 , _lowerCAmelCase : List[Any]=1E-10 , _lowerCAmelCase : Optional[Any]=True , ): SCREAMING_SNAKE_CASE_ = parent SCREAMING_SNAKE_CASE_ = batch_size SCREAMING_SNAKE_CASE_ = min_seq_length SCREAMING_SNAKE_CASE_ = max_seq_length SCREAMING_SNAKE_CASE_ = (self.max_seq_length - self.min_seq_length) // (self.batch_size - 1) SCREAMING_SNAKE_CASE_ = feature_size SCREAMING_SNAKE_CASE_ = padding_value SCREAMING_SNAKE_CASE_ = sampling_rate SCREAMING_SNAKE_CASE_ = do_normalize SCREAMING_SNAKE_CASE_ = num_mel_bins SCREAMING_SNAKE_CASE_ = hop_length SCREAMING_SNAKE_CASE_ = win_length SCREAMING_SNAKE_CASE_ = win_function SCREAMING_SNAKE_CASE_ = fmin SCREAMING_SNAKE_CASE_ = fmax SCREAMING_SNAKE_CASE_ = mel_floor SCREAMING_SNAKE_CASE_ = return_attention_mask def lowerCAmelCase_ ( self : Union[str, Any] ): return { "feature_size": self.feature_size, "padding_value": self.padding_value, "sampling_rate": self.sampling_rate, "do_normalize": self.do_normalize, "num_mel_bins": self.num_mel_bins, "hop_length": self.hop_length, "win_length": self.win_length, "win_function": self.win_function, "fmin": self.fmin, "fmax": self.fmax, "mel_floor": self.mel_floor, "return_attention_mask": self.return_attention_mask, } def lowerCAmelCase_ ( self : Dict , _lowerCAmelCase : Optional[int]=False , _lowerCAmelCase : str=False ): def _flatten(_lowerCAmelCase : Dict ): return list(itertools.chain(*_lowerCAmelCase ) ) if equal_length: SCREAMING_SNAKE_CASE_ = floats_list((self.batch_size, self.max_seq_length) ) else: # make sure that inputs increase in size SCREAMING_SNAKE_CASE_ = [ _flatten(floats_list((x, self.feature_size) ) ) for x in range(self.min_seq_length , self.max_seq_length , self.seq_length_diff ) ] if numpify: SCREAMING_SNAKE_CASE_ = [np.asarray(_lowerCAmelCase ) for x in speech_inputs] return speech_inputs def lowerCAmelCase_ ( self : List[Any] , _lowerCAmelCase : Union[str, Any]=False , _lowerCAmelCase : Optional[int]=False ): if equal_length: SCREAMING_SNAKE_CASE_ = [floats_list((self.max_seq_length, self.num_mel_bins) ) for _ in range(self.batch_size )] else: # make sure that inputs increase in size SCREAMING_SNAKE_CASE_ = [ floats_list((x, self.num_mel_bins) ) for x in range(self.min_seq_length , self.max_seq_length , self.seq_length_diff ) ] if numpify: SCREAMING_SNAKE_CASE_ = [np.asarray(_lowerCAmelCase ) for x in speech_inputs] return speech_inputs @require_torch class lowerCamelCase_ ( _SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' lowercase_ = SpeechTaFeatureExtractor def lowerCAmelCase_ ( self : Any ): SCREAMING_SNAKE_CASE_ = SpeechTaFeatureExtractionTester(self ) def lowerCAmelCase_ ( self : Any , _lowerCAmelCase : int ): self.assertTrue(np.all(np.mean(_lowerCAmelCase , axis=0 ) < 1E-3 ) ) self.assertTrue(np.all(np.abs(np.var(_lowerCAmelCase , axis=0 ) - 1 ) < 1E-3 ) ) def lowerCAmelCase_ ( self : List[Any] ): # Tests that all call wrap to encode_plus and batch_encode_plus SCREAMING_SNAKE_CASE_ = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) # create three inputs of length 800, 1000, and 1200 SCREAMING_SNAKE_CASE_ = [floats_list((1, x) )[0] for x in range(800 , 1_400 , 200 )] SCREAMING_SNAKE_CASE_ = [np.asarray(_lowerCAmelCase ) for speech_input in speech_inputs] # Test not batched input SCREAMING_SNAKE_CASE_ = feat_extract(speech_inputs[0] , return_tensors='np' ).input_values SCREAMING_SNAKE_CASE_ = feat_extract(np_speech_inputs[0] , return_tensors='np' ).input_values self.assertTrue(np.allclose(_lowerCAmelCase , _lowerCAmelCase , atol=1E-3 ) ) # Test batched SCREAMING_SNAKE_CASE_ = feat_extract(_lowerCAmelCase , return_tensors='np' ).input_values SCREAMING_SNAKE_CASE_ = feat_extract(_lowerCAmelCase , return_tensors='np' ).input_values for enc_seq_a, enc_seq_a in zip(_lowerCAmelCase , _lowerCAmelCase ): self.assertTrue(np.allclose(_lowerCAmelCase , _lowerCAmelCase , atol=1E-3 ) ) def lowerCAmelCase_ ( self : Union[str, Any] ): SCREAMING_SNAKE_CASE_ = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) SCREAMING_SNAKE_CASE_ = [floats_list((1, x) )[0] for x in range(800 , 1_400 , 200 )] SCREAMING_SNAKE_CASE_ = ['longest', 'max_length', 'do_not_pad'] SCREAMING_SNAKE_CASE_ = [None, 1_600, None] for max_length, padding in zip(_lowerCAmelCase , _lowerCAmelCase ): SCREAMING_SNAKE_CASE_ = feat_extract(_lowerCAmelCase , padding=_lowerCAmelCase , max_length=_lowerCAmelCase , return_tensors='np' ) SCREAMING_SNAKE_CASE_ = processed.input_values self._check_zero_mean_unit_variance(input_values[0][:800] ) self.assertTrue(input_values[0][800:].sum() < 1E-6 ) self._check_zero_mean_unit_variance(input_values[1][:1_000] ) self.assertTrue(input_values[0][1_000:].sum() < 1E-6 ) self._check_zero_mean_unit_variance(input_values[2][:1_200] ) def lowerCAmelCase_ ( self : Optional[Any] ): SCREAMING_SNAKE_CASE_ = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) SCREAMING_SNAKE_CASE_ = range(800 , 1_400 , 200 ) SCREAMING_SNAKE_CASE_ = [floats_list((1, x) )[0] for x in lengths] SCREAMING_SNAKE_CASE_ = ['longest', 'max_length', 'do_not_pad'] SCREAMING_SNAKE_CASE_ = [None, 1_600, None] for max_length, padding in zip(_lowerCAmelCase , _lowerCAmelCase ): SCREAMING_SNAKE_CASE_ = feat_extract(_lowerCAmelCase , max_length=_lowerCAmelCase , padding=_lowerCAmelCase ) SCREAMING_SNAKE_CASE_ = processed.input_values self._check_zero_mean_unit_variance(input_values[0][:800] ) self._check_zero_mean_unit_variance(input_values[1][:1_000] ) self._check_zero_mean_unit_variance(input_values[2][:1_200] ) def lowerCAmelCase_ ( self : Dict ): SCREAMING_SNAKE_CASE_ = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) SCREAMING_SNAKE_CASE_ = [floats_list((1, x) )[0] for x in range(800 , 1_400 , 200 )] SCREAMING_SNAKE_CASE_ = feat_extract( _lowerCAmelCase , truncation=_lowerCAmelCase , max_length=1_000 , padding='max_length' , return_tensors='np' ) SCREAMING_SNAKE_CASE_ = processed.input_values self._check_zero_mean_unit_variance(input_values[0, :800] ) self._check_zero_mean_unit_variance(input_values[1] ) self._check_zero_mean_unit_variance(input_values[2] ) def lowerCAmelCase_ ( self : Dict ): SCREAMING_SNAKE_CASE_ = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) SCREAMING_SNAKE_CASE_ = [floats_list((1, x) )[0] for x in range(800 , 1_400 , 200 )] SCREAMING_SNAKE_CASE_ = feat_extract( _lowerCAmelCase , truncation=_lowerCAmelCase , max_length=1_000 , padding='longest' , return_tensors='np' ) SCREAMING_SNAKE_CASE_ = processed.input_values self._check_zero_mean_unit_variance(input_values[0, :800] ) self._check_zero_mean_unit_variance(input_values[1, :1_000] ) self._check_zero_mean_unit_variance(input_values[2] ) # make sure that if max_length < longest -> then pad to max_length self.assertTrue(input_values.shape == (3, 1_000) ) SCREAMING_SNAKE_CASE_ = [floats_list((1, x) )[0] for x in range(800 , 1_400 , 200 )] SCREAMING_SNAKE_CASE_ = feat_extract( _lowerCAmelCase , truncation=_lowerCAmelCase , max_length=2_000 , padding='longest' , return_tensors='np' ) SCREAMING_SNAKE_CASE_ = processed.input_values self._check_zero_mean_unit_variance(input_values[0, :800] ) self._check_zero_mean_unit_variance(input_values[1, :1_000] ) self._check_zero_mean_unit_variance(input_values[2] ) # make sure that if max_length > longest -> then pad to longest self.assertTrue(input_values.shape == (3, 1_200) ) def lowerCAmelCase_ ( self : Optional[int] ): SCREAMING_SNAKE_CASE_ = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) SCREAMING_SNAKE_CASE_ = np.random.rand(100 ).astype(np.floataa ) SCREAMING_SNAKE_CASE_ = np_speech_inputs.tolist() for inputs in [py_speech_inputs, np_speech_inputs]: SCREAMING_SNAKE_CASE_ = feature_extractor.pad([{'input_values': inputs}] , return_tensors='np' ) self.assertTrue(np_processed.input_values.dtype == np.floataa ) SCREAMING_SNAKE_CASE_ = feature_extractor.pad([{'input_values': inputs}] , return_tensors='pt' ) self.assertTrue(pt_processed.input_values.dtype == torch.floataa ) def lowerCAmelCase_ ( self : Tuple ): # Tests that all call wrap to encode_plus and batch_encode_plus SCREAMING_SNAKE_CASE_ = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) # create three inputs of length 800, 1000, and 1200 SCREAMING_SNAKE_CASE_ = [floats_list((1, x) )[0] for x in range(800 , 1_400 , 200 )] SCREAMING_SNAKE_CASE_ = [np.asarray(_lowerCAmelCase ) for speech_input in speech_inputs] # Test feature size SCREAMING_SNAKE_CASE_ = feature_extractor(audio_target=_lowerCAmelCase , padding=_lowerCAmelCase , return_tensors='np' ).input_values self.assertTrue(input_values.ndim == 3 ) self.assertTrue(input_values.shape[-1] == feature_extractor.num_mel_bins ) # Test not batched input SCREAMING_SNAKE_CASE_ = feature_extractor(speech_inputs[0] , return_tensors='np' ).input_values SCREAMING_SNAKE_CASE_ = feature_extractor(np_speech_inputs[0] , return_tensors='np' ).input_values self.assertTrue(np.allclose(_lowerCAmelCase , _lowerCAmelCase , atol=1E-3 ) ) # Test batched SCREAMING_SNAKE_CASE_ = feature_extractor(_lowerCAmelCase , return_tensors='np' ).input_values SCREAMING_SNAKE_CASE_ = feature_extractor(_lowerCAmelCase , return_tensors='np' ).input_values for enc_seq_a, enc_seq_a in zip(_lowerCAmelCase , _lowerCAmelCase ): self.assertTrue(np.allclose(_lowerCAmelCase , _lowerCAmelCase , atol=1E-3 ) ) # Test 2-D numpy arrays are batched. SCREAMING_SNAKE_CASE_ = [floats_list((1, x) )[0] for x in (800, 800, 800)] SCREAMING_SNAKE_CASE_ = np.asarray(_lowerCAmelCase ) SCREAMING_SNAKE_CASE_ = feature_extractor(_lowerCAmelCase , return_tensors='np' ).input_values SCREAMING_SNAKE_CASE_ = feature_extractor(_lowerCAmelCase , return_tensors='np' ).input_values for enc_seq_a, enc_seq_a in zip(_lowerCAmelCase , _lowerCAmelCase ): self.assertTrue(np.allclose(_lowerCAmelCase , _lowerCAmelCase , atol=1E-3 ) ) def lowerCAmelCase_ ( self : str ): SCREAMING_SNAKE_CASE_ = self.feat_extract_tester.prepare_inputs_for_target() SCREAMING_SNAKE_CASE_ = self.feature_extraction_class(**self.feat_extract_dict ) SCREAMING_SNAKE_CASE_ = feat_extract.model_input_names[0] SCREAMING_SNAKE_CASE_ = BatchFeature({input_name: speech_inputs} ) self.assertTrue(all(len(_lowerCAmelCase ) == len(_lowerCAmelCase ) for x, y in zip(_lowerCAmelCase , processed_features[input_name] ) ) ) SCREAMING_SNAKE_CASE_ = self.feat_extract_tester.prepare_inputs_for_target(equal_length=_lowerCAmelCase ) SCREAMING_SNAKE_CASE_ = BatchFeature({input_name: speech_inputs} , tensor_type='np' ) SCREAMING_SNAKE_CASE_ = processed_features[input_name] if len(batch_features_input.shape ) < 3: SCREAMING_SNAKE_CASE_ = batch_features_input[:, :, None] self.assertTrue( batch_features_input.shape == (self.feat_extract_tester.batch_size, len(speech_inputs[0] ), self.feat_extract_tester.num_mel_bins) ) @require_torch def lowerCAmelCase_ ( self : Dict ): SCREAMING_SNAKE_CASE_ = self.feat_extract_tester.prepare_inputs_for_target(equal_length=_lowerCAmelCase ) SCREAMING_SNAKE_CASE_ = self.feature_extraction_class(**self.feat_extract_dict ) SCREAMING_SNAKE_CASE_ = feat_extract.model_input_names[0] SCREAMING_SNAKE_CASE_ = BatchFeature({input_name: speech_inputs} , tensor_type='pt' ) SCREAMING_SNAKE_CASE_ = processed_features[input_name] if len(batch_features_input.shape ) < 3: SCREAMING_SNAKE_CASE_ = batch_features_input[:, :, None] self.assertTrue( batch_features_input.shape == (self.feat_extract_tester.batch_size, len(speech_inputs[0] ), self.feat_extract_tester.num_mel_bins) ) @require_torch def lowerCAmelCase_ ( self : Dict ): SCREAMING_SNAKE_CASE_ = self.feature_extraction_class(**self.feat_extract_dict ) SCREAMING_SNAKE_CASE_ = self.feat_extract_tester.prepare_inputs_for_target() SCREAMING_SNAKE_CASE_ = feat_extract.model_input_names[0] SCREAMING_SNAKE_CASE_ = BatchFeature({input_name: speech_inputs} ) SCREAMING_SNAKE_CASE_ = feat_extract.num_mel_bins # hack! SCREAMING_SNAKE_CASE_ = feat_extract.pad(_lowerCAmelCase , padding='longest' , return_tensors='np' )[input_name] SCREAMING_SNAKE_CASE_ = feat_extract.pad(_lowerCAmelCase , padding='longest' , return_tensors='pt' )[input_name] self.assertTrue(abs(input_np.astype(np.floataa ).sum() - input_pt.numpy().astype(np.floataa ).sum() ) < 1E-2 ) def lowerCAmelCase_ ( self : str ): SCREAMING_SNAKE_CASE_ = self.feat_extract_dict SCREAMING_SNAKE_CASE_ = True SCREAMING_SNAKE_CASE_ = self.feature_extraction_class(**_lowerCAmelCase ) SCREAMING_SNAKE_CASE_ = self.feat_extract_tester.prepare_inputs_for_target() SCREAMING_SNAKE_CASE_ = [len(_lowerCAmelCase ) for x in speech_inputs] SCREAMING_SNAKE_CASE_ = feat_extract.model_input_names[0] SCREAMING_SNAKE_CASE_ = BatchFeature({input_name: speech_inputs} ) SCREAMING_SNAKE_CASE_ = feat_extract.num_mel_bins # hack! SCREAMING_SNAKE_CASE_ = feat_extract.pad(_lowerCAmelCase , padding='longest' , return_tensors='np' ) self.assertIn('attention_mask' , _lowerCAmelCase ) self.assertListEqual(list(processed.attention_mask.shape ) , list(processed[input_name].shape[:2] ) ) self.assertListEqual(processed.attention_mask.sum(-1 ).tolist() , _lowerCAmelCase ) def lowerCAmelCase_ ( self : Any ): SCREAMING_SNAKE_CASE_ = self.feat_extract_dict SCREAMING_SNAKE_CASE_ = True SCREAMING_SNAKE_CASE_ = self.feature_extraction_class(**_lowerCAmelCase ) SCREAMING_SNAKE_CASE_ = self.feat_extract_tester.prepare_inputs_for_target() SCREAMING_SNAKE_CASE_ = [len(_lowerCAmelCase ) for x in speech_inputs] SCREAMING_SNAKE_CASE_ = feat_extract.model_input_names[0] SCREAMING_SNAKE_CASE_ = BatchFeature({input_name: speech_inputs} ) SCREAMING_SNAKE_CASE_ = min(_lowerCAmelCase ) SCREAMING_SNAKE_CASE_ = feat_extract.num_mel_bins # hack! SCREAMING_SNAKE_CASE_ = feat_extract.pad( _lowerCAmelCase , padding='max_length' , max_length=_lowerCAmelCase , truncation=_lowerCAmelCase , return_tensors='np' ) self.assertIn('attention_mask' , _lowerCAmelCase ) self.assertListEqual( list(processed_pad.attention_mask.shape ) , [processed_pad[input_name].shape[0], max_length] ) self.assertListEqual( processed_pad.attention_mask[:, :max_length].sum(-1 ).tolist() , [max_length for x in speech_inputs] ) def lowerCAmelCase_ ( self : List[Any] , _lowerCAmelCase : Tuple ): from datasets import load_dataset SCREAMING_SNAKE_CASE_ = load_dataset('hf-internal-testing/librispeech_asr_dummy' , 'clean' , split='validation' ) # automatic decoding with librispeech SCREAMING_SNAKE_CASE_ = ds.sort('id' ).select(range(_lowerCAmelCase ) )[:num_samples]['audio'] return [x["array"] for x in speech_samples] def lowerCAmelCase_ ( self : Any ): # fmt: off SCREAMING_SNAKE_CASE_ = torch.tensor( [2.3_804E-03, 2.0_752E-03, 1.9_836E-03, 2.1_057E-03, 1.6_174E-03, 3.0_518E-04, 9.1_553E-05, 3.3_569E-04, 9.7_656E-04, 1.8_311E-03, 2.0_142E-03, 2.1_057E-03, 1.7_395E-03, 4.5_776E-04, -3.9_673E-04, 4.5_776E-04, 1.0_071E-03, 9.1_553E-05, 4.8_828E-04, 1.1_597E-03, 7.3_242E-04, 9.4_604E-04, 1.8_005E-03, 1.8_311E-03, 8.8_501E-04, 4.2_725E-04, 4.8_828E-04, 7.3_242E-04, 1.0_986E-03, 2.1_057E-03] ) # fmt: on SCREAMING_SNAKE_CASE_ = self._load_datasamples(1 ) SCREAMING_SNAKE_CASE_ = SpeechTaFeatureExtractor() SCREAMING_SNAKE_CASE_ = feature_extractor(_lowerCAmelCase , return_tensors='pt' ).input_values self.assertEquals(input_values.shape , (1, 93_680) ) self.assertTrue(torch.allclose(input_values[0, :30] , _lowerCAmelCase , atol=1E-6 ) ) def lowerCAmelCase_ ( self : Optional[int] ): # fmt: off SCREAMING_SNAKE_CASE_ = torch.tensor( [-2.6870, -3.0104, -3.1356, -3.5352, -3.0044, -3.0353, -3.4719, -3.6777, -3.1520, -2.9435, -2.6553, -2.8795, -2.9944, -2.5921, -3.0279, -3.0386, -3.0864, -3.1291, -3.2353, -2.7444, -2.6831, -2.7287, -3.1761, -3.1571, -3.2726, -3.0582, -3.1007, -3.4533, -3.4695, -3.0998] ) # fmt: on SCREAMING_SNAKE_CASE_ = self._load_datasamples(1 ) SCREAMING_SNAKE_CASE_ = SpeechTaFeatureExtractor() SCREAMING_SNAKE_CASE_ = feature_extractor(audio_target=_lowerCAmelCase , return_tensors='pt' ).input_values self.assertEquals(input_values.shape , (1, 366, 80) ) self.assertTrue(torch.allclose(input_values[0, 0, :30] , _lowerCAmelCase , atol=1E-4 ) )
31
0
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available, is_vision_available, ) UpperCAmelCase__ = { 'configuration_layoutlmv2': ['LAYOUTLMV2_PRETRAINED_CONFIG_ARCHIVE_MAP', 'LayoutLMv2Config'], 'processing_layoutlmv2': ['LayoutLMv2Processor'], 'tokenization_layoutlmv2': ['LayoutLMv2Tokenizer'], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase__ = ['LayoutLMv2TokenizerFast'] try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase__ = ['LayoutLMv2FeatureExtractor'] UpperCAmelCase__ = ['LayoutLMv2ImageProcessor'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase__ = [ 'LAYOUTLMV2_PRETRAINED_MODEL_ARCHIVE_LIST', 'LayoutLMv2ForQuestionAnswering', 'LayoutLMv2ForSequenceClassification', 'LayoutLMv2ForTokenClassification', 'LayoutLMv2Layer', 'LayoutLMv2Model', 'LayoutLMv2PreTrainedModel', ] if TYPE_CHECKING: from .configuration_layoutlmva import LAYOUTLMV2_PRETRAINED_CONFIG_ARCHIVE_MAP, LayoutLMvaConfig from .processing_layoutlmva import LayoutLMvaProcessor from .tokenization_layoutlmva import LayoutLMvaTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_layoutlmva_fast import LayoutLMvaTokenizerFast try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_layoutlmva import LayoutLMvaFeatureExtractor, LayoutLMvaImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_layoutlmva import ( LAYOUTLMV2_PRETRAINED_MODEL_ARCHIVE_LIST, LayoutLMvaForQuestionAnswering, LayoutLMvaForSequenceClassification, LayoutLMvaForTokenClassification, LayoutLMvaLayer, LayoutLMvaModel, LayoutLMvaPreTrainedModel, ) else: import sys UpperCAmelCase__ = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
351
from __future__ import annotations from typing import TypedDict class lowerCamelCase_ ( _SCREAMING_SNAKE_CASE ): '''simple docstring''' lowercase_ = 42 lowercase_ = 42 def UpperCAmelCase_ ( __UpperCAmelCase : str ) -> list[str]: if not isinstance(__UpperCAmelCase , __UpperCAmelCase ): raise TypeError('The parameter s type must be str.' ) return [s[i:] + s[:i] for i in range(len(__UpperCAmelCase ) )] def UpperCAmelCase_ ( __UpperCAmelCase : str ) -> BWTTransformDict: if not isinstance(__UpperCAmelCase , __UpperCAmelCase ): raise TypeError('The parameter s type must be str.' ) if not s: raise ValueError('The parameter s must not be empty.' ) SCREAMING_SNAKE_CASE_ = all_rotations(__UpperCAmelCase ) rotations.sort() # sort the list of rotations in alphabetically order # make a string composed of the last char of each rotation SCREAMING_SNAKE_CASE_ = { "bwt_string": "".join([word[-1] for word in rotations] ), "idx_original_string": rotations.index(__UpperCAmelCase ), } return response def UpperCAmelCase_ ( __UpperCAmelCase : str , __UpperCAmelCase : int ) -> str: if not isinstance(__UpperCAmelCase , __UpperCAmelCase ): raise TypeError('The parameter bwt_string type must be str.' ) if not bwt_string: raise ValueError('The parameter bwt_string must not be empty.' ) try: SCREAMING_SNAKE_CASE_ = int(__UpperCAmelCase ) except ValueError: raise TypeError( 'The parameter idx_original_string type must be int or passive' ' of cast to int.' ) if idx_original_string < 0: raise ValueError('The parameter idx_original_string must not be lower than 0.' ) if idx_original_string >= len(__UpperCAmelCase ): raise ValueError( 'The parameter idx_original_string must be lower than' ' len(bwt_string).' ) SCREAMING_SNAKE_CASE_ = [''] * len(__UpperCAmelCase ) for _ in range(len(__UpperCAmelCase ) ): for i in range(len(__UpperCAmelCase ) ): SCREAMING_SNAKE_CASE_ = bwt_string[i] + ordered_rotations[i] ordered_rotations.sort() return ordered_rotations[idx_original_string] if __name__ == "__main__": lowerCamelCase__ : Optional[int] = 'Provide a string that I will generate its BWT transform: ' lowerCamelCase__ : List[str] = input(entry_msg).strip() lowerCamelCase__ : int = bwt_transform(s) print( f'''Burrows Wheeler transform for string \'{s}\' results ''' f'''in \'{result['bwt_string']}\'''' ) lowerCamelCase__ : Dict = reverse_bwt(result['bwt_string'], result['idx_original_string']) print( f'''Reversing Burrows Wheeler transform for entry \'{result['bwt_string']}\' ''' f'''we get original string \'{original_string}\'''' )
31
0
'''simple docstring''' from maths.prime_check import is_prime def _lowerCAmelCase ( lowercase : int ) ->int: """simple docstring""" if not isinstance(__UpperCAmelCase , __UpperCAmelCase ): lowercase__ = F'''Input value of [number={number}] must be an integer''' raise TypeError(__UpperCAmelCase ) if is_prime(__UpperCAmelCase ) and is_prime(number + 2 ): return number + 2 else: return -1 if __name__ == "__main__": import doctest doctest.testmod()
161
class lowerCamelCase_ : '''simple docstring''' def __init__( self : str ): SCREAMING_SNAKE_CASE_ = {} def lowerCAmelCase_ ( self : List[str] ): print(self.vertex ) for i in self.vertex: print(_lowerCAmelCase , ' -> ' , ' -> '.join([str(_lowerCAmelCase ) for j in self.vertex[i]] ) ) def lowerCAmelCase_ ( self : Union[str, Any] , _lowerCAmelCase : int , _lowerCAmelCase : int ): # check if vertex is already present, if from_vertex in self.vertex: self.vertex[from_vertex].append(_lowerCAmelCase ) else: # else make a new vertex SCREAMING_SNAKE_CASE_ = [to_vertex] def lowerCAmelCase_ ( self : Optional[Any] ): # visited array for storing already visited nodes SCREAMING_SNAKE_CASE_ = [False] * len(self.vertex ) # call the recursive helper function for i in range(len(self.vertex ) ): if not visited[i]: self.dfs_recursive(_lowerCAmelCase , _lowerCAmelCase ) def lowerCAmelCase_ ( self : Tuple , _lowerCAmelCase : int , _lowerCAmelCase : list ): # mark start vertex as visited SCREAMING_SNAKE_CASE_ = True print(_lowerCAmelCase , end=' ' ) # Recur for all the vertices that are adjacent to this node for i in self.vertex: if not visited[i]: self.dfs_recursive(_lowerCAmelCase , _lowerCAmelCase ) if __name__ == "__main__": lowerCamelCase__ : List[Any] = Graph() g.add_edge(0, 1) g.add_edge(0, 2) g.add_edge(1, 2) g.add_edge(2, 0) g.add_edge(2, 3) g.add_edge(3, 3) g.print_graph() print('DFS:') g.dfs() # OUTPUT: # 0 -> 1 -> 2 # 1 -> 2 # 2 -> 0 -> 3 # 3 -> 3 # DFS: # 0 1 2 3
31
0
"""simple docstring""" import os import string import sys A_ : Any =1 << 8 A_ : Optional[int] ={ 'tab': ord("""\t"""), 'newline': ord("""\r"""), 'esc': 2_7, 'up': 6_5 + ARROW_KEY_FLAG, 'down': 6_6 + ARROW_KEY_FLAG, 'right': 6_7 + ARROW_KEY_FLAG, 'left': 6_8 + ARROW_KEY_FLAG, 'mod_int': 9_1, 'undefined': sys.maxsize, 'interrupt': 3, 'insert': 5_0, 'delete': 5_1, 'pg_up': 5_3, 'pg_down': 5_4, } A_ : Dict =KEYMAP['up'] A_ : int =KEYMAP['left'] if sys.platform == "win32": A_ : Any =[] A_ : List[str] ={ b'\xe0H': KEYMAP['up'] - ARROW_KEY_FLAG, b'\x00H': KEYMAP['up'] - ARROW_KEY_FLAG, b'\xe0P': KEYMAP['down'] - ARROW_KEY_FLAG, b'\x00P': KEYMAP['down'] - ARROW_KEY_FLAG, b'\xe0M': KEYMAP['right'] - ARROW_KEY_FLAG, b'\x00M': KEYMAP['right'] - ARROW_KEY_FLAG, b'\xe0K': KEYMAP['left'] - ARROW_KEY_FLAG, b'\x00K': KEYMAP['left'] - ARROW_KEY_FLAG, } for i in range(1_0): A_ : Union[str, Any] =ord(str(i)) def SCREAMING_SNAKE_CASE_ ( )-> Dict: if os.name == "nt": import msvcrt _lowerCamelCase = 'mbcs' # Flush the keyboard buffer while msvcrt.kbhit(): msvcrt.getch() if len(__UpperCAmelCase ) == 0: # Read the keystroke _lowerCamelCase = msvcrt.getch() # If it is a prefix char, get second part if ch in (b"\x00", b"\xe0"): _lowerCamelCase = ch + msvcrt.getch() # Translate actual Win chars to bullet char types try: _lowerCamelCase = chr(WIN_KEYMAP[cha] ) WIN_CH_BUFFER.append(chr(KEYMAP['mod_int'] ) ) WIN_CH_BUFFER.append(__UpperCAmelCase ) if ord(__UpperCAmelCase ) in ( KEYMAP["insert"] - 1 << 9, KEYMAP["delete"] - 1 << 9, KEYMAP["pg_up"] - 1 << 9, KEYMAP["pg_down"] - 1 << 9, ): WIN_CH_BUFFER.append(chr(126 ) ) _lowerCamelCase = chr(KEYMAP['esc'] ) except KeyError: _lowerCamelCase = cha[1] else: _lowerCamelCase = ch.decode(__UpperCAmelCase ) else: _lowerCamelCase = WIN_CH_BUFFER.pop(0 ) elif os.name == "posix": import termios import tty _lowerCamelCase = sys.stdin.fileno() _lowerCamelCase = termios.tcgetattr(__UpperCAmelCase ) try: tty.setraw(__UpperCAmelCase ) _lowerCamelCase = sys.stdin.read(1 ) finally: termios.tcsetattr(__UpperCAmelCase , termios.TCSADRAIN , __UpperCAmelCase ) return ch def SCREAMING_SNAKE_CASE_ ( )-> List[str]: _lowerCamelCase = get_raw_chars() if ord(__UpperCAmelCase ) in [KEYMAP["interrupt"], KEYMAP["newline"]]: return char elif ord(__UpperCAmelCase ) == KEYMAP["esc"]: _lowerCamelCase = get_raw_chars() if ord(__UpperCAmelCase ) == KEYMAP["mod_int"]: _lowerCamelCase = get_raw_chars() if ord(__UpperCAmelCase ) >= KEYMAP["arrow_begin"] - ARROW_KEY_FLAG and ord(__UpperCAmelCase ) <= KEYMAP["arrow_end"] - ARROW_KEY_FLAG: return chr(ord(__UpperCAmelCase ) + ARROW_KEY_FLAG ) else: return KEYMAP["undefined"] else: return get_raw_chars() else: if char in string.printable: return char else: return KEYMAP["undefined"]
650
from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCamelCase__ : str = logging.get_logger(__name__) lowerCamelCase__ : Tuple = { 'funnel-transformer/small': 'https://huggingface.co/funnel-transformer/small/resolve/main/config.json', 'funnel-transformer/small-base': 'https://huggingface.co/funnel-transformer/small-base/resolve/main/config.json', 'funnel-transformer/medium': 'https://huggingface.co/funnel-transformer/medium/resolve/main/config.json', 'funnel-transformer/medium-base': 'https://huggingface.co/funnel-transformer/medium-base/resolve/main/config.json', 'funnel-transformer/intermediate': ( 'https://huggingface.co/funnel-transformer/intermediate/resolve/main/config.json' ), 'funnel-transformer/intermediate-base': ( 'https://huggingface.co/funnel-transformer/intermediate-base/resolve/main/config.json' ), 'funnel-transformer/large': 'https://huggingface.co/funnel-transformer/large/resolve/main/config.json', 'funnel-transformer/large-base': 'https://huggingface.co/funnel-transformer/large-base/resolve/main/config.json', 'funnel-transformer/xlarge': 'https://huggingface.co/funnel-transformer/xlarge/resolve/main/config.json', 'funnel-transformer/xlarge-base': 'https://huggingface.co/funnel-transformer/xlarge-base/resolve/main/config.json', } class lowerCamelCase_ ( _SCREAMING_SNAKE_CASE ): '''simple docstring''' lowercase_ = "funnel" lowercase_ = { "hidden_size": "d_model", "num_attention_heads": "n_head", } def __init__( self : int , _lowerCAmelCase : Optional[int]=30_522 , _lowerCAmelCase : List[str]=[4, 4, 4] , _lowerCAmelCase : Tuple=None , _lowerCAmelCase : Optional[int]=2 , _lowerCAmelCase : int=768 , _lowerCAmelCase : Optional[Any]=12 , _lowerCAmelCase : Optional[Any]=64 , _lowerCAmelCase : Optional[Any]=3_072 , _lowerCAmelCase : List[str]="gelu_new" , _lowerCAmelCase : Any=0.1 , _lowerCAmelCase : int=0.1 , _lowerCAmelCase : Tuple=0.0 , _lowerCAmelCase : List[Any]=0.1 , _lowerCAmelCase : Dict=None , _lowerCAmelCase : str=1E-9 , _lowerCAmelCase : Any="mean" , _lowerCAmelCase : Union[str, Any]="relative_shift" , _lowerCAmelCase : Optional[Any]=True , _lowerCAmelCase : Dict=True , _lowerCAmelCase : Tuple=True , **_lowerCAmelCase : Optional[Any] , ): SCREAMING_SNAKE_CASE_ = vocab_size SCREAMING_SNAKE_CASE_ = block_sizes SCREAMING_SNAKE_CASE_ = [1] * len(_lowerCAmelCase ) if block_repeats is None else block_repeats assert len(_lowerCAmelCase ) == len( self.block_repeats ), "`block_sizes` and `block_repeats` should have the same length." SCREAMING_SNAKE_CASE_ = num_decoder_layers SCREAMING_SNAKE_CASE_ = d_model SCREAMING_SNAKE_CASE_ = n_head SCREAMING_SNAKE_CASE_ = d_head SCREAMING_SNAKE_CASE_ = d_inner SCREAMING_SNAKE_CASE_ = hidden_act SCREAMING_SNAKE_CASE_ = hidden_dropout SCREAMING_SNAKE_CASE_ = attention_dropout SCREAMING_SNAKE_CASE_ = activation_dropout SCREAMING_SNAKE_CASE_ = initializer_range SCREAMING_SNAKE_CASE_ = initializer_std SCREAMING_SNAKE_CASE_ = layer_norm_eps assert pooling_type in [ "mean", "max", ], F"Got {pooling_type} for `pooling_type` but only 'mean' and 'max' are supported." SCREAMING_SNAKE_CASE_ = pooling_type assert attention_type in [ "relative_shift", "factorized", ], F"Got {attention_type} for `attention_type` but only 'relative_shift' and 'factorized' are supported." SCREAMING_SNAKE_CASE_ = attention_type SCREAMING_SNAKE_CASE_ = separate_cls SCREAMING_SNAKE_CASE_ = truncate_seq SCREAMING_SNAKE_CASE_ = pool_q_only super().__init__(**_lowerCAmelCase ) @property def lowerCAmelCase_ ( self : Optional[int] ): return sum(self.block_sizes ) @num_hidden_layers.setter def lowerCAmelCase_ ( self : int , _lowerCAmelCase : List[Any] ): raise NotImplementedError( 'This model does not support the setting of `num_hidden_layers`. Please set `block_sizes`.' ) @property def lowerCAmelCase_ ( self : List[Any] ): return len(self.block_sizes ) @num_blocks.setter def lowerCAmelCase_ ( self : Dict , _lowerCAmelCase : Union[str, Any] ): raise NotImplementedError('This model does not support the setting of `num_blocks`. Please set `block_sizes`.' )
31
0
"""simple docstring""" import argparse import os.path as osp import re import torch from safetensors.torch import load_file, save_file # =================# # UNet Conversion # # =================# __SCREAMING_SNAKE_CASE : Dict = [ # (stable-diffusion, HF Diffusers) ('time_embed.0.weight', 'time_embedding.linear_1.weight'), ('time_embed.0.bias', 'time_embedding.linear_1.bias'), ('time_embed.2.weight', 'time_embedding.linear_2.weight'), ('time_embed.2.bias', 'time_embedding.linear_2.bias'), ('input_blocks.0.0.weight', 'conv_in.weight'), ('input_blocks.0.0.bias', 'conv_in.bias'), ('out.0.weight', 'conv_norm_out.weight'), ('out.0.bias', 'conv_norm_out.bias'), ('out.2.weight', 'conv_out.weight'), ('out.2.bias', 'conv_out.bias'), ] __SCREAMING_SNAKE_CASE : Any = [ # (stable-diffusion, HF Diffusers) ('in_layers.0', 'norm1'), ('in_layers.2', 'conv1'), ('out_layers.0', 'norm2'), ('out_layers.3', 'conv2'), ('emb_layers.1', 'time_emb_proj'), ('skip_connection', 'conv_shortcut'), ] __SCREAMING_SNAKE_CASE : int = [] # hardcoded number of downblocks and resnets/attentions... # would need smarter logic for other networks. for i in range(4): # loop over downblocks/upblocks for j in range(2): # loop over resnets/attentions for downblocks __SCREAMING_SNAKE_CASE : str = F"""down_blocks.{i}.resnets.{j}.""" __SCREAMING_SNAKE_CASE : List[Any] = F"""input_blocks.{3*i + j + 1}.0.""" unet_conversion_map_layer.append((sd_down_res_prefix, hf_down_res_prefix)) if i < 3: # no attention layers in down_blocks.3 __SCREAMING_SNAKE_CASE : Optional[Any] = F"""down_blocks.{i}.attentions.{j}.""" __SCREAMING_SNAKE_CASE : str = F"""input_blocks.{3*i + j + 1}.1.""" unet_conversion_map_layer.append((sd_down_atn_prefix, hf_down_atn_prefix)) for j in range(3): # loop over resnets/attentions for upblocks __SCREAMING_SNAKE_CASE : List[Any] = F"""up_blocks.{i}.resnets.{j}.""" __SCREAMING_SNAKE_CASE : List[Any] = F"""output_blocks.{3*i + j}.0.""" unet_conversion_map_layer.append((sd_up_res_prefix, hf_up_res_prefix)) if i > 0: # no attention layers in up_blocks.0 __SCREAMING_SNAKE_CASE : Tuple = F"""up_blocks.{i}.attentions.{j}.""" __SCREAMING_SNAKE_CASE : Dict = F"""output_blocks.{3*i + j}.1.""" unet_conversion_map_layer.append((sd_up_atn_prefix, hf_up_atn_prefix)) if i < 3: # no downsample in down_blocks.3 __SCREAMING_SNAKE_CASE : Union[str, Any] = F"""down_blocks.{i}.downsamplers.0.conv.""" __SCREAMING_SNAKE_CASE : Union[str, Any] = F"""input_blocks.{3*(i+1)}.0.op.""" unet_conversion_map_layer.append((sd_downsample_prefix, hf_downsample_prefix)) # no upsample in up_blocks.3 __SCREAMING_SNAKE_CASE : Optional[int] = F"""up_blocks.{i}.upsamplers.0.""" __SCREAMING_SNAKE_CASE : List[Any] = F"""output_blocks.{3*i + 2}.{1 if i == 0 else 2}.""" unet_conversion_map_layer.append((sd_upsample_prefix, hf_upsample_prefix)) __SCREAMING_SNAKE_CASE : Dict = 'mid_block.attentions.0.' __SCREAMING_SNAKE_CASE : Any = 'middle_block.1.' unet_conversion_map_layer.append((sd_mid_atn_prefix, hf_mid_atn_prefix)) for j in range(2): __SCREAMING_SNAKE_CASE : Union[str, Any] = F"""mid_block.resnets.{j}.""" __SCREAMING_SNAKE_CASE : int = F"""middle_block.{2*j}.""" unet_conversion_map_layer.append((sd_mid_res_prefix, hf_mid_res_prefix)) def lowerCAmelCase_( lowercase_ : Tuple ) -> int: # buyer beware: this is a *brittle* function, # and correct output requires that all of these pieces interact in # the exact order in which I have arranged them. _lowerCamelCase = {k: k for k in unet_state_dict.keys()} for sd_name, hf_name in unet_conversion_map: _lowerCamelCase = sd_name for k, v in mapping.items(): if "resnets" in k: for sd_part, hf_part in unet_conversion_map_resnet: _lowerCamelCase = v.replace(__UpperCAmelCase , __UpperCAmelCase ) _lowerCamelCase = v for k, v in mapping.items(): for sd_part, hf_part in unet_conversion_map_layer: _lowerCamelCase = v.replace(__UpperCAmelCase , __UpperCAmelCase ) _lowerCamelCase = v _lowerCamelCase = {v: unet_state_dict[k] for k, v in mapping.items()} return new_state_dict # ================# # VAE Conversion # # ================# __SCREAMING_SNAKE_CASE : str = [ # (stable-diffusion, HF Diffusers) ('nin_shortcut', 'conv_shortcut'), ('norm_out', 'conv_norm_out'), ('mid.attn_1.', 'mid_block.attentions.0.'), ] for i in range(4): # down_blocks have two resnets for j in range(2): __SCREAMING_SNAKE_CASE : Union[str, Any] = F"""encoder.down_blocks.{i}.resnets.{j}.""" __SCREAMING_SNAKE_CASE : Union[str, Any] = F"""encoder.down.{i}.block.{j}.""" vae_conversion_map.append((sd_down_prefix, hf_down_prefix)) if i < 3: __SCREAMING_SNAKE_CASE : int = F"""down_blocks.{i}.downsamplers.0.""" __SCREAMING_SNAKE_CASE : List[Any] = F"""down.{i}.downsample.""" vae_conversion_map.append((sd_downsample_prefix, hf_downsample_prefix)) __SCREAMING_SNAKE_CASE : List[Any] = F"""up_blocks.{i}.upsamplers.0.""" __SCREAMING_SNAKE_CASE : int = F"""up.{3-i}.upsample.""" vae_conversion_map.append((sd_upsample_prefix, hf_upsample_prefix)) # up_blocks have three resnets # also, up blocks in hf are numbered in reverse from sd for j in range(3): __SCREAMING_SNAKE_CASE : Dict = F"""decoder.up_blocks.{i}.resnets.{j}.""" __SCREAMING_SNAKE_CASE : Any = F"""decoder.up.{3-i}.block.{j}.""" vae_conversion_map.append((sd_up_prefix, hf_up_prefix)) # this part accounts for mid blocks in both the encoder and the decoder for i in range(2): __SCREAMING_SNAKE_CASE : List[str] = F"""mid_block.resnets.{i}.""" __SCREAMING_SNAKE_CASE : str = F"""mid.block_{i+1}.""" vae_conversion_map.append((sd_mid_res_prefix, hf_mid_res_prefix)) __SCREAMING_SNAKE_CASE : str = [ # (stable-diffusion, HF Diffusers) ('norm.', 'group_norm.'), ('q.', 'query.'), ('k.', 'key.'), ('v.', 'value.'), ('proj_out.', 'proj_attn.'), ] def lowerCAmelCase_( lowercase_ : Tuple ) -> List[str]: # convert HF linear weights to SD conv2d weights return w.reshape(*w.shape , 1 , 1 ) def lowerCAmelCase_( lowercase_ : List[str] ) -> int: _lowerCamelCase = {k: k for k in vae_state_dict.keys()} for k, v in mapping.items(): for sd_part, hf_part in vae_conversion_map: _lowerCamelCase = v.replace(__UpperCAmelCase , __UpperCAmelCase ) _lowerCamelCase = v for k, v in mapping.items(): if "attentions" in k: for sd_part, hf_part in vae_conversion_map_attn: _lowerCamelCase = v.replace(__UpperCAmelCase , __UpperCAmelCase ) _lowerCamelCase = v _lowerCamelCase = {v: vae_state_dict[k] for k, v in mapping.items()} _lowerCamelCase = ['''q''', '''k''', '''v''', '''proj_out'''] for k, v in new_state_dict.items(): for weight_name in weights_to_convert: if F"""mid.attn_1.{weight_name}.weight""" in k: print(F"""Reshaping {k} for SD format""" ) _lowerCamelCase = reshape_weight_for_sd(__UpperCAmelCase ) return new_state_dict # =========================# # Text Encoder Conversion # # =========================# __SCREAMING_SNAKE_CASE : str = [ # (stable-diffusion, HF Diffusers) ('resblocks.', 'text_model.encoder.layers.'), ('ln_1', 'layer_norm1'), ('ln_2', 'layer_norm2'), ('.c_fc.', '.fc1.'), ('.c_proj.', '.fc2.'), ('.attn', '.self_attn'), ('ln_final.', 'transformer.text_model.final_layer_norm.'), ('token_embedding.weight', 'transformer.text_model.embeddings.token_embedding.weight'), ('positional_embedding', 'transformer.text_model.embeddings.position_embedding.weight'), ] __SCREAMING_SNAKE_CASE : Tuple = {re.escape(x[1]): x[0] for x in textenc_conversion_lst} __SCREAMING_SNAKE_CASE : str = re.compile('''|'''.join(protected.keys())) # Ordering is from https://github.com/pytorch/pytorch/blob/master/test/cpp/api/modules.cpp __SCREAMING_SNAKE_CASE : Optional[int] = {'q': 0, 'k': 1, 'v': 2} def lowerCAmelCase_( lowercase_ : List[str] ) -> Union[str, Any]: _lowerCamelCase = {} _lowerCamelCase = {} _lowerCamelCase = {} for k, v in text_enc_dict.items(): if ( k.endswith('''.self_attn.q_proj.weight''' ) or k.endswith('''.self_attn.k_proj.weight''' ) or k.endswith('''.self_attn.v_proj.weight''' ) ): _lowerCamelCase = k[: -len('''.q_proj.weight''' )] _lowerCamelCase = k[-len('''q_proj.weight''' )] if k_pre not in capture_qkv_weight: _lowerCamelCase = [None, None, None] _lowerCamelCase = v continue if ( k.endswith('''.self_attn.q_proj.bias''' ) or k.endswith('''.self_attn.k_proj.bias''' ) or k.endswith('''.self_attn.v_proj.bias''' ) ): _lowerCamelCase = k[: -len('''.q_proj.bias''' )] _lowerCamelCase = k[-len('''q_proj.bias''' )] if k_pre not in capture_qkv_bias: _lowerCamelCase = [None, None, None] _lowerCamelCase = v continue _lowerCamelCase = textenc_pattern.sub(lambda lowercase_ : protected[re.escape(m.group(0 ) )] , __UpperCAmelCase ) _lowerCamelCase = v for k_pre, tensors in capture_qkv_weight.items(): if None in tensors: raise Exception('''CORRUPTED MODEL: one of the q-k-v values for the text encoder was missing''' ) _lowerCamelCase = textenc_pattern.sub(lambda lowercase_ : protected[re.escape(m.group(0 ) )] , __UpperCAmelCase ) _lowerCamelCase = torch.cat(__UpperCAmelCase ) for k_pre, tensors in capture_qkv_bias.items(): if None in tensors: raise Exception('''CORRUPTED MODEL: one of the q-k-v values for the text encoder was missing''' ) _lowerCamelCase = textenc_pattern.sub(lambda lowercase_ : protected[re.escape(m.group(0 ) )] , __UpperCAmelCase ) _lowerCamelCase = torch.cat(__UpperCAmelCase ) return new_state_dict def lowerCAmelCase_( lowercase_ : Optional[int] ) -> Optional[Any]: return text_enc_dict if __name__ == "__main__": __SCREAMING_SNAKE_CASE : int = argparse.ArgumentParser() parser.add_argument('''--model_path''', default=None, type=str, required=True, help='''Path to the model to convert.''') parser.add_argument('''--checkpoint_path''', default=None, type=str, required=True, help='''Path to the output model.''') parser.add_argument('''--half''', action='''store_true''', help='''Save weights in half precision.''') parser.add_argument( '''--use_safetensors''', action='''store_true''', help='''Save weights use safetensors, default is ckpt.''' ) __SCREAMING_SNAKE_CASE : Any = parser.parse_args() assert args.model_path is not None, "Must provide a model path!" assert args.checkpoint_path is not None, "Must provide a checkpoint path!" # Path for safetensors __SCREAMING_SNAKE_CASE : Union[str, Any] = osp.join(args.model_path, '''unet''', '''diffusion_pytorch_model.safetensors''') __SCREAMING_SNAKE_CASE : Dict = osp.join(args.model_path, '''vae''', '''diffusion_pytorch_model.safetensors''') __SCREAMING_SNAKE_CASE : List[str] = osp.join(args.model_path, '''text_encoder''', '''model.safetensors''') # Load models from safetensors if it exists, if it doesn't pytorch if osp.exists(unet_path): __SCREAMING_SNAKE_CASE : Any = load_file(unet_path, device='''cpu''') else: __SCREAMING_SNAKE_CASE : List[str] = osp.join(args.model_path, '''unet''', '''diffusion_pytorch_model.bin''') __SCREAMING_SNAKE_CASE : Any = torch.load(unet_path, map_location='''cpu''') if osp.exists(vae_path): __SCREAMING_SNAKE_CASE : Tuple = load_file(vae_path, device='''cpu''') else: __SCREAMING_SNAKE_CASE : Any = osp.join(args.model_path, '''vae''', '''diffusion_pytorch_model.bin''') __SCREAMING_SNAKE_CASE : str = torch.load(vae_path, map_location='''cpu''') if osp.exists(text_enc_path): __SCREAMING_SNAKE_CASE : List[str] = load_file(text_enc_path, device='''cpu''') else: __SCREAMING_SNAKE_CASE : Optional[Any] = osp.join(args.model_path, '''text_encoder''', '''pytorch_model.bin''') __SCREAMING_SNAKE_CASE : int = torch.load(text_enc_path, map_location='''cpu''') # Convert the UNet model __SCREAMING_SNAKE_CASE : List[str] = convert_unet_state_dict(unet_state_dict) __SCREAMING_SNAKE_CASE : Union[str, Any] = {'model.diffusion_model.' + k: v for k, v in unet_state_dict.items()} # Convert the VAE model __SCREAMING_SNAKE_CASE : List[Any] = convert_vae_state_dict(vae_state_dict) __SCREAMING_SNAKE_CASE : int = {'first_stage_model.' + k: v for k, v in vae_state_dict.items()} # Easiest way to identify v2.0 model seems to be that the text encoder (OpenCLIP) is deeper __SCREAMING_SNAKE_CASE : str = 'text_model.encoder.layers.22.layer_norm2.bias' in text_enc_dict if is_vaa_model: # Need to add the tag 'transformer' in advance so we can knock it out from the final layer-norm __SCREAMING_SNAKE_CASE : int = {'transformer.' + k: v for k, v in text_enc_dict.items()} __SCREAMING_SNAKE_CASE : Union[str, Any] = convert_text_enc_state_dict_vaa(text_enc_dict) __SCREAMING_SNAKE_CASE : Any = {'cond_stage_model.model.' + k: v for k, v in text_enc_dict.items()} else: __SCREAMING_SNAKE_CASE : List[str] = convert_text_enc_state_dict(text_enc_dict) __SCREAMING_SNAKE_CASE : Any = {'cond_stage_model.transformer.' + k: v for k, v in text_enc_dict.items()} # Put together new checkpoint __SCREAMING_SNAKE_CASE : Union[str, Any] = {**unet_state_dict, **vae_state_dict, **text_enc_dict} if args.half: __SCREAMING_SNAKE_CASE : Dict = {k: v.half() for k, v in state_dict.items()} if args.use_safetensors: save_file(state_dict, args.checkpoint_path) else: __SCREAMING_SNAKE_CASE : Optional[int] = {'state_dict': state_dict} torch.save(state_dict, args.checkpoint_path)
661
from __future__ import annotations from collections.abc import Iterator class lowerCamelCase_ : '''simple docstring''' def __init__( self : Union[str, Any] , _lowerCAmelCase : int ): SCREAMING_SNAKE_CASE_ = value SCREAMING_SNAKE_CASE_ = None SCREAMING_SNAKE_CASE_ = None class lowerCamelCase_ : '''simple docstring''' def __init__( self : int , _lowerCAmelCase : Node ): SCREAMING_SNAKE_CASE_ = tree def lowerCAmelCase_ ( self : Union[str, Any] , _lowerCAmelCase : Node | None ): if node is None: return 0 return node.value + ( self.depth_first_search(node.left ) + self.depth_first_search(node.right ) ) def __iter__( self : Dict ): yield self.depth_first_search(self.tree ) if __name__ == "__main__": import doctest doctest.testmod()
31
0
"""simple docstring""" from typing import TYPE_CHECKING from ....utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available A = {'configuration_mmbt': ['MMBTConfig']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A = ['MMBTForClassification', 'MMBTModel', 'ModalEmbeddings'] if TYPE_CHECKING: from .configuration_mmbt import MMBTConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mmbt import MMBTForClassification, MMBTModel, ModalEmbeddings else: import sys A = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
77
def UpperCAmelCase_ ( __UpperCAmelCase : list , __UpperCAmelCase : int , __UpperCAmelCase : int = 0 , __UpperCAmelCase : int = 0 ) -> int: SCREAMING_SNAKE_CASE_ = right or len(__UpperCAmelCase ) - 1 if left > right: return -1 elif list_data[left] == key: return left elif list_data[right] == key: return right else: return search(__UpperCAmelCase , __UpperCAmelCase , left + 1 , right - 1 ) if __name__ == "__main__": import doctest doctest.testmod()
31
0
import os def lowerCAmelCase ( UpperCamelCase__ : str ) -> List[str]: """simple docstring""" __SCREAMING_SNAKE_CASE: int = len(grid[0] ) __SCREAMING_SNAKE_CASE: List[str] = len(__UpperCAmelCase ) __SCREAMING_SNAKE_CASE: Optional[Any] = 0 __SCREAMING_SNAKE_CASE: List[Any] = 0 __SCREAMING_SNAKE_CASE: Union[str, Any] = 0 # Check vertically, horizontally, diagonally at the same time (only works # for nxn grid) for i in range(__UpperCAmelCase ): for j in range(n_rows - 3 ): __SCREAMING_SNAKE_CASE: Union[str, Any] = grid[j][i] * grid[j + 1][i] * grid[j + 2][i] * grid[j + 3][i] __SCREAMING_SNAKE_CASE: List[str] = grid[i][j] * grid[i][j + 1] * grid[i][j + 2] * grid[i][j + 3] # Left-to-right diagonal (\) product if i < n_columns - 3: __SCREAMING_SNAKE_CASE: List[Any] = ( grid[i][j] * grid[i + 1][j + 1] * grid[i + 2][j + 2] * grid[i + 3][j + 3] ) # Right-to-left diagonal(/) product if i > 2: __SCREAMING_SNAKE_CASE: Union[str, Any] = ( grid[i][j] * grid[i - 1][j + 1] * grid[i - 2][j + 2] * grid[i - 3][j + 3] ) __SCREAMING_SNAKE_CASE: Union[str, Any] = max( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) if max_product > largest: __SCREAMING_SNAKE_CASE: Any = max_product return largest def lowerCAmelCase ( ) -> Any: """simple docstring""" __SCREAMING_SNAKE_CASE: Dict = [] with open(os.path.dirname(__UpperCAmelCase ) + '''/grid.txt''' ) as file: for line in file: grid.append(line.strip('''\n''' ).split(''' ''' ) ) __SCREAMING_SNAKE_CASE: List[Any] = [[int(__UpperCAmelCase ) for i in grid[j]] for j in range(len(__UpperCAmelCase ) )] return largest_product(__UpperCAmelCase ) if __name__ == "__main__": print(solution())
202
import os from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils import AddedToken from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_fnet import FNetTokenizer else: lowerCamelCase__ : Optional[Any] = None lowerCamelCase__ : List[str] = logging.get_logger(__name__) lowerCamelCase__ : List[str] = {'vocab_file': 'spiece.model', 'tokenizer_file': 'tokenizer.json'} lowerCamelCase__ : List[str] = { 'vocab_file': { 'google/fnet-base': 'https://huggingface.co/google/fnet-base/resolve/main/spiece.model', 'google/fnet-large': 'https://huggingface.co/google/fnet-large/resolve/main/spiece.model', }, 'tokenizer_file': { 'google/fnet-base': 'https://huggingface.co/google/fnet-base/resolve/main/tokenizer.json', 'google/fnet-large': 'https://huggingface.co/google/fnet-large/resolve/main/tokenizer.json', }, } lowerCamelCase__ : Optional[Any] = { 'google/fnet-base': 512, 'google/fnet-large': 512, } lowerCamelCase__ : List[Any] = '▁' class lowerCamelCase_ ( _SCREAMING_SNAKE_CASE ): '''simple docstring''' lowercase_ = VOCAB_FILES_NAMES lowercase_ = PRETRAINED_VOCAB_FILES_MAP lowercase_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowercase_ = ["input_ids", "token_type_ids"] lowercase_ = FNetTokenizer def __init__( self : List[Any] , _lowerCAmelCase : Dict=None , _lowerCAmelCase : Dict=None , _lowerCAmelCase : List[str]=False , _lowerCAmelCase : Optional[Any]=True , _lowerCAmelCase : Tuple=True , _lowerCAmelCase : List[Any]="<unk>" , _lowerCAmelCase : Optional[Any]="[SEP]" , _lowerCAmelCase : Optional[Any]="<pad>" , _lowerCAmelCase : Optional[int]="[CLS]" , _lowerCAmelCase : Optional[Any]="[MASK]" , **_lowerCAmelCase : Any , ): # Mask token behave like a normal word, i.e. include the space before it and # is included in the raw text, there should be a match in a non-normalized sentence. SCREAMING_SNAKE_CASE_ = ( AddedToken(_lowerCAmelCase , lstrip=_lowerCAmelCase , rstrip=_lowerCAmelCase , normalized=_lowerCAmelCase ) if isinstance(_lowerCAmelCase , _lowerCAmelCase ) else mask_token ) super().__init__( _lowerCAmelCase , tokenizer_file=_lowerCAmelCase , do_lower_case=_lowerCAmelCase , remove_space=_lowerCAmelCase , keep_accents=_lowerCAmelCase , unk_token=_lowerCAmelCase , sep_token=_lowerCAmelCase , pad_token=_lowerCAmelCase , cls_token=_lowerCAmelCase , mask_token=_lowerCAmelCase , **_lowerCAmelCase , ) SCREAMING_SNAKE_CASE_ = do_lower_case SCREAMING_SNAKE_CASE_ = remove_space SCREAMING_SNAKE_CASE_ = keep_accents SCREAMING_SNAKE_CASE_ = vocab_file SCREAMING_SNAKE_CASE_ = False if not self.vocab_file else True def lowerCAmelCase_ ( self : Any , _lowerCAmelCase : List[int] , _lowerCAmelCase : Optional[List[int]] = None ): SCREAMING_SNAKE_CASE_ = [self.sep_token_id] SCREAMING_SNAKE_CASE_ = [self.cls_token_id] if token_ids_a is None: return cls + token_ids_a + sep return cls + token_ids_a + sep + token_ids_a + sep def lowerCAmelCase_ ( self : Optional[int] , _lowerCAmelCase : List[int] , _lowerCAmelCase : Optional[List[int]] = None ): SCREAMING_SNAKE_CASE_ = [self.sep_token_id] SCREAMING_SNAKE_CASE_ = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def lowerCAmelCase_ ( self : Optional[Any] , _lowerCAmelCase : str , _lowerCAmelCase : Optional[str] = None ): if not os.path.isdir(_lowerCAmelCase ): logger.error(F"Vocabulary path ({save_directory}) should be a directory" ) return SCREAMING_SNAKE_CASE_ = os.path.join( _lowerCAmelCase , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(_lowerCAmelCase ): copyfile(self.vocab_file , _lowerCAmelCase ) return (out_vocab_file,)
31
0
'''simple docstring''' import os from collections.abc import Iterator def _A ( lowercase__ = "." ): for dir_path, dir_names, filenames in os.walk(__UpperCAmelCase ): lowercase__ = [d for d in dir_names if d != """scripts""" and d[0] not in """._"""] for filename in filenames: if filename == "__init__.py": continue if os.path.splitext(__UpperCAmelCase )[1] in (".py", ".ipynb"): yield os.path.join(__UpperCAmelCase , __UpperCAmelCase ).lstrip("""./""" ) def _A ( lowercase__ ): return f'''{i * ' '}*''' if i else "\n##" def _A ( lowercase__ , lowercase__ ): lowercase__ = old_path.split(os.sep ) for i, new_part in enumerate(new_path.split(os.sep ) ): if (i + 1 > len(__UpperCAmelCase ) or old_parts[i] != new_part) and new_part: print(f'''{md_prefix(__UpperCAmelCase )} {new_part.replace('_' , ' ' ).title()}''' ) return new_path def _A ( lowercase__ = "." ): lowercase__ = """""" for filepath in sorted(good_file_paths(__UpperCAmelCase ) ): lowercase__ , lowercase__ = os.path.split(__UpperCAmelCase ) if filepath != old_path: lowercase__ = print_path(__UpperCAmelCase , __UpperCAmelCase ) lowercase__ = (filepath.count(os.sep ) + 1) if filepath else 0 lowercase__ = f'''{filepath}/{filename}'''.replace(""" """ , """%20""" ) lowercase__ = os.path.splitext(filename.replace("""_""" , """ """ ).title() )[0] print(f'''{md_prefix(__UpperCAmelCase )} [{filename}]({url})''' ) if __name__ == "__main__": print_directory_md(".")
325
from __future__ import annotations from collections.abc import Generator def UpperCAmelCase_ ( ) -> Generator[int, None, None]: SCREAMING_SNAKE_CASE_ = {} SCREAMING_SNAKE_CASE_ = 2 while True: SCREAMING_SNAKE_CASE_ = factor_map.pop(__UpperCAmelCase , __UpperCAmelCase ) if factor: SCREAMING_SNAKE_CASE_ = factor + prime while x in factor_map: x += factor SCREAMING_SNAKE_CASE_ = factor else: SCREAMING_SNAKE_CASE_ = prime yield prime prime += 1 def UpperCAmelCase_ ( __UpperCAmelCase : float = 1E10 ) -> int: SCREAMING_SNAKE_CASE_ = sieve() SCREAMING_SNAKE_CASE_ = 1 while True: SCREAMING_SNAKE_CASE_ = next(__UpperCAmelCase ) if (2 * prime * n) > limit: return n # Ignore the next prime as the reminder will be 2. next(__UpperCAmelCase ) n += 2 if __name__ == "__main__": print(solution())
31
0
from collections import OrderedDict from typing import TYPE_CHECKING, Any, List, Mapping, Optional, Union from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import TensorType, logging if TYPE_CHECKING: from ...onnx.config import PatchingSpec from ...tokenization_utils_base import PreTrainedTokenizerBase __a = logging.get_logger(__name__) __a = { 'allenai/longformer-base-4096': 'https://huggingface.co/allenai/longformer-base-4096/resolve/main/config.json', 'allenai/longformer-large-4096': 'https://huggingface.co/allenai/longformer-large-4096/resolve/main/config.json', 'allenai/longformer-large-4096-finetuned-triviaqa': ( 'https://huggingface.co/allenai/longformer-large-4096-finetuned-triviaqa/resolve/main/config.json' ), 'allenai/longformer-base-4096-extra.pos.embd.only': ( 'https://huggingface.co/allenai/longformer-base-4096-extra.pos.embd.only/resolve/main/config.json' ), 'allenai/longformer-large-4096-extra.pos.embd.only': ( 'https://huggingface.co/allenai/longformer-large-4096-extra.pos.embd.only/resolve/main/config.json' ), } class __a( _SCREAMING_SNAKE_CASE ): """simple docstring""" lowerCAmelCase = '''longformer''' def __init__( self ,_SCREAMING_SNAKE_CASE = 512 ,_SCREAMING_SNAKE_CASE = 2 ,_SCREAMING_SNAKE_CASE = 1 ,_SCREAMING_SNAKE_CASE = 0 ,_SCREAMING_SNAKE_CASE = 2 ,_SCREAMING_SNAKE_CASE = 30_522 ,_SCREAMING_SNAKE_CASE = 768 ,_SCREAMING_SNAKE_CASE = 12 ,_SCREAMING_SNAKE_CASE = 12 ,_SCREAMING_SNAKE_CASE = 3_072 ,_SCREAMING_SNAKE_CASE = "gelu" ,_SCREAMING_SNAKE_CASE = 0.1 ,_SCREAMING_SNAKE_CASE = 0.1 ,_SCREAMING_SNAKE_CASE = 512 ,_SCREAMING_SNAKE_CASE = 2 ,_SCREAMING_SNAKE_CASE = 0.02 ,_SCREAMING_SNAKE_CASE = 1e-12 ,_SCREAMING_SNAKE_CASE = False ,**_SCREAMING_SNAKE_CASE ,) -> Optional[Any]: super().__init__(pad_token_id=_lowerCAmelCase ,**_lowerCAmelCase ) UpperCAmelCase_ : Dict = attention_window UpperCAmelCase_ : List[Any] = sep_token_id UpperCAmelCase_ : str = bos_token_id UpperCAmelCase_ : List[Any] = eos_token_id UpperCAmelCase_ : List[Any] = vocab_size UpperCAmelCase_ : Dict = hidden_size UpperCAmelCase_ : Any = num_hidden_layers UpperCAmelCase_ : Union[str, Any] = num_attention_heads UpperCAmelCase_ : int = hidden_act UpperCAmelCase_ : int = intermediate_size UpperCAmelCase_ : Union[str, Any] = hidden_dropout_prob UpperCAmelCase_ : int = attention_probs_dropout_prob UpperCAmelCase_ : Optional[Any] = max_position_embeddings UpperCAmelCase_ : Any = type_vocab_size UpperCAmelCase_ : Union[str, Any] = initializer_range UpperCAmelCase_ : Union[str, Any] = layer_norm_eps UpperCAmelCase_ : List[Any] = onnx_export class __a( _SCREAMING_SNAKE_CASE ): """simple docstring""" def __init__( self ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE = "default" ,_SCREAMING_SNAKE_CASE = None ) -> str: super().__init__(_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ) UpperCAmelCase_ : Union[str, Any] = True @property def a__ ( self ) -> Optional[int]: if self.task == "multiple-choice": UpperCAmelCase_ : Optional[Any] = {0: '''batch''', 1: '''choice''', 2: '''sequence'''} else: UpperCAmelCase_ : Optional[int] = {0: '''batch''', 1: '''sequence'''} return OrderedDict( [ ('''input_ids''', dynamic_axis), ('''attention_mask''', dynamic_axis), ('''global_attention_mask''', dynamic_axis), ] ) @property def a__ ( self ) -> List[Any]: UpperCAmelCase_ : Dict = super().outputs if self.task == "default": UpperCAmelCase_ : List[Any] = {0: '''batch'''} return outputs @property def a__ ( self ) -> Any: return 1e-4 @property def a__ ( self ) -> str: # needs to be >= 14 to support tril operator return max(super().default_onnx_opset ,14 ) def a__ ( self ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE = -1 ,_SCREAMING_SNAKE_CASE = -1 ,_SCREAMING_SNAKE_CASE = False ,_SCREAMING_SNAKE_CASE = None ,) -> Union[str, Any]: UpperCAmelCase_ : Union[str, Any] = super().generate_dummy_inputs( preprocessor=_lowerCAmelCase ,batch_size=_lowerCAmelCase ,seq_length=_lowerCAmelCase ,is_pair=_lowerCAmelCase ,framework=_lowerCAmelCase ) import torch # for some reason, replacing this code by inputs["global_attention_mask"] = torch.randint(2, inputs["input_ids"].shape, dtype=torch.int64) # makes the export fail randomly UpperCAmelCase_ : Union[str, Any] = torch.zeros_like(inputs['''input_ids'''] ) # make every second token global UpperCAmelCase_ : List[Any] = 1 return inputs
30
import numpy as np import torch from torch.utils.data import DataLoader from accelerate.utils.dataclasses import DistributedType class lowerCamelCase_ : '''simple docstring''' def __init__( self : Any , _lowerCAmelCase : Optional[int]=2 , _lowerCAmelCase : Any=3 , _lowerCAmelCase : Tuple=64 , _lowerCAmelCase : List[str]=None ): SCREAMING_SNAKE_CASE_ = np.random.default_rng(_lowerCAmelCase ) SCREAMING_SNAKE_CASE_ = length SCREAMING_SNAKE_CASE_ = rng.normal(size=(length,) ).astype(np.floataa ) SCREAMING_SNAKE_CASE_ = a * self.x + b + rng.normal(scale=0.1 , size=(length,) ).astype(np.floataa ) def __len__( self : Optional[int] ): return self.length def __getitem__( self : str , _lowerCAmelCase : Union[str, Any] ): return {"x": self.x[i], "y": self.y[i]} class lowerCamelCase_ ( torch.nn.Module ): '''simple docstring''' def __init__( self : Tuple , _lowerCAmelCase : Dict=0 , _lowerCAmelCase : List[str]=0 , _lowerCAmelCase : str=False ): super().__init__() SCREAMING_SNAKE_CASE_ = torch.nn.Parameter(torch.tensor([2, 3] ).float() ) SCREAMING_SNAKE_CASE_ = torch.nn.Parameter(torch.tensor([2, 3] ).float() ) SCREAMING_SNAKE_CASE_ = True def lowerCAmelCase_ ( self : Dict , _lowerCAmelCase : Union[str, Any]=None ): if self.first_batch: print(F"Model dtype: {self.a.dtype}, {self.b.dtype}. Input dtype: {x.dtype}" ) SCREAMING_SNAKE_CASE_ = False return x * self.a[0] + self.b[0] class lowerCamelCase_ ( torch.nn.Module ): '''simple docstring''' def __init__( self : Optional[int] , _lowerCAmelCase : Any=0 , _lowerCAmelCase : Any=0 , _lowerCAmelCase : Optional[Any]=False ): super().__init__() SCREAMING_SNAKE_CASE_ = torch.nn.Parameter(torch.tensor(_lowerCAmelCase ).float() ) SCREAMING_SNAKE_CASE_ = torch.nn.Parameter(torch.tensor(_lowerCAmelCase ).float() ) SCREAMING_SNAKE_CASE_ = True def lowerCAmelCase_ ( self : Optional[Any] , _lowerCAmelCase : Optional[int]=None ): if self.first_batch: print(F"Model dtype: {self.a.dtype}, {self.b.dtype}. Input dtype: {x.dtype}" ) SCREAMING_SNAKE_CASE_ = False return x * self.a + self.b def UpperCAmelCase_ ( __UpperCAmelCase : Dict , __UpperCAmelCase : int = 16 ) -> Union[str, Any]: from datasets import load_dataset from transformers import AutoTokenizer SCREAMING_SNAKE_CASE_ = AutoTokenizer.from_pretrained('bert-base-cased' ) SCREAMING_SNAKE_CASE_ = {'train': 'tests/test_samples/MRPC/train.csv', 'validation': 'tests/test_samples/MRPC/dev.csv'} SCREAMING_SNAKE_CASE_ = load_dataset('csv' , data_files=__UpperCAmelCase ) SCREAMING_SNAKE_CASE_ = datasets['train'].unique('label' ) SCREAMING_SNAKE_CASE_ = {v: i for i, v in enumerate(__UpperCAmelCase )} def tokenize_function(__UpperCAmelCase : Optional[int] ): # max_length=None => use the model max length (it's actually the default) SCREAMING_SNAKE_CASE_ = tokenizer( examples['sentence1'] , examples['sentence2'] , truncation=__UpperCAmelCase , max_length=__UpperCAmelCase , padding='max_length' ) if "label" in examples: SCREAMING_SNAKE_CASE_ = [label_to_id[l] for l in examples['label']] return outputs # Apply the method we just defined to all the examples in all the splits of the dataset SCREAMING_SNAKE_CASE_ = datasets.map( __UpperCAmelCase , batched=__UpperCAmelCase , remove_columns=['sentence1', 'sentence2', 'label'] , ) def collate_fn(__UpperCAmelCase : Dict ): # On TPU it's best to pad everything to the same length or training will be very slow. if accelerator.distributed_type == DistributedType.TPU: return tokenizer.pad(__UpperCAmelCase , padding='max_length' , max_length=1_28 , return_tensors='pt' ) return tokenizer.pad(__UpperCAmelCase , padding='longest' , return_tensors='pt' ) # Instantiate dataloaders. SCREAMING_SNAKE_CASE_ = DataLoader(tokenized_datasets['train'] , shuffle=__UpperCAmelCase , collate_fn=__UpperCAmelCase , batch_size=2 ) SCREAMING_SNAKE_CASE_ = DataLoader(tokenized_datasets['validation'] , shuffle=__UpperCAmelCase , collate_fn=__UpperCAmelCase , batch_size=1 ) return train_dataloader, eval_dataloader
31
0
'''simple docstring''' A_ = [ 'Audio', 'Array2D', 'Array3D', 'Array4D', 'Array5D', 'ClassLabel', 'Features', 'Sequence', 'Value', 'Image', 'Translation', 'TranslationVariableLanguages', ] from .audio import Audio from .features import ArrayaD, ArrayaD, ArrayaD, ArrayaD, ClassLabel, Features, Sequence, Value from .image import Image from .translation import Translation, TranslationVariableLanguages
270
import warnings from ...utils import logging from .image_processing_layoutlmva import LayoutLMvaImageProcessor lowerCamelCase__ : Union[str, Any] = logging.get_logger(__name__) class lowerCamelCase_ ( _SCREAMING_SNAKE_CASE ): '''simple docstring''' def __init__( self : Dict , *_lowerCAmelCase : Optional[Any] , **_lowerCAmelCase : Any ): warnings.warn( 'The class LayoutLMv2FeatureExtractor is deprecated and will be removed in version 5 of Transformers.' ' Please use LayoutLMv2ImageProcessor instead.' , _lowerCAmelCase , ) super().__init__(*_lowerCAmelCase , **_lowerCAmelCase )
31
0
'''simple docstring''' import inspect import os import unittest import torch import accelerate from accelerate import debug_launcher from accelerate.test_utils import ( execute_subprocess_async, require_cpu, require_huggingface_suite, require_multi_gpu, require_single_gpu, ) from accelerate.utils import patch_environment @require_huggingface_suite class _a (unittest.TestCase): """simple docstring""" def UpperCamelCase ( self ) -> List[str]: _SCREAMING_SNAKE_CASE = inspect.getfile(accelerate.test_utils ) _SCREAMING_SNAKE_CASE = os.path.sep.join( mod_file.split(os.path.sep )[:-1] + ["""scripts""", """external_deps""", """test_metrics.py"""] ) from accelerate.test_utils.scripts.external_deps import test_metrics # noqa: F401 _SCREAMING_SNAKE_CASE = test_metrics @require_cpu def UpperCamelCase ( self ) -> Union[str, Any]: debug_launcher(self.test_metrics.main , num_processes=1 ) @require_cpu def UpperCamelCase ( self ) -> List[Any]: debug_launcher(self.test_metrics.main ) @require_single_gpu def UpperCamelCase ( self ) -> List[str]: self.test_metrics.main() @require_multi_gpu def UpperCamelCase ( self ) -> Dict: print(F"Found {torch.cuda.device_count()} devices." ) _SCREAMING_SNAKE_CASE = ["""torchrun""", F"--nproc_per_node={torch.cuda.device_count()}", self.test_file_path] with patch_environment(omp_num_threads=1 ): execute_subprocess_async(_lowerCAmelCase , env=os.environ.copy() )
591
def UpperCAmelCase_ ( ) -> list[list[int]]: return [list(range(10_00 - i , -10_00 - i , -1 ) ) for i in range(10_00 )] lowerCamelCase__ : List[Any] = generate_large_matrix() lowerCamelCase__ : List[Any] = ( [[4, 3, 2, -1], [3, 2, 1, -1], [1, 1, -1, -2], [-1, -1, -2, -3]], [[3, 2], [1, 0]], [[7, 7, 6]], [[7, 7, 6], [-1, -2, -3]], grid, ) def UpperCAmelCase_ ( __UpperCAmelCase : list[list[int]] ) -> None: assert all(row == sorted(__UpperCAmelCase , reverse=__UpperCAmelCase ) for row in grid ) assert all(list(__UpperCAmelCase ) == sorted(__UpperCAmelCase , reverse=__UpperCAmelCase ) for col in zip(*__UpperCAmelCase ) ) def UpperCAmelCase_ ( __UpperCAmelCase : list[int] ) -> int: SCREAMING_SNAKE_CASE_ = 0 SCREAMING_SNAKE_CASE_ = len(__UpperCAmelCase ) - 1 # Edge cases such as no values or all numbers are negative. if not array or array[0] < 0: return 0 while right + 1 > left: SCREAMING_SNAKE_CASE_ = (left + right) // 2 SCREAMING_SNAKE_CASE_ = array[mid] # Num must be negative and the index must be greater than or equal to 0. if num < 0 and array[mid - 1] >= 0: return mid if num >= 0: SCREAMING_SNAKE_CASE_ = mid + 1 else: SCREAMING_SNAKE_CASE_ = mid - 1 # No negative numbers so return the last index of the array + 1 which is the length. return len(__UpperCAmelCase ) def UpperCAmelCase_ ( __UpperCAmelCase : list[list[int]] ) -> int: SCREAMING_SNAKE_CASE_ = 0 SCREAMING_SNAKE_CASE_ = len(grid[0] ) for i in range(len(__UpperCAmelCase ) ): SCREAMING_SNAKE_CASE_ = find_negative_index(grid[i][:bound] ) total += bound return (len(__UpperCAmelCase ) * len(grid[0] )) - total def UpperCAmelCase_ ( __UpperCAmelCase : list[list[int]] ) -> int: return len([number for row in grid for number in row if number < 0] ) def UpperCAmelCase_ ( __UpperCAmelCase : list[list[int]] ) -> int: SCREAMING_SNAKE_CASE_ = 0 for row in grid: for i, number in enumerate(__UpperCAmelCase ): if number < 0: total += len(__UpperCAmelCase ) - i break return total def UpperCAmelCase_ ( ) -> None: from timeit import timeit print('Running benchmarks' ) SCREAMING_SNAKE_CASE_ = ( 'from __main__ import count_negatives_binary_search, ' 'count_negatives_brute_force, count_negatives_brute_force_with_break, grid' ) for func in ( "count_negatives_binary_search", # took 0.7727 seconds "count_negatives_brute_force_with_break", # took 4.6505 seconds "count_negatives_brute_force", # took 12.8160 seconds ): SCREAMING_SNAKE_CASE_ = timeit(f"{func}(grid=grid)" , setup=__UpperCAmelCase , number=5_00 ) print(f"{func}() took {time:0.4f} seconds" ) if __name__ == "__main__": import doctest doctest.testmod() benchmark()
31
0
from typing import List, Optional, Union import torch from ...models import UNetaDConditionModel, VQModel from ...pipelines import DiffusionPipeline from ...pipelines.pipeline_utils import ImagePipelineOutput from ...schedulers import DDPMScheduler from ...utils import ( is_accelerate_available, is_accelerate_version, logging, randn_tensor, replace_example_docstring, ) a_ = logging.get_logger(__name__) # pylint: disable=invalid-name a_ = '\n Examples:\n ```py\n >>> from diffusers import KandinskyV22Pipeline, KandinskyV22PriorPipeline\n >>> import torch\n\n >>> pipe_prior = KandinskyV22PriorPipeline.from_pretrained("kandinsky-community/kandinsky-2-2-prior")\n >>> pipe_prior.to("cuda")\n >>> prompt = "red cat, 4k photo"\n >>> out = pipe_prior(prompt)\n >>> image_emb = out.image_embeds\n >>> zero_image_emb = out.negative_image_embeds\n >>> pipe = KandinskyV22Pipeline.from_pretrained("kandinsky-community/kandinsky-2-2-decoder")\n >>> pipe.to("cuda")\n >>> image = pipe(\n ... image_embeds=image_emb,\n ... negative_image_embeds=zero_image_emb,\n ... height=768,\n ... width=768,\n ... num_inference_steps=50,\n ... ).images\n >>> image[0].save("cat.png")\n ```\n' def __lowercase ( lowerCamelCase : Optional[int] , lowerCamelCase : int , lowerCamelCase : Any=8 ): UpperCamelCase_ : Tuple = height // scale_factor**2 if height % scale_factor**2 != 0: new_height += 1 UpperCamelCase_ : Any = width // scale_factor**2 if width % scale_factor**2 != 0: new_width += 1 return new_height * scale_factor, new_width * scale_factor class _lowercase ( _SCREAMING_SNAKE_CASE ): def __init__( self : Dict , snake_case : UNetaDConditionModel , snake_case : DDPMScheduler , snake_case : VQModel , ) -> Optional[int]: """simple docstring""" super().__init__() self.register_modules( unet=_lowerCAmelCase , scheduler=_lowerCAmelCase , movq=_lowerCAmelCase , ) UpperCamelCase_ : List[str] = 2 ** (len(self.movq.config.block_out_channels ) - 1) def SCREAMING_SNAKE_CASE__ ( self : Union[str, Any] , snake_case : str , snake_case : Optional[int] , snake_case : Dict , snake_case : Optional[int] , snake_case : List[str] , snake_case : List[Any] ) -> List[str]: """simple docstring""" if latents is None: UpperCamelCase_ : Optional[Any] = randn_tensor(_lowerCAmelCase , generator=_lowerCAmelCase , device=_lowerCAmelCase , dtype=_lowerCAmelCase ) else: if latents.shape != shape: raise ValueError(f"Unexpected latents shape, got {latents.shape}, expected {shape}" ) UpperCamelCase_ : Union[str, Any] = latents.to(_lowerCAmelCase ) UpperCamelCase_ : Dict = latents * scheduler.init_noise_sigma return latents def SCREAMING_SNAKE_CASE__ ( self : Optional[Any] , snake_case : str=0 ) -> List[Any]: """simple docstring""" if is_accelerate_available(): from accelerate import cpu_offload else: raise ImportError('Please install accelerate via `pip install accelerate`' ) UpperCamelCase_ : Optional[int] = torch.device(f"cuda:{gpu_id}" ) UpperCamelCase_ : Union[str, Any] = [ self.unet, self.movq, ] for cpu_offloaded_model in models: if cpu_offloaded_model is not None: cpu_offload(_lowerCAmelCase , _lowerCAmelCase ) def SCREAMING_SNAKE_CASE__ ( self : List[str] , snake_case : Any=0 ) -> List[str]: """simple docstring""" if is_accelerate_available() and is_accelerate_version('>=' , '0.17.0.dev0' ): from accelerate import cpu_offload_with_hook else: raise ImportError('`enable_model_cpu_offload` requires `accelerate v0.17.0` or higher.' ) UpperCamelCase_ : List[Any] = torch.device(f"cuda:{gpu_id}" ) if self.device.type != "cpu": self.to('cpu' , silence_dtype_warnings=_lowerCAmelCase ) torch.cuda.empty_cache() # otherwise we don't see the memory savings (but they probably exist) UpperCamelCase_ : Dict = None for cpu_offloaded_model in [self.unet, self.movq]: UpperCamelCase_, UpperCamelCase_ : List[Any] = cpu_offload_with_hook(_lowerCAmelCase , _lowerCAmelCase , prev_module_hook=_lowerCAmelCase ) # We'll offload the last model manually. UpperCamelCase_ : List[Any] = hook @property # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline._execution_device def SCREAMING_SNAKE_CASE__ ( self : int ) -> Any: """simple docstring""" if not hasattr(self.unet , '_hf_hook' ): return self.device for module in self.unet.modules(): if ( hasattr(_lowerCAmelCase , '_hf_hook' ) and hasattr(module._hf_hook , 'execution_device' ) and module._hf_hook.execution_device is not None ): return torch.device(module._hf_hook.execution_device ) return self.device @torch.no_grad() @replace_example_docstring(_lowerCAmelCase ) def __call__( self : Any , snake_case : Union[torch.FloatTensor, List[torch.FloatTensor]] , snake_case : Union[torch.FloatTensor, List[torch.FloatTensor]] , snake_case : int = 5_1_2 , snake_case : int = 5_1_2 , snake_case : int = 1_0_0 , snake_case : float = 4.0 , snake_case : int = 1 , snake_case : Optional[Union[torch.Generator, List[torch.Generator]]] = None , snake_case : Optional[torch.FloatTensor] = None , snake_case : Optional[str] = "pil" , snake_case : bool = True , ) -> Optional[int]: """simple docstring""" UpperCamelCase_ : List[str] = self._execution_device UpperCamelCase_ : str = guidance_scale > 1.0 if isinstance(_lowerCAmelCase , _lowerCAmelCase ): UpperCamelCase_ : Dict = torch.cat(_lowerCAmelCase , dim=0 ) UpperCamelCase_ : List[str] = image_embeds.shape[0] * num_images_per_prompt if isinstance(_lowerCAmelCase , _lowerCAmelCase ): UpperCamelCase_ : str = torch.cat(_lowerCAmelCase , dim=0 ) if do_classifier_free_guidance: UpperCamelCase_ : Dict = image_embeds.repeat_interleave(_lowerCAmelCase , dim=0 ) UpperCamelCase_ : Tuple = negative_image_embeds.repeat_interleave(_lowerCAmelCase , dim=0 ) UpperCamelCase_ : Union[str, Any] = torch.cat([negative_image_embeds, image_embeds] , dim=0 ).to(dtype=self.unet.dtype , device=_lowerCAmelCase ) self.scheduler.set_timesteps(_lowerCAmelCase , device=_lowerCAmelCase ) UpperCamelCase_ : Union[str, Any] = self.scheduler.timesteps UpperCamelCase_ : Any = self.unet.config.in_channels UpperCamelCase_, UpperCamelCase_ : int = downscale_height_and_width(_lowerCAmelCase , _lowerCAmelCase , self.movq_scale_factor ) # create initial latent UpperCamelCase_ : Optional[Any] = self.prepare_latents( (batch_size, num_channels_latents, height, width) , image_embeds.dtype , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , self.scheduler , ) for i, t in enumerate(self.progress_bar(_lowerCAmelCase ) ): # expand the latents if we are doing classifier free guidance UpperCamelCase_ : Optional[Any] = torch.cat([latents] * 2 ) if do_classifier_free_guidance else latents UpperCamelCase_ : Dict = {'image_embeds': image_embeds} UpperCamelCase_ : Tuple = self.unet( sample=_lowerCAmelCase , timestep=_lowerCAmelCase , encoder_hidden_states=_lowerCAmelCase , added_cond_kwargs=_lowerCAmelCase , return_dict=_lowerCAmelCase , )[0] if do_classifier_free_guidance: UpperCamelCase_, UpperCamelCase_ : Dict = noise_pred.split(latents.shape[1] , dim=1 ) UpperCamelCase_, UpperCamelCase_ : Dict = noise_pred.chunk(2 ) UpperCamelCase_, UpperCamelCase_ : List[str] = variance_pred.chunk(2 ) UpperCamelCase_ : int = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) UpperCamelCase_ : Optional[int] = torch.cat([noise_pred, variance_pred_text] , dim=1 ) if not ( hasattr(self.scheduler.config , 'variance_type' ) and self.scheduler.config.variance_type in ["learned", "learned_range"] ): UpperCamelCase_, UpperCamelCase_ : Optional[int] = noise_pred.split(latents.shape[1] , dim=1 ) # compute the previous noisy sample x_t -> x_t-1 UpperCamelCase_ : List[str] = self.scheduler.step( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , generator=_lowerCAmelCase , )[0] # post-processing UpperCamelCase_ : Optional[int] = self.movq.decode(_lowerCAmelCase , force_not_quantize=_lowerCAmelCase )['sample'] if output_type not in ["pt", "np", "pil"]: raise ValueError(f"Only the output types `pt`, `pil` and `np` are supported not output_type={output_type}" ) if output_type in ["np", "pil"]: UpperCamelCase_ : Any = image * 0.5 + 0.5 UpperCamelCase_ : int = image.clamp(0 , 1 ) UpperCamelCase_ : Optional[Any] = image.cpu().permute(0 , 2 , 3 , 1 ).float().numpy() if output_type == "pil": UpperCamelCase_ : Optional[int] = self.numpy_to_pil(_lowerCAmelCase ) if not return_dict: return (image,) return ImagePipelineOutput(images=_lowerCAmelCase )
417
from typing import TYPE_CHECKING from ....utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available lowerCamelCase__ : Optional[int] = {'configuration_mmbt': ['MMBTConfig']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase__ : Any = ['MMBTForClassification', 'MMBTModel', 'ModalEmbeddings'] if TYPE_CHECKING: from .configuration_mmbt import MMBTConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mmbt import MMBTForClassification, MMBTModel, ModalEmbeddings else: import sys lowerCamelCase__ : str = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
31
0
import warnings from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCAmelCase__ = logging.get_logger(__name__) UpperCAmelCase__ = { 'xlnet-base-cased': 'https://huggingface.co/xlnet-base-cased/resolve/main/config.json', 'xlnet-large-cased': 'https://huggingface.co/xlnet-large-cased/resolve/main/config.json', } class snake_case_ ( _SCREAMING_SNAKE_CASE ): """simple docstring""" snake_case__ = """xlnet""" snake_case__ = ["""mems"""] snake_case__ = { """n_token""": """vocab_size""", # Backward compatibility """hidden_size""": """d_model""", """num_attention_heads""": """n_head""", """num_hidden_layers""": """n_layer""", } def __init__(self: str , __UpperCAmelCase: Optional[int]=32000 , __UpperCAmelCase: Optional[Any]=1024 , __UpperCAmelCase: str=24 , __UpperCAmelCase: Any=16 , __UpperCAmelCase: Union[str, Any]=4096 , __UpperCAmelCase: List[str]="gelu" , __UpperCAmelCase: Tuple=True , __UpperCAmelCase: Optional[int]="bi" , __UpperCAmelCase: Any=0.02 , __UpperCAmelCase: List[Any]=1E-12 , __UpperCAmelCase: Any=0.1 , __UpperCAmelCase: List[Any]=512 , __UpperCAmelCase: int=None , __UpperCAmelCase: Dict=True , __UpperCAmelCase: str=False , __UpperCAmelCase: str=False , __UpperCAmelCase: str=-1 , __UpperCAmelCase: Dict=False , __UpperCAmelCase: int="last" , __UpperCAmelCase: List[Any]=True , __UpperCAmelCase: Optional[int]="tanh" , __UpperCAmelCase: Union[str, Any]=0.1 , __UpperCAmelCase: Any=5 , __UpperCAmelCase: List[Any]=5 , __UpperCAmelCase: Optional[int]=5 , __UpperCAmelCase: Optional[int]=1 , __UpperCAmelCase: Dict=2 , **__UpperCAmelCase: str , ) -> Tuple: '''simple docstring''' __a : Optional[int] = vocab_size __a : Dict = d_model __a : Any = n_layer __a : Dict = n_head if d_model % n_head != 0: raise ValueError(f'\'d_model % n_head\' ({d_model % n_head}) should be equal to 0' ) if "d_head" in kwargs: if kwargs["d_head"] != d_model // n_head: raise ValueError( f'`d_head` ({kwargs["d_head"]}) should be equal to `d_model // n_head` ({d_model // n_head})' ) __a : Union[str, Any] = d_model // n_head __a : List[str] = ff_activation __a : Any = d_inner __a : Dict = untie_r __a : Optional[int] = attn_type __a : Optional[Any] = initializer_range __a : Union[str, Any] = layer_norm_eps __a : List[Any] = dropout __a : Dict = mem_len __a : Union[str, Any] = reuse_len __a : List[str] = bi_data __a : Optional[int] = clamp_len __a : str = same_length __a : Optional[int] = summary_type __a : Dict = summary_use_proj __a : int = summary_activation __a : Tuple = summary_last_dropout __a : Optional[Any] = start_n_top __a : List[str] = end_n_top __a : Any = bos_token_id __a : Any = pad_token_id __a : Any = eos_token_id if "use_cache" in kwargs: warnings.warn( "The `use_cache` argument is deprecated and will be removed in a future version, use `use_mems_eval`" " instead." , _lowerCAmelCase , ) __a : Tuple = kwargs["use_cache"] __a : str = use_mems_eval __a : Union[str, Any] = use_mems_train super().__init__(pad_token_id=_lowerCAmelCase , bos_token_id=_lowerCAmelCase , eos_token_id=_lowerCAmelCase , **_lowerCAmelCase ) @property def UpperCAmelCase__ (self: Union[str, Any] ) -> Union[str, Any]: '''simple docstring''' logger.info(f'The model {self.model_type} is one of the few models that has no sequence length limit.' ) return -1 @max_position_embeddings.setter def UpperCAmelCase__ (self: List[str] , __UpperCAmelCase: Optional[int] ) -> str: '''simple docstring''' raise NotImplementedError( f'The model {self.model_type} is one of the few models that has no sequence length limit.' )
351
import unittest from typing import Tuple import torch from diffusers.utils import floats_tensor, randn_tensor, torch_all_close, torch_device from diffusers.utils.testing_utils import require_torch @require_torch class lowerCamelCase_ : '''simple docstring''' @property def lowerCAmelCase_ ( self : Optional[Any] ): return self.get_dummy_input() @property def lowerCAmelCase_ ( self : Union[str, Any] ): if self.block_type == "down": return (4, 32, 16, 16) elif self.block_type == "mid": return (4, 32, 32, 32) elif self.block_type == "up": return (4, 32, 64, 64) raise ValueError(F"'{self.block_type}' is not a supported block_type. Set it to 'up', 'mid', or 'down'." ) def lowerCAmelCase_ ( self : List[str] , _lowerCAmelCase : Optional[Any]=True , _lowerCAmelCase : str=False , _lowerCAmelCase : Optional[int]=False , _lowerCAmelCase : Dict=False , ): SCREAMING_SNAKE_CASE_ = 4 SCREAMING_SNAKE_CASE_ = 32 SCREAMING_SNAKE_CASE_ = (32, 32) SCREAMING_SNAKE_CASE_ = torch.manual_seed(0 ) SCREAMING_SNAKE_CASE_ = torch.device(_lowerCAmelCase ) SCREAMING_SNAKE_CASE_ = (batch_size, num_channels) + sizes SCREAMING_SNAKE_CASE_ = randn_tensor(_lowerCAmelCase , generator=_lowerCAmelCase , device=_lowerCAmelCase ) SCREAMING_SNAKE_CASE_ = {'hidden_states': hidden_states} if include_temb: SCREAMING_SNAKE_CASE_ = 128 SCREAMING_SNAKE_CASE_ = randn_tensor((batch_size, temb_channels) , generator=_lowerCAmelCase , device=_lowerCAmelCase ) if include_res_hidden_states_tuple: SCREAMING_SNAKE_CASE_ = torch.manual_seed(1 ) SCREAMING_SNAKE_CASE_ = (randn_tensor(_lowerCAmelCase , generator=_lowerCAmelCase , device=_lowerCAmelCase ),) if include_encoder_hidden_states: SCREAMING_SNAKE_CASE_ = floats_tensor((batch_size, 32, 32) ).to(_lowerCAmelCase ) if include_skip_sample: SCREAMING_SNAKE_CASE_ = randn_tensor(((batch_size, 3) + sizes) , generator=_lowerCAmelCase , device=_lowerCAmelCase ) return dummy_input def lowerCAmelCase_ ( self : Optional[int] ): SCREAMING_SNAKE_CASE_ = { 'in_channels': 32, 'out_channels': 32, 'temb_channels': 128, } if self.block_type == "up": SCREAMING_SNAKE_CASE_ = 32 if self.block_type == "mid": init_dict.pop('out_channels' ) SCREAMING_SNAKE_CASE_ = self.dummy_input return init_dict, inputs_dict def lowerCAmelCase_ ( self : Dict , _lowerCAmelCase : Optional[Any] ): SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = self.prepare_init_args_and_inputs_for_common() SCREAMING_SNAKE_CASE_ = self.block_class(**_lowerCAmelCase ) unet_block.to(_lowerCAmelCase ) unet_block.eval() with torch.no_grad(): SCREAMING_SNAKE_CASE_ = unet_block(**_lowerCAmelCase ) if isinstance(_lowerCAmelCase , _lowerCAmelCase ): SCREAMING_SNAKE_CASE_ = output[0] self.assertEqual(output.shape , self.output_shape ) SCREAMING_SNAKE_CASE_ = output[0, -1, -3:, -3:] SCREAMING_SNAKE_CASE_ = torch.tensor(_lowerCAmelCase ).to(_lowerCAmelCase ) assert torch_all_close(output_slice.flatten() , _lowerCAmelCase , atol=5E-3 ) @unittest.skipIf(torch_device == 'mps' , 'Training is not supported in mps' ) def lowerCAmelCase_ ( self : Any ): SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = self.prepare_init_args_and_inputs_for_common() SCREAMING_SNAKE_CASE_ = self.block_class(**_lowerCAmelCase ) model.to(_lowerCAmelCase ) model.train() SCREAMING_SNAKE_CASE_ = model(**_lowerCAmelCase ) if isinstance(_lowerCAmelCase , _lowerCAmelCase ): SCREAMING_SNAKE_CASE_ = output[0] SCREAMING_SNAKE_CASE_ = torch.device(_lowerCAmelCase ) SCREAMING_SNAKE_CASE_ = randn_tensor(output.shape , device=_lowerCAmelCase ) SCREAMING_SNAKE_CASE_ = torch.nn.functional.mse_loss(_lowerCAmelCase , _lowerCAmelCase ) loss.backward()
31
0
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging _lowerCAmelCase = logging.get_logger(__name__) _lowerCAmelCase = { 'funnel-transformer/small': 'https://huggingface.co/funnel-transformer/small/resolve/main/config.json', 'funnel-transformer/small-base': 'https://huggingface.co/funnel-transformer/small-base/resolve/main/config.json', 'funnel-transformer/medium': 'https://huggingface.co/funnel-transformer/medium/resolve/main/config.json', 'funnel-transformer/medium-base': 'https://huggingface.co/funnel-transformer/medium-base/resolve/main/config.json', 'funnel-transformer/intermediate': ( 'https://huggingface.co/funnel-transformer/intermediate/resolve/main/config.json' ), 'funnel-transformer/intermediate-base': ( 'https://huggingface.co/funnel-transformer/intermediate-base/resolve/main/config.json' ), 'funnel-transformer/large': 'https://huggingface.co/funnel-transformer/large/resolve/main/config.json', 'funnel-transformer/large-base': 'https://huggingface.co/funnel-transformer/large-base/resolve/main/config.json', 'funnel-transformer/xlarge': 'https://huggingface.co/funnel-transformer/xlarge/resolve/main/config.json', 'funnel-transformer/xlarge-base': 'https://huggingface.co/funnel-transformer/xlarge-base/resolve/main/config.json', } class __A ( _SCREAMING_SNAKE_CASE ): """simple docstring""" A_ = 'funnel' A_ = { 'hidden_size': 'd_model', 'num_attention_heads': 'n_head', } def __init__( self , _lowerCamelCase=3_0_5_2_2 , _lowerCamelCase=[4, 4, 4] , _lowerCamelCase=None , _lowerCamelCase=2 , _lowerCamelCase=7_6_8 , _lowerCamelCase=1_2 , _lowerCamelCase=6_4 , _lowerCamelCase=3_0_7_2 , _lowerCamelCase="gelu_new" , _lowerCamelCase=0.1 , _lowerCamelCase=0.1 , _lowerCamelCase=0.0 , _lowerCamelCase=0.1 , _lowerCamelCase=None , _lowerCamelCase=1e-9 , _lowerCamelCase="mean" , _lowerCamelCase="relative_shift" , _lowerCamelCase=True , _lowerCamelCase=True , _lowerCamelCase=True , **_lowerCamelCase , )-> Tuple: lowercase__ = vocab_size lowercase__ = block_sizes lowercase__ = [1] * len(_lowerCAmelCase ) if block_repeats is None else block_repeats assert len(_lowerCAmelCase ) == len( self.block_repeats ), "`block_sizes` and `block_repeats` should have the same length." lowercase__ = num_decoder_layers lowercase__ = d_model lowercase__ = n_head lowercase__ = d_head lowercase__ = d_inner lowercase__ = hidden_act lowercase__ = hidden_dropout lowercase__ = attention_dropout lowercase__ = activation_dropout lowercase__ = initializer_range lowercase__ = initializer_std lowercase__ = layer_norm_eps assert pooling_type in [ "mean", "max", ], f'''Got {pooling_type} for `pooling_type` but only \'mean\' and \'max\' are supported.''' lowercase__ = pooling_type assert attention_type in [ "relative_shift", "factorized", ], f'''Got {attention_type} for `attention_type` but only \'relative_shift\' and \'factorized\' are supported.''' lowercase__ = attention_type lowercase__ = separate_cls lowercase__ = truncate_seq lowercase__ = pool_q_only super().__init__(**_lowerCAmelCase ) @property def snake_case_( self )-> Tuple: return sum(self.block_sizes ) @num_hidden_layers.setter def snake_case_( self , _lowerCamelCase )-> Optional[int]: raise NotImplementedError( '''This model does not support the setting of `num_hidden_layers`. Please set `block_sizes`.''' ) @property def snake_case_( self )-> Any: return len(self.block_sizes ) @num_blocks.setter def snake_case_( self , _lowerCamelCase )-> List[Any]: raise NotImplementedError('''This model does not support the setting of `num_blocks`. Please set `block_sizes`.''' )
161
import operator as op def UpperCAmelCase_ ( __UpperCAmelCase : str ) -> Any: SCREAMING_SNAKE_CASE_ = [] SCREAMING_SNAKE_CASE_ = lambda __UpperCAmelCase , __UpperCAmelCase : int(x / y ) # noqa: E731 integer division operation SCREAMING_SNAKE_CASE_ = { '^': op.pow, '*': op.mul, '/': div, '+': op.add, '-': op.sub, } # operators & their respective operation # print table header print('Symbol'.center(8 ) , 'Action'.center(12 ) , 'Stack' , sep=' | ' ) print('-' * (30 + len(__UpperCAmelCase )) ) for x in post_fix: if x.isdigit(): # if x in digit stack.append(__UpperCAmelCase ) # append x to stack # output in tabular format print(x.rjust(8 ) , ('push(' + x + ')').ljust(12 ) , ','.join(__UpperCAmelCase ) , sep=' | ' ) else: SCREAMING_SNAKE_CASE_ = stack.pop() # pop stack # output in tabular format print(''.rjust(8 ) , ('pop(' + b + ')').ljust(12 ) , ','.join(__UpperCAmelCase ) , sep=' | ' ) SCREAMING_SNAKE_CASE_ = stack.pop() # pop stack # output in tabular format print(''.rjust(8 ) , ('pop(' + a + ')').ljust(12 ) , ','.join(__UpperCAmelCase ) , sep=' | ' ) stack.append( str(opr[x](int(__UpperCAmelCase ) , int(__UpperCAmelCase ) ) ) ) # evaluate the 2 values popped from stack & push result to stack # output in tabular format print( x.rjust(8 ) , ('push(' + a + x + b + ')').ljust(12 ) , ','.join(__UpperCAmelCase ) , sep=' | ' , ) return int(stack[0] ) if __name__ == "__main__": lowerCamelCase__ : Tuple = input('\n\nEnter a Postfix Equation (space separated) = ').split(' ') print('\n\tResult = ', solve(Postfix))
31
0
"""simple docstring""" def SCREAMING_SNAKE_CASE_ ( snake_case : str = "The quick brown fox jumps over the lazy dog" , )-> bool: _lowerCamelCase = set() # Replace all the whitespace in our sentence _lowerCamelCase = input_str.replace(' ' , '' ) for alpha in input_str: if "a" <= alpha.lower() <= "z": frequency.add(alpha.lower() ) return len(__UpperCAmelCase ) == 26 def SCREAMING_SNAKE_CASE_ ( snake_case : str = "The quick brown fox jumps over the lazy dog" , )-> bool: _lowerCamelCase = [False] * 26 for char in input_str: if char.islower(): _lowerCamelCase = True elif char.isupper(): _lowerCamelCase = True return all(__UpperCAmelCase ) def SCREAMING_SNAKE_CASE_ ( snake_case : str = "The quick brown fox jumps over the lazy dog" , )-> bool: return len({char for char in input_str.lower() if char.isalpha()} ) == 26 def SCREAMING_SNAKE_CASE_ ( )-> None: from timeit import timeit _lowerCamelCase = 'from __main__ import is_pangram, is_pangram_faster, is_pangram_fastest' print(timeit('is_pangram()' , setup=__UpperCAmelCase ) ) print(timeit('is_pangram_faster()' , setup=__UpperCAmelCase ) ) print(timeit('is_pangram_fastest()' , setup=__UpperCAmelCase ) ) # 5.348480500048026, 2.6477354579837993, 1.8470395830227062 # 5.036091582966037, 2.644472333951853, 1.8869528750656173 if __name__ == "__main__": import doctest doctest.testmod() benchmark()
650
def UpperCAmelCase_ ( __UpperCAmelCase : int ) -> int: assert isinstance(__UpperCAmelCase , __UpperCAmelCase ), f"The input value of [n={number}] is not an integer" if number == 1: return 2 elif number < 1: SCREAMING_SNAKE_CASE_ = f"The input value of [n={number}] has to be > 0" raise ValueError(__UpperCAmelCase ) else: SCREAMING_SNAKE_CASE_ = sylvester(number - 1 ) SCREAMING_SNAKE_CASE_ = num - 1 SCREAMING_SNAKE_CASE_ = num return lower * upper + 1 if __name__ == "__main__": print(f'''The 8th number in Sylvester\'s sequence: {sylvester(8)}''')
31
0
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available __SCREAMING_SNAKE_CASE : List[str] = { 'configuration_graphormer': ['GRAPHORMER_PRETRAINED_CONFIG_ARCHIVE_MAP', 'GraphormerConfig'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __SCREAMING_SNAKE_CASE : str = [ 'GRAPHORMER_PRETRAINED_MODEL_ARCHIVE_LIST', 'GraphormerForGraphClassification', 'GraphormerModel', 'GraphormerPreTrainedModel', ] if TYPE_CHECKING: from .configuration_graphormer import GRAPHORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, GraphormerConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_graphormer import ( GRAPHORMER_PRETRAINED_MODEL_ARCHIVE_LIST, GraphormerForGraphClassification, GraphormerModel, GraphormerPreTrainedModel, ) else: import sys __SCREAMING_SNAKE_CASE : List[Any] = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
661
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_sentencepiece_available, is_tf_available, is_tokenizers_available, is_torch_available, ) if is_sentencepiece_available(): from ..ta.tokenization_ta import TaTokenizer else: from ...utils.dummy_sentencepiece_objects import TaTokenizer lowerCamelCase__ : List[Any] = TaTokenizer if is_tokenizers_available(): from ..ta.tokenization_ta_fast import TaTokenizerFast else: from ...utils.dummy_tokenizers_objects import TaTokenizerFast lowerCamelCase__ : Union[str, Any] = TaTokenizerFast lowerCamelCase__ : Dict = {'configuration_mt5': ['MT5Config', 'MT5OnnxConfig']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase__ : Tuple = [ 'MT5EncoderModel', 'MT5ForConditionalGeneration', 'MT5ForQuestionAnswering', 'MT5Model', 'MT5PreTrainedModel', 'MT5Stack', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase__ : Tuple = ['TFMT5EncoderModel', 'TFMT5ForConditionalGeneration', 'TFMT5Model'] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase__ : Tuple = ['FlaxMT5EncoderModel', 'FlaxMT5ForConditionalGeneration', 'FlaxMT5Model'] if TYPE_CHECKING: from .configuration_mta import MTaConfig, MTaOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mta import ( MTaEncoderModel, MTaForConditionalGeneration, MTaForQuestionAnswering, MTaModel, MTaPreTrainedModel, MTaStack, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_mta import TFMTaEncoderModel, TFMTaForConditionalGeneration, TFMTaModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_mta import FlaxMTaEncoderModel, FlaxMTaForConditionalGeneration, FlaxMTaModel else: import sys lowerCamelCase__ : int = _LazyModule( __name__, globals()['__file__'], _import_structure, extra_objects={'MT5Tokenizer': MTaTokenizer, 'MT5TokenizerFast': MTaTokenizerFast}, module_spec=__spec__, )
31
0
"""simple docstring""" from __future__ import annotations from math import ceil, floor, sqrt def _UpperCamelCase ( UpperCamelCase = 200_0000 ) -> int: """simple docstring""" __UpperCAmelCase : int = [0] __UpperCAmelCase : str = 42 for idx in range(1 , ceil(sqrt(target * 2 ) * 1.1 ) ): triangle_numbers.append(triangle_numbers[-1] + idx ) # we want this to be as close as possible to target __UpperCAmelCase : Dict = 0 # the area corresponding to the grid that gives the product closest to target __UpperCAmelCase : str = 0 # an estimate of b, using the quadratic formula __UpperCAmelCase : Dict = 42 # the largest integer less than b_estimate __UpperCAmelCase : List[Any] = 42 # the largest integer less than b_estimate __UpperCAmelCase : List[str] = 42 # the triangle number corresponding to b_floor __UpperCAmelCase : List[Any] = 42 # the triangle number corresponding to b_ceil __UpperCAmelCase : str = 42 for idx_a, triangle_a in enumerate(triangle_numbers[1:] , 1 ): __UpperCAmelCase : Optional[int] = (-1 + sqrt(1 + 8 * target / triangle_a )) / 2 __UpperCAmelCase : Optional[int] = floor(__UpperCAmelCase ) __UpperCAmelCase : Tuple = ceil(__UpperCAmelCase ) __UpperCAmelCase : Tuple = triangle_numbers[b_floor] __UpperCAmelCase : Tuple = triangle_numbers[b_ceil] if abs(target - triangle_b_first_guess * triangle_a ) < abs( target - best_product ): __UpperCAmelCase : List[str] = triangle_b_first_guess * triangle_a __UpperCAmelCase : int = idx_a * b_floor if abs(target - triangle_b_second_guess * triangle_a ) < abs( target - best_product ): __UpperCAmelCase : Optional[int] = triangle_b_second_guess * triangle_a __UpperCAmelCase : Optional[Any] = idx_a * b_ceil return area if __name__ == "__main__": print(f'''{solution() = }''')
77
import subprocess import sys from transformers import BertConfig, BertModel, BertTokenizer, pipeline from transformers.testing_utils import TestCasePlus, require_torch class lowerCamelCase_ ( _SCREAMING_SNAKE_CASE ): '''simple docstring''' @require_torch def lowerCAmelCase_ ( self : int ): # this test is a bit tricky since TRANSFORMERS_OFFLINE can only be changed before # `transformers` is loaded, and it's too late for inside pytest - so we are changing it # while running an external program # python one-liner segments # this must be loaded before socket.socket is monkey-patched SCREAMING_SNAKE_CASE_ = '\nfrom transformers import BertConfig, BertModel, BertTokenizer, pipeline\n ' SCREAMING_SNAKE_CASE_ = '\nmname = "hf-internal-testing/tiny-random-bert"\nBertConfig.from_pretrained(mname)\nBertModel.from_pretrained(mname)\nBertTokenizer.from_pretrained(mname)\npipe = pipeline(task="fill-mask", model=mname)\nprint("success")\n ' SCREAMING_SNAKE_CASE_ = '\nimport socket\ndef offline_socket(*args, **kwargs): raise RuntimeError("Offline mode is enabled, we shouldn\'t access internet")\nsocket.socket = offline_socket\n ' # Force fetching the files so that we can use the cache SCREAMING_SNAKE_CASE_ = 'hf-internal-testing/tiny-random-bert' BertConfig.from_pretrained(_lowerCAmelCase ) BertModel.from_pretrained(_lowerCAmelCase ) BertTokenizer.from_pretrained(_lowerCAmelCase ) pipeline(task='fill-mask' , model=_lowerCAmelCase ) # baseline - just load from_pretrained with normal network SCREAMING_SNAKE_CASE_ = [sys.executable, '-c', '\n'.join([load, run, mock] )] # should succeed SCREAMING_SNAKE_CASE_ = self.get_env() # should succeed as TRANSFORMERS_OFFLINE=1 tells it to use local files SCREAMING_SNAKE_CASE_ = '1' SCREAMING_SNAKE_CASE_ = subprocess.run(_lowerCAmelCase , env=_lowerCAmelCase , check=_lowerCAmelCase , capture_output=_lowerCAmelCase ) self.assertEqual(result.returncode , 0 , result.stderr ) self.assertIn('success' , result.stdout.decode() ) @require_torch def lowerCAmelCase_ ( self : Tuple ): # python one-liner segments # this must be loaded before socket.socket is monkey-patched SCREAMING_SNAKE_CASE_ = '\nfrom transformers import BertConfig, BertModel, BertTokenizer, pipeline\n ' SCREAMING_SNAKE_CASE_ = '\nmname = "hf-internal-testing/tiny-random-bert"\nBertConfig.from_pretrained(mname)\nBertModel.from_pretrained(mname)\nBertTokenizer.from_pretrained(mname)\npipe = pipeline(task="fill-mask", model=mname)\nprint("success")\n ' SCREAMING_SNAKE_CASE_ = '\nimport socket\ndef offline_socket(*args, **kwargs): raise socket.error("Faking flaky internet")\nsocket.socket = offline_socket\n ' # Force fetching the files so that we can use the cache SCREAMING_SNAKE_CASE_ = 'hf-internal-testing/tiny-random-bert' BertConfig.from_pretrained(_lowerCAmelCase ) BertModel.from_pretrained(_lowerCAmelCase ) BertTokenizer.from_pretrained(_lowerCAmelCase ) pipeline(task='fill-mask' , model=_lowerCAmelCase ) # baseline - just load from_pretrained with normal network SCREAMING_SNAKE_CASE_ = [sys.executable, '-c', '\n'.join([load, run, mock] )] # should succeed SCREAMING_SNAKE_CASE_ = self.get_env() SCREAMING_SNAKE_CASE_ = subprocess.run(_lowerCAmelCase , env=_lowerCAmelCase , check=_lowerCAmelCase , capture_output=_lowerCAmelCase ) self.assertEqual(result.returncode , 0 , result.stderr ) self.assertIn('success' , result.stdout.decode() ) @require_torch def lowerCAmelCase_ ( self : List[str] ): # this test is a bit tricky since TRANSFORMERS_OFFLINE can only be changed before # `transformers` is loaded, and it's too late for inside pytest - so we are changing it # while running an external program # python one-liner segments # this must be loaded before socket.socket is monkey-patched SCREAMING_SNAKE_CASE_ = '\nfrom transformers import BertConfig, BertModel, BertTokenizer\n ' SCREAMING_SNAKE_CASE_ = '\nmname = "hf-internal-testing/tiny-random-bert-sharded"\nBertConfig.from_pretrained(mname)\nBertModel.from_pretrained(mname)\nprint("success")\n ' SCREAMING_SNAKE_CASE_ = '\nimport socket\ndef offline_socket(*args, **kwargs): raise ValueError("Offline mode is enabled")\nsocket.socket = offline_socket\n ' # baseline - just load from_pretrained with normal network SCREAMING_SNAKE_CASE_ = [sys.executable, '-c', '\n'.join([load, run] )] # should succeed SCREAMING_SNAKE_CASE_ = self.get_env() SCREAMING_SNAKE_CASE_ = subprocess.run(_lowerCAmelCase , env=_lowerCAmelCase , check=_lowerCAmelCase , capture_output=_lowerCAmelCase ) self.assertEqual(result.returncode , 0 , result.stderr ) self.assertIn('success' , result.stdout.decode() ) # next emulate no network SCREAMING_SNAKE_CASE_ = [sys.executable, '-c', '\n'.join([load, mock, run] )] # Doesn't fail anymore since the model is in the cache due to other tests, so commenting this. # env["TRANSFORMERS_OFFLINE"] = "0" # result = subprocess.run(cmd, env=env, check=False, capture_output=True) # self.assertEqual(result.returncode, 1, result.stderr) # should succeed as TRANSFORMERS_OFFLINE=1 tells it to use local files SCREAMING_SNAKE_CASE_ = '1' SCREAMING_SNAKE_CASE_ = subprocess.run(_lowerCAmelCase , env=_lowerCAmelCase , check=_lowerCAmelCase , capture_output=_lowerCAmelCase ) self.assertEqual(result.returncode , 0 , result.stderr ) self.assertIn('success' , result.stdout.decode() ) @require_torch def lowerCAmelCase_ ( self : Any ): SCREAMING_SNAKE_CASE_ = '\nfrom transformers import pipeline\n ' SCREAMING_SNAKE_CASE_ = '\nmname = "hf-internal-testing/tiny-random-bert"\npipe = pipeline(model=mname)\n ' SCREAMING_SNAKE_CASE_ = '\nimport socket\ndef offline_socket(*args, **kwargs): raise socket.error("Offline mode is enabled")\nsocket.socket = offline_socket\n ' SCREAMING_SNAKE_CASE_ = self.get_env() SCREAMING_SNAKE_CASE_ = '1' SCREAMING_SNAKE_CASE_ = [sys.executable, '-c', '\n'.join([load, mock, run] )] SCREAMING_SNAKE_CASE_ = subprocess.run(_lowerCAmelCase , env=_lowerCAmelCase , check=_lowerCAmelCase , capture_output=_lowerCAmelCase ) self.assertEqual(result.returncode , 1 , result.stderr ) self.assertIn( 'You cannot infer task automatically within `pipeline` when using offline mode' , result.stderr.decode().replace('\n' , '' ) , ) @require_torch def lowerCAmelCase_ ( self : Optional[int] ): SCREAMING_SNAKE_CASE_ = '\nfrom transformers import AutoModel\n ' SCREAMING_SNAKE_CASE_ = '\nmname = "hf-internal-testing/test_dynamic_model"\nAutoModel.from_pretrained(mname, trust_remote_code=True)\nprint("success")\n ' # baseline - just load from_pretrained with normal network SCREAMING_SNAKE_CASE_ = [sys.executable, '-c', '\n'.join([load, run] )] # should succeed SCREAMING_SNAKE_CASE_ = self.get_env() SCREAMING_SNAKE_CASE_ = subprocess.run(_lowerCAmelCase , env=_lowerCAmelCase , check=_lowerCAmelCase , capture_output=_lowerCAmelCase ) self.assertEqual(result.returncode , 0 , result.stderr ) self.assertIn('success' , result.stdout.decode() ) # should succeed as TRANSFORMERS_OFFLINE=1 tells it to use local files SCREAMING_SNAKE_CASE_ = '1' SCREAMING_SNAKE_CASE_ = subprocess.run(_lowerCAmelCase , env=_lowerCAmelCase , check=_lowerCAmelCase , capture_output=_lowerCAmelCase ) self.assertEqual(result.returncode , 0 , result.stderr ) self.assertIn('success' , result.stdout.decode() )
31
0
from typing import List, Optional, Union from ...image_utils import ImageInput from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType class a ( _SCREAMING_SNAKE_CASE ): SCREAMING_SNAKE_CASE__ : Any = ['''image_processor''', '''tokenizer'''] SCREAMING_SNAKE_CASE__ : List[str] = '''BlipImageProcessor''' SCREAMING_SNAKE_CASE__ : Optional[Any] = ('''BertTokenizer''', '''BertTokenizerFast''') def __init__( self , _lowerCAmelCase , _lowerCAmelCase ): """simple docstring""" __SCREAMING_SNAKE_CASE: List[Any] = False super().__init__(_lowerCAmelCase , _lowerCAmelCase ) __SCREAMING_SNAKE_CASE: Union[str, Any] = self.image_processor def __call__( self , _lowerCAmelCase = None , _lowerCAmelCase = None , _lowerCAmelCase = True , _lowerCAmelCase = False , _lowerCAmelCase = None , _lowerCAmelCase = None , _lowerCAmelCase = 0 , _lowerCAmelCase = None , _lowerCAmelCase = None , _lowerCAmelCase = False , _lowerCAmelCase = False , _lowerCAmelCase = False , _lowerCAmelCase = False , _lowerCAmelCase = False , _lowerCAmelCase = True , _lowerCAmelCase = None , **_lowerCAmelCase , ): """simple docstring""" if images is None and text is None: raise ValueError('''You have to specify either images or text.''' ) # Get only text if images is None: __SCREAMING_SNAKE_CASE: Union[str, Any] = self.tokenizer __SCREAMING_SNAKE_CASE: Any = self.tokenizer( text=_lowerCAmelCase , add_special_tokens=_lowerCAmelCase , padding=_lowerCAmelCase , truncation=_lowerCAmelCase , max_length=_lowerCAmelCase , stride=_lowerCAmelCase , pad_to_multiple_of=_lowerCAmelCase , return_attention_mask=_lowerCAmelCase , return_overflowing_tokens=_lowerCAmelCase , return_special_tokens_mask=_lowerCAmelCase , return_offsets_mapping=_lowerCAmelCase , return_token_type_ids=_lowerCAmelCase , return_length=_lowerCAmelCase , verbose=_lowerCAmelCase , return_tensors=_lowerCAmelCase , **_lowerCAmelCase , ) return text_encoding # add pixel_values __SCREAMING_SNAKE_CASE: Tuple = self.image_processor(_lowerCAmelCase , return_tensors=_lowerCAmelCase ) if text is not None: __SCREAMING_SNAKE_CASE: Dict = self.tokenizer( text=_lowerCAmelCase , add_special_tokens=_lowerCAmelCase , padding=_lowerCAmelCase , truncation=_lowerCAmelCase , max_length=_lowerCAmelCase , stride=_lowerCAmelCase , pad_to_multiple_of=_lowerCAmelCase , return_attention_mask=_lowerCAmelCase , return_overflowing_tokens=_lowerCAmelCase , return_special_tokens_mask=_lowerCAmelCase , return_offsets_mapping=_lowerCAmelCase , return_token_type_ids=_lowerCAmelCase , return_length=_lowerCAmelCase , verbose=_lowerCAmelCase , return_tensors=_lowerCAmelCase , **_lowerCAmelCase , ) else: __SCREAMING_SNAKE_CASE: Optional[Any] = None if text_encoding is not None: encoding_image_processor.update(_lowerCAmelCase ) return encoding_image_processor def snake_case_ ( self , *_lowerCAmelCase , **_lowerCAmelCase ): """simple docstring""" return self.tokenizer.batch_decode(*_lowerCAmelCase , **_lowerCAmelCase ) def snake_case_ ( self , *_lowerCAmelCase , **_lowerCAmelCase ): """simple docstring""" return self.tokenizer.decode(*_lowerCAmelCase , **_lowerCAmelCase ) @property def snake_case_ ( self ): """simple docstring""" __SCREAMING_SNAKE_CASE: Dict = self.tokenizer.model_input_names __SCREAMING_SNAKE_CASE: Optional[Any] = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) )
202
import torch from transformers import PreTrainedModel, XLMRobertaConfig, XLMRobertaModel class lowerCamelCase_ ( _SCREAMING_SNAKE_CASE ): '''simple docstring''' lowercase_ = "M-CLIP" def __init__( self : Tuple , _lowerCAmelCase : List[str]=1_024 , _lowerCAmelCase : str=768 , **_lowerCAmelCase : Union[str, Any] ): SCREAMING_SNAKE_CASE_ = transformerDimSize SCREAMING_SNAKE_CASE_ = imageDimSize super().__init__(**_lowerCAmelCase ) class lowerCamelCase_ ( _SCREAMING_SNAKE_CASE ): '''simple docstring''' lowercase_ = MCLIPConfig def __init__( self : Dict , _lowerCAmelCase : Union[str, Any] , *_lowerCAmelCase : str , **_lowerCAmelCase : str ): super().__init__(_lowerCAmelCase , *_lowerCAmelCase , **_lowerCAmelCase ) SCREAMING_SNAKE_CASE_ = XLMRobertaModel(_lowerCAmelCase ) SCREAMING_SNAKE_CASE_ = torch.nn.Linear( in_features=config.transformerDimensions , out_features=config.numDims ) def lowerCAmelCase_ ( self : List[Any] , _lowerCAmelCase : Any , _lowerCAmelCase : Union[str, Any] ): SCREAMING_SNAKE_CASE_ = self.transformer(input_ids=_lowerCAmelCase , attention_mask=_lowerCAmelCase )[0] SCREAMING_SNAKE_CASE_ = (embs * attention_mask.unsqueeze(2 )).sum(dim=1 ) / attention_mask.sum(dim=1 )[:, None] return self.LinearTransformation(_lowerCAmelCase ), embs
31
0
'''simple docstring''' import inspect from typing import Callable, List, Optional, Union import torch from transformers import ( CLIPImageProcessor, CLIPTextModel, CLIPTokenizer, WhisperForConditionalGeneration, WhisperProcessor, ) from diffusers import ( AutoencoderKL, DDIMScheduler, DiffusionPipeline, LMSDiscreteScheduler, PNDMScheduler, UNetaDConditionModel, ) from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion import StableDiffusionPipelineOutput from diffusers.pipelines.stable_diffusion.safety_checker import StableDiffusionSafetyChecker from diffusers.utils import logging __A = logging.get_logger(__name__) # pylint: disable=invalid-name class A ( _SCREAMING_SNAKE_CASE ): def __init__( self , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , ) -> Any: '''simple docstring''' super().__init__() if safety_checker is None: logger.warning( F'''You have disabled the safety checker for {self.__class__} by passing `safety_checker=None`. Ensure''' """ that you abide to the conditions of the Stable Diffusion license and do not expose unfiltered""" """ results in services or applications open to the public. Both the diffusers team and Hugging Face""" """ strongly recommend to keep the safety filter enabled in all public facing circumstances, disabling""" """ it only for use-cases that involve analyzing network behavior or auditing its results. For more""" """ information, please have a look at https://github.com/huggingface/diffusers/pull/254 .""" ) self.register_modules( speech_model=_lowerCAmelCase , speech_processor=_lowerCAmelCase , vae=_lowerCAmelCase , text_encoder=_lowerCAmelCase , tokenizer=_lowerCAmelCase , unet=_lowerCAmelCase , scheduler=_lowerCAmelCase , feature_extractor=_lowerCAmelCase , ) def A__ ( self , lowerCamelCase__ = "auto" ) -> int: '''simple docstring''' if slice_size == "auto": lowercase__ = self.unet.config.attention_head_dim // 2 self.unet.set_attention_slice(_lowerCAmelCase ) def A__ ( self ) -> List[str]: '''simple docstring''' self.enable_attention_slicing(_lowerCAmelCase ) @torch.no_grad() def __call__( self , lowerCamelCase__ , lowerCamelCase__=16_000 , lowerCamelCase__ = 512 , lowerCamelCase__ = 512 , lowerCamelCase__ = 50 , lowerCamelCase__ = 7.5 , lowerCamelCase__ = None , lowerCamelCase__ = 1 , lowerCamelCase__ = 0.0 , lowerCamelCase__ = None , lowerCamelCase__ = None , lowerCamelCase__ = "pil" , lowerCamelCase__ = True , lowerCamelCase__ = None , lowerCamelCase__ = 1 , **lowerCamelCase__ , ) -> str: '''simple docstring''' lowercase__ = self.speech_processor.feature_extractor( _lowerCAmelCase , return_tensors="""pt""" , sampling_rate=_lowerCAmelCase ).input_features.to(self.device ) lowercase__ = self.speech_model.generate(_lowerCAmelCase , max_length=480_000 ) lowercase__ = self.speech_processor.tokenizer.batch_decode(_lowerCAmelCase , skip_special_tokens=_lowerCAmelCase , normalize=_lowerCAmelCase )[ 0 ] if isinstance(_lowerCAmelCase , _lowerCAmelCase ): lowercase__ = 1 elif isinstance(_lowerCAmelCase , _lowerCAmelCase ): lowercase__ = len(_lowerCAmelCase ) else: raise ValueError(F'''`prompt` has to be of type `str` or `list` but is {type(_lowerCAmelCase )}''' ) if height % 8 != 0 or width % 8 != 0: raise ValueError(F'''`height` and `width` have to be divisible by 8 but are {height} and {width}.''' ) if (callback_steps is None) or ( callback_steps is not None and (not isinstance(_lowerCAmelCase , _lowerCAmelCase ) or callback_steps <= 0) ): raise ValueError( F'''`callback_steps` has to be a positive integer but is {callback_steps} of type''' F''' {type(_lowerCAmelCase )}.''' ) # get prompt text embeddings lowercase__ = self.tokenizer( _lowerCAmelCase , padding="""max_length""" , max_length=self.tokenizer.model_max_length , return_tensors="""pt""" , ) lowercase__ = text_inputs.input_ids if text_input_ids.shape[-1] > self.tokenizer.model_max_length: lowercase__ = self.tokenizer.batch_decode(text_input_ids[:, self.tokenizer.model_max_length :] ) logger.warning( """The following part of your input was truncated because CLIP can only handle sequences up to""" F''' {self.tokenizer.model_max_length} tokens: {removed_text}''' ) lowercase__ = text_input_ids[:, : self.tokenizer.model_max_length] lowercase__ = self.text_encoder(text_input_ids.to(self.device ) )[0] # duplicate text embeddings for each generation per prompt, using mps friendly method lowercase__ , lowercase__ , lowercase__ = text_embeddings.shape lowercase__ = text_embeddings.repeat(1 , _lowerCAmelCase , 1 ) lowercase__ = text_embeddings.view(bs_embed * num_images_per_prompt , _lowerCAmelCase , -1 ) # here `guidance_scale` is defined analog to the guidance weight `w` of equation (2) # of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1` # corresponds to doing no classifier free guidance. lowercase__ = guidance_scale > 1.0 # get unconditional embeddings for classifier free guidance if do_classifier_free_guidance: lowercase__ = 42 if negative_prompt is None: lowercase__ = [""""""] * batch_size elif type(_lowerCAmelCase ) is not type(_lowerCAmelCase ): raise TypeError( F'''`negative_prompt` should be the same type to `prompt`, but got {type(_lowerCAmelCase )} !=''' F''' {type(_lowerCAmelCase )}.''' ) elif isinstance(_lowerCAmelCase , _lowerCAmelCase ): lowercase__ = [negative_prompt] elif batch_size != len(_lowerCAmelCase ): raise ValueError( F'''`negative_prompt`: {negative_prompt} has batch size {len(_lowerCAmelCase )}, but `prompt`:''' F''' {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches''' """ the batch size of `prompt`.""" ) else: lowercase__ = negative_prompt lowercase__ = text_input_ids.shape[-1] lowercase__ = self.tokenizer( _lowerCAmelCase , padding="""max_length""" , max_length=_lowerCAmelCase , truncation=_lowerCAmelCase , return_tensors="""pt""" , ) lowercase__ = self.text_encoder(uncond_input.input_ids.to(self.device ) )[0] # duplicate unconditional embeddings for each generation per prompt, using mps friendly method lowercase__ = uncond_embeddings.shape[1] lowercase__ = uncond_embeddings.repeat(1 , _lowerCAmelCase , 1 ) lowercase__ = uncond_embeddings.view(batch_size * num_images_per_prompt , _lowerCAmelCase , -1 ) # For classifier free guidance, we need to do two forward passes. # Here we concatenate the unconditional and text embeddings into a single batch # to avoid doing two forward passes lowercase__ = torch.cat([uncond_embeddings, text_embeddings] ) # get the initial random noise unless the user supplied it # Unlike in other pipelines, latents need to be generated in the target device # for 1-to-1 results reproducibility with the CompVis implementation. # However this currently doesn't work in `mps`. lowercase__ = (batch_size * num_images_per_prompt, self.unet.config.in_channels, height // 8, width // 8) lowercase__ = text_embeddings.dtype if latents is None: if self.device.type == "mps": # randn does not exist on mps lowercase__ = torch.randn(_lowerCAmelCase , generator=_lowerCAmelCase , device="""cpu""" , dtype=_lowerCAmelCase ).to( self.device ) else: lowercase__ = torch.randn(_lowerCAmelCase , generator=_lowerCAmelCase , device=self.device , dtype=_lowerCAmelCase ) else: if latents.shape != latents_shape: raise ValueError(F'''Unexpected latents shape, got {latents.shape}, expected {latents_shape}''' ) lowercase__ = latents.to(self.device ) # set timesteps self.scheduler.set_timesteps(_lowerCAmelCase ) # Some schedulers like PNDM have timesteps as arrays # It's more optimized to move all timesteps to correct device beforehand lowercase__ = self.scheduler.timesteps.to(self.device ) # scale the initial noise by the standard deviation required by the scheduler lowercase__ = latents * self.scheduler.init_noise_sigma # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature # eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers. # eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502 # and should be between [0, 1] lowercase__ = """eta""" in set(inspect.signature(self.scheduler.step ).parameters.keys() ) lowercase__ = {} if accepts_eta: lowercase__ = eta for i, t in enumerate(self.progress_bar(_lowerCAmelCase ) ): # expand the latents if we are doing classifier free guidance lowercase__ = torch.cat([latents] * 2 ) if do_classifier_free_guidance else latents lowercase__ = self.scheduler.scale_model_input(_lowerCAmelCase , _lowerCAmelCase ) # predict the noise residual lowercase__ = self.unet(_lowerCAmelCase , _lowerCAmelCase , encoder_hidden_states=_lowerCAmelCase ).sample # perform guidance if do_classifier_free_guidance: lowercase__ , lowercase__ = noise_pred.chunk(2 ) lowercase__ = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) # compute the previous noisy sample x_t -> x_t-1 lowercase__ = self.scheduler.step(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , **_lowerCAmelCase ).prev_sample # call the callback, if provided if callback is not None and i % callback_steps == 0: callback(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) lowercase__ = 1 / 0.1_82_15 * latents lowercase__ = self.vae.decode(_lowerCAmelCase ).sample lowercase__ = (image / 2 + 0.5).clamp(0 , 1 ) # we always cast to float32 as this does not cause significant overhead and is compatible with bfloat16 lowercase__ = image.cpu().permute(0 , 2 , 3 , 1 ).float().numpy() if output_type == "pil": lowercase__ = self.numpy_to_pil(_lowerCAmelCase ) if not return_dict: return image return StableDiffusionPipelineOutput(images=_lowerCAmelCase , nsfw_content_detected=_lowerCAmelCase )
325
import gc import random import unittest import numpy as np import torch from transformers import XLMRobertaTokenizer from diffusers import ( AltDiffusionImgaImgPipeline, AutoencoderKL, PNDMScheduler, UNetaDConditionModel, ) from diffusers.image_processor import VaeImageProcessor from diffusers.pipelines.alt_diffusion.modeling_roberta_series import ( RobertaSeriesConfig, RobertaSeriesModelWithTransformation, ) from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu enable_full_determinism() class lowerCamelCase_ ( unittest.TestCase ): '''simple docstring''' def lowerCAmelCase_ ( self : str ): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() @property def lowerCAmelCase_ ( self : Union[str, Any] ): SCREAMING_SNAKE_CASE_ = 1 SCREAMING_SNAKE_CASE_ = 3 SCREAMING_SNAKE_CASE_ = (32, 32) SCREAMING_SNAKE_CASE_ = floats_tensor((batch_size, num_channels) + sizes , rng=random.Random(0 ) ).to(_lowerCAmelCase ) return image @property def lowerCAmelCase_ ( self : Union[str, Any] ): torch.manual_seed(0 ) SCREAMING_SNAKE_CASE_ = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=('DownBlock2D', 'CrossAttnDownBlock2D') , up_block_types=('CrossAttnUpBlock2D', 'UpBlock2D') , cross_attention_dim=32 , ) return model @property def lowerCAmelCase_ ( self : Tuple ): torch.manual_seed(0 ) SCREAMING_SNAKE_CASE_ = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=['DownEncoderBlock2D', 'DownEncoderBlock2D'] , up_block_types=['UpDecoderBlock2D', 'UpDecoderBlock2D'] , latent_channels=4 , ) return model @property def lowerCAmelCase_ ( self : Optional[int] ): torch.manual_seed(0 ) SCREAMING_SNAKE_CASE_ = RobertaSeriesConfig( hidden_size=32 , project_dim=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=5_006 , ) return RobertaSeriesModelWithTransformation(_lowerCAmelCase ) @property def lowerCAmelCase_ ( self : List[Any] ): def extract(*_lowerCAmelCase : Optional[int] , **_lowerCAmelCase : str ): class lowerCamelCase_ : '''simple docstring''' def __init__( self : str ): SCREAMING_SNAKE_CASE_ = torch.ones([0] ) def lowerCAmelCase_ ( self : Union[str, Any] , _lowerCAmelCase : int ): self.pixel_values.to(_lowerCAmelCase ) return self return Out() return extract def lowerCAmelCase_ ( self : Optional[Any] ): SCREAMING_SNAKE_CASE_ = 'cpu' # ensure determinism for the device-dependent torch.Generator SCREAMING_SNAKE_CASE_ = self.dummy_cond_unet SCREAMING_SNAKE_CASE_ = PNDMScheduler(skip_prk_steps=_lowerCAmelCase ) SCREAMING_SNAKE_CASE_ = self.dummy_vae SCREAMING_SNAKE_CASE_ = self.dummy_text_encoder SCREAMING_SNAKE_CASE_ = XLMRobertaTokenizer.from_pretrained('hf-internal-testing/tiny-xlm-roberta' ) SCREAMING_SNAKE_CASE_ = 77 SCREAMING_SNAKE_CASE_ = self.dummy_image.to(_lowerCAmelCase ) SCREAMING_SNAKE_CASE_ = init_image / 2 + 0.5 # make sure here that pndm scheduler skips prk SCREAMING_SNAKE_CASE_ = AltDiffusionImgaImgPipeline( unet=_lowerCAmelCase , scheduler=_lowerCAmelCase , vae=_lowerCAmelCase , text_encoder=_lowerCAmelCase , tokenizer=_lowerCAmelCase , safety_checker=_lowerCAmelCase , feature_extractor=self.dummy_extractor , ) SCREAMING_SNAKE_CASE_ = VaeImageProcessor(vae_scale_factor=alt_pipe.vae_scale_factor , do_normalize=_lowerCAmelCase ) SCREAMING_SNAKE_CASE_ = alt_pipe.to(_lowerCAmelCase ) alt_pipe.set_progress_bar_config(disable=_lowerCAmelCase ) SCREAMING_SNAKE_CASE_ = 'A painting of a squirrel eating a burger' SCREAMING_SNAKE_CASE_ = torch.Generator(device=_lowerCAmelCase ).manual_seed(0 ) SCREAMING_SNAKE_CASE_ = alt_pipe( [prompt] , generator=_lowerCAmelCase , guidance_scale=6.0 , num_inference_steps=2 , output_type='np' , image=_lowerCAmelCase , ) SCREAMING_SNAKE_CASE_ = output.images SCREAMING_SNAKE_CASE_ = torch.Generator(device=_lowerCAmelCase ).manual_seed(0 ) SCREAMING_SNAKE_CASE_ = alt_pipe( [prompt] , generator=_lowerCAmelCase , guidance_scale=6.0 , num_inference_steps=2 , output_type='np' , image=_lowerCAmelCase , return_dict=_lowerCAmelCase , )[0] SCREAMING_SNAKE_CASE_ = image[0, -3:, -3:, -1] SCREAMING_SNAKE_CASE_ = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) SCREAMING_SNAKE_CASE_ = np.array([0.4427, 0.3731, 0.4249, 0.4941, 0.4546, 0.4148, 0.4193, 0.4666, 0.4499] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 5E-3 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 5E-3 @unittest.skipIf(torch_device != 'cuda' , 'This test requires a GPU' ) def lowerCAmelCase_ ( self : Tuple ): SCREAMING_SNAKE_CASE_ = self.dummy_cond_unet SCREAMING_SNAKE_CASE_ = PNDMScheduler(skip_prk_steps=_lowerCAmelCase ) SCREAMING_SNAKE_CASE_ = self.dummy_vae SCREAMING_SNAKE_CASE_ = self.dummy_text_encoder SCREAMING_SNAKE_CASE_ = XLMRobertaTokenizer.from_pretrained('hf-internal-testing/tiny-xlm-roberta' ) SCREAMING_SNAKE_CASE_ = 77 SCREAMING_SNAKE_CASE_ = self.dummy_image.to(_lowerCAmelCase ) # put models in fp16 SCREAMING_SNAKE_CASE_ = unet.half() SCREAMING_SNAKE_CASE_ = vae.half() SCREAMING_SNAKE_CASE_ = bert.half() # make sure here that pndm scheduler skips prk SCREAMING_SNAKE_CASE_ = AltDiffusionImgaImgPipeline( unet=_lowerCAmelCase , scheduler=_lowerCAmelCase , vae=_lowerCAmelCase , text_encoder=_lowerCAmelCase , tokenizer=_lowerCAmelCase , safety_checker=_lowerCAmelCase , feature_extractor=self.dummy_extractor , ) SCREAMING_SNAKE_CASE_ = VaeImageProcessor(vae_scale_factor=alt_pipe.vae_scale_factor , do_normalize=_lowerCAmelCase ) SCREAMING_SNAKE_CASE_ = alt_pipe.to(_lowerCAmelCase ) alt_pipe.set_progress_bar_config(disable=_lowerCAmelCase ) SCREAMING_SNAKE_CASE_ = 'A painting of a squirrel eating a burger' SCREAMING_SNAKE_CASE_ = torch.manual_seed(0 ) SCREAMING_SNAKE_CASE_ = alt_pipe( [prompt] , generator=_lowerCAmelCase , num_inference_steps=2 , output_type='np' , image=_lowerCAmelCase , ).images assert image.shape == (1, 32, 32, 3) @unittest.skipIf(torch_device != 'cuda' , 'This test requires a GPU' ) def lowerCAmelCase_ ( self : str ): SCREAMING_SNAKE_CASE_ = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/img2img/sketch-mountains-input.jpg' ) # resize to resolution that is divisible by 8 but not 16 or 32 SCREAMING_SNAKE_CASE_ = init_image.resize((760, 504) ) SCREAMING_SNAKE_CASE_ = 'BAAI/AltDiffusion' SCREAMING_SNAKE_CASE_ = AltDiffusionImgaImgPipeline.from_pretrained( _lowerCAmelCase , safety_checker=_lowerCAmelCase , ) pipe.to(_lowerCAmelCase ) pipe.set_progress_bar_config(disable=_lowerCAmelCase ) pipe.enable_attention_slicing() SCREAMING_SNAKE_CASE_ = 'A fantasy landscape, trending on artstation' SCREAMING_SNAKE_CASE_ = torch.manual_seed(0 ) SCREAMING_SNAKE_CASE_ = pipe( prompt=_lowerCAmelCase , image=_lowerCAmelCase , strength=0.75 , guidance_scale=7.5 , generator=_lowerCAmelCase , output_type='np' , ) SCREAMING_SNAKE_CASE_ = output.images[0] SCREAMING_SNAKE_CASE_ = image[255:258, 383:386, -1] assert image.shape == (504, 760, 3) SCREAMING_SNAKE_CASE_ = np.array([0.9358, 0.9397, 0.9599, 0.9901, 1.0000, 1.0000, 0.9882, 1.0000, 1.0000] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 @slow @require_torch_gpu class lowerCamelCase_ ( unittest.TestCase ): '''simple docstring''' def lowerCAmelCase_ ( self : str ): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def lowerCAmelCase_ ( self : int ): SCREAMING_SNAKE_CASE_ = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/img2img/sketch-mountains-input.jpg' ) SCREAMING_SNAKE_CASE_ = init_image.resize((768, 512) ) SCREAMING_SNAKE_CASE_ = load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/img2img/fantasy_landscape_alt.npy' ) SCREAMING_SNAKE_CASE_ = 'BAAI/AltDiffusion' SCREAMING_SNAKE_CASE_ = AltDiffusionImgaImgPipeline.from_pretrained( _lowerCAmelCase , safety_checker=_lowerCAmelCase , ) pipe.to(_lowerCAmelCase ) pipe.set_progress_bar_config(disable=_lowerCAmelCase ) pipe.enable_attention_slicing() SCREAMING_SNAKE_CASE_ = 'A fantasy landscape, trending on artstation' SCREAMING_SNAKE_CASE_ = torch.manual_seed(0 ) SCREAMING_SNAKE_CASE_ = pipe( prompt=_lowerCAmelCase , image=_lowerCAmelCase , strength=0.75 , guidance_scale=7.5 , generator=_lowerCAmelCase , output_type='np' , ) SCREAMING_SNAKE_CASE_ = output.images[0] assert image.shape == (512, 768, 3) # img2img is flaky across GPUs even in fp32, so using MAE here assert np.abs(expected_image - image ).max() < 1E-2
31
0
from ...configuration_utils import PretrainedConfig from ...utils import logging __a = logging.get_logger(__name__) __a = { 'tanreinama/GPTSAN-2.8B-spout_is_uniform': ( 'https://huggingface.co/tanreinama/GPTSAN-2.8B-spout_is_uniform/resolve/main/config.json' ), } class __a( _SCREAMING_SNAKE_CASE ): """simple docstring""" lowerCAmelCase = '''gptsan-japanese''' lowerCAmelCase = [ '''past_key_values''', ] lowerCAmelCase = { '''hidden_size''': '''d_model''', '''num_attention_heads''': '''num_heads''', '''num_hidden_layers''': '''num_layers''', } def __init__( self ,_SCREAMING_SNAKE_CASE=36_000 ,_SCREAMING_SNAKE_CASE=1_280 ,_SCREAMING_SNAKE_CASE=1_024 ,_SCREAMING_SNAKE_CASE=8_192 ,_SCREAMING_SNAKE_CASE=4_096 ,_SCREAMING_SNAKE_CASE=128 ,_SCREAMING_SNAKE_CASE=10 ,_SCREAMING_SNAKE_CASE=0 ,_SCREAMING_SNAKE_CASE=16 ,_SCREAMING_SNAKE_CASE=16 ,_SCREAMING_SNAKE_CASE=128 ,_SCREAMING_SNAKE_CASE=0.0 ,_SCREAMING_SNAKE_CASE=1e-5 ,_SCREAMING_SNAKE_CASE=False ,_SCREAMING_SNAKE_CASE=0.0 ,_SCREAMING_SNAKE_CASE="float32" ,_SCREAMING_SNAKE_CASE=False ,_SCREAMING_SNAKE_CASE=False ,_SCREAMING_SNAKE_CASE=False ,_SCREAMING_SNAKE_CASE=0.0_02 ,_SCREAMING_SNAKE_CASE=False ,_SCREAMING_SNAKE_CASE=True ,_SCREAMING_SNAKE_CASE=35_998 ,_SCREAMING_SNAKE_CASE=35_995 ,_SCREAMING_SNAKE_CASE=35_999 ,**_SCREAMING_SNAKE_CASE ,) -> Tuple: UpperCAmelCase_ : str = vocab_size UpperCAmelCase_ : Tuple = max_position_embeddings UpperCAmelCase_ : Optional[Any] = d_model UpperCAmelCase_ : Optional[int] = d_ff UpperCAmelCase_ : Union[str, Any] = d_ext UpperCAmelCase_ : str = d_spout UpperCAmelCase_ : List[Any] = num_switch_layers UpperCAmelCase_ : str = num_ext_layers UpperCAmelCase_ : Optional[int] = num_switch_layers + num_ext_layers UpperCAmelCase_ : Dict = num_heads UpperCAmelCase_ : List[str] = num_experts UpperCAmelCase_ : Optional[int] = expert_capacity UpperCAmelCase_ : List[Any] = dropout_rate UpperCAmelCase_ : str = layer_norm_epsilon UpperCAmelCase_ : Tuple = router_bias UpperCAmelCase_ : Union[str, Any] = router_jitter_noise UpperCAmelCase_ : int = router_dtype UpperCAmelCase_ : Any = router_ignore_padding_tokens UpperCAmelCase_ : int = output_hidden_states UpperCAmelCase_ : int = output_attentions UpperCAmelCase_ : Union[str, Any] = initializer_factor UpperCAmelCase_ : List[str] = output_router_logits UpperCAmelCase_ : Dict = use_cache super().__init__( separator_token_id=_lowerCAmelCase ,pad_token_id=_lowerCAmelCase ,eos_token_id=_lowerCAmelCase ,**_lowerCAmelCase ,)
30
from collections import OrderedDict from typing import TYPE_CHECKING, Any, List, Mapping, Optional, Union from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import TensorType, logging if TYPE_CHECKING: from ...onnx.config import PatchingSpec from ...tokenization_utils_base import PreTrainedTokenizerBase lowerCamelCase__ : Optional[int] = logging.get_logger(__name__) lowerCamelCase__ : Dict = { 'allenai/longformer-base-4096': 'https://huggingface.co/allenai/longformer-base-4096/resolve/main/config.json', 'allenai/longformer-large-4096': 'https://huggingface.co/allenai/longformer-large-4096/resolve/main/config.json', 'allenai/longformer-large-4096-finetuned-triviaqa': ( 'https://huggingface.co/allenai/longformer-large-4096-finetuned-triviaqa/resolve/main/config.json' ), 'allenai/longformer-base-4096-extra.pos.embd.only': ( 'https://huggingface.co/allenai/longformer-base-4096-extra.pos.embd.only/resolve/main/config.json' ), 'allenai/longformer-large-4096-extra.pos.embd.only': ( 'https://huggingface.co/allenai/longformer-large-4096-extra.pos.embd.only/resolve/main/config.json' ), } class lowerCamelCase_ ( _SCREAMING_SNAKE_CASE ): '''simple docstring''' lowercase_ = "longformer" def __init__( self : Union[str, Any] , _lowerCAmelCase : Union[List[int], int] = 512 , _lowerCAmelCase : int = 2 , _lowerCAmelCase : int = 1 , _lowerCAmelCase : int = 0 , _lowerCAmelCase : int = 2 , _lowerCAmelCase : int = 30_522 , _lowerCAmelCase : int = 768 , _lowerCAmelCase : int = 12 , _lowerCAmelCase : int = 12 , _lowerCAmelCase : int = 3_072 , _lowerCAmelCase : str = "gelu" , _lowerCAmelCase : float = 0.1 , _lowerCAmelCase : float = 0.1 , _lowerCAmelCase : int = 512 , _lowerCAmelCase : int = 2 , _lowerCAmelCase : float = 0.02 , _lowerCAmelCase : float = 1E-12 , _lowerCAmelCase : bool = False , **_lowerCAmelCase : Union[str, Any] , ): super().__init__(pad_token_id=_lowerCAmelCase , **_lowerCAmelCase ) SCREAMING_SNAKE_CASE_ = attention_window SCREAMING_SNAKE_CASE_ = sep_token_id SCREAMING_SNAKE_CASE_ = bos_token_id SCREAMING_SNAKE_CASE_ = eos_token_id SCREAMING_SNAKE_CASE_ = vocab_size SCREAMING_SNAKE_CASE_ = hidden_size SCREAMING_SNAKE_CASE_ = num_hidden_layers SCREAMING_SNAKE_CASE_ = num_attention_heads SCREAMING_SNAKE_CASE_ = hidden_act SCREAMING_SNAKE_CASE_ = intermediate_size SCREAMING_SNAKE_CASE_ = hidden_dropout_prob SCREAMING_SNAKE_CASE_ = attention_probs_dropout_prob SCREAMING_SNAKE_CASE_ = max_position_embeddings SCREAMING_SNAKE_CASE_ = type_vocab_size SCREAMING_SNAKE_CASE_ = initializer_range SCREAMING_SNAKE_CASE_ = layer_norm_eps SCREAMING_SNAKE_CASE_ = onnx_export class lowerCamelCase_ ( _SCREAMING_SNAKE_CASE ): '''simple docstring''' def __init__( self : Optional[Any] , _lowerCAmelCase : "PretrainedConfig" , _lowerCAmelCase : str = "default" , _lowerCAmelCase : "List[PatchingSpec]" = None ): super().__init__(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) SCREAMING_SNAKE_CASE_ = True @property def lowerCAmelCase_ ( self : Any ): if self.task == "multiple-choice": SCREAMING_SNAKE_CASE_ = {0: 'batch', 1: 'choice', 2: 'sequence'} else: SCREAMING_SNAKE_CASE_ = {0: 'batch', 1: 'sequence'} return OrderedDict( [ ('input_ids', dynamic_axis), ('attention_mask', dynamic_axis), ('global_attention_mask', dynamic_axis), ] ) @property def lowerCAmelCase_ ( self : Optional[int] ): SCREAMING_SNAKE_CASE_ = super().outputs if self.task == "default": SCREAMING_SNAKE_CASE_ = {0: 'batch'} return outputs @property def lowerCAmelCase_ ( self : str ): return 1E-4 @property def lowerCAmelCase_ ( self : Optional[Any] ): # needs to be >= 14 to support tril operator return max(super().default_onnx_opset , 14 ) def lowerCAmelCase_ ( self : str , _lowerCAmelCase : "PreTrainedTokenizerBase" , _lowerCAmelCase : int = -1 , _lowerCAmelCase : int = -1 , _lowerCAmelCase : bool = False , _lowerCAmelCase : Optional[TensorType] = None , ): SCREAMING_SNAKE_CASE_ = super().generate_dummy_inputs( preprocessor=_lowerCAmelCase , batch_size=_lowerCAmelCase , seq_length=_lowerCAmelCase , is_pair=_lowerCAmelCase , framework=_lowerCAmelCase ) import torch # for some reason, replacing this code by inputs["global_attention_mask"] = torch.randint(2, inputs["input_ids"].shape, dtype=torch.int64) # makes the export fail randomly SCREAMING_SNAKE_CASE_ = torch.zeros_like(inputs['input_ids'] ) # make every second token global SCREAMING_SNAKE_CASE_ = 1 return inputs
31
0
'''simple docstring''' import warnings from ...utils import logging from .image_processing_mobilevit import MobileViTImageProcessor A_ = logging.get_logger(__name__) class lowercase_ ( _SCREAMING_SNAKE_CASE ): def __init__( self : str , *__lowerCamelCase : Tuple , **__lowerCamelCase : int ): warnings.warn( 'The class MobileViTFeatureExtractor is deprecated and will be removed in version 5 of Transformers.' ' Please use MobileViTImageProcessor instead.' , _lowerCAmelCase , ) super().__init__(*_lowerCAmelCase , **_lowerCAmelCase )
270
import warnings from ...utils import logging from .image_processing_mobilevit import MobileViTImageProcessor lowerCamelCase__ : Optional[int] = logging.get_logger(__name__) class lowerCamelCase_ ( _SCREAMING_SNAKE_CASE ): '''simple docstring''' def __init__( self : str , *_lowerCAmelCase : Tuple , **_lowerCAmelCase : int ): warnings.warn( 'The class MobileViTFeatureExtractor is deprecated and will be removed in version 5 of Transformers.' ' Please use MobileViTImageProcessor instead.' , _lowerCAmelCase , ) super().__init__(*_lowerCAmelCase , **_lowerCAmelCase )
31
0
'''simple docstring''' import time import unittest from transformers import is_torch_available from transformers.testing_utils import require_torch, torch_device from ..test_modeling_common import ids_tensor if is_torch_available(): import torch from transformers.generation import ( MaxLengthCriteria, MaxNewTokensCriteria, MaxTimeCriteria, StoppingCriteriaList, validate_stopping_criteria, ) @require_torch class _a (unittest.TestCase): """simple docstring""" def UpperCamelCase ( self , A__ ) -> List[str]: _SCREAMING_SNAKE_CASE = 3 _SCREAMING_SNAKE_CASE = 2_50 _SCREAMING_SNAKE_CASE = ids_tensor((batch_size, length) , _lowerCAmelCase ) _SCREAMING_SNAKE_CASE = torch.ones((batch_size, length) , device=_lowerCAmelCase , dtype=torch.float ) / length return input_ids, scores def UpperCamelCase ( self ) -> Optional[Any]: _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = self._get_tensors(5 ) _SCREAMING_SNAKE_CASE = StoppingCriteriaList( [ MaxLengthCriteria(max_length=10 ), MaxTimeCriteria(max_time=0.1 ), ] ) self.assertFalse(criteria(_lowerCAmelCase , _lowerCAmelCase ) ) _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = self._get_tensors(9 ) self.assertFalse(criteria(_lowerCAmelCase , _lowerCAmelCase ) ) _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = self._get_tensors(10 ) self.assertTrue(criteria(_lowerCAmelCase , _lowerCAmelCase ) ) def UpperCamelCase ( self ) -> List[Any]: _SCREAMING_SNAKE_CASE = MaxLengthCriteria(max_length=10 ) _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = self._get_tensors(5 ) self.assertFalse(criteria(_lowerCAmelCase , _lowerCAmelCase ) ) _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = self._get_tensors(9 ) self.assertFalse(criteria(_lowerCAmelCase , _lowerCAmelCase ) ) _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = self._get_tensors(10 ) self.assertTrue(criteria(_lowerCAmelCase , _lowerCAmelCase ) ) def UpperCamelCase ( self ) -> Union[str, Any]: _SCREAMING_SNAKE_CASE = MaxNewTokensCriteria(start_length=5 , max_new_tokens=5 ) _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = self._get_tensors(5 ) self.assertFalse(criteria(_lowerCAmelCase , _lowerCAmelCase ) ) _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = self._get_tensors(9 ) self.assertFalse(criteria(_lowerCAmelCase , _lowerCAmelCase ) ) _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = self._get_tensors(10 ) self.assertTrue(criteria(_lowerCAmelCase , _lowerCAmelCase ) ) _SCREAMING_SNAKE_CASE = StoppingCriteriaList([criteria] ) self.assertEqual(criteria_list.max_length , 10 ) def UpperCamelCase ( self ) -> str: _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = self._get_tensors(5 ) _SCREAMING_SNAKE_CASE = MaxTimeCriteria(max_time=0.1 ) self.assertFalse(criteria(_lowerCAmelCase , _lowerCAmelCase ) ) _SCREAMING_SNAKE_CASE = MaxTimeCriteria(max_time=0.1 , initial_timestamp=time.time() - 0.2 ) self.assertTrue(criteria(_lowerCAmelCase , _lowerCAmelCase ) ) def UpperCamelCase ( self ) -> Optional[int]: validate_stopping_criteria(StoppingCriteriaList([MaxLengthCriteria(10 )] ) , 10 ) with self.assertWarns(_lowerCAmelCase ): validate_stopping_criteria(StoppingCriteriaList([MaxLengthCriteria(10 )] ) , 11 ) _SCREAMING_SNAKE_CASE = validate_stopping_criteria(StoppingCriteriaList() , 11 ) self.assertEqual(len(_lowerCAmelCase ) , 1 )
591
from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCamelCase__ : Optional[int] = logging.get_logger(__name__) lowerCamelCase__ : Tuple = { 'microsoft/swinv2-tiny-patch4-window8-256': ( 'https://huggingface.co/microsoft/swinv2-tiny-patch4-window8-256/resolve/main/config.json' ), } class lowerCamelCase_ ( _SCREAMING_SNAKE_CASE ): '''simple docstring''' lowercase_ = "swinv2" lowercase_ = { "num_attention_heads": "num_heads", "num_hidden_layers": "num_layers", } def __init__( self : Dict , _lowerCAmelCase : Optional[Any]=224 , _lowerCAmelCase : Optional[int]=4 , _lowerCAmelCase : Tuple=3 , _lowerCAmelCase : Tuple=96 , _lowerCAmelCase : Dict=[2, 2, 6, 2] , _lowerCAmelCase : Optional[Any]=[3, 6, 12, 24] , _lowerCAmelCase : str=7 , _lowerCAmelCase : List[Any]=4.0 , _lowerCAmelCase : List[str]=True , _lowerCAmelCase : List[Any]=0.0 , _lowerCAmelCase : List[Any]=0.0 , _lowerCAmelCase : Any=0.1 , _lowerCAmelCase : List[Any]="gelu" , _lowerCAmelCase : str=False , _lowerCAmelCase : str=0.02 , _lowerCAmelCase : List[Any]=1E-5 , _lowerCAmelCase : str=32 , **_lowerCAmelCase : List[Any] , ): super().__init__(**_lowerCAmelCase ) SCREAMING_SNAKE_CASE_ = image_size SCREAMING_SNAKE_CASE_ = patch_size SCREAMING_SNAKE_CASE_ = num_channels SCREAMING_SNAKE_CASE_ = embed_dim SCREAMING_SNAKE_CASE_ = depths SCREAMING_SNAKE_CASE_ = len(_lowerCAmelCase ) SCREAMING_SNAKE_CASE_ = num_heads SCREAMING_SNAKE_CASE_ = window_size SCREAMING_SNAKE_CASE_ = mlp_ratio SCREAMING_SNAKE_CASE_ = qkv_bias SCREAMING_SNAKE_CASE_ = hidden_dropout_prob SCREAMING_SNAKE_CASE_ = attention_probs_dropout_prob SCREAMING_SNAKE_CASE_ = drop_path_rate SCREAMING_SNAKE_CASE_ = hidden_act SCREAMING_SNAKE_CASE_ = use_absolute_embeddings SCREAMING_SNAKE_CASE_ = layer_norm_eps SCREAMING_SNAKE_CASE_ = initializer_range SCREAMING_SNAKE_CASE_ = encoder_stride # we set the hidden_size attribute in order to make Swinv2 work with VisionEncoderDecoderModel # this indicates the channel dimension after the last stage of the model SCREAMING_SNAKE_CASE_ = int(embed_dim * 2 ** (len(_lowerCAmelCase ) - 1) ) SCREAMING_SNAKE_CASE_ = (0, 0, 0, 0)
31
0
from __future__ import annotations import unittest from transformers import is_tf_available from transformers.testing_utils import require_sentencepiece, require_tf, require_tokenizers, slow if is_tf_available(): import numpy as np import tensorflow as tf from transformers import TFCamembertModel @require_tf @require_sentencepiece @require_tokenizers class _lowercase ( unittest.TestCase ): @slow def SCREAMING_SNAKE_CASE__ ( self : List[Any] ) -> Any: """simple docstring""" UpperCamelCase_ : Any = TFCamembertModel.from_pretrained('jplu/tf-camembert-base' ) UpperCamelCase_ : Dict = tf.convert_to_tensor( [[5, 1_2_1, 1_1, 6_6_0, 1_6, 7_3_0, 2_5_5_4_3, 1_1_0, 8_3, 6]] , dtype=tf.intaa , ) # J'aime le camembert !" UpperCamelCase_ : Any = model(_lowerCAmelCase )['last_hidden_state'] UpperCamelCase_ : Dict = tf.TensorShape((1, 1_0, 7_6_8) ) self.assertEqual(output.shape , _lowerCAmelCase ) # compare the actual values for a slice. UpperCamelCase_ : str = tf.convert_to_tensor( [[[-0.0254, 0.0235, 0.1027], [0.0606, -0.1811, -0.0418], [-0.1561, -0.1127, 0.2687]]] , dtype=tf.floataa , ) # camembert = torch.hub.load('pytorch/fairseq', 'camembert.v0') # camembert.eval() # expected_slice = roberta.model.forward(input_ids)[0][:, :3, :3].detach() self.assertTrue(np.allclose(output[:, :3, :3].numpy() , expected_slice.numpy() , atol=1e-4 ) )
417
import itertools import random import unittest import numpy as np from transformers import BatchFeature, SpeechTaFeatureExtractor from transformers.testing_utils import require_torch from transformers.utils.import_utils import is_torch_available from ...test_sequence_feature_extraction_common import SequenceFeatureExtractionTestMixin if is_torch_available(): import torch lowerCamelCase__ : Dict = random.Random() def UpperCAmelCase_ ( __UpperCAmelCase : int , __UpperCAmelCase : Tuple=1.0 , __UpperCAmelCase : Dict=None , __UpperCAmelCase : Dict=None ) -> Tuple: if rng is None: SCREAMING_SNAKE_CASE_ = global_rng SCREAMING_SNAKE_CASE_ = [] for batch_idx in range(shape[0] ): values.append([] ) for _ in range(shape[1] ): values[-1].append(rng.random() * scale ) return values @require_torch class lowerCamelCase_ ( unittest.TestCase ): '''simple docstring''' def __init__( self : List[str] , _lowerCAmelCase : int , _lowerCAmelCase : Optional[Any]=7 , _lowerCAmelCase : Union[str, Any]=400 , _lowerCAmelCase : Tuple=2_000 , _lowerCAmelCase : str=1 , _lowerCAmelCase : int=0.0 , _lowerCAmelCase : Optional[Any]=16_000 , _lowerCAmelCase : Optional[Any]=True , _lowerCAmelCase : Any=80 , _lowerCAmelCase : Union[str, Any]=16 , _lowerCAmelCase : List[str]=64 , _lowerCAmelCase : List[Any]="hann_window" , _lowerCAmelCase : Any=80 , _lowerCAmelCase : List[Any]=7_600 , _lowerCAmelCase : List[Any]=1E-10 , _lowerCAmelCase : Optional[Any]=True , ): SCREAMING_SNAKE_CASE_ = parent SCREAMING_SNAKE_CASE_ = batch_size SCREAMING_SNAKE_CASE_ = min_seq_length SCREAMING_SNAKE_CASE_ = max_seq_length SCREAMING_SNAKE_CASE_ = (self.max_seq_length - self.min_seq_length) // (self.batch_size - 1) SCREAMING_SNAKE_CASE_ = feature_size SCREAMING_SNAKE_CASE_ = padding_value SCREAMING_SNAKE_CASE_ = sampling_rate SCREAMING_SNAKE_CASE_ = do_normalize SCREAMING_SNAKE_CASE_ = num_mel_bins SCREAMING_SNAKE_CASE_ = hop_length SCREAMING_SNAKE_CASE_ = win_length SCREAMING_SNAKE_CASE_ = win_function SCREAMING_SNAKE_CASE_ = fmin SCREAMING_SNAKE_CASE_ = fmax SCREAMING_SNAKE_CASE_ = mel_floor SCREAMING_SNAKE_CASE_ = return_attention_mask def lowerCAmelCase_ ( self : Union[str, Any] ): return { "feature_size": self.feature_size, "padding_value": self.padding_value, "sampling_rate": self.sampling_rate, "do_normalize": self.do_normalize, "num_mel_bins": self.num_mel_bins, "hop_length": self.hop_length, "win_length": self.win_length, "win_function": self.win_function, "fmin": self.fmin, "fmax": self.fmax, "mel_floor": self.mel_floor, "return_attention_mask": self.return_attention_mask, } def lowerCAmelCase_ ( self : Dict , _lowerCAmelCase : Optional[int]=False , _lowerCAmelCase : str=False ): def _flatten(_lowerCAmelCase : Dict ): return list(itertools.chain(*_lowerCAmelCase ) ) if equal_length: SCREAMING_SNAKE_CASE_ = floats_list((self.batch_size, self.max_seq_length) ) else: # make sure that inputs increase in size SCREAMING_SNAKE_CASE_ = [ _flatten(floats_list((x, self.feature_size) ) ) for x in range(self.min_seq_length , self.max_seq_length , self.seq_length_diff ) ] if numpify: SCREAMING_SNAKE_CASE_ = [np.asarray(_lowerCAmelCase ) for x in speech_inputs] return speech_inputs def lowerCAmelCase_ ( self : List[Any] , _lowerCAmelCase : Union[str, Any]=False , _lowerCAmelCase : Optional[int]=False ): if equal_length: SCREAMING_SNAKE_CASE_ = [floats_list((self.max_seq_length, self.num_mel_bins) ) for _ in range(self.batch_size )] else: # make sure that inputs increase in size SCREAMING_SNAKE_CASE_ = [ floats_list((x, self.num_mel_bins) ) for x in range(self.min_seq_length , self.max_seq_length , self.seq_length_diff ) ] if numpify: SCREAMING_SNAKE_CASE_ = [np.asarray(_lowerCAmelCase ) for x in speech_inputs] return speech_inputs @require_torch class lowerCamelCase_ ( _SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' lowercase_ = SpeechTaFeatureExtractor def lowerCAmelCase_ ( self : Any ): SCREAMING_SNAKE_CASE_ = SpeechTaFeatureExtractionTester(self ) def lowerCAmelCase_ ( self : Any , _lowerCAmelCase : int ): self.assertTrue(np.all(np.mean(_lowerCAmelCase , axis=0 ) < 1E-3 ) ) self.assertTrue(np.all(np.abs(np.var(_lowerCAmelCase , axis=0 ) - 1 ) < 1E-3 ) ) def lowerCAmelCase_ ( self : List[Any] ): # Tests that all call wrap to encode_plus and batch_encode_plus SCREAMING_SNAKE_CASE_ = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) # create three inputs of length 800, 1000, and 1200 SCREAMING_SNAKE_CASE_ = [floats_list((1, x) )[0] for x in range(800 , 1_400 , 200 )] SCREAMING_SNAKE_CASE_ = [np.asarray(_lowerCAmelCase ) for speech_input in speech_inputs] # Test not batched input SCREAMING_SNAKE_CASE_ = feat_extract(speech_inputs[0] , return_tensors='np' ).input_values SCREAMING_SNAKE_CASE_ = feat_extract(np_speech_inputs[0] , return_tensors='np' ).input_values self.assertTrue(np.allclose(_lowerCAmelCase , _lowerCAmelCase , atol=1E-3 ) ) # Test batched SCREAMING_SNAKE_CASE_ = feat_extract(_lowerCAmelCase , return_tensors='np' ).input_values SCREAMING_SNAKE_CASE_ = feat_extract(_lowerCAmelCase , return_tensors='np' ).input_values for enc_seq_a, enc_seq_a in zip(_lowerCAmelCase , _lowerCAmelCase ): self.assertTrue(np.allclose(_lowerCAmelCase , _lowerCAmelCase , atol=1E-3 ) ) def lowerCAmelCase_ ( self : Union[str, Any] ): SCREAMING_SNAKE_CASE_ = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) SCREAMING_SNAKE_CASE_ = [floats_list((1, x) )[0] for x in range(800 , 1_400 , 200 )] SCREAMING_SNAKE_CASE_ = ['longest', 'max_length', 'do_not_pad'] SCREAMING_SNAKE_CASE_ = [None, 1_600, None] for max_length, padding in zip(_lowerCAmelCase , _lowerCAmelCase ): SCREAMING_SNAKE_CASE_ = feat_extract(_lowerCAmelCase , padding=_lowerCAmelCase , max_length=_lowerCAmelCase , return_tensors='np' ) SCREAMING_SNAKE_CASE_ = processed.input_values self._check_zero_mean_unit_variance(input_values[0][:800] ) self.assertTrue(input_values[0][800:].sum() < 1E-6 ) self._check_zero_mean_unit_variance(input_values[1][:1_000] ) self.assertTrue(input_values[0][1_000:].sum() < 1E-6 ) self._check_zero_mean_unit_variance(input_values[2][:1_200] ) def lowerCAmelCase_ ( self : Optional[Any] ): SCREAMING_SNAKE_CASE_ = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) SCREAMING_SNAKE_CASE_ = range(800 , 1_400 , 200 ) SCREAMING_SNAKE_CASE_ = [floats_list((1, x) )[0] for x in lengths] SCREAMING_SNAKE_CASE_ = ['longest', 'max_length', 'do_not_pad'] SCREAMING_SNAKE_CASE_ = [None, 1_600, None] for max_length, padding in zip(_lowerCAmelCase , _lowerCAmelCase ): SCREAMING_SNAKE_CASE_ = feat_extract(_lowerCAmelCase , max_length=_lowerCAmelCase , padding=_lowerCAmelCase ) SCREAMING_SNAKE_CASE_ = processed.input_values self._check_zero_mean_unit_variance(input_values[0][:800] ) self._check_zero_mean_unit_variance(input_values[1][:1_000] ) self._check_zero_mean_unit_variance(input_values[2][:1_200] ) def lowerCAmelCase_ ( self : Dict ): SCREAMING_SNAKE_CASE_ = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) SCREAMING_SNAKE_CASE_ = [floats_list((1, x) )[0] for x in range(800 , 1_400 , 200 )] SCREAMING_SNAKE_CASE_ = feat_extract( _lowerCAmelCase , truncation=_lowerCAmelCase , max_length=1_000 , padding='max_length' , return_tensors='np' ) SCREAMING_SNAKE_CASE_ = processed.input_values self._check_zero_mean_unit_variance(input_values[0, :800] ) self._check_zero_mean_unit_variance(input_values[1] ) self._check_zero_mean_unit_variance(input_values[2] ) def lowerCAmelCase_ ( self : Dict ): SCREAMING_SNAKE_CASE_ = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) SCREAMING_SNAKE_CASE_ = [floats_list((1, x) )[0] for x in range(800 , 1_400 , 200 )] SCREAMING_SNAKE_CASE_ = feat_extract( _lowerCAmelCase , truncation=_lowerCAmelCase , max_length=1_000 , padding='longest' , return_tensors='np' ) SCREAMING_SNAKE_CASE_ = processed.input_values self._check_zero_mean_unit_variance(input_values[0, :800] ) self._check_zero_mean_unit_variance(input_values[1, :1_000] ) self._check_zero_mean_unit_variance(input_values[2] ) # make sure that if max_length < longest -> then pad to max_length self.assertTrue(input_values.shape == (3, 1_000) ) SCREAMING_SNAKE_CASE_ = [floats_list((1, x) )[0] for x in range(800 , 1_400 , 200 )] SCREAMING_SNAKE_CASE_ = feat_extract( _lowerCAmelCase , truncation=_lowerCAmelCase , max_length=2_000 , padding='longest' , return_tensors='np' ) SCREAMING_SNAKE_CASE_ = processed.input_values self._check_zero_mean_unit_variance(input_values[0, :800] ) self._check_zero_mean_unit_variance(input_values[1, :1_000] ) self._check_zero_mean_unit_variance(input_values[2] ) # make sure that if max_length > longest -> then pad to longest self.assertTrue(input_values.shape == (3, 1_200) ) def lowerCAmelCase_ ( self : Optional[int] ): SCREAMING_SNAKE_CASE_ = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) SCREAMING_SNAKE_CASE_ = np.random.rand(100 ).astype(np.floataa ) SCREAMING_SNAKE_CASE_ = np_speech_inputs.tolist() for inputs in [py_speech_inputs, np_speech_inputs]: SCREAMING_SNAKE_CASE_ = feature_extractor.pad([{'input_values': inputs}] , return_tensors='np' ) self.assertTrue(np_processed.input_values.dtype == np.floataa ) SCREAMING_SNAKE_CASE_ = feature_extractor.pad([{'input_values': inputs}] , return_tensors='pt' ) self.assertTrue(pt_processed.input_values.dtype == torch.floataa ) def lowerCAmelCase_ ( self : Tuple ): # Tests that all call wrap to encode_plus and batch_encode_plus SCREAMING_SNAKE_CASE_ = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) # create three inputs of length 800, 1000, and 1200 SCREAMING_SNAKE_CASE_ = [floats_list((1, x) )[0] for x in range(800 , 1_400 , 200 )] SCREAMING_SNAKE_CASE_ = [np.asarray(_lowerCAmelCase ) for speech_input in speech_inputs] # Test feature size SCREAMING_SNAKE_CASE_ = feature_extractor(audio_target=_lowerCAmelCase , padding=_lowerCAmelCase , return_tensors='np' ).input_values self.assertTrue(input_values.ndim == 3 ) self.assertTrue(input_values.shape[-1] == feature_extractor.num_mel_bins ) # Test not batched input SCREAMING_SNAKE_CASE_ = feature_extractor(speech_inputs[0] , return_tensors='np' ).input_values SCREAMING_SNAKE_CASE_ = feature_extractor(np_speech_inputs[0] , return_tensors='np' ).input_values self.assertTrue(np.allclose(_lowerCAmelCase , _lowerCAmelCase , atol=1E-3 ) ) # Test batched SCREAMING_SNAKE_CASE_ = feature_extractor(_lowerCAmelCase , return_tensors='np' ).input_values SCREAMING_SNAKE_CASE_ = feature_extractor(_lowerCAmelCase , return_tensors='np' ).input_values for enc_seq_a, enc_seq_a in zip(_lowerCAmelCase , _lowerCAmelCase ): self.assertTrue(np.allclose(_lowerCAmelCase , _lowerCAmelCase , atol=1E-3 ) ) # Test 2-D numpy arrays are batched. SCREAMING_SNAKE_CASE_ = [floats_list((1, x) )[0] for x in (800, 800, 800)] SCREAMING_SNAKE_CASE_ = np.asarray(_lowerCAmelCase ) SCREAMING_SNAKE_CASE_ = feature_extractor(_lowerCAmelCase , return_tensors='np' ).input_values SCREAMING_SNAKE_CASE_ = feature_extractor(_lowerCAmelCase , return_tensors='np' ).input_values for enc_seq_a, enc_seq_a in zip(_lowerCAmelCase , _lowerCAmelCase ): self.assertTrue(np.allclose(_lowerCAmelCase , _lowerCAmelCase , atol=1E-3 ) ) def lowerCAmelCase_ ( self : str ): SCREAMING_SNAKE_CASE_ = self.feat_extract_tester.prepare_inputs_for_target() SCREAMING_SNAKE_CASE_ = self.feature_extraction_class(**self.feat_extract_dict ) SCREAMING_SNAKE_CASE_ = feat_extract.model_input_names[0] SCREAMING_SNAKE_CASE_ = BatchFeature({input_name: speech_inputs} ) self.assertTrue(all(len(_lowerCAmelCase ) == len(_lowerCAmelCase ) for x, y in zip(_lowerCAmelCase , processed_features[input_name] ) ) ) SCREAMING_SNAKE_CASE_ = self.feat_extract_tester.prepare_inputs_for_target(equal_length=_lowerCAmelCase ) SCREAMING_SNAKE_CASE_ = BatchFeature({input_name: speech_inputs} , tensor_type='np' ) SCREAMING_SNAKE_CASE_ = processed_features[input_name] if len(batch_features_input.shape ) < 3: SCREAMING_SNAKE_CASE_ = batch_features_input[:, :, None] self.assertTrue( batch_features_input.shape == (self.feat_extract_tester.batch_size, len(speech_inputs[0] ), self.feat_extract_tester.num_mel_bins) ) @require_torch def lowerCAmelCase_ ( self : Dict ): SCREAMING_SNAKE_CASE_ = self.feat_extract_tester.prepare_inputs_for_target(equal_length=_lowerCAmelCase ) SCREAMING_SNAKE_CASE_ = self.feature_extraction_class(**self.feat_extract_dict ) SCREAMING_SNAKE_CASE_ = feat_extract.model_input_names[0] SCREAMING_SNAKE_CASE_ = BatchFeature({input_name: speech_inputs} , tensor_type='pt' ) SCREAMING_SNAKE_CASE_ = processed_features[input_name] if len(batch_features_input.shape ) < 3: SCREAMING_SNAKE_CASE_ = batch_features_input[:, :, None] self.assertTrue( batch_features_input.shape == (self.feat_extract_tester.batch_size, len(speech_inputs[0] ), self.feat_extract_tester.num_mel_bins) ) @require_torch def lowerCAmelCase_ ( self : Dict ): SCREAMING_SNAKE_CASE_ = self.feature_extraction_class(**self.feat_extract_dict ) SCREAMING_SNAKE_CASE_ = self.feat_extract_tester.prepare_inputs_for_target() SCREAMING_SNAKE_CASE_ = feat_extract.model_input_names[0] SCREAMING_SNAKE_CASE_ = BatchFeature({input_name: speech_inputs} ) SCREAMING_SNAKE_CASE_ = feat_extract.num_mel_bins # hack! SCREAMING_SNAKE_CASE_ = feat_extract.pad(_lowerCAmelCase , padding='longest' , return_tensors='np' )[input_name] SCREAMING_SNAKE_CASE_ = feat_extract.pad(_lowerCAmelCase , padding='longest' , return_tensors='pt' )[input_name] self.assertTrue(abs(input_np.astype(np.floataa ).sum() - input_pt.numpy().astype(np.floataa ).sum() ) < 1E-2 ) def lowerCAmelCase_ ( self : str ): SCREAMING_SNAKE_CASE_ = self.feat_extract_dict SCREAMING_SNAKE_CASE_ = True SCREAMING_SNAKE_CASE_ = self.feature_extraction_class(**_lowerCAmelCase ) SCREAMING_SNAKE_CASE_ = self.feat_extract_tester.prepare_inputs_for_target() SCREAMING_SNAKE_CASE_ = [len(_lowerCAmelCase ) for x in speech_inputs] SCREAMING_SNAKE_CASE_ = feat_extract.model_input_names[0] SCREAMING_SNAKE_CASE_ = BatchFeature({input_name: speech_inputs} ) SCREAMING_SNAKE_CASE_ = feat_extract.num_mel_bins # hack! SCREAMING_SNAKE_CASE_ = feat_extract.pad(_lowerCAmelCase , padding='longest' , return_tensors='np' ) self.assertIn('attention_mask' , _lowerCAmelCase ) self.assertListEqual(list(processed.attention_mask.shape ) , list(processed[input_name].shape[:2] ) ) self.assertListEqual(processed.attention_mask.sum(-1 ).tolist() , _lowerCAmelCase ) def lowerCAmelCase_ ( self : Any ): SCREAMING_SNAKE_CASE_ = self.feat_extract_dict SCREAMING_SNAKE_CASE_ = True SCREAMING_SNAKE_CASE_ = self.feature_extraction_class(**_lowerCAmelCase ) SCREAMING_SNAKE_CASE_ = self.feat_extract_tester.prepare_inputs_for_target() SCREAMING_SNAKE_CASE_ = [len(_lowerCAmelCase ) for x in speech_inputs] SCREAMING_SNAKE_CASE_ = feat_extract.model_input_names[0] SCREAMING_SNAKE_CASE_ = BatchFeature({input_name: speech_inputs} ) SCREAMING_SNAKE_CASE_ = min(_lowerCAmelCase ) SCREAMING_SNAKE_CASE_ = feat_extract.num_mel_bins # hack! SCREAMING_SNAKE_CASE_ = feat_extract.pad( _lowerCAmelCase , padding='max_length' , max_length=_lowerCAmelCase , truncation=_lowerCAmelCase , return_tensors='np' ) self.assertIn('attention_mask' , _lowerCAmelCase ) self.assertListEqual( list(processed_pad.attention_mask.shape ) , [processed_pad[input_name].shape[0], max_length] ) self.assertListEqual( processed_pad.attention_mask[:, :max_length].sum(-1 ).tolist() , [max_length for x in speech_inputs] ) def lowerCAmelCase_ ( self : List[Any] , _lowerCAmelCase : Tuple ): from datasets import load_dataset SCREAMING_SNAKE_CASE_ = load_dataset('hf-internal-testing/librispeech_asr_dummy' , 'clean' , split='validation' ) # automatic decoding with librispeech SCREAMING_SNAKE_CASE_ = ds.sort('id' ).select(range(_lowerCAmelCase ) )[:num_samples]['audio'] return [x["array"] for x in speech_samples] def lowerCAmelCase_ ( self : Any ): # fmt: off SCREAMING_SNAKE_CASE_ = torch.tensor( [2.3_804E-03, 2.0_752E-03, 1.9_836E-03, 2.1_057E-03, 1.6_174E-03, 3.0_518E-04, 9.1_553E-05, 3.3_569E-04, 9.7_656E-04, 1.8_311E-03, 2.0_142E-03, 2.1_057E-03, 1.7_395E-03, 4.5_776E-04, -3.9_673E-04, 4.5_776E-04, 1.0_071E-03, 9.1_553E-05, 4.8_828E-04, 1.1_597E-03, 7.3_242E-04, 9.4_604E-04, 1.8_005E-03, 1.8_311E-03, 8.8_501E-04, 4.2_725E-04, 4.8_828E-04, 7.3_242E-04, 1.0_986E-03, 2.1_057E-03] ) # fmt: on SCREAMING_SNAKE_CASE_ = self._load_datasamples(1 ) SCREAMING_SNAKE_CASE_ = SpeechTaFeatureExtractor() SCREAMING_SNAKE_CASE_ = feature_extractor(_lowerCAmelCase , return_tensors='pt' ).input_values self.assertEquals(input_values.shape , (1, 93_680) ) self.assertTrue(torch.allclose(input_values[0, :30] , _lowerCAmelCase , atol=1E-6 ) ) def lowerCAmelCase_ ( self : Optional[int] ): # fmt: off SCREAMING_SNAKE_CASE_ = torch.tensor( [-2.6870, -3.0104, -3.1356, -3.5352, -3.0044, -3.0353, -3.4719, -3.6777, -3.1520, -2.9435, -2.6553, -2.8795, -2.9944, -2.5921, -3.0279, -3.0386, -3.0864, -3.1291, -3.2353, -2.7444, -2.6831, -2.7287, -3.1761, -3.1571, -3.2726, -3.0582, -3.1007, -3.4533, -3.4695, -3.0998] ) # fmt: on SCREAMING_SNAKE_CASE_ = self._load_datasamples(1 ) SCREAMING_SNAKE_CASE_ = SpeechTaFeatureExtractor() SCREAMING_SNAKE_CASE_ = feature_extractor(audio_target=_lowerCAmelCase , return_tensors='pt' ).input_values self.assertEquals(input_values.shape , (1, 366, 80) ) self.assertTrue(torch.allclose(input_values[0, 0, :30] , _lowerCAmelCase , atol=1E-4 ) )
31
0
def a_ (__A , __A , __A , __A ) -> str: """simple docstring""" if height >= 1: move_tower(height - 1 , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) move_disk(__UpperCAmelCase , __UpperCAmelCase ) move_tower(height - 1 , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) def a_ (__A , __A ) -> Optional[Any]: """simple docstring""" print("moving disk from" , __UpperCAmelCase , "to" , __UpperCAmelCase ) def a_ () -> int: """simple docstring""" __a : Optional[int] = int(input("Height of hanoi: " ).strip() ) move_tower(__UpperCAmelCase , "A" , "B" , "C" ) if __name__ == "__main__": main()
351
from __future__ import annotations from typing import TypedDict class lowerCamelCase_ ( _SCREAMING_SNAKE_CASE ): '''simple docstring''' lowercase_ = 42 lowercase_ = 42 def UpperCAmelCase_ ( __UpperCAmelCase : str ) -> list[str]: if not isinstance(__UpperCAmelCase , __UpperCAmelCase ): raise TypeError('The parameter s type must be str.' ) return [s[i:] + s[:i] for i in range(len(__UpperCAmelCase ) )] def UpperCAmelCase_ ( __UpperCAmelCase : str ) -> BWTTransformDict: if not isinstance(__UpperCAmelCase , __UpperCAmelCase ): raise TypeError('The parameter s type must be str.' ) if not s: raise ValueError('The parameter s must not be empty.' ) SCREAMING_SNAKE_CASE_ = all_rotations(__UpperCAmelCase ) rotations.sort() # sort the list of rotations in alphabetically order # make a string composed of the last char of each rotation SCREAMING_SNAKE_CASE_ = { "bwt_string": "".join([word[-1] for word in rotations] ), "idx_original_string": rotations.index(__UpperCAmelCase ), } return response def UpperCAmelCase_ ( __UpperCAmelCase : str , __UpperCAmelCase : int ) -> str: if not isinstance(__UpperCAmelCase , __UpperCAmelCase ): raise TypeError('The parameter bwt_string type must be str.' ) if not bwt_string: raise ValueError('The parameter bwt_string must not be empty.' ) try: SCREAMING_SNAKE_CASE_ = int(__UpperCAmelCase ) except ValueError: raise TypeError( 'The parameter idx_original_string type must be int or passive' ' of cast to int.' ) if idx_original_string < 0: raise ValueError('The parameter idx_original_string must not be lower than 0.' ) if idx_original_string >= len(__UpperCAmelCase ): raise ValueError( 'The parameter idx_original_string must be lower than' ' len(bwt_string).' ) SCREAMING_SNAKE_CASE_ = [''] * len(__UpperCAmelCase ) for _ in range(len(__UpperCAmelCase ) ): for i in range(len(__UpperCAmelCase ) ): SCREAMING_SNAKE_CASE_ = bwt_string[i] + ordered_rotations[i] ordered_rotations.sort() return ordered_rotations[idx_original_string] if __name__ == "__main__": lowerCamelCase__ : Optional[int] = 'Provide a string that I will generate its BWT transform: ' lowerCamelCase__ : List[str] = input(entry_msg).strip() lowerCamelCase__ : int = bwt_transform(s) print( f'''Burrows Wheeler transform for string \'{s}\' results ''' f'''in \'{result['bwt_string']}\'''' ) lowerCamelCase__ : Dict = reverse_bwt(result['bwt_string'], result['idx_original_string']) print( f'''Reversing Burrows Wheeler transform for entry \'{result['bwt_string']}\' ''' f'''we get original string \'{original_string}\'''' )
31
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available _lowerCAmelCase = {} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCAmelCase = ['GPTSw3Tokenizer'] if TYPE_CHECKING: try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_gpt_swa import GPTSwaTokenizer else: import sys _lowerCAmelCase = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
161
class lowerCamelCase_ : '''simple docstring''' def __init__( self : str ): SCREAMING_SNAKE_CASE_ = {} def lowerCAmelCase_ ( self : List[str] ): print(self.vertex ) for i in self.vertex: print(_lowerCAmelCase , ' -> ' , ' -> '.join([str(_lowerCAmelCase ) for j in self.vertex[i]] ) ) def lowerCAmelCase_ ( self : Union[str, Any] , _lowerCAmelCase : int , _lowerCAmelCase : int ): # check if vertex is already present, if from_vertex in self.vertex: self.vertex[from_vertex].append(_lowerCAmelCase ) else: # else make a new vertex SCREAMING_SNAKE_CASE_ = [to_vertex] def lowerCAmelCase_ ( self : Optional[Any] ): # visited array for storing already visited nodes SCREAMING_SNAKE_CASE_ = [False] * len(self.vertex ) # call the recursive helper function for i in range(len(self.vertex ) ): if not visited[i]: self.dfs_recursive(_lowerCAmelCase , _lowerCAmelCase ) def lowerCAmelCase_ ( self : Tuple , _lowerCAmelCase : int , _lowerCAmelCase : list ): # mark start vertex as visited SCREAMING_SNAKE_CASE_ = True print(_lowerCAmelCase , end=' ' ) # Recur for all the vertices that are adjacent to this node for i in self.vertex: if not visited[i]: self.dfs_recursive(_lowerCAmelCase , _lowerCAmelCase ) if __name__ == "__main__": lowerCamelCase__ : List[Any] = Graph() g.add_edge(0, 1) g.add_edge(0, 2) g.add_edge(1, 2) g.add_edge(2, 0) g.add_edge(2, 3) g.add_edge(3, 3) g.print_graph() print('DFS:') g.dfs() # OUTPUT: # 0 -> 1 -> 2 # 1 -> 2 # 2 -> 0 -> 3 # 3 -> 3 # DFS: # 0 1 2 3
31
0
"""simple docstring""" import json import os from pathlib import Path from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple, Union import sentencepiece from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging A_ : Optional[int] =logging.get_logger(__name__) A_ : Union[str, Any] ='▁' A_ : Any ={ 'vocab_file': 'vocab.json', 'spm_file': 'sentencepiece.bpe.model', } A_ : Any ={ 'vocab_file': { 'facebook/s2t-small-librispeech-asr': ( 'https://huggingface.co/facebook/s2t-small-librispeech-asr/resolve/main/vocab.json' ), }, 'spm_file': { 'facebook/s2t-small-librispeech-asr': ( 'https://huggingface.co/facebook/s2t-small-librispeech-asr/resolve/main/sentencepiece.bpe.model' ) }, } A_ : Union[str, Any] ={ 'facebook/s2t-small-librispeech-asr': 1_0_2_4, } A_ : Dict =['pt', 'fr', 'ru', 'nl', 'ro', 'it', 'es', 'de'] A_ : List[Any] ={'mustc': MUSTC_LANGS} class __a ( _SCREAMING_SNAKE_CASE ): SCREAMING_SNAKE_CASE__ : Tuple = VOCAB_FILES_NAMES SCREAMING_SNAKE_CASE__ : Tuple = PRETRAINED_VOCAB_FILES_MAP SCREAMING_SNAKE_CASE__ : Dict = MAX_MODEL_INPUT_SIZES SCREAMING_SNAKE_CASE__ : Any = ["input_ids", "attention_mask"] SCREAMING_SNAKE_CASE__ : List[str] = [] def __init__( self , a__ , a__ , a__="<s>" , a__="</s>" , a__="<pad>" , a__="<unk>" , a__=False , a__=False , a__=None , a__=None , a__ = None , **a__ , ): _lowerCamelCase = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( bos_token=_lowerCAmelCase , eos_token=_lowerCAmelCase , unk_token=_lowerCAmelCase , pad_token=_lowerCAmelCase , do_upper_case=_lowerCAmelCase , do_lower_case=_lowerCAmelCase , tgt_lang=_lowerCAmelCase , lang_codes=_lowerCAmelCase , sp_model_kwargs=self.sp_model_kwargs , **_lowerCAmelCase , ) _lowerCamelCase = do_upper_case _lowerCamelCase = do_lower_case _lowerCamelCase = load_json(_lowerCAmelCase ) _lowerCamelCase = {v: k for k, v in self.encoder.items()} _lowerCamelCase = spm_file _lowerCamelCase = load_spm(_lowerCAmelCase , self.sp_model_kwargs ) if lang_codes is not None: _lowerCamelCase = lang_codes _lowerCamelCase = LANGUAGES[lang_codes] _lowerCamelCase = [F'<lang:{lang}>' for lang in self.langs] _lowerCamelCase = {lang: self.sp_model.PieceToId(F'<lang:{lang}>' ) for lang in self.langs} _lowerCamelCase = self.lang_tokens _lowerCamelCase = tgt_lang if tgt_lang is not None else self.langs[0] self.set_tgt_lang_special_tokens(self._tgt_lang ) else: _lowerCamelCase = {} @property def snake_case_ ( self ): return len(self.encoder ) @property def snake_case_ ( self ): return self._tgt_lang @tgt_lang.setter def snake_case_ ( self , a__ ): _lowerCamelCase = new_tgt_lang self.set_tgt_lang_special_tokens(_lowerCAmelCase ) def snake_case_ ( self , a__ ): _lowerCamelCase = self.lang_code_to_id[tgt_lang] _lowerCamelCase = [lang_code_id] def snake_case_ ( self , a__ ): return self.sp_model.encode(_lowerCAmelCase , out_type=_lowerCAmelCase ) def snake_case_ ( self , a__ ): return self.encoder.get(_lowerCAmelCase , self.encoder[self.unk_token] ) def snake_case_ ( self , a__ ): return self.decoder.get(_lowerCAmelCase , self.unk_token ) def snake_case_ ( self , a__ ): _lowerCamelCase = [] _lowerCamelCase = '' for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: _lowerCamelCase = self.sp_model.decode(_lowerCAmelCase ) out_string += (decoded.upper() if self.do_upper_case else decoded) + token + " " _lowerCamelCase = [] else: current_sub_tokens.append(_lowerCAmelCase ) _lowerCamelCase = self.sp_model.decode(_lowerCAmelCase ) out_string += decoded.upper() if self.do_upper_case else decoded return out_string.strip() def snake_case_ ( self , a__ , a__=None ): if token_ids_a is None: return self.prefix_tokens + token_ids_a + [self.eos_token_id] # We don't expect to process pairs, but leave the pair logic for API consistency return self.prefix_tokens + token_ids_a + token_ids_a + [self.eos_token_id] def snake_case_ ( self , a__ , a__ = None , a__ = False ): if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=_lowerCAmelCase , token_ids_a=_lowerCAmelCase , already_has_special_tokens=_lowerCAmelCase ) _lowerCamelCase = [1] * len(self.prefix_tokens ) _lowerCamelCase = [1] if token_ids_a is None: return prefix_ones + ([0] * len(_lowerCAmelCase )) + suffix_ones return prefix_ones + ([0] * len(_lowerCAmelCase )) + ([0] * len(_lowerCAmelCase )) + suffix_ones def snake_case_ ( self ): _lowerCamelCase = self.encoder.copy() vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self ): _lowerCamelCase = self.__dict__.copy() _lowerCamelCase = None return state def __setstate__( self , a__ ): _lowerCamelCase = d # for backward compatibility if not hasattr(self , 'sp_model_kwargs' ): _lowerCamelCase = {} _lowerCamelCase = load_spm(self.spm_file , self.sp_model_kwargs ) def snake_case_ ( self , a__ , a__ = None ): _lowerCamelCase = Path(_lowerCAmelCase ) assert save_dir.is_dir(), F'{save_directory} should be a directory' _lowerCamelCase = save_dir / ( (filename_prefix + '-' if filename_prefix else '') + self.vocab_files_names['vocab_file'] ) _lowerCamelCase = save_dir / ( (filename_prefix + '-' if filename_prefix else '') + self.vocab_files_names['spm_file'] ) save_json(self.encoder , _lowerCAmelCase ) if os.path.abspath(self.spm_file ) != os.path.abspath(_lowerCAmelCase ) and os.path.isfile(self.spm_file ): copyfile(self.spm_file , _lowerCAmelCase ) elif not os.path.isfile(self.spm_file ): with open(_lowerCAmelCase , 'wb' ) as fi: _lowerCamelCase = self.sp_model.serialized_model_proto() fi.write(_lowerCAmelCase ) return (str(_lowerCAmelCase ), str(_lowerCAmelCase )) def SCREAMING_SNAKE_CASE_ ( snake_case : str , snake_case : Dict[str, Any] )-> sentencepiece.SentencePieceProcessor: _lowerCamelCase = sentencepiece.SentencePieceProcessor(**__UpperCAmelCase ) spm.Load(str(__UpperCAmelCase ) ) return spm def SCREAMING_SNAKE_CASE_ ( snake_case : str )-> Union[Dict, List]: with open(__UpperCAmelCase , 'r' ) as f: return json.load(__UpperCAmelCase ) def SCREAMING_SNAKE_CASE_ ( snake_case : Optional[Any] , snake_case : str )-> None: with open(__UpperCAmelCase , 'w' ) as f: json.dump(__UpperCAmelCase , __UpperCAmelCase , indent=2 )
650
from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCamelCase__ : str = logging.get_logger(__name__) lowerCamelCase__ : Tuple = { 'funnel-transformer/small': 'https://huggingface.co/funnel-transformer/small/resolve/main/config.json', 'funnel-transformer/small-base': 'https://huggingface.co/funnel-transformer/small-base/resolve/main/config.json', 'funnel-transformer/medium': 'https://huggingface.co/funnel-transformer/medium/resolve/main/config.json', 'funnel-transformer/medium-base': 'https://huggingface.co/funnel-transformer/medium-base/resolve/main/config.json', 'funnel-transformer/intermediate': ( 'https://huggingface.co/funnel-transformer/intermediate/resolve/main/config.json' ), 'funnel-transformer/intermediate-base': ( 'https://huggingface.co/funnel-transformer/intermediate-base/resolve/main/config.json' ), 'funnel-transformer/large': 'https://huggingface.co/funnel-transformer/large/resolve/main/config.json', 'funnel-transformer/large-base': 'https://huggingface.co/funnel-transformer/large-base/resolve/main/config.json', 'funnel-transformer/xlarge': 'https://huggingface.co/funnel-transformer/xlarge/resolve/main/config.json', 'funnel-transformer/xlarge-base': 'https://huggingface.co/funnel-transformer/xlarge-base/resolve/main/config.json', } class lowerCamelCase_ ( _SCREAMING_SNAKE_CASE ): '''simple docstring''' lowercase_ = "funnel" lowercase_ = { "hidden_size": "d_model", "num_attention_heads": "n_head", } def __init__( self : int , _lowerCAmelCase : Optional[int]=30_522 , _lowerCAmelCase : List[str]=[4, 4, 4] , _lowerCAmelCase : Tuple=None , _lowerCAmelCase : Optional[int]=2 , _lowerCAmelCase : int=768 , _lowerCAmelCase : Optional[Any]=12 , _lowerCAmelCase : Optional[Any]=64 , _lowerCAmelCase : Optional[Any]=3_072 , _lowerCAmelCase : List[str]="gelu_new" , _lowerCAmelCase : Any=0.1 , _lowerCAmelCase : int=0.1 , _lowerCAmelCase : Tuple=0.0 , _lowerCAmelCase : List[Any]=0.1 , _lowerCAmelCase : Dict=None , _lowerCAmelCase : str=1E-9 , _lowerCAmelCase : Any="mean" , _lowerCAmelCase : Union[str, Any]="relative_shift" , _lowerCAmelCase : Optional[Any]=True , _lowerCAmelCase : Dict=True , _lowerCAmelCase : Tuple=True , **_lowerCAmelCase : Optional[Any] , ): SCREAMING_SNAKE_CASE_ = vocab_size SCREAMING_SNAKE_CASE_ = block_sizes SCREAMING_SNAKE_CASE_ = [1] * len(_lowerCAmelCase ) if block_repeats is None else block_repeats assert len(_lowerCAmelCase ) == len( self.block_repeats ), "`block_sizes` and `block_repeats` should have the same length." SCREAMING_SNAKE_CASE_ = num_decoder_layers SCREAMING_SNAKE_CASE_ = d_model SCREAMING_SNAKE_CASE_ = n_head SCREAMING_SNAKE_CASE_ = d_head SCREAMING_SNAKE_CASE_ = d_inner SCREAMING_SNAKE_CASE_ = hidden_act SCREAMING_SNAKE_CASE_ = hidden_dropout SCREAMING_SNAKE_CASE_ = attention_dropout SCREAMING_SNAKE_CASE_ = activation_dropout SCREAMING_SNAKE_CASE_ = initializer_range SCREAMING_SNAKE_CASE_ = initializer_std SCREAMING_SNAKE_CASE_ = layer_norm_eps assert pooling_type in [ "mean", "max", ], F"Got {pooling_type} for `pooling_type` but only 'mean' and 'max' are supported." SCREAMING_SNAKE_CASE_ = pooling_type assert attention_type in [ "relative_shift", "factorized", ], F"Got {attention_type} for `attention_type` but only 'relative_shift' and 'factorized' are supported." SCREAMING_SNAKE_CASE_ = attention_type SCREAMING_SNAKE_CASE_ = separate_cls SCREAMING_SNAKE_CASE_ = truncate_seq SCREAMING_SNAKE_CASE_ = pool_q_only super().__init__(**_lowerCAmelCase ) @property def lowerCAmelCase_ ( self : Optional[int] ): return sum(self.block_sizes ) @num_hidden_layers.setter def lowerCAmelCase_ ( self : int , _lowerCAmelCase : List[Any] ): raise NotImplementedError( 'This model does not support the setting of `num_hidden_layers`. Please set `block_sizes`.' ) @property def lowerCAmelCase_ ( self : List[Any] ): return len(self.block_sizes ) @num_blocks.setter def lowerCAmelCase_ ( self : Dict , _lowerCAmelCase : Union[str, Any] ): raise NotImplementedError('This model does not support the setting of `num_blocks`. Please set `block_sizes`.' )
31
0
"""simple docstring""" import os from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils import AddedToken from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_albert import AlbertTokenizer else: __SCREAMING_SNAKE_CASE : List[str] = None __SCREAMING_SNAKE_CASE : int = logging.get_logger(__name__) __SCREAMING_SNAKE_CASE : Tuple = {'vocab_file': 'spiece.model', 'tokenizer_file': 'tokenizer.json'} __SCREAMING_SNAKE_CASE : List[str] = { 'vocab_file': { 'albert-base-v1': 'https://huggingface.co/albert-base-v1/resolve/main/spiece.model', 'albert-large-v1': 'https://huggingface.co/albert-large-v1/resolve/main/spiece.model', 'albert-xlarge-v1': 'https://huggingface.co/albert-xlarge-v1/resolve/main/spiece.model', 'albert-xxlarge-v1': 'https://huggingface.co/albert-xxlarge-v1/resolve/main/spiece.model', 'albert-base-v2': 'https://huggingface.co/albert-base-v2/resolve/main/spiece.model', 'albert-large-v2': 'https://huggingface.co/albert-large-v2/resolve/main/spiece.model', 'albert-xlarge-v2': 'https://huggingface.co/albert-xlarge-v2/resolve/main/spiece.model', 'albert-xxlarge-v2': 'https://huggingface.co/albert-xxlarge-v2/resolve/main/spiece.model', }, 'tokenizer_file': { 'albert-base-v1': 'https://huggingface.co/albert-base-v1/resolve/main/tokenizer.json', 'albert-large-v1': 'https://huggingface.co/albert-large-v1/resolve/main/tokenizer.json', 'albert-xlarge-v1': 'https://huggingface.co/albert-xlarge-v1/resolve/main/tokenizer.json', 'albert-xxlarge-v1': 'https://huggingface.co/albert-xxlarge-v1/resolve/main/tokenizer.json', 'albert-base-v2': 'https://huggingface.co/albert-base-v2/resolve/main/tokenizer.json', 'albert-large-v2': 'https://huggingface.co/albert-large-v2/resolve/main/tokenizer.json', 'albert-xlarge-v2': 'https://huggingface.co/albert-xlarge-v2/resolve/main/tokenizer.json', 'albert-xxlarge-v2': 'https://huggingface.co/albert-xxlarge-v2/resolve/main/tokenizer.json', }, } __SCREAMING_SNAKE_CASE : Optional[Any] = { 'albert-base-v1': 5_1_2, 'albert-large-v1': 5_1_2, 'albert-xlarge-v1': 5_1_2, 'albert-xxlarge-v1': 5_1_2, 'albert-base-v2': 5_1_2, 'albert-large-v2': 5_1_2, 'albert-xlarge-v2': 5_1_2, 'albert-xxlarge-v2': 5_1_2, } __SCREAMING_SNAKE_CASE : Any = '▁' class lowerCamelCase_( _SCREAMING_SNAKE_CASE ): '''simple docstring''' lowercase__ : Any = VOCAB_FILES_NAMES lowercase__ : Union[str, Any] = PRETRAINED_VOCAB_FILES_MAP lowercase__ : List[str] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowercase__ : Dict = AlbertTokenizer def __init__( self , lowerCamelCase__=None , lowerCamelCase__=None , lowerCamelCase__=True , lowerCamelCase__=True , lowerCamelCase__=False , lowerCamelCase__="[CLS]" , lowerCamelCase__="[SEP]" , lowerCamelCase__="<unk>" , lowerCamelCase__="[SEP]" , lowerCamelCase__="<pad>" , lowerCamelCase__="[CLS]" , lowerCamelCase__="[MASK]" , **lowerCamelCase__ , ): # Mask token behave like a normal word, i.e. include the space before it and # is included in the raw text, there should be a match in a non-normalized sentence. _lowerCamelCase = ( AddedToken(_lowerCAmelCase , lstrip=_lowerCAmelCase , rstrip=_lowerCAmelCase , normalized=_lowerCAmelCase ) if isinstance(_lowerCAmelCase , _lowerCAmelCase ) else mask_token ) super().__init__( _lowerCAmelCase , tokenizer_file=_lowerCAmelCase , do_lower_case=_lowerCAmelCase , remove_space=_lowerCAmelCase , keep_accents=_lowerCAmelCase , bos_token=_lowerCAmelCase , eos_token=_lowerCAmelCase , unk_token=_lowerCAmelCase , sep_token=_lowerCAmelCase , pad_token=_lowerCAmelCase , cls_token=_lowerCAmelCase , mask_token=_lowerCAmelCase , **_lowerCAmelCase , ) _lowerCamelCase = do_lower_case _lowerCamelCase = remove_space _lowerCamelCase = keep_accents _lowerCamelCase = vocab_file _lowerCamelCase = False if not self.vocab_file else True def snake_case__ ( self , lowerCamelCase__ , lowerCamelCase__ = None ): _lowerCamelCase = [self.sep_token_id] _lowerCamelCase = [self.cls_token_id] if token_ids_a is None: return cls + token_ids_a + sep return cls + token_ids_a + sep + token_ids_a + sep def snake_case__ ( self , lowerCamelCase__ , lowerCamelCase__ = None ): _lowerCamelCase = [self.sep_token_id] _lowerCamelCase = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def snake_case__ ( self , lowerCamelCase__ , lowerCamelCase__ = None ): if not self.can_save_slow_tokenizer: raise ValueError( '''Your fast tokenizer does not have the necessary information to save the vocabulary for a slow ''' '''tokenizer.''' ) if not os.path.isdir(_lowerCAmelCase ): logger.error(F"""Vocabulary path ({save_directory}) should be a directory""" ) return _lowerCamelCase = os.path.join( _lowerCAmelCase , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(_lowerCAmelCase ): copyfile(self.vocab_file , _lowerCAmelCase ) return (out_vocab_file,)
661
from __future__ import annotations from collections.abc import Iterator class lowerCamelCase_ : '''simple docstring''' def __init__( self : Union[str, Any] , _lowerCAmelCase : int ): SCREAMING_SNAKE_CASE_ = value SCREAMING_SNAKE_CASE_ = None SCREAMING_SNAKE_CASE_ = None class lowerCamelCase_ : '''simple docstring''' def __init__( self : int , _lowerCAmelCase : Node ): SCREAMING_SNAKE_CASE_ = tree def lowerCAmelCase_ ( self : Union[str, Any] , _lowerCAmelCase : Node | None ): if node is None: return 0 return node.value + ( self.depth_first_search(node.left ) + self.depth_first_search(node.right ) ) def __iter__( self : Dict ): yield self.depth_first_search(self.tree ) if __name__ == "__main__": import doctest doctest.testmod()
31
0
"""simple docstring""" class a__ : def __init__( self : str): """simple docstring""" __UpperCAmelCase : Tuple = {} def a_ ( self : List[str]): """simple docstring""" print(self.vertex) for i in self.vertex: print(_lowerCAmelCase , " -> " , " -> ".join([str(_lowerCAmelCase) for j in self.vertex[i]])) def a_ ( self : Union[str, Any] , UpperCamelCase_ : int , UpperCamelCase_ : int): """simple docstring""" if from_vertex in self.vertex: self.vertex[from_vertex].append(_lowerCAmelCase) else: # else make a new vertex __UpperCAmelCase : str = [to_vertex] def a_ ( self : Optional[Any]): """simple docstring""" __UpperCAmelCase : Tuple = [False] * len(self.vertex) # call the recursive helper function for i in range(len(self.vertex)): if not visited[i]: self.dfs_recursive(_lowerCAmelCase , _lowerCAmelCase) def a_ ( self : Tuple , UpperCamelCase_ : int , UpperCamelCase_ : list): """simple docstring""" __UpperCAmelCase : Dict = True print(_lowerCAmelCase , end=" ") # Recur for all the vertices that are adjacent to this node for i in self.vertex: if not visited[i]: self.dfs_recursive(_lowerCAmelCase , _lowerCAmelCase) if __name__ == "__main__": A = Graph() g.add_edge(0, 1) g.add_edge(0, 2) g.add_edge(1, 2) g.add_edge(2, 0) g.add_edge(2, 3) g.add_edge(3, 3) g.print_graph() print("""DFS:""") g.dfs() # OUTPUT: # 0 -> 1 -> 2 # 1 -> 2 # 2 -> 0 -> 3 # 3 -> 3 # DFS: # 0 1 2 3
77
def UpperCAmelCase_ ( __UpperCAmelCase : list , __UpperCAmelCase : int , __UpperCAmelCase : int = 0 , __UpperCAmelCase : int = 0 ) -> int: SCREAMING_SNAKE_CASE_ = right or len(__UpperCAmelCase ) - 1 if left > right: return -1 elif list_data[left] == key: return left elif list_data[right] == key: return right else: return search(__UpperCAmelCase , __UpperCAmelCase , left + 1 , right - 1 ) if __name__ == "__main__": import doctest doctest.testmod()
31
0
import math import flax.linen as nn import jax.numpy as jnp def lowerCAmelCase ( UpperCamelCase__ : jnp.ndarray , UpperCamelCase__ : int , UpperCamelCase__ : float = 1 , UpperCamelCase__ : float = 1 , UpperCamelCase__ : float = 1.0E4 , UpperCamelCase__ : bool = False , UpperCamelCase__ : float = 1.0 , ) -> jnp.ndarray: """simple docstring""" assert timesteps.ndim == 1, "Timesteps should be a 1d-array" assert embedding_dim % 2 == 0, F"""Embedding dimension {embedding_dim} should be even""" __SCREAMING_SNAKE_CASE: Optional[int] = float(embedding_dim // 2 ) __SCREAMING_SNAKE_CASE: Dict = math.log(max_timescale / min_timescale ) / (num_timescales - freq_shift) __SCREAMING_SNAKE_CASE: Optional[int] = min_timescale * jnp.exp(jnp.arange(__UpperCAmelCase , dtype=jnp.floataa ) * -log_timescale_increment ) __SCREAMING_SNAKE_CASE: Optional[int] = jnp.expand_dims(__UpperCAmelCase , 1 ) * jnp.expand_dims(__UpperCAmelCase , 0 ) # scale embeddings __SCREAMING_SNAKE_CASE: str = scale * emb if flip_sin_to_cos: __SCREAMING_SNAKE_CASE: List[str] = jnp.concatenate([jnp.cos(__UpperCAmelCase ), jnp.sin(__UpperCAmelCase )] , axis=1 ) else: __SCREAMING_SNAKE_CASE: int = jnp.concatenate([jnp.sin(__UpperCAmelCase ), jnp.cos(__UpperCAmelCase )] , axis=1 ) __SCREAMING_SNAKE_CASE: Any = jnp.reshape(__UpperCAmelCase , [jnp.shape(__UpperCAmelCase )[0], embedding_dim] ) return signal class a ( nn.Module ): SCREAMING_SNAKE_CASE__ : str = 32 SCREAMING_SNAKE_CASE__ : Optional[Any] = jnp.floataa @nn.compact def __call__( self , _lowerCAmelCase ): """simple docstring""" __SCREAMING_SNAKE_CASE: int = nn.Dense(self.time_embed_dim , dtype=self.dtype , name='''linear_1''' )(_lowerCAmelCase ) __SCREAMING_SNAKE_CASE: Any = nn.silu(_lowerCAmelCase ) __SCREAMING_SNAKE_CASE: List[Any] = nn.Dense(self.time_embed_dim , dtype=self.dtype , name='''linear_2''' )(_lowerCAmelCase ) return temb class a ( nn.Module ): SCREAMING_SNAKE_CASE__ : int = 32 SCREAMING_SNAKE_CASE__ : str = False SCREAMING_SNAKE_CASE__ : Tuple = 1 @nn.compact def __call__( self , _lowerCAmelCase ): """simple docstring""" return get_sinusoidal_embeddings( _lowerCAmelCase , embedding_dim=self.dim , flip_sin_to_cos=self.flip_sin_to_cos , freq_shift=self.freq_shift )
202
import os from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils import AddedToken from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_fnet import FNetTokenizer else: lowerCamelCase__ : Optional[Any] = None lowerCamelCase__ : List[str] = logging.get_logger(__name__) lowerCamelCase__ : List[str] = {'vocab_file': 'spiece.model', 'tokenizer_file': 'tokenizer.json'} lowerCamelCase__ : List[str] = { 'vocab_file': { 'google/fnet-base': 'https://huggingface.co/google/fnet-base/resolve/main/spiece.model', 'google/fnet-large': 'https://huggingface.co/google/fnet-large/resolve/main/spiece.model', }, 'tokenizer_file': { 'google/fnet-base': 'https://huggingface.co/google/fnet-base/resolve/main/tokenizer.json', 'google/fnet-large': 'https://huggingface.co/google/fnet-large/resolve/main/tokenizer.json', }, } lowerCamelCase__ : Optional[Any] = { 'google/fnet-base': 512, 'google/fnet-large': 512, } lowerCamelCase__ : List[Any] = '▁' class lowerCamelCase_ ( _SCREAMING_SNAKE_CASE ): '''simple docstring''' lowercase_ = VOCAB_FILES_NAMES lowercase_ = PRETRAINED_VOCAB_FILES_MAP lowercase_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowercase_ = ["input_ids", "token_type_ids"] lowercase_ = FNetTokenizer def __init__( self : List[Any] , _lowerCAmelCase : Dict=None , _lowerCAmelCase : Dict=None , _lowerCAmelCase : List[str]=False , _lowerCAmelCase : Optional[Any]=True , _lowerCAmelCase : Tuple=True , _lowerCAmelCase : List[Any]="<unk>" , _lowerCAmelCase : Optional[Any]="[SEP]" , _lowerCAmelCase : Optional[Any]="<pad>" , _lowerCAmelCase : Optional[int]="[CLS]" , _lowerCAmelCase : Optional[Any]="[MASK]" , **_lowerCAmelCase : Any , ): # Mask token behave like a normal word, i.e. include the space before it and # is included in the raw text, there should be a match in a non-normalized sentence. SCREAMING_SNAKE_CASE_ = ( AddedToken(_lowerCAmelCase , lstrip=_lowerCAmelCase , rstrip=_lowerCAmelCase , normalized=_lowerCAmelCase ) if isinstance(_lowerCAmelCase , _lowerCAmelCase ) else mask_token ) super().__init__( _lowerCAmelCase , tokenizer_file=_lowerCAmelCase , do_lower_case=_lowerCAmelCase , remove_space=_lowerCAmelCase , keep_accents=_lowerCAmelCase , unk_token=_lowerCAmelCase , sep_token=_lowerCAmelCase , pad_token=_lowerCAmelCase , cls_token=_lowerCAmelCase , mask_token=_lowerCAmelCase , **_lowerCAmelCase , ) SCREAMING_SNAKE_CASE_ = do_lower_case SCREAMING_SNAKE_CASE_ = remove_space SCREAMING_SNAKE_CASE_ = keep_accents SCREAMING_SNAKE_CASE_ = vocab_file SCREAMING_SNAKE_CASE_ = False if not self.vocab_file else True def lowerCAmelCase_ ( self : Any , _lowerCAmelCase : List[int] , _lowerCAmelCase : Optional[List[int]] = None ): SCREAMING_SNAKE_CASE_ = [self.sep_token_id] SCREAMING_SNAKE_CASE_ = [self.cls_token_id] if token_ids_a is None: return cls + token_ids_a + sep return cls + token_ids_a + sep + token_ids_a + sep def lowerCAmelCase_ ( self : Optional[int] , _lowerCAmelCase : List[int] , _lowerCAmelCase : Optional[List[int]] = None ): SCREAMING_SNAKE_CASE_ = [self.sep_token_id] SCREAMING_SNAKE_CASE_ = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def lowerCAmelCase_ ( self : Optional[Any] , _lowerCAmelCase : str , _lowerCAmelCase : Optional[str] = None ): if not os.path.isdir(_lowerCAmelCase ): logger.error(F"Vocabulary path ({save_directory}) should be a directory" ) return SCREAMING_SNAKE_CASE_ = os.path.join( _lowerCAmelCase , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(_lowerCAmelCase ): copyfile(self.vocab_file , _lowerCAmelCase ) return (out_vocab_file,)
31
0
'''simple docstring''' import string from math import logaa def _A ( lowercase__ , lowercase__ ): lowercase__ = document.translate( str.maketrans("""""" , """""" , string.punctuation ) ).replace("""\n""" , """""" ) lowercase__ = document_without_punctuation.split(""" """ ) # word tokenization return len([word for word in tokenize_document if word.lower() == term.lower()] ) def _A ( lowercase__ , lowercase__ ): lowercase__ = corpus.lower().translate( str.maketrans("""""" , """""" , string.punctuation ) ) # strip all punctuation and replace it with '' lowercase__ = corpus_without_punctuation.split("""\n""" ) lowercase__ = term.lower() return (len([doc for doc in docs if term in doc] ), len(__UpperCAmelCase )) def _A ( lowercase__ , lowercase__ , lowercase__=False ): if smoothing: if n == 0: raise ValueError("""log10(0) is undefined.""" ) return round(1 + logaa(n / (1 + df) ) , 3 ) if df == 0: raise ZeroDivisionError("""df must be > 0""" ) elif n == 0: raise ValueError("""log10(0) is undefined.""" ) return round(logaa(n / df ) , 3 ) def _A ( lowercase__ , lowercase__ ): return round(tf * idf , 3 )
325
from __future__ import annotations from collections.abc import Generator def UpperCAmelCase_ ( ) -> Generator[int, None, None]: SCREAMING_SNAKE_CASE_ = {} SCREAMING_SNAKE_CASE_ = 2 while True: SCREAMING_SNAKE_CASE_ = factor_map.pop(__UpperCAmelCase , __UpperCAmelCase ) if factor: SCREAMING_SNAKE_CASE_ = factor + prime while x in factor_map: x += factor SCREAMING_SNAKE_CASE_ = factor else: SCREAMING_SNAKE_CASE_ = prime yield prime prime += 1 def UpperCAmelCase_ ( __UpperCAmelCase : float = 1E10 ) -> int: SCREAMING_SNAKE_CASE_ = sieve() SCREAMING_SNAKE_CASE_ = 1 while True: SCREAMING_SNAKE_CASE_ = next(__UpperCAmelCase ) if (2 * prime * n) > limit: return n # Ignore the next prime as the reminder will be 2. next(__UpperCAmelCase ) n += 2 if __name__ == "__main__": print(solution())
31
0
import numpy as np import torch from torch.utils.data import DataLoader from accelerate.utils.dataclasses import DistributedType class __a: """simple docstring""" def __init__( self ,_SCREAMING_SNAKE_CASE=2 ,_SCREAMING_SNAKE_CASE=3 ,_SCREAMING_SNAKE_CASE=64 ,_SCREAMING_SNAKE_CASE=None ) -> int: UpperCAmelCase_ : List[Any] = np.random.default_rng(_lowerCAmelCase ) UpperCAmelCase_ : str = length UpperCAmelCase_ : Tuple = rng.normal(size=(length,) ).astype(np.floataa ) UpperCAmelCase_ : Optional[int] = a * self.x + b + rng.normal(scale=0.1 ,size=(length,) ).astype(np.floataa ) def __len__( self ) -> List[str]: return self.length def __getitem__( self ,_SCREAMING_SNAKE_CASE ) -> Any: return {"x": self.x[i], "y": self.y[i]} class __a( torch.nn.Module ): """simple docstring""" def __init__( self ,_SCREAMING_SNAKE_CASE=0 ,_SCREAMING_SNAKE_CASE=0 ,_SCREAMING_SNAKE_CASE=False ) -> Optional[int]: super().__init__() UpperCAmelCase_ : List[Any] = torch.nn.Parameter(torch.tensor([2, 3] ).float() ) UpperCAmelCase_ : Optional[Any] = torch.nn.Parameter(torch.tensor([2, 3] ).float() ) UpperCAmelCase_ : List[Any] = True def a__ ( self ,_SCREAMING_SNAKE_CASE=None ) -> int: if self.first_batch: print(f'''Model dtype: {self.a.dtype}, {self.b.dtype}. Input dtype: {x.dtype}''' ) UpperCAmelCase_ : int = False return x * self.a[0] + self.b[0] class __a( torch.nn.Module ): """simple docstring""" def __init__( self ,_SCREAMING_SNAKE_CASE=0 ,_SCREAMING_SNAKE_CASE=0 ,_SCREAMING_SNAKE_CASE=False ) -> List[Any]: super().__init__() UpperCAmelCase_ : Tuple = torch.nn.Parameter(torch.tensor(_lowerCAmelCase ).float() ) UpperCAmelCase_ : str = torch.nn.Parameter(torch.tensor(_lowerCAmelCase ).float() ) UpperCAmelCase_ : Optional[int] = True def a__ ( self ,_SCREAMING_SNAKE_CASE=None ) -> str: if self.first_batch: print(f'''Model dtype: {self.a.dtype}, {self.b.dtype}. Input dtype: {x.dtype}''' ) UpperCAmelCase_ : Any = False return x * self.a + self.b def lowerCamelCase__ ( _lowercase , _lowercase = 16 ): '''simple docstring''' from datasets import load_dataset from transformers import AutoTokenizer UpperCAmelCase_ : Any = AutoTokenizer.from_pretrained('''bert-base-cased''' ) UpperCAmelCase_ : Tuple = {'''train''': '''tests/test_samples/MRPC/train.csv''', '''validation''': '''tests/test_samples/MRPC/dev.csv'''} UpperCAmelCase_ : Tuple = load_dataset('''csv''' , data_files=__UpperCAmelCase ) UpperCAmelCase_ : int = datasets['''train'''].unique('''label''' ) UpperCAmelCase_ : str = {v: i for i, v in enumerate(__UpperCAmelCase )} def tokenize_function(_lowercase ): # max_length=None => use the model max length (it's actually the default) UpperCAmelCase_ : Tuple = tokenizer( examples['''sentence1'''] , examples['''sentence2'''] , truncation=__UpperCAmelCase , max_length=__UpperCAmelCase , padding='''max_length''' ) if "label" in examples: UpperCAmelCase_ : Dict = [label_to_id[l] for l in examples['''label''']] return outputs # Apply the method we just defined to all the examples in all the splits of the dataset UpperCAmelCase_ : List[Any] = datasets.map( __UpperCAmelCase , batched=__UpperCAmelCase , remove_columns=['''sentence1''', '''sentence2''', '''label'''] , ) def collate_fn(_lowercase ): # On TPU it's best to pad everything to the same length or training will be very slow. if accelerator.distributed_type == DistributedType.TPU: return tokenizer.pad(__UpperCAmelCase , padding='''max_length''' , max_length=128 , return_tensors='''pt''' ) return tokenizer.pad(__UpperCAmelCase , padding='''longest''' , return_tensors='''pt''' ) # Instantiate dataloaders. UpperCAmelCase_ : List[Any] = DataLoader(tokenized_datasets['''train'''] , shuffle=__UpperCAmelCase , collate_fn=__UpperCAmelCase , batch_size=2 ) UpperCAmelCase_ : Any = DataLoader(tokenized_datasets['''validation'''] , shuffle=__UpperCAmelCase , collate_fn=__UpperCAmelCase , batch_size=1 ) return train_dataloader, eval_dataloader
30
import numpy as np import torch from torch.utils.data import DataLoader from accelerate.utils.dataclasses import DistributedType class lowerCamelCase_ : '''simple docstring''' def __init__( self : Any , _lowerCAmelCase : Optional[int]=2 , _lowerCAmelCase : Any=3 , _lowerCAmelCase : Tuple=64 , _lowerCAmelCase : List[str]=None ): SCREAMING_SNAKE_CASE_ = np.random.default_rng(_lowerCAmelCase ) SCREAMING_SNAKE_CASE_ = length SCREAMING_SNAKE_CASE_ = rng.normal(size=(length,) ).astype(np.floataa ) SCREAMING_SNAKE_CASE_ = a * self.x + b + rng.normal(scale=0.1 , size=(length,) ).astype(np.floataa ) def __len__( self : Optional[int] ): return self.length def __getitem__( self : str , _lowerCAmelCase : Union[str, Any] ): return {"x": self.x[i], "y": self.y[i]} class lowerCamelCase_ ( torch.nn.Module ): '''simple docstring''' def __init__( self : Tuple , _lowerCAmelCase : Dict=0 , _lowerCAmelCase : List[str]=0 , _lowerCAmelCase : str=False ): super().__init__() SCREAMING_SNAKE_CASE_ = torch.nn.Parameter(torch.tensor([2, 3] ).float() ) SCREAMING_SNAKE_CASE_ = torch.nn.Parameter(torch.tensor([2, 3] ).float() ) SCREAMING_SNAKE_CASE_ = True def lowerCAmelCase_ ( self : Dict , _lowerCAmelCase : Union[str, Any]=None ): if self.first_batch: print(F"Model dtype: {self.a.dtype}, {self.b.dtype}. Input dtype: {x.dtype}" ) SCREAMING_SNAKE_CASE_ = False return x * self.a[0] + self.b[0] class lowerCamelCase_ ( torch.nn.Module ): '''simple docstring''' def __init__( self : Optional[int] , _lowerCAmelCase : Any=0 , _lowerCAmelCase : Any=0 , _lowerCAmelCase : Optional[Any]=False ): super().__init__() SCREAMING_SNAKE_CASE_ = torch.nn.Parameter(torch.tensor(_lowerCAmelCase ).float() ) SCREAMING_SNAKE_CASE_ = torch.nn.Parameter(torch.tensor(_lowerCAmelCase ).float() ) SCREAMING_SNAKE_CASE_ = True def lowerCAmelCase_ ( self : Optional[Any] , _lowerCAmelCase : Optional[int]=None ): if self.first_batch: print(F"Model dtype: {self.a.dtype}, {self.b.dtype}. Input dtype: {x.dtype}" ) SCREAMING_SNAKE_CASE_ = False return x * self.a + self.b def UpperCAmelCase_ ( __UpperCAmelCase : Dict , __UpperCAmelCase : int = 16 ) -> Union[str, Any]: from datasets import load_dataset from transformers import AutoTokenizer SCREAMING_SNAKE_CASE_ = AutoTokenizer.from_pretrained('bert-base-cased' ) SCREAMING_SNAKE_CASE_ = {'train': 'tests/test_samples/MRPC/train.csv', 'validation': 'tests/test_samples/MRPC/dev.csv'} SCREAMING_SNAKE_CASE_ = load_dataset('csv' , data_files=__UpperCAmelCase ) SCREAMING_SNAKE_CASE_ = datasets['train'].unique('label' ) SCREAMING_SNAKE_CASE_ = {v: i for i, v in enumerate(__UpperCAmelCase )} def tokenize_function(__UpperCAmelCase : Optional[int] ): # max_length=None => use the model max length (it's actually the default) SCREAMING_SNAKE_CASE_ = tokenizer( examples['sentence1'] , examples['sentence2'] , truncation=__UpperCAmelCase , max_length=__UpperCAmelCase , padding='max_length' ) if "label" in examples: SCREAMING_SNAKE_CASE_ = [label_to_id[l] for l in examples['label']] return outputs # Apply the method we just defined to all the examples in all the splits of the dataset SCREAMING_SNAKE_CASE_ = datasets.map( __UpperCAmelCase , batched=__UpperCAmelCase , remove_columns=['sentence1', 'sentence2', 'label'] , ) def collate_fn(__UpperCAmelCase : Dict ): # On TPU it's best to pad everything to the same length or training will be very slow. if accelerator.distributed_type == DistributedType.TPU: return tokenizer.pad(__UpperCAmelCase , padding='max_length' , max_length=1_28 , return_tensors='pt' ) return tokenizer.pad(__UpperCAmelCase , padding='longest' , return_tensors='pt' ) # Instantiate dataloaders. SCREAMING_SNAKE_CASE_ = DataLoader(tokenized_datasets['train'] , shuffle=__UpperCAmelCase , collate_fn=__UpperCAmelCase , batch_size=2 ) SCREAMING_SNAKE_CASE_ = DataLoader(tokenized_datasets['validation'] , shuffle=__UpperCAmelCase , collate_fn=__UpperCAmelCase , batch_size=1 ) return train_dataloader, eval_dataloader
31
0
'''simple docstring''' import itertools import random import unittest import numpy as np from transformers import BatchFeature, SpeechTaFeatureExtractor from transformers.testing_utils import require_torch from transformers.utils.import_utils import is_torch_available from ...test_sequence_feature_extraction_common import SequenceFeatureExtractionTestMixin if is_torch_available(): import torch A_ = random.Random() def UpperCamelCase__ ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE=1.0 , __SCREAMING_SNAKE_CASE=None , __SCREAMING_SNAKE_CASE=None ) -> Tuple: if rng is None: snake_case__ : str = global_rng snake_case__ : List[str] = [] for batch_idx in range(shape[0] ): values.append([] ) for _ in range(shape[1] ): values[-1].append(rng.random() * scale ) return values @require_torch class lowercase_ ( unittest.TestCase ): def __init__( self : List[str] , __lowerCamelCase : int , __lowerCamelCase : Optional[Any]=7 , __lowerCamelCase : Union[str, Any]=400 , __lowerCamelCase : Tuple=2000 , __lowerCamelCase : str=1 , __lowerCamelCase : int=0.0 , __lowerCamelCase : Optional[Any]=16000 , __lowerCamelCase : Optional[Any]=True , __lowerCamelCase : Any=80 , __lowerCamelCase : Union[str, Any]=16 , __lowerCamelCase : List[str]=64 , __lowerCamelCase : List[Any]="hann_window" , __lowerCamelCase : Any=80 , __lowerCamelCase : List[Any]=7600 , __lowerCamelCase : List[Any]=1E-10 , __lowerCamelCase : Optional[Any]=True , ): snake_case__ : Dict = parent snake_case__ : Optional[Any] = batch_size snake_case__ : List[str] = min_seq_length snake_case__ : Optional[Any] = max_seq_length snake_case__ : Dict = (self.max_seq_length - self.min_seq_length) // (self.batch_size - 1) snake_case__ : Any = feature_size snake_case__ : Union[str, Any] = padding_value snake_case__ : List[Any] = sampling_rate snake_case__ : Optional[Any] = do_normalize snake_case__ : Tuple = num_mel_bins snake_case__ : List[str] = hop_length snake_case__ : int = win_length snake_case__ : Union[str, Any] = win_function snake_case__ : int = fmin snake_case__ : List[str] = fmax snake_case__ : str = mel_floor snake_case__ : Optional[int] = return_attention_mask def _lowerCAmelCase ( self : Union[str, Any] ): return { "feature_size": self.feature_size, "padding_value": self.padding_value, "sampling_rate": self.sampling_rate, "do_normalize": self.do_normalize, "num_mel_bins": self.num_mel_bins, "hop_length": self.hop_length, "win_length": self.win_length, "win_function": self.win_function, "fmin": self.fmin, "fmax": self.fmax, "mel_floor": self.mel_floor, "return_attention_mask": self.return_attention_mask, } def _lowerCAmelCase ( self : Dict , __lowerCamelCase : Optional[int]=False , __lowerCamelCase : str=False ): def _flatten(__lowerCamelCase : Dict ): return list(itertools.chain(*_lowerCAmelCase ) ) if equal_length: snake_case__ : Union[str, Any] = floats_list((self.batch_size, self.max_seq_length) ) else: # make sure that inputs increase in size snake_case__ : Dict = [ _flatten(floats_list((x, self.feature_size) ) ) for x in range(self.min_seq_length , self.max_seq_length , self.seq_length_diff ) ] if numpify: snake_case__ : Any = [np.asarray(_lowerCAmelCase ) for x in speech_inputs] return speech_inputs def _lowerCAmelCase ( self : List[Any] , __lowerCamelCase : Union[str, Any]=False , __lowerCamelCase : Optional[int]=False ): if equal_length: snake_case__ : Any = [floats_list((self.max_seq_length, self.num_mel_bins) ) for _ in range(self.batch_size )] else: # make sure that inputs increase in size snake_case__ : int = [ floats_list((x, self.num_mel_bins) ) for x in range(self.min_seq_length , self.max_seq_length , self.seq_length_diff ) ] if numpify: snake_case__ : Union[str, Any] = [np.asarray(_lowerCAmelCase ) for x in speech_inputs] return speech_inputs @require_torch class lowercase_ ( _SCREAMING_SNAKE_CASE , unittest.TestCase ): A_ = SpeechTaFeatureExtractor def _lowerCAmelCase ( self : Any ): snake_case__ : Any = SpeechTaFeatureExtractionTester(self ) def _lowerCAmelCase ( self : Any , __lowerCamelCase : int ): self.assertTrue(np.all(np.mean(_lowerCAmelCase , axis=0 ) < 1E-3 ) ) self.assertTrue(np.all(np.abs(np.var(_lowerCAmelCase , axis=0 ) - 1 ) < 1E-3 ) ) def _lowerCAmelCase ( self : List[Any] ): # Tests that all call wrap to encode_plus and batch_encode_plus snake_case__ : Union[str, Any] = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) # create three inputs of length 800, 1000, and 1200 snake_case__ : Union[str, Any] = [floats_list((1, x) )[0] for x in range(800 , 1400 , 200 )] snake_case__ : int = [np.asarray(_lowerCAmelCase ) for speech_input in speech_inputs] # Test not batched input snake_case__ : str = feat_extract(speech_inputs[0] , return_tensors='np' ).input_values snake_case__ : Tuple = feat_extract(np_speech_inputs[0] , return_tensors='np' ).input_values self.assertTrue(np.allclose(_lowerCAmelCase , _lowerCAmelCase , atol=1E-3 ) ) # Test batched snake_case__ : Union[str, Any] = feat_extract(_lowerCAmelCase , return_tensors='np' ).input_values snake_case__ : str = feat_extract(_lowerCAmelCase , return_tensors='np' ).input_values for enc_seq_a, enc_seq_a in zip(_lowerCAmelCase , _lowerCAmelCase ): self.assertTrue(np.allclose(_lowerCAmelCase , _lowerCAmelCase , atol=1E-3 ) ) def _lowerCAmelCase ( self : Union[str, Any] ): snake_case__ : List[str] = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) snake_case__ : List[str] = [floats_list((1, x) )[0] for x in range(800 , 1400 , 200 )] snake_case__ : Any = ['longest', 'max_length', 'do_not_pad'] snake_case__ : List[str] = [None, 1600, None] for max_length, padding in zip(_lowerCAmelCase , _lowerCAmelCase ): snake_case__ : Optional[int] = feat_extract(_lowerCAmelCase , padding=_lowerCAmelCase , max_length=_lowerCAmelCase , return_tensors='np' ) snake_case__ : Optional[Any] = processed.input_values self._check_zero_mean_unit_variance(input_values[0][:800] ) self.assertTrue(input_values[0][800:].sum() < 1E-6 ) self._check_zero_mean_unit_variance(input_values[1][:1000] ) self.assertTrue(input_values[0][1000:].sum() < 1E-6 ) self._check_zero_mean_unit_variance(input_values[2][:1200] ) def _lowerCAmelCase ( self : Optional[Any] ): snake_case__ : str = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) snake_case__ : Any = range(800 , 1400 , 200 ) snake_case__ : Optional[int] = [floats_list((1, x) )[0] for x in lengths] snake_case__ : Any = ['longest', 'max_length', 'do_not_pad'] snake_case__ : List[Any] = [None, 1600, None] for max_length, padding in zip(_lowerCAmelCase , _lowerCAmelCase ): snake_case__ : int = feat_extract(_lowerCAmelCase , max_length=_lowerCAmelCase , padding=_lowerCAmelCase ) snake_case__ : Dict = processed.input_values self._check_zero_mean_unit_variance(input_values[0][:800] ) self._check_zero_mean_unit_variance(input_values[1][:1000] ) self._check_zero_mean_unit_variance(input_values[2][:1200] ) def _lowerCAmelCase ( self : Dict ): snake_case__ : Union[str, Any] = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) snake_case__ : str = [floats_list((1, x) )[0] for x in range(800 , 1400 , 200 )] snake_case__ : Optional[Any] = feat_extract( _lowerCAmelCase , truncation=_lowerCAmelCase , max_length=1000 , padding='max_length' , return_tensors='np' ) snake_case__ : str = processed.input_values self._check_zero_mean_unit_variance(input_values[0, :800] ) self._check_zero_mean_unit_variance(input_values[1] ) self._check_zero_mean_unit_variance(input_values[2] ) def _lowerCAmelCase ( self : Dict ): snake_case__ : int = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) snake_case__ : Optional[Any] = [floats_list((1, x) )[0] for x in range(800 , 1400 , 200 )] snake_case__ : Dict = feat_extract( _lowerCAmelCase , truncation=_lowerCAmelCase , max_length=1000 , padding='longest' , return_tensors='np' ) snake_case__ : Tuple = processed.input_values self._check_zero_mean_unit_variance(input_values[0, :800] ) self._check_zero_mean_unit_variance(input_values[1, :1000] ) self._check_zero_mean_unit_variance(input_values[2] ) # make sure that if max_length < longest -> then pad to max_length self.assertTrue(input_values.shape == (3, 1000) ) snake_case__ : Dict = [floats_list((1, x) )[0] for x in range(800 , 1400 , 200 )] snake_case__ : List[Any] = feat_extract( _lowerCAmelCase , truncation=_lowerCAmelCase , max_length=2000 , padding='longest' , return_tensors='np' ) snake_case__ : Dict = processed.input_values self._check_zero_mean_unit_variance(input_values[0, :800] ) self._check_zero_mean_unit_variance(input_values[1, :1000] ) self._check_zero_mean_unit_variance(input_values[2] ) # make sure that if max_length > longest -> then pad to longest self.assertTrue(input_values.shape == (3, 1200) ) def _lowerCAmelCase ( self : Optional[int] ): snake_case__ : Optional[int] = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) snake_case__ : str = np.random.rand(100 ).astype(np.floataa ) snake_case__ : Any = np_speech_inputs.tolist() for inputs in [py_speech_inputs, np_speech_inputs]: snake_case__ : Tuple = feature_extractor.pad([{'input_values': inputs}] , return_tensors='np' ) self.assertTrue(np_processed.input_values.dtype == np.floataa ) snake_case__ : Optional[int] = feature_extractor.pad([{'input_values': inputs}] , return_tensors='pt' ) self.assertTrue(pt_processed.input_values.dtype == torch.floataa ) def _lowerCAmelCase ( self : Tuple ): # Tests that all call wrap to encode_plus and batch_encode_plus snake_case__ : Tuple = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) # create three inputs of length 800, 1000, and 1200 snake_case__ : List[str] = [floats_list((1, x) )[0] for x in range(800 , 1400 , 200 )] snake_case__ : Optional[int] = [np.asarray(_lowerCAmelCase ) for speech_input in speech_inputs] # Test feature size snake_case__ : List[Any] = feature_extractor(audio_target=_lowerCAmelCase , padding=_lowerCAmelCase , return_tensors='np' ).input_values self.assertTrue(input_values.ndim == 3 ) self.assertTrue(input_values.shape[-1] == feature_extractor.num_mel_bins ) # Test not batched input snake_case__ : str = feature_extractor(speech_inputs[0] , return_tensors='np' ).input_values snake_case__ : Any = feature_extractor(np_speech_inputs[0] , return_tensors='np' ).input_values self.assertTrue(np.allclose(_lowerCAmelCase , _lowerCAmelCase , atol=1E-3 ) ) # Test batched snake_case__ : int = feature_extractor(_lowerCAmelCase , return_tensors='np' ).input_values snake_case__ : int = feature_extractor(_lowerCAmelCase , return_tensors='np' ).input_values for enc_seq_a, enc_seq_a in zip(_lowerCAmelCase , _lowerCAmelCase ): self.assertTrue(np.allclose(_lowerCAmelCase , _lowerCAmelCase , atol=1E-3 ) ) # Test 2-D numpy arrays are batched. snake_case__ : Optional[int] = [floats_list((1, x) )[0] for x in (800, 800, 800)] snake_case__ : List[Any] = np.asarray(_lowerCAmelCase ) snake_case__ : List[Any] = feature_extractor(_lowerCAmelCase , return_tensors='np' ).input_values snake_case__ : str = feature_extractor(_lowerCAmelCase , return_tensors='np' ).input_values for enc_seq_a, enc_seq_a in zip(_lowerCAmelCase , _lowerCAmelCase ): self.assertTrue(np.allclose(_lowerCAmelCase , _lowerCAmelCase , atol=1E-3 ) ) def _lowerCAmelCase ( self : str ): snake_case__ : Any = self.feat_extract_tester.prepare_inputs_for_target() snake_case__ : List[Any] = self.feature_extraction_class(**self.feat_extract_dict ) snake_case__ : List[str] = feat_extract.model_input_names[0] snake_case__ : Union[str, Any] = BatchFeature({input_name: speech_inputs} ) self.assertTrue(all(len(_lowerCAmelCase ) == len(_lowerCAmelCase ) for x, y in zip(_lowerCAmelCase , processed_features[input_name] ) ) ) snake_case__ : int = self.feat_extract_tester.prepare_inputs_for_target(equal_length=_lowerCAmelCase ) snake_case__ : Any = BatchFeature({input_name: speech_inputs} , tensor_type='np' ) snake_case__ : Any = processed_features[input_name] if len(batch_features_input.shape ) < 3: snake_case__ : str = batch_features_input[:, :, None] self.assertTrue( batch_features_input.shape == (self.feat_extract_tester.batch_size, len(speech_inputs[0] ), self.feat_extract_tester.num_mel_bins) ) @require_torch def _lowerCAmelCase ( self : Dict ): snake_case__ : Optional[Any] = self.feat_extract_tester.prepare_inputs_for_target(equal_length=_lowerCAmelCase ) snake_case__ : Any = self.feature_extraction_class(**self.feat_extract_dict ) snake_case__ : int = feat_extract.model_input_names[0] snake_case__ : Union[str, Any] = BatchFeature({input_name: speech_inputs} , tensor_type='pt' ) snake_case__ : Optional[int] = processed_features[input_name] if len(batch_features_input.shape ) < 3: snake_case__ : Optional[Any] = batch_features_input[:, :, None] self.assertTrue( batch_features_input.shape == (self.feat_extract_tester.batch_size, len(speech_inputs[0] ), self.feat_extract_tester.num_mel_bins) ) @require_torch def _lowerCAmelCase ( self : Dict ): snake_case__ : str = self.feature_extraction_class(**self.feat_extract_dict ) snake_case__ : List[str] = self.feat_extract_tester.prepare_inputs_for_target() snake_case__ : Any = feat_extract.model_input_names[0] snake_case__ : Optional[int] = BatchFeature({input_name: speech_inputs} ) snake_case__ : List[str] = feat_extract.num_mel_bins # hack! snake_case__ : Dict = feat_extract.pad(_lowerCAmelCase , padding='longest' , return_tensors='np' )[input_name] snake_case__ : str = feat_extract.pad(_lowerCAmelCase , padding='longest' , return_tensors='pt' )[input_name] self.assertTrue(abs(input_np.astype(np.floataa ).sum() - input_pt.numpy().astype(np.floataa ).sum() ) < 1E-2 ) def _lowerCAmelCase ( self : str ): snake_case__ : Tuple = self.feat_extract_dict snake_case__ : List[Any] = True snake_case__ : List[str] = self.feature_extraction_class(**_lowerCAmelCase ) snake_case__ : int = self.feat_extract_tester.prepare_inputs_for_target() snake_case__ : Union[str, Any] = [len(_lowerCAmelCase ) for x in speech_inputs] snake_case__ : List[str] = feat_extract.model_input_names[0] snake_case__ : Optional[Any] = BatchFeature({input_name: speech_inputs} ) snake_case__ : Any = feat_extract.num_mel_bins # hack! snake_case__ : Any = feat_extract.pad(_lowerCAmelCase , padding='longest' , return_tensors='np' ) self.assertIn('attention_mask' , _lowerCAmelCase ) self.assertListEqual(list(processed.attention_mask.shape ) , list(processed[input_name].shape[:2] ) ) self.assertListEqual(processed.attention_mask.sum(-1 ).tolist() , _lowerCAmelCase ) def _lowerCAmelCase ( self : Any ): snake_case__ : List[str] = self.feat_extract_dict snake_case__ : List[str] = True snake_case__ : Tuple = self.feature_extraction_class(**_lowerCAmelCase ) snake_case__ : Any = self.feat_extract_tester.prepare_inputs_for_target() snake_case__ : Optional[int] = [len(_lowerCAmelCase ) for x in speech_inputs] snake_case__ : Optional[int] = feat_extract.model_input_names[0] snake_case__ : Optional[Any] = BatchFeature({input_name: speech_inputs} ) snake_case__ : Optional[Any] = min(_lowerCAmelCase ) snake_case__ : List[str] = feat_extract.num_mel_bins # hack! snake_case__ : List[str] = feat_extract.pad( _lowerCAmelCase , padding='max_length' , max_length=_lowerCAmelCase , truncation=_lowerCAmelCase , return_tensors='np' ) self.assertIn('attention_mask' , _lowerCAmelCase ) self.assertListEqual( list(processed_pad.attention_mask.shape ) , [processed_pad[input_name].shape[0], max_length] ) self.assertListEqual( processed_pad.attention_mask[:, :max_length].sum(-1 ).tolist() , [max_length for x in speech_inputs] ) def _lowerCAmelCase ( self : List[Any] , __lowerCamelCase : Tuple ): from datasets import load_dataset snake_case__ : List[str] = load_dataset('hf-internal-testing/librispeech_asr_dummy' , 'clean' , split='validation' ) # automatic decoding with librispeech snake_case__ : Union[str, Any] = ds.sort('id' ).select(range(_lowerCAmelCase ) )[:num_samples]['audio'] return [x["array"] for x in speech_samples] def _lowerCAmelCase ( self : Any ): # fmt: off snake_case__ : str = torch.tensor( [2.3_804E-03, 2.0_752E-03, 1.9_836E-03, 2.1_057E-03, 1.6_174E-03, 3.0_518E-04, 9.1_553E-05, 3.3_569E-04, 9.7_656E-04, 1.8_311E-03, 2.0_142E-03, 2.1_057E-03, 1.7_395E-03, 4.5_776E-04, -3.9_673E-04, 4.5_776E-04, 1.0_071E-03, 9.1_553E-05, 4.8_828E-04, 1.1_597E-03, 7.3_242E-04, 9.4_604E-04, 1.8_005E-03, 1.8_311E-03, 8.8_501E-04, 4.2_725E-04, 4.8_828E-04, 7.3_242E-04, 1.0_986E-03, 2.1_057E-03] ) # fmt: on snake_case__ : int = self._load_datasamples(1 ) snake_case__ : str = SpeechTaFeatureExtractor() snake_case__ : Optional[int] = feature_extractor(_lowerCAmelCase , return_tensors='pt' ).input_values self.assertEquals(input_values.shape , (1, 93680) ) self.assertTrue(torch.allclose(input_values[0, :30] , _lowerCAmelCase , atol=1E-6 ) ) def _lowerCAmelCase ( self : Optional[int] ): # fmt: off snake_case__ : int = torch.tensor( [-2.6_8_7_0, -3.0_1_0_4, -3.1_3_5_6, -3.5_3_5_2, -3.0_0_4_4, -3.0_3_5_3, -3.4_7_1_9, -3.6_7_7_7, -3.1_5_2_0, -2.9_4_3_5, -2.6_5_5_3, -2.8_7_9_5, -2.9_9_4_4, -2.5_9_2_1, -3.0_2_7_9, -3.0_3_8_6, -3.0_8_6_4, -3.1_2_9_1, -3.2_3_5_3, -2.7_4_4_4, -2.6_8_3_1, -2.7_2_8_7, -3.1_7_6_1, -3.1_5_7_1, -3.2_7_2_6, -3.0_5_8_2, -3.1_0_0_7, -3.4_5_3_3, -3.4_6_9_5, -3.0_9_9_8] ) # fmt: on snake_case__ : Any = self._load_datasamples(1 ) snake_case__ : str = SpeechTaFeatureExtractor() snake_case__ : Union[str, Any] = feature_extractor(audio_target=_lowerCAmelCase , return_tensors='pt' ).input_values self.assertEquals(input_values.shape , (1, 366, 80) ) self.assertTrue(torch.allclose(input_values[0, 0, :30] , _lowerCAmelCase , atol=1E-4 ) )
270
import warnings from ...utils import logging from .image_processing_layoutlmva import LayoutLMvaImageProcessor lowerCamelCase__ : Union[str, Any] = logging.get_logger(__name__) class lowerCamelCase_ ( _SCREAMING_SNAKE_CASE ): '''simple docstring''' def __init__( self : Dict , *_lowerCAmelCase : Optional[Any] , **_lowerCAmelCase : Any ): warnings.warn( 'The class LayoutLMv2FeatureExtractor is deprecated and will be removed in version 5 of Transformers.' ' Please use LayoutLMv2ImageProcessor instead.' , _lowerCAmelCase , ) super().__init__(*_lowerCAmelCase , **_lowerCAmelCase )
31
0
'''simple docstring''' import json import os import tempfile from transformers.testing_utils import check_json_file_has_correct_format class _a : """simple docstring""" SCREAMING_SNAKE_CASE = None def UpperCamelCase ( self ) -> Optional[int]: _SCREAMING_SNAKE_CASE = self.feature_extraction_class(**self.feat_extract_dict ) _SCREAMING_SNAKE_CASE = json.loads(feat_extract.to_json_string() ) for key, value in self.feat_extract_dict.items(): self.assertEqual(obj[key] , _lowerCAmelCase ) def UpperCamelCase ( self ) -> List[Any]: _SCREAMING_SNAKE_CASE = self.feature_extraction_class(**self.feat_extract_dict ) with tempfile.TemporaryDirectory() as tmpdirname: _SCREAMING_SNAKE_CASE = os.path.join(_lowerCAmelCase , """feat_extract.json""" ) feat_extract_first.to_json_file(_lowerCAmelCase ) _SCREAMING_SNAKE_CASE = self.feature_extraction_class.from_json_file(_lowerCAmelCase ) self.assertEqual(feat_extract_second.to_dict() , feat_extract_first.to_dict() ) def UpperCamelCase ( self ) -> int: _SCREAMING_SNAKE_CASE = self.feature_extraction_class(**self.feat_extract_dict ) with tempfile.TemporaryDirectory() as tmpdirname: _SCREAMING_SNAKE_CASE = feat_extract_first.save_pretrained(_lowerCAmelCase )[0] check_json_file_has_correct_format(_lowerCAmelCase ) _SCREAMING_SNAKE_CASE = self.feature_extraction_class.from_pretrained(_lowerCAmelCase ) self.assertEqual(feat_extract_second.to_dict() , feat_extract_first.to_dict() ) def UpperCamelCase ( self ) -> Union[str, Any]: _SCREAMING_SNAKE_CASE = self.feature_extraction_class() self.assertIsNotNone(_lowerCAmelCase )
591
def UpperCAmelCase_ ( ) -> list[list[int]]: return [list(range(10_00 - i , -10_00 - i , -1 ) ) for i in range(10_00 )] lowerCamelCase__ : List[Any] = generate_large_matrix() lowerCamelCase__ : List[Any] = ( [[4, 3, 2, -1], [3, 2, 1, -1], [1, 1, -1, -2], [-1, -1, -2, -3]], [[3, 2], [1, 0]], [[7, 7, 6]], [[7, 7, 6], [-1, -2, -3]], grid, ) def UpperCAmelCase_ ( __UpperCAmelCase : list[list[int]] ) -> None: assert all(row == sorted(__UpperCAmelCase , reverse=__UpperCAmelCase ) for row in grid ) assert all(list(__UpperCAmelCase ) == sorted(__UpperCAmelCase , reverse=__UpperCAmelCase ) for col in zip(*__UpperCAmelCase ) ) def UpperCAmelCase_ ( __UpperCAmelCase : list[int] ) -> int: SCREAMING_SNAKE_CASE_ = 0 SCREAMING_SNAKE_CASE_ = len(__UpperCAmelCase ) - 1 # Edge cases such as no values or all numbers are negative. if not array or array[0] < 0: return 0 while right + 1 > left: SCREAMING_SNAKE_CASE_ = (left + right) // 2 SCREAMING_SNAKE_CASE_ = array[mid] # Num must be negative and the index must be greater than or equal to 0. if num < 0 and array[mid - 1] >= 0: return mid if num >= 0: SCREAMING_SNAKE_CASE_ = mid + 1 else: SCREAMING_SNAKE_CASE_ = mid - 1 # No negative numbers so return the last index of the array + 1 which is the length. return len(__UpperCAmelCase ) def UpperCAmelCase_ ( __UpperCAmelCase : list[list[int]] ) -> int: SCREAMING_SNAKE_CASE_ = 0 SCREAMING_SNAKE_CASE_ = len(grid[0] ) for i in range(len(__UpperCAmelCase ) ): SCREAMING_SNAKE_CASE_ = find_negative_index(grid[i][:bound] ) total += bound return (len(__UpperCAmelCase ) * len(grid[0] )) - total def UpperCAmelCase_ ( __UpperCAmelCase : list[list[int]] ) -> int: return len([number for row in grid for number in row if number < 0] ) def UpperCAmelCase_ ( __UpperCAmelCase : list[list[int]] ) -> int: SCREAMING_SNAKE_CASE_ = 0 for row in grid: for i, number in enumerate(__UpperCAmelCase ): if number < 0: total += len(__UpperCAmelCase ) - i break return total def UpperCAmelCase_ ( ) -> None: from timeit import timeit print('Running benchmarks' ) SCREAMING_SNAKE_CASE_ = ( 'from __main__ import count_negatives_binary_search, ' 'count_negatives_brute_force, count_negatives_brute_force_with_break, grid' ) for func in ( "count_negatives_binary_search", # took 0.7727 seconds "count_negatives_brute_force_with_break", # took 4.6505 seconds "count_negatives_brute_force", # took 12.8160 seconds ): SCREAMING_SNAKE_CASE_ = timeit(f"{func}(grid=grid)" , setup=__UpperCAmelCase , number=5_00 ) print(f"{func}() took {time:0.4f} seconds" ) if __name__ == "__main__": import doctest doctest.testmod() benchmark()
31
0
from packaging import version from .import_utils import is_accelerate_available if is_accelerate_available(): import accelerate def A__ ( SCREAMING_SNAKE_CASE_ : Optional[int] ) -> Optional[Any]: """simple docstring""" if not is_accelerate_available(): return method _UpperCAmelCase = version.parse(accelerate.__version__ ).base_version if version.parse(SCREAMING_SNAKE_CASE_ ) < version.parse('''0.17.0''' ): return method def wrapper(self : Optional[int] , *SCREAMING_SNAKE_CASE_ : Tuple , **SCREAMING_SNAKE_CASE_ : Tuple ): if hasattr(self , '''_hf_hook''' ) and hasattr(self._hf_hook , '''pre_forward''' ): self._hf_hook.pre_forward(self ) return method(self , *SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) return wrapper
32
import unittest from transformers import LiltConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( LiltForQuestionAnswering, LiltForSequenceClassification, LiltForTokenClassification, LiltModel, ) from transformers.models.lilt.modeling_lilt import LILT_PRETRAINED_MODEL_ARCHIVE_LIST class __UpperCamelCase : def __init__( self , _UpperCamelCase , _UpperCamelCase=13 , _UpperCamelCase=7 , _UpperCamelCase=True , _UpperCamelCase=True , _UpperCamelCase=True , _UpperCamelCase=True , _UpperCamelCase=99 , _UpperCamelCase=24 , _UpperCamelCase=2 , _UpperCamelCase=6 , _UpperCamelCase=37 , _UpperCamelCase="gelu" , _UpperCamelCase=0.1 , _UpperCamelCase=0.1 , _UpperCamelCase=512 , _UpperCamelCase=16 , _UpperCamelCase=2 , _UpperCamelCase=0.02 , _UpperCamelCase=3 , _UpperCamelCase=None , _UpperCamelCase=1000 , ): _UpperCAmelCase = parent _UpperCAmelCase = batch_size _UpperCAmelCase = seq_length _UpperCAmelCase = is_training _UpperCAmelCase = use_input_mask _UpperCAmelCase = use_token_type_ids _UpperCAmelCase = use_labels _UpperCAmelCase = vocab_size _UpperCAmelCase = hidden_size _UpperCAmelCase = num_hidden_layers _UpperCAmelCase = num_attention_heads _UpperCAmelCase = intermediate_size _UpperCAmelCase = hidden_act _UpperCAmelCase = hidden_dropout_prob _UpperCAmelCase = attention_probs_dropout_prob _UpperCAmelCase = max_position_embeddings _UpperCAmelCase = type_vocab_size _UpperCAmelCase = type_sequence_label_size _UpperCAmelCase = initializer_range _UpperCAmelCase = num_labels _UpperCAmelCase = scope _UpperCAmelCase = range_bbox def UpperCamelCase( self ): _UpperCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _UpperCAmelCase = ids_tensor([self.batch_size, self.seq_length, 4] , self.range_bbox ) # Ensure that bbox is legal for i in range(bbox.shape[0] ): for j in range(bbox.shape[1] ): if bbox[i, j, 3] < bbox[i, j, 1]: _UpperCAmelCase = bbox[i, j, 3] _UpperCAmelCase = bbox[i, j, 1] _UpperCAmelCase = t if bbox[i, j, 2] < bbox[i, j, 0]: _UpperCAmelCase = bbox[i, j, 2] _UpperCAmelCase = bbox[i, j, 0] _UpperCAmelCase = t _UpperCAmelCase = None if self.use_input_mask: _UpperCAmelCase = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 ) _UpperCAmelCase = None if self.use_token_type_ids: _UpperCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) _UpperCAmelCase = None _UpperCAmelCase = None if self.use_labels: _UpperCAmelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size ) _UpperCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) _UpperCAmelCase = self.get_config() return config, input_ids, bbox, token_type_ids, input_mask, sequence_labels, token_labels def UpperCamelCase( self ): return LiltConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , ) def UpperCamelCase( self , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , ): _UpperCAmelCase = LiltModel(config=_UpperCamelCase ) model.to(_UpperCamelCase ) model.eval() _UpperCAmelCase = model(_UpperCamelCase , bbox=_UpperCamelCase , attention_mask=_UpperCamelCase , token_type_ids=_UpperCamelCase ) _UpperCAmelCase = model(_UpperCamelCase , bbox=_UpperCamelCase , token_type_ids=_UpperCamelCase ) _UpperCAmelCase = model(_UpperCamelCase , bbox=_UpperCamelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) ) def UpperCamelCase( self , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , ): _UpperCAmelCase = self.num_labels _UpperCAmelCase = LiltForTokenClassification(config=_UpperCamelCase ) model.to(_UpperCamelCase ) model.eval() _UpperCAmelCase = model( _UpperCamelCase , bbox=_UpperCamelCase , attention_mask=_UpperCamelCase , token_type_ids=_UpperCamelCase , labels=_UpperCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def UpperCamelCase( self , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , ): _UpperCAmelCase = LiltForQuestionAnswering(config=_UpperCamelCase ) model.to(_UpperCamelCase ) model.eval() _UpperCAmelCase = model( _UpperCamelCase , bbox=_UpperCamelCase , attention_mask=_UpperCamelCase , token_type_ids=_UpperCamelCase , start_positions=_UpperCamelCase , end_positions=_UpperCamelCase , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def UpperCamelCase( self ): _UpperCAmelCase = self.prepare_config_and_inputs() ( ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ) = config_and_inputs _UpperCAmelCase = { '''input_ids''': input_ids, '''bbox''': bbox, '''token_type_ids''': token_type_ids, '''attention_mask''': input_mask, } return config, inputs_dict @require_torch class __UpperCamelCase ( A__ , A__ , A__ , unittest.TestCase ): __A : Dict = ( ( LiltModel, LiltForSequenceClassification, LiltForTokenClassification, LiltForQuestionAnswering, ) if is_torch_available() else () ) __A : Optional[Any] = ( { """feature-extraction""": LiltModel, """question-answering""": LiltForQuestionAnswering, """text-classification""": LiltForSequenceClassification, """token-classification""": LiltForTokenClassification, """zero-shot""": LiltForSequenceClassification, } if is_torch_available() else {} ) __A : List[Any] = False __A : Optional[int] = False def UpperCamelCase( self , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ): return True def UpperCamelCase( self ): _UpperCAmelCase = LiltModelTester(self ) _UpperCAmelCase = ConfigTester(self , config_class=_UpperCamelCase , hidden_size=37 ) def UpperCamelCase( self ): self.config_tester.run_common_tests() def UpperCamelCase( self ): _UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_UpperCamelCase ) def UpperCamelCase( self ): _UpperCAmelCase = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: _UpperCAmelCase = type self.model_tester.create_and_check_model(*_UpperCamelCase ) def UpperCamelCase( self ): _UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*_UpperCamelCase ) def UpperCamelCase( self ): _UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*_UpperCamelCase ) @slow def UpperCamelCase( self ): for model_name in LILT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _UpperCAmelCase = LiltModel.from_pretrained(_UpperCamelCase ) self.assertIsNotNone(_UpperCamelCase ) @require_torch @slow class __UpperCamelCase ( unittest.TestCase ): def UpperCamelCase( self ): _UpperCAmelCase = LiltModel.from_pretrained('''SCUT-DLVCLab/lilt-roberta-en-base''' ).to(_UpperCamelCase ) _UpperCAmelCase = torch.tensor([[1, 2]] , device=_UpperCamelCase ) _UpperCAmelCase = torch.tensor([[[1, 2, 3, 4], [5, 6, 7, 8]]] , device=_UpperCamelCase ) # forward pass with torch.no_grad(): _UpperCAmelCase = model(input_ids=_UpperCamelCase , bbox=_UpperCamelCase ) _UpperCAmelCase = torch.Size([1, 2, 768] ) _UpperCAmelCase = torch.tensor( [[-0.0653, 0.0950, -0.0061], [-0.0545, 0.0926, -0.0324]] , device=_UpperCamelCase , ) self.assertTrue(outputs.last_hidden_state.shape , _UpperCamelCase ) self.assertTrue(torch.allclose(outputs.last_hidden_state[0, :, :3] , _UpperCamelCase , atol=1e-3 ) )
32
1
import heapq import sys import numpy as np UpperCAmelCase_ = tuple[int, int] class __UpperCamelCase : def __init__( self ): _UpperCAmelCase = [] _UpperCAmelCase = set() def UpperCamelCase( self ): if not self.empty(): return self.elements[0][0] else: return float('''inf''' ) def UpperCamelCase( self ): return len(self.elements ) == 0 def UpperCamelCase( self , _UpperCamelCase , _UpperCamelCase ): if item not in self.set: heapq.heappush(self.elements , (priority, item) ) self.set.add(_UpperCamelCase ) else: # update # print("update", item) _UpperCAmelCase = [] ((_UpperCAmelCase) , (_UpperCAmelCase)) = heapq.heappop(self.elements ) while x != item: temp.append((pri, x) ) ((_UpperCAmelCase) , (_UpperCAmelCase)) = heapq.heappop(self.elements ) temp.append((priority, item) ) for pro, xxx in temp: heapq.heappush(self.elements , (pro, xxx) ) def UpperCamelCase( self , _UpperCamelCase ): if item in self.set: self.set.remove(_UpperCamelCase ) _UpperCAmelCase = [] ((_UpperCAmelCase) , (_UpperCAmelCase)) = heapq.heappop(self.elements ) while x != item: temp.append((pro, x) ) ((_UpperCAmelCase) , (_UpperCAmelCase)) = heapq.heappop(self.elements ) for prito, yyy in temp: heapq.heappush(self.elements , (prito, yyy) ) def UpperCamelCase( self ): return self.elements[0][1] def UpperCamelCase( self ): ((_UpperCAmelCase) , (_UpperCAmelCase)) = heapq.heappop(self.elements ) self.set.remove(_UpperCamelCase ) return (priority, item) def A__ ( SCREAMING_SNAKE_CASE_ : TPos , SCREAMING_SNAKE_CASE_ : TPos ) -> Any: """simple docstring""" _UpperCAmelCase = np.array(SCREAMING_SNAKE_CASE_ ) _UpperCAmelCase = np.array(SCREAMING_SNAKE_CASE_ ) return np.linalg.norm(a - b ) def A__ ( SCREAMING_SNAKE_CASE_ : TPos , SCREAMING_SNAKE_CASE_ : TPos ) -> int: """simple docstring""" return consistent_heuristic(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) // t def A__ ( SCREAMING_SNAKE_CASE_ : TPos , SCREAMING_SNAKE_CASE_ : TPos ) -> Tuple: """simple docstring""" return abs(p[0] - goal[0] ) + abs(p[1] - goal[1] ) def A__ ( SCREAMING_SNAKE_CASE_ : TPos , SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : TPos , SCREAMING_SNAKE_CASE_ : dict[TPos, float] ) -> str: """simple docstring""" _UpperCAmelCase = g_function[start] + Wa * heuristics[i](SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) return ans def A__ ( SCREAMING_SNAKE_CASE_ : Union[str, Any] , SCREAMING_SNAKE_CASE_ : str , SCREAMING_SNAKE_CASE_ : Dict ) -> Dict: """simple docstring""" _UpperCAmelCase = np.chararray((n, n) ) for i in range(SCREAMING_SNAKE_CASE_ ): for j in range(SCREAMING_SNAKE_CASE_ ): _UpperCAmelCase = '''*''' for i in range(SCREAMING_SNAKE_CASE_ ): for j in range(SCREAMING_SNAKE_CASE_ ): if (j, (n - 1) - i) in blocks: _UpperCAmelCase = '''#''' _UpperCAmelCase = '''-''' _UpperCAmelCase = back_pointer[goal] while x != start: ((_UpperCAmelCase) , (_UpperCAmelCase)) = x # print(x) _UpperCAmelCase = '''-''' _UpperCAmelCase = back_pointer[x] _UpperCAmelCase = '''-''' for i in range(SCREAMING_SNAKE_CASE_ ): for j in range(SCREAMING_SNAKE_CASE_ ): if (i, j) == (0, n - 1): print(grid[i][j] , end=''' ''' ) print('''<-- End position''' , end=''' ''' ) else: print(grid[i][j] , end=''' ''' ) print() print('''^''' ) print('''Start position''' ) print() print('''# is an obstacle''' ) print('''- is the path taken by algorithm''' ) print('''PATH TAKEN BY THE ALGORITHM IS:-''' ) _UpperCAmelCase = back_pointer[goal] while x != start: print(SCREAMING_SNAKE_CASE_ , end=''' ''' ) _UpperCAmelCase = back_pointer[x] print(SCREAMING_SNAKE_CASE_ ) sys.exit() def A__ ( SCREAMING_SNAKE_CASE_ : TPos ) -> Tuple: """simple docstring""" if p[0] < 0 or p[0] > n - 1: return False if p[1] < 0 or p[1] > n - 1: return False return True def A__ ( SCREAMING_SNAKE_CASE_ : Dict , SCREAMING_SNAKE_CASE_ : Optional[Any] , SCREAMING_SNAKE_CASE_ : List[str] , SCREAMING_SNAKE_CASE_ : Dict , SCREAMING_SNAKE_CASE_ : Optional[int] , SCREAMING_SNAKE_CASE_ : Optional[Any] , SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : List[Any] , ) -> List[Any]: """simple docstring""" for itera in range(SCREAMING_SNAKE_CASE_ ): open_list[itera].remove_element(SCREAMING_SNAKE_CASE_ ) # print("s", s) # print("j", j) ((_UpperCAmelCase) , (_UpperCAmelCase)) = s _UpperCAmelCase = (x - 1, y) _UpperCAmelCase = (x + 1, y) _UpperCAmelCase = (x, y + 1) _UpperCAmelCase = (x, y - 1) for neighbours in [left, right, up, down]: if neighbours not in blocks: if valid(SCREAMING_SNAKE_CASE_ ) and neighbours not in visited: # print("neighbour", neighbours) visited.add(SCREAMING_SNAKE_CASE_ ) _UpperCAmelCase = -1 _UpperCAmelCase = float('''inf''' ) if valid(SCREAMING_SNAKE_CASE_ ) and g_function[neighbours] > g_function[s] + 1: _UpperCAmelCase = g_function[s] + 1 _UpperCAmelCase = s if neighbours not in close_list_anchor: open_list[0].put(SCREAMING_SNAKE_CASE_ , key(SCREAMING_SNAKE_CASE_ , 0 , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) ) if neighbours not in close_list_inad: for var in range(1 , SCREAMING_SNAKE_CASE_ ): if key(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) <= Wa * key( SCREAMING_SNAKE_CASE_ , 0 , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): open_list[j].put( SCREAMING_SNAKE_CASE_ , key(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) ) def A__ ( ) -> Any: """simple docstring""" _UpperCAmelCase = [] for x in range(1 , 5 ): for y in range(1 , 6 ): some_list.append((x, y) ) for x in range(15 , 20 ): some_list.append((x, 17) ) for x in range(10 , 19 ): for y in range(1 , 15 ): some_list.append((x, y) ) # L block for x in range(1 , 4 ): for y in range(12 , 19 ): some_list.append((x, y) ) for x in range(3 , 13 ): for y in range(16 , 19 ): some_list.append((x, y) ) return some_list UpperCAmelCase_ = {0: consistent_heuristic, 1: heuristic_a, 2: heuristic_a} UpperCAmelCase_ = [ (0, 1), (1, 1), (2, 1), (3, 1), (4, 1), (5, 1), (6, 1), (7, 1), (8, 1), (9, 1), (10, 1), (11, 1), (12, 1), (13, 1), (14, 1), (15, 1), (16, 1), (17, 1), (18, 1), (19, 1), ] UpperCAmelCase_ = make_common_ground() UpperCAmelCase_ = blocks_blk # hyper parameters UpperCAmelCase_ = 1 UpperCAmelCase_ = 1 UpperCAmelCase_ = 20 UpperCAmelCase_ = 3 # one consistent and two other inconsistent # start and end destination UpperCAmelCase_ = (0, 0) UpperCAmelCase_ = (n - 1, n - 1) UpperCAmelCase_ = 1 def A__ ( SCREAMING_SNAKE_CASE_ : TPos , SCREAMING_SNAKE_CASE_ : TPos , SCREAMING_SNAKE_CASE_ : int ) -> Union[str, Any]: """simple docstring""" _UpperCAmelCase = {start: 0, goal: float('''inf''' )} _UpperCAmelCase = {start: -1, goal: -1} _UpperCAmelCase = [] _UpperCAmelCase = set() for i in range(SCREAMING_SNAKE_CASE_ ): open_list.append(PriorityQueue() ) open_list[i].put(SCREAMING_SNAKE_CASE_ , key(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) ) _UpperCAmelCase = [] _UpperCAmelCase = [] while open_list[0].minkey() < float('''inf''' ): for i in range(1 , SCREAMING_SNAKE_CASE_ ): # print(open_list[0].minkey(), open_list[i].minkey()) if open_list[i].minkey() <= Wa * open_list[0].minkey(): global t t += 1 if g_function[goal] <= open_list[i].minkey(): if g_function[goal] < float('''inf''' ): do_something(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) else: _UpperCAmelCase , _UpperCAmelCase = open_list[i].top_show() visited.add(SCREAMING_SNAKE_CASE_ ) expand_state( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , ) close_list_inad.append(SCREAMING_SNAKE_CASE_ ) else: if g_function[goal] <= open_list[0].minkey(): if g_function[goal] < float('''inf''' ): do_something(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) else: _UpperCAmelCase = open_list[0].top_show() visited.add(SCREAMING_SNAKE_CASE_ ) expand_state( SCREAMING_SNAKE_CASE_ , 0 , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , ) close_list_anchor.append(SCREAMING_SNAKE_CASE_ ) print('''No path found to goal''' ) print() for i in range(n - 1 , -1 , -1 ): for j in range(SCREAMING_SNAKE_CASE_ ): if (j, i) in blocks: print('''#''' , end=''' ''' ) elif (j, i) in back_pointer: if (j, i) == (n - 1, n - 1): print('''*''' , end=''' ''' ) else: print('''-''' , end=''' ''' ) else: print('''*''' , end=''' ''' ) if (j, i) == (n - 1, n - 1): print('''<-- End position''' , end=''' ''' ) print() print('''^''' ) print('''Start position''' ) print() print('''# is an obstacle''' ) print('''- is the path taken by algorithm''' ) if __name__ == "__main__": multi_a_star(start, goal, n_heuristic)
32
from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCAmelCase_ = logging.get_logger(__name__) UpperCAmelCase_ = { "RWKV/rwkv-4-169m-pile": "https://huggingface.co/RWKV/rwkv-4-169m-pile/resolve/main/config.json", "RWKV/rwkv-4-430m-pile": "https://huggingface.co/RWKV/rwkv-4-430m-pile/resolve/main/config.json", "RWKV/rwkv-4-1b5-pile": "https://huggingface.co/RWKV/rwkv-4-1b5-pile/resolve/main/config.json", "RWKV/rwkv-4-3b-pile": "https://huggingface.co/RWKV/rwkv-4-3b-pile/resolve/main/config.json", "RWKV/rwkv-4-7b-pile": "https://huggingface.co/RWKV/rwkv-4-7b-pile/resolve/main/config.json", "RWKV/rwkv-4-14b-pile": "https://huggingface.co/RWKV/rwkv-4-14b-pile/resolve/main/config.json", "RWKV/rwkv-raven-1b5": "https://huggingface.co/RWKV/rwkv-raven-1b5/resolve/main/config.json", "RWKV/rwkv-raven-3b": "https://huggingface.co/RWKV/rwkv-raven-3b/resolve/main/config.json", "RWKV/rwkv-raven-7b": "https://huggingface.co/RWKV/rwkv-raven-7b/resolve/main/config.json", "RWKV/rwkv-raven-14b": "https://huggingface.co/RWKV/rwkv-raven-14b/resolve/main/config.json", } class __UpperCamelCase ( A__ ): __A : Tuple = """rwkv""" __A : Any = {"""max_position_embeddings""": """context_length"""} def __init__( self , _UpperCamelCase=50277 , _UpperCamelCase=1024 , _UpperCamelCase=4096 , _UpperCamelCase=32 , _UpperCamelCase=None , _UpperCamelCase=None , _UpperCamelCase=1e-5 , _UpperCamelCase=0 , _UpperCamelCase=0 , _UpperCamelCase=6 , _UpperCamelCase=False , _UpperCamelCase=True , **_UpperCamelCase , ): _UpperCAmelCase = vocab_size _UpperCAmelCase = context_length _UpperCAmelCase = hidden_size _UpperCAmelCase = num_hidden_layers _UpperCAmelCase = attention_hidden_size if attention_hidden_size is not None else hidden_size _UpperCAmelCase = intermediate_size if intermediate_size is not None else 4 * hidden_size _UpperCAmelCase = layer_norm_epsilon _UpperCAmelCase = rescale_every _UpperCAmelCase = use_cache _UpperCAmelCase = bos_token_id _UpperCAmelCase = eos_token_id super().__init__( tie_word_embeddings=_UpperCamelCase , bos_token_id=_UpperCamelCase , eos_token_id=_UpperCamelCase , **_UpperCamelCase )
32
1
import logging import os import sys from dataclasses import dataclass, field from typing import Optional from seqaseq_trainer import SeqaSeqTrainer from seqaseq_training_args import SeqaSeqTrainingArguments import transformers from transformers import ( AutoConfig, AutoModelForSeqaSeqLM, AutoTokenizer, HfArgumentParser, MBartTokenizer, MBartTokenizerFast, set_seed, ) from transformers.trainer_utils import EvaluationStrategy, is_main_process from transformers.training_args import ParallelMode from utils import ( SeqaSeqDataCollator, SeqaSeqDataset, assert_all_frozen, build_compute_metrics_fn, check_output_dir, freeze_embeds, freeze_params, lmap, save_json, use_task_specific_params, write_txt_file, ) UpperCAmelCase_ = logging.getLogger(__name__) @dataclass class __UpperCamelCase : __A : str = field( metadata={"""help""": """Path to pretrained model or model identifier from huggingface.co/models"""} ) __A : Optional[str] = field( default=A__ , metadata={"""help""": """Pretrained config name or path if not the same as model_name"""} ) __A : Optional[str] = field( default=A__ , metadata={"""help""": """Pretrained tokenizer name or path if not the same as model_name"""} ) __A : Optional[str] = field( default=A__ , metadata={"""help""": """Where do you want to store the pretrained models downloaded from huggingface.co"""} , ) __A : bool = field(default=A__ , metadata={"""help""": """Whether tp freeze the encoder."""} ) __A : bool = field(default=A__ , metadata={"""help""": """Whether to freeze the embeddings."""} ) @dataclass class __UpperCamelCase : __A : str = field( metadata={"""help""": """The input data dir. Should contain the .tsv files (or other data files) for the task."""} ) __A : Optional[str] = field( default="""summarization""" , metadata={"""help""": """Task name, summarization (or summarization_{dataset} for pegasus) or translation"""} , ) __A : Optional[int] = field( default=10_24 , metadata={ """help""": ( """The maximum total input sequence length after tokenization. Sequences longer """ """than this will be truncated, sequences shorter will be padded.""" ) } , ) __A : Optional[int] = field( default=1_28 , metadata={ """help""": ( """The maximum total sequence length for target text after tokenization. Sequences longer """ """than this will be truncated, sequences shorter will be padded.""" ) } , ) __A : Optional[int] = field( default=1_42 , metadata={ """help""": ( """The maximum total sequence length for validation target text after tokenization. Sequences longer """ """than this will be truncated, sequences shorter will be padded. """ """This argument is also used to override the ``max_length`` param of ``model.generate``, which is used """ """during ``evaluate`` and ``predict``.""" ) } , ) __A : Optional[int] = field( default=1_42 , metadata={ """help""": ( """The maximum total sequence length for test target text after tokenization. Sequences longer """ """than this will be truncated, sequences shorter will be padded.""" ) } , ) __A : Optional[int] = field(default=-1 , metadata={"""help""": """# training examples. -1 means use all."""} ) __A : Optional[int] = field(default=-1 , metadata={"""help""": """# validation examples. -1 means use all."""} ) __A : Optional[int] = field(default=-1 , metadata={"""help""": """# test examples. -1 means use all."""} ) __A : Optional[str] = field(default=A__ , metadata={"""help""": """Source language id for translation."""} ) __A : Optional[str] = field(default=A__ , metadata={"""help""": """Target language id for translation."""} ) __A : Optional[int] = field(default=A__ , metadata={"""help""": """# num_beams to use for evaluation."""} ) __A : bool = field( default=A__ , metadata={"""help""": """If only pad tokens should be ignored. This assumes that `config.pad_token_id` is defined."""} , ) def A__ ( SCREAMING_SNAKE_CASE_ : List[str] , SCREAMING_SNAKE_CASE_ : Tuple , SCREAMING_SNAKE_CASE_ : Optional[int] ) -> Dict: """simple docstring""" logger.info(F'''***** {split} metrics *****''' ) for key in sorted(metrics.keys() ): logger.info(F''' {key} = {metrics[key]}''' ) save_json(SCREAMING_SNAKE_CASE_ , os.path.join(SCREAMING_SNAKE_CASE_ , F'''{split}_results.json''' ) ) def A__ ( ) -> int: """simple docstring""" _UpperCAmelCase = HfArgumentParser((ModelArguments, DataTrainingArguments, SeqaSeqTrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith('''.json''' ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase = parser.parse_args_into_dataclasses() check_output_dir(SCREAMING_SNAKE_CASE_ ) # Setup logging logging.basicConfig( format='''%(asctime)s - %(levelname)s - %(name)s - %(message)s''' , datefmt='''%m/%d/%Y %H:%M:%S''' , level=logging.INFO if training_args.local_rank in [-1, 0] else logging.WARN , ) logger.warning( '''Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s''' , training_args.local_rank , training_args.device , training_args.n_gpu , bool(training_args.parallel_mode == ParallelMode.DISTRIBUTED ) , training_args.fpaa , ) transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() # Set the verbosity to info of the Transformers logger (on main process only): if is_main_process(training_args.local_rank ): transformers.utils.logging.set_verbosity_info() logger.info('''Training/evaluation parameters %s''' , SCREAMING_SNAKE_CASE_ ) # Set seed set_seed(training_args.seed ) # Load pretrained model and tokenizer # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. _UpperCAmelCase = AutoConfig.from_pretrained( model_args.config_name if model_args.config_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , ) _UpperCAmelCase = ('''encoder_layerdrop''', '''decoder_layerdrop''', '''dropout''', '''attention_dropout''') for p in extra_model_params: if getattr(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): assert hasattr(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ), F'''({config.__class__.__name__}) doesn\'t have a `{p}` attribute''' setattr(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , getattr(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) ) _UpperCAmelCase = AutoTokenizer.from_pretrained( model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , ) _UpperCAmelCase = AutoModelForSeqaSeqLM.from_pretrained( model_args.model_name_or_path , from_tf='''.ckpt''' in model_args.model_name_or_path , config=SCREAMING_SNAKE_CASE_ , cache_dir=model_args.cache_dir , ) # use task specific params use_task_specific_params(SCREAMING_SNAKE_CASE_ , data_args.task ) # set num_beams for evaluation if data_args.eval_beams is None: _UpperCAmelCase = model.config.num_beams # set decoder_start_token_id for MBart if model.config.decoder_start_token_id is None and isinstance(SCREAMING_SNAKE_CASE_ , (MBartTokenizer, MBartTokenizerFast) ): assert ( data_args.tgt_lang is not None and data_args.src_lang is not None ), "mBart requires --tgt_lang and --src_lang" if isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): _UpperCAmelCase = tokenizer.lang_code_to_id[data_args.tgt_lang] else: _UpperCAmelCase = tokenizer.convert_tokens_to_ids(data_args.tgt_lang ) if model_args.freeze_embeds: freeze_embeds(SCREAMING_SNAKE_CASE_ ) if model_args.freeze_encoder: freeze_params(model.get_encoder() ) assert_all_frozen(model.get_encoder() ) _UpperCAmelCase = SeqaSeqDataset # Get datasets _UpperCAmelCase = ( dataset_class( SCREAMING_SNAKE_CASE_ , type_path='''train''' , data_dir=data_args.data_dir , n_obs=data_args.n_train , max_target_length=data_args.max_target_length , max_source_length=data_args.max_source_length , prefix=model.config.prefix or '''''' , ) if training_args.do_train else None ) _UpperCAmelCase = ( dataset_class( SCREAMING_SNAKE_CASE_ , type_path='''val''' , data_dir=data_args.data_dir , n_obs=data_args.n_val , max_target_length=data_args.val_max_target_length , max_source_length=data_args.max_source_length , prefix=model.config.prefix or '''''' , ) if training_args.do_eval or training_args.evaluation_strategy != EvaluationStrategy.NO else None ) _UpperCAmelCase = ( dataset_class( SCREAMING_SNAKE_CASE_ , type_path='''test''' , data_dir=data_args.data_dir , n_obs=data_args.n_test , max_target_length=data_args.test_max_target_length , max_source_length=data_args.max_source_length , prefix=model.config.prefix or '''''' , ) if training_args.do_predict else None ) # Initialize our Trainer _UpperCAmelCase = ( build_compute_metrics_fn(data_args.task , SCREAMING_SNAKE_CASE_ ) if training_args.predict_with_generate else None ) _UpperCAmelCase = SeqaSeqTrainer( model=SCREAMING_SNAKE_CASE_ , args=SCREAMING_SNAKE_CASE_ , data_args=SCREAMING_SNAKE_CASE_ , train_dataset=SCREAMING_SNAKE_CASE_ , eval_dataset=SCREAMING_SNAKE_CASE_ , data_collator=SeqaSeqDataCollator( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , model.config.decoder_start_token_id , training_args.tpu_num_cores ) , compute_metrics=SCREAMING_SNAKE_CASE_ , tokenizer=SCREAMING_SNAKE_CASE_ , ) _UpperCAmelCase = {} # Training if training_args.do_train: logger.info('''*** Train ***''' ) _UpperCAmelCase = trainer.train( model_path=model_args.model_name_or_path if os.path.isdir(model_args.model_name_or_path ) else None ) _UpperCAmelCase = train_result.metrics _UpperCAmelCase = data_args.n_train trainer.save_model() # this also saves the tokenizer if trainer.is_world_process_zero(): handle_metrics('''train''' , SCREAMING_SNAKE_CASE_ , training_args.output_dir ) all_metrics.update(SCREAMING_SNAKE_CASE_ ) # Need to save the state, since Trainer.save_model saves only the tokenizer with the model trainer.state.save_to_json(os.path.join(training_args.output_dir , '''trainer_state.json''' ) ) # For convenience, we also re-save the tokenizer to the same directory, # so that you can share your model easily on huggingface.co/models =) tokenizer.save_pretrained(training_args.output_dir ) # Evaluation if training_args.do_eval: logger.info('''*** Evaluate ***''' ) _UpperCAmelCase = trainer.evaluate(metric_key_prefix='''val''' ) _UpperCAmelCase = data_args.n_val _UpperCAmelCase = round(metrics['''val_loss'''] , 4 ) if trainer.is_world_process_zero(): handle_metrics('''val''' , SCREAMING_SNAKE_CASE_ , training_args.output_dir ) all_metrics.update(SCREAMING_SNAKE_CASE_ ) if training_args.do_predict: logger.info('''*** Predict ***''' ) _UpperCAmelCase = trainer.predict(test_dataset=SCREAMING_SNAKE_CASE_ , metric_key_prefix='''test''' ) _UpperCAmelCase = test_output.metrics _UpperCAmelCase = data_args.n_test if trainer.is_world_process_zero(): _UpperCAmelCase = round(metrics['''test_loss'''] , 4 ) handle_metrics('''test''' , SCREAMING_SNAKE_CASE_ , training_args.output_dir ) all_metrics.update(SCREAMING_SNAKE_CASE_ ) if training_args.predict_with_generate: _UpperCAmelCase = tokenizer.batch_decode( test_output.predictions , skip_special_tokens=SCREAMING_SNAKE_CASE_ , clean_up_tokenization_spaces=SCREAMING_SNAKE_CASE_ ) _UpperCAmelCase = lmap(str.strip , SCREAMING_SNAKE_CASE_ ) write_txt_file(SCREAMING_SNAKE_CASE_ , os.path.join(training_args.output_dir , '''test_generations.txt''' ) ) if trainer.is_world_process_zero(): save_json(SCREAMING_SNAKE_CASE_ , os.path.join(training_args.output_dir , '''all_results.json''' ) ) return all_metrics def A__ ( SCREAMING_SNAKE_CASE_ : int ) -> Union[str, Any]: """simple docstring""" main() if __name__ == "__main__": main()
32
def A__ ( SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : int ) -> str: """simple docstring""" if a < 0 or b < 0: raise ValueError('''the value of both inputs must be positive''' ) _UpperCAmelCase = str(bin(SCREAMING_SNAKE_CASE_ ) )[2:] # remove the leading "0b" _UpperCAmelCase = str(bin(SCREAMING_SNAKE_CASE_ ) )[2:] # remove the leading "0b" _UpperCAmelCase = max(len(SCREAMING_SNAKE_CASE_ ) , len(SCREAMING_SNAKE_CASE_ ) ) return "0b" + "".join( str(int(char_a == '''1''' and char_b == '''1''' ) ) for char_a, char_b in zip(a_binary.zfill(SCREAMING_SNAKE_CASE_ ) , b_binary.zfill(SCREAMING_SNAKE_CASE_ ) ) ) if __name__ == "__main__": import doctest doctest.testmod()
32
1
import os from typing import Dict, List, Tuple, TypeVar, Union UpperCAmelCase_ = TypeVar("T") UpperCAmelCase_ = Union[List[T], Tuple[T, ...]] UpperCAmelCase_ = Union[T, List[T], Dict[str, T]] UpperCAmelCase_ = Union[str, bytes, os.PathLike]
32
from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCAmelCase_ = logging.get_logger(__name__) UpperCAmelCase_ = { "tiiuae/falcon-40b": "https://huggingface.co/tiiuae/falcon-40b/resolve/main/config.json", "tiiuae/falcon-7b": "https://huggingface.co/tiiuae/falcon-7b/resolve/main/config.json", } class __UpperCamelCase ( A__ ): __A : Dict = """falcon""" __A : Any = ["""past_key_values"""] def __init__( self , _UpperCamelCase=65024 , _UpperCamelCase=4544 , _UpperCamelCase=32 , _UpperCamelCase=71 , _UpperCamelCase=1e-5 , _UpperCamelCase=0.02 , _UpperCamelCase=True , _UpperCamelCase=0.0 , _UpperCamelCase=0.0 , _UpperCamelCase=None , _UpperCamelCase=False , _UpperCamelCase=False , _UpperCamelCase=True , _UpperCamelCase=True , _UpperCamelCase=False , _UpperCamelCase=11 , _UpperCamelCase=11 , **_UpperCamelCase , ): _UpperCAmelCase = vocab_size # Backward compatibility with n_embed kwarg _UpperCAmelCase = kwargs.pop('''n_embed''' , _UpperCamelCase ) _UpperCAmelCase = hidden_size if n_embed is None else n_embed _UpperCAmelCase = num_hidden_layers _UpperCAmelCase = num_attention_heads _UpperCAmelCase = layer_norm_epsilon _UpperCAmelCase = initializer_range _UpperCAmelCase = use_cache _UpperCAmelCase = hidden_dropout _UpperCAmelCase = attention_dropout _UpperCAmelCase = bos_token_id _UpperCAmelCase = eos_token_id _UpperCAmelCase = num_attention_heads if num_kv_heads is None else num_kv_heads _UpperCAmelCase = alibi _UpperCAmelCase = new_decoder_architecture _UpperCAmelCase = multi_query # Ignored when new_decoder_architecture is True _UpperCAmelCase = parallel_attn _UpperCAmelCase = bias super().__init__(bos_token_id=_UpperCamelCase , eos_token_id=_UpperCamelCase , **_UpperCamelCase ) @property def UpperCamelCase( self ): return self.hidden_size // self.num_attention_heads @property def UpperCamelCase( self ): return not self.alibi
32
1
import torch from diffusers import EulerDiscreteScheduler from diffusers.utils import torch_device from .test_schedulers import SchedulerCommonTest class __UpperCamelCase ( A__ ): __A : List[str] = (EulerDiscreteScheduler,) __A : Optional[int] = 10 def UpperCamelCase( self , **_UpperCamelCase ): _UpperCAmelCase = { '''num_train_timesteps''': 1100, '''beta_start''': 0.0001, '''beta_end''': 0.02, '''beta_schedule''': '''linear''', } config.update(**_UpperCamelCase ) return config def UpperCamelCase( self ): for timesteps in [10, 50, 100, 1000]: self.check_over_configs(num_train_timesteps=_UpperCamelCase ) def UpperCamelCase( self ): for beta_start, beta_end in zip([0.00001, 0.0001, 0.001] , [0.0002, 0.002, 0.02] ): self.check_over_configs(beta_start=_UpperCamelCase , beta_end=_UpperCamelCase ) def UpperCamelCase( self ): for schedule in ["linear", "scaled_linear"]: self.check_over_configs(beta_schedule=_UpperCamelCase ) def UpperCamelCase( self ): for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs(prediction_type=_UpperCamelCase ) def UpperCamelCase( self ): _UpperCAmelCase = self.scheduler_classes[0] _UpperCAmelCase = self.get_scheduler_config() _UpperCAmelCase = scheduler_class(**_UpperCamelCase ) scheduler.set_timesteps(self.num_inference_steps ) _UpperCAmelCase = torch.manual_seed(0 ) _UpperCAmelCase = self.dummy_model() _UpperCAmelCase = self.dummy_sample_deter * scheduler.init_noise_sigma _UpperCAmelCase = sample.to(_UpperCamelCase ) for i, t in enumerate(scheduler.timesteps ): _UpperCAmelCase = scheduler.scale_model_input(_UpperCamelCase , _UpperCamelCase ) _UpperCAmelCase = model(_UpperCamelCase , _UpperCamelCase ) _UpperCAmelCase = scheduler.step(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase , generator=_UpperCamelCase ) _UpperCAmelCase = output.prev_sample _UpperCAmelCase = torch.sum(torch.abs(_UpperCamelCase ) ) _UpperCAmelCase = torch.mean(torch.abs(_UpperCamelCase ) ) assert abs(result_sum.item() - 10.0807 ) < 1e-2 assert abs(result_mean.item() - 0.0131 ) < 1e-3 def UpperCamelCase( self ): _UpperCAmelCase = self.scheduler_classes[0] _UpperCAmelCase = self.get_scheduler_config(prediction_type='''v_prediction''' ) _UpperCAmelCase = scheduler_class(**_UpperCamelCase ) scheduler.set_timesteps(self.num_inference_steps ) _UpperCAmelCase = torch.manual_seed(0 ) _UpperCAmelCase = self.dummy_model() _UpperCAmelCase = self.dummy_sample_deter * scheduler.init_noise_sigma _UpperCAmelCase = sample.to(_UpperCamelCase ) for i, t in enumerate(scheduler.timesteps ): _UpperCAmelCase = scheduler.scale_model_input(_UpperCamelCase , _UpperCamelCase ) _UpperCAmelCase = model(_UpperCamelCase , _UpperCamelCase ) _UpperCAmelCase = scheduler.step(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase , generator=_UpperCamelCase ) _UpperCAmelCase = output.prev_sample _UpperCAmelCase = torch.sum(torch.abs(_UpperCamelCase ) ) _UpperCAmelCase = torch.mean(torch.abs(_UpperCamelCase ) ) assert abs(result_sum.item() - 0.0002 ) < 1e-2 assert abs(result_mean.item() - 2.2676e-06 ) < 1e-3 def UpperCamelCase( self ): _UpperCAmelCase = self.scheduler_classes[0] _UpperCAmelCase = self.get_scheduler_config() _UpperCAmelCase = scheduler_class(**_UpperCamelCase ) scheduler.set_timesteps(self.num_inference_steps , device=_UpperCamelCase ) _UpperCAmelCase = torch.manual_seed(0 ) _UpperCAmelCase = self.dummy_model() _UpperCAmelCase = self.dummy_sample_deter * scheduler.init_noise_sigma.cpu() _UpperCAmelCase = sample.to(_UpperCamelCase ) for t in scheduler.timesteps: _UpperCAmelCase = scheduler.scale_model_input(_UpperCamelCase , _UpperCamelCase ) _UpperCAmelCase = model(_UpperCamelCase , _UpperCamelCase ) _UpperCAmelCase = scheduler.step(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase , generator=_UpperCamelCase ) _UpperCAmelCase = output.prev_sample _UpperCAmelCase = torch.sum(torch.abs(_UpperCamelCase ) ) _UpperCAmelCase = torch.mean(torch.abs(_UpperCamelCase ) ) assert abs(result_sum.item() - 10.0807 ) < 1e-2 assert abs(result_mean.item() - 0.0131 ) < 1e-3 def UpperCamelCase( self ): _UpperCAmelCase = self.scheduler_classes[0] _UpperCAmelCase = self.get_scheduler_config() _UpperCAmelCase = scheduler_class(**_UpperCamelCase , use_karras_sigmas=_UpperCamelCase ) scheduler.set_timesteps(self.num_inference_steps , device=_UpperCamelCase ) _UpperCAmelCase = torch.manual_seed(0 ) _UpperCAmelCase = self.dummy_model() _UpperCAmelCase = self.dummy_sample_deter * scheduler.init_noise_sigma.cpu() _UpperCAmelCase = sample.to(_UpperCamelCase ) for t in scheduler.timesteps: _UpperCAmelCase = scheduler.scale_model_input(_UpperCamelCase , _UpperCamelCase ) _UpperCAmelCase = model(_UpperCamelCase , _UpperCamelCase ) _UpperCAmelCase = scheduler.step(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase , generator=_UpperCamelCase ) _UpperCAmelCase = output.prev_sample _UpperCAmelCase = torch.sum(torch.abs(_UpperCamelCase ) ) _UpperCAmelCase = torch.mean(torch.abs(_UpperCamelCase ) ) assert abs(result_sum.item() - 124.52299499511719 ) < 1e-2 assert abs(result_mean.item() - 0.16213932633399963 ) < 1e-3
32
from math import sqrt def A__ ( SCREAMING_SNAKE_CASE_ : int ) -> bool: """simple docstring""" if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5 , int(sqrt(SCREAMING_SNAKE_CASE_ ) + 1 ) , 6 ): if number % i == 0 or number % (i + 2) == 0: return False return True def A__ ( SCREAMING_SNAKE_CASE_ : int = 1_00_01 ) -> int: """simple docstring""" _UpperCAmelCase = 0 _UpperCAmelCase = 1 while count != nth and number < 3: number += 1 if is_prime(SCREAMING_SNAKE_CASE_ ): count += 1 while count != nth: number += 2 if is_prime(SCREAMING_SNAKE_CASE_ ): count += 1 return number if __name__ == "__main__": print(f'''{solution() = }''')
32
1
from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging UpperCAmelCase_ = logging.get_logger(__name__) UpperCAmelCase_ = { "bert-base-uncased": "https://huggingface.co/bert-base-uncased/resolve/main/config.json", "bert-large-uncased": "https://huggingface.co/bert-large-uncased/resolve/main/config.json", "bert-base-cased": "https://huggingface.co/bert-base-cased/resolve/main/config.json", "bert-large-cased": "https://huggingface.co/bert-large-cased/resolve/main/config.json", "bert-base-multilingual-uncased": "https://huggingface.co/bert-base-multilingual-uncased/resolve/main/config.json", "bert-base-multilingual-cased": "https://huggingface.co/bert-base-multilingual-cased/resolve/main/config.json", "bert-base-chinese": "https://huggingface.co/bert-base-chinese/resolve/main/config.json", "bert-base-german-cased": "https://huggingface.co/bert-base-german-cased/resolve/main/config.json", "bert-large-uncased-whole-word-masking": ( "https://huggingface.co/bert-large-uncased-whole-word-masking/resolve/main/config.json" ), "bert-large-cased-whole-word-masking": ( "https://huggingface.co/bert-large-cased-whole-word-masking/resolve/main/config.json" ), "bert-large-uncased-whole-word-masking-finetuned-squad": ( "https://huggingface.co/bert-large-uncased-whole-word-masking-finetuned-squad/resolve/main/config.json" ), "bert-large-cased-whole-word-masking-finetuned-squad": ( "https://huggingface.co/bert-large-cased-whole-word-masking-finetuned-squad/resolve/main/config.json" ), "bert-base-cased-finetuned-mrpc": "https://huggingface.co/bert-base-cased-finetuned-mrpc/resolve/main/config.json", "bert-base-german-dbmdz-cased": "https://huggingface.co/bert-base-german-dbmdz-cased/resolve/main/config.json", "bert-base-german-dbmdz-uncased": "https://huggingface.co/bert-base-german-dbmdz-uncased/resolve/main/config.json", "cl-tohoku/bert-base-japanese": "https://huggingface.co/cl-tohoku/bert-base-japanese/resolve/main/config.json", "cl-tohoku/bert-base-japanese-whole-word-masking": ( "https://huggingface.co/cl-tohoku/bert-base-japanese-whole-word-masking/resolve/main/config.json" ), "cl-tohoku/bert-base-japanese-char": ( "https://huggingface.co/cl-tohoku/bert-base-japanese-char/resolve/main/config.json" ), "cl-tohoku/bert-base-japanese-char-whole-word-masking": ( "https://huggingface.co/cl-tohoku/bert-base-japanese-char-whole-word-masking/resolve/main/config.json" ), "TurkuNLP/bert-base-finnish-cased-v1": ( "https://huggingface.co/TurkuNLP/bert-base-finnish-cased-v1/resolve/main/config.json" ), "TurkuNLP/bert-base-finnish-uncased-v1": ( "https://huggingface.co/TurkuNLP/bert-base-finnish-uncased-v1/resolve/main/config.json" ), "wietsedv/bert-base-dutch-cased": "https://huggingface.co/wietsedv/bert-base-dutch-cased/resolve/main/config.json", # See all BERT models at https://huggingface.co/models?filter=bert } class __UpperCamelCase ( A__ ): __A : Union[str, Any] = """bert""" def __init__( self , _UpperCamelCase=30522 , _UpperCamelCase=768 , _UpperCamelCase=12 , _UpperCamelCase=12 , _UpperCamelCase=3072 , _UpperCamelCase="gelu" , _UpperCamelCase=0.1 , _UpperCamelCase=0.1 , _UpperCamelCase=512 , _UpperCamelCase=2 , _UpperCamelCase=0.02 , _UpperCamelCase=1e-12 , _UpperCamelCase=0 , _UpperCamelCase="absolute" , _UpperCamelCase=True , _UpperCamelCase=None , **_UpperCamelCase , ): super().__init__(pad_token_id=_UpperCamelCase , **_UpperCamelCase ) _UpperCAmelCase = vocab_size _UpperCAmelCase = hidden_size _UpperCAmelCase = num_hidden_layers _UpperCAmelCase = num_attention_heads _UpperCAmelCase = hidden_act _UpperCAmelCase = intermediate_size _UpperCAmelCase = hidden_dropout_prob _UpperCAmelCase = attention_probs_dropout_prob _UpperCAmelCase = max_position_embeddings _UpperCAmelCase = type_vocab_size _UpperCAmelCase = initializer_range _UpperCAmelCase = layer_norm_eps _UpperCAmelCase = position_embedding_type _UpperCAmelCase = use_cache _UpperCAmelCase = classifier_dropout class __UpperCamelCase ( A__ ): @property def UpperCamelCase( self ): if self.task == "multiple-choice": _UpperCAmelCase = {0: '''batch''', 1: '''choice''', 2: '''sequence'''} else: _UpperCAmelCase = {0: '''batch''', 1: '''sequence'''} return OrderedDict( [ ('''input_ids''', dynamic_axis), ('''attention_mask''', dynamic_axis), ('''token_type_ids''', dynamic_axis), ] )
32
def A__ ( SCREAMING_SNAKE_CASE_ : int ) -> bool: """simple docstring""" if not isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): _UpperCAmelCase = F'''Input value of [number={number}] must be an integer''' raise TypeError(SCREAMING_SNAKE_CASE_ ) if number < 0: return False _UpperCAmelCase = number * number while number > 0: if number % 10 != number_square % 10: return False number //= 10 number_square //= 10 return True if __name__ == "__main__": import doctest doctest.testmod()
32
1
import gc import unittest from diffusers import FlaxDPMSolverMultistepScheduler, FlaxStableDiffusionPipeline from diffusers.utils import is_flax_available, slow from diffusers.utils.testing_utils import require_flax if is_flax_available(): import jax import jax.numpy as jnp from flax.jax_utils import replicate from flax.training.common_utils import shard @slow @require_flax class __UpperCamelCase ( unittest.TestCase ): def UpperCamelCase( self ): # clean up the VRAM after each test super().tearDown() gc.collect() def UpperCamelCase( self ): _UpperCAmelCase , _UpperCAmelCase = FlaxStableDiffusionPipeline.from_pretrained( '''stabilityai/stable-diffusion-2''' , revision='''bf16''' , dtype=jnp.bfloataa , ) _UpperCAmelCase = '''A painting of a squirrel eating a burger''' _UpperCAmelCase = jax.device_count() _UpperCAmelCase = num_samples * [prompt] _UpperCAmelCase = sd_pipe.prepare_inputs(_UpperCamelCase ) _UpperCAmelCase = replicate(_UpperCamelCase ) _UpperCAmelCase = shard(_UpperCamelCase ) _UpperCAmelCase = jax.random.PRNGKey(0 ) _UpperCAmelCase = jax.random.split(_UpperCamelCase , jax.device_count() ) _UpperCAmelCase = sd_pipe(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase , num_inference_steps=25 , jit=_UpperCamelCase )[0] assert images.shape == (jax.device_count(), 1, 768, 768, 3) _UpperCAmelCase = images.reshape((images.shape[0] * images.shape[1],) + images.shape[-3:] ) _UpperCAmelCase = images[0, 253:256, 253:256, -1] _UpperCAmelCase = jnp.asarray(jax.device_get(image_slice.flatten() ) ) _UpperCAmelCase = jnp.array([0.4238, 0.4414, 0.4395, 0.4453, 0.4629, 0.4590, 0.4531, 0.45508, 0.4512] ) print(f'''output_slice: {output_slice}''' ) assert jnp.abs(output_slice - expected_slice ).max() < 1e-2 def UpperCamelCase( self ): _UpperCAmelCase = '''stabilityai/stable-diffusion-2''' _UpperCAmelCase , _UpperCAmelCase = FlaxDPMSolverMultistepScheduler.from_pretrained(_UpperCamelCase , subfolder='''scheduler''' ) _UpperCAmelCase , _UpperCAmelCase = FlaxStableDiffusionPipeline.from_pretrained( _UpperCamelCase , scheduler=_UpperCamelCase , revision='''bf16''' , dtype=jnp.bfloataa , ) _UpperCAmelCase = scheduler_params _UpperCAmelCase = '''A painting of a squirrel eating a burger''' _UpperCAmelCase = jax.device_count() _UpperCAmelCase = num_samples * [prompt] _UpperCAmelCase = sd_pipe.prepare_inputs(_UpperCamelCase ) _UpperCAmelCase = replicate(_UpperCamelCase ) _UpperCAmelCase = shard(_UpperCamelCase ) _UpperCAmelCase = jax.random.PRNGKey(0 ) _UpperCAmelCase = jax.random.split(_UpperCamelCase , jax.device_count() ) _UpperCAmelCase = sd_pipe(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase , num_inference_steps=25 , jit=_UpperCamelCase )[0] assert images.shape == (jax.device_count(), 1, 768, 768, 3) _UpperCAmelCase = images.reshape((images.shape[0] * images.shape[1],) + images.shape[-3:] ) _UpperCAmelCase = images[0, 253:256, 253:256, -1] _UpperCAmelCase = jnp.asarray(jax.device_get(image_slice.flatten() ) ) _UpperCAmelCase = jnp.array([0.4336, 0.42969, 0.4453, 0.4199, 0.4297, 0.4531, 0.4434, 0.4434, 0.4297] ) print(f'''output_slice: {output_slice}''' ) assert jnp.abs(output_slice - expected_slice ).max() < 1e-2
32
from dataclasses import dataclass, field from typing import ClassVar, Dict from ..features import Features, Value from .base import TaskTemplate @dataclass(frozen=A__ ) class __UpperCamelCase ( A__ ): __A : str = field(default="""language-modeling""" , metadata={"""include_in_asdict_even_if_is_default""": True} ) __A : ClassVar[Features] = Features({"""text""": Value("""string""" )} ) __A : ClassVar[Features] = Features({} ) __A : str = "text" @property def UpperCamelCase( self ): return {self.text_column: "text"}
32
1
import unittest from transformers import BarthezTokenizer, BarthezTokenizerFast, BatchEncoding from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers @require_sentencepiece @slow # see https://github.com/huggingface/transformers/issues/11457 class __UpperCamelCase ( A__ , unittest.TestCase ): __A : Optional[int] = BarthezTokenizer __A : Union[str, Any] = BarthezTokenizerFast __A : List[Any] = True __A : str = True def UpperCamelCase( self ): super().setUp() _UpperCAmelCase = BarthezTokenizerFast.from_pretrained('''moussaKam/mbarthez''' ) tokenizer.save_pretrained(self.tmpdirname ) tokenizer.save_pretrained(self.tmpdirname , legacy_format=_UpperCamelCase ) _UpperCAmelCase = tokenizer def UpperCamelCase( self ): _UpperCAmelCase = '''<pad>''' _UpperCAmelCase = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(_UpperCamelCase ) , _UpperCamelCase ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(_UpperCamelCase ) , _UpperCamelCase ) def UpperCamelCase( self ): _UpperCAmelCase = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , '''<s>''' ) self.assertEqual(vocab_keys[1] , '''<pad>''' ) self.assertEqual(vocab_keys[-1] , '''<mask>''' ) self.assertEqual(len(_UpperCamelCase ) , 101122 ) def UpperCamelCase( self ): self.assertEqual(self.get_tokenizer().vocab_size , 101122 ) @require_torch def UpperCamelCase( self ): _UpperCAmelCase = ['''A long paragraph for summarization.''', '''Another paragraph for summarization.'''] _UpperCAmelCase = [0, 57, 3018, 70307, 91, 2] _UpperCAmelCase = self.tokenizer( _UpperCamelCase , max_length=len(_UpperCamelCase ) , padding=_UpperCamelCase , truncation=_UpperCamelCase , return_tensors='''pt''' ) self.assertIsInstance(_UpperCamelCase , _UpperCamelCase ) self.assertEqual((2, 6) , batch.input_ids.shape ) self.assertEqual((2, 6) , batch.attention_mask.shape ) _UpperCAmelCase = batch.input_ids.tolist()[0] self.assertListEqual(_UpperCamelCase , _UpperCamelCase ) def UpperCamelCase( self ): if not self.test_rust_tokenizer: return _UpperCAmelCase = self.get_tokenizer() _UpperCAmelCase = self.get_rust_tokenizer() _UpperCAmelCase = '''I was born in 92000, and this is falsé.''' _UpperCAmelCase = tokenizer.tokenize(_UpperCamelCase ) _UpperCAmelCase = rust_tokenizer.tokenize(_UpperCamelCase ) self.assertListEqual(_UpperCamelCase , _UpperCamelCase ) _UpperCAmelCase = tokenizer.encode(_UpperCamelCase , add_special_tokens=_UpperCamelCase ) _UpperCAmelCase = rust_tokenizer.encode(_UpperCamelCase , add_special_tokens=_UpperCamelCase ) self.assertListEqual(_UpperCamelCase , _UpperCamelCase ) _UpperCAmelCase = self.get_rust_tokenizer() _UpperCAmelCase = tokenizer.encode(_UpperCamelCase ) _UpperCAmelCase = rust_tokenizer.encode(_UpperCamelCase ) self.assertListEqual(_UpperCamelCase , _UpperCamelCase ) @slow def UpperCamelCase( self ): # fmt: off _UpperCAmelCase = {'''input_ids''': [[0, 490, 14328, 4507, 354, 47, 43669, 95, 25, 78117, 20215, 19779, 190, 22, 400, 4, 35343, 80310, 603, 86, 24937, 105, 33438, 94762, 196, 39642, 7, 15, 15933, 173, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [0, 10534, 87, 25, 66, 3358, 196, 55289, 8, 82961, 81, 2204, 75203, 7, 15, 763, 12956, 216, 178, 14328, 9595, 1377, 69693, 7, 448, 71021, 196, 18106, 1437, 13974, 108, 9083, 4, 49315, 7, 39, 86, 1326, 2793, 46333, 4, 448, 196, 74588, 7, 49315, 7, 39, 21, 822, 38470, 74, 21, 66723, 62480, 8, 22050, 5, 2]], '''attention_mask''': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]]} # noqa: E501 # fmt: on # moussaKam/mbarthez is a french model. So we also use french texts. _UpperCAmelCase = [ '''Le transformeur est un modèle d\'apprentissage profond introduit en 2017, ''' '''utilisé principalement dans le domaine du traitement automatique des langues (TAL).''', '''À l\'instar des réseaux de neurones récurrents (RNN), les transformeurs sont conçus ''' '''pour gérer des données séquentielles, telles que le langage naturel, pour des tâches ''' '''telles que la traduction et la synthèse de texte.''', ] self.tokenizer_integration_test_util( expected_encoding=_UpperCamelCase , model_name='''moussaKam/mbarthez''' , revision='''c2e4ecbca5e3cd2c37fe1ac285ca4fbdf1366fb6''' , sequences=_UpperCamelCase , )
32
import os import re import warnings from shutil import copyfile from typing import TYPE_CHECKING, Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import PreTrainedTokenizer if TYPE_CHECKING: from ...tokenization_utils_base import TextInput from ...utils import logging UpperCAmelCase_ = logging.get_logger(__name__) UpperCAmelCase_ = {"vocab_file": "spiece.model"} UpperCAmelCase_ = { "vocab_file": { "t5-small": "https://huggingface.co/t5-small/resolve/main/spiece.model", "t5-base": "https://huggingface.co/t5-base/resolve/main/spiece.model", "t5-large": "https://huggingface.co/t5-large/resolve/main/spiece.model", "t5-3b": "https://huggingface.co/t5-3b/resolve/main/spiece.model", "t5-11b": "https://huggingface.co/t5-11b/resolve/main/spiece.model", } } # TODO(PVP) - this should be removed in Transformers v5 UpperCAmelCase_ = { "t5-small": 5_12, "t5-base": 5_12, "t5-large": 5_12, "t5-3b": 5_12, "t5-11b": 5_12, } UpperCAmelCase_ = "▁" class __UpperCamelCase ( A__ ): __A : Any = VOCAB_FILES_NAMES __A : Union[str, Any] = PRETRAINED_VOCAB_FILES_MAP __A : Any = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __A : Tuple = ["""input_ids""", """attention_mask"""] def __init__( self , _UpperCamelCase , _UpperCamelCase="</s>" , _UpperCamelCase="<unk>" , _UpperCamelCase="<pad>" , _UpperCamelCase=100 , _UpperCamelCase=None , _UpperCamelCase = None , _UpperCamelCase=True , **_UpperCamelCase , ): # Add extra_ids to the special token list if extra_ids > 0 and additional_special_tokens is None: _UpperCAmelCase = [f'''<extra_id_{i}>''' for i in range(_UpperCamelCase )] elif extra_ids > 0 and additional_special_tokens is not None: # Check that we have the right number of extra_id special tokens _UpperCAmelCase = len(set(filter(lambda _UpperCamelCase : bool('''extra_id''' in str(_UpperCamelCase ) ) , _UpperCamelCase ) ) ) if extra_tokens != extra_ids: raise ValueError( f'''Both extra_ids ({extra_ids}) and additional_special_tokens ({additional_special_tokens}) are''' ''' provided to T5Tokenizer. In this case the additional_special_tokens must include the extra_ids''' ''' tokens''' ) if legacy: logger.warning_once( f'''You are using the legacy behaviour of the {self.__class__}. This means that tokens that come after special tokens will not be properly handled. We recommend you to''' ''' read the related pull request available at https://github.com/huggingface/transformers/pull/24565''' ) _UpperCAmelCase = legacy _UpperCAmelCase = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( eos_token=_UpperCamelCase , unk_token=_UpperCamelCase , pad_token=_UpperCamelCase , extra_ids=_UpperCamelCase , additional_special_tokens=_UpperCamelCase , sp_model_kwargs=self.sp_model_kwargs , legacy=_UpperCamelCase , **_UpperCamelCase , ) _UpperCAmelCase = vocab_file _UpperCAmelCase = extra_ids _UpperCAmelCase = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(_UpperCamelCase ) @staticmethod def UpperCamelCase( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ): if pretrained_model_name_or_path in TaTokenizer.max_model_input_sizes: _UpperCAmelCase = TaTokenizer.max_model_input_sizes[pretrained_model_name_or_path] if init_max_model_length is not None and init_max_model_length != max_model_length: return init_max_model_length elif init_max_model_length is None: warnings.warn( '''This tokenizer was incorrectly instantiated with a model max length of''' f''' {deprecated_max_model_length} which will be corrected in Transformers v5.\nFor now, this''' ''' behavior is kept to avoid breaking backwards compatibility when padding/encoding with''' ''' `truncation is True`.\n- Be aware that you SHOULD NOT rely on''' f''' {pretrained_model_name_or_path} automatically truncating your input to''' f''' {deprecated_max_model_length} when padding/encoding.\n- If you want to encode/pad to sequences''' f''' longer than {deprecated_max_model_length} you can either instantiate this tokenizer with''' ''' `model_max_length` or pass `max_length` when encoding/padding.\n- To avoid this warning, please''' ''' instantiate this tokenizer with `model_max_length` set to your preferred value.''' , _UpperCamelCase , ) return max_model_length @property def UpperCamelCase( self ): return self.sp_model.get_piece_size() + self._extra_ids def UpperCamelCase( self ): _UpperCAmelCase = {self.convert_ids_to_tokens(_UpperCamelCase ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def UpperCamelCase( self , _UpperCamelCase , _UpperCamelCase = None , _UpperCamelCase = False ): if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=_UpperCamelCase , token_ids_a=_UpperCamelCase , already_has_special_tokens=_UpperCamelCase ) # normal case: some special tokens if token_ids_a is None: return ([0] * len(_UpperCamelCase )) + [1] return ([0] * len(_UpperCamelCase )) + [1] + ([0] * len(_UpperCamelCase )) + [1] def UpperCamelCase( self ): return list( set(filter(lambda _UpperCamelCase : bool(re.search(R'''<extra_id_\d+>''' , _UpperCamelCase ) ) is not None , self.additional_special_tokens ) ) ) def UpperCamelCase( self ): return [self._convert_token_to_id(_UpperCamelCase ) for token in self.get_sentinel_tokens()] def UpperCamelCase( self , _UpperCamelCase ): if len(_UpperCamelCase ) > 0 and token_ids[-1] == self.eos_token_id: warnings.warn( f'''This sequence already has {self.eos_token}. In future versions this behavior may lead to duplicated''' ''' eos tokens being added.''' ) return token_ids else: return token_ids + [self.eos_token_id] def UpperCamelCase( self , _UpperCamelCase , _UpperCamelCase = None ): _UpperCAmelCase = [self.eos_token_id] if token_ids_a is None: return len(token_ids_a + eos ) * [0] return len(token_ids_a + eos + token_ids_a + eos ) * [0] def UpperCamelCase( self , _UpperCamelCase , _UpperCamelCase = None ): _UpperCAmelCase = self._add_eos_if_not_present(_UpperCamelCase ) if token_ids_a is None: return token_ids_a else: _UpperCAmelCase = self._add_eos_if_not_present(_UpperCamelCase ) return token_ids_a + token_ids_a def __getstate__( self ): _UpperCAmelCase = self.__dict__.copy() _UpperCAmelCase = None return state def __setstate__( self , _UpperCamelCase ): _UpperCAmelCase = d # for backward compatibility if not hasattr(self , '''sp_model_kwargs''' ): _UpperCAmelCase = {} _UpperCAmelCase = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def UpperCamelCase( self , _UpperCamelCase , **_UpperCamelCase ): # Replace the SPIECE_UNDERLINE with a space to make sure SPIECE_UNDERLINE is only used at # the beginning of the text if not self.legacy: _UpperCAmelCase = SPIECE_UNDERLINE + text.replace(_UpperCamelCase , ''' ''' ) return super().tokenize(_UpperCamelCase , **_UpperCamelCase ) def UpperCamelCase( self , _UpperCamelCase , **_UpperCamelCase ): if not self.legacy: _UpperCAmelCase = text.startswith(_UpperCamelCase ) if is_first: _UpperCAmelCase = text[1:] _UpperCAmelCase = self.sp_model.encode(_UpperCamelCase , out_type=_UpperCamelCase ) if not self.legacy and not is_first and not text.startswith(''' ''' ) and tokens[0].startswith(_UpperCamelCase ): _UpperCAmelCase = ([tokens[0][1:]] if len(tokens[0] ) > 1 else []) + tokens[1:] return tokens def UpperCamelCase( self , _UpperCamelCase ): if token.startswith('''<extra_id_''' ): _UpperCAmelCase = re.match(R'''<extra_id_(\d+)>''' , _UpperCamelCase ) _UpperCAmelCase = int(match.group(1 ) ) return self.vocab_size - num - 1 return self.sp_model.piece_to_id(_UpperCamelCase ) def UpperCamelCase( self , _UpperCamelCase ): if index < self.sp_model.get_piece_size(): _UpperCAmelCase = self.sp_model.IdToPiece(_UpperCamelCase ) else: _UpperCAmelCase = f'''<extra_id_{self.vocab_size - 1 - index}>''' return token def UpperCamelCase( self , _UpperCamelCase ): _UpperCAmelCase = [] _UpperCAmelCase = '''''' _UpperCAmelCase = False for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: if not prev_is_special: out_string += " " out_string += self.sp_model.decode(_UpperCamelCase ) + token _UpperCAmelCase = True _UpperCAmelCase = [] else: current_sub_tokens.append(_UpperCamelCase ) _UpperCAmelCase = False out_string += self.sp_model.decode(_UpperCamelCase ) return out_string.strip() def UpperCamelCase( self , _UpperCamelCase , _UpperCamelCase = None ): if not os.path.isdir(_UpperCamelCase ): logger.error(f'''Vocabulary path ({save_directory}) should be a directory''' ) return _UpperCAmelCase = os.path.join( _UpperCamelCase , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(_UpperCamelCase ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , _UpperCamelCase ) elif not os.path.isfile(self.vocab_file ): with open(_UpperCamelCase , '''wb''' ) as fi: _UpperCAmelCase = self.sp_model.serialized_model_proto() fi.write(_UpperCamelCase ) return (out_vocab_file,)
32
1
from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCAmelCase_ = logging.get_logger(__name__) UpperCAmelCase_ = { "studio-ousia/luke-base": "https://huggingface.co/studio-ousia/luke-base/resolve/main/config.json", "studio-ousia/luke-large": "https://huggingface.co/studio-ousia/luke-large/resolve/main/config.json", } class __UpperCamelCase ( A__ ): __A : str = """luke""" def __init__( self , _UpperCamelCase=50267 , _UpperCamelCase=500000 , _UpperCamelCase=768 , _UpperCamelCase=256 , _UpperCamelCase=12 , _UpperCamelCase=12 , _UpperCamelCase=3072 , _UpperCamelCase="gelu" , _UpperCamelCase=0.1 , _UpperCamelCase=0.1 , _UpperCamelCase=512 , _UpperCamelCase=2 , _UpperCamelCase=0.02 , _UpperCamelCase=1e-12 , _UpperCamelCase=True , _UpperCamelCase=None , _UpperCamelCase=1 , _UpperCamelCase=0 , _UpperCamelCase=2 , **_UpperCamelCase , ): super().__init__(pad_token_id=_UpperCamelCase , bos_token_id=_UpperCamelCase , eos_token_id=_UpperCamelCase , **_UpperCamelCase ) _UpperCAmelCase = vocab_size _UpperCAmelCase = entity_vocab_size _UpperCAmelCase = hidden_size _UpperCAmelCase = entity_emb_size _UpperCAmelCase = num_hidden_layers _UpperCAmelCase = num_attention_heads _UpperCAmelCase = hidden_act _UpperCAmelCase = intermediate_size _UpperCAmelCase = hidden_dropout_prob _UpperCAmelCase = attention_probs_dropout_prob _UpperCAmelCase = max_position_embeddings _UpperCAmelCase = type_vocab_size _UpperCAmelCase = initializer_range _UpperCAmelCase = layer_norm_eps _UpperCAmelCase = use_entity_aware_attention _UpperCAmelCase = classifier_dropout
32
from __future__ import annotations def A__ ( SCREAMING_SNAKE_CASE_ : int ) -> bool: """simple docstring""" _UpperCAmelCase = str(SCREAMING_SNAKE_CASE_ ) return len(SCREAMING_SNAKE_CASE_ ) == 9 and set(SCREAMING_SNAKE_CASE_ ) == set('''123456789''' ) def A__ ( ) -> int | None: """simple docstring""" for base_num in range(99_99 , 49_99 , -1 ): _UpperCAmelCase = 10_00_02 * base_num if is_9_pandigital(SCREAMING_SNAKE_CASE_ ): return candidate for base_num in range(3_33 , 99 , -1 ): _UpperCAmelCase = 1_00_20_03 * base_num if is_9_pandigital(SCREAMING_SNAKE_CASE_ ): return candidate return None if __name__ == "__main__": print(f'''{solution() = }''')
32
1
import numpy as np from matplotlib import pyplot as plt from sklearn.datasets import load_iris from sklearn.metrics import ConfusionMatrixDisplay from sklearn.model_selection import train_test_split from xgboost import XGBClassifier def A__ ( SCREAMING_SNAKE_CASE_ : dict ) -> tuple: """simple docstring""" return (data["data"], data["target"]) def A__ ( SCREAMING_SNAKE_CASE_ : np.ndarray , SCREAMING_SNAKE_CASE_ : np.ndarray ) -> XGBClassifier: """simple docstring""" _UpperCAmelCase = XGBClassifier() classifier.fit(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) return classifier def A__ ( ) -> None: """simple docstring""" _UpperCAmelCase = load_iris() _UpperCAmelCase , _UpperCAmelCase = data_handling(SCREAMING_SNAKE_CASE_ ) _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase = train_test_split( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , test_size=0.2_5 ) _UpperCAmelCase = iris['''target_names'''] # Create an XGBoost Classifier from the training data _UpperCAmelCase = xgboost(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) # Display the confusion matrix of the classifier with both training and test sets ConfusionMatrixDisplay.from_estimator( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , display_labels=SCREAMING_SNAKE_CASE_ , cmap='''Blues''' , normalize='''true''' , ) plt.title('''Normalized Confusion Matrix - IRIS Dataset''' ) plt.show() if __name__ == "__main__": import doctest doctest.testmod(verbose=True) main()
32
import numpy as np def A__ ( SCREAMING_SNAKE_CASE_ : np.ndarray , SCREAMING_SNAKE_CASE_ : float ) -> np.ndarray: """simple docstring""" return np.where(vector > 0 , SCREAMING_SNAKE_CASE_ , (alpha * (np.exp(SCREAMING_SNAKE_CASE_ ) - 1)) ) if __name__ == "__main__": import doctest doctest.testmod()
32
1
from __future__ import annotations from math import pow, sqrt def A__ ( SCREAMING_SNAKE_CASE_ : float , SCREAMING_SNAKE_CASE_ : float , SCREAMING_SNAKE_CASE_ : float ) -> dict[str, float]: """simple docstring""" if (resistance, reactance, impedance).count(0 ) != 1: raise ValueError('''One and only one argument must be 0''' ) if resistance == 0: return {"resistance": sqrt(pow(SCREAMING_SNAKE_CASE_ , 2 ) - pow(SCREAMING_SNAKE_CASE_ , 2 ) )} elif reactance == 0: return {"reactance": sqrt(pow(SCREAMING_SNAKE_CASE_ , 2 ) - pow(SCREAMING_SNAKE_CASE_ , 2 ) )} elif impedance == 0: return {"impedance": sqrt(pow(SCREAMING_SNAKE_CASE_ , 2 ) + pow(SCREAMING_SNAKE_CASE_ , 2 ) )} else: raise ValueError('''Exactly one argument must be 0''' ) if __name__ == "__main__": import doctest doctest.testmod()
32
UpperCAmelCase_ = { "A": ".-", "B": "-...", "C": "-.-.", "D": "-..", "E": ".", "F": "..-.", "G": "--.", "H": "....", "I": "..", "J": ".---", "K": "-.-", "L": ".-..", "M": "--", "N": "-.", "O": "---", "P": ".--.", "Q": "--.-", "R": ".-.", "S": "...", "T": "-", "U": "..-", "V": "...-", "W": ".--", "X": "-..-", "Y": "-.--", "Z": "--..", "1": ".----", "2": "..---", "3": "...--", "4": "....-", "5": ".....", "6": "-....", "7": "--...", "8": "---..", "9": "----.", "0": "-----", "&": ".-...", "@": ".--.-.", ":": "---...", ",": "--..--", ".": ".-.-.-", "'": ".----.", "\"": ".-..-.", "?": "..--..", "/": "-..-.", "=": "-...-", "+": ".-.-.", "-": "-....-", "(": "-.--.", ")": "-.--.-", "!": "-.-.--", " ": "/" } # Exclamation mark is not in ITU-R recommendation # fmt: on UpperCAmelCase_ = {value: key for key, value in MORSE_CODE_DICT.items()} def A__ ( SCREAMING_SNAKE_CASE_ : str ) -> str: """simple docstring""" return " ".join(MORSE_CODE_DICT[char] for char in message.upper() ) def A__ ( SCREAMING_SNAKE_CASE_ : str ) -> str: """simple docstring""" return "".join(REVERSE_DICT[char] for char in message.split() ) def A__ ( ) -> None: """simple docstring""" _UpperCAmelCase = '''Morse code here!''' print(SCREAMING_SNAKE_CASE_ ) _UpperCAmelCase = encrypt(SCREAMING_SNAKE_CASE_ ) print(SCREAMING_SNAKE_CASE_ ) _UpperCAmelCase = decrypt(SCREAMING_SNAKE_CASE_ ) print(SCREAMING_SNAKE_CASE_ ) if __name__ == "__main__": main()
32
1
def A__ ( SCREAMING_SNAKE_CASE_ : list ) -> list: """simple docstring""" _UpperCAmelCase = len(SCREAMING_SNAKE_CASE_ ) for i in range(1 , SCREAMING_SNAKE_CASE_ ): _UpperCAmelCase = collection[i] _UpperCAmelCase = 0 _UpperCAmelCase = i - 1 while low <= high: _UpperCAmelCase = (low + high) // 2 if val < collection[mid]: _UpperCAmelCase = mid - 1 else: _UpperCAmelCase = mid + 1 for j in range(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , -1 ): _UpperCAmelCase = collection[j - 1] _UpperCAmelCase = val return collection if __name__ == "__main__": UpperCAmelCase_ = input("Enter numbers separated by a comma:\n").strip() UpperCAmelCase_ = [int(item) for item in user_input.split(",")] print(binary_insertion_sort(unsorted))
32
import gc import unittest import numpy as np import torch from diffusers import DanceDiffusionPipeline, IPNDMScheduler, UNetaDModel from diffusers.utils import slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu, skip_mps from ..pipeline_params import UNCONDITIONAL_AUDIO_GENERATION_BATCH_PARAMS, UNCONDITIONAL_AUDIO_GENERATION_PARAMS from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() class __UpperCamelCase ( A__ , unittest.TestCase ): __A : Any = DanceDiffusionPipeline __A : Any = UNCONDITIONAL_AUDIO_GENERATION_PARAMS __A : Tuple = PipelineTesterMixin.required_optional_params - { """callback""", """latents""", """callback_steps""", """output_type""", """num_images_per_prompt""", } __A : Tuple = UNCONDITIONAL_AUDIO_GENERATION_BATCH_PARAMS __A : List[str] = False __A : str = False def UpperCamelCase( self ): torch.manual_seed(0 ) _UpperCAmelCase = UNetaDModel( block_out_channels=(32, 32, 64) , extra_in_channels=16 , sample_size=512 , sample_rate=16000 , in_channels=2 , out_channels=2 , flip_sin_to_cos=_UpperCamelCase , use_timestep_embedding=_UpperCamelCase , time_embedding_type='''fourier''' , mid_block_type='''UNetMidBlock1D''' , down_block_types=('''DownBlock1DNoSkip''', '''DownBlock1D''', '''AttnDownBlock1D''') , up_block_types=('''AttnUpBlock1D''', '''UpBlock1D''', '''UpBlock1DNoSkip''') , ) _UpperCAmelCase = IPNDMScheduler() _UpperCAmelCase = { '''unet''': unet, '''scheduler''': scheduler, } return components def UpperCamelCase( self , _UpperCamelCase , _UpperCamelCase=0 ): if str(_UpperCamelCase ).startswith('''mps''' ): _UpperCAmelCase = torch.manual_seed(_UpperCamelCase ) else: _UpperCAmelCase = torch.Generator(device=_UpperCamelCase ).manual_seed(_UpperCamelCase ) _UpperCAmelCase = { '''batch_size''': 1, '''generator''': generator, '''num_inference_steps''': 4, } return inputs def UpperCamelCase( self ): _UpperCAmelCase = '''cpu''' # ensure determinism for the device-dependent torch.Generator _UpperCAmelCase = self.get_dummy_components() _UpperCAmelCase = DanceDiffusionPipeline(**_UpperCamelCase ) _UpperCAmelCase = pipe.to(_UpperCamelCase ) pipe.set_progress_bar_config(disable=_UpperCamelCase ) _UpperCAmelCase = self.get_dummy_inputs(_UpperCamelCase ) _UpperCAmelCase = pipe(**_UpperCamelCase ) _UpperCAmelCase = output.audios _UpperCAmelCase = audio[0, -3:, -3:] assert audio.shape == (1, 2, components["unet"].sample_size) _UpperCAmelCase = np.array([-0.7265, 1.0000, -0.8388, 0.1175, 0.9498, -1.0000] ) assert np.abs(audio_slice.flatten() - expected_slice ).max() < 1e-2 @skip_mps def UpperCamelCase( self ): return super().test_save_load_local() @skip_mps def UpperCamelCase( self ): return super().test_dict_tuple_outputs_equivalent(expected_max_difference=3e-3 ) @skip_mps def UpperCamelCase( self ): return super().test_save_load_optional_components() @skip_mps def UpperCamelCase( self ): return super().test_attention_slicing_forward_pass() def UpperCamelCase( self ): super().test_inference_batch_single_identical(expected_max_diff=3e-3 ) @slow @require_torch_gpu class __UpperCamelCase ( unittest.TestCase ): def UpperCamelCase( self ): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def UpperCamelCase( self ): _UpperCAmelCase = torch_device _UpperCAmelCase = DanceDiffusionPipeline.from_pretrained('''harmonai/maestro-150k''' ) _UpperCAmelCase = pipe.to(_UpperCamelCase ) pipe.set_progress_bar_config(disable=_UpperCamelCase ) _UpperCAmelCase = torch.manual_seed(0 ) _UpperCAmelCase = pipe(generator=_UpperCamelCase , num_inference_steps=100 , audio_length_in_s=4.096 ) _UpperCAmelCase = output.audios _UpperCAmelCase = audio[0, -3:, -3:] assert audio.shape == (1, 2, pipe.unet.sample_size) _UpperCAmelCase = np.array([-0.0192, -0.0231, -0.0318, -0.0059, 0.0002, -0.0020] ) assert np.abs(audio_slice.flatten() - expected_slice ).max() < 1e-2 def UpperCamelCase( self ): _UpperCAmelCase = torch_device _UpperCAmelCase = DanceDiffusionPipeline.from_pretrained('''harmonai/maestro-150k''' , torch_dtype=torch.floataa ) _UpperCAmelCase = pipe.to(_UpperCamelCase ) pipe.set_progress_bar_config(disable=_UpperCamelCase ) _UpperCAmelCase = torch.manual_seed(0 ) _UpperCAmelCase = pipe(generator=_UpperCamelCase , num_inference_steps=100 , audio_length_in_s=4.096 ) _UpperCAmelCase = output.audios _UpperCAmelCase = audio[0, -3:, -3:] assert audio.shape == (1, 2, pipe.unet.sample_size) _UpperCAmelCase = np.array([-0.0367, -0.0488, -0.0771, -0.0525, -0.0444, -0.0341] ) assert np.abs(audio_slice.flatten() - expected_slice ).max() < 1e-2
32
1
from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCAmelCase_ = logging.get_logger(__name__) UpperCAmelCase_ = { "RWKV/rwkv-4-169m-pile": "https://huggingface.co/RWKV/rwkv-4-169m-pile/resolve/main/config.json", "RWKV/rwkv-4-430m-pile": "https://huggingface.co/RWKV/rwkv-4-430m-pile/resolve/main/config.json", "RWKV/rwkv-4-1b5-pile": "https://huggingface.co/RWKV/rwkv-4-1b5-pile/resolve/main/config.json", "RWKV/rwkv-4-3b-pile": "https://huggingface.co/RWKV/rwkv-4-3b-pile/resolve/main/config.json", "RWKV/rwkv-4-7b-pile": "https://huggingface.co/RWKV/rwkv-4-7b-pile/resolve/main/config.json", "RWKV/rwkv-4-14b-pile": "https://huggingface.co/RWKV/rwkv-4-14b-pile/resolve/main/config.json", "RWKV/rwkv-raven-1b5": "https://huggingface.co/RWKV/rwkv-raven-1b5/resolve/main/config.json", "RWKV/rwkv-raven-3b": "https://huggingface.co/RWKV/rwkv-raven-3b/resolve/main/config.json", "RWKV/rwkv-raven-7b": "https://huggingface.co/RWKV/rwkv-raven-7b/resolve/main/config.json", "RWKV/rwkv-raven-14b": "https://huggingface.co/RWKV/rwkv-raven-14b/resolve/main/config.json", } class __UpperCamelCase ( A__ ): __A : Tuple = """rwkv""" __A : Any = {"""max_position_embeddings""": """context_length"""} def __init__( self , _UpperCamelCase=50277 , _UpperCamelCase=1024 , _UpperCamelCase=4096 , _UpperCamelCase=32 , _UpperCamelCase=None , _UpperCamelCase=None , _UpperCamelCase=1e-5 , _UpperCamelCase=0 , _UpperCamelCase=0 , _UpperCamelCase=6 , _UpperCamelCase=False , _UpperCamelCase=True , **_UpperCamelCase , ): _UpperCAmelCase = vocab_size _UpperCAmelCase = context_length _UpperCAmelCase = hidden_size _UpperCAmelCase = num_hidden_layers _UpperCAmelCase = attention_hidden_size if attention_hidden_size is not None else hidden_size _UpperCAmelCase = intermediate_size if intermediate_size is not None else 4 * hidden_size _UpperCAmelCase = layer_norm_epsilon _UpperCAmelCase = rescale_every _UpperCAmelCase = use_cache _UpperCAmelCase = bos_token_id _UpperCAmelCase = eos_token_id super().__init__( tie_word_embeddings=_UpperCamelCase , bos_token_id=_UpperCamelCase , eos_token_id=_UpperCamelCase , **_UpperCamelCase )
32
from collections import OrderedDict from ...utils import logging from .auto_factory import _BaseAutoModelClass, _LazyAutoMapping, auto_class_update from .configuration_auto import CONFIG_MAPPING_NAMES UpperCAmelCase_ = logging.get_logger(__name__) UpperCAmelCase_ = OrderedDict( [ # Base model mapping ("albert", "FlaxAlbertModel"), ("bart", "FlaxBartModel"), ("beit", "FlaxBeitModel"), ("bert", "FlaxBertModel"), ("big_bird", "FlaxBigBirdModel"), ("blenderbot", "FlaxBlenderbotModel"), ("blenderbot-small", "FlaxBlenderbotSmallModel"), ("clip", "FlaxCLIPModel"), ("distilbert", "FlaxDistilBertModel"), ("electra", "FlaxElectraModel"), ("gpt-sw3", "FlaxGPT2Model"), ("gpt2", "FlaxGPT2Model"), ("gpt_neo", "FlaxGPTNeoModel"), ("gptj", "FlaxGPTJModel"), ("longt5", "FlaxLongT5Model"), ("marian", "FlaxMarianModel"), ("mbart", "FlaxMBartModel"), ("mt5", "FlaxMT5Model"), ("opt", "FlaxOPTModel"), ("pegasus", "FlaxPegasusModel"), ("regnet", "FlaxRegNetModel"), ("resnet", "FlaxResNetModel"), ("roberta", "FlaxRobertaModel"), ("roberta-prelayernorm", "FlaxRobertaPreLayerNormModel"), ("roformer", "FlaxRoFormerModel"), ("t5", "FlaxT5Model"), ("vision-text-dual-encoder", "FlaxVisionTextDualEncoderModel"), ("vit", "FlaxViTModel"), ("wav2vec2", "FlaxWav2Vec2Model"), ("whisper", "FlaxWhisperModel"), ("xglm", "FlaxXGLMModel"), ("xlm-roberta", "FlaxXLMRobertaModel"), ] ) UpperCAmelCase_ = OrderedDict( [ # Model for pre-training mapping ("albert", "FlaxAlbertForPreTraining"), ("bart", "FlaxBartForConditionalGeneration"), ("bert", "FlaxBertForPreTraining"), ("big_bird", "FlaxBigBirdForPreTraining"), ("electra", "FlaxElectraForPreTraining"), ("longt5", "FlaxLongT5ForConditionalGeneration"), ("mbart", "FlaxMBartForConditionalGeneration"), ("mt5", "FlaxMT5ForConditionalGeneration"), ("roberta", "FlaxRobertaForMaskedLM"), ("roberta-prelayernorm", "FlaxRobertaPreLayerNormForMaskedLM"), ("roformer", "FlaxRoFormerForMaskedLM"), ("t5", "FlaxT5ForConditionalGeneration"), ("wav2vec2", "FlaxWav2Vec2ForPreTraining"), ("whisper", "FlaxWhisperForConditionalGeneration"), ("xlm-roberta", "FlaxXLMRobertaForMaskedLM"), ] ) UpperCAmelCase_ = OrderedDict( [ # Model for Masked LM mapping ("albert", "FlaxAlbertForMaskedLM"), ("bart", "FlaxBartForConditionalGeneration"), ("bert", "FlaxBertForMaskedLM"), ("big_bird", "FlaxBigBirdForMaskedLM"), ("distilbert", "FlaxDistilBertForMaskedLM"), ("electra", "FlaxElectraForMaskedLM"), ("mbart", "FlaxMBartForConditionalGeneration"), ("roberta", "FlaxRobertaForMaskedLM"), ("roberta-prelayernorm", "FlaxRobertaPreLayerNormForMaskedLM"), ("roformer", "FlaxRoFormerForMaskedLM"), ("xlm-roberta", "FlaxXLMRobertaForMaskedLM"), ] ) UpperCAmelCase_ = OrderedDict( [ # Model for Seq2Seq Causal LM mapping ("bart", "FlaxBartForConditionalGeneration"), ("blenderbot", "FlaxBlenderbotForConditionalGeneration"), ("blenderbot-small", "FlaxBlenderbotSmallForConditionalGeneration"), ("encoder-decoder", "FlaxEncoderDecoderModel"), ("longt5", "FlaxLongT5ForConditionalGeneration"), ("marian", "FlaxMarianMTModel"), ("mbart", "FlaxMBartForConditionalGeneration"), ("mt5", "FlaxMT5ForConditionalGeneration"), ("pegasus", "FlaxPegasusForConditionalGeneration"), ("t5", "FlaxT5ForConditionalGeneration"), ] ) UpperCAmelCase_ = OrderedDict( [ # Model for Image-classsification ("beit", "FlaxBeitForImageClassification"), ("regnet", "FlaxRegNetForImageClassification"), ("resnet", "FlaxResNetForImageClassification"), ("vit", "FlaxViTForImageClassification"), ] ) UpperCAmelCase_ = OrderedDict( [ ("vision-encoder-decoder", "FlaxVisionEncoderDecoderModel"), ] ) UpperCAmelCase_ = OrderedDict( [ # Model for Causal LM mapping ("bart", "FlaxBartForCausalLM"), ("bert", "FlaxBertForCausalLM"), ("big_bird", "FlaxBigBirdForCausalLM"), ("electra", "FlaxElectraForCausalLM"), ("gpt-sw3", "FlaxGPT2LMHeadModel"), ("gpt2", "FlaxGPT2LMHeadModel"), ("gpt_neo", "FlaxGPTNeoForCausalLM"), ("gptj", "FlaxGPTJForCausalLM"), ("opt", "FlaxOPTForCausalLM"), ("roberta", "FlaxRobertaForCausalLM"), ("roberta-prelayernorm", "FlaxRobertaPreLayerNormForCausalLM"), ("xglm", "FlaxXGLMForCausalLM"), ("xlm-roberta", "FlaxXLMRobertaForCausalLM"), ] ) UpperCAmelCase_ = OrderedDict( [ # Model for Sequence Classification mapping ("albert", "FlaxAlbertForSequenceClassification"), ("bart", "FlaxBartForSequenceClassification"), ("bert", "FlaxBertForSequenceClassification"), ("big_bird", "FlaxBigBirdForSequenceClassification"), ("distilbert", "FlaxDistilBertForSequenceClassification"), ("electra", "FlaxElectraForSequenceClassification"), ("mbart", "FlaxMBartForSequenceClassification"), ("roberta", "FlaxRobertaForSequenceClassification"), ("roberta-prelayernorm", "FlaxRobertaPreLayerNormForSequenceClassification"), ("roformer", "FlaxRoFormerForSequenceClassification"), ("xlm-roberta", "FlaxXLMRobertaForSequenceClassification"), ] ) UpperCAmelCase_ = OrderedDict( [ # Model for Question Answering mapping ("albert", "FlaxAlbertForQuestionAnswering"), ("bart", "FlaxBartForQuestionAnswering"), ("bert", "FlaxBertForQuestionAnswering"), ("big_bird", "FlaxBigBirdForQuestionAnswering"), ("distilbert", "FlaxDistilBertForQuestionAnswering"), ("electra", "FlaxElectraForQuestionAnswering"), ("mbart", "FlaxMBartForQuestionAnswering"), ("roberta", "FlaxRobertaForQuestionAnswering"), ("roberta-prelayernorm", "FlaxRobertaPreLayerNormForQuestionAnswering"), ("roformer", "FlaxRoFormerForQuestionAnswering"), ("xlm-roberta", "FlaxXLMRobertaForQuestionAnswering"), ] ) UpperCAmelCase_ = OrderedDict( [ # Model for Token Classification mapping ("albert", "FlaxAlbertForTokenClassification"), ("bert", "FlaxBertForTokenClassification"), ("big_bird", "FlaxBigBirdForTokenClassification"), ("distilbert", "FlaxDistilBertForTokenClassification"), ("electra", "FlaxElectraForTokenClassification"), ("roberta", "FlaxRobertaForTokenClassification"), ("roberta-prelayernorm", "FlaxRobertaPreLayerNormForTokenClassification"), ("roformer", "FlaxRoFormerForTokenClassification"), ("xlm-roberta", "FlaxXLMRobertaForTokenClassification"), ] ) UpperCAmelCase_ = OrderedDict( [ # Model for Multiple Choice mapping ("albert", "FlaxAlbertForMultipleChoice"), ("bert", "FlaxBertForMultipleChoice"), ("big_bird", "FlaxBigBirdForMultipleChoice"), ("distilbert", "FlaxDistilBertForMultipleChoice"), ("electra", "FlaxElectraForMultipleChoice"), ("roberta", "FlaxRobertaForMultipleChoice"), ("roberta-prelayernorm", "FlaxRobertaPreLayerNormForMultipleChoice"), ("roformer", "FlaxRoFormerForMultipleChoice"), ("xlm-roberta", "FlaxXLMRobertaForMultipleChoice"), ] ) UpperCAmelCase_ = OrderedDict( [ ("bert", "FlaxBertForNextSentencePrediction"), ] ) UpperCAmelCase_ = OrderedDict( [ ("speech-encoder-decoder", "FlaxSpeechEncoderDecoderModel"), ("whisper", "FlaxWhisperForConditionalGeneration"), ] ) UpperCAmelCase_ = OrderedDict( [ ("whisper", "FlaxWhisperForAudioClassification"), ] ) UpperCAmelCase_ = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_MAPPING_NAMES) UpperCAmelCase_ = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_PRETRAINING_MAPPING_NAMES) UpperCAmelCase_ = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_MASKED_LM_MAPPING_NAMES) UpperCAmelCase_ = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING_NAMES ) UpperCAmelCase_ = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING_NAMES ) UpperCAmelCase_ = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_VISION_2_SEQ_MAPPING_NAMES) UpperCAmelCase_ = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_CAUSAL_LM_MAPPING_NAMES) UpperCAmelCase_ = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING_NAMES ) UpperCAmelCase_ = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_QUESTION_ANSWERING_MAPPING_NAMES ) UpperCAmelCase_ = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING_NAMES ) UpperCAmelCase_ = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_MULTIPLE_CHOICE_MAPPING_NAMES ) UpperCAmelCase_ = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_NEXT_SENTENCE_PREDICTION_MAPPING_NAMES ) UpperCAmelCase_ = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_SPEECH_SEQ_2_SEQ_MAPPING_NAMES ) UpperCAmelCase_ = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_AUDIO_CLASSIFICATION_MAPPING_NAMES ) class __UpperCamelCase ( _BaseAutoModelClass ): __A : List[str] = FLAX_MODEL_MAPPING UpperCAmelCase_ = auto_class_update(FlaxAutoModel) class __UpperCamelCase ( _BaseAutoModelClass ): __A : Optional[Any] = FLAX_MODEL_FOR_PRETRAINING_MAPPING UpperCAmelCase_ = auto_class_update(FlaxAutoModelForPreTraining, head_doc="pretraining") class __UpperCamelCase ( _BaseAutoModelClass ): __A : List[Any] = FLAX_MODEL_FOR_CAUSAL_LM_MAPPING UpperCAmelCase_ = auto_class_update(FlaxAutoModelForCausalLM, head_doc="causal language modeling") class __UpperCamelCase ( _BaseAutoModelClass ): __A : List[str] = FLAX_MODEL_FOR_MASKED_LM_MAPPING UpperCAmelCase_ = auto_class_update(FlaxAutoModelForMaskedLM, head_doc="masked language modeling") class __UpperCamelCase ( _BaseAutoModelClass ): __A : Dict = FLAX_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING UpperCAmelCase_ = auto_class_update( FlaxAutoModelForSeqaSeqLM, head_doc="sequence-to-sequence language modeling", checkpoint_for_example="t5-base" ) class __UpperCamelCase ( _BaseAutoModelClass ): __A : List[str] = FLAX_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING UpperCAmelCase_ = auto_class_update( FlaxAutoModelForSequenceClassification, head_doc="sequence classification" ) class __UpperCamelCase ( _BaseAutoModelClass ): __A : Dict = FLAX_MODEL_FOR_QUESTION_ANSWERING_MAPPING UpperCAmelCase_ = auto_class_update(FlaxAutoModelForQuestionAnswering, head_doc="question answering") class __UpperCamelCase ( _BaseAutoModelClass ): __A : Union[str, Any] = FLAX_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING UpperCAmelCase_ = auto_class_update( FlaxAutoModelForTokenClassification, head_doc="token classification" ) class __UpperCamelCase ( _BaseAutoModelClass ): __A : Union[str, Any] = FLAX_MODEL_FOR_MULTIPLE_CHOICE_MAPPING UpperCAmelCase_ = auto_class_update(FlaxAutoModelForMultipleChoice, head_doc="multiple choice") class __UpperCamelCase ( _BaseAutoModelClass ): __A : Any = FLAX_MODEL_FOR_NEXT_SENTENCE_PREDICTION_MAPPING UpperCAmelCase_ = auto_class_update( FlaxAutoModelForNextSentencePrediction, head_doc="next sentence prediction" ) class __UpperCamelCase ( _BaseAutoModelClass ): __A : Dict = FLAX_MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING UpperCAmelCase_ = auto_class_update( FlaxAutoModelForImageClassification, head_doc="image classification" ) class __UpperCamelCase ( _BaseAutoModelClass ): __A : Optional[int] = FLAX_MODEL_FOR_VISION_2_SEQ_MAPPING UpperCAmelCase_ = auto_class_update(FlaxAutoModelForVisionaSeq, head_doc="vision-to-text modeling") class __UpperCamelCase ( _BaseAutoModelClass ): __A : str = FLAX_MODEL_FOR_SPEECH_SEQ_2_SEQ_MAPPING UpperCAmelCase_ = auto_class_update( FlaxAutoModelForSpeechSeqaSeq, head_doc="sequence-to-sequence speech-to-text modeling" )
32
1
import inspect import unittest from transformers import ViTHybridConfig from transformers.testing_utils import require_accelerate, require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ViTHybridForImageClassification, ViTHybridImageProcessor, ViTHybridModel from transformers.models.vit_hybrid.modeling_vit_hybrid import VIT_HYBRID_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image class __UpperCamelCase : def __init__( self , _UpperCamelCase , _UpperCamelCase=13 , _UpperCamelCase=64 , _UpperCamelCase=2 , _UpperCamelCase=3 , _UpperCamelCase=True , _UpperCamelCase=True , _UpperCamelCase=32 , _UpperCamelCase=5 , _UpperCamelCase=4 , _UpperCamelCase=37 , _UpperCamelCase="gelu" , _UpperCamelCase=0.1 , _UpperCamelCase=0.1 , _UpperCamelCase=10 , _UpperCamelCase=0.02 , _UpperCamelCase=[1, 16, 4, 4] , _UpperCamelCase=None , ): _UpperCAmelCase = parent _UpperCAmelCase = batch_size _UpperCAmelCase = image_size _UpperCAmelCase = patch_size _UpperCAmelCase = num_channels _UpperCAmelCase = is_training _UpperCAmelCase = use_labels _UpperCAmelCase = hidden_size _UpperCAmelCase = num_hidden_layers _UpperCAmelCase = num_attention_heads _UpperCAmelCase = intermediate_size _UpperCAmelCase = hidden_act _UpperCAmelCase = hidden_dropout_prob _UpperCAmelCase = attention_probs_dropout_prob _UpperCAmelCase = type_sequence_label_size _UpperCAmelCase = initializer_range _UpperCAmelCase = scope _UpperCAmelCase = backbone_featmap_shape # in ViT hybrid, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token) # the number of patches is based on the feature map of the backbone, which by default uses an output stride # of 32, which means that the feature map has a spatial resolution of 1/32 of the input image size _UpperCAmelCase = (self.image_size // 32) ** 2 _UpperCAmelCase = num_patches + 1 def UpperCamelCase( self ): _UpperCAmelCase = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) _UpperCAmelCase = None if self.use_labels: _UpperCAmelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size ) _UpperCAmelCase = self.get_config() return config, pixel_values, labels def UpperCamelCase( self ): _UpperCAmelCase = { '''global_padding''': '''same''', '''layer_type''': '''bottleneck''', '''depths''': [3, 4, 9], '''out_features''': ['''stage1''', '''stage2''', '''stage3'''], '''embedding_dynamic_padding''': True, '''hidden_sizes''': [4, 8, 16, 32], '''num_groups''': 2, } return ViTHybridConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=_UpperCamelCase , initializer_range=self.initializer_range , backbone_featmap_shape=self.backbone_featmap_shape , backbone_config=_UpperCamelCase , ) def UpperCamelCase( self , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ): _UpperCAmelCase = ViTHybridModel(config=_UpperCamelCase ) model.to(_UpperCamelCase ) model.eval() _UpperCAmelCase = model(_UpperCamelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def UpperCamelCase( self , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ): _UpperCAmelCase = self.type_sequence_label_size _UpperCAmelCase = ViTHybridForImageClassification(_UpperCamelCase ) model.to(_UpperCamelCase ) model.eval() _UpperCAmelCase = model(_UpperCamelCase , labels=_UpperCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def UpperCamelCase( self ): _UpperCAmelCase = self.prepare_config_and_inputs() _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase = config_and_inputs _UpperCAmelCase = {'''pixel_values''': pixel_values} return config, inputs_dict @require_torch class __UpperCamelCase ( A__ , A__ , unittest.TestCase ): __A : Tuple = (ViTHybridModel, ViTHybridForImageClassification) if is_torch_available() else () __A : Tuple = ( {"""feature-extraction""": ViTHybridModel, """image-classification""": ViTHybridForImageClassification} if is_torch_available() else {} ) __A : Optional[Any] = False __A : Optional[int] = False __A : int = False def UpperCamelCase( self ): _UpperCAmelCase = ViTHybridModelTester(self ) _UpperCAmelCase = ConfigTester(self , config_class=_UpperCamelCase , has_text_modality=_UpperCamelCase , hidden_size=37 ) def UpperCamelCase( self ): self.config_tester.run_common_tests() @unittest.skip(reason='''ViT does not use inputs_embeds''' ) def UpperCamelCase( self ): pass def UpperCamelCase( self ): _UpperCAmelCase , _UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _UpperCAmelCase = model_class(_UpperCamelCase ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) _UpperCAmelCase = model.get_output_embeddings() self.assertTrue(x is None or isinstance(_UpperCamelCase , nn.Linear ) ) def UpperCamelCase( self ): _UpperCAmelCase , _UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _UpperCAmelCase = model_class(_UpperCamelCase ) _UpperCAmelCase = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic _UpperCAmelCase = [*signature.parameters.keys()] _UpperCAmelCase = ['''pixel_values'''] self.assertListEqual(arg_names[:1] , _UpperCamelCase ) def UpperCamelCase( self ): _UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_UpperCamelCase ) def UpperCamelCase( self ): _UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*_UpperCamelCase ) def UpperCamelCase( self ): _UpperCAmelCase , _UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() _UpperCAmelCase = _config_zero_init(_UpperCamelCase ) for model_class in self.all_model_classes: _UpperCAmelCase = model_class(config=_UpperCamelCase ) # Skip the check for the backbone for name, module in model.named_modules(): if module.__class__.__name__ == "ViTHybridPatchEmbeddings": _UpperCAmelCase = [f'''{name}.{key}''' for key in module.state_dict().keys()] break for name, param in model.named_parameters(): if param.requires_grad: if name in backbone_params: continue self.assertIn( ((param.data.mean() * 1e9).round() / 1e9).item() , [0.0, 1.0] , msg=f'''Parameter {name} of model {model_class} seems not properly initialized''' , ) @slow def UpperCamelCase( self ): for model_name in VIT_HYBRID_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _UpperCAmelCase = ViTHybridModel.from_pretrained(_UpperCamelCase ) self.assertIsNotNone(_UpperCamelCase ) def A__ ( ) -> Optional[Any]: """simple docstring""" _UpperCAmelCase = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) return image @require_torch @require_vision class __UpperCamelCase ( unittest.TestCase ): @cached_property def UpperCamelCase( self ): return ( ViTHybridImageProcessor.from_pretrained(VIT_HYBRID_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) if is_vision_available() else None ) @slow def UpperCamelCase( self ): _UpperCAmelCase = ViTHybridForImageClassification.from_pretrained(VIT_HYBRID_PRETRAINED_MODEL_ARCHIVE_LIST[0] ).to( _UpperCamelCase ) _UpperCAmelCase = self.default_image_processor _UpperCAmelCase = prepare_img() _UpperCAmelCase = image_processor(images=_UpperCamelCase , return_tensors='''pt''' ).to(_UpperCamelCase ) # forward pass with torch.no_grad(): _UpperCAmelCase = model(**_UpperCamelCase ) # verify the logits _UpperCAmelCase = torch.Size((1, 1000) ) self.assertEqual(outputs.logits.shape , _UpperCamelCase ) _UpperCAmelCase = torch.tensor([-1.9090, -0.4993, -0.2389] ).to(_UpperCamelCase ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , _UpperCamelCase , atol=1e-4 ) ) @slow @require_accelerate def UpperCamelCase( self ): _UpperCAmelCase = ViTHybridImageProcessor.from_pretrained('''google/vit-hybrid-base-bit-384''' ) _UpperCAmelCase = ViTHybridForImageClassification.from_pretrained('''google/vit-hybrid-base-bit-384''' , device_map='''auto''' ) _UpperCAmelCase = prepare_img() _UpperCAmelCase = image_processor(images=_UpperCamelCase , return_tensors='''pt''' ) _UpperCAmelCase = model(**_UpperCamelCase ) _UpperCAmelCase = outputs.logits # model predicts one of the 1000 ImageNet classes _UpperCAmelCase = logits.argmax(-1 ).item() self.assertTrue(model.config.idalabel[predicted_class_idx] , '''tabby, tabby cat''' )
32
import baseaa def A__ ( SCREAMING_SNAKE_CASE_ : str ) -> bytes: """simple docstring""" return baseaa.baaencode(string.encode('''utf-8''' ) ) def A__ ( SCREAMING_SNAKE_CASE_ : bytes ) -> str: """simple docstring""" return baseaa.baadecode(SCREAMING_SNAKE_CASE_ ).decode('''utf-8''' ) if __name__ == "__main__": UpperCAmelCase_ = "Hello World!" UpperCAmelCase_ = baseaa_encode(test) print(encoded) UpperCAmelCase_ = baseaa_decode(encoded) print(decoded)
32
1
import argparse import os import re UpperCAmelCase_ = "src/diffusers" # Pattern that looks at the indentation in a line. UpperCAmelCase_ = re.compile(r"^(\s*)\S") # Pattern that matches `"key":" and puts `key` in group 0. UpperCAmelCase_ = re.compile(r"^\s*\"([^\"]+)\":") # Pattern that matches `_import_structure["key"]` and puts `key` in group 0. UpperCAmelCase_ = re.compile(r"^\s*_import_structure\[\"([^\"]+)\"\]") # Pattern that matches `"key",` and puts `key` in group 0. UpperCAmelCase_ = re.compile(r"^\s*\"([^\"]+)\",\s*$") # Pattern that matches any `[stuff]` and puts `stuff` in group 0. UpperCAmelCase_ = re.compile(r"\[([^\]]+)\]") def A__ ( SCREAMING_SNAKE_CASE_ : Tuple ) -> Tuple: """simple docstring""" _UpperCAmelCase = _re_indent.search(SCREAMING_SNAKE_CASE_ ) return "" if search is None else search.groups()[0] def A__ ( SCREAMING_SNAKE_CASE_ : Dict , SCREAMING_SNAKE_CASE_ : Optional[int]="" , SCREAMING_SNAKE_CASE_ : int=None , SCREAMING_SNAKE_CASE_ : Tuple=None ) -> Any: """simple docstring""" _UpperCAmelCase = 0 _UpperCAmelCase = code.split('''\n''' ) if start_prompt is not None: while not lines[index].startswith(SCREAMING_SNAKE_CASE_ ): index += 1 _UpperCAmelCase = ['''\n'''.join(lines[:index] )] else: _UpperCAmelCase = [] # We split into blocks until we get to the `end_prompt` (or the end of the block). _UpperCAmelCase = [lines[index]] index += 1 while index < len(SCREAMING_SNAKE_CASE_ ) and (end_prompt is None or not lines[index].startswith(SCREAMING_SNAKE_CASE_ )): if len(lines[index] ) > 0 and get_indent(lines[index] ) == indent_level: if len(SCREAMING_SNAKE_CASE_ ) > 0 and get_indent(current_block[-1] ).startswith(indent_level + ''' ''' ): current_block.append(lines[index] ) blocks.append('''\n'''.join(SCREAMING_SNAKE_CASE_ ) ) if index < len(SCREAMING_SNAKE_CASE_ ) - 1: _UpperCAmelCase = [lines[index + 1]] index += 1 else: _UpperCAmelCase = [] else: blocks.append('''\n'''.join(SCREAMING_SNAKE_CASE_ ) ) _UpperCAmelCase = [lines[index]] else: current_block.append(lines[index] ) index += 1 # Adds current block if it's nonempty. if len(SCREAMING_SNAKE_CASE_ ) > 0: blocks.append('''\n'''.join(SCREAMING_SNAKE_CASE_ ) ) # Add final block after end_prompt if provided. if end_prompt is not None and index < len(SCREAMING_SNAKE_CASE_ ): blocks.append('''\n'''.join(lines[index:] ) ) return blocks def A__ ( SCREAMING_SNAKE_CASE_ : Tuple ) -> Tuple: """simple docstring""" def _inner(SCREAMING_SNAKE_CASE_ : Optional[Any] ): return key(SCREAMING_SNAKE_CASE_ ).lower().replace('''_''' , '''''' ) return _inner def A__ ( SCREAMING_SNAKE_CASE_ : Union[str, Any] , SCREAMING_SNAKE_CASE_ : Any=None ) -> int: """simple docstring""" def noop(SCREAMING_SNAKE_CASE_ : Optional[Any] ): return x if key is None: _UpperCAmelCase = noop # Constants are all uppercase, they go first. _UpperCAmelCase = [obj for obj in objects if key(SCREAMING_SNAKE_CASE_ ).isupper()] # Classes are not all uppercase but start with a capital, they go second. _UpperCAmelCase = [obj for obj in objects if key(SCREAMING_SNAKE_CASE_ )[0].isupper() and not key(SCREAMING_SNAKE_CASE_ ).isupper()] # Functions begin with a lowercase, they go last. _UpperCAmelCase = [obj for obj in objects if not key(SCREAMING_SNAKE_CASE_ )[0].isupper()] _UpperCAmelCase = ignore_underscore(SCREAMING_SNAKE_CASE_ ) return sorted(SCREAMING_SNAKE_CASE_ , key=SCREAMING_SNAKE_CASE_ ) + sorted(SCREAMING_SNAKE_CASE_ , key=SCREAMING_SNAKE_CASE_ ) + sorted(SCREAMING_SNAKE_CASE_ , key=SCREAMING_SNAKE_CASE_ ) def A__ ( SCREAMING_SNAKE_CASE_ : List[Any] ) -> Dict: """simple docstring""" def _replace(SCREAMING_SNAKE_CASE_ : Union[str, Any] ): _UpperCAmelCase = match.groups()[0] if "," not in imports: return F'''[{imports}]''' _UpperCAmelCase = [part.strip().replace('''"''' , '''''' ) for part in imports.split(''',''' )] # We will have a final empty element if the line finished with a comma. if len(keys[-1] ) == 0: _UpperCAmelCase = keys[:-1] return "[" + ", ".join([F'''"{k}"''' for k in sort_objects(SCREAMING_SNAKE_CASE_ )] ) + "]" _UpperCAmelCase = import_statement.split('''\n''' ) if len(SCREAMING_SNAKE_CASE_ ) > 3: # Here we have to sort internal imports that are on several lines (one per name): # key: [ # "object1", # "object2", # ... # ] # We may have to ignore one or two lines on each side. _UpperCAmelCase = 2 if lines[1].strip() == '''[''' else 1 _UpperCAmelCase = [(i, _re_strip_line.search(SCREAMING_SNAKE_CASE_ ).groups()[0]) for i, line in enumerate(lines[idx:-idx] )] _UpperCAmelCase = sort_objects(SCREAMING_SNAKE_CASE_ , key=lambda SCREAMING_SNAKE_CASE_ : x[1] ) _UpperCAmelCase = [lines[x[0] + idx] for x in sorted_indices] return "\n".join(lines[:idx] + sorted_lines + lines[-idx:] ) elif len(SCREAMING_SNAKE_CASE_ ) == 3: # Here we have to sort internal imports that are on one separate line: # key: [ # "object1", "object2", ... # ] if _re_bracket_content.search(lines[1] ) is not None: _UpperCAmelCase = _re_bracket_content.sub(_replace , lines[1] ) else: _UpperCAmelCase = [part.strip().replace('''"''' , '''''' ) for part in lines[1].split(''',''' )] # We will have a final empty element if the line finished with a comma. if len(keys[-1] ) == 0: _UpperCAmelCase = keys[:-1] _UpperCAmelCase = get_indent(lines[1] ) + ''', '''.join([F'''"{k}"''' for k in sort_objects(SCREAMING_SNAKE_CASE_ )] ) return "\n".join(SCREAMING_SNAKE_CASE_ ) else: # Finally we have to deal with imports fitting on one line _UpperCAmelCase = _re_bracket_content.sub(_replace , SCREAMING_SNAKE_CASE_ ) return import_statement def A__ ( SCREAMING_SNAKE_CASE_ : Union[str, Any] , SCREAMING_SNAKE_CASE_ : List[str]=True ) -> str: """simple docstring""" with open(SCREAMING_SNAKE_CASE_ , '''r''' ) as f: _UpperCAmelCase = f.read() if "_import_structure" not in code: return # Blocks of indent level 0 _UpperCAmelCase = split_code_in_indented_blocks( SCREAMING_SNAKE_CASE_ , start_prompt='''_import_structure = {''' , end_prompt='''if TYPE_CHECKING:''' ) # We ignore block 0 (everything until start_prompt) and the last block (everything after end_prompt). for block_idx in range(1 , len(SCREAMING_SNAKE_CASE_ ) - 1 ): # Check if the block contains some `_import_structure`s thingy to sort. _UpperCAmelCase = main_blocks[block_idx] _UpperCAmelCase = block.split('''\n''' ) # Get to the start of the imports. _UpperCAmelCase = 0 while line_idx < len(SCREAMING_SNAKE_CASE_ ) and "_import_structure" not in block_lines[line_idx]: # Skip dummy import blocks if "import dummy" in block_lines[line_idx]: _UpperCAmelCase = len(SCREAMING_SNAKE_CASE_ ) else: line_idx += 1 if line_idx >= len(SCREAMING_SNAKE_CASE_ ): continue # Ignore beginning and last line: they don't contain anything. _UpperCAmelCase = '''\n'''.join(block_lines[line_idx:-1] ) _UpperCAmelCase = get_indent(block_lines[1] ) # Slit the internal block into blocks of indent level 1. _UpperCAmelCase = split_code_in_indented_blocks(SCREAMING_SNAKE_CASE_ , indent_level=SCREAMING_SNAKE_CASE_ ) # We have two categories of import key: list or _import_structure[key].append/extend _UpperCAmelCase = _re_direct_key if '''_import_structure''' in block_lines[0] else _re_indirect_key # Grab the keys, but there is a trap: some lines are empty or just comments. _UpperCAmelCase = [(pattern.search(SCREAMING_SNAKE_CASE_ ).groups()[0] if pattern.search(SCREAMING_SNAKE_CASE_ ) is not None else None) for b in internal_blocks] # We only sort the lines with a key. _UpperCAmelCase = [(i, key) for i, key in enumerate(SCREAMING_SNAKE_CASE_ ) if key is not None] _UpperCAmelCase = [x[0] for x in sorted(SCREAMING_SNAKE_CASE_ , key=lambda SCREAMING_SNAKE_CASE_ : x[1] )] # We reorder the blocks by leaving empty lines/comments as they were and reorder the rest. _UpperCAmelCase = 0 _UpperCAmelCase = [] for i in range(len(SCREAMING_SNAKE_CASE_ ) ): if keys[i] is None: reordered_blocks.append(internal_blocks[i] ) else: _UpperCAmelCase = sort_objects_in_import(internal_blocks[sorted_indices[count]] ) reordered_blocks.append(SCREAMING_SNAKE_CASE_ ) count += 1 # And we put our main block back together with its first and last line. _UpperCAmelCase = '''\n'''.join(block_lines[:line_idx] + reordered_blocks + [block_lines[-1]] ) if code != "\n".join(SCREAMING_SNAKE_CASE_ ): if check_only: return True else: print(F'''Overwriting {file}.''' ) with open(SCREAMING_SNAKE_CASE_ , '''w''' ) as f: f.write('''\n'''.join(SCREAMING_SNAKE_CASE_ ) ) def A__ ( SCREAMING_SNAKE_CASE_ : List[str]=True ) -> int: """simple docstring""" _UpperCAmelCase = [] for root, _, files in os.walk(SCREAMING_SNAKE_CASE_ ): if "__init__.py" in files: _UpperCAmelCase = sort_imports(os.path.join(SCREAMING_SNAKE_CASE_ , '''__init__.py''' ) , check_only=SCREAMING_SNAKE_CASE_ ) if result: _UpperCAmelCase = [os.path.join(SCREAMING_SNAKE_CASE_ , '''__init__.py''' )] if len(SCREAMING_SNAKE_CASE_ ) > 0: raise ValueError(F'''Would overwrite {len(SCREAMING_SNAKE_CASE_ )} files, run `make style`.''' ) if __name__ == "__main__": UpperCAmelCase_ = argparse.ArgumentParser() parser.add_argument("--check_only", action="store_true", help="Whether to only check or fix style.") UpperCAmelCase_ = parser.parse_args() sort_imports_in_all_inits(check_only=args.check_only)
32
from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD, ChannelDimension, ImageInput, PILImageResampling, is_batched, to_numpy_array, valid_images, ) from ...utils import TensorType, logging UpperCAmelCase_ = logging.get_logger(__name__) class __UpperCamelCase ( A__ ): __A : int = ["""pixel_values"""] def __init__( self , _UpperCamelCase = True , _UpperCamelCase = None , _UpperCamelCase = PILImageResampling.BICUBIC , _UpperCamelCase = True , _UpperCamelCase = True , _UpperCamelCase = 1 / 255 , _UpperCamelCase = None , _UpperCamelCase = True , _UpperCamelCase = None , _UpperCamelCase = None , **_UpperCamelCase , ): super().__init__(**_UpperCamelCase ) _UpperCAmelCase = size if size is not None else {'''height''': 224, '''width''': 224} _UpperCAmelCase = get_size_dict(_UpperCamelCase ) _UpperCAmelCase = crop_size if crop_size is not None else {'''height''': 224, '''width''': 224} _UpperCAmelCase = get_size_dict(_UpperCamelCase , default_to_square=_UpperCamelCase , param_name='''crop_size''' ) _UpperCAmelCase = do_resize _UpperCAmelCase = do_rescale _UpperCAmelCase = do_normalize _UpperCAmelCase = do_center_crop _UpperCAmelCase = crop_size _UpperCAmelCase = size _UpperCAmelCase = resample _UpperCAmelCase = rescale_factor _UpperCAmelCase = image_mean if image_mean is not None else IMAGENET_DEFAULT_MEAN _UpperCAmelCase = image_std if image_std is not None else IMAGENET_DEFAULT_STD def UpperCamelCase( self , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase = PILImageResampling.BILINEAR , _UpperCamelCase = None , **_UpperCamelCase , ): _UpperCAmelCase = get_size_dict(_UpperCamelCase ) if "shortest_edge" in size: _UpperCAmelCase = get_resize_output_image_size(_UpperCamelCase , size=size['''shortest_edge'''] , default_to_square=_UpperCamelCase ) # size = get_resize_output_image_size(image, size["shortest_edge"], size["longest_edge"]) elif "height" in size and "width" in size: _UpperCAmelCase = (size['''height'''], size['''width''']) else: raise ValueError(f'''Size must contain \'height\' and \'width\' keys or \'shortest_edge\' key. Got {size.keys()}''' ) return resize(_UpperCamelCase , size=_UpperCamelCase , resample=_UpperCamelCase , data_format=_UpperCamelCase , **_UpperCamelCase ) def UpperCamelCase( self , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase = None , **_UpperCamelCase , ): _UpperCAmelCase = get_size_dict(_UpperCamelCase ) if "height" not in size or "width" not in size: raise ValueError(f'''The `size` parameter must contain the keys (height, width). Got {size.keys()}''' ) return center_crop(_UpperCamelCase , size=(size['''height'''], size['''width''']) , data_format=_UpperCamelCase , **_UpperCamelCase ) def UpperCamelCase( self , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase = None , **_UpperCamelCase ): return rescale(_UpperCamelCase , scale=_UpperCamelCase , data_format=_UpperCamelCase , **_UpperCamelCase ) def UpperCamelCase( self , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase = None , **_UpperCamelCase , ): return normalize(_UpperCamelCase , mean=_UpperCamelCase , std=_UpperCamelCase , data_format=_UpperCamelCase , **_UpperCamelCase ) def UpperCamelCase( self , _UpperCamelCase , _UpperCamelCase = None , _UpperCamelCase = None , _UpperCamelCase = None , _UpperCamelCase = None , _UpperCamelCase = None , _UpperCamelCase = None , _UpperCamelCase = None , _UpperCamelCase = None , _UpperCamelCase = None , _UpperCamelCase = None , _UpperCamelCase = None , _UpperCamelCase = ChannelDimension.FIRST , **_UpperCamelCase , ): _UpperCAmelCase = do_resize if do_resize is not None else self.do_resize _UpperCAmelCase = do_rescale if do_rescale is not None else self.do_rescale _UpperCAmelCase = do_normalize if do_normalize is not None else self.do_normalize _UpperCAmelCase = do_center_crop if do_center_crop is not None else self.do_center_crop _UpperCAmelCase = crop_size if crop_size is not None else self.crop_size _UpperCAmelCase = get_size_dict(_UpperCamelCase , param_name='''crop_size''' , default_to_square=_UpperCamelCase ) _UpperCAmelCase = resample if resample is not None else self.resample _UpperCAmelCase = rescale_factor if rescale_factor is not None else self.rescale_factor _UpperCAmelCase = image_mean if image_mean is not None else self.image_mean _UpperCAmelCase = image_std if image_std is not None else self.image_std _UpperCAmelCase = size if size is not None else self.size _UpperCAmelCase = get_size_dict(_UpperCamelCase ) if not is_batched(_UpperCamelCase ): _UpperCAmelCase = [images] if not valid_images(_UpperCamelCase ): raise ValueError( '''Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ''' '''torch.Tensor, tf.Tensor or jax.ndarray.''' ) if do_resize and size is None: raise ValueError('''Size must be specified if do_resize is True.''' ) if do_center_crop and crop_size is None: raise ValueError('''Crop size must be specified if do_center_crop is True.''' ) if do_rescale and rescale_factor is None: raise ValueError('''Rescale factor must be specified if do_rescale is True.''' ) # All transformations expect numpy arrays. _UpperCAmelCase = [to_numpy_array(_UpperCamelCase ) for image in images] if do_resize: _UpperCAmelCase = [self.resize(image=_UpperCamelCase , size=_UpperCamelCase , resample=_UpperCamelCase ) for image in images] if do_center_crop: _UpperCAmelCase = [self.center_crop(image=_UpperCamelCase , size=_UpperCamelCase ) for image in images] if do_rescale: _UpperCAmelCase = [self.rescale(image=_UpperCamelCase , scale=_UpperCamelCase ) for image in images] if do_normalize: _UpperCAmelCase = [self.normalize(image=_UpperCamelCase , mean=_UpperCamelCase , std=_UpperCamelCase ) for image in images] _UpperCAmelCase = [to_channel_dimension_format(_UpperCamelCase , _UpperCamelCase ) for image in images] _UpperCAmelCase = {'''pixel_values''': images} return BatchFeature(data=_UpperCamelCase , tensor_type=_UpperCamelCase )
32
1
import unittest import numpy as np from transformers import RobertaConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_modeling_flax_common import FlaxModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask if is_flax_available(): from transformers.models.roberta.modeling_flax_roberta import ( FlaxRobertaForCausalLM, FlaxRobertaForMaskedLM, FlaxRobertaForMultipleChoice, FlaxRobertaForQuestionAnswering, FlaxRobertaForSequenceClassification, FlaxRobertaForTokenClassification, FlaxRobertaModel, ) class __UpperCamelCase ( unittest.TestCase ): def __init__( self , _UpperCamelCase , _UpperCamelCase=13 , _UpperCamelCase=7 , _UpperCamelCase=True , _UpperCamelCase=True , _UpperCamelCase=True , _UpperCamelCase=True , _UpperCamelCase=99 , _UpperCamelCase=32 , _UpperCamelCase=5 , _UpperCamelCase=4 , _UpperCamelCase=37 , _UpperCamelCase="gelu" , _UpperCamelCase=0.1 , _UpperCamelCase=0.1 , _UpperCamelCase=512 , _UpperCamelCase=16 , _UpperCamelCase=2 , _UpperCamelCase=0.02 , _UpperCamelCase=4 , ): _UpperCAmelCase = parent _UpperCAmelCase = batch_size _UpperCAmelCase = seq_length _UpperCAmelCase = is_training _UpperCAmelCase = use_attention_mask _UpperCAmelCase = use_token_type_ids _UpperCAmelCase = use_labels _UpperCAmelCase = vocab_size _UpperCAmelCase = hidden_size _UpperCAmelCase = num_hidden_layers _UpperCAmelCase = num_attention_heads _UpperCAmelCase = intermediate_size _UpperCAmelCase = hidden_act _UpperCAmelCase = hidden_dropout_prob _UpperCAmelCase = attention_probs_dropout_prob _UpperCAmelCase = max_position_embeddings _UpperCAmelCase = type_vocab_size _UpperCAmelCase = type_sequence_label_size _UpperCAmelCase = initializer_range _UpperCAmelCase = num_choices def UpperCamelCase( self ): _UpperCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _UpperCAmelCase = None if self.use_attention_mask: _UpperCAmelCase = random_attention_mask([self.batch_size, self.seq_length] ) _UpperCAmelCase = None if self.use_token_type_ids: _UpperCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) _UpperCAmelCase = RobertaConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=_UpperCamelCase , initializer_range=self.initializer_range , ) return config, input_ids, token_type_ids, attention_mask def UpperCamelCase( self ): _UpperCAmelCase = self.prepare_config_and_inputs() _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase = config_and_inputs _UpperCAmelCase = {'''input_ids''': input_ids, '''token_type_ids''': token_type_ids, '''attention_mask''': attention_mask} return config, inputs_dict def UpperCamelCase( self ): _UpperCAmelCase = self.prepare_config_and_inputs() _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase = config_and_inputs _UpperCAmelCase = True _UpperCAmelCase = floats_tensor([self.batch_size, self.seq_length, self.hidden_size] ) _UpperCAmelCase = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 ) return ( config, input_ids, token_type_ids, encoder_hidden_states, encoder_attention_mask, ) @require_flax class __UpperCamelCase ( A__ , unittest.TestCase ): __A : Union[str, Any] = True __A : str = ( ( FlaxRobertaModel, FlaxRobertaForCausalLM, FlaxRobertaForMaskedLM, FlaxRobertaForSequenceClassification, FlaxRobertaForTokenClassification, FlaxRobertaForMultipleChoice, FlaxRobertaForQuestionAnswering, ) if is_flax_available() else () ) def UpperCamelCase( self ): _UpperCAmelCase = FlaxRobertaModelTester(self ) @slow def UpperCamelCase( self ): for model_class_name in self.all_model_classes: _UpperCAmelCase = model_class_name.from_pretrained('''roberta-base''' , from_pt=_UpperCamelCase ) _UpperCAmelCase = model(np.ones((1, 1) ) ) self.assertIsNotNone(_UpperCamelCase )
32
from ..utils import DummyObject, requires_backends class __UpperCamelCase ( metaclass=A__ ): __A : str = ["""torch""", """scipy"""] def __init__( self , *_UpperCamelCase , **_UpperCamelCase ): requires_backends(self , ['''torch''', '''scipy'''] ) @classmethod def UpperCamelCase( cls , *_UpperCamelCase , **_UpperCamelCase ): requires_backends(cls , ['''torch''', '''scipy'''] ) @classmethod def UpperCamelCase( cls , *_UpperCamelCase , **_UpperCamelCase ): requires_backends(cls , ['''torch''', '''scipy'''] )
32
1
def A__ ( SCREAMING_SNAKE_CASE_ : int ) -> int: """simple docstring""" if not isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): raise TypeError('''only integers accepted as input''' ) else: _UpperCAmelCase = str(abs(SCREAMING_SNAKE_CASE_ ) ) _UpperCAmelCase = [list(SCREAMING_SNAKE_CASE_ ) for char in range(len(SCREAMING_SNAKE_CASE_ ) )] for index in range(len(SCREAMING_SNAKE_CASE_ ) ): num_transpositions[index].pop(SCREAMING_SNAKE_CASE_ ) return max( int(''''''.join(list(SCREAMING_SNAKE_CASE_ ) ) ) for transposition in num_transpositions ) if __name__ == "__main__": __import__("doctest").testmod()
32
def A__ ( SCREAMING_SNAKE_CASE_ : int = 2_00_00_00 ) -> int: """simple docstring""" _UpperCAmelCase = [0 for i in range(n + 1 )] _UpperCAmelCase = 1 _UpperCAmelCase = 1 for i in range(2 , int(n**0.5 ) + 1 ): if primality_list[i] == 0: for j in range(i * i , n + 1 , SCREAMING_SNAKE_CASE_ ): _UpperCAmelCase = 1 _UpperCAmelCase = 0 for i in range(SCREAMING_SNAKE_CASE_ ): if primality_list[i] == 0: sum_of_primes += i return sum_of_primes if __name__ == "__main__": print(f'''{solution() = }''')
32
1
from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCAmelCase_ = logging.get_logger(__name__) UpperCAmelCase_ = {"openai-gpt": "https://huggingface.co/openai-gpt/resolve/main/config.json"} class __UpperCamelCase ( A__ ): __A : Any = """openai-gpt""" __A : Optional[int] = { """max_position_embeddings""": """n_positions""", """hidden_size""": """n_embd""", """num_attention_heads""": """n_head""", """num_hidden_layers""": """n_layer""", } def __init__( self , _UpperCamelCase=40478 , _UpperCamelCase=512 , _UpperCamelCase=768 , _UpperCamelCase=12 , _UpperCamelCase=12 , _UpperCamelCase="gelu" , _UpperCamelCase=0.1 , _UpperCamelCase=0.1 , _UpperCamelCase=0.1 , _UpperCamelCase=1e-5 , _UpperCamelCase=0.02 , _UpperCamelCase="cls_index" , _UpperCamelCase=True , _UpperCamelCase=None , _UpperCamelCase=True , _UpperCamelCase=0.1 , **_UpperCamelCase , ): _UpperCAmelCase = vocab_size _UpperCAmelCase = n_positions _UpperCAmelCase = n_embd _UpperCAmelCase = n_layer _UpperCAmelCase = n_head _UpperCAmelCase = afn _UpperCAmelCase = resid_pdrop _UpperCAmelCase = embd_pdrop _UpperCAmelCase = attn_pdrop _UpperCAmelCase = layer_norm_epsilon _UpperCAmelCase = initializer_range _UpperCAmelCase = summary_type _UpperCAmelCase = summary_use_proj _UpperCAmelCase = summary_activation _UpperCAmelCase = summary_first_dropout _UpperCAmelCase = summary_proj_to_labels super().__init__(**_UpperCamelCase )
32
import warnings from ...utils import logging from .image_processing_glpn import GLPNImageProcessor UpperCAmelCase_ = logging.get_logger(__name__) class __UpperCamelCase ( A__ ): def __init__( self , *_UpperCamelCase , **_UpperCamelCase ): warnings.warn( '''The class GLPNFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please''' ''' use GLPNImageProcessor instead.''' , _UpperCamelCase , ) super().__init__(*_UpperCamelCase , **_UpperCamelCase )
32
1
from numpy import exp, pi, sqrt def A__ ( SCREAMING_SNAKE_CASE_ : Any , SCREAMING_SNAKE_CASE_ : float = 0.0 , SCREAMING_SNAKE_CASE_ : float = 1.0 ) -> int: """simple docstring""" return 1 / sqrt(2 * pi * sigma**2 ) * exp(-((x - mu) ** 2) / (2 * sigma**2) ) if __name__ == "__main__": import doctest doctest.testmod()
32
from typing import List, Optional, Union from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType class __UpperCamelCase ( A__ ): __A : Dict = ["""image_processor""", """tokenizer"""] __A : List[str] = """BridgeTowerImageProcessor""" __A : str = ("""RobertaTokenizer""", """RobertaTokenizerFast""") def __init__( self , _UpperCamelCase , _UpperCamelCase ): super().__init__(_UpperCamelCase , _UpperCamelCase ) def __call__( self , _UpperCamelCase , _UpperCamelCase = None , _UpperCamelCase = True , _UpperCamelCase = False , _UpperCamelCase = None , _UpperCamelCase = None , _UpperCamelCase = 0 , _UpperCamelCase = None , _UpperCamelCase = None , _UpperCamelCase = None , _UpperCamelCase = False , _UpperCamelCase = False , _UpperCamelCase = False , _UpperCamelCase = False , _UpperCamelCase = True , _UpperCamelCase = None , **_UpperCamelCase , ): _UpperCAmelCase = self.tokenizer( text=_UpperCamelCase , add_special_tokens=_UpperCamelCase , padding=_UpperCamelCase , truncation=_UpperCamelCase , max_length=_UpperCamelCase , stride=_UpperCamelCase , pad_to_multiple_of=_UpperCamelCase , return_token_type_ids=_UpperCamelCase , return_attention_mask=_UpperCamelCase , return_overflowing_tokens=_UpperCamelCase , return_special_tokens_mask=_UpperCamelCase , return_offsets_mapping=_UpperCamelCase , return_length=_UpperCamelCase , verbose=_UpperCamelCase , return_tensors=_UpperCamelCase , **_UpperCamelCase , ) # add pixel_values + pixel_mask _UpperCAmelCase = self.image_processor( _UpperCamelCase , return_tensors=_UpperCamelCase , do_normalize=_UpperCamelCase , do_center_crop=_UpperCamelCase , **_UpperCamelCase ) encoding.update(_UpperCamelCase ) return encoding def UpperCamelCase( self , *_UpperCamelCase , **_UpperCamelCase ): return self.tokenizer.batch_decode(*_UpperCamelCase , **_UpperCamelCase ) def UpperCamelCase( self , *_UpperCamelCase , **_UpperCamelCase ): return self.tokenizer.decode(*_UpperCamelCase , **_UpperCamelCase ) @property def UpperCamelCase( self ): _UpperCAmelCase = self.tokenizer.model_input_names _UpperCAmelCase = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) )
32
1
import copy from dataclasses import dataclass, field from typing import ClassVar, Dict from ..features import Audio, Features, Value from .base import TaskTemplate @dataclass(frozen=A__ ) class __UpperCamelCase ( A__ ): __A : str = field(default="""automatic-speech-recognition""" , metadata={"""include_in_asdict_even_if_is_default""": True} ) __A : ClassVar[Features] = Features({"""audio""": Audio()} ) __A : ClassVar[Features] = Features({"""transcription""": Value("""string""" )} ) __A : str = "audio" __A : str = "transcription" def UpperCamelCase( self , _UpperCamelCase ): if self.audio_column not in features: raise ValueError(f'''Column {self.audio_column} is not present in features.''' ) if not isinstance(features[self.audio_column] , _UpperCamelCase ): raise ValueError(f'''Column {self.audio_column} is not an Audio type.''' ) _UpperCAmelCase = copy.deepcopy(self ) _UpperCAmelCase = self.input_schema.copy() _UpperCAmelCase = features[self.audio_column] _UpperCAmelCase = input_schema return task_template @property def UpperCamelCase( self ): return {self.audio_column: "audio", self.transcription_column: "transcription"}
32
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available UpperCAmelCase_ = { "configuration_xlm": ["XLM_PRETRAINED_CONFIG_ARCHIVE_MAP", "XLMConfig", "XLMOnnxConfig"], "tokenization_xlm": ["XLMTokenizer"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase_ = [ "XLM_PRETRAINED_MODEL_ARCHIVE_LIST", "XLMForMultipleChoice", "XLMForQuestionAnswering", "XLMForQuestionAnsweringSimple", "XLMForSequenceClassification", "XLMForTokenClassification", "XLMModel", "XLMPreTrainedModel", "XLMWithLMHeadModel", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase_ = [ "TF_XLM_PRETRAINED_MODEL_ARCHIVE_LIST", "TFXLMForMultipleChoice", "TFXLMForQuestionAnsweringSimple", "TFXLMForSequenceClassification", "TFXLMForTokenClassification", "TFXLMMainLayer", "TFXLMModel", "TFXLMPreTrainedModel", "TFXLMWithLMHeadModel", ] if TYPE_CHECKING: from .configuration_xlm import XLM_PRETRAINED_CONFIG_ARCHIVE_MAP, XLMConfig, XLMOnnxConfig from .tokenization_xlm import XLMTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_xlm import ( XLM_PRETRAINED_MODEL_ARCHIVE_LIST, XLMForMultipleChoice, XLMForQuestionAnswering, XLMForQuestionAnsweringSimple, XLMForSequenceClassification, XLMForTokenClassification, XLMModel, XLMPreTrainedModel, XLMWithLMHeadModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_xlm import ( TF_XLM_PRETRAINED_MODEL_ARCHIVE_LIST, TFXLMForMultipleChoice, TFXLMForQuestionAnsweringSimple, TFXLMForSequenceClassification, TFXLMForTokenClassification, TFXLMMainLayer, TFXLMModel, TFXLMPreTrainedModel, TFXLMWithLMHeadModel, ) else: import sys UpperCAmelCase_ = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
32
1