code
stringlengths
82
54.1k
code_codestyle
int64
0
699
style_context
stringlengths
111
35.6k
style_context_codestyle
int64
0
699
label
int64
0
1
UpperCAmelCase_ = [ (10_00, "M"), (9_00, "CM"), (5_00, "D"), (4_00, "CD"), (1_00, "C"), (90, "XC"), (50, "L"), (40, "XL"), (10, "X"), (9, "IX"), (5, "V"), (4, "IV"), (1, "I"), ] def A__ ( SCREAMING_SNAKE_CASE_ : str ) -> int: """simple docstring""" _UpperCAmelCase = {'''I''': 1, '''V''': 5, '''X''': 10, '''L''': 50, '''C''': 1_00, '''D''': 5_00, '''M''': 10_00} _UpperCAmelCase = 0 _UpperCAmelCase = 0 while place < len(SCREAMING_SNAKE_CASE_ ): if (place + 1 < len(SCREAMING_SNAKE_CASE_ )) and (vals[roman[place]] < vals[roman[place + 1]]): total += vals[roman[place + 1]] - vals[roman[place]] place += 2 else: total += vals[roman[place]] place += 1 return total def A__ ( SCREAMING_SNAKE_CASE_ : int ) -> str: """simple docstring""" _UpperCAmelCase = [] for arabic, roman in ROMAN: ((_UpperCAmelCase) , (_UpperCAmelCase)) = divmod(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) result.append(roman * factor ) if number == 0: break return "".join(SCREAMING_SNAKE_CASE_ ) if __name__ == "__main__": import doctest doctest.testmod()
32
from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCAmelCase_ = logging.get_logger(__name__) UpperCAmelCase_ = { "microsoft/biogpt": "https://huggingface.co/microsoft/biogpt/resolve/main/config.json", # See all BioGPT models at https://huggingface.co/models?filter=biogpt } class __UpperCamelCase ( A__ ): __A : Any = """biogpt""" def __init__( self , _UpperCamelCase=42384 , _UpperCamelCase=1024 , _UpperCamelCase=24 , _UpperCamelCase=16 , _UpperCamelCase=4096 , _UpperCamelCase="gelu" , _UpperCamelCase=0.1 , _UpperCamelCase=0.1 , _UpperCamelCase=1024 , _UpperCamelCase=0.02 , _UpperCamelCase=1e-12 , _UpperCamelCase=True , _UpperCamelCase=True , _UpperCamelCase=0.0 , _UpperCamelCase=0.0 , _UpperCamelCase=1 , _UpperCamelCase=0 , _UpperCamelCase=2 , **_UpperCamelCase , ): _UpperCAmelCase = vocab_size _UpperCAmelCase = max_position_embeddings _UpperCAmelCase = hidden_size _UpperCAmelCase = num_hidden_layers _UpperCAmelCase = num_attention_heads _UpperCAmelCase = intermediate_size _UpperCAmelCase = hidden_act _UpperCAmelCase = hidden_dropout_prob _UpperCAmelCase = attention_probs_dropout_prob _UpperCAmelCase = initializer_range _UpperCAmelCase = layer_norm_eps _UpperCAmelCase = scale_embedding _UpperCAmelCase = use_cache _UpperCAmelCase = layerdrop _UpperCAmelCase = activation_dropout super().__init__(pad_token_id=_UpperCamelCase , bos_token_id=_UpperCamelCase , eos_token_id=_UpperCamelCase , **_UpperCamelCase )
32
1
import collections from typing import List, Optional, Union from ...tokenization_utils_base import BatchEncoding from ...utils import TensorType, add_end_docstrings, add_start_docstrings, logging from ..bert.tokenization_bert import BertTokenizer UpperCAmelCase_ = logging.get_logger(__name__) UpperCAmelCase_ = {"vocab_file": "vocab.txt", "tokenizer_file": "tokenizer.json"} UpperCAmelCase_ = { "vocab_file": { "facebook/dpr-ctx_encoder-single-nq-base": ( "https://huggingface.co/facebook/dpr-ctx_encoder-single-nq-base/resolve/main/vocab.txt" ), "facebook/dpr-ctx_encoder-multiset-base": ( "https://huggingface.co/facebook/dpr-ctx_encoder-multiset-base/resolve/main/vocab.txt" ), }, "tokenizer_file": { "facebook/dpr-ctx_encoder-single-nq-base": ( "https://huggingface.co/facebook/dpr-ctx_encoder-single-nq-base/resolve/main/tokenizer.json" ), "facebook/dpr-ctx_encoder-multiset-base": ( "https://huggingface.co/facebook/dpr-ctx_encoder-multiset-base/resolve/main/tokenizer.json" ), }, } UpperCAmelCase_ = { "vocab_file": { "facebook/dpr-question_encoder-single-nq-base": ( "https://huggingface.co/facebook/dpr-question_encoder-single-nq-base/resolve/main/vocab.txt" ), "facebook/dpr-question_encoder-multiset-base": ( "https://huggingface.co/facebook/dpr-question_encoder-multiset-base/resolve/main/vocab.txt" ), }, "tokenizer_file": { "facebook/dpr-question_encoder-single-nq-base": ( "https://huggingface.co/facebook/dpr-question_encoder-single-nq-base/resolve/main/tokenizer.json" ), "facebook/dpr-question_encoder-multiset-base": ( "https://huggingface.co/facebook/dpr-question_encoder-multiset-base/resolve/main/tokenizer.json" ), }, } UpperCAmelCase_ = { "vocab_file": { "facebook/dpr-reader-single-nq-base": ( "https://huggingface.co/facebook/dpr-reader-single-nq-base/resolve/main/vocab.txt" ), "facebook/dpr-reader-multiset-base": ( "https://huggingface.co/facebook/dpr-reader-multiset-base/resolve/main/vocab.txt" ), }, "tokenizer_file": { "facebook/dpr-reader-single-nq-base": ( "https://huggingface.co/facebook/dpr-reader-single-nq-base/resolve/main/tokenizer.json" ), "facebook/dpr-reader-multiset-base": ( "https://huggingface.co/facebook/dpr-reader-multiset-base/resolve/main/tokenizer.json" ), }, } UpperCAmelCase_ = { "facebook/dpr-ctx_encoder-single-nq-base": 5_12, "facebook/dpr-ctx_encoder-multiset-base": 5_12, } UpperCAmelCase_ = { "facebook/dpr-question_encoder-single-nq-base": 5_12, "facebook/dpr-question_encoder-multiset-base": 5_12, } UpperCAmelCase_ = { "facebook/dpr-reader-single-nq-base": 5_12, "facebook/dpr-reader-multiset-base": 5_12, } UpperCAmelCase_ = { "facebook/dpr-ctx_encoder-single-nq-base": {"do_lower_case": True}, "facebook/dpr-ctx_encoder-multiset-base": {"do_lower_case": True}, } UpperCAmelCase_ = { "facebook/dpr-question_encoder-single-nq-base": {"do_lower_case": True}, "facebook/dpr-question_encoder-multiset-base": {"do_lower_case": True}, } UpperCAmelCase_ = { "facebook/dpr-reader-single-nq-base": {"do_lower_case": True}, "facebook/dpr-reader-multiset-base": {"do_lower_case": True}, } class __UpperCamelCase ( A__ ): __A : Optional[int] = VOCAB_FILES_NAMES __A : int = CONTEXT_ENCODER_PRETRAINED_VOCAB_FILES_MAP __A : List[str] = CONTEXT_ENCODER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __A : Optional[int] = CONTEXT_ENCODER_PRETRAINED_INIT_CONFIGURATION class __UpperCamelCase ( A__ ): __A : Dict = VOCAB_FILES_NAMES __A : List[str] = QUESTION_ENCODER_PRETRAINED_VOCAB_FILES_MAP __A : Any = QUESTION_ENCODER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __A : str = QUESTION_ENCODER_PRETRAINED_INIT_CONFIGURATION UpperCAmelCase_ = collections.namedtuple( "DPRSpanPrediction", ["span_score", "relevance_score", "doc_id", "start_index", "end_index", "text"] ) UpperCAmelCase_ = collections.namedtuple("DPRReaderOutput", ["start_logits", "end_logits", "relevance_logits"]) UpperCAmelCase_ = r"\n Return a dictionary with the token ids of the input strings and other information to give to `.decode_best_spans`.\n It converts the strings of a question and different passages (title and text) in a sequence of IDs (integers),\n using the tokenizer and vocabulary. The resulting `input_ids` is a matrix of size `(n_passages, sequence_length)`\n with the format:\n\n ```\n [CLS] <question token ids> [SEP] <titles ids> [SEP] <texts ids>\n ```\n\n Args:\n questions (`str` or `List[str]`):\n The questions to be encoded. You can specify one question for many passages. In this case, the question\n will be duplicated like `[questions] * n_passages`. Otherwise you have to specify as many questions as in\n `titles` or `texts`.\n titles (`str` or `List[str]`):\n The passages titles to be encoded. This can be a string or a list of strings if there are several passages.\n texts (`str` or `List[str]`):\n The passages texts to be encoded. This can be a string or a list of strings if there are several passages.\n padding (`bool`, `str` or [`~utils.PaddingStrategy`], *optional*, defaults to `False`):\n Activates and controls padding. Accepts the following values:\n\n - `True` or `'longest'`: Pad to the longest sequence in the batch (or no padding if only a single sequence\n if provided).\n - `'max_length'`: Pad to a maximum length specified with the argument `max_length` or to the maximum\n acceptable input length for the model if that argument is not provided.\n - `False` or `'do_not_pad'` (default): No padding (i.e., can output a batch with sequences of different\n lengths).\n truncation (`bool`, `str` or [`~tokenization_utils_base.TruncationStrategy`], *optional*, defaults to `False`):\n Activates and controls truncation. Accepts the following values:\n\n - `True` or `'longest_first'`: Truncate to a maximum length specified with the argument `max_length` or to\n the maximum acceptable input length for the model if that argument is not provided. This will truncate\n token by token, removing a token from the longest sequence in the pair if a pair of sequences (or a batch\n of pairs) is provided.\n - `'only_first'`: Truncate to a maximum length specified with the argument `max_length` or to the maximum\n acceptable input length for the model if that argument is not provided. This will only truncate the first\n sequence of a pair if a pair of sequences (or a batch of pairs) is provided.\n - `'only_second'`: Truncate to a maximum length specified with the argument `max_length` or to the maximum\n acceptable input length for the model if that argument is not provided. This will only truncate the\n second sequence of a pair if a pair of sequences (or a batch of pairs) is provided.\n - `False` or `'do_not_truncate'` (default): No truncation (i.e., can output batch with sequence lengths\n greater than the model maximum admissible input size).\n max_length (`int`, *optional*):\n Controls the maximum length to use by one of the truncation/padding parameters.\n\n If left unset or set to `None`, this will use the predefined model maximum length if a maximum length\n is required by one of the truncation/padding parameters. If the model has no specific maximum input\n length (like XLNet) truncation/padding to a maximum length will be deactivated.\n return_tensors (`str` or [`~utils.TensorType`], *optional*):\n If set, will return tensors instead of list of python integers. Acceptable values are:\n\n - `'tf'`: Return TensorFlow `tf.constant` objects.\n - `'pt'`: Return PyTorch `torch.Tensor` objects.\n - `'np'`: Return Numpy `np.ndarray` objects.\n return_attention_mask (`bool`, *optional*):\n Whether or not to return the attention mask. If not set, will return the attention mask according to the\n specific tokenizer's default, defined by the `return_outputs` attribute.\n\n [What are attention masks?](../glossary#attention-mask)\n\n Returns:\n `Dict[str, List[List[int]]]`: A dictionary with the following keys:\n\n - `input_ids`: List of token ids to be fed to a model.\n - `attention_mask`: List of indices specifying which tokens should be attended to by the model.\n " @add_start_docstrings(A__ ) class __UpperCamelCase : def __call__( self , _UpperCamelCase , _UpperCamelCase = None , _UpperCamelCase = None , _UpperCamelCase = False , _UpperCamelCase = False , _UpperCamelCase = None , _UpperCamelCase = None , _UpperCamelCase = None , **_UpperCamelCase , ): if titles is None and texts is None: return super().__call__( _UpperCamelCase , padding=_UpperCamelCase , truncation=_UpperCamelCase , max_length=_UpperCamelCase , return_tensors=_UpperCamelCase , return_attention_mask=_UpperCamelCase , **_UpperCamelCase , ) elif titles is None or texts is None: _UpperCAmelCase = titles if texts is None else texts return super().__call__( _UpperCamelCase , _UpperCamelCase , padding=_UpperCamelCase , truncation=_UpperCamelCase , max_length=_UpperCamelCase , return_tensors=_UpperCamelCase , return_attention_mask=_UpperCamelCase , **_UpperCamelCase , ) _UpperCAmelCase = titles if not isinstance(_UpperCamelCase , _UpperCamelCase ) else [titles] _UpperCAmelCase = texts if not isinstance(_UpperCamelCase , _UpperCamelCase ) else [texts] _UpperCAmelCase = len(_UpperCamelCase ) _UpperCAmelCase = questions if not isinstance(_UpperCamelCase , _UpperCamelCase ) else [questions] * n_passages if len(_UpperCamelCase ) != len(_UpperCamelCase ): raise ValueError( f'''There should be as many titles than texts but got {len(_UpperCamelCase )} titles and {len(_UpperCamelCase )} texts.''' ) _UpperCAmelCase = super().__call__(_UpperCamelCase , _UpperCamelCase , padding=_UpperCamelCase , truncation=_UpperCamelCase )['''input_ids'''] _UpperCAmelCase = super().__call__(_UpperCamelCase , add_special_tokens=_UpperCamelCase , padding=_UpperCamelCase , truncation=_UpperCamelCase )['''input_ids'''] _UpperCAmelCase = { '''input_ids''': [ (encoded_question_and_title + encoded_text)[:max_length] if max_length is not None and truncation else encoded_question_and_title + encoded_text for encoded_question_and_title, encoded_text in zip(_UpperCamelCase , _UpperCamelCase ) ] } if return_attention_mask is not False: _UpperCAmelCase = [] for input_ids in encoded_inputs["input_ids"]: attention_mask.append([int(input_id != self.pad_token_id ) for input_id in input_ids] ) _UpperCAmelCase = attention_mask return self.pad(_UpperCamelCase , padding=_UpperCamelCase , max_length=_UpperCamelCase , return_tensors=_UpperCamelCase ) def UpperCamelCase( self , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase = 16 , _UpperCamelCase = 64 , _UpperCamelCase = 4 , ): _UpperCAmelCase = reader_input['''input_ids'''] _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase = reader_output[:3] _UpperCAmelCase = len(_UpperCamelCase ) _UpperCAmelCase = sorted(range(_UpperCamelCase ) , reverse=_UpperCamelCase , key=relevance_logits.__getitem__ ) _UpperCAmelCase = [] for doc_id in sorted_docs: _UpperCAmelCase = list(input_ids[doc_id] ) # assuming question & title information is at the beginning of the sequence _UpperCAmelCase = sequence_ids.index(self.sep_token_id , 2 ) + 1 # second sep id if sequence_ids[-1] == self.pad_token_id: _UpperCAmelCase = sequence_ids.index(self.pad_token_id ) else: _UpperCAmelCase = len(_UpperCamelCase ) _UpperCAmelCase = self._get_best_spans( start_logits=start_logits[doc_id][passage_offset:sequence_len] , end_logits=end_logits[doc_id][passage_offset:sequence_len] , max_answer_length=_UpperCamelCase , top_spans=_UpperCamelCase , ) for start_index, end_index in best_spans: start_index += passage_offset end_index += passage_offset nbest_spans_predictions.append( DPRSpanPrediction( span_score=start_logits[doc_id][start_index] + end_logits[doc_id][end_index] , relevance_score=relevance_logits[doc_id] , doc_id=_UpperCamelCase , start_index=_UpperCamelCase , end_index=_UpperCamelCase , text=self.decode(sequence_ids[start_index : end_index + 1] ) , ) ) if len(_UpperCamelCase ) >= num_spans: break return nbest_spans_predictions[:num_spans] def UpperCamelCase( self , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , ): _UpperCAmelCase = [] for start_index, start_score in enumerate(_UpperCamelCase ): for answer_length, end_score in enumerate(end_logits[start_index : start_index + max_answer_length] ): scores.append(((start_index, start_index + answer_length), start_score + end_score) ) _UpperCAmelCase = sorted(_UpperCamelCase , key=lambda _UpperCamelCase : x[1] , reverse=_UpperCamelCase ) _UpperCAmelCase = [] for (start_index, end_index), score in scores: if start_index > end_index: raise ValueError(f'''Wrong span indices: [{start_index}:{end_index}]''' ) _UpperCAmelCase = end_index - start_index + 1 if length > max_answer_length: raise ValueError(f'''Span is too long: {length} > {max_answer_length}''' ) if any( start_index <= prev_start_index <= prev_end_index <= end_index or prev_start_index <= start_index <= end_index <= prev_end_index for (prev_start_index, prev_end_index) in chosen_span_intervals ): continue chosen_span_intervals.append((start_index, end_index) ) if len(_UpperCamelCase ) == top_spans: break return chosen_span_intervals @add_end_docstrings(A__ ) class __UpperCamelCase ( A__ , A__ ): __A : Dict = VOCAB_FILES_NAMES __A : Dict = READER_PRETRAINED_VOCAB_FILES_MAP __A : int = READER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __A : Optional[Any] = READER_PRETRAINED_INIT_CONFIGURATION __A : Tuple = ["""input_ids""", """attention_mask"""]
32
from typing import List from .keymap import KEYMAP, get_character def A__ ( SCREAMING_SNAKE_CASE_ : str ) -> List[str]: """simple docstring""" def decorator(SCREAMING_SNAKE_CASE_ : List[Any] ): _UpperCAmelCase = getattr(SCREAMING_SNAKE_CASE_ , '''handle_key''' , [] ) handle += [key] setattr(SCREAMING_SNAKE_CASE_ , '''handle_key''' , SCREAMING_SNAKE_CASE_ ) return func return decorator def A__ ( *SCREAMING_SNAKE_CASE_ : List[str] ) -> Dict: """simple docstring""" def decorator(SCREAMING_SNAKE_CASE_ : Any ): _UpperCAmelCase = getattr(SCREAMING_SNAKE_CASE_ , '''handle_key''' , [] ) handle += keys setattr(SCREAMING_SNAKE_CASE_ , '''handle_key''' , SCREAMING_SNAKE_CASE_ ) return func return decorator class __UpperCamelCase ( A__ ): def __new__( cls , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ): _UpperCAmelCase = super().__new__(cls , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) if not hasattr(_UpperCamelCase , '''key_handler''' ): setattr(_UpperCamelCase , '''key_handler''' , {} ) setattr(_UpperCamelCase , '''handle_input''' , KeyHandler.handle_input ) for value in attrs.values(): _UpperCAmelCase = getattr(_UpperCamelCase , '''handle_key''' , [] ) for key in handled_keys: _UpperCAmelCase = value return new_cls @staticmethod def UpperCamelCase( cls ): _UpperCAmelCase = get_character() if char != KEYMAP["undefined"]: _UpperCAmelCase = ord(_UpperCamelCase ) _UpperCAmelCase = cls.key_handler.get(_UpperCamelCase ) if handler: _UpperCAmelCase = char return handler(cls ) else: return None def A__ ( cls : Union[str, Any] ) -> Any: """simple docstring""" return KeyHandler(cls.__name__ , cls.__bases__ , cls.__dict__.copy() )
32
1
from typing import Dict, List, Optional, Tuple, Union import torch from ...models import AutoencoderKL, TransformeraDModel from ...schedulers import KarrasDiffusionSchedulers from ...utils import randn_tensor from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput class __UpperCamelCase ( A__ ): def __init__( self , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase = None , ): super().__init__() self.register_modules(transformer=_UpperCamelCase , vae=_UpperCamelCase , scheduler=_UpperCamelCase ) # create a imagenet -> id dictionary for easier use _UpperCAmelCase = {} if idalabel is not None: for key, value in idalabel.items(): for label in value.split(''',''' ): _UpperCAmelCase = int(_UpperCamelCase ) _UpperCAmelCase = dict(sorted(self.labels.items() ) ) def UpperCamelCase( self , _UpperCamelCase ): if not isinstance(_UpperCamelCase , _UpperCamelCase ): _UpperCAmelCase = list(_UpperCamelCase ) for l in label: if l not in self.labels: raise ValueError( f'''{l} does not exist. Please make sure to select one of the following labels: \n {self.labels}.''' ) return [self.labels[l] for l in label] @torch.no_grad() def __call__( self , _UpperCamelCase , _UpperCamelCase = 4.0 , _UpperCamelCase = None , _UpperCamelCase = 50 , _UpperCamelCase = "pil" , _UpperCamelCase = True , ): _UpperCAmelCase = len(_UpperCamelCase ) _UpperCAmelCase = self.transformer.config.sample_size _UpperCAmelCase = self.transformer.config.in_channels _UpperCAmelCase = randn_tensor( shape=(batch_size, latent_channels, latent_size, latent_size) , generator=_UpperCamelCase , device=self.device , dtype=self.transformer.dtype , ) _UpperCAmelCase = torch.cat([latents] * 2 ) if guidance_scale > 1 else latents _UpperCAmelCase = torch.tensor(_UpperCamelCase , device=self.device ).reshape(-1 ) _UpperCAmelCase = torch.tensor([1000] * batch_size , device=self.device ) _UpperCAmelCase = torch.cat([class_labels, class_null] , 0 ) if guidance_scale > 1 else class_labels # set step values self.scheduler.set_timesteps(_UpperCamelCase ) for t in self.progress_bar(self.scheduler.timesteps ): if guidance_scale > 1: _UpperCAmelCase = latent_model_input[: len(_UpperCamelCase ) // 2] _UpperCAmelCase = torch.cat([half, half] , dim=0 ) _UpperCAmelCase = self.scheduler.scale_model_input(_UpperCamelCase , _UpperCamelCase ) _UpperCAmelCase = t if not torch.is_tensor(_UpperCamelCase ): # TODO: this requires sync between CPU and GPU. So try to pass timesteps as tensors if you can # This would be a good case for the `match` statement (Python 3.10+) _UpperCAmelCase = latent_model_input.device.type == '''mps''' if isinstance(_UpperCamelCase , _UpperCamelCase ): _UpperCAmelCase = torch.floataa if is_mps else torch.floataa else: _UpperCAmelCase = torch.intaa if is_mps else torch.intaa _UpperCAmelCase = torch.tensor([timesteps] , dtype=_UpperCamelCase , device=latent_model_input.device ) elif len(timesteps.shape ) == 0: _UpperCAmelCase = timesteps[None].to(latent_model_input.device ) # broadcast to batch dimension in a way that's compatible with ONNX/Core ML _UpperCAmelCase = timesteps.expand(latent_model_input.shape[0] ) # predict noise model_output _UpperCAmelCase = self.transformer( _UpperCamelCase , timestep=_UpperCamelCase , class_labels=_UpperCamelCase ).sample # perform guidance if guidance_scale > 1: _UpperCAmelCase , _UpperCAmelCase = noise_pred[:, :latent_channels], noise_pred[:, latent_channels:] _UpperCAmelCase , _UpperCAmelCase = torch.split(_UpperCamelCase , len(_UpperCamelCase ) // 2 , dim=0 ) _UpperCAmelCase = uncond_eps + guidance_scale * (cond_eps - uncond_eps) _UpperCAmelCase = torch.cat([half_eps, half_eps] , dim=0 ) _UpperCAmelCase = torch.cat([eps, rest] , dim=1 ) # learned sigma if self.transformer.config.out_channels // 2 == latent_channels: _UpperCAmelCase , _UpperCAmelCase = torch.split(_UpperCamelCase , _UpperCamelCase , dim=1 ) else: _UpperCAmelCase = noise_pred # compute previous image: x_t -> x_t-1 _UpperCAmelCase = self.scheduler.step(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase ).prev_sample if guidance_scale > 1: _UpperCAmelCase , _UpperCAmelCase = latent_model_input.chunk(2 , dim=0 ) else: _UpperCAmelCase = latent_model_input _UpperCAmelCase = 1 / self.vae.config.scaling_factor * latents _UpperCAmelCase = self.vae.decode(_UpperCamelCase ).sample _UpperCAmelCase = (samples / 2 + 0.5).clamp(0 , 1 ) # we always cast to float32 as this does not cause significant overhead and is compatible with bfloat16 _UpperCAmelCase = samples.cpu().permute(0 , 2 , 3 , 1 ).float().numpy() if output_type == "pil": _UpperCAmelCase = self.numpy_to_pil(_UpperCamelCase ) if not return_dict: return (samples,) return ImagePipelineOutput(images=_UpperCamelCase )
32
import unittest from transformers import LiltConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( LiltForQuestionAnswering, LiltForSequenceClassification, LiltForTokenClassification, LiltModel, ) from transformers.models.lilt.modeling_lilt import LILT_PRETRAINED_MODEL_ARCHIVE_LIST class __UpperCamelCase : def __init__( self , _UpperCamelCase , _UpperCamelCase=13 , _UpperCamelCase=7 , _UpperCamelCase=True , _UpperCamelCase=True , _UpperCamelCase=True , _UpperCamelCase=True , _UpperCamelCase=99 , _UpperCamelCase=24 , _UpperCamelCase=2 , _UpperCamelCase=6 , _UpperCamelCase=37 , _UpperCamelCase="gelu" , _UpperCamelCase=0.1 , _UpperCamelCase=0.1 , _UpperCamelCase=512 , _UpperCamelCase=16 , _UpperCamelCase=2 , _UpperCamelCase=0.02 , _UpperCamelCase=3 , _UpperCamelCase=None , _UpperCamelCase=1000 , ): _UpperCAmelCase = parent _UpperCAmelCase = batch_size _UpperCAmelCase = seq_length _UpperCAmelCase = is_training _UpperCAmelCase = use_input_mask _UpperCAmelCase = use_token_type_ids _UpperCAmelCase = use_labels _UpperCAmelCase = vocab_size _UpperCAmelCase = hidden_size _UpperCAmelCase = num_hidden_layers _UpperCAmelCase = num_attention_heads _UpperCAmelCase = intermediate_size _UpperCAmelCase = hidden_act _UpperCAmelCase = hidden_dropout_prob _UpperCAmelCase = attention_probs_dropout_prob _UpperCAmelCase = max_position_embeddings _UpperCAmelCase = type_vocab_size _UpperCAmelCase = type_sequence_label_size _UpperCAmelCase = initializer_range _UpperCAmelCase = num_labels _UpperCAmelCase = scope _UpperCAmelCase = range_bbox def UpperCamelCase( self ): _UpperCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _UpperCAmelCase = ids_tensor([self.batch_size, self.seq_length, 4] , self.range_bbox ) # Ensure that bbox is legal for i in range(bbox.shape[0] ): for j in range(bbox.shape[1] ): if bbox[i, j, 3] < bbox[i, j, 1]: _UpperCAmelCase = bbox[i, j, 3] _UpperCAmelCase = bbox[i, j, 1] _UpperCAmelCase = t if bbox[i, j, 2] < bbox[i, j, 0]: _UpperCAmelCase = bbox[i, j, 2] _UpperCAmelCase = bbox[i, j, 0] _UpperCAmelCase = t _UpperCAmelCase = None if self.use_input_mask: _UpperCAmelCase = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 ) _UpperCAmelCase = None if self.use_token_type_ids: _UpperCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) _UpperCAmelCase = None _UpperCAmelCase = None if self.use_labels: _UpperCAmelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size ) _UpperCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) _UpperCAmelCase = self.get_config() return config, input_ids, bbox, token_type_ids, input_mask, sequence_labels, token_labels def UpperCamelCase( self ): return LiltConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , ) def UpperCamelCase( self , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , ): _UpperCAmelCase = LiltModel(config=_UpperCamelCase ) model.to(_UpperCamelCase ) model.eval() _UpperCAmelCase = model(_UpperCamelCase , bbox=_UpperCamelCase , attention_mask=_UpperCamelCase , token_type_ids=_UpperCamelCase ) _UpperCAmelCase = model(_UpperCamelCase , bbox=_UpperCamelCase , token_type_ids=_UpperCamelCase ) _UpperCAmelCase = model(_UpperCamelCase , bbox=_UpperCamelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) ) def UpperCamelCase( self , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , ): _UpperCAmelCase = self.num_labels _UpperCAmelCase = LiltForTokenClassification(config=_UpperCamelCase ) model.to(_UpperCamelCase ) model.eval() _UpperCAmelCase = model( _UpperCamelCase , bbox=_UpperCamelCase , attention_mask=_UpperCamelCase , token_type_ids=_UpperCamelCase , labels=_UpperCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def UpperCamelCase( self , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , ): _UpperCAmelCase = LiltForQuestionAnswering(config=_UpperCamelCase ) model.to(_UpperCamelCase ) model.eval() _UpperCAmelCase = model( _UpperCamelCase , bbox=_UpperCamelCase , attention_mask=_UpperCamelCase , token_type_ids=_UpperCamelCase , start_positions=_UpperCamelCase , end_positions=_UpperCamelCase , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def UpperCamelCase( self ): _UpperCAmelCase = self.prepare_config_and_inputs() ( ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ) = config_and_inputs _UpperCAmelCase = { '''input_ids''': input_ids, '''bbox''': bbox, '''token_type_ids''': token_type_ids, '''attention_mask''': input_mask, } return config, inputs_dict @require_torch class __UpperCamelCase ( A__ , A__ , A__ , unittest.TestCase ): __A : Dict = ( ( LiltModel, LiltForSequenceClassification, LiltForTokenClassification, LiltForQuestionAnswering, ) if is_torch_available() else () ) __A : Optional[Any] = ( { """feature-extraction""": LiltModel, """question-answering""": LiltForQuestionAnswering, """text-classification""": LiltForSequenceClassification, """token-classification""": LiltForTokenClassification, """zero-shot""": LiltForSequenceClassification, } if is_torch_available() else {} ) __A : List[Any] = False __A : Optional[int] = False def UpperCamelCase( self , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ): return True def UpperCamelCase( self ): _UpperCAmelCase = LiltModelTester(self ) _UpperCAmelCase = ConfigTester(self , config_class=_UpperCamelCase , hidden_size=37 ) def UpperCamelCase( self ): self.config_tester.run_common_tests() def UpperCamelCase( self ): _UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_UpperCamelCase ) def UpperCamelCase( self ): _UpperCAmelCase = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: _UpperCAmelCase = type self.model_tester.create_and_check_model(*_UpperCamelCase ) def UpperCamelCase( self ): _UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*_UpperCamelCase ) def UpperCamelCase( self ): _UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*_UpperCamelCase ) @slow def UpperCamelCase( self ): for model_name in LILT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _UpperCAmelCase = LiltModel.from_pretrained(_UpperCamelCase ) self.assertIsNotNone(_UpperCamelCase ) @require_torch @slow class __UpperCamelCase ( unittest.TestCase ): def UpperCamelCase( self ): _UpperCAmelCase = LiltModel.from_pretrained('''SCUT-DLVCLab/lilt-roberta-en-base''' ).to(_UpperCamelCase ) _UpperCAmelCase = torch.tensor([[1, 2]] , device=_UpperCamelCase ) _UpperCAmelCase = torch.tensor([[[1, 2, 3, 4], [5, 6, 7, 8]]] , device=_UpperCamelCase ) # forward pass with torch.no_grad(): _UpperCAmelCase = model(input_ids=_UpperCamelCase , bbox=_UpperCamelCase ) _UpperCAmelCase = torch.Size([1, 2, 768] ) _UpperCAmelCase = torch.tensor( [[-0.0653, 0.0950, -0.0061], [-0.0545, 0.0926, -0.0324]] , device=_UpperCamelCase , ) self.assertTrue(outputs.last_hidden_state.shape , _UpperCamelCase ) self.assertTrue(torch.allclose(outputs.last_hidden_state[0, :, :3] , _UpperCamelCase , atol=1e-3 ) )
32
1
import copy import re class __UpperCamelCase : __A : Any = """hp""" __A : Optional[int] = {} __A : Tuple = None @classmethod def UpperCamelCase( cls , _UpperCamelCase , _UpperCamelCase ): _UpperCAmelCase = prefix _UpperCAmelCase = defaults cls.build_naming_info() @staticmethod def UpperCamelCase( _UpperCamelCase , _UpperCamelCase ): if len(_UpperCamelCase ) == 0: return "" _UpperCAmelCase = None if any(char.isdigit() for char in word ): raise Exception(f'''Parameters should not contain numbers: \'{word}\' contains a number''' ) if word in info["short_word"]: return info["short_word"][word] for prefix_len in range(1 , len(_UpperCamelCase ) + 1 ): _UpperCAmelCase = word[:prefix_len] if prefix in info["reverse_short_word"]: continue else: _UpperCAmelCase = prefix break if short_word is None: # Paranoid fallback def int_to_alphabetic(_UpperCamelCase ): _UpperCAmelCase = '''''' while integer != 0: _UpperCAmelCase = chr(ord('''A''' ) + integer % 10 ) + s integer //= 10 return s _UpperCAmelCase = 0 while True: _UpperCAmelCase = word + '''#''' + int_to_alphabetic(_UpperCamelCase ) if sword in info["reverse_short_word"]: continue else: _UpperCAmelCase = sword break _UpperCAmelCase = short_word _UpperCAmelCase = word return short_word @staticmethod def UpperCamelCase( _UpperCamelCase , _UpperCamelCase ): _UpperCAmelCase = param_name.split('''_''' ) _UpperCAmelCase = [TrialShortNamer.shortname_for_word(_UpperCamelCase , _UpperCamelCase ) for word in words] # We try to create a separatorless short name, but if there is a collision we have to fallback # to a separated short name _UpperCAmelCase = ['''''', '''_'''] for separator in separators: _UpperCAmelCase = separator.join(_UpperCamelCase ) if shortname not in info["reverse_short_param"]: _UpperCAmelCase = shortname _UpperCAmelCase = param_name return shortname return param_name @staticmethod def UpperCamelCase( _UpperCamelCase , _UpperCamelCase ): _UpperCAmelCase = TrialShortNamer.shortname_for_key(_UpperCamelCase , _UpperCamelCase ) _UpperCAmelCase = short_name _UpperCAmelCase = param_name @classmethod def UpperCamelCase( cls ): if cls.NAMING_INFO is not None: return _UpperCAmelCase = { '''short_word''': {}, '''reverse_short_word''': {}, '''short_param''': {}, '''reverse_short_param''': {}, } _UpperCAmelCase = list(cls.DEFAULTS.keys() ) for k in field_keys: cls.add_new_param_name(_UpperCamelCase , _UpperCamelCase ) _UpperCAmelCase = info @classmethod def UpperCamelCase( cls , _UpperCamelCase ): cls.build_naming_info() assert cls.PREFIX is not None _UpperCAmelCase = [copy.copy(cls.PREFIX )] for k, v in params.items(): if k not in cls.DEFAULTS: raise Exception(f'''You should provide a default value for the param name {k} with value {v}''' ) if v == cls.DEFAULTS[k]: # The default value is not added to the name continue _UpperCAmelCase = cls.NAMING_INFO['''short_param'''][k] if isinstance(_UpperCamelCase , _UpperCamelCase ): _UpperCAmelCase = 1 if v else 0 _UpperCAmelCase = '''''' if isinstance(_UpperCamelCase , (int, float) ) else '''-''' _UpperCAmelCase = f'''{key}{sep}{v}''' name.append(_UpperCamelCase ) return "_".join(_UpperCamelCase ) @classmethod def UpperCamelCase( cls , _UpperCamelCase ): _UpperCAmelCase = repr[len(cls.PREFIX ) + 1 :] if repr == "": _UpperCAmelCase = [] else: _UpperCAmelCase = repr.split('''_''' ) _UpperCAmelCase = {} for value in values: if "-" in value: _UpperCAmelCase , _UpperCAmelCase = value.split('''-''' ) else: _UpperCAmelCase = re.sub('''[0-9.]''' , '''''' , _UpperCamelCase ) _UpperCAmelCase = float(re.sub('''[^0-9.]''' , '''''' , _UpperCamelCase ) ) _UpperCAmelCase = cls.NAMING_INFO['''reverse_short_param'''][p_k] _UpperCAmelCase = p_v for k in cls.DEFAULTS: if k not in parameters: _UpperCAmelCase = cls.DEFAULTS[k] return parameters
32
from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCAmelCase_ = logging.get_logger(__name__) UpperCAmelCase_ = { "RWKV/rwkv-4-169m-pile": "https://huggingface.co/RWKV/rwkv-4-169m-pile/resolve/main/config.json", "RWKV/rwkv-4-430m-pile": "https://huggingface.co/RWKV/rwkv-4-430m-pile/resolve/main/config.json", "RWKV/rwkv-4-1b5-pile": "https://huggingface.co/RWKV/rwkv-4-1b5-pile/resolve/main/config.json", "RWKV/rwkv-4-3b-pile": "https://huggingface.co/RWKV/rwkv-4-3b-pile/resolve/main/config.json", "RWKV/rwkv-4-7b-pile": "https://huggingface.co/RWKV/rwkv-4-7b-pile/resolve/main/config.json", "RWKV/rwkv-4-14b-pile": "https://huggingface.co/RWKV/rwkv-4-14b-pile/resolve/main/config.json", "RWKV/rwkv-raven-1b5": "https://huggingface.co/RWKV/rwkv-raven-1b5/resolve/main/config.json", "RWKV/rwkv-raven-3b": "https://huggingface.co/RWKV/rwkv-raven-3b/resolve/main/config.json", "RWKV/rwkv-raven-7b": "https://huggingface.co/RWKV/rwkv-raven-7b/resolve/main/config.json", "RWKV/rwkv-raven-14b": "https://huggingface.co/RWKV/rwkv-raven-14b/resolve/main/config.json", } class __UpperCamelCase ( A__ ): __A : Tuple = """rwkv""" __A : Any = {"""max_position_embeddings""": """context_length"""} def __init__( self , _UpperCamelCase=50277 , _UpperCamelCase=1024 , _UpperCamelCase=4096 , _UpperCamelCase=32 , _UpperCamelCase=None , _UpperCamelCase=None , _UpperCamelCase=1e-5 , _UpperCamelCase=0 , _UpperCamelCase=0 , _UpperCamelCase=6 , _UpperCamelCase=False , _UpperCamelCase=True , **_UpperCamelCase , ): _UpperCAmelCase = vocab_size _UpperCAmelCase = context_length _UpperCAmelCase = hidden_size _UpperCAmelCase = num_hidden_layers _UpperCAmelCase = attention_hidden_size if attention_hidden_size is not None else hidden_size _UpperCAmelCase = intermediate_size if intermediate_size is not None else 4 * hidden_size _UpperCAmelCase = layer_norm_epsilon _UpperCAmelCase = rescale_every _UpperCAmelCase = use_cache _UpperCAmelCase = bos_token_id _UpperCAmelCase = eos_token_id super().__init__( tie_word_embeddings=_UpperCamelCase , bos_token_id=_UpperCamelCase , eos_token_id=_UpperCamelCase , **_UpperCamelCase )
32
1
import doctest from collections import deque import numpy as np class __UpperCamelCase : def __init__( self ): _UpperCAmelCase = [2, 1, 2, -1] _UpperCAmelCase = [1, 2, 3, 4] def UpperCamelCase( self ): _UpperCAmelCase = len(self.first_signal ) _UpperCAmelCase = len(self.second_signal ) _UpperCAmelCase = max(_UpperCamelCase , _UpperCamelCase ) # create a zero matrix of max_length x max_length _UpperCAmelCase = [[0] * max_length for i in range(_UpperCamelCase )] # fills the smaller signal with zeros to make both signals of same length if length_first_signal < length_second_signal: self.first_signal += [0] * (max_length - length_first_signal) elif length_first_signal > length_second_signal: self.second_signal += [0] * (max_length - length_second_signal) for i in range(_UpperCamelCase ): _UpperCAmelCase = deque(self.second_signal ) rotated_signal.rotate(_UpperCamelCase ) for j, item in enumerate(_UpperCamelCase ): matrix[i][j] += item # multiply the matrix with the first signal _UpperCAmelCase = np.matmul(np.transpose(_UpperCamelCase ) , np.transpose(self.first_signal ) ) # rounding-off to two decimal places return [round(_UpperCamelCase , 2 ) for i in final_signal] if __name__ == "__main__": doctest.testmod()
32
def A__ ( SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : int ) -> str: """simple docstring""" if a < 0 or b < 0: raise ValueError('''the value of both inputs must be positive''' ) _UpperCAmelCase = str(bin(SCREAMING_SNAKE_CASE_ ) )[2:] # remove the leading "0b" _UpperCAmelCase = str(bin(SCREAMING_SNAKE_CASE_ ) )[2:] # remove the leading "0b" _UpperCAmelCase = max(len(SCREAMING_SNAKE_CASE_ ) , len(SCREAMING_SNAKE_CASE_ ) ) return "0b" + "".join( str(int(char_a == '''1''' and char_b == '''1''' ) ) for char_a, char_b in zip(a_binary.zfill(SCREAMING_SNAKE_CASE_ ) , b_binary.zfill(SCREAMING_SNAKE_CASE_ ) ) ) if __name__ == "__main__": import doctest doctest.testmod()
32
1
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available UpperCAmelCase_ = { "configuration_clipseg": [ "CLIPSEG_PRETRAINED_CONFIG_ARCHIVE_MAP", "CLIPSegConfig", "CLIPSegTextConfig", "CLIPSegVisionConfig", ], "processing_clipseg": ["CLIPSegProcessor"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase_ = [ "CLIPSEG_PRETRAINED_MODEL_ARCHIVE_LIST", "CLIPSegModel", "CLIPSegPreTrainedModel", "CLIPSegTextModel", "CLIPSegVisionModel", "CLIPSegForImageSegmentation", ] if TYPE_CHECKING: from .configuration_clipseg import ( CLIPSEG_PRETRAINED_CONFIG_ARCHIVE_MAP, CLIPSegConfig, CLIPSegTextConfig, CLIPSegVisionConfig, ) from .processing_clipseg import CLIPSegProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_clipseg import ( CLIPSEG_PRETRAINED_MODEL_ARCHIVE_LIST, CLIPSegForImageSegmentation, CLIPSegModel, CLIPSegPreTrainedModel, CLIPSegTextModel, CLIPSegVisionModel, ) else: import sys UpperCAmelCase_ = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
32
from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCAmelCase_ = logging.get_logger(__name__) UpperCAmelCase_ = { "tiiuae/falcon-40b": "https://huggingface.co/tiiuae/falcon-40b/resolve/main/config.json", "tiiuae/falcon-7b": "https://huggingface.co/tiiuae/falcon-7b/resolve/main/config.json", } class __UpperCamelCase ( A__ ): __A : Dict = """falcon""" __A : Any = ["""past_key_values"""] def __init__( self , _UpperCamelCase=65024 , _UpperCamelCase=4544 , _UpperCamelCase=32 , _UpperCamelCase=71 , _UpperCamelCase=1e-5 , _UpperCamelCase=0.02 , _UpperCamelCase=True , _UpperCamelCase=0.0 , _UpperCamelCase=0.0 , _UpperCamelCase=None , _UpperCamelCase=False , _UpperCamelCase=False , _UpperCamelCase=True , _UpperCamelCase=True , _UpperCamelCase=False , _UpperCamelCase=11 , _UpperCamelCase=11 , **_UpperCamelCase , ): _UpperCAmelCase = vocab_size # Backward compatibility with n_embed kwarg _UpperCAmelCase = kwargs.pop('''n_embed''' , _UpperCamelCase ) _UpperCAmelCase = hidden_size if n_embed is None else n_embed _UpperCAmelCase = num_hidden_layers _UpperCAmelCase = num_attention_heads _UpperCAmelCase = layer_norm_epsilon _UpperCAmelCase = initializer_range _UpperCAmelCase = use_cache _UpperCAmelCase = hidden_dropout _UpperCAmelCase = attention_dropout _UpperCAmelCase = bos_token_id _UpperCAmelCase = eos_token_id _UpperCAmelCase = num_attention_heads if num_kv_heads is None else num_kv_heads _UpperCAmelCase = alibi _UpperCAmelCase = new_decoder_architecture _UpperCAmelCase = multi_query # Ignored when new_decoder_architecture is True _UpperCAmelCase = parallel_attn _UpperCAmelCase = bias super().__init__(bos_token_id=_UpperCamelCase , eos_token_id=_UpperCamelCase , **_UpperCamelCase ) @property def UpperCamelCase( self ): return self.hidden_size // self.num_attention_heads @property def UpperCamelCase( self ): return not self.alibi
32
1
import multiprocessing import time from arguments import PretokenizationArguments from datasets import load_dataset from transformers import AutoTokenizer, HfArgumentParser def A__ ( SCREAMING_SNAKE_CASE_ : int ) -> List[str]: """simple docstring""" _UpperCAmelCase = {} _UpperCAmelCase = tokenizer(example['''content'''] , truncation=SCREAMING_SNAKE_CASE_ )['''input_ids'''] _UpperCAmelCase = len(example['''content'''] ) / len(output['''input_ids'''] ) return output UpperCAmelCase_ = HfArgumentParser(PretokenizationArguments) UpperCAmelCase_ = parser.parse_args() if args.num_workers is None: UpperCAmelCase_ = multiprocessing.cpu_count() UpperCAmelCase_ = AutoTokenizer.from_pretrained(args.tokenizer_dir) UpperCAmelCase_ = time.time() UpperCAmelCase_ = load_dataset(args.dataset_name, split="train") print(f'''Dataset loaded in {time.time()-t_start:.2f}s''') UpperCAmelCase_ = time.time() UpperCAmelCase_ = ds.map( tokenize, num_proc=args.num_workers, remove_columns=[ "repo_name", "path", "copies", "size", "content", "license", "hash", "line_mean", "line_max", "alpha_frac", "autogenerated", ], ) print(f'''Dataset tokenized in {time.time()-t_start:.2f}s''') UpperCAmelCase_ = time.time() ds.push_to_hub(args.tokenized_data_repo) print(f'''Data pushed to the hub in {time.time()-t_start:.2f}s''')
32
from math import sqrt def A__ ( SCREAMING_SNAKE_CASE_ : int ) -> bool: """simple docstring""" if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5 , int(sqrt(SCREAMING_SNAKE_CASE_ ) + 1 ) , 6 ): if number % i == 0 or number % (i + 2) == 0: return False return True def A__ ( SCREAMING_SNAKE_CASE_ : int = 1_00_01 ) -> int: """simple docstring""" _UpperCAmelCase = 0 _UpperCAmelCase = 1 while count != nth and number < 3: number += 1 if is_prime(SCREAMING_SNAKE_CASE_ ): count += 1 while count != nth: number += 2 if is_prime(SCREAMING_SNAKE_CASE_ ): count += 1 return number if __name__ == "__main__": print(f'''{solution() = }''')
32
1
import os import sys from contextlib import contextmanager # Windows only if os.name == "nt": import ctypes import msvcrt # noqa class __UpperCamelCase ( ctypes.Structure ): # _fields is a specific attr expected by ctypes __A : int = [("""size""", ctypes.c_int), ("""visible""", ctypes.c_byte)] def A__ ( ) -> Union[str, Any]: """simple docstring""" if os.name == "nt": _UpperCAmelCase = CursorInfo() _UpperCAmelCase = ctypes.windll.kernelaa.GetStdHandle(-11 ) ctypes.windll.kernelaa.GetConsoleCursorInfo(SCREAMING_SNAKE_CASE_ , ctypes.byref(SCREAMING_SNAKE_CASE_ ) ) _UpperCAmelCase = False ctypes.windll.kernelaa.SetConsoleCursorInfo(SCREAMING_SNAKE_CASE_ , ctypes.byref(SCREAMING_SNAKE_CASE_ ) ) elif os.name == "posix": sys.stdout.write('''\033[?25l''' ) sys.stdout.flush() def A__ ( ) -> List[Any]: """simple docstring""" if os.name == "nt": _UpperCAmelCase = CursorInfo() _UpperCAmelCase = ctypes.windll.kernelaa.GetStdHandle(-11 ) ctypes.windll.kernelaa.GetConsoleCursorInfo(SCREAMING_SNAKE_CASE_ , ctypes.byref(SCREAMING_SNAKE_CASE_ ) ) _UpperCAmelCase = True ctypes.windll.kernelaa.SetConsoleCursorInfo(SCREAMING_SNAKE_CASE_ , ctypes.byref(SCREAMING_SNAKE_CASE_ ) ) elif os.name == "posix": sys.stdout.write('''\033[?25h''' ) sys.stdout.flush() @contextmanager def A__ ( ) -> str: """simple docstring""" try: hide_cursor() yield finally: show_cursor()
32
def A__ ( SCREAMING_SNAKE_CASE_ : int ) -> bool: """simple docstring""" if not isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): _UpperCAmelCase = F'''Input value of [number={number}] must be an integer''' raise TypeError(SCREAMING_SNAKE_CASE_ ) if number < 0: return False _UpperCAmelCase = number * number while number > 0: if number % 10 != number_square % 10: return False number //= 10 number_square //= 10 return True if __name__ == "__main__": import doctest doctest.testmod()
32
1
from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCAmelCase_ = logging.get_logger(__name__) UpperCAmelCase_ = { "facebook/xglm-564M": "https://huggingface.co/facebook/xglm-564M/resolve/main/config.json", # See all XGLM models at https://huggingface.co/models?filter=xglm } class __UpperCamelCase ( A__ ): __A : int = """xglm""" __A : Tuple = ["""past_key_values"""] __A : Union[str, Any] = { """num_attention_heads""": """attention_heads""", """hidden_size""": """d_model""", """num_hidden_layers""": """num_layers""", } def __init__( self , _UpperCamelCase=256008 , _UpperCamelCase=2048 , _UpperCamelCase=1024 , _UpperCamelCase=4096 , _UpperCamelCase=24 , _UpperCamelCase=16 , _UpperCamelCase="gelu" , _UpperCamelCase=0.1 , _UpperCamelCase=0.1 , _UpperCamelCase=0.0 , _UpperCamelCase=0.0 , _UpperCamelCase=0.02 , _UpperCamelCase=True , _UpperCamelCase=True , _UpperCamelCase=2 , _UpperCamelCase=1 , _UpperCamelCase=0 , _UpperCamelCase=2 , **_UpperCamelCase , ): _UpperCAmelCase = vocab_size _UpperCAmelCase = max_position_embeddings _UpperCAmelCase = d_model _UpperCAmelCase = ffn_dim _UpperCAmelCase = num_layers _UpperCAmelCase = attention_heads _UpperCAmelCase = activation_function _UpperCAmelCase = dropout _UpperCAmelCase = attention_dropout _UpperCAmelCase = activation_dropout _UpperCAmelCase = layerdrop _UpperCAmelCase = init_std _UpperCAmelCase = scale_embedding # scale factor will be sqrt(d_model) if True _UpperCAmelCase = use_cache super().__init__( pad_token_id=_UpperCamelCase , bos_token_id=_UpperCamelCase , eos_token_id=_UpperCamelCase , decoder_start_token_id=_UpperCamelCase , **_UpperCamelCase , )
32
from dataclasses import dataclass, field from typing import ClassVar, Dict from ..features import Features, Value from .base import TaskTemplate @dataclass(frozen=A__ ) class __UpperCamelCase ( A__ ): __A : str = field(default="""language-modeling""" , metadata={"""include_in_asdict_even_if_is_default""": True} ) __A : ClassVar[Features] = Features({"""text""": Value("""string""" )} ) __A : ClassVar[Features] = Features({} ) __A : str = "text" @property def UpperCamelCase( self ): return {self.text_column: "text"}
32
1
def A__ ( SCREAMING_SNAKE_CASE_ : int ) -> int: """simple docstring""" if not isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): raise ValueError('''multiplicative_persistence() only accepts integral values''' ) if num < 0: raise ValueError('''multiplicative_persistence() does not accept negative values''' ) _UpperCAmelCase = 0 _UpperCAmelCase = str(SCREAMING_SNAKE_CASE_ ) while len(SCREAMING_SNAKE_CASE_ ) != 1: _UpperCAmelCase = [int(SCREAMING_SNAKE_CASE_ ) for i in num_string] _UpperCAmelCase = 1 for i in range(0 , len(SCREAMING_SNAKE_CASE_ ) ): total *= numbers[i] _UpperCAmelCase = str(SCREAMING_SNAKE_CASE_ ) steps += 1 return steps def A__ ( SCREAMING_SNAKE_CASE_ : int ) -> int: """simple docstring""" if not isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): raise ValueError('''additive_persistence() only accepts integral values''' ) if num < 0: raise ValueError('''additive_persistence() does not accept negative values''' ) _UpperCAmelCase = 0 _UpperCAmelCase = str(SCREAMING_SNAKE_CASE_ ) while len(SCREAMING_SNAKE_CASE_ ) != 1: _UpperCAmelCase = [int(SCREAMING_SNAKE_CASE_ ) for i in num_string] _UpperCAmelCase = 0 for i in range(0 , len(SCREAMING_SNAKE_CASE_ ) ): total += numbers[i] _UpperCAmelCase = str(SCREAMING_SNAKE_CASE_ ) steps += 1 return steps if __name__ == "__main__": import doctest doctest.testmod()
32
import os import re import warnings from shutil import copyfile from typing import TYPE_CHECKING, Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import PreTrainedTokenizer if TYPE_CHECKING: from ...tokenization_utils_base import TextInput from ...utils import logging UpperCAmelCase_ = logging.get_logger(__name__) UpperCAmelCase_ = {"vocab_file": "spiece.model"} UpperCAmelCase_ = { "vocab_file": { "t5-small": "https://huggingface.co/t5-small/resolve/main/spiece.model", "t5-base": "https://huggingface.co/t5-base/resolve/main/spiece.model", "t5-large": "https://huggingface.co/t5-large/resolve/main/spiece.model", "t5-3b": "https://huggingface.co/t5-3b/resolve/main/spiece.model", "t5-11b": "https://huggingface.co/t5-11b/resolve/main/spiece.model", } } # TODO(PVP) - this should be removed in Transformers v5 UpperCAmelCase_ = { "t5-small": 5_12, "t5-base": 5_12, "t5-large": 5_12, "t5-3b": 5_12, "t5-11b": 5_12, } UpperCAmelCase_ = "▁" class __UpperCamelCase ( A__ ): __A : Any = VOCAB_FILES_NAMES __A : Union[str, Any] = PRETRAINED_VOCAB_FILES_MAP __A : Any = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __A : Tuple = ["""input_ids""", """attention_mask"""] def __init__( self , _UpperCamelCase , _UpperCamelCase="</s>" , _UpperCamelCase="<unk>" , _UpperCamelCase="<pad>" , _UpperCamelCase=100 , _UpperCamelCase=None , _UpperCamelCase = None , _UpperCamelCase=True , **_UpperCamelCase , ): # Add extra_ids to the special token list if extra_ids > 0 and additional_special_tokens is None: _UpperCAmelCase = [f'''<extra_id_{i}>''' for i in range(_UpperCamelCase )] elif extra_ids > 0 and additional_special_tokens is not None: # Check that we have the right number of extra_id special tokens _UpperCAmelCase = len(set(filter(lambda _UpperCamelCase : bool('''extra_id''' in str(_UpperCamelCase ) ) , _UpperCamelCase ) ) ) if extra_tokens != extra_ids: raise ValueError( f'''Both extra_ids ({extra_ids}) and additional_special_tokens ({additional_special_tokens}) are''' ''' provided to T5Tokenizer. In this case the additional_special_tokens must include the extra_ids''' ''' tokens''' ) if legacy: logger.warning_once( f'''You are using the legacy behaviour of the {self.__class__}. This means that tokens that come after special tokens will not be properly handled. We recommend you to''' ''' read the related pull request available at https://github.com/huggingface/transformers/pull/24565''' ) _UpperCAmelCase = legacy _UpperCAmelCase = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( eos_token=_UpperCamelCase , unk_token=_UpperCamelCase , pad_token=_UpperCamelCase , extra_ids=_UpperCamelCase , additional_special_tokens=_UpperCamelCase , sp_model_kwargs=self.sp_model_kwargs , legacy=_UpperCamelCase , **_UpperCamelCase , ) _UpperCAmelCase = vocab_file _UpperCAmelCase = extra_ids _UpperCAmelCase = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(_UpperCamelCase ) @staticmethod def UpperCamelCase( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ): if pretrained_model_name_or_path in TaTokenizer.max_model_input_sizes: _UpperCAmelCase = TaTokenizer.max_model_input_sizes[pretrained_model_name_or_path] if init_max_model_length is not None and init_max_model_length != max_model_length: return init_max_model_length elif init_max_model_length is None: warnings.warn( '''This tokenizer was incorrectly instantiated with a model max length of''' f''' {deprecated_max_model_length} which will be corrected in Transformers v5.\nFor now, this''' ''' behavior is kept to avoid breaking backwards compatibility when padding/encoding with''' ''' `truncation is True`.\n- Be aware that you SHOULD NOT rely on''' f''' {pretrained_model_name_or_path} automatically truncating your input to''' f''' {deprecated_max_model_length} when padding/encoding.\n- If you want to encode/pad to sequences''' f''' longer than {deprecated_max_model_length} you can either instantiate this tokenizer with''' ''' `model_max_length` or pass `max_length` when encoding/padding.\n- To avoid this warning, please''' ''' instantiate this tokenizer with `model_max_length` set to your preferred value.''' , _UpperCamelCase , ) return max_model_length @property def UpperCamelCase( self ): return self.sp_model.get_piece_size() + self._extra_ids def UpperCamelCase( self ): _UpperCAmelCase = {self.convert_ids_to_tokens(_UpperCamelCase ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def UpperCamelCase( self , _UpperCamelCase , _UpperCamelCase = None , _UpperCamelCase = False ): if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=_UpperCamelCase , token_ids_a=_UpperCamelCase , already_has_special_tokens=_UpperCamelCase ) # normal case: some special tokens if token_ids_a is None: return ([0] * len(_UpperCamelCase )) + [1] return ([0] * len(_UpperCamelCase )) + [1] + ([0] * len(_UpperCamelCase )) + [1] def UpperCamelCase( self ): return list( set(filter(lambda _UpperCamelCase : bool(re.search(R'''<extra_id_\d+>''' , _UpperCamelCase ) ) is not None , self.additional_special_tokens ) ) ) def UpperCamelCase( self ): return [self._convert_token_to_id(_UpperCamelCase ) for token in self.get_sentinel_tokens()] def UpperCamelCase( self , _UpperCamelCase ): if len(_UpperCamelCase ) > 0 and token_ids[-1] == self.eos_token_id: warnings.warn( f'''This sequence already has {self.eos_token}. In future versions this behavior may lead to duplicated''' ''' eos tokens being added.''' ) return token_ids else: return token_ids + [self.eos_token_id] def UpperCamelCase( self , _UpperCamelCase , _UpperCamelCase = None ): _UpperCAmelCase = [self.eos_token_id] if token_ids_a is None: return len(token_ids_a + eos ) * [0] return len(token_ids_a + eos + token_ids_a + eos ) * [0] def UpperCamelCase( self , _UpperCamelCase , _UpperCamelCase = None ): _UpperCAmelCase = self._add_eos_if_not_present(_UpperCamelCase ) if token_ids_a is None: return token_ids_a else: _UpperCAmelCase = self._add_eos_if_not_present(_UpperCamelCase ) return token_ids_a + token_ids_a def __getstate__( self ): _UpperCAmelCase = self.__dict__.copy() _UpperCAmelCase = None return state def __setstate__( self , _UpperCamelCase ): _UpperCAmelCase = d # for backward compatibility if not hasattr(self , '''sp_model_kwargs''' ): _UpperCAmelCase = {} _UpperCAmelCase = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def UpperCamelCase( self , _UpperCamelCase , **_UpperCamelCase ): # Replace the SPIECE_UNDERLINE with a space to make sure SPIECE_UNDERLINE is only used at # the beginning of the text if not self.legacy: _UpperCAmelCase = SPIECE_UNDERLINE + text.replace(_UpperCamelCase , ''' ''' ) return super().tokenize(_UpperCamelCase , **_UpperCamelCase ) def UpperCamelCase( self , _UpperCamelCase , **_UpperCamelCase ): if not self.legacy: _UpperCAmelCase = text.startswith(_UpperCamelCase ) if is_first: _UpperCAmelCase = text[1:] _UpperCAmelCase = self.sp_model.encode(_UpperCamelCase , out_type=_UpperCamelCase ) if not self.legacy and not is_first and not text.startswith(''' ''' ) and tokens[0].startswith(_UpperCamelCase ): _UpperCAmelCase = ([tokens[0][1:]] if len(tokens[0] ) > 1 else []) + tokens[1:] return tokens def UpperCamelCase( self , _UpperCamelCase ): if token.startswith('''<extra_id_''' ): _UpperCAmelCase = re.match(R'''<extra_id_(\d+)>''' , _UpperCamelCase ) _UpperCAmelCase = int(match.group(1 ) ) return self.vocab_size - num - 1 return self.sp_model.piece_to_id(_UpperCamelCase ) def UpperCamelCase( self , _UpperCamelCase ): if index < self.sp_model.get_piece_size(): _UpperCAmelCase = self.sp_model.IdToPiece(_UpperCamelCase ) else: _UpperCAmelCase = f'''<extra_id_{self.vocab_size - 1 - index}>''' return token def UpperCamelCase( self , _UpperCamelCase ): _UpperCAmelCase = [] _UpperCAmelCase = '''''' _UpperCAmelCase = False for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: if not prev_is_special: out_string += " " out_string += self.sp_model.decode(_UpperCamelCase ) + token _UpperCAmelCase = True _UpperCAmelCase = [] else: current_sub_tokens.append(_UpperCamelCase ) _UpperCAmelCase = False out_string += self.sp_model.decode(_UpperCamelCase ) return out_string.strip() def UpperCamelCase( self , _UpperCamelCase , _UpperCamelCase = None ): if not os.path.isdir(_UpperCamelCase ): logger.error(f'''Vocabulary path ({save_directory}) should be a directory''' ) return _UpperCAmelCase = os.path.join( _UpperCamelCase , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(_UpperCamelCase ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , _UpperCamelCase ) elif not os.path.isfile(self.vocab_file ): with open(_UpperCamelCase , '''wb''' ) as fi: _UpperCAmelCase = self.sp_model.serialized_model_proto() fi.write(_UpperCamelCase ) return (out_vocab_file,)
32
1
import json import sys def A__ ( SCREAMING_SNAKE_CASE_ : Union[str, Any] , SCREAMING_SNAKE_CASE_ : List[Any] ) -> Union[str, Any]: """simple docstring""" with open(SCREAMING_SNAKE_CASE_ , encoding='''utf-8''' ) as f: _UpperCAmelCase = json.load(SCREAMING_SNAKE_CASE_ ) _UpperCAmelCase = ['''<details>''', '''<summary>Show updated benchmarks!</summary>''', ''' '''] for benchmark_name in sorted(SCREAMING_SNAKE_CASE_ ): _UpperCAmelCase = results[benchmark_name] _UpperCAmelCase = benchmark_name.split('''/''' )[-1] output_md.append(F'''### Benchmark: {benchmark_file_name}''' ) _UpperCAmelCase = '''| metric |''' _UpperCAmelCase = '''|--------|''' _UpperCAmelCase = '''| new / old (diff) |''' for metric_name in sorted(SCREAMING_SNAKE_CASE_ ): _UpperCAmelCase = benchmark_res[metric_name] _UpperCAmelCase = metric_vals['''new'''] _UpperCAmelCase = metric_vals.get('''old''' , SCREAMING_SNAKE_CASE_ ) _UpperCAmelCase = metric_vals.get('''diff''' , SCREAMING_SNAKE_CASE_ ) _UpperCAmelCase = F''' {new_val:f}''' if isinstance(SCREAMING_SNAKE_CASE_ , (int, float) ) else '''None''' if old_val is not None: val_str += F''' / {old_val:f}''' if isinstance(SCREAMING_SNAKE_CASE_ , (int, float) ) else "None" if dif_val is not None: val_str += F''' ({dif_val:f})''' if isinstance(SCREAMING_SNAKE_CASE_ , (int, float) ) else "None" title += " " + metric_name + " |" lines += "---|" value += val_str + " |" output_md += [title, lines, value, " "] output_md.append('''</details>''' ) with open(SCREAMING_SNAKE_CASE_ , '''w''' , encoding='''utf-8''' ) as f: f.writelines('''\n'''.join(SCREAMING_SNAKE_CASE_ ) ) if __name__ == "__main__": UpperCAmelCase_ = sys.argv[1] UpperCAmelCase_ = sys.argv[2] format_json_to_md(input_json_file, output_md_file)
32
from __future__ import annotations def A__ ( SCREAMING_SNAKE_CASE_ : int ) -> bool: """simple docstring""" _UpperCAmelCase = str(SCREAMING_SNAKE_CASE_ ) return len(SCREAMING_SNAKE_CASE_ ) == 9 and set(SCREAMING_SNAKE_CASE_ ) == set('''123456789''' ) def A__ ( ) -> int | None: """simple docstring""" for base_num in range(99_99 , 49_99 , -1 ): _UpperCAmelCase = 10_00_02 * base_num if is_9_pandigital(SCREAMING_SNAKE_CASE_ ): return candidate for base_num in range(3_33 , 99 , -1 ): _UpperCAmelCase = 1_00_20_03 * base_num if is_9_pandigital(SCREAMING_SNAKE_CASE_ ): return candidate return None if __name__ == "__main__": print(f'''{solution() = }''')
32
1
import argparse import json import os import tensorstore as ts import torch from flax import serialization from flax.traverse_util import flatten_dict, unflatten_dict from tensorflow.io import gfile from transformers.modeling_utils import dtype_byte_size from transformers.models.switch_transformers.convert_switch_transformers_original_flax_checkpoint_to_pytorch import ( rename_keys, ) from transformers.utils import WEIGHTS_INDEX_NAME, WEIGHTS_NAME from transformers.utils.hub import convert_file_size_to_int def A__ ( SCREAMING_SNAKE_CASE_ : Union[str, Any] , SCREAMING_SNAKE_CASE_ : List[Any] ) -> str: """simple docstring""" if flax_key_tuple[-1] == "kernel" and flax_tensor.ndim == 3: # expert layer _UpperCAmelCase = flax_key_tuple[:-1] + ('''weight''',) _UpperCAmelCase = torch.permute(SCREAMING_SNAKE_CASE_ , (0, 2, 1) ) elif flax_key_tuple[-1] == "kernel" and ".".join(SCREAMING_SNAKE_CASE_ ): # linear layer _UpperCAmelCase = flax_key_tuple[:-1] + ('''weight''',) _UpperCAmelCase = flax_tensor.T elif flax_key_tuple[-1] in ["scale", "embedding"]: _UpperCAmelCase = flax_key_tuple[:-1] + ('''weight''',) return flax_key_tuple, flax_tensor def A__ ( SCREAMING_SNAKE_CASE_ : Optional[int] , SCREAMING_SNAKE_CASE_ : Dict , SCREAMING_SNAKE_CASE_ : List[Any] ) -> List[Any]: """simple docstring""" if "metadata" in layer: _UpperCAmelCase = layer.split('''metadata''' ) _UpperCAmelCase = ''''''.join(split_layer[0] )[:-1] _UpperCAmelCase = [tuple(('''metadata''' + split_layer[1]).split('''/''' ) )] elif "kvstore" in layer: _UpperCAmelCase = layer.split('''kvstore''' ) _UpperCAmelCase = ''''''.join(split_layer[0] )[:-1] _UpperCAmelCase = [tuple(('''kvstore''' + split_layer[1]).split('''/''' ) )] else: _UpperCAmelCase = layer.split('''/''' ) _UpperCAmelCase = '''/'''.join(split_layer[:-1] ) _UpperCAmelCase = (split_layer[-1],) if "kvstore/path" in layer: _UpperCAmelCase = F'''{switch_checkpoint_path}/{checkpoint_info[layer]}''' elif "kvstore/driver" in layer: _UpperCAmelCase = '''file''' else: _UpperCAmelCase = checkpoint_info[layer] return curr_real_layer_name, split_layer, content def A__ ( SCREAMING_SNAKE_CASE_ : Union[str, Any] , SCREAMING_SNAKE_CASE_ : Optional[int] ) -> Any: """simple docstring""" _UpperCAmelCase = rename_keys(SCREAMING_SNAKE_CASE_ ) _UpperCAmelCase = {} for k, v in current_block.items(): _UpperCAmelCase = v _UpperCAmelCase = new_current_block torch.save(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) def A__ ( SCREAMING_SNAKE_CASE_ : str , SCREAMING_SNAKE_CASE_ : List[str] , SCREAMING_SNAKE_CASE_ : List[Any] , SCREAMING_SNAKE_CASE_ : Optional[int] , SCREAMING_SNAKE_CASE_ : str = WEIGHTS_NAME ) -> Tuple: """simple docstring""" _UpperCAmelCase = convert_file_size_to_int(SCREAMING_SNAKE_CASE_ ) _UpperCAmelCase = [] _UpperCAmelCase = {} _UpperCAmelCase = 0 _UpperCAmelCase = 0 os.makedirs(SCREAMING_SNAKE_CASE_ , exist_ok=SCREAMING_SNAKE_CASE_ ) with gfile.GFile(switch_checkpoint_path + '''/checkpoint''' , '''rb''' ) as fp: _UpperCAmelCase = serialization.msgpack_restore(fp.read() )['''optimizer''']['''target'''] _UpperCAmelCase = flatten_dict(SCREAMING_SNAKE_CASE_ , sep='''/''' ) _UpperCAmelCase = {} for layer in checkpoint_info.keys(): _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase = get_key_and_tensorstore_dict( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) if curr_real_layer_name in all_layers: _UpperCAmelCase = content else: _UpperCAmelCase = {split_layer[-1]: content} for key in all_layers.keys(): # open tensorstore file _UpperCAmelCase = ts.open(unflatten_dict(all_layers[key] ) ).result().read().result() _UpperCAmelCase = torch.tensor(SCREAMING_SNAKE_CASE_ ) _UpperCAmelCase = raw_weights.numel() * dtype_byte_size(raw_weights.dtype ) # use the renaming pattern from the small conversion scripts _UpperCAmelCase , _UpperCAmelCase = rename_base_flax_keys(tuple(key.split('''/''' ) ) , SCREAMING_SNAKE_CASE_ ) _UpperCAmelCase = '''/'''.join(SCREAMING_SNAKE_CASE_ ) # If this weight is going to tip up over the maximal size, we split. if current_block_size + weight_size > max_shard_size: _UpperCAmelCase = os.path.join( SCREAMING_SNAKE_CASE_ , weights_name.replace('''.bin''' , F'''-{len(SCREAMING_SNAKE_CASE_ )+1:05d}-of-???.bin''' ) ) rename_and_save_block(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) sharded_state_dicts.append(current_block.keys() ) del current_block _UpperCAmelCase = {} _UpperCAmelCase = 0 _UpperCAmelCase = raw_weights.to(getattr(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) ) current_block_size += weight_size total_size += weight_size # Add the last block _UpperCAmelCase = os.path.join(SCREAMING_SNAKE_CASE_ , weights_name.replace('''.bin''' , F'''-{len(SCREAMING_SNAKE_CASE_ )+1:05d}-of-???.bin''' ) ) rename_and_save_block(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) sharded_state_dicts.append(current_block.keys() ) # If we only have one shard, we return it if len(SCREAMING_SNAKE_CASE_ ) == 1: return {weights_name: sharded_state_dicts[0]}, None # Otherwise, let's build the index _UpperCAmelCase = {} _UpperCAmelCase = {} for idx, shard in enumerate(SCREAMING_SNAKE_CASE_ ): _UpperCAmelCase = weights_name.replace( '''.bin''' , F'''-{idx+1:05d}-of-{len(SCREAMING_SNAKE_CASE_ ):05d}.bin''' ) # len(sharded_state_dicts):05d} _UpperCAmelCase = os.path.join(SCREAMING_SNAKE_CASE_ , weights_name.replace('''.bin''' , F'''-{idx+1:05d}-of-???.bin''' ) ) os.rename(SCREAMING_SNAKE_CASE_ , os.path.join(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) ) _UpperCAmelCase = shard for key in shard: _UpperCAmelCase = shard_file # Add the metadata _UpperCAmelCase = {'''total_size''': total_size} _UpperCAmelCase = {'''metadata''': metadata, '''weight_map''': weight_map} with open(os.path.join(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) , '''w''' , encoding='''utf-8''' ) as f: _UpperCAmelCase = json.dumps(SCREAMING_SNAKE_CASE_ , indent=2 , sort_keys=SCREAMING_SNAKE_CASE_ ) + '''\n''' f.write(SCREAMING_SNAKE_CASE_ ) return metadata, index if __name__ == "__main__": UpperCAmelCase_ = argparse.ArgumentParser() # Required parameters parser.add_argument( "--switch_t5x_checkpoint_path", default="/mnt/disks/disk_switch/original_checkpoints/switch-xxl-128/checkpoint_634600", type=str, required=False, help="Path to a directory containing a folder per layer. Follows the original Google format.", ) parser.add_argument("--max_shard_size", default="10GB", required=False, help="Max shard size") parser.add_argument("--dtype", default="bfloat16", type=str, required=False, help="dtype of the saved model") parser.add_argument( "--pytorch_dump_folder_path", default="/mnt/disks/disk_switch/original_checkpoints/switch-xxl-128-converted", type=str, required=False, help="Path to the output pytorch model.", ) UpperCAmelCase_ = parser.parse_args() shard_on_the_fly( args.switch_tax_checkpoint_path, args.pytorch_dump_folder_path, args.max_shard_size, args.dtype, ) def A__ ( ) -> Dict: """simple docstring""" from transformers import SwitchTransformersConfig, SwitchTransformersForConditionalGeneration, TaTokenizer _UpperCAmelCase = SwitchTransformersConfig.from_pretrained('''google/switch-base-8''' ) config.save_pretrained('''/home/arthur_huggingface_co/transformers/switch_converted''' ) _UpperCAmelCase = SwitchTransformersForConditionalGeneration.from_pretrained( '''/home/arthur_huggingface_co/transformers/switch_converted''' , device_map='''auto''' ) _UpperCAmelCase = TaTokenizer.from_pretrained('''t5-small''' ) _UpperCAmelCase = '''A <extra_id_0> walks into a bar a orders a <extra_id_1> with <extra_id_2> pinch of <extra_id_3>.''' _UpperCAmelCase = tokenizer(SCREAMING_SNAKE_CASE_ , return_tensors='''pt''' ).input_ids _UpperCAmelCase = model.generate(SCREAMING_SNAKE_CASE_ , decoder_start_token_id=0 ) print(tokenizer.decode(out[0] ) )
32
import numpy as np def A__ ( SCREAMING_SNAKE_CASE_ : np.ndarray , SCREAMING_SNAKE_CASE_ : float ) -> np.ndarray: """simple docstring""" return np.where(vector > 0 , SCREAMING_SNAKE_CASE_ , (alpha * (np.exp(SCREAMING_SNAKE_CASE_ ) - 1)) ) if __name__ == "__main__": import doctest doctest.testmod()
32
1
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available UpperCAmelCase_ = { "configuration_mobilenet_v2": [ "MOBILENET_V2_PRETRAINED_CONFIG_ARCHIVE_MAP", "MobileNetV2Config", "MobileNetV2OnnxConfig", ], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase_ = ["MobileNetV2FeatureExtractor"] UpperCAmelCase_ = ["MobileNetV2ImageProcessor"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase_ = [ "MOBILENET_V2_PRETRAINED_MODEL_ARCHIVE_LIST", "MobileNetV2ForImageClassification", "MobileNetV2ForSemanticSegmentation", "MobileNetV2Model", "MobileNetV2PreTrainedModel", "load_tf_weights_in_mobilenet_v2", ] if TYPE_CHECKING: from .configuration_mobilenet_va import ( MOBILENET_V2_PRETRAINED_CONFIG_ARCHIVE_MAP, MobileNetVaConfig, MobileNetVaOnnxConfig, ) try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_mobilenet_va import MobileNetVaFeatureExtractor from .image_processing_mobilenet_va import MobileNetVaImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mobilenet_va import ( MOBILENET_V2_PRETRAINED_MODEL_ARCHIVE_LIST, MobileNetVaForImageClassification, MobileNetVaForSemanticSegmentation, MobileNetVaModel, MobileNetVaPreTrainedModel, load_tf_weights_in_mobilenet_va, ) else: import sys UpperCAmelCase_ = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
32
UpperCAmelCase_ = { "A": ".-", "B": "-...", "C": "-.-.", "D": "-..", "E": ".", "F": "..-.", "G": "--.", "H": "....", "I": "..", "J": ".---", "K": "-.-", "L": ".-..", "M": "--", "N": "-.", "O": "---", "P": ".--.", "Q": "--.-", "R": ".-.", "S": "...", "T": "-", "U": "..-", "V": "...-", "W": ".--", "X": "-..-", "Y": "-.--", "Z": "--..", "1": ".----", "2": "..---", "3": "...--", "4": "....-", "5": ".....", "6": "-....", "7": "--...", "8": "---..", "9": "----.", "0": "-----", "&": ".-...", "@": ".--.-.", ":": "---...", ",": "--..--", ".": ".-.-.-", "'": ".----.", "\"": ".-..-.", "?": "..--..", "/": "-..-.", "=": "-...-", "+": ".-.-.", "-": "-....-", "(": "-.--.", ")": "-.--.-", "!": "-.-.--", " ": "/" } # Exclamation mark is not in ITU-R recommendation # fmt: on UpperCAmelCase_ = {value: key for key, value in MORSE_CODE_DICT.items()} def A__ ( SCREAMING_SNAKE_CASE_ : str ) -> str: """simple docstring""" return " ".join(MORSE_CODE_DICT[char] for char in message.upper() ) def A__ ( SCREAMING_SNAKE_CASE_ : str ) -> str: """simple docstring""" return "".join(REVERSE_DICT[char] for char in message.split() ) def A__ ( ) -> None: """simple docstring""" _UpperCAmelCase = '''Morse code here!''' print(SCREAMING_SNAKE_CASE_ ) _UpperCAmelCase = encrypt(SCREAMING_SNAKE_CASE_ ) print(SCREAMING_SNAKE_CASE_ ) _UpperCAmelCase = decrypt(SCREAMING_SNAKE_CASE_ ) print(SCREAMING_SNAKE_CASE_ ) if __name__ == "__main__": main()
32
1
from collections.abc import Iterable from typing import Any class __UpperCamelCase : def __init__( self , _UpperCamelCase = None ): _UpperCAmelCase = value _UpperCAmelCase = None # Added in order to delete a node easier _UpperCAmelCase = None _UpperCAmelCase = None def __repr__( self ): from pprint import pformat if self.left is None and self.right is None: return str(self.value ) return pformat({f'''{self.value}''': (self.left, self.right)} , indent=1 ) class __UpperCamelCase : def __init__( self , _UpperCamelCase = None ): _UpperCAmelCase = root def __str__( self ): return str(self.root ) def UpperCamelCase( self , _UpperCamelCase , _UpperCamelCase ): if new_children is not None: # reset its kids _UpperCAmelCase = node.parent if node.parent is not None: # reset its parent if self.is_right(_UpperCamelCase ): # If it is the right children _UpperCAmelCase = new_children else: _UpperCAmelCase = new_children else: _UpperCAmelCase = new_children def UpperCamelCase( self , _UpperCamelCase ): if node.parent and node.parent.right: return node == node.parent.right return False def UpperCamelCase( self ): return self.root is None def UpperCamelCase( self , _UpperCamelCase ): _UpperCAmelCase = Node(_UpperCamelCase ) # create a new Node if self.empty(): # if Tree is empty _UpperCAmelCase = new_node # set its root else: # Tree is not empty _UpperCAmelCase = self.root # from root if parent_node is None: return while True: # While we don't get to a leaf if value < parent_node.value: # We go left if parent_node.left is None: _UpperCAmelCase = new_node # We insert the new node in a leaf break else: _UpperCAmelCase = parent_node.left else: if parent_node.right is None: _UpperCAmelCase = new_node break else: _UpperCAmelCase = parent_node.right _UpperCAmelCase = parent_node def UpperCamelCase( self , *_UpperCamelCase ): for value in values: self.__insert(_UpperCamelCase ) def UpperCamelCase( self , _UpperCamelCase ): if self.empty(): raise IndexError('''Warning: Tree is empty! please use another.''' ) else: _UpperCAmelCase = self.root # use lazy evaluation here to avoid NoneType Attribute error while node is not None and node.value is not value: _UpperCAmelCase = node.left if value < node.value else node.right return node def UpperCamelCase( self , _UpperCamelCase = None ): if node is None: if self.root is None: return None _UpperCAmelCase = self.root if not self.empty(): while node.right is not None: _UpperCAmelCase = node.right return node def UpperCamelCase( self , _UpperCamelCase = None ): if node is None: _UpperCAmelCase = self.root if self.root is None: return None if not self.empty(): _UpperCAmelCase = self.root while node.left is not None: _UpperCAmelCase = node.left return node def UpperCamelCase( self , _UpperCamelCase ): _UpperCAmelCase = self.search(_UpperCamelCase ) # Look for the node with that label if node is not None: if node.left is None and node.right is None: # If it has no children self.__reassign_nodes(_UpperCamelCase , _UpperCamelCase ) elif node.left is None: # Has only right children self.__reassign_nodes(_UpperCamelCase , node.right ) elif node.right is None: # Has only left children self.__reassign_nodes(_UpperCamelCase , node.left ) else: _UpperCAmelCase = self.get_max( node.left ) # Gets the max value of the left branch self.remove(tmp_node.value ) # type: ignore _UpperCAmelCase = ( tmp_node.value # type: ignore ) # Assigns the value to the node to delete and keep tree structure def UpperCamelCase( self , _UpperCamelCase ): if node is not None: yield node # Preorder Traversal yield from self.preorder_traverse(node.left ) yield from self.preorder_traverse(node.right ) def UpperCamelCase( self , _UpperCamelCase=None ): if traversal_function is None: return self.preorder_traverse(self.root ) else: return traversal_function(self.root ) def UpperCamelCase( self , _UpperCamelCase , _UpperCamelCase ): if node: self.inorder(_UpperCamelCase , node.left ) arr.append(node.value ) self.inorder(_UpperCamelCase , node.right ) def UpperCamelCase( self , _UpperCamelCase , _UpperCamelCase ): _UpperCAmelCase = [] self.inorder(_UpperCamelCase , _UpperCamelCase ) # append all values to list using inorder traversal return arr[k - 1] def A__ ( SCREAMING_SNAKE_CASE_ : Node | None ) -> list[Node]: """simple docstring""" _UpperCAmelCase = [] if curr_node is not None: _UpperCAmelCase = postorder(curr_node.left ) + postorder(curr_node.right ) + [curr_node] return node_list def A__ ( ) -> None: """simple docstring""" _UpperCAmelCase = (8, 3, 6, 1, 10, 14, 13, 4, 7) _UpperCAmelCase = BinarySearchTree() for i in testlist: t.insert(SCREAMING_SNAKE_CASE_ ) # Prints all the elements of the list in order traversal print(SCREAMING_SNAKE_CASE_ ) if t.search(6 ) is not None: print('''The value 6 exists''' ) else: print('''The value 6 doesn\'t exist''' ) if t.search(-1 ) is not None: print('''The value -1 exists''' ) else: print('''The value -1 doesn\'t exist''' ) if not t.empty(): print('''Max Value: ''' , t.get_max().value ) # type: ignore print('''Min Value: ''' , t.get_min().value ) # type: ignore for i in testlist: t.remove(SCREAMING_SNAKE_CASE_ ) print(SCREAMING_SNAKE_CASE_ ) if __name__ == "__main__": import doctest doctest.testmod(verbose=True)
32
import gc import unittest import numpy as np import torch from diffusers import DanceDiffusionPipeline, IPNDMScheduler, UNetaDModel from diffusers.utils import slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu, skip_mps from ..pipeline_params import UNCONDITIONAL_AUDIO_GENERATION_BATCH_PARAMS, UNCONDITIONAL_AUDIO_GENERATION_PARAMS from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() class __UpperCamelCase ( A__ , unittest.TestCase ): __A : Any = DanceDiffusionPipeline __A : Any = UNCONDITIONAL_AUDIO_GENERATION_PARAMS __A : Tuple = PipelineTesterMixin.required_optional_params - { """callback""", """latents""", """callback_steps""", """output_type""", """num_images_per_prompt""", } __A : Tuple = UNCONDITIONAL_AUDIO_GENERATION_BATCH_PARAMS __A : List[str] = False __A : str = False def UpperCamelCase( self ): torch.manual_seed(0 ) _UpperCAmelCase = UNetaDModel( block_out_channels=(32, 32, 64) , extra_in_channels=16 , sample_size=512 , sample_rate=16000 , in_channels=2 , out_channels=2 , flip_sin_to_cos=_UpperCamelCase , use_timestep_embedding=_UpperCamelCase , time_embedding_type='''fourier''' , mid_block_type='''UNetMidBlock1D''' , down_block_types=('''DownBlock1DNoSkip''', '''DownBlock1D''', '''AttnDownBlock1D''') , up_block_types=('''AttnUpBlock1D''', '''UpBlock1D''', '''UpBlock1DNoSkip''') , ) _UpperCAmelCase = IPNDMScheduler() _UpperCAmelCase = { '''unet''': unet, '''scheduler''': scheduler, } return components def UpperCamelCase( self , _UpperCamelCase , _UpperCamelCase=0 ): if str(_UpperCamelCase ).startswith('''mps''' ): _UpperCAmelCase = torch.manual_seed(_UpperCamelCase ) else: _UpperCAmelCase = torch.Generator(device=_UpperCamelCase ).manual_seed(_UpperCamelCase ) _UpperCAmelCase = { '''batch_size''': 1, '''generator''': generator, '''num_inference_steps''': 4, } return inputs def UpperCamelCase( self ): _UpperCAmelCase = '''cpu''' # ensure determinism for the device-dependent torch.Generator _UpperCAmelCase = self.get_dummy_components() _UpperCAmelCase = DanceDiffusionPipeline(**_UpperCamelCase ) _UpperCAmelCase = pipe.to(_UpperCamelCase ) pipe.set_progress_bar_config(disable=_UpperCamelCase ) _UpperCAmelCase = self.get_dummy_inputs(_UpperCamelCase ) _UpperCAmelCase = pipe(**_UpperCamelCase ) _UpperCAmelCase = output.audios _UpperCAmelCase = audio[0, -3:, -3:] assert audio.shape == (1, 2, components["unet"].sample_size) _UpperCAmelCase = np.array([-0.7265, 1.0000, -0.8388, 0.1175, 0.9498, -1.0000] ) assert np.abs(audio_slice.flatten() - expected_slice ).max() < 1e-2 @skip_mps def UpperCamelCase( self ): return super().test_save_load_local() @skip_mps def UpperCamelCase( self ): return super().test_dict_tuple_outputs_equivalent(expected_max_difference=3e-3 ) @skip_mps def UpperCamelCase( self ): return super().test_save_load_optional_components() @skip_mps def UpperCamelCase( self ): return super().test_attention_slicing_forward_pass() def UpperCamelCase( self ): super().test_inference_batch_single_identical(expected_max_diff=3e-3 ) @slow @require_torch_gpu class __UpperCamelCase ( unittest.TestCase ): def UpperCamelCase( self ): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def UpperCamelCase( self ): _UpperCAmelCase = torch_device _UpperCAmelCase = DanceDiffusionPipeline.from_pretrained('''harmonai/maestro-150k''' ) _UpperCAmelCase = pipe.to(_UpperCamelCase ) pipe.set_progress_bar_config(disable=_UpperCamelCase ) _UpperCAmelCase = torch.manual_seed(0 ) _UpperCAmelCase = pipe(generator=_UpperCamelCase , num_inference_steps=100 , audio_length_in_s=4.096 ) _UpperCAmelCase = output.audios _UpperCAmelCase = audio[0, -3:, -3:] assert audio.shape == (1, 2, pipe.unet.sample_size) _UpperCAmelCase = np.array([-0.0192, -0.0231, -0.0318, -0.0059, 0.0002, -0.0020] ) assert np.abs(audio_slice.flatten() - expected_slice ).max() < 1e-2 def UpperCamelCase( self ): _UpperCAmelCase = torch_device _UpperCAmelCase = DanceDiffusionPipeline.from_pretrained('''harmonai/maestro-150k''' , torch_dtype=torch.floataa ) _UpperCAmelCase = pipe.to(_UpperCamelCase ) pipe.set_progress_bar_config(disable=_UpperCamelCase ) _UpperCAmelCase = torch.manual_seed(0 ) _UpperCAmelCase = pipe(generator=_UpperCamelCase , num_inference_steps=100 , audio_length_in_s=4.096 ) _UpperCAmelCase = output.audios _UpperCAmelCase = audio[0, -3:, -3:] assert audio.shape == (1, 2, pipe.unet.sample_size) _UpperCAmelCase = np.array([-0.0367, -0.0488, -0.0771, -0.0525, -0.0444, -0.0341] ) assert np.abs(audio_slice.flatten() - expected_slice ).max() < 1e-2
32
1
def A__ ( SCREAMING_SNAKE_CASE_ : int = 10_00 ) -> int: """simple docstring""" _UpperCAmelCase , _UpperCAmelCase = 1, 1 _UpperCAmelCase = [] for i in range(1 , n + 1 ): _UpperCAmelCase = prev_numerator + 2 * prev_denominator _UpperCAmelCase = prev_numerator + prev_denominator if len(str(SCREAMING_SNAKE_CASE_ ) ) > len(str(SCREAMING_SNAKE_CASE_ ) ): result.append(SCREAMING_SNAKE_CASE_ ) _UpperCAmelCase = numerator _UpperCAmelCase = denominator return len(SCREAMING_SNAKE_CASE_ ) if __name__ == "__main__": print(f'''{solution() = }''')
32
from collections import OrderedDict from ...utils import logging from .auto_factory import _BaseAutoModelClass, _LazyAutoMapping, auto_class_update from .configuration_auto import CONFIG_MAPPING_NAMES UpperCAmelCase_ = logging.get_logger(__name__) UpperCAmelCase_ = OrderedDict( [ # Base model mapping ("albert", "FlaxAlbertModel"), ("bart", "FlaxBartModel"), ("beit", "FlaxBeitModel"), ("bert", "FlaxBertModel"), ("big_bird", "FlaxBigBirdModel"), ("blenderbot", "FlaxBlenderbotModel"), ("blenderbot-small", "FlaxBlenderbotSmallModel"), ("clip", "FlaxCLIPModel"), ("distilbert", "FlaxDistilBertModel"), ("electra", "FlaxElectraModel"), ("gpt-sw3", "FlaxGPT2Model"), ("gpt2", "FlaxGPT2Model"), ("gpt_neo", "FlaxGPTNeoModel"), ("gptj", "FlaxGPTJModel"), ("longt5", "FlaxLongT5Model"), ("marian", "FlaxMarianModel"), ("mbart", "FlaxMBartModel"), ("mt5", "FlaxMT5Model"), ("opt", "FlaxOPTModel"), ("pegasus", "FlaxPegasusModel"), ("regnet", "FlaxRegNetModel"), ("resnet", "FlaxResNetModel"), ("roberta", "FlaxRobertaModel"), ("roberta-prelayernorm", "FlaxRobertaPreLayerNormModel"), ("roformer", "FlaxRoFormerModel"), ("t5", "FlaxT5Model"), ("vision-text-dual-encoder", "FlaxVisionTextDualEncoderModel"), ("vit", "FlaxViTModel"), ("wav2vec2", "FlaxWav2Vec2Model"), ("whisper", "FlaxWhisperModel"), ("xglm", "FlaxXGLMModel"), ("xlm-roberta", "FlaxXLMRobertaModel"), ] ) UpperCAmelCase_ = OrderedDict( [ # Model for pre-training mapping ("albert", "FlaxAlbertForPreTraining"), ("bart", "FlaxBartForConditionalGeneration"), ("bert", "FlaxBertForPreTraining"), ("big_bird", "FlaxBigBirdForPreTraining"), ("electra", "FlaxElectraForPreTraining"), ("longt5", "FlaxLongT5ForConditionalGeneration"), ("mbart", "FlaxMBartForConditionalGeneration"), ("mt5", "FlaxMT5ForConditionalGeneration"), ("roberta", "FlaxRobertaForMaskedLM"), ("roberta-prelayernorm", "FlaxRobertaPreLayerNormForMaskedLM"), ("roformer", "FlaxRoFormerForMaskedLM"), ("t5", "FlaxT5ForConditionalGeneration"), ("wav2vec2", "FlaxWav2Vec2ForPreTraining"), ("whisper", "FlaxWhisperForConditionalGeneration"), ("xlm-roberta", "FlaxXLMRobertaForMaskedLM"), ] ) UpperCAmelCase_ = OrderedDict( [ # Model for Masked LM mapping ("albert", "FlaxAlbertForMaskedLM"), ("bart", "FlaxBartForConditionalGeneration"), ("bert", "FlaxBertForMaskedLM"), ("big_bird", "FlaxBigBirdForMaskedLM"), ("distilbert", "FlaxDistilBertForMaskedLM"), ("electra", "FlaxElectraForMaskedLM"), ("mbart", "FlaxMBartForConditionalGeneration"), ("roberta", "FlaxRobertaForMaskedLM"), ("roberta-prelayernorm", "FlaxRobertaPreLayerNormForMaskedLM"), ("roformer", "FlaxRoFormerForMaskedLM"), ("xlm-roberta", "FlaxXLMRobertaForMaskedLM"), ] ) UpperCAmelCase_ = OrderedDict( [ # Model for Seq2Seq Causal LM mapping ("bart", "FlaxBartForConditionalGeneration"), ("blenderbot", "FlaxBlenderbotForConditionalGeneration"), ("blenderbot-small", "FlaxBlenderbotSmallForConditionalGeneration"), ("encoder-decoder", "FlaxEncoderDecoderModel"), ("longt5", "FlaxLongT5ForConditionalGeneration"), ("marian", "FlaxMarianMTModel"), ("mbart", "FlaxMBartForConditionalGeneration"), ("mt5", "FlaxMT5ForConditionalGeneration"), ("pegasus", "FlaxPegasusForConditionalGeneration"), ("t5", "FlaxT5ForConditionalGeneration"), ] ) UpperCAmelCase_ = OrderedDict( [ # Model for Image-classsification ("beit", "FlaxBeitForImageClassification"), ("regnet", "FlaxRegNetForImageClassification"), ("resnet", "FlaxResNetForImageClassification"), ("vit", "FlaxViTForImageClassification"), ] ) UpperCAmelCase_ = OrderedDict( [ ("vision-encoder-decoder", "FlaxVisionEncoderDecoderModel"), ] ) UpperCAmelCase_ = OrderedDict( [ # Model for Causal LM mapping ("bart", "FlaxBartForCausalLM"), ("bert", "FlaxBertForCausalLM"), ("big_bird", "FlaxBigBirdForCausalLM"), ("electra", "FlaxElectraForCausalLM"), ("gpt-sw3", "FlaxGPT2LMHeadModel"), ("gpt2", "FlaxGPT2LMHeadModel"), ("gpt_neo", "FlaxGPTNeoForCausalLM"), ("gptj", "FlaxGPTJForCausalLM"), ("opt", "FlaxOPTForCausalLM"), ("roberta", "FlaxRobertaForCausalLM"), ("roberta-prelayernorm", "FlaxRobertaPreLayerNormForCausalLM"), ("xglm", "FlaxXGLMForCausalLM"), ("xlm-roberta", "FlaxXLMRobertaForCausalLM"), ] ) UpperCAmelCase_ = OrderedDict( [ # Model for Sequence Classification mapping ("albert", "FlaxAlbertForSequenceClassification"), ("bart", "FlaxBartForSequenceClassification"), ("bert", "FlaxBertForSequenceClassification"), ("big_bird", "FlaxBigBirdForSequenceClassification"), ("distilbert", "FlaxDistilBertForSequenceClassification"), ("electra", "FlaxElectraForSequenceClassification"), ("mbart", "FlaxMBartForSequenceClassification"), ("roberta", "FlaxRobertaForSequenceClassification"), ("roberta-prelayernorm", "FlaxRobertaPreLayerNormForSequenceClassification"), ("roformer", "FlaxRoFormerForSequenceClassification"), ("xlm-roberta", "FlaxXLMRobertaForSequenceClassification"), ] ) UpperCAmelCase_ = OrderedDict( [ # Model for Question Answering mapping ("albert", "FlaxAlbertForQuestionAnswering"), ("bart", "FlaxBartForQuestionAnswering"), ("bert", "FlaxBertForQuestionAnswering"), ("big_bird", "FlaxBigBirdForQuestionAnswering"), ("distilbert", "FlaxDistilBertForQuestionAnswering"), ("electra", "FlaxElectraForQuestionAnswering"), ("mbart", "FlaxMBartForQuestionAnswering"), ("roberta", "FlaxRobertaForQuestionAnswering"), ("roberta-prelayernorm", "FlaxRobertaPreLayerNormForQuestionAnswering"), ("roformer", "FlaxRoFormerForQuestionAnswering"), ("xlm-roberta", "FlaxXLMRobertaForQuestionAnswering"), ] ) UpperCAmelCase_ = OrderedDict( [ # Model for Token Classification mapping ("albert", "FlaxAlbertForTokenClassification"), ("bert", "FlaxBertForTokenClassification"), ("big_bird", "FlaxBigBirdForTokenClassification"), ("distilbert", "FlaxDistilBertForTokenClassification"), ("electra", "FlaxElectraForTokenClassification"), ("roberta", "FlaxRobertaForTokenClassification"), ("roberta-prelayernorm", "FlaxRobertaPreLayerNormForTokenClassification"), ("roformer", "FlaxRoFormerForTokenClassification"), ("xlm-roberta", "FlaxXLMRobertaForTokenClassification"), ] ) UpperCAmelCase_ = OrderedDict( [ # Model for Multiple Choice mapping ("albert", "FlaxAlbertForMultipleChoice"), ("bert", "FlaxBertForMultipleChoice"), ("big_bird", "FlaxBigBirdForMultipleChoice"), ("distilbert", "FlaxDistilBertForMultipleChoice"), ("electra", "FlaxElectraForMultipleChoice"), ("roberta", "FlaxRobertaForMultipleChoice"), ("roberta-prelayernorm", "FlaxRobertaPreLayerNormForMultipleChoice"), ("roformer", "FlaxRoFormerForMultipleChoice"), ("xlm-roberta", "FlaxXLMRobertaForMultipleChoice"), ] ) UpperCAmelCase_ = OrderedDict( [ ("bert", "FlaxBertForNextSentencePrediction"), ] ) UpperCAmelCase_ = OrderedDict( [ ("speech-encoder-decoder", "FlaxSpeechEncoderDecoderModel"), ("whisper", "FlaxWhisperForConditionalGeneration"), ] ) UpperCAmelCase_ = OrderedDict( [ ("whisper", "FlaxWhisperForAudioClassification"), ] ) UpperCAmelCase_ = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_MAPPING_NAMES) UpperCAmelCase_ = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_PRETRAINING_MAPPING_NAMES) UpperCAmelCase_ = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_MASKED_LM_MAPPING_NAMES) UpperCAmelCase_ = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING_NAMES ) UpperCAmelCase_ = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING_NAMES ) UpperCAmelCase_ = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_VISION_2_SEQ_MAPPING_NAMES) UpperCAmelCase_ = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_CAUSAL_LM_MAPPING_NAMES) UpperCAmelCase_ = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING_NAMES ) UpperCAmelCase_ = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_QUESTION_ANSWERING_MAPPING_NAMES ) UpperCAmelCase_ = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING_NAMES ) UpperCAmelCase_ = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_MULTIPLE_CHOICE_MAPPING_NAMES ) UpperCAmelCase_ = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_NEXT_SENTENCE_PREDICTION_MAPPING_NAMES ) UpperCAmelCase_ = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_SPEECH_SEQ_2_SEQ_MAPPING_NAMES ) UpperCAmelCase_ = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_AUDIO_CLASSIFICATION_MAPPING_NAMES ) class __UpperCamelCase ( _BaseAutoModelClass ): __A : List[str] = FLAX_MODEL_MAPPING UpperCAmelCase_ = auto_class_update(FlaxAutoModel) class __UpperCamelCase ( _BaseAutoModelClass ): __A : Optional[Any] = FLAX_MODEL_FOR_PRETRAINING_MAPPING UpperCAmelCase_ = auto_class_update(FlaxAutoModelForPreTraining, head_doc="pretraining") class __UpperCamelCase ( _BaseAutoModelClass ): __A : List[Any] = FLAX_MODEL_FOR_CAUSAL_LM_MAPPING UpperCAmelCase_ = auto_class_update(FlaxAutoModelForCausalLM, head_doc="causal language modeling") class __UpperCamelCase ( _BaseAutoModelClass ): __A : List[str] = FLAX_MODEL_FOR_MASKED_LM_MAPPING UpperCAmelCase_ = auto_class_update(FlaxAutoModelForMaskedLM, head_doc="masked language modeling") class __UpperCamelCase ( _BaseAutoModelClass ): __A : Dict = FLAX_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING UpperCAmelCase_ = auto_class_update( FlaxAutoModelForSeqaSeqLM, head_doc="sequence-to-sequence language modeling", checkpoint_for_example="t5-base" ) class __UpperCamelCase ( _BaseAutoModelClass ): __A : List[str] = FLAX_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING UpperCAmelCase_ = auto_class_update( FlaxAutoModelForSequenceClassification, head_doc="sequence classification" ) class __UpperCamelCase ( _BaseAutoModelClass ): __A : Dict = FLAX_MODEL_FOR_QUESTION_ANSWERING_MAPPING UpperCAmelCase_ = auto_class_update(FlaxAutoModelForQuestionAnswering, head_doc="question answering") class __UpperCamelCase ( _BaseAutoModelClass ): __A : Union[str, Any] = FLAX_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING UpperCAmelCase_ = auto_class_update( FlaxAutoModelForTokenClassification, head_doc="token classification" ) class __UpperCamelCase ( _BaseAutoModelClass ): __A : Union[str, Any] = FLAX_MODEL_FOR_MULTIPLE_CHOICE_MAPPING UpperCAmelCase_ = auto_class_update(FlaxAutoModelForMultipleChoice, head_doc="multiple choice") class __UpperCamelCase ( _BaseAutoModelClass ): __A : Any = FLAX_MODEL_FOR_NEXT_SENTENCE_PREDICTION_MAPPING UpperCAmelCase_ = auto_class_update( FlaxAutoModelForNextSentencePrediction, head_doc="next sentence prediction" ) class __UpperCamelCase ( _BaseAutoModelClass ): __A : Dict = FLAX_MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING UpperCAmelCase_ = auto_class_update( FlaxAutoModelForImageClassification, head_doc="image classification" ) class __UpperCamelCase ( _BaseAutoModelClass ): __A : Optional[int] = FLAX_MODEL_FOR_VISION_2_SEQ_MAPPING UpperCAmelCase_ = auto_class_update(FlaxAutoModelForVisionaSeq, head_doc="vision-to-text modeling") class __UpperCamelCase ( _BaseAutoModelClass ): __A : str = FLAX_MODEL_FOR_SPEECH_SEQ_2_SEQ_MAPPING UpperCAmelCase_ = auto_class_update( FlaxAutoModelForSpeechSeqaSeq, head_doc="sequence-to-sequence speech-to-text modeling" )
32
1
import copy from dataclasses import dataclass from pathlib import Path from typing import Dict, Optional, Union @dataclass class __UpperCamelCase : __A : Optional[Union[str, Path]] = None __A : bool = False __A : bool = False __A : bool = False __A : Optional[Dict] = None __A : Optional[str] = None __A : bool = False __A : bool = False __A : bool = False __A : bool = True __A : Optional[int] = None __A : int = 1 __A : Optional[Union[str, bool]] = None __A : bool = False __A : Optional[Dict] = None __A : Optional[str] = None def UpperCamelCase( self ): return self.__class__(**{k: copy.deepcopy(_UpperCamelCase ) for k, v in self.__dict__.items()} )
32
import baseaa def A__ ( SCREAMING_SNAKE_CASE_ : str ) -> bytes: """simple docstring""" return baseaa.baaencode(string.encode('''utf-8''' ) ) def A__ ( SCREAMING_SNAKE_CASE_ : bytes ) -> str: """simple docstring""" return baseaa.baadecode(SCREAMING_SNAKE_CASE_ ).decode('''utf-8''' ) if __name__ == "__main__": UpperCAmelCase_ = "Hello World!" UpperCAmelCase_ = baseaa_encode(test) print(encoded) UpperCAmelCase_ = baseaa_decode(encoded) print(decoded)
32
1
from typing import List, Optional, Union import torch from ...models import UNetaDConditionModel, VQModel from ...pipelines import DiffusionPipeline from ...pipelines.pipeline_utils import ImagePipelineOutput from ...schedulers import DDPMScheduler from ...utils import ( is_accelerate_available, is_accelerate_version, logging, randn_tensor, replace_example_docstring, ) UpperCAmelCase_ = logging.get_logger(__name__) # pylint: disable=invalid-name UpperCAmelCase_ = "\n Examples:\n ```py\n >>> from diffusers import KandinskyV22Pipeline, KandinskyV22PriorPipeline\n >>> import torch\n\n >>> pipe_prior = KandinskyV22PriorPipeline.from_pretrained(\"kandinsky-community/kandinsky-2-2-prior\")\n >>> pipe_prior.to(\"cuda\")\n >>> prompt = \"red cat, 4k photo\"\n >>> out = pipe_prior(prompt)\n >>> image_emb = out.image_embeds\n >>> zero_image_emb = out.negative_image_embeds\n >>> pipe = KandinskyV22Pipeline.from_pretrained(\"kandinsky-community/kandinsky-2-2-decoder\")\n >>> pipe.to(\"cuda\")\n >>> image = pipe(\n ... image_embeds=image_emb,\n ... negative_image_embeds=zero_image_emb,\n ... height=768,\n ... width=768,\n ... num_inference_steps=50,\n ... ).images\n >>> image[0].save(\"cat.png\")\n ```\n" def A__ ( SCREAMING_SNAKE_CASE_ : List[str] , SCREAMING_SNAKE_CASE_ : Optional[int] , SCREAMING_SNAKE_CASE_ : List[Any]=8 ) -> int: """simple docstring""" _UpperCAmelCase = height // scale_factor**2 if height % scale_factor**2 != 0: new_height += 1 _UpperCAmelCase = width // scale_factor**2 if width % scale_factor**2 != 0: new_width += 1 return new_height * scale_factor, new_width * scale_factor class __UpperCamelCase ( A__ ): def __init__( self , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , ): super().__init__() self.register_modules( unet=_UpperCamelCase , scheduler=_UpperCamelCase , movq=_UpperCamelCase , ) _UpperCAmelCase = 2 ** (len(self.movq.config.block_out_channels ) - 1) def UpperCamelCase( self , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ): if latents is None: _UpperCAmelCase = randn_tensor(_UpperCamelCase , generator=_UpperCamelCase , device=_UpperCamelCase , dtype=_UpperCamelCase ) else: if latents.shape != shape: raise ValueError(f'''Unexpected latents shape, got {latents.shape}, expected {shape}''' ) _UpperCAmelCase = latents.to(_UpperCamelCase ) _UpperCAmelCase = latents * scheduler.init_noise_sigma return latents def UpperCamelCase( self , _UpperCamelCase=0 ): if is_accelerate_available(): from accelerate import cpu_offload else: raise ImportError('''Please install accelerate via `pip install accelerate`''' ) _UpperCAmelCase = torch.device(f'''cuda:{gpu_id}''' ) _UpperCAmelCase = [ self.unet, self.movq, ] for cpu_offloaded_model in models: if cpu_offloaded_model is not None: cpu_offload(_UpperCamelCase , _UpperCamelCase ) def UpperCamelCase( self , _UpperCamelCase=0 ): if is_accelerate_available() and is_accelerate_version('''>=''' , '''0.17.0.dev0''' ): from accelerate import cpu_offload_with_hook else: raise ImportError('''`enable_model_cpu_offload` requires `accelerate v0.17.0` or higher.''' ) _UpperCAmelCase = torch.device(f'''cuda:{gpu_id}''' ) if self.device.type != "cpu": self.to('''cpu''' , silence_dtype_warnings=_UpperCamelCase ) torch.cuda.empty_cache() # otherwise we don't see the memory savings (but they probably exist) _UpperCAmelCase = None for cpu_offloaded_model in [self.unet, self.movq]: _UpperCAmelCase , _UpperCAmelCase = cpu_offload_with_hook(_UpperCamelCase , _UpperCamelCase , prev_module_hook=_UpperCamelCase ) # We'll offload the last model manually. _UpperCAmelCase = hook @property # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline._execution_device def UpperCamelCase( self ): if not hasattr(self.unet , '''_hf_hook''' ): return self.device for module in self.unet.modules(): if ( hasattr(_UpperCamelCase , '''_hf_hook''' ) and hasattr(module._hf_hook , '''execution_device''' ) and module._hf_hook.execution_device is not None ): return torch.device(module._hf_hook.execution_device ) return self.device @torch.no_grad() @replace_example_docstring(_UpperCamelCase ) def __call__( self , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase = 512 , _UpperCamelCase = 512 , _UpperCamelCase = 100 , _UpperCamelCase = 4.0 , _UpperCamelCase = 1 , _UpperCamelCase = None , _UpperCamelCase = None , _UpperCamelCase = "pil" , _UpperCamelCase = True , ): _UpperCAmelCase = self._execution_device _UpperCAmelCase = guidance_scale > 1.0 if isinstance(_UpperCamelCase , _UpperCamelCase ): _UpperCAmelCase = torch.cat(_UpperCamelCase , dim=0 ) _UpperCAmelCase = image_embeds.shape[0] * num_images_per_prompt if isinstance(_UpperCamelCase , _UpperCamelCase ): _UpperCAmelCase = torch.cat(_UpperCamelCase , dim=0 ) if do_classifier_free_guidance: _UpperCAmelCase = image_embeds.repeat_interleave(_UpperCamelCase , dim=0 ) _UpperCAmelCase = negative_image_embeds.repeat_interleave(_UpperCamelCase , dim=0 ) _UpperCAmelCase = torch.cat([negative_image_embeds, image_embeds] , dim=0 ).to(dtype=self.unet.dtype , device=_UpperCamelCase ) self.scheduler.set_timesteps(_UpperCamelCase , device=_UpperCamelCase ) _UpperCAmelCase = self.scheduler.timesteps _UpperCAmelCase = self.unet.config.in_channels _UpperCAmelCase , _UpperCAmelCase = downscale_height_and_width(_UpperCamelCase , _UpperCamelCase , self.movq_scale_factor ) # create initial latent _UpperCAmelCase = self.prepare_latents( (batch_size, num_channels_latents, height, width) , image_embeds.dtype , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , self.scheduler , ) for i, t in enumerate(self.progress_bar(_UpperCamelCase ) ): # expand the latents if we are doing classifier free guidance _UpperCAmelCase = torch.cat([latents] * 2 ) if do_classifier_free_guidance else latents _UpperCAmelCase = {'''image_embeds''': image_embeds} _UpperCAmelCase = self.unet( sample=_UpperCamelCase , timestep=_UpperCamelCase , encoder_hidden_states=_UpperCamelCase , added_cond_kwargs=_UpperCamelCase , return_dict=_UpperCamelCase , )[0] if do_classifier_free_guidance: _UpperCAmelCase , _UpperCAmelCase = noise_pred.split(latents.shape[1] , dim=1 ) _UpperCAmelCase , _UpperCAmelCase = noise_pred.chunk(2 ) _UpperCAmelCase , _UpperCAmelCase = variance_pred.chunk(2 ) _UpperCAmelCase = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) _UpperCAmelCase = torch.cat([noise_pred, variance_pred_text] , dim=1 ) if not ( hasattr(self.scheduler.config , '''variance_type''' ) and self.scheduler.config.variance_type in ["learned", "learned_range"] ): _UpperCAmelCase , _UpperCAmelCase = noise_pred.split(latents.shape[1] , dim=1 ) # compute the previous noisy sample x_t -> x_t-1 _UpperCAmelCase = self.scheduler.step( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , generator=_UpperCamelCase , )[0] # post-processing _UpperCAmelCase = self.movq.decode(_UpperCamelCase , force_not_quantize=_UpperCamelCase )['''sample'''] if output_type not in ["pt", "np", "pil"]: raise ValueError(f'''Only the output types `pt`, `pil` and `np` are supported not output_type={output_type}''' ) if output_type in ["np", "pil"]: _UpperCAmelCase = image * 0.5 + 0.5 _UpperCAmelCase = image.clamp(0 , 1 ) _UpperCAmelCase = image.cpu().permute(0 , 2 , 3 , 1 ).float().numpy() if output_type == "pil": _UpperCAmelCase = self.numpy_to_pil(_UpperCamelCase ) if not return_dict: return (image,) return ImagePipelineOutput(images=_UpperCamelCase )
32
from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD, ChannelDimension, ImageInput, PILImageResampling, is_batched, to_numpy_array, valid_images, ) from ...utils import TensorType, logging UpperCAmelCase_ = logging.get_logger(__name__) class __UpperCamelCase ( A__ ): __A : int = ["""pixel_values"""] def __init__( self , _UpperCamelCase = True , _UpperCamelCase = None , _UpperCamelCase = PILImageResampling.BICUBIC , _UpperCamelCase = True , _UpperCamelCase = True , _UpperCamelCase = 1 / 255 , _UpperCamelCase = None , _UpperCamelCase = True , _UpperCamelCase = None , _UpperCamelCase = None , **_UpperCamelCase , ): super().__init__(**_UpperCamelCase ) _UpperCAmelCase = size if size is not None else {'''height''': 224, '''width''': 224} _UpperCAmelCase = get_size_dict(_UpperCamelCase ) _UpperCAmelCase = crop_size if crop_size is not None else {'''height''': 224, '''width''': 224} _UpperCAmelCase = get_size_dict(_UpperCamelCase , default_to_square=_UpperCamelCase , param_name='''crop_size''' ) _UpperCAmelCase = do_resize _UpperCAmelCase = do_rescale _UpperCAmelCase = do_normalize _UpperCAmelCase = do_center_crop _UpperCAmelCase = crop_size _UpperCAmelCase = size _UpperCAmelCase = resample _UpperCAmelCase = rescale_factor _UpperCAmelCase = image_mean if image_mean is not None else IMAGENET_DEFAULT_MEAN _UpperCAmelCase = image_std if image_std is not None else IMAGENET_DEFAULT_STD def UpperCamelCase( self , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase = PILImageResampling.BILINEAR , _UpperCamelCase = None , **_UpperCamelCase , ): _UpperCAmelCase = get_size_dict(_UpperCamelCase ) if "shortest_edge" in size: _UpperCAmelCase = get_resize_output_image_size(_UpperCamelCase , size=size['''shortest_edge'''] , default_to_square=_UpperCamelCase ) # size = get_resize_output_image_size(image, size["shortest_edge"], size["longest_edge"]) elif "height" in size and "width" in size: _UpperCAmelCase = (size['''height'''], size['''width''']) else: raise ValueError(f'''Size must contain \'height\' and \'width\' keys or \'shortest_edge\' key. Got {size.keys()}''' ) return resize(_UpperCamelCase , size=_UpperCamelCase , resample=_UpperCamelCase , data_format=_UpperCamelCase , **_UpperCamelCase ) def UpperCamelCase( self , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase = None , **_UpperCamelCase , ): _UpperCAmelCase = get_size_dict(_UpperCamelCase ) if "height" not in size or "width" not in size: raise ValueError(f'''The `size` parameter must contain the keys (height, width). Got {size.keys()}''' ) return center_crop(_UpperCamelCase , size=(size['''height'''], size['''width''']) , data_format=_UpperCamelCase , **_UpperCamelCase ) def UpperCamelCase( self , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase = None , **_UpperCamelCase ): return rescale(_UpperCamelCase , scale=_UpperCamelCase , data_format=_UpperCamelCase , **_UpperCamelCase ) def UpperCamelCase( self , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase = None , **_UpperCamelCase , ): return normalize(_UpperCamelCase , mean=_UpperCamelCase , std=_UpperCamelCase , data_format=_UpperCamelCase , **_UpperCamelCase ) def UpperCamelCase( self , _UpperCamelCase , _UpperCamelCase = None , _UpperCamelCase = None , _UpperCamelCase = None , _UpperCamelCase = None , _UpperCamelCase = None , _UpperCamelCase = None , _UpperCamelCase = None , _UpperCamelCase = None , _UpperCamelCase = None , _UpperCamelCase = None , _UpperCamelCase = None , _UpperCamelCase = ChannelDimension.FIRST , **_UpperCamelCase , ): _UpperCAmelCase = do_resize if do_resize is not None else self.do_resize _UpperCAmelCase = do_rescale if do_rescale is not None else self.do_rescale _UpperCAmelCase = do_normalize if do_normalize is not None else self.do_normalize _UpperCAmelCase = do_center_crop if do_center_crop is not None else self.do_center_crop _UpperCAmelCase = crop_size if crop_size is not None else self.crop_size _UpperCAmelCase = get_size_dict(_UpperCamelCase , param_name='''crop_size''' , default_to_square=_UpperCamelCase ) _UpperCAmelCase = resample if resample is not None else self.resample _UpperCAmelCase = rescale_factor if rescale_factor is not None else self.rescale_factor _UpperCAmelCase = image_mean if image_mean is not None else self.image_mean _UpperCAmelCase = image_std if image_std is not None else self.image_std _UpperCAmelCase = size if size is not None else self.size _UpperCAmelCase = get_size_dict(_UpperCamelCase ) if not is_batched(_UpperCamelCase ): _UpperCAmelCase = [images] if not valid_images(_UpperCamelCase ): raise ValueError( '''Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ''' '''torch.Tensor, tf.Tensor or jax.ndarray.''' ) if do_resize and size is None: raise ValueError('''Size must be specified if do_resize is True.''' ) if do_center_crop and crop_size is None: raise ValueError('''Crop size must be specified if do_center_crop is True.''' ) if do_rescale and rescale_factor is None: raise ValueError('''Rescale factor must be specified if do_rescale is True.''' ) # All transformations expect numpy arrays. _UpperCAmelCase = [to_numpy_array(_UpperCamelCase ) for image in images] if do_resize: _UpperCAmelCase = [self.resize(image=_UpperCamelCase , size=_UpperCamelCase , resample=_UpperCamelCase ) for image in images] if do_center_crop: _UpperCAmelCase = [self.center_crop(image=_UpperCamelCase , size=_UpperCamelCase ) for image in images] if do_rescale: _UpperCAmelCase = [self.rescale(image=_UpperCamelCase , scale=_UpperCamelCase ) for image in images] if do_normalize: _UpperCAmelCase = [self.normalize(image=_UpperCamelCase , mean=_UpperCamelCase , std=_UpperCamelCase ) for image in images] _UpperCAmelCase = [to_channel_dimension_format(_UpperCamelCase , _UpperCamelCase ) for image in images] _UpperCAmelCase = {'''pixel_values''': images} return BatchFeature(data=_UpperCamelCase , tensor_type=_UpperCamelCase )
32
1
from ...configuration_utils import PretrainedConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices UpperCAmelCase_ = logging.get_logger(__name__) UpperCAmelCase_ = { "microsoft/focalnet-tiny": "https://huggingface.co/microsoft/focalnet-tiny/resolve/main/config.json", } class __UpperCamelCase ( A__ , A__ ): __A : Union[str, Any] = """focalnet""" def __init__( self , _UpperCamelCase=224 , _UpperCamelCase=4 , _UpperCamelCase=3 , _UpperCamelCase=96 , _UpperCamelCase=False , _UpperCamelCase=[192, 384, 768, 768] , _UpperCamelCase=[2, 2, 6, 2] , _UpperCamelCase=[2, 2, 2, 2] , _UpperCamelCase=[3, 3, 3, 3] , _UpperCamelCase="gelu" , _UpperCamelCase=4.0 , _UpperCamelCase=0.0 , _UpperCamelCase=0.1 , _UpperCamelCase=False , _UpperCamelCase=1e-4 , _UpperCamelCase=False , _UpperCamelCase=False , _UpperCamelCase=False , _UpperCamelCase=0.02 , _UpperCamelCase=1e-5 , _UpperCamelCase=32 , _UpperCamelCase=None , _UpperCamelCase=None , **_UpperCamelCase , ): super().__init__(**_UpperCamelCase ) _UpperCAmelCase = image_size _UpperCAmelCase = patch_size _UpperCAmelCase = num_channels _UpperCAmelCase = embed_dim _UpperCAmelCase = use_conv_embed _UpperCAmelCase = hidden_sizes _UpperCAmelCase = depths _UpperCAmelCase = focal_levels _UpperCAmelCase = focal_windows _UpperCAmelCase = hidden_act _UpperCAmelCase = mlp_ratio _UpperCAmelCase = hidden_dropout_prob _UpperCAmelCase = drop_path_rate _UpperCAmelCase = use_layerscale _UpperCAmelCase = layerscale_value _UpperCAmelCase = use_post_layernorm _UpperCAmelCase = use_post_layernorm_in_modulation _UpperCAmelCase = normalize_modulator _UpperCAmelCase = initializer_range _UpperCAmelCase = layer_norm_eps _UpperCAmelCase = encoder_stride _UpperCAmelCase = ['''stem'''] + [f'''stage{idx}''' for idx in range(1 , len(self.depths ) + 1 )] _UpperCAmelCase , _UpperCAmelCase = get_aligned_output_features_output_indices( out_features=_UpperCamelCase , out_indices=_UpperCamelCase , stage_names=self.stage_names )
32
from ..utils import DummyObject, requires_backends class __UpperCamelCase ( metaclass=A__ ): __A : str = ["""torch""", """scipy"""] def __init__( self , *_UpperCamelCase , **_UpperCamelCase ): requires_backends(self , ['''torch''', '''scipy'''] ) @classmethod def UpperCamelCase( cls , *_UpperCamelCase , **_UpperCamelCase ): requires_backends(cls , ['''torch''', '''scipy'''] ) @classmethod def UpperCamelCase( cls , *_UpperCamelCase , **_UpperCamelCase ): requires_backends(cls , ['''torch''', '''scipy'''] )
32
1
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available UpperCAmelCase_ = {"configuration_wavlm": ["WAVLM_PRETRAINED_CONFIG_ARCHIVE_MAP", "WavLMConfig"]} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase_ = [ "WAVLM_PRETRAINED_MODEL_ARCHIVE_LIST", "WavLMForAudioFrameClassification", "WavLMForCTC", "WavLMForSequenceClassification", "WavLMForXVector", "WavLMModel", "WavLMPreTrainedModel", ] if TYPE_CHECKING: from .configuration_wavlm import WAVLM_PRETRAINED_CONFIG_ARCHIVE_MAP, WavLMConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_wavlm import ( WAVLM_PRETRAINED_MODEL_ARCHIVE_LIST, WavLMForAudioFrameClassification, WavLMForCTC, WavLMForSequenceClassification, WavLMForXVector, WavLMModel, WavLMPreTrainedModel, ) else: import sys UpperCAmelCase_ = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
32
def A__ ( SCREAMING_SNAKE_CASE_ : int = 2_00_00_00 ) -> int: """simple docstring""" _UpperCAmelCase = [0 for i in range(n + 1 )] _UpperCAmelCase = 1 _UpperCAmelCase = 1 for i in range(2 , int(n**0.5 ) + 1 ): if primality_list[i] == 0: for j in range(i * i , n + 1 , SCREAMING_SNAKE_CASE_ ): _UpperCAmelCase = 1 _UpperCAmelCase = 0 for i in range(SCREAMING_SNAKE_CASE_ ): if primality_list[i] == 0: sum_of_primes += i return sum_of_primes if __name__ == "__main__": print(f'''{solution() = }''')
32
1
# Function to print upper half of diamond (pyramid) def A__ ( SCREAMING_SNAKE_CASE_ : int ) -> Any: """simple docstring""" for i in range(0 , SCREAMING_SNAKE_CASE_ ): for _ in range(0 , n - i - 1 ): # printing spaces print(''' ''' , end='''''' ) for _ in range(0 , i + 1 ): # printing stars print('''* ''' , end='''''' ) print() def A__ ( SCREAMING_SNAKE_CASE_ : List[str] ) -> Optional[int]: """simple docstring""" for i in range(SCREAMING_SNAKE_CASE_ , 0 , -1 ): for _ in range(SCREAMING_SNAKE_CASE_ , 0 , -1 ): # printing stars print('''* ''' , end='''''' ) print() for _ in range(n - i + 1 , 0 , -1 ): # printing spaces print(''' ''' , end='''''' ) def A__ ( SCREAMING_SNAKE_CASE_ : Union[str, Any] ) -> Tuple: """simple docstring""" if n <= 0: print(''' ... .... nothing printing :(''' ) return floyd(SCREAMING_SNAKE_CASE_ ) # upper half reverse_floyd(SCREAMING_SNAKE_CASE_ ) # lower half if __name__ == "__main__": print(r"| /\ | |- | |- |--| |\ /| |-") print(r"|/ \| |- |_ |_ |__| | \/ | |_") UpperCAmelCase_ = 1 while K: UpperCAmelCase_ = int(input("enter the number and , and see the magic : ")) print() pretty_print(user_number) UpperCAmelCase_ = int(input("press 0 to exit... and 1 to continue...")) print("Good Bye...")
32
import warnings from ...utils import logging from .image_processing_glpn import GLPNImageProcessor UpperCAmelCase_ = logging.get_logger(__name__) class __UpperCamelCase ( A__ ): def __init__( self , *_UpperCamelCase , **_UpperCamelCase ): warnings.warn( '''The class GLPNFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please''' ''' use GLPNImageProcessor instead.''' , _UpperCamelCase , ) super().__init__(*_UpperCamelCase , **_UpperCamelCase )
32
1
import argparse import json import logging import os import shutil import sys import tempfile import unittest from unittest import mock import torch from accelerate.utils import write_basic_config from transformers.testing_utils import TestCasePlus, get_gpu_count, run_command, slow, torch_device from transformers.utils import is_apex_available logging.basicConfig(level=logging.DEBUG) UpperCAmelCase_ = logging.getLogger() def A__ ( ) -> List[Any]: """simple docstring""" _UpperCAmelCase = argparse.ArgumentParser() parser.add_argument('''-f''' ) _UpperCAmelCase = parser.parse_args() return args.f def A__ ( SCREAMING_SNAKE_CASE_ : Dict ) -> str: """simple docstring""" _UpperCAmelCase = {} _UpperCAmelCase = os.path.join(SCREAMING_SNAKE_CASE_ , '''all_results.json''' ) if os.path.exists(SCREAMING_SNAKE_CASE_ ): with open(SCREAMING_SNAKE_CASE_ , '''r''' ) as f: _UpperCAmelCase = json.load(SCREAMING_SNAKE_CASE_ ) else: raise ValueError(F'''can\'t find {path}''' ) return results def A__ ( ) -> Union[str, Any]: """simple docstring""" _UpperCAmelCase = torch.cuda.is_available() and torch_device == '''cuda''' return is_using_cuda and is_apex_available() UpperCAmelCase_ = logging.StreamHandler(sys.stdout) logger.addHandler(stream_handler) class __UpperCamelCase ( A__ ): @classmethod def UpperCamelCase( cls ): # Write Accelerate config, will pick up on CPU, GPU, and multi-GPU _UpperCAmelCase = tempfile.mkdtemp() _UpperCAmelCase = os.path.join(cls.tmpdir , '''default_config.yml''' ) write_basic_config(save_location=cls.configPath ) _UpperCAmelCase = ['''accelerate''', '''launch''', '''--config_file''', cls.configPath] @classmethod def UpperCamelCase( cls ): shutil.rmtree(cls.tmpdir ) @mock.patch.dict(os.environ , {'''WANDB_MODE''': '''offline'''} ) def UpperCamelCase( self ): _UpperCAmelCase = self.get_auto_remove_tmp_dir() _UpperCAmelCase = f''' {self.examples_dir}/pytorch/text-classification/run_glue_no_trainer.py --model_name_or_path distilbert-base-uncased --output_dir {tmp_dir} --train_file ./tests/fixtures/tests_samples/MRPC/train.csv --validation_file ./tests/fixtures/tests_samples/MRPC/dev.csv --per_device_train_batch_size=2 --per_device_eval_batch_size=1 --learning_rate=1e-4 --seed=42 --checkpointing_steps epoch --with_tracking '''.split() if is_cuda_and_apex_available(): testargs.append('''--fp16''' ) run_command(self._launch_args + testargs ) _UpperCAmelCase = get_results(_UpperCamelCase ) self.assertGreaterEqual(result['''eval_accuracy'''] , 0.75 ) self.assertTrue(os.path.exists(os.path.join(_UpperCamelCase , '''epoch_0''' ) ) ) self.assertTrue(os.path.exists(os.path.join(_UpperCamelCase , '''glue_no_trainer''' ) ) ) @mock.patch.dict(os.environ , {'''WANDB_MODE''': '''offline'''} ) def UpperCamelCase( self ): _UpperCAmelCase = self.get_auto_remove_tmp_dir() _UpperCAmelCase = f''' {self.examples_dir}/pytorch/language-modeling/run_clm_no_trainer.py --model_name_or_path distilgpt2 --train_file ./tests/fixtures/sample_text.txt --validation_file ./tests/fixtures/sample_text.txt --block_size 128 --per_device_train_batch_size 5 --per_device_eval_batch_size 5 --num_train_epochs 2 --output_dir {tmp_dir} --checkpointing_steps epoch --with_tracking '''.split() if torch.cuda.device_count() > 1: # Skipping because there are not enough batches to train the model + would need a drop_last to work. return run_command(self._launch_args + testargs ) _UpperCAmelCase = get_results(_UpperCamelCase ) self.assertLess(result['''perplexity'''] , 100 ) self.assertTrue(os.path.exists(os.path.join(_UpperCamelCase , '''epoch_0''' ) ) ) self.assertTrue(os.path.exists(os.path.join(_UpperCamelCase , '''clm_no_trainer''' ) ) ) @mock.patch.dict(os.environ , {'''WANDB_MODE''': '''offline'''} ) def UpperCamelCase( self ): _UpperCAmelCase = self.get_auto_remove_tmp_dir() _UpperCAmelCase = f''' {self.examples_dir}/pytorch/language-modeling/run_mlm_no_trainer.py --model_name_or_path distilroberta-base --train_file ./tests/fixtures/sample_text.txt --validation_file ./tests/fixtures/sample_text.txt --output_dir {tmp_dir} --num_train_epochs=1 --checkpointing_steps epoch --with_tracking '''.split() run_command(self._launch_args + testargs ) _UpperCAmelCase = get_results(_UpperCamelCase ) self.assertLess(result['''perplexity'''] , 42 ) self.assertTrue(os.path.exists(os.path.join(_UpperCamelCase , '''epoch_0''' ) ) ) self.assertTrue(os.path.exists(os.path.join(_UpperCamelCase , '''mlm_no_trainer''' ) ) ) @mock.patch.dict(os.environ , {'''WANDB_MODE''': '''offline'''} ) def UpperCamelCase( self ): # with so little data distributed training needs more epochs to get the score on par with 0/1 gpu _UpperCAmelCase = 7 if get_gpu_count() > 1 else 2 _UpperCAmelCase = self.get_auto_remove_tmp_dir() _UpperCAmelCase = f''' {self.examples_dir}/pytorch/token-classification/run_ner_no_trainer.py --model_name_or_path bert-base-uncased --train_file tests/fixtures/tests_samples/conll/sample.json --validation_file tests/fixtures/tests_samples/conll/sample.json --output_dir {tmp_dir} --learning_rate=2e-4 --per_device_train_batch_size=2 --per_device_eval_batch_size=2 --num_train_epochs={epochs} --seed 7 --checkpointing_steps epoch --with_tracking '''.split() run_command(self._launch_args + testargs ) _UpperCAmelCase = get_results(_UpperCamelCase ) self.assertGreaterEqual(result['''eval_accuracy'''] , 0.75 ) self.assertLess(result['''train_loss'''] , 0.5 ) self.assertTrue(os.path.exists(os.path.join(_UpperCamelCase , '''epoch_0''' ) ) ) self.assertTrue(os.path.exists(os.path.join(_UpperCamelCase , '''ner_no_trainer''' ) ) ) @unittest.skip(reason='''Fix me @muellerzr''' ) @mock.patch.dict(os.environ , {'''WANDB_MODE''': '''offline'''} ) def UpperCamelCase( self ): _UpperCAmelCase = self.get_auto_remove_tmp_dir() _UpperCAmelCase = f''' {self.examples_dir}/pytorch/question-answering/run_qa_no_trainer.py --model_name_or_path bert-base-uncased --version_2_with_negative --train_file tests/fixtures/tests_samples/SQUAD/sample.json --validation_file tests/fixtures/tests_samples/SQUAD/sample.json --output_dir {tmp_dir} --seed=42 --max_train_steps=10 --num_warmup_steps=2 --learning_rate=2e-4 --per_device_train_batch_size=2 --per_device_eval_batch_size=1 --checkpointing_steps epoch --with_tracking '''.split() run_command(self._launch_args + testargs ) _UpperCAmelCase = get_results(_UpperCamelCase ) # Because we use --version_2_with_negative the testing script uses SQuAD v2 metrics. self.assertGreaterEqual(result['''eval_f1'''] , 28 ) self.assertGreaterEqual(result['''eval_exact'''] , 28 ) self.assertTrue(os.path.exists(os.path.join(_UpperCamelCase , '''epoch_0''' ) ) ) self.assertTrue(os.path.exists(os.path.join(_UpperCamelCase , '''qa_no_trainer''' ) ) ) @mock.patch.dict(os.environ , {'''WANDB_MODE''': '''offline'''} ) def UpperCamelCase( self ): _UpperCAmelCase = self.get_auto_remove_tmp_dir() _UpperCAmelCase = f''' {self.examples_dir}/pytorch/multiple-choice/run_swag_no_trainer.py --model_name_or_path bert-base-uncased --train_file tests/fixtures/tests_samples/swag/sample.json --validation_file tests/fixtures/tests_samples/swag/sample.json --output_dir {tmp_dir} --max_train_steps=20 --num_warmup_steps=2 --learning_rate=2e-4 --per_device_train_batch_size=2 --per_device_eval_batch_size=1 --with_tracking '''.split() run_command(self._launch_args + testargs ) _UpperCAmelCase = get_results(_UpperCamelCase ) self.assertGreaterEqual(result['''eval_accuracy'''] , 0.8 ) self.assertTrue(os.path.exists(os.path.join(_UpperCamelCase , '''swag_no_trainer''' ) ) ) @slow @mock.patch.dict(os.environ , {'''WANDB_MODE''': '''offline'''} ) def UpperCamelCase( self ): _UpperCAmelCase = self.get_auto_remove_tmp_dir() _UpperCAmelCase = f''' {self.examples_dir}/pytorch/summarization/run_summarization_no_trainer.py --model_name_or_path t5-small --train_file tests/fixtures/tests_samples/xsum/sample.json --validation_file tests/fixtures/tests_samples/xsum/sample.json --output_dir {tmp_dir} --max_train_steps=50 --num_warmup_steps=8 --learning_rate=2e-4 --per_device_train_batch_size=2 --per_device_eval_batch_size=1 --checkpointing_steps epoch --with_tracking '''.split() run_command(self._launch_args + testargs ) _UpperCAmelCase = get_results(_UpperCamelCase ) self.assertGreaterEqual(result['''eval_rouge1'''] , 10 ) self.assertGreaterEqual(result['''eval_rouge2'''] , 2 ) self.assertGreaterEqual(result['''eval_rougeL'''] , 7 ) self.assertGreaterEqual(result['''eval_rougeLsum'''] , 7 ) self.assertTrue(os.path.exists(os.path.join(_UpperCamelCase , '''epoch_0''' ) ) ) self.assertTrue(os.path.exists(os.path.join(_UpperCamelCase , '''summarization_no_trainer''' ) ) ) @slow @mock.patch.dict(os.environ , {'''WANDB_MODE''': '''offline'''} ) def UpperCamelCase( self ): _UpperCAmelCase = self.get_auto_remove_tmp_dir() _UpperCAmelCase = f''' {self.examples_dir}/pytorch/translation/run_translation_no_trainer.py --model_name_or_path sshleifer/student_marian_en_ro_6_1 --source_lang en --target_lang ro --train_file tests/fixtures/tests_samples/wmt16/sample.json --validation_file tests/fixtures/tests_samples/wmt16/sample.json --output_dir {tmp_dir} --max_train_steps=50 --num_warmup_steps=8 --num_beams=6 --learning_rate=3e-3 --per_device_train_batch_size=2 --per_device_eval_batch_size=1 --source_lang en_XX --target_lang ro_RO --checkpointing_steps epoch --with_tracking '''.split() run_command(self._launch_args + testargs ) _UpperCAmelCase = get_results(_UpperCamelCase ) self.assertGreaterEqual(result['''eval_bleu'''] , 30 ) self.assertTrue(os.path.exists(os.path.join(_UpperCamelCase , '''epoch_0''' ) ) ) self.assertTrue(os.path.exists(os.path.join(_UpperCamelCase , '''translation_no_trainer''' ) ) ) @slow def UpperCamelCase( self ): _UpperCAmelCase = logging.StreamHandler(sys.stdout ) logger.addHandler(_UpperCamelCase ) _UpperCAmelCase = self.get_auto_remove_tmp_dir() _UpperCAmelCase = f''' {self.examples_dir}/pytorch/semantic-segmentation/run_semantic_segmentation_no_trainer.py --dataset_name huggingface/semantic-segmentation-test-sample --output_dir {tmp_dir} --max_train_steps=10 --num_warmup_steps=2 --learning_rate=2e-4 --per_device_train_batch_size=2 --per_device_eval_batch_size=1 --checkpointing_steps epoch '''.split() run_command(self._launch_args + testargs ) _UpperCAmelCase = get_results(_UpperCamelCase ) self.assertGreaterEqual(result['''eval_overall_accuracy'''] , 0.10 ) @mock.patch.dict(os.environ , {'''WANDB_MODE''': '''offline'''} ) def UpperCamelCase( self ): _UpperCAmelCase = self.get_auto_remove_tmp_dir() _UpperCAmelCase = f''' {self.examples_dir}/pytorch/image-classification/run_image_classification_no_trainer.py --model_name_or_path google/vit-base-patch16-224-in21k --dataset_name hf-internal-testing/cats_vs_dogs_sample --learning_rate 1e-4 --per_device_train_batch_size 2 --per_device_eval_batch_size 1 --max_train_steps 2 --train_val_split 0.1 --seed 42 --output_dir {tmp_dir} --with_tracking --checkpointing_steps 1 '''.split() if is_cuda_and_apex_available(): testargs.append('''--fp16''' ) run_command(self._launch_args + testargs ) _UpperCAmelCase = get_results(_UpperCamelCase ) # The base model scores a 25% self.assertGreaterEqual(result['''eval_accuracy'''] , 0.6 ) self.assertTrue(os.path.exists(os.path.join(_UpperCamelCase , '''step_1''' ) ) ) self.assertTrue(os.path.exists(os.path.join(_UpperCamelCase , '''image_classification_no_trainer''' ) ) )
32
from typing import List, Optional, Union from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType class __UpperCamelCase ( A__ ): __A : Dict = ["""image_processor""", """tokenizer"""] __A : List[str] = """BridgeTowerImageProcessor""" __A : str = ("""RobertaTokenizer""", """RobertaTokenizerFast""") def __init__( self , _UpperCamelCase , _UpperCamelCase ): super().__init__(_UpperCamelCase , _UpperCamelCase ) def __call__( self , _UpperCamelCase , _UpperCamelCase = None , _UpperCamelCase = True , _UpperCamelCase = False , _UpperCamelCase = None , _UpperCamelCase = None , _UpperCamelCase = 0 , _UpperCamelCase = None , _UpperCamelCase = None , _UpperCamelCase = None , _UpperCamelCase = False , _UpperCamelCase = False , _UpperCamelCase = False , _UpperCamelCase = False , _UpperCamelCase = True , _UpperCamelCase = None , **_UpperCamelCase , ): _UpperCAmelCase = self.tokenizer( text=_UpperCamelCase , add_special_tokens=_UpperCamelCase , padding=_UpperCamelCase , truncation=_UpperCamelCase , max_length=_UpperCamelCase , stride=_UpperCamelCase , pad_to_multiple_of=_UpperCamelCase , return_token_type_ids=_UpperCamelCase , return_attention_mask=_UpperCamelCase , return_overflowing_tokens=_UpperCamelCase , return_special_tokens_mask=_UpperCamelCase , return_offsets_mapping=_UpperCamelCase , return_length=_UpperCamelCase , verbose=_UpperCamelCase , return_tensors=_UpperCamelCase , **_UpperCamelCase , ) # add pixel_values + pixel_mask _UpperCAmelCase = self.image_processor( _UpperCamelCase , return_tensors=_UpperCamelCase , do_normalize=_UpperCamelCase , do_center_crop=_UpperCamelCase , **_UpperCamelCase ) encoding.update(_UpperCamelCase ) return encoding def UpperCamelCase( self , *_UpperCamelCase , **_UpperCamelCase ): return self.tokenizer.batch_decode(*_UpperCamelCase , **_UpperCamelCase ) def UpperCamelCase( self , *_UpperCamelCase , **_UpperCamelCase ): return self.tokenizer.decode(*_UpperCamelCase , **_UpperCamelCase ) @property def UpperCamelCase( self ): _UpperCAmelCase = self.tokenizer.model_input_names _UpperCAmelCase = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) )
32
1
from math import sqrt import numpy as np from sympy import symbols # Coefficient # Speed of light (m/s) UpperCAmelCase_ = 2_99_79_24_58 # Symbols UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ = symbols("ct x y z") def A__ ( SCREAMING_SNAKE_CASE_ : float ) -> float: """simple docstring""" if velocity > c: raise ValueError('''Speed must not exceed light speed 299,792,458 [m/s]!''' ) elif velocity < 1: # Usually the speed should be much higher than 1 (c order of magnitude) raise ValueError('''Speed must be greater than or equal to 1!''' ) return velocity / c def A__ ( SCREAMING_SNAKE_CASE_ : float ) -> float: """simple docstring""" return 1 / sqrt(1 - beta(SCREAMING_SNAKE_CASE_ ) ** 2 ) def A__ ( SCREAMING_SNAKE_CASE_ : float ) -> np.ndarray: """simple docstring""" return np.array( [ [gamma(SCREAMING_SNAKE_CASE_ ), -gamma(SCREAMING_SNAKE_CASE_ ) * beta(SCREAMING_SNAKE_CASE_ ), 0, 0], [-gamma(SCREAMING_SNAKE_CASE_ ) * beta(SCREAMING_SNAKE_CASE_ ), gamma(SCREAMING_SNAKE_CASE_ ), 0, 0], [0, 0, 1, 0], [0, 0, 0, 1], ] ) def A__ ( SCREAMING_SNAKE_CASE_ : float , SCREAMING_SNAKE_CASE_ : np.ndarray | None = None ) -> np.ndarray: """simple docstring""" if event is None: _UpperCAmelCase = np.array([ct, x, y, z] ) # Symbolic four vector else: event[0] *= c # x0 is ct (speed of light * time) return transformation_matrix(SCREAMING_SNAKE_CASE_ ) @ event if __name__ == "__main__": import doctest doctest.testmod() # Example of symbolic vector: UpperCAmelCase_ = transform(29_97_92_45) print("Example of four vector: ") print(f'''ct\' = {four_vector[0]}''') print(f'''x\' = {four_vector[1]}''') print(f'''y\' = {four_vector[2]}''') print(f'''z\' = {four_vector[3]}''') # Substitute symbols with numerical values UpperCAmelCase_ = {ct: c, x: 1, y: 1, z: 1} UpperCAmelCase_ = [four_vector[i].subs(sub_dict) for i in range(4)] print(f'''\n{numerical_vector}''')
32
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available UpperCAmelCase_ = { "configuration_xlm": ["XLM_PRETRAINED_CONFIG_ARCHIVE_MAP", "XLMConfig", "XLMOnnxConfig"], "tokenization_xlm": ["XLMTokenizer"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase_ = [ "XLM_PRETRAINED_MODEL_ARCHIVE_LIST", "XLMForMultipleChoice", "XLMForQuestionAnswering", "XLMForQuestionAnsweringSimple", "XLMForSequenceClassification", "XLMForTokenClassification", "XLMModel", "XLMPreTrainedModel", "XLMWithLMHeadModel", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase_ = [ "TF_XLM_PRETRAINED_MODEL_ARCHIVE_LIST", "TFXLMForMultipleChoice", "TFXLMForQuestionAnsweringSimple", "TFXLMForSequenceClassification", "TFXLMForTokenClassification", "TFXLMMainLayer", "TFXLMModel", "TFXLMPreTrainedModel", "TFXLMWithLMHeadModel", ] if TYPE_CHECKING: from .configuration_xlm import XLM_PRETRAINED_CONFIG_ARCHIVE_MAP, XLMConfig, XLMOnnxConfig from .tokenization_xlm import XLMTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_xlm import ( XLM_PRETRAINED_MODEL_ARCHIVE_LIST, XLMForMultipleChoice, XLMForQuestionAnswering, XLMForQuestionAnsweringSimple, XLMForSequenceClassification, XLMForTokenClassification, XLMModel, XLMPreTrainedModel, XLMWithLMHeadModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_xlm import ( TF_XLM_PRETRAINED_MODEL_ARCHIVE_LIST, TFXLMForMultipleChoice, TFXLMForQuestionAnsweringSimple, TFXLMForSequenceClassification, TFXLMForTokenClassification, TFXLMMainLayer, TFXLMModel, TFXLMPreTrainedModel, TFXLMWithLMHeadModel, ) else: import sys UpperCAmelCase_ = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
32
1
import unittest from transformers import ( MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, Pipeline, ZeroShotClassificationPipeline, pipeline, ) from transformers.testing_utils import is_pipeline_test, nested_simplify, require_tf, require_torch, slow from .test_pipelines_common import ANY # These 2 model types require different inputs than those of the usual text models. UpperCAmelCase_ = {"LayoutLMv2Config", "LayoutLMv3Config"} @is_pipeline_test class __UpperCamelCase ( unittest.TestCase ): __A : List[Any] = MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING __A : List[str] = TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING if model_mapping is not None: __A : Any = {config: model for config, model in model_mapping.items() if config.__name__ not in _TO_SKIP} if tf_model_mapping is not None: __A : Optional[int] = { config: model for config, model in tf_model_mapping.items() if config.__name__ not in _TO_SKIP } def UpperCamelCase( self , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ): _UpperCAmelCase = ZeroShotClassificationPipeline( model=_UpperCamelCase , tokenizer=_UpperCamelCase , candidate_labels=['''polics''', '''health'''] ) return classifier, ["Who are you voting for in 2020?", "My stomach hurts."] def UpperCamelCase( self , _UpperCamelCase , _UpperCamelCase ): _UpperCAmelCase = classifier('''Who are you voting for in 2020?''' , candidate_labels='''politics''' ) self.assertEqual(_UpperCamelCase , {'''sequence''': ANY(_UpperCamelCase ), '''labels''': [ANY(_UpperCamelCase )], '''scores''': [ANY(_UpperCamelCase )]} ) # No kwarg _UpperCAmelCase = classifier('''Who are you voting for in 2020?''' , ['''politics'''] ) self.assertEqual(_UpperCamelCase , {'''sequence''': ANY(_UpperCamelCase ), '''labels''': [ANY(_UpperCamelCase )], '''scores''': [ANY(_UpperCamelCase )]} ) _UpperCAmelCase = classifier('''Who are you voting for in 2020?''' , candidate_labels=['''politics'''] ) self.assertEqual(_UpperCamelCase , {'''sequence''': ANY(_UpperCamelCase ), '''labels''': [ANY(_UpperCamelCase )], '''scores''': [ANY(_UpperCamelCase )]} ) _UpperCAmelCase = classifier('''Who are you voting for in 2020?''' , candidate_labels='''politics, public health''' ) self.assertEqual( _UpperCamelCase , {'''sequence''': ANY(_UpperCamelCase ), '''labels''': [ANY(_UpperCamelCase ), ANY(_UpperCamelCase )], '''scores''': [ANY(_UpperCamelCase ), ANY(_UpperCamelCase )]} ) self.assertAlmostEqual(sum(nested_simplify(outputs['''scores'''] ) ) , 1.0 ) _UpperCAmelCase = classifier('''Who are you voting for in 2020?''' , candidate_labels=['''politics''', '''public health'''] ) self.assertEqual( _UpperCamelCase , {'''sequence''': ANY(_UpperCamelCase ), '''labels''': [ANY(_UpperCamelCase ), ANY(_UpperCamelCase )], '''scores''': [ANY(_UpperCamelCase ), ANY(_UpperCamelCase )]} ) self.assertAlmostEqual(sum(nested_simplify(outputs['''scores'''] ) ) , 1.0 ) _UpperCAmelCase = classifier( '''Who are you voting for in 2020?''' , candidate_labels='''politics''' , hypothesis_template='''This text is about {}''' ) self.assertEqual(_UpperCamelCase , {'''sequence''': ANY(_UpperCamelCase ), '''labels''': [ANY(_UpperCamelCase )], '''scores''': [ANY(_UpperCamelCase )]} ) # https://github.com/huggingface/transformers/issues/13846 _UpperCAmelCase = classifier(['''I am happy'''] , ['''positive''', '''negative'''] ) self.assertEqual( _UpperCamelCase , [ {'''sequence''': ANY(_UpperCamelCase ), '''labels''': [ANY(_UpperCamelCase ), ANY(_UpperCamelCase )], '''scores''': [ANY(_UpperCamelCase ), ANY(_UpperCamelCase )]} for i in range(1 ) ] , ) _UpperCAmelCase = classifier(['''I am happy''', '''I am sad'''] , ['''positive''', '''negative'''] ) self.assertEqual( _UpperCamelCase , [ {'''sequence''': ANY(_UpperCamelCase ), '''labels''': [ANY(_UpperCamelCase ), ANY(_UpperCamelCase )], '''scores''': [ANY(_UpperCamelCase ), ANY(_UpperCamelCase )]} for i in range(2 ) ] , ) with self.assertRaises(_UpperCamelCase ): classifier('''''' , candidate_labels='''politics''' ) with self.assertRaises(_UpperCamelCase ): classifier(_UpperCamelCase , candidate_labels='''politics''' ) with self.assertRaises(_UpperCamelCase ): classifier('''Who are you voting for in 2020?''' , candidate_labels='''''' ) with self.assertRaises(_UpperCamelCase ): classifier('''Who are you voting for in 2020?''' , candidate_labels=_UpperCamelCase ) with self.assertRaises(_UpperCamelCase ): classifier( '''Who are you voting for in 2020?''' , candidate_labels='''politics''' , hypothesis_template='''Not formatting template''' , ) with self.assertRaises(_UpperCamelCase ): classifier( '''Who are you voting for in 2020?''' , candidate_labels='''politics''' , hypothesis_template=_UpperCamelCase , ) self.run_entailment_id(_UpperCamelCase ) def UpperCamelCase( self , _UpperCamelCase ): _UpperCAmelCase = zero_shot_classifier.model.config _UpperCAmelCase = config.labelaid _UpperCAmelCase = zero_shot_classifier.entailment_id _UpperCAmelCase = {'''LABEL_0''': 0, '''LABEL_1''': 1, '''LABEL_2''': 2} self.assertEqual(zero_shot_classifier.entailment_id , -1 ) _UpperCAmelCase = {'''entailment''': 0, '''neutral''': 1, '''contradiction''': 2} self.assertEqual(zero_shot_classifier.entailment_id , 0 ) _UpperCAmelCase = {'''ENTAIL''': 0, '''NON-ENTAIL''': 1} self.assertEqual(zero_shot_classifier.entailment_id , 0 ) _UpperCAmelCase = {'''ENTAIL''': 2, '''NEUTRAL''': 1, '''CONTR''': 0} self.assertEqual(zero_shot_classifier.entailment_id , 2 ) _UpperCAmelCase = original_labelaid self.assertEqual(_UpperCamelCase , zero_shot_classifier.entailment_id ) @require_torch def UpperCamelCase( self ): _UpperCAmelCase = pipeline( '''zero-shot-classification''' , model='''sshleifer/tiny-distilbert-base-cased-distilled-squad''' , framework='''pt''' , ) # There was a regression in 4.10 for this # Adding a test so we don't make the mistake again. # https://github.com/huggingface/transformers/issues/13381#issuecomment-912343499 zero_shot_classifier( '''Who are you voting for in 2020?''' * 100 , candidate_labels=['''politics''', '''public health''', '''science'''] ) @require_torch def UpperCamelCase( self ): _UpperCAmelCase = pipeline( '''zero-shot-classification''' , model='''sshleifer/tiny-distilbert-base-cased-distilled-squad''' , framework='''pt''' , ) _UpperCAmelCase = zero_shot_classifier( '''Who are you voting for in 2020?''' , candidate_labels=['''politics''', '''public health''', '''science'''] ) self.assertEqual( nested_simplify(_UpperCamelCase ) , { '''sequence''': '''Who are you voting for in 2020?''', '''labels''': ['''science''', '''public health''', '''politics'''], '''scores''': [0.333, 0.333, 0.333], } , ) @require_tf def UpperCamelCase( self ): _UpperCAmelCase = pipeline( '''zero-shot-classification''' , model='''sshleifer/tiny-distilbert-base-cased-distilled-squad''' , framework='''tf''' , ) _UpperCAmelCase = zero_shot_classifier( '''Who are you voting for in 2020?''' , candidate_labels=['''politics''', '''public health''', '''science'''] ) self.assertEqual( nested_simplify(_UpperCamelCase ) , { '''sequence''': '''Who are you voting for in 2020?''', '''labels''': ['''science''', '''public health''', '''politics'''], '''scores''': [0.333, 0.333, 0.333], } , ) @slow @require_torch def UpperCamelCase( self ): _UpperCAmelCase = pipeline('''zero-shot-classification''' , model='''roberta-large-mnli''' , framework='''pt''' ) _UpperCAmelCase = zero_shot_classifier( '''Who are you voting for in 2020?''' , candidate_labels=['''politics''', '''public health''', '''science'''] ) self.assertEqual( nested_simplify(_UpperCamelCase ) , { '''sequence''': '''Who are you voting for in 2020?''', '''labels''': ['''politics''', '''public health''', '''science'''], '''scores''': [0.976, 0.015, 0.009], } , ) _UpperCAmelCase = zero_shot_classifier( '''The dominant sequence transduction models are based on complex recurrent or convolutional neural networks''' ''' in an encoder-decoder configuration. The best performing models also connect the encoder and decoder''' ''' through an attention mechanism. We propose a new simple network architecture, the Transformer, based''' ''' solely on attention mechanisms, dispensing with recurrence and convolutions entirely. Experiments on two''' ''' machine translation tasks show these models to be superior in quality while being more parallelizable''' ''' and requiring significantly less time to train. Our model achieves 28.4 BLEU on the WMT 2014''' ''' English-to-German translation task, improving over the existing best results, including ensembles by''' ''' over 2 BLEU. On the WMT 2014 English-to-French translation task, our model establishes a new''' ''' single-model state-of-the-art BLEU score of 41.8 after training for 3.5 days on eight GPUs, a small''' ''' fraction of the training costs of the best models from the literature. We show that the Transformer''' ''' generalizes well to other tasks by applying it successfully to English constituency parsing both with''' ''' large and limited training data.''' , candidate_labels=['''machine learning''', '''statistics''', '''translation''', '''vision'''] , multi_label=_UpperCamelCase , ) self.assertEqual( nested_simplify(_UpperCamelCase ) , { '''sequence''': ( '''The dominant sequence transduction models are based on complex recurrent or convolutional neural''' ''' networks in an encoder-decoder configuration. The best performing models also connect the''' ''' encoder and decoder through an attention mechanism. We propose a new simple network''' ''' architecture, the Transformer, based solely on attention mechanisms, dispensing with recurrence''' ''' and convolutions entirely. Experiments on two machine translation tasks show these models to be''' ''' superior in quality while being more parallelizable and requiring significantly less time to''' ''' train. Our model achieves 28.4 BLEU on the WMT 2014 English-to-German translation task,''' ''' improving over the existing best results, including ensembles by over 2 BLEU. On the WMT 2014''' ''' English-to-French translation task, our model establishes a new single-model state-of-the-art''' ''' BLEU score of 41.8 after training for 3.5 days on eight GPUs, a small fraction of the training''' ''' costs of the best models from the literature. We show that the Transformer generalizes well to''' ''' other tasks by applying it successfully to English constituency parsing both with large and''' ''' limited training data.''' ), '''labels''': ['''translation''', '''machine learning''', '''vision''', '''statistics'''], '''scores''': [0.817, 0.713, 0.018, 0.018], } , ) @slow @require_tf def UpperCamelCase( self ): _UpperCAmelCase = pipeline('''zero-shot-classification''' , model='''roberta-large-mnli''' , framework='''tf''' ) _UpperCAmelCase = zero_shot_classifier( '''Who are you voting for in 2020?''' , candidate_labels=['''politics''', '''public health''', '''science'''] ) self.assertEqual( nested_simplify(_UpperCamelCase ) , { '''sequence''': '''Who are you voting for in 2020?''', '''labels''': ['''politics''', '''public health''', '''science'''], '''scores''': [0.976, 0.015, 0.009], } , ) _UpperCAmelCase = zero_shot_classifier( '''The dominant sequence transduction models are based on complex recurrent or convolutional neural networks''' ''' in an encoder-decoder configuration. The best performing models also connect the encoder and decoder''' ''' through an attention mechanism. We propose a new simple network architecture, the Transformer, based''' ''' solely on attention mechanisms, dispensing with recurrence and convolutions entirely. Experiments on two''' ''' machine translation tasks show these models to be superior in quality while being more parallelizable''' ''' and requiring significantly less time to train. Our model achieves 28.4 BLEU on the WMT 2014''' ''' English-to-German translation task, improving over the existing best results, including ensembles by''' ''' over 2 BLEU. On the WMT 2014 English-to-French translation task, our model establishes a new''' ''' single-model state-of-the-art BLEU score of 41.8 after training for 3.5 days on eight GPUs, a small''' ''' fraction of the training costs of the best models from the literature. We show that the Transformer''' ''' generalizes well to other tasks by applying it successfully to English constituency parsing both with''' ''' large and limited training data.''' , candidate_labels=['''machine learning''', '''statistics''', '''translation''', '''vision'''] , multi_label=_UpperCamelCase , ) self.assertEqual( nested_simplify(_UpperCamelCase ) , { '''sequence''': ( '''The dominant sequence transduction models are based on complex recurrent or convolutional neural''' ''' networks in an encoder-decoder configuration. The best performing models also connect the''' ''' encoder and decoder through an attention mechanism. We propose a new simple network''' ''' architecture, the Transformer, based solely on attention mechanisms, dispensing with recurrence''' ''' and convolutions entirely. Experiments on two machine translation tasks show these models to be''' ''' superior in quality while being more parallelizable and requiring significantly less time to''' ''' train. Our model achieves 28.4 BLEU on the WMT 2014 English-to-German translation task,''' ''' improving over the existing best results, including ensembles by over 2 BLEU. On the WMT 2014''' ''' English-to-French translation task, our model establishes a new single-model state-of-the-art''' ''' BLEU score of 41.8 after training for 3.5 days on eight GPUs, a small fraction of the training''' ''' costs of the best models from the literature. We show that the Transformer generalizes well to''' ''' other tasks by applying it successfully to English constituency parsing both with large and''' ''' limited training data.''' ), '''labels''': ['''translation''', '''machine learning''', '''vision''', '''statistics'''], '''scores''': [0.817, 0.713, 0.018, 0.018], } , )
32
from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCAmelCase_ = logging.get_logger(__name__) UpperCAmelCase_ = { "microsoft/biogpt": "https://huggingface.co/microsoft/biogpt/resolve/main/config.json", # See all BioGPT models at https://huggingface.co/models?filter=biogpt } class __UpperCamelCase ( A__ ): __A : Any = """biogpt""" def __init__( self , _UpperCamelCase=42384 , _UpperCamelCase=1024 , _UpperCamelCase=24 , _UpperCamelCase=16 , _UpperCamelCase=4096 , _UpperCamelCase="gelu" , _UpperCamelCase=0.1 , _UpperCamelCase=0.1 , _UpperCamelCase=1024 , _UpperCamelCase=0.02 , _UpperCamelCase=1e-12 , _UpperCamelCase=True , _UpperCamelCase=True , _UpperCamelCase=0.0 , _UpperCamelCase=0.0 , _UpperCamelCase=1 , _UpperCamelCase=0 , _UpperCamelCase=2 , **_UpperCamelCase , ): _UpperCAmelCase = vocab_size _UpperCAmelCase = max_position_embeddings _UpperCAmelCase = hidden_size _UpperCAmelCase = num_hidden_layers _UpperCAmelCase = num_attention_heads _UpperCAmelCase = intermediate_size _UpperCAmelCase = hidden_act _UpperCAmelCase = hidden_dropout_prob _UpperCAmelCase = attention_probs_dropout_prob _UpperCAmelCase = initializer_range _UpperCAmelCase = layer_norm_eps _UpperCAmelCase = scale_embedding _UpperCAmelCase = use_cache _UpperCAmelCase = layerdrop _UpperCAmelCase = activation_dropout super().__init__(pad_token_id=_UpperCamelCase , bos_token_id=_UpperCamelCase , eos_token_id=_UpperCamelCase , **_UpperCamelCase )
32
1
from typing import List from .keymap import KEYMAP, get_character def A__ ( SCREAMING_SNAKE_CASE_ : str ) -> List[str]: """simple docstring""" def decorator(SCREAMING_SNAKE_CASE_ : List[Any] ): _UpperCAmelCase = getattr(SCREAMING_SNAKE_CASE_ , '''handle_key''' , [] ) handle += [key] setattr(SCREAMING_SNAKE_CASE_ , '''handle_key''' , SCREAMING_SNAKE_CASE_ ) return func return decorator def A__ ( *SCREAMING_SNAKE_CASE_ : List[str] ) -> Dict: """simple docstring""" def decorator(SCREAMING_SNAKE_CASE_ : Any ): _UpperCAmelCase = getattr(SCREAMING_SNAKE_CASE_ , '''handle_key''' , [] ) handle += keys setattr(SCREAMING_SNAKE_CASE_ , '''handle_key''' , SCREAMING_SNAKE_CASE_ ) return func return decorator class __UpperCamelCase ( A__ ): def __new__( cls , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ): _UpperCAmelCase = super().__new__(cls , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) if not hasattr(_UpperCamelCase , '''key_handler''' ): setattr(_UpperCamelCase , '''key_handler''' , {} ) setattr(_UpperCamelCase , '''handle_input''' , KeyHandler.handle_input ) for value in attrs.values(): _UpperCAmelCase = getattr(_UpperCamelCase , '''handle_key''' , [] ) for key in handled_keys: _UpperCAmelCase = value return new_cls @staticmethod def UpperCamelCase( cls ): _UpperCAmelCase = get_character() if char != KEYMAP["undefined"]: _UpperCAmelCase = ord(_UpperCamelCase ) _UpperCAmelCase = cls.key_handler.get(_UpperCamelCase ) if handler: _UpperCAmelCase = char return handler(cls ) else: return None def A__ ( cls : Union[str, Any] ) -> Any: """simple docstring""" return KeyHandler(cls.__name__ , cls.__bases__ , cls.__dict__.copy() )
32
from typing import List from .keymap import KEYMAP, get_character def A__ ( SCREAMING_SNAKE_CASE_ : str ) -> List[str]: """simple docstring""" def decorator(SCREAMING_SNAKE_CASE_ : List[Any] ): _UpperCAmelCase = getattr(SCREAMING_SNAKE_CASE_ , '''handle_key''' , [] ) handle += [key] setattr(SCREAMING_SNAKE_CASE_ , '''handle_key''' , SCREAMING_SNAKE_CASE_ ) return func return decorator def A__ ( *SCREAMING_SNAKE_CASE_ : List[str] ) -> Dict: """simple docstring""" def decorator(SCREAMING_SNAKE_CASE_ : Any ): _UpperCAmelCase = getattr(SCREAMING_SNAKE_CASE_ , '''handle_key''' , [] ) handle += keys setattr(SCREAMING_SNAKE_CASE_ , '''handle_key''' , SCREAMING_SNAKE_CASE_ ) return func return decorator class __UpperCamelCase ( A__ ): def __new__( cls , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ): _UpperCAmelCase = super().__new__(cls , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) if not hasattr(_UpperCamelCase , '''key_handler''' ): setattr(_UpperCamelCase , '''key_handler''' , {} ) setattr(_UpperCamelCase , '''handle_input''' , KeyHandler.handle_input ) for value in attrs.values(): _UpperCAmelCase = getattr(_UpperCamelCase , '''handle_key''' , [] ) for key in handled_keys: _UpperCAmelCase = value return new_cls @staticmethod def UpperCamelCase( cls ): _UpperCAmelCase = get_character() if char != KEYMAP["undefined"]: _UpperCAmelCase = ord(_UpperCamelCase ) _UpperCAmelCase = cls.key_handler.get(_UpperCamelCase ) if handler: _UpperCAmelCase = char return handler(cls ) else: return None def A__ ( cls : Union[str, Any] ) -> Any: """simple docstring""" return KeyHandler(cls.__name__ , cls.__bases__ , cls.__dict__.copy() )
32
1
def A__ ( SCREAMING_SNAKE_CASE_ : list ) -> int: """simple docstring""" if not grid or not grid[0]: raise TypeError('''The grid does not contain the appropriate information''' ) for cell_n in range(1 , len(grid[0] ) ): grid[0][cell_n] += grid[0][cell_n - 1] _UpperCAmelCase = grid[0] for row_n in range(1 , len(SCREAMING_SNAKE_CASE_ ) ): _UpperCAmelCase = grid[row_n] _UpperCAmelCase = fill_row(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) _UpperCAmelCase = grid[row_n] return grid[-1][-1] def A__ ( SCREAMING_SNAKE_CASE_ : list , SCREAMING_SNAKE_CASE_ : list ) -> list: """simple docstring""" current_row[0] += row_above[0] for cell_n in range(1 , len(SCREAMING_SNAKE_CASE_ ) ): current_row[cell_n] += min(current_row[cell_n - 1] , row_above[cell_n] ) return current_row if __name__ == "__main__": import doctest doctest.testmod()
32
import unittest from transformers import LiltConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( LiltForQuestionAnswering, LiltForSequenceClassification, LiltForTokenClassification, LiltModel, ) from transformers.models.lilt.modeling_lilt import LILT_PRETRAINED_MODEL_ARCHIVE_LIST class __UpperCamelCase : def __init__( self , _UpperCamelCase , _UpperCamelCase=13 , _UpperCamelCase=7 , _UpperCamelCase=True , _UpperCamelCase=True , _UpperCamelCase=True , _UpperCamelCase=True , _UpperCamelCase=99 , _UpperCamelCase=24 , _UpperCamelCase=2 , _UpperCamelCase=6 , _UpperCamelCase=37 , _UpperCamelCase="gelu" , _UpperCamelCase=0.1 , _UpperCamelCase=0.1 , _UpperCamelCase=512 , _UpperCamelCase=16 , _UpperCamelCase=2 , _UpperCamelCase=0.02 , _UpperCamelCase=3 , _UpperCamelCase=None , _UpperCamelCase=1000 , ): _UpperCAmelCase = parent _UpperCAmelCase = batch_size _UpperCAmelCase = seq_length _UpperCAmelCase = is_training _UpperCAmelCase = use_input_mask _UpperCAmelCase = use_token_type_ids _UpperCAmelCase = use_labels _UpperCAmelCase = vocab_size _UpperCAmelCase = hidden_size _UpperCAmelCase = num_hidden_layers _UpperCAmelCase = num_attention_heads _UpperCAmelCase = intermediate_size _UpperCAmelCase = hidden_act _UpperCAmelCase = hidden_dropout_prob _UpperCAmelCase = attention_probs_dropout_prob _UpperCAmelCase = max_position_embeddings _UpperCAmelCase = type_vocab_size _UpperCAmelCase = type_sequence_label_size _UpperCAmelCase = initializer_range _UpperCAmelCase = num_labels _UpperCAmelCase = scope _UpperCAmelCase = range_bbox def UpperCamelCase( self ): _UpperCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _UpperCAmelCase = ids_tensor([self.batch_size, self.seq_length, 4] , self.range_bbox ) # Ensure that bbox is legal for i in range(bbox.shape[0] ): for j in range(bbox.shape[1] ): if bbox[i, j, 3] < bbox[i, j, 1]: _UpperCAmelCase = bbox[i, j, 3] _UpperCAmelCase = bbox[i, j, 1] _UpperCAmelCase = t if bbox[i, j, 2] < bbox[i, j, 0]: _UpperCAmelCase = bbox[i, j, 2] _UpperCAmelCase = bbox[i, j, 0] _UpperCAmelCase = t _UpperCAmelCase = None if self.use_input_mask: _UpperCAmelCase = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 ) _UpperCAmelCase = None if self.use_token_type_ids: _UpperCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) _UpperCAmelCase = None _UpperCAmelCase = None if self.use_labels: _UpperCAmelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size ) _UpperCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) _UpperCAmelCase = self.get_config() return config, input_ids, bbox, token_type_ids, input_mask, sequence_labels, token_labels def UpperCamelCase( self ): return LiltConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , ) def UpperCamelCase( self , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , ): _UpperCAmelCase = LiltModel(config=_UpperCamelCase ) model.to(_UpperCamelCase ) model.eval() _UpperCAmelCase = model(_UpperCamelCase , bbox=_UpperCamelCase , attention_mask=_UpperCamelCase , token_type_ids=_UpperCamelCase ) _UpperCAmelCase = model(_UpperCamelCase , bbox=_UpperCamelCase , token_type_ids=_UpperCamelCase ) _UpperCAmelCase = model(_UpperCamelCase , bbox=_UpperCamelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) ) def UpperCamelCase( self , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , ): _UpperCAmelCase = self.num_labels _UpperCAmelCase = LiltForTokenClassification(config=_UpperCamelCase ) model.to(_UpperCamelCase ) model.eval() _UpperCAmelCase = model( _UpperCamelCase , bbox=_UpperCamelCase , attention_mask=_UpperCamelCase , token_type_ids=_UpperCamelCase , labels=_UpperCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def UpperCamelCase( self , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , ): _UpperCAmelCase = LiltForQuestionAnswering(config=_UpperCamelCase ) model.to(_UpperCamelCase ) model.eval() _UpperCAmelCase = model( _UpperCamelCase , bbox=_UpperCamelCase , attention_mask=_UpperCamelCase , token_type_ids=_UpperCamelCase , start_positions=_UpperCamelCase , end_positions=_UpperCamelCase , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def UpperCamelCase( self ): _UpperCAmelCase = self.prepare_config_and_inputs() ( ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ) = config_and_inputs _UpperCAmelCase = { '''input_ids''': input_ids, '''bbox''': bbox, '''token_type_ids''': token_type_ids, '''attention_mask''': input_mask, } return config, inputs_dict @require_torch class __UpperCamelCase ( A__ , A__ , A__ , unittest.TestCase ): __A : Dict = ( ( LiltModel, LiltForSequenceClassification, LiltForTokenClassification, LiltForQuestionAnswering, ) if is_torch_available() else () ) __A : Optional[Any] = ( { """feature-extraction""": LiltModel, """question-answering""": LiltForQuestionAnswering, """text-classification""": LiltForSequenceClassification, """token-classification""": LiltForTokenClassification, """zero-shot""": LiltForSequenceClassification, } if is_torch_available() else {} ) __A : List[Any] = False __A : Optional[int] = False def UpperCamelCase( self , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ): return True def UpperCamelCase( self ): _UpperCAmelCase = LiltModelTester(self ) _UpperCAmelCase = ConfigTester(self , config_class=_UpperCamelCase , hidden_size=37 ) def UpperCamelCase( self ): self.config_tester.run_common_tests() def UpperCamelCase( self ): _UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_UpperCamelCase ) def UpperCamelCase( self ): _UpperCAmelCase = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: _UpperCAmelCase = type self.model_tester.create_and_check_model(*_UpperCamelCase ) def UpperCamelCase( self ): _UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*_UpperCamelCase ) def UpperCamelCase( self ): _UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*_UpperCamelCase ) @slow def UpperCamelCase( self ): for model_name in LILT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _UpperCAmelCase = LiltModel.from_pretrained(_UpperCamelCase ) self.assertIsNotNone(_UpperCamelCase ) @require_torch @slow class __UpperCamelCase ( unittest.TestCase ): def UpperCamelCase( self ): _UpperCAmelCase = LiltModel.from_pretrained('''SCUT-DLVCLab/lilt-roberta-en-base''' ).to(_UpperCamelCase ) _UpperCAmelCase = torch.tensor([[1, 2]] , device=_UpperCamelCase ) _UpperCAmelCase = torch.tensor([[[1, 2, 3, 4], [5, 6, 7, 8]]] , device=_UpperCamelCase ) # forward pass with torch.no_grad(): _UpperCAmelCase = model(input_ids=_UpperCamelCase , bbox=_UpperCamelCase ) _UpperCAmelCase = torch.Size([1, 2, 768] ) _UpperCAmelCase = torch.tensor( [[-0.0653, 0.0950, -0.0061], [-0.0545, 0.0926, -0.0324]] , device=_UpperCamelCase , ) self.assertTrue(outputs.last_hidden_state.shape , _UpperCamelCase ) self.assertTrue(torch.allclose(outputs.last_hidden_state[0, :, :3] , _UpperCamelCase , atol=1e-3 ) )
32
1
import argparse import glob import logging import os import sys import time from collections import defaultdict from pathlib import Path from typing import Dict, List, Tuple import numpy as np import pytorch_lightning as pl import torch from callbacks import SeqaSeqLoggingCallback, get_checkpoint_callback, get_early_stopping_callback from torch import nn from torch.utils.data import DataLoader from transformers import MBartTokenizer, TaForConditionalGeneration from transformers.models.bart.modeling_bart import shift_tokens_right from utils import ( ROUGE_KEYS, LegacySeqaSeqDataset, SeqaSeqDataset, assert_all_frozen, calculate_bleu, calculate_rouge, check_output_dir, flatten_list, freeze_embeds, freeze_params, get_git_info, label_smoothed_nll_loss, lmap, pickle_save, save_git_info, save_json, use_task_specific_params, ) # need the parent dir module sys.path.insert(2, str(Path(__file__).resolve().parents[1])) from lightning_base import BaseTransformer, add_generic_args, generic_train # noqa UpperCAmelCase_ = logging.getLogger(__name__) class __UpperCamelCase ( A__ ): __A : Optional[Any] = """summarization""" __A : Union[str, Any] = ["""loss"""] __A : Any = ROUGE_KEYS __A : Any = """rouge2""" def __init__( self , _UpperCamelCase , **_UpperCamelCase ): if hparams.sortish_sampler and hparams.gpus > 1: _UpperCAmelCase = False elif hparams.max_tokens_per_batch is not None: if hparams.gpus > 1: raise NotImplementedError('''Dynamic Batch size does not work for multi-gpu training''' ) if hparams.sortish_sampler: raise ValueError('''--sortish_sampler and --max_tokens_per_batch may not be used simultaneously''' ) super().__init__(_UpperCamelCase , num_labels=_UpperCamelCase , mode=self.mode , **_UpperCamelCase ) use_task_specific_params(self.model , '''summarization''' ) save_git_info(self.hparams.output_dir ) _UpperCAmelCase = Path(self.output_dir ) / '''metrics.json''' _UpperCAmelCase = Path(self.output_dir ) / '''hparams.pkl''' pickle_save(self.hparams , self.hparams_save_path ) _UpperCAmelCase = 0 _UpperCAmelCase = defaultdict(_UpperCamelCase ) _UpperCAmelCase = self.config.model_type _UpperCAmelCase = self.config.tgt_vocab_size if self.model_type == '''fsmt''' else self.config.vocab_size _UpperCAmelCase = { "data_dir": self.hparams.data_dir, "max_source_length": self.hparams.max_source_length, "prefix": self.model.config.prefix or "", } _UpperCAmelCase = { '''train''': self.hparams.n_train, '''val''': self.hparams.n_val, '''test''': self.hparams.n_test, } _UpperCAmelCase = {k: v if v >= 0 else None for k, v in n_observations_per_split.items()} _UpperCAmelCase = { '''train''': self.hparams.max_target_length, '''val''': self.hparams.val_max_target_length, '''test''': self.hparams.test_max_target_length, } assert self.target_lens["train"] <= self.target_lens["val"], f'''target_lens: {self.target_lens}''' assert self.target_lens["train"] <= self.target_lens["test"], f'''target_lens: {self.target_lens}''' if self.hparams.freeze_embeds: freeze_embeds(self.model ) if self.hparams.freeze_encoder: freeze_params(self.model.get_encoder() ) assert_all_frozen(self.model.get_encoder() ) _UpperCAmelCase = get_git_info()['''repo_sha'''] _UpperCAmelCase = hparams.num_workers _UpperCAmelCase = None # default to config if self.model.config.decoder_start_token_id is None and isinstance(self.tokenizer , _UpperCamelCase ): _UpperCAmelCase = self.tokenizer.lang_code_to_id[hparams.tgt_lang] _UpperCAmelCase = self.decoder_start_token_id _UpperCAmelCase = ( SeqaSeqDataset if hasattr(self.tokenizer , '''prepare_seq2seq_batch''' ) else LegacySeqaSeqDataset ) _UpperCAmelCase = False _UpperCAmelCase = self.model.config.num_beams if self.hparams.eval_beams is None else self.hparams.eval_beams if self.hparams.eval_max_gen_length is not None: _UpperCAmelCase = self.hparams.eval_max_gen_length else: _UpperCAmelCase = self.model.config.max_length _UpperCAmelCase = self.default_val_metric if self.hparams.val_metric is None else self.hparams.val_metric def UpperCamelCase( self , _UpperCamelCase ): _UpperCAmelCase = { k: self.tokenizer.batch_decode(v.tolist() ) if '''mask''' not in k else v.shape for k, v in batch.items() } save_json(_UpperCamelCase , Path(self.output_dir ) / '''text_batch.json''' ) save_json({k: v.tolist() for k, v in batch.items()} , Path(self.output_dir ) / '''tok_batch.json''' ) _UpperCAmelCase = True return readable_batch def UpperCamelCase( self , _UpperCamelCase , **_UpperCamelCase ): return self.model(_UpperCamelCase , **_UpperCamelCase ) def UpperCamelCase( self , _UpperCamelCase ): _UpperCAmelCase = self.tokenizer.batch_decode( _UpperCamelCase , skip_special_tokens=_UpperCamelCase , clean_up_tokenization_spaces=_UpperCamelCase ) return lmap(str.strip , _UpperCamelCase ) def UpperCamelCase( self , _UpperCamelCase ): _UpperCAmelCase = self.tokenizer.pad_token_id _UpperCAmelCase , _UpperCAmelCase = batch['''input_ids'''], batch['''attention_mask'''] _UpperCAmelCase = batch['''labels'''] if isinstance(self.model , _UpperCamelCase ): _UpperCAmelCase = self.model._shift_right(_UpperCamelCase ) else: _UpperCAmelCase = shift_tokens_right(_UpperCamelCase , _UpperCamelCase ) if not self.already_saved_batch: # This would be slightly better if it only happened on rank zero _UpperCAmelCase = decoder_input_ids self.save_readable_batch(_UpperCamelCase ) _UpperCAmelCase = self(_UpperCamelCase , attention_mask=_UpperCamelCase , decoder_input_ids=_UpperCamelCase , use_cache=_UpperCamelCase ) _UpperCAmelCase = outputs['''logits'''] if self.hparams.label_smoothing == 0: # Same behavior as modeling_bart.py, besides ignoring pad_token_id _UpperCAmelCase = nn.CrossEntropyLoss(ignore_index=_UpperCamelCase ) assert lm_logits.shape[-1] == self.vocab_size _UpperCAmelCase = ce_loss_fct(lm_logits.view(-1 , lm_logits.shape[-1] ) , tgt_ids.view(-1 ) ) else: _UpperCAmelCase = nn.functional.log_softmax(_UpperCamelCase , dim=-1 ) _UpperCAmelCase , _UpperCAmelCase = label_smoothed_nll_loss( _UpperCamelCase , _UpperCamelCase , self.hparams.label_smoothing , ignore_index=_UpperCamelCase ) return (loss,) @property def UpperCamelCase( self ): return self.tokenizer.pad_token_id def UpperCamelCase( self , _UpperCamelCase , _UpperCamelCase ): _UpperCAmelCase = self._step(_UpperCamelCase ) _UpperCAmelCase = dict(zip(self.loss_names , _UpperCamelCase ) ) # tokens per batch _UpperCAmelCase = batch['''input_ids'''].ne(self.pad ).sum() + batch['''labels'''].ne(self.pad ).sum() _UpperCAmelCase = batch['''input_ids'''].shape[0] _UpperCAmelCase = batch['''input_ids'''].eq(self.pad ).sum() _UpperCAmelCase = batch['''input_ids'''].eq(self.pad ).float().mean() # TODO(SS): make a wandb summary metric for this return {"loss": loss_tensors[0], "log": logs} def UpperCamelCase( self , _UpperCamelCase , _UpperCamelCase ): return self._generative_step(_UpperCamelCase ) def UpperCamelCase( self , _UpperCamelCase , _UpperCamelCase="val" ): self.step_count += 1 _UpperCAmelCase = {k: torch.stack([x[k] for x in outputs] ).mean() for k in self.loss_names} _UpperCAmelCase = losses['''loss'''] _UpperCAmelCase = { k: np.array([x[k] for x in outputs] ).mean() for k in self.metric_names + ['''gen_time''', '''gen_len'''] } _UpperCAmelCase = ( generative_metrics[self.val_metric] if self.val_metric in generative_metrics else losses[self.val_metric] ) _UpperCAmelCase = torch.tensor(_UpperCamelCase ).type_as(_UpperCamelCase ) generative_metrics.update({k: v.item() for k, v in losses.items()} ) losses.update(_UpperCamelCase ) _UpperCAmelCase = {f'''{prefix}_avg_{k}''': x for k, x in losses.items()} _UpperCAmelCase = self.step_count self.metrics[prefix].append(_UpperCamelCase ) # callback writes this to self.metrics_save_path _UpperCAmelCase = flatten_list([x['''preds'''] for x in outputs] ) return { "log": all_metrics, "preds": preds, f'''{prefix}_loss''': loss, f'''{prefix}_{self.val_metric}''': metric_tensor, } def UpperCamelCase( self , _UpperCamelCase , _UpperCamelCase ): return calculate_rouge(_UpperCamelCase , _UpperCamelCase ) def UpperCamelCase( self , _UpperCamelCase ): _UpperCAmelCase = time.time() # parser.add_argument('--eval_max_gen_length', type=int, default=None, help='never generate more than n tokens') _UpperCAmelCase = self.model.generate( batch['''input_ids'''] , attention_mask=batch['''attention_mask'''] , use_cache=_UpperCamelCase , decoder_start_token_id=self.decoder_start_token_id , num_beams=self.eval_beams , max_length=self.eval_max_length , ) _UpperCAmelCase = (time.time() - ta) / batch['''input_ids'''].shape[0] _UpperCAmelCase = self.ids_to_clean_text(_UpperCamelCase ) _UpperCAmelCase = self.ids_to_clean_text(batch['''labels'''] ) _UpperCAmelCase = self._step(_UpperCamelCase ) _UpperCAmelCase = dict(zip(self.loss_names , _UpperCamelCase ) ) _UpperCAmelCase = self.calc_generative_metrics(_UpperCamelCase , _UpperCamelCase ) _UpperCAmelCase = np.mean(lmap(_UpperCamelCase , _UpperCamelCase ) ) base_metrics.update(gen_time=_UpperCamelCase , gen_len=_UpperCamelCase , preds=_UpperCamelCase , target=_UpperCamelCase , **_UpperCamelCase ) return base_metrics def UpperCamelCase( self , _UpperCamelCase , _UpperCamelCase ): return self._generative_step(_UpperCamelCase ) def UpperCamelCase( self , _UpperCamelCase ): return self.validation_epoch_end(_UpperCamelCase , prefix='''test''' ) def UpperCamelCase( self , _UpperCamelCase ): _UpperCAmelCase = self.n_obs[type_path] _UpperCAmelCase = self.target_lens[type_path] _UpperCAmelCase = self.dataset_class( self.tokenizer , type_path=_UpperCamelCase , n_obs=_UpperCamelCase , max_target_length=_UpperCamelCase , **self.dataset_kwargs , ) return dataset def UpperCamelCase( self , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase = False ): _UpperCAmelCase = self.get_dataset(_UpperCamelCase ) if self.hparams.sortish_sampler and type_path != "test" and type_path != "val": _UpperCAmelCase = dataset.make_sortish_sampler(_UpperCamelCase , distributed=self.hparams.gpus > 1 ) return DataLoader( _UpperCamelCase , batch_size=_UpperCamelCase , collate_fn=dataset.collate_fn , shuffle=_UpperCamelCase , num_workers=self.num_workers , sampler=_UpperCamelCase , ) elif self.hparams.max_tokens_per_batch is not None and type_path != "test" and type_path != "val": _UpperCAmelCase = dataset.make_dynamic_sampler( self.hparams.max_tokens_per_batch , distributed=self.hparams.gpus > 1 ) return DataLoader( _UpperCamelCase , batch_sampler=_UpperCamelCase , collate_fn=dataset.collate_fn , num_workers=self.num_workers , ) else: return DataLoader( _UpperCamelCase , batch_size=_UpperCamelCase , collate_fn=dataset.collate_fn , shuffle=_UpperCamelCase , num_workers=self.num_workers , sampler=_UpperCamelCase , ) def UpperCamelCase( self ): _UpperCAmelCase = self.get_dataloader('''train''' , batch_size=self.hparams.train_batch_size , shuffle=_UpperCamelCase ) return dataloader def UpperCamelCase( self ): return self.get_dataloader('''val''' , batch_size=self.hparams.eval_batch_size ) def UpperCamelCase( self ): return self.get_dataloader('''test''' , batch_size=self.hparams.eval_batch_size ) @staticmethod def UpperCamelCase( _UpperCamelCase , _UpperCamelCase ): BaseTransformer.add_model_specific_args(_UpperCamelCase , _UpperCamelCase ) add_generic_args(_UpperCamelCase , _UpperCamelCase ) parser.add_argument( '''--max_source_length''' , default=1024 , type=_UpperCamelCase , help=( '''The maximum total input sequence length after tokenization. Sequences longer ''' '''than this will be truncated, sequences shorter will be padded.''' ) , ) parser.add_argument( '''--max_target_length''' , default=56 , type=_UpperCamelCase , help=( '''The maximum total input sequence length after tokenization. Sequences longer ''' '''than this will be truncated, sequences shorter will be padded.''' ) , ) parser.add_argument( '''--val_max_target_length''' , default=142 , type=_UpperCamelCase , help=( '''The maximum total input sequence length after tokenization. Sequences longer ''' '''than this will be truncated, sequences shorter will be padded.''' ) , ) parser.add_argument( '''--test_max_target_length''' , default=142 , type=_UpperCamelCase , help=( '''The maximum total input sequence length after tokenization. Sequences longer ''' '''than this will be truncated, sequences shorter will be padded.''' ) , ) parser.add_argument('''--freeze_encoder''' , action='''store_true''' ) parser.add_argument('''--freeze_embeds''' , action='''store_true''' ) parser.add_argument('''--sortish_sampler''' , action='''store_true''' , default=_UpperCamelCase ) parser.add_argument('''--overwrite_output_dir''' , action='''store_true''' , default=_UpperCamelCase ) parser.add_argument('''--max_tokens_per_batch''' , type=_UpperCamelCase , default=_UpperCamelCase ) parser.add_argument('''--logger_name''' , type=_UpperCamelCase , choices=['''default''', '''wandb''', '''wandb_shared'''] , default='''default''' ) parser.add_argument('''--n_train''' , type=_UpperCamelCase , default=-1 , required=_UpperCamelCase , help='''# examples. -1 means use all.''' ) parser.add_argument('''--n_val''' , type=_UpperCamelCase , default=500 , required=_UpperCamelCase , help='''# examples. -1 means use all.''' ) parser.add_argument('''--n_test''' , type=_UpperCamelCase , default=-1 , required=_UpperCamelCase , help='''# examples. -1 means use all.''' ) parser.add_argument( '''--task''' , type=_UpperCamelCase , default='''summarization''' , required=_UpperCamelCase , help='''# examples. -1 means use all.''' ) parser.add_argument('''--label_smoothing''' , type=_UpperCamelCase , default=0.0 , required=_UpperCamelCase ) parser.add_argument('''--src_lang''' , type=_UpperCamelCase , default='''''' , required=_UpperCamelCase ) parser.add_argument('''--tgt_lang''' , type=_UpperCamelCase , default='''''' , required=_UpperCamelCase ) parser.add_argument('''--eval_beams''' , type=_UpperCamelCase , default=_UpperCamelCase , required=_UpperCamelCase ) parser.add_argument( '''--val_metric''' , type=_UpperCamelCase , default=_UpperCamelCase , required=_UpperCamelCase , choices=['''bleu''', '''rouge2''', '''loss''', None] ) parser.add_argument('''--eval_max_gen_length''' , type=_UpperCamelCase , default=_UpperCamelCase , help='''never generate more than n tokens''' ) parser.add_argument('''--save_top_k''' , type=_UpperCamelCase , default=1 , required=_UpperCamelCase , help='''How many checkpoints to save''' ) parser.add_argument( '''--early_stopping_patience''' , type=_UpperCamelCase , default=-1 , required=_UpperCamelCase , help=( '''-1 means never early stop. early_stopping_patience is measured in validation checks, not epochs. So''' ''' val_check_interval will effect it.''' ) , ) return parser class __UpperCamelCase ( A__ ): __A : Dict = """translation""" __A : Dict = ["""loss"""] __A : str = ["""bleu"""] __A : Tuple = """bleu""" def __init__( self , _UpperCamelCase , **_UpperCamelCase ): super().__init__(_UpperCamelCase , **_UpperCamelCase ) _UpperCAmelCase = hparams.src_lang _UpperCAmelCase = hparams.tgt_lang def UpperCamelCase( self , _UpperCamelCase , _UpperCamelCase ): return calculate_bleu(_UpperCamelCase , _UpperCamelCase ) def A__ ( SCREAMING_SNAKE_CASE_ : Optional[Any] , SCREAMING_SNAKE_CASE_ : Any=None ) -> SummarizationModule: """simple docstring""" Path(args.output_dir ).mkdir(exist_ok=SCREAMING_SNAKE_CASE_ ) check_output_dir(SCREAMING_SNAKE_CASE_ , expected_items=3 ) if model is None: if "summarization" in args.task: _UpperCAmelCase = SummarizationModule(SCREAMING_SNAKE_CASE_ ) else: _UpperCAmelCase = TranslationModule(SCREAMING_SNAKE_CASE_ ) _UpperCAmelCase = Path(args.data_dir ).name if ( args.logger_name == "default" or args.fast_dev_run or str(args.output_dir ).startswith('''/tmp''' ) or str(args.output_dir ).startswith('''/var''' ) ): _UpperCAmelCase = True # don't pollute wandb logs unnecessarily elif args.logger_name == "wandb": from pytorch_lightning.loggers import WandbLogger _UpperCAmelCase = os.environ.get('''WANDB_PROJECT''' , SCREAMING_SNAKE_CASE_ ) _UpperCAmelCase = WandbLogger(name=model.output_dir.name , project=SCREAMING_SNAKE_CASE_ ) elif args.logger_name == "wandb_shared": from pytorch_lightning.loggers import WandbLogger _UpperCAmelCase = WandbLogger(name=model.output_dir.name , project=F'''hf_{dataset}''' ) if args.early_stopping_patience >= 0: _UpperCAmelCase = get_early_stopping_callback(model.val_metric , args.early_stopping_patience ) else: _UpperCAmelCase = False _UpperCAmelCase = args.val_metric == '''loss''' _UpperCAmelCase = generic_train( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , logging_callback=SeqaSeqLoggingCallback() , checkpoint_callback=get_checkpoint_callback( args.output_dir , model.val_metric , args.save_top_k , SCREAMING_SNAKE_CASE_ ) , early_stopping_callback=SCREAMING_SNAKE_CASE_ , logger=SCREAMING_SNAKE_CASE_ , ) pickle_save(model.hparams , model.output_dir / '''hparams.pkl''' ) if not args.do_predict: return model _UpperCAmelCase = '''''' _UpperCAmelCase = sorted(glob.glob(os.path.join(args.output_dir , '''*.ckpt''' ) , recursive=SCREAMING_SNAKE_CASE_ ) ) if checkpoints: _UpperCAmelCase = checkpoints[-1] _UpperCAmelCase = checkpoints[-1] trainer.logger.log_hyperparams(model.hparams ) # test() without a model tests using the best checkpoint automatically trainer.test() return model if __name__ == "__main__": UpperCAmelCase_ = argparse.ArgumentParser() UpperCAmelCase_ = pl.Trainer.add_argparse_args(parser) UpperCAmelCase_ = SummarizationModule.add_model_specific_args(parser, os.getcwd()) UpperCAmelCase_ = parser.parse_args() main(args)
32
from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCAmelCase_ = logging.get_logger(__name__) UpperCAmelCase_ = { "RWKV/rwkv-4-169m-pile": "https://huggingface.co/RWKV/rwkv-4-169m-pile/resolve/main/config.json", "RWKV/rwkv-4-430m-pile": "https://huggingface.co/RWKV/rwkv-4-430m-pile/resolve/main/config.json", "RWKV/rwkv-4-1b5-pile": "https://huggingface.co/RWKV/rwkv-4-1b5-pile/resolve/main/config.json", "RWKV/rwkv-4-3b-pile": "https://huggingface.co/RWKV/rwkv-4-3b-pile/resolve/main/config.json", "RWKV/rwkv-4-7b-pile": "https://huggingface.co/RWKV/rwkv-4-7b-pile/resolve/main/config.json", "RWKV/rwkv-4-14b-pile": "https://huggingface.co/RWKV/rwkv-4-14b-pile/resolve/main/config.json", "RWKV/rwkv-raven-1b5": "https://huggingface.co/RWKV/rwkv-raven-1b5/resolve/main/config.json", "RWKV/rwkv-raven-3b": "https://huggingface.co/RWKV/rwkv-raven-3b/resolve/main/config.json", "RWKV/rwkv-raven-7b": "https://huggingface.co/RWKV/rwkv-raven-7b/resolve/main/config.json", "RWKV/rwkv-raven-14b": "https://huggingface.co/RWKV/rwkv-raven-14b/resolve/main/config.json", } class __UpperCamelCase ( A__ ): __A : Tuple = """rwkv""" __A : Any = {"""max_position_embeddings""": """context_length"""} def __init__( self , _UpperCamelCase=50277 , _UpperCamelCase=1024 , _UpperCamelCase=4096 , _UpperCamelCase=32 , _UpperCamelCase=None , _UpperCamelCase=None , _UpperCamelCase=1e-5 , _UpperCamelCase=0 , _UpperCamelCase=0 , _UpperCamelCase=6 , _UpperCamelCase=False , _UpperCamelCase=True , **_UpperCamelCase , ): _UpperCAmelCase = vocab_size _UpperCAmelCase = context_length _UpperCAmelCase = hidden_size _UpperCAmelCase = num_hidden_layers _UpperCAmelCase = attention_hidden_size if attention_hidden_size is not None else hidden_size _UpperCAmelCase = intermediate_size if intermediate_size is not None else 4 * hidden_size _UpperCAmelCase = layer_norm_epsilon _UpperCAmelCase = rescale_every _UpperCAmelCase = use_cache _UpperCAmelCase = bos_token_id _UpperCAmelCase = eos_token_id super().__init__( tie_word_embeddings=_UpperCamelCase , bos_token_id=_UpperCamelCase , eos_token_id=_UpperCamelCase , **_UpperCamelCase )
32
1
import warnings from functools import wraps from typing import Callable def A__ ( SCREAMING_SNAKE_CASE_ : Callable ) -> Callable: """simple docstring""" @wraps(SCREAMING_SNAKE_CASE_ ) def _inner_fn(*SCREAMING_SNAKE_CASE_ : List[str] , **SCREAMING_SNAKE_CASE_ : int ): warnings.warn( (F'''\'{fn.__name__}\' is experimental and might be subject to breaking changes in the future.''') , SCREAMING_SNAKE_CASE_ , ) return fn(*SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) return _inner_fn
32
def A__ ( SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : int ) -> str: """simple docstring""" if a < 0 or b < 0: raise ValueError('''the value of both inputs must be positive''' ) _UpperCAmelCase = str(bin(SCREAMING_SNAKE_CASE_ ) )[2:] # remove the leading "0b" _UpperCAmelCase = str(bin(SCREAMING_SNAKE_CASE_ ) )[2:] # remove the leading "0b" _UpperCAmelCase = max(len(SCREAMING_SNAKE_CASE_ ) , len(SCREAMING_SNAKE_CASE_ ) ) return "0b" + "".join( str(int(char_a == '''1''' and char_b == '''1''' ) ) for char_a, char_b in zip(a_binary.zfill(SCREAMING_SNAKE_CASE_ ) , b_binary.zfill(SCREAMING_SNAKE_CASE_ ) ) ) if __name__ == "__main__": import doctest doctest.testmod()
32
1
import argparse import glob import importlib.util import os import re import black from doc_builder.style_doc import style_docstrings_in_code # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_copies.py UpperCAmelCase_ = "src/diffusers" UpperCAmelCase_ = "." # This is to make sure the diffusers module imported is the one in the repo. UpperCAmelCase_ = importlib.util.spec_from_file_location( "diffusers", os.path.join(DIFFUSERS_PATH, "__init__.py"), submodule_search_locations=[DIFFUSERS_PATH], ) UpperCAmelCase_ = spec.loader.load_module() def A__ ( SCREAMING_SNAKE_CASE_ : Tuple , SCREAMING_SNAKE_CASE_ : Tuple ) -> List[str]: """simple docstring""" return line.startswith(SCREAMING_SNAKE_CASE_ ) or len(SCREAMING_SNAKE_CASE_ ) <= 1 or re.search(R'''^\s*\)(\s*->.*:|:)\s*$''' , SCREAMING_SNAKE_CASE_ ) is not None def A__ ( SCREAMING_SNAKE_CASE_ : List[str] ) -> str: """simple docstring""" _UpperCAmelCase = object_name.split('''.''' ) _UpperCAmelCase = 0 # First let's find the module where our object lives. _UpperCAmelCase = parts[i] while i < len(SCREAMING_SNAKE_CASE_ ) and not os.path.isfile(os.path.join(SCREAMING_SNAKE_CASE_ , F'''{module}.py''' ) ): i += 1 if i < len(SCREAMING_SNAKE_CASE_ ): _UpperCAmelCase = os.path.join(SCREAMING_SNAKE_CASE_ , parts[i] ) if i >= len(SCREAMING_SNAKE_CASE_ ): raise ValueError(F'''`object_name` should begin with the name of a module of diffusers but got {object_name}.''' ) with open(os.path.join(SCREAMING_SNAKE_CASE_ , F'''{module}.py''' ) , '''r''' , encoding='''utf-8''' , newline='''\n''' ) as f: _UpperCAmelCase = f.readlines() # Now let's find the class / func in the code! _UpperCAmelCase = '''''' _UpperCAmelCase = 0 for name in parts[i + 1 :]: while ( line_index < len(SCREAMING_SNAKE_CASE_ ) and re.search(RF'''^{indent}(class|def)\s+{name}(\(|\:)''' , lines[line_index] ) is None ): line_index += 1 indent += " " line_index += 1 if line_index >= len(SCREAMING_SNAKE_CASE_ ): raise ValueError(F''' {object_name} does not match any function or class in {module}.''' ) # We found the beginning of the class / func, now let's find the end (when the indent diminishes). _UpperCAmelCase = line_index while line_index < len(SCREAMING_SNAKE_CASE_ ) and _should_continue(lines[line_index] , SCREAMING_SNAKE_CASE_ ): line_index += 1 # Clean up empty lines at the end (if any). while len(lines[line_index - 1] ) <= 1: line_index -= 1 _UpperCAmelCase = lines[start_index:line_index] return "".join(SCREAMING_SNAKE_CASE_ ) UpperCAmelCase_ = re.compile(r"^(\s*)#\s*Copied from\s+diffusers\.(\S+\.\S+)\s*($|\S.*$)") UpperCAmelCase_ = re.compile(r"^\s*(\S+)->(\S+)(\s+.*|$)") UpperCAmelCase_ = re.compile(r"<FILL\s+[^>]*>") def A__ ( SCREAMING_SNAKE_CASE_ : List[str] ) -> Union[str, Any]: """simple docstring""" _UpperCAmelCase = code.split('''\n''' ) _UpperCAmelCase = 0 while idx < len(SCREAMING_SNAKE_CASE_ ) and len(lines[idx] ) == 0: idx += 1 if idx < len(SCREAMING_SNAKE_CASE_ ): return re.search(R'''^(\s*)\S''' , lines[idx] ).groups()[0] return "" def A__ ( SCREAMING_SNAKE_CASE_ : int ) -> int: """simple docstring""" _UpperCAmelCase = len(get_indent(SCREAMING_SNAKE_CASE_ ) ) > 0 if has_indent: _UpperCAmelCase = F'''class Bla:\n{code}''' _UpperCAmelCase = black.Mode(target_versions={black.TargetVersion.PYaa} , line_length=1_19 , preview=SCREAMING_SNAKE_CASE_ ) _UpperCAmelCase = black.format_str(SCREAMING_SNAKE_CASE_ , mode=SCREAMING_SNAKE_CASE_ ) _UpperCAmelCase , _UpperCAmelCase = style_docstrings_in_code(SCREAMING_SNAKE_CASE_ ) return result[len('''class Bla:\n''' ) :] if has_indent else result def A__ ( SCREAMING_SNAKE_CASE_ : Any , SCREAMING_SNAKE_CASE_ : List[str]=False ) -> Tuple: """simple docstring""" with open(SCREAMING_SNAKE_CASE_ , '''r''' , encoding='''utf-8''' , newline='''\n''' ) as f: _UpperCAmelCase = f.readlines() _UpperCAmelCase = [] _UpperCAmelCase = 0 # Not a for loop cause `lines` is going to change (if `overwrite=True`). while line_index < len(SCREAMING_SNAKE_CASE_ ): _UpperCAmelCase = _re_copy_warning.search(lines[line_index] ) if search is None: line_index += 1 continue # There is some copied code here, let's retrieve the original. _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase = search.groups() _UpperCAmelCase = find_code_in_diffusers(SCREAMING_SNAKE_CASE_ ) _UpperCAmelCase = get_indent(SCREAMING_SNAKE_CASE_ ) _UpperCAmelCase = line_index + 1 if indent == theoretical_indent else line_index + 2 _UpperCAmelCase = theoretical_indent _UpperCAmelCase = start_index # Loop to check the observed code, stop when indentation diminishes or if we see a End copy comment. _UpperCAmelCase = True while line_index < len(SCREAMING_SNAKE_CASE_ ) and should_continue: line_index += 1 if line_index >= len(SCREAMING_SNAKE_CASE_ ): break _UpperCAmelCase = lines[line_index] _UpperCAmelCase = _should_continue(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) and re.search(F'''^{indent}# End copy''' , SCREAMING_SNAKE_CASE_ ) is None # Clean up empty lines at the end (if any). while len(lines[line_index - 1] ) <= 1: line_index -= 1 _UpperCAmelCase = lines[start_index:line_index] _UpperCAmelCase = ''''''.join(SCREAMING_SNAKE_CASE_ ) # Remove any nested `Copied from` comments to avoid circular copies _UpperCAmelCase = [line for line in theoretical_code.split('''\n''' ) if _re_copy_warning.search(SCREAMING_SNAKE_CASE_ ) is None] _UpperCAmelCase = '''\n'''.join(SCREAMING_SNAKE_CASE_ ) # Before comparing, use the `replace_pattern` on the original code. if len(SCREAMING_SNAKE_CASE_ ) > 0: _UpperCAmelCase = replace_pattern.replace('''with''' , '''''' ).split(''',''' ) _UpperCAmelCase = [_re_replace_pattern.search(SCREAMING_SNAKE_CASE_ ) for p in patterns] for pattern in patterns: if pattern is None: continue _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase = pattern.groups() _UpperCAmelCase = re.sub(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) if option.strip() == "all-casing": _UpperCAmelCase = re.sub(obja.lower() , obja.lower() , SCREAMING_SNAKE_CASE_ ) _UpperCAmelCase = re.sub(obja.upper() , obja.upper() , SCREAMING_SNAKE_CASE_ ) # Blackify after replacement. To be able to do that, we need the header (class or function definition) # from the previous line _UpperCAmelCase = blackify(lines[start_index - 1] + theoretical_code ) _UpperCAmelCase = theoretical_code[len(lines[start_index - 1] ) :] # Test for a diff and act accordingly. if observed_code != theoretical_code: diffs.append([object_name, start_index] ) if overwrite: _UpperCAmelCase = lines[:start_index] + [theoretical_code] + lines[line_index:] _UpperCAmelCase = start_index + 1 if overwrite and len(SCREAMING_SNAKE_CASE_ ) > 0: # Warn the user a file has been modified. print(F'''Detected changes, rewriting {filename}.''' ) with open(SCREAMING_SNAKE_CASE_ , '''w''' , encoding='''utf-8''' , newline='''\n''' ) as f: f.writelines(SCREAMING_SNAKE_CASE_ ) return diffs def A__ ( SCREAMING_SNAKE_CASE_ : bool = False ) -> Tuple: """simple docstring""" _UpperCAmelCase = glob.glob(os.path.join(SCREAMING_SNAKE_CASE_ , '''**/*.py''' ) , recursive=SCREAMING_SNAKE_CASE_ ) _UpperCAmelCase = [] for filename in all_files: _UpperCAmelCase = is_copy_consistent(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) diffs += [F'''- {filename}: copy does not match {d[0]} at line {d[1]}''' for d in new_diffs] if not overwrite and len(SCREAMING_SNAKE_CASE_ ) > 0: _UpperCAmelCase = '''\n'''.join(SCREAMING_SNAKE_CASE_ ) raise Exception( '''Found the following copy inconsistencies:\n''' + diff + '''\nRun `make fix-copies` or `python utils/check_copies.py --fix_and_overwrite` to fix them.''' ) if __name__ == "__main__": UpperCAmelCase_ = argparse.ArgumentParser() parser.add_argument("--fix_and_overwrite", action="store_true", help="Whether to fix inconsistencies.") UpperCAmelCase_ = parser.parse_args() check_copies(args.fix_and_overwrite)
32
from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCAmelCase_ = logging.get_logger(__name__) UpperCAmelCase_ = { "tiiuae/falcon-40b": "https://huggingface.co/tiiuae/falcon-40b/resolve/main/config.json", "tiiuae/falcon-7b": "https://huggingface.co/tiiuae/falcon-7b/resolve/main/config.json", } class __UpperCamelCase ( A__ ): __A : Dict = """falcon""" __A : Any = ["""past_key_values"""] def __init__( self , _UpperCamelCase=65024 , _UpperCamelCase=4544 , _UpperCamelCase=32 , _UpperCamelCase=71 , _UpperCamelCase=1e-5 , _UpperCamelCase=0.02 , _UpperCamelCase=True , _UpperCamelCase=0.0 , _UpperCamelCase=0.0 , _UpperCamelCase=None , _UpperCamelCase=False , _UpperCamelCase=False , _UpperCamelCase=True , _UpperCamelCase=True , _UpperCamelCase=False , _UpperCamelCase=11 , _UpperCamelCase=11 , **_UpperCamelCase , ): _UpperCAmelCase = vocab_size # Backward compatibility with n_embed kwarg _UpperCAmelCase = kwargs.pop('''n_embed''' , _UpperCamelCase ) _UpperCAmelCase = hidden_size if n_embed is None else n_embed _UpperCAmelCase = num_hidden_layers _UpperCAmelCase = num_attention_heads _UpperCAmelCase = layer_norm_epsilon _UpperCAmelCase = initializer_range _UpperCAmelCase = use_cache _UpperCAmelCase = hidden_dropout _UpperCAmelCase = attention_dropout _UpperCAmelCase = bos_token_id _UpperCAmelCase = eos_token_id _UpperCAmelCase = num_attention_heads if num_kv_heads is None else num_kv_heads _UpperCAmelCase = alibi _UpperCAmelCase = new_decoder_architecture _UpperCAmelCase = multi_query # Ignored when new_decoder_architecture is True _UpperCAmelCase = parallel_attn _UpperCAmelCase = bias super().__init__(bos_token_id=_UpperCamelCase , eos_token_id=_UpperCamelCase , **_UpperCamelCase ) @property def UpperCamelCase( self ): return self.hidden_size // self.num_attention_heads @property def UpperCamelCase( self ): return not self.alibi
32
1
def A__ ( SCREAMING_SNAKE_CASE_ : int = 10_00 ) -> int: """simple docstring""" _UpperCAmelCase , _UpperCAmelCase = 1, 1 _UpperCAmelCase = 2 while True: _UpperCAmelCase = 0 _UpperCAmelCase = fa + fa _UpperCAmelCase , _UpperCAmelCase = fa, f index += 1 for _ in str(SCREAMING_SNAKE_CASE_ ): i += 1 if i == n: break return index if __name__ == "__main__": print(solution(int(str(input()).strip())))
32
from math import sqrt def A__ ( SCREAMING_SNAKE_CASE_ : int ) -> bool: """simple docstring""" if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5 , int(sqrt(SCREAMING_SNAKE_CASE_ ) + 1 ) , 6 ): if number % i == 0 or number % (i + 2) == 0: return False return True def A__ ( SCREAMING_SNAKE_CASE_ : int = 1_00_01 ) -> int: """simple docstring""" _UpperCAmelCase = 0 _UpperCAmelCase = 1 while count != nth and number < 3: number += 1 if is_prime(SCREAMING_SNAKE_CASE_ ): count += 1 while count != nth: number += 2 if is_prime(SCREAMING_SNAKE_CASE_ ): count += 1 return number if __name__ == "__main__": print(f'''{solution() = }''')
32
1
import argparse import os import evaluate import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType ######################################################################## # This is a fully working simple example to use Accelerate, # specifically showcasing the experiment tracking capability, # and builds off the `nlp_example.py` script. # # This example trains a Bert base model on GLUE MRPC # in any of the following settings (with the same script): # - single CPU or single GPU # - multi GPUS (using PyTorch distributed mode) # - (multi) TPUs # - fp16 (mixed-precision) or fp32 (normal precision) # # To help focus on the differences in the code, building `DataLoaders` # was refactored into its own function. # New additions from the base script can be found quickly by # looking for the # New Code # tags # # To run it in each of these various modes, follow the instructions # in the readme for examples: # https://github.com/huggingface/accelerate/tree/main/examples # ######################################################################## UpperCAmelCase_ = 16 UpperCAmelCase_ = 32 def A__ ( SCREAMING_SNAKE_CASE_ : Accelerator , SCREAMING_SNAKE_CASE_ : int = 16 ) -> Tuple: """simple docstring""" _UpperCAmelCase = AutoTokenizer.from_pretrained('''bert-base-cased''' ) _UpperCAmelCase = load_dataset('''glue''' , '''mrpc''' ) def tokenize_function(SCREAMING_SNAKE_CASE_ : Dict ): # max_length=None => use the model max length (it's actually the default) _UpperCAmelCase = tokenizer(examples['''sentence1'''] , examples['''sentence2'''] , truncation=SCREAMING_SNAKE_CASE_ , max_length=SCREAMING_SNAKE_CASE_ ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset # starting with the main process first: with accelerator.main_process_first(): _UpperCAmelCase = datasets.map( SCREAMING_SNAKE_CASE_ , batched=SCREAMING_SNAKE_CASE_ , remove_columns=['''idx''', '''sentence1''', '''sentence2'''] , ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library _UpperCAmelCase = tokenized_datasets.rename_column('''label''' , '''labels''' ) def collate_fn(SCREAMING_SNAKE_CASE_ : Optional[int] ): # On TPU it's best to pad everything to the same length or training will be very slow. _UpperCAmelCase = 1_28 if accelerator.distributed_type == DistributedType.TPU else None # When using mixed precision we want round multiples of 8/16 if accelerator.mixed_precision == "fp8": _UpperCAmelCase = 16 elif accelerator.mixed_precision != "no": _UpperCAmelCase = 8 else: _UpperCAmelCase = None return tokenizer.pad( SCREAMING_SNAKE_CASE_ , padding='''longest''' , max_length=SCREAMING_SNAKE_CASE_ , pad_to_multiple_of=SCREAMING_SNAKE_CASE_ , return_tensors='''pt''' , ) # Instantiate dataloaders. _UpperCAmelCase = DataLoader( tokenized_datasets['''train'''] , shuffle=SCREAMING_SNAKE_CASE_ , collate_fn=SCREAMING_SNAKE_CASE_ , batch_size=SCREAMING_SNAKE_CASE_ ) _UpperCAmelCase = DataLoader( tokenized_datasets['''validation'''] , shuffle=SCREAMING_SNAKE_CASE_ , collate_fn=SCREAMING_SNAKE_CASE_ , batch_size=SCREAMING_SNAKE_CASE_ ) return train_dataloader, eval_dataloader # For testing only if os.environ.get("TESTING_MOCKED_DATALOADERS", None) == "1": from accelerate.test_utils.training import mocked_dataloaders UpperCAmelCase_ = mocked_dataloaders # noqa: F811 def A__ ( SCREAMING_SNAKE_CASE_ : Optional[int] , SCREAMING_SNAKE_CASE_ : Union[str, Any] ) -> Union[str, Any]: """simple docstring""" if os.environ.get('''TESTING_MOCKED_DATALOADERS''' , SCREAMING_SNAKE_CASE_ ) == "1": _UpperCAmelCase = 2 # Initialize Accelerator # New Code # # We pass in "all" to `log_with` to grab all available trackers in the environment # Note: If using a custom `Tracker` class, should be passed in here such as: # >>> log_with = ["all", MyCustomTrackerClassInstance()] if args.with_tracking: _UpperCAmelCase = Accelerator( cpu=args.cpu , mixed_precision=args.mixed_precision , log_with='''all''' , project_dir=args.project_dir ) else: _UpperCAmelCase = Accelerator(cpu=args.cpu , mixed_precision=args.mixed_precision ) # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs _UpperCAmelCase = config['''lr'''] _UpperCAmelCase = int(config['''num_epochs'''] ) _UpperCAmelCase = int(config['''seed'''] ) _UpperCAmelCase = int(config['''batch_size'''] ) set_seed(SCREAMING_SNAKE_CASE_ ) _UpperCAmelCase , _UpperCAmelCase = get_dataloaders(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) _UpperCAmelCase = evaluate.load('''glue''' , '''mrpc''' ) # If the batch size is too big we use gradient accumulation _UpperCAmelCase = 1 if batch_size > MAX_GPU_BATCH_SIZE and accelerator.distributed_type != DistributedType.TPU: _UpperCAmelCase = batch_size // MAX_GPU_BATCH_SIZE _UpperCAmelCase = MAX_GPU_BATCH_SIZE # Instantiate the model (we build the model here so that the seed also control new weights initialization) _UpperCAmelCase = AutoModelForSequenceClassification.from_pretrained('''bert-base-cased''' , return_dict=SCREAMING_SNAKE_CASE_ ) # We could avoid this line since the accelerator is set with `device_placement=True` (default value). # Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer # creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that). _UpperCAmelCase = model.to(accelerator.device ) # Instantiate optimizer _UpperCAmelCase = AdamW(params=model.parameters() , lr=SCREAMING_SNAKE_CASE_ ) # Instantiate scheduler _UpperCAmelCase = get_linear_schedule_with_warmup( optimizer=SCREAMING_SNAKE_CASE_ , num_warmup_steps=1_00 , num_training_steps=(len(SCREAMING_SNAKE_CASE_ ) * num_epochs) // gradient_accumulation_steps , ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase = accelerator.prepare( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) # New Code # # We need to initialize the trackers we use. Overall configurations can also be stored if args.with_tracking: _UpperCAmelCase = os.path.split(SCREAMING_SNAKE_CASE_ )[-1].split('''.''' )[0] accelerator.init_trackers(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) # Now we train the model for epoch in range(SCREAMING_SNAKE_CASE_ ): model.train() # New Code # # For our tracking example, we will log the total loss of each epoch if args.with_tracking: _UpperCAmelCase = 0 for step, batch in enumerate(SCREAMING_SNAKE_CASE_ ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) _UpperCAmelCase = model(**SCREAMING_SNAKE_CASE_ ) _UpperCAmelCase = outputs.loss # New Code # if args.with_tracking: total_loss += loss.detach().float() _UpperCAmelCase = loss / gradient_accumulation_steps accelerator.backward(SCREAMING_SNAKE_CASE_ ) if step % gradient_accumulation_steps == 0: optimizer.step() lr_scheduler.step() optimizer.zero_grad() model.eval() for step, batch in enumerate(SCREAMING_SNAKE_CASE_ ): # We could avoid this line since we set the accelerator with `device_placement=True` (the default). batch.to(accelerator.device ) with torch.no_grad(): _UpperCAmelCase = model(**SCREAMING_SNAKE_CASE_ ) _UpperCAmelCase = outputs.logits.argmax(dim=-1 ) _UpperCAmelCase , _UpperCAmelCase = accelerator.gather_for_metrics((predictions, batch['''labels''']) ) metric.add_batch( predictions=SCREAMING_SNAKE_CASE_ , references=SCREAMING_SNAKE_CASE_ , ) _UpperCAmelCase = metric.compute() # Use accelerator.print to print only on the main process. accelerator.print(F'''epoch {epoch}:''' , SCREAMING_SNAKE_CASE_ ) # New Code # # To actually log, we call `Accelerator.log` # The values passed can be of `str`, `int`, `float` or `dict` of `str` to `float`/`int` if args.with_tracking: accelerator.log( { '''accuracy''': eval_metric['''accuracy'''], '''f1''': eval_metric['''f1'''], '''train_loss''': total_loss.item() / len(SCREAMING_SNAKE_CASE_ ), '''epoch''': epoch, } , step=SCREAMING_SNAKE_CASE_ , ) # New Code # # When a run is finished, you should call `accelerator.end_training()` # to close all of the open trackers if args.with_tracking: accelerator.end_training() def A__ ( ) -> List[Any]: """simple docstring""" _UpperCAmelCase = argparse.ArgumentParser(description='''Simple example of training script.''' ) parser.add_argument( '''--mixed_precision''' , type=SCREAMING_SNAKE_CASE_ , default=SCREAMING_SNAKE_CASE_ , choices=['''no''', '''fp16''', '''bf16''', '''fp8'''] , help='''Whether to use mixed precision. Choose''' '''between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10.''' '''and an Nvidia Ampere GPU.''' , ) parser.add_argument('''--cpu''' , action='''store_true''' , help='''If passed, will train on the CPU.''' ) parser.add_argument( '''--with_tracking''' , action='''store_true''' , help='''Whether to load in all available experiment trackers from the environment and use them for logging.''' , ) parser.add_argument( '''--project_dir''' , type=SCREAMING_SNAKE_CASE_ , default='''logs''' , help='''Location on where to store experiment tracking logs` and relevent project information''' , ) _UpperCAmelCase = parser.parse_args() _UpperCAmelCase = {'''lr''': 2E-5, '''num_epochs''': 3, '''seed''': 42, '''batch_size''': 16} training_function(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) if __name__ == "__main__": main()
32
def A__ ( SCREAMING_SNAKE_CASE_ : int ) -> bool: """simple docstring""" if not isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): _UpperCAmelCase = F'''Input value of [number={number}] must be an integer''' raise TypeError(SCREAMING_SNAKE_CASE_ ) if number < 0: return False _UpperCAmelCase = number * number while number > 0: if number % 10 != number_square % 10: return False number //= 10 number_square //= 10 return True if __name__ == "__main__": import doctest doctest.testmod()
32
1
import unittest from transformers import BigBirdTokenizer, BigBirdTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, require_torch, slow from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin UpperCAmelCase_ = "▁" UpperCAmelCase_ = get_tests_dir("fixtures/test_sentencepiece.model") @require_sentencepiece @require_tokenizers class __UpperCamelCase ( A__ , unittest.TestCase ): __A : Tuple = BigBirdTokenizer __A : List[str] = BigBirdTokenizerFast __A : List[Any] = True __A : List[Any] = True def UpperCamelCase( self ): super().setUp() _UpperCAmelCase = self.tokenizer_class(_UpperCamelCase , keep_accents=_UpperCamelCase ) tokenizer.save_pretrained(self.tmpdirname ) def UpperCamelCase( self ): _UpperCAmelCase = '''<s>''' _UpperCAmelCase = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(_UpperCamelCase ) , _UpperCamelCase ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(_UpperCamelCase ) , _UpperCamelCase ) def UpperCamelCase( self ): _UpperCAmelCase = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , '''<unk>''' ) self.assertEqual(vocab_keys[1] , '''<s>''' ) self.assertEqual(vocab_keys[-1] , '''[MASK]''' ) self.assertEqual(len(_UpperCamelCase ) , 1004 ) def UpperCamelCase( self ): self.assertEqual(self.get_tokenizer().vocab_size , 1000 ) def UpperCamelCase( self ): if not self.test_rust_tokenizer: return _UpperCAmelCase = self.get_tokenizer() _UpperCAmelCase = self.get_rust_tokenizer() _UpperCAmelCase = '''I was born in 92000, and this is falsé.''' _UpperCAmelCase = tokenizer.tokenize(_UpperCamelCase ) _UpperCAmelCase = rust_tokenizer.tokenize(_UpperCamelCase ) self.assertListEqual(_UpperCamelCase , _UpperCamelCase ) _UpperCAmelCase = tokenizer.encode(_UpperCamelCase , add_special_tokens=_UpperCamelCase ) _UpperCAmelCase = rust_tokenizer.encode(_UpperCamelCase , add_special_tokens=_UpperCamelCase ) self.assertListEqual(_UpperCamelCase , _UpperCamelCase ) _UpperCAmelCase = self.get_rust_tokenizer() _UpperCAmelCase = tokenizer.encode(_UpperCamelCase ) _UpperCAmelCase = rust_tokenizer.encode(_UpperCamelCase ) self.assertListEqual(_UpperCamelCase , _UpperCamelCase ) def UpperCamelCase( self ): _UpperCAmelCase = BigBirdTokenizer(_UpperCamelCase , keep_accents=_UpperCamelCase ) _UpperCAmelCase = tokenizer.tokenize('''This is a test''' ) self.assertListEqual(_UpperCamelCase , ['''▁This''', '''▁is''', '''▁a''', '''▁t''', '''est'''] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(_UpperCamelCase ) , [285, 46, 10, 170, 382] , ) _UpperCAmelCase = tokenizer.tokenize('''I was born in 92000, and this is falsé.''' ) self.assertListEqual( _UpperCamelCase , [ SPIECE_UNDERLINE + '''I''', SPIECE_UNDERLINE + '''was''', SPIECE_UNDERLINE + '''b''', '''or''', '''n''', SPIECE_UNDERLINE + '''in''', SPIECE_UNDERLINE + '''''', '''9''', '''2''', '''0''', '''0''', '''0''', ''',''', SPIECE_UNDERLINE + '''and''', SPIECE_UNDERLINE + '''this''', SPIECE_UNDERLINE + '''is''', SPIECE_UNDERLINE + '''f''', '''al''', '''s''', '''é''', '''.''', ] , ) _UpperCAmelCase = tokenizer.convert_tokens_to_ids(_UpperCamelCase ) self.assertListEqual( _UpperCamelCase , [8, 21, 84, 55, 24, 19, 7, 0, 602, 347, 347, 347, 3, 12, 66, 46, 72, 80, 6, 0, 4] , ) _UpperCAmelCase = tokenizer.convert_ids_to_tokens(_UpperCamelCase ) self.assertListEqual( _UpperCamelCase , [ SPIECE_UNDERLINE + '''I''', SPIECE_UNDERLINE + '''was''', SPIECE_UNDERLINE + '''b''', '''or''', '''n''', SPIECE_UNDERLINE + '''in''', SPIECE_UNDERLINE + '''''', '''<unk>''', '''2''', '''0''', '''0''', '''0''', ''',''', SPIECE_UNDERLINE + '''and''', SPIECE_UNDERLINE + '''this''', SPIECE_UNDERLINE + '''is''', SPIECE_UNDERLINE + '''f''', '''al''', '''s''', '''<unk>''', '''.''', ] , ) @cached_property def UpperCamelCase( self ): return BigBirdTokenizer.from_pretrained('''google/bigbird-roberta-base''' ) @slow def UpperCamelCase( self ): _UpperCAmelCase = '''Hello World!''' _UpperCAmelCase = [65, 18536, 2260, 101, 66] self.assertListEqual(_UpperCamelCase , self.big_tokenizer.encode(_UpperCamelCase ) ) @slow def UpperCamelCase( self ): _UpperCAmelCase = ( '''This is a very long text with a lot of weird characters, such as: . , ~ ? ( ) " [ ] ! : - . Also we will''' ''' add words that should not exsist and be tokenized to <unk>, such as saoneuhaoesuth''' ) # fmt: off _UpperCAmelCase = [65, 871, 419, 358, 946, 991, 2521, 452, 358, 1357, 387, 7751, 3536, 112, 985, 456, 126, 865, 938, 5400, 5734, 458, 1368, 467, 786, 2462, 5246, 1159, 633, 865, 4519, 457, 582, 852, 2557, 427, 916, 508, 405, 34324, 497, 391, 408, 11342, 1244, 385, 100, 938, 985, 456, 574, 362, 12597, 3200, 3129, 1172, 66] # noqa: E231 # fmt: on self.assertListEqual(_UpperCamelCase , self.big_tokenizer.encode(_UpperCamelCase ) ) @require_torch @slow def UpperCamelCase( self ): import torch from transformers import BigBirdConfig, BigBirdModel # Build sequence _UpperCAmelCase = list(self.big_tokenizer.get_vocab().keys() )[:10] _UpperCAmelCase = ''' '''.join(_UpperCamelCase ) _UpperCAmelCase = self.big_tokenizer.encode_plus(_UpperCamelCase , return_tensors='''pt''' , return_token_type_ids=_UpperCamelCase ) _UpperCAmelCase = self.big_tokenizer.batch_encode_plus( [sequence + ''' ''' + sequence] , return_tensors='''pt''' , return_token_type_ids=_UpperCamelCase ) _UpperCAmelCase = BigBirdConfig(attention_type='''original_full''' ) _UpperCAmelCase = BigBirdModel(_UpperCamelCase ) assert model.get_input_embeddings().weight.shape[0] >= self.big_tokenizer.vocab_size with torch.no_grad(): model(**_UpperCamelCase ) model(**_UpperCamelCase ) @slow def UpperCamelCase( self ): _UpperCAmelCase = BigBirdTokenizer.from_pretrained('''google/bigbird-roberta-base''' ) _UpperCAmelCase = tokenizer.decode(tokenizer('''Paris is the [MASK].''' ).input_ids ) self.assertTrue(decoded_text == '''[CLS] Paris is the[MASK].[SEP]''' ) @slow def UpperCamelCase( self ): # fmt: off _UpperCAmelCase = {'''input_ids''': [[65, 39286, 458, 36335, 2001, 456, 13073, 13266, 455, 113, 7746, 1741, 11157, 391, 13073, 13266, 455, 113, 3967, 35412, 113, 4936, 109, 3870, 2377, 113, 30084, 45720, 458, 134, 17496, 112, 503, 11672, 113, 118, 112, 5665, 13347, 38687, 112, 1496, 31389, 112, 3268, 47264, 134, 962, 112, 16377, 8035, 23130, 430, 12169, 15518, 28592, 458, 146, 41697, 109, 391, 12169, 15518, 16689, 458, 146, 41358, 109, 452, 726, 4034, 111, 763, 35412, 5082, 388, 1903, 111, 9051, 391, 2870, 48918, 1900, 1123, 550, 998, 112, 9586, 15985, 455, 391, 410, 22955, 37636, 114, 66], [65, 448, 17496, 419, 3663, 385, 763, 113, 27533, 2870, 3283, 13043, 1639, 24713, 523, 656, 24013, 18550, 2521, 517, 27014, 21244, 420, 1212, 1465, 391, 927, 4833, 388, 578, 11786, 114, 66, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [65, 484, 2169, 7687, 21932, 18146, 726, 363, 17032, 3391, 114, 66, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], '''attention_mask''': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=_UpperCamelCase , model_name='''google/bigbird-roberta-base''' , revision='''215c99f1600e06f83acce68422f2035b2b5c3510''' , )
32
from dataclasses import dataclass, field from typing import ClassVar, Dict from ..features import Features, Value from .base import TaskTemplate @dataclass(frozen=A__ ) class __UpperCamelCase ( A__ ): __A : str = field(default="""language-modeling""" , metadata={"""include_in_asdict_even_if_is_default""": True} ) __A : ClassVar[Features] = Features({"""text""": Value("""string""" )} ) __A : ClassVar[Features] = Features({} ) __A : str = "text" @property def UpperCamelCase( self ): return {self.text_column: "text"}
32
1
import collections import inspect import unittest from transformers import FocalNetConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_backbone_common import BackboneTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ( FocalNetBackbone, FocalNetForImageClassification, FocalNetForMaskedImageModeling, FocalNetModel, ) from transformers.models.focalnet.modeling_focalnet import FOCALNET_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class __UpperCamelCase : def __init__( self , _UpperCamelCase , _UpperCamelCase=13 , _UpperCamelCase=32 , _UpperCamelCase=2 , _UpperCamelCase=3 , _UpperCamelCase=16 , _UpperCamelCase=[32, 64, 128] , _UpperCamelCase=[1, 2, 1] , _UpperCamelCase=[2, 2, 4] , _UpperCamelCase=2 , _UpperCamelCase=2.0 , _UpperCamelCase=True , _UpperCamelCase=0.0 , _UpperCamelCase=0.0 , _UpperCamelCase=0.1 , _UpperCamelCase="gelu" , _UpperCamelCase=False , _UpperCamelCase=True , _UpperCamelCase=0.02 , _UpperCamelCase=1e-5 , _UpperCamelCase=True , _UpperCamelCase=None , _UpperCamelCase=True , _UpperCamelCase=10 , _UpperCamelCase=8 , _UpperCamelCase=["stage1", "stage2"] , _UpperCamelCase=[1, 2] , ): _UpperCAmelCase = parent _UpperCAmelCase = batch_size _UpperCAmelCase = image_size _UpperCAmelCase = patch_size _UpperCAmelCase = num_channels _UpperCAmelCase = embed_dim _UpperCAmelCase = hidden_sizes _UpperCAmelCase = depths _UpperCAmelCase = num_heads _UpperCAmelCase = window_size _UpperCAmelCase = mlp_ratio _UpperCAmelCase = qkv_bias _UpperCAmelCase = hidden_dropout_prob _UpperCAmelCase = attention_probs_dropout_prob _UpperCAmelCase = drop_path_rate _UpperCAmelCase = hidden_act _UpperCAmelCase = use_absolute_embeddings _UpperCAmelCase = patch_norm _UpperCAmelCase = layer_norm_eps _UpperCAmelCase = initializer_range _UpperCAmelCase = is_training _UpperCAmelCase = scope _UpperCAmelCase = use_labels _UpperCAmelCase = type_sequence_label_size _UpperCAmelCase = encoder_stride _UpperCAmelCase = out_features _UpperCAmelCase = out_indices def UpperCamelCase( self ): _UpperCAmelCase = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) _UpperCAmelCase = None if self.use_labels: _UpperCAmelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size ) _UpperCAmelCase = self.get_config() return config, pixel_values, labels def UpperCamelCase( self ): return FocalNetConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , embed_dim=self.embed_dim , hidden_sizes=self.hidden_sizes , depths=self.depths , num_heads=self.num_heads , window_size=self.window_size , mlp_ratio=self.mlp_ratio , qkv_bias=self.qkv_bias , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , drop_path_rate=self.drop_path_rate , hidden_act=self.hidden_act , use_absolute_embeddings=self.use_absolute_embeddings , path_norm=self.patch_norm , layer_norm_eps=self.layer_norm_eps , initializer_range=self.initializer_range , encoder_stride=self.encoder_stride , out_features=self.out_features , out_indices=self.out_indices , ) def UpperCamelCase( self , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ): _UpperCAmelCase = FocalNetModel(config=_UpperCamelCase ) model.to(_UpperCamelCase ) model.eval() _UpperCAmelCase = model(_UpperCamelCase ) _UpperCAmelCase = ((config.image_size // config.patch_size) ** 2) // (4 ** (len(config.depths ) - 1)) _UpperCAmelCase = int(config.embed_dim * 2 ** (len(config.depths ) - 1) ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, expected_seq_len, expected_dim) ) def UpperCamelCase( self , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ): _UpperCAmelCase = FocalNetBackbone(config=_UpperCamelCase ) model.to(_UpperCamelCase ) model.eval() _UpperCAmelCase = model(_UpperCamelCase ) # verify feature maps self.parent.assertEqual(len(result.feature_maps ) , len(config.out_features ) ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.image_size, 8, 8] ) # verify channels self.parent.assertEqual(len(model.channels ) , len(config.out_features ) ) self.parent.assertListEqual(model.channels , config.hidden_sizes[:-1] ) # verify backbone works with out_features=None _UpperCAmelCase = None _UpperCAmelCase = FocalNetBackbone(config=_UpperCamelCase ) model.to(_UpperCamelCase ) model.eval() _UpperCAmelCase = model(_UpperCamelCase ) # verify feature maps self.parent.assertEqual(len(result.feature_maps ) , 1 ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.image_size * 2, 4, 4] ) # verify channels self.parent.assertEqual(len(model.channels ) , 1 ) self.parent.assertListEqual(model.channels , [config.hidden_sizes[-1]] ) def UpperCamelCase( self , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ): _UpperCAmelCase = FocalNetForMaskedImageModeling(config=_UpperCamelCase ) model.to(_UpperCamelCase ) model.eval() _UpperCAmelCase = model(_UpperCamelCase ) self.parent.assertEqual( result.reconstruction.shape , (self.batch_size, self.num_channels, self.image_size, self.image_size) ) # test greyscale images _UpperCAmelCase = 1 _UpperCAmelCase = FocalNetForMaskedImageModeling(_UpperCamelCase ) model.to(_UpperCamelCase ) model.eval() _UpperCAmelCase = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) _UpperCAmelCase = model(_UpperCamelCase ) self.parent.assertEqual(result.reconstruction.shape , (self.batch_size, 1, self.image_size, self.image_size) ) def UpperCamelCase( self , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ): _UpperCAmelCase = self.type_sequence_label_size _UpperCAmelCase = FocalNetForImageClassification(_UpperCamelCase ) model.to(_UpperCamelCase ) model.eval() _UpperCAmelCase = model(_UpperCamelCase , labels=_UpperCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) # test greyscale images _UpperCAmelCase = 1 _UpperCAmelCase = FocalNetForImageClassification(_UpperCamelCase ) model.to(_UpperCamelCase ) model.eval() _UpperCAmelCase = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) _UpperCAmelCase = model(_UpperCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def UpperCamelCase( self ): _UpperCAmelCase = self.prepare_config_and_inputs() _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase = config_and_inputs _UpperCAmelCase = {'''pixel_values''': pixel_values} return config, inputs_dict @require_torch class __UpperCamelCase ( A__ , A__ , unittest.TestCase ): __A : List[str] = ( ( FocalNetModel, FocalNetForImageClassification, FocalNetForMaskedImageModeling, FocalNetBackbone, ) if is_torch_available() else () ) __A : Union[str, Any] = ( {"""feature-extraction""": FocalNetModel, """image-classification""": FocalNetForImageClassification} if is_torch_available() else {} ) __A : int = False __A : int = False __A : Dict = False __A : str = False __A : Tuple = False def UpperCamelCase( self ): _UpperCAmelCase = FocalNetModelTester(self ) _UpperCAmelCase = ConfigTester(self , config_class=_UpperCamelCase , embed_dim=37 , has_text_modality=_UpperCamelCase ) def UpperCamelCase( self ): self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def UpperCamelCase( self ): return def UpperCamelCase( self ): _UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_UpperCamelCase ) def UpperCamelCase( self ): _UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_backbone(*_UpperCamelCase ) def UpperCamelCase( self ): _UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_image_modeling(*_UpperCamelCase ) def UpperCamelCase( self ): _UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*_UpperCamelCase ) @unittest.skip(reason='''FocalNet does not use inputs_embeds''' ) def UpperCamelCase( self ): pass @unittest.skip(reason='''FocalNet does not use feedforward chunking''' ) def UpperCamelCase( self ): pass def UpperCamelCase( self ): _UpperCAmelCase , _UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes[:-1]: _UpperCAmelCase = model_class(_UpperCamelCase ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) _UpperCAmelCase = model.get_output_embeddings() self.assertTrue(x is None or isinstance(_UpperCamelCase , nn.Linear ) ) def UpperCamelCase( self ): _UpperCAmelCase , _UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes[:-1]: _UpperCAmelCase = model_class(_UpperCamelCase ) _UpperCAmelCase = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic _UpperCAmelCase = [*signature.parameters.keys()] _UpperCAmelCase = ['''pixel_values'''] self.assertListEqual(arg_names[:1] , _UpperCamelCase ) def UpperCamelCase( self , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ): _UpperCAmelCase = model_class(_UpperCamelCase ) model.to(_UpperCamelCase ) model.eval() with torch.no_grad(): _UpperCAmelCase = model(**self._prepare_for_class(_UpperCamelCase , _UpperCamelCase ) ) _UpperCAmelCase = outputs.hidden_states _UpperCAmelCase = getattr( self.model_tester , '''expected_num_hidden_layers''' , len(self.model_tester.depths ) + 1 ) self.assertEqual(len(_UpperCamelCase ) , _UpperCamelCase ) # FocalNet has a different seq_length _UpperCAmelCase = ( config.patch_size if isinstance(config.patch_size , collections.abc.Iterable ) else (config.patch_size, config.patch_size) ) _UpperCAmelCase = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [num_patches, self.model_tester.embed_dim] , ) _UpperCAmelCase = outputs.reshaped_hidden_states self.assertEqual(len(_UpperCamelCase ) , _UpperCamelCase ) _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase = reshaped_hidden_states[0].shape _UpperCAmelCase = ( reshaped_hidden_states[0].view(_UpperCamelCase , _UpperCamelCase , height * width ).permute(0 , 2 , 1 ) ) self.assertListEqual( list(reshaped_hidden_states.shape[-2:] ) , [num_patches, self.model_tester.embed_dim] , ) def UpperCamelCase( self ): _UpperCAmelCase , _UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() _UpperCAmelCase = ( self.model_tester.image_size if isinstance(self.model_tester.image_size , collections.abc.Iterable ) else (self.model_tester.image_size, self.model_tester.image_size) ) for model_class in self.all_model_classes[:-1]: _UpperCAmelCase = True self.check_hidden_states_output(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] _UpperCAmelCase = True self.check_hidden_states_output(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) def UpperCamelCase( self ): _UpperCAmelCase , _UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() _UpperCAmelCase = 3 _UpperCAmelCase = ( self.model_tester.image_size if isinstance(self.model_tester.image_size , collections.abc.Iterable ) else (self.model_tester.image_size, self.model_tester.image_size) ) _UpperCAmelCase = ( config.patch_size if isinstance(config.patch_size , collections.abc.Iterable ) else (config.patch_size, config.patch_size) ) _UpperCAmelCase = image_size[0] + patch_size[0] - (image_size[0] % patch_size[0]) _UpperCAmelCase = image_size[1] + patch_size[1] - (image_size[1] % patch_size[1]) for model_class in self.all_model_classes[:-1]: _UpperCAmelCase = True self.check_hidden_states_output(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase , (padded_height, padded_width) ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] _UpperCAmelCase = True self.check_hidden_states_output(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase , (padded_height, padded_width) ) @slow def UpperCamelCase( self ): for model_name in FOCALNET_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _UpperCAmelCase = FocalNetModel.from_pretrained(_UpperCamelCase ) self.assertIsNotNone(_UpperCamelCase ) def UpperCamelCase( self ): _UpperCAmelCase , _UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() _UpperCAmelCase = _config_zero_init(_UpperCamelCase ) for model_class in self.all_model_classes: _UpperCAmelCase = model_class(config=_UpperCamelCase ) for name, param in model.named_parameters(): if "embeddings" not in name and param.requires_grad: self.assertIn( ((param.data.mean() * 1e9).round() / 1e9).item() , [0.0, 1.0] , msg=f'''Parameter {name} of model {model_class} seems not properly initialized''' , ) @require_vision @require_torch class __UpperCamelCase ( unittest.TestCase ): @cached_property def UpperCamelCase( self ): # TODO update organization return AutoImageProcessor.from_pretrained('''microsoft/focalnet-tiny''' ) if is_vision_available() else None @slow def UpperCamelCase( self ): _UpperCAmelCase = FocalNetForImageClassification.from_pretrained('''microsoft/focalnet-tiny''' ).to(_UpperCamelCase ) _UpperCAmelCase = self.default_image_processor _UpperCAmelCase = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) _UpperCAmelCase = image_processor(images=_UpperCamelCase , return_tensors='''pt''' ).to(_UpperCamelCase ) # forward pass with torch.no_grad(): _UpperCAmelCase = model(**_UpperCamelCase ) # verify the logits _UpperCAmelCase = torch.Size((1, 1000) ) self.assertEqual(outputs.logits.shape , _UpperCamelCase ) _UpperCAmelCase = torch.tensor([0.2166, -0.4368, 0.2191] ).to(_UpperCamelCase ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , _UpperCamelCase , atol=1e-4 ) ) self.assertTrue(outputs.logits.argmax(dim=-1 ).item() , 281 ) @require_torch class __UpperCamelCase ( A__ , unittest.TestCase ): __A : Optional[int] = (FocalNetBackbone,) if is_torch_available() else () __A : str = FocalNetConfig __A : Any = False def UpperCamelCase( self ): _UpperCAmelCase = FocalNetModelTester(self )
32
import os import re import warnings from shutil import copyfile from typing import TYPE_CHECKING, Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import PreTrainedTokenizer if TYPE_CHECKING: from ...tokenization_utils_base import TextInput from ...utils import logging UpperCAmelCase_ = logging.get_logger(__name__) UpperCAmelCase_ = {"vocab_file": "spiece.model"} UpperCAmelCase_ = { "vocab_file": { "t5-small": "https://huggingface.co/t5-small/resolve/main/spiece.model", "t5-base": "https://huggingface.co/t5-base/resolve/main/spiece.model", "t5-large": "https://huggingface.co/t5-large/resolve/main/spiece.model", "t5-3b": "https://huggingface.co/t5-3b/resolve/main/spiece.model", "t5-11b": "https://huggingface.co/t5-11b/resolve/main/spiece.model", } } # TODO(PVP) - this should be removed in Transformers v5 UpperCAmelCase_ = { "t5-small": 5_12, "t5-base": 5_12, "t5-large": 5_12, "t5-3b": 5_12, "t5-11b": 5_12, } UpperCAmelCase_ = "▁" class __UpperCamelCase ( A__ ): __A : Any = VOCAB_FILES_NAMES __A : Union[str, Any] = PRETRAINED_VOCAB_FILES_MAP __A : Any = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __A : Tuple = ["""input_ids""", """attention_mask"""] def __init__( self , _UpperCamelCase , _UpperCamelCase="</s>" , _UpperCamelCase="<unk>" , _UpperCamelCase="<pad>" , _UpperCamelCase=100 , _UpperCamelCase=None , _UpperCamelCase = None , _UpperCamelCase=True , **_UpperCamelCase , ): # Add extra_ids to the special token list if extra_ids > 0 and additional_special_tokens is None: _UpperCAmelCase = [f'''<extra_id_{i}>''' for i in range(_UpperCamelCase )] elif extra_ids > 0 and additional_special_tokens is not None: # Check that we have the right number of extra_id special tokens _UpperCAmelCase = len(set(filter(lambda _UpperCamelCase : bool('''extra_id''' in str(_UpperCamelCase ) ) , _UpperCamelCase ) ) ) if extra_tokens != extra_ids: raise ValueError( f'''Both extra_ids ({extra_ids}) and additional_special_tokens ({additional_special_tokens}) are''' ''' provided to T5Tokenizer. In this case the additional_special_tokens must include the extra_ids''' ''' tokens''' ) if legacy: logger.warning_once( f'''You are using the legacy behaviour of the {self.__class__}. This means that tokens that come after special tokens will not be properly handled. We recommend you to''' ''' read the related pull request available at https://github.com/huggingface/transformers/pull/24565''' ) _UpperCAmelCase = legacy _UpperCAmelCase = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( eos_token=_UpperCamelCase , unk_token=_UpperCamelCase , pad_token=_UpperCamelCase , extra_ids=_UpperCamelCase , additional_special_tokens=_UpperCamelCase , sp_model_kwargs=self.sp_model_kwargs , legacy=_UpperCamelCase , **_UpperCamelCase , ) _UpperCAmelCase = vocab_file _UpperCAmelCase = extra_ids _UpperCAmelCase = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(_UpperCamelCase ) @staticmethod def UpperCamelCase( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ): if pretrained_model_name_or_path in TaTokenizer.max_model_input_sizes: _UpperCAmelCase = TaTokenizer.max_model_input_sizes[pretrained_model_name_or_path] if init_max_model_length is not None and init_max_model_length != max_model_length: return init_max_model_length elif init_max_model_length is None: warnings.warn( '''This tokenizer was incorrectly instantiated with a model max length of''' f''' {deprecated_max_model_length} which will be corrected in Transformers v5.\nFor now, this''' ''' behavior is kept to avoid breaking backwards compatibility when padding/encoding with''' ''' `truncation is True`.\n- Be aware that you SHOULD NOT rely on''' f''' {pretrained_model_name_or_path} automatically truncating your input to''' f''' {deprecated_max_model_length} when padding/encoding.\n- If you want to encode/pad to sequences''' f''' longer than {deprecated_max_model_length} you can either instantiate this tokenizer with''' ''' `model_max_length` or pass `max_length` when encoding/padding.\n- To avoid this warning, please''' ''' instantiate this tokenizer with `model_max_length` set to your preferred value.''' , _UpperCamelCase , ) return max_model_length @property def UpperCamelCase( self ): return self.sp_model.get_piece_size() + self._extra_ids def UpperCamelCase( self ): _UpperCAmelCase = {self.convert_ids_to_tokens(_UpperCamelCase ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def UpperCamelCase( self , _UpperCamelCase , _UpperCamelCase = None , _UpperCamelCase = False ): if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=_UpperCamelCase , token_ids_a=_UpperCamelCase , already_has_special_tokens=_UpperCamelCase ) # normal case: some special tokens if token_ids_a is None: return ([0] * len(_UpperCamelCase )) + [1] return ([0] * len(_UpperCamelCase )) + [1] + ([0] * len(_UpperCamelCase )) + [1] def UpperCamelCase( self ): return list( set(filter(lambda _UpperCamelCase : bool(re.search(R'''<extra_id_\d+>''' , _UpperCamelCase ) ) is not None , self.additional_special_tokens ) ) ) def UpperCamelCase( self ): return [self._convert_token_to_id(_UpperCamelCase ) for token in self.get_sentinel_tokens()] def UpperCamelCase( self , _UpperCamelCase ): if len(_UpperCamelCase ) > 0 and token_ids[-1] == self.eos_token_id: warnings.warn( f'''This sequence already has {self.eos_token}. In future versions this behavior may lead to duplicated''' ''' eos tokens being added.''' ) return token_ids else: return token_ids + [self.eos_token_id] def UpperCamelCase( self , _UpperCamelCase , _UpperCamelCase = None ): _UpperCAmelCase = [self.eos_token_id] if token_ids_a is None: return len(token_ids_a + eos ) * [0] return len(token_ids_a + eos + token_ids_a + eos ) * [0] def UpperCamelCase( self , _UpperCamelCase , _UpperCamelCase = None ): _UpperCAmelCase = self._add_eos_if_not_present(_UpperCamelCase ) if token_ids_a is None: return token_ids_a else: _UpperCAmelCase = self._add_eos_if_not_present(_UpperCamelCase ) return token_ids_a + token_ids_a def __getstate__( self ): _UpperCAmelCase = self.__dict__.copy() _UpperCAmelCase = None return state def __setstate__( self , _UpperCamelCase ): _UpperCAmelCase = d # for backward compatibility if not hasattr(self , '''sp_model_kwargs''' ): _UpperCAmelCase = {} _UpperCAmelCase = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def UpperCamelCase( self , _UpperCamelCase , **_UpperCamelCase ): # Replace the SPIECE_UNDERLINE with a space to make sure SPIECE_UNDERLINE is only used at # the beginning of the text if not self.legacy: _UpperCAmelCase = SPIECE_UNDERLINE + text.replace(_UpperCamelCase , ''' ''' ) return super().tokenize(_UpperCamelCase , **_UpperCamelCase ) def UpperCamelCase( self , _UpperCamelCase , **_UpperCamelCase ): if not self.legacy: _UpperCAmelCase = text.startswith(_UpperCamelCase ) if is_first: _UpperCAmelCase = text[1:] _UpperCAmelCase = self.sp_model.encode(_UpperCamelCase , out_type=_UpperCamelCase ) if not self.legacy and not is_first and not text.startswith(''' ''' ) and tokens[0].startswith(_UpperCamelCase ): _UpperCAmelCase = ([tokens[0][1:]] if len(tokens[0] ) > 1 else []) + tokens[1:] return tokens def UpperCamelCase( self , _UpperCamelCase ): if token.startswith('''<extra_id_''' ): _UpperCAmelCase = re.match(R'''<extra_id_(\d+)>''' , _UpperCamelCase ) _UpperCAmelCase = int(match.group(1 ) ) return self.vocab_size - num - 1 return self.sp_model.piece_to_id(_UpperCamelCase ) def UpperCamelCase( self , _UpperCamelCase ): if index < self.sp_model.get_piece_size(): _UpperCAmelCase = self.sp_model.IdToPiece(_UpperCamelCase ) else: _UpperCAmelCase = f'''<extra_id_{self.vocab_size - 1 - index}>''' return token def UpperCamelCase( self , _UpperCamelCase ): _UpperCAmelCase = [] _UpperCAmelCase = '''''' _UpperCAmelCase = False for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: if not prev_is_special: out_string += " " out_string += self.sp_model.decode(_UpperCamelCase ) + token _UpperCAmelCase = True _UpperCAmelCase = [] else: current_sub_tokens.append(_UpperCamelCase ) _UpperCAmelCase = False out_string += self.sp_model.decode(_UpperCamelCase ) return out_string.strip() def UpperCamelCase( self , _UpperCamelCase , _UpperCamelCase = None ): if not os.path.isdir(_UpperCamelCase ): logger.error(f'''Vocabulary path ({save_directory}) should be a directory''' ) return _UpperCAmelCase = os.path.join( _UpperCamelCase , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(_UpperCamelCase ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , _UpperCamelCase ) elif not os.path.isfile(self.vocab_file ): with open(_UpperCamelCase , '''wb''' ) as fi: _UpperCAmelCase = self.sp_model.serialized_model_proto() fi.write(_UpperCamelCase ) return (out_vocab_file,)
32
1
import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import LevitImageProcessor class __UpperCamelCase ( unittest.TestCase ): def __init__( self , _UpperCamelCase , _UpperCamelCase=7 , _UpperCamelCase=3 , _UpperCamelCase=18 , _UpperCamelCase=30 , _UpperCamelCase=400 , _UpperCamelCase=True , _UpperCamelCase=None , _UpperCamelCase=True , _UpperCamelCase=None , _UpperCamelCase=True , _UpperCamelCase=[0.5, 0.5, 0.5] , _UpperCamelCase=[0.5, 0.5, 0.5] , ): _UpperCAmelCase = size if size is not None else {'''shortest_edge''': 18} _UpperCAmelCase = crop_size if crop_size is not None else {'''height''': 18, '''width''': 18} _UpperCAmelCase = parent _UpperCAmelCase = batch_size _UpperCAmelCase = num_channels _UpperCAmelCase = image_size _UpperCAmelCase = min_resolution _UpperCAmelCase = max_resolution _UpperCAmelCase = do_resize _UpperCAmelCase = size _UpperCAmelCase = do_center_crop _UpperCAmelCase = crop_size _UpperCAmelCase = do_normalize _UpperCAmelCase = image_mean _UpperCAmelCase = image_std def UpperCamelCase( self ): return { "image_mean": self.image_mean, "image_std": self.image_std, "do_normalize": self.do_normalize, "do_resize": self.do_resize, "do_center_crop": self.do_center_crop, "size": self.size, "crop_size": self.crop_size, } @require_torch @require_vision class __UpperCamelCase ( A__ , unittest.TestCase ): __A : int = LevitImageProcessor if is_vision_available() else None def UpperCamelCase( self ): _UpperCAmelCase = LevitImageProcessingTester(self ) @property def UpperCamelCase( self ): return self.image_processor_tester.prepare_image_processor_dict() def UpperCamelCase( self ): _UpperCAmelCase = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(_UpperCamelCase , '''image_mean''' ) ) self.assertTrue(hasattr(_UpperCamelCase , '''image_std''' ) ) self.assertTrue(hasattr(_UpperCamelCase , '''do_normalize''' ) ) self.assertTrue(hasattr(_UpperCamelCase , '''do_resize''' ) ) self.assertTrue(hasattr(_UpperCamelCase , '''do_center_crop''' ) ) self.assertTrue(hasattr(_UpperCamelCase , '''size''' ) ) def UpperCamelCase( self ): _UpperCAmelCase = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {'''shortest_edge''': 18} ) self.assertEqual(image_processor.crop_size , {'''height''': 18, '''width''': 18} ) _UpperCAmelCase = self.image_processing_class.from_dict(self.image_processor_dict , size=42 , crop_size=84 ) self.assertEqual(image_processor.size , {'''shortest_edge''': 42} ) self.assertEqual(image_processor.crop_size , {'''height''': 84, '''width''': 84} ) def UpperCamelCase( self ): pass def UpperCamelCase( self ): # Initialize image_processing _UpperCAmelCase = self.image_processing_class(**self.image_processor_dict ) # create random PIL images _UpperCAmelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=_UpperCamelCase ) for image in image_inputs: self.assertIsInstance(_UpperCamelCase , Image.Image ) # Test not batched input _UpperCAmelCase = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) # Test batched _UpperCAmelCase = image_processing(_UpperCamelCase , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) def UpperCamelCase( self ): # Initialize image_processing _UpperCAmelCase = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors _UpperCAmelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=_UpperCamelCase , numpify=_UpperCamelCase ) for image in image_inputs: self.assertIsInstance(_UpperCamelCase , np.ndarray ) # Test not batched input _UpperCAmelCase = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) # Test batched _UpperCAmelCase = image_processing(_UpperCamelCase , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) def UpperCamelCase( self ): # Initialize image_processing _UpperCAmelCase = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors _UpperCAmelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=_UpperCamelCase , torchify=_UpperCamelCase ) for image in image_inputs: self.assertIsInstance(_UpperCamelCase , torch.Tensor ) # Test not batched input _UpperCAmelCase = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) # Test batched _UpperCAmelCase = image_processing(_UpperCamelCase , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , )
32
from __future__ import annotations def A__ ( SCREAMING_SNAKE_CASE_ : int ) -> bool: """simple docstring""" _UpperCAmelCase = str(SCREAMING_SNAKE_CASE_ ) return len(SCREAMING_SNAKE_CASE_ ) == 9 and set(SCREAMING_SNAKE_CASE_ ) == set('''123456789''' ) def A__ ( ) -> int | None: """simple docstring""" for base_num in range(99_99 , 49_99 , -1 ): _UpperCAmelCase = 10_00_02 * base_num if is_9_pandigital(SCREAMING_SNAKE_CASE_ ): return candidate for base_num in range(3_33 , 99 , -1 ): _UpperCAmelCase = 1_00_20_03 * base_num if is_9_pandigital(SCREAMING_SNAKE_CASE_ ): return candidate return None if __name__ == "__main__": print(f'''{solution() = }''')
32
1
UpperCAmelCase_ = [4, 1, 7, 4, 2, 6, 4, 1, 5, 3, 7, 5] UpperCAmelCase_ = [3, 7, 7, 4, 2, 6, 4, 1, 5, 3, 7, 5] UpperCAmelCase_ = { 0: "Sunday", 1: "Monday", 2: "Tuesday", 3: "Wednesday", 4: "Thursday", 5: "Friday", 6: "Saturday", } def A__ ( SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : int ) -> str: """simple docstring""" assert len(str(SCREAMING_SNAKE_CASE_ ) ) > 2, "year should be in YYYY format" assert 1 <= month <= 12, "month should be between 1 to 12" assert 1 <= day <= 31, "day should be between 1 to 31" # Doomsday algorithm: _UpperCAmelCase = year // 1_00 _UpperCAmelCase = (5 * (century % 4) + 2) % 7 _UpperCAmelCase = year % 1_00 _UpperCAmelCase = centurian % 12 _UpperCAmelCase = ( (centurian // 12) + centurian_m + (centurian_m // 4) + century_anchor ) % 7 _UpperCAmelCase = ( DOOMSDAY_NOT_LEAP[month - 1] if (year % 4 != 0) or (centurian == 0 and (year % 4_00) == 0) else DOOMSDAY_LEAP[month - 1] ) _UpperCAmelCase = (dooms_day + day - day_anchor) % 7 return WEEK_DAY_NAMES[week_day] if __name__ == "__main__": import doctest doctest.testmod()
32
import numpy as np def A__ ( SCREAMING_SNAKE_CASE_ : np.ndarray , SCREAMING_SNAKE_CASE_ : float ) -> np.ndarray: """simple docstring""" return np.where(vector > 0 , SCREAMING_SNAKE_CASE_ , (alpha * (np.exp(SCREAMING_SNAKE_CASE_ ) - 1)) ) if __name__ == "__main__": import doctest doctest.testmod()
32
1
import tempfile import torch from diffusers import ( DEISMultistepScheduler, DPMSolverMultistepScheduler, DPMSolverSinglestepScheduler, UniPCMultistepScheduler, ) from .test_schedulers import SchedulerCommonTest class __UpperCamelCase ( A__ ): __A : List[str] = (UniPCMultistepScheduler,) __A : List[str] = (("""num_inference_steps""", 25),) def UpperCamelCase( self , **_UpperCamelCase ): _UpperCAmelCase = { '''num_train_timesteps''': 1000, '''beta_start''': 0.0001, '''beta_end''': 0.02, '''beta_schedule''': '''linear''', '''solver_order''': 2, '''solver_type''': '''bh2''', } config.update(**_UpperCamelCase ) return config def UpperCamelCase( self , _UpperCamelCase=0 , **_UpperCamelCase ): _UpperCAmelCase = dict(self.forward_default_kwargs ) _UpperCAmelCase = kwargs.pop('''num_inference_steps''' , _UpperCamelCase ) _UpperCAmelCase = self.dummy_sample _UpperCAmelCase = 0.1 * sample _UpperCAmelCase = [residual + 0.2, residual + 0.15, residual + 0.10] for scheduler_class in self.scheduler_classes: _UpperCAmelCase = self.get_scheduler_config(**_UpperCamelCase ) _UpperCAmelCase = scheduler_class(**_UpperCamelCase ) scheduler.set_timesteps(_UpperCamelCase ) # copy over dummy past residuals _UpperCAmelCase = dummy_past_residuals[: scheduler.config.solver_order] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(_UpperCamelCase ) _UpperCAmelCase = scheduler_class.from_pretrained(_UpperCamelCase ) new_scheduler.set_timesteps(_UpperCamelCase ) # copy over dummy past residuals _UpperCAmelCase = dummy_past_residuals[: new_scheduler.config.solver_order] _UpperCAmelCase , _UpperCAmelCase = sample, sample for t in range(_UpperCamelCase , time_step + scheduler.config.solver_order + 1 ): _UpperCAmelCase = scheduler.step(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase , **_UpperCamelCase ).prev_sample _UpperCAmelCase = new_scheduler.step(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase , **_UpperCamelCase ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1e-5, "Scheduler outputs are not identical" def UpperCamelCase( self , _UpperCamelCase=0 , **_UpperCamelCase ): _UpperCAmelCase = dict(self.forward_default_kwargs ) _UpperCAmelCase = kwargs.pop('''num_inference_steps''' , _UpperCamelCase ) _UpperCAmelCase = self.dummy_sample _UpperCAmelCase = 0.1 * sample _UpperCAmelCase = [residual + 0.2, residual + 0.15, residual + 0.10] for scheduler_class in self.scheduler_classes: _UpperCAmelCase = self.get_scheduler_config() _UpperCAmelCase = scheduler_class(**_UpperCamelCase ) scheduler.set_timesteps(_UpperCamelCase ) # copy over dummy past residuals (must be after setting timesteps) _UpperCAmelCase = dummy_past_residuals[: scheduler.config.solver_order] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(_UpperCamelCase ) _UpperCAmelCase = scheduler_class.from_pretrained(_UpperCamelCase ) # copy over dummy past residuals new_scheduler.set_timesteps(_UpperCamelCase ) # copy over dummy past residual (must be after setting timesteps) _UpperCAmelCase = dummy_past_residuals[: new_scheduler.config.solver_order] _UpperCAmelCase = scheduler.step(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase , **_UpperCamelCase ).prev_sample _UpperCAmelCase = new_scheduler.step(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase , **_UpperCamelCase ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1e-5, "Scheduler outputs are not identical" def UpperCamelCase( self , _UpperCamelCase=None , **_UpperCamelCase ): if scheduler is None: _UpperCAmelCase = self.scheduler_classes[0] _UpperCAmelCase = self.get_scheduler_config(**_UpperCamelCase ) _UpperCAmelCase = scheduler_class(**_UpperCamelCase ) _UpperCAmelCase = self.scheduler_classes[0] _UpperCAmelCase = self.get_scheduler_config(**_UpperCamelCase ) _UpperCAmelCase = scheduler_class(**_UpperCamelCase ) _UpperCAmelCase = 10 _UpperCAmelCase = self.dummy_model() _UpperCAmelCase = self.dummy_sample_deter scheduler.set_timesteps(_UpperCamelCase ) for i, t in enumerate(scheduler.timesteps ): _UpperCAmelCase = model(_UpperCamelCase , _UpperCamelCase ) _UpperCAmelCase = scheduler.step(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase ).prev_sample return sample def UpperCamelCase( self ): _UpperCAmelCase = dict(self.forward_default_kwargs ) _UpperCAmelCase = kwargs.pop('''num_inference_steps''' , _UpperCamelCase ) for scheduler_class in self.scheduler_classes: _UpperCAmelCase = self.get_scheduler_config() _UpperCAmelCase = scheduler_class(**_UpperCamelCase ) _UpperCAmelCase = self.dummy_sample _UpperCAmelCase = 0.1 * sample if num_inference_steps is not None and hasattr(_UpperCamelCase , '''set_timesteps''' ): scheduler.set_timesteps(_UpperCamelCase ) elif num_inference_steps is not None and not hasattr(_UpperCamelCase , '''set_timesteps''' ): _UpperCAmelCase = num_inference_steps # copy over dummy past residuals (must be done after set_timesteps) _UpperCAmelCase = [residual + 0.2, residual + 0.15, residual + 0.10] _UpperCAmelCase = dummy_past_residuals[: scheduler.config.solver_order] _UpperCAmelCase = scheduler.timesteps[5] _UpperCAmelCase = scheduler.timesteps[6] _UpperCAmelCase = scheduler.step(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase , **_UpperCamelCase ).prev_sample _UpperCAmelCase = scheduler.step(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase , **_UpperCamelCase ).prev_sample self.assertEqual(output_a.shape , sample.shape ) self.assertEqual(output_a.shape , output_a.shape ) def UpperCamelCase( self ): # make sure that iterating over schedulers with same config names gives same results # for defaults _UpperCAmelCase = UniPCMultistepScheduler(**self.get_scheduler_config() ) _UpperCAmelCase = self.full_loop(scheduler=_UpperCamelCase ) _UpperCAmelCase = torch.mean(torch.abs(_UpperCamelCase ) ) assert abs(result_mean.item() - 0.2464 ) < 1e-3 _UpperCAmelCase = DPMSolverSinglestepScheduler.from_config(scheduler.config ) _UpperCAmelCase = DEISMultistepScheduler.from_config(scheduler.config ) _UpperCAmelCase = DPMSolverMultistepScheduler.from_config(scheduler.config ) _UpperCAmelCase = UniPCMultistepScheduler.from_config(scheduler.config ) _UpperCAmelCase = self.full_loop(scheduler=_UpperCamelCase ) _UpperCAmelCase = torch.mean(torch.abs(_UpperCamelCase ) ) assert abs(result_mean.item() - 0.2464 ) < 1e-3 def UpperCamelCase( self ): for timesteps in [25, 50, 100, 999, 1000]: self.check_over_configs(num_train_timesteps=_UpperCamelCase ) def UpperCamelCase( self ): self.check_over_configs(thresholding=_UpperCamelCase ) for order in [1, 2, 3]: for solver_type in ["bh1", "bh2"]: for threshold in [0.5, 1.0, 2.0]: for prediction_type in ["epsilon", "sample"]: self.check_over_configs( thresholding=_UpperCamelCase , prediction_type=_UpperCamelCase , sample_max_value=_UpperCamelCase , solver_order=_UpperCamelCase , solver_type=_UpperCamelCase , ) def UpperCamelCase( self ): for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs(prediction_type=_UpperCamelCase ) def UpperCamelCase( self ): for solver_type in ["bh1", "bh2"]: for order in [1, 2, 3]: for prediction_type in ["epsilon", "sample"]: self.check_over_configs( solver_order=_UpperCamelCase , solver_type=_UpperCamelCase , prediction_type=_UpperCamelCase , ) _UpperCAmelCase = self.full_loop( solver_order=_UpperCamelCase , solver_type=_UpperCamelCase , prediction_type=_UpperCamelCase , ) assert not torch.isnan(_UpperCamelCase ).any(), "Samples have nan numbers" def UpperCamelCase( self ): self.check_over_configs(lower_order_final=_UpperCamelCase ) self.check_over_configs(lower_order_final=_UpperCamelCase ) def UpperCamelCase( self ): for num_inference_steps in [1, 2, 3, 5, 10, 50, 100, 999, 1000]: self.check_over_forward(num_inference_steps=_UpperCamelCase , time_step=0 ) def UpperCamelCase( self ): _UpperCAmelCase = self.full_loop() _UpperCAmelCase = torch.mean(torch.abs(_UpperCamelCase ) ) assert abs(result_mean.item() - 0.2464 ) < 1e-3 def UpperCamelCase( self ): _UpperCAmelCase = self.full_loop(prediction_type='''v_prediction''' ) _UpperCAmelCase = torch.mean(torch.abs(_UpperCamelCase ) ) assert abs(result_mean.item() - 0.1014 ) < 1e-3 def UpperCamelCase( self ): _UpperCAmelCase = self.scheduler_classes[0] _UpperCAmelCase = self.get_scheduler_config(thresholding=_UpperCamelCase , dynamic_thresholding_ratio=0 ) _UpperCAmelCase = scheduler_class(**_UpperCamelCase ) _UpperCAmelCase = 10 _UpperCAmelCase = self.dummy_model() _UpperCAmelCase = self.dummy_sample_deter.half() scheduler.set_timesteps(_UpperCamelCase ) for i, t in enumerate(scheduler.timesteps ): _UpperCAmelCase = model(_UpperCamelCase , _UpperCamelCase ) _UpperCAmelCase = scheduler.step(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase ).prev_sample assert sample.dtype == torch.floataa def UpperCamelCase( self , **_UpperCamelCase ): for scheduler_class in self.scheduler_classes: _UpperCAmelCase = self.get_scheduler_config(**_UpperCamelCase ) _UpperCAmelCase = scheduler_class(**_UpperCamelCase ) scheduler.set_timesteps(scheduler.config.num_train_timesteps ) assert len(scheduler.timesteps.unique() ) == scheduler.num_inference_steps
32
UpperCAmelCase_ = { "A": ".-", "B": "-...", "C": "-.-.", "D": "-..", "E": ".", "F": "..-.", "G": "--.", "H": "....", "I": "..", "J": ".---", "K": "-.-", "L": ".-..", "M": "--", "N": "-.", "O": "---", "P": ".--.", "Q": "--.-", "R": ".-.", "S": "...", "T": "-", "U": "..-", "V": "...-", "W": ".--", "X": "-..-", "Y": "-.--", "Z": "--..", "1": ".----", "2": "..---", "3": "...--", "4": "....-", "5": ".....", "6": "-....", "7": "--...", "8": "---..", "9": "----.", "0": "-----", "&": ".-...", "@": ".--.-.", ":": "---...", ",": "--..--", ".": ".-.-.-", "'": ".----.", "\"": ".-..-.", "?": "..--..", "/": "-..-.", "=": "-...-", "+": ".-.-.", "-": "-....-", "(": "-.--.", ")": "-.--.-", "!": "-.-.--", " ": "/" } # Exclamation mark is not in ITU-R recommendation # fmt: on UpperCAmelCase_ = {value: key for key, value in MORSE_CODE_DICT.items()} def A__ ( SCREAMING_SNAKE_CASE_ : str ) -> str: """simple docstring""" return " ".join(MORSE_CODE_DICT[char] for char in message.upper() ) def A__ ( SCREAMING_SNAKE_CASE_ : str ) -> str: """simple docstring""" return "".join(REVERSE_DICT[char] for char in message.split() ) def A__ ( ) -> None: """simple docstring""" _UpperCAmelCase = '''Morse code here!''' print(SCREAMING_SNAKE_CASE_ ) _UpperCAmelCase = encrypt(SCREAMING_SNAKE_CASE_ ) print(SCREAMING_SNAKE_CASE_ ) _UpperCAmelCase = decrypt(SCREAMING_SNAKE_CASE_ ) print(SCREAMING_SNAKE_CASE_ ) if __name__ == "__main__": main()
32
1
from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices UpperCAmelCase_ = logging.get_logger(__name__) UpperCAmelCase_ = { "microsoft/swin-tiny-patch4-window7-224": ( "https://huggingface.co/microsoft/swin-tiny-patch4-window7-224/resolve/main/config.json" ), # See all Swin models at https://huggingface.co/models?filter=swin } class __UpperCamelCase ( A__ , A__ ): __A : Union[str, Any] = """swin""" __A : Tuple = { """num_attention_heads""": """num_heads""", """num_hidden_layers""": """num_layers""", } def __init__( self , _UpperCamelCase=224 , _UpperCamelCase=4 , _UpperCamelCase=3 , _UpperCamelCase=96 , _UpperCamelCase=[2, 2, 6, 2] , _UpperCamelCase=[3, 6, 12, 24] , _UpperCamelCase=7 , _UpperCamelCase=4.0 , _UpperCamelCase=True , _UpperCamelCase=0.0 , _UpperCamelCase=0.0 , _UpperCamelCase=0.1 , _UpperCamelCase="gelu" , _UpperCamelCase=False , _UpperCamelCase=0.02 , _UpperCamelCase=1e-5 , _UpperCamelCase=32 , _UpperCamelCase=None , _UpperCamelCase=None , **_UpperCamelCase , ): super().__init__(**_UpperCamelCase ) _UpperCAmelCase = image_size _UpperCAmelCase = patch_size _UpperCAmelCase = num_channels _UpperCAmelCase = embed_dim _UpperCAmelCase = depths _UpperCAmelCase = len(_UpperCamelCase ) _UpperCAmelCase = num_heads _UpperCAmelCase = window_size _UpperCAmelCase = mlp_ratio _UpperCAmelCase = qkv_bias _UpperCAmelCase = hidden_dropout_prob _UpperCAmelCase = attention_probs_dropout_prob _UpperCAmelCase = drop_path_rate _UpperCAmelCase = hidden_act _UpperCAmelCase = use_absolute_embeddings _UpperCAmelCase = layer_norm_eps _UpperCAmelCase = initializer_range _UpperCAmelCase = encoder_stride # we set the hidden_size attribute in order to make Swin work with VisionEncoderDecoderModel # this indicates the channel dimension after the last stage of the model _UpperCAmelCase = int(embed_dim * 2 ** (len(_UpperCamelCase ) - 1) ) _UpperCAmelCase = ['''stem'''] + [f'''stage{idx}''' for idx in range(1 , len(_UpperCamelCase ) + 1 )] _UpperCAmelCase , _UpperCAmelCase = get_aligned_output_features_output_indices( out_features=_UpperCamelCase , out_indices=_UpperCamelCase , stage_names=self.stage_names ) class __UpperCamelCase ( A__ ): __A : Dict = version.parse("""1.11""" ) @property def UpperCamelCase( self ): return OrderedDict( [ ('''pixel_values''', {0: '''batch''', 1: '''num_channels''', 2: '''height''', 3: '''width'''}), ] ) @property def UpperCamelCase( self ): return 1e-4
32
import gc import unittest import numpy as np import torch from diffusers import DanceDiffusionPipeline, IPNDMScheduler, UNetaDModel from diffusers.utils import slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu, skip_mps from ..pipeline_params import UNCONDITIONAL_AUDIO_GENERATION_BATCH_PARAMS, UNCONDITIONAL_AUDIO_GENERATION_PARAMS from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() class __UpperCamelCase ( A__ , unittest.TestCase ): __A : Any = DanceDiffusionPipeline __A : Any = UNCONDITIONAL_AUDIO_GENERATION_PARAMS __A : Tuple = PipelineTesterMixin.required_optional_params - { """callback""", """latents""", """callback_steps""", """output_type""", """num_images_per_prompt""", } __A : Tuple = UNCONDITIONAL_AUDIO_GENERATION_BATCH_PARAMS __A : List[str] = False __A : str = False def UpperCamelCase( self ): torch.manual_seed(0 ) _UpperCAmelCase = UNetaDModel( block_out_channels=(32, 32, 64) , extra_in_channels=16 , sample_size=512 , sample_rate=16000 , in_channels=2 , out_channels=2 , flip_sin_to_cos=_UpperCamelCase , use_timestep_embedding=_UpperCamelCase , time_embedding_type='''fourier''' , mid_block_type='''UNetMidBlock1D''' , down_block_types=('''DownBlock1DNoSkip''', '''DownBlock1D''', '''AttnDownBlock1D''') , up_block_types=('''AttnUpBlock1D''', '''UpBlock1D''', '''UpBlock1DNoSkip''') , ) _UpperCAmelCase = IPNDMScheduler() _UpperCAmelCase = { '''unet''': unet, '''scheduler''': scheduler, } return components def UpperCamelCase( self , _UpperCamelCase , _UpperCamelCase=0 ): if str(_UpperCamelCase ).startswith('''mps''' ): _UpperCAmelCase = torch.manual_seed(_UpperCamelCase ) else: _UpperCAmelCase = torch.Generator(device=_UpperCamelCase ).manual_seed(_UpperCamelCase ) _UpperCAmelCase = { '''batch_size''': 1, '''generator''': generator, '''num_inference_steps''': 4, } return inputs def UpperCamelCase( self ): _UpperCAmelCase = '''cpu''' # ensure determinism for the device-dependent torch.Generator _UpperCAmelCase = self.get_dummy_components() _UpperCAmelCase = DanceDiffusionPipeline(**_UpperCamelCase ) _UpperCAmelCase = pipe.to(_UpperCamelCase ) pipe.set_progress_bar_config(disable=_UpperCamelCase ) _UpperCAmelCase = self.get_dummy_inputs(_UpperCamelCase ) _UpperCAmelCase = pipe(**_UpperCamelCase ) _UpperCAmelCase = output.audios _UpperCAmelCase = audio[0, -3:, -3:] assert audio.shape == (1, 2, components["unet"].sample_size) _UpperCAmelCase = np.array([-0.7265, 1.0000, -0.8388, 0.1175, 0.9498, -1.0000] ) assert np.abs(audio_slice.flatten() - expected_slice ).max() < 1e-2 @skip_mps def UpperCamelCase( self ): return super().test_save_load_local() @skip_mps def UpperCamelCase( self ): return super().test_dict_tuple_outputs_equivalent(expected_max_difference=3e-3 ) @skip_mps def UpperCamelCase( self ): return super().test_save_load_optional_components() @skip_mps def UpperCamelCase( self ): return super().test_attention_slicing_forward_pass() def UpperCamelCase( self ): super().test_inference_batch_single_identical(expected_max_diff=3e-3 ) @slow @require_torch_gpu class __UpperCamelCase ( unittest.TestCase ): def UpperCamelCase( self ): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def UpperCamelCase( self ): _UpperCAmelCase = torch_device _UpperCAmelCase = DanceDiffusionPipeline.from_pretrained('''harmonai/maestro-150k''' ) _UpperCAmelCase = pipe.to(_UpperCamelCase ) pipe.set_progress_bar_config(disable=_UpperCamelCase ) _UpperCAmelCase = torch.manual_seed(0 ) _UpperCAmelCase = pipe(generator=_UpperCamelCase , num_inference_steps=100 , audio_length_in_s=4.096 ) _UpperCAmelCase = output.audios _UpperCAmelCase = audio[0, -3:, -3:] assert audio.shape == (1, 2, pipe.unet.sample_size) _UpperCAmelCase = np.array([-0.0192, -0.0231, -0.0318, -0.0059, 0.0002, -0.0020] ) assert np.abs(audio_slice.flatten() - expected_slice ).max() < 1e-2 def UpperCamelCase( self ): _UpperCAmelCase = torch_device _UpperCAmelCase = DanceDiffusionPipeline.from_pretrained('''harmonai/maestro-150k''' , torch_dtype=torch.floataa ) _UpperCAmelCase = pipe.to(_UpperCamelCase ) pipe.set_progress_bar_config(disable=_UpperCamelCase ) _UpperCAmelCase = torch.manual_seed(0 ) _UpperCAmelCase = pipe(generator=_UpperCamelCase , num_inference_steps=100 , audio_length_in_s=4.096 ) _UpperCAmelCase = output.audios _UpperCAmelCase = audio[0, -3:, -3:] assert audio.shape == (1, 2, pipe.unet.sample_size) _UpperCAmelCase = np.array([-0.0367, -0.0488, -0.0771, -0.0525, -0.0444, -0.0341] ) assert np.abs(audio_slice.flatten() - expected_slice ).max() < 1e-2
32
1
from collections import defaultdict from math import gcd def A__ ( SCREAMING_SNAKE_CASE_ : int = 1_50_00_00 ) -> int: """simple docstring""" _UpperCAmelCase = defaultdict(SCREAMING_SNAKE_CASE_ ) _UpperCAmelCase = 2 while 2 * euclid_m * (euclid_m + 1) <= limit: for euclid_n in range((euclid_m % 2) + 1 , SCREAMING_SNAKE_CASE_ , 2 ): if gcd(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) > 1: continue _UpperCAmelCase = 2 * euclid_m * (euclid_m + euclid_n) for perimeter in range(SCREAMING_SNAKE_CASE_ , limit + 1 , SCREAMING_SNAKE_CASE_ ): frequencies[perimeter] += 1 euclid_m += 1 return sum(1 for frequency in frequencies.values() if frequency == 1 ) if __name__ == "__main__": print(f'''{solution() = }''')
32
from collections import OrderedDict from ...utils import logging from .auto_factory import _BaseAutoModelClass, _LazyAutoMapping, auto_class_update from .configuration_auto import CONFIG_MAPPING_NAMES UpperCAmelCase_ = logging.get_logger(__name__) UpperCAmelCase_ = OrderedDict( [ # Base model mapping ("albert", "FlaxAlbertModel"), ("bart", "FlaxBartModel"), ("beit", "FlaxBeitModel"), ("bert", "FlaxBertModel"), ("big_bird", "FlaxBigBirdModel"), ("blenderbot", "FlaxBlenderbotModel"), ("blenderbot-small", "FlaxBlenderbotSmallModel"), ("clip", "FlaxCLIPModel"), ("distilbert", "FlaxDistilBertModel"), ("electra", "FlaxElectraModel"), ("gpt-sw3", "FlaxGPT2Model"), ("gpt2", "FlaxGPT2Model"), ("gpt_neo", "FlaxGPTNeoModel"), ("gptj", "FlaxGPTJModel"), ("longt5", "FlaxLongT5Model"), ("marian", "FlaxMarianModel"), ("mbart", "FlaxMBartModel"), ("mt5", "FlaxMT5Model"), ("opt", "FlaxOPTModel"), ("pegasus", "FlaxPegasusModel"), ("regnet", "FlaxRegNetModel"), ("resnet", "FlaxResNetModel"), ("roberta", "FlaxRobertaModel"), ("roberta-prelayernorm", "FlaxRobertaPreLayerNormModel"), ("roformer", "FlaxRoFormerModel"), ("t5", "FlaxT5Model"), ("vision-text-dual-encoder", "FlaxVisionTextDualEncoderModel"), ("vit", "FlaxViTModel"), ("wav2vec2", "FlaxWav2Vec2Model"), ("whisper", "FlaxWhisperModel"), ("xglm", "FlaxXGLMModel"), ("xlm-roberta", "FlaxXLMRobertaModel"), ] ) UpperCAmelCase_ = OrderedDict( [ # Model for pre-training mapping ("albert", "FlaxAlbertForPreTraining"), ("bart", "FlaxBartForConditionalGeneration"), ("bert", "FlaxBertForPreTraining"), ("big_bird", "FlaxBigBirdForPreTraining"), ("electra", "FlaxElectraForPreTraining"), ("longt5", "FlaxLongT5ForConditionalGeneration"), ("mbart", "FlaxMBartForConditionalGeneration"), ("mt5", "FlaxMT5ForConditionalGeneration"), ("roberta", "FlaxRobertaForMaskedLM"), ("roberta-prelayernorm", "FlaxRobertaPreLayerNormForMaskedLM"), ("roformer", "FlaxRoFormerForMaskedLM"), ("t5", "FlaxT5ForConditionalGeneration"), ("wav2vec2", "FlaxWav2Vec2ForPreTraining"), ("whisper", "FlaxWhisperForConditionalGeneration"), ("xlm-roberta", "FlaxXLMRobertaForMaskedLM"), ] ) UpperCAmelCase_ = OrderedDict( [ # Model for Masked LM mapping ("albert", "FlaxAlbertForMaskedLM"), ("bart", "FlaxBartForConditionalGeneration"), ("bert", "FlaxBertForMaskedLM"), ("big_bird", "FlaxBigBirdForMaskedLM"), ("distilbert", "FlaxDistilBertForMaskedLM"), ("electra", "FlaxElectraForMaskedLM"), ("mbart", "FlaxMBartForConditionalGeneration"), ("roberta", "FlaxRobertaForMaskedLM"), ("roberta-prelayernorm", "FlaxRobertaPreLayerNormForMaskedLM"), ("roformer", "FlaxRoFormerForMaskedLM"), ("xlm-roberta", "FlaxXLMRobertaForMaskedLM"), ] ) UpperCAmelCase_ = OrderedDict( [ # Model for Seq2Seq Causal LM mapping ("bart", "FlaxBartForConditionalGeneration"), ("blenderbot", "FlaxBlenderbotForConditionalGeneration"), ("blenderbot-small", "FlaxBlenderbotSmallForConditionalGeneration"), ("encoder-decoder", "FlaxEncoderDecoderModel"), ("longt5", "FlaxLongT5ForConditionalGeneration"), ("marian", "FlaxMarianMTModel"), ("mbart", "FlaxMBartForConditionalGeneration"), ("mt5", "FlaxMT5ForConditionalGeneration"), ("pegasus", "FlaxPegasusForConditionalGeneration"), ("t5", "FlaxT5ForConditionalGeneration"), ] ) UpperCAmelCase_ = OrderedDict( [ # Model for Image-classsification ("beit", "FlaxBeitForImageClassification"), ("regnet", "FlaxRegNetForImageClassification"), ("resnet", "FlaxResNetForImageClassification"), ("vit", "FlaxViTForImageClassification"), ] ) UpperCAmelCase_ = OrderedDict( [ ("vision-encoder-decoder", "FlaxVisionEncoderDecoderModel"), ] ) UpperCAmelCase_ = OrderedDict( [ # Model for Causal LM mapping ("bart", "FlaxBartForCausalLM"), ("bert", "FlaxBertForCausalLM"), ("big_bird", "FlaxBigBirdForCausalLM"), ("electra", "FlaxElectraForCausalLM"), ("gpt-sw3", "FlaxGPT2LMHeadModel"), ("gpt2", "FlaxGPT2LMHeadModel"), ("gpt_neo", "FlaxGPTNeoForCausalLM"), ("gptj", "FlaxGPTJForCausalLM"), ("opt", "FlaxOPTForCausalLM"), ("roberta", "FlaxRobertaForCausalLM"), ("roberta-prelayernorm", "FlaxRobertaPreLayerNormForCausalLM"), ("xglm", "FlaxXGLMForCausalLM"), ("xlm-roberta", "FlaxXLMRobertaForCausalLM"), ] ) UpperCAmelCase_ = OrderedDict( [ # Model for Sequence Classification mapping ("albert", "FlaxAlbertForSequenceClassification"), ("bart", "FlaxBartForSequenceClassification"), ("bert", "FlaxBertForSequenceClassification"), ("big_bird", "FlaxBigBirdForSequenceClassification"), ("distilbert", "FlaxDistilBertForSequenceClassification"), ("electra", "FlaxElectraForSequenceClassification"), ("mbart", "FlaxMBartForSequenceClassification"), ("roberta", "FlaxRobertaForSequenceClassification"), ("roberta-prelayernorm", "FlaxRobertaPreLayerNormForSequenceClassification"), ("roformer", "FlaxRoFormerForSequenceClassification"), ("xlm-roberta", "FlaxXLMRobertaForSequenceClassification"), ] ) UpperCAmelCase_ = OrderedDict( [ # Model for Question Answering mapping ("albert", "FlaxAlbertForQuestionAnswering"), ("bart", "FlaxBartForQuestionAnswering"), ("bert", "FlaxBertForQuestionAnswering"), ("big_bird", "FlaxBigBirdForQuestionAnswering"), ("distilbert", "FlaxDistilBertForQuestionAnswering"), ("electra", "FlaxElectraForQuestionAnswering"), ("mbart", "FlaxMBartForQuestionAnswering"), ("roberta", "FlaxRobertaForQuestionAnswering"), ("roberta-prelayernorm", "FlaxRobertaPreLayerNormForQuestionAnswering"), ("roformer", "FlaxRoFormerForQuestionAnswering"), ("xlm-roberta", "FlaxXLMRobertaForQuestionAnswering"), ] ) UpperCAmelCase_ = OrderedDict( [ # Model for Token Classification mapping ("albert", "FlaxAlbertForTokenClassification"), ("bert", "FlaxBertForTokenClassification"), ("big_bird", "FlaxBigBirdForTokenClassification"), ("distilbert", "FlaxDistilBertForTokenClassification"), ("electra", "FlaxElectraForTokenClassification"), ("roberta", "FlaxRobertaForTokenClassification"), ("roberta-prelayernorm", "FlaxRobertaPreLayerNormForTokenClassification"), ("roformer", "FlaxRoFormerForTokenClassification"), ("xlm-roberta", "FlaxXLMRobertaForTokenClassification"), ] ) UpperCAmelCase_ = OrderedDict( [ # Model for Multiple Choice mapping ("albert", "FlaxAlbertForMultipleChoice"), ("bert", "FlaxBertForMultipleChoice"), ("big_bird", "FlaxBigBirdForMultipleChoice"), ("distilbert", "FlaxDistilBertForMultipleChoice"), ("electra", "FlaxElectraForMultipleChoice"), ("roberta", "FlaxRobertaForMultipleChoice"), ("roberta-prelayernorm", "FlaxRobertaPreLayerNormForMultipleChoice"), ("roformer", "FlaxRoFormerForMultipleChoice"), ("xlm-roberta", "FlaxXLMRobertaForMultipleChoice"), ] ) UpperCAmelCase_ = OrderedDict( [ ("bert", "FlaxBertForNextSentencePrediction"), ] ) UpperCAmelCase_ = OrderedDict( [ ("speech-encoder-decoder", "FlaxSpeechEncoderDecoderModel"), ("whisper", "FlaxWhisperForConditionalGeneration"), ] ) UpperCAmelCase_ = OrderedDict( [ ("whisper", "FlaxWhisperForAudioClassification"), ] ) UpperCAmelCase_ = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_MAPPING_NAMES) UpperCAmelCase_ = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_PRETRAINING_MAPPING_NAMES) UpperCAmelCase_ = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_MASKED_LM_MAPPING_NAMES) UpperCAmelCase_ = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING_NAMES ) UpperCAmelCase_ = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING_NAMES ) UpperCAmelCase_ = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_VISION_2_SEQ_MAPPING_NAMES) UpperCAmelCase_ = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_CAUSAL_LM_MAPPING_NAMES) UpperCAmelCase_ = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING_NAMES ) UpperCAmelCase_ = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_QUESTION_ANSWERING_MAPPING_NAMES ) UpperCAmelCase_ = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING_NAMES ) UpperCAmelCase_ = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_MULTIPLE_CHOICE_MAPPING_NAMES ) UpperCAmelCase_ = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_NEXT_SENTENCE_PREDICTION_MAPPING_NAMES ) UpperCAmelCase_ = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_SPEECH_SEQ_2_SEQ_MAPPING_NAMES ) UpperCAmelCase_ = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_AUDIO_CLASSIFICATION_MAPPING_NAMES ) class __UpperCamelCase ( _BaseAutoModelClass ): __A : List[str] = FLAX_MODEL_MAPPING UpperCAmelCase_ = auto_class_update(FlaxAutoModel) class __UpperCamelCase ( _BaseAutoModelClass ): __A : Optional[Any] = FLAX_MODEL_FOR_PRETRAINING_MAPPING UpperCAmelCase_ = auto_class_update(FlaxAutoModelForPreTraining, head_doc="pretraining") class __UpperCamelCase ( _BaseAutoModelClass ): __A : List[Any] = FLAX_MODEL_FOR_CAUSAL_LM_MAPPING UpperCAmelCase_ = auto_class_update(FlaxAutoModelForCausalLM, head_doc="causal language modeling") class __UpperCamelCase ( _BaseAutoModelClass ): __A : List[str] = FLAX_MODEL_FOR_MASKED_LM_MAPPING UpperCAmelCase_ = auto_class_update(FlaxAutoModelForMaskedLM, head_doc="masked language modeling") class __UpperCamelCase ( _BaseAutoModelClass ): __A : Dict = FLAX_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING UpperCAmelCase_ = auto_class_update( FlaxAutoModelForSeqaSeqLM, head_doc="sequence-to-sequence language modeling", checkpoint_for_example="t5-base" ) class __UpperCamelCase ( _BaseAutoModelClass ): __A : List[str] = FLAX_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING UpperCAmelCase_ = auto_class_update( FlaxAutoModelForSequenceClassification, head_doc="sequence classification" ) class __UpperCamelCase ( _BaseAutoModelClass ): __A : Dict = FLAX_MODEL_FOR_QUESTION_ANSWERING_MAPPING UpperCAmelCase_ = auto_class_update(FlaxAutoModelForQuestionAnswering, head_doc="question answering") class __UpperCamelCase ( _BaseAutoModelClass ): __A : Union[str, Any] = FLAX_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING UpperCAmelCase_ = auto_class_update( FlaxAutoModelForTokenClassification, head_doc="token classification" ) class __UpperCamelCase ( _BaseAutoModelClass ): __A : Union[str, Any] = FLAX_MODEL_FOR_MULTIPLE_CHOICE_MAPPING UpperCAmelCase_ = auto_class_update(FlaxAutoModelForMultipleChoice, head_doc="multiple choice") class __UpperCamelCase ( _BaseAutoModelClass ): __A : Any = FLAX_MODEL_FOR_NEXT_SENTENCE_PREDICTION_MAPPING UpperCAmelCase_ = auto_class_update( FlaxAutoModelForNextSentencePrediction, head_doc="next sentence prediction" ) class __UpperCamelCase ( _BaseAutoModelClass ): __A : Dict = FLAX_MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING UpperCAmelCase_ = auto_class_update( FlaxAutoModelForImageClassification, head_doc="image classification" ) class __UpperCamelCase ( _BaseAutoModelClass ): __A : Optional[int] = FLAX_MODEL_FOR_VISION_2_SEQ_MAPPING UpperCAmelCase_ = auto_class_update(FlaxAutoModelForVisionaSeq, head_doc="vision-to-text modeling") class __UpperCamelCase ( _BaseAutoModelClass ): __A : str = FLAX_MODEL_FOR_SPEECH_SEQ_2_SEQ_MAPPING UpperCAmelCase_ = auto_class_update( FlaxAutoModelForSpeechSeqaSeq, head_doc="sequence-to-sequence speech-to-text modeling" )
32
1
import torch from transformers import PreTrainedModel, XLMRobertaConfig, XLMRobertaModel class __UpperCamelCase ( A__ ): __A : str = """M-CLIP""" def __init__( self , _UpperCamelCase=1024 , _UpperCamelCase=768 , **_UpperCamelCase ): _UpperCAmelCase = transformerDimSize _UpperCAmelCase = imageDimSize super().__init__(**_UpperCamelCase ) class __UpperCamelCase ( A__ ): __A : Any = MCLIPConfig def __init__( self , _UpperCamelCase , *_UpperCamelCase , **_UpperCamelCase ): super().__init__(_UpperCamelCase , *_UpperCamelCase , **_UpperCamelCase ) _UpperCAmelCase = XLMRobertaModel(_UpperCamelCase ) _UpperCAmelCase = torch.nn.Linear( in_features=config.transformerDimensions , out_features=config.numDims ) def UpperCamelCase( self , _UpperCamelCase , _UpperCamelCase ): _UpperCAmelCase = self.transformer(input_ids=_UpperCamelCase , attention_mask=_UpperCamelCase )[0] _UpperCAmelCase = (embs * attention_mask.unsqueeze(2 )).sum(dim=1 ) / attention_mask.sum(dim=1 )[:, None] return self.LinearTransformation(_UpperCamelCase ), embs
32
import baseaa def A__ ( SCREAMING_SNAKE_CASE_ : str ) -> bytes: """simple docstring""" return baseaa.baaencode(string.encode('''utf-8''' ) ) def A__ ( SCREAMING_SNAKE_CASE_ : bytes ) -> str: """simple docstring""" return baseaa.baadecode(SCREAMING_SNAKE_CASE_ ).decode('''utf-8''' ) if __name__ == "__main__": UpperCAmelCase_ = "Hello World!" UpperCAmelCase_ = baseaa_encode(test) print(encoded) UpperCAmelCase_ = baseaa_decode(encoded) print(decoded)
32
1
import torch from diffusers import DDPMParallelScheduler from .test_schedulers import SchedulerCommonTest class __UpperCamelCase ( A__ ): __A : Union[str, Any] = (DDPMParallelScheduler,) def UpperCamelCase( self , **_UpperCamelCase ): _UpperCAmelCase = { '''num_train_timesteps''': 1000, '''beta_start''': 0.0001, '''beta_end''': 0.02, '''beta_schedule''': '''linear''', '''variance_type''': '''fixed_small''', '''clip_sample''': True, } config.update(**_UpperCamelCase ) return config def UpperCamelCase( self ): for timesteps in [1, 5, 100, 1000]: self.check_over_configs(num_train_timesteps=_UpperCamelCase ) def UpperCamelCase( self ): for beta_start, beta_end in zip([0.0001, 0.001, 0.01, 0.1] , [0.002, 0.02, 0.2, 2] ): self.check_over_configs(beta_start=_UpperCamelCase , beta_end=_UpperCamelCase ) def UpperCamelCase( self ): for schedule in ["linear", "squaredcos_cap_v2"]: self.check_over_configs(beta_schedule=_UpperCamelCase ) def UpperCamelCase( self ): for variance in ["fixed_small", "fixed_large", "other"]: self.check_over_configs(variance_type=_UpperCamelCase ) def UpperCamelCase( self ): for clip_sample in [True, False]: self.check_over_configs(clip_sample=_UpperCamelCase ) def UpperCamelCase( self ): self.check_over_configs(thresholding=_UpperCamelCase ) for threshold in [0.5, 1.0, 2.0]: for prediction_type in ["epsilon", "sample", "v_prediction"]: self.check_over_configs( thresholding=_UpperCamelCase , prediction_type=_UpperCamelCase , sample_max_value=_UpperCamelCase , ) def UpperCamelCase( self ): for prediction_type in ["epsilon", "sample", "v_prediction"]: self.check_over_configs(prediction_type=_UpperCamelCase ) def UpperCamelCase( self ): for t in [0, 500, 999]: self.check_over_forward(time_step=_UpperCamelCase ) def UpperCamelCase( self ): _UpperCAmelCase = self.scheduler_classes[0] _UpperCAmelCase = self.get_scheduler_config() _UpperCAmelCase = scheduler_class(**_UpperCamelCase ) assert torch.sum(torch.abs(scheduler._get_variance(0 ) - 0.0 ) ) < 1e-5 assert torch.sum(torch.abs(scheduler._get_variance(487 ) - 0.00979 ) ) < 1e-5 assert torch.sum(torch.abs(scheduler._get_variance(999 ) - 0.02 ) ) < 1e-5 def UpperCamelCase( self ): _UpperCAmelCase = self.scheduler_classes[0] _UpperCAmelCase = self.get_scheduler_config() _UpperCAmelCase = scheduler_class(**_UpperCamelCase ) _UpperCAmelCase = len(_UpperCamelCase ) _UpperCAmelCase = self.dummy_model() _UpperCAmelCase = self.dummy_sample_deter _UpperCAmelCase = self.dummy_sample_deter + 0.1 _UpperCAmelCase = self.dummy_sample_deter - 0.1 _UpperCAmelCase = samplea.shape[0] _UpperCAmelCase = torch.stack([samplea, samplea, samplea] , dim=0 ) _UpperCAmelCase = torch.arange(_UpperCamelCase )[0:3, None].repeat(1 , _UpperCamelCase ) _UpperCAmelCase = model(samples.flatten(0 , 1 ) , timesteps.flatten(0 , 1 ) ) _UpperCAmelCase = scheduler.batch_step_no_noise(_UpperCamelCase , timesteps.flatten(0 , 1 ) , samples.flatten(0 , 1 ) ) _UpperCAmelCase = torch.sum(torch.abs(_UpperCamelCase ) ) _UpperCAmelCase = torch.mean(torch.abs(_UpperCamelCase ) ) assert abs(result_sum.item() - 1153.1833 ) < 1e-2 assert abs(result_mean.item() - 0.5005 ) < 1e-3 def UpperCamelCase( self ): _UpperCAmelCase = self.scheduler_classes[0] _UpperCAmelCase = self.get_scheduler_config() _UpperCAmelCase = scheduler_class(**_UpperCamelCase ) _UpperCAmelCase = len(_UpperCamelCase ) _UpperCAmelCase = self.dummy_model() _UpperCAmelCase = self.dummy_sample_deter _UpperCAmelCase = torch.manual_seed(0 ) for t in reversed(range(_UpperCamelCase ) ): # 1. predict noise residual _UpperCAmelCase = model(_UpperCamelCase , _UpperCamelCase ) # 2. predict previous mean of sample x_t-1 _UpperCAmelCase = scheduler.step(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase , generator=_UpperCamelCase ).prev_sample _UpperCAmelCase = pred_prev_sample _UpperCAmelCase = torch.sum(torch.abs(_UpperCamelCase ) ) _UpperCAmelCase = torch.mean(torch.abs(_UpperCamelCase ) ) assert abs(result_sum.item() - 258.9606 ) < 1e-2 assert abs(result_mean.item() - 0.3372 ) < 1e-3 def UpperCamelCase( self ): _UpperCAmelCase = self.scheduler_classes[0] _UpperCAmelCase = self.get_scheduler_config(prediction_type='''v_prediction''' ) _UpperCAmelCase = scheduler_class(**_UpperCamelCase ) _UpperCAmelCase = len(_UpperCamelCase ) _UpperCAmelCase = self.dummy_model() _UpperCAmelCase = self.dummy_sample_deter _UpperCAmelCase = torch.manual_seed(0 ) for t in reversed(range(_UpperCamelCase ) ): # 1. predict noise residual _UpperCAmelCase = model(_UpperCamelCase , _UpperCamelCase ) # 2. predict previous mean of sample x_t-1 _UpperCAmelCase = scheduler.step(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase , generator=_UpperCamelCase ).prev_sample _UpperCAmelCase = pred_prev_sample _UpperCAmelCase = torch.sum(torch.abs(_UpperCamelCase ) ) _UpperCAmelCase = torch.mean(torch.abs(_UpperCamelCase ) ) assert abs(result_sum.item() - 202.0296 ) < 1e-2 assert abs(result_mean.item() - 0.2631 ) < 1e-3 def UpperCamelCase( self ): _UpperCAmelCase = self.scheduler_classes[0] _UpperCAmelCase = self.get_scheduler_config() _UpperCAmelCase = scheduler_class(**_UpperCamelCase ) _UpperCAmelCase = [100, 87, 50, 1, 0] scheduler.set_timesteps(timesteps=_UpperCamelCase ) _UpperCAmelCase = scheduler.timesteps for i, timestep in enumerate(_UpperCamelCase ): if i == len(_UpperCamelCase ) - 1: _UpperCAmelCase = -1 else: _UpperCAmelCase = timesteps[i + 1] _UpperCAmelCase = scheduler.previous_timestep(_UpperCamelCase ) _UpperCAmelCase = prev_t.item() self.assertEqual(_UpperCamelCase , _UpperCamelCase ) def UpperCamelCase( self ): _UpperCAmelCase = self.scheduler_classes[0] _UpperCAmelCase = self.get_scheduler_config() _UpperCAmelCase = scheduler_class(**_UpperCamelCase ) _UpperCAmelCase = [100, 87, 50, 51, 0] with self.assertRaises(_UpperCamelCase , msg='''`custom_timesteps` must be in descending order.''' ): scheduler.set_timesteps(timesteps=_UpperCamelCase ) def UpperCamelCase( self ): _UpperCAmelCase = self.scheduler_classes[0] _UpperCAmelCase = self.get_scheduler_config() _UpperCAmelCase = scheduler_class(**_UpperCamelCase ) _UpperCAmelCase = [100, 87, 50, 1, 0] _UpperCAmelCase = len(_UpperCamelCase ) with self.assertRaises(_UpperCamelCase , msg='''Can only pass one of `num_inference_steps` or `custom_timesteps`.''' ): scheduler.set_timesteps(num_inference_steps=_UpperCamelCase , timesteps=_UpperCamelCase ) def UpperCamelCase( self ): _UpperCAmelCase = self.scheduler_classes[0] _UpperCAmelCase = self.get_scheduler_config() _UpperCAmelCase = scheduler_class(**_UpperCamelCase ) _UpperCAmelCase = [scheduler.config.num_train_timesteps] with self.assertRaises( _UpperCamelCase , msg='''`timesteps` must start before `self.config.train_timesteps`: {scheduler.config.num_train_timesteps}}''' , ): scheduler.set_timesteps(timesteps=_UpperCamelCase )
32
from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD, ChannelDimension, ImageInput, PILImageResampling, is_batched, to_numpy_array, valid_images, ) from ...utils import TensorType, logging UpperCAmelCase_ = logging.get_logger(__name__) class __UpperCamelCase ( A__ ): __A : int = ["""pixel_values"""] def __init__( self , _UpperCamelCase = True , _UpperCamelCase = None , _UpperCamelCase = PILImageResampling.BICUBIC , _UpperCamelCase = True , _UpperCamelCase = True , _UpperCamelCase = 1 / 255 , _UpperCamelCase = None , _UpperCamelCase = True , _UpperCamelCase = None , _UpperCamelCase = None , **_UpperCamelCase , ): super().__init__(**_UpperCamelCase ) _UpperCAmelCase = size if size is not None else {'''height''': 224, '''width''': 224} _UpperCAmelCase = get_size_dict(_UpperCamelCase ) _UpperCAmelCase = crop_size if crop_size is not None else {'''height''': 224, '''width''': 224} _UpperCAmelCase = get_size_dict(_UpperCamelCase , default_to_square=_UpperCamelCase , param_name='''crop_size''' ) _UpperCAmelCase = do_resize _UpperCAmelCase = do_rescale _UpperCAmelCase = do_normalize _UpperCAmelCase = do_center_crop _UpperCAmelCase = crop_size _UpperCAmelCase = size _UpperCAmelCase = resample _UpperCAmelCase = rescale_factor _UpperCAmelCase = image_mean if image_mean is not None else IMAGENET_DEFAULT_MEAN _UpperCAmelCase = image_std if image_std is not None else IMAGENET_DEFAULT_STD def UpperCamelCase( self , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase = PILImageResampling.BILINEAR , _UpperCamelCase = None , **_UpperCamelCase , ): _UpperCAmelCase = get_size_dict(_UpperCamelCase ) if "shortest_edge" in size: _UpperCAmelCase = get_resize_output_image_size(_UpperCamelCase , size=size['''shortest_edge'''] , default_to_square=_UpperCamelCase ) # size = get_resize_output_image_size(image, size["shortest_edge"], size["longest_edge"]) elif "height" in size and "width" in size: _UpperCAmelCase = (size['''height'''], size['''width''']) else: raise ValueError(f'''Size must contain \'height\' and \'width\' keys or \'shortest_edge\' key. Got {size.keys()}''' ) return resize(_UpperCamelCase , size=_UpperCamelCase , resample=_UpperCamelCase , data_format=_UpperCamelCase , **_UpperCamelCase ) def UpperCamelCase( self , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase = None , **_UpperCamelCase , ): _UpperCAmelCase = get_size_dict(_UpperCamelCase ) if "height" not in size or "width" not in size: raise ValueError(f'''The `size` parameter must contain the keys (height, width). Got {size.keys()}''' ) return center_crop(_UpperCamelCase , size=(size['''height'''], size['''width''']) , data_format=_UpperCamelCase , **_UpperCamelCase ) def UpperCamelCase( self , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase = None , **_UpperCamelCase ): return rescale(_UpperCamelCase , scale=_UpperCamelCase , data_format=_UpperCamelCase , **_UpperCamelCase ) def UpperCamelCase( self , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase = None , **_UpperCamelCase , ): return normalize(_UpperCamelCase , mean=_UpperCamelCase , std=_UpperCamelCase , data_format=_UpperCamelCase , **_UpperCamelCase ) def UpperCamelCase( self , _UpperCamelCase , _UpperCamelCase = None , _UpperCamelCase = None , _UpperCamelCase = None , _UpperCamelCase = None , _UpperCamelCase = None , _UpperCamelCase = None , _UpperCamelCase = None , _UpperCamelCase = None , _UpperCamelCase = None , _UpperCamelCase = None , _UpperCamelCase = None , _UpperCamelCase = ChannelDimension.FIRST , **_UpperCamelCase , ): _UpperCAmelCase = do_resize if do_resize is not None else self.do_resize _UpperCAmelCase = do_rescale if do_rescale is not None else self.do_rescale _UpperCAmelCase = do_normalize if do_normalize is not None else self.do_normalize _UpperCAmelCase = do_center_crop if do_center_crop is not None else self.do_center_crop _UpperCAmelCase = crop_size if crop_size is not None else self.crop_size _UpperCAmelCase = get_size_dict(_UpperCamelCase , param_name='''crop_size''' , default_to_square=_UpperCamelCase ) _UpperCAmelCase = resample if resample is not None else self.resample _UpperCAmelCase = rescale_factor if rescale_factor is not None else self.rescale_factor _UpperCAmelCase = image_mean if image_mean is not None else self.image_mean _UpperCAmelCase = image_std if image_std is not None else self.image_std _UpperCAmelCase = size if size is not None else self.size _UpperCAmelCase = get_size_dict(_UpperCamelCase ) if not is_batched(_UpperCamelCase ): _UpperCAmelCase = [images] if not valid_images(_UpperCamelCase ): raise ValueError( '''Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ''' '''torch.Tensor, tf.Tensor or jax.ndarray.''' ) if do_resize and size is None: raise ValueError('''Size must be specified if do_resize is True.''' ) if do_center_crop and crop_size is None: raise ValueError('''Crop size must be specified if do_center_crop is True.''' ) if do_rescale and rescale_factor is None: raise ValueError('''Rescale factor must be specified if do_rescale is True.''' ) # All transformations expect numpy arrays. _UpperCAmelCase = [to_numpy_array(_UpperCamelCase ) for image in images] if do_resize: _UpperCAmelCase = [self.resize(image=_UpperCamelCase , size=_UpperCamelCase , resample=_UpperCamelCase ) for image in images] if do_center_crop: _UpperCAmelCase = [self.center_crop(image=_UpperCamelCase , size=_UpperCamelCase ) for image in images] if do_rescale: _UpperCAmelCase = [self.rescale(image=_UpperCamelCase , scale=_UpperCamelCase ) for image in images] if do_normalize: _UpperCAmelCase = [self.normalize(image=_UpperCamelCase , mean=_UpperCamelCase , std=_UpperCamelCase ) for image in images] _UpperCAmelCase = [to_channel_dimension_format(_UpperCamelCase , _UpperCamelCase ) for image in images] _UpperCAmelCase = {'''pixel_values''': images} return BatchFeature(data=_UpperCamelCase , tensor_type=_UpperCamelCase )
32
1
import socket def A__ ( ) -> Dict: """simple docstring""" _UpperCAmelCase = socket.socket(socket.AF_INET , socket.SOCK_STREAM ) _UpperCAmelCase = socket.gethostname() _UpperCAmelCase = 1_23_12 sock.connect((host, port) ) sock.send(B'''Hello server!''' ) with open('''Received_file''' , '''wb''' ) as out_file: print('''File opened''' ) print('''Receiving data...''' ) while True: _UpperCAmelCase = sock.recv(10_24 ) if not data: break out_file.write(SCREAMING_SNAKE_CASE_ ) print('''Successfully received the file''' ) sock.close() print('''Connection closed''' ) if __name__ == "__main__": main()
32
from ..utils import DummyObject, requires_backends class __UpperCamelCase ( metaclass=A__ ): __A : str = ["""torch""", """scipy"""] def __init__( self , *_UpperCamelCase , **_UpperCamelCase ): requires_backends(self , ['''torch''', '''scipy'''] ) @classmethod def UpperCamelCase( cls , *_UpperCamelCase , **_UpperCamelCase ): requires_backends(cls , ['''torch''', '''scipy'''] ) @classmethod def UpperCamelCase( cls , *_UpperCamelCase , **_UpperCamelCase ): requires_backends(cls , ['''torch''', '''scipy'''] )
32
1
import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging UpperCAmelCase_ = logging.get_logger(__name__) UpperCAmelCase_ = "▁" UpperCAmelCase_ = {"vocab_file": "sentencepiece.bpe.model", "monolingual_vocab_file": "dict.txt"} UpperCAmelCase_ = { "vocab_file": { "vinai/bartpho-syllable": "https://huggingface.co/vinai/bartpho-syllable/resolve/main/sentencepiece.bpe.model", }, "monolingual_vocab_file": { "vinai/bartpho-syllable": "https://huggingface.co/vinai/bartpho-syllable/resolve/main/dict.txt", }, } UpperCAmelCase_ = {"vinai/bartpho-syllable": 10_24} class __UpperCamelCase ( A__ ): __A : List[Any] = VOCAB_FILES_NAMES __A : Dict = PRETRAINED_VOCAB_FILES_MAP __A : Optional[Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __A : int = ["""input_ids""", """attention_mask"""] def __init__( self , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase="<s>" , _UpperCamelCase="</s>" , _UpperCamelCase="</s>" , _UpperCamelCase="<s>" , _UpperCamelCase="<unk>" , _UpperCamelCase="<pad>" , _UpperCamelCase="<mask>" , _UpperCamelCase = None , **_UpperCamelCase , ): # Mask token behave like a normal word, i.e. include the space before it _UpperCAmelCase = AddedToken(_UpperCamelCase , lstrip=_UpperCamelCase , rstrip=_UpperCamelCase ) if isinstance(_UpperCamelCase , _UpperCamelCase ) else mask_token _UpperCAmelCase = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( bos_token=_UpperCamelCase , eos_token=_UpperCamelCase , unk_token=_UpperCamelCase , sep_token=_UpperCamelCase , cls_token=_UpperCamelCase , pad_token=_UpperCamelCase , mask_token=_UpperCamelCase , sp_model_kwargs=self.sp_model_kwargs , **_UpperCamelCase , ) _UpperCAmelCase = vocab_file _UpperCAmelCase = monolingual_vocab_file _UpperCAmelCase = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(str(_UpperCamelCase ) ) # Load the reduced vocab # Keep order of special tokens for backward compatibility _UpperCAmelCase = {} _UpperCAmelCase = 0 for token in [bos_token, pad_token, eos_token, unk_token, sep_token, cls_token]: if str(_UpperCamelCase ) not in self.fairseq_tokens_to_ids: _UpperCAmelCase = cnt cnt += 1 with open(_UpperCamelCase , '''r''' , encoding='''utf-8''' ) as f: for line in f.readlines(): _UpperCAmelCase = line.strip().split()[0] _UpperCAmelCase = len(self.fairseq_tokens_to_ids ) if str(_UpperCamelCase ) not in self.fairseq_tokens_to_ids: _UpperCAmelCase = len(self.fairseq_tokens_to_ids ) _UpperCAmelCase = {v: k for k, v in self.fairseq_tokens_to_ids.items()} def __getstate__( self ): _UpperCAmelCase = self.__dict__.copy() _UpperCAmelCase = None _UpperCAmelCase = self.sp_model.serialized_model_proto() return state def __setstate__( self , _UpperCamelCase ): _UpperCAmelCase = d # for backward compatibility if not hasattr(self , '''sp_model_kwargs''' ): _UpperCAmelCase = {} _UpperCAmelCase = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.LoadFromSerializedProto(self.sp_model_proto ) def UpperCamelCase( self , _UpperCamelCase , _UpperCamelCase = None ): if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] _UpperCAmelCase = [self.cls_token_id] _UpperCAmelCase = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def UpperCamelCase( self , _UpperCamelCase , _UpperCamelCase = None , _UpperCamelCase = False ): if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=_UpperCamelCase , token_ids_a=_UpperCamelCase , already_has_special_tokens=_UpperCamelCase ) if token_ids_a is None: return [1] + ([0] * len(_UpperCamelCase )) + [1] return [1] + ([0] * len(_UpperCamelCase )) + [1, 1] + ([0] * len(_UpperCamelCase )) + [1] def UpperCamelCase( self , _UpperCamelCase , _UpperCamelCase = None ): _UpperCAmelCase = [self.sep_token_id] _UpperCAmelCase = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] @property def UpperCamelCase( self ): return len(self.fairseq_ids_to_tokens ) def UpperCamelCase( self ): _UpperCAmelCase = {self.convert_ids_to_tokens(_UpperCamelCase ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def UpperCamelCase( self , _UpperCamelCase ): return self.sp_model.encode(_UpperCamelCase , out_type=_UpperCamelCase ) def UpperCamelCase( self , _UpperCamelCase ): if token in self.fairseq_tokens_to_ids: return self.fairseq_tokens_to_ids[token] else: return self.unk_token_id def UpperCamelCase( self , _UpperCamelCase ): return self.fairseq_ids_to_tokens[index] def UpperCamelCase( self , _UpperCamelCase ): _UpperCAmelCase = ''''''.join(_UpperCamelCase ).replace(_UpperCamelCase , ''' ''' ).strip() return out_string def UpperCamelCase( self , _UpperCamelCase , _UpperCamelCase = None ): if not os.path.isdir(_UpperCamelCase ): logger.error(f'''Vocabulary path ({save_directory}) should be a directory''' ) return _UpperCAmelCase = os.path.join( _UpperCamelCase , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) _UpperCAmelCase = os.path.join( _UpperCamelCase , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''monolingual_vocab_file'''] , ) if os.path.abspath(self.vocab_file ) != os.path.abspath(_UpperCamelCase ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , _UpperCamelCase ) elif not os.path.isfile(self.vocab_file ): with open(_UpperCamelCase , '''wb''' ) as fi: _UpperCAmelCase = self.sp_model.serialized_model_proto() fi.write(_UpperCamelCase ) if os.path.abspath(self.monolingual_vocab_file ) != os.path.abspath( _UpperCamelCase ) and os.path.isfile(self.monolingual_vocab_file ): copyfile(self.monolingual_vocab_file , _UpperCamelCase ) elif not os.path.isfile(self.monolingual_vocab_file ): with open(_UpperCamelCase , '''w''' , encoding='''utf-8''' ) as fp: for token in self.fairseq_tokens_to_ids: if token not in self.all_special_tokens: fp.write(f'''{str(_UpperCamelCase )} \n''' ) return out_vocab_file, out_monolingual_vocab_file
32
def A__ ( SCREAMING_SNAKE_CASE_ : int = 2_00_00_00 ) -> int: """simple docstring""" _UpperCAmelCase = [0 for i in range(n + 1 )] _UpperCAmelCase = 1 _UpperCAmelCase = 1 for i in range(2 , int(n**0.5 ) + 1 ): if primality_list[i] == 0: for j in range(i * i , n + 1 , SCREAMING_SNAKE_CASE_ ): _UpperCAmelCase = 1 _UpperCAmelCase = 0 for i in range(SCREAMING_SNAKE_CASE_ ): if primality_list[i] == 0: sum_of_primes += i return sum_of_primes if __name__ == "__main__": print(f'''{solution() = }''')
32
1
# DISCLAIMER: This file is strongly influenced by https://github.com/yang-song/score_sde_pytorch import math from dataclasses import dataclass from typing import Optional, Tuple, Union import torch from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput, randn_tensor from .scheduling_utils import SchedulerMixin, SchedulerOutput @dataclass class __UpperCamelCase ( A__ ): __A : torch.FloatTensor __A : torch.FloatTensor class __UpperCamelCase ( A__ , A__ ): __A : Dict = 1 @register_to_config def __init__( self , _UpperCamelCase = 2000 , _UpperCamelCase = 0.15 , _UpperCamelCase = 0.01 , _UpperCamelCase = 1348.0 , _UpperCamelCase = 1e-5 , _UpperCamelCase = 1 , ): # standard deviation of the initial noise distribution _UpperCAmelCase = sigma_max # setable values _UpperCAmelCase = None self.set_sigmas(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) def UpperCamelCase( self , _UpperCamelCase , _UpperCamelCase = None ): return sample def UpperCamelCase( self , _UpperCamelCase , _UpperCamelCase = None , _UpperCamelCase = None ): _UpperCAmelCase = sampling_eps if sampling_eps is not None else self.config.sampling_eps _UpperCAmelCase = torch.linspace(1 , _UpperCamelCase , _UpperCamelCase , device=_UpperCamelCase ) def UpperCamelCase( self , _UpperCamelCase , _UpperCamelCase = None , _UpperCamelCase = None , _UpperCamelCase = None ): _UpperCAmelCase = sigma_min if sigma_min is not None else self.config.sigma_min _UpperCAmelCase = sigma_max if sigma_max is not None else self.config.sigma_max _UpperCAmelCase = sampling_eps if sampling_eps is not None else self.config.sampling_eps if self.timesteps is None: self.set_timesteps(_UpperCamelCase , _UpperCamelCase ) _UpperCAmelCase = sigma_min * (sigma_max / sigma_min) ** (self.timesteps / sampling_eps) _UpperCAmelCase = torch.exp(torch.linspace(math.log(_UpperCamelCase ) , math.log(_UpperCamelCase ) , _UpperCamelCase ) ) _UpperCAmelCase = torch.tensor([sigma_min * (sigma_max / sigma_min) ** t for t in self.timesteps] ) def UpperCamelCase( self , _UpperCamelCase , _UpperCamelCase ): return torch.where( timesteps == 0 , torch.zeros_like(t.to(timesteps.device ) ) , self.discrete_sigmas[timesteps - 1].to(timesteps.device ) , ) def UpperCamelCase( self , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase = None , _UpperCamelCase = True , ): if self.timesteps is None: raise ValueError( '''`self.timesteps` is not set, you need to run \'set_timesteps\' after creating the scheduler''' ) _UpperCAmelCase = timestep * torch.ones( sample.shape[0] , device=sample.device ) # torch.repeat_interleave(timestep, sample.shape[0]) _UpperCAmelCase = (timestep * (len(self.timesteps ) - 1)).long() # mps requires indices to be in the same device, so we use cpu as is the default with cuda _UpperCAmelCase = timesteps.to(self.discrete_sigmas.device ) _UpperCAmelCase = self.discrete_sigmas[timesteps].to(sample.device ) _UpperCAmelCase = self.get_adjacent_sigma(_UpperCamelCase , _UpperCamelCase ).to(sample.device ) _UpperCAmelCase = torch.zeros_like(_UpperCamelCase ) _UpperCAmelCase = (sigma**2 - adjacent_sigma**2) ** 0.5 # equation 6 in the paper: the model_output modeled by the network is grad_x log pt(x) # also equation 47 shows the analog from SDE models to ancestral sampling methods _UpperCAmelCase = diffusion.flatten() while len(diffusion.shape ) < len(sample.shape ): _UpperCAmelCase = diffusion.unsqueeze(-1 ) _UpperCAmelCase = drift - diffusion**2 * model_output # equation 6: sample noise for the diffusion term of _UpperCAmelCase = randn_tensor( sample.shape , layout=sample.layout , generator=_UpperCamelCase , device=sample.device , dtype=sample.dtype ) _UpperCAmelCase = sample - drift # subtract because `dt` is a small negative timestep # TODO is the variable diffusion the correct scaling term for the noise? _UpperCAmelCase = prev_sample_mean + diffusion * noise # add impact of diffusion field g if not return_dict: return (prev_sample, prev_sample_mean) return SdeVeOutput(prev_sample=_UpperCamelCase , prev_sample_mean=_UpperCamelCase ) def UpperCamelCase( self , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase = None , _UpperCamelCase = True , ): if self.timesteps is None: raise ValueError( '''`self.timesteps` is not set, you need to run \'set_timesteps\' after creating the scheduler''' ) # For small batch sizes, the paper "suggest replacing norm(z) with sqrt(d), where d is the dim. of z" # sample noise for correction _UpperCAmelCase = randn_tensor(sample.shape , layout=sample.layout , generator=_UpperCamelCase ).to(sample.device ) # compute step size from the model_output, the noise, and the snr _UpperCAmelCase = torch.norm(model_output.reshape(model_output.shape[0] , -1 ) , dim=-1 ).mean() _UpperCAmelCase = torch.norm(noise.reshape(noise.shape[0] , -1 ) , dim=-1 ).mean() _UpperCAmelCase = (self.config.snr * noise_norm / grad_norm) ** 2 * 2 _UpperCAmelCase = step_size * torch.ones(sample.shape[0] ).to(sample.device ) # self.repeat_scalar(step_size, sample.shape[0]) # compute corrected sample: model_output term and noise term _UpperCAmelCase = step_size.flatten() while len(step_size.shape ) < len(sample.shape ): _UpperCAmelCase = step_size.unsqueeze(-1 ) _UpperCAmelCase = sample + step_size * model_output _UpperCAmelCase = prev_sample_mean + ((step_size * 2) ** 0.5) * noise if not return_dict: return (prev_sample,) return SchedulerOutput(prev_sample=_UpperCamelCase ) def UpperCamelCase( self , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , ): # Make sure sigmas and timesteps have the same device and dtype as original_samples _UpperCAmelCase = timesteps.to(original_samples.device ) _UpperCAmelCase = self.discrete_sigmas.to(original_samples.device )[timesteps] _UpperCAmelCase = ( noise * sigmas[:, None, None, None] if noise is not None else torch.randn_like(_UpperCamelCase ) * sigmas[:, None, None, None] ) _UpperCAmelCase = noise + original_samples return noisy_samples def __len__( self ): return self.config.num_train_timesteps
32
import warnings from ...utils import logging from .image_processing_glpn import GLPNImageProcessor UpperCAmelCase_ = logging.get_logger(__name__) class __UpperCamelCase ( A__ ): def __init__( self , *_UpperCamelCase , **_UpperCamelCase ): warnings.warn( '''The class GLPNFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please''' ''' use GLPNImageProcessor instead.''' , _UpperCamelCase , ) super().__init__(*_UpperCamelCase , **_UpperCamelCase )
32
1
import json import os from typing import Optional import numpy as np from ...feature_extraction_utils import BatchFeature from ...processing_utils import ProcessorMixin from ...utils import logging from ...utils.hub import get_file_from_repo from ..auto import AutoTokenizer UpperCAmelCase_ = logging.get_logger(__name__) class __UpperCamelCase ( A__ ): __A : List[str] = """AutoTokenizer""" __A : str = ["""tokenizer"""] __A : Union[str, Any] = { """semantic_prompt""": 1, """coarse_prompt""": 2, """fine_prompt""": 2, } def __init__( self , _UpperCamelCase , _UpperCamelCase=None ): super().__init__(_UpperCamelCase ) _UpperCAmelCase = speaker_embeddings @classmethod def UpperCamelCase( cls , _UpperCamelCase , _UpperCamelCase="speaker_embeddings_path.json" , **_UpperCamelCase ): if speaker_embeddings_dict_path is not None: _UpperCAmelCase = get_file_from_repo( _UpperCamelCase , _UpperCamelCase , subfolder=kwargs.pop('''subfolder''' , _UpperCamelCase ) , cache_dir=kwargs.pop('''cache_dir''' , _UpperCamelCase ) , force_download=kwargs.pop('''force_download''' , _UpperCamelCase ) , proxies=kwargs.pop('''proxies''' , _UpperCamelCase ) , resume_download=kwargs.pop('''resume_download''' , _UpperCamelCase ) , local_files_only=kwargs.pop('''local_files_only''' , _UpperCamelCase ) , use_auth_token=kwargs.pop('''use_auth_token''' , _UpperCamelCase ) , revision=kwargs.pop('''revision''' , _UpperCamelCase ) , ) if speaker_embeddings_path is None: logger.warning( f'''`{os.path.join(_UpperCamelCase , _UpperCamelCase )}` does not exists , no preloaded speaker embeddings will be used - Make sure to provide a correct path to the json dictionnary if wanted, otherwise set `speaker_embeddings_dict_path=None`.''' ) _UpperCAmelCase = None else: with open(_UpperCamelCase ) as speaker_embeddings_json: _UpperCAmelCase = json.load(_UpperCamelCase ) else: _UpperCAmelCase = None _UpperCAmelCase = AutoTokenizer.from_pretrained(_UpperCamelCase , **_UpperCamelCase ) return cls(tokenizer=_UpperCamelCase , speaker_embeddings=_UpperCamelCase ) def UpperCamelCase( self , _UpperCamelCase , _UpperCamelCase="speaker_embeddings_path.json" , _UpperCamelCase="speaker_embeddings" , _UpperCamelCase = False , **_UpperCamelCase , ): if self.speaker_embeddings is not None: os.makedirs(os.path.join(_UpperCamelCase , _UpperCamelCase , '''v2''' ) , exist_ok=_UpperCamelCase ) _UpperCAmelCase = {} _UpperCAmelCase = save_directory for prompt_key in self.speaker_embeddings: if prompt_key != "repo_or_path": _UpperCAmelCase = self._load_voice_preset(_UpperCamelCase ) _UpperCAmelCase = {} for key in self.speaker_embeddings[prompt_key]: np.save( os.path.join( embeddings_dict['''repo_or_path'''] , _UpperCamelCase , f'''{prompt_key}_{key}''' ) , voice_preset[key] , allow_pickle=_UpperCamelCase , ) _UpperCAmelCase = os.path.join(_UpperCamelCase , f'''{prompt_key}_{key}.npy''' ) _UpperCAmelCase = tmp_dict with open(os.path.join(_UpperCamelCase , _UpperCamelCase ) , '''w''' ) as fp: json.dump(_UpperCamelCase , _UpperCamelCase ) super().save_pretrained(_UpperCamelCase , _UpperCamelCase , **_UpperCamelCase ) def UpperCamelCase( self , _UpperCamelCase = None , **_UpperCamelCase ): _UpperCAmelCase = self.speaker_embeddings[voice_preset] _UpperCAmelCase = {} for key in ["semantic_prompt", "coarse_prompt", "fine_prompt"]: if key not in voice_preset_paths: raise ValueError( f'''Voice preset unrecognized, missing {key} as a key in self.speaker_embeddings[{voice_preset}].''' ) _UpperCAmelCase = get_file_from_repo( self.speaker_embeddings.get('''repo_or_path''' , '''/''' ) , voice_preset_paths[key] , subfolder=kwargs.pop('''subfolder''' , _UpperCamelCase ) , cache_dir=kwargs.pop('''cache_dir''' , _UpperCamelCase ) , force_download=kwargs.pop('''force_download''' , _UpperCamelCase ) , proxies=kwargs.pop('''proxies''' , _UpperCamelCase ) , resume_download=kwargs.pop('''resume_download''' , _UpperCamelCase ) , local_files_only=kwargs.pop('''local_files_only''' , _UpperCamelCase ) , use_auth_token=kwargs.pop('''use_auth_token''' , _UpperCamelCase ) , revision=kwargs.pop('''revision''' , _UpperCamelCase ) , ) if path is None: raise ValueError( f'''`{os.path.join(self.speaker_embeddings.get('repo_or_path' , '/' ) , voice_preset_paths[key] )}` does not exists , no preloaded voice preset will be used - Make sure to provide correct paths to the {voice_preset} embeddings.''' ) _UpperCAmelCase = np.load(_UpperCamelCase ) return voice_preset_dict def UpperCamelCase( self , _UpperCamelCase = None ): for key in ["semantic_prompt", "coarse_prompt", "fine_prompt"]: if key not in voice_preset: raise ValueError(f'''Voice preset unrecognized, missing {key} as a key.''' ) if not isinstance(voice_preset[key] , np.ndarray ): raise ValueError(f'''{key} voice preset must be a {str(self.preset_shape[key] )}D ndarray.''' ) if len(voice_preset[key].shape ) != self.preset_shape[key]: raise ValueError(f'''{key} voice preset must be a {str(self.preset_shape[key] )}D ndarray.''' ) def __call__( self , _UpperCamelCase=None , _UpperCamelCase=None , _UpperCamelCase="pt" , _UpperCamelCase=256 , _UpperCamelCase=False , _UpperCamelCase=True , _UpperCamelCase=False , **_UpperCamelCase , ): if voice_preset is not None and not isinstance(_UpperCamelCase , _UpperCamelCase ): if ( isinstance(_UpperCamelCase , _UpperCamelCase ) and self.speaker_embeddings is not None and voice_preset in self.speaker_embeddings ): _UpperCAmelCase = self._load_voice_preset(_UpperCamelCase ) else: if isinstance(_UpperCamelCase , _UpperCamelCase ) and not voice_preset.endswith('''.npz''' ): _UpperCAmelCase = voice_preset + '''.npz''' _UpperCAmelCase = np.load(_UpperCamelCase ) if voice_preset is not None: self._validate_voice_preset_dict(_UpperCamelCase , **_UpperCamelCase ) _UpperCAmelCase = BatchFeature(data=_UpperCamelCase , tensor_type=_UpperCamelCase ) _UpperCAmelCase = self.tokenizer( _UpperCamelCase , return_tensors=_UpperCamelCase , padding='''max_length''' , max_length=_UpperCamelCase , return_attention_mask=_UpperCamelCase , return_token_type_ids=_UpperCamelCase , add_special_tokens=_UpperCamelCase , **_UpperCamelCase , ) if voice_preset is not None: _UpperCAmelCase = voice_preset return encoded_text
32
from typing import List, Optional, Union from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType class __UpperCamelCase ( A__ ): __A : Dict = ["""image_processor""", """tokenizer"""] __A : List[str] = """BridgeTowerImageProcessor""" __A : str = ("""RobertaTokenizer""", """RobertaTokenizerFast""") def __init__( self , _UpperCamelCase , _UpperCamelCase ): super().__init__(_UpperCamelCase , _UpperCamelCase ) def __call__( self , _UpperCamelCase , _UpperCamelCase = None , _UpperCamelCase = True , _UpperCamelCase = False , _UpperCamelCase = None , _UpperCamelCase = None , _UpperCamelCase = 0 , _UpperCamelCase = None , _UpperCamelCase = None , _UpperCamelCase = None , _UpperCamelCase = False , _UpperCamelCase = False , _UpperCamelCase = False , _UpperCamelCase = False , _UpperCamelCase = True , _UpperCamelCase = None , **_UpperCamelCase , ): _UpperCAmelCase = self.tokenizer( text=_UpperCamelCase , add_special_tokens=_UpperCamelCase , padding=_UpperCamelCase , truncation=_UpperCamelCase , max_length=_UpperCamelCase , stride=_UpperCamelCase , pad_to_multiple_of=_UpperCamelCase , return_token_type_ids=_UpperCamelCase , return_attention_mask=_UpperCamelCase , return_overflowing_tokens=_UpperCamelCase , return_special_tokens_mask=_UpperCamelCase , return_offsets_mapping=_UpperCamelCase , return_length=_UpperCamelCase , verbose=_UpperCamelCase , return_tensors=_UpperCamelCase , **_UpperCamelCase , ) # add pixel_values + pixel_mask _UpperCAmelCase = self.image_processor( _UpperCamelCase , return_tensors=_UpperCamelCase , do_normalize=_UpperCamelCase , do_center_crop=_UpperCamelCase , **_UpperCamelCase ) encoding.update(_UpperCamelCase ) return encoding def UpperCamelCase( self , *_UpperCamelCase , **_UpperCamelCase ): return self.tokenizer.batch_decode(*_UpperCamelCase , **_UpperCamelCase ) def UpperCamelCase( self , *_UpperCamelCase , **_UpperCamelCase ): return self.tokenizer.decode(*_UpperCamelCase , **_UpperCamelCase ) @property def UpperCamelCase( self ): _UpperCAmelCase = self.tokenizer.model_input_names _UpperCAmelCase = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) )
32
1
from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCAmelCase_ = logging.get_logger(__name__) UpperCAmelCase_ = { "tiiuae/falcon-40b": "https://huggingface.co/tiiuae/falcon-40b/resolve/main/config.json", "tiiuae/falcon-7b": "https://huggingface.co/tiiuae/falcon-7b/resolve/main/config.json", } class __UpperCamelCase ( A__ ): __A : Dict = """falcon""" __A : Any = ["""past_key_values"""] def __init__( self , _UpperCamelCase=65024 , _UpperCamelCase=4544 , _UpperCamelCase=32 , _UpperCamelCase=71 , _UpperCamelCase=1e-5 , _UpperCamelCase=0.02 , _UpperCamelCase=True , _UpperCamelCase=0.0 , _UpperCamelCase=0.0 , _UpperCamelCase=None , _UpperCamelCase=False , _UpperCamelCase=False , _UpperCamelCase=True , _UpperCamelCase=True , _UpperCamelCase=False , _UpperCamelCase=11 , _UpperCamelCase=11 , **_UpperCamelCase , ): _UpperCAmelCase = vocab_size # Backward compatibility with n_embed kwarg _UpperCAmelCase = kwargs.pop('''n_embed''' , _UpperCamelCase ) _UpperCAmelCase = hidden_size if n_embed is None else n_embed _UpperCAmelCase = num_hidden_layers _UpperCAmelCase = num_attention_heads _UpperCAmelCase = layer_norm_epsilon _UpperCAmelCase = initializer_range _UpperCAmelCase = use_cache _UpperCAmelCase = hidden_dropout _UpperCAmelCase = attention_dropout _UpperCAmelCase = bos_token_id _UpperCAmelCase = eos_token_id _UpperCAmelCase = num_attention_heads if num_kv_heads is None else num_kv_heads _UpperCAmelCase = alibi _UpperCAmelCase = new_decoder_architecture _UpperCAmelCase = multi_query # Ignored when new_decoder_architecture is True _UpperCAmelCase = parallel_attn _UpperCAmelCase = bias super().__init__(bos_token_id=_UpperCamelCase , eos_token_id=_UpperCamelCase , **_UpperCamelCase ) @property def UpperCamelCase( self ): return self.hidden_size // self.num_attention_heads @property def UpperCamelCase( self ): return not self.alibi
32
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available UpperCAmelCase_ = { "configuration_xlm": ["XLM_PRETRAINED_CONFIG_ARCHIVE_MAP", "XLMConfig", "XLMOnnxConfig"], "tokenization_xlm": ["XLMTokenizer"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase_ = [ "XLM_PRETRAINED_MODEL_ARCHIVE_LIST", "XLMForMultipleChoice", "XLMForQuestionAnswering", "XLMForQuestionAnsweringSimple", "XLMForSequenceClassification", "XLMForTokenClassification", "XLMModel", "XLMPreTrainedModel", "XLMWithLMHeadModel", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase_ = [ "TF_XLM_PRETRAINED_MODEL_ARCHIVE_LIST", "TFXLMForMultipleChoice", "TFXLMForQuestionAnsweringSimple", "TFXLMForSequenceClassification", "TFXLMForTokenClassification", "TFXLMMainLayer", "TFXLMModel", "TFXLMPreTrainedModel", "TFXLMWithLMHeadModel", ] if TYPE_CHECKING: from .configuration_xlm import XLM_PRETRAINED_CONFIG_ARCHIVE_MAP, XLMConfig, XLMOnnxConfig from .tokenization_xlm import XLMTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_xlm import ( XLM_PRETRAINED_MODEL_ARCHIVE_LIST, XLMForMultipleChoice, XLMForQuestionAnswering, XLMForQuestionAnsweringSimple, XLMForSequenceClassification, XLMForTokenClassification, XLMModel, XLMPreTrainedModel, XLMWithLMHeadModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_xlm import ( TF_XLM_PRETRAINED_MODEL_ARCHIVE_LIST, TFXLMForMultipleChoice, TFXLMForQuestionAnsweringSimple, TFXLMForSequenceClassification, TFXLMForTokenClassification, TFXLMMainLayer, TFXLMModel, TFXLMPreTrainedModel, TFXLMWithLMHeadModel, ) else: import sys UpperCAmelCase_ = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
32
1
from __future__ import annotations import random # Maximum size of the population. Bigger could be faster but is more memory expensive. UpperCAmelCase_ = 2_00 # Number of elements selected in every generation of evolution. The selection takes # place from best to worst of that generation and must be smaller than N_POPULATION. UpperCAmelCase_ = 50 # Probability that an element of a generation can mutate, changing one of its genes. # This will guarantee that all genes will be used during evolution. UpperCAmelCase_ = 0.4 # Just a seed to improve randomness required by the algorithm. random.seed(random.randint(0, 10_00)) def A__ ( SCREAMING_SNAKE_CASE_ : str , SCREAMING_SNAKE_CASE_ : str ) -> tuple[str, float]: """simple docstring""" _UpperCAmelCase = len([g for position, g in enumerate(SCREAMING_SNAKE_CASE_ ) if g == main_target[position]] ) return (item, float(SCREAMING_SNAKE_CASE_ )) def A__ ( SCREAMING_SNAKE_CASE_ : str , SCREAMING_SNAKE_CASE_ : str ) -> tuple[str, str]: """simple docstring""" _UpperCAmelCase = random.randint(0 , len(SCREAMING_SNAKE_CASE_ ) - 1 ) _UpperCAmelCase = parent_a[:random_slice] + parent_a[random_slice:] _UpperCAmelCase = parent_a[:random_slice] + parent_a[random_slice:] return (child_a, child_a) def A__ ( SCREAMING_SNAKE_CASE_ : str , SCREAMING_SNAKE_CASE_ : list[str] ) -> str: """simple docstring""" _UpperCAmelCase = list(SCREAMING_SNAKE_CASE_ ) if random.uniform(0 , 1 ) < MUTATION_PROBABILITY: _UpperCAmelCase = random.choice(SCREAMING_SNAKE_CASE_ ) return "".join(SCREAMING_SNAKE_CASE_ ) def A__ ( SCREAMING_SNAKE_CASE_ : tuple[str, float] , SCREAMING_SNAKE_CASE_ : list[tuple[str, float]] , SCREAMING_SNAKE_CASE_ : list[str] , ) -> list[str]: """simple docstring""" _UpperCAmelCase = [] # Generate more children proportionally to the fitness score. _UpperCAmelCase = int(parent_a[1] * 1_00 ) + 1 _UpperCAmelCase = 10 if child_n >= 10 else child_n for _ in range(SCREAMING_SNAKE_CASE_ ): _UpperCAmelCase = population_score[random.randint(0 , SCREAMING_SNAKE_CASE_ )][0] _UpperCAmelCase , _UpperCAmelCase = crossover(parent_a[0] , SCREAMING_SNAKE_CASE_ ) # Append new string to the population list. pop.append(mutate(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) ) pop.append(mutate(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) ) return pop def A__ ( SCREAMING_SNAKE_CASE_ : str , SCREAMING_SNAKE_CASE_ : list[str] , SCREAMING_SNAKE_CASE_ : bool = True ) -> tuple[int, int, str]: """simple docstring""" if N_POPULATION < N_SELECTED: _UpperCAmelCase = F'''{N_POPULATION} must be bigger than {N_SELECTED}''' raise ValueError(SCREAMING_SNAKE_CASE_ ) # Verify that the target contains no genes besides the ones inside genes variable. _UpperCAmelCase = sorted({c for c in target if c not in genes} ) if not_in_genes_list: _UpperCAmelCase = F'''{not_in_genes_list} is not in genes list, evolution cannot converge''' raise ValueError(SCREAMING_SNAKE_CASE_ ) # Generate random starting population. _UpperCAmelCase = [] for _ in range(SCREAMING_SNAKE_CASE_ ): population.append(''''''.join([random.choice(SCREAMING_SNAKE_CASE_ ) for i in range(len(SCREAMING_SNAKE_CASE_ ) )] ) ) # Just some logs to know what the algorithms is doing. _UpperCAmelCase , _UpperCAmelCase = 0, 0 # This loop will end when we find a perfect match for our target. while True: generation += 1 total_population += len(SCREAMING_SNAKE_CASE_ ) # Random population created. Now it's time to evaluate. # Adding a bit of concurrency can make everything faster, # # import concurrent.futures # population_score: list[tuple[str, float]] = [] # with concurrent.futures.ThreadPoolExecutor( # max_workers=NUM_WORKERS) as executor: # futures = {executor.submit(evaluate, item) for item in population} # concurrent.futures.wait(futures) # population_score = [item.result() for item in futures] # # but with a simple algorithm like this, it will probably be slower. # We just need to call evaluate for every item inside the population. _UpperCAmelCase = [evaluate(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) for item in population] # Check if there is a matching evolution. _UpperCAmelCase = sorted(SCREAMING_SNAKE_CASE_ , key=lambda SCREAMING_SNAKE_CASE_ : x[1] , reverse=SCREAMING_SNAKE_CASE_ ) if population_score[0][0] == target: return (generation, total_population, population_score[0][0]) # Print the best result every 10 generation. # Just to know that the algorithm is working. if debug and generation % 10 == 0: print( F'''\nGeneration: {generation}''' F'''\nTotal Population:{total_population}''' F'''\nBest score: {population_score[0][1]}''' F'''\nBest string: {population_score[0][0]}''' ) # Flush the old population, keeping some of the best evolutions. # Keeping this avoid regression of evolution. _UpperCAmelCase = population[: int(N_POPULATION / 3 )] population.clear() population.extend(SCREAMING_SNAKE_CASE_ ) # Normalize population score to be between 0 and 1. _UpperCAmelCase = [ (item, score / len(SCREAMING_SNAKE_CASE_ )) for item, score in population_score ] # This is selection for i in range(SCREAMING_SNAKE_CASE_ ): population.extend(select(population_score[int(SCREAMING_SNAKE_CASE_ )] , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) ) # Check if the population has already reached the maximum value and if so, # break the cycle. If this check is disabled, the algorithm will take # forever to compute large strings, but will also calculate small strings in # a far fewer generations. if len(SCREAMING_SNAKE_CASE_ ) > N_POPULATION: break if __name__ == "__main__": UpperCAmelCase_ = ( "This is a genetic algorithm to evaluate, combine, evolve, and mutate a string!" ) UpperCAmelCase_ = list( " ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklm" "nopqrstuvwxyz.,;!?+-*#@^'èéòà€ù=)(&%$£/\\" ) UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ = basic(target_str, genes_list) print( f'''\nGeneration: {generation}\nTotal Population: {population}\nTarget: {target}''' )
32
from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCAmelCase_ = logging.get_logger(__name__) UpperCAmelCase_ = { "microsoft/biogpt": "https://huggingface.co/microsoft/biogpt/resolve/main/config.json", # See all BioGPT models at https://huggingface.co/models?filter=biogpt } class __UpperCamelCase ( A__ ): __A : Any = """biogpt""" def __init__( self , _UpperCamelCase=42384 , _UpperCamelCase=1024 , _UpperCamelCase=24 , _UpperCamelCase=16 , _UpperCamelCase=4096 , _UpperCamelCase="gelu" , _UpperCamelCase=0.1 , _UpperCamelCase=0.1 , _UpperCamelCase=1024 , _UpperCamelCase=0.02 , _UpperCamelCase=1e-12 , _UpperCamelCase=True , _UpperCamelCase=True , _UpperCamelCase=0.0 , _UpperCamelCase=0.0 , _UpperCamelCase=1 , _UpperCamelCase=0 , _UpperCamelCase=2 , **_UpperCamelCase , ): _UpperCAmelCase = vocab_size _UpperCAmelCase = max_position_embeddings _UpperCAmelCase = hidden_size _UpperCAmelCase = num_hidden_layers _UpperCAmelCase = num_attention_heads _UpperCAmelCase = intermediate_size _UpperCAmelCase = hidden_act _UpperCAmelCase = hidden_dropout_prob _UpperCAmelCase = attention_probs_dropout_prob _UpperCAmelCase = initializer_range _UpperCAmelCase = layer_norm_eps _UpperCAmelCase = scale_embedding _UpperCAmelCase = use_cache _UpperCAmelCase = layerdrop _UpperCAmelCase = activation_dropout super().__init__(pad_token_id=_UpperCamelCase , bos_token_id=_UpperCamelCase , eos_token_id=_UpperCamelCase , **_UpperCamelCase )
32
1
import gc import random import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer import diffusers from diffusers import ( AutoencoderKL, EulerDiscreteScheduler, StableDiffusionLatentUpscalePipeline, StableDiffusionPipeline, UNetaDConditionModel, ) from diffusers.schedulers import KarrasDiffusionSchedulers from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..pipeline_params import TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_PARAMS from ..test_pipelines_common import PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() def A__ ( SCREAMING_SNAKE_CASE_ : List[Any] ) -> Any: """simple docstring""" _UpperCAmelCase = [tensor.shape for tensor in tensor_list] return all(shape == shapes[0] for shape in shapes[1:] ) class __UpperCamelCase ( A__ , A__ , A__ , unittest.TestCase ): __A : str = StableDiffusionLatentUpscalePipeline __A : int = TEXT_GUIDED_IMAGE_VARIATION_PARAMS - { """height""", """width""", """cross_attention_kwargs""", """negative_prompt_embeds""", """prompt_embeds""", } __A : Dict = PipelineTesterMixin.required_optional_params - {"""num_images_per_prompt"""} __A : Dict = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS __A : Any = frozenset( [] ) # TO-DO: update image_params once pipeline is refactored with VaeImageProcessor.preprocess __A : Optional[int] = frozenset([] ) __A : str = True @property def UpperCamelCase( self ): _UpperCAmelCase = 1 _UpperCAmelCase = 4 _UpperCAmelCase = (16, 16) _UpperCAmelCase = floats_tensor((batch_size, num_channels) + sizes , rng=random.Random(0 ) ).to(_UpperCamelCase ) return image def UpperCamelCase( self ): torch.manual_seed(0 ) _UpperCAmelCase = UNetaDConditionModel( act_fn='''gelu''' , attention_head_dim=8 , norm_num_groups=_UpperCamelCase , block_out_channels=[32, 32, 64, 64] , time_cond_proj_dim=160 , conv_in_kernel=1 , conv_out_kernel=1 , cross_attention_dim=32 , down_block_types=( '''KDownBlock2D''', '''KCrossAttnDownBlock2D''', '''KCrossAttnDownBlock2D''', '''KCrossAttnDownBlock2D''', ) , in_channels=8 , mid_block_type=_UpperCamelCase , only_cross_attention=_UpperCamelCase , out_channels=5 , resnet_time_scale_shift='''scale_shift''' , time_embedding_type='''fourier''' , timestep_post_act='''gelu''' , up_block_types=('''KCrossAttnUpBlock2D''', '''KCrossAttnUpBlock2D''', '''KCrossAttnUpBlock2D''', '''KUpBlock2D''') , ) _UpperCAmelCase = AutoencoderKL( block_out_channels=[32, 32, 64, 64] , in_channels=3 , out_channels=3 , down_block_types=[ '''DownEncoderBlock2D''', '''DownEncoderBlock2D''', '''DownEncoderBlock2D''', '''DownEncoderBlock2D''', ] , up_block_types=['''UpDecoderBlock2D''', '''UpDecoderBlock2D''', '''UpDecoderBlock2D''', '''UpDecoderBlock2D'''] , latent_channels=4 , ) _UpperCAmelCase = EulerDiscreteScheduler(prediction_type='''sample''' ) _UpperCAmelCase = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , hidden_act='''quick_gelu''' , projection_dim=512 , ) _UpperCAmelCase = CLIPTextModel(_UpperCamelCase ) _UpperCAmelCase = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' ) _UpperCAmelCase = { '''unet''': model.eval(), '''vae''': vae.eval(), '''scheduler''': scheduler, '''text_encoder''': text_encoder, '''tokenizer''': tokenizer, } return components def UpperCamelCase( self , _UpperCamelCase , _UpperCamelCase=0 ): if str(_UpperCamelCase ).startswith('''mps''' ): _UpperCAmelCase = torch.manual_seed(_UpperCamelCase ) else: _UpperCAmelCase = torch.Generator(device=_UpperCamelCase ).manual_seed(_UpperCamelCase ) _UpperCAmelCase = { '''prompt''': '''A painting of a squirrel eating a burger''', '''image''': self.dummy_image.cpu(), '''generator''': generator, '''num_inference_steps''': 2, '''output_type''': '''numpy''', } return inputs def UpperCamelCase( self ): _UpperCAmelCase = '''cpu''' _UpperCAmelCase = self.get_dummy_components() _UpperCAmelCase = self.pipeline_class(**_UpperCamelCase ) pipe.to(_UpperCamelCase ) pipe.set_progress_bar_config(disable=_UpperCamelCase ) _UpperCAmelCase = self.get_dummy_inputs(_UpperCamelCase ) _UpperCAmelCase = pipe(**_UpperCamelCase ).images _UpperCAmelCase = image[0, -3:, -3:, -1] self.assertEqual(image.shape , (1, 256, 256, 3) ) _UpperCAmelCase = np.array( [0.47222412, 0.41921633, 0.44717434, 0.46874192, 0.42588258, 0.46150726, 0.4677534, 0.45583832, 0.48579055] ) _UpperCAmelCase = np.abs(image_slice.flatten() - expected_slice ).max() self.assertLessEqual(_UpperCamelCase , 1e-3 ) def UpperCamelCase( self ): super().test_attention_slicing_forward_pass(expected_max_diff=7e-3 ) def UpperCamelCase( self ): super().test_cpu_offload_forward_pass(expected_max_diff=3e-3 ) def UpperCamelCase( self ): super().test_dict_tuple_outputs_equivalent(expected_max_difference=3e-3 ) def UpperCamelCase( self ): super().test_inference_batch_single_identical(expected_max_diff=7e-3 ) def UpperCamelCase( self ): super().test_pt_np_pil_outputs_equivalent(expected_max_diff=3e-3 ) def UpperCamelCase( self ): super().test_save_load_local(expected_max_difference=3e-3 ) def UpperCamelCase( self ): super().test_save_load_optional_components(expected_max_difference=3e-3 ) def UpperCamelCase( self ): _UpperCAmelCase = [ '''DDIMScheduler''', '''DDPMScheduler''', '''PNDMScheduler''', '''HeunDiscreteScheduler''', '''EulerAncestralDiscreteScheduler''', '''KDPM2DiscreteScheduler''', '''KDPM2AncestralDiscreteScheduler''', '''DPMSolverSDEScheduler''', ] _UpperCAmelCase = self.get_dummy_components() _UpperCAmelCase = self.pipeline_class(**_UpperCamelCase ) # make sure that PNDM does not need warm-up pipe.scheduler.register_to_config(skip_prk_steps=_UpperCamelCase ) pipe.to(_UpperCamelCase ) pipe.set_progress_bar_config(disable=_UpperCamelCase ) _UpperCAmelCase = self.get_dummy_inputs(_UpperCamelCase ) _UpperCAmelCase = 2 _UpperCAmelCase = [] for scheduler_enum in KarrasDiffusionSchedulers: if scheduler_enum.name in skip_schedulers: # no sigma schedulers are not supported # no schedulers continue _UpperCAmelCase = getattr(_UpperCamelCase , scheduler_enum.name ) _UpperCAmelCase = scheduler_cls.from_config(pipe.scheduler.config ) _UpperCAmelCase = pipe(**_UpperCamelCase )[0] outputs.append(_UpperCamelCase ) assert check_same_shape(_UpperCamelCase ) @require_torch_gpu @slow class __UpperCamelCase ( unittest.TestCase ): def UpperCamelCase( self ): super().tearDown() gc.collect() torch.cuda.empty_cache() def UpperCamelCase( self ): _UpperCAmelCase = torch.manual_seed(33 ) _UpperCAmelCase = StableDiffusionPipeline.from_pretrained('''CompVis/stable-diffusion-v1-4''' , torch_dtype=torch.floataa ) pipe.to('''cuda''' ) _UpperCAmelCase = StableDiffusionLatentUpscalePipeline.from_pretrained( '''stabilityai/sd-x2-latent-upscaler''' , torch_dtype=torch.floataa ) upscaler.to('''cuda''' ) _UpperCAmelCase = '''a photo of an astronaut high resolution, unreal engine, ultra realistic''' _UpperCAmelCase = pipe(_UpperCamelCase , generator=_UpperCamelCase , output_type='''latent''' ).images _UpperCAmelCase = upscaler( prompt=_UpperCamelCase , image=_UpperCamelCase , num_inference_steps=20 , guidance_scale=0 , generator=_UpperCamelCase , output_type='''np''' , ).images[0] _UpperCAmelCase = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/latent-upscaler/astronaut_1024.npy''' ) assert np.abs((expected_image - image).mean() ) < 5e-2 def UpperCamelCase( self ): _UpperCAmelCase = torch.manual_seed(33 ) _UpperCAmelCase = StableDiffusionLatentUpscalePipeline.from_pretrained( '''stabilityai/sd-x2-latent-upscaler''' , torch_dtype=torch.floataa ) upscaler.to('''cuda''' ) _UpperCAmelCase = '''the temple of fire by Ross Tran and Gerardo Dottori, oil on canvas''' _UpperCAmelCase = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/latent-upscaler/fire_temple_512.png''' ) _UpperCAmelCase = upscaler( prompt=_UpperCamelCase , image=_UpperCamelCase , num_inference_steps=20 , guidance_scale=0 , generator=_UpperCamelCase , output_type='''np''' , ).images[0] _UpperCAmelCase = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/latent-upscaler/fire_temple_1024.npy''' ) assert np.abs((expected_image - image).max() ) < 5e-2
32
from typing import List from .keymap import KEYMAP, get_character def A__ ( SCREAMING_SNAKE_CASE_ : str ) -> List[str]: """simple docstring""" def decorator(SCREAMING_SNAKE_CASE_ : List[Any] ): _UpperCAmelCase = getattr(SCREAMING_SNAKE_CASE_ , '''handle_key''' , [] ) handle += [key] setattr(SCREAMING_SNAKE_CASE_ , '''handle_key''' , SCREAMING_SNAKE_CASE_ ) return func return decorator def A__ ( *SCREAMING_SNAKE_CASE_ : List[str] ) -> Dict: """simple docstring""" def decorator(SCREAMING_SNAKE_CASE_ : Any ): _UpperCAmelCase = getattr(SCREAMING_SNAKE_CASE_ , '''handle_key''' , [] ) handle += keys setattr(SCREAMING_SNAKE_CASE_ , '''handle_key''' , SCREAMING_SNAKE_CASE_ ) return func return decorator class __UpperCamelCase ( A__ ): def __new__( cls , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ): _UpperCAmelCase = super().__new__(cls , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) if not hasattr(_UpperCamelCase , '''key_handler''' ): setattr(_UpperCamelCase , '''key_handler''' , {} ) setattr(_UpperCamelCase , '''handle_input''' , KeyHandler.handle_input ) for value in attrs.values(): _UpperCAmelCase = getattr(_UpperCamelCase , '''handle_key''' , [] ) for key in handled_keys: _UpperCAmelCase = value return new_cls @staticmethod def UpperCamelCase( cls ): _UpperCAmelCase = get_character() if char != KEYMAP["undefined"]: _UpperCAmelCase = ord(_UpperCamelCase ) _UpperCAmelCase = cls.key_handler.get(_UpperCamelCase ) if handler: _UpperCAmelCase = char return handler(cls ) else: return None def A__ ( cls : Union[str, Any] ) -> Any: """simple docstring""" return KeyHandler(cls.__name__ , cls.__bases__ , cls.__dict__.copy() )
32
1
import unittest from transformers import MobileBertConfig, is_torch_available from transformers.models.auto import get_values from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( MODEL_FOR_PRETRAINING_MAPPING, MobileBertForMaskedLM, MobileBertForMultipleChoice, MobileBertForNextSentencePrediction, MobileBertForPreTraining, MobileBertForQuestionAnswering, MobileBertForSequenceClassification, MobileBertForTokenClassification, MobileBertModel, ) class __UpperCamelCase : def __init__( self , _UpperCamelCase , _UpperCamelCase=13 , _UpperCamelCase=7 , _UpperCamelCase=True , _UpperCamelCase=True , _UpperCamelCase=True , _UpperCamelCase=True , _UpperCamelCase=99 , _UpperCamelCase=64 , _UpperCamelCase=32 , _UpperCamelCase=5 , _UpperCamelCase=4 , _UpperCamelCase=37 , _UpperCamelCase="gelu" , _UpperCamelCase=0.1 , _UpperCamelCase=0.1 , _UpperCamelCase=512 , _UpperCamelCase=16 , _UpperCamelCase=2 , _UpperCamelCase=0.02 , _UpperCamelCase=3 , _UpperCamelCase=4 , _UpperCamelCase=None , ): _UpperCAmelCase = parent _UpperCAmelCase = batch_size _UpperCAmelCase = seq_length _UpperCAmelCase = is_training _UpperCAmelCase = use_input_mask _UpperCAmelCase = use_token_type_ids _UpperCAmelCase = use_labels _UpperCAmelCase = vocab_size _UpperCAmelCase = hidden_size _UpperCAmelCase = embedding_size _UpperCAmelCase = num_hidden_layers _UpperCAmelCase = num_attention_heads _UpperCAmelCase = intermediate_size _UpperCAmelCase = hidden_act _UpperCAmelCase = hidden_dropout_prob _UpperCAmelCase = attention_probs_dropout_prob _UpperCAmelCase = max_position_embeddings _UpperCAmelCase = type_vocab_size _UpperCAmelCase = type_sequence_label_size _UpperCAmelCase = initializer_range _UpperCAmelCase = num_labels _UpperCAmelCase = num_choices _UpperCAmelCase = scope def UpperCamelCase( self ): _UpperCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _UpperCAmelCase = None if self.use_input_mask: _UpperCAmelCase = random_attention_mask([self.batch_size, self.seq_length] ) _UpperCAmelCase = None if self.use_token_type_ids: _UpperCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) _UpperCAmelCase = None _UpperCAmelCase = None _UpperCAmelCase = None if self.use_labels: _UpperCAmelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size ) _UpperCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) _UpperCAmelCase = ids_tensor([self.batch_size] , self.num_choices ) _UpperCAmelCase = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def UpperCamelCase( self ): return MobileBertConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , embedding_size=self.embedding_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=_UpperCamelCase , initializer_range=self.initializer_range , ) def UpperCamelCase( self , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ): _UpperCAmelCase = MobileBertModel(config=_UpperCamelCase ) model.to(_UpperCamelCase ) model.eval() _UpperCAmelCase = model(_UpperCamelCase , attention_mask=_UpperCamelCase , token_type_ids=_UpperCamelCase ) _UpperCAmelCase = model(_UpperCamelCase , token_type_ids=_UpperCamelCase ) _UpperCAmelCase = model(_UpperCamelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) ) def UpperCamelCase( self , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ): _UpperCAmelCase = MobileBertForMaskedLM(config=_UpperCamelCase ) model.to(_UpperCamelCase ) model.eval() _UpperCAmelCase = model(_UpperCamelCase , attention_mask=_UpperCamelCase , token_type_ids=_UpperCamelCase , labels=_UpperCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def UpperCamelCase( self , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ): _UpperCAmelCase = MobileBertForNextSentencePrediction(config=_UpperCamelCase ) model.to(_UpperCamelCase ) model.eval() _UpperCAmelCase = model( _UpperCamelCase , attention_mask=_UpperCamelCase , token_type_ids=_UpperCamelCase , labels=_UpperCamelCase , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, 2) ) def UpperCamelCase( self , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ): _UpperCAmelCase = MobileBertForPreTraining(config=_UpperCamelCase ) model.to(_UpperCamelCase ) model.eval() _UpperCAmelCase = model( _UpperCamelCase , attention_mask=_UpperCamelCase , token_type_ids=_UpperCamelCase , labels=_UpperCamelCase , next_sentence_label=_UpperCamelCase , ) self.parent.assertEqual(result.prediction_logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) self.parent.assertEqual(result.seq_relationship_logits.shape , (self.batch_size, 2) ) def UpperCamelCase( self , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ): _UpperCAmelCase = MobileBertForQuestionAnswering(config=_UpperCamelCase ) model.to(_UpperCamelCase ) model.eval() _UpperCAmelCase = model( _UpperCamelCase , attention_mask=_UpperCamelCase , token_type_ids=_UpperCamelCase , start_positions=_UpperCamelCase , end_positions=_UpperCamelCase , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def UpperCamelCase( self , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ): _UpperCAmelCase = self.num_labels _UpperCAmelCase = MobileBertForSequenceClassification(_UpperCamelCase ) model.to(_UpperCamelCase ) model.eval() _UpperCAmelCase = model(_UpperCamelCase , attention_mask=_UpperCamelCase , token_type_ids=_UpperCamelCase , labels=_UpperCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def UpperCamelCase( self , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ): _UpperCAmelCase = self.num_labels _UpperCAmelCase = MobileBertForTokenClassification(config=_UpperCamelCase ) model.to(_UpperCamelCase ) model.eval() _UpperCAmelCase = model(_UpperCamelCase , attention_mask=_UpperCamelCase , token_type_ids=_UpperCamelCase , labels=_UpperCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def UpperCamelCase( self , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ): _UpperCAmelCase = self.num_choices _UpperCAmelCase = MobileBertForMultipleChoice(config=_UpperCamelCase ) model.to(_UpperCamelCase ) model.eval() _UpperCAmelCase = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() _UpperCAmelCase = token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() _UpperCAmelCase = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() _UpperCAmelCase = model( _UpperCamelCase , attention_mask=_UpperCamelCase , token_type_ids=_UpperCamelCase , labels=_UpperCamelCase , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def UpperCamelCase( self ): _UpperCAmelCase = self.prepare_config_and_inputs() ( ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ) = config_and_inputs _UpperCAmelCase = {'''input_ids''': input_ids, '''token_type_ids''': token_type_ids, '''attention_mask''': input_mask} return config, inputs_dict @require_torch class __UpperCamelCase ( A__ , A__ , unittest.TestCase ): __A : int = ( ( MobileBertModel, MobileBertForMaskedLM, MobileBertForMultipleChoice, MobileBertForNextSentencePrediction, MobileBertForPreTraining, MobileBertForQuestionAnswering, MobileBertForSequenceClassification, MobileBertForTokenClassification, ) if is_torch_available() else () ) __A : Union[str, Any] = ( { """feature-extraction""": MobileBertModel, """fill-mask""": MobileBertForMaskedLM, """question-answering""": MobileBertForQuestionAnswering, """text-classification""": MobileBertForSequenceClassification, """token-classification""": MobileBertForTokenClassification, """zero-shot""": MobileBertForSequenceClassification, } if is_torch_available() else {} ) __A : Optional[Any] = True def UpperCamelCase( self , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase=False ): _UpperCAmelCase = super()._prepare_for_class(_UpperCamelCase , _UpperCamelCase , return_labels=_UpperCamelCase ) if return_labels: if model_class in get_values(_UpperCamelCase ): _UpperCAmelCase = torch.zeros( (self.model_tester.batch_size, self.model_tester.seq_length) , dtype=torch.long , device=_UpperCamelCase ) _UpperCAmelCase = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=_UpperCamelCase ) return inputs_dict def UpperCamelCase( self ): _UpperCAmelCase = MobileBertModelTester(self ) _UpperCAmelCase = ConfigTester(self , config_class=_UpperCamelCase , hidden_size=37 ) def UpperCamelCase( self ): self.config_tester.run_common_tests() def UpperCamelCase( self ): _UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_model(*_UpperCamelCase ) def UpperCamelCase( self ): _UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_masked_lm(*_UpperCamelCase ) def UpperCamelCase( self ): _UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_multiple_choice(*_UpperCamelCase ) def UpperCamelCase( self ): _UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_next_sequence_prediction(*_UpperCamelCase ) def UpperCamelCase( self ): _UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_pretraining(*_UpperCamelCase ) def UpperCamelCase( self ): _UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_question_answering(*_UpperCamelCase ) def UpperCamelCase( self ): _UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_sequence_classification(*_UpperCamelCase ) def UpperCamelCase( self ): _UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_token_classification(*_UpperCamelCase ) def A__ ( SCREAMING_SNAKE_CASE_ : Union[str, Any] ) -> Optional[int]: """simple docstring""" return torch.tensor( SCREAMING_SNAKE_CASE_ , dtype=torch.long , device=SCREAMING_SNAKE_CASE_ , ) UpperCAmelCase_ = 1e-3 @require_torch @require_sentencepiece @require_tokenizers class __UpperCamelCase ( unittest.TestCase ): @slow def UpperCamelCase( self ): _UpperCAmelCase = MobileBertModel.from_pretrained('''google/mobilebert-uncased''' ).to(_UpperCamelCase ) _UpperCAmelCase = _long_tensor([[101, 7110, 1005, 1056, 2023, 11333, 17413, 1029, 102]] ) with torch.no_grad(): _UpperCAmelCase = model(_UpperCamelCase )[0] _UpperCAmelCase = torch.Size((1, 9, 512) ) self.assertEqual(output.shape , _UpperCamelCase ) _UpperCAmelCase = torch.tensor( [ [ [-2.4736526e07, 8.2691656e04, 1.6521838e05], [-5.7541704e-01, 3.9056022e00, 4.4011507e00], [2.6047359e00, 1.5677652e00, -1.7324188e-01], ] ] , device=_UpperCamelCase , ) # MobileBERT results range from 10e0 to 10e8. Even a 0.0000001% difference with a value of 10e8 results in a # ~1 difference, it's therefore not a good idea to measure using addition. # Here, we instead divide the expected result with the result in order to obtain ~1. We then check that the # result is held between bounds: 1 - TOLERANCE < expected_result / result < 1 + TOLERANCE _UpperCAmelCase = torch.all((expected_slice / output[..., :3, :3]) >= 1 - TOLERANCE ) _UpperCAmelCase = torch.all((expected_slice / output[..., :3, :3]) <= 1 + TOLERANCE ) self.assertTrue(lower_bound and upper_bound )
32
import unittest from transformers import LiltConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( LiltForQuestionAnswering, LiltForSequenceClassification, LiltForTokenClassification, LiltModel, ) from transformers.models.lilt.modeling_lilt import LILT_PRETRAINED_MODEL_ARCHIVE_LIST class __UpperCamelCase : def __init__( self , _UpperCamelCase , _UpperCamelCase=13 , _UpperCamelCase=7 , _UpperCamelCase=True , _UpperCamelCase=True , _UpperCamelCase=True , _UpperCamelCase=True , _UpperCamelCase=99 , _UpperCamelCase=24 , _UpperCamelCase=2 , _UpperCamelCase=6 , _UpperCamelCase=37 , _UpperCamelCase="gelu" , _UpperCamelCase=0.1 , _UpperCamelCase=0.1 , _UpperCamelCase=512 , _UpperCamelCase=16 , _UpperCamelCase=2 , _UpperCamelCase=0.02 , _UpperCamelCase=3 , _UpperCamelCase=None , _UpperCamelCase=1000 , ): _UpperCAmelCase = parent _UpperCAmelCase = batch_size _UpperCAmelCase = seq_length _UpperCAmelCase = is_training _UpperCAmelCase = use_input_mask _UpperCAmelCase = use_token_type_ids _UpperCAmelCase = use_labels _UpperCAmelCase = vocab_size _UpperCAmelCase = hidden_size _UpperCAmelCase = num_hidden_layers _UpperCAmelCase = num_attention_heads _UpperCAmelCase = intermediate_size _UpperCAmelCase = hidden_act _UpperCAmelCase = hidden_dropout_prob _UpperCAmelCase = attention_probs_dropout_prob _UpperCAmelCase = max_position_embeddings _UpperCAmelCase = type_vocab_size _UpperCAmelCase = type_sequence_label_size _UpperCAmelCase = initializer_range _UpperCAmelCase = num_labels _UpperCAmelCase = scope _UpperCAmelCase = range_bbox def UpperCamelCase( self ): _UpperCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _UpperCAmelCase = ids_tensor([self.batch_size, self.seq_length, 4] , self.range_bbox ) # Ensure that bbox is legal for i in range(bbox.shape[0] ): for j in range(bbox.shape[1] ): if bbox[i, j, 3] < bbox[i, j, 1]: _UpperCAmelCase = bbox[i, j, 3] _UpperCAmelCase = bbox[i, j, 1] _UpperCAmelCase = t if bbox[i, j, 2] < bbox[i, j, 0]: _UpperCAmelCase = bbox[i, j, 2] _UpperCAmelCase = bbox[i, j, 0] _UpperCAmelCase = t _UpperCAmelCase = None if self.use_input_mask: _UpperCAmelCase = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 ) _UpperCAmelCase = None if self.use_token_type_ids: _UpperCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) _UpperCAmelCase = None _UpperCAmelCase = None if self.use_labels: _UpperCAmelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size ) _UpperCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) _UpperCAmelCase = self.get_config() return config, input_ids, bbox, token_type_ids, input_mask, sequence_labels, token_labels def UpperCamelCase( self ): return LiltConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , ) def UpperCamelCase( self , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , ): _UpperCAmelCase = LiltModel(config=_UpperCamelCase ) model.to(_UpperCamelCase ) model.eval() _UpperCAmelCase = model(_UpperCamelCase , bbox=_UpperCamelCase , attention_mask=_UpperCamelCase , token_type_ids=_UpperCamelCase ) _UpperCAmelCase = model(_UpperCamelCase , bbox=_UpperCamelCase , token_type_ids=_UpperCamelCase ) _UpperCAmelCase = model(_UpperCamelCase , bbox=_UpperCamelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) ) def UpperCamelCase( self , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , ): _UpperCAmelCase = self.num_labels _UpperCAmelCase = LiltForTokenClassification(config=_UpperCamelCase ) model.to(_UpperCamelCase ) model.eval() _UpperCAmelCase = model( _UpperCamelCase , bbox=_UpperCamelCase , attention_mask=_UpperCamelCase , token_type_ids=_UpperCamelCase , labels=_UpperCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def UpperCamelCase( self , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , ): _UpperCAmelCase = LiltForQuestionAnswering(config=_UpperCamelCase ) model.to(_UpperCamelCase ) model.eval() _UpperCAmelCase = model( _UpperCamelCase , bbox=_UpperCamelCase , attention_mask=_UpperCamelCase , token_type_ids=_UpperCamelCase , start_positions=_UpperCamelCase , end_positions=_UpperCamelCase , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def UpperCamelCase( self ): _UpperCAmelCase = self.prepare_config_and_inputs() ( ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ) = config_and_inputs _UpperCAmelCase = { '''input_ids''': input_ids, '''bbox''': bbox, '''token_type_ids''': token_type_ids, '''attention_mask''': input_mask, } return config, inputs_dict @require_torch class __UpperCamelCase ( A__ , A__ , A__ , unittest.TestCase ): __A : Dict = ( ( LiltModel, LiltForSequenceClassification, LiltForTokenClassification, LiltForQuestionAnswering, ) if is_torch_available() else () ) __A : Optional[Any] = ( { """feature-extraction""": LiltModel, """question-answering""": LiltForQuestionAnswering, """text-classification""": LiltForSequenceClassification, """token-classification""": LiltForTokenClassification, """zero-shot""": LiltForSequenceClassification, } if is_torch_available() else {} ) __A : List[Any] = False __A : Optional[int] = False def UpperCamelCase( self , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ): return True def UpperCamelCase( self ): _UpperCAmelCase = LiltModelTester(self ) _UpperCAmelCase = ConfigTester(self , config_class=_UpperCamelCase , hidden_size=37 ) def UpperCamelCase( self ): self.config_tester.run_common_tests() def UpperCamelCase( self ): _UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_UpperCamelCase ) def UpperCamelCase( self ): _UpperCAmelCase = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: _UpperCAmelCase = type self.model_tester.create_and_check_model(*_UpperCamelCase ) def UpperCamelCase( self ): _UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*_UpperCamelCase ) def UpperCamelCase( self ): _UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*_UpperCamelCase ) @slow def UpperCamelCase( self ): for model_name in LILT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _UpperCAmelCase = LiltModel.from_pretrained(_UpperCamelCase ) self.assertIsNotNone(_UpperCamelCase ) @require_torch @slow class __UpperCamelCase ( unittest.TestCase ): def UpperCamelCase( self ): _UpperCAmelCase = LiltModel.from_pretrained('''SCUT-DLVCLab/lilt-roberta-en-base''' ).to(_UpperCamelCase ) _UpperCAmelCase = torch.tensor([[1, 2]] , device=_UpperCamelCase ) _UpperCAmelCase = torch.tensor([[[1, 2, 3, 4], [5, 6, 7, 8]]] , device=_UpperCamelCase ) # forward pass with torch.no_grad(): _UpperCAmelCase = model(input_ids=_UpperCamelCase , bbox=_UpperCamelCase ) _UpperCAmelCase = torch.Size([1, 2, 768] ) _UpperCAmelCase = torch.tensor( [[-0.0653, 0.0950, -0.0061], [-0.0545, 0.0926, -0.0324]] , device=_UpperCamelCase , ) self.assertTrue(outputs.last_hidden_state.shape , _UpperCamelCase ) self.assertTrue(torch.allclose(outputs.last_hidden_state[0, :, :3] , _UpperCamelCase , atol=1e-3 ) )
32
1
from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging UpperCAmelCase_ = logging.get_logger(__name__) UpperCAmelCase_ = { "facebook/levit-128S": "https://huggingface.co/facebook/levit-128S/resolve/main/config.json", # See all LeViT models at https://huggingface.co/models?filter=levit } class __UpperCamelCase ( A__ ): __A : Tuple = """levit""" def __init__( self , _UpperCamelCase=224 , _UpperCamelCase=3 , _UpperCamelCase=3 , _UpperCamelCase=2 , _UpperCamelCase=1 , _UpperCamelCase=16 , _UpperCamelCase=[128, 256, 384] , _UpperCamelCase=[4, 8, 12] , _UpperCamelCase=[4, 4, 4] , _UpperCamelCase=[16, 16, 16] , _UpperCamelCase=0 , _UpperCamelCase=[2, 2, 2] , _UpperCamelCase=[2, 2, 2] , _UpperCamelCase=0.02 , **_UpperCamelCase , ): super().__init__(**_UpperCamelCase ) _UpperCAmelCase = image_size _UpperCAmelCase = num_channels _UpperCAmelCase = kernel_size _UpperCAmelCase = stride _UpperCAmelCase = padding _UpperCAmelCase = hidden_sizes _UpperCAmelCase = num_attention_heads _UpperCAmelCase = depths _UpperCAmelCase = key_dim _UpperCAmelCase = drop_path_rate _UpperCAmelCase = patch_size _UpperCAmelCase = attention_ratio _UpperCAmelCase = mlp_ratio _UpperCAmelCase = initializer_range _UpperCAmelCase = [ ['''Subsample''', key_dim[0], hidden_sizes[0] // key_dim[0], 4, 2, 2], ['''Subsample''', key_dim[0], hidden_sizes[1] // key_dim[0], 4, 2, 2], ] class __UpperCamelCase ( A__ ): __A : List[Any] = version.parse("""1.11""" ) @property def UpperCamelCase( self ): return OrderedDict( [ ('''pixel_values''', {0: '''batch''', 1: '''num_channels''', 2: '''height''', 3: '''width'''}), ] ) @property def UpperCamelCase( self ): return 1e-4
32
from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCAmelCase_ = logging.get_logger(__name__) UpperCAmelCase_ = { "RWKV/rwkv-4-169m-pile": "https://huggingface.co/RWKV/rwkv-4-169m-pile/resolve/main/config.json", "RWKV/rwkv-4-430m-pile": "https://huggingface.co/RWKV/rwkv-4-430m-pile/resolve/main/config.json", "RWKV/rwkv-4-1b5-pile": "https://huggingface.co/RWKV/rwkv-4-1b5-pile/resolve/main/config.json", "RWKV/rwkv-4-3b-pile": "https://huggingface.co/RWKV/rwkv-4-3b-pile/resolve/main/config.json", "RWKV/rwkv-4-7b-pile": "https://huggingface.co/RWKV/rwkv-4-7b-pile/resolve/main/config.json", "RWKV/rwkv-4-14b-pile": "https://huggingface.co/RWKV/rwkv-4-14b-pile/resolve/main/config.json", "RWKV/rwkv-raven-1b5": "https://huggingface.co/RWKV/rwkv-raven-1b5/resolve/main/config.json", "RWKV/rwkv-raven-3b": "https://huggingface.co/RWKV/rwkv-raven-3b/resolve/main/config.json", "RWKV/rwkv-raven-7b": "https://huggingface.co/RWKV/rwkv-raven-7b/resolve/main/config.json", "RWKV/rwkv-raven-14b": "https://huggingface.co/RWKV/rwkv-raven-14b/resolve/main/config.json", } class __UpperCamelCase ( A__ ): __A : Tuple = """rwkv""" __A : Any = {"""max_position_embeddings""": """context_length"""} def __init__( self , _UpperCamelCase=50277 , _UpperCamelCase=1024 , _UpperCamelCase=4096 , _UpperCamelCase=32 , _UpperCamelCase=None , _UpperCamelCase=None , _UpperCamelCase=1e-5 , _UpperCamelCase=0 , _UpperCamelCase=0 , _UpperCamelCase=6 , _UpperCamelCase=False , _UpperCamelCase=True , **_UpperCamelCase , ): _UpperCAmelCase = vocab_size _UpperCAmelCase = context_length _UpperCAmelCase = hidden_size _UpperCAmelCase = num_hidden_layers _UpperCAmelCase = attention_hidden_size if attention_hidden_size is not None else hidden_size _UpperCAmelCase = intermediate_size if intermediate_size is not None else 4 * hidden_size _UpperCAmelCase = layer_norm_epsilon _UpperCAmelCase = rescale_every _UpperCAmelCase = use_cache _UpperCAmelCase = bos_token_id _UpperCAmelCase = eos_token_id super().__init__( tie_word_embeddings=_UpperCamelCase , bos_token_id=_UpperCamelCase , eos_token_id=_UpperCamelCase , **_UpperCamelCase )
32
1
from math import isqrt, loga def A__ ( SCREAMING_SNAKE_CASE_ : int ) -> list[int]: """simple docstring""" _UpperCAmelCase = [True] * max_number for i in range(2 , isqrt(max_number - 1 ) + 1 ): if is_prime[i]: for j in range(i**2 , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): _UpperCAmelCase = False return [i for i in range(2 , SCREAMING_SNAKE_CASE_ ) if is_prime[i]] def A__ ( SCREAMING_SNAKE_CASE_ : int = 80_08_00 , SCREAMING_SNAKE_CASE_ : int = 80_08_00 ) -> int: """simple docstring""" _UpperCAmelCase = degree * loga(SCREAMING_SNAKE_CASE_ ) _UpperCAmelCase = int(SCREAMING_SNAKE_CASE_ ) _UpperCAmelCase = calculate_prime_numbers(SCREAMING_SNAKE_CASE_ ) _UpperCAmelCase = 0 _UpperCAmelCase = 0 _UpperCAmelCase = len(SCREAMING_SNAKE_CASE_ ) - 1 while left < right: while ( prime_numbers[right] * loga(prime_numbers[left] ) + prime_numbers[left] * loga(prime_numbers[right] ) > upper_bound ): right -= 1 hybrid_integers_count += right - left left += 1 return hybrid_integers_count if __name__ == "__main__": print(f'''{solution() = }''')
32
def A__ ( SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : int ) -> str: """simple docstring""" if a < 0 or b < 0: raise ValueError('''the value of both inputs must be positive''' ) _UpperCAmelCase = str(bin(SCREAMING_SNAKE_CASE_ ) )[2:] # remove the leading "0b" _UpperCAmelCase = str(bin(SCREAMING_SNAKE_CASE_ ) )[2:] # remove the leading "0b" _UpperCAmelCase = max(len(SCREAMING_SNAKE_CASE_ ) , len(SCREAMING_SNAKE_CASE_ ) ) return "0b" + "".join( str(int(char_a == '''1''' and char_b == '''1''' ) ) for char_a, char_b in zip(a_binary.zfill(SCREAMING_SNAKE_CASE_ ) , b_binary.zfill(SCREAMING_SNAKE_CASE_ ) ) ) if __name__ == "__main__": import doctest doctest.testmod()
32
1
import json import os import shutil import tempfile import unittest import numpy as np from transformers import BertTokenizerFast from transformers.models.bert.tokenization_bert import VOCAB_FILES_NAMES, BertTokenizer from transformers.testing_utils import require_tokenizers, require_vision from transformers.utils import IMAGE_PROCESSOR_NAME, is_vision_available if is_vision_available(): from PIL import Image from transformers import VisionTextDualEncoderProcessor, ViTImageProcessor @require_tokenizers @require_vision class __UpperCamelCase ( unittest.TestCase ): def UpperCamelCase( self ): _UpperCAmelCase = tempfile.mkdtemp() # fmt: off _UpperCAmelCase = ['''[UNK]''', '''[CLS]''', '''[SEP]''', '''[PAD]''', '''[MASK]''', '''want''', '''##want''', '''##ed''', '''wa''', '''un''', '''runn''', '''##ing''', ''',''', '''low''', '''lowest'''] # fmt: on _UpperCAmelCase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as vocab_writer: vocab_writer.write(''''''.join([x + '''\n''' for x in vocab_tokens] ) ) _UpperCAmelCase = { '''do_resize''': True, '''size''': {'''height''': 18, '''width''': 18}, '''do_normalize''': True, '''image_mean''': [0.5, 0.5, 0.5], '''image_std''': [0.5, 0.5, 0.5], } _UpperCAmelCase = os.path.join(self.tmpdirname , _UpperCamelCase ) with open(self.image_processor_file , '''w''' , encoding='''utf-8''' ) as fp: json.dump(_UpperCamelCase , _UpperCamelCase ) def UpperCamelCase( self , **_UpperCamelCase ): return BertTokenizer.from_pretrained(self.tmpdirname , **_UpperCamelCase ) def UpperCamelCase( self , **_UpperCamelCase ): return ViTImageProcessor.from_pretrained(self.tmpdirname , **_UpperCamelCase ) def UpperCamelCase( self ): shutil.rmtree(self.tmpdirname ) def UpperCamelCase( self ): _UpperCAmelCase = [np.random.randint(255 , size=(3, 30, 400) , dtype=np.uinta )] _UpperCAmelCase = [Image.fromarray(np.moveaxis(_UpperCamelCase , 0 , -1 ) ) for x in image_inputs] return image_inputs def UpperCamelCase( self ): _UpperCAmelCase = self.get_tokenizer() _UpperCAmelCase = self.get_image_processor() _UpperCAmelCase = VisionTextDualEncoderProcessor(tokenizer=_UpperCamelCase , image_processor=_UpperCamelCase ) processor.save_pretrained(self.tmpdirname ) _UpperCAmelCase = VisionTextDualEncoderProcessor.from_pretrained(self.tmpdirname ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer.get_vocab() ) self.assertIsInstance(processor.tokenizer , (BertTokenizer, BertTokenizerFast) ) self.assertEqual(processor.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertIsInstance(processor.image_processor , _UpperCamelCase ) def UpperCamelCase( self ): _UpperCAmelCase = VisionTextDualEncoderProcessor( tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) _UpperCAmelCase = self.get_tokenizer(bos_token='''(BOS)''' , eos_token='''(EOS)''' ) _UpperCAmelCase = self.get_image_processor(do_normalize=_UpperCamelCase , padding_value=1.0 ) _UpperCAmelCase = VisionTextDualEncoderProcessor.from_pretrained( self.tmpdirname , bos_token='''(BOS)''' , eos_token='''(EOS)''' , do_normalize=_UpperCamelCase , padding_value=1.0 ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer , (BertTokenizer, BertTokenizerFast) ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , _UpperCamelCase ) def UpperCamelCase( self ): _UpperCAmelCase = self.get_image_processor() _UpperCAmelCase = self.get_tokenizer() _UpperCAmelCase = VisionTextDualEncoderProcessor(tokenizer=_UpperCamelCase , image_processor=_UpperCamelCase ) _UpperCAmelCase = self.prepare_image_inputs() _UpperCAmelCase = image_processor(_UpperCamelCase , return_tensors='''np''' ) _UpperCAmelCase = processor(images=_UpperCamelCase , return_tensors='''np''' ) for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1e-2 ) def UpperCamelCase( self ): _UpperCAmelCase = self.get_image_processor() _UpperCAmelCase = self.get_tokenizer() _UpperCAmelCase = VisionTextDualEncoderProcessor(tokenizer=_UpperCamelCase , image_processor=_UpperCamelCase ) _UpperCAmelCase = '''lower newer''' _UpperCAmelCase = processor(text=_UpperCamelCase ) _UpperCAmelCase = tokenizer(_UpperCamelCase ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key] ) def UpperCamelCase( self ): _UpperCAmelCase = self.get_image_processor() _UpperCAmelCase = self.get_tokenizer() _UpperCAmelCase = VisionTextDualEncoderProcessor(tokenizer=_UpperCamelCase , image_processor=_UpperCamelCase ) _UpperCAmelCase = '''lower newer''' _UpperCAmelCase = self.prepare_image_inputs() _UpperCAmelCase = processor(text=_UpperCamelCase , images=_UpperCamelCase ) self.assertListEqual(list(inputs.keys() ) , ['''input_ids''', '''token_type_ids''', '''attention_mask''', '''pixel_values'''] ) # test if it raises when no input is passed with self.assertRaises(_UpperCamelCase ): processor() def UpperCamelCase( self ): _UpperCAmelCase = self.get_image_processor() _UpperCAmelCase = self.get_tokenizer() _UpperCAmelCase = VisionTextDualEncoderProcessor(tokenizer=_UpperCamelCase , image_processor=_UpperCamelCase ) _UpperCAmelCase = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] _UpperCAmelCase = processor.batch_decode(_UpperCamelCase ) _UpperCAmelCase = tokenizer.batch_decode(_UpperCamelCase ) self.assertListEqual(_UpperCamelCase , _UpperCamelCase ) def UpperCamelCase( self ): _UpperCAmelCase = self.get_image_processor() _UpperCAmelCase = self.get_tokenizer() _UpperCAmelCase = VisionTextDualEncoderProcessor(tokenizer=_UpperCamelCase , image_processor=_UpperCamelCase ) _UpperCAmelCase = '''lower newer''' _UpperCAmelCase = self.prepare_image_inputs() _UpperCAmelCase = processor(text=_UpperCamelCase , images=_UpperCamelCase ) self.assertListEqual(list(inputs.keys() ) , processor.model_input_names )
32
from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCAmelCase_ = logging.get_logger(__name__) UpperCAmelCase_ = { "tiiuae/falcon-40b": "https://huggingface.co/tiiuae/falcon-40b/resolve/main/config.json", "tiiuae/falcon-7b": "https://huggingface.co/tiiuae/falcon-7b/resolve/main/config.json", } class __UpperCamelCase ( A__ ): __A : Dict = """falcon""" __A : Any = ["""past_key_values"""] def __init__( self , _UpperCamelCase=65024 , _UpperCamelCase=4544 , _UpperCamelCase=32 , _UpperCamelCase=71 , _UpperCamelCase=1e-5 , _UpperCamelCase=0.02 , _UpperCamelCase=True , _UpperCamelCase=0.0 , _UpperCamelCase=0.0 , _UpperCamelCase=None , _UpperCamelCase=False , _UpperCamelCase=False , _UpperCamelCase=True , _UpperCamelCase=True , _UpperCamelCase=False , _UpperCamelCase=11 , _UpperCamelCase=11 , **_UpperCamelCase , ): _UpperCAmelCase = vocab_size # Backward compatibility with n_embed kwarg _UpperCAmelCase = kwargs.pop('''n_embed''' , _UpperCamelCase ) _UpperCAmelCase = hidden_size if n_embed is None else n_embed _UpperCAmelCase = num_hidden_layers _UpperCAmelCase = num_attention_heads _UpperCAmelCase = layer_norm_epsilon _UpperCAmelCase = initializer_range _UpperCAmelCase = use_cache _UpperCAmelCase = hidden_dropout _UpperCAmelCase = attention_dropout _UpperCAmelCase = bos_token_id _UpperCAmelCase = eos_token_id _UpperCAmelCase = num_attention_heads if num_kv_heads is None else num_kv_heads _UpperCAmelCase = alibi _UpperCAmelCase = new_decoder_architecture _UpperCAmelCase = multi_query # Ignored when new_decoder_architecture is True _UpperCAmelCase = parallel_attn _UpperCAmelCase = bias super().__init__(bos_token_id=_UpperCamelCase , eos_token_id=_UpperCamelCase , **_UpperCamelCase ) @property def UpperCamelCase( self ): return self.hidden_size // self.num_attention_heads @property def UpperCamelCase( self ): return not self.alibi
32
1
def A__ ( SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : int ) -> str: """simple docstring""" if a < 0 or b < 0: raise ValueError('''the value of both inputs must be positive''' ) _UpperCAmelCase = str(bin(SCREAMING_SNAKE_CASE_ ) )[2:] # remove the leading "0b" _UpperCAmelCase = str(bin(SCREAMING_SNAKE_CASE_ ) )[2:] # remove the leading "0b" _UpperCAmelCase = max(len(SCREAMING_SNAKE_CASE_ ) , len(SCREAMING_SNAKE_CASE_ ) ) return "0b" + "".join( str(int(char_a == '''1''' and char_b == '''1''' ) ) for char_a, char_b in zip(a_binary.zfill(SCREAMING_SNAKE_CASE_ ) , b_binary.zfill(SCREAMING_SNAKE_CASE_ ) ) ) if __name__ == "__main__": import doctest doctest.testmod()
32
from math import sqrt def A__ ( SCREAMING_SNAKE_CASE_ : int ) -> bool: """simple docstring""" if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5 , int(sqrt(SCREAMING_SNAKE_CASE_ ) + 1 ) , 6 ): if number % i == 0 or number % (i + 2) == 0: return False return True def A__ ( SCREAMING_SNAKE_CASE_ : int = 1_00_01 ) -> int: """simple docstring""" _UpperCAmelCase = 0 _UpperCAmelCase = 1 while count != nth and number < 3: number += 1 if is_prime(SCREAMING_SNAKE_CASE_ ): count += 1 while count != nth: number += 2 if is_prime(SCREAMING_SNAKE_CASE_ ): count += 1 return number if __name__ == "__main__": print(f'''{solution() = }''')
32
1
import unittest from transformers import MODEL_FOR_ZERO_SHOT_OBJECT_DETECTION_MAPPING, is_vision_available, pipeline from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_tf, require_torch, require_vision, slow, ) from .test_pipelines_common import ANY if is_vision_available(): from PIL import Image else: class __UpperCamelCase : @staticmethod def UpperCamelCase( *_UpperCamelCase , **_UpperCamelCase ): pass @is_pipeline_test @require_vision @require_torch class __UpperCamelCase ( unittest.TestCase ): __A : Union[str, Any] = MODEL_FOR_ZERO_SHOT_OBJECT_DETECTION_MAPPING def UpperCamelCase( self , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ): _UpperCAmelCase = pipeline( '''zero-shot-object-detection''' , model='''hf-internal-testing/tiny-random-owlvit-object-detection''' ) _UpperCAmelCase = [ { '''image''': '''./tests/fixtures/tests_samples/COCO/000000039769.png''', '''candidate_labels''': ['''cat''', '''remote''', '''couch'''], } ] return object_detector, examples def UpperCamelCase( self , _UpperCamelCase , _UpperCamelCase ): _UpperCAmelCase = object_detector(examples[0] , threshold=0.0 ) _UpperCAmelCase = len(_UpperCamelCase ) self.assertGreater(_UpperCamelCase , 0 ) self.assertEqual( _UpperCamelCase , [ { '''score''': ANY(_UpperCamelCase ), '''label''': ANY(_UpperCamelCase ), '''box''': {'''xmin''': ANY(_UpperCamelCase ), '''ymin''': ANY(_UpperCamelCase ), '''xmax''': ANY(_UpperCamelCase ), '''ymax''': ANY(_UpperCamelCase )}, } for i in range(_UpperCamelCase ) ] , ) @require_tf @unittest.skip('''Zero Shot Object Detection not implemented in TF''' ) def UpperCamelCase( self ): pass @require_torch def UpperCamelCase( self ): _UpperCAmelCase = pipeline( '''zero-shot-object-detection''' , model='''hf-internal-testing/tiny-random-owlvit-object-detection''' ) _UpperCAmelCase = object_detector( '''./tests/fixtures/tests_samples/COCO/000000039769.png''' , candidate_labels=['''cat''', '''remote''', '''couch'''] , threshold=0.64 , ) self.assertEqual( nested_simplify(_UpperCamelCase , decimals=4 ) , [ {'''score''': 0.7235, '''label''': '''cat''', '''box''': {'''xmin''': 204, '''ymin''': 167, '''xmax''': 232, '''ymax''': 190}}, {'''score''': 0.7218, '''label''': '''remote''', '''box''': {'''xmin''': 204, '''ymin''': 167, '''xmax''': 232, '''ymax''': 190}}, {'''score''': 0.7184, '''label''': '''couch''', '''box''': {'''xmin''': 204, '''ymin''': 167, '''xmax''': 232, '''ymax''': 190}}, {'''score''': 0.6748, '''label''': '''remote''', '''box''': {'''xmin''': 571, '''ymin''': 83, '''xmax''': 598, '''ymax''': 103}}, {'''score''': 0.6656, '''label''': '''cat''', '''box''': {'''xmin''': 571, '''ymin''': 83, '''xmax''': 598, '''ymax''': 103}}, {'''score''': 0.6614, '''label''': '''couch''', '''box''': {'''xmin''': 571, '''ymin''': 83, '''xmax''': 598, '''ymax''': 103}}, {'''score''': 0.6456, '''label''': '''remote''', '''box''': {'''xmin''': 494, '''ymin''': 105, '''xmax''': 521, '''ymax''': 127}}, {'''score''': 0.642, '''label''': '''remote''', '''box''': {'''xmin''': 67, '''ymin''': 274, '''xmax''': 93, '''ymax''': 297}}, {'''score''': 0.6419, '''label''': '''cat''', '''box''': {'''xmin''': 494, '''ymin''': 105, '''xmax''': 521, '''ymax''': 127}}, ] , ) _UpperCAmelCase = object_detector( [ { '''image''': '''./tests/fixtures/tests_samples/COCO/000000039769.png''', '''candidate_labels''': ['''cat''', '''remote''', '''couch'''], } ] , threshold=0.64 , ) self.assertEqual( nested_simplify(_UpperCamelCase , decimals=4 ) , [ [ {'''score''': 0.7235, '''label''': '''cat''', '''box''': {'''xmin''': 204, '''ymin''': 167, '''xmax''': 232, '''ymax''': 190}}, {'''score''': 0.7218, '''label''': '''remote''', '''box''': {'''xmin''': 204, '''ymin''': 167, '''xmax''': 232, '''ymax''': 190}}, {'''score''': 0.7184, '''label''': '''couch''', '''box''': {'''xmin''': 204, '''ymin''': 167, '''xmax''': 232, '''ymax''': 190}}, {'''score''': 0.6748, '''label''': '''remote''', '''box''': {'''xmin''': 571, '''ymin''': 83, '''xmax''': 598, '''ymax''': 103}}, {'''score''': 0.6656, '''label''': '''cat''', '''box''': {'''xmin''': 571, '''ymin''': 83, '''xmax''': 598, '''ymax''': 103}}, {'''score''': 0.6614, '''label''': '''couch''', '''box''': {'''xmin''': 571, '''ymin''': 83, '''xmax''': 598, '''ymax''': 103}}, {'''score''': 0.6456, '''label''': '''remote''', '''box''': {'''xmin''': 494, '''ymin''': 105, '''xmax''': 521, '''ymax''': 127}}, {'''score''': 0.642, '''label''': '''remote''', '''box''': {'''xmin''': 67, '''ymin''': 274, '''xmax''': 93, '''ymax''': 297}}, {'''score''': 0.6419, '''label''': '''cat''', '''box''': {'''xmin''': 494, '''ymin''': 105, '''xmax''': 521, '''ymax''': 127}}, ] ] , ) @require_torch @slow def UpperCamelCase( self ): _UpperCAmelCase = pipeline('''zero-shot-object-detection''' ) _UpperCAmelCase = object_detector( '''http://images.cocodataset.org/val2017/000000039769.jpg''' , candidate_labels=['''cat''', '''remote''', '''couch'''] , ) self.assertEqual( nested_simplify(_UpperCamelCase , decimals=4 ) , [ {'''score''': 0.2868, '''label''': '''cat''', '''box''': {'''xmin''': 324, '''ymin''': 20, '''xmax''': 640, '''ymax''': 373}}, {'''score''': 0.277, '''label''': '''remote''', '''box''': {'''xmin''': 40, '''ymin''': 72, '''xmax''': 177, '''ymax''': 115}}, {'''score''': 0.2537, '''label''': '''cat''', '''box''': {'''xmin''': 1, '''ymin''': 55, '''xmax''': 315, '''ymax''': 472}}, {'''score''': 0.1474, '''label''': '''remote''', '''box''': {'''xmin''': 335, '''ymin''': 74, '''xmax''': 371, '''ymax''': 187}}, {'''score''': 0.1208, '''label''': '''couch''', '''box''': {'''xmin''': 4, '''ymin''': 0, '''xmax''': 642, '''ymax''': 476}}, ] , ) _UpperCAmelCase = object_detector( [ { '''image''': '''http://images.cocodataset.org/val2017/000000039769.jpg''', '''candidate_labels''': ['''cat''', '''remote''', '''couch'''], }, { '''image''': '''http://images.cocodataset.org/val2017/000000039769.jpg''', '''candidate_labels''': ['''cat''', '''remote''', '''couch'''], }, ] , ) self.assertEqual( nested_simplify(_UpperCamelCase , decimals=4 ) , [ [ {'''score''': 0.2868, '''label''': '''cat''', '''box''': {'''xmin''': 324, '''ymin''': 20, '''xmax''': 640, '''ymax''': 373}}, {'''score''': 0.277, '''label''': '''remote''', '''box''': {'''xmin''': 40, '''ymin''': 72, '''xmax''': 177, '''ymax''': 115}}, {'''score''': 0.2537, '''label''': '''cat''', '''box''': {'''xmin''': 1, '''ymin''': 55, '''xmax''': 315, '''ymax''': 472}}, {'''score''': 0.1474, '''label''': '''remote''', '''box''': {'''xmin''': 335, '''ymin''': 74, '''xmax''': 371, '''ymax''': 187}}, {'''score''': 0.1208, '''label''': '''couch''', '''box''': {'''xmin''': 4, '''ymin''': 0, '''xmax''': 642, '''ymax''': 476}}, ], [ {'''score''': 0.2868, '''label''': '''cat''', '''box''': {'''xmin''': 324, '''ymin''': 20, '''xmax''': 640, '''ymax''': 373}}, {'''score''': 0.277, '''label''': '''remote''', '''box''': {'''xmin''': 40, '''ymin''': 72, '''xmax''': 177, '''ymax''': 115}}, {'''score''': 0.2537, '''label''': '''cat''', '''box''': {'''xmin''': 1, '''ymin''': 55, '''xmax''': 315, '''ymax''': 472}}, {'''score''': 0.1474, '''label''': '''remote''', '''box''': {'''xmin''': 335, '''ymin''': 74, '''xmax''': 371, '''ymax''': 187}}, {'''score''': 0.1208, '''label''': '''couch''', '''box''': {'''xmin''': 4, '''ymin''': 0, '''xmax''': 642, '''ymax''': 476}}, ], ] , ) @require_tf @unittest.skip('''Zero Shot Object Detection not implemented in TF''' ) def UpperCamelCase( self ): pass @require_torch @slow def UpperCamelCase( self ): _UpperCAmelCase = 0.2 _UpperCAmelCase = pipeline('''zero-shot-object-detection''' ) _UpperCAmelCase = object_detector( '''http://images.cocodataset.org/val2017/000000039769.jpg''' , candidate_labels=['''cat''', '''remote''', '''couch'''] , threshold=_UpperCamelCase , ) self.assertEqual( nested_simplify(_UpperCamelCase , decimals=4 ) , [ {'''score''': 0.2868, '''label''': '''cat''', '''box''': {'''xmin''': 324, '''ymin''': 20, '''xmax''': 640, '''ymax''': 373}}, {'''score''': 0.277, '''label''': '''remote''', '''box''': {'''xmin''': 40, '''ymin''': 72, '''xmax''': 177, '''ymax''': 115}}, {'''score''': 0.2537, '''label''': '''cat''', '''box''': {'''xmin''': 1, '''ymin''': 55, '''xmax''': 315, '''ymax''': 472}}, ] , ) @require_torch @slow def UpperCamelCase( self ): _UpperCAmelCase = 2 _UpperCAmelCase = pipeline('''zero-shot-object-detection''' ) _UpperCAmelCase = object_detector( '''http://images.cocodataset.org/val2017/000000039769.jpg''' , candidate_labels=['''cat''', '''remote''', '''couch'''] , top_k=_UpperCamelCase , ) self.assertEqual( nested_simplify(_UpperCamelCase , decimals=4 ) , [ {'''score''': 0.2868, '''label''': '''cat''', '''box''': {'''xmin''': 324, '''ymin''': 20, '''xmax''': 640, '''ymax''': 373}}, {'''score''': 0.277, '''label''': '''remote''', '''box''': {'''xmin''': 40, '''ymin''': 72, '''xmax''': 177, '''ymax''': 115}}, ] , )
32
def A__ ( SCREAMING_SNAKE_CASE_ : int ) -> bool: """simple docstring""" if not isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): _UpperCAmelCase = F'''Input value of [number={number}] must be an integer''' raise TypeError(SCREAMING_SNAKE_CASE_ ) if number < 0: return False _UpperCAmelCase = number * number while number > 0: if number % 10 != number_square % 10: return False number //= 10 number_square //= 10 return True if __name__ == "__main__": import doctest doctest.testmod()
32
1
from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available UpperCAmelCase_ = { "configuration_autoformer": [ "AUTOFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP", "AutoformerConfig", ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase_ = [ "AUTOFORMER_PRETRAINED_MODEL_ARCHIVE_LIST", "AutoformerForPrediction", "AutoformerModel", "AutoformerPreTrainedModel", ] if TYPE_CHECKING: from .configuration_autoformer import ( AUTOFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, AutoformerConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_autoformer import ( AUTOFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, AutoformerForPrediction, AutoformerModel, AutoformerPreTrainedModel, ) else: import sys UpperCAmelCase_ = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
32
from dataclasses import dataclass, field from typing import ClassVar, Dict from ..features import Features, Value from .base import TaskTemplate @dataclass(frozen=A__ ) class __UpperCamelCase ( A__ ): __A : str = field(default="""language-modeling""" , metadata={"""include_in_asdict_even_if_is_default""": True} ) __A : ClassVar[Features] = Features({"""text""": Value("""string""" )} ) __A : ClassVar[Features] = Features({} ) __A : str = "text" @property def UpperCamelCase( self ): return {self.text_column: "text"}
32
1
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available UpperCAmelCase_ = { "configuration_git": ["GIT_PRETRAINED_CONFIG_ARCHIVE_MAP", "GitConfig", "GitVisionConfig"], "processing_git": ["GitProcessor"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase_ = [ "GIT_PRETRAINED_MODEL_ARCHIVE_LIST", "GitForCausalLM", "GitModel", "GitPreTrainedModel", "GitVisionModel", ] if TYPE_CHECKING: from .configuration_git import GIT_PRETRAINED_CONFIG_ARCHIVE_MAP, GitConfig, GitVisionConfig from .processing_git import GitProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_git import ( GIT_PRETRAINED_MODEL_ARCHIVE_LIST, GitForCausalLM, GitModel, GitPreTrainedModel, GitVisionModel, ) else: import sys UpperCAmelCase_ = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
32
import os import re import warnings from shutil import copyfile from typing import TYPE_CHECKING, Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import PreTrainedTokenizer if TYPE_CHECKING: from ...tokenization_utils_base import TextInput from ...utils import logging UpperCAmelCase_ = logging.get_logger(__name__) UpperCAmelCase_ = {"vocab_file": "spiece.model"} UpperCAmelCase_ = { "vocab_file": { "t5-small": "https://huggingface.co/t5-small/resolve/main/spiece.model", "t5-base": "https://huggingface.co/t5-base/resolve/main/spiece.model", "t5-large": "https://huggingface.co/t5-large/resolve/main/spiece.model", "t5-3b": "https://huggingface.co/t5-3b/resolve/main/spiece.model", "t5-11b": "https://huggingface.co/t5-11b/resolve/main/spiece.model", } } # TODO(PVP) - this should be removed in Transformers v5 UpperCAmelCase_ = { "t5-small": 5_12, "t5-base": 5_12, "t5-large": 5_12, "t5-3b": 5_12, "t5-11b": 5_12, } UpperCAmelCase_ = "▁" class __UpperCamelCase ( A__ ): __A : Any = VOCAB_FILES_NAMES __A : Union[str, Any] = PRETRAINED_VOCAB_FILES_MAP __A : Any = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __A : Tuple = ["""input_ids""", """attention_mask"""] def __init__( self , _UpperCamelCase , _UpperCamelCase="</s>" , _UpperCamelCase="<unk>" , _UpperCamelCase="<pad>" , _UpperCamelCase=100 , _UpperCamelCase=None , _UpperCamelCase = None , _UpperCamelCase=True , **_UpperCamelCase , ): # Add extra_ids to the special token list if extra_ids > 0 and additional_special_tokens is None: _UpperCAmelCase = [f'''<extra_id_{i}>''' for i in range(_UpperCamelCase )] elif extra_ids > 0 and additional_special_tokens is not None: # Check that we have the right number of extra_id special tokens _UpperCAmelCase = len(set(filter(lambda _UpperCamelCase : bool('''extra_id''' in str(_UpperCamelCase ) ) , _UpperCamelCase ) ) ) if extra_tokens != extra_ids: raise ValueError( f'''Both extra_ids ({extra_ids}) and additional_special_tokens ({additional_special_tokens}) are''' ''' provided to T5Tokenizer. In this case the additional_special_tokens must include the extra_ids''' ''' tokens''' ) if legacy: logger.warning_once( f'''You are using the legacy behaviour of the {self.__class__}. This means that tokens that come after special tokens will not be properly handled. We recommend you to''' ''' read the related pull request available at https://github.com/huggingface/transformers/pull/24565''' ) _UpperCAmelCase = legacy _UpperCAmelCase = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( eos_token=_UpperCamelCase , unk_token=_UpperCamelCase , pad_token=_UpperCamelCase , extra_ids=_UpperCamelCase , additional_special_tokens=_UpperCamelCase , sp_model_kwargs=self.sp_model_kwargs , legacy=_UpperCamelCase , **_UpperCamelCase , ) _UpperCAmelCase = vocab_file _UpperCAmelCase = extra_ids _UpperCAmelCase = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(_UpperCamelCase ) @staticmethod def UpperCamelCase( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ): if pretrained_model_name_or_path in TaTokenizer.max_model_input_sizes: _UpperCAmelCase = TaTokenizer.max_model_input_sizes[pretrained_model_name_or_path] if init_max_model_length is not None and init_max_model_length != max_model_length: return init_max_model_length elif init_max_model_length is None: warnings.warn( '''This tokenizer was incorrectly instantiated with a model max length of''' f''' {deprecated_max_model_length} which will be corrected in Transformers v5.\nFor now, this''' ''' behavior is kept to avoid breaking backwards compatibility when padding/encoding with''' ''' `truncation is True`.\n- Be aware that you SHOULD NOT rely on''' f''' {pretrained_model_name_or_path} automatically truncating your input to''' f''' {deprecated_max_model_length} when padding/encoding.\n- If you want to encode/pad to sequences''' f''' longer than {deprecated_max_model_length} you can either instantiate this tokenizer with''' ''' `model_max_length` or pass `max_length` when encoding/padding.\n- To avoid this warning, please''' ''' instantiate this tokenizer with `model_max_length` set to your preferred value.''' , _UpperCamelCase , ) return max_model_length @property def UpperCamelCase( self ): return self.sp_model.get_piece_size() + self._extra_ids def UpperCamelCase( self ): _UpperCAmelCase = {self.convert_ids_to_tokens(_UpperCamelCase ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def UpperCamelCase( self , _UpperCamelCase , _UpperCamelCase = None , _UpperCamelCase = False ): if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=_UpperCamelCase , token_ids_a=_UpperCamelCase , already_has_special_tokens=_UpperCamelCase ) # normal case: some special tokens if token_ids_a is None: return ([0] * len(_UpperCamelCase )) + [1] return ([0] * len(_UpperCamelCase )) + [1] + ([0] * len(_UpperCamelCase )) + [1] def UpperCamelCase( self ): return list( set(filter(lambda _UpperCamelCase : bool(re.search(R'''<extra_id_\d+>''' , _UpperCamelCase ) ) is not None , self.additional_special_tokens ) ) ) def UpperCamelCase( self ): return [self._convert_token_to_id(_UpperCamelCase ) for token in self.get_sentinel_tokens()] def UpperCamelCase( self , _UpperCamelCase ): if len(_UpperCamelCase ) > 0 and token_ids[-1] == self.eos_token_id: warnings.warn( f'''This sequence already has {self.eos_token}. In future versions this behavior may lead to duplicated''' ''' eos tokens being added.''' ) return token_ids else: return token_ids + [self.eos_token_id] def UpperCamelCase( self , _UpperCamelCase , _UpperCamelCase = None ): _UpperCAmelCase = [self.eos_token_id] if token_ids_a is None: return len(token_ids_a + eos ) * [0] return len(token_ids_a + eos + token_ids_a + eos ) * [0] def UpperCamelCase( self , _UpperCamelCase , _UpperCamelCase = None ): _UpperCAmelCase = self._add_eos_if_not_present(_UpperCamelCase ) if token_ids_a is None: return token_ids_a else: _UpperCAmelCase = self._add_eos_if_not_present(_UpperCamelCase ) return token_ids_a + token_ids_a def __getstate__( self ): _UpperCAmelCase = self.__dict__.copy() _UpperCAmelCase = None return state def __setstate__( self , _UpperCamelCase ): _UpperCAmelCase = d # for backward compatibility if not hasattr(self , '''sp_model_kwargs''' ): _UpperCAmelCase = {} _UpperCAmelCase = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def UpperCamelCase( self , _UpperCamelCase , **_UpperCamelCase ): # Replace the SPIECE_UNDERLINE with a space to make sure SPIECE_UNDERLINE is only used at # the beginning of the text if not self.legacy: _UpperCAmelCase = SPIECE_UNDERLINE + text.replace(_UpperCamelCase , ''' ''' ) return super().tokenize(_UpperCamelCase , **_UpperCamelCase ) def UpperCamelCase( self , _UpperCamelCase , **_UpperCamelCase ): if not self.legacy: _UpperCAmelCase = text.startswith(_UpperCamelCase ) if is_first: _UpperCAmelCase = text[1:] _UpperCAmelCase = self.sp_model.encode(_UpperCamelCase , out_type=_UpperCamelCase ) if not self.legacy and not is_first and not text.startswith(''' ''' ) and tokens[0].startswith(_UpperCamelCase ): _UpperCAmelCase = ([tokens[0][1:]] if len(tokens[0] ) > 1 else []) + tokens[1:] return tokens def UpperCamelCase( self , _UpperCamelCase ): if token.startswith('''<extra_id_''' ): _UpperCAmelCase = re.match(R'''<extra_id_(\d+)>''' , _UpperCamelCase ) _UpperCAmelCase = int(match.group(1 ) ) return self.vocab_size - num - 1 return self.sp_model.piece_to_id(_UpperCamelCase ) def UpperCamelCase( self , _UpperCamelCase ): if index < self.sp_model.get_piece_size(): _UpperCAmelCase = self.sp_model.IdToPiece(_UpperCamelCase ) else: _UpperCAmelCase = f'''<extra_id_{self.vocab_size - 1 - index}>''' return token def UpperCamelCase( self , _UpperCamelCase ): _UpperCAmelCase = [] _UpperCAmelCase = '''''' _UpperCAmelCase = False for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: if not prev_is_special: out_string += " " out_string += self.sp_model.decode(_UpperCamelCase ) + token _UpperCAmelCase = True _UpperCAmelCase = [] else: current_sub_tokens.append(_UpperCamelCase ) _UpperCAmelCase = False out_string += self.sp_model.decode(_UpperCamelCase ) return out_string.strip() def UpperCamelCase( self , _UpperCamelCase , _UpperCamelCase = None ): if not os.path.isdir(_UpperCamelCase ): logger.error(f'''Vocabulary path ({save_directory}) should be a directory''' ) return _UpperCAmelCase = os.path.join( _UpperCamelCase , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(_UpperCamelCase ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , _UpperCamelCase ) elif not os.path.isfile(self.vocab_file ): with open(_UpperCamelCase , '''wb''' ) as fi: _UpperCAmelCase = self.sp_model.serialized_model_proto() fi.write(_UpperCamelCase ) return (out_vocab_file,)
32
1
from typing import List, Optional from tokenizers import ByteLevelBPETokenizer from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_blenderbot_small import BlenderbotSmallTokenizer UpperCAmelCase_ = logging.get_logger(__name__) UpperCAmelCase_ = { "vocab_file": "vocab.json", "merges_file": "merges.txt", "tokenizer_config_file": "tokenizer_config.json", } UpperCAmelCase_ = { "vocab_file": { "facebook/blenderbot_small-90M": "https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/vocab.json" }, "merges_file": { "facebook/blenderbot_small-90M": "https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/merges.txt" }, "tokenizer_config_file": { "facebook/blenderbot_small-90M": ( "https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/tokenizer_config.json" ) }, } UpperCAmelCase_ = { "facebook/blenderbot_small-90M": 5_12, } class __UpperCamelCase ( A__ ): __A : List[str] = VOCAB_FILES_NAMES __A : Tuple = PRETRAINED_VOCAB_FILES_MAP __A : Tuple = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __A : Optional[int] = BlenderbotSmallTokenizer def __init__( self , _UpperCamelCase=None , _UpperCamelCase=None , _UpperCamelCase="<|endoftext|>" , _UpperCamelCase="<|endoftext|>" , _UpperCamelCase="<|endoftext|>" , _UpperCamelCase=False , _UpperCamelCase=True , **_UpperCamelCase , ): super().__init__( ByteLevelBPETokenizer( vocab=_UpperCamelCase , merges=_UpperCamelCase , add_prefix_space=_UpperCamelCase , trim_offsets=_UpperCamelCase , ) , bos_token=_UpperCamelCase , eos_token=_UpperCamelCase , unk_token=_UpperCamelCase , **_UpperCamelCase , ) _UpperCAmelCase = add_prefix_space def UpperCamelCase( self , _UpperCamelCase , _UpperCamelCase=None ): _UpperCAmelCase = [self.bos_token_id] + token_ids_a + [self.eos_token_id] if token_ids_a is None: return output return output + [self.eos_token_id] + token_ids_a + [self.eos_token_id] def UpperCamelCase( self , _UpperCamelCase , _UpperCamelCase = None ): _UpperCAmelCase = [self.sep_token_id] _UpperCAmelCase = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0]
32
from __future__ import annotations def A__ ( SCREAMING_SNAKE_CASE_ : int ) -> bool: """simple docstring""" _UpperCAmelCase = str(SCREAMING_SNAKE_CASE_ ) return len(SCREAMING_SNAKE_CASE_ ) == 9 and set(SCREAMING_SNAKE_CASE_ ) == set('''123456789''' ) def A__ ( ) -> int | None: """simple docstring""" for base_num in range(99_99 , 49_99 , -1 ): _UpperCAmelCase = 10_00_02 * base_num if is_9_pandigital(SCREAMING_SNAKE_CASE_ ): return candidate for base_num in range(3_33 , 99 , -1 ): _UpperCAmelCase = 1_00_20_03 * base_num if is_9_pandigital(SCREAMING_SNAKE_CASE_ ): return candidate return None if __name__ == "__main__": print(f'''{solution() = }''')
32
1
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, ) UpperCAmelCase_ = { "configuration_distilbert": [ "DISTILBERT_PRETRAINED_CONFIG_ARCHIVE_MAP", "DistilBertConfig", "DistilBertOnnxConfig", ], "tokenization_distilbert": ["DistilBertTokenizer"], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase_ = ["DistilBertTokenizerFast"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase_ = [ "DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST", "DistilBertForMaskedLM", "DistilBertForMultipleChoice", "DistilBertForQuestionAnswering", "DistilBertForSequenceClassification", "DistilBertForTokenClassification", "DistilBertModel", "DistilBertPreTrainedModel", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase_ = [ "TF_DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST", "TFDistilBertForMaskedLM", "TFDistilBertForMultipleChoice", "TFDistilBertForQuestionAnswering", "TFDistilBertForSequenceClassification", "TFDistilBertForTokenClassification", "TFDistilBertMainLayer", "TFDistilBertModel", "TFDistilBertPreTrainedModel", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase_ = [ "FlaxDistilBertForMaskedLM", "FlaxDistilBertForMultipleChoice", "FlaxDistilBertForQuestionAnswering", "FlaxDistilBertForSequenceClassification", "FlaxDistilBertForTokenClassification", "FlaxDistilBertModel", "FlaxDistilBertPreTrainedModel", ] if TYPE_CHECKING: from .configuration_distilbert import ( DISTILBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, DistilBertConfig, DistilBertOnnxConfig, ) from .tokenization_distilbert import DistilBertTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_distilbert_fast import DistilBertTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_distilbert import ( DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST, DistilBertForMaskedLM, DistilBertForMultipleChoice, DistilBertForQuestionAnswering, DistilBertForSequenceClassification, DistilBertForTokenClassification, DistilBertModel, DistilBertPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_distilbert import ( TF_DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST, TFDistilBertForMaskedLM, TFDistilBertForMultipleChoice, TFDistilBertForQuestionAnswering, TFDistilBertForSequenceClassification, TFDistilBertForTokenClassification, TFDistilBertMainLayer, TFDistilBertModel, TFDistilBertPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_distilbert import ( FlaxDistilBertForMaskedLM, FlaxDistilBertForMultipleChoice, FlaxDistilBertForQuestionAnswering, FlaxDistilBertForSequenceClassification, FlaxDistilBertForTokenClassification, FlaxDistilBertModel, FlaxDistilBertPreTrainedModel, ) else: import sys UpperCAmelCase_ = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
32
import numpy as np def A__ ( SCREAMING_SNAKE_CASE_ : np.ndarray , SCREAMING_SNAKE_CASE_ : float ) -> np.ndarray: """simple docstring""" return np.where(vector > 0 , SCREAMING_SNAKE_CASE_ , (alpha * (np.exp(SCREAMING_SNAKE_CASE_ ) - 1)) ) if __name__ == "__main__": import doctest doctest.testmod()
32
1
import os import time import numpy as np import onnxruntime as ort UpperCAmelCase_ = "1" UpperCAmelCase_ = "0" UpperCAmelCase_ = "1" UpperCAmelCase_ = ort.SessionOptions() UpperCAmelCase_ = ort.GraphOptimizationLevel.ORT_DISABLE_ALL print("Create inference session...") UpperCAmelCase_ = ["TensorrtExecutionProvider", "CUDAExecutionProvider"] UpperCAmelCase_ = ort.InferenceSession("model.onnx", sess_options=sess_opt, providers=execution_provider) UpperCAmelCase_ = ort.RunOptions() UpperCAmelCase_ = 1_28 UpperCAmelCase_ = 1 UpperCAmelCase_ = np.ones((batch, sequence), dtype=np.intaa) UpperCAmelCase_ = np.ones((batch, sequence), dtype=np.intaa) UpperCAmelCase_ = np.ones((batch, sequence), dtype=np.intaa) print("Warm up phase...") sess.run( None, { sess.get_inputs()[0].name: input_ids, sess.get_inputs()[1].name: attention_mask, sess.get_inputs()[2].name: token_type_ids, }, run_options=run_opt, ) print("Start inference...") UpperCAmelCase_ = time.time() UpperCAmelCase_ = 20_00 UpperCAmelCase_ = {} for iter in range(max_iters): UpperCAmelCase_ = sess.run( None, { sess.get_inputs()[0].name: input_ids, sess.get_inputs()[1].name: attention_mask, sess.get_inputs()[2].name: token_type_ids, }, run_options=run_opt, ) print("Average Inference Time = {:.3f} ms".format((time.time() - start_time) * 10_00 / max_iters))
32
UpperCAmelCase_ = { "A": ".-", "B": "-...", "C": "-.-.", "D": "-..", "E": ".", "F": "..-.", "G": "--.", "H": "....", "I": "..", "J": ".---", "K": "-.-", "L": ".-..", "M": "--", "N": "-.", "O": "---", "P": ".--.", "Q": "--.-", "R": ".-.", "S": "...", "T": "-", "U": "..-", "V": "...-", "W": ".--", "X": "-..-", "Y": "-.--", "Z": "--..", "1": ".----", "2": "..---", "3": "...--", "4": "....-", "5": ".....", "6": "-....", "7": "--...", "8": "---..", "9": "----.", "0": "-----", "&": ".-...", "@": ".--.-.", ":": "---...", ",": "--..--", ".": ".-.-.-", "'": ".----.", "\"": ".-..-.", "?": "..--..", "/": "-..-.", "=": "-...-", "+": ".-.-.", "-": "-....-", "(": "-.--.", ")": "-.--.-", "!": "-.-.--", " ": "/" } # Exclamation mark is not in ITU-R recommendation # fmt: on UpperCAmelCase_ = {value: key for key, value in MORSE_CODE_DICT.items()} def A__ ( SCREAMING_SNAKE_CASE_ : str ) -> str: """simple docstring""" return " ".join(MORSE_CODE_DICT[char] for char in message.upper() ) def A__ ( SCREAMING_SNAKE_CASE_ : str ) -> str: """simple docstring""" return "".join(REVERSE_DICT[char] for char in message.split() ) def A__ ( ) -> None: """simple docstring""" _UpperCAmelCase = '''Morse code here!''' print(SCREAMING_SNAKE_CASE_ ) _UpperCAmelCase = encrypt(SCREAMING_SNAKE_CASE_ ) print(SCREAMING_SNAKE_CASE_ ) _UpperCAmelCase = decrypt(SCREAMING_SNAKE_CASE_ ) print(SCREAMING_SNAKE_CASE_ ) if __name__ == "__main__": main()
32
1
from pathlib import Path import numpy as np from PIL import Image def A__ ( SCREAMING_SNAKE_CASE_ : np.ndarray ) -> np.ndarray: """simple docstring""" _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase = rgb[:, :, 0], rgb[:, :, 1], rgb[:, :, 2] return 0.2_9_8_9 * r + 0.5_8_7_0 * g + 0.1_1_4_0 * b def A__ ( SCREAMING_SNAKE_CASE_ : np.ndarray ) -> np.ndarray: """simple docstring""" return (gray > 1_27) & (gray <= 2_55) def A__ ( SCREAMING_SNAKE_CASE_ : np.ndarray , SCREAMING_SNAKE_CASE_ : np.ndarray ) -> np.ndarray: """simple docstring""" _UpperCAmelCase = np.zeros_like(SCREAMING_SNAKE_CASE_ ) _UpperCAmelCase = np.zeros( (image.shape[0] + kernel.shape[0] - 1, image.shape[1] + kernel.shape[1] - 1) ) # Copy image to padded image _UpperCAmelCase = image # Iterate over image & apply kernel for x in range(image.shape[1] ): for y in range(image.shape[0] ): _UpperCAmelCase = ( kernel * image_padded[y : y + kernel.shape[0], x : x + kernel.shape[1]] ).sum() _UpperCAmelCase = int(summation > 0 ) return output if __name__ == "__main__": # read original image UpperCAmelCase_ = Path(__file__).resolve().parent / "image_data" / "lena.jpg" UpperCAmelCase_ = np.array(Image.open(lena_path)) # kernel to be applied UpperCAmelCase_ = np.array([[0, 1, 0], [1, 1, 1], [0, 1, 0]]) UpperCAmelCase_ = dilation(gray_to_binary(rgb_to_gray(lena)), structuring_element) # Save the output image UpperCAmelCase_ = Image.fromarray(output).convert("RGB") pil_img.save("result_dilation.png")
32
import gc import unittest import numpy as np import torch from diffusers import DanceDiffusionPipeline, IPNDMScheduler, UNetaDModel from diffusers.utils import slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu, skip_mps from ..pipeline_params import UNCONDITIONAL_AUDIO_GENERATION_BATCH_PARAMS, UNCONDITIONAL_AUDIO_GENERATION_PARAMS from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() class __UpperCamelCase ( A__ , unittest.TestCase ): __A : Any = DanceDiffusionPipeline __A : Any = UNCONDITIONAL_AUDIO_GENERATION_PARAMS __A : Tuple = PipelineTesterMixin.required_optional_params - { """callback""", """latents""", """callback_steps""", """output_type""", """num_images_per_prompt""", } __A : Tuple = UNCONDITIONAL_AUDIO_GENERATION_BATCH_PARAMS __A : List[str] = False __A : str = False def UpperCamelCase( self ): torch.manual_seed(0 ) _UpperCAmelCase = UNetaDModel( block_out_channels=(32, 32, 64) , extra_in_channels=16 , sample_size=512 , sample_rate=16000 , in_channels=2 , out_channels=2 , flip_sin_to_cos=_UpperCamelCase , use_timestep_embedding=_UpperCamelCase , time_embedding_type='''fourier''' , mid_block_type='''UNetMidBlock1D''' , down_block_types=('''DownBlock1DNoSkip''', '''DownBlock1D''', '''AttnDownBlock1D''') , up_block_types=('''AttnUpBlock1D''', '''UpBlock1D''', '''UpBlock1DNoSkip''') , ) _UpperCAmelCase = IPNDMScheduler() _UpperCAmelCase = { '''unet''': unet, '''scheduler''': scheduler, } return components def UpperCamelCase( self , _UpperCamelCase , _UpperCamelCase=0 ): if str(_UpperCamelCase ).startswith('''mps''' ): _UpperCAmelCase = torch.manual_seed(_UpperCamelCase ) else: _UpperCAmelCase = torch.Generator(device=_UpperCamelCase ).manual_seed(_UpperCamelCase ) _UpperCAmelCase = { '''batch_size''': 1, '''generator''': generator, '''num_inference_steps''': 4, } return inputs def UpperCamelCase( self ): _UpperCAmelCase = '''cpu''' # ensure determinism for the device-dependent torch.Generator _UpperCAmelCase = self.get_dummy_components() _UpperCAmelCase = DanceDiffusionPipeline(**_UpperCamelCase ) _UpperCAmelCase = pipe.to(_UpperCamelCase ) pipe.set_progress_bar_config(disable=_UpperCamelCase ) _UpperCAmelCase = self.get_dummy_inputs(_UpperCamelCase ) _UpperCAmelCase = pipe(**_UpperCamelCase ) _UpperCAmelCase = output.audios _UpperCAmelCase = audio[0, -3:, -3:] assert audio.shape == (1, 2, components["unet"].sample_size) _UpperCAmelCase = np.array([-0.7265, 1.0000, -0.8388, 0.1175, 0.9498, -1.0000] ) assert np.abs(audio_slice.flatten() - expected_slice ).max() < 1e-2 @skip_mps def UpperCamelCase( self ): return super().test_save_load_local() @skip_mps def UpperCamelCase( self ): return super().test_dict_tuple_outputs_equivalent(expected_max_difference=3e-3 ) @skip_mps def UpperCamelCase( self ): return super().test_save_load_optional_components() @skip_mps def UpperCamelCase( self ): return super().test_attention_slicing_forward_pass() def UpperCamelCase( self ): super().test_inference_batch_single_identical(expected_max_diff=3e-3 ) @slow @require_torch_gpu class __UpperCamelCase ( unittest.TestCase ): def UpperCamelCase( self ): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def UpperCamelCase( self ): _UpperCAmelCase = torch_device _UpperCAmelCase = DanceDiffusionPipeline.from_pretrained('''harmonai/maestro-150k''' ) _UpperCAmelCase = pipe.to(_UpperCamelCase ) pipe.set_progress_bar_config(disable=_UpperCamelCase ) _UpperCAmelCase = torch.manual_seed(0 ) _UpperCAmelCase = pipe(generator=_UpperCamelCase , num_inference_steps=100 , audio_length_in_s=4.096 ) _UpperCAmelCase = output.audios _UpperCAmelCase = audio[0, -3:, -3:] assert audio.shape == (1, 2, pipe.unet.sample_size) _UpperCAmelCase = np.array([-0.0192, -0.0231, -0.0318, -0.0059, 0.0002, -0.0020] ) assert np.abs(audio_slice.flatten() - expected_slice ).max() < 1e-2 def UpperCamelCase( self ): _UpperCAmelCase = torch_device _UpperCAmelCase = DanceDiffusionPipeline.from_pretrained('''harmonai/maestro-150k''' , torch_dtype=torch.floataa ) _UpperCAmelCase = pipe.to(_UpperCamelCase ) pipe.set_progress_bar_config(disable=_UpperCamelCase ) _UpperCAmelCase = torch.manual_seed(0 ) _UpperCAmelCase = pipe(generator=_UpperCamelCase , num_inference_steps=100 , audio_length_in_s=4.096 ) _UpperCAmelCase = output.audios _UpperCAmelCase = audio[0, -3:, -3:] assert audio.shape == (1, 2, pipe.unet.sample_size) _UpperCAmelCase = np.array([-0.0367, -0.0488, -0.0771, -0.0525, -0.0444, -0.0341] ) assert np.abs(audio_slice.flatten() - expected_slice ).max() < 1e-2
32
1
from math import isclose, sqrt def A__ ( SCREAMING_SNAKE_CASE_ : float , SCREAMING_SNAKE_CASE_ : float , SCREAMING_SNAKE_CASE_ : float ) -> tuple[float, float, float]: """simple docstring""" _UpperCAmelCase = point_y / 4 / point_x _UpperCAmelCase = 2 * normal_gradient / (1 + normal_gradient * normal_gradient) _UpperCAmelCase = (1 - normal_gradient * normal_gradient) / ( 1 + normal_gradient * normal_gradient ) _UpperCAmelCase = (sa - ca * incoming_gradient) / (ca + sa * incoming_gradient) # to find the next point, solve the simultaeneous equations: # y^2 + 4x^2 = 100 # y - b = m * (x - a) # ==> A x^2 + B x + C = 0 _UpperCAmelCase = outgoing_gradient**2 + 4 _UpperCAmelCase = 2 * outgoing_gradient * (point_y - outgoing_gradient * point_x) _UpperCAmelCase = (point_y - outgoing_gradient * point_x) ** 2 - 1_00 _UpperCAmelCase = ( -linear_term - sqrt(linear_term**2 - 4 * quadratic_term * constant_term ) ) / (2 * quadratic_term) _UpperCAmelCase = ( -linear_term + sqrt(linear_term**2 - 4 * quadratic_term * constant_term ) ) / (2 * quadratic_term) # two solutions, one of which is our input point _UpperCAmelCase = x_minus if isclose(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) else x_plus _UpperCAmelCase = point_y + outgoing_gradient * (next_x - point_x) return next_x, next_y, outgoing_gradient def A__ ( SCREAMING_SNAKE_CASE_ : float = 1.4 , SCREAMING_SNAKE_CASE_ : float = -9.6 ) -> int: """simple docstring""" _UpperCAmelCase = 0 _UpperCAmelCase = first_x_coord _UpperCAmelCase = first_y_coord _UpperCAmelCase = (1_0.1 - point_y) / (0.0 - point_x) while not (-0.0_1 <= point_x <= 0.0_1 and point_y > 0): _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase = next_point(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) num_reflections += 1 return num_reflections if __name__ == "__main__": print(f'''{solution() = }''')
32
from collections import OrderedDict from ...utils import logging from .auto_factory import _BaseAutoModelClass, _LazyAutoMapping, auto_class_update from .configuration_auto import CONFIG_MAPPING_NAMES UpperCAmelCase_ = logging.get_logger(__name__) UpperCAmelCase_ = OrderedDict( [ # Base model mapping ("albert", "FlaxAlbertModel"), ("bart", "FlaxBartModel"), ("beit", "FlaxBeitModel"), ("bert", "FlaxBertModel"), ("big_bird", "FlaxBigBirdModel"), ("blenderbot", "FlaxBlenderbotModel"), ("blenderbot-small", "FlaxBlenderbotSmallModel"), ("clip", "FlaxCLIPModel"), ("distilbert", "FlaxDistilBertModel"), ("electra", "FlaxElectraModel"), ("gpt-sw3", "FlaxGPT2Model"), ("gpt2", "FlaxGPT2Model"), ("gpt_neo", "FlaxGPTNeoModel"), ("gptj", "FlaxGPTJModel"), ("longt5", "FlaxLongT5Model"), ("marian", "FlaxMarianModel"), ("mbart", "FlaxMBartModel"), ("mt5", "FlaxMT5Model"), ("opt", "FlaxOPTModel"), ("pegasus", "FlaxPegasusModel"), ("regnet", "FlaxRegNetModel"), ("resnet", "FlaxResNetModel"), ("roberta", "FlaxRobertaModel"), ("roberta-prelayernorm", "FlaxRobertaPreLayerNormModel"), ("roformer", "FlaxRoFormerModel"), ("t5", "FlaxT5Model"), ("vision-text-dual-encoder", "FlaxVisionTextDualEncoderModel"), ("vit", "FlaxViTModel"), ("wav2vec2", "FlaxWav2Vec2Model"), ("whisper", "FlaxWhisperModel"), ("xglm", "FlaxXGLMModel"), ("xlm-roberta", "FlaxXLMRobertaModel"), ] ) UpperCAmelCase_ = OrderedDict( [ # Model for pre-training mapping ("albert", "FlaxAlbertForPreTraining"), ("bart", "FlaxBartForConditionalGeneration"), ("bert", "FlaxBertForPreTraining"), ("big_bird", "FlaxBigBirdForPreTraining"), ("electra", "FlaxElectraForPreTraining"), ("longt5", "FlaxLongT5ForConditionalGeneration"), ("mbart", "FlaxMBartForConditionalGeneration"), ("mt5", "FlaxMT5ForConditionalGeneration"), ("roberta", "FlaxRobertaForMaskedLM"), ("roberta-prelayernorm", "FlaxRobertaPreLayerNormForMaskedLM"), ("roformer", "FlaxRoFormerForMaskedLM"), ("t5", "FlaxT5ForConditionalGeneration"), ("wav2vec2", "FlaxWav2Vec2ForPreTraining"), ("whisper", "FlaxWhisperForConditionalGeneration"), ("xlm-roberta", "FlaxXLMRobertaForMaskedLM"), ] ) UpperCAmelCase_ = OrderedDict( [ # Model for Masked LM mapping ("albert", "FlaxAlbertForMaskedLM"), ("bart", "FlaxBartForConditionalGeneration"), ("bert", "FlaxBertForMaskedLM"), ("big_bird", "FlaxBigBirdForMaskedLM"), ("distilbert", "FlaxDistilBertForMaskedLM"), ("electra", "FlaxElectraForMaskedLM"), ("mbart", "FlaxMBartForConditionalGeneration"), ("roberta", "FlaxRobertaForMaskedLM"), ("roberta-prelayernorm", "FlaxRobertaPreLayerNormForMaskedLM"), ("roformer", "FlaxRoFormerForMaskedLM"), ("xlm-roberta", "FlaxXLMRobertaForMaskedLM"), ] ) UpperCAmelCase_ = OrderedDict( [ # Model for Seq2Seq Causal LM mapping ("bart", "FlaxBartForConditionalGeneration"), ("blenderbot", "FlaxBlenderbotForConditionalGeneration"), ("blenderbot-small", "FlaxBlenderbotSmallForConditionalGeneration"), ("encoder-decoder", "FlaxEncoderDecoderModel"), ("longt5", "FlaxLongT5ForConditionalGeneration"), ("marian", "FlaxMarianMTModel"), ("mbart", "FlaxMBartForConditionalGeneration"), ("mt5", "FlaxMT5ForConditionalGeneration"), ("pegasus", "FlaxPegasusForConditionalGeneration"), ("t5", "FlaxT5ForConditionalGeneration"), ] ) UpperCAmelCase_ = OrderedDict( [ # Model for Image-classsification ("beit", "FlaxBeitForImageClassification"), ("regnet", "FlaxRegNetForImageClassification"), ("resnet", "FlaxResNetForImageClassification"), ("vit", "FlaxViTForImageClassification"), ] ) UpperCAmelCase_ = OrderedDict( [ ("vision-encoder-decoder", "FlaxVisionEncoderDecoderModel"), ] ) UpperCAmelCase_ = OrderedDict( [ # Model for Causal LM mapping ("bart", "FlaxBartForCausalLM"), ("bert", "FlaxBertForCausalLM"), ("big_bird", "FlaxBigBirdForCausalLM"), ("electra", "FlaxElectraForCausalLM"), ("gpt-sw3", "FlaxGPT2LMHeadModel"), ("gpt2", "FlaxGPT2LMHeadModel"), ("gpt_neo", "FlaxGPTNeoForCausalLM"), ("gptj", "FlaxGPTJForCausalLM"), ("opt", "FlaxOPTForCausalLM"), ("roberta", "FlaxRobertaForCausalLM"), ("roberta-prelayernorm", "FlaxRobertaPreLayerNormForCausalLM"), ("xglm", "FlaxXGLMForCausalLM"), ("xlm-roberta", "FlaxXLMRobertaForCausalLM"), ] ) UpperCAmelCase_ = OrderedDict( [ # Model for Sequence Classification mapping ("albert", "FlaxAlbertForSequenceClassification"), ("bart", "FlaxBartForSequenceClassification"), ("bert", "FlaxBertForSequenceClassification"), ("big_bird", "FlaxBigBirdForSequenceClassification"), ("distilbert", "FlaxDistilBertForSequenceClassification"), ("electra", "FlaxElectraForSequenceClassification"), ("mbart", "FlaxMBartForSequenceClassification"), ("roberta", "FlaxRobertaForSequenceClassification"), ("roberta-prelayernorm", "FlaxRobertaPreLayerNormForSequenceClassification"), ("roformer", "FlaxRoFormerForSequenceClassification"), ("xlm-roberta", "FlaxXLMRobertaForSequenceClassification"), ] ) UpperCAmelCase_ = OrderedDict( [ # Model for Question Answering mapping ("albert", "FlaxAlbertForQuestionAnswering"), ("bart", "FlaxBartForQuestionAnswering"), ("bert", "FlaxBertForQuestionAnswering"), ("big_bird", "FlaxBigBirdForQuestionAnswering"), ("distilbert", "FlaxDistilBertForQuestionAnswering"), ("electra", "FlaxElectraForQuestionAnswering"), ("mbart", "FlaxMBartForQuestionAnswering"), ("roberta", "FlaxRobertaForQuestionAnswering"), ("roberta-prelayernorm", "FlaxRobertaPreLayerNormForQuestionAnswering"), ("roformer", "FlaxRoFormerForQuestionAnswering"), ("xlm-roberta", "FlaxXLMRobertaForQuestionAnswering"), ] ) UpperCAmelCase_ = OrderedDict( [ # Model for Token Classification mapping ("albert", "FlaxAlbertForTokenClassification"), ("bert", "FlaxBertForTokenClassification"), ("big_bird", "FlaxBigBirdForTokenClassification"), ("distilbert", "FlaxDistilBertForTokenClassification"), ("electra", "FlaxElectraForTokenClassification"), ("roberta", "FlaxRobertaForTokenClassification"), ("roberta-prelayernorm", "FlaxRobertaPreLayerNormForTokenClassification"), ("roformer", "FlaxRoFormerForTokenClassification"), ("xlm-roberta", "FlaxXLMRobertaForTokenClassification"), ] ) UpperCAmelCase_ = OrderedDict( [ # Model for Multiple Choice mapping ("albert", "FlaxAlbertForMultipleChoice"), ("bert", "FlaxBertForMultipleChoice"), ("big_bird", "FlaxBigBirdForMultipleChoice"), ("distilbert", "FlaxDistilBertForMultipleChoice"), ("electra", "FlaxElectraForMultipleChoice"), ("roberta", "FlaxRobertaForMultipleChoice"), ("roberta-prelayernorm", "FlaxRobertaPreLayerNormForMultipleChoice"), ("roformer", "FlaxRoFormerForMultipleChoice"), ("xlm-roberta", "FlaxXLMRobertaForMultipleChoice"), ] ) UpperCAmelCase_ = OrderedDict( [ ("bert", "FlaxBertForNextSentencePrediction"), ] ) UpperCAmelCase_ = OrderedDict( [ ("speech-encoder-decoder", "FlaxSpeechEncoderDecoderModel"), ("whisper", "FlaxWhisperForConditionalGeneration"), ] ) UpperCAmelCase_ = OrderedDict( [ ("whisper", "FlaxWhisperForAudioClassification"), ] ) UpperCAmelCase_ = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_MAPPING_NAMES) UpperCAmelCase_ = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_PRETRAINING_MAPPING_NAMES) UpperCAmelCase_ = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_MASKED_LM_MAPPING_NAMES) UpperCAmelCase_ = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING_NAMES ) UpperCAmelCase_ = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING_NAMES ) UpperCAmelCase_ = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_VISION_2_SEQ_MAPPING_NAMES) UpperCAmelCase_ = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_CAUSAL_LM_MAPPING_NAMES) UpperCAmelCase_ = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING_NAMES ) UpperCAmelCase_ = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_QUESTION_ANSWERING_MAPPING_NAMES ) UpperCAmelCase_ = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING_NAMES ) UpperCAmelCase_ = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_MULTIPLE_CHOICE_MAPPING_NAMES ) UpperCAmelCase_ = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_NEXT_SENTENCE_PREDICTION_MAPPING_NAMES ) UpperCAmelCase_ = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_SPEECH_SEQ_2_SEQ_MAPPING_NAMES ) UpperCAmelCase_ = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_AUDIO_CLASSIFICATION_MAPPING_NAMES ) class __UpperCamelCase ( _BaseAutoModelClass ): __A : List[str] = FLAX_MODEL_MAPPING UpperCAmelCase_ = auto_class_update(FlaxAutoModel) class __UpperCamelCase ( _BaseAutoModelClass ): __A : Optional[Any] = FLAX_MODEL_FOR_PRETRAINING_MAPPING UpperCAmelCase_ = auto_class_update(FlaxAutoModelForPreTraining, head_doc="pretraining") class __UpperCamelCase ( _BaseAutoModelClass ): __A : List[Any] = FLAX_MODEL_FOR_CAUSAL_LM_MAPPING UpperCAmelCase_ = auto_class_update(FlaxAutoModelForCausalLM, head_doc="causal language modeling") class __UpperCamelCase ( _BaseAutoModelClass ): __A : List[str] = FLAX_MODEL_FOR_MASKED_LM_MAPPING UpperCAmelCase_ = auto_class_update(FlaxAutoModelForMaskedLM, head_doc="masked language modeling") class __UpperCamelCase ( _BaseAutoModelClass ): __A : Dict = FLAX_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING UpperCAmelCase_ = auto_class_update( FlaxAutoModelForSeqaSeqLM, head_doc="sequence-to-sequence language modeling", checkpoint_for_example="t5-base" ) class __UpperCamelCase ( _BaseAutoModelClass ): __A : List[str] = FLAX_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING UpperCAmelCase_ = auto_class_update( FlaxAutoModelForSequenceClassification, head_doc="sequence classification" ) class __UpperCamelCase ( _BaseAutoModelClass ): __A : Dict = FLAX_MODEL_FOR_QUESTION_ANSWERING_MAPPING UpperCAmelCase_ = auto_class_update(FlaxAutoModelForQuestionAnswering, head_doc="question answering") class __UpperCamelCase ( _BaseAutoModelClass ): __A : Union[str, Any] = FLAX_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING UpperCAmelCase_ = auto_class_update( FlaxAutoModelForTokenClassification, head_doc="token classification" ) class __UpperCamelCase ( _BaseAutoModelClass ): __A : Union[str, Any] = FLAX_MODEL_FOR_MULTIPLE_CHOICE_MAPPING UpperCAmelCase_ = auto_class_update(FlaxAutoModelForMultipleChoice, head_doc="multiple choice") class __UpperCamelCase ( _BaseAutoModelClass ): __A : Any = FLAX_MODEL_FOR_NEXT_SENTENCE_PREDICTION_MAPPING UpperCAmelCase_ = auto_class_update( FlaxAutoModelForNextSentencePrediction, head_doc="next sentence prediction" ) class __UpperCamelCase ( _BaseAutoModelClass ): __A : Dict = FLAX_MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING UpperCAmelCase_ = auto_class_update( FlaxAutoModelForImageClassification, head_doc="image classification" ) class __UpperCamelCase ( _BaseAutoModelClass ): __A : Optional[int] = FLAX_MODEL_FOR_VISION_2_SEQ_MAPPING UpperCAmelCase_ = auto_class_update(FlaxAutoModelForVisionaSeq, head_doc="vision-to-text modeling") class __UpperCamelCase ( _BaseAutoModelClass ): __A : str = FLAX_MODEL_FOR_SPEECH_SEQ_2_SEQ_MAPPING UpperCAmelCase_ = auto_class_update( FlaxAutoModelForSpeechSeqaSeq, head_doc="sequence-to-sequence speech-to-text modeling" )
32
1
import copy import os from typing import Union from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCAmelCase_ = logging.get_logger(__name__) UpperCAmelCase_ = { "google/pix2struct-textcaps-base": ( "https://huggingface.co/google/pix2struct-textcaps-base/resolve/main/config.json" ), } class __UpperCamelCase ( A__ ): __A : Tuple = """pix2struct_text_model""" __A : Any = ["""past_key_values"""] __A : str = { """hidden_size""": """hidden_size""", """num_attention_heads""": """num_heads""", """num_hidden_layers""": """num_layers""", } def __init__( self , _UpperCamelCase=50244 , _UpperCamelCase=768 , _UpperCamelCase=64 , _UpperCamelCase=2048 , _UpperCamelCase=12 , _UpperCamelCase=12 , _UpperCamelCase=32 , _UpperCamelCase=128 , _UpperCamelCase=0.1 , _UpperCamelCase=1e-6 , _UpperCamelCase=1.0 , _UpperCamelCase="gelu_new" , _UpperCamelCase=0 , _UpperCamelCase=False , _UpperCamelCase=0 , _UpperCamelCase=1 , _UpperCamelCase=False , _UpperCamelCase=True , **_UpperCamelCase , ): _UpperCAmelCase = vocab_size _UpperCAmelCase = hidden_size _UpperCAmelCase = d_kv _UpperCAmelCase = d_ff _UpperCAmelCase = num_layers _UpperCAmelCase = num_heads _UpperCAmelCase = relative_attention_num_buckets _UpperCAmelCase = relative_attention_max_distance _UpperCAmelCase = dropout_rate _UpperCAmelCase = layer_norm_epsilon _UpperCAmelCase = initializer_factor _UpperCAmelCase = use_cache _UpperCAmelCase = eos_token_id _UpperCAmelCase = decoder_start_token_id # for backwards compatibility _UpperCAmelCase = dense_act_fn super().__init__( pad_token_id=_UpperCamelCase , eos_token_id=_UpperCamelCase , decoder_start_token_id=_UpperCamelCase , tie_word_embeddings=_UpperCamelCase , is_decoder=_UpperCamelCase , **_UpperCamelCase , ) @classmethod def UpperCamelCase( cls , _UpperCamelCase , **_UpperCamelCase ): cls._set_token_in_kwargs(_UpperCamelCase ) _UpperCAmelCase , _UpperCAmelCase = cls.get_config_dict(_UpperCamelCase , **_UpperCamelCase ) # get the text config dict if we are loading from Pix2StructConfig if config_dict.get('''model_type''' ) == "pix2struct": _UpperCAmelCase = config_dict['''text_config'''] if "model_type" in config_dict and hasattr(cls , '''model_type''' ) and config_dict["model_type"] != cls.model_type: logger.warning( f'''You are using a model of type {config_dict['model_type']} to instantiate a model of type ''' f'''{cls.model_type}. This is not supported for all configurations of models and can yield errors.''' ) return cls.from_dict(_UpperCamelCase , **_UpperCamelCase ) class __UpperCamelCase ( A__ ): __A : List[Any] = """pix2struct_vision_model""" def __init__( self , _UpperCamelCase=768 , _UpperCamelCase=768 , _UpperCamelCase=2048 , _UpperCamelCase=64 , _UpperCamelCase=12 , _UpperCamelCase=12 , _UpperCamelCase="gelu_new" , _UpperCamelCase=1e-6 , _UpperCamelCase=0.0 , _UpperCamelCase=0.0 , _UpperCamelCase=1e-10 , _UpperCamelCase=1.0 , _UpperCamelCase=4096 , _UpperCamelCase=32 , _UpperCamelCase=128 , **_UpperCamelCase , ): super().__init__(**_UpperCamelCase ) _UpperCAmelCase = hidden_size _UpperCAmelCase = patch_embed_hidden_size _UpperCAmelCase = d_ff _UpperCAmelCase = dropout_rate _UpperCAmelCase = num_hidden_layers _UpperCAmelCase = num_attention_heads _UpperCAmelCase = initializer_range _UpperCAmelCase = initializer_factor _UpperCAmelCase = attention_dropout _UpperCAmelCase = layer_norm_eps _UpperCAmelCase = dense_act_fn _UpperCAmelCase = seq_len _UpperCAmelCase = relative_attention_num_buckets _UpperCAmelCase = relative_attention_max_distance _UpperCAmelCase = d_kv @classmethod def UpperCamelCase( cls , _UpperCamelCase , **_UpperCamelCase ): cls._set_token_in_kwargs(_UpperCamelCase ) _UpperCAmelCase , _UpperCAmelCase = cls.get_config_dict(_UpperCamelCase , **_UpperCamelCase ) # get the vision config dict if we are loading from Pix2StructConfig if config_dict.get('''model_type''' ) == "pix2struct": _UpperCAmelCase = config_dict['''vision_config'''] if "model_type" in config_dict and hasattr(cls , '''model_type''' ) and config_dict["model_type"] != cls.model_type: logger.warning( f'''You are using a model of type {config_dict['model_type']} to instantiate a model of type ''' f'''{cls.model_type}. This is not supported for all configurations of models and can yield errors.''' ) return cls.from_dict(_UpperCamelCase , **_UpperCamelCase ) class __UpperCamelCase ( A__ ): __A : int = """pix2struct""" __A : List[str] = True def __init__( self , _UpperCamelCase=None , _UpperCamelCase=None , _UpperCamelCase=1.0 , _UpperCamelCase=0.02 , _UpperCamelCase=False , _UpperCamelCase=False , _UpperCamelCase=True , **_UpperCamelCase , ): super().__init__(tie_word_embeddings=_UpperCamelCase , is_encoder_decoder=_UpperCamelCase , **_UpperCamelCase ) if text_config is None: _UpperCAmelCase = {} logger.info('''text_config is None. Initializing the Pix2StructTextConfig with default values.''' ) if vision_config is None: _UpperCAmelCase = {} logger.info('''vision_config is None. Initializing the Pix2StructVisionConfig with default values.''' ) _UpperCAmelCase = PixaStructTextConfig(**_UpperCamelCase ) _UpperCAmelCase = PixaStructVisionConfig(**_UpperCamelCase ) _UpperCAmelCase = self.text_config.decoder_start_token_id _UpperCAmelCase = self.text_config.pad_token_id _UpperCAmelCase = self.text_config.eos_token_id _UpperCAmelCase = initializer_factor _UpperCAmelCase = initializer_range _UpperCAmelCase = self.initializer_range _UpperCAmelCase = self.initializer_range _UpperCAmelCase = is_vqa @classmethod def UpperCamelCase( cls , _UpperCamelCase , _UpperCamelCase , **_UpperCamelCase ): return cls(text_config=text_config.to_dict() , vision_config=vision_config.to_dict() , **_UpperCamelCase ) def UpperCamelCase( self ): _UpperCAmelCase = copy.deepcopy(self.__dict__ ) _UpperCAmelCase = self.text_config.to_dict() _UpperCAmelCase = self.vision_config.to_dict() _UpperCAmelCase = self.__class__.model_type return output
32
import baseaa def A__ ( SCREAMING_SNAKE_CASE_ : str ) -> bytes: """simple docstring""" return baseaa.baaencode(string.encode('''utf-8''' ) ) def A__ ( SCREAMING_SNAKE_CASE_ : bytes ) -> str: """simple docstring""" return baseaa.baadecode(SCREAMING_SNAKE_CASE_ ).decode('''utf-8''' ) if __name__ == "__main__": UpperCAmelCase_ = "Hello World!" UpperCAmelCase_ = baseaa_encode(test) print(encoded) UpperCAmelCase_ = baseaa_decode(encoded) print(decoded)
32
1
from ..utils import DummyObject, requires_backends class __UpperCamelCase ( metaclass=A__ ): __A : Optional[Any] = ["""flax""", """transformers"""] def __init__( self , *_UpperCamelCase , **_UpperCamelCase ): requires_backends(self , ['''flax''', '''transformers'''] ) @classmethod def UpperCamelCase( cls , *_UpperCamelCase , **_UpperCamelCase ): requires_backends(cls , ['''flax''', '''transformers'''] ) @classmethod def UpperCamelCase( cls , *_UpperCamelCase , **_UpperCamelCase ): requires_backends(cls , ['''flax''', '''transformers'''] ) class __UpperCamelCase ( metaclass=A__ ): __A : str = ["""flax""", """transformers"""] def __init__( self , *_UpperCamelCase , **_UpperCamelCase ): requires_backends(self , ['''flax''', '''transformers'''] ) @classmethod def UpperCamelCase( cls , *_UpperCamelCase , **_UpperCamelCase ): requires_backends(cls , ['''flax''', '''transformers'''] ) @classmethod def UpperCamelCase( cls , *_UpperCamelCase , **_UpperCamelCase ): requires_backends(cls , ['''flax''', '''transformers'''] ) class __UpperCamelCase ( metaclass=A__ ): __A : Tuple = ["""flax""", """transformers"""] def __init__( self , *_UpperCamelCase , **_UpperCamelCase ): requires_backends(self , ['''flax''', '''transformers'''] ) @classmethod def UpperCamelCase( cls , *_UpperCamelCase , **_UpperCamelCase ): requires_backends(cls , ['''flax''', '''transformers'''] ) @classmethod def UpperCamelCase( cls , *_UpperCamelCase , **_UpperCamelCase ): requires_backends(cls , ['''flax''', '''transformers'''] ) class __UpperCamelCase ( metaclass=A__ ): __A : Optional[Any] = ["""flax""", """transformers"""] def __init__( self , *_UpperCamelCase , **_UpperCamelCase ): requires_backends(self , ['''flax''', '''transformers'''] ) @classmethod def UpperCamelCase( cls , *_UpperCamelCase , **_UpperCamelCase ): requires_backends(cls , ['''flax''', '''transformers'''] ) @classmethod def UpperCamelCase( cls , *_UpperCamelCase , **_UpperCamelCase ): requires_backends(cls , ['''flax''', '''transformers'''] )
32
from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD, ChannelDimension, ImageInput, PILImageResampling, is_batched, to_numpy_array, valid_images, ) from ...utils import TensorType, logging UpperCAmelCase_ = logging.get_logger(__name__) class __UpperCamelCase ( A__ ): __A : int = ["""pixel_values"""] def __init__( self , _UpperCamelCase = True , _UpperCamelCase = None , _UpperCamelCase = PILImageResampling.BICUBIC , _UpperCamelCase = True , _UpperCamelCase = True , _UpperCamelCase = 1 / 255 , _UpperCamelCase = None , _UpperCamelCase = True , _UpperCamelCase = None , _UpperCamelCase = None , **_UpperCamelCase , ): super().__init__(**_UpperCamelCase ) _UpperCAmelCase = size if size is not None else {'''height''': 224, '''width''': 224} _UpperCAmelCase = get_size_dict(_UpperCamelCase ) _UpperCAmelCase = crop_size if crop_size is not None else {'''height''': 224, '''width''': 224} _UpperCAmelCase = get_size_dict(_UpperCamelCase , default_to_square=_UpperCamelCase , param_name='''crop_size''' ) _UpperCAmelCase = do_resize _UpperCAmelCase = do_rescale _UpperCAmelCase = do_normalize _UpperCAmelCase = do_center_crop _UpperCAmelCase = crop_size _UpperCAmelCase = size _UpperCAmelCase = resample _UpperCAmelCase = rescale_factor _UpperCAmelCase = image_mean if image_mean is not None else IMAGENET_DEFAULT_MEAN _UpperCAmelCase = image_std if image_std is not None else IMAGENET_DEFAULT_STD def UpperCamelCase( self , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase = PILImageResampling.BILINEAR , _UpperCamelCase = None , **_UpperCamelCase , ): _UpperCAmelCase = get_size_dict(_UpperCamelCase ) if "shortest_edge" in size: _UpperCAmelCase = get_resize_output_image_size(_UpperCamelCase , size=size['''shortest_edge'''] , default_to_square=_UpperCamelCase ) # size = get_resize_output_image_size(image, size["shortest_edge"], size["longest_edge"]) elif "height" in size and "width" in size: _UpperCAmelCase = (size['''height'''], size['''width''']) else: raise ValueError(f'''Size must contain \'height\' and \'width\' keys or \'shortest_edge\' key. Got {size.keys()}''' ) return resize(_UpperCamelCase , size=_UpperCamelCase , resample=_UpperCamelCase , data_format=_UpperCamelCase , **_UpperCamelCase ) def UpperCamelCase( self , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase = None , **_UpperCamelCase , ): _UpperCAmelCase = get_size_dict(_UpperCamelCase ) if "height" not in size or "width" not in size: raise ValueError(f'''The `size` parameter must contain the keys (height, width). Got {size.keys()}''' ) return center_crop(_UpperCamelCase , size=(size['''height'''], size['''width''']) , data_format=_UpperCamelCase , **_UpperCamelCase ) def UpperCamelCase( self , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase = None , **_UpperCamelCase ): return rescale(_UpperCamelCase , scale=_UpperCamelCase , data_format=_UpperCamelCase , **_UpperCamelCase ) def UpperCamelCase( self , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase = None , **_UpperCamelCase , ): return normalize(_UpperCamelCase , mean=_UpperCamelCase , std=_UpperCamelCase , data_format=_UpperCamelCase , **_UpperCamelCase ) def UpperCamelCase( self , _UpperCamelCase , _UpperCamelCase = None , _UpperCamelCase = None , _UpperCamelCase = None , _UpperCamelCase = None , _UpperCamelCase = None , _UpperCamelCase = None , _UpperCamelCase = None , _UpperCamelCase = None , _UpperCamelCase = None , _UpperCamelCase = None , _UpperCamelCase = None , _UpperCamelCase = ChannelDimension.FIRST , **_UpperCamelCase , ): _UpperCAmelCase = do_resize if do_resize is not None else self.do_resize _UpperCAmelCase = do_rescale if do_rescale is not None else self.do_rescale _UpperCAmelCase = do_normalize if do_normalize is not None else self.do_normalize _UpperCAmelCase = do_center_crop if do_center_crop is not None else self.do_center_crop _UpperCAmelCase = crop_size if crop_size is not None else self.crop_size _UpperCAmelCase = get_size_dict(_UpperCamelCase , param_name='''crop_size''' , default_to_square=_UpperCamelCase ) _UpperCAmelCase = resample if resample is not None else self.resample _UpperCAmelCase = rescale_factor if rescale_factor is not None else self.rescale_factor _UpperCAmelCase = image_mean if image_mean is not None else self.image_mean _UpperCAmelCase = image_std if image_std is not None else self.image_std _UpperCAmelCase = size if size is not None else self.size _UpperCAmelCase = get_size_dict(_UpperCamelCase ) if not is_batched(_UpperCamelCase ): _UpperCAmelCase = [images] if not valid_images(_UpperCamelCase ): raise ValueError( '''Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ''' '''torch.Tensor, tf.Tensor or jax.ndarray.''' ) if do_resize and size is None: raise ValueError('''Size must be specified if do_resize is True.''' ) if do_center_crop and crop_size is None: raise ValueError('''Crop size must be specified if do_center_crop is True.''' ) if do_rescale and rescale_factor is None: raise ValueError('''Rescale factor must be specified if do_rescale is True.''' ) # All transformations expect numpy arrays. _UpperCAmelCase = [to_numpy_array(_UpperCamelCase ) for image in images] if do_resize: _UpperCAmelCase = [self.resize(image=_UpperCamelCase , size=_UpperCamelCase , resample=_UpperCamelCase ) for image in images] if do_center_crop: _UpperCAmelCase = [self.center_crop(image=_UpperCamelCase , size=_UpperCamelCase ) for image in images] if do_rescale: _UpperCAmelCase = [self.rescale(image=_UpperCamelCase , scale=_UpperCamelCase ) for image in images] if do_normalize: _UpperCAmelCase = [self.normalize(image=_UpperCamelCase , mean=_UpperCamelCase , std=_UpperCamelCase ) for image in images] _UpperCAmelCase = [to_channel_dimension_format(_UpperCamelCase , _UpperCamelCase ) for image in images] _UpperCAmelCase = {'''pixel_values''': images} return BatchFeature(data=_UpperCamelCase , tensor_type=_UpperCamelCase )
32
1
import argparse import json import os import torch from transformers.file_utils import has_file from diffusers import UNetaDConditionModel, UNetaDModel UpperCAmelCase_ = False UpperCAmelCase_ = True UpperCAmelCase_ = False if __name__ == "__main__": UpperCAmelCase_ = argparse.ArgumentParser() parser.add_argument( "--repo_path", default=None, type=str, required=True, help="The config json file corresponding to the architecture.", ) parser.add_argument("--dump_path", default=None, type=str, required=True, help="Path to the output model.") UpperCAmelCase_ = parser.parse_args() UpperCAmelCase_ = { "image_size": "sample_size", "num_res_blocks": "layers_per_block", "block_channels": "block_out_channels", "down_blocks": "down_block_types", "up_blocks": "up_block_types", "downscale_freq_shift": "freq_shift", "resnet_num_groups": "norm_num_groups", "resnet_act_fn": "act_fn", "resnet_eps": "norm_eps", "num_head_channels": "attention_head_dim", } UpperCAmelCase_ = { "time_steps": "time_proj", "mid": "mid_block", "downsample_blocks": "down_blocks", "upsample_blocks": "up_blocks", } UpperCAmelCase_ = "" if has_file(args.repo_path, "config.json") else "unet" with open(os.path.join(args.repo_path, subfolder, "config.json"), "r", encoding="utf-8") as reader: UpperCAmelCase_ = reader.read() UpperCAmelCase_ = json.loads(text) if do_only_config: for key in config_parameters_to_change.keys(): config.pop(key, None) if has_file(args.repo_path, "config.json"): UpperCAmelCase_ = UNetaDModel(**config) else: UpperCAmelCase_ = UNetaDConditionModel if "ldm-text2im-large-256" in args.repo_path else UNetaDModel UpperCAmelCase_ = class_name(**config) if do_only_config: model.save_config(os.path.join(args.repo_path, subfolder)) UpperCAmelCase_ = dict(model.config) if do_only_renaming: for key, value in config_parameters_to_change.items(): if key in config: UpperCAmelCase_ = config[key] del config[key] UpperCAmelCase_ = [k.replace("UNetRes", "") for k in config["down_block_types"]] UpperCAmelCase_ = [k.replace("UNetRes", "") for k in config["up_block_types"]] if do_only_weights: UpperCAmelCase_ = torch.load(os.path.join(args.repo_path, subfolder, "diffusion_pytorch_model.bin")) UpperCAmelCase_ = {} for param_key, param_value in state_dict.items(): if param_key.endswith(".op.bias") or param_key.endswith(".op.weight"): continue UpperCAmelCase_ = False for key, new_key in key_parameters_to_change.items(): if not has_changed and param_key.split(".")[0] == key: UpperCAmelCase_ = param_value UpperCAmelCase_ = True if not has_changed: UpperCAmelCase_ = param_value model.load_state_dict(new_state_dict) model.save_pretrained(os.path.join(args.repo_path, subfolder))
32
from ..utils import DummyObject, requires_backends class __UpperCamelCase ( metaclass=A__ ): __A : str = ["""torch""", """scipy"""] def __init__( self , *_UpperCamelCase , **_UpperCamelCase ): requires_backends(self , ['''torch''', '''scipy'''] ) @classmethod def UpperCamelCase( cls , *_UpperCamelCase , **_UpperCamelCase ): requires_backends(cls , ['''torch''', '''scipy'''] ) @classmethod def UpperCamelCase( cls , *_UpperCamelCase , **_UpperCamelCase ): requires_backends(cls , ['''torch''', '''scipy'''] )
32
1
import inspect import unittest from transformers import ConvNextVaConfig from transformers.models.auto import get_values from transformers.models.auto.modeling_auto import MODEL_FOR_BACKBONE_MAPPING_NAMES, MODEL_MAPPING_NAMES from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ConvNextVaBackbone, ConvNextVaForImageClassification, ConvNextVaModel from transformers.models.convnextva.modeling_convnextva import CONVNEXTV2_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class __UpperCamelCase : def __init__( self , _UpperCamelCase , _UpperCamelCase=13 , _UpperCamelCase=32 , _UpperCamelCase=3 , _UpperCamelCase=4 , _UpperCamelCase=[10, 20, 30, 40] , _UpperCamelCase=[2, 2, 3, 2] , _UpperCamelCase=True , _UpperCamelCase=True , _UpperCamelCase=37 , _UpperCamelCase="gelu" , _UpperCamelCase=10 , _UpperCamelCase=0.02 , _UpperCamelCase=["stage2", "stage3", "stage4"] , _UpperCamelCase=[2, 3, 4] , _UpperCamelCase=None , ): _UpperCAmelCase = parent _UpperCAmelCase = batch_size _UpperCAmelCase = image_size _UpperCAmelCase = num_channels _UpperCAmelCase = num_stages _UpperCAmelCase = hidden_sizes _UpperCAmelCase = depths _UpperCAmelCase = is_training _UpperCAmelCase = use_labels _UpperCAmelCase = intermediate_size _UpperCAmelCase = hidden_act _UpperCAmelCase = num_labels _UpperCAmelCase = initializer_range _UpperCAmelCase = out_features _UpperCAmelCase = out_indices _UpperCAmelCase = scope def UpperCamelCase( self ): _UpperCAmelCase = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) _UpperCAmelCase = None if self.use_labels: _UpperCAmelCase = ids_tensor([self.batch_size] , self.num_labels ) _UpperCAmelCase = self.get_config() return config, pixel_values, labels def UpperCamelCase( self ): return ConvNextVaConfig( num_channels=self.num_channels , hidden_sizes=self.hidden_sizes , depths=self.depths , num_stages=self.num_stages , hidden_act=self.hidden_act , is_decoder=_UpperCamelCase , initializer_range=self.initializer_range , out_features=self.out_features , out_indices=self.out_indices , num_labels=self.num_labels , ) def UpperCamelCase( self , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ): _UpperCAmelCase = ConvNextVaModel(config=_UpperCamelCase ) model.to(_UpperCamelCase ) model.eval() _UpperCAmelCase = model(_UpperCamelCase ) # expected last hidden states: B, C, H // 32, W // 32 self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], self.image_size // 32, self.image_size // 32) , ) def UpperCamelCase( self , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ): _UpperCAmelCase = ConvNextVaForImageClassification(_UpperCamelCase ) model.to(_UpperCamelCase ) model.eval() _UpperCAmelCase = model(_UpperCamelCase , labels=_UpperCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def UpperCamelCase( self , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ): _UpperCAmelCase = ConvNextVaBackbone(config=_UpperCamelCase ) model.to(_UpperCamelCase ) model.eval() _UpperCAmelCase = model(_UpperCamelCase ) # verify hidden states self.parent.assertEqual(len(result.feature_maps ) , len(config.out_features ) ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.hidden_sizes[1], 4, 4] ) # verify channels self.parent.assertEqual(len(model.channels ) , len(config.out_features ) ) self.parent.assertListEqual(model.channels , config.hidden_sizes[1:] ) # verify backbone works with out_features=None _UpperCAmelCase = None _UpperCAmelCase = ConvNextVaBackbone(config=_UpperCamelCase ) model.to(_UpperCamelCase ) model.eval() _UpperCAmelCase = model(_UpperCamelCase ) # verify feature maps self.parent.assertEqual(len(result.feature_maps ) , 1 ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.hidden_sizes[-1], 1, 1] ) # verify channels self.parent.assertEqual(len(model.channels ) , 1 ) self.parent.assertListEqual(model.channels , [config.hidden_sizes[-1]] ) def UpperCamelCase( self ): _UpperCAmelCase = self.prepare_config_and_inputs() _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase = config_and_inputs _UpperCAmelCase = {'''pixel_values''': pixel_values} return config, inputs_dict def UpperCamelCase( self ): _UpperCAmelCase = self.prepare_config_and_inputs() _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase = config_and_inputs _UpperCAmelCase = {'''pixel_values''': pixel_values, '''labels''': labels} return config, inputs_dict @require_torch class __UpperCamelCase ( A__ , A__ , unittest.TestCase ): __A : Dict = ( ( ConvNextVaModel, ConvNextVaForImageClassification, ConvNextVaBackbone, ) if is_torch_available() else () ) __A : Union[str, Any] = ( {"""feature-extraction""": ConvNextVaModel, """image-classification""": ConvNextVaForImageClassification} if is_torch_available() else {} ) __A : str = False __A : Dict = False __A : Any = False __A : Tuple = False __A : Optional[Any] = False def UpperCamelCase( self ): _UpperCAmelCase = ConvNextVaModelTester(self ) _UpperCAmelCase = ConfigTester(self , config_class=_UpperCamelCase , has_text_modality=_UpperCamelCase , hidden_size=37 ) def UpperCamelCase( self ): self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def UpperCamelCase( self ): return @unittest.skip(reason='''ConvNextV2 does not use inputs_embeds''' ) def UpperCamelCase( self ): pass @unittest.skip(reason='''ConvNextV2 does not support input and output embeddings''' ) def UpperCamelCase( self ): pass @unittest.skip(reason='''ConvNextV2 does not use feedforward chunking''' ) def UpperCamelCase( self ): pass def UpperCamelCase( self ): if not self.model_tester.is_training: return for model_class in self.all_model_classes: _UpperCAmelCase , _UpperCAmelCase = self.model_tester.prepare_config_and_inputs_with_labels() _UpperCAmelCase = True if model_class.__name__ in [ *get_values(_UpperCamelCase ), *get_values(_UpperCamelCase ), ]: continue _UpperCAmelCase = model_class(_UpperCamelCase ) model.to(_UpperCamelCase ) model.train() _UpperCAmelCase = self._prepare_for_class(_UpperCamelCase , _UpperCamelCase , return_labels=_UpperCamelCase ) _UpperCAmelCase = model(**_UpperCamelCase ).loss loss.backward() def UpperCamelCase( self ): if not self.model_tester.is_training: return for model_class in self.all_model_classes: _UpperCAmelCase , _UpperCAmelCase = self.model_tester.prepare_config_and_inputs_with_labels() _UpperCAmelCase = False _UpperCAmelCase = True if ( model_class.__name__ in [*get_values(_UpperCamelCase ), *get_values(_UpperCamelCase )] or not model_class.supports_gradient_checkpointing ): continue _UpperCAmelCase = model_class(_UpperCamelCase ) model.to(_UpperCamelCase ) model.gradient_checkpointing_enable() model.train() _UpperCAmelCase = self._prepare_for_class(_UpperCamelCase , _UpperCamelCase , return_labels=_UpperCamelCase ) _UpperCAmelCase = model(**_UpperCamelCase ).loss loss.backward() def UpperCamelCase( self ): _UpperCAmelCase , _UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _UpperCAmelCase = model_class(_UpperCamelCase ) _UpperCAmelCase = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic _UpperCAmelCase = [*signature.parameters.keys()] _UpperCAmelCase = ['''pixel_values'''] self.assertListEqual(arg_names[:1] , _UpperCamelCase ) def UpperCamelCase( self ): _UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_UpperCamelCase ) def UpperCamelCase( self ): def check_hidden_states_output(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase ): _UpperCAmelCase = model_class(_UpperCamelCase ) model.to(_UpperCamelCase ) model.eval() with torch.no_grad(): _UpperCAmelCase = model(**self._prepare_for_class(_UpperCamelCase , _UpperCamelCase ) ) _UpperCAmelCase = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states _UpperCAmelCase = self.model_tester.num_stages self.assertEqual(len(_UpperCamelCase ) , expected_num_stages + 1 ) # ConvNextV2's feature maps are of shape (batch_size, num_channels, height, width) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [self.model_tester.image_size // 4, self.model_tester.image_size // 4] , ) _UpperCAmelCase , _UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _UpperCAmelCase = True check_hidden_states_output(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] _UpperCAmelCase = True check_hidden_states_output(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) def UpperCamelCase( self ): _UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*_UpperCamelCase ) @slow def UpperCamelCase( self ): for model_name in CONVNEXTV2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _UpperCAmelCase = ConvNextVaModel.from_pretrained(_UpperCamelCase ) self.assertIsNotNone(_UpperCamelCase ) def A__ ( ) -> str: """simple docstring""" _UpperCAmelCase = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) return image @require_torch @require_vision class __UpperCamelCase ( unittest.TestCase ): @cached_property def UpperCamelCase( self ): return AutoImageProcessor.from_pretrained('''facebook/convnextv2-tiny-1k-224''' ) if is_vision_available() else None @slow def UpperCamelCase( self ): _UpperCAmelCase = ConvNextVaForImageClassification.from_pretrained('''facebook/convnextv2-tiny-1k-224''' ).to(_UpperCamelCase ) _UpperCAmelCase = self.default_image_processor _UpperCAmelCase = prepare_img() _UpperCAmelCase = preprocessor(images=_UpperCamelCase , return_tensors='''pt''' ).to(_UpperCamelCase ) # forward pass with torch.no_grad(): _UpperCAmelCase = model(**_UpperCamelCase ) # verify the logits _UpperCAmelCase = torch.Size((1, 1000) ) self.assertEqual(outputs.logits.shape , _UpperCamelCase ) _UpperCAmelCase = torch.tensor([0.9996, 0.1966, -0.4386] ).to(_UpperCamelCase ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , _UpperCamelCase , atol=1e-4 ) )
32
def A__ ( SCREAMING_SNAKE_CASE_ : int = 2_00_00_00 ) -> int: """simple docstring""" _UpperCAmelCase = [0 for i in range(n + 1 )] _UpperCAmelCase = 1 _UpperCAmelCase = 1 for i in range(2 , int(n**0.5 ) + 1 ): if primality_list[i] == 0: for j in range(i * i , n + 1 , SCREAMING_SNAKE_CASE_ ): _UpperCAmelCase = 1 _UpperCAmelCase = 0 for i in range(SCREAMING_SNAKE_CASE_ ): if primality_list[i] == 0: sum_of_primes += i return sum_of_primes if __name__ == "__main__": print(f'''{solution() = }''')
32
1
import random def A__ ( SCREAMING_SNAKE_CASE_ : list , SCREAMING_SNAKE_CASE_ : Union[str, Any] ) -> tuple: """simple docstring""" _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase = [], [], [] for element in data: if element < pivot: less.append(SCREAMING_SNAKE_CASE_ ) elif element > pivot: greater.append(SCREAMING_SNAKE_CASE_ ) else: equal.append(SCREAMING_SNAKE_CASE_ ) return less, equal, greater def A__ ( SCREAMING_SNAKE_CASE_ : list , SCREAMING_SNAKE_CASE_ : int ) -> Dict: """simple docstring""" if index >= len(SCREAMING_SNAKE_CASE_ ) or index < 0: return None _UpperCAmelCase = items[random.randint(0 , len(SCREAMING_SNAKE_CASE_ ) - 1 )] _UpperCAmelCase = 0 _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase = _partition(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) _UpperCAmelCase = len(SCREAMING_SNAKE_CASE_ ) _UpperCAmelCase = len(SCREAMING_SNAKE_CASE_ ) # index is the pivot if m <= index < m + count: return pivot # must be in smaller elif m > index: return quick_select(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) # must be in larger else: return quick_select(SCREAMING_SNAKE_CASE_ , index - (m + count) )
32
import warnings from ...utils import logging from .image_processing_glpn import GLPNImageProcessor UpperCAmelCase_ = logging.get_logger(__name__) class __UpperCamelCase ( A__ ): def __init__( self , *_UpperCamelCase , **_UpperCamelCase ): warnings.warn( '''The class GLPNFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please''' ''' use GLPNImageProcessor instead.''' , _UpperCamelCase , ) super().__init__(*_UpperCamelCase , **_UpperCamelCase )
32
1
def A__ ( SCREAMING_SNAKE_CASE_ : list , SCREAMING_SNAKE_CASE_ : list , SCREAMING_SNAKE_CASE_ : int ) -> list: """simple docstring""" _UpperCAmelCase = len(SCREAMING_SNAKE_CASE_ ) _UpperCAmelCase = [[0] * n for i in range(SCREAMING_SNAKE_CASE_ )] for i in range(SCREAMING_SNAKE_CASE_ ): _UpperCAmelCase = y_points[i] for i in range(2 , SCREAMING_SNAKE_CASE_ ): for j in range(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): _UpperCAmelCase = ( (xa - x_points[j - i + 1]) * q[j][i - 1] - (xa - x_points[j]) * q[j - 1][i - 1] ) / (x_points[j] - x_points[j - i + 1]) return [q[n - 1][n - 1], q] if __name__ == "__main__": import doctest doctest.testmod()
32
from typing import List, Optional, Union from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType class __UpperCamelCase ( A__ ): __A : Dict = ["""image_processor""", """tokenizer"""] __A : List[str] = """BridgeTowerImageProcessor""" __A : str = ("""RobertaTokenizer""", """RobertaTokenizerFast""") def __init__( self , _UpperCamelCase , _UpperCamelCase ): super().__init__(_UpperCamelCase , _UpperCamelCase ) def __call__( self , _UpperCamelCase , _UpperCamelCase = None , _UpperCamelCase = True , _UpperCamelCase = False , _UpperCamelCase = None , _UpperCamelCase = None , _UpperCamelCase = 0 , _UpperCamelCase = None , _UpperCamelCase = None , _UpperCamelCase = None , _UpperCamelCase = False , _UpperCamelCase = False , _UpperCamelCase = False , _UpperCamelCase = False , _UpperCamelCase = True , _UpperCamelCase = None , **_UpperCamelCase , ): _UpperCAmelCase = self.tokenizer( text=_UpperCamelCase , add_special_tokens=_UpperCamelCase , padding=_UpperCamelCase , truncation=_UpperCamelCase , max_length=_UpperCamelCase , stride=_UpperCamelCase , pad_to_multiple_of=_UpperCamelCase , return_token_type_ids=_UpperCamelCase , return_attention_mask=_UpperCamelCase , return_overflowing_tokens=_UpperCamelCase , return_special_tokens_mask=_UpperCamelCase , return_offsets_mapping=_UpperCamelCase , return_length=_UpperCamelCase , verbose=_UpperCamelCase , return_tensors=_UpperCamelCase , **_UpperCamelCase , ) # add pixel_values + pixel_mask _UpperCAmelCase = self.image_processor( _UpperCamelCase , return_tensors=_UpperCamelCase , do_normalize=_UpperCamelCase , do_center_crop=_UpperCamelCase , **_UpperCamelCase ) encoding.update(_UpperCamelCase ) return encoding def UpperCamelCase( self , *_UpperCamelCase , **_UpperCamelCase ): return self.tokenizer.batch_decode(*_UpperCamelCase , **_UpperCamelCase ) def UpperCamelCase( self , *_UpperCamelCase , **_UpperCamelCase ): return self.tokenizer.decode(*_UpperCamelCase , **_UpperCamelCase ) @property def UpperCamelCase( self ): _UpperCAmelCase = self.tokenizer.model_input_names _UpperCAmelCase = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) )
32
1
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available UpperCAmelCase_ = { "configuration_xlm": ["XLM_PRETRAINED_CONFIG_ARCHIVE_MAP", "XLMConfig", "XLMOnnxConfig"], "tokenization_xlm": ["XLMTokenizer"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase_ = [ "XLM_PRETRAINED_MODEL_ARCHIVE_LIST", "XLMForMultipleChoice", "XLMForQuestionAnswering", "XLMForQuestionAnsweringSimple", "XLMForSequenceClassification", "XLMForTokenClassification", "XLMModel", "XLMPreTrainedModel", "XLMWithLMHeadModel", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase_ = [ "TF_XLM_PRETRAINED_MODEL_ARCHIVE_LIST", "TFXLMForMultipleChoice", "TFXLMForQuestionAnsweringSimple", "TFXLMForSequenceClassification", "TFXLMForTokenClassification", "TFXLMMainLayer", "TFXLMModel", "TFXLMPreTrainedModel", "TFXLMWithLMHeadModel", ] if TYPE_CHECKING: from .configuration_xlm import XLM_PRETRAINED_CONFIG_ARCHIVE_MAP, XLMConfig, XLMOnnxConfig from .tokenization_xlm import XLMTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_xlm import ( XLM_PRETRAINED_MODEL_ARCHIVE_LIST, XLMForMultipleChoice, XLMForQuestionAnswering, XLMForQuestionAnsweringSimple, XLMForSequenceClassification, XLMForTokenClassification, XLMModel, XLMPreTrainedModel, XLMWithLMHeadModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_xlm import ( TF_XLM_PRETRAINED_MODEL_ARCHIVE_LIST, TFXLMForMultipleChoice, TFXLMForQuestionAnsweringSimple, TFXLMForSequenceClassification, TFXLMForTokenClassification, TFXLMMainLayer, TFXLMModel, TFXLMPreTrainedModel, TFXLMWithLMHeadModel, ) else: import sys UpperCAmelCase_ = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
32
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available UpperCAmelCase_ = { "configuration_xlm": ["XLM_PRETRAINED_CONFIG_ARCHIVE_MAP", "XLMConfig", "XLMOnnxConfig"], "tokenization_xlm": ["XLMTokenizer"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase_ = [ "XLM_PRETRAINED_MODEL_ARCHIVE_LIST", "XLMForMultipleChoice", "XLMForQuestionAnswering", "XLMForQuestionAnsweringSimple", "XLMForSequenceClassification", "XLMForTokenClassification", "XLMModel", "XLMPreTrainedModel", "XLMWithLMHeadModel", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase_ = [ "TF_XLM_PRETRAINED_MODEL_ARCHIVE_LIST", "TFXLMForMultipleChoice", "TFXLMForQuestionAnsweringSimple", "TFXLMForSequenceClassification", "TFXLMForTokenClassification", "TFXLMMainLayer", "TFXLMModel", "TFXLMPreTrainedModel", "TFXLMWithLMHeadModel", ] if TYPE_CHECKING: from .configuration_xlm import XLM_PRETRAINED_CONFIG_ARCHIVE_MAP, XLMConfig, XLMOnnxConfig from .tokenization_xlm import XLMTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_xlm import ( XLM_PRETRAINED_MODEL_ARCHIVE_LIST, XLMForMultipleChoice, XLMForQuestionAnswering, XLMForQuestionAnsweringSimple, XLMForSequenceClassification, XLMForTokenClassification, XLMModel, XLMPreTrainedModel, XLMWithLMHeadModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_xlm import ( TF_XLM_PRETRAINED_MODEL_ARCHIVE_LIST, TFXLMForMultipleChoice, TFXLMForQuestionAnsweringSimple, TFXLMForSequenceClassification, TFXLMForTokenClassification, TFXLMMainLayer, TFXLMModel, TFXLMPreTrainedModel, TFXLMWithLMHeadModel, ) else: import sys UpperCAmelCase_ = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
32
1
def A__ ( SCREAMING_SNAKE_CASE_ : list[int] , SCREAMING_SNAKE_CASE_ : list[int] , SCREAMING_SNAKE_CASE_ : int ) -> bool: """simple docstring""" return not any( neighbour == 1 and colored_vertices[i] == color for i, neighbour in enumerate(SCREAMING_SNAKE_CASE_ ) ) def A__ ( SCREAMING_SNAKE_CASE_ : list[list[int]] , SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : list[int] , SCREAMING_SNAKE_CASE_ : int ) -> bool: """simple docstring""" if index == len(SCREAMING_SNAKE_CASE_ ): return True # Recursive Step for i in range(SCREAMING_SNAKE_CASE_ ): if valid_coloring(graph[index] , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): # Color current vertex _UpperCAmelCase = i # Validate coloring if util_color(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , index + 1 ): return True # Backtrack _UpperCAmelCase = -1 return False def A__ ( SCREAMING_SNAKE_CASE_ : list[list[int]] , SCREAMING_SNAKE_CASE_ : int ) -> list[int]: """simple docstring""" _UpperCAmelCase = [-1] * len(SCREAMING_SNAKE_CASE_ ) if util_color(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , 0 ): return colored_vertices return []
32
from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCAmelCase_ = logging.get_logger(__name__) UpperCAmelCase_ = { "microsoft/biogpt": "https://huggingface.co/microsoft/biogpt/resolve/main/config.json", # See all BioGPT models at https://huggingface.co/models?filter=biogpt } class __UpperCamelCase ( A__ ): __A : Any = """biogpt""" def __init__( self , _UpperCamelCase=42384 , _UpperCamelCase=1024 , _UpperCamelCase=24 , _UpperCamelCase=16 , _UpperCamelCase=4096 , _UpperCamelCase="gelu" , _UpperCamelCase=0.1 , _UpperCamelCase=0.1 , _UpperCamelCase=1024 , _UpperCamelCase=0.02 , _UpperCamelCase=1e-12 , _UpperCamelCase=True , _UpperCamelCase=True , _UpperCamelCase=0.0 , _UpperCamelCase=0.0 , _UpperCamelCase=1 , _UpperCamelCase=0 , _UpperCamelCase=2 , **_UpperCamelCase , ): _UpperCAmelCase = vocab_size _UpperCAmelCase = max_position_embeddings _UpperCAmelCase = hidden_size _UpperCAmelCase = num_hidden_layers _UpperCAmelCase = num_attention_heads _UpperCAmelCase = intermediate_size _UpperCAmelCase = hidden_act _UpperCAmelCase = hidden_dropout_prob _UpperCAmelCase = attention_probs_dropout_prob _UpperCAmelCase = initializer_range _UpperCAmelCase = layer_norm_eps _UpperCAmelCase = scale_embedding _UpperCAmelCase = use_cache _UpperCAmelCase = layerdrop _UpperCAmelCase = activation_dropout super().__init__(pad_token_id=_UpperCamelCase , bos_token_id=_UpperCamelCase , eos_token_id=_UpperCamelCase , **_UpperCamelCase )
32
1
import inspect import unittest import numpy as np from tests.test_modeling_common import floats_tensor from transformers import DetrConfig, MaskFormerConfig, SwinConfig, is_torch_available, is_vision_available from transformers.testing_utils import require_torch, require_torch_multi_gpu, require_vision, slow, torch_device from transformers.utils import cached_property from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import MaskFormerForInstanceSegmentation, MaskFormerModel if is_vision_available(): from transformers import MaskFormerImageProcessor if is_vision_available(): from PIL import Image class __UpperCamelCase : def __init__( self , _UpperCamelCase , _UpperCamelCase=2 , _UpperCamelCase=True , _UpperCamelCase=False , _UpperCamelCase=10 , _UpperCamelCase=3 , _UpperCamelCase=32 * 4 , _UpperCamelCase=32 * 6 , _UpperCamelCase=4 , _UpperCamelCase=32 , ): _UpperCAmelCase = parent _UpperCAmelCase = batch_size _UpperCAmelCase = is_training _UpperCAmelCase = use_auxiliary_loss _UpperCAmelCase = num_queries _UpperCAmelCase = num_channels _UpperCAmelCase = min_size _UpperCAmelCase = max_size _UpperCAmelCase = num_labels _UpperCAmelCase = mask_feature_size def UpperCamelCase( self ): _UpperCAmelCase = floats_tensor([self.batch_size, self.num_channels, self.min_size, self.max_size] ).to( _UpperCamelCase ) _UpperCAmelCase = torch.ones([self.batch_size, self.min_size, self.max_size] , device=_UpperCamelCase ) _UpperCAmelCase = ( torch.rand([self.batch_size, self.num_labels, self.min_size, self.max_size] , device=_UpperCamelCase ) > 0.5 ).float() _UpperCAmelCase = (torch.rand((self.batch_size, self.num_labels) , device=_UpperCamelCase ) > 0.5).long() _UpperCAmelCase = self.get_config() return config, pixel_values, pixel_mask, mask_labels, class_labels def UpperCamelCase( self ): return MaskFormerConfig.from_backbone_and_decoder_configs( backbone_config=SwinConfig( depths=[1, 1, 1, 1] , ) , decoder_config=DetrConfig( decoder_ffn_dim=128 , num_queries=self.num_queries , decoder_attention_heads=2 , d_model=self.mask_feature_size , ) , mask_feature_size=self.mask_feature_size , fpn_feature_size=self.mask_feature_size , num_channels=self.num_channels , num_labels=self.num_labels , ) def UpperCamelCase( self ): _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase = self.prepare_config_and_inputs() _UpperCAmelCase = {'''pixel_values''': pixel_values, '''pixel_mask''': pixel_mask} return config, inputs_dict def UpperCamelCase( self , _UpperCamelCase , _UpperCamelCase ): _UpperCAmelCase = output.encoder_hidden_states _UpperCAmelCase = output.pixel_decoder_hidden_states _UpperCAmelCase = output.transformer_decoder_hidden_states self.parent.assertTrue(len(_UpperCamelCase ) , len(config.backbone_config.depths ) ) self.parent.assertTrue(len(_UpperCamelCase ) , len(config.backbone_config.depths ) ) self.parent.assertTrue(len(_UpperCamelCase ) , config.decoder_config.decoder_layers ) def UpperCamelCase( self , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase=False ): with torch.no_grad(): _UpperCAmelCase = MaskFormerModel(config=_UpperCamelCase ) model.to(_UpperCamelCase ) model.eval() _UpperCAmelCase = model(pixel_values=_UpperCamelCase , pixel_mask=_UpperCamelCase ) _UpperCAmelCase = model(_UpperCamelCase , output_hidden_states=_UpperCamelCase ) # the correct shape of output.transformer_decoder_hidden_states ensure the correcteness of the # encoder and pixel decoder self.parent.assertEqual( output.transformer_decoder_last_hidden_state.shape , (self.batch_size, self.num_queries, self.mask_feature_size) , ) # let's ensure the other two hidden state exists self.parent.assertTrue(output.pixel_decoder_last_hidden_state is not None ) self.parent.assertTrue(output.encoder_last_hidden_state is not None ) if output_hidden_states: self.check_output_hidden_state(_UpperCamelCase , _UpperCamelCase ) def UpperCamelCase( self , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ): _UpperCAmelCase = MaskFormerForInstanceSegmentation(config=_UpperCamelCase ) model.to(_UpperCamelCase ) model.eval() def comm_check_on_output(_UpperCamelCase ): # let's still check that all the required stuff is there self.parent.assertTrue(result.transformer_decoder_last_hidden_state is not None ) self.parent.assertTrue(result.pixel_decoder_last_hidden_state is not None ) self.parent.assertTrue(result.encoder_last_hidden_state is not None ) # okay, now we need to check the logits shape # due to the encoder compression, masks have a //4 spatial size self.parent.assertEqual( result.masks_queries_logits.shape , (self.batch_size, self.num_queries, self.min_size // 4, self.max_size // 4) , ) # + 1 for null class self.parent.assertEqual( result.class_queries_logits.shape , (self.batch_size, self.num_queries, self.num_labels + 1) ) with torch.no_grad(): _UpperCAmelCase = model(pixel_values=_UpperCamelCase , pixel_mask=_UpperCamelCase ) _UpperCAmelCase = model(_UpperCamelCase ) comm_check_on_output(_UpperCamelCase ) _UpperCAmelCase = model( pixel_values=_UpperCamelCase , pixel_mask=_UpperCamelCase , mask_labels=_UpperCamelCase , class_labels=_UpperCamelCase ) comm_check_on_output(_UpperCamelCase ) self.parent.assertTrue(result.loss is not None ) self.parent.assertEqual(result.loss.shape , torch.Size([1] ) ) @require_torch class __UpperCamelCase ( A__ , A__ , unittest.TestCase ): __A : int = (MaskFormerModel, MaskFormerForInstanceSegmentation) if is_torch_available() else () __A : int = ( {"""feature-extraction""": MaskFormerModel, """image-segmentation""": MaskFormerForInstanceSegmentation} if is_torch_available() else {} ) __A : List[str] = False __A : Optional[Any] = False __A : Union[str, Any] = False __A : Optional[Any] = False def UpperCamelCase( self ): _UpperCAmelCase = MaskFormerModelTester(self ) _UpperCAmelCase = ConfigTester(self , config_class=_UpperCamelCase , has_text_modality=_UpperCamelCase ) def UpperCamelCase( self ): self.config_tester.run_common_tests() def UpperCamelCase( self ): _UpperCAmelCase , _UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.create_and_check_maskformer_model(_UpperCamelCase , **_UpperCamelCase , output_hidden_states=_UpperCamelCase ) def UpperCamelCase( self ): _UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_maskformer_instance_segmentation_head_model(*_UpperCamelCase ) @unittest.skip(reason='''MaskFormer does not use inputs_embeds''' ) def UpperCamelCase( self ): pass @unittest.skip(reason='''MaskFormer does not have a get_input_embeddings method''' ) def UpperCamelCase( self ): pass @unittest.skip(reason='''MaskFormer is not a generative model''' ) def UpperCamelCase( self ): pass @unittest.skip(reason='''MaskFormer does not use token embeddings''' ) def UpperCamelCase( self ): pass @require_torch_multi_gpu @unittest.skip( reason='''MaskFormer has some layers using `add_module` which doesn\'t work well with `nn.DataParallel`''' ) def UpperCamelCase( self ): pass @unittest.skip('''Will be fixed soon by reducing the size of the model used for common tests.''' ) def UpperCamelCase( self ): pass def UpperCamelCase( self ): _UpperCAmelCase , _UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _UpperCAmelCase = model_class(_UpperCamelCase ) _UpperCAmelCase = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic _UpperCAmelCase = [*signature.parameters.keys()] _UpperCAmelCase = ['''pixel_values'''] self.assertListEqual(arg_names[:1] , _UpperCamelCase ) @slow def UpperCamelCase( self ): for model_name in ["facebook/maskformer-swin-small-coco"]: _UpperCAmelCase = MaskFormerModel.from_pretrained(_UpperCamelCase ) self.assertIsNotNone(_UpperCamelCase ) def UpperCamelCase( self ): _UpperCAmelCase = (self.model_tester.min_size,) * 2 _UpperCAmelCase = { '''pixel_values''': torch.randn((2, 3, *size) , device=_UpperCamelCase ), '''mask_labels''': torch.randn((2, 10, *size) , device=_UpperCamelCase ), '''class_labels''': torch.zeros(2 , 10 , device=_UpperCamelCase ).long(), } _UpperCAmelCase = MaskFormerForInstanceSegmentation(MaskFormerConfig() ).to(_UpperCamelCase ) _UpperCAmelCase = model(**_UpperCamelCase ) self.assertTrue(outputs.loss is not None ) def UpperCamelCase( self ): _UpperCAmelCase , _UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.create_and_check_maskformer_model(_UpperCamelCase , **_UpperCamelCase , output_hidden_states=_UpperCamelCase ) def UpperCamelCase( self ): _UpperCAmelCase , _UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _UpperCAmelCase = model_class(_UpperCamelCase ).to(_UpperCamelCase ) _UpperCAmelCase = model(**_UpperCamelCase , output_attentions=_UpperCamelCase ) self.assertTrue(outputs.attentions is not None ) def UpperCamelCase( self ): if not self.model_tester.is_training: return # only MaskFormerForInstanceSegmentation has the loss _UpperCAmelCase = self.all_model_classes[1] _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase = self.model_tester.prepare_config_and_inputs() _UpperCAmelCase = model_class(_UpperCamelCase ) model.to(_UpperCamelCase ) model.train() _UpperCAmelCase = model(_UpperCamelCase , mask_labels=_UpperCamelCase , class_labels=_UpperCamelCase ).loss loss.backward() def UpperCamelCase( self ): # only MaskFormerForInstanceSegmentation has the loss _UpperCAmelCase = self.all_model_classes[1] _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase = self.model_tester.prepare_config_and_inputs() _UpperCAmelCase = True _UpperCAmelCase = True _UpperCAmelCase = model_class(_UpperCamelCase ) model.to(_UpperCamelCase ) model.train() _UpperCAmelCase = model(_UpperCamelCase , mask_labels=_UpperCamelCase , class_labels=_UpperCamelCase ) _UpperCAmelCase = outputs.encoder_hidden_states[0] encoder_hidden_states.retain_grad() _UpperCAmelCase = outputs.pixel_decoder_hidden_states[0] pixel_decoder_hidden_states.retain_grad() # we requires_grad=True in inputs_embeds (line 2152), the original implementation don't _UpperCAmelCase = outputs.transformer_decoder_hidden_states[0] transformer_decoder_hidden_states.retain_grad() _UpperCAmelCase = outputs.attentions[0] attentions.retain_grad() outputs.loss.backward(retain_graph=_UpperCamelCase ) self.assertIsNotNone(encoder_hidden_states.grad ) self.assertIsNotNone(pixel_decoder_hidden_states.grad ) self.assertIsNotNone(transformer_decoder_hidden_states.grad ) self.assertIsNotNone(attentions.grad ) UpperCAmelCase_ = 1e-4 def A__ ( ) -> Dict: """simple docstring""" _UpperCAmelCase = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) return image @require_vision @slow class __UpperCamelCase ( unittest.TestCase ): @cached_property def UpperCamelCase( self ): return ( MaskFormerImageProcessor.from_pretrained('''facebook/maskformer-swin-small-coco''' ) if is_vision_available() else None ) def UpperCamelCase( self ): _UpperCAmelCase = MaskFormerModel.from_pretrained('''facebook/maskformer-swin-small-coco''' ).to(_UpperCamelCase ) _UpperCAmelCase = self.default_image_processor _UpperCAmelCase = prepare_img() _UpperCAmelCase = image_processor(_UpperCamelCase , return_tensors='''pt''' ).to(_UpperCamelCase ) _UpperCAmelCase = inputs['''pixel_values'''].shape # check size is divisible by 32 self.assertTrue((inputs_shape[-1] % 32) == 0 and (inputs_shape[-2] % 32) == 0 ) # check size self.assertEqual(_UpperCamelCase , (1, 3, 800, 1088) ) with torch.no_grad(): _UpperCAmelCase = model(**_UpperCamelCase ) _UpperCAmelCase = torch.tensor( [[-0.0482, 0.9228, 0.4951], [-0.2547, 0.8017, 0.8527], [-0.0069, 0.3385, -0.0089]] ).to(_UpperCamelCase ) self.assertTrue( torch.allclose( outputs.encoder_last_hidden_state[0, 0, :3, :3] , _UpperCamelCase , atol=_UpperCamelCase ) ) _UpperCAmelCase = torch.tensor( [[-0.8422, -0.8434, -0.9718], [-1.0144, -0.5565, -0.4195], [-1.0038, -0.4484, -0.1961]] ).to(_UpperCamelCase ) self.assertTrue( torch.allclose( outputs.pixel_decoder_last_hidden_state[0, 0, :3, :3] , _UpperCamelCase , atol=_UpperCamelCase ) ) _UpperCAmelCase = torch.tensor( [[0.2852, -0.0159, 0.9735], [0.6254, 0.1858, 0.8529], [-0.0680, -0.4116, 1.8413]] ).to(_UpperCamelCase ) self.assertTrue( torch.allclose( outputs.transformer_decoder_last_hidden_state[0, :3, :3] , _UpperCamelCase , atol=_UpperCamelCase ) ) def UpperCamelCase( self ): _UpperCAmelCase = ( MaskFormerForInstanceSegmentation.from_pretrained('''facebook/maskformer-swin-small-coco''' ) .to(_UpperCamelCase ) .eval() ) _UpperCAmelCase = self.default_image_processor _UpperCAmelCase = prepare_img() _UpperCAmelCase = image_processor(_UpperCamelCase , return_tensors='''pt''' ).to(_UpperCamelCase ) _UpperCAmelCase = inputs['''pixel_values'''].shape # check size is divisible by 32 self.assertTrue((inputs_shape[-1] % 32) == 0 and (inputs_shape[-2] % 32) == 0 ) # check size self.assertEqual(_UpperCamelCase , (1, 3, 800, 1088) ) with torch.no_grad(): _UpperCAmelCase = model(**_UpperCamelCase ) # masks_queries_logits _UpperCAmelCase = outputs.masks_queries_logits self.assertEqual( masks_queries_logits.shape , (1, model.config.decoder_config.num_queries, inputs_shape[-2] // 4, inputs_shape[-1] // 4) , ) _UpperCAmelCase = [ [-1.3737124, -1.7724937, -1.9364233], [-1.5977281, -1.9867939, -2.1523695], [-1.5795398, -1.9269832, -2.093942], ] _UpperCAmelCase = torch.tensor(_UpperCamelCase ).to(_UpperCamelCase ) self.assertTrue(torch.allclose(masks_queries_logits[0, 0, :3, :3] , _UpperCamelCase , atol=_UpperCamelCase ) ) # class_queries_logits _UpperCAmelCase = outputs.class_queries_logits self.assertEqual( class_queries_logits.shape , (1, model.config.decoder_config.num_queries, model.config.num_labels + 1) ) _UpperCAmelCase = torch.tensor( [ [1.6512e00, -5.2572e00, -3.3519e00], [3.6169e-02, -5.9025e00, -2.9313e00], [1.0766e-04, -7.7630e00, -5.1263e00], ] ).to(_UpperCamelCase ) self.assertTrue(torch.allclose(outputs.class_queries_logits[0, :3, :3] , _UpperCamelCase , atol=_UpperCamelCase ) ) def UpperCamelCase( self ): _UpperCAmelCase = ( MaskFormerForInstanceSegmentation.from_pretrained('''facebook/maskformer-resnet101-coco-stuff''' ) .to(_UpperCamelCase ) .eval() ) _UpperCAmelCase = self.default_image_processor _UpperCAmelCase = prepare_img() _UpperCAmelCase = image_processor(_UpperCamelCase , return_tensors='''pt''' ).to(_UpperCamelCase ) _UpperCAmelCase = inputs['''pixel_values'''].shape # check size is divisible by 32 self.assertTrue((inputs_shape[-1] % 32) == 0 and (inputs_shape[-2] % 32) == 0 ) # check size self.assertEqual(_UpperCamelCase , (1, 3, 800, 1088) ) with torch.no_grad(): _UpperCAmelCase = model(**_UpperCamelCase ) # masks_queries_logits _UpperCAmelCase = outputs.masks_queries_logits self.assertEqual( masks_queries_logits.shape , (1, model.config.decoder_config.num_queries, inputs_shape[-2] // 4, inputs_shape[-1] // 4) , ) _UpperCAmelCase = [[-0.9046, -2.6366, -4.6062], [-3.4179, -5.7890, -8.8057], [-4.9179, -7.6560, -10.7711]] _UpperCAmelCase = torch.tensor(_UpperCamelCase ).to(_UpperCamelCase ) self.assertTrue(torch.allclose(masks_queries_logits[0, 0, :3, :3] , _UpperCamelCase , atol=_UpperCamelCase ) ) # class_queries_logits _UpperCAmelCase = outputs.class_queries_logits self.assertEqual( class_queries_logits.shape , (1, model.config.decoder_config.num_queries, model.config.num_labels + 1) ) _UpperCAmelCase = torch.tensor( [[4.7188, -3.2585, -2.8857], [6.6871, -2.9181, -1.2487], [7.2449, -2.2764, -2.1874]] ).to(_UpperCamelCase ) self.assertTrue(torch.allclose(outputs.class_queries_logits[0, :3, :3] , _UpperCamelCase , atol=_UpperCamelCase ) ) def UpperCamelCase( self ): _UpperCAmelCase = ( MaskFormerForInstanceSegmentation.from_pretrained('''facebook/maskformer-swin-small-coco''' ) .to(_UpperCamelCase ) .eval() ) _UpperCAmelCase = self.default_image_processor _UpperCAmelCase = image_processor( [np.zeros((3, 800, 1333) ), np.zeros((3, 800, 1333) )] , segmentation_maps=[np.zeros((384, 384) ).astype(np.floataa ), np.zeros((384, 384) ).astype(np.floataa )] , return_tensors='''pt''' , ) _UpperCAmelCase = inputs['''pixel_values'''].to(_UpperCamelCase ) _UpperCAmelCase = [el.to(_UpperCamelCase ) for el in inputs['''mask_labels''']] _UpperCAmelCase = [el.to(_UpperCamelCase ) for el in inputs['''class_labels''']] with torch.no_grad(): _UpperCAmelCase = model(**_UpperCamelCase ) self.assertTrue(outputs.loss is not None )
32
from typing import List from .keymap import KEYMAP, get_character def A__ ( SCREAMING_SNAKE_CASE_ : str ) -> List[str]: """simple docstring""" def decorator(SCREAMING_SNAKE_CASE_ : List[Any] ): _UpperCAmelCase = getattr(SCREAMING_SNAKE_CASE_ , '''handle_key''' , [] ) handle += [key] setattr(SCREAMING_SNAKE_CASE_ , '''handle_key''' , SCREAMING_SNAKE_CASE_ ) return func return decorator def A__ ( *SCREAMING_SNAKE_CASE_ : List[str] ) -> Dict: """simple docstring""" def decorator(SCREAMING_SNAKE_CASE_ : Any ): _UpperCAmelCase = getattr(SCREAMING_SNAKE_CASE_ , '''handle_key''' , [] ) handle += keys setattr(SCREAMING_SNAKE_CASE_ , '''handle_key''' , SCREAMING_SNAKE_CASE_ ) return func return decorator class __UpperCamelCase ( A__ ): def __new__( cls , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ): _UpperCAmelCase = super().__new__(cls , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) if not hasattr(_UpperCamelCase , '''key_handler''' ): setattr(_UpperCamelCase , '''key_handler''' , {} ) setattr(_UpperCamelCase , '''handle_input''' , KeyHandler.handle_input ) for value in attrs.values(): _UpperCAmelCase = getattr(_UpperCamelCase , '''handle_key''' , [] ) for key in handled_keys: _UpperCAmelCase = value return new_cls @staticmethod def UpperCamelCase( cls ): _UpperCAmelCase = get_character() if char != KEYMAP["undefined"]: _UpperCAmelCase = ord(_UpperCamelCase ) _UpperCAmelCase = cls.key_handler.get(_UpperCamelCase ) if handler: _UpperCAmelCase = char return handler(cls ) else: return None def A__ ( cls : Union[str, Any] ) -> Any: """simple docstring""" return KeyHandler(cls.__name__ , cls.__bases__ , cls.__dict__.copy() )
32
1
from ...utils import ( OptionalDependencyNotAvailable, is_torch_available, is_transformers_available, is_transformers_version, ) try: if not (is_transformers_available() and is_torch_available() and is_transformers_version(">=", "4.25.0")): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import UnCLIPImageVariationPipeline, UnCLIPPipeline else: from .pipeline_unclip import UnCLIPPipeline from .pipeline_unclip_image_variation import UnCLIPImageVariationPipeline from .text_proj import UnCLIPTextProjModel
32
import unittest from transformers import LiltConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( LiltForQuestionAnswering, LiltForSequenceClassification, LiltForTokenClassification, LiltModel, ) from transformers.models.lilt.modeling_lilt import LILT_PRETRAINED_MODEL_ARCHIVE_LIST class __UpperCamelCase : def __init__( self , _UpperCamelCase , _UpperCamelCase=13 , _UpperCamelCase=7 , _UpperCamelCase=True , _UpperCamelCase=True , _UpperCamelCase=True , _UpperCamelCase=True , _UpperCamelCase=99 , _UpperCamelCase=24 , _UpperCamelCase=2 , _UpperCamelCase=6 , _UpperCamelCase=37 , _UpperCamelCase="gelu" , _UpperCamelCase=0.1 , _UpperCamelCase=0.1 , _UpperCamelCase=512 , _UpperCamelCase=16 , _UpperCamelCase=2 , _UpperCamelCase=0.02 , _UpperCamelCase=3 , _UpperCamelCase=None , _UpperCamelCase=1000 , ): _UpperCAmelCase = parent _UpperCAmelCase = batch_size _UpperCAmelCase = seq_length _UpperCAmelCase = is_training _UpperCAmelCase = use_input_mask _UpperCAmelCase = use_token_type_ids _UpperCAmelCase = use_labels _UpperCAmelCase = vocab_size _UpperCAmelCase = hidden_size _UpperCAmelCase = num_hidden_layers _UpperCAmelCase = num_attention_heads _UpperCAmelCase = intermediate_size _UpperCAmelCase = hidden_act _UpperCAmelCase = hidden_dropout_prob _UpperCAmelCase = attention_probs_dropout_prob _UpperCAmelCase = max_position_embeddings _UpperCAmelCase = type_vocab_size _UpperCAmelCase = type_sequence_label_size _UpperCAmelCase = initializer_range _UpperCAmelCase = num_labels _UpperCAmelCase = scope _UpperCAmelCase = range_bbox def UpperCamelCase( self ): _UpperCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _UpperCAmelCase = ids_tensor([self.batch_size, self.seq_length, 4] , self.range_bbox ) # Ensure that bbox is legal for i in range(bbox.shape[0] ): for j in range(bbox.shape[1] ): if bbox[i, j, 3] < bbox[i, j, 1]: _UpperCAmelCase = bbox[i, j, 3] _UpperCAmelCase = bbox[i, j, 1] _UpperCAmelCase = t if bbox[i, j, 2] < bbox[i, j, 0]: _UpperCAmelCase = bbox[i, j, 2] _UpperCAmelCase = bbox[i, j, 0] _UpperCAmelCase = t _UpperCAmelCase = None if self.use_input_mask: _UpperCAmelCase = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 ) _UpperCAmelCase = None if self.use_token_type_ids: _UpperCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) _UpperCAmelCase = None _UpperCAmelCase = None if self.use_labels: _UpperCAmelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size ) _UpperCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) _UpperCAmelCase = self.get_config() return config, input_ids, bbox, token_type_ids, input_mask, sequence_labels, token_labels def UpperCamelCase( self ): return LiltConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , ) def UpperCamelCase( self , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , ): _UpperCAmelCase = LiltModel(config=_UpperCamelCase ) model.to(_UpperCamelCase ) model.eval() _UpperCAmelCase = model(_UpperCamelCase , bbox=_UpperCamelCase , attention_mask=_UpperCamelCase , token_type_ids=_UpperCamelCase ) _UpperCAmelCase = model(_UpperCamelCase , bbox=_UpperCamelCase , token_type_ids=_UpperCamelCase ) _UpperCAmelCase = model(_UpperCamelCase , bbox=_UpperCamelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) ) def UpperCamelCase( self , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , ): _UpperCAmelCase = self.num_labels _UpperCAmelCase = LiltForTokenClassification(config=_UpperCamelCase ) model.to(_UpperCamelCase ) model.eval() _UpperCAmelCase = model( _UpperCamelCase , bbox=_UpperCamelCase , attention_mask=_UpperCamelCase , token_type_ids=_UpperCamelCase , labels=_UpperCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def UpperCamelCase( self , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , ): _UpperCAmelCase = LiltForQuestionAnswering(config=_UpperCamelCase ) model.to(_UpperCamelCase ) model.eval() _UpperCAmelCase = model( _UpperCamelCase , bbox=_UpperCamelCase , attention_mask=_UpperCamelCase , token_type_ids=_UpperCamelCase , start_positions=_UpperCamelCase , end_positions=_UpperCamelCase , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def UpperCamelCase( self ): _UpperCAmelCase = self.prepare_config_and_inputs() ( ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ) = config_and_inputs _UpperCAmelCase = { '''input_ids''': input_ids, '''bbox''': bbox, '''token_type_ids''': token_type_ids, '''attention_mask''': input_mask, } return config, inputs_dict @require_torch class __UpperCamelCase ( A__ , A__ , A__ , unittest.TestCase ): __A : Dict = ( ( LiltModel, LiltForSequenceClassification, LiltForTokenClassification, LiltForQuestionAnswering, ) if is_torch_available() else () ) __A : Optional[Any] = ( { """feature-extraction""": LiltModel, """question-answering""": LiltForQuestionAnswering, """text-classification""": LiltForSequenceClassification, """token-classification""": LiltForTokenClassification, """zero-shot""": LiltForSequenceClassification, } if is_torch_available() else {} ) __A : List[Any] = False __A : Optional[int] = False def UpperCamelCase( self , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ): return True def UpperCamelCase( self ): _UpperCAmelCase = LiltModelTester(self ) _UpperCAmelCase = ConfigTester(self , config_class=_UpperCamelCase , hidden_size=37 ) def UpperCamelCase( self ): self.config_tester.run_common_tests() def UpperCamelCase( self ): _UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_UpperCamelCase ) def UpperCamelCase( self ): _UpperCAmelCase = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: _UpperCAmelCase = type self.model_tester.create_and_check_model(*_UpperCamelCase ) def UpperCamelCase( self ): _UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*_UpperCamelCase ) def UpperCamelCase( self ): _UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*_UpperCamelCase ) @slow def UpperCamelCase( self ): for model_name in LILT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _UpperCAmelCase = LiltModel.from_pretrained(_UpperCamelCase ) self.assertIsNotNone(_UpperCamelCase ) @require_torch @slow class __UpperCamelCase ( unittest.TestCase ): def UpperCamelCase( self ): _UpperCAmelCase = LiltModel.from_pretrained('''SCUT-DLVCLab/lilt-roberta-en-base''' ).to(_UpperCamelCase ) _UpperCAmelCase = torch.tensor([[1, 2]] , device=_UpperCamelCase ) _UpperCAmelCase = torch.tensor([[[1, 2, 3, 4], [5, 6, 7, 8]]] , device=_UpperCamelCase ) # forward pass with torch.no_grad(): _UpperCAmelCase = model(input_ids=_UpperCamelCase , bbox=_UpperCamelCase ) _UpperCAmelCase = torch.Size([1, 2, 768] ) _UpperCAmelCase = torch.tensor( [[-0.0653, 0.0950, -0.0061], [-0.0545, 0.0926, -0.0324]] , device=_UpperCamelCase , ) self.assertTrue(outputs.last_hidden_state.shape , _UpperCamelCase ) self.assertTrue(torch.allclose(outputs.last_hidden_state[0, :, :3] , _UpperCamelCase , atol=1e-3 ) )
32
1
from sklearn.metrics import mean_squared_error import datasets UpperCAmelCase_ = "\\n@article{scikit-learn,\n title={Scikit-learn: Machine Learning in {P}ython},\n author={Pedregosa, F. and Varoquaux, G. and Gramfort, A. and Michel, V.\n and Thirion, B. and Grisel, O. and Blondel, M. and Prettenhofer, P.\n and Weiss, R. and Dubourg, V. and Vanderplas, J. and Passos, A. and\n Cournapeau, D. and Brucher, M. and Perrot, M. and Duchesnay, E.},\n journal={Journal of Machine Learning Research},\n volume={12},\n pages={2825--2830},\n year={2011}\n}\n" UpperCAmelCase_ = "\\nMean Squared Error(MSE) is the average of the square of difference between the predicted\nand actual values.\n" UpperCAmelCase_ = "\nArgs:\n predictions: array-like of shape (n_samples,) or (n_samples, n_outputs)\n Estimated target values.\n references: array-like of shape (n_samples,) or (n_samples, n_outputs)\n Ground truth (correct) target values.\n sample_weight: array-like of shape (n_samples,), default=None\n Sample weights.\n multioutput: {\"raw_values\", \"uniform_average\"} or array-like of shape (n_outputs,), default=\"uniform_average\"\n Defines aggregating of multiple output values. Array-like value defines weights used to average errors.\n\n \"raw_values\" : Returns a full set of errors in case of multioutput input.\n\n \"uniform_average\" : Errors of all outputs are averaged with uniform weight.\n\n squared : bool, default=True\n If True returns MSE value, if False returns RMSE (Root Mean Squared Error) value.\n\nReturns:\n mse : mean squared error.\nExamples:\n\n >>> mse_metric = datasets.load_metric(\"mse\")\n >>> predictions = [2.5, 0.0, 2, 8]\n >>> references = [3, -0.5, 2, 7]\n >>> results = mse_metric.compute(predictions=predictions, references=references)\n >>> print(results)\n {'mse': 0.375}\n >>> rmse_result = mse_metric.compute(predictions=predictions, references=references, squared=False)\n >>> print(rmse_result)\n {'mse': 0.6123724356957945}\n\n If you're using multi-dimensional lists, then set the config as follows :\n\n >>> mse_metric = datasets.load_metric(\"mse\", \"multilist\")\n >>> predictions = [[0.5, 1], [-1, 1], [7, -6]]\n >>> references = [[0, 2], [-1, 2], [8, -5]]\n >>> results = mse_metric.compute(predictions=predictions, references=references)\n >>> print(results)\n {'mse': 0.7083333333333334}\n >>> results = mse_metric.compute(predictions=predictions, references=references, multioutput='raw_values')\n >>> print(results) # doctest: +NORMALIZE_WHITESPACE\n {'mse': array([0.41666667, 1. ])}\n" @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class __UpperCamelCase ( datasets.Metric ): def UpperCamelCase( self ): return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features(self._get_feature_types() ) , reference_urls=[ '''https://scikit-learn.org/stable/modules/generated/sklearn.metrics.mean_squared_error.html''' ] , ) def UpperCamelCase( self ): if self.config_name == "multilist": return { "predictions": datasets.Sequence(datasets.Value('''float''' ) ), "references": datasets.Sequence(datasets.Value('''float''' ) ), } else: return { "predictions": datasets.Value('''float''' ), "references": datasets.Value('''float''' ), } def UpperCamelCase( self , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase=None , _UpperCamelCase="uniform_average" , _UpperCamelCase=True ): _UpperCAmelCase = mean_squared_error( _UpperCamelCase , _UpperCamelCase , sample_weight=_UpperCamelCase , multioutput=_UpperCamelCase , squared=_UpperCamelCase ) return {"mse": mse}
32
from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCAmelCase_ = logging.get_logger(__name__) UpperCAmelCase_ = { "RWKV/rwkv-4-169m-pile": "https://huggingface.co/RWKV/rwkv-4-169m-pile/resolve/main/config.json", "RWKV/rwkv-4-430m-pile": "https://huggingface.co/RWKV/rwkv-4-430m-pile/resolve/main/config.json", "RWKV/rwkv-4-1b5-pile": "https://huggingface.co/RWKV/rwkv-4-1b5-pile/resolve/main/config.json", "RWKV/rwkv-4-3b-pile": "https://huggingface.co/RWKV/rwkv-4-3b-pile/resolve/main/config.json", "RWKV/rwkv-4-7b-pile": "https://huggingface.co/RWKV/rwkv-4-7b-pile/resolve/main/config.json", "RWKV/rwkv-4-14b-pile": "https://huggingface.co/RWKV/rwkv-4-14b-pile/resolve/main/config.json", "RWKV/rwkv-raven-1b5": "https://huggingface.co/RWKV/rwkv-raven-1b5/resolve/main/config.json", "RWKV/rwkv-raven-3b": "https://huggingface.co/RWKV/rwkv-raven-3b/resolve/main/config.json", "RWKV/rwkv-raven-7b": "https://huggingface.co/RWKV/rwkv-raven-7b/resolve/main/config.json", "RWKV/rwkv-raven-14b": "https://huggingface.co/RWKV/rwkv-raven-14b/resolve/main/config.json", } class __UpperCamelCase ( A__ ): __A : Tuple = """rwkv""" __A : Any = {"""max_position_embeddings""": """context_length"""} def __init__( self , _UpperCamelCase=50277 , _UpperCamelCase=1024 , _UpperCamelCase=4096 , _UpperCamelCase=32 , _UpperCamelCase=None , _UpperCamelCase=None , _UpperCamelCase=1e-5 , _UpperCamelCase=0 , _UpperCamelCase=0 , _UpperCamelCase=6 , _UpperCamelCase=False , _UpperCamelCase=True , **_UpperCamelCase , ): _UpperCAmelCase = vocab_size _UpperCAmelCase = context_length _UpperCAmelCase = hidden_size _UpperCAmelCase = num_hidden_layers _UpperCAmelCase = attention_hidden_size if attention_hidden_size is not None else hidden_size _UpperCAmelCase = intermediate_size if intermediate_size is not None else 4 * hidden_size _UpperCAmelCase = layer_norm_epsilon _UpperCAmelCase = rescale_every _UpperCAmelCase = use_cache _UpperCAmelCase = bos_token_id _UpperCAmelCase = eos_token_id super().__init__( tie_word_embeddings=_UpperCamelCase , bos_token_id=_UpperCamelCase , eos_token_id=_UpperCamelCase , **_UpperCamelCase )
32
1
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available UpperCAmelCase_ = { "configuration_table_transformer": [ "TABLE_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP", "TableTransformerConfig", "TableTransformerOnnxConfig", ] } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase_ = [ "TABLE_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST", "TableTransformerForObjectDetection", "TableTransformerModel", "TableTransformerPreTrainedModel", ] if TYPE_CHECKING: from .configuration_table_transformer import ( TABLE_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, TableTransformerConfig, TableTransformerOnnxConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_table_transformer import ( TABLE_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, TableTransformerForObjectDetection, TableTransformerModel, TableTransformerPreTrainedModel, ) else: import sys UpperCAmelCase_ = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
32
def A__ ( SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : int ) -> str: """simple docstring""" if a < 0 or b < 0: raise ValueError('''the value of both inputs must be positive''' ) _UpperCAmelCase = str(bin(SCREAMING_SNAKE_CASE_ ) )[2:] # remove the leading "0b" _UpperCAmelCase = str(bin(SCREAMING_SNAKE_CASE_ ) )[2:] # remove the leading "0b" _UpperCAmelCase = max(len(SCREAMING_SNAKE_CASE_ ) , len(SCREAMING_SNAKE_CASE_ ) ) return "0b" + "".join( str(int(char_a == '''1''' and char_b == '''1''' ) ) for char_a, char_b in zip(a_binary.zfill(SCREAMING_SNAKE_CASE_ ) , b_binary.zfill(SCREAMING_SNAKE_CASE_ ) ) ) if __name__ == "__main__": import doctest doctest.testmod()
32
1
from __future__ import annotations import unittest from transformers import is_tf_available from transformers.testing_utils import require_sentencepiece, require_tf, require_tokenizers, slow if is_tf_available(): import numpy as np import tensorflow as tf from transformers import TFCamembertModel @require_tf @require_sentencepiece @require_tokenizers class __UpperCamelCase ( unittest.TestCase ): @slow def UpperCamelCase( self ): _UpperCAmelCase = TFCamembertModel.from_pretrained('''jplu/tf-camembert-base''' ) _UpperCAmelCase = tf.convert_to_tensor( [[5, 121, 11, 660, 16, 730, 25543, 110, 83, 6]] , dtype=tf.intaa , ) # J'aime le camembert !" _UpperCAmelCase = model(_UpperCamelCase )['''last_hidden_state'''] _UpperCAmelCase = tf.TensorShape((1, 10, 768) ) self.assertEqual(output.shape , _UpperCamelCase ) # compare the actual values for a slice. _UpperCAmelCase = tf.convert_to_tensor( [[[-0.0254, 0.0235, 0.1027], [0.0606, -0.1811, -0.0418], [-0.1561, -0.1127, 0.2687]]] , dtype=tf.floataa , ) # camembert = torch.hub.load('pytorch/fairseq', 'camembert.v0') # camembert.eval() # expected_slice = roberta.model.forward(input_ids)[0][:, :3, :3].detach() self.assertTrue(np.allclose(output[:, :3, :3].numpy() , expected_slice.numpy() , atol=1e-4 ) )
32
from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCAmelCase_ = logging.get_logger(__name__) UpperCAmelCase_ = { "tiiuae/falcon-40b": "https://huggingface.co/tiiuae/falcon-40b/resolve/main/config.json", "tiiuae/falcon-7b": "https://huggingface.co/tiiuae/falcon-7b/resolve/main/config.json", } class __UpperCamelCase ( A__ ): __A : Dict = """falcon""" __A : Any = ["""past_key_values"""] def __init__( self , _UpperCamelCase=65024 , _UpperCamelCase=4544 , _UpperCamelCase=32 , _UpperCamelCase=71 , _UpperCamelCase=1e-5 , _UpperCamelCase=0.02 , _UpperCamelCase=True , _UpperCamelCase=0.0 , _UpperCamelCase=0.0 , _UpperCamelCase=None , _UpperCamelCase=False , _UpperCamelCase=False , _UpperCamelCase=True , _UpperCamelCase=True , _UpperCamelCase=False , _UpperCamelCase=11 , _UpperCamelCase=11 , **_UpperCamelCase , ): _UpperCAmelCase = vocab_size # Backward compatibility with n_embed kwarg _UpperCAmelCase = kwargs.pop('''n_embed''' , _UpperCamelCase ) _UpperCAmelCase = hidden_size if n_embed is None else n_embed _UpperCAmelCase = num_hidden_layers _UpperCAmelCase = num_attention_heads _UpperCAmelCase = layer_norm_epsilon _UpperCAmelCase = initializer_range _UpperCAmelCase = use_cache _UpperCAmelCase = hidden_dropout _UpperCAmelCase = attention_dropout _UpperCAmelCase = bos_token_id _UpperCAmelCase = eos_token_id _UpperCAmelCase = num_attention_heads if num_kv_heads is None else num_kv_heads _UpperCAmelCase = alibi _UpperCAmelCase = new_decoder_architecture _UpperCAmelCase = multi_query # Ignored when new_decoder_architecture is True _UpperCAmelCase = parallel_attn _UpperCAmelCase = bias super().__init__(bos_token_id=_UpperCamelCase , eos_token_id=_UpperCamelCase , **_UpperCamelCase ) @property def UpperCamelCase( self ): return self.hidden_size // self.num_attention_heads @property def UpperCamelCase( self ): return not self.alibi
32
1
# Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from argparse import ArgumentParser from accelerate.commands.config import get_config_parser from accelerate.commands.env import env_command_parser from accelerate.commands.launch import launch_command_parser from accelerate.commands.test import test_command_parser from accelerate.commands.tpu import tpu_command_parser def A__ ( ) -> Tuple: """simple docstring""" _UpperCAmelCase = ArgumentParser('''Accelerate CLI tool''' , usage='''accelerate <command> [<args>]''' , allow_abbrev=SCREAMING_SNAKE_CASE_ ) _UpperCAmelCase = parser.add_subparsers(help='''accelerate command helpers''' ) # Register commands get_config_parser(subparsers=SCREAMING_SNAKE_CASE_ ) env_command_parser(subparsers=SCREAMING_SNAKE_CASE_ ) launch_command_parser(subparsers=SCREAMING_SNAKE_CASE_ ) tpu_command_parser(subparsers=SCREAMING_SNAKE_CASE_ ) test_command_parser(subparsers=SCREAMING_SNAKE_CASE_ ) # Let's go _UpperCAmelCase = parser.parse_args() if not hasattr(SCREAMING_SNAKE_CASE_ , '''func''' ): parser.print_help() exit(1 ) # Run args.func(SCREAMING_SNAKE_CASE_ ) if __name__ == "__main__": main()
32
from math import sqrt def A__ ( SCREAMING_SNAKE_CASE_ : int ) -> bool: """simple docstring""" if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5 , int(sqrt(SCREAMING_SNAKE_CASE_ ) + 1 ) , 6 ): if number % i == 0 or number % (i + 2) == 0: return False return True def A__ ( SCREAMING_SNAKE_CASE_ : int = 1_00_01 ) -> int: """simple docstring""" _UpperCAmelCase = 0 _UpperCAmelCase = 1 while count != nth and number < 3: number += 1 if is_prime(SCREAMING_SNAKE_CASE_ ): count += 1 while count != nth: number += 2 if is_prime(SCREAMING_SNAKE_CASE_ ): count += 1 return number if __name__ == "__main__": print(f'''{solution() = }''')
32
1
import unittest from transformers import load_tool from .test_tools_common import ToolTesterMixin class __UpperCamelCase ( unittest.TestCase , A__ ): def UpperCamelCase( self ): _UpperCAmelCase = load_tool('''text-classification''' ) self.tool.setup() _UpperCAmelCase = load_tool('''text-classification''' , remote=_UpperCamelCase ) def UpperCamelCase( self ): _UpperCAmelCase = self.tool('''That\'s quite cool''' , ['''positive''', '''negative'''] ) self.assertEqual(_UpperCamelCase , '''positive''' ) def UpperCamelCase( self ): _UpperCAmelCase = self.remote_tool('''That\'s quite cool''' , ['''positive''', '''negative'''] ) self.assertEqual(_UpperCamelCase , '''positive''' ) def UpperCamelCase( self ): _UpperCAmelCase = self.tool(text='''That\'s quite cool''' , labels=['''positive''', '''negative'''] ) self.assertEqual(_UpperCamelCase , '''positive''' ) def UpperCamelCase( self ): _UpperCAmelCase = self.remote_tool(text='''That\'s quite cool''' , labels=['''positive''', '''negative'''] ) self.assertEqual(_UpperCamelCase , '''positive''' )
32
def A__ ( SCREAMING_SNAKE_CASE_ : int ) -> bool: """simple docstring""" if not isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): _UpperCAmelCase = F'''Input value of [number={number}] must be an integer''' raise TypeError(SCREAMING_SNAKE_CASE_ ) if number < 0: return False _UpperCAmelCase = number * number while number > 0: if number % 10 != number_square % 10: return False number //= 10 number_square //= 10 return True if __name__ == "__main__": import doctest doctest.testmod()
32
1
import argparse import torch from transformers import GPTaConfig, GPTaModel, load_tf_weights_in_gpta from transformers.utils import CONFIG_NAME, WEIGHTS_NAME, logging logging.set_verbosity_info() def A__ ( SCREAMING_SNAKE_CASE_ : List[str] , SCREAMING_SNAKE_CASE_ : Any , SCREAMING_SNAKE_CASE_ : Tuple ) -> int: """simple docstring""" if gpta_config_file == "": _UpperCAmelCase = GPTaConfig() else: _UpperCAmelCase = GPTaConfig.from_json_file(SCREAMING_SNAKE_CASE_ ) _UpperCAmelCase = GPTaModel(SCREAMING_SNAKE_CASE_ ) # Load weights from numpy load_tf_weights_in_gpta(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) # Save pytorch-model _UpperCAmelCase = pytorch_dump_folder_path + '''/''' + WEIGHTS_NAME _UpperCAmelCase = pytorch_dump_folder_path + '''/''' + CONFIG_NAME print(F'''Save PyTorch model to {pytorch_weights_dump_path}''' ) torch.save(model.state_dict() , SCREAMING_SNAKE_CASE_ ) print(F'''Save configuration file to {pytorch_config_dump_path}''' ) with open(SCREAMING_SNAKE_CASE_ , '''w''' , encoding='''utf-8''' ) as f: f.write(config.to_json_string() ) if __name__ == "__main__": UpperCAmelCase_ = argparse.ArgumentParser() # Required parameters parser.add_argument( "--gpt2_checkpoint_path", default=None, type=str, required=True, help="Path to the TensorFlow checkpoint path." ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, required=True, help="Path to the output PyTorch model." ) parser.add_argument( "--gpt2_config_file", default="", type=str, help=( "An optional config json file corresponding to the pre-trained OpenAI model. \n" "This specifies the model architecture." ), ) UpperCAmelCase_ = parser.parse_args() convert_gpta_checkpoint_to_pytorch(args.gpta_checkpoint_path, args.gpta_config_file, args.pytorch_dump_folder_path)
32
from dataclasses import dataclass, field from typing import ClassVar, Dict from ..features import Features, Value from .base import TaskTemplate @dataclass(frozen=A__ ) class __UpperCamelCase ( A__ ): __A : str = field(default="""language-modeling""" , metadata={"""include_in_asdict_even_if_is_default""": True} ) __A : ClassVar[Features] = Features({"""text""": Value("""string""" )} ) __A : ClassVar[Features] = Features({} ) __A : str = "text" @property def UpperCamelCase( self ): return {self.text_column: "text"}
32
1
import unittest from transformers import AutoTokenizer, NystromformerConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( NystromformerForMaskedLM, NystromformerForMultipleChoice, NystromformerForQuestionAnswering, NystromformerForSequenceClassification, NystromformerForTokenClassification, NystromformerModel, ) from transformers.models.nystromformer.modeling_nystromformer import NYSTROMFORMER_PRETRAINED_MODEL_ARCHIVE_LIST class __UpperCamelCase : def __init__( self , _UpperCamelCase , _UpperCamelCase=13 , _UpperCamelCase=7 , _UpperCamelCase=True , _UpperCamelCase=True , _UpperCamelCase=True , _UpperCamelCase=True , _UpperCamelCase=99 , _UpperCamelCase=32 , _UpperCamelCase=5 , _UpperCamelCase=4 , _UpperCamelCase=37 , _UpperCamelCase="gelu" , _UpperCamelCase=0.1 , _UpperCamelCase=0.1 , _UpperCamelCase=512 , _UpperCamelCase=16 , _UpperCamelCase=2 , _UpperCamelCase=0.02 , _UpperCamelCase=3 , _UpperCamelCase=4 , _UpperCamelCase=None , ): _UpperCAmelCase = parent _UpperCAmelCase = batch_size _UpperCAmelCase = seq_length _UpperCAmelCase = is_training _UpperCAmelCase = use_input_mask _UpperCAmelCase = use_token_type_ids _UpperCAmelCase = use_labels _UpperCAmelCase = vocab_size _UpperCAmelCase = hidden_size _UpperCAmelCase = num_hidden_layers _UpperCAmelCase = num_attention_heads _UpperCAmelCase = intermediate_size _UpperCAmelCase = hidden_act _UpperCAmelCase = hidden_dropout_prob _UpperCAmelCase = attention_probs_dropout_prob _UpperCAmelCase = max_position_embeddings _UpperCAmelCase = type_vocab_size _UpperCAmelCase = type_sequence_label_size _UpperCAmelCase = initializer_range _UpperCAmelCase = num_labels _UpperCAmelCase = num_choices _UpperCAmelCase = scope def UpperCamelCase( self ): _UpperCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _UpperCAmelCase = None if self.use_input_mask: _UpperCAmelCase = random_attention_mask([self.batch_size, self.seq_length] ) _UpperCAmelCase = None if self.use_token_type_ids: _UpperCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) _UpperCAmelCase = None _UpperCAmelCase = None _UpperCAmelCase = None if self.use_labels: _UpperCAmelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size ) _UpperCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) _UpperCAmelCase = ids_tensor([self.batch_size] , self.num_choices ) _UpperCAmelCase = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def UpperCamelCase( self ): return NystromformerConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=_UpperCamelCase , initializer_range=self.initializer_range , ) def UpperCamelCase( self , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ): _UpperCAmelCase = NystromformerModel(config=_UpperCamelCase ) model.to(_UpperCamelCase ) model.eval() _UpperCAmelCase = model(_UpperCamelCase , attention_mask=_UpperCamelCase , token_type_ids=_UpperCamelCase ) _UpperCAmelCase = model(_UpperCamelCase , token_type_ids=_UpperCamelCase ) _UpperCAmelCase = model(_UpperCamelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def UpperCamelCase( self , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ): _UpperCAmelCase = NystromformerForMaskedLM(config=_UpperCamelCase ) model.to(_UpperCamelCase ) model.eval() _UpperCAmelCase = model(_UpperCamelCase , attention_mask=_UpperCamelCase , token_type_ids=_UpperCamelCase , labels=_UpperCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def UpperCamelCase( self , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ): _UpperCAmelCase = NystromformerForQuestionAnswering(config=_UpperCamelCase ) model.to(_UpperCamelCase ) model.eval() _UpperCAmelCase = model( _UpperCamelCase , attention_mask=_UpperCamelCase , token_type_ids=_UpperCamelCase , start_positions=_UpperCamelCase , end_positions=_UpperCamelCase , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def UpperCamelCase( self , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ): _UpperCAmelCase = self.num_labels _UpperCAmelCase = NystromformerForSequenceClassification(_UpperCamelCase ) model.to(_UpperCamelCase ) model.eval() _UpperCAmelCase = model(_UpperCamelCase , attention_mask=_UpperCamelCase , token_type_ids=_UpperCamelCase , labels=_UpperCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def UpperCamelCase( self , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ): _UpperCAmelCase = self.num_labels _UpperCAmelCase = NystromformerForTokenClassification(config=_UpperCamelCase ) model.to(_UpperCamelCase ) model.eval() _UpperCAmelCase = model(_UpperCamelCase , attention_mask=_UpperCamelCase , token_type_ids=_UpperCamelCase , labels=_UpperCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def UpperCamelCase( self , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ): _UpperCAmelCase = self.num_choices _UpperCAmelCase = NystromformerForMultipleChoice(config=_UpperCamelCase ) model.to(_UpperCamelCase ) model.eval() _UpperCAmelCase = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() _UpperCAmelCase = token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() _UpperCAmelCase = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() _UpperCAmelCase = model( _UpperCamelCase , attention_mask=_UpperCamelCase , token_type_ids=_UpperCamelCase , labels=_UpperCamelCase , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def UpperCamelCase( self ): _UpperCAmelCase = self.prepare_config_and_inputs() ( ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ) = config_and_inputs _UpperCAmelCase = {'''input_ids''': input_ids, '''token_type_ids''': token_type_ids, '''attention_mask''': input_mask} return config, inputs_dict @require_torch class __UpperCamelCase ( A__ , A__ , unittest.TestCase ): __A : Tuple = ( ( NystromformerModel, NystromformerForMaskedLM, NystromformerForMultipleChoice, NystromformerForQuestionAnswering, NystromformerForSequenceClassification, NystromformerForTokenClassification, ) if is_torch_available() else () ) __A : Optional[Any] = ( { """feature-extraction""": NystromformerModel, """fill-mask""": NystromformerForMaskedLM, """question-answering""": NystromformerForQuestionAnswering, """text-classification""": NystromformerForSequenceClassification, """token-classification""": NystromformerForTokenClassification, """zero-shot""": NystromformerForSequenceClassification, } if is_torch_available() else {} ) __A : Any = False __A : Optional[Any] = False def UpperCamelCase( self ): _UpperCAmelCase = NystromformerModelTester(self ) _UpperCAmelCase = ConfigTester(self , config_class=_UpperCamelCase , hidden_size=37 ) def UpperCamelCase( self ): self.config_tester.run_common_tests() def UpperCamelCase( self ): _UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_UpperCamelCase ) def UpperCamelCase( self ): _UpperCAmelCase = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: _UpperCAmelCase = type self.model_tester.create_and_check_model(*_UpperCamelCase ) def UpperCamelCase( self ): _UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*_UpperCamelCase ) def UpperCamelCase( self ): _UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_multiple_choice(*_UpperCamelCase ) def UpperCamelCase( self ): _UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*_UpperCamelCase ) def UpperCamelCase( self ): _UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*_UpperCamelCase ) def UpperCamelCase( self ): _UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*_UpperCamelCase ) @slow def UpperCamelCase( self ): for model_name in NYSTROMFORMER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _UpperCAmelCase = NystromformerModel.from_pretrained(_UpperCamelCase ) self.assertIsNotNone(_UpperCamelCase ) @require_torch class __UpperCamelCase ( unittest.TestCase ): @slow def UpperCamelCase( self ): _UpperCAmelCase = NystromformerModel.from_pretrained('''uw-madison/nystromformer-512''' ) _UpperCAmelCase = torch.tensor([[0, 1, 2, 3, 4, 5]] ) with torch.no_grad(): _UpperCAmelCase = model(_UpperCamelCase )[0] _UpperCAmelCase = torch.Size((1, 6, 768) ) self.assertEqual(output.shape , _UpperCamelCase ) _UpperCAmelCase = torch.tensor( [[[-0.4532, -0.0936, 0.5137], [-0.2676, 0.0628, 0.6186], [-0.3629, -0.1726, 0.4716]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] , _UpperCamelCase , atol=1e-4 ) ) @slow def UpperCamelCase( self ): _UpperCAmelCase = '''the [MASK] of Belgium is Brussels''' _UpperCAmelCase = AutoTokenizer.from_pretrained('''uw-madison/nystromformer-512''' ) _UpperCAmelCase = NystromformerForMaskedLM.from_pretrained('''uw-madison/nystromformer-512''' ) _UpperCAmelCase = tokenizer(_UpperCamelCase , return_tensors='''pt''' ) with torch.no_grad(): _UpperCAmelCase = model(encoding.input_ids ).logits _UpperCAmelCase = token_logits[:, 2, :].argmax(-1 )[0] self.assertEqual(tokenizer.decode(_UpperCamelCase ) , '''capital''' )
32
import os import re import warnings from shutil import copyfile from typing import TYPE_CHECKING, Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import PreTrainedTokenizer if TYPE_CHECKING: from ...tokenization_utils_base import TextInput from ...utils import logging UpperCAmelCase_ = logging.get_logger(__name__) UpperCAmelCase_ = {"vocab_file": "spiece.model"} UpperCAmelCase_ = { "vocab_file": { "t5-small": "https://huggingface.co/t5-small/resolve/main/spiece.model", "t5-base": "https://huggingface.co/t5-base/resolve/main/spiece.model", "t5-large": "https://huggingface.co/t5-large/resolve/main/spiece.model", "t5-3b": "https://huggingface.co/t5-3b/resolve/main/spiece.model", "t5-11b": "https://huggingface.co/t5-11b/resolve/main/spiece.model", } } # TODO(PVP) - this should be removed in Transformers v5 UpperCAmelCase_ = { "t5-small": 5_12, "t5-base": 5_12, "t5-large": 5_12, "t5-3b": 5_12, "t5-11b": 5_12, } UpperCAmelCase_ = "▁" class __UpperCamelCase ( A__ ): __A : Any = VOCAB_FILES_NAMES __A : Union[str, Any] = PRETRAINED_VOCAB_FILES_MAP __A : Any = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __A : Tuple = ["""input_ids""", """attention_mask"""] def __init__( self , _UpperCamelCase , _UpperCamelCase="</s>" , _UpperCamelCase="<unk>" , _UpperCamelCase="<pad>" , _UpperCamelCase=100 , _UpperCamelCase=None , _UpperCamelCase = None , _UpperCamelCase=True , **_UpperCamelCase , ): # Add extra_ids to the special token list if extra_ids > 0 and additional_special_tokens is None: _UpperCAmelCase = [f'''<extra_id_{i}>''' for i in range(_UpperCamelCase )] elif extra_ids > 0 and additional_special_tokens is not None: # Check that we have the right number of extra_id special tokens _UpperCAmelCase = len(set(filter(lambda _UpperCamelCase : bool('''extra_id''' in str(_UpperCamelCase ) ) , _UpperCamelCase ) ) ) if extra_tokens != extra_ids: raise ValueError( f'''Both extra_ids ({extra_ids}) and additional_special_tokens ({additional_special_tokens}) are''' ''' provided to T5Tokenizer. In this case the additional_special_tokens must include the extra_ids''' ''' tokens''' ) if legacy: logger.warning_once( f'''You are using the legacy behaviour of the {self.__class__}. This means that tokens that come after special tokens will not be properly handled. We recommend you to''' ''' read the related pull request available at https://github.com/huggingface/transformers/pull/24565''' ) _UpperCAmelCase = legacy _UpperCAmelCase = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( eos_token=_UpperCamelCase , unk_token=_UpperCamelCase , pad_token=_UpperCamelCase , extra_ids=_UpperCamelCase , additional_special_tokens=_UpperCamelCase , sp_model_kwargs=self.sp_model_kwargs , legacy=_UpperCamelCase , **_UpperCamelCase , ) _UpperCAmelCase = vocab_file _UpperCAmelCase = extra_ids _UpperCAmelCase = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(_UpperCamelCase ) @staticmethod def UpperCamelCase( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ): if pretrained_model_name_or_path in TaTokenizer.max_model_input_sizes: _UpperCAmelCase = TaTokenizer.max_model_input_sizes[pretrained_model_name_or_path] if init_max_model_length is not None and init_max_model_length != max_model_length: return init_max_model_length elif init_max_model_length is None: warnings.warn( '''This tokenizer was incorrectly instantiated with a model max length of''' f''' {deprecated_max_model_length} which will be corrected in Transformers v5.\nFor now, this''' ''' behavior is kept to avoid breaking backwards compatibility when padding/encoding with''' ''' `truncation is True`.\n- Be aware that you SHOULD NOT rely on''' f''' {pretrained_model_name_or_path} automatically truncating your input to''' f''' {deprecated_max_model_length} when padding/encoding.\n- If you want to encode/pad to sequences''' f''' longer than {deprecated_max_model_length} you can either instantiate this tokenizer with''' ''' `model_max_length` or pass `max_length` when encoding/padding.\n- To avoid this warning, please''' ''' instantiate this tokenizer with `model_max_length` set to your preferred value.''' , _UpperCamelCase , ) return max_model_length @property def UpperCamelCase( self ): return self.sp_model.get_piece_size() + self._extra_ids def UpperCamelCase( self ): _UpperCAmelCase = {self.convert_ids_to_tokens(_UpperCamelCase ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def UpperCamelCase( self , _UpperCamelCase , _UpperCamelCase = None , _UpperCamelCase = False ): if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=_UpperCamelCase , token_ids_a=_UpperCamelCase , already_has_special_tokens=_UpperCamelCase ) # normal case: some special tokens if token_ids_a is None: return ([0] * len(_UpperCamelCase )) + [1] return ([0] * len(_UpperCamelCase )) + [1] + ([0] * len(_UpperCamelCase )) + [1] def UpperCamelCase( self ): return list( set(filter(lambda _UpperCamelCase : bool(re.search(R'''<extra_id_\d+>''' , _UpperCamelCase ) ) is not None , self.additional_special_tokens ) ) ) def UpperCamelCase( self ): return [self._convert_token_to_id(_UpperCamelCase ) for token in self.get_sentinel_tokens()] def UpperCamelCase( self , _UpperCamelCase ): if len(_UpperCamelCase ) > 0 and token_ids[-1] == self.eos_token_id: warnings.warn( f'''This sequence already has {self.eos_token}. In future versions this behavior may lead to duplicated''' ''' eos tokens being added.''' ) return token_ids else: return token_ids + [self.eos_token_id] def UpperCamelCase( self , _UpperCamelCase , _UpperCamelCase = None ): _UpperCAmelCase = [self.eos_token_id] if token_ids_a is None: return len(token_ids_a + eos ) * [0] return len(token_ids_a + eos + token_ids_a + eos ) * [0] def UpperCamelCase( self , _UpperCamelCase , _UpperCamelCase = None ): _UpperCAmelCase = self._add_eos_if_not_present(_UpperCamelCase ) if token_ids_a is None: return token_ids_a else: _UpperCAmelCase = self._add_eos_if_not_present(_UpperCamelCase ) return token_ids_a + token_ids_a def __getstate__( self ): _UpperCAmelCase = self.__dict__.copy() _UpperCAmelCase = None return state def __setstate__( self , _UpperCamelCase ): _UpperCAmelCase = d # for backward compatibility if not hasattr(self , '''sp_model_kwargs''' ): _UpperCAmelCase = {} _UpperCAmelCase = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def UpperCamelCase( self , _UpperCamelCase , **_UpperCamelCase ): # Replace the SPIECE_UNDERLINE with a space to make sure SPIECE_UNDERLINE is only used at # the beginning of the text if not self.legacy: _UpperCAmelCase = SPIECE_UNDERLINE + text.replace(_UpperCamelCase , ''' ''' ) return super().tokenize(_UpperCamelCase , **_UpperCamelCase ) def UpperCamelCase( self , _UpperCamelCase , **_UpperCamelCase ): if not self.legacy: _UpperCAmelCase = text.startswith(_UpperCamelCase ) if is_first: _UpperCAmelCase = text[1:] _UpperCAmelCase = self.sp_model.encode(_UpperCamelCase , out_type=_UpperCamelCase ) if not self.legacy and not is_first and not text.startswith(''' ''' ) and tokens[0].startswith(_UpperCamelCase ): _UpperCAmelCase = ([tokens[0][1:]] if len(tokens[0] ) > 1 else []) + tokens[1:] return tokens def UpperCamelCase( self , _UpperCamelCase ): if token.startswith('''<extra_id_''' ): _UpperCAmelCase = re.match(R'''<extra_id_(\d+)>''' , _UpperCamelCase ) _UpperCAmelCase = int(match.group(1 ) ) return self.vocab_size - num - 1 return self.sp_model.piece_to_id(_UpperCamelCase ) def UpperCamelCase( self , _UpperCamelCase ): if index < self.sp_model.get_piece_size(): _UpperCAmelCase = self.sp_model.IdToPiece(_UpperCamelCase ) else: _UpperCAmelCase = f'''<extra_id_{self.vocab_size - 1 - index}>''' return token def UpperCamelCase( self , _UpperCamelCase ): _UpperCAmelCase = [] _UpperCAmelCase = '''''' _UpperCAmelCase = False for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: if not prev_is_special: out_string += " " out_string += self.sp_model.decode(_UpperCamelCase ) + token _UpperCAmelCase = True _UpperCAmelCase = [] else: current_sub_tokens.append(_UpperCamelCase ) _UpperCAmelCase = False out_string += self.sp_model.decode(_UpperCamelCase ) return out_string.strip() def UpperCamelCase( self , _UpperCamelCase , _UpperCamelCase = None ): if not os.path.isdir(_UpperCamelCase ): logger.error(f'''Vocabulary path ({save_directory}) should be a directory''' ) return _UpperCAmelCase = os.path.join( _UpperCamelCase , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(_UpperCamelCase ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , _UpperCamelCase ) elif not os.path.isfile(self.vocab_file ): with open(_UpperCamelCase , '''wb''' ) as fi: _UpperCAmelCase = self.sp_model.serialized_model_proto() fi.write(_UpperCamelCase ) return (out_vocab_file,)
32
1
from ...utils import logging from ..ta.modeling_tf_ta import TFTaEncoderModel, TFTaForConditionalGeneration, TFTaModel from .configuration_mta import MTaConfig UpperCAmelCase_ = logging.get_logger(__name__) UpperCAmelCase_ = "T5Config" class __UpperCamelCase ( A__ ): __A : str = """mt5""" __A : Optional[Any] = MTaConfig class __UpperCamelCase ( A__ ): __A : Tuple = """mt5""" __A : List[str] = MTaConfig class __UpperCamelCase ( A__ ): __A : Optional[Any] = """mt5""" __A : int = MTaConfig
32
from __future__ import annotations def A__ ( SCREAMING_SNAKE_CASE_ : int ) -> bool: """simple docstring""" _UpperCAmelCase = str(SCREAMING_SNAKE_CASE_ ) return len(SCREAMING_SNAKE_CASE_ ) == 9 and set(SCREAMING_SNAKE_CASE_ ) == set('''123456789''' ) def A__ ( ) -> int | None: """simple docstring""" for base_num in range(99_99 , 49_99 , -1 ): _UpperCAmelCase = 10_00_02 * base_num if is_9_pandigital(SCREAMING_SNAKE_CASE_ ): return candidate for base_num in range(3_33 , 99 , -1 ): _UpperCAmelCase = 1_00_20_03 * base_num if is_9_pandigital(SCREAMING_SNAKE_CASE_ ): return candidate return None if __name__ == "__main__": print(f'''{solution() = }''')
32
1
def A__ ( SCREAMING_SNAKE_CASE_ : list[int] , SCREAMING_SNAKE_CASE_ : list[int] ) -> tuple[float, float]: """simple docstring""" if not len(SCREAMING_SNAKE_CASE_ ) == len(SCREAMING_SNAKE_CASE_ ) == 3: raise ValueError('''Please enter a valid equation.''' ) if equationa[0] == equationa[1] == equationa[0] == equationa[1] == 0: raise ValueError('''Both a & b of two equations can\'t be zero.''' ) # Extract the coefficients _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase = equationa _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase = equationa # Calculate the determinants of the matrices _UpperCAmelCase = aa * ba - aa * ba _UpperCAmelCase = ca * ba - ca * ba _UpperCAmelCase = aa * ca - aa * ca # Check if the system of linear equations has a solution (using Cramer's rule) if determinant == 0: if determinant_x == determinant_y == 0: raise ValueError('''Infinite solutions. (Consistent system)''' ) else: raise ValueError('''No solution. (Inconsistent system)''' ) else: if determinant_x == determinant_y == 0: # Trivial solution (Inconsistent system) return (0.0, 0.0) else: _UpperCAmelCase = determinant_x / determinant _UpperCAmelCase = determinant_y / determinant # Non-Trivial Solution (Consistent system) return (x, y)
32
import numpy as np def A__ ( SCREAMING_SNAKE_CASE_ : np.ndarray , SCREAMING_SNAKE_CASE_ : float ) -> np.ndarray: """simple docstring""" return np.where(vector > 0 , SCREAMING_SNAKE_CASE_ , (alpha * (np.exp(SCREAMING_SNAKE_CASE_ ) - 1)) ) if __name__ == "__main__": import doctest doctest.testmod()
32
1
from __future__ import annotations import unittest import numpy as np from transformers import OPTConfig, is_tf_available from transformers.testing_utils import require_sentencepiece, require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import GPTaTokenizer, TFOPTForCausalLM, TFOPTModel def A__ ( SCREAMING_SNAKE_CASE_ : Optional[int] , SCREAMING_SNAKE_CASE_ : Optional[Any] , SCREAMING_SNAKE_CASE_ : Dict=None , SCREAMING_SNAKE_CASE_ : str=None ) -> str: """simple docstring""" if attention_mask is None: _UpperCAmelCase = tf.cast(tf.math.not_equal(SCREAMING_SNAKE_CASE_ , config.pad_token_id ) , tf.inta ) return {"input_ids": input_ids, "attention_mask": attention_mask} @require_tf class __UpperCamelCase : __A : Optional[int] = OPTConfig __A : Tuple = {} __A : List[Any] = """gelu""" def __init__( self , _UpperCamelCase , _UpperCamelCase=13 , _UpperCamelCase=7 , _UpperCamelCase=True , _UpperCamelCase=False , _UpperCamelCase=99 , _UpperCamelCase=16 , _UpperCamelCase=2 , _UpperCamelCase=4 , _UpperCamelCase=4 , _UpperCamelCase="gelu" , _UpperCamelCase=0.1 , _UpperCamelCase=0.1 , _UpperCamelCase=20 , _UpperCamelCase=2 , _UpperCamelCase=1 , _UpperCamelCase=0 , _UpperCamelCase=16 , _UpperCamelCase=16 , ): _UpperCAmelCase = parent _UpperCAmelCase = batch_size _UpperCAmelCase = seq_length _UpperCAmelCase = is_training _UpperCAmelCase = use_labels _UpperCAmelCase = vocab_size _UpperCAmelCase = hidden_size _UpperCAmelCase = num_hidden_layers _UpperCAmelCase = num_attention_heads _UpperCAmelCase = intermediate_size _UpperCAmelCase = hidden_act _UpperCAmelCase = hidden_dropout_prob _UpperCAmelCase = attention_probs_dropout_prob _UpperCAmelCase = max_position_embeddings _UpperCAmelCase = eos_token_id _UpperCAmelCase = pad_token_id _UpperCAmelCase = bos_token_id _UpperCAmelCase = embed_dim _UpperCAmelCase = word_embed_proj_dim _UpperCAmelCase = False def UpperCamelCase( self ): _UpperCAmelCase = ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size ) _UpperCAmelCase = tf.expand_dims(tf.constant([self.eos_token_id] * self.batch_size ) , 1 ) _UpperCAmelCase = tf.concat([input_ids, eos_tensor] , axis=1 ) _UpperCAmelCase = self.config_cls( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_id=self.eos_token_id , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , embed_dim=self.embed_dim , word_embed_proj_dim=self.word_embed_proj_dim , is_encoder_decoder=_UpperCamelCase , **self.config_updates , ) _UpperCAmelCase = prepare_opt_inputs_dict(_UpperCamelCase , _UpperCamelCase ) return config, inputs_dict def UpperCamelCase( self , _UpperCamelCase , _UpperCamelCase ): _UpperCAmelCase = TFOPTModel(config=_UpperCamelCase ) _UpperCAmelCase = inputs_dict['''input_ids'''] _UpperCAmelCase = input_ids[:1, :] _UpperCAmelCase = inputs_dict['''attention_mask'''][:1, :] _UpperCAmelCase = 1 # first forward pass _UpperCAmelCase = model(_UpperCamelCase , attention_mask=_UpperCamelCase , use_cache=_UpperCamelCase ) _UpperCAmelCase , _UpperCAmelCase = outputs.to_tuple() # create hypothetical next token and extent to next_input_ids _UpperCAmelCase = ids_tensor((self.batch_size, 3) , config.vocab_size ) _UpperCAmelCase = tf.cast(ids_tensor((self.batch_size, 3) , 2 ) , tf.inta ) # append to next input_ids and _UpperCAmelCase = tf.concat([input_ids, next_tokens] , axis=-1 ) _UpperCAmelCase = tf.concat([attention_mask, next_attn_mask] , axis=-1 ) _UpperCAmelCase = model(_UpperCamelCase , attention_mask=_UpperCamelCase )[0] _UpperCAmelCase = model(_UpperCamelCase , attention_mask=_UpperCamelCase , past_key_values=_UpperCamelCase )[0] self.parent.assertEqual(next_tokens.shape[1] , output_from_past.shape[1] ) # select random slice _UpperCAmelCase = int(ids_tensor((1,) , output_from_past.shape[-1] ) ) _UpperCAmelCase = output_from_no_past[:, -3:, random_slice_idx] _UpperCAmelCase = output_from_past[:, :, random_slice_idx] # test that outputs are equal for slice tf.debugging.assert_near(_UpperCamelCase , _UpperCamelCase , rtol=1e-3 ) @require_tf class __UpperCamelCase ( A__ , A__ , unittest.TestCase ): __A : Union[str, Any] = (TFOPTModel, TFOPTForCausalLM) if is_tf_available() else () __A : int = (TFOPTForCausalLM,) if is_tf_available() else () __A : Any = ( {"""feature-extraction""": TFOPTModel, """text-generation""": TFOPTForCausalLM} if is_tf_available() else {} ) __A : Dict = False __A : Union[str, Any] = False __A : Any = False __A : Union[str, Any] = 10 def UpperCamelCase( self ): _UpperCAmelCase = TFOPTModelTester(self ) _UpperCAmelCase = ConfigTester(self , config_class=_UpperCamelCase ) def UpperCamelCase( self ): self.config_tester.run_common_tests() def UpperCamelCase( self ): _UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.check_decoder_model_past_large_inputs(*_UpperCamelCase ) def UpperCamelCase( self ): _UpperCAmelCase , _UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() def _get_word_embedding_weight(_UpperCamelCase , _UpperCamelCase ): if hasattr(_UpperCamelCase , '''weight''' ): return embedding_layer.weight else: # Here we build the word embeddings weights if not exists. # And then we retry to get the attribute once built. model.build() if hasattr(_UpperCamelCase , '''weight''' ): return embedding_layer.weight else: return None for model_class in self.all_model_classes: for size in [config.vocab_size - 10, config.vocab_size + 10]: # build the embeddings _UpperCAmelCase = model_class(config=_UpperCamelCase ) _UpperCAmelCase = _get_word_embedding_weight(_UpperCamelCase , model.get_input_embeddings() ) _UpperCAmelCase = _get_word_embedding_weight(_UpperCamelCase , model.get_output_embeddings() ) # reshape the embeddings model.resize_token_embeddings(_UpperCamelCase ) _UpperCAmelCase = _get_word_embedding_weight(_UpperCamelCase , model.get_input_embeddings() ) _UpperCAmelCase = _get_word_embedding_weight(_UpperCamelCase , model.get_output_embeddings() ) # check that the resized embeddings size matches the desired size. _UpperCAmelCase = size if size is not None else config.vocab_size self.assertEqual(new_input_embeddings.shape[0] , _UpperCamelCase ) # check that weights remain the same after resizing _UpperCAmelCase = True for pa, pa in zip(old_input_embeddings.value() , new_input_embeddings.value() ): if tf.math.reduce_sum(tf.math.abs(pa - pa ) ) > 0: _UpperCAmelCase = False self.assertTrue(_UpperCamelCase ) if old_output_embeddings is not None and new_output_embeddings is not None: self.assertEqual(new_output_embeddings.shape[0] , _UpperCamelCase ) _UpperCAmelCase = True for pa, pa in zip(old_output_embeddings.value() , new_output_embeddings.value() ): if tf.math.reduce_sum(tf.math.abs(pa - pa ) ) > 0: _UpperCAmelCase = False self.assertTrue(_UpperCamelCase ) def A__ ( SCREAMING_SNAKE_CASE_ : List[Any] ) -> str: """simple docstring""" return tf.constant(SCREAMING_SNAKE_CASE_ , dtype=tf.intaa ) @require_tf class __UpperCamelCase ( unittest.TestCase ): __A : List[Any] = 99 def UpperCamelCase( self ): _UpperCAmelCase = tf.ones((4, 1) , dtype=tf.intaa ) * 2 _UpperCAmelCase = tf.concat([ids_tensor((4, 6) , self.vocab_size - 3 ) + 3, eos_column_vector] , axis=1 ) _UpperCAmelCase = input_ids.shape[0] _UpperCAmelCase = OPTConfig( vocab_size=self.vocab_size , hidden_size=24 , num_hidden_layers=2 , num_attention_heads=2 , ffn_dim=32 , max_position_embeddings=48 , eos_token_id=2 , pad_token_id=1 , bos_token_id=0 , ) return config, input_ids, batch_size @require_sentencepiece @require_tf class __UpperCamelCase ( unittest.TestCase ): @slow def UpperCamelCase( self ): _UpperCAmelCase = TFOPTModel.from_pretrained('''facebook/opt-350m''' ) _UpperCAmelCase = _long_tensor([[0, 31414, 232, 328, 740, 1140, 12695, 69, 46078, 1588, 2]] ) _UpperCAmelCase = tf.not_equal(_UpperCamelCase , model.config.pad_token_id ) with tf.GradientTape(): _UpperCAmelCase = model(input_ids=_UpperCamelCase , attention_mask=_UpperCamelCase ).last_hidden_state _UpperCAmelCase = (1, 11, 512) self.assertEqual(output.shape , _UpperCamelCase ) _UpperCAmelCase = tf.constant( [[-0.2873, -1.9218, -0.3033], [-1.2710, -0.1338, -0.1902], [0.4095, 0.1214, -1.3121]] ) self.assertTrue(np.allclose(output[:, :3, :3] , _UpperCamelCase , atol=4e-3 ) ) _UpperCAmelCase = tf.function(_UpperCamelCase , jit_compile=_UpperCamelCase ) _UpperCAmelCase = xla_generate(_UpperCamelCase , _UpperCamelCase )[0] self.assertTrue(np.allclose(output[:, :3, :3] , _UpperCamelCase , atol=4e-2 ) ) @require_tf @slow class __UpperCamelCase ( unittest.TestCase ): def UpperCamelCase( self ): super().setUp() _UpperCAmelCase = '''facebook/opt-350m''' def UpperCamelCase( self ): _UpperCAmelCase = TFOPTForCausalLM.from_pretrained(self.path_model ) _UpperCAmelCase = GPTaTokenizer.from_pretrained(self.path_model ) _UpperCAmelCase = [ '''Today is a beautiful day and I want to''', '''In the city of''', '''Paris is the capital of France and''', '''Computers and mobile phones have taken''', ] # verify that prompt without BOS token is identical to Metaseq -> add_special_tokens=False _UpperCAmelCase = tokenizer(_UpperCamelCase , return_tensors='''tf''' , padding=_UpperCamelCase , add_special_tokens=_UpperCamelCase ) _UpperCAmelCase = tf.math.reduce_mean(model(inputs.input_ids , attention_mask=inputs.attention_mask )[0] , axis=-1 ) _UpperCAmelCase = tf.constant( [ [1.3851, -13.8923, -10.5229, -10.7533, -0.2309, -10.2384, -0.5365, -9.0947, -5.1670], [-4.7073, -10.6276, -3.9415, -21.5242, -0.2822, -0.2822, -0.2822, -0.2822, -0.2822], [0.6247, -3.4229, -8.9179, -1.4297, -14.1650, 1.4146, -9.0218, -0.2703, -0.2703], [6.4783, -1.9913, -10.7926, -2.3336, 1.5092, -0.9974, -6.8213, 1.3477, 1.3477], ] ) self.assertTrue(np.allclose(_UpperCamelCase , _UpperCamelCase , atol=1e-4 ) ) _UpperCAmelCase = tf.function(_UpperCamelCase , jit_compile=_UpperCamelCase ) _UpperCAmelCase = tf.math.reduce_mean(xla_generate(inputs.input_ids , attention_mask=inputs.attention_mask )[0] , axis=-1 ) self.assertTrue(np.allclose(_UpperCamelCase , _UpperCamelCase , atol=1e-4 ) ) @require_tf @slow class __UpperCamelCase ( unittest.TestCase ): @property def UpperCamelCase( self ): return [ "Today is a beautiful day and I want", "In the city of", "Paris is the capital of France and", "Computers and mobile phones have taken", ] def UpperCamelCase( self ): _UpperCAmelCase = '''facebook/opt-125m''' _UpperCAmelCase = [ '''Today is a beautiful day and I want to''', '''In the city of New York, the city''', '''Paris is the capital of France and the capital''', '''Computers and mobile phones have taken over the''', ] _UpperCAmelCase = [] _UpperCAmelCase = GPTaTokenizer.from_pretrained(_UpperCamelCase ) _UpperCAmelCase = TFOPTForCausalLM.from_pretrained(_UpperCamelCase ) for prompt in self.prompts: _UpperCAmelCase = tokenizer(_UpperCamelCase , return_tensors='''tf''' ).input_ids _UpperCAmelCase = model.generate(_UpperCamelCase , max_length=10 ) _UpperCAmelCase = tokenizer.batch_decode(_UpperCamelCase , skip_special_tokens=_UpperCamelCase ) predicted_outputs += generated_string self.assertListEqual(_UpperCamelCase , _UpperCamelCase ) def UpperCamelCase( self ): _UpperCAmelCase = '''facebook/opt-350m''' _UpperCAmelCase = GPTaTokenizer.from_pretrained(_UpperCamelCase ) _UpperCAmelCase = TFOPTForCausalLM.from_pretrained(_UpperCamelCase ) _UpperCAmelCase = '''left''' # use different length sentences to test batching _UpperCAmelCase = [ '''Hello, my dog is a little''', '''Today, I''', ] _UpperCAmelCase = tokenizer(_UpperCamelCase , return_tensors='''tf''' , padding=_UpperCamelCase ) _UpperCAmelCase = inputs['''input_ids'''] _UpperCAmelCase = model.generate(input_ids=_UpperCamelCase , attention_mask=inputs['''attention_mask'''] ) _UpperCAmelCase = tokenizer(sentences[0] , return_tensors='''tf''' ).input_ids _UpperCAmelCase = model.generate(input_ids=_UpperCamelCase ) _UpperCAmelCase = inputs_non_padded.shape[-1] - tf.math.reduce_sum( tf.cast(inputs['''attention_mask'''][-1] , tf.intaa ) ) _UpperCAmelCase = tokenizer(sentences[1] , return_tensors='''tf''' ).input_ids _UpperCAmelCase = model.generate(input_ids=_UpperCamelCase , max_length=model.config.max_length - num_paddings ) _UpperCAmelCase = tokenizer.batch_decode(_UpperCamelCase , skip_special_tokens=_UpperCamelCase ) _UpperCAmelCase = tokenizer.decode(output_non_padded[0] , skip_special_tokens=_UpperCamelCase ) _UpperCAmelCase = tokenizer.decode(output_padded[0] , skip_special_tokens=_UpperCamelCase ) _UpperCAmelCase = [ '''Hello, my dog is a little bit of a dork.\nI\'m a little bit''', '''Today, I was in the middle of a conversation with a friend about the''', ] self.assertListEqual(_UpperCamelCase , _UpperCamelCase ) self.assertListEqual(_UpperCamelCase , [non_padded_sentence, padded_sentence] ) def UpperCamelCase( self ): _UpperCAmelCase = '''facebook/opt-350m''' _UpperCAmelCase = [ '''Today is a beautiful day and I want to''', '''In the city of San Francisco, the city''', '''Paris is the capital of France and the capital''', '''Computers and mobile phones have taken over the''', ] _UpperCAmelCase = [] _UpperCAmelCase = GPTaTokenizer.from_pretrained(_UpperCamelCase ) _UpperCAmelCase = TFOPTForCausalLM.from_pretrained(_UpperCamelCase ) for prompt in self.prompts: _UpperCAmelCase = tokenizer(_UpperCamelCase , return_tensors='''tf''' ).input_ids _UpperCAmelCase = model.generate(_UpperCamelCase , max_length=10 ) _UpperCAmelCase = tokenizer.batch_decode(_UpperCamelCase , skip_special_tokens=_UpperCamelCase ) predicted_outputs += generated_string self.assertListEqual(_UpperCamelCase , _UpperCamelCase )
32
UpperCAmelCase_ = { "A": ".-", "B": "-...", "C": "-.-.", "D": "-..", "E": ".", "F": "..-.", "G": "--.", "H": "....", "I": "..", "J": ".---", "K": "-.-", "L": ".-..", "M": "--", "N": "-.", "O": "---", "P": ".--.", "Q": "--.-", "R": ".-.", "S": "...", "T": "-", "U": "..-", "V": "...-", "W": ".--", "X": "-..-", "Y": "-.--", "Z": "--..", "1": ".----", "2": "..---", "3": "...--", "4": "....-", "5": ".....", "6": "-....", "7": "--...", "8": "---..", "9": "----.", "0": "-----", "&": ".-...", "@": ".--.-.", ":": "---...", ",": "--..--", ".": ".-.-.-", "'": ".----.", "\"": ".-..-.", "?": "..--..", "/": "-..-.", "=": "-...-", "+": ".-.-.", "-": "-....-", "(": "-.--.", ")": "-.--.-", "!": "-.-.--", " ": "/" } # Exclamation mark is not in ITU-R recommendation # fmt: on UpperCAmelCase_ = {value: key for key, value in MORSE_CODE_DICT.items()} def A__ ( SCREAMING_SNAKE_CASE_ : str ) -> str: """simple docstring""" return " ".join(MORSE_CODE_DICT[char] for char in message.upper() ) def A__ ( SCREAMING_SNAKE_CASE_ : str ) -> str: """simple docstring""" return "".join(REVERSE_DICT[char] for char in message.split() ) def A__ ( ) -> None: """simple docstring""" _UpperCAmelCase = '''Morse code here!''' print(SCREAMING_SNAKE_CASE_ ) _UpperCAmelCase = encrypt(SCREAMING_SNAKE_CASE_ ) print(SCREAMING_SNAKE_CASE_ ) _UpperCAmelCase = decrypt(SCREAMING_SNAKE_CASE_ ) print(SCREAMING_SNAKE_CASE_ ) if __name__ == "__main__": main()
32
1
import argparse import torch from transformers import MobileBertConfig, MobileBertForPreTraining, load_tf_weights_in_mobilebert from transformers.utils import logging logging.set_verbosity_info() def A__ ( SCREAMING_SNAKE_CASE_ : Union[str, Any] , SCREAMING_SNAKE_CASE_ : Dict , SCREAMING_SNAKE_CASE_ : List[str] ) -> int: """simple docstring""" _UpperCAmelCase = MobileBertConfig.from_json_file(SCREAMING_SNAKE_CASE_ ) print(F'''Building PyTorch model from configuration: {config}''' ) _UpperCAmelCase = MobileBertForPreTraining(SCREAMING_SNAKE_CASE_ ) # Load weights from tf checkpoint _UpperCAmelCase = load_tf_weights_in_mobilebert(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) # Save pytorch-model print(F'''Save PyTorch model to {pytorch_dump_path}''' ) torch.save(model.state_dict() , SCREAMING_SNAKE_CASE_ ) if __name__ == "__main__": UpperCAmelCase_ = argparse.ArgumentParser() # Required parameters parser.add_argument( "--tf_checkpoint_path", default=None, type=str, required=True, help="Path to the TensorFlow checkpoint path." ) parser.add_argument( "--mobilebert_config_file", default=None, type=str, required=True, help=( "The config json file corresponding to the pre-trained MobileBERT model. \n" "This specifies the model architecture." ), ) parser.add_argument( "--pytorch_dump_path", default=None, type=str, required=True, help="Path to the output PyTorch model." ) UpperCAmelCase_ = parser.parse_args() convert_tf_checkpoint_to_pytorch(args.tf_checkpoint_path, args.mobilebert_config_file, args.pytorch_dump_path)
32
import gc import unittest import numpy as np import torch from diffusers import DanceDiffusionPipeline, IPNDMScheduler, UNetaDModel from diffusers.utils import slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu, skip_mps from ..pipeline_params import UNCONDITIONAL_AUDIO_GENERATION_BATCH_PARAMS, UNCONDITIONAL_AUDIO_GENERATION_PARAMS from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() class __UpperCamelCase ( A__ , unittest.TestCase ): __A : Any = DanceDiffusionPipeline __A : Any = UNCONDITIONAL_AUDIO_GENERATION_PARAMS __A : Tuple = PipelineTesterMixin.required_optional_params - { """callback""", """latents""", """callback_steps""", """output_type""", """num_images_per_prompt""", } __A : Tuple = UNCONDITIONAL_AUDIO_GENERATION_BATCH_PARAMS __A : List[str] = False __A : str = False def UpperCamelCase( self ): torch.manual_seed(0 ) _UpperCAmelCase = UNetaDModel( block_out_channels=(32, 32, 64) , extra_in_channels=16 , sample_size=512 , sample_rate=16000 , in_channels=2 , out_channels=2 , flip_sin_to_cos=_UpperCamelCase , use_timestep_embedding=_UpperCamelCase , time_embedding_type='''fourier''' , mid_block_type='''UNetMidBlock1D''' , down_block_types=('''DownBlock1DNoSkip''', '''DownBlock1D''', '''AttnDownBlock1D''') , up_block_types=('''AttnUpBlock1D''', '''UpBlock1D''', '''UpBlock1DNoSkip''') , ) _UpperCAmelCase = IPNDMScheduler() _UpperCAmelCase = { '''unet''': unet, '''scheduler''': scheduler, } return components def UpperCamelCase( self , _UpperCamelCase , _UpperCamelCase=0 ): if str(_UpperCamelCase ).startswith('''mps''' ): _UpperCAmelCase = torch.manual_seed(_UpperCamelCase ) else: _UpperCAmelCase = torch.Generator(device=_UpperCamelCase ).manual_seed(_UpperCamelCase ) _UpperCAmelCase = { '''batch_size''': 1, '''generator''': generator, '''num_inference_steps''': 4, } return inputs def UpperCamelCase( self ): _UpperCAmelCase = '''cpu''' # ensure determinism for the device-dependent torch.Generator _UpperCAmelCase = self.get_dummy_components() _UpperCAmelCase = DanceDiffusionPipeline(**_UpperCamelCase ) _UpperCAmelCase = pipe.to(_UpperCamelCase ) pipe.set_progress_bar_config(disable=_UpperCamelCase ) _UpperCAmelCase = self.get_dummy_inputs(_UpperCamelCase ) _UpperCAmelCase = pipe(**_UpperCamelCase ) _UpperCAmelCase = output.audios _UpperCAmelCase = audio[0, -3:, -3:] assert audio.shape == (1, 2, components["unet"].sample_size) _UpperCAmelCase = np.array([-0.7265, 1.0000, -0.8388, 0.1175, 0.9498, -1.0000] ) assert np.abs(audio_slice.flatten() - expected_slice ).max() < 1e-2 @skip_mps def UpperCamelCase( self ): return super().test_save_load_local() @skip_mps def UpperCamelCase( self ): return super().test_dict_tuple_outputs_equivalent(expected_max_difference=3e-3 ) @skip_mps def UpperCamelCase( self ): return super().test_save_load_optional_components() @skip_mps def UpperCamelCase( self ): return super().test_attention_slicing_forward_pass() def UpperCamelCase( self ): super().test_inference_batch_single_identical(expected_max_diff=3e-3 ) @slow @require_torch_gpu class __UpperCamelCase ( unittest.TestCase ): def UpperCamelCase( self ): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def UpperCamelCase( self ): _UpperCAmelCase = torch_device _UpperCAmelCase = DanceDiffusionPipeline.from_pretrained('''harmonai/maestro-150k''' ) _UpperCAmelCase = pipe.to(_UpperCamelCase ) pipe.set_progress_bar_config(disable=_UpperCamelCase ) _UpperCAmelCase = torch.manual_seed(0 ) _UpperCAmelCase = pipe(generator=_UpperCamelCase , num_inference_steps=100 , audio_length_in_s=4.096 ) _UpperCAmelCase = output.audios _UpperCAmelCase = audio[0, -3:, -3:] assert audio.shape == (1, 2, pipe.unet.sample_size) _UpperCAmelCase = np.array([-0.0192, -0.0231, -0.0318, -0.0059, 0.0002, -0.0020] ) assert np.abs(audio_slice.flatten() - expected_slice ).max() < 1e-2 def UpperCamelCase( self ): _UpperCAmelCase = torch_device _UpperCAmelCase = DanceDiffusionPipeline.from_pretrained('''harmonai/maestro-150k''' , torch_dtype=torch.floataa ) _UpperCAmelCase = pipe.to(_UpperCamelCase ) pipe.set_progress_bar_config(disable=_UpperCamelCase ) _UpperCAmelCase = torch.manual_seed(0 ) _UpperCAmelCase = pipe(generator=_UpperCamelCase , num_inference_steps=100 , audio_length_in_s=4.096 ) _UpperCAmelCase = output.audios _UpperCAmelCase = audio[0, -3:, -3:] assert audio.shape == (1, 2, pipe.unet.sample_size) _UpperCAmelCase = np.array([-0.0367, -0.0488, -0.0771, -0.0525, -0.0444, -0.0341] ) assert np.abs(audio_slice.flatten() - expected_slice ).max() < 1e-2
32
1
import torch from torch import nn from transformers import CLIPPreTrainedModel, CLIPVisionModel from ...models.attention import BasicTransformerBlock from ...utils import logging UpperCAmelCase_ = logging.get_logger(__name__) # pylint: disable=invalid-name class __UpperCamelCase ( A__ ): def __init__( self , _UpperCamelCase , _UpperCamelCase=768 ): super().__init__(_UpperCamelCase ) _UpperCAmelCase = proj_size _UpperCAmelCase = CLIPVisionModel(_UpperCamelCase ) _UpperCAmelCase = PaintByExampleMapper(_UpperCamelCase ) _UpperCAmelCase = nn.LayerNorm(config.hidden_size ) _UpperCAmelCase = nn.Linear(config.hidden_size , self.proj_size ) # uncondition for scaling _UpperCAmelCase = nn.Parameter(torch.randn((1, 1, self.proj_size) ) ) def UpperCamelCase( self , _UpperCamelCase , _UpperCamelCase=False ): _UpperCAmelCase = self.model(pixel_values=_UpperCamelCase ) _UpperCAmelCase = clip_output.pooler_output _UpperCAmelCase = self.mapper(latent_states[:, None] ) _UpperCAmelCase = self.final_layer_norm(_UpperCamelCase ) _UpperCAmelCase = self.proj_out(_UpperCamelCase ) if return_uncond_vector: return latent_states, self.uncond_vector return latent_states class __UpperCamelCase ( nn.Module ): def __init__( self , _UpperCamelCase ): super().__init__() _UpperCAmelCase = (config.num_hidden_layers + 1) // 5 _UpperCAmelCase = config.hidden_size _UpperCAmelCase = 1 _UpperCAmelCase = nn.ModuleList( [ BasicTransformerBlock(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase , activation_fn='''gelu''' , attention_bias=_UpperCamelCase ) for _ in range(_UpperCamelCase ) ] ) def UpperCamelCase( self , _UpperCamelCase ): for block in self.blocks: _UpperCAmelCase = block(_UpperCamelCase ) return hidden_states
32
from collections import OrderedDict from ...utils import logging from .auto_factory import _BaseAutoModelClass, _LazyAutoMapping, auto_class_update from .configuration_auto import CONFIG_MAPPING_NAMES UpperCAmelCase_ = logging.get_logger(__name__) UpperCAmelCase_ = OrderedDict( [ # Base model mapping ("albert", "FlaxAlbertModel"), ("bart", "FlaxBartModel"), ("beit", "FlaxBeitModel"), ("bert", "FlaxBertModel"), ("big_bird", "FlaxBigBirdModel"), ("blenderbot", "FlaxBlenderbotModel"), ("blenderbot-small", "FlaxBlenderbotSmallModel"), ("clip", "FlaxCLIPModel"), ("distilbert", "FlaxDistilBertModel"), ("electra", "FlaxElectraModel"), ("gpt-sw3", "FlaxGPT2Model"), ("gpt2", "FlaxGPT2Model"), ("gpt_neo", "FlaxGPTNeoModel"), ("gptj", "FlaxGPTJModel"), ("longt5", "FlaxLongT5Model"), ("marian", "FlaxMarianModel"), ("mbart", "FlaxMBartModel"), ("mt5", "FlaxMT5Model"), ("opt", "FlaxOPTModel"), ("pegasus", "FlaxPegasusModel"), ("regnet", "FlaxRegNetModel"), ("resnet", "FlaxResNetModel"), ("roberta", "FlaxRobertaModel"), ("roberta-prelayernorm", "FlaxRobertaPreLayerNormModel"), ("roformer", "FlaxRoFormerModel"), ("t5", "FlaxT5Model"), ("vision-text-dual-encoder", "FlaxVisionTextDualEncoderModel"), ("vit", "FlaxViTModel"), ("wav2vec2", "FlaxWav2Vec2Model"), ("whisper", "FlaxWhisperModel"), ("xglm", "FlaxXGLMModel"), ("xlm-roberta", "FlaxXLMRobertaModel"), ] ) UpperCAmelCase_ = OrderedDict( [ # Model for pre-training mapping ("albert", "FlaxAlbertForPreTraining"), ("bart", "FlaxBartForConditionalGeneration"), ("bert", "FlaxBertForPreTraining"), ("big_bird", "FlaxBigBirdForPreTraining"), ("electra", "FlaxElectraForPreTraining"), ("longt5", "FlaxLongT5ForConditionalGeneration"), ("mbart", "FlaxMBartForConditionalGeneration"), ("mt5", "FlaxMT5ForConditionalGeneration"), ("roberta", "FlaxRobertaForMaskedLM"), ("roberta-prelayernorm", "FlaxRobertaPreLayerNormForMaskedLM"), ("roformer", "FlaxRoFormerForMaskedLM"), ("t5", "FlaxT5ForConditionalGeneration"), ("wav2vec2", "FlaxWav2Vec2ForPreTraining"), ("whisper", "FlaxWhisperForConditionalGeneration"), ("xlm-roberta", "FlaxXLMRobertaForMaskedLM"), ] ) UpperCAmelCase_ = OrderedDict( [ # Model for Masked LM mapping ("albert", "FlaxAlbertForMaskedLM"), ("bart", "FlaxBartForConditionalGeneration"), ("bert", "FlaxBertForMaskedLM"), ("big_bird", "FlaxBigBirdForMaskedLM"), ("distilbert", "FlaxDistilBertForMaskedLM"), ("electra", "FlaxElectraForMaskedLM"), ("mbart", "FlaxMBartForConditionalGeneration"), ("roberta", "FlaxRobertaForMaskedLM"), ("roberta-prelayernorm", "FlaxRobertaPreLayerNormForMaskedLM"), ("roformer", "FlaxRoFormerForMaskedLM"), ("xlm-roberta", "FlaxXLMRobertaForMaskedLM"), ] ) UpperCAmelCase_ = OrderedDict( [ # Model for Seq2Seq Causal LM mapping ("bart", "FlaxBartForConditionalGeneration"), ("blenderbot", "FlaxBlenderbotForConditionalGeneration"), ("blenderbot-small", "FlaxBlenderbotSmallForConditionalGeneration"), ("encoder-decoder", "FlaxEncoderDecoderModel"), ("longt5", "FlaxLongT5ForConditionalGeneration"), ("marian", "FlaxMarianMTModel"), ("mbart", "FlaxMBartForConditionalGeneration"), ("mt5", "FlaxMT5ForConditionalGeneration"), ("pegasus", "FlaxPegasusForConditionalGeneration"), ("t5", "FlaxT5ForConditionalGeneration"), ] ) UpperCAmelCase_ = OrderedDict( [ # Model for Image-classsification ("beit", "FlaxBeitForImageClassification"), ("regnet", "FlaxRegNetForImageClassification"), ("resnet", "FlaxResNetForImageClassification"), ("vit", "FlaxViTForImageClassification"), ] ) UpperCAmelCase_ = OrderedDict( [ ("vision-encoder-decoder", "FlaxVisionEncoderDecoderModel"), ] ) UpperCAmelCase_ = OrderedDict( [ # Model for Causal LM mapping ("bart", "FlaxBartForCausalLM"), ("bert", "FlaxBertForCausalLM"), ("big_bird", "FlaxBigBirdForCausalLM"), ("electra", "FlaxElectraForCausalLM"), ("gpt-sw3", "FlaxGPT2LMHeadModel"), ("gpt2", "FlaxGPT2LMHeadModel"), ("gpt_neo", "FlaxGPTNeoForCausalLM"), ("gptj", "FlaxGPTJForCausalLM"), ("opt", "FlaxOPTForCausalLM"), ("roberta", "FlaxRobertaForCausalLM"), ("roberta-prelayernorm", "FlaxRobertaPreLayerNormForCausalLM"), ("xglm", "FlaxXGLMForCausalLM"), ("xlm-roberta", "FlaxXLMRobertaForCausalLM"), ] ) UpperCAmelCase_ = OrderedDict( [ # Model for Sequence Classification mapping ("albert", "FlaxAlbertForSequenceClassification"), ("bart", "FlaxBartForSequenceClassification"), ("bert", "FlaxBertForSequenceClassification"), ("big_bird", "FlaxBigBirdForSequenceClassification"), ("distilbert", "FlaxDistilBertForSequenceClassification"), ("electra", "FlaxElectraForSequenceClassification"), ("mbart", "FlaxMBartForSequenceClassification"), ("roberta", "FlaxRobertaForSequenceClassification"), ("roberta-prelayernorm", "FlaxRobertaPreLayerNormForSequenceClassification"), ("roformer", "FlaxRoFormerForSequenceClassification"), ("xlm-roberta", "FlaxXLMRobertaForSequenceClassification"), ] ) UpperCAmelCase_ = OrderedDict( [ # Model for Question Answering mapping ("albert", "FlaxAlbertForQuestionAnswering"), ("bart", "FlaxBartForQuestionAnswering"), ("bert", "FlaxBertForQuestionAnswering"), ("big_bird", "FlaxBigBirdForQuestionAnswering"), ("distilbert", "FlaxDistilBertForQuestionAnswering"), ("electra", "FlaxElectraForQuestionAnswering"), ("mbart", "FlaxMBartForQuestionAnswering"), ("roberta", "FlaxRobertaForQuestionAnswering"), ("roberta-prelayernorm", "FlaxRobertaPreLayerNormForQuestionAnswering"), ("roformer", "FlaxRoFormerForQuestionAnswering"), ("xlm-roberta", "FlaxXLMRobertaForQuestionAnswering"), ] ) UpperCAmelCase_ = OrderedDict( [ # Model for Token Classification mapping ("albert", "FlaxAlbertForTokenClassification"), ("bert", "FlaxBertForTokenClassification"), ("big_bird", "FlaxBigBirdForTokenClassification"), ("distilbert", "FlaxDistilBertForTokenClassification"), ("electra", "FlaxElectraForTokenClassification"), ("roberta", "FlaxRobertaForTokenClassification"), ("roberta-prelayernorm", "FlaxRobertaPreLayerNormForTokenClassification"), ("roformer", "FlaxRoFormerForTokenClassification"), ("xlm-roberta", "FlaxXLMRobertaForTokenClassification"), ] ) UpperCAmelCase_ = OrderedDict( [ # Model for Multiple Choice mapping ("albert", "FlaxAlbertForMultipleChoice"), ("bert", "FlaxBertForMultipleChoice"), ("big_bird", "FlaxBigBirdForMultipleChoice"), ("distilbert", "FlaxDistilBertForMultipleChoice"), ("electra", "FlaxElectraForMultipleChoice"), ("roberta", "FlaxRobertaForMultipleChoice"), ("roberta-prelayernorm", "FlaxRobertaPreLayerNormForMultipleChoice"), ("roformer", "FlaxRoFormerForMultipleChoice"), ("xlm-roberta", "FlaxXLMRobertaForMultipleChoice"), ] ) UpperCAmelCase_ = OrderedDict( [ ("bert", "FlaxBertForNextSentencePrediction"), ] ) UpperCAmelCase_ = OrderedDict( [ ("speech-encoder-decoder", "FlaxSpeechEncoderDecoderModel"), ("whisper", "FlaxWhisperForConditionalGeneration"), ] ) UpperCAmelCase_ = OrderedDict( [ ("whisper", "FlaxWhisperForAudioClassification"), ] ) UpperCAmelCase_ = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_MAPPING_NAMES) UpperCAmelCase_ = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_PRETRAINING_MAPPING_NAMES) UpperCAmelCase_ = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_MASKED_LM_MAPPING_NAMES) UpperCAmelCase_ = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING_NAMES ) UpperCAmelCase_ = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING_NAMES ) UpperCAmelCase_ = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_VISION_2_SEQ_MAPPING_NAMES) UpperCAmelCase_ = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_CAUSAL_LM_MAPPING_NAMES) UpperCAmelCase_ = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING_NAMES ) UpperCAmelCase_ = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_QUESTION_ANSWERING_MAPPING_NAMES ) UpperCAmelCase_ = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING_NAMES ) UpperCAmelCase_ = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_MULTIPLE_CHOICE_MAPPING_NAMES ) UpperCAmelCase_ = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_NEXT_SENTENCE_PREDICTION_MAPPING_NAMES ) UpperCAmelCase_ = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_SPEECH_SEQ_2_SEQ_MAPPING_NAMES ) UpperCAmelCase_ = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_AUDIO_CLASSIFICATION_MAPPING_NAMES ) class __UpperCamelCase ( _BaseAutoModelClass ): __A : List[str] = FLAX_MODEL_MAPPING UpperCAmelCase_ = auto_class_update(FlaxAutoModel) class __UpperCamelCase ( _BaseAutoModelClass ): __A : Optional[Any] = FLAX_MODEL_FOR_PRETRAINING_MAPPING UpperCAmelCase_ = auto_class_update(FlaxAutoModelForPreTraining, head_doc="pretraining") class __UpperCamelCase ( _BaseAutoModelClass ): __A : List[Any] = FLAX_MODEL_FOR_CAUSAL_LM_MAPPING UpperCAmelCase_ = auto_class_update(FlaxAutoModelForCausalLM, head_doc="causal language modeling") class __UpperCamelCase ( _BaseAutoModelClass ): __A : List[str] = FLAX_MODEL_FOR_MASKED_LM_MAPPING UpperCAmelCase_ = auto_class_update(FlaxAutoModelForMaskedLM, head_doc="masked language modeling") class __UpperCamelCase ( _BaseAutoModelClass ): __A : Dict = FLAX_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING UpperCAmelCase_ = auto_class_update( FlaxAutoModelForSeqaSeqLM, head_doc="sequence-to-sequence language modeling", checkpoint_for_example="t5-base" ) class __UpperCamelCase ( _BaseAutoModelClass ): __A : List[str] = FLAX_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING UpperCAmelCase_ = auto_class_update( FlaxAutoModelForSequenceClassification, head_doc="sequence classification" ) class __UpperCamelCase ( _BaseAutoModelClass ): __A : Dict = FLAX_MODEL_FOR_QUESTION_ANSWERING_MAPPING UpperCAmelCase_ = auto_class_update(FlaxAutoModelForQuestionAnswering, head_doc="question answering") class __UpperCamelCase ( _BaseAutoModelClass ): __A : Union[str, Any] = FLAX_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING UpperCAmelCase_ = auto_class_update( FlaxAutoModelForTokenClassification, head_doc="token classification" ) class __UpperCamelCase ( _BaseAutoModelClass ): __A : Union[str, Any] = FLAX_MODEL_FOR_MULTIPLE_CHOICE_MAPPING UpperCAmelCase_ = auto_class_update(FlaxAutoModelForMultipleChoice, head_doc="multiple choice") class __UpperCamelCase ( _BaseAutoModelClass ): __A : Any = FLAX_MODEL_FOR_NEXT_SENTENCE_PREDICTION_MAPPING UpperCAmelCase_ = auto_class_update( FlaxAutoModelForNextSentencePrediction, head_doc="next sentence prediction" ) class __UpperCamelCase ( _BaseAutoModelClass ): __A : Dict = FLAX_MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING UpperCAmelCase_ = auto_class_update( FlaxAutoModelForImageClassification, head_doc="image classification" ) class __UpperCamelCase ( _BaseAutoModelClass ): __A : Optional[int] = FLAX_MODEL_FOR_VISION_2_SEQ_MAPPING UpperCAmelCase_ = auto_class_update(FlaxAutoModelForVisionaSeq, head_doc="vision-to-text modeling") class __UpperCamelCase ( _BaseAutoModelClass ): __A : str = FLAX_MODEL_FOR_SPEECH_SEQ_2_SEQ_MAPPING UpperCAmelCase_ = auto_class_update( FlaxAutoModelForSpeechSeqaSeq, head_doc="sequence-to-sequence speech-to-text modeling" )
32
1
import gc import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, EulerAncestralDiscreteScheduler, LMSDiscreteScheduler, PNDMScheduler, StableDiffusionPanoramaPipeline, UNetaDConditionModel, ) from diffusers.utils import slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu, skip_mps from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_IMAGE_PARAMS, TEXT_TO_IMAGE_PARAMS from ..test_pipelines_common import PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() @skip_mps class __UpperCamelCase ( A__ , A__ , unittest.TestCase ): __A : Union[str, Any] = StableDiffusionPanoramaPipeline __A : Tuple = TEXT_TO_IMAGE_PARAMS __A : str = TEXT_TO_IMAGE_BATCH_PARAMS __A : List[Any] = TEXT_TO_IMAGE_IMAGE_PARAMS __A : Tuple = TEXT_TO_IMAGE_IMAGE_PARAMS def UpperCamelCase( self ): torch.manual_seed(0 ) _UpperCAmelCase = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=1 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=('''DownBlock2D''', '''CrossAttnDownBlock2D''') , up_block_types=('''CrossAttnUpBlock2D''', '''UpBlock2D''') , cross_attention_dim=32 , ) _UpperCAmelCase = DDIMScheduler() torch.manual_seed(0 ) _UpperCAmelCase = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=['''DownEncoderBlock2D''', '''DownEncoderBlock2D'''] , up_block_types=['''UpDecoderBlock2D''', '''UpDecoderBlock2D'''] , latent_channels=4 , ) torch.manual_seed(0 ) _UpperCAmelCase = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , ) _UpperCAmelCase = CLIPTextModel(_UpperCamelCase ) _UpperCAmelCase = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' ) _UpperCAmelCase = { '''unet''': unet, '''scheduler''': scheduler, '''vae''': vae, '''text_encoder''': text_encoder, '''tokenizer''': tokenizer, '''safety_checker''': None, '''feature_extractor''': None, } return components def UpperCamelCase( self , _UpperCamelCase , _UpperCamelCase=0 ): _UpperCAmelCase = torch.manual_seed(_UpperCamelCase ) _UpperCAmelCase = { '''prompt''': '''a photo of the dolomites''', '''generator''': generator, # Setting height and width to None to prevent OOMs on CPU. '''height''': None, '''width''': None, '''num_inference_steps''': 1, '''guidance_scale''': 6.0, '''output_type''': '''numpy''', } return inputs def UpperCamelCase( self ): _UpperCAmelCase = '''cpu''' # ensure determinism for the device-dependent torch.Generator _UpperCAmelCase = self.get_dummy_components() _UpperCAmelCase = StableDiffusionPanoramaPipeline(**_UpperCamelCase ) _UpperCAmelCase = sd_pipe.to(_UpperCamelCase ) sd_pipe.set_progress_bar_config(disable=_UpperCamelCase ) _UpperCAmelCase = self.get_dummy_inputs(_UpperCamelCase ) _UpperCAmelCase = sd_pipe(**_UpperCamelCase ).images _UpperCAmelCase = image[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) _UpperCAmelCase = np.array([0.6186, 0.5374, 0.4915, 0.4135, 0.4114, 0.4563, 0.5128, 0.4977, 0.4757] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def UpperCamelCase( self ): super().test_inference_batch_consistent(batch_sizes=[1, 2] ) def UpperCamelCase( self ): super().test_inference_batch_single_identical(batch_size=2 , expected_max_diff=3.25e-3 ) def UpperCamelCase( self ): _UpperCAmelCase = '''cpu''' # ensure determinism for the device-dependent torch.Generator _UpperCAmelCase = self.get_dummy_components() _UpperCAmelCase = StableDiffusionPanoramaPipeline(**_UpperCamelCase ) _UpperCAmelCase = sd_pipe.to(_UpperCamelCase ) sd_pipe.set_progress_bar_config(disable=_UpperCamelCase ) _UpperCAmelCase = self.get_dummy_inputs(_UpperCamelCase ) _UpperCAmelCase = '''french fries''' _UpperCAmelCase = sd_pipe(**_UpperCamelCase , negative_prompt=_UpperCamelCase ) _UpperCAmelCase = output.images _UpperCAmelCase = image[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) _UpperCAmelCase = np.array([0.6187, 0.5375, 0.4915, 0.4136, 0.4114, 0.4563, 0.5128, 0.4976, 0.4757] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def UpperCamelCase( self ): _UpperCAmelCase = '''cpu''' # ensure determinism for the device-dependent torch.Generator _UpperCAmelCase = self.get_dummy_components() _UpperCAmelCase = StableDiffusionPanoramaPipeline(**_UpperCamelCase ) _UpperCAmelCase = sd_pipe.to(_UpperCamelCase ) sd_pipe.set_progress_bar_config(disable=_UpperCamelCase ) _UpperCAmelCase = self.get_dummy_inputs(_UpperCamelCase ) _UpperCAmelCase = sd_pipe(**_UpperCamelCase , view_batch_size=2 ) _UpperCAmelCase = output.images _UpperCAmelCase = image[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) _UpperCAmelCase = np.array([0.6187, 0.5375, 0.4915, 0.4136, 0.4114, 0.4563, 0.5128, 0.4976, 0.4757] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def UpperCamelCase( self ): _UpperCAmelCase = '''cpu''' # ensure determinism for the device-dependent torch.Generator _UpperCAmelCase = self.get_dummy_components() _UpperCAmelCase = EulerAncestralDiscreteScheduler( beta_start=0.00085 , beta_end=0.012 , beta_schedule='''scaled_linear''' ) _UpperCAmelCase = StableDiffusionPanoramaPipeline(**_UpperCamelCase ) _UpperCAmelCase = sd_pipe.to(_UpperCamelCase ) sd_pipe.set_progress_bar_config(disable=_UpperCamelCase ) _UpperCAmelCase = self.get_dummy_inputs(_UpperCamelCase ) _UpperCAmelCase = sd_pipe(**_UpperCamelCase ).images _UpperCAmelCase = image[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) _UpperCAmelCase = np.array([0.4024, 0.6510, 0.4901, 0.5378, 0.5813, 0.5622, 0.4795, 0.4467, 0.4952] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def UpperCamelCase( self ): _UpperCAmelCase = '''cpu''' # ensure determinism for the device-dependent torch.Generator _UpperCAmelCase = self.get_dummy_components() _UpperCAmelCase = PNDMScheduler( beta_start=0.00085 , beta_end=0.012 , beta_schedule='''scaled_linear''' , skip_prk_steps=_UpperCamelCase ) _UpperCAmelCase = StableDiffusionPanoramaPipeline(**_UpperCamelCase ) _UpperCAmelCase = sd_pipe.to(_UpperCamelCase ) sd_pipe.set_progress_bar_config(disable=_UpperCamelCase ) _UpperCAmelCase = self.get_dummy_inputs(_UpperCamelCase ) _UpperCAmelCase = sd_pipe(**_UpperCamelCase ).images _UpperCAmelCase = image[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) _UpperCAmelCase = np.array([0.6391, 0.6291, 0.4861, 0.5134, 0.5552, 0.4578, 0.5032, 0.5023, 0.4539] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 @slow @require_torch_gpu class __UpperCamelCase ( unittest.TestCase ): def UpperCamelCase( self ): super().tearDown() gc.collect() torch.cuda.empty_cache() def UpperCamelCase( self , _UpperCamelCase=0 ): _UpperCAmelCase = torch.manual_seed(_UpperCamelCase ) _UpperCAmelCase = { '''prompt''': '''a photo of the dolomites''', '''generator''': generator, '''num_inference_steps''': 3, '''guidance_scale''': 7.5, '''output_type''': '''numpy''', } return inputs def UpperCamelCase( self ): _UpperCAmelCase = '''stabilityai/stable-diffusion-2-base''' _UpperCAmelCase = DDIMScheduler.from_pretrained(_UpperCamelCase , subfolder='''scheduler''' ) _UpperCAmelCase = StableDiffusionPanoramaPipeline.from_pretrained(_UpperCamelCase , scheduler=_UpperCamelCase , safety_checker=_UpperCamelCase ) pipe.to(_UpperCamelCase ) pipe.set_progress_bar_config(disable=_UpperCamelCase ) pipe.enable_attention_slicing() _UpperCAmelCase = self.get_inputs() _UpperCAmelCase = pipe(**_UpperCamelCase ).images _UpperCAmelCase = image[0, -3:, -3:, -1].flatten() assert image.shape == (1, 512, 2048, 3) _UpperCAmelCase = np.array( [ 0.36968392, 0.27025372, 0.32446766, 0.28379387, 0.36363274, 0.30733347, 0.27100027, 0.27054125, 0.25536096, ] ) assert np.abs(expected_slice - image_slice ).max() < 1e-2 def UpperCamelCase( self ): _UpperCAmelCase = StableDiffusionPanoramaPipeline.from_pretrained( '''stabilityai/stable-diffusion-2-base''' , safety_checker=_UpperCamelCase ) _UpperCAmelCase = LMSDiscreteScheduler.from_config(pipe.scheduler.config ) pipe.to(_UpperCamelCase ) pipe.set_progress_bar_config(disable=_UpperCamelCase ) pipe.enable_attention_slicing() _UpperCAmelCase = self.get_inputs() _UpperCAmelCase = pipe(**_UpperCamelCase ).images _UpperCAmelCase = image[0, -3:, -3:, -1].flatten() assert image.shape == (1, 512, 2048, 3) _UpperCAmelCase = np.array( [ [ 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, ] ] ) assert np.abs(expected_slice - image_slice ).max() < 1e-3 def UpperCamelCase( self ): _UpperCAmelCase = 0 def callback_fn(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) -> None: _UpperCAmelCase = True nonlocal number_of_steps number_of_steps += 1 if step == 1: _UpperCAmelCase = latents.detach().cpu().numpy() assert latents.shape == (1, 4, 64, 256) _UpperCAmelCase = latents[0, -3:, -3:, -1] _UpperCAmelCase = np.array( [ 0.18681869, 0.33907816, 0.5361276, 0.14432865, -0.02856611, -0.73941123, 0.23397987, 0.47322682, -0.37823164, ] ) assert np.abs(latents_slice.flatten() - expected_slice ).max() < 5e-2 elif step == 2: _UpperCAmelCase = latents.detach().cpu().numpy() assert latents.shape == (1, 4, 64, 256) _UpperCAmelCase = latents[0, -3:, -3:, -1] _UpperCAmelCase = np.array( [ 0.18539645, 0.33987248, 0.5378559, 0.14437142, -0.02455261, -0.7338317, 0.23990755, 0.47356272, -0.3786505, ] ) assert np.abs(latents_slice.flatten() - expected_slice ).max() < 5e-2 _UpperCAmelCase = False _UpperCAmelCase = '''stabilityai/stable-diffusion-2-base''' _UpperCAmelCase = DDIMScheduler.from_pretrained(_UpperCamelCase , subfolder='''scheduler''' ) _UpperCAmelCase = StableDiffusionPanoramaPipeline.from_pretrained(_UpperCamelCase , scheduler=_UpperCamelCase , safety_checker=_UpperCamelCase ) _UpperCAmelCase = pipe.to(_UpperCamelCase ) pipe.set_progress_bar_config(disable=_UpperCamelCase ) pipe.enable_attention_slicing() _UpperCAmelCase = self.get_inputs() pipe(**_UpperCamelCase , callback=_UpperCamelCase , callback_steps=1 ) assert callback_fn.has_been_called assert number_of_steps == 3 def UpperCamelCase( self ): torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() torch.cuda.reset_peak_memory_stats() _UpperCAmelCase = '''stabilityai/stable-diffusion-2-base''' _UpperCAmelCase = DDIMScheduler.from_pretrained(_UpperCamelCase , subfolder='''scheduler''' ) _UpperCAmelCase = StableDiffusionPanoramaPipeline.from_pretrained(_UpperCamelCase , scheduler=_UpperCamelCase , safety_checker=_UpperCamelCase ) _UpperCAmelCase = pipe.to(_UpperCamelCase ) pipe.set_progress_bar_config(disable=_UpperCamelCase ) pipe.enable_attention_slicing(1 ) pipe.enable_sequential_cpu_offload() _UpperCAmelCase = self.get_inputs() _UpperCAmelCase = pipe(**_UpperCamelCase ) _UpperCAmelCase = torch.cuda.max_memory_allocated() # make sure that less than 5.2 GB is allocated assert mem_bytes < 5.5 * 10**9
32
import baseaa def A__ ( SCREAMING_SNAKE_CASE_ : str ) -> bytes: """simple docstring""" return baseaa.baaencode(string.encode('''utf-8''' ) ) def A__ ( SCREAMING_SNAKE_CASE_ : bytes ) -> str: """simple docstring""" return baseaa.baadecode(SCREAMING_SNAKE_CASE_ ).decode('''utf-8''' ) if __name__ == "__main__": UpperCAmelCase_ = "Hello World!" UpperCAmelCase_ = baseaa_encode(test) print(encoded) UpperCAmelCase_ = baseaa_decode(encoded) print(decoded)
32
1
import functools import logging import os import sys import threading from logging import ( CRITICAL, # NOQA DEBUG, # NOQA ERROR, # NOQA FATAL, # NOQA INFO, # NOQA NOTSET, # NOQA WARN, # NOQA WARNING, # NOQA ) from typing import Optional import huggingface_hub.utils as hf_hub_utils from tqdm import auto as tqdm_lib UpperCAmelCase_ = threading.Lock() UpperCAmelCase_ = None UpperCAmelCase_ = { "debug": logging.DEBUG, "info": logging.INFO, "warning": logging.WARNING, "error": logging.ERROR, "critical": logging.CRITICAL, } UpperCAmelCase_ = logging.WARNING UpperCAmelCase_ = True def A__ ( ) -> Tuple: """simple docstring""" _UpperCAmelCase = os.getenv('''TRANSFORMERS_VERBOSITY''' , SCREAMING_SNAKE_CASE_ ) if env_level_str: if env_level_str in log_levels: return log_levels[env_level_str] else: logging.getLogger().warning( F'''Unknown option TRANSFORMERS_VERBOSITY={env_level_str}, ''' F'''has to be one of: { ', '.join(log_levels.keys() ) }''' ) return _default_log_level def A__ ( ) -> str: """simple docstring""" return __name__.split('''.''' )[0] def A__ ( ) -> logging.Logger: """simple docstring""" return logging.getLogger(_get_library_name() ) def A__ ( ) -> None: """simple docstring""" global _default_handler with _lock: if _default_handler: # This library has already configured the library root logger. return _UpperCAmelCase = logging.StreamHandler() # Set sys.stderr as stream. _UpperCAmelCase = sys.stderr.flush # Apply our default configuration to the library root logger. _UpperCAmelCase = _get_library_root_logger() library_root_logger.addHandler(_default_handler ) library_root_logger.setLevel(_get_default_logging_level() ) _UpperCAmelCase = False def A__ ( ) -> None: """simple docstring""" global _default_handler with _lock: if not _default_handler: return _UpperCAmelCase = _get_library_root_logger() library_root_logger.removeHandler(_default_handler ) library_root_logger.setLevel(logging.NOTSET ) _UpperCAmelCase = None def A__ ( ) -> List[Any]: """simple docstring""" return log_levels def A__ ( SCREAMING_SNAKE_CASE_ : Optional[str] = None ) -> logging.Logger: """simple docstring""" if name is None: _UpperCAmelCase = _get_library_name() _configure_library_root_logger() return logging.getLogger(SCREAMING_SNAKE_CASE_ ) def A__ ( ) -> int: """simple docstring""" _configure_library_root_logger() return _get_library_root_logger().getEffectiveLevel() def A__ ( SCREAMING_SNAKE_CASE_ : int ) -> None: """simple docstring""" _configure_library_root_logger() _get_library_root_logger().setLevel(SCREAMING_SNAKE_CASE_ ) def A__ ( ) -> Optional[Any]: """simple docstring""" return set_verbosity(SCREAMING_SNAKE_CASE_ ) def A__ ( ) -> int: """simple docstring""" return set_verbosity(SCREAMING_SNAKE_CASE_ ) def A__ ( ) -> List[str]: """simple docstring""" return set_verbosity(SCREAMING_SNAKE_CASE_ ) def A__ ( ) -> Optional[Any]: """simple docstring""" return set_verbosity(SCREAMING_SNAKE_CASE_ ) def A__ ( ) -> None: """simple docstring""" _configure_library_root_logger() assert _default_handler is not None _get_library_root_logger().removeHandler(_default_handler ) def A__ ( ) -> None: """simple docstring""" _configure_library_root_logger() assert _default_handler is not None _get_library_root_logger().addHandler(_default_handler ) def A__ ( SCREAMING_SNAKE_CASE_ : logging.Handler ) -> None: """simple docstring""" _configure_library_root_logger() assert handler is not None _get_library_root_logger().addHandler(SCREAMING_SNAKE_CASE_ ) def A__ ( SCREAMING_SNAKE_CASE_ : logging.Handler ) -> None: """simple docstring""" _configure_library_root_logger() assert handler is not None and handler not in _get_library_root_logger().handlers _get_library_root_logger().removeHandler(SCREAMING_SNAKE_CASE_ ) def A__ ( ) -> None: """simple docstring""" _configure_library_root_logger() _UpperCAmelCase = False def A__ ( ) -> None: """simple docstring""" _configure_library_root_logger() _UpperCAmelCase = True def A__ ( ) -> None: """simple docstring""" _UpperCAmelCase = _get_library_root_logger().handlers for handler in handlers: _UpperCAmelCase = logging.Formatter('''[%(levelname)s|%(filename)s:%(lineno)s] %(asctime)s >> %(message)s''' ) handler.setFormatter(SCREAMING_SNAKE_CASE_ ) def A__ ( ) -> None: """simple docstring""" _UpperCAmelCase = _get_library_root_logger().handlers for handler in handlers: handler.setFormatter(SCREAMING_SNAKE_CASE_ ) def A__ ( self : Optional[int] , *SCREAMING_SNAKE_CASE_ : Any , **SCREAMING_SNAKE_CASE_ : Union[str, Any] ) -> str: """simple docstring""" _UpperCAmelCase = os.getenv('''TRANSFORMERS_NO_ADVISORY_WARNINGS''' , SCREAMING_SNAKE_CASE_ ) if no_advisory_warnings: return self.warning(*SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) UpperCAmelCase_ = warning_advice @functools.lru_cache(SCREAMING_SNAKE_CASE_ ) def A__ ( self : Dict , *SCREAMING_SNAKE_CASE_ : List[Any] , **SCREAMING_SNAKE_CASE_ : Dict ) -> Optional[int]: """simple docstring""" self.warning(*SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) UpperCAmelCase_ = warning_once class __UpperCamelCase : def __init__( self , *_UpperCamelCase , **_UpperCamelCase ): # pylint: disable=unused-argument _UpperCAmelCase = args[0] if args else None def __iter__( self ): return iter(self._iterator ) def __getattr__( self , _UpperCamelCase ): def empty_fn(*_UpperCamelCase , **_UpperCamelCase ): # pylint: disable=unused-argument return return empty_fn def __enter__( self ): return self def __exit__( self , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ): return class __UpperCamelCase : def __call__( self , *_UpperCamelCase , **_UpperCamelCase ): if _tqdm_active: return tqdm_lib.tqdm(*_UpperCamelCase , **_UpperCamelCase ) else: return EmptyTqdm(*_UpperCamelCase , **_UpperCamelCase ) def UpperCamelCase( self , *_UpperCamelCase , **_UpperCamelCase ): _UpperCAmelCase = None if _tqdm_active: return tqdm_lib.tqdm.set_lock(*_UpperCamelCase , **_UpperCamelCase ) def UpperCamelCase( self ): if _tqdm_active: return tqdm_lib.tqdm.get_lock() UpperCAmelCase_ = _tqdm_cls() def A__ ( ) -> bool: """simple docstring""" global _tqdm_active return bool(_tqdm_active ) def A__ ( ) -> str: """simple docstring""" global _tqdm_active _UpperCAmelCase = True hf_hub_utils.enable_progress_bars() def A__ ( ) -> List[Any]: """simple docstring""" global _tqdm_active _UpperCAmelCase = False hf_hub_utils.disable_progress_bars()
32
from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD, ChannelDimension, ImageInput, PILImageResampling, is_batched, to_numpy_array, valid_images, ) from ...utils import TensorType, logging UpperCAmelCase_ = logging.get_logger(__name__) class __UpperCamelCase ( A__ ): __A : int = ["""pixel_values"""] def __init__( self , _UpperCamelCase = True , _UpperCamelCase = None , _UpperCamelCase = PILImageResampling.BICUBIC , _UpperCamelCase = True , _UpperCamelCase = True , _UpperCamelCase = 1 / 255 , _UpperCamelCase = None , _UpperCamelCase = True , _UpperCamelCase = None , _UpperCamelCase = None , **_UpperCamelCase , ): super().__init__(**_UpperCamelCase ) _UpperCAmelCase = size if size is not None else {'''height''': 224, '''width''': 224} _UpperCAmelCase = get_size_dict(_UpperCamelCase ) _UpperCAmelCase = crop_size if crop_size is not None else {'''height''': 224, '''width''': 224} _UpperCAmelCase = get_size_dict(_UpperCamelCase , default_to_square=_UpperCamelCase , param_name='''crop_size''' ) _UpperCAmelCase = do_resize _UpperCAmelCase = do_rescale _UpperCAmelCase = do_normalize _UpperCAmelCase = do_center_crop _UpperCAmelCase = crop_size _UpperCAmelCase = size _UpperCAmelCase = resample _UpperCAmelCase = rescale_factor _UpperCAmelCase = image_mean if image_mean is not None else IMAGENET_DEFAULT_MEAN _UpperCAmelCase = image_std if image_std is not None else IMAGENET_DEFAULT_STD def UpperCamelCase( self , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase = PILImageResampling.BILINEAR , _UpperCamelCase = None , **_UpperCamelCase , ): _UpperCAmelCase = get_size_dict(_UpperCamelCase ) if "shortest_edge" in size: _UpperCAmelCase = get_resize_output_image_size(_UpperCamelCase , size=size['''shortest_edge'''] , default_to_square=_UpperCamelCase ) # size = get_resize_output_image_size(image, size["shortest_edge"], size["longest_edge"]) elif "height" in size and "width" in size: _UpperCAmelCase = (size['''height'''], size['''width''']) else: raise ValueError(f'''Size must contain \'height\' and \'width\' keys or \'shortest_edge\' key. Got {size.keys()}''' ) return resize(_UpperCamelCase , size=_UpperCamelCase , resample=_UpperCamelCase , data_format=_UpperCamelCase , **_UpperCamelCase ) def UpperCamelCase( self , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase = None , **_UpperCamelCase , ): _UpperCAmelCase = get_size_dict(_UpperCamelCase ) if "height" not in size or "width" not in size: raise ValueError(f'''The `size` parameter must contain the keys (height, width). Got {size.keys()}''' ) return center_crop(_UpperCamelCase , size=(size['''height'''], size['''width''']) , data_format=_UpperCamelCase , **_UpperCamelCase ) def UpperCamelCase( self , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase = None , **_UpperCamelCase ): return rescale(_UpperCamelCase , scale=_UpperCamelCase , data_format=_UpperCamelCase , **_UpperCamelCase ) def UpperCamelCase( self , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase = None , **_UpperCamelCase , ): return normalize(_UpperCamelCase , mean=_UpperCamelCase , std=_UpperCamelCase , data_format=_UpperCamelCase , **_UpperCamelCase ) def UpperCamelCase( self , _UpperCamelCase , _UpperCamelCase = None , _UpperCamelCase = None , _UpperCamelCase = None , _UpperCamelCase = None , _UpperCamelCase = None , _UpperCamelCase = None , _UpperCamelCase = None , _UpperCamelCase = None , _UpperCamelCase = None , _UpperCamelCase = None , _UpperCamelCase = None , _UpperCamelCase = ChannelDimension.FIRST , **_UpperCamelCase , ): _UpperCAmelCase = do_resize if do_resize is not None else self.do_resize _UpperCAmelCase = do_rescale if do_rescale is not None else self.do_rescale _UpperCAmelCase = do_normalize if do_normalize is not None else self.do_normalize _UpperCAmelCase = do_center_crop if do_center_crop is not None else self.do_center_crop _UpperCAmelCase = crop_size if crop_size is not None else self.crop_size _UpperCAmelCase = get_size_dict(_UpperCamelCase , param_name='''crop_size''' , default_to_square=_UpperCamelCase ) _UpperCAmelCase = resample if resample is not None else self.resample _UpperCAmelCase = rescale_factor if rescale_factor is not None else self.rescale_factor _UpperCAmelCase = image_mean if image_mean is not None else self.image_mean _UpperCAmelCase = image_std if image_std is not None else self.image_std _UpperCAmelCase = size if size is not None else self.size _UpperCAmelCase = get_size_dict(_UpperCamelCase ) if not is_batched(_UpperCamelCase ): _UpperCAmelCase = [images] if not valid_images(_UpperCamelCase ): raise ValueError( '''Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ''' '''torch.Tensor, tf.Tensor or jax.ndarray.''' ) if do_resize and size is None: raise ValueError('''Size must be specified if do_resize is True.''' ) if do_center_crop and crop_size is None: raise ValueError('''Crop size must be specified if do_center_crop is True.''' ) if do_rescale and rescale_factor is None: raise ValueError('''Rescale factor must be specified if do_rescale is True.''' ) # All transformations expect numpy arrays. _UpperCAmelCase = [to_numpy_array(_UpperCamelCase ) for image in images] if do_resize: _UpperCAmelCase = [self.resize(image=_UpperCamelCase , size=_UpperCamelCase , resample=_UpperCamelCase ) for image in images] if do_center_crop: _UpperCAmelCase = [self.center_crop(image=_UpperCamelCase , size=_UpperCamelCase ) for image in images] if do_rescale: _UpperCAmelCase = [self.rescale(image=_UpperCamelCase , scale=_UpperCamelCase ) for image in images] if do_normalize: _UpperCAmelCase = [self.normalize(image=_UpperCamelCase , mean=_UpperCamelCase , std=_UpperCamelCase ) for image in images] _UpperCAmelCase = [to_channel_dimension_format(_UpperCamelCase , _UpperCamelCase ) for image in images] _UpperCAmelCase = {'''pixel_values''': images} return BatchFeature(data=_UpperCamelCase , tensor_type=_UpperCamelCase )
32
1
from typing import Union from ..utils import add_end_docstrings, is_torch_available, is_vision_available, logging from .base import PIPELINE_INIT_ARGS, Pipeline if is_vision_available(): from PIL import Image from ..image_utils import load_image if is_torch_available(): from ..models.auto.modeling_auto import MODEL_FOR_VISUAL_QUESTION_ANSWERING_MAPPING UpperCAmelCase_ = logging.get_logger(__name__) @add_end_docstrings(A__ ) class __UpperCamelCase ( A__ ): def __init__( self , *_UpperCamelCase , **_UpperCamelCase ): super().__init__(*_UpperCamelCase , **_UpperCamelCase ) self.check_model_type(_UpperCamelCase ) def UpperCamelCase( self , _UpperCamelCase=None , _UpperCamelCase=None , _UpperCamelCase=None , **_UpperCamelCase ): _UpperCAmelCase , _UpperCAmelCase = {}, {} if padding is not None: _UpperCAmelCase = padding if truncation is not None: _UpperCAmelCase = truncation if top_k is not None: _UpperCAmelCase = top_k return preprocess_params, {}, postprocess_params def __call__( self , _UpperCamelCase , _UpperCamelCase = None , **_UpperCamelCase ): if isinstance(_UpperCamelCase , (Image.Image, str) ) and isinstance(_UpperCamelCase , _UpperCamelCase ): _UpperCAmelCase = {'''image''': image, '''question''': question} else: _UpperCAmelCase = image _UpperCAmelCase = super().__call__(_UpperCamelCase , **_UpperCamelCase ) return results def UpperCamelCase( self , _UpperCamelCase , _UpperCamelCase=False , _UpperCamelCase=False ): _UpperCAmelCase = load_image(inputs['''image'''] ) _UpperCAmelCase = self.tokenizer( inputs['''question'''] , return_tensors=self.framework , padding=_UpperCamelCase , truncation=_UpperCamelCase ) _UpperCAmelCase = self.image_processor(images=_UpperCamelCase , return_tensors=self.framework ) model_inputs.update(_UpperCamelCase ) return model_inputs def UpperCamelCase( self , _UpperCamelCase ): _UpperCAmelCase = self.model(**_UpperCamelCase ) return model_outputs def UpperCamelCase( self , _UpperCamelCase , _UpperCamelCase=5 ): if top_k > self.model.config.num_labels: _UpperCAmelCase = self.model.config.num_labels if self.framework == "pt": _UpperCAmelCase = model_outputs.logits.sigmoid()[0] _UpperCAmelCase , _UpperCAmelCase = probs.topk(_UpperCamelCase ) else: raise ValueError(f'''Unsupported framework: {self.framework}''' ) _UpperCAmelCase = scores.tolist() _UpperCAmelCase = ids.tolist() return [{"score": score, "answer": self.model.config.idalabel[_id]} for score, _id in zip(_UpperCamelCase , _UpperCamelCase )]
32
from ..utils import DummyObject, requires_backends class __UpperCamelCase ( metaclass=A__ ): __A : str = ["""torch""", """scipy"""] def __init__( self , *_UpperCamelCase , **_UpperCamelCase ): requires_backends(self , ['''torch''', '''scipy'''] ) @classmethod def UpperCamelCase( cls , *_UpperCamelCase , **_UpperCamelCase ): requires_backends(cls , ['''torch''', '''scipy'''] ) @classmethod def UpperCamelCase( cls , *_UpperCamelCase , **_UpperCamelCase ): requires_backends(cls , ['''torch''', '''scipy'''] )
32
1
import warnings from pathlib import Path from typing import List, Tuple, Union import fire from torch import nn from transformers import AutoModelForSeqaSeqLM, AutoTokenizer, PreTrainedModel from transformers.utils import logging UpperCAmelCase_ = logging.get_logger(__name__) def A__ ( SCREAMING_SNAKE_CASE_ : nn.ModuleList , SCREAMING_SNAKE_CASE_ : nn.ModuleList , SCREAMING_SNAKE_CASE_ : List[int] ) -> None: """simple docstring""" _UpperCAmelCase = nn.ModuleList([src_layers[i] for i in layers_to_copy] ) assert len(SCREAMING_SNAKE_CASE_ ) == len(SCREAMING_SNAKE_CASE_ ), F'''{len(SCREAMING_SNAKE_CASE_ )} != {len(SCREAMING_SNAKE_CASE_ )}''' dest_layers.load_state_dict(layers_to_copy.state_dict() ) UpperCAmelCase_ = { # maps num layers in teacher -> num_layers in student -> which teacher layers to copy. # 12: bart, 16: pegasus, 6: marian/Helsinki-NLP 12: { 1: [0], # This says that if the teacher has 12 layers and the student has 1, copy layer 0 of the teacher 2: [0, 6], 3: [0, 6, 11], 4: [0, 4, 8, 11], 6: [0, 2, 4, 7, 9, 11], 9: [0, 1, 2, 4, 5, 7, 9, 10, 11], 12: list(range(12)), }, 16: { # maps num layers in student -> which teacher layers to copy 1: [0], 2: [0, 15], 3: [0, 8, 15], 4: [0, 5, 10, 15], 6: [0, 3, 6, 9, 12, 15], 8: [0, 2, 4, 6, 8, 10, 12, 15], 9: [0, 1, 3, 5, 7, 9, 11, 13, 15], 12: [0, 1, 2, 3, 4, 5, 6, 7, 9, 11, 13, 15], 16: list(range(16)), }, 6: {1: [0], 2: [0, 5], 3: [0, 2, 5], 4: [0, 1, 3, 5], 6: list(range(6))}, } UpperCAmelCase_ = { # maps num layers in student -> which teacher layers to copy. 6: {1: [5], 2: [3, 5], 3: [1, 4, 5], 4: [1, 2, 4, 5]}, 12: {1: [11], 2: [5, 11], 3: [3, 7, 11], 6: [1, 3, 5, 8, 10, 11]}, 16: {1: [15], 4: [4, 9, 12, 15], 8: [1, 3, 5, 7, 9, 11, 13, 15]}, } def A__ ( SCREAMING_SNAKE_CASE_ : Optional[Any] , SCREAMING_SNAKE_CASE_ : Any ) -> str: """simple docstring""" try: _UpperCAmelCase = LAYERS_TO_COPY[n_teacher][n_student] return val except KeyError: if n_student != n_teacher: warnings.warn( F'''no hardcoded layers to copy for teacher {n_teacher} -> student {n_student}, defaulting to first''' F''' {n_student}''' ) return list(range(SCREAMING_SNAKE_CASE_ ) ) def A__ ( SCREAMING_SNAKE_CASE_ : List[Any] , SCREAMING_SNAKE_CASE_ : Tuple ) -> List[int]: """simple docstring""" if n_student > n_teacher: raise ValueError(F'''Cannot perform intermediate supervision for student {n_student} > teacher {n_teacher}''' ) elif n_teacher == n_student: return list(range(SCREAMING_SNAKE_CASE_ ) ) elif n_student == 1: return [n_teacher - 1] else: return LAYERS_TO_SUPERVISE[n_teacher][n_student] def A__ ( SCREAMING_SNAKE_CASE_ : Union[str, PreTrainedModel] , SCREAMING_SNAKE_CASE_ : Union[str, Path] = "student" , SCREAMING_SNAKE_CASE_ : Union[int, None] = None , SCREAMING_SNAKE_CASE_ : Union[int, None] = None , SCREAMING_SNAKE_CASE_ : List[Any]=False , SCREAMING_SNAKE_CASE_ : Dict=None , SCREAMING_SNAKE_CASE_ : Union[str, Any]=None , **SCREAMING_SNAKE_CASE_ : int , ) -> Tuple[PreTrainedModel, List[int], List[int]]: """simple docstring""" _UpperCAmelCase = '''encoder_layers and decoder_layers cannot be both None-- you would just have an identical teacher.''' assert (e is not None) or (d is not None), _msg if isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): AutoTokenizer.from_pretrained(SCREAMING_SNAKE_CASE_ ).save_pretrained(SCREAMING_SNAKE_CASE_ ) # purely for convenience _UpperCAmelCase = AutoModelForSeqaSeqLM.from_pretrained(SCREAMING_SNAKE_CASE_ ).eval() else: assert isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ), F'''teacher must be a model or string got type {type(SCREAMING_SNAKE_CASE_ )}''' _UpperCAmelCase = teacher.config.to_diff_dict() try: _UpperCAmelCase , _UpperCAmelCase = teacher.config.encoder_layers, teacher.config.decoder_layers if e is None: _UpperCAmelCase = teacher_e if d is None: _UpperCAmelCase = teacher_d init_kwargs.update({'''encoder_layers''': e, '''decoder_layers''': d} ) except AttributeError: # T5 if hasattr(teacher.config , '''num_encoder_layers''' ): _UpperCAmelCase , _UpperCAmelCase = teacher.config.num_encoder_layers, teacher.config.num_decoder_layers else: _UpperCAmelCase , _UpperCAmelCase = teacher.config.num_layers, teacher.config.num_decoder_layers if e is None: _UpperCAmelCase = teacher_e if d is None: _UpperCAmelCase = teacher_d if hasattr(teacher.config , '''num_encoder_layers''' ): init_kwargs.update({'''num_encoder_layers''': e, '''num_decoder_layers''': d} ) else: init_kwargs.update({'''num_layers''': e, '''num_decoder_layers''': d} ) # Kwargs to instantiate student: teacher kwargs with updated layer numbers + **extra_config_kwargs init_kwargs.update(SCREAMING_SNAKE_CASE_ ) # Copy weights _UpperCAmelCase = teacher.config_class(**SCREAMING_SNAKE_CASE_ ) _UpperCAmelCase = AutoModelForSeqaSeqLM.from_config(SCREAMING_SNAKE_CASE_ ) # Start by copying the full teacher state dict this will copy the first N teacher layers to the student. _UpperCAmelCase = student.load_state_dict(teacher.state_dict() , strict=SCREAMING_SNAKE_CASE_ ) assert info.missing_keys == [], info.missing_keys # every student key should have a teacher keys. if copy_first_teacher_layers: # Our copying is done. We just log and save _UpperCAmelCase , _UpperCAmelCase = list(range(SCREAMING_SNAKE_CASE_ ) ), list(range(SCREAMING_SNAKE_CASE_ ) ) logger.info( F'''Copied encoder layers {e_layers_to_copy} and decoder layers {d_layers_to_copy}. Saving them to''' F''' {save_path}''' ) student.save_pretrained(SCREAMING_SNAKE_CASE_ ) return student, e_layers_to_copy, d_layers_to_copy # Decide which layers of the teacher to copy. Not exactly alternating -- we try to keep first and last layer. if e_layers_to_copy is None: _UpperCAmelCase = pick_layers_to_copy(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) if d_layers_to_copy is None: _UpperCAmelCase = pick_layers_to_copy(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) try: if hasattr( SCREAMING_SNAKE_CASE_ , '''prophetnet''' ): # For ProphetNet, student.model.encoder.layers is called student.prophetnet.encoder.layers copy_layers(teacher.prophetnet.encoder.layers , student.prophetnet.encoder.layers , SCREAMING_SNAKE_CASE_ ) copy_layers(teacher.prophetnet.decoder.layers , student.prophetnet.decoder.layers , SCREAMING_SNAKE_CASE_ ) else: copy_layers(teacher.model.encoder.layers , student.model.encoder.layers , SCREAMING_SNAKE_CASE_ ) copy_layers(teacher.model.decoder.layers , student.model.decoder.layers , SCREAMING_SNAKE_CASE_ ) except AttributeError: # For t5, student.model.encoder.layers is called student.encoder.block copy_layers(teacher.encoder.block , student.encoder.block , SCREAMING_SNAKE_CASE_ ) copy_layers(teacher.decoder.block , student.decoder.block , SCREAMING_SNAKE_CASE_ ) logger.info( F'''Copied encoder layers {e_layers_to_copy} and decoder layers {d_layers_to_copy}. Saving them to {save_path}''' ) _UpperCAmelCase = { '''teacher_type''': teacher.config.model_type, '''copied_encoder_layers''': e_layers_to_copy, '''copied_decoder_layers''': d_layers_to_copy, } student.save_pretrained(SCREAMING_SNAKE_CASE_ ) # Save information about copying for easier reproducibility return student, e_layers_to_copy, d_layers_to_copy if __name__ == "__main__": fire.Fire(create_student_by_copying_alternating_layers)
32
def A__ ( SCREAMING_SNAKE_CASE_ : int = 2_00_00_00 ) -> int: """simple docstring""" _UpperCAmelCase = [0 for i in range(n + 1 )] _UpperCAmelCase = 1 _UpperCAmelCase = 1 for i in range(2 , int(n**0.5 ) + 1 ): if primality_list[i] == 0: for j in range(i * i , n + 1 , SCREAMING_SNAKE_CASE_ ): _UpperCAmelCase = 1 _UpperCAmelCase = 0 for i in range(SCREAMING_SNAKE_CASE_ ): if primality_list[i] == 0: sum_of_primes += i return sum_of_primes if __name__ == "__main__": print(f'''{solution() = }''')
32
1
from itertools import product from cva import COLOR_BGR2GRAY, cvtColor, imread, imshow, waitKey from numpy import dot, exp, mgrid, pi, ravel, square, uinta, zeros def A__ ( SCREAMING_SNAKE_CASE_ : Any , SCREAMING_SNAKE_CASE_ : int ) -> Any: """simple docstring""" _UpperCAmelCase = k_size // 2 _UpperCAmelCase , _UpperCAmelCase = mgrid[0 - center : k_size - center, 0 - center : k_size - center] _UpperCAmelCase = 1 / (2 * pi * sigma) * exp(-(square(SCREAMING_SNAKE_CASE_ ) + square(SCREAMING_SNAKE_CASE_ )) / (2 * square(SCREAMING_SNAKE_CASE_ )) ) return g def A__ ( SCREAMING_SNAKE_CASE_ : List[str] , SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : Optional[Any] ) -> str: """simple docstring""" _UpperCAmelCase , _UpperCAmelCase = image.shape[0], image.shape[1] # dst image height and width _UpperCAmelCase = height - k_size + 1 _UpperCAmelCase = width - k_size + 1 # im2col, turn the k_size*k_size pixels into a row and np.vstack all rows _UpperCAmelCase = zeros((dst_height * dst_width, k_size * k_size) ) _UpperCAmelCase = 0 for i, j in product(range(SCREAMING_SNAKE_CASE_ ) , range(SCREAMING_SNAKE_CASE_ ) ): _UpperCAmelCase = ravel(image[i : i + k_size, j : j + k_size] ) _UpperCAmelCase = window row += 1 # turn the kernel into shape(k*k, 1) _UpperCAmelCase = gen_gaussian_kernel(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) _UpperCAmelCase = ravel(SCREAMING_SNAKE_CASE_ ) # reshape and get the dst image _UpperCAmelCase = dot(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ).reshape(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ).astype(SCREAMING_SNAKE_CASE_ ) return dst if __name__ == "__main__": # read original image UpperCAmelCase_ = imread(r"../image_data/lena.jpg") # turn image in gray scale value UpperCAmelCase_ = cvtColor(img, COLOR_BGR2GRAY) # get values with two different mask size UpperCAmelCase_ = gaussian_filter(gray, 3, sigma=1) UpperCAmelCase_ = gaussian_filter(gray, 5, sigma=0.8) # show result images imshow("gaussian filter with 3x3 mask", gaussianaxa) imshow("gaussian filter with 5x5 mask", gaussianaxa) waitKey()
32
import warnings from ...utils import logging from .image_processing_glpn import GLPNImageProcessor UpperCAmelCase_ = logging.get_logger(__name__) class __UpperCamelCase ( A__ ): def __init__( self , *_UpperCamelCase , **_UpperCamelCase ): warnings.warn( '''The class GLPNFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please''' ''' use GLPNImageProcessor instead.''' , _UpperCamelCase , ) super().__init__(*_UpperCamelCase , **_UpperCamelCase )
32
1
import warnings from ...utils import logging from .image_processing_layoutlmva import LayoutLMvaImageProcessor UpperCAmelCase_ = logging.get_logger(__name__) class __UpperCamelCase ( A__ ): def __init__( self , *_UpperCamelCase , **_UpperCamelCase ): warnings.warn( '''The class LayoutLMv2FeatureExtractor is deprecated and will be removed in version 5 of Transformers.''' ''' Please use LayoutLMv2ImageProcessor instead.''' , _UpperCamelCase , ) super().__init__(*_UpperCamelCase , **_UpperCamelCase )
32
from typing import List, Optional, Union from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType class __UpperCamelCase ( A__ ): __A : Dict = ["""image_processor""", """tokenizer"""] __A : List[str] = """BridgeTowerImageProcessor""" __A : str = ("""RobertaTokenizer""", """RobertaTokenizerFast""") def __init__( self , _UpperCamelCase , _UpperCamelCase ): super().__init__(_UpperCamelCase , _UpperCamelCase ) def __call__( self , _UpperCamelCase , _UpperCamelCase = None , _UpperCamelCase = True , _UpperCamelCase = False , _UpperCamelCase = None , _UpperCamelCase = None , _UpperCamelCase = 0 , _UpperCamelCase = None , _UpperCamelCase = None , _UpperCamelCase = None , _UpperCamelCase = False , _UpperCamelCase = False , _UpperCamelCase = False , _UpperCamelCase = False , _UpperCamelCase = True , _UpperCamelCase = None , **_UpperCamelCase , ): _UpperCAmelCase = self.tokenizer( text=_UpperCamelCase , add_special_tokens=_UpperCamelCase , padding=_UpperCamelCase , truncation=_UpperCamelCase , max_length=_UpperCamelCase , stride=_UpperCamelCase , pad_to_multiple_of=_UpperCamelCase , return_token_type_ids=_UpperCamelCase , return_attention_mask=_UpperCamelCase , return_overflowing_tokens=_UpperCamelCase , return_special_tokens_mask=_UpperCamelCase , return_offsets_mapping=_UpperCamelCase , return_length=_UpperCamelCase , verbose=_UpperCamelCase , return_tensors=_UpperCamelCase , **_UpperCamelCase , ) # add pixel_values + pixel_mask _UpperCAmelCase = self.image_processor( _UpperCamelCase , return_tensors=_UpperCamelCase , do_normalize=_UpperCamelCase , do_center_crop=_UpperCamelCase , **_UpperCamelCase ) encoding.update(_UpperCamelCase ) return encoding def UpperCamelCase( self , *_UpperCamelCase , **_UpperCamelCase ): return self.tokenizer.batch_decode(*_UpperCamelCase , **_UpperCamelCase ) def UpperCamelCase( self , *_UpperCamelCase , **_UpperCamelCase ): return self.tokenizer.decode(*_UpperCamelCase , **_UpperCamelCase ) @property def UpperCamelCase( self ): _UpperCAmelCase = self.tokenizer.model_input_names _UpperCAmelCase = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) )
32
1
import random import unittest import numpy as np import transformers from transformers import is_flax_available, is_torch_available from transformers.testing_utils import is_pt_flax_cross_test, require_flax if is_flax_available(): import os import jax.numpy as jnp from jax import jit from transformers import AutoTokenizer, FlaxAutoModelForCausalLM from transformers.modeling_flax_pytorch_utils import load_flax_weights_in_pytorch_model UpperCAmelCase_ = "0.12" # assumed parallelism: 8 if is_torch_available(): import torch def A__ ( SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : Optional[int] , SCREAMING_SNAKE_CASE_ : Tuple=None ) -> Dict: """simple docstring""" if rng is None: _UpperCAmelCase = random.Random() _UpperCAmelCase = 1 for dim in shape: total_dims *= dim _UpperCAmelCase = [] for _ in range(SCREAMING_SNAKE_CASE_ ): values.append(rng.randint(0 , vocab_size - 1 ) ) _UpperCAmelCase = np.array(SCREAMING_SNAKE_CASE_ , dtype=jnp.intaa ).reshape(SCREAMING_SNAKE_CASE_ ) return output def A__ ( SCREAMING_SNAKE_CASE_ : Any , SCREAMING_SNAKE_CASE_ : Optional[int]=None ) -> int: """simple docstring""" _UpperCAmelCase = ids_tensor(SCREAMING_SNAKE_CASE_ , vocab_size=2 , rng=SCREAMING_SNAKE_CASE_ ) # make sure that at least one token is attended to for each batch _UpperCAmelCase = 1 return attn_mask @require_flax class __UpperCamelCase : __A : Optional[Any] = None __A : Tuple = () def UpperCamelCase( self ): _UpperCAmelCase , _UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() # cut to half length & take max batch_size 3 _UpperCAmelCase = 2 _UpperCAmelCase = inputs['''input_ids'''].shape[-1] // 2 _UpperCAmelCase = inputs['''input_ids'''][:max_batch_size, :sequence_length] _UpperCAmelCase = jnp.ones_like(_UpperCamelCase ) _UpperCAmelCase = attention_mask[:max_batch_size, :sequence_length] # generate max 5 tokens _UpperCAmelCase = input_ids.shape[-1] + 5 if config.eos_token_id is not None and config.pad_token_id is None: # hack to allow generate for models such as GPT2 as is done in `generate()` _UpperCAmelCase = config.eos_token_id return config, input_ids, attention_mask, max_length @is_pt_flax_cross_test def UpperCamelCase( self ): _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase = self._get_input_ids_and_config() _UpperCAmelCase = False _UpperCAmelCase = max_length _UpperCAmelCase = 0 for model_class in self.all_generative_model_classes: _UpperCAmelCase = model_class(_UpperCamelCase ) _UpperCAmelCase = model_class.__name__[4:] # Skip the "Flax" at the beginning _UpperCAmelCase = getattr(_UpperCamelCase , _UpperCamelCase ) _UpperCAmelCase = pt_model_class(_UpperCamelCase ).eval() _UpperCAmelCase = load_flax_weights_in_pytorch_model(_UpperCamelCase , flax_model.params ) _UpperCAmelCase = flax_model.generate(_UpperCamelCase ).sequences _UpperCAmelCase = pt_model.generate(torch.tensor(_UpperCamelCase , dtype=torch.long ) ) if flax_generation_outputs.shape[-1] > pt_generation_outputs.shape[-1]: _UpperCAmelCase = flax_generation_outputs[:, : pt_generation_outputs.shape[-1]] self.assertListEqual(pt_generation_outputs.numpy().tolist() , flax_generation_outputs.tolist() ) def UpperCamelCase( self ): _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase = self._get_input_ids_and_config() _UpperCAmelCase = False _UpperCAmelCase = max_length for model_class in self.all_generative_model_classes: _UpperCAmelCase = model_class(_UpperCamelCase ) _UpperCAmelCase = model.generate(_UpperCamelCase ).sequences self.assertEqual(generation_outputs.shape[-1] , _UpperCamelCase ) _UpperCAmelCase = jit(model.generate ) _UpperCAmelCase = jit_generate(_UpperCamelCase ).sequences self.assertListEqual(generation_outputs.tolist() , jit_generation_outputs.tolist() ) def UpperCamelCase( self ): _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase = self._get_input_ids_and_config() _UpperCAmelCase = True _UpperCAmelCase = max_length for model_class in self.all_generative_model_classes: _UpperCAmelCase = model_class(_UpperCamelCase ) _UpperCAmelCase = model.generate(_UpperCamelCase ).sequences self.assertEqual(generation_outputs.shape[-1] , _UpperCamelCase ) _UpperCAmelCase = jit(model.generate ) _UpperCAmelCase = jit_generate(_UpperCamelCase ).sequences self.assertListEqual(generation_outputs.tolist() , jit_generation_outputs.tolist() ) def UpperCamelCase( self ): _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase = self._get_input_ids_and_config() _UpperCAmelCase = False _UpperCAmelCase = max_length _UpperCAmelCase = 2 for model_class in self.all_generative_model_classes: _UpperCAmelCase = model_class(_UpperCamelCase ) _UpperCAmelCase = model.generate(_UpperCamelCase ).sequences self.assertEqual(generation_outputs.shape[-1] , _UpperCamelCase ) _UpperCAmelCase = jit(model.generate ) _UpperCAmelCase = jit_generate(_UpperCamelCase ).sequences self.assertListEqual(generation_outputs.tolist() , jit_generation_outputs.tolist() ) def UpperCamelCase( self ): _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase = self._get_input_ids_and_config() _UpperCAmelCase = False _UpperCAmelCase = max_length _UpperCAmelCase = 2 _UpperCAmelCase = 2 for model_class in self.all_generative_model_classes: _UpperCAmelCase = model_class(_UpperCamelCase ) _UpperCAmelCase = model.generate(_UpperCamelCase ).sequences self.assertEqual(generation_outputs.shape[0] , input_ids.shape[0] * config.num_return_sequences ) def UpperCamelCase( self ): _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase = self._get_input_ids_and_config() _UpperCAmelCase = True _UpperCAmelCase = max_length _UpperCAmelCase = 0.8 _UpperCAmelCase = 10 _UpperCAmelCase = 0.3 _UpperCAmelCase = 1 _UpperCAmelCase = 8 _UpperCAmelCase = 9 for model_class in self.all_generative_model_classes: _UpperCAmelCase = model_class(_UpperCamelCase ) _UpperCAmelCase = model.generate(_UpperCamelCase ).sequences self.assertEqual(generation_outputs.shape[-1] , _UpperCamelCase ) _UpperCAmelCase = jit(model.generate ) _UpperCAmelCase = jit_generate(_UpperCamelCase ).sequences self.assertListEqual(generation_outputs.tolist() , jit_generation_outputs.tolist() ) def UpperCamelCase( self ): _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase = self._get_input_ids_and_config() _UpperCAmelCase = max_length _UpperCAmelCase = 1 _UpperCAmelCase = 8 _UpperCAmelCase = 9 for model_class in self.all_generative_model_classes: _UpperCAmelCase = model_class(_UpperCamelCase ) _UpperCAmelCase = model.generate(_UpperCamelCase ).sequences self.assertEqual(generation_outputs.shape[-1] , _UpperCamelCase ) _UpperCAmelCase = jit(model.generate ) _UpperCAmelCase = jit_generate(_UpperCamelCase ).sequences self.assertListEqual(generation_outputs.tolist() , jit_generation_outputs.tolist() ) def UpperCamelCase( self ): _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase = self._get_input_ids_and_config() _UpperCAmelCase = max_length _UpperCAmelCase = 2 _UpperCAmelCase = 1 _UpperCAmelCase = 8 _UpperCAmelCase = 9 for model_class in self.all_generative_model_classes: _UpperCAmelCase = model_class(_UpperCamelCase ) _UpperCAmelCase = model.generate(_UpperCamelCase ).sequences self.assertEqual(generation_outputs.shape[-1] , _UpperCamelCase ) _UpperCAmelCase = jit(model.generate ) _UpperCAmelCase = jit_generate(_UpperCamelCase ).sequences self.assertListEqual(generation_outputs.tolist() , jit_generation_outputs.tolist() ) def UpperCamelCase( self ): _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase = self._get_input_ids_and_config() # pad attention mask on the left _UpperCAmelCase = attention_mask.at[(0, 0)].set(0 ) _UpperCAmelCase = False _UpperCAmelCase = max_length for model_class in self.all_generative_model_classes: _UpperCAmelCase = model_class(_UpperCamelCase ) _UpperCAmelCase = model.generate(_UpperCamelCase , attention_mask=_UpperCamelCase ).sequences self.assertEqual(generation_outputs.shape[-1] , _UpperCamelCase ) _UpperCAmelCase = jit(model.generate ) _UpperCAmelCase = jit_generate(_UpperCamelCase , attention_mask=_UpperCamelCase ).sequences self.assertListEqual(generation_outputs.tolist() , jit_generation_outputs.tolist() ) def UpperCamelCase( self ): _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase = self._get_input_ids_and_config() # pad attention mask on the left _UpperCAmelCase = attention_mask.at[(0, 0)].set(0 ) _UpperCAmelCase = True _UpperCAmelCase = max_length for model_class in self.all_generative_model_classes: _UpperCAmelCase = model_class(_UpperCamelCase ) _UpperCAmelCase = model.generate(_UpperCamelCase , attention_mask=_UpperCamelCase ).sequences self.assertEqual(generation_outputs.shape[-1] , _UpperCamelCase ) _UpperCAmelCase = jit(model.generate ) _UpperCAmelCase = jit_generate(_UpperCamelCase , attention_mask=_UpperCamelCase ).sequences self.assertListEqual(generation_outputs.tolist() , jit_generation_outputs.tolist() ) def UpperCamelCase( self ): _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase = self._get_input_ids_and_config() # pad attention mask on the left _UpperCAmelCase = attention_mask.at[(0, 0)].set(0 ) _UpperCAmelCase = 2 _UpperCAmelCase = max_length for model_class in self.all_generative_model_classes: _UpperCAmelCase = model_class(_UpperCamelCase ) _UpperCAmelCase = model.generate(_UpperCamelCase , attention_mask=_UpperCamelCase ).sequences self.assertEqual(generation_outputs.shape[-1] , _UpperCamelCase ) _UpperCAmelCase = jit(model.generate ) _UpperCAmelCase = jit_generate(_UpperCamelCase , attention_mask=_UpperCamelCase ).sequences self.assertListEqual(generation_outputs.tolist() , jit_generation_outputs.tolist() ) @require_flax class __UpperCamelCase ( unittest.TestCase ): def UpperCamelCase( self ): _UpperCAmelCase = AutoTokenizer.from_pretrained('''hf-internal-testing/tiny-bert''' ) _UpperCAmelCase = FlaxAutoModelForCausalLM.from_pretrained('''hf-internal-testing/tiny-bert-flax-only''' ) _UpperCAmelCase = '''Hello world''' _UpperCAmelCase = tokenizer(_UpperCamelCase , return_tensors='''np''' ).input_ids # typos are quickly detected (the correct argument is `do_sample`) with self.assertRaisesRegex(_UpperCamelCase , '''do_samples''' ): model.generate(_UpperCamelCase , do_samples=_UpperCamelCase ) # arbitrary arguments that will not be used anywhere are also not accepted with self.assertRaisesRegex(_UpperCamelCase , '''foo''' ): _UpperCAmelCase = {'''foo''': '''bar'''} model.generate(_UpperCamelCase , **_UpperCamelCase )
32
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available UpperCAmelCase_ = { "configuration_xlm": ["XLM_PRETRAINED_CONFIG_ARCHIVE_MAP", "XLMConfig", "XLMOnnxConfig"], "tokenization_xlm": ["XLMTokenizer"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase_ = [ "XLM_PRETRAINED_MODEL_ARCHIVE_LIST", "XLMForMultipleChoice", "XLMForQuestionAnswering", "XLMForQuestionAnsweringSimple", "XLMForSequenceClassification", "XLMForTokenClassification", "XLMModel", "XLMPreTrainedModel", "XLMWithLMHeadModel", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase_ = [ "TF_XLM_PRETRAINED_MODEL_ARCHIVE_LIST", "TFXLMForMultipleChoice", "TFXLMForQuestionAnsweringSimple", "TFXLMForSequenceClassification", "TFXLMForTokenClassification", "TFXLMMainLayer", "TFXLMModel", "TFXLMPreTrainedModel", "TFXLMWithLMHeadModel", ] if TYPE_CHECKING: from .configuration_xlm import XLM_PRETRAINED_CONFIG_ARCHIVE_MAP, XLMConfig, XLMOnnxConfig from .tokenization_xlm import XLMTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_xlm import ( XLM_PRETRAINED_MODEL_ARCHIVE_LIST, XLMForMultipleChoice, XLMForQuestionAnswering, XLMForQuestionAnsweringSimple, XLMForSequenceClassification, XLMForTokenClassification, XLMModel, XLMPreTrainedModel, XLMWithLMHeadModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_xlm import ( TF_XLM_PRETRAINED_MODEL_ARCHIVE_LIST, TFXLMForMultipleChoice, TFXLMForQuestionAnsweringSimple, TFXLMForSequenceClassification, TFXLMForTokenClassification, TFXLMMainLayer, TFXLMModel, TFXLMPreTrainedModel, TFXLMWithLMHeadModel, ) else: import sys UpperCAmelCase_ = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
32
1
UpperCAmelCase_ = { 0: "0", 1: "1", 2: "2", 3: "3", 4: "4", 5: "5", 6: "6", 7: "7", 8: "8", 9: "9", 10: "a", 11: "b", 12: "c", 13: "d", 14: "e", 15: "f", } def A__ ( SCREAMING_SNAKE_CASE_ : float ) -> str: """simple docstring""" assert type(SCREAMING_SNAKE_CASE_ ) in (int, float) and decimal == int(SCREAMING_SNAKE_CASE_ ) _UpperCAmelCase = int(SCREAMING_SNAKE_CASE_ ) _UpperCAmelCase = '''''' _UpperCAmelCase = False if decimal < 0: _UpperCAmelCase = True decimal *= -1 while decimal > 0: _UpperCAmelCase , _UpperCAmelCase = divmod(SCREAMING_SNAKE_CASE_ , 16 ) _UpperCAmelCase = values[remainder] + hexadecimal _UpperCAmelCase = '''0x''' + hexadecimal if negative: _UpperCAmelCase = '''-''' + hexadecimal return hexadecimal if __name__ == "__main__": import doctest doctest.testmod()
32
from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCAmelCase_ = logging.get_logger(__name__) UpperCAmelCase_ = { "microsoft/biogpt": "https://huggingface.co/microsoft/biogpt/resolve/main/config.json", # See all BioGPT models at https://huggingface.co/models?filter=biogpt } class __UpperCamelCase ( A__ ): __A : Any = """biogpt""" def __init__( self , _UpperCamelCase=42384 , _UpperCamelCase=1024 , _UpperCamelCase=24 , _UpperCamelCase=16 , _UpperCamelCase=4096 , _UpperCamelCase="gelu" , _UpperCamelCase=0.1 , _UpperCamelCase=0.1 , _UpperCamelCase=1024 , _UpperCamelCase=0.02 , _UpperCamelCase=1e-12 , _UpperCamelCase=True , _UpperCamelCase=True , _UpperCamelCase=0.0 , _UpperCamelCase=0.0 , _UpperCamelCase=1 , _UpperCamelCase=0 , _UpperCamelCase=2 , **_UpperCamelCase , ): _UpperCAmelCase = vocab_size _UpperCAmelCase = max_position_embeddings _UpperCAmelCase = hidden_size _UpperCAmelCase = num_hidden_layers _UpperCAmelCase = num_attention_heads _UpperCAmelCase = intermediate_size _UpperCAmelCase = hidden_act _UpperCAmelCase = hidden_dropout_prob _UpperCAmelCase = attention_probs_dropout_prob _UpperCAmelCase = initializer_range _UpperCAmelCase = layer_norm_eps _UpperCAmelCase = scale_embedding _UpperCAmelCase = use_cache _UpperCAmelCase = layerdrop _UpperCAmelCase = activation_dropout super().__init__(pad_token_id=_UpperCamelCase , bos_token_id=_UpperCamelCase , eos_token_id=_UpperCamelCase , **_UpperCamelCase )
32
1
from ..utils import DummyObject, requires_backends class __UpperCamelCase ( metaclass=A__ ): __A : str = ["""torch""", """scipy"""] def __init__( self , *_UpperCamelCase , **_UpperCamelCase ): requires_backends(self , ['''torch''', '''scipy'''] ) @classmethod def UpperCamelCase( cls , *_UpperCamelCase , **_UpperCamelCase ): requires_backends(cls , ['''torch''', '''scipy'''] ) @classmethod def UpperCamelCase( cls , *_UpperCamelCase , **_UpperCamelCase ): requires_backends(cls , ['''torch''', '''scipy'''] )
32
from typing import List from .keymap import KEYMAP, get_character def A__ ( SCREAMING_SNAKE_CASE_ : str ) -> List[str]: """simple docstring""" def decorator(SCREAMING_SNAKE_CASE_ : List[Any] ): _UpperCAmelCase = getattr(SCREAMING_SNAKE_CASE_ , '''handle_key''' , [] ) handle += [key] setattr(SCREAMING_SNAKE_CASE_ , '''handle_key''' , SCREAMING_SNAKE_CASE_ ) return func return decorator def A__ ( *SCREAMING_SNAKE_CASE_ : List[str] ) -> Dict: """simple docstring""" def decorator(SCREAMING_SNAKE_CASE_ : Any ): _UpperCAmelCase = getattr(SCREAMING_SNAKE_CASE_ , '''handle_key''' , [] ) handle += keys setattr(SCREAMING_SNAKE_CASE_ , '''handle_key''' , SCREAMING_SNAKE_CASE_ ) return func return decorator class __UpperCamelCase ( A__ ): def __new__( cls , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ): _UpperCAmelCase = super().__new__(cls , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) if not hasattr(_UpperCamelCase , '''key_handler''' ): setattr(_UpperCamelCase , '''key_handler''' , {} ) setattr(_UpperCamelCase , '''handle_input''' , KeyHandler.handle_input ) for value in attrs.values(): _UpperCAmelCase = getattr(_UpperCamelCase , '''handle_key''' , [] ) for key in handled_keys: _UpperCAmelCase = value return new_cls @staticmethod def UpperCamelCase( cls ): _UpperCAmelCase = get_character() if char != KEYMAP["undefined"]: _UpperCAmelCase = ord(_UpperCamelCase ) _UpperCAmelCase = cls.key_handler.get(_UpperCamelCase ) if handler: _UpperCAmelCase = char return handler(cls ) else: return None def A__ ( cls : Union[str, Any] ) -> Any: """simple docstring""" return KeyHandler(cls.__name__ , cls.__bases__ , cls.__dict__.copy() )
32
1
import os import shutil import tempfile from unittest import TestCase from unittest.mock import patch import numpy as np from datasets import Dataset from transformers.models.realm.configuration_realm import RealmConfig from transformers.models.realm.retrieval_realm import _REALM_BLOCK_RECORDS_FILENAME, RealmRetriever from transformers.models.realm.tokenization_realm import VOCAB_FILES_NAMES, RealmTokenizer class __UpperCamelCase ( A__ ): def UpperCamelCase( self ): _UpperCAmelCase = tempfile.mkdtemp() _UpperCAmelCase = 5 # Realm tok _UpperCAmelCase = [ '''[UNK]''', '''[CLS]''', '''[SEP]''', '''[PAD]''', '''[MASK]''', '''test''', '''question''', '''this''', '''is''', '''the''', '''first''', '''second''', '''third''', '''fourth''', '''fifth''', '''record''', '''want''', '''##want''', '''##ed''', '''wa''', '''un''', '''runn''', '''##ing''', ''',''', '''low''', '''lowest''', ] _UpperCAmelCase = os.path.join(self.tmpdirname , '''realm_tokenizer''' ) os.makedirs(_UpperCamelCase , exist_ok=_UpperCamelCase ) _UpperCAmelCase = os.path.join(_UpperCamelCase , VOCAB_FILES_NAMES['''vocab_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as vocab_writer: vocab_writer.write(''''''.join([x + '''\n''' for x in vocab_tokens] ) ) _UpperCAmelCase = os.path.join(self.tmpdirname , '''realm_block_records''' ) os.makedirs(_UpperCamelCase , exist_ok=_UpperCamelCase ) def UpperCamelCase( self ): return RealmTokenizer.from_pretrained(os.path.join(self.tmpdirname , '''realm_tokenizer''' ) ) def UpperCamelCase( self ): shutil.rmtree(self.tmpdirname ) def UpperCamelCase( self ): _UpperCAmelCase = RealmConfig(num_block_records=self.num_block_records ) return config def UpperCamelCase( self ): _UpperCAmelCase = Dataset.from_dict( { '''id''': ['''0''', '''1'''], '''question''': ['''foo''', '''bar'''], '''answers''': [['''Foo''', '''Bar'''], ['''Bar''']], } ) return dataset def UpperCamelCase( self ): _UpperCAmelCase = np.array( [ B'''This is the first record''', B'''This is the second record''', B'''This is the third record''', B'''This is the fourth record''', B'''This is the fifth record''', B'''This is a longer longer longer record''', ] , dtype=_UpperCamelCase , ) return block_records def UpperCamelCase( self ): _UpperCAmelCase = RealmRetriever( block_records=self.get_dummy_block_records() , tokenizer=self.get_tokenizer() , ) return retriever def UpperCamelCase( self ): _UpperCAmelCase = self.get_config() _UpperCAmelCase = self.get_dummy_retriever() _UpperCAmelCase = retriever.tokenizer _UpperCAmelCase = np.array([0, 3] , dtype='''long''' ) _UpperCAmelCase = tokenizer(['''Test question'''] ).input_ids _UpperCAmelCase = tokenizer( ['''the fourth'''] , add_special_tokens=_UpperCamelCase , return_token_type_ids=_UpperCamelCase , return_attention_mask=_UpperCamelCase , ).input_ids _UpperCAmelCase = config.reader_seq_len _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase = retriever( _UpperCamelCase , _UpperCamelCase , answer_ids=_UpperCamelCase , max_length=_UpperCamelCase , return_tensors='''np''' ) self.assertEqual(len(_UpperCamelCase ) , 2 ) self.assertEqual(len(_UpperCamelCase ) , 2 ) self.assertEqual(len(_UpperCamelCase ) , 2 ) self.assertEqual(concat_inputs.input_ids.shape , (2, 10) ) self.assertEqual(concat_inputs.attention_mask.shape , (2, 10) ) self.assertEqual(concat_inputs.token_type_ids.shape , (2, 10) ) self.assertEqual(concat_inputs.special_tokens_mask.shape , (2, 10) ) self.assertEqual( tokenizer.convert_ids_to_tokens(concat_inputs.input_ids[0] ) , ['''[CLS]''', '''test''', '''question''', '''[SEP]''', '''this''', '''is''', '''the''', '''first''', '''record''', '''[SEP]'''] , ) self.assertEqual( tokenizer.convert_ids_to_tokens(concat_inputs.input_ids[1] ) , ['''[CLS]''', '''test''', '''question''', '''[SEP]''', '''this''', '''is''', '''the''', '''fourth''', '''record''', '''[SEP]'''] , ) def UpperCamelCase( self ): _UpperCAmelCase = self.get_config() _UpperCAmelCase = self.get_dummy_retriever() _UpperCAmelCase = retriever.tokenizer _UpperCAmelCase = np.array([0, 3, 5] , dtype='''long''' ) _UpperCAmelCase = tokenizer(['''Test question'''] ).input_ids _UpperCAmelCase = tokenizer( ['''the fourth''', '''longer longer'''] , add_special_tokens=_UpperCamelCase , return_token_type_ids=_UpperCamelCase , return_attention_mask=_UpperCamelCase , ).input_ids _UpperCAmelCase = config.reader_seq_len _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase = retriever( _UpperCamelCase , _UpperCamelCase , answer_ids=_UpperCamelCase , max_length=_UpperCamelCase , return_tensors='''np''' ) self.assertEqual([False, True, True] , _UpperCamelCase ) self.assertEqual([[-1, -1, -1], [6, -1, -1], [6, 7, 8]] , _UpperCamelCase ) self.assertEqual([[-1, -1, -1], [7, -1, -1], [7, 8, 9]] , _UpperCamelCase ) def UpperCamelCase( self ): _UpperCAmelCase = self.get_dummy_retriever() retriever.save_pretrained(os.path.join(self.tmpdirname , '''realm_block_records''' ) ) # Test local path _UpperCAmelCase = retriever.from_pretrained(os.path.join(self.tmpdirname , '''realm_block_records''' ) ) self.assertEqual(retriever.block_records[0] , B'''This is the first record''' ) # Test mocked remote path with patch('''transformers.models.realm.retrieval_realm.hf_hub_download''' ) as mock_hf_hub_download: _UpperCAmelCase = os.path.join( os.path.join(self.tmpdirname , '''realm_block_records''' ) , _REALM_BLOCK_RECORDS_FILENAME ) _UpperCAmelCase = RealmRetriever.from_pretrained('''google/realm-cc-news-pretrained-openqa''' ) self.assertEqual(retriever.block_records[0] , B'''This is the first record''' )
32
import unittest from transformers import LiltConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( LiltForQuestionAnswering, LiltForSequenceClassification, LiltForTokenClassification, LiltModel, ) from transformers.models.lilt.modeling_lilt import LILT_PRETRAINED_MODEL_ARCHIVE_LIST class __UpperCamelCase : def __init__( self , _UpperCamelCase , _UpperCamelCase=13 , _UpperCamelCase=7 , _UpperCamelCase=True , _UpperCamelCase=True , _UpperCamelCase=True , _UpperCamelCase=True , _UpperCamelCase=99 , _UpperCamelCase=24 , _UpperCamelCase=2 , _UpperCamelCase=6 , _UpperCamelCase=37 , _UpperCamelCase="gelu" , _UpperCamelCase=0.1 , _UpperCamelCase=0.1 , _UpperCamelCase=512 , _UpperCamelCase=16 , _UpperCamelCase=2 , _UpperCamelCase=0.02 , _UpperCamelCase=3 , _UpperCamelCase=None , _UpperCamelCase=1000 , ): _UpperCAmelCase = parent _UpperCAmelCase = batch_size _UpperCAmelCase = seq_length _UpperCAmelCase = is_training _UpperCAmelCase = use_input_mask _UpperCAmelCase = use_token_type_ids _UpperCAmelCase = use_labels _UpperCAmelCase = vocab_size _UpperCAmelCase = hidden_size _UpperCAmelCase = num_hidden_layers _UpperCAmelCase = num_attention_heads _UpperCAmelCase = intermediate_size _UpperCAmelCase = hidden_act _UpperCAmelCase = hidden_dropout_prob _UpperCAmelCase = attention_probs_dropout_prob _UpperCAmelCase = max_position_embeddings _UpperCAmelCase = type_vocab_size _UpperCAmelCase = type_sequence_label_size _UpperCAmelCase = initializer_range _UpperCAmelCase = num_labels _UpperCAmelCase = scope _UpperCAmelCase = range_bbox def UpperCamelCase( self ): _UpperCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _UpperCAmelCase = ids_tensor([self.batch_size, self.seq_length, 4] , self.range_bbox ) # Ensure that bbox is legal for i in range(bbox.shape[0] ): for j in range(bbox.shape[1] ): if bbox[i, j, 3] < bbox[i, j, 1]: _UpperCAmelCase = bbox[i, j, 3] _UpperCAmelCase = bbox[i, j, 1] _UpperCAmelCase = t if bbox[i, j, 2] < bbox[i, j, 0]: _UpperCAmelCase = bbox[i, j, 2] _UpperCAmelCase = bbox[i, j, 0] _UpperCAmelCase = t _UpperCAmelCase = None if self.use_input_mask: _UpperCAmelCase = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 ) _UpperCAmelCase = None if self.use_token_type_ids: _UpperCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) _UpperCAmelCase = None _UpperCAmelCase = None if self.use_labels: _UpperCAmelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size ) _UpperCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) _UpperCAmelCase = self.get_config() return config, input_ids, bbox, token_type_ids, input_mask, sequence_labels, token_labels def UpperCamelCase( self ): return LiltConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , ) def UpperCamelCase( self , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , ): _UpperCAmelCase = LiltModel(config=_UpperCamelCase ) model.to(_UpperCamelCase ) model.eval() _UpperCAmelCase = model(_UpperCamelCase , bbox=_UpperCamelCase , attention_mask=_UpperCamelCase , token_type_ids=_UpperCamelCase ) _UpperCAmelCase = model(_UpperCamelCase , bbox=_UpperCamelCase , token_type_ids=_UpperCamelCase ) _UpperCAmelCase = model(_UpperCamelCase , bbox=_UpperCamelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) ) def UpperCamelCase( self , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , ): _UpperCAmelCase = self.num_labels _UpperCAmelCase = LiltForTokenClassification(config=_UpperCamelCase ) model.to(_UpperCamelCase ) model.eval() _UpperCAmelCase = model( _UpperCamelCase , bbox=_UpperCamelCase , attention_mask=_UpperCamelCase , token_type_ids=_UpperCamelCase , labels=_UpperCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def UpperCamelCase( self , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , ): _UpperCAmelCase = LiltForQuestionAnswering(config=_UpperCamelCase ) model.to(_UpperCamelCase ) model.eval() _UpperCAmelCase = model( _UpperCamelCase , bbox=_UpperCamelCase , attention_mask=_UpperCamelCase , token_type_ids=_UpperCamelCase , start_positions=_UpperCamelCase , end_positions=_UpperCamelCase , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def UpperCamelCase( self ): _UpperCAmelCase = self.prepare_config_and_inputs() ( ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ) = config_and_inputs _UpperCAmelCase = { '''input_ids''': input_ids, '''bbox''': bbox, '''token_type_ids''': token_type_ids, '''attention_mask''': input_mask, } return config, inputs_dict @require_torch class __UpperCamelCase ( A__ , A__ , A__ , unittest.TestCase ): __A : Dict = ( ( LiltModel, LiltForSequenceClassification, LiltForTokenClassification, LiltForQuestionAnswering, ) if is_torch_available() else () ) __A : Optional[Any] = ( { """feature-extraction""": LiltModel, """question-answering""": LiltForQuestionAnswering, """text-classification""": LiltForSequenceClassification, """token-classification""": LiltForTokenClassification, """zero-shot""": LiltForSequenceClassification, } if is_torch_available() else {} ) __A : List[Any] = False __A : Optional[int] = False def UpperCamelCase( self , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ): return True def UpperCamelCase( self ): _UpperCAmelCase = LiltModelTester(self ) _UpperCAmelCase = ConfigTester(self , config_class=_UpperCamelCase , hidden_size=37 ) def UpperCamelCase( self ): self.config_tester.run_common_tests() def UpperCamelCase( self ): _UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_UpperCamelCase ) def UpperCamelCase( self ): _UpperCAmelCase = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: _UpperCAmelCase = type self.model_tester.create_and_check_model(*_UpperCamelCase ) def UpperCamelCase( self ): _UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*_UpperCamelCase ) def UpperCamelCase( self ): _UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*_UpperCamelCase ) @slow def UpperCamelCase( self ): for model_name in LILT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _UpperCAmelCase = LiltModel.from_pretrained(_UpperCamelCase ) self.assertIsNotNone(_UpperCamelCase ) @require_torch @slow class __UpperCamelCase ( unittest.TestCase ): def UpperCamelCase( self ): _UpperCAmelCase = LiltModel.from_pretrained('''SCUT-DLVCLab/lilt-roberta-en-base''' ).to(_UpperCamelCase ) _UpperCAmelCase = torch.tensor([[1, 2]] , device=_UpperCamelCase ) _UpperCAmelCase = torch.tensor([[[1, 2, 3, 4], [5, 6, 7, 8]]] , device=_UpperCamelCase ) # forward pass with torch.no_grad(): _UpperCAmelCase = model(input_ids=_UpperCamelCase , bbox=_UpperCamelCase ) _UpperCAmelCase = torch.Size([1, 2, 768] ) _UpperCAmelCase = torch.tensor( [[-0.0653, 0.0950, -0.0061], [-0.0545, 0.0926, -0.0324]] , device=_UpperCamelCase , ) self.assertTrue(outputs.last_hidden_state.shape , _UpperCamelCase ) self.assertTrue(torch.allclose(outputs.last_hidden_state[0, :, :3] , _UpperCamelCase , atol=1e-3 ) )
32
1
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tensorflow_text_available, is_tf_available, is_tokenizers_available, is_torch_available, ) UpperCAmelCase_ = { "configuration_bert": ["BERT_PRETRAINED_CONFIG_ARCHIVE_MAP", "BertConfig", "BertOnnxConfig"], "tokenization_bert": ["BasicTokenizer", "BertTokenizer", "WordpieceTokenizer"], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase_ = ["BertTokenizerFast"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase_ = [ "BERT_PRETRAINED_MODEL_ARCHIVE_LIST", "BertForMaskedLM", "BertForMultipleChoice", "BertForNextSentencePrediction", "BertForPreTraining", "BertForQuestionAnswering", "BertForSequenceClassification", "BertForTokenClassification", "BertLayer", "BertLMHeadModel", "BertModel", "BertPreTrainedModel", "load_tf_weights_in_bert", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase_ = [ "TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST", "TFBertEmbeddings", "TFBertForMaskedLM", "TFBertForMultipleChoice", "TFBertForNextSentencePrediction", "TFBertForPreTraining", "TFBertForQuestionAnswering", "TFBertForSequenceClassification", "TFBertForTokenClassification", "TFBertLMHeadModel", "TFBertMainLayer", "TFBertModel", "TFBertPreTrainedModel", ] try: if not is_tensorflow_text_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase_ = ["TFBertTokenizer"] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase_ = [ "FlaxBertForCausalLM", "FlaxBertForMaskedLM", "FlaxBertForMultipleChoice", "FlaxBertForNextSentencePrediction", "FlaxBertForPreTraining", "FlaxBertForQuestionAnswering", "FlaxBertForSequenceClassification", "FlaxBertForTokenClassification", "FlaxBertModel", "FlaxBertPreTrainedModel", ] if TYPE_CHECKING: from .configuration_bert import BERT_PRETRAINED_CONFIG_ARCHIVE_MAP, BertConfig, BertOnnxConfig from .tokenization_bert import BasicTokenizer, BertTokenizer, WordpieceTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_bert_fast import BertTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_bert import ( BERT_PRETRAINED_MODEL_ARCHIVE_LIST, BertForMaskedLM, BertForMultipleChoice, BertForNextSentencePrediction, BertForPreTraining, BertForQuestionAnswering, BertForSequenceClassification, BertForTokenClassification, BertLayer, BertLMHeadModel, BertModel, BertPreTrainedModel, load_tf_weights_in_bert, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_bert import ( TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST, TFBertEmbeddings, TFBertForMaskedLM, TFBertForMultipleChoice, TFBertForNextSentencePrediction, TFBertForPreTraining, TFBertForQuestionAnswering, TFBertForSequenceClassification, TFBertForTokenClassification, TFBertLMHeadModel, TFBertMainLayer, TFBertModel, TFBertPreTrainedModel, ) try: if not is_tensorflow_text_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_bert_tf import TFBertTokenizer try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_bert import ( FlaxBertForCausalLM, FlaxBertForMaskedLM, FlaxBertForMultipleChoice, FlaxBertForNextSentencePrediction, FlaxBertForPreTraining, FlaxBertForQuestionAnswering, FlaxBertForSequenceClassification, FlaxBertForTokenClassification, FlaxBertModel, FlaxBertPreTrainedModel, ) else: import sys UpperCAmelCase_ = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
32
from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCAmelCase_ = logging.get_logger(__name__) UpperCAmelCase_ = { "RWKV/rwkv-4-169m-pile": "https://huggingface.co/RWKV/rwkv-4-169m-pile/resolve/main/config.json", "RWKV/rwkv-4-430m-pile": "https://huggingface.co/RWKV/rwkv-4-430m-pile/resolve/main/config.json", "RWKV/rwkv-4-1b5-pile": "https://huggingface.co/RWKV/rwkv-4-1b5-pile/resolve/main/config.json", "RWKV/rwkv-4-3b-pile": "https://huggingface.co/RWKV/rwkv-4-3b-pile/resolve/main/config.json", "RWKV/rwkv-4-7b-pile": "https://huggingface.co/RWKV/rwkv-4-7b-pile/resolve/main/config.json", "RWKV/rwkv-4-14b-pile": "https://huggingface.co/RWKV/rwkv-4-14b-pile/resolve/main/config.json", "RWKV/rwkv-raven-1b5": "https://huggingface.co/RWKV/rwkv-raven-1b5/resolve/main/config.json", "RWKV/rwkv-raven-3b": "https://huggingface.co/RWKV/rwkv-raven-3b/resolve/main/config.json", "RWKV/rwkv-raven-7b": "https://huggingface.co/RWKV/rwkv-raven-7b/resolve/main/config.json", "RWKV/rwkv-raven-14b": "https://huggingface.co/RWKV/rwkv-raven-14b/resolve/main/config.json", } class __UpperCamelCase ( A__ ): __A : Tuple = """rwkv""" __A : Any = {"""max_position_embeddings""": """context_length"""} def __init__( self , _UpperCamelCase=50277 , _UpperCamelCase=1024 , _UpperCamelCase=4096 , _UpperCamelCase=32 , _UpperCamelCase=None , _UpperCamelCase=None , _UpperCamelCase=1e-5 , _UpperCamelCase=0 , _UpperCamelCase=0 , _UpperCamelCase=6 , _UpperCamelCase=False , _UpperCamelCase=True , **_UpperCamelCase , ): _UpperCAmelCase = vocab_size _UpperCAmelCase = context_length _UpperCAmelCase = hidden_size _UpperCAmelCase = num_hidden_layers _UpperCAmelCase = attention_hidden_size if attention_hidden_size is not None else hidden_size _UpperCAmelCase = intermediate_size if intermediate_size is not None else 4 * hidden_size _UpperCAmelCase = layer_norm_epsilon _UpperCAmelCase = rescale_every _UpperCAmelCase = use_cache _UpperCAmelCase = bos_token_id _UpperCAmelCase = eos_token_id super().__init__( tie_word_embeddings=_UpperCamelCase , bos_token_id=_UpperCamelCase , eos_token_id=_UpperCamelCase , **_UpperCamelCase )
32
1
import json import logging import os import sys from time import time from unittest.mock import patch from transformers.testing_utils import TestCasePlus, require_torch_tpu logging.basicConfig(level=logging.DEBUG) UpperCAmelCase_ = logging.getLogger() def A__ ( SCREAMING_SNAKE_CASE_ : Optional[int] ) -> Any: """simple docstring""" _UpperCAmelCase = {} _UpperCAmelCase = os.path.join(SCREAMING_SNAKE_CASE_ , '''all_results.json''' ) if os.path.exists(SCREAMING_SNAKE_CASE_ ): with open(SCREAMING_SNAKE_CASE_ , '''r''' ) as f: _UpperCAmelCase = json.load(SCREAMING_SNAKE_CASE_ ) else: raise ValueError(F'''can\'t find {path}''' ) return results UpperCAmelCase_ = logging.StreamHandler(sys.stdout) logger.addHandler(stream_handler) @require_torch_tpu class __UpperCamelCase ( A__ ): def UpperCamelCase( self ): import xla_spawn _UpperCAmelCase = self.get_auto_remove_tmp_dir() _UpperCAmelCase = f''' ./examples/pytorch/text-classification/run_glue.py --num_cores=8 ./examples/pytorch/text-classification/run_glue.py --model_name_or_path distilbert-base-uncased --output_dir {tmp_dir} --overwrite_output_dir --train_file ./tests/fixtures/tests_samples/MRPC/train.csv --validation_file ./tests/fixtures/tests_samples/MRPC/dev.csv --do_train --do_eval --debug tpu_metrics_debug --per_device_train_batch_size=2 --per_device_eval_batch_size=1 --learning_rate=1e-4 --max_steps=10 --warmup_steps=2 --seed=42 --max_seq_length=128 '''.split() with patch.object(_UpperCamelCase , '''argv''' , _UpperCamelCase ): _UpperCAmelCase = time() xla_spawn.main() _UpperCAmelCase = time() _UpperCAmelCase = get_results(_UpperCamelCase ) self.assertGreaterEqual(result['''eval_accuracy'''] , 0.75 ) # Assert that the script takes less than 500 seconds to make sure it doesn't hang. self.assertLess(end - start , 500 ) def UpperCamelCase( self ): import xla_spawn _UpperCAmelCase = ''' ./tests/test_trainer_tpu.py --num_cores=8 ./tests/test_trainer_tpu.py '''.split() with patch.object(_UpperCamelCase , '''argv''' , _UpperCamelCase ): xla_spawn.main()
32
def A__ ( SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : int ) -> str: """simple docstring""" if a < 0 or b < 0: raise ValueError('''the value of both inputs must be positive''' ) _UpperCAmelCase = str(bin(SCREAMING_SNAKE_CASE_ ) )[2:] # remove the leading "0b" _UpperCAmelCase = str(bin(SCREAMING_SNAKE_CASE_ ) )[2:] # remove the leading "0b" _UpperCAmelCase = max(len(SCREAMING_SNAKE_CASE_ ) , len(SCREAMING_SNAKE_CASE_ ) ) return "0b" + "".join( str(int(char_a == '''1''' and char_b == '''1''' ) ) for char_a, char_b in zip(a_binary.zfill(SCREAMING_SNAKE_CASE_ ) , b_binary.zfill(SCREAMING_SNAKE_CASE_ ) ) ) if __name__ == "__main__": import doctest doctest.testmod()
32
1
from datasets.utils.patching import _PatchedModuleObj, patch_submodule from . import _test_patching def A__ ( ) -> Dict: """simple docstring""" import os as original_os from os import path as original_path from os import rename as original_rename from os.path import dirname as original_dirname from os.path import join as original_join assert _test_patching.os is original_os assert _test_patching.path is original_path assert _test_patching.join is original_join assert _test_patching.renamed_os is original_os assert _test_patching.renamed_path is original_path assert _test_patching.renamed_join is original_join _UpperCAmelCase = '''__test_patch_submodule_mock__''' with patch_submodule(_test_patching , '''os.path.join''' , SCREAMING_SNAKE_CASE_ ): # Every way to access os.path.join must be patched, and the rest must stay untouched # check os.path.join assert isinstance(_test_patching.os , _PatchedModuleObj ) assert isinstance(_test_patching.os.path , _PatchedModuleObj ) assert _test_patching.os.path.join is mock # check path.join assert isinstance(_test_patching.path , _PatchedModuleObj ) assert _test_patching.path.join is mock # check join assert _test_patching.join is mock # check that the other attributes are untouched assert _test_patching.os.rename is original_rename assert _test_patching.path.dirname is original_dirname assert _test_patching.os.path.dirname is original_dirname # Even renamed modules or objects must be patched # check renamed_os.path.join assert isinstance(_test_patching.renamed_os , _PatchedModuleObj ) assert isinstance(_test_patching.renamed_os.path , _PatchedModuleObj ) assert _test_patching.renamed_os.path.join is mock # check renamed_path.join assert isinstance(_test_patching.renamed_path , _PatchedModuleObj ) assert _test_patching.renamed_path.join is mock # check renamed_join assert _test_patching.renamed_join is mock # check that the other attributes are untouched assert _test_patching.renamed_os.rename is original_rename assert _test_patching.renamed_path.dirname is original_dirname assert _test_patching.renamed_os.path.dirname is original_dirname # check that everthing is back to normal when the patch is over assert _test_patching.os is original_os assert _test_patching.path is original_path assert _test_patching.join is original_join assert _test_patching.renamed_os is original_os assert _test_patching.renamed_path is original_path assert _test_patching.renamed_join is original_join def A__ ( ) -> Dict: """simple docstring""" assert _test_patching.open is open _UpperCAmelCase = '''__test_patch_submodule_builtin_mock__''' # _test_patching has "open" in its globals assert _test_patching.open is open with patch_submodule(_test_patching , '''open''' , SCREAMING_SNAKE_CASE_ ): assert _test_patching.open is mock # check that everthing is back to normal when the patch is over assert _test_patching.open is open def A__ ( ) -> List[Any]: """simple docstring""" _UpperCAmelCase = '''__test_patch_submodule_missing_mock__''' with patch_submodule(_test_patching , '''pandas.read_csv''' , SCREAMING_SNAKE_CASE_ ): pass def A__ ( ) -> List[Any]: """simple docstring""" _UpperCAmelCase = '''__test_patch_submodule_missing_builtin_mock__''' # _test_patching doesn't have "len" in its globals assert getattr(_test_patching , '''len''' , SCREAMING_SNAKE_CASE_ ) is None with patch_submodule(_test_patching , '''len''' , SCREAMING_SNAKE_CASE_ ): assert _test_patching.len is mock assert _test_patching.len is len def A__ ( ) -> Tuple: """simple docstring""" _UpperCAmelCase = '''__test_patch_submodule_start_and_stop_mock__''' _UpperCAmelCase = patch_submodule(_test_patching , '''open''' , SCREAMING_SNAKE_CASE_ ) assert _test_patching.open is open patch.start() assert _test_patching.open is mock patch.stop() assert _test_patching.open is open def A__ ( ) -> Union[str, Any]: """simple docstring""" from os import rename as original_rename from os.path import dirname as original_dirname from os.path import join as original_join _UpperCAmelCase = '''__test_patch_submodule_successive_join__''' _UpperCAmelCase = '''__test_patch_submodule_successive_dirname__''' _UpperCAmelCase = '''__test_patch_submodule_successive_rename__''' assert _test_patching.os.path.join is original_join assert _test_patching.os.path.dirname is original_dirname assert _test_patching.os.rename is original_rename with patch_submodule(_test_patching , '''os.path.join''' , SCREAMING_SNAKE_CASE_ ): with patch_submodule(_test_patching , '''os.rename''' , SCREAMING_SNAKE_CASE_ ): with patch_submodule(_test_patching , '''os.path.dirname''' , SCREAMING_SNAKE_CASE_ ): assert _test_patching.os.path.join is mock_join assert _test_patching.os.path.dirname is mock_dirname assert _test_patching.os.rename is mock_rename # try another order with patch_submodule(_test_patching , '''os.rename''' , SCREAMING_SNAKE_CASE_ ): with patch_submodule(_test_patching , '''os.path.join''' , SCREAMING_SNAKE_CASE_ ): with patch_submodule(_test_patching , '''os.path.dirname''' , SCREAMING_SNAKE_CASE_ ): assert _test_patching.os.path.join is mock_join assert _test_patching.os.path.dirname is mock_dirname assert _test_patching.os.rename is mock_rename assert _test_patching.os.path.join is original_join assert _test_patching.os.path.dirname is original_dirname assert _test_patching.os.rename is original_rename def A__ ( ) -> List[Any]: """simple docstring""" _UpperCAmelCase = '''__test_patch_submodule_doesnt_exist_mock__''' with patch_submodule(_test_patching , '''__module_that_doesn_exist__.__attribute_that_doesn_exist__''' , SCREAMING_SNAKE_CASE_ ): pass with patch_submodule(_test_patching , '''os.__attribute_that_doesn_exist__''' , SCREAMING_SNAKE_CASE_ ): pass
32
from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCAmelCase_ = logging.get_logger(__name__) UpperCAmelCase_ = { "tiiuae/falcon-40b": "https://huggingface.co/tiiuae/falcon-40b/resolve/main/config.json", "tiiuae/falcon-7b": "https://huggingface.co/tiiuae/falcon-7b/resolve/main/config.json", } class __UpperCamelCase ( A__ ): __A : Dict = """falcon""" __A : Any = ["""past_key_values"""] def __init__( self , _UpperCamelCase=65024 , _UpperCamelCase=4544 , _UpperCamelCase=32 , _UpperCamelCase=71 , _UpperCamelCase=1e-5 , _UpperCamelCase=0.02 , _UpperCamelCase=True , _UpperCamelCase=0.0 , _UpperCamelCase=0.0 , _UpperCamelCase=None , _UpperCamelCase=False , _UpperCamelCase=False , _UpperCamelCase=True , _UpperCamelCase=True , _UpperCamelCase=False , _UpperCamelCase=11 , _UpperCamelCase=11 , **_UpperCamelCase , ): _UpperCAmelCase = vocab_size # Backward compatibility with n_embed kwarg _UpperCAmelCase = kwargs.pop('''n_embed''' , _UpperCamelCase ) _UpperCAmelCase = hidden_size if n_embed is None else n_embed _UpperCAmelCase = num_hidden_layers _UpperCAmelCase = num_attention_heads _UpperCAmelCase = layer_norm_epsilon _UpperCAmelCase = initializer_range _UpperCAmelCase = use_cache _UpperCAmelCase = hidden_dropout _UpperCAmelCase = attention_dropout _UpperCAmelCase = bos_token_id _UpperCAmelCase = eos_token_id _UpperCAmelCase = num_attention_heads if num_kv_heads is None else num_kv_heads _UpperCAmelCase = alibi _UpperCAmelCase = new_decoder_architecture _UpperCAmelCase = multi_query # Ignored when new_decoder_architecture is True _UpperCAmelCase = parallel_attn _UpperCAmelCase = bias super().__init__(bos_token_id=_UpperCamelCase , eos_token_id=_UpperCamelCase , **_UpperCamelCase ) @property def UpperCamelCase( self ): return self.hidden_size // self.num_attention_heads @property def UpperCamelCase( self ): return not self.alibi
32
1
import os import re import warnings from shutil import copyfile from typing import TYPE_CHECKING, Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import PreTrainedTokenizer if TYPE_CHECKING: from ...tokenization_utils_base import TextInput from ...utils import logging UpperCAmelCase_ = logging.get_logger(__name__) UpperCAmelCase_ = {"vocab_file": "spiece.model"} UpperCAmelCase_ = { "vocab_file": { "t5-small": "https://huggingface.co/t5-small/resolve/main/spiece.model", "t5-base": "https://huggingface.co/t5-base/resolve/main/spiece.model", "t5-large": "https://huggingface.co/t5-large/resolve/main/spiece.model", "t5-3b": "https://huggingface.co/t5-3b/resolve/main/spiece.model", "t5-11b": "https://huggingface.co/t5-11b/resolve/main/spiece.model", } } # TODO(PVP) - this should be removed in Transformers v5 UpperCAmelCase_ = { "t5-small": 5_12, "t5-base": 5_12, "t5-large": 5_12, "t5-3b": 5_12, "t5-11b": 5_12, } UpperCAmelCase_ = "▁" class __UpperCamelCase ( A__ ): __A : Any = VOCAB_FILES_NAMES __A : Union[str, Any] = PRETRAINED_VOCAB_FILES_MAP __A : Any = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __A : Tuple = ["""input_ids""", """attention_mask"""] def __init__( self , _UpperCamelCase , _UpperCamelCase="</s>" , _UpperCamelCase="<unk>" , _UpperCamelCase="<pad>" , _UpperCamelCase=100 , _UpperCamelCase=None , _UpperCamelCase = None , _UpperCamelCase=True , **_UpperCamelCase , ): # Add extra_ids to the special token list if extra_ids > 0 and additional_special_tokens is None: _UpperCAmelCase = [f'''<extra_id_{i}>''' for i in range(_UpperCamelCase )] elif extra_ids > 0 and additional_special_tokens is not None: # Check that we have the right number of extra_id special tokens _UpperCAmelCase = len(set(filter(lambda _UpperCamelCase : bool('''extra_id''' in str(_UpperCamelCase ) ) , _UpperCamelCase ) ) ) if extra_tokens != extra_ids: raise ValueError( f'''Both extra_ids ({extra_ids}) and additional_special_tokens ({additional_special_tokens}) are''' ''' provided to T5Tokenizer. In this case the additional_special_tokens must include the extra_ids''' ''' tokens''' ) if legacy: logger.warning_once( f'''You are using the legacy behaviour of the {self.__class__}. This means that tokens that come after special tokens will not be properly handled. We recommend you to''' ''' read the related pull request available at https://github.com/huggingface/transformers/pull/24565''' ) _UpperCAmelCase = legacy _UpperCAmelCase = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( eos_token=_UpperCamelCase , unk_token=_UpperCamelCase , pad_token=_UpperCamelCase , extra_ids=_UpperCamelCase , additional_special_tokens=_UpperCamelCase , sp_model_kwargs=self.sp_model_kwargs , legacy=_UpperCamelCase , **_UpperCamelCase , ) _UpperCAmelCase = vocab_file _UpperCAmelCase = extra_ids _UpperCAmelCase = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(_UpperCamelCase ) @staticmethod def UpperCamelCase( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ): if pretrained_model_name_or_path in TaTokenizer.max_model_input_sizes: _UpperCAmelCase = TaTokenizer.max_model_input_sizes[pretrained_model_name_or_path] if init_max_model_length is not None and init_max_model_length != max_model_length: return init_max_model_length elif init_max_model_length is None: warnings.warn( '''This tokenizer was incorrectly instantiated with a model max length of''' f''' {deprecated_max_model_length} which will be corrected in Transformers v5.\nFor now, this''' ''' behavior is kept to avoid breaking backwards compatibility when padding/encoding with''' ''' `truncation is True`.\n- Be aware that you SHOULD NOT rely on''' f''' {pretrained_model_name_or_path} automatically truncating your input to''' f''' {deprecated_max_model_length} when padding/encoding.\n- If you want to encode/pad to sequences''' f''' longer than {deprecated_max_model_length} you can either instantiate this tokenizer with''' ''' `model_max_length` or pass `max_length` when encoding/padding.\n- To avoid this warning, please''' ''' instantiate this tokenizer with `model_max_length` set to your preferred value.''' , _UpperCamelCase , ) return max_model_length @property def UpperCamelCase( self ): return self.sp_model.get_piece_size() + self._extra_ids def UpperCamelCase( self ): _UpperCAmelCase = {self.convert_ids_to_tokens(_UpperCamelCase ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def UpperCamelCase( self , _UpperCamelCase , _UpperCamelCase = None , _UpperCamelCase = False ): if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=_UpperCamelCase , token_ids_a=_UpperCamelCase , already_has_special_tokens=_UpperCamelCase ) # normal case: some special tokens if token_ids_a is None: return ([0] * len(_UpperCamelCase )) + [1] return ([0] * len(_UpperCamelCase )) + [1] + ([0] * len(_UpperCamelCase )) + [1] def UpperCamelCase( self ): return list( set(filter(lambda _UpperCamelCase : bool(re.search(R'''<extra_id_\d+>''' , _UpperCamelCase ) ) is not None , self.additional_special_tokens ) ) ) def UpperCamelCase( self ): return [self._convert_token_to_id(_UpperCamelCase ) for token in self.get_sentinel_tokens()] def UpperCamelCase( self , _UpperCamelCase ): if len(_UpperCamelCase ) > 0 and token_ids[-1] == self.eos_token_id: warnings.warn( f'''This sequence already has {self.eos_token}. In future versions this behavior may lead to duplicated''' ''' eos tokens being added.''' ) return token_ids else: return token_ids + [self.eos_token_id] def UpperCamelCase( self , _UpperCamelCase , _UpperCamelCase = None ): _UpperCAmelCase = [self.eos_token_id] if token_ids_a is None: return len(token_ids_a + eos ) * [0] return len(token_ids_a + eos + token_ids_a + eos ) * [0] def UpperCamelCase( self , _UpperCamelCase , _UpperCamelCase = None ): _UpperCAmelCase = self._add_eos_if_not_present(_UpperCamelCase ) if token_ids_a is None: return token_ids_a else: _UpperCAmelCase = self._add_eos_if_not_present(_UpperCamelCase ) return token_ids_a + token_ids_a def __getstate__( self ): _UpperCAmelCase = self.__dict__.copy() _UpperCAmelCase = None return state def __setstate__( self , _UpperCamelCase ): _UpperCAmelCase = d # for backward compatibility if not hasattr(self , '''sp_model_kwargs''' ): _UpperCAmelCase = {} _UpperCAmelCase = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def UpperCamelCase( self , _UpperCamelCase , **_UpperCamelCase ): # Replace the SPIECE_UNDERLINE with a space to make sure SPIECE_UNDERLINE is only used at # the beginning of the text if not self.legacy: _UpperCAmelCase = SPIECE_UNDERLINE + text.replace(_UpperCamelCase , ''' ''' ) return super().tokenize(_UpperCamelCase , **_UpperCamelCase ) def UpperCamelCase( self , _UpperCamelCase , **_UpperCamelCase ): if not self.legacy: _UpperCAmelCase = text.startswith(_UpperCamelCase ) if is_first: _UpperCAmelCase = text[1:] _UpperCAmelCase = self.sp_model.encode(_UpperCamelCase , out_type=_UpperCamelCase ) if not self.legacy and not is_first and not text.startswith(''' ''' ) and tokens[0].startswith(_UpperCamelCase ): _UpperCAmelCase = ([tokens[0][1:]] if len(tokens[0] ) > 1 else []) + tokens[1:] return tokens def UpperCamelCase( self , _UpperCamelCase ): if token.startswith('''<extra_id_''' ): _UpperCAmelCase = re.match(R'''<extra_id_(\d+)>''' , _UpperCamelCase ) _UpperCAmelCase = int(match.group(1 ) ) return self.vocab_size - num - 1 return self.sp_model.piece_to_id(_UpperCamelCase ) def UpperCamelCase( self , _UpperCamelCase ): if index < self.sp_model.get_piece_size(): _UpperCAmelCase = self.sp_model.IdToPiece(_UpperCamelCase ) else: _UpperCAmelCase = f'''<extra_id_{self.vocab_size - 1 - index}>''' return token def UpperCamelCase( self , _UpperCamelCase ): _UpperCAmelCase = [] _UpperCAmelCase = '''''' _UpperCAmelCase = False for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: if not prev_is_special: out_string += " " out_string += self.sp_model.decode(_UpperCamelCase ) + token _UpperCAmelCase = True _UpperCAmelCase = [] else: current_sub_tokens.append(_UpperCamelCase ) _UpperCAmelCase = False out_string += self.sp_model.decode(_UpperCamelCase ) return out_string.strip() def UpperCamelCase( self , _UpperCamelCase , _UpperCamelCase = None ): if not os.path.isdir(_UpperCamelCase ): logger.error(f'''Vocabulary path ({save_directory}) should be a directory''' ) return _UpperCAmelCase = os.path.join( _UpperCamelCase , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(_UpperCamelCase ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , _UpperCamelCase ) elif not os.path.isfile(self.vocab_file ): with open(_UpperCamelCase , '''wb''' ) as fi: _UpperCAmelCase = self.sp_model.serialized_model_proto() fi.write(_UpperCamelCase ) return (out_vocab_file,)
32
from math import sqrt def A__ ( SCREAMING_SNAKE_CASE_ : int ) -> bool: """simple docstring""" if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5 , int(sqrt(SCREAMING_SNAKE_CASE_ ) + 1 ) , 6 ): if number % i == 0 or number % (i + 2) == 0: return False return True def A__ ( SCREAMING_SNAKE_CASE_ : int = 1_00_01 ) -> int: """simple docstring""" _UpperCAmelCase = 0 _UpperCAmelCase = 1 while count != nth and number < 3: number += 1 if is_prime(SCREAMING_SNAKE_CASE_ ): count += 1 while count != nth: number += 2 if is_prime(SCREAMING_SNAKE_CASE_ ): count += 1 return number if __name__ == "__main__": print(f'''{solution() = }''')
32
1
import argparse import re import requests import torch # git clone https://github.com/salesforce/BLIP.git from models.blip import blip_decoder from models.blip_itm import blip_itm from models.blip_vqa import blip_vqa from PIL import Image from torchvision import transforms from torchvision.transforms.functional import InterpolationMode from transformers import ( BertTokenizer, BlipConfig, BlipForConditionalGeneration, BlipForImageTextRetrieval, BlipForQuestionAnswering, ) def A__ ( SCREAMING_SNAKE_CASE_ : Any , SCREAMING_SNAKE_CASE_ : Tuple ) -> Dict: """simple docstring""" _UpperCAmelCase = '''https://storage.googleapis.com/sfr-vision-language-research/BLIP/demo.jpg''' _UpperCAmelCase = Image.open(requests.get(SCREAMING_SNAKE_CASE_ , stream=SCREAMING_SNAKE_CASE_ ).raw ).convert('''RGB''' ) _UpperCAmelCase = transforms.Compose( [ transforms.Resize((image_size, image_size) , interpolation=InterpolationMode.BICUBIC ), transforms.ToTensor(), transforms.Normalize((0.4_8_1_4_5_4_6_6, 0.4_5_7_8_2_7_5, 0.4_0_8_2_1_0_7_3) , (0.2_6_8_6_2_9_5_4, 0.2_6_1_3_0_2_5_8, 0.2_7_5_7_7_7_1_1) ), ] ) _UpperCAmelCase = transform(SCREAMING_SNAKE_CASE_ ).unsqueeze(0 ).to(SCREAMING_SNAKE_CASE_ ) return image def A__ ( SCREAMING_SNAKE_CASE_ : List[str] ) -> Tuple: """simple docstring""" if "visual_encoder" in key: _UpperCAmelCase = re.sub('''visual_encoder*''' , '''vision_model.encoder''' , SCREAMING_SNAKE_CASE_ ) if "blocks" in key: _UpperCAmelCase = re.sub(R'''blocks''' , '''layers''' , SCREAMING_SNAKE_CASE_ ) if "attn" in key: _UpperCAmelCase = re.sub(R'''attn''' , '''self_attn''' , SCREAMING_SNAKE_CASE_ ) if "norm1" in key: _UpperCAmelCase = re.sub(R'''norm1''' , '''layer_norm1''' , SCREAMING_SNAKE_CASE_ ) if "norm2" in key: _UpperCAmelCase = re.sub(R'''norm2''' , '''layer_norm2''' , SCREAMING_SNAKE_CASE_ ) if "encoder.norm" in key: _UpperCAmelCase = re.sub(R'''encoder.norm''' , '''post_layernorm''' , SCREAMING_SNAKE_CASE_ ) if "encoder.patch_embed.proj" in key: _UpperCAmelCase = re.sub(R'''encoder.patch_embed.proj''' , '''embeddings.patch_embedding''' , SCREAMING_SNAKE_CASE_ ) if "encoder.pos_embed" in key: _UpperCAmelCase = re.sub(R'''encoder.pos_embed''' , '''embeddings.position_embedding''' , SCREAMING_SNAKE_CASE_ ) if "encoder.cls_token" in key: _UpperCAmelCase = re.sub(R'''encoder.cls_token''' , '''embeddings.class_embedding''' , SCREAMING_SNAKE_CASE_ ) if "self_attn" in key: _UpperCAmelCase = re.sub(R'''self_attn.proj''' , '''self_attn.projection''' , SCREAMING_SNAKE_CASE_ ) return key @torch.no_grad() def A__ ( SCREAMING_SNAKE_CASE_ : Optional[int] , SCREAMING_SNAKE_CASE_ : int=None ) -> Dict: """simple docstring""" if config_path is not None: _UpperCAmelCase = BlipConfig.from_pretrained(SCREAMING_SNAKE_CASE_ ) else: _UpperCAmelCase = BlipConfig(projection_dim=5_12 , text_config={} , vision_config={} ) _UpperCAmelCase = BlipForConditionalGeneration(SCREAMING_SNAKE_CASE_ ).eval() _UpperCAmelCase = '''https://storage.googleapis.com/sfr-vision-language-research/BLIP/models/model_base_capfilt_large.pth''' _UpperCAmelCase = blip_decoder(pretrained=SCREAMING_SNAKE_CASE_ , image_size=3_84 , vit='''base''' ) _UpperCAmelCase = pt_model.eval() _UpperCAmelCase = pt_model.state_dict() for key in modified_state_dict.copy(): _UpperCAmelCase = modified_state_dict.pop(SCREAMING_SNAKE_CASE_ ) _UpperCAmelCase = rename_key(SCREAMING_SNAKE_CASE_ ) _UpperCAmelCase = value hf_model.load_state_dict(SCREAMING_SNAKE_CASE_ ) _UpperCAmelCase = 3_84 _UpperCAmelCase = load_demo_image(image_size=SCREAMING_SNAKE_CASE_ , device='''cpu''' ) _UpperCAmelCase = BertTokenizer.from_pretrained('''bert-base-uncased''' ) _UpperCAmelCase = tokenizer(['''a picture of'''] ).input_ids _UpperCAmelCase = hf_model.generate(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) assert out[0].tolist() == [3_05_22, 10_37, 38_61, 19_97, 10_37, 24_50, 35_64, 20_06, 19_96, 35_09, 20_07, 20_14, 38_99, 1_02] _UpperCAmelCase = hf_model.generate(SCREAMING_SNAKE_CASE_ ) assert out[0].tolist() == [3_05_22, 10_37, 24_50, 35_64, 20_06, 19_96, 35_09, 20_07, 20_14, 38_99, 1_02] if pytorch_dump_folder_path is not None: hf_model.save_pretrained(SCREAMING_SNAKE_CASE_ ) # model_url = 'https://storage.googleapis.com/sfr-vision-language-research/BLIP/models/model_vqa.pth' _UpperCAmelCase = ( '''https://storage.googleapis.com/sfr-vision-language-research/BLIP/models/model_base_vqa_capfilt_large.pth''' ) _UpperCAmelCase = blip_vqa(pretrained=SCREAMING_SNAKE_CASE_ , image_size=SCREAMING_SNAKE_CASE_ , vit='''base''' ) vqa_model.eval() _UpperCAmelCase = vqa_model.state_dict() for key in modified_state_dict.copy(): _UpperCAmelCase = modified_state_dict.pop(SCREAMING_SNAKE_CASE_ ) _UpperCAmelCase = rename_key(SCREAMING_SNAKE_CASE_ ) _UpperCAmelCase = value _UpperCAmelCase = BlipForQuestionAnswering(SCREAMING_SNAKE_CASE_ ) hf_vqa_model.load_state_dict(SCREAMING_SNAKE_CASE_ ) _UpperCAmelCase = ['''How many dogs are in this image?'''] _UpperCAmelCase = tokenizer(SCREAMING_SNAKE_CASE_ , return_tensors='''pt''' ).input_ids _UpperCAmelCase = hf_vqa_model.generate(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) print(tokenizer.decode(answer[0] ) ) assert tokenizer.decode(answer[0] ) == "[UNK] 1 [SEP]" if pytorch_dump_folder_path is not None: hf_vqa_model.save_pretrained(pytorch_dump_folder_path + '''_vqa''' ) _UpperCAmelCase = '''https://storage.googleapis.com/sfr-vision-language-research/BLIP/models/model_base_retrieval_coco.pth''' _UpperCAmelCase = blip_itm(pretrained=SCREAMING_SNAKE_CASE_ , image_size=SCREAMING_SNAKE_CASE_ , vit='''base''' ) itm_model.eval() _UpperCAmelCase = itm_model.state_dict() for key in modified_state_dict.copy(): _UpperCAmelCase = modified_state_dict.pop(SCREAMING_SNAKE_CASE_ ) _UpperCAmelCase = rename_key(SCREAMING_SNAKE_CASE_ ) _UpperCAmelCase = value _UpperCAmelCase = BlipForImageTextRetrieval(SCREAMING_SNAKE_CASE_ ) _UpperCAmelCase = ['''A picture of a woman with a dog sitting in a beach'''] _UpperCAmelCase = tokenizer( SCREAMING_SNAKE_CASE_ , return_tensors='''pt''' , padding='''max_length''' , truncation=SCREAMING_SNAKE_CASE_ , max_length=35 , ).input_ids hf_itm_model.load_state_dict(SCREAMING_SNAKE_CASE_ ) hf_itm_model.eval() _UpperCAmelCase = hf_itm_model(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , use_itm_head=SCREAMING_SNAKE_CASE_ ) _UpperCAmelCase = hf_itm_model(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , use_itm_head=SCREAMING_SNAKE_CASE_ ) assert out[0].item() == 0.2_1_1_0_6_8_7_4_9_4_2_7_7_9_5_4 assert torch.nn.functional.softmax(out_itm[0] , dim=1 )[:, 1].item() == 0.4_5_6_9_8_8_4_5_3_8_6_5_0_5_1_2_7 if pytorch_dump_folder_path is not None: hf_itm_model.save_pretrained(pytorch_dump_folder_path + '''_itm''' ) if __name__ == "__main__": UpperCAmelCase_ = argparse.ArgumentParser() parser.add_argument("--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model.") parser.add_argument("--config_path", default=None, type=str, help="Path to hf config.json of model to convert") UpperCAmelCase_ = parser.parse_args() convert_blip_checkpoint(args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path)
32
def A__ ( SCREAMING_SNAKE_CASE_ : int ) -> bool: """simple docstring""" if not isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): _UpperCAmelCase = F'''Input value of [number={number}] must be an integer''' raise TypeError(SCREAMING_SNAKE_CASE_ ) if number < 0: return False _UpperCAmelCase = number * number while number > 0: if number % 10 != number_square % 10: return False number //= 10 number_square //= 10 return True if __name__ == "__main__": import doctest doctest.testmod()
32
1
import unittest from transformers import LiltConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( LiltForQuestionAnswering, LiltForSequenceClassification, LiltForTokenClassification, LiltModel, ) from transformers.models.lilt.modeling_lilt import LILT_PRETRAINED_MODEL_ARCHIVE_LIST class __UpperCamelCase : def __init__( self , _UpperCamelCase , _UpperCamelCase=13 , _UpperCamelCase=7 , _UpperCamelCase=True , _UpperCamelCase=True , _UpperCamelCase=True , _UpperCamelCase=True , _UpperCamelCase=99 , _UpperCamelCase=24 , _UpperCamelCase=2 , _UpperCamelCase=6 , _UpperCamelCase=37 , _UpperCamelCase="gelu" , _UpperCamelCase=0.1 , _UpperCamelCase=0.1 , _UpperCamelCase=512 , _UpperCamelCase=16 , _UpperCamelCase=2 , _UpperCamelCase=0.02 , _UpperCamelCase=3 , _UpperCamelCase=None , _UpperCamelCase=1000 , ): _UpperCAmelCase = parent _UpperCAmelCase = batch_size _UpperCAmelCase = seq_length _UpperCAmelCase = is_training _UpperCAmelCase = use_input_mask _UpperCAmelCase = use_token_type_ids _UpperCAmelCase = use_labels _UpperCAmelCase = vocab_size _UpperCAmelCase = hidden_size _UpperCAmelCase = num_hidden_layers _UpperCAmelCase = num_attention_heads _UpperCAmelCase = intermediate_size _UpperCAmelCase = hidden_act _UpperCAmelCase = hidden_dropout_prob _UpperCAmelCase = attention_probs_dropout_prob _UpperCAmelCase = max_position_embeddings _UpperCAmelCase = type_vocab_size _UpperCAmelCase = type_sequence_label_size _UpperCAmelCase = initializer_range _UpperCAmelCase = num_labels _UpperCAmelCase = scope _UpperCAmelCase = range_bbox def UpperCamelCase( self ): _UpperCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _UpperCAmelCase = ids_tensor([self.batch_size, self.seq_length, 4] , self.range_bbox ) # Ensure that bbox is legal for i in range(bbox.shape[0] ): for j in range(bbox.shape[1] ): if bbox[i, j, 3] < bbox[i, j, 1]: _UpperCAmelCase = bbox[i, j, 3] _UpperCAmelCase = bbox[i, j, 1] _UpperCAmelCase = t if bbox[i, j, 2] < bbox[i, j, 0]: _UpperCAmelCase = bbox[i, j, 2] _UpperCAmelCase = bbox[i, j, 0] _UpperCAmelCase = t _UpperCAmelCase = None if self.use_input_mask: _UpperCAmelCase = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 ) _UpperCAmelCase = None if self.use_token_type_ids: _UpperCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) _UpperCAmelCase = None _UpperCAmelCase = None if self.use_labels: _UpperCAmelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size ) _UpperCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) _UpperCAmelCase = self.get_config() return config, input_ids, bbox, token_type_ids, input_mask, sequence_labels, token_labels def UpperCamelCase( self ): return LiltConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , ) def UpperCamelCase( self , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , ): _UpperCAmelCase = LiltModel(config=_UpperCamelCase ) model.to(_UpperCamelCase ) model.eval() _UpperCAmelCase = model(_UpperCamelCase , bbox=_UpperCamelCase , attention_mask=_UpperCamelCase , token_type_ids=_UpperCamelCase ) _UpperCAmelCase = model(_UpperCamelCase , bbox=_UpperCamelCase , token_type_ids=_UpperCamelCase ) _UpperCAmelCase = model(_UpperCamelCase , bbox=_UpperCamelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) ) def UpperCamelCase( self , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , ): _UpperCAmelCase = self.num_labels _UpperCAmelCase = LiltForTokenClassification(config=_UpperCamelCase ) model.to(_UpperCamelCase ) model.eval() _UpperCAmelCase = model( _UpperCamelCase , bbox=_UpperCamelCase , attention_mask=_UpperCamelCase , token_type_ids=_UpperCamelCase , labels=_UpperCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def UpperCamelCase( self , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , ): _UpperCAmelCase = LiltForQuestionAnswering(config=_UpperCamelCase ) model.to(_UpperCamelCase ) model.eval() _UpperCAmelCase = model( _UpperCamelCase , bbox=_UpperCamelCase , attention_mask=_UpperCamelCase , token_type_ids=_UpperCamelCase , start_positions=_UpperCamelCase , end_positions=_UpperCamelCase , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def UpperCamelCase( self ): _UpperCAmelCase = self.prepare_config_and_inputs() ( ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ) = config_and_inputs _UpperCAmelCase = { '''input_ids''': input_ids, '''bbox''': bbox, '''token_type_ids''': token_type_ids, '''attention_mask''': input_mask, } return config, inputs_dict @require_torch class __UpperCamelCase ( A__ , A__ , A__ , unittest.TestCase ): __A : Dict = ( ( LiltModel, LiltForSequenceClassification, LiltForTokenClassification, LiltForQuestionAnswering, ) if is_torch_available() else () ) __A : Optional[Any] = ( { """feature-extraction""": LiltModel, """question-answering""": LiltForQuestionAnswering, """text-classification""": LiltForSequenceClassification, """token-classification""": LiltForTokenClassification, """zero-shot""": LiltForSequenceClassification, } if is_torch_available() else {} ) __A : List[Any] = False __A : Optional[int] = False def UpperCamelCase( self , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ): return True def UpperCamelCase( self ): _UpperCAmelCase = LiltModelTester(self ) _UpperCAmelCase = ConfigTester(self , config_class=_UpperCamelCase , hidden_size=37 ) def UpperCamelCase( self ): self.config_tester.run_common_tests() def UpperCamelCase( self ): _UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_UpperCamelCase ) def UpperCamelCase( self ): _UpperCAmelCase = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: _UpperCAmelCase = type self.model_tester.create_and_check_model(*_UpperCamelCase ) def UpperCamelCase( self ): _UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*_UpperCamelCase ) def UpperCamelCase( self ): _UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*_UpperCamelCase ) @slow def UpperCamelCase( self ): for model_name in LILT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _UpperCAmelCase = LiltModel.from_pretrained(_UpperCamelCase ) self.assertIsNotNone(_UpperCamelCase ) @require_torch @slow class __UpperCamelCase ( unittest.TestCase ): def UpperCamelCase( self ): _UpperCAmelCase = LiltModel.from_pretrained('''SCUT-DLVCLab/lilt-roberta-en-base''' ).to(_UpperCamelCase ) _UpperCAmelCase = torch.tensor([[1, 2]] , device=_UpperCamelCase ) _UpperCAmelCase = torch.tensor([[[1, 2, 3, 4], [5, 6, 7, 8]]] , device=_UpperCamelCase ) # forward pass with torch.no_grad(): _UpperCAmelCase = model(input_ids=_UpperCamelCase , bbox=_UpperCamelCase ) _UpperCAmelCase = torch.Size([1, 2, 768] ) _UpperCAmelCase = torch.tensor( [[-0.0653, 0.0950, -0.0061], [-0.0545, 0.0926, -0.0324]] , device=_UpperCamelCase , ) self.assertTrue(outputs.last_hidden_state.shape , _UpperCamelCase ) self.assertTrue(torch.allclose(outputs.last_hidden_state[0, :, :3] , _UpperCamelCase , atol=1e-3 ) )
32
from dataclasses import dataclass, field from typing import ClassVar, Dict from ..features import Features, Value from .base import TaskTemplate @dataclass(frozen=A__ ) class __UpperCamelCase ( A__ ): __A : str = field(default="""language-modeling""" , metadata={"""include_in_asdict_even_if_is_default""": True} ) __A : ClassVar[Features] = Features({"""text""": Value("""string""" )} ) __A : ClassVar[Features] = Features({} ) __A : str = "text" @property def UpperCamelCase( self ): return {self.text_column: "text"}
32
1
import os import pytest from transformers.dynamic_module_utils import get_imports UpperCAmelCase_ = "\nimport os\n" UpperCAmelCase_ = "\ndef foo():\n import os\n return False\n" UpperCAmelCase_ = "\ndef foo():\n def bar():\n if True:\n import os\n return False\n return bar()\n" UpperCAmelCase_ = "\nimport os\n\ntry:\n import bar\nexcept ImportError:\n raise ValueError()\n" UpperCAmelCase_ = "\nimport os\n\ndef foo():\n try:\n import bar\n except ImportError:\n raise ValueError()\n" UpperCAmelCase_ = "\nimport os\n\ntry:\n import bar\nexcept (ImportError, AttributeError):\n raise ValueError()\n" UpperCAmelCase_ = "\nimport os\n\ntry:\n import bar\nexcept ImportError as e:\n raise ValueError()\n" UpperCAmelCase_ = "\nimport os\n\ntry:\n import bar\nexcept:\n raise ValueError()\n" UpperCAmelCase_ = "\nimport os\n\ntry:\n import bar\n import baz\nexcept ImportError:\n raise ValueError()\n" UpperCAmelCase_ = "\nimport os\n\ntry:\n import bar\n import baz\nexcept ImportError:\n x = 1\n raise ValueError()\n" UpperCAmelCase_ = [ TOP_LEVEL_IMPORT, IMPORT_IN_FUNCTION, DEEPLY_NESTED_IMPORT, TOP_LEVEL_TRY_IMPORT, GENERIC_EXCEPT_IMPORT, MULTILINE_TRY_IMPORT, MULTILINE_BOTH_IMPORT, MULTIPLE_EXCEPTS_IMPORT, EXCEPT_AS_IMPORT, TRY_IMPORT_IN_FUNCTION, ] @pytest.mark.parametrize('''case''' , SCREAMING_SNAKE_CASE_ ) def A__ ( SCREAMING_SNAKE_CASE_ : Optional[Any] , SCREAMING_SNAKE_CASE_ : Optional[int] ) -> Optional[int]: """simple docstring""" _UpperCAmelCase = os.path.join(SCREAMING_SNAKE_CASE_ , '''test_file.py''' ) with open(SCREAMING_SNAKE_CASE_ , '''w''' ) as _tmp_file: _tmp_file.write(SCREAMING_SNAKE_CASE_ ) _UpperCAmelCase = get_imports(SCREAMING_SNAKE_CASE_ ) assert parsed_imports == ["os"]
32
import os import re import warnings from shutil import copyfile from typing import TYPE_CHECKING, Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import PreTrainedTokenizer if TYPE_CHECKING: from ...tokenization_utils_base import TextInput from ...utils import logging UpperCAmelCase_ = logging.get_logger(__name__) UpperCAmelCase_ = {"vocab_file": "spiece.model"} UpperCAmelCase_ = { "vocab_file": { "t5-small": "https://huggingface.co/t5-small/resolve/main/spiece.model", "t5-base": "https://huggingface.co/t5-base/resolve/main/spiece.model", "t5-large": "https://huggingface.co/t5-large/resolve/main/spiece.model", "t5-3b": "https://huggingface.co/t5-3b/resolve/main/spiece.model", "t5-11b": "https://huggingface.co/t5-11b/resolve/main/spiece.model", } } # TODO(PVP) - this should be removed in Transformers v5 UpperCAmelCase_ = { "t5-small": 5_12, "t5-base": 5_12, "t5-large": 5_12, "t5-3b": 5_12, "t5-11b": 5_12, } UpperCAmelCase_ = "▁" class __UpperCamelCase ( A__ ): __A : Any = VOCAB_FILES_NAMES __A : Union[str, Any] = PRETRAINED_VOCAB_FILES_MAP __A : Any = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __A : Tuple = ["""input_ids""", """attention_mask"""] def __init__( self , _UpperCamelCase , _UpperCamelCase="</s>" , _UpperCamelCase="<unk>" , _UpperCamelCase="<pad>" , _UpperCamelCase=100 , _UpperCamelCase=None , _UpperCamelCase = None , _UpperCamelCase=True , **_UpperCamelCase , ): # Add extra_ids to the special token list if extra_ids > 0 and additional_special_tokens is None: _UpperCAmelCase = [f'''<extra_id_{i}>''' for i in range(_UpperCamelCase )] elif extra_ids > 0 and additional_special_tokens is not None: # Check that we have the right number of extra_id special tokens _UpperCAmelCase = len(set(filter(lambda _UpperCamelCase : bool('''extra_id''' in str(_UpperCamelCase ) ) , _UpperCamelCase ) ) ) if extra_tokens != extra_ids: raise ValueError( f'''Both extra_ids ({extra_ids}) and additional_special_tokens ({additional_special_tokens}) are''' ''' provided to T5Tokenizer. In this case the additional_special_tokens must include the extra_ids''' ''' tokens''' ) if legacy: logger.warning_once( f'''You are using the legacy behaviour of the {self.__class__}. This means that tokens that come after special tokens will not be properly handled. We recommend you to''' ''' read the related pull request available at https://github.com/huggingface/transformers/pull/24565''' ) _UpperCAmelCase = legacy _UpperCAmelCase = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( eos_token=_UpperCamelCase , unk_token=_UpperCamelCase , pad_token=_UpperCamelCase , extra_ids=_UpperCamelCase , additional_special_tokens=_UpperCamelCase , sp_model_kwargs=self.sp_model_kwargs , legacy=_UpperCamelCase , **_UpperCamelCase , ) _UpperCAmelCase = vocab_file _UpperCAmelCase = extra_ids _UpperCAmelCase = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(_UpperCamelCase ) @staticmethod def UpperCamelCase( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ): if pretrained_model_name_or_path in TaTokenizer.max_model_input_sizes: _UpperCAmelCase = TaTokenizer.max_model_input_sizes[pretrained_model_name_or_path] if init_max_model_length is not None and init_max_model_length != max_model_length: return init_max_model_length elif init_max_model_length is None: warnings.warn( '''This tokenizer was incorrectly instantiated with a model max length of''' f''' {deprecated_max_model_length} which will be corrected in Transformers v5.\nFor now, this''' ''' behavior is kept to avoid breaking backwards compatibility when padding/encoding with''' ''' `truncation is True`.\n- Be aware that you SHOULD NOT rely on''' f''' {pretrained_model_name_or_path} automatically truncating your input to''' f''' {deprecated_max_model_length} when padding/encoding.\n- If you want to encode/pad to sequences''' f''' longer than {deprecated_max_model_length} you can either instantiate this tokenizer with''' ''' `model_max_length` or pass `max_length` when encoding/padding.\n- To avoid this warning, please''' ''' instantiate this tokenizer with `model_max_length` set to your preferred value.''' , _UpperCamelCase , ) return max_model_length @property def UpperCamelCase( self ): return self.sp_model.get_piece_size() + self._extra_ids def UpperCamelCase( self ): _UpperCAmelCase = {self.convert_ids_to_tokens(_UpperCamelCase ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def UpperCamelCase( self , _UpperCamelCase , _UpperCamelCase = None , _UpperCamelCase = False ): if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=_UpperCamelCase , token_ids_a=_UpperCamelCase , already_has_special_tokens=_UpperCamelCase ) # normal case: some special tokens if token_ids_a is None: return ([0] * len(_UpperCamelCase )) + [1] return ([0] * len(_UpperCamelCase )) + [1] + ([0] * len(_UpperCamelCase )) + [1] def UpperCamelCase( self ): return list( set(filter(lambda _UpperCamelCase : bool(re.search(R'''<extra_id_\d+>''' , _UpperCamelCase ) ) is not None , self.additional_special_tokens ) ) ) def UpperCamelCase( self ): return [self._convert_token_to_id(_UpperCamelCase ) for token in self.get_sentinel_tokens()] def UpperCamelCase( self , _UpperCamelCase ): if len(_UpperCamelCase ) > 0 and token_ids[-1] == self.eos_token_id: warnings.warn( f'''This sequence already has {self.eos_token}. In future versions this behavior may lead to duplicated''' ''' eos tokens being added.''' ) return token_ids else: return token_ids + [self.eos_token_id] def UpperCamelCase( self , _UpperCamelCase , _UpperCamelCase = None ): _UpperCAmelCase = [self.eos_token_id] if token_ids_a is None: return len(token_ids_a + eos ) * [0] return len(token_ids_a + eos + token_ids_a + eos ) * [0] def UpperCamelCase( self , _UpperCamelCase , _UpperCamelCase = None ): _UpperCAmelCase = self._add_eos_if_not_present(_UpperCamelCase ) if token_ids_a is None: return token_ids_a else: _UpperCAmelCase = self._add_eos_if_not_present(_UpperCamelCase ) return token_ids_a + token_ids_a def __getstate__( self ): _UpperCAmelCase = self.__dict__.copy() _UpperCAmelCase = None return state def __setstate__( self , _UpperCamelCase ): _UpperCAmelCase = d # for backward compatibility if not hasattr(self , '''sp_model_kwargs''' ): _UpperCAmelCase = {} _UpperCAmelCase = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def UpperCamelCase( self , _UpperCamelCase , **_UpperCamelCase ): # Replace the SPIECE_UNDERLINE with a space to make sure SPIECE_UNDERLINE is only used at # the beginning of the text if not self.legacy: _UpperCAmelCase = SPIECE_UNDERLINE + text.replace(_UpperCamelCase , ''' ''' ) return super().tokenize(_UpperCamelCase , **_UpperCamelCase ) def UpperCamelCase( self , _UpperCamelCase , **_UpperCamelCase ): if not self.legacy: _UpperCAmelCase = text.startswith(_UpperCamelCase ) if is_first: _UpperCAmelCase = text[1:] _UpperCAmelCase = self.sp_model.encode(_UpperCamelCase , out_type=_UpperCamelCase ) if not self.legacy and not is_first and not text.startswith(''' ''' ) and tokens[0].startswith(_UpperCamelCase ): _UpperCAmelCase = ([tokens[0][1:]] if len(tokens[0] ) > 1 else []) + tokens[1:] return tokens def UpperCamelCase( self , _UpperCamelCase ): if token.startswith('''<extra_id_''' ): _UpperCAmelCase = re.match(R'''<extra_id_(\d+)>''' , _UpperCamelCase ) _UpperCAmelCase = int(match.group(1 ) ) return self.vocab_size - num - 1 return self.sp_model.piece_to_id(_UpperCamelCase ) def UpperCamelCase( self , _UpperCamelCase ): if index < self.sp_model.get_piece_size(): _UpperCAmelCase = self.sp_model.IdToPiece(_UpperCamelCase ) else: _UpperCAmelCase = f'''<extra_id_{self.vocab_size - 1 - index}>''' return token def UpperCamelCase( self , _UpperCamelCase ): _UpperCAmelCase = [] _UpperCAmelCase = '''''' _UpperCAmelCase = False for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: if not prev_is_special: out_string += " " out_string += self.sp_model.decode(_UpperCamelCase ) + token _UpperCAmelCase = True _UpperCAmelCase = [] else: current_sub_tokens.append(_UpperCamelCase ) _UpperCAmelCase = False out_string += self.sp_model.decode(_UpperCamelCase ) return out_string.strip() def UpperCamelCase( self , _UpperCamelCase , _UpperCamelCase = None ): if not os.path.isdir(_UpperCamelCase ): logger.error(f'''Vocabulary path ({save_directory}) should be a directory''' ) return _UpperCAmelCase = os.path.join( _UpperCamelCase , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(_UpperCamelCase ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , _UpperCamelCase ) elif not os.path.isfile(self.vocab_file ): with open(_UpperCamelCase , '''wb''' ) as fi: _UpperCAmelCase = self.sp_model.serialized_model_proto() fi.write(_UpperCamelCase ) return (out_vocab_file,)
32
1
from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCAmelCase_ = logging.get_logger(__name__) UpperCAmelCase_ = { "microsoft/biogpt": "https://huggingface.co/microsoft/biogpt/resolve/main/config.json", # See all BioGPT models at https://huggingface.co/models?filter=biogpt } class __UpperCamelCase ( A__ ): __A : Any = """biogpt""" def __init__( self , _UpperCamelCase=42384 , _UpperCamelCase=1024 , _UpperCamelCase=24 , _UpperCamelCase=16 , _UpperCamelCase=4096 , _UpperCamelCase="gelu" , _UpperCamelCase=0.1 , _UpperCamelCase=0.1 , _UpperCamelCase=1024 , _UpperCamelCase=0.02 , _UpperCamelCase=1e-12 , _UpperCamelCase=True , _UpperCamelCase=True , _UpperCamelCase=0.0 , _UpperCamelCase=0.0 , _UpperCamelCase=1 , _UpperCamelCase=0 , _UpperCamelCase=2 , **_UpperCamelCase , ): _UpperCAmelCase = vocab_size _UpperCAmelCase = max_position_embeddings _UpperCAmelCase = hidden_size _UpperCAmelCase = num_hidden_layers _UpperCAmelCase = num_attention_heads _UpperCAmelCase = intermediate_size _UpperCAmelCase = hidden_act _UpperCAmelCase = hidden_dropout_prob _UpperCAmelCase = attention_probs_dropout_prob _UpperCAmelCase = initializer_range _UpperCAmelCase = layer_norm_eps _UpperCAmelCase = scale_embedding _UpperCAmelCase = use_cache _UpperCAmelCase = layerdrop _UpperCAmelCase = activation_dropout super().__init__(pad_token_id=_UpperCamelCase , bos_token_id=_UpperCamelCase , eos_token_id=_UpperCamelCase , **_UpperCamelCase )
32
from __future__ import annotations def A__ ( SCREAMING_SNAKE_CASE_ : int ) -> bool: """simple docstring""" _UpperCAmelCase = str(SCREAMING_SNAKE_CASE_ ) return len(SCREAMING_SNAKE_CASE_ ) == 9 and set(SCREAMING_SNAKE_CASE_ ) == set('''123456789''' ) def A__ ( ) -> int | None: """simple docstring""" for base_num in range(99_99 , 49_99 , -1 ): _UpperCAmelCase = 10_00_02 * base_num if is_9_pandigital(SCREAMING_SNAKE_CASE_ ): return candidate for base_num in range(3_33 , 99 , -1 ): _UpperCAmelCase = 1_00_20_03 * base_num if is_9_pandigital(SCREAMING_SNAKE_CASE_ ): return candidate return None if __name__ == "__main__": print(f'''{solution() = }''')
32
1
import importlib import json import os from collections import OrderedDict from typing import Dict, Optional, Union # Build the list of all image processors from ...configuration_utils import PretrainedConfig from ...dynamic_module_utils import get_class_from_dynamic_module, resolve_trust_remote_code from ...image_processing_utils import ImageProcessingMixin from ...utils import CONFIG_NAME, IMAGE_PROCESSOR_NAME, get_file_from_repo, logging from .auto_factory import _LazyAutoMapping from .configuration_auto import ( CONFIG_MAPPING_NAMES, AutoConfig, model_type_to_module_name, replace_list_option_in_docstrings, ) UpperCAmelCase_ = logging.get_logger(__name__) UpperCAmelCase_ = OrderedDict( [ ("align", "EfficientNetImageProcessor"), ("beit", "BeitImageProcessor"), ("bit", "BitImageProcessor"), ("blip", "BlipImageProcessor"), ("blip-2", "BlipImageProcessor"), ("bridgetower", "BridgeTowerImageProcessor"), ("chinese_clip", "ChineseCLIPImageProcessor"), ("clip", "CLIPImageProcessor"), ("clipseg", "ViTImageProcessor"), ("conditional_detr", "ConditionalDetrImageProcessor"), ("convnext", "ConvNextImageProcessor"), ("convnextv2", "ConvNextImageProcessor"), ("cvt", "ConvNextImageProcessor"), ("data2vec-vision", "BeitImageProcessor"), ("deformable_detr", "DeformableDetrImageProcessor"), ("deit", "DeiTImageProcessor"), ("deta", "DetaImageProcessor"), ("detr", "DetrImageProcessor"), ("dinat", "ViTImageProcessor"), ("donut-swin", "DonutImageProcessor"), ("dpt", "DPTImageProcessor"), ("efficientformer", "EfficientFormerImageProcessor"), ("efficientnet", "EfficientNetImageProcessor"), ("flava", "FlavaImageProcessor"), ("focalnet", "BitImageProcessor"), ("git", "CLIPImageProcessor"), ("glpn", "GLPNImageProcessor"), ("groupvit", "CLIPImageProcessor"), ("imagegpt", "ImageGPTImageProcessor"), ("instructblip", "BlipImageProcessor"), ("layoutlmv2", "LayoutLMv2ImageProcessor"), ("layoutlmv3", "LayoutLMv3ImageProcessor"), ("levit", "LevitImageProcessor"), ("mask2former", "Mask2FormerImageProcessor"), ("maskformer", "MaskFormerImageProcessor"), ("mgp-str", "ViTImageProcessor"), ("mobilenet_v1", "MobileNetV1ImageProcessor"), ("mobilenet_v2", "MobileNetV2ImageProcessor"), ("mobilevit", "MobileViTImageProcessor"), ("mobilevit", "MobileViTImageProcessor"), ("mobilevitv2", "MobileViTImageProcessor"), ("nat", "ViTImageProcessor"), ("oneformer", "OneFormerImageProcessor"), ("owlvit", "OwlViTImageProcessor"), ("perceiver", "PerceiverImageProcessor"), ("pix2struct", "Pix2StructImageProcessor"), ("poolformer", "PoolFormerImageProcessor"), ("regnet", "ConvNextImageProcessor"), ("resnet", "ConvNextImageProcessor"), ("sam", "SamImageProcessor"), ("segformer", "SegformerImageProcessor"), ("swiftformer", "ViTImageProcessor"), ("swin", "ViTImageProcessor"), ("swin2sr", "Swin2SRImageProcessor"), ("swinv2", "ViTImageProcessor"), ("table-transformer", "DetrImageProcessor"), ("timesformer", "VideoMAEImageProcessor"), ("tvlt", "TvltImageProcessor"), ("upernet", "SegformerImageProcessor"), ("van", "ConvNextImageProcessor"), ("videomae", "VideoMAEImageProcessor"), ("vilt", "ViltImageProcessor"), ("vit", "ViTImageProcessor"), ("vit_hybrid", "ViTHybridImageProcessor"), ("vit_mae", "ViTImageProcessor"), ("vit_msn", "ViTImageProcessor"), ("xclip", "CLIPImageProcessor"), ("yolos", "YolosImageProcessor"), ] ) UpperCAmelCase_ = _LazyAutoMapping(CONFIG_MAPPING_NAMES, IMAGE_PROCESSOR_MAPPING_NAMES) def A__ ( SCREAMING_SNAKE_CASE_ : str ) -> Optional[int]: """simple docstring""" for module_name, extractors in IMAGE_PROCESSOR_MAPPING_NAMES.items(): if class_name in extractors: _UpperCAmelCase = model_type_to_module_name(SCREAMING_SNAKE_CASE_ ) _UpperCAmelCase = importlib.import_module(F'''.{module_name}''' , '''transformers.models''' ) try: return getattr(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) except AttributeError: continue for _, extractor in IMAGE_PROCESSOR_MAPPING._extra_content.items(): if getattr(SCREAMING_SNAKE_CASE_ , '''__name__''' , SCREAMING_SNAKE_CASE_ ) == class_name: return extractor # We did not fine the class, but maybe it's because a dep is missing. In that case, the class will be in the main # init and we return the proper dummy to get an appropriate error message. _UpperCAmelCase = importlib.import_module('''transformers''' ) if hasattr(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): return getattr(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) return None def A__ ( SCREAMING_SNAKE_CASE_ : Union[str, os.PathLike] , SCREAMING_SNAKE_CASE_ : Optional[Union[str, os.PathLike]] = None , SCREAMING_SNAKE_CASE_ : bool = False , SCREAMING_SNAKE_CASE_ : bool = False , SCREAMING_SNAKE_CASE_ : Optional[Dict[str, str]] = None , SCREAMING_SNAKE_CASE_ : Optional[Union[bool, str]] = None , SCREAMING_SNAKE_CASE_ : Optional[str] = None , SCREAMING_SNAKE_CASE_ : bool = False , **SCREAMING_SNAKE_CASE_ : List[Any] , ) -> Tuple: """simple docstring""" _UpperCAmelCase = get_file_from_repo( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , cache_dir=SCREAMING_SNAKE_CASE_ , force_download=SCREAMING_SNAKE_CASE_ , resume_download=SCREAMING_SNAKE_CASE_ , proxies=SCREAMING_SNAKE_CASE_ , use_auth_token=SCREAMING_SNAKE_CASE_ , revision=SCREAMING_SNAKE_CASE_ , local_files_only=SCREAMING_SNAKE_CASE_ , ) if resolved_config_file is None: logger.info( '''Could not locate the image processor configuration file, will try to use the model config instead.''' ) return {} with open(SCREAMING_SNAKE_CASE_ , encoding='''utf-8''' ) as reader: return json.load(SCREAMING_SNAKE_CASE_ ) class __UpperCamelCase : def __init__( self ): raise EnvironmentError( '''AutoImageProcessor is designed to be instantiated ''' '''using the `AutoImageProcessor.from_pretrained(pretrained_model_name_or_path)` method.''' ) @classmethod @replace_list_option_in_docstrings(_UpperCamelCase ) def UpperCamelCase( cls , _UpperCamelCase , **_UpperCamelCase ): _UpperCAmelCase = kwargs.pop('''config''' , _UpperCamelCase ) _UpperCAmelCase = kwargs.pop('''trust_remote_code''' , _UpperCamelCase ) _UpperCAmelCase = True _UpperCAmelCase , _UpperCAmelCase = ImageProcessingMixin.get_image_processor_dict(_UpperCamelCase , **_UpperCamelCase ) _UpperCAmelCase = config_dict.get('''image_processor_type''' , _UpperCamelCase ) _UpperCAmelCase = None if "AutoImageProcessor" in config_dict.get('''auto_map''' , {} ): _UpperCAmelCase = config_dict['''auto_map''']['''AutoImageProcessor'''] # If we still don't have the image processor class, check if we're loading from a previous feature extractor config # and if so, infer the image processor class from there. if image_processor_class is None and image_processor_auto_map is None: _UpperCAmelCase = config_dict.pop('''feature_extractor_type''' , _UpperCamelCase ) if feature_extractor_class is not None: logger.warning( '''Could not find image processor class in the image processor config or the model config. Loading''' ''' based on pattern matching with the model\'s feature extractor configuration.''' ) _UpperCAmelCase = feature_extractor_class.replace('''FeatureExtractor''' , '''ImageProcessor''' ) if "AutoFeatureExtractor" in config_dict.get('''auto_map''' , {} ): _UpperCAmelCase = config_dict['''auto_map''']['''AutoFeatureExtractor'''] _UpperCAmelCase = feature_extractor_auto_map.replace('''FeatureExtractor''' , '''ImageProcessor''' ) logger.warning( '''Could not find image processor auto map in the image processor config or the model config.''' ''' Loading based on pattern matching with the model\'s feature extractor configuration.''' ) # If we don't find the image processor class in the image processor config, let's try the model config. if image_processor_class is None and image_processor_auto_map is None: if not isinstance(_UpperCamelCase , _UpperCamelCase ): _UpperCAmelCase = AutoConfig.from_pretrained(_UpperCamelCase , **_UpperCamelCase ) # It could be in `config.image_processor_type`` _UpperCAmelCase = getattr(_UpperCamelCase , '''image_processor_type''' , _UpperCamelCase ) if hasattr(_UpperCamelCase , '''auto_map''' ) and "AutoImageProcessor" in config.auto_map: _UpperCAmelCase = config.auto_map['''AutoImageProcessor'''] if image_processor_class is not None: _UpperCAmelCase = image_processor_class_from_name(_UpperCamelCase ) _UpperCAmelCase = image_processor_auto_map is not None _UpperCAmelCase = image_processor_class is not None or type(_UpperCamelCase ) in IMAGE_PROCESSOR_MAPPING _UpperCAmelCase = resolve_trust_remote_code( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) if has_remote_code and trust_remote_code: _UpperCAmelCase = get_class_from_dynamic_module( _UpperCamelCase , _UpperCamelCase , **_UpperCamelCase ) _UpperCAmelCase = kwargs.pop('''code_revision''' , _UpperCamelCase ) if os.path.isdir(_UpperCamelCase ): image_processor_class.register_for_auto_class() return image_processor_class.from_dict(_UpperCamelCase , **_UpperCamelCase ) elif image_processor_class is not None: return image_processor_class.from_dict(_UpperCamelCase , **_UpperCamelCase ) # Last try: we use the IMAGE_PROCESSOR_MAPPING. elif type(_UpperCamelCase ) in IMAGE_PROCESSOR_MAPPING: _UpperCAmelCase = IMAGE_PROCESSOR_MAPPING[type(_UpperCamelCase )] return image_processor_class.from_dict(_UpperCamelCase , **_UpperCamelCase ) raise ValueError( f'''Unrecognized image processor in {pretrained_model_name_or_path}. Should have a ''' f'''`image_processor_type` key in its {IMAGE_PROCESSOR_NAME} of {CONFIG_NAME}, or one of the following ''' f'''`model_type` keys in its {CONFIG_NAME}: {', '.join(c for c in IMAGE_PROCESSOR_MAPPING_NAMES.keys() )}''' ) @staticmethod def UpperCamelCase( _UpperCamelCase , _UpperCamelCase ): IMAGE_PROCESSOR_MAPPING.register(_UpperCamelCase , _UpperCamelCase )
32
import numpy as np def A__ ( SCREAMING_SNAKE_CASE_ : np.ndarray , SCREAMING_SNAKE_CASE_ : float ) -> np.ndarray: """simple docstring""" return np.where(vector > 0 , SCREAMING_SNAKE_CASE_ , (alpha * (np.exp(SCREAMING_SNAKE_CASE_ ) - 1)) ) if __name__ == "__main__": import doctest doctest.testmod()
32
1