code
stringlengths
82
54.1k
code_codestyle
int64
0
699
style_context
stringlengths
111
35.6k
style_context_codestyle
int64
0
699
label
int64
0
1
import gc import random import unittest import numpy as np import torch from diffusers import DDIMScheduler, KandinskyVaaPipeline, KandinskyVaaPriorPipeline, UNetaDConditionModel, VQModel from diffusers.utils import floats_tensor, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference enable_full_determinism() class lowerCamelCase_ ( lowerCamelCase , unittest.TestCase ): a__ = KandinskyVaaPipeline a__ = [ '''image_embeds''', '''negative_image_embeds''', ] a__ = ['''image_embeds''', '''negative_image_embeds'''] a__ = [ '''generator''', '''height''', '''width''', '''latents''', '''guidance_scale''', '''num_inference_steps''', '''return_dict''', '''guidance_scale''', '''num_images_per_prompt''', '''output_type''', '''return_dict''', ] a__ = False @property def A ( self ): """simple docstring""" return 3_2 @property def A ( self ): """simple docstring""" return 3_2 @property def A ( self ): """simple docstring""" return self.time_input_dim @property def A ( self ): """simple docstring""" return self.time_input_dim * 4 @property def A ( self ): """simple docstring""" return 1_0_0 @property def A ( self ): """simple docstring""" torch.manual_seed(0 ) __magic_name__ :str = { '''in_channels''': 4, # Out channels is double in channels because predicts mean and variance '''out_channels''': 8, '''addition_embed_type''': '''image''', '''down_block_types''': ('''ResnetDownsampleBlock2D''', '''SimpleCrossAttnDownBlock2D'''), '''up_block_types''': ('''SimpleCrossAttnUpBlock2D''', '''ResnetUpsampleBlock2D'''), '''mid_block_type''': '''UNetMidBlock2DSimpleCrossAttn''', '''block_out_channels''': (self.block_out_channels_a, self.block_out_channels_a * 2), '''layers_per_block''': 1, '''encoder_hid_dim''': self.text_embedder_hidden_size, '''encoder_hid_dim_type''': '''image_proj''', '''cross_attention_dim''': self.cross_attention_dim, '''attention_head_dim''': 4, '''resnet_time_scale_shift''': '''scale_shift''', '''class_embed_type''': None, } __magic_name__ :Optional[int] = UNetaDConditionModel(**__lowerCAmelCase ) return model @property def A ( self ): """simple docstring""" return { "block_out_channels": [3_2, 6_4], "down_block_types": ["DownEncoderBlock2D", "AttnDownEncoderBlock2D"], "in_channels": 3, "latent_channels": 4, "layers_per_block": 1, "norm_num_groups": 8, "norm_type": "spatial", "num_vq_embeddings": 1_2, "out_channels": 3, "up_block_types": [ "AttnUpDecoderBlock2D", "UpDecoderBlock2D", ], "vq_embed_dim": 4, } @property def A ( self ): """simple docstring""" torch.manual_seed(0 ) __magic_name__ :int = VQModel(**self.dummy_movq_kwargs ) return model def A ( self ): """simple docstring""" __magic_name__ :Dict = self.dummy_unet __magic_name__ :str = self.dummy_movq __magic_name__ :Tuple = DDIMScheduler( num_train_timesteps=1_0_0_0 , beta_schedule='''linear''' , beta_start=0.00085 , beta_end=0.012 , clip_sample=__lowerCAmelCase , set_alpha_to_one=__lowerCAmelCase , steps_offset=1 , prediction_type='''epsilon''' , thresholding=__lowerCAmelCase , ) __magic_name__ :Dict = { '''unet''': unet, '''scheduler''': scheduler, '''movq''': movq, } return components def A ( self , __lowerCAmelCase , __lowerCAmelCase=0 ): """simple docstring""" __magic_name__ :int = floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(__lowerCAmelCase ) ).to(__lowerCAmelCase ) __magic_name__ :Optional[int] = floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(seed + 1 ) ).to( __lowerCAmelCase ) if str(__lowerCAmelCase ).startswith('''mps''' ): __magic_name__ :Dict = torch.manual_seed(__lowerCAmelCase ) else: __magic_name__ :Any = torch.Generator(device=__lowerCAmelCase ).manual_seed(__lowerCAmelCase ) __magic_name__ :Union[str, Any] = { '''image_embeds''': image_embeds, '''negative_image_embeds''': negative_image_embeds, '''generator''': generator, '''height''': 6_4, '''width''': 6_4, '''guidance_scale''': 4.0, '''num_inference_steps''': 2, '''output_type''': '''np''', } return inputs def A ( self ): """simple docstring""" __magic_name__ :Dict = '''cpu''' __magic_name__ :int = self.get_dummy_components() __magic_name__ :List[Any] = self.pipeline_class(**__lowerCAmelCase ) __magic_name__ :Optional[int] = pipe.to(__lowerCAmelCase ) pipe.set_progress_bar_config(disable=__lowerCAmelCase ) __magic_name__ :Optional[int] = pipe(**self.get_dummy_inputs(__lowerCAmelCase ) ) __magic_name__ :Optional[int] = output.images __magic_name__ :Optional[int] = pipe( **self.get_dummy_inputs(__lowerCAmelCase ) , return_dict=__lowerCAmelCase , )[0] __magic_name__ :List[Any] = image[0, -3:, -3:, -1] __magic_name__ :Dict = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 6_4, 6_4, 3) __magic_name__ :str = np.array( [0.6237976, 1.0, 0.36441332, 1.0, 0.70639634, 0.29877186, 0.85652125, 0.5216843, 0.54454046] ) assert ( np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 ), F''' expected_slice {expected_slice}, but got {image_slice.flatten()}''' assert ( np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 ), F''' expected_slice {expected_slice}, but got {image_from_tuple_slice.flatten()}''' @slow @require_torch_gpu class lowerCamelCase_ ( unittest.TestCase ): def A ( self ): """simple docstring""" # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def A ( self ): """simple docstring""" __magic_name__ :Tuple = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/kandinskyv22/kandinskyv22_text2img_cat_fp16.npy''' ) __magic_name__ :Dict = KandinskyVaaPriorPipeline.from_pretrained( '''kandinsky-community/kandinsky-2-2-prior''' , torch_dtype=torch.floataa ) pipe_prior.to(__lowerCAmelCase ) __magic_name__ :Any = KandinskyVaaPipeline.from_pretrained( '''kandinsky-community/kandinsky-2-2-decoder''' , torch_dtype=torch.floataa ) __magic_name__ :List[str] = pipeline.to(__lowerCAmelCase ) pipeline.set_progress_bar_config(disable=__lowerCAmelCase ) __magic_name__ :int = '''red cat, 4k photo''' __magic_name__ :int = torch.Generator(device='''cuda''' ).manual_seed(0 ) __magic_name__ , __magic_name__ :int = pipe_prior( __lowerCAmelCase , generator=__lowerCAmelCase , num_inference_steps=5 , negative_prompt='''''' , ).to_tuple() __magic_name__ :int = torch.Generator(device='''cuda''' ).manual_seed(0 ) __magic_name__ :Optional[Any] = pipeline( image_embeds=__lowerCAmelCase , negative_image_embeds=__lowerCAmelCase , generator=__lowerCAmelCase , num_inference_steps=1_0_0 , output_type='''np''' , ) __magic_name__ :Union[str, Any] = output.images[0] assert image.shape == (5_1_2, 5_1_2, 3) assert_mean_pixel_difference(__lowerCAmelCase , __lowerCAmelCase )
0
import unittest from transformers import LiltConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( LiltForQuestionAnswering, LiltForSequenceClassification, LiltForTokenClassification, LiltModel, ) from transformers.models.lilt.modeling_lilt import LILT_PRETRAINED_MODEL_ARCHIVE_LIST class __UpperCamelCase : def __init__( self , _UpperCamelCase , _UpperCamelCase=13 , _UpperCamelCase=7 , _UpperCamelCase=True , _UpperCamelCase=True , _UpperCamelCase=True , _UpperCamelCase=True , _UpperCamelCase=99 , _UpperCamelCase=24 , _UpperCamelCase=2 , _UpperCamelCase=6 , _UpperCamelCase=37 , _UpperCamelCase="gelu" , _UpperCamelCase=0.1 , _UpperCamelCase=0.1 , _UpperCamelCase=512 , _UpperCamelCase=16 , _UpperCamelCase=2 , _UpperCamelCase=0.02 , _UpperCamelCase=3 , _UpperCamelCase=None , _UpperCamelCase=1000 , ): _UpperCAmelCase = parent _UpperCAmelCase = batch_size _UpperCAmelCase = seq_length _UpperCAmelCase = is_training _UpperCAmelCase = use_input_mask _UpperCAmelCase = use_token_type_ids _UpperCAmelCase = use_labels _UpperCAmelCase = vocab_size _UpperCAmelCase = hidden_size _UpperCAmelCase = num_hidden_layers _UpperCAmelCase = num_attention_heads _UpperCAmelCase = intermediate_size _UpperCAmelCase = hidden_act _UpperCAmelCase = hidden_dropout_prob _UpperCAmelCase = attention_probs_dropout_prob _UpperCAmelCase = max_position_embeddings _UpperCAmelCase = type_vocab_size _UpperCAmelCase = type_sequence_label_size _UpperCAmelCase = initializer_range _UpperCAmelCase = num_labels _UpperCAmelCase = scope _UpperCAmelCase = range_bbox def UpperCamelCase( self ): _UpperCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _UpperCAmelCase = ids_tensor([self.batch_size, self.seq_length, 4] , self.range_bbox ) # Ensure that bbox is legal for i in range(bbox.shape[0] ): for j in range(bbox.shape[1] ): if bbox[i, j, 3] < bbox[i, j, 1]: _UpperCAmelCase = bbox[i, j, 3] _UpperCAmelCase = bbox[i, j, 1] _UpperCAmelCase = t if bbox[i, j, 2] < bbox[i, j, 0]: _UpperCAmelCase = bbox[i, j, 2] _UpperCAmelCase = bbox[i, j, 0] _UpperCAmelCase = t _UpperCAmelCase = None if self.use_input_mask: _UpperCAmelCase = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 ) _UpperCAmelCase = None if self.use_token_type_ids: _UpperCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) _UpperCAmelCase = None _UpperCAmelCase = None if self.use_labels: _UpperCAmelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size ) _UpperCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) _UpperCAmelCase = self.get_config() return config, input_ids, bbox, token_type_ids, input_mask, sequence_labels, token_labels def UpperCamelCase( self ): return LiltConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , ) def UpperCamelCase( self , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , ): _UpperCAmelCase = LiltModel(config=_UpperCamelCase ) model.to(_UpperCamelCase ) model.eval() _UpperCAmelCase = model(_UpperCamelCase , bbox=_UpperCamelCase , attention_mask=_UpperCamelCase , token_type_ids=_UpperCamelCase ) _UpperCAmelCase = model(_UpperCamelCase , bbox=_UpperCamelCase , token_type_ids=_UpperCamelCase ) _UpperCAmelCase = model(_UpperCamelCase , bbox=_UpperCamelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) ) def UpperCamelCase( self , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , ): _UpperCAmelCase = self.num_labels _UpperCAmelCase = LiltForTokenClassification(config=_UpperCamelCase ) model.to(_UpperCamelCase ) model.eval() _UpperCAmelCase = model( _UpperCamelCase , bbox=_UpperCamelCase , attention_mask=_UpperCamelCase , token_type_ids=_UpperCamelCase , labels=_UpperCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def UpperCamelCase( self , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , ): _UpperCAmelCase = LiltForQuestionAnswering(config=_UpperCamelCase ) model.to(_UpperCamelCase ) model.eval() _UpperCAmelCase = model( _UpperCamelCase , bbox=_UpperCamelCase , attention_mask=_UpperCamelCase , token_type_ids=_UpperCamelCase , start_positions=_UpperCamelCase , end_positions=_UpperCamelCase , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def UpperCamelCase( self ): _UpperCAmelCase = self.prepare_config_and_inputs() ( ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ) = config_and_inputs _UpperCAmelCase = { '''input_ids''': input_ids, '''bbox''': bbox, '''token_type_ids''': token_type_ids, '''attention_mask''': input_mask, } return config, inputs_dict @require_torch class __UpperCamelCase ( A__ , A__ , A__ , unittest.TestCase ): __A : Dict = ( ( LiltModel, LiltForSequenceClassification, LiltForTokenClassification, LiltForQuestionAnswering, ) if is_torch_available() else () ) __A : Optional[Any] = ( { """feature-extraction""": LiltModel, """question-answering""": LiltForQuestionAnswering, """text-classification""": LiltForSequenceClassification, """token-classification""": LiltForTokenClassification, """zero-shot""": LiltForSequenceClassification, } if is_torch_available() else {} ) __A : List[Any] = False __A : Optional[int] = False def UpperCamelCase( self , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ): return True def UpperCamelCase( self ): _UpperCAmelCase = LiltModelTester(self ) _UpperCAmelCase = ConfigTester(self , config_class=_UpperCamelCase , hidden_size=37 ) def UpperCamelCase( self ): self.config_tester.run_common_tests() def UpperCamelCase( self ): _UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_UpperCamelCase ) def UpperCamelCase( self ): _UpperCAmelCase = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: _UpperCAmelCase = type self.model_tester.create_and_check_model(*_UpperCamelCase ) def UpperCamelCase( self ): _UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*_UpperCamelCase ) def UpperCamelCase( self ): _UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*_UpperCamelCase ) @slow def UpperCamelCase( self ): for model_name in LILT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _UpperCAmelCase = LiltModel.from_pretrained(_UpperCamelCase ) self.assertIsNotNone(_UpperCamelCase ) @require_torch @slow class __UpperCamelCase ( unittest.TestCase ): def UpperCamelCase( self ): _UpperCAmelCase = LiltModel.from_pretrained('''SCUT-DLVCLab/lilt-roberta-en-base''' ).to(_UpperCamelCase ) _UpperCAmelCase = torch.tensor([[1, 2]] , device=_UpperCamelCase ) _UpperCAmelCase = torch.tensor([[[1, 2, 3, 4], [5, 6, 7, 8]]] , device=_UpperCamelCase ) # forward pass with torch.no_grad(): _UpperCAmelCase = model(input_ids=_UpperCamelCase , bbox=_UpperCamelCase ) _UpperCAmelCase = torch.Size([1, 2, 768] ) _UpperCAmelCase = torch.tensor( [[-0.0653, 0.0950, -0.0061], [-0.0545, 0.0926, -0.0324]] , device=_UpperCamelCase , ) self.assertTrue(outputs.last_hidden_state.shape , _UpperCamelCase ) self.assertTrue(torch.allclose(outputs.last_hidden_state[0, :, :3] , _UpperCamelCase , atol=1e-3 ) )
32
0
from typing import List, Optional, Union import numpy as np import tensorflow as tf from .utils import logging __snake_case = logging.get_logger(__name__) def _A ( _lowercase ) -> List[int]: """simple docstring""" if isinstance(_lowercase , np.ndarray ): return list(tensor.shape ) __UpperCamelCase = tf.shape(_lowercase ) if tensor.shape == tf.TensorShape(_lowercase ): return dynamic __UpperCamelCase = tensor.shape.as_list() return [dynamic[i] if s is None else s for i, s in enumerate(_lowercase )] def _A ( _lowercase , _lowercase = None , _lowercase = None ) -> tf.Tensor: """simple docstring""" return tf.nn.softmax(logits=logits + 1e-9 , axis=_lowercase , name=_lowercase ) def _A ( _lowercase , _lowercase , _lowercase , _lowercase=1e-5 , _lowercase=-1 ) -> str: """simple docstring""" if weight.shape.rank != 1 or bias.shape.rank != 1 or not isinstance(_lowercase , _lowercase ): raise NotImplementedError('Only 1D weight and bias tensors are supported for now, with only a single axis.' ) # Get mean and variance on the axis to be normalized __UpperCamelCase, __UpperCamelCase = tf.nn.moments(_lowercase , axes=[axis] , keepdims=_lowercase ) if axis != -1: # Reshape scale and weight to have the same rank as inputs, but with 1 dimensions # on every dimension except axis __UpperCamelCase = [1] * inputs.shape.rank __UpperCamelCase = shape_list(_lowercase )[axis] __UpperCamelCase = tf.reshape(_lowercase , _lowercase ) __UpperCamelCase = tf.reshape(_lowercase , _lowercase ) # Compute layer normalization using the batch_normalization # function. __UpperCamelCase = tf.nn.batch_normalization( _lowercase , _lowercase , _lowercase , offset=_lowercase , scale=_lowercase , variance_epsilon=_lowercase , ) return outputs def _A ( _lowercase , _lowercase=0 , _lowercase=-1 ) -> Tuple: """simple docstring""" if end_dim < 0: end_dim += input.shape.rank if start_dim < 0: start_dim += input.shape.rank if start_dim == end_dim: return input __UpperCamelCase = tf.shape(_lowercase ) __UpperCamelCase = tf.math.reduce_prod(in_shape[start_dim : end_dim + 1] ) __UpperCamelCase = tf.concat([in_shape[:start_dim], [flattened_dim], in_shape[end_dim + 1 :]] , axis=0 ) return tf.reshape(_lowercase , _lowercase ) def _A ( _lowercase ) -> tf.Tensor: """simple docstring""" if not isinstance(_lowercase , tf.Tensor ): __UpperCamelCase = tf.convert_to_tensor(_lowercase ) # Catches stray NumPy inputs if encoder_attention_mask.shape.rank == 3: __UpperCamelCase = encoder_attention_mask[:, None, :, :] if encoder_attention_mask.shape.rank == 2: __UpperCamelCase = encoder_attention_mask[:, None, None, :] # T5 has a mask that can compare sequence ids, we can simulate this here with this transposition # Cf. https://github.com/tensorflow/mesh/blob/8d2465e9bc93129b913b5ccc6a59aa97abd96ec6/mesh_tensorflow # /transformer/transformer_layers.py#L270 # encoder_extended_attention_mask = (encoder_extended_attention_mask == # encoder_extended_attention_mask.transpose(-1, -2)) __UpperCamelCase = ( tf.cast(1 , encoder_attention_mask.dtype ) - encoder_extended_attention_mask ) * encoder_extended_attention_mask.dtype.min return encoder_extended_attention_mask def _A ( _lowercase , _lowercase , _lowercase = "input_ids" ) -> None: """simple docstring""" tf.debugging.assert_less( _lowercase , tf.cast(_lowercase , dtype=tensor.dtype ) , message=( f'''The maximum value of {tensor_name} ({tf.math.reduce_max(_lowercase )}) must be smaller than the embedding ''' f'''layer\'s input dimension ({embed_dim}). The likely cause is some problem at tokenization time.''' ) , ) def _A ( _lowercase , _lowercase , _lowercase ) -> Optional[int]: """simple docstring""" __UpperCamelCase = 6_45_12 # Check that no item in `data` is larger than `HDF5_OBJECT_HEADER_LIMIT` # because in that case even chunking the array would not make the saving # possible. __UpperCamelCase = [x for x in data if len(_lowercase ) > HDF5_OBJECT_HEADER_LIMIT] # Expecting this to never be true. if bad_attributes: raise RuntimeError( 'The following attributes cannot be saved to HDF5 file because ' f'''they are larger than {HDF5_OBJECT_HEADER_LIMIT} ''' f'''bytes: {bad_attributes}''' ) __UpperCamelCase = np.asarray(_lowercase ) __UpperCamelCase = 1 __UpperCamelCase = np.array_split(_lowercase , _lowercase ) # This will never loop forever thanks to the test above. while any(x.nbytes > HDF5_OBJECT_HEADER_LIMIT for x in chunked_data ): num_chunks += 1 __UpperCamelCase = np.array_split(_lowercase , _lowercase ) if num_chunks > 1: for chunk_id, chunk_data in enumerate(_lowercase ): __UpperCamelCase = chunk_data else: __UpperCamelCase = data def _A ( _lowercase , _lowercase ) -> Tuple: """simple docstring""" if name in group.attrs: __UpperCamelCase = [n.decode('utf8' ) if hasattr(_lowercase , 'decode' ) else n for n in group.attrs[name]] else: __UpperCamelCase = [] __UpperCamelCase = 0 while "%s%d" % (name, chunk_id) in group.attrs: data.extend( [n.decode('utf8' ) if hasattr(_lowercase , 'decode' ) else n for n in group.attrs['%s%d' % (name, chunk_id)]] ) chunk_id += 1 return data def _A ( _lowercase ) -> Tuple: """simple docstring""" def _expand_single_ad_tensor(_lowercase ): if isinstance(_lowercase , tf.Tensor ) and t.shape.rank == 1: return tf.expand_dims(_lowercase , axis=-1 ) return t return tf.nest.map_structure(_expand_single_ad_tensor , _lowercase )
1
from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCAmelCase_ = logging.get_logger(__name__) UpperCAmelCase_ = { "RWKV/rwkv-4-169m-pile": "https://huggingface.co/RWKV/rwkv-4-169m-pile/resolve/main/config.json", "RWKV/rwkv-4-430m-pile": "https://huggingface.co/RWKV/rwkv-4-430m-pile/resolve/main/config.json", "RWKV/rwkv-4-1b5-pile": "https://huggingface.co/RWKV/rwkv-4-1b5-pile/resolve/main/config.json", "RWKV/rwkv-4-3b-pile": "https://huggingface.co/RWKV/rwkv-4-3b-pile/resolve/main/config.json", "RWKV/rwkv-4-7b-pile": "https://huggingface.co/RWKV/rwkv-4-7b-pile/resolve/main/config.json", "RWKV/rwkv-4-14b-pile": "https://huggingface.co/RWKV/rwkv-4-14b-pile/resolve/main/config.json", "RWKV/rwkv-raven-1b5": "https://huggingface.co/RWKV/rwkv-raven-1b5/resolve/main/config.json", "RWKV/rwkv-raven-3b": "https://huggingface.co/RWKV/rwkv-raven-3b/resolve/main/config.json", "RWKV/rwkv-raven-7b": "https://huggingface.co/RWKV/rwkv-raven-7b/resolve/main/config.json", "RWKV/rwkv-raven-14b": "https://huggingface.co/RWKV/rwkv-raven-14b/resolve/main/config.json", } class __UpperCamelCase ( A__ ): __A : Tuple = """rwkv""" __A : Any = {"""max_position_embeddings""": """context_length"""} def __init__( self , _UpperCamelCase=50277 , _UpperCamelCase=1024 , _UpperCamelCase=4096 , _UpperCamelCase=32 , _UpperCamelCase=None , _UpperCamelCase=None , _UpperCamelCase=1e-5 , _UpperCamelCase=0 , _UpperCamelCase=0 , _UpperCamelCase=6 , _UpperCamelCase=False , _UpperCamelCase=True , **_UpperCamelCase , ): _UpperCAmelCase = vocab_size _UpperCAmelCase = context_length _UpperCAmelCase = hidden_size _UpperCAmelCase = num_hidden_layers _UpperCAmelCase = attention_hidden_size if attention_hidden_size is not None else hidden_size _UpperCAmelCase = intermediate_size if intermediate_size is not None else 4 * hidden_size _UpperCAmelCase = layer_norm_epsilon _UpperCAmelCase = rescale_every _UpperCAmelCase = use_cache _UpperCAmelCase = bos_token_id _UpperCAmelCase = eos_token_id super().__init__( tie_word_embeddings=_UpperCamelCase , bos_token_id=_UpperCamelCase , eos_token_id=_UpperCamelCase , **_UpperCamelCase )
32
0
import gc import random import unittest import torch from diffusers import ( IFImgaImgPipeline, IFImgaImgSuperResolutionPipeline, IFInpaintingPipeline, IFInpaintingSuperResolutionPipeline, IFPipeline, IFSuperResolutionPipeline, ) from diffusers.models.attention_processor import AttnAddedKVProcessor from diffusers.utils.import_utils import is_xformers_available from diffusers.utils.testing_utils import floats_tensor, load_numpy, require_torch_gpu, skip_mps, slow, torch_device from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_PARAMS from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference from . import IFPipelineTesterMixin @skip_mps class lowerCamelCase__ ( _A , _A , unittest.TestCase): """simple docstring""" a__ : List[str] = IFPipeline a__ : Optional[Any] = TEXT_TO_IMAGE_PARAMS - {"width", "height", "latents"} a__ : Optional[int] = TEXT_TO_IMAGE_BATCH_PARAMS a__ : Optional[Any] = PipelineTesterMixin.required_optional_params - {"latents"} def snake_case_ ( self : Dict ) -> Optional[Any]: return self._get_dummy_components() def snake_case_ ( self : Any , __lowerCAmelCase : int , __lowerCAmelCase : Optional[Any]=0 ) -> List[str]: if str(__lowerCAmelCase ).startswith('''mps''' ): _A = torch.manual_seed(__lowerCAmelCase ) else: _A = torch.Generator(device=__lowerCAmelCase ).manual_seed(__lowerCAmelCase ) _A = { '''prompt''': '''A painting of a squirrel eating a burger''', '''generator''': generator, '''num_inference_steps''': 2, '''output_type''': '''numpy''', } return inputs def snake_case_ ( self : str ) -> Tuple: self._test_save_load_optional_components() @unittest.skipIf(torch_device != '''cuda''' , reason='''float16 requires CUDA''' ) def snake_case_ ( self : Union[str, Any] ) -> Any: # Due to non-determinism in save load of the hf-internal-testing/tiny-random-t5 text encoder super().test_save_load_floataa(expected_max_diff=1E-1 ) def snake_case_ ( self : Union[str, Any] ) -> List[Any]: self._test_attention_slicing_forward_pass(expected_max_diff=1E-2 ) def snake_case_ ( self : Union[str, Any] ) -> Union[str, Any]: self._test_save_load_local() def snake_case_ ( self : Dict ) -> List[Any]: self._test_inference_batch_single_identical( expected_max_diff=1E-2 , ) @unittest.skipIf( torch_device != '''cuda''' or not is_xformers_available() , reason='''XFormers attention is only available with CUDA and `xformers` installed''' , ) def snake_case_ ( self : Dict ) -> List[Any]: self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=1E-3 ) @slow @require_torch_gpu class lowerCamelCase__ ( unittest.TestCase): """simple docstring""" def snake_case_ ( self : List[Any] ) -> Any: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def snake_case_ ( self : Tuple ) -> str: # if _A = IFPipeline.from_pretrained('''DeepFloyd/IF-I-XL-v1.0''' , variant='''fp16''' , torch_dtype=torch.floataa ) _A = IFSuperResolutionPipeline.from_pretrained( '''DeepFloyd/IF-II-L-v1.0''' , variant='''fp16''' , torch_dtype=torch.floataa , text_encoder=__lowerCAmelCase , tokenizer=__lowerCAmelCase ) # pre compute text embeddings and remove T5 to save memory pipe_a.text_encoder.to('''cuda''' ) _A , _A = pipe_a.encode_prompt('''anime turtle''' , device='''cuda''' ) del pipe_a.tokenizer del pipe_a.text_encoder gc.collect() _A = None _A = None pipe_a.enable_model_cpu_offload() pipe_a.enable_model_cpu_offload() pipe_a.unet.set_attn_processor(AttnAddedKVProcessor() ) pipe_a.unet.set_attn_processor(AttnAddedKVProcessor() ) self._test_if(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) pipe_a.remove_all_hooks() pipe_a.remove_all_hooks() # img2img _A = IFImgaImgPipeline(**pipe_a.components ) _A = IFImgaImgSuperResolutionPipeline(**pipe_a.components ) pipe_a.enable_model_cpu_offload() pipe_a.enable_model_cpu_offload() pipe_a.unet.set_attn_processor(AttnAddedKVProcessor() ) pipe_a.unet.set_attn_processor(AttnAddedKVProcessor() ) self._test_if_imgaimg(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) pipe_a.remove_all_hooks() pipe_a.remove_all_hooks() # inpainting _A = IFInpaintingPipeline(**pipe_a.components ) _A = IFInpaintingSuperResolutionPipeline(**pipe_a.components ) pipe_a.enable_model_cpu_offload() pipe_a.enable_model_cpu_offload() pipe_a.unet.set_attn_processor(AttnAddedKVProcessor() ) pipe_a.unet.set_attn_processor(AttnAddedKVProcessor() ) self._test_if_inpainting(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) def snake_case_ ( self : str , __lowerCAmelCase : Tuple , __lowerCAmelCase : List[str] , __lowerCAmelCase : Optional[Any] , __lowerCAmelCase : List[Any] ) -> Tuple: # pipeline 1 _start_torch_memory_measurement() _A = torch.Generator(device='''cpu''' ).manual_seed(0 ) _A = pipe_a( prompt_embeds=__lowerCAmelCase , negative_prompt_embeds=__lowerCAmelCase , num_inference_steps=2 , generator=__lowerCAmelCase , output_type='''np''' , ) _A = output.images[0] assert image.shape == (64, 64, 3) _A = torch.cuda.max_memory_allocated() assert mem_bytes < 13 * 10**9 _A = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if.npy''' ) assert_mean_pixel_difference(__lowerCAmelCase , __lowerCAmelCase ) # pipeline 2 _start_torch_memory_measurement() _A = torch.Generator(device='''cpu''' ).manual_seed(0 ) _A = floats_tensor((1, 3, 64, 64) , rng=random.Random(0 ) ).to(__lowerCAmelCase ) _A = pipe_a( prompt_embeds=__lowerCAmelCase , negative_prompt_embeds=__lowerCAmelCase , image=__lowerCAmelCase , generator=__lowerCAmelCase , num_inference_steps=2 , output_type='''np''' , ) _A = output.images[0] assert image.shape == (2_56, 2_56, 3) _A = torch.cuda.max_memory_allocated() assert mem_bytes < 4 * 10**9 _A = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if_superresolution_stage_II.npy''' ) assert_mean_pixel_difference(__lowerCAmelCase , __lowerCAmelCase ) def snake_case_ ( self : str , __lowerCAmelCase : Any , __lowerCAmelCase : Union[str, Any] , __lowerCAmelCase : List[str] , __lowerCAmelCase : Optional[Any] ) -> Dict: # pipeline 1 _start_torch_memory_measurement() _A = floats_tensor((1, 3, 64, 64) , rng=random.Random(0 ) ).to(__lowerCAmelCase ) _A = torch.Generator(device='''cpu''' ).manual_seed(0 ) _A = pipe_a( prompt_embeds=__lowerCAmelCase , negative_prompt_embeds=__lowerCAmelCase , image=__lowerCAmelCase , num_inference_steps=2 , generator=__lowerCAmelCase , output_type='''np''' , ) _A = output.images[0] assert image.shape == (64, 64, 3) _A = torch.cuda.max_memory_allocated() assert mem_bytes < 10 * 10**9 _A = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if_img2img.npy''' ) assert_mean_pixel_difference(__lowerCAmelCase , __lowerCAmelCase ) # pipeline 2 _start_torch_memory_measurement() _A = torch.Generator(device='''cpu''' ).manual_seed(0 ) _A = floats_tensor((1, 3, 2_56, 2_56) , rng=random.Random(0 ) ).to(__lowerCAmelCase ) _A = floats_tensor((1, 3, 64, 64) , rng=random.Random(0 ) ).to(__lowerCAmelCase ) _A = pipe_a( prompt_embeds=__lowerCAmelCase , negative_prompt_embeds=__lowerCAmelCase , image=__lowerCAmelCase , original_image=__lowerCAmelCase , generator=__lowerCAmelCase , num_inference_steps=2 , output_type='''np''' , ) _A = output.images[0] assert image.shape == (2_56, 2_56, 3) _A = torch.cuda.max_memory_allocated() assert mem_bytes < 4 * 10**9 _A = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if_img2img_superresolution_stage_II.npy''' ) assert_mean_pixel_difference(__lowerCAmelCase , __lowerCAmelCase ) def snake_case_ ( self : str , __lowerCAmelCase : Optional[Any] , __lowerCAmelCase : Tuple , __lowerCAmelCase : Optional[int] , __lowerCAmelCase : Tuple ) -> Tuple: # pipeline 1 _start_torch_memory_measurement() _A = floats_tensor((1, 3, 64, 64) , rng=random.Random(0 ) ).to(__lowerCAmelCase ) _A = floats_tensor((1, 3, 64, 64) , rng=random.Random(1 ) ).to(__lowerCAmelCase ) _A = torch.Generator(device='''cpu''' ).manual_seed(0 ) _A = pipe_a( prompt_embeds=__lowerCAmelCase , negative_prompt_embeds=__lowerCAmelCase , image=__lowerCAmelCase , mask_image=__lowerCAmelCase , num_inference_steps=2 , generator=__lowerCAmelCase , output_type='''np''' , ) _A = output.images[0] assert image.shape == (64, 64, 3) _A = torch.cuda.max_memory_allocated() assert mem_bytes < 10 * 10**9 _A = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if_inpainting.npy''' ) assert_mean_pixel_difference(__lowerCAmelCase , __lowerCAmelCase ) # pipeline 2 _start_torch_memory_measurement() _A = torch.Generator(device='''cpu''' ).manual_seed(0 ) _A = floats_tensor((1, 3, 64, 64) , rng=random.Random(0 ) ).to(__lowerCAmelCase ) _A = floats_tensor((1, 3, 2_56, 2_56) , rng=random.Random(0 ) ).to(__lowerCAmelCase ) _A = floats_tensor((1, 3, 2_56, 2_56) , rng=random.Random(1 ) ).to(__lowerCAmelCase ) _A = pipe_a( prompt_embeds=__lowerCAmelCase , negative_prompt_embeds=__lowerCAmelCase , image=__lowerCAmelCase , mask_image=__lowerCAmelCase , original_image=__lowerCAmelCase , generator=__lowerCAmelCase , num_inference_steps=2 , output_type='''np''' , ) _A = output.images[0] assert image.shape == (2_56, 2_56, 3) _A = torch.cuda.max_memory_allocated() assert mem_bytes < 4 * 10**9 _A = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if_inpainting_superresolution_stage_II.npy''' ) assert_mean_pixel_difference(__lowerCAmelCase , __lowerCAmelCase ) def SCREAMING_SNAKE_CASE_ ( ) -> List[Any]: torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() torch.cuda.reset_peak_memory_stats()
2
def A__ ( SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : int ) -> str: """simple docstring""" if a < 0 or b < 0: raise ValueError('''the value of both inputs must be positive''' ) _UpperCAmelCase = str(bin(SCREAMING_SNAKE_CASE_ ) )[2:] # remove the leading "0b" _UpperCAmelCase = str(bin(SCREAMING_SNAKE_CASE_ ) )[2:] # remove the leading "0b" _UpperCAmelCase = max(len(SCREAMING_SNAKE_CASE_ ) , len(SCREAMING_SNAKE_CASE_ ) ) return "0b" + "".join( str(int(char_a == '''1''' and char_b == '''1''' ) ) for char_a, char_b in zip(a_binary.zfill(SCREAMING_SNAKE_CASE_ ) , b_binary.zfill(SCREAMING_SNAKE_CASE_ ) ) ) if __name__ == "__main__": import doctest doctest.testmod()
32
0
'''simple docstring''' import operator as op def A_( A : Union[str, Any]): UpperCamelCase = [] UpperCamelCase = lambda A , A: int(x / y) # noqa: E731 integer division operation UpperCamelCase = { '^': op.pow, '*': op.mul, '/': div, '+': op.add, '-': op.sub, } # operators & their respective operation # print table header print('Symbol'.center(8) , 'Action'.center(12) , 'Stack' , sep=' | ') print('-' * (30 + len(A))) for x in post_fix: if x.isdigit(): # if x in digit stack.append(A) # append x to stack # output in tabular format print(x.rjust(8) , ('push(' + x + ')').ljust(12) , ','.join(A) , sep=' | ') else: UpperCamelCase = stack.pop() # pop stack # output in tabular format print(''.rjust(8) , ('pop(' + b + ')').ljust(12) , ','.join(A) , sep=' | ') UpperCamelCase = stack.pop() # pop stack # output in tabular format print(''.rjust(8) , ('pop(' + a + ')').ljust(12) , ','.join(A) , sep=' | ') stack.append( str(opr[x](int(A) , int(A)))) # evaluate the 2 values popped from stack & push result to stack # output in tabular format print( x.rjust(8) , ('push(' + a + x + b + ')').ljust(12) , ','.join(A) , sep=' | ' , ) return int(stack[0]) if __name__ == "__main__": lowerCAmelCase : Any = input('\n\nEnter a Postfix Equation (space separated) = ').split(' ') print('\n\tResult = ', solve(Postfix))
3
from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCAmelCase_ = logging.get_logger(__name__) UpperCAmelCase_ = { "tiiuae/falcon-40b": "https://huggingface.co/tiiuae/falcon-40b/resolve/main/config.json", "tiiuae/falcon-7b": "https://huggingface.co/tiiuae/falcon-7b/resolve/main/config.json", } class __UpperCamelCase ( A__ ): __A : Dict = """falcon""" __A : Any = ["""past_key_values"""] def __init__( self , _UpperCamelCase=65024 , _UpperCamelCase=4544 , _UpperCamelCase=32 , _UpperCamelCase=71 , _UpperCamelCase=1e-5 , _UpperCamelCase=0.02 , _UpperCamelCase=True , _UpperCamelCase=0.0 , _UpperCamelCase=0.0 , _UpperCamelCase=None , _UpperCamelCase=False , _UpperCamelCase=False , _UpperCamelCase=True , _UpperCamelCase=True , _UpperCamelCase=False , _UpperCamelCase=11 , _UpperCamelCase=11 , **_UpperCamelCase , ): _UpperCAmelCase = vocab_size # Backward compatibility with n_embed kwarg _UpperCAmelCase = kwargs.pop('''n_embed''' , _UpperCamelCase ) _UpperCAmelCase = hidden_size if n_embed is None else n_embed _UpperCAmelCase = num_hidden_layers _UpperCAmelCase = num_attention_heads _UpperCAmelCase = layer_norm_epsilon _UpperCAmelCase = initializer_range _UpperCAmelCase = use_cache _UpperCAmelCase = hidden_dropout _UpperCAmelCase = attention_dropout _UpperCAmelCase = bos_token_id _UpperCAmelCase = eos_token_id _UpperCAmelCase = num_attention_heads if num_kv_heads is None else num_kv_heads _UpperCAmelCase = alibi _UpperCAmelCase = new_decoder_architecture _UpperCAmelCase = multi_query # Ignored when new_decoder_architecture is True _UpperCAmelCase = parallel_attn _UpperCAmelCase = bias super().__init__(bos_token_id=_UpperCamelCase , eos_token_id=_UpperCamelCase , **_UpperCamelCase ) @property def UpperCamelCase( self ): return self.hidden_size // self.num_attention_heads @property def UpperCamelCase( self ): return not self.alibi
32
0
"""simple docstring""" from collections import deque class a : def __init__( self , _snake_case , _snake_case , _snake_case ): """simple docstring""" lowerCAmelCase = process_name # process name lowerCAmelCase = arrival_time # arrival time of the process # completion time of finished process or last interrupted time lowerCAmelCase = arrival_time lowerCAmelCase = burst_time # remaining burst time lowerCAmelCase = 0 # total time of the process wait in ready queue lowerCAmelCase = 0 # time from arrival time to completion time class a : def __init__( self , _snake_case , _snake_case , _snake_case , _snake_case , ): """simple docstring""" lowerCAmelCase = number_of_queues # time slice of queues that round robin algorithm applied lowerCAmelCase = time_slices # unfinished process is in this ready_queue lowerCAmelCase = queue # current time lowerCAmelCase = current_time # finished process is in this sequence queue lowerCAmelCase = deque() def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase = [] for i in range(len(self.finish_queue ) ): sequence.append(self.finish_queue[i].process_name ) return sequence def UpperCamelCase__ ( self , _snake_case ): """simple docstring""" lowerCAmelCase = [] for i in range(len(_snake_case ) ): waiting_times.append(queue[i].waiting_time ) return waiting_times def UpperCamelCase__ ( self , _snake_case ): """simple docstring""" lowerCAmelCase = [] for i in range(len(_snake_case ) ): turnaround_times.append(queue[i].turnaround_time ) return turnaround_times def UpperCamelCase__ ( self , _snake_case ): """simple docstring""" lowerCAmelCase = [] for i in range(len(_snake_case ) ): completion_times.append(queue[i].stop_time ) return completion_times def UpperCamelCase__ ( self , _snake_case ): """simple docstring""" return [q.burst_time for q in queue] def UpperCamelCase__ ( self , _snake_case ): """simple docstring""" process.waiting_time += self.current_time - process.stop_time return process.waiting_time def UpperCamelCase__ ( self , _snake_case ): """simple docstring""" lowerCAmelCase = deque() # sequence deque of finished process while len(_snake_case ) != 0: lowerCAmelCase = ready_queue.popleft() # current process # if process's arrival time is later than current time, update current time if self.current_time < cp.arrival_time: self.current_time += cp.arrival_time # update waiting time of current process self.update_waiting_time(_snake_case ) # update current time self.current_time += cp.burst_time # finish the process and set the process's burst-time 0 lowerCAmelCase = 0 # set the process's turnaround time because it is finished lowerCAmelCase = self.current_time - cp.arrival_time # set the completion time lowerCAmelCase = self.current_time # add the process to queue that has finished queue finished.append(_snake_case ) self.finish_queue.extend(_snake_case ) # add finished process to finish queue # FCFS will finish all remaining processes return finished def UpperCamelCase__ ( self , _snake_case , _snake_case ): """simple docstring""" lowerCAmelCase = deque() # sequence deque of terminated process # just for 1 cycle and unfinished processes will go back to queue for _ in range(len(_snake_case ) ): lowerCAmelCase = ready_queue.popleft() # current process # if process's arrival time is later than current time, update current time if self.current_time < cp.arrival_time: self.current_time += cp.arrival_time # update waiting time of unfinished processes self.update_waiting_time(_snake_case ) # if the burst time of process is bigger than time-slice if cp.burst_time > time_slice: # use CPU for only time-slice self.current_time += time_slice # update remaining burst time cp.burst_time -= time_slice # update end point time lowerCAmelCase = self.current_time # locate the process behind the queue because it is not finished ready_queue.append(_snake_case ) else: # use CPU for remaining burst time self.current_time += cp.burst_time # set burst time 0 because the process is finished lowerCAmelCase = 0 # set the finish time lowerCAmelCase = self.current_time # update the process' turnaround time because it is finished lowerCAmelCase = self.current_time - cp.arrival_time # add the process to queue that has finished queue finished.append(_snake_case ) self.finish_queue.extend(_snake_case ) # add finished process to finish queue # return finished processes queue and remaining processes queue return finished, ready_queue def UpperCamelCase__ ( self ): """simple docstring""" for i in range(self.number_of_queues - 1 ): lowerCAmelCase ,lowerCAmelCase = self.round_robin( self.ready_queue , self.time_slices[i] ) # the last queue has first_come_first_served algorithm self.first_come_first_served(self.ready_queue ) return self.finish_queue if __name__ == "__main__": import doctest __UpperCamelCase : Tuple = Process('''P1''', 0, 53) __UpperCamelCase : List[Any] = Process('''P2''', 0, 17) __UpperCamelCase : Tuple = Process('''P3''', 0, 68) __UpperCamelCase : List[Any] = Process('''P4''', 0, 24) __UpperCamelCase : Union[str, Any] = 3 __UpperCamelCase : str = [17, 25] __UpperCamelCase : str = deque([Pa, Pa, Pa, Pa]) if len(time_slices) != number_of_queues - 1: raise SystemExit(0) doctest.testmod(extraglobs={'''queue''': deque([Pa, Pa, Pa, Pa])}) __UpperCamelCase : Union[str, Any] = Process('''P1''', 0, 53) __UpperCamelCase : Any = Process('''P2''', 0, 17) __UpperCamelCase : Optional[Any] = Process('''P3''', 0, 68) __UpperCamelCase : List[Any] = Process('''P4''', 0, 24) __UpperCamelCase : List[Any] = 3 __UpperCamelCase : Any = [17, 25] __UpperCamelCase : int = deque([Pa, Pa, Pa, Pa]) __UpperCamelCase : Union[str, Any] = MLFQ(number_of_queues, time_slices, queue, 0) __UpperCamelCase : Optional[Any] = mlfq.multi_level_feedback_queue() # print total waiting times of processes(P1, P2, P3, P4) print( f'''waiting time:\ \t\t\t{MLFQ.calculate_waiting_time(mlfq, [Pa, Pa, Pa, Pa])}''' ) # print completion times of processes(P1, P2, P3, P4) print( f'''completion time:\ \t\t{MLFQ.calculate_completion_time(mlfq, [Pa, Pa, Pa, Pa])}''' ) # print total turnaround times of processes(P1, P2, P3, P4) print( f'''turnaround time:\ \t\t{MLFQ.calculate_turnaround_time(mlfq, [Pa, Pa, Pa, Pa])}''' ) # print sequence of finished processes print( f'''sequence of finished processes:\ {mlfq.calculate_sequence_of_finish_queue()}''' )
4
from math import sqrt def A__ ( SCREAMING_SNAKE_CASE_ : int ) -> bool: """simple docstring""" if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5 , int(sqrt(SCREAMING_SNAKE_CASE_ ) + 1 ) , 6 ): if number % i == 0 or number % (i + 2) == 0: return False return True def A__ ( SCREAMING_SNAKE_CASE_ : int = 1_00_01 ) -> int: """simple docstring""" _UpperCAmelCase = 0 _UpperCAmelCase = 1 while count != nth and number < 3: number += 1 if is_prime(SCREAMING_SNAKE_CASE_ ): count += 1 while count != nth: number += 2 if is_prime(SCREAMING_SNAKE_CASE_ ): count += 1 return number if __name__ == "__main__": print(f'''{solution() = }''')
32
0
'''simple docstring''' import os from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils import AddedToken from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_xlnet import XLNetTokenizer else: _lowercase = None _lowercase = logging.get_logger(__name__) _lowercase = {"""vocab_file""": """spiece.model""", """tokenizer_file""": """tokenizer.json"""} _lowercase = { """vocab_file""": { """xlnet-base-cased""": """https://huggingface.co/xlnet-base-cased/resolve/main/spiece.model""", """xlnet-large-cased""": """https://huggingface.co/xlnet-large-cased/resolve/main/spiece.model""", }, """tokenizer_file""": { """xlnet-base-cased""": """https://huggingface.co/xlnet-base-cased/resolve/main/tokenizer.json""", """xlnet-large-cased""": """https://huggingface.co/xlnet-large-cased/resolve/main/tokenizer.json""", }, } _lowercase = { """xlnet-base-cased""": None, """xlnet-large-cased""": None, } _lowercase = """▁""" # Segments (not really needed) _lowercase = 0 _lowercase = 1 _lowercase = 2 _lowercase = 3 _lowercase = 4 class UpperCAmelCase_ ( _SCREAMING_SNAKE_CASE ): '''simple docstring''' _lowercase : str = VOCAB_FILES_NAMES _lowercase : Optional[int] = PRETRAINED_VOCAB_FILES_MAP _lowercase : Optional[Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _lowercase : str = '''left''' _lowercase : Optional[int] = XLNetTokenizer def __init__( self , _lowercase=None , _lowercase=None , _lowercase=False , _lowercase=True , _lowercase=False , _lowercase="<s>" , _lowercase="</s>" , _lowercase="<unk>" , _lowercase="<sep>" , _lowercase="<pad>" , _lowercase="<cls>" , _lowercase="<mask>" , _lowercase=["<eop>", "<eod>"] , **_lowercase , ): """simple docstring""" _lowerCAmelCase = AddedToken(_lowercase , lstrip=_lowercase , rstrip=_lowercase ) if isinstance(_lowercase , _lowercase ) else mask_token super().__init__( vocab_file=_lowercase , tokenizer_file=_lowercase , do_lower_case=_lowercase , remove_space=_lowercase , keep_accents=_lowercase , bos_token=_lowercase , eos_token=_lowercase , unk_token=_lowercase , sep_token=_lowercase , pad_token=_lowercase , cls_token=_lowercase , mask_token=_lowercase , additional_special_tokens=_lowercase , **_lowercase , ) _lowerCAmelCase = 3 _lowerCAmelCase = do_lower_case _lowerCAmelCase = remove_space _lowerCAmelCase = keep_accents _lowerCAmelCase = vocab_file _lowerCAmelCase = False if not self.vocab_file else True def _lowercase ( self , _lowercase , _lowercase = None ): """simple docstring""" _lowerCAmelCase = [self.sep_token_id] _lowerCAmelCase = [self.cls_token_id] if token_ids_a is None: return token_ids_a + sep + cls return token_ids_a + sep + token_ids_a + sep + cls def _lowercase ( self , _lowercase , _lowercase = None ): """simple docstring""" _lowerCAmelCase = [self.sep_token_id] _lowerCAmelCase = [2] if token_ids_a is None: return len(token_ids_a + sep ) * [0] + cls_segment_id return len(token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] + cls_segment_id def _lowercase ( self , _lowercase , _lowercase = None ): """simple docstring""" if not self.can_save_slow_tokenizer: raise ValueError( """Your fast tokenizer does not have the necessary information to save the vocabulary for a slow """ """tokenizer.""" ) if not os.path.isdir(_lowercase ): logger.error(F'Vocabulary path ({save_directory}) should be a directory' ) return _lowerCAmelCase = os.path.join( _lowercase , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(_lowercase ): copyfile(self.vocab_file , _lowercase ) return (out_vocab_file,)
5
def A__ ( SCREAMING_SNAKE_CASE_ : int ) -> bool: """simple docstring""" if not isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): _UpperCAmelCase = F'''Input value of [number={number}] must be an integer''' raise TypeError(SCREAMING_SNAKE_CASE_ ) if number < 0: return False _UpperCAmelCase = number * number while number > 0: if number % 10 != number_square % 10: return False number //= 10 number_square //= 10 return True if __name__ == "__main__": import doctest doctest.testmod()
32
0
import os from typing import Optional import fsspec from fsspec.archive import AbstractArchiveFileSystem from fsspec.utils import DEFAULT_BLOCK_SIZE class UpperCamelCase_ ( UpperCamelCase__ ): lowerCamelCase_ = "" lowerCamelCase_ = ( None # protocol passed in prefix to the url. ex: "gzip", for gzip://file.txt::http://foo.bar/file.txt.gz ) lowerCamelCase_ = None # compression type in fsspec. ex: "gzip" lowerCamelCase_ = None # extension of the filename to strip. ex: "".gz" to get file.txt from file.txt.gz def __init__( self :Optional[int] , __A :str = "" , __A :Optional[str] = None , __A :Optional[dict] = None , **__A :List[str] ) -> Any: """simple docstring""" super().__init__(self , **__A ) # always open as "rb" since fsspec can then use the TextIOWrapper to make it work for "r" mode SCREAMING_SNAKE_CASE__ = fsspec.open( __A , mode="""rb""" , protocol=__A , compression=self.compression , client_kwargs={ """requote_redirect_url""": False, # see https://github.com/huggingface/datasets/pull/5459 """trust_env""": True, # Enable reading proxy env variables. **(target_options or {}).pop("""client_kwargs""" , {} ), # To avoid issues if it was already passed. } , **(target_options or {}) , ) SCREAMING_SNAKE_CASE__ = os.path.basename(self.file.path.split("""::""" )[0] ) SCREAMING_SNAKE_CASE__ = ( self.compressed_name[: self.compressed_name.rindex(""".""" )] if """.""" in self.compressed_name else self.compressed_name ) SCREAMING_SNAKE_CASE__ = None @classmethod def _snake_case ( cls :Any , __A :Tuple ) -> List[str]: """simple docstring""" return super()._strip_protocol(__A ).lstrip("""/""" ) def _snake_case ( self :Union[str, Any] ) -> Tuple: """simple docstring""" if self.dir_cache is None: SCREAMING_SNAKE_CASE__ = {**self.file.fs.info(self.file.path ), """name""": self.uncompressed_name} SCREAMING_SNAKE_CASE__ = {f["""name"""]: f} def _snake_case ( self :Optional[int] , __A :str ) -> str: """simple docstring""" return self.file.open().read() def _snake_case ( self :List[str] , __A :str , __A :str = "rb" , __A :int=None , __A :List[str]=True , __A :Optional[Any]=None , **__A :Union[str, Any] , ) -> Any: """simple docstring""" SCREAMING_SNAKE_CASE__ = self._strip_protocol(__A ) if mode != "rb": raise ValueError(f'''Tried to read with mode {mode} on file {self.file.path} opened with mode \'rb\'''' ) return self.file.open() class UpperCamelCase_ ( UpperCamelCase__ ): lowerCamelCase_ = "bz2" lowerCamelCase_ = "bz2" lowerCamelCase_ = ".bz2" class UpperCamelCase_ ( UpperCamelCase__ ): lowerCamelCase_ = "gzip" lowerCamelCase_ = "gzip" lowerCamelCase_ = ".gz" class UpperCamelCase_ ( UpperCamelCase__ ): lowerCamelCase_ = "lz4" lowerCamelCase_ = "lz4" lowerCamelCase_ = ".lz4" class UpperCamelCase_ ( UpperCamelCase__ ): lowerCamelCase_ = "xz" lowerCamelCase_ = "xz" lowerCamelCase_ = ".xz" class UpperCamelCase_ ( UpperCamelCase__ ): lowerCamelCase_ = "zstd" lowerCamelCase_ = "zstd" lowerCamelCase_ = ".zst" def __init__( self :List[Any] , __A :str , __A :str = "rb" , __A :Optional[str] = None , __A :Optional[dict] = None , __A :int = DEFAULT_BLOCK_SIZE , **__A :Optional[int] , ) -> Union[str, Any]: """simple docstring""" super().__init__( fo=__A , mode=__A , target_protocol=__A , target_options=__A , block_size=__A , **__A , ) # We need to wrap the zstd decompressor to avoid this error in fsspec==2021.7.0 and zstandard==0.15.2: # # File "/Users/user/.virtualenvs/hf-datasets/lib/python3.7/site-packages/fsspec/core.py", line 145, in open # out.close = close # AttributeError: 'zstd.ZstdDecompressionReader' object attribute 'close' is read-only # # see https://github.com/intake/filesystem_spec/issues/725 SCREAMING_SNAKE_CASE__ = self.file.__enter__ class UpperCamelCase_ : def __init__( self :int , __A :Tuple ) -> int: """simple docstring""" SCREAMING_SNAKE_CASE__ = file_ def __enter__( self :Optional[Any] ) -> Optional[int]: """simple docstring""" self._file.__enter__() return self def __exit__( self :Optional[Any] , *__A :List[Any] , **__A :int ) -> Tuple: """simple docstring""" self._file.__exit__(*__A , **__A ) def __iter__( self :Any ) -> Optional[int]: """simple docstring""" return iter(self._file ) def _snake_case ( self :Dict ) -> Dict: """simple docstring""" return next(self._file ) def __getattr__( self :Union[str, Any] , __A :List[str] ) -> Optional[Any]: """simple docstring""" return getattr(self._file , __A ) def fixed_enter(*__A :List[Any] , **__A :Optional[int] ): return WrappedFile(_enter(*__A , **__A ) ) SCREAMING_SNAKE_CASE__ = fixed_enter
6
from dataclasses import dataclass, field from typing import ClassVar, Dict from ..features import Features, Value from .base import TaskTemplate @dataclass(frozen=A__ ) class __UpperCamelCase ( A__ ): __A : str = field(default="""language-modeling""" , metadata={"""include_in_asdict_even_if_is_default""": True} ) __A : ClassVar[Features] = Features({"""text""": Value("""string""" )} ) __A : ClassVar[Features] = Features({} ) __A : str = "text" @property def UpperCamelCase( self ): return {self.text_column: "text"}
32
0
"""simple docstring""" import pytest from datasets.splits import SplitDict, SplitInfo from datasets.utils.py_utils import asdict @pytest.mark.parametrize( 'split_dict' , [ SplitDict(), SplitDict({'train': SplitInfo(name='train' , num_bytes=13_37 , num_examples=42 , dataset_name='my_dataset' )} ), SplitDict({'train': SplitInfo(name='train' , num_bytes=13_37 , num_examples=42 )} ), SplitDict({'train': SplitInfo()} ), ] , ) def _snake_case ( _snake_case : SplitDict ) -> Optional[Any]: '''simple docstring''' _A = split_dict._to_yaml_list() assert len(_snake_case ) == len(_snake_case ) _A = SplitDict._from_yaml_list(_snake_case ) for split_name, split_info in split_dict.items(): # dataset_name field is deprecated, and is therefore not part of the YAML dump _A = None # the split name of split_dict takes over the name of the split info object _A = split_name assert split_dict == reloaded @pytest.mark.parametrize( 'split_info' , [SplitInfo(), SplitInfo(dataset_name=_snake_case ), SplitInfo(dataset_name='my_dataset' )] ) def _snake_case ( _snake_case : Any ) -> Dict: '''simple docstring''' _A = asdict(SplitDict({'train': split_info} ) ) assert "dataset_name" in split_dict_asdict["train"] assert split_dict_asdict["train"]["dataset_name"] == split_info.dataset_name
7
import os import re import warnings from shutil import copyfile from typing import TYPE_CHECKING, Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import PreTrainedTokenizer if TYPE_CHECKING: from ...tokenization_utils_base import TextInput from ...utils import logging UpperCAmelCase_ = logging.get_logger(__name__) UpperCAmelCase_ = {"vocab_file": "spiece.model"} UpperCAmelCase_ = { "vocab_file": { "t5-small": "https://huggingface.co/t5-small/resolve/main/spiece.model", "t5-base": "https://huggingface.co/t5-base/resolve/main/spiece.model", "t5-large": "https://huggingface.co/t5-large/resolve/main/spiece.model", "t5-3b": "https://huggingface.co/t5-3b/resolve/main/spiece.model", "t5-11b": "https://huggingface.co/t5-11b/resolve/main/spiece.model", } } # TODO(PVP) - this should be removed in Transformers v5 UpperCAmelCase_ = { "t5-small": 5_12, "t5-base": 5_12, "t5-large": 5_12, "t5-3b": 5_12, "t5-11b": 5_12, } UpperCAmelCase_ = "▁" class __UpperCamelCase ( A__ ): __A : Any = VOCAB_FILES_NAMES __A : Union[str, Any] = PRETRAINED_VOCAB_FILES_MAP __A : Any = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __A : Tuple = ["""input_ids""", """attention_mask"""] def __init__( self , _UpperCamelCase , _UpperCamelCase="</s>" , _UpperCamelCase="<unk>" , _UpperCamelCase="<pad>" , _UpperCamelCase=100 , _UpperCamelCase=None , _UpperCamelCase = None , _UpperCamelCase=True , **_UpperCamelCase , ): # Add extra_ids to the special token list if extra_ids > 0 and additional_special_tokens is None: _UpperCAmelCase = [f'''<extra_id_{i}>''' for i in range(_UpperCamelCase )] elif extra_ids > 0 and additional_special_tokens is not None: # Check that we have the right number of extra_id special tokens _UpperCAmelCase = len(set(filter(lambda _UpperCamelCase : bool('''extra_id''' in str(_UpperCamelCase ) ) , _UpperCamelCase ) ) ) if extra_tokens != extra_ids: raise ValueError( f'''Both extra_ids ({extra_ids}) and additional_special_tokens ({additional_special_tokens}) are''' ''' provided to T5Tokenizer. In this case the additional_special_tokens must include the extra_ids''' ''' tokens''' ) if legacy: logger.warning_once( f'''You are using the legacy behaviour of the {self.__class__}. This means that tokens that come after special tokens will not be properly handled. We recommend you to''' ''' read the related pull request available at https://github.com/huggingface/transformers/pull/24565''' ) _UpperCAmelCase = legacy _UpperCAmelCase = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( eos_token=_UpperCamelCase , unk_token=_UpperCamelCase , pad_token=_UpperCamelCase , extra_ids=_UpperCamelCase , additional_special_tokens=_UpperCamelCase , sp_model_kwargs=self.sp_model_kwargs , legacy=_UpperCamelCase , **_UpperCamelCase , ) _UpperCAmelCase = vocab_file _UpperCAmelCase = extra_ids _UpperCAmelCase = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(_UpperCamelCase ) @staticmethod def UpperCamelCase( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ): if pretrained_model_name_or_path in TaTokenizer.max_model_input_sizes: _UpperCAmelCase = TaTokenizer.max_model_input_sizes[pretrained_model_name_or_path] if init_max_model_length is not None and init_max_model_length != max_model_length: return init_max_model_length elif init_max_model_length is None: warnings.warn( '''This tokenizer was incorrectly instantiated with a model max length of''' f''' {deprecated_max_model_length} which will be corrected in Transformers v5.\nFor now, this''' ''' behavior is kept to avoid breaking backwards compatibility when padding/encoding with''' ''' `truncation is True`.\n- Be aware that you SHOULD NOT rely on''' f''' {pretrained_model_name_or_path} automatically truncating your input to''' f''' {deprecated_max_model_length} when padding/encoding.\n- If you want to encode/pad to sequences''' f''' longer than {deprecated_max_model_length} you can either instantiate this tokenizer with''' ''' `model_max_length` or pass `max_length` when encoding/padding.\n- To avoid this warning, please''' ''' instantiate this tokenizer with `model_max_length` set to your preferred value.''' , _UpperCamelCase , ) return max_model_length @property def UpperCamelCase( self ): return self.sp_model.get_piece_size() + self._extra_ids def UpperCamelCase( self ): _UpperCAmelCase = {self.convert_ids_to_tokens(_UpperCamelCase ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def UpperCamelCase( self , _UpperCamelCase , _UpperCamelCase = None , _UpperCamelCase = False ): if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=_UpperCamelCase , token_ids_a=_UpperCamelCase , already_has_special_tokens=_UpperCamelCase ) # normal case: some special tokens if token_ids_a is None: return ([0] * len(_UpperCamelCase )) + [1] return ([0] * len(_UpperCamelCase )) + [1] + ([0] * len(_UpperCamelCase )) + [1] def UpperCamelCase( self ): return list( set(filter(lambda _UpperCamelCase : bool(re.search(R'''<extra_id_\d+>''' , _UpperCamelCase ) ) is not None , self.additional_special_tokens ) ) ) def UpperCamelCase( self ): return [self._convert_token_to_id(_UpperCamelCase ) for token in self.get_sentinel_tokens()] def UpperCamelCase( self , _UpperCamelCase ): if len(_UpperCamelCase ) > 0 and token_ids[-1] == self.eos_token_id: warnings.warn( f'''This sequence already has {self.eos_token}. In future versions this behavior may lead to duplicated''' ''' eos tokens being added.''' ) return token_ids else: return token_ids + [self.eos_token_id] def UpperCamelCase( self , _UpperCamelCase , _UpperCamelCase = None ): _UpperCAmelCase = [self.eos_token_id] if token_ids_a is None: return len(token_ids_a + eos ) * [0] return len(token_ids_a + eos + token_ids_a + eos ) * [0] def UpperCamelCase( self , _UpperCamelCase , _UpperCamelCase = None ): _UpperCAmelCase = self._add_eos_if_not_present(_UpperCamelCase ) if token_ids_a is None: return token_ids_a else: _UpperCAmelCase = self._add_eos_if_not_present(_UpperCamelCase ) return token_ids_a + token_ids_a def __getstate__( self ): _UpperCAmelCase = self.__dict__.copy() _UpperCAmelCase = None return state def __setstate__( self , _UpperCamelCase ): _UpperCAmelCase = d # for backward compatibility if not hasattr(self , '''sp_model_kwargs''' ): _UpperCAmelCase = {} _UpperCAmelCase = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def UpperCamelCase( self , _UpperCamelCase , **_UpperCamelCase ): # Replace the SPIECE_UNDERLINE with a space to make sure SPIECE_UNDERLINE is only used at # the beginning of the text if not self.legacy: _UpperCAmelCase = SPIECE_UNDERLINE + text.replace(_UpperCamelCase , ''' ''' ) return super().tokenize(_UpperCamelCase , **_UpperCamelCase ) def UpperCamelCase( self , _UpperCamelCase , **_UpperCamelCase ): if not self.legacy: _UpperCAmelCase = text.startswith(_UpperCamelCase ) if is_first: _UpperCAmelCase = text[1:] _UpperCAmelCase = self.sp_model.encode(_UpperCamelCase , out_type=_UpperCamelCase ) if not self.legacy and not is_first and not text.startswith(''' ''' ) and tokens[0].startswith(_UpperCamelCase ): _UpperCAmelCase = ([tokens[0][1:]] if len(tokens[0] ) > 1 else []) + tokens[1:] return tokens def UpperCamelCase( self , _UpperCamelCase ): if token.startswith('''<extra_id_''' ): _UpperCAmelCase = re.match(R'''<extra_id_(\d+)>''' , _UpperCamelCase ) _UpperCAmelCase = int(match.group(1 ) ) return self.vocab_size - num - 1 return self.sp_model.piece_to_id(_UpperCamelCase ) def UpperCamelCase( self , _UpperCamelCase ): if index < self.sp_model.get_piece_size(): _UpperCAmelCase = self.sp_model.IdToPiece(_UpperCamelCase ) else: _UpperCAmelCase = f'''<extra_id_{self.vocab_size - 1 - index}>''' return token def UpperCamelCase( self , _UpperCamelCase ): _UpperCAmelCase = [] _UpperCAmelCase = '''''' _UpperCAmelCase = False for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: if not prev_is_special: out_string += " " out_string += self.sp_model.decode(_UpperCamelCase ) + token _UpperCAmelCase = True _UpperCAmelCase = [] else: current_sub_tokens.append(_UpperCamelCase ) _UpperCAmelCase = False out_string += self.sp_model.decode(_UpperCamelCase ) return out_string.strip() def UpperCamelCase( self , _UpperCamelCase , _UpperCamelCase = None ): if not os.path.isdir(_UpperCamelCase ): logger.error(f'''Vocabulary path ({save_directory}) should be a directory''' ) return _UpperCAmelCase = os.path.join( _UpperCamelCase , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(_UpperCamelCase ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , _UpperCamelCase ) elif not os.path.isfile(self.vocab_file ): with open(_UpperCamelCase , '''wb''' ) as fi: _UpperCAmelCase = self.sp_model.serialized_model_proto() fi.write(_UpperCamelCase ) return (out_vocab_file,)
32
0
'''simple docstring''' import argparse import torch from transformers import BertForMaskedLM if __name__ == "__main__": lowercase__ : Optional[int] = argparse.ArgumentParser( description=( '''Extraction some layers of the full BertForMaskedLM or RObertaForMaskedLM for Transfer Learned''' ''' Distillation''' ) ) parser.add_argument('''--model_type''', default='''bert''', choices=['''bert''']) parser.add_argument('''--model_name''', default='''bert-base-uncased''', type=str) parser.add_argument('''--dump_checkpoint''', default='''serialization_dir/tf_bert-base-uncased_0247911.pth''', type=str) parser.add_argument('''--vocab_transform''', action='''store_true''') lowercase__ : Dict = parser.parse_args() if args.model_type == "bert": lowercase__ : Dict = BertForMaskedLM.from_pretrained(args.model_name) lowercase__ : int = '''bert''' else: raise ValueError('''args.model_type should be "bert".''') lowercase__ : List[Any] = model.state_dict() lowercase__ : Optional[Any] = {} for w in ["word_embeddings", "position_embeddings"]: lowercase__ : Dict = state_dict[f"""{prefix}.embeddings.{w}.weight"""] for w in ["weight", "bias"]: lowercase__ : Any = state_dict[f"""{prefix}.embeddings.LayerNorm.{w}"""] lowercase__ : List[Any] = 0 for teacher_idx in [0, 2, 4, 7, 9, 11]: for w in ["weight", "bias"]: lowercase__ : Optional[Any] = state_dict[ f"""{prefix}.encoder.layer.{teacher_idx}.attention.self.query.{w}""" ] lowercase__ : str = state_dict[ f"""{prefix}.encoder.layer.{teacher_idx}.attention.self.key.{w}""" ] lowercase__ : Optional[int] = state_dict[ f"""{prefix}.encoder.layer.{teacher_idx}.attention.self.value.{w}""" ] lowercase__ : Dict = state_dict[ f"""{prefix}.encoder.layer.{teacher_idx}.attention.output.dense.{w}""" ] lowercase__ : List[Any] = state_dict[ f"""{prefix}.encoder.layer.{teacher_idx}.attention.output.LayerNorm.{w}""" ] lowercase__ : Dict = state_dict[ f"""{prefix}.encoder.layer.{teacher_idx}.intermediate.dense.{w}""" ] lowercase__ : List[str] = state_dict[ f"""{prefix}.encoder.layer.{teacher_idx}.output.dense.{w}""" ] lowercase__ : List[Any] = state_dict[ f"""{prefix}.encoder.layer.{teacher_idx}.output.LayerNorm.{w}""" ] std_idx += 1 lowercase__ : int = state_dict['''cls.predictions.decoder.weight'''] lowercase__ : List[Any] = state_dict['''cls.predictions.bias'''] if args.vocab_transform: for w in ["weight", "bias"]: lowercase__ : Optional[Any] = state_dict[f"""cls.predictions.transform.dense.{w}"""] lowercase__ : Union[str, Any] = state_dict[f"""cls.predictions.transform.LayerNorm.{w}"""] print(f"""N layers selected for distillation: {std_idx}""") print(f"""Number of params transferred for distillation: {len(compressed_sd.keys())}""") print(f"""Save transferred checkpoint to {args.dump_checkpoint}.""") torch.save(compressed_sd, args.dump_checkpoint)
8
from __future__ import annotations def A__ ( SCREAMING_SNAKE_CASE_ : int ) -> bool: """simple docstring""" _UpperCAmelCase = str(SCREAMING_SNAKE_CASE_ ) return len(SCREAMING_SNAKE_CASE_ ) == 9 and set(SCREAMING_SNAKE_CASE_ ) == set('''123456789''' ) def A__ ( ) -> int | None: """simple docstring""" for base_num in range(99_99 , 49_99 , -1 ): _UpperCAmelCase = 10_00_02 * base_num if is_9_pandigital(SCREAMING_SNAKE_CASE_ ): return candidate for base_num in range(3_33 , 99 , -1 ): _UpperCAmelCase = 1_00_20_03 * base_num if is_9_pandigital(SCREAMING_SNAKE_CASE_ ): return candidate return None if __name__ == "__main__": print(f'''{solution() = }''')
32
0
import warnings from typing import List, Optional, Union from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType class __lowerCAmelCase ( UpperCAmelCase_ ): """simple docstring""" A__ : str = ["image_processor", "tokenizer"] A__ : str = "LayoutLMv3ImageProcessor" A__ : Tuple = ("LayoutLMv3Tokenizer", "LayoutLMv3TokenizerFast") def __init__( self : Optional[int] , _snake_case : Optional[int]=None , _snake_case : Optional[int]=None , **_snake_case : int ): """simple docstring""" A__ = None if "feature_extractor" in kwargs: warnings.warn( 'The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`' ' instead.' , _snake_case , ) A__ = kwargs.pop('feature_extractor' ) A__ = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError('You need to specify an `image_processor`.' ) if tokenizer is None: raise ValueError('You need to specify a `tokenizer`.' ) super().__init__(_snake_case , _snake_case ) def __call__( self : Optional[int] , _snake_case : List[str] , _snake_case : Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]] = None , _snake_case : Optional[Union[PreTokenizedInput, List[PreTokenizedInput]]] = None , _snake_case : Union[List[List[int]], List[List[List[int]]]] = None , _snake_case : Optional[Union[List[int], List[List[int]]]] = None , _snake_case : bool = True , _snake_case : Union[bool, str, PaddingStrategy] = False , _snake_case : Union[bool, str, TruncationStrategy] = None , _snake_case : Optional[int] = None , _snake_case : int = 0 , _snake_case : Optional[int] = None , _snake_case : Optional[bool] = None , _snake_case : Optional[bool] = None , _snake_case : bool = False , _snake_case : bool = False , _snake_case : bool = False , _snake_case : bool = False , _snake_case : bool = True , _snake_case : Optional[Union[str, TensorType]] = None , **_snake_case : Optional[Any] , ): """simple docstring""" if self.image_processor.apply_ocr and (boxes is not None): raise ValueError( 'You cannot provide bounding boxes if you initialized the image processor with apply_ocr set to True.' ) if self.image_processor.apply_ocr and (word_labels is not None): raise ValueError( 'You cannot provide word labels if you initialized the image processor with apply_ocr set to True.' ) # first, apply the image processor A__ = self.image_processor(images=_snake_case , return_tensors=_snake_case ) # second, apply the tokenizer if text is not None and self.image_processor.apply_ocr and text_pair is None: if isinstance(_snake_case , _snake_case ): A__ = [text] # add batch dimension (as the image processor always adds a batch dimension) A__ = features['words'] A__ = self.tokenizer( text=text if text is not None else features['words'] , text_pair=text_pair if text_pair is not None else None , boxes=boxes if boxes is not None else features['boxes'] , word_labels=_snake_case , add_special_tokens=_snake_case , padding=_snake_case , truncation=_snake_case , max_length=_snake_case , stride=_snake_case , pad_to_multiple_of=_snake_case , return_token_type_ids=_snake_case , return_attention_mask=_snake_case , return_overflowing_tokens=_snake_case , return_special_tokens_mask=_snake_case , return_offsets_mapping=_snake_case , return_length=_snake_case , verbose=_snake_case , return_tensors=_snake_case , **_snake_case , ) # add pixel values A__ = features.pop('pixel_values' ) if return_overflowing_tokens is True: A__ = self.get_overflowing_images(_snake_case , encoded_inputs['overflow_to_sample_mapping'] ) A__ = images return encoded_inputs def _a ( self : int , _snake_case : List[str] , _snake_case : Union[str, Any] ): """simple docstring""" A__ = [] for sample_idx in overflow_to_sample_mapping: images_with_overflow.append(images[sample_idx] ) if len(_snake_case ) != len(_snake_case ): raise ValueError( 'Expected length of images to be the same as the length of `overflow_to_sample_mapping`, but got' F''' {len(_snake_case )} and {len(_snake_case )}''' ) return images_with_overflow def _a ( self : Union[str, Any] , *_snake_case : List[Any] , **_snake_case : Any ): """simple docstring""" return self.tokenizer.batch_decode(*_snake_case , **_snake_case ) def _a ( self : List[str] , *_snake_case : Optional[int] , **_snake_case : int ): """simple docstring""" return self.tokenizer.decode(*_snake_case , **_snake_case ) @property def _a ( self : Optional[Any] ): """simple docstring""" return ["input_ids", "bbox", "attention_mask", "pixel_values"] @property def _a ( self : Any ): """simple docstring""" warnings.warn( '`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.' , _snake_case , ) return self.image_processor_class @property def _a ( self : int ): """simple docstring""" warnings.warn( '`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead.' , _snake_case , ) return self.image_processor
9
import numpy as np def A__ ( SCREAMING_SNAKE_CASE_ : np.ndarray , SCREAMING_SNAKE_CASE_ : float ) -> np.ndarray: """simple docstring""" return np.where(vector > 0 , SCREAMING_SNAKE_CASE_ , (alpha * (np.exp(SCREAMING_SNAKE_CASE_ ) - 1)) ) if __name__ == "__main__": import doctest doctest.testmod()
32
0
import functools import operator from ...configuration_utils import PretrainedConfig from ...utils import logging _lowerCAmelCase = logging.get_logger(__name__) _lowerCAmelCase = { "microsoft/unispeech-sat-base-100h-libri-ft": ( "https://huggingface.co/microsoft/unispeech-sat-base-100h-libri-ft/resolve/main/config.json" ), # See all UniSpeechSat models at https://huggingface.co/models?filter=unispeech_sat } class lowerCAmelCase_ ( __lowercase ): UpperCAmelCase = "unispeech-sat" def __init__( self : List[Any] , _A : Dict=32 , _A : int=768 , _A : str=12 , _A : str=12 , _A : Any=3072 , _A : List[str]="gelu" , _A : Any=0.1 , _A : Union[str, Any]=0.1 , _A : Optional[int]=0.1 , _A : Optional[Any]=0.0 , _A : List[str]=0.0 , _A : Optional[Any]=0.1 , _A : str=0.1 , _A : List[str]=0.02 , _A : Optional[int]=1e-5 , _A : Dict="group" , _A : str="gelu" , _A : List[str]=(512, 512, 512, 512, 512, 512, 512) , _A : Any=(5, 2, 2, 2, 2, 2, 2) , _A : Dict=(10, 3, 3, 3, 3, 2, 2) , _A : Union[str, Any]=False , _A : str=128 , _A : Tuple=16 , _A : Optional[int]=False , _A : Dict=True , _A : Optional[Any]=0.05 , _A : Any=10 , _A : str=2 , _A : Dict=0.0 , _A : List[str]=10 , _A : Union[str, Any]=0 , _A : List[str]=320 , _A : List[Any]=2 , _A : Optional[Any]=0.1 , _A : Optional[Any]=100 , _A : List[str]=256 , _A : Any=256 , _A : List[Any]=0.1 , _A : Dict="mean" , _A : Dict=False , _A : List[str]=False , _A : List[Any]=256 , _A : Any=(512, 512, 512, 512, 1500) , _A : Any=(5, 3, 3, 1, 1) , _A : Dict=(1, 2, 3, 1, 1) , _A : str=512 , _A : Dict=0 , _A : List[str]=1 , _A : Tuple=2 , _A : Optional[Any]=504 , **_A : int , ): super().__init__(**_A , pad_token_id=_A , bos_token_id=_A , eos_token_id=_A ) _UpperCamelCase = hidden_size _UpperCamelCase = feat_extract_norm _UpperCamelCase = feat_extract_activation _UpperCamelCase = list(_A ) _UpperCamelCase = list(_A ) _UpperCamelCase = list(_A ) _UpperCamelCase = conv_bias _UpperCamelCase = num_conv_pos_embeddings _UpperCamelCase = num_conv_pos_embedding_groups _UpperCamelCase = len(self.conv_dim ) _UpperCamelCase = num_hidden_layers _UpperCamelCase = intermediate_size _UpperCamelCase = hidden_act _UpperCamelCase = num_attention_heads _UpperCamelCase = hidden_dropout _UpperCamelCase = attention_dropout _UpperCamelCase = activation_dropout _UpperCamelCase = feat_proj_dropout _UpperCamelCase = final_dropout _UpperCamelCase = layerdrop _UpperCamelCase = layer_norm_eps _UpperCamelCase = initializer_range _UpperCamelCase = vocab_size _UpperCamelCase = num_clusters _UpperCamelCase = do_stable_layer_norm _UpperCamelCase = use_weighted_layer_sum if ( (len(self.conv_stride ) != self.num_feat_extract_layers) or (len(self.conv_kernel ) != self.num_feat_extract_layers) or (len(self.conv_dim ) != self.num_feat_extract_layers) ): raise ValueError( '''Configuration for convolutional layers is incorrect. It is required that `len(config.conv_dim)` ==''' ''' `len(config.conv_stride)` == `len(config.conv_kernel)`, but is `len(config.conv_dim) =''' F""" {len(self.conv_dim )}`, `len(config.conv_stride) = {len(self.conv_stride )}`,""" F""" `len(config.conv_kernel) = {len(self.conv_kernel )}`.""" ) # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 _UpperCamelCase = apply_spec_augment _UpperCamelCase = mask_time_prob _UpperCamelCase = mask_time_length _UpperCamelCase = mask_time_min_masks _UpperCamelCase = mask_feature_prob _UpperCamelCase = mask_feature_length _UpperCamelCase = mask_feature_min_masks # parameters for pretraining with codevector quantized representations _UpperCamelCase = num_codevectors_per_group _UpperCamelCase = num_codevector_groups _UpperCamelCase = contrastive_logits_temperature _UpperCamelCase = feat_quantizer_dropout _UpperCamelCase = num_negatives _UpperCamelCase = codevector_dim _UpperCamelCase = proj_codevector_dim _UpperCamelCase = diversity_loss_weight # ctc loss _UpperCamelCase = ctc_loss_reduction _UpperCamelCase = ctc_zero_infinity # SequenceClassification-specific parameter. Feel free to ignore for other classes. _UpperCamelCase = classifier_proj_size # XVector-specific parameters. Feel free to ignore for other classes. _UpperCamelCase = list(_A ) _UpperCamelCase = list(_A ) _UpperCamelCase = list(_A ) _UpperCamelCase = xvector_output_dim @property def UpperCamelCase_ ( self : List[str] ): return functools.reduce(operator.mul , self.conv_stride , 1 )
10
UpperCAmelCase_ = { "A": ".-", "B": "-...", "C": "-.-.", "D": "-..", "E": ".", "F": "..-.", "G": "--.", "H": "....", "I": "..", "J": ".---", "K": "-.-", "L": ".-..", "M": "--", "N": "-.", "O": "---", "P": ".--.", "Q": "--.-", "R": ".-.", "S": "...", "T": "-", "U": "..-", "V": "...-", "W": ".--", "X": "-..-", "Y": "-.--", "Z": "--..", "1": ".----", "2": "..---", "3": "...--", "4": "....-", "5": ".....", "6": "-....", "7": "--...", "8": "---..", "9": "----.", "0": "-----", "&": ".-...", "@": ".--.-.", ":": "---...", ",": "--..--", ".": ".-.-.-", "'": ".----.", "\"": ".-..-.", "?": "..--..", "/": "-..-.", "=": "-...-", "+": ".-.-.", "-": "-....-", "(": "-.--.", ")": "-.--.-", "!": "-.-.--", " ": "/" } # Exclamation mark is not in ITU-R recommendation # fmt: on UpperCAmelCase_ = {value: key for key, value in MORSE_CODE_DICT.items()} def A__ ( SCREAMING_SNAKE_CASE_ : str ) -> str: """simple docstring""" return " ".join(MORSE_CODE_DICT[char] for char in message.upper() ) def A__ ( SCREAMING_SNAKE_CASE_ : str ) -> str: """simple docstring""" return "".join(REVERSE_DICT[char] for char in message.split() ) def A__ ( ) -> None: """simple docstring""" _UpperCAmelCase = '''Morse code here!''' print(SCREAMING_SNAKE_CASE_ ) _UpperCAmelCase = encrypt(SCREAMING_SNAKE_CASE_ ) print(SCREAMING_SNAKE_CASE_ ) _UpperCAmelCase = decrypt(SCREAMING_SNAKE_CASE_ ) print(SCREAMING_SNAKE_CASE_ ) if __name__ == "__main__": main()
32
0
'''simple docstring''' import os import re from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging lowercase_ = logging.get_logger(__name__) lowercase_ = { "vocab_file": "vocab.txt", "merges_file": "bpe.codes", } lowercase_ = { "vocab_file": { "vinai/phobert-base": "https://huggingface.co/vinai/phobert-base/resolve/main/vocab.txt", "vinai/phobert-large": "https://huggingface.co/vinai/phobert-large/resolve/main/vocab.txt", }, "merges_file": { "vinai/phobert-base": "https://huggingface.co/vinai/phobert-base/resolve/main/bpe.codes", "vinai/phobert-large": "https://huggingface.co/vinai/phobert-large/resolve/main/bpe.codes", }, } lowercase_ = { "vinai/phobert-base": 256, "vinai/phobert-large": 256, } def lowerCAmelCase (__A): """simple docstring""" _a = set() _a = word[0] for char in word[1:]: pairs.add((prev_char, char)) _a = char _a = set(__A) return pairs class __A ( A ): '''simple docstring''' __lowerCamelCase : Optional[Any] = VOCAB_FILES_NAMES __lowerCamelCase : Dict = PRETRAINED_VOCAB_FILES_MAP __lowerCamelCase : List[str] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES def __init__(self , A , A , A="<s>" , A="</s>" , A="</s>" , A="<s>" , A="<unk>" , A="<pad>" , A="<mask>" , **A , ) -> Optional[Any]: """simple docstring""" super().__init__( bos_token=A , eos_token=A , unk_token=A , sep_token=A , cls_token=A , pad_token=A , mask_token=A , **A , ) _a = vocab_file _a = merges_file _a = {} _a = 0 _a = 1 _a = 2 _a = 3 self.add_from_file(A ) _a = {v: k for k, v in self.encoder.items()} with open(A , encoding='''utf-8''' ) as merges_handle: _a = merges_handle.read().split('''\n''' )[:-1] _a = [tuple(merge.split()[:-1] ) for merge in merges] _a = dict(zip(A , range(len(A ) ) ) ) _a = {} def a__ (self , A , A = None ) -> List[int]: """simple docstring""" if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] _a = [self.cls_token_id] _a = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def a__ (self , A , A = None , A = False ) -> List[int]: """simple docstring""" if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=A , token_ids_a=A , already_has_special_tokens=A ) if token_ids_a is None: return [1] + ([0] * len(A )) + [1] return [1] + ([0] * len(A )) + [1, 1] + ([0] * len(A )) + [1] def a__ (self , A , A = None ) -> List[int]: """simple docstring""" _a = [self.sep_token_id] _a = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] @property def a__ (self ) -> Union[str, Any]: """simple docstring""" return len(self.encoder ) def a__ (self ) -> Union[str, Any]: """simple docstring""" return dict(self.encoder , **self.added_tokens_encoder ) def a__ (self , A ) -> Tuple: """simple docstring""" if token in self.cache: return self.cache[token] _a = tuple(A ) _a = tuple(list(word[:-1] ) + [word[-1] + '''</w>'''] ) _a = get_pairs(A ) if not pairs: return token while True: _a = min(A , key=lambda A : self.bpe_ranks.get(A , float('''inf''' ) ) ) if bigram not in self.bpe_ranks: break _a , _a = bigram _a = [] _a = 0 while i < len(A ): try: _a = word.index(A , A ) except ValueError: new_word.extend(word[i:] ) break else: new_word.extend(word[i:j] ) _a = j if word[i] == first and i < len(A ) - 1 and word[i + 1] == second: new_word.append(first + second ) i += 2 else: new_word.append(word[i] ) i += 1 _a = tuple(A ) _a = new_word if len(A ) == 1: break else: _a = get_pairs(A ) _a = '''@@ '''.join(A ) _a = word[:-4] _a = word return word def a__ (self , A ) -> str: """simple docstring""" _a = [] _a = re.findall(R'''\S+\n?''' , A ) for token in words: split_tokens.extend(list(self.bpe(A ).split(''' ''' ) ) ) return split_tokens def a__ (self , A ) -> Dict: """simple docstring""" return self.encoder.get(A , self.encoder.get(self.unk_token ) ) def a__ (self , A ) -> Any: """simple docstring""" return self.decoder.get(A , self.unk_token ) def a__ (self , A ) -> int: """simple docstring""" _a = ''' '''.join(A ).replace('''@@ ''' , '''''' ).strip() return out_string def a__ (self , A , A = None ) -> Tuple[str]: """simple docstring""" if not os.path.isdir(A ): logger.error(f'''Vocabulary path ({save_directory}) should be a directory''' ) return _a = os.path.join( A , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) _a = os.path.join( A , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''merges_file'''] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(A ): copyfile(self.vocab_file , A ) if os.path.abspath(self.merges_file ) != os.path.abspath(A ): copyfile(self.merges_file , A ) return out_vocab_file, out_merge_file def a__ (self , A ) -> List[Any]: """simple docstring""" if isinstance(A , A ): try: with open(A , '''r''' , encoding='''utf-8''' ) as fd: self.add_from_file(A ) except FileNotFoundError as fnfe: raise fnfe except UnicodeError: raise Exception(f'''Incorrect encoding detected in {f}, please rebuild the dataset''' ) return _a = f.readlines() for lineTmp in lines: _a = lineTmp.strip() _a = line.rfind(''' ''' ) if idx == -1: raise ValueError('''Incorrect dictionary format, expected \'<token> <cnt>\'''' ) _a = line[:idx] _a = len(self.encoder )
11
import gc import unittest import numpy as np import torch from diffusers import DanceDiffusionPipeline, IPNDMScheduler, UNetaDModel from diffusers.utils import slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu, skip_mps from ..pipeline_params import UNCONDITIONAL_AUDIO_GENERATION_BATCH_PARAMS, UNCONDITIONAL_AUDIO_GENERATION_PARAMS from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() class __UpperCamelCase ( A__ , unittest.TestCase ): __A : Any = DanceDiffusionPipeline __A : Any = UNCONDITIONAL_AUDIO_GENERATION_PARAMS __A : Tuple = PipelineTesterMixin.required_optional_params - { """callback""", """latents""", """callback_steps""", """output_type""", """num_images_per_prompt""", } __A : Tuple = UNCONDITIONAL_AUDIO_GENERATION_BATCH_PARAMS __A : List[str] = False __A : str = False def UpperCamelCase( self ): torch.manual_seed(0 ) _UpperCAmelCase = UNetaDModel( block_out_channels=(32, 32, 64) , extra_in_channels=16 , sample_size=512 , sample_rate=16000 , in_channels=2 , out_channels=2 , flip_sin_to_cos=_UpperCamelCase , use_timestep_embedding=_UpperCamelCase , time_embedding_type='''fourier''' , mid_block_type='''UNetMidBlock1D''' , down_block_types=('''DownBlock1DNoSkip''', '''DownBlock1D''', '''AttnDownBlock1D''') , up_block_types=('''AttnUpBlock1D''', '''UpBlock1D''', '''UpBlock1DNoSkip''') , ) _UpperCAmelCase = IPNDMScheduler() _UpperCAmelCase = { '''unet''': unet, '''scheduler''': scheduler, } return components def UpperCamelCase( self , _UpperCamelCase , _UpperCamelCase=0 ): if str(_UpperCamelCase ).startswith('''mps''' ): _UpperCAmelCase = torch.manual_seed(_UpperCamelCase ) else: _UpperCAmelCase = torch.Generator(device=_UpperCamelCase ).manual_seed(_UpperCamelCase ) _UpperCAmelCase = { '''batch_size''': 1, '''generator''': generator, '''num_inference_steps''': 4, } return inputs def UpperCamelCase( self ): _UpperCAmelCase = '''cpu''' # ensure determinism for the device-dependent torch.Generator _UpperCAmelCase = self.get_dummy_components() _UpperCAmelCase = DanceDiffusionPipeline(**_UpperCamelCase ) _UpperCAmelCase = pipe.to(_UpperCamelCase ) pipe.set_progress_bar_config(disable=_UpperCamelCase ) _UpperCAmelCase = self.get_dummy_inputs(_UpperCamelCase ) _UpperCAmelCase = pipe(**_UpperCamelCase ) _UpperCAmelCase = output.audios _UpperCAmelCase = audio[0, -3:, -3:] assert audio.shape == (1, 2, components["unet"].sample_size) _UpperCAmelCase = np.array([-0.7265, 1.0000, -0.8388, 0.1175, 0.9498, -1.0000] ) assert np.abs(audio_slice.flatten() - expected_slice ).max() < 1e-2 @skip_mps def UpperCamelCase( self ): return super().test_save_load_local() @skip_mps def UpperCamelCase( self ): return super().test_dict_tuple_outputs_equivalent(expected_max_difference=3e-3 ) @skip_mps def UpperCamelCase( self ): return super().test_save_load_optional_components() @skip_mps def UpperCamelCase( self ): return super().test_attention_slicing_forward_pass() def UpperCamelCase( self ): super().test_inference_batch_single_identical(expected_max_diff=3e-3 ) @slow @require_torch_gpu class __UpperCamelCase ( unittest.TestCase ): def UpperCamelCase( self ): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def UpperCamelCase( self ): _UpperCAmelCase = torch_device _UpperCAmelCase = DanceDiffusionPipeline.from_pretrained('''harmonai/maestro-150k''' ) _UpperCAmelCase = pipe.to(_UpperCamelCase ) pipe.set_progress_bar_config(disable=_UpperCamelCase ) _UpperCAmelCase = torch.manual_seed(0 ) _UpperCAmelCase = pipe(generator=_UpperCamelCase , num_inference_steps=100 , audio_length_in_s=4.096 ) _UpperCAmelCase = output.audios _UpperCAmelCase = audio[0, -3:, -3:] assert audio.shape == (1, 2, pipe.unet.sample_size) _UpperCAmelCase = np.array([-0.0192, -0.0231, -0.0318, -0.0059, 0.0002, -0.0020] ) assert np.abs(audio_slice.flatten() - expected_slice ).max() < 1e-2 def UpperCamelCase( self ): _UpperCAmelCase = torch_device _UpperCAmelCase = DanceDiffusionPipeline.from_pretrained('''harmonai/maestro-150k''' , torch_dtype=torch.floataa ) _UpperCAmelCase = pipe.to(_UpperCamelCase ) pipe.set_progress_bar_config(disable=_UpperCamelCase ) _UpperCAmelCase = torch.manual_seed(0 ) _UpperCAmelCase = pipe(generator=_UpperCamelCase , num_inference_steps=100 , audio_length_in_s=4.096 ) _UpperCAmelCase = output.audios _UpperCAmelCase = audio[0, -3:, -3:] assert audio.shape == (1, 2, pipe.unet.sample_size) _UpperCAmelCase = np.array([-0.0367, -0.0488, -0.0771, -0.0525, -0.0444, -0.0341] ) assert np.abs(audio_slice.flatten() - expected_slice ).max() < 1e-2
32
0
from __future__ import annotations def UpperCamelCase ( lowercase_ , lowercase_ ) -> list[int]: '''simple docstring''' lowercase__ : List[str] = 0 lowercase__ : List[Any] = len(lowercase_ ) - 1 while i < j: if nums[i] + nums[j] == target: return [i, j] elif nums[i] + nums[j] < target: lowercase__ : Optional[Any] = i + 1 else: lowercase__ : int = j - 1 return [] if __name__ == "__main__": import doctest doctest.testmod() print(f'''{two_pointer([2, 7, 1_1, 1_5], 9) = }''')
12
from collections import OrderedDict from ...utils import logging from .auto_factory import _BaseAutoModelClass, _LazyAutoMapping, auto_class_update from .configuration_auto import CONFIG_MAPPING_NAMES UpperCAmelCase_ = logging.get_logger(__name__) UpperCAmelCase_ = OrderedDict( [ # Base model mapping ("albert", "FlaxAlbertModel"), ("bart", "FlaxBartModel"), ("beit", "FlaxBeitModel"), ("bert", "FlaxBertModel"), ("big_bird", "FlaxBigBirdModel"), ("blenderbot", "FlaxBlenderbotModel"), ("blenderbot-small", "FlaxBlenderbotSmallModel"), ("clip", "FlaxCLIPModel"), ("distilbert", "FlaxDistilBertModel"), ("electra", "FlaxElectraModel"), ("gpt-sw3", "FlaxGPT2Model"), ("gpt2", "FlaxGPT2Model"), ("gpt_neo", "FlaxGPTNeoModel"), ("gptj", "FlaxGPTJModel"), ("longt5", "FlaxLongT5Model"), ("marian", "FlaxMarianModel"), ("mbart", "FlaxMBartModel"), ("mt5", "FlaxMT5Model"), ("opt", "FlaxOPTModel"), ("pegasus", "FlaxPegasusModel"), ("regnet", "FlaxRegNetModel"), ("resnet", "FlaxResNetModel"), ("roberta", "FlaxRobertaModel"), ("roberta-prelayernorm", "FlaxRobertaPreLayerNormModel"), ("roformer", "FlaxRoFormerModel"), ("t5", "FlaxT5Model"), ("vision-text-dual-encoder", "FlaxVisionTextDualEncoderModel"), ("vit", "FlaxViTModel"), ("wav2vec2", "FlaxWav2Vec2Model"), ("whisper", "FlaxWhisperModel"), ("xglm", "FlaxXGLMModel"), ("xlm-roberta", "FlaxXLMRobertaModel"), ] ) UpperCAmelCase_ = OrderedDict( [ # Model for pre-training mapping ("albert", "FlaxAlbertForPreTraining"), ("bart", "FlaxBartForConditionalGeneration"), ("bert", "FlaxBertForPreTraining"), ("big_bird", "FlaxBigBirdForPreTraining"), ("electra", "FlaxElectraForPreTraining"), ("longt5", "FlaxLongT5ForConditionalGeneration"), ("mbart", "FlaxMBartForConditionalGeneration"), ("mt5", "FlaxMT5ForConditionalGeneration"), ("roberta", "FlaxRobertaForMaskedLM"), ("roberta-prelayernorm", "FlaxRobertaPreLayerNormForMaskedLM"), ("roformer", "FlaxRoFormerForMaskedLM"), ("t5", "FlaxT5ForConditionalGeneration"), ("wav2vec2", "FlaxWav2Vec2ForPreTraining"), ("whisper", "FlaxWhisperForConditionalGeneration"), ("xlm-roberta", "FlaxXLMRobertaForMaskedLM"), ] ) UpperCAmelCase_ = OrderedDict( [ # Model for Masked LM mapping ("albert", "FlaxAlbertForMaskedLM"), ("bart", "FlaxBartForConditionalGeneration"), ("bert", "FlaxBertForMaskedLM"), ("big_bird", "FlaxBigBirdForMaskedLM"), ("distilbert", "FlaxDistilBertForMaskedLM"), ("electra", "FlaxElectraForMaskedLM"), ("mbart", "FlaxMBartForConditionalGeneration"), ("roberta", "FlaxRobertaForMaskedLM"), ("roberta-prelayernorm", "FlaxRobertaPreLayerNormForMaskedLM"), ("roformer", "FlaxRoFormerForMaskedLM"), ("xlm-roberta", "FlaxXLMRobertaForMaskedLM"), ] ) UpperCAmelCase_ = OrderedDict( [ # Model for Seq2Seq Causal LM mapping ("bart", "FlaxBartForConditionalGeneration"), ("blenderbot", "FlaxBlenderbotForConditionalGeneration"), ("blenderbot-small", "FlaxBlenderbotSmallForConditionalGeneration"), ("encoder-decoder", "FlaxEncoderDecoderModel"), ("longt5", "FlaxLongT5ForConditionalGeneration"), ("marian", "FlaxMarianMTModel"), ("mbart", "FlaxMBartForConditionalGeneration"), ("mt5", "FlaxMT5ForConditionalGeneration"), ("pegasus", "FlaxPegasusForConditionalGeneration"), ("t5", "FlaxT5ForConditionalGeneration"), ] ) UpperCAmelCase_ = OrderedDict( [ # Model for Image-classsification ("beit", "FlaxBeitForImageClassification"), ("regnet", "FlaxRegNetForImageClassification"), ("resnet", "FlaxResNetForImageClassification"), ("vit", "FlaxViTForImageClassification"), ] ) UpperCAmelCase_ = OrderedDict( [ ("vision-encoder-decoder", "FlaxVisionEncoderDecoderModel"), ] ) UpperCAmelCase_ = OrderedDict( [ # Model for Causal LM mapping ("bart", "FlaxBartForCausalLM"), ("bert", "FlaxBertForCausalLM"), ("big_bird", "FlaxBigBirdForCausalLM"), ("electra", "FlaxElectraForCausalLM"), ("gpt-sw3", "FlaxGPT2LMHeadModel"), ("gpt2", "FlaxGPT2LMHeadModel"), ("gpt_neo", "FlaxGPTNeoForCausalLM"), ("gptj", "FlaxGPTJForCausalLM"), ("opt", "FlaxOPTForCausalLM"), ("roberta", "FlaxRobertaForCausalLM"), ("roberta-prelayernorm", "FlaxRobertaPreLayerNormForCausalLM"), ("xglm", "FlaxXGLMForCausalLM"), ("xlm-roberta", "FlaxXLMRobertaForCausalLM"), ] ) UpperCAmelCase_ = OrderedDict( [ # Model for Sequence Classification mapping ("albert", "FlaxAlbertForSequenceClassification"), ("bart", "FlaxBartForSequenceClassification"), ("bert", "FlaxBertForSequenceClassification"), ("big_bird", "FlaxBigBirdForSequenceClassification"), ("distilbert", "FlaxDistilBertForSequenceClassification"), ("electra", "FlaxElectraForSequenceClassification"), ("mbart", "FlaxMBartForSequenceClassification"), ("roberta", "FlaxRobertaForSequenceClassification"), ("roberta-prelayernorm", "FlaxRobertaPreLayerNormForSequenceClassification"), ("roformer", "FlaxRoFormerForSequenceClassification"), ("xlm-roberta", "FlaxXLMRobertaForSequenceClassification"), ] ) UpperCAmelCase_ = OrderedDict( [ # Model for Question Answering mapping ("albert", "FlaxAlbertForQuestionAnswering"), ("bart", "FlaxBartForQuestionAnswering"), ("bert", "FlaxBertForQuestionAnswering"), ("big_bird", "FlaxBigBirdForQuestionAnswering"), ("distilbert", "FlaxDistilBertForQuestionAnswering"), ("electra", "FlaxElectraForQuestionAnswering"), ("mbart", "FlaxMBartForQuestionAnswering"), ("roberta", "FlaxRobertaForQuestionAnswering"), ("roberta-prelayernorm", "FlaxRobertaPreLayerNormForQuestionAnswering"), ("roformer", "FlaxRoFormerForQuestionAnswering"), ("xlm-roberta", "FlaxXLMRobertaForQuestionAnswering"), ] ) UpperCAmelCase_ = OrderedDict( [ # Model for Token Classification mapping ("albert", "FlaxAlbertForTokenClassification"), ("bert", "FlaxBertForTokenClassification"), ("big_bird", "FlaxBigBirdForTokenClassification"), ("distilbert", "FlaxDistilBertForTokenClassification"), ("electra", "FlaxElectraForTokenClassification"), ("roberta", "FlaxRobertaForTokenClassification"), ("roberta-prelayernorm", "FlaxRobertaPreLayerNormForTokenClassification"), ("roformer", "FlaxRoFormerForTokenClassification"), ("xlm-roberta", "FlaxXLMRobertaForTokenClassification"), ] ) UpperCAmelCase_ = OrderedDict( [ # Model for Multiple Choice mapping ("albert", "FlaxAlbertForMultipleChoice"), ("bert", "FlaxBertForMultipleChoice"), ("big_bird", "FlaxBigBirdForMultipleChoice"), ("distilbert", "FlaxDistilBertForMultipleChoice"), ("electra", "FlaxElectraForMultipleChoice"), ("roberta", "FlaxRobertaForMultipleChoice"), ("roberta-prelayernorm", "FlaxRobertaPreLayerNormForMultipleChoice"), ("roformer", "FlaxRoFormerForMultipleChoice"), ("xlm-roberta", "FlaxXLMRobertaForMultipleChoice"), ] ) UpperCAmelCase_ = OrderedDict( [ ("bert", "FlaxBertForNextSentencePrediction"), ] ) UpperCAmelCase_ = OrderedDict( [ ("speech-encoder-decoder", "FlaxSpeechEncoderDecoderModel"), ("whisper", "FlaxWhisperForConditionalGeneration"), ] ) UpperCAmelCase_ = OrderedDict( [ ("whisper", "FlaxWhisperForAudioClassification"), ] ) UpperCAmelCase_ = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_MAPPING_NAMES) UpperCAmelCase_ = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_PRETRAINING_MAPPING_NAMES) UpperCAmelCase_ = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_MASKED_LM_MAPPING_NAMES) UpperCAmelCase_ = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING_NAMES ) UpperCAmelCase_ = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING_NAMES ) UpperCAmelCase_ = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_VISION_2_SEQ_MAPPING_NAMES) UpperCAmelCase_ = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_CAUSAL_LM_MAPPING_NAMES) UpperCAmelCase_ = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING_NAMES ) UpperCAmelCase_ = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_QUESTION_ANSWERING_MAPPING_NAMES ) UpperCAmelCase_ = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING_NAMES ) UpperCAmelCase_ = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_MULTIPLE_CHOICE_MAPPING_NAMES ) UpperCAmelCase_ = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_NEXT_SENTENCE_PREDICTION_MAPPING_NAMES ) UpperCAmelCase_ = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_SPEECH_SEQ_2_SEQ_MAPPING_NAMES ) UpperCAmelCase_ = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_AUDIO_CLASSIFICATION_MAPPING_NAMES ) class __UpperCamelCase ( _BaseAutoModelClass ): __A : List[str] = FLAX_MODEL_MAPPING UpperCAmelCase_ = auto_class_update(FlaxAutoModel) class __UpperCamelCase ( _BaseAutoModelClass ): __A : Optional[Any] = FLAX_MODEL_FOR_PRETRAINING_MAPPING UpperCAmelCase_ = auto_class_update(FlaxAutoModelForPreTraining, head_doc="pretraining") class __UpperCamelCase ( _BaseAutoModelClass ): __A : List[Any] = FLAX_MODEL_FOR_CAUSAL_LM_MAPPING UpperCAmelCase_ = auto_class_update(FlaxAutoModelForCausalLM, head_doc="causal language modeling") class __UpperCamelCase ( _BaseAutoModelClass ): __A : List[str] = FLAX_MODEL_FOR_MASKED_LM_MAPPING UpperCAmelCase_ = auto_class_update(FlaxAutoModelForMaskedLM, head_doc="masked language modeling") class __UpperCamelCase ( _BaseAutoModelClass ): __A : Dict = FLAX_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING UpperCAmelCase_ = auto_class_update( FlaxAutoModelForSeqaSeqLM, head_doc="sequence-to-sequence language modeling", checkpoint_for_example="t5-base" ) class __UpperCamelCase ( _BaseAutoModelClass ): __A : List[str] = FLAX_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING UpperCAmelCase_ = auto_class_update( FlaxAutoModelForSequenceClassification, head_doc="sequence classification" ) class __UpperCamelCase ( _BaseAutoModelClass ): __A : Dict = FLAX_MODEL_FOR_QUESTION_ANSWERING_MAPPING UpperCAmelCase_ = auto_class_update(FlaxAutoModelForQuestionAnswering, head_doc="question answering") class __UpperCamelCase ( _BaseAutoModelClass ): __A : Union[str, Any] = FLAX_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING UpperCAmelCase_ = auto_class_update( FlaxAutoModelForTokenClassification, head_doc="token classification" ) class __UpperCamelCase ( _BaseAutoModelClass ): __A : Union[str, Any] = FLAX_MODEL_FOR_MULTIPLE_CHOICE_MAPPING UpperCAmelCase_ = auto_class_update(FlaxAutoModelForMultipleChoice, head_doc="multiple choice") class __UpperCamelCase ( _BaseAutoModelClass ): __A : Any = FLAX_MODEL_FOR_NEXT_SENTENCE_PREDICTION_MAPPING UpperCAmelCase_ = auto_class_update( FlaxAutoModelForNextSentencePrediction, head_doc="next sentence prediction" ) class __UpperCamelCase ( _BaseAutoModelClass ): __A : Dict = FLAX_MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING UpperCAmelCase_ = auto_class_update( FlaxAutoModelForImageClassification, head_doc="image classification" ) class __UpperCamelCase ( _BaseAutoModelClass ): __A : Optional[int] = FLAX_MODEL_FOR_VISION_2_SEQ_MAPPING UpperCAmelCase_ = auto_class_update(FlaxAutoModelForVisionaSeq, head_doc="vision-to-text modeling") class __UpperCamelCase ( _BaseAutoModelClass ): __A : str = FLAX_MODEL_FOR_SPEECH_SEQ_2_SEQ_MAPPING UpperCAmelCase_ = auto_class_update( FlaxAutoModelForSpeechSeqaSeq, head_doc="sequence-to-sequence speech-to-text modeling" )
32
0
'''simple docstring''' import math def UpperCAmelCase__ ( UpperCAmelCase_ : int ) -> bool: return math.sqrt(UpperCAmelCase_ ) * math.sqrt(UpperCAmelCase_ ) == num def UpperCAmelCase__ ( UpperCAmelCase_ : int ) -> bool: __lowerCamelCase : Tuple = 0 __lowerCamelCase : str = n while left <= right: __lowerCamelCase : int = (left + right) // 2 if mid**2 == n: return True elif mid**2 > n: __lowerCamelCase : int = mid - 1 else: __lowerCamelCase : int = mid + 1 return False if __name__ == "__main__": import doctest doctest.testmod()
13
import baseaa def A__ ( SCREAMING_SNAKE_CASE_ : str ) -> bytes: """simple docstring""" return baseaa.baaencode(string.encode('''utf-8''' ) ) def A__ ( SCREAMING_SNAKE_CASE_ : bytes ) -> str: """simple docstring""" return baseaa.baadecode(SCREAMING_SNAKE_CASE_ ).decode('''utf-8''' ) if __name__ == "__main__": UpperCAmelCase_ = "Hello World!" UpperCAmelCase_ = baseaa_encode(test) print(encoded) UpperCAmelCase_ = baseaa_decode(encoded) print(decoded)
32
0
def __UpperCAmelCase ( __a : int ) -> int: """simple docstring""" _a : str = abs(__a ) _a : Any = 0 while n > 0: res += n % 10 n //= 10 return res def __UpperCAmelCase ( __a : int ) -> int: """simple docstring""" _a : Union[str, Any] = abs(__a ) return n if n < 10 else n % 10 + sum_of_digits(n // 10 ) def __UpperCAmelCase ( __a : int ) -> int: """simple docstring""" return sum(int(__a ) for c in str(abs(__a ) ) ) def __UpperCAmelCase ( ) -> None: """simple docstring""" from collections.abc import Callable from timeit import timeit def benchmark_a_function(__a : Callable ,__a : int ) -> None: _a : str = F"""{func.__name__}({value})""" _a : List[Any] = timeit(F"""__main__.{call}""" ,setup='''import __main__''' ) print(F"""{call:56} = {func(__a )} -- {timing:.4f} seconds""" ) for value in (262_144, 1_125_899_906_842_624, 1_267_650_600_228_229_401_496_703_205_376): for func in (sum_of_digits, sum_of_digits_recursion, sum_of_digits_compact): benchmark_a_function(__a ,__a ) print() if __name__ == "__main__": import doctest doctest.testmod() benchmark()
14
from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD, ChannelDimension, ImageInput, PILImageResampling, is_batched, to_numpy_array, valid_images, ) from ...utils import TensorType, logging UpperCAmelCase_ = logging.get_logger(__name__) class __UpperCamelCase ( A__ ): __A : int = ["""pixel_values"""] def __init__( self , _UpperCamelCase = True , _UpperCamelCase = None , _UpperCamelCase = PILImageResampling.BICUBIC , _UpperCamelCase = True , _UpperCamelCase = True , _UpperCamelCase = 1 / 255 , _UpperCamelCase = None , _UpperCamelCase = True , _UpperCamelCase = None , _UpperCamelCase = None , **_UpperCamelCase , ): super().__init__(**_UpperCamelCase ) _UpperCAmelCase = size if size is not None else {'''height''': 224, '''width''': 224} _UpperCAmelCase = get_size_dict(_UpperCamelCase ) _UpperCAmelCase = crop_size if crop_size is not None else {'''height''': 224, '''width''': 224} _UpperCAmelCase = get_size_dict(_UpperCamelCase , default_to_square=_UpperCamelCase , param_name='''crop_size''' ) _UpperCAmelCase = do_resize _UpperCAmelCase = do_rescale _UpperCAmelCase = do_normalize _UpperCAmelCase = do_center_crop _UpperCAmelCase = crop_size _UpperCAmelCase = size _UpperCAmelCase = resample _UpperCAmelCase = rescale_factor _UpperCAmelCase = image_mean if image_mean is not None else IMAGENET_DEFAULT_MEAN _UpperCAmelCase = image_std if image_std is not None else IMAGENET_DEFAULT_STD def UpperCamelCase( self , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase = PILImageResampling.BILINEAR , _UpperCamelCase = None , **_UpperCamelCase , ): _UpperCAmelCase = get_size_dict(_UpperCamelCase ) if "shortest_edge" in size: _UpperCAmelCase = get_resize_output_image_size(_UpperCamelCase , size=size['''shortest_edge'''] , default_to_square=_UpperCamelCase ) # size = get_resize_output_image_size(image, size["shortest_edge"], size["longest_edge"]) elif "height" in size and "width" in size: _UpperCAmelCase = (size['''height'''], size['''width''']) else: raise ValueError(f'''Size must contain \'height\' and \'width\' keys or \'shortest_edge\' key. Got {size.keys()}''' ) return resize(_UpperCamelCase , size=_UpperCamelCase , resample=_UpperCamelCase , data_format=_UpperCamelCase , **_UpperCamelCase ) def UpperCamelCase( self , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase = None , **_UpperCamelCase , ): _UpperCAmelCase = get_size_dict(_UpperCamelCase ) if "height" not in size or "width" not in size: raise ValueError(f'''The `size` parameter must contain the keys (height, width). Got {size.keys()}''' ) return center_crop(_UpperCamelCase , size=(size['''height'''], size['''width''']) , data_format=_UpperCamelCase , **_UpperCamelCase ) def UpperCamelCase( self , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase = None , **_UpperCamelCase ): return rescale(_UpperCamelCase , scale=_UpperCamelCase , data_format=_UpperCamelCase , **_UpperCamelCase ) def UpperCamelCase( self , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase = None , **_UpperCamelCase , ): return normalize(_UpperCamelCase , mean=_UpperCamelCase , std=_UpperCamelCase , data_format=_UpperCamelCase , **_UpperCamelCase ) def UpperCamelCase( self , _UpperCamelCase , _UpperCamelCase = None , _UpperCamelCase = None , _UpperCamelCase = None , _UpperCamelCase = None , _UpperCamelCase = None , _UpperCamelCase = None , _UpperCamelCase = None , _UpperCamelCase = None , _UpperCamelCase = None , _UpperCamelCase = None , _UpperCamelCase = None , _UpperCamelCase = ChannelDimension.FIRST , **_UpperCamelCase , ): _UpperCAmelCase = do_resize if do_resize is not None else self.do_resize _UpperCAmelCase = do_rescale if do_rescale is not None else self.do_rescale _UpperCAmelCase = do_normalize if do_normalize is not None else self.do_normalize _UpperCAmelCase = do_center_crop if do_center_crop is not None else self.do_center_crop _UpperCAmelCase = crop_size if crop_size is not None else self.crop_size _UpperCAmelCase = get_size_dict(_UpperCamelCase , param_name='''crop_size''' , default_to_square=_UpperCamelCase ) _UpperCAmelCase = resample if resample is not None else self.resample _UpperCAmelCase = rescale_factor if rescale_factor is not None else self.rescale_factor _UpperCAmelCase = image_mean if image_mean is not None else self.image_mean _UpperCAmelCase = image_std if image_std is not None else self.image_std _UpperCAmelCase = size if size is not None else self.size _UpperCAmelCase = get_size_dict(_UpperCamelCase ) if not is_batched(_UpperCamelCase ): _UpperCAmelCase = [images] if not valid_images(_UpperCamelCase ): raise ValueError( '''Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ''' '''torch.Tensor, tf.Tensor or jax.ndarray.''' ) if do_resize and size is None: raise ValueError('''Size must be specified if do_resize is True.''' ) if do_center_crop and crop_size is None: raise ValueError('''Crop size must be specified if do_center_crop is True.''' ) if do_rescale and rescale_factor is None: raise ValueError('''Rescale factor must be specified if do_rescale is True.''' ) # All transformations expect numpy arrays. _UpperCAmelCase = [to_numpy_array(_UpperCamelCase ) for image in images] if do_resize: _UpperCAmelCase = [self.resize(image=_UpperCamelCase , size=_UpperCamelCase , resample=_UpperCamelCase ) for image in images] if do_center_crop: _UpperCAmelCase = [self.center_crop(image=_UpperCamelCase , size=_UpperCamelCase ) for image in images] if do_rescale: _UpperCAmelCase = [self.rescale(image=_UpperCamelCase , scale=_UpperCamelCase ) for image in images] if do_normalize: _UpperCAmelCase = [self.normalize(image=_UpperCamelCase , mean=_UpperCamelCase , std=_UpperCamelCase ) for image in images] _UpperCAmelCase = [to_channel_dimension_format(_UpperCamelCase , _UpperCamelCase ) for image in images] _UpperCAmelCase = {'''pixel_values''': images} return BatchFeature(data=_UpperCamelCase , tensor_type=_UpperCamelCase )
32
0
# This is the module that test_patching.py uses to test patch_submodule() import os # noqa: this is just for tests import os as renamed_os # noqa: this is just for tests from os import path # noqa: this is just for tests from os import path as renamed_path # noqa: this is just for tests from os.path import join # noqa: this is just for tests from os.path import join as renamed_join # noqa: this is just for tests A : List[Any] = open # noqa: we just need to have a builtin inside this module to test it properly
15
from ..utils import DummyObject, requires_backends class __UpperCamelCase ( metaclass=A__ ): __A : str = ["""torch""", """scipy"""] def __init__( self , *_UpperCamelCase , **_UpperCamelCase ): requires_backends(self , ['''torch''', '''scipy'''] ) @classmethod def UpperCamelCase( cls , *_UpperCamelCase , **_UpperCamelCase ): requires_backends(cls , ['''torch''', '''scipy'''] ) @classmethod def UpperCamelCase( cls , *_UpperCamelCase , **_UpperCamelCase ): requires_backends(cls , ['''torch''', '''scipy'''] )
32
0
# Lint as: python3 import sys from collections.abc import Mapping from typing import TYPE_CHECKING, Dict, Optional import numpy as np import pyarrow as pa from .. import config from ..utils.logging import get_logger from ..utils.py_utils import map_nested from .formatting import TensorFormatter if TYPE_CHECKING: import jax import jaxlib __A : List[str] = get_logger() __A : Optional[dict] = None class _SCREAMING_SNAKE_CASE ( TensorFormatter[Mapping, "jax.Array", Mapping] ): '''simple docstring''' def __init__( self : Tuple , __lowerCamelCase : Tuple=None , __lowerCamelCase : int=None , **__lowerCamelCase : Dict ): super().__init__(features=__lowerCamelCase ) import jax from jaxlib.xla_client import Device if isinstance(__lowerCamelCase , __lowerCamelCase ): raise ValueError( f"Expected {device} to be a `str` not {type(__lowerCamelCase )}, as `jaxlib.xla_extension.Device` " "is not serializable neither with `pickle` nor with `dill`. Instead you can surround " "the device with `str()` to get its string identifier that will be internally mapped " "to the actual `jaxlib.xla_extension.Device`." ) SCREAMING_SNAKE_CASE = device if isinstance(__lowerCamelCase , __lowerCamelCase ) else str(jax.devices()[0] ) # using global variable since `jaxlib.xla_extension.Device` is not serializable neither # with `pickle` nor with `dill`, so we need to use a global variable instead global DEVICE_MAPPING if DEVICE_MAPPING is None: SCREAMING_SNAKE_CASE = self._map_devices_to_str() if self.device not in list(DEVICE_MAPPING.keys() ): logger.warning( f"Device with string identifier {self.device} not listed among the available " f"devices: {list(DEVICE_MAPPING.keys() )}, so falling back to the default " f"device: {str(jax.devices()[0] )}." ) SCREAMING_SNAKE_CASE = str(jax.devices()[0] ) SCREAMING_SNAKE_CASE = jnp_array_kwargs @staticmethod def _snake_case ( ): import jax return {str(__lowerCamelCase ): device for device in jax.devices()} def _snake_case ( self : Any , __lowerCamelCase : List[Any] ): import jax import jax.numpy as jnp if isinstance(__lowerCamelCase , __lowerCamelCase ) and column: if all( isinstance(__lowerCamelCase , jax.Array ) and x.shape == column[0].shape and x.dtype == column[0].dtype for x in column ): return jnp.stack(__lowerCamelCase , axis=0 ) return column def _snake_case ( self : int , __lowerCamelCase : Dict ): import jax import jax.numpy as jnp if isinstance(__lowerCamelCase , (str, bytes, type(__lowerCamelCase )) ): return value elif isinstance(__lowerCamelCase , (np.character, np.ndarray) ) and np.issubdtype(value.dtype , np.character ): return value.tolist() SCREAMING_SNAKE_CASE = {} if isinstance(__lowerCamelCase , (np.number, np.ndarray) ) and np.issubdtype(value.dtype , np.integer ): # the default int precision depends on the jax config # see https://jax.readthedocs.io/en/latest/notebooks/Common_Gotchas_in_JAX.html#double-64bit-precision if jax.config.jax_enable_xaa: SCREAMING_SNAKE_CASE = {"dtype": jnp.intaa} else: SCREAMING_SNAKE_CASE = {"dtype": jnp.intaa} elif isinstance(__lowerCamelCase , (np.number, np.ndarray) ) and np.issubdtype(value.dtype , np.floating ): SCREAMING_SNAKE_CASE = {"dtype": jnp.floataa} elif config.PIL_AVAILABLE and "PIL" in sys.modules: import PIL.Image if isinstance(__lowerCamelCase , PIL.Image.Image ): SCREAMING_SNAKE_CASE = np.asarray(__lowerCamelCase ) # using global variable since `jaxlib.xla_extension.Device` is not serializable neither # with `pickle` nor with `dill`, so we need to use a global variable instead global DEVICE_MAPPING if DEVICE_MAPPING is None: SCREAMING_SNAKE_CASE = self._map_devices_to_str() with jax.default_device(DEVICE_MAPPING[self.device] ): # calling jnp.array on a np.ndarray does copy the data # see https://github.com/google/jax/issues/4486 return jnp.array(__lowerCamelCase , **{**default_dtype, **self.jnp_array_kwargs} ) def _snake_case ( self : List[Any] , __lowerCamelCase : int ): import jax # support for torch, tf, jax etc. if config.TORCH_AVAILABLE and "torch" in sys.modules: import torch if isinstance(__lowerCamelCase , torch.Tensor ): return self._tensorize(data_struct.detach().cpu().numpy()[()] ) if hasattr(__lowerCamelCase , "__array__" ) and not isinstance(__lowerCamelCase , jax.Array ): SCREAMING_SNAKE_CASE = data_struct.__array__() # support for nested types like struct of list of struct if isinstance(__lowerCamelCase , np.ndarray ): if data_struct.dtype == object: # jax arrays cannot be instantied from an array of objects return self._consolidate([self.recursive_tensorize(__lowerCamelCase ) for substruct in data_struct] ) elif isinstance(__lowerCamelCase , (list, tuple) ): return self._consolidate([self.recursive_tensorize(__lowerCamelCase ) for substruct in data_struct] ) return self._tensorize(__lowerCamelCase ) def _snake_case ( self : Union[str, Any] , __lowerCamelCase : dict ): return map_nested(self._recursive_tensorize , __lowerCamelCase , map_list=__lowerCamelCase ) def _snake_case ( self : int , __lowerCamelCase : pa.Table ): SCREAMING_SNAKE_CASE = self.numpy_arrow_extractor().extract_row(__lowerCamelCase ) SCREAMING_SNAKE_CASE = self.python_features_decoder.decode_row(__lowerCamelCase ) return self.recursive_tensorize(__lowerCamelCase ) def _snake_case ( self : int , __lowerCamelCase : pa.Table ): SCREAMING_SNAKE_CASE = self.numpy_arrow_extractor().extract_column(__lowerCamelCase ) SCREAMING_SNAKE_CASE = self.python_features_decoder.decode_column(__lowerCamelCase , pa_table.column_names[0] ) SCREAMING_SNAKE_CASE = self.recursive_tensorize(__lowerCamelCase ) SCREAMING_SNAKE_CASE = self._consolidate(__lowerCamelCase ) return column def _snake_case ( self : int , __lowerCamelCase : pa.Table ): SCREAMING_SNAKE_CASE = self.numpy_arrow_extractor().extract_batch(__lowerCamelCase ) SCREAMING_SNAKE_CASE = self.python_features_decoder.decode_batch(__lowerCamelCase ) SCREAMING_SNAKE_CASE = self.recursive_tensorize(__lowerCamelCase ) for column_name in batch: SCREAMING_SNAKE_CASE = self._consolidate(batch[column_name] ) return batch
16
def A__ ( SCREAMING_SNAKE_CASE_ : int = 2_00_00_00 ) -> int: """simple docstring""" _UpperCAmelCase = [0 for i in range(n + 1 )] _UpperCAmelCase = 1 _UpperCAmelCase = 1 for i in range(2 , int(n**0.5 ) + 1 ): if primality_list[i] == 0: for j in range(i * i , n + 1 , SCREAMING_SNAKE_CASE_ ): _UpperCAmelCase = 1 _UpperCAmelCase = 0 for i in range(SCREAMING_SNAKE_CASE_ ): if primality_list[i] == 0: sum_of_primes += i return sum_of_primes if __name__ == "__main__": print(f'''{solution() = }''')
32
0
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available UpperCAmelCase_ : Optional[Any] = { '''configuration_altclip''': [ '''ALTCLIP_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''AltCLIPConfig''', '''AltCLIPTextConfig''', '''AltCLIPVisionConfig''', ], '''processing_altclip''': ['''AltCLIPProcessor'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase_ : List[str] = [ '''ALTCLIP_PRETRAINED_MODEL_ARCHIVE_LIST''', '''AltCLIPPreTrainedModel''', '''AltCLIPModel''', '''AltCLIPTextModel''', '''AltCLIPVisionModel''', ] if TYPE_CHECKING: from .configuration_altclip import ( ALTCLIP_PRETRAINED_CONFIG_ARCHIVE_MAP, AltCLIPConfig, AltCLIPTextConfig, AltCLIPVisionConfig, ) from .processing_altclip import AltCLIPProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_altclip import ( ALTCLIP_PRETRAINED_MODEL_ARCHIVE_LIST, AltCLIPModel, AltCLIPPreTrainedModel, AltCLIPTextModel, AltCLIPVisionModel, ) else: import sys UpperCAmelCase_ : str = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
17
import warnings from ...utils import logging from .image_processing_glpn import GLPNImageProcessor UpperCAmelCase_ = logging.get_logger(__name__) class __UpperCamelCase ( A__ ): def __init__( self , *_UpperCamelCase , **_UpperCamelCase ): warnings.warn( '''The class GLPNFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please''' ''' use GLPNImageProcessor instead.''' , _UpperCamelCase , ) super().__init__(*_UpperCamelCase , **_UpperCamelCase )
32
0
'''simple docstring''' import functools def __a(SCREAMING_SNAKE_CASE_ : str , SCREAMING_SNAKE_CASE_ : str ): '''simple docstring''' _lowerCAmelCase = len(SCREAMING_SNAKE_CASE_ ) _lowerCAmelCase = len(SCREAMING_SNAKE_CASE_ ) @functools.cache def min_distance(SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : int ) -> int: # if first word index is overflow - delete all from the second word if indexa >= len_worda: return len_worda - indexa # if second word index is overflow - delete all from the first word if indexa >= len_worda: return len_worda - indexa _lowerCAmelCase = int(worda[indexa] != worda[indexa] ) # current letters not identical return min( 1 + min_distance(indexa + 1 , SCREAMING_SNAKE_CASE_ ) , 1 + min_distance(SCREAMING_SNAKE_CASE_ , indexa + 1 ) , diff + min_distance(indexa + 1 , indexa + 1 ) , ) return min_distance(0 , 0 ) if __name__ == "__main__": import doctest doctest.testmod()
18
from typing import List, Optional, Union from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType class __UpperCamelCase ( A__ ): __A : Dict = ["""image_processor""", """tokenizer"""] __A : List[str] = """BridgeTowerImageProcessor""" __A : str = ("""RobertaTokenizer""", """RobertaTokenizerFast""") def __init__( self , _UpperCamelCase , _UpperCamelCase ): super().__init__(_UpperCamelCase , _UpperCamelCase ) def __call__( self , _UpperCamelCase , _UpperCamelCase = None , _UpperCamelCase = True , _UpperCamelCase = False , _UpperCamelCase = None , _UpperCamelCase = None , _UpperCamelCase = 0 , _UpperCamelCase = None , _UpperCamelCase = None , _UpperCamelCase = None , _UpperCamelCase = False , _UpperCamelCase = False , _UpperCamelCase = False , _UpperCamelCase = False , _UpperCamelCase = True , _UpperCamelCase = None , **_UpperCamelCase , ): _UpperCAmelCase = self.tokenizer( text=_UpperCamelCase , add_special_tokens=_UpperCamelCase , padding=_UpperCamelCase , truncation=_UpperCamelCase , max_length=_UpperCamelCase , stride=_UpperCamelCase , pad_to_multiple_of=_UpperCamelCase , return_token_type_ids=_UpperCamelCase , return_attention_mask=_UpperCamelCase , return_overflowing_tokens=_UpperCamelCase , return_special_tokens_mask=_UpperCamelCase , return_offsets_mapping=_UpperCamelCase , return_length=_UpperCamelCase , verbose=_UpperCamelCase , return_tensors=_UpperCamelCase , **_UpperCamelCase , ) # add pixel_values + pixel_mask _UpperCAmelCase = self.image_processor( _UpperCamelCase , return_tensors=_UpperCamelCase , do_normalize=_UpperCamelCase , do_center_crop=_UpperCamelCase , **_UpperCamelCase ) encoding.update(_UpperCamelCase ) return encoding def UpperCamelCase( self , *_UpperCamelCase , **_UpperCamelCase ): return self.tokenizer.batch_decode(*_UpperCamelCase , **_UpperCamelCase ) def UpperCamelCase( self , *_UpperCamelCase , **_UpperCamelCase ): return self.tokenizer.decode(*_UpperCamelCase , **_UpperCamelCase ) @property def UpperCamelCase( self ): _UpperCAmelCase = self.tokenizer.model_input_names _UpperCAmelCase = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) )
32
0
"""simple docstring""" def lowerCamelCase__ ( __snake_case, __snake_case, __snake_case, __snake_case ) -> bool: """simple docstring""" if graph[path[curr_ind - 1]][next_ver] == 0: return False # 2. Validate that next vertex is not already in path return not any(vertex == next_ver for vertex in path ) def lowerCamelCase__ ( __snake_case, __snake_case, __snake_case ) -> bool: """simple docstring""" if curr_ind == len(__snake_case ): # return whether path exists between current and starting vertices return graph[path[curr_ind - 1]][path[0]] == 1 # Recursive Step for next_ver in range(0, len(__snake_case ) ): if valid_connection(__snake_case, __snake_case, __snake_case, __snake_case ): # Insert current vertex into path as next transition _UpperCamelCase = next_ver # Validate created path if util_hamilton_cycle(__snake_case, __snake_case, curr_ind + 1 ): return True # Backtrack _UpperCamelCase = -1 return False def lowerCamelCase__ ( __snake_case, __snake_case = 0 ) -> list[int]: """simple docstring""" _UpperCamelCase = [-1] * (len(__snake_case ) + 1) # initialize start and end of path with starting index _UpperCamelCase = _UpperCamelCase = start_index # evaluate and if we find answer return path either return empty array return path if util_hamilton_cycle(__snake_case, __snake_case, 1 ) else []
19
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available UpperCAmelCase_ = { "configuration_xlm": ["XLM_PRETRAINED_CONFIG_ARCHIVE_MAP", "XLMConfig", "XLMOnnxConfig"], "tokenization_xlm": ["XLMTokenizer"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase_ = [ "XLM_PRETRAINED_MODEL_ARCHIVE_LIST", "XLMForMultipleChoice", "XLMForQuestionAnswering", "XLMForQuestionAnsweringSimple", "XLMForSequenceClassification", "XLMForTokenClassification", "XLMModel", "XLMPreTrainedModel", "XLMWithLMHeadModel", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase_ = [ "TF_XLM_PRETRAINED_MODEL_ARCHIVE_LIST", "TFXLMForMultipleChoice", "TFXLMForQuestionAnsweringSimple", "TFXLMForSequenceClassification", "TFXLMForTokenClassification", "TFXLMMainLayer", "TFXLMModel", "TFXLMPreTrainedModel", "TFXLMWithLMHeadModel", ] if TYPE_CHECKING: from .configuration_xlm import XLM_PRETRAINED_CONFIG_ARCHIVE_MAP, XLMConfig, XLMOnnxConfig from .tokenization_xlm import XLMTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_xlm import ( XLM_PRETRAINED_MODEL_ARCHIVE_LIST, XLMForMultipleChoice, XLMForQuestionAnswering, XLMForQuestionAnsweringSimple, XLMForSequenceClassification, XLMForTokenClassification, XLMModel, XLMPreTrainedModel, XLMWithLMHeadModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_xlm import ( TF_XLM_PRETRAINED_MODEL_ARCHIVE_LIST, TFXLMForMultipleChoice, TFXLMForQuestionAnsweringSimple, TFXLMForSequenceClassification, TFXLMForTokenClassification, TFXLMMainLayer, TFXLMModel, TFXLMPreTrainedModel, TFXLMWithLMHeadModel, ) else: import sys UpperCAmelCase_ = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
32
0
from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging _lowerCAmelCase: str = logging.get_logger(__name__) _lowerCAmelCase: Any = { 'google/bigbird-roberta-base': 'https://huggingface.co/google/bigbird-roberta-base/resolve/main/config.json', 'google/bigbird-roberta-large': 'https://huggingface.co/google/bigbird-roberta-large/resolve/main/config.json', 'google/bigbird-base-trivia-itc': 'https://huggingface.co/google/bigbird-base-trivia-itc/resolve/main/config.json', # See all BigBird models at https://huggingface.co/models?filter=big_bird } class lowercase_ (lowercase__ ): snake_case ='big_bird' def __init__( self , lowercase_=50358 , lowercase_=768 , lowercase_=12 , lowercase_=12 , lowercase_=3072 , lowercase_="gelu_new" , lowercase_=0.1 , lowercase_=0.1 , lowercase_=4096 , lowercase_=2 , lowercase_=0.02 , lowercase_=1e-12 , lowercase_=True , lowercase_=0 , lowercase_=1 , lowercase_=2 , lowercase_=66 , lowercase_="block_sparse" , lowercase_=True , lowercase_=False , lowercase_=64 , lowercase_=3 , lowercase_=None , **lowercase_ , ) -> Any: super().__init__( pad_token_id=lowercase_ , bos_token_id=lowercase_ , eos_token_id=lowercase_ , sep_token_id=lowercase_ , **lowercase_ , ) a__ =vocab_size a__ =max_position_embeddings a__ =hidden_size a__ =num_hidden_layers a__ =num_attention_heads a__ =intermediate_size a__ =hidden_act a__ =hidden_dropout_prob a__ =attention_probs_dropout_prob a__ =initializer_range a__ =type_vocab_size a__ =layer_norm_eps a__ =use_cache a__ =rescale_embeddings a__ =attention_type a__ =use_bias a__ =block_size a__ =num_random_blocks a__ =classifier_dropout class lowercase_ (lowercase__ ): @property def __UpperCamelCase ( self) -> Mapping[str, Mapping[int, str]]: if self.task == "multiple-choice": a__ ={0: 'batch', 1: 'choice', 2: 'sequence'} else: a__ ={0: 'batch', 1: 'sequence'} return OrderedDict( [ ('input_ids', dynamic_axis), ('attention_mask', dynamic_axis), ])
20
from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCAmelCase_ = logging.get_logger(__name__) UpperCAmelCase_ = { "microsoft/biogpt": "https://huggingface.co/microsoft/biogpt/resolve/main/config.json", # See all BioGPT models at https://huggingface.co/models?filter=biogpt } class __UpperCamelCase ( A__ ): __A : Any = """biogpt""" def __init__( self , _UpperCamelCase=42384 , _UpperCamelCase=1024 , _UpperCamelCase=24 , _UpperCamelCase=16 , _UpperCamelCase=4096 , _UpperCamelCase="gelu" , _UpperCamelCase=0.1 , _UpperCamelCase=0.1 , _UpperCamelCase=1024 , _UpperCamelCase=0.02 , _UpperCamelCase=1e-12 , _UpperCamelCase=True , _UpperCamelCase=True , _UpperCamelCase=0.0 , _UpperCamelCase=0.0 , _UpperCamelCase=1 , _UpperCamelCase=0 , _UpperCamelCase=2 , **_UpperCamelCase , ): _UpperCAmelCase = vocab_size _UpperCAmelCase = max_position_embeddings _UpperCAmelCase = hidden_size _UpperCAmelCase = num_hidden_layers _UpperCAmelCase = num_attention_heads _UpperCAmelCase = intermediate_size _UpperCAmelCase = hidden_act _UpperCAmelCase = hidden_dropout_prob _UpperCAmelCase = attention_probs_dropout_prob _UpperCAmelCase = initializer_range _UpperCAmelCase = layer_norm_eps _UpperCAmelCase = scale_embedding _UpperCAmelCase = use_cache _UpperCAmelCase = layerdrop _UpperCAmelCase = activation_dropout super().__init__(pad_token_id=_UpperCamelCase , bos_token_id=_UpperCamelCase , eos_token_id=_UpperCamelCase , **_UpperCamelCase )
32
0
class __A : def __init__( self :Any , __snake_case :str = "" , __snake_case :bool = False ): '''simple docstring''' __magic_name__ : dict[str, RadixNode] ={} # A node will be a leaf if the tree contains its word __magic_name__ : Tuple =is_leaf __magic_name__ : Optional[Any] =prefix def A__ ( self :Tuple , __snake_case :str ): '''simple docstring''' __magic_name__ : Optional[Any] =0 for q, w in zip(self.prefix , __snake_case ): if q != w: break x += 1 return self.prefix[:x], self.prefix[x:], word[x:] def A__ ( self :Optional[int] , __snake_case :list[str] ): '''simple docstring''' for word in words: self.insert(__snake_case ) def A__ ( self :List[Any] , __snake_case :str ): '''simple docstring''' if self.prefix == word: __magic_name__ : str =True # Case 2: The node has no edges that have a prefix to the word # Solution: We create an edge from the current node to a new one # containing the word elif word[0] not in self.nodes: __magic_name__ : Optional[int] =RadixNode(prefix=__snake_case , is_leaf=__snake_case ) else: __magic_name__ : Union[str, Any] =self.nodes[word[0]] __magic_name__ , __magic_name__ , __magic_name__ : Optional[int] =incoming_node.match( __snake_case ) # Case 3: The node prefix is equal to the matching # Solution: We insert remaining word on the next node if remaining_prefix == "": self.nodes[matching_string[0]].insert(__snake_case ) # Case 4: The word is greater equal to the matching # Solution: Create a node in between both nodes, change # prefixes and add the new node for the remaining word else: __magic_name__ : Tuple =remaining_prefix __magic_name__ : Optional[Any] =self.nodes[matching_string[0]] __magic_name__ : Optional[Any] =RadixNode(__snake_case , __snake_case ) __magic_name__ : int =aux_node if remaining_word == "": __magic_name__ : int =True else: self.nodes[matching_string[0]].insert(__snake_case ) def A__ ( self :Any , __snake_case :str ): '''simple docstring''' __magic_name__ : Union[str, Any] =self.nodes.get(word[0] , __snake_case ) if not incoming_node: return False else: __magic_name__ , __magic_name__ , __magic_name__ : Dict =incoming_node.match( __snake_case ) # If there is remaining prefix, the word can't be on the tree if remaining_prefix != "": return False # This applies when the word and the prefix are equal elif remaining_word == "": return incoming_node.is_leaf # We have word remaining so we check the next node else: return incoming_node.find(__snake_case ) def A__ ( self :Optional[Any] , __snake_case :str ): '''simple docstring''' __magic_name__ : Tuple =self.nodes.get(word[0] , __snake_case ) if not incoming_node: return False else: __magic_name__ , __magic_name__ , __magic_name__ : int =incoming_node.match( __snake_case ) # If there is remaining prefix, the word can't be on the tree if remaining_prefix != "": return False # We have word remaining so we check the next node elif remaining_word != "": return incoming_node.delete(__snake_case ) else: # If it is not a leaf, we don't have to delete if not incoming_node.is_leaf: return False else: # We delete the nodes if no edges go from it if len(incoming_node.nodes ) == 0: del self.nodes[word[0]] # We merge the current node with its only child if len(self.nodes ) == 1 and not self.is_leaf: __magic_name__ : List[Any] =list(self.nodes.values() )[0] __magic_name__ : List[str] =merging_node.is_leaf self.prefix += merging_node.prefix __magic_name__ : List[str] =merging_node.nodes # If there is more than 1 edge, we just mark it as non-leaf elif len(incoming_node.nodes ) > 1: __magic_name__ : str =False # If there is 1 edge, we merge it with its child else: __magic_name__ : Optional[Any] =list(incoming_node.nodes.values() )[0] __magic_name__ : List[Any] =merging_node.is_leaf incoming_node.prefix += merging_node.prefix __magic_name__ : int =merging_node.nodes return True def A__ ( self :Tuple , __snake_case :int = 0 ): '''simple docstring''' if self.prefix != "": print("""-""" * height , self.prefix , """ (leaf)""" if self.is_leaf else """""" ) for value in self.nodes.values(): value.print_tree(height + 1 ) def lowerCAmelCase_ ( ): __magic_name__ : List[Any] ="""banana bananas bandana band apple all beast""".split() __magic_name__ : Dict =RadixNode() root.insert_many(lowerCamelCase ) assert all(root.find(lowerCamelCase ) for word in words ) assert not root.find("""bandanas""" ) assert not root.find("""apps""" ) root.delete("""all""" ) assert not root.find("""all""" ) root.delete("""banana""" ) assert not root.find("""banana""" ) assert root.find("""bananas""" ) return True def lowerCAmelCase_ ( ): assert test_trie() def lowerCAmelCase_ ( ): __magic_name__ : Optional[int] =RadixNode() __magic_name__ : List[str] ="""banana bananas bandanas bandana band apple all beast""".split() root.insert_many(lowerCamelCase ) print("""Words:""" , lowerCamelCase ) print("""Tree:""" ) root.print_tree() if __name__ == "__main__": main()
21
from typing import List from .keymap import KEYMAP, get_character def A__ ( SCREAMING_SNAKE_CASE_ : str ) -> List[str]: """simple docstring""" def decorator(SCREAMING_SNAKE_CASE_ : List[Any] ): _UpperCAmelCase = getattr(SCREAMING_SNAKE_CASE_ , '''handle_key''' , [] ) handle += [key] setattr(SCREAMING_SNAKE_CASE_ , '''handle_key''' , SCREAMING_SNAKE_CASE_ ) return func return decorator def A__ ( *SCREAMING_SNAKE_CASE_ : List[str] ) -> Dict: """simple docstring""" def decorator(SCREAMING_SNAKE_CASE_ : Any ): _UpperCAmelCase = getattr(SCREAMING_SNAKE_CASE_ , '''handle_key''' , [] ) handle += keys setattr(SCREAMING_SNAKE_CASE_ , '''handle_key''' , SCREAMING_SNAKE_CASE_ ) return func return decorator class __UpperCamelCase ( A__ ): def __new__( cls , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ): _UpperCAmelCase = super().__new__(cls , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) if not hasattr(_UpperCamelCase , '''key_handler''' ): setattr(_UpperCamelCase , '''key_handler''' , {} ) setattr(_UpperCamelCase , '''handle_input''' , KeyHandler.handle_input ) for value in attrs.values(): _UpperCAmelCase = getattr(_UpperCamelCase , '''handle_key''' , [] ) for key in handled_keys: _UpperCAmelCase = value return new_cls @staticmethod def UpperCamelCase( cls ): _UpperCAmelCase = get_character() if char != KEYMAP["undefined"]: _UpperCAmelCase = ord(_UpperCamelCase ) _UpperCAmelCase = cls.key_handler.get(_UpperCamelCase ) if handler: _UpperCAmelCase = char return handler(cls ) else: return None def A__ ( cls : Union[str, Any] ) -> Any: """simple docstring""" return KeyHandler(cls.__name__ , cls.__bases__ , cls.__dict__.copy() )
32
0
'''simple docstring''' import unittest import torch from torch import nn from accelerate.test_utils import require_cuda from accelerate.utils.memory import find_executable_batch_size, release_memory def snake_case_ (): '''simple docstring''' raise RuntimeError('''CUDA out of memory.''' ) class A ( nn.Module ): def __init__( self : List[Any] ) -> List[str]: """simple docstring""" super().__init__() _a = nn.Linear(3 , 4 ) _a = nn.BatchNormad(4 ) _a = nn.Linear(4 , 5 ) def __lowerCAmelCase ( self : Union[str, Any] , lowerCAmelCase_ : Dict ) -> List[str]: """simple docstring""" return self.lineara(self.batchnorm(self.lineara(lowerCAmelCase_ ) ) ) class A ( unittest.TestCase ): def __lowerCAmelCase ( self : Dict ) -> List[Any]: """simple docstring""" _a = [] @find_executable_batch_size(starting_batch_size=1_28 ) def mock_training_loop_function(lowerCAmelCase_ : str ): nonlocal batch_sizes batch_sizes.append(lowerCAmelCase_ ) if batch_size != 8: raise_fake_out_of_memory() mock_training_loop_function() self.assertListEqual(lowerCAmelCase_ , [1_28, 64, 32, 16, 8] ) def __lowerCAmelCase ( self : List[Any] ) -> List[Any]: """simple docstring""" _a = [] @find_executable_batch_size(starting_batch_size=1_28 ) def mock_training_loop_function(lowerCAmelCase_ : List[str] , lowerCAmelCase_ : List[Any] ): nonlocal batch_sizes batch_sizes.append(lowerCAmelCase_ ) if batch_size != 8: raise_fake_out_of_memory() return batch_size, arga _a , _a = mock_training_loop_function('''hello''' ) self.assertListEqual(lowerCAmelCase_ , [1_28, 64, 32, 16, 8] ) self.assertListEqual([bs, arga] , [8, '''hello'''] ) def __lowerCAmelCase ( self : Union[str, Any] ) -> Union[str, Any]: """simple docstring""" @find_executable_batch_size(starting_batch_size=0 ) def mock_training_loop_function(lowerCAmelCase_ : Tuple ): pass with self.assertRaises(lowerCAmelCase_ ) as cm: mock_training_loop_function() self.assertIn('''No executable batch size found, reached zero.''' , cm.exception.args[0] ) def __lowerCAmelCase ( self : int ) -> Optional[int]: """simple docstring""" @find_executable_batch_size(starting_batch_size=16 ) def mock_training_loop_function(lowerCAmelCase_ : Union[str, Any] ): if batch_size > 0: raise_fake_out_of_memory() pass with self.assertRaises(lowerCAmelCase_ ) as cm: mock_training_loop_function() self.assertIn('''No executable batch size found, reached zero.''' , cm.exception.args[0] ) def __lowerCAmelCase ( self : int ) -> Tuple: """simple docstring""" @find_executable_batch_size(starting_batch_size=1_28 ) def mock_training_loop_function(lowerCAmelCase_ : int , lowerCAmelCase_ : Dict , lowerCAmelCase_ : str ): if batch_size != 8: raise raise_fake_out_of_memory() with self.assertRaises(lowerCAmelCase_ ) as cm: mock_training_loop_function(1_28 , '''hello''' , '''world''' ) self.assertIn('''Batch size was passed into `f`''' , cm.exception.args[0] ) self.assertIn('''`f(arg1=\'hello\', arg2=\'world\')''' , cm.exception.args[0] ) def __lowerCAmelCase ( self : Any ) -> Optional[Any]: """simple docstring""" @find_executable_batch_size(starting_batch_size=16 ) def mock_training_loop_function(lowerCAmelCase_ : Any ): raise ValueError('''Oops, we had an error!''' ) with self.assertRaises(lowerCAmelCase_ ) as cm: mock_training_loop_function() self.assertIn('''Oops, we had an error!''' , cm.exception.args[0] ) @require_cuda def __lowerCAmelCase ( self : List[Any] ) -> Optional[int]: """simple docstring""" _a = torch.cuda.memory_allocated() _a = ModelForTest() model.cuda() self.assertGreater(torch.cuda.memory_allocated() , lowerCAmelCase_ ) _a = release_memory(lowerCAmelCase_ ) self.assertEqual(torch.cuda.memory_allocated() , lowerCAmelCase_ )
22
import unittest from transformers import LiltConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( LiltForQuestionAnswering, LiltForSequenceClassification, LiltForTokenClassification, LiltModel, ) from transformers.models.lilt.modeling_lilt import LILT_PRETRAINED_MODEL_ARCHIVE_LIST class __UpperCamelCase : def __init__( self , _UpperCamelCase , _UpperCamelCase=13 , _UpperCamelCase=7 , _UpperCamelCase=True , _UpperCamelCase=True , _UpperCamelCase=True , _UpperCamelCase=True , _UpperCamelCase=99 , _UpperCamelCase=24 , _UpperCamelCase=2 , _UpperCamelCase=6 , _UpperCamelCase=37 , _UpperCamelCase="gelu" , _UpperCamelCase=0.1 , _UpperCamelCase=0.1 , _UpperCamelCase=512 , _UpperCamelCase=16 , _UpperCamelCase=2 , _UpperCamelCase=0.02 , _UpperCamelCase=3 , _UpperCamelCase=None , _UpperCamelCase=1000 , ): _UpperCAmelCase = parent _UpperCAmelCase = batch_size _UpperCAmelCase = seq_length _UpperCAmelCase = is_training _UpperCAmelCase = use_input_mask _UpperCAmelCase = use_token_type_ids _UpperCAmelCase = use_labels _UpperCAmelCase = vocab_size _UpperCAmelCase = hidden_size _UpperCAmelCase = num_hidden_layers _UpperCAmelCase = num_attention_heads _UpperCAmelCase = intermediate_size _UpperCAmelCase = hidden_act _UpperCAmelCase = hidden_dropout_prob _UpperCAmelCase = attention_probs_dropout_prob _UpperCAmelCase = max_position_embeddings _UpperCAmelCase = type_vocab_size _UpperCAmelCase = type_sequence_label_size _UpperCAmelCase = initializer_range _UpperCAmelCase = num_labels _UpperCAmelCase = scope _UpperCAmelCase = range_bbox def UpperCamelCase( self ): _UpperCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _UpperCAmelCase = ids_tensor([self.batch_size, self.seq_length, 4] , self.range_bbox ) # Ensure that bbox is legal for i in range(bbox.shape[0] ): for j in range(bbox.shape[1] ): if bbox[i, j, 3] < bbox[i, j, 1]: _UpperCAmelCase = bbox[i, j, 3] _UpperCAmelCase = bbox[i, j, 1] _UpperCAmelCase = t if bbox[i, j, 2] < bbox[i, j, 0]: _UpperCAmelCase = bbox[i, j, 2] _UpperCAmelCase = bbox[i, j, 0] _UpperCAmelCase = t _UpperCAmelCase = None if self.use_input_mask: _UpperCAmelCase = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 ) _UpperCAmelCase = None if self.use_token_type_ids: _UpperCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) _UpperCAmelCase = None _UpperCAmelCase = None if self.use_labels: _UpperCAmelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size ) _UpperCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) _UpperCAmelCase = self.get_config() return config, input_ids, bbox, token_type_ids, input_mask, sequence_labels, token_labels def UpperCamelCase( self ): return LiltConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , ) def UpperCamelCase( self , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , ): _UpperCAmelCase = LiltModel(config=_UpperCamelCase ) model.to(_UpperCamelCase ) model.eval() _UpperCAmelCase = model(_UpperCamelCase , bbox=_UpperCamelCase , attention_mask=_UpperCamelCase , token_type_ids=_UpperCamelCase ) _UpperCAmelCase = model(_UpperCamelCase , bbox=_UpperCamelCase , token_type_ids=_UpperCamelCase ) _UpperCAmelCase = model(_UpperCamelCase , bbox=_UpperCamelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) ) def UpperCamelCase( self , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , ): _UpperCAmelCase = self.num_labels _UpperCAmelCase = LiltForTokenClassification(config=_UpperCamelCase ) model.to(_UpperCamelCase ) model.eval() _UpperCAmelCase = model( _UpperCamelCase , bbox=_UpperCamelCase , attention_mask=_UpperCamelCase , token_type_ids=_UpperCamelCase , labels=_UpperCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def UpperCamelCase( self , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , ): _UpperCAmelCase = LiltForQuestionAnswering(config=_UpperCamelCase ) model.to(_UpperCamelCase ) model.eval() _UpperCAmelCase = model( _UpperCamelCase , bbox=_UpperCamelCase , attention_mask=_UpperCamelCase , token_type_ids=_UpperCamelCase , start_positions=_UpperCamelCase , end_positions=_UpperCamelCase , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def UpperCamelCase( self ): _UpperCAmelCase = self.prepare_config_and_inputs() ( ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ) = config_and_inputs _UpperCAmelCase = { '''input_ids''': input_ids, '''bbox''': bbox, '''token_type_ids''': token_type_ids, '''attention_mask''': input_mask, } return config, inputs_dict @require_torch class __UpperCamelCase ( A__ , A__ , A__ , unittest.TestCase ): __A : Dict = ( ( LiltModel, LiltForSequenceClassification, LiltForTokenClassification, LiltForQuestionAnswering, ) if is_torch_available() else () ) __A : Optional[Any] = ( { """feature-extraction""": LiltModel, """question-answering""": LiltForQuestionAnswering, """text-classification""": LiltForSequenceClassification, """token-classification""": LiltForTokenClassification, """zero-shot""": LiltForSequenceClassification, } if is_torch_available() else {} ) __A : List[Any] = False __A : Optional[int] = False def UpperCamelCase( self , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ): return True def UpperCamelCase( self ): _UpperCAmelCase = LiltModelTester(self ) _UpperCAmelCase = ConfigTester(self , config_class=_UpperCamelCase , hidden_size=37 ) def UpperCamelCase( self ): self.config_tester.run_common_tests() def UpperCamelCase( self ): _UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_UpperCamelCase ) def UpperCamelCase( self ): _UpperCAmelCase = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: _UpperCAmelCase = type self.model_tester.create_and_check_model(*_UpperCamelCase ) def UpperCamelCase( self ): _UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*_UpperCamelCase ) def UpperCamelCase( self ): _UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*_UpperCamelCase ) @slow def UpperCamelCase( self ): for model_name in LILT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _UpperCAmelCase = LiltModel.from_pretrained(_UpperCamelCase ) self.assertIsNotNone(_UpperCamelCase ) @require_torch @slow class __UpperCamelCase ( unittest.TestCase ): def UpperCamelCase( self ): _UpperCAmelCase = LiltModel.from_pretrained('''SCUT-DLVCLab/lilt-roberta-en-base''' ).to(_UpperCamelCase ) _UpperCAmelCase = torch.tensor([[1, 2]] , device=_UpperCamelCase ) _UpperCAmelCase = torch.tensor([[[1, 2, 3, 4], [5, 6, 7, 8]]] , device=_UpperCamelCase ) # forward pass with torch.no_grad(): _UpperCAmelCase = model(input_ids=_UpperCamelCase , bbox=_UpperCamelCase ) _UpperCAmelCase = torch.Size([1, 2, 768] ) _UpperCAmelCase = torch.tensor( [[-0.0653, 0.0950, -0.0061], [-0.0545, 0.0926, -0.0324]] , device=_UpperCamelCase , ) self.assertTrue(outputs.last_hidden_state.shape , _UpperCamelCase ) self.assertTrue(torch.allclose(outputs.last_hidden_state[0, :, :3] , _UpperCamelCase , atol=1e-3 ) )
32
0
from typing import Any, Callable, Dict, List, Optional, Union import torch from transformers import CLIPImageProcessor, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, DiffusionPipeline, LMSDiscreteScheduler, PNDMScheduler, StableDiffusionPipeline, UNetaDConditionModel, ) from diffusers.pipelines.stable_diffusion import StableDiffusionPipelineOutput from diffusers.pipelines.stable_diffusion.safety_checker import StableDiffusionSafetyChecker snake_case__ : str = """CompVis/stable-diffusion-v1-1""" snake_case__ : Optional[Any] = """CompVis/stable-diffusion-v1-2""" snake_case__ : List[Any] = """CompVis/stable-diffusion-v1-3""" snake_case__ : int = """CompVis/stable-diffusion-v1-4""" class _a ( UpperCAmelCase__ ): """simple docstring""" def __init__( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase = True , ) -> List[str]: super()._init_() UpperCamelCase_ = StableDiffusionPipeline.from_pretrained(_UpperCAmelCase ) UpperCamelCase_ = StableDiffusionPipeline.from_pretrained(_UpperCAmelCase ) UpperCamelCase_ = StableDiffusionPipeline.from_pretrained(_UpperCAmelCase ) UpperCamelCase_ = StableDiffusionPipeline( vae=_UpperCAmelCase , text_encoder=_UpperCAmelCase , tokenizer=_UpperCAmelCase , unet=_UpperCAmelCase , scheduler=_UpperCAmelCase , safety_checker=_UpperCAmelCase , feature_extractor=_UpperCAmelCase , requires_safety_checker=_UpperCAmelCase , ) self.register_modules(pipelinea=self.pipea , pipelinea=self.pipea , pipelinea=self.pipea , pipelinea=self.pipea ) @property def _UpperCAmelCase ( self ) -> Dict[str, Any]: return {k: getattr(self , _UpperCAmelCase ) for k in self.config.keys() if not k.startswith('_' )} def _UpperCAmelCase ( self , _UpperCAmelCase = "auto" ) -> List[str]: if slice_size == "auto": # half the attention head size is usually a good trade-off between # speed and memory UpperCamelCase_ = self.unet.config.attention_head_dim // 2 self.unet.set_attention_slice(_UpperCAmelCase ) def _UpperCAmelCase ( self ) -> int: self.enable_attention_slicing(_UpperCAmelCase ) @torch.no_grad() def _UpperCAmelCase ( self , _UpperCAmelCase , _UpperCAmelCase = 512 , _UpperCAmelCase = 512 , _UpperCAmelCase = 50 , _UpperCAmelCase = 7.5 , _UpperCAmelCase = None , _UpperCAmelCase = 1 , _UpperCAmelCase = 0.0 , _UpperCAmelCase = None , _UpperCAmelCase = None , _UpperCAmelCase = "pil" , _UpperCAmelCase = True , _UpperCAmelCase = None , _UpperCAmelCase = 1 , **_UpperCAmelCase , ) -> Any: return self.pipea( prompt=_UpperCAmelCase , height=_UpperCAmelCase , width=_UpperCAmelCase , num_inference_steps=_UpperCAmelCase , guidance_scale=_UpperCAmelCase , negative_prompt=_UpperCAmelCase , num_images_per_prompt=_UpperCAmelCase , eta=_UpperCAmelCase , generator=_UpperCAmelCase , latents=_UpperCAmelCase , output_type=_UpperCAmelCase , return_dict=_UpperCAmelCase , callback=_UpperCAmelCase , callback_steps=_UpperCAmelCase , **_UpperCAmelCase , ) @torch.no_grad() def _UpperCAmelCase ( self , _UpperCAmelCase , _UpperCAmelCase = 512 , _UpperCAmelCase = 512 , _UpperCAmelCase = 50 , _UpperCAmelCase = 7.5 , _UpperCAmelCase = None , _UpperCAmelCase = 1 , _UpperCAmelCase = 0.0 , _UpperCAmelCase = None , _UpperCAmelCase = None , _UpperCAmelCase = "pil" , _UpperCAmelCase = True , _UpperCAmelCase = None , _UpperCAmelCase = 1 , **_UpperCAmelCase , ) -> List[Any]: return self.pipea( prompt=_UpperCAmelCase , height=_UpperCAmelCase , width=_UpperCAmelCase , num_inference_steps=_UpperCAmelCase , guidance_scale=_UpperCAmelCase , negative_prompt=_UpperCAmelCase , num_images_per_prompt=_UpperCAmelCase , eta=_UpperCAmelCase , generator=_UpperCAmelCase , latents=_UpperCAmelCase , output_type=_UpperCAmelCase , return_dict=_UpperCAmelCase , callback=_UpperCAmelCase , callback_steps=_UpperCAmelCase , **_UpperCAmelCase , ) @torch.no_grad() def _UpperCAmelCase ( self , _UpperCAmelCase , _UpperCAmelCase = 512 , _UpperCAmelCase = 512 , _UpperCAmelCase = 50 , _UpperCAmelCase = 7.5 , _UpperCAmelCase = None , _UpperCAmelCase = 1 , _UpperCAmelCase = 0.0 , _UpperCAmelCase = None , _UpperCAmelCase = None , _UpperCAmelCase = "pil" , _UpperCAmelCase = True , _UpperCAmelCase = None , _UpperCAmelCase = 1 , **_UpperCAmelCase , ) -> Optional[int]: return self.pipea( prompt=_UpperCAmelCase , height=_UpperCAmelCase , width=_UpperCAmelCase , num_inference_steps=_UpperCAmelCase , guidance_scale=_UpperCAmelCase , negative_prompt=_UpperCAmelCase , num_images_per_prompt=_UpperCAmelCase , eta=_UpperCAmelCase , generator=_UpperCAmelCase , latents=_UpperCAmelCase , output_type=_UpperCAmelCase , return_dict=_UpperCAmelCase , callback=_UpperCAmelCase , callback_steps=_UpperCAmelCase , **_UpperCAmelCase , ) @torch.no_grad() def _UpperCAmelCase ( self , _UpperCAmelCase , _UpperCAmelCase = 512 , _UpperCAmelCase = 512 , _UpperCAmelCase = 50 , _UpperCAmelCase = 7.5 , _UpperCAmelCase = None , _UpperCAmelCase = 1 , _UpperCAmelCase = 0.0 , _UpperCAmelCase = None , _UpperCAmelCase = None , _UpperCAmelCase = "pil" , _UpperCAmelCase = True , _UpperCAmelCase = None , _UpperCAmelCase = 1 , **_UpperCAmelCase , ) -> Tuple: return self.pipea( prompt=_UpperCAmelCase , height=_UpperCAmelCase , width=_UpperCAmelCase , num_inference_steps=_UpperCAmelCase , guidance_scale=_UpperCAmelCase , negative_prompt=_UpperCAmelCase , num_images_per_prompt=_UpperCAmelCase , eta=_UpperCAmelCase , generator=_UpperCAmelCase , latents=_UpperCAmelCase , output_type=_UpperCAmelCase , return_dict=_UpperCAmelCase , callback=_UpperCAmelCase , callback_steps=_UpperCAmelCase , **_UpperCAmelCase , ) @torch.no_grad() def _UpperCAmelCase ( self , _UpperCAmelCase , _UpperCAmelCase = 512 , _UpperCAmelCase = 512 , _UpperCAmelCase = 50 , _UpperCAmelCase = 7.5 , _UpperCAmelCase = None , _UpperCAmelCase = 1 , _UpperCAmelCase = 0.0 , _UpperCAmelCase = None , _UpperCAmelCase = None , _UpperCAmelCase = "pil" , _UpperCAmelCase = True , _UpperCAmelCase = None , _UpperCAmelCase = 1 , **_UpperCAmelCase , ) -> List[Any]: UpperCamelCase_ = 'cuda' if torch.cuda.is_available() else 'cpu' self.to(_UpperCAmelCase ) # Checks if the height and width are divisible by 8 or not if height % 8 != 0 or width % 8 != 0: raise ValueError(f"""`height` and `width` must be divisible by 8 but are {height} and {width}.""" ) # Get first result from Stable Diffusion Checkpoint v1.1 UpperCamelCase_ = self.textaimg_sda_a( prompt=_UpperCAmelCase , height=_UpperCAmelCase , width=_UpperCAmelCase , num_inference_steps=_UpperCAmelCase , guidance_scale=_UpperCAmelCase , negative_prompt=_UpperCAmelCase , num_images_per_prompt=_UpperCAmelCase , eta=_UpperCAmelCase , generator=_UpperCAmelCase , latents=_UpperCAmelCase , output_type=_UpperCAmelCase , return_dict=_UpperCAmelCase , callback=_UpperCAmelCase , callback_steps=_UpperCAmelCase , **_UpperCAmelCase , ) # Get first result from Stable Diffusion Checkpoint v1.2 UpperCamelCase_ = self.textaimg_sda_a( prompt=_UpperCAmelCase , height=_UpperCAmelCase , width=_UpperCAmelCase , num_inference_steps=_UpperCAmelCase , guidance_scale=_UpperCAmelCase , negative_prompt=_UpperCAmelCase , num_images_per_prompt=_UpperCAmelCase , eta=_UpperCAmelCase , generator=_UpperCAmelCase , latents=_UpperCAmelCase , output_type=_UpperCAmelCase , return_dict=_UpperCAmelCase , callback=_UpperCAmelCase , callback_steps=_UpperCAmelCase , **_UpperCAmelCase , ) # Get first result from Stable Diffusion Checkpoint v1.3 UpperCamelCase_ = self.textaimg_sda_a( prompt=_UpperCAmelCase , height=_UpperCAmelCase , width=_UpperCAmelCase , num_inference_steps=_UpperCAmelCase , guidance_scale=_UpperCAmelCase , negative_prompt=_UpperCAmelCase , num_images_per_prompt=_UpperCAmelCase , eta=_UpperCAmelCase , generator=_UpperCAmelCase , latents=_UpperCAmelCase , output_type=_UpperCAmelCase , return_dict=_UpperCAmelCase , callback=_UpperCAmelCase , callback_steps=_UpperCAmelCase , **_UpperCAmelCase , ) # Get first result from Stable Diffusion Checkpoint v1.4 UpperCamelCase_ = self.textaimg_sda_a( prompt=_UpperCAmelCase , height=_UpperCAmelCase , width=_UpperCAmelCase , num_inference_steps=_UpperCAmelCase , guidance_scale=_UpperCAmelCase , negative_prompt=_UpperCAmelCase , num_images_per_prompt=_UpperCAmelCase , eta=_UpperCAmelCase , generator=_UpperCAmelCase , latents=_UpperCAmelCase , output_type=_UpperCAmelCase , return_dict=_UpperCAmelCase , callback=_UpperCAmelCase , callback_steps=_UpperCAmelCase , **_UpperCAmelCase , ) # Get all result images into a single list and pass it via StableDiffusionPipelineOutput for final result return StableDiffusionPipelineOutput([resa[0], resa[0], resa[0], resa[0]] )
23
from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCAmelCase_ = logging.get_logger(__name__) UpperCAmelCase_ = { "RWKV/rwkv-4-169m-pile": "https://huggingface.co/RWKV/rwkv-4-169m-pile/resolve/main/config.json", "RWKV/rwkv-4-430m-pile": "https://huggingface.co/RWKV/rwkv-4-430m-pile/resolve/main/config.json", "RWKV/rwkv-4-1b5-pile": "https://huggingface.co/RWKV/rwkv-4-1b5-pile/resolve/main/config.json", "RWKV/rwkv-4-3b-pile": "https://huggingface.co/RWKV/rwkv-4-3b-pile/resolve/main/config.json", "RWKV/rwkv-4-7b-pile": "https://huggingface.co/RWKV/rwkv-4-7b-pile/resolve/main/config.json", "RWKV/rwkv-4-14b-pile": "https://huggingface.co/RWKV/rwkv-4-14b-pile/resolve/main/config.json", "RWKV/rwkv-raven-1b5": "https://huggingface.co/RWKV/rwkv-raven-1b5/resolve/main/config.json", "RWKV/rwkv-raven-3b": "https://huggingface.co/RWKV/rwkv-raven-3b/resolve/main/config.json", "RWKV/rwkv-raven-7b": "https://huggingface.co/RWKV/rwkv-raven-7b/resolve/main/config.json", "RWKV/rwkv-raven-14b": "https://huggingface.co/RWKV/rwkv-raven-14b/resolve/main/config.json", } class __UpperCamelCase ( A__ ): __A : Tuple = """rwkv""" __A : Any = {"""max_position_embeddings""": """context_length"""} def __init__( self , _UpperCamelCase=50277 , _UpperCamelCase=1024 , _UpperCamelCase=4096 , _UpperCamelCase=32 , _UpperCamelCase=None , _UpperCamelCase=None , _UpperCamelCase=1e-5 , _UpperCamelCase=0 , _UpperCamelCase=0 , _UpperCamelCase=6 , _UpperCamelCase=False , _UpperCamelCase=True , **_UpperCamelCase , ): _UpperCAmelCase = vocab_size _UpperCAmelCase = context_length _UpperCAmelCase = hidden_size _UpperCAmelCase = num_hidden_layers _UpperCAmelCase = attention_hidden_size if attention_hidden_size is not None else hidden_size _UpperCAmelCase = intermediate_size if intermediate_size is not None else 4 * hidden_size _UpperCAmelCase = layer_norm_epsilon _UpperCAmelCase = rescale_every _UpperCAmelCase = use_cache _UpperCAmelCase = bos_token_id _UpperCAmelCase = eos_token_id super().__init__( tie_word_embeddings=_UpperCamelCase , bos_token_id=_UpperCamelCase , eos_token_id=_UpperCamelCase , **_UpperCamelCase )
32
0
'''simple docstring''' from collections import OrderedDict from typing import Any, Mapping, Optional from ... import PreTrainedTokenizer from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig, OnnxConfigWithPast, OnnxSeqaSeqConfigWithPast from ...onnx.utils import compute_effective_axis_dimension from ...utils import TensorType, is_torch_available, logging UpperCAmelCase_ : Any = logging.get_logger(__name__) UpperCAmelCase_ : int = { '''Helsinki-NLP/opus-mt-en-de''': '''https://huggingface.co/Helsinki-NLP/opus-mt-en-de/resolve/main/config.json''', # See all Marian models at https://huggingface.co/models?filter=marian } class lowerCAmelCase ( __lowerCAmelCase): __lowercase : int = '''marian''' __lowercase : Any = ['''past_key_values'''] __lowercase : List[Any] = {'''num_attention_heads''': '''encoder_attention_heads''', '''hidden_size''': '''d_model'''} def __init__( self , __SCREAMING_SNAKE_CASE=5_8101 , __SCREAMING_SNAKE_CASE=None , __SCREAMING_SNAKE_CASE=1024 , __SCREAMING_SNAKE_CASE=12 , __SCREAMING_SNAKE_CASE=4096 , __SCREAMING_SNAKE_CASE=16 , __SCREAMING_SNAKE_CASE=12 , __SCREAMING_SNAKE_CASE=4096 , __SCREAMING_SNAKE_CASE=16 , __SCREAMING_SNAKE_CASE=0.0 , __SCREAMING_SNAKE_CASE=0.0 , __SCREAMING_SNAKE_CASE=True , __SCREAMING_SNAKE_CASE=True , __SCREAMING_SNAKE_CASE="gelu" , __SCREAMING_SNAKE_CASE=1024 , __SCREAMING_SNAKE_CASE=0.1 , __SCREAMING_SNAKE_CASE=0.0 , __SCREAMING_SNAKE_CASE=0.0 , __SCREAMING_SNAKE_CASE=0.02 , __SCREAMING_SNAKE_CASE=5_8100 , __SCREAMING_SNAKE_CASE=False , __SCREAMING_SNAKE_CASE=5_8100 , __SCREAMING_SNAKE_CASE=0 , __SCREAMING_SNAKE_CASE=0 , __SCREAMING_SNAKE_CASE=True , **__SCREAMING_SNAKE_CASE , ) -> str: '''simple docstring''' __snake_case = vocab_size __snake_case = decoder_vocab_size or vocab_size __snake_case = max_position_embeddings __snake_case = d_model __snake_case = encoder_ffn_dim __snake_case = encoder_layers __snake_case = encoder_attention_heads __snake_case = decoder_ffn_dim __snake_case = decoder_layers __snake_case = decoder_attention_heads __snake_case = dropout __snake_case = attention_dropout __snake_case = activation_dropout __snake_case = activation_function __snake_case = init_std __snake_case = encoder_layerdrop __snake_case = decoder_layerdrop __snake_case = use_cache __snake_case = encoder_layers __snake_case = scale_embedding # scale factor will be sqrt(d_model) if True __snake_case = share_encoder_decoder_embeddings super().__init__( pad_token_id=__SCREAMING_SNAKE_CASE , eos_token_id=__SCREAMING_SNAKE_CASE , is_encoder_decoder=__SCREAMING_SNAKE_CASE , decoder_start_token_id=__SCREAMING_SNAKE_CASE , forced_eos_token_id=__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE , ) class lowerCAmelCase ( __lowerCAmelCase): @property # Copied from transformers.models.bart.configuration_bart.BartOnnxConfig.inputs def lowerCAmelCase ( self ) -> Mapping[str, Mapping[int, str]]: '''simple docstring''' if self.task in ["default", "seq2seq-lm"]: __snake_case = OrderedDict( [ ('''input_ids''', {0: '''batch''', 1: '''encoder_sequence'''}), ('''attention_mask''', {0: '''batch''', 1: '''encoder_sequence'''}), ] ) if self.use_past: __snake_case = {0: '''batch'''} __snake_case = {0: '''batch''', 1: '''past_decoder_sequence + sequence'''} else: __snake_case = {0: '''batch''', 1: '''decoder_sequence'''} __snake_case = {0: '''batch''', 1: '''decoder_sequence'''} if self.use_past: self.fill_with_past_key_values_(__SCREAMING_SNAKE_CASE , direction='''inputs''' ) elif self.task == "causal-lm": # TODO: figure this case out. __snake_case = OrderedDict( [ ('''input_ids''', {0: '''batch''', 1: '''encoder_sequence'''}), ('''attention_mask''', {0: '''batch''', 1: '''encoder_sequence'''}), ] ) if self.use_past: __snake_case , __snake_case = self.num_layers for i in range(__SCREAMING_SNAKE_CASE ): __snake_case = {0: '''batch''', 2: '''past_sequence + sequence'''} __snake_case = {0: '''batch''', 2: '''past_sequence + sequence'''} else: __snake_case = OrderedDict( [ ('''input_ids''', {0: '''batch''', 1: '''encoder_sequence'''}), ('''attention_mask''', {0: '''batch''', 1: '''encoder_sequence'''}), ('''decoder_input_ids''', {0: '''batch''', 1: '''decoder_sequence'''}), ('''decoder_attention_mask''', {0: '''batch''', 1: '''decoder_sequence'''}), ] ) return common_inputs @property # Copied from transformers.models.bart.configuration_bart.BartOnnxConfig.outputs def lowerCAmelCase ( self ) -> Mapping[str, Mapping[int, str]]: '''simple docstring''' if self.task in ["default", "seq2seq-lm"]: __snake_case = super().outputs else: __snake_case = super(__SCREAMING_SNAKE_CASE , self ).outputs if self.use_past: __snake_case , __snake_case = self.num_layers for i in range(__SCREAMING_SNAKE_CASE ): __snake_case = {0: '''batch''', 2: '''past_sequence + sequence'''} __snake_case = {0: '''batch''', 2: '''past_sequence + sequence'''} return common_outputs def lowerCAmelCase ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = -1 , __SCREAMING_SNAKE_CASE = -1 , __SCREAMING_SNAKE_CASE = False , __SCREAMING_SNAKE_CASE = None , ) -> Mapping[str, Any]: '''simple docstring''' __snake_case = self._generate_dummy_inputs_for_encoder_and_decoder( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) # Generate decoder inputs __snake_case = seq_length if not self.use_past else 1 __snake_case = self._generate_dummy_inputs_for_encoder_and_decoder( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) __snake_case = {F'''decoder_{name}''': tensor for name, tensor in decoder_inputs.items()} __snake_case = dict(**__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ) if self.use_past: if not is_torch_available(): raise ValueError('''Cannot generate dummy past_keys inputs without PyTorch installed.''' ) else: import torch __snake_case , __snake_case = common_inputs['''input_ids'''].shape __snake_case = common_inputs['''decoder_input_ids'''].shape[1] __snake_case , __snake_case = self.num_attention_heads __snake_case = ( batch, num_encoder_attention_heads, encoder_seq_length, self._config.hidden_size // num_encoder_attention_heads, ) __snake_case = decoder_seq_length + 3 __snake_case = ( batch, num_decoder_attention_heads, decoder_past_length, self._config.hidden_size // num_decoder_attention_heads, ) __snake_case = torch.cat( [common_inputs['''decoder_attention_mask'''], torch.ones(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )] , dim=1 ) __snake_case = [] # If the number of encoder and decoder layers are present in the model configuration, both are considered __snake_case , __snake_case = self.num_layers __snake_case = min(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) __snake_case = max(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) - min_num_layers __snake_case = '''encoder''' if num_encoder_layers > num_decoder_layers else '''decoder''' for _ in range(__SCREAMING_SNAKE_CASE ): common_inputs["past_key_values"].append( ( torch.zeros(__SCREAMING_SNAKE_CASE ), torch.zeros(__SCREAMING_SNAKE_CASE ), torch.zeros(__SCREAMING_SNAKE_CASE ), torch.zeros(__SCREAMING_SNAKE_CASE ), ) ) # TODO: test this. __snake_case = encoder_shape if remaining_side_name == '''encoder''' else decoder_shape for _ in range(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): common_inputs["past_key_values"].append((torch.zeros(__SCREAMING_SNAKE_CASE ), torch.zeros(__SCREAMING_SNAKE_CASE )) ) return common_inputs def lowerCAmelCase ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = -1 , __SCREAMING_SNAKE_CASE = -1 , __SCREAMING_SNAKE_CASE = False , __SCREAMING_SNAKE_CASE = None , ) -> Mapping[str, Any]: '''simple docstring''' __snake_case = self._generate_dummy_inputs_for_encoder_and_decoder( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) if self.use_past: if not is_torch_available(): raise ValueError('''Cannot generate dummy past_keys inputs without PyTorch installed.''' ) else: import torch __snake_case , __snake_case = common_inputs['''input_ids'''].shape # Not using the same length for past_key_values __snake_case = seqlen + 2 __snake_case , __snake_case = self.num_layers __snake_case , __snake_case = self.num_attention_heads __snake_case = ( batch, num_encoder_attention_heads, past_key_values_length, self._config.hidden_size // num_encoder_attention_heads, ) __snake_case = common_inputs['''attention_mask'''].dtype __snake_case = torch.cat( [common_inputs['''attention_mask'''], torch.ones(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , dtype=__SCREAMING_SNAKE_CASE )] , dim=1 ) __snake_case = [ (torch.zeros(__SCREAMING_SNAKE_CASE ), torch.zeros(__SCREAMING_SNAKE_CASE )) for _ in range(__SCREAMING_SNAKE_CASE ) ] return common_inputs def lowerCAmelCase ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = -1 , __SCREAMING_SNAKE_CASE = -1 , __SCREAMING_SNAKE_CASE = False , __SCREAMING_SNAKE_CASE = None , ) -> Mapping[str, Any]: '''simple docstring''' __snake_case = compute_effective_axis_dimension( __SCREAMING_SNAKE_CASE , fixed_dimension=OnnxConfig.default_fixed_batch , num_token_to_add=0 ) # If dynamic axis (-1) we forward with a fixed dimension of 8 tokens to avoid optimizations made by ONNX __snake_case = tokenizer.num_special_tokens_to_add(__SCREAMING_SNAKE_CASE ) __snake_case = compute_effective_axis_dimension( __SCREAMING_SNAKE_CASE , fixed_dimension=OnnxConfig.default_fixed_sequence , num_token_to_add=__SCREAMING_SNAKE_CASE ) # Generate dummy inputs according to compute batch and sequence __snake_case = [''' '''.join([tokenizer.unk_token] ) * seq_length] * batch_size __snake_case = dict(tokenizer(__SCREAMING_SNAKE_CASE , return_tensors=__SCREAMING_SNAKE_CASE ) ) return common_inputs def lowerCAmelCase ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = -1 , __SCREAMING_SNAKE_CASE = -1 , __SCREAMING_SNAKE_CASE = False , __SCREAMING_SNAKE_CASE = None , ) -> Mapping[str, Any]: '''simple docstring''' if self.task in ["default", "seq2seq-lm"]: __snake_case = self._generate_dummy_inputs_for_default_and_seqaseq_lm( __SCREAMING_SNAKE_CASE , batch_size=__SCREAMING_SNAKE_CASE , seq_length=__SCREAMING_SNAKE_CASE , is_pair=__SCREAMING_SNAKE_CASE , framework=__SCREAMING_SNAKE_CASE ) else: __snake_case = self._generate_dummy_inputs_for_causal_lm( __SCREAMING_SNAKE_CASE , batch_size=__SCREAMING_SNAKE_CASE , seq_length=__SCREAMING_SNAKE_CASE , is_pair=__SCREAMING_SNAKE_CASE , framework=__SCREAMING_SNAKE_CASE ) return common_inputs def lowerCAmelCase ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) -> List[Any]: '''simple docstring''' if self.task in ["default", "seq2seq-lm"]: __snake_case = super()._flatten_past_key_values_(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) else: __snake_case = super(__SCREAMING_SNAKE_CASE , self )._flatten_past_key_values_( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) @property def lowerCAmelCase ( self ) -> float: '''simple docstring''' return 1E-4
24
def A__ ( SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : int ) -> str: """simple docstring""" if a < 0 or b < 0: raise ValueError('''the value of both inputs must be positive''' ) _UpperCAmelCase = str(bin(SCREAMING_SNAKE_CASE_ ) )[2:] # remove the leading "0b" _UpperCAmelCase = str(bin(SCREAMING_SNAKE_CASE_ ) )[2:] # remove the leading "0b" _UpperCAmelCase = max(len(SCREAMING_SNAKE_CASE_ ) , len(SCREAMING_SNAKE_CASE_ ) ) return "0b" + "".join( str(int(char_a == '''1''' and char_b == '''1''' ) ) for char_a, char_b in zip(a_binary.zfill(SCREAMING_SNAKE_CASE_ ) , b_binary.zfill(SCREAMING_SNAKE_CASE_ ) ) ) if __name__ == "__main__": import doctest doctest.testmod()
32
0
from typing import Optional from urllib.parse import quote import huggingface_hub as hfh from packaging import version def lowerCamelCase__ ( _a , _a , _a = None): if version.parse(hfh.__version__).release < version.parse("0.11.0").release: # old versions of hfh don't url-encode the file path SCREAMING_SNAKE_CASE : Dict = quote(_a) return hfh.hf_hub_url(_a , _a , repo_type="dataset" , revision=_a)
25
from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCAmelCase_ = logging.get_logger(__name__) UpperCAmelCase_ = { "tiiuae/falcon-40b": "https://huggingface.co/tiiuae/falcon-40b/resolve/main/config.json", "tiiuae/falcon-7b": "https://huggingface.co/tiiuae/falcon-7b/resolve/main/config.json", } class __UpperCamelCase ( A__ ): __A : Dict = """falcon""" __A : Any = ["""past_key_values"""] def __init__( self , _UpperCamelCase=65024 , _UpperCamelCase=4544 , _UpperCamelCase=32 , _UpperCamelCase=71 , _UpperCamelCase=1e-5 , _UpperCamelCase=0.02 , _UpperCamelCase=True , _UpperCamelCase=0.0 , _UpperCamelCase=0.0 , _UpperCamelCase=None , _UpperCamelCase=False , _UpperCamelCase=False , _UpperCamelCase=True , _UpperCamelCase=True , _UpperCamelCase=False , _UpperCamelCase=11 , _UpperCamelCase=11 , **_UpperCamelCase , ): _UpperCAmelCase = vocab_size # Backward compatibility with n_embed kwarg _UpperCAmelCase = kwargs.pop('''n_embed''' , _UpperCamelCase ) _UpperCAmelCase = hidden_size if n_embed is None else n_embed _UpperCAmelCase = num_hidden_layers _UpperCAmelCase = num_attention_heads _UpperCAmelCase = layer_norm_epsilon _UpperCAmelCase = initializer_range _UpperCAmelCase = use_cache _UpperCAmelCase = hidden_dropout _UpperCAmelCase = attention_dropout _UpperCAmelCase = bos_token_id _UpperCAmelCase = eos_token_id _UpperCAmelCase = num_attention_heads if num_kv_heads is None else num_kv_heads _UpperCAmelCase = alibi _UpperCAmelCase = new_decoder_architecture _UpperCAmelCase = multi_query # Ignored when new_decoder_architecture is True _UpperCAmelCase = parallel_attn _UpperCAmelCase = bias super().__init__(bos_token_id=_UpperCamelCase , eos_token_id=_UpperCamelCase , **_UpperCamelCase ) @property def UpperCamelCase( self ): return self.hidden_size // self.num_attention_heads @property def UpperCamelCase( self ): return not self.alibi
32
0
'''simple docstring''' import comet # From: unbabel-comet import torch import datasets __UpperCamelCase = datasets.logging.get_logger(__name__) __UpperCamelCase = "\\n@inproceedings{rei-EtAl:2020:WMT,\n author = {Rei, Ricardo and Stewart, Craig and Farinha, Ana C and Lavie, Alon},\n title = {Unbabel's Participation in the WMT20 Metrics Shared Task},\n booktitle = {Proceedings of the Fifth Conference on Machine Translation},\n month = {November},\n year = {2020},\n address = {Online},\n publisher = {Association for Computational Linguistics},\n pages = {909--918},\n}\n@inproceedings{rei-etal-2020-comet,\n title = \"{COMET}: A Neural Framework for {MT} Evaluation\",\n author = \"Rei, Ricardo and\n Stewart, Craig and\n Farinha, Ana C and\n Lavie, Alon\",\n booktitle = \"Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP)\",\n month = nov,\n year = \"2020\",\n address = \"Online\",\n publisher = \"Association for Computational Linguistics\",\n url = \"https://www.aclweb.org/anthology/2020.emnlp-main.213\",\n pages = \"2685--2702\",\n}\n" __UpperCamelCase = "\\nCrosslingual Optimized Metric for Evaluation of Translation (COMET) is an open-source framework used to train Machine Translation metrics that achieve high levels of correlation with different types of human judgments (HTER, DA's or MQM).\nWith the release of the framework the authors also released fully trained models that were used to compete in the WMT20 Metrics Shared Task achieving SOTA in that years competition.\n\nSee the [README.md] file at https://unbabel.github.io/COMET/html/models.html for more information.\n" __UpperCamelCase = "\nCOMET score.\n\nArgs:\n\n`sources` (list of str): Source sentences\n`predictions` (list of str): candidate translations\n`references` (list of str): reference translations\n`cuda` (bool): If set to True, runs COMET using GPU\n`show_progress` (bool): Shows progress\n`model`: COMET model to be used. Will default to `wmt-large-da-estimator-1719` if None.\n\nReturns:\n `samples`: List of dictionaries with `src`, `mt`, `ref` and `score`.\n `scores`: List of scores.\n\nExamples:\n\n >>> comet_metric = datasets.load_metric('comet')\n >>> # comet_metric = load_metric('comet', 'wmt20-comet-da') # you can also choose which model to use\n >>> source = [\"Dem Feuer konnte Einhalt geboten werden\", \"Schulen und Kindergärten wurden eröffnet.\"]\n >>> hypothesis = [\"The fire could be stopped\", \"Schools and kindergartens were open\"]\n >>> reference = [\"They were able to control the fire.\", \"Schools and kindergartens opened\"]\n >>> results = comet_metric.compute(predictions=hypothesis, references=reference, sources=source)\n >>> print([round(v, 2) for v in results[\"scores\"]])\n [0.19, 0.92]\n" @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class _A ( datasets.Metric ): def lowercase__ ( self : str ) -> Tuple: """simple docstring""" return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , homepage="""https://unbabel.github.io/COMET/html/index.html""" , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { """sources""": datasets.Value("""string""" , id="""sequence""" ), """predictions""": datasets.Value("""string""" , id="""sequence""" ), """references""": datasets.Value("""string""" , id="""sequence""" ), } ) , codebase_urls=["""https://github.com/Unbabel/COMET"""] , reference_urls=[ """https://github.com/Unbabel/COMET""", """https://www.aclweb.org/anthology/2020.emnlp-main.213/""", """http://www.statmt.org/wmt20/pdf/2020.wmt-1.101.pdf6""", ] , ) def lowercase__ ( self : int , __magic_name__ : Any ) -> Any: """simple docstring""" if self.config_name == "default": __snake_case : Tuple = comet.load_from_checkpoint(comet.download_model("""wmt20-comet-da""" ) ) else: __snake_case : Any = comet.load_from_checkpoint(comet.download_model(self.config_name ) ) def lowercase__ ( self : Union[str, Any] , __magic_name__ : Dict , __magic_name__ : List[str] , __magic_name__ : Any , __magic_name__ : int=None , __magic_name__ : str=False ) -> List[str]: """simple docstring""" if gpus is None: __snake_case : List[str] = 1 if torch.cuda.is_available() else 0 __snake_case : int = {"""src""": sources, """mt""": predictions, """ref""": references} __snake_case : Optional[Any] = [dict(zip(__magic_name__ , __magic_name__ ) ) for t in zip(*data.values() )] __snake_case , __snake_case : List[Any] = self.scorer.predict(__magic_name__ , gpus=__magic_name__ , progress_bar=__magic_name__ ) return {"mean_score": mean_score, "scores": scores}
26
from math import sqrt def A__ ( SCREAMING_SNAKE_CASE_ : int ) -> bool: """simple docstring""" if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5 , int(sqrt(SCREAMING_SNAKE_CASE_ ) + 1 ) , 6 ): if number % i == 0 or number % (i + 2) == 0: return False return True def A__ ( SCREAMING_SNAKE_CASE_ : int = 1_00_01 ) -> int: """simple docstring""" _UpperCAmelCase = 0 _UpperCAmelCase = 1 while count != nth and number < 3: number += 1 if is_prime(SCREAMING_SNAKE_CASE_ ): count += 1 while count != nth: number += 2 if is_prime(SCREAMING_SNAKE_CASE_ ): count += 1 return number if __name__ == "__main__": print(f'''{solution() = }''')
32
0
import argparse import hashlib # hashlib is only used inside the Test class import struct class lowerCamelCase: '''simple docstring''' def __init__( self , snake_case_ ): _A = data _A = [0X6745_2301, 0XEFCD_AB89, 0X98BA_DCFE, 0X1032_5476, 0XC3D2_E1F0] @staticmethod def lowerCAmelCase__ ( snake_case_ , snake_case_ ): return ((n << b) | (n >> (32 - b))) & 0XFFFF_FFFF def lowerCAmelCase__ ( self ): _A = B'\x80' + B'\x00' * (63 - (len(self.data ) + 8) % 64) _A = self.data + padding + struct.pack('>Q' , 8 * len(self.data ) ) return padded_data def lowerCAmelCase__ ( self ): return [ self.padded_data[i : i + 64] for i in range(0 , len(self.padded_data ) , 64 ) ] def lowerCAmelCase__ ( self , snake_case_ ): _A = list(struct.unpack('>16L' , snake_case_ ) ) + [0] * 64 for i in range(16 , 80 ): _A = self.rotate((w[i - 3] ^ w[i - 8] ^ w[i - 14] ^ w[i - 16]) , 1 ) return w def lowerCAmelCase__ ( self ): _A = self.padding() _A = self.split_blocks() for block in self.blocks: _A = self.expand_block(snake_case_ ) _A, _A, _A, _A, _A = self.h for i in range(0 , 80 ): if 0 <= i < 20: _A = (b & c) | ((~b) & d) _A = 0X5A82_7999 elif 20 <= i < 40: _A = b ^ c ^ d _A = 0X6ED9_EBA1 elif 40 <= i < 60: _A = (b & c) | (b & d) | (c & d) _A = 0X8F1B_BCDC elif 60 <= i < 80: _A = b ^ c ^ d _A = 0XCA62_C1D6 _A, _A, _A, _A, _A = ( self.rotate(snake_case_ , 5 ) + f + e + k + expanded_block[i] & 0XFFFF_FFFF, a, self.rotate(snake_case_ , 30 ), c, d, ) _A = ( self.h[0] + a & 0XFFFF_FFFF, self.h[1] + b & 0XFFFF_FFFF, self.h[2] + c & 0XFFFF_FFFF, self.h[3] + d & 0XFFFF_FFFF, self.h[4] + e & 0XFFFF_FFFF, ) return ("{:08x}" * 5).format(*self.h ) def __lowerCAmelCase( ) -> Any: """simple docstring""" _A = b'Test String' assert SHAaHash(_SCREAMING_SNAKE_CASE ).final_hash() == hashlib.shaa(_SCREAMING_SNAKE_CASE ).hexdigest() # noqa: S324 def __lowerCAmelCase( ) -> int: """simple docstring""" _A = argparse.ArgumentParser(description='Process some strings or files' ) parser.add_argument( '--string' , dest='input_string' , default='Hello World!! Welcome to Cryptography' , help='Hash the string' , ) parser.add_argument('--file' , dest='input_file' , help='Hash contents of a file' ) _A = parser.parse_args() _A = args.input_string # In any case hash input should be a bytestring if args.input_file: with open(args.input_file , 'rb' ) as f: _A = f.read() else: _A = bytes(_SCREAMING_SNAKE_CASE , 'utf-8' ) print(SHAaHash(_SCREAMING_SNAKE_CASE ).final_hash() ) if __name__ == "__main__": main() import doctest doctest.testmod()
27
def A__ ( SCREAMING_SNAKE_CASE_ : int ) -> bool: """simple docstring""" if not isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): _UpperCAmelCase = F'''Input value of [number={number}] must be an integer''' raise TypeError(SCREAMING_SNAKE_CASE_ ) if number < 0: return False _UpperCAmelCase = number * number while number > 0: if number % 10 != number_square % 10: return False number //= 10 number_square //= 10 return True if __name__ == "__main__": import doctest doctest.testmod()
32
0
'''simple docstring''' def lowercase__( __UpperCamelCase: int ): """simple docstring""" SCREAMING_SNAKE_CASE : Any = [1] SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : List[str] = 0, 0, 0 SCREAMING_SNAKE_CASE : Dict = ugly_nums[ia] * 2 SCREAMING_SNAKE_CASE : Optional[int] = ugly_nums[ia] * 3 SCREAMING_SNAKE_CASE : Any = ugly_nums[ia] * 5 for _ in range(1 ,__UpperCamelCase ): SCREAMING_SNAKE_CASE : int = min(__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ) ugly_nums.append(__UpperCamelCase ) if next_num == next_a: ia += 1 SCREAMING_SNAKE_CASE : Tuple = ugly_nums[ia] * 2 if next_num == next_a: ia += 1 SCREAMING_SNAKE_CASE : Dict = ugly_nums[ia] * 3 if next_num == next_a: ia += 1 SCREAMING_SNAKE_CASE : Union[str, Any] = ugly_nums[ia] * 5 return ugly_nums[-1] if __name__ == "__main__": from doctest import testmod testmod(verbose=True) print(F"""{ugly_numbers(2_0_0) = }""")
28
from dataclasses import dataclass, field from typing import ClassVar, Dict from ..features import Features, Value from .base import TaskTemplate @dataclass(frozen=A__ ) class __UpperCamelCase ( A__ ): __A : str = field(default="""language-modeling""" , metadata={"""include_in_asdict_even_if_is_default""": True} ) __A : ClassVar[Features] = Features({"""text""": Value("""string""" )} ) __A : ClassVar[Features] = Features({} ) __A : str = "text" @property def UpperCamelCase( self ): return {self.text_column: "text"}
32
0
"""simple docstring""" from cva import destroyAllWindows, imread, imshow, waitKey def lowercase ( lowerCAmelCase__ ): # getting number of pixels in the image lowerCamelCase_ , lowerCamelCase_ = img.shape[0], img.shape[1] # converting each pixel's color to its negative for i in range(lowerCAmelCase__ ): for j in range(lowerCAmelCase__ ): lowerCamelCase_ = [255, 255, 255] - img[i][j] return img if __name__ == "__main__": # read original image A_ = imread("""image_data/lena.jpg""", 1) # convert to its negative A_ = convert_to_negative(img) # show result image imshow("""negative of original image""", img) waitKey(0) destroyAllWindows()
29
import os import re import warnings from shutil import copyfile from typing import TYPE_CHECKING, Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import PreTrainedTokenizer if TYPE_CHECKING: from ...tokenization_utils_base import TextInput from ...utils import logging UpperCAmelCase_ = logging.get_logger(__name__) UpperCAmelCase_ = {"vocab_file": "spiece.model"} UpperCAmelCase_ = { "vocab_file": { "t5-small": "https://huggingface.co/t5-small/resolve/main/spiece.model", "t5-base": "https://huggingface.co/t5-base/resolve/main/spiece.model", "t5-large": "https://huggingface.co/t5-large/resolve/main/spiece.model", "t5-3b": "https://huggingface.co/t5-3b/resolve/main/spiece.model", "t5-11b": "https://huggingface.co/t5-11b/resolve/main/spiece.model", } } # TODO(PVP) - this should be removed in Transformers v5 UpperCAmelCase_ = { "t5-small": 5_12, "t5-base": 5_12, "t5-large": 5_12, "t5-3b": 5_12, "t5-11b": 5_12, } UpperCAmelCase_ = "▁" class __UpperCamelCase ( A__ ): __A : Any = VOCAB_FILES_NAMES __A : Union[str, Any] = PRETRAINED_VOCAB_FILES_MAP __A : Any = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __A : Tuple = ["""input_ids""", """attention_mask"""] def __init__( self , _UpperCamelCase , _UpperCamelCase="</s>" , _UpperCamelCase="<unk>" , _UpperCamelCase="<pad>" , _UpperCamelCase=100 , _UpperCamelCase=None , _UpperCamelCase = None , _UpperCamelCase=True , **_UpperCamelCase , ): # Add extra_ids to the special token list if extra_ids > 0 and additional_special_tokens is None: _UpperCAmelCase = [f'''<extra_id_{i}>''' for i in range(_UpperCamelCase )] elif extra_ids > 0 and additional_special_tokens is not None: # Check that we have the right number of extra_id special tokens _UpperCAmelCase = len(set(filter(lambda _UpperCamelCase : bool('''extra_id''' in str(_UpperCamelCase ) ) , _UpperCamelCase ) ) ) if extra_tokens != extra_ids: raise ValueError( f'''Both extra_ids ({extra_ids}) and additional_special_tokens ({additional_special_tokens}) are''' ''' provided to T5Tokenizer. In this case the additional_special_tokens must include the extra_ids''' ''' tokens''' ) if legacy: logger.warning_once( f'''You are using the legacy behaviour of the {self.__class__}. This means that tokens that come after special tokens will not be properly handled. We recommend you to''' ''' read the related pull request available at https://github.com/huggingface/transformers/pull/24565''' ) _UpperCAmelCase = legacy _UpperCAmelCase = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( eos_token=_UpperCamelCase , unk_token=_UpperCamelCase , pad_token=_UpperCamelCase , extra_ids=_UpperCamelCase , additional_special_tokens=_UpperCamelCase , sp_model_kwargs=self.sp_model_kwargs , legacy=_UpperCamelCase , **_UpperCamelCase , ) _UpperCAmelCase = vocab_file _UpperCAmelCase = extra_ids _UpperCAmelCase = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(_UpperCamelCase ) @staticmethod def UpperCamelCase( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ): if pretrained_model_name_or_path in TaTokenizer.max_model_input_sizes: _UpperCAmelCase = TaTokenizer.max_model_input_sizes[pretrained_model_name_or_path] if init_max_model_length is not None and init_max_model_length != max_model_length: return init_max_model_length elif init_max_model_length is None: warnings.warn( '''This tokenizer was incorrectly instantiated with a model max length of''' f''' {deprecated_max_model_length} which will be corrected in Transformers v5.\nFor now, this''' ''' behavior is kept to avoid breaking backwards compatibility when padding/encoding with''' ''' `truncation is True`.\n- Be aware that you SHOULD NOT rely on''' f''' {pretrained_model_name_or_path} automatically truncating your input to''' f''' {deprecated_max_model_length} when padding/encoding.\n- If you want to encode/pad to sequences''' f''' longer than {deprecated_max_model_length} you can either instantiate this tokenizer with''' ''' `model_max_length` or pass `max_length` when encoding/padding.\n- To avoid this warning, please''' ''' instantiate this tokenizer with `model_max_length` set to your preferred value.''' , _UpperCamelCase , ) return max_model_length @property def UpperCamelCase( self ): return self.sp_model.get_piece_size() + self._extra_ids def UpperCamelCase( self ): _UpperCAmelCase = {self.convert_ids_to_tokens(_UpperCamelCase ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def UpperCamelCase( self , _UpperCamelCase , _UpperCamelCase = None , _UpperCamelCase = False ): if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=_UpperCamelCase , token_ids_a=_UpperCamelCase , already_has_special_tokens=_UpperCamelCase ) # normal case: some special tokens if token_ids_a is None: return ([0] * len(_UpperCamelCase )) + [1] return ([0] * len(_UpperCamelCase )) + [1] + ([0] * len(_UpperCamelCase )) + [1] def UpperCamelCase( self ): return list( set(filter(lambda _UpperCamelCase : bool(re.search(R'''<extra_id_\d+>''' , _UpperCamelCase ) ) is not None , self.additional_special_tokens ) ) ) def UpperCamelCase( self ): return [self._convert_token_to_id(_UpperCamelCase ) for token in self.get_sentinel_tokens()] def UpperCamelCase( self , _UpperCamelCase ): if len(_UpperCamelCase ) > 0 and token_ids[-1] == self.eos_token_id: warnings.warn( f'''This sequence already has {self.eos_token}. In future versions this behavior may lead to duplicated''' ''' eos tokens being added.''' ) return token_ids else: return token_ids + [self.eos_token_id] def UpperCamelCase( self , _UpperCamelCase , _UpperCamelCase = None ): _UpperCAmelCase = [self.eos_token_id] if token_ids_a is None: return len(token_ids_a + eos ) * [0] return len(token_ids_a + eos + token_ids_a + eos ) * [0] def UpperCamelCase( self , _UpperCamelCase , _UpperCamelCase = None ): _UpperCAmelCase = self._add_eos_if_not_present(_UpperCamelCase ) if token_ids_a is None: return token_ids_a else: _UpperCAmelCase = self._add_eos_if_not_present(_UpperCamelCase ) return token_ids_a + token_ids_a def __getstate__( self ): _UpperCAmelCase = self.__dict__.copy() _UpperCAmelCase = None return state def __setstate__( self , _UpperCamelCase ): _UpperCAmelCase = d # for backward compatibility if not hasattr(self , '''sp_model_kwargs''' ): _UpperCAmelCase = {} _UpperCAmelCase = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def UpperCamelCase( self , _UpperCamelCase , **_UpperCamelCase ): # Replace the SPIECE_UNDERLINE with a space to make sure SPIECE_UNDERLINE is only used at # the beginning of the text if not self.legacy: _UpperCAmelCase = SPIECE_UNDERLINE + text.replace(_UpperCamelCase , ''' ''' ) return super().tokenize(_UpperCamelCase , **_UpperCamelCase ) def UpperCamelCase( self , _UpperCamelCase , **_UpperCamelCase ): if not self.legacy: _UpperCAmelCase = text.startswith(_UpperCamelCase ) if is_first: _UpperCAmelCase = text[1:] _UpperCAmelCase = self.sp_model.encode(_UpperCamelCase , out_type=_UpperCamelCase ) if not self.legacy and not is_first and not text.startswith(''' ''' ) and tokens[0].startswith(_UpperCamelCase ): _UpperCAmelCase = ([tokens[0][1:]] if len(tokens[0] ) > 1 else []) + tokens[1:] return tokens def UpperCamelCase( self , _UpperCamelCase ): if token.startswith('''<extra_id_''' ): _UpperCAmelCase = re.match(R'''<extra_id_(\d+)>''' , _UpperCamelCase ) _UpperCAmelCase = int(match.group(1 ) ) return self.vocab_size - num - 1 return self.sp_model.piece_to_id(_UpperCamelCase ) def UpperCamelCase( self , _UpperCamelCase ): if index < self.sp_model.get_piece_size(): _UpperCAmelCase = self.sp_model.IdToPiece(_UpperCamelCase ) else: _UpperCAmelCase = f'''<extra_id_{self.vocab_size - 1 - index}>''' return token def UpperCamelCase( self , _UpperCamelCase ): _UpperCAmelCase = [] _UpperCAmelCase = '''''' _UpperCAmelCase = False for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: if not prev_is_special: out_string += " " out_string += self.sp_model.decode(_UpperCamelCase ) + token _UpperCAmelCase = True _UpperCAmelCase = [] else: current_sub_tokens.append(_UpperCamelCase ) _UpperCAmelCase = False out_string += self.sp_model.decode(_UpperCamelCase ) return out_string.strip() def UpperCamelCase( self , _UpperCamelCase , _UpperCamelCase = None ): if not os.path.isdir(_UpperCamelCase ): logger.error(f'''Vocabulary path ({save_directory}) should be a directory''' ) return _UpperCAmelCase = os.path.join( _UpperCamelCase , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(_UpperCamelCase ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , _UpperCamelCase ) elif not os.path.isfile(self.vocab_file ): with open(_UpperCamelCase , '''wb''' ) as fi: _UpperCAmelCase = self.sp_model.serialized_model_proto() fi.write(_UpperCamelCase ) return (out_vocab_file,)
32
0
import argparse import json import os import evaluate import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType from accelerate.utils.deepspeed import DummyOptim, DummyScheduler __a = 16 __a = 32 def lowerCamelCase__ ( _lowercase , _lowercase = 16 , _lowercase = "bert-base-cased" ): '''simple docstring''' UpperCAmelCase_ : Optional[Any] = AutoTokenizer.from_pretrained(_lowercase ) UpperCAmelCase_ : int = load_dataset('''glue''' , '''mrpc''' ) def tokenize_function(_lowercase ): # max_length=None => use the model max length (it's actually the default) UpperCAmelCase_ : Any = tokenizer(examples['''sentence1'''] , examples['''sentence2'''] , truncation=_lowercase , max_length=_lowercase ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset UpperCAmelCase_ : Tuple = datasets.map( _lowercase , batched=_lowercase , remove_columns=['''idx''', '''sentence1''', '''sentence2'''] , load_from_cache_file=_lowercase ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library UpperCAmelCase_ : Union[str, Any] = tokenized_datasets.rename_column('''label''' , '''labels''' ) def collate_fn(_lowercase ): # On TPU it's best to pad everything to the same length or training will be very slow. if accelerator.distributed_type == DistributedType.TPU: return tokenizer.pad(_lowercase , padding='''max_length''' , max_length=128 , return_tensors='''pt''' ) return tokenizer.pad(_lowercase , padding='''longest''' , return_tensors='''pt''' ) # Instantiate dataloaders. UpperCAmelCase_ : Union[str, Any] = DataLoader( tokenized_datasets['''train'''] , shuffle=_lowercase , collate_fn=_lowercase , batch_size=_lowercase ) UpperCAmelCase_ : int = DataLoader( tokenized_datasets['''validation'''] , shuffle=_lowercase , collate_fn=_lowercase , batch_size=_lowercase ) return train_dataloader, eval_dataloader def lowerCamelCase__ ( _lowercase , _lowercase , _lowercase , _lowercase ): '''simple docstring''' model.eval() UpperCAmelCase_ : List[str] = 0 for step, batch in enumerate(_lowercase ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) with torch.no_grad(): UpperCAmelCase_ : Any = model(**_lowercase ) UpperCAmelCase_ : Optional[Any] = outputs.logits.argmax(dim=-1 ) # It is slightly faster to call this once, than multiple times UpperCAmelCase_, UpperCAmelCase_ : int = accelerator.gather( (predictions, batch['''labels''']) ) # If we are in a multiprocess environment, the last batch has duplicates if accelerator.use_distributed: if step == len(_lowercase ) - 1: UpperCAmelCase_ : Dict = predictions[: len(eval_dataloader.dataset ) - samples_seen] UpperCAmelCase_ : Union[str, Any] = references[: len(eval_dataloader.dataset ) - samples_seen] else: samples_seen += references.shape[0] metric.add_batch( predictions=_lowercase , references=_lowercase , ) UpperCAmelCase_ : Union[str, Any] = metric.compute() return eval_metric["accuracy"] def lowerCamelCase__ ( _lowercase , _lowercase ): '''simple docstring''' UpperCAmelCase_ : int = Accelerator() # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs UpperCAmelCase_ : Optional[Any] = config['''lr'''] UpperCAmelCase_ : Union[str, Any] = int(config['''num_epochs'''] ) UpperCAmelCase_ : Optional[Any] = int(config['''seed'''] ) UpperCAmelCase_ : int = int(config['''batch_size'''] ) UpperCAmelCase_ : List[str] = args.model_name_or_path set_seed(_lowercase ) UpperCAmelCase_, UpperCAmelCase_ : int = get_dataloaders(_lowercase , _lowercase , _lowercase ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) UpperCAmelCase_ : Optional[Any] = AutoModelForSequenceClassification.from_pretrained(_lowercase , return_dict=_lowercase ) # Instantiate optimizer UpperCAmelCase_ : List[Any] = ( AdamW if accelerator.state.deepspeed_plugin is None or '''optimizer''' not in accelerator.state.deepspeed_plugin.deepspeed_config else DummyOptim ) UpperCAmelCase_ : str = optimizer_cls(params=model.parameters() , lr=_lowercase ) if accelerator.state.deepspeed_plugin is not None: UpperCAmelCase_ : Optional[int] = accelerator.state.deepspeed_plugin.deepspeed_config[ '''gradient_accumulation_steps''' ] else: UpperCAmelCase_ : List[Any] = 1 UpperCAmelCase_ : Optional[Any] = (len(_lowercase ) * num_epochs) // gradient_accumulation_steps # Instantiate scheduler if ( accelerator.state.deepspeed_plugin is None or "scheduler" not in accelerator.state.deepspeed_plugin.deepspeed_config ): UpperCAmelCase_ : List[str] = get_linear_schedule_with_warmup( optimizer=_lowercase , num_warmup_steps=0 , num_training_steps=_lowercase , ) else: UpperCAmelCase_ : List[str] = DummyScheduler(_lowercase , total_num_steps=_lowercase , warmup_num_steps=0 ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. UpperCAmelCase_, UpperCAmelCase_, UpperCAmelCase_, UpperCAmelCase_, UpperCAmelCase_ : Union[str, Any] = accelerator.prepare( _lowercase , _lowercase , _lowercase , _lowercase , _lowercase ) # We need to keep track of how many total steps we have iterated over UpperCAmelCase_ : Tuple = 0 # We also need to keep track of the stating epoch so files are named properly UpperCAmelCase_ : Optional[Any] = 0 UpperCAmelCase_ : str = evaluate.load('''glue''' , '''mrpc''' ) UpperCAmelCase_ : List[str] = num_epochs if args.partial_train_epoch is not None: UpperCAmelCase_ : Union[str, Any] = args.partial_train_epoch if args.resume_from_checkpoint: accelerator.load_state(args.resume_from_checkpoint ) UpperCAmelCase_ : Dict = args.resume_from_checkpoint.split('''epoch_''' )[1] UpperCAmelCase_ : int = '''''' for char in epoch_string: if char.isdigit(): state_epoch_num += char else: break UpperCAmelCase_ : Union[str, Any] = int(_lowercase ) + 1 UpperCAmelCase_ : List[str] = evaluation_loop(_lowercase , _lowercase , _lowercase , _lowercase ) accelerator.print('''resumed checkpoint performance:''' , _lowercase ) accelerator.print('''resumed checkpoint\'s scheduler\'s lr:''' , lr_scheduler.get_lr()[0] ) accelerator.print('''resumed optimizers\'s lr:''' , optimizer.param_groups[0]['''lr'''] ) with open(os.path.join(args.output_dir , f'''state_{starting_epoch-1}.json''' ) , '''r''' ) as f: UpperCAmelCase_ : Any = json.load(_lowercase ) assert resumed_state["accuracy"] == accuracy, "Accuracy mismatch, loading from checkpoint failed" assert ( resumed_state["lr"] == lr_scheduler.get_lr()[0] ), "Scheduler learning rate mismatch, loading from checkpoint failed" assert ( resumed_state["optimizer_lr"] == optimizer.param_groups[0]["lr"] ), "Optimizer learning rate mismatch, loading from checkpoint failed" assert resumed_state["epoch"] == starting_epoch - 1, "Epoch mismatch, loading from checkpoint failed" return # Now we train the model UpperCAmelCase_ : Union[str, Any] = {} for epoch in range(_lowercase , _lowercase ): model.train() for step, batch in enumerate(_lowercase ): UpperCAmelCase_ : List[str] = model(**_lowercase ) UpperCAmelCase_ : int = outputs.loss UpperCAmelCase_ : Optional[int] = loss / gradient_accumulation_steps accelerator.backward(_lowercase ) if step % gradient_accumulation_steps == 0: optimizer.step() lr_scheduler.step() optimizer.zero_grad() overall_step += 1 UpperCAmelCase_ : str = f'''epoch_{epoch}''' UpperCAmelCase_ : Optional[Any] = os.path.join(args.output_dir , _lowercase ) accelerator.save_state(_lowercase ) UpperCAmelCase_ : Any = evaluation_loop(_lowercase , _lowercase , _lowercase , _lowercase ) UpperCAmelCase_ : Union[str, Any] = accuracy UpperCAmelCase_ : List[str] = lr_scheduler.get_lr()[0] UpperCAmelCase_ : List[Any] = optimizer.param_groups[0]['''lr'''] UpperCAmelCase_ : Any = epoch UpperCAmelCase_ : Any = overall_step accelerator.print(f'''epoch {epoch}:''' , _lowercase ) accelerator.wait_for_everyone() if accelerator.is_main_process: with open(os.path.join(args.output_dir , f'''state_{epoch}.json''' ) , '''w''' ) as f: json.dump(_lowercase , _lowercase ) def lowerCamelCase__ ( ): '''simple docstring''' UpperCAmelCase_ : Any = argparse.ArgumentParser(description='''Simple example of training script tracking peak GPU memory usage.''' ) parser.add_argument( '''--model_name_or_path''' , type=_lowercase , default='''bert-base-cased''' , help='''Path to pretrained model or model identifier from huggingface.co/models.''' , required=_lowercase , ) parser.add_argument( '''--output_dir''' , type=_lowercase , default='''.''' , help='''Optional save directory where all checkpoint folders will be stored. Default is the current working directory.''' , ) parser.add_argument( '''--resume_from_checkpoint''' , type=_lowercase , default=_lowercase , help='''If the training should continue from a checkpoint folder.''' , ) parser.add_argument( '''--partial_train_epoch''' , type=_lowercase , default=_lowercase , help='''If passed, the training will stop after this number of epochs.''' , ) parser.add_argument( '''--num_epochs''' , type=_lowercase , default=2 , help='''Number of train epochs.''' , ) UpperCAmelCase_ : Union[str, Any] = parser.parse_args() UpperCAmelCase_ : Dict = {'''lr''': 2E-5, '''num_epochs''': args.num_epochs, '''seed''': 42, '''batch_size''': 16} training_function(_lowercase , _lowercase ) if __name__ == "__main__": main()
30
from __future__ import annotations def A__ ( SCREAMING_SNAKE_CASE_ : int ) -> bool: """simple docstring""" _UpperCAmelCase = str(SCREAMING_SNAKE_CASE_ ) return len(SCREAMING_SNAKE_CASE_ ) == 9 and set(SCREAMING_SNAKE_CASE_ ) == set('''123456789''' ) def A__ ( ) -> int | None: """simple docstring""" for base_num in range(99_99 , 49_99 , -1 ): _UpperCAmelCase = 10_00_02 * base_num if is_9_pandigital(SCREAMING_SNAKE_CASE_ ): return candidate for base_num in range(3_33 , 99 , -1 ): _UpperCAmelCase = 1_00_20_03 * base_num if is_9_pandigital(SCREAMING_SNAKE_CASE_ ): return candidate return None if __name__ == "__main__": print(f'''{solution() = }''')
32
0
lowerCamelCase__ : int = tuple[float, float, float] lowerCamelCase__ : Optional[Any] = tuple[float, float, float] def UpperCAmelCase_ ( __UpperCAmelCase : Pointad , __UpperCAmelCase : Pointad ) -> Vectorad: SCREAMING_SNAKE_CASE_ = end_pointa[0] - end_pointa[0] SCREAMING_SNAKE_CASE_ = end_pointa[1] - end_pointa[1] SCREAMING_SNAKE_CASE_ = end_pointa[2] - end_pointa[2] return (x, y, z) def UpperCAmelCase_ ( __UpperCAmelCase : Vectorad , __UpperCAmelCase : Vectorad ) -> Vectorad: SCREAMING_SNAKE_CASE_ = ab[1] * ac[2] - ab[2] * ac[1] # *i SCREAMING_SNAKE_CASE_ = (ab[0] * ac[2] - ab[2] * ac[0]) * -1 # *j SCREAMING_SNAKE_CASE_ = ab[0] * ac[1] - ab[1] * ac[0] # *k return (x, y, z) def UpperCAmelCase_ ( __UpperCAmelCase : Vectorad , __UpperCAmelCase : int ) -> bool: return tuple(round(__UpperCAmelCase , __UpperCAmelCase ) for x in vector ) == (0, 0, 0) def UpperCAmelCase_ ( __UpperCAmelCase : Pointad , __UpperCAmelCase : Pointad , __UpperCAmelCase : Pointad , __UpperCAmelCase : int = 10 ) -> bool: SCREAMING_SNAKE_CASE_ = create_vector(__UpperCAmelCase , __UpperCAmelCase ) SCREAMING_SNAKE_CASE_ = create_vector(__UpperCAmelCase , __UpperCAmelCase ) return is_zero_vector(get_ad_vectors_cross(__UpperCAmelCase , __UpperCAmelCase ) , __UpperCAmelCase )
31
import numpy as np def A__ ( SCREAMING_SNAKE_CASE_ : np.ndarray , SCREAMING_SNAKE_CASE_ : float ) -> np.ndarray: """simple docstring""" return np.where(vector > 0 , SCREAMING_SNAKE_CASE_ , (alpha * (np.exp(SCREAMING_SNAKE_CASE_ ) - 1)) ) if __name__ == "__main__": import doctest doctest.testmod()
32
0
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_tokenizers_available, is_torch_available, ) lowerCamelCase__ : str = { """configuration_deberta""": ["""DEBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP""", """DebertaConfig""", """DebertaOnnxConfig"""], """tokenization_deberta""": ["""DebertaTokenizer"""], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase__ : Any = ["""DebertaTokenizerFast"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase__ : List[str] = [ """DEBERTA_PRETRAINED_MODEL_ARCHIVE_LIST""", """DebertaForMaskedLM""", """DebertaForQuestionAnswering""", """DebertaForSequenceClassification""", """DebertaForTokenClassification""", """DebertaModel""", """DebertaPreTrainedModel""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase__ : Tuple = [ """TF_DEBERTA_PRETRAINED_MODEL_ARCHIVE_LIST""", """TFDebertaForMaskedLM""", """TFDebertaForQuestionAnswering""", """TFDebertaForSequenceClassification""", """TFDebertaForTokenClassification""", """TFDebertaModel""", """TFDebertaPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_deberta import DEBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP, DebertaConfig, DebertaOnnxConfig from .tokenization_deberta import DebertaTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_deberta_fast import DebertaTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_deberta import ( DEBERTA_PRETRAINED_MODEL_ARCHIVE_LIST, DebertaForMaskedLM, DebertaForQuestionAnswering, DebertaForSequenceClassification, DebertaForTokenClassification, DebertaModel, DebertaPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_deberta import ( TF_DEBERTA_PRETRAINED_MODEL_ARCHIVE_LIST, TFDebertaForMaskedLM, TFDebertaForQuestionAnswering, TFDebertaForSequenceClassification, TFDebertaForTokenClassification, TFDebertaModel, TFDebertaPreTrainedModel, ) else: import sys lowerCamelCase__ : Any = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
33
UpperCAmelCase_ = { "A": ".-", "B": "-...", "C": "-.-.", "D": "-..", "E": ".", "F": "..-.", "G": "--.", "H": "....", "I": "..", "J": ".---", "K": "-.-", "L": ".-..", "M": "--", "N": "-.", "O": "---", "P": ".--.", "Q": "--.-", "R": ".-.", "S": "...", "T": "-", "U": "..-", "V": "...-", "W": ".--", "X": "-..-", "Y": "-.--", "Z": "--..", "1": ".----", "2": "..---", "3": "...--", "4": "....-", "5": ".....", "6": "-....", "7": "--...", "8": "---..", "9": "----.", "0": "-----", "&": ".-...", "@": ".--.-.", ":": "---...", ",": "--..--", ".": ".-.-.-", "'": ".----.", "\"": ".-..-.", "?": "..--..", "/": "-..-.", "=": "-...-", "+": ".-.-.", "-": "-....-", "(": "-.--.", ")": "-.--.-", "!": "-.-.--", " ": "/" } # Exclamation mark is not in ITU-R recommendation # fmt: on UpperCAmelCase_ = {value: key for key, value in MORSE_CODE_DICT.items()} def A__ ( SCREAMING_SNAKE_CASE_ : str ) -> str: """simple docstring""" return " ".join(MORSE_CODE_DICT[char] for char in message.upper() ) def A__ ( SCREAMING_SNAKE_CASE_ : str ) -> str: """simple docstring""" return "".join(REVERSE_DICT[char] for char in message.split() ) def A__ ( ) -> None: """simple docstring""" _UpperCAmelCase = '''Morse code here!''' print(SCREAMING_SNAKE_CASE_ ) _UpperCAmelCase = encrypt(SCREAMING_SNAKE_CASE_ ) print(SCREAMING_SNAKE_CASE_ ) _UpperCAmelCase = decrypt(SCREAMING_SNAKE_CASE_ ) print(SCREAMING_SNAKE_CASE_ ) if __name__ == "__main__": main()
32
0
"""simple docstring""" import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import GLPNImageProcessor class snake_case_ ( unittest.TestCase ): """simple docstring""" def __init__( self , lowerCamelCase_ , lowerCamelCase_=7 , lowerCamelCase_=3 , lowerCamelCase_=1_8 , lowerCamelCase_=3_0 , lowerCamelCase_=4_0_0 , lowerCamelCase_=True , lowerCamelCase_=3_2 , lowerCamelCase_=True , ) -> Union[str, Any]: UpperCamelCase = parent UpperCamelCase = batch_size UpperCamelCase = num_channels UpperCamelCase = image_size UpperCamelCase = min_resolution UpperCamelCase = max_resolution UpperCamelCase = do_resize UpperCamelCase = size_divisor UpperCamelCase = do_rescale def UpperCAmelCase__ ( self) -> Any: return { "do_resize": self.do_resize, "size_divisor": self.size_divisor, "do_rescale": self.do_rescale, } @require_torch @require_vision class snake_case_ ( lowerCamelCase_ , unittest.TestCase ): """simple docstring""" A_ = GLPNImageProcessor if is_vision_available() else None def UpperCAmelCase__ ( self) -> List[Any]: UpperCamelCase = GLPNImageProcessingTester(self) @property def UpperCAmelCase__ ( self) -> str: return self.image_processor_tester.prepare_image_processor_dict() def UpperCAmelCase__ ( self) -> Optional[int]: UpperCamelCase = self.image_processing_class(**self.image_processor_dict) self.assertTrue(hasattr(lowerCamelCase_ , '''do_resize''')) self.assertTrue(hasattr(lowerCamelCase_ , '''size_divisor''')) self.assertTrue(hasattr(lowerCamelCase_ , '''resample''')) self.assertTrue(hasattr(lowerCamelCase_ , '''do_rescale''')) def UpperCAmelCase__ ( self) -> str: pass def UpperCAmelCase__ ( self) -> Optional[Any]: # Initialize image_processing UpperCamelCase = self.image_processing_class(**self.image_processor_dict) # create random PIL images UpperCamelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCamelCase_) for image in image_inputs: self.assertIsInstance(lowerCamelCase_ , Image.Image) # Test not batched input (GLPNImageProcessor doesn't support batching) UpperCamelCase = image_processing(image_inputs[0] , return_tensors='''pt''').pixel_values self.assertTrue(encoded_images.shape[-1] % self.image_processor_tester.size_divisor == 0) self.assertTrue(encoded_images.shape[-2] % self.image_processor_tester.size_divisor == 0) def UpperCAmelCase__ ( self) -> Optional[Any]: # Initialize image_processing UpperCamelCase = self.image_processing_class(**self.image_processor_dict) # create random numpy tensors UpperCamelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCamelCase_ , numpify=lowerCamelCase_) for image in image_inputs: self.assertIsInstance(lowerCamelCase_ , np.ndarray) # Test not batched input (GLPNImageProcessor doesn't support batching) UpperCamelCase = image_processing(image_inputs[0] , return_tensors='''pt''').pixel_values self.assertTrue(encoded_images.shape[-1] % self.image_processor_tester.size_divisor == 0) self.assertTrue(encoded_images.shape[-2] % self.image_processor_tester.size_divisor == 0) def UpperCAmelCase__ ( self) -> Optional[int]: # Initialize image_processing UpperCamelCase = self.image_processing_class(**self.image_processor_dict) # create random PyTorch tensors UpperCamelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCamelCase_ , torchify=lowerCamelCase_) for image in image_inputs: self.assertIsInstance(lowerCamelCase_ , torch.Tensor) # Test not batched input (GLPNImageProcessor doesn't support batching) UpperCamelCase = image_processing(image_inputs[0] , return_tensors='''pt''').pixel_values self.assertTrue(encoded_images.shape[-1] % self.image_processor_tester.size_divisor == 0) self.assertTrue(encoded_images.shape[-2] % self.image_processor_tester.size_divisor == 0)
34
import gc import unittest import numpy as np import torch from diffusers import DanceDiffusionPipeline, IPNDMScheduler, UNetaDModel from diffusers.utils import slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu, skip_mps from ..pipeline_params import UNCONDITIONAL_AUDIO_GENERATION_BATCH_PARAMS, UNCONDITIONAL_AUDIO_GENERATION_PARAMS from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() class __UpperCamelCase ( A__ , unittest.TestCase ): __A : Any = DanceDiffusionPipeline __A : Any = UNCONDITIONAL_AUDIO_GENERATION_PARAMS __A : Tuple = PipelineTesterMixin.required_optional_params - { """callback""", """latents""", """callback_steps""", """output_type""", """num_images_per_prompt""", } __A : Tuple = UNCONDITIONAL_AUDIO_GENERATION_BATCH_PARAMS __A : List[str] = False __A : str = False def UpperCamelCase( self ): torch.manual_seed(0 ) _UpperCAmelCase = UNetaDModel( block_out_channels=(32, 32, 64) , extra_in_channels=16 , sample_size=512 , sample_rate=16000 , in_channels=2 , out_channels=2 , flip_sin_to_cos=_UpperCamelCase , use_timestep_embedding=_UpperCamelCase , time_embedding_type='''fourier''' , mid_block_type='''UNetMidBlock1D''' , down_block_types=('''DownBlock1DNoSkip''', '''DownBlock1D''', '''AttnDownBlock1D''') , up_block_types=('''AttnUpBlock1D''', '''UpBlock1D''', '''UpBlock1DNoSkip''') , ) _UpperCAmelCase = IPNDMScheduler() _UpperCAmelCase = { '''unet''': unet, '''scheduler''': scheduler, } return components def UpperCamelCase( self , _UpperCamelCase , _UpperCamelCase=0 ): if str(_UpperCamelCase ).startswith('''mps''' ): _UpperCAmelCase = torch.manual_seed(_UpperCamelCase ) else: _UpperCAmelCase = torch.Generator(device=_UpperCamelCase ).manual_seed(_UpperCamelCase ) _UpperCAmelCase = { '''batch_size''': 1, '''generator''': generator, '''num_inference_steps''': 4, } return inputs def UpperCamelCase( self ): _UpperCAmelCase = '''cpu''' # ensure determinism for the device-dependent torch.Generator _UpperCAmelCase = self.get_dummy_components() _UpperCAmelCase = DanceDiffusionPipeline(**_UpperCamelCase ) _UpperCAmelCase = pipe.to(_UpperCamelCase ) pipe.set_progress_bar_config(disable=_UpperCamelCase ) _UpperCAmelCase = self.get_dummy_inputs(_UpperCamelCase ) _UpperCAmelCase = pipe(**_UpperCamelCase ) _UpperCAmelCase = output.audios _UpperCAmelCase = audio[0, -3:, -3:] assert audio.shape == (1, 2, components["unet"].sample_size) _UpperCAmelCase = np.array([-0.7265, 1.0000, -0.8388, 0.1175, 0.9498, -1.0000] ) assert np.abs(audio_slice.flatten() - expected_slice ).max() < 1e-2 @skip_mps def UpperCamelCase( self ): return super().test_save_load_local() @skip_mps def UpperCamelCase( self ): return super().test_dict_tuple_outputs_equivalent(expected_max_difference=3e-3 ) @skip_mps def UpperCamelCase( self ): return super().test_save_load_optional_components() @skip_mps def UpperCamelCase( self ): return super().test_attention_slicing_forward_pass() def UpperCamelCase( self ): super().test_inference_batch_single_identical(expected_max_diff=3e-3 ) @slow @require_torch_gpu class __UpperCamelCase ( unittest.TestCase ): def UpperCamelCase( self ): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def UpperCamelCase( self ): _UpperCAmelCase = torch_device _UpperCAmelCase = DanceDiffusionPipeline.from_pretrained('''harmonai/maestro-150k''' ) _UpperCAmelCase = pipe.to(_UpperCamelCase ) pipe.set_progress_bar_config(disable=_UpperCamelCase ) _UpperCAmelCase = torch.manual_seed(0 ) _UpperCAmelCase = pipe(generator=_UpperCamelCase , num_inference_steps=100 , audio_length_in_s=4.096 ) _UpperCAmelCase = output.audios _UpperCAmelCase = audio[0, -3:, -3:] assert audio.shape == (1, 2, pipe.unet.sample_size) _UpperCAmelCase = np.array([-0.0192, -0.0231, -0.0318, -0.0059, 0.0002, -0.0020] ) assert np.abs(audio_slice.flatten() - expected_slice ).max() < 1e-2 def UpperCamelCase( self ): _UpperCAmelCase = torch_device _UpperCAmelCase = DanceDiffusionPipeline.from_pretrained('''harmonai/maestro-150k''' , torch_dtype=torch.floataa ) _UpperCAmelCase = pipe.to(_UpperCamelCase ) pipe.set_progress_bar_config(disable=_UpperCamelCase ) _UpperCAmelCase = torch.manual_seed(0 ) _UpperCAmelCase = pipe(generator=_UpperCamelCase , num_inference_steps=100 , audio_length_in_s=4.096 ) _UpperCAmelCase = output.audios _UpperCAmelCase = audio[0, -3:, -3:] assert audio.shape == (1, 2, pipe.unet.sample_size) _UpperCAmelCase = np.array([-0.0367, -0.0488, -0.0771, -0.0525, -0.0444, -0.0341] ) assert np.abs(audio_slice.flatten() - expected_slice ).max() < 1e-2
32
0
import os import zipfile import pytest from datasets.utils.extract import ( BzipaExtractor, Extractor, GzipExtractor, LzaExtractor, SevenZipExtractor, TarExtractor, XzExtractor, ZipExtractor, ZstdExtractor, ) from .utils import require_lza, require_pyazr, require_zstandard @pytest.mark.parametrize( '''compression_format, is_archive''' , [ ('''7z''', True), ('''bz2''', False), ('''gzip''', False), ('''lz4''', False), ('''tar''', True), ('''xz''', False), ('''zip''', True), ('''zstd''', False), ] , ) def a ( A__ , A__ , A__ , A__ , A__ , A__ , A__ , A__ , A__ , A__ , A__ , A__ , ) -> Union[str, Any]: '''simple docstring''' SCREAMING_SNAKE_CASE__ : List[Any] = { '''7z''': (seven_zip_file, SevenZipExtractor), '''bz2''': (bza_file, BzipaExtractor), '''gzip''': (gz_file, GzipExtractor), '''lz4''': (lza_file, LzaExtractor), '''tar''': (tar_file, TarExtractor), '''xz''': (xz_file, XzExtractor), '''zip''': (zip_file, ZipExtractor), '''zstd''': (zstd_file, ZstdExtractor), } SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : Optional[int] = input_paths_and_base_extractors[compression_format] if input_path is None: SCREAMING_SNAKE_CASE__ : Union[str, Any] = f"""for '{compression_format}' compression_format, """ if compression_format == "7z": reason += require_pyazr.kwargs["reason"] elif compression_format == "lz4": reason += require_lza.kwargs["reason"] elif compression_format == "zstd": reason += require_zstandard.kwargs["reason"] pytest.skip(A__ ) assert base_extractor.is_extractable(A__ ) SCREAMING_SNAKE_CASE__ : Tuple = tmp_path / ('''extracted''' if is_archive else '''extracted.txt''') base_extractor.extract(A__ , A__ ) if is_archive: assert output_path.is_dir() for file_path in output_path.iterdir(): assert file_path.name == text_file.name SCREAMING_SNAKE_CASE__ : List[str] = file_path.read_text(encoding='''utf-8''' ) else: SCREAMING_SNAKE_CASE__ : Tuple = output_path.read_text(encoding='''utf-8''' ) SCREAMING_SNAKE_CASE__ : List[str] = text_file.read_text(encoding='''utf-8''' ) assert extracted_file_content == expected_file_content @pytest.mark.parametrize( '''compression_format, is_archive''' , [ ('''7z''', True), ('''bz2''', False), ('''gzip''', False), ('''lz4''', False), ('''tar''', True), ('''xz''', False), ('''zip''', True), ('''zstd''', False), ] , ) def a ( A__ , A__ , A__ , A__ , A__ , A__ , A__ , A__ , A__ , A__ , A__ , A__ , ) -> Optional[Any]: '''simple docstring''' SCREAMING_SNAKE_CASE__ : Union[str, Any] = { '''7z''': seven_zip_file, '''bz2''': bza_file, '''gzip''': gz_file, '''lz4''': lza_file, '''tar''': tar_file, '''xz''': xz_file, '''zip''': zip_file, '''zstd''': zstd_file, } SCREAMING_SNAKE_CASE__ : int = input_paths[compression_format] if input_path is None: SCREAMING_SNAKE_CASE__ : int = f"""for '{compression_format}' compression_format, """ if compression_format == "7z": reason += require_pyazr.kwargs["reason"] elif compression_format == "lz4": reason += require_lza.kwargs["reason"] elif compression_format == "zstd": reason += require_zstandard.kwargs["reason"] pytest.skip(A__ ) SCREAMING_SNAKE_CASE__ : Any = Extractor.infer_extractor_format(A__ ) assert extractor_format is not None SCREAMING_SNAKE_CASE__ : Any = tmp_path / ('''extracted''' if is_archive else '''extracted.txt''') Extractor.extract(A__ , A__ , A__ ) if is_archive: assert output_path.is_dir() for file_path in output_path.iterdir(): assert file_path.name == text_file.name SCREAMING_SNAKE_CASE__ : List[Any] = file_path.read_text(encoding='''utf-8''' ) else: SCREAMING_SNAKE_CASE__ : Optional[int] = output_path.read_text(encoding='''utf-8''' ) SCREAMING_SNAKE_CASE__ : List[Any] = text_file.read_text(encoding='''utf-8''' ) assert extracted_file_content == expected_file_content @pytest.fixture def a ( A__ , A__ ) -> str: '''simple docstring''' import tarfile SCREAMING_SNAKE_CASE__ : Optional[int] = tmp_path / '''data_dot_dot''' directory.mkdir() SCREAMING_SNAKE_CASE__ : str = directory / '''tar_file_with_dot_dot.tar''' with tarfile.TarFile(A__ , '''w''' ) as f: f.add(A__ , arcname=os.path.join('''..''' , text_file.name ) ) return path @pytest.fixture def a ( A__ ) -> Union[str, Any]: '''simple docstring''' import tarfile SCREAMING_SNAKE_CASE__ : Optional[int] = tmp_path / '''data_sym_link''' directory.mkdir() SCREAMING_SNAKE_CASE__ : Tuple = directory / '''tar_file_with_sym_link.tar''' os.symlink('''..''' , directory / '''subdir''' , target_is_directory=A__ ) with tarfile.TarFile(A__ , '''w''' ) as f: f.add(str(directory / '''subdir''' ) , arcname='''subdir''' ) # str required by os.readlink on Windows and Python < 3.8 return path @pytest.mark.parametrize( '''insecure_tar_file, error_log''' , [('''tar_file_with_dot_dot''', '''illegal path'''), ('''tar_file_with_sym_link''', '''Symlink''')] , ) def a ( A__ , A__ , A__ , A__ , A__ , A__ ) -> Optional[Any]: '''simple docstring''' SCREAMING_SNAKE_CASE__ : List[str] = { '''tar_file_with_dot_dot''': tar_file_with_dot_dot, '''tar_file_with_sym_link''': tar_file_with_sym_link, } SCREAMING_SNAKE_CASE__ : Tuple = insecure_tar_files[insecure_tar_file] SCREAMING_SNAKE_CASE__ : List[Any] = tmp_path / '''extracted''' TarExtractor.extract(A__ , A__ ) assert caplog.text for record in caplog.records: assert record.levelname == "ERROR" assert error_log in record.msg def a ( A__ ) -> str: '''simple docstring''' SCREAMING_SNAKE_CASE__ : Optional[Any] = tmpdir / '''not_a_zip_file''' # From: https://github.com/python/cpython/pull/5053 SCREAMING_SNAKE_CASE__ : Tuple = ( b'''\x89PNG\r\n\x1a\n\x00\x00\x00\rIHDR\x00\x00\x00\x01\x00\x00''' b'''\x00\x02\x08\x06\x00\x00\x00\x99\x81\xb6\'\x00\x00\x00\x15I''' b'''DATx\x01\x01\n\x00\xf5\xff\x00PK\x05\x06\x00PK\x06\x06\x07''' b'''\xac\x01N\xc6|a\r\x00\x00\x00\x00IEND\xaeB`\x82''' ) with not_a_zip_file.open('''wb''' ) as f: f.write(A__ ) assert zipfile.is_zipfile(str(A__ ) ) # is a false positive for `zipfile` assert not ZipExtractor.is_extractable(A__ ) # but we're right
35
from collections import OrderedDict from ...utils import logging from .auto_factory import _BaseAutoModelClass, _LazyAutoMapping, auto_class_update from .configuration_auto import CONFIG_MAPPING_NAMES UpperCAmelCase_ = logging.get_logger(__name__) UpperCAmelCase_ = OrderedDict( [ # Base model mapping ("albert", "FlaxAlbertModel"), ("bart", "FlaxBartModel"), ("beit", "FlaxBeitModel"), ("bert", "FlaxBertModel"), ("big_bird", "FlaxBigBirdModel"), ("blenderbot", "FlaxBlenderbotModel"), ("blenderbot-small", "FlaxBlenderbotSmallModel"), ("clip", "FlaxCLIPModel"), ("distilbert", "FlaxDistilBertModel"), ("electra", "FlaxElectraModel"), ("gpt-sw3", "FlaxGPT2Model"), ("gpt2", "FlaxGPT2Model"), ("gpt_neo", "FlaxGPTNeoModel"), ("gptj", "FlaxGPTJModel"), ("longt5", "FlaxLongT5Model"), ("marian", "FlaxMarianModel"), ("mbart", "FlaxMBartModel"), ("mt5", "FlaxMT5Model"), ("opt", "FlaxOPTModel"), ("pegasus", "FlaxPegasusModel"), ("regnet", "FlaxRegNetModel"), ("resnet", "FlaxResNetModel"), ("roberta", "FlaxRobertaModel"), ("roberta-prelayernorm", "FlaxRobertaPreLayerNormModel"), ("roformer", "FlaxRoFormerModel"), ("t5", "FlaxT5Model"), ("vision-text-dual-encoder", "FlaxVisionTextDualEncoderModel"), ("vit", "FlaxViTModel"), ("wav2vec2", "FlaxWav2Vec2Model"), ("whisper", "FlaxWhisperModel"), ("xglm", "FlaxXGLMModel"), ("xlm-roberta", "FlaxXLMRobertaModel"), ] ) UpperCAmelCase_ = OrderedDict( [ # Model for pre-training mapping ("albert", "FlaxAlbertForPreTraining"), ("bart", "FlaxBartForConditionalGeneration"), ("bert", "FlaxBertForPreTraining"), ("big_bird", "FlaxBigBirdForPreTraining"), ("electra", "FlaxElectraForPreTraining"), ("longt5", "FlaxLongT5ForConditionalGeneration"), ("mbart", "FlaxMBartForConditionalGeneration"), ("mt5", "FlaxMT5ForConditionalGeneration"), ("roberta", "FlaxRobertaForMaskedLM"), ("roberta-prelayernorm", "FlaxRobertaPreLayerNormForMaskedLM"), ("roformer", "FlaxRoFormerForMaskedLM"), ("t5", "FlaxT5ForConditionalGeneration"), ("wav2vec2", "FlaxWav2Vec2ForPreTraining"), ("whisper", "FlaxWhisperForConditionalGeneration"), ("xlm-roberta", "FlaxXLMRobertaForMaskedLM"), ] ) UpperCAmelCase_ = OrderedDict( [ # Model for Masked LM mapping ("albert", "FlaxAlbertForMaskedLM"), ("bart", "FlaxBartForConditionalGeneration"), ("bert", "FlaxBertForMaskedLM"), ("big_bird", "FlaxBigBirdForMaskedLM"), ("distilbert", "FlaxDistilBertForMaskedLM"), ("electra", "FlaxElectraForMaskedLM"), ("mbart", "FlaxMBartForConditionalGeneration"), ("roberta", "FlaxRobertaForMaskedLM"), ("roberta-prelayernorm", "FlaxRobertaPreLayerNormForMaskedLM"), ("roformer", "FlaxRoFormerForMaskedLM"), ("xlm-roberta", "FlaxXLMRobertaForMaskedLM"), ] ) UpperCAmelCase_ = OrderedDict( [ # Model for Seq2Seq Causal LM mapping ("bart", "FlaxBartForConditionalGeneration"), ("blenderbot", "FlaxBlenderbotForConditionalGeneration"), ("blenderbot-small", "FlaxBlenderbotSmallForConditionalGeneration"), ("encoder-decoder", "FlaxEncoderDecoderModel"), ("longt5", "FlaxLongT5ForConditionalGeneration"), ("marian", "FlaxMarianMTModel"), ("mbart", "FlaxMBartForConditionalGeneration"), ("mt5", "FlaxMT5ForConditionalGeneration"), ("pegasus", "FlaxPegasusForConditionalGeneration"), ("t5", "FlaxT5ForConditionalGeneration"), ] ) UpperCAmelCase_ = OrderedDict( [ # Model for Image-classsification ("beit", "FlaxBeitForImageClassification"), ("regnet", "FlaxRegNetForImageClassification"), ("resnet", "FlaxResNetForImageClassification"), ("vit", "FlaxViTForImageClassification"), ] ) UpperCAmelCase_ = OrderedDict( [ ("vision-encoder-decoder", "FlaxVisionEncoderDecoderModel"), ] ) UpperCAmelCase_ = OrderedDict( [ # Model for Causal LM mapping ("bart", "FlaxBartForCausalLM"), ("bert", "FlaxBertForCausalLM"), ("big_bird", "FlaxBigBirdForCausalLM"), ("electra", "FlaxElectraForCausalLM"), ("gpt-sw3", "FlaxGPT2LMHeadModel"), ("gpt2", "FlaxGPT2LMHeadModel"), ("gpt_neo", "FlaxGPTNeoForCausalLM"), ("gptj", "FlaxGPTJForCausalLM"), ("opt", "FlaxOPTForCausalLM"), ("roberta", "FlaxRobertaForCausalLM"), ("roberta-prelayernorm", "FlaxRobertaPreLayerNormForCausalLM"), ("xglm", "FlaxXGLMForCausalLM"), ("xlm-roberta", "FlaxXLMRobertaForCausalLM"), ] ) UpperCAmelCase_ = OrderedDict( [ # Model for Sequence Classification mapping ("albert", "FlaxAlbertForSequenceClassification"), ("bart", "FlaxBartForSequenceClassification"), ("bert", "FlaxBertForSequenceClassification"), ("big_bird", "FlaxBigBirdForSequenceClassification"), ("distilbert", "FlaxDistilBertForSequenceClassification"), ("electra", "FlaxElectraForSequenceClassification"), ("mbart", "FlaxMBartForSequenceClassification"), ("roberta", "FlaxRobertaForSequenceClassification"), ("roberta-prelayernorm", "FlaxRobertaPreLayerNormForSequenceClassification"), ("roformer", "FlaxRoFormerForSequenceClassification"), ("xlm-roberta", "FlaxXLMRobertaForSequenceClassification"), ] ) UpperCAmelCase_ = OrderedDict( [ # Model for Question Answering mapping ("albert", "FlaxAlbertForQuestionAnswering"), ("bart", "FlaxBartForQuestionAnswering"), ("bert", "FlaxBertForQuestionAnswering"), ("big_bird", "FlaxBigBirdForQuestionAnswering"), ("distilbert", "FlaxDistilBertForQuestionAnswering"), ("electra", "FlaxElectraForQuestionAnswering"), ("mbart", "FlaxMBartForQuestionAnswering"), ("roberta", "FlaxRobertaForQuestionAnswering"), ("roberta-prelayernorm", "FlaxRobertaPreLayerNormForQuestionAnswering"), ("roformer", "FlaxRoFormerForQuestionAnswering"), ("xlm-roberta", "FlaxXLMRobertaForQuestionAnswering"), ] ) UpperCAmelCase_ = OrderedDict( [ # Model for Token Classification mapping ("albert", "FlaxAlbertForTokenClassification"), ("bert", "FlaxBertForTokenClassification"), ("big_bird", "FlaxBigBirdForTokenClassification"), ("distilbert", "FlaxDistilBertForTokenClassification"), ("electra", "FlaxElectraForTokenClassification"), ("roberta", "FlaxRobertaForTokenClassification"), ("roberta-prelayernorm", "FlaxRobertaPreLayerNormForTokenClassification"), ("roformer", "FlaxRoFormerForTokenClassification"), ("xlm-roberta", "FlaxXLMRobertaForTokenClassification"), ] ) UpperCAmelCase_ = OrderedDict( [ # Model for Multiple Choice mapping ("albert", "FlaxAlbertForMultipleChoice"), ("bert", "FlaxBertForMultipleChoice"), ("big_bird", "FlaxBigBirdForMultipleChoice"), ("distilbert", "FlaxDistilBertForMultipleChoice"), ("electra", "FlaxElectraForMultipleChoice"), ("roberta", "FlaxRobertaForMultipleChoice"), ("roberta-prelayernorm", "FlaxRobertaPreLayerNormForMultipleChoice"), ("roformer", "FlaxRoFormerForMultipleChoice"), ("xlm-roberta", "FlaxXLMRobertaForMultipleChoice"), ] ) UpperCAmelCase_ = OrderedDict( [ ("bert", "FlaxBertForNextSentencePrediction"), ] ) UpperCAmelCase_ = OrderedDict( [ ("speech-encoder-decoder", "FlaxSpeechEncoderDecoderModel"), ("whisper", "FlaxWhisperForConditionalGeneration"), ] ) UpperCAmelCase_ = OrderedDict( [ ("whisper", "FlaxWhisperForAudioClassification"), ] ) UpperCAmelCase_ = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_MAPPING_NAMES) UpperCAmelCase_ = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_PRETRAINING_MAPPING_NAMES) UpperCAmelCase_ = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_MASKED_LM_MAPPING_NAMES) UpperCAmelCase_ = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING_NAMES ) UpperCAmelCase_ = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING_NAMES ) UpperCAmelCase_ = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_VISION_2_SEQ_MAPPING_NAMES) UpperCAmelCase_ = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_CAUSAL_LM_MAPPING_NAMES) UpperCAmelCase_ = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING_NAMES ) UpperCAmelCase_ = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_QUESTION_ANSWERING_MAPPING_NAMES ) UpperCAmelCase_ = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING_NAMES ) UpperCAmelCase_ = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_MULTIPLE_CHOICE_MAPPING_NAMES ) UpperCAmelCase_ = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_NEXT_SENTENCE_PREDICTION_MAPPING_NAMES ) UpperCAmelCase_ = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_SPEECH_SEQ_2_SEQ_MAPPING_NAMES ) UpperCAmelCase_ = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_AUDIO_CLASSIFICATION_MAPPING_NAMES ) class __UpperCamelCase ( _BaseAutoModelClass ): __A : List[str] = FLAX_MODEL_MAPPING UpperCAmelCase_ = auto_class_update(FlaxAutoModel) class __UpperCamelCase ( _BaseAutoModelClass ): __A : Optional[Any] = FLAX_MODEL_FOR_PRETRAINING_MAPPING UpperCAmelCase_ = auto_class_update(FlaxAutoModelForPreTraining, head_doc="pretraining") class __UpperCamelCase ( _BaseAutoModelClass ): __A : List[Any] = FLAX_MODEL_FOR_CAUSAL_LM_MAPPING UpperCAmelCase_ = auto_class_update(FlaxAutoModelForCausalLM, head_doc="causal language modeling") class __UpperCamelCase ( _BaseAutoModelClass ): __A : List[str] = FLAX_MODEL_FOR_MASKED_LM_MAPPING UpperCAmelCase_ = auto_class_update(FlaxAutoModelForMaskedLM, head_doc="masked language modeling") class __UpperCamelCase ( _BaseAutoModelClass ): __A : Dict = FLAX_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING UpperCAmelCase_ = auto_class_update( FlaxAutoModelForSeqaSeqLM, head_doc="sequence-to-sequence language modeling", checkpoint_for_example="t5-base" ) class __UpperCamelCase ( _BaseAutoModelClass ): __A : List[str] = FLAX_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING UpperCAmelCase_ = auto_class_update( FlaxAutoModelForSequenceClassification, head_doc="sequence classification" ) class __UpperCamelCase ( _BaseAutoModelClass ): __A : Dict = FLAX_MODEL_FOR_QUESTION_ANSWERING_MAPPING UpperCAmelCase_ = auto_class_update(FlaxAutoModelForQuestionAnswering, head_doc="question answering") class __UpperCamelCase ( _BaseAutoModelClass ): __A : Union[str, Any] = FLAX_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING UpperCAmelCase_ = auto_class_update( FlaxAutoModelForTokenClassification, head_doc="token classification" ) class __UpperCamelCase ( _BaseAutoModelClass ): __A : Union[str, Any] = FLAX_MODEL_FOR_MULTIPLE_CHOICE_MAPPING UpperCAmelCase_ = auto_class_update(FlaxAutoModelForMultipleChoice, head_doc="multiple choice") class __UpperCamelCase ( _BaseAutoModelClass ): __A : Any = FLAX_MODEL_FOR_NEXT_SENTENCE_PREDICTION_MAPPING UpperCAmelCase_ = auto_class_update( FlaxAutoModelForNextSentencePrediction, head_doc="next sentence prediction" ) class __UpperCamelCase ( _BaseAutoModelClass ): __A : Dict = FLAX_MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING UpperCAmelCase_ = auto_class_update( FlaxAutoModelForImageClassification, head_doc="image classification" ) class __UpperCamelCase ( _BaseAutoModelClass ): __A : Optional[int] = FLAX_MODEL_FOR_VISION_2_SEQ_MAPPING UpperCAmelCase_ = auto_class_update(FlaxAutoModelForVisionaSeq, head_doc="vision-to-text modeling") class __UpperCamelCase ( _BaseAutoModelClass ): __A : str = FLAX_MODEL_FOR_SPEECH_SEQ_2_SEQ_MAPPING UpperCAmelCase_ = auto_class_update( FlaxAutoModelForSpeechSeqaSeq, head_doc="sequence-to-sequence speech-to-text modeling" )
32
0
import fire from transformers import AutoConfig, AutoModelForSeqaSeqLM, AutoTokenizer def lowercase ( __A : str , __A : str , **__A : Optional[int] ) -> Optional[Any]: '''simple docstring''' snake_case : int = AutoConfig.from_pretrained(__A , **__A ) snake_case : Tuple = AutoModelForSeqaSeqLM.from_config(__A ) model.save_pretrained(__A ) AutoTokenizer.from_pretrained(__A ).save_pretrained(__A ) return model if __name__ == "__main__": fire.Fire(save_randomly_initialized_version)
36
import baseaa def A__ ( SCREAMING_SNAKE_CASE_ : str ) -> bytes: """simple docstring""" return baseaa.baaencode(string.encode('''utf-8''' ) ) def A__ ( SCREAMING_SNAKE_CASE_ : bytes ) -> str: """simple docstring""" return baseaa.baadecode(SCREAMING_SNAKE_CASE_ ).decode('''utf-8''' ) if __name__ == "__main__": UpperCAmelCase_ = "Hello World!" UpperCAmelCase_ = baseaa_encode(test) print(encoded) UpperCAmelCase_ = baseaa_decode(encoded) print(decoded)
32
0
import gc import threading import time import psutil import torch class A__ : """simple docstring""" def __init__( self : int ): a__ : Optional[int] = psutil.Process() a__ : Union[str, Any] = False def _UpperCamelCase( self : Any ): a__ : str = -1 while True: a__ : Dict = max(self.process.memory_info().rss , self.cpu_memory_peak ) # can't sleep or will not catch the peak right (this comment is here on purpose) if not self.peak_monitoring: break def _UpperCamelCase( self : Dict ): a__ : int = True a__ : Tuple = threading.Thread(target=self.peak_monitor ) a__ : Dict = True self.thread.start() def _UpperCamelCase( self : Any ): a__ : Dict = False self.thread.join() return self.cpu_memory_peak UpperCamelCase : List[str] = PeakCPUMemory() def UpperCamelCase_ ( ) -> int: # Time a__ : List[Any] = {"time": time.time()} gc.collect() torch.cuda.empty_cache() # CPU mem a__ : Union[str, Any] = psutil.Process().memory_info().rss cpu_peak_tracker.start() # GPU mem for i in range(torch.cuda.device_count() ): a__ : Dict = torch.cuda.memory_allocated(__a ) torch.cuda.reset_peak_memory_stats() return measures def UpperCamelCase_ ( __a ) -> Any: # Time a__ : Union[str, Any] = {"time": time.time() - start_measures["time"]} gc.collect() torch.cuda.empty_cache() # CPU mem a__ : Any = (psutil.Process().memory_info().rss - start_measures["cpu"]) / 2**20 a__ : Optional[int] = (cpu_peak_tracker.stop() - start_measures["cpu"]) / 2**20 # GPU mem for i in range(torch.cuda.device_count() ): a__ : Optional[Any] = (torch.cuda.memory_allocated(__a ) - start_measures[str(__a )]) / 2**20 a__ : int = (torch.cuda.max_memory_allocated(__a ) - start_measures[str(__a )]) / 2**20 return measures def UpperCamelCase_ ( __a , __a ) -> Optional[Any]: print(f'''{description}:''' ) print(f'''- Time: {measures['time']:.2f}s''' ) for i in range(torch.cuda.device_count() ): print(f'''- GPU {i} allocated: {measures[str(__a )]:.2f}MiB''' ) a__ : Dict = measures[f'''{i}-peak'''] print(f'''- GPU {i} peak: {peak:.2f}MiB''' ) print(f'''- CPU RAM allocated: {measures['cpu']:.2f}MiB''' ) print(f'''- CPU RAM peak: {measures['cpu-peak']:.2f}MiB''' )
37
from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD, ChannelDimension, ImageInput, PILImageResampling, is_batched, to_numpy_array, valid_images, ) from ...utils import TensorType, logging UpperCAmelCase_ = logging.get_logger(__name__) class __UpperCamelCase ( A__ ): __A : int = ["""pixel_values"""] def __init__( self , _UpperCamelCase = True , _UpperCamelCase = None , _UpperCamelCase = PILImageResampling.BICUBIC , _UpperCamelCase = True , _UpperCamelCase = True , _UpperCamelCase = 1 / 255 , _UpperCamelCase = None , _UpperCamelCase = True , _UpperCamelCase = None , _UpperCamelCase = None , **_UpperCamelCase , ): super().__init__(**_UpperCamelCase ) _UpperCAmelCase = size if size is not None else {'''height''': 224, '''width''': 224} _UpperCAmelCase = get_size_dict(_UpperCamelCase ) _UpperCAmelCase = crop_size if crop_size is not None else {'''height''': 224, '''width''': 224} _UpperCAmelCase = get_size_dict(_UpperCamelCase , default_to_square=_UpperCamelCase , param_name='''crop_size''' ) _UpperCAmelCase = do_resize _UpperCAmelCase = do_rescale _UpperCAmelCase = do_normalize _UpperCAmelCase = do_center_crop _UpperCAmelCase = crop_size _UpperCAmelCase = size _UpperCAmelCase = resample _UpperCAmelCase = rescale_factor _UpperCAmelCase = image_mean if image_mean is not None else IMAGENET_DEFAULT_MEAN _UpperCAmelCase = image_std if image_std is not None else IMAGENET_DEFAULT_STD def UpperCamelCase( self , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase = PILImageResampling.BILINEAR , _UpperCamelCase = None , **_UpperCamelCase , ): _UpperCAmelCase = get_size_dict(_UpperCamelCase ) if "shortest_edge" in size: _UpperCAmelCase = get_resize_output_image_size(_UpperCamelCase , size=size['''shortest_edge'''] , default_to_square=_UpperCamelCase ) # size = get_resize_output_image_size(image, size["shortest_edge"], size["longest_edge"]) elif "height" in size and "width" in size: _UpperCAmelCase = (size['''height'''], size['''width''']) else: raise ValueError(f'''Size must contain \'height\' and \'width\' keys or \'shortest_edge\' key. Got {size.keys()}''' ) return resize(_UpperCamelCase , size=_UpperCamelCase , resample=_UpperCamelCase , data_format=_UpperCamelCase , **_UpperCamelCase ) def UpperCamelCase( self , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase = None , **_UpperCamelCase , ): _UpperCAmelCase = get_size_dict(_UpperCamelCase ) if "height" not in size or "width" not in size: raise ValueError(f'''The `size` parameter must contain the keys (height, width). Got {size.keys()}''' ) return center_crop(_UpperCamelCase , size=(size['''height'''], size['''width''']) , data_format=_UpperCamelCase , **_UpperCamelCase ) def UpperCamelCase( self , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase = None , **_UpperCamelCase ): return rescale(_UpperCamelCase , scale=_UpperCamelCase , data_format=_UpperCamelCase , **_UpperCamelCase ) def UpperCamelCase( self , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase = None , **_UpperCamelCase , ): return normalize(_UpperCamelCase , mean=_UpperCamelCase , std=_UpperCamelCase , data_format=_UpperCamelCase , **_UpperCamelCase ) def UpperCamelCase( self , _UpperCamelCase , _UpperCamelCase = None , _UpperCamelCase = None , _UpperCamelCase = None , _UpperCamelCase = None , _UpperCamelCase = None , _UpperCamelCase = None , _UpperCamelCase = None , _UpperCamelCase = None , _UpperCamelCase = None , _UpperCamelCase = None , _UpperCamelCase = None , _UpperCamelCase = ChannelDimension.FIRST , **_UpperCamelCase , ): _UpperCAmelCase = do_resize if do_resize is not None else self.do_resize _UpperCAmelCase = do_rescale if do_rescale is not None else self.do_rescale _UpperCAmelCase = do_normalize if do_normalize is not None else self.do_normalize _UpperCAmelCase = do_center_crop if do_center_crop is not None else self.do_center_crop _UpperCAmelCase = crop_size if crop_size is not None else self.crop_size _UpperCAmelCase = get_size_dict(_UpperCamelCase , param_name='''crop_size''' , default_to_square=_UpperCamelCase ) _UpperCAmelCase = resample if resample is not None else self.resample _UpperCAmelCase = rescale_factor if rescale_factor is not None else self.rescale_factor _UpperCAmelCase = image_mean if image_mean is not None else self.image_mean _UpperCAmelCase = image_std if image_std is not None else self.image_std _UpperCAmelCase = size if size is not None else self.size _UpperCAmelCase = get_size_dict(_UpperCamelCase ) if not is_batched(_UpperCamelCase ): _UpperCAmelCase = [images] if not valid_images(_UpperCamelCase ): raise ValueError( '''Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ''' '''torch.Tensor, tf.Tensor or jax.ndarray.''' ) if do_resize and size is None: raise ValueError('''Size must be specified if do_resize is True.''' ) if do_center_crop and crop_size is None: raise ValueError('''Crop size must be specified if do_center_crop is True.''' ) if do_rescale and rescale_factor is None: raise ValueError('''Rescale factor must be specified if do_rescale is True.''' ) # All transformations expect numpy arrays. _UpperCAmelCase = [to_numpy_array(_UpperCamelCase ) for image in images] if do_resize: _UpperCAmelCase = [self.resize(image=_UpperCamelCase , size=_UpperCamelCase , resample=_UpperCamelCase ) for image in images] if do_center_crop: _UpperCAmelCase = [self.center_crop(image=_UpperCamelCase , size=_UpperCamelCase ) for image in images] if do_rescale: _UpperCAmelCase = [self.rescale(image=_UpperCamelCase , scale=_UpperCamelCase ) for image in images] if do_normalize: _UpperCAmelCase = [self.normalize(image=_UpperCamelCase , mean=_UpperCamelCase , std=_UpperCamelCase ) for image in images] _UpperCAmelCase = [to_channel_dimension_format(_UpperCamelCase , _UpperCamelCase ) for image in images] _UpperCAmelCase = {'''pixel_values''': images} return BatchFeature(data=_UpperCamelCase , tensor_type=_UpperCamelCase )
32
0
'''simple docstring''' from typing import Callable, Optional from .. import Features from ..packaged_modules.generator.generator import Generator from .abc import AbstractDatasetInputStream class __snake_case ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' def __init__( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = None , __SCREAMING_SNAKE_CASE = None , __SCREAMING_SNAKE_CASE = False , __SCREAMING_SNAKE_CASE = False , __SCREAMING_SNAKE_CASE = None , __SCREAMING_SNAKE_CASE = None , **__SCREAMING_SNAKE_CASE , ): super().__init__( features=__SCREAMING_SNAKE_CASE , cache_dir=__SCREAMING_SNAKE_CASE , keep_in_memory=__SCREAMING_SNAKE_CASE , streaming=__SCREAMING_SNAKE_CASE , num_proc=__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE , ) snake_case__ : Tuple = Generator( cache_dir=__SCREAMING_SNAKE_CASE , features=__SCREAMING_SNAKE_CASE , generator=__SCREAMING_SNAKE_CASE , gen_kwargs=__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE , ) def __UpperCamelCase ( self ): # Build iterable dataset if self.streaming: snake_case__ : Dict = self.builder.as_streaming_dataset(split="""train""" ) # Build regular (map-style) dataset else: snake_case__ : Optional[Any] = None snake_case__ : List[Any] = None snake_case__ : Dict = None snake_case__ : int = None self.builder.download_and_prepare( download_config=__SCREAMING_SNAKE_CASE , download_mode=__SCREAMING_SNAKE_CASE , verification_mode=__SCREAMING_SNAKE_CASE , base_path=__SCREAMING_SNAKE_CASE , num_proc=self.num_proc , ) snake_case__ : Optional[int] = self.builder.as_dataset( split="""train""" , verification_mode=__SCREAMING_SNAKE_CASE , in_memory=self.keep_in_memory ) return dataset
38
from ..utils import DummyObject, requires_backends class __UpperCamelCase ( metaclass=A__ ): __A : str = ["""torch""", """scipy"""] def __init__( self , *_UpperCamelCase , **_UpperCamelCase ): requires_backends(self , ['''torch''', '''scipy'''] ) @classmethod def UpperCamelCase( cls , *_UpperCamelCase , **_UpperCamelCase ): requires_backends(cls , ['''torch''', '''scipy'''] ) @classmethod def UpperCamelCase( cls , *_UpperCamelCase , **_UpperCamelCase ): requires_backends(cls , ['''torch''', '''scipy'''] )
32
0
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_tokenizers_available, is_torch_available, ) lowerCAmelCase_ = { '''configuration_longformer''': [ '''LONGFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''LongformerConfig''', '''LongformerOnnxConfig''', ], '''tokenization_longformer''': ['''LongformerTokenizer'''], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_ = ['''LongformerTokenizerFast'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_ = [ '''LONGFORMER_PRETRAINED_MODEL_ARCHIVE_LIST''', '''LongformerForMaskedLM''', '''LongformerForMultipleChoice''', '''LongformerForQuestionAnswering''', '''LongformerForSequenceClassification''', '''LongformerForTokenClassification''', '''LongformerModel''', '''LongformerPreTrainedModel''', '''LongformerSelfAttention''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_ = [ '''TF_LONGFORMER_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFLongformerForMaskedLM''', '''TFLongformerForMultipleChoice''', '''TFLongformerForQuestionAnswering''', '''TFLongformerForSequenceClassification''', '''TFLongformerForTokenClassification''', '''TFLongformerModel''', '''TFLongformerPreTrainedModel''', '''TFLongformerSelfAttention''', ] if TYPE_CHECKING: from .configuration_longformer import ( LONGFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, LongformerConfig, LongformerOnnxConfig, ) from .tokenization_longformer import LongformerTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_longformer_fast import LongformerTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_longformer import ( LONGFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, LongformerForMaskedLM, LongformerForMultipleChoice, LongformerForQuestionAnswering, LongformerForSequenceClassification, LongformerForTokenClassification, LongformerModel, LongformerPreTrainedModel, LongformerSelfAttention, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_longformer import ( TF_LONGFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, TFLongformerForMaskedLM, TFLongformerForMultipleChoice, TFLongformerForQuestionAnswering, TFLongformerForSequenceClassification, TFLongformerForTokenClassification, TFLongformerModel, TFLongformerPreTrainedModel, TFLongformerSelfAttention, ) else: import sys lowerCAmelCase_ = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
39
def A__ ( SCREAMING_SNAKE_CASE_ : int = 2_00_00_00 ) -> int: """simple docstring""" _UpperCAmelCase = [0 for i in range(n + 1 )] _UpperCAmelCase = 1 _UpperCAmelCase = 1 for i in range(2 , int(n**0.5 ) + 1 ): if primality_list[i] == 0: for j in range(i * i , n + 1 , SCREAMING_SNAKE_CASE_ ): _UpperCAmelCase = 1 _UpperCAmelCase = 0 for i in range(SCREAMING_SNAKE_CASE_ ): if primality_list[i] == 0: sum_of_primes += i return sum_of_primes if __name__ == "__main__": print(f'''{solution() = }''')
32
0
def UpperCamelCase ( snake_case__ : list[list[int | float]] ) -> int: UpperCamelCase : Tuple = len(snake_case__ ) UpperCamelCase : Tuple = len(matrix[0] ) UpperCamelCase : Tuple = min(snake_case__ , snake_case__ ) for row in range(snake_case__ ): # Check if diagonal element is not zero if matrix[row][row] != 0: # Eliminate all the elements below the diagonal for col in range(row + 1 , snake_case__ ): UpperCamelCase : Dict = matrix[col][row] / matrix[row][row] for i in range(snake_case__ , snake_case__ ): matrix[col][i] -= multiplier * matrix[row][i] else: # Find a non-zero diagonal element to swap rows UpperCamelCase : Optional[int] = True for i in range(row + 1 , snake_case__ ): if matrix[i][row] != 0: UpperCamelCase , UpperCamelCase : Union[str, Any] = matrix[i], matrix[row] UpperCamelCase : List[str] = False break if reduce: rank -= 1 for i in range(snake_case__ ): UpperCamelCase : Optional[Any] = matrix[i][rank] # Reduce the row pointer by one to stay on the same row row -= 1 return rank if __name__ == "__main__": import doctest doctest.testmod()
40
import warnings from ...utils import logging from .image_processing_glpn import GLPNImageProcessor UpperCAmelCase_ = logging.get_logger(__name__) class __UpperCamelCase ( A__ ): def __init__( self , *_UpperCamelCase , **_UpperCamelCase ): warnings.warn( '''The class GLPNFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please''' ''' use GLPNImageProcessor instead.''' , _UpperCamelCase , ) super().__init__(*_UpperCamelCase , **_UpperCamelCase )
32
0
'''simple docstring''' from __future__ import annotations def _A ( A__ , A__ , A__ ): """simple docstring""" __lowercase = list(range(len(A__ ) ) ) __lowercase = [v / w for v, w in zip(A__ , A__ )] index.sort(key=lambda A__ : ratio[i] , reverse=A__ ) __lowercase = 0 __lowercase = [0] * len(A__ ) for i in index: if weight[i] <= capacity: __lowercase = 1 max_value += value[i] capacity -= weight[i] else: __lowercase = capacity / weight[i] max_value += value[i] * capacity / weight[i] break return max_value, fractions if __name__ == "__main__": import doctest doctest.testmod()
41
from typing import List, Optional, Union from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType class __UpperCamelCase ( A__ ): __A : Dict = ["""image_processor""", """tokenizer"""] __A : List[str] = """BridgeTowerImageProcessor""" __A : str = ("""RobertaTokenizer""", """RobertaTokenizerFast""") def __init__( self , _UpperCamelCase , _UpperCamelCase ): super().__init__(_UpperCamelCase , _UpperCamelCase ) def __call__( self , _UpperCamelCase , _UpperCamelCase = None , _UpperCamelCase = True , _UpperCamelCase = False , _UpperCamelCase = None , _UpperCamelCase = None , _UpperCamelCase = 0 , _UpperCamelCase = None , _UpperCamelCase = None , _UpperCamelCase = None , _UpperCamelCase = False , _UpperCamelCase = False , _UpperCamelCase = False , _UpperCamelCase = False , _UpperCamelCase = True , _UpperCamelCase = None , **_UpperCamelCase , ): _UpperCAmelCase = self.tokenizer( text=_UpperCamelCase , add_special_tokens=_UpperCamelCase , padding=_UpperCamelCase , truncation=_UpperCamelCase , max_length=_UpperCamelCase , stride=_UpperCamelCase , pad_to_multiple_of=_UpperCamelCase , return_token_type_ids=_UpperCamelCase , return_attention_mask=_UpperCamelCase , return_overflowing_tokens=_UpperCamelCase , return_special_tokens_mask=_UpperCamelCase , return_offsets_mapping=_UpperCamelCase , return_length=_UpperCamelCase , verbose=_UpperCamelCase , return_tensors=_UpperCamelCase , **_UpperCamelCase , ) # add pixel_values + pixel_mask _UpperCAmelCase = self.image_processor( _UpperCamelCase , return_tensors=_UpperCamelCase , do_normalize=_UpperCamelCase , do_center_crop=_UpperCamelCase , **_UpperCamelCase ) encoding.update(_UpperCamelCase ) return encoding def UpperCamelCase( self , *_UpperCamelCase , **_UpperCamelCase ): return self.tokenizer.batch_decode(*_UpperCamelCase , **_UpperCamelCase ) def UpperCamelCase( self , *_UpperCamelCase , **_UpperCamelCase ): return self.tokenizer.decode(*_UpperCamelCase , **_UpperCamelCase ) @property def UpperCamelCase( self ): _UpperCAmelCase = self.tokenizer.model_input_names _UpperCAmelCase = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) )
32
0
'''simple docstring''' def _UpperCamelCase ( __UpperCamelCase ) -> int: assert column_title.isupper() lowerCamelCase_ = 0 lowerCamelCase_ = len(__UpperCamelCase ) - 1 lowerCamelCase_ = 0 while index >= 0: lowerCamelCase_ = (ord(column_title[index] ) - 64) * pow(26 ,__UpperCamelCase ) answer += value power += 1 index -= 1 return answer if __name__ == "__main__": from doctest import testmod testmod()
42
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available UpperCAmelCase_ = { "configuration_xlm": ["XLM_PRETRAINED_CONFIG_ARCHIVE_MAP", "XLMConfig", "XLMOnnxConfig"], "tokenization_xlm": ["XLMTokenizer"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase_ = [ "XLM_PRETRAINED_MODEL_ARCHIVE_LIST", "XLMForMultipleChoice", "XLMForQuestionAnswering", "XLMForQuestionAnsweringSimple", "XLMForSequenceClassification", "XLMForTokenClassification", "XLMModel", "XLMPreTrainedModel", "XLMWithLMHeadModel", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase_ = [ "TF_XLM_PRETRAINED_MODEL_ARCHIVE_LIST", "TFXLMForMultipleChoice", "TFXLMForQuestionAnsweringSimple", "TFXLMForSequenceClassification", "TFXLMForTokenClassification", "TFXLMMainLayer", "TFXLMModel", "TFXLMPreTrainedModel", "TFXLMWithLMHeadModel", ] if TYPE_CHECKING: from .configuration_xlm import XLM_PRETRAINED_CONFIG_ARCHIVE_MAP, XLMConfig, XLMOnnxConfig from .tokenization_xlm import XLMTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_xlm import ( XLM_PRETRAINED_MODEL_ARCHIVE_LIST, XLMForMultipleChoice, XLMForQuestionAnswering, XLMForQuestionAnsweringSimple, XLMForSequenceClassification, XLMForTokenClassification, XLMModel, XLMPreTrainedModel, XLMWithLMHeadModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_xlm import ( TF_XLM_PRETRAINED_MODEL_ARCHIVE_LIST, TFXLMForMultipleChoice, TFXLMForQuestionAnsweringSimple, TFXLMForSequenceClassification, TFXLMForTokenClassification, TFXLMMainLayer, TFXLMModel, TFXLMPreTrainedModel, TFXLMWithLMHeadModel, ) else: import sys UpperCAmelCase_ = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
32
0
from typing import Optional import pyspark from .. import Features, NamedSplit from ..download import DownloadMode from ..packaged_modules.spark.spark import Spark from .abc import AbstractDatasetReader class _a ( UpperCamelCase__ ): def __init__( self: int , UpperCamelCase_: pyspark.sql.DataFrame , UpperCamelCase_: Optional[NamedSplit] = None , UpperCamelCase_: Optional[Features] = None , UpperCamelCase_: bool = True , UpperCamelCase_: str = None , UpperCamelCase_: bool = False , UpperCamelCase_: str = None , UpperCamelCase_: bool = True , UpperCamelCase_: str = "arrow" , **UpperCamelCase_: List[Any] , ) -> Any: """simple docstring""" super().__init__( split=UpperCamelCase_ , features=UpperCamelCase_ , cache_dir=UpperCamelCase_ , keep_in_memory=UpperCamelCase_ , streaming=UpperCamelCase_ , **UpperCamelCase_ , ) lowercase__ = load_from_cache_file lowercase__ = file_format lowercase__ = Spark( df=UpperCamelCase_ , features=UpperCamelCase_ , cache_dir=UpperCamelCase_ , working_dir=UpperCamelCase_ , **UpperCamelCase_ , ) def lowerCamelCase_ ( self: Tuple ) -> Dict: """simple docstring""" if self.streaming: return self.builder.as_streaming_dataset(split=self.split ) lowercase__ = None if self._load_from_cache_file else DownloadMode.FORCE_REDOWNLOAD self.builder.download_and_prepare( download_mode=UpperCamelCase_ , file_format=self._file_format , ) return self.builder.as_dataset(split=self.split )
43
from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCAmelCase_ = logging.get_logger(__name__) UpperCAmelCase_ = { "microsoft/biogpt": "https://huggingface.co/microsoft/biogpt/resolve/main/config.json", # See all BioGPT models at https://huggingface.co/models?filter=biogpt } class __UpperCamelCase ( A__ ): __A : Any = """biogpt""" def __init__( self , _UpperCamelCase=42384 , _UpperCamelCase=1024 , _UpperCamelCase=24 , _UpperCamelCase=16 , _UpperCamelCase=4096 , _UpperCamelCase="gelu" , _UpperCamelCase=0.1 , _UpperCamelCase=0.1 , _UpperCamelCase=1024 , _UpperCamelCase=0.02 , _UpperCamelCase=1e-12 , _UpperCamelCase=True , _UpperCamelCase=True , _UpperCamelCase=0.0 , _UpperCamelCase=0.0 , _UpperCamelCase=1 , _UpperCamelCase=0 , _UpperCamelCase=2 , **_UpperCamelCase , ): _UpperCAmelCase = vocab_size _UpperCAmelCase = max_position_embeddings _UpperCAmelCase = hidden_size _UpperCAmelCase = num_hidden_layers _UpperCAmelCase = num_attention_heads _UpperCAmelCase = intermediate_size _UpperCAmelCase = hidden_act _UpperCAmelCase = hidden_dropout_prob _UpperCAmelCase = attention_probs_dropout_prob _UpperCAmelCase = initializer_range _UpperCAmelCase = layer_norm_eps _UpperCAmelCase = scale_embedding _UpperCAmelCase = use_cache _UpperCAmelCase = layerdrop _UpperCAmelCase = activation_dropout super().__init__(pad_token_id=_UpperCamelCase , bos_token_id=_UpperCamelCase , eos_token_id=_UpperCamelCase , **_UpperCamelCase )
32
0
'''simple docstring''' from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging UpperCAmelCase_ : Union[str, Any] = logging.get_logger(__name__) UpperCAmelCase_ : Any = { 'bert-base-uncased': 'https://huggingface.co/bert-base-uncased/resolve/main/config.json', 'bert-large-uncased': 'https://huggingface.co/bert-large-uncased/resolve/main/config.json', 'bert-base-cased': 'https://huggingface.co/bert-base-cased/resolve/main/config.json', 'bert-large-cased': 'https://huggingface.co/bert-large-cased/resolve/main/config.json', 'bert-base-multilingual-uncased': 'https://huggingface.co/bert-base-multilingual-uncased/resolve/main/config.json', 'bert-base-multilingual-cased': 'https://huggingface.co/bert-base-multilingual-cased/resolve/main/config.json', 'bert-base-chinese': 'https://huggingface.co/bert-base-chinese/resolve/main/config.json', 'bert-base-german-cased': 'https://huggingface.co/bert-base-german-cased/resolve/main/config.json', 'bert-large-uncased-whole-word-masking': ( 'https://huggingface.co/bert-large-uncased-whole-word-masking/resolve/main/config.json' ), 'bert-large-cased-whole-word-masking': ( 'https://huggingface.co/bert-large-cased-whole-word-masking/resolve/main/config.json' ), 'bert-large-uncased-whole-word-masking-finetuned-squad': ( 'https://huggingface.co/bert-large-uncased-whole-word-masking-finetuned-squad/resolve/main/config.json' ), 'bert-large-cased-whole-word-masking-finetuned-squad': ( 'https://huggingface.co/bert-large-cased-whole-word-masking-finetuned-squad/resolve/main/config.json' ), 'bert-base-cased-finetuned-mrpc': 'https://huggingface.co/bert-base-cased-finetuned-mrpc/resolve/main/config.json', 'bert-base-german-dbmdz-cased': 'https://huggingface.co/bert-base-german-dbmdz-cased/resolve/main/config.json', 'bert-base-german-dbmdz-uncased': 'https://huggingface.co/bert-base-german-dbmdz-uncased/resolve/main/config.json', 'cl-tohoku/bert-base-japanese': 'https://huggingface.co/cl-tohoku/bert-base-japanese/resolve/main/config.json', 'cl-tohoku/bert-base-japanese-whole-word-masking': ( 'https://huggingface.co/cl-tohoku/bert-base-japanese-whole-word-masking/resolve/main/config.json' ), 'cl-tohoku/bert-base-japanese-char': ( 'https://huggingface.co/cl-tohoku/bert-base-japanese-char/resolve/main/config.json' ), 'cl-tohoku/bert-base-japanese-char-whole-word-masking': ( 'https://huggingface.co/cl-tohoku/bert-base-japanese-char-whole-word-masking/resolve/main/config.json' ), 'TurkuNLP/bert-base-finnish-cased-v1': ( 'https://huggingface.co/TurkuNLP/bert-base-finnish-cased-v1/resolve/main/config.json' ), 'TurkuNLP/bert-base-finnish-uncased-v1': ( 'https://huggingface.co/TurkuNLP/bert-base-finnish-uncased-v1/resolve/main/config.json' ), 'wietsedv/bert-base-dutch-cased': 'https://huggingface.co/wietsedv/bert-base-dutch-cased/resolve/main/config.json', # See all BERT models at https://huggingface.co/models?filter=bert } class UpperCAmelCase__ ( A ): lowerCAmelCase_ = 'bert' def __init__( self : Dict,__A : str=3_0_5_2_2,__A : List[Any]=7_6_8,__A : Union[str, Any]=1_2,__A : Any=1_2,__A : str=3_0_7_2,__A : List[str]="gelu",__A : int=0.1,__A : Any=0.1,__A : int=5_1_2,__A : Union[str, Any]=2,__A : List[str]=0.02,__A : Tuple=1e-12,__A : Optional[Any]=0,__A : int="absolute",__A : str=True,__A : Any=None,**__A : str,): super().__init__(pad_token_id=__A,**__A ) _lowerCamelCase : str = vocab_size _lowerCamelCase : Optional[Any] = hidden_size _lowerCamelCase : Optional[Any] = num_hidden_layers _lowerCamelCase : List[str] = num_attention_heads _lowerCamelCase : Any = hidden_act _lowerCamelCase : Union[str, Any] = intermediate_size _lowerCamelCase : int = hidden_dropout_prob _lowerCamelCase : Optional[int] = attention_probs_dropout_prob _lowerCamelCase : List[str] = max_position_embeddings _lowerCamelCase : Optional[int] = type_vocab_size _lowerCamelCase : Optional[Any] = initializer_range _lowerCamelCase : int = layer_norm_eps _lowerCamelCase : Tuple = position_embedding_type _lowerCamelCase : List[Any] = use_cache _lowerCamelCase : str = classifier_dropout class UpperCAmelCase__ ( A ): @property def lowerCamelCase_ ( self : List[Any] ): if self.task == "multiple-choice": _lowerCamelCase : Dict = {0: "batch", 1: "choice", 2: "sequence"} else: _lowerCamelCase : Optional[Any] = {0: "batch", 1: "sequence"} return OrderedDict( [ ("input_ids", dynamic_axis), ("attention_mask", dynamic_axis), ("token_type_ids", dynamic_axis), ] )
44
from typing import List from .keymap import KEYMAP, get_character def A__ ( SCREAMING_SNAKE_CASE_ : str ) -> List[str]: """simple docstring""" def decorator(SCREAMING_SNAKE_CASE_ : List[Any] ): _UpperCAmelCase = getattr(SCREAMING_SNAKE_CASE_ , '''handle_key''' , [] ) handle += [key] setattr(SCREAMING_SNAKE_CASE_ , '''handle_key''' , SCREAMING_SNAKE_CASE_ ) return func return decorator def A__ ( *SCREAMING_SNAKE_CASE_ : List[str] ) -> Dict: """simple docstring""" def decorator(SCREAMING_SNAKE_CASE_ : Any ): _UpperCAmelCase = getattr(SCREAMING_SNAKE_CASE_ , '''handle_key''' , [] ) handle += keys setattr(SCREAMING_SNAKE_CASE_ , '''handle_key''' , SCREAMING_SNAKE_CASE_ ) return func return decorator class __UpperCamelCase ( A__ ): def __new__( cls , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ): _UpperCAmelCase = super().__new__(cls , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) if not hasattr(_UpperCamelCase , '''key_handler''' ): setattr(_UpperCamelCase , '''key_handler''' , {} ) setattr(_UpperCamelCase , '''handle_input''' , KeyHandler.handle_input ) for value in attrs.values(): _UpperCAmelCase = getattr(_UpperCamelCase , '''handle_key''' , [] ) for key in handled_keys: _UpperCAmelCase = value return new_cls @staticmethod def UpperCamelCase( cls ): _UpperCAmelCase = get_character() if char != KEYMAP["undefined"]: _UpperCAmelCase = ord(_UpperCamelCase ) _UpperCAmelCase = cls.key_handler.get(_UpperCamelCase ) if handler: _UpperCAmelCase = char return handler(cls ) else: return None def A__ ( cls : Union[str, Any] ) -> Any: """simple docstring""" return KeyHandler(cls.__name__ , cls.__bases__ , cls.__dict__.copy() )
32
0
import inspect import unittest import warnings from math import ceil, floor from transformers import LevitConfig from transformers.file_utils import cached_property, is_torch_available, is_vision_available from transformers.models.auto import get_values from transformers.testing_utils import require_torch, require_vision, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING, MODEL_MAPPING, LevitForImageClassification, LevitForImageClassificationWithTeacher, LevitModel, ) from transformers.models.levit.modeling_levit import LEVIT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import LevitImageProcessor class lowerCAmelCase_ ( lowercase ): """simple docstring""" def __a ( self :Optional[int] ): UpperCamelCase__ :List[str] = self.config_class(**self.inputs_dict ) self.parent.assertTrue(hasattr(lowerCamelCase__ , """hidden_sizes""" ) ) self.parent.assertTrue(hasattr(lowerCamelCase__ , """num_attention_heads""" ) ) class lowerCAmelCase_ : """simple docstring""" def __init__( self :Dict , lowerCamelCase__ :Optional[Any] , lowerCamelCase__ :str=13 , lowerCamelCase__ :Dict=64 , lowerCamelCase__ :Dict=3 , lowerCamelCase__ :Union[str, Any]=3 , lowerCamelCase__ :Dict=2 , lowerCamelCase__ :Tuple=1 , lowerCamelCase__ :Tuple=16 , lowerCamelCase__ :int=[1_28, 2_56, 3_84] , lowerCamelCase__ :int=[4, 6, 8] , lowerCamelCase__ :Optional[Any]=[2, 3, 4] , lowerCamelCase__ :int=[16, 16, 16] , lowerCamelCase__ :List[Any]=0 , lowerCamelCase__ :List[Any]=[2, 2, 2] , lowerCamelCase__ :List[Any]=[2, 2, 2] , lowerCamelCase__ :Dict=0.02 , lowerCamelCase__ :Tuple=True , lowerCamelCase__ :Any=True , lowerCamelCase__ :int=2 , ): UpperCamelCase__ :Optional[Any] = parent UpperCamelCase__ :List[Any] = batch_size UpperCamelCase__ :Optional[int] = image_size UpperCamelCase__ :Any = num_channels UpperCamelCase__ :List[Any] = kernel_size UpperCamelCase__ :List[Any] = stride UpperCamelCase__ :Optional[Any] = padding UpperCamelCase__ :Optional[int] = hidden_sizes UpperCamelCase__ :Tuple = num_attention_heads UpperCamelCase__ :Optional[int] = depths UpperCamelCase__ :Dict = key_dim UpperCamelCase__ :Tuple = drop_path_rate UpperCamelCase__ :Optional[Any] = patch_size UpperCamelCase__ :Optional[Any] = attention_ratio UpperCamelCase__ :List[str] = mlp_ratio UpperCamelCase__ :int = initializer_range UpperCamelCase__ :List[Any] = [ ["""Subsample""", key_dim[0], hidden_sizes[0] // key_dim[0], 4, 2, 2], ["""Subsample""", key_dim[0], hidden_sizes[1] // key_dim[0], 4, 2, 2], ] UpperCamelCase__ :int = is_training UpperCamelCase__ :Union[str, Any] = use_labels UpperCamelCase__ :Optional[int] = num_labels UpperCamelCase__ :Any = initializer_range def __a ( self :str ): UpperCamelCase__ :Tuple = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) UpperCamelCase__ :int = None if self.use_labels: UpperCamelCase__ :List[Any] = ids_tensor([self.batch_size] , self.num_labels ) UpperCamelCase__ :Optional[Any] = self.get_config() return config, pixel_values, labels def __a ( self :Union[str, Any] ): return LevitConfig( image_size=self.image_size , num_channels=self.num_channels , kernel_size=self.kernel_size , stride=self.stride , padding=self.padding , patch_size=self.patch_size , hidden_sizes=self.hidden_sizes , num_attention_heads=self.num_attention_heads , depths=self.depths , key_dim=self.key_dim , drop_path_rate=self.drop_path_rate , mlp_ratio=self.mlp_ratio , attention_ratio=self.attention_ratio , initializer_range=self.initializer_range , down_ops=self.down_ops , ) def __a ( self :List[str] , lowerCamelCase__ :Any , lowerCamelCase__ :Tuple , lowerCamelCase__ :Tuple ): UpperCamelCase__ :Any = LevitModel(config=lowerCamelCase__ ) model.to(lowerCamelCase__ ) model.eval() UpperCamelCase__ :List[str] = model(lowerCamelCase__ ) UpperCamelCase__ :Tuple = (self.image_size, self.image_size) UpperCamelCase__ , UpperCamelCase__ :List[Any] = image_size[0], image_size[1] for _ in range(4 ): UpperCamelCase__ :List[str] = floor(((height + 2 * self.padding - self.kernel_size) / self.stride) + 1 ) UpperCamelCase__ :str = floor(((width + 2 * self.padding - self.kernel_size) / self.stride) + 1 ) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, ceil(height / 4 ) * ceil(width / 4 ), self.hidden_sizes[-1]) , ) def __a ( self :Dict , lowerCamelCase__ :Optional[Any] , lowerCamelCase__ :Optional[Any] , lowerCamelCase__ :Optional[Any] ): UpperCamelCase__ :Optional[Any] = self.num_labels UpperCamelCase__ :Union[str, Any] = LevitForImageClassification(lowerCamelCase__ ) model.to(lowerCamelCase__ ) model.eval() UpperCamelCase__ :List[Any] = model(lowerCamelCase__ , labels=lowerCamelCase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def __a ( self :Optional[Any] ): UpperCamelCase__ :str = self.prepare_config_and_inputs() UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ :Tuple = config_and_inputs UpperCamelCase__ :Optional[int] = {"""pixel_values""": pixel_values} return config, inputs_dict @require_torch class lowerCAmelCase_ ( lowercase , lowercase , unittest.TestCase ): """simple docstring""" _snake_case : int = ( (LevitModel, LevitForImageClassification, LevitForImageClassificationWithTeacher) if is_torch_available() else () ) _snake_case : Union[str, Any] = ( { """feature-extraction""": LevitModel, """image-classification""": (LevitForImageClassification, LevitForImageClassificationWithTeacher), } if is_torch_available() else {} ) _snake_case : List[str] = False _snake_case : Dict = False _snake_case : Dict = False _snake_case : List[Any] = False _snake_case : Dict = False def __a ( self :Optional[int] ): UpperCamelCase__ :Optional[Any] = LevitModelTester(self ) UpperCamelCase__ :int = ConfigTester(self , config_class=lowerCamelCase__ , has_text_modality=lowerCamelCase__ , hidden_size=37 ) def __a ( self :Optional[int] ): self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def __a ( self :Union[str, Any] ): return @unittest.skip(reason="""Levit does not use inputs_embeds""" ) def __a ( self :Union[str, Any] ): pass @unittest.skip(reason="""Levit does not support input and output embeddings""" ) def __a ( self :Tuple ): pass @unittest.skip(reason="""Levit does not output attentions""" ) def __a ( self :int ): pass def __a ( self :Union[str, Any] ): UpperCamelCase__ , UpperCamelCase__ :str = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCamelCase__ :List[str] = model_class(lowerCamelCase__ ) UpperCamelCase__ :Any = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic UpperCamelCase__ :Tuple = [*signature.parameters.keys()] UpperCamelCase__ :Optional[int] = ["""pixel_values"""] self.assertListEqual(arg_names[:1] , lowerCamelCase__ ) def __a ( self :int ): def check_hidden_states_output(lowerCamelCase__ :Dict , lowerCamelCase__ :Dict , lowerCamelCase__ :str ): UpperCamelCase__ :Dict = model_class(lowerCamelCase__ ) model.to(lowerCamelCase__ ) model.eval() with torch.no_grad(): UpperCamelCase__ :Union[str, Any] = model(**self._prepare_for_class(lowerCamelCase__ , lowerCamelCase__ ) ) UpperCamelCase__ :Optional[int] = outputs.hidden_states UpperCamelCase__ :Dict = len(self.model_tester.depths ) + 1 self.assertEqual(len(lowerCamelCase__ ) , lowerCamelCase__ ) UpperCamelCase__ :int = (self.model_tester.image_size, self.model_tester.image_size) UpperCamelCase__ , UpperCamelCase__ :Union[str, Any] = image_size[0], image_size[1] for _ in range(4 ): UpperCamelCase__ :Dict = floor( ( (height + 2 * self.model_tester.padding - self.model_tester.kernel_size) / self.model_tester.stride ) + 1 ) UpperCamelCase__ :Optional[int] = floor( ( (width + 2 * self.model_tester.padding - self.model_tester.kernel_size) / self.model_tester.stride ) + 1 ) # verify the first hidden states (first block) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [ height * width, self.model_tester.hidden_sizes[0], ] , ) UpperCamelCase__ , UpperCamelCase__ :Tuple = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCamelCase__ :int = True check_hidden_states_output(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] UpperCamelCase__ :Dict = True check_hidden_states_output(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) @unittest.skip("""Will be fixed soon by reducing the size of the model used for common tests.""" ) def __a ( self :Dict ): pass def __a ( self :Dict , lowerCamelCase__ :Optional[int] , lowerCamelCase__ :List[str] , lowerCamelCase__ :List[str]=False ): UpperCamelCase__ :int = super()._prepare_for_class(lowerCamelCase__ , lowerCamelCase__ , return_labels=lowerCamelCase__ ) if return_labels: if model_class.__name__ == "LevitForImageClassificationWithTeacher": del inputs_dict["labels"] return inputs_dict def __a ( self :Dict ): UpperCamelCase__ :Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowerCamelCase__ ) def __a ( self :Tuple ): UpperCamelCase__ :List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*lowerCamelCase__ ) def __a ( self :List[Any] ): if not self.model_tester.is_training: return UpperCamelCase__ , UpperCamelCase__ :List[str] = self.model_tester.prepare_config_and_inputs_for_common() UpperCamelCase__ :str = True for model_class in self.all_model_classes: # LevitForImageClassificationWithTeacher supports inference-only if ( model_class in get_values(lowerCamelCase__ ) or model_class.__name__ == "LevitForImageClassificationWithTeacher" ): continue UpperCamelCase__ :str = model_class(lowerCamelCase__ ) model.to(lowerCamelCase__ ) model.train() UpperCamelCase__ :str = self._prepare_for_class(lowerCamelCase__ , lowerCamelCase__ , return_labels=lowerCamelCase__ ) UpperCamelCase__ :Optional[Any] = model(**lowerCamelCase__ ).loss loss.backward() def __a ( self :Tuple ): UpperCamelCase__ , UpperCamelCase__ :Any = self.model_tester.prepare_config_and_inputs_for_common() if not self.model_tester.is_training: return UpperCamelCase__ :Union[str, Any] = False UpperCamelCase__ :Optional[int] = True for model_class in self.all_model_classes: if model_class in get_values(lowerCamelCase__ ) or not model_class.supports_gradient_checkpointing: continue # LevitForImageClassificationWithTeacher supports inference-only if model_class.__name__ == "LevitForImageClassificationWithTeacher": continue UpperCamelCase__ :Dict = model_class(lowerCamelCase__ ) model.gradient_checkpointing_enable() model.to(lowerCamelCase__ ) model.train() UpperCamelCase__ :Union[str, Any] = self._prepare_for_class(lowerCamelCase__ , lowerCamelCase__ , return_labels=lowerCamelCase__ ) UpperCamelCase__ :Optional[int] = model(**lowerCamelCase__ ).loss loss.backward() def __a ( self :Optional[int] ): UpperCamelCase__ , UpperCamelCase__ :List[Any] = self.model_tester.prepare_config_and_inputs_for_common() UpperCamelCase__ :Dict = [ {"""title""": """multi_label_classification""", """num_labels""": 2, """dtype""": torch.float}, {"""title""": """single_label_classification""", """num_labels""": 1, """dtype""": torch.long}, {"""title""": """regression""", """num_labels""": 1, """dtype""": torch.float}, ] for model_class in self.all_model_classes: if ( model_class not in [ *get_values(lowerCamelCase__ ), ] or model_class.__name__ == "LevitForImageClassificationWithTeacher" ): continue for problem_type in problem_types: with self.subTest(msg=f"""Testing {model_class} with {problem_type["title"]}""" ): UpperCamelCase__ :str = problem_type["""title"""] UpperCamelCase__ :Tuple = problem_type["""num_labels"""] UpperCamelCase__ :Dict = model_class(lowerCamelCase__ ) model.to(lowerCamelCase__ ) model.train() UpperCamelCase__ :List[str] = self._prepare_for_class(lowerCamelCase__ , lowerCamelCase__ , return_labels=lowerCamelCase__ ) if problem_type["num_labels"] > 1: UpperCamelCase__ :Tuple = inputs["""labels"""].unsqueeze(1 ).repeat(1 , problem_type["""num_labels"""] ) UpperCamelCase__ :str = inputs["""labels"""].to(problem_type["""dtype"""] ) # This tests that we do not trigger the warning form PyTorch "Using a target size that is different # to the input size. This will likely lead to incorrect results due to broadcasting. Please ensure # they have the same size." which is a symptom something in wrong for the regression problem. # See https://github.com/huggingface/transformers/issues/11780 with warnings.catch_warnings(record=lowerCamelCase__ ) as warning_list: UpperCamelCase__ :Dict = model(**lowerCamelCase__ ).loss for w in warning_list: if "Using a target size that is different to the input size" in str(w.message ): raise ValueError( f"""Something is going wrong in the regression problem: intercepted {w.message}""" ) loss.backward() @slow def __a ( self :Any ): for model_name in LEVIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCamelCase__ :Any = LevitModel.from_pretrained(lowerCamelCase__ ) self.assertIsNotNone(lowerCamelCase__ ) def A ( ) -> str: UpperCamelCase__ :int = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) return image @require_torch @require_vision class lowerCAmelCase_ ( unittest.TestCase ): """simple docstring""" @cached_property def __a ( self :Any ): return LevitImageProcessor.from_pretrained(LEVIT_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) @slow def __a ( self :Tuple ): UpperCamelCase__ :Any = LevitForImageClassificationWithTeacher.from_pretrained(LEVIT_PRETRAINED_MODEL_ARCHIVE_LIST[0] ).to( lowerCamelCase__ ) UpperCamelCase__ :Optional[Any] = self.default_image_processor UpperCamelCase__ :Union[str, Any] = prepare_img() UpperCamelCase__ :str = image_processor(images=lowerCamelCase__ , return_tensors="""pt""" ).to(lowerCamelCase__ ) # forward pass with torch.no_grad(): UpperCamelCase__ :List[str] = model(**lowerCamelCase__ ) # verify the logits UpperCamelCase__ :str = torch.Size((1, 10_00) ) self.assertEqual(outputs.logits.shape , lowerCamelCase__ ) UpperCamelCase__ :Tuple = torch.tensor([1.0448, -0.3745, -1.8317] ).to(lowerCamelCase__ ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , lowerCamelCase__ , atol=1e-4 ) )
45
import unittest from transformers import LiltConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( LiltForQuestionAnswering, LiltForSequenceClassification, LiltForTokenClassification, LiltModel, ) from transformers.models.lilt.modeling_lilt import LILT_PRETRAINED_MODEL_ARCHIVE_LIST class __UpperCamelCase : def __init__( self , _UpperCamelCase , _UpperCamelCase=13 , _UpperCamelCase=7 , _UpperCamelCase=True , _UpperCamelCase=True , _UpperCamelCase=True , _UpperCamelCase=True , _UpperCamelCase=99 , _UpperCamelCase=24 , _UpperCamelCase=2 , _UpperCamelCase=6 , _UpperCamelCase=37 , _UpperCamelCase="gelu" , _UpperCamelCase=0.1 , _UpperCamelCase=0.1 , _UpperCamelCase=512 , _UpperCamelCase=16 , _UpperCamelCase=2 , _UpperCamelCase=0.02 , _UpperCamelCase=3 , _UpperCamelCase=None , _UpperCamelCase=1000 , ): _UpperCAmelCase = parent _UpperCAmelCase = batch_size _UpperCAmelCase = seq_length _UpperCAmelCase = is_training _UpperCAmelCase = use_input_mask _UpperCAmelCase = use_token_type_ids _UpperCAmelCase = use_labels _UpperCAmelCase = vocab_size _UpperCAmelCase = hidden_size _UpperCAmelCase = num_hidden_layers _UpperCAmelCase = num_attention_heads _UpperCAmelCase = intermediate_size _UpperCAmelCase = hidden_act _UpperCAmelCase = hidden_dropout_prob _UpperCAmelCase = attention_probs_dropout_prob _UpperCAmelCase = max_position_embeddings _UpperCAmelCase = type_vocab_size _UpperCAmelCase = type_sequence_label_size _UpperCAmelCase = initializer_range _UpperCAmelCase = num_labels _UpperCAmelCase = scope _UpperCAmelCase = range_bbox def UpperCamelCase( self ): _UpperCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _UpperCAmelCase = ids_tensor([self.batch_size, self.seq_length, 4] , self.range_bbox ) # Ensure that bbox is legal for i in range(bbox.shape[0] ): for j in range(bbox.shape[1] ): if bbox[i, j, 3] < bbox[i, j, 1]: _UpperCAmelCase = bbox[i, j, 3] _UpperCAmelCase = bbox[i, j, 1] _UpperCAmelCase = t if bbox[i, j, 2] < bbox[i, j, 0]: _UpperCAmelCase = bbox[i, j, 2] _UpperCAmelCase = bbox[i, j, 0] _UpperCAmelCase = t _UpperCAmelCase = None if self.use_input_mask: _UpperCAmelCase = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 ) _UpperCAmelCase = None if self.use_token_type_ids: _UpperCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) _UpperCAmelCase = None _UpperCAmelCase = None if self.use_labels: _UpperCAmelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size ) _UpperCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) _UpperCAmelCase = self.get_config() return config, input_ids, bbox, token_type_ids, input_mask, sequence_labels, token_labels def UpperCamelCase( self ): return LiltConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , ) def UpperCamelCase( self , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , ): _UpperCAmelCase = LiltModel(config=_UpperCamelCase ) model.to(_UpperCamelCase ) model.eval() _UpperCAmelCase = model(_UpperCamelCase , bbox=_UpperCamelCase , attention_mask=_UpperCamelCase , token_type_ids=_UpperCamelCase ) _UpperCAmelCase = model(_UpperCamelCase , bbox=_UpperCamelCase , token_type_ids=_UpperCamelCase ) _UpperCAmelCase = model(_UpperCamelCase , bbox=_UpperCamelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) ) def UpperCamelCase( self , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , ): _UpperCAmelCase = self.num_labels _UpperCAmelCase = LiltForTokenClassification(config=_UpperCamelCase ) model.to(_UpperCamelCase ) model.eval() _UpperCAmelCase = model( _UpperCamelCase , bbox=_UpperCamelCase , attention_mask=_UpperCamelCase , token_type_ids=_UpperCamelCase , labels=_UpperCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def UpperCamelCase( self , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , ): _UpperCAmelCase = LiltForQuestionAnswering(config=_UpperCamelCase ) model.to(_UpperCamelCase ) model.eval() _UpperCAmelCase = model( _UpperCamelCase , bbox=_UpperCamelCase , attention_mask=_UpperCamelCase , token_type_ids=_UpperCamelCase , start_positions=_UpperCamelCase , end_positions=_UpperCamelCase , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def UpperCamelCase( self ): _UpperCAmelCase = self.prepare_config_and_inputs() ( ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ) = config_and_inputs _UpperCAmelCase = { '''input_ids''': input_ids, '''bbox''': bbox, '''token_type_ids''': token_type_ids, '''attention_mask''': input_mask, } return config, inputs_dict @require_torch class __UpperCamelCase ( A__ , A__ , A__ , unittest.TestCase ): __A : Dict = ( ( LiltModel, LiltForSequenceClassification, LiltForTokenClassification, LiltForQuestionAnswering, ) if is_torch_available() else () ) __A : Optional[Any] = ( { """feature-extraction""": LiltModel, """question-answering""": LiltForQuestionAnswering, """text-classification""": LiltForSequenceClassification, """token-classification""": LiltForTokenClassification, """zero-shot""": LiltForSequenceClassification, } if is_torch_available() else {} ) __A : List[Any] = False __A : Optional[int] = False def UpperCamelCase( self , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ): return True def UpperCamelCase( self ): _UpperCAmelCase = LiltModelTester(self ) _UpperCAmelCase = ConfigTester(self , config_class=_UpperCamelCase , hidden_size=37 ) def UpperCamelCase( self ): self.config_tester.run_common_tests() def UpperCamelCase( self ): _UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_UpperCamelCase ) def UpperCamelCase( self ): _UpperCAmelCase = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: _UpperCAmelCase = type self.model_tester.create_and_check_model(*_UpperCamelCase ) def UpperCamelCase( self ): _UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*_UpperCamelCase ) def UpperCamelCase( self ): _UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*_UpperCamelCase ) @slow def UpperCamelCase( self ): for model_name in LILT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _UpperCAmelCase = LiltModel.from_pretrained(_UpperCamelCase ) self.assertIsNotNone(_UpperCamelCase ) @require_torch @slow class __UpperCamelCase ( unittest.TestCase ): def UpperCamelCase( self ): _UpperCAmelCase = LiltModel.from_pretrained('''SCUT-DLVCLab/lilt-roberta-en-base''' ).to(_UpperCamelCase ) _UpperCAmelCase = torch.tensor([[1, 2]] , device=_UpperCamelCase ) _UpperCAmelCase = torch.tensor([[[1, 2, 3, 4], [5, 6, 7, 8]]] , device=_UpperCamelCase ) # forward pass with torch.no_grad(): _UpperCAmelCase = model(input_ids=_UpperCamelCase , bbox=_UpperCamelCase ) _UpperCAmelCase = torch.Size([1, 2, 768] ) _UpperCAmelCase = torch.tensor( [[-0.0653, 0.0950, -0.0061], [-0.0545, 0.0926, -0.0324]] , device=_UpperCamelCase , ) self.assertTrue(outputs.last_hidden_state.shape , _UpperCamelCase ) self.assertTrue(torch.allclose(outputs.last_hidden_state[0, :, :3] , _UpperCamelCase , atol=1e-3 ) )
32
0
"""simple docstring""" from dataclasses import asdict, dataclass from typing import Optional from ...configuration_utils import PretrainedConfig from ...utils import logging _lowerCAmelCase : Union[str, Any] = logging.get_logger(__name__) # TODO Update this _lowerCAmelCase : Optional[Any] = { '''facebook/esm-1b''': '''https://huggingface.co/facebook/esm-1b/resolve/main/config.json''', # See all ESM models at https://huggingface.co/models?filter=esm } class A_ ( _a ): lowerCAmelCase__ = 'esm' def __init__( self: str ,__lowerCAmelCase: Tuple=None ,__lowerCAmelCase: Tuple=None ,__lowerCAmelCase: str=None ,__lowerCAmelCase: Optional[int]=768 ,__lowerCAmelCase: Any=12 ,__lowerCAmelCase: str=12 ,__lowerCAmelCase: List[Any]=3_072 ,__lowerCAmelCase: int=0.1 ,__lowerCAmelCase: int=0.1 ,__lowerCAmelCase: List[Any]=1_026 ,__lowerCAmelCase: Optional[Any]=0.02 ,__lowerCAmelCase: Dict=1e-12 ,__lowerCAmelCase: Dict="absolute" ,__lowerCAmelCase: List[Any]=True ,__lowerCAmelCase: Optional[Any]=None ,__lowerCAmelCase: Union[str, Any]=False ,__lowerCAmelCase: str=False ,__lowerCAmelCase: List[Any]=None ,__lowerCAmelCase: Union[str, Any]=None ,**__lowerCAmelCase: int ,): '''simple docstring''' super().__init__(pad_token_id=__lowerCAmelCase ,mask_token_id=__lowerCAmelCase ,**__lowerCAmelCase ) _lowerCamelCase : List[Any] = vocab_size _lowerCamelCase : Union[str, Any] = hidden_size _lowerCamelCase : Optional[Any] = num_hidden_layers _lowerCamelCase : str = num_attention_heads _lowerCamelCase : int = intermediate_size _lowerCamelCase : Tuple = hidden_dropout_prob _lowerCamelCase : Any = attention_probs_dropout_prob _lowerCamelCase : int = max_position_embeddings _lowerCamelCase : int = initializer_range _lowerCamelCase : Union[str, Any] = layer_norm_eps _lowerCamelCase : Optional[int] = position_embedding_type _lowerCamelCase : str = use_cache _lowerCamelCase : Union[str, Any] = emb_layer_norm_before _lowerCamelCase : Tuple = token_dropout _lowerCamelCase : Dict = is_folding_model if is_folding_model: if esmfold_config is None: logger.info("No esmfold_config supplied for folding model, using default values." ) _lowerCamelCase : Dict = EsmFoldConfig() elif isinstance(__lowerCAmelCase ,__lowerCAmelCase ): _lowerCamelCase : List[Any] = EsmFoldConfig(**__lowerCAmelCase ) _lowerCamelCase : Union[str, Any] = esmfold_config if vocab_list is None: logger.warning("No vocab_list supplied for folding model, assuming the ESM-2 vocabulary!" ) _lowerCamelCase : List[str] = get_default_vocab_list() else: _lowerCamelCase : Optional[Any] = vocab_list else: _lowerCamelCase : List[str] = None _lowerCamelCase : Dict = None if self.esmfold_config is not None and getattr(self.esmfold_config ,"use_esm_attn_map" ,__lowerCAmelCase ): raise ValueError("The HuggingFace port of ESMFold does not support use_esm_attn_map at this time!" ) def _lowercase ( self: Any ): '''simple docstring''' _lowerCamelCase : List[Any] = super().to_dict() if isinstance(self.esmfold_config ,__lowerCAmelCase ): _lowerCamelCase : Optional[int] = self.esmfold_config.to_dict() return output @dataclass class A_ : lowerCAmelCase__ = None lowerCAmelCase__ = True lowerCAmelCase__ = False lowerCAmelCase__ = False lowerCAmelCase__ = False lowerCAmelCase__ = 0 lowerCAmelCase__ = True lowerCAmelCase__ = False lowerCAmelCase__ = 1_2_8 lowerCAmelCase__ = None def _lowercase ( self: Dict ): '''simple docstring''' if self.trunk is None: _lowerCamelCase : Optional[int] = TrunkConfig() elif isinstance(self.trunk ,__lowerCAmelCase ): _lowerCamelCase : Union[str, Any] = TrunkConfig(**self.trunk ) def _lowercase ( self: Optional[Any] ): '''simple docstring''' _lowerCamelCase : Dict = asdict(self ) _lowerCamelCase : str = self.trunk.to_dict() return output @dataclass class A_ : lowerCAmelCase__ = 4_8 lowerCAmelCase__ = 1_0_2_4 lowerCAmelCase__ = 1_2_8 lowerCAmelCase__ = 3_2 lowerCAmelCase__ = 3_2 lowerCAmelCase__ = 3_2 lowerCAmelCase__ = 0 lowerCAmelCase__ = 0 lowerCAmelCase__ = False lowerCAmelCase__ = 4 lowerCAmelCase__ = 1_2_8 lowerCAmelCase__ = None def _lowercase ( self: Any ): '''simple docstring''' if self.structure_module is None: _lowerCamelCase : Tuple = StructureModuleConfig() elif isinstance(self.structure_module ,__lowerCAmelCase ): _lowerCamelCase : str = StructureModuleConfig(**self.structure_module ) if self.max_recycles <= 0: raise ValueError(F"""`max_recycles` should be positive, got {self.max_recycles}.""" ) if self.sequence_state_dim % self.sequence_state_dim != 0: raise ValueError( "`sequence_state_dim` should be a round multiple of `sequence_state_dim`, got" F""" {self.sequence_state_dim} and {self.sequence_state_dim}.""" ) if self.pairwise_state_dim % self.pairwise_state_dim != 0: raise ValueError( "`pairwise_state_dim` should be a round multiple of `pairwise_state_dim`, got" F""" {self.pairwise_state_dim} and {self.pairwise_state_dim}.""" ) _lowerCamelCase : Optional[Any] = self.sequence_state_dim // self.sequence_head_width _lowerCamelCase : Optional[int] = self.pairwise_state_dim // self.pairwise_head_width if self.sequence_state_dim != sequence_num_heads * self.sequence_head_width: raise ValueError( "`sequence_state_dim` should be equal to `sequence_num_heads * sequence_head_width, got" F""" {self.sequence_state_dim} != {sequence_num_heads} * {self.sequence_head_width}.""" ) if self.pairwise_state_dim != pairwise_num_heads * self.pairwise_head_width: raise ValueError( "`pairwise_state_dim` should be equal to `pairwise_num_heads * pairwise_head_width, got" F""" {self.pairwise_state_dim} != {pairwise_num_heads} * {self.pairwise_head_width}.""" ) if self.pairwise_state_dim % 2 != 0: raise ValueError(F"""`pairwise_state_dim` should be even, got {self.pairwise_state_dim}.""" ) if self.dropout >= 0.4: raise ValueError(F"""`dropout` should not be greater than 0.4, got {self.dropout}.""" ) def _lowercase ( self: List[str] ): '''simple docstring''' _lowerCamelCase : Dict = asdict(self ) _lowerCamelCase : Optional[int] = self.structure_module.to_dict() return output @dataclass class A_ : lowerCAmelCase__ = 3_8_4 lowerCAmelCase__ = 1_2_8 lowerCAmelCase__ = 1_6 lowerCAmelCase__ = 1_2_8 lowerCAmelCase__ = 1_2 lowerCAmelCase__ = 4 lowerCAmelCase__ = 8 lowerCAmelCase__ = 0.1 lowerCAmelCase__ = 8 lowerCAmelCase__ = 1 lowerCAmelCase__ = 2 lowerCAmelCase__ = 7 lowerCAmelCase__ = 1_0 lowerCAmelCase__ = 1E-8 lowerCAmelCase__ = 1E5 def _lowercase ( self: Any ): '''simple docstring''' return asdict(self ) def lowerCamelCase_( ) -> int: '''simple docstring''' return ( "<cls>", "<pad>", "<eos>", "<unk>", "L", "A", "G", "V", "S", "E", "R", "T", "I", "D", "P", "K", "Q", "N", "F", "Y", "M", "H", "W", "C", "X", "B", "U", "Z", "O", ".", "-", "<null_1>", "<mask>", )
46
from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCAmelCase_ = logging.get_logger(__name__) UpperCAmelCase_ = { "RWKV/rwkv-4-169m-pile": "https://huggingface.co/RWKV/rwkv-4-169m-pile/resolve/main/config.json", "RWKV/rwkv-4-430m-pile": "https://huggingface.co/RWKV/rwkv-4-430m-pile/resolve/main/config.json", "RWKV/rwkv-4-1b5-pile": "https://huggingface.co/RWKV/rwkv-4-1b5-pile/resolve/main/config.json", "RWKV/rwkv-4-3b-pile": "https://huggingface.co/RWKV/rwkv-4-3b-pile/resolve/main/config.json", "RWKV/rwkv-4-7b-pile": "https://huggingface.co/RWKV/rwkv-4-7b-pile/resolve/main/config.json", "RWKV/rwkv-4-14b-pile": "https://huggingface.co/RWKV/rwkv-4-14b-pile/resolve/main/config.json", "RWKV/rwkv-raven-1b5": "https://huggingface.co/RWKV/rwkv-raven-1b5/resolve/main/config.json", "RWKV/rwkv-raven-3b": "https://huggingface.co/RWKV/rwkv-raven-3b/resolve/main/config.json", "RWKV/rwkv-raven-7b": "https://huggingface.co/RWKV/rwkv-raven-7b/resolve/main/config.json", "RWKV/rwkv-raven-14b": "https://huggingface.co/RWKV/rwkv-raven-14b/resolve/main/config.json", } class __UpperCamelCase ( A__ ): __A : Tuple = """rwkv""" __A : Any = {"""max_position_embeddings""": """context_length"""} def __init__( self , _UpperCamelCase=50277 , _UpperCamelCase=1024 , _UpperCamelCase=4096 , _UpperCamelCase=32 , _UpperCamelCase=None , _UpperCamelCase=None , _UpperCamelCase=1e-5 , _UpperCamelCase=0 , _UpperCamelCase=0 , _UpperCamelCase=6 , _UpperCamelCase=False , _UpperCamelCase=True , **_UpperCamelCase , ): _UpperCAmelCase = vocab_size _UpperCAmelCase = context_length _UpperCAmelCase = hidden_size _UpperCAmelCase = num_hidden_layers _UpperCAmelCase = attention_hidden_size if attention_hidden_size is not None else hidden_size _UpperCAmelCase = intermediate_size if intermediate_size is not None else 4 * hidden_size _UpperCAmelCase = layer_norm_epsilon _UpperCAmelCase = rescale_every _UpperCAmelCase = use_cache _UpperCAmelCase = bos_token_id _UpperCAmelCase = eos_token_id super().__init__( tie_word_embeddings=_UpperCamelCase , bos_token_id=_UpperCamelCase , eos_token_id=_UpperCamelCase , **_UpperCamelCase )
32
0
import copy import os from collections import OrderedDict from typing import TYPE_CHECKING, Any, Dict, Mapping, Optional, Union if TYPE_CHECKING: from ...processing_utils import ProcessorMixin from ...utils import TensorType from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging SCREAMING_SNAKE_CASE__ = logging.get_logger(__name__) SCREAMING_SNAKE_CASE__ = { '''google/owlvit-base-patch32''': '''https://huggingface.co/google/owlvit-base-patch32/resolve/main/config.json''', '''google/owlvit-base-patch16''': '''https://huggingface.co/google/owlvit-base-patch16/resolve/main/config.json''', '''google/owlvit-large-patch14''': '''https://huggingface.co/google/owlvit-large-patch14/resolve/main/config.json''', } class _UpperCamelCase( __lowerCamelCase ): __SCREAMING_SNAKE_CASE : Union[str, Any] = '''owlvit_text_model''' def __init__( self : Optional[int] , SCREAMING_SNAKE_CASE__ : Tuple=4_9_4_0_8 , SCREAMING_SNAKE_CASE__ : Optional[int]=5_1_2 , SCREAMING_SNAKE_CASE__ : Optional[Any]=2_0_4_8 , SCREAMING_SNAKE_CASE__ : int=1_2 , SCREAMING_SNAKE_CASE__ : Union[str, Any]=8 , SCREAMING_SNAKE_CASE__ : int=1_6 , SCREAMING_SNAKE_CASE__ : Dict="quick_gelu" , SCREAMING_SNAKE_CASE__ : Any=1e-5 , SCREAMING_SNAKE_CASE__ : str=0.0 , SCREAMING_SNAKE_CASE__ : Tuple=0.02 , SCREAMING_SNAKE_CASE__ : List[Any]=1.0 , SCREAMING_SNAKE_CASE__ : List[Any]=0 , SCREAMING_SNAKE_CASE__ : List[Any]=4_9_4_0_6 , SCREAMING_SNAKE_CASE__ : Union[str, Any]=4_9_4_0_7 , **SCREAMING_SNAKE_CASE__ : Dict , ): '''simple docstring''' super().__init__(pad_token_id=SCREAMING_SNAKE_CASE__ , bos_token_id=SCREAMING_SNAKE_CASE__ , eos_token_id=SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ) __a : List[Any] = vocab_size __a : Dict = hidden_size __a : Optional[Any] = intermediate_size __a : Any = num_hidden_layers __a : List[Any] = num_attention_heads __a : Optional[Any] = max_position_embeddings __a : Dict = hidden_act __a : str = layer_norm_eps __a : List[str] = attention_dropout __a : Optional[int] = initializer_range __a : List[Any] = initializer_factor @classmethod def __lowerCAmelCase ( cls : int , SCREAMING_SNAKE_CASE__ : Union[str, os.PathLike] , **SCREAMING_SNAKE_CASE__ : Any ): '''simple docstring''' cls._set_token_in_kwargs(SCREAMING_SNAKE_CASE__ ) __a , __a : Dict = cls.get_config_dict(SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ) # get the text config dict if we are loading from OwlViTConfig if config_dict.get('model_type' ) == "owlvit": __a : Dict = config_dict['text_config'] if "model_type" in config_dict and hasattr(cls , 'model_type' ) and config_dict["model_type"] != cls.model_type: logger.warning( f'''You are using a model of type {config_dict["model_type"]} to instantiate a model of type ''' f'''{cls.model_type}. This is not supported for all configurations of models and can yield errors.''' ) return cls.from_dict(SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ) class _UpperCamelCase( __lowerCamelCase ): __SCREAMING_SNAKE_CASE : str = '''owlvit_vision_model''' def __init__( self : Tuple , SCREAMING_SNAKE_CASE__ : Union[str, Any]=7_6_8 , SCREAMING_SNAKE_CASE__ : Dict=3_0_7_2 , SCREAMING_SNAKE_CASE__ : Dict=1_2 , SCREAMING_SNAKE_CASE__ : List[str]=1_2 , SCREAMING_SNAKE_CASE__ : Dict=3 , SCREAMING_SNAKE_CASE__ : List[Any]=7_6_8 , SCREAMING_SNAKE_CASE__ : int=3_2 , SCREAMING_SNAKE_CASE__ : Tuple="quick_gelu" , SCREAMING_SNAKE_CASE__ : List[Any]=1e-5 , SCREAMING_SNAKE_CASE__ : List[str]=0.0 , SCREAMING_SNAKE_CASE__ : List[str]=0.02 , SCREAMING_SNAKE_CASE__ : Tuple=1.0 , **SCREAMING_SNAKE_CASE__ : Tuple , ): '''simple docstring''' super().__init__(**SCREAMING_SNAKE_CASE__ ) __a : str = hidden_size __a : int = intermediate_size __a : Dict = num_hidden_layers __a : str = num_attention_heads __a : Optional[int] = num_channels __a : Tuple = image_size __a : str = patch_size __a : List[str] = hidden_act __a : Dict = layer_norm_eps __a : Union[str, Any] = attention_dropout __a : int = initializer_range __a : List[str] = initializer_factor @classmethod def __lowerCAmelCase ( cls : Optional[Any] , SCREAMING_SNAKE_CASE__ : Union[str, os.PathLike] , **SCREAMING_SNAKE_CASE__ : Dict ): '''simple docstring''' cls._set_token_in_kwargs(SCREAMING_SNAKE_CASE__ ) __a , __a : int = cls.get_config_dict(SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ) # get the vision config dict if we are loading from OwlViTConfig if config_dict.get('model_type' ) == "owlvit": __a : List[str] = config_dict['vision_config'] if "model_type" in config_dict and hasattr(cls , 'model_type' ) and config_dict["model_type"] != cls.model_type: logger.warning( f'''You are using a model of type {config_dict["model_type"]} to instantiate a model of type ''' f'''{cls.model_type}. This is not supported for all configurations of models and can yield errors.''' ) return cls.from_dict(SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ) class _UpperCamelCase( __lowerCamelCase ): __SCREAMING_SNAKE_CASE : Any = '''owlvit''' __SCREAMING_SNAKE_CASE : str = True def __init__( self : str , SCREAMING_SNAKE_CASE__ : List[Any]=None , SCREAMING_SNAKE_CASE__ : List[str]=None , SCREAMING_SNAKE_CASE__ : Any=5_1_2 , SCREAMING_SNAKE_CASE__ : Optional[int]=2.6_592 , SCREAMING_SNAKE_CASE__ : Dict=True , **SCREAMING_SNAKE_CASE__ : str , ): '''simple docstring''' super().__init__(**SCREAMING_SNAKE_CASE__ ) if text_config is None: __a : int = {} logger.info('text_config is None. Initializing the OwlViTTextConfig with default values.' ) if vision_config is None: __a : Optional[int] = {} logger.info('vision_config is None. initializing the OwlViTVisionConfig with default values.' ) __a : int = OwlViTTextConfig(**SCREAMING_SNAKE_CASE__ ) __a : str = OwlViTVisionConfig(**SCREAMING_SNAKE_CASE__ ) __a : str = projection_dim __a : Union[str, Any] = logit_scale_init_value __a : Union[str, Any] = return_dict __a : int = 1.0 @classmethod def __lowerCAmelCase ( cls : Any , SCREAMING_SNAKE_CASE__ : Union[str, os.PathLike] , **SCREAMING_SNAKE_CASE__ : Tuple ): '''simple docstring''' cls._set_token_in_kwargs(SCREAMING_SNAKE_CASE__ ) __a , __a : int = cls.get_config_dict(SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ) if "model_type" in config_dict and hasattr(cls , 'model_type' ) and config_dict["model_type"] != cls.model_type: logger.warning( f'''You are using a model of type {config_dict["model_type"]} to instantiate a model of type ''' f'''{cls.model_type}. This is not supported for all configurations of models and can yield errors.''' ) return cls.from_dict(SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ) @classmethod def __lowerCAmelCase ( cls : Dict , SCREAMING_SNAKE_CASE__ : Dict , SCREAMING_SNAKE_CASE__ : Dict , **SCREAMING_SNAKE_CASE__ : Optional[int] ): '''simple docstring''' __a : Union[str, Any] = {} __a : List[str] = text_config __a : Tuple = vision_config return cls.from_dict(SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ) def __lowerCAmelCase ( self : Optional[int] ): '''simple docstring''' __a : List[Any] = copy.deepcopy(self.__dict__ ) __a : Optional[Any] = self.text_config.to_dict() __a : Dict = self.vision_config.to_dict() __a : Dict = self.__class__.model_type return output class _UpperCamelCase( __lowerCamelCase ): @property def __lowerCAmelCase ( self : Optional[Any] ): '''simple docstring''' return OrderedDict( [ ('input_ids', {0: 'batch', 1: 'sequence'}), ('pixel_values', {0: 'batch', 1: 'num_channels', 2: 'height', 3: 'width'}), ('attention_mask', {0: 'batch', 1: 'sequence'}), ] ) @property def __lowerCAmelCase ( self : Dict ): '''simple docstring''' return OrderedDict( [ ('logits_per_image', {0: 'batch'}), ('logits_per_text', {0: 'batch'}), ('text_embeds', {0: 'batch'}), ('image_embeds', {0: 'batch'}), ] ) @property def __lowerCAmelCase ( self : str ): '''simple docstring''' return 1e-4 def __lowerCAmelCase ( self : Optional[int] , SCREAMING_SNAKE_CASE__ : "ProcessorMixin" , SCREAMING_SNAKE_CASE__ : int = -1 , SCREAMING_SNAKE_CASE__ : int = -1 , SCREAMING_SNAKE_CASE__ : Optional["TensorType"] = None , ): '''simple docstring''' __a : Tuple = super().generate_dummy_inputs( processor.tokenizer , batch_size=SCREAMING_SNAKE_CASE__ , seq_length=SCREAMING_SNAKE_CASE__ , framework=SCREAMING_SNAKE_CASE__ ) __a : Dict = super().generate_dummy_inputs( processor.image_processor , batch_size=SCREAMING_SNAKE_CASE__ , framework=SCREAMING_SNAKE_CASE__ ) return {**text_input_dict, **image_input_dict} @property def __lowerCAmelCase ( self : Optional[Any] ): '''simple docstring''' return 1_4
47
def A__ ( SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : int ) -> str: """simple docstring""" if a < 0 or b < 0: raise ValueError('''the value of both inputs must be positive''' ) _UpperCAmelCase = str(bin(SCREAMING_SNAKE_CASE_ ) )[2:] # remove the leading "0b" _UpperCAmelCase = str(bin(SCREAMING_SNAKE_CASE_ ) )[2:] # remove the leading "0b" _UpperCAmelCase = max(len(SCREAMING_SNAKE_CASE_ ) , len(SCREAMING_SNAKE_CASE_ ) ) return "0b" + "".join( str(int(char_a == '''1''' and char_b == '''1''' ) ) for char_a, char_b in zip(a_binary.zfill(SCREAMING_SNAKE_CASE_ ) , b_binary.zfill(SCREAMING_SNAKE_CASE_ ) ) ) if __name__ == "__main__": import doctest doctest.testmod()
32
0
'''simple docstring''' import os import pytest import yaml from datasets.features.features import Features, Value from datasets.info import DatasetInfo, DatasetInfosDict @pytest.mark.parametrize( "files" , [ ["full:README.md", "dataset_infos.json"], ["empty:README.md", "dataset_infos.json"], ["dataset_infos.json"], ["full:README.md"], ] , ) def A ( UpperCamelCase_ : Tuple , UpperCamelCase_ : Optional[Any] ) -> List[Any]: '''simple docstring''' lowerCAmelCase__ = tmp_path_factory.mktemp("dset_infos_dir" ) if "full:README.md" in files: with open(dataset_infos_dir / "README.md" , "w" ) as f: f.write("---\ndataset_info:\n dataset_size: 42\n---" ) if "empty:README.md" in files: with open(dataset_infos_dir / "README.md" , "w" ) as f: f.write("" ) # we want to support dataset_infos.json for backward compatibility if "dataset_infos.json" in files: with open(dataset_infos_dir / "dataset_infos.json" , "w" ) as f: f.write("{\"default\": {\"dataset_size\": 42}}" ) lowerCAmelCase__ = DatasetInfosDict.from_directory(UpperCamelCase_ ) assert dataset_infos assert dataset_infos["default"].dataset_size == 42 @pytest.mark.parametrize( "dataset_info" , [ DatasetInfo(), DatasetInfo( description="foo" , features=Features({"a": Value("int32" )} ) , builder_name="builder" , config_name="config" , version="1.0.0" , splits=[{"name": "train"}] , download_size=42 , ), ] , ) def A ( UpperCamelCase_ : Optional[Any] , UpperCamelCase_ : DatasetInfo ) -> Optional[int]: '''simple docstring''' lowerCAmelCase__ = str(UpperCamelCase_ ) dataset_info.write_to_directory(UpperCamelCase_ ) lowerCAmelCase__ = DatasetInfo.from_directory(UpperCamelCase_ ) assert dataset_info == reloaded assert os.path.exists(os.path.join(UpperCamelCase_ , "dataset_info.json" ) ) def A ( ) -> List[Any]: '''simple docstring''' lowerCAmelCase__ = DatasetInfo( description="foo" , citation="bar" , homepage="https://foo.bar" , license="CC0" , features=Features({"a": Value("int32" )} ) , post_processed={} , supervised_keys=() , task_templates=[] , builder_name="builder" , config_name="config" , version="1.0.0" , splits=[{"name": "train", "num_examples": 42}] , download_checksums={} , download_size=13_37 , post_processing_size=4_42 , dataset_size=12_34 , size_in_bytes=13_37 + 4_42 + 12_34 , ) lowerCAmelCase__ = dataset_info._to_yaml_dict() assert sorted(UpperCamelCase_ ) == sorted(DatasetInfo._INCLUDED_INFO_IN_YAML ) for key in DatasetInfo._INCLUDED_INFO_IN_YAML: assert key in dataset_info_yaml_dict assert isinstance(dataset_info_yaml_dict[key] , (list, dict, int, str) ) lowerCAmelCase__ = yaml.safe_dump(UpperCamelCase_ ) lowerCAmelCase__ = yaml.safe_load(UpperCamelCase_ ) assert dataset_info_yaml_dict == reloaded def A ( ) -> str: '''simple docstring''' lowerCAmelCase__ = DatasetInfo() lowerCAmelCase__ = dataset_info._to_yaml_dict() assert dataset_info_yaml_dict == {} @pytest.mark.parametrize( "dataset_infos_dict" , [ DatasetInfosDict(), DatasetInfosDict({"default": DatasetInfo()} ), DatasetInfosDict({"my_config_name": DatasetInfo()} ), DatasetInfosDict( { "default": DatasetInfo( description="foo" , features=Features({"a": Value("int32" )} ) , builder_name="builder" , config_name="config" , version="1.0.0" , splits=[{"name": "train"}] , download_size=42 , ) } ), DatasetInfosDict( { "v1": DatasetInfo(dataset_size=42 ), "v2": DatasetInfo(dataset_size=13_37 ), } ), ] , ) def A ( UpperCamelCase_ : Dict , UpperCamelCase_ : DatasetInfosDict ) -> Union[str, Any]: '''simple docstring''' lowerCAmelCase__ = str(UpperCamelCase_ ) dataset_infos_dict.write_to_directory(UpperCamelCase_ ) lowerCAmelCase__ = DatasetInfosDict.from_directory(UpperCamelCase_ ) # the config_name of the dataset_infos_dict take over the attribute for config_name, dataset_info in dataset_infos_dict.items(): lowerCAmelCase__ = config_name # the yaml representation doesn't include fields like description or citation # so we just test that we can recover what we can from the yaml lowerCAmelCase__ = DatasetInfo._from_yaml_dict(dataset_info._to_yaml_dict() ) assert dataset_infos_dict == reloaded if dataset_infos_dict: assert os.path.exists(os.path.join(UpperCamelCase_ , "README.md" ) )
48
from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCAmelCase_ = logging.get_logger(__name__) UpperCAmelCase_ = { "tiiuae/falcon-40b": "https://huggingface.co/tiiuae/falcon-40b/resolve/main/config.json", "tiiuae/falcon-7b": "https://huggingface.co/tiiuae/falcon-7b/resolve/main/config.json", } class __UpperCamelCase ( A__ ): __A : Dict = """falcon""" __A : Any = ["""past_key_values"""] def __init__( self , _UpperCamelCase=65024 , _UpperCamelCase=4544 , _UpperCamelCase=32 , _UpperCamelCase=71 , _UpperCamelCase=1e-5 , _UpperCamelCase=0.02 , _UpperCamelCase=True , _UpperCamelCase=0.0 , _UpperCamelCase=0.0 , _UpperCamelCase=None , _UpperCamelCase=False , _UpperCamelCase=False , _UpperCamelCase=True , _UpperCamelCase=True , _UpperCamelCase=False , _UpperCamelCase=11 , _UpperCamelCase=11 , **_UpperCamelCase , ): _UpperCAmelCase = vocab_size # Backward compatibility with n_embed kwarg _UpperCAmelCase = kwargs.pop('''n_embed''' , _UpperCamelCase ) _UpperCAmelCase = hidden_size if n_embed is None else n_embed _UpperCAmelCase = num_hidden_layers _UpperCAmelCase = num_attention_heads _UpperCAmelCase = layer_norm_epsilon _UpperCAmelCase = initializer_range _UpperCAmelCase = use_cache _UpperCAmelCase = hidden_dropout _UpperCAmelCase = attention_dropout _UpperCAmelCase = bos_token_id _UpperCAmelCase = eos_token_id _UpperCAmelCase = num_attention_heads if num_kv_heads is None else num_kv_heads _UpperCAmelCase = alibi _UpperCAmelCase = new_decoder_architecture _UpperCAmelCase = multi_query # Ignored when new_decoder_architecture is True _UpperCAmelCase = parallel_attn _UpperCAmelCase = bias super().__init__(bos_token_id=_UpperCamelCase , eos_token_id=_UpperCamelCase , **_UpperCamelCase ) @property def UpperCamelCase( self ): return self.hidden_size // self.num_attention_heads @property def UpperCamelCase( self ): return not self.alibi
32
0
"""simple docstring""" import argparse import math import traceback import dateutil.parser as date_parser import requests def lowercase__ ( snake_case_ :Dict ): __UpperCAmelCase = {} __UpperCAmelCase = job['''started_at'''] __UpperCAmelCase = job['''completed_at'''] __UpperCAmelCase = date_parser.parse(snake_case_ ) __UpperCAmelCase = date_parser.parse(snake_case_ ) __UpperCAmelCase = round((end_datetime - start_datetime).total_seconds() / 60.0 ) __UpperCAmelCase = start __UpperCAmelCase = end __UpperCAmelCase = duration_in_min return job_info def lowercase__ ( snake_case_ :Tuple , snake_case_ :List[Any]=None ): __UpperCAmelCase = None if token is not None: __UpperCAmelCase = {'''Accept''': '''application/vnd.github+json''', '''Authorization''': F'''Bearer {token}'''} __UpperCAmelCase = F'''https://api.github.com/repos/huggingface/transformers/actions/runs/{workflow_run_id}/jobs?per_page=100''' __UpperCAmelCase = requests.get(snake_case_ , headers=snake_case_ ).json() __UpperCAmelCase = {} try: job_time.update({job['''name''']: extract_time_from_single_job(snake_case_ ) for job in result['''jobs''']} ) __UpperCAmelCase = math.ceil((result['''total_count'''] - 100) / 100 ) for i in range(snake_case_ ): __UpperCAmelCase = requests.get(url + F'''&page={i + 2}''' , headers=snake_case_ ).json() job_time.update({job['''name''']: extract_time_from_single_job(snake_case_ ) for job in result['''jobs''']} ) return job_time except Exception: print(F'''Unknown error, could not fetch links:\n{traceback.format_exc()}''' ) return {} if __name__ == "__main__": _lowercase : List[Any] = argparse.ArgumentParser() # Required parameters parser.add_argument('--workflow_run_id', type=str, required=True, help='A GitHub Actions workflow run id.') _lowercase : Tuple = parser.parse_args() _lowercase : List[str] = get_job_time(args.workflow_run_id) _lowercase : List[Any] = dict(sorted(job_time.items(), key=lambda item: item[1]["duration"], reverse=True)) for k, v in job_time.items(): print(f"""{k}: {v["duration"]}""")
49
from math import sqrt def A__ ( SCREAMING_SNAKE_CASE_ : int ) -> bool: """simple docstring""" if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5 , int(sqrt(SCREAMING_SNAKE_CASE_ ) + 1 ) , 6 ): if number % i == 0 or number % (i + 2) == 0: return False return True def A__ ( SCREAMING_SNAKE_CASE_ : int = 1_00_01 ) -> int: """simple docstring""" _UpperCAmelCase = 0 _UpperCAmelCase = 1 while count != nth and number < 3: number += 1 if is_prime(SCREAMING_SNAKE_CASE_ ): count += 1 while count != nth: number += 2 if is_prime(SCREAMING_SNAKE_CASE_ ): count += 1 return number if __name__ == "__main__": print(f'''{solution() = }''')
32
0
'''simple docstring''' import collections import tempfile import unittest import numpy as np from transformers.testing_utils import ( is_pt_flax_cross_test, require_flax, require_torch, require_vision, slow, torch_device, ) from transformers.utils import is_flax_available, is_torch_available, is_vision_available from ...test_modeling_flax_common import floats_tensor, ids_tensor, random_attention_mask from ..bert.test_modeling_flax_bert import FlaxBertModelTester from ..clip.test_modeling_flax_clip import FlaxCLIPVisionModelTester from ..vit.test_modeling_flax_vit import FlaxViTModelTester if is_flax_available(): from transformers import ( FlaxBertModel, FlaxCLIPVisionModel, FlaxVisionTextDualEncoderModel, FlaxViTModel, VisionTextDualEncoderConfig, VisionTextDualEncoderProcessor, ) from transformers.modeling_flax_pytorch_utils import ( convert_pytorch_state_dict_to_flax, load_flax_weights_in_pytorch_model, ) if is_torch_available(): import torch from transformers import VisionTextDualEncoderModel if is_vision_available(): from PIL import Image def A__ ( __lowerCAmelCase : Any ): if isinstance(__lowerCAmelCase , collections.abc.Iterable ): return x return (x, x) @require_flax class UpperCamelCase__ : '''simple docstring''' def UpperCamelCase_ ( self ,_lowerCAmelCase ,_lowerCAmelCase ): pass def UpperCamelCase_ ( self ): pass def UpperCamelCase_ ( self ): pass def UpperCamelCase_ ( self ,_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ): lowerCamelCase__ = np.abs((a - b) ).max() self.assertLessEqual(_lowerCAmelCase ,_lowerCAmelCase ,F'''Difference between torch and flax is {diff} (>= {tol}).''' ) def UpperCamelCase_ ( self ,_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase=None ,**_lowerCAmelCase ): lowerCamelCase__ = VisionTextDualEncoderConfig.from_vision_text_configs(_lowerCAmelCase ,_lowerCAmelCase ) lowerCamelCase__ = FlaxVisionTextDualEncoderModel(_lowerCAmelCase ) lowerCamelCase__ = model(input_ids=_lowerCAmelCase ,pixel_values=_lowerCAmelCase ,attention_mask=_lowerCAmelCase ) self.assertEqual(output["""text_embeds"""].shape ,(input_ids.shape[0], config.projection_dim) ) self.assertEqual(output["""image_embeds"""].shape ,(pixel_values.shape[0], config.projection_dim) ) def UpperCamelCase_ ( self ,_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase=None ,**_lowerCAmelCase ): lowerCamelCase__ , lowerCamelCase__ = self.get_vision_text_model(_lowerCAmelCase ,_lowerCAmelCase ) lowerCamelCase__ = {"""vision_model""": vision_model, """text_model""": text_model} lowerCamelCase__ = FlaxVisionTextDualEncoderModel.from_vision_text_pretrained(**_lowerCAmelCase ) lowerCamelCase__ = model(input_ids=_lowerCAmelCase ,pixel_values=_lowerCAmelCase ,attention_mask=_lowerCAmelCase ) self.assertEqual(output["""text_embeds"""].shape ,(input_ids.shape[0], model.config.projection_dim) ) self.assertEqual(output["""image_embeds"""].shape ,(pixel_values.shape[0], model.config.projection_dim) ) def UpperCamelCase_ ( self ,_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase=None ,**_lowerCAmelCase ): lowerCamelCase__ , lowerCamelCase__ = self.get_vision_text_model(_lowerCAmelCase ,_lowerCAmelCase ) lowerCamelCase__ = {"""vision_model""": vision_model, """text_model""": text_model} lowerCamelCase__ = FlaxVisionTextDualEncoderModel.from_vision_text_pretrained(**_lowerCAmelCase ) lowerCamelCase__ = model(input_ids=_lowerCAmelCase ,pixel_values=_lowerCAmelCase ,attention_mask=_lowerCAmelCase ) lowerCamelCase__ = output[0] with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(_lowerCAmelCase ) lowerCamelCase__ = FlaxVisionTextDualEncoderModel.from_pretrained(_lowerCAmelCase ) lowerCamelCase__ = model(input_ids=_lowerCAmelCase ,pixel_values=_lowerCAmelCase ,attention_mask=_lowerCAmelCase ) lowerCamelCase__ = after_output[0] lowerCamelCase__ = np.amax(np.abs(out_a - out_a ) ) self.assertLessEqual(_lowerCAmelCase ,1E-3 ) def UpperCamelCase_ ( self ,_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase=None ,**_lowerCAmelCase ): lowerCamelCase__ , lowerCamelCase__ = self.get_vision_text_model(_lowerCAmelCase ,_lowerCAmelCase ) lowerCamelCase__ = {"""vision_model""": vision_model, """text_model""": text_model} lowerCamelCase__ = FlaxVisionTextDualEncoderModel.from_vision_text_pretrained(**_lowerCAmelCase ) lowerCamelCase__ = model( input_ids=_lowerCAmelCase ,pixel_values=_lowerCAmelCase ,attention_mask=_lowerCAmelCase ,output_attentions=_lowerCAmelCase ) lowerCamelCase__ = output.vision_model_output.attentions self.assertEqual(len(_lowerCAmelCase ) ,vision_config.num_hidden_layers ) # in ViT, the seq_len equals the number of patches + 1 (we add 1 for the [CLS] token) lowerCamelCase__ = to_atuple(vision_model.config.image_size ) lowerCamelCase__ = to_atuple(vision_model.config.patch_size ) lowerCamelCase__ = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) lowerCamelCase__ = num_patches + 1 self.assertEqual(vision_attentions[0].shape[-3:] ,(vision_config.num_attention_heads, seq_len, seq_len) ) lowerCamelCase__ = output.text_model_output.attentions self.assertEqual(len(_lowerCAmelCase ) ,text_config.num_hidden_layers ) self.assertEqual( text_attentions[0].shape[-3:] ,(text_config.num_attention_heads, input_ids.shape[-1], input_ids.shape[-1]) ,) def UpperCamelCase_ ( self ,_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ): pt_model.to(_lowerCAmelCase ) pt_model.eval() # prepare inputs lowerCamelCase__ = inputs_dict lowerCamelCase__ = {k: torch.tensor(v.tolist() ) for k, v in flax_inputs.items()} with torch.no_grad(): lowerCamelCase__ = pt_model(**_lowerCAmelCase ).to_tuple() lowerCamelCase__ = fx_model(**_lowerCAmelCase ).to_tuple() self.assertEqual(len(_lowerCAmelCase ) ,len(_lowerCAmelCase ) ,"""Output lengths differ between Flax and PyTorch""" ) for fx_output, pt_output in zip(fx_outputs[:4] ,pt_outputs[:4] ): self.assert_almost_equals(_lowerCAmelCase ,pt_output.numpy() ,4E-2 ) # PT -> Flax with tempfile.TemporaryDirectory() as tmpdirname: pt_model.save_pretrained(_lowerCAmelCase ) lowerCamelCase__ = FlaxVisionTextDualEncoderModel.from_pretrained(_lowerCAmelCase ,from_pt=_lowerCAmelCase ) lowerCamelCase__ = fx_model_loaded(**_lowerCAmelCase ).to_tuple() self.assertEqual(len(_lowerCAmelCase ) ,len(_lowerCAmelCase ) ,"""Output lengths differ between Flax and PyTorch""" ) for fx_output_loaded, pt_output in zip(fx_outputs_loaded[:4] ,pt_outputs[:4] ): self.assert_almost_equals(_lowerCAmelCase ,pt_output.numpy() ,4E-2 ) # Flax -> PT with tempfile.TemporaryDirectory() as tmpdirname: fx_model.save_pretrained(_lowerCAmelCase ) lowerCamelCase__ = VisionTextDualEncoderModel.from_pretrained(_lowerCAmelCase ,from_flax=_lowerCAmelCase ) pt_model_loaded.to(_lowerCAmelCase ) pt_model_loaded.eval() with torch.no_grad(): lowerCamelCase__ = pt_model_loaded(**_lowerCAmelCase ).to_tuple() self.assertEqual(len(_lowerCAmelCase ) ,len(_lowerCAmelCase ) ,"""Output lengths differ between Flax and PyTorch""" ) for fx_output, pt_output_loaded in zip(fx_outputs[:4] ,pt_outputs_loaded[:4] ): self.assert_almost_equals(_lowerCAmelCase ,pt_output_loaded.numpy() ,4E-2 ) def UpperCamelCase_ ( self ,_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ): lowerCamelCase__ = VisionTextDualEncoderConfig.from_vision_text_configs(_lowerCAmelCase ,_lowerCAmelCase ) lowerCamelCase__ = VisionTextDualEncoderModel(_lowerCAmelCase ) lowerCamelCase__ = FlaxVisionTextDualEncoderModel(_lowerCAmelCase ) lowerCamelCase__ = convert_pytorch_state_dict_to_flax(pt_model.state_dict() ,_lowerCAmelCase ) lowerCamelCase__ = fx_state self.check_pt_flax_equivalence(_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ) def UpperCamelCase_ ( self ,_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ): lowerCamelCase__ = VisionTextDualEncoderConfig.from_vision_text_configs(_lowerCAmelCase ,_lowerCAmelCase ) lowerCamelCase__ = VisionTextDualEncoderModel(_lowerCAmelCase ) lowerCamelCase__ = FlaxVisionTextDualEncoderModel(_lowerCAmelCase ) lowerCamelCase__ = load_flax_weights_in_pytorch_model(_lowerCAmelCase ,fx_model.params ) self.check_pt_flax_equivalence(_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ) def UpperCamelCase_ ( self ): lowerCamelCase__ = self.prepare_config_and_inputs() self.check_model_from_pretrained_configs(**_lowerCAmelCase ) def UpperCamelCase_ ( self ): lowerCamelCase__ = self.prepare_config_and_inputs() self.check_vision_text_dual_encoder_from_pretrained(**_lowerCAmelCase ) def UpperCamelCase_ ( self ): lowerCamelCase__ = self.prepare_config_and_inputs() self.check_save_load(**_lowerCAmelCase ) def UpperCamelCase_ ( self ): lowerCamelCase__ = self.prepare_config_and_inputs() self.check_vision_text_output_attention(**_lowerCAmelCase ) @is_pt_flax_cross_test def UpperCamelCase_ ( self ): lowerCamelCase__ = self.prepare_config_and_inputs() lowerCamelCase__ = config_inputs_dict.pop("""vision_config""" ) lowerCamelCase__ = config_inputs_dict.pop("""text_config""" ) lowerCamelCase__ = config_inputs_dict self.check_equivalence_pt_to_flax(_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ) self.check_equivalence_flax_to_pt(_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ) @slow def UpperCamelCase_ ( self ): lowerCamelCase__ , lowerCamelCase__ = self.get_pretrained_model_and_inputs() lowerCamelCase__ = model_a(**_lowerCAmelCase ) lowerCamelCase__ = outputs[0] with tempfile.TemporaryDirectory() as tmp_dirname: model_a.save_pretrained(_lowerCAmelCase ) lowerCamelCase__ = FlaxVisionTextDualEncoderModel.from_pretrained(_lowerCAmelCase ) lowerCamelCase__ = model_a(**_lowerCAmelCase ) lowerCamelCase__ = after_outputs[0] lowerCamelCase__ = np.amax(np.abs(out_a - out_a ) ) self.assertLessEqual(_lowerCAmelCase ,1E-5 ) @require_flax class UpperCamelCase__ (a ,unittest.TestCase ): '''simple docstring''' def UpperCamelCase_ ( self ): lowerCamelCase__ = FlaxVisionTextDualEncoderModel.from_vision_text_pretrained( """hf-internal-testing/tiny-random-vit""" ,"""hf-internal-testing/tiny-bert""" ,vision_from_pt=_lowerCAmelCase ,text_from_pt=_lowerCAmelCase ,) lowerCamelCase__ = 13 lowerCamelCase__ = floats_tensor( [ batch_size, model.config.vision_config.num_channels, model.config.vision_config.image_size, model.config.vision_config.image_size, ] ) lowerCamelCase__ = ids_tensor([batch_size, 4] ,model.config.text_config.vocab_size ) lowerCamelCase__ = random_attention_mask([batch_size, 4] ) lowerCamelCase__ = {"""pixel_values""": pixel_values, """input_ids""": input_ids, """attention_mask""": attention_mask} return model, inputs def UpperCamelCase_ ( self ,_lowerCAmelCase ,_lowerCAmelCase ): lowerCamelCase__ = FlaxViTModel(_lowerCAmelCase ) lowerCamelCase__ = FlaxBertModel(_lowerCAmelCase ) return vision_model, text_model def UpperCamelCase_ ( self ): lowerCamelCase__ = FlaxViTModelTester(self ) lowerCamelCase__ = FlaxBertModelTester(self ) lowerCamelCase__ = vit_model_tester.prepare_config_and_inputs() lowerCamelCase__ = bert_model_tester.prepare_config_and_inputs() lowerCamelCase__ , lowerCamelCase__ = vision_config_and_inputs lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ = text_config_and_inputs # make sure that cross attention layers are added return { "text_config": text_config, "vision_config": vision_config, "pixel_values": pixel_values, "attention_mask": attention_mask, "input_ids": input_ids, "token_type_ids": token_type_ids, } @require_torch class UpperCamelCase__ (a ,unittest.TestCase ): '''simple docstring''' def UpperCamelCase_ ( self ): lowerCamelCase__ = FlaxVisionTextDualEncoderModel.from_vision_text_pretrained( """hf-internal-testing/tiny-random-clip""" ,"""hf-internal-testing/tiny-bert""" ,vision_from_pt=_lowerCAmelCase ,text_from_pt=_lowerCAmelCase ,) lowerCamelCase__ = 13 lowerCamelCase__ = floats_tensor( [ batch_size, model.config.vision_config.num_channels, model.config.vision_config.image_size, model.config.vision_config.image_size, ] ) lowerCamelCase__ = ids_tensor([batch_size, 4] ,model.config.text_config.vocab_size ) lowerCamelCase__ = random_attention_mask([batch_size, 4] ) lowerCamelCase__ = {"""pixel_values""": pixel_values, """input_ids""": input_ids, """attention_mask""": attention_mask} return model, inputs def UpperCamelCase_ ( self ,_lowerCAmelCase ,_lowerCAmelCase ): lowerCamelCase__ = FlaxCLIPVisionModel(_lowerCAmelCase ) lowerCamelCase__ = FlaxBertModel(_lowerCAmelCase ) return vision_model, text_model def UpperCamelCase_ ( self ): lowerCamelCase__ = FlaxCLIPVisionModelTester(self ) lowerCamelCase__ = FlaxBertModelTester(self ) lowerCamelCase__ = clip_model_tester.prepare_config_and_inputs() lowerCamelCase__ = bert_model_tester.prepare_config_and_inputs() lowerCamelCase__ , lowerCamelCase__ = vision_config_and_inputs lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ = text_config_and_inputs # make sure that cross attention layers are added return { "text_config": text_config, "vision_config": vision_config, "pixel_values": pixel_values, "attention_mask": attention_mask, "input_ids": input_ids, "token_type_ids": token_type_ids, } @require_flax @require_vision class UpperCamelCase__ (unittest.TestCase ): '''simple docstring''' @slow def UpperCamelCase_ ( self ): lowerCamelCase__ = FlaxVisionTextDualEncoderModel.from_pretrained("""clip-italian/clip-italian""" ,logit_scale_init_value=1.0 ) lowerCamelCase__ = VisionTextDualEncoderProcessor.from_pretrained("""clip-italian/clip-italian""" ) lowerCamelCase__ = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) lowerCamelCase__ = processor( text=["""una foto di un gatto""", """una foto di un cane"""] ,images=_lowerCAmelCase ,padding=_lowerCAmelCase ,return_tensors="""np""" ) lowerCamelCase__ = model(**_lowerCAmelCase ) # verify the logits self.assertEqual(outputs.logits_per_image.shape ,(inputs.pixel_values.shape[0], inputs.input_ids.shape[0]) ) self.assertEqual( outputs.logits_per_text.shape ,(inputs.input_ids.shape[0], inputs.pixel_values.shape[0]) ,) lowerCamelCase__ = np.array([[1.228_4727, 0.310_4122]] ) self.assertTrue(np.allclose(outputs.logits_per_image ,_lowerCAmelCase ,atol=1E-3 ) )
50
def A__ ( SCREAMING_SNAKE_CASE_ : int ) -> bool: """simple docstring""" if not isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): _UpperCAmelCase = F'''Input value of [number={number}] must be an integer''' raise TypeError(SCREAMING_SNAKE_CASE_ ) if number < 0: return False _UpperCAmelCase = number * number while number > 0: if number % 10 != number_square % 10: return False number //= 10 number_square //= 10 return True if __name__ == "__main__": import doctest doctest.testmod()
32
0
'''simple docstring''' from __future__ import annotations import requests def __snake_case ( SCREAMING_SNAKE_CASE_ : str ) -> dict: """simple docstring""" UpperCAmelCase = f"https://hacker-news.firebaseio.com/v0/item/{story_id}.json?print=pretty" return requests.get(SCREAMING_SNAKE_CASE_ ).json() def __snake_case ( SCREAMING_SNAKE_CASE_ : int = 10 ) -> list[dict]: """simple docstring""" UpperCAmelCase = '''https://hacker-news.firebaseio.com/v0/topstories.json?print=pretty''' UpperCAmelCase = requests.get(SCREAMING_SNAKE_CASE_ ).json()[:max_stories] return [get_hackernews_story(SCREAMING_SNAKE_CASE_ ) for story_id in story_ids] def __snake_case ( SCREAMING_SNAKE_CASE_ : int = 10 ) -> str: """simple docstring""" UpperCAmelCase = hackernews_top_stories(SCREAMING_SNAKE_CASE_ ) return "\n".join('''* [{title}]({url})'''.format(**SCREAMING_SNAKE_CASE_ ) for story in stories ) if __name__ == "__main__": print(hackernews_top_stories_as_markdown())
51
from dataclasses import dataclass, field from typing import ClassVar, Dict from ..features import Features, Value from .base import TaskTemplate @dataclass(frozen=A__ ) class __UpperCamelCase ( A__ ): __A : str = field(default="""language-modeling""" , metadata={"""include_in_asdict_even_if_is_default""": True} ) __A : ClassVar[Features] = Features({"""text""": Value("""string""" )} ) __A : ClassVar[Features] = Features({} ) __A : str = "text" @property def UpperCamelCase( self ): return {self.text_column: "text"}
32
0
"""simple docstring""" from typing import Dict, List from nltk.translate import gleu_score import datasets from datasets import MetricInfo A = '''\ @misc{wu2016googles, title={Google\'s Neural Machine Translation System: Bridging the Gap between Human and Machine Translation}, author={Yonghui Wu and Mike Schuster and Zhifeng Chen and Quoc V. Le and Mohammad Norouzi and Wolfgang Macherey and Maxim Krikun and Yuan Cao and Qin Gao and Klaus Macherey and Jeff Klingner and Apurva Shah and Melvin Johnson and Xiaobing Liu and Łukasz Kaiser and Stephan Gouws and Yoshikiyo Kato and Taku Kudo and Hideto Kazawa and Keith Stevens and George Kurian and Nishant Patil and Wei Wang and Cliff Young and Jason Smith and Jason Riesa and Alex Rudnick and Oriol Vinyals and Greg Corrado and Macduff Hughes and Jeffrey Dean}, year={2016}, eprint={1609.08144}, archivePrefix={arXiv}, primaryClass={cs.CL} } ''' A = '''\ The BLEU score has some undesirable properties when used for single sentences, as it was designed to be a corpus measure. We therefore use a slightly different score for our RL experiments which we call the \'GLEU score\'. For the GLEU score, we record all sub-sequences of 1, 2, 3 or 4 tokens in output and target sequence (n-grams). We then compute a recall, which is the ratio of the number of matching n-grams to the number of total n-grams in the target (ground truth) sequence, and a precision, which is the ratio of the number of matching n-grams to the number of total n-grams in the generated output sequence. Then GLEU score is simply the minimum of recall and precision. This GLEU score\'s range is always between 0 (no matches) and 1 (all match) and it is symmetrical when switching output and target. According to our experiments, GLEU score correlates quite well with the BLEU metric on a corpus level but does not have its drawbacks for our per sentence reward objective. ''' A = '''\ Computes corpus-level Google BLEU (GLEU) score of translated segments against one or more references. Instead of averaging the sentence level GLEU scores (i.e. macro-average precision), Wu et al. (2016) sum up the matching tokens and the max of hypothesis and reference tokens for each sentence, then compute using the aggregate values. Args: predictions (list of str): list of translations to score. Each translation should be tokenized into a list of tokens. references (list of list of str): list of lists of references for each translation. Each reference should be tokenized into a list of tokens. min_len (int): The minimum order of n-gram this function should extract. Defaults to 1. max_len (int): The maximum order of n-gram this function should extract. Defaults to 4. Returns: \'google_bleu\': google_bleu score Examples: Example 1: >>> hyp1 = [\'It\', \'is\', \'a\', \'guide\', \'to\', \'action\', \'which\', ... \'ensures\', \'that\', \'the\', \'rubber\', \'duck\', \'always\', ... \'disobeys\', \'the\', \'commands\', \'of\', \'the\', \'cat\'] >>> ref1a = [\'It\', \'is\', \'the\', \'guiding\', \'principle\', \'which\', ... \'guarantees\', \'the\', \'rubber\', \'duck\', \'forces\', \'never\', ... \'being\', \'under\', \'the\', \'command\', \'of\', \'the\', \'cat\'] >>> hyp2 = [\'he\', \'read\', \'the\', \'book\', \'because\', \'he\', \'was\', ... \'interested\', \'in\', \'world\', \'history\'] >>> ref2a = [\'he\', \'was\', \'interested\', \'in\', \'world\', \'history\', ... \'because\', \'he\', \'read\', \'the\', \'book\'] >>> list_of_references = [[ref1a], [ref2a]] >>> hypotheses = [hyp1, hyp2] >>> google_bleu = datasets.load_metric("google_bleu") >>> results = google_bleu.compute(predictions=hypotheses, references=list_of_references) >>> print(round(results["google_bleu"], 2)) 0.44 Example 2: >>> hyp1 = [\'It\', \'is\', \'a\', \'guide\', \'to\', \'action\', \'which\', ... \'ensures\', \'that\', \'the\', \'rubber\', \'duck\', \'always\', ... \'disobeys\', \'the\', \'commands\', \'of\', \'the\', \'cat\'] >>> ref1a = [\'It\', \'is\', \'the\', \'guiding\', \'principle\', \'which\', ... \'guarantees\', \'the\', \'rubber\', \'duck\', \'forces\', \'never\', ... \'being\', \'under\', \'the\', \'command\', \'of\', \'the\', \'cat\'] >>> ref1b = [\'It\', \'is\', \'a\', \'guide\', \'to\', \'action\', \'that\', ... \'ensures\', \'that\', \'the\', \'rubber\', \'duck\', \'will\', \'never\', ... \'heed\', \'the\', \'cat\', \'commands\'] >>> ref1c = [\'It\', \'is\', \'the\', \'practical\', \'guide\', \'for\', \'the\', ... \'rubber\', \'duck\', \'army\', \'never\', \'to\', \'heed\', \'the\', \'directions\', ... \'of\', \'the\', \'cat\'] >>> hyp2 = [\'he\', \'read\', \'the\', \'book\', \'because\', \'he\', \'was\', ... \'interested\', \'in\', \'world\', \'history\'] >>> ref2a = [\'he\', \'was\', \'interested\', \'in\', \'world\', \'history\', ... \'because\', \'he\', \'read\', \'the\', \'book\'] >>> list_of_references = [[ref1a, ref1b, ref1c], [ref2a]] >>> hypotheses = [hyp1, hyp2] >>> google_bleu = datasets.load_metric("google_bleu") >>> results = google_bleu.compute(predictions=hypotheses, references=list_of_references) >>> print(round(results["google_bleu"], 2)) 0.61 Example 3: >>> hyp1 = [\'It\', \'is\', \'a\', \'guide\', \'to\', \'action\', \'which\', ... \'ensures\', \'that\', \'the\', \'rubber\', \'duck\', \'always\', ... \'disobeys\', \'the\', \'commands\', \'of\', \'the\', \'cat\'] >>> ref1a = [\'It\', \'is\', \'the\', \'guiding\', \'principle\', \'which\', ... \'guarantees\', \'the\', \'rubber\', \'duck\', \'forces\', \'never\', ... \'being\', \'under\', \'the\', \'command\', \'of\', \'the\', \'cat\'] >>> ref1b = [\'It\', \'is\', \'a\', \'guide\', \'to\', \'action\', \'that\', ... \'ensures\', \'that\', \'the\', \'rubber\', \'duck\', \'will\', \'never\', ... \'heed\', \'the\', \'cat\', \'commands\'] >>> ref1c = [\'It\', \'is\', \'the\', \'practical\', \'guide\', \'for\', \'the\', ... \'rubber\', \'duck\', \'army\', \'never\', \'to\', \'heed\', \'the\', \'directions\', ... \'of\', \'the\', \'cat\'] >>> hyp2 = [\'he\', \'read\', \'the\', \'book\', \'because\', \'he\', \'was\', ... \'interested\', \'in\', \'world\', \'history\'] >>> ref2a = [\'he\', \'was\', \'interested\', \'in\', \'world\', \'history\', ... \'because\', \'he\', \'read\', \'the\', \'book\'] >>> list_of_references = [[ref1a, ref1b, ref1c], [ref2a]] >>> hypotheses = [hyp1, hyp2] >>> google_bleu = datasets.load_metric("google_bleu") >>> results = google_bleu.compute(predictions=hypotheses, references=list_of_references, min_len=2) >>> print(round(results["google_bleu"], 2)) 0.53 Example 4: >>> hyp1 = [\'It\', \'is\', \'a\', \'guide\', \'to\', \'action\', \'which\', ... \'ensures\', \'that\', \'the\', \'rubber\', \'duck\', \'always\', ... \'disobeys\', \'the\', \'commands\', \'of\', \'the\', \'cat\'] >>> ref1a = [\'It\', \'is\', \'the\', \'guiding\', \'principle\', \'which\', ... \'guarantees\', \'the\', \'rubber\', \'duck\', \'forces\', \'never\', ... \'being\', \'under\', \'the\', \'command\', \'of\', \'the\', \'cat\'] >>> ref1b = [\'It\', \'is\', \'a\', \'guide\', \'to\', \'action\', \'that\', ... \'ensures\', \'that\', \'the\', \'rubber\', \'duck\', \'will\', \'never\', ... \'heed\', \'the\', \'cat\', \'commands\'] >>> ref1c = [\'It\', \'is\', \'the\', \'practical\', \'guide\', \'for\', \'the\', ... \'rubber\', \'duck\', \'army\', \'never\', \'to\', \'heed\', \'the\', \'directions\', ... \'of\', \'the\', \'cat\'] >>> hyp2 = [\'he\', \'read\', \'the\', \'book\', \'because\', \'he\', \'was\', ... \'interested\', \'in\', \'world\', \'history\'] >>> ref2a = [\'he\', \'was\', \'interested\', \'in\', \'world\', \'history\', ... \'because\', \'he\', \'read\', \'the\', \'book\'] >>> list_of_references = [[ref1a, ref1b, ref1c], [ref2a]] >>> hypotheses = [hyp1, hyp2] >>> google_bleu = datasets.load_metric("google_bleu") >>> results = google_bleu.compute(predictions=hypotheses,references=list_of_references, min_len=2, max_len=6) >>> print(round(results["google_bleu"], 2)) 0.4 ''' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class __lowercase ( datasets.Metric ): '''simple docstring''' def _lowerCamelCase ( self ): return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { '''predictions''': datasets.Sequence(datasets.Value('''string''' , id='''token''' ) , id='''sequence''' ), '''references''': datasets.Sequence( datasets.Sequence(datasets.Value('''string''' , id='''token''' ) , id='''sequence''' ) , id='''references''' ), } ) , ) def _lowerCamelCase ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase = 1 , _UpperCAmelCase = 4 , ): return { "google_bleu": gleu_score.corpus_gleu( list_of_references=_UpperCAmelCase , hypotheses=_UpperCAmelCase , min_len=_UpperCAmelCase , max_len=_UpperCAmelCase ) }
52
import os import re import warnings from shutil import copyfile from typing import TYPE_CHECKING, Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import PreTrainedTokenizer if TYPE_CHECKING: from ...tokenization_utils_base import TextInput from ...utils import logging UpperCAmelCase_ = logging.get_logger(__name__) UpperCAmelCase_ = {"vocab_file": "spiece.model"} UpperCAmelCase_ = { "vocab_file": { "t5-small": "https://huggingface.co/t5-small/resolve/main/spiece.model", "t5-base": "https://huggingface.co/t5-base/resolve/main/spiece.model", "t5-large": "https://huggingface.co/t5-large/resolve/main/spiece.model", "t5-3b": "https://huggingface.co/t5-3b/resolve/main/spiece.model", "t5-11b": "https://huggingface.co/t5-11b/resolve/main/spiece.model", } } # TODO(PVP) - this should be removed in Transformers v5 UpperCAmelCase_ = { "t5-small": 5_12, "t5-base": 5_12, "t5-large": 5_12, "t5-3b": 5_12, "t5-11b": 5_12, } UpperCAmelCase_ = "▁" class __UpperCamelCase ( A__ ): __A : Any = VOCAB_FILES_NAMES __A : Union[str, Any] = PRETRAINED_VOCAB_FILES_MAP __A : Any = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __A : Tuple = ["""input_ids""", """attention_mask"""] def __init__( self , _UpperCamelCase , _UpperCamelCase="</s>" , _UpperCamelCase="<unk>" , _UpperCamelCase="<pad>" , _UpperCamelCase=100 , _UpperCamelCase=None , _UpperCamelCase = None , _UpperCamelCase=True , **_UpperCamelCase , ): # Add extra_ids to the special token list if extra_ids > 0 and additional_special_tokens is None: _UpperCAmelCase = [f'''<extra_id_{i}>''' for i in range(_UpperCamelCase )] elif extra_ids > 0 and additional_special_tokens is not None: # Check that we have the right number of extra_id special tokens _UpperCAmelCase = len(set(filter(lambda _UpperCamelCase : bool('''extra_id''' in str(_UpperCamelCase ) ) , _UpperCamelCase ) ) ) if extra_tokens != extra_ids: raise ValueError( f'''Both extra_ids ({extra_ids}) and additional_special_tokens ({additional_special_tokens}) are''' ''' provided to T5Tokenizer. In this case the additional_special_tokens must include the extra_ids''' ''' tokens''' ) if legacy: logger.warning_once( f'''You are using the legacy behaviour of the {self.__class__}. This means that tokens that come after special tokens will not be properly handled. We recommend you to''' ''' read the related pull request available at https://github.com/huggingface/transformers/pull/24565''' ) _UpperCAmelCase = legacy _UpperCAmelCase = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( eos_token=_UpperCamelCase , unk_token=_UpperCamelCase , pad_token=_UpperCamelCase , extra_ids=_UpperCamelCase , additional_special_tokens=_UpperCamelCase , sp_model_kwargs=self.sp_model_kwargs , legacy=_UpperCamelCase , **_UpperCamelCase , ) _UpperCAmelCase = vocab_file _UpperCAmelCase = extra_ids _UpperCAmelCase = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(_UpperCamelCase ) @staticmethod def UpperCamelCase( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ): if pretrained_model_name_or_path in TaTokenizer.max_model_input_sizes: _UpperCAmelCase = TaTokenizer.max_model_input_sizes[pretrained_model_name_or_path] if init_max_model_length is not None and init_max_model_length != max_model_length: return init_max_model_length elif init_max_model_length is None: warnings.warn( '''This tokenizer was incorrectly instantiated with a model max length of''' f''' {deprecated_max_model_length} which will be corrected in Transformers v5.\nFor now, this''' ''' behavior is kept to avoid breaking backwards compatibility when padding/encoding with''' ''' `truncation is True`.\n- Be aware that you SHOULD NOT rely on''' f''' {pretrained_model_name_or_path} automatically truncating your input to''' f''' {deprecated_max_model_length} when padding/encoding.\n- If you want to encode/pad to sequences''' f''' longer than {deprecated_max_model_length} you can either instantiate this tokenizer with''' ''' `model_max_length` or pass `max_length` when encoding/padding.\n- To avoid this warning, please''' ''' instantiate this tokenizer with `model_max_length` set to your preferred value.''' , _UpperCamelCase , ) return max_model_length @property def UpperCamelCase( self ): return self.sp_model.get_piece_size() + self._extra_ids def UpperCamelCase( self ): _UpperCAmelCase = {self.convert_ids_to_tokens(_UpperCamelCase ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def UpperCamelCase( self , _UpperCamelCase , _UpperCamelCase = None , _UpperCamelCase = False ): if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=_UpperCamelCase , token_ids_a=_UpperCamelCase , already_has_special_tokens=_UpperCamelCase ) # normal case: some special tokens if token_ids_a is None: return ([0] * len(_UpperCamelCase )) + [1] return ([0] * len(_UpperCamelCase )) + [1] + ([0] * len(_UpperCamelCase )) + [1] def UpperCamelCase( self ): return list( set(filter(lambda _UpperCamelCase : bool(re.search(R'''<extra_id_\d+>''' , _UpperCamelCase ) ) is not None , self.additional_special_tokens ) ) ) def UpperCamelCase( self ): return [self._convert_token_to_id(_UpperCamelCase ) for token in self.get_sentinel_tokens()] def UpperCamelCase( self , _UpperCamelCase ): if len(_UpperCamelCase ) > 0 and token_ids[-1] == self.eos_token_id: warnings.warn( f'''This sequence already has {self.eos_token}. In future versions this behavior may lead to duplicated''' ''' eos tokens being added.''' ) return token_ids else: return token_ids + [self.eos_token_id] def UpperCamelCase( self , _UpperCamelCase , _UpperCamelCase = None ): _UpperCAmelCase = [self.eos_token_id] if token_ids_a is None: return len(token_ids_a + eos ) * [0] return len(token_ids_a + eos + token_ids_a + eos ) * [0] def UpperCamelCase( self , _UpperCamelCase , _UpperCamelCase = None ): _UpperCAmelCase = self._add_eos_if_not_present(_UpperCamelCase ) if token_ids_a is None: return token_ids_a else: _UpperCAmelCase = self._add_eos_if_not_present(_UpperCamelCase ) return token_ids_a + token_ids_a def __getstate__( self ): _UpperCAmelCase = self.__dict__.copy() _UpperCAmelCase = None return state def __setstate__( self , _UpperCamelCase ): _UpperCAmelCase = d # for backward compatibility if not hasattr(self , '''sp_model_kwargs''' ): _UpperCAmelCase = {} _UpperCAmelCase = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def UpperCamelCase( self , _UpperCamelCase , **_UpperCamelCase ): # Replace the SPIECE_UNDERLINE with a space to make sure SPIECE_UNDERLINE is only used at # the beginning of the text if not self.legacy: _UpperCAmelCase = SPIECE_UNDERLINE + text.replace(_UpperCamelCase , ''' ''' ) return super().tokenize(_UpperCamelCase , **_UpperCamelCase ) def UpperCamelCase( self , _UpperCamelCase , **_UpperCamelCase ): if not self.legacy: _UpperCAmelCase = text.startswith(_UpperCamelCase ) if is_first: _UpperCAmelCase = text[1:] _UpperCAmelCase = self.sp_model.encode(_UpperCamelCase , out_type=_UpperCamelCase ) if not self.legacy and not is_first and not text.startswith(''' ''' ) and tokens[0].startswith(_UpperCamelCase ): _UpperCAmelCase = ([tokens[0][1:]] if len(tokens[0] ) > 1 else []) + tokens[1:] return tokens def UpperCamelCase( self , _UpperCamelCase ): if token.startswith('''<extra_id_''' ): _UpperCAmelCase = re.match(R'''<extra_id_(\d+)>''' , _UpperCamelCase ) _UpperCAmelCase = int(match.group(1 ) ) return self.vocab_size - num - 1 return self.sp_model.piece_to_id(_UpperCamelCase ) def UpperCamelCase( self , _UpperCamelCase ): if index < self.sp_model.get_piece_size(): _UpperCAmelCase = self.sp_model.IdToPiece(_UpperCamelCase ) else: _UpperCAmelCase = f'''<extra_id_{self.vocab_size - 1 - index}>''' return token def UpperCamelCase( self , _UpperCamelCase ): _UpperCAmelCase = [] _UpperCAmelCase = '''''' _UpperCAmelCase = False for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: if not prev_is_special: out_string += " " out_string += self.sp_model.decode(_UpperCamelCase ) + token _UpperCAmelCase = True _UpperCAmelCase = [] else: current_sub_tokens.append(_UpperCamelCase ) _UpperCAmelCase = False out_string += self.sp_model.decode(_UpperCamelCase ) return out_string.strip() def UpperCamelCase( self , _UpperCamelCase , _UpperCamelCase = None ): if not os.path.isdir(_UpperCamelCase ): logger.error(f'''Vocabulary path ({save_directory}) should be a directory''' ) return _UpperCAmelCase = os.path.join( _UpperCamelCase , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(_UpperCamelCase ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , _UpperCamelCase ) elif not os.path.isfile(self.vocab_file ): with open(_UpperCamelCase , '''wb''' ) as fi: _UpperCAmelCase = self.sp_model.serialized_model_proto() fi.write(_UpperCamelCase ) return (out_vocab_file,)
32
0
from __future__ import annotations import requests _snake_case : Any = set( 'approved_at_utc approved_by author_flair_background_color\nauthor_flair_css_class author_flair_richtext author_flair_template_id author_fullname\nauthor_premium can_mod_post category clicked content_categories created_utc downs\nedited gilded gildings hidden hide_score is_created_from_ads_ui is_meta\nis_original_content is_reddit_media_domain is_video link_flair_css_class\nlink_flair_richtext link_flair_text link_flair_text_color media_embed mod_reason_title\nname permalink pwls quarantine saved score secure_media secure_media_embed selftext\nsubreddit subreddit_name_prefixed subreddit_type thumbnail title top_awarded_type\ntotal_awards_received ups upvote_ratio url user_reports'.split() ) def a_ ( lowerCAmelCase_ : str, lowerCAmelCase_ : int = 1, lowerCAmelCase_ : str = "new", lowerCAmelCase_ : list | None = None ): __lowerCAmelCase = wanted_data or [] if invalid_search_terms := ", ".join(sorted(set(lowerCAmelCase_ ) - valid_terms ) ): __lowerCAmelCase = F"""Invalid search term: {invalid_search_terms}""" raise ValueError(lowerCAmelCase_ ) __lowerCAmelCase = requests.get( F"""https://reddit.com/r/{subreddit}/{age}.json?limit={limit}""", headers={'User-agent': 'A random string'}, ) if response.status_code == 429: raise requests.HTTPError __lowerCAmelCase = response.json() if not wanted_data: return {id_: data["data"]["children"][id_] for id_ in range(lowerCAmelCase_ )} __lowerCAmelCase = {} for id_ in range(lowerCAmelCase_ ): __lowerCAmelCase = { item: data['data']['children'][id_]['data'][item] for item in wanted_data } return data_dict if __name__ == "__main__": # If you get Error 429, that means you are rate limited.Try after some time print(get_subreddit_data('learnpython', wanted_data=['title', 'url', 'selftext']))
53
from __future__ import annotations def A__ ( SCREAMING_SNAKE_CASE_ : int ) -> bool: """simple docstring""" _UpperCAmelCase = str(SCREAMING_SNAKE_CASE_ ) return len(SCREAMING_SNAKE_CASE_ ) == 9 and set(SCREAMING_SNAKE_CASE_ ) == set('''123456789''' ) def A__ ( ) -> int | None: """simple docstring""" for base_num in range(99_99 , 49_99 , -1 ): _UpperCAmelCase = 10_00_02 * base_num if is_9_pandigital(SCREAMING_SNAKE_CASE_ ): return candidate for base_num in range(3_33 , 99 , -1 ): _UpperCAmelCase = 1_00_20_03 * base_num if is_9_pandigital(SCREAMING_SNAKE_CASE_ ): return candidate return None if __name__ == "__main__": print(f'''{solution() = }''')
32
0
import gc import random import unittest import numpy as np import torch from PIL import Image from diffusers import ( DDIMScheduler, KandinskyVaaImgaImgPipeline, KandinskyVaaPriorPipeline, UNetaDConditionModel, VQModel, ) from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference enable_full_determinism() class A ( __lowercase , unittest.TestCase ): _snake_case =KandinskyVaaImgaImgPipeline _snake_case =['''image_embeds''', '''negative_image_embeds''', '''image'''] _snake_case =[ '''image_embeds''', '''negative_image_embeds''', '''image''', ] _snake_case =[ '''generator''', '''height''', '''width''', '''strength''', '''guidance_scale''', '''num_inference_steps''', '''return_dict''', '''guidance_scale''', '''num_images_per_prompt''', '''output_type''', '''return_dict''', ] _snake_case =False @property def lowerCAmelCase__ ( self: List[Any] ) -> Dict: '''simple docstring''' return 32 @property def lowerCAmelCase__ ( self: Any ) -> Optional[int]: '''simple docstring''' return 32 @property def lowerCAmelCase__ ( self: Optional[Any] ) -> List[str]: '''simple docstring''' return self.time_input_dim @property def lowerCAmelCase__ ( self: List[str] ) -> Dict: '''simple docstring''' return self.time_input_dim * 4 @property def lowerCAmelCase__ ( self: int ) -> str: '''simple docstring''' return 100 @property def lowerCAmelCase__ ( self: List[Any] ) -> Union[str, Any]: '''simple docstring''' torch.manual_seed(0 ) UpperCAmelCase_ ={ "in_channels": 4, # Out channels is double in channels because predicts mean and variance "out_channels": 8, "addition_embed_type": "image", "down_block_types": ("ResnetDownsampleBlock2D", "SimpleCrossAttnDownBlock2D"), "up_block_types": ("SimpleCrossAttnUpBlock2D", "ResnetUpsampleBlock2D"), "mid_block_type": "UNetMidBlock2DSimpleCrossAttn", "block_out_channels": (self.block_out_channels_a, self.block_out_channels_a * 2), "layers_per_block": 1, "encoder_hid_dim": self.text_embedder_hidden_size, "encoder_hid_dim_type": "image_proj", "cross_attention_dim": self.cross_attention_dim, "attention_head_dim": 4, "resnet_time_scale_shift": "scale_shift", "class_embed_type": None, } UpperCAmelCase_ =UNetaDConditionModel(**_lowerCAmelCase ) return model @property def lowerCAmelCase__ ( self: Any ) -> Tuple: '''simple docstring''' return { "block_out_channels": [32, 64], "down_block_types": ["DownEncoderBlock2D", "AttnDownEncoderBlock2D"], "in_channels": 3, "latent_channels": 4, "layers_per_block": 1, "norm_num_groups": 8, "norm_type": "spatial", "num_vq_embeddings": 12, "out_channels": 3, "up_block_types": [ "AttnUpDecoderBlock2D", "UpDecoderBlock2D", ], "vq_embed_dim": 4, } @property def lowerCAmelCase__ ( self: Union[str, Any] ) -> Any: '''simple docstring''' torch.manual_seed(0 ) UpperCAmelCase_ =VQModel(**self.dummy_movq_kwargs ) return model def lowerCAmelCase__ ( self: Dict ) -> Union[str, Any]: '''simple docstring''' UpperCAmelCase_ =self.dummy_unet UpperCAmelCase_ =self.dummy_movq UpperCAmelCase_ ={ "num_train_timesteps": 1000, "beta_schedule": "linear", "beta_start": 0.0_00_85, "beta_end": 0.0_12, "clip_sample": False, "set_alpha_to_one": False, "steps_offset": 0, "prediction_type": "epsilon", "thresholding": False, } UpperCAmelCase_ =DDIMScheduler(**_lowerCAmelCase ) UpperCAmelCase_ ={ "unet": unet, "scheduler": scheduler, "movq": movq, } return components def lowerCAmelCase__ ( self: int , _lowerCAmelCase: Any , _lowerCAmelCase: Optional[Any]=0 ) -> Dict: '''simple docstring''' UpperCAmelCase_ =floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(_lowerCAmelCase ) ).to(_lowerCAmelCase ) UpperCAmelCase_ =floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(seed + 1 ) ).to( _lowerCAmelCase ) # create init_image UpperCAmelCase_ =floats_tensor((1, 3, 64, 64) , rng=random.Random(_lowerCAmelCase ) ).to(_lowerCAmelCase ) UpperCAmelCase_ =image.cpu().permute(0 , 2 , 3 , 1 )[0] UpperCAmelCase_ =Image.fromarray(np.uinta(_lowerCAmelCase ) ).convert("RGB" ).resize((256, 256) ) if str(_lowerCAmelCase ).startswith("mps" ): UpperCAmelCase_ =torch.manual_seed(_lowerCAmelCase ) else: UpperCAmelCase_ =torch.Generator(device=_lowerCAmelCase ).manual_seed(_lowerCAmelCase ) UpperCAmelCase_ ={ "image": init_image, "image_embeds": image_embeds, "negative_image_embeds": negative_image_embeds, "generator": generator, "height": 64, "width": 64, "num_inference_steps": 10, "guidance_scale": 7.0, "strength": 0.2, "output_type": "np", } return inputs def lowerCAmelCase__ ( self: int ) -> int: '''simple docstring''' UpperCAmelCase_ ="cpu" UpperCAmelCase_ =self.get_dummy_components() UpperCAmelCase_ =self.pipeline_class(**_lowerCAmelCase ) UpperCAmelCase_ =pipe.to(_lowerCAmelCase ) pipe.set_progress_bar_config(disable=_lowerCAmelCase ) UpperCAmelCase_ =pipe(**self.get_dummy_inputs(_lowerCAmelCase ) ) UpperCAmelCase_ =output.images UpperCAmelCase_ =pipe( **self.get_dummy_inputs(_lowerCAmelCase ) , return_dict=_lowerCAmelCase , )[0] UpperCAmelCase_ =image[0, -3:, -3:, -1] UpperCAmelCase_ =image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) UpperCAmelCase_ =np.array( [0.6_19_97_78, 0.63_98_44_06, 0.46_14_57_85, 0.62_94_49_84, 0.5_62_22_15, 0.47_30_61_32, 0.47_44_14_56, 0.4_60_76_06, 0.48_71_92_63] ) assert ( np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 ), F' expected_slice {expected_slice}, but got {image_slice.flatten()}' assert ( np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2 ), F' expected_slice {expected_slice}, but got {image_from_tuple_slice.flatten()}' @slow @require_torch_gpu class A ( unittest.TestCase ): def lowerCAmelCase__ ( self: List[Any] ) -> str: '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def lowerCAmelCase__ ( self: int ) -> Tuple: '''simple docstring''' UpperCAmelCase_ =load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/kandinskyv22/kandinskyv22_img2img_frog.npy" ) UpperCAmelCase_ =load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/kandinsky/cat.png" ) UpperCAmelCase_ ="A red cartoon frog, 4k" UpperCAmelCase_ =KandinskyVaaPriorPipeline.from_pretrained( "kandinsky-community/kandinsky-2-2-prior" , torch_dtype=torch.floataa ) pipe_prior.to(_lowerCAmelCase ) UpperCAmelCase_ =KandinskyVaaImgaImgPipeline.from_pretrained( "kandinsky-community/kandinsky-2-2-decoder" , torch_dtype=torch.floataa ) UpperCAmelCase_ =pipeline.to(_lowerCAmelCase ) pipeline.set_progress_bar_config(disable=_lowerCAmelCase ) UpperCAmelCase_ =torch.Generator(device="cpu" ).manual_seed(0 ) UpperCAmelCase_ , UpperCAmelCase_ =pipe_prior( _lowerCAmelCase , generator=_lowerCAmelCase , num_inference_steps=5 , negative_prompt="" , ).to_tuple() UpperCAmelCase_ =pipeline( image=_lowerCAmelCase , image_embeds=_lowerCAmelCase , negative_image_embeds=_lowerCAmelCase , generator=_lowerCAmelCase , num_inference_steps=100 , height=768 , width=768 , strength=0.2 , output_type="np" , ) UpperCAmelCase_ =output.images[0] assert image.shape == (768, 768, 3) assert_mean_pixel_difference(_lowerCAmelCase , _lowerCAmelCase )
54
import numpy as np def A__ ( SCREAMING_SNAKE_CASE_ : np.ndarray , SCREAMING_SNAKE_CASE_ : float ) -> np.ndarray: """simple docstring""" return np.where(vector > 0 , SCREAMING_SNAKE_CASE_ , (alpha * (np.exp(SCREAMING_SNAKE_CASE_ ) - 1)) ) if __name__ == "__main__": import doctest doctest.testmod()
32
0
import subprocess import sys from transformers import BertConfig, BertModel, BertTokenizer, pipeline from transformers.testing_utils import TestCasePlus, require_torch class UpperCAmelCase ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' @require_torch def UpperCamelCase_ ( self : Optional[int] ): # this test is a bit tricky since TRANSFORMERS_OFFLINE can only be changed before # `transformers` is loaded, and it's too late for inside pytest - so we are changing it # while running an external program # python one-liner segments # this must be loaded before socket.socket is monkey-patched __A = "\nfrom transformers import BertConfig, BertModel, BertTokenizer, pipeline\n " __A = "\nmname = \"hf-internal-testing/tiny-random-bert\"\nBertConfig.from_pretrained(mname)\nBertModel.from_pretrained(mname)\nBertTokenizer.from_pretrained(mname)\npipe = pipeline(task=\"fill-mask\", model=mname)\nprint(\"success\")\n " __A = "\nimport socket\ndef offline_socket(*args, **kwargs): raise RuntimeError(\"Offline mode is enabled, we shouldn't access internet\")\nsocket.socket = offline_socket\n " # Force fetching the files so that we can use the cache __A = "hf-internal-testing/tiny-random-bert" BertConfig.from_pretrained(A ) BertModel.from_pretrained(A ) BertTokenizer.from_pretrained(A ) pipeline(task="fill-mask" ,model=A ) # baseline - just load from_pretrained with normal network __A = [sys.executable, "-c", "\n".join([load, run, mock] )] # should succeed __A = self.get_env() # should succeed as TRANSFORMERS_OFFLINE=1 tells it to use local files __A = "1" __A = subprocess.run(A ,env=A ,check=A ,capture_output=A ) self.assertEqual(result.returncode ,0 ,result.stderr ) self.assertIn("success" ,result.stdout.decode() ) @require_torch def UpperCamelCase_ ( self : Union[str, Any] ): # python one-liner segments # this must be loaded before socket.socket is monkey-patched __A = "\nfrom transformers import BertConfig, BertModel, BertTokenizer, pipeline\n " __A = "\nmname = \"hf-internal-testing/tiny-random-bert\"\nBertConfig.from_pretrained(mname)\nBertModel.from_pretrained(mname)\nBertTokenizer.from_pretrained(mname)\npipe = pipeline(task=\"fill-mask\", model=mname)\nprint(\"success\")\n " __A = "\nimport socket\ndef offline_socket(*args, **kwargs): raise socket.error(\"Faking flaky internet\")\nsocket.socket = offline_socket\n " # Force fetching the files so that we can use the cache __A = "hf-internal-testing/tiny-random-bert" BertConfig.from_pretrained(A ) BertModel.from_pretrained(A ) BertTokenizer.from_pretrained(A ) pipeline(task="fill-mask" ,model=A ) # baseline - just load from_pretrained with normal network __A = [sys.executable, "-c", "\n".join([load, run, mock] )] # should succeed __A = self.get_env() __A = subprocess.run(A ,env=A ,check=A ,capture_output=A ) self.assertEqual(result.returncode ,0 ,result.stderr ) self.assertIn("success" ,result.stdout.decode() ) @require_torch def UpperCamelCase_ ( self : Optional[int] ): # this test is a bit tricky since TRANSFORMERS_OFFLINE can only be changed before # `transformers` is loaded, and it's too late for inside pytest - so we are changing it # while running an external program # python one-liner segments # this must be loaded before socket.socket is monkey-patched __A = "\nfrom transformers import BertConfig, BertModel, BertTokenizer\n " __A = "\nmname = \"hf-internal-testing/tiny-random-bert-sharded\"\nBertConfig.from_pretrained(mname)\nBertModel.from_pretrained(mname)\nprint(\"success\")\n " __A = "\nimport socket\ndef offline_socket(*args, **kwargs): raise ValueError(\"Offline mode is enabled\")\nsocket.socket = offline_socket\n " # baseline - just load from_pretrained with normal network __A = [sys.executable, "-c", "\n".join([load, run] )] # should succeed __A = self.get_env() __A = subprocess.run(A ,env=A ,check=A ,capture_output=A ) self.assertEqual(result.returncode ,0 ,result.stderr ) self.assertIn("success" ,result.stdout.decode() ) # next emulate no network __A = [sys.executable, "-c", "\n".join([load, mock, run] )] # Doesn't fail anymore since the model is in the cache due to other tests, so commenting this. # env["TRANSFORMERS_OFFLINE"] = "0" # result = subprocess.run(cmd, env=env, check=False, capture_output=True) # self.assertEqual(result.returncode, 1, result.stderr) # should succeed as TRANSFORMERS_OFFLINE=1 tells it to use local files __A = "1" __A = subprocess.run(A ,env=A ,check=A ,capture_output=A ) self.assertEqual(result.returncode ,0 ,result.stderr ) self.assertIn("success" ,result.stdout.decode() ) @require_torch def UpperCamelCase_ ( self : List[str] ): __A = "\nfrom transformers import pipeline\n " __A = "\nmname = \"hf-internal-testing/tiny-random-bert\"\npipe = pipeline(model=mname)\n " __A = "\nimport socket\ndef offline_socket(*args, **kwargs): raise socket.error(\"Offline mode is enabled\")\nsocket.socket = offline_socket\n " __A = self.get_env() __A = "1" __A = [sys.executable, "-c", "\n".join([load, mock, run] )] __A = subprocess.run(A ,env=A ,check=A ,capture_output=A ) self.assertEqual(result.returncode ,1 ,result.stderr ) self.assertIn( "You cannot infer task automatically within `pipeline` when using offline mode" ,result.stderr.decode().replace("\n" ,"" ) ,) @require_torch def UpperCamelCase_ ( self : Union[str, Any] ): __A = "\nfrom transformers import AutoModel\n " __A = "\nmname = \"hf-internal-testing/test_dynamic_model\"\nAutoModel.from_pretrained(mname, trust_remote_code=True)\nprint(\"success\")\n " # baseline - just load from_pretrained with normal network __A = [sys.executable, "-c", "\n".join([load, run] )] # should succeed __A = self.get_env() __A = subprocess.run(A ,env=A ,check=A ,capture_output=A ) self.assertEqual(result.returncode ,0 ,result.stderr ) self.assertIn("success" ,result.stdout.decode() ) # should succeed as TRANSFORMERS_OFFLINE=1 tells it to use local files __A = "1" __A = subprocess.run(A ,env=A ,check=A ,capture_output=A ) self.assertEqual(result.returncode ,0 ,result.stderr ) self.assertIn("success" ,result.stdout.decode() )
55
UpperCAmelCase_ = { "A": ".-", "B": "-...", "C": "-.-.", "D": "-..", "E": ".", "F": "..-.", "G": "--.", "H": "....", "I": "..", "J": ".---", "K": "-.-", "L": ".-..", "M": "--", "N": "-.", "O": "---", "P": ".--.", "Q": "--.-", "R": ".-.", "S": "...", "T": "-", "U": "..-", "V": "...-", "W": ".--", "X": "-..-", "Y": "-.--", "Z": "--..", "1": ".----", "2": "..---", "3": "...--", "4": "....-", "5": ".....", "6": "-....", "7": "--...", "8": "---..", "9": "----.", "0": "-----", "&": ".-...", "@": ".--.-.", ":": "---...", ",": "--..--", ".": ".-.-.-", "'": ".----.", "\"": ".-..-.", "?": "..--..", "/": "-..-.", "=": "-...-", "+": ".-.-.", "-": "-....-", "(": "-.--.", ")": "-.--.-", "!": "-.-.--", " ": "/" } # Exclamation mark is not in ITU-R recommendation # fmt: on UpperCAmelCase_ = {value: key for key, value in MORSE_CODE_DICT.items()} def A__ ( SCREAMING_SNAKE_CASE_ : str ) -> str: """simple docstring""" return " ".join(MORSE_CODE_DICT[char] for char in message.upper() ) def A__ ( SCREAMING_SNAKE_CASE_ : str ) -> str: """simple docstring""" return "".join(REVERSE_DICT[char] for char in message.split() ) def A__ ( ) -> None: """simple docstring""" _UpperCAmelCase = '''Morse code here!''' print(SCREAMING_SNAKE_CASE_ ) _UpperCAmelCase = encrypt(SCREAMING_SNAKE_CASE_ ) print(SCREAMING_SNAKE_CASE_ ) _UpperCAmelCase = decrypt(SCREAMING_SNAKE_CASE_ ) print(SCREAMING_SNAKE_CASE_ ) if __name__ == "__main__": main()
32
0
'''simple docstring''' from diffusers.utils.testing_utils import require_onnxruntime @require_onnxruntime class _lowercase : pass
56
import gc import unittest import numpy as np import torch from diffusers import DanceDiffusionPipeline, IPNDMScheduler, UNetaDModel from diffusers.utils import slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu, skip_mps from ..pipeline_params import UNCONDITIONAL_AUDIO_GENERATION_BATCH_PARAMS, UNCONDITIONAL_AUDIO_GENERATION_PARAMS from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() class __UpperCamelCase ( A__ , unittest.TestCase ): __A : Any = DanceDiffusionPipeline __A : Any = UNCONDITIONAL_AUDIO_GENERATION_PARAMS __A : Tuple = PipelineTesterMixin.required_optional_params - { """callback""", """latents""", """callback_steps""", """output_type""", """num_images_per_prompt""", } __A : Tuple = UNCONDITIONAL_AUDIO_GENERATION_BATCH_PARAMS __A : List[str] = False __A : str = False def UpperCamelCase( self ): torch.manual_seed(0 ) _UpperCAmelCase = UNetaDModel( block_out_channels=(32, 32, 64) , extra_in_channels=16 , sample_size=512 , sample_rate=16000 , in_channels=2 , out_channels=2 , flip_sin_to_cos=_UpperCamelCase , use_timestep_embedding=_UpperCamelCase , time_embedding_type='''fourier''' , mid_block_type='''UNetMidBlock1D''' , down_block_types=('''DownBlock1DNoSkip''', '''DownBlock1D''', '''AttnDownBlock1D''') , up_block_types=('''AttnUpBlock1D''', '''UpBlock1D''', '''UpBlock1DNoSkip''') , ) _UpperCAmelCase = IPNDMScheduler() _UpperCAmelCase = { '''unet''': unet, '''scheduler''': scheduler, } return components def UpperCamelCase( self , _UpperCamelCase , _UpperCamelCase=0 ): if str(_UpperCamelCase ).startswith('''mps''' ): _UpperCAmelCase = torch.manual_seed(_UpperCamelCase ) else: _UpperCAmelCase = torch.Generator(device=_UpperCamelCase ).manual_seed(_UpperCamelCase ) _UpperCAmelCase = { '''batch_size''': 1, '''generator''': generator, '''num_inference_steps''': 4, } return inputs def UpperCamelCase( self ): _UpperCAmelCase = '''cpu''' # ensure determinism for the device-dependent torch.Generator _UpperCAmelCase = self.get_dummy_components() _UpperCAmelCase = DanceDiffusionPipeline(**_UpperCamelCase ) _UpperCAmelCase = pipe.to(_UpperCamelCase ) pipe.set_progress_bar_config(disable=_UpperCamelCase ) _UpperCAmelCase = self.get_dummy_inputs(_UpperCamelCase ) _UpperCAmelCase = pipe(**_UpperCamelCase ) _UpperCAmelCase = output.audios _UpperCAmelCase = audio[0, -3:, -3:] assert audio.shape == (1, 2, components["unet"].sample_size) _UpperCAmelCase = np.array([-0.7265, 1.0000, -0.8388, 0.1175, 0.9498, -1.0000] ) assert np.abs(audio_slice.flatten() - expected_slice ).max() < 1e-2 @skip_mps def UpperCamelCase( self ): return super().test_save_load_local() @skip_mps def UpperCamelCase( self ): return super().test_dict_tuple_outputs_equivalent(expected_max_difference=3e-3 ) @skip_mps def UpperCamelCase( self ): return super().test_save_load_optional_components() @skip_mps def UpperCamelCase( self ): return super().test_attention_slicing_forward_pass() def UpperCamelCase( self ): super().test_inference_batch_single_identical(expected_max_diff=3e-3 ) @slow @require_torch_gpu class __UpperCamelCase ( unittest.TestCase ): def UpperCamelCase( self ): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def UpperCamelCase( self ): _UpperCAmelCase = torch_device _UpperCAmelCase = DanceDiffusionPipeline.from_pretrained('''harmonai/maestro-150k''' ) _UpperCAmelCase = pipe.to(_UpperCamelCase ) pipe.set_progress_bar_config(disable=_UpperCamelCase ) _UpperCAmelCase = torch.manual_seed(0 ) _UpperCAmelCase = pipe(generator=_UpperCamelCase , num_inference_steps=100 , audio_length_in_s=4.096 ) _UpperCAmelCase = output.audios _UpperCAmelCase = audio[0, -3:, -3:] assert audio.shape == (1, 2, pipe.unet.sample_size) _UpperCAmelCase = np.array([-0.0192, -0.0231, -0.0318, -0.0059, 0.0002, -0.0020] ) assert np.abs(audio_slice.flatten() - expected_slice ).max() < 1e-2 def UpperCamelCase( self ): _UpperCAmelCase = torch_device _UpperCAmelCase = DanceDiffusionPipeline.from_pretrained('''harmonai/maestro-150k''' , torch_dtype=torch.floataa ) _UpperCAmelCase = pipe.to(_UpperCamelCase ) pipe.set_progress_bar_config(disable=_UpperCamelCase ) _UpperCAmelCase = torch.manual_seed(0 ) _UpperCAmelCase = pipe(generator=_UpperCamelCase , num_inference_steps=100 , audio_length_in_s=4.096 ) _UpperCAmelCase = output.audios _UpperCAmelCase = audio[0, -3:, -3:] assert audio.shape == (1, 2, pipe.unet.sample_size) _UpperCAmelCase = np.array([-0.0367, -0.0488, -0.0771, -0.0525, -0.0444, -0.0341] ) assert np.abs(audio_slice.flatten() - expected_slice ).max() < 1e-2
32
0
class _lowerCAmelCase: """simple docstring""" def __init__( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): UpperCamelCase_: Any = name UpperCamelCase_: Any = value UpperCamelCase_: Optional[Any] = weight def __repr__( self ): return f'''{self.__class__.__name__}({self.name}, {self.value}, {self.weight})''' def _a ( self ): return self.value def _a ( self ): return self.name def _a ( self ): return self.weight def _a ( self ): return self.value / self.weight def snake_case (UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ) -> Optional[int]: UpperCamelCase_: Any = [] for i in range(len(UpperCAmelCase__ ) ): menu.append(Things(name[i] , value[i] , weight[i] ) ) return menu def snake_case (UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ) -> List[str]: UpperCamelCase_: Optional[int] = sorted(UpperCAmelCase__ , key=UpperCAmelCase__ , reverse=UpperCAmelCase__ ) UpperCamelCase_: Dict = [] UpperCamelCase_ ,UpperCamelCase_: Any = 0.0, 0.0 for i in range(len(UpperCAmelCase__ ) ): if (total_cost + items_copy[i].get_weight()) <= max_cost: result.append(items_copy[i] ) total_cost += items_copy[i].get_weight() total_value += items_copy[i].get_value() return (result, total_value) def snake_case () -> List[str]: pass if __name__ == "__main__": import doctest doctest.testmod()
57
from collections import OrderedDict from ...utils import logging from .auto_factory import _BaseAutoModelClass, _LazyAutoMapping, auto_class_update from .configuration_auto import CONFIG_MAPPING_NAMES UpperCAmelCase_ = logging.get_logger(__name__) UpperCAmelCase_ = OrderedDict( [ # Base model mapping ("albert", "FlaxAlbertModel"), ("bart", "FlaxBartModel"), ("beit", "FlaxBeitModel"), ("bert", "FlaxBertModel"), ("big_bird", "FlaxBigBirdModel"), ("blenderbot", "FlaxBlenderbotModel"), ("blenderbot-small", "FlaxBlenderbotSmallModel"), ("clip", "FlaxCLIPModel"), ("distilbert", "FlaxDistilBertModel"), ("electra", "FlaxElectraModel"), ("gpt-sw3", "FlaxGPT2Model"), ("gpt2", "FlaxGPT2Model"), ("gpt_neo", "FlaxGPTNeoModel"), ("gptj", "FlaxGPTJModel"), ("longt5", "FlaxLongT5Model"), ("marian", "FlaxMarianModel"), ("mbart", "FlaxMBartModel"), ("mt5", "FlaxMT5Model"), ("opt", "FlaxOPTModel"), ("pegasus", "FlaxPegasusModel"), ("regnet", "FlaxRegNetModel"), ("resnet", "FlaxResNetModel"), ("roberta", "FlaxRobertaModel"), ("roberta-prelayernorm", "FlaxRobertaPreLayerNormModel"), ("roformer", "FlaxRoFormerModel"), ("t5", "FlaxT5Model"), ("vision-text-dual-encoder", "FlaxVisionTextDualEncoderModel"), ("vit", "FlaxViTModel"), ("wav2vec2", "FlaxWav2Vec2Model"), ("whisper", "FlaxWhisperModel"), ("xglm", "FlaxXGLMModel"), ("xlm-roberta", "FlaxXLMRobertaModel"), ] ) UpperCAmelCase_ = OrderedDict( [ # Model for pre-training mapping ("albert", "FlaxAlbertForPreTraining"), ("bart", "FlaxBartForConditionalGeneration"), ("bert", "FlaxBertForPreTraining"), ("big_bird", "FlaxBigBirdForPreTraining"), ("electra", "FlaxElectraForPreTraining"), ("longt5", "FlaxLongT5ForConditionalGeneration"), ("mbart", "FlaxMBartForConditionalGeneration"), ("mt5", "FlaxMT5ForConditionalGeneration"), ("roberta", "FlaxRobertaForMaskedLM"), ("roberta-prelayernorm", "FlaxRobertaPreLayerNormForMaskedLM"), ("roformer", "FlaxRoFormerForMaskedLM"), ("t5", "FlaxT5ForConditionalGeneration"), ("wav2vec2", "FlaxWav2Vec2ForPreTraining"), ("whisper", "FlaxWhisperForConditionalGeneration"), ("xlm-roberta", "FlaxXLMRobertaForMaskedLM"), ] ) UpperCAmelCase_ = OrderedDict( [ # Model for Masked LM mapping ("albert", "FlaxAlbertForMaskedLM"), ("bart", "FlaxBartForConditionalGeneration"), ("bert", "FlaxBertForMaskedLM"), ("big_bird", "FlaxBigBirdForMaskedLM"), ("distilbert", "FlaxDistilBertForMaskedLM"), ("electra", "FlaxElectraForMaskedLM"), ("mbart", "FlaxMBartForConditionalGeneration"), ("roberta", "FlaxRobertaForMaskedLM"), ("roberta-prelayernorm", "FlaxRobertaPreLayerNormForMaskedLM"), ("roformer", "FlaxRoFormerForMaskedLM"), ("xlm-roberta", "FlaxXLMRobertaForMaskedLM"), ] ) UpperCAmelCase_ = OrderedDict( [ # Model for Seq2Seq Causal LM mapping ("bart", "FlaxBartForConditionalGeneration"), ("blenderbot", "FlaxBlenderbotForConditionalGeneration"), ("blenderbot-small", "FlaxBlenderbotSmallForConditionalGeneration"), ("encoder-decoder", "FlaxEncoderDecoderModel"), ("longt5", "FlaxLongT5ForConditionalGeneration"), ("marian", "FlaxMarianMTModel"), ("mbart", "FlaxMBartForConditionalGeneration"), ("mt5", "FlaxMT5ForConditionalGeneration"), ("pegasus", "FlaxPegasusForConditionalGeneration"), ("t5", "FlaxT5ForConditionalGeneration"), ] ) UpperCAmelCase_ = OrderedDict( [ # Model for Image-classsification ("beit", "FlaxBeitForImageClassification"), ("regnet", "FlaxRegNetForImageClassification"), ("resnet", "FlaxResNetForImageClassification"), ("vit", "FlaxViTForImageClassification"), ] ) UpperCAmelCase_ = OrderedDict( [ ("vision-encoder-decoder", "FlaxVisionEncoderDecoderModel"), ] ) UpperCAmelCase_ = OrderedDict( [ # Model for Causal LM mapping ("bart", "FlaxBartForCausalLM"), ("bert", "FlaxBertForCausalLM"), ("big_bird", "FlaxBigBirdForCausalLM"), ("electra", "FlaxElectraForCausalLM"), ("gpt-sw3", "FlaxGPT2LMHeadModel"), ("gpt2", "FlaxGPT2LMHeadModel"), ("gpt_neo", "FlaxGPTNeoForCausalLM"), ("gptj", "FlaxGPTJForCausalLM"), ("opt", "FlaxOPTForCausalLM"), ("roberta", "FlaxRobertaForCausalLM"), ("roberta-prelayernorm", "FlaxRobertaPreLayerNormForCausalLM"), ("xglm", "FlaxXGLMForCausalLM"), ("xlm-roberta", "FlaxXLMRobertaForCausalLM"), ] ) UpperCAmelCase_ = OrderedDict( [ # Model for Sequence Classification mapping ("albert", "FlaxAlbertForSequenceClassification"), ("bart", "FlaxBartForSequenceClassification"), ("bert", "FlaxBertForSequenceClassification"), ("big_bird", "FlaxBigBirdForSequenceClassification"), ("distilbert", "FlaxDistilBertForSequenceClassification"), ("electra", "FlaxElectraForSequenceClassification"), ("mbart", "FlaxMBartForSequenceClassification"), ("roberta", "FlaxRobertaForSequenceClassification"), ("roberta-prelayernorm", "FlaxRobertaPreLayerNormForSequenceClassification"), ("roformer", "FlaxRoFormerForSequenceClassification"), ("xlm-roberta", "FlaxXLMRobertaForSequenceClassification"), ] ) UpperCAmelCase_ = OrderedDict( [ # Model for Question Answering mapping ("albert", "FlaxAlbertForQuestionAnswering"), ("bart", "FlaxBartForQuestionAnswering"), ("bert", "FlaxBertForQuestionAnswering"), ("big_bird", "FlaxBigBirdForQuestionAnswering"), ("distilbert", "FlaxDistilBertForQuestionAnswering"), ("electra", "FlaxElectraForQuestionAnswering"), ("mbart", "FlaxMBartForQuestionAnswering"), ("roberta", "FlaxRobertaForQuestionAnswering"), ("roberta-prelayernorm", "FlaxRobertaPreLayerNormForQuestionAnswering"), ("roformer", "FlaxRoFormerForQuestionAnswering"), ("xlm-roberta", "FlaxXLMRobertaForQuestionAnswering"), ] ) UpperCAmelCase_ = OrderedDict( [ # Model for Token Classification mapping ("albert", "FlaxAlbertForTokenClassification"), ("bert", "FlaxBertForTokenClassification"), ("big_bird", "FlaxBigBirdForTokenClassification"), ("distilbert", "FlaxDistilBertForTokenClassification"), ("electra", "FlaxElectraForTokenClassification"), ("roberta", "FlaxRobertaForTokenClassification"), ("roberta-prelayernorm", "FlaxRobertaPreLayerNormForTokenClassification"), ("roformer", "FlaxRoFormerForTokenClassification"), ("xlm-roberta", "FlaxXLMRobertaForTokenClassification"), ] ) UpperCAmelCase_ = OrderedDict( [ # Model for Multiple Choice mapping ("albert", "FlaxAlbertForMultipleChoice"), ("bert", "FlaxBertForMultipleChoice"), ("big_bird", "FlaxBigBirdForMultipleChoice"), ("distilbert", "FlaxDistilBertForMultipleChoice"), ("electra", "FlaxElectraForMultipleChoice"), ("roberta", "FlaxRobertaForMultipleChoice"), ("roberta-prelayernorm", "FlaxRobertaPreLayerNormForMultipleChoice"), ("roformer", "FlaxRoFormerForMultipleChoice"), ("xlm-roberta", "FlaxXLMRobertaForMultipleChoice"), ] ) UpperCAmelCase_ = OrderedDict( [ ("bert", "FlaxBertForNextSentencePrediction"), ] ) UpperCAmelCase_ = OrderedDict( [ ("speech-encoder-decoder", "FlaxSpeechEncoderDecoderModel"), ("whisper", "FlaxWhisperForConditionalGeneration"), ] ) UpperCAmelCase_ = OrderedDict( [ ("whisper", "FlaxWhisperForAudioClassification"), ] ) UpperCAmelCase_ = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_MAPPING_NAMES) UpperCAmelCase_ = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_PRETRAINING_MAPPING_NAMES) UpperCAmelCase_ = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_MASKED_LM_MAPPING_NAMES) UpperCAmelCase_ = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING_NAMES ) UpperCAmelCase_ = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING_NAMES ) UpperCAmelCase_ = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_VISION_2_SEQ_MAPPING_NAMES) UpperCAmelCase_ = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_CAUSAL_LM_MAPPING_NAMES) UpperCAmelCase_ = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING_NAMES ) UpperCAmelCase_ = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_QUESTION_ANSWERING_MAPPING_NAMES ) UpperCAmelCase_ = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING_NAMES ) UpperCAmelCase_ = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_MULTIPLE_CHOICE_MAPPING_NAMES ) UpperCAmelCase_ = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_NEXT_SENTENCE_PREDICTION_MAPPING_NAMES ) UpperCAmelCase_ = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_SPEECH_SEQ_2_SEQ_MAPPING_NAMES ) UpperCAmelCase_ = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_AUDIO_CLASSIFICATION_MAPPING_NAMES ) class __UpperCamelCase ( _BaseAutoModelClass ): __A : List[str] = FLAX_MODEL_MAPPING UpperCAmelCase_ = auto_class_update(FlaxAutoModel) class __UpperCamelCase ( _BaseAutoModelClass ): __A : Optional[Any] = FLAX_MODEL_FOR_PRETRAINING_MAPPING UpperCAmelCase_ = auto_class_update(FlaxAutoModelForPreTraining, head_doc="pretraining") class __UpperCamelCase ( _BaseAutoModelClass ): __A : List[Any] = FLAX_MODEL_FOR_CAUSAL_LM_MAPPING UpperCAmelCase_ = auto_class_update(FlaxAutoModelForCausalLM, head_doc="causal language modeling") class __UpperCamelCase ( _BaseAutoModelClass ): __A : List[str] = FLAX_MODEL_FOR_MASKED_LM_MAPPING UpperCAmelCase_ = auto_class_update(FlaxAutoModelForMaskedLM, head_doc="masked language modeling") class __UpperCamelCase ( _BaseAutoModelClass ): __A : Dict = FLAX_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING UpperCAmelCase_ = auto_class_update( FlaxAutoModelForSeqaSeqLM, head_doc="sequence-to-sequence language modeling", checkpoint_for_example="t5-base" ) class __UpperCamelCase ( _BaseAutoModelClass ): __A : List[str] = FLAX_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING UpperCAmelCase_ = auto_class_update( FlaxAutoModelForSequenceClassification, head_doc="sequence classification" ) class __UpperCamelCase ( _BaseAutoModelClass ): __A : Dict = FLAX_MODEL_FOR_QUESTION_ANSWERING_MAPPING UpperCAmelCase_ = auto_class_update(FlaxAutoModelForQuestionAnswering, head_doc="question answering") class __UpperCamelCase ( _BaseAutoModelClass ): __A : Union[str, Any] = FLAX_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING UpperCAmelCase_ = auto_class_update( FlaxAutoModelForTokenClassification, head_doc="token classification" ) class __UpperCamelCase ( _BaseAutoModelClass ): __A : Union[str, Any] = FLAX_MODEL_FOR_MULTIPLE_CHOICE_MAPPING UpperCAmelCase_ = auto_class_update(FlaxAutoModelForMultipleChoice, head_doc="multiple choice") class __UpperCamelCase ( _BaseAutoModelClass ): __A : Any = FLAX_MODEL_FOR_NEXT_SENTENCE_PREDICTION_MAPPING UpperCAmelCase_ = auto_class_update( FlaxAutoModelForNextSentencePrediction, head_doc="next sentence prediction" ) class __UpperCamelCase ( _BaseAutoModelClass ): __A : Dict = FLAX_MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING UpperCAmelCase_ = auto_class_update( FlaxAutoModelForImageClassification, head_doc="image classification" ) class __UpperCamelCase ( _BaseAutoModelClass ): __A : Optional[int] = FLAX_MODEL_FOR_VISION_2_SEQ_MAPPING UpperCAmelCase_ = auto_class_update(FlaxAutoModelForVisionaSeq, head_doc="vision-to-text modeling") class __UpperCamelCase ( _BaseAutoModelClass ): __A : str = FLAX_MODEL_FOR_SPEECH_SEQ_2_SEQ_MAPPING UpperCAmelCase_ = auto_class_update( FlaxAutoModelForSpeechSeqaSeq, head_doc="sequence-to-sequence speech-to-text modeling" )
32
0
"""simple docstring""" from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging __lowerCAmelCase : List[Any] = logging.get_logger(__name__) __lowerCAmelCase : Dict = { '''junnyu/roformer_chinese_small''': '''https://huggingface.co/junnyu/roformer_chinese_small/resolve/main/config.json''', '''junnyu/roformer_chinese_base''': '''https://huggingface.co/junnyu/roformer_chinese_base/resolve/main/config.json''', '''junnyu/roformer_chinese_char_small''': ( '''https://huggingface.co/junnyu/roformer_chinese_char_small/resolve/main/config.json''' ), '''junnyu/roformer_chinese_char_base''': ( '''https://huggingface.co/junnyu/roformer_chinese_char_base/resolve/main/config.json''' ), '''junnyu/roformer_small_discriminator''': ( '''https://huggingface.co/junnyu/roformer_small_discriminator/resolve/main/config.json''' ), '''junnyu/roformer_small_generator''': ( '''https://huggingface.co/junnyu/roformer_small_generator/resolve/main/config.json''' ), # See all RoFormer models at https://huggingface.co/models?filter=roformer } class _lowerCAmelCase ( SCREAMING_SNAKE_CASE__ ): """simple docstring""" _lowerCamelCase = '''roformer''' def __init__( self , _lowercase=5_0_0_0_0 , _lowercase=None , _lowercase=7_6_8 , _lowercase=1_2 , _lowercase=1_2 , _lowercase=3_0_7_2 , _lowercase="gelu" , _lowercase=0.1 , _lowercase=0.1 , _lowercase=1_5_3_6 , _lowercase=2 , _lowercase=0.02 , _lowercase=1E-12 , _lowercase=0 , _lowercase=False , _lowercase=True , **_lowercase , ) -> int: '''simple docstring''' super().__init__(pad_token_id=_lowercase , **_lowercase ) snake_case_ : str = vocab_size snake_case_ : Any = hidden_size if embedding_size is None else embedding_size snake_case_ : List[str] = hidden_size snake_case_ : str = num_hidden_layers snake_case_ : Union[str, Any] = num_attention_heads snake_case_ : Union[str, Any] = hidden_act snake_case_ : Optional[Any] = intermediate_size snake_case_ : List[str] = hidden_dropout_prob snake_case_ : str = attention_probs_dropout_prob snake_case_ : Union[str, Any] = max_position_embeddings snake_case_ : List[str] = type_vocab_size snake_case_ : Tuple = initializer_range snake_case_ : str = layer_norm_eps snake_case_ : List[str] = rotary_value snake_case_ : str = use_cache class _lowerCAmelCase ( SCREAMING_SNAKE_CASE__ ): """simple docstring""" @property def UpperCAmelCase__ ( self ) -> Mapping[str, Mapping[int, str]]: '''simple docstring''' if self.task == "multiple-choice": snake_case_ : int = {0: """batch""", 1: """choice""", 2: """sequence"""} else: snake_case_ : Any = {0: """batch""", 1: """sequence"""} snake_case_ : Optional[int] = {0: """batch""", 1: """sequence"""} return OrderedDict( [ ("""input_ids""", dynamic_axis), ("""attention_mask""", dynamic_axis), ("""token_type_ids""", dynamic_axis), ] )
58
import baseaa def A__ ( SCREAMING_SNAKE_CASE_ : str ) -> bytes: """simple docstring""" return baseaa.baaencode(string.encode('''utf-8''' ) ) def A__ ( SCREAMING_SNAKE_CASE_ : bytes ) -> str: """simple docstring""" return baseaa.baadecode(SCREAMING_SNAKE_CASE_ ).decode('''utf-8''' ) if __name__ == "__main__": UpperCAmelCase_ = "Hello World!" UpperCAmelCase_ = baseaa_encode(test) print(encoded) UpperCAmelCase_ = baseaa_decode(encoded) print(decoded)
32
0
from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging __A = logging.get_logger(__name__) __A = { "YituTech/conv-bert-base": "https://huggingface.co/YituTech/conv-bert-base/resolve/main/config.json", "YituTech/conv-bert-medium-small": ( "https://huggingface.co/YituTech/conv-bert-medium-small/resolve/main/config.json" ), "YituTech/conv-bert-small": "https://huggingface.co/YituTech/conv-bert-small/resolve/main/config.json", # See all ConvBERT models at https://huggingface.co/models?filter=convbert } class _SCREAMING_SNAKE_CASE ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' lowercase_ = "convbert" def __init__(self : List[str] , UpperCAmelCase_ : Any=30_522 , UpperCAmelCase_ : Optional[int]=768 , UpperCAmelCase_ : Optional[int]=12 , UpperCAmelCase_ : Optional[Any]=12 , UpperCAmelCase_ : List[str]=3_072 , UpperCAmelCase_ : Dict="gelu" , UpperCAmelCase_ : int=0.1 , UpperCAmelCase_ : Any=0.1 , UpperCAmelCase_ : List[str]=512 , UpperCAmelCase_ : List[str]=2 , UpperCAmelCase_ : Tuple=0.02 , UpperCAmelCase_ : List[str]=1E-1_2 , UpperCAmelCase_ : Optional[int]=1 , UpperCAmelCase_ : Union[str, Any]=0 , UpperCAmelCase_ : Tuple=2 , UpperCAmelCase_ : Optional[int]=768 , UpperCAmelCase_ : Dict=2 , UpperCAmelCase_ : Optional[int]=9 , UpperCAmelCase_ : List[str]=1 , UpperCAmelCase_ : Union[str, Any]=None , **UpperCAmelCase_ : Optional[int] , ) ->List[Any]: '''simple docstring''' super().__init__( pad_token_id=UpperCAmelCase_ , bos_token_id=UpperCAmelCase_ , eos_token_id=UpperCAmelCase_ , **UpperCAmelCase_ , ) lowerCamelCase__: Any =vocab_size lowerCamelCase__: Optional[Any] =hidden_size lowerCamelCase__: List[Any] =num_hidden_layers lowerCamelCase__: List[str] =num_attention_heads lowerCamelCase__: Dict =intermediate_size lowerCamelCase__: List[Any] =hidden_act lowerCamelCase__: List[str] =hidden_dropout_prob lowerCamelCase__: List[Any] =attention_probs_dropout_prob lowerCamelCase__: Union[str, Any] =max_position_embeddings lowerCamelCase__: str =type_vocab_size lowerCamelCase__: str =initializer_range lowerCamelCase__: Optional[Any] =layer_norm_eps lowerCamelCase__: Optional[int] =embedding_size lowerCamelCase__: List[str] =head_ratio lowerCamelCase__: Optional[Any] =conv_kernel_size lowerCamelCase__: int =num_groups lowerCamelCase__: List[str] =classifier_dropout class _SCREAMING_SNAKE_CASE ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' @property def SCREAMING_SNAKE_CASE_ (self : Union[str, Any]) ->Mapping[str, Mapping[int, str]]: '''simple docstring''' if self.task == "multiple-choice": lowerCamelCase__: Any ={0: "batch", 1: "choice", 2: "sequence"} else: lowerCamelCase__: str ={0: "batch", 1: "sequence"} return OrderedDict( [ ("input_ids", dynamic_axis), ("attention_mask", dynamic_axis), ("token_type_ids", dynamic_axis), ])
59
from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD, ChannelDimension, ImageInput, PILImageResampling, is_batched, to_numpy_array, valid_images, ) from ...utils import TensorType, logging UpperCAmelCase_ = logging.get_logger(__name__) class __UpperCamelCase ( A__ ): __A : int = ["""pixel_values"""] def __init__( self , _UpperCamelCase = True , _UpperCamelCase = None , _UpperCamelCase = PILImageResampling.BICUBIC , _UpperCamelCase = True , _UpperCamelCase = True , _UpperCamelCase = 1 / 255 , _UpperCamelCase = None , _UpperCamelCase = True , _UpperCamelCase = None , _UpperCamelCase = None , **_UpperCamelCase , ): super().__init__(**_UpperCamelCase ) _UpperCAmelCase = size if size is not None else {'''height''': 224, '''width''': 224} _UpperCAmelCase = get_size_dict(_UpperCamelCase ) _UpperCAmelCase = crop_size if crop_size is not None else {'''height''': 224, '''width''': 224} _UpperCAmelCase = get_size_dict(_UpperCamelCase , default_to_square=_UpperCamelCase , param_name='''crop_size''' ) _UpperCAmelCase = do_resize _UpperCAmelCase = do_rescale _UpperCAmelCase = do_normalize _UpperCAmelCase = do_center_crop _UpperCAmelCase = crop_size _UpperCAmelCase = size _UpperCAmelCase = resample _UpperCAmelCase = rescale_factor _UpperCAmelCase = image_mean if image_mean is not None else IMAGENET_DEFAULT_MEAN _UpperCAmelCase = image_std if image_std is not None else IMAGENET_DEFAULT_STD def UpperCamelCase( self , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase = PILImageResampling.BILINEAR , _UpperCamelCase = None , **_UpperCamelCase , ): _UpperCAmelCase = get_size_dict(_UpperCamelCase ) if "shortest_edge" in size: _UpperCAmelCase = get_resize_output_image_size(_UpperCamelCase , size=size['''shortest_edge'''] , default_to_square=_UpperCamelCase ) # size = get_resize_output_image_size(image, size["shortest_edge"], size["longest_edge"]) elif "height" in size and "width" in size: _UpperCAmelCase = (size['''height'''], size['''width''']) else: raise ValueError(f'''Size must contain \'height\' and \'width\' keys or \'shortest_edge\' key. Got {size.keys()}''' ) return resize(_UpperCamelCase , size=_UpperCamelCase , resample=_UpperCamelCase , data_format=_UpperCamelCase , **_UpperCamelCase ) def UpperCamelCase( self , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase = None , **_UpperCamelCase , ): _UpperCAmelCase = get_size_dict(_UpperCamelCase ) if "height" not in size or "width" not in size: raise ValueError(f'''The `size` parameter must contain the keys (height, width). Got {size.keys()}''' ) return center_crop(_UpperCamelCase , size=(size['''height'''], size['''width''']) , data_format=_UpperCamelCase , **_UpperCamelCase ) def UpperCamelCase( self , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase = None , **_UpperCamelCase ): return rescale(_UpperCamelCase , scale=_UpperCamelCase , data_format=_UpperCamelCase , **_UpperCamelCase ) def UpperCamelCase( self , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase = None , **_UpperCamelCase , ): return normalize(_UpperCamelCase , mean=_UpperCamelCase , std=_UpperCamelCase , data_format=_UpperCamelCase , **_UpperCamelCase ) def UpperCamelCase( self , _UpperCamelCase , _UpperCamelCase = None , _UpperCamelCase = None , _UpperCamelCase = None , _UpperCamelCase = None , _UpperCamelCase = None , _UpperCamelCase = None , _UpperCamelCase = None , _UpperCamelCase = None , _UpperCamelCase = None , _UpperCamelCase = None , _UpperCamelCase = None , _UpperCamelCase = ChannelDimension.FIRST , **_UpperCamelCase , ): _UpperCAmelCase = do_resize if do_resize is not None else self.do_resize _UpperCAmelCase = do_rescale if do_rescale is not None else self.do_rescale _UpperCAmelCase = do_normalize if do_normalize is not None else self.do_normalize _UpperCAmelCase = do_center_crop if do_center_crop is not None else self.do_center_crop _UpperCAmelCase = crop_size if crop_size is not None else self.crop_size _UpperCAmelCase = get_size_dict(_UpperCamelCase , param_name='''crop_size''' , default_to_square=_UpperCamelCase ) _UpperCAmelCase = resample if resample is not None else self.resample _UpperCAmelCase = rescale_factor if rescale_factor is not None else self.rescale_factor _UpperCAmelCase = image_mean if image_mean is not None else self.image_mean _UpperCAmelCase = image_std if image_std is not None else self.image_std _UpperCAmelCase = size if size is not None else self.size _UpperCAmelCase = get_size_dict(_UpperCamelCase ) if not is_batched(_UpperCamelCase ): _UpperCAmelCase = [images] if not valid_images(_UpperCamelCase ): raise ValueError( '''Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ''' '''torch.Tensor, tf.Tensor or jax.ndarray.''' ) if do_resize and size is None: raise ValueError('''Size must be specified if do_resize is True.''' ) if do_center_crop and crop_size is None: raise ValueError('''Crop size must be specified if do_center_crop is True.''' ) if do_rescale and rescale_factor is None: raise ValueError('''Rescale factor must be specified if do_rescale is True.''' ) # All transformations expect numpy arrays. _UpperCAmelCase = [to_numpy_array(_UpperCamelCase ) for image in images] if do_resize: _UpperCAmelCase = [self.resize(image=_UpperCamelCase , size=_UpperCamelCase , resample=_UpperCamelCase ) for image in images] if do_center_crop: _UpperCAmelCase = [self.center_crop(image=_UpperCamelCase , size=_UpperCamelCase ) for image in images] if do_rescale: _UpperCAmelCase = [self.rescale(image=_UpperCamelCase , scale=_UpperCamelCase ) for image in images] if do_normalize: _UpperCAmelCase = [self.normalize(image=_UpperCamelCase , mean=_UpperCamelCase , std=_UpperCamelCase ) for image in images] _UpperCAmelCase = [to_channel_dimension_format(_UpperCamelCase , _UpperCamelCase ) for image in images] _UpperCAmelCase = {'''pixel_values''': images} return BatchFeature(data=_UpperCamelCase , tensor_type=_UpperCamelCase )
32
0
def lowerCamelCase_ ( _UpperCamelCase ) -> list[int]: """simple docstring""" snake_case_ : Optional[int] = [0 for i in range(len(_UpperCamelCase ) )] # initialize interval's left pointer and right pointer snake_case_ , snake_case_ : Tuple = 0, 0 for i in range(1 , len(_UpperCamelCase ) ): # case when current index is inside the interval if i <= right_pointer: snake_case_ : Any = min(right_pointer - i + 1 , z_result[i - left_pointer] ) snake_case_ : Tuple = min_edge while go_next(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase ): z_result[i] += 1 # if new index's result gives us more right interval, # we've to update left_pointer and right_pointer if i + z_result[i] - 1 > right_pointer: snake_case_ , snake_case_ : int = i, i + z_result[i] - 1 return z_result def lowerCamelCase_ ( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) -> bool: """simple docstring""" return i + z_result[i] < len(_UpperCamelCase ) and s[z_result[i]] == s[i + z_result[i]] def lowerCamelCase_ ( _UpperCamelCase , _UpperCamelCase ) -> int: """simple docstring""" snake_case_ : Tuple = 0 # concatenate 'pattern' and 'input_str' and call z_function # with concatenated string snake_case_ : Union[str, Any] = z_function(pattern + input_str ) for val in z_result: # if value is greater then length of the pattern string # that means this index is starting position of substring # which is equal to pattern string if val >= len(_UpperCamelCase ): answer += 1 return answer if __name__ == "__main__": import doctest doctest.testmod()
60
from ..utils import DummyObject, requires_backends class __UpperCamelCase ( metaclass=A__ ): __A : str = ["""torch""", """scipy"""] def __init__( self , *_UpperCamelCase , **_UpperCamelCase ): requires_backends(self , ['''torch''', '''scipy'''] ) @classmethod def UpperCamelCase( cls , *_UpperCamelCase , **_UpperCamelCase ): requires_backends(cls , ['''torch''', '''scipy'''] ) @classmethod def UpperCamelCase( cls , *_UpperCamelCase , **_UpperCamelCase ): requires_backends(cls , ['''torch''', '''scipy'''] )
32
0
import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import ChineseCLIPImageProcessor class __lowerCamelCase ( unittest.TestCase ): """simple docstring""" def __init__( self : str , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : Dict=7 , SCREAMING_SNAKE_CASE__ : Tuple=3 , SCREAMING_SNAKE_CASE__ : Optional[int]=18 , SCREAMING_SNAKE_CASE__ : List[str]=30 , SCREAMING_SNAKE_CASE__ : Dict=400 , SCREAMING_SNAKE_CASE__ : Optional[int]=True , SCREAMING_SNAKE_CASE__ : Tuple=None , SCREAMING_SNAKE_CASE__ : Dict=True , SCREAMING_SNAKE_CASE__ : str=None , SCREAMING_SNAKE_CASE__ : str=True , SCREAMING_SNAKE_CASE__ : Optional[Any]=[0.48_145_466, 0.4_578_275, 0.40_821_073] , SCREAMING_SNAKE_CASE__ : Union[str, Any]=[0.26_862_954, 0.26_130_258, 0.27_577_711] , SCREAMING_SNAKE_CASE__ : Union[str, Any]=True , ) -> int: lowerCAmelCase__ = size if size is not None else {"height": 224, "width": 224} lowerCAmelCase__ = crop_size if crop_size is not None else {"height": 18, "width": 18} lowerCAmelCase__ = parent lowerCAmelCase__ = batch_size lowerCAmelCase__ = num_channels lowerCAmelCase__ = image_size lowerCAmelCase__ = min_resolution lowerCAmelCase__ = max_resolution lowerCAmelCase__ = do_resize lowerCAmelCase__ = size lowerCAmelCase__ = do_center_crop lowerCAmelCase__ = crop_size lowerCAmelCase__ = do_normalize lowerCAmelCase__ = image_mean lowerCAmelCase__ = image_std lowerCAmelCase__ = do_convert_rgb def a ( self : Union[str, Any] ) -> Union[str, Any]: return { "do_resize": self.do_resize, "size": self.size, "do_center_crop": self.do_center_crop, "crop_size": self.crop_size, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, "do_convert_rgb": self.do_convert_rgb, } def a ( self : Union[str, Any] , SCREAMING_SNAKE_CASE__ : List[str]=False , SCREAMING_SNAKE_CASE__ : Optional[Any]=False , SCREAMING_SNAKE_CASE__ : Optional[Any]=False ) -> Optional[Any]: assert not (numpify and torchify), "You cannot specify both numpy and PyTorch tensors at the same time" if equal_resolution: lowerCAmelCase__ = [] for i in range(self.batch_size ): image_inputs.append( np.random.randint( 255 , size=(self.num_channels, self.max_resolution, self.max_resolution) , dtype=np.uinta ) ) else: lowerCAmelCase__ = [] for i in range(self.batch_size ): lowerCAmelCase__ , lowerCAmelCase__ = np.random.choice(np.arange(self.min_resolution , self.max_resolution ) , 2 ) image_inputs.append(np.random.randint(255 , size=(self.num_channels, width, height) , dtype=np.uinta ) ) if not numpify and not torchify: # PIL expects the channel dimension as last dimension lowerCAmelCase__ = [Image.fromarray(np.moveaxis(SCREAMING_SNAKE_CASE__ , 0 , -1 ) ) for x in image_inputs] if torchify: lowerCAmelCase__ = [torch.from_numpy(SCREAMING_SNAKE_CASE__ ) for x in image_inputs] return image_inputs @require_torch @require_vision class __lowerCamelCase ( UpperCamelCase__ , unittest.TestCase ): """simple docstring""" snake_case__ = ChineseCLIPImageProcessor if is_vision_available() else None def a ( self : Optional[Any] ) -> List[str]: lowerCAmelCase__ = ChineseCLIPImageProcessingTester(self , do_center_crop=SCREAMING_SNAKE_CASE__ ) @property def a ( self : int ) -> str: return self.image_processor_tester.prepare_image_processor_dict() def a ( self : Tuple ) -> int: lowerCAmelCase__ = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(SCREAMING_SNAKE_CASE__ , "do_resize" ) ) self.assertTrue(hasattr(SCREAMING_SNAKE_CASE__ , "size" ) ) self.assertTrue(hasattr(SCREAMING_SNAKE_CASE__ , "do_center_crop" ) ) self.assertTrue(hasattr(SCREAMING_SNAKE_CASE__ , "center_crop" ) ) self.assertTrue(hasattr(SCREAMING_SNAKE_CASE__ , "do_normalize" ) ) self.assertTrue(hasattr(SCREAMING_SNAKE_CASE__ , "image_mean" ) ) self.assertTrue(hasattr(SCREAMING_SNAKE_CASE__ , "image_std" ) ) self.assertTrue(hasattr(SCREAMING_SNAKE_CASE__ , "do_convert_rgb" ) ) def a ( self : Dict ) -> int: lowerCAmelCase__ = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {"height": 224, "width": 224} ) self.assertEqual(image_processor.crop_size , {"height": 18, "width": 18} ) lowerCAmelCase__ = self.image_processing_class.from_dict(self.image_processor_dict , size=42 , crop_size=84 ) self.assertEqual(image_processor.size , {"shortest_edge": 42} ) self.assertEqual(image_processor.crop_size , {"height": 84, "width": 84} ) def a ( self : str ) -> Optional[int]: pass def a ( self : Tuple ) -> Union[str, Any]: # Initialize image_processing lowerCAmelCase__ = self.image_processing_class(**self.image_processor_dict ) # create random PIL images lowerCAmelCase__ = self.image_processor_tester.prepare_inputs(equal_resolution=SCREAMING_SNAKE_CASE__ ) for image in image_inputs: self.assertIsInstance(SCREAMING_SNAKE_CASE__ , Image.Image ) # Test not batched input lowerCAmelCase__ = image_processing(image_inputs[0] , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) , ) # Test batched lowerCAmelCase__ = image_processing(SCREAMING_SNAKE_CASE__ , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) , ) def a ( self : Union[str, Any] ) -> Dict: # Initialize image_processing lowerCAmelCase__ = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors lowerCAmelCase__ = self.image_processor_tester.prepare_inputs(equal_resolution=SCREAMING_SNAKE_CASE__ , numpify=SCREAMING_SNAKE_CASE__ ) for image in image_inputs: self.assertIsInstance(SCREAMING_SNAKE_CASE__ , np.ndarray ) # Test not batched input lowerCAmelCase__ = image_processing(image_inputs[0] , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) , ) # Test batched lowerCAmelCase__ = image_processing(SCREAMING_SNAKE_CASE__ , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) , ) def a ( self : Optional[Any] ) -> Any: # Initialize image_processing lowerCAmelCase__ = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors lowerCAmelCase__ = self.image_processor_tester.prepare_inputs(equal_resolution=SCREAMING_SNAKE_CASE__ , torchify=SCREAMING_SNAKE_CASE__ ) for image in image_inputs: self.assertIsInstance(SCREAMING_SNAKE_CASE__ , torch.Tensor ) # Test not batched input lowerCAmelCase__ = image_processing(image_inputs[0] , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) , ) # Test batched lowerCAmelCase__ = image_processing(SCREAMING_SNAKE_CASE__ , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) , ) @require_torch @require_vision class __lowerCamelCase ( UpperCamelCase__ , unittest.TestCase ): """simple docstring""" snake_case__ = ChineseCLIPImageProcessor if is_vision_available() else None def a ( self : Optional[int] ) -> Union[str, Any]: lowerCAmelCase__ = ChineseCLIPImageProcessingTester(self , num_channels=4 , do_center_crop=SCREAMING_SNAKE_CASE__ ) lowerCAmelCase__ = 3 @property def a ( self : int ) -> Dict: return self.image_processor_tester.prepare_image_processor_dict() def a ( self : List[str] ) -> Dict: lowerCAmelCase__ = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(SCREAMING_SNAKE_CASE__ , "do_resize" ) ) self.assertTrue(hasattr(SCREAMING_SNAKE_CASE__ , "size" ) ) self.assertTrue(hasattr(SCREAMING_SNAKE_CASE__ , "do_center_crop" ) ) self.assertTrue(hasattr(SCREAMING_SNAKE_CASE__ , "center_crop" ) ) self.assertTrue(hasattr(SCREAMING_SNAKE_CASE__ , "do_normalize" ) ) self.assertTrue(hasattr(SCREAMING_SNAKE_CASE__ , "image_mean" ) ) self.assertTrue(hasattr(SCREAMING_SNAKE_CASE__ , "image_std" ) ) self.assertTrue(hasattr(SCREAMING_SNAKE_CASE__ , "do_convert_rgb" ) ) def a ( self : Any ) -> Optional[int]: pass def a ( self : str ) -> Union[str, Any]: # Initialize image_processing lowerCAmelCase__ = self.image_processing_class(**self.image_processor_dict ) # create random PIL images lowerCAmelCase__ = self.image_processor_tester.prepare_inputs(equal_resolution=SCREAMING_SNAKE_CASE__ ) for image in image_inputs: self.assertIsInstance(SCREAMING_SNAKE_CASE__ , Image.Image ) # Test not batched input lowerCAmelCase__ = image_processing(image_inputs[0] , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.expected_encoded_image_num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) , ) # Test batched lowerCAmelCase__ = image_processing(SCREAMING_SNAKE_CASE__ , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.expected_encoded_image_num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) , )
61
def A__ ( SCREAMING_SNAKE_CASE_ : int = 2_00_00_00 ) -> int: """simple docstring""" _UpperCAmelCase = [0 for i in range(n + 1 )] _UpperCAmelCase = 1 _UpperCAmelCase = 1 for i in range(2 , int(n**0.5 ) + 1 ): if primality_list[i] == 0: for j in range(i * i , n + 1 , SCREAMING_SNAKE_CASE_ ): _UpperCAmelCase = 1 _UpperCAmelCase = 0 for i in range(SCREAMING_SNAKE_CASE_ ): if primality_list[i] == 0: sum_of_primes += i return sum_of_primes if __name__ == "__main__": print(f'''{solution() = }''')
32
0
def lowerCamelCase__ ( lowercase , lowercase ): """simple docstring""" SCREAMING_SNAKE_CASE : List[str] = len(lowercase ) print("The following activities are selected:" ) # The first activity is always selected SCREAMING_SNAKE_CASE : Optional[int] = 0 print(lowercase , end="," ) # Consider rest of the activities for j in range(lowercase ): # If this activity has start time greater than # or equal to the finish time of previously # selected activity, then select it if start[j] >= finish[i]: print(lowercase , end="," ) SCREAMING_SNAKE_CASE : List[str] = j if __name__ == "__main__": import doctest doctest.testmod() snake_case = [1, 3, 0, 5, 8, 5] snake_case = [2, 4, 6, 7, 9, 9] print_max_activities(start, finish)
62
import warnings from ...utils import logging from .image_processing_glpn import GLPNImageProcessor UpperCAmelCase_ = logging.get_logger(__name__) class __UpperCamelCase ( A__ ): def __init__( self , *_UpperCamelCase , **_UpperCamelCase ): warnings.warn( '''The class GLPNFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please''' ''' use GLPNImageProcessor instead.''' , _UpperCamelCase , ) super().__init__(*_UpperCamelCase , **_UpperCamelCase )
32
0
def lowerCamelCase__ ( __lowerCamelCase : List[Any] , __lowerCamelCase : Union[str, Any] ): __UpperCAmelCase : Tuple = 0 while b > 0: if b & 1: res += a a += a b >>= 1 return res def lowerCamelCase__ ( __lowerCamelCase : List[str] , __lowerCamelCase : Union[str, Any] , __lowerCamelCase : Dict ): __UpperCAmelCase : int = 0 while b > 0: if b & 1: __UpperCAmelCase : Optional[int] = ((res % c) + (a % c)) % c a += a b >>= 1 return res
63
from typing import List, Optional, Union from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType class __UpperCamelCase ( A__ ): __A : Dict = ["""image_processor""", """tokenizer"""] __A : List[str] = """BridgeTowerImageProcessor""" __A : str = ("""RobertaTokenizer""", """RobertaTokenizerFast""") def __init__( self , _UpperCamelCase , _UpperCamelCase ): super().__init__(_UpperCamelCase , _UpperCamelCase ) def __call__( self , _UpperCamelCase , _UpperCamelCase = None , _UpperCamelCase = True , _UpperCamelCase = False , _UpperCamelCase = None , _UpperCamelCase = None , _UpperCamelCase = 0 , _UpperCamelCase = None , _UpperCamelCase = None , _UpperCamelCase = None , _UpperCamelCase = False , _UpperCamelCase = False , _UpperCamelCase = False , _UpperCamelCase = False , _UpperCamelCase = True , _UpperCamelCase = None , **_UpperCamelCase , ): _UpperCAmelCase = self.tokenizer( text=_UpperCamelCase , add_special_tokens=_UpperCamelCase , padding=_UpperCamelCase , truncation=_UpperCamelCase , max_length=_UpperCamelCase , stride=_UpperCamelCase , pad_to_multiple_of=_UpperCamelCase , return_token_type_ids=_UpperCamelCase , return_attention_mask=_UpperCamelCase , return_overflowing_tokens=_UpperCamelCase , return_special_tokens_mask=_UpperCamelCase , return_offsets_mapping=_UpperCamelCase , return_length=_UpperCamelCase , verbose=_UpperCamelCase , return_tensors=_UpperCamelCase , **_UpperCamelCase , ) # add pixel_values + pixel_mask _UpperCAmelCase = self.image_processor( _UpperCamelCase , return_tensors=_UpperCamelCase , do_normalize=_UpperCamelCase , do_center_crop=_UpperCamelCase , **_UpperCamelCase ) encoding.update(_UpperCamelCase ) return encoding def UpperCamelCase( self , *_UpperCamelCase , **_UpperCamelCase ): return self.tokenizer.batch_decode(*_UpperCamelCase , **_UpperCamelCase ) def UpperCamelCase( self , *_UpperCamelCase , **_UpperCamelCase ): return self.tokenizer.decode(*_UpperCamelCase , **_UpperCamelCase ) @property def UpperCamelCase( self ): _UpperCAmelCase = self.tokenizer.model_input_names _UpperCAmelCase = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) )
32
0
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available lowercase_ : Optional[int] = {'configuration_glpn': ['GLPN_PRETRAINED_CONFIG_ARCHIVE_MAP', 'GLPNConfig']} try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase_ : Any = ['GLPNFeatureExtractor'] lowercase_ : str = ['GLPNImageProcessor'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase_ : Union[str, Any] = [ 'GLPN_PRETRAINED_MODEL_ARCHIVE_LIST', 'GLPNForDepthEstimation', 'GLPNLayer', 'GLPNModel', 'GLPNPreTrainedModel', ] if TYPE_CHECKING: from .configuration_glpn import GLPN_PRETRAINED_CONFIG_ARCHIVE_MAP, GLPNConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_glpn import GLPNFeatureExtractor from .image_processing_glpn import GLPNImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_glpn import ( GLPN_PRETRAINED_MODEL_ARCHIVE_LIST, GLPNForDepthEstimation, GLPNLayer, GLPNModel, GLPNPreTrainedModel, ) else: import sys lowercase_ : Any = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
64
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available UpperCAmelCase_ = { "configuration_xlm": ["XLM_PRETRAINED_CONFIG_ARCHIVE_MAP", "XLMConfig", "XLMOnnxConfig"], "tokenization_xlm": ["XLMTokenizer"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase_ = [ "XLM_PRETRAINED_MODEL_ARCHIVE_LIST", "XLMForMultipleChoice", "XLMForQuestionAnswering", "XLMForQuestionAnsweringSimple", "XLMForSequenceClassification", "XLMForTokenClassification", "XLMModel", "XLMPreTrainedModel", "XLMWithLMHeadModel", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase_ = [ "TF_XLM_PRETRAINED_MODEL_ARCHIVE_LIST", "TFXLMForMultipleChoice", "TFXLMForQuestionAnsweringSimple", "TFXLMForSequenceClassification", "TFXLMForTokenClassification", "TFXLMMainLayer", "TFXLMModel", "TFXLMPreTrainedModel", "TFXLMWithLMHeadModel", ] if TYPE_CHECKING: from .configuration_xlm import XLM_PRETRAINED_CONFIG_ARCHIVE_MAP, XLMConfig, XLMOnnxConfig from .tokenization_xlm import XLMTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_xlm import ( XLM_PRETRAINED_MODEL_ARCHIVE_LIST, XLMForMultipleChoice, XLMForQuestionAnswering, XLMForQuestionAnsweringSimple, XLMForSequenceClassification, XLMForTokenClassification, XLMModel, XLMPreTrainedModel, XLMWithLMHeadModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_xlm import ( TF_XLM_PRETRAINED_MODEL_ARCHIVE_LIST, TFXLMForMultipleChoice, TFXLMForQuestionAnsweringSimple, TFXLMForSequenceClassification, TFXLMForTokenClassification, TFXLMMainLayer, TFXLMModel, TFXLMPreTrainedModel, TFXLMWithLMHeadModel, ) else: import sys UpperCAmelCase_ = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
32
0
"""simple docstring""" import argparse from collections import defaultdict import yaml __UpperCAmelCase = 'docs/source/en/_toctree.yml' def lowerCAmelCase ( __UpperCamelCase ): '''simple docstring''' UpperCAmelCase__ : List[str] = defaultdict(__UpperCamelCase ) UpperCAmelCase__ : Any = [] UpperCAmelCase__ : Tuple = [] for doc in doc_list: if "local" in doc: counts[doc["local"]] += 1 if doc["title"].lower() == "overview": overview_doc.append({"""local""": doc["""local"""], """title""": doc["""title"""]} ) else: new_doc_list.append(__UpperCamelCase ) UpperCAmelCase__ : Optional[int] = new_doc_list UpperCAmelCase__ : Tuple = [key for key, value in counts.items() if value > 1] UpperCAmelCase__ : str = [] for duplicate_key in duplicates: UpperCAmelCase__ : Tuple = list({doc["""title"""] for doc in doc_list if doc["""local"""] == duplicate_key} ) if len(__UpperCamelCase ) > 1: raise ValueError( F"{duplicate_key} is present several times in the documentation table of content at " """`docs/source/en/_toctree.yml` with different *Title* values. Choose one of those and remove the """ """others.""" ) # Only add this once new_doc.append({"""local""": duplicate_key, """title""": titles[0]} ) # Add none duplicate-keys new_doc.extend([doc for doc in doc_list if """local""" not in counts or counts[doc["""local"""]] == 1] ) UpperCAmelCase__ : List[str] = sorted(__UpperCamelCase , key=lambda __UpperCamelCase : s["title"].lower() ) # "overview" gets special treatment and is always first if len(__UpperCamelCase ) > 1: raise ValueError("""{doc_list} has two 'overview' docs which is not allowed.""" ) overview_doc.extend(__UpperCamelCase ) # Sort return overview_doc def lowerCAmelCase ( __UpperCamelCase=False ): '''simple docstring''' with open(__UpperCamelCase , encoding="""utf-8""" ) as f: UpperCAmelCase__ : Tuple = yaml.safe_load(f.read() ) # Get to the API doc UpperCAmelCase__ : Tuple = 0 while content[api_idx]["title"] != "API": api_idx += 1 UpperCAmelCase__ : Dict = content[api_idx]["""sections"""] # Then to the model doc UpperCAmelCase__ : Any = 0 while api_doc[scheduler_idx]["title"] != "Schedulers": scheduler_idx += 1 UpperCAmelCase__ : Union[str, Any] = api_doc[scheduler_idx]["""sections"""] UpperCAmelCase__ : Dict = clean_doc_toc(__UpperCamelCase ) UpperCAmelCase__ : Dict = False if new_scheduler_doc != scheduler_doc: UpperCAmelCase__ : Optional[Any] = True if overwrite: UpperCAmelCase__ : int = new_scheduler_doc if diff: if overwrite: UpperCAmelCase__ : Any = api_doc with open(__UpperCamelCase , """w""" , encoding="""utf-8""" ) as f: f.write(yaml.dump(__UpperCamelCase , allow_unicode=__UpperCamelCase ) ) else: raise ValueError( """The model doc part of the table of content is not properly sorted, run `make style` to fix this.""" ) def lowerCAmelCase ( __UpperCamelCase=False ): '''simple docstring''' with open(__UpperCamelCase , encoding="""utf-8""" ) as f: UpperCAmelCase__ : List[str] = yaml.safe_load(f.read() ) # Get to the API doc UpperCAmelCase__ : Optional[Any] = 0 while content[api_idx]["title"] != "API": api_idx += 1 UpperCAmelCase__ : Tuple = content[api_idx]["""sections"""] # Then to the model doc UpperCAmelCase__ : List[str] = 0 while api_doc[pipeline_idx]["title"] != "Pipelines": pipeline_idx += 1 UpperCAmelCase__ : str = False UpperCAmelCase__ : List[Any] = api_doc[pipeline_idx]["""sections"""] UpperCAmelCase__ : str = [] # sort sub pipeline docs for pipeline_doc in pipeline_docs: if "section" in pipeline_doc: UpperCAmelCase__ : Optional[Any] = pipeline_doc["""section"""] UpperCAmelCase__ : Union[str, Any] = clean_doc_toc(__UpperCamelCase ) if overwrite: UpperCAmelCase__ : str = new_sub_pipeline_doc new_pipeline_docs.append(__UpperCamelCase ) # sort overall pipeline doc UpperCAmelCase__ : List[str] = clean_doc_toc(__UpperCamelCase ) if new_pipeline_docs != pipeline_docs: UpperCAmelCase__ : Any = True if overwrite: UpperCAmelCase__ : List[str] = new_pipeline_docs if diff: if overwrite: UpperCAmelCase__ : Optional[int] = api_doc with open(__UpperCamelCase , """w""" , encoding="""utf-8""" ) as f: f.write(yaml.dump(__UpperCamelCase , allow_unicode=__UpperCamelCase ) ) else: raise ValueError( """The model doc part of the table of content is not properly sorted, run `make style` to fix this.""" ) if __name__ == "__main__": __UpperCAmelCase = argparse.ArgumentParser() parser.add_argument('--fix_and_overwrite', action='store_true', help='Whether to fix inconsistencies.') __UpperCAmelCase = parser.parse_args() check_scheduler_doc(args.fix_and_overwrite) check_pipeline_doc(args.fix_and_overwrite)
65
from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCAmelCase_ = logging.get_logger(__name__) UpperCAmelCase_ = { "microsoft/biogpt": "https://huggingface.co/microsoft/biogpt/resolve/main/config.json", # See all BioGPT models at https://huggingface.co/models?filter=biogpt } class __UpperCamelCase ( A__ ): __A : Any = """biogpt""" def __init__( self , _UpperCamelCase=42384 , _UpperCamelCase=1024 , _UpperCamelCase=24 , _UpperCamelCase=16 , _UpperCamelCase=4096 , _UpperCamelCase="gelu" , _UpperCamelCase=0.1 , _UpperCamelCase=0.1 , _UpperCamelCase=1024 , _UpperCamelCase=0.02 , _UpperCamelCase=1e-12 , _UpperCamelCase=True , _UpperCamelCase=True , _UpperCamelCase=0.0 , _UpperCamelCase=0.0 , _UpperCamelCase=1 , _UpperCamelCase=0 , _UpperCamelCase=2 , **_UpperCamelCase , ): _UpperCAmelCase = vocab_size _UpperCAmelCase = max_position_embeddings _UpperCAmelCase = hidden_size _UpperCAmelCase = num_hidden_layers _UpperCAmelCase = num_attention_heads _UpperCAmelCase = intermediate_size _UpperCAmelCase = hidden_act _UpperCAmelCase = hidden_dropout_prob _UpperCAmelCase = attention_probs_dropout_prob _UpperCAmelCase = initializer_range _UpperCAmelCase = layer_norm_eps _UpperCAmelCase = scale_embedding _UpperCAmelCase = use_cache _UpperCAmelCase = layerdrop _UpperCAmelCase = activation_dropout super().__init__(pad_token_id=_UpperCamelCase , bos_token_id=_UpperCamelCase , eos_token_id=_UpperCamelCase , **_UpperCamelCase )
32
0
import sys UpperCamelCase = ( "73167176531330624919225119674426574742355349194934" "96983520312774506326239578318016984801869478851843" "85861560789112949495459501737958331952853208805511" "12540698747158523863050715693290963295227443043557" "66896648950445244523161731856403098711121722383113" "62229893423380308135336276614282806444486645238749" "30358907296290491560440772390713810515859307960866" "70172427121883998797908792274921901699720888093776" "65727333001053367881220235421809751254540594752243" "52584907711670556013604839586446706324415722155397" "53697817977846174064955149290862569321978468622482" "83972241375657056057490261407972968652414535100474" "82166370484403199890008895243450658541227588666881" "16427171479924442928230863465674813919123162824586" "17866458359124566529476545682848912883142607690042" "24219022671055626321111109370544217506941658960408" "07198403850962455444362981230987879927244284909188" "84580156166097919133875499200524063689912560717606" "05886116467109405077541002256983155200055935729725" "71636269561882670428252483600823257530420752963450" ) def __magic_name__ ( SCREAMING_SNAKE_CASE ) -> int: _lowercase : List[Any] = 1 for digit in s: product *= int(SCREAMING_SNAKE_CASE ) return product def __magic_name__ ( SCREAMING_SNAKE_CASE = N ) -> int: _lowercase : Dict = -sys.maxsize - 1 _lowercase : Tuple = n[:13] _lowercase : List[Any] = 13 while cur_index < len(SCREAMING_SNAKE_CASE ) - 13: if int(n[cur_index] ) >= int(substr[0] ): _lowercase : List[str] = substr[1:] + n[cur_index] cur_index += 1 else: _lowercase : str = max(SCREAMING_SNAKE_CASE , str_eval(SCREAMING_SNAKE_CASE ) ) _lowercase : Dict = n[cur_index : cur_index + 13] cur_index += 13 return largest_product if __name__ == "__main__": print(f'''{solution() = }''')
66
from typing import List from .keymap import KEYMAP, get_character def A__ ( SCREAMING_SNAKE_CASE_ : str ) -> List[str]: """simple docstring""" def decorator(SCREAMING_SNAKE_CASE_ : List[Any] ): _UpperCAmelCase = getattr(SCREAMING_SNAKE_CASE_ , '''handle_key''' , [] ) handle += [key] setattr(SCREAMING_SNAKE_CASE_ , '''handle_key''' , SCREAMING_SNAKE_CASE_ ) return func return decorator def A__ ( *SCREAMING_SNAKE_CASE_ : List[str] ) -> Dict: """simple docstring""" def decorator(SCREAMING_SNAKE_CASE_ : Any ): _UpperCAmelCase = getattr(SCREAMING_SNAKE_CASE_ , '''handle_key''' , [] ) handle += keys setattr(SCREAMING_SNAKE_CASE_ , '''handle_key''' , SCREAMING_SNAKE_CASE_ ) return func return decorator class __UpperCamelCase ( A__ ): def __new__( cls , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ): _UpperCAmelCase = super().__new__(cls , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) if not hasattr(_UpperCamelCase , '''key_handler''' ): setattr(_UpperCamelCase , '''key_handler''' , {} ) setattr(_UpperCamelCase , '''handle_input''' , KeyHandler.handle_input ) for value in attrs.values(): _UpperCAmelCase = getattr(_UpperCamelCase , '''handle_key''' , [] ) for key in handled_keys: _UpperCAmelCase = value return new_cls @staticmethod def UpperCamelCase( cls ): _UpperCAmelCase = get_character() if char != KEYMAP["undefined"]: _UpperCAmelCase = ord(_UpperCamelCase ) _UpperCAmelCase = cls.key_handler.get(_UpperCamelCase ) if handler: _UpperCAmelCase = char return handler(cls ) else: return None def A__ ( cls : Union[str, Any] ) -> Any: """simple docstring""" return KeyHandler(cls.__name__ , cls.__bases__ , cls.__dict__.copy() )
32
0
# Copyright 2023 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available snake_case = {"""configuration_timm_backbone""": ["""TimmBackboneConfig"""]} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case = ["""TimmBackbone"""] if TYPE_CHECKING: from .configuration_timm_backbone import TimmBackboneConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_timm_backbone import TimmBackbone else: import sys snake_case = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
67
import unittest from transformers import LiltConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( LiltForQuestionAnswering, LiltForSequenceClassification, LiltForTokenClassification, LiltModel, ) from transformers.models.lilt.modeling_lilt import LILT_PRETRAINED_MODEL_ARCHIVE_LIST class __UpperCamelCase : def __init__( self , _UpperCamelCase , _UpperCamelCase=13 , _UpperCamelCase=7 , _UpperCamelCase=True , _UpperCamelCase=True , _UpperCamelCase=True , _UpperCamelCase=True , _UpperCamelCase=99 , _UpperCamelCase=24 , _UpperCamelCase=2 , _UpperCamelCase=6 , _UpperCamelCase=37 , _UpperCamelCase="gelu" , _UpperCamelCase=0.1 , _UpperCamelCase=0.1 , _UpperCamelCase=512 , _UpperCamelCase=16 , _UpperCamelCase=2 , _UpperCamelCase=0.02 , _UpperCamelCase=3 , _UpperCamelCase=None , _UpperCamelCase=1000 , ): _UpperCAmelCase = parent _UpperCAmelCase = batch_size _UpperCAmelCase = seq_length _UpperCAmelCase = is_training _UpperCAmelCase = use_input_mask _UpperCAmelCase = use_token_type_ids _UpperCAmelCase = use_labels _UpperCAmelCase = vocab_size _UpperCAmelCase = hidden_size _UpperCAmelCase = num_hidden_layers _UpperCAmelCase = num_attention_heads _UpperCAmelCase = intermediate_size _UpperCAmelCase = hidden_act _UpperCAmelCase = hidden_dropout_prob _UpperCAmelCase = attention_probs_dropout_prob _UpperCAmelCase = max_position_embeddings _UpperCAmelCase = type_vocab_size _UpperCAmelCase = type_sequence_label_size _UpperCAmelCase = initializer_range _UpperCAmelCase = num_labels _UpperCAmelCase = scope _UpperCAmelCase = range_bbox def UpperCamelCase( self ): _UpperCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _UpperCAmelCase = ids_tensor([self.batch_size, self.seq_length, 4] , self.range_bbox ) # Ensure that bbox is legal for i in range(bbox.shape[0] ): for j in range(bbox.shape[1] ): if bbox[i, j, 3] < bbox[i, j, 1]: _UpperCAmelCase = bbox[i, j, 3] _UpperCAmelCase = bbox[i, j, 1] _UpperCAmelCase = t if bbox[i, j, 2] < bbox[i, j, 0]: _UpperCAmelCase = bbox[i, j, 2] _UpperCAmelCase = bbox[i, j, 0] _UpperCAmelCase = t _UpperCAmelCase = None if self.use_input_mask: _UpperCAmelCase = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 ) _UpperCAmelCase = None if self.use_token_type_ids: _UpperCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) _UpperCAmelCase = None _UpperCAmelCase = None if self.use_labels: _UpperCAmelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size ) _UpperCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) _UpperCAmelCase = self.get_config() return config, input_ids, bbox, token_type_ids, input_mask, sequence_labels, token_labels def UpperCamelCase( self ): return LiltConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , ) def UpperCamelCase( self , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , ): _UpperCAmelCase = LiltModel(config=_UpperCamelCase ) model.to(_UpperCamelCase ) model.eval() _UpperCAmelCase = model(_UpperCamelCase , bbox=_UpperCamelCase , attention_mask=_UpperCamelCase , token_type_ids=_UpperCamelCase ) _UpperCAmelCase = model(_UpperCamelCase , bbox=_UpperCamelCase , token_type_ids=_UpperCamelCase ) _UpperCAmelCase = model(_UpperCamelCase , bbox=_UpperCamelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) ) def UpperCamelCase( self , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , ): _UpperCAmelCase = self.num_labels _UpperCAmelCase = LiltForTokenClassification(config=_UpperCamelCase ) model.to(_UpperCamelCase ) model.eval() _UpperCAmelCase = model( _UpperCamelCase , bbox=_UpperCamelCase , attention_mask=_UpperCamelCase , token_type_ids=_UpperCamelCase , labels=_UpperCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def UpperCamelCase( self , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , ): _UpperCAmelCase = LiltForQuestionAnswering(config=_UpperCamelCase ) model.to(_UpperCamelCase ) model.eval() _UpperCAmelCase = model( _UpperCamelCase , bbox=_UpperCamelCase , attention_mask=_UpperCamelCase , token_type_ids=_UpperCamelCase , start_positions=_UpperCamelCase , end_positions=_UpperCamelCase , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def UpperCamelCase( self ): _UpperCAmelCase = self.prepare_config_and_inputs() ( ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ) = config_and_inputs _UpperCAmelCase = { '''input_ids''': input_ids, '''bbox''': bbox, '''token_type_ids''': token_type_ids, '''attention_mask''': input_mask, } return config, inputs_dict @require_torch class __UpperCamelCase ( A__ , A__ , A__ , unittest.TestCase ): __A : Dict = ( ( LiltModel, LiltForSequenceClassification, LiltForTokenClassification, LiltForQuestionAnswering, ) if is_torch_available() else () ) __A : Optional[Any] = ( { """feature-extraction""": LiltModel, """question-answering""": LiltForQuestionAnswering, """text-classification""": LiltForSequenceClassification, """token-classification""": LiltForTokenClassification, """zero-shot""": LiltForSequenceClassification, } if is_torch_available() else {} ) __A : List[Any] = False __A : Optional[int] = False def UpperCamelCase( self , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ): return True def UpperCamelCase( self ): _UpperCAmelCase = LiltModelTester(self ) _UpperCAmelCase = ConfigTester(self , config_class=_UpperCamelCase , hidden_size=37 ) def UpperCamelCase( self ): self.config_tester.run_common_tests() def UpperCamelCase( self ): _UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_UpperCamelCase ) def UpperCamelCase( self ): _UpperCAmelCase = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: _UpperCAmelCase = type self.model_tester.create_and_check_model(*_UpperCamelCase ) def UpperCamelCase( self ): _UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*_UpperCamelCase ) def UpperCamelCase( self ): _UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*_UpperCamelCase ) @slow def UpperCamelCase( self ): for model_name in LILT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _UpperCAmelCase = LiltModel.from_pretrained(_UpperCamelCase ) self.assertIsNotNone(_UpperCamelCase ) @require_torch @slow class __UpperCamelCase ( unittest.TestCase ): def UpperCamelCase( self ): _UpperCAmelCase = LiltModel.from_pretrained('''SCUT-DLVCLab/lilt-roberta-en-base''' ).to(_UpperCamelCase ) _UpperCAmelCase = torch.tensor([[1, 2]] , device=_UpperCamelCase ) _UpperCAmelCase = torch.tensor([[[1, 2, 3, 4], [5, 6, 7, 8]]] , device=_UpperCamelCase ) # forward pass with torch.no_grad(): _UpperCAmelCase = model(input_ids=_UpperCamelCase , bbox=_UpperCamelCase ) _UpperCAmelCase = torch.Size([1, 2, 768] ) _UpperCAmelCase = torch.tensor( [[-0.0653, 0.0950, -0.0061], [-0.0545, 0.0926, -0.0324]] , device=_UpperCamelCase , ) self.assertTrue(outputs.last_hidden_state.shape , _UpperCamelCase ) self.assertTrue(torch.allclose(outputs.last_hidden_state[0, :, :3] , _UpperCamelCase , atol=1e-3 ) )
32
0
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available __A = { "configuration_tapas": ["TAPAS_PRETRAINED_CONFIG_ARCHIVE_MAP", "TapasConfig"], "tokenization_tapas": ["TapasTokenizer"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A = [ "TAPAS_PRETRAINED_MODEL_ARCHIVE_LIST", "TapasForMaskedLM", "TapasForQuestionAnswering", "TapasForSequenceClassification", "TapasModel", "TapasPreTrainedModel", "load_tf_weights_in_tapas", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A = [ "TF_TAPAS_PRETRAINED_MODEL_ARCHIVE_LIST", "TFTapasForMaskedLM", "TFTapasForQuestionAnswering", "TFTapasForSequenceClassification", "TFTapasModel", "TFTapasPreTrainedModel", ] if TYPE_CHECKING: from .configuration_tapas import TAPAS_PRETRAINED_CONFIG_ARCHIVE_MAP, TapasConfig from .tokenization_tapas import TapasTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tapas import ( TAPAS_PRETRAINED_MODEL_ARCHIVE_LIST, TapasForMaskedLM, TapasForQuestionAnswering, TapasForSequenceClassification, TapasModel, TapasPreTrainedModel, load_tf_weights_in_tapas, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_tapas import ( TF_TAPAS_PRETRAINED_MODEL_ARCHIVE_LIST, TFTapasForMaskedLM, TFTapasForQuestionAnswering, TFTapasForSequenceClassification, TFTapasModel, TFTapasPreTrainedModel, ) else: import sys __A = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
68
from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCAmelCase_ = logging.get_logger(__name__) UpperCAmelCase_ = { "RWKV/rwkv-4-169m-pile": "https://huggingface.co/RWKV/rwkv-4-169m-pile/resolve/main/config.json", "RWKV/rwkv-4-430m-pile": "https://huggingface.co/RWKV/rwkv-4-430m-pile/resolve/main/config.json", "RWKV/rwkv-4-1b5-pile": "https://huggingface.co/RWKV/rwkv-4-1b5-pile/resolve/main/config.json", "RWKV/rwkv-4-3b-pile": "https://huggingface.co/RWKV/rwkv-4-3b-pile/resolve/main/config.json", "RWKV/rwkv-4-7b-pile": "https://huggingface.co/RWKV/rwkv-4-7b-pile/resolve/main/config.json", "RWKV/rwkv-4-14b-pile": "https://huggingface.co/RWKV/rwkv-4-14b-pile/resolve/main/config.json", "RWKV/rwkv-raven-1b5": "https://huggingface.co/RWKV/rwkv-raven-1b5/resolve/main/config.json", "RWKV/rwkv-raven-3b": "https://huggingface.co/RWKV/rwkv-raven-3b/resolve/main/config.json", "RWKV/rwkv-raven-7b": "https://huggingface.co/RWKV/rwkv-raven-7b/resolve/main/config.json", "RWKV/rwkv-raven-14b": "https://huggingface.co/RWKV/rwkv-raven-14b/resolve/main/config.json", } class __UpperCamelCase ( A__ ): __A : Tuple = """rwkv""" __A : Any = {"""max_position_embeddings""": """context_length"""} def __init__( self , _UpperCamelCase=50277 , _UpperCamelCase=1024 , _UpperCamelCase=4096 , _UpperCamelCase=32 , _UpperCamelCase=None , _UpperCamelCase=None , _UpperCamelCase=1e-5 , _UpperCamelCase=0 , _UpperCamelCase=0 , _UpperCamelCase=6 , _UpperCamelCase=False , _UpperCamelCase=True , **_UpperCamelCase , ): _UpperCAmelCase = vocab_size _UpperCAmelCase = context_length _UpperCAmelCase = hidden_size _UpperCAmelCase = num_hidden_layers _UpperCAmelCase = attention_hidden_size if attention_hidden_size is not None else hidden_size _UpperCAmelCase = intermediate_size if intermediate_size is not None else 4 * hidden_size _UpperCAmelCase = layer_norm_epsilon _UpperCAmelCase = rescale_every _UpperCAmelCase = use_cache _UpperCAmelCase = bos_token_id _UpperCAmelCase = eos_token_id super().__init__( tie_word_embeddings=_UpperCamelCase , bos_token_id=_UpperCamelCase , eos_token_id=_UpperCamelCase , **_UpperCamelCase )
32
0
'''simple docstring''' import mpmath # for roots of unity import numpy as np class SCREAMING_SNAKE_CASE__ : def __init__( self : Tuple , a_ : Optional[int]=None , a_ : int=None ): """simple docstring""" __snake_case = list(poly_a or [0] )[:] __snake_case = list(poly_b or [0] )[:] # Remove leading zero coefficients while self.polyA[-1] == 0: self.polyA.pop() __snake_case = len(self.polyA ) while self.polyB[-1] == 0: self.polyB.pop() __snake_case = len(self.polyB ) # Add 0 to make lengths equal a power of 2 __snake_case = int( 2 ** np.ceil(np.loga(len(self.polyA ) + len(self.polyB ) - 1 ) ) ) while len(self.polyA ) < self.c_max_length: self.polyA.append(0 ) while len(self.polyB ) < self.c_max_length: self.polyB.append(0 ) # A complex root used for the fourier transform __snake_case = complex(mpmath.root(x=1 , n=self.c_max_length , k=1 ) ) # The product __snake_case = self.__multiply() def A ( self : Any , a_ : Optional[Any] ): """simple docstring""" __snake_case = [[x] for x in self.polyA] if which == "A" else [[x] for x in self.polyB] # Corner case if len(a_ ) <= 1: return dft[0] # __snake_case = self.c_max_length // 2 while next_ncol > 0: __snake_case = [[] for i in range(a_ )] __snake_case = self.root**next_ncol # First half of next step __snake_case = 1 for j in range(self.c_max_length // (next_ncol * 2) ): for i in range(a_ ): new_dft[i].append(dft[i][j] + current_root * dft[i + next_ncol][j] ) current_root *= root # Second half of next step __snake_case = 1 for j in range(self.c_max_length // (next_ncol * 2) ): for i in range(a_ ): new_dft[i].append(dft[i][j] - current_root * dft[i + next_ncol][j] ) current_root *= root # Update __snake_case = new_dft __snake_case = next_ncol // 2 return dft[0] def A ( self : Union[str, Any] ): """simple docstring""" __snake_case = self.__dft("A" ) __snake_case = self.__dft("B" ) __snake_case = [[dft_a[i] * dft_b[i] for i in range(self.c_max_length )]] del dft_a del dft_b # Corner Case if len(inverce_c[0] ) <= 1: return inverce_c[0] # Inverse DFT __snake_case = 2 while next_ncol <= self.c_max_length: __snake_case = [[] for i in range(a_ )] __snake_case = self.root ** (next_ncol // 2) __snake_case = 1 # First half of next step for j in range(self.c_max_length // next_ncol ): for i in range(next_ncol // 2 ): # Even positions new_inverse_c[i].append( ( inverce_c[i][j] + inverce_c[i][j + self.c_max_length // next_ncol] ) / 2 ) # Odd positions new_inverse_c[i + next_ncol // 2].append( ( inverce_c[i][j] - inverce_c[i][j + self.c_max_length // next_ncol] ) / (2 * current_root) ) current_root *= root # Update __snake_case = new_inverse_c next_ncol *= 2 # Unpack __snake_case = [round(x[0].real , 8 ) + round(x[0].imag , 8 ) * 1j for x in inverce_c] # Remove leading 0's while inverce_c[-1] == 0: inverce_c.pop() return inverce_c def __str__( self : Optional[int] ): """simple docstring""" __snake_case = "A = " + " + ".join( f'''{coef}*x^{i}''' for coef, i in enumerate(self.polyA[: self.len_A] ) ) __snake_case = "B = " + " + ".join( f'''{coef}*x^{i}''' for coef, i in enumerate(self.polyB[: self.len_B] ) ) __snake_case = "A*B = " + " + ".join( f'''{coef}*x^{i}''' for coef, i in enumerate(self.product ) ) return f'''{a}\n{b}\n{c}''' # Unit tests if __name__ == "__main__": import doctest doctest.testmod()
69
def A__ ( SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : int ) -> str: """simple docstring""" if a < 0 or b < 0: raise ValueError('''the value of both inputs must be positive''' ) _UpperCAmelCase = str(bin(SCREAMING_SNAKE_CASE_ ) )[2:] # remove the leading "0b" _UpperCAmelCase = str(bin(SCREAMING_SNAKE_CASE_ ) )[2:] # remove the leading "0b" _UpperCAmelCase = max(len(SCREAMING_SNAKE_CASE_ ) , len(SCREAMING_SNAKE_CASE_ ) ) return "0b" + "".join( str(int(char_a == '''1''' and char_b == '''1''' ) ) for char_a, char_b in zip(a_binary.zfill(SCREAMING_SNAKE_CASE_ ) , b_binary.zfill(SCREAMING_SNAKE_CASE_ ) ) ) if __name__ == "__main__": import doctest doctest.testmod()
32
0
from __future__ import annotations import matplotlib.pyplot as plt # type: ignore import numpy # initial triangle of Koch snowflake lowerCamelCase : Optional[Any] = numpy.array([0, 0]) lowerCamelCase : Optional[int] = numpy.array([0.5, 0.866_0254]) lowerCamelCase : Optional[Any] = numpy.array([1, 0]) lowerCamelCase : Dict = [VECTOR_1, VECTOR_2, VECTOR_3, VECTOR_1] def _SCREAMING_SNAKE_CASE ( lowercase : list[numpy.ndarray] , lowercase : int ): '''simple docstring''' lowerCamelCase_ = initial_vectors for _ in range(lowercase ): lowerCamelCase_ = iteration_step(lowercase ) return vectors def _SCREAMING_SNAKE_CASE ( lowercase : list[numpy.ndarray] ): '''simple docstring''' lowerCamelCase_ = [] for i, start_vector in enumerate(vectors[:-1] ): lowerCamelCase_ = vectors[i + 1] new_vectors.append(lowercase ) lowerCamelCase_ = end_vector - start_vector new_vectors.append(start_vector + difference_vector / 3 ) new_vectors.append( start_vector + difference_vector / 3 + rotate(difference_vector / 3 , 60 ) ) new_vectors.append(start_vector + difference_vector * 2 / 3 ) new_vectors.append(vectors[-1] ) return new_vectors def _SCREAMING_SNAKE_CASE ( lowercase : numpy.ndarray , lowercase : float ): '''simple docstring''' lowerCamelCase_ = numpy.radians(lowercase ) lowerCamelCase_ , lowerCamelCase_ = numpy.cos(lowercase ), numpy.sin(lowercase ) lowerCamelCase_ = numpy.array(((c, -s), (s, c)) ) return numpy.dot(lowercase , lowercase ) def _SCREAMING_SNAKE_CASE ( lowercase : list[numpy.ndarray] ): '''simple docstring''' lowerCamelCase_ = plt.gca() axes.set_aspect('equal' ) # matplotlib.pyplot.plot takes a list of all x-coordinates and a list of all # y-coordinates as inputs, which are constructed from the vector-list using # zip() lowerCamelCase_ , lowerCamelCase_ = zip(*lowercase ) plt.plot(lowercase , lowercase ) plt.show() if __name__ == "__main__": import doctest doctest.testmod() lowerCamelCase : Union[str, Any] = iterate(INITIAL_VECTORS, 5) plot(processed_vectors)
70
from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCAmelCase_ = logging.get_logger(__name__) UpperCAmelCase_ = { "tiiuae/falcon-40b": "https://huggingface.co/tiiuae/falcon-40b/resolve/main/config.json", "tiiuae/falcon-7b": "https://huggingface.co/tiiuae/falcon-7b/resolve/main/config.json", } class __UpperCamelCase ( A__ ): __A : Dict = """falcon""" __A : Any = ["""past_key_values"""] def __init__( self , _UpperCamelCase=65024 , _UpperCamelCase=4544 , _UpperCamelCase=32 , _UpperCamelCase=71 , _UpperCamelCase=1e-5 , _UpperCamelCase=0.02 , _UpperCamelCase=True , _UpperCamelCase=0.0 , _UpperCamelCase=0.0 , _UpperCamelCase=None , _UpperCamelCase=False , _UpperCamelCase=False , _UpperCamelCase=True , _UpperCamelCase=True , _UpperCamelCase=False , _UpperCamelCase=11 , _UpperCamelCase=11 , **_UpperCamelCase , ): _UpperCAmelCase = vocab_size # Backward compatibility with n_embed kwarg _UpperCAmelCase = kwargs.pop('''n_embed''' , _UpperCamelCase ) _UpperCAmelCase = hidden_size if n_embed is None else n_embed _UpperCAmelCase = num_hidden_layers _UpperCAmelCase = num_attention_heads _UpperCAmelCase = layer_norm_epsilon _UpperCAmelCase = initializer_range _UpperCAmelCase = use_cache _UpperCAmelCase = hidden_dropout _UpperCAmelCase = attention_dropout _UpperCAmelCase = bos_token_id _UpperCAmelCase = eos_token_id _UpperCAmelCase = num_attention_heads if num_kv_heads is None else num_kv_heads _UpperCAmelCase = alibi _UpperCAmelCase = new_decoder_architecture _UpperCAmelCase = multi_query # Ignored when new_decoder_architecture is True _UpperCAmelCase = parallel_attn _UpperCAmelCase = bias super().__init__(bos_token_id=_UpperCamelCase , eos_token_id=_UpperCamelCase , **_UpperCamelCase ) @property def UpperCamelCase( self ): return self.hidden_size // self.num_attention_heads @property def UpperCamelCase( self ): return not self.alibi
32
0
'''simple docstring''' from __future__ import annotations from collections.abc import Callable def a__ ( _SCREAMING_SNAKE_CASE : Callable[[int | float], int | float] , _SCREAMING_SNAKE_CASE : int | float , _SCREAMING_SNAKE_CASE : int | float , _SCREAMING_SNAKE_CASE : int = 1_00 , ) -> float: """simple docstring""" UpperCAmelCase_ : Optional[int] = x_start UpperCAmelCase_ : Optional[Any] = fnc(_SCREAMING_SNAKE_CASE ) UpperCAmelCase_ : List[Any] = 0.0 for _ in range(_SCREAMING_SNAKE_CASE ): # Approximates small segments of curve as linear and solve # for trapezoidal area UpperCAmelCase_ : int = (x_end - x_start) / steps + xa UpperCAmelCase_ : str = fnc(_SCREAMING_SNAKE_CASE ) area += abs(fxa + fxa ) * (xa - xa) / 2 # Increment step UpperCAmelCase_ : Any = xa UpperCAmelCase_ : List[Any] = fxa return area if __name__ == "__main__": def a__ ( _SCREAMING_SNAKE_CASE : Any ) -> int: """simple docstring""" return x**3 + x**2 print("""f(x) = x^3 + x^2""") print("""The area between the curve, x = -5, x = 5 and the x axis is:""") _lowerCamelCase = 10 while i <= 10_0000: print(f"""with {i} steps: {trapezoidal_area(f, -5, 5, i)}""") i *= 10
71
from math import sqrt def A__ ( SCREAMING_SNAKE_CASE_ : int ) -> bool: """simple docstring""" if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5 , int(sqrt(SCREAMING_SNAKE_CASE_ ) + 1 ) , 6 ): if number % i == 0 or number % (i + 2) == 0: return False return True def A__ ( SCREAMING_SNAKE_CASE_ : int = 1_00_01 ) -> int: """simple docstring""" _UpperCAmelCase = 0 _UpperCAmelCase = 1 while count != nth and number < 3: number += 1 if is_prime(SCREAMING_SNAKE_CASE_ ): count += 1 while count != nth: number += 2 if is_prime(SCREAMING_SNAKE_CASE_ ): count += 1 return number if __name__ == "__main__": print(f'''{solution() = }''')
32
0
'''simple docstring''' import os from typing import List, Optional, Union from ...image_processing_utils import BatchFeature from ...image_utils import ImageInput from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType from ..auto import AutoTokenizer class __magic_name__ ( __SCREAMING_SNAKE_CASE ): UpperCamelCase__ = ['image_processor', 'tokenizer'] UpperCamelCase__ = 'BlipImageProcessor' UpperCamelCase__ = 'AutoTokenizer' def __init__( self , snake_case_ , snake_case_ , snake_case_ ): super().__init__(snake_case_ , snake_case_ ) # add QFormer tokenizer lowercase =qformer_tokenizer def __call__( self , snake_case_ = None , snake_case_ = None , snake_case_ = True , snake_case_ = False , snake_case_ = None , snake_case_ = None , snake_case_ = 0 , snake_case_ = None , snake_case_ = None , snake_case_ = False , snake_case_ = False , snake_case_ = False , snake_case_ = False , snake_case_ = False , snake_case_ = True , snake_case_ = None , **snake_case_ , ): if images is None and text is None: raise ValueError('''You have to specify at least images or text.''' ) lowercase =BatchFeature() if text is not None: lowercase =self.tokenizer( text=snake_case_ , add_special_tokens=snake_case_ , padding=snake_case_ , truncation=snake_case_ , max_length=snake_case_ , stride=snake_case_ , pad_to_multiple_of=snake_case_ , return_attention_mask=snake_case_ , return_overflowing_tokens=snake_case_ , return_special_tokens_mask=snake_case_ , return_offsets_mapping=snake_case_ , return_token_type_ids=snake_case_ , return_length=snake_case_ , verbose=snake_case_ , return_tensors=snake_case_ , **snake_case_ , ) encoding.update(snake_case_ ) lowercase =self.qformer_tokenizer( text=snake_case_ , add_special_tokens=snake_case_ , padding=snake_case_ , truncation=snake_case_ , max_length=snake_case_ , stride=snake_case_ , pad_to_multiple_of=snake_case_ , return_attention_mask=snake_case_ , return_overflowing_tokens=snake_case_ , return_special_tokens_mask=snake_case_ , return_offsets_mapping=snake_case_ , return_token_type_ids=snake_case_ , return_length=snake_case_ , verbose=snake_case_ , return_tensors=snake_case_ , **snake_case_ , ) lowercase =qformer_text_encoding.pop('''input_ids''' ) lowercase =qformer_text_encoding.pop('''attention_mask''' ) if images is not None: lowercase =self.image_processor(snake_case_ , return_tensors=snake_case_ ) encoding.update(snake_case_ ) return encoding def _A( self , *snake_case_ , **snake_case_ ): return self.tokenizer.batch_decode(*snake_case_ , **snake_case_ ) def _A( self , *snake_case_ , **snake_case_ ): return self.tokenizer.decode(*snake_case_ , **snake_case_ ) @property # Copied from transformers.models.blip.processing_blip.BlipProcessor.model_input_names def _A( self ): lowercase =self.tokenizer.model_input_names lowercase =self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) ) def _A( self , snake_case_ , **snake_case_ ): if os.path.isfile(snake_case_ ): raise ValueError(f'Provided path ({save_directory}) should be a directory, not a file' ) os.makedirs(snake_case_ , exist_ok=snake_case_ ) lowercase =os.path.join(snake_case_ , '''qformer_tokenizer''' ) self.qformer_tokenizer.save_pretrained(snake_case_ ) return super().save_pretrained(snake_case_ , **snake_case_ ) @classmethod def _A( cls , snake_case_ , **snake_case_ ): lowercase =AutoTokenizer.from_pretrained(snake_case_ , subfolder='''qformer_tokenizer''' ) lowercase =cls._get_arguments_from_pretrained(snake_case_ , **snake_case_ ) args.append(snake_case_ ) return cls(*snake_case_ )
72
def A__ ( SCREAMING_SNAKE_CASE_ : int ) -> bool: """simple docstring""" if not isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): _UpperCAmelCase = F'''Input value of [number={number}] must be an integer''' raise TypeError(SCREAMING_SNAKE_CASE_ ) if number < 0: return False _UpperCAmelCase = number * number while number > 0: if number % 10 != number_square % 10: return False number //= 10 number_square //= 10 return True if __name__ == "__main__": import doctest doctest.testmod()
32
0
import functools import operator from ...configuration_utils import PretrainedConfig from ...utils import logging a_ : Tuple = logging.get_logger(__name__) a_ : Optional[int] = { 'facebook/wav2vec2-base-960h': 'https://huggingface.co/facebook/wav2vec2-base-960h/resolve/main/config.json', # See all Wav2Vec2 models at https://huggingface.co/models?filter=wav2vec2 } class _snake_case ( A__ ): _lowercase : Union[str, Any] = '''wav2vec2''' def __init__( self , a=32 , a=768 , a=12 , a=12 , a=3072 , a="gelu" , a=0.1 , a=0.1 , a=0.1 , a=0.0 , a=0.0 , a=0.1 , a=0.1 , a=0.02 , a=1E-5 , a="group" , a="gelu" , a=(512, 512, 512, 512, 512, 512, 512) , a=(5, 2, 2, 2, 2, 2, 2) , a=(10, 3, 3, 3, 3, 2, 2) , a=False , a=128 , a=16 , a=False , a=True , a=0.05 , a=10 , a=2 , a=0.0 , a=10 , a=0 , a=320 , a=2 , a=0.1 , a=100 , a=256 , a=256 , a=0.1 , a="sum" , a=False , a=False , a=256 , a=(512, 512, 512, 512, 1500) , a=(5, 3, 3, 1, 1) , a=(1, 2, 3, 1, 1) , a=512 , a=0 , a=1 , a=2 , a=False , a=3 , a=2 , a=3 , a=None , a=None , **a , ) -> Tuple: super().__init__(**a , pad_token_id=a , bos_token_id=a , eos_token_id=a) SCREAMING_SNAKE_CASE = hidden_size SCREAMING_SNAKE_CASE = feat_extract_norm SCREAMING_SNAKE_CASE = feat_extract_activation SCREAMING_SNAKE_CASE = list(a) SCREAMING_SNAKE_CASE = list(a) SCREAMING_SNAKE_CASE = list(a) SCREAMING_SNAKE_CASE = conv_bias SCREAMING_SNAKE_CASE = num_conv_pos_embeddings SCREAMING_SNAKE_CASE = num_conv_pos_embedding_groups SCREAMING_SNAKE_CASE = len(self.conv_dim) SCREAMING_SNAKE_CASE = num_hidden_layers SCREAMING_SNAKE_CASE = intermediate_size SCREAMING_SNAKE_CASE = hidden_act SCREAMING_SNAKE_CASE = num_attention_heads SCREAMING_SNAKE_CASE = hidden_dropout SCREAMING_SNAKE_CASE = attention_dropout SCREAMING_SNAKE_CASE = activation_dropout SCREAMING_SNAKE_CASE = feat_proj_dropout SCREAMING_SNAKE_CASE = final_dropout SCREAMING_SNAKE_CASE = layerdrop SCREAMING_SNAKE_CASE = layer_norm_eps SCREAMING_SNAKE_CASE = initializer_range SCREAMING_SNAKE_CASE = vocab_size SCREAMING_SNAKE_CASE = do_stable_layer_norm SCREAMING_SNAKE_CASE = use_weighted_layer_sum if ( (len(self.conv_stride) != self.num_feat_extract_layers) or (len(self.conv_kernel) != self.num_feat_extract_layers) or (len(self.conv_dim) != self.num_feat_extract_layers) ): raise ValueError( 'Configuration for convolutional layers is incorrect. It is required that `len(config.conv_dim)` ==' ' `len(config.conv_stride)` == `len(config.conv_kernel)`, but is `len(config.conv_dim) =' f''' {len(self.conv_dim)}`, `len(config.conv_stride) = {len(self.conv_stride)}`,''' f''' `len(config.conv_kernel) = {len(self.conv_kernel)}`.''') # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 SCREAMING_SNAKE_CASE = apply_spec_augment SCREAMING_SNAKE_CASE = mask_time_prob SCREAMING_SNAKE_CASE = mask_time_length SCREAMING_SNAKE_CASE = mask_time_min_masks SCREAMING_SNAKE_CASE = mask_feature_prob SCREAMING_SNAKE_CASE = mask_feature_length SCREAMING_SNAKE_CASE = mask_feature_min_masks # parameters for pretraining with codevector quantized representations SCREAMING_SNAKE_CASE = num_codevectors_per_group SCREAMING_SNAKE_CASE = num_codevector_groups SCREAMING_SNAKE_CASE = contrastive_logits_temperature SCREAMING_SNAKE_CASE = feat_quantizer_dropout SCREAMING_SNAKE_CASE = num_negatives SCREAMING_SNAKE_CASE = codevector_dim SCREAMING_SNAKE_CASE = proj_codevector_dim SCREAMING_SNAKE_CASE = diversity_loss_weight # ctc loss SCREAMING_SNAKE_CASE = ctc_loss_reduction SCREAMING_SNAKE_CASE = ctc_zero_infinity # adapter SCREAMING_SNAKE_CASE = add_adapter SCREAMING_SNAKE_CASE = adapter_kernel_size SCREAMING_SNAKE_CASE = adapter_stride SCREAMING_SNAKE_CASE = num_adapter_layers SCREAMING_SNAKE_CASE = output_hidden_size or hidden_size SCREAMING_SNAKE_CASE = adapter_attn_dim # SequenceClassification-specific parameter. Feel free to ignore for other classes. SCREAMING_SNAKE_CASE = classifier_proj_size # XVector-specific parameters. Feel free to ignore for other classes. SCREAMING_SNAKE_CASE = list(a) SCREAMING_SNAKE_CASE = list(a) SCREAMING_SNAKE_CASE = list(a) SCREAMING_SNAKE_CASE = xvector_output_dim @property def SCREAMING_SNAKE_CASE__ ( self) -> Union[str, Any]: return functools.reduce(operator.mul , self.conv_stride , 1)
73
from dataclasses import dataclass, field from typing import ClassVar, Dict from ..features import Features, Value from .base import TaskTemplate @dataclass(frozen=A__ ) class __UpperCamelCase ( A__ ): __A : str = field(default="""language-modeling""" , metadata={"""include_in_asdict_even_if_is_default""": True} ) __A : ClassVar[Features] = Features({"""text""": Value("""string""" )} ) __A : ClassVar[Features] = Features({} ) __A : str = "text" @property def UpperCamelCase( self ): return {self.text_column: "text"}
32
0
import argparse import json import os import time import zipfile from get_ci_error_statistics import download_artifact, get_artifacts_links from transformers import logging lowercase_ = logging.get_logger(__name__) def a__ ( snake_case , snake_case ): """simple docstring""" __SCREAMING_SNAKE_CASE : Optional[int] = set() __SCREAMING_SNAKE_CASE : str = [] def parse_line(snake_case ): for line in fp: if isinstance(snake_case , snake_case ): __SCREAMING_SNAKE_CASE : List[Any] = line.decode('''UTF-8''' ) if "warnings summary (final)" in line: continue # This means we are outside the body of a warning elif not line.startswith(''' ''' ): # process a single warning and move it to `selected_warnings`. if len(snake_case ) > 0: __SCREAMING_SNAKE_CASE : List[Any] = '''\n'''.join(snake_case ) # Only keep the warnings specified in `targets` if any(F''': {x}: ''' in warning for x in targets ): selected_warnings.add(snake_case ) buffer.clear() continue else: __SCREAMING_SNAKE_CASE : int = line.strip() buffer.append(snake_case ) if from_gh: for filename in os.listdir(snake_case ): __SCREAMING_SNAKE_CASE : Any = os.path.join(snake_case , snake_case ) if not os.path.isdir(snake_case ): # read the file if filename != "warnings.txt": continue with open(snake_case ) as fp: parse_line(snake_case ) else: try: with zipfile.ZipFile(snake_case ) as z: for filename in z.namelist(): if not os.path.isdir(snake_case ): # read the file if filename != "warnings.txt": continue with z.open(snake_case ) as fp: parse_line(snake_case ) except Exception: logger.warning( F'''{artifact_path} is either an invalid zip file or something else wrong. This file is skipped.''' ) return selected_warnings def a__ ( snake_case , snake_case ): """simple docstring""" __SCREAMING_SNAKE_CASE : List[str] = set() __SCREAMING_SNAKE_CASE : List[Any] = [os.path.join(snake_case , snake_case ) for p in os.listdir(snake_case ) if (p.endswith('''.zip''' ) or from_gh)] for p in paths: selected_warnings.update(extract_warnings_from_single_artifact(snake_case , snake_case ) ) return selected_warnings if __name__ == "__main__": def a__ ( snake_case ): """simple docstring""" return values.split(''',''' ) lowercase_ = argparse.ArgumentParser() # Required parameters parser.add_argument("""--workflow_run_id""", type=str, required=True, help="""A GitHub Actions workflow run id.""") parser.add_argument( """--output_dir""", type=str, required=True, help="""Where to store the downloaded artifacts and other result files.""", ) parser.add_argument("""--token""", default=None, type=str, help="""A token that has actions:read permission.""") # optional parameters parser.add_argument( """--targets""", default="""DeprecationWarning,UserWarning,FutureWarning""", type=list_str, help="""Comma-separated list of target warning(s) which we want to extract.""", ) parser.add_argument( """--from_gh""", action="""store_true""", help="""If running from a GitHub action workflow and collecting warnings from its artifacts.""", ) lowercase_ = parser.parse_args() lowercase_ = args.from_gh if from_gh: # The artifacts have to be downloaded using `actions/download-artifact@v3` pass else: os.makedirs(args.output_dir, exist_ok=True) # get download links lowercase_ = get_artifacts_links(args.workflow_run_id, token=args.token) with open(os.path.join(args.output_dir, """artifacts.json"""), """w""", encoding="""UTF-8""") as fp: json.dump(artifacts, fp, ensure_ascii=False, indent=4) # download artifacts for idx, (name, url) in enumerate(artifacts.items()): print(name) print(url) print("""=""" * 80) download_artifact(name, url, args.output_dir, args.token) # Be gentle to GitHub time.sleep(1) # extract warnings from artifacts lowercase_ = extract_warnings(args.output_dir, args.targets) lowercase_ = sorted(selected_warnings) with open(os.path.join(args.output_dir, """selected_warnings.json"""), """w""", encoding="""UTF-8""") as fp: json.dump(selected_warnings, fp, ensure_ascii=False, indent=4)
74
import os import re import warnings from shutil import copyfile from typing import TYPE_CHECKING, Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import PreTrainedTokenizer if TYPE_CHECKING: from ...tokenization_utils_base import TextInput from ...utils import logging UpperCAmelCase_ = logging.get_logger(__name__) UpperCAmelCase_ = {"vocab_file": "spiece.model"} UpperCAmelCase_ = { "vocab_file": { "t5-small": "https://huggingface.co/t5-small/resolve/main/spiece.model", "t5-base": "https://huggingface.co/t5-base/resolve/main/spiece.model", "t5-large": "https://huggingface.co/t5-large/resolve/main/spiece.model", "t5-3b": "https://huggingface.co/t5-3b/resolve/main/spiece.model", "t5-11b": "https://huggingface.co/t5-11b/resolve/main/spiece.model", } } # TODO(PVP) - this should be removed in Transformers v5 UpperCAmelCase_ = { "t5-small": 5_12, "t5-base": 5_12, "t5-large": 5_12, "t5-3b": 5_12, "t5-11b": 5_12, } UpperCAmelCase_ = "▁" class __UpperCamelCase ( A__ ): __A : Any = VOCAB_FILES_NAMES __A : Union[str, Any] = PRETRAINED_VOCAB_FILES_MAP __A : Any = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __A : Tuple = ["""input_ids""", """attention_mask"""] def __init__( self , _UpperCamelCase , _UpperCamelCase="</s>" , _UpperCamelCase="<unk>" , _UpperCamelCase="<pad>" , _UpperCamelCase=100 , _UpperCamelCase=None , _UpperCamelCase = None , _UpperCamelCase=True , **_UpperCamelCase , ): # Add extra_ids to the special token list if extra_ids > 0 and additional_special_tokens is None: _UpperCAmelCase = [f'''<extra_id_{i}>''' for i in range(_UpperCamelCase )] elif extra_ids > 0 and additional_special_tokens is not None: # Check that we have the right number of extra_id special tokens _UpperCAmelCase = len(set(filter(lambda _UpperCamelCase : bool('''extra_id''' in str(_UpperCamelCase ) ) , _UpperCamelCase ) ) ) if extra_tokens != extra_ids: raise ValueError( f'''Both extra_ids ({extra_ids}) and additional_special_tokens ({additional_special_tokens}) are''' ''' provided to T5Tokenizer. In this case the additional_special_tokens must include the extra_ids''' ''' tokens''' ) if legacy: logger.warning_once( f'''You are using the legacy behaviour of the {self.__class__}. This means that tokens that come after special tokens will not be properly handled. We recommend you to''' ''' read the related pull request available at https://github.com/huggingface/transformers/pull/24565''' ) _UpperCAmelCase = legacy _UpperCAmelCase = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( eos_token=_UpperCamelCase , unk_token=_UpperCamelCase , pad_token=_UpperCamelCase , extra_ids=_UpperCamelCase , additional_special_tokens=_UpperCamelCase , sp_model_kwargs=self.sp_model_kwargs , legacy=_UpperCamelCase , **_UpperCamelCase , ) _UpperCAmelCase = vocab_file _UpperCAmelCase = extra_ids _UpperCAmelCase = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(_UpperCamelCase ) @staticmethod def UpperCamelCase( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ): if pretrained_model_name_or_path in TaTokenizer.max_model_input_sizes: _UpperCAmelCase = TaTokenizer.max_model_input_sizes[pretrained_model_name_or_path] if init_max_model_length is not None and init_max_model_length != max_model_length: return init_max_model_length elif init_max_model_length is None: warnings.warn( '''This tokenizer was incorrectly instantiated with a model max length of''' f''' {deprecated_max_model_length} which will be corrected in Transformers v5.\nFor now, this''' ''' behavior is kept to avoid breaking backwards compatibility when padding/encoding with''' ''' `truncation is True`.\n- Be aware that you SHOULD NOT rely on''' f''' {pretrained_model_name_or_path} automatically truncating your input to''' f''' {deprecated_max_model_length} when padding/encoding.\n- If you want to encode/pad to sequences''' f''' longer than {deprecated_max_model_length} you can either instantiate this tokenizer with''' ''' `model_max_length` or pass `max_length` when encoding/padding.\n- To avoid this warning, please''' ''' instantiate this tokenizer with `model_max_length` set to your preferred value.''' , _UpperCamelCase , ) return max_model_length @property def UpperCamelCase( self ): return self.sp_model.get_piece_size() + self._extra_ids def UpperCamelCase( self ): _UpperCAmelCase = {self.convert_ids_to_tokens(_UpperCamelCase ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def UpperCamelCase( self , _UpperCamelCase , _UpperCamelCase = None , _UpperCamelCase = False ): if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=_UpperCamelCase , token_ids_a=_UpperCamelCase , already_has_special_tokens=_UpperCamelCase ) # normal case: some special tokens if token_ids_a is None: return ([0] * len(_UpperCamelCase )) + [1] return ([0] * len(_UpperCamelCase )) + [1] + ([0] * len(_UpperCamelCase )) + [1] def UpperCamelCase( self ): return list( set(filter(lambda _UpperCamelCase : bool(re.search(R'''<extra_id_\d+>''' , _UpperCamelCase ) ) is not None , self.additional_special_tokens ) ) ) def UpperCamelCase( self ): return [self._convert_token_to_id(_UpperCamelCase ) for token in self.get_sentinel_tokens()] def UpperCamelCase( self , _UpperCamelCase ): if len(_UpperCamelCase ) > 0 and token_ids[-1] == self.eos_token_id: warnings.warn( f'''This sequence already has {self.eos_token}. In future versions this behavior may lead to duplicated''' ''' eos tokens being added.''' ) return token_ids else: return token_ids + [self.eos_token_id] def UpperCamelCase( self , _UpperCamelCase , _UpperCamelCase = None ): _UpperCAmelCase = [self.eos_token_id] if token_ids_a is None: return len(token_ids_a + eos ) * [0] return len(token_ids_a + eos + token_ids_a + eos ) * [0] def UpperCamelCase( self , _UpperCamelCase , _UpperCamelCase = None ): _UpperCAmelCase = self._add_eos_if_not_present(_UpperCamelCase ) if token_ids_a is None: return token_ids_a else: _UpperCAmelCase = self._add_eos_if_not_present(_UpperCamelCase ) return token_ids_a + token_ids_a def __getstate__( self ): _UpperCAmelCase = self.__dict__.copy() _UpperCAmelCase = None return state def __setstate__( self , _UpperCamelCase ): _UpperCAmelCase = d # for backward compatibility if not hasattr(self , '''sp_model_kwargs''' ): _UpperCAmelCase = {} _UpperCAmelCase = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def UpperCamelCase( self , _UpperCamelCase , **_UpperCamelCase ): # Replace the SPIECE_UNDERLINE with a space to make sure SPIECE_UNDERLINE is only used at # the beginning of the text if not self.legacy: _UpperCAmelCase = SPIECE_UNDERLINE + text.replace(_UpperCamelCase , ''' ''' ) return super().tokenize(_UpperCamelCase , **_UpperCamelCase ) def UpperCamelCase( self , _UpperCamelCase , **_UpperCamelCase ): if not self.legacy: _UpperCAmelCase = text.startswith(_UpperCamelCase ) if is_first: _UpperCAmelCase = text[1:] _UpperCAmelCase = self.sp_model.encode(_UpperCamelCase , out_type=_UpperCamelCase ) if not self.legacy and not is_first and not text.startswith(''' ''' ) and tokens[0].startswith(_UpperCamelCase ): _UpperCAmelCase = ([tokens[0][1:]] if len(tokens[0] ) > 1 else []) + tokens[1:] return tokens def UpperCamelCase( self , _UpperCamelCase ): if token.startswith('''<extra_id_''' ): _UpperCAmelCase = re.match(R'''<extra_id_(\d+)>''' , _UpperCamelCase ) _UpperCAmelCase = int(match.group(1 ) ) return self.vocab_size - num - 1 return self.sp_model.piece_to_id(_UpperCamelCase ) def UpperCamelCase( self , _UpperCamelCase ): if index < self.sp_model.get_piece_size(): _UpperCAmelCase = self.sp_model.IdToPiece(_UpperCamelCase ) else: _UpperCAmelCase = f'''<extra_id_{self.vocab_size - 1 - index}>''' return token def UpperCamelCase( self , _UpperCamelCase ): _UpperCAmelCase = [] _UpperCAmelCase = '''''' _UpperCAmelCase = False for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: if not prev_is_special: out_string += " " out_string += self.sp_model.decode(_UpperCamelCase ) + token _UpperCAmelCase = True _UpperCAmelCase = [] else: current_sub_tokens.append(_UpperCamelCase ) _UpperCAmelCase = False out_string += self.sp_model.decode(_UpperCamelCase ) return out_string.strip() def UpperCamelCase( self , _UpperCamelCase , _UpperCamelCase = None ): if not os.path.isdir(_UpperCamelCase ): logger.error(f'''Vocabulary path ({save_directory}) should be a directory''' ) return _UpperCAmelCase = os.path.join( _UpperCamelCase , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(_UpperCamelCase ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , _UpperCamelCase ) elif not os.path.isfile(self.vocab_file ): with open(_UpperCamelCase , '''wb''' ) as fi: _UpperCAmelCase = self.sp_model.serialized_model_proto() fi.write(_UpperCamelCase ) return (out_vocab_file,)
32
0
'''simple docstring''' from typing import Callable, List, Optional, Union import PIL import torch from transformers import ( CLIPImageProcessor, CLIPSegForImageSegmentation, CLIPSegProcessor, CLIPTextModel, CLIPTokenizer, ) from diffusers import DiffusionPipeline from diffusers.configuration_utils import FrozenDict from diffusers.models import AutoencoderKL, UNetaDConditionModel from diffusers.pipelines.stable_diffusion import StableDiffusionInpaintPipeline from diffusers.pipelines.stable_diffusion.safety_checker import StableDiffusionSafetyChecker from diffusers.schedulers import DDIMScheduler, LMSDiscreteScheduler, PNDMScheduler from diffusers.utils import deprecate, is_accelerate_available, logging UpperCamelCase__ = logging.get_logger(__name__) # pylint: disable=invalid-name class lowerCamelCase_ ( __a ): def __init__( self : int , _A : CLIPSegForImageSegmentation , _A : CLIPSegProcessor , _A : AutoencoderKL , _A : CLIPTextModel , _A : CLIPTokenizer , _A : UNetaDConditionModel , _A : Union[DDIMScheduler, PNDMScheduler, LMSDiscreteScheduler] , _A : StableDiffusionSafetyChecker , _A : CLIPImageProcessor , ): '''simple docstring''' super().__init__() if hasattr(scheduler.config , '''steps_offset''' ) and scheduler.config.steps_offset != 1: UpperCAmelCase__ : Union[str, Any] = ( f"""The configuration file of this scheduler: {scheduler} is outdated. `steps_offset`""" f""" should be set to 1 instead of {scheduler.config.steps_offset}. Please make sure """ '''to update the config accordingly as leaving `steps_offset` might led to incorrect results''' ''' in future versions. If you have downloaded this checkpoint from the Hugging Face Hub,''' ''' it would be very nice if you could open a Pull request for the `scheduler/scheduler_config.json`''' ''' file''' ) deprecate('''steps_offset!=1''' , '''1.0.0''' , _A , standard_warn=_A ) UpperCAmelCase__ : Optional[int] = dict(scheduler.config ) UpperCAmelCase__ : List[str] = 1 UpperCAmelCase__ : Optional[Any] = FrozenDict(_A ) if hasattr(scheduler.config , '''skip_prk_steps''' ) and scheduler.config.skip_prk_steps is False: UpperCAmelCase__ : List[str] = ( f"""The configuration file of this scheduler: {scheduler} has not set the configuration""" ''' `skip_prk_steps`. `skip_prk_steps` should be set to True in the configuration file. Please make''' ''' sure to update the config accordingly as not setting `skip_prk_steps` in the config might lead to''' ''' incorrect results in future versions. If you have downloaded this checkpoint from the Hugging Face''' ''' Hub, it would be very nice if you could open a Pull request for the''' ''' `scheduler/scheduler_config.json` file''' ) deprecate('''skip_prk_steps not set''' , '''1.0.0''' , _A , standard_warn=_A ) UpperCAmelCase__ : str = dict(scheduler.config ) UpperCAmelCase__ : List[str] = True UpperCAmelCase__ : Union[str, Any] = FrozenDict(_A ) if safety_checker is None: logger.warning( f"""You have disabled the safety checker for {self.__class__} by passing `safety_checker=None`. Ensure""" ''' that you abide to the conditions of the Stable Diffusion license and do not expose unfiltered''' ''' results in services or applications open to the public. Both the diffusers team and Hugging Face''' ''' strongly recommend to keep the safety filter enabled in all public facing circumstances, disabling''' ''' it only for use-cases that involve analyzing network behavior or auditing its results. For more''' ''' information, please have a look at https://github.com/huggingface/diffusers/pull/254 .''' ) self.register_modules( segmentation_model=_A , segmentation_processor=_A , vae=_A , text_encoder=_A , tokenizer=_A , unet=_A , scheduler=_A , safety_checker=_A , feature_extractor=_A , ) def lowercase_ ( self : List[str] , _A : Optional[Union[str, int]] = "auto" ): '''simple docstring''' if slice_size == "auto": # half the attention head size is usually a good trade-off between # speed and memory UpperCAmelCase__ : List[str] = self.unet.config.attention_head_dim // 2 self.unet.set_attention_slice(_A ) def lowercase_ ( self : Union[str, Any] ): '''simple docstring''' self.enable_attention_slicing(_A ) def lowercase_ ( self : List[Any] ): '''simple docstring''' if is_accelerate_available(): from accelerate import cpu_offload else: raise ImportError('''Please install accelerate via `pip install accelerate`''' ) UpperCAmelCase__ : List[Any] = torch.device('''cuda''' ) for cpu_offloaded_model in [self.unet, self.text_encoder, self.vae, self.safety_checker]: if cpu_offloaded_model is not None: cpu_offload(_A , _A ) @property # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline._execution_device def lowercase_ ( self : Union[str, Any] ): '''simple docstring''' if self.device != torch.device('''meta''' ) or not hasattr(self.unet , '''_hf_hook''' ): return self.device for module in self.unet.modules(): if ( hasattr(_A , '''_hf_hook''' ) and hasattr(module._hf_hook , '''execution_device''' ) and module._hf_hook.execution_device is not None ): return torch.device(module._hf_hook.execution_device ) return self.device @torch.no_grad() def __call__( self : Optional[Any] , _A : Union[str, List[str]] , _A : Union[torch.FloatTensor, PIL.Image.Image] , _A : str , _A : int = 512 , _A : int = 512 , _A : int = 50 , _A : float = 7.5 , _A : Optional[Union[str, List[str]]] = None , _A : Optional[int] = 1 , _A : float = 0.0 , _A : Optional[torch.Generator] = None , _A : Optional[torch.FloatTensor] = None , _A : Optional[str] = "pil" , _A : bool = True , _A : Optional[Callable[[int, int, torch.FloatTensor], None]] = None , _A : int = 1 , **_A : List[Any] , ): '''simple docstring''' UpperCAmelCase__ : Optional[int] = self.segmentation_processor( text=[text] , images=[image] , padding='''max_length''' , return_tensors='''pt''' ).to(self.device ) UpperCAmelCase__ : str = self.segmentation_model(**_A ) UpperCAmelCase__ : Any = torch.sigmoid(outputs.logits ).cpu().detach().unsqueeze(-1 ).numpy() UpperCAmelCase__ : Any = self.numpy_to_pil(_A )[0].resize(image.size ) # Run inpainting pipeline with the generated mask UpperCAmelCase__ : List[Any] = StableDiffusionInpaintPipeline( vae=self.vae , text_encoder=self.text_encoder , tokenizer=self.tokenizer , unet=self.unet , scheduler=self.scheduler , safety_checker=self.safety_checker , feature_extractor=self.feature_extractor , ) return inpainting_pipeline( prompt=_A , image=_A , mask_image=_A , height=_A , width=_A , num_inference_steps=_A , guidance_scale=_A , negative_prompt=_A , num_images_per_prompt=_A , eta=_A , generator=_A , latents=_A , output_type=_A , return_dict=_A , callback=_A , callback_steps=_A , )
75
from __future__ import annotations def A__ ( SCREAMING_SNAKE_CASE_ : int ) -> bool: """simple docstring""" _UpperCAmelCase = str(SCREAMING_SNAKE_CASE_ ) return len(SCREAMING_SNAKE_CASE_ ) == 9 and set(SCREAMING_SNAKE_CASE_ ) == set('''123456789''' ) def A__ ( ) -> int | None: """simple docstring""" for base_num in range(99_99 , 49_99 , -1 ): _UpperCAmelCase = 10_00_02 * base_num if is_9_pandigital(SCREAMING_SNAKE_CASE_ ): return candidate for base_num in range(3_33 , 99 , -1 ): _UpperCAmelCase = 1_00_20_03 * base_num if is_9_pandigital(SCREAMING_SNAKE_CASE_ ): return candidate return None if __name__ == "__main__": print(f'''{solution() = }''')
32
0
"""simple docstring""" import numpy as np import torch import tqdm from ...models.unet_ad import UNetaDModel from ...pipelines import DiffusionPipeline from ...utils import randn_tensor from ...utils.dummy_pt_objects import DDPMScheduler class UpperCAmelCase_ ( snake_case ): def __init__( self , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , ) -> Any: super().__init__() __lowercase : Optional[Any] = value_function __lowercase : Tuple = unet __lowercase : Any = scheduler __lowercase : List[str] = env __lowercase : Dict = env.get_dataset() __lowercase : Dict = {} for key in self.data.keys(): try: __lowercase : List[str] = self.data[key].mean() except: # noqa: E722 pass __lowercase : List[str] = {} for key in self.data.keys(): try: __lowercase : str = self.data[key].std() except: # noqa: E722 pass __lowercase : Any = env.observation_space.shape[0] __lowercase : List[Any] = env.action_space.shape[0] def _lowerCamelCase ( self , UpperCamelCase_ , UpperCamelCase_ ) -> Any: return (x_in - self.means[key]) / self.stds[key] def _lowerCamelCase ( self , UpperCamelCase_ , UpperCamelCase_ ) -> Tuple: return x_in * self.stds[key] + self.means[key] def _lowerCamelCase ( self , UpperCamelCase_ ) -> List[Any]: if type(UpperCamelCase_ ) is dict: return {k: self.to_torch(UpperCamelCase_ ) for k, v in x_in.items()} elif torch.is_tensor(UpperCamelCase_ ): return x_in.to(self.unet.device ) return torch.tensor(UpperCamelCase_ , device=self.unet.device ) def _lowerCamelCase ( self , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) -> Union[str, Any]: for key, val in cond.items(): __lowercase : Optional[int] = val.clone() return x_in def _lowerCamelCase ( self , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) -> str: __lowercase : List[str] = x.shape[0] __lowercase : int = None for i in tqdm.tqdm(self.scheduler.timesteps ): # create batch of timesteps to pass into model __lowercase : Tuple = torch.full((batch_size,) , UpperCamelCase_ , device=self.unet.device , dtype=torch.long ) for _ in range(UpperCamelCase_ ): with torch.enable_grad(): x.requires_grad_() # permute to match dimension for pre-trained models __lowercase : Optional[int] = self.value_function(x.permute(0 , 2 , 1 ) , UpperCamelCase_ ).sample __lowercase : List[Any] = torch.autograd.grad([y.sum()] , [x] )[0] __lowercase : Dict = self.scheduler._get_variance(UpperCamelCase_ ) __lowercase : str = torch.exp(0.5 * posterior_variance ) __lowercase : Tuple = model_std * grad __lowercase : Dict = 0 __lowercase : Optional[int] = x.detach() __lowercase : Optional[Any] = x + scale * grad __lowercase : List[str] = self.reset_xa(UpperCamelCase_ , UpperCamelCase_ , self.action_dim ) __lowercase : List[Any] = self.unet(x.permute(0 , 2 , 1 ) , UpperCamelCase_ ).sample.permute(0 , 2 , 1 ) # TODO: verify deprecation of this kwarg __lowercase : Tuple = self.scheduler.step(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , predict_epsilon=UpperCamelCase_ )['''prev_sample'''] # apply conditions to the trajectory (set the initial state) __lowercase : Any = self.reset_xa(UpperCamelCase_ , UpperCamelCase_ , self.action_dim ) __lowercase : Dict = self.to_torch(UpperCamelCase_ ) return x, y def __call__( self , UpperCamelCase_ , UpperCamelCase_=64 , UpperCamelCase_=32 , UpperCamelCase_=2 , UpperCamelCase_=0.1 ) -> List[Any]: # normalize the observations and create batch dimension __lowercase : Optional[Any] = self.normalize(UpperCamelCase_ , '''observations''' ) __lowercase : Any = obs[None].repeat(UpperCamelCase_ , axis=0 ) __lowercase : Optional[int] = {0: self.to_torch(UpperCamelCase_ )} __lowercase : Optional[int] = (batch_size, planning_horizon, self.state_dim + self.action_dim) # generate initial noise and apply our conditions (to make the trajectories start at current state) __lowercase : int = randn_tensor(UpperCamelCase_ , device=self.unet.device ) __lowercase : int = self.reset_xa(UpperCamelCase_ , UpperCamelCase_ , self.action_dim ) __lowercase : List[Any] = self.to_torch(UpperCamelCase_ ) # run the diffusion process __lowercase ,__lowercase : str = self.run_diffusion(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) # sort output trajectories by value __lowercase : Optional[Any] = y.argsort(0 , descending=UpperCamelCase_ ).squeeze() __lowercase : List[Any] = x[sorted_idx] __lowercase : Union[str, Any] = sorted_values[:, :, : self.action_dim] __lowercase : List[str] = actions.detach().cpu().numpy() __lowercase : Optional[Any] = self.de_normalize(UpperCamelCase_ , key='''actions''' ) # select the action with the highest value if y is not None: __lowercase : str = 0 else: # if we didn't run value guiding, select a random action __lowercase : Optional[int] = np.random.randint(0 , UpperCamelCase_ ) __lowercase : Optional[Any] = denorm_actions[selected_index, 0] return denorm_actions
76
import numpy as np def A__ ( SCREAMING_SNAKE_CASE_ : np.ndarray , SCREAMING_SNAKE_CASE_ : float ) -> np.ndarray: """simple docstring""" return np.where(vector > 0 , SCREAMING_SNAKE_CASE_ , (alpha * (np.exp(SCREAMING_SNAKE_CASE_ ) - 1)) ) if __name__ == "__main__": import doctest doctest.testmod()
32
0
"""simple docstring""" A = """Input must be a string of 8 numbers plus letter""" A = """TRWAGMYFPDXBNJZSQVHLCKE""" def _UpperCamelCase ( UpperCamelCase ) -> bool: """simple docstring""" if not isinstance(UpperCamelCase , UpperCamelCase ): __UpperCAmelCase : List[Any] = f"Expected string as input, found {type(UpperCamelCase ).__name__}" raise TypeError(UpperCamelCase ) __UpperCAmelCase : Union[str, Any] = spanish_id.replace("-" , "" ).upper() if len(UpperCamelCase ) != 9: raise ValueError(UpperCamelCase ) try: __UpperCAmelCase : int = int(spanish_id_clean[0:8] ) __UpperCAmelCase : Optional[Any] = spanish_id_clean[8] except ValueError as ex: raise ValueError(UpperCamelCase ) from ex if letter.isdigit(): raise ValueError(UpperCamelCase ) return letter == LOOKUP_LETTERS[number % 23] if __name__ == "__main__": import doctest doctest.testmod()
77
UpperCAmelCase_ = { "A": ".-", "B": "-...", "C": "-.-.", "D": "-..", "E": ".", "F": "..-.", "G": "--.", "H": "....", "I": "..", "J": ".---", "K": "-.-", "L": ".-..", "M": "--", "N": "-.", "O": "---", "P": ".--.", "Q": "--.-", "R": ".-.", "S": "...", "T": "-", "U": "..-", "V": "...-", "W": ".--", "X": "-..-", "Y": "-.--", "Z": "--..", "1": ".----", "2": "..---", "3": "...--", "4": "....-", "5": ".....", "6": "-....", "7": "--...", "8": "---..", "9": "----.", "0": "-----", "&": ".-...", "@": ".--.-.", ":": "---...", ",": "--..--", ".": ".-.-.-", "'": ".----.", "\"": ".-..-.", "?": "..--..", "/": "-..-.", "=": "-...-", "+": ".-.-.", "-": "-....-", "(": "-.--.", ")": "-.--.-", "!": "-.-.--", " ": "/" } # Exclamation mark is not in ITU-R recommendation # fmt: on UpperCAmelCase_ = {value: key for key, value in MORSE_CODE_DICT.items()} def A__ ( SCREAMING_SNAKE_CASE_ : str ) -> str: """simple docstring""" return " ".join(MORSE_CODE_DICT[char] for char in message.upper() ) def A__ ( SCREAMING_SNAKE_CASE_ : str ) -> str: """simple docstring""" return "".join(REVERSE_DICT[char] for char in message.split() ) def A__ ( ) -> None: """simple docstring""" _UpperCAmelCase = '''Morse code here!''' print(SCREAMING_SNAKE_CASE_ ) _UpperCAmelCase = encrypt(SCREAMING_SNAKE_CASE_ ) print(SCREAMING_SNAKE_CASE_ ) _UpperCAmelCase = decrypt(SCREAMING_SNAKE_CASE_ ) print(SCREAMING_SNAKE_CASE_ ) if __name__ == "__main__": main()
32
0
'''simple docstring''' from collections import OrderedDict from typing import Any, Mapping, Optional, Union from ...configuration_utils import PretrainedConfig from ...feature_extraction_utils import FeatureExtractionMixin from ...onnx import OnnxConfig from ...onnx.utils import compute_effective_axis_dimension from ...tokenization_utils_base import PreTrainedTokenizerBase from ...utils import TensorType, logging SCREAMING_SNAKE_CASE_: Optional[Any] =logging.get_logger(__name__) SCREAMING_SNAKE_CASE_: List[Any] ={ 'deepmind/language-perceiver': 'https://huggingface.co/deepmind/language-perceiver/resolve/main/config.json', # See all Perceiver models at https://huggingface.co/models?filter=perceiver } class __A ( UpperCamelCase__ ): a__ : List[Any] = """perceiver""" def __init__(self : Optional[int] , __a : Tuple=256 , __a : Optional[Any]=1280 , __a : Optional[int]=768 , __a : Any=1 , __a : List[str]=26 , __a : Dict=8 , __a : List[Any]=8 , __a : Tuple=None , __a : List[str]=None , __a : Optional[int]="kv" , __a : Union[str, Any]=1 , __a : List[str]=1 , __a : List[Any]="gelu" , __a : List[str]=0.1 , __a : str=0.02 , __a : List[str]=1E-12 , __a : Optional[int]=True , __a : Tuple=262 , __a : Dict=2048 , __a : int=56 , __a : Optional[int]=[368, 496] , __a : Any=16 , __a : Optional[Any]=1920 , __a : Any=16 , __a : str=[1, 16, 224, 224] , **__a : Any , ): super().__init__(**__a ) UpperCAmelCase_ = num_latents UpperCAmelCase_ = d_latents UpperCAmelCase_ = d_model UpperCAmelCase_ = num_blocks UpperCAmelCase_ = num_self_attends_per_block UpperCAmelCase_ = num_self_attention_heads UpperCAmelCase_ = num_cross_attention_heads UpperCAmelCase_ = qk_channels UpperCAmelCase_ = v_channels UpperCAmelCase_ = cross_attention_shape_for_attention UpperCAmelCase_ = self_attention_widening_factor UpperCAmelCase_ = cross_attention_widening_factor UpperCAmelCase_ = hidden_act UpperCAmelCase_ = attention_probs_dropout_prob UpperCAmelCase_ = initializer_range UpperCAmelCase_ = layer_norm_eps UpperCAmelCase_ = use_query_residual # masked language modeling attributes UpperCAmelCase_ = vocab_size UpperCAmelCase_ = max_position_embeddings # image classification attributes UpperCAmelCase_ = image_size # flow attributes UpperCAmelCase_ = train_size # multimodal autoencoding attributes UpperCAmelCase_ = num_frames UpperCAmelCase_ = audio_samples_per_frame UpperCAmelCase_ = samples_per_patch UpperCAmelCase_ = output_shape class __A ( UpperCamelCase__ ): @property def _lowercase (self : Dict ): if self.task == "multiple-choice": UpperCAmelCase_ = {0: "batch", 1: "choice", 2: "sequence"} else: UpperCAmelCase_ = {0: "batch", 1: "sequence"} return OrderedDict( [ ("inputs", dynamic_axis), ("attention_mask", dynamic_axis), ] ) @property def _lowercase (self : Optional[Any] ): return 1E-4 def _lowercase (self : Union[str, Any] , __a : Union["PreTrainedTokenizerBase", "FeatureExtractionMixin"] , __a : int = -1 , __a : int = -1 , __a : int = -1 , __a : bool = False , __a : Optional[TensorType] = None , __a : int = 3 , __a : int = 40 , __a : int = 40 , ): # copied from `transformers.onnx.config.OnnxConfig` and slightly altered/simplified if isinstance(__a , __a ): # If dynamic axis (-1) we forward with a fixed dimension of 2 samples to avoid optimizations made by ONNX UpperCAmelCase_ = compute_effective_axis_dimension( __a , fixed_dimension=OnnxConfig.default_fixed_batch , num_token_to_add=0 ) # If dynamic axis (-1) we forward with a fixed dimension of 8 tokens to avoid optimizations made by ONNX UpperCAmelCase_ = preprocessor.num_special_tokens_to_add(__a ) UpperCAmelCase_ = compute_effective_axis_dimension( __a , fixed_dimension=OnnxConfig.default_fixed_sequence , num_token_to_add=__a ) # Generate dummy inputs according to compute batch and sequence UpperCAmelCase_ = [" ".join(["a"] ) * seq_length] * batch_size UpperCAmelCase_ = dict(preprocessor(__a , return_tensors=__a ) ) UpperCAmelCase_ = inputs.pop("input_ids" ) return inputs elif isinstance(__a , __a ) and preprocessor.model_input_names[0] == "pixel_values": # If dynamic axis (-1) we forward with a fixed dimension of 2 samples to avoid optimizations made by ONNX UpperCAmelCase_ = compute_effective_axis_dimension(__a , fixed_dimension=OnnxConfig.default_fixed_batch ) UpperCAmelCase_ = self._generate_dummy_images(__a , __a , __a , __a ) UpperCAmelCase_ = dict(preprocessor(images=__a , return_tensors=__a ) ) UpperCAmelCase_ = inputs.pop("pixel_values" ) return inputs else: raise ValueError( "Unable to generate dummy inputs for the model. Please provide a tokenizer or a preprocessor." )
78
import gc import unittest import numpy as np import torch from diffusers import DanceDiffusionPipeline, IPNDMScheduler, UNetaDModel from diffusers.utils import slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu, skip_mps from ..pipeline_params import UNCONDITIONAL_AUDIO_GENERATION_BATCH_PARAMS, UNCONDITIONAL_AUDIO_GENERATION_PARAMS from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() class __UpperCamelCase ( A__ , unittest.TestCase ): __A : Any = DanceDiffusionPipeline __A : Any = UNCONDITIONAL_AUDIO_GENERATION_PARAMS __A : Tuple = PipelineTesterMixin.required_optional_params - { """callback""", """latents""", """callback_steps""", """output_type""", """num_images_per_prompt""", } __A : Tuple = UNCONDITIONAL_AUDIO_GENERATION_BATCH_PARAMS __A : List[str] = False __A : str = False def UpperCamelCase( self ): torch.manual_seed(0 ) _UpperCAmelCase = UNetaDModel( block_out_channels=(32, 32, 64) , extra_in_channels=16 , sample_size=512 , sample_rate=16000 , in_channels=2 , out_channels=2 , flip_sin_to_cos=_UpperCamelCase , use_timestep_embedding=_UpperCamelCase , time_embedding_type='''fourier''' , mid_block_type='''UNetMidBlock1D''' , down_block_types=('''DownBlock1DNoSkip''', '''DownBlock1D''', '''AttnDownBlock1D''') , up_block_types=('''AttnUpBlock1D''', '''UpBlock1D''', '''UpBlock1DNoSkip''') , ) _UpperCAmelCase = IPNDMScheduler() _UpperCAmelCase = { '''unet''': unet, '''scheduler''': scheduler, } return components def UpperCamelCase( self , _UpperCamelCase , _UpperCamelCase=0 ): if str(_UpperCamelCase ).startswith('''mps''' ): _UpperCAmelCase = torch.manual_seed(_UpperCamelCase ) else: _UpperCAmelCase = torch.Generator(device=_UpperCamelCase ).manual_seed(_UpperCamelCase ) _UpperCAmelCase = { '''batch_size''': 1, '''generator''': generator, '''num_inference_steps''': 4, } return inputs def UpperCamelCase( self ): _UpperCAmelCase = '''cpu''' # ensure determinism for the device-dependent torch.Generator _UpperCAmelCase = self.get_dummy_components() _UpperCAmelCase = DanceDiffusionPipeline(**_UpperCamelCase ) _UpperCAmelCase = pipe.to(_UpperCamelCase ) pipe.set_progress_bar_config(disable=_UpperCamelCase ) _UpperCAmelCase = self.get_dummy_inputs(_UpperCamelCase ) _UpperCAmelCase = pipe(**_UpperCamelCase ) _UpperCAmelCase = output.audios _UpperCAmelCase = audio[0, -3:, -3:] assert audio.shape == (1, 2, components["unet"].sample_size) _UpperCAmelCase = np.array([-0.7265, 1.0000, -0.8388, 0.1175, 0.9498, -1.0000] ) assert np.abs(audio_slice.flatten() - expected_slice ).max() < 1e-2 @skip_mps def UpperCamelCase( self ): return super().test_save_load_local() @skip_mps def UpperCamelCase( self ): return super().test_dict_tuple_outputs_equivalent(expected_max_difference=3e-3 ) @skip_mps def UpperCamelCase( self ): return super().test_save_load_optional_components() @skip_mps def UpperCamelCase( self ): return super().test_attention_slicing_forward_pass() def UpperCamelCase( self ): super().test_inference_batch_single_identical(expected_max_diff=3e-3 ) @slow @require_torch_gpu class __UpperCamelCase ( unittest.TestCase ): def UpperCamelCase( self ): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def UpperCamelCase( self ): _UpperCAmelCase = torch_device _UpperCAmelCase = DanceDiffusionPipeline.from_pretrained('''harmonai/maestro-150k''' ) _UpperCAmelCase = pipe.to(_UpperCamelCase ) pipe.set_progress_bar_config(disable=_UpperCamelCase ) _UpperCAmelCase = torch.manual_seed(0 ) _UpperCAmelCase = pipe(generator=_UpperCamelCase , num_inference_steps=100 , audio_length_in_s=4.096 ) _UpperCAmelCase = output.audios _UpperCAmelCase = audio[0, -3:, -3:] assert audio.shape == (1, 2, pipe.unet.sample_size) _UpperCAmelCase = np.array([-0.0192, -0.0231, -0.0318, -0.0059, 0.0002, -0.0020] ) assert np.abs(audio_slice.flatten() - expected_slice ).max() < 1e-2 def UpperCamelCase( self ): _UpperCAmelCase = torch_device _UpperCAmelCase = DanceDiffusionPipeline.from_pretrained('''harmonai/maestro-150k''' , torch_dtype=torch.floataa ) _UpperCAmelCase = pipe.to(_UpperCamelCase ) pipe.set_progress_bar_config(disable=_UpperCamelCase ) _UpperCAmelCase = torch.manual_seed(0 ) _UpperCAmelCase = pipe(generator=_UpperCamelCase , num_inference_steps=100 , audio_length_in_s=4.096 ) _UpperCAmelCase = output.audios _UpperCAmelCase = audio[0, -3:, -3:] assert audio.shape == (1, 2, pipe.unet.sample_size) _UpperCAmelCase = np.array([-0.0367, -0.0488, -0.0771, -0.0525, -0.0444, -0.0341] ) assert np.abs(audio_slice.flatten() - expected_slice ).max() < 1e-2
32
0
SCREAMING_SNAKE_CASE__ : Dict = 6_55_21 def _lowerCamelCase ( __lowerCamelCase ) -> int: '''simple docstring''' UpperCAmelCase__ : str = 1 UpperCAmelCase__ : Tuple = 0 for plain_chr in plain_text: UpperCAmelCase__ : int = (a + ord(__lowerCamelCase )) % MOD_ADLER UpperCAmelCase__ : List[str] = (b + a) % MOD_ADLER return (b << 16) | a
79
from collections import OrderedDict from ...utils import logging from .auto_factory import _BaseAutoModelClass, _LazyAutoMapping, auto_class_update from .configuration_auto import CONFIG_MAPPING_NAMES UpperCAmelCase_ = logging.get_logger(__name__) UpperCAmelCase_ = OrderedDict( [ # Base model mapping ("albert", "FlaxAlbertModel"), ("bart", "FlaxBartModel"), ("beit", "FlaxBeitModel"), ("bert", "FlaxBertModel"), ("big_bird", "FlaxBigBirdModel"), ("blenderbot", "FlaxBlenderbotModel"), ("blenderbot-small", "FlaxBlenderbotSmallModel"), ("clip", "FlaxCLIPModel"), ("distilbert", "FlaxDistilBertModel"), ("electra", "FlaxElectraModel"), ("gpt-sw3", "FlaxGPT2Model"), ("gpt2", "FlaxGPT2Model"), ("gpt_neo", "FlaxGPTNeoModel"), ("gptj", "FlaxGPTJModel"), ("longt5", "FlaxLongT5Model"), ("marian", "FlaxMarianModel"), ("mbart", "FlaxMBartModel"), ("mt5", "FlaxMT5Model"), ("opt", "FlaxOPTModel"), ("pegasus", "FlaxPegasusModel"), ("regnet", "FlaxRegNetModel"), ("resnet", "FlaxResNetModel"), ("roberta", "FlaxRobertaModel"), ("roberta-prelayernorm", "FlaxRobertaPreLayerNormModel"), ("roformer", "FlaxRoFormerModel"), ("t5", "FlaxT5Model"), ("vision-text-dual-encoder", "FlaxVisionTextDualEncoderModel"), ("vit", "FlaxViTModel"), ("wav2vec2", "FlaxWav2Vec2Model"), ("whisper", "FlaxWhisperModel"), ("xglm", "FlaxXGLMModel"), ("xlm-roberta", "FlaxXLMRobertaModel"), ] ) UpperCAmelCase_ = OrderedDict( [ # Model for pre-training mapping ("albert", "FlaxAlbertForPreTraining"), ("bart", "FlaxBartForConditionalGeneration"), ("bert", "FlaxBertForPreTraining"), ("big_bird", "FlaxBigBirdForPreTraining"), ("electra", "FlaxElectraForPreTraining"), ("longt5", "FlaxLongT5ForConditionalGeneration"), ("mbart", "FlaxMBartForConditionalGeneration"), ("mt5", "FlaxMT5ForConditionalGeneration"), ("roberta", "FlaxRobertaForMaskedLM"), ("roberta-prelayernorm", "FlaxRobertaPreLayerNormForMaskedLM"), ("roformer", "FlaxRoFormerForMaskedLM"), ("t5", "FlaxT5ForConditionalGeneration"), ("wav2vec2", "FlaxWav2Vec2ForPreTraining"), ("whisper", "FlaxWhisperForConditionalGeneration"), ("xlm-roberta", "FlaxXLMRobertaForMaskedLM"), ] ) UpperCAmelCase_ = OrderedDict( [ # Model for Masked LM mapping ("albert", "FlaxAlbertForMaskedLM"), ("bart", "FlaxBartForConditionalGeneration"), ("bert", "FlaxBertForMaskedLM"), ("big_bird", "FlaxBigBirdForMaskedLM"), ("distilbert", "FlaxDistilBertForMaskedLM"), ("electra", "FlaxElectraForMaskedLM"), ("mbart", "FlaxMBartForConditionalGeneration"), ("roberta", "FlaxRobertaForMaskedLM"), ("roberta-prelayernorm", "FlaxRobertaPreLayerNormForMaskedLM"), ("roformer", "FlaxRoFormerForMaskedLM"), ("xlm-roberta", "FlaxXLMRobertaForMaskedLM"), ] ) UpperCAmelCase_ = OrderedDict( [ # Model for Seq2Seq Causal LM mapping ("bart", "FlaxBartForConditionalGeneration"), ("blenderbot", "FlaxBlenderbotForConditionalGeneration"), ("blenderbot-small", "FlaxBlenderbotSmallForConditionalGeneration"), ("encoder-decoder", "FlaxEncoderDecoderModel"), ("longt5", "FlaxLongT5ForConditionalGeneration"), ("marian", "FlaxMarianMTModel"), ("mbart", "FlaxMBartForConditionalGeneration"), ("mt5", "FlaxMT5ForConditionalGeneration"), ("pegasus", "FlaxPegasusForConditionalGeneration"), ("t5", "FlaxT5ForConditionalGeneration"), ] ) UpperCAmelCase_ = OrderedDict( [ # Model for Image-classsification ("beit", "FlaxBeitForImageClassification"), ("regnet", "FlaxRegNetForImageClassification"), ("resnet", "FlaxResNetForImageClassification"), ("vit", "FlaxViTForImageClassification"), ] ) UpperCAmelCase_ = OrderedDict( [ ("vision-encoder-decoder", "FlaxVisionEncoderDecoderModel"), ] ) UpperCAmelCase_ = OrderedDict( [ # Model for Causal LM mapping ("bart", "FlaxBartForCausalLM"), ("bert", "FlaxBertForCausalLM"), ("big_bird", "FlaxBigBirdForCausalLM"), ("electra", "FlaxElectraForCausalLM"), ("gpt-sw3", "FlaxGPT2LMHeadModel"), ("gpt2", "FlaxGPT2LMHeadModel"), ("gpt_neo", "FlaxGPTNeoForCausalLM"), ("gptj", "FlaxGPTJForCausalLM"), ("opt", "FlaxOPTForCausalLM"), ("roberta", "FlaxRobertaForCausalLM"), ("roberta-prelayernorm", "FlaxRobertaPreLayerNormForCausalLM"), ("xglm", "FlaxXGLMForCausalLM"), ("xlm-roberta", "FlaxXLMRobertaForCausalLM"), ] ) UpperCAmelCase_ = OrderedDict( [ # Model for Sequence Classification mapping ("albert", "FlaxAlbertForSequenceClassification"), ("bart", "FlaxBartForSequenceClassification"), ("bert", "FlaxBertForSequenceClassification"), ("big_bird", "FlaxBigBirdForSequenceClassification"), ("distilbert", "FlaxDistilBertForSequenceClassification"), ("electra", "FlaxElectraForSequenceClassification"), ("mbart", "FlaxMBartForSequenceClassification"), ("roberta", "FlaxRobertaForSequenceClassification"), ("roberta-prelayernorm", "FlaxRobertaPreLayerNormForSequenceClassification"), ("roformer", "FlaxRoFormerForSequenceClassification"), ("xlm-roberta", "FlaxXLMRobertaForSequenceClassification"), ] ) UpperCAmelCase_ = OrderedDict( [ # Model for Question Answering mapping ("albert", "FlaxAlbertForQuestionAnswering"), ("bart", "FlaxBartForQuestionAnswering"), ("bert", "FlaxBertForQuestionAnswering"), ("big_bird", "FlaxBigBirdForQuestionAnswering"), ("distilbert", "FlaxDistilBertForQuestionAnswering"), ("electra", "FlaxElectraForQuestionAnswering"), ("mbart", "FlaxMBartForQuestionAnswering"), ("roberta", "FlaxRobertaForQuestionAnswering"), ("roberta-prelayernorm", "FlaxRobertaPreLayerNormForQuestionAnswering"), ("roformer", "FlaxRoFormerForQuestionAnswering"), ("xlm-roberta", "FlaxXLMRobertaForQuestionAnswering"), ] ) UpperCAmelCase_ = OrderedDict( [ # Model for Token Classification mapping ("albert", "FlaxAlbertForTokenClassification"), ("bert", "FlaxBertForTokenClassification"), ("big_bird", "FlaxBigBirdForTokenClassification"), ("distilbert", "FlaxDistilBertForTokenClassification"), ("electra", "FlaxElectraForTokenClassification"), ("roberta", "FlaxRobertaForTokenClassification"), ("roberta-prelayernorm", "FlaxRobertaPreLayerNormForTokenClassification"), ("roformer", "FlaxRoFormerForTokenClassification"), ("xlm-roberta", "FlaxXLMRobertaForTokenClassification"), ] ) UpperCAmelCase_ = OrderedDict( [ # Model for Multiple Choice mapping ("albert", "FlaxAlbertForMultipleChoice"), ("bert", "FlaxBertForMultipleChoice"), ("big_bird", "FlaxBigBirdForMultipleChoice"), ("distilbert", "FlaxDistilBertForMultipleChoice"), ("electra", "FlaxElectraForMultipleChoice"), ("roberta", "FlaxRobertaForMultipleChoice"), ("roberta-prelayernorm", "FlaxRobertaPreLayerNormForMultipleChoice"), ("roformer", "FlaxRoFormerForMultipleChoice"), ("xlm-roberta", "FlaxXLMRobertaForMultipleChoice"), ] ) UpperCAmelCase_ = OrderedDict( [ ("bert", "FlaxBertForNextSentencePrediction"), ] ) UpperCAmelCase_ = OrderedDict( [ ("speech-encoder-decoder", "FlaxSpeechEncoderDecoderModel"), ("whisper", "FlaxWhisperForConditionalGeneration"), ] ) UpperCAmelCase_ = OrderedDict( [ ("whisper", "FlaxWhisperForAudioClassification"), ] ) UpperCAmelCase_ = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_MAPPING_NAMES) UpperCAmelCase_ = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_PRETRAINING_MAPPING_NAMES) UpperCAmelCase_ = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_MASKED_LM_MAPPING_NAMES) UpperCAmelCase_ = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING_NAMES ) UpperCAmelCase_ = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING_NAMES ) UpperCAmelCase_ = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_VISION_2_SEQ_MAPPING_NAMES) UpperCAmelCase_ = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_CAUSAL_LM_MAPPING_NAMES) UpperCAmelCase_ = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING_NAMES ) UpperCAmelCase_ = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_QUESTION_ANSWERING_MAPPING_NAMES ) UpperCAmelCase_ = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING_NAMES ) UpperCAmelCase_ = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_MULTIPLE_CHOICE_MAPPING_NAMES ) UpperCAmelCase_ = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_NEXT_SENTENCE_PREDICTION_MAPPING_NAMES ) UpperCAmelCase_ = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_SPEECH_SEQ_2_SEQ_MAPPING_NAMES ) UpperCAmelCase_ = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_AUDIO_CLASSIFICATION_MAPPING_NAMES ) class __UpperCamelCase ( _BaseAutoModelClass ): __A : List[str] = FLAX_MODEL_MAPPING UpperCAmelCase_ = auto_class_update(FlaxAutoModel) class __UpperCamelCase ( _BaseAutoModelClass ): __A : Optional[Any] = FLAX_MODEL_FOR_PRETRAINING_MAPPING UpperCAmelCase_ = auto_class_update(FlaxAutoModelForPreTraining, head_doc="pretraining") class __UpperCamelCase ( _BaseAutoModelClass ): __A : List[Any] = FLAX_MODEL_FOR_CAUSAL_LM_MAPPING UpperCAmelCase_ = auto_class_update(FlaxAutoModelForCausalLM, head_doc="causal language modeling") class __UpperCamelCase ( _BaseAutoModelClass ): __A : List[str] = FLAX_MODEL_FOR_MASKED_LM_MAPPING UpperCAmelCase_ = auto_class_update(FlaxAutoModelForMaskedLM, head_doc="masked language modeling") class __UpperCamelCase ( _BaseAutoModelClass ): __A : Dict = FLAX_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING UpperCAmelCase_ = auto_class_update( FlaxAutoModelForSeqaSeqLM, head_doc="sequence-to-sequence language modeling", checkpoint_for_example="t5-base" ) class __UpperCamelCase ( _BaseAutoModelClass ): __A : List[str] = FLAX_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING UpperCAmelCase_ = auto_class_update( FlaxAutoModelForSequenceClassification, head_doc="sequence classification" ) class __UpperCamelCase ( _BaseAutoModelClass ): __A : Dict = FLAX_MODEL_FOR_QUESTION_ANSWERING_MAPPING UpperCAmelCase_ = auto_class_update(FlaxAutoModelForQuestionAnswering, head_doc="question answering") class __UpperCamelCase ( _BaseAutoModelClass ): __A : Union[str, Any] = FLAX_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING UpperCAmelCase_ = auto_class_update( FlaxAutoModelForTokenClassification, head_doc="token classification" ) class __UpperCamelCase ( _BaseAutoModelClass ): __A : Union[str, Any] = FLAX_MODEL_FOR_MULTIPLE_CHOICE_MAPPING UpperCAmelCase_ = auto_class_update(FlaxAutoModelForMultipleChoice, head_doc="multiple choice") class __UpperCamelCase ( _BaseAutoModelClass ): __A : Any = FLAX_MODEL_FOR_NEXT_SENTENCE_PREDICTION_MAPPING UpperCAmelCase_ = auto_class_update( FlaxAutoModelForNextSentencePrediction, head_doc="next sentence prediction" ) class __UpperCamelCase ( _BaseAutoModelClass ): __A : Dict = FLAX_MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING UpperCAmelCase_ = auto_class_update( FlaxAutoModelForImageClassification, head_doc="image classification" ) class __UpperCamelCase ( _BaseAutoModelClass ): __A : Optional[int] = FLAX_MODEL_FOR_VISION_2_SEQ_MAPPING UpperCAmelCase_ = auto_class_update(FlaxAutoModelForVisionaSeq, head_doc="vision-to-text modeling") class __UpperCamelCase ( _BaseAutoModelClass ): __A : str = FLAX_MODEL_FOR_SPEECH_SEQ_2_SEQ_MAPPING UpperCAmelCase_ = auto_class_update( FlaxAutoModelForSpeechSeqaSeq, head_doc="sequence-to-sequence speech-to-text modeling" )
32
0
def snake_case ( lowerCamelCase , lowerCamelCase ): '''simple docstring''' __lowercase = len(lowerCamelCase ) + 1 __lowercase = len(lowerCamelCase ) + 1 # dp is a 2d matrix where dp[i][j] denotes whether prefix string of # length i of input_string matches with prefix string of length j of # given pattern. # "dp" stands for dynamic programming. __lowercase = [[0 for i in range(lowerCamelCase )] for j in range(lowerCamelCase )] # since string of zero length match pattern of zero length __lowercase = 1 # since pattern of zero length will never match with string of non-zero length for i in range(1 , lowerCamelCase ): __lowercase = 0 # since string of zero length will match with pattern where there # is at least one * alternatively for j in range(1 , lowerCamelCase ): __lowercase = dp[0][j - 2] if pattern[j - 1] == """*""" else 0 # now using bottom-up approach to find for all remaining lengths for i in range(1 , lowerCamelCase ): for j in range(1 , lowerCamelCase ): if input_string[i - 1] == pattern[j - 1] or pattern[j - 1] == ".": __lowercase = dp[i - 1][j - 1] elif pattern[j - 1] == "*": if dp[i][j - 2] == 1: __lowercase = 1 elif pattern[j - 2] in (input_string[i - 1], "."): __lowercase = dp[i - 1][j] else: __lowercase = 0 else: __lowercase = 0 return bool(dp[-1][-1] ) if __name__ == "__main__": import doctest doctest.testmod() # inputing the strings # input_string = input("input a string :") # pattern = input("input a pattern :") __UpperCamelCase : Any = """aab""" __UpperCamelCase : Optional[Any] = """c*a*b""" # using function to check whether given string matches the given pattern if match_pattern(input_string, pattern): print(F'''{input_string} matches the given pattern {pattern}''') else: print(F'''{input_string} does not match with the given pattern {pattern}''')
80
import baseaa def A__ ( SCREAMING_SNAKE_CASE_ : str ) -> bytes: """simple docstring""" return baseaa.baaencode(string.encode('''utf-8''' ) ) def A__ ( SCREAMING_SNAKE_CASE_ : bytes ) -> str: """simple docstring""" return baseaa.baadecode(SCREAMING_SNAKE_CASE_ ).decode('''utf-8''' ) if __name__ == "__main__": UpperCAmelCase_ = "Hello World!" UpperCAmelCase_ = baseaa_encode(test) print(encoded) UpperCAmelCase_ = baseaa_decode(encoded) print(decoded)
32
0
import torch from diffusers import DDIMParallelScheduler from .test_schedulers import SchedulerCommonTest class a (_lowerCAmelCase ): """simple docstring""" __UpperCAmelCase : List[str] = (DDIMParallelScheduler,) __UpperCAmelCase : Tuple = (("eta", 0.0), ("num_inference_steps", 50)) def __snake_case ( self : int , **lowerCamelCase : Optional[Any] ) -> Optional[Any]: __snake_case : Any = { "num_train_timesteps": 1000, "beta_start": 0.00_01, "beta_end": 0.02, "beta_schedule": "linear", "clip_sample": True, } config.update(**lowerCamelCase ) return config def __snake_case ( self : Optional[Any] , **lowerCamelCase : List[str] ) -> Any: __snake_case : Optional[int] = self.scheduler_classes[0] __snake_case : Optional[int] = self.get_scheduler_config(**lowerCamelCase ) __snake_case : Optional[int] = scheduler_class(**lowerCamelCase ) __snake_case , __snake_case : List[Any] = 10, 0.0 __snake_case : Union[str, Any] = self.dummy_model() __snake_case : Union[str, Any] = self.dummy_sample_deter scheduler.set_timesteps(lowerCamelCase ) for t in scheduler.timesteps: __snake_case : List[Any] = model(lowerCamelCase , lowerCamelCase ) __snake_case : List[str] = scheduler.step(lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase ).prev_sample return sample def __snake_case ( self : Tuple ) -> Dict: for timesteps in [100, 500, 1000]: self.check_over_configs(num_train_timesteps=lowerCamelCase ) def __snake_case ( self : Dict ) -> int: for steps_offset in [0, 1]: self.check_over_configs(steps_offset=lowerCamelCase ) __snake_case : Optional[int] = self.scheduler_classes[0] __snake_case : Optional[Any] = self.get_scheduler_config(steps_offset=1 ) __snake_case : List[str] = scheduler_class(**lowerCamelCase ) scheduler.set_timesteps(5 ) assert torch.equal(scheduler.timesteps , torch.LongTensor([801, 601, 401, 201, 1] ) ) def __snake_case ( self : List[Any] ) -> int: for beta_start, beta_end in zip([0.00_01, 0.0_01, 0.01, 0.1] , [0.0_02, 0.02, 0.2, 2] ): self.check_over_configs(beta_start=lowerCamelCase , beta_end=lowerCamelCase ) def __snake_case ( self : List[Any] ) -> str: for schedule in ["linear", "squaredcos_cap_v2"]: self.check_over_configs(beta_schedule=lowerCamelCase ) def __snake_case ( self : Tuple ) -> List[str]: for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs(prediction_type=lowerCamelCase ) def __snake_case ( self : Optional[Any] ) -> List[Any]: for clip_sample in [True, False]: self.check_over_configs(clip_sample=lowerCamelCase ) def __snake_case ( self : Tuple ) -> List[Any]: for timestep_spacing in ["trailing", "leading"]: self.check_over_configs(timestep_spacing=lowerCamelCase ) def __snake_case ( self : Tuple ) -> Any: for rescale_betas_zero_snr in [True, False]: self.check_over_configs(rescale_betas_zero_snr=lowerCamelCase ) def __snake_case ( self : Dict ) -> List[str]: self.check_over_configs(thresholding=lowerCamelCase ) for threshold in [0.5, 1.0, 2.0]: for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs( thresholding=lowerCamelCase , prediction_type=lowerCamelCase , sample_max_value=lowerCamelCase , ) def __snake_case ( self : int ) -> Union[str, Any]: for t in [1, 10, 49]: self.check_over_forward(time_step=lowerCamelCase ) def __snake_case ( self : int ) -> List[Any]: for t, num_inference_steps in zip([1, 10, 50] , [10, 50, 500] ): self.check_over_forward(time_step=lowerCamelCase , num_inference_steps=lowerCamelCase ) def __snake_case ( self : Dict ) -> str: for t, eta in zip([1, 10, 49] , [0.0, 0.5, 1.0] ): self.check_over_forward(time_step=lowerCamelCase , eta=lowerCamelCase ) def __snake_case ( self : Any ) -> Any: __snake_case : Any = self.scheduler_classes[0] __snake_case : Dict = self.get_scheduler_config() __snake_case : Optional[int] = scheduler_class(**lowerCamelCase ) assert torch.sum(torch.abs(scheduler._get_variance(0 , 0 ) - 0.0 ) ) < 1E-5 assert torch.sum(torch.abs(scheduler._get_variance(420 , 400 ) - 0.1_47_71 ) ) < 1E-5 assert torch.sum(torch.abs(scheduler._get_variance(980 , 960 ) - 0.3_24_60 ) ) < 1E-5 assert torch.sum(torch.abs(scheduler._get_variance(0 , 0 ) - 0.0 ) ) < 1E-5 assert torch.sum(torch.abs(scheduler._get_variance(487 , 486 ) - 0.0_09_79 ) ) < 1E-5 assert torch.sum(torch.abs(scheduler._get_variance(999 , 998 ) - 0.02 ) ) < 1E-5 def __snake_case ( self : Dict ) -> List[Any]: __snake_case : Any = self.scheduler_classes[0] __snake_case : Dict = self.get_scheduler_config() __snake_case : Optional[int] = scheduler_class(**lowerCamelCase ) __snake_case , __snake_case : str = 10, 0.0 scheduler.set_timesteps(lowerCamelCase ) __snake_case : Dict = self.dummy_model() __snake_case : List[Any] = self.dummy_sample_deter __snake_case : int = self.dummy_sample_deter + 0.1 __snake_case : str = self.dummy_sample_deter - 0.1 __snake_case : Dict = samplea.shape[0] __snake_case : str = torch.stack([samplea, samplea, samplea] , dim=0 ) __snake_case : int = torch.arange(lowerCamelCase )[0:3, None].repeat(1 , lowerCamelCase ) __snake_case : Union[str, Any] = model(samples.flatten(0 , 1 ) , timesteps.flatten(0 , 1 ) ) __snake_case : Any = scheduler.batch_step_no_noise(lowerCamelCase , timesteps.flatten(0 , 1 ) , samples.flatten(0 , 1 ) , lowerCamelCase ) __snake_case : Optional[Any] = torch.sum(torch.abs(lowerCamelCase ) ) __snake_case : List[Any] = torch.mean(torch.abs(lowerCamelCase ) ) assert abs(result_sum.item() - 11_47.79_04 ) < 1E-2 assert abs(result_mean.item() - 0.49_82 ) < 1E-3 def __snake_case ( self : str ) -> Optional[int]: __snake_case : Union[str, Any] = self.full_loop() __snake_case : Dict = torch.sum(torch.abs(lowerCamelCase ) ) __snake_case : Dict = torch.mean(torch.abs(lowerCamelCase ) ) assert abs(result_sum.item() - 1_72.00_67 ) < 1E-2 assert abs(result_mean.item() - 0.22_39_67 ) < 1E-3 def __snake_case ( self : str ) -> Dict: __snake_case : Any = self.full_loop(prediction_type="v_prediction" ) __snake_case : Optional[int] = torch.sum(torch.abs(lowerCamelCase ) ) __snake_case : int = torch.mean(torch.abs(lowerCamelCase ) ) assert abs(result_sum.item() - 52.53_02 ) < 1E-2 assert abs(result_mean.item() - 0.06_84 ) < 1E-3 def __snake_case ( self : Dict ) -> Tuple: # We specify different beta, so that the first alpha is 0.99 __snake_case : str = self.full_loop(set_alpha_to_one=lowerCamelCase , beta_start=0.01 ) __snake_case : Dict = torch.sum(torch.abs(lowerCamelCase ) ) __snake_case : Dict = torch.mean(torch.abs(lowerCamelCase ) ) assert abs(result_sum.item() - 1_49.82_95 ) < 1E-2 assert abs(result_mean.item() - 0.19_51 ) < 1E-3 def __snake_case ( self : Optional[Any] ) -> List[Any]: # We specify different beta, so that the first alpha is 0.99 __snake_case : Union[str, Any] = self.full_loop(set_alpha_to_one=lowerCamelCase , beta_start=0.01 ) __snake_case : Optional[Any] = torch.sum(torch.abs(lowerCamelCase ) ) __snake_case : Dict = torch.mean(torch.abs(lowerCamelCase ) ) assert abs(result_sum.item() - 1_49.07_84 ) < 1E-2 assert abs(result_mean.item() - 0.19_41 ) < 1E-3
81
from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD, ChannelDimension, ImageInput, PILImageResampling, is_batched, to_numpy_array, valid_images, ) from ...utils import TensorType, logging UpperCAmelCase_ = logging.get_logger(__name__) class __UpperCamelCase ( A__ ): __A : int = ["""pixel_values"""] def __init__( self , _UpperCamelCase = True , _UpperCamelCase = None , _UpperCamelCase = PILImageResampling.BICUBIC , _UpperCamelCase = True , _UpperCamelCase = True , _UpperCamelCase = 1 / 255 , _UpperCamelCase = None , _UpperCamelCase = True , _UpperCamelCase = None , _UpperCamelCase = None , **_UpperCamelCase , ): super().__init__(**_UpperCamelCase ) _UpperCAmelCase = size if size is not None else {'''height''': 224, '''width''': 224} _UpperCAmelCase = get_size_dict(_UpperCamelCase ) _UpperCAmelCase = crop_size if crop_size is not None else {'''height''': 224, '''width''': 224} _UpperCAmelCase = get_size_dict(_UpperCamelCase , default_to_square=_UpperCamelCase , param_name='''crop_size''' ) _UpperCAmelCase = do_resize _UpperCAmelCase = do_rescale _UpperCAmelCase = do_normalize _UpperCAmelCase = do_center_crop _UpperCAmelCase = crop_size _UpperCAmelCase = size _UpperCAmelCase = resample _UpperCAmelCase = rescale_factor _UpperCAmelCase = image_mean if image_mean is not None else IMAGENET_DEFAULT_MEAN _UpperCAmelCase = image_std if image_std is not None else IMAGENET_DEFAULT_STD def UpperCamelCase( self , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase = PILImageResampling.BILINEAR , _UpperCamelCase = None , **_UpperCamelCase , ): _UpperCAmelCase = get_size_dict(_UpperCamelCase ) if "shortest_edge" in size: _UpperCAmelCase = get_resize_output_image_size(_UpperCamelCase , size=size['''shortest_edge'''] , default_to_square=_UpperCamelCase ) # size = get_resize_output_image_size(image, size["shortest_edge"], size["longest_edge"]) elif "height" in size and "width" in size: _UpperCAmelCase = (size['''height'''], size['''width''']) else: raise ValueError(f'''Size must contain \'height\' and \'width\' keys or \'shortest_edge\' key. Got {size.keys()}''' ) return resize(_UpperCamelCase , size=_UpperCamelCase , resample=_UpperCamelCase , data_format=_UpperCamelCase , **_UpperCamelCase ) def UpperCamelCase( self , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase = None , **_UpperCamelCase , ): _UpperCAmelCase = get_size_dict(_UpperCamelCase ) if "height" not in size or "width" not in size: raise ValueError(f'''The `size` parameter must contain the keys (height, width). Got {size.keys()}''' ) return center_crop(_UpperCamelCase , size=(size['''height'''], size['''width''']) , data_format=_UpperCamelCase , **_UpperCamelCase ) def UpperCamelCase( self , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase = None , **_UpperCamelCase ): return rescale(_UpperCamelCase , scale=_UpperCamelCase , data_format=_UpperCamelCase , **_UpperCamelCase ) def UpperCamelCase( self , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase = None , **_UpperCamelCase , ): return normalize(_UpperCamelCase , mean=_UpperCamelCase , std=_UpperCamelCase , data_format=_UpperCamelCase , **_UpperCamelCase ) def UpperCamelCase( self , _UpperCamelCase , _UpperCamelCase = None , _UpperCamelCase = None , _UpperCamelCase = None , _UpperCamelCase = None , _UpperCamelCase = None , _UpperCamelCase = None , _UpperCamelCase = None , _UpperCamelCase = None , _UpperCamelCase = None , _UpperCamelCase = None , _UpperCamelCase = None , _UpperCamelCase = ChannelDimension.FIRST , **_UpperCamelCase , ): _UpperCAmelCase = do_resize if do_resize is not None else self.do_resize _UpperCAmelCase = do_rescale if do_rescale is not None else self.do_rescale _UpperCAmelCase = do_normalize if do_normalize is not None else self.do_normalize _UpperCAmelCase = do_center_crop if do_center_crop is not None else self.do_center_crop _UpperCAmelCase = crop_size if crop_size is not None else self.crop_size _UpperCAmelCase = get_size_dict(_UpperCamelCase , param_name='''crop_size''' , default_to_square=_UpperCamelCase ) _UpperCAmelCase = resample if resample is not None else self.resample _UpperCAmelCase = rescale_factor if rescale_factor is not None else self.rescale_factor _UpperCAmelCase = image_mean if image_mean is not None else self.image_mean _UpperCAmelCase = image_std if image_std is not None else self.image_std _UpperCAmelCase = size if size is not None else self.size _UpperCAmelCase = get_size_dict(_UpperCamelCase ) if not is_batched(_UpperCamelCase ): _UpperCAmelCase = [images] if not valid_images(_UpperCamelCase ): raise ValueError( '''Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ''' '''torch.Tensor, tf.Tensor or jax.ndarray.''' ) if do_resize and size is None: raise ValueError('''Size must be specified if do_resize is True.''' ) if do_center_crop and crop_size is None: raise ValueError('''Crop size must be specified if do_center_crop is True.''' ) if do_rescale and rescale_factor is None: raise ValueError('''Rescale factor must be specified if do_rescale is True.''' ) # All transformations expect numpy arrays. _UpperCAmelCase = [to_numpy_array(_UpperCamelCase ) for image in images] if do_resize: _UpperCAmelCase = [self.resize(image=_UpperCamelCase , size=_UpperCamelCase , resample=_UpperCamelCase ) for image in images] if do_center_crop: _UpperCAmelCase = [self.center_crop(image=_UpperCamelCase , size=_UpperCamelCase ) for image in images] if do_rescale: _UpperCAmelCase = [self.rescale(image=_UpperCamelCase , scale=_UpperCamelCase ) for image in images] if do_normalize: _UpperCAmelCase = [self.normalize(image=_UpperCamelCase , mean=_UpperCamelCase , std=_UpperCamelCase ) for image in images] _UpperCAmelCase = [to_channel_dimension_format(_UpperCamelCase , _UpperCamelCase ) for image in images] _UpperCAmelCase = {'''pixel_values''': images} return BatchFeature(data=_UpperCamelCase , tensor_type=_UpperCamelCase )
32
0
"""simple docstring""" import os from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_pegasus import PegasusTokenizer else: lowerCamelCase = None lowerCamelCase = logging.get_logger(__name__) lowerCamelCase = """▁""" lowerCamelCase = {"""vocab_file""": """spiece.model""", """tokenizer_file""": """tokenizer.json"""} lowerCamelCase = { """vocab_file""": {"""google/pegasus-xsum""": """https://huggingface.co/google/pegasus-xsum/resolve/main/spiece.model"""}, """tokenizer_file""": { """google/pegasus-xsum""": """https://huggingface.co/google/pegasus-xsum/resolve/main/tokenizer.json""" }, } lowerCamelCase = { """google/pegasus-xsum""": 512, } class lowercase__ ( SCREAMING_SNAKE_CASE ): '''simple docstring''' UpperCamelCase = VOCAB_FILES_NAMES UpperCamelCase = PRETRAINED_VOCAB_FILES_MAP UpperCamelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCamelCase = PegasusTokenizer UpperCamelCase = ['''input_ids''', '''attention_mask'''] def __init__( self : Optional[Any] , _UpperCAmelCase : List[str]=None , _UpperCAmelCase : Tuple=None , _UpperCAmelCase : Any="<pad>" , _UpperCAmelCase : List[str]="</s>" , _UpperCAmelCase : Tuple="<unk>" , _UpperCAmelCase : Optional[Any]="<mask_2>" , _UpperCAmelCase : int="<mask_1>" , _UpperCAmelCase : Dict=None , _UpperCAmelCase : Optional[Any]=103 , **_UpperCAmelCase : Union[str, Any] , ) -> Union[str, Any]: '''simple docstring''' UpperCAmelCase_ = offset if additional_special_tokens is not None: if not isinstance(_UpperCAmelCase , _UpperCAmelCase ): raise TypeError( F"""additional_special_tokens should be of type {type(_UpperCAmelCase )}, but is""" F""" {type(_UpperCAmelCase )}""" ) UpperCAmelCase_ = ( ([mask_token_sent] + additional_special_tokens) if mask_token_sent not in additional_special_tokens and mask_token_sent is not None else additional_special_tokens ) # fill additional tokens with ..., <unk_token_102> in case not all additional tokens are already taken additional_special_tokens_extended += [ F"""<unk_{i}>""" for i in range(len(_UpperCAmelCase ) , self.offset - 1 ) ] if len(set(_UpperCAmelCase ) ) != len(_UpperCAmelCase ): raise ValueError( "Please make sure that the provided additional_special_tokens do not contain an incorrectly" F""" shifted list of <unk_x> tokens. Found {additional_special_tokens_extended}.""" ) UpperCAmelCase_ = additional_special_tokens_extended else: UpperCAmelCase_ = [mask_token_sent] if mask_token_sent is not None else [] additional_special_tokens += [F"""<unk_{i}>""" for i in range(2 , self.offset )] super().__init__( _UpperCAmelCase , tokenizer_file=_UpperCAmelCase , pad_token=_UpperCAmelCase , eos_token=_UpperCAmelCase , unk_token=_UpperCAmelCase , mask_token=_UpperCAmelCase , mask_token_sent=_UpperCAmelCase , offset=_UpperCAmelCase , additional_special_tokens=_UpperCAmelCase , **_UpperCAmelCase , ) UpperCAmelCase_ = vocab_file UpperCAmelCase_ = False if not self.vocab_file else True def lowercase__ ( self : Optional[int] , _UpperCAmelCase : str ) -> Union[str, Any]: '''simple docstring''' UpperCAmelCase_ = set(self.all_special_ids ) # call it once instead of inside list comp all_special_ids.remove(self.unk_token_id ) # <unk> is only sometimes special if all_special_ids != set(range(len(self.additional_special_tokens ) + 3 ) ): raise ValueError( "There should be 3 special tokens: mask_token, pad_token, and eos_token +" F""" {len(self.additional_special_tokens )} additional_special_tokens, but got {all_special_ids}""" ) return [1 if x in all_special_ids else 0 for x in seq] def lowercase__ ( self : List[Any] , _UpperCAmelCase : List , _UpperCAmelCase : Optional[List] = None , _UpperCAmelCase : bool = False ) -> List[int]: '''simple docstring''' if already_has_special_tokens: return self._special_token_mask(_UpperCAmelCase ) elif token_ids_a is None: return self._special_token_mask(_UpperCAmelCase ) + [1] else: return self._special_token_mask(token_ids_a + token_ids_a ) + [1] def lowercase__ ( self : Tuple , _UpperCAmelCase : Dict , _UpperCAmelCase : List[str]=None ) -> List[int]: '''simple docstring''' if token_ids_a is None: return token_ids_a + [self.eos_token_id] # We don't expect to process pairs, but leave the pair logic for API consistency return token_ids_a + token_ids_a + [self.eos_token_id] def lowercase__ ( self : Any , _UpperCAmelCase : str , _UpperCAmelCase : Optional[str] = None ) -> Tuple[str]: '''simple docstring''' if not self.can_save_slow_tokenizer: raise ValueError( "Your fast tokenizer does not have the necessary information to save the vocabulary for a slow " "tokenizer." ) if not os.path.isdir(_UpperCAmelCase ): logger.error(F"""Vocabulary path ({save_directory}) should be a directory""" ) return UpperCAmelCase_ = os.path.join( _UpperCAmelCase , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(_UpperCAmelCase ): copyfile(self.vocab_file , _UpperCAmelCase ) return (out_vocab_file,)
82
from ..utils import DummyObject, requires_backends class __UpperCamelCase ( metaclass=A__ ): __A : str = ["""torch""", """scipy"""] def __init__( self , *_UpperCamelCase , **_UpperCamelCase ): requires_backends(self , ['''torch''', '''scipy'''] ) @classmethod def UpperCamelCase( cls , *_UpperCamelCase , **_UpperCamelCase ): requires_backends(cls , ['''torch''', '''scipy'''] ) @classmethod def UpperCamelCase( cls , *_UpperCamelCase , **_UpperCamelCase ): requires_backends(cls , ['''torch''', '''scipy'''] )
32
0
"""simple docstring""" import argparse import json from collections import OrderedDict from functools import partial from pathlib import Path import timm import torch from huggingface_hub import hf_hub_download from transformers import LevitConfig, LevitForImageClassificationWithTeacher, LevitImageProcessor from transformers.utils import logging logging.set_verbosity_info() lowerCAmelCase__ = logging.get_logger() def snake_case_ ( A_ : int, A_ : str, A_ : LevitConfig, A_ : Path, A_ : bool = True ): '''simple docstring''' print(F'''Converting {name}...''' ) with torch.no_grad(): if hidden_sizes == 1_28: if name[-1] == "S": _lowerCamelCase : int = timm.create_model('''levit_128s''', pretrained=A_ ) else: _lowerCamelCase : Tuple = timm.create_model('''levit_128''', pretrained=A_ ) if hidden_sizes == 1_92: _lowerCamelCase : List[str] = timm.create_model('''levit_192''', pretrained=A_ ) if hidden_sizes == 2_56: _lowerCamelCase : Union[str, Any] = timm.create_model('''levit_256''', pretrained=A_ ) if hidden_sizes == 3_84: _lowerCamelCase : Union[str, Any] = timm.create_model('''levit_384''', pretrained=A_ ) from_model.eval() _lowerCamelCase : Any = LevitForImageClassificationWithTeacher(A_ ).eval() _lowerCamelCase : int = OrderedDict() _lowerCamelCase : Any = from_model.state_dict() _lowerCamelCase : List[str] = list(from_model.state_dict().keys() ) _lowerCamelCase : List[str] = list(our_model.state_dict().keys() ) print(len(A_ ), len(A_ ) ) for i in range(len(A_ ) ): _lowerCamelCase : Union[str, Any] = weights[og_keys[i]] our_model.load_state_dict(A_ ) _lowerCamelCase : Optional[int] = torch.randn((2, 3, 2_24, 2_24) ) _lowerCamelCase : Union[str, Any] = from_model(A_ ) _lowerCamelCase : Optional[Any] = our_model(A_ ).logits assert torch.allclose(A_, A_ ), "The model logits don't match the original one." _lowerCamelCase : int = name print(A_ ) if push_to_hub: our_model.save_pretrained(save_directory / checkpoint_name ) _lowerCamelCase : int = LevitImageProcessor() image_processor.save_pretrained(save_directory / checkpoint_name ) print(F'''Pushed {checkpoint_name}''' ) def snake_case_ ( A_ : Path, A_ : str = None, A_ : bool = True ): '''simple docstring''' _lowerCamelCase : Dict = '''imagenet-1k-id2label.json''' _lowerCamelCase : Dict = 10_00 _lowerCamelCase : Union[str, Any] = (1, num_labels) _lowerCamelCase : Tuple = '''huggingface/label-files''' _lowerCamelCase : Any = num_labels _lowerCamelCase : List[Any] = json.load(open(hf_hub_download(A_, A_, repo_type='''dataset''' ), '''r''' ) ) _lowerCamelCase : List[str] = {int(A_ ): v for k, v in idalabel.items()} _lowerCamelCase : Optional[Any] = idalabel _lowerCamelCase : Tuple = {v: k for k, v in idalabel.items()} _lowerCamelCase : int = partial(A_, num_labels=A_, idalabel=A_, labelaid=A_ ) _lowerCamelCase : Optional[int] = { '''levit-128S''': 1_28, '''levit-128''': 1_28, '''levit-192''': 1_92, '''levit-256''': 2_56, '''levit-384''': 3_84, } _lowerCamelCase : Any = { '''levit-128S''': ImageNetPreTrainedConfig( hidden_sizes=[1_28, 2_56, 3_84], num_attention_heads=[4, 6, 8], depths=[2, 3, 4], key_dim=[16, 16, 16], drop_path_rate=0, ), '''levit-128''': ImageNetPreTrainedConfig( hidden_sizes=[1_28, 2_56, 3_84], num_attention_heads=[4, 8, 12], depths=[4, 4, 4], key_dim=[16, 16, 16], drop_path_rate=0, ), '''levit-192''': ImageNetPreTrainedConfig( hidden_sizes=[1_92, 2_88, 3_84], num_attention_heads=[3, 5, 6], depths=[4, 4, 4], key_dim=[32, 32, 32], drop_path_rate=0, ), '''levit-256''': ImageNetPreTrainedConfig( hidden_sizes=[2_56, 3_84, 5_12], num_attention_heads=[4, 6, 8], depths=[4, 4, 4], key_dim=[32, 32, 32], drop_path_rate=0, ), '''levit-384''': ImageNetPreTrainedConfig( hidden_sizes=[3_84, 5_12, 7_68], num_attention_heads=[6, 9, 12], depths=[4, 4, 4], key_dim=[32, 32, 32], drop_path_rate=0.1, ), } if model_name: convert_weight_and_push( names_to_hidden_sizes[model_name], A_, names_to_config[model_name], A_, A_ ) else: for model_name, config in names_to_config.items(): convert_weight_and_push(names_to_hidden_sizes[model_name], A_, A_, A_, A_ ) return config, expected_shape if __name__ == "__main__": lowerCAmelCase__ = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--model_name''', default=None, type=str, help='''The name of the model you wish to convert, it must be one of the supported Levit* architecture,''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default='''levit-dump-folder/''', type=Path, required=False, help='''Path to the output PyTorch model directory.''', ) parser.add_argument('''--push_to_hub''', action='''store_true''', help='''Push model and image processor to the hub''') parser.add_argument( '''--no-push_to_hub''', dest='''push_to_hub''', action='''store_false''', help='''Do not push model and image processor to the hub''', ) lowerCAmelCase__ = parser.parse_args() lowerCAmelCase__ = args.pytorch_dump_folder_path pytorch_dump_folder_path.mkdir(exist_ok=True, parents=True) convert_weights_and_push(pytorch_dump_folder_path, args.model_name, args.push_to_hub)
83
def A__ ( SCREAMING_SNAKE_CASE_ : int = 2_00_00_00 ) -> int: """simple docstring""" _UpperCAmelCase = [0 for i in range(n + 1 )] _UpperCAmelCase = 1 _UpperCAmelCase = 1 for i in range(2 , int(n**0.5 ) + 1 ): if primality_list[i] == 0: for j in range(i * i , n + 1 , SCREAMING_SNAKE_CASE_ ): _UpperCAmelCase = 1 _UpperCAmelCase = 0 for i in range(SCREAMING_SNAKE_CASE_ ): if primality_list[i] == 0: sum_of_primes += i return sum_of_primes if __name__ == "__main__": print(f'''{solution() = }''')
32
0
import warnings from typing import Dict, List, Optional, Tuple from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging UpperCAmelCase = logging.get_logger(__name__) class A_ ( __lowerCamelCase ): '''simple docstring''' _UpperCamelCase : List[Any] = ["""input_ids""", """attention_mask"""] def __init__( self , snake_case="</s>" , snake_case="<unk>" , snake_case="<pad>" , snake_case=125 , snake_case=None , **snake_case , ): # Add extra_ids to the special token list if extra_ids > 0 and additional_special_tokens is None: lowercase = [F'''<extra_id_{i}>''' for i in range(snake_case )] elif extra_ids > 0 and additional_special_tokens is not None: # Check that we have the right number of extra_id special tokens lowercase = len(set(filter(lambda snake_case : bool('extra_id' in str(snake_case ) ) , snake_case ) ) ) if extra_tokens != extra_ids: raise ValueError( F'''Both extra_ids ({extra_ids}) and additional_special_tokens ({additional_special_tokens}) are''' ' provided to ByT5Tokenizer. In this case the additional_special_tokens must include the' ' extra_ids tokens' ) lowercase = AddedToken(snake_case , lstrip=snake_case , rstrip=snake_case ) if isinstance(snake_case , snake_case ) else pad_token lowercase = AddedToken(snake_case , lstrip=snake_case , rstrip=snake_case ) if isinstance(snake_case , snake_case ) else eos_token lowercase = AddedToken(snake_case , lstrip=snake_case , rstrip=snake_case ) if isinstance(snake_case , snake_case ) else unk_token super().__init__( eos_token=snake_case , unk_token=snake_case , pad_token=snake_case , extra_ids=snake_case , additional_special_tokens=snake_case , **snake_case , ) lowercase = extra_ids lowercase = 2**8 # utf is 8 bits # define special tokens dict lowercase = { self.pad_token: 0, self.eos_token: 1, self.unk_token: 2, } lowercase = len(self.special_tokens_encoder ) lowercase = len(snake_case ) for i, token in enumerate(snake_case ): lowercase = self.vocab_size + i - n lowercase = {v: k for k, v in self.special_tokens_encoder.items()} @property def SCREAMING_SNAKE_CASE__ ( self ): return self._utf_vocab_size + self._num_special_tokens + self._extra_ids def SCREAMING_SNAKE_CASE__ ( self , snake_case , snake_case = None , snake_case = False ): if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=snake_case , token_ids_a=snake_case , already_has_special_tokens=snake_case ) # normal case: some special tokens if token_ids_a is None: return ([0] * len(snake_case )) + [1] return ([0] * len(snake_case )) + [1] + ([0] * len(snake_case )) + [1] def SCREAMING_SNAKE_CASE__ ( self , snake_case ): if len(snake_case ) > 0 and token_ids[-1] == self.eos_token_id: warnings.warn( F'''This sequence already has {self.eos_token}. In future versions this behavior may lead to duplicated''' ' eos tokens being added.' ) return token_ids else: return token_ids + [self.eos_token_id] def SCREAMING_SNAKE_CASE__ ( self , snake_case , snake_case = None ): lowercase = [self.eos_token_id] if token_ids_a is None: return len(token_ids_a + eos ) * [0] return len(token_ids_a + eos + token_ids_a + eos ) * [0] def SCREAMING_SNAKE_CASE__ ( self , snake_case , snake_case = None ): lowercase = self._add_eos_if_not_present(snake_case ) if token_ids_a is None: return token_ids_a else: lowercase = self._add_eos_if_not_present(snake_case ) return token_ids_a + token_ids_a def SCREAMING_SNAKE_CASE__ ( self , snake_case ): lowercase = [chr(snake_case ) for i in text.encode('utf-8' )] return tokens def SCREAMING_SNAKE_CASE__ ( self , snake_case ): if token in self.special_tokens_encoder: lowercase = self.special_tokens_encoder[token] elif token in self.added_tokens_encoder: lowercase = self.added_tokens_encoder[token] elif len(snake_case ) != 1: lowercase = self.unk_token_id else: lowercase = ord(snake_case ) + self._num_special_tokens return token_id def SCREAMING_SNAKE_CASE__ ( self , snake_case ): if index in self.special_tokens_decoder: lowercase = self.special_tokens_decoder[index] else: lowercase = chr(index - self._num_special_tokens ) return token def SCREAMING_SNAKE_CASE__ ( self , snake_case ): lowercase = B'' for token in tokens: if token in self.special_tokens_decoder: lowercase = self.special_tokens_decoder[token].encode('utf-8' ) elif token in self.added_tokens_decoder: lowercase = self.special_tokens_decoder[token].encode('utf-8' ) elif token in self.special_tokens_encoder: lowercase = token.encode('utf-8' ) elif token in self.added_tokens_encoder: lowercase = token.encode('utf-8' ) else: lowercase = bytes([ord(snake_case )] ) bstring += tok_string lowercase = bstring.decode('utf-8' , errors='ignore' ) return string def SCREAMING_SNAKE_CASE__ ( self , snake_case , snake_case = None ): return ()
84
import warnings from ...utils import logging from .image_processing_glpn import GLPNImageProcessor UpperCAmelCase_ = logging.get_logger(__name__) class __UpperCamelCase ( A__ ): def __init__( self , *_UpperCamelCase , **_UpperCamelCase ): warnings.warn( '''The class GLPNFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please''' ''' use GLPNImageProcessor instead.''' , _UpperCamelCase , ) super().__init__(*_UpperCamelCase , **_UpperCamelCase )
32
0
import json import unittest import numpy as np from huggingface_hub import hf_hub_download from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from transformers import OneFormerImageProcessor from transformers.models.oneformer.image_processing_oneformer import binary_mask_to_rle from transformers.models.oneformer.modeling_oneformer import OneFormerForUniversalSegmentationOutput if is_vision_available(): from PIL import Image def _a ( lowercase__ : Any , lowercase__ : Any="shi-labs/oneformer_demo" ): '''simple docstring''' with open(hf_hub_download(lowercase__ , lowercase__ , repo_type='dataset' ) , 'r' ) as f: SCREAMING_SNAKE_CASE__ : List[str] = json.load(lowercase__ ) SCREAMING_SNAKE_CASE__ : int = {} SCREAMING_SNAKE_CASE__ : List[Any] = [] SCREAMING_SNAKE_CASE__ : Any = [] for key, info in class_info.items(): SCREAMING_SNAKE_CASE__ : str = info['name'] class_names.append(info['name'] ) if info["isthing"]: thing_ids.append(int(lowercase__ ) ) SCREAMING_SNAKE_CASE__ : Dict = thing_ids SCREAMING_SNAKE_CASE__ : int = class_names return metadata class snake_case ( unittest.TestCase ): def __init__( self : int , a_ : Optional[int] , a_ : Any=7 , a_ : Optional[Any]=3 , a_ : Optional[int]=30 , a_ : List[str]=400 , a_ : Optional[Any]=None , a_ : List[str]=True , a_ : Union[str, Any]=True , a_ : Tuple=[0.5, 0.5, 0.5] , a_ : str=[0.5, 0.5, 0.5] , a_ : List[Any]=10 , a_ : Any=False , a_ : str=255 , a_ : List[str]="shi-labs/oneformer_demo" , a_ : Optional[int]="ade20k_panoptic.json" , a_ : Dict=10 , )-> Tuple: """simple docstring""" SCREAMING_SNAKE_CASE__ : Union[str, Any] = parent SCREAMING_SNAKE_CASE__ : Optional[Any] = batch_size SCREAMING_SNAKE_CASE__ : Union[str, Any] = num_channels SCREAMING_SNAKE_CASE__ : str = min_resolution SCREAMING_SNAKE_CASE__ : int = max_resolution SCREAMING_SNAKE_CASE__ : Optional[Any] = do_resize SCREAMING_SNAKE_CASE__ : Tuple = {'shortest_edge': 32, 'longest_edge': 1333} if size is None else size SCREAMING_SNAKE_CASE__ : Any = do_normalize SCREAMING_SNAKE_CASE__ : List[Any] = image_mean SCREAMING_SNAKE_CASE__ : List[Any] = image_std SCREAMING_SNAKE_CASE__ : int = class_info_file SCREAMING_SNAKE_CASE__ : Any = prepare_metadata(a_ , a_ ) SCREAMING_SNAKE_CASE__ : Tuple = num_text SCREAMING_SNAKE_CASE__ : str = repo_path # for the post_process_functions SCREAMING_SNAKE_CASE__ : List[Any] = 2 SCREAMING_SNAKE_CASE__ : Tuple = 10 SCREAMING_SNAKE_CASE__ : Optional[int] = 10 SCREAMING_SNAKE_CASE__ : Optional[Any] = 3 SCREAMING_SNAKE_CASE__ : Tuple = 4 SCREAMING_SNAKE_CASE__ : str = num_labels SCREAMING_SNAKE_CASE__ : List[Any] = do_reduce_labels SCREAMING_SNAKE_CASE__ : Tuple = ignore_index def __lowercase( self : Dict )-> Dict: """simple docstring""" return { "do_resize": self.do_resize, "size": self.size, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, "num_labels": self.num_labels, "do_reduce_labels": self.do_reduce_labels, "ignore_index": self.ignore_index, "class_info_file": self.class_info_file, "metadata": self.metadata, "num_text": self.num_text, } def __lowercase( self : Optional[int] , a_ : Optional[int] , a_ : Dict=False )-> str: """simple docstring""" if not batched: SCREAMING_SNAKE_CASE__ : List[str] = image_inputs[0] if isinstance(a_ , Image.Image ): SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : Tuple = image.size else: SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : Any = image.shape[1], image.shape[2] if w < h: SCREAMING_SNAKE_CASE__ : Tuple = int(self.size['shortest_edge'] * h / w ) SCREAMING_SNAKE_CASE__ : str = self.size['shortest_edge'] elif w > h: SCREAMING_SNAKE_CASE__ : Any = self.size['shortest_edge'] SCREAMING_SNAKE_CASE__ : Dict = int(self.size['shortest_edge'] * w / h ) else: SCREAMING_SNAKE_CASE__ : str = self.size['shortest_edge'] SCREAMING_SNAKE_CASE__ : str = self.size['shortest_edge'] else: SCREAMING_SNAKE_CASE__ : int = [] for image in image_inputs: SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : str = self.get_expected_values([image] ) expected_values.append((expected_height, expected_width) ) SCREAMING_SNAKE_CASE__ : Union[str, Any] = max(a_ , key=lambda a_ : item[0] )[0] SCREAMING_SNAKE_CASE__ : Tuple = max(a_ , key=lambda a_ : item[1] )[1] return expected_height, expected_width def __lowercase( self : Union[str, Any] )-> int: """simple docstring""" return OneFormerForUniversalSegmentationOutput( # +1 for null class class_queries_logits=torch.randn((self.batch_size, self.num_queries, self.num_classes + 1) ) , masks_queries_logits=torch.randn((self.batch_size, self.num_queries, self.height, self.width) ) , ) @require_torch @require_vision class snake_case ( UpperCamelCase_ , unittest.TestCase ): lowercase_ = OneFormerImageProcessor if (is_vision_available() and is_torch_available()) else None # only for test_image_processing_common.test_image_proc_to_json_string lowercase_ = image_processing_class def __lowercase( self : Optional[Any] )-> List[str]: """simple docstring""" SCREAMING_SNAKE_CASE__ : Any = OneFormerImageProcessorTester(self ) @property def __lowercase( self : Tuple )-> Optional[Any]: """simple docstring""" return self.image_processing_tester.prepare_image_processor_dict() def __lowercase( self : Optional[Any] )-> Any: """simple docstring""" SCREAMING_SNAKE_CASE__ : Union[str, Any] = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(a_ , 'image_mean' ) ) self.assertTrue(hasattr(a_ , 'image_std' ) ) self.assertTrue(hasattr(a_ , 'do_normalize' ) ) self.assertTrue(hasattr(a_ , 'do_resize' ) ) self.assertTrue(hasattr(a_ , 'size' ) ) self.assertTrue(hasattr(a_ , 'ignore_index' ) ) self.assertTrue(hasattr(a_ , 'class_info_file' ) ) self.assertTrue(hasattr(a_ , 'num_text' ) ) self.assertTrue(hasattr(a_ , 'repo_path' ) ) self.assertTrue(hasattr(a_ , 'metadata' ) ) self.assertTrue(hasattr(a_ , 'do_reduce_labels' ) ) def __lowercase( self : Dict )-> List[Any]: """simple docstring""" pass def __lowercase( self : str )-> Tuple: """simple docstring""" # Initialize image_processor SCREAMING_SNAKE_CASE__ : Optional[Any] = self.image_processing_class(**self.image_processor_dict ) # create random PIL images SCREAMING_SNAKE_CASE__ : str = prepare_image_inputs(self.image_processing_tester , equal_resolution=a_ ) for image in image_inputs: self.assertIsInstance(a_ , Image.Image ) # Test not batched input SCREAMING_SNAKE_CASE__ : Dict = image_processor(image_inputs[0] , ['semantic'] , return_tensors='pt' ).pixel_values SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : Any = self.image_processing_tester.get_expected_values(a_ ) self.assertEqual( encoded_images.shape , (1, self.image_processing_tester.num_channels, expected_height, expected_width) , ) # Test batched SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : str = self.image_processing_tester.get_expected_values(a_ , batched=a_ ) SCREAMING_SNAKE_CASE__ : Union[str, Any] = image_processor( a_ , ['semantic'] * len(a_ ) , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processing_tester.batch_size, self.image_processing_tester.num_channels, expected_height, expected_width, ) , ) def __lowercase( self : int )-> Union[str, Any]: """simple docstring""" # Initialize image_processor SCREAMING_SNAKE_CASE__ : Dict = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors SCREAMING_SNAKE_CASE__ : List[str] = prepare_image_inputs(self.image_processing_tester , equal_resolution=a_ , numpify=a_ ) for image in image_inputs: self.assertIsInstance(a_ , np.ndarray ) # Test not batched input SCREAMING_SNAKE_CASE__ : List[Any] = image_processor(image_inputs[0] , ['semantic'] , return_tensors='pt' ).pixel_values SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : Dict = self.image_processing_tester.get_expected_values(a_ ) self.assertEqual( encoded_images.shape , (1, self.image_processing_tester.num_channels, expected_height, expected_width) , ) # Test batched SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : List[Any] = self.image_processing_tester.get_expected_values(a_ , batched=a_ ) SCREAMING_SNAKE_CASE__ : Optional[Any] = image_processor( a_ , ['semantic'] * len(a_ ) , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processing_tester.batch_size, self.image_processing_tester.num_channels, expected_height, expected_width, ) , ) def __lowercase( self : Union[str, Any] )-> Optional[Any]: """simple docstring""" # Initialize image_processor SCREAMING_SNAKE_CASE__ : Optional[int] = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors SCREAMING_SNAKE_CASE__ : str = prepare_image_inputs(self.image_processing_tester , equal_resolution=a_ , torchify=a_ ) for image in image_inputs: self.assertIsInstance(a_ , torch.Tensor ) # Test not batched input SCREAMING_SNAKE_CASE__ : Optional[int] = image_processor(image_inputs[0] , ['semantic'] , return_tensors='pt' ).pixel_values SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : Tuple = self.image_processing_tester.get_expected_values(a_ ) self.assertEqual( encoded_images.shape , (1, self.image_processing_tester.num_channels, expected_height, expected_width) , ) # Test batched SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : int = self.image_processing_tester.get_expected_values(a_ , batched=a_ ) SCREAMING_SNAKE_CASE__ : List[str] = image_processor( a_ , ['semantic'] * len(a_ ) , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processing_tester.batch_size, self.image_processing_tester.num_channels, expected_height, expected_width, ) , ) def __lowercase( self : str , a_ : Optional[int]=False , a_ : Optional[Any]=False , a_ : str="np" )-> Dict: """simple docstring""" SCREAMING_SNAKE_CASE__ : Dict = self.image_processing_class(**self.image_processor_dict ) # prepare image and target SCREAMING_SNAKE_CASE__ : List[Any] = self.image_processing_tester.num_labels SCREAMING_SNAKE_CASE__ : Any = None SCREAMING_SNAKE_CASE__ : str = None SCREAMING_SNAKE_CASE__ : Optional[int] = prepare_image_inputs(self.image_processing_tester , equal_resolution=a_ ) if with_segmentation_maps: SCREAMING_SNAKE_CASE__ : Optional[int] = num_labels if is_instance_map: SCREAMING_SNAKE_CASE__ : Dict = list(range(a_ ) ) * 2 SCREAMING_SNAKE_CASE__ : Optional[Any] = dict(enumerate(a_ ) ) SCREAMING_SNAKE_CASE__ : List[str] = [ np.random.randint(0 , high * 2 , (img.size[1], img.size[0]) ).astype(np.uinta ) for img in image_inputs ] if segmentation_type == "pil": SCREAMING_SNAKE_CASE__ : Optional[Any] = [Image.fromarray(a_ ) for annotation in annotations] SCREAMING_SNAKE_CASE__ : Dict = image_processor( a_ , ['semantic'] * len(a_ ) , a_ , return_tensors='pt' , instance_id_to_semantic_id=a_ , pad_and_return_pixel_mask=a_ , ) return inputs def __lowercase( self : Any )-> List[str]: """simple docstring""" pass def __lowercase( self : Optional[int] )-> Optional[int]: """simple docstring""" def common(a_ : Optional[Any]=False , a_ : Tuple=None ): SCREAMING_SNAKE_CASE__ : int = self.comm_get_image_processor_inputs( with_segmentation_maps=a_ , is_instance_map=a_ , segmentation_type=a_ ) SCREAMING_SNAKE_CASE__ : Tuple = inputs['mask_labels'] SCREAMING_SNAKE_CASE__ : List[Any] = inputs['class_labels'] SCREAMING_SNAKE_CASE__ : Optional[int] = inputs['pixel_values'] SCREAMING_SNAKE_CASE__ : List[str] = inputs['text_inputs'] # check the batch_size for mask_label, class_label, text_input in zip(a_ , a_ , a_ ): self.assertEqual(mask_label.shape[0] , class_label.shape[0] ) # this ensure padding has happened self.assertEqual(mask_label.shape[1:] , pixel_values.shape[2:] ) self.assertEqual(len(a_ ) , self.image_processing_tester.num_text ) common() common(is_instance_map=a_ ) common(is_instance_map=a_ , segmentation_type='pil' ) common(is_instance_map=a_ , segmentation_type='pil' ) def __lowercase( self : Union[str, Any] )-> List[str]: """simple docstring""" SCREAMING_SNAKE_CASE__ : Optional[int] = np.zeros((20, 50) ) SCREAMING_SNAKE_CASE__ : List[Any] = 1 SCREAMING_SNAKE_CASE__ : Union[str, Any] = 1 SCREAMING_SNAKE_CASE__ : Optional[Any] = 1 SCREAMING_SNAKE_CASE__ : int = binary_mask_to_rle(a_ ) self.assertEqual(len(a_ ) , 4 ) self.assertEqual(rle[0] , 21 ) self.assertEqual(rle[1] , 45 ) def __lowercase( self : Optional[Any] )-> Any: """simple docstring""" SCREAMING_SNAKE_CASE__ : List[str] = self.image_processing_class( num_labels=self.image_processing_tester.num_classes , max_seq_length=77 , task_seq_length=77 , class_info_file='ade20k_panoptic.json' , num_text=self.image_processing_tester.num_text , repo_path='shi-labs/oneformer_demo' , ) SCREAMING_SNAKE_CASE__ : Optional[int] = self.image_processing_tester.get_fake_oneformer_outputs() SCREAMING_SNAKE_CASE__ : int = fature_extractor.post_process_semantic_segmentation(a_ ) self.assertEqual(len(a_ ) , self.image_processing_tester.batch_size ) self.assertEqual( segmentation[0].shape , ( self.image_processing_tester.height, self.image_processing_tester.width, ) , ) SCREAMING_SNAKE_CASE__ : Union[str, Any] = [(1, 4) for i in range(self.image_processing_tester.batch_size )] SCREAMING_SNAKE_CASE__ : List[str] = fature_extractor.post_process_semantic_segmentation(a_ , target_sizes=a_ ) self.assertEqual(segmentation[0].shape , target_sizes[0] ) def __lowercase( self : Optional[int] )-> str: """simple docstring""" SCREAMING_SNAKE_CASE__ : Any = self.image_processing_class( num_labels=self.image_processing_tester.num_classes , max_seq_length=77 , task_seq_length=77 , class_info_file='ade20k_panoptic.json' , num_text=self.image_processing_tester.num_text , repo_path='shi-labs/oneformer_demo' , ) SCREAMING_SNAKE_CASE__ : List[Any] = self.image_processing_tester.get_fake_oneformer_outputs() SCREAMING_SNAKE_CASE__ : Optional[Any] = image_processor.post_process_instance_segmentation(a_ , threshold=0 ) self.assertTrue(len(a_ ) == self.image_processing_tester.batch_size ) for el in segmentation: self.assertTrue('segmentation' in el ) self.assertTrue('segments_info' in el ) self.assertEqual(type(el['segments_info'] ) , a_ ) self.assertEqual( el['segmentation'].shape , (self.image_processing_tester.height, self.image_processing_tester.width) ) def __lowercase( self : Union[str, Any] )-> Any: """simple docstring""" SCREAMING_SNAKE_CASE__ : str = self.image_processing_class( num_labels=self.image_processing_tester.num_classes , max_seq_length=77 , task_seq_length=77 , class_info_file='ade20k_panoptic.json' , num_text=self.image_processing_tester.num_text , repo_path='shi-labs/oneformer_demo' , ) SCREAMING_SNAKE_CASE__ : Optional[Any] = self.image_processing_tester.get_fake_oneformer_outputs() SCREAMING_SNAKE_CASE__ : Union[str, Any] = image_processor.post_process_panoptic_segmentation(a_ , threshold=0 ) self.assertTrue(len(a_ ) == self.image_processing_tester.batch_size ) for el in segmentation: self.assertTrue('segmentation' in el ) self.assertTrue('segments_info' in el ) self.assertEqual(type(el['segments_info'] ) , a_ ) self.assertEqual( el['segmentation'].shape , (self.image_processing_tester.height, self.image_processing_tester.width) )
85
from typing import List, Optional, Union from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType class __UpperCamelCase ( A__ ): __A : Dict = ["""image_processor""", """tokenizer"""] __A : List[str] = """BridgeTowerImageProcessor""" __A : str = ("""RobertaTokenizer""", """RobertaTokenizerFast""") def __init__( self , _UpperCamelCase , _UpperCamelCase ): super().__init__(_UpperCamelCase , _UpperCamelCase ) def __call__( self , _UpperCamelCase , _UpperCamelCase = None , _UpperCamelCase = True , _UpperCamelCase = False , _UpperCamelCase = None , _UpperCamelCase = None , _UpperCamelCase = 0 , _UpperCamelCase = None , _UpperCamelCase = None , _UpperCamelCase = None , _UpperCamelCase = False , _UpperCamelCase = False , _UpperCamelCase = False , _UpperCamelCase = False , _UpperCamelCase = True , _UpperCamelCase = None , **_UpperCamelCase , ): _UpperCAmelCase = self.tokenizer( text=_UpperCamelCase , add_special_tokens=_UpperCamelCase , padding=_UpperCamelCase , truncation=_UpperCamelCase , max_length=_UpperCamelCase , stride=_UpperCamelCase , pad_to_multiple_of=_UpperCamelCase , return_token_type_ids=_UpperCamelCase , return_attention_mask=_UpperCamelCase , return_overflowing_tokens=_UpperCamelCase , return_special_tokens_mask=_UpperCamelCase , return_offsets_mapping=_UpperCamelCase , return_length=_UpperCamelCase , verbose=_UpperCamelCase , return_tensors=_UpperCamelCase , **_UpperCamelCase , ) # add pixel_values + pixel_mask _UpperCAmelCase = self.image_processor( _UpperCamelCase , return_tensors=_UpperCamelCase , do_normalize=_UpperCamelCase , do_center_crop=_UpperCamelCase , **_UpperCamelCase ) encoding.update(_UpperCamelCase ) return encoding def UpperCamelCase( self , *_UpperCamelCase , **_UpperCamelCase ): return self.tokenizer.batch_decode(*_UpperCamelCase , **_UpperCamelCase ) def UpperCamelCase( self , *_UpperCamelCase , **_UpperCamelCase ): return self.tokenizer.decode(*_UpperCamelCase , **_UpperCamelCase ) @property def UpperCamelCase( self ): _UpperCAmelCase = self.tokenizer.model_input_names _UpperCAmelCase = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) )
32
0
from __future__ import annotations def __snake_case ( __UpperCamelCase : str ): """simple docstring""" return [ord(__UpperCamelCase ) - 96 for elem in plain] def __snake_case ( __UpperCamelCase : list[int] ): """simple docstring""" return "".join(chr(elem + 96 ) for elem in encoded ) def __snake_case ( ): """simple docstring""" A_ = encode(input("-> " ).strip().lower() ) print("Encoded: " ,__UpperCamelCase ) print("Decoded:" ,decode(__UpperCamelCase ) ) if __name__ == "__main__": main()
86
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available UpperCAmelCase_ = { "configuration_xlm": ["XLM_PRETRAINED_CONFIG_ARCHIVE_MAP", "XLMConfig", "XLMOnnxConfig"], "tokenization_xlm": ["XLMTokenizer"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase_ = [ "XLM_PRETRAINED_MODEL_ARCHIVE_LIST", "XLMForMultipleChoice", "XLMForQuestionAnswering", "XLMForQuestionAnsweringSimple", "XLMForSequenceClassification", "XLMForTokenClassification", "XLMModel", "XLMPreTrainedModel", "XLMWithLMHeadModel", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase_ = [ "TF_XLM_PRETRAINED_MODEL_ARCHIVE_LIST", "TFXLMForMultipleChoice", "TFXLMForQuestionAnsweringSimple", "TFXLMForSequenceClassification", "TFXLMForTokenClassification", "TFXLMMainLayer", "TFXLMModel", "TFXLMPreTrainedModel", "TFXLMWithLMHeadModel", ] if TYPE_CHECKING: from .configuration_xlm import XLM_PRETRAINED_CONFIG_ARCHIVE_MAP, XLMConfig, XLMOnnxConfig from .tokenization_xlm import XLMTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_xlm import ( XLM_PRETRAINED_MODEL_ARCHIVE_LIST, XLMForMultipleChoice, XLMForQuestionAnswering, XLMForQuestionAnsweringSimple, XLMForSequenceClassification, XLMForTokenClassification, XLMModel, XLMPreTrainedModel, XLMWithLMHeadModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_xlm import ( TF_XLM_PRETRAINED_MODEL_ARCHIVE_LIST, TFXLMForMultipleChoice, TFXLMForQuestionAnsweringSimple, TFXLMForSequenceClassification, TFXLMForTokenClassification, TFXLMMainLayer, TFXLMModel, TFXLMPreTrainedModel, TFXLMWithLMHeadModel, ) else: import sys UpperCAmelCase_ = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
32
0
import math from collections.abc import Iterator from itertools import takewhile def SCREAMING_SNAKE_CASE ( lowercase_ ) -> bool: """simple docstring""" if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5 , int(math.sqrt(lowercase_ ) + 1 ) , 6 ): if number % i == 0 or number % (i + 2) == 0: return False return True def SCREAMING_SNAKE_CASE ( ) -> Iterator[int]: """simple docstring""" A__ = 2 while True: if is_prime(lowercase_ ): yield num num += 1 def SCREAMING_SNAKE_CASE ( lowercase_ = 2_000_000 ) -> int: """simple docstring""" return sum(takewhile(lambda lowercase_ : x < n , prime_generator() ) ) if __name__ == "__main__": print(F'''{solution() = }''')
87
from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCAmelCase_ = logging.get_logger(__name__) UpperCAmelCase_ = { "microsoft/biogpt": "https://huggingface.co/microsoft/biogpt/resolve/main/config.json", # See all BioGPT models at https://huggingface.co/models?filter=biogpt } class __UpperCamelCase ( A__ ): __A : Any = """biogpt""" def __init__( self , _UpperCamelCase=42384 , _UpperCamelCase=1024 , _UpperCamelCase=24 , _UpperCamelCase=16 , _UpperCamelCase=4096 , _UpperCamelCase="gelu" , _UpperCamelCase=0.1 , _UpperCamelCase=0.1 , _UpperCamelCase=1024 , _UpperCamelCase=0.02 , _UpperCamelCase=1e-12 , _UpperCamelCase=True , _UpperCamelCase=True , _UpperCamelCase=0.0 , _UpperCamelCase=0.0 , _UpperCamelCase=1 , _UpperCamelCase=0 , _UpperCamelCase=2 , **_UpperCamelCase , ): _UpperCAmelCase = vocab_size _UpperCAmelCase = max_position_embeddings _UpperCAmelCase = hidden_size _UpperCAmelCase = num_hidden_layers _UpperCAmelCase = num_attention_heads _UpperCAmelCase = intermediate_size _UpperCAmelCase = hidden_act _UpperCAmelCase = hidden_dropout_prob _UpperCAmelCase = attention_probs_dropout_prob _UpperCAmelCase = initializer_range _UpperCAmelCase = layer_norm_eps _UpperCAmelCase = scale_embedding _UpperCAmelCase = use_cache _UpperCAmelCase = layerdrop _UpperCAmelCase = activation_dropout super().__init__(pad_token_id=_UpperCamelCase , bos_token_id=_UpperCamelCase , eos_token_id=_UpperCamelCase , **_UpperCamelCase )
32
0
"""simple docstring""" import unittest from transformers import AutoTokenizer, NystromformerConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( NystromformerForMaskedLM, NystromformerForMultipleChoice, NystromformerForQuestionAnswering, NystromformerForSequenceClassification, NystromformerForTokenClassification, NystromformerModel, ) from transformers.models.nystromformer.modeling_nystromformer import NYSTROMFORMER_PRETRAINED_MODEL_ARCHIVE_LIST class lowercase__ : def __init__( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE=13 , SCREAMING_SNAKE_CASE=7 , SCREAMING_SNAKE_CASE=True , SCREAMING_SNAKE_CASE=True , SCREAMING_SNAKE_CASE=True , SCREAMING_SNAKE_CASE=True , SCREAMING_SNAKE_CASE=99 , SCREAMING_SNAKE_CASE=32 , SCREAMING_SNAKE_CASE=5 , SCREAMING_SNAKE_CASE=4 , SCREAMING_SNAKE_CASE=37 , SCREAMING_SNAKE_CASE="gelu" , SCREAMING_SNAKE_CASE=0.1 , SCREAMING_SNAKE_CASE=0.1 , SCREAMING_SNAKE_CASE=512 , SCREAMING_SNAKE_CASE=16 , SCREAMING_SNAKE_CASE=2 , SCREAMING_SNAKE_CASE=0.02 , SCREAMING_SNAKE_CASE=3 , SCREAMING_SNAKE_CASE=4 , SCREAMING_SNAKE_CASE=None , ) -> List[Any]: _lowerCamelCase : Union[str, Any] = parent _lowerCamelCase : Optional[Any] = batch_size _lowerCamelCase : Optional[int] = seq_length _lowerCamelCase : Any = is_training _lowerCamelCase : int = use_input_mask _lowerCamelCase : Tuple = use_token_type_ids _lowerCamelCase : List[str] = use_labels _lowerCamelCase : Any = vocab_size _lowerCamelCase : Dict = hidden_size _lowerCamelCase : Any = num_hidden_layers _lowerCamelCase : Dict = num_attention_heads _lowerCamelCase : List[Any] = intermediate_size _lowerCamelCase : str = hidden_act _lowerCamelCase : Tuple = hidden_dropout_prob _lowerCamelCase : List[str] = attention_probs_dropout_prob _lowerCamelCase : Dict = max_position_embeddings _lowerCamelCase : str = type_vocab_size _lowerCamelCase : Any = type_sequence_label_size _lowerCamelCase : List[str] = initializer_range _lowerCamelCase : Optional[Any] = num_labels _lowerCamelCase : List[str] = num_choices _lowerCamelCase : int = scope def UpperCamelCase_ ( self) -> int: _lowerCamelCase : Any = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size) _lowerCamelCase : Union[str, Any] = None if self.use_input_mask: _lowerCamelCase : Optional[Any] = random_attention_mask([self.batch_size, self.seq_length]) _lowerCamelCase : int = None if self.use_token_type_ids: _lowerCamelCase : str = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size) _lowerCamelCase : Dict = None _lowerCamelCase : Any = None _lowerCamelCase : List[Any] = None if self.use_labels: _lowerCamelCase : List[str] = ids_tensor([self.batch_size] , self.type_sequence_label_size) _lowerCamelCase : List[str] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels) _lowerCamelCase : Dict = ids_tensor([self.batch_size] , self.num_choices) _lowerCamelCase : int = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def UpperCamelCase_ ( self) -> Dict: return NystromformerConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=SCREAMING_SNAKE_CASE , initializer_range=self.initializer_range , ) def UpperCamelCase_ ( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE) -> List[str]: _lowerCamelCase : str = NystromformerModel(config=SCREAMING_SNAKE_CASE) model.to(SCREAMING_SNAKE_CASE) model.eval() _lowerCamelCase : Union[str, Any] = model(SCREAMING_SNAKE_CASE , attention_mask=SCREAMING_SNAKE_CASE , token_type_ids=SCREAMING_SNAKE_CASE) _lowerCamelCase : List[str] = model(SCREAMING_SNAKE_CASE , token_type_ids=SCREAMING_SNAKE_CASE) _lowerCamelCase : List[str] = model(SCREAMING_SNAKE_CASE) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size)) def UpperCamelCase_ ( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE) -> List[Any]: _lowerCamelCase : Union[str, Any] = NystromformerForMaskedLM(config=SCREAMING_SNAKE_CASE) model.to(SCREAMING_SNAKE_CASE) model.eval() _lowerCamelCase : Union[str, Any] = model(SCREAMING_SNAKE_CASE , attention_mask=SCREAMING_SNAKE_CASE , token_type_ids=SCREAMING_SNAKE_CASE , labels=SCREAMING_SNAKE_CASE) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size)) def UpperCamelCase_ ( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE) -> Any: _lowerCamelCase : List[str] = NystromformerForQuestionAnswering(config=SCREAMING_SNAKE_CASE) model.to(SCREAMING_SNAKE_CASE) model.eval() _lowerCamelCase : Dict = model( SCREAMING_SNAKE_CASE , attention_mask=SCREAMING_SNAKE_CASE , token_type_ids=SCREAMING_SNAKE_CASE , start_positions=SCREAMING_SNAKE_CASE , end_positions=SCREAMING_SNAKE_CASE , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length)) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length)) def UpperCamelCase_ ( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE) -> Optional[Any]: _lowerCamelCase : Union[str, Any] = self.num_labels _lowerCamelCase : int = NystromformerForSequenceClassification(SCREAMING_SNAKE_CASE) model.to(SCREAMING_SNAKE_CASE) model.eval() _lowerCamelCase : str = model(SCREAMING_SNAKE_CASE , attention_mask=SCREAMING_SNAKE_CASE , token_type_ids=SCREAMING_SNAKE_CASE , labels=SCREAMING_SNAKE_CASE) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels)) def UpperCamelCase_ ( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE) -> int: _lowerCamelCase : Tuple = self.num_labels _lowerCamelCase : int = NystromformerForTokenClassification(config=SCREAMING_SNAKE_CASE) model.to(SCREAMING_SNAKE_CASE) model.eval() _lowerCamelCase : Union[str, Any] = model(SCREAMING_SNAKE_CASE , attention_mask=SCREAMING_SNAKE_CASE , token_type_ids=SCREAMING_SNAKE_CASE , labels=SCREAMING_SNAKE_CASE) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels)) def UpperCamelCase_ ( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE) -> List[str]: _lowerCamelCase : int = self.num_choices _lowerCamelCase : Any = NystromformerForMultipleChoice(config=SCREAMING_SNAKE_CASE) model.to(SCREAMING_SNAKE_CASE) model.eval() _lowerCamelCase : Optional[Any] = input_ids.unsqueeze(1).expand(-1 , self.num_choices , -1).contiguous() _lowerCamelCase : List[str] = token_type_ids.unsqueeze(1).expand(-1 , self.num_choices , -1).contiguous() _lowerCamelCase : Dict = input_mask.unsqueeze(1).expand(-1 , self.num_choices , -1).contiguous() _lowerCamelCase : str = model( SCREAMING_SNAKE_CASE , attention_mask=SCREAMING_SNAKE_CASE , token_type_ids=SCREAMING_SNAKE_CASE , labels=SCREAMING_SNAKE_CASE , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices)) def UpperCamelCase_ ( self) -> List[Any]: _lowerCamelCase : Tuple = self.prepare_config_and_inputs() ( ( _lowerCamelCase ) , ( _lowerCamelCase ) , ( _lowerCamelCase ) , ( _lowerCamelCase ) , ( _lowerCamelCase ) , ( _lowerCamelCase ) , ( _lowerCamelCase ) , ) : Union[str, Any] = config_and_inputs _lowerCamelCase : Optional[int] = {"""input_ids""": input_ids, """token_type_ids""": token_type_ids, """attention_mask""": input_mask} return config, inputs_dict @require_torch class lowercase__ ( A_ ,A_ ,unittest.TestCase ): __UpperCAmelCase = ( ( NystromformerModel, NystromformerForMaskedLM, NystromformerForMultipleChoice, NystromformerForQuestionAnswering, NystromformerForSequenceClassification, NystromformerForTokenClassification, ) if is_torch_available() else () ) __UpperCAmelCase = ( { '''feature-extraction''': NystromformerModel, '''fill-mask''': NystromformerForMaskedLM, '''question-answering''': NystromformerForQuestionAnswering, '''text-classification''': NystromformerForSequenceClassification, '''token-classification''': NystromformerForTokenClassification, '''zero-shot''': NystromformerForSequenceClassification, } if is_torch_available() else {} ) __UpperCAmelCase = False __UpperCAmelCase = False def UpperCamelCase_ ( self) -> List[str]: _lowerCamelCase : Union[str, Any] = NystromformerModelTester(self) _lowerCamelCase : List[Any] = ConfigTester(self , config_class=SCREAMING_SNAKE_CASE , hidden_size=37) def UpperCamelCase_ ( self) -> str: self.config_tester.run_common_tests() def UpperCamelCase_ ( self) -> Any: _lowerCamelCase : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*SCREAMING_SNAKE_CASE) def UpperCamelCase_ ( self) -> Tuple: _lowerCamelCase : List[Any] = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: _lowerCamelCase : int = type self.model_tester.create_and_check_model(*SCREAMING_SNAKE_CASE) def UpperCamelCase_ ( self) -> int: _lowerCamelCase : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*SCREAMING_SNAKE_CASE) def UpperCamelCase_ ( self) -> Union[str, Any]: _lowerCamelCase : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_multiple_choice(*SCREAMING_SNAKE_CASE) def UpperCamelCase_ ( self) -> Optional[int]: _lowerCamelCase : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*SCREAMING_SNAKE_CASE) def UpperCamelCase_ ( self) -> List[str]: _lowerCamelCase : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*SCREAMING_SNAKE_CASE) def UpperCamelCase_ ( self) -> str: _lowerCamelCase : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*SCREAMING_SNAKE_CASE) @slow def UpperCamelCase_ ( self) -> Optional[int]: for model_name in NYSTROMFORMER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _lowerCamelCase : Dict = NystromformerModel.from_pretrained(SCREAMING_SNAKE_CASE) self.assertIsNotNone(SCREAMING_SNAKE_CASE) @require_torch class lowercase__ ( unittest.TestCase ): @slow def UpperCamelCase_ ( self) -> Optional[Any]: _lowerCamelCase : Union[str, Any] = NystromformerModel.from_pretrained("""uw-madison/nystromformer-512""") _lowerCamelCase : Union[str, Any] = torch.tensor([[0, 1, 2, 3, 4, 5]]) with torch.no_grad(): _lowerCamelCase : List[Any] = model(SCREAMING_SNAKE_CASE)[0] _lowerCamelCase : Any = torch.Size((1, 6, 768)) self.assertEqual(output.shape , SCREAMING_SNAKE_CASE) _lowerCamelCase : List[str] = torch.tensor( [[[-0.45_32, -0.09_36, 0.51_37], [-0.26_76, 0.06_28, 0.61_86], [-0.36_29, -0.17_26, 0.47_16]]]) self.assertTrue(torch.allclose(output[:, :3, :3] , SCREAMING_SNAKE_CASE , atol=1e-4)) @slow def UpperCamelCase_ ( self) -> Optional[Any]: _lowerCamelCase : Optional[Any] = """the [MASK] of Belgium is Brussels""" _lowerCamelCase : Optional[Any] = AutoTokenizer.from_pretrained("""uw-madison/nystromformer-512""") _lowerCamelCase : List[Any] = NystromformerForMaskedLM.from_pretrained("""uw-madison/nystromformer-512""") _lowerCamelCase : str = tokenizer(SCREAMING_SNAKE_CASE , return_tensors="""pt""") with torch.no_grad(): _lowerCamelCase : Tuple = model(encoding.input_ids).logits _lowerCamelCase : str = token_logits[:, 2, :].argmax(-1)[0] self.assertEqual(tokenizer.decode(SCREAMING_SNAKE_CASE) , """capital""")
88
from typing import List from .keymap import KEYMAP, get_character def A__ ( SCREAMING_SNAKE_CASE_ : str ) -> List[str]: """simple docstring""" def decorator(SCREAMING_SNAKE_CASE_ : List[Any] ): _UpperCAmelCase = getattr(SCREAMING_SNAKE_CASE_ , '''handle_key''' , [] ) handle += [key] setattr(SCREAMING_SNAKE_CASE_ , '''handle_key''' , SCREAMING_SNAKE_CASE_ ) return func return decorator def A__ ( *SCREAMING_SNAKE_CASE_ : List[str] ) -> Dict: """simple docstring""" def decorator(SCREAMING_SNAKE_CASE_ : Any ): _UpperCAmelCase = getattr(SCREAMING_SNAKE_CASE_ , '''handle_key''' , [] ) handle += keys setattr(SCREAMING_SNAKE_CASE_ , '''handle_key''' , SCREAMING_SNAKE_CASE_ ) return func return decorator class __UpperCamelCase ( A__ ): def __new__( cls , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ): _UpperCAmelCase = super().__new__(cls , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) if not hasattr(_UpperCamelCase , '''key_handler''' ): setattr(_UpperCamelCase , '''key_handler''' , {} ) setattr(_UpperCamelCase , '''handle_input''' , KeyHandler.handle_input ) for value in attrs.values(): _UpperCAmelCase = getattr(_UpperCamelCase , '''handle_key''' , [] ) for key in handled_keys: _UpperCAmelCase = value return new_cls @staticmethod def UpperCamelCase( cls ): _UpperCAmelCase = get_character() if char != KEYMAP["undefined"]: _UpperCAmelCase = ord(_UpperCamelCase ) _UpperCAmelCase = cls.key_handler.get(_UpperCamelCase ) if handler: _UpperCAmelCase = char return handler(cls ) else: return None def A__ ( cls : Union[str, Any] ) -> Any: """simple docstring""" return KeyHandler(cls.__name__ , cls.__bases__ , cls.__dict__.copy() )
32
0
import unittest import numpy as np from transformers.testing_utils import require_pytesseract, require_torch from transformers.utils import is_pytesseract_available, is_torch_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_pytesseract_available(): from PIL import Image from transformers import LayoutLMvaImageProcessor class _lowerCamelCase( unittest.TestCase ): def __init__( self, lowerCamelCase, lowerCamelCase=7, lowerCamelCase=3, lowerCamelCase=18, lowerCamelCase=30, lowerCamelCase=4_00, lowerCamelCase=True, lowerCamelCase=None, lowerCamelCase=True, ) -> Optional[Any]: """simple docstring""" _lowercase : Tuple = size if size is not None else {'height': 18, 'width': 18} _lowercase : Optional[int] = parent _lowercase : Optional[Any] = batch_size _lowercase : Any = num_channels _lowercase : Optional[int] = image_size _lowercase : List[Any] = min_resolution _lowercase : Optional[int] = max_resolution _lowercase : Optional[int] = do_resize _lowercase : str = size _lowercase : Optional[int] = apply_ocr def UpperCamelCase ( self) -> List[str]: """simple docstring""" return {"do_resize": self.do_resize, "size": self.size, "apply_ocr": self.apply_ocr} @require_torch @require_pytesseract class _lowerCamelCase( _a, unittest.TestCase ): lowercase_ : Optional[Any] = LayoutLMvaImageProcessor if is_pytesseract_available() else None def UpperCamelCase ( self) -> Union[str, Any]: """simple docstring""" _lowercase : Union[str, Any] = LayoutLMvaImageProcessingTester(self) @property def UpperCamelCase ( self) -> Optional[int]: """simple docstring""" return self.image_processor_tester.prepare_image_processor_dict() def UpperCamelCase ( self) -> List[Any]: """simple docstring""" _lowercase : Tuple = self.image_processing_class(**self.image_processor_dict) self.assertTrue(hasattr(lowerCamelCase, 'do_resize')) self.assertTrue(hasattr(lowerCamelCase, 'size')) self.assertTrue(hasattr(lowerCamelCase, 'apply_ocr')) def UpperCamelCase ( self) -> List[Any]: """simple docstring""" _lowercase : List[Any] = self.image_processing_class.from_dict(self.image_processor_dict) self.assertEqual(image_processor.size, {'height': 18, 'width': 18}) _lowercase : Optional[int] = self.image_processing_class.from_dict(self.image_processor_dict, size=42) self.assertEqual(image_processor.size, {'height': 42, 'width': 42}) def UpperCamelCase ( self) -> List[str]: """simple docstring""" pass def UpperCamelCase ( self) -> str: """simple docstring""" _lowercase : Optional[Any] = self.image_processing_class(**self.image_processor_dict) # create random PIL images _lowercase : int = prepare_image_inputs(self.image_processor_tester, equal_resolution=lowerCamelCase) for image in image_inputs: self.assertIsInstance(lowerCamelCase, Image.Image) # Test not batched input _lowercase : Dict = image_processing(image_inputs[0], return_tensors='pt') self.assertEqual( encoding.pixel_values.shape, ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size['height'], self.image_processor_tester.size['width'], ), ) self.assertIsInstance(encoding.words, lowerCamelCase) self.assertIsInstance(encoding.boxes, lowerCamelCase) # Test batched _lowercase : Optional[Any] = image_processing(lowerCamelCase, return_tensors='pt').pixel_values self.assertEqual( encoded_images.shape, ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size['height'], self.image_processor_tester.size['width'], ), ) def UpperCamelCase ( self) -> Optional[int]: """simple docstring""" _lowercase : List[Any] = self.image_processing_class(**self.image_processor_dict) # create random numpy tensors _lowercase : Dict = prepare_image_inputs(self.image_processor_tester, equal_resolution=lowerCamelCase, numpify=lowerCamelCase) for image in image_inputs: self.assertIsInstance(lowerCamelCase, np.ndarray) # Test not batched input _lowercase : Union[str, Any] = image_processing(image_inputs[0], return_tensors='pt').pixel_values self.assertEqual( encoded_images.shape, ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size['height'], self.image_processor_tester.size['width'], ), ) # Test batched _lowercase : Tuple = image_processing(lowerCamelCase, return_tensors='pt').pixel_values self.assertEqual( encoded_images.shape, ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size['height'], self.image_processor_tester.size['width'], ), ) def UpperCamelCase ( self) -> List[Any]: """simple docstring""" _lowercase : Dict = self.image_processing_class(**self.image_processor_dict) # create random PyTorch tensors _lowercase : Any = prepare_image_inputs(self.image_processor_tester, equal_resolution=lowerCamelCase, torchify=lowerCamelCase) for image in image_inputs: self.assertIsInstance(lowerCamelCase, torch.Tensor) # Test not batched input _lowercase : Optional[Any] = image_processing(image_inputs[0], return_tensors='pt').pixel_values self.assertEqual( encoded_images.shape, ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size['height'], self.image_processor_tester.size['width'], ), ) # Test batched _lowercase : Union[str, Any] = image_processing(lowerCamelCase, return_tensors='pt').pixel_values self.assertEqual( encoded_images.shape, ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size['height'], self.image_processor_tester.size['width'], ), ) def UpperCamelCase ( self) -> Optional[int]: """simple docstring""" _lowercase : int = LayoutLMvaImageProcessor() from datasets import load_dataset _lowercase : List[str] = load_dataset('hf-internal-testing/fixtures_docvqa', split='test') _lowercase : Tuple = Image.open(ds[0]['file']).convert('RGB') _lowercase : Dict = image_processing(lowerCamelCase, return_tensors='pt') self.assertEqual(encoding.pixel_values.shape, (1, 3, 2_24, 2_24)) self.assertEqual(len(encoding.words), len(encoding.boxes)) # fmt: off # the words and boxes were obtained with Tesseract 4.1.1 _lowercase : Union[str, Any] = [['11:14', 'to', '11:39', 'a.m', '11:39', 'to', '11:44', 'a.m.', '11:44', 'a.m.', 'to', '12:25', 'p.m.', '12:25', 'to', '12:58', 'p.m.', '12:58', 'to', '4:00', 'p.m.', '2:00', 'to', '5:00', 'p.m.', 'Coffee', 'Break', 'Coffee', 'will', 'be', 'served', 'for', 'men', 'and', 'women', 'in', 'the', 'lobby', 'adjacent', 'to', 'exhibit', 'area.', 'Please', 'move', 'into', 'exhibit', 'area.', '(Exhibits', 'Open)', 'TRRF', 'GENERAL', 'SESSION', '(PART', '|)', 'Presiding:', 'Lee', 'A.', 'Waller', 'TRRF', 'Vice', 'President', '“Introductory', 'Remarks”', 'Lee', 'A.', 'Waller,', 'TRRF', 'Vice', 'Presi-', 'dent', 'Individual', 'Interviews', 'with', 'TRRF', 'Public', 'Board', 'Members', 'and', 'Sci-', 'entific', 'Advisory', 'Council', 'Mem-', 'bers', 'Conducted', 'by', 'TRRF', 'Treasurer', 'Philip', 'G.', 'Kuehn', 'to', 'get', 'answers', 'which', 'the', 'public', 'refrigerated', 'warehousing', 'industry', 'is', 'looking', 'for.', 'Plus', 'questions', 'from', 'the', 'floor.', 'Dr.', 'Emil', 'M.', 'Mrak,', 'University', 'of', 'Cal-', 'ifornia,', 'Chairman,', 'TRRF', 'Board;', 'Sam', 'R.', 'Cecil,', 'University', 'of', 'Georgia', 'College', 'of', 'Agriculture;', 'Dr.', 'Stanley', 'Charm,', 'Tufts', 'University', 'School', 'of', 'Medicine;', 'Dr.', 'Robert', 'H.', 'Cotton,', 'ITT', 'Continental', 'Baking', 'Company;', 'Dr.', 'Owen', 'Fennema,', 'University', 'of', 'Wis-', 'consin;', 'Dr.', 'Robert', 'E.', 'Hardenburg,', 'USDA.', 'Questions', 'and', 'Answers', 'Exhibits', 'Open', 'Capt.', 'Jack', 'Stoney', 'Room', 'TRRF', 'Scientific', 'Advisory', 'Council', 'Meeting', 'Ballroom', 'Foyer']] # noqa: E231 _lowercase : Optional[int] = [[[1_41, 57, 2_14, 69], [2_28, 58, 2_52, 69], [1_41, 75, 2_16, 88], [2_30, 79, 2_80, 88], [1_42, 2_60, 2_18, 2_73], [2_30, 2_61, 2_55, 2_73], [1_43, 2_79, 2_18, 2_90], [2_31, 2_82, 2_90, 2_91], [1_43, 3_42, 2_18, 3_54], [2_31, 3_45, 2_89, 3_55], [2_02, 3_62, 2_27, 3_73], [1_43, 3_79, 2_20, 3_92], [2_31, 3_82, 2_91, 3_94], [1_44, 7_14, 2_20, 7_26], [2_31, 7_15, 2_56, 7_26], [1_44, 7_32, 2_20, 7_45], [2_32, 7_36, 2_91, 7_47], [1_44, 7_69, 2_18, 7_82], [2_31, 7_70, 2_56, 7_82], [1_41, 7_88, 2_02, 8_01], [2_15, 7_91, 2_74, 8_04], [1_43, 8_26, 2_04, 8_38], [2_15, 8_26, 2_40, 8_38], [1_42, 8_44, 2_02, 8_57], [2_15, 8_47, 2_74, 8_59], [3_34, 57, 4_27, 69], [4_40, 57, 5_22, 69], [3_69, 75, 4_61, 88], [4_69, 75, 5_16, 88], [5_28, 76, 5_62, 88], [5_70, 76, 6_67, 88], [6_75, 75, 7_11, 87], [7_21, 79, 7_78, 88], [7_89, 75, 8_40, 88], [3_69, 97, 4_70, 1_07], [4_84, 94, 5_07, 1_06], [5_18, 94, 5_62, 1_07], [5_76, 94, 6_55, 1_10], [6_68, 94, 7_92, 1_09], [8_04, 95, 8_29, 1_07], [3_69, 1_13, 4_65, 1_25], [4_77, 1_16, 5_47, 1_25], [5_62, 1_13, 6_58, 1_25], [6_71, 1_16, 7_48, 1_25], [7_61, 1_13, 8_11, 1_25], [3_69, 1_31, 4_65, 1_43], [4_77, 1_33, 5_48, 1_43], [5_63, 1_30, 6_98, 1_45], [7_10, 1_30, 8_02, 1_46], [3_36, 1_71, 4_12, 1_83], [4_23, 1_71, 5_72, 1_83], [5_82, 1_70, 7_16, 1_84], [7_28, 1_71, 8_17, 1_87], [8_29, 1_71, 8_44, 1_86], [3_38, 1_97, 4_82, 2_12], [5_07, 1_96, 5_57, 2_09], [5_69, 1_96, 5_95, 2_08], [6_10, 1_96, 7_02, 2_09], [5_05, 2_14, 5_83, 2_26], [5_95, 2_14, 6_56, 2_27], [6_70, 2_15, 8_07, 2_27], [3_35, 2_59, 5_43, 2_74], [5_56, 2_59, 7_08, 2_72], [3_72, 2_79, 4_22, 2_91], [4_35, 2_79, 4_60, 2_91], [4_74, 2_79, 5_74, 2_92], [5_87, 2_78, 6_64, 2_91], [6_76, 2_78, 7_38, 2_91], [7_51, 2_79, 8_34, 2_91], [3_72, 2_98, 4_34, 3_10], [3_35, 3_41, 4_83, 3_54], [4_97, 3_41, 6_55, 3_54], [6_67, 3_41, 7_28, 3_54], [7_40, 3_41, 8_25, 3_54], [3_35, 3_60, 4_30, 3_72], [4_42, 3_60, 5_34, 3_72], [5_45, 3_59, 6_87, 3_72], [6_97, 3_60, 7_54, 3_72], [7_65, 3_60, 8_23, 3_73], [3_34, 3_78, 4_28, 3_91], [4_40, 3_78, 5_77, 3_94], [5_90, 3_78, 7_05, 3_91], [7_20, 3_78, 8_01, 3_91], [3_34, 3_97, 4_00, 4_09], [3_70, 4_16, 5_29, 4_29], [5_44, 4_16, 5_76, 4_32], [5_87, 4_16, 6_65, 4_28], [6_77, 4_16, 8_14, 4_29], [3_72, 4_35, 4_52, 4_50], [4_65, 4_34, 4_95, 4_47], [5_11, 4_34, 6_00, 4_47], [6_11, 4_36, 6_37, 4_47], [6_49, 4_36, 6_94, 4_51], [7_05, 4_38, 8_24, 4_47], [3_69, 4_53, 4_52, 4_66], [4_64, 4_54, 5_09, 4_66], [5_22, 4_53, 6_11, 4_69], [6_25, 4_53, 7_92, 4_69], [3_70, 4_72, 5_56, 4_88], [5_70, 4_72, 6_84, 4_87], [6_97, 4_72, 7_18, 4_85], [7_32, 4_72, 8_35, 4_88], [3_69, 4_90, 4_11, 5_03], [4_25, 4_90, 4_84, 5_03], [4_96, 4_90, 6_35, 5_06], [6_45, 4_90, 7_07, 5_03], [7_18, 4_91, 7_61, 5_03], [7_71, 4_90, 8_40, 5_03], [3_36, 5_10, 3_74, 5_21], [3_88, 5_10, 4_47, 5_22], [4_60, 5_10, 4_89, 5_21], [5_03, 5_10, 5_80, 5_22], [5_92, 5_09, 7_36, 5_25], [7_45, 5_09, 7_70, 5_22], [7_81, 5_09, 8_40, 5_22], [3_38, 5_28, 4_34, 5_41], [4_48, 5_28, 5_96, 5_41], [6_09, 5_27, 6_87, 5_40], [7_00, 5_28, 7_92, 5_41], [3_36, 5_46, 3_97, 5_59], [4_07, 5_46, 4_31, 5_59], [4_43, 5_46, 5_25, 5_60], [5_37, 5_46, 6_80, 5_62], [6_88, 5_46, 7_14, 5_59], [7_22, 5_46, 8_37, 5_62], [3_36, 5_65, 4_49, 5_81], [4_61, 5_65, 4_85, 5_77], [4_97, 5_65, 6_65, 5_81], [6_81, 5_65, 7_18, 5_77], [7_32, 5_65, 8_37, 5_80], [3_37, 5_84, 4_38, 5_97], [4_52, 5_83, 5_21, 5_96], [5_35, 5_84, 6_77, 5_99], [6_90, 5_83, 7_87, 5_96], [8_01, 5_83, 8_25, 5_96], [3_38, 6_02, 4_78, 6_15], [4_92, 6_02, 5_30, 6_14], [5_43, 6_02, 6_38, 6_15], [6_50, 6_02, 6_76, 6_14], [6_88, 6_02, 7_88, 6_15], [8_02, 6_02, 8_43, 6_14], [3_37, 6_21, 5_02, 6_33], [5_16, 6_21, 6_15, 6_37], [6_29, 6_21, 7_74, 6_36], [7_89, 6_21, 8_27, 6_33], [3_37, 6_39, 4_18, 6_52], [4_32, 6_40, 5_71, 6_53], [5_87, 6_39, 7_31, 6_55], [7_43, 6_39, 7_69, 6_52], [7_80, 6_39, 8_41, 6_52], [3_38, 6_58, 4_40, 6_73], [4_55, 6_58, 4_91, 6_70], [5_08, 6_58, 6_02, 6_71], [6_16, 6_58, 6_38, 6_70], [6_54, 6_58, 8_35, 6_74], [3_37, 6_77, 4_29, 6_89], [3_37, 7_14, 4_82, 7_26], [4_95, 7_14, 5_48, 7_26], [5_61, 7_14, 6_83, 7_26], [3_38, 7_70, 4_61, 7_82], [4_74, 7_69, 5_54, 7_85], [4_89, 7_88, 5_62, 8_03], [5_76, 7_88, 6_43, 8_01], [6_56, 7_87, 7_51, 8_04], [7_64, 7_88, 8_44, 8_01], [3_34, 8_25, 4_21, 8_38], [4_30, 8_24, 5_74, 8_38], [5_84, 8_24, 7_23, 8_41], [3_35, 8_44, 4_50, 8_57], [4_64, 8_43, 5_83, 8_60], [6_28, 8_62, 7_55, 8_75], [7_69, 8_61, 8_48, 8_78]]] # noqa: E231 # fmt: on self.assertListEqual(encoding.words, lowerCamelCase) self.assertListEqual(encoding.boxes, lowerCamelCase) # with apply_OCR = False _lowercase : int = LayoutLMvaImageProcessor(apply_ocr=lowerCamelCase) _lowercase : int = image_processing(lowerCamelCase, return_tensors='pt') self.assertEqual(encoding.pixel_values.shape, (1, 3, 2_24, 2_24))
89
import unittest from transformers import LiltConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( LiltForQuestionAnswering, LiltForSequenceClassification, LiltForTokenClassification, LiltModel, ) from transformers.models.lilt.modeling_lilt import LILT_PRETRAINED_MODEL_ARCHIVE_LIST class __UpperCamelCase : def __init__( self , _UpperCamelCase , _UpperCamelCase=13 , _UpperCamelCase=7 , _UpperCamelCase=True , _UpperCamelCase=True , _UpperCamelCase=True , _UpperCamelCase=True , _UpperCamelCase=99 , _UpperCamelCase=24 , _UpperCamelCase=2 , _UpperCamelCase=6 , _UpperCamelCase=37 , _UpperCamelCase="gelu" , _UpperCamelCase=0.1 , _UpperCamelCase=0.1 , _UpperCamelCase=512 , _UpperCamelCase=16 , _UpperCamelCase=2 , _UpperCamelCase=0.02 , _UpperCamelCase=3 , _UpperCamelCase=None , _UpperCamelCase=1000 , ): _UpperCAmelCase = parent _UpperCAmelCase = batch_size _UpperCAmelCase = seq_length _UpperCAmelCase = is_training _UpperCAmelCase = use_input_mask _UpperCAmelCase = use_token_type_ids _UpperCAmelCase = use_labels _UpperCAmelCase = vocab_size _UpperCAmelCase = hidden_size _UpperCAmelCase = num_hidden_layers _UpperCAmelCase = num_attention_heads _UpperCAmelCase = intermediate_size _UpperCAmelCase = hidden_act _UpperCAmelCase = hidden_dropout_prob _UpperCAmelCase = attention_probs_dropout_prob _UpperCAmelCase = max_position_embeddings _UpperCAmelCase = type_vocab_size _UpperCAmelCase = type_sequence_label_size _UpperCAmelCase = initializer_range _UpperCAmelCase = num_labels _UpperCAmelCase = scope _UpperCAmelCase = range_bbox def UpperCamelCase( self ): _UpperCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _UpperCAmelCase = ids_tensor([self.batch_size, self.seq_length, 4] , self.range_bbox ) # Ensure that bbox is legal for i in range(bbox.shape[0] ): for j in range(bbox.shape[1] ): if bbox[i, j, 3] < bbox[i, j, 1]: _UpperCAmelCase = bbox[i, j, 3] _UpperCAmelCase = bbox[i, j, 1] _UpperCAmelCase = t if bbox[i, j, 2] < bbox[i, j, 0]: _UpperCAmelCase = bbox[i, j, 2] _UpperCAmelCase = bbox[i, j, 0] _UpperCAmelCase = t _UpperCAmelCase = None if self.use_input_mask: _UpperCAmelCase = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 ) _UpperCAmelCase = None if self.use_token_type_ids: _UpperCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) _UpperCAmelCase = None _UpperCAmelCase = None if self.use_labels: _UpperCAmelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size ) _UpperCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) _UpperCAmelCase = self.get_config() return config, input_ids, bbox, token_type_ids, input_mask, sequence_labels, token_labels def UpperCamelCase( self ): return LiltConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , ) def UpperCamelCase( self , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , ): _UpperCAmelCase = LiltModel(config=_UpperCamelCase ) model.to(_UpperCamelCase ) model.eval() _UpperCAmelCase = model(_UpperCamelCase , bbox=_UpperCamelCase , attention_mask=_UpperCamelCase , token_type_ids=_UpperCamelCase ) _UpperCAmelCase = model(_UpperCamelCase , bbox=_UpperCamelCase , token_type_ids=_UpperCamelCase ) _UpperCAmelCase = model(_UpperCamelCase , bbox=_UpperCamelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) ) def UpperCamelCase( self , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , ): _UpperCAmelCase = self.num_labels _UpperCAmelCase = LiltForTokenClassification(config=_UpperCamelCase ) model.to(_UpperCamelCase ) model.eval() _UpperCAmelCase = model( _UpperCamelCase , bbox=_UpperCamelCase , attention_mask=_UpperCamelCase , token_type_ids=_UpperCamelCase , labels=_UpperCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def UpperCamelCase( self , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , ): _UpperCAmelCase = LiltForQuestionAnswering(config=_UpperCamelCase ) model.to(_UpperCamelCase ) model.eval() _UpperCAmelCase = model( _UpperCamelCase , bbox=_UpperCamelCase , attention_mask=_UpperCamelCase , token_type_ids=_UpperCamelCase , start_positions=_UpperCamelCase , end_positions=_UpperCamelCase , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def UpperCamelCase( self ): _UpperCAmelCase = self.prepare_config_and_inputs() ( ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ) = config_and_inputs _UpperCAmelCase = { '''input_ids''': input_ids, '''bbox''': bbox, '''token_type_ids''': token_type_ids, '''attention_mask''': input_mask, } return config, inputs_dict @require_torch class __UpperCamelCase ( A__ , A__ , A__ , unittest.TestCase ): __A : Dict = ( ( LiltModel, LiltForSequenceClassification, LiltForTokenClassification, LiltForQuestionAnswering, ) if is_torch_available() else () ) __A : Optional[Any] = ( { """feature-extraction""": LiltModel, """question-answering""": LiltForQuestionAnswering, """text-classification""": LiltForSequenceClassification, """token-classification""": LiltForTokenClassification, """zero-shot""": LiltForSequenceClassification, } if is_torch_available() else {} ) __A : List[Any] = False __A : Optional[int] = False def UpperCamelCase( self , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ): return True def UpperCamelCase( self ): _UpperCAmelCase = LiltModelTester(self ) _UpperCAmelCase = ConfigTester(self , config_class=_UpperCamelCase , hidden_size=37 ) def UpperCamelCase( self ): self.config_tester.run_common_tests() def UpperCamelCase( self ): _UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_UpperCamelCase ) def UpperCamelCase( self ): _UpperCAmelCase = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: _UpperCAmelCase = type self.model_tester.create_and_check_model(*_UpperCamelCase ) def UpperCamelCase( self ): _UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*_UpperCamelCase ) def UpperCamelCase( self ): _UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*_UpperCamelCase ) @slow def UpperCamelCase( self ): for model_name in LILT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _UpperCAmelCase = LiltModel.from_pretrained(_UpperCamelCase ) self.assertIsNotNone(_UpperCamelCase ) @require_torch @slow class __UpperCamelCase ( unittest.TestCase ): def UpperCamelCase( self ): _UpperCAmelCase = LiltModel.from_pretrained('''SCUT-DLVCLab/lilt-roberta-en-base''' ).to(_UpperCamelCase ) _UpperCAmelCase = torch.tensor([[1, 2]] , device=_UpperCamelCase ) _UpperCAmelCase = torch.tensor([[[1, 2, 3, 4], [5, 6, 7, 8]]] , device=_UpperCamelCase ) # forward pass with torch.no_grad(): _UpperCAmelCase = model(input_ids=_UpperCamelCase , bbox=_UpperCamelCase ) _UpperCAmelCase = torch.Size([1, 2, 768] ) _UpperCAmelCase = torch.tensor( [[-0.0653, 0.0950, -0.0061], [-0.0545, 0.0926, -0.0324]] , device=_UpperCamelCase , ) self.assertTrue(outputs.last_hidden_state.shape , _UpperCamelCase ) self.assertTrue(torch.allclose(outputs.last_hidden_state[0, :, :3] , _UpperCamelCase , atol=1e-3 ) )
32
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tf_available, is_tokenizers_available, is_torch_available, ) __UpperCAmelCase = {'''configuration_xlnet''': ['''XLNET_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''XLNetConfig''']} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCAmelCase = ['''XLNetTokenizer'''] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCAmelCase = ['''XLNetTokenizerFast'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCAmelCase = [ '''XLNET_PRETRAINED_MODEL_ARCHIVE_LIST''', '''XLNetForMultipleChoice''', '''XLNetForQuestionAnswering''', '''XLNetForQuestionAnsweringSimple''', '''XLNetForSequenceClassification''', '''XLNetForTokenClassification''', '''XLNetLMHeadModel''', '''XLNetModel''', '''XLNetPreTrainedModel''', '''load_tf_weights_in_xlnet''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCAmelCase = [ '''TF_XLNET_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFXLNetForMultipleChoice''', '''TFXLNetForQuestionAnsweringSimple''', '''TFXLNetForSequenceClassification''', '''TFXLNetForTokenClassification''', '''TFXLNetLMHeadModel''', '''TFXLNetMainLayer''', '''TFXLNetModel''', '''TFXLNetPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_xlnet import XLNET_PRETRAINED_CONFIG_ARCHIVE_MAP, XLNetConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_xlnet import XLNetTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_xlnet_fast import XLNetTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_xlnet import ( XLNET_PRETRAINED_MODEL_ARCHIVE_LIST, XLNetForMultipleChoice, XLNetForQuestionAnswering, XLNetForQuestionAnsweringSimple, XLNetForSequenceClassification, XLNetForTokenClassification, XLNetLMHeadModel, XLNetModel, XLNetPreTrainedModel, load_tf_weights_in_xlnet, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_xlnet import ( TF_XLNET_PRETRAINED_MODEL_ARCHIVE_LIST, TFXLNetForMultipleChoice, TFXLNetForQuestionAnsweringSimple, TFXLNetForSequenceClassification, TFXLNetForTokenClassification, TFXLNetLMHeadModel, TFXLNetMainLayer, TFXLNetModel, TFXLNetPreTrainedModel, ) else: import sys __UpperCAmelCase = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
90
from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCAmelCase_ = logging.get_logger(__name__) UpperCAmelCase_ = { "RWKV/rwkv-4-169m-pile": "https://huggingface.co/RWKV/rwkv-4-169m-pile/resolve/main/config.json", "RWKV/rwkv-4-430m-pile": "https://huggingface.co/RWKV/rwkv-4-430m-pile/resolve/main/config.json", "RWKV/rwkv-4-1b5-pile": "https://huggingface.co/RWKV/rwkv-4-1b5-pile/resolve/main/config.json", "RWKV/rwkv-4-3b-pile": "https://huggingface.co/RWKV/rwkv-4-3b-pile/resolve/main/config.json", "RWKV/rwkv-4-7b-pile": "https://huggingface.co/RWKV/rwkv-4-7b-pile/resolve/main/config.json", "RWKV/rwkv-4-14b-pile": "https://huggingface.co/RWKV/rwkv-4-14b-pile/resolve/main/config.json", "RWKV/rwkv-raven-1b5": "https://huggingface.co/RWKV/rwkv-raven-1b5/resolve/main/config.json", "RWKV/rwkv-raven-3b": "https://huggingface.co/RWKV/rwkv-raven-3b/resolve/main/config.json", "RWKV/rwkv-raven-7b": "https://huggingface.co/RWKV/rwkv-raven-7b/resolve/main/config.json", "RWKV/rwkv-raven-14b": "https://huggingface.co/RWKV/rwkv-raven-14b/resolve/main/config.json", } class __UpperCamelCase ( A__ ): __A : Tuple = """rwkv""" __A : Any = {"""max_position_embeddings""": """context_length"""} def __init__( self , _UpperCamelCase=50277 , _UpperCamelCase=1024 , _UpperCamelCase=4096 , _UpperCamelCase=32 , _UpperCamelCase=None , _UpperCamelCase=None , _UpperCamelCase=1e-5 , _UpperCamelCase=0 , _UpperCamelCase=0 , _UpperCamelCase=6 , _UpperCamelCase=False , _UpperCamelCase=True , **_UpperCamelCase , ): _UpperCAmelCase = vocab_size _UpperCAmelCase = context_length _UpperCAmelCase = hidden_size _UpperCAmelCase = num_hidden_layers _UpperCAmelCase = attention_hidden_size if attention_hidden_size is not None else hidden_size _UpperCAmelCase = intermediate_size if intermediate_size is not None else 4 * hidden_size _UpperCAmelCase = layer_norm_epsilon _UpperCAmelCase = rescale_every _UpperCAmelCase = use_cache _UpperCAmelCase = bos_token_id _UpperCAmelCase = eos_token_id super().__init__( tie_word_embeddings=_UpperCamelCase , bos_token_id=_UpperCamelCase , eos_token_id=_UpperCamelCase , **_UpperCamelCase )
32
0
"""simple docstring""" import unittest from transformers import is_torch_available from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow if is_torch_available(): import torch from transformers import XLMRobertaModel @require_sentencepiece @require_tokenizers @require_torch class lowerCAmelCase_ ( unittest.TestCase ): '''simple docstring''' @slow def _SCREAMING_SNAKE_CASE ( self : Dict ) -> str: A = XLMRobertaModel.from_pretrained('xlm-roberta-base' ) A = torch.tensor([[0, 581, 1_0269, 83, 9_9942, 136, 6_0742, 23, 70, 8_0583, 1_8276, 2]] ) # The dog is cute and lives in the garden house A = torch.Size((1, 12, 768) ) # batch_size, sequence_length, embedding_vector_dim A = torch.tensor( [[-0.01_01, 0.12_18, -0.08_03, 0.08_01, 0.13_27, 0.07_76, -0.12_15, 0.23_83, 0.33_38, 0.31_06, 0.03_00, 0.02_52]] ) # xlmr = torch.hub.load('pytorch/fairseq', 'xlmr.base') # xlmr.eval() # expected_output_values_last_dim = xlmr.extract_features(input_ids[0])[:, :, -1] with torch.no_grad(): A = model(A_ )['last_hidden_state'].detach() self.assertEqual(output.shape ,A_ ) # compare the actual values for a slice of last dim self.assertTrue(torch.allclose(output[:, :, -1] ,A_ ,atol=1e-3 ) ) @slow def _SCREAMING_SNAKE_CASE ( self : Dict ) -> Dict: A = XLMRobertaModel.from_pretrained('xlm-roberta-large' ) A = torch.tensor([[0, 581, 1_0269, 83, 9_9942, 136, 6_0742, 23, 70, 8_0583, 1_8276, 2]] ) # The dog is cute and lives in the garden house A = torch.Size((1, 12, 1024) ) # batch_size, sequence_length, embedding_vector_dim A = torch.tensor( [[-0.06_99, -0.03_18, 0.07_05, -0.12_41, 0.09_99, -0.05_20, 0.10_04, -0.18_38, -0.47_04, 0.14_37, 0.08_21, 0.01_26]] ) # xlmr = torch.hub.load('pytorch/fairseq', 'xlmr.large') # xlmr.eval() # expected_output_values_last_dim = xlmr.extract_features(input_ids[0])[:, :, -1] with torch.no_grad(): A = model(A_ )['last_hidden_state'].detach() self.assertEqual(output.shape ,A_ ) # compare the actual values for a slice of last dim self.assertTrue(torch.allclose(output[:, :, -1] ,A_ ,atol=1e-3 ) )
91
def A__ ( SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : int ) -> str: """simple docstring""" if a < 0 or b < 0: raise ValueError('''the value of both inputs must be positive''' ) _UpperCAmelCase = str(bin(SCREAMING_SNAKE_CASE_ ) )[2:] # remove the leading "0b" _UpperCAmelCase = str(bin(SCREAMING_SNAKE_CASE_ ) )[2:] # remove the leading "0b" _UpperCAmelCase = max(len(SCREAMING_SNAKE_CASE_ ) , len(SCREAMING_SNAKE_CASE_ ) ) return "0b" + "".join( str(int(char_a == '''1''' and char_b == '''1''' ) ) for char_a, char_b in zip(a_binary.zfill(SCREAMING_SNAKE_CASE_ ) , b_binary.zfill(SCREAMING_SNAKE_CASE_ ) ) ) if __name__ == "__main__": import doctest doctest.testmod()
32
0
'''simple docstring''' import os try: from .build_directory_md import good_file_paths except ImportError: from build_directory_md import good_file_paths # type: ignore UpperCamelCase_ = list(good_file_paths()) assert filepaths, "good_file_paths() failed!" UpperCamelCase_ = [file for file in filepaths if file != file.lower()] if upper_files: print(f'''{len(upper_files)} files contain uppercase characters:''') print("""\n""".join(upper_files) + """\n""") UpperCamelCase_ = [file for file in filepaths if """ """ in file] if space_files: print(f'''{len(space_files)} files contain space characters:''') print("""\n""".join(space_files) + """\n""") UpperCamelCase_ = [file for file in filepaths if """-""" in file] if hyphen_files: print(f'''{len(hyphen_files)} files contain hyphen characters:''') print("""\n""".join(hyphen_files) + """\n""") UpperCamelCase_ = [file for file in filepaths if os.sep not in file] if nodir_files: print(f'''{len(nodir_files)} files are not in a directory:''') print("""\n""".join(nodir_files) + """\n""") UpperCamelCase_ = len(upper_files + space_files + hyphen_files + nodir_files) if bad_files: import sys sys.exit(bad_files)
92
from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCAmelCase_ = logging.get_logger(__name__) UpperCAmelCase_ = { "tiiuae/falcon-40b": "https://huggingface.co/tiiuae/falcon-40b/resolve/main/config.json", "tiiuae/falcon-7b": "https://huggingface.co/tiiuae/falcon-7b/resolve/main/config.json", } class __UpperCamelCase ( A__ ): __A : Dict = """falcon""" __A : Any = ["""past_key_values"""] def __init__( self , _UpperCamelCase=65024 , _UpperCamelCase=4544 , _UpperCamelCase=32 , _UpperCamelCase=71 , _UpperCamelCase=1e-5 , _UpperCamelCase=0.02 , _UpperCamelCase=True , _UpperCamelCase=0.0 , _UpperCamelCase=0.0 , _UpperCamelCase=None , _UpperCamelCase=False , _UpperCamelCase=False , _UpperCamelCase=True , _UpperCamelCase=True , _UpperCamelCase=False , _UpperCamelCase=11 , _UpperCamelCase=11 , **_UpperCamelCase , ): _UpperCAmelCase = vocab_size # Backward compatibility with n_embed kwarg _UpperCAmelCase = kwargs.pop('''n_embed''' , _UpperCamelCase ) _UpperCAmelCase = hidden_size if n_embed is None else n_embed _UpperCAmelCase = num_hidden_layers _UpperCAmelCase = num_attention_heads _UpperCAmelCase = layer_norm_epsilon _UpperCAmelCase = initializer_range _UpperCAmelCase = use_cache _UpperCAmelCase = hidden_dropout _UpperCAmelCase = attention_dropout _UpperCAmelCase = bos_token_id _UpperCAmelCase = eos_token_id _UpperCAmelCase = num_attention_heads if num_kv_heads is None else num_kv_heads _UpperCAmelCase = alibi _UpperCAmelCase = new_decoder_architecture _UpperCAmelCase = multi_query # Ignored when new_decoder_architecture is True _UpperCAmelCase = parallel_attn _UpperCAmelCase = bias super().__init__(bos_token_id=_UpperCamelCase , eos_token_id=_UpperCamelCase , **_UpperCamelCase ) @property def UpperCamelCase( self ): return self.hidden_size // self.num_attention_heads @property def UpperCamelCase( self ): return not self.alibi
32
0
"""simple docstring""" import os import re import shutil import sys import tempfile import unittest import black __A = os.path.abspath(os.path.dirname(os.path.dirname(os.path.dirname(__file__)))) sys.path.append(os.path.join(git_repo_path, """utils""")) import check_copies # noqa: E402 # This is the reference code that will be used in the tests. # If BertLMPredictionHead is changed in modeling_bert.py, this code needs to be manually updated. __A = """ def __init__(self, config): super().__init__() self.transform = BertPredictionHeadTransform(config) # The output weights are the same as the input embeddings, but there is # an output-only bias for each token. self.decoder = nn.Linear(config.hidden_size, config.vocab_size, bias=False) self.bias = nn.Parameter(torch.zeros(config.vocab_size)) # Need a link between the two variables so that the bias is correctly resized with `resize_token_embeddings` self.decoder.bias = self.bias def forward(self, hidden_states): hidden_states = self.transform(hidden_states) hidden_states = self.decoder(hidden_states) return hidden_states """ class _lowerCAmelCase ( unittest.TestCase ): """simple docstring""" def snake_case ( self ): '''simple docstring''' lowerCAmelCase__ :Optional[Any] = tempfile.mkdtemp() os.makedirs(os.path.join(self.transformer_dir , 'models/bert/' ) ) lowerCAmelCase__ :List[Any] = self.transformer_dir shutil.copy( os.path.join(__UpperCAmelCase , 'src/transformers/models/bert/modeling_bert.py' ) , os.path.join(self.transformer_dir , 'models/bert/modeling_bert.py' ) , ) def snake_case ( self ): '''simple docstring''' lowerCAmelCase__ :int = 'src/transformers' shutil.rmtree(self.transformer_dir ) def snake_case ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase=None ): '''simple docstring''' lowerCAmelCase__ :Union[str, Any] = comment + F"\nclass {class_name}(nn.Module):\n" + class_code if overwrite_result is not None: lowerCAmelCase__ :List[Any] = comment + F"\nclass {class_name}(nn.Module):\n" + overwrite_result lowerCAmelCase__ :Any = black.Mode(target_versions={black.TargetVersion.PYaa} , line_length=1_1_9 ) lowerCAmelCase__ :int = black.format_str(__UpperCAmelCase , mode=__UpperCAmelCase ) lowerCAmelCase__ :Any = os.path.join(self.transformer_dir , 'new_code.py' ) with open(__UpperCAmelCase , 'w' , newline='\n' ) as f: f.write(__UpperCAmelCase ) if overwrite_result is None: self.assertTrue(len(check_copies.is_copy_consistent(__UpperCAmelCase ) ) == 0 ) else: check_copies.is_copy_consistent(f.name , overwrite=__UpperCAmelCase ) with open(__UpperCAmelCase , 'r' ) as f: self.assertTrue(f.read() , __UpperCAmelCase ) def snake_case ( self ): '''simple docstring''' lowerCAmelCase__ :str = check_copies.find_code_in_transformers('models.bert.modeling_bert.BertLMPredictionHead' ) self.assertEqual(__UpperCAmelCase , __UpperCAmelCase ) def snake_case ( self ): '''simple docstring''' self.check_copy_consistency( '# Copied from transformers.models.bert.modeling_bert.BertLMPredictionHead' , 'BertLMPredictionHead' , REFERENCE_CODE + '\n' , ) # With no empty line at the end self.check_copy_consistency( '# Copied from transformers.models.bert.modeling_bert.BertLMPredictionHead' , 'BertLMPredictionHead' , __UpperCAmelCase , ) # Copy consistency with rename self.check_copy_consistency( '# Copied from transformers.models.bert.modeling_bert.BertLMPredictionHead with Bert->TestModel' , 'TestModelLMPredictionHead' , re.sub('Bert' , 'TestModel' , __UpperCAmelCase ) , ) # Copy consistency with a really long name lowerCAmelCase__ :Optional[int] = 'TestModelWithAReallyLongNameBecauseSomePeopleLikeThatForSomeReason' self.check_copy_consistency( F"# Copied from transformers.models.bert.modeling_bert.BertLMPredictionHead with Bert->{long_class_name}" , F"{long_class_name}LMPredictionHead" , re.sub('Bert' , __UpperCAmelCase , __UpperCAmelCase ) , ) # Copy consistency with overwrite self.check_copy_consistency( '# Copied from transformers.models.bert.modeling_bert.BertLMPredictionHead with Bert->TestModel' , 'TestModelLMPredictionHead' , __UpperCAmelCase , overwrite_result=re.sub('Bert' , 'TestModel' , __UpperCAmelCase ) , ) def snake_case ( self ): '''simple docstring''' lowerCAmelCase__ :Tuple = check_copies.LOCALIZED_READMES['README_zh-hans.md'] lowerCAmelCase__ :Optional[int] = ( '1. **[ALBERT](https://huggingface.co/transformers/model_doc/albert.html)** (from Google Research and the' ' Toyota Technological Institute at Chicago) released with the paper [ALBERT: A Lite BERT for' ' Self-supervised Learning of Language Representations](https://arxiv.org/abs/1909.11942), by Zhenzhong' ' Lan, Mingda Chen, Sebastian Goodman, Kevin Gimpel, Piyush Sharma, Radu Soricut.\n1.' ' **[DistilBERT](https://huggingface.co/transformers/model_doc/distilbert.html)** (from HuggingFace),' ' released together with the paper [DistilBERT, a distilled version of BERT: smaller, faster, cheaper and' ' lighter](https://arxiv.org/abs/1910.01108) by Victor Sanh, Lysandre Debut and Thomas Wolf. The same' ' method has been applied to compress GPT2 into' ' [DistilGPT2](https://github.com/huggingface/transformers/tree/main/examples/distillation), RoBERTa into' ' [DistilRoBERTa](https://github.com/huggingface/transformers/tree/main/examples/distillation),' ' Multilingual BERT into' ' [DistilmBERT](https://github.com/huggingface/transformers/tree/main/examples/distillation) and a German' ' version of DistilBERT.\n1. **[ELECTRA](https://huggingface.co/transformers/model_doc/electra.html)**' ' (from Google Research/Stanford University) released with the paper [ELECTRA: Pre-training text encoders' ' as discriminators rather than generators](https://arxiv.org/abs/2003.10555) by Kevin Clark, Minh-Thang' ' Luong, Quoc V. Le, Christopher D. Manning.' ) lowerCAmelCase__ :Optional[int] = ( '1. **[ALBERT](https://huggingface.co/transformers/model_doc/albert.html)** (来自 Google Research and the' ' Toyota Technological Institute at Chicago) 伴随论文 [ALBERT: A Lite BERT for Self-supervised Learning of' ' Language Representations](https://arxiv.org/abs/1909.11942), 由 Zhenzhong Lan, Mingda Chen, Sebastian' ' Goodman, Kevin Gimpel, Piyush Sharma, Radu Soricut 发布。\n' ) lowerCAmelCase__ :Any = ( '1. **[ALBERT](https://huggingface.co/transformers/model_doc/albert.html)** (来自 Google Research and the' ' Toyota Technological Institute at Chicago) 伴随论文 [ALBERT: A Lite BERT for Self-supervised Learning of' ' Language Representations](https://arxiv.org/abs/1909.11942), 由 Zhenzhong Lan, Mingda Chen, Sebastian' ' Goodman, Kevin Gimpel, Piyush Sharma, Radu Soricut 发布。\n1.' ' **[DistilBERT](https://huggingface.co/transformers/model_doc/distilbert.html)** (来自 HuggingFace) 伴随论文' ' [DistilBERT, a distilled version of BERT: smaller, faster, cheaper and' ' lighter](https://arxiv.org/abs/1910.01108) 由 Victor Sanh, Lysandre Debut and Thomas Wolf 发布。 The same' ' method has been applied to compress GPT2 into' ' [DistilGPT2](https://github.com/huggingface/transformers/tree/main/examples/distillation), RoBERTa into' ' [DistilRoBERTa](https://github.com/huggingface/transformers/tree/main/examples/distillation),' ' Multilingual BERT into' ' [DistilmBERT](https://github.com/huggingface/transformers/tree/main/examples/distillation) and a German' ' version of DistilBERT.\n1. **[ELECTRA](https://huggingface.co/transformers/model_doc/electra.html)** (来自' ' Google Research/Stanford University) 伴随论文 [ELECTRA: Pre-training text encoders as discriminators rather' ' than generators](https://arxiv.org/abs/2003.10555) 由 Kevin Clark, Minh-Thang Luong, Quoc V. Le,' ' Christopher D. Manning 发布。\n' ) lowerCAmelCase__ , lowerCAmelCase__ :Union[str, Any] = check_copies.convert_to_localized_md( __UpperCAmelCase , __UpperCAmelCase , localized_readme['format_model_list'] ) self.assertFalse(__UpperCAmelCase ) self.assertEqual(__UpperCAmelCase , __UpperCAmelCase ) lowerCAmelCase__ , lowerCAmelCase__ :Optional[int] = check_copies.convert_to_localized_md( __UpperCAmelCase , __UpperCAmelCase , localized_readme['format_model_list'] ) # Check whether the number of models is equal to README.md after conversion. self.assertTrue(__UpperCAmelCase ) lowerCAmelCase__ :List[str] = ( '1. **[ALBERT](https://huggingface.co/transformers/model_doc/albert.html)** (from Google Research and the' ' Toyota Technological Institute at Chicago) released with the paper [ALBERT: A Lite BERT for' ' Self-supervised Learning of Language Representations](https://arxiv.org/abs/1909.11942), by Zhenzhong' ' Lan, Mingda Chen, Sebastian Goodman, Kevin Gimpel, Piyush Sharma, Radu Soricut.' ) lowerCAmelCase__ :Dict = ( '1. **[ALBERT](https://huggingface.co/transformers/main/model_doc/albert.html)** (来自 Google Research and' ' the Toyota Technological Institute at Chicago) 伴随论文 [ALBERT: A Lite BERT for Self-supervised Learning of' ' Language Representations](https://arxiv.org/abs/1909.11942), 由 Zhenzhong Lan, Mingda Chen, Sebastian' ' Goodman, Kevin Gimpel, Piyush Sharma, Radu Soricut 发布。\n' ) lowerCAmelCase__ :Optional[Any] = ( '1. **[ALBERT](https://huggingface.co/transformers/model_doc/albert.html)** (来自 Google Research and the' ' Toyota Technological Institute at Chicago) 伴随论文 [ALBERT: A Lite BERT for Self-supervised Learning of' ' Language Representations](https://arxiv.org/abs/1909.11942), 由 Zhenzhong Lan, Mingda Chen, Sebastian' ' Goodman, Kevin Gimpel, Piyush Sharma, Radu Soricut 发布。\n' ) lowerCAmelCase__ , lowerCAmelCase__ :int = check_copies.convert_to_localized_md( __UpperCAmelCase , __UpperCAmelCase , localized_readme['format_model_list'] ) # Check if the model link is synchronized. self.assertEqual(__UpperCAmelCase , __UpperCAmelCase )
93
from math import sqrt def A__ ( SCREAMING_SNAKE_CASE_ : int ) -> bool: """simple docstring""" if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5 , int(sqrt(SCREAMING_SNAKE_CASE_ ) + 1 ) , 6 ): if number % i == 0 or number % (i + 2) == 0: return False return True def A__ ( SCREAMING_SNAKE_CASE_ : int = 1_00_01 ) -> int: """simple docstring""" _UpperCAmelCase = 0 _UpperCAmelCase = 1 while count != nth and number < 3: number += 1 if is_prime(SCREAMING_SNAKE_CASE_ ): count += 1 while count != nth: number += 2 if is_prime(SCREAMING_SNAKE_CASE_ ): count += 1 return number if __name__ == "__main__": print(f'''{solution() = }''')
32
0
'''simple docstring''' import argparse import collections import os import re from transformers.utils import direct_transformers_import # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_table.py SCREAMING_SNAKE_CASE = 'src/transformers' SCREAMING_SNAKE_CASE = 'docs/source/en' SCREAMING_SNAKE_CASE = '.' def lowercase_ ( __A : List[Any] , __A : Dict , __A : int ) -> List[str]: """simple docstring""" with open(__A , '''r''' , encoding='''utf-8''' , newline='''\n''' ) as f: lowercase : Optional[Any] =f.readlines() # Find the start prompt. lowercase : Optional[int] =0 while not lines[start_index].startswith(__A ): start_index += 1 start_index += 1 lowercase : str =start_index while not lines[end_index].startswith(__A ): end_index += 1 end_index -= 1 while len(lines[start_index] ) <= 1: start_index += 1 while len(lines[end_index] ) <= 1: end_index -= 1 end_index += 1 return "".join(lines[start_index:end_index] ), start_index, end_index, lines # Add here suffixes that are used to identify models, separated by | SCREAMING_SNAKE_CASE = 'Model|Encoder|Decoder|ForConditionalGeneration' # Regexes that match TF/Flax/PT model names. SCREAMING_SNAKE_CASE = re.compile(r'TF(.*)(?:Model|Encoder|Decoder|ForConditionalGeneration)') SCREAMING_SNAKE_CASE = re.compile(r'Flax(.*)(?:Model|Encoder|Decoder|ForConditionalGeneration)') # Will match any TF or Flax model too so need to be in an else branch afterthe two previous regexes. SCREAMING_SNAKE_CASE = re.compile(r'(.*)(?:Model|Encoder|Decoder|ForConditionalGeneration)') # This is to make sure the transformers module imported is the one in the repo. SCREAMING_SNAKE_CASE = direct_transformers_import(TRANSFORMERS_PATH) def lowercase_ ( __A : Union[str, Any] ) -> Union[str, Any]: """simple docstring""" lowercase : Optional[int] =re.finditer('''.+?(?:(?<=[a-z])(?=[A-Z])|(?<=[A-Z])(?=[A-Z][a-z])|$)''' , __A ) return [m.group(0 ) for m in matches] def lowercase_ ( __A : Tuple , __A : List[Any] ) -> int: """simple docstring""" lowercase : int =2 if text == '''✅''' or text == '''❌''' else len(__A ) lowercase : int =(width - text_length) // 2 lowercase : Dict =width - text_length - left_indent return " " * left_indent + text + " " * right_indent def lowercase_ ( ) -> int: """simple docstring""" lowercase : List[str] =transformers_module.models.auto.configuration_auto.CONFIG_MAPPING_NAMES lowercase : Union[str, Any] ={ name: config_maping_names[code] for code, name in transformers_module.MODEL_NAMES_MAPPING.items() if code in config_maping_names } lowercase : Dict ={name: config.replace('''Config''' , '''''' ) for name, config in model_name_to_config.items()} # Dictionaries flagging if each model prefix has a slow/fast tokenizer, backend in PT/TF/Flax. lowercase : Optional[int] =collections.defaultdict(__A ) lowercase : List[Any] =collections.defaultdict(__A ) lowercase : List[Any] =collections.defaultdict(__A ) lowercase : str =collections.defaultdict(__A ) lowercase : int =collections.defaultdict(__A ) # Let's lookup through all transformers object (once). for attr_name in dir(__A ): lowercase : int =None if attr_name.endswith('''Tokenizer''' ): lowercase : Optional[Any] =slow_tokenizers lowercase : Dict =attr_name[:-9] elif attr_name.endswith('''TokenizerFast''' ): lowercase : Optional[int] =fast_tokenizers lowercase : Optional[Any] =attr_name[:-1_3] elif _re_tf_models.match(__A ) is not None: lowercase : Optional[Any] =tf_models lowercase : Any =_re_tf_models.match(__A ).groups()[0] elif _re_flax_models.match(__A ) is not None: lowercase : Any =flax_models lowercase : Optional[int] =_re_flax_models.match(__A ).groups()[0] elif _re_pt_models.match(__A ) is not None: lowercase : List[str] =pt_models lowercase : Dict =_re_pt_models.match(__A ).groups()[0] if lookup_dict is not None: while len(__A ) > 0: if attr_name in model_name_to_prefix.values(): lowercase : Optional[int] =True break # Try again after removing the last word in the name lowercase : List[str] =''''''.join(camel_case_split(__A )[:-1] ) # Let's build that table! lowercase : List[Any] =list(model_name_to_config.keys() ) model_names.sort(key=str.lower ) lowercase : Tuple =['''Model''', '''Tokenizer slow''', '''Tokenizer fast''', '''PyTorch support''', '''TensorFlow support''', '''Flax Support'''] # We'll need widths to properly display everything in the center (+2 is to leave one extra space on each side). lowercase : Optional[Any] =[len(__A ) + 2 for c in columns] lowercase : int =max([len(__A ) for name in model_names] ) + 2 # Build the table per se lowercase : Any ='''|''' + '''|'''.join([_center_text(__A , __A ) for c, w in zip(__A , __A )] ) + '''|\n''' # Use ":-----:" format to center-aligned table cell texts table += "|" + "|".join([''':''' + '''-''' * (w - 2) + ''':''' for w in widths] ) + "|\n" lowercase : Dict ={True: '''✅''', False: '''❌'''} for name in model_names: lowercase : Dict =model_name_to_prefix[name] lowercase : Dict =[ name, check[slow_tokenizers[prefix]], check[fast_tokenizers[prefix]], check[pt_models[prefix]], check[tf_models[prefix]], check[flax_models[prefix]], ] table += "|" + "|".join([_center_text(__A , __A ) for l, w in zip(__A , __A )] ) + "|\n" return table def lowercase_ ( __A : Any=False ) -> Optional[Any]: """simple docstring""" lowercase , lowercase , lowercase , lowercase : Optional[Any] =_find_text_in_file( filename=os.path.join(__A , '''index.md''' ) , start_prompt='''<!--This table is updated automatically from the auto modules''' , end_prompt='''<!-- End table-->''' , ) lowercase : List[Any] =get_model_table_from_auto_modules() if current_table != new_table: if overwrite: with open(os.path.join(__A , '''index.md''' ) , '''w''' , encoding='''utf-8''' , newline='''\n''' ) as f: f.writelines(lines[:start_index] + [new_table] + lines[end_index:] ) else: raise ValueError( '''The model table in the `index.md` has not been updated. Run `make fix-copies` to fix this.''' ) if __name__ == "__main__": SCREAMING_SNAKE_CASE = argparse.ArgumentParser() parser.add_argument('--fix_and_overwrite', action='store_true', help='Whether to fix inconsistencies.') SCREAMING_SNAKE_CASE = parser.parse_args() check_model_table(args.fix_and_overwrite)
94
def A__ ( SCREAMING_SNAKE_CASE_ : int ) -> bool: """simple docstring""" if not isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): _UpperCAmelCase = F'''Input value of [number={number}] must be an integer''' raise TypeError(SCREAMING_SNAKE_CASE_ ) if number < 0: return False _UpperCAmelCase = number * number while number > 0: if number % 10 != number_square % 10: return False number //= 10 number_square //= 10 return True if __name__ == "__main__": import doctest doctest.testmod()
32
0
"""simple docstring""" import os from typing import Optional import fsspec from fsspec.archive import AbstractArchiveFileSystem from fsspec.utils import DEFAULT_BLOCK_SIZE class UpperCamelCase_ (__A ): __magic_name__ = '''''' __magic_name__ = ( None # protocol passed in prefix to the url. ex: "gzip", for gzip://file.txt::http://foo.bar/file.txt.gz ) __magic_name__ = None # compression type in fsspec. ex: "gzip" __magic_name__ = None # extension of the filename to strip. ex: "".gz" to get file.txt from file.txt.gz def __init__( self : List[Any] , lowerCAmelCase_ : str = "" , lowerCAmelCase_ : Optional[str] = None , lowerCAmelCase_ : Optional[dict] = None , **lowerCAmelCase_ : List[str] ) -> List[Any]: super().__init__(self , **lowerCAmelCase_ ) # always open as "rb" since fsspec can then use the TextIOWrapper to make it work for "r" mode UpperCAmelCase_ : Dict = fsspec.open( lowerCAmelCase_ , mode="rb" , protocol=lowerCAmelCase_ , compression=self.compression , client_kwargs={ "requote_redirect_url": False, # see https://github.com/huggingface/datasets/pull/5459 "trust_env": True, # Enable reading proxy env variables. **(target_options or {}).pop("client_kwargs" , {} ), # To avoid issues if it was already passed. } , **(target_options or {}) , ) UpperCAmelCase_ : Optional[int] = os.path.basename(self.file.path.split("::" )[0] ) UpperCAmelCase_ : Any = ( self.compressed_name[: self.compressed_name.rindex("." )] if "." in self.compressed_name else self.compressed_name ) UpperCAmelCase_ : Any = None @classmethod def _SCREAMING_SNAKE_CASE ( cls : Optional[Any] , lowerCAmelCase_ : List[str] ) -> Any: # compressed file paths are always relative to the archive root return super()._strip_protocol(lowerCAmelCase_ ).lstrip("/" ) def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> List[str]: if self.dir_cache is None: UpperCAmelCase_ : Optional[Any] = {**self.file.fs.info(self.file.path ), "name": self.uncompressed_name} UpperCAmelCase_ : str = {f["name"]: f} def _SCREAMING_SNAKE_CASE ( self : int , lowerCAmelCase_ : str ) -> Any: return self.file.open().read() def _SCREAMING_SNAKE_CASE ( self : Optional[int] , lowerCAmelCase_ : str , lowerCAmelCase_ : str = "rb" , lowerCAmelCase_ : List[str]=None , lowerCAmelCase_ : List[str]=True , lowerCAmelCase_ : int=None , **lowerCAmelCase_ : Tuple , ) -> Tuple: UpperCAmelCase_ : List[str] = self._strip_protocol(lowerCAmelCase_ ) if mode != "rb": raise ValueError(f"""Tried to read with mode {mode} on file {self.file.path} opened with mode 'rb'""" ) return self.file.open() class UpperCamelCase_ (__A ): __magic_name__ = '''bz2''' __magic_name__ = '''bz2''' __magic_name__ = '''.bz2''' class UpperCamelCase_ (__A ): __magic_name__ = '''gzip''' __magic_name__ = '''gzip''' __magic_name__ = '''.gz''' class UpperCamelCase_ (__A ): __magic_name__ = '''lz4''' __magic_name__ = '''lz4''' __magic_name__ = '''.lz4''' class UpperCamelCase_ (__A ): __magic_name__ = '''xz''' __magic_name__ = '''xz''' __magic_name__ = '''.xz''' class UpperCamelCase_ (__A ): __magic_name__ = '''zstd''' __magic_name__ = '''zstd''' __magic_name__ = '''.zst''' def __init__( self : Tuple , lowerCAmelCase_ : str , lowerCAmelCase_ : str = "rb" , lowerCAmelCase_ : Optional[str] = None , lowerCAmelCase_ : Optional[dict] = None , lowerCAmelCase_ : int = DEFAULT_BLOCK_SIZE , **lowerCAmelCase_ : List[Any] , ) -> Dict: super().__init__( fo=lowerCAmelCase_ , mode=lowerCAmelCase_ , target_protocol=lowerCAmelCase_ , target_options=lowerCAmelCase_ , block_size=lowerCAmelCase_ , **lowerCAmelCase_ , ) # We need to wrap the zstd decompressor to avoid this error in fsspec==2021.7.0 and zstandard==0.15.2: # # File "/Users/user/.virtualenvs/hf-datasets/lib/python3.7/site-packages/fsspec/core.py", line 145, in open # out.close = close # AttributeError: 'zstd.ZstdDecompressionReader' object attribute 'close' is read-only # # see https://github.com/intake/filesystem_spec/issues/725 UpperCAmelCase_ : Optional[Any] = self.file.__enter__ class UpperCamelCase_ : def __init__( self : Tuple , lowerCAmelCase_ : List[Any] ) -> List[Any]: UpperCAmelCase_ : Optional[int] = file_ def __enter__( self : Tuple ) -> List[Any]: self._file.__enter__() return self def __exit__( self : Union[str, Any] , *lowerCAmelCase_ : int , **lowerCAmelCase_ : int ) -> Optional[int]: self._file.__exit__(*lowerCAmelCase_ , **lowerCAmelCase_ ) def __iter__( self : Optional[int] ) -> int: return iter(self._file ) def _SCREAMING_SNAKE_CASE ( self : Optional[int] ) -> int: return next(self._file ) def __getattr__( self : Optional[int] , lowerCAmelCase_ : Optional[Any] ) -> List[Any]: return getattr(self._file , lowerCAmelCase_ ) def fixed_enter(*lowerCAmelCase_ : int , **lowerCAmelCase_ : Optional[Any] ): return WrappedFile(_enter(*lowerCAmelCase_ , **lowerCAmelCase_ ) ) UpperCAmelCase_ : List[Any] = fixed_enter
95
from dataclasses import dataclass, field from typing import ClassVar, Dict from ..features import Features, Value from .base import TaskTemplate @dataclass(frozen=A__ ) class __UpperCamelCase ( A__ ): __A : str = field(default="""language-modeling""" , metadata={"""include_in_asdict_even_if_is_default""": True} ) __A : ClassVar[Features] = Features({"""text""": Value("""string""" )} ) __A : ClassVar[Features] = Features({} ) __A : str = "text" @property def UpperCamelCase( self ): return {self.text_column: "text"}
32
0
"""simple docstring""" from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, is_valid_image, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging if is_vision_available(): import PIL __lowerCamelCase = logging.get_logger(__name__) def a ( __UpperCAmelCase : List[str] ) -> List[List[ImageInput]]: if isinstance(__UpperCAmelCase , (list, tuple) ) and isinstance(videos[0] , (list, tuple) ) and is_valid_image(videos[0][0] ): return videos elif isinstance(__UpperCAmelCase , (list, tuple) ) and is_valid_image(videos[0] ): return [videos] elif is_valid_image(__UpperCAmelCase ): return [[videos]] raise ValueError(f'Could not make batched video from {videos}' ) class __A ( SCREAMING_SNAKE_CASE_ ): UpperCAmelCase__ = ["pixel_values"] def __init__( self : str , __snake_case : bool = True , __snake_case : Dict[str, int] = None , __snake_case : PILImageResampling = PILImageResampling.BILINEAR , __snake_case : bool = True , __snake_case : Dict[str, int] = None , __snake_case : bool = True , __snake_case : Union[int, float] = 1 / 2_5_5 , __snake_case : bool = True , __snake_case : Optional[Union[float, List[float]]] = None , __snake_case : Optional[Union[float, List[float]]] = None , **__snake_case : List[str] , ) -> None: super().__init__(**__snake_case ) __magic_name__: Tuple = size if size is not None else {"""shortest_edge""": 2_2_4} __magic_name__: str = get_size_dict(__snake_case , default_to_square=__snake_case ) __magic_name__: Optional[int] = crop_size if crop_size is not None else {"""height""": 2_2_4, """width""": 2_2_4} __magic_name__: str = get_size_dict(__snake_case , param_name="""crop_size""" ) __magic_name__: List[str] = do_resize __magic_name__: Optional[int] = size __magic_name__: Dict = do_center_crop __magic_name__: Any = crop_size __magic_name__: List[str] = resample __magic_name__: str = do_rescale __magic_name__: int = rescale_factor __magic_name__: List[str] = do_normalize __magic_name__: Any = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN __magic_name__: List[str] = image_std if image_std is not None else IMAGENET_STANDARD_STD def lowerCamelCase__ ( self : List[Any] , __snake_case : np.ndarray , __snake_case : Dict[str, int] , __snake_case : PILImageResampling = PILImageResampling.BILINEAR , __snake_case : Optional[Union[str, ChannelDimension]] = None , **__snake_case : Optional[Any] , ) -> np.ndarray: __magic_name__: Optional[Any] = get_size_dict(__snake_case , default_to_square=__snake_case ) if "shortest_edge" in size: __magic_name__: Tuple = get_resize_output_image_size(__snake_case , size["""shortest_edge"""] , default_to_square=__snake_case ) elif "height" in size and "width" in size: __magic_name__: Optional[Any] = (size["""height"""], size["""width"""]) else: raise ValueError(F'Size must have \'height\' and \'width\' or \'shortest_edge\' as keys. Got {size.keys()}' ) return resize(__snake_case , size=__snake_case , resample=__snake_case , data_format=__snake_case , **__snake_case ) def lowerCamelCase__ ( self : List[Any] , __snake_case : np.ndarray , __snake_case : Dict[str, int] , __snake_case : Optional[Union[str, ChannelDimension]] = None , **__snake_case : Optional[int] , ) -> np.ndarray: __magic_name__: str = get_size_dict(__snake_case ) if "height" not in size or "width" not in size: raise ValueError(F'Size must have \'height\' and \'width\' as keys. Got {size.keys()}' ) return center_crop(__snake_case , size=(size["""height"""], size["""width"""]) , data_format=__snake_case , **__snake_case ) def lowerCamelCase__ ( self : List[Any] , __snake_case : np.ndarray , __snake_case : Union[int, float] , __snake_case : Optional[Union[str, ChannelDimension]] = None , **__snake_case : Optional[Any] , ) -> Union[str, Any]: return rescale(__snake_case , scale=__snake_case , data_format=__snake_case , **__snake_case ) def lowerCamelCase__ ( self : str , __snake_case : np.ndarray , __snake_case : Union[float, List[float]] , __snake_case : Union[float, List[float]] , __snake_case : Optional[Union[str, ChannelDimension]] = None , **__snake_case : Any , ) -> np.ndarray: return normalize(__snake_case , mean=__snake_case , std=__snake_case , data_format=__snake_case , **__snake_case ) def lowerCamelCase__ ( self : Union[str, Any] , __snake_case : ImageInput , __snake_case : bool = None , __snake_case : Dict[str, int] = None , __snake_case : PILImageResampling = None , __snake_case : bool = None , __snake_case : Dict[str, int] = None , __snake_case : bool = None , __snake_case : float = None , __snake_case : bool = None , __snake_case : Optional[Union[float, List[float]]] = None , __snake_case : Optional[Union[float, List[float]]] = None , __snake_case : Optional[ChannelDimension] = ChannelDimension.FIRST , ) -> np.ndarray: if do_resize and size is None or resample is None: raise ValueError("""Size and resample must be specified if do_resize is True.""" ) if do_center_crop and crop_size is None: raise ValueError("""Crop size must be specified if do_center_crop is True.""" ) if do_rescale and rescale_factor is None: raise ValueError("""Rescale factor must be specified if do_rescale is True.""" ) if do_normalize and (image_mean is None or image_std is None): raise ValueError("""Image mean and std must be specified if do_normalize is True.""" ) # All transformations expect numpy arrays. __magic_name__: int = to_numpy_array(__snake_case ) if do_resize: __magic_name__: Union[str, Any] = self.resize(image=__snake_case , size=__snake_case , resample=__snake_case ) if do_center_crop: __magic_name__: str = self.center_crop(__snake_case , size=__snake_case ) if do_rescale: __magic_name__: str = self.rescale(image=__snake_case , scale=__snake_case ) if do_normalize: __magic_name__: List[Any] = self.normalize(image=__snake_case , mean=__snake_case , std=__snake_case ) __magic_name__: str = to_channel_dimension_format(__snake_case , __snake_case ) return image def lowerCamelCase__ ( self : str , __snake_case : ImageInput , __snake_case : bool = None , __snake_case : Dict[str, int] = None , __snake_case : PILImageResampling = None , __snake_case : bool = None , __snake_case : Dict[str, int] = None , __snake_case : bool = None , __snake_case : float = None , __snake_case : bool = None , __snake_case : Optional[Union[float, List[float]]] = None , __snake_case : Optional[Union[float, List[float]]] = None , __snake_case : Optional[Union[str, TensorType]] = None , __snake_case : ChannelDimension = ChannelDimension.FIRST , **__snake_case : int , ) -> PIL.Image.Image: __magic_name__: List[Any] = do_resize if do_resize is not None else self.do_resize __magic_name__: List[str] = resample if resample is not None else self.resample __magic_name__: Optional[int] = do_center_crop if do_center_crop is not None else self.do_center_crop __magic_name__: Optional[Any] = do_rescale if do_rescale is not None else self.do_rescale __magic_name__: Dict = rescale_factor if rescale_factor is not None else self.rescale_factor __magic_name__: Optional[Any] = do_normalize if do_normalize is not None else self.do_normalize __magic_name__: Dict = image_mean if image_mean is not None else self.image_mean __magic_name__: List[str] = image_std if image_std is not None else self.image_std __magic_name__: List[str] = size if size is not None else self.size __magic_name__: Tuple = get_size_dict(__snake_case , default_to_square=__snake_case ) __magic_name__: Optional[Any] = crop_size if crop_size is not None else self.crop_size __magic_name__: List[str] = get_size_dict(__snake_case , param_name="""crop_size""" ) if not valid_images(__snake_case ): raise ValueError( """Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, """ """torch.Tensor, tf.Tensor or jax.ndarray.""" ) __magic_name__: Tuple = make_batched(__snake_case ) __magic_name__: int = [ [ self._preprocess_image( image=__snake_case , do_resize=__snake_case , size=__snake_case , resample=__snake_case , do_center_crop=__snake_case , crop_size=__snake_case , do_rescale=__snake_case , rescale_factor=__snake_case , do_normalize=__snake_case , image_mean=__snake_case , image_std=__snake_case , data_format=__snake_case , ) for img in video ] for video in videos ] __magic_name__: Tuple = {"""pixel_values""": videos} return BatchFeature(data=__snake_case , tensor_type=__snake_case )
96
import os import re import warnings from shutil import copyfile from typing import TYPE_CHECKING, Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import PreTrainedTokenizer if TYPE_CHECKING: from ...tokenization_utils_base import TextInput from ...utils import logging UpperCAmelCase_ = logging.get_logger(__name__) UpperCAmelCase_ = {"vocab_file": "spiece.model"} UpperCAmelCase_ = { "vocab_file": { "t5-small": "https://huggingface.co/t5-small/resolve/main/spiece.model", "t5-base": "https://huggingface.co/t5-base/resolve/main/spiece.model", "t5-large": "https://huggingface.co/t5-large/resolve/main/spiece.model", "t5-3b": "https://huggingface.co/t5-3b/resolve/main/spiece.model", "t5-11b": "https://huggingface.co/t5-11b/resolve/main/spiece.model", } } # TODO(PVP) - this should be removed in Transformers v5 UpperCAmelCase_ = { "t5-small": 5_12, "t5-base": 5_12, "t5-large": 5_12, "t5-3b": 5_12, "t5-11b": 5_12, } UpperCAmelCase_ = "▁" class __UpperCamelCase ( A__ ): __A : Any = VOCAB_FILES_NAMES __A : Union[str, Any] = PRETRAINED_VOCAB_FILES_MAP __A : Any = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __A : Tuple = ["""input_ids""", """attention_mask"""] def __init__( self , _UpperCamelCase , _UpperCamelCase="</s>" , _UpperCamelCase="<unk>" , _UpperCamelCase="<pad>" , _UpperCamelCase=100 , _UpperCamelCase=None , _UpperCamelCase = None , _UpperCamelCase=True , **_UpperCamelCase , ): # Add extra_ids to the special token list if extra_ids > 0 and additional_special_tokens is None: _UpperCAmelCase = [f'''<extra_id_{i}>''' for i in range(_UpperCamelCase )] elif extra_ids > 0 and additional_special_tokens is not None: # Check that we have the right number of extra_id special tokens _UpperCAmelCase = len(set(filter(lambda _UpperCamelCase : bool('''extra_id''' in str(_UpperCamelCase ) ) , _UpperCamelCase ) ) ) if extra_tokens != extra_ids: raise ValueError( f'''Both extra_ids ({extra_ids}) and additional_special_tokens ({additional_special_tokens}) are''' ''' provided to T5Tokenizer. In this case the additional_special_tokens must include the extra_ids''' ''' tokens''' ) if legacy: logger.warning_once( f'''You are using the legacy behaviour of the {self.__class__}. This means that tokens that come after special tokens will not be properly handled. We recommend you to''' ''' read the related pull request available at https://github.com/huggingface/transformers/pull/24565''' ) _UpperCAmelCase = legacy _UpperCAmelCase = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( eos_token=_UpperCamelCase , unk_token=_UpperCamelCase , pad_token=_UpperCamelCase , extra_ids=_UpperCamelCase , additional_special_tokens=_UpperCamelCase , sp_model_kwargs=self.sp_model_kwargs , legacy=_UpperCamelCase , **_UpperCamelCase , ) _UpperCAmelCase = vocab_file _UpperCAmelCase = extra_ids _UpperCAmelCase = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(_UpperCamelCase ) @staticmethod def UpperCamelCase( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ): if pretrained_model_name_or_path in TaTokenizer.max_model_input_sizes: _UpperCAmelCase = TaTokenizer.max_model_input_sizes[pretrained_model_name_or_path] if init_max_model_length is not None and init_max_model_length != max_model_length: return init_max_model_length elif init_max_model_length is None: warnings.warn( '''This tokenizer was incorrectly instantiated with a model max length of''' f''' {deprecated_max_model_length} which will be corrected in Transformers v5.\nFor now, this''' ''' behavior is kept to avoid breaking backwards compatibility when padding/encoding with''' ''' `truncation is True`.\n- Be aware that you SHOULD NOT rely on''' f''' {pretrained_model_name_or_path} automatically truncating your input to''' f''' {deprecated_max_model_length} when padding/encoding.\n- If you want to encode/pad to sequences''' f''' longer than {deprecated_max_model_length} you can either instantiate this tokenizer with''' ''' `model_max_length` or pass `max_length` when encoding/padding.\n- To avoid this warning, please''' ''' instantiate this tokenizer with `model_max_length` set to your preferred value.''' , _UpperCamelCase , ) return max_model_length @property def UpperCamelCase( self ): return self.sp_model.get_piece_size() + self._extra_ids def UpperCamelCase( self ): _UpperCAmelCase = {self.convert_ids_to_tokens(_UpperCamelCase ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def UpperCamelCase( self , _UpperCamelCase , _UpperCamelCase = None , _UpperCamelCase = False ): if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=_UpperCamelCase , token_ids_a=_UpperCamelCase , already_has_special_tokens=_UpperCamelCase ) # normal case: some special tokens if token_ids_a is None: return ([0] * len(_UpperCamelCase )) + [1] return ([0] * len(_UpperCamelCase )) + [1] + ([0] * len(_UpperCamelCase )) + [1] def UpperCamelCase( self ): return list( set(filter(lambda _UpperCamelCase : bool(re.search(R'''<extra_id_\d+>''' , _UpperCamelCase ) ) is not None , self.additional_special_tokens ) ) ) def UpperCamelCase( self ): return [self._convert_token_to_id(_UpperCamelCase ) for token in self.get_sentinel_tokens()] def UpperCamelCase( self , _UpperCamelCase ): if len(_UpperCamelCase ) > 0 and token_ids[-1] == self.eos_token_id: warnings.warn( f'''This sequence already has {self.eos_token}. In future versions this behavior may lead to duplicated''' ''' eos tokens being added.''' ) return token_ids else: return token_ids + [self.eos_token_id] def UpperCamelCase( self , _UpperCamelCase , _UpperCamelCase = None ): _UpperCAmelCase = [self.eos_token_id] if token_ids_a is None: return len(token_ids_a + eos ) * [0] return len(token_ids_a + eos + token_ids_a + eos ) * [0] def UpperCamelCase( self , _UpperCamelCase , _UpperCamelCase = None ): _UpperCAmelCase = self._add_eos_if_not_present(_UpperCamelCase ) if token_ids_a is None: return token_ids_a else: _UpperCAmelCase = self._add_eos_if_not_present(_UpperCamelCase ) return token_ids_a + token_ids_a def __getstate__( self ): _UpperCAmelCase = self.__dict__.copy() _UpperCAmelCase = None return state def __setstate__( self , _UpperCamelCase ): _UpperCAmelCase = d # for backward compatibility if not hasattr(self , '''sp_model_kwargs''' ): _UpperCAmelCase = {} _UpperCAmelCase = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def UpperCamelCase( self , _UpperCamelCase , **_UpperCamelCase ): # Replace the SPIECE_UNDERLINE with a space to make sure SPIECE_UNDERLINE is only used at # the beginning of the text if not self.legacy: _UpperCAmelCase = SPIECE_UNDERLINE + text.replace(_UpperCamelCase , ''' ''' ) return super().tokenize(_UpperCamelCase , **_UpperCamelCase ) def UpperCamelCase( self , _UpperCamelCase , **_UpperCamelCase ): if not self.legacy: _UpperCAmelCase = text.startswith(_UpperCamelCase ) if is_first: _UpperCAmelCase = text[1:] _UpperCAmelCase = self.sp_model.encode(_UpperCamelCase , out_type=_UpperCamelCase ) if not self.legacy and not is_first and not text.startswith(''' ''' ) and tokens[0].startswith(_UpperCamelCase ): _UpperCAmelCase = ([tokens[0][1:]] if len(tokens[0] ) > 1 else []) + tokens[1:] return tokens def UpperCamelCase( self , _UpperCamelCase ): if token.startswith('''<extra_id_''' ): _UpperCAmelCase = re.match(R'''<extra_id_(\d+)>''' , _UpperCamelCase ) _UpperCAmelCase = int(match.group(1 ) ) return self.vocab_size - num - 1 return self.sp_model.piece_to_id(_UpperCamelCase ) def UpperCamelCase( self , _UpperCamelCase ): if index < self.sp_model.get_piece_size(): _UpperCAmelCase = self.sp_model.IdToPiece(_UpperCamelCase ) else: _UpperCAmelCase = f'''<extra_id_{self.vocab_size - 1 - index}>''' return token def UpperCamelCase( self , _UpperCamelCase ): _UpperCAmelCase = [] _UpperCAmelCase = '''''' _UpperCAmelCase = False for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: if not prev_is_special: out_string += " " out_string += self.sp_model.decode(_UpperCamelCase ) + token _UpperCAmelCase = True _UpperCAmelCase = [] else: current_sub_tokens.append(_UpperCamelCase ) _UpperCAmelCase = False out_string += self.sp_model.decode(_UpperCamelCase ) return out_string.strip() def UpperCamelCase( self , _UpperCamelCase , _UpperCamelCase = None ): if not os.path.isdir(_UpperCamelCase ): logger.error(f'''Vocabulary path ({save_directory}) should be a directory''' ) return _UpperCAmelCase = os.path.join( _UpperCamelCase , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(_UpperCamelCase ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , _UpperCamelCase ) elif not os.path.isfile(self.vocab_file ): with open(_UpperCamelCase , '''wb''' ) as fi: _UpperCAmelCase = self.sp_model.serialized_model_proto() fi.write(_UpperCamelCase ) return (out_vocab_file,)
32
0
def a ( snake_case__: int ): '''simple docstring''' if not isinstance(snake_case__ , snake_case__ ): raise ValueError('''multiplicative_persistence() only accepts integral values''' ) if num < 0: raise ValueError('''multiplicative_persistence() does not accept negative values''' ) lowercase_ = 0 lowercase_ = str(snake_case__ ) while len(snake_case__ ) != 1: lowercase_ = [int(snake_case__ ) for i in num_string] lowercase_ = 1 for i in range(0 , len(snake_case__ ) ): total *= numbers[i] lowercase_ = str(snake_case__ ) steps += 1 return steps def a ( snake_case__: int ): '''simple docstring''' if not isinstance(snake_case__ , snake_case__ ): raise ValueError('''additive_persistence() only accepts integral values''' ) if num < 0: raise ValueError('''additive_persistence() does not accept negative values''' ) lowercase_ = 0 lowercase_ = str(snake_case__ ) while len(snake_case__ ) != 1: lowercase_ = [int(snake_case__ ) for i in num_string] lowercase_ = 0 for i in range(0 , len(snake_case__ ) ): total += numbers[i] lowercase_ = str(snake_case__ ) steps += 1 return steps if __name__ == "__main__": import doctest doctest.testmod()
97
from __future__ import annotations def A__ ( SCREAMING_SNAKE_CASE_ : int ) -> bool: """simple docstring""" _UpperCAmelCase = str(SCREAMING_SNAKE_CASE_ ) return len(SCREAMING_SNAKE_CASE_ ) == 9 and set(SCREAMING_SNAKE_CASE_ ) == set('''123456789''' ) def A__ ( ) -> int | None: """simple docstring""" for base_num in range(99_99 , 49_99 , -1 ): _UpperCAmelCase = 10_00_02 * base_num if is_9_pandigital(SCREAMING_SNAKE_CASE_ ): return candidate for base_num in range(3_33 , 99 , -1 ): _UpperCAmelCase = 1_00_20_03 * base_num if is_9_pandigital(SCREAMING_SNAKE_CASE_ ): return candidate return None if __name__ == "__main__": print(f'''{solution() = }''')
32
0
'''simple docstring''' import tempfile import unittest import numpy as np from diffusers import ( DDIMScheduler, DPMSolverMultistepScheduler, EulerAncestralDiscreteScheduler, EulerDiscreteScheduler, LMSDiscreteScheduler, OnnxStableDiffusionPipeline, PNDMScheduler, ) from diffusers.utils.testing_utils import is_onnx_available, nightly, require_onnxruntime, require_torch_gpu from ..test_pipelines_onnx_common import OnnxPipelineTesterMixin if is_onnx_available(): import onnxruntime as ort class __lowerCAmelCase ( __magic_name__ , unittest.TestCase ): """simple docstring""" _snake_case : Dict = 'hf-internal-testing/tiny-random-OnnxStableDiffusionPipeline' def snake_case__ ( self : Optional[int] , lowerCAmelCase__ : int=0 ) -> Union[str, Any]: '''simple docstring''' _UpperCamelCase = np.random.RandomState(lowerCAmelCase__ ) _UpperCamelCase = { '''prompt''': '''A painting of a squirrel eating a burger''', '''generator''': generator, '''num_inference_steps''': 2, '''guidance_scale''': 7.5, '''output_type''': '''numpy''', } return inputs def snake_case__ ( self : Any ) -> Union[str, Any]: '''simple docstring''' _UpperCamelCase = OnnxStableDiffusionPipeline.from_pretrained(self.hub_checkpoint , provider='''CPUExecutionProvider''' ) pipe.set_progress_bar_config(disable=lowerCAmelCase__ ) _UpperCamelCase = self.get_dummy_inputs() _UpperCamelCase = pipe(**lowerCAmelCase__ ).images _UpperCamelCase = image[0, -3:, -3:, -1] assert image.shape == (1, 128, 128, 3) _UpperCamelCase = np.array([0.65072, 0.58492, 0.48219, 0.55521, 0.53180, 0.55939, 0.50697, 0.39800, 0.46455] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def snake_case__ ( self : List[Any] ) -> Optional[int]: '''simple docstring''' _UpperCamelCase = OnnxStableDiffusionPipeline.from_pretrained(self.hub_checkpoint , provider='''CPUExecutionProvider''' ) _UpperCamelCase = PNDMScheduler.from_config(pipe.scheduler.config , skip_prk_steps=lowerCAmelCase__ ) pipe.set_progress_bar_config(disable=lowerCAmelCase__ ) _UpperCamelCase = self.get_dummy_inputs() _UpperCamelCase = pipe(**lowerCAmelCase__ ).images _UpperCamelCase = image[0, -3:, -3:, -1] assert image.shape == (1, 128, 128, 3) _UpperCamelCase = np.array([0.65863, 0.59425, 0.49326, 0.56313, 0.53875, 0.56627, 0.51065, 0.39777, 0.46330] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def snake_case__ ( self : List[str] ) -> List[str]: '''simple docstring''' _UpperCamelCase = OnnxStableDiffusionPipeline.from_pretrained(self.hub_checkpoint , provider='''CPUExecutionProvider''' ) _UpperCamelCase = LMSDiscreteScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=lowerCAmelCase__ ) _UpperCamelCase = self.get_dummy_inputs() _UpperCamelCase = pipe(**lowerCAmelCase__ ).images _UpperCamelCase = image[0, -3:, -3:, -1] assert image.shape == (1, 128, 128, 3) _UpperCamelCase = np.array([0.53755, 0.60786, 0.47402, 0.49488, 0.51869, 0.49819, 0.47985, 0.38957, 0.44279] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def snake_case__ ( self : Tuple ) -> Optional[int]: '''simple docstring''' _UpperCamelCase = OnnxStableDiffusionPipeline.from_pretrained(self.hub_checkpoint , provider='''CPUExecutionProvider''' ) _UpperCamelCase = EulerDiscreteScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=lowerCAmelCase__ ) _UpperCamelCase = self.get_dummy_inputs() _UpperCamelCase = pipe(**lowerCAmelCase__ ).images _UpperCamelCase = image[0, -3:, -3:, -1] assert image.shape == (1, 128, 128, 3) _UpperCamelCase = np.array([0.53755, 0.60786, 0.47402, 0.49488, 0.51869, 0.49819, 0.47985, 0.38957, 0.44279] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def snake_case__ ( self : Dict ) -> List[str]: '''simple docstring''' _UpperCamelCase = OnnxStableDiffusionPipeline.from_pretrained(self.hub_checkpoint , provider='''CPUExecutionProvider''' ) _UpperCamelCase = EulerAncestralDiscreteScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=lowerCAmelCase__ ) _UpperCamelCase = self.get_dummy_inputs() _UpperCamelCase = pipe(**lowerCAmelCase__ ).images _UpperCamelCase = image[0, -3:, -3:, -1] assert image.shape == (1, 128, 128, 3) _UpperCamelCase = np.array([0.53817, 0.60812, 0.47384, 0.49530, 0.51894, 0.49814, 0.47984, 0.38958, 0.44271] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def snake_case__ ( self : List[str] ) -> Union[str, Any]: '''simple docstring''' _UpperCamelCase = OnnxStableDiffusionPipeline.from_pretrained(self.hub_checkpoint , provider='''CPUExecutionProvider''' ) _UpperCamelCase = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=lowerCAmelCase__ ) _UpperCamelCase = self.get_dummy_inputs() _UpperCamelCase = pipe(**lowerCAmelCase__ ).images _UpperCamelCase = image[0, -3:, -3:, -1] assert image.shape == (1, 128, 128, 3) _UpperCamelCase = np.array([0.53895, 0.60808, 0.47933, 0.49608, 0.51886, 0.49950, 0.48053, 0.38957, 0.44200] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def snake_case__ ( self : Optional[int] ) -> List[Any]: '''simple docstring''' _UpperCamelCase = OnnxStableDiffusionPipeline.from_pretrained(self.hub_checkpoint , provider='''CPUExecutionProvider''' ) pipe.set_progress_bar_config(disable=lowerCAmelCase__ ) _UpperCamelCase = self.get_dummy_inputs() _UpperCamelCase = 3 * [inputs['''prompt''']] # forward _UpperCamelCase = pipe(**lowerCAmelCase__ ) _UpperCamelCase = output.images[0, -3:, -3:, -1] _UpperCamelCase = self.get_dummy_inputs() _UpperCamelCase = 3 * [inputs.pop('''prompt''' )] _UpperCamelCase = pipe.tokenizer( lowerCAmelCase__ , padding='''max_length''' , max_length=pipe.tokenizer.model_max_length , truncation=lowerCAmelCase__ , return_tensors='''np''' , ) _UpperCamelCase = text_inputs['''input_ids'''] _UpperCamelCase = pipe.text_encoder(input_ids=text_inputs.astype(np.intaa ) )[0] _UpperCamelCase = prompt_embeds # forward _UpperCamelCase = pipe(**lowerCAmelCase__ ) _UpperCamelCase = output.images[0, -3:, -3:, -1] assert np.abs(image_slice_a.flatten() - image_slice_a.flatten() ).max() < 1e-4 def snake_case__ ( self : Tuple ) -> int: '''simple docstring''' _UpperCamelCase = OnnxStableDiffusionPipeline.from_pretrained(self.hub_checkpoint , provider='''CPUExecutionProvider''' ) pipe.set_progress_bar_config(disable=lowerCAmelCase__ ) _UpperCamelCase = self.get_dummy_inputs() _UpperCamelCase = 3 * ['''this is a negative prompt'''] _UpperCamelCase = negative_prompt _UpperCamelCase = 3 * [inputs['''prompt''']] # forward _UpperCamelCase = pipe(**lowerCAmelCase__ ) _UpperCamelCase = output.images[0, -3:, -3:, -1] _UpperCamelCase = self.get_dummy_inputs() _UpperCamelCase = 3 * [inputs.pop('''prompt''' )] _UpperCamelCase = [] for p in [prompt, negative_prompt]: _UpperCamelCase = pipe.tokenizer( lowerCAmelCase__ , padding='''max_length''' , max_length=pipe.tokenizer.model_max_length , truncation=lowerCAmelCase__ , return_tensors='''np''' , ) _UpperCamelCase = text_inputs['''input_ids'''] embeds.append(pipe.text_encoder(input_ids=text_inputs.astype(np.intaa ) )[0] ) _UpperCamelCase , _UpperCamelCase = embeds # forward _UpperCamelCase = pipe(**lowerCAmelCase__ ) _UpperCamelCase = output.images[0, -3:, -3:, -1] assert np.abs(image_slice_a.flatten() - image_slice_a.flatten() ).max() < 1e-4 @nightly @require_onnxruntime @require_torch_gpu class __lowerCAmelCase ( unittest.TestCase ): """simple docstring""" @property def snake_case__ ( self : Any ) -> List[str]: '''simple docstring''' return ( "CUDAExecutionProvider", { "gpu_mem_limit": "15000000000", # 15GB "arena_extend_strategy": "kSameAsRequested", }, ) @property def snake_case__ ( self : Optional[Any] ) -> Union[str, Any]: '''simple docstring''' _UpperCamelCase = ort.SessionOptions() _UpperCamelCase = False return options def snake_case__ ( self : Any ) -> List[str]: '''simple docstring''' _UpperCamelCase = OnnxStableDiffusionPipeline.from_pretrained( '''CompVis/stable-diffusion-v1-4''' , revision='''onnx''' , safety_checker=lowerCAmelCase__ , feature_extractor=lowerCAmelCase__ , provider=self.gpu_provider , sess_options=self.gpu_options , ) sd_pipe.set_progress_bar_config(disable=lowerCAmelCase__ ) _UpperCamelCase = '''A painting of a squirrel eating a burger''' np.random.seed(0 ) _UpperCamelCase = sd_pipe([prompt] , guidance_scale=6.0 , num_inference_steps=10 , output_type='''np''' ) _UpperCamelCase = output.images _UpperCamelCase = image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) _UpperCamelCase = np.array([0.0452, 0.0390, 0.0087, 0.0350, 0.0617, 0.0364, 0.0544, 0.0523, 0.0720] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3 def snake_case__ ( self : str ) -> Dict: '''simple docstring''' _UpperCamelCase = DDIMScheduler.from_pretrained( '''runwayml/stable-diffusion-v1-5''' , subfolder='''scheduler''' , revision='''onnx''' ) _UpperCamelCase = OnnxStableDiffusionPipeline.from_pretrained( '''runwayml/stable-diffusion-v1-5''' , revision='''onnx''' , scheduler=lowerCAmelCase__ , safety_checker=lowerCAmelCase__ , feature_extractor=lowerCAmelCase__ , provider=self.gpu_provider , sess_options=self.gpu_options , ) sd_pipe.set_progress_bar_config(disable=lowerCAmelCase__ ) _UpperCamelCase = '''open neural network exchange''' _UpperCamelCase = np.random.RandomState(0 ) _UpperCamelCase = sd_pipe([prompt] , guidance_scale=7.5 , num_inference_steps=10 , generator=lowerCAmelCase__ , output_type='''np''' ) _UpperCamelCase = output.images _UpperCamelCase = image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) _UpperCamelCase = np.array([0.2867, 0.1974, 0.1481, 0.7294, 0.7251, 0.6667, 0.4194, 0.5642, 0.6486] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3 def snake_case__ ( self : List[str] ) -> Optional[Any]: '''simple docstring''' _UpperCamelCase = LMSDiscreteScheduler.from_pretrained( '''runwayml/stable-diffusion-v1-5''' , subfolder='''scheduler''' , revision='''onnx''' ) _UpperCamelCase = OnnxStableDiffusionPipeline.from_pretrained( '''runwayml/stable-diffusion-v1-5''' , revision='''onnx''' , scheduler=lowerCAmelCase__ , safety_checker=lowerCAmelCase__ , feature_extractor=lowerCAmelCase__ , provider=self.gpu_provider , sess_options=self.gpu_options , ) sd_pipe.set_progress_bar_config(disable=lowerCAmelCase__ ) _UpperCamelCase = '''open neural network exchange''' _UpperCamelCase = np.random.RandomState(0 ) _UpperCamelCase = sd_pipe([prompt] , guidance_scale=7.5 , num_inference_steps=10 , generator=lowerCAmelCase__ , output_type='''np''' ) _UpperCamelCase = output.images _UpperCamelCase = image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) _UpperCamelCase = np.array([0.2306, 0.1959, 0.1593, 0.6549, 0.6394, 0.5408, 0.5065, 0.6010, 0.6161] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3 def snake_case__ ( self : List[Any] ) -> Any: '''simple docstring''' _UpperCamelCase = 0 def test_callback_fn(lowerCAmelCase__ : int , lowerCAmelCase__ : int , lowerCAmelCase__ : np.ndarray ) -> None: _UpperCamelCase = True nonlocal number_of_steps number_of_steps += 1 if step == 0: assert latents.shape == (1, 4, 64, 64) _UpperCamelCase = latents[0, -3:, -3:, -1] _UpperCamelCase = np.array( [-0.6772, -0.3835, -1.2456, 0.1905, -1.0974, 0.6967, -1.9353, 0.0178, 1.0167] ) assert np.abs(latents_slice.flatten() - expected_slice ).max() < 1e-3 elif step == 5: assert latents.shape == (1, 4, 64, 64) _UpperCamelCase = latents[0, -3:, -3:, -1] _UpperCamelCase = np.array( [-0.3351, 0.2241, -0.1837, -0.2325, -0.6577, 0.3393, -0.0241, 0.5899, 1.3875] ) assert np.abs(latents_slice.flatten() - expected_slice ).max() < 1e-3 _UpperCamelCase = False _UpperCamelCase = OnnxStableDiffusionPipeline.from_pretrained( '''runwayml/stable-diffusion-v1-5''' , revision='''onnx''' , safety_checker=lowerCAmelCase__ , feature_extractor=lowerCAmelCase__ , provider=self.gpu_provider , sess_options=self.gpu_options , ) pipe.set_progress_bar_config(disable=lowerCAmelCase__ ) _UpperCamelCase = '''Andromeda galaxy in a bottle''' _UpperCamelCase = np.random.RandomState(0 ) pipe( prompt=lowerCAmelCase__ , num_inference_steps=5 , guidance_scale=7.5 , generator=lowerCAmelCase__ , callback=lowerCAmelCase__ , callback_steps=1 , ) assert test_callback_fn.has_been_called assert number_of_steps == 6 def snake_case__ ( self : Union[str, Any] ) -> Dict: '''simple docstring''' _UpperCamelCase = OnnxStableDiffusionPipeline.from_pretrained( '''runwayml/stable-diffusion-v1-5''' , revision='''onnx''' , safety_checker=lowerCAmelCase__ , feature_extractor=lowerCAmelCase__ , provider=self.gpu_provider , sess_options=self.gpu_options , ) assert isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) assert pipe.safety_checker is None _UpperCamelCase = pipe('''example prompt''' , num_inference_steps=2 ).images[0] assert image is not None # check that there's no error when saving a pipeline with one of the models being None with tempfile.TemporaryDirectory() as tmpdirname: pipe.save_pretrained(lowerCAmelCase__ ) _UpperCamelCase = OnnxStableDiffusionPipeline.from_pretrained(lowerCAmelCase__ ) # sanity check that the pipeline still works assert pipe.safety_checker is None _UpperCamelCase = pipe('''example prompt''' , num_inference_steps=2 ).images[0] assert image is not None
98
import numpy as np def A__ ( SCREAMING_SNAKE_CASE_ : np.ndarray , SCREAMING_SNAKE_CASE_ : float ) -> np.ndarray: """simple docstring""" return np.where(vector > 0 , SCREAMING_SNAKE_CASE_ , (alpha * (np.exp(SCREAMING_SNAKE_CASE_ ) - 1)) ) if __name__ == "__main__": import doctest doctest.testmod()
32
0
def a (lowerCAmelCase__ ): if not numbers: return 0 if not isinstance(lowerCAmelCase__ , (list, tuple) ) or not all( isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) for number in numbers ): raise ValueError("""numbers must be an iterable of integers""" ) __a = __a = __a = numbers[0] for i in range(1 , len(lowerCAmelCase__ ) ): # update the maximum and minimum subarray products __a = numbers[i] if number < 0: __a , __a = min_till_now, max_till_now __a = max(lowerCAmelCase__ , max_till_now * number ) __a = min(lowerCAmelCase__ , min_till_now * number ) # update the maximum product found till now __a = max(lowerCAmelCase__ , lowerCAmelCase__ ) return max_prod
99
UpperCAmelCase_ = { "A": ".-", "B": "-...", "C": "-.-.", "D": "-..", "E": ".", "F": "..-.", "G": "--.", "H": "....", "I": "..", "J": ".---", "K": "-.-", "L": ".-..", "M": "--", "N": "-.", "O": "---", "P": ".--.", "Q": "--.-", "R": ".-.", "S": "...", "T": "-", "U": "..-", "V": "...-", "W": ".--", "X": "-..-", "Y": "-.--", "Z": "--..", "1": ".----", "2": "..---", "3": "...--", "4": "....-", "5": ".....", "6": "-....", "7": "--...", "8": "---..", "9": "----.", "0": "-----", "&": ".-...", "@": ".--.-.", ":": "---...", ",": "--..--", ".": ".-.-.-", "'": ".----.", "\"": ".-..-.", "?": "..--..", "/": "-..-.", "=": "-...-", "+": ".-.-.", "-": "-....-", "(": "-.--.", ")": "-.--.-", "!": "-.-.--", " ": "/" } # Exclamation mark is not in ITU-R recommendation # fmt: on UpperCAmelCase_ = {value: key for key, value in MORSE_CODE_DICT.items()} def A__ ( SCREAMING_SNAKE_CASE_ : str ) -> str: """simple docstring""" return " ".join(MORSE_CODE_DICT[char] for char in message.upper() ) def A__ ( SCREAMING_SNAKE_CASE_ : str ) -> str: """simple docstring""" return "".join(REVERSE_DICT[char] for char in message.split() ) def A__ ( ) -> None: """simple docstring""" _UpperCAmelCase = '''Morse code here!''' print(SCREAMING_SNAKE_CASE_ ) _UpperCAmelCase = encrypt(SCREAMING_SNAKE_CASE_ ) print(SCREAMING_SNAKE_CASE_ ) _UpperCAmelCase = decrypt(SCREAMING_SNAKE_CASE_ ) print(SCREAMING_SNAKE_CASE_ ) if __name__ == "__main__": main()
32
0
def __snake_case ( lowerCAmelCase_ ) -> int: SCREAMING_SNAKE_CASE__ = 0 while num > 0: digit_sum += num % 1_0 num //= 1_0 return digit_sum def __snake_case ( lowerCAmelCase_ = 1_0_0 ) -> int: SCREAMING_SNAKE_CASE__ = 1 SCREAMING_SNAKE_CASE__ = 2 for i in range(2 , max_n + 1 ): SCREAMING_SNAKE_CASE__ = pre_numerator SCREAMING_SNAKE_CASE__ = 2 * i // 3 if i % 3 == 0 else 1 SCREAMING_SNAKE_CASE__ = cur_numerator SCREAMING_SNAKE_CASE__ = e_cont * pre_numerator + temp return sum_digits(lowerCAmelCase_ ) if __name__ == "__main__": print(F'{solution() = }')
100
import gc import unittest import numpy as np import torch from diffusers import DanceDiffusionPipeline, IPNDMScheduler, UNetaDModel from diffusers.utils import slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu, skip_mps from ..pipeline_params import UNCONDITIONAL_AUDIO_GENERATION_BATCH_PARAMS, UNCONDITIONAL_AUDIO_GENERATION_PARAMS from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() class __UpperCamelCase ( A__ , unittest.TestCase ): __A : Any = DanceDiffusionPipeline __A : Any = UNCONDITIONAL_AUDIO_GENERATION_PARAMS __A : Tuple = PipelineTesterMixin.required_optional_params - { """callback""", """latents""", """callback_steps""", """output_type""", """num_images_per_prompt""", } __A : Tuple = UNCONDITIONAL_AUDIO_GENERATION_BATCH_PARAMS __A : List[str] = False __A : str = False def UpperCamelCase( self ): torch.manual_seed(0 ) _UpperCAmelCase = UNetaDModel( block_out_channels=(32, 32, 64) , extra_in_channels=16 , sample_size=512 , sample_rate=16000 , in_channels=2 , out_channels=2 , flip_sin_to_cos=_UpperCamelCase , use_timestep_embedding=_UpperCamelCase , time_embedding_type='''fourier''' , mid_block_type='''UNetMidBlock1D''' , down_block_types=('''DownBlock1DNoSkip''', '''DownBlock1D''', '''AttnDownBlock1D''') , up_block_types=('''AttnUpBlock1D''', '''UpBlock1D''', '''UpBlock1DNoSkip''') , ) _UpperCAmelCase = IPNDMScheduler() _UpperCAmelCase = { '''unet''': unet, '''scheduler''': scheduler, } return components def UpperCamelCase( self , _UpperCamelCase , _UpperCamelCase=0 ): if str(_UpperCamelCase ).startswith('''mps''' ): _UpperCAmelCase = torch.manual_seed(_UpperCamelCase ) else: _UpperCAmelCase = torch.Generator(device=_UpperCamelCase ).manual_seed(_UpperCamelCase ) _UpperCAmelCase = { '''batch_size''': 1, '''generator''': generator, '''num_inference_steps''': 4, } return inputs def UpperCamelCase( self ): _UpperCAmelCase = '''cpu''' # ensure determinism for the device-dependent torch.Generator _UpperCAmelCase = self.get_dummy_components() _UpperCAmelCase = DanceDiffusionPipeline(**_UpperCamelCase ) _UpperCAmelCase = pipe.to(_UpperCamelCase ) pipe.set_progress_bar_config(disable=_UpperCamelCase ) _UpperCAmelCase = self.get_dummy_inputs(_UpperCamelCase ) _UpperCAmelCase = pipe(**_UpperCamelCase ) _UpperCAmelCase = output.audios _UpperCAmelCase = audio[0, -3:, -3:] assert audio.shape == (1, 2, components["unet"].sample_size) _UpperCAmelCase = np.array([-0.7265, 1.0000, -0.8388, 0.1175, 0.9498, -1.0000] ) assert np.abs(audio_slice.flatten() - expected_slice ).max() < 1e-2 @skip_mps def UpperCamelCase( self ): return super().test_save_load_local() @skip_mps def UpperCamelCase( self ): return super().test_dict_tuple_outputs_equivalent(expected_max_difference=3e-3 ) @skip_mps def UpperCamelCase( self ): return super().test_save_load_optional_components() @skip_mps def UpperCamelCase( self ): return super().test_attention_slicing_forward_pass() def UpperCamelCase( self ): super().test_inference_batch_single_identical(expected_max_diff=3e-3 ) @slow @require_torch_gpu class __UpperCamelCase ( unittest.TestCase ): def UpperCamelCase( self ): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def UpperCamelCase( self ): _UpperCAmelCase = torch_device _UpperCAmelCase = DanceDiffusionPipeline.from_pretrained('''harmonai/maestro-150k''' ) _UpperCAmelCase = pipe.to(_UpperCamelCase ) pipe.set_progress_bar_config(disable=_UpperCamelCase ) _UpperCAmelCase = torch.manual_seed(0 ) _UpperCAmelCase = pipe(generator=_UpperCamelCase , num_inference_steps=100 , audio_length_in_s=4.096 ) _UpperCAmelCase = output.audios _UpperCAmelCase = audio[0, -3:, -3:] assert audio.shape == (1, 2, pipe.unet.sample_size) _UpperCAmelCase = np.array([-0.0192, -0.0231, -0.0318, -0.0059, 0.0002, -0.0020] ) assert np.abs(audio_slice.flatten() - expected_slice ).max() < 1e-2 def UpperCamelCase( self ): _UpperCAmelCase = torch_device _UpperCAmelCase = DanceDiffusionPipeline.from_pretrained('''harmonai/maestro-150k''' , torch_dtype=torch.floataa ) _UpperCAmelCase = pipe.to(_UpperCamelCase ) pipe.set_progress_bar_config(disable=_UpperCamelCase ) _UpperCAmelCase = torch.manual_seed(0 ) _UpperCAmelCase = pipe(generator=_UpperCamelCase , num_inference_steps=100 , audio_length_in_s=4.096 ) _UpperCAmelCase = output.audios _UpperCAmelCase = audio[0, -3:, -3:] assert audio.shape == (1, 2, pipe.unet.sample_size) _UpperCAmelCase = np.array([-0.0367, -0.0488, -0.0771, -0.0525, -0.0444, -0.0341] ) assert np.abs(audio_slice.flatten() - expected_slice ).max() < 1e-2
32
0