code
stringlengths
82
54.1k
code_codestyle
int64
0
699
style_context
stringlengths
111
35.6k
style_context_codestyle
int64
0
699
label
int64
0
1
def a__ ( A__, A__, A__, A__ ): SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : Optional[int] = len(A__ ), len(grid[0] ) if ( min(A__, A__ ) < 0 or row == row_length or col == col_length or (row, col) in visit or grid[row][col] == 1 ): return 0 if row == row_length - 1 and col == col_length - 1: return 1 visit.add((row, col) ) SCREAMING_SNAKE_CASE_ : Dict = 0 count += depth_first_search(A__, row + 1, A__, A__ ) count += depth_first_search(A__, row - 1, A__, A__ ) count += depth_first_search(A__, A__, col + 1, A__ ) count += depth_first_search(A__, A__, col - 1, A__ ) visit.remove((row, col) ) return count if __name__ == "__main__": import doctest doctest.testmod()
101
from collections import OrderedDict from ...utils import logging from .auto_factory import _BaseAutoModelClass, _LazyAutoMapping, auto_class_update from .configuration_auto import CONFIG_MAPPING_NAMES UpperCAmelCase_ = logging.get_logger(__name__) UpperCAmelCase_ = OrderedDict( [ # Base model mapping ("albert", "FlaxAlbertModel"), ("bart", "FlaxBartModel"), ("beit", "FlaxBeitModel"), ("bert", "FlaxBertModel"), ("big_bird", "FlaxBigBirdModel"), ("blenderbot", "FlaxBlenderbotModel"), ("blenderbot-small", "FlaxBlenderbotSmallModel"), ("clip", "FlaxCLIPModel"), ("distilbert", "FlaxDistilBertModel"), ("electra", "FlaxElectraModel"), ("gpt-sw3", "FlaxGPT2Model"), ("gpt2", "FlaxGPT2Model"), ("gpt_neo", "FlaxGPTNeoModel"), ("gptj", "FlaxGPTJModel"), ("longt5", "FlaxLongT5Model"), ("marian", "FlaxMarianModel"), ("mbart", "FlaxMBartModel"), ("mt5", "FlaxMT5Model"), ("opt", "FlaxOPTModel"), ("pegasus", "FlaxPegasusModel"), ("regnet", "FlaxRegNetModel"), ("resnet", "FlaxResNetModel"), ("roberta", "FlaxRobertaModel"), ("roberta-prelayernorm", "FlaxRobertaPreLayerNormModel"), ("roformer", "FlaxRoFormerModel"), ("t5", "FlaxT5Model"), ("vision-text-dual-encoder", "FlaxVisionTextDualEncoderModel"), ("vit", "FlaxViTModel"), ("wav2vec2", "FlaxWav2Vec2Model"), ("whisper", "FlaxWhisperModel"), ("xglm", "FlaxXGLMModel"), ("xlm-roberta", "FlaxXLMRobertaModel"), ] ) UpperCAmelCase_ = OrderedDict( [ # Model for pre-training mapping ("albert", "FlaxAlbertForPreTraining"), ("bart", "FlaxBartForConditionalGeneration"), ("bert", "FlaxBertForPreTraining"), ("big_bird", "FlaxBigBirdForPreTraining"), ("electra", "FlaxElectraForPreTraining"), ("longt5", "FlaxLongT5ForConditionalGeneration"), ("mbart", "FlaxMBartForConditionalGeneration"), ("mt5", "FlaxMT5ForConditionalGeneration"), ("roberta", "FlaxRobertaForMaskedLM"), ("roberta-prelayernorm", "FlaxRobertaPreLayerNormForMaskedLM"), ("roformer", "FlaxRoFormerForMaskedLM"), ("t5", "FlaxT5ForConditionalGeneration"), ("wav2vec2", "FlaxWav2Vec2ForPreTraining"), ("whisper", "FlaxWhisperForConditionalGeneration"), ("xlm-roberta", "FlaxXLMRobertaForMaskedLM"), ] ) UpperCAmelCase_ = OrderedDict( [ # Model for Masked LM mapping ("albert", "FlaxAlbertForMaskedLM"), ("bart", "FlaxBartForConditionalGeneration"), ("bert", "FlaxBertForMaskedLM"), ("big_bird", "FlaxBigBirdForMaskedLM"), ("distilbert", "FlaxDistilBertForMaskedLM"), ("electra", "FlaxElectraForMaskedLM"), ("mbart", "FlaxMBartForConditionalGeneration"), ("roberta", "FlaxRobertaForMaskedLM"), ("roberta-prelayernorm", "FlaxRobertaPreLayerNormForMaskedLM"), ("roformer", "FlaxRoFormerForMaskedLM"), ("xlm-roberta", "FlaxXLMRobertaForMaskedLM"), ] ) UpperCAmelCase_ = OrderedDict( [ # Model for Seq2Seq Causal LM mapping ("bart", "FlaxBartForConditionalGeneration"), ("blenderbot", "FlaxBlenderbotForConditionalGeneration"), ("blenderbot-small", "FlaxBlenderbotSmallForConditionalGeneration"), ("encoder-decoder", "FlaxEncoderDecoderModel"), ("longt5", "FlaxLongT5ForConditionalGeneration"), ("marian", "FlaxMarianMTModel"), ("mbart", "FlaxMBartForConditionalGeneration"), ("mt5", "FlaxMT5ForConditionalGeneration"), ("pegasus", "FlaxPegasusForConditionalGeneration"), ("t5", "FlaxT5ForConditionalGeneration"), ] ) UpperCAmelCase_ = OrderedDict( [ # Model for Image-classsification ("beit", "FlaxBeitForImageClassification"), ("regnet", "FlaxRegNetForImageClassification"), ("resnet", "FlaxResNetForImageClassification"), ("vit", "FlaxViTForImageClassification"), ] ) UpperCAmelCase_ = OrderedDict( [ ("vision-encoder-decoder", "FlaxVisionEncoderDecoderModel"), ] ) UpperCAmelCase_ = OrderedDict( [ # Model for Causal LM mapping ("bart", "FlaxBartForCausalLM"), ("bert", "FlaxBertForCausalLM"), ("big_bird", "FlaxBigBirdForCausalLM"), ("electra", "FlaxElectraForCausalLM"), ("gpt-sw3", "FlaxGPT2LMHeadModel"), ("gpt2", "FlaxGPT2LMHeadModel"), ("gpt_neo", "FlaxGPTNeoForCausalLM"), ("gptj", "FlaxGPTJForCausalLM"), ("opt", "FlaxOPTForCausalLM"), ("roberta", "FlaxRobertaForCausalLM"), ("roberta-prelayernorm", "FlaxRobertaPreLayerNormForCausalLM"), ("xglm", "FlaxXGLMForCausalLM"), ("xlm-roberta", "FlaxXLMRobertaForCausalLM"), ] ) UpperCAmelCase_ = OrderedDict( [ # Model for Sequence Classification mapping ("albert", "FlaxAlbertForSequenceClassification"), ("bart", "FlaxBartForSequenceClassification"), ("bert", "FlaxBertForSequenceClassification"), ("big_bird", "FlaxBigBirdForSequenceClassification"), ("distilbert", "FlaxDistilBertForSequenceClassification"), ("electra", "FlaxElectraForSequenceClassification"), ("mbart", "FlaxMBartForSequenceClassification"), ("roberta", "FlaxRobertaForSequenceClassification"), ("roberta-prelayernorm", "FlaxRobertaPreLayerNormForSequenceClassification"), ("roformer", "FlaxRoFormerForSequenceClassification"), ("xlm-roberta", "FlaxXLMRobertaForSequenceClassification"), ] ) UpperCAmelCase_ = OrderedDict( [ # Model for Question Answering mapping ("albert", "FlaxAlbertForQuestionAnswering"), ("bart", "FlaxBartForQuestionAnswering"), ("bert", "FlaxBertForQuestionAnswering"), ("big_bird", "FlaxBigBirdForQuestionAnswering"), ("distilbert", "FlaxDistilBertForQuestionAnswering"), ("electra", "FlaxElectraForQuestionAnswering"), ("mbart", "FlaxMBartForQuestionAnswering"), ("roberta", "FlaxRobertaForQuestionAnswering"), ("roberta-prelayernorm", "FlaxRobertaPreLayerNormForQuestionAnswering"), ("roformer", "FlaxRoFormerForQuestionAnswering"), ("xlm-roberta", "FlaxXLMRobertaForQuestionAnswering"), ] ) UpperCAmelCase_ = OrderedDict( [ # Model for Token Classification mapping ("albert", "FlaxAlbertForTokenClassification"), ("bert", "FlaxBertForTokenClassification"), ("big_bird", "FlaxBigBirdForTokenClassification"), ("distilbert", "FlaxDistilBertForTokenClassification"), ("electra", "FlaxElectraForTokenClassification"), ("roberta", "FlaxRobertaForTokenClassification"), ("roberta-prelayernorm", "FlaxRobertaPreLayerNormForTokenClassification"), ("roformer", "FlaxRoFormerForTokenClassification"), ("xlm-roberta", "FlaxXLMRobertaForTokenClassification"), ] ) UpperCAmelCase_ = OrderedDict( [ # Model for Multiple Choice mapping ("albert", "FlaxAlbertForMultipleChoice"), ("bert", "FlaxBertForMultipleChoice"), ("big_bird", "FlaxBigBirdForMultipleChoice"), ("distilbert", "FlaxDistilBertForMultipleChoice"), ("electra", "FlaxElectraForMultipleChoice"), ("roberta", "FlaxRobertaForMultipleChoice"), ("roberta-prelayernorm", "FlaxRobertaPreLayerNormForMultipleChoice"), ("roformer", "FlaxRoFormerForMultipleChoice"), ("xlm-roberta", "FlaxXLMRobertaForMultipleChoice"), ] ) UpperCAmelCase_ = OrderedDict( [ ("bert", "FlaxBertForNextSentencePrediction"), ] ) UpperCAmelCase_ = OrderedDict( [ ("speech-encoder-decoder", "FlaxSpeechEncoderDecoderModel"), ("whisper", "FlaxWhisperForConditionalGeneration"), ] ) UpperCAmelCase_ = OrderedDict( [ ("whisper", "FlaxWhisperForAudioClassification"), ] ) UpperCAmelCase_ = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_MAPPING_NAMES) UpperCAmelCase_ = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_PRETRAINING_MAPPING_NAMES) UpperCAmelCase_ = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_MASKED_LM_MAPPING_NAMES) UpperCAmelCase_ = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING_NAMES ) UpperCAmelCase_ = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING_NAMES ) UpperCAmelCase_ = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_VISION_2_SEQ_MAPPING_NAMES) UpperCAmelCase_ = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_CAUSAL_LM_MAPPING_NAMES) UpperCAmelCase_ = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING_NAMES ) UpperCAmelCase_ = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_QUESTION_ANSWERING_MAPPING_NAMES ) UpperCAmelCase_ = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING_NAMES ) UpperCAmelCase_ = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_MULTIPLE_CHOICE_MAPPING_NAMES ) UpperCAmelCase_ = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_NEXT_SENTENCE_PREDICTION_MAPPING_NAMES ) UpperCAmelCase_ = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_SPEECH_SEQ_2_SEQ_MAPPING_NAMES ) UpperCAmelCase_ = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_AUDIO_CLASSIFICATION_MAPPING_NAMES ) class __UpperCamelCase ( _BaseAutoModelClass ): __A : List[str] = FLAX_MODEL_MAPPING UpperCAmelCase_ = auto_class_update(FlaxAutoModel) class __UpperCamelCase ( _BaseAutoModelClass ): __A : Optional[Any] = FLAX_MODEL_FOR_PRETRAINING_MAPPING UpperCAmelCase_ = auto_class_update(FlaxAutoModelForPreTraining, head_doc="pretraining") class __UpperCamelCase ( _BaseAutoModelClass ): __A : List[Any] = FLAX_MODEL_FOR_CAUSAL_LM_MAPPING UpperCAmelCase_ = auto_class_update(FlaxAutoModelForCausalLM, head_doc="causal language modeling") class __UpperCamelCase ( _BaseAutoModelClass ): __A : List[str] = FLAX_MODEL_FOR_MASKED_LM_MAPPING UpperCAmelCase_ = auto_class_update(FlaxAutoModelForMaskedLM, head_doc="masked language modeling") class __UpperCamelCase ( _BaseAutoModelClass ): __A : Dict = FLAX_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING UpperCAmelCase_ = auto_class_update( FlaxAutoModelForSeqaSeqLM, head_doc="sequence-to-sequence language modeling", checkpoint_for_example="t5-base" ) class __UpperCamelCase ( _BaseAutoModelClass ): __A : List[str] = FLAX_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING UpperCAmelCase_ = auto_class_update( FlaxAutoModelForSequenceClassification, head_doc="sequence classification" ) class __UpperCamelCase ( _BaseAutoModelClass ): __A : Dict = FLAX_MODEL_FOR_QUESTION_ANSWERING_MAPPING UpperCAmelCase_ = auto_class_update(FlaxAutoModelForQuestionAnswering, head_doc="question answering") class __UpperCamelCase ( _BaseAutoModelClass ): __A : Union[str, Any] = FLAX_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING UpperCAmelCase_ = auto_class_update( FlaxAutoModelForTokenClassification, head_doc="token classification" ) class __UpperCamelCase ( _BaseAutoModelClass ): __A : Union[str, Any] = FLAX_MODEL_FOR_MULTIPLE_CHOICE_MAPPING UpperCAmelCase_ = auto_class_update(FlaxAutoModelForMultipleChoice, head_doc="multiple choice") class __UpperCamelCase ( _BaseAutoModelClass ): __A : Any = FLAX_MODEL_FOR_NEXT_SENTENCE_PREDICTION_MAPPING UpperCAmelCase_ = auto_class_update( FlaxAutoModelForNextSentencePrediction, head_doc="next sentence prediction" ) class __UpperCamelCase ( _BaseAutoModelClass ): __A : Dict = FLAX_MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING UpperCAmelCase_ = auto_class_update( FlaxAutoModelForImageClassification, head_doc="image classification" ) class __UpperCamelCase ( _BaseAutoModelClass ): __A : Optional[int] = FLAX_MODEL_FOR_VISION_2_SEQ_MAPPING UpperCAmelCase_ = auto_class_update(FlaxAutoModelForVisionaSeq, head_doc="vision-to-text modeling") class __UpperCamelCase ( _BaseAutoModelClass ): __A : str = FLAX_MODEL_FOR_SPEECH_SEQ_2_SEQ_MAPPING UpperCAmelCase_ = auto_class_update( FlaxAutoModelForSpeechSeqaSeq, head_doc="sequence-to-sequence speech-to-text modeling" )
32
0
"""simple docstring""" __magic_name__ : dict[tuple[int, int, int], int] = {} def UpperCamelCase (SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): # if we are absent twice, or late 3 consecutive days, # no further prize strings are possible if late == 3 or absent == 2: return 0 # if we have no days left, and have not failed any other rules, # we have a prize string if days == 0: return 1 # No easy solution, so now we need to do the recursive calculation # First, check if the combination is already in the cache, and # if yes, return the stored value from there since we already # know the number of possible prize strings from this point on UpperCamelCase : Any = (days, absent, late) if key in cache: return cache[key] # now we calculate the three possible ways that can unfold from # this point on, depending on our attendance today # 1) if we are late (but not absent), the "absent" counter stays as # it is, but the "late" counter increases by one UpperCamelCase : Dict = _calculate(days - 1 , SCREAMING_SNAKE_CASE , late + 1 ) # 2) if we are absent, the "absent" counter increases by 1, and the # "late" counter resets to 0 UpperCamelCase : int = _calculate(days - 1 , absent + 1 , 0 ) # 3) if we are on time, this resets the "late" counter and keeps the # absent counter UpperCamelCase : Dict = _calculate(days - 1 , SCREAMING_SNAKE_CASE , 0 ) UpperCamelCase : Optional[int] = state_late + state_absent + state_ontime UpperCamelCase : Any = prizestrings return prizestrings def UpperCamelCase (SCREAMING_SNAKE_CASE = 30 ): return _calculate(SCREAMING_SNAKE_CASE , absent=0 , late=0 ) if __name__ == "__main__": print(solution())
102
import baseaa def A__ ( SCREAMING_SNAKE_CASE_ : str ) -> bytes: """simple docstring""" return baseaa.baaencode(string.encode('''utf-8''' ) ) def A__ ( SCREAMING_SNAKE_CASE_ : bytes ) -> str: """simple docstring""" return baseaa.baadecode(SCREAMING_SNAKE_CASE_ ).decode('''utf-8''' ) if __name__ == "__main__": UpperCAmelCase_ = "Hello World!" UpperCAmelCase_ = baseaa_encode(test) print(encoded) UpperCAmelCase_ = baseaa_decode(encoded) print(decoded)
32
0
"""simple docstring""" import os import socket from contextlib import contextmanager import torch from ..commands.config.default import write_basic_config # noqa: F401 from ..state import PartialState from .dataclasses import DistributedType from .imports import is_deepspeed_available, is_tpu_available from .transformer_engine import convert_model from .versions import is_torch_version if is_deepspeed_available(): from deepspeed import DeepSpeedEngine if is_tpu_available(check_device=False): import torch_xla.core.xla_model as xm def snake_case ( lowerCAmelCase_ ) -> Optional[Any]: if is_torch_version('''<''' , '''2.0.0''' ) or not hasattr(lowerCAmelCase_ , '''_dynamo''' ): return False return isinstance(lowerCAmelCase_ , torch._dynamo.eval_frame.OptimizedModule ) def snake_case ( lowerCAmelCase_ , lowerCAmelCase_ = True ) -> Dict: _snake_case = (torch.nn.parallel.DistributedDataParallel, torch.nn.DataParallel) _snake_case = is_compiled_module(lowerCAmelCase_ ) if is_compiled: _snake_case = model _snake_case = model._orig_mod if is_deepspeed_available(): options += (DeepSpeedEngine,) while isinstance(lowerCAmelCase_ , lowerCAmelCase_ ): _snake_case = model.module if not keep_fpaa_wrapper: _snake_case = getattr(lowerCAmelCase_ , '''forward''' ) _snake_case = model.__dict__.pop('''_original_forward''' , lowerCAmelCase_ ) if original_forward is not None: while hasattr(lowerCAmelCase_ , '''__wrapped__''' ): _snake_case = forward.__wrapped__ if forward == original_forward: break _snake_case = forward if getattr(lowerCAmelCase_ , '''_converted_to_transformer_engine''' , lowerCAmelCase_ ): convert_model(lowerCAmelCase_ , to_transformer_engine=lowerCAmelCase_ ) if is_compiled: _snake_case = model _snake_case = compiled_model return model def snake_case ( ) -> str: PartialState().wait_for_everyone() def snake_case ( lowerCAmelCase_ , lowerCAmelCase_ ) -> Dict: if PartialState().distributed_type == DistributedType.TPU: xm.save(lowerCAmelCase_ , lowerCAmelCase_ ) elif PartialState().local_process_index == 0: torch.save(lowerCAmelCase_ , lowerCAmelCase_ ) @contextmanager def snake_case ( **lowerCAmelCase_ ) -> str: for key, value in kwargs.items(): _snake_case = str(lowerCAmelCase_ ) yield for key in kwargs: if key.upper() in os.environ: del os.environ[key.upper()] def snake_case ( lowerCAmelCase_ ) -> Tuple: if not hasattr(lowerCAmelCase_ , '''__qualname__''' ) and not hasattr(lowerCAmelCase_ , '''__name__''' ): _snake_case = getattr(lowerCAmelCase_ , '''__class__''' , lowerCAmelCase_ ) if hasattr(lowerCAmelCase_ , '''__qualname__''' ): return obj.__qualname__ if hasattr(lowerCAmelCase_ , '''__name__''' ): return obj.__name__ return str(lowerCAmelCase_ ) def snake_case ( lowerCAmelCase_ , lowerCAmelCase_ ) -> Tuple: for key, value in source.items(): if isinstance(lowerCAmelCase_ , lowerCAmelCase_ ): _snake_case = destination.setdefault(lowerCAmelCase_ , {} ) merge_dicts(lowerCAmelCase_ , lowerCAmelCase_ ) else: _snake_case = value return destination def snake_case ( lowerCAmelCase_ = None ) -> bool: if port is None: _snake_case = 29500 with socket.socket(socket.AF_INET , socket.SOCK_STREAM ) as s: return s.connect_ex(('''localhost''', port) ) == 0
103
from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD, ChannelDimension, ImageInput, PILImageResampling, is_batched, to_numpy_array, valid_images, ) from ...utils import TensorType, logging UpperCAmelCase_ = logging.get_logger(__name__) class __UpperCamelCase ( A__ ): __A : int = ["""pixel_values"""] def __init__( self , _UpperCamelCase = True , _UpperCamelCase = None , _UpperCamelCase = PILImageResampling.BICUBIC , _UpperCamelCase = True , _UpperCamelCase = True , _UpperCamelCase = 1 / 255 , _UpperCamelCase = None , _UpperCamelCase = True , _UpperCamelCase = None , _UpperCamelCase = None , **_UpperCamelCase , ): super().__init__(**_UpperCamelCase ) _UpperCAmelCase = size if size is not None else {'''height''': 224, '''width''': 224} _UpperCAmelCase = get_size_dict(_UpperCamelCase ) _UpperCAmelCase = crop_size if crop_size is not None else {'''height''': 224, '''width''': 224} _UpperCAmelCase = get_size_dict(_UpperCamelCase , default_to_square=_UpperCamelCase , param_name='''crop_size''' ) _UpperCAmelCase = do_resize _UpperCAmelCase = do_rescale _UpperCAmelCase = do_normalize _UpperCAmelCase = do_center_crop _UpperCAmelCase = crop_size _UpperCAmelCase = size _UpperCAmelCase = resample _UpperCAmelCase = rescale_factor _UpperCAmelCase = image_mean if image_mean is not None else IMAGENET_DEFAULT_MEAN _UpperCAmelCase = image_std if image_std is not None else IMAGENET_DEFAULT_STD def UpperCamelCase( self , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase = PILImageResampling.BILINEAR , _UpperCamelCase = None , **_UpperCamelCase , ): _UpperCAmelCase = get_size_dict(_UpperCamelCase ) if "shortest_edge" in size: _UpperCAmelCase = get_resize_output_image_size(_UpperCamelCase , size=size['''shortest_edge'''] , default_to_square=_UpperCamelCase ) # size = get_resize_output_image_size(image, size["shortest_edge"], size["longest_edge"]) elif "height" in size and "width" in size: _UpperCAmelCase = (size['''height'''], size['''width''']) else: raise ValueError(f'''Size must contain \'height\' and \'width\' keys or \'shortest_edge\' key. Got {size.keys()}''' ) return resize(_UpperCamelCase , size=_UpperCamelCase , resample=_UpperCamelCase , data_format=_UpperCamelCase , **_UpperCamelCase ) def UpperCamelCase( self , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase = None , **_UpperCamelCase , ): _UpperCAmelCase = get_size_dict(_UpperCamelCase ) if "height" not in size or "width" not in size: raise ValueError(f'''The `size` parameter must contain the keys (height, width). Got {size.keys()}''' ) return center_crop(_UpperCamelCase , size=(size['''height'''], size['''width''']) , data_format=_UpperCamelCase , **_UpperCamelCase ) def UpperCamelCase( self , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase = None , **_UpperCamelCase ): return rescale(_UpperCamelCase , scale=_UpperCamelCase , data_format=_UpperCamelCase , **_UpperCamelCase ) def UpperCamelCase( self , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase = None , **_UpperCamelCase , ): return normalize(_UpperCamelCase , mean=_UpperCamelCase , std=_UpperCamelCase , data_format=_UpperCamelCase , **_UpperCamelCase ) def UpperCamelCase( self , _UpperCamelCase , _UpperCamelCase = None , _UpperCamelCase = None , _UpperCamelCase = None , _UpperCamelCase = None , _UpperCamelCase = None , _UpperCamelCase = None , _UpperCamelCase = None , _UpperCamelCase = None , _UpperCamelCase = None , _UpperCamelCase = None , _UpperCamelCase = None , _UpperCamelCase = ChannelDimension.FIRST , **_UpperCamelCase , ): _UpperCAmelCase = do_resize if do_resize is not None else self.do_resize _UpperCAmelCase = do_rescale if do_rescale is not None else self.do_rescale _UpperCAmelCase = do_normalize if do_normalize is not None else self.do_normalize _UpperCAmelCase = do_center_crop if do_center_crop is not None else self.do_center_crop _UpperCAmelCase = crop_size if crop_size is not None else self.crop_size _UpperCAmelCase = get_size_dict(_UpperCamelCase , param_name='''crop_size''' , default_to_square=_UpperCamelCase ) _UpperCAmelCase = resample if resample is not None else self.resample _UpperCAmelCase = rescale_factor if rescale_factor is not None else self.rescale_factor _UpperCAmelCase = image_mean if image_mean is not None else self.image_mean _UpperCAmelCase = image_std if image_std is not None else self.image_std _UpperCAmelCase = size if size is not None else self.size _UpperCAmelCase = get_size_dict(_UpperCamelCase ) if not is_batched(_UpperCamelCase ): _UpperCAmelCase = [images] if not valid_images(_UpperCamelCase ): raise ValueError( '''Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ''' '''torch.Tensor, tf.Tensor or jax.ndarray.''' ) if do_resize and size is None: raise ValueError('''Size must be specified if do_resize is True.''' ) if do_center_crop and crop_size is None: raise ValueError('''Crop size must be specified if do_center_crop is True.''' ) if do_rescale and rescale_factor is None: raise ValueError('''Rescale factor must be specified if do_rescale is True.''' ) # All transformations expect numpy arrays. _UpperCAmelCase = [to_numpy_array(_UpperCamelCase ) for image in images] if do_resize: _UpperCAmelCase = [self.resize(image=_UpperCamelCase , size=_UpperCamelCase , resample=_UpperCamelCase ) for image in images] if do_center_crop: _UpperCAmelCase = [self.center_crop(image=_UpperCamelCase , size=_UpperCamelCase ) for image in images] if do_rescale: _UpperCAmelCase = [self.rescale(image=_UpperCamelCase , scale=_UpperCamelCase ) for image in images] if do_normalize: _UpperCAmelCase = [self.normalize(image=_UpperCamelCase , mean=_UpperCamelCase , std=_UpperCamelCase ) for image in images] _UpperCAmelCase = [to_channel_dimension_format(_UpperCamelCase , _UpperCamelCase ) for image in images] _UpperCAmelCase = {'''pixel_values''': images} return BatchFeature(data=_UpperCamelCase , tensor_type=_UpperCamelCase )
32
0
"""simple docstring""" import unittest import numpy as np from diffusers import LMSDiscreteScheduler, OnnxStableDiffusionInpaintPipeline from diffusers.utils.testing_utils import ( is_onnx_available, load_image, nightly, require_onnxruntime, require_torch_gpu, ) from ..test_pipelines_onnx_common import OnnxPipelineTesterMixin if is_onnx_available(): import onnxruntime as ort class UpperCamelCase__ ( _lowerCAmelCase , unittest.TestCase ): """simple docstring""" pass @nightly @require_onnxruntime @require_torch_gpu class UpperCamelCase__ ( unittest.TestCase ): """simple docstring""" @property def snake_case__ ( self ) -> Tuple: return ( "CUDAExecutionProvider", { "gpu_mem_limit": "15000000000", # 15GB "arena_extend_strategy": "kSameAsRequested", }, ) @property def snake_case__ ( self ) -> Any: A__ = ort.SessionOptions() A__ = False return options def snake_case__ ( self ) -> Union[str, Any]: A__ = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/in_paint/overture-creations-5sI6fQgYIuo.png" ) A__ = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/in_paint/overture-creations-5sI6fQgYIuo_mask.png" ) A__ = OnnxStableDiffusionInpaintPipeline.from_pretrained( "runwayml/stable-diffusion-inpainting" , revision="onnx" , safety_checker=SCREAMING_SNAKE_CASE__ , feature_extractor=SCREAMING_SNAKE_CASE__ , provider=self.gpu_provider , sess_options=self.gpu_options , ) pipe.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE__ ) A__ = "A red cat sitting on a park bench" A__ = np.random.RandomState(0 ) A__ = pipe( prompt=SCREAMING_SNAKE_CASE__ , image=SCREAMING_SNAKE_CASE__ , mask_image=SCREAMING_SNAKE_CASE__ , guidance_scale=7.5 , num_inference_steps=10 , generator=SCREAMING_SNAKE_CASE__ , output_type="np" , ) A__ = output.images A__ = images[0, 255:258, 255:258, -1] assert images.shape == (1, 512, 512, 3) A__ = np.array([0.2_5_1_4, 0.3_0_0_7, 0.3_5_1_7, 0.1_7_9_0, 0.2_3_8_2, 0.3_1_6_7, 0.1_9_4_4, 0.2_2_7_3, 0.2_4_6_4] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3 def snake_case__ ( self ) -> str: A__ = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/in_paint/overture-creations-5sI6fQgYIuo.png" ) A__ = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/in_paint/overture-creations-5sI6fQgYIuo_mask.png" ) A__ = LMSDiscreteScheduler.from_pretrained( "runwayml/stable-diffusion-inpainting" , subfolder="scheduler" , revision="onnx" ) A__ = OnnxStableDiffusionInpaintPipeline.from_pretrained( "runwayml/stable-diffusion-inpainting" , revision="onnx" , scheduler=SCREAMING_SNAKE_CASE__ , safety_checker=SCREAMING_SNAKE_CASE__ , feature_extractor=SCREAMING_SNAKE_CASE__ , provider=self.gpu_provider , sess_options=self.gpu_options , ) pipe.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE__ ) A__ = "A red cat sitting on a park bench" A__ = np.random.RandomState(0 ) A__ = pipe( prompt=SCREAMING_SNAKE_CASE__ , image=SCREAMING_SNAKE_CASE__ , mask_image=SCREAMING_SNAKE_CASE__ , guidance_scale=7.5 , num_inference_steps=20 , generator=SCREAMING_SNAKE_CASE__ , output_type="np" , ) A__ = output.images A__ = images[0, 255:258, 255:258, -1] assert images.shape == (1, 512, 512, 3) A__ = np.array([0.0_0_8_6, 0.0_0_7_7, 0.0_0_8_3, 0.0_0_9_3, 0.0_1_0_7, 0.0_1_3_9, 0.0_0_9_4, 0.0_0_9_7, 0.0_1_2_5] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3
104
from ..utils import DummyObject, requires_backends class __UpperCamelCase ( metaclass=A__ ): __A : str = ["""torch""", """scipy"""] def __init__( self , *_UpperCamelCase , **_UpperCamelCase ): requires_backends(self , ['''torch''', '''scipy'''] ) @classmethod def UpperCamelCase( cls , *_UpperCamelCase , **_UpperCamelCase ): requires_backends(cls , ['''torch''', '''scipy'''] ) @classmethod def UpperCamelCase( cls , *_UpperCamelCase , **_UpperCamelCase ): requires_backends(cls , ['''torch''', '''scipy'''] )
32
0
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available UpperCamelCase__ : Optional[int] = { '''configuration_bloom''': ['''BLOOM_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''BloomConfig''', '''BloomOnnxConfig'''], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase__ : Tuple = ['''BloomTokenizerFast'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase__ : Any = [ '''BLOOM_PRETRAINED_MODEL_ARCHIVE_LIST''', '''BloomForCausalLM''', '''BloomModel''', '''BloomPreTrainedModel''', '''BloomForSequenceClassification''', '''BloomForTokenClassification''', '''BloomForQuestionAnswering''', ] if TYPE_CHECKING: from .configuration_bloom import BLOOM_PRETRAINED_CONFIG_ARCHIVE_MAP, BloomConfig, BloomOnnxConfig try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_bloom_fast import BloomTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_bloom import ( BLOOM_PRETRAINED_MODEL_ARCHIVE_LIST, BloomForCausalLM, BloomForQuestionAnswering, BloomForSequenceClassification, BloomForTokenClassification, BloomModel, BloomPreTrainedModel, ) else: import sys UpperCamelCase__ : Tuple = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
105
def A__ ( SCREAMING_SNAKE_CASE_ : int = 2_00_00_00 ) -> int: """simple docstring""" _UpperCAmelCase = [0 for i in range(n + 1 )] _UpperCAmelCase = 1 _UpperCAmelCase = 1 for i in range(2 , int(n**0.5 ) + 1 ): if primality_list[i] == 0: for j in range(i * i , n + 1 , SCREAMING_SNAKE_CASE_ ): _UpperCAmelCase = 1 _UpperCAmelCase = 0 for i in range(SCREAMING_SNAKE_CASE_ ): if primality_list[i] == 0: sum_of_primes += i return sum_of_primes if __name__ == "__main__": print(f'''{solution() = }''')
32
0
from math import ceil def lowerCamelCase_ ( lowerCAmelCase__ : Optional[Any] , lowerCAmelCase__ : int ) -> Tuple: '''simple docstring''' A = list(range(0 , lowerCAmelCase__ ) ) A = [item for sublist in list(device_map.values() ) for item in sublist] # Duplicate check A = [] for i in device_map_blocks: if device_map_blocks.count(lowerCAmelCase__ ) > 1 and i not in duplicate_blocks: duplicate_blocks.append(lowerCAmelCase__ ) # Missing blocks A = [i for i in blocks if i not in device_map_blocks] A = [i for i in device_map_blocks if i not in blocks] if len(lowerCAmelCase__ ) != 0: raise ValueError( 'Duplicate attention blocks specified in device_map. Attention blocks must be specified to one device.' ' These attention blocks were specified more than once: ' + str(lowerCAmelCase__ ) ) if len(lowerCAmelCase__ ) != 0: raise ValueError( 'There are attention blocks for this model that are not specified in the device_map. Add these attention ' 'blocks to a device on the device_map: ' + str(lowerCAmelCase__ ) ) if len(lowerCAmelCase__ ) != 0: raise ValueError( 'The device_map contains more attention blocks than this model has. Remove these from the device_map:' + str(lowerCAmelCase__ ) ) def lowerCamelCase_ ( lowerCAmelCase__ : Tuple , lowerCAmelCase__ : str ) -> Any: '''simple docstring''' A = list(range(lowerCAmelCase__ ) ) A = int(ceil(n_layers / len(lowerCAmelCase__ ) ) ) A = [layers[i : i + n_blocks] for i in range(0 , lowerCAmelCase__ , lowerCAmelCase__ )] return dict(zip(lowerCAmelCase__ , lowerCAmelCase__ ) )
106
import warnings from ...utils import logging from .image_processing_glpn import GLPNImageProcessor UpperCAmelCase_ = logging.get_logger(__name__) class __UpperCamelCase ( A__ ): def __init__( self , *_UpperCamelCase , **_UpperCamelCase ): warnings.warn( '''The class GLPNFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please''' ''' use GLPNImageProcessor instead.''' , _UpperCamelCase , ) super().__init__(*_UpperCamelCase , **_UpperCamelCase )
32
0
'''simple docstring''' import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import PoolFormerImageProcessor class lowercase_ ( unittest.TestCase ): """simple docstring""" def __init__( self : Dict, UpperCamelCase__ : Optional[int], UpperCamelCase__ : Dict=7, UpperCamelCase__ : str=3, UpperCamelCase__ : List[Any]=30, UpperCamelCase__ : List[str]=4_00, UpperCamelCase__ : str=True, UpperCamelCase__ : Dict=None, UpperCamelCase__ : Union[str, Any]=0.9, UpperCamelCase__ : List[Any]=None, UpperCamelCase__ : Union[str, Any]=True, UpperCamelCase__ : Any=[0.5, 0.5, 0.5], UpperCamelCase__ : List[str]=[0.5, 0.5, 0.5], ) -> Tuple: _A = size if size is not None else {'shortest_edge': 30} _A = crop_size if crop_size is not None else {'height': 30, 'width': 30} _A = parent _A = batch_size _A = num_channels _A = min_resolution _A = max_resolution _A = do_resize_and_center_crop _A = size _A = crop_pct _A = crop_size _A = do_normalize _A = image_mean _A = image_std def __UpperCAmelCase ( self : Tuple ) -> Union[str, Any]: return { "size": self.size, "do_resize_and_center_crop": self.do_resize_and_center_crop, "crop_pct": self.crop_pct, "crop_size": self.crop_size, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, } @require_torch @require_vision class lowercase_ ( _UpperCamelCase , unittest.TestCase ): """simple docstring""" __lowerCAmelCase = PoolFormerImageProcessor if is_vision_available() else None def __UpperCAmelCase ( self : Optional[Any] ) -> int: _A = PoolFormerImageProcessingTester(self ) @property def __UpperCAmelCase ( self : Dict ) -> Any: return self.image_processor_tester.prepare_image_processor_dict() def __UpperCAmelCase ( self : Dict ) -> Optional[int]: _A = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(UpperCamelCase__, 'do_resize_and_center_crop' ) ) self.assertTrue(hasattr(UpperCamelCase__, 'size' ) ) self.assertTrue(hasattr(UpperCamelCase__, 'crop_pct' ) ) self.assertTrue(hasattr(UpperCamelCase__, 'do_normalize' ) ) self.assertTrue(hasattr(UpperCamelCase__, 'image_mean' ) ) self.assertTrue(hasattr(UpperCamelCase__, 'image_std' ) ) def __UpperCAmelCase ( self : str ) -> Optional[Any]: _A = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size, {'shortest_edge': 30} ) self.assertEqual(image_processor.crop_size, {'height': 30, 'width': 30} ) _A = self.image_processing_class.from_dict(self.image_processor_dict, size=42, crop_size=84 ) self.assertEqual(image_processor.size, {'shortest_edge': 42} ) self.assertEqual(image_processor.crop_size, {'height': 84, 'width': 84} ) def __UpperCAmelCase ( self : Optional[int] ) -> str: pass def __UpperCAmelCase ( self : int ) -> Optional[int]: # Initialize image_processing _A = self.image_processing_class(**self.image_processor_dict ) # create random PIL images _A = prepare_image_inputs(self.image_processor_tester, equal_resolution=UpperCamelCase__ ) for image in image_inputs: self.assertIsInstance(UpperCamelCase__, Image.Image ) # Test not batched input _A = image_processing(image_inputs[0], return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape, ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ), ) # Test batched _A = image_processing(UpperCamelCase__, return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape, ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ), ) def __UpperCAmelCase ( self : str ) -> Optional[Any]: # Initialize image_processing _A = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors _A = prepare_image_inputs(self.image_processor_tester, equal_resolution=UpperCamelCase__, numpify=UpperCamelCase__ ) for image in image_inputs: self.assertIsInstance(UpperCamelCase__, np.ndarray ) # Test not batched input _A = image_processing(image_inputs[0], return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape, ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ), ) # Test batched _A = image_processing(UpperCamelCase__, return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape, ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ), ) def __UpperCAmelCase ( self : str ) -> Optional[int]: # Initialize image_processing _A = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors _A = prepare_image_inputs(self.image_processor_tester, equal_resolution=UpperCamelCase__, torchify=UpperCamelCase__ ) for image in image_inputs: self.assertIsInstance(UpperCamelCase__, torch.Tensor ) # Test not batched input _A = image_processing(image_inputs[0], return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape, ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ), ) # Test batched _A = image_processing(UpperCamelCase__, return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape, ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ), )
107
from typing import List, Optional, Union from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType class __UpperCamelCase ( A__ ): __A : Dict = ["""image_processor""", """tokenizer"""] __A : List[str] = """BridgeTowerImageProcessor""" __A : str = ("""RobertaTokenizer""", """RobertaTokenizerFast""") def __init__( self , _UpperCamelCase , _UpperCamelCase ): super().__init__(_UpperCamelCase , _UpperCamelCase ) def __call__( self , _UpperCamelCase , _UpperCamelCase = None , _UpperCamelCase = True , _UpperCamelCase = False , _UpperCamelCase = None , _UpperCamelCase = None , _UpperCamelCase = 0 , _UpperCamelCase = None , _UpperCamelCase = None , _UpperCamelCase = None , _UpperCamelCase = False , _UpperCamelCase = False , _UpperCamelCase = False , _UpperCamelCase = False , _UpperCamelCase = True , _UpperCamelCase = None , **_UpperCamelCase , ): _UpperCAmelCase = self.tokenizer( text=_UpperCamelCase , add_special_tokens=_UpperCamelCase , padding=_UpperCamelCase , truncation=_UpperCamelCase , max_length=_UpperCamelCase , stride=_UpperCamelCase , pad_to_multiple_of=_UpperCamelCase , return_token_type_ids=_UpperCamelCase , return_attention_mask=_UpperCamelCase , return_overflowing_tokens=_UpperCamelCase , return_special_tokens_mask=_UpperCamelCase , return_offsets_mapping=_UpperCamelCase , return_length=_UpperCamelCase , verbose=_UpperCamelCase , return_tensors=_UpperCamelCase , **_UpperCamelCase , ) # add pixel_values + pixel_mask _UpperCAmelCase = self.image_processor( _UpperCamelCase , return_tensors=_UpperCamelCase , do_normalize=_UpperCamelCase , do_center_crop=_UpperCamelCase , **_UpperCamelCase ) encoding.update(_UpperCamelCase ) return encoding def UpperCamelCase( self , *_UpperCamelCase , **_UpperCamelCase ): return self.tokenizer.batch_decode(*_UpperCamelCase , **_UpperCamelCase ) def UpperCamelCase( self , *_UpperCamelCase , **_UpperCamelCase ): return self.tokenizer.decode(*_UpperCamelCase , **_UpperCamelCase ) @property def UpperCamelCase( self ): _UpperCAmelCase = self.tokenizer.model_input_names _UpperCAmelCase = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) )
32
0
import numpy as np import torch from imwatermark import WatermarkEncoder # Copied from https://github.com/Stability-AI/generative-models/blob/613af104c6b85184091d42d374fef420eddb356d/scripts/demo/streamlit_helpers.py#L66 __a: Dict = 0B1011_0011_1110_1100_1001_0000_0111_1011_1011_0001_1001_1110 # bin(x)[2:] gives bits of x as str, use int to convert them to 0/1 __a: List[Any] = [int(bit) for bit in bin(WATERMARK_MESSAGE)[2:]] class SCREAMING_SNAKE_CASE__ : '''simple docstring''' def __init__( self : str ) -> str: """simple docstring""" _UpperCAmelCase = WATERMARK_BITS _UpperCAmelCase = WatermarkEncoder() self.encoder.set_watermark("""bits""" , self.watermark ) def lowerCamelCase ( self : Optional[Any] , lowerCamelCase : torch.FloatTensor ) -> Tuple: """simple docstring""" # can't encode images that are smaller than 256 if images.shape[-1] < 256: return images _UpperCAmelCase = (255 * (images / 2 + 0.5)).cpu().permute(0 , 2 , 3 , 1 ).float().numpy() _UpperCAmelCase = [self.encoder.encode(lowerCamelCase , """dwtDct""" ) for image in images] _UpperCAmelCase = torch.from_numpy(np.array(lowerCamelCase ) ).permute(0 , 3 , 1 , 2 ) _UpperCAmelCase = torch.clamp(2 * (images / 255 - 0.5) , min=-1.0 , max=1.0 ) return images
108
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available UpperCAmelCase_ = { "configuration_xlm": ["XLM_PRETRAINED_CONFIG_ARCHIVE_MAP", "XLMConfig", "XLMOnnxConfig"], "tokenization_xlm": ["XLMTokenizer"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase_ = [ "XLM_PRETRAINED_MODEL_ARCHIVE_LIST", "XLMForMultipleChoice", "XLMForQuestionAnswering", "XLMForQuestionAnsweringSimple", "XLMForSequenceClassification", "XLMForTokenClassification", "XLMModel", "XLMPreTrainedModel", "XLMWithLMHeadModel", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase_ = [ "TF_XLM_PRETRAINED_MODEL_ARCHIVE_LIST", "TFXLMForMultipleChoice", "TFXLMForQuestionAnsweringSimple", "TFXLMForSequenceClassification", "TFXLMForTokenClassification", "TFXLMMainLayer", "TFXLMModel", "TFXLMPreTrainedModel", "TFXLMWithLMHeadModel", ] if TYPE_CHECKING: from .configuration_xlm import XLM_PRETRAINED_CONFIG_ARCHIVE_MAP, XLMConfig, XLMOnnxConfig from .tokenization_xlm import XLMTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_xlm import ( XLM_PRETRAINED_MODEL_ARCHIVE_LIST, XLMForMultipleChoice, XLMForQuestionAnswering, XLMForQuestionAnsweringSimple, XLMForSequenceClassification, XLMForTokenClassification, XLMModel, XLMPreTrainedModel, XLMWithLMHeadModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_xlm import ( TF_XLM_PRETRAINED_MODEL_ARCHIVE_LIST, TFXLMForMultipleChoice, TFXLMForQuestionAnsweringSimple, TFXLMForSequenceClassification, TFXLMForTokenClassification, TFXLMMainLayer, TFXLMModel, TFXLMPreTrainedModel, TFXLMWithLMHeadModel, ) else: import sys UpperCAmelCase_ = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
32
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_tokenizers_available, is_torch_available, ) a = { "configuration_deberta": ["DEBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP", "DebertaConfig", "DebertaOnnxConfig"], "tokenization_deberta": ["DebertaTokenizer"], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a = ["DebertaTokenizerFast"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a = [ "DEBERTA_PRETRAINED_MODEL_ARCHIVE_LIST", "DebertaForMaskedLM", "DebertaForQuestionAnswering", "DebertaForSequenceClassification", "DebertaForTokenClassification", "DebertaModel", "DebertaPreTrainedModel", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a = [ "TF_DEBERTA_PRETRAINED_MODEL_ARCHIVE_LIST", "TFDebertaForMaskedLM", "TFDebertaForQuestionAnswering", "TFDebertaForSequenceClassification", "TFDebertaForTokenClassification", "TFDebertaModel", "TFDebertaPreTrainedModel", ] if TYPE_CHECKING: from .configuration_deberta import DEBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP, DebertaConfig, DebertaOnnxConfig from .tokenization_deberta import DebertaTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_deberta_fast import DebertaTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_deberta import ( DEBERTA_PRETRAINED_MODEL_ARCHIVE_LIST, DebertaForMaskedLM, DebertaForQuestionAnswering, DebertaForSequenceClassification, DebertaForTokenClassification, DebertaModel, DebertaPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_deberta import ( TF_DEBERTA_PRETRAINED_MODEL_ARCHIVE_LIST, TFDebertaForMaskedLM, TFDebertaForQuestionAnswering, TFDebertaForSequenceClassification, TFDebertaForTokenClassification, TFDebertaModel, TFDebertaPreTrainedModel, ) else: import sys a = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
109
from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCAmelCase_ = logging.get_logger(__name__) UpperCAmelCase_ = { "microsoft/biogpt": "https://huggingface.co/microsoft/biogpt/resolve/main/config.json", # See all BioGPT models at https://huggingface.co/models?filter=biogpt } class __UpperCamelCase ( A__ ): __A : Any = """biogpt""" def __init__( self , _UpperCamelCase=42384 , _UpperCamelCase=1024 , _UpperCamelCase=24 , _UpperCamelCase=16 , _UpperCamelCase=4096 , _UpperCamelCase="gelu" , _UpperCamelCase=0.1 , _UpperCamelCase=0.1 , _UpperCamelCase=1024 , _UpperCamelCase=0.02 , _UpperCamelCase=1e-12 , _UpperCamelCase=True , _UpperCamelCase=True , _UpperCamelCase=0.0 , _UpperCamelCase=0.0 , _UpperCamelCase=1 , _UpperCamelCase=0 , _UpperCamelCase=2 , **_UpperCamelCase , ): _UpperCAmelCase = vocab_size _UpperCAmelCase = max_position_embeddings _UpperCAmelCase = hidden_size _UpperCAmelCase = num_hidden_layers _UpperCAmelCase = num_attention_heads _UpperCAmelCase = intermediate_size _UpperCAmelCase = hidden_act _UpperCAmelCase = hidden_dropout_prob _UpperCAmelCase = attention_probs_dropout_prob _UpperCAmelCase = initializer_range _UpperCAmelCase = layer_norm_eps _UpperCAmelCase = scale_embedding _UpperCAmelCase = use_cache _UpperCAmelCase = layerdrop _UpperCAmelCase = activation_dropout super().__init__(pad_token_id=_UpperCamelCase , bos_token_id=_UpperCamelCase , eos_token_id=_UpperCamelCase , **_UpperCamelCase )
32
0
"""simple docstring""" # Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import re from ..models.auto import AutoProcessor from ..models.vision_encoder_decoder import VisionEncoderDecoderModel from ..utils import is_vision_available from .base import PipelineTool if is_vision_available(): from PIL import Image class a ( lowercase ): UpperCamelCase : Tuple = """naver-clova-ix/donut-base-finetuned-docvqa""" UpperCamelCase : int = ( """This is a tool that answers a question about an document (pdf). It takes an input named `document` which """ """should be the document containing the information, as well as a `question` that is the question about the """ """document. It returns a text that contains the answer to the question.""" ) UpperCamelCase : Optional[Any] = """document_qa""" UpperCamelCase : List[Any] = AutoProcessor UpperCamelCase : int = VisionEncoderDecoderModel UpperCamelCase : str = ["""image""", """text"""] UpperCamelCase : Tuple = ["""text"""] def __init__( self , *UpperCamelCase_ , **UpperCamelCase_ ): if not is_vision_available(): raise ValueError('Pillow must be installed to use the DocumentQuestionAnsweringTool.' ) super().__init__(*UpperCamelCase_ , **UpperCamelCase_ ) def __snake_case ( self , UpperCamelCase_ , UpperCamelCase_ ): UpperCAmelCase__ : Optional[Any] = '<s_docvqa><s_question>{user_input}</s_question><s_answer>' UpperCAmelCase__ : int = task_prompt.replace('{user_input}' , UpperCamelCase_ ) UpperCAmelCase__ : Tuple = self.pre_processor.tokenizer( UpperCamelCase_ , add_special_tokens=UpperCamelCase_ , return_tensors='pt' ).input_ids UpperCAmelCase__ : List[Any] = self.pre_processor(UpperCamelCase_ , return_tensors='pt' ).pixel_values return {"decoder_input_ids": decoder_input_ids, "pixel_values": pixel_values} def __snake_case ( self , UpperCamelCase_ ): return self.model.generate( inputs['pixel_values'].to(self.device ) , decoder_input_ids=inputs['decoder_input_ids'].to(self.device ) , max_length=self.model.decoder.config.max_position_embeddings , early_stopping=UpperCamelCase_ , pad_token_id=self.pre_processor.tokenizer.pad_token_id , eos_token_id=self.pre_processor.tokenizer.eos_token_id , use_cache=UpperCamelCase_ , num_beams=1 , bad_words_ids=[[self.pre_processor.tokenizer.unk_token_id]] , return_dict_in_generate=UpperCamelCase_ , ).sequences def __snake_case ( self , UpperCamelCase_ ): UpperCAmelCase__ : Union[str, Any] = self.pre_processor.batch_decode(UpperCamelCase_ )[0] UpperCAmelCase__ : Optional[Any] = sequence.replace(self.pre_processor.tokenizer.eos_token , '' ) UpperCAmelCase__ : Optional[int] = sequence.replace(self.pre_processor.tokenizer.pad_token , '' ) UpperCAmelCase__ : Tuple = re.sub(R'<.*?>' , '' , UpperCamelCase_ , count=1 ).strip() # remove first task start token UpperCAmelCase__ : Any = self.pre_processor.tokenajson(UpperCamelCase_ ) return sequence["answer"]
110
from typing import List from .keymap import KEYMAP, get_character def A__ ( SCREAMING_SNAKE_CASE_ : str ) -> List[str]: """simple docstring""" def decorator(SCREAMING_SNAKE_CASE_ : List[Any] ): _UpperCAmelCase = getattr(SCREAMING_SNAKE_CASE_ , '''handle_key''' , [] ) handle += [key] setattr(SCREAMING_SNAKE_CASE_ , '''handle_key''' , SCREAMING_SNAKE_CASE_ ) return func return decorator def A__ ( *SCREAMING_SNAKE_CASE_ : List[str] ) -> Dict: """simple docstring""" def decorator(SCREAMING_SNAKE_CASE_ : Any ): _UpperCAmelCase = getattr(SCREAMING_SNAKE_CASE_ , '''handle_key''' , [] ) handle += keys setattr(SCREAMING_SNAKE_CASE_ , '''handle_key''' , SCREAMING_SNAKE_CASE_ ) return func return decorator class __UpperCamelCase ( A__ ): def __new__( cls , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ): _UpperCAmelCase = super().__new__(cls , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) if not hasattr(_UpperCamelCase , '''key_handler''' ): setattr(_UpperCamelCase , '''key_handler''' , {} ) setattr(_UpperCamelCase , '''handle_input''' , KeyHandler.handle_input ) for value in attrs.values(): _UpperCAmelCase = getattr(_UpperCamelCase , '''handle_key''' , [] ) for key in handled_keys: _UpperCAmelCase = value return new_cls @staticmethod def UpperCamelCase( cls ): _UpperCAmelCase = get_character() if char != KEYMAP["undefined"]: _UpperCAmelCase = ord(_UpperCamelCase ) _UpperCAmelCase = cls.key_handler.get(_UpperCamelCase ) if handler: _UpperCAmelCase = char return handler(cls ) else: return None def A__ ( cls : Union[str, Any] ) -> Any: """simple docstring""" return KeyHandler(cls.__name__ , cls.__bases__ , cls.__dict__.copy() )
32
0
# Function to print upper half of diamond (pyramid) def __SCREAMING_SNAKE_CASE ( UpperCamelCase__ ) -> Any: '''simple docstring''' for i in range(0 , SCREAMING_SNAKE_CASE_ ): for _ in range(0 , n - i - 1 ): # printing spaces print(''' ''' , end='''''' ) for _ in range(0 , i + 1 ): # printing stars print('''* ''' , end='''''' ) print() def __SCREAMING_SNAKE_CASE ( UpperCamelCase__ ) -> Optional[int]: '''simple docstring''' for i in range(SCREAMING_SNAKE_CASE_ , 0 , -1 ): for _ in range(SCREAMING_SNAKE_CASE_ , 0 , -1 ): # printing stars print('''* ''' , end='''''' ) print() for _ in range(n - i + 1 , 0 , -1 ): # printing spaces print(''' ''' , end='''''' ) def __SCREAMING_SNAKE_CASE ( UpperCamelCase__ ) -> Tuple: '''simple docstring''' if n <= 0: print(''' ... .... nothing printing :(''' ) return floyd(SCREAMING_SNAKE_CASE_ ) # upper half reverse_floyd(SCREAMING_SNAKE_CASE_ ) # lower half if __name__ == "__main__": print(R"| /\ | |- | |- |--| |\ /| |-") print(R"|/ \| |- |_ |_ |__| | \/ | |_") __A : List[Any] = 1 while K: __A : Optional[int] = int(input("enter the number and , and see the magic : ")) print() pretty_print(user_number) __A : Any = int(input("press 0 to exit... and 1 to continue...")) print("Good Bye...")
130
import unittest from transformers import LiltConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( LiltForQuestionAnswering, LiltForSequenceClassification, LiltForTokenClassification, LiltModel, ) from transformers.models.lilt.modeling_lilt import LILT_PRETRAINED_MODEL_ARCHIVE_LIST class __UpperCamelCase : def __init__( self , _UpperCamelCase , _UpperCamelCase=13 , _UpperCamelCase=7 , _UpperCamelCase=True , _UpperCamelCase=True , _UpperCamelCase=True , _UpperCamelCase=True , _UpperCamelCase=99 , _UpperCamelCase=24 , _UpperCamelCase=2 , _UpperCamelCase=6 , _UpperCamelCase=37 , _UpperCamelCase="gelu" , _UpperCamelCase=0.1 , _UpperCamelCase=0.1 , _UpperCamelCase=512 , _UpperCamelCase=16 , _UpperCamelCase=2 , _UpperCamelCase=0.02 , _UpperCamelCase=3 , _UpperCamelCase=None , _UpperCamelCase=1000 , ): _UpperCAmelCase = parent _UpperCAmelCase = batch_size _UpperCAmelCase = seq_length _UpperCAmelCase = is_training _UpperCAmelCase = use_input_mask _UpperCAmelCase = use_token_type_ids _UpperCAmelCase = use_labels _UpperCAmelCase = vocab_size _UpperCAmelCase = hidden_size _UpperCAmelCase = num_hidden_layers _UpperCAmelCase = num_attention_heads _UpperCAmelCase = intermediate_size _UpperCAmelCase = hidden_act _UpperCAmelCase = hidden_dropout_prob _UpperCAmelCase = attention_probs_dropout_prob _UpperCAmelCase = max_position_embeddings _UpperCAmelCase = type_vocab_size _UpperCAmelCase = type_sequence_label_size _UpperCAmelCase = initializer_range _UpperCAmelCase = num_labels _UpperCAmelCase = scope _UpperCAmelCase = range_bbox def UpperCamelCase( self ): _UpperCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _UpperCAmelCase = ids_tensor([self.batch_size, self.seq_length, 4] , self.range_bbox ) # Ensure that bbox is legal for i in range(bbox.shape[0] ): for j in range(bbox.shape[1] ): if bbox[i, j, 3] < bbox[i, j, 1]: _UpperCAmelCase = bbox[i, j, 3] _UpperCAmelCase = bbox[i, j, 1] _UpperCAmelCase = t if bbox[i, j, 2] < bbox[i, j, 0]: _UpperCAmelCase = bbox[i, j, 2] _UpperCAmelCase = bbox[i, j, 0] _UpperCAmelCase = t _UpperCAmelCase = None if self.use_input_mask: _UpperCAmelCase = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 ) _UpperCAmelCase = None if self.use_token_type_ids: _UpperCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) _UpperCAmelCase = None _UpperCAmelCase = None if self.use_labels: _UpperCAmelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size ) _UpperCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) _UpperCAmelCase = self.get_config() return config, input_ids, bbox, token_type_ids, input_mask, sequence_labels, token_labels def UpperCamelCase( self ): return LiltConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , ) def UpperCamelCase( self , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , ): _UpperCAmelCase = LiltModel(config=_UpperCamelCase ) model.to(_UpperCamelCase ) model.eval() _UpperCAmelCase = model(_UpperCamelCase , bbox=_UpperCamelCase , attention_mask=_UpperCamelCase , token_type_ids=_UpperCamelCase ) _UpperCAmelCase = model(_UpperCamelCase , bbox=_UpperCamelCase , token_type_ids=_UpperCamelCase ) _UpperCAmelCase = model(_UpperCamelCase , bbox=_UpperCamelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) ) def UpperCamelCase( self , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , ): _UpperCAmelCase = self.num_labels _UpperCAmelCase = LiltForTokenClassification(config=_UpperCamelCase ) model.to(_UpperCamelCase ) model.eval() _UpperCAmelCase = model( _UpperCamelCase , bbox=_UpperCamelCase , attention_mask=_UpperCamelCase , token_type_ids=_UpperCamelCase , labels=_UpperCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def UpperCamelCase( self , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , ): _UpperCAmelCase = LiltForQuestionAnswering(config=_UpperCamelCase ) model.to(_UpperCamelCase ) model.eval() _UpperCAmelCase = model( _UpperCamelCase , bbox=_UpperCamelCase , attention_mask=_UpperCamelCase , token_type_ids=_UpperCamelCase , start_positions=_UpperCamelCase , end_positions=_UpperCamelCase , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def UpperCamelCase( self ): _UpperCAmelCase = self.prepare_config_and_inputs() ( ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ) = config_and_inputs _UpperCAmelCase = { '''input_ids''': input_ids, '''bbox''': bbox, '''token_type_ids''': token_type_ids, '''attention_mask''': input_mask, } return config, inputs_dict @require_torch class __UpperCamelCase ( A__ , A__ , A__ , unittest.TestCase ): __A : Dict = ( ( LiltModel, LiltForSequenceClassification, LiltForTokenClassification, LiltForQuestionAnswering, ) if is_torch_available() else () ) __A : Optional[Any] = ( { """feature-extraction""": LiltModel, """question-answering""": LiltForQuestionAnswering, """text-classification""": LiltForSequenceClassification, """token-classification""": LiltForTokenClassification, """zero-shot""": LiltForSequenceClassification, } if is_torch_available() else {} ) __A : List[Any] = False __A : Optional[int] = False def UpperCamelCase( self , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ): return True def UpperCamelCase( self ): _UpperCAmelCase = LiltModelTester(self ) _UpperCAmelCase = ConfigTester(self , config_class=_UpperCamelCase , hidden_size=37 ) def UpperCamelCase( self ): self.config_tester.run_common_tests() def UpperCamelCase( self ): _UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_UpperCamelCase ) def UpperCamelCase( self ): _UpperCAmelCase = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: _UpperCAmelCase = type self.model_tester.create_and_check_model(*_UpperCamelCase ) def UpperCamelCase( self ): _UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*_UpperCamelCase ) def UpperCamelCase( self ): _UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*_UpperCamelCase ) @slow def UpperCamelCase( self ): for model_name in LILT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _UpperCAmelCase = LiltModel.from_pretrained(_UpperCamelCase ) self.assertIsNotNone(_UpperCamelCase ) @require_torch @slow class __UpperCamelCase ( unittest.TestCase ): def UpperCamelCase( self ): _UpperCAmelCase = LiltModel.from_pretrained('''SCUT-DLVCLab/lilt-roberta-en-base''' ).to(_UpperCamelCase ) _UpperCAmelCase = torch.tensor([[1, 2]] , device=_UpperCamelCase ) _UpperCAmelCase = torch.tensor([[[1, 2, 3, 4], [5, 6, 7, 8]]] , device=_UpperCamelCase ) # forward pass with torch.no_grad(): _UpperCAmelCase = model(input_ids=_UpperCamelCase , bbox=_UpperCamelCase ) _UpperCAmelCase = torch.Size([1, 2, 768] ) _UpperCAmelCase = torch.tensor( [[-0.0653, 0.0950, -0.0061], [-0.0545, 0.0926, -0.0324]] , device=_UpperCamelCase , ) self.assertTrue(outputs.last_hidden_state.shape , _UpperCamelCase ) self.assertTrue(torch.allclose(outputs.last_hidden_state[0, :, :3] , _UpperCamelCase , atol=1e-3 ) )
32
0
"""simple docstring""" def _a ( _snake_case , _snake_case , _snake_case ): """simple docstring""" return not any( neighbour == 1 and colored_vertices[i] == color for i, neighbour in enumerate(SCREAMING_SNAKE_CASE_ ) ) def _a ( _snake_case , _snake_case , _snake_case , _snake_case ): """simple docstring""" if index == len(SCREAMING_SNAKE_CASE_ ): return True # Recursive Step for i in range(SCREAMING_SNAKE_CASE_ ): if valid_coloring(graph[index] , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): # Color current vertex UpperCAmelCase = i # Validate coloring if util_color(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , index + 1 ): return True # Backtrack UpperCAmelCase = -1 return False def _a ( _snake_case , _snake_case ): """simple docstring""" UpperCAmelCase = [-1] * len(SCREAMING_SNAKE_CASE_ ) if util_color(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , 0 ): return colored_vertices return []
341
from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCAmelCase_ = logging.get_logger(__name__) UpperCAmelCase_ = { "RWKV/rwkv-4-169m-pile": "https://huggingface.co/RWKV/rwkv-4-169m-pile/resolve/main/config.json", "RWKV/rwkv-4-430m-pile": "https://huggingface.co/RWKV/rwkv-4-430m-pile/resolve/main/config.json", "RWKV/rwkv-4-1b5-pile": "https://huggingface.co/RWKV/rwkv-4-1b5-pile/resolve/main/config.json", "RWKV/rwkv-4-3b-pile": "https://huggingface.co/RWKV/rwkv-4-3b-pile/resolve/main/config.json", "RWKV/rwkv-4-7b-pile": "https://huggingface.co/RWKV/rwkv-4-7b-pile/resolve/main/config.json", "RWKV/rwkv-4-14b-pile": "https://huggingface.co/RWKV/rwkv-4-14b-pile/resolve/main/config.json", "RWKV/rwkv-raven-1b5": "https://huggingface.co/RWKV/rwkv-raven-1b5/resolve/main/config.json", "RWKV/rwkv-raven-3b": "https://huggingface.co/RWKV/rwkv-raven-3b/resolve/main/config.json", "RWKV/rwkv-raven-7b": "https://huggingface.co/RWKV/rwkv-raven-7b/resolve/main/config.json", "RWKV/rwkv-raven-14b": "https://huggingface.co/RWKV/rwkv-raven-14b/resolve/main/config.json", } class __UpperCamelCase ( A__ ): __A : Tuple = """rwkv""" __A : Any = {"""max_position_embeddings""": """context_length"""} def __init__( self , _UpperCamelCase=50277 , _UpperCamelCase=1024 , _UpperCamelCase=4096 , _UpperCamelCase=32 , _UpperCamelCase=None , _UpperCamelCase=None , _UpperCamelCase=1e-5 , _UpperCamelCase=0 , _UpperCamelCase=0 , _UpperCamelCase=6 , _UpperCamelCase=False , _UpperCamelCase=True , **_UpperCamelCase , ): _UpperCAmelCase = vocab_size _UpperCAmelCase = context_length _UpperCAmelCase = hidden_size _UpperCAmelCase = num_hidden_layers _UpperCAmelCase = attention_hidden_size if attention_hidden_size is not None else hidden_size _UpperCAmelCase = intermediate_size if intermediate_size is not None else 4 * hidden_size _UpperCAmelCase = layer_norm_epsilon _UpperCAmelCase = rescale_every _UpperCAmelCase = use_cache _UpperCAmelCase = bos_token_id _UpperCAmelCase = eos_token_id super().__init__( tie_word_embeddings=_UpperCamelCase , bos_token_id=_UpperCamelCase , eos_token_id=_UpperCamelCase , **_UpperCamelCase )
32
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available _UpperCAmelCase : int = { '''configuration_mobilenet_v2''': [ '''MOBILENET_V2_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''MobileNetV2Config''', '''MobileNetV2OnnxConfig''', ], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCAmelCase : List[Any] = ['''MobileNetV2FeatureExtractor'''] _UpperCAmelCase : Optional[int] = ['''MobileNetV2ImageProcessor'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCAmelCase : Optional[Any] = [ '''MOBILENET_V2_PRETRAINED_MODEL_ARCHIVE_LIST''', '''MobileNetV2ForImageClassification''', '''MobileNetV2ForSemanticSegmentation''', '''MobileNetV2Model''', '''MobileNetV2PreTrainedModel''', '''load_tf_weights_in_mobilenet_v2''', ] if TYPE_CHECKING: from .configuration_mobilenet_va import ( MOBILENET_V2_PRETRAINED_CONFIG_ARCHIVE_MAP, MobileNetVaConfig, MobileNetVaOnnxConfig, ) try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_mobilenet_va import MobileNetVaFeatureExtractor from .image_processing_mobilenet_va import MobileNetVaImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mobilenet_va import ( MOBILENET_V2_PRETRAINED_MODEL_ARCHIVE_LIST, MobileNetVaForImageClassification, MobileNetVaForSemanticSegmentation, MobileNetVaModel, MobileNetVaPreTrainedModel, load_tf_weights_in_mobilenet_va, ) else: import sys _UpperCAmelCase : Optional[int] = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
72
def A__ ( SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : int ) -> str: """simple docstring""" if a < 0 or b < 0: raise ValueError('''the value of both inputs must be positive''' ) _UpperCAmelCase = str(bin(SCREAMING_SNAKE_CASE_ ) )[2:] # remove the leading "0b" _UpperCAmelCase = str(bin(SCREAMING_SNAKE_CASE_ ) )[2:] # remove the leading "0b" _UpperCAmelCase = max(len(SCREAMING_SNAKE_CASE_ ) , len(SCREAMING_SNAKE_CASE_ ) ) return "0b" + "".join( str(int(char_a == '''1''' and char_b == '''1''' ) ) for char_a, char_b in zip(a_binary.zfill(SCREAMING_SNAKE_CASE_ ) , b_binary.zfill(SCREAMING_SNAKE_CASE_ ) ) ) if __name__ == "__main__": import doctest doctest.testmod()
32
0
import os from typing import Dict, List, Tuple, TypeVar, Union _lowercase: str = TypeVar('''T''') _lowercase: Optional[int] = Union[List[T], Tuple[T, ...]] _lowercase: Optional[int] = Union[T, List[T], Dict[str, T]] _lowercase: List[str] = Union[str, bytes, os.PathLike]
192
from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCAmelCase_ = logging.get_logger(__name__) UpperCAmelCase_ = { "tiiuae/falcon-40b": "https://huggingface.co/tiiuae/falcon-40b/resolve/main/config.json", "tiiuae/falcon-7b": "https://huggingface.co/tiiuae/falcon-7b/resolve/main/config.json", } class __UpperCamelCase ( A__ ): __A : Dict = """falcon""" __A : Any = ["""past_key_values"""] def __init__( self , _UpperCamelCase=65024 , _UpperCamelCase=4544 , _UpperCamelCase=32 , _UpperCamelCase=71 , _UpperCamelCase=1e-5 , _UpperCamelCase=0.02 , _UpperCamelCase=True , _UpperCamelCase=0.0 , _UpperCamelCase=0.0 , _UpperCamelCase=None , _UpperCamelCase=False , _UpperCamelCase=False , _UpperCamelCase=True , _UpperCamelCase=True , _UpperCamelCase=False , _UpperCamelCase=11 , _UpperCamelCase=11 , **_UpperCamelCase , ): _UpperCAmelCase = vocab_size # Backward compatibility with n_embed kwarg _UpperCAmelCase = kwargs.pop('''n_embed''' , _UpperCamelCase ) _UpperCAmelCase = hidden_size if n_embed is None else n_embed _UpperCAmelCase = num_hidden_layers _UpperCAmelCase = num_attention_heads _UpperCAmelCase = layer_norm_epsilon _UpperCAmelCase = initializer_range _UpperCAmelCase = use_cache _UpperCAmelCase = hidden_dropout _UpperCAmelCase = attention_dropout _UpperCAmelCase = bos_token_id _UpperCAmelCase = eos_token_id _UpperCAmelCase = num_attention_heads if num_kv_heads is None else num_kv_heads _UpperCAmelCase = alibi _UpperCAmelCase = new_decoder_architecture _UpperCAmelCase = multi_query # Ignored when new_decoder_architecture is True _UpperCAmelCase = parallel_attn _UpperCAmelCase = bias super().__init__(bos_token_id=_UpperCamelCase , eos_token_id=_UpperCamelCase , **_UpperCamelCase ) @property def UpperCamelCase( self ): return self.hidden_size // self.num_attention_heads @property def UpperCamelCase( self ): return not self.alibi
32
0
'''simple docstring''' import argparse import torch from torch import nn from transformers import MaMaaaConfig, MaMaaaForConditionalGeneration def _UpperCamelCase ( __UpperCamelCase ) -> Optional[int]: lowerCamelCase_ = [ 'encoder.version', 'decoder.version', 'model.encoder.version', 'model.decoder.version', 'decoder.output_projection.weight', '_float_tensor', 'encoder.embed_positions._float_tensor', 'decoder.embed_positions._float_tensor', ] for k in ignore_keys: state_dict.pop(SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ ) def _UpperCamelCase ( __UpperCamelCase ) -> int: lowerCamelCase_ ,lowerCamelCase_ = emb.weight.shape lowerCamelCase_ = nn.Linear(SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ ,bias=SCREAMING_SNAKE_CASE_ ) lowerCamelCase_ = emb.weight.data return lin_layer def _UpperCamelCase ( __UpperCamelCase ) -> Any: lowerCamelCase_ = torch.load(SCREAMING_SNAKE_CASE_ ,map_location='cpu' ) lowerCamelCase_ = mam_aaa['args'] or mam_aaa['cfg']['model'] lowerCamelCase_ = mam_aaa['model'] remove_ignore_keys_(SCREAMING_SNAKE_CASE_ ) lowerCamelCase_ = state_dict['encoder.embed_tokens.weight'].shape[0] lowerCamelCase_ = MaMaaaConfig( vocab_size=SCREAMING_SNAKE_CASE_ ,max_position_embeddings=10_24 ,encoder_layers=args.encoder_layers ,decoder_layers=args.decoder_layers ,encoder_attention_heads=args.encoder_attention_heads ,decoder_attention_heads=args.decoder_attention_heads ,encoder_ffn_dim=args.encoder_ffn_embed_dim ,decoder_ffn_dim=args.decoder_ffn_embed_dim ,d_model=args.encoder_embed_dim ,encoder_layerdrop=args.encoder_layerdrop ,decoder_layerdrop=args.decoder_layerdrop ,dropout=args.dropout ,attention_dropout=args.attention_dropout ,activation_dropout=args.activation_dropout ,activation_function='relu' ,) lowerCamelCase_ = state_dict['decoder.embed_tokens.weight'] lowerCamelCase_ = MaMaaaForConditionalGeneration(SCREAMING_SNAKE_CASE_ ) model.model.load_state_dict(SCREAMING_SNAKE_CASE_ ,strict=SCREAMING_SNAKE_CASE_ ) lowerCamelCase_ = make_linear_from_emb(model.model.shared ) return model if __name__ == "__main__": A_ = argparse.ArgumentParser() # Required parameters parser.add_argument("fairseq_path", type=str, help="path to a model.pt on local filesystem.") parser.add_argument("pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model.") A_ = parser.parse_args() A_ = convert_fairseq_mamaaa_checkpoint_from_disk(args.fairseq_pathß) model.save_pretrained(args.pytorch_dump_folder_path)
42
from math import sqrt def A__ ( SCREAMING_SNAKE_CASE_ : int ) -> bool: """simple docstring""" if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5 , int(sqrt(SCREAMING_SNAKE_CASE_ ) + 1 ) , 6 ): if number % i == 0 or number % (i + 2) == 0: return False return True def A__ ( SCREAMING_SNAKE_CASE_ : int = 1_00_01 ) -> int: """simple docstring""" _UpperCAmelCase = 0 _UpperCAmelCase = 1 while count != nth and number < 3: number += 1 if is_prime(SCREAMING_SNAKE_CASE_ ): count += 1 while count != nth: number += 2 if is_prime(SCREAMING_SNAKE_CASE_ ): count += 1 return number if __name__ == "__main__": print(f'''{solution() = }''')
32
0
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available snake_case : Tuple = { '''configuration_xlm''': ['''XLM_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''XLMConfig''', '''XLMOnnxConfig'''], '''tokenization_xlm''': ['''XLMTokenizer'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case : List[Any] = [ '''XLM_PRETRAINED_MODEL_ARCHIVE_LIST''', '''XLMForMultipleChoice''', '''XLMForQuestionAnswering''', '''XLMForQuestionAnsweringSimple''', '''XLMForSequenceClassification''', '''XLMForTokenClassification''', '''XLMModel''', '''XLMPreTrainedModel''', '''XLMWithLMHeadModel''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case : Any = [ '''TF_XLM_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFXLMForMultipleChoice''', '''TFXLMForQuestionAnsweringSimple''', '''TFXLMForSequenceClassification''', '''TFXLMForTokenClassification''', '''TFXLMMainLayer''', '''TFXLMModel''', '''TFXLMPreTrainedModel''', '''TFXLMWithLMHeadModel''', ] if TYPE_CHECKING: from .configuration_xlm import XLM_PRETRAINED_CONFIG_ARCHIVE_MAP, XLMConfig, XLMOnnxConfig from .tokenization_xlm import XLMTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_xlm import ( XLM_PRETRAINED_MODEL_ARCHIVE_LIST, XLMForMultipleChoice, XLMForQuestionAnswering, XLMForQuestionAnsweringSimple, XLMForSequenceClassification, XLMForTokenClassification, XLMModel, XLMPreTrainedModel, XLMWithLMHeadModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_xlm import ( TF_XLM_PRETRAINED_MODEL_ARCHIVE_LIST, TFXLMForMultipleChoice, TFXLMForQuestionAnsweringSimple, TFXLMForSequenceClassification, TFXLMForTokenClassification, TFXLMMainLayer, TFXLMModel, TFXLMPreTrainedModel, TFXLMWithLMHeadModel, ) else: import sys snake_case : Union[str, Any] = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
335
def A__ ( SCREAMING_SNAKE_CASE_ : int ) -> bool: """simple docstring""" if not isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): _UpperCAmelCase = F'''Input value of [number={number}] must be an integer''' raise TypeError(SCREAMING_SNAKE_CASE_ ) if number < 0: return False _UpperCAmelCase = number * number while number > 0: if number % 10 != number_square % 10: return False number //= 10 number_square //= 10 return True if __name__ == "__main__": import doctest doctest.testmod()
32
0
import os from pathlib import Path from unittest.mock import patch import pytest import zstandard as zstd from datasets.download.download_config import DownloadConfig from datasets.utils.file_utils import ( OfflineModeIsEnabled, cached_path, fsspec_get, fsspec_head, ftp_get, ftp_head, get_from_cache, http_get, http_head, ) lowerCAmelCase__: Dict = "\\n Text data.\n Second line of data." lowerCAmelCase__: str = "file" @pytest.fixture(scope='session' ) def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE ) -> Dict: SCREAMING_SNAKE_CASE_ : List[Any] = tmp_path_factory.mktemp('data' ) / (FILE_PATH + '.zstd') SCREAMING_SNAKE_CASE_ : Any = bytes(SCREAMING_SNAKE_CASE_ , 'utf-8' ) with zstd.open(SCREAMING_SNAKE_CASE_ , 'wb' ) as f: f.write(SCREAMING_SNAKE_CASE_ ) return path @pytest.fixture def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE ) -> Optional[Any]: with open(os.path.join(tmpfs.local_root_dir , SCREAMING_SNAKE_CASE_ ) , 'w' ) as f: f.write(SCREAMING_SNAKE_CASE_ ) return FILE_PATH @pytest.mark.parametrize('compression_format' , ['gzip', 'xz', 'zstd'] ) def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> str: SCREAMING_SNAKE_CASE_ : Tuple = {'gzip': gz_file, 'xz': xz_file, 'zstd': zstd_path} SCREAMING_SNAKE_CASE_ : Optional[Any] = input_paths[compression_format] SCREAMING_SNAKE_CASE_ : Any = tmp_path / 'cache' SCREAMING_SNAKE_CASE_ : Any = DownloadConfig(cache_dir=SCREAMING_SNAKE_CASE_ , extract_compressed_file=SCREAMING_SNAKE_CASE_ ) SCREAMING_SNAKE_CASE_ : Optional[int] = cached_path(SCREAMING_SNAKE_CASE_ , download_config=SCREAMING_SNAKE_CASE_ ) with open(SCREAMING_SNAKE_CASE_ ) as f: SCREAMING_SNAKE_CASE_ : List[Any] = f.read() with open(SCREAMING_SNAKE_CASE_ ) as f: SCREAMING_SNAKE_CASE_ : Tuple = f.read() assert extracted_file_content == expected_file_content @pytest.mark.parametrize('default_extracted' , [True, False] ) @pytest.mark.parametrize('default_cache_dir' , [True, False] ) def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> List[str]: SCREAMING_SNAKE_CASE_ : Tuple = 'custom_cache' SCREAMING_SNAKE_CASE_ : List[str] = 'custom_extracted_dir' SCREAMING_SNAKE_CASE_ : Union[str, Any] = tmp_path / 'custom_extracted_path' if default_extracted: SCREAMING_SNAKE_CASE_ : str = ('downloads' if default_cache_dir else custom_cache_dir, 'extracted') else: monkeypatch.setattr('datasets.config.EXTRACTED_DATASETS_DIR' , SCREAMING_SNAKE_CASE_ ) monkeypatch.setattr('datasets.config.EXTRACTED_DATASETS_PATH' , str(SCREAMING_SNAKE_CASE_ ) ) SCREAMING_SNAKE_CASE_ : Optional[Any] = custom_extracted_path.parts[-2:] if default_cache_dir else (custom_cache_dir, custom_extracted_dir) SCREAMING_SNAKE_CASE_ : Dict = xz_file SCREAMING_SNAKE_CASE_ : Optional[int] = ( DownloadConfig(extract_compressed_file=SCREAMING_SNAKE_CASE_ ) if default_cache_dir else DownloadConfig(cache_dir=tmp_path / custom_cache_dir , extract_compressed_file=SCREAMING_SNAKE_CASE_ ) ) SCREAMING_SNAKE_CASE_ : List[str] = cached_path(SCREAMING_SNAKE_CASE_ , download_config=SCREAMING_SNAKE_CASE_ ) assert Path(SCREAMING_SNAKE_CASE_ ).parent.parts[-2:] == expected def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE ) -> Optional[int]: SCREAMING_SNAKE_CASE_ : Tuple = str(Path(SCREAMING_SNAKE_CASE_ ).resolve() ) assert cached_path(SCREAMING_SNAKE_CASE_ ) == text_file # relative path SCREAMING_SNAKE_CASE_ : Dict = str(Path(SCREAMING_SNAKE_CASE_ ).resolve().relative_to(Path(os.getcwd() ) ) ) assert cached_path(SCREAMING_SNAKE_CASE_ ) == text_file def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE ) -> List[Any]: SCREAMING_SNAKE_CASE_ : List[str] = str(tmp_path.resolve() / '__missing_file__.txt' ) with pytest.raises(SCREAMING_SNAKE_CASE_ ): cached_path(SCREAMING_SNAKE_CASE_ ) # relative path SCREAMING_SNAKE_CASE_ : Optional[int] = './__missing_file__.txt' with pytest.raises(SCREAMING_SNAKE_CASE_ ): cached_path(SCREAMING_SNAKE_CASE_ ) def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE ) -> Any: SCREAMING_SNAKE_CASE_ : Union[str, Any] = get_from_cache(f'tmp://{tmpfs_file}' ) with open(SCREAMING_SNAKE_CASE_ ) as f: SCREAMING_SNAKE_CASE_ : Union[str, Any] = f.read() assert output_file_content == FILE_CONTENT @patch('datasets.config.HF_DATASETS_OFFLINE' , SCREAMING_SNAKE_CASE_ ) def __SCREAMING_SNAKE_CASE ( ) -> Any: with pytest.raises(SCREAMING_SNAKE_CASE_ ): cached_path('https://huggingface.co' ) @patch('datasets.config.HF_DATASETS_OFFLINE' , SCREAMING_SNAKE_CASE_ ) def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE ) -> str: SCREAMING_SNAKE_CASE_ : int = tmp_path_factory.mktemp('data' ) / 'file.html' with pytest.raises(SCREAMING_SNAKE_CASE_ ): http_get('https://huggingface.co' , temp_file=SCREAMING_SNAKE_CASE_ ) with pytest.raises(SCREAMING_SNAKE_CASE_ ): http_head('https://huggingface.co' ) @patch('datasets.config.HF_DATASETS_OFFLINE' , SCREAMING_SNAKE_CASE_ ) def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE ) -> Union[str, Any]: SCREAMING_SNAKE_CASE_ : Optional[int] = tmp_path_factory.mktemp('data' ) / 'file.html' with pytest.raises(SCREAMING_SNAKE_CASE_ ): ftp_get('ftp://huggingface.co' , temp_file=SCREAMING_SNAKE_CASE_ ) with pytest.raises(SCREAMING_SNAKE_CASE_ ): ftp_head('ftp://huggingface.co' ) @patch('datasets.config.HF_DATASETS_OFFLINE' , SCREAMING_SNAKE_CASE_ ) def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE ) -> List[Any]: SCREAMING_SNAKE_CASE_ : List[Any] = tmp_path_factory.mktemp('data' ) / 'file.html' with pytest.raises(SCREAMING_SNAKE_CASE_ ): fsspec_get('s3://huggingface.co' , temp_file=SCREAMING_SNAKE_CASE_ ) with pytest.raises(SCREAMING_SNAKE_CASE_ ): fsspec_head('s3://huggingface.co' )
345
from dataclasses import dataclass, field from typing import ClassVar, Dict from ..features import Features, Value from .base import TaskTemplate @dataclass(frozen=A__ ) class __UpperCamelCase ( A__ ): __A : str = field(default="""language-modeling""" , metadata={"""include_in_asdict_even_if_is_default""": True} ) __A : ClassVar[Features] = Features({"""text""": Value("""string""" )} ) __A : ClassVar[Features] = Features({} ) __A : str = "text" @property def UpperCamelCase( self ): return {self.text_column: "text"}
32
0
'''simple docstring''' import shutil import tempfile import unittest import numpy as np import pytest from transformers.testing_utils import require_vision from transformers.utils import is_vision_available if is_vision_available(): from PIL import Image from transformers import AutoProcessor, BertTokenizer, BlipImageProcessor, BlipProcessor, PreTrainedTokenizerFast @require_vision class _snake_case ( unittest.TestCase ): '''simple docstring''' def lowerCAmelCase__ ( self: str ) -> Optional[int]: __magic_name__ : int = tempfile.mkdtemp() __magic_name__ : List[str] = BlipImageProcessor() __magic_name__ : int = BertTokenizer.from_pretrained("hf-internal-testing/tiny-random-BertModel" ) __magic_name__ : Union[str, Any] = BlipProcessor(_UpperCamelCase , _UpperCamelCase ) processor.save_pretrained(self.tmpdirname ) def lowerCAmelCase__ ( self: Union[str, Any] , **__UpperCamelCase: Optional[int] ) -> str: return AutoProcessor.from_pretrained(self.tmpdirname , **_UpperCamelCase ).tokenizer def lowerCAmelCase__ ( self: Optional[int] , **__UpperCamelCase: List[str] ) -> Optional[int]: return AutoProcessor.from_pretrained(self.tmpdirname , **_UpperCamelCase ).image_processor def lowerCAmelCase__ ( self: int ) -> Tuple: shutil.rmtree(self.tmpdirname ) def lowerCAmelCase__ ( self: Dict ) -> Dict: __magic_name__ : Union[str, Any] = [np.random.randint(255 , size=(3, 30, 400) , dtype=np.uinta )] __magic_name__ : str = [Image.fromarray(np.moveaxis(_UpperCamelCase , 0 , -1 ) ) for x in image_inputs] return image_inputs def lowerCAmelCase__ ( self: Union[str, Any] ) -> List[Any]: __magic_name__ : Optional[int] = BlipProcessor(tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) __magic_name__ : Tuple = self.get_tokenizer(bos_token="(BOS)" , eos_token="(EOS)" ) __magic_name__ : Optional[Any] = self.get_image_processor(do_normalize=_UpperCamelCase , padding_value=1.0 ) __magic_name__ : Optional[int] = BlipProcessor.from_pretrained( self.tmpdirname , bos_token="(BOS)" , eos_token="(EOS)" , do_normalize=_UpperCamelCase , padding_value=1.0 ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer , _UpperCamelCase ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , _UpperCamelCase ) def lowerCAmelCase__ ( self: Dict ) -> Union[str, Any]: __magic_name__ : str = self.get_image_processor() __magic_name__ : List[Any] = self.get_tokenizer() __magic_name__ : int = BlipProcessor(tokenizer=_UpperCamelCase , image_processor=_UpperCamelCase ) __magic_name__ : List[Any] = self.prepare_image_inputs() __magic_name__ : Optional[Any] = image_processor(_UpperCamelCase , return_tensors="np" ) __magic_name__ : Any = processor(images=_UpperCamelCase , return_tensors="np" ) for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1E-2 ) def lowerCAmelCase__ ( self: int ) -> Optional[int]: __magic_name__ : Tuple = self.get_image_processor() __magic_name__ : Tuple = self.get_tokenizer() __magic_name__ : List[Any] = BlipProcessor(tokenizer=_UpperCamelCase , image_processor=_UpperCamelCase ) __magic_name__ : int = "lower newer" __magic_name__ : Any = processor(text=_UpperCamelCase ) __magic_name__ : str = tokenizer(_UpperCamelCase , return_token_type_ids=_UpperCamelCase ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key] ) def lowerCAmelCase__ ( self: Dict ) -> Optional[int]: __magic_name__ : Optional[int] = self.get_image_processor() __magic_name__ : List[Any] = self.get_tokenizer() __magic_name__ : str = BlipProcessor(tokenizer=_UpperCamelCase , image_processor=_UpperCamelCase ) __magic_name__ : Optional[int] = "lower newer" __magic_name__ : Any = self.prepare_image_inputs() __magic_name__ : Union[str, Any] = processor(text=_UpperCamelCase , images=_UpperCamelCase ) self.assertListEqual(list(inputs.keys() ) , ["pixel_values", "input_ids", "attention_mask"] ) # test if it raises when no input is passed with pytest.raises(_UpperCamelCase ): processor() def lowerCAmelCase__ ( self: Union[str, Any] ) -> Optional[Any]: __magic_name__ : Any = self.get_image_processor() __magic_name__ : int = self.get_tokenizer() __magic_name__ : Optional[Any] = BlipProcessor(tokenizer=_UpperCamelCase , image_processor=_UpperCamelCase ) __magic_name__ : Dict = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] __magic_name__ : int = processor.batch_decode(_UpperCamelCase ) __magic_name__ : int = tokenizer.batch_decode(_UpperCamelCase ) self.assertListEqual(_UpperCamelCase , _UpperCamelCase ) def lowerCAmelCase__ ( self: Any ) -> int: __magic_name__ : List[Any] = self.get_image_processor() __magic_name__ : int = self.get_tokenizer() __magic_name__ : Any = BlipProcessor(tokenizer=_UpperCamelCase , image_processor=_UpperCamelCase ) __magic_name__ : Dict = "lower newer" __magic_name__ : Optional[int] = self.prepare_image_inputs() __magic_name__ : Dict = processor(text=_UpperCamelCase , images=_UpperCamelCase ) # For now the processor supports only ['pixel_values', 'input_ids', 'attention_mask'] self.assertListEqual(list(inputs.keys() ) , ["pixel_values", "input_ids", "attention_mask"] )
436
import os import re import warnings from shutil import copyfile from typing import TYPE_CHECKING, Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import PreTrainedTokenizer if TYPE_CHECKING: from ...tokenization_utils_base import TextInput from ...utils import logging UpperCAmelCase_ = logging.get_logger(__name__) UpperCAmelCase_ = {"vocab_file": "spiece.model"} UpperCAmelCase_ = { "vocab_file": { "t5-small": "https://huggingface.co/t5-small/resolve/main/spiece.model", "t5-base": "https://huggingface.co/t5-base/resolve/main/spiece.model", "t5-large": "https://huggingface.co/t5-large/resolve/main/spiece.model", "t5-3b": "https://huggingface.co/t5-3b/resolve/main/spiece.model", "t5-11b": "https://huggingface.co/t5-11b/resolve/main/spiece.model", } } # TODO(PVP) - this should be removed in Transformers v5 UpperCAmelCase_ = { "t5-small": 5_12, "t5-base": 5_12, "t5-large": 5_12, "t5-3b": 5_12, "t5-11b": 5_12, } UpperCAmelCase_ = "▁" class __UpperCamelCase ( A__ ): __A : Any = VOCAB_FILES_NAMES __A : Union[str, Any] = PRETRAINED_VOCAB_FILES_MAP __A : Any = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __A : Tuple = ["""input_ids""", """attention_mask"""] def __init__( self , _UpperCamelCase , _UpperCamelCase="</s>" , _UpperCamelCase="<unk>" , _UpperCamelCase="<pad>" , _UpperCamelCase=100 , _UpperCamelCase=None , _UpperCamelCase = None , _UpperCamelCase=True , **_UpperCamelCase , ): # Add extra_ids to the special token list if extra_ids > 0 and additional_special_tokens is None: _UpperCAmelCase = [f'''<extra_id_{i}>''' for i in range(_UpperCamelCase )] elif extra_ids > 0 and additional_special_tokens is not None: # Check that we have the right number of extra_id special tokens _UpperCAmelCase = len(set(filter(lambda _UpperCamelCase : bool('''extra_id''' in str(_UpperCamelCase ) ) , _UpperCamelCase ) ) ) if extra_tokens != extra_ids: raise ValueError( f'''Both extra_ids ({extra_ids}) and additional_special_tokens ({additional_special_tokens}) are''' ''' provided to T5Tokenizer. In this case the additional_special_tokens must include the extra_ids''' ''' tokens''' ) if legacy: logger.warning_once( f'''You are using the legacy behaviour of the {self.__class__}. This means that tokens that come after special tokens will not be properly handled. We recommend you to''' ''' read the related pull request available at https://github.com/huggingface/transformers/pull/24565''' ) _UpperCAmelCase = legacy _UpperCAmelCase = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( eos_token=_UpperCamelCase , unk_token=_UpperCamelCase , pad_token=_UpperCamelCase , extra_ids=_UpperCamelCase , additional_special_tokens=_UpperCamelCase , sp_model_kwargs=self.sp_model_kwargs , legacy=_UpperCamelCase , **_UpperCamelCase , ) _UpperCAmelCase = vocab_file _UpperCAmelCase = extra_ids _UpperCAmelCase = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(_UpperCamelCase ) @staticmethod def UpperCamelCase( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ): if pretrained_model_name_or_path in TaTokenizer.max_model_input_sizes: _UpperCAmelCase = TaTokenizer.max_model_input_sizes[pretrained_model_name_or_path] if init_max_model_length is not None and init_max_model_length != max_model_length: return init_max_model_length elif init_max_model_length is None: warnings.warn( '''This tokenizer was incorrectly instantiated with a model max length of''' f''' {deprecated_max_model_length} which will be corrected in Transformers v5.\nFor now, this''' ''' behavior is kept to avoid breaking backwards compatibility when padding/encoding with''' ''' `truncation is True`.\n- Be aware that you SHOULD NOT rely on''' f''' {pretrained_model_name_or_path} automatically truncating your input to''' f''' {deprecated_max_model_length} when padding/encoding.\n- If you want to encode/pad to sequences''' f''' longer than {deprecated_max_model_length} you can either instantiate this tokenizer with''' ''' `model_max_length` or pass `max_length` when encoding/padding.\n- To avoid this warning, please''' ''' instantiate this tokenizer with `model_max_length` set to your preferred value.''' , _UpperCamelCase , ) return max_model_length @property def UpperCamelCase( self ): return self.sp_model.get_piece_size() + self._extra_ids def UpperCamelCase( self ): _UpperCAmelCase = {self.convert_ids_to_tokens(_UpperCamelCase ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def UpperCamelCase( self , _UpperCamelCase , _UpperCamelCase = None , _UpperCamelCase = False ): if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=_UpperCamelCase , token_ids_a=_UpperCamelCase , already_has_special_tokens=_UpperCamelCase ) # normal case: some special tokens if token_ids_a is None: return ([0] * len(_UpperCamelCase )) + [1] return ([0] * len(_UpperCamelCase )) + [1] + ([0] * len(_UpperCamelCase )) + [1] def UpperCamelCase( self ): return list( set(filter(lambda _UpperCamelCase : bool(re.search(R'''<extra_id_\d+>''' , _UpperCamelCase ) ) is not None , self.additional_special_tokens ) ) ) def UpperCamelCase( self ): return [self._convert_token_to_id(_UpperCamelCase ) for token in self.get_sentinel_tokens()] def UpperCamelCase( self , _UpperCamelCase ): if len(_UpperCamelCase ) > 0 and token_ids[-1] == self.eos_token_id: warnings.warn( f'''This sequence already has {self.eos_token}. In future versions this behavior may lead to duplicated''' ''' eos tokens being added.''' ) return token_ids else: return token_ids + [self.eos_token_id] def UpperCamelCase( self , _UpperCamelCase , _UpperCamelCase = None ): _UpperCAmelCase = [self.eos_token_id] if token_ids_a is None: return len(token_ids_a + eos ) * [0] return len(token_ids_a + eos + token_ids_a + eos ) * [0] def UpperCamelCase( self , _UpperCamelCase , _UpperCamelCase = None ): _UpperCAmelCase = self._add_eos_if_not_present(_UpperCamelCase ) if token_ids_a is None: return token_ids_a else: _UpperCAmelCase = self._add_eos_if_not_present(_UpperCamelCase ) return token_ids_a + token_ids_a def __getstate__( self ): _UpperCAmelCase = self.__dict__.copy() _UpperCAmelCase = None return state def __setstate__( self , _UpperCamelCase ): _UpperCAmelCase = d # for backward compatibility if not hasattr(self , '''sp_model_kwargs''' ): _UpperCAmelCase = {} _UpperCAmelCase = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def UpperCamelCase( self , _UpperCamelCase , **_UpperCamelCase ): # Replace the SPIECE_UNDERLINE with a space to make sure SPIECE_UNDERLINE is only used at # the beginning of the text if not self.legacy: _UpperCAmelCase = SPIECE_UNDERLINE + text.replace(_UpperCamelCase , ''' ''' ) return super().tokenize(_UpperCamelCase , **_UpperCamelCase ) def UpperCamelCase( self , _UpperCamelCase , **_UpperCamelCase ): if not self.legacy: _UpperCAmelCase = text.startswith(_UpperCamelCase ) if is_first: _UpperCAmelCase = text[1:] _UpperCAmelCase = self.sp_model.encode(_UpperCamelCase , out_type=_UpperCamelCase ) if not self.legacy and not is_first and not text.startswith(''' ''' ) and tokens[0].startswith(_UpperCamelCase ): _UpperCAmelCase = ([tokens[0][1:]] if len(tokens[0] ) > 1 else []) + tokens[1:] return tokens def UpperCamelCase( self , _UpperCamelCase ): if token.startswith('''<extra_id_''' ): _UpperCAmelCase = re.match(R'''<extra_id_(\d+)>''' , _UpperCamelCase ) _UpperCAmelCase = int(match.group(1 ) ) return self.vocab_size - num - 1 return self.sp_model.piece_to_id(_UpperCamelCase ) def UpperCamelCase( self , _UpperCamelCase ): if index < self.sp_model.get_piece_size(): _UpperCAmelCase = self.sp_model.IdToPiece(_UpperCamelCase ) else: _UpperCAmelCase = f'''<extra_id_{self.vocab_size - 1 - index}>''' return token def UpperCamelCase( self , _UpperCamelCase ): _UpperCAmelCase = [] _UpperCAmelCase = '''''' _UpperCAmelCase = False for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: if not prev_is_special: out_string += " " out_string += self.sp_model.decode(_UpperCamelCase ) + token _UpperCAmelCase = True _UpperCAmelCase = [] else: current_sub_tokens.append(_UpperCamelCase ) _UpperCAmelCase = False out_string += self.sp_model.decode(_UpperCamelCase ) return out_string.strip() def UpperCamelCase( self , _UpperCamelCase , _UpperCamelCase = None ): if not os.path.isdir(_UpperCamelCase ): logger.error(f'''Vocabulary path ({save_directory}) should be a directory''' ) return _UpperCAmelCase = os.path.join( _UpperCamelCase , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(_UpperCamelCase ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , _UpperCamelCase ) elif not os.path.isfile(self.vocab_file ): with open(_UpperCamelCase , '''wb''' ) as fi: _UpperCAmelCase = self.sp_model.serialized_model_proto() fi.write(_UpperCamelCase ) return (out_vocab_file,)
32
0
import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import LevitImageProcessor class snake_case_ ( unittest.TestCase ): '''simple docstring''' def __init__( self, A_, A_=7, A_=3, A_=18, A_=30, A_=400, A_=True, A_=None, A_=True, A_=None, A_=True, A_=[0.5, 0.5, 0.5], A_=[0.5, 0.5, 0.5], ) -> Any: UpperCAmelCase__ =size if size is not None else {"shortest_edge": 18} UpperCAmelCase__ =crop_size if crop_size is not None else {"height": 18, "width": 18} UpperCAmelCase__ =parent UpperCAmelCase__ =batch_size UpperCAmelCase__ =num_channels UpperCAmelCase__ =image_size UpperCAmelCase__ =min_resolution UpperCAmelCase__ =max_resolution UpperCAmelCase__ =do_resize UpperCAmelCase__ =size UpperCAmelCase__ =do_center_crop UpperCAmelCase__ =crop_size UpperCAmelCase__ =do_normalize UpperCAmelCase__ =image_mean UpperCAmelCase__ =image_std def __UpperCAmelCase ( self ) -> Union[str, Any]: return { "image_mean": self.image_mean, "image_std": self.image_std, "do_normalize": self.do_normalize, "do_resize": self.do_resize, "do_center_crop": self.do_center_crop, "size": self.size, "crop_size": self.crop_size, } @require_torch @require_vision class snake_case_ ( A__, unittest.TestCase ): '''simple docstring''' __UpperCamelCase = LevitImageProcessor if is_vision_available() else None def __UpperCAmelCase ( self ) -> Union[str, Any]: UpperCAmelCase__ =LevitImageProcessingTester(self ) @property def __UpperCAmelCase ( self ) -> Optional[int]: return self.image_processor_tester.prepare_image_processor_dict() def __UpperCAmelCase ( self ) -> int: UpperCAmelCase__ =self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(_UpperCamelCase, "image_mean" ) ) self.assertTrue(hasattr(_UpperCamelCase, "image_std" ) ) self.assertTrue(hasattr(_UpperCamelCase, "do_normalize" ) ) self.assertTrue(hasattr(_UpperCamelCase, "do_resize" ) ) self.assertTrue(hasattr(_UpperCamelCase, "do_center_crop" ) ) self.assertTrue(hasattr(_UpperCamelCase, "size" ) ) def __UpperCAmelCase ( self ) -> Tuple: UpperCAmelCase__ =self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size, {"shortest_edge": 18} ) self.assertEqual(image_processor.crop_size, {"height": 18, "width": 18} ) UpperCAmelCase__ =self.image_processing_class.from_dict(self.image_processor_dict, size=42, crop_size=84 ) self.assertEqual(image_processor.size, {"shortest_edge": 42} ) self.assertEqual(image_processor.crop_size, {"height": 84, "width": 84} ) def __UpperCAmelCase ( self ) -> Union[str, Any]: pass def __UpperCAmelCase ( self ) -> List[str]: # Initialize image_processing UpperCAmelCase__ =self.image_processing_class(**self.image_processor_dict ) # create random PIL images UpperCAmelCase__ =prepare_image_inputs(self.image_processor_tester, equal_resolution=_UpperCamelCase ) for image in image_inputs: self.assertIsInstance(_UpperCamelCase, Image.Image ) # Test not batched input UpperCAmelCase__ =image_processing(image_inputs[0], return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape, ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ), ) # Test batched UpperCAmelCase__ =image_processing(_UpperCamelCase, return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape, ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ), ) def __UpperCAmelCase ( self ) -> List[Any]: # Initialize image_processing UpperCAmelCase__ =self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors UpperCAmelCase__ =prepare_image_inputs(self.image_processor_tester, equal_resolution=_UpperCamelCase, numpify=_UpperCamelCase ) for image in image_inputs: self.assertIsInstance(_UpperCamelCase, np.ndarray ) # Test not batched input UpperCAmelCase__ =image_processing(image_inputs[0], return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape, ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ), ) # Test batched UpperCAmelCase__ =image_processing(_UpperCamelCase, return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape, ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ), ) def __UpperCAmelCase ( self ) -> Optional[Any]: # Initialize image_processing UpperCAmelCase__ =self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors UpperCAmelCase__ =prepare_image_inputs(self.image_processor_tester, equal_resolution=_UpperCamelCase, torchify=_UpperCamelCase ) for image in image_inputs: self.assertIsInstance(_UpperCamelCase, torch.Tensor ) # Test not batched input UpperCAmelCase__ =image_processing(image_inputs[0], return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape, ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ), ) # Test batched UpperCAmelCase__ =image_processing(_UpperCamelCase, return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape, ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ), )
625
from __future__ import annotations def A__ ( SCREAMING_SNAKE_CASE_ : int ) -> bool: """simple docstring""" _UpperCAmelCase = str(SCREAMING_SNAKE_CASE_ ) return len(SCREAMING_SNAKE_CASE_ ) == 9 and set(SCREAMING_SNAKE_CASE_ ) == set('''123456789''' ) def A__ ( ) -> int | None: """simple docstring""" for base_num in range(99_99 , 49_99 , -1 ): _UpperCAmelCase = 10_00_02 * base_num if is_9_pandigital(SCREAMING_SNAKE_CASE_ ): return candidate for base_num in range(3_33 , 99 , -1 ): _UpperCAmelCase = 1_00_20_03 * base_num if is_9_pandigital(SCREAMING_SNAKE_CASE_ ): return candidate return None if __name__ == "__main__": print(f'''{solution() = }''')
32
0
"""simple docstring""" import inspect import unittest from transformers import ConvNextVaConfig from transformers.models.auto import get_values from transformers.models.auto.modeling_auto import MODEL_FOR_BACKBONE_MAPPING_NAMES, MODEL_MAPPING_NAMES from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ConvNextVaBackbone, ConvNextVaForImageClassification, ConvNextVaModel from transformers.models.convnextva.modeling_convnextva import CONVNEXTV2_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class __lowerCAmelCase : '''simple docstring''' def __init__( self , a , a=13 , a=32 , a=3 , a=4 , a=[10, 20, 30, 40] , a=[2, 2, 3, 2] , a=True , a=True , a=37 , a="gelu" , a=10 , a=0.02 , a=["stage2", "stage3", "stage4"] , a=[2, 3, 4] , a=None , ): """simple docstring""" snake_case_ :Tuple = parent snake_case_ :Union[str, Any] = batch_size snake_case_ :Any = image_size snake_case_ :int = num_channels snake_case_ :Optional[int] = num_stages snake_case_ :Optional[int] = hidden_sizes snake_case_ :str = depths snake_case_ :List[Any] = is_training snake_case_ :Any = use_labels snake_case_ :List[str] = intermediate_size snake_case_ :int = hidden_act snake_case_ :Optional[int] = num_labels snake_case_ :Union[str, Any] = initializer_range snake_case_ :str = out_features snake_case_ :Tuple = out_indices snake_case_ :Optional[Any] = scope def _a ( self ): """simple docstring""" snake_case_ :str = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) snake_case_ :Dict = None if self.use_labels: snake_case_ :Tuple = ids_tensor([self.batch_size] , self.num_labels ) snake_case_ :Optional[int] = self.get_config() return config, pixel_values, labels def _a ( self ): """simple docstring""" return ConvNextVaConfig( num_channels=self.num_channels , hidden_sizes=self.hidden_sizes , depths=self.depths , num_stages=self.num_stages , hidden_act=self.hidden_act , is_decoder=_UpperCamelCase , initializer_range=self.initializer_range , out_features=self.out_features , out_indices=self.out_indices , num_labels=self.num_labels , ) def _a ( self , a , a , a ): """simple docstring""" snake_case_ :Optional[Any] = ConvNextVaModel(config=_UpperCamelCase ) model.to(_UpperCamelCase ) model.eval() snake_case_ :List[str] = model(_UpperCamelCase ) # expected last hidden states: B, C, H // 32, W // 32 self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], self.image_size // 32, self.image_size // 32) , ) def _a ( self , a , a , a ): """simple docstring""" snake_case_ :Any = ConvNextVaForImageClassification(_UpperCamelCase ) model.to(_UpperCamelCase ) model.eval() snake_case_ :Optional[Any] = model(_UpperCamelCase , labels=_UpperCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def _a ( self , a , a , a ): """simple docstring""" snake_case_ :Dict = ConvNextVaBackbone(config=_UpperCamelCase ) model.to(_UpperCamelCase ) model.eval() snake_case_ :Dict = model(_UpperCamelCase ) # verify hidden states self.parent.assertEqual(len(result.feature_maps ) , len(config.out_features ) ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.hidden_sizes[1], 4, 4] ) # verify channels self.parent.assertEqual(len(model.channels ) , len(config.out_features ) ) self.parent.assertListEqual(model.channels , config.hidden_sizes[1:] ) # verify backbone works with out_features=None snake_case_ :Dict = None snake_case_ :Optional[int] = ConvNextVaBackbone(config=_UpperCamelCase ) model.to(_UpperCamelCase ) model.eval() snake_case_ :Optional[Any] = model(_UpperCamelCase ) # verify feature maps self.parent.assertEqual(len(result.feature_maps ) , 1 ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.hidden_sizes[-1], 1, 1] ) # verify channels self.parent.assertEqual(len(model.channels ) , 1 ) self.parent.assertListEqual(model.channels , [config.hidden_sizes[-1]] ) def _a ( self ): """simple docstring""" snake_case_ :Any = self.prepare_config_and_inputs() snake_case_ , snake_case_ , snake_case_ :Tuple = config_and_inputs snake_case_ :Any = {"pixel_values": pixel_values} return config, inputs_dict def _a ( self ): """simple docstring""" snake_case_ :List[str] = self.prepare_config_and_inputs() snake_case_ , snake_case_ , snake_case_ :Optional[Any] = config_and_inputs snake_case_ :List[Any] = {"pixel_values": pixel_values, "labels": labels} return config, inputs_dict @require_torch class __lowerCAmelCase (A__ ,A__ ,unittest.TestCase ): '''simple docstring''' a__ = ( ( ConvNextVaModel, ConvNextVaForImageClassification, ConvNextVaBackbone, ) if is_torch_available() else () ) a__ = ( {"""feature-extraction""": ConvNextVaModel, """image-classification""": ConvNextVaForImageClassification} if is_torch_available() else {} ) a__ = False a__ = False a__ = False a__ = False a__ = False def _a ( self ): """simple docstring""" snake_case_ :int = ConvNextVaModelTester(self ) snake_case_ :Union[str, Any] = ConfigTester(self , config_class=_UpperCamelCase , has_text_modality=_UpperCamelCase , hidden_size=37 ) def _a ( self ): """simple docstring""" self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def _a ( self ): """simple docstring""" return @unittest.skip(reason="ConvNextV2 does not use inputs_embeds" ) def _a ( self ): """simple docstring""" pass @unittest.skip(reason="ConvNextV2 does not support input and output embeddings" ) def _a ( self ): """simple docstring""" pass @unittest.skip(reason="ConvNextV2 does not use feedforward chunking" ) def _a ( self ): """simple docstring""" pass def _a ( self ): """simple docstring""" if not self.model_tester.is_training: return for model_class in self.all_model_classes: snake_case_ , snake_case_ :List[Any] = self.model_tester.prepare_config_and_inputs_with_labels() snake_case_ :str = True if model_class.__name__ in [ *get_values(_UpperCamelCase ), *get_values(_UpperCamelCase ), ]: continue snake_case_ :Any = model_class(_UpperCamelCase ) model.to(_UpperCamelCase ) model.train() snake_case_ :Tuple = self._prepare_for_class(_UpperCamelCase , _UpperCamelCase , return_labels=_UpperCamelCase ) snake_case_ :Optional[Any] = model(**_UpperCamelCase ).loss loss.backward() def _a ( self ): """simple docstring""" if not self.model_tester.is_training: return for model_class in self.all_model_classes: snake_case_ , snake_case_ :str = self.model_tester.prepare_config_and_inputs_with_labels() snake_case_ :Tuple = False snake_case_ :List[str] = True if ( model_class.__name__ in [*get_values(_UpperCamelCase ), *get_values(_UpperCamelCase )] or not model_class.supports_gradient_checkpointing ): continue snake_case_ :Optional[int] = model_class(_UpperCamelCase ) model.to(_UpperCamelCase ) model.gradient_checkpointing_enable() model.train() snake_case_ :int = self._prepare_for_class(_UpperCamelCase , _UpperCamelCase , return_labels=_UpperCamelCase ) snake_case_ :Any = model(**_UpperCamelCase ).loss loss.backward() def _a ( self ): """simple docstring""" snake_case_ , snake_case_ :Any = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: snake_case_ :List[Any] = model_class(_UpperCamelCase ) snake_case_ :Union[str, Any] = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic snake_case_ :Tuple = [*signature.parameters.keys()] snake_case_ :List[str] = ["pixel_values"] self.assertListEqual(arg_names[:1] , _UpperCamelCase ) def _a ( self ): """simple docstring""" snake_case_ :List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_UpperCamelCase ) def _a ( self ): """simple docstring""" def check_hidden_states_output(a , a , a ): snake_case_ :Optional[Any] = model_class(_UpperCamelCase ) model.to(_UpperCamelCase ) model.eval() with torch.no_grad(): snake_case_ :Any = model(**self._prepare_for_class(_UpperCamelCase , _UpperCamelCase ) ) snake_case_ :str = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states snake_case_ :Dict = self.model_tester.num_stages self.assertEqual(len(_UpperCamelCase ) , expected_num_stages + 1 ) # ConvNextV2's feature maps are of shape (batch_size, num_channels, height, width) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [self.model_tester.image_size // 4, self.model_tester.image_size // 4] , ) snake_case_ , snake_case_ :str = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: snake_case_ :Union[str, Any] = True check_hidden_states_output(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] snake_case_ :Optional[Any] = True check_hidden_states_output(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) def _a ( self ): """simple docstring""" snake_case_ :int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*_UpperCamelCase ) @slow def _a ( self ): """simple docstring""" for model_name in CONVNEXTV2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: snake_case_ :Union[str, Any] = ConvNextVaModel.from_pretrained(_UpperCamelCase ) self.assertIsNotNone(_UpperCamelCase ) def A ( ): """simple docstring""" snake_case_ :Optional[Any] = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) return image @require_torch @require_vision class __lowerCAmelCase (unittest.TestCase ): '''simple docstring''' @cached_property def _a ( self ): """simple docstring""" return AutoImageProcessor.from_pretrained("facebook/convnextv2-tiny-1k-224" ) if is_vision_available() else None @slow def _a ( self ): """simple docstring""" snake_case_ :Optional[int] = ConvNextVaForImageClassification.from_pretrained("facebook/convnextv2-tiny-1k-224" ).to(_UpperCamelCase ) snake_case_ :Dict = self.default_image_processor snake_case_ :Optional[Any] = prepare_img() snake_case_ :Optional[int] = preprocessor(images=_UpperCamelCase , return_tensors="pt" ).to(_UpperCamelCase ) # forward pass with torch.no_grad(): snake_case_ :Optional[Any] = model(**_UpperCamelCase ) # verify the logits snake_case_ :Dict = torch.Size((1, 10_00) ) self.assertEqual(outputs.logits.shape , _UpperCamelCase ) snake_case_ :Dict = torch.tensor([0.9996, 0.1966, -0.4386] ).to(_UpperCamelCase ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , _UpperCamelCase , atol=1e-4 ) )
584
import numpy as np def A__ ( SCREAMING_SNAKE_CASE_ : np.ndarray , SCREAMING_SNAKE_CASE_ : float ) -> np.ndarray: """simple docstring""" return np.where(vector > 0 , SCREAMING_SNAKE_CASE_ , (alpha * (np.exp(SCREAMING_SNAKE_CASE_ ) - 1)) ) if __name__ == "__main__": import doctest doctest.testmod()
32
0
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available SCREAMING_SNAKE_CASE_:Optional[Any] = {"""configuration_wavlm""": ["""WAVLM_PRETRAINED_CONFIG_ARCHIVE_MAP""", """WavLMConfig"""]} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE_:str = [ """WAVLM_PRETRAINED_MODEL_ARCHIVE_LIST""", """WavLMForAudioFrameClassification""", """WavLMForCTC""", """WavLMForSequenceClassification""", """WavLMForXVector""", """WavLMModel""", """WavLMPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_wavlm import WAVLM_PRETRAINED_CONFIG_ARCHIVE_MAP, WavLMConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_wavlm import ( WAVLM_PRETRAINED_MODEL_ARCHIVE_LIST, WavLMForAudioFrameClassification, WavLMForCTC, WavLMForSequenceClassification, WavLMForXVector, WavLMModel, WavLMPreTrainedModel, ) else: import sys SCREAMING_SNAKE_CASE_:int = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
662
UpperCAmelCase_ = { "A": ".-", "B": "-...", "C": "-.-.", "D": "-..", "E": ".", "F": "..-.", "G": "--.", "H": "....", "I": "..", "J": ".---", "K": "-.-", "L": ".-..", "M": "--", "N": "-.", "O": "---", "P": ".--.", "Q": "--.-", "R": ".-.", "S": "...", "T": "-", "U": "..-", "V": "...-", "W": ".--", "X": "-..-", "Y": "-.--", "Z": "--..", "1": ".----", "2": "..---", "3": "...--", "4": "....-", "5": ".....", "6": "-....", "7": "--...", "8": "---..", "9": "----.", "0": "-----", "&": ".-...", "@": ".--.-.", ":": "---...", ",": "--..--", ".": ".-.-.-", "'": ".----.", "\"": ".-..-.", "?": "..--..", "/": "-..-.", "=": "-...-", "+": ".-.-.", "-": "-....-", "(": "-.--.", ")": "-.--.-", "!": "-.-.--", " ": "/" } # Exclamation mark is not in ITU-R recommendation # fmt: on UpperCAmelCase_ = {value: key for key, value in MORSE_CODE_DICT.items()} def A__ ( SCREAMING_SNAKE_CASE_ : str ) -> str: """simple docstring""" return " ".join(MORSE_CODE_DICT[char] for char in message.upper() ) def A__ ( SCREAMING_SNAKE_CASE_ : str ) -> str: """simple docstring""" return "".join(REVERSE_DICT[char] for char in message.split() ) def A__ ( ) -> None: """simple docstring""" _UpperCAmelCase = '''Morse code here!''' print(SCREAMING_SNAKE_CASE_ ) _UpperCAmelCase = encrypt(SCREAMING_SNAKE_CASE_ ) print(SCREAMING_SNAKE_CASE_ ) _UpperCAmelCase = decrypt(SCREAMING_SNAKE_CASE_ ) print(SCREAMING_SNAKE_CASE_ ) if __name__ == "__main__": main()
32
0
from datasets.utils.patching import _PatchedModuleObj, patch_submodule from . import _test_patching def __SCREAMING_SNAKE_CASE ( ) -> Dict: '''simple docstring''' import os as original_os from os import path as original_path from os import rename as original_rename from os.path import dirname as original_dirname from os.path import join as original_join assert _test_patching.os is original_os assert _test_patching.path is original_path assert _test_patching.join is original_join assert _test_patching.renamed_os is original_os assert _test_patching.renamed_path is original_path assert _test_patching.renamed_join is original_join UpperCAmelCase = '''__test_patch_submodule_mock__''' with patch_submodule(_test_patching , '''os.path.join''' , SCREAMING_SNAKE_CASE_ ): # Every way to access os.path.join must be patched, and the rest must stay untouched # check os.path.join assert isinstance(_test_patching.os , _PatchedModuleObj ) assert isinstance(_test_patching.os.path , _PatchedModuleObj ) assert _test_patching.os.path.join is mock # check path.join assert isinstance(_test_patching.path , _PatchedModuleObj ) assert _test_patching.path.join is mock # check join assert _test_patching.join is mock # check that the other attributes are untouched assert _test_patching.os.rename is original_rename assert _test_patching.path.dirname is original_dirname assert _test_patching.os.path.dirname is original_dirname # Even renamed modules or objects must be patched # check renamed_os.path.join assert isinstance(_test_patching.renamed_os , _PatchedModuleObj ) assert isinstance(_test_patching.renamed_os.path , _PatchedModuleObj ) assert _test_patching.renamed_os.path.join is mock # check renamed_path.join assert isinstance(_test_patching.renamed_path , _PatchedModuleObj ) assert _test_patching.renamed_path.join is mock # check renamed_join assert _test_patching.renamed_join is mock # check that the other attributes are untouched assert _test_patching.renamed_os.rename is original_rename assert _test_patching.renamed_path.dirname is original_dirname assert _test_patching.renamed_os.path.dirname is original_dirname # check that everthing is back to normal when the patch is over assert _test_patching.os is original_os assert _test_patching.path is original_path assert _test_patching.join is original_join assert _test_patching.renamed_os is original_os assert _test_patching.renamed_path is original_path assert _test_patching.renamed_join is original_join def __SCREAMING_SNAKE_CASE ( ) -> Dict: '''simple docstring''' assert _test_patching.open is open UpperCAmelCase = '''__test_patch_submodule_builtin_mock__''' # _test_patching has "open" in its globals assert _test_patching.open is open with patch_submodule(_test_patching , '''open''' , SCREAMING_SNAKE_CASE_ ): assert _test_patching.open is mock # check that everthing is back to normal when the patch is over assert _test_patching.open is open def __SCREAMING_SNAKE_CASE ( ) -> List[Any]: '''simple docstring''' UpperCAmelCase = '''__test_patch_submodule_missing_mock__''' with patch_submodule(_test_patching , '''pandas.read_csv''' , SCREAMING_SNAKE_CASE_ ): pass def __SCREAMING_SNAKE_CASE ( ) -> List[Any]: '''simple docstring''' UpperCAmelCase = '''__test_patch_submodule_missing_builtin_mock__''' # _test_patching doesn't have "len" in its globals assert getattr(_test_patching , '''len''' , SCREAMING_SNAKE_CASE_ ) is None with patch_submodule(_test_patching , '''len''' , SCREAMING_SNAKE_CASE_ ): assert _test_patching.len is mock assert _test_patching.len is len def __SCREAMING_SNAKE_CASE ( ) -> Tuple: '''simple docstring''' UpperCAmelCase = '''__test_patch_submodule_start_and_stop_mock__''' UpperCAmelCase = patch_submodule(_test_patching , '''open''' , SCREAMING_SNAKE_CASE_ ) assert _test_patching.open is open patch.start() assert _test_patching.open is mock patch.stop() assert _test_patching.open is open def __SCREAMING_SNAKE_CASE ( ) -> Union[str, Any]: '''simple docstring''' from os import rename as original_rename from os.path import dirname as original_dirname from os.path import join as original_join UpperCAmelCase = '''__test_patch_submodule_successive_join__''' UpperCAmelCase = '''__test_patch_submodule_successive_dirname__''' UpperCAmelCase = '''__test_patch_submodule_successive_rename__''' assert _test_patching.os.path.join is original_join assert _test_patching.os.path.dirname is original_dirname assert _test_patching.os.rename is original_rename with patch_submodule(_test_patching , '''os.path.join''' , SCREAMING_SNAKE_CASE_ ): with patch_submodule(_test_patching , '''os.rename''' , SCREAMING_SNAKE_CASE_ ): with patch_submodule(_test_patching , '''os.path.dirname''' , SCREAMING_SNAKE_CASE_ ): assert _test_patching.os.path.join is mock_join assert _test_patching.os.path.dirname is mock_dirname assert _test_patching.os.rename is mock_rename # try another order with patch_submodule(_test_patching , '''os.rename''' , SCREAMING_SNAKE_CASE_ ): with patch_submodule(_test_patching , '''os.path.join''' , SCREAMING_SNAKE_CASE_ ): with patch_submodule(_test_patching , '''os.path.dirname''' , SCREAMING_SNAKE_CASE_ ): assert _test_patching.os.path.join is mock_join assert _test_patching.os.path.dirname is mock_dirname assert _test_patching.os.rename is mock_rename assert _test_patching.os.path.join is original_join assert _test_patching.os.path.dirname is original_dirname assert _test_patching.os.rename is original_rename def __SCREAMING_SNAKE_CASE ( ) -> List[Any]: '''simple docstring''' UpperCAmelCase = '''__test_patch_submodule_doesnt_exist_mock__''' with patch_submodule(_test_patching , '''__module_that_doesn_exist__.__attribute_that_doesn_exist__''' , SCREAMING_SNAKE_CASE_ ): pass with patch_submodule(_test_patching , '''os.__attribute_that_doesn_exist__''' , SCREAMING_SNAKE_CASE_ ): pass
130
import gc import unittest import numpy as np import torch from diffusers import DanceDiffusionPipeline, IPNDMScheduler, UNetaDModel from diffusers.utils import slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu, skip_mps from ..pipeline_params import UNCONDITIONAL_AUDIO_GENERATION_BATCH_PARAMS, UNCONDITIONAL_AUDIO_GENERATION_PARAMS from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() class __UpperCamelCase ( A__ , unittest.TestCase ): __A : Any = DanceDiffusionPipeline __A : Any = UNCONDITIONAL_AUDIO_GENERATION_PARAMS __A : Tuple = PipelineTesterMixin.required_optional_params - { """callback""", """latents""", """callback_steps""", """output_type""", """num_images_per_prompt""", } __A : Tuple = UNCONDITIONAL_AUDIO_GENERATION_BATCH_PARAMS __A : List[str] = False __A : str = False def UpperCamelCase( self ): torch.manual_seed(0 ) _UpperCAmelCase = UNetaDModel( block_out_channels=(32, 32, 64) , extra_in_channels=16 , sample_size=512 , sample_rate=16000 , in_channels=2 , out_channels=2 , flip_sin_to_cos=_UpperCamelCase , use_timestep_embedding=_UpperCamelCase , time_embedding_type='''fourier''' , mid_block_type='''UNetMidBlock1D''' , down_block_types=('''DownBlock1DNoSkip''', '''DownBlock1D''', '''AttnDownBlock1D''') , up_block_types=('''AttnUpBlock1D''', '''UpBlock1D''', '''UpBlock1DNoSkip''') , ) _UpperCAmelCase = IPNDMScheduler() _UpperCAmelCase = { '''unet''': unet, '''scheduler''': scheduler, } return components def UpperCamelCase( self , _UpperCamelCase , _UpperCamelCase=0 ): if str(_UpperCamelCase ).startswith('''mps''' ): _UpperCAmelCase = torch.manual_seed(_UpperCamelCase ) else: _UpperCAmelCase = torch.Generator(device=_UpperCamelCase ).manual_seed(_UpperCamelCase ) _UpperCAmelCase = { '''batch_size''': 1, '''generator''': generator, '''num_inference_steps''': 4, } return inputs def UpperCamelCase( self ): _UpperCAmelCase = '''cpu''' # ensure determinism for the device-dependent torch.Generator _UpperCAmelCase = self.get_dummy_components() _UpperCAmelCase = DanceDiffusionPipeline(**_UpperCamelCase ) _UpperCAmelCase = pipe.to(_UpperCamelCase ) pipe.set_progress_bar_config(disable=_UpperCamelCase ) _UpperCAmelCase = self.get_dummy_inputs(_UpperCamelCase ) _UpperCAmelCase = pipe(**_UpperCamelCase ) _UpperCAmelCase = output.audios _UpperCAmelCase = audio[0, -3:, -3:] assert audio.shape == (1, 2, components["unet"].sample_size) _UpperCAmelCase = np.array([-0.7265, 1.0000, -0.8388, 0.1175, 0.9498, -1.0000] ) assert np.abs(audio_slice.flatten() - expected_slice ).max() < 1e-2 @skip_mps def UpperCamelCase( self ): return super().test_save_load_local() @skip_mps def UpperCamelCase( self ): return super().test_dict_tuple_outputs_equivalent(expected_max_difference=3e-3 ) @skip_mps def UpperCamelCase( self ): return super().test_save_load_optional_components() @skip_mps def UpperCamelCase( self ): return super().test_attention_slicing_forward_pass() def UpperCamelCase( self ): super().test_inference_batch_single_identical(expected_max_diff=3e-3 ) @slow @require_torch_gpu class __UpperCamelCase ( unittest.TestCase ): def UpperCamelCase( self ): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def UpperCamelCase( self ): _UpperCAmelCase = torch_device _UpperCAmelCase = DanceDiffusionPipeline.from_pretrained('''harmonai/maestro-150k''' ) _UpperCAmelCase = pipe.to(_UpperCamelCase ) pipe.set_progress_bar_config(disable=_UpperCamelCase ) _UpperCAmelCase = torch.manual_seed(0 ) _UpperCAmelCase = pipe(generator=_UpperCamelCase , num_inference_steps=100 , audio_length_in_s=4.096 ) _UpperCAmelCase = output.audios _UpperCAmelCase = audio[0, -3:, -3:] assert audio.shape == (1, 2, pipe.unet.sample_size) _UpperCAmelCase = np.array([-0.0192, -0.0231, -0.0318, -0.0059, 0.0002, -0.0020] ) assert np.abs(audio_slice.flatten() - expected_slice ).max() < 1e-2 def UpperCamelCase( self ): _UpperCAmelCase = torch_device _UpperCAmelCase = DanceDiffusionPipeline.from_pretrained('''harmonai/maestro-150k''' , torch_dtype=torch.floataa ) _UpperCAmelCase = pipe.to(_UpperCamelCase ) pipe.set_progress_bar_config(disable=_UpperCamelCase ) _UpperCAmelCase = torch.manual_seed(0 ) _UpperCAmelCase = pipe(generator=_UpperCamelCase , num_inference_steps=100 , audio_length_in_s=4.096 ) _UpperCAmelCase = output.audios _UpperCAmelCase = audio[0, -3:, -3:] assert audio.shape == (1, 2, pipe.unet.sample_size) _UpperCAmelCase = np.array([-0.0367, -0.0488, -0.0771, -0.0525, -0.0444, -0.0341] ) assert np.abs(audio_slice.flatten() - expected_slice ).max() < 1e-2
32
0
"""simple docstring""" from typing import List from .keymap import KEYMAP, get_character def _a ( _snake_case ): """simple docstring""" def decorator(_snake_case ): UpperCAmelCase = getattr(SCREAMING_SNAKE_CASE_ , """handle_key""" , [] ) handle += [key] setattr(SCREAMING_SNAKE_CASE_ , """handle_key""" , SCREAMING_SNAKE_CASE_ ) return func return decorator def _a ( *_snake_case ): """simple docstring""" def decorator(_snake_case ): UpperCAmelCase = getattr(SCREAMING_SNAKE_CASE_ , """handle_key""" , [] ) handle += keys setattr(SCREAMING_SNAKE_CASE_ , """handle_key""" , SCREAMING_SNAKE_CASE_ ) return func return decorator class lowerCamelCase__ ( A__ ): def __new__( cls ,A ,A ,A ): UpperCAmelCase = super().__new__(cls ,_UpperCamelCase ,_UpperCamelCase ,_UpperCamelCase ) if not hasattr(_UpperCamelCase ,"""key_handler""" ): setattr(_UpperCamelCase ,"""key_handler""" ,{} ) setattr(_UpperCamelCase ,"""handle_input""" ,KeyHandler.handle_input ) for value in attrs.values(): UpperCAmelCase = getattr(_UpperCamelCase ,"""handle_key""" ,[] ) for key in handled_keys: UpperCAmelCase = value return new_cls @staticmethod def _UpperCamelCase ( cls ): UpperCAmelCase = get_character() if char != KEYMAP["undefined"]: UpperCAmelCase = ord(_UpperCamelCase ) UpperCAmelCase = cls.key_handler.get(_UpperCamelCase ) if handler: UpperCAmelCase = char return handler(cls ) else: return None def _a ( cls ): """simple docstring""" return KeyHandler(cls.__name__ , cls.__bases__ , cls.__dict__.copy() )
341
from collections import OrderedDict from ...utils import logging from .auto_factory import _BaseAutoModelClass, _LazyAutoMapping, auto_class_update from .configuration_auto import CONFIG_MAPPING_NAMES UpperCAmelCase_ = logging.get_logger(__name__) UpperCAmelCase_ = OrderedDict( [ # Base model mapping ("albert", "FlaxAlbertModel"), ("bart", "FlaxBartModel"), ("beit", "FlaxBeitModel"), ("bert", "FlaxBertModel"), ("big_bird", "FlaxBigBirdModel"), ("blenderbot", "FlaxBlenderbotModel"), ("blenderbot-small", "FlaxBlenderbotSmallModel"), ("clip", "FlaxCLIPModel"), ("distilbert", "FlaxDistilBertModel"), ("electra", "FlaxElectraModel"), ("gpt-sw3", "FlaxGPT2Model"), ("gpt2", "FlaxGPT2Model"), ("gpt_neo", "FlaxGPTNeoModel"), ("gptj", "FlaxGPTJModel"), ("longt5", "FlaxLongT5Model"), ("marian", "FlaxMarianModel"), ("mbart", "FlaxMBartModel"), ("mt5", "FlaxMT5Model"), ("opt", "FlaxOPTModel"), ("pegasus", "FlaxPegasusModel"), ("regnet", "FlaxRegNetModel"), ("resnet", "FlaxResNetModel"), ("roberta", "FlaxRobertaModel"), ("roberta-prelayernorm", "FlaxRobertaPreLayerNormModel"), ("roformer", "FlaxRoFormerModel"), ("t5", "FlaxT5Model"), ("vision-text-dual-encoder", "FlaxVisionTextDualEncoderModel"), ("vit", "FlaxViTModel"), ("wav2vec2", "FlaxWav2Vec2Model"), ("whisper", "FlaxWhisperModel"), ("xglm", "FlaxXGLMModel"), ("xlm-roberta", "FlaxXLMRobertaModel"), ] ) UpperCAmelCase_ = OrderedDict( [ # Model for pre-training mapping ("albert", "FlaxAlbertForPreTraining"), ("bart", "FlaxBartForConditionalGeneration"), ("bert", "FlaxBertForPreTraining"), ("big_bird", "FlaxBigBirdForPreTraining"), ("electra", "FlaxElectraForPreTraining"), ("longt5", "FlaxLongT5ForConditionalGeneration"), ("mbart", "FlaxMBartForConditionalGeneration"), ("mt5", "FlaxMT5ForConditionalGeneration"), ("roberta", "FlaxRobertaForMaskedLM"), ("roberta-prelayernorm", "FlaxRobertaPreLayerNormForMaskedLM"), ("roformer", "FlaxRoFormerForMaskedLM"), ("t5", "FlaxT5ForConditionalGeneration"), ("wav2vec2", "FlaxWav2Vec2ForPreTraining"), ("whisper", "FlaxWhisperForConditionalGeneration"), ("xlm-roberta", "FlaxXLMRobertaForMaskedLM"), ] ) UpperCAmelCase_ = OrderedDict( [ # Model for Masked LM mapping ("albert", "FlaxAlbertForMaskedLM"), ("bart", "FlaxBartForConditionalGeneration"), ("bert", "FlaxBertForMaskedLM"), ("big_bird", "FlaxBigBirdForMaskedLM"), ("distilbert", "FlaxDistilBertForMaskedLM"), ("electra", "FlaxElectraForMaskedLM"), ("mbart", "FlaxMBartForConditionalGeneration"), ("roberta", "FlaxRobertaForMaskedLM"), ("roberta-prelayernorm", "FlaxRobertaPreLayerNormForMaskedLM"), ("roformer", "FlaxRoFormerForMaskedLM"), ("xlm-roberta", "FlaxXLMRobertaForMaskedLM"), ] ) UpperCAmelCase_ = OrderedDict( [ # Model for Seq2Seq Causal LM mapping ("bart", "FlaxBartForConditionalGeneration"), ("blenderbot", "FlaxBlenderbotForConditionalGeneration"), ("blenderbot-small", "FlaxBlenderbotSmallForConditionalGeneration"), ("encoder-decoder", "FlaxEncoderDecoderModel"), ("longt5", "FlaxLongT5ForConditionalGeneration"), ("marian", "FlaxMarianMTModel"), ("mbart", "FlaxMBartForConditionalGeneration"), ("mt5", "FlaxMT5ForConditionalGeneration"), ("pegasus", "FlaxPegasusForConditionalGeneration"), ("t5", "FlaxT5ForConditionalGeneration"), ] ) UpperCAmelCase_ = OrderedDict( [ # Model for Image-classsification ("beit", "FlaxBeitForImageClassification"), ("regnet", "FlaxRegNetForImageClassification"), ("resnet", "FlaxResNetForImageClassification"), ("vit", "FlaxViTForImageClassification"), ] ) UpperCAmelCase_ = OrderedDict( [ ("vision-encoder-decoder", "FlaxVisionEncoderDecoderModel"), ] ) UpperCAmelCase_ = OrderedDict( [ # Model for Causal LM mapping ("bart", "FlaxBartForCausalLM"), ("bert", "FlaxBertForCausalLM"), ("big_bird", "FlaxBigBirdForCausalLM"), ("electra", "FlaxElectraForCausalLM"), ("gpt-sw3", "FlaxGPT2LMHeadModel"), ("gpt2", "FlaxGPT2LMHeadModel"), ("gpt_neo", "FlaxGPTNeoForCausalLM"), ("gptj", "FlaxGPTJForCausalLM"), ("opt", "FlaxOPTForCausalLM"), ("roberta", "FlaxRobertaForCausalLM"), ("roberta-prelayernorm", "FlaxRobertaPreLayerNormForCausalLM"), ("xglm", "FlaxXGLMForCausalLM"), ("xlm-roberta", "FlaxXLMRobertaForCausalLM"), ] ) UpperCAmelCase_ = OrderedDict( [ # Model for Sequence Classification mapping ("albert", "FlaxAlbertForSequenceClassification"), ("bart", "FlaxBartForSequenceClassification"), ("bert", "FlaxBertForSequenceClassification"), ("big_bird", "FlaxBigBirdForSequenceClassification"), ("distilbert", "FlaxDistilBertForSequenceClassification"), ("electra", "FlaxElectraForSequenceClassification"), ("mbart", "FlaxMBartForSequenceClassification"), ("roberta", "FlaxRobertaForSequenceClassification"), ("roberta-prelayernorm", "FlaxRobertaPreLayerNormForSequenceClassification"), ("roformer", "FlaxRoFormerForSequenceClassification"), ("xlm-roberta", "FlaxXLMRobertaForSequenceClassification"), ] ) UpperCAmelCase_ = OrderedDict( [ # Model for Question Answering mapping ("albert", "FlaxAlbertForQuestionAnswering"), ("bart", "FlaxBartForQuestionAnswering"), ("bert", "FlaxBertForQuestionAnswering"), ("big_bird", "FlaxBigBirdForQuestionAnswering"), ("distilbert", "FlaxDistilBertForQuestionAnswering"), ("electra", "FlaxElectraForQuestionAnswering"), ("mbart", "FlaxMBartForQuestionAnswering"), ("roberta", "FlaxRobertaForQuestionAnswering"), ("roberta-prelayernorm", "FlaxRobertaPreLayerNormForQuestionAnswering"), ("roformer", "FlaxRoFormerForQuestionAnswering"), ("xlm-roberta", "FlaxXLMRobertaForQuestionAnswering"), ] ) UpperCAmelCase_ = OrderedDict( [ # Model for Token Classification mapping ("albert", "FlaxAlbertForTokenClassification"), ("bert", "FlaxBertForTokenClassification"), ("big_bird", "FlaxBigBirdForTokenClassification"), ("distilbert", "FlaxDistilBertForTokenClassification"), ("electra", "FlaxElectraForTokenClassification"), ("roberta", "FlaxRobertaForTokenClassification"), ("roberta-prelayernorm", "FlaxRobertaPreLayerNormForTokenClassification"), ("roformer", "FlaxRoFormerForTokenClassification"), ("xlm-roberta", "FlaxXLMRobertaForTokenClassification"), ] ) UpperCAmelCase_ = OrderedDict( [ # Model for Multiple Choice mapping ("albert", "FlaxAlbertForMultipleChoice"), ("bert", "FlaxBertForMultipleChoice"), ("big_bird", "FlaxBigBirdForMultipleChoice"), ("distilbert", "FlaxDistilBertForMultipleChoice"), ("electra", "FlaxElectraForMultipleChoice"), ("roberta", "FlaxRobertaForMultipleChoice"), ("roberta-prelayernorm", "FlaxRobertaPreLayerNormForMultipleChoice"), ("roformer", "FlaxRoFormerForMultipleChoice"), ("xlm-roberta", "FlaxXLMRobertaForMultipleChoice"), ] ) UpperCAmelCase_ = OrderedDict( [ ("bert", "FlaxBertForNextSentencePrediction"), ] ) UpperCAmelCase_ = OrderedDict( [ ("speech-encoder-decoder", "FlaxSpeechEncoderDecoderModel"), ("whisper", "FlaxWhisperForConditionalGeneration"), ] ) UpperCAmelCase_ = OrderedDict( [ ("whisper", "FlaxWhisperForAudioClassification"), ] ) UpperCAmelCase_ = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_MAPPING_NAMES) UpperCAmelCase_ = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_PRETRAINING_MAPPING_NAMES) UpperCAmelCase_ = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_MASKED_LM_MAPPING_NAMES) UpperCAmelCase_ = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING_NAMES ) UpperCAmelCase_ = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING_NAMES ) UpperCAmelCase_ = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_VISION_2_SEQ_MAPPING_NAMES) UpperCAmelCase_ = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_CAUSAL_LM_MAPPING_NAMES) UpperCAmelCase_ = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING_NAMES ) UpperCAmelCase_ = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_QUESTION_ANSWERING_MAPPING_NAMES ) UpperCAmelCase_ = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING_NAMES ) UpperCAmelCase_ = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_MULTIPLE_CHOICE_MAPPING_NAMES ) UpperCAmelCase_ = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_NEXT_SENTENCE_PREDICTION_MAPPING_NAMES ) UpperCAmelCase_ = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_SPEECH_SEQ_2_SEQ_MAPPING_NAMES ) UpperCAmelCase_ = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_AUDIO_CLASSIFICATION_MAPPING_NAMES ) class __UpperCamelCase ( _BaseAutoModelClass ): __A : List[str] = FLAX_MODEL_MAPPING UpperCAmelCase_ = auto_class_update(FlaxAutoModel) class __UpperCamelCase ( _BaseAutoModelClass ): __A : Optional[Any] = FLAX_MODEL_FOR_PRETRAINING_MAPPING UpperCAmelCase_ = auto_class_update(FlaxAutoModelForPreTraining, head_doc="pretraining") class __UpperCamelCase ( _BaseAutoModelClass ): __A : List[Any] = FLAX_MODEL_FOR_CAUSAL_LM_MAPPING UpperCAmelCase_ = auto_class_update(FlaxAutoModelForCausalLM, head_doc="causal language modeling") class __UpperCamelCase ( _BaseAutoModelClass ): __A : List[str] = FLAX_MODEL_FOR_MASKED_LM_MAPPING UpperCAmelCase_ = auto_class_update(FlaxAutoModelForMaskedLM, head_doc="masked language modeling") class __UpperCamelCase ( _BaseAutoModelClass ): __A : Dict = FLAX_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING UpperCAmelCase_ = auto_class_update( FlaxAutoModelForSeqaSeqLM, head_doc="sequence-to-sequence language modeling", checkpoint_for_example="t5-base" ) class __UpperCamelCase ( _BaseAutoModelClass ): __A : List[str] = FLAX_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING UpperCAmelCase_ = auto_class_update( FlaxAutoModelForSequenceClassification, head_doc="sequence classification" ) class __UpperCamelCase ( _BaseAutoModelClass ): __A : Dict = FLAX_MODEL_FOR_QUESTION_ANSWERING_MAPPING UpperCAmelCase_ = auto_class_update(FlaxAutoModelForQuestionAnswering, head_doc="question answering") class __UpperCamelCase ( _BaseAutoModelClass ): __A : Union[str, Any] = FLAX_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING UpperCAmelCase_ = auto_class_update( FlaxAutoModelForTokenClassification, head_doc="token classification" ) class __UpperCamelCase ( _BaseAutoModelClass ): __A : Union[str, Any] = FLAX_MODEL_FOR_MULTIPLE_CHOICE_MAPPING UpperCAmelCase_ = auto_class_update(FlaxAutoModelForMultipleChoice, head_doc="multiple choice") class __UpperCamelCase ( _BaseAutoModelClass ): __A : Any = FLAX_MODEL_FOR_NEXT_SENTENCE_PREDICTION_MAPPING UpperCAmelCase_ = auto_class_update( FlaxAutoModelForNextSentencePrediction, head_doc="next sentence prediction" ) class __UpperCamelCase ( _BaseAutoModelClass ): __A : Dict = FLAX_MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING UpperCAmelCase_ = auto_class_update( FlaxAutoModelForImageClassification, head_doc="image classification" ) class __UpperCamelCase ( _BaseAutoModelClass ): __A : Optional[int] = FLAX_MODEL_FOR_VISION_2_SEQ_MAPPING UpperCAmelCase_ = auto_class_update(FlaxAutoModelForVisionaSeq, head_doc="vision-to-text modeling") class __UpperCamelCase ( _BaseAutoModelClass ): __A : str = FLAX_MODEL_FOR_SPEECH_SEQ_2_SEQ_MAPPING UpperCAmelCase_ = auto_class_update( FlaxAutoModelForSpeechSeqaSeq, head_doc="sequence-to-sequence speech-to-text modeling" )
32
0
'''simple docstring''' import heapq import sys import numpy as np _UpperCAmelCase : Optional[Any] = tuple[int, int] class __magic_name__ : def __init__( self ): lowercase =[] lowercase =set() def _A( self ): if not self.empty(): return self.elements[0][0] else: return float('''inf''' ) def _A( self ): return len(self.elements ) == 0 def _A( self , snake_case_ , snake_case_ ): if item not in self.set: heapq.heappush(self.elements , (priority, item) ) self.set.add(_UpperCamelCase ) else: # update # print("update", item) lowercase =[] ((lowercase) , (lowercase)) =heapq.heappop(self.elements ) while x != item: temp.append((pri, x) ) ((lowercase) , (lowercase)) =heapq.heappop(self.elements ) temp.append((priority, item) ) for pro, xxx in temp: heapq.heappush(self.elements , (pro, xxx) ) def _A( self , snake_case_ ): if item in self.set: self.set.remove(_UpperCamelCase ) lowercase =[] ((lowercase) , (lowercase)) =heapq.heappop(self.elements ) while x != item: temp.append((pro, x) ) ((lowercase) , (lowercase)) =heapq.heappop(self.elements ) for prito, yyy in temp: heapq.heappush(self.elements , (prito, yyy) ) def _A( self ): return self.elements[0][1] def _A( self ): ((lowercase) , (lowercase)) =heapq.heappop(self.elements ) self.set.remove(_UpperCamelCase ) return (priority, item) def UpperCamelCase ( lowercase_ : TPos , lowercase_ : TPos ) -> Any: '''simple docstring''' lowercase =np.array(SCREAMING_SNAKE_CASE_ ) lowercase =np.array(SCREAMING_SNAKE_CASE_ ) return np.linalg.norm(a - b ) def UpperCamelCase ( lowercase_ : TPos , lowercase_ : TPos ) -> int: '''simple docstring''' return consistent_heuristic(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) // t def UpperCamelCase ( lowercase_ : TPos , lowercase_ : TPos ) -> Tuple: '''simple docstring''' return abs(p[0] - goal[0] ) + abs(p[1] - goal[1] ) def UpperCamelCase ( lowercase_ : TPos , lowercase_ : int , lowercase_ : TPos , lowercase_ : dict[TPos, float] ) -> str: '''simple docstring''' lowercase =g_function[start] + Wa * heuristics[i](SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) return ans def UpperCamelCase ( lowercase_ : Union[str, Any] , lowercase_ : str , lowercase_ : Dict ) -> Dict: '''simple docstring''' lowercase =np.chararray((n, n) ) for i in range(SCREAMING_SNAKE_CASE_ ): for j in range(SCREAMING_SNAKE_CASE_ ): lowercase ='''*''' for i in range(SCREAMING_SNAKE_CASE_ ): for j in range(SCREAMING_SNAKE_CASE_ ): if (j, (n - 1) - i) in blocks: lowercase ='''#''' lowercase ='''-''' lowercase =back_pointer[goal] while x != start: ((lowercase) , (lowercase)) =x # print(x) lowercase ='''-''' lowercase =back_pointer[x] lowercase ='''-''' for i in range(SCREAMING_SNAKE_CASE_ ): for j in range(SCREAMING_SNAKE_CASE_ ): if (i, j) == (0, n - 1): print(grid[i][j] , end=''' ''' ) print('''<-- End position''' , end=''' ''' ) else: print(grid[i][j] , end=''' ''' ) print() print('''^''' ) print('''Start position''' ) print() print('''# is an obstacle''' ) print('''- is the path taken by algorithm''' ) print('''PATH TAKEN BY THE ALGORITHM IS:-''' ) lowercase =back_pointer[goal] while x != start: print(SCREAMING_SNAKE_CASE_ , end=''' ''' ) lowercase =back_pointer[x] print(SCREAMING_SNAKE_CASE_ ) sys.exit() def UpperCamelCase ( lowercase_ : TPos ) -> Tuple: '''simple docstring''' if p[0] < 0 or p[0] > n - 1: return False if p[1] < 0 or p[1] > n - 1: return False return True def UpperCamelCase ( lowercase_ : Dict , lowercase_ : Optional[Any] , lowercase_ : List[str] , lowercase_ : Dict , lowercase_ : Optional[int] , lowercase_ : Optional[Any] , lowercase_ : int , lowercase_ : List[Any] , ) -> List[Any]: '''simple docstring''' for itera in range(SCREAMING_SNAKE_CASE_ ): open_list[itera].remove_element(SCREAMING_SNAKE_CASE_ ) # print("s", s) # print("j", j) ((lowercase) , (lowercase)) =s lowercase =(x - 1, y) lowercase =(x + 1, y) lowercase =(x, y + 1) lowercase =(x, y - 1) for neighbours in [left, right, up, down]: if neighbours not in blocks: if valid(SCREAMING_SNAKE_CASE_ ) and neighbours not in visited: # print("neighbour", neighbours) visited.add(SCREAMING_SNAKE_CASE_ ) lowercase =-1 lowercase =float('''inf''' ) if valid(SCREAMING_SNAKE_CASE_ ) and g_function[neighbours] > g_function[s] + 1: lowercase =g_function[s] + 1 lowercase =s if neighbours not in close_list_anchor: open_list[0].put(SCREAMING_SNAKE_CASE_ , key(SCREAMING_SNAKE_CASE_ , 0 , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) ) if neighbours not in close_list_inad: for var in range(1 , SCREAMING_SNAKE_CASE_ ): if key(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) <= Wa * key( SCREAMING_SNAKE_CASE_ , 0 , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): open_list[j].put( SCREAMING_SNAKE_CASE_ , key(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) ) def UpperCamelCase ( ) -> Any: '''simple docstring''' lowercase =[] for x in range(1 , 5 ): for y in range(1 , 6 ): some_list.append((x, y) ) for x in range(1_5 , 2_0 ): some_list.append((x, 1_7) ) for x in range(1_0 , 1_9 ): for y in range(1 , 1_5 ): some_list.append((x, y) ) # L block for x in range(1 , 4 ): for y in range(1_2 , 1_9 ): some_list.append((x, y) ) for x in range(3 , 1_3 ): for y in range(1_6 , 1_9 ): some_list.append((x, y) ) return some_list _UpperCAmelCase : int = {0: consistent_heuristic, 1: heuristic_a, 2: heuristic_a} _UpperCAmelCase : Tuple = [ (0, 1), (1, 1), (2, 1), (3, 1), (4, 1), (5, 1), (6, 1), (7, 1), (8, 1), (9, 1), (10, 1), (11, 1), (12, 1), (13, 1), (14, 1), (15, 1), (16, 1), (17, 1), (18, 1), (19, 1), ] _UpperCAmelCase : Dict = make_common_ground() _UpperCAmelCase : Any = blocks_blk # hyper parameters _UpperCAmelCase : Any = 1 _UpperCAmelCase : Optional[int] = 1 _UpperCAmelCase : Optional[int] = 20 _UpperCAmelCase : List[Any] = 3 # one consistent and two other inconsistent # start and end destination _UpperCAmelCase : Dict = (0, 0) _UpperCAmelCase : Optional[int] = (n - 1, n - 1) _UpperCAmelCase : str = 1 def UpperCamelCase ( lowercase_ : TPos , lowercase_ : TPos , lowercase_ : int ) -> Union[str, Any]: '''simple docstring''' lowercase ={start: 0, goal: float('''inf''' )} lowercase ={start: -1, goal: -1} lowercase =[] lowercase =set() for i in range(SCREAMING_SNAKE_CASE_ ): open_list.append(PriorityQueue() ) open_list[i].put(SCREAMING_SNAKE_CASE_ , key(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) ) lowercase =[] lowercase =[] while open_list[0].minkey() < float('''inf''' ): for i in range(1 , SCREAMING_SNAKE_CASE_ ): # print(open_list[0].minkey(), open_list[i].minkey()) if open_list[i].minkey() <= Wa * open_list[0].minkey(): global t t += 1 if g_function[goal] <= open_list[i].minkey(): if g_function[goal] < float('''inf''' ): do_something(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) else: lowercase , lowercase =open_list[i].top_show() visited.add(SCREAMING_SNAKE_CASE_ ) expand_state( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , ) close_list_inad.append(SCREAMING_SNAKE_CASE_ ) else: if g_function[goal] <= open_list[0].minkey(): if g_function[goal] < float('''inf''' ): do_something(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) else: lowercase =open_list[0].top_show() visited.add(SCREAMING_SNAKE_CASE_ ) expand_state( SCREAMING_SNAKE_CASE_ , 0 , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , ) close_list_anchor.append(SCREAMING_SNAKE_CASE_ ) print('''No path found to goal''' ) print() for i in range(n - 1 , -1 , -1 ): for j in range(SCREAMING_SNAKE_CASE_ ): if (j, i) in blocks: print('''#''' , end=''' ''' ) elif (j, i) in back_pointer: if (j, i) == (n - 1, n - 1): print('''*''' , end=''' ''' ) else: print('''-''' , end=''' ''' ) else: print('''*''' , end=''' ''' ) if (j, i) == (n - 1, n - 1): print('''<-- End position''' , end=''' ''' ) print() print('''^''' ) print('''Start position''' ) print() print('''# is an obstacle''' ) print('''- is the path taken by algorithm''' ) if __name__ == "__main__": multi_a_star(start, goal, n_heuristic)
72
import baseaa def A__ ( SCREAMING_SNAKE_CASE_ : str ) -> bytes: """simple docstring""" return baseaa.baaencode(string.encode('''utf-8''' ) ) def A__ ( SCREAMING_SNAKE_CASE_ : bytes ) -> str: """simple docstring""" return baseaa.baadecode(SCREAMING_SNAKE_CASE_ ).decode('''utf-8''' ) if __name__ == "__main__": UpperCAmelCase_ = "Hello World!" UpperCAmelCase_ = baseaa_encode(test) print(encoded) UpperCAmelCase_ = baseaa_decode(encoded) print(decoded)
32
0
from ...configuration_utils import PretrainedConfig from ...utils import logging _lowercase: str = logging.get_logger(__name__) _lowercase: List[Any] = { '''SCUT-DLVCLab/lilt-roberta-en-base''': ( '''https://huggingface.co/SCUT-DLVCLab/lilt-roberta-en-base/resolve/main/config.json''' ), } class lowerCamelCase__ ( A__ ): UpperCamelCase__ ="""lilt""" def __init__( self : Optional[int] , lowercase__ : List[str]=3_05_22 , lowercase__ : Tuple=7_68 , lowercase__ : str=12 , lowercase__ : Any=12 , lowercase__ : Tuple=30_72 , lowercase__ : Union[str, Any]="gelu" , lowercase__ : str=0.1 , lowercase__ : Optional[Any]=0.1 , lowercase__ : str=5_12 , lowercase__ : Union[str, Any]=2 , lowercase__ : Union[str, Any]=0.0_2 , lowercase__ : List[Any]=1e-12 , lowercase__ : Union[str, Any]=0 , lowercase__ : Optional[Any]="absolute" , lowercase__ : Optional[int]=None , lowercase__ : str=4 , lowercase__ : Tuple=10_24 , **lowercase__ : Any , ): super().__init__(pad_token_id=_UpperCamelCase , **_UpperCamelCase ) _lowerCAmelCase = vocab_size _lowerCAmelCase = hidden_size _lowerCAmelCase = num_hidden_layers _lowerCAmelCase = num_attention_heads _lowerCAmelCase = hidden_act _lowerCAmelCase = intermediate_size _lowerCAmelCase = hidden_dropout_prob _lowerCAmelCase = attention_probs_dropout_prob _lowerCAmelCase = max_position_embeddings _lowerCAmelCase = type_vocab_size _lowerCAmelCase = initializer_range _lowerCAmelCase = layer_norm_eps _lowerCAmelCase = position_embedding_type _lowerCAmelCase = classifier_dropout _lowerCAmelCase = channel_shrink_ratio _lowerCAmelCase = max_ad_position_embeddings
192
from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD, ChannelDimension, ImageInput, PILImageResampling, is_batched, to_numpy_array, valid_images, ) from ...utils import TensorType, logging UpperCAmelCase_ = logging.get_logger(__name__) class __UpperCamelCase ( A__ ): __A : int = ["""pixel_values"""] def __init__( self , _UpperCamelCase = True , _UpperCamelCase = None , _UpperCamelCase = PILImageResampling.BICUBIC , _UpperCamelCase = True , _UpperCamelCase = True , _UpperCamelCase = 1 / 255 , _UpperCamelCase = None , _UpperCamelCase = True , _UpperCamelCase = None , _UpperCamelCase = None , **_UpperCamelCase , ): super().__init__(**_UpperCamelCase ) _UpperCAmelCase = size if size is not None else {'''height''': 224, '''width''': 224} _UpperCAmelCase = get_size_dict(_UpperCamelCase ) _UpperCAmelCase = crop_size if crop_size is not None else {'''height''': 224, '''width''': 224} _UpperCAmelCase = get_size_dict(_UpperCamelCase , default_to_square=_UpperCamelCase , param_name='''crop_size''' ) _UpperCAmelCase = do_resize _UpperCAmelCase = do_rescale _UpperCAmelCase = do_normalize _UpperCAmelCase = do_center_crop _UpperCAmelCase = crop_size _UpperCAmelCase = size _UpperCAmelCase = resample _UpperCAmelCase = rescale_factor _UpperCAmelCase = image_mean if image_mean is not None else IMAGENET_DEFAULT_MEAN _UpperCAmelCase = image_std if image_std is not None else IMAGENET_DEFAULT_STD def UpperCamelCase( self , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase = PILImageResampling.BILINEAR , _UpperCamelCase = None , **_UpperCamelCase , ): _UpperCAmelCase = get_size_dict(_UpperCamelCase ) if "shortest_edge" in size: _UpperCAmelCase = get_resize_output_image_size(_UpperCamelCase , size=size['''shortest_edge'''] , default_to_square=_UpperCamelCase ) # size = get_resize_output_image_size(image, size["shortest_edge"], size["longest_edge"]) elif "height" in size and "width" in size: _UpperCAmelCase = (size['''height'''], size['''width''']) else: raise ValueError(f'''Size must contain \'height\' and \'width\' keys or \'shortest_edge\' key. Got {size.keys()}''' ) return resize(_UpperCamelCase , size=_UpperCamelCase , resample=_UpperCamelCase , data_format=_UpperCamelCase , **_UpperCamelCase ) def UpperCamelCase( self , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase = None , **_UpperCamelCase , ): _UpperCAmelCase = get_size_dict(_UpperCamelCase ) if "height" not in size or "width" not in size: raise ValueError(f'''The `size` parameter must contain the keys (height, width). Got {size.keys()}''' ) return center_crop(_UpperCamelCase , size=(size['''height'''], size['''width''']) , data_format=_UpperCamelCase , **_UpperCamelCase ) def UpperCamelCase( self , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase = None , **_UpperCamelCase ): return rescale(_UpperCamelCase , scale=_UpperCamelCase , data_format=_UpperCamelCase , **_UpperCamelCase ) def UpperCamelCase( self , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase = None , **_UpperCamelCase , ): return normalize(_UpperCamelCase , mean=_UpperCamelCase , std=_UpperCamelCase , data_format=_UpperCamelCase , **_UpperCamelCase ) def UpperCamelCase( self , _UpperCamelCase , _UpperCamelCase = None , _UpperCamelCase = None , _UpperCamelCase = None , _UpperCamelCase = None , _UpperCamelCase = None , _UpperCamelCase = None , _UpperCamelCase = None , _UpperCamelCase = None , _UpperCamelCase = None , _UpperCamelCase = None , _UpperCamelCase = None , _UpperCamelCase = ChannelDimension.FIRST , **_UpperCamelCase , ): _UpperCAmelCase = do_resize if do_resize is not None else self.do_resize _UpperCAmelCase = do_rescale if do_rescale is not None else self.do_rescale _UpperCAmelCase = do_normalize if do_normalize is not None else self.do_normalize _UpperCAmelCase = do_center_crop if do_center_crop is not None else self.do_center_crop _UpperCAmelCase = crop_size if crop_size is not None else self.crop_size _UpperCAmelCase = get_size_dict(_UpperCamelCase , param_name='''crop_size''' , default_to_square=_UpperCamelCase ) _UpperCAmelCase = resample if resample is not None else self.resample _UpperCAmelCase = rescale_factor if rescale_factor is not None else self.rescale_factor _UpperCAmelCase = image_mean if image_mean is not None else self.image_mean _UpperCAmelCase = image_std if image_std is not None else self.image_std _UpperCAmelCase = size if size is not None else self.size _UpperCAmelCase = get_size_dict(_UpperCamelCase ) if not is_batched(_UpperCamelCase ): _UpperCAmelCase = [images] if not valid_images(_UpperCamelCase ): raise ValueError( '''Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ''' '''torch.Tensor, tf.Tensor or jax.ndarray.''' ) if do_resize and size is None: raise ValueError('''Size must be specified if do_resize is True.''' ) if do_center_crop and crop_size is None: raise ValueError('''Crop size must be specified if do_center_crop is True.''' ) if do_rescale and rescale_factor is None: raise ValueError('''Rescale factor must be specified if do_rescale is True.''' ) # All transformations expect numpy arrays. _UpperCAmelCase = [to_numpy_array(_UpperCamelCase ) for image in images] if do_resize: _UpperCAmelCase = [self.resize(image=_UpperCamelCase , size=_UpperCamelCase , resample=_UpperCamelCase ) for image in images] if do_center_crop: _UpperCAmelCase = [self.center_crop(image=_UpperCamelCase , size=_UpperCamelCase ) for image in images] if do_rescale: _UpperCAmelCase = [self.rescale(image=_UpperCamelCase , scale=_UpperCamelCase ) for image in images] if do_normalize: _UpperCAmelCase = [self.normalize(image=_UpperCamelCase , mean=_UpperCamelCase , std=_UpperCamelCase ) for image in images] _UpperCAmelCase = [to_channel_dimension_format(_UpperCamelCase , _UpperCamelCase ) for image in images] _UpperCAmelCase = {'''pixel_values''': images} return BatchFeature(data=_UpperCamelCase , tensor_type=_UpperCamelCase )
32
0
'''simple docstring''' import numpy as np import datasets A_ = "\nCompute the Mahalanobis Distance\n\nMahalonobis distance is the distance between a point and a distribution.\nAnd not between two distinct points. It is effectively a multivariate equivalent of the Euclidean distance.\nIt was introduced by Prof. P. C. Mahalanobis in 1936\nand has been used in various statistical applications ever since\n[source: https://www.machinelearningplus.com/statistics/mahalanobis-distance/]\n" A_ = "\\n@article{de2000mahalanobis,\n title={The mahalanobis distance},\n author={De Maesschalck, Roy and Jouan-Rimbaud, Delphine and Massart, D{\'e}sir{\'e} L},\n journal={Chemometrics and intelligent laboratory systems},\n volume={50},\n number={1},\n pages={1--18},\n year={2000},\n publisher={Elsevier}\n}\n" A_ = "\nArgs:\n X: List of datapoints to be compared with the `reference_distribution`.\n reference_distribution: List of datapoints from the reference distribution we want to compare to.\nReturns:\n mahalanobis: The Mahalonobis distance for each datapoint in `X`.\nExamples:\n\n >>> mahalanobis_metric = datasets.load_metric(\"mahalanobis\")\n >>> results = mahalanobis_metric.compute(reference_distribution=[[0, 1], [1, 0]], X=[[0, 1]])\n >>> print(results)\n {'mahalanobis': array([0.5])}\n" @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class UpperCAmelCase ( datasets.Metric ): '''simple docstring''' def UpperCamelCase( self ) -> Union[str, Any]: '''simple docstring''' return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { 'X': datasets.Sequence(datasets.Value('float' , id='sequence' ) , id='X' ), } ) , ) def UpperCamelCase( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> int: '''simple docstring''' lowerCamelCase_ = np.array(_UpperCamelCase ) lowerCamelCase_ = np.array(_UpperCamelCase ) # Assert that arrays are 2D if len(X.shape ) != 2: raise ValueError('Expected `X` to be a 2D vector' ) if len(reference_distribution.shape ) != 2: raise ValueError('Expected `reference_distribution` to be a 2D vector' ) if reference_distribution.shape[0] < 2: raise ValueError( 'Expected `reference_distribution` to be a 2D vector with more than one element in the first dimension' ) # Get mahalanobis distance for each prediction lowerCamelCase_ = X - np.mean(_UpperCamelCase ) lowerCamelCase_ = np.cov(reference_distribution.T ) try: lowerCamelCase_ = np.linalg.inv(_UpperCamelCase ) except np.linalg.LinAlgError: lowerCamelCase_ = np.linalg.pinv(_UpperCamelCase ) lowerCamelCase_ = np.dot(_UpperCamelCase , _UpperCamelCase ) lowerCamelCase_ = np.dot(_UpperCamelCase , X_minus_mu.T ).diagonal() return {"mahalanobis": mahal_dist}
42
from ..utils import DummyObject, requires_backends class __UpperCamelCase ( metaclass=A__ ): __A : str = ["""torch""", """scipy"""] def __init__( self , *_UpperCamelCase , **_UpperCamelCase ): requires_backends(self , ['''torch''', '''scipy'''] ) @classmethod def UpperCamelCase( cls , *_UpperCamelCase , **_UpperCamelCase ): requires_backends(cls , ['''torch''', '''scipy'''] ) @classmethod def UpperCamelCase( cls , *_UpperCamelCase , **_UpperCamelCase ): requires_backends(cls , ['''torch''', '''scipy'''] )
32
0
from typing import Optional import torch import torch.utils.checkpoint from torch import Tensor, nn from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss from ...activations import ACTaFN from ...file_utils import add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward from ...modeling_outputs import ( BaseModelOutputWithNoAttention, BaseModelOutputWithPoolingAndNoAttention, ImageClassifierOutputWithNoAttention, ) from ...modeling_utils import PreTrainedModel from ...utils import logging from .configuration_regnet import RegNetConfig snake_case : str = logging.get_logger(__name__) # General docstring snake_case : str = '''RegNetConfig''' # Base docstring snake_case : Tuple = '''facebook/regnet-y-040''' snake_case : Optional[Any] = [1, 10_88, 7, 7] # Image classification docstring snake_case : Dict = '''facebook/regnet-y-040''' snake_case : Tuple = '''tabby, tabby cat''' snake_case : Optional[int] = [ '''facebook/regnet-y-040''', # See all regnet models at https://huggingface.co/models?filter=regnet ] class snake_case_ (nn.Module ): def __init__( self :Any ,__snake_case :str ,__snake_case :List[Any] ,__snake_case :List[str] = 3 ,__snake_case :Tuple = 1 ,__snake_case :List[str] = 1 ,__snake_case :str = "relu" ,) -> List[Any]: super().__init__() a__ = nn.Convad( _UpperCamelCase ,_UpperCamelCase ,kernel_size=_UpperCamelCase ,stride=_UpperCamelCase ,padding=kernel_size // 2 ,groups=_UpperCamelCase ,bias=_UpperCamelCase ,) a__ = nn.BatchNormad(_UpperCamelCase ) a__ = ACTaFN[activation] if activation is not None else nn.Identity() def lowerCamelCase__( self :Optional[Any] ,__snake_case :str ) -> str: a__ = self.convolution(_UpperCamelCase ) a__ = self.normalization(_UpperCamelCase ) a__ = self.activation(_UpperCamelCase ) return hidden_state class snake_case_ (nn.Module ): def __init__( self :Tuple ,__snake_case :List[str] ) -> Tuple: super().__init__() a__ = RegNetConvLayer( config.num_channels ,config.embedding_size ,kernel_size=3 ,stride=2 ,activation=config.hidden_act ) a__ = config.num_channels def lowerCamelCase__( self :List[Any] ,__snake_case :Any ) -> Optional[Any]: a__ = pixel_values.shape[1] if num_channels != self.num_channels: raise ValueError( 'Make sure that the channel dimension of the pixel values match with the one set in the configuration.' ) a__ = self.embedder(_UpperCamelCase ) return hidden_state class snake_case_ (nn.Module ): def __init__( self :Union[str, Any] ,__snake_case :Union[str, Any] ,__snake_case :Optional[int] ,__snake_case :Optional[int] = 2 ) -> List[str]: super().__init__() a__ = nn.Convad(_UpperCamelCase ,_UpperCamelCase ,kernel_size=1 ,stride=_UpperCamelCase ,bias=_UpperCamelCase ) a__ = nn.BatchNormad(_UpperCamelCase ) def lowerCamelCase__( self :Any ,__snake_case :str ) -> Any: a__ = self.convolution(_UpperCamelCase ) a__ = self.normalization(_UpperCamelCase ) return hidden_state class snake_case_ (nn.Module ): def __init__( self :Union[str, Any] ,__snake_case :Dict ,__snake_case :Optional[int] ) -> List[str]: super().__init__() a__ = nn.AdaptiveAvgPoolad((1, 1) ) a__ = nn.Sequential( nn.Convad(_UpperCamelCase ,_UpperCamelCase ,kernel_size=1 ) ,nn.ReLU() ,nn.Convad(_UpperCamelCase ,_UpperCamelCase ,kernel_size=1 ) ,nn.Sigmoid() ,) def lowerCamelCase__( self :Union[str, Any] ,__snake_case :Optional[Any] ) -> Optional[int]: # b c h w -> b c 1 1 a__ = self.pooler(_UpperCamelCase ) a__ = self.attention(_UpperCamelCase ) a__ = hidden_state * attention return hidden_state class snake_case_ (nn.Module ): def __init__( self :Optional[Any] ,__snake_case :Optional[Any] ,__snake_case :List[str] ,__snake_case :int ,__snake_case :str = 1 ) -> Tuple: super().__init__() a__ = in_channels != out_channels or stride != 1 a__ = max(1 ,out_channels // config.groups_width ) a__ = ( RegNetShortCut(_UpperCamelCase ,_UpperCamelCase ,stride=_UpperCamelCase ) if should_apply_shortcut else nn.Identity() ) a__ = nn.Sequential( RegNetConvLayer(_UpperCamelCase ,_UpperCamelCase ,kernel_size=1 ,activation=config.hidden_act ) ,RegNetConvLayer(_UpperCamelCase ,_UpperCamelCase ,stride=_UpperCamelCase ,groups=_UpperCamelCase ,activation=config.hidden_act ) ,RegNetConvLayer(_UpperCamelCase ,_UpperCamelCase ,kernel_size=1 ,activation=_UpperCamelCase ) ,) a__ = ACTaFN[config.hidden_act] def lowerCamelCase__( self :Optional[Any] ,__snake_case :List[Any] ) -> List[str]: a__ = hidden_state a__ = self.layer(_UpperCamelCase ) a__ = self.shortcut(_UpperCamelCase ) hidden_state += residual a__ = self.activation(_UpperCamelCase ) return hidden_state class snake_case_ (nn.Module ): def __init__( self :str ,__snake_case :Any ,__snake_case :Optional[Any] ,__snake_case :List[str] ,__snake_case :Optional[int] = 1 ) -> Dict: super().__init__() a__ = in_channels != out_channels or stride != 1 a__ = max(1 ,out_channels // config.groups_width ) a__ = ( RegNetShortCut(_UpperCamelCase ,_UpperCamelCase ,stride=_UpperCamelCase ) if should_apply_shortcut else nn.Identity() ) a__ = nn.Sequential( RegNetConvLayer(_UpperCamelCase ,_UpperCamelCase ,kernel_size=1 ,activation=config.hidden_act ) ,RegNetConvLayer(_UpperCamelCase ,_UpperCamelCase ,stride=_UpperCamelCase ,groups=_UpperCamelCase ,activation=config.hidden_act ) ,RegNetSELayer(_UpperCamelCase ,reduced_channels=int(round(in_channels / 4 ) ) ) ,RegNetConvLayer(_UpperCamelCase ,_UpperCamelCase ,kernel_size=1 ,activation=_UpperCamelCase ) ,) a__ = ACTaFN[config.hidden_act] def lowerCamelCase__( self :Any ,__snake_case :Optional[int] ) -> Optional[int]: a__ = hidden_state a__ = self.layer(_UpperCamelCase ) a__ = self.shortcut(_UpperCamelCase ) hidden_state += residual a__ = self.activation(_UpperCamelCase ) return hidden_state class snake_case_ (nn.Module ): def __init__( self :List[Any] ,__snake_case :Tuple ,__snake_case :Optional[Any] ,__snake_case :Optional[int] ,__snake_case :Union[str, Any] = 2 ,__snake_case :List[Any] = 2 ,) -> List[Any]: super().__init__() a__ = RegNetXLayer if config.layer_type == 'x' else RegNetYLayer a__ = nn.Sequential( # downsampling is done in the first layer with stride of 2 layer( _UpperCamelCase ,_UpperCamelCase ,_UpperCamelCase ,stride=_UpperCamelCase ,) ,*[layer(_UpperCamelCase ,_UpperCamelCase ,_UpperCamelCase ) for _ in range(depth - 1 )] ,) def lowerCamelCase__( self :Dict ,__snake_case :Tuple ) -> Tuple: a__ = self.layers(_UpperCamelCase ) return hidden_state class snake_case_ (nn.Module ): def __init__( self :Optional[int] ,__snake_case :Tuple ) -> List[Any]: super().__init__() a__ = nn.ModuleList([] ) # based on `downsample_in_first_stage`, the first layer of the first stage may or may not downsample the input self.stages.append( RegNetStage( _UpperCamelCase ,config.embedding_size ,config.hidden_sizes[0] ,stride=2 if config.downsample_in_first_stage else 1 ,depth=config.depths[0] ,) ) a__ = zip(config.hidden_sizes ,config.hidden_sizes[1:] ) for (in_channels, out_channels), depth in zip(_UpperCamelCase ,config.depths[1:] ): self.stages.append(RegNetStage(_UpperCamelCase ,_UpperCamelCase ,_UpperCamelCase ,depth=_UpperCamelCase ) ) def lowerCamelCase__( self :Any ,__snake_case :Union[str, Any] ,__snake_case :Optional[int] = False ,__snake_case :List[str] = True ) -> Optional[Any]: a__ = () if output_hidden_states else None for stage_module in self.stages: if output_hidden_states: a__ = hidden_states + (hidden_state,) a__ = stage_module(_UpperCamelCase ) if output_hidden_states: a__ = hidden_states + (hidden_state,) if not return_dict: return tuple(v for v in [hidden_state, hidden_states] if v is not None ) return BaseModelOutputWithNoAttention(last_hidden_state=_UpperCamelCase ,hidden_states=_UpperCamelCase ) class snake_case_ (A__ ): UpperCAmelCase__ : List[str] = RegNetConfig UpperCAmelCase__ : Any = """regnet""" UpperCAmelCase__ : Optional[int] = """pixel_values""" UpperCAmelCase__ : Any = True def lowerCamelCase__( self :Union[str, Any] ,__snake_case :List[Any] ) -> Any: if isinstance(_UpperCamelCase ,nn.Convad ): nn.init.kaiming_normal_(module.weight ,mode='fan_out' ,nonlinearity='relu' ) elif isinstance(_UpperCamelCase ,(nn.BatchNormad, nn.GroupNorm) ): nn.init.constant_(module.weight ,1 ) nn.init.constant_(module.bias ,0 ) def lowerCamelCase__( self :Any ,__snake_case :Optional[int] ,__snake_case :str=False ) -> int: if isinstance(_UpperCamelCase ,_UpperCamelCase ): a__ = value snake_case : List[str] = r'''\n This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. Use it\n as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and\n behavior.\n\n Parameters:\n config ([`RegNetConfig`]): Model configuration class with all the parameters of the model.\n Initializing with a config file does not load the weights associated with the model, only the\n configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.\n''' snake_case : Any = r'''\n Args:\n pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`):\n Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See\n [`ConvNextImageProcessor.__call__`] for details.\n\n output_hidden_states (`bool`, *optional*):\n Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for\n more detail.\n return_dict (`bool`, *optional*):\n Whether or not to return a [`~file_utils.ModelOutput`] instead of a plain tuple.\n''' @add_start_docstrings( '''The bare RegNet model outputting raw features without any specific head on top.''' , A__ , ) # Copied from transformers.models.resnet.modeling_resnet.ResNetModel with RESNET->REGNET,ResNet->RegNet class snake_case_ (A__ ): def __init__( self :int ,__snake_case :List[str] ) -> Tuple: super().__init__(_UpperCamelCase ) a__ = config a__ = RegNetEmbeddings(_UpperCamelCase ) a__ = RegNetEncoder(_UpperCamelCase ) a__ = nn.AdaptiveAvgPoolad((1, 1) ) # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(_UpperCamelCase ) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC ,output_type=_UpperCamelCase ,config_class=_CONFIG_FOR_DOC ,modality='vision' ,expected_output=_EXPECTED_OUTPUT_SHAPE ,) def lowerCamelCase__( self :str ,__snake_case :Union[str, Any] ,__snake_case :Optional[Any] = None ,__snake_case :List[str] = None ) -> List[Any]: a__ = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) a__ = return_dict if return_dict is not None else self.config.use_return_dict a__ = self.embedder(_UpperCamelCase ) a__ = self.encoder( _UpperCamelCase ,output_hidden_states=_UpperCamelCase ,return_dict=_UpperCamelCase ) a__ = encoder_outputs[0] a__ = self.pooler(_UpperCamelCase ) if not return_dict: return (last_hidden_state, pooled_output) + encoder_outputs[1:] return BaseModelOutputWithPoolingAndNoAttention( last_hidden_state=_UpperCamelCase ,pooler_output=_UpperCamelCase ,hidden_states=encoder_outputs.hidden_states ,) @add_start_docstrings( ''' RegNet Model with an image classification head on top (a linear layer on top of the pooled features), e.g. for ImageNet. ''' , A__ , ) # Copied from transformers.models.resnet.modeling_resnet.ResNetForImageClassification with RESNET->REGNET,ResNet->RegNet,resnet->regnet class snake_case_ (A__ ): def __init__( self :int ,__snake_case :Tuple ) -> List[Any]: super().__init__(_UpperCamelCase ) a__ = config.num_labels a__ = RegNetModel(_UpperCamelCase ) # classification head a__ = nn.Sequential( nn.Flatten() ,nn.Linear(config.hidden_sizes[-1] ,config.num_labels ) if config.num_labels > 0 else nn.Identity() ,) # initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(_UpperCamelCase ) @add_code_sample_docstrings( checkpoint=_IMAGE_CLASS_CHECKPOINT ,output_type=_UpperCamelCase ,config_class=_CONFIG_FOR_DOC ,expected_output=_IMAGE_CLASS_EXPECTED_OUTPUT ,) def lowerCamelCase__( self :Dict ,__snake_case :Tuple = None ,__snake_case :Optional[int] = None ,__snake_case :Optional[Any] = None ,__snake_case :Dict = None ,) -> Any: a__ = return_dict if return_dict is not None else self.config.use_return_dict a__ = self.regnet(_UpperCamelCase ,output_hidden_states=_UpperCamelCase ,return_dict=_UpperCamelCase ) a__ = outputs.pooler_output if return_dict else outputs[1] a__ = self.classifier(_UpperCamelCase ) a__ = None if labels is not None: if self.config.problem_type is None: if self.num_labels == 1: a__ = 'regression' elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int): a__ = 'single_label_classification' else: a__ = 'multi_label_classification' if self.config.problem_type == "regression": a__ = MSELoss() if self.num_labels == 1: a__ = loss_fct(logits.squeeze() ,labels.squeeze() ) else: a__ = loss_fct(_UpperCamelCase ,_UpperCamelCase ) elif self.config.problem_type == "single_label_classification": a__ = CrossEntropyLoss() a__ = loss_fct(logits.view(-1 ,self.num_labels ) ,labels.view(-1 ) ) elif self.config.problem_type == "multi_label_classification": a__ = BCEWithLogitsLoss() a__ = loss_fct(_UpperCamelCase ,_UpperCamelCase ) if not return_dict: a__ = (logits,) + outputs[2:] return (loss,) + output if loss is not None else output return ImageClassifierOutputWithNoAttention(loss=_UpperCamelCase ,logits=_UpperCamelCase ,hidden_states=outputs.hidden_states )
335
def A__ ( SCREAMING_SNAKE_CASE_ : int = 2_00_00_00 ) -> int: """simple docstring""" _UpperCAmelCase = [0 for i in range(n + 1 )] _UpperCAmelCase = 1 _UpperCAmelCase = 1 for i in range(2 , int(n**0.5 ) + 1 ): if primality_list[i] == 0: for j in range(i * i , n + 1 , SCREAMING_SNAKE_CASE_ ): _UpperCAmelCase = 1 _UpperCAmelCase = 0 for i in range(SCREAMING_SNAKE_CASE_ ): if primality_list[i] == 0: sum_of_primes += i return sum_of_primes if __name__ == "__main__": print(f'''{solution() = }''')
32
0
from typing import List, Optional from tokenizers import ByteLevelBPETokenizer from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_blenderbot_small import BlenderbotSmallTokenizer lowerCAmelCase__: Dict = logging.get_logger(__name__) lowerCAmelCase__: Dict = { "vocab_file": "vocab.json", "merges_file": "merges.txt", "tokenizer_config_file": "tokenizer_config.json", } lowerCAmelCase__: Dict = { "vocab_file": { "facebook/blenderbot_small-90M": "https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/vocab.json" }, "merges_file": { "facebook/blenderbot_small-90M": "https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/merges.txt" }, "tokenizer_config_file": { "facebook/blenderbot_small-90M": ( "https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/tokenizer_config.json" ) }, } lowerCAmelCase__: str = { "facebook/blenderbot_small-90M": 512, } class snake_case_ ( A__ ): __lowerCamelCase : List[str] = VOCAB_FILES_NAMES __lowerCamelCase : Tuple = PRETRAINED_VOCAB_FILES_MAP __lowerCamelCase : Tuple = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __lowerCamelCase : Optional[int] = BlenderbotSmallTokenizer def __init__( self , __lowerCAmelCase=None , __lowerCAmelCase=None , __lowerCAmelCase="<|endoftext|>" , __lowerCAmelCase="<|endoftext|>" , __lowerCAmelCase="<|endoftext|>" , __lowerCAmelCase=False , __lowerCAmelCase=True , **__lowerCAmelCase , ): super().__init__( ByteLevelBPETokenizer( vocab=_UpperCamelCase , merges=_UpperCamelCase , add_prefix_space=_UpperCamelCase , trim_offsets=_UpperCamelCase , ) , bos_token=_UpperCamelCase , eos_token=_UpperCamelCase , unk_token=_UpperCamelCase , **_UpperCamelCase , ) SCREAMING_SNAKE_CASE_ : Optional[int] = add_prefix_space def __A ( self , __lowerCAmelCase , __lowerCAmelCase=None ): SCREAMING_SNAKE_CASE_ : str = [self.bos_token_id] + token_ids_a + [self.eos_token_id] if token_ids_a is None: return output return output + [self.eos_token_id] + token_ids_a + [self.eos_token_id] def __A ( self , __lowerCAmelCase , __lowerCAmelCase = None ): SCREAMING_SNAKE_CASE_ : List[str] = [self.sep_token_id] SCREAMING_SNAKE_CASE_ : Union[str, Any] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0]
345
import warnings from ...utils import logging from .image_processing_glpn import GLPNImageProcessor UpperCAmelCase_ = logging.get_logger(__name__) class __UpperCamelCase ( A__ ): def __init__( self , *_UpperCamelCase , **_UpperCamelCase ): warnings.warn( '''The class GLPNFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please''' ''' use GLPNImageProcessor instead.''' , _UpperCamelCase , ) super().__init__(*_UpperCamelCase , **_UpperCamelCase )
32
0
'''simple docstring''' import argparse import os import evaluate import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType ######################################################################## # This is a fully working simple example to use Accelerate, # specifically showcasing the experiment tracking capability, # and builds off the `nlp_example.py` script. # # This example trains a Bert base model on GLUE MRPC # in any of the following settings (with the same script): # - single CPU or single GPU # - multi GPUS (using PyTorch distributed mode) # - (multi) TPUs # - fp16 (mixed-precision) or fp32 (normal precision) # # To help focus on the differences in the code, building `DataLoaders` # was refactored into its own function. # New additions from the base script can be found quickly by # looking for the # New Code # tags # # To run it in each of these various modes, follow the instructions # in the readme for examples: # https://github.com/huggingface/accelerate/tree/main/examples # ######################################################################## _SCREAMING_SNAKE_CASE : Dict = 16 _SCREAMING_SNAKE_CASE : Optional[int] = 32 def _UpperCamelCase ( UpperCamelCase__ , UpperCamelCase__ = 16 ): """simple docstring""" __magic_name__ : Tuple = AutoTokenizer.from_pretrained("bert-base-cased" ) __magic_name__ : List[Any] = load_dataset("glue" , "mrpc" ) def tokenize_function(UpperCamelCase__ ): # max_length=None => use the model max length (it's actually the default) __magic_name__ : Optional[Any] = tokenizer(examples["sentence1"] , examples["sentence2"] , truncation=SCREAMING_SNAKE_CASE_ , max_length=SCREAMING_SNAKE_CASE_ ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset # starting with the main process first: with accelerator.main_process_first(): __magic_name__ : List[str] = datasets.map( SCREAMING_SNAKE_CASE_ , batched=SCREAMING_SNAKE_CASE_ , remove_columns=["idx", "sentence1", "sentence2"] , ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library __magic_name__ : int = tokenized_datasets.rename_column("label" , "labels" ) def collate_fn(UpperCamelCase__ ): # On TPU it's best to pad everything to the same length or training will be very slow. __magic_name__ : int = 128 if accelerator.distributed_type == DistributedType.TPU else None # When using mixed precision we want round multiples of 8/16 if accelerator.mixed_precision == "fp8": __magic_name__ : Dict = 16 elif accelerator.mixed_precision != "no": __magic_name__ : Dict = 8 else: __magic_name__ : List[str] = None return tokenizer.pad( SCREAMING_SNAKE_CASE_ , padding="longest" , max_length=SCREAMING_SNAKE_CASE_ , pad_to_multiple_of=SCREAMING_SNAKE_CASE_ , return_tensors="pt" , ) # Instantiate dataloaders. __magic_name__ : Optional[int] = DataLoader( tokenized_datasets["train"] , shuffle=SCREAMING_SNAKE_CASE_ , collate_fn=SCREAMING_SNAKE_CASE_ , batch_size=SCREAMING_SNAKE_CASE_ ) __magic_name__ : str = DataLoader( tokenized_datasets["validation"] , shuffle=SCREAMING_SNAKE_CASE_ , collate_fn=SCREAMING_SNAKE_CASE_ , batch_size=SCREAMING_SNAKE_CASE_ ) return train_dataloader, eval_dataloader # For testing only if os.environ.get("TESTING_MOCKED_DATALOADERS", None) == "1": from accelerate.test_utils.training import mocked_dataloaders _SCREAMING_SNAKE_CASE : Dict = mocked_dataloaders # noqa: F811 def _UpperCamelCase ( UpperCamelCase__ , UpperCamelCase__ ): """simple docstring""" if os.environ.get("TESTING_MOCKED_DATALOADERS" , SCREAMING_SNAKE_CASE_ ) == "1": __magic_name__ : Union[str, Any] = 2 # Initialize Accelerator # New Code # # We pass in "all" to `log_with` to grab all available trackers in the environment # Note: If using a custom `Tracker` class, should be passed in here such as: # >>> log_with = ["all", MyCustomTrackerClassInstance()] if args.with_tracking: __magic_name__ : Tuple = Accelerator( cpu=args.cpu , mixed_precision=args.mixed_precision , log_with="all" , project_dir=args.project_dir ) else: __magic_name__ : Optional[Any] = Accelerator(cpu=args.cpu , mixed_precision=args.mixed_precision ) # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs __magic_name__ : Optional[Any] = config["lr"] __magic_name__ : List[str] = int(config["num_epochs"] ) __magic_name__ : int = int(config["seed"] ) __magic_name__ : str = int(config["batch_size"] ) set_seed(SCREAMING_SNAKE_CASE_ ) __magic_name__ , __magic_name__ : List[str] = get_dataloaders(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) __magic_name__ : Tuple = evaluate.load("glue" , "mrpc" ) # If the batch size is too big we use gradient accumulation __magic_name__ : Any = 1 if batch_size > MAX_GPU_BATCH_SIZE and accelerator.distributed_type != DistributedType.TPU: __magic_name__ : List[Any] = batch_size // MAX_GPU_BATCH_SIZE __magic_name__ : List[str] = MAX_GPU_BATCH_SIZE # Instantiate the model (we build the model here so that the seed also control new weights initialization) __magic_name__ : List[Any] = AutoModelForSequenceClassification.from_pretrained("bert-base-cased" , return_dict=SCREAMING_SNAKE_CASE_ ) # We could avoid this line since the accelerator is set with `device_placement=True` (default value). # Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer # creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that). __magic_name__ : Any = model.to(accelerator.device ) # Instantiate optimizer __magic_name__ : Optional[int] = AdamW(params=model.parameters() , lr=SCREAMING_SNAKE_CASE_ ) # Instantiate scheduler __magic_name__ : List[Any] = get_linear_schedule_with_warmup( optimizer=SCREAMING_SNAKE_CASE_ , num_warmup_steps=100 , num_training_steps=(len(SCREAMING_SNAKE_CASE_ ) * num_epochs) // gradient_accumulation_steps , ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ : List[Any] = accelerator.prepare( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) # New Code # # We need to initialize the trackers we use. Overall configurations can also be stored if args.with_tracking: __magic_name__ : Optional[Any] = os.path.split(SCREAMING_SNAKE_CASE_ )[-1].split("." )[0] accelerator.init_trackers(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) # Now we train the model for epoch in range(SCREAMING_SNAKE_CASE_ ): model.train() # New Code # # For our tracking example, we will log the total loss of each epoch if args.with_tracking: __magic_name__ : List[str] = 0 for step, batch in enumerate(SCREAMING_SNAKE_CASE_ ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) __magic_name__ : List[str] = model(**SCREAMING_SNAKE_CASE_ ) __magic_name__ : List[str] = outputs.loss # New Code # if args.with_tracking: total_loss += loss.detach().float() __magic_name__ : Optional[int] = loss / gradient_accumulation_steps accelerator.backward(SCREAMING_SNAKE_CASE_ ) if step % gradient_accumulation_steps == 0: optimizer.step() lr_scheduler.step() optimizer.zero_grad() model.eval() for step, batch in enumerate(SCREAMING_SNAKE_CASE_ ): # We could avoid this line since we set the accelerator with `device_placement=True` (the default). batch.to(accelerator.device ) with torch.no_grad(): __magic_name__ : Dict = model(**SCREAMING_SNAKE_CASE_ ) __magic_name__ : int = outputs.logits.argmax(dim=-1 ) __magic_name__ , __magic_name__ : Union[str, Any] = accelerator.gather_for_metrics((predictions, batch["labels"]) ) metric.add_batch( predictions=SCREAMING_SNAKE_CASE_ , references=SCREAMING_SNAKE_CASE_ , ) __magic_name__ : Optional[Any] = metric.compute() # Use accelerator.print to print only on the main process. accelerator.print(F"""epoch {epoch}:""" , SCREAMING_SNAKE_CASE_ ) # New Code # # To actually log, we call `Accelerator.log` # The values passed can be of `str`, `int`, `float` or `dict` of `str` to `float`/`int` if args.with_tracking: accelerator.log( { "accuracy": eval_metric["accuracy"], "f1": eval_metric["f1"], "train_loss": total_loss.item() / len(SCREAMING_SNAKE_CASE_ ), "epoch": epoch, } , step=SCREAMING_SNAKE_CASE_ , ) # New Code # # When a run is finished, you should call `accelerator.end_training()` # to close all of the open trackers if args.with_tracking: accelerator.end_training() def _UpperCamelCase ( ): """simple docstring""" __magic_name__ : List[str] = argparse.ArgumentParser(description="Simple example of training script." ) parser.add_argument( "--mixed_precision" , type=SCREAMING_SNAKE_CASE_ , default=SCREAMING_SNAKE_CASE_ , choices=["no", "fp16", "bf16", "fp8"] , help="Whether to use mixed precision. Choose" "between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10." "and an Nvidia Ampere GPU." , ) parser.add_argument("--cpu" , action="store_true" , help="If passed, will train on the CPU." ) parser.add_argument( "--with_tracking" , action="store_true" , help="Whether to load in all available experiment trackers from the environment and use them for logging." , ) parser.add_argument( "--project_dir" , type=SCREAMING_SNAKE_CASE_ , default="logs" , help="Location on where to store experiment tracking logs` and relevent project information" , ) __magic_name__ : Dict = parser.parse_args() __magic_name__ : Dict = {"lr": 2E-5, "num_epochs": 3, "seed": 42, "batch_size": 16} training_function(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) if __name__ == "__main__": main()
436
from typing import List, Optional, Union from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType class __UpperCamelCase ( A__ ): __A : Dict = ["""image_processor""", """tokenizer"""] __A : List[str] = """BridgeTowerImageProcessor""" __A : str = ("""RobertaTokenizer""", """RobertaTokenizerFast""") def __init__( self , _UpperCamelCase , _UpperCamelCase ): super().__init__(_UpperCamelCase , _UpperCamelCase ) def __call__( self , _UpperCamelCase , _UpperCamelCase = None , _UpperCamelCase = True , _UpperCamelCase = False , _UpperCamelCase = None , _UpperCamelCase = None , _UpperCamelCase = 0 , _UpperCamelCase = None , _UpperCamelCase = None , _UpperCamelCase = None , _UpperCamelCase = False , _UpperCamelCase = False , _UpperCamelCase = False , _UpperCamelCase = False , _UpperCamelCase = True , _UpperCamelCase = None , **_UpperCamelCase , ): _UpperCAmelCase = self.tokenizer( text=_UpperCamelCase , add_special_tokens=_UpperCamelCase , padding=_UpperCamelCase , truncation=_UpperCamelCase , max_length=_UpperCamelCase , stride=_UpperCamelCase , pad_to_multiple_of=_UpperCamelCase , return_token_type_ids=_UpperCamelCase , return_attention_mask=_UpperCamelCase , return_overflowing_tokens=_UpperCamelCase , return_special_tokens_mask=_UpperCamelCase , return_offsets_mapping=_UpperCamelCase , return_length=_UpperCamelCase , verbose=_UpperCamelCase , return_tensors=_UpperCamelCase , **_UpperCamelCase , ) # add pixel_values + pixel_mask _UpperCAmelCase = self.image_processor( _UpperCamelCase , return_tensors=_UpperCamelCase , do_normalize=_UpperCamelCase , do_center_crop=_UpperCamelCase , **_UpperCamelCase ) encoding.update(_UpperCamelCase ) return encoding def UpperCamelCase( self , *_UpperCamelCase , **_UpperCamelCase ): return self.tokenizer.batch_decode(*_UpperCamelCase , **_UpperCamelCase ) def UpperCamelCase( self , *_UpperCamelCase , **_UpperCamelCase ): return self.tokenizer.decode(*_UpperCamelCase , **_UpperCamelCase ) @property def UpperCamelCase( self ): _UpperCAmelCase = self.tokenizer.model_input_names _UpperCAmelCase = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) )
32
0
def _UpperCAmelCase ( A = 1000 ): '''simple docstring''' UpperCAmelCase__ =3 UpperCAmelCase__ =0 while a < n: if a % 3 == 0 or a % 5 == 0: result += a elif a % 15 == 0: result -= a a += 1 return result if __name__ == "__main__": print(f"""{solution() = }""")
625
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available UpperCAmelCase_ = { "configuration_xlm": ["XLM_PRETRAINED_CONFIG_ARCHIVE_MAP", "XLMConfig", "XLMOnnxConfig"], "tokenization_xlm": ["XLMTokenizer"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase_ = [ "XLM_PRETRAINED_MODEL_ARCHIVE_LIST", "XLMForMultipleChoice", "XLMForQuestionAnswering", "XLMForQuestionAnsweringSimple", "XLMForSequenceClassification", "XLMForTokenClassification", "XLMModel", "XLMPreTrainedModel", "XLMWithLMHeadModel", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase_ = [ "TF_XLM_PRETRAINED_MODEL_ARCHIVE_LIST", "TFXLMForMultipleChoice", "TFXLMForQuestionAnsweringSimple", "TFXLMForSequenceClassification", "TFXLMForTokenClassification", "TFXLMMainLayer", "TFXLMModel", "TFXLMPreTrainedModel", "TFXLMWithLMHeadModel", ] if TYPE_CHECKING: from .configuration_xlm import XLM_PRETRAINED_CONFIG_ARCHIVE_MAP, XLMConfig, XLMOnnxConfig from .tokenization_xlm import XLMTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_xlm import ( XLM_PRETRAINED_MODEL_ARCHIVE_LIST, XLMForMultipleChoice, XLMForQuestionAnswering, XLMForQuestionAnsweringSimple, XLMForSequenceClassification, XLMForTokenClassification, XLMModel, XLMPreTrainedModel, XLMWithLMHeadModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_xlm import ( TF_XLM_PRETRAINED_MODEL_ARCHIVE_LIST, TFXLMForMultipleChoice, TFXLMForQuestionAnsweringSimple, TFXLMForSequenceClassification, TFXLMForTokenClassification, TFXLMMainLayer, TFXLMModel, TFXLMPreTrainedModel, TFXLMWithLMHeadModel, ) else: import sys UpperCAmelCase_ = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
32
0
"""simple docstring""" import sys from collections import defaultdict class __lowerCAmelCase : '''simple docstring''' def __init__( self ): """simple docstring""" snake_case_ :Any = [] def _a ( self , a ): """simple docstring""" return self.node_position[vertex] def _a ( self , a , a ): """simple docstring""" snake_case_ :str = pos def _a ( self , a , a , a , a ): """simple docstring""" if start > size // 2 - 1: return else: if 2 * start + 2 >= size: snake_case_ :Optional[int] = 2 * start + 1 else: if heap[2 * start + 1] < heap[2 * start + 2]: snake_case_ :Tuple = 2 * start + 1 else: snake_case_ :str = 2 * start + 2 if heap[smallest_child] < heap[start]: snake_case_ , snake_case_ :Optional[int] = heap[smallest_child], positions[smallest_child] snake_case_ , snake_case_ :Optional[Any] = ( heap[start], positions[start], ) snake_case_ , snake_case_ :Tuple = temp, tempa snake_case_ :Optional[int] = self.get_position(positions[smallest_child] ) self.set_position( positions[smallest_child] , self.get_position(positions[start] ) ) self.set_position(positions[start] , _UpperCamelCase ) self.top_to_bottom(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) def _a ( self , a , a , a , a ): """simple docstring""" snake_case_ :Tuple = position[index] while index != 0: snake_case_ :Tuple = int((index - 2) / 2 ) if index % 2 == 0 else int((index - 1) / 2 ) if val < heap[parent]: snake_case_ :int = heap[parent] snake_case_ :List[str] = position[parent] self.set_position(position[parent] , _UpperCamelCase ) else: snake_case_ :int = val snake_case_ :Any = temp self.set_position(_UpperCamelCase , _UpperCamelCase ) break snake_case_ :List[str] = parent else: snake_case_ :Dict = val snake_case_ :Any = temp self.set_position(_UpperCamelCase , 0 ) def _a ( self , a , a ): """simple docstring""" snake_case_ :List[str] = len(_UpperCamelCase ) // 2 - 1 for i in range(_UpperCamelCase , -1 , -1 ): self.top_to_bottom(_UpperCamelCase , _UpperCamelCase , len(_UpperCamelCase ) , _UpperCamelCase ) def _a ( self , a , a ): """simple docstring""" snake_case_ :Optional[Any] = positions[0] snake_case_ :Union[str, Any] = sys.maxsize self.top_to_bottom(_UpperCamelCase , 0 , len(_UpperCamelCase ) , _UpperCamelCase ) return temp def A ( _A ): """simple docstring""" snake_case_ :List[Any] = Heap() snake_case_ :List[Any] = [0] * len(SCREAMING_SNAKE_CASE_ ) snake_case_ :Any = [-1] * len(SCREAMING_SNAKE_CASE_ ) # Neighboring Tree Vertex of selected vertex # Minimum Distance of explored vertex with neighboring vertex of partial tree # formed in graph snake_case_ :int = [] # Heap of Distance of vertices from their neighboring vertex snake_case_ :Optional[int] = [] for vertex in range(len(SCREAMING_SNAKE_CASE_ ) ): distance_tv.append(sys.maxsize ) positions.append(SCREAMING_SNAKE_CASE_ ) heap.node_position.append(SCREAMING_SNAKE_CASE_ ) snake_case_ :List[str] = [] snake_case_ :str = 1 snake_case_ :Union[str, Any] = sys.maxsize for neighbor, distance in adjacency_list[0]: snake_case_ :Tuple = 0 snake_case_ :Tuple = distance heap.heapify(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ) for _ in range(1, len(SCREAMING_SNAKE_CASE_ ) ): snake_case_ :List[str] = heap.delete_minimum(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ) if visited[vertex] == 0: tree_edges.append((nbr_tv[vertex], vertex) ) snake_case_ :str = 1 for neighbor, distance in adjacency_list[vertex]: if ( visited[neighbor] == 0 and distance < distance_tv[heap.get_position(SCREAMING_SNAKE_CASE_ )] ): snake_case_ :Dict = distance heap.bottom_to_top( SCREAMING_SNAKE_CASE_, heap.get_position(SCREAMING_SNAKE_CASE_ ), SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ) snake_case_ :List[str] = vertex return tree_edges if __name__ == "__main__": # pragma: no cover # < --------- Prims Algorithm --------- > __UpperCAmelCase : Tuple = int(input('Enter number of edges: ').strip()) __UpperCAmelCase : Tuple = defaultdict(list) for _ in range(edges_number): __UpperCAmelCase : str = [int(x) for x in input().strip().split()] adjacency_list[edge[0]].append([edge[1], edge[2]]) adjacency_list[edge[1]].append([edge[0], edge[2]]) print(prisms_algorithm(adjacency_list))
584
from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCAmelCase_ = logging.get_logger(__name__) UpperCAmelCase_ = { "microsoft/biogpt": "https://huggingface.co/microsoft/biogpt/resolve/main/config.json", # See all BioGPT models at https://huggingface.co/models?filter=biogpt } class __UpperCamelCase ( A__ ): __A : Any = """biogpt""" def __init__( self , _UpperCamelCase=42384 , _UpperCamelCase=1024 , _UpperCamelCase=24 , _UpperCamelCase=16 , _UpperCamelCase=4096 , _UpperCamelCase="gelu" , _UpperCamelCase=0.1 , _UpperCamelCase=0.1 , _UpperCamelCase=1024 , _UpperCamelCase=0.02 , _UpperCamelCase=1e-12 , _UpperCamelCase=True , _UpperCamelCase=True , _UpperCamelCase=0.0 , _UpperCamelCase=0.0 , _UpperCamelCase=1 , _UpperCamelCase=0 , _UpperCamelCase=2 , **_UpperCamelCase , ): _UpperCAmelCase = vocab_size _UpperCAmelCase = max_position_embeddings _UpperCAmelCase = hidden_size _UpperCAmelCase = num_hidden_layers _UpperCAmelCase = num_attention_heads _UpperCAmelCase = intermediate_size _UpperCAmelCase = hidden_act _UpperCAmelCase = hidden_dropout_prob _UpperCAmelCase = attention_probs_dropout_prob _UpperCAmelCase = initializer_range _UpperCAmelCase = layer_norm_eps _UpperCAmelCase = scale_embedding _UpperCAmelCase = use_cache _UpperCAmelCase = layerdrop _UpperCAmelCase = activation_dropout super().__init__(pad_token_id=_UpperCamelCase , bos_token_id=_UpperCamelCase , eos_token_id=_UpperCamelCase , **_UpperCamelCase )
32
0
import doctest from collections import deque import numpy as np class SCREAMING_SNAKE_CASE__ : '''simple docstring''' def __init__( self ): A : Any = [2, 1, 2, -1] A : Union[str, Any] = [1, 2, 3, 4] def _lowerCAmelCase ( self ): A : Tuple = len(self.first_signal ) A : str = len(self.second_signal ) A : Union[str, Any] = max(_UpperCamelCase, _UpperCamelCase ) # create a zero matrix of max_length x max_length A : int = [[0] * max_length for i in range(_UpperCamelCase )] # fills the smaller signal with zeros to make both signals of same length if length_first_signal < length_second_signal: self.first_signal += [0] * (max_length - length_first_signal) elif length_first_signal > length_second_signal: self.second_signal += [0] * (max_length - length_second_signal) for i in range(_UpperCamelCase ): A : Tuple = deque(self.second_signal ) rotated_signal.rotate(_UpperCamelCase ) for j, item in enumerate(_UpperCamelCase ): matrix[i][j] += item # multiply the matrix with the first signal A : Optional[int] = np.matmul(np.transpose(_UpperCamelCase ), np.transpose(self.first_signal ) ) # rounding-off to two decimal places return [round(_UpperCamelCase, 2 ) for i in final_signal] if __name__ == "__main__": doctest.testmod()
662
from typing import List from .keymap import KEYMAP, get_character def A__ ( SCREAMING_SNAKE_CASE_ : str ) -> List[str]: """simple docstring""" def decorator(SCREAMING_SNAKE_CASE_ : List[Any] ): _UpperCAmelCase = getattr(SCREAMING_SNAKE_CASE_ , '''handle_key''' , [] ) handle += [key] setattr(SCREAMING_SNAKE_CASE_ , '''handle_key''' , SCREAMING_SNAKE_CASE_ ) return func return decorator def A__ ( *SCREAMING_SNAKE_CASE_ : List[str] ) -> Dict: """simple docstring""" def decorator(SCREAMING_SNAKE_CASE_ : Any ): _UpperCAmelCase = getattr(SCREAMING_SNAKE_CASE_ , '''handle_key''' , [] ) handle += keys setattr(SCREAMING_SNAKE_CASE_ , '''handle_key''' , SCREAMING_SNAKE_CASE_ ) return func return decorator class __UpperCamelCase ( A__ ): def __new__( cls , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ): _UpperCAmelCase = super().__new__(cls , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) if not hasattr(_UpperCamelCase , '''key_handler''' ): setattr(_UpperCamelCase , '''key_handler''' , {} ) setattr(_UpperCamelCase , '''handle_input''' , KeyHandler.handle_input ) for value in attrs.values(): _UpperCAmelCase = getattr(_UpperCamelCase , '''handle_key''' , [] ) for key in handled_keys: _UpperCAmelCase = value return new_cls @staticmethod def UpperCamelCase( cls ): _UpperCAmelCase = get_character() if char != KEYMAP["undefined"]: _UpperCAmelCase = ord(_UpperCamelCase ) _UpperCAmelCase = cls.key_handler.get(_UpperCamelCase ) if handler: _UpperCAmelCase = char return handler(cls ) else: return None def A__ ( cls : Union[str, Any] ) -> Any: """simple docstring""" return KeyHandler(cls.__name__ , cls.__bases__ , cls.__dict__.copy() )
32
0
from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging __A : Tuple = logging.get_logger(__name__) __A : Union[str, Any] = { "bert-base-uncased": "https://huggingface.co/bert-base-uncased/resolve/main/config.json", "bert-large-uncased": "https://huggingface.co/bert-large-uncased/resolve/main/config.json", "bert-base-cased": "https://huggingface.co/bert-base-cased/resolve/main/config.json", "bert-large-cased": "https://huggingface.co/bert-large-cased/resolve/main/config.json", "bert-base-multilingual-uncased": "https://huggingface.co/bert-base-multilingual-uncased/resolve/main/config.json", "bert-base-multilingual-cased": "https://huggingface.co/bert-base-multilingual-cased/resolve/main/config.json", "bert-base-chinese": "https://huggingface.co/bert-base-chinese/resolve/main/config.json", "bert-base-german-cased": "https://huggingface.co/bert-base-german-cased/resolve/main/config.json", "bert-large-uncased-whole-word-masking": ( "https://huggingface.co/bert-large-uncased-whole-word-masking/resolve/main/config.json" ), "bert-large-cased-whole-word-masking": ( "https://huggingface.co/bert-large-cased-whole-word-masking/resolve/main/config.json" ), "bert-large-uncased-whole-word-masking-finetuned-squad": ( "https://huggingface.co/bert-large-uncased-whole-word-masking-finetuned-squad/resolve/main/config.json" ), "bert-large-cased-whole-word-masking-finetuned-squad": ( "https://huggingface.co/bert-large-cased-whole-word-masking-finetuned-squad/resolve/main/config.json" ), "bert-base-cased-finetuned-mrpc": "https://huggingface.co/bert-base-cased-finetuned-mrpc/resolve/main/config.json", "bert-base-german-dbmdz-cased": "https://huggingface.co/bert-base-german-dbmdz-cased/resolve/main/config.json", "bert-base-german-dbmdz-uncased": "https://huggingface.co/bert-base-german-dbmdz-uncased/resolve/main/config.json", "cl-tohoku/bert-base-japanese": "https://huggingface.co/cl-tohoku/bert-base-japanese/resolve/main/config.json", "cl-tohoku/bert-base-japanese-whole-word-masking": ( "https://huggingface.co/cl-tohoku/bert-base-japanese-whole-word-masking/resolve/main/config.json" ), "cl-tohoku/bert-base-japanese-char": ( "https://huggingface.co/cl-tohoku/bert-base-japanese-char/resolve/main/config.json" ), "cl-tohoku/bert-base-japanese-char-whole-word-masking": ( "https://huggingface.co/cl-tohoku/bert-base-japanese-char-whole-word-masking/resolve/main/config.json" ), "TurkuNLP/bert-base-finnish-cased-v1": ( "https://huggingface.co/TurkuNLP/bert-base-finnish-cased-v1/resolve/main/config.json" ), "TurkuNLP/bert-base-finnish-uncased-v1": ( "https://huggingface.co/TurkuNLP/bert-base-finnish-uncased-v1/resolve/main/config.json" ), "wietsedv/bert-base-dutch-cased": "https://huggingface.co/wietsedv/bert-base-dutch-cased/resolve/main/config.json", # See all BERT models at https://huggingface.co/models?filter=bert } class A_ (A__ ): UpperCAmelCase__ = """bert""" def __init__( self , _A=3_0_5_2_2 , _A=7_6_8 , _A=1_2 , _A=1_2 , _A=3_0_7_2 , _A="gelu" , _A=0.1 , _A=0.1 , _A=5_1_2 , _A=2 , _A=0.02 , _A=1E-12 , _A=0 , _A="absolute" , _A=True , _A=None , **_A , ): '''simple docstring''' super().__init__(pad_token_id=_UpperCamelCase , **_UpperCamelCase ) UpperCAmelCase = vocab_size UpperCAmelCase = hidden_size UpperCAmelCase = num_hidden_layers UpperCAmelCase = num_attention_heads UpperCAmelCase = hidden_act UpperCAmelCase = intermediate_size UpperCAmelCase = hidden_dropout_prob UpperCAmelCase = attention_probs_dropout_prob UpperCAmelCase = max_position_embeddings UpperCAmelCase = type_vocab_size UpperCAmelCase = initializer_range UpperCAmelCase = layer_norm_eps UpperCAmelCase = position_embedding_type UpperCAmelCase = use_cache UpperCAmelCase = classifier_dropout class A_ (A__ ): @property def _lowercase ( self ): '''simple docstring''' if self.task == "multiple-choice": UpperCAmelCase = {0: '''batch''', 1: '''choice''', 2: '''sequence'''} else: UpperCAmelCase = {0: '''batch''', 1: '''sequence'''} return OrderedDict( [ ('''input_ids''', dynamic_axis), ('''attention_mask''', dynamic_axis), ('''token_type_ids''', dynamic_axis), ] )
130
import unittest from transformers import LiltConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( LiltForQuestionAnswering, LiltForSequenceClassification, LiltForTokenClassification, LiltModel, ) from transformers.models.lilt.modeling_lilt import LILT_PRETRAINED_MODEL_ARCHIVE_LIST class __UpperCamelCase : def __init__( self , _UpperCamelCase , _UpperCamelCase=13 , _UpperCamelCase=7 , _UpperCamelCase=True , _UpperCamelCase=True , _UpperCamelCase=True , _UpperCamelCase=True , _UpperCamelCase=99 , _UpperCamelCase=24 , _UpperCamelCase=2 , _UpperCamelCase=6 , _UpperCamelCase=37 , _UpperCamelCase="gelu" , _UpperCamelCase=0.1 , _UpperCamelCase=0.1 , _UpperCamelCase=512 , _UpperCamelCase=16 , _UpperCamelCase=2 , _UpperCamelCase=0.02 , _UpperCamelCase=3 , _UpperCamelCase=None , _UpperCamelCase=1000 , ): _UpperCAmelCase = parent _UpperCAmelCase = batch_size _UpperCAmelCase = seq_length _UpperCAmelCase = is_training _UpperCAmelCase = use_input_mask _UpperCAmelCase = use_token_type_ids _UpperCAmelCase = use_labels _UpperCAmelCase = vocab_size _UpperCAmelCase = hidden_size _UpperCAmelCase = num_hidden_layers _UpperCAmelCase = num_attention_heads _UpperCAmelCase = intermediate_size _UpperCAmelCase = hidden_act _UpperCAmelCase = hidden_dropout_prob _UpperCAmelCase = attention_probs_dropout_prob _UpperCAmelCase = max_position_embeddings _UpperCAmelCase = type_vocab_size _UpperCAmelCase = type_sequence_label_size _UpperCAmelCase = initializer_range _UpperCAmelCase = num_labels _UpperCAmelCase = scope _UpperCAmelCase = range_bbox def UpperCamelCase( self ): _UpperCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _UpperCAmelCase = ids_tensor([self.batch_size, self.seq_length, 4] , self.range_bbox ) # Ensure that bbox is legal for i in range(bbox.shape[0] ): for j in range(bbox.shape[1] ): if bbox[i, j, 3] < bbox[i, j, 1]: _UpperCAmelCase = bbox[i, j, 3] _UpperCAmelCase = bbox[i, j, 1] _UpperCAmelCase = t if bbox[i, j, 2] < bbox[i, j, 0]: _UpperCAmelCase = bbox[i, j, 2] _UpperCAmelCase = bbox[i, j, 0] _UpperCAmelCase = t _UpperCAmelCase = None if self.use_input_mask: _UpperCAmelCase = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 ) _UpperCAmelCase = None if self.use_token_type_ids: _UpperCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) _UpperCAmelCase = None _UpperCAmelCase = None if self.use_labels: _UpperCAmelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size ) _UpperCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) _UpperCAmelCase = self.get_config() return config, input_ids, bbox, token_type_ids, input_mask, sequence_labels, token_labels def UpperCamelCase( self ): return LiltConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , ) def UpperCamelCase( self , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , ): _UpperCAmelCase = LiltModel(config=_UpperCamelCase ) model.to(_UpperCamelCase ) model.eval() _UpperCAmelCase = model(_UpperCamelCase , bbox=_UpperCamelCase , attention_mask=_UpperCamelCase , token_type_ids=_UpperCamelCase ) _UpperCAmelCase = model(_UpperCamelCase , bbox=_UpperCamelCase , token_type_ids=_UpperCamelCase ) _UpperCAmelCase = model(_UpperCamelCase , bbox=_UpperCamelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) ) def UpperCamelCase( self , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , ): _UpperCAmelCase = self.num_labels _UpperCAmelCase = LiltForTokenClassification(config=_UpperCamelCase ) model.to(_UpperCamelCase ) model.eval() _UpperCAmelCase = model( _UpperCamelCase , bbox=_UpperCamelCase , attention_mask=_UpperCamelCase , token_type_ids=_UpperCamelCase , labels=_UpperCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def UpperCamelCase( self , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , ): _UpperCAmelCase = LiltForQuestionAnswering(config=_UpperCamelCase ) model.to(_UpperCamelCase ) model.eval() _UpperCAmelCase = model( _UpperCamelCase , bbox=_UpperCamelCase , attention_mask=_UpperCamelCase , token_type_ids=_UpperCamelCase , start_positions=_UpperCamelCase , end_positions=_UpperCamelCase , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def UpperCamelCase( self ): _UpperCAmelCase = self.prepare_config_and_inputs() ( ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ) = config_and_inputs _UpperCAmelCase = { '''input_ids''': input_ids, '''bbox''': bbox, '''token_type_ids''': token_type_ids, '''attention_mask''': input_mask, } return config, inputs_dict @require_torch class __UpperCamelCase ( A__ , A__ , A__ , unittest.TestCase ): __A : Dict = ( ( LiltModel, LiltForSequenceClassification, LiltForTokenClassification, LiltForQuestionAnswering, ) if is_torch_available() else () ) __A : Optional[Any] = ( { """feature-extraction""": LiltModel, """question-answering""": LiltForQuestionAnswering, """text-classification""": LiltForSequenceClassification, """token-classification""": LiltForTokenClassification, """zero-shot""": LiltForSequenceClassification, } if is_torch_available() else {} ) __A : List[Any] = False __A : Optional[int] = False def UpperCamelCase( self , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ): return True def UpperCamelCase( self ): _UpperCAmelCase = LiltModelTester(self ) _UpperCAmelCase = ConfigTester(self , config_class=_UpperCamelCase , hidden_size=37 ) def UpperCamelCase( self ): self.config_tester.run_common_tests() def UpperCamelCase( self ): _UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_UpperCamelCase ) def UpperCamelCase( self ): _UpperCAmelCase = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: _UpperCAmelCase = type self.model_tester.create_and_check_model(*_UpperCamelCase ) def UpperCamelCase( self ): _UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*_UpperCamelCase ) def UpperCamelCase( self ): _UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*_UpperCamelCase ) @slow def UpperCamelCase( self ): for model_name in LILT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _UpperCAmelCase = LiltModel.from_pretrained(_UpperCamelCase ) self.assertIsNotNone(_UpperCamelCase ) @require_torch @slow class __UpperCamelCase ( unittest.TestCase ): def UpperCamelCase( self ): _UpperCAmelCase = LiltModel.from_pretrained('''SCUT-DLVCLab/lilt-roberta-en-base''' ).to(_UpperCamelCase ) _UpperCAmelCase = torch.tensor([[1, 2]] , device=_UpperCamelCase ) _UpperCAmelCase = torch.tensor([[[1, 2, 3, 4], [5, 6, 7, 8]]] , device=_UpperCamelCase ) # forward pass with torch.no_grad(): _UpperCAmelCase = model(input_ids=_UpperCamelCase , bbox=_UpperCamelCase ) _UpperCAmelCase = torch.Size([1, 2, 768] ) _UpperCAmelCase = torch.tensor( [[-0.0653, 0.0950, -0.0061], [-0.0545, 0.0926, -0.0324]] , device=_UpperCamelCase , ) self.assertTrue(outputs.last_hidden_state.shape , _UpperCamelCase ) self.assertTrue(torch.allclose(outputs.last_hidden_state[0, :, :3] , _UpperCamelCase , atol=1e-3 ) )
32
0
"""simple docstring""" from __future__ import annotations import math import random from collections.abc import Collection from typing import overload class lowerCamelCase__ : def __init__( self ,A = None ): if components is None: UpperCAmelCase = [] UpperCAmelCase = list(_UpperCamelCase ) def __len__( self ): return len(self.__components ) def __str__( self ): return "(" + ",".join(map(_UpperCamelCase ,self.__components ) ) + ")" def __add__( self ,A ): UpperCAmelCase = len(self ) if size == len(_UpperCamelCase ): UpperCAmelCase = [self.__components[i] + other.component(_UpperCamelCase ) for i in range(_UpperCamelCase )] return Vector(_UpperCamelCase ) else: raise Exception("""must have the same size""" ) def __sub__( self ,A ): UpperCAmelCase = len(self ) if size == len(_UpperCamelCase ): UpperCAmelCase = [self.__components[i] - other.component(_UpperCamelCase ) for i in range(_UpperCamelCase )] return Vector(_UpperCamelCase ) else: # error case raise Exception("""must have the same size""" ) @overload def __mul__( self ,A ): ... @overload def __mul__( self ,A ): ... def __mul__( self ,A ): if isinstance(_UpperCamelCase ,(float, int) ): UpperCAmelCase = [c * other for c in self.__components] return Vector(_UpperCamelCase ) elif isinstance(_UpperCamelCase ,_UpperCamelCase ) and len(self ) == len(_UpperCamelCase ): UpperCAmelCase = len(self ) UpperCAmelCase = [self.__components[i] * other.component(_UpperCamelCase ) for i in range(_UpperCamelCase )] return sum(_UpperCamelCase ) else: # error case raise Exception("""invalid operand!""" ) def _UpperCamelCase ( self ): return Vector(self.__components ) def _UpperCamelCase ( self ,A ): if isinstance(_UpperCamelCase ,_UpperCamelCase ) and -len(self.__components ) <= i < len(self.__components ): return self.__components[i] else: raise Exception("""index out of range""" ) def _UpperCamelCase ( self ,A ,A ): assert -len(self.__components ) <= pos < len(self.__components ) UpperCAmelCase = value def _UpperCamelCase ( self ): if len(self.__components ) == 0: raise Exception("""Vector is empty""" ) UpperCAmelCase = [c**2 for c in self.__components] return math.sqrt(sum(_UpperCamelCase ) ) def _UpperCamelCase ( self ,A ,A = False ): UpperCAmelCase = self * other UpperCAmelCase = self.euclidean_length() * other.euclidean_length() if deg: return math.degrees(math.acos(num / den ) ) else: return math.acos(num / den ) def _a ( _snake_case ): """simple docstring""" assert isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) return Vector([0] * dimension ) def _a ( _snake_case , _snake_case ): """simple docstring""" assert isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) and (isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )) UpperCAmelCase = [0] * dimension UpperCAmelCase = 1 return Vector(SCREAMING_SNAKE_CASE_ ) def _a ( _snake_case , _snake_case , _snake_case ): """simple docstring""" assert ( isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) and isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) and (isinstance(SCREAMING_SNAKE_CASE_ , (int, float) )) ) return x * scalar + y def _a ( _snake_case , _snake_case , _snake_case ): """simple docstring""" random.seed(SCREAMING_SNAKE_CASE_ ) UpperCAmelCase = [random.randint(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) for _ in range(SCREAMING_SNAKE_CASE_ )] return Vector(SCREAMING_SNAKE_CASE_ ) class lowerCamelCase__ : def __init__( self ,A ,A ,A ): UpperCAmelCase = matrix UpperCAmelCase = w UpperCAmelCase = h def __str__( self ): UpperCAmelCase = """""" for i in range(self.__height ): ans += "|" for j in range(self.__width ): if j < self.__width - 1: ans += str(self.__matrix[i][j] ) + "," else: ans += str(self.__matrix[i][j] ) + "|\n" return ans def __add__( self ,A ): if self.__width == other.width() and self.__height == other.height(): UpperCAmelCase = [] for i in range(self.__height ): UpperCAmelCase = [ self.__matrix[i][j] + other.component(_UpperCamelCase ,_UpperCamelCase ) for j in range(self.__width ) ] matrix.append(_UpperCamelCase ) return Matrix(_UpperCamelCase ,self.__width ,self.__height ) else: raise Exception("""matrix must have the same dimension!""" ) def __sub__( self ,A ): if self.__width == other.width() and self.__height == other.height(): UpperCAmelCase = [] for i in range(self.__height ): UpperCAmelCase = [ self.__matrix[i][j] - other.component(_UpperCamelCase ,_UpperCamelCase ) for j in range(self.__width ) ] matrix.append(_UpperCamelCase ) return Matrix(_UpperCamelCase ,self.__width ,self.__height ) else: raise Exception("""matrices must have the same dimension!""" ) @overload def __mul__( self ,A ): ... @overload def __mul__( self ,A ): ... def __mul__( self ,A ): if isinstance(_UpperCamelCase ,_UpperCamelCase ): # matrix-vector if len(_UpperCamelCase ) == self.__width: UpperCAmelCase = zero_vector(self.__height ) for i in range(self.__height ): UpperCAmelCase = [ self.__matrix[i][j] * other.component(_UpperCamelCase ) for j in range(self.__width ) ] ans.change_component(_UpperCamelCase ,sum(_UpperCamelCase ) ) return ans else: raise Exception( """vector must have the same size as the """ """number of columns of the matrix!""" ) elif isinstance(_UpperCamelCase ,(int, float) ): # matrix-scalar UpperCAmelCase = [ [self.__matrix[i][j] * other for j in range(self.__width )] for i in range(self.__height ) ] return Matrix(_UpperCamelCase ,self.__width ,self.__height ) return None def _UpperCamelCase ( self ): return self.__height def _UpperCamelCase ( self ): return self.__width def _UpperCamelCase ( self ,A ,A ): if 0 <= x < self.__height and 0 <= y < self.__width: return self.__matrix[x][y] else: raise Exception("""change_component: indices out of bounds""" ) def _UpperCamelCase ( self ,A ,A ,A ): if 0 <= x < self.__height and 0 <= y < self.__width: UpperCAmelCase = value else: raise Exception("""change_component: indices out of bounds""" ) def _UpperCamelCase ( self ,A ,A ): if self.__height != self.__width: raise Exception("""Matrix is not square""" ) UpperCAmelCase = self.__matrix[:x] + self.__matrix[x + 1 :] for i in range(len(_UpperCamelCase ) ): UpperCAmelCase = minor[i][:y] + minor[i][y + 1 :] return Matrix(_UpperCamelCase ,self.__width - 1 ,self.__height - 1 ).determinant() def _UpperCamelCase ( self ,A ,A ): if self.__height != self.__width: raise Exception("""Matrix is not square""" ) if 0 <= x < self.__height and 0 <= y < self.__width: return (-1) ** (x + y) * self.minor(_UpperCamelCase ,_UpperCamelCase ) else: raise Exception("""Indices out of bounds""" ) def _UpperCamelCase ( self ): if self.__height != self.__width: raise Exception("""Matrix is not square""" ) if self.__height < 1: raise Exception("""Matrix has no element""" ) elif self.__height == 1: return self.__matrix[0][0] elif self.__height == 2: return ( self.__matrix[0][0] * self.__matrix[1][1] - self.__matrix[0][1] * self.__matrix[1][0] ) else: UpperCAmelCase = [ self.__matrix[0][y] * self.cofactor(0 ,_UpperCamelCase ) for y in range(self.__width ) ] return sum(_UpperCamelCase ) def _a ( _snake_case ): """simple docstring""" UpperCAmelCase = [[0] * n for _ in range(SCREAMING_SNAKE_CASE_ )] return Matrix(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) def _a ( _snake_case , _snake_case , _snake_case , _snake_case ): """simple docstring""" random.seed(SCREAMING_SNAKE_CASE_ ) UpperCAmelCase = [ [random.randint(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) for _ in range(SCREAMING_SNAKE_CASE_ )] for _ in range(SCREAMING_SNAKE_CASE_ ) ] return Matrix(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
341
from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCAmelCase_ = logging.get_logger(__name__) UpperCAmelCase_ = { "RWKV/rwkv-4-169m-pile": "https://huggingface.co/RWKV/rwkv-4-169m-pile/resolve/main/config.json", "RWKV/rwkv-4-430m-pile": "https://huggingface.co/RWKV/rwkv-4-430m-pile/resolve/main/config.json", "RWKV/rwkv-4-1b5-pile": "https://huggingface.co/RWKV/rwkv-4-1b5-pile/resolve/main/config.json", "RWKV/rwkv-4-3b-pile": "https://huggingface.co/RWKV/rwkv-4-3b-pile/resolve/main/config.json", "RWKV/rwkv-4-7b-pile": "https://huggingface.co/RWKV/rwkv-4-7b-pile/resolve/main/config.json", "RWKV/rwkv-4-14b-pile": "https://huggingface.co/RWKV/rwkv-4-14b-pile/resolve/main/config.json", "RWKV/rwkv-raven-1b5": "https://huggingface.co/RWKV/rwkv-raven-1b5/resolve/main/config.json", "RWKV/rwkv-raven-3b": "https://huggingface.co/RWKV/rwkv-raven-3b/resolve/main/config.json", "RWKV/rwkv-raven-7b": "https://huggingface.co/RWKV/rwkv-raven-7b/resolve/main/config.json", "RWKV/rwkv-raven-14b": "https://huggingface.co/RWKV/rwkv-raven-14b/resolve/main/config.json", } class __UpperCamelCase ( A__ ): __A : Tuple = """rwkv""" __A : Any = {"""max_position_embeddings""": """context_length"""} def __init__( self , _UpperCamelCase=50277 , _UpperCamelCase=1024 , _UpperCamelCase=4096 , _UpperCamelCase=32 , _UpperCamelCase=None , _UpperCamelCase=None , _UpperCamelCase=1e-5 , _UpperCamelCase=0 , _UpperCamelCase=0 , _UpperCamelCase=6 , _UpperCamelCase=False , _UpperCamelCase=True , **_UpperCamelCase , ): _UpperCAmelCase = vocab_size _UpperCAmelCase = context_length _UpperCAmelCase = hidden_size _UpperCAmelCase = num_hidden_layers _UpperCAmelCase = attention_hidden_size if attention_hidden_size is not None else hidden_size _UpperCAmelCase = intermediate_size if intermediate_size is not None else 4 * hidden_size _UpperCAmelCase = layer_norm_epsilon _UpperCAmelCase = rescale_every _UpperCAmelCase = use_cache _UpperCAmelCase = bos_token_id _UpperCAmelCase = eos_token_id super().__init__( tie_word_embeddings=_UpperCamelCase , bos_token_id=_UpperCamelCase , eos_token_id=_UpperCamelCase , **_UpperCamelCase )
32
0
'''simple docstring''' import re import jax.numpy as jnp from flax.traverse_util import flatten_dict, unflatten_dict from jax.random import PRNGKey from ..utils import logging _UpperCAmelCase : Any = logging.get_logger(__name__) def UpperCamelCase ( lowercase_ : int ) -> int: '''simple docstring''' lowercase =R'''\w+[.]\d+''' lowercase =re.findall(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) for pat in pats: lowercase =key.replace(SCREAMING_SNAKE_CASE_ , '''_'''.join(pat.split('''.''' ) ) ) return key def UpperCamelCase ( lowercase_ : Any , lowercase_ : Optional[Any] , lowercase_ : Union[str, Any] ) -> Tuple: '''simple docstring''' lowercase =pt_tuple_key[:-1] + ('''scale''',) if ( any('''norm''' in str_ for str_ in pt_tuple_key ) and (pt_tuple_key[-1] == "bias") and (pt_tuple_key[:-1] + ("bias",) not in random_flax_state_dict) and (pt_tuple_key[:-1] + ("scale",) in random_flax_state_dict) ): lowercase =pt_tuple_key[:-1] + ('''scale''',) return renamed_pt_tuple_key, pt_tensor elif pt_tuple_key[-1] in ["weight", "gamma"] and pt_tuple_key[:-1] + ("scale",) in random_flax_state_dict: lowercase =pt_tuple_key[:-1] + ('''scale''',) return renamed_pt_tuple_key, pt_tensor # embedding if pt_tuple_key[-1] == "weight" and pt_tuple_key[:-1] + ("embedding",) in random_flax_state_dict: lowercase =pt_tuple_key[:-1] + ('''embedding''',) return renamed_pt_tuple_key, pt_tensor # conv layer lowercase =pt_tuple_key[:-1] + ('''kernel''',) if pt_tuple_key[-1] == "weight" and pt_tensor.ndim == 4: lowercase =pt_tensor.transpose(2 , 3 , 1 , 0 ) return renamed_pt_tuple_key, pt_tensor # linear layer lowercase =pt_tuple_key[:-1] + ('''kernel''',) if pt_tuple_key[-1] == "weight": lowercase =pt_tensor.T return renamed_pt_tuple_key, pt_tensor # old PyTorch layer norm weight lowercase =pt_tuple_key[:-1] + ('''weight''',) if pt_tuple_key[-1] == "gamma": return renamed_pt_tuple_key, pt_tensor # old PyTorch layer norm bias lowercase =pt_tuple_key[:-1] + ('''bias''',) if pt_tuple_key[-1] == "beta": return renamed_pt_tuple_key, pt_tensor return pt_tuple_key, pt_tensor def UpperCamelCase ( lowercase_ : Any , lowercase_ : List[str] , lowercase_ : Dict=4_2 ) -> List[Any]: '''simple docstring''' lowercase ={k: v.numpy() for k, v in pt_state_dict.items()} # Step 2: Since the model is stateless, get random Flax params lowercase =flax_model.init_weights(PRNGKey(SCREAMING_SNAKE_CASE_ ) ) lowercase =flatten_dict(SCREAMING_SNAKE_CASE_ ) lowercase ={} # Need to change some parameters name to match Flax names for pt_key, pt_tensor in pt_state_dict.items(): lowercase =rename_key(SCREAMING_SNAKE_CASE_ ) lowercase =tuple(renamed_pt_key.split('''.''' ) ) # Correctly rename weight parameters lowercase , lowercase =rename_key_and_reshape_tensor(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) if flax_key in random_flax_state_dict: if flax_tensor.shape != random_flax_state_dict[flax_key].shape: raise ValueError( f'PyTorch checkpoint seems to be incorrect. Weight {pt_key} was expected to be of shape ' f'{random_flax_state_dict[flax_key].shape}, but is {flax_tensor.shape}.' ) # also add unexpected weight so that warning is thrown lowercase =jnp.asarray(SCREAMING_SNAKE_CASE_ ) return unflatten_dict(SCREAMING_SNAKE_CASE_ )
72
def A__ ( SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : int ) -> str: """simple docstring""" if a < 0 or b < 0: raise ValueError('''the value of both inputs must be positive''' ) _UpperCAmelCase = str(bin(SCREAMING_SNAKE_CASE_ ) )[2:] # remove the leading "0b" _UpperCAmelCase = str(bin(SCREAMING_SNAKE_CASE_ ) )[2:] # remove the leading "0b" _UpperCAmelCase = max(len(SCREAMING_SNAKE_CASE_ ) , len(SCREAMING_SNAKE_CASE_ ) ) return "0b" + "".join( str(int(char_a == '''1''' and char_b == '''1''' ) ) for char_a, char_b in zip(a_binary.zfill(SCREAMING_SNAKE_CASE_ ) , b_binary.zfill(SCREAMING_SNAKE_CASE_ ) ) ) if __name__ == "__main__": import doctest doctest.testmod()
32
0
from math import isclose, sqrt def _lowerCamelCase ( snake_case , snake_case , snake_case ): _lowerCAmelCase = point_y / 4 / point_x _lowerCAmelCase = 2 * normal_gradient / (1 + normal_gradient * normal_gradient) _lowerCAmelCase = (1 - normal_gradient * normal_gradient) / ( 1 + normal_gradient * normal_gradient ) _lowerCAmelCase = (sa - ca * incoming_gradient) / (ca + sa * incoming_gradient) # to find the next point, solve the simultaeneous equations: # y^2 + 4x^2 = 100 # y - b = m * (x - a) # ==> A x^2 + B x + C = 0 _lowerCAmelCase = outgoing_gradient**2 + 4 _lowerCAmelCase = 2 * outgoing_gradient * (point_y - outgoing_gradient * point_x) _lowerCAmelCase = (point_y - outgoing_gradient * point_x) ** 2 - 100 _lowerCAmelCase = ( -linear_term - sqrt(linear_term**2 - 4 * quadratic_term * constant_term ) ) / (2 * quadratic_term) _lowerCAmelCase = ( -linear_term + sqrt(linear_term**2 - 4 * quadratic_term * constant_term ) ) / (2 * quadratic_term) # two solutions, one of which is our input point _lowerCAmelCase = x_minus if isclose(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) else x_plus _lowerCAmelCase = point_y + outgoing_gradient * (next_x - point_x) return next_x, next_y, outgoing_gradient def _lowerCamelCase ( snake_case = 1.4 , snake_case = -9.6 ): _lowerCAmelCase = 0 _lowerCAmelCase = first_x_coord _lowerCAmelCase = first_y_coord _lowerCAmelCase = (10.1 - point_y) / (0.0 - point_x) while not (-0.01 <= point_x <= 0.01 and point_y > 0): _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase = next_point(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) num_reflections += 1 return num_reflections if __name__ == "__main__": print(f"""{solution() = }""")
192
from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCAmelCase_ = logging.get_logger(__name__) UpperCAmelCase_ = { "tiiuae/falcon-40b": "https://huggingface.co/tiiuae/falcon-40b/resolve/main/config.json", "tiiuae/falcon-7b": "https://huggingface.co/tiiuae/falcon-7b/resolve/main/config.json", } class __UpperCamelCase ( A__ ): __A : Dict = """falcon""" __A : Any = ["""past_key_values"""] def __init__( self , _UpperCamelCase=65024 , _UpperCamelCase=4544 , _UpperCamelCase=32 , _UpperCamelCase=71 , _UpperCamelCase=1e-5 , _UpperCamelCase=0.02 , _UpperCamelCase=True , _UpperCamelCase=0.0 , _UpperCamelCase=0.0 , _UpperCamelCase=None , _UpperCamelCase=False , _UpperCamelCase=False , _UpperCamelCase=True , _UpperCamelCase=True , _UpperCamelCase=False , _UpperCamelCase=11 , _UpperCamelCase=11 , **_UpperCamelCase , ): _UpperCAmelCase = vocab_size # Backward compatibility with n_embed kwarg _UpperCAmelCase = kwargs.pop('''n_embed''' , _UpperCamelCase ) _UpperCAmelCase = hidden_size if n_embed is None else n_embed _UpperCAmelCase = num_hidden_layers _UpperCAmelCase = num_attention_heads _UpperCAmelCase = layer_norm_epsilon _UpperCAmelCase = initializer_range _UpperCAmelCase = use_cache _UpperCAmelCase = hidden_dropout _UpperCAmelCase = attention_dropout _UpperCAmelCase = bos_token_id _UpperCAmelCase = eos_token_id _UpperCAmelCase = num_attention_heads if num_kv_heads is None else num_kv_heads _UpperCAmelCase = alibi _UpperCAmelCase = new_decoder_architecture _UpperCAmelCase = multi_query # Ignored when new_decoder_architecture is True _UpperCAmelCase = parallel_attn _UpperCAmelCase = bias super().__init__(bos_token_id=_UpperCamelCase , eos_token_id=_UpperCamelCase , **_UpperCamelCase ) @property def UpperCamelCase( self ): return self.hidden_size // self.num_attention_heads @property def UpperCamelCase( self ): return not self.alibi
32
0
'''simple docstring''' from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging A_ = logging.get_logger(__name__) A_ = { "facebook/levit-128S": "https://huggingface.co/facebook/levit-128S/resolve/main/config.json", # See all LeViT models at https://huggingface.co/models?filter=levit } class UpperCAmelCase ( A__ ): '''simple docstring''' SCREAMING_SNAKE_CASE_ = """levit""" def __init__( self , SCREAMING_SNAKE_CASE_=224 , SCREAMING_SNAKE_CASE_=3 , SCREAMING_SNAKE_CASE_=3 , SCREAMING_SNAKE_CASE_=2 , SCREAMING_SNAKE_CASE_=1 , SCREAMING_SNAKE_CASE_=16 , SCREAMING_SNAKE_CASE_=[128, 256, 384] , SCREAMING_SNAKE_CASE_=[4, 8, 12] , SCREAMING_SNAKE_CASE_=[4, 4, 4] , SCREAMING_SNAKE_CASE_=[16, 16, 16] , SCREAMING_SNAKE_CASE_=0 , SCREAMING_SNAKE_CASE_=[2, 2, 2] , SCREAMING_SNAKE_CASE_=[2, 2, 2] , SCREAMING_SNAKE_CASE_=0.02 , **SCREAMING_SNAKE_CASE_ , ) -> List[str]: '''simple docstring''' super().__init__(**_UpperCamelCase ) lowerCamelCase_ = image_size lowerCamelCase_ = num_channels lowerCamelCase_ = kernel_size lowerCamelCase_ = stride lowerCamelCase_ = padding lowerCamelCase_ = hidden_sizes lowerCamelCase_ = num_attention_heads lowerCamelCase_ = depths lowerCamelCase_ = key_dim lowerCamelCase_ = drop_path_rate lowerCamelCase_ = patch_size lowerCamelCase_ = attention_ratio lowerCamelCase_ = mlp_ratio lowerCamelCase_ = initializer_range lowerCamelCase_ = [ ['Subsample', key_dim[0], hidden_sizes[0] // key_dim[0], 4, 2, 2], ['Subsample', key_dim[0], hidden_sizes[1] // key_dim[0], 4, 2, 2], ] class UpperCAmelCase ( A__ ): '''simple docstring''' SCREAMING_SNAKE_CASE_ = version.parse('1.11' ) @property def UpperCamelCase( self ) -> Optional[Any]: '''simple docstring''' return OrderedDict( [ ('pixel_values', {0: 'batch', 1: 'num_channels', 2: 'height', 3: 'width'}), ] ) @property def UpperCamelCase( self ) -> Dict: '''simple docstring''' return 1E-4
42
from math import sqrt def A__ ( SCREAMING_SNAKE_CASE_ : int ) -> bool: """simple docstring""" if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5 , int(sqrt(SCREAMING_SNAKE_CASE_ ) + 1 ) , 6 ): if number % i == 0 or number % (i + 2) == 0: return False return True def A__ ( SCREAMING_SNAKE_CASE_ : int = 1_00_01 ) -> int: """simple docstring""" _UpperCAmelCase = 0 _UpperCAmelCase = 1 while count != nth and number < 3: number += 1 if is_prime(SCREAMING_SNAKE_CASE_ ): count += 1 while count != nth: number += 2 if is_prime(SCREAMING_SNAKE_CASE_ ): count += 1 return number if __name__ == "__main__": print(f'''{solution() = }''')
32
0
from __future__ import annotations from collections.abc import Iterable, Iterator from dataclasses import dataclass snake_case : Any = (3, 9, -11, 0, 7, 5, 1, -1) snake_case : int = (4, 6, 2, 0, 8, 10, 3, -2) @dataclass class snake_case_ : UpperCAmelCase__ : int UpperCAmelCase__ : Node | None class snake_case_ : def __init__( self :Dict ,__snake_case :List[str] ) -> List[str]: a__ = None for i in sorted(_UpperCamelCase ,reverse=_UpperCamelCase ): a__ = Node(_UpperCamelCase ,self.head ) def __iter__( self :Tuple ) -> Any: a__ = self.head while node: yield node.data a__ = node.next_node def __len__( self :List[str] ) -> Any: return sum(1 for _ in self ) def __str__( self :Optional[int] ) -> str: return " -> ".join([str(_UpperCamelCase ) for node in self] ) def __lowercase ( __lowerCAmelCase : SortedLinkedList , __lowerCAmelCase : SortedLinkedList ): return SortedLinkedList(list(SCREAMING_SNAKE_CASE_ ) + list(SCREAMING_SNAKE_CASE_ ) ) if __name__ == "__main__": import doctest doctest.testmod() snake_case : Dict = SortedLinkedList print(merge_lists(SSL(test_data_odd), SSL(test_data_even)))
335
def A__ ( SCREAMING_SNAKE_CASE_ : int ) -> bool: """simple docstring""" if not isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): _UpperCAmelCase = F'''Input value of [number={number}] must be an integer''' raise TypeError(SCREAMING_SNAKE_CASE_ ) if number < 0: return False _UpperCAmelCase = number * number while number > 0: if number % 10 != number_square % 10: return False number //= 10 number_square //= 10 return True if __name__ == "__main__": import doctest doctest.testmod()
32
0
import os import random import sys from . import cryptomath_module as cryptoMath # noqa: N812 from . import rabin_miller as rabinMiller # noqa: N812 def __SCREAMING_SNAKE_CASE ( ) -> None: print('Making key files...' ) make_key_files('rsa' , 1024 ) print('Key files generation successful.' ) def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE ) -> tuple[tuple[int, int], tuple[int, int]]: print('Generating prime p...' ) SCREAMING_SNAKE_CASE_ : Optional[int] = rabinMiller.generate_large_prime(SCREAMING_SNAKE_CASE_ ) print('Generating prime q...' ) SCREAMING_SNAKE_CASE_ : Tuple = rabinMiller.generate_large_prime(SCREAMING_SNAKE_CASE_ ) SCREAMING_SNAKE_CASE_ : Any = p * q print('Generating e that is relatively prime to (p - 1) * (q - 1)...' ) while True: SCREAMING_SNAKE_CASE_ : str = random.randrange(2 ** (key_size - 1) , 2 ** (key_size) ) if cryptoMath.gcd(SCREAMING_SNAKE_CASE_ , (p - 1) * (q - 1) ) == 1: break print('Calculating d that is mod inverse of e...' ) SCREAMING_SNAKE_CASE_ : List[Any] = cryptoMath.find_mod_inverse(SCREAMING_SNAKE_CASE_ , (p - 1) * (q - 1) ) SCREAMING_SNAKE_CASE_ : Optional[Any] = (n, e) SCREAMING_SNAKE_CASE_ : List[Any] = (n, d) return (public_key, private_key) def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> None: if os.path.exists(f'{name}_pubkey.txt' ) or os.path.exists(f'{name}_privkey.txt' ): print('\nWARNING:' ) print( f'"{name}_pubkey.txt" or "{name}_privkey.txt" already exists. \n' 'Use a different name or delete these files and re-run this program.' ) sys.exit() SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : Dict = generate_key(SCREAMING_SNAKE_CASE_ ) print(f'\nWriting public key to file {name}_pubkey.txt...' ) with open(f'{name}_pubkey.txt' , 'w' ) as out_file: out_file.write(f'{key_size},{public_key[0]},{public_key[1]}' ) print(f'Writing private key to file {name}_privkey.txt...' ) with open(f'{name}_privkey.txt' , 'w' ) as out_file: out_file.write(f'{key_size},{private_key[0]},{private_key[1]}' ) if __name__ == "__main__": main()
345
from dataclasses import dataclass, field from typing import ClassVar, Dict from ..features import Features, Value from .base import TaskTemplate @dataclass(frozen=A__ ) class __UpperCamelCase ( A__ ): __A : str = field(default="""language-modeling""" , metadata={"""include_in_asdict_even_if_is_default""": True} ) __A : ClassVar[Features] = Features({"""text""": Value("""string""" )} ) __A : ClassVar[Features] = Features({} ) __A : str = "text" @property def UpperCamelCase( self ): return {self.text_column: "text"}
32
0
'''simple docstring''' def _UpperCamelCase ( UpperCamelCase__ , UpperCamelCase__ ): """simple docstring""" __magic_name__ : List[Any] = [0 for i in range(r + 1 )] # nc0 = 1 __magic_name__ : Dict = 1 for i in range(1 , n + 1 ): # to compute current row from previous row. __magic_name__ : List[str] = min(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) while j > 0: c[j] += c[j - 1] j -= 1 return c[r] print(binomial_coefficient(n=10, r=5))
436
import os import re import warnings from shutil import copyfile from typing import TYPE_CHECKING, Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import PreTrainedTokenizer if TYPE_CHECKING: from ...tokenization_utils_base import TextInput from ...utils import logging UpperCAmelCase_ = logging.get_logger(__name__) UpperCAmelCase_ = {"vocab_file": "spiece.model"} UpperCAmelCase_ = { "vocab_file": { "t5-small": "https://huggingface.co/t5-small/resolve/main/spiece.model", "t5-base": "https://huggingface.co/t5-base/resolve/main/spiece.model", "t5-large": "https://huggingface.co/t5-large/resolve/main/spiece.model", "t5-3b": "https://huggingface.co/t5-3b/resolve/main/spiece.model", "t5-11b": "https://huggingface.co/t5-11b/resolve/main/spiece.model", } } # TODO(PVP) - this should be removed in Transformers v5 UpperCAmelCase_ = { "t5-small": 5_12, "t5-base": 5_12, "t5-large": 5_12, "t5-3b": 5_12, "t5-11b": 5_12, } UpperCAmelCase_ = "▁" class __UpperCamelCase ( A__ ): __A : Any = VOCAB_FILES_NAMES __A : Union[str, Any] = PRETRAINED_VOCAB_FILES_MAP __A : Any = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __A : Tuple = ["""input_ids""", """attention_mask"""] def __init__( self , _UpperCamelCase , _UpperCamelCase="</s>" , _UpperCamelCase="<unk>" , _UpperCamelCase="<pad>" , _UpperCamelCase=100 , _UpperCamelCase=None , _UpperCamelCase = None , _UpperCamelCase=True , **_UpperCamelCase , ): # Add extra_ids to the special token list if extra_ids > 0 and additional_special_tokens is None: _UpperCAmelCase = [f'''<extra_id_{i}>''' for i in range(_UpperCamelCase )] elif extra_ids > 0 and additional_special_tokens is not None: # Check that we have the right number of extra_id special tokens _UpperCAmelCase = len(set(filter(lambda _UpperCamelCase : bool('''extra_id''' in str(_UpperCamelCase ) ) , _UpperCamelCase ) ) ) if extra_tokens != extra_ids: raise ValueError( f'''Both extra_ids ({extra_ids}) and additional_special_tokens ({additional_special_tokens}) are''' ''' provided to T5Tokenizer. In this case the additional_special_tokens must include the extra_ids''' ''' tokens''' ) if legacy: logger.warning_once( f'''You are using the legacy behaviour of the {self.__class__}. This means that tokens that come after special tokens will not be properly handled. We recommend you to''' ''' read the related pull request available at https://github.com/huggingface/transformers/pull/24565''' ) _UpperCAmelCase = legacy _UpperCAmelCase = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( eos_token=_UpperCamelCase , unk_token=_UpperCamelCase , pad_token=_UpperCamelCase , extra_ids=_UpperCamelCase , additional_special_tokens=_UpperCamelCase , sp_model_kwargs=self.sp_model_kwargs , legacy=_UpperCamelCase , **_UpperCamelCase , ) _UpperCAmelCase = vocab_file _UpperCAmelCase = extra_ids _UpperCAmelCase = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(_UpperCamelCase ) @staticmethod def UpperCamelCase( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ): if pretrained_model_name_or_path in TaTokenizer.max_model_input_sizes: _UpperCAmelCase = TaTokenizer.max_model_input_sizes[pretrained_model_name_or_path] if init_max_model_length is not None and init_max_model_length != max_model_length: return init_max_model_length elif init_max_model_length is None: warnings.warn( '''This tokenizer was incorrectly instantiated with a model max length of''' f''' {deprecated_max_model_length} which will be corrected in Transformers v5.\nFor now, this''' ''' behavior is kept to avoid breaking backwards compatibility when padding/encoding with''' ''' `truncation is True`.\n- Be aware that you SHOULD NOT rely on''' f''' {pretrained_model_name_or_path} automatically truncating your input to''' f''' {deprecated_max_model_length} when padding/encoding.\n- If you want to encode/pad to sequences''' f''' longer than {deprecated_max_model_length} you can either instantiate this tokenizer with''' ''' `model_max_length` or pass `max_length` when encoding/padding.\n- To avoid this warning, please''' ''' instantiate this tokenizer with `model_max_length` set to your preferred value.''' , _UpperCamelCase , ) return max_model_length @property def UpperCamelCase( self ): return self.sp_model.get_piece_size() + self._extra_ids def UpperCamelCase( self ): _UpperCAmelCase = {self.convert_ids_to_tokens(_UpperCamelCase ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def UpperCamelCase( self , _UpperCamelCase , _UpperCamelCase = None , _UpperCamelCase = False ): if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=_UpperCamelCase , token_ids_a=_UpperCamelCase , already_has_special_tokens=_UpperCamelCase ) # normal case: some special tokens if token_ids_a is None: return ([0] * len(_UpperCamelCase )) + [1] return ([0] * len(_UpperCamelCase )) + [1] + ([0] * len(_UpperCamelCase )) + [1] def UpperCamelCase( self ): return list( set(filter(lambda _UpperCamelCase : bool(re.search(R'''<extra_id_\d+>''' , _UpperCamelCase ) ) is not None , self.additional_special_tokens ) ) ) def UpperCamelCase( self ): return [self._convert_token_to_id(_UpperCamelCase ) for token in self.get_sentinel_tokens()] def UpperCamelCase( self , _UpperCamelCase ): if len(_UpperCamelCase ) > 0 and token_ids[-1] == self.eos_token_id: warnings.warn( f'''This sequence already has {self.eos_token}. In future versions this behavior may lead to duplicated''' ''' eos tokens being added.''' ) return token_ids else: return token_ids + [self.eos_token_id] def UpperCamelCase( self , _UpperCamelCase , _UpperCamelCase = None ): _UpperCAmelCase = [self.eos_token_id] if token_ids_a is None: return len(token_ids_a + eos ) * [0] return len(token_ids_a + eos + token_ids_a + eos ) * [0] def UpperCamelCase( self , _UpperCamelCase , _UpperCamelCase = None ): _UpperCAmelCase = self._add_eos_if_not_present(_UpperCamelCase ) if token_ids_a is None: return token_ids_a else: _UpperCAmelCase = self._add_eos_if_not_present(_UpperCamelCase ) return token_ids_a + token_ids_a def __getstate__( self ): _UpperCAmelCase = self.__dict__.copy() _UpperCAmelCase = None return state def __setstate__( self , _UpperCamelCase ): _UpperCAmelCase = d # for backward compatibility if not hasattr(self , '''sp_model_kwargs''' ): _UpperCAmelCase = {} _UpperCAmelCase = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def UpperCamelCase( self , _UpperCamelCase , **_UpperCamelCase ): # Replace the SPIECE_UNDERLINE with a space to make sure SPIECE_UNDERLINE is only used at # the beginning of the text if not self.legacy: _UpperCAmelCase = SPIECE_UNDERLINE + text.replace(_UpperCamelCase , ''' ''' ) return super().tokenize(_UpperCamelCase , **_UpperCamelCase ) def UpperCamelCase( self , _UpperCamelCase , **_UpperCamelCase ): if not self.legacy: _UpperCAmelCase = text.startswith(_UpperCamelCase ) if is_first: _UpperCAmelCase = text[1:] _UpperCAmelCase = self.sp_model.encode(_UpperCamelCase , out_type=_UpperCamelCase ) if not self.legacy and not is_first and not text.startswith(''' ''' ) and tokens[0].startswith(_UpperCamelCase ): _UpperCAmelCase = ([tokens[0][1:]] if len(tokens[0] ) > 1 else []) + tokens[1:] return tokens def UpperCamelCase( self , _UpperCamelCase ): if token.startswith('''<extra_id_''' ): _UpperCAmelCase = re.match(R'''<extra_id_(\d+)>''' , _UpperCamelCase ) _UpperCAmelCase = int(match.group(1 ) ) return self.vocab_size - num - 1 return self.sp_model.piece_to_id(_UpperCamelCase ) def UpperCamelCase( self , _UpperCamelCase ): if index < self.sp_model.get_piece_size(): _UpperCAmelCase = self.sp_model.IdToPiece(_UpperCamelCase ) else: _UpperCAmelCase = f'''<extra_id_{self.vocab_size - 1 - index}>''' return token def UpperCamelCase( self , _UpperCamelCase ): _UpperCAmelCase = [] _UpperCAmelCase = '''''' _UpperCAmelCase = False for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: if not prev_is_special: out_string += " " out_string += self.sp_model.decode(_UpperCamelCase ) + token _UpperCAmelCase = True _UpperCAmelCase = [] else: current_sub_tokens.append(_UpperCamelCase ) _UpperCAmelCase = False out_string += self.sp_model.decode(_UpperCamelCase ) return out_string.strip() def UpperCamelCase( self , _UpperCamelCase , _UpperCamelCase = None ): if not os.path.isdir(_UpperCamelCase ): logger.error(f'''Vocabulary path ({save_directory}) should be a directory''' ) return _UpperCAmelCase = os.path.join( _UpperCamelCase , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(_UpperCamelCase ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , _UpperCamelCase ) elif not os.path.isfile(self.vocab_file ): with open(_UpperCamelCase , '''wb''' ) as fi: _UpperCAmelCase = self.sp_model.serialized_model_proto() fi.write(_UpperCamelCase ) return (out_vocab_file,)
32
0
from collections.abc import Iterable from typing import Any class snake_case_ : '''simple docstring''' def __init__( self, A_ = None ) -> Union[str, Any]: UpperCAmelCase__ =value UpperCAmelCase__ =None # Added in order to delete a node easier UpperCAmelCase__ =None UpperCAmelCase__ =None def __repr__( self ) -> Any: from pprint import pformat if self.left is None and self.right is None: return str(self.value ) return pformat({f"""{self.value}""": (self.left, self.right)}, indent=1 ) class snake_case_ : '''simple docstring''' def __init__( self, A_ = None ) -> Optional[Any]: UpperCAmelCase__ =root def __str__( self ) -> Optional[int]: return str(self.root ) def __UpperCAmelCase ( self, A_, A_ ) -> List[str]: if new_children is not None: # reset its kids UpperCAmelCase__ =node.parent if node.parent is not None: # reset its parent if self.is_right(_UpperCamelCase ): # If it is the right children UpperCAmelCase__ =new_children else: UpperCAmelCase__ =new_children else: UpperCAmelCase__ =new_children def __UpperCAmelCase ( self, A_ ) -> Union[str, Any]: if node.parent and node.parent.right: return node == node.parent.right return False def __UpperCAmelCase ( self ) -> List[Any]: return self.root is None def __UpperCAmelCase ( self, A_ ) -> Union[str, Any]: UpperCAmelCase__ =Node(_UpperCamelCase ) # create a new Node if self.empty(): # if Tree is empty UpperCAmelCase__ =new_node # set its root else: # Tree is not empty UpperCAmelCase__ =self.root # from root if parent_node is None: return while True: # While we don't get to a leaf if value < parent_node.value: # We go left if parent_node.left is None: UpperCAmelCase__ =new_node # We insert the new node in a leaf break else: UpperCAmelCase__ =parent_node.left else: if parent_node.right is None: UpperCAmelCase__ =new_node break else: UpperCAmelCase__ =parent_node.right UpperCAmelCase__ =parent_node def __UpperCAmelCase ( self, *A_ ) -> List[str]: for value in values: self.__insert(_UpperCamelCase ) def __UpperCAmelCase ( self, A_ ) -> int: if self.empty(): raise IndexError("Warning: Tree is empty! please use another." ) else: UpperCAmelCase__ =self.root # use lazy evaluation here to avoid NoneType Attribute error while node is not None and node.value is not value: UpperCAmelCase__ =node.left if value < node.value else node.right return node def __UpperCAmelCase ( self, A_ = None ) -> Optional[Any]: if node is None: if self.root is None: return None UpperCAmelCase__ =self.root if not self.empty(): while node.right is not None: UpperCAmelCase__ =node.right return node def __UpperCAmelCase ( self, A_ = None ) -> List[Any]: if node is None: UpperCAmelCase__ =self.root if self.root is None: return None if not self.empty(): UpperCAmelCase__ =self.root while node.left is not None: UpperCAmelCase__ =node.left return node def __UpperCAmelCase ( self, A_ ) -> Optional[Any]: UpperCAmelCase__ =self.search(_UpperCamelCase ) # Look for the node with that label if node is not None: if node.left is None and node.right is None: # If it has no children self.__reassign_nodes(_UpperCamelCase, _UpperCamelCase ) elif node.left is None: # Has only right children self.__reassign_nodes(_UpperCamelCase, node.right ) elif node.right is None: # Has only left children self.__reassign_nodes(_UpperCamelCase, node.left ) else: UpperCAmelCase__ =self.get_max( node.left ) # Gets the max value of the left branch self.remove(tmp_node.value ) # type: ignore UpperCAmelCase__ =( tmp_node.value # type: ignore ) # Assigns the value to the node to delete and keep tree structure def __UpperCAmelCase ( self, A_ ) -> Union[str, Any]: if node is not None: yield node # Preorder Traversal yield from self.preorder_traverse(node.left ) yield from self.preorder_traverse(node.right ) def __UpperCAmelCase ( self, A_=None ) -> List[str]: if traversal_function is None: return self.preorder_traverse(self.root ) else: return traversal_function(self.root ) def __UpperCAmelCase ( self, A_, A_ ) -> str: if node: self.inorder(_UpperCamelCase, node.left ) arr.append(node.value ) self.inorder(_UpperCamelCase, node.right ) def __UpperCAmelCase ( self, A_, A_ ) -> Tuple: UpperCAmelCase__ =[] self.inorder(_UpperCamelCase, _UpperCamelCase ) # append all values to list using inorder traversal return arr[k - 1] def _UpperCAmelCase ( A ): '''simple docstring''' UpperCAmelCase__ =[] if curr_node is not None: UpperCAmelCase__ =postorder(curr_node.left ) + postorder(curr_node.right ) + [curr_node] return node_list def _UpperCAmelCase ( ): '''simple docstring''' UpperCAmelCase__ =(8, 3, 6, 1, 10, 14, 13, 4, 7) UpperCAmelCase__ =BinarySearchTree() for i in testlist: t.insert(SCREAMING_SNAKE_CASE_ ) # Prints all the elements of the list in order traversal print(SCREAMING_SNAKE_CASE_ ) if t.search(6 ) is not None: print("The value 6 exists" ) else: print("The value 6 doesn\'t exist" ) if t.search(-1 ) is not None: print("The value -1 exists" ) else: print("The value -1 doesn\'t exist" ) if not t.empty(): print("Max Value: " , t.get_max().value ) # type: ignore print("Min Value: " , t.get_min().value ) # type: ignore for i in testlist: t.remove(SCREAMING_SNAKE_CASE_ ) print(SCREAMING_SNAKE_CASE_ ) if __name__ == "__main__": import doctest doctest.testmod(verbose=True)
625
from __future__ import annotations def A__ ( SCREAMING_SNAKE_CASE_ : int ) -> bool: """simple docstring""" _UpperCAmelCase = str(SCREAMING_SNAKE_CASE_ ) return len(SCREAMING_SNAKE_CASE_ ) == 9 and set(SCREAMING_SNAKE_CASE_ ) == set('''123456789''' ) def A__ ( ) -> int | None: """simple docstring""" for base_num in range(99_99 , 49_99 , -1 ): _UpperCAmelCase = 10_00_02 * base_num if is_9_pandigital(SCREAMING_SNAKE_CASE_ ): return candidate for base_num in range(3_33 , 99 , -1 ): _UpperCAmelCase = 1_00_20_03 * base_num if is_9_pandigital(SCREAMING_SNAKE_CASE_ ): return candidate return None if __name__ == "__main__": print(f'''{solution() = }''')
32
0
"""simple docstring""" import logging import os import sys from dataclasses import dataclass, field from importlib import import_module from typing import Dict, List, Optional, Tuple import numpy as np from seqeval.metrics import accuracy_score, fa_score, precision_score, recall_score from torch import nn from utils_ner import Split, TokenClassificationDataset, TokenClassificationTask import transformers from transformers import ( AutoConfig, AutoModelForTokenClassification, AutoTokenizer, DataCollatorWithPadding, EvalPrediction, HfArgumentParser, Trainer, TrainingArguments, set_seed, ) from transformers.trainer_utils import is_main_process __UpperCAmelCase : Dict = logging.getLogger(__name__) @dataclass class __lowerCAmelCase : '''simple docstring''' a__ = field( metadata={'help': 'Path to pretrained model or model identifier from huggingface.co/models'} ) a__ = field( default=A__ ,metadata={'help': 'Pretrained config name or path if not the same as model_name'} ) a__ = field( default='NER' ,metadata={'help': 'Task type to fine tune in training (e.g. NER, POS, etc)'} ) a__ = field( default=A__ ,metadata={'help': 'Pretrained tokenizer name or path if not the same as model_name'} ) a__ = field(default=A__ ,metadata={'help': 'Set this flag to use fast tokenization.'} ) # If you want to tweak more attributes on your tokenizer, you should do it in a distinct script, # or just modify its tokenizer_config.json. a__ = field( default=A__ ,metadata={'help': 'Where do you want to store the pretrained models downloaded from huggingface.co'} ,) @dataclass class __lowerCAmelCase : '''simple docstring''' a__ = field( metadata={'help': 'The input data dir. Should contain the .txt files for a CoNLL-2003-formatted task.'} ) a__ = field( default=A__ ,metadata={'help': 'Path to a file containing all labels. If not specified, CoNLL-2003 labels are used.'} ,) a__ = field( default=1_28 ,metadata={ 'help': ( 'The maximum total input sequence length after tokenization. Sequences longer ' 'than this will be truncated, sequences shorter will be padded.' ) } ,) a__ = field( default=A__ ,metadata={'help': 'Overwrite the cached training and evaluation sets'} ) def A ( ): """simple docstring""" snake_case_ :Union[str, Any] = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith(".json" ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. snake_case_ , snake_case_ , snake_case_ :Any = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: snake_case_ , snake_case_ , snake_case_ :Any = parser.parse_args_into_dataclasses() if ( os.path.exists(training_args.output_dir ) and os.listdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir ): raise ValueError( F'''Output directory ({training_args.output_dir}) already exists and is not empty. Use''' " --overwrite_output_dir to overcome." ) snake_case_ :Optional[Any] = import_module("tasks" ) try: snake_case_ :str = getattr(SCREAMING_SNAKE_CASE_, model_args.task_type ) snake_case_ :int = token_classification_task_clazz() except AttributeError: raise ValueError( F'''Task {model_args.task_type} needs to be defined as a TokenClassificationTask subclass in {module}. ''' F'''Available tasks classes are: {TokenClassificationTask.__subclasses__()}''' ) # Setup logging logging.basicConfig( format="%(asctime)s - %(levelname)s - %(name)s - %(message)s", datefmt="%m/%d/%Y %H:%M:%S", level=logging.INFO if training_args.local_rank in [-1, 0] else logging.WARN, ) logger.warning( "Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s", training_args.local_rank, training_args.device, training_args.n_gpu, bool(training_args.local_rank != -1 ), training_args.fpaa, ) # Set the verbosity to info of the Transformers logger (on main process only): if is_main_process(training_args.local_rank ): transformers.utils.logging.set_verbosity_info() transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() logger.info("Training/evaluation parameters %s", SCREAMING_SNAKE_CASE_ ) # Set seed set_seed(training_args.seed ) # Prepare CONLL-2003 task snake_case_ :str = token_classification_task.get_labels(data_args.labels ) snake_case_ :Optional[Any] = dict(enumerate(SCREAMING_SNAKE_CASE_ ) ) snake_case_ :str = len(SCREAMING_SNAKE_CASE_ ) # Load pretrained model and tokenizer # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. snake_case_ :Optional[Any] = AutoConfig.from_pretrained( model_args.config_name if model_args.config_name else model_args.model_name_or_path, num_labels=SCREAMING_SNAKE_CASE_, idalabel=SCREAMING_SNAKE_CASE_, labelaid={label: i for i, label in enumerate(SCREAMING_SNAKE_CASE_ )}, cache_dir=model_args.cache_dir, ) snake_case_ :Tuple = AutoTokenizer.from_pretrained( model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path, cache_dir=model_args.cache_dir, use_fast=model_args.use_fast, ) snake_case_ :List[Any] = AutoModelForTokenClassification.from_pretrained( model_args.model_name_or_path, from_tf=bool(".ckpt" in model_args.model_name_or_path ), config=SCREAMING_SNAKE_CASE_, cache_dir=model_args.cache_dir, ) # Get datasets snake_case_ :Dict = ( TokenClassificationDataset( token_classification_task=SCREAMING_SNAKE_CASE_, data_dir=data_args.data_dir, tokenizer=SCREAMING_SNAKE_CASE_, labels=SCREAMING_SNAKE_CASE_, model_type=config.model_type, max_seq_length=data_args.max_seq_length, overwrite_cache=data_args.overwrite_cache, mode=Split.train, ) if training_args.do_train else None ) snake_case_ :Optional[Any] = ( TokenClassificationDataset( token_classification_task=SCREAMING_SNAKE_CASE_, data_dir=data_args.data_dir, tokenizer=SCREAMING_SNAKE_CASE_, labels=SCREAMING_SNAKE_CASE_, model_type=config.model_type, max_seq_length=data_args.max_seq_length, overwrite_cache=data_args.overwrite_cache, mode=Split.dev, ) if training_args.do_eval else None ) def align_predictions(_A, _A ) -> Tuple[List[int], List[int]]: snake_case_ :List[Any] = np.argmax(SCREAMING_SNAKE_CASE_, axis=2 ) snake_case_ , snake_case_ :Optional[Any] = preds.shape snake_case_ :Union[str, Any] = [[] for _ in range(SCREAMING_SNAKE_CASE_ )] snake_case_ :Tuple = [[] for _ in range(SCREAMING_SNAKE_CASE_ )] for i in range(SCREAMING_SNAKE_CASE_ ): for j in range(SCREAMING_SNAKE_CASE_ ): if label_ids[i, j] != nn.CrossEntropyLoss().ignore_index: out_label_list[i].append(label_map[label_ids[i][j]] ) preds_list[i].append(label_map[preds[i][j]] ) return preds_list, out_label_list def compute_metrics(_A ) -> Dict: snake_case_ , snake_case_ :Tuple = align_predictions(p.predictions, p.label_ids ) return { "accuracy_score": accuracy_score(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ), "precision": precision_score(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ), "recall": recall_score(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ), "f1": fa_score(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ), } # Data collator snake_case_ :int = DataCollatorWithPadding(SCREAMING_SNAKE_CASE_, pad_to_multiple_of=8 ) if training_args.fpaa else None # Initialize our Trainer snake_case_ :Optional[Any] = Trainer( model=SCREAMING_SNAKE_CASE_, args=SCREAMING_SNAKE_CASE_, train_dataset=SCREAMING_SNAKE_CASE_, eval_dataset=SCREAMING_SNAKE_CASE_, compute_metrics=SCREAMING_SNAKE_CASE_, data_collator=SCREAMING_SNAKE_CASE_, ) # Training if training_args.do_train: trainer.train( model_path=model_args.model_name_or_path if os.path.isdir(model_args.model_name_or_path ) else None ) trainer.save_model() # For convenience, we also re-save the tokenizer to the same directory, # so that you can share your model easily on huggingface.co/models =) if trainer.is_world_process_zero(): tokenizer.save_pretrained(training_args.output_dir ) # Evaluation snake_case_ :List[str] = {} if training_args.do_eval: logger.info("*** Evaluate ***" ) snake_case_ :str = trainer.evaluate() snake_case_ :Optional[int] = os.path.join(training_args.output_dir, "eval_results.txt" ) if trainer.is_world_process_zero(): with open(SCREAMING_SNAKE_CASE_, "w" ) as writer: logger.info("***** Eval results *****" ) for key, value in result.items(): logger.info(" %s = %s", SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ) writer.write("%s = %s\n" % (key, value) ) results.update(SCREAMING_SNAKE_CASE_ ) # Predict if training_args.do_predict: snake_case_ :Union[str, Any] = TokenClassificationDataset( token_classification_task=SCREAMING_SNAKE_CASE_, data_dir=data_args.data_dir, tokenizer=SCREAMING_SNAKE_CASE_, labels=SCREAMING_SNAKE_CASE_, model_type=config.model_type, max_seq_length=data_args.max_seq_length, overwrite_cache=data_args.overwrite_cache, mode=Split.test, ) snake_case_ , snake_case_ , snake_case_ :Union[str, Any] = trainer.predict(SCREAMING_SNAKE_CASE_ ) snake_case_ , snake_case_ :Any = align_predictions(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ) snake_case_ :Optional[int] = os.path.join(training_args.output_dir, "test_results.txt" ) if trainer.is_world_process_zero(): with open(SCREAMING_SNAKE_CASE_, "w" ) as writer: for key, value in metrics.items(): logger.info(" %s = %s", SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ) writer.write("%s = %s\n" % (key, value) ) # Save predictions snake_case_ :Optional[Any] = os.path.join(training_args.output_dir, "test_predictions.txt" ) if trainer.is_world_process_zero(): with open(SCREAMING_SNAKE_CASE_, "w" ) as writer: with open(os.path.join(data_args.data_dir, "test.txt" ), "r" ) as f: token_classification_task.write_predictions_to_file(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ) return results def A ( _A ): """simple docstring""" main() if __name__ == "__main__": main()
584
import numpy as np def A__ ( SCREAMING_SNAKE_CASE_ : np.ndarray , SCREAMING_SNAKE_CASE_ : float ) -> np.ndarray: """simple docstring""" return np.where(vector > 0 , SCREAMING_SNAKE_CASE_ , (alpha * (np.exp(SCREAMING_SNAKE_CASE_ ) - 1)) ) if __name__ == "__main__": import doctest doctest.testmod()
32
0
from ...utils import ( OptionalDependencyNotAvailable, is_torch_available, is_transformers_available, is_transformers_version, ) try: if not (is_transformers_available() and is_torch_available() and is_transformers_version(""">=""", """4.25.0""")): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import UnCLIPImageVariationPipeline, UnCLIPPipeline else: from .pipeline_unclip import UnCLIPPipeline from .pipeline_unclip_image_variation import UnCLIPImageVariationPipeline from .text_proj import UnCLIPTextProjModel
662
UpperCAmelCase_ = { "A": ".-", "B": "-...", "C": "-.-.", "D": "-..", "E": ".", "F": "..-.", "G": "--.", "H": "....", "I": "..", "J": ".---", "K": "-.-", "L": ".-..", "M": "--", "N": "-.", "O": "---", "P": ".--.", "Q": "--.-", "R": ".-.", "S": "...", "T": "-", "U": "..-", "V": "...-", "W": ".--", "X": "-..-", "Y": "-.--", "Z": "--..", "1": ".----", "2": "..---", "3": "...--", "4": "....-", "5": ".....", "6": "-....", "7": "--...", "8": "---..", "9": "----.", "0": "-----", "&": ".-...", "@": ".--.-.", ":": "---...", ",": "--..--", ".": ".-.-.-", "'": ".----.", "\"": ".-..-.", "?": "..--..", "/": "-..-.", "=": "-...-", "+": ".-.-.", "-": "-....-", "(": "-.--.", ")": "-.--.-", "!": "-.-.--", " ": "/" } # Exclamation mark is not in ITU-R recommendation # fmt: on UpperCAmelCase_ = {value: key for key, value in MORSE_CODE_DICT.items()} def A__ ( SCREAMING_SNAKE_CASE_ : str ) -> str: """simple docstring""" return " ".join(MORSE_CODE_DICT[char] for char in message.upper() ) def A__ ( SCREAMING_SNAKE_CASE_ : str ) -> str: """simple docstring""" return "".join(REVERSE_DICT[char] for char in message.split() ) def A__ ( ) -> None: """simple docstring""" _UpperCAmelCase = '''Morse code here!''' print(SCREAMING_SNAKE_CASE_ ) _UpperCAmelCase = encrypt(SCREAMING_SNAKE_CASE_ ) print(SCREAMING_SNAKE_CASE_ ) _UpperCAmelCase = decrypt(SCREAMING_SNAKE_CASE_ ) print(SCREAMING_SNAKE_CASE_ ) if __name__ == "__main__": main()
32
0
import socket def __SCREAMING_SNAKE_CASE ( ) -> Dict: '''simple docstring''' UpperCAmelCase = socket.socket(socket.AF_INET , socket.SOCK_STREAM ) UpperCAmelCase = socket.gethostname() UpperCAmelCase = 1_2312 sock.connect((host, port) ) sock.send(B'''Hello server!''' ) with open('''Received_file''' , '''wb''' ) as out_file: print('''File opened''' ) print('''Receiving data...''' ) while True: UpperCAmelCase = sock.recv(1024 ) if not data: break out_file.write(SCREAMING_SNAKE_CASE_ ) print('''Successfully received the file''' ) sock.close() print('''Connection closed''' ) if __name__ == "__main__": main()
130
import gc import unittest import numpy as np import torch from diffusers import DanceDiffusionPipeline, IPNDMScheduler, UNetaDModel from diffusers.utils import slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu, skip_mps from ..pipeline_params import UNCONDITIONAL_AUDIO_GENERATION_BATCH_PARAMS, UNCONDITIONAL_AUDIO_GENERATION_PARAMS from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() class __UpperCamelCase ( A__ , unittest.TestCase ): __A : Any = DanceDiffusionPipeline __A : Any = UNCONDITIONAL_AUDIO_GENERATION_PARAMS __A : Tuple = PipelineTesterMixin.required_optional_params - { """callback""", """latents""", """callback_steps""", """output_type""", """num_images_per_prompt""", } __A : Tuple = UNCONDITIONAL_AUDIO_GENERATION_BATCH_PARAMS __A : List[str] = False __A : str = False def UpperCamelCase( self ): torch.manual_seed(0 ) _UpperCAmelCase = UNetaDModel( block_out_channels=(32, 32, 64) , extra_in_channels=16 , sample_size=512 , sample_rate=16000 , in_channels=2 , out_channels=2 , flip_sin_to_cos=_UpperCamelCase , use_timestep_embedding=_UpperCamelCase , time_embedding_type='''fourier''' , mid_block_type='''UNetMidBlock1D''' , down_block_types=('''DownBlock1DNoSkip''', '''DownBlock1D''', '''AttnDownBlock1D''') , up_block_types=('''AttnUpBlock1D''', '''UpBlock1D''', '''UpBlock1DNoSkip''') , ) _UpperCAmelCase = IPNDMScheduler() _UpperCAmelCase = { '''unet''': unet, '''scheduler''': scheduler, } return components def UpperCamelCase( self , _UpperCamelCase , _UpperCamelCase=0 ): if str(_UpperCamelCase ).startswith('''mps''' ): _UpperCAmelCase = torch.manual_seed(_UpperCamelCase ) else: _UpperCAmelCase = torch.Generator(device=_UpperCamelCase ).manual_seed(_UpperCamelCase ) _UpperCAmelCase = { '''batch_size''': 1, '''generator''': generator, '''num_inference_steps''': 4, } return inputs def UpperCamelCase( self ): _UpperCAmelCase = '''cpu''' # ensure determinism for the device-dependent torch.Generator _UpperCAmelCase = self.get_dummy_components() _UpperCAmelCase = DanceDiffusionPipeline(**_UpperCamelCase ) _UpperCAmelCase = pipe.to(_UpperCamelCase ) pipe.set_progress_bar_config(disable=_UpperCamelCase ) _UpperCAmelCase = self.get_dummy_inputs(_UpperCamelCase ) _UpperCAmelCase = pipe(**_UpperCamelCase ) _UpperCAmelCase = output.audios _UpperCAmelCase = audio[0, -3:, -3:] assert audio.shape == (1, 2, components["unet"].sample_size) _UpperCAmelCase = np.array([-0.7265, 1.0000, -0.8388, 0.1175, 0.9498, -1.0000] ) assert np.abs(audio_slice.flatten() - expected_slice ).max() < 1e-2 @skip_mps def UpperCamelCase( self ): return super().test_save_load_local() @skip_mps def UpperCamelCase( self ): return super().test_dict_tuple_outputs_equivalent(expected_max_difference=3e-3 ) @skip_mps def UpperCamelCase( self ): return super().test_save_load_optional_components() @skip_mps def UpperCamelCase( self ): return super().test_attention_slicing_forward_pass() def UpperCamelCase( self ): super().test_inference_batch_single_identical(expected_max_diff=3e-3 ) @slow @require_torch_gpu class __UpperCamelCase ( unittest.TestCase ): def UpperCamelCase( self ): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def UpperCamelCase( self ): _UpperCAmelCase = torch_device _UpperCAmelCase = DanceDiffusionPipeline.from_pretrained('''harmonai/maestro-150k''' ) _UpperCAmelCase = pipe.to(_UpperCamelCase ) pipe.set_progress_bar_config(disable=_UpperCamelCase ) _UpperCAmelCase = torch.manual_seed(0 ) _UpperCAmelCase = pipe(generator=_UpperCamelCase , num_inference_steps=100 , audio_length_in_s=4.096 ) _UpperCAmelCase = output.audios _UpperCAmelCase = audio[0, -3:, -3:] assert audio.shape == (1, 2, pipe.unet.sample_size) _UpperCAmelCase = np.array([-0.0192, -0.0231, -0.0318, -0.0059, 0.0002, -0.0020] ) assert np.abs(audio_slice.flatten() - expected_slice ).max() < 1e-2 def UpperCamelCase( self ): _UpperCAmelCase = torch_device _UpperCAmelCase = DanceDiffusionPipeline.from_pretrained('''harmonai/maestro-150k''' , torch_dtype=torch.floataa ) _UpperCAmelCase = pipe.to(_UpperCamelCase ) pipe.set_progress_bar_config(disable=_UpperCamelCase ) _UpperCAmelCase = torch.manual_seed(0 ) _UpperCAmelCase = pipe(generator=_UpperCamelCase , num_inference_steps=100 , audio_length_in_s=4.096 ) _UpperCAmelCase = output.audios _UpperCAmelCase = audio[0, -3:, -3:] assert audio.shape == (1, 2, pipe.unet.sample_size) _UpperCAmelCase = np.array([-0.0367, -0.0488, -0.0771, -0.0525, -0.0444, -0.0341] ) assert np.abs(audio_slice.flatten() - expected_slice ).max() < 1e-2
32
0
"""simple docstring""" import unittest import torch from torch import nn from diffusers.models.activations import get_activation class lowerCamelCase__ ( unittest.TestCase ): def _UpperCamelCase ( self ): UpperCAmelCase = get_activation("""swish""" ) self.assertIsInstance(_UpperCamelCase ,nn.SiLU ) self.assertEqual(act(torch.tensor(-100 ,dtype=torch.floataa ) ).item() ,0 ) self.assertNotEqual(act(torch.tensor(-1 ,dtype=torch.floataa ) ).item() ,0 ) self.assertEqual(act(torch.tensor(0 ,dtype=torch.floataa ) ).item() ,0 ) self.assertEqual(act(torch.tensor(20 ,dtype=torch.floataa ) ).item() ,20 ) def _UpperCamelCase ( self ): UpperCAmelCase = get_activation("""silu""" ) self.assertIsInstance(_UpperCamelCase ,nn.SiLU ) self.assertEqual(act(torch.tensor(-100 ,dtype=torch.floataa ) ).item() ,0 ) self.assertNotEqual(act(torch.tensor(-1 ,dtype=torch.floataa ) ).item() ,0 ) self.assertEqual(act(torch.tensor(0 ,dtype=torch.floataa ) ).item() ,0 ) self.assertEqual(act(torch.tensor(20 ,dtype=torch.floataa ) ).item() ,20 ) def _UpperCamelCase ( self ): UpperCAmelCase = get_activation("""mish""" ) self.assertIsInstance(_UpperCamelCase ,nn.Mish ) self.assertEqual(act(torch.tensor(-200 ,dtype=torch.floataa ) ).item() ,0 ) self.assertNotEqual(act(torch.tensor(-1 ,dtype=torch.floataa ) ).item() ,0 ) self.assertEqual(act(torch.tensor(0 ,dtype=torch.floataa ) ).item() ,0 ) self.assertEqual(act(torch.tensor(20 ,dtype=torch.floataa ) ).item() ,20 ) def _UpperCamelCase ( self ): UpperCAmelCase = get_activation("""gelu""" ) self.assertIsInstance(_UpperCamelCase ,nn.GELU ) self.assertEqual(act(torch.tensor(-100 ,dtype=torch.floataa ) ).item() ,0 ) self.assertNotEqual(act(torch.tensor(-1 ,dtype=torch.floataa ) ).item() ,0 ) self.assertEqual(act(torch.tensor(0 ,dtype=torch.floataa ) ).item() ,0 ) self.assertEqual(act(torch.tensor(20 ,dtype=torch.floataa ) ).item() ,20 )
341
from collections import OrderedDict from ...utils import logging from .auto_factory import _BaseAutoModelClass, _LazyAutoMapping, auto_class_update from .configuration_auto import CONFIG_MAPPING_NAMES UpperCAmelCase_ = logging.get_logger(__name__) UpperCAmelCase_ = OrderedDict( [ # Base model mapping ("albert", "FlaxAlbertModel"), ("bart", "FlaxBartModel"), ("beit", "FlaxBeitModel"), ("bert", "FlaxBertModel"), ("big_bird", "FlaxBigBirdModel"), ("blenderbot", "FlaxBlenderbotModel"), ("blenderbot-small", "FlaxBlenderbotSmallModel"), ("clip", "FlaxCLIPModel"), ("distilbert", "FlaxDistilBertModel"), ("electra", "FlaxElectraModel"), ("gpt-sw3", "FlaxGPT2Model"), ("gpt2", "FlaxGPT2Model"), ("gpt_neo", "FlaxGPTNeoModel"), ("gptj", "FlaxGPTJModel"), ("longt5", "FlaxLongT5Model"), ("marian", "FlaxMarianModel"), ("mbart", "FlaxMBartModel"), ("mt5", "FlaxMT5Model"), ("opt", "FlaxOPTModel"), ("pegasus", "FlaxPegasusModel"), ("regnet", "FlaxRegNetModel"), ("resnet", "FlaxResNetModel"), ("roberta", "FlaxRobertaModel"), ("roberta-prelayernorm", "FlaxRobertaPreLayerNormModel"), ("roformer", "FlaxRoFormerModel"), ("t5", "FlaxT5Model"), ("vision-text-dual-encoder", "FlaxVisionTextDualEncoderModel"), ("vit", "FlaxViTModel"), ("wav2vec2", "FlaxWav2Vec2Model"), ("whisper", "FlaxWhisperModel"), ("xglm", "FlaxXGLMModel"), ("xlm-roberta", "FlaxXLMRobertaModel"), ] ) UpperCAmelCase_ = OrderedDict( [ # Model for pre-training mapping ("albert", "FlaxAlbertForPreTraining"), ("bart", "FlaxBartForConditionalGeneration"), ("bert", "FlaxBertForPreTraining"), ("big_bird", "FlaxBigBirdForPreTraining"), ("electra", "FlaxElectraForPreTraining"), ("longt5", "FlaxLongT5ForConditionalGeneration"), ("mbart", "FlaxMBartForConditionalGeneration"), ("mt5", "FlaxMT5ForConditionalGeneration"), ("roberta", "FlaxRobertaForMaskedLM"), ("roberta-prelayernorm", "FlaxRobertaPreLayerNormForMaskedLM"), ("roformer", "FlaxRoFormerForMaskedLM"), ("t5", "FlaxT5ForConditionalGeneration"), ("wav2vec2", "FlaxWav2Vec2ForPreTraining"), ("whisper", "FlaxWhisperForConditionalGeneration"), ("xlm-roberta", "FlaxXLMRobertaForMaskedLM"), ] ) UpperCAmelCase_ = OrderedDict( [ # Model for Masked LM mapping ("albert", "FlaxAlbertForMaskedLM"), ("bart", "FlaxBartForConditionalGeneration"), ("bert", "FlaxBertForMaskedLM"), ("big_bird", "FlaxBigBirdForMaskedLM"), ("distilbert", "FlaxDistilBertForMaskedLM"), ("electra", "FlaxElectraForMaskedLM"), ("mbart", "FlaxMBartForConditionalGeneration"), ("roberta", "FlaxRobertaForMaskedLM"), ("roberta-prelayernorm", "FlaxRobertaPreLayerNormForMaskedLM"), ("roformer", "FlaxRoFormerForMaskedLM"), ("xlm-roberta", "FlaxXLMRobertaForMaskedLM"), ] ) UpperCAmelCase_ = OrderedDict( [ # Model for Seq2Seq Causal LM mapping ("bart", "FlaxBartForConditionalGeneration"), ("blenderbot", "FlaxBlenderbotForConditionalGeneration"), ("blenderbot-small", "FlaxBlenderbotSmallForConditionalGeneration"), ("encoder-decoder", "FlaxEncoderDecoderModel"), ("longt5", "FlaxLongT5ForConditionalGeneration"), ("marian", "FlaxMarianMTModel"), ("mbart", "FlaxMBartForConditionalGeneration"), ("mt5", "FlaxMT5ForConditionalGeneration"), ("pegasus", "FlaxPegasusForConditionalGeneration"), ("t5", "FlaxT5ForConditionalGeneration"), ] ) UpperCAmelCase_ = OrderedDict( [ # Model for Image-classsification ("beit", "FlaxBeitForImageClassification"), ("regnet", "FlaxRegNetForImageClassification"), ("resnet", "FlaxResNetForImageClassification"), ("vit", "FlaxViTForImageClassification"), ] ) UpperCAmelCase_ = OrderedDict( [ ("vision-encoder-decoder", "FlaxVisionEncoderDecoderModel"), ] ) UpperCAmelCase_ = OrderedDict( [ # Model for Causal LM mapping ("bart", "FlaxBartForCausalLM"), ("bert", "FlaxBertForCausalLM"), ("big_bird", "FlaxBigBirdForCausalLM"), ("electra", "FlaxElectraForCausalLM"), ("gpt-sw3", "FlaxGPT2LMHeadModel"), ("gpt2", "FlaxGPT2LMHeadModel"), ("gpt_neo", "FlaxGPTNeoForCausalLM"), ("gptj", "FlaxGPTJForCausalLM"), ("opt", "FlaxOPTForCausalLM"), ("roberta", "FlaxRobertaForCausalLM"), ("roberta-prelayernorm", "FlaxRobertaPreLayerNormForCausalLM"), ("xglm", "FlaxXGLMForCausalLM"), ("xlm-roberta", "FlaxXLMRobertaForCausalLM"), ] ) UpperCAmelCase_ = OrderedDict( [ # Model for Sequence Classification mapping ("albert", "FlaxAlbertForSequenceClassification"), ("bart", "FlaxBartForSequenceClassification"), ("bert", "FlaxBertForSequenceClassification"), ("big_bird", "FlaxBigBirdForSequenceClassification"), ("distilbert", "FlaxDistilBertForSequenceClassification"), ("electra", "FlaxElectraForSequenceClassification"), ("mbart", "FlaxMBartForSequenceClassification"), ("roberta", "FlaxRobertaForSequenceClassification"), ("roberta-prelayernorm", "FlaxRobertaPreLayerNormForSequenceClassification"), ("roformer", "FlaxRoFormerForSequenceClassification"), ("xlm-roberta", "FlaxXLMRobertaForSequenceClassification"), ] ) UpperCAmelCase_ = OrderedDict( [ # Model for Question Answering mapping ("albert", "FlaxAlbertForQuestionAnswering"), ("bart", "FlaxBartForQuestionAnswering"), ("bert", "FlaxBertForQuestionAnswering"), ("big_bird", "FlaxBigBirdForQuestionAnswering"), ("distilbert", "FlaxDistilBertForQuestionAnswering"), ("electra", "FlaxElectraForQuestionAnswering"), ("mbart", "FlaxMBartForQuestionAnswering"), ("roberta", "FlaxRobertaForQuestionAnswering"), ("roberta-prelayernorm", "FlaxRobertaPreLayerNormForQuestionAnswering"), ("roformer", "FlaxRoFormerForQuestionAnswering"), ("xlm-roberta", "FlaxXLMRobertaForQuestionAnswering"), ] ) UpperCAmelCase_ = OrderedDict( [ # Model for Token Classification mapping ("albert", "FlaxAlbertForTokenClassification"), ("bert", "FlaxBertForTokenClassification"), ("big_bird", "FlaxBigBirdForTokenClassification"), ("distilbert", "FlaxDistilBertForTokenClassification"), ("electra", "FlaxElectraForTokenClassification"), ("roberta", "FlaxRobertaForTokenClassification"), ("roberta-prelayernorm", "FlaxRobertaPreLayerNormForTokenClassification"), ("roformer", "FlaxRoFormerForTokenClassification"), ("xlm-roberta", "FlaxXLMRobertaForTokenClassification"), ] ) UpperCAmelCase_ = OrderedDict( [ # Model for Multiple Choice mapping ("albert", "FlaxAlbertForMultipleChoice"), ("bert", "FlaxBertForMultipleChoice"), ("big_bird", "FlaxBigBirdForMultipleChoice"), ("distilbert", "FlaxDistilBertForMultipleChoice"), ("electra", "FlaxElectraForMultipleChoice"), ("roberta", "FlaxRobertaForMultipleChoice"), ("roberta-prelayernorm", "FlaxRobertaPreLayerNormForMultipleChoice"), ("roformer", "FlaxRoFormerForMultipleChoice"), ("xlm-roberta", "FlaxXLMRobertaForMultipleChoice"), ] ) UpperCAmelCase_ = OrderedDict( [ ("bert", "FlaxBertForNextSentencePrediction"), ] ) UpperCAmelCase_ = OrderedDict( [ ("speech-encoder-decoder", "FlaxSpeechEncoderDecoderModel"), ("whisper", "FlaxWhisperForConditionalGeneration"), ] ) UpperCAmelCase_ = OrderedDict( [ ("whisper", "FlaxWhisperForAudioClassification"), ] ) UpperCAmelCase_ = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_MAPPING_NAMES) UpperCAmelCase_ = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_PRETRAINING_MAPPING_NAMES) UpperCAmelCase_ = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_MASKED_LM_MAPPING_NAMES) UpperCAmelCase_ = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING_NAMES ) UpperCAmelCase_ = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING_NAMES ) UpperCAmelCase_ = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_VISION_2_SEQ_MAPPING_NAMES) UpperCAmelCase_ = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_CAUSAL_LM_MAPPING_NAMES) UpperCAmelCase_ = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING_NAMES ) UpperCAmelCase_ = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_QUESTION_ANSWERING_MAPPING_NAMES ) UpperCAmelCase_ = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING_NAMES ) UpperCAmelCase_ = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_MULTIPLE_CHOICE_MAPPING_NAMES ) UpperCAmelCase_ = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_NEXT_SENTENCE_PREDICTION_MAPPING_NAMES ) UpperCAmelCase_ = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_SPEECH_SEQ_2_SEQ_MAPPING_NAMES ) UpperCAmelCase_ = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_AUDIO_CLASSIFICATION_MAPPING_NAMES ) class __UpperCamelCase ( _BaseAutoModelClass ): __A : List[str] = FLAX_MODEL_MAPPING UpperCAmelCase_ = auto_class_update(FlaxAutoModel) class __UpperCamelCase ( _BaseAutoModelClass ): __A : Optional[Any] = FLAX_MODEL_FOR_PRETRAINING_MAPPING UpperCAmelCase_ = auto_class_update(FlaxAutoModelForPreTraining, head_doc="pretraining") class __UpperCamelCase ( _BaseAutoModelClass ): __A : List[Any] = FLAX_MODEL_FOR_CAUSAL_LM_MAPPING UpperCAmelCase_ = auto_class_update(FlaxAutoModelForCausalLM, head_doc="causal language modeling") class __UpperCamelCase ( _BaseAutoModelClass ): __A : List[str] = FLAX_MODEL_FOR_MASKED_LM_MAPPING UpperCAmelCase_ = auto_class_update(FlaxAutoModelForMaskedLM, head_doc="masked language modeling") class __UpperCamelCase ( _BaseAutoModelClass ): __A : Dict = FLAX_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING UpperCAmelCase_ = auto_class_update( FlaxAutoModelForSeqaSeqLM, head_doc="sequence-to-sequence language modeling", checkpoint_for_example="t5-base" ) class __UpperCamelCase ( _BaseAutoModelClass ): __A : List[str] = FLAX_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING UpperCAmelCase_ = auto_class_update( FlaxAutoModelForSequenceClassification, head_doc="sequence classification" ) class __UpperCamelCase ( _BaseAutoModelClass ): __A : Dict = FLAX_MODEL_FOR_QUESTION_ANSWERING_MAPPING UpperCAmelCase_ = auto_class_update(FlaxAutoModelForQuestionAnswering, head_doc="question answering") class __UpperCamelCase ( _BaseAutoModelClass ): __A : Union[str, Any] = FLAX_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING UpperCAmelCase_ = auto_class_update( FlaxAutoModelForTokenClassification, head_doc="token classification" ) class __UpperCamelCase ( _BaseAutoModelClass ): __A : Union[str, Any] = FLAX_MODEL_FOR_MULTIPLE_CHOICE_MAPPING UpperCAmelCase_ = auto_class_update(FlaxAutoModelForMultipleChoice, head_doc="multiple choice") class __UpperCamelCase ( _BaseAutoModelClass ): __A : Any = FLAX_MODEL_FOR_NEXT_SENTENCE_PREDICTION_MAPPING UpperCAmelCase_ = auto_class_update( FlaxAutoModelForNextSentencePrediction, head_doc="next sentence prediction" ) class __UpperCamelCase ( _BaseAutoModelClass ): __A : Dict = FLAX_MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING UpperCAmelCase_ = auto_class_update( FlaxAutoModelForImageClassification, head_doc="image classification" ) class __UpperCamelCase ( _BaseAutoModelClass ): __A : Optional[int] = FLAX_MODEL_FOR_VISION_2_SEQ_MAPPING UpperCAmelCase_ = auto_class_update(FlaxAutoModelForVisionaSeq, head_doc="vision-to-text modeling") class __UpperCamelCase ( _BaseAutoModelClass ): __A : str = FLAX_MODEL_FOR_SPEECH_SEQ_2_SEQ_MAPPING UpperCAmelCase_ = auto_class_update( FlaxAutoModelForSpeechSeqaSeq, head_doc="sequence-to-sequence speech-to-text modeling" )
32
0
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices _UpperCAmelCase : Tuple = logging.get_logger(__name__) _UpperCAmelCase : Optional[int] = { '''microsoft/focalnet-tiny''': '''https://huggingface.co/microsoft/focalnet-tiny/resolve/main/config.json''', } class __magic_name__ ( A__ , A__ ): UpperCamelCase__ = """focalnet""" def __init__( self , snake_case_=2_24 , snake_case_=4 , snake_case_=3 , snake_case_=96 , snake_case_=False , snake_case_=[1_92, 3_84, 7_68, 7_68] , snake_case_=[2, 2, 6, 2] , snake_case_=[2, 2, 2, 2] , snake_case_=[3, 3, 3, 3] , snake_case_="gelu" , snake_case_=4.0 , snake_case_=0.0 , snake_case_=0.1 , snake_case_=False , snake_case_=1E-4 , snake_case_=False , snake_case_=False , snake_case_=False , snake_case_=0.02 , snake_case_=1E-5 , snake_case_=32 , snake_case_=None , snake_case_=None , **snake_case_ , ): super().__init__(**_UpperCamelCase ) lowercase =image_size lowercase =patch_size lowercase =num_channels lowercase =embed_dim lowercase =use_conv_embed lowercase =hidden_sizes lowercase =depths lowercase =focal_levels lowercase =focal_windows lowercase =hidden_act lowercase =mlp_ratio lowercase =hidden_dropout_prob lowercase =drop_path_rate lowercase =use_layerscale lowercase =layerscale_value lowercase =use_post_layernorm lowercase =use_post_layernorm_in_modulation lowercase =normalize_modulator lowercase =initializer_range lowercase =layer_norm_eps lowercase =encoder_stride lowercase =['''stem'''] + [f'stage{idx}' for idx in range(1 , len(self.depths ) + 1 )] lowercase , lowercase =get_aligned_output_features_output_indices( out_features=_UpperCamelCase , out_indices=_UpperCamelCase , stage_names=self.stage_names )
72
import baseaa def A__ ( SCREAMING_SNAKE_CASE_ : str ) -> bytes: """simple docstring""" return baseaa.baaencode(string.encode('''utf-8''' ) ) def A__ ( SCREAMING_SNAKE_CASE_ : bytes ) -> str: """simple docstring""" return baseaa.baadecode(SCREAMING_SNAKE_CASE_ ).decode('''utf-8''' ) if __name__ == "__main__": UpperCAmelCase_ = "Hello World!" UpperCAmelCase_ = baseaa_encode(test) print(encoded) UpperCAmelCase_ = baseaa_decode(encoded) print(decoded)
32
0
from __future__ import annotations def _lowerCamelCase ( snake_case ): if not nums: return 0 _lowerCAmelCase = nums[0] _lowerCAmelCase = 0 for num in nums[1:]: _lowerCAmelCase , _lowerCAmelCase = ( max_excluding + num, max(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ), ) return max(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) if __name__ == "__main__": import doctest doctest.testmod()
192
from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD, ChannelDimension, ImageInput, PILImageResampling, is_batched, to_numpy_array, valid_images, ) from ...utils import TensorType, logging UpperCAmelCase_ = logging.get_logger(__name__) class __UpperCamelCase ( A__ ): __A : int = ["""pixel_values"""] def __init__( self , _UpperCamelCase = True , _UpperCamelCase = None , _UpperCamelCase = PILImageResampling.BICUBIC , _UpperCamelCase = True , _UpperCamelCase = True , _UpperCamelCase = 1 / 255 , _UpperCamelCase = None , _UpperCamelCase = True , _UpperCamelCase = None , _UpperCamelCase = None , **_UpperCamelCase , ): super().__init__(**_UpperCamelCase ) _UpperCAmelCase = size if size is not None else {'''height''': 224, '''width''': 224} _UpperCAmelCase = get_size_dict(_UpperCamelCase ) _UpperCAmelCase = crop_size if crop_size is not None else {'''height''': 224, '''width''': 224} _UpperCAmelCase = get_size_dict(_UpperCamelCase , default_to_square=_UpperCamelCase , param_name='''crop_size''' ) _UpperCAmelCase = do_resize _UpperCAmelCase = do_rescale _UpperCAmelCase = do_normalize _UpperCAmelCase = do_center_crop _UpperCAmelCase = crop_size _UpperCAmelCase = size _UpperCAmelCase = resample _UpperCAmelCase = rescale_factor _UpperCAmelCase = image_mean if image_mean is not None else IMAGENET_DEFAULT_MEAN _UpperCAmelCase = image_std if image_std is not None else IMAGENET_DEFAULT_STD def UpperCamelCase( self , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase = PILImageResampling.BILINEAR , _UpperCamelCase = None , **_UpperCamelCase , ): _UpperCAmelCase = get_size_dict(_UpperCamelCase ) if "shortest_edge" in size: _UpperCAmelCase = get_resize_output_image_size(_UpperCamelCase , size=size['''shortest_edge'''] , default_to_square=_UpperCamelCase ) # size = get_resize_output_image_size(image, size["shortest_edge"], size["longest_edge"]) elif "height" in size and "width" in size: _UpperCAmelCase = (size['''height'''], size['''width''']) else: raise ValueError(f'''Size must contain \'height\' and \'width\' keys or \'shortest_edge\' key. Got {size.keys()}''' ) return resize(_UpperCamelCase , size=_UpperCamelCase , resample=_UpperCamelCase , data_format=_UpperCamelCase , **_UpperCamelCase ) def UpperCamelCase( self , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase = None , **_UpperCamelCase , ): _UpperCAmelCase = get_size_dict(_UpperCamelCase ) if "height" not in size or "width" not in size: raise ValueError(f'''The `size` parameter must contain the keys (height, width). Got {size.keys()}''' ) return center_crop(_UpperCamelCase , size=(size['''height'''], size['''width''']) , data_format=_UpperCamelCase , **_UpperCamelCase ) def UpperCamelCase( self , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase = None , **_UpperCamelCase ): return rescale(_UpperCamelCase , scale=_UpperCamelCase , data_format=_UpperCamelCase , **_UpperCamelCase ) def UpperCamelCase( self , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase = None , **_UpperCamelCase , ): return normalize(_UpperCamelCase , mean=_UpperCamelCase , std=_UpperCamelCase , data_format=_UpperCamelCase , **_UpperCamelCase ) def UpperCamelCase( self , _UpperCamelCase , _UpperCamelCase = None , _UpperCamelCase = None , _UpperCamelCase = None , _UpperCamelCase = None , _UpperCamelCase = None , _UpperCamelCase = None , _UpperCamelCase = None , _UpperCamelCase = None , _UpperCamelCase = None , _UpperCamelCase = None , _UpperCamelCase = None , _UpperCamelCase = ChannelDimension.FIRST , **_UpperCamelCase , ): _UpperCAmelCase = do_resize if do_resize is not None else self.do_resize _UpperCAmelCase = do_rescale if do_rescale is not None else self.do_rescale _UpperCAmelCase = do_normalize if do_normalize is not None else self.do_normalize _UpperCAmelCase = do_center_crop if do_center_crop is not None else self.do_center_crop _UpperCAmelCase = crop_size if crop_size is not None else self.crop_size _UpperCAmelCase = get_size_dict(_UpperCamelCase , param_name='''crop_size''' , default_to_square=_UpperCamelCase ) _UpperCAmelCase = resample if resample is not None else self.resample _UpperCAmelCase = rescale_factor if rescale_factor is not None else self.rescale_factor _UpperCAmelCase = image_mean if image_mean is not None else self.image_mean _UpperCAmelCase = image_std if image_std is not None else self.image_std _UpperCAmelCase = size if size is not None else self.size _UpperCAmelCase = get_size_dict(_UpperCamelCase ) if not is_batched(_UpperCamelCase ): _UpperCAmelCase = [images] if not valid_images(_UpperCamelCase ): raise ValueError( '''Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ''' '''torch.Tensor, tf.Tensor or jax.ndarray.''' ) if do_resize and size is None: raise ValueError('''Size must be specified if do_resize is True.''' ) if do_center_crop and crop_size is None: raise ValueError('''Crop size must be specified if do_center_crop is True.''' ) if do_rescale and rescale_factor is None: raise ValueError('''Rescale factor must be specified if do_rescale is True.''' ) # All transformations expect numpy arrays. _UpperCAmelCase = [to_numpy_array(_UpperCamelCase ) for image in images] if do_resize: _UpperCAmelCase = [self.resize(image=_UpperCamelCase , size=_UpperCamelCase , resample=_UpperCamelCase ) for image in images] if do_center_crop: _UpperCAmelCase = [self.center_crop(image=_UpperCamelCase , size=_UpperCamelCase ) for image in images] if do_rescale: _UpperCAmelCase = [self.rescale(image=_UpperCamelCase , scale=_UpperCamelCase ) for image in images] if do_normalize: _UpperCAmelCase = [self.normalize(image=_UpperCamelCase , mean=_UpperCamelCase , std=_UpperCamelCase ) for image in images] _UpperCAmelCase = [to_channel_dimension_format(_UpperCamelCase , _UpperCamelCase ) for image in images] _UpperCAmelCase = {'''pixel_values''': images} return BatchFeature(data=_UpperCamelCase , tensor_type=_UpperCamelCase )
32
0
'''simple docstring''' from collections import defaultdict from math import gcd def _UpperCamelCase ( __UpperCamelCase = 1_50_00_00 ) -> int: lowerCamelCase_ = defaultdict(SCREAMING_SNAKE_CASE_ ) lowerCamelCase_ = 2 while 2 * euclid_m * (euclid_m + 1) <= limit: for euclid_n in range((euclid_m % 2) + 1 ,SCREAMING_SNAKE_CASE_ ,2 ): if gcd(SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ ) > 1: continue lowerCamelCase_ = 2 * euclid_m * (euclid_m + euclid_n) for perimeter in range(SCREAMING_SNAKE_CASE_ ,limit + 1 ,SCREAMING_SNAKE_CASE_ ): frequencies[perimeter] += 1 euclid_m += 1 return sum(1 for frequency in frequencies.values() if frequency == 1 ) if __name__ == "__main__": print(f'''{solution() = }''')
42
from ..utils import DummyObject, requires_backends class __UpperCamelCase ( metaclass=A__ ): __A : str = ["""torch""", """scipy"""] def __init__( self , *_UpperCamelCase , **_UpperCamelCase ): requires_backends(self , ['''torch''', '''scipy'''] ) @classmethod def UpperCamelCase( cls , *_UpperCamelCase , **_UpperCamelCase ): requires_backends(cls , ['''torch''', '''scipy'''] ) @classmethod def UpperCamelCase( cls , *_UpperCamelCase , **_UpperCamelCase ): requires_backends(cls , ['''torch''', '''scipy'''] )
32
0
def __lowercase ( __lowerCAmelCase : int ): if not isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): raise TypeError('only integers accepted as input' ) else: a__ = str(abs(SCREAMING_SNAKE_CASE_ ) ) a__ = [list(SCREAMING_SNAKE_CASE_ ) for char in range(len(SCREAMING_SNAKE_CASE_ ) )] for index in range(len(SCREAMING_SNAKE_CASE_ ) ): num_transpositions[index].pop(SCREAMING_SNAKE_CASE_ ) return max( int(''.join(list(SCREAMING_SNAKE_CASE_ ) ) ) for transposition in num_transpositions ) if __name__ == "__main__": __import__('''doctest''').testmod()
335
def A__ ( SCREAMING_SNAKE_CASE_ : int = 2_00_00_00 ) -> int: """simple docstring""" _UpperCAmelCase = [0 for i in range(n + 1 )] _UpperCAmelCase = 1 _UpperCAmelCase = 1 for i in range(2 , int(n**0.5 ) + 1 ): if primality_list[i] == 0: for j in range(i * i , n + 1 , SCREAMING_SNAKE_CASE_ ): _UpperCAmelCase = 1 _UpperCAmelCase = 0 for i in range(SCREAMING_SNAKE_CASE_ ): if primality_list[i] == 0: sum_of_primes += i return sum_of_primes if __name__ == "__main__": print(f'''{solution() = }''')
32
0
import inspect import unittest from transformers import ViTHybridConfig from transformers.testing_utils import require_accelerate, require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ViTHybridForImageClassification, ViTHybridImageProcessor, ViTHybridModel from transformers.models.vit_hybrid.modeling_vit_hybrid import VIT_HYBRID_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image class snake_case_ : def __init__( self , __lowerCAmelCase , __lowerCAmelCase=13 , __lowerCAmelCase=64 , __lowerCAmelCase=2 , __lowerCAmelCase=3 , __lowerCAmelCase=True , __lowerCAmelCase=True , __lowerCAmelCase=32 , __lowerCAmelCase=5 , __lowerCAmelCase=4 , __lowerCAmelCase=37 , __lowerCAmelCase="gelu" , __lowerCAmelCase=0.1 , __lowerCAmelCase=0.1 , __lowerCAmelCase=10 , __lowerCAmelCase=0.02 , __lowerCAmelCase=[1, 16, 4, 4] , __lowerCAmelCase=None , ): SCREAMING_SNAKE_CASE_ : Union[str, Any] = parent SCREAMING_SNAKE_CASE_ : Any = batch_size SCREAMING_SNAKE_CASE_ : Tuple = image_size SCREAMING_SNAKE_CASE_ : Optional[Any] = patch_size SCREAMING_SNAKE_CASE_ : str = num_channels SCREAMING_SNAKE_CASE_ : Union[str, Any] = is_training SCREAMING_SNAKE_CASE_ : Optional[Any] = use_labels SCREAMING_SNAKE_CASE_ : Union[str, Any] = hidden_size SCREAMING_SNAKE_CASE_ : Tuple = num_hidden_layers SCREAMING_SNAKE_CASE_ : Dict = num_attention_heads SCREAMING_SNAKE_CASE_ : Any = intermediate_size SCREAMING_SNAKE_CASE_ : List[Any] = hidden_act SCREAMING_SNAKE_CASE_ : List[str] = hidden_dropout_prob SCREAMING_SNAKE_CASE_ : List[Any] = attention_probs_dropout_prob SCREAMING_SNAKE_CASE_ : List[str] = type_sequence_label_size SCREAMING_SNAKE_CASE_ : Optional[Any] = initializer_range SCREAMING_SNAKE_CASE_ : Optional[Any] = scope SCREAMING_SNAKE_CASE_ : Any = backbone_featmap_shape # in ViT hybrid, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token) # the number of patches is based on the feature map of the backbone, which by default uses an output stride # of 32, which means that the feature map has a spatial resolution of 1/32 of the input image size SCREAMING_SNAKE_CASE_ : List[Any] = (self.image_size // 32) ** 2 SCREAMING_SNAKE_CASE_ : List[Any] = num_patches + 1 def __A ( self ): SCREAMING_SNAKE_CASE_ : Tuple = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) SCREAMING_SNAKE_CASE_ : Any = None if self.use_labels: SCREAMING_SNAKE_CASE_ : str = ids_tensor([self.batch_size] , self.type_sequence_label_size ) SCREAMING_SNAKE_CASE_ : str = self.get_config() return config, pixel_values, labels def __A ( self ): SCREAMING_SNAKE_CASE_ : Union[str, Any] = { 'global_padding': 'same', 'layer_type': 'bottleneck', 'depths': [3, 4, 9], 'out_features': ['stage1', 'stage2', 'stage3'], 'embedding_dynamic_padding': True, 'hidden_sizes': [4, 8, 16, 32], 'num_groups': 2, } return ViTHybridConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=_UpperCamelCase , initializer_range=self.initializer_range , backbone_featmap_shape=self.backbone_featmap_shape , backbone_config=_UpperCamelCase , ) def __A ( self , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ): SCREAMING_SNAKE_CASE_ : List[Any] = ViTHybridModel(config=_UpperCamelCase ) model.to(_UpperCamelCase ) model.eval() SCREAMING_SNAKE_CASE_ : Tuple = model(_UpperCamelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def __A ( self , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ): SCREAMING_SNAKE_CASE_ : Optional[int] = self.type_sequence_label_size SCREAMING_SNAKE_CASE_ : Union[str, Any] = ViTHybridForImageClassification(_UpperCamelCase ) model.to(_UpperCamelCase ) model.eval() SCREAMING_SNAKE_CASE_ : List[str] = model(_UpperCamelCase , labels=_UpperCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def __A ( self ): SCREAMING_SNAKE_CASE_ : Union[str, Any] = self.prepare_config_and_inputs() SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : List[Any] = config_and_inputs SCREAMING_SNAKE_CASE_ : Any = {'pixel_values': pixel_values} return config, inputs_dict @require_torch class snake_case_ ( A__ , A__ , unittest.TestCase ): __lowerCamelCase : Tuple = (ViTHybridModel, ViTHybridForImageClassification) if is_torch_available() else () __lowerCamelCase : Tuple = ( {"""feature-extraction""": ViTHybridModel, """image-classification""": ViTHybridForImageClassification} if is_torch_available() else {} ) __lowerCamelCase : Optional[Any] = False __lowerCamelCase : Optional[int] = False __lowerCamelCase : int = False def __A ( self ): SCREAMING_SNAKE_CASE_ : str = ViTHybridModelTester(self ) SCREAMING_SNAKE_CASE_ : List[Any] = ConfigTester(self , config_class=_UpperCamelCase , has_text_modality=_UpperCamelCase , hidden_size=37 ) def __A ( self ): self.config_tester.run_common_tests() @unittest.skip(reason='ViT does not use inputs_embeds' ) def __A ( self ): pass def __A ( self ): SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : List[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: SCREAMING_SNAKE_CASE_ : Optional[int] = model_class(_UpperCamelCase ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) SCREAMING_SNAKE_CASE_ : Dict = model.get_output_embeddings() self.assertTrue(x is None or isinstance(_UpperCamelCase , nn.Linear ) ) def __A ( self ): SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : List[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: SCREAMING_SNAKE_CASE_ : Tuple = model_class(_UpperCamelCase ) SCREAMING_SNAKE_CASE_ : List[str] = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic SCREAMING_SNAKE_CASE_ : Optional[Any] = [*signature.parameters.keys()] SCREAMING_SNAKE_CASE_ : Optional[Any] = ['pixel_values'] self.assertListEqual(arg_names[:1] , _UpperCamelCase ) def __A ( self ): SCREAMING_SNAKE_CASE_ : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_UpperCamelCase ) def __A ( self ): SCREAMING_SNAKE_CASE_ : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*_UpperCamelCase ) def __A ( self ): SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() SCREAMING_SNAKE_CASE_ : Union[str, Any] = _config_zero_init(_UpperCamelCase ) for model_class in self.all_model_classes: SCREAMING_SNAKE_CASE_ : Dict = model_class(config=_UpperCamelCase ) # Skip the check for the backbone for name, module in model.named_modules(): if module.__class__.__name__ == "ViTHybridPatchEmbeddings": SCREAMING_SNAKE_CASE_ : List[str] = [F'{name}.{key}' for key in module.state_dict().keys()] break for name, param in model.named_parameters(): if param.requires_grad: if name in backbone_params: continue self.assertIn( ((param.data.mean() * 1e9).round() / 1e9).item() , [0.0, 1.0] , msg=F'Parameter {name} of model {model_class} seems not properly initialized' , ) @slow def __A ( self ): for model_name in VIT_HYBRID_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: SCREAMING_SNAKE_CASE_ : int = ViTHybridModel.from_pretrained(_UpperCamelCase ) self.assertIsNotNone(_UpperCamelCase ) def __SCREAMING_SNAKE_CASE ( ) -> Optional[Any]: SCREAMING_SNAKE_CASE_ : str = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) return image @require_torch @require_vision class snake_case_ ( unittest.TestCase ): @cached_property def __A ( self ): return ( ViTHybridImageProcessor.from_pretrained(VIT_HYBRID_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) if is_vision_available() else None ) @slow def __A ( self ): SCREAMING_SNAKE_CASE_ : Optional[Any] = ViTHybridForImageClassification.from_pretrained(VIT_HYBRID_PRETRAINED_MODEL_ARCHIVE_LIST[0] ).to( _UpperCamelCase ) SCREAMING_SNAKE_CASE_ : Optional[int] = self.default_image_processor SCREAMING_SNAKE_CASE_ : Tuple = prepare_img() SCREAMING_SNAKE_CASE_ : int = image_processor(images=_UpperCamelCase , return_tensors='pt' ).to(_UpperCamelCase ) # forward pass with torch.no_grad(): SCREAMING_SNAKE_CASE_ : int = model(**_UpperCamelCase ) # verify the logits SCREAMING_SNAKE_CASE_ : Tuple = torch.Size((1, 1_000) ) self.assertEqual(outputs.logits.shape , _UpperCamelCase ) SCREAMING_SNAKE_CASE_ : Optional[int] = torch.tensor([-1.90_90, -0.49_93, -0.23_89] ).to(_UpperCamelCase ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , _UpperCamelCase , atol=1e-4 ) ) @slow @require_accelerate def __A ( self ): SCREAMING_SNAKE_CASE_ : List[Any] = ViTHybridImageProcessor.from_pretrained('google/vit-hybrid-base-bit-384' ) SCREAMING_SNAKE_CASE_ : int = ViTHybridForImageClassification.from_pretrained('google/vit-hybrid-base-bit-384' , device_map='auto' ) SCREAMING_SNAKE_CASE_ : Optional[Any] = prepare_img() SCREAMING_SNAKE_CASE_ : Tuple = image_processor(images=_UpperCamelCase , return_tensors='pt' ) SCREAMING_SNAKE_CASE_ : int = model(**_UpperCamelCase ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = outputs.logits # model predicts one of the 1000 ImageNet classes SCREAMING_SNAKE_CASE_ : Union[str, Any] = logits.argmax(-1 ).item() self.assertTrue(model.config.idalabel[predicted_class_idx] , 'tabby, tabby cat' )
345
import warnings from ...utils import logging from .image_processing_glpn import GLPNImageProcessor UpperCAmelCase_ = logging.get_logger(__name__) class __UpperCamelCase ( A__ ): def __init__( self , *_UpperCamelCase , **_UpperCamelCase ): warnings.warn( '''The class GLPNFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please''' ''' use GLPNImageProcessor instead.''' , _UpperCamelCase , ) super().__init__(*_UpperCamelCase , **_UpperCamelCase )
32
0
'''simple docstring''' from __future__ import annotations import unittest from transformers import is_tf_available from transformers.testing_utils import require_sentencepiece, require_tf, require_tokenizers, slow if is_tf_available(): import numpy as np import tensorflow as tf from transformers import TFCamembertModel @require_tf @require_sentencepiece @require_tokenizers class _snake_case ( unittest.TestCase ): '''simple docstring''' @slow def lowerCAmelCase__ ( self: Any ) -> Optional[int]: __magic_name__ : Union[str, Any] = TFCamembertModel.from_pretrained("jplu/tf-camembert-base" ) __magic_name__ : Any = tf.convert_to_tensor( [[5, 121, 11, 660, 16, 730, 2_5543, 110, 83, 6]] , dtype=tf.intaa , ) # J'aime le camembert !" __magic_name__ : int = model(_UpperCamelCase )["last_hidden_state"] __magic_name__ : Tuple = tf.TensorShape((1, 10, 768) ) self.assertEqual(output.shape , _UpperCamelCase ) # compare the actual values for a slice. __magic_name__ : str = tf.convert_to_tensor( [[[-0.0_2_5_4, 0.0_2_3_5, 0.1_0_2_7], [0.0_6_0_6, -0.1_8_1_1, -0.0_4_1_8], [-0.1_5_6_1, -0.1_1_2_7, 0.2_6_8_7]]] , dtype=tf.floataa , ) # camembert = torch.hub.load('pytorch/fairseq', 'camembert.v0') # camembert.eval() # expected_slice = roberta.model.forward(input_ids)[0][:, :3, :3].detach() self.assertTrue(np.allclose(output[:, :3, :3].numpy() , expected_slice.numpy() , atol=1E-4 ) )
436
from typing import List, Optional, Union from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType class __UpperCamelCase ( A__ ): __A : Dict = ["""image_processor""", """tokenizer"""] __A : List[str] = """BridgeTowerImageProcessor""" __A : str = ("""RobertaTokenizer""", """RobertaTokenizerFast""") def __init__( self , _UpperCamelCase , _UpperCamelCase ): super().__init__(_UpperCamelCase , _UpperCamelCase ) def __call__( self , _UpperCamelCase , _UpperCamelCase = None , _UpperCamelCase = True , _UpperCamelCase = False , _UpperCamelCase = None , _UpperCamelCase = None , _UpperCamelCase = 0 , _UpperCamelCase = None , _UpperCamelCase = None , _UpperCamelCase = None , _UpperCamelCase = False , _UpperCamelCase = False , _UpperCamelCase = False , _UpperCamelCase = False , _UpperCamelCase = True , _UpperCamelCase = None , **_UpperCamelCase , ): _UpperCAmelCase = self.tokenizer( text=_UpperCamelCase , add_special_tokens=_UpperCamelCase , padding=_UpperCamelCase , truncation=_UpperCamelCase , max_length=_UpperCamelCase , stride=_UpperCamelCase , pad_to_multiple_of=_UpperCamelCase , return_token_type_ids=_UpperCamelCase , return_attention_mask=_UpperCamelCase , return_overflowing_tokens=_UpperCamelCase , return_special_tokens_mask=_UpperCamelCase , return_offsets_mapping=_UpperCamelCase , return_length=_UpperCamelCase , verbose=_UpperCamelCase , return_tensors=_UpperCamelCase , **_UpperCamelCase , ) # add pixel_values + pixel_mask _UpperCAmelCase = self.image_processor( _UpperCamelCase , return_tensors=_UpperCamelCase , do_normalize=_UpperCamelCase , do_center_crop=_UpperCamelCase , **_UpperCamelCase ) encoding.update(_UpperCamelCase ) return encoding def UpperCamelCase( self , *_UpperCamelCase , **_UpperCamelCase ): return self.tokenizer.batch_decode(*_UpperCamelCase , **_UpperCamelCase ) def UpperCamelCase( self , *_UpperCamelCase , **_UpperCamelCase ): return self.tokenizer.decode(*_UpperCamelCase , **_UpperCamelCase ) @property def UpperCamelCase( self ): _UpperCAmelCase = self.tokenizer.model_input_names _UpperCAmelCase = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) )
32
0
from collections import OrderedDict from ...utils import logging from .auto_factory import _BaseAutoModelClass, _LazyAutoMapping, auto_class_update from .configuration_auto import CONFIG_MAPPING_NAMES UpperCamelCase_ = logging.get_logger(__name__) UpperCamelCase_ = OrderedDict( [ # Base model mapping ('albert', 'FlaxAlbertModel'), ('bart', 'FlaxBartModel'), ('beit', 'FlaxBeitModel'), ('bert', 'FlaxBertModel'), ('big_bird', 'FlaxBigBirdModel'), ('blenderbot', 'FlaxBlenderbotModel'), ('blenderbot-small', 'FlaxBlenderbotSmallModel'), ('clip', 'FlaxCLIPModel'), ('distilbert', 'FlaxDistilBertModel'), ('electra', 'FlaxElectraModel'), ('gpt-sw3', 'FlaxGPT2Model'), ('gpt2', 'FlaxGPT2Model'), ('gpt_neo', 'FlaxGPTNeoModel'), ('gptj', 'FlaxGPTJModel'), ('longt5', 'FlaxLongT5Model'), ('marian', 'FlaxMarianModel'), ('mbart', 'FlaxMBartModel'), ('mt5', 'FlaxMT5Model'), ('opt', 'FlaxOPTModel'), ('pegasus', 'FlaxPegasusModel'), ('regnet', 'FlaxRegNetModel'), ('resnet', 'FlaxResNetModel'), ('roberta', 'FlaxRobertaModel'), ('roberta-prelayernorm', 'FlaxRobertaPreLayerNormModel'), ('roformer', 'FlaxRoFormerModel'), ('t5', 'FlaxT5Model'), ('vision-text-dual-encoder', 'FlaxVisionTextDualEncoderModel'), ('vit', 'FlaxViTModel'), ('wav2vec2', 'FlaxWav2Vec2Model'), ('whisper', 'FlaxWhisperModel'), ('xglm', 'FlaxXGLMModel'), ('xlm-roberta', 'FlaxXLMRobertaModel'), ] ) UpperCamelCase_ = OrderedDict( [ # Model for pre-training mapping ('albert', 'FlaxAlbertForPreTraining'), ('bart', 'FlaxBartForConditionalGeneration'), ('bert', 'FlaxBertForPreTraining'), ('big_bird', 'FlaxBigBirdForPreTraining'), ('electra', 'FlaxElectraForPreTraining'), ('longt5', 'FlaxLongT5ForConditionalGeneration'), ('mbart', 'FlaxMBartForConditionalGeneration'), ('mt5', 'FlaxMT5ForConditionalGeneration'), ('roberta', 'FlaxRobertaForMaskedLM'), ('roberta-prelayernorm', 'FlaxRobertaPreLayerNormForMaskedLM'), ('roformer', 'FlaxRoFormerForMaskedLM'), ('t5', 'FlaxT5ForConditionalGeneration'), ('wav2vec2', 'FlaxWav2Vec2ForPreTraining'), ('whisper', 'FlaxWhisperForConditionalGeneration'), ('xlm-roberta', 'FlaxXLMRobertaForMaskedLM'), ] ) UpperCamelCase_ = OrderedDict( [ # Model for Masked LM mapping ('albert', 'FlaxAlbertForMaskedLM'), ('bart', 'FlaxBartForConditionalGeneration'), ('bert', 'FlaxBertForMaskedLM'), ('big_bird', 'FlaxBigBirdForMaskedLM'), ('distilbert', 'FlaxDistilBertForMaskedLM'), ('electra', 'FlaxElectraForMaskedLM'), ('mbart', 'FlaxMBartForConditionalGeneration'), ('roberta', 'FlaxRobertaForMaskedLM'), ('roberta-prelayernorm', 'FlaxRobertaPreLayerNormForMaskedLM'), ('roformer', 'FlaxRoFormerForMaskedLM'), ('xlm-roberta', 'FlaxXLMRobertaForMaskedLM'), ] ) UpperCamelCase_ = OrderedDict( [ # Model for Seq2Seq Causal LM mapping ('bart', 'FlaxBartForConditionalGeneration'), ('blenderbot', 'FlaxBlenderbotForConditionalGeneration'), ('blenderbot-small', 'FlaxBlenderbotSmallForConditionalGeneration'), ('encoder-decoder', 'FlaxEncoderDecoderModel'), ('longt5', 'FlaxLongT5ForConditionalGeneration'), ('marian', 'FlaxMarianMTModel'), ('mbart', 'FlaxMBartForConditionalGeneration'), ('mt5', 'FlaxMT5ForConditionalGeneration'), ('pegasus', 'FlaxPegasusForConditionalGeneration'), ('t5', 'FlaxT5ForConditionalGeneration'), ] ) UpperCamelCase_ = OrderedDict( [ # Model for Image-classsification ('beit', 'FlaxBeitForImageClassification'), ('regnet', 'FlaxRegNetForImageClassification'), ('resnet', 'FlaxResNetForImageClassification'), ('vit', 'FlaxViTForImageClassification'), ] ) UpperCamelCase_ = OrderedDict( [ ('vision-encoder-decoder', 'FlaxVisionEncoderDecoderModel'), ] ) UpperCamelCase_ = OrderedDict( [ # Model for Causal LM mapping ('bart', 'FlaxBartForCausalLM'), ('bert', 'FlaxBertForCausalLM'), ('big_bird', 'FlaxBigBirdForCausalLM'), ('electra', 'FlaxElectraForCausalLM'), ('gpt-sw3', 'FlaxGPT2LMHeadModel'), ('gpt2', 'FlaxGPT2LMHeadModel'), ('gpt_neo', 'FlaxGPTNeoForCausalLM'), ('gptj', 'FlaxGPTJForCausalLM'), ('opt', 'FlaxOPTForCausalLM'), ('roberta', 'FlaxRobertaForCausalLM'), ('roberta-prelayernorm', 'FlaxRobertaPreLayerNormForCausalLM'), ('xglm', 'FlaxXGLMForCausalLM'), ('xlm-roberta', 'FlaxXLMRobertaForCausalLM'), ] ) UpperCamelCase_ = OrderedDict( [ # Model for Sequence Classification mapping ('albert', 'FlaxAlbertForSequenceClassification'), ('bart', 'FlaxBartForSequenceClassification'), ('bert', 'FlaxBertForSequenceClassification'), ('big_bird', 'FlaxBigBirdForSequenceClassification'), ('distilbert', 'FlaxDistilBertForSequenceClassification'), ('electra', 'FlaxElectraForSequenceClassification'), ('mbart', 'FlaxMBartForSequenceClassification'), ('roberta', 'FlaxRobertaForSequenceClassification'), ('roberta-prelayernorm', 'FlaxRobertaPreLayerNormForSequenceClassification'), ('roformer', 'FlaxRoFormerForSequenceClassification'), ('xlm-roberta', 'FlaxXLMRobertaForSequenceClassification'), ] ) UpperCamelCase_ = OrderedDict( [ # Model for Question Answering mapping ('albert', 'FlaxAlbertForQuestionAnswering'), ('bart', 'FlaxBartForQuestionAnswering'), ('bert', 'FlaxBertForQuestionAnswering'), ('big_bird', 'FlaxBigBirdForQuestionAnswering'), ('distilbert', 'FlaxDistilBertForQuestionAnswering'), ('electra', 'FlaxElectraForQuestionAnswering'), ('mbart', 'FlaxMBartForQuestionAnswering'), ('roberta', 'FlaxRobertaForQuestionAnswering'), ('roberta-prelayernorm', 'FlaxRobertaPreLayerNormForQuestionAnswering'), ('roformer', 'FlaxRoFormerForQuestionAnswering'), ('xlm-roberta', 'FlaxXLMRobertaForQuestionAnswering'), ] ) UpperCamelCase_ = OrderedDict( [ # Model for Token Classification mapping ('albert', 'FlaxAlbertForTokenClassification'), ('bert', 'FlaxBertForTokenClassification'), ('big_bird', 'FlaxBigBirdForTokenClassification'), ('distilbert', 'FlaxDistilBertForTokenClassification'), ('electra', 'FlaxElectraForTokenClassification'), ('roberta', 'FlaxRobertaForTokenClassification'), ('roberta-prelayernorm', 'FlaxRobertaPreLayerNormForTokenClassification'), ('roformer', 'FlaxRoFormerForTokenClassification'), ('xlm-roberta', 'FlaxXLMRobertaForTokenClassification'), ] ) UpperCamelCase_ = OrderedDict( [ # Model for Multiple Choice mapping ('albert', 'FlaxAlbertForMultipleChoice'), ('bert', 'FlaxBertForMultipleChoice'), ('big_bird', 'FlaxBigBirdForMultipleChoice'), ('distilbert', 'FlaxDistilBertForMultipleChoice'), ('electra', 'FlaxElectraForMultipleChoice'), ('roberta', 'FlaxRobertaForMultipleChoice'), ('roberta-prelayernorm', 'FlaxRobertaPreLayerNormForMultipleChoice'), ('roformer', 'FlaxRoFormerForMultipleChoice'), ('xlm-roberta', 'FlaxXLMRobertaForMultipleChoice'), ] ) UpperCamelCase_ = OrderedDict( [ ('bert', 'FlaxBertForNextSentencePrediction'), ] ) UpperCamelCase_ = OrderedDict( [ ('speech-encoder-decoder', 'FlaxSpeechEncoderDecoderModel'), ('whisper', 'FlaxWhisperForConditionalGeneration'), ] ) UpperCamelCase_ = OrderedDict( [ ('whisper', 'FlaxWhisperForAudioClassification'), ] ) UpperCamelCase_ = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_MAPPING_NAMES) UpperCamelCase_ = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_PRETRAINING_MAPPING_NAMES) UpperCamelCase_ = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_MASKED_LM_MAPPING_NAMES) UpperCamelCase_ = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING_NAMES ) UpperCamelCase_ = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING_NAMES ) UpperCamelCase_ = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_VISION_2_SEQ_MAPPING_NAMES) UpperCamelCase_ = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_CAUSAL_LM_MAPPING_NAMES) UpperCamelCase_ = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING_NAMES ) UpperCamelCase_ = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_QUESTION_ANSWERING_MAPPING_NAMES ) UpperCamelCase_ = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING_NAMES ) UpperCamelCase_ = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_MULTIPLE_CHOICE_MAPPING_NAMES ) UpperCamelCase_ = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_NEXT_SENTENCE_PREDICTION_MAPPING_NAMES ) UpperCamelCase_ = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_SPEECH_SEQ_2_SEQ_MAPPING_NAMES ) UpperCamelCase_ = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_AUDIO_CLASSIFICATION_MAPPING_NAMES ) class snake_case_ ( _BaseAutoModelClass ): '''simple docstring''' __UpperCamelCase = FLAX_MODEL_MAPPING UpperCamelCase_ = auto_class_update(FlaxAutoModel) class snake_case_ ( _BaseAutoModelClass ): '''simple docstring''' __UpperCamelCase = FLAX_MODEL_FOR_PRETRAINING_MAPPING UpperCamelCase_ = auto_class_update(FlaxAutoModelForPreTraining, head_doc='pretraining') class snake_case_ ( _BaseAutoModelClass ): '''simple docstring''' __UpperCamelCase = FLAX_MODEL_FOR_CAUSAL_LM_MAPPING UpperCamelCase_ = auto_class_update(FlaxAutoModelForCausalLM, head_doc='causal language modeling') class snake_case_ ( _BaseAutoModelClass ): '''simple docstring''' __UpperCamelCase = FLAX_MODEL_FOR_MASKED_LM_MAPPING UpperCamelCase_ = auto_class_update(FlaxAutoModelForMaskedLM, head_doc='masked language modeling') class snake_case_ ( _BaseAutoModelClass ): '''simple docstring''' __UpperCamelCase = FLAX_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING UpperCamelCase_ = auto_class_update( FlaxAutoModelForSeqaSeqLM, head_doc='sequence-to-sequence language modeling', checkpoint_for_example='t5-base' ) class snake_case_ ( _BaseAutoModelClass ): '''simple docstring''' __UpperCamelCase = FLAX_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING UpperCamelCase_ = auto_class_update( FlaxAutoModelForSequenceClassification, head_doc='sequence classification' ) class snake_case_ ( _BaseAutoModelClass ): '''simple docstring''' __UpperCamelCase = FLAX_MODEL_FOR_QUESTION_ANSWERING_MAPPING UpperCamelCase_ = auto_class_update(FlaxAutoModelForQuestionAnswering, head_doc='question answering') class snake_case_ ( _BaseAutoModelClass ): '''simple docstring''' __UpperCamelCase = FLAX_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING UpperCamelCase_ = auto_class_update( FlaxAutoModelForTokenClassification, head_doc='token classification' ) class snake_case_ ( _BaseAutoModelClass ): '''simple docstring''' __UpperCamelCase = FLAX_MODEL_FOR_MULTIPLE_CHOICE_MAPPING UpperCamelCase_ = auto_class_update(FlaxAutoModelForMultipleChoice, head_doc='multiple choice') class snake_case_ ( _BaseAutoModelClass ): '''simple docstring''' __UpperCamelCase = FLAX_MODEL_FOR_NEXT_SENTENCE_PREDICTION_MAPPING UpperCamelCase_ = auto_class_update( FlaxAutoModelForNextSentencePrediction, head_doc='next sentence prediction' ) class snake_case_ ( _BaseAutoModelClass ): '''simple docstring''' __UpperCamelCase = FLAX_MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING UpperCamelCase_ = auto_class_update( FlaxAutoModelForImageClassification, head_doc='image classification' ) class snake_case_ ( _BaseAutoModelClass ): '''simple docstring''' __UpperCamelCase = FLAX_MODEL_FOR_VISION_2_SEQ_MAPPING UpperCamelCase_ = auto_class_update(FlaxAutoModelForVisionaSeq, head_doc='vision-to-text modeling') class snake_case_ ( _BaseAutoModelClass ): '''simple docstring''' __UpperCamelCase = FLAX_MODEL_FOR_SPEECH_SEQ_2_SEQ_MAPPING UpperCamelCase_ = auto_class_update( FlaxAutoModelForSpeechSeqaSeq, head_doc='sequence-to-sequence speech-to-text modeling' )
625
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available UpperCAmelCase_ = { "configuration_xlm": ["XLM_PRETRAINED_CONFIG_ARCHIVE_MAP", "XLMConfig", "XLMOnnxConfig"], "tokenization_xlm": ["XLMTokenizer"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase_ = [ "XLM_PRETRAINED_MODEL_ARCHIVE_LIST", "XLMForMultipleChoice", "XLMForQuestionAnswering", "XLMForQuestionAnsweringSimple", "XLMForSequenceClassification", "XLMForTokenClassification", "XLMModel", "XLMPreTrainedModel", "XLMWithLMHeadModel", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase_ = [ "TF_XLM_PRETRAINED_MODEL_ARCHIVE_LIST", "TFXLMForMultipleChoice", "TFXLMForQuestionAnsweringSimple", "TFXLMForSequenceClassification", "TFXLMForTokenClassification", "TFXLMMainLayer", "TFXLMModel", "TFXLMPreTrainedModel", "TFXLMWithLMHeadModel", ] if TYPE_CHECKING: from .configuration_xlm import XLM_PRETRAINED_CONFIG_ARCHIVE_MAP, XLMConfig, XLMOnnxConfig from .tokenization_xlm import XLMTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_xlm import ( XLM_PRETRAINED_MODEL_ARCHIVE_LIST, XLMForMultipleChoice, XLMForQuestionAnswering, XLMForQuestionAnsweringSimple, XLMForSequenceClassification, XLMForTokenClassification, XLMModel, XLMPreTrainedModel, XLMWithLMHeadModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_xlm import ( TF_XLM_PRETRAINED_MODEL_ARCHIVE_LIST, TFXLMForMultipleChoice, TFXLMForQuestionAnsweringSimple, TFXLMForSequenceClassification, TFXLMForTokenClassification, TFXLMMainLayer, TFXLMModel, TFXLMPreTrainedModel, TFXLMWithLMHeadModel, ) else: import sys UpperCAmelCase_ = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
32
0
"""simple docstring""" import argparse import re import requests import torch # git clone https://github.com/salesforce/BLIP.git from models.blip import blip_decoder from models.blip_itm import blip_itm from models.blip_vqa import blip_vqa from PIL import Image from torchvision import transforms from torchvision.transforms.functional import InterpolationMode from transformers import ( BertTokenizer, BlipConfig, BlipForConditionalGeneration, BlipForImageTextRetrieval, BlipForQuestionAnswering, ) def A ( _A, _A ): """simple docstring""" snake_case_ :Optional[int] = "https://storage.googleapis.com/sfr-vision-language-research/BLIP/demo.jpg" snake_case_ :Dict = Image.open(requests.get(SCREAMING_SNAKE_CASE_, stream=SCREAMING_SNAKE_CASE_ ).raw ).convert("RGB" ) snake_case_ :int = transforms.Compose( [ transforms.Resize((image_size, image_size), interpolation=InterpolationMode.BICUBIC ), transforms.ToTensor(), transforms.Normalize((0.48_145_466, 0.4_578_275, 0.40_821_073), (0.26_862_954, 0.26_130_258, 0.27_577_711) ), ] ) snake_case_ :List[str] = transform(SCREAMING_SNAKE_CASE_ ).unsqueeze(0 ).to(SCREAMING_SNAKE_CASE_ ) return image def A ( _A ): """simple docstring""" if "visual_encoder" in key: snake_case_ :Dict = re.sub("visual_encoder*", "vision_model.encoder", SCREAMING_SNAKE_CASE_ ) if "blocks" in key: snake_case_ :int = re.sub(R"blocks", "layers", SCREAMING_SNAKE_CASE_ ) if "attn" in key: snake_case_ :List[Any] = re.sub(R"attn", "self_attn", SCREAMING_SNAKE_CASE_ ) if "norm1" in key: snake_case_ :List[Any] = re.sub(R"norm1", "layer_norm1", SCREAMING_SNAKE_CASE_ ) if "norm2" in key: snake_case_ :Dict = re.sub(R"norm2", "layer_norm2", SCREAMING_SNAKE_CASE_ ) if "encoder.norm" in key: snake_case_ :List[Any] = re.sub(R"encoder.norm", "post_layernorm", SCREAMING_SNAKE_CASE_ ) if "encoder.patch_embed.proj" in key: snake_case_ :List[str] = re.sub(R"encoder.patch_embed.proj", "embeddings.patch_embedding", SCREAMING_SNAKE_CASE_ ) if "encoder.pos_embed" in key: snake_case_ :Optional[Any] = re.sub(R"encoder.pos_embed", "embeddings.position_embedding", SCREAMING_SNAKE_CASE_ ) if "encoder.cls_token" in key: snake_case_ :Union[str, Any] = re.sub(R"encoder.cls_token", "embeddings.class_embedding", SCREAMING_SNAKE_CASE_ ) if "self_attn" in key: snake_case_ :Optional[int] = re.sub(R"self_attn.proj", "self_attn.projection", SCREAMING_SNAKE_CASE_ ) return key @torch.no_grad() def A ( _A, _A=None ): """simple docstring""" if config_path is not None: snake_case_ :Optional[Any] = BlipConfig.from_pretrained(SCREAMING_SNAKE_CASE_ ) else: snake_case_ :Any = BlipConfig(projection_dim=512, text_config={}, vision_config={} ) snake_case_ :List[Any] = BlipForConditionalGeneration(SCREAMING_SNAKE_CASE_ ).eval() snake_case_ :int = "https://storage.googleapis.com/sfr-vision-language-research/BLIP/models/model_base_capfilt_large.pth" snake_case_ :Union[str, Any] = blip_decoder(pretrained=SCREAMING_SNAKE_CASE_, image_size=384, vit="base" ) snake_case_ :List[Any] = pt_model.eval() snake_case_ :Any = pt_model.state_dict() for key in modified_state_dict.copy(): snake_case_ :List[str] = modified_state_dict.pop(SCREAMING_SNAKE_CASE_ ) snake_case_ :Tuple = rename_key(SCREAMING_SNAKE_CASE_ ) snake_case_ :Dict = value hf_model.load_state_dict(SCREAMING_SNAKE_CASE_ ) snake_case_ :Optional[Any] = 384 snake_case_ :str = load_demo_image(image_size=SCREAMING_SNAKE_CASE_, device="cpu" ) snake_case_ :List[Any] = BertTokenizer.from_pretrained("bert-base-uncased" ) snake_case_ :Tuple = tokenizer(["a picture of"] ).input_ids snake_case_ :Dict = hf_model.generate(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ) assert out[0].tolist() == [30_522, 1_037, 3_861, 1_997, 1_037, 2_450, 3_564, 2_006, 1_996, 3_509, 2_007, 2_014, 3_899, 102] snake_case_ :Optional[Any] = hf_model.generate(SCREAMING_SNAKE_CASE_ ) assert out[0].tolist() == [30_522, 1_037, 2_450, 3_564, 2_006, 1_996, 3_509, 2_007, 2_014, 3_899, 102] if pytorch_dump_folder_path is not None: hf_model.save_pretrained(SCREAMING_SNAKE_CASE_ ) # model_url = 'https://storage.googleapis.com/sfr-vision-language-research/BLIP/models/model_vqa.pth' snake_case_ :Optional[Any] = ( "https://storage.googleapis.com/sfr-vision-language-research/BLIP/models/model_base_vqa_capfilt_large.pth" ) snake_case_ :Optional[Any] = blip_vqa(pretrained=SCREAMING_SNAKE_CASE_, image_size=SCREAMING_SNAKE_CASE_, vit="base" ) vqa_model.eval() snake_case_ :str = vqa_model.state_dict() for key in modified_state_dict.copy(): snake_case_ :List[Any] = modified_state_dict.pop(SCREAMING_SNAKE_CASE_ ) snake_case_ :Optional[int] = rename_key(SCREAMING_SNAKE_CASE_ ) snake_case_ :Dict = value snake_case_ :List[str] = BlipForQuestionAnswering(SCREAMING_SNAKE_CASE_ ) hf_vqa_model.load_state_dict(SCREAMING_SNAKE_CASE_ ) snake_case_ :Dict = ["How many dogs are in this image?"] snake_case_ :Dict = tokenizer(SCREAMING_SNAKE_CASE_, return_tensors="pt" ).input_ids snake_case_ :List[str] = hf_vqa_model.generate(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ) print(tokenizer.decode(answer[0] ) ) assert tokenizer.decode(answer[0] ) == "[UNK] 1 [SEP]" if pytorch_dump_folder_path is not None: hf_vqa_model.save_pretrained(pytorch_dump_folder_path + "_vqa" ) snake_case_ :Optional[Any] = "https://storage.googleapis.com/sfr-vision-language-research/BLIP/models/model_base_retrieval_coco.pth" snake_case_ :List[Any] = blip_itm(pretrained=SCREAMING_SNAKE_CASE_, image_size=SCREAMING_SNAKE_CASE_, vit="base" ) itm_model.eval() snake_case_ :List[str] = itm_model.state_dict() for key in modified_state_dict.copy(): snake_case_ :List[Any] = modified_state_dict.pop(SCREAMING_SNAKE_CASE_ ) snake_case_ :Optional[Any] = rename_key(SCREAMING_SNAKE_CASE_ ) snake_case_ :Optional[int] = value snake_case_ :Any = BlipForImageTextRetrieval(SCREAMING_SNAKE_CASE_ ) snake_case_ :Optional[Any] = ["A picture of a woman with a dog sitting in a beach"] snake_case_ :str = tokenizer( SCREAMING_SNAKE_CASE_, return_tensors="pt", padding="max_length", truncation=SCREAMING_SNAKE_CASE_, max_length=35, ).input_ids hf_itm_model.load_state_dict(SCREAMING_SNAKE_CASE_ ) hf_itm_model.eval() snake_case_ :List[str] = hf_itm_model(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, use_itm_head=SCREAMING_SNAKE_CASE_ ) snake_case_ :List[str] = hf_itm_model(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, use_itm_head=SCREAMING_SNAKE_CASE_ ) assert out[0].item() == 0.2_110_687_494_277_954 assert torch.nn.functional.softmax(out_itm[0], dim=1 )[:, 1].item() == 0.45_698_845_386_505_127 if pytorch_dump_folder_path is not None: hf_itm_model.save_pretrained(pytorch_dump_folder_path + "_itm" ) if __name__ == "__main__": __UpperCAmelCase : str = argparse.ArgumentParser() parser.add_argument('--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model.') parser.add_argument('--config_path', default=None, type=str, help='Path to hf config.json of model to convert') __UpperCAmelCase : Optional[Any] = parser.parse_args() convert_blip_checkpoint(args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path)
584
from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCAmelCase_ = logging.get_logger(__name__) UpperCAmelCase_ = { "microsoft/biogpt": "https://huggingface.co/microsoft/biogpt/resolve/main/config.json", # See all BioGPT models at https://huggingface.co/models?filter=biogpt } class __UpperCamelCase ( A__ ): __A : Any = """biogpt""" def __init__( self , _UpperCamelCase=42384 , _UpperCamelCase=1024 , _UpperCamelCase=24 , _UpperCamelCase=16 , _UpperCamelCase=4096 , _UpperCamelCase="gelu" , _UpperCamelCase=0.1 , _UpperCamelCase=0.1 , _UpperCamelCase=1024 , _UpperCamelCase=0.02 , _UpperCamelCase=1e-12 , _UpperCamelCase=True , _UpperCamelCase=True , _UpperCamelCase=0.0 , _UpperCamelCase=0.0 , _UpperCamelCase=1 , _UpperCamelCase=0 , _UpperCamelCase=2 , **_UpperCamelCase , ): _UpperCAmelCase = vocab_size _UpperCAmelCase = max_position_embeddings _UpperCAmelCase = hidden_size _UpperCAmelCase = num_hidden_layers _UpperCAmelCase = num_attention_heads _UpperCAmelCase = intermediate_size _UpperCAmelCase = hidden_act _UpperCAmelCase = hidden_dropout_prob _UpperCAmelCase = attention_probs_dropout_prob _UpperCAmelCase = initializer_range _UpperCAmelCase = layer_norm_eps _UpperCAmelCase = scale_embedding _UpperCAmelCase = use_cache _UpperCAmelCase = layerdrop _UpperCAmelCase = activation_dropout super().__init__(pad_token_id=_UpperCamelCase , bos_token_id=_UpperCamelCase , eos_token_id=_UpperCamelCase , **_UpperCamelCase )
32
0
import json import logging import os import sys from time import time from unittest.mock import patch from transformers.testing_utils import TestCasePlus, require_torch_tpu logging.basicConfig(level=logging.DEBUG) SCREAMING_SNAKE_CASE_:Optional[int] = logging.getLogger() def __UpperCamelCase ( _lowerCAmelCase ) -> Any: """simple docstring""" A : Optional[Any] = {} A : List[str] = os.path.join(SCREAMING_SNAKE_CASE_ , """all_results.json""" ) if os.path.exists(SCREAMING_SNAKE_CASE_ ): with open(SCREAMING_SNAKE_CASE_ , """r""" ) as f: A : str = json.load(SCREAMING_SNAKE_CASE_ ) else: raise ValueError(f'''can\'t find {path}''' ) return results SCREAMING_SNAKE_CASE_:Optional[Any] = logging.StreamHandler(sys.stdout) logger.addHandler(stream_handler) @require_torch_tpu class SCREAMING_SNAKE_CASE__ ( A__ ): '''simple docstring''' def _lowerCAmelCase ( self ): import xla_spawn A : Optional[int] = self.get_auto_remove_tmp_dir() A : List[str] = f''' ./examples/pytorch/text-classification/run_glue.py --num_cores=8 ./examples/pytorch/text-classification/run_glue.py --model_name_or_path distilbert-base-uncased --output_dir {tmp_dir} --overwrite_output_dir --train_file ./tests/fixtures/tests_samples/MRPC/train.csv --validation_file ./tests/fixtures/tests_samples/MRPC/dev.csv --do_train --do_eval --debug tpu_metrics_debug --per_device_train_batch_size=2 --per_device_eval_batch_size=1 --learning_rate=1e-4 --max_steps=10 --warmup_steps=2 --seed=42 --max_seq_length=128 '''.split() with patch.object(_UpperCamelCase, """argv""", _UpperCamelCase ): A : Any = time() xla_spawn.main() A : Tuple = time() A : int = get_results(_UpperCamelCase ) self.assertGreaterEqual(result["""eval_accuracy"""], 0.75 ) # Assert that the script takes less than 500 seconds to make sure it doesn't hang. self.assertLess(end - start, 500 ) def _lowerCAmelCase ( self ): import xla_spawn A : int = """ ./tests/test_trainer_tpu.py --num_cores=8 ./tests/test_trainer_tpu.py """.split() with patch.object(_UpperCamelCase, """argv""", _UpperCamelCase ): xla_spawn.main()
662
from typing import List from .keymap import KEYMAP, get_character def A__ ( SCREAMING_SNAKE_CASE_ : str ) -> List[str]: """simple docstring""" def decorator(SCREAMING_SNAKE_CASE_ : List[Any] ): _UpperCAmelCase = getattr(SCREAMING_SNAKE_CASE_ , '''handle_key''' , [] ) handle += [key] setattr(SCREAMING_SNAKE_CASE_ , '''handle_key''' , SCREAMING_SNAKE_CASE_ ) return func return decorator def A__ ( *SCREAMING_SNAKE_CASE_ : List[str] ) -> Dict: """simple docstring""" def decorator(SCREAMING_SNAKE_CASE_ : Any ): _UpperCAmelCase = getattr(SCREAMING_SNAKE_CASE_ , '''handle_key''' , [] ) handle += keys setattr(SCREAMING_SNAKE_CASE_ , '''handle_key''' , SCREAMING_SNAKE_CASE_ ) return func return decorator class __UpperCamelCase ( A__ ): def __new__( cls , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ): _UpperCAmelCase = super().__new__(cls , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) if not hasattr(_UpperCamelCase , '''key_handler''' ): setattr(_UpperCamelCase , '''key_handler''' , {} ) setattr(_UpperCamelCase , '''handle_input''' , KeyHandler.handle_input ) for value in attrs.values(): _UpperCAmelCase = getattr(_UpperCamelCase , '''handle_key''' , [] ) for key in handled_keys: _UpperCAmelCase = value return new_cls @staticmethod def UpperCamelCase( cls ): _UpperCAmelCase = get_character() if char != KEYMAP["undefined"]: _UpperCAmelCase = ord(_UpperCamelCase ) _UpperCAmelCase = cls.key_handler.get(_UpperCamelCase ) if handler: _UpperCAmelCase = char return handler(cls ) else: return None def A__ ( cls : Union[str, Any] ) -> Any: """simple docstring""" return KeyHandler(cls.__name__ , cls.__bases__ , cls.__dict__.copy() )
32
0
import importlib import json import os from collections import OrderedDict from typing import Dict, Optional, Union # Build the list of all image processors from ...configuration_utils import PretrainedConfig from ...dynamic_module_utils import get_class_from_dynamic_module, resolve_trust_remote_code from ...image_processing_utils import ImageProcessingMixin from ...utils import CONFIG_NAME, IMAGE_PROCESSOR_NAME, get_file_from_repo, logging from .auto_factory import _LazyAutoMapping from .configuration_auto import ( CONFIG_MAPPING_NAMES, AutoConfig, model_type_to_module_name, replace_list_option_in_docstrings, ) __A : Tuple = logging.get_logger(__name__) __A : Optional[Any] = OrderedDict( [ ("align", "EfficientNetImageProcessor"), ("beit", "BeitImageProcessor"), ("bit", "BitImageProcessor"), ("blip", "BlipImageProcessor"), ("blip-2", "BlipImageProcessor"), ("bridgetower", "BridgeTowerImageProcessor"), ("chinese_clip", "ChineseCLIPImageProcessor"), ("clip", "CLIPImageProcessor"), ("clipseg", "ViTImageProcessor"), ("conditional_detr", "ConditionalDetrImageProcessor"), ("convnext", "ConvNextImageProcessor"), ("convnextv2", "ConvNextImageProcessor"), ("cvt", "ConvNextImageProcessor"), ("data2vec-vision", "BeitImageProcessor"), ("deformable_detr", "DeformableDetrImageProcessor"), ("deit", "DeiTImageProcessor"), ("deta", "DetaImageProcessor"), ("detr", "DetrImageProcessor"), ("dinat", "ViTImageProcessor"), ("donut-swin", "DonutImageProcessor"), ("dpt", "DPTImageProcessor"), ("efficientformer", "EfficientFormerImageProcessor"), ("efficientnet", "EfficientNetImageProcessor"), ("flava", "FlavaImageProcessor"), ("focalnet", "BitImageProcessor"), ("git", "CLIPImageProcessor"), ("glpn", "GLPNImageProcessor"), ("groupvit", "CLIPImageProcessor"), ("imagegpt", "ImageGPTImageProcessor"), ("instructblip", "BlipImageProcessor"), ("layoutlmv2", "LayoutLMv2ImageProcessor"), ("layoutlmv3", "LayoutLMv3ImageProcessor"), ("levit", "LevitImageProcessor"), ("mask2former", "Mask2FormerImageProcessor"), ("maskformer", "MaskFormerImageProcessor"), ("mgp-str", "ViTImageProcessor"), ("mobilenet_v1", "MobileNetV1ImageProcessor"), ("mobilenet_v2", "MobileNetV2ImageProcessor"), ("mobilevit", "MobileViTImageProcessor"), ("mobilevit", "MobileViTImageProcessor"), ("mobilevitv2", "MobileViTImageProcessor"), ("nat", "ViTImageProcessor"), ("oneformer", "OneFormerImageProcessor"), ("owlvit", "OwlViTImageProcessor"), ("perceiver", "PerceiverImageProcessor"), ("pix2struct", "Pix2StructImageProcessor"), ("poolformer", "PoolFormerImageProcessor"), ("regnet", "ConvNextImageProcessor"), ("resnet", "ConvNextImageProcessor"), ("sam", "SamImageProcessor"), ("segformer", "SegformerImageProcessor"), ("swiftformer", "ViTImageProcessor"), ("swin", "ViTImageProcessor"), ("swin2sr", "Swin2SRImageProcessor"), ("swinv2", "ViTImageProcessor"), ("table-transformer", "DetrImageProcessor"), ("timesformer", "VideoMAEImageProcessor"), ("tvlt", "TvltImageProcessor"), ("upernet", "SegformerImageProcessor"), ("van", "ConvNextImageProcessor"), ("videomae", "VideoMAEImageProcessor"), ("vilt", "ViltImageProcessor"), ("vit", "ViTImageProcessor"), ("vit_hybrid", "ViTHybridImageProcessor"), ("vit_mae", "ViTImageProcessor"), ("vit_msn", "ViTImageProcessor"), ("xclip", "CLIPImageProcessor"), ("yolos", "YolosImageProcessor"), ] ) __A : Optional[Any] = _LazyAutoMapping(CONFIG_MAPPING_NAMES, IMAGE_PROCESSOR_MAPPING_NAMES) def __SCREAMING_SNAKE_CASE ( UpperCamelCase__ ) -> Optional[int]: '''simple docstring''' for module_name, extractors in IMAGE_PROCESSOR_MAPPING_NAMES.items(): if class_name in extractors: UpperCAmelCase = model_type_to_module_name(SCREAMING_SNAKE_CASE_ ) UpperCAmelCase = importlib.import_module(F""".{module_name}""" , '''transformers.models''' ) try: return getattr(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) except AttributeError: continue for _, extractor in IMAGE_PROCESSOR_MAPPING._extra_content.items(): if getattr(SCREAMING_SNAKE_CASE_ , '''__name__''' , SCREAMING_SNAKE_CASE_ ) == class_name: return extractor # We did not fine the class, but maybe it's because a dep is missing. In that case, the class will be in the main # init and we return the proper dummy to get an appropriate error message. UpperCAmelCase = importlib.import_module('''transformers''' ) if hasattr(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): return getattr(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) return None def __SCREAMING_SNAKE_CASE ( UpperCamelCase__ , UpperCamelCase__ = None , UpperCamelCase__ = False , UpperCamelCase__ = False , UpperCamelCase__ = None , UpperCamelCase__ = None , UpperCamelCase__ = None , UpperCamelCase__ = False , **UpperCamelCase__ , ) -> Tuple: '''simple docstring''' UpperCAmelCase = get_file_from_repo( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , cache_dir=SCREAMING_SNAKE_CASE_ , force_download=SCREAMING_SNAKE_CASE_ , resume_download=SCREAMING_SNAKE_CASE_ , proxies=SCREAMING_SNAKE_CASE_ , use_auth_token=SCREAMING_SNAKE_CASE_ , revision=SCREAMING_SNAKE_CASE_ , local_files_only=SCREAMING_SNAKE_CASE_ , ) if resolved_config_file is None: logger.info( '''Could not locate the image processor configuration file, will try to use the model config instead.''' ) return {} with open(SCREAMING_SNAKE_CASE_ , encoding='''utf-8''' ) as reader: return json.load(SCREAMING_SNAKE_CASE_ ) class A_ : def __init__( self ): '''simple docstring''' raise EnvironmentError( '''AutoImageProcessor is designed to be instantiated ''' '''using the `AutoImageProcessor.from_pretrained(pretrained_model_name_or_path)` method.''' ) @classmethod @replace_list_option_in_docstrings(_UpperCamelCase ) def _lowercase ( cls , _A , **_A ): '''simple docstring''' UpperCAmelCase = kwargs.pop('''config''' , _UpperCamelCase ) UpperCAmelCase = kwargs.pop('''trust_remote_code''' , _UpperCamelCase ) UpperCAmelCase = True UpperCAmelCase , UpperCAmelCase = ImageProcessingMixin.get_image_processor_dict(_UpperCamelCase , **_UpperCamelCase ) UpperCAmelCase = config_dict.get('''image_processor_type''' , _UpperCamelCase ) UpperCAmelCase = None if "AutoImageProcessor" in config_dict.get('''auto_map''' , {} ): UpperCAmelCase = config_dict['''auto_map''']['''AutoImageProcessor'''] # If we still don't have the image processor class, check if we're loading from a previous feature extractor config # and if so, infer the image processor class from there. if image_processor_class is None and image_processor_auto_map is None: UpperCAmelCase = config_dict.pop('''feature_extractor_type''' , _UpperCamelCase ) if feature_extractor_class is not None: logger.warning( '''Could not find image processor class in the image processor config or the model config. Loading''' ''' based on pattern matching with the model\'s feature extractor configuration.''' ) UpperCAmelCase = feature_extractor_class.replace('''FeatureExtractor''' , '''ImageProcessor''' ) if "AutoFeatureExtractor" in config_dict.get('''auto_map''' , {} ): UpperCAmelCase = config_dict['''auto_map''']['''AutoFeatureExtractor'''] UpperCAmelCase = feature_extractor_auto_map.replace('''FeatureExtractor''' , '''ImageProcessor''' ) logger.warning( '''Could not find image processor auto map in the image processor config or the model config.''' ''' Loading based on pattern matching with the model\'s feature extractor configuration.''' ) # If we don't find the image processor class in the image processor config, let's try the model config. if image_processor_class is None and image_processor_auto_map is None: if not isinstance(_UpperCamelCase , _UpperCamelCase ): UpperCAmelCase = AutoConfig.from_pretrained(_UpperCamelCase , **_UpperCamelCase ) # It could be in `config.image_processor_type`` UpperCAmelCase = getattr(_UpperCamelCase , '''image_processor_type''' , _UpperCamelCase ) if hasattr(_UpperCamelCase , '''auto_map''' ) and "AutoImageProcessor" in config.auto_map: UpperCAmelCase = config.auto_map['''AutoImageProcessor'''] if image_processor_class is not None: UpperCAmelCase = image_processor_class_from_name(_UpperCamelCase ) UpperCAmelCase = image_processor_auto_map is not None UpperCAmelCase = image_processor_class is not None or type(_UpperCamelCase ) in IMAGE_PROCESSOR_MAPPING UpperCAmelCase = resolve_trust_remote_code( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) if has_remote_code and trust_remote_code: UpperCAmelCase = get_class_from_dynamic_module( _UpperCamelCase , _UpperCamelCase , **_UpperCamelCase ) UpperCAmelCase = kwargs.pop('''code_revision''' , _UpperCamelCase ) if os.path.isdir(_UpperCamelCase ): image_processor_class.register_for_auto_class() return image_processor_class.from_dict(_UpperCamelCase , **_UpperCamelCase ) elif image_processor_class is not None: return image_processor_class.from_dict(_UpperCamelCase , **_UpperCamelCase ) # Last try: we use the IMAGE_PROCESSOR_MAPPING. elif type(_UpperCamelCase ) in IMAGE_PROCESSOR_MAPPING: UpperCAmelCase = IMAGE_PROCESSOR_MAPPING[type(_UpperCamelCase )] return image_processor_class.from_dict(_UpperCamelCase , **_UpperCamelCase ) raise ValueError( F"""Unrecognized image processor in {pretrained_model_name_or_path}. Should have a """ F"""`image_processor_type` key in its {IMAGE_PROCESSOR_NAME} of {CONFIG_NAME}, or one of the following """ F"""`model_type` keys in its {CONFIG_NAME}: {", ".join(c for c in IMAGE_PROCESSOR_MAPPING_NAMES.keys() )}""" ) @staticmethod def _lowercase ( _A , _A ): '''simple docstring''' IMAGE_PROCESSOR_MAPPING.register(_UpperCamelCase , _UpperCamelCase )
130
import unittest from transformers import LiltConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( LiltForQuestionAnswering, LiltForSequenceClassification, LiltForTokenClassification, LiltModel, ) from transformers.models.lilt.modeling_lilt import LILT_PRETRAINED_MODEL_ARCHIVE_LIST class __UpperCamelCase : def __init__( self , _UpperCamelCase , _UpperCamelCase=13 , _UpperCamelCase=7 , _UpperCamelCase=True , _UpperCamelCase=True , _UpperCamelCase=True , _UpperCamelCase=True , _UpperCamelCase=99 , _UpperCamelCase=24 , _UpperCamelCase=2 , _UpperCamelCase=6 , _UpperCamelCase=37 , _UpperCamelCase="gelu" , _UpperCamelCase=0.1 , _UpperCamelCase=0.1 , _UpperCamelCase=512 , _UpperCamelCase=16 , _UpperCamelCase=2 , _UpperCamelCase=0.02 , _UpperCamelCase=3 , _UpperCamelCase=None , _UpperCamelCase=1000 , ): _UpperCAmelCase = parent _UpperCAmelCase = batch_size _UpperCAmelCase = seq_length _UpperCAmelCase = is_training _UpperCAmelCase = use_input_mask _UpperCAmelCase = use_token_type_ids _UpperCAmelCase = use_labels _UpperCAmelCase = vocab_size _UpperCAmelCase = hidden_size _UpperCAmelCase = num_hidden_layers _UpperCAmelCase = num_attention_heads _UpperCAmelCase = intermediate_size _UpperCAmelCase = hidden_act _UpperCAmelCase = hidden_dropout_prob _UpperCAmelCase = attention_probs_dropout_prob _UpperCAmelCase = max_position_embeddings _UpperCAmelCase = type_vocab_size _UpperCAmelCase = type_sequence_label_size _UpperCAmelCase = initializer_range _UpperCAmelCase = num_labels _UpperCAmelCase = scope _UpperCAmelCase = range_bbox def UpperCamelCase( self ): _UpperCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _UpperCAmelCase = ids_tensor([self.batch_size, self.seq_length, 4] , self.range_bbox ) # Ensure that bbox is legal for i in range(bbox.shape[0] ): for j in range(bbox.shape[1] ): if bbox[i, j, 3] < bbox[i, j, 1]: _UpperCAmelCase = bbox[i, j, 3] _UpperCAmelCase = bbox[i, j, 1] _UpperCAmelCase = t if bbox[i, j, 2] < bbox[i, j, 0]: _UpperCAmelCase = bbox[i, j, 2] _UpperCAmelCase = bbox[i, j, 0] _UpperCAmelCase = t _UpperCAmelCase = None if self.use_input_mask: _UpperCAmelCase = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 ) _UpperCAmelCase = None if self.use_token_type_ids: _UpperCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) _UpperCAmelCase = None _UpperCAmelCase = None if self.use_labels: _UpperCAmelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size ) _UpperCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) _UpperCAmelCase = self.get_config() return config, input_ids, bbox, token_type_ids, input_mask, sequence_labels, token_labels def UpperCamelCase( self ): return LiltConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , ) def UpperCamelCase( self , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , ): _UpperCAmelCase = LiltModel(config=_UpperCamelCase ) model.to(_UpperCamelCase ) model.eval() _UpperCAmelCase = model(_UpperCamelCase , bbox=_UpperCamelCase , attention_mask=_UpperCamelCase , token_type_ids=_UpperCamelCase ) _UpperCAmelCase = model(_UpperCamelCase , bbox=_UpperCamelCase , token_type_ids=_UpperCamelCase ) _UpperCAmelCase = model(_UpperCamelCase , bbox=_UpperCamelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) ) def UpperCamelCase( self , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , ): _UpperCAmelCase = self.num_labels _UpperCAmelCase = LiltForTokenClassification(config=_UpperCamelCase ) model.to(_UpperCamelCase ) model.eval() _UpperCAmelCase = model( _UpperCamelCase , bbox=_UpperCamelCase , attention_mask=_UpperCamelCase , token_type_ids=_UpperCamelCase , labels=_UpperCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def UpperCamelCase( self , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , ): _UpperCAmelCase = LiltForQuestionAnswering(config=_UpperCamelCase ) model.to(_UpperCamelCase ) model.eval() _UpperCAmelCase = model( _UpperCamelCase , bbox=_UpperCamelCase , attention_mask=_UpperCamelCase , token_type_ids=_UpperCamelCase , start_positions=_UpperCamelCase , end_positions=_UpperCamelCase , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def UpperCamelCase( self ): _UpperCAmelCase = self.prepare_config_and_inputs() ( ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ) = config_and_inputs _UpperCAmelCase = { '''input_ids''': input_ids, '''bbox''': bbox, '''token_type_ids''': token_type_ids, '''attention_mask''': input_mask, } return config, inputs_dict @require_torch class __UpperCamelCase ( A__ , A__ , A__ , unittest.TestCase ): __A : Dict = ( ( LiltModel, LiltForSequenceClassification, LiltForTokenClassification, LiltForQuestionAnswering, ) if is_torch_available() else () ) __A : Optional[Any] = ( { """feature-extraction""": LiltModel, """question-answering""": LiltForQuestionAnswering, """text-classification""": LiltForSequenceClassification, """token-classification""": LiltForTokenClassification, """zero-shot""": LiltForSequenceClassification, } if is_torch_available() else {} ) __A : List[Any] = False __A : Optional[int] = False def UpperCamelCase( self , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ): return True def UpperCamelCase( self ): _UpperCAmelCase = LiltModelTester(self ) _UpperCAmelCase = ConfigTester(self , config_class=_UpperCamelCase , hidden_size=37 ) def UpperCamelCase( self ): self.config_tester.run_common_tests() def UpperCamelCase( self ): _UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_UpperCamelCase ) def UpperCamelCase( self ): _UpperCAmelCase = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: _UpperCAmelCase = type self.model_tester.create_and_check_model(*_UpperCamelCase ) def UpperCamelCase( self ): _UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*_UpperCamelCase ) def UpperCamelCase( self ): _UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*_UpperCamelCase ) @slow def UpperCamelCase( self ): for model_name in LILT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _UpperCAmelCase = LiltModel.from_pretrained(_UpperCamelCase ) self.assertIsNotNone(_UpperCamelCase ) @require_torch @slow class __UpperCamelCase ( unittest.TestCase ): def UpperCamelCase( self ): _UpperCAmelCase = LiltModel.from_pretrained('''SCUT-DLVCLab/lilt-roberta-en-base''' ).to(_UpperCamelCase ) _UpperCAmelCase = torch.tensor([[1, 2]] , device=_UpperCamelCase ) _UpperCAmelCase = torch.tensor([[[1, 2, 3, 4], [5, 6, 7, 8]]] , device=_UpperCamelCase ) # forward pass with torch.no_grad(): _UpperCAmelCase = model(input_ids=_UpperCamelCase , bbox=_UpperCamelCase ) _UpperCAmelCase = torch.Size([1, 2, 768] ) _UpperCAmelCase = torch.tensor( [[-0.0653, 0.0950, -0.0061], [-0.0545, 0.0926, -0.0324]] , device=_UpperCamelCase , ) self.assertTrue(outputs.last_hidden_state.shape , _UpperCamelCase ) self.assertTrue(torch.allclose(outputs.last_hidden_state[0, :, :3] , _UpperCamelCase , atol=1e-3 ) )
32
0
"""simple docstring""" def _a ( _snake_case ): """simple docstring""" if not isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): raise ValueError("""multiplicative_persistence() only accepts integral values""" ) if num < 0: raise ValueError("""multiplicative_persistence() does not accept negative values""" ) UpperCAmelCase = 0 UpperCAmelCase = str(SCREAMING_SNAKE_CASE_ ) while len(SCREAMING_SNAKE_CASE_ ) != 1: UpperCAmelCase = [int(SCREAMING_SNAKE_CASE_ ) for i in num_string] UpperCAmelCase = 1 for i in range(0 , len(SCREAMING_SNAKE_CASE_ ) ): total *= numbers[i] UpperCAmelCase = str(SCREAMING_SNAKE_CASE_ ) steps += 1 return steps def _a ( _snake_case ): """simple docstring""" if not isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): raise ValueError("""additive_persistence() only accepts integral values""" ) if num < 0: raise ValueError("""additive_persistence() does not accept negative values""" ) UpperCAmelCase = 0 UpperCAmelCase = str(SCREAMING_SNAKE_CASE_ ) while len(SCREAMING_SNAKE_CASE_ ) != 1: UpperCAmelCase = [int(SCREAMING_SNAKE_CASE_ ) for i in num_string] UpperCAmelCase = 0 for i in range(0 , len(SCREAMING_SNAKE_CASE_ ) ): total += numbers[i] UpperCAmelCase = str(SCREAMING_SNAKE_CASE_ ) steps += 1 return steps if __name__ == "__main__": import doctest doctest.testmod()
341
from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCAmelCase_ = logging.get_logger(__name__) UpperCAmelCase_ = { "RWKV/rwkv-4-169m-pile": "https://huggingface.co/RWKV/rwkv-4-169m-pile/resolve/main/config.json", "RWKV/rwkv-4-430m-pile": "https://huggingface.co/RWKV/rwkv-4-430m-pile/resolve/main/config.json", "RWKV/rwkv-4-1b5-pile": "https://huggingface.co/RWKV/rwkv-4-1b5-pile/resolve/main/config.json", "RWKV/rwkv-4-3b-pile": "https://huggingface.co/RWKV/rwkv-4-3b-pile/resolve/main/config.json", "RWKV/rwkv-4-7b-pile": "https://huggingface.co/RWKV/rwkv-4-7b-pile/resolve/main/config.json", "RWKV/rwkv-4-14b-pile": "https://huggingface.co/RWKV/rwkv-4-14b-pile/resolve/main/config.json", "RWKV/rwkv-raven-1b5": "https://huggingface.co/RWKV/rwkv-raven-1b5/resolve/main/config.json", "RWKV/rwkv-raven-3b": "https://huggingface.co/RWKV/rwkv-raven-3b/resolve/main/config.json", "RWKV/rwkv-raven-7b": "https://huggingface.co/RWKV/rwkv-raven-7b/resolve/main/config.json", "RWKV/rwkv-raven-14b": "https://huggingface.co/RWKV/rwkv-raven-14b/resolve/main/config.json", } class __UpperCamelCase ( A__ ): __A : Tuple = """rwkv""" __A : Any = {"""max_position_embeddings""": """context_length"""} def __init__( self , _UpperCamelCase=50277 , _UpperCamelCase=1024 , _UpperCamelCase=4096 , _UpperCamelCase=32 , _UpperCamelCase=None , _UpperCamelCase=None , _UpperCamelCase=1e-5 , _UpperCamelCase=0 , _UpperCamelCase=0 , _UpperCamelCase=6 , _UpperCamelCase=False , _UpperCamelCase=True , **_UpperCamelCase , ): _UpperCAmelCase = vocab_size _UpperCAmelCase = context_length _UpperCAmelCase = hidden_size _UpperCAmelCase = num_hidden_layers _UpperCAmelCase = attention_hidden_size if attention_hidden_size is not None else hidden_size _UpperCAmelCase = intermediate_size if intermediate_size is not None else 4 * hidden_size _UpperCAmelCase = layer_norm_epsilon _UpperCAmelCase = rescale_every _UpperCAmelCase = use_cache _UpperCAmelCase = bos_token_id _UpperCAmelCase = eos_token_id super().__init__( tie_word_embeddings=_UpperCamelCase , bos_token_id=_UpperCamelCase , eos_token_id=_UpperCamelCase , **_UpperCamelCase )
32
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available _UpperCAmelCase : Optional[int] = {'''configuration_yolos''': ['''YOLOS_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''YolosConfig''', '''YolosOnnxConfig''']} try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCAmelCase : Dict = ['''YolosFeatureExtractor'''] _UpperCAmelCase : Dict = ['''YolosImageProcessor'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCAmelCase : List[str] = [ '''YOLOS_PRETRAINED_MODEL_ARCHIVE_LIST''', '''YolosForObjectDetection''', '''YolosModel''', '''YolosPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_yolos import YOLOS_PRETRAINED_CONFIG_ARCHIVE_MAP, YolosConfig, YolosOnnxConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_yolos import YolosFeatureExtractor from .image_processing_yolos import YolosImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_yolos import ( YOLOS_PRETRAINED_MODEL_ARCHIVE_LIST, YolosForObjectDetection, YolosModel, YolosPreTrainedModel, ) else: import sys _UpperCAmelCase : int = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
72
def A__ ( SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : int ) -> str: """simple docstring""" if a < 0 or b < 0: raise ValueError('''the value of both inputs must be positive''' ) _UpperCAmelCase = str(bin(SCREAMING_SNAKE_CASE_ ) )[2:] # remove the leading "0b" _UpperCAmelCase = str(bin(SCREAMING_SNAKE_CASE_ ) )[2:] # remove the leading "0b" _UpperCAmelCase = max(len(SCREAMING_SNAKE_CASE_ ) , len(SCREAMING_SNAKE_CASE_ ) ) return "0b" + "".join( str(int(char_a == '''1''' and char_b == '''1''' ) ) for char_a, char_b in zip(a_binary.zfill(SCREAMING_SNAKE_CASE_ ) , b_binary.zfill(SCREAMING_SNAKE_CASE_ ) ) ) if __name__ == "__main__": import doctest doctest.testmod()
32
0
def _lowerCamelCase ( snake_case = 1_000 ): _lowerCAmelCase , _lowerCAmelCase = 1, 1 _lowerCAmelCase = 2 while True: _lowerCAmelCase = 0 _lowerCAmelCase = fa + fa _lowerCAmelCase , _lowerCAmelCase = fa, f index += 1 for _ in str(SCREAMING_SNAKE_CASE_ ): i += 1 if i == n: break return index if __name__ == "__main__": print(solution(int(str(input()).strip())))
192
from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCAmelCase_ = logging.get_logger(__name__) UpperCAmelCase_ = { "tiiuae/falcon-40b": "https://huggingface.co/tiiuae/falcon-40b/resolve/main/config.json", "tiiuae/falcon-7b": "https://huggingface.co/tiiuae/falcon-7b/resolve/main/config.json", } class __UpperCamelCase ( A__ ): __A : Dict = """falcon""" __A : Any = ["""past_key_values"""] def __init__( self , _UpperCamelCase=65024 , _UpperCamelCase=4544 , _UpperCamelCase=32 , _UpperCamelCase=71 , _UpperCamelCase=1e-5 , _UpperCamelCase=0.02 , _UpperCamelCase=True , _UpperCamelCase=0.0 , _UpperCamelCase=0.0 , _UpperCamelCase=None , _UpperCamelCase=False , _UpperCamelCase=False , _UpperCamelCase=True , _UpperCamelCase=True , _UpperCamelCase=False , _UpperCamelCase=11 , _UpperCamelCase=11 , **_UpperCamelCase , ): _UpperCAmelCase = vocab_size # Backward compatibility with n_embed kwarg _UpperCAmelCase = kwargs.pop('''n_embed''' , _UpperCamelCase ) _UpperCAmelCase = hidden_size if n_embed is None else n_embed _UpperCAmelCase = num_hidden_layers _UpperCAmelCase = num_attention_heads _UpperCAmelCase = layer_norm_epsilon _UpperCAmelCase = initializer_range _UpperCAmelCase = use_cache _UpperCAmelCase = hidden_dropout _UpperCAmelCase = attention_dropout _UpperCAmelCase = bos_token_id _UpperCAmelCase = eos_token_id _UpperCAmelCase = num_attention_heads if num_kv_heads is None else num_kv_heads _UpperCAmelCase = alibi _UpperCAmelCase = new_decoder_architecture _UpperCAmelCase = multi_query # Ignored when new_decoder_architecture is True _UpperCAmelCase = parallel_attn _UpperCAmelCase = bias super().__init__(bos_token_id=_UpperCamelCase , eos_token_id=_UpperCamelCase , **_UpperCamelCase ) @property def UpperCamelCase( self ): return self.hidden_size // self.num_attention_heads @property def UpperCamelCase( self ): return not self.alibi
32
0
'''simple docstring''' import argparse from transformers import TaConfig, TaForConditionalGeneration, load_tf_weights_in_ta from transformers.utils import logging logging.set_verbosity_info() def _UpperCamelCase ( __UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ) -> Optional[Any]: lowerCamelCase_ = TaConfig.from_json_file(SCREAMING_SNAKE_CASE_ ) print(f'''Building PyTorch model from configuration: {config}''' ) lowerCamelCase_ = TaForConditionalGeneration(SCREAMING_SNAKE_CASE_ ) # Load weights from tf checkpoint load_tf_weights_in_ta(SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ ) # Save pytorch-model print(f'''Save PyTorch model to {pytorch_dump_path}''' ) model.save_pretrained(SCREAMING_SNAKE_CASE_ ) if __name__ == "__main__": A_ = argparse.ArgumentParser() # Required parameters parser.add_argument( "--tf_checkpoint_path", default=None, type=str, required=True, help="Path to the TensorFlow checkpoint path." ) parser.add_argument( "--config_file", default=None, type=str, required=True, help=( "The config json file corresponding to the pre-trained T5 model. \nThis specifies the model architecture." ), ) parser.add_argument( "--pytorch_dump_path", default=None, type=str, required=True, help="Path to the output PyTorch model." ) A_ = parser.parse_args() convert_tf_checkpoint_to_pytorch(args.tf_checkpoint_path, args.config_file, args.pytorch_dump_path)
42
from math import sqrt def A__ ( SCREAMING_SNAKE_CASE_ : int ) -> bool: """simple docstring""" if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5 , int(sqrt(SCREAMING_SNAKE_CASE_ ) + 1 ) , 6 ): if number % i == 0 or number % (i + 2) == 0: return False return True def A__ ( SCREAMING_SNAKE_CASE_ : int = 1_00_01 ) -> int: """simple docstring""" _UpperCAmelCase = 0 _UpperCAmelCase = 1 while count != nth and number < 3: number += 1 if is_prime(SCREAMING_SNAKE_CASE_ ): count += 1 while count != nth: number += 2 if is_prime(SCREAMING_SNAKE_CASE_ ): count += 1 return number if __name__ == "__main__": print(f'''{solution() = }''')
32
0
from math import isqrt def __lowercase ( __lowerCAmelCase : int ): a__ = [True] * max_number for i in range(2 , isqrt(max_number - 1 ) + 1 ): if is_prime[i]: for j in range(i**2 , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): a__ = False return [i for i in range(2 , SCREAMING_SNAKE_CASE_ ) if is_prime[i]] def __lowercase ( __lowerCAmelCase : int = 1_0**8 ): a__ = calculate_prime_numbers(max_number // 2 ) a__ = 0 a__ = 0 a__ = len(SCREAMING_SNAKE_CASE_ ) - 1 while left <= right: while prime_numbers[left] * prime_numbers[right] >= max_number: right -= 1 semiprimes_count += right - left + 1 left += 1 return semiprimes_count if __name__ == "__main__": print(f"""{solution() = }""")
335
def A__ ( SCREAMING_SNAKE_CASE_ : int ) -> bool: """simple docstring""" if not isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): _UpperCAmelCase = F'''Input value of [number={number}] must be an integer''' raise TypeError(SCREAMING_SNAKE_CASE_ ) if number < 0: return False _UpperCAmelCase = number * number while number > 0: if number % 10 != number_square % 10: return False number //= 10 number_square //= 10 return True if __name__ == "__main__": import doctest doctest.testmod()
32
0
import unittest import numpy as np from transformers import RobertaConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_modeling_flax_common import FlaxModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask if is_flax_available(): from transformers.models.roberta.modeling_flax_roberta import ( FlaxRobertaForCausalLM, FlaxRobertaForMaskedLM, FlaxRobertaForMultipleChoice, FlaxRobertaForQuestionAnswering, FlaxRobertaForSequenceClassification, FlaxRobertaForTokenClassification, FlaxRobertaModel, ) class snake_case_ ( unittest.TestCase ): def __init__( self , __lowerCAmelCase , __lowerCAmelCase=13 , __lowerCAmelCase=7 , __lowerCAmelCase=True , __lowerCAmelCase=True , __lowerCAmelCase=True , __lowerCAmelCase=True , __lowerCAmelCase=99 , __lowerCAmelCase=32 , __lowerCAmelCase=5 , __lowerCAmelCase=4 , __lowerCAmelCase=37 , __lowerCAmelCase="gelu" , __lowerCAmelCase=0.1 , __lowerCAmelCase=0.1 , __lowerCAmelCase=512 , __lowerCAmelCase=16 , __lowerCAmelCase=2 , __lowerCAmelCase=0.02 , __lowerCAmelCase=4 , ): SCREAMING_SNAKE_CASE_ : int = parent SCREAMING_SNAKE_CASE_ : Union[str, Any] = batch_size SCREAMING_SNAKE_CASE_ : Any = seq_length SCREAMING_SNAKE_CASE_ : Union[str, Any] = is_training SCREAMING_SNAKE_CASE_ : Optional[int] = use_attention_mask SCREAMING_SNAKE_CASE_ : Any = use_token_type_ids SCREAMING_SNAKE_CASE_ : Union[str, Any] = use_labels SCREAMING_SNAKE_CASE_ : Dict = vocab_size SCREAMING_SNAKE_CASE_ : Optional[int] = hidden_size SCREAMING_SNAKE_CASE_ : int = num_hidden_layers SCREAMING_SNAKE_CASE_ : str = num_attention_heads SCREAMING_SNAKE_CASE_ : Tuple = intermediate_size SCREAMING_SNAKE_CASE_ : str = hidden_act SCREAMING_SNAKE_CASE_ : Optional[Any] = hidden_dropout_prob SCREAMING_SNAKE_CASE_ : Any = attention_probs_dropout_prob SCREAMING_SNAKE_CASE_ : List[str] = max_position_embeddings SCREAMING_SNAKE_CASE_ : Optional[Any] = type_vocab_size SCREAMING_SNAKE_CASE_ : str = type_sequence_label_size SCREAMING_SNAKE_CASE_ : str = initializer_range SCREAMING_SNAKE_CASE_ : str = num_choices def __A ( self ): SCREAMING_SNAKE_CASE_ : Union[str, Any] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) SCREAMING_SNAKE_CASE_ : Dict = None if self.use_attention_mask: SCREAMING_SNAKE_CASE_ : Dict = random_attention_mask([self.batch_size, self.seq_length] ) SCREAMING_SNAKE_CASE_ : List[Any] = None if self.use_token_type_ids: SCREAMING_SNAKE_CASE_ : int = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = RobertaConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=_UpperCamelCase , initializer_range=self.initializer_range , ) return config, input_ids, token_type_ids, attention_mask def __A ( self ): SCREAMING_SNAKE_CASE_ : List[Any] = self.prepare_config_and_inputs() SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : List[str] = config_and_inputs SCREAMING_SNAKE_CASE_ : int = {'input_ids': input_ids, 'token_type_ids': token_type_ids, 'attention_mask': attention_mask} return config, inputs_dict def __A ( self ): SCREAMING_SNAKE_CASE_ : Tuple = self.prepare_config_and_inputs() SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : Optional[int] = config_and_inputs SCREAMING_SNAKE_CASE_ : Union[str, Any] = True SCREAMING_SNAKE_CASE_ : Optional[int] = floats_tensor([self.batch_size, self.seq_length, self.hidden_size] ) SCREAMING_SNAKE_CASE_ : str = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 ) return ( config, input_ids, token_type_ids, encoder_hidden_states, encoder_attention_mask, ) @require_flax class snake_case_ ( A__ , unittest.TestCase ): __lowerCamelCase : Union[str, Any] = True __lowerCamelCase : str = ( ( FlaxRobertaModel, FlaxRobertaForCausalLM, FlaxRobertaForMaskedLM, FlaxRobertaForSequenceClassification, FlaxRobertaForTokenClassification, FlaxRobertaForMultipleChoice, FlaxRobertaForQuestionAnswering, ) if is_flax_available() else () ) def __A ( self ): SCREAMING_SNAKE_CASE_ : Dict = FlaxRobertaModelTester(self ) @slow def __A ( self ): for model_class_name in self.all_model_classes: SCREAMING_SNAKE_CASE_ : Tuple = model_class_name.from_pretrained('roberta-base' , from_pt=_UpperCamelCase ) SCREAMING_SNAKE_CASE_ : List[str] = model(np.ones((1, 1) ) ) self.assertIsNotNone(_UpperCamelCase )
345
from dataclasses import dataclass, field from typing import ClassVar, Dict from ..features import Features, Value from .base import TaskTemplate @dataclass(frozen=A__ ) class __UpperCamelCase ( A__ ): __A : str = field(default="""language-modeling""" , metadata={"""include_in_asdict_even_if_is_default""": True} ) __A : ClassVar[Features] = Features({"""text""": Value("""string""" )} ) __A : ClassVar[Features] = Features({} ) __A : str = "text" @property def UpperCamelCase( self ): return {self.text_column: "text"}
32
0
'''simple docstring''' from ...utils import logging from ..ta.modeling_tf_ta import TFTaEncoderModel, TFTaForConditionalGeneration, TFTaModel from .configuration_mta import MTaConfig _SCREAMING_SNAKE_CASE : int = logging.get_logger(__name__) _SCREAMING_SNAKE_CASE : str = "T5Config" class _snake_case ( A__ ): '''simple docstring''' __snake_case = """mt5""" __snake_case = MTaConfig class _snake_case ( A__ ): '''simple docstring''' __snake_case = """mt5""" __snake_case = MTaConfig class _snake_case ( A__ ): '''simple docstring''' __snake_case = """mt5""" __snake_case = MTaConfig
436
import os import re import warnings from shutil import copyfile from typing import TYPE_CHECKING, Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import PreTrainedTokenizer if TYPE_CHECKING: from ...tokenization_utils_base import TextInput from ...utils import logging UpperCAmelCase_ = logging.get_logger(__name__) UpperCAmelCase_ = {"vocab_file": "spiece.model"} UpperCAmelCase_ = { "vocab_file": { "t5-small": "https://huggingface.co/t5-small/resolve/main/spiece.model", "t5-base": "https://huggingface.co/t5-base/resolve/main/spiece.model", "t5-large": "https://huggingface.co/t5-large/resolve/main/spiece.model", "t5-3b": "https://huggingface.co/t5-3b/resolve/main/spiece.model", "t5-11b": "https://huggingface.co/t5-11b/resolve/main/spiece.model", } } # TODO(PVP) - this should be removed in Transformers v5 UpperCAmelCase_ = { "t5-small": 5_12, "t5-base": 5_12, "t5-large": 5_12, "t5-3b": 5_12, "t5-11b": 5_12, } UpperCAmelCase_ = "▁" class __UpperCamelCase ( A__ ): __A : Any = VOCAB_FILES_NAMES __A : Union[str, Any] = PRETRAINED_VOCAB_FILES_MAP __A : Any = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __A : Tuple = ["""input_ids""", """attention_mask"""] def __init__( self , _UpperCamelCase , _UpperCamelCase="</s>" , _UpperCamelCase="<unk>" , _UpperCamelCase="<pad>" , _UpperCamelCase=100 , _UpperCamelCase=None , _UpperCamelCase = None , _UpperCamelCase=True , **_UpperCamelCase , ): # Add extra_ids to the special token list if extra_ids > 0 and additional_special_tokens is None: _UpperCAmelCase = [f'''<extra_id_{i}>''' for i in range(_UpperCamelCase )] elif extra_ids > 0 and additional_special_tokens is not None: # Check that we have the right number of extra_id special tokens _UpperCAmelCase = len(set(filter(lambda _UpperCamelCase : bool('''extra_id''' in str(_UpperCamelCase ) ) , _UpperCamelCase ) ) ) if extra_tokens != extra_ids: raise ValueError( f'''Both extra_ids ({extra_ids}) and additional_special_tokens ({additional_special_tokens}) are''' ''' provided to T5Tokenizer. In this case the additional_special_tokens must include the extra_ids''' ''' tokens''' ) if legacy: logger.warning_once( f'''You are using the legacy behaviour of the {self.__class__}. This means that tokens that come after special tokens will not be properly handled. We recommend you to''' ''' read the related pull request available at https://github.com/huggingface/transformers/pull/24565''' ) _UpperCAmelCase = legacy _UpperCAmelCase = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( eos_token=_UpperCamelCase , unk_token=_UpperCamelCase , pad_token=_UpperCamelCase , extra_ids=_UpperCamelCase , additional_special_tokens=_UpperCamelCase , sp_model_kwargs=self.sp_model_kwargs , legacy=_UpperCamelCase , **_UpperCamelCase , ) _UpperCAmelCase = vocab_file _UpperCAmelCase = extra_ids _UpperCAmelCase = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(_UpperCamelCase ) @staticmethod def UpperCamelCase( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ): if pretrained_model_name_or_path in TaTokenizer.max_model_input_sizes: _UpperCAmelCase = TaTokenizer.max_model_input_sizes[pretrained_model_name_or_path] if init_max_model_length is not None and init_max_model_length != max_model_length: return init_max_model_length elif init_max_model_length is None: warnings.warn( '''This tokenizer was incorrectly instantiated with a model max length of''' f''' {deprecated_max_model_length} which will be corrected in Transformers v5.\nFor now, this''' ''' behavior is kept to avoid breaking backwards compatibility when padding/encoding with''' ''' `truncation is True`.\n- Be aware that you SHOULD NOT rely on''' f''' {pretrained_model_name_or_path} automatically truncating your input to''' f''' {deprecated_max_model_length} when padding/encoding.\n- If you want to encode/pad to sequences''' f''' longer than {deprecated_max_model_length} you can either instantiate this tokenizer with''' ''' `model_max_length` or pass `max_length` when encoding/padding.\n- To avoid this warning, please''' ''' instantiate this tokenizer with `model_max_length` set to your preferred value.''' , _UpperCamelCase , ) return max_model_length @property def UpperCamelCase( self ): return self.sp_model.get_piece_size() + self._extra_ids def UpperCamelCase( self ): _UpperCAmelCase = {self.convert_ids_to_tokens(_UpperCamelCase ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def UpperCamelCase( self , _UpperCamelCase , _UpperCamelCase = None , _UpperCamelCase = False ): if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=_UpperCamelCase , token_ids_a=_UpperCamelCase , already_has_special_tokens=_UpperCamelCase ) # normal case: some special tokens if token_ids_a is None: return ([0] * len(_UpperCamelCase )) + [1] return ([0] * len(_UpperCamelCase )) + [1] + ([0] * len(_UpperCamelCase )) + [1] def UpperCamelCase( self ): return list( set(filter(lambda _UpperCamelCase : bool(re.search(R'''<extra_id_\d+>''' , _UpperCamelCase ) ) is not None , self.additional_special_tokens ) ) ) def UpperCamelCase( self ): return [self._convert_token_to_id(_UpperCamelCase ) for token in self.get_sentinel_tokens()] def UpperCamelCase( self , _UpperCamelCase ): if len(_UpperCamelCase ) > 0 and token_ids[-1] == self.eos_token_id: warnings.warn( f'''This sequence already has {self.eos_token}. In future versions this behavior may lead to duplicated''' ''' eos tokens being added.''' ) return token_ids else: return token_ids + [self.eos_token_id] def UpperCamelCase( self , _UpperCamelCase , _UpperCamelCase = None ): _UpperCAmelCase = [self.eos_token_id] if token_ids_a is None: return len(token_ids_a + eos ) * [0] return len(token_ids_a + eos + token_ids_a + eos ) * [0] def UpperCamelCase( self , _UpperCamelCase , _UpperCamelCase = None ): _UpperCAmelCase = self._add_eos_if_not_present(_UpperCamelCase ) if token_ids_a is None: return token_ids_a else: _UpperCAmelCase = self._add_eos_if_not_present(_UpperCamelCase ) return token_ids_a + token_ids_a def __getstate__( self ): _UpperCAmelCase = self.__dict__.copy() _UpperCAmelCase = None return state def __setstate__( self , _UpperCamelCase ): _UpperCAmelCase = d # for backward compatibility if not hasattr(self , '''sp_model_kwargs''' ): _UpperCAmelCase = {} _UpperCAmelCase = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def UpperCamelCase( self , _UpperCamelCase , **_UpperCamelCase ): # Replace the SPIECE_UNDERLINE with a space to make sure SPIECE_UNDERLINE is only used at # the beginning of the text if not self.legacy: _UpperCAmelCase = SPIECE_UNDERLINE + text.replace(_UpperCamelCase , ''' ''' ) return super().tokenize(_UpperCamelCase , **_UpperCamelCase ) def UpperCamelCase( self , _UpperCamelCase , **_UpperCamelCase ): if not self.legacy: _UpperCAmelCase = text.startswith(_UpperCamelCase ) if is_first: _UpperCAmelCase = text[1:] _UpperCAmelCase = self.sp_model.encode(_UpperCamelCase , out_type=_UpperCamelCase ) if not self.legacy and not is_first and not text.startswith(''' ''' ) and tokens[0].startswith(_UpperCamelCase ): _UpperCAmelCase = ([tokens[0][1:]] if len(tokens[0] ) > 1 else []) + tokens[1:] return tokens def UpperCamelCase( self , _UpperCamelCase ): if token.startswith('''<extra_id_''' ): _UpperCAmelCase = re.match(R'''<extra_id_(\d+)>''' , _UpperCamelCase ) _UpperCAmelCase = int(match.group(1 ) ) return self.vocab_size - num - 1 return self.sp_model.piece_to_id(_UpperCamelCase ) def UpperCamelCase( self , _UpperCamelCase ): if index < self.sp_model.get_piece_size(): _UpperCAmelCase = self.sp_model.IdToPiece(_UpperCamelCase ) else: _UpperCAmelCase = f'''<extra_id_{self.vocab_size - 1 - index}>''' return token def UpperCamelCase( self , _UpperCamelCase ): _UpperCAmelCase = [] _UpperCAmelCase = '''''' _UpperCAmelCase = False for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: if not prev_is_special: out_string += " " out_string += self.sp_model.decode(_UpperCamelCase ) + token _UpperCAmelCase = True _UpperCAmelCase = [] else: current_sub_tokens.append(_UpperCamelCase ) _UpperCAmelCase = False out_string += self.sp_model.decode(_UpperCamelCase ) return out_string.strip() def UpperCamelCase( self , _UpperCamelCase , _UpperCamelCase = None ): if not os.path.isdir(_UpperCamelCase ): logger.error(f'''Vocabulary path ({save_directory}) should be a directory''' ) return _UpperCAmelCase = os.path.join( _UpperCamelCase , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(_UpperCamelCase ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , _UpperCamelCase ) elif not os.path.isfile(self.vocab_file ): with open(_UpperCamelCase , '''wb''' ) as fi: _UpperCAmelCase = self.sp_model.serialized_model_proto() fi.write(_UpperCamelCase ) return (out_vocab_file,)
32
0
from math import sqrt import numpy as np from sympy import symbols # Coefficient # Speed of light (m/s) UpperCamelCase_ = 2_99_79_24_58 # Symbols UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ = symbols('ct x y z') def _UpperCAmelCase ( A ): '''simple docstring''' if velocity > c: raise ValueError("Speed must not exceed light speed 299,792,458 [m/s]!" ) elif velocity < 1: # Usually the speed should be much higher than 1 (c order of magnitude) raise ValueError("Speed must be greater than or equal to 1!" ) return velocity / c def _UpperCAmelCase ( A ): '''simple docstring''' return 1 / sqrt(1 - beta(SCREAMING_SNAKE_CASE_ ) ** 2 ) def _UpperCAmelCase ( A ): '''simple docstring''' return np.array( [ [gamma(SCREAMING_SNAKE_CASE_ ), -gamma(SCREAMING_SNAKE_CASE_ ) * beta(SCREAMING_SNAKE_CASE_ ), 0, 0], [-gamma(SCREAMING_SNAKE_CASE_ ) * beta(SCREAMING_SNAKE_CASE_ ), gamma(SCREAMING_SNAKE_CASE_ ), 0, 0], [0, 0, 1, 0], [0, 0, 0, 1], ] ) def _UpperCAmelCase ( A , A = None ): '''simple docstring''' if event is None: UpperCAmelCase__ =np.array([ct, x, y, z] ) # Symbolic four vector else: event[0] *= c # x0 is ct (speed of light * time) return transformation_matrix(SCREAMING_SNAKE_CASE_ ) @ event if __name__ == "__main__": import doctest doctest.testmod() # Example of symbolic vector: UpperCamelCase_ = transform(29_97_92_45) print('Example of four vector: ') print(f"""ct\' = {four_vector[0]}""") print(f"""x\' = {four_vector[1]}""") print(f"""y\' = {four_vector[2]}""") print(f"""z\' = {four_vector[3]}""") # Substitute symbols with numerical values UpperCamelCase_ = {ct: c, x: 1, y: 1, z: 1} UpperCamelCase_ = [four_vector[i].subs(sub_dict) for i in range(4)] print(f"""\n{numerical_vector}""")
625
from __future__ import annotations def A__ ( SCREAMING_SNAKE_CASE_ : int ) -> bool: """simple docstring""" _UpperCAmelCase = str(SCREAMING_SNAKE_CASE_ ) return len(SCREAMING_SNAKE_CASE_ ) == 9 and set(SCREAMING_SNAKE_CASE_ ) == set('''123456789''' ) def A__ ( ) -> int | None: """simple docstring""" for base_num in range(99_99 , 49_99 , -1 ): _UpperCAmelCase = 10_00_02 * base_num if is_9_pandigital(SCREAMING_SNAKE_CASE_ ): return candidate for base_num in range(3_33 , 99 , -1 ): _UpperCAmelCase = 1_00_20_03 * base_num if is_9_pandigital(SCREAMING_SNAKE_CASE_ ): return candidate return None if __name__ == "__main__": print(f'''{solution() = }''')
32
0
"""simple docstring""" import copy from typing import Any, Dict, List, Optional, Union import numpy as np from ...audio_utils import mel_filter_bank, spectrogram, window_function from ...feature_extraction_sequence_utils import SequenceFeatureExtractor from ...feature_extraction_utils import BatchFeature from ...utils import TensorType, logging __UpperCAmelCase : Any = logging.get_logger(__name__) class __lowerCAmelCase (A__ ): '''simple docstring''' a__ = ["""input_features"""] def __init__( self , a=80 , a=1_60_00 , a=1_60 , a=30 , a=4_00 , a=0.0 , a=False , **a , ): """simple docstring""" super().__init__( feature_size=_UpperCamelCase , sampling_rate=_UpperCamelCase , padding_value=_UpperCamelCase , return_attention_mask=_UpperCamelCase , **_UpperCamelCase , ) snake_case_ :str = n_fft snake_case_ :Dict = hop_length snake_case_ :Union[str, Any] = chunk_length snake_case_ :List[str] = chunk_length * sampling_rate snake_case_ :int = self.n_samples // hop_length snake_case_ :Any = sampling_rate snake_case_ :Optional[int] = mel_filter_bank( num_frequency_bins=1 + n_fft // 2 , num_mel_filters=_UpperCamelCase , min_frequency=0.0 , max_frequency=8000.0 , sampling_rate=_UpperCamelCase , norm="slaney" , mel_scale="slaney" , ) def _a ( self , a ): """simple docstring""" snake_case_ :Union[str, Any] = spectrogram( _UpperCamelCase , window_function(self.n_fft , "hann" ) , frame_length=self.n_fft , hop_length=self.hop_length , power=2.0 , mel_filters=self.mel_filters , log_mel="log10" , ) snake_case_ :Any = log_spec[:, :-1] snake_case_ :int = np.maximum(_UpperCamelCase , log_spec.max() - 8.0 ) snake_case_ :Any = (log_spec + 4.0) / 4.0 return log_spec @staticmethod # Copied from transformers.models.wav2vec2.feature_extraction_wav2vec2.Wav2Vec2FeatureExtractor.zero_mean_unit_var_norm def _a ( a , a , a = 0.0 ): """simple docstring""" if attention_mask is not None: snake_case_ :Dict = np.array(_UpperCamelCase , np.intaa ) snake_case_ :Dict = [] for vector, length in zip(_UpperCamelCase , attention_mask.sum(-1 ) ): snake_case_ :int = (vector - vector[:length].mean()) / np.sqrt(vector[:length].var() + 1e-7 ) if length < normed_slice.shape[0]: snake_case_ :Optional[Any] = padding_value normed_input_values.append(_UpperCamelCase ) else: snake_case_ :Optional[Any] = [(x - x.mean()) / np.sqrt(x.var() + 1e-7 ) for x in input_values] return normed_input_values def __call__( self , a , a = True , a = None , a = None , a = None , a = "max_length" , a = None , a = None , a = None , **a , ): """simple docstring""" if sampling_rate is not None: if sampling_rate != self.sampling_rate: raise ValueError( F'''The model corresponding to this feature extractor: {self.__class__.__name__} was trained using a''' F''' sampling rate of {self.sampling_rate}. Please make sure that the provided `raw_speech` input''' F''' was sampled with {self.sampling_rate} and not {sampling_rate}.''' ) else: logger.warning( "It is strongly recommended to pass the `sampling_rate` argument to this function. " "Failing to do so can result in silent errors that might be hard to debug." ) snake_case_ :Optional[int] = isinstance(_UpperCamelCase , np.ndarray ) and len(raw_speech.shape ) > 1 if is_batched_numpy and len(raw_speech.shape ) > 2: raise ValueError(F'''Only mono-channel audio is supported for input to {self}''' ) snake_case_ :Tuple = is_batched_numpy or ( isinstance(_UpperCamelCase , (list, tuple) ) and (isinstance(raw_speech[0] , (np.ndarray, tuple, list) )) ) if is_batched: snake_case_ :Any = [np.asarray([speech] , dtype=np.floataa ).T for speech in raw_speech] elif not is_batched and not isinstance(_UpperCamelCase , np.ndarray ): snake_case_ :Tuple = np.asarray(_UpperCamelCase , dtype=np.floataa ) elif isinstance(_UpperCamelCase , np.ndarray ) and raw_speech.dtype is np.dtype(np.floataa ): snake_case_ :Dict = raw_speech.astype(np.floataa ) # always return batch if not is_batched: snake_case_ :Tuple = [np.asarray([raw_speech] ).T] snake_case_ :List[Any] = BatchFeature({"input_features": raw_speech} ) # convert into correct format for padding snake_case_ :int = self.pad( _UpperCamelCase , padding=_UpperCamelCase , max_length=max_length if max_length else self.n_samples , truncation=_UpperCamelCase , pad_to_multiple_of=_UpperCamelCase , return_attention_mask=return_attention_mask or do_normalize , ) # zero-mean and unit-variance normalization if do_normalize: snake_case_ :Tuple = self.zero_mean_unit_var_norm( padded_inputs["input_features"] , attention_mask=padded_inputs["attention_mask"] , padding_value=self.padding_value , ) snake_case_ :Optional[Any] = np.stack(padded_inputs["input_features"] , axis=0 ) # make sure list is in array format snake_case_ :Union[str, Any] = padded_inputs.get("input_features" ).transpose(2 , 0 , 1 ) snake_case_ :Dict = [self._np_extract_fbank_features(_UpperCamelCase ) for waveform in input_features[0]] if isinstance(input_features[0] , _UpperCamelCase ): snake_case_ :Optional[Any] = [np.asarray(_UpperCamelCase , dtype=np.floataa ) for feature in input_features] else: snake_case_ :Union[str, Any] = input_features if return_attention_mask: # rescale from sample (48000) to feature (3000) snake_case_ :str = padded_inputs["attention_mask"][:, :: self.hop_length] if return_tensors is not None: snake_case_ :Dict = padded_inputs.convert_to_tensors(_UpperCamelCase ) return padded_inputs def _a ( self ): """simple docstring""" snake_case_ :Any = copy.deepcopy(self.__dict__ ) snake_case_ :Optional[int] = self.__class__.__name__ if "mel_filters" in output: del output["mel_filters"] return output
584
import numpy as np def A__ ( SCREAMING_SNAKE_CASE_ : np.ndarray , SCREAMING_SNAKE_CASE_ : float ) -> np.ndarray: """simple docstring""" return np.where(vector > 0 , SCREAMING_SNAKE_CASE_ , (alpha * (np.exp(SCREAMING_SNAKE_CASE_ ) - 1)) ) if __name__ == "__main__": import doctest doctest.testmod()
32
0
import shutil import tempfile import unittest from transformers import SPIECE_UNDERLINE, BatchEncoding, MBartaaTokenizer, MBartaaTokenizerFast, is_torch_available from transformers.testing_utils import ( get_tests_dir, nested_simplify, require_sentencepiece, require_tokenizers, require_torch, slow, ) from ...test_tokenization_common import TokenizerTesterMixin SCREAMING_SNAKE_CASE_:str = get_tests_dir("""fixtures/test_sentencepiece.model""") if is_torch_available(): from transformers.models.mbart.modeling_mbart import shift_tokens_right SCREAMING_SNAKE_CASE_:List[Any] = 250_004 SCREAMING_SNAKE_CASE_:str = 250_020 @require_sentencepiece @require_tokenizers class SCREAMING_SNAKE_CASE__ ( A__ , unittest.TestCase ): '''simple docstring''' __lowerCamelCase : Union[str, Any] = MBartaaTokenizer __lowerCamelCase : Any = MBartaaTokenizerFast __lowerCamelCase : Dict = True __lowerCamelCase : Any = True def _lowerCAmelCase ( self ): super().setUp() # We have a SentencePiece fixture for testing A : Dict = MBartaaTokenizer(_UpperCamelCase, src_lang="""en_XX""", tgt_lang="""ro_RO""", keep_accents=_UpperCamelCase ) tokenizer.save_pretrained(self.tmpdirname ) def _lowerCAmelCase ( self ): A : int = """<s>""" A : Optional[Any] = 0 self.assertEqual(self.get_tokenizer()._convert_token_to_id(_UpperCamelCase ), _UpperCamelCase ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(_UpperCamelCase ), _UpperCamelCase ) def _lowerCAmelCase ( self ): A : List[Any] = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0], """<s>""" ) self.assertEqual(vocab_keys[1], """<pad>""" ) self.assertEqual(vocab_keys[-1], """<mask>""" ) self.assertEqual(len(_UpperCamelCase ), 1054 ) def _lowerCAmelCase ( self ): self.assertEqual(self.get_tokenizer().vocab_size, 1054 ) def _lowerCAmelCase ( self ): A : Optional[int] = MBartaaTokenizer(_UpperCamelCase, src_lang="""en_XX""", tgt_lang="""ro_RO""", keep_accents=_UpperCamelCase ) A : Optional[Any] = tokenizer.tokenize("""This is a test""" ) self.assertListEqual(_UpperCamelCase, ["""▁This""", """▁is""", """▁a""", """▁t""", """est"""] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(_UpperCamelCase ), [value + tokenizer.fairseq_offset for value in [285, 46, 10, 170, 382]], ) A : Optional[int] = tokenizer.tokenize("""I was born in 92000, and this is falsé.""" ) self.assertListEqual( _UpperCamelCase, [SPIECE_UNDERLINE + """I""", SPIECE_UNDERLINE + """was""", SPIECE_UNDERLINE + """b""", """or""", """n""", SPIECE_UNDERLINE + """in""", SPIECE_UNDERLINE + """""", """9""", """2""", """0""", """0""", """0""", """,""", SPIECE_UNDERLINE + """and""", SPIECE_UNDERLINE + """this""", SPIECE_UNDERLINE + """is""", SPIECE_UNDERLINE + """f""", """al""", """s""", """é""", """."""], ) A : Union[str, Any] = tokenizer.convert_tokens_to_ids(_UpperCamelCase ) self.assertListEqual( _UpperCamelCase, [ value + tokenizer.fairseq_offset for value in [8, 21, 84, 55, 24, 19, 7, 2, 602, 347, 347, 347, 3, 12, 66, 46, 72, 80, 6, 2, 4] ], ) A : str = tokenizer.convert_ids_to_tokens(_UpperCamelCase ) self.assertListEqual( _UpperCamelCase, [SPIECE_UNDERLINE + """I""", SPIECE_UNDERLINE + """was""", SPIECE_UNDERLINE + """b""", """or""", """n""", SPIECE_UNDERLINE + """in""", SPIECE_UNDERLINE + """""", """<unk>""", """2""", """0""", """0""", """0""", """,""", SPIECE_UNDERLINE + """and""", SPIECE_UNDERLINE + """this""", SPIECE_UNDERLINE + """is""", SPIECE_UNDERLINE + """f""", """al""", """s""", """<unk>""", """."""], ) @slow def _lowerCAmelCase ( self ): # fmt: off A : Dict = {"""input_ids""": [[25_0004, 1_1062, 8_2772, 7, 15, 8_2772, 538, 5_1529, 237, 1_7198, 1290, 206, 9, 21_5175, 1314, 136, 1_7198, 1290, 206, 9, 5_6359, 42, 12_2009, 9, 1_6466, 16, 8_7344, 4537, 9, 4717, 7_8381, 6, 15_9958, 7, 15, 2_4480, 618, 4, 527, 2_2693, 5428, 4, 2777, 2_4480, 9874, 4, 4_3523, 594, 4, 803, 1_8392, 3_3189, 18, 4, 4_3523, 2_4447, 1_2399, 100, 2_4955, 8_3658, 9626, 14_4057, 15, 839, 2_2335, 16, 136, 2_4955, 8_3658, 8_3479, 15, 3_9102, 724, 16, 678, 645, 2789, 1328, 4589, 42, 12_2009, 11_5774, 23, 805, 1328, 4_6876, 7, 136, 5_3894, 1940, 4_2227, 4_1159, 1_7721, 823, 425, 4, 2_7512, 9_8722, 206, 136, 5531, 4970, 919, 1_7336, 5, 2], [25_0004, 2_0080, 618, 83, 8_2775, 47, 479, 9, 1517, 73, 5_3894, 333, 8_0581, 11_0117, 1_8811, 5256, 1295, 51, 15_2526, 297, 7986, 390, 12_4416, 538, 3_5431, 214, 98, 1_5044, 2_5737, 136, 7108, 4_3701, 23, 756, 13_5355, 7, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [25_0004, 581, 6_3773, 11_9455, 6, 14_7797, 8_8203, 7, 645, 70, 21, 3285, 1_0269, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]], """attention_mask""": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=_UpperCamelCase, model_name="""facebook/mbart-large-50""", revision="""d3913889c59cd5c9e456b269c376325eabad57e2""", ) def _lowerCAmelCase ( self ): if not self.test_slow_tokenizer: # as we don't have a slow version, we can't compare the outputs between slow and fast versions return A : Union[str, Any] = (self.rust_tokenizer_class, """hf-internal-testing/tiny-random-mbart50""", {}) for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f'''{tokenizer.__class__.__name__} ({pretrained_name})''' ): A : List[str] = self.rust_tokenizer_class.from_pretrained(_UpperCamelCase, **_UpperCamelCase ) A : List[Any] = self.tokenizer_class.from_pretrained(_UpperCamelCase, **_UpperCamelCase ) A : Dict = tempfile.mkdtemp() A : str = tokenizer_r.save_pretrained(_UpperCamelCase ) A : Dict = tokenizer_p.save_pretrained(_UpperCamelCase ) # Checks it save with the same files + the tokenizer.json file for the fast one self.assertTrue(any("""tokenizer.json""" in f for f in tokenizer_r_files ) ) A : Optional[int] = tuple(f for f in tokenizer_r_files if """tokenizer.json""" not in f ) self.assertSequenceEqual(_UpperCamelCase, _UpperCamelCase ) # Checks everything loads correctly in the same way A : int = tokenizer_r.from_pretrained(_UpperCamelCase ) A : Any = tokenizer_p.from_pretrained(_UpperCamelCase ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(_UpperCamelCase, _UpperCamelCase ) ) # self.assertEqual(getattr(tokenizer_rp, key), getattr(tokenizer_pp, key)) # self.assertEqual(getattr(tokenizer_rp, key + "_id"), getattr(tokenizer_pp, key + "_id")) shutil.rmtree(_UpperCamelCase ) # Save tokenizer rust, legacy_format=True A : Dict = tempfile.mkdtemp() A : Any = tokenizer_r.save_pretrained(_UpperCamelCase, legacy_format=_UpperCamelCase ) A : str = tokenizer_p.save_pretrained(_UpperCamelCase ) # Checks it save with the same files self.assertSequenceEqual(_UpperCamelCase, _UpperCamelCase ) # Checks everything loads correctly in the same way A : List[str] = tokenizer_r.from_pretrained(_UpperCamelCase ) A : Tuple = tokenizer_p.from_pretrained(_UpperCamelCase ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(_UpperCamelCase, _UpperCamelCase ) ) shutil.rmtree(_UpperCamelCase ) # Save tokenizer rust, legacy_format=False A : List[str] = tempfile.mkdtemp() A : Any = tokenizer_r.save_pretrained(_UpperCamelCase, legacy_format=_UpperCamelCase ) A : Optional[Any] = tokenizer_p.save_pretrained(_UpperCamelCase ) # Checks it saved the tokenizer.json file self.assertTrue(any("""tokenizer.json""" in f for f in tokenizer_r_files ) ) # Checks everything loads correctly in the same way A : List[Any] = tokenizer_r.from_pretrained(_UpperCamelCase ) A : Optional[int] = tokenizer_p.from_pretrained(_UpperCamelCase ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(_UpperCamelCase, _UpperCamelCase ) ) shutil.rmtree(_UpperCamelCase ) @require_torch @require_sentencepiece @require_tokenizers class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): '''simple docstring''' __lowerCamelCase : Dict = """facebook/mbart-large-50-one-to-many-mmt""" __lowerCamelCase : Optional[int] = [ """ UN Chief Says There Is No Military Solution in Syria""", """ Secretary-General Ban Ki-moon says his response to Russia's stepped up military support for Syria is that \"there is no military solution\" to the nearly five-year conflict and more weapons will only worsen the violence and misery for millions of people.""", ] __lowerCamelCase : Optional[int] = [ """Şeful ONU declară că nu există o soluţie militară în Siria""", """Secretarul General Ban Ki-moon declară că răspunsul său la intensificarea sprijinului militar al Rusiei""" """ pentru Siria este că \"nu există o soluţie militară\" la conflictul de aproape cinci ani şi că noi arme nu vor""" """ face decât să înrăutăţească violenţele şi mizeria pentru milioane de oameni.""", ] __lowerCamelCase : Any = [EN_CODE, 8274, 12_7873, 2_5916, 7, 8622, 2071, 438, 6_7485, 53, 18_7895, 23, 5_1712, 2] @classmethod def _lowerCAmelCase ( cls ): A : str = MBartaaTokenizer.from_pretrained( cls.checkpoint_name, src_lang="""en_XX""", tgt_lang="""ro_RO""" ) A : int = 1 return cls def _lowerCAmelCase ( self ): self.assertEqual(self.tokenizer.fairseq_tokens_to_ids["""ar_AR"""], 25_0001 ) self.assertEqual(self.tokenizer.fairseq_tokens_to_ids["""en_EN"""], 25_0004 ) self.assertEqual(self.tokenizer.fairseq_tokens_to_ids["""ro_RO"""], 25_0020 ) self.assertEqual(self.tokenizer.fairseq_tokens_to_ids["""mr_IN"""], 25_0038 ) def _lowerCAmelCase ( self ): A : Optional[Any] = self.tokenizer.batch_encode_plus(self.src_text ).input_ids[0] self.assertListEqual(self.expected_src_tokens, _UpperCamelCase ) def _lowerCAmelCase ( self ): self.assertIn(_UpperCamelCase, self.tokenizer.all_special_ids ) A : Optional[Any] = [RO_CODE, 884, 9019, 96, 9, 916, 8_6792, 36, 1_8743, 1_5596, 5, 2] A : str = self.tokenizer.decode(_UpperCamelCase, skip_special_tokens=_UpperCamelCase ) A : List[Any] = self.tokenizer.decode(generated_ids[1:], skip_special_tokens=_UpperCamelCase ) self.assertEqual(_UpperCamelCase, _UpperCamelCase ) self.assertNotIn(self.tokenizer.eos_token, _UpperCamelCase ) def _lowerCAmelCase ( self ): A : Optional[Any] = ["""this is gunna be a long sentence """ * 20] assert isinstance(src_text[0], _UpperCamelCase ) A : Optional[int] = 10 A : str = self.tokenizer(_UpperCamelCase, max_length=_UpperCamelCase, truncation=_UpperCamelCase ).input_ids[0] self.assertEqual(ids[0], _UpperCamelCase ) self.assertEqual(ids[-1], 2 ) self.assertEqual(len(_UpperCamelCase ), _UpperCamelCase ) def _lowerCAmelCase ( self ): self.assertListEqual(self.tokenizer.convert_tokens_to_ids(["""<mask>""", """ar_AR"""] ), [25_0053, 25_0001] ) def _lowerCAmelCase ( self ): A : int = tempfile.mkdtemp() A : List[Any] = self.tokenizer.fairseq_tokens_to_ids self.tokenizer.save_pretrained(_UpperCamelCase ) A : List[Any] = MBartaaTokenizer.from_pretrained(_UpperCamelCase ) self.assertDictEqual(new_tok.fairseq_tokens_to_ids, _UpperCamelCase ) @require_torch def _lowerCAmelCase ( self ): A : Union[str, Any] = self.tokenizer(self.src_text, text_target=self.tgt_text, padding=_UpperCamelCase, return_tensors="""pt""" ) A : Dict = shift_tokens_right(batch["""labels"""], self.tokenizer.pad_token_id ) # fairseq batch: https://gist.github.com/sshleifer/cba08bc2109361a74ac3760a7e30e4f4 assert batch.input_ids[1][0] == EN_CODE assert batch.input_ids[1][-1] == 2 assert batch.labels[1][0] == RO_CODE assert batch.labels[1][-1] == 2 assert batch.decoder_input_ids[1][:2].tolist() == [2, RO_CODE] @require_torch def _lowerCAmelCase ( self ): A : int = self.tokenizer( self.src_text, text_target=self.tgt_text, padding=_UpperCamelCase, truncation=_UpperCamelCase, max_length=len(self.expected_src_tokens ), return_tensors="""pt""", ) A : Optional[int] = shift_tokens_right(batch["""labels"""], self.tokenizer.pad_token_id ) self.assertIsInstance(_UpperCamelCase, _UpperCamelCase ) self.assertEqual((2, 14), batch.input_ids.shape ) self.assertEqual((2, 14), batch.attention_mask.shape ) A : int = batch.input_ids.tolist()[0] self.assertListEqual(self.expected_src_tokens, _UpperCamelCase ) self.assertEqual(2, batch.decoder_input_ids[0, 0] ) # decoder_start_token_id # Test that special tokens are reset self.assertEqual(self.tokenizer.prefix_tokens, [EN_CODE] ) self.assertEqual(self.tokenizer.suffix_tokens, [self.tokenizer.eos_token_id] ) def _lowerCAmelCase ( self ): A : Tuple = self.tokenizer(self.src_text, padding=_UpperCamelCase, truncation=_UpperCamelCase, max_length=3, return_tensors="""pt""" ) A : List[Any] = self.tokenizer( text_target=self.tgt_text, padding=_UpperCamelCase, truncation=_UpperCamelCase, max_length=10, return_tensors="""pt""" ) A : Dict = targets["""input_ids"""] A : List[Any] = shift_tokens_right(_UpperCamelCase, self.tokenizer.pad_token_id ) self.assertEqual(batch.input_ids.shape[1], 3 ) self.assertEqual(batch.decoder_input_ids.shape[1], 10 ) @require_torch def _lowerCAmelCase ( self ): A : Tuple = self.tokenizer._build_translation_inputs( """A test""", return_tensors="""pt""", src_lang="""en_XX""", tgt_lang="""ar_AR""" ) self.assertEqual( nested_simplify(_UpperCamelCase ), { # en_XX, A, test, EOS """input_ids""": [[25_0004, 62, 3034, 2]], """attention_mask""": [[1, 1, 1, 1]], # ar_AR """forced_bos_token_id""": 25_0001, }, )
662
UpperCAmelCase_ = { "A": ".-", "B": "-...", "C": "-.-.", "D": "-..", "E": ".", "F": "..-.", "G": "--.", "H": "....", "I": "..", "J": ".---", "K": "-.-", "L": ".-..", "M": "--", "N": "-.", "O": "---", "P": ".--.", "Q": "--.-", "R": ".-.", "S": "...", "T": "-", "U": "..-", "V": "...-", "W": ".--", "X": "-..-", "Y": "-.--", "Z": "--..", "1": ".----", "2": "..---", "3": "...--", "4": "....-", "5": ".....", "6": "-....", "7": "--...", "8": "---..", "9": "----.", "0": "-----", "&": ".-...", "@": ".--.-.", ":": "---...", ",": "--..--", ".": ".-.-.-", "'": ".----.", "\"": ".-..-.", "?": "..--..", "/": "-..-.", "=": "-...-", "+": ".-.-.", "-": "-....-", "(": "-.--.", ")": "-.--.-", "!": "-.-.--", " ": "/" } # Exclamation mark is not in ITU-R recommendation # fmt: on UpperCAmelCase_ = {value: key for key, value in MORSE_CODE_DICT.items()} def A__ ( SCREAMING_SNAKE_CASE_ : str ) -> str: """simple docstring""" return " ".join(MORSE_CODE_DICT[char] for char in message.upper() ) def A__ ( SCREAMING_SNAKE_CASE_ : str ) -> str: """simple docstring""" return "".join(REVERSE_DICT[char] for char in message.split() ) def A__ ( ) -> None: """simple docstring""" _UpperCAmelCase = '''Morse code here!''' print(SCREAMING_SNAKE_CASE_ ) _UpperCAmelCase = encrypt(SCREAMING_SNAKE_CASE_ ) print(SCREAMING_SNAKE_CASE_ ) _UpperCAmelCase = decrypt(SCREAMING_SNAKE_CASE_ ) print(SCREAMING_SNAKE_CASE_ ) if __name__ == "__main__": main()
32
0
from math import isqrt, loga def __SCREAMING_SNAKE_CASE ( UpperCamelCase__ ) -> list[int]: '''simple docstring''' UpperCAmelCase = [True] * max_number for i in range(2 , isqrt(max_number - 1 ) + 1 ): if is_prime[i]: for j in range(i**2 , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): UpperCAmelCase = False return [i for i in range(2 , SCREAMING_SNAKE_CASE_ ) if is_prime[i]] def __SCREAMING_SNAKE_CASE ( UpperCamelCase__ = 80_0800 , UpperCamelCase__ = 80_0800 ) -> int: '''simple docstring''' UpperCAmelCase = degree * loga(SCREAMING_SNAKE_CASE_ ) UpperCAmelCase = int(SCREAMING_SNAKE_CASE_ ) UpperCAmelCase = calculate_prime_numbers(SCREAMING_SNAKE_CASE_ ) UpperCAmelCase = 0 UpperCAmelCase = 0 UpperCAmelCase = len(SCREAMING_SNAKE_CASE_ ) - 1 while left < right: while ( prime_numbers[right] * loga(prime_numbers[left] ) + prime_numbers[left] * loga(prime_numbers[right] ) > upper_bound ): right -= 1 hybrid_integers_count += right - left left += 1 return hybrid_integers_count if __name__ == "__main__": print(F'{solution() = }')
130
import gc import unittest import numpy as np import torch from diffusers import DanceDiffusionPipeline, IPNDMScheduler, UNetaDModel from diffusers.utils import slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu, skip_mps from ..pipeline_params import UNCONDITIONAL_AUDIO_GENERATION_BATCH_PARAMS, UNCONDITIONAL_AUDIO_GENERATION_PARAMS from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() class __UpperCamelCase ( A__ , unittest.TestCase ): __A : Any = DanceDiffusionPipeline __A : Any = UNCONDITIONAL_AUDIO_GENERATION_PARAMS __A : Tuple = PipelineTesterMixin.required_optional_params - { """callback""", """latents""", """callback_steps""", """output_type""", """num_images_per_prompt""", } __A : Tuple = UNCONDITIONAL_AUDIO_GENERATION_BATCH_PARAMS __A : List[str] = False __A : str = False def UpperCamelCase( self ): torch.manual_seed(0 ) _UpperCAmelCase = UNetaDModel( block_out_channels=(32, 32, 64) , extra_in_channels=16 , sample_size=512 , sample_rate=16000 , in_channels=2 , out_channels=2 , flip_sin_to_cos=_UpperCamelCase , use_timestep_embedding=_UpperCamelCase , time_embedding_type='''fourier''' , mid_block_type='''UNetMidBlock1D''' , down_block_types=('''DownBlock1DNoSkip''', '''DownBlock1D''', '''AttnDownBlock1D''') , up_block_types=('''AttnUpBlock1D''', '''UpBlock1D''', '''UpBlock1DNoSkip''') , ) _UpperCAmelCase = IPNDMScheduler() _UpperCAmelCase = { '''unet''': unet, '''scheduler''': scheduler, } return components def UpperCamelCase( self , _UpperCamelCase , _UpperCamelCase=0 ): if str(_UpperCamelCase ).startswith('''mps''' ): _UpperCAmelCase = torch.manual_seed(_UpperCamelCase ) else: _UpperCAmelCase = torch.Generator(device=_UpperCamelCase ).manual_seed(_UpperCamelCase ) _UpperCAmelCase = { '''batch_size''': 1, '''generator''': generator, '''num_inference_steps''': 4, } return inputs def UpperCamelCase( self ): _UpperCAmelCase = '''cpu''' # ensure determinism for the device-dependent torch.Generator _UpperCAmelCase = self.get_dummy_components() _UpperCAmelCase = DanceDiffusionPipeline(**_UpperCamelCase ) _UpperCAmelCase = pipe.to(_UpperCamelCase ) pipe.set_progress_bar_config(disable=_UpperCamelCase ) _UpperCAmelCase = self.get_dummy_inputs(_UpperCamelCase ) _UpperCAmelCase = pipe(**_UpperCamelCase ) _UpperCAmelCase = output.audios _UpperCAmelCase = audio[0, -3:, -3:] assert audio.shape == (1, 2, components["unet"].sample_size) _UpperCAmelCase = np.array([-0.7265, 1.0000, -0.8388, 0.1175, 0.9498, -1.0000] ) assert np.abs(audio_slice.flatten() - expected_slice ).max() < 1e-2 @skip_mps def UpperCamelCase( self ): return super().test_save_load_local() @skip_mps def UpperCamelCase( self ): return super().test_dict_tuple_outputs_equivalent(expected_max_difference=3e-3 ) @skip_mps def UpperCamelCase( self ): return super().test_save_load_optional_components() @skip_mps def UpperCamelCase( self ): return super().test_attention_slicing_forward_pass() def UpperCamelCase( self ): super().test_inference_batch_single_identical(expected_max_diff=3e-3 ) @slow @require_torch_gpu class __UpperCamelCase ( unittest.TestCase ): def UpperCamelCase( self ): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def UpperCamelCase( self ): _UpperCAmelCase = torch_device _UpperCAmelCase = DanceDiffusionPipeline.from_pretrained('''harmonai/maestro-150k''' ) _UpperCAmelCase = pipe.to(_UpperCamelCase ) pipe.set_progress_bar_config(disable=_UpperCamelCase ) _UpperCAmelCase = torch.manual_seed(0 ) _UpperCAmelCase = pipe(generator=_UpperCamelCase , num_inference_steps=100 , audio_length_in_s=4.096 ) _UpperCAmelCase = output.audios _UpperCAmelCase = audio[0, -3:, -3:] assert audio.shape == (1, 2, pipe.unet.sample_size) _UpperCAmelCase = np.array([-0.0192, -0.0231, -0.0318, -0.0059, 0.0002, -0.0020] ) assert np.abs(audio_slice.flatten() - expected_slice ).max() < 1e-2 def UpperCamelCase( self ): _UpperCAmelCase = torch_device _UpperCAmelCase = DanceDiffusionPipeline.from_pretrained('''harmonai/maestro-150k''' , torch_dtype=torch.floataa ) _UpperCAmelCase = pipe.to(_UpperCamelCase ) pipe.set_progress_bar_config(disable=_UpperCamelCase ) _UpperCAmelCase = torch.manual_seed(0 ) _UpperCAmelCase = pipe(generator=_UpperCamelCase , num_inference_steps=100 , audio_length_in_s=4.096 ) _UpperCAmelCase = output.audios _UpperCAmelCase = audio[0, -3:, -3:] assert audio.shape == (1, 2, pipe.unet.sample_size) _UpperCAmelCase = np.array([-0.0367, -0.0488, -0.0771, -0.0525, -0.0444, -0.0341] ) assert np.abs(audio_slice.flatten() - expected_slice ).max() < 1e-2
32
0
"""simple docstring""" import argparse import glob import logging import os import sys import time from collections import defaultdict from pathlib import Path from typing import Dict, List, Tuple import numpy as np import pytorch_lightning as pl import torch from callbacks import SeqaSeqLoggingCallback, get_checkpoint_callback, get_early_stopping_callback from torch import nn from torch.utils.data import DataLoader from transformers import MBartTokenizer, TaForConditionalGeneration from transformers.models.bart.modeling_bart import shift_tokens_right from utils import ( ROUGE_KEYS, LegacySeqaSeqDataset, SeqaSeqDataset, assert_all_frozen, calculate_bleu, calculate_rouge, check_output_dir, flatten_list, freeze_embeds, freeze_params, get_git_info, label_smoothed_nll_loss, lmap, pickle_save, save_git_info, save_json, use_task_specific_params, ) # need the parent dir module sys.path.insert(2, str(Path(__file__).resolve().parents[1])) from lightning_base import BaseTransformer, add_generic_args, generic_train # noqa _UpperCamelCase = logging.getLogger(__name__) class lowerCamelCase__ ( A__ ): SCREAMING_SNAKE_CASE = """summarization""" SCREAMING_SNAKE_CASE = ["""loss"""] SCREAMING_SNAKE_CASE = ROUGE_KEYS SCREAMING_SNAKE_CASE = """rouge2""" def __init__( self ,A ,**A ): if hparams.sortish_sampler and hparams.gpus > 1: UpperCAmelCase = False elif hparams.max_tokens_per_batch is not None: if hparams.gpus > 1: raise NotImplementedError("""Dynamic Batch size does not work for multi-gpu training""" ) if hparams.sortish_sampler: raise ValueError("""--sortish_sampler and --max_tokens_per_batch may not be used simultaneously""" ) super().__init__(_UpperCamelCase ,num_labels=_UpperCamelCase ,mode=self.mode ,**_UpperCamelCase ) use_task_specific_params(self.model ,"""summarization""" ) save_git_info(self.hparams.output_dir ) UpperCAmelCase = Path(self.output_dir ) / """metrics.json""" UpperCAmelCase = Path(self.output_dir ) / """hparams.pkl""" pickle_save(self.hparams ,self.hparams_save_path ) UpperCAmelCase = 0 UpperCAmelCase = defaultdict(_UpperCamelCase ) UpperCAmelCase = self.config.model_type UpperCAmelCase = self.config.tgt_vocab_size if self.model_type == """fsmt""" else self.config.vocab_size UpperCAmelCase = { """data_dir""": self.hparams.data_dir, """max_source_length""": self.hparams.max_source_length, """prefix""": self.model.config.prefix or """""", } UpperCAmelCase = { """train""": self.hparams.n_train, """val""": self.hparams.n_val, """test""": self.hparams.n_test, } UpperCAmelCase = {k: v if v >= 0 else None for k, v in n_observations_per_split.items()} UpperCAmelCase = { """train""": self.hparams.max_target_length, """val""": self.hparams.val_max_target_length, """test""": self.hparams.test_max_target_length, } assert self.target_lens["train"] <= self.target_lens["val"], F'''target_lens: {self.target_lens}''' assert self.target_lens["train"] <= self.target_lens["test"], F'''target_lens: {self.target_lens}''' if self.hparams.freeze_embeds: freeze_embeds(self.model ) if self.hparams.freeze_encoder: freeze_params(self.model.get_encoder() ) assert_all_frozen(self.model.get_encoder() ) UpperCAmelCase = get_git_info()["""repo_sha"""] UpperCAmelCase = hparams.num_workers UpperCAmelCase = None # default to config if self.model.config.decoder_start_token_id is None and isinstance(self.tokenizer ,_UpperCamelCase ): UpperCAmelCase = self.tokenizer.lang_code_to_id[hparams.tgt_lang] UpperCAmelCase = self.decoder_start_token_id UpperCAmelCase = ( SeqaSeqDataset if hasattr(self.tokenizer ,"""prepare_seq2seq_batch""" ) else LegacySeqaSeqDataset ) UpperCAmelCase = False UpperCAmelCase = self.model.config.num_beams if self.hparams.eval_beams is None else self.hparams.eval_beams if self.hparams.eval_max_gen_length is not None: UpperCAmelCase = self.hparams.eval_max_gen_length else: UpperCAmelCase = self.model.config.max_length UpperCAmelCase = self.default_val_metric if self.hparams.val_metric is None else self.hparams.val_metric def _UpperCamelCase ( self ,A ): UpperCAmelCase = { k: self.tokenizer.batch_decode(v.tolist() ) if """mask""" not in k else v.shape for k, v in batch.items() } save_json(_UpperCamelCase ,Path(self.output_dir ) / """text_batch.json""" ) save_json({k: v.tolist() for k, v in batch.items()} ,Path(self.output_dir ) / """tok_batch.json""" ) UpperCAmelCase = True return readable_batch def _UpperCamelCase ( self ,A ,**A ): return self.model(_UpperCamelCase ,**_UpperCamelCase ) def _UpperCamelCase ( self ,A ): UpperCAmelCase = self.tokenizer.batch_decode( _UpperCamelCase ,skip_special_tokens=_UpperCamelCase ,clean_up_tokenization_spaces=_UpperCamelCase ) return lmap(str.strip ,_UpperCamelCase ) def _UpperCamelCase ( self ,A ): UpperCAmelCase = self.tokenizer.pad_token_id UpperCAmelCase , UpperCAmelCase = batch["""input_ids"""], batch["""attention_mask"""] UpperCAmelCase = batch["""labels"""] if isinstance(self.model ,_UpperCamelCase ): UpperCAmelCase = self.model._shift_right(_UpperCamelCase ) else: UpperCAmelCase = shift_tokens_right(_UpperCamelCase ,_UpperCamelCase ) if not self.already_saved_batch: # This would be slightly better if it only happened on rank zero UpperCAmelCase = decoder_input_ids self.save_readable_batch(_UpperCamelCase ) UpperCAmelCase = self(_UpperCamelCase ,attention_mask=_UpperCamelCase ,decoder_input_ids=_UpperCamelCase ,use_cache=_UpperCamelCase ) UpperCAmelCase = outputs["""logits"""] if self.hparams.label_smoothing == 0: # Same behavior as modeling_bart.py, besides ignoring pad_token_id UpperCAmelCase = nn.CrossEntropyLoss(ignore_index=_UpperCamelCase ) assert lm_logits.shape[-1] == self.vocab_size UpperCAmelCase = ce_loss_fct(lm_logits.view(-1 ,lm_logits.shape[-1] ) ,tgt_ids.view(-1 ) ) else: UpperCAmelCase = nn.functional.log_softmax(_UpperCamelCase ,dim=-1 ) UpperCAmelCase , UpperCAmelCase = label_smoothed_nll_loss( _UpperCamelCase ,_UpperCamelCase ,self.hparams.label_smoothing ,ignore_index=_UpperCamelCase ) return (loss,) @property def _UpperCamelCase ( self ): return self.tokenizer.pad_token_id def _UpperCamelCase ( self ,A ,A ): UpperCAmelCase = self._step(_UpperCamelCase ) UpperCAmelCase = dict(zip(self.loss_names ,_UpperCamelCase ) ) # tokens per batch UpperCAmelCase = batch["""input_ids"""].ne(self.pad ).sum() + batch["""labels"""].ne(self.pad ).sum() UpperCAmelCase = batch["""input_ids"""].shape[0] UpperCAmelCase = batch["""input_ids"""].eq(self.pad ).sum() UpperCAmelCase = batch["""input_ids"""].eq(self.pad ).float().mean() # TODO(SS): make a wandb summary metric for this return {"loss": loss_tensors[0], "log": logs} def _UpperCamelCase ( self ,A ,A ): return self._generative_step(_UpperCamelCase ) def _UpperCamelCase ( self ,A ,A="val" ): self.step_count += 1 UpperCAmelCase = {k: torch.stack([x[k] for x in outputs] ).mean() for k in self.loss_names} UpperCAmelCase = losses["""loss"""] UpperCAmelCase = { k: np.array([x[k] for x in outputs] ).mean() for k in self.metric_names + ["""gen_time""", """gen_len"""] } UpperCAmelCase = ( generative_metrics[self.val_metric] if self.val_metric in generative_metrics else losses[self.val_metric] ) UpperCAmelCase = torch.tensor(_UpperCamelCase ).type_as(_UpperCamelCase ) generative_metrics.update({k: v.item() for k, v in losses.items()} ) losses.update(_UpperCamelCase ) UpperCAmelCase = {F'''{prefix}_avg_{k}''': x for k, x in losses.items()} UpperCAmelCase = self.step_count self.metrics[prefix].append(_UpperCamelCase ) # callback writes this to self.metrics_save_path UpperCAmelCase = flatten_list([x["""preds"""] for x in outputs] ) return { "log": all_metrics, "preds": preds, F'''{prefix}_loss''': loss, F'''{prefix}_{self.val_metric}''': metric_tensor, } def _UpperCamelCase ( self ,A ,A ): return calculate_rouge(_UpperCamelCase ,_UpperCamelCase ) def _UpperCamelCase ( self ,A ): UpperCAmelCase = time.time() # parser.add_argument('--eval_max_gen_length', type=int, default=None, help='never generate more than n tokens') UpperCAmelCase = self.model.generate( batch["""input_ids"""] ,attention_mask=batch["""attention_mask"""] ,use_cache=_UpperCamelCase ,decoder_start_token_id=self.decoder_start_token_id ,num_beams=self.eval_beams ,max_length=self.eval_max_length ,) UpperCAmelCase = (time.time() - ta) / batch["""input_ids"""].shape[0] UpperCAmelCase = self.ids_to_clean_text(_UpperCamelCase ) UpperCAmelCase = self.ids_to_clean_text(batch["""labels"""] ) UpperCAmelCase = self._step(_UpperCamelCase ) UpperCAmelCase = dict(zip(self.loss_names ,_UpperCamelCase ) ) UpperCAmelCase = self.calc_generative_metrics(_UpperCamelCase ,_UpperCamelCase ) UpperCAmelCase = np.mean(lmap(_UpperCamelCase ,_UpperCamelCase ) ) base_metrics.update(gen_time=_UpperCamelCase ,gen_len=_UpperCamelCase ,preds=_UpperCamelCase ,target=_UpperCamelCase ,**_UpperCamelCase ) return base_metrics def _UpperCamelCase ( self ,A ,A ): return self._generative_step(_UpperCamelCase ) def _UpperCamelCase ( self ,A ): return self.validation_epoch_end(_UpperCamelCase ,prefix="""test""" ) def _UpperCamelCase ( self ,A ): UpperCAmelCase = self.n_obs[type_path] UpperCAmelCase = self.target_lens[type_path] UpperCAmelCase = self.dataset_class( self.tokenizer ,type_path=_UpperCamelCase ,n_obs=_UpperCamelCase ,max_target_length=_UpperCamelCase ,**self.dataset_kwargs ,) return dataset def _UpperCamelCase ( self ,A ,A ,A = False ): UpperCAmelCase = self.get_dataset(_UpperCamelCase ) if self.hparams.sortish_sampler and type_path != "test" and type_path != "val": UpperCAmelCase = dataset.make_sortish_sampler(_UpperCamelCase ,distributed=self.hparams.gpus > 1 ) return DataLoader( _UpperCamelCase ,batch_size=_UpperCamelCase ,collate_fn=dataset.collate_fn ,shuffle=_UpperCamelCase ,num_workers=self.num_workers ,sampler=_UpperCamelCase ,) elif self.hparams.max_tokens_per_batch is not None and type_path != "test" and type_path != "val": UpperCAmelCase = dataset.make_dynamic_sampler( self.hparams.max_tokens_per_batch ,distributed=self.hparams.gpus > 1 ) return DataLoader( _UpperCamelCase ,batch_sampler=_UpperCamelCase ,collate_fn=dataset.collate_fn ,num_workers=self.num_workers ,) else: return DataLoader( _UpperCamelCase ,batch_size=_UpperCamelCase ,collate_fn=dataset.collate_fn ,shuffle=_UpperCamelCase ,num_workers=self.num_workers ,sampler=_UpperCamelCase ,) def _UpperCamelCase ( self ): UpperCAmelCase = self.get_dataloader("""train""" ,batch_size=self.hparams.train_batch_size ,shuffle=_UpperCamelCase ) return dataloader def _UpperCamelCase ( self ): return self.get_dataloader("""val""" ,batch_size=self.hparams.eval_batch_size ) def _UpperCamelCase ( self ): return self.get_dataloader("""test""" ,batch_size=self.hparams.eval_batch_size ) @staticmethod def _UpperCamelCase ( A ,A ): BaseTransformer.add_model_specific_args(_UpperCamelCase ,_UpperCamelCase ) add_generic_args(_UpperCamelCase ,_UpperCamelCase ) parser.add_argument( """--max_source_length""" ,default=1_024 ,type=_UpperCamelCase ,help=( """The maximum total input sequence length after tokenization. Sequences longer """ """than this will be truncated, sequences shorter will be padded.""" ) ,) parser.add_argument( """--max_target_length""" ,default=56 ,type=_UpperCamelCase ,help=( """The maximum total input sequence length after tokenization. Sequences longer """ """than this will be truncated, sequences shorter will be padded.""" ) ,) parser.add_argument( """--val_max_target_length""" ,default=142 ,type=_UpperCamelCase ,help=( """The maximum total input sequence length after tokenization. Sequences longer """ """than this will be truncated, sequences shorter will be padded.""" ) ,) parser.add_argument( """--test_max_target_length""" ,default=142 ,type=_UpperCamelCase ,help=( """The maximum total input sequence length after tokenization. Sequences longer """ """than this will be truncated, sequences shorter will be padded.""" ) ,) parser.add_argument("""--freeze_encoder""" ,action="""store_true""" ) parser.add_argument("""--freeze_embeds""" ,action="""store_true""" ) parser.add_argument("""--sortish_sampler""" ,action="""store_true""" ,default=_UpperCamelCase ) parser.add_argument("""--overwrite_output_dir""" ,action="""store_true""" ,default=_UpperCamelCase ) parser.add_argument("""--max_tokens_per_batch""" ,type=_UpperCamelCase ,default=_UpperCamelCase ) parser.add_argument("""--logger_name""" ,type=_UpperCamelCase ,choices=["""default""", """wandb""", """wandb_shared"""] ,default="""default""" ) parser.add_argument("""--n_train""" ,type=_UpperCamelCase ,default=-1 ,required=_UpperCamelCase ,help="""# examples. -1 means use all.""" ) parser.add_argument("""--n_val""" ,type=_UpperCamelCase ,default=500 ,required=_UpperCamelCase ,help="""# examples. -1 means use all.""" ) parser.add_argument("""--n_test""" ,type=_UpperCamelCase ,default=-1 ,required=_UpperCamelCase ,help="""# examples. -1 means use all.""" ) parser.add_argument( """--task""" ,type=_UpperCamelCase ,default="""summarization""" ,required=_UpperCamelCase ,help="""# examples. -1 means use all.""" ) parser.add_argument("""--label_smoothing""" ,type=_UpperCamelCase ,default=0.0 ,required=_UpperCamelCase ) parser.add_argument("""--src_lang""" ,type=_UpperCamelCase ,default="""""" ,required=_UpperCamelCase ) parser.add_argument("""--tgt_lang""" ,type=_UpperCamelCase ,default="""""" ,required=_UpperCamelCase ) parser.add_argument("""--eval_beams""" ,type=_UpperCamelCase ,default=_UpperCamelCase ,required=_UpperCamelCase ) parser.add_argument( """--val_metric""" ,type=_UpperCamelCase ,default=_UpperCamelCase ,required=_UpperCamelCase ,choices=["""bleu""", """rouge2""", """loss""", None] ) parser.add_argument("""--eval_max_gen_length""" ,type=_UpperCamelCase ,default=_UpperCamelCase ,help="""never generate more than n tokens""" ) parser.add_argument("""--save_top_k""" ,type=_UpperCamelCase ,default=1 ,required=_UpperCamelCase ,help="""How many checkpoints to save""" ) parser.add_argument( """--early_stopping_patience""" ,type=_UpperCamelCase ,default=-1 ,required=_UpperCamelCase ,help=( """-1 means never early stop. early_stopping_patience is measured in validation checks, not epochs. So""" """ val_check_interval will effect it.""" ) ,) return parser class lowerCamelCase__ ( A__ ): SCREAMING_SNAKE_CASE = """translation""" SCREAMING_SNAKE_CASE = ["""loss"""] SCREAMING_SNAKE_CASE = ["""bleu"""] SCREAMING_SNAKE_CASE = """bleu""" def __init__( self ,A ,**A ): super().__init__(_UpperCamelCase ,**_UpperCamelCase ) UpperCAmelCase = hparams.src_lang UpperCAmelCase = hparams.tgt_lang def _UpperCamelCase ( self ,A ,A ): return calculate_bleu(_UpperCamelCase ,_UpperCamelCase ) def _a ( _snake_case , _snake_case=None ): """simple docstring""" Path(args.output_dir ).mkdir(exist_ok=SCREAMING_SNAKE_CASE_ ) check_output_dir(SCREAMING_SNAKE_CASE_ , expected_items=3 ) if model is None: if "summarization" in args.task: UpperCAmelCase = SummarizationModule(SCREAMING_SNAKE_CASE_ ) else: UpperCAmelCase = TranslationModule(SCREAMING_SNAKE_CASE_ ) UpperCAmelCase = Path(args.data_dir ).name if ( args.logger_name == "default" or args.fast_dev_run or str(args.output_dir ).startswith("""/tmp""" ) or str(args.output_dir ).startswith("""/var""" ) ): UpperCAmelCase = True # don't pollute wandb logs unnecessarily elif args.logger_name == "wandb": from pytorch_lightning.loggers import WandbLogger UpperCAmelCase = os.environ.get("""WANDB_PROJECT""" , SCREAMING_SNAKE_CASE_ ) UpperCAmelCase = WandbLogger(name=model.output_dir.name , project=SCREAMING_SNAKE_CASE_ ) elif args.logger_name == "wandb_shared": from pytorch_lightning.loggers import WandbLogger UpperCAmelCase = WandbLogger(name=model.output_dir.name , project=F'''hf_{dataset}''' ) if args.early_stopping_patience >= 0: UpperCAmelCase = get_early_stopping_callback(model.val_metric , args.early_stopping_patience ) else: UpperCAmelCase = False UpperCAmelCase = args.val_metric == """loss""" UpperCAmelCase = generic_train( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , logging_callback=SeqaSeqLoggingCallback() , checkpoint_callback=get_checkpoint_callback( args.output_dir , model.val_metric , args.save_top_k , SCREAMING_SNAKE_CASE_ ) , early_stopping_callback=SCREAMING_SNAKE_CASE_ , logger=SCREAMING_SNAKE_CASE_ , ) pickle_save(model.hparams , model.output_dir / """hparams.pkl""" ) if not args.do_predict: return model UpperCAmelCase = """""" UpperCAmelCase = sorted(glob.glob(os.path.join(args.output_dir , """*.ckpt""" ) , recursive=SCREAMING_SNAKE_CASE_ ) ) if checkpoints: UpperCAmelCase = checkpoints[-1] UpperCAmelCase = checkpoints[-1] trainer.logger.log_hyperparams(model.hparams ) # test() without a model tests using the best checkpoint automatically trainer.test() return model if __name__ == "__main__": _UpperCamelCase = argparse.ArgumentParser() _UpperCamelCase = pl.Trainer.add_argparse_args(parser) _UpperCamelCase = SummarizationModule.add_model_specific_args(parser, os.getcwd()) _UpperCamelCase = parser.parse_args() main(args)
341
from collections import OrderedDict from ...utils import logging from .auto_factory import _BaseAutoModelClass, _LazyAutoMapping, auto_class_update from .configuration_auto import CONFIG_MAPPING_NAMES UpperCAmelCase_ = logging.get_logger(__name__) UpperCAmelCase_ = OrderedDict( [ # Base model mapping ("albert", "FlaxAlbertModel"), ("bart", "FlaxBartModel"), ("beit", "FlaxBeitModel"), ("bert", "FlaxBertModel"), ("big_bird", "FlaxBigBirdModel"), ("blenderbot", "FlaxBlenderbotModel"), ("blenderbot-small", "FlaxBlenderbotSmallModel"), ("clip", "FlaxCLIPModel"), ("distilbert", "FlaxDistilBertModel"), ("electra", "FlaxElectraModel"), ("gpt-sw3", "FlaxGPT2Model"), ("gpt2", "FlaxGPT2Model"), ("gpt_neo", "FlaxGPTNeoModel"), ("gptj", "FlaxGPTJModel"), ("longt5", "FlaxLongT5Model"), ("marian", "FlaxMarianModel"), ("mbart", "FlaxMBartModel"), ("mt5", "FlaxMT5Model"), ("opt", "FlaxOPTModel"), ("pegasus", "FlaxPegasusModel"), ("regnet", "FlaxRegNetModel"), ("resnet", "FlaxResNetModel"), ("roberta", "FlaxRobertaModel"), ("roberta-prelayernorm", "FlaxRobertaPreLayerNormModel"), ("roformer", "FlaxRoFormerModel"), ("t5", "FlaxT5Model"), ("vision-text-dual-encoder", "FlaxVisionTextDualEncoderModel"), ("vit", "FlaxViTModel"), ("wav2vec2", "FlaxWav2Vec2Model"), ("whisper", "FlaxWhisperModel"), ("xglm", "FlaxXGLMModel"), ("xlm-roberta", "FlaxXLMRobertaModel"), ] ) UpperCAmelCase_ = OrderedDict( [ # Model for pre-training mapping ("albert", "FlaxAlbertForPreTraining"), ("bart", "FlaxBartForConditionalGeneration"), ("bert", "FlaxBertForPreTraining"), ("big_bird", "FlaxBigBirdForPreTraining"), ("electra", "FlaxElectraForPreTraining"), ("longt5", "FlaxLongT5ForConditionalGeneration"), ("mbart", "FlaxMBartForConditionalGeneration"), ("mt5", "FlaxMT5ForConditionalGeneration"), ("roberta", "FlaxRobertaForMaskedLM"), ("roberta-prelayernorm", "FlaxRobertaPreLayerNormForMaskedLM"), ("roformer", "FlaxRoFormerForMaskedLM"), ("t5", "FlaxT5ForConditionalGeneration"), ("wav2vec2", "FlaxWav2Vec2ForPreTraining"), ("whisper", "FlaxWhisperForConditionalGeneration"), ("xlm-roberta", "FlaxXLMRobertaForMaskedLM"), ] ) UpperCAmelCase_ = OrderedDict( [ # Model for Masked LM mapping ("albert", "FlaxAlbertForMaskedLM"), ("bart", "FlaxBartForConditionalGeneration"), ("bert", "FlaxBertForMaskedLM"), ("big_bird", "FlaxBigBirdForMaskedLM"), ("distilbert", "FlaxDistilBertForMaskedLM"), ("electra", "FlaxElectraForMaskedLM"), ("mbart", "FlaxMBartForConditionalGeneration"), ("roberta", "FlaxRobertaForMaskedLM"), ("roberta-prelayernorm", "FlaxRobertaPreLayerNormForMaskedLM"), ("roformer", "FlaxRoFormerForMaskedLM"), ("xlm-roberta", "FlaxXLMRobertaForMaskedLM"), ] ) UpperCAmelCase_ = OrderedDict( [ # Model for Seq2Seq Causal LM mapping ("bart", "FlaxBartForConditionalGeneration"), ("blenderbot", "FlaxBlenderbotForConditionalGeneration"), ("blenderbot-small", "FlaxBlenderbotSmallForConditionalGeneration"), ("encoder-decoder", "FlaxEncoderDecoderModel"), ("longt5", "FlaxLongT5ForConditionalGeneration"), ("marian", "FlaxMarianMTModel"), ("mbart", "FlaxMBartForConditionalGeneration"), ("mt5", "FlaxMT5ForConditionalGeneration"), ("pegasus", "FlaxPegasusForConditionalGeneration"), ("t5", "FlaxT5ForConditionalGeneration"), ] ) UpperCAmelCase_ = OrderedDict( [ # Model for Image-classsification ("beit", "FlaxBeitForImageClassification"), ("regnet", "FlaxRegNetForImageClassification"), ("resnet", "FlaxResNetForImageClassification"), ("vit", "FlaxViTForImageClassification"), ] ) UpperCAmelCase_ = OrderedDict( [ ("vision-encoder-decoder", "FlaxVisionEncoderDecoderModel"), ] ) UpperCAmelCase_ = OrderedDict( [ # Model for Causal LM mapping ("bart", "FlaxBartForCausalLM"), ("bert", "FlaxBertForCausalLM"), ("big_bird", "FlaxBigBirdForCausalLM"), ("electra", "FlaxElectraForCausalLM"), ("gpt-sw3", "FlaxGPT2LMHeadModel"), ("gpt2", "FlaxGPT2LMHeadModel"), ("gpt_neo", "FlaxGPTNeoForCausalLM"), ("gptj", "FlaxGPTJForCausalLM"), ("opt", "FlaxOPTForCausalLM"), ("roberta", "FlaxRobertaForCausalLM"), ("roberta-prelayernorm", "FlaxRobertaPreLayerNormForCausalLM"), ("xglm", "FlaxXGLMForCausalLM"), ("xlm-roberta", "FlaxXLMRobertaForCausalLM"), ] ) UpperCAmelCase_ = OrderedDict( [ # Model for Sequence Classification mapping ("albert", "FlaxAlbertForSequenceClassification"), ("bart", "FlaxBartForSequenceClassification"), ("bert", "FlaxBertForSequenceClassification"), ("big_bird", "FlaxBigBirdForSequenceClassification"), ("distilbert", "FlaxDistilBertForSequenceClassification"), ("electra", "FlaxElectraForSequenceClassification"), ("mbart", "FlaxMBartForSequenceClassification"), ("roberta", "FlaxRobertaForSequenceClassification"), ("roberta-prelayernorm", "FlaxRobertaPreLayerNormForSequenceClassification"), ("roformer", "FlaxRoFormerForSequenceClassification"), ("xlm-roberta", "FlaxXLMRobertaForSequenceClassification"), ] ) UpperCAmelCase_ = OrderedDict( [ # Model for Question Answering mapping ("albert", "FlaxAlbertForQuestionAnswering"), ("bart", "FlaxBartForQuestionAnswering"), ("bert", "FlaxBertForQuestionAnswering"), ("big_bird", "FlaxBigBirdForQuestionAnswering"), ("distilbert", "FlaxDistilBertForQuestionAnswering"), ("electra", "FlaxElectraForQuestionAnswering"), ("mbart", "FlaxMBartForQuestionAnswering"), ("roberta", "FlaxRobertaForQuestionAnswering"), ("roberta-prelayernorm", "FlaxRobertaPreLayerNormForQuestionAnswering"), ("roformer", "FlaxRoFormerForQuestionAnswering"), ("xlm-roberta", "FlaxXLMRobertaForQuestionAnswering"), ] ) UpperCAmelCase_ = OrderedDict( [ # Model for Token Classification mapping ("albert", "FlaxAlbertForTokenClassification"), ("bert", "FlaxBertForTokenClassification"), ("big_bird", "FlaxBigBirdForTokenClassification"), ("distilbert", "FlaxDistilBertForTokenClassification"), ("electra", "FlaxElectraForTokenClassification"), ("roberta", "FlaxRobertaForTokenClassification"), ("roberta-prelayernorm", "FlaxRobertaPreLayerNormForTokenClassification"), ("roformer", "FlaxRoFormerForTokenClassification"), ("xlm-roberta", "FlaxXLMRobertaForTokenClassification"), ] ) UpperCAmelCase_ = OrderedDict( [ # Model for Multiple Choice mapping ("albert", "FlaxAlbertForMultipleChoice"), ("bert", "FlaxBertForMultipleChoice"), ("big_bird", "FlaxBigBirdForMultipleChoice"), ("distilbert", "FlaxDistilBertForMultipleChoice"), ("electra", "FlaxElectraForMultipleChoice"), ("roberta", "FlaxRobertaForMultipleChoice"), ("roberta-prelayernorm", "FlaxRobertaPreLayerNormForMultipleChoice"), ("roformer", "FlaxRoFormerForMultipleChoice"), ("xlm-roberta", "FlaxXLMRobertaForMultipleChoice"), ] ) UpperCAmelCase_ = OrderedDict( [ ("bert", "FlaxBertForNextSentencePrediction"), ] ) UpperCAmelCase_ = OrderedDict( [ ("speech-encoder-decoder", "FlaxSpeechEncoderDecoderModel"), ("whisper", "FlaxWhisperForConditionalGeneration"), ] ) UpperCAmelCase_ = OrderedDict( [ ("whisper", "FlaxWhisperForAudioClassification"), ] ) UpperCAmelCase_ = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_MAPPING_NAMES) UpperCAmelCase_ = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_PRETRAINING_MAPPING_NAMES) UpperCAmelCase_ = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_MASKED_LM_MAPPING_NAMES) UpperCAmelCase_ = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING_NAMES ) UpperCAmelCase_ = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING_NAMES ) UpperCAmelCase_ = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_VISION_2_SEQ_MAPPING_NAMES) UpperCAmelCase_ = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_CAUSAL_LM_MAPPING_NAMES) UpperCAmelCase_ = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING_NAMES ) UpperCAmelCase_ = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_QUESTION_ANSWERING_MAPPING_NAMES ) UpperCAmelCase_ = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING_NAMES ) UpperCAmelCase_ = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_MULTIPLE_CHOICE_MAPPING_NAMES ) UpperCAmelCase_ = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_NEXT_SENTENCE_PREDICTION_MAPPING_NAMES ) UpperCAmelCase_ = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_SPEECH_SEQ_2_SEQ_MAPPING_NAMES ) UpperCAmelCase_ = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_AUDIO_CLASSIFICATION_MAPPING_NAMES ) class __UpperCamelCase ( _BaseAutoModelClass ): __A : List[str] = FLAX_MODEL_MAPPING UpperCAmelCase_ = auto_class_update(FlaxAutoModel) class __UpperCamelCase ( _BaseAutoModelClass ): __A : Optional[Any] = FLAX_MODEL_FOR_PRETRAINING_MAPPING UpperCAmelCase_ = auto_class_update(FlaxAutoModelForPreTraining, head_doc="pretraining") class __UpperCamelCase ( _BaseAutoModelClass ): __A : List[Any] = FLAX_MODEL_FOR_CAUSAL_LM_MAPPING UpperCAmelCase_ = auto_class_update(FlaxAutoModelForCausalLM, head_doc="causal language modeling") class __UpperCamelCase ( _BaseAutoModelClass ): __A : List[str] = FLAX_MODEL_FOR_MASKED_LM_MAPPING UpperCAmelCase_ = auto_class_update(FlaxAutoModelForMaskedLM, head_doc="masked language modeling") class __UpperCamelCase ( _BaseAutoModelClass ): __A : Dict = FLAX_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING UpperCAmelCase_ = auto_class_update( FlaxAutoModelForSeqaSeqLM, head_doc="sequence-to-sequence language modeling", checkpoint_for_example="t5-base" ) class __UpperCamelCase ( _BaseAutoModelClass ): __A : List[str] = FLAX_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING UpperCAmelCase_ = auto_class_update( FlaxAutoModelForSequenceClassification, head_doc="sequence classification" ) class __UpperCamelCase ( _BaseAutoModelClass ): __A : Dict = FLAX_MODEL_FOR_QUESTION_ANSWERING_MAPPING UpperCAmelCase_ = auto_class_update(FlaxAutoModelForQuestionAnswering, head_doc="question answering") class __UpperCamelCase ( _BaseAutoModelClass ): __A : Union[str, Any] = FLAX_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING UpperCAmelCase_ = auto_class_update( FlaxAutoModelForTokenClassification, head_doc="token classification" ) class __UpperCamelCase ( _BaseAutoModelClass ): __A : Union[str, Any] = FLAX_MODEL_FOR_MULTIPLE_CHOICE_MAPPING UpperCAmelCase_ = auto_class_update(FlaxAutoModelForMultipleChoice, head_doc="multiple choice") class __UpperCamelCase ( _BaseAutoModelClass ): __A : Any = FLAX_MODEL_FOR_NEXT_SENTENCE_PREDICTION_MAPPING UpperCAmelCase_ = auto_class_update( FlaxAutoModelForNextSentencePrediction, head_doc="next sentence prediction" ) class __UpperCamelCase ( _BaseAutoModelClass ): __A : Dict = FLAX_MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING UpperCAmelCase_ = auto_class_update( FlaxAutoModelForImageClassification, head_doc="image classification" ) class __UpperCamelCase ( _BaseAutoModelClass ): __A : Optional[int] = FLAX_MODEL_FOR_VISION_2_SEQ_MAPPING UpperCAmelCase_ = auto_class_update(FlaxAutoModelForVisionaSeq, head_doc="vision-to-text modeling") class __UpperCamelCase ( _BaseAutoModelClass ): __A : str = FLAX_MODEL_FOR_SPEECH_SEQ_2_SEQ_MAPPING UpperCAmelCase_ = auto_class_update( FlaxAutoModelForSpeechSeqaSeq, head_doc="sequence-to-sequence speech-to-text modeling" )
32
0
'''simple docstring''' import os import tempfile from functools import partial from unittest import TestCase from unittest.mock import patch import datasets import datasets.config from .utils import require_beam class __magic_name__ ( datasets.BeamBasedBuilder ): def _A( self ): return datasets.DatasetInfo( features=datasets.Features({'''content''': datasets.Value('''string''' )} ) , supervised_keys=_UpperCamelCase , ) def _A( self , snake_case_ , snake_case_ ): return [datasets.SplitGenerator(name=datasets.Split.TRAIN , gen_kwargs={'''examples''': get_test_dummy_examples()} )] def _A( self , snake_case_ , snake_case_ ): import apache_beam as beam return pipeline | "Load Examples" >> beam.Create(_UpperCamelCase ) class __magic_name__ ( datasets.BeamBasedBuilder ): def _A( self ): return datasets.DatasetInfo( features=datasets.Features({'''a''': datasets.Sequence({'''b''': datasets.Value('''string''' )} )} ) , supervised_keys=_UpperCamelCase , ) def _A( self , snake_case_ , snake_case_ ): return [ datasets.SplitGenerator(name=datasets.Split.TRAIN , gen_kwargs={'''examples''': get_test_nested_examples()} ) ] def _A( self , snake_case_ , snake_case_ ): import apache_beam as beam return pipeline | "Load Examples" >> beam.Create(_UpperCamelCase ) def UpperCamelCase ( ) -> Dict: '''simple docstring''' return [(i, {"content": content}) for i, content in enumerate(['''foo''', '''bar''', '''foobar'''] )] def UpperCamelCase ( ) -> Dict: '''simple docstring''' return [(i, {"a": {"b": [content]}}) for i, content in enumerate(['''foo''', '''bar''', '''foobar'''] )] class __magic_name__ ( A__ ): @require_beam def _A( self ): lowercase =len(get_test_dummy_examples() ) with tempfile.TemporaryDirectory() as tmp_cache_dir: lowercase =DummyBeamDataset(cache_dir=_UpperCamelCase , beam_runner='''DirectRunner''' ) builder.download_and_prepare() self.assertTrue( os.path.exists( os.path.join(_UpperCamelCase , builder.name , '''default''' , '''0.0.0''' , f'{builder.name}-train.arrow' ) ) ) self.assertDictEqual(builder.info.features , datasets.Features({'''content''': datasets.Value('''string''' )} ) ) lowercase =builder.as_dataset() self.assertEqual(dset['''train'''].num_rows , _UpperCamelCase ) self.assertEqual(dset['''train'''].info.splits['''train'''].num_examples , _UpperCamelCase ) self.assertDictEqual(dset['''train'''][0] , get_test_dummy_examples()[0][1] ) self.assertDictEqual( dset['''train'''][expected_num_examples - 1] , get_test_dummy_examples()[expected_num_examples - 1][1] ) self.assertTrue( os.path.exists(os.path.join(_UpperCamelCase , builder.name , '''default''' , '''0.0.0''' , '''dataset_info.json''' ) ) ) del dset @require_beam def _A( self ): import apache_beam as beam lowercase =beam.io.parquetio.WriteToParquet lowercase =len(get_test_dummy_examples() ) with tempfile.TemporaryDirectory() as tmp_cache_dir: lowercase =DummyBeamDataset(cache_dir=_UpperCamelCase , beam_runner='''DirectRunner''' ) with patch('''apache_beam.io.parquetio.WriteToParquet''' ) as write_parquet_mock: lowercase =partial(_UpperCamelCase , num_shards=2 ) builder.download_and_prepare() self.assertTrue( os.path.exists( os.path.join( _UpperCamelCase , builder.name , '''default''' , '''0.0.0''' , f'{builder.name}-train-00000-of-00002.arrow' ) ) ) self.assertTrue( os.path.exists( os.path.join( _UpperCamelCase , builder.name , '''default''' , '''0.0.0''' , f'{builder.name}-train-00000-of-00002.arrow' ) ) ) self.assertDictEqual(builder.info.features , datasets.Features({'''content''': datasets.Value('''string''' )} ) ) lowercase =builder.as_dataset() self.assertEqual(dset['''train'''].num_rows , _UpperCamelCase ) self.assertEqual(dset['''train'''].info.splits['''train'''].num_examples , _UpperCamelCase ) # Order is not preserved when sharding, so we just check that all the elements are there self.assertListEqual(sorted(dset['''train''']['''content'''] ) , sorted(['''foo''', '''bar''', '''foobar'''] ) ) self.assertTrue( os.path.exists(os.path.join(_UpperCamelCase , builder.name , '''default''' , '''0.0.0''' , '''dataset_info.json''' ) ) ) del dset @require_beam def _A( self ): with tempfile.TemporaryDirectory() as tmp_cache_dir: lowercase =DummyBeamDataset(cache_dir=_UpperCamelCase ) self.assertRaises(datasets.builder.MissingBeamOptions , builder.download_and_prepare ) @require_beam def _A( self ): lowercase =len(get_test_nested_examples() ) with tempfile.TemporaryDirectory() as tmp_cache_dir: lowercase =NestedBeamDataset(cache_dir=_UpperCamelCase , beam_runner='''DirectRunner''' ) builder.download_and_prepare() self.assertTrue( os.path.exists( os.path.join(_UpperCamelCase , builder.name , '''default''' , '''0.0.0''' , f'{builder.name}-train.arrow' ) ) ) self.assertDictEqual( builder.info.features , datasets.Features({'''a''': datasets.Sequence({'''b''': datasets.Value('''string''' )} )} ) ) lowercase =builder.as_dataset() self.assertEqual(dset['''train'''].num_rows , _UpperCamelCase ) self.assertEqual(dset['''train'''].info.splits['''train'''].num_examples , _UpperCamelCase ) self.assertDictEqual(dset['''train'''][0] , get_test_nested_examples()[0][1] ) self.assertDictEqual( dset['''train'''][expected_num_examples - 1] , get_test_nested_examples()[expected_num_examples - 1][1] ) self.assertTrue( os.path.exists(os.path.join(_UpperCamelCase , builder.name , '''default''' , '''0.0.0''' , '''dataset_info.json''' ) ) ) del dset
72
import baseaa def A__ ( SCREAMING_SNAKE_CASE_ : str ) -> bytes: """simple docstring""" return baseaa.baaencode(string.encode('''utf-8''' ) ) def A__ ( SCREAMING_SNAKE_CASE_ : bytes ) -> str: """simple docstring""" return baseaa.baadecode(SCREAMING_SNAKE_CASE_ ).decode('''utf-8''' ) if __name__ == "__main__": UpperCAmelCase_ = "Hello World!" UpperCAmelCase_ = baseaa_encode(test) print(encoded) UpperCAmelCase_ = baseaa_decode(encoded) print(decoded)
32
0
import warnings from ...utils import logging from .image_processing_layoutlmva import LayoutLMvaImageProcessor _lowercase: Optional[Any] = logging.get_logger(__name__) class lowerCamelCase__ ( A__ ): def __init__( self : Dict , *lowercase__ : List[Any] , **lowercase__ : List[str] ): warnings.warn( 'The class LayoutLMv2FeatureExtractor is deprecated and will be removed in version 5 of Transformers.' ' Please use LayoutLMv2ImageProcessor instead.' , _UpperCamelCase , ) super().__init__(*_UpperCamelCase , **_UpperCamelCase )
192
from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD, ChannelDimension, ImageInput, PILImageResampling, is_batched, to_numpy_array, valid_images, ) from ...utils import TensorType, logging UpperCAmelCase_ = logging.get_logger(__name__) class __UpperCamelCase ( A__ ): __A : int = ["""pixel_values"""] def __init__( self , _UpperCamelCase = True , _UpperCamelCase = None , _UpperCamelCase = PILImageResampling.BICUBIC , _UpperCamelCase = True , _UpperCamelCase = True , _UpperCamelCase = 1 / 255 , _UpperCamelCase = None , _UpperCamelCase = True , _UpperCamelCase = None , _UpperCamelCase = None , **_UpperCamelCase , ): super().__init__(**_UpperCamelCase ) _UpperCAmelCase = size if size is not None else {'''height''': 224, '''width''': 224} _UpperCAmelCase = get_size_dict(_UpperCamelCase ) _UpperCAmelCase = crop_size if crop_size is not None else {'''height''': 224, '''width''': 224} _UpperCAmelCase = get_size_dict(_UpperCamelCase , default_to_square=_UpperCamelCase , param_name='''crop_size''' ) _UpperCAmelCase = do_resize _UpperCAmelCase = do_rescale _UpperCAmelCase = do_normalize _UpperCAmelCase = do_center_crop _UpperCAmelCase = crop_size _UpperCAmelCase = size _UpperCAmelCase = resample _UpperCAmelCase = rescale_factor _UpperCAmelCase = image_mean if image_mean is not None else IMAGENET_DEFAULT_MEAN _UpperCAmelCase = image_std if image_std is not None else IMAGENET_DEFAULT_STD def UpperCamelCase( self , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase = PILImageResampling.BILINEAR , _UpperCamelCase = None , **_UpperCamelCase , ): _UpperCAmelCase = get_size_dict(_UpperCamelCase ) if "shortest_edge" in size: _UpperCAmelCase = get_resize_output_image_size(_UpperCamelCase , size=size['''shortest_edge'''] , default_to_square=_UpperCamelCase ) # size = get_resize_output_image_size(image, size["shortest_edge"], size["longest_edge"]) elif "height" in size and "width" in size: _UpperCAmelCase = (size['''height'''], size['''width''']) else: raise ValueError(f'''Size must contain \'height\' and \'width\' keys or \'shortest_edge\' key. Got {size.keys()}''' ) return resize(_UpperCamelCase , size=_UpperCamelCase , resample=_UpperCamelCase , data_format=_UpperCamelCase , **_UpperCamelCase ) def UpperCamelCase( self , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase = None , **_UpperCamelCase , ): _UpperCAmelCase = get_size_dict(_UpperCamelCase ) if "height" not in size or "width" not in size: raise ValueError(f'''The `size` parameter must contain the keys (height, width). Got {size.keys()}''' ) return center_crop(_UpperCamelCase , size=(size['''height'''], size['''width''']) , data_format=_UpperCamelCase , **_UpperCamelCase ) def UpperCamelCase( self , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase = None , **_UpperCamelCase ): return rescale(_UpperCamelCase , scale=_UpperCamelCase , data_format=_UpperCamelCase , **_UpperCamelCase ) def UpperCamelCase( self , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase = None , **_UpperCamelCase , ): return normalize(_UpperCamelCase , mean=_UpperCamelCase , std=_UpperCamelCase , data_format=_UpperCamelCase , **_UpperCamelCase ) def UpperCamelCase( self , _UpperCamelCase , _UpperCamelCase = None , _UpperCamelCase = None , _UpperCamelCase = None , _UpperCamelCase = None , _UpperCamelCase = None , _UpperCamelCase = None , _UpperCamelCase = None , _UpperCamelCase = None , _UpperCamelCase = None , _UpperCamelCase = None , _UpperCamelCase = None , _UpperCamelCase = ChannelDimension.FIRST , **_UpperCamelCase , ): _UpperCAmelCase = do_resize if do_resize is not None else self.do_resize _UpperCAmelCase = do_rescale if do_rescale is not None else self.do_rescale _UpperCAmelCase = do_normalize if do_normalize is not None else self.do_normalize _UpperCAmelCase = do_center_crop if do_center_crop is not None else self.do_center_crop _UpperCAmelCase = crop_size if crop_size is not None else self.crop_size _UpperCAmelCase = get_size_dict(_UpperCamelCase , param_name='''crop_size''' , default_to_square=_UpperCamelCase ) _UpperCAmelCase = resample if resample is not None else self.resample _UpperCAmelCase = rescale_factor if rescale_factor is not None else self.rescale_factor _UpperCAmelCase = image_mean if image_mean is not None else self.image_mean _UpperCAmelCase = image_std if image_std is not None else self.image_std _UpperCAmelCase = size if size is not None else self.size _UpperCAmelCase = get_size_dict(_UpperCamelCase ) if not is_batched(_UpperCamelCase ): _UpperCAmelCase = [images] if not valid_images(_UpperCamelCase ): raise ValueError( '''Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ''' '''torch.Tensor, tf.Tensor or jax.ndarray.''' ) if do_resize and size is None: raise ValueError('''Size must be specified if do_resize is True.''' ) if do_center_crop and crop_size is None: raise ValueError('''Crop size must be specified if do_center_crop is True.''' ) if do_rescale and rescale_factor is None: raise ValueError('''Rescale factor must be specified if do_rescale is True.''' ) # All transformations expect numpy arrays. _UpperCAmelCase = [to_numpy_array(_UpperCamelCase ) for image in images] if do_resize: _UpperCAmelCase = [self.resize(image=_UpperCamelCase , size=_UpperCamelCase , resample=_UpperCamelCase ) for image in images] if do_center_crop: _UpperCAmelCase = [self.center_crop(image=_UpperCamelCase , size=_UpperCamelCase ) for image in images] if do_rescale: _UpperCAmelCase = [self.rescale(image=_UpperCamelCase , scale=_UpperCamelCase ) for image in images] if do_normalize: _UpperCAmelCase = [self.normalize(image=_UpperCamelCase , mean=_UpperCamelCase , std=_UpperCamelCase ) for image in images] _UpperCAmelCase = [to_channel_dimension_format(_UpperCamelCase , _UpperCamelCase ) for image in images] _UpperCAmelCase = {'''pixel_values''': images} return BatchFeature(data=_UpperCamelCase , tensor_type=_UpperCamelCase )
32
0
'''simple docstring''' import argparse import json import os import torch from transformers.file_utils import has_file from diffusers import UNetaDConditionModel, UNetaDModel A_ = False A_ = True A_ = False if __name__ == "__main__": A_ = argparse.ArgumentParser() parser.add_argument( "--repo_path", default=None, type=str, required=True, help="The config json file corresponding to the architecture.", ) parser.add_argument("--dump_path", default=None, type=str, required=True, help="Path to the output model.") A_ = parser.parse_args() A_ = { "image_size": "sample_size", "num_res_blocks": "layers_per_block", "block_channels": "block_out_channels", "down_blocks": "down_block_types", "up_blocks": "up_block_types", "downscale_freq_shift": "freq_shift", "resnet_num_groups": "norm_num_groups", "resnet_act_fn": "act_fn", "resnet_eps": "norm_eps", "num_head_channels": "attention_head_dim", } A_ = { "time_steps": "time_proj", "mid": "mid_block", "downsample_blocks": "down_blocks", "upsample_blocks": "up_blocks", } A_ = "" if has_file(args.repo_path, "config.json") else "unet" with open(os.path.join(args.repo_path, subfolder, "config.json"), "r", encoding="utf-8") as reader: A_ = reader.read() A_ = json.loads(text) if do_only_config: for key in config_parameters_to_change.keys(): config.pop(key, None) if has_file(args.repo_path, "config.json"): A_ = UNetaDModel(**config) else: A_ = UNetaDConditionModel if "ldm-text2im-large-256" in args.repo_path else UNetaDModel A_ = class_name(**config) if do_only_config: model.save_config(os.path.join(args.repo_path, subfolder)) A_ = dict(model.config) if do_only_renaming: for key, value in config_parameters_to_change.items(): if key in config: A_ = config[key] del config[key] A_ = [k.replace("UNetRes", "") for k in config["down_block_types"]] A_ = [k.replace("UNetRes", "") for k in config["up_block_types"]] if do_only_weights: A_ = torch.load(os.path.join(args.repo_path, subfolder, "diffusion_pytorch_model.bin")) A_ = {} for param_key, param_value in state_dict.items(): if param_key.endswith(".op.bias") or param_key.endswith(".op.weight"): continue A_ = False for key, new_key in key_parameters_to_change.items(): if not has_changed and param_key.split(".")[0] == key: A_ = param_value A_ = True if not has_changed: A_ = param_value model.load_state_dict(new_state_dict) model.save_pretrained(os.path.join(args.repo_path, subfolder))
42
from ..utils import DummyObject, requires_backends class __UpperCamelCase ( metaclass=A__ ): __A : str = ["""torch""", """scipy"""] def __init__( self , *_UpperCamelCase , **_UpperCamelCase ): requires_backends(self , ['''torch''', '''scipy'''] ) @classmethod def UpperCamelCase( cls , *_UpperCamelCase , **_UpperCamelCase ): requires_backends(cls , ['''torch''', '''scipy'''] ) @classmethod def UpperCamelCase( cls , *_UpperCamelCase , **_UpperCamelCase ): requires_backends(cls , ['''torch''', '''scipy'''] )
32
0
import unittest from transformers import AutoTokenizer, NystromformerConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( NystromformerForMaskedLM, NystromformerForMultipleChoice, NystromformerForQuestionAnswering, NystromformerForSequenceClassification, NystromformerForTokenClassification, NystromformerModel, ) from transformers.models.nystromformer.modeling_nystromformer import NYSTROMFORMER_PRETRAINED_MODEL_ARCHIVE_LIST class snake_case_ : def __init__( self :List[str] ,__snake_case :Optional[Any] ,__snake_case :List[Any]=13 ,__snake_case :Any=7 ,__snake_case :int=True ,__snake_case :List[str]=True ,__snake_case :Optional[int]=True ,__snake_case :Union[str, Any]=True ,__snake_case :Union[str, Any]=99 ,__snake_case :Any=32 ,__snake_case :int=5 ,__snake_case :Union[str, Any]=4 ,__snake_case :Tuple=37 ,__snake_case :Union[str, Any]="gelu" ,__snake_case :Optional[Any]=0.1 ,__snake_case :Optional[Any]=0.1 ,__snake_case :int=5_12 ,__snake_case :str=16 ,__snake_case :List[Any]=2 ,__snake_case :Any=0.02 ,__snake_case :Optional[int]=3 ,__snake_case :List[str]=4 ,__snake_case :List[str]=None ,) -> Dict: a__ = parent a__ = batch_size a__ = seq_length a__ = is_training a__ = use_input_mask a__ = use_token_type_ids a__ = use_labels a__ = vocab_size a__ = hidden_size a__ = num_hidden_layers a__ = num_attention_heads a__ = intermediate_size a__ = hidden_act a__ = hidden_dropout_prob a__ = attention_probs_dropout_prob a__ = max_position_embeddings a__ = type_vocab_size a__ = type_sequence_label_size a__ = initializer_range a__ = num_labels a__ = num_choices a__ = scope def lowerCamelCase__( self :str ) -> Union[str, Any]: a__ = ids_tensor([self.batch_size, self.seq_length] ,self.vocab_size ) a__ = None if self.use_input_mask: a__ = random_attention_mask([self.batch_size, self.seq_length] ) a__ = None if self.use_token_type_ids: a__ = ids_tensor([self.batch_size, self.seq_length] ,self.type_vocab_size ) a__ = None a__ = None a__ = None if self.use_labels: a__ = ids_tensor([self.batch_size] ,self.type_sequence_label_size ) a__ = ids_tensor([self.batch_size, self.seq_length] ,self.num_labels ) a__ = ids_tensor([self.batch_size] ,self.num_choices ) a__ = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def lowerCamelCase__( self :Optional[int] ) -> List[str]: return NystromformerConfig( vocab_size=self.vocab_size ,hidden_size=self.hidden_size ,num_hidden_layers=self.num_hidden_layers ,num_attention_heads=self.num_attention_heads ,intermediate_size=self.intermediate_size ,hidden_act=self.hidden_act ,hidden_dropout_prob=self.hidden_dropout_prob ,attention_probs_dropout_prob=self.attention_probs_dropout_prob ,max_position_embeddings=self.max_position_embeddings ,type_vocab_size=self.type_vocab_size ,is_decoder=_UpperCamelCase ,initializer_range=self.initializer_range ,) def lowerCamelCase__( self :str ,__snake_case :Tuple ,__snake_case :List[Any] ,__snake_case :int ,__snake_case :int ,__snake_case :Optional[Any] ,__snake_case :List[str] ,__snake_case :int ) -> Dict: a__ = NystromformerModel(config=_UpperCamelCase ) model.to(_UpperCamelCase ) model.eval() a__ = model(_UpperCamelCase ,attention_mask=_UpperCamelCase ,token_type_ids=_UpperCamelCase ) a__ = model(_UpperCamelCase ,token_type_ids=_UpperCamelCase ) a__ = model(_UpperCamelCase ) self.parent.assertEqual(result.last_hidden_state.shape ,(self.batch_size, self.seq_length, self.hidden_size) ) def lowerCamelCase__( self :List[str] ,__snake_case :int ,__snake_case :Tuple ,__snake_case :List[str] ,__snake_case :Dict ,__snake_case :Optional[Any] ,__snake_case :Dict ,__snake_case :Dict ) -> Tuple: a__ = NystromformerForMaskedLM(config=_UpperCamelCase ) model.to(_UpperCamelCase ) model.eval() a__ = model(_UpperCamelCase ,attention_mask=_UpperCamelCase ,token_type_ids=_UpperCamelCase ,labels=_UpperCamelCase ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.seq_length, self.vocab_size) ) def lowerCamelCase__( self :Dict ,__snake_case :str ,__snake_case :Union[str, Any] ,__snake_case :Optional[Any] ,__snake_case :Any ,__snake_case :Optional[int] ,__snake_case :Union[str, Any] ,__snake_case :int ) -> Tuple: a__ = NystromformerForQuestionAnswering(config=_UpperCamelCase ) model.to(_UpperCamelCase ) model.eval() a__ = model( _UpperCamelCase ,attention_mask=_UpperCamelCase ,token_type_ids=_UpperCamelCase ,start_positions=_UpperCamelCase ,end_positions=_UpperCamelCase ,) self.parent.assertEqual(result.start_logits.shape ,(self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape ,(self.batch_size, self.seq_length) ) def lowerCamelCase__( self :Union[str, Any] ,__snake_case :Union[str, Any] ,__snake_case :List[Any] ,__snake_case :List[str] ,__snake_case :Dict ,__snake_case :str ,__snake_case :Optional[int] ,__snake_case :Any ) -> Optional[Any]: a__ = self.num_labels a__ = NystromformerForSequenceClassification(_UpperCamelCase ) model.to(_UpperCamelCase ) model.eval() a__ = model(_UpperCamelCase ,attention_mask=_UpperCamelCase ,token_type_ids=_UpperCamelCase ,labels=_UpperCamelCase ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.num_labels) ) def lowerCamelCase__( self :List[Any] ,__snake_case :Optional[Any] ,__snake_case :int ,__snake_case :Any ,__snake_case :Union[str, Any] ,__snake_case :Optional[Any] ,__snake_case :Optional[int] ,__snake_case :List[Any] ) -> List[Any]: a__ = self.num_labels a__ = NystromformerForTokenClassification(config=_UpperCamelCase ) model.to(_UpperCamelCase ) model.eval() a__ = model(_UpperCamelCase ,attention_mask=_UpperCamelCase ,token_type_ids=_UpperCamelCase ,labels=_UpperCamelCase ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.seq_length, self.num_labels) ) def lowerCamelCase__( self :Union[str, Any] ,__snake_case :Optional[int] ,__snake_case :str ,__snake_case :Optional[int] ,__snake_case :int ,__snake_case :Dict ,__snake_case :Dict ,__snake_case :Optional[Any] ) -> Optional[int]: a__ = self.num_choices a__ = NystromformerForMultipleChoice(config=_UpperCamelCase ) model.to(_UpperCamelCase ) model.eval() a__ = input_ids.unsqueeze(1 ).expand(-1 ,self.num_choices ,-1 ).contiguous() a__ = token_type_ids.unsqueeze(1 ).expand(-1 ,self.num_choices ,-1 ).contiguous() a__ = input_mask.unsqueeze(1 ).expand(-1 ,self.num_choices ,-1 ).contiguous() a__ = model( _UpperCamelCase ,attention_mask=_UpperCamelCase ,token_type_ids=_UpperCamelCase ,labels=_UpperCamelCase ,) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.num_choices) ) def lowerCamelCase__( self :Optional[Any] ) -> Optional[int]: a__ = self.prepare_config_and_inputs() ( ( a__ ) , ( a__ ) , ( a__ ) , ( a__ ) , ( a__ ) , ( a__ ) , ( a__ ) , ) = config_and_inputs a__ = {'input_ids': input_ids, 'token_type_ids': token_type_ids, 'attention_mask': input_mask} return config, inputs_dict @require_torch class snake_case_ (A__ , A__ , unittest.TestCase ): UpperCAmelCase__ : Tuple = ( ( NystromformerModel, NystromformerForMaskedLM, NystromformerForMultipleChoice, NystromformerForQuestionAnswering, NystromformerForSequenceClassification, NystromformerForTokenClassification, ) if is_torch_available() else () ) UpperCAmelCase__ : Optional[Any] = ( { """feature-extraction""": NystromformerModel, """fill-mask""": NystromformerForMaskedLM, """question-answering""": NystromformerForQuestionAnswering, """text-classification""": NystromformerForSequenceClassification, """token-classification""": NystromformerForTokenClassification, """zero-shot""": NystromformerForSequenceClassification, } if is_torch_available() else {} ) UpperCAmelCase__ : Any = False UpperCAmelCase__ : Optional[Any] = False def lowerCamelCase__( self :Optional[Any] ) -> Any: a__ = NystromformerModelTester(self ) a__ = ConfigTester(self ,config_class=_UpperCamelCase ,hidden_size=37 ) def lowerCamelCase__( self :Tuple ) -> Dict: self.config_tester.run_common_tests() def lowerCamelCase__( self :List[Any] ) -> Optional[int]: a__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_UpperCamelCase ) def lowerCamelCase__( self :List[str] ) -> int: a__ = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: a__ = type self.model_tester.create_and_check_model(*_UpperCamelCase ) def lowerCamelCase__( self :Optional[int] ) -> Dict: a__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*_UpperCamelCase ) def lowerCamelCase__( self :Any ) -> Tuple: a__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_multiple_choice(*_UpperCamelCase ) def lowerCamelCase__( self :Optional[Any] ) -> Dict: a__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*_UpperCamelCase ) def lowerCamelCase__( self :List[str] ) -> Optional[Any]: a__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*_UpperCamelCase ) def lowerCamelCase__( self :Union[str, Any] ) -> Any: a__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*_UpperCamelCase ) @slow def lowerCamelCase__( self :Union[str, Any] ) -> str: for model_name in NYSTROMFORMER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: a__ = NystromformerModel.from_pretrained(_UpperCamelCase ) self.assertIsNotNone(_UpperCamelCase ) @require_torch class snake_case_ (unittest.TestCase ): @slow def lowerCamelCase__( self :str ) -> Optional[int]: a__ = NystromformerModel.from_pretrained('uw-madison/nystromformer-512' ) a__ = torch.tensor([[0, 1, 2, 3, 4, 5]] ) with torch.no_grad(): a__ = model(_UpperCamelCase )[0] a__ = torch.Size((1, 6, 7_68) ) self.assertEqual(output.shape ,_UpperCamelCase ) a__ = torch.tensor( [[[-0.45_32, -0.09_36, 0.51_37], [-0.26_76, 0.06_28, 0.61_86], [-0.36_29, -0.17_26, 0.47_16]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] ,_UpperCamelCase ,atol=1E-4 ) ) @slow def lowerCamelCase__( self :int ) -> Optional[Any]: a__ = 'the [MASK] of Belgium is Brussels' a__ = AutoTokenizer.from_pretrained('uw-madison/nystromformer-512' ) a__ = NystromformerForMaskedLM.from_pretrained('uw-madison/nystromformer-512' ) a__ = tokenizer(_UpperCamelCase ,return_tensors='pt' ) with torch.no_grad(): a__ = model(encoding.input_ids ).logits a__ = token_logits[:, 2, :].argmax(-1 )[0] self.assertEqual(tokenizer.decode(_UpperCamelCase ) ,'capital' )
335
def A__ ( SCREAMING_SNAKE_CASE_ : int = 2_00_00_00 ) -> int: """simple docstring""" _UpperCAmelCase = [0 for i in range(n + 1 )] _UpperCAmelCase = 1 _UpperCAmelCase = 1 for i in range(2 , int(n**0.5 ) + 1 ): if primality_list[i] == 0: for j in range(i * i , n + 1 , SCREAMING_SNAKE_CASE_ ): _UpperCAmelCase = 1 _UpperCAmelCase = 0 for i in range(SCREAMING_SNAKE_CASE_ ): if primality_list[i] == 0: sum_of_primes += i return sum_of_primes if __name__ == "__main__": print(f'''{solution() = }''')
32
0
import unittest from transformers.testing_utils import require_bsa from transformers.utils import is_bsa_available from ...test_feature_extraction_common import FeatureExtractionSavingTestMixin if is_bsa_available(): from transformers import MarkupLMFeatureExtractor class snake_case_ ( unittest.TestCase ): def __init__( self , __lowerCAmelCase ): SCREAMING_SNAKE_CASE_ : int = parent def __A ( self ): return {} def __SCREAMING_SNAKE_CASE ( ) -> Union[str, Any]: SCREAMING_SNAKE_CASE_ : List[str] = '<HTML>\n\n <HEAD>\n <TITLE>sample document</TITLE>\n </HEAD>\n\n <BODY BGCOLOR="FFFFFF">\n <HR>\n <a href="http://google.com">Goog</a>\n <H1>This is one header</H1>\n <H2>This is a another Header</H2>\n <P>Travel from\n <P>\n <B>SFO to JFK</B>\n <BR>\n <B><I>on May 2, 2015 at 2:00 pm. For details go to confirm.com </I></B>\n <HR>\n <div style="color:#0000FF">\n <h3>Traveler <b> name </b> is\n <p> John Doe </p>\n </div>' SCREAMING_SNAKE_CASE_ : Tuple = '\n <!DOCTYPE html>\n <html>\n <body>\n\n <h1>My First Heading</h1>\n <p>My first paragraph.</p>\n\n </body>\n </html>\n ' return [html_string_a, html_string_a] @require_bsa class snake_case_ ( A__ , unittest.TestCase ): __lowerCamelCase : Optional[int] = MarkupLMFeatureExtractor if is_bsa_available() else None def __A ( self ): SCREAMING_SNAKE_CASE_ : Optional[Any] = MarkupLMFeatureExtractionTester(self ) @property def __A ( self ): return self.feature_extract_tester.prepare_feat_extract_dict() def __A ( self ): # Initialize feature_extractor SCREAMING_SNAKE_CASE_ : List[str] = self.feature_extraction_class() # Test not batched input SCREAMING_SNAKE_CASE_ : List[Any] = get_html_strings()[0] SCREAMING_SNAKE_CASE_ : Any = feature_extractor(_UpperCamelCase ) # fmt: off SCREAMING_SNAKE_CASE_ : Optional[int] = [['sample document', 'Goog', 'This is one header', 'This is a another Header', 'Travel from', 'SFO to JFK', 'on May 2, 2015 at 2:00 pm. For details go to confirm.com', 'Traveler', 'name', 'is', 'John Doe']] SCREAMING_SNAKE_CASE_ : List[str] = [['/html/head/title', '/html/body/a', '/html/body/h1', '/html/body/h2', '/html/body/p', '/html/body/p/p/b[1]', '/html/body/p/p/b[2]/i', '/html/body/p/p/div/h3', '/html/body/p/p/div/h3/b', '/html/body/p/p/div/h3', '/html/body/p/p/div/h3/p']] # fmt: on self.assertEqual(encoding.nodes , _UpperCamelCase ) self.assertEqual(encoding.xpaths , _UpperCamelCase ) # Test batched SCREAMING_SNAKE_CASE_ : List[Any] = get_html_strings() SCREAMING_SNAKE_CASE_ : Optional[Any] = feature_extractor(_UpperCamelCase ) # fmt: off SCREAMING_SNAKE_CASE_ : Tuple = expected_nodes + [['My First Heading', 'My first paragraph.']] SCREAMING_SNAKE_CASE_ : Union[str, Any] = expected_xpaths + [['/html/body/h1', '/html/body/p']] self.assertEqual(len(encoding.nodes ) , 2 ) self.assertEqual(len(encoding.xpaths ) , 2 ) self.assertEqual(encoding.nodes , _UpperCamelCase ) self.assertEqual(encoding.xpaths , _UpperCamelCase )
345
import warnings from ...utils import logging from .image_processing_glpn import GLPNImageProcessor UpperCAmelCase_ = logging.get_logger(__name__) class __UpperCamelCase ( A__ ): def __init__( self , *_UpperCamelCase , **_UpperCamelCase ): warnings.warn( '''The class GLPNFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please''' ''' use GLPNImageProcessor instead.''' , _UpperCamelCase , ) super().__init__(*_UpperCamelCase , **_UpperCamelCase )
32
0
'''simple docstring''' def _UpperCamelCase ( UpperCamelCase__ , UpperCamelCase__ ): """simple docstring""" return [sentence[i : i + ngram_size] for i in range(len(SCREAMING_SNAKE_CASE_ ) - ngram_size + 1 )] if __name__ == "__main__": from doctest import testmod testmod()
436
from typing import List, Optional, Union from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType class __UpperCamelCase ( A__ ): __A : Dict = ["""image_processor""", """tokenizer"""] __A : List[str] = """BridgeTowerImageProcessor""" __A : str = ("""RobertaTokenizer""", """RobertaTokenizerFast""") def __init__( self , _UpperCamelCase , _UpperCamelCase ): super().__init__(_UpperCamelCase , _UpperCamelCase ) def __call__( self , _UpperCamelCase , _UpperCamelCase = None , _UpperCamelCase = True , _UpperCamelCase = False , _UpperCamelCase = None , _UpperCamelCase = None , _UpperCamelCase = 0 , _UpperCamelCase = None , _UpperCamelCase = None , _UpperCamelCase = None , _UpperCamelCase = False , _UpperCamelCase = False , _UpperCamelCase = False , _UpperCamelCase = False , _UpperCamelCase = True , _UpperCamelCase = None , **_UpperCamelCase , ): _UpperCAmelCase = self.tokenizer( text=_UpperCamelCase , add_special_tokens=_UpperCamelCase , padding=_UpperCamelCase , truncation=_UpperCamelCase , max_length=_UpperCamelCase , stride=_UpperCamelCase , pad_to_multiple_of=_UpperCamelCase , return_token_type_ids=_UpperCamelCase , return_attention_mask=_UpperCamelCase , return_overflowing_tokens=_UpperCamelCase , return_special_tokens_mask=_UpperCamelCase , return_offsets_mapping=_UpperCamelCase , return_length=_UpperCamelCase , verbose=_UpperCamelCase , return_tensors=_UpperCamelCase , **_UpperCamelCase , ) # add pixel_values + pixel_mask _UpperCAmelCase = self.image_processor( _UpperCamelCase , return_tensors=_UpperCamelCase , do_normalize=_UpperCamelCase , do_center_crop=_UpperCamelCase , **_UpperCamelCase ) encoding.update(_UpperCamelCase ) return encoding def UpperCamelCase( self , *_UpperCamelCase , **_UpperCamelCase ): return self.tokenizer.batch_decode(*_UpperCamelCase , **_UpperCamelCase ) def UpperCamelCase( self , *_UpperCamelCase , **_UpperCamelCase ): return self.tokenizer.decode(*_UpperCamelCase , **_UpperCamelCase ) @property def UpperCamelCase( self ): _UpperCAmelCase = self.tokenizer.model_input_names _UpperCAmelCase = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) )
32
0
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available UpperCamelCase_ = { 'configuration_instructblip': [ 'INSTRUCTBLIP_PRETRAINED_CONFIG_ARCHIVE_MAP', 'InstructBlipConfig', 'InstructBlipQFormerConfig', 'InstructBlipVisionConfig', ], 'processing_instructblip': ['InstructBlipProcessor'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase_ = [ 'INSTRUCTBLIP_PRETRAINED_MODEL_ARCHIVE_LIST', 'InstructBlipQFormerModel', 'InstructBlipPreTrainedModel', 'InstructBlipForConditionalGeneration', 'InstructBlipVisionModel', ] if TYPE_CHECKING: from .configuration_instructblip import ( INSTRUCTBLIP_PRETRAINED_CONFIG_ARCHIVE_MAP, InstructBlipConfig, InstructBlipQFormerConfig, InstructBlipVisionConfig, ) from .processing_instructblip import InstructBlipProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_instructblip import ( INSTRUCTBLIP_PRETRAINED_MODEL_ARCHIVE_LIST, InstructBlipForConditionalGeneration, InstructBlipPreTrainedModel, InstructBlipQFormerModel, InstructBlipVisionModel, ) else: import sys UpperCamelCase_ = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
625
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available UpperCAmelCase_ = { "configuration_xlm": ["XLM_PRETRAINED_CONFIG_ARCHIVE_MAP", "XLMConfig", "XLMOnnxConfig"], "tokenization_xlm": ["XLMTokenizer"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase_ = [ "XLM_PRETRAINED_MODEL_ARCHIVE_LIST", "XLMForMultipleChoice", "XLMForQuestionAnswering", "XLMForQuestionAnsweringSimple", "XLMForSequenceClassification", "XLMForTokenClassification", "XLMModel", "XLMPreTrainedModel", "XLMWithLMHeadModel", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase_ = [ "TF_XLM_PRETRAINED_MODEL_ARCHIVE_LIST", "TFXLMForMultipleChoice", "TFXLMForQuestionAnsweringSimple", "TFXLMForSequenceClassification", "TFXLMForTokenClassification", "TFXLMMainLayer", "TFXLMModel", "TFXLMPreTrainedModel", "TFXLMWithLMHeadModel", ] if TYPE_CHECKING: from .configuration_xlm import XLM_PRETRAINED_CONFIG_ARCHIVE_MAP, XLMConfig, XLMOnnxConfig from .tokenization_xlm import XLMTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_xlm import ( XLM_PRETRAINED_MODEL_ARCHIVE_LIST, XLMForMultipleChoice, XLMForQuestionAnswering, XLMForQuestionAnsweringSimple, XLMForSequenceClassification, XLMForTokenClassification, XLMModel, XLMPreTrainedModel, XLMWithLMHeadModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_xlm import ( TF_XLM_PRETRAINED_MODEL_ARCHIVE_LIST, TFXLMForMultipleChoice, TFXLMForQuestionAnsweringSimple, TFXLMForSequenceClassification, TFXLMForTokenClassification, TFXLMMainLayer, TFXLMModel, TFXLMPreTrainedModel, TFXLMWithLMHeadModel, ) else: import sys UpperCAmelCase_ = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
32
0
"""simple docstring""" from collections import defaultdict from graphs.minimum_spanning_tree_prims import prisms_algorithm as mst def A ( ): """simple docstring""" snake_case_ , snake_case_ :str = 9, 14 # noqa: F841 snake_case_ :Any = [ [0, 1, 4], [0, 7, 8], [1, 2, 8], [7, 8, 7], [7, 6, 1], [2, 8, 2], [8, 6, 6], [2, 3, 7], [2, 5, 4], [6, 5, 2], [3, 5, 14], [3, 4, 9], [5, 4, 10], [1, 7, 11], ] snake_case_ :Union[str, Any] = defaultdict(SCREAMING_SNAKE_CASE_ ) for nodea, nodea, cost in edges: adjancency[nodea].append([nodea, cost] ) adjancency[nodea].append([nodea, cost] ) snake_case_ :Dict = mst(SCREAMING_SNAKE_CASE_ ) snake_case_ :List[Any] = [ [7, 6, 1], [2, 8, 2], [6, 5, 2], [0, 1, 4], [2, 5, 4], [2, 3, 7], [0, 7, 8], [3, 4, 9], ] for answer in expected: snake_case_ :Optional[int] = tuple(answer[:2] ) snake_case_ :Union[str, Any] = tuple(edge[::-1] ) assert edge in result or reverse in result
584
from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCAmelCase_ = logging.get_logger(__name__) UpperCAmelCase_ = { "microsoft/biogpt": "https://huggingface.co/microsoft/biogpt/resolve/main/config.json", # See all BioGPT models at https://huggingface.co/models?filter=biogpt } class __UpperCamelCase ( A__ ): __A : Any = """biogpt""" def __init__( self , _UpperCamelCase=42384 , _UpperCamelCase=1024 , _UpperCamelCase=24 , _UpperCamelCase=16 , _UpperCamelCase=4096 , _UpperCamelCase="gelu" , _UpperCamelCase=0.1 , _UpperCamelCase=0.1 , _UpperCamelCase=1024 , _UpperCamelCase=0.02 , _UpperCamelCase=1e-12 , _UpperCamelCase=True , _UpperCamelCase=True , _UpperCamelCase=0.0 , _UpperCamelCase=0.0 , _UpperCamelCase=1 , _UpperCamelCase=0 , _UpperCamelCase=2 , **_UpperCamelCase , ): _UpperCAmelCase = vocab_size _UpperCAmelCase = max_position_embeddings _UpperCAmelCase = hidden_size _UpperCAmelCase = num_hidden_layers _UpperCAmelCase = num_attention_heads _UpperCAmelCase = intermediate_size _UpperCAmelCase = hidden_act _UpperCAmelCase = hidden_dropout_prob _UpperCAmelCase = attention_probs_dropout_prob _UpperCAmelCase = initializer_range _UpperCAmelCase = layer_norm_eps _UpperCAmelCase = scale_embedding _UpperCAmelCase = use_cache _UpperCAmelCase = layerdrop _UpperCAmelCase = activation_dropout super().__init__(pad_token_id=_UpperCamelCase , bos_token_id=_UpperCamelCase , eos_token_id=_UpperCamelCase , **_UpperCamelCase )
32
0
SCREAMING_SNAKE_CASE_:Optional[int] = [4, 1, 7, 4, 2, 6, 4, 1, 5, 3, 7, 5] SCREAMING_SNAKE_CASE_:Any = [3, 7, 7, 4, 2, 6, 4, 1, 5, 3, 7, 5] SCREAMING_SNAKE_CASE_:Optional[int] = { 0: """Sunday""", 1: """Monday""", 2: """Tuesday""", 3: """Wednesday""", 4: """Thursday""", 5: """Friday""", 6: """Saturday""", } def __UpperCamelCase ( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) -> str: """simple docstring""" assert len(str(SCREAMING_SNAKE_CASE_ ) ) > 2, "year should be in YYYY format" assert 1 <= month <= 12, "month should be between 1 to 12" assert 1 <= day <= 31, "day should be between 1 to 31" # Doomsday algorithm: A : str = year // 100 A : List[Any] = (5 * (century % 4) + 2) % 7 A : Tuple = year % 100 A : List[str] = centurian % 12 A : Tuple = ( (centurian // 12) + centurian_m + (centurian_m // 4) + century_anchor ) % 7 A : List[str] = ( DOOMSDAY_NOT_LEAP[month - 1] if (year % 4 != 0) or (centurian == 0 and (year % 400) == 0) else DOOMSDAY_LEAP[month - 1] ) A : Optional[int] = (dooms_day + day - day_anchor) % 7 return WEEK_DAY_NAMES[week_day] if __name__ == "__main__": import doctest doctest.testmod()
662
from typing import List from .keymap import KEYMAP, get_character def A__ ( SCREAMING_SNAKE_CASE_ : str ) -> List[str]: """simple docstring""" def decorator(SCREAMING_SNAKE_CASE_ : List[Any] ): _UpperCAmelCase = getattr(SCREAMING_SNAKE_CASE_ , '''handle_key''' , [] ) handle += [key] setattr(SCREAMING_SNAKE_CASE_ , '''handle_key''' , SCREAMING_SNAKE_CASE_ ) return func return decorator def A__ ( *SCREAMING_SNAKE_CASE_ : List[str] ) -> Dict: """simple docstring""" def decorator(SCREAMING_SNAKE_CASE_ : Any ): _UpperCAmelCase = getattr(SCREAMING_SNAKE_CASE_ , '''handle_key''' , [] ) handle += keys setattr(SCREAMING_SNAKE_CASE_ , '''handle_key''' , SCREAMING_SNAKE_CASE_ ) return func return decorator class __UpperCamelCase ( A__ ): def __new__( cls , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ): _UpperCAmelCase = super().__new__(cls , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) if not hasattr(_UpperCamelCase , '''key_handler''' ): setattr(_UpperCamelCase , '''key_handler''' , {} ) setattr(_UpperCamelCase , '''handle_input''' , KeyHandler.handle_input ) for value in attrs.values(): _UpperCAmelCase = getattr(_UpperCamelCase , '''handle_key''' , [] ) for key in handled_keys: _UpperCAmelCase = value return new_cls @staticmethod def UpperCamelCase( cls ): _UpperCAmelCase = get_character() if char != KEYMAP["undefined"]: _UpperCAmelCase = ord(_UpperCamelCase ) _UpperCAmelCase = cls.key_handler.get(_UpperCamelCase ) if handler: _UpperCAmelCase = char return handler(cls ) else: return None def A__ ( cls : Union[str, Any] ) -> Any: """simple docstring""" return KeyHandler(cls.__name__ , cls.__bases__ , cls.__dict__.copy() )
32
0
import os import shutil import tempfile from unittest import TestCase from unittest.mock import patch import numpy as np from datasets import Dataset from transformers.models.realm.configuration_realm import RealmConfig from transformers.models.realm.retrieval_realm import _REALM_BLOCK_RECORDS_FILENAME, RealmRetriever from transformers.models.realm.tokenization_realm import VOCAB_FILES_NAMES, RealmTokenizer class A_ (A__ ): def _lowercase ( self ): '''simple docstring''' UpperCAmelCase = tempfile.mkdtemp() UpperCAmelCase = 5 # Realm tok UpperCAmelCase = [ '''[UNK]''', '''[CLS]''', '''[SEP]''', '''[PAD]''', '''[MASK]''', '''test''', '''question''', '''this''', '''is''', '''the''', '''first''', '''second''', '''third''', '''fourth''', '''fifth''', '''record''', '''want''', '''##want''', '''##ed''', '''wa''', '''un''', '''runn''', '''##ing''', ''',''', '''low''', '''lowest''', ] UpperCAmelCase = os.path.join(self.tmpdirname , '''realm_tokenizer''' ) os.makedirs(_UpperCamelCase , exist_ok=_UpperCamelCase ) UpperCAmelCase = os.path.join(_UpperCamelCase , VOCAB_FILES_NAMES['''vocab_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as vocab_writer: vocab_writer.write(''''''.join([x + '''\n''' for x in vocab_tokens] ) ) UpperCAmelCase = os.path.join(self.tmpdirname , '''realm_block_records''' ) os.makedirs(_UpperCamelCase , exist_ok=_UpperCamelCase ) def _lowercase ( self ): '''simple docstring''' return RealmTokenizer.from_pretrained(os.path.join(self.tmpdirname , '''realm_tokenizer''' ) ) def _lowercase ( self ): '''simple docstring''' shutil.rmtree(self.tmpdirname ) def _lowercase ( self ): '''simple docstring''' UpperCAmelCase = RealmConfig(num_block_records=self.num_block_records ) return config def _lowercase ( self ): '''simple docstring''' UpperCAmelCase = Dataset.from_dict( { '''id''': ['''0''', '''1'''], '''question''': ['''foo''', '''bar'''], '''answers''': [['''Foo''', '''Bar'''], ['''Bar''']], } ) return dataset def _lowercase ( self ): '''simple docstring''' UpperCAmelCase = np.array( [ b'''This is the first record''', b'''This is the second record''', b'''This is the third record''', b'''This is the fourth record''', b'''This is the fifth record''', b'''This is a longer longer longer record''', ] , dtype=_UpperCamelCase , ) return block_records def _lowercase ( self ): '''simple docstring''' UpperCAmelCase = RealmRetriever( block_records=self.get_dummy_block_records() , tokenizer=self.get_tokenizer() , ) return retriever def _lowercase ( self ): '''simple docstring''' UpperCAmelCase = self.get_config() UpperCAmelCase = self.get_dummy_retriever() UpperCAmelCase = retriever.tokenizer UpperCAmelCase = np.array([0, 3] , dtype='''long''' ) UpperCAmelCase = tokenizer(['''Test question'''] ).input_ids UpperCAmelCase = tokenizer( ['''the fourth'''] , add_special_tokens=_UpperCamelCase , return_token_type_ids=_UpperCamelCase , return_attention_mask=_UpperCamelCase , ).input_ids UpperCAmelCase = config.reader_seq_len UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = retriever( _UpperCamelCase , _UpperCamelCase , answer_ids=_UpperCamelCase , max_length=_UpperCamelCase , return_tensors='''np''' ) self.assertEqual(len(_UpperCamelCase ) , 2 ) self.assertEqual(len(_UpperCamelCase ) , 2 ) self.assertEqual(len(_UpperCamelCase ) , 2 ) self.assertEqual(concat_inputs.input_ids.shape , (2, 1_0) ) self.assertEqual(concat_inputs.attention_mask.shape , (2, 1_0) ) self.assertEqual(concat_inputs.token_type_ids.shape , (2, 1_0) ) self.assertEqual(concat_inputs.special_tokens_mask.shape , (2, 1_0) ) self.assertEqual( tokenizer.convert_ids_to_tokens(concat_inputs.input_ids[0] ) , ['''[CLS]''', '''test''', '''question''', '''[SEP]''', '''this''', '''is''', '''the''', '''first''', '''record''', '''[SEP]'''] , ) self.assertEqual( tokenizer.convert_ids_to_tokens(concat_inputs.input_ids[1] ) , ['''[CLS]''', '''test''', '''question''', '''[SEP]''', '''this''', '''is''', '''the''', '''fourth''', '''record''', '''[SEP]'''] , ) def _lowercase ( self ): '''simple docstring''' UpperCAmelCase = self.get_config() UpperCAmelCase = self.get_dummy_retriever() UpperCAmelCase = retriever.tokenizer UpperCAmelCase = np.array([0, 3, 5] , dtype='''long''' ) UpperCAmelCase = tokenizer(['''Test question'''] ).input_ids UpperCAmelCase = tokenizer( ['''the fourth''', '''longer longer'''] , add_special_tokens=_UpperCamelCase , return_token_type_ids=_UpperCamelCase , return_attention_mask=_UpperCamelCase , ).input_ids UpperCAmelCase = config.reader_seq_len UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = retriever( _UpperCamelCase , _UpperCamelCase , answer_ids=_UpperCamelCase , max_length=_UpperCamelCase , return_tensors='''np''' ) self.assertEqual([False, True, True] , _UpperCamelCase ) self.assertEqual([[-1, -1, -1], [6, -1, -1], [6, 7, 8]] , _UpperCamelCase ) self.assertEqual([[-1, -1, -1], [7, -1, -1], [7, 8, 9]] , _UpperCamelCase ) def _lowercase ( self ): '''simple docstring''' UpperCAmelCase = self.get_dummy_retriever() retriever.save_pretrained(os.path.join(self.tmpdirname , '''realm_block_records''' ) ) # Test local path UpperCAmelCase = retriever.from_pretrained(os.path.join(self.tmpdirname , '''realm_block_records''' ) ) self.assertEqual(retriever.block_records[0] , b'''This is the first record''' ) # Test mocked remote path with patch('''transformers.models.realm.retrieval_realm.hf_hub_download''' ) as mock_hf_hub_download: UpperCAmelCase = os.path.join( os.path.join(self.tmpdirname , '''realm_block_records''' ) , _REALM_BLOCK_RECORDS_FILENAME ) UpperCAmelCase = RealmRetriever.from_pretrained('''google/realm-cc-news-pretrained-openqa''' ) self.assertEqual(retriever.block_records[0] , b'''This is the first record''' )
130
import unittest from transformers import LiltConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( LiltForQuestionAnswering, LiltForSequenceClassification, LiltForTokenClassification, LiltModel, ) from transformers.models.lilt.modeling_lilt import LILT_PRETRAINED_MODEL_ARCHIVE_LIST class __UpperCamelCase : def __init__( self , _UpperCamelCase , _UpperCamelCase=13 , _UpperCamelCase=7 , _UpperCamelCase=True , _UpperCamelCase=True , _UpperCamelCase=True , _UpperCamelCase=True , _UpperCamelCase=99 , _UpperCamelCase=24 , _UpperCamelCase=2 , _UpperCamelCase=6 , _UpperCamelCase=37 , _UpperCamelCase="gelu" , _UpperCamelCase=0.1 , _UpperCamelCase=0.1 , _UpperCamelCase=512 , _UpperCamelCase=16 , _UpperCamelCase=2 , _UpperCamelCase=0.02 , _UpperCamelCase=3 , _UpperCamelCase=None , _UpperCamelCase=1000 , ): _UpperCAmelCase = parent _UpperCAmelCase = batch_size _UpperCAmelCase = seq_length _UpperCAmelCase = is_training _UpperCAmelCase = use_input_mask _UpperCAmelCase = use_token_type_ids _UpperCAmelCase = use_labels _UpperCAmelCase = vocab_size _UpperCAmelCase = hidden_size _UpperCAmelCase = num_hidden_layers _UpperCAmelCase = num_attention_heads _UpperCAmelCase = intermediate_size _UpperCAmelCase = hidden_act _UpperCAmelCase = hidden_dropout_prob _UpperCAmelCase = attention_probs_dropout_prob _UpperCAmelCase = max_position_embeddings _UpperCAmelCase = type_vocab_size _UpperCAmelCase = type_sequence_label_size _UpperCAmelCase = initializer_range _UpperCAmelCase = num_labels _UpperCAmelCase = scope _UpperCAmelCase = range_bbox def UpperCamelCase( self ): _UpperCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _UpperCAmelCase = ids_tensor([self.batch_size, self.seq_length, 4] , self.range_bbox ) # Ensure that bbox is legal for i in range(bbox.shape[0] ): for j in range(bbox.shape[1] ): if bbox[i, j, 3] < bbox[i, j, 1]: _UpperCAmelCase = bbox[i, j, 3] _UpperCAmelCase = bbox[i, j, 1] _UpperCAmelCase = t if bbox[i, j, 2] < bbox[i, j, 0]: _UpperCAmelCase = bbox[i, j, 2] _UpperCAmelCase = bbox[i, j, 0] _UpperCAmelCase = t _UpperCAmelCase = None if self.use_input_mask: _UpperCAmelCase = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 ) _UpperCAmelCase = None if self.use_token_type_ids: _UpperCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) _UpperCAmelCase = None _UpperCAmelCase = None if self.use_labels: _UpperCAmelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size ) _UpperCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) _UpperCAmelCase = self.get_config() return config, input_ids, bbox, token_type_ids, input_mask, sequence_labels, token_labels def UpperCamelCase( self ): return LiltConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , ) def UpperCamelCase( self , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , ): _UpperCAmelCase = LiltModel(config=_UpperCamelCase ) model.to(_UpperCamelCase ) model.eval() _UpperCAmelCase = model(_UpperCamelCase , bbox=_UpperCamelCase , attention_mask=_UpperCamelCase , token_type_ids=_UpperCamelCase ) _UpperCAmelCase = model(_UpperCamelCase , bbox=_UpperCamelCase , token_type_ids=_UpperCamelCase ) _UpperCAmelCase = model(_UpperCamelCase , bbox=_UpperCamelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) ) def UpperCamelCase( self , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , ): _UpperCAmelCase = self.num_labels _UpperCAmelCase = LiltForTokenClassification(config=_UpperCamelCase ) model.to(_UpperCamelCase ) model.eval() _UpperCAmelCase = model( _UpperCamelCase , bbox=_UpperCamelCase , attention_mask=_UpperCamelCase , token_type_ids=_UpperCamelCase , labels=_UpperCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def UpperCamelCase( self , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , ): _UpperCAmelCase = LiltForQuestionAnswering(config=_UpperCamelCase ) model.to(_UpperCamelCase ) model.eval() _UpperCAmelCase = model( _UpperCamelCase , bbox=_UpperCamelCase , attention_mask=_UpperCamelCase , token_type_ids=_UpperCamelCase , start_positions=_UpperCamelCase , end_positions=_UpperCamelCase , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def UpperCamelCase( self ): _UpperCAmelCase = self.prepare_config_and_inputs() ( ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ) = config_and_inputs _UpperCAmelCase = { '''input_ids''': input_ids, '''bbox''': bbox, '''token_type_ids''': token_type_ids, '''attention_mask''': input_mask, } return config, inputs_dict @require_torch class __UpperCamelCase ( A__ , A__ , A__ , unittest.TestCase ): __A : Dict = ( ( LiltModel, LiltForSequenceClassification, LiltForTokenClassification, LiltForQuestionAnswering, ) if is_torch_available() else () ) __A : Optional[Any] = ( { """feature-extraction""": LiltModel, """question-answering""": LiltForQuestionAnswering, """text-classification""": LiltForSequenceClassification, """token-classification""": LiltForTokenClassification, """zero-shot""": LiltForSequenceClassification, } if is_torch_available() else {} ) __A : List[Any] = False __A : Optional[int] = False def UpperCamelCase( self , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ): return True def UpperCamelCase( self ): _UpperCAmelCase = LiltModelTester(self ) _UpperCAmelCase = ConfigTester(self , config_class=_UpperCamelCase , hidden_size=37 ) def UpperCamelCase( self ): self.config_tester.run_common_tests() def UpperCamelCase( self ): _UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_UpperCamelCase ) def UpperCamelCase( self ): _UpperCAmelCase = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: _UpperCAmelCase = type self.model_tester.create_and_check_model(*_UpperCamelCase ) def UpperCamelCase( self ): _UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*_UpperCamelCase ) def UpperCamelCase( self ): _UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*_UpperCamelCase ) @slow def UpperCamelCase( self ): for model_name in LILT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _UpperCAmelCase = LiltModel.from_pretrained(_UpperCamelCase ) self.assertIsNotNone(_UpperCamelCase ) @require_torch @slow class __UpperCamelCase ( unittest.TestCase ): def UpperCamelCase( self ): _UpperCAmelCase = LiltModel.from_pretrained('''SCUT-DLVCLab/lilt-roberta-en-base''' ).to(_UpperCamelCase ) _UpperCAmelCase = torch.tensor([[1, 2]] , device=_UpperCamelCase ) _UpperCAmelCase = torch.tensor([[[1, 2, 3, 4], [5, 6, 7, 8]]] , device=_UpperCamelCase ) # forward pass with torch.no_grad(): _UpperCAmelCase = model(input_ids=_UpperCamelCase , bbox=_UpperCamelCase ) _UpperCAmelCase = torch.Size([1, 2, 768] ) _UpperCAmelCase = torch.tensor( [[-0.0653, 0.0950, -0.0061], [-0.0545, 0.0926, -0.0324]] , device=_UpperCamelCase , ) self.assertTrue(outputs.last_hidden_state.shape , _UpperCamelCase ) self.assertTrue(torch.allclose(outputs.last_hidden_state[0, :, :3] , _UpperCamelCase , atol=1e-3 ) )
32
0
"""simple docstring""" from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available _UpperCamelCase = { """configuration_autoformer""": [ """AUTOFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP""", """AutoformerConfig""", ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCamelCase = [ """AUTOFORMER_PRETRAINED_MODEL_ARCHIVE_LIST""", """AutoformerForPrediction""", """AutoformerModel""", """AutoformerPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_autoformer import ( AUTOFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, AutoformerConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_autoformer import ( AUTOFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, AutoformerForPrediction, AutoformerModel, AutoformerPreTrainedModel, ) else: import sys _UpperCamelCase = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
341
from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCAmelCase_ = logging.get_logger(__name__) UpperCAmelCase_ = { "RWKV/rwkv-4-169m-pile": "https://huggingface.co/RWKV/rwkv-4-169m-pile/resolve/main/config.json", "RWKV/rwkv-4-430m-pile": "https://huggingface.co/RWKV/rwkv-4-430m-pile/resolve/main/config.json", "RWKV/rwkv-4-1b5-pile": "https://huggingface.co/RWKV/rwkv-4-1b5-pile/resolve/main/config.json", "RWKV/rwkv-4-3b-pile": "https://huggingface.co/RWKV/rwkv-4-3b-pile/resolve/main/config.json", "RWKV/rwkv-4-7b-pile": "https://huggingface.co/RWKV/rwkv-4-7b-pile/resolve/main/config.json", "RWKV/rwkv-4-14b-pile": "https://huggingface.co/RWKV/rwkv-4-14b-pile/resolve/main/config.json", "RWKV/rwkv-raven-1b5": "https://huggingface.co/RWKV/rwkv-raven-1b5/resolve/main/config.json", "RWKV/rwkv-raven-3b": "https://huggingface.co/RWKV/rwkv-raven-3b/resolve/main/config.json", "RWKV/rwkv-raven-7b": "https://huggingface.co/RWKV/rwkv-raven-7b/resolve/main/config.json", "RWKV/rwkv-raven-14b": "https://huggingface.co/RWKV/rwkv-raven-14b/resolve/main/config.json", } class __UpperCamelCase ( A__ ): __A : Tuple = """rwkv""" __A : Any = {"""max_position_embeddings""": """context_length"""} def __init__( self , _UpperCamelCase=50277 , _UpperCamelCase=1024 , _UpperCamelCase=4096 , _UpperCamelCase=32 , _UpperCamelCase=None , _UpperCamelCase=None , _UpperCamelCase=1e-5 , _UpperCamelCase=0 , _UpperCamelCase=0 , _UpperCamelCase=6 , _UpperCamelCase=False , _UpperCamelCase=True , **_UpperCamelCase , ): _UpperCAmelCase = vocab_size _UpperCAmelCase = context_length _UpperCAmelCase = hidden_size _UpperCAmelCase = num_hidden_layers _UpperCAmelCase = attention_hidden_size if attention_hidden_size is not None else hidden_size _UpperCAmelCase = intermediate_size if intermediate_size is not None else 4 * hidden_size _UpperCAmelCase = layer_norm_epsilon _UpperCAmelCase = rescale_every _UpperCAmelCase = use_cache _UpperCAmelCase = bos_token_id _UpperCAmelCase = eos_token_id super().__init__( tie_word_embeddings=_UpperCamelCase , bos_token_id=_UpperCamelCase , eos_token_id=_UpperCamelCase , **_UpperCamelCase )
32
0
'''simple docstring''' def UpperCamelCase ( lowercase_ : list ) -> int: '''simple docstring''' if not grid or not grid[0]: raise TypeError('''The grid does not contain the appropriate information''' ) for cell_n in range(1 , len(grid[0] ) ): grid[0][cell_n] += grid[0][cell_n - 1] lowercase =grid[0] for row_n in range(1 , len(SCREAMING_SNAKE_CASE_ ) ): lowercase =grid[row_n] lowercase =fill_row(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) lowercase =grid[row_n] return grid[-1][-1] def UpperCamelCase ( lowercase_ : list , lowercase_ : list ) -> list: '''simple docstring''' current_row[0] += row_above[0] for cell_n in range(1 , len(SCREAMING_SNAKE_CASE_ ) ): current_row[cell_n] += min(current_row[cell_n - 1] , row_above[cell_n] ) return current_row if __name__ == "__main__": import doctest doctest.testmod()
72
def A__ ( SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : int ) -> str: """simple docstring""" if a < 0 or b < 0: raise ValueError('''the value of both inputs must be positive''' ) _UpperCAmelCase = str(bin(SCREAMING_SNAKE_CASE_ ) )[2:] # remove the leading "0b" _UpperCAmelCase = str(bin(SCREAMING_SNAKE_CASE_ ) )[2:] # remove the leading "0b" _UpperCAmelCase = max(len(SCREAMING_SNAKE_CASE_ ) , len(SCREAMING_SNAKE_CASE_ ) ) return "0b" + "".join( str(int(char_a == '''1''' and char_b == '''1''' ) ) for char_a, char_b in zip(a_binary.zfill(SCREAMING_SNAKE_CASE_ ) , b_binary.zfill(SCREAMING_SNAKE_CASE_ ) ) ) if __name__ == "__main__": import doctest doctest.testmod()
32
0
import argparse import torch from transformers import GPTaConfig, GPTaModel, load_tf_weights_in_gpta from transformers.utils import CONFIG_NAME, WEIGHTS_NAME, logging logging.set_verbosity_info() def _lowerCamelCase ( snake_case , snake_case , snake_case ): if gpta_config_file == "": _lowerCAmelCase = GPTaConfig() else: _lowerCAmelCase = GPTaConfig.from_json_file(SCREAMING_SNAKE_CASE_ ) _lowerCAmelCase = GPTaModel(SCREAMING_SNAKE_CASE_ ) # Load weights from numpy load_tf_weights_in_gpta(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) # Save pytorch-model _lowerCAmelCase = pytorch_dump_folder_path + '/' + WEIGHTS_NAME _lowerCAmelCase = pytorch_dump_folder_path + '/' + CONFIG_NAME print(F'Save PyTorch model to {pytorch_weights_dump_path}' ) torch.save(model.state_dict() , SCREAMING_SNAKE_CASE_ ) print(F'Save configuration file to {pytorch_config_dump_path}' ) with open(SCREAMING_SNAKE_CASE_ , 'w' , encoding='utf-8' ) as f: f.write(config.to_json_string() ) if __name__ == "__main__": _lowercase: Optional[Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--gpt2_checkpoint_path''', default=None, type=str, required=True, help='''Path to the TensorFlow checkpoint path.''' ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, required=True, help='''Path to the output PyTorch model.''' ) parser.add_argument( '''--gpt2_config_file''', default='''''', type=str, help=( '''An optional config json file corresponding to the pre-trained OpenAI model. \n''' '''This specifies the model architecture.''' ), ) _lowercase: Dict = parser.parse_args() convert_gpta_checkpoint_to_pytorch(args.gpta_checkpoint_path, args.gpta_config_file, args.pytorch_dump_folder_path)
192
from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCAmelCase_ = logging.get_logger(__name__) UpperCAmelCase_ = { "tiiuae/falcon-40b": "https://huggingface.co/tiiuae/falcon-40b/resolve/main/config.json", "tiiuae/falcon-7b": "https://huggingface.co/tiiuae/falcon-7b/resolve/main/config.json", } class __UpperCamelCase ( A__ ): __A : Dict = """falcon""" __A : Any = ["""past_key_values"""] def __init__( self , _UpperCamelCase=65024 , _UpperCamelCase=4544 , _UpperCamelCase=32 , _UpperCamelCase=71 , _UpperCamelCase=1e-5 , _UpperCamelCase=0.02 , _UpperCamelCase=True , _UpperCamelCase=0.0 , _UpperCamelCase=0.0 , _UpperCamelCase=None , _UpperCamelCase=False , _UpperCamelCase=False , _UpperCamelCase=True , _UpperCamelCase=True , _UpperCamelCase=False , _UpperCamelCase=11 , _UpperCamelCase=11 , **_UpperCamelCase , ): _UpperCAmelCase = vocab_size # Backward compatibility with n_embed kwarg _UpperCAmelCase = kwargs.pop('''n_embed''' , _UpperCamelCase ) _UpperCAmelCase = hidden_size if n_embed is None else n_embed _UpperCAmelCase = num_hidden_layers _UpperCAmelCase = num_attention_heads _UpperCAmelCase = layer_norm_epsilon _UpperCAmelCase = initializer_range _UpperCAmelCase = use_cache _UpperCAmelCase = hidden_dropout _UpperCAmelCase = attention_dropout _UpperCAmelCase = bos_token_id _UpperCAmelCase = eos_token_id _UpperCAmelCase = num_attention_heads if num_kv_heads is None else num_kv_heads _UpperCAmelCase = alibi _UpperCAmelCase = new_decoder_architecture _UpperCAmelCase = multi_query # Ignored when new_decoder_architecture is True _UpperCAmelCase = parallel_attn _UpperCAmelCase = bias super().__init__(bos_token_id=_UpperCamelCase , eos_token_id=_UpperCamelCase , **_UpperCamelCase ) @property def UpperCamelCase( self ): return self.hidden_size // self.num_attention_heads @property def UpperCamelCase( self ): return not self.alibi
32
0
'''simple docstring''' import copy from dataclasses import dataclass, field from typing import ClassVar, Dict from ..features import Audio, Features, Value from .base import TaskTemplate @dataclass(frozen=A__ ) class UpperCAmelCase ( A__ ): '''simple docstring''' SCREAMING_SNAKE_CASE_ = field(default='automatic-speech-recognition' , metadata={'include_in_asdict_even_if_is_default': True} ) SCREAMING_SNAKE_CASE_ = Features({'audio': Audio()} ) SCREAMING_SNAKE_CASE_ = Features({'transcription': Value('string' )} ) SCREAMING_SNAKE_CASE_ = "audio" SCREAMING_SNAKE_CASE_ = "transcription" def UpperCamelCase( self , SCREAMING_SNAKE_CASE_ ) -> Optional[Any]: '''simple docstring''' if self.audio_column not in features: raise ValueError(f'''Column {self.audio_column} is not present in features.''' ) if not isinstance(features[self.audio_column] , _UpperCamelCase ): raise ValueError(f'''Column {self.audio_column} is not an Audio type.''' ) lowerCamelCase_ = copy.deepcopy(self ) lowerCamelCase_ = self.input_schema.copy() lowerCamelCase_ = features[self.audio_column] lowerCamelCase_ = input_schema return task_template @property def UpperCamelCase( self ) -> Optional[Any]: '''simple docstring''' return {self.audio_column: "audio", self.transcription_column: "transcription"}
42
from math import sqrt def A__ ( SCREAMING_SNAKE_CASE_ : int ) -> bool: """simple docstring""" if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5 , int(sqrt(SCREAMING_SNAKE_CASE_ ) + 1 ) , 6 ): if number % i == 0 or number % (i + 2) == 0: return False return True def A__ ( SCREAMING_SNAKE_CASE_ : int = 1_00_01 ) -> int: """simple docstring""" _UpperCAmelCase = 0 _UpperCAmelCase = 1 while count != nth and number < 3: number += 1 if is_prime(SCREAMING_SNAKE_CASE_ ): count += 1 while count != nth: number += 2 if is_prime(SCREAMING_SNAKE_CASE_ ): count += 1 return number if __name__ == "__main__": print(f'''{solution() = }''')
32
0
snake_case : List[Any] = '''ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789+/''' def __lowercase ( __lowerCAmelCase : bytes ): if not isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): a__ = F'a bytes-like object is required, not \'{data.__class__.__name__}\'' raise TypeError(SCREAMING_SNAKE_CASE_ ) a__ = ''.join(bin(SCREAMING_SNAKE_CASE_ )[2:].zfill(8 ) for byte in data ) a__ = len(SCREAMING_SNAKE_CASE_ ) % 6 != 0 if padding_needed: # The padding that will be added later a__ = b'=' * ((6 - len(SCREAMING_SNAKE_CASE_ ) % 6) // 2) # Append binary_stream with arbitrary binary digits (0's by default) to make its # length a multiple of 6. binary_stream += "0" * (6 - len(SCREAMING_SNAKE_CASE_ ) % 6) else: a__ = b'' # Encode every 6 binary digits to their corresponding Base64 character return ( "".join( B64_CHARSET[int(binary_stream[index : index + 6] , 2 )] for index in range(0 , len(SCREAMING_SNAKE_CASE_ ) , 6 ) ).encode() + padding ) def __lowercase ( __lowerCAmelCase : str ): if not isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) and not isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): a__ = ( 'argument should be a bytes-like object or ASCII string, ' F'not \'{encoded_data.__class__.__name__}\'' ) raise TypeError(SCREAMING_SNAKE_CASE_ ) # In case encoded_data is a bytes-like object, make sure it contains only # ASCII characters so we convert it to a string object if isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): try: a__ = encoded_data.decode('utf-8' ) except UnicodeDecodeError: raise ValueError('base64 encoded data should only contain ASCII characters' ) a__ = encoded_data.count('=' ) # Check if the encoded string contains non base64 characters if padding: assert all( char in B64_CHARSET for char in encoded_data[:-padding] ), "Invalid base64 character(s) found." else: assert all( char in B64_CHARSET for char in encoded_data ), "Invalid base64 character(s) found." # Check the padding assert len(SCREAMING_SNAKE_CASE_ ) % 4 == 0 and padding < 3, "Incorrect padding" if padding: # Remove padding if there is one a__ = encoded_data[:-padding] a__ = ''.join( bin(B64_CHARSET.index(SCREAMING_SNAKE_CASE_ ) )[2:].zfill(6 ) for char in encoded_data )[: -padding * 2] else: a__ = ''.join( bin(B64_CHARSET.index(SCREAMING_SNAKE_CASE_ ) )[2:].zfill(6 ) for char in encoded_data ) a__ = [ int(binary_stream[index : index + 8] , 2 ) for index in range(0 , len(SCREAMING_SNAKE_CASE_ ) , 8 ) ] return bytes(SCREAMING_SNAKE_CASE_ ) if __name__ == "__main__": import doctest doctest.testmod()
335
def A__ ( SCREAMING_SNAKE_CASE_ : int ) -> bool: """simple docstring""" if not isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): _UpperCAmelCase = F'''Input value of [number={number}] must be an integer''' raise TypeError(SCREAMING_SNAKE_CASE_ ) if number < 0: return False _UpperCAmelCase = number * number while number > 0: if number % 10 != number_square % 10: return False number //= 10 number_square //= 10 return True if __name__ == "__main__": import doctest doctest.testmod()
32
0
import multiprocessing import time from arguments import PretokenizationArguments from datasets import load_dataset from transformers import AutoTokenizer, HfArgumentParser def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE ) -> List[str]: SCREAMING_SNAKE_CASE_ : List[Any] = {} SCREAMING_SNAKE_CASE_ : Optional[Any] = tokenizer(example['content'] , truncation=SCREAMING_SNAKE_CASE_ )['input_ids'] SCREAMING_SNAKE_CASE_ : List[Any] = len(example['content'] ) / len(output['input_ids'] ) return output lowerCAmelCase__: Optional[int] = HfArgumentParser(PretokenizationArguments) lowerCAmelCase__: Any = parser.parse_args() if args.num_workers is None: lowerCAmelCase__: Any = multiprocessing.cpu_count() lowerCAmelCase__: List[Any] = AutoTokenizer.from_pretrained(args.tokenizer_dir) lowerCAmelCase__: List[Any] = time.time() lowerCAmelCase__: int = load_dataset(args.dataset_name, split="train") print(f'''Dataset loaded in {time.time()-t_start:.2f}s''') lowerCAmelCase__: Tuple = time.time() lowerCAmelCase__: Union[str, Any] = ds.map( tokenize, num_proc=args.num_workers, remove_columns=[ "repo_name", "path", "copies", "size", "content", "license", "hash", "line_mean", "line_max", "alpha_frac", "autogenerated", ], ) print(f'''Dataset tokenized in {time.time()-t_start:.2f}s''') lowerCAmelCase__: int = time.time() ds.push_to_hub(args.tokenized_data_repo) print(f'''Data pushed to the hub in {time.time()-t_start:.2f}s''')
345
from dataclasses import dataclass, field from typing import ClassVar, Dict from ..features import Features, Value from .base import TaskTemplate @dataclass(frozen=A__ ) class __UpperCamelCase ( A__ ): __A : str = field(default="""language-modeling""" , metadata={"""include_in_asdict_even_if_is_default""": True} ) __A : ClassVar[Features] = Features({"""text""": Value("""string""" )} ) __A : ClassVar[Features] = Features({} ) __A : str = "text" @property def UpperCamelCase( self ): return {self.text_column: "text"}
32
0
'''simple docstring''' import os import time import numpy as np import onnxruntime as ort _SCREAMING_SNAKE_CASE : List[Any] = "1" _SCREAMING_SNAKE_CASE : str = "0" _SCREAMING_SNAKE_CASE : Tuple = "1" _SCREAMING_SNAKE_CASE : Union[str, Any] = ort.SessionOptions() _SCREAMING_SNAKE_CASE : Union[str, Any] = ort.GraphOptimizationLevel.ORT_DISABLE_ALL print("Create inference session...") _SCREAMING_SNAKE_CASE : str = ["TensorrtExecutionProvider", "CUDAExecutionProvider"] _SCREAMING_SNAKE_CASE : Optional[int] = ort.InferenceSession("model.onnx", sess_options=sess_opt, providers=execution_provider) _SCREAMING_SNAKE_CASE : List[Any] = ort.RunOptions() _SCREAMING_SNAKE_CASE : int = 1_28 _SCREAMING_SNAKE_CASE : int = 1 _SCREAMING_SNAKE_CASE : str = np.ones((batch, sequence), dtype=np.intaa) _SCREAMING_SNAKE_CASE : Optional[Any] = np.ones((batch, sequence), dtype=np.intaa) _SCREAMING_SNAKE_CASE : List[Any] = np.ones((batch, sequence), dtype=np.intaa) print("Warm up phase...") sess.run( None, { sess.get_inputs()[0].name: input_ids, sess.get_inputs()[1].name: attention_mask, sess.get_inputs()[2].name: token_type_ids, }, run_options=run_opt, ) print("Start inference...") _SCREAMING_SNAKE_CASE : int = time.time() _SCREAMING_SNAKE_CASE : List[str] = 20_00 _SCREAMING_SNAKE_CASE : Optional[int] = {} for iter in range(max_iters): _SCREAMING_SNAKE_CASE : int = sess.run( None, { sess.get_inputs()[0].name: input_ids, sess.get_inputs()[1].name: attention_mask, sess.get_inputs()[2].name: token_type_ids, }, run_options=run_opt, ) print("Average Inference Time = {:.3f} ms".format((time.time() - start_time) * 10_00 / max_iters))
436
import os import re import warnings from shutil import copyfile from typing import TYPE_CHECKING, Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import PreTrainedTokenizer if TYPE_CHECKING: from ...tokenization_utils_base import TextInput from ...utils import logging UpperCAmelCase_ = logging.get_logger(__name__) UpperCAmelCase_ = {"vocab_file": "spiece.model"} UpperCAmelCase_ = { "vocab_file": { "t5-small": "https://huggingface.co/t5-small/resolve/main/spiece.model", "t5-base": "https://huggingface.co/t5-base/resolve/main/spiece.model", "t5-large": "https://huggingface.co/t5-large/resolve/main/spiece.model", "t5-3b": "https://huggingface.co/t5-3b/resolve/main/spiece.model", "t5-11b": "https://huggingface.co/t5-11b/resolve/main/spiece.model", } } # TODO(PVP) - this should be removed in Transformers v5 UpperCAmelCase_ = { "t5-small": 5_12, "t5-base": 5_12, "t5-large": 5_12, "t5-3b": 5_12, "t5-11b": 5_12, } UpperCAmelCase_ = "▁" class __UpperCamelCase ( A__ ): __A : Any = VOCAB_FILES_NAMES __A : Union[str, Any] = PRETRAINED_VOCAB_FILES_MAP __A : Any = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __A : Tuple = ["""input_ids""", """attention_mask"""] def __init__( self , _UpperCamelCase , _UpperCamelCase="</s>" , _UpperCamelCase="<unk>" , _UpperCamelCase="<pad>" , _UpperCamelCase=100 , _UpperCamelCase=None , _UpperCamelCase = None , _UpperCamelCase=True , **_UpperCamelCase , ): # Add extra_ids to the special token list if extra_ids > 0 and additional_special_tokens is None: _UpperCAmelCase = [f'''<extra_id_{i}>''' for i in range(_UpperCamelCase )] elif extra_ids > 0 and additional_special_tokens is not None: # Check that we have the right number of extra_id special tokens _UpperCAmelCase = len(set(filter(lambda _UpperCamelCase : bool('''extra_id''' in str(_UpperCamelCase ) ) , _UpperCamelCase ) ) ) if extra_tokens != extra_ids: raise ValueError( f'''Both extra_ids ({extra_ids}) and additional_special_tokens ({additional_special_tokens}) are''' ''' provided to T5Tokenizer. In this case the additional_special_tokens must include the extra_ids''' ''' tokens''' ) if legacy: logger.warning_once( f'''You are using the legacy behaviour of the {self.__class__}. This means that tokens that come after special tokens will not be properly handled. We recommend you to''' ''' read the related pull request available at https://github.com/huggingface/transformers/pull/24565''' ) _UpperCAmelCase = legacy _UpperCAmelCase = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( eos_token=_UpperCamelCase , unk_token=_UpperCamelCase , pad_token=_UpperCamelCase , extra_ids=_UpperCamelCase , additional_special_tokens=_UpperCamelCase , sp_model_kwargs=self.sp_model_kwargs , legacy=_UpperCamelCase , **_UpperCamelCase , ) _UpperCAmelCase = vocab_file _UpperCAmelCase = extra_ids _UpperCAmelCase = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(_UpperCamelCase ) @staticmethod def UpperCamelCase( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ): if pretrained_model_name_or_path in TaTokenizer.max_model_input_sizes: _UpperCAmelCase = TaTokenizer.max_model_input_sizes[pretrained_model_name_or_path] if init_max_model_length is not None and init_max_model_length != max_model_length: return init_max_model_length elif init_max_model_length is None: warnings.warn( '''This tokenizer was incorrectly instantiated with a model max length of''' f''' {deprecated_max_model_length} which will be corrected in Transformers v5.\nFor now, this''' ''' behavior is kept to avoid breaking backwards compatibility when padding/encoding with''' ''' `truncation is True`.\n- Be aware that you SHOULD NOT rely on''' f''' {pretrained_model_name_or_path} automatically truncating your input to''' f''' {deprecated_max_model_length} when padding/encoding.\n- If you want to encode/pad to sequences''' f''' longer than {deprecated_max_model_length} you can either instantiate this tokenizer with''' ''' `model_max_length` or pass `max_length` when encoding/padding.\n- To avoid this warning, please''' ''' instantiate this tokenizer with `model_max_length` set to your preferred value.''' , _UpperCamelCase , ) return max_model_length @property def UpperCamelCase( self ): return self.sp_model.get_piece_size() + self._extra_ids def UpperCamelCase( self ): _UpperCAmelCase = {self.convert_ids_to_tokens(_UpperCamelCase ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def UpperCamelCase( self , _UpperCamelCase , _UpperCamelCase = None , _UpperCamelCase = False ): if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=_UpperCamelCase , token_ids_a=_UpperCamelCase , already_has_special_tokens=_UpperCamelCase ) # normal case: some special tokens if token_ids_a is None: return ([0] * len(_UpperCamelCase )) + [1] return ([0] * len(_UpperCamelCase )) + [1] + ([0] * len(_UpperCamelCase )) + [1] def UpperCamelCase( self ): return list( set(filter(lambda _UpperCamelCase : bool(re.search(R'''<extra_id_\d+>''' , _UpperCamelCase ) ) is not None , self.additional_special_tokens ) ) ) def UpperCamelCase( self ): return [self._convert_token_to_id(_UpperCamelCase ) for token in self.get_sentinel_tokens()] def UpperCamelCase( self , _UpperCamelCase ): if len(_UpperCamelCase ) > 0 and token_ids[-1] == self.eos_token_id: warnings.warn( f'''This sequence already has {self.eos_token}. In future versions this behavior may lead to duplicated''' ''' eos tokens being added.''' ) return token_ids else: return token_ids + [self.eos_token_id] def UpperCamelCase( self , _UpperCamelCase , _UpperCamelCase = None ): _UpperCAmelCase = [self.eos_token_id] if token_ids_a is None: return len(token_ids_a + eos ) * [0] return len(token_ids_a + eos + token_ids_a + eos ) * [0] def UpperCamelCase( self , _UpperCamelCase , _UpperCamelCase = None ): _UpperCAmelCase = self._add_eos_if_not_present(_UpperCamelCase ) if token_ids_a is None: return token_ids_a else: _UpperCAmelCase = self._add_eos_if_not_present(_UpperCamelCase ) return token_ids_a + token_ids_a def __getstate__( self ): _UpperCAmelCase = self.__dict__.copy() _UpperCAmelCase = None return state def __setstate__( self , _UpperCamelCase ): _UpperCAmelCase = d # for backward compatibility if not hasattr(self , '''sp_model_kwargs''' ): _UpperCAmelCase = {} _UpperCAmelCase = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def UpperCamelCase( self , _UpperCamelCase , **_UpperCamelCase ): # Replace the SPIECE_UNDERLINE with a space to make sure SPIECE_UNDERLINE is only used at # the beginning of the text if not self.legacy: _UpperCAmelCase = SPIECE_UNDERLINE + text.replace(_UpperCamelCase , ''' ''' ) return super().tokenize(_UpperCamelCase , **_UpperCamelCase ) def UpperCamelCase( self , _UpperCamelCase , **_UpperCamelCase ): if not self.legacy: _UpperCAmelCase = text.startswith(_UpperCamelCase ) if is_first: _UpperCAmelCase = text[1:] _UpperCAmelCase = self.sp_model.encode(_UpperCamelCase , out_type=_UpperCamelCase ) if not self.legacy and not is_first and not text.startswith(''' ''' ) and tokens[0].startswith(_UpperCamelCase ): _UpperCAmelCase = ([tokens[0][1:]] if len(tokens[0] ) > 1 else []) + tokens[1:] return tokens def UpperCamelCase( self , _UpperCamelCase ): if token.startswith('''<extra_id_''' ): _UpperCAmelCase = re.match(R'''<extra_id_(\d+)>''' , _UpperCamelCase ) _UpperCAmelCase = int(match.group(1 ) ) return self.vocab_size - num - 1 return self.sp_model.piece_to_id(_UpperCamelCase ) def UpperCamelCase( self , _UpperCamelCase ): if index < self.sp_model.get_piece_size(): _UpperCAmelCase = self.sp_model.IdToPiece(_UpperCamelCase ) else: _UpperCAmelCase = f'''<extra_id_{self.vocab_size - 1 - index}>''' return token def UpperCamelCase( self , _UpperCamelCase ): _UpperCAmelCase = [] _UpperCAmelCase = '''''' _UpperCAmelCase = False for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: if not prev_is_special: out_string += " " out_string += self.sp_model.decode(_UpperCamelCase ) + token _UpperCAmelCase = True _UpperCAmelCase = [] else: current_sub_tokens.append(_UpperCamelCase ) _UpperCAmelCase = False out_string += self.sp_model.decode(_UpperCamelCase ) return out_string.strip() def UpperCamelCase( self , _UpperCamelCase , _UpperCamelCase = None ): if not os.path.isdir(_UpperCamelCase ): logger.error(f'''Vocabulary path ({save_directory}) should be a directory''' ) return _UpperCAmelCase = os.path.join( _UpperCamelCase , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(_UpperCamelCase ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , _UpperCamelCase ) elif not os.path.isfile(self.vocab_file ): with open(_UpperCamelCase , '''wb''' ) as fi: _UpperCAmelCase = self.sp_model.serialized_model_proto() fi.write(_UpperCamelCase ) return (out_vocab_file,)
32
0
UpperCamelCase_ = { 'A': '.-', 'B': '-...', 'C': '-.-.', 'D': '-..', 'E': '.', 'F': '..-.', 'G': '--.', 'H': '....', 'I': '..', 'J': '.---', 'K': '-.-', 'L': '.-..', 'M': '--', 'N': '-.', 'O': '---', 'P': '.--.', 'Q': '--.-', 'R': '.-.', 'S': '...', 'T': '-', 'U': '..-', 'V': '...-', 'W': '.--', 'X': '-..-', 'Y': '-.--', 'Z': '--..', '1': '.----', '2': '..---', '3': '...--', '4': '....-', '5': '.....', '6': '-....', '7': '--...', '8': '---..', '9': '----.', '0': '-----', '&': '.-...', '@': '.--.-.', ':': '---...', ',': '--..--', '.': '.-.-.-', '\'': '.----.', '\"': '.-..-.', '?': '..--..', '/': '-..-.', '=': '-...-', '+': '.-.-.', '-': '-....-', '(': '-.--.', ')': '-.--.-', '!': '-.-.--', ' ': '/' } # Exclamation mark is not in ITU-R recommendation # fmt: on UpperCamelCase_ = {value: key for key, value in MORSE_CODE_DICT.items()} def _UpperCAmelCase ( A ): '''simple docstring''' return " ".join(MORSE_CODE_DICT[char] for char in message.upper() ) def _UpperCAmelCase ( A ): '''simple docstring''' return "".join(REVERSE_DICT[char] for char in message.split() ) def _UpperCAmelCase ( ): '''simple docstring''' UpperCAmelCase__ ="Morse code here!" print(SCREAMING_SNAKE_CASE_ ) UpperCAmelCase__ =encrypt(SCREAMING_SNAKE_CASE_ ) print(SCREAMING_SNAKE_CASE_ ) UpperCAmelCase__ =decrypt(SCREAMING_SNAKE_CASE_ ) print(SCREAMING_SNAKE_CASE_ ) if __name__ == "__main__": main()
625
from __future__ import annotations def A__ ( SCREAMING_SNAKE_CASE_ : int ) -> bool: """simple docstring""" _UpperCAmelCase = str(SCREAMING_SNAKE_CASE_ ) return len(SCREAMING_SNAKE_CASE_ ) == 9 and set(SCREAMING_SNAKE_CASE_ ) == set('''123456789''' ) def A__ ( ) -> int | None: """simple docstring""" for base_num in range(99_99 , 49_99 , -1 ): _UpperCAmelCase = 10_00_02 * base_num if is_9_pandigital(SCREAMING_SNAKE_CASE_ ): return candidate for base_num in range(3_33 , 99 , -1 ): _UpperCAmelCase = 1_00_20_03 * base_num if is_9_pandigital(SCREAMING_SNAKE_CASE_ ): return candidate return None if __name__ == "__main__": print(f'''{solution() = }''')
32
0
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging __UpperCAmelCase : Union[str, Any] = logging.get_logger(__name__) __UpperCAmelCase : Optional[Any] = { 'funnel-transformer/small': 'https://huggingface.co/funnel-transformer/small/resolve/main/config.json', 'funnel-transformer/small-base': 'https://huggingface.co/funnel-transformer/small-base/resolve/main/config.json', 'funnel-transformer/medium': 'https://huggingface.co/funnel-transformer/medium/resolve/main/config.json', 'funnel-transformer/medium-base': 'https://huggingface.co/funnel-transformer/medium-base/resolve/main/config.json', 'funnel-transformer/intermediate': ( 'https://huggingface.co/funnel-transformer/intermediate/resolve/main/config.json' ), 'funnel-transformer/intermediate-base': ( 'https://huggingface.co/funnel-transformer/intermediate-base/resolve/main/config.json' ), 'funnel-transformer/large': 'https://huggingface.co/funnel-transformer/large/resolve/main/config.json', 'funnel-transformer/large-base': 'https://huggingface.co/funnel-transformer/large-base/resolve/main/config.json', 'funnel-transformer/xlarge': 'https://huggingface.co/funnel-transformer/xlarge/resolve/main/config.json', 'funnel-transformer/xlarge-base': 'https://huggingface.co/funnel-transformer/xlarge-base/resolve/main/config.json', } class __lowerCAmelCase (A__ ): '''simple docstring''' a__ = """funnel""" a__ = { """hidden_size""": """d_model""", """num_attention_heads""": """n_head""", } def __init__( self , a=3_05_22 , a=[4, 4, 4] , a=None , a=2 , a=7_68 , a=12 , a=64 , a=30_72 , a="gelu_new" , a=0.1 , a=0.1 , a=0.0 , a=0.1 , a=None , a=1e-9 , a="mean" , a="relative_shift" , a=True , a=True , a=True , **a , ): """simple docstring""" snake_case_ :List[str] = vocab_size snake_case_ :str = block_sizes snake_case_ :Tuple = [1] * len(_UpperCamelCase ) if block_repeats is None else block_repeats assert len(_UpperCamelCase ) == len( self.block_repeats ), "`block_sizes` and `block_repeats` should have the same length." snake_case_ :Dict = num_decoder_layers snake_case_ :Union[str, Any] = d_model snake_case_ :Optional[Any] = n_head snake_case_ :List[Any] = d_head snake_case_ :List[Any] = d_inner snake_case_ :List[str] = hidden_act snake_case_ :Optional[Any] = hidden_dropout snake_case_ :Optional[Any] = attention_dropout snake_case_ :List[Any] = activation_dropout snake_case_ :int = initializer_range snake_case_ :str = initializer_std snake_case_ :Any = layer_norm_eps assert pooling_type in [ "mean", "max", ], F'''Got {pooling_type} for `pooling_type` but only \'mean\' and \'max\' are supported.''' snake_case_ :Dict = pooling_type assert attention_type in [ "relative_shift", "factorized", ], F'''Got {attention_type} for `attention_type` but only \'relative_shift\' and \'factorized\' are supported.''' snake_case_ :str = attention_type snake_case_ :int = separate_cls snake_case_ :List[Any] = truncate_seq snake_case_ :List[Any] = pool_q_only super().__init__(**_UpperCamelCase ) @property def _a ( self ): """simple docstring""" return sum(self.block_sizes ) @num_hidden_layers.setter def _a ( self , a ): """simple docstring""" raise NotImplementedError( "This model does not support the setting of `num_hidden_layers`. Please set `block_sizes`." ) @property def _a ( self ): """simple docstring""" return len(self.block_sizes ) @num_blocks.setter def _a ( self , a ): """simple docstring""" raise NotImplementedError("This model does not support the setting of `num_blocks`. Please set `block_sizes`." )
584
import numpy as np def A__ ( SCREAMING_SNAKE_CASE_ : np.ndarray , SCREAMING_SNAKE_CASE_ : float ) -> np.ndarray: """simple docstring""" return np.where(vector > 0 , SCREAMING_SNAKE_CASE_ , (alpha * (np.exp(SCREAMING_SNAKE_CASE_ ) - 1)) ) if __name__ == "__main__": import doctest doctest.testmod()
32
0
import unittest from transformers import BarthezTokenizer, BarthezTokenizerFast, BatchEncoding from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers @require_sentencepiece @slow # see https://github.com/huggingface/transformers/issues/11457 class SCREAMING_SNAKE_CASE__ ( A__ , unittest.TestCase ): '''simple docstring''' __lowerCamelCase : Optional[int] = BarthezTokenizer __lowerCamelCase : Union[str, Any] = BarthezTokenizerFast __lowerCamelCase : List[Any] = True __lowerCamelCase : str = True def _lowerCAmelCase ( self ): super().setUp() A : Tuple = BarthezTokenizerFast.from_pretrained("""moussaKam/mbarthez""" ) tokenizer.save_pretrained(self.tmpdirname ) tokenizer.save_pretrained(self.tmpdirname, legacy_format=_UpperCamelCase ) A : List[str] = tokenizer def _lowerCAmelCase ( self ): A : str = """<pad>""" A : Optional[Any] = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(_UpperCamelCase ), _UpperCamelCase ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(_UpperCamelCase ), _UpperCamelCase ) def _lowerCAmelCase ( self ): A : str = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0], """<s>""" ) self.assertEqual(vocab_keys[1], """<pad>""" ) self.assertEqual(vocab_keys[-1], """<mask>""" ) self.assertEqual(len(_UpperCamelCase ), 10_1122 ) def _lowerCAmelCase ( self ): self.assertEqual(self.get_tokenizer().vocab_size, 10_1122 ) @require_torch def _lowerCAmelCase ( self ): A : Union[str, Any] = ["""A long paragraph for summarization.""", """Another paragraph for summarization."""] A : List[str] = [0, 57, 3018, 7_0307, 91, 2] A : Tuple = self.tokenizer( _UpperCamelCase, max_length=len(_UpperCamelCase ), padding=_UpperCamelCase, truncation=_UpperCamelCase, return_tensors="""pt""" ) self.assertIsInstance(_UpperCamelCase, _UpperCamelCase ) self.assertEqual((2, 6), batch.input_ids.shape ) self.assertEqual((2, 6), batch.attention_mask.shape ) A : List[Any] = batch.input_ids.tolist()[0] self.assertListEqual(_UpperCamelCase, _UpperCamelCase ) def _lowerCAmelCase ( self ): if not self.test_rust_tokenizer: return A : Optional[Any] = self.get_tokenizer() A : Union[str, Any] = self.get_rust_tokenizer() A : Optional[int] = """I was born in 92000, and this is falsé.""" A : Optional[Any] = tokenizer.tokenize(_UpperCamelCase ) A : Any = rust_tokenizer.tokenize(_UpperCamelCase ) self.assertListEqual(_UpperCamelCase, _UpperCamelCase ) A : List[Any] = tokenizer.encode(_UpperCamelCase, add_special_tokens=_UpperCamelCase ) A : int = rust_tokenizer.encode(_UpperCamelCase, add_special_tokens=_UpperCamelCase ) self.assertListEqual(_UpperCamelCase, _UpperCamelCase ) A : int = self.get_rust_tokenizer() A : Optional[int] = tokenizer.encode(_UpperCamelCase ) A : Optional[int] = rust_tokenizer.encode(_UpperCamelCase ) self.assertListEqual(_UpperCamelCase, _UpperCamelCase ) @slow def _lowerCAmelCase ( self ): # fmt: off A : List[Any] = {"""input_ids""": [[0, 490, 1_4328, 4507, 354, 47, 4_3669, 95, 25, 7_8117, 2_0215, 1_9779, 190, 22, 400, 4, 3_5343, 8_0310, 603, 86, 2_4937, 105, 3_3438, 9_4762, 196, 3_9642, 7, 15, 1_5933, 173, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [0, 1_0534, 87, 25, 66, 3358, 196, 5_5289, 8, 8_2961, 81, 2204, 7_5203, 7, 15, 763, 1_2956, 216, 178, 1_4328, 9595, 1377, 6_9693, 7, 448, 7_1021, 196, 1_8106, 1437, 1_3974, 108, 9083, 4, 4_9315, 7, 39, 86, 1326, 2793, 4_6333, 4, 448, 196, 7_4588, 7, 4_9315, 7, 39, 21, 822, 3_8470, 74, 21, 6_6723, 6_2480, 8, 2_2050, 5, 2]], """attention_mask""": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]]} # noqa: E501 # fmt: on # moussaKam/mbarthez is a french model. So we also use french texts. A : Union[str, Any] = [ """Le transformeur est un modèle d\'apprentissage profond introduit en 2017, """ """utilisé principalement dans le domaine du traitement automatique des langues (TAL).""", """À l\'instar des réseaux de neurones récurrents (RNN), les transformeurs sont conçus """ """pour gérer des données séquentielles, telles que le langage naturel, pour des tâches """ """telles que la traduction et la synthèse de texte.""", ] self.tokenizer_integration_test_util( expected_encoding=_UpperCamelCase, model_name="""moussaKam/mbarthez""", revision="""c2e4ecbca5e3cd2c37fe1ac285ca4fbdf1366fb6""", sequences=_UpperCamelCase, )
662
UpperCAmelCase_ = { "A": ".-", "B": "-...", "C": "-.-.", "D": "-..", "E": ".", "F": "..-.", "G": "--.", "H": "....", "I": "..", "J": ".---", "K": "-.-", "L": ".-..", "M": "--", "N": "-.", "O": "---", "P": ".--.", "Q": "--.-", "R": ".-.", "S": "...", "T": "-", "U": "..-", "V": "...-", "W": ".--", "X": "-..-", "Y": "-.--", "Z": "--..", "1": ".----", "2": "..---", "3": "...--", "4": "....-", "5": ".....", "6": "-....", "7": "--...", "8": "---..", "9": "----.", "0": "-----", "&": ".-...", "@": ".--.-.", ":": "---...", ",": "--..--", ".": ".-.-.-", "'": ".----.", "\"": ".-..-.", "?": "..--..", "/": "-..-.", "=": "-...-", "+": ".-.-.", "-": "-....-", "(": "-.--.", ")": "-.--.-", "!": "-.-.--", " ": "/" } # Exclamation mark is not in ITU-R recommendation # fmt: on UpperCAmelCase_ = {value: key for key, value in MORSE_CODE_DICT.items()} def A__ ( SCREAMING_SNAKE_CASE_ : str ) -> str: """simple docstring""" return " ".join(MORSE_CODE_DICT[char] for char in message.upper() ) def A__ ( SCREAMING_SNAKE_CASE_ : str ) -> str: """simple docstring""" return "".join(REVERSE_DICT[char] for char in message.split() ) def A__ ( ) -> None: """simple docstring""" _UpperCAmelCase = '''Morse code here!''' print(SCREAMING_SNAKE_CASE_ ) _UpperCAmelCase = encrypt(SCREAMING_SNAKE_CASE_ ) print(SCREAMING_SNAKE_CASE_ ) _UpperCAmelCase = decrypt(SCREAMING_SNAKE_CASE_ ) print(SCREAMING_SNAKE_CASE_ ) if __name__ == "__main__": main()
32
0
from __future__ import annotations def __SCREAMING_SNAKE_CASE ( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) -> list: '''simple docstring''' UpperCAmelCase = [] UpperCAmelCase , UpperCAmelCase = input_list[low:mid], input_list[mid : high + 1] while left and right: result.append((left if left[0] <= right[0] else right).pop(0 ) ) UpperCAmelCase = result + left + right return input_list def __SCREAMING_SNAKE_CASE ( UpperCamelCase__ ) -> list: '''simple docstring''' if len(SCREAMING_SNAKE_CASE_ ) <= 1: return input_list UpperCAmelCase = list(SCREAMING_SNAKE_CASE_ ) # iteration for two-way merging UpperCAmelCase = 2 while p <= len(SCREAMING_SNAKE_CASE_ ): # getting low, high and middle value for merge-sort of single list for i in range(0 , len(SCREAMING_SNAKE_CASE_ ) , SCREAMING_SNAKE_CASE_ ): UpperCAmelCase = i UpperCAmelCase = i + p - 1 UpperCAmelCase = (low + high + 1) // 2 UpperCAmelCase = merge(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) # final merge of last two parts if p * 2 >= len(SCREAMING_SNAKE_CASE_ ): UpperCAmelCase = i UpperCAmelCase = merge(SCREAMING_SNAKE_CASE_ , 0 , SCREAMING_SNAKE_CASE_ , len(SCREAMING_SNAKE_CASE_ ) - 1 ) break p *= 2 return input_list if __name__ == "__main__": __A : Tuple = input("Enter numbers separated by a comma:\n").strip() if user_input == "": __A : Dict = [] else: __A : int = [int(item.strip()) for item in user_input.split(",")] print(iter_merge_sort(unsorted))
130
import gc import unittest import numpy as np import torch from diffusers import DanceDiffusionPipeline, IPNDMScheduler, UNetaDModel from diffusers.utils import slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu, skip_mps from ..pipeline_params import UNCONDITIONAL_AUDIO_GENERATION_BATCH_PARAMS, UNCONDITIONAL_AUDIO_GENERATION_PARAMS from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() class __UpperCamelCase ( A__ , unittest.TestCase ): __A : Any = DanceDiffusionPipeline __A : Any = UNCONDITIONAL_AUDIO_GENERATION_PARAMS __A : Tuple = PipelineTesterMixin.required_optional_params - { """callback""", """latents""", """callback_steps""", """output_type""", """num_images_per_prompt""", } __A : Tuple = UNCONDITIONAL_AUDIO_GENERATION_BATCH_PARAMS __A : List[str] = False __A : str = False def UpperCamelCase( self ): torch.manual_seed(0 ) _UpperCAmelCase = UNetaDModel( block_out_channels=(32, 32, 64) , extra_in_channels=16 , sample_size=512 , sample_rate=16000 , in_channels=2 , out_channels=2 , flip_sin_to_cos=_UpperCamelCase , use_timestep_embedding=_UpperCamelCase , time_embedding_type='''fourier''' , mid_block_type='''UNetMidBlock1D''' , down_block_types=('''DownBlock1DNoSkip''', '''DownBlock1D''', '''AttnDownBlock1D''') , up_block_types=('''AttnUpBlock1D''', '''UpBlock1D''', '''UpBlock1DNoSkip''') , ) _UpperCAmelCase = IPNDMScheduler() _UpperCAmelCase = { '''unet''': unet, '''scheduler''': scheduler, } return components def UpperCamelCase( self , _UpperCamelCase , _UpperCamelCase=0 ): if str(_UpperCamelCase ).startswith('''mps''' ): _UpperCAmelCase = torch.manual_seed(_UpperCamelCase ) else: _UpperCAmelCase = torch.Generator(device=_UpperCamelCase ).manual_seed(_UpperCamelCase ) _UpperCAmelCase = { '''batch_size''': 1, '''generator''': generator, '''num_inference_steps''': 4, } return inputs def UpperCamelCase( self ): _UpperCAmelCase = '''cpu''' # ensure determinism for the device-dependent torch.Generator _UpperCAmelCase = self.get_dummy_components() _UpperCAmelCase = DanceDiffusionPipeline(**_UpperCamelCase ) _UpperCAmelCase = pipe.to(_UpperCamelCase ) pipe.set_progress_bar_config(disable=_UpperCamelCase ) _UpperCAmelCase = self.get_dummy_inputs(_UpperCamelCase ) _UpperCAmelCase = pipe(**_UpperCamelCase ) _UpperCAmelCase = output.audios _UpperCAmelCase = audio[0, -3:, -3:] assert audio.shape == (1, 2, components["unet"].sample_size) _UpperCAmelCase = np.array([-0.7265, 1.0000, -0.8388, 0.1175, 0.9498, -1.0000] ) assert np.abs(audio_slice.flatten() - expected_slice ).max() < 1e-2 @skip_mps def UpperCamelCase( self ): return super().test_save_load_local() @skip_mps def UpperCamelCase( self ): return super().test_dict_tuple_outputs_equivalent(expected_max_difference=3e-3 ) @skip_mps def UpperCamelCase( self ): return super().test_save_load_optional_components() @skip_mps def UpperCamelCase( self ): return super().test_attention_slicing_forward_pass() def UpperCamelCase( self ): super().test_inference_batch_single_identical(expected_max_diff=3e-3 ) @slow @require_torch_gpu class __UpperCamelCase ( unittest.TestCase ): def UpperCamelCase( self ): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def UpperCamelCase( self ): _UpperCAmelCase = torch_device _UpperCAmelCase = DanceDiffusionPipeline.from_pretrained('''harmonai/maestro-150k''' ) _UpperCAmelCase = pipe.to(_UpperCamelCase ) pipe.set_progress_bar_config(disable=_UpperCamelCase ) _UpperCAmelCase = torch.manual_seed(0 ) _UpperCAmelCase = pipe(generator=_UpperCamelCase , num_inference_steps=100 , audio_length_in_s=4.096 ) _UpperCAmelCase = output.audios _UpperCAmelCase = audio[0, -3:, -3:] assert audio.shape == (1, 2, pipe.unet.sample_size) _UpperCAmelCase = np.array([-0.0192, -0.0231, -0.0318, -0.0059, 0.0002, -0.0020] ) assert np.abs(audio_slice.flatten() - expected_slice ).max() < 1e-2 def UpperCamelCase( self ): _UpperCAmelCase = torch_device _UpperCAmelCase = DanceDiffusionPipeline.from_pretrained('''harmonai/maestro-150k''' , torch_dtype=torch.floataa ) _UpperCAmelCase = pipe.to(_UpperCamelCase ) pipe.set_progress_bar_config(disable=_UpperCamelCase ) _UpperCAmelCase = torch.manual_seed(0 ) _UpperCAmelCase = pipe(generator=_UpperCamelCase , num_inference_steps=100 , audio_length_in_s=4.096 ) _UpperCAmelCase = output.audios _UpperCAmelCase = audio[0, -3:, -3:] assert audio.shape == (1, 2, pipe.unet.sample_size) _UpperCAmelCase = np.array([-0.0367, -0.0488, -0.0771, -0.0525, -0.0444, -0.0341] ) assert np.abs(audio_slice.flatten() - expected_slice ).max() < 1e-2
32
0
"""simple docstring""" from numpy import exp, pi, sqrt def _a ( _snake_case , _snake_case = 0.0 , _snake_case = 1.0 ): """simple docstring""" return 1 / sqrt(2 * pi * sigma**2 ) * exp(-((x - mu) ** 2) / (2 * sigma**2) ) if __name__ == "__main__": import doctest doctest.testmod()
341
from collections import OrderedDict from ...utils import logging from .auto_factory import _BaseAutoModelClass, _LazyAutoMapping, auto_class_update from .configuration_auto import CONFIG_MAPPING_NAMES UpperCAmelCase_ = logging.get_logger(__name__) UpperCAmelCase_ = OrderedDict( [ # Base model mapping ("albert", "FlaxAlbertModel"), ("bart", "FlaxBartModel"), ("beit", "FlaxBeitModel"), ("bert", "FlaxBertModel"), ("big_bird", "FlaxBigBirdModel"), ("blenderbot", "FlaxBlenderbotModel"), ("blenderbot-small", "FlaxBlenderbotSmallModel"), ("clip", "FlaxCLIPModel"), ("distilbert", "FlaxDistilBertModel"), ("electra", "FlaxElectraModel"), ("gpt-sw3", "FlaxGPT2Model"), ("gpt2", "FlaxGPT2Model"), ("gpt_neo", "FlaxGPTNeoModel"), ("gptj", "FlaxGPTJModel"), ("longt5", "FlaxLongT5Model"), ("marian", "FlaxMarianModel"), ("mbart", "FlaxMBartModel"), ("mt5", "FlaxMT5Model"), ("opt", "FlaxOPTModel"), ("pegasus", "FlaxPegasusModel"), ("regnet", "FlaxRegNetModel"), ("resnet", "FlaxResNetModel"), ("roberta", "FlaxRobertaModel"), ("roberta-prelayernorm", "FlaxRobertaPreLayerNormModel"), ("roformer", "FlaxRoFormerModel"), ("t5", "FlaxT5Model"), ("vision-text-dual-encoder", "FlaxVisionTextDualEncoderModel"), ("vit", "FlaxViTModel"), ("wav2vec2", "FlaxWav2Vec2Model"), ("whisper", "FlaxWhisperModel"), ("xglm", "FlaxXGLMModel"), ("xlm-roberta", "FlaxXLMRobertaModel"), ] ) UpperCAmelCase_ = OrderedDict( [ # Model for pre-training mapping ("albert", "FlaxAlbertForPreTraining"), ("bart", "FlaxBartForConditionalGeneration"), ("bert", "FlaxBertForPreTraining"), ("big_bird", "FlaxBigBirdForPreTraining"), ("electra", "FlaxElectraForPreTraining"), ("longt5", "FlaxLongT5ForConditionalGeneration"), ("mbart", "FlaxMBartForConditionalGeneration"), ("mt5", "FlaxMT5ForConditionalGeneration"), ("roberta", "FlaxRobertaForMaskedLM"), ("roberta-prelayernorm", "FlaxRobertaPreLayerNormForMaskedLM"), ("roformer", "FlaxRoFormerForMaskedLM"), ("t5", "FlaxT5ForConditionalGeneration"), ("wav2vec2", "FlaxWav2Vec2ForPreTraining"), ("whisper", "FlaxWhisperForConditionalGeneration"), ("xlm-roberta", "FlaxXLMRobertaForMaskedLM"), ] ) UpperCAmelCase_ = OrderedDict( [ # Model for Masked LM mapping ("albert", "FlaxAlbertForMaskedLM"), ("bart", "FlaxBartForConditionalGeneration"), ("bert", "FlaxBertForMaskedLM"), ("big_bird", "FlaxBigBirdForMaskedLM"), ("distilbert", "FlaxDistilBertForMaskedLM"), ("electra", "FlaxElectraForMaskedLM"), ("mbart", "FlaxMBartForConditionalGeneration"), ("roberta", "FlaxRobertaForMaskedLM"), ("roberta-prelayernorm", "FlaxRobertaPreLayerNormForMaskedLM"), ("roformer", "FlaxRoFormerForMaskedLM"), ("xlm-roberta", "FlaxXLMRobertaForMaskedLM"), ] ) UpperCAmelCase_ = OrderedDict( [ # Model for Seq2Seq Causal LM mapping ("bart", "FlaxBartForConditionalGeneration"), ("blenderbot", "FlaxBlenderbotForConditionalGeneration"), ("blenderbot-small", "FlaxBlenderbotSmallForConditionalGeneration"), ("encoder-decoder", "FlaxEncoderDecoderModel"), ("longt5", "FlaxLongT5ForConditionalGeneration"), ("marian", "FlaxMarianMTModel"), ("mbart", "FlaxMBartForConditionalGeneration"), ("mt5", "FlaxMT5ForConditionalGeneration"), ("pegasus", "FlaxPegasusForConditionalGeneration"), ("t5", "FlaxT5ForConditionalGeneration"), ] ) UpperCAmelCase_ = OrderedDict( [ # Model for Image-classsification ("beit", "FlaxBeitForImageClassification"), ("regnet", "FlaxRegNetForImageClassification"), ("resnet", "FlaxResNetForImageClassification"), ("vit", "FlaxViTForImageClassification"), ] ) UpperCAmelCase_ = OrderedDict( [ ("vision-encoder-decoder", "FlaxVisionEncoderDecoderModel"), ] ) UpperCAmelCase_ = OrderedDict( [ # Model for Causal LM mapping ("bart", "FlaxBartForCausalLM"), ("bert", "FlaxBertForCausalLM"), ("big_bird", "FlaxBigBirdForCausalLM"), ("electra", "FlaxElectraForCausalLM"), ("gpt-sw3", "FlaxGPT2LMHeadModel"), ("gpt2", "FlaxGPT2LMHeadModel"), ("gpt_neo", "FlaxGPTNeoForCausalLM"), ("gptj", "FlaxGPTJForCausalLM"), ("opt", "FlaxOPTForCausalLM"), ("roberta", "FlaxRobertaForCausalLM"), ("roberta-prelayernorm", "FlaxRobertaPreLayerNormForCausalLM"), ("xglm", "FlaxXGLMForCausalLM"), ("xlm-roberta", "FlaxXLMRobertaForCausalLM"), ] ) UpperCAmelCase_ = OrderedDict( [ # Model for Sequence Classification mapping ("albert", "FlaxAlbertForSequenceClassification"), ("bart", "FlaxBartForSequenceClassification"), ("bert", "FlaxBertForSequenceClassification"), ("big_bird", "FlaxBigBirdForSequenceClassification"), ("distilbert", "FlaxDistilBertForSequenceClassification"), ("electra", "FlaxElectraForSequenceClassification"), ("mbart", "FlaxMBartForSequenceClassification"), ("roberta", "FlaxRobertaForSequenceClassification"), ("roberta-prelayernorm", "FlaxRobertaPreLayerNormForSequenceClassification"), ("roformer", "FlaxRoFormerForSequenceClassification"), ("xlm-roberta", "FlaxXLMRobertaForSequenceClassification"), ] ) UpperCAmelCase_ = OrderedDict( [ # Model for Question Answering mapping ("albert", "FlaxAlbertForQuestionAnswering"), ("bart", "FlaxBartForQuestionAnswering"), ("bert", "FlaxBertForQuestionAnswering"), ("big_bird", "FlaxBigBirdForQuestionAnswering"), ("distilbert", "FlaxDistilBertForQuestionAnswering"), ("electra", "FlaxElectraForQuestionAnswering"), ("mbart", "FlaxMBartForQuestionAnswering"), ("roberta", "FlaxRobertaForQuestionAnswering"), ("roberta-prelayernorm", "FlaxRobertaPreLayerNormForQuestionAnswering"), ("roformer", "FlaxRoFormerForQuestionAnswering"), ("xlm-roberta", "FlaxXLMRobertaForQuestionAnswering"), ] ) UpperCAmelCase_ = OrderedDict( [ # Model for Token Classification mapping ("albert", "FlaxAlbertForTokenClassification"), ("bert", "FlaxBertForTokenClassification"), ("big_bird", "FlaxBigBirdForTokenClassification"), ("distilbert", "FlaxDistilBertForTokenClassification"), ("electra", "FlaxElectraForTokenClassification"), ("roberta", "FlaxRobertaForTokenClassification"), ("roberta-prelayernorm", "FlaxRobertaPreLayerNormForTokenClassification"), ("roformer", "FlaxRoFormerForTokenClassification"), ("xlm-roberta", "FlaxXLMRobertaForTokenClassification"), ] ) UpperCAmelCase_ = OrderedDict( [ # Model for Multiple Choice mapping ("albert", "FlaxAlbertForMultipleChoice"), ("bert", "FlaxBertForMultipleChoice"), ("big_bird", "FlaxBigBirdForMultipleChoice"), ("distilbert", "FlaxDistilBertForMultipleChoice"), ("electra", "FlaxElectraForMultipleChoice"), ("roberta", "FlaxRobertaForMultipleChoice"), ("roberta-prelayernorm", "FlaxRobertaPreLayerNormForMultipleChoice"), ("roformer", "FlaxRoFormerForMultipleChoice"), ("xlm-roberta", "FlaxXLMRobertaForMultipleChoice"), ] ) UpperCAmelCase_ = OrderedDict( [ ("bert", "FlaxBertForNextSentencePrediction"), ] ) UpperCAmelCase_ = OrderedDict( [ ("speech-encoder-decoder", "FlaxSpeechEncoderDecoderModel"), ("whisper", "FlaxWhisperForConditionalGeneration"), ] ) UpperCAmelCase_ = OrderedDict( [ ("whisper", "FlaxWhisperForAudioClassification"), ] ) UpperCAmelCase_ = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_MAPPING_NAMES) UpperCAmelCase_ = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_PRETRAINING_MAPPING_NAMES) UpperCAmelCase_ = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_MASKED_LM_MAPPING_NAMES) UpperCAmelCase_ = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING_NAMES ) UpperCAmelCase_ = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING_NAMES ) UpperCAmelCase_ = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_VISION_2_SEQ_MAPPING_NAMES) UpperCAmelCase_ = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_CAUSAL_LM_MAPPING_NAMES) UpperCAmelCase_ = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING_NAMES ) UpperCAmelCase_ = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_QUESTION_ANSWERING_MAPPING_NAMES ) UpperCAmelCase_ = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING_NAMES ) UpperCAmelCase_ = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_MULTIPLE_CHOICE_MAPPING_NAMES ) UpperCAmelCase_ = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_NEXT_SENTENCE_PREDICTION_MAPPING_NAMES ) UpperCAmelCase_ = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_SPEECH_SEQ_2_SEQ_MAPPING_NAMES ) UpperCAmelCase_ = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_AUDIO_CLASSIFICATION_MAPPING_NAMES ) class __UpperCamelCase ( _BaseAutoModelClass ): __A : List[str] = FLAX_MODEL_MAPPING UpperCAmelCase_ = auto_class_update(FlaxAutoModel) class __UpperCamelCase ( _BaseAutoModelClass ): __A : Optional[Any] = FLAX_MODEL_FOR_PRETRAINING_MAPPING UpperCAmelCase_ = auto_class_update(FlaxAutoModelForPreTraining, head_doc="pretraining") class __UpperCamelCase ( _BaseAutoModelClass ): __A : List[Any] = FLAX_MODEL_FOR_CAUSAL_LM_MAPPING UpperCAmelCase_ = auto_class_update(FlaxAutoModelForCausalLM, head_doc="causal language modeling") class __UpperCamelCase ( _BaseAutoModelClass ): __A : List[str] = FLAX_MODEL_FOR_MASKED_LM_MAPPING UpperCAmelCase_ = auto_class_update(FlaxAutoModelForMaskedLM, head_doc="masked language modeling") class __UpperCamelCase ( _BaseAutoModelClass ): __A : Dict = FLAX_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING UpperCAmelCase_ = auto_class_update( FlaxAutoModelForSeqaSeqLM, head_doc="sequence-to-sequence language modeling", checkpoint_for_example="t5-base" ) class __UpperCamelCase ( _BaseAutoModelClass ): __A : List[str] = FLAX_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING UpperCAmelCase_ = auto_class_update( FlaxAutoModelForSequenceClassification, head_doc="sequence classification" ) class __UpperCamelCase ( _BaseAutoModelClass ): __A : Dict = FLAX_MODEL_FOR_QUESTION_ANSWERING_MAPPING UpperCAmelCase_ = auto_class_update(FlaxAutoModelForQuestionAnswering, head_doc="question answering") class __UpperCamelCase ( _BaseAutoModelClass ): __A : Union[str, Any] = FLAX_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING UpperCAmelCase_ = auto_class_update( FlaxAutoModelForTokenClassification, head_doc="token classification" ) class __UpperCamelCase ( _BaseAutoModelClass ): __A : Union[str, Any] = FLAX_MODEL_FOR_MULTIPLE_CHOICE_MAPPING UpperCAmelCase_ = auto_class_update(FlaxAutoModelForMultipleChoice, head_doc="multiple choice") class __UpperCamelCase ( _BaseAutoModelClass ): __A : Any = FLAX_MODEL_FOR_NEXT_SENTENCE_PREDICTION_MAPPING UpperCAmelCase_ = auto_class_update( FlaxAutoModelForNextSentencePrediction, head_doc="next sentence prediction" ) class __UpperCamelCase ( _BaseAutoModelClass ): __A : Dict = FLAX_MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING UpperCAmelCase_ = auto_class_update( FlaxAutoModelForImageClassification, head_doc="image classification" ) class __UpperCamelCase ( _BaseAutoModelClass ): __A : Optional[int] = FLAX_MODEL_FOR_VISION_2_SEQ_MAPPING UpperCAmelCase_ = auto_class_update(FlaxAutoModelForVisionaSeq, head_doc="vision-to-text modeling") class __UpperCamelCase ( _BaseAutoModelClass ): __A : str = FLAX_MODEL_FOR_SPEECH_SEQ_2_SEQ_MAPPING UpperCAmelCase_ = auto_class_update( FlaxAutoModelForSpeechSeqaSeq, head_doc="sequence-to-sequence speech-to-text modeling" )
32
0
'''simple docstring''' from __future__ import annotations def UpperCamelCase ( lowercase_ : list[int] , lowercase_ : int ) -> list[int]: '''simple docstring''' lowercase =0 lowercase =len(SCREAMING_SNAKE_CASE_ ) - 1 while i < j: if nums[i] + nums[j] == target: return [i, j] elif nums[i] + nums[j] < target: lowercase =i + 1 else: lowercase =j - 1 return [] if __name__ == "__main__": import doctest doctest.testmod() print(F"""{two_pointer([2, 7, 11, 15], 9) = }""")
72
import baseaa def A__ ( SCREAMING_SNAKE_CASE_ : str ) -> bytes: """simple docstring""" return baseaa.baaencode(string.encode('''utf-8''' ) ) def A__ ( SCREAMING_SNAKE_CASE_ : bytes ) -> str: """simple docstring""" return baseaa.baadecode(SCREAMING_SNAKE_CASE_ ).decode('''utf-8''' ) if __name__ == "__main__": UpperCAmelCase_ = "Hello World!" UpperCAmelCase_ = baseaa_encode(test) print(encoded) UpperCAmelCase_ = baseaa_decode(encoded) print(decoded)
32
0
import argparse import glob import importlib.util import os import re import black from doc_builder.style_doc import style_docstrings_in_code # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_copies.py _lowercase: Union[str, Any] = '''src/diffusers''' _lowercase: Dict = '''.''' # This is to make sure the diffusers module imported is the one in the repo. _lowercase: str = importlib.util.spec_from_file_location( '''diffusers''', os.path.join(DIFFUSERS_PATH, '''__init__.py'''), submodule_search_locations=[DIFFUSERS_PATH], ) _lowercase: Dict = spec.loader.load_module() def _lowerCamelCase ( snake_case , snake_case ): return line.startswith(SCREAMING_SNAKE_CASE_ ) or len(SCREAMING_SNAKE_CASE_ ) <= 1 or re.search(R'^\s*\)(\s*->.*:|:)\s*$' , SCREAMING_SNAKE_CASE_ ) is not None def _lowerCamelCase ( snake_case ): _lowerCAmelCase = object_name.split('.' ) _lowerCAmelCase = 0 # First let's find the module where our object lives. _lowerCAmelCase = parts[i] while i < len(SCREAMING_SNAKE_CASE_ ) and not os.path.isfile(os.path.join(SCREAMING_SNAKE_CASE_ , F'{module}.py' ) ): i += 1 if i < len(SCREAMING_SNAKE_CASE_ ): _lowerCAmelCase = os.path.join(SCREAMING_SNAKE_CASE_ , parts[i] ) if i >= len(SCREAMING_SNAKE_CASE_ ): raise ValueError(F'`object_name` should begin with the name of a module of diffusers but got {object_name}.' ) with open(os.path.join(SCREAMING_SNAKE_CASE_ , F'{module}.py' ) , 'r' , encoding='utf-8' , newline='\n' ) as f: _lowerCAmelCase = f.readlines() # Now let's find the class / func in the code! _lowerCAmelCase = '' _lowerCAmelCase = 0 for name in parts[i + 1 :]: while ( line_index < len(SCREAMING_SNAKE_CASE_ ) and re.search(RF'^{indent}(class|def)\s+{name}(\(|\:)' , lines[line_index] ) is None ): line_index += 1 indent += " " line_index += 1 if line_index >= len(SCREAMING_SNAKE_CASE_ ): raise ValueError(F' {object_name} does not match any function or class in {module}.' ) # We found the beginning of the class / func, now let's find the end (when the indent diminishes). _lowerCAmelCase = line_index while line_index < len(SCREAMING_SNAKE_CASE_ ) and _should_continue(lines[line_index] , SCREAMING_SNAKE_CASE_ ): line_index += 1 # Clean up empty lines at the end (if any). while len(lines[line_index - 1] ) <= 1: line_index -= 1 _lowerCAmelCase = lines[start_index:line_index] return "".join(SCREAMING_SNAKE_CASE_ ) _lowercase: str = re.compile(R'''^(\s*)#\s*Copied from\s+diffusers\.(\S+\.\S+)\s*($|\S.*$)''') _lowercase: Union[str, Any] = re.compile(R'''^\s*(\S+)->(\S+)(\s+.*|$)''') _lowercase: str = re.compile(R'''<FILL\s+[^>]*>''') def _lowerCamelCase ( snake_case ): _lowerCAmelCase = code.split('\n' ) _lowerCAmelCase = 0 while idx < len(SCREAMING_SNAKE_CASE_ ) and len(lines[idx] ) == 0: idx += 1 if idx < len(SCREAMING_SNAKE_CASE_ ): return re.search(R'^(\s*)\S' , lines[idx] ).groups()[0] return "" def _lowerCamelCase ( snake_case ): _lowerCAmelCase = len(get_indent(SCREAMING_SNAKE_CASE_ ) ) > 0 if has_indent: _lowerCAmelCase = F'class Bla:\n{code}' _lowerCAmelCase = black.Mode(target_versions={black.TargetVersion.PYaa} , line_length=119 , preview=SCREAMING_SNAKE_CASE_ ) _lowerCAmelCase = black.format_str(SCREAMING_SNAKE_CASE_ , mode=SCREAMING_SNAKE_CASE_ ) _lowerCAmelCase , _lowerCAmelCase = style_docstrings_in_code(SCREAMING_SNAKE_CASE_ ) return result[len('class Bla:\n' ) :] if has_indent else result def _lowerCamelCase ( snake_case , snake_case=False ): with open(SCREAMING_SNAKE_CASE_ , 'r' , encoding='utf-8' , newline='\n' ) as f: _lowerCAmelCase = f.readlines() _lowerCAmelCase = [] _lowerCAmelCase = 0 # Not a for loop cause `lines` is going to change (if `overwrite=True`). while line_index < len(SCREAMING_SNAKE_CASE_ ): _lowerCAmelCase = _re_copy_warning.search(lines[line_index] ) if search is None: line_index += 1 continue # There is some copied code here, let's retrieve the original. _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase = search.groups() _lowerCAmelCase = find_code_in_diffusers(SCREAMING_SNAKE_CASE_ ) _lowerCAmelCase = get_indent(SCREAMING_SNAKE_CASE_ ) _lowerCAmelCase = line_index + 1 if indent == theoretical_indent else line_index + 2 _lowerCAmelCase = theoretical_indent _lowerCAmelCase = start_index # Loop to check the observed code, stop when indentation diminishes or if we see a End copy comment. _lowerCAmelCase = True while line_index < len(SCREAMING_SNAKE_CASE_ ) and should_continue: line_index += 1 if line_index >= len(SCREAMING_SNAKE_CASE_ ): break _lowerCAmelCase = lines[line_index] _lowerCAmelCase = _should_continue(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) and re.search(F'^{indent}# End copy' , SCREAMING_SNAKE_CASE_ ) is None # Clean up empty lines at the end (if any). while len(lines[line_index - 1] ) <= 1: line_index -= 1 _lowerCAmelCase = lines[start_index:line_index] _lowerCAmelCase = ''.join(SCREAMING_SNAKE_CASE_ ) # Remove any nested `Copied from` comments to avoid circular copies _lowerCAmelCase = [line for line in theoretical_code.split('\n' ) if _re_copy_warning.search(SCREAMING_SNAKE_CASE_ ) is None] _lowerCAmelCase = '\n'.join(SCREAMING_SNAKE_CASE_ ) # Before comparing, use the `replace_pattern` on the original code. if len(SCREAMING_SNAKE_CASE_ ) > 0: _lowerCAmelCase = replace_pattern.replace('with' , '' ).split(',' ) _lowerCAmelCase = [_re_replace_pattern.search(SCREAMING_SNAKE_CASE_ ) for p in patterns] for pattern in patterns: if pattern is None: continue _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase = pattern.groups() _lowerCAmelCase = re.sub(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) if option.strip() == "all-casing": _lowerCAmelCase = re.sub(obja.lower() , obja.lower() , SCREAMING_SNAKE_CASE_ ) _lowerCAmelCase = re.sub(obja.upper() , obja.upper() , SCREAMING_SNAKE_CASE_ ) # Blackify after replacement. To be able to do that, we need the header (class or function definition) # from the previous line _lowerCAmelCase = blackify(lines[start_index - 1] + theoretical_code ) _lowerCAmelCase = theoretical_code[len(lines[start_index - 1] ) :] # Test for a diff and act accordingly. if observed_code != theoretical_code: diffs.append([object_name, start_index] ) if overwrite: _lowerCAmelCase = lines[:start_index] + [theoretical_code] + lines[line_index:] _lowerCAmelCase = start_index + 1 if overwrite and len(SCREAMING_SNAKE_CASE_ ) > 0: # Warn the user a file has been modified. print(F'Detected changes, rewriting {filename}.' ) with open(SCREAMING_SNAKE_CASE_ , 'w' , encoding='utf-8' , newline='\n' ) as f: f.writelines(SCREAMING_SNAKE_CASE_ ) return diffs def _lowerCamelCase ( snake_case = False ): _lowerCAmelCase = glob.glob(os.path.join(SCREAMING_SNAKE_CASE_ , '**/*.py' ) , recursive=SCREAMING_SNAKE_CASE_ ) _lowerCAmelCase = [] for filename in all_files: _lowerCAmelCase = is_copy_consistent(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) diffs += [F'- {filename}: copy does not match {d[0]} at line {d[1]}' for d in new_diffs] if not overwrite and len(SCREAMING_SNAKE_CASE_ ) > 0: _lowerCAmelCase = '\n'.join(SCREAMING_SNAKE_CASE_ ) raise Exception( 'Found the following copy inconsistencies:\n' + diff + '\nRun `make fix-copies` or `python utils/check_copies.py --fix_and_overwrite` to fix them.' ) if __name__ == "__main__": _lowercase: Any = argparse.ArgumentParser() parser.add_argument('''--fix_and_overwrite''', action='''store_true''', help='''Whether to fix inconsistencies.''') _lowercase: int = parser.parse_args() check_copies(args.fix_and_overwrite)
192
from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD, ChannelDimension, ImageInput, PILImageResampling, is_batched, to_numpy_array, valid_images, ) from ...utils import TensorType, logging UpperCAmelCase_ = logging.get_logger(__name__) class __UpperCamelCase ( A__ ): __A : int = ["""pixel_values"""] def __init__( self , _UpperCamelCase = True , _UpperCamelCase = None , _UpperCamelCase = PILImageResampling.BICUBIC , _UpperCamelCase = True , _UpperCamelCase = True , _UpperCamelCase = 1 / 255 , _UpperCamelCase = None , _UpperCamelCase = True , _UpperCamelCase = None , _UpperCamelCase = None , **_UpperCamelCase , ): super().__init__(**_UpperCamelCase ) _UpperCAmelCase = size if size is not None else {'''height''': 224, '''width''': 224} _UpperCAmelCase = get_size_dict(_UpperCamelCase ) _UpperCAmelCase = crop_size if crop_size is not None else {'''height''': 224, '''width''': 224} _UpperCAmelCase = get_size_dict(_UpperCamelCase , default_to_square=_UpperCamelCase , param_name='''crop_size''' ) _UpperCAmelCase = do_resize _UpperCAmelCase = do_rescale _UpperCAmelCase = do_normalize _UpperCAmelCase = do_center_crop _UpperCAmelCase = crop_size _UpperCAmelCase = size _UpperCAmelCase = resample _UpperCAmelCase = rescale_factor _UpperCAmelCase = image_mean if image_mean is not None else IMAGENET_DEFAULT_MEAN _UpperCAmelCase = image_std if image_std is not None else IMAGENET_DEFAULT_STD def UpperCamelCase( self , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase = PILImageResampling.BILINEAR , _UpperCamelCase = None , **_UpperCamelCase , ): _UpperCAmelCase = get_size_dict(_UpperCamelCase ) if "shortest_edge" in size: _UpperCAmelCase = get_resize_output_image_size(_UpperCamelCase , size=size['''shortest_edge'''] , default_to_square=_UpperCamelCase ) # size = get_resize_output_image_size(image, size["shortest_edge"], size["longest_edge"]) elif "height" in size and "width" in size: _UpperCAmelCase = (size['''height'''], size['''width''']) else: raise ValueError(f'''Size must contain \'height\' and \'width\' keys or \'shortest_edge\' key. Got {size.keys()}''' ) return resize(_UpperCamelCase , size=_UpperCamelCase , resample=_UpperCamelCase , data_format=_UpperCamelCase , **_UpperCamelCase ) def UpperCamelCase( self , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase = None , **_UpperCamelCase , ): _UpperCAmelCase = get_size_dict(_UpperCamelCase ) if "height" not in size or "width" not in size: raise ValueError(f'''The `size` parameter must contain the keys (height, width). Got {size.keys()}''' ) return center_crop(_UpperCamelCase , size=(size['''height'''], size['''width''']) , data_format=_UpperCamelCase , **_UpperCamelCase ) def UpperCamelCase( self , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase = None , **_UpperCamelCase ): return rescale(_UpperCamelCase , scale=_UpperCamelCase , data_format=_UpperCamelCase , **_UpperCamelCase ) def UpperCamelCase( self , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase = None , **_UpperCamelCase , ): return normalize(_UpperCamelCase , mean=_UpperCamelCase , std=_UpperCamelCase , data_format=_UpperCamelCase , **_UpperCamelCase ) def UpperCamelCase( self , _UpperCamelCase , _UpperCamelCase = None , _UpperCamelCase = None , _UpperCamelCase = None , _UpperCamelCase = None , _UpperCamelCase = None , _UpperCamelCase = None , _UpperCamelCase = None , _UpperCamelCase = None , _UpperCamelCase = None , _UpperCamelCase = None , _UpperCamelCase = None , _UpperCamelCase = ChannelDimension.FIRST , **_UpperCamelCase , ): _UpperCAmelCase = do_resize if do_resize is not None else self.do_resize _UpperCAmelCase = do_rescale if do_rescale is not None else self.do_rescale _UpperCAmelCase = do_normalize if do_normalize is not None else self.do_normalize _UpperCAmelCase = do_center_crop if do_center_crop is not None else self.do_center_crop _UpperCAmelCase = crop_size if crop_size is not None else self.crop_size _UpperCAmelCase = get_size_dict(_UpperCamelCase , param_name='''crop_size''' , default_to_square=_UpperCamelCase ) _UpperCAmelCase = resample if resample is not None else self.resample _UpperCAmelCase = rescale_factor if rescale_factor is not None else self.rescale_factor _UpperCAmelCase = image_mean if image_mean is not None else self.image_mean _UpperCAmelCase = image_std if image_std is not None else self.image_std _UpperCAmelCase = size if size is not None else self.size _UpperCAmelCase = get_size_dict(_UpperCamelCase ) if not is_batched(_UpperCamelCase ): _UpperCAmelCase = [images] if not valid_images(_UpperCamelCase ): raise ValueError( '''Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ''' '''torch.Tensor, tf.Tensor or jax.ndarray.''' ) if do_resize and size is None: raise ValueError('''Size must be specified if do_resize is True.''' ) if do_center_crop and crop_size is None: raise ValueError('''Crop size must be specified if do_center_crop is True.''' ) if do_rescale and rescale_factor is None: raise ValueError('''Rescale factor must be specified if do_rescale is True.''' ) # All transformations expect numpy arrays. _UpperCAmelCase = [to_numpy_array(_UpperCamelCase ) for image in images] if do_resize: _UpperCAmelCase = [self.resize(image=_UpperCamelCase , size=_UpperCamelCase , resample=_UpperCamelCase ) for image in images] if do_center_crop: _UpperCAmelCase = [self.center_crop(image=_UpperCamelCase , size=_UpperCamelCase ) for image in images] if do_rescale: _UpperCAmelCase = [self.rescale(image=_UpperCamelCase , scale=_UpperCamelCase ) for image in images] if do_normalize: _UpperCAmelCase = [self.normalize(image=_UpperCamelCase , mean=_UpperCamelCase , std=_UpperCamelCase ) for image in images] _UpperCAmelCase = [to_channel_dimension_format(_UpperCamelCase , _UpperCamelCase ) for image in images] _UpperCAmelCase = {'''pixel_values''': images} return BatchFeature(data=_UpperCamelCase , tensor_type=_UpperCamelCase )
32
0
'''simple docstring''' import time from dataclasses import dataclass from multiprocessing import Pool from unittest import TestCase from unittest.mock import patch import multiprocess import numpy as np import pytest from datasets.utils.py_utils import ( NestedDataStructure, asdict, iflatmap_unordered, map_nested, temp_seed, temporary_assignment, zip_dict, ) from .utils import require_tf, require_torch def _UpperCamelCase ( __UpperCamelCase ) -> Any: # picklable for multiprocessing return x.sum() def _UpperCamelCase ( __UpperCamelCase ) -> Union[str, Any]: # picklable for multiprocessing return i + 1 @dataclass class UpperCAmelCase : '''simple docstring''' SCREAMING_SNAKE_CASE_ = 42 SCREAMING_SNAKE_CASE_ = 42 class UpperCAmelCase ( A__ ): '''simple docstring''' def UpperCamelCase( self ) -> List[str]: '''simple docstring''' lowerCamelCase_ = {} lowerCamelCase_ = [] lowerCamelCase_ = 1 lowerCamelCase_ = [1, 2] lowerCamelCase_ = {'a': 1, 'b': 2} lowerCamelCase_ = {'a': [1, 2], 'b': [3, 4]} lowerCamelCase_ = {'a': {'1': 1}, 'b': 2} lowerCamelCase_ = {'a': 1, 'b': 2, 'c': 3, 'd': 4} lowerCamelCase_ = {} lowerCamelCase_ = [] lowerCamelCase_ = 2 lowerCamelCase_ = [2, 3] lowerCamelCase_ = {'a': 2, 'b': 3} lowerCamelCase_ = {'a': [2, 3], 'b': [4, 5]} lowerCamelCase_ = {'a': {'1': 2}, 'b': 3} lowerCamelCase_ = {'a': 2, 'b': 3, 'c': 4, 'd': 5} self.assertEqual(map_nested(_UpperCamelCase , _UpperCamelCase ) , _UpperCamelCase ) self.assertEqual(map_nested(_UpperCamelCase , _UpperCamelCase ) , _UpperCamelCase ) self.assertEqual(map_nested(_UpperCamelCase , _UpperCamelCase ) , _UpperCamelCase ) self.assertEqual(map_nested(_UpperCamelCase , _UpperCamelCase ) , _UpperCamelCase ) self.assertEqual(map_nested(_UpperCamelCase , _UpperCamelCase ) , _UpperCamelCase ) self.assertEqual(map_nested(_UpperCamelCase , _UpperCamelCase ) , _UpperCamelCase ) self.assertEqual(map_nested(_UpperCamelCase , _UpperCamelCase ) , _UpperCamelCase ) self.assertEqual(map_nested(_UpperCamelCase , _UpperCamelCase ) , _UpperCamelCase ) lowerCamelCase_ = 2 self.assertEqual(map_nested(_UpperCamelCase , _UpperCamelCase , num_proc=_UpperCamelCase ) , _UpperCamelCase ) self.assertEqual(map_nested(_UpperCamelCase , _UpperCamelCase , num_proc=_UpperCamelCase ) , _UpperCamelCase ) self.assertEqual(map_nested(_UpperCamelCase , _UpperCamelCase , num_proc=_UpperCamelCase ) , _UpperCamelCase ) self.assertEqual(map_nested(_UpperCamelCase , _UpperCamelCase , num_proc=_UpperCamelCase ) , _UpperCamelCase ) self.assertEqual(map_nested(_UpperCamelCase , _UpperCamelCase , num_proc=_UpperCamelCase ) , _UpperCamelCase ) self.assertEqual(map_nested(_UpperCamelCase , _UpperCamelCase , num_proc=_UpperCamelCase ) , _UpperCamelCase ) self.assertEqual(map_nested(_UpperCamelCase , _UpperCamelCase , num_proc=_UpperCamelCase ) , _UpperCamelCase ) self.assertEqual(map_nested(_UpperCamelCase , _UpperCamelCase , num_proc=_UpperCamelCase ) , _UpperCamelCase ) lowerCamelCase_ = {'a': np.eye(2 ), 'b': np.zeros(3 ), 'c': np.ones(2 )} lowerCamelCase_ = {'a': 2, 'b': 0, 'c': 2} lowerCamelCase_ = { 'a': np.eye(2 ).astype(_UpperCamelCase ), 'b': np.zeros(3 ).astype(_UpperCamelCase ), 'c': np.ones(2 ).astype(_UpperCamelCase ), } self.assertEqual(map_nested(_UpperCamelCase , _UpperCamelCase , map_numpy=_UpperCamelCase ) , _UpperCamelCase ) self.assertEqual( {k: v.tolist() for k, v in map_nested(_UpperCamelCase , _UpperCamelCase , map_numpy=_UpperCamelCase ).items()} , {k: v.tolist() for k, v in expected_map_nested_sna_int.items()} , ) self.assertEqual(map_nested(_UpperCamelCase , _UpperCamelCase , map_numpy=_UpperCamelCase , num_proc=_UpperCamelCase ) , _UpperCamelCase ) self.assertEqual( {k: v.tolist() for k, v in map_nested(_UpperCamelCase , _UpperCamelCase , map_numpy=_UpperCamelCase , num_proc=_UpperCamelCase ).items()} , {k: v.tolist() for k, v in expected_map_nested_sna_int.items()} , ) with self.assertRaises(_UpperCamelCase ): # can't pickle a local lambda map_nested(lambda SCREAMING_SNAKE_CASE_ : x + 1 , _UpperCamelCase , num_proc=_UpperCamelCase ) def UpperCamelCase( self ) -> Optional[Any]: '''simple docstring''' lowerCamelCase_ = {'a': 1, 'b': 2} lowerCamelCase_ = {'a': 3, 'b': 4} lowerCamelCase_ = {'a': 5, 'b': 6} lowerCamelCase_ = sorted([('a', (1, 3, 5)), ('b', (2, 4, 6))] ) self.assertEqual(sorted(zip_dict(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) ) , _UpperCamelCase ) def UpperCamelCase( self ) -> str: '''simple docstring''' class UpperCAmelCase : '''simple docstring''' SCREAMING_SNAKE_CASE_ = """bar""" lowerCamelCase_ = Foo() self.assertEqual(foo.my_attr , 'bar' ) with temporary_assignment(_UpperCamelCase , 'my_attr' , 'BAR' ): self.assertEqual(foo.my_attr , 'BAR' ) self.assertEqual(foo.my_attr , 'bar' ) @pytest.mark.parametrize( 'iterable_length, num_proc, expected_num_proc' ,[ (1, None, 1), (1, 1, 1), (2, None, 1), (2, 1, 1), (2, 2, 1), (2, 3, 1), (3, 2, 1), (16, 16, 16), (16, 17, 16), (17, 16, 16), ] ,) def _UpperCamelCase ( __UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ) -> Tuple: with patch('datasets.utils.py_utils._single_map_nested' ) as mock_single_map_nested, patch( 'datasets.parallel.parallel.Pool' ) as mock_multiprocessing_pool: lowerCamelCase_ = {f'''{i}''': i for i in range(SCREAMING_SNAKE_CASE_ )} lowerCamelCase_ = map_nested(lambda __UpperCamelCase : x + 10 ,SCREAMING_SNAKE_CASE_ ,num_proc=SCREAMING_SNAKE_CASE_ ,parallel_min_length=16 ) if expected_num_proc == 1: assert mock_single_map_nested.called assert not mock_multiprocessing_pool.called else: assert not mock_single_map_nested.called assert mock_multiprocessing_pool.called assert mock_multiprocessing_pool.call_args[0][0] == expected_num_proc class UpperCAmelCase ( A__ ): '''simple docstring''' @require_tf def UpperCamelCase( self ) -> Any: '''simple docstring''' import tensorflow as tf from tensorflow.keras import layers lowerCamelCase_ = layers.Dense(2 ) def gen_random_output(): lowerCamelCase_ = tf.random.uniform((1, 3) ) return model(_UpperCamelCase ).numpy() with temp_seed(42 , set_tensorflow=_UpperCamelCase ): lowerCamelCase_ = gen_random_output() with temp_seed(42 , set_tensorflow=_UpperCamelCase ): lowerCamelCase_ = gen_random_output() lowerCamelCase_ = gen_random_output() np.testing.assert_equal(_UpperCamelCase , _UpperCamelCase ) self.assertGreater(np.abs(outa - outa ).sum() , 0 ) @require_torch def UpperCamelCase( self ) -> Union[str, Any]: '''simple docstring''' import torch def gen_random_output(): lowerCamelCase_ = torch.nn.Linear(3 , 2 ) lowerCamelCase_ = torch.rand(1 , 3 ) return model(_UpperCamelCase ).detach().numpy() with temp_seed(42 , set_pytorch=_UpperCamelCase ): lowerCamelCase_ = gen_random_output() with temp_seed(42 , set_pytorch=_UpperCamelCase ): lowerCamelCase_ = gen_random_output() lowerCamelCase_ = gen_random_output() np.testing.assert_equal(_UpperCamelCase , _UpperCamelCase ) self.assertGreater(np.abs(outa - outa ).sum() , 0 ) def UpperCamelCase( self ) -> Dict: '''simple docstring''' def gen_random_output(): return np.random.rand(1 , 3 ) with temp_seed(42 ): lowerCamelCase_ = gen_random_output() with temp_seed(42 ): lowerCamelCase_ = gen_random_output() lowerCamelCase_ = gen_random_output() np.testing.assert_equal(_UpperCamelCase , _UpperCamelCase ) self.assertGreater(np.abs(outa - outa ).sum() , 0 ) @pytest.mark.parametrize('input_data' ,[{}] ) def _UpperCamelCase ( __UpperCamelCase ) -> Dict: lowerCamelCase_ = NestedDataStructure(SCREAMING_SNAKE_CASE_ ).data assert output_data == input_data @pytest.mark.parametrize( 'data, expected_output' ,[ ({}, []), ([], []), ('foo', ['foo']), (['foo', 'bar'], ['foo', 'bar']), ([['foo', 'bar']], ['foo', 'bar']), ([[['foo'], ['bar']]], ['foo', 'bar']), ([[['foo'], 'bar']], ['foo', 'bar']), ({'a': 1, 'b': 2}, [1, 2]), ({'a': [1, 2], 'b': [3, 4]}, [1, 2, 3, 4]), ({'a': [[1, 2]], 'b': [[3, 4]]}, [1, 2, 3, 4]), ({'a': [[1, 2]], 'b': [3, 4]}, [1, 2, 3, 4]), ({'a': [[[1], [2]]], 'b': [[[3], [4]]]}, [1, 2, 3, 4]), ({'a': [[[1], [2]]], 'b': [[3, 4]]}, [1, 2, 3, 4]), ({'a': [[[1], [2]]], 'b': [3, 4]}, [1, 2, 3, 4]), ({'a': [[[1], [2]]], 'b': [3, [4]]}, [1, 2, 3, 4]), ({'a': {'1': 1}, 'b': 2}, [1, 2]), ({'a': {'1': [1]}, 'b': 2}, [1, 2]), ({'a': {'1': [1]}, 'b': [2]}, [1, 2]), ] ,) def _UpperCamelCase ( __UpperCamelCase ,__UpperCamelCase ) -> Optional[Any]: lowerCamelCase_ = NestedDataStructure(SCREAMING_SNAKE_CASE_ ).flatten() assert output == expected_output def _UpperCamelCase ( ) -> int: lowerCamelCase_ = A(x=1 ,y='foobar' ) lowerCamelCase_ = {'x': 1, 'y': 'foobar'} assert asdict(SCREAMING_SNAKE_CASE_ ) == expected_output lowerCamelCase_ = {'a': {'b': A(x=10 ,y='foo' )}, 'c': [A(x=20 ,y='bar' )]} lowerCamelCase_ = {'a': {'b': {'x': 10, 'y': 'foo'}}, 'c': [{'x': 20, 'y': 'bar'}]} assert asdict(SCREAMING_SNAKE_CASE_ ) == expected_output with pytest.raises(SCREAMING_SNAKE_CASE_ ): asdict([1, A(x=10 ,y='foo' )] ) def _UpperCamelCase ( __UpperCamelCase ) -> int: return text.split() def _UpperCamelCase ( __UpperCamelCase ) -> Any: yield (time.time(), content) time.sleep(2 ) yield (time.time(), content) def _UpperCamelCase ( ) -> str: with Pool(2 ) as pool: lowerCamelCase_ = list(iflatmap_unordered(SCREAMING_SNAKE_CASE_ ,_split_text ,kwargs_iterable=[{'text': 'hello there'}] * 10 ) ) assert out.count('hello' ) == 10 assert out.count('there' ) == 10 assert len(SCREAMING_SNAKE_CASE_ ) == 20 # check multiprocess from pathos (uses dill for pickling) with multiprocess.Pool(2 ) as pool: lowerCamelCase_ = list(iflatmap_unordered(SCREAMING_SNAKE_CASE_ ,_split_text ,kwargs_iterable=[{'text': 'hello there'}] * 10 ) ) assert out.count('hello' ) == 10 assert out.count('there' ) == 10 assert len(SCREAMING_SNAKE_CASE_ ) == 20 # check that we get items as fast as possible with Pool(2 ) as pool: lowerCamelCase_ = [] for yield_time, content in iflatmap_unordered( SCREAMING_SNAKE_CASE_ ,_aseconds_generator_of_aitems_with_timing ,kwargs_iterable=[{'content': 'a'}, {'content': 'b'}] ): assert yield_time < time.time() + 0.1, "we should each item directly after it was yielded" out.append(SCREAMING_SNAKE_CASE_ ) assert out.count('a' ) == 2 assert out.count('b' ) == 2 assert len(SCREAMING_SNAKE_CASE_ ) == 4
42
from ..utils import DummyObject, requires_backends class __UpperCamelCase ( metaclass=A__ ): __A : str = ["""torch""", """scipy"""] def __init__( self , *_UpperCamelCase , **_UpperCamelCase ): requires_backends(self , ['''torch''', '''scipy'''] ) @classmethod def UpperCamelCase( cls , *_UpperCamelCase , **_UpperCamelCase ): requires_backends(cls , ['''torch''', '''scipy'''] ) @classmethod def UpperCamelCase( cls , *_UpperCamelCase , **_UpperCamelCase ): requires_backends(cls , ['''torch''', '''scipy'''] )
32
0
snake_case : Union[str, Any] = '''\n# Transformers installation\n! pip install transformers datasets\n# To install from source instead of the last release, comment the command above and uncomment the following one.\n# ! pip install git+https://github.com/huggingface/transformers.git\n''' snake_case : Optional[Any] = [{'''type''': '''code''', '''content''': INSTALL_CONTENT}] snake_case : Union[str, Any] = { '''{processor_class}''': '''FakeProcessorClass''', '''{model_class}''': '''FakeModelClass''', '''{object_class}''': '''FakeObjectClass''', }
335
def A__ ( SCREAMING_SNAKE_CASE_ : int = 2_00_00_00 ) -> int: """simple docstring""" _UpperCAmelCase = [0 for i in range(n + 1 )] _UpperCAmelCase = 1 _UpperCAmelCase = 1 for i in range(2 , int(n**0.5 ) + 1 ): if primality_list[i] == 0: for j in range(i * i , n + 1 , SCREAMING_SNAKE_CASE_ ): _UpperCAmelCase = 1 _UpperCAmelCase = 0 for i in range(SCREAMING_SNAKE_CASE_ ): if primality_list[i] == 0: sum_of_primes += i return sum_of_primes if __name__ == "__main__": print(f'''{solution() = }''')
32
0
import bza import gzip import lzma import os import shutil import struct import tarfile import warnings import zipfile from abc import ABC, abstractmethod from pathlib import Path from typing import Dict, List, Optional, Type, Union from .. import config from .filelock import FileLock from .logging import get_logger lowerCAmelCase__: List[Any] = get_logger(__name__) class snake_case_ : def __init__( self , __lowerCAmelCase = None ): SCREAMING_SNAKE_CASE_ : Dict = ( os.path.join(_UpperCamelCase , config.EXTRACTED_DATASETS_DIR ) if cache_dir else config.EXTRACTED_DATASETS_PATH ) SCREAMING_SNAKE_CASE_ : str = Extractor def __A ( self , __lowerCAmelCase ): from .file_utils import hash_url_to_filename # Path where we extract compressed archives # We extract in the cache dir, and get the extracted path name by hashing the original path" SCREAMING_SNAKE_CASE_ : Optional[int] = os.path.abspath(_UpperCamelCase ) return os.path.join(self.extract_dir , hash_url_to_filename(_UpperCamelCase ) ) def __A ( self , __lowerCAmelCase , __lowerCAmelCase ): return force_extract or ( not os.path.isfile(_UpperCamelCase ) and not (os.path.isdir(_UpperCamelCase ) and os.listdir(_UpperCamelCase )) ) def __A ( self , __lowerCAmelCase , __lowerCAmelCase = False ): SCREAMING_SNAKE_CASE_ : int = self.extractor.infer_extractor_format(_UpperCamelCase ) if not extractor_format: return input_path SCREAMING_SNAKE_CASE_ : Dict = self._get_output_path(_UpperCamelCase ) if self._do_extract(_UpperCamelCase , _UpperCamelCase ): self.extractor.extract(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) return output_path class snake_case_ ( A__ ): @classmethod @abstractmethod def __A ( cls , __lowerCAmelCase , **__lowerCAmelCase ): ... @staticmethod @abstractmethod def __A ( __lowerCAmelCase , __lowerCAmelCase ): ... class snake_case_ ( A__ , A__ ): __lowerCamelCase : List[bytes] = [] @staticmethod def __A ( __lowerCAmelCase , __lowerCAmelCase ): with open(_UpperCamelCase , 'rb' ) as f: return f.read(_UpperCamelCase ) @classmethod def __A ( cls , __lowerCAmelCase , __lowerCAmelCase = b"" ): if not magic_number: SCREAMING_SNAKE_CASE_ : Union[str, Any] = max(len(_UpperCamelCase ) for cls_magic_number in cls.magic_numbers ) try: SCREAMING_SNAKE_CASE_ : Dict = cls.read_magic_number(_UpperCamelCase , _UpperCamelCase ) except OSError: return False return any(magic_number.startswith(_UpperCamelCase ) for cls_magic_number in cls.magic_numbers ) class snake_case_ ( A__ ): @classmethod def __A ( cls , __lowerCAmelCase , **__lowerCAmelCase ): return tarfile.is_tarfile(_UpperCamelCase ) @staticmethod def __A ( __lowerCAmelCase , __lowerCAmelCase ): def resolved(__lowerCAmelCase ) -> str: return os.path.realpath(os.path.abspath(_UpperCamelCase ) ) def badpath(__lowerCAmelCase , __lowerCAmelCase ) -> bool: # joinpath will ignore base if path is absolute return not resolved(os.path.join(_UpperCamelCase , _UpperCamelCase ) ).startswith(_UpperCamelCase ) def badlink(__lowerCAmelCase , __lowerCAmelCase ) -> bool: # Links are interpreted relative to the directory containing the link SCREAMING_SNAKE_CASE_ : str = resolved(os.path.join(_UpperCamelCase , os.path.dirname(info.name ) ) ) return badpath(info.linkname , base=_UpperCamelCase ) SCREAMING_SNAKE_CASE_ : int = resolved(_UpperCamelCase ) for finfo in members: if badpath(finfo.name , _UpperCamelCase ): logger.error(F'Extraction of {finfo.name} is blocked (illegal path)' ) elif finfo.issym() and badlink(_UpperCamelCase , _UpperCamelCase ): logger.error(F'Extraction of {finfo.name} is blocked: Symlink to {finfo.linkname}' ) elif finfo.islnk() and badlink(_UpperCamelCase , _UpperCamelCase ): logger.error(F'Extraction of {finfo.name} is blocked: Hard link to {finfo.linkname}' ) else: yield finfo @staticmethod def __A ( __lowerCAmelCase , __lowerCAmelCase ): os.makedirs(_UpperCamelCase , exist_ok=_UpperCamelCase ) SCREAMING_SNAKE_CASE_ : Dict = tarfile.open(_UpperCamelCase ) tar_file.extractall(_UpperCamelCase , members=TarExtractor.safemembers(_UpperCamelCase , _UpperCamelCase ) ) tar_file.close() class snake_case_ ( A__ ): __lowerCamelCase : int = [b"""\x1F\x8B"""] @staticmethod def __A ( __lowerCAmelCase , __lowerCAmelCase ): with gzip.open(_UpperCamelCase , 'rb' ) as gzip_file: with open(_UpperCamelCase , 'wb' ) as extracted_file: shutil.copyfileobj(_UpperCamelCase , _UpperCamelCase ) class snake_case_ ( A__ ): __lowerCamelCase : Optional[Any] = [ b"""PK\x03\x04""", b"""PK\x05\x06""", # empty archive b"""PK\x07\x08""", # spanned archive ] @classmethod def __A ( cls , __lowerCAmelCase , __lowerCAmelCase = b"" ): if super().is_extractable(_UpperCamelCase , magic_number=_UpperCamelCase ): return True try: # Alternative version of zipfile.is_zipfile that has less false positives, but misses executable zip archives. # From: https://github.com/python/cpython/pull/5053 from zipfile import ( _CD_SIGNATURE, _ECD_DISK_NUMBER, _ECD_DISK_START, _ECD_ENTRIES_TOTAL, _ECD_OFFSET, _ECD_SIZE, _EndRecData, sizeCentralDir, stringCentralDir, structCentralDir, ) with open(_UpperCamelCase , 'rb' ) as fp: SCREAMING_SNAKE_CASE_ : Union[str, Any] = _EndRecData(_UpperCamelCase ) if endrec: if endrec[_ECD_ENTRIES_TOTAL] == 0 and endrec[_ECD_SIZE] == 0 and endrec[_ECD_OFFSET] == 0: return True # Empty zipfiles are still zipfiles elif endrec[_ECD_DISK_NUMBER] == endrec[_ECD_DISK_START]: fp.seek(endrec[_ECD_OFFSET] ) # Central directory is on the same disk if fp.tell() == endrec[_ECD_OFFSET] and endrec[_ECD_SIZE] >= sizeCentralDir: SCREAMING_SNAKE_CASE_ : Dict = fp.read(_UpperCamelCase ) # CD is where we expect it to be if len(_UpperCamelCase ) == sizeCentralDir: SCREAMING_SNAKE_CASE_ : Optional[int] = struct.unpack(_UpperCamelCase , _UpperCamelCase ) # CD is the right size if centdir[_CD_SIGNATURE] == stringCentralDir: return True # First central directory entry has correct magic number return False except Exception: # catch all errors in case future python versions change the zipfile internals return False @staticmethod def __A ( __lowerCAmelCase , __lowerCAmelCase ): os.makedirs(_UpperCamelCase , exist_ok=_UpperCamelCase ) with zipfile.ZipFile(_UpperCamelCase , 'r' ) as zip_file: zip_file.extractall(_UpperCamelCase ) zip_file.close() class snake_case_ ( A__ ): __lowerCamelCase : str = [b"""\xFD\x37\x7A\x58\x5A\x00"""] @staticmethod def __A ( __lowerCAmelCase , __lowerCAmelCase ): with lzma.open(_UpperCamelCase ) as compressed_file: with open(_UpperCamelCase , 'wb' ) as extracted_file: shutil.copyfileobj(_UpperCamelCase , _UpperCamelCase ) class snake_case_ ( A__ ): __lowerCamelCase : str = [b"""Rar!\x1a\x07\x00""", b"""Rar!\x1a\x07\x01\x00"""] # RAR_ID # RAR5_ID @staticmethod def __A ( __lowerCAmelCase , __lowerCAmelCase ): if not config.RARFILE_AVAILABLE: raise ImportError('Please pip install rarfile' ) import rarfile os.makedirs(_UpperCamelCase , exist_ok=_UpperCamelCase ) SCREAMING_SNAKE_CASE_ : Any = rarfile.RarFile(_UpperCamelCase ) rf.extractall(_UpperCamelCase ) rf.close() class snake_case_ ( A__ ): __lowerCamelCase : Any = [b"""\x28\xb5\x2F\xFD"""] @staticmethod def __A ( __lowerCAmelCase , __lowerCAmelCase ): if not config.ZSTANDARD_AVAILABLE: raise ImportError('Please pip install zstandard' ) import zstandard as zstd SCREAMING_SNAKE_CASE_ : str = zstd.ZstdDecompressor() with open(_UpperCamelCase , 'rb' ) as ifh, open(_UpperCamelCase , 'wb' ) as ofh: dctx.copy_stream(_UpperCamelCase , _UpperCamelCase ) class snake_case_ ( A__ ): __lowerCamelCase : Tuple = [b"""\x42\x5A\x68"""] @staticmethod def __A ( __lowerCAmelCase , __lowerCAmelCase ): with bza.open(_UpperCamelCase , 'rb' ) as compressed_file: with open(_UpperCamelCase , 'wb' ) as extracted_file: shutil.copyfileobj(_UpperCamelCase , _UpperCamelCase ) class snake_case_ ( A__ ): __lowerCamelCase : Union[str, Any] = [b"""\x37\x7A\xBC\xAF\x27\x1C"""] @staticmethod def __A ( __lowerCAmelCase , __lowerCAmelCase ): if not config.PY7ZR_AVAILABLE: raise ImportError('Please pip install py7zr' ) import pyazr os.makedirs(_UpperCamelCase , exist_ok=_UpperCamelCase ) with pyazr.SevenZipFile(_UpperCamelCase , 'r' ) as archive: archive.extractall(_UpperCamelCase ) class snake_case_ ( A__ ): __lowerCamelCase : Optional[Any] = [b"""\x04\x22\x4D\x18"""] @staticmethod def __A ( __lowerCAmelCase , __lowerCAmelCase ): if not config.LZ4_AVAILABLE: raise ImportError('Please pip install lz4' ) import lza.frame with lza.frame.open(_UpperCamelCase , 'rb' ) as compressed_file: with open(_UpperCamelCase , 'wb' ) as extracted_file: shutil.copyfileobj(_UpperCamelCase , _UpperCamelCase ) class snake_case_ : # Put zip file to the last, b/c it is possible wrongly detected as zip (I guess it means: as tar or gzip) __lowerCamelCase : Dict[str, Type[BaseExtractor]] = { "tar": TarExtractor, "gzip": GzipExtractor, "zip": ZipExtractor, "xz": XzExtractor, "rar": RarExtractor, "zstd": ZstdExtractor, "bz2": BzipaExtractor, "7z": SevenZipExtractor, # <Added version="2.4.0"/> "lz4": LzaExtractor, # <Added version="2.4.0"/> } @classmethod def __A ( cls ): return max( len(_UpperCamelCase ) for extractor in cls.extractors.values() if issubclass(_UpperCamelCase , _UpperCamelCase ) for extractor_magic_number in extractor.magic_numbers ) @staticmethod def __A ( __lowerCAmelCase , __lowerCAmelCase ): try: return MagicNumberBaseExtractor.read_magic_number(_UpperCamelCase , magic_number_length=_UpperCamelCase ) except OSError: return b"" @classmethod def __A ( cls , __lowerCAmelCase , __lowerCAmelCase = False ): warnings.warn( 'Method \'is_extractable\' was deprecated in version 2.4.0 and will be removed in 3.0.0. ' 'Use \'infer_extractor_format\' instead.' , category=_UpperCamelCase , ) SCREAMING_SNAKE_CASE_ : Optional[Any] = cls.infer_extractor_format(_UpperCamelCase ) if extractor_format: return True if not return_extractor else (True, cls.extractors[extractor_format]) return False if not return_extractor else (False, None) @classmethod def __A ( cls , __lowerCAmelCase ): # <Added version="2.4.0"/> SCREAMING_SNAKE_CASE_ : List[str] = cls._get_magic_number_max_length() SCREAMING_SNAKE_CASE_ : Optional[int] = cls._read_magic_number(_UpperCamelCase , _UpperCamelCase ) for extractor_format, extractor in cls.extractors.items(): if extractor.is_extractable(_UpperCamelCase , magic_number=_UpperCamelCase ): return extractor_format @classmethod def __A ( cls , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = None , __lowerCAmelCase = "deprecated" , ): os.makedirs(os.path.dirname(_UpperCamelCase ) , exist_ok=_UpperCamelCase ) # Prevent parallel extractions SCREAMING_SNAKE_CASE_ : Dict = str(Path(_UpperCamelCase ).with_suffix('.lock' ) ) with FileLock(_UpperCamelCase ): shutil.rmtree(_UpperCamelCase , ignore_errors=_UpperCamelCase ) if extractor_format or extractor != "deprecated": if extractor != "deprecated" or not isinstance(_UpperCamelCase , _UpperCamelCase ): # passed as positional arg warnings.warn( 'Parameter \'extractor\' was deprecated in version 2.4.0 and will be removed in 3.0.0. ' 'Use \'extractor_format\' instead.' , category=_UpperCamelCase , ) SCREAMING_SNAKE_CASE_ : Dict = extractor if extractor != 'deprecated' else extractor_format else: SCREAMING_SNAKE_CASE_ : Optional[int] = cls.extractors[extractor_format] return extractor.extract(_UpperCamelCase , _UpperCamelCase ) else: warnings.warn( 'Parameter \'extractor_format\' was made required in version 2.4.0 and not passing it will raise an ' 'exception in 3.0.0.' , category=_UpperCamelCase , ) for extractor in cls.extractors.values(): if extractor.is_extractable(_UpperCamelCase ): return extractor.extract(_UpperCamelCase , _UpperCamelCase )
345
import warnings from ...utils import logging from .image_processing_glpn import GLPNImageProcessor UpperCAmelCase_ = logging.get_logger(__name__) class __UpperCamelCase ( A__ ): def __init__( self , *_UpperCamelCase , **_UpperCamelCase ): warnings.warn( '''The class GLPNFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please''' ''' use GLPNImageProcessor instead.''' , _UpperCamelCase , ) super().__init__(*_UpperCamelCase , **_UpperCamelCase )
32
0
'''simple docstring''' import argparse import pickle import numpy as np import torch from torch import nn from transformers import ReformerConfig, ReformerModelWithLMHead from transformers.utils import logging logging.set_verbosity_info() def _UpperCamelCase ( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__=None ): """simple docstring""" assert torch_layer.weight.shape == weight.shape, F"""{torch_layer} layer.weight does not match""" __magic_name__ : Optional[int] = nn.Parameter(SCREAMING_SNAKE_CASE_ ) if bias is not None: assert torch_layer.bias.shape == bias.shape, F"""{torch_layer} layer.bias does not match""" __magic_name__ : Union[str, Any] = nn.Parameter(SCREAMING_SNAKE_CASE_ ) def _UpperCamelCase ( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ): """simple docstring""" __magic_name__ : Optional[Any] = np.asarray(weights[0] ) __magic_name__ : int = np.asarray(weights[1] ) __magic_name__ : Optional[int] = np.asarray(weights[2] ) set_param( torch_layer.self_attention.query_key , torch.tensor(SCREAMING_SNAKE_CASE_ ).transpose(1 , 2 ).contiguous().view(-1 , SCREAMING_SNAKE_CASE_ ) , ) set_param( torch_layer.self_attention.value , torch.tensor(SCREAMING_SNAKE_CASE_ ).transpose(1 , 2 ).contiguous().view(-1 , SCREAMING_SNAKE_CASE_ ) , ) set_param( torch_layer.output.dense , torch.tensor(SCREAMING_SNAKE_CASE_ ).view(-1 , SCREAMING_SNAKE_CASE_ ).contiguous().transpose(0 , 1 ) , ) def _UpperCamelCase ( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ): """simple docstring""" __magic_name__ : List[str] = np.asarray(weights[0] ) __magic_name__ : str = np.asarray(weights[1] ) __magic_name__ : int = np.asarray(weights[2] ) __magic_name__ : Tuple = np.asarray(weights[3] ) set_param( torch_layer.self_attention.query , torch.tensor(SCREAMING_SNAKE_CASE_ ).transpose(1 , 2 ).contiguous().view(-1 , SCREAMING_SNAKE_CASE_ ) , ) set_param( torch_layer.self_attention.key , torch.tensor(SCREAMING_SNAKE_CASE_ ).transpose(1 , 2 ).contiguous().view(-1 , SCREAMING_SNAKE_CASE_ ) , ) set_param( torch_layer.self_attention.value , torch.tensor(SCREAMING_SNAKE_CASE_ ).transpose(1 , 2 ).contiguous().view(-1 , SCREAMING_SNAKE_CASE_ ) , ) set_param( torch_layer.output.dense , torch.tensor(SCREAMING_SNAKE_CASE_ ).view(-1 , SCREAMING_SNAKE_CASE_ ).contiguous().transpose(0 , 1 ) , ) def _UpperCamelCase ( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ): """simple docstring""" __magic_name__ : List[str] = weights[0][0][0] __magic_name__ : Union[str, Any] = np.asarray(layer_norm_a[0] ) __magic_name__ : int = np.asarray(layer_norm_a[1] ) set_param( torch_block.attention.layer_norm , torch.tensor(SCREAMING_SNAKE_CASE_ ) , torch.tensor(SCREAMING_SNAKE_CASE_ ) , ) # lsh weights + output __magic_name__ : int = weights[0][1] if len(SCREAMING_SNAKE_CASE_ ) < 4: set_layer_weights_in_torch_lsh(SCREAMING_SNAKE_CASE_ , torch_block.attention , SCREAMING_SNAKE_CASE_ ) else: set_layer_weights_in_torch_local(SCREAMING_SNAKE_CASE_ , torch_block.attention , SCREAMING_SNAKE_CASE_ ) # intermediate weighs __magic_name__ : Dict = weights[2][0][1][2] # Chunked Feed Forward if len(SCREAMING_SNAKE_CASE_ ) == 4: __magic_name__ : Union[str, Any] = intermediate_weights[2] # layernorm 2 __magic_name__ : Dict = np.asarray(intermediate_weights[0][0] ) __magic_name__ : Tuple = np.asarray(intermediate_weights[0][1] ) set_param( torch_block.feed_forward.layer_norm , torch.tensor(SCREAMING_SNAKE_CASE_ ) , torch.tensor(SCREAMING_SNAKE_CASE_ ) , ) # intermediate dense __magic_name__ : Dict = np.asarray(intermediate_weights[1][0] ) __magic_name__ : Dict = np.asarray(intermediate_weights[1][1] ) set_param( torch_block.feed_forward.dense.dense , torch.tensor(SCREAMING_SNAKE_CASE_ ).transpose(0 , 1 ).contiguous() , torch.tensor(SCREAMING_SNAKE_CASE_ ) , ) # intermediate out __magic_name__ : Optional[int] = np.asarray(intermediate_weights[4][0] ) __magic_name__ : List[Any] = np.asarray(intermediate_weights[4][1] ) set_param( torch_block.feed_forward.output.dense , torch.tensor(SCREAMING_SNAKE_CASE_ ).transpose(0 , 1 ).contiguous() , torch.tensor(SCREAMING_SNAKE_CASE_ ) , ) def _UpperCamelCase ( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ): """simple docstring""" __magic_name__ : int = torch_model.reformer # word embeds __magic_name__ : List[str] = np.asarray(weights[1] ) set_param( torch_model_reformer.embeddings.word_embeddings , torch.tensor(SCREAMING_SNAKE_CASE_ ) , ) if isinstance(weights[3] , SCREAMING_SNAKE_CASE_ ): __magic_name__ : Optional[int] = torch_model_reformer.embeddings.position_embeddings for emb_idx in range(len(position_embeddings.weights ) ): __magic_name__ : Dict = np.asarray(weights[3][emb_idx][0] ) assert ( position_embeddings.weights[emb_idx].shape == emb_weights.shape ), F"""{position_embeddings[emb_idx]} emb does not match""" __magic_name__ : Optional[int] = nn.Parameter(torch.tensor(SCREAMING_SNAKE_CASE_ ) ) __magic_name__ : str = weights[5] assert len(torch_model_reformer.encoder.layers ) * 4 == len( SCREAMING_SNAKE_CASE_ ), "HF and trax model do not have the same number of layers" for layer_idx, layer in enumerate(torch_model_reformer.encoder.layers ): __magic_name__ : Optional[int] = trax_layer_weights[4 * layer_idx : 4 * (layer_idx + 1)] set_block_weights_in_torch(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) # output layer norm __magic_name__ : Optional[int] = np.asarray(weights[7][0] ) __magic_name__ : List[str] = np.asarray(weights[7][1] ) set_param( torch_model_reformer.encoder.layer_norm , torch.tensor(SCREAMING_SNAKE_CASE_ ) , torch.tensor(SCREAMING_SNAKE_CASE_ ) , ) # output embeddings __magic_name__ : Optional[Any] = np.asarray(weights[9][0] ) __magic_name__ : Union[str, Any] = np.asarray(weights[9][1] ) set_param( torch_model.lm_head.decoder , torch.tensor(SCREAMING_SNAKE_CASE_ ).transpose(0 , 1 ).contiguous() , torch.tensor(SCREAMING_SNAKE_CASE_ ) , ) def _UpperCamelCase ( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ): """simple docstring""" __magic_name__ : str = ReformerConfig.from_json_file(SCREAMING_SNAKE_CASE_ ) print(F"""Building PyTorch model from configuration: {config}""" ) __magic_name__ : Any = ReformerModelWithLMHead(SCREAMING_SNAKE_CASE_ ) with open(SCREAMING_SNAKE_CASE_ , "rb" ) as f: __magic_name__ : Dict = pickle.load(SCREAMING_SNAKE_CASE_ )["weights"] set_model_weights_in_torch(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , config.hidden_size ) # Save pytorch-model print(F"""Save PyTorch model to {pytorch_dump_path}""" ) torch.save(model.state_dict() , SCREAMING_SNAKE_CASE_ ) if __name__ == "__main__": _SCREAMING_SNAKE_CASE : Dict = argparse.ArgumentParser() # Required parameters parser.add_argument( "--trax_model_pkl_path", default=None, type=str, required=True, help="Path to the TensorFlow checkpoint path." ) parser.add_argument( "--config_file", default=None, type=str, required=True, help=( "The config json file corresponding to the pre-trained Reformer model. \n" "This specifies the model architecture." ), ) parser.add_argument( "--pytorch_dump_path", default=None, type=str, required=True, help="Path to the output PyTorch model." ) _SCREAMING_SNAKE_CASE : List[str] = parser.parse_args() convert_trax_checkpoint_to_pytorch(args.trax_model_pkl_path, args.config_file, args.pytorch_dump_path)
436
from typing import List, Optional, Union from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType class __UpperCamelCase ( A__ ): __A : Dict = ["""image_processor""", """tokenizer"""] __A : List[str] = """BridgeTowerImageProcessor""" __A : str = ("""RobertaTokenizer""", """RobertaTokenizerFast""") def __init__( self , _UpperCamelCase , _UpperCamelCase ): super().__init__(_UpperCamelCase , _UpperCamelCase ) def __call__( self , _UpperCamelCase , _UpperCamelCase = None , _UpperCamelCase = True , _UpperCamelCase = False , _UpperCamelCase = None , _UpperCamelCase = None , _UpperCamelCase = 0 , _UpperCamelCase = None , _UpperCamelCase = None , _UpperCamelCase = None , _UpperCamelCase = False , _UpperCamelCase = False , _UpperCamelCase = False , _UpperCamelCase = False , _UpperCamelCase = True , _UpperCamelCase = None , **_UpperCamelCase , ): _UpperCAmelCase = self.tokenizer( text=_UpperCamelCase , add_special_tokens=_UpperCamelCase , padding=_UpperCamelCase , truncation=_UpperCamelCase , max_length=_UpperCamelCase , stride=_UpperCamelCase , pad_to_multiple_of=_UpperCamelCase , return_token_type_ids=_UpperCamelCase , return_attention_mask=_UpperCamelCase , return_overflowing_tokens=_UpperCamelCase , return_special_tokens_mask=_UpperCamelCase , return_offsets_mapping=_UpperCamelCase , return_length=_UpperCamelCase , verbose=_UpperCamelCase , return_tensors=_UpperCamelCase , **_UpperCamelCase , ) # add pixel_values + pixel_mask _UpperCAmelCase = self.image_processor( _UpperCamelCase , return_tensors=_UpperCamelCase , do_normalize=_UpperCamelCase , do_center_crop=_UpperCamelCase , **_UpperCamelCase ) encoding.update(_UpperCamelCase ) return encoding def UpperCamelCase( self , *_UpperCamelCase , **_UpperCamelCase ): return self.tokenizer.batch_decode(*_UpperCamelCase , **_UpperCamelCase ) def UpperCamelCase( self , *_UpperCamelCase , **_UpperCamelCase ): return self.tokenizer.decode(*_UpperCamelCase , **_UpperCamelCase ) @property def UpperCamelCase( self ): _UpperCAmelCase = self.tokenizer.model_input_names _UpperCAmelCase = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) )
32
0
import copy import inspect import unittest import numpy as np from huggingface_hub import hf_hub_download from transformers import TimesformerConfig from transformers.models.auto import get_values from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ( MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING, TimesformerForVideoClassification, TimesformerModel, ) from transformers.models.timesformer.modeling_timesformer import TIMESFORMER_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from transformers import VideoMAEImageProcessor class snake_case_ : '''simple docstring''' def __init__( self, A_, A_=13, A_=10, A_=3, A_=2, A_=2, A_=True, A_=True, A_=32, A_=5, A_=4, A_=37, A_="gelu", A_=0.1, A_=0.1, A_=10, A_=0.02, A_="divided_space_time", A_=None, ) -> Optional[int]: UpperCAmelCase__ =parent UpperCAmelCase__ =batch_size UpperCAmelCase__ =image_size UpperCAmelCase__ =num_channels UpperCAmelCase__ =patch_size UpperCAmelCase__ =num_frames UpperCAmelCase__ =is_training UpperCAmelCase__ =use_labels UpperCAmelCase__ =hidden_size UpperCAmelCase__ =num_hidden_layers UpperCAmelCase__ =num_attention_heads UpperCAmelCase__ =intermediate_size UpperCAmelCase__ =hidden_act UpperCAmelCase__ =hidden_dropout_prob UpperCAmelCase__ =attention_probs_dropout_prob UpperCAmelCase__ =attention_type UpperCAmelCase__ =initializer_range UpperCAmelCase__ =scope UpperCAmelCase__ =num_labels # in TimeSformer, the number of spatial tokens equals num_frames * num_patches per frame + 1 CLS token UpperCAmelCase__ =(image_size // patch_size) ** 2 UpperCAmelCase__ =(num_frames) * self.num_patches_per_frame + 1 def __UpperCAmelCase ( self ) -> List[str]: UpperCAmelCase__ =floats_tensor( [self.batch_size, self.num_frames, self.num_channels, self.image_size, self.image_size] ) UpperCAmelCase__ =None if self.use_labels: UpperCAmelCase__ =ids_tensor([self.batch_size], self.num_labels ) UpperCAmelCase__ =self.get_config() return config, pixel_values, labels def __UpperCAmelCase ( self ) -> Dict: UpperCAmelCase__ =TimesformerConfig( image_size=self.image_size, patch_size=self.patch_size, num_channels=self.num_channels, num_frames=self.num_frames, hidden_size=self.hidden_size, num_hidden_layers=self.num_hidden_layers, num_attention_heads=self.num_attention_heads, intermediate_size=self.intermediate_size, hidden_act=self.hidden_act, hidden_dropout_prob=self.hidden_dropout_prob, attention_probs_dropout_prob=self.attention_probs_dropout_prob, initializer_range=self.initializer_range, attention_type=self.attention_type, ) UpperCAmelCase__ =self.num_labels return config def __UpperCAmelCase ( self, A_, A_, A_ ) -> Union[str, Any]: UpperCAmelCase__ =TimesformerModel(config=_UpperCamelCase ) model.to(_UpperCamelCase ) model.eval() UpperCAmelCase__ =model(_UpperCamelCase ) self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size) ) def __UpperCAmelCase ( self, A_, A_, A_ ) -> Optional[Any]: UpperCAmelCase__ =TimesformerForVideoClassification(_UpperCamelCase ) model.to(_UpperCamelCase ) model.eval() UpperCAmelCase__ =model(_UpperCamelCase ) # verify the logits shape UpperCAmelCase__ =torch.Size((self.batch_size, self.num_labels) ) self.parent.assertEqual(result.logits.shape, _UpperCamelCase ) def __UpperCAmelCase ( self ) -> Union[str, Any]: UpperCAmelCase__ =self.prepare_config_and_inputs() UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ =config_and_inputs UpperCAmelCase__ ={"pixel_values": pixel_values} return config, inputs_dict @require_torch class snake_case_ ( A__, A__, unittest.TestCase ): '''simple docstring''' __UpperCamelCase = (TimesformerModel, TimesformerForVideoClassification) if is_torch_available() else () __UpperCamelCase = ( {"""feature-extraction""": TimesformerModel, """video-classification""": TimesformerForVideoClassification} if is_torch_available() else {} ) __UpperCamelCase = False __UpperCamelCase = False __UpperCamelCase = False __UpperCamelCase = False def __UpperCAmelCase ( self ) -> Union[str, Any]: UpperCAmelCase__ =TimesformerModelTester(self ) UpperCAmelCase__ =ConfigTester( self, config_class=_UpperCamelCase, has_text_modality=_UpperCamelCase, hidden_size=37 ) def __UpperCAmelCase ( self, A_, A_, A_=False ) -> Optional[Any]: UpperCAmelCase__ =copy.deepcopy(_UpperCamelCase ) if return_labels: if model_class in get_values(_UpperCamelCase ): UpperCAmelCase__ =torch.zeros( self.model_tester.batch_size, dtype=torch.long, device=_UpperCamelCase ) return inputs_dict def __UpperCAmelCase ( self ) -> List[str]: self.config_tester.run_common_tests() @unittest.skip(reason="TimeSformer does not use inputs_embeds" ) def __UpperCAmelCase ( self ) -> str: pass def __UpperCAmelCase ( self ) -> List[str]: UpperCAmelCase__ , UpperCAmelCase__ =self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCAmelCase__ =model_class(_UpperCamelCase ) self.assertIsInstance(model.get_input_embeddings(), (nn.Module) ) UpperCAmelCase__ =model.get_output_embeddings() self.assertTrue(x is None or isinstance(_UpperCamelCase, nn.Linear ) ) def __UpperCAmelCase ( self ) -> Dict: UpperCAmelCase__ , UpperCAmelCase__ =self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCAmelCase__ =model_class(_UpperCamelCase ) UpperCAmelCase__ =inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic UpperCAmelCase__ =[*signature.parameters.keys()] UpperCAmelCase__ =["pixel_values"] self.assertListEqual(arg_names[:1], _UpperCamelCase ) def __UpperCAmelCase ( self ) -> List[str]: UpperCAmelCase__ =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_UpperCamelCase ) def __UpperCAmelCase ( self ) -> Union[str, Any]: UpperCAmelCase__ =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_video_classification(*_UpperCamelCase ) @slow def __UpperCAmelCase ( self ) -> int: for model_name in TIMESFORMER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCAmelCase__ =TimesformerModel.from_pretrained(_UpperCamelCase ) self.assertIsNotNone(_UpperCamelCase ) def __UpperCAmelCase ( self ) -> List[Any]: if not self.has_attentions: pass else: UpperCAmelCase__ , UpperCAmelCase__ =self.model_tester.prepare_config_and_inputs_for_common() UpperCAmelCase__ =True for model_class in self.all_model_classes: UpperCAmelCase__ =self.model_tester.seq_length UpperCAmelCase__ =self.model_tester.num_frames UpperCAmelCase__ =True UpperCAmelCase__ =False UpperCAmelCase__ =True UpperCAmelCase__ =model_class(_UpperCamelCase ) model.to(_UpperCamelCase ) model.eval() with torch.no_grad(): UpperCAmelCase__ =model(**self._prepare_for_class(_UpperCamelCase, _UpperCamelCase ) ) UpperCAmelCase__ =outputs.attentions self.assertEqual(len(_UpperCamelCase ), self.model_tester.num_hidden_layers ) # check that output_attentions also work using config del inputs_dict["output_attentions"] UpperCAmelCase__ =True UpperCAmelCase__ =model_class(_UpperCamelCase ) model.to(_UpperCamelCase ) model.eval() with torch.no_grad(): UpperCAmelCase__ =model(**self._prepare_for_class(_UpperCamelCase, _UpperCamelCase ) ) UpperCAmelCase__ =outputs.attentions self.assertEqual(len(_UpperCamelCase ), self.model_tester.num_hidden_layers ) # attentions has shape (batch_size x num_frames) x num_heads x (num_patches per frame + 1) x (num_patches per frame + 1) self.assertListEqual( list(attentions[0].shape[-3:] ), [self.model_tester.num_attention_heads, seq_len // num_frames + 1, seq_len // num_frames + 1], ) UpperCAmelCase__ =len(_UpperCamelCase ) # Check attention is always last and order is fine UpperCAmelCase__ =True UpperCAmelCase__ =True UpperCAmelCase__ =model_class(_UpperCamelCase ) model.to(_UpperCamelCase ) model.eval() with torch.no_grad(): UpperCAmelCase__ =model(**self._prepare_for_class(_UpperCamelCase, _UpperCamelCase ) ) self.assertEqual(out_len + 1, len(_UpperCamelCase ) ) UpperCAmelCase__ =outputs.attentions self.assertEqual(len(_UpperCamelCase ), self.model_tester.num_hidden_layers ) # attentions has shape (batch_size x num_frames) x num_heads x (num_patches per frame + 1) x (num_patches per frame + 1) self.assertListEqual( list(self_attentions[0].shape[-3:] ), [self.model_tester.num_attention_heads, seq_len // num_frames + 1, seq_len // num_frames + 1], ) def __UpperCAmelCase ( self ) -> str: def check_hidden_states_output(A_, A_, A_ ): UpperCAmelCase__ =model_class(_UpperCamelCase ) model.to(_UpperCamelCase ) model.eval() with torch.no_grad(): UpperCAmelCase__ =model(**self._prepare_for_class(_UpperCamelCase, _UpperCamelCase ) ) UpperCAmelCase__ =outputs.hidden_states UpperCAmelCase__ =self.model_tester.num_hidden_layers + 1 self.assertEqual(len(_UpperCamelCase ), _UpperCamelCase ) UpperCAmelCase__ =self.model_tester.seq_length self.assertListEqual( list(hidden_states[0].shape[-2:] ), [seq_length, self.model_tester.hidden_size], ) UpperCAmelCase__ , UpperCAmelCase__ =self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCAmelCase__ =True check_hidden_states_output(_UpperCamelCase, _UpperCamelCase, _UpperCamelCase ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] UpperCAmelCase__ =True check_hidden_states_output(_UpperCamelCase, _UpperCamelCase, _UpperCamelCase ) def _UpperCAmelCase ( ): '''simple docstring''' UpperCAmelCase__ =hf_hub_download( repo_id="hf-internal-testing/spaghetti-video" , filename="eating_spaghetti.npy" , repo_type="dataset" ) UpperCAmelCase__ =np.load(SCREAMING_SNAKE_CASE_ ) return list(SCREAMING_SNAKE_CASE_ ) @require_torch @require_vision class snake_case_ ( unittest.TestCase ): '''simple docstring''' @cached_property def __UpperCAmelCase ( self ) -> int: # logits were tested with a different mean and std, so we use the same here return ( VideoMAEImageProcessor(image_mean=[0.5, 0.5, 0.5], image_std=[0.5, 0.5, 0.5] ) if is_vision_available() else None ) @slow def __UpperCAmelCase ( self ) -> int: UpperCAmelCase__ =TimesformerForVideoClassification.from_pretrained("facebook/timesformer-base-finetuned-k400" ).to( _UpperCamelCase ) UpperCAmelCase__ =self.default_image_processor UpperCAmelCase__ =prepare_video() UpperCAmelCase__ =image_processor(video[:8], return_tensors="pt" ).to(_UpperCamelCase ) # forward pass with torch.no_grad(): UpperCAmelCase__ =model(**_UpperCamelCase ) # verify the logits UpperCAmelCase__ =torch.Size((1, 400) ) self.assertEqual(outputs.logits.shape, _UpperCamelCase ) UpperCAmelCase__ =torch.tensor([-0.30_16, -0.77_13, -0.42_05] ).to(_UpperCamelCase ) self.assertTrue(torch.allclose(outputs.logits[0, :3], _UpperCamelCase, atol=1E-4 ) )
625
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available UpperCAmelCase_ = { "configuration_xlm": ["XLM_PRETRAINED_CONFIG_ARCHIVE_MAP", "XLMConfig", "XLMOnnxConfig"], "tokenization_xlm": ["XLMTokenizer"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase_ = [ "XLM_PRETRAINED_MODEL_ARCHIVE_LIST", "XLMForMultipleChoice", "XLMForQuestionAnswering", "XLMForQuestionAnsweringSimple", "XLMForSequenceClassification", "XLMForTokenClassification", "XLMModel", "XLMPreTrainedModel", "XLMWithLMHeadModel", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase_ = [ "TF_XLM_PRETRAINED_MODEL_ARCHIVE_LIST", "TFXLMForMultipleChoice", "TFXLMForQuestionAnsweringSimple", "TFXLMForSequenceClassification", "TFXLMForTokenClassification", "TFXLMMainLayer", "TFXLMModel", "TFXLMPreTrainedModel", "TFXLMWithLMHeadModel", ] if TYPE_CHECKING: from .configuration_xlm import XLM_PRETRAINED_CONFIG_ARCHIVE_MAP, XLMConfig, XLMOnnxConfig from .tokenization_xlm import XLMTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_xlm import ( XLM_PRETRAINED_MODEL_ARCHIVE_LIST, XLMForMultipleChoice, XLMForQuestionAnswering, XLMForQuestionAnsweringSimple, XLMForSequenceClassification, XLMForTokenClassification, XLMModel, XLMPreTrainedModel, XLMWithLMHeadModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_xlm import ( TF_XLM_PRETRAINED_MODEL_ARCHIVE_LIST, TFXLMForMultipleChoice, TFXLMForQuestionAnsweringSimple, TFXLMForSequenceClassification, TFXLMForTokenClassification, TFXLMMainLayer, TFXLMModel, TFXLMPreTrainedModel, TFXLMWithLMHeadModel, ) else: import sys UpperCAmelCase_ = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
32
0
"""simple docstring""" def A ( _A = 1_000 ): """simple docstring""" snake_case_ , snake_case_ :Union[str, Any] = 1, 1 snake_case_ :List[str] = [] for i in range(1, n + 1 ): snake_case_ :Any = prev_numerator + 2 * prev_denominator snake_case_ :Union[str, Any] = prev_numerator + prev_denominator if len(str(SCREAMING_SNAKE_CASE_ ) ) > len(str(SCREAMING_SNAKE_CASE_ ) ): result.append(SCREAMING_SNAKE_CASE_ ) snake_case_ :Tuple = numerator snake_case_ :Tuple = denominator return len(SCREAMING_SNAKE_CASE_ ) if __name__ == "__main__": print(F'''{solution() = }''')
584
from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCAmelCase_ = logging.get_logger(__name__) UpperCAmelCase_ = { "microsoft/biogpt": "https://huggingface.co/microsoft/biogpt/resolve/main/config.json", # See all BioGPT models at https://huggingface.co/models?filter=biogpt } class __UpperCamelCase ( A__ ): __A : Any = """biogpt""" def __init__( self , _UpperCamelCase=42384 , _UpperCamelCase=1024 , _UpperCamelCase=24 , _UpperCamelCase=16 , _UpperCamelCase=4096 , _UpperCamelCase="gelu" , _UpperCamelCase=0.1 , _UpperCamelCase=0.1 , _UpperCamelCase=1024 , _UpperCamelCase=0.02 , _UpperCamelCase=1e-12 , _UpperCamelCase=True , _UpperCamelCase=True , _UpperCamelCase=0.0 , _UpperCamelCase=0.0 , _UpperCamelCase=1 , _UpperCamelCase=0 , _UpperCamelCase=2 , **_UpperCamelCase , ): _UpperCAmelCase = vocab_size _UpperCAmelCase = max_position_embeddings _UpperCAmelCase = hidden_size _UpperCAmelCase = num_hidden_layers _UpperCAmelCase = num_attention_heads _UpperCAmelCase = intermediate_size _UpperCAmelCase = hidden_act _UpperCAmelCase = hidden_dropout_prob _UpperCAmelCase = attention_probs_dropout_prob _UpperCAmelCase = initializer_range _UpperCAmelCase = layer_norm_eps _UpperCAmelCase = scale_embedding _UpperCAmelCase = use_cache _UpperCAmelCase = layerdrop _UpperCAmelCase = activation_dropout super().__init__(pad_token_id=_UpperCamelCase , bos_token_id=_UpperCamelCase , eos_token_id=_UpperCamelCase , **_UpperCamelCase )
32
0
import unittest from transformers import load_tool from .test_tools_common import ToolTesterMixin class SCREAMING_SNAKE_CASE__ ( unittest.TestCase , A__ ): '''simple docstring''' def _lowerCAmelCase ( self ): A : Optional[Any] = load_tool("""text-classification""" ) self.tool.setup() A : Optional[int] = load_tool("""text-classification""", remote=_UpperCamelCase ) def _lowerCAmelCase ( self ): A : int = self.tool("""That\'s quite cool""", ["""positive""", """negative"""] ) self.assertEqual(_UpperCamelCase, """positive""" ) def _lowerCAmelCase ( self ): A : Optional[int] = self.remote_tool("""That\'s quite cool""", ["""positive""", """negative"""] ) self.assertEqual(_UpperCamelCase, """positive""" ) def _lowerCAmelCase ( self ): A : Any = self.tool(text="""That\'s quite cool""", labels=["""positive""", """negative"""] ) self.assertEqual(_UpperCamelCase, """positive""" ) def _lowerCAmelCase ( self ): A : Tuple = self.remote_tool(text="""That\'s quite cool""", labels=["""positive""", """negative"""] ) self.assertEqual(_UpperCamelCase, """positive""" )
662
from typing import List from .keymap import KEYMAP, get_character def A__ ( SCREAMING_SNAKE_CASE_ : str ) -> List[str]: """simple docstring""" def decorator(SCREAMING_SNAKE_CASE_ : List[Any] ): _UpperCAmelCase = getattr(SCREAMING_SNAKE_CASE_ , '''handle_key''' , [] ) handle += [key] setattr(SCREAMING_SNAKE_CASE_ , '''handle_key''' , SCREAMING_SNAKE_CASE_ ) return func return decorator def A__ ( *SCREAMING_SNAKE_CASE_ : List[str] ) -> Dict: """simple docstring""" def decorator(SCREAMING_SNAKE_CASE_ : Any ): _UpperCAmelCase = getattr(SCREAMING_SNAKE_CASE_ , '''handle_key''' , [] ) handle += keys setattr(SCREAMING_SNAKE_CASE_ , '''handle_key''' , SCREAMING_SNAKE_CASE_ ) return func return decorator class __UpperCamelCase ( A__ ): def __new__( cls , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ): _UpperCAmelCase = super().__new__(cls , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) if not hasattr(_UpperCamelCase , '''key_handler''' ): setattr(_UpperCamelCase , '''key_handler''' , {} ) setattr(_UpperCamelCase , '''handle_input''' , KeyHandler.handle_input ) for value in attrs.values(): _UpperCAmelCase = getattr(_UpperCamelCase , '''handle_key''' , [] ) for key in handled_keys: _UpperCAmelCase = value return new_cls @staticmethod def UpperCamelCase( cls ): _UpperCAmelCase = get_character() if char != KEYMAP["undefined"]: _UpperCAmelCase = ord(_UpperCamelCase ) _UpperCAmelCase = cls.key_handler.get(_UpperCamelCase ) if handler: _UpperCAmelCase = char return handler(cls ) else: return None def A__ ( cls : Union[str, Any] ) -> Any: """simple docstring""" return KeyHandler(cls.__name__ , cls.__bases__ , cls.__dict__.copy() )
32
0
from ..utils import DummyObject, requires_backends class A_ (metaclass=A__ ): UpperCAmelCase__ = ["""torch""", """scipy"""] def __init__( self , *_A , **_A ): '''simple docstring''' requires_backends(self , ['''torch''', '''scipy'''] ) @classmethod def _lowercase ( cls , *_A , **_A ): '''simple docstring''' requires_backends(cls , ['''torch''', '''scipy'''] ) @classmethod def _lowercase ( cls , *_A , **_A ): '''simple docstring''' requires_backends(cls , ['''torch''', '''scipy'''] )
130
import unittest from transformers import LiltConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( LiltForQuestionAnswering, LiltForSequenceClassification, LiltForTokenClassification, LiltModel, ) from transformers.models.lilt.modeling_lilt import LILT_PRETRAINED_MODEL_ARCHIVE_LIST class __UpperCamelCase : def __init__( self , _UpperCamelCase , _UpperCamelCase=13 , _UpperCamelCase=7 , _UpperCamelCase=True , _UpperCamelCase=True , _UpperCamelCase=True , _UpperCamelCase=True , _UpperCamelCase=99 , _UpperCamelCase=24 , _UpperCamelCase=2 , _UpperCamelCase=6 , _UpperCamelCase=37 , _UpperCamelCase="gelu" , _UpperCamelCase=0.1 , _UpperCamelCase=0.1 , _UpperCamelCase=512 , _UpperCamelCase=16 , _UpperCamelCase=2 , _UpperCamelCase=0.02 , _UpperCamelCase=3 , _UpperCamelCase=None , _UpperCamelCase=1000 , ): _UpperCAmelCase = parent _UpperCAmelCase = batch_size _UpperCAmelCase = seq_length _UpperCAmelCase = is_training _UpperCAmelCase = use_input_mask _UpperCAmelCase = use_token_type_ids _UpperCAmelCase = use_labels _UpperCAmelCase = vocab_size _UpperCAmelCase = hidden_size _UpperCAmelCase = num_hidden_layers _UpperCAmelCase = num_attention_heads _UpperCAmelCase = intermediate_size _UpperCAmelCase = hidden_act _UpperCAmelCase = hidden_dropout_prob _UpperCAmelCase = attention_probs_dropout_prob _UpperCAmelCase = max_position_embeddings _UpperCAmelCase = type_vocab_size _UpperCAmelCase = type_sequence_label_size _UpperCAmelCase = initializer_range _UpperCAmelCase = num_labels _UpperCAmelCase = scope _UpperCAmelCase = range_bbox def UpperCamelCase( self ): _UpperCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _UpperCAmelCase = ids_tensor([self.batch_size, self.seq_length, 4] , self.range_bbox ) # Ensure that bbox is legal for i in range(bbox.shape[0] ): for j in range(bbox.shape[1] ): if bbox[i, j, 3] < bbox[i, j, 1]: _UpperCAmelCase = bbox[i, j, 3] _UpperCAmelCase = bbox[i, j, 1] _UpperCAmelCase = t if bbox[i, j, 2] < bbox[i, j, 0]: _UpperCAmelCase = bbox[i, j, 2] _UpperCAmelCase = bbox[i, j, 0] _UpperCAmelCase = t _UpperCAmelCase = None if self.use_input_mask: _UpperCAmelCase = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 ) _UpperCAmelCase = None if self.use_token_type_ids: _UpperCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) _UpperCAmelCase = None _UpperCAmelCase = None if self.use_labels: _UpperCAmelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size ) _UpperCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) _UpperCAmelCase = self.get_config() return config, input_ids, bbox, token_type_ids, input_mask, sequence_labels, token_labels def UpperCamelCase( self ): return LiltConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , ) def UpperCamelCase( self , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , ): _UpperCAmelCase = LiltModel(config=_UpperCamelCase ) model.to(_UpperCamelCase ) model.eval() _UpperCAmelCase = model(_UpperCamelCase , bbox=_UpperCamelCase , attention_mask=_UpperCamelCase , token_type_ids=_UpperCamelCase ) _UpperCAmelCase = model(_UpperCamelCase , bbox=_UpperCamelCase , token_type_ids=_UpperCamelCase ) _UpperCAmelCase = model(_UpperCamelCase , bbox=_UpperCamelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) ) def UpperCamelCase( self , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , ): _UpperCAmelCase = self.num_labels _UpperCAmelCase = LiltForTokenClassification(config=_UpperCamelCase ) model.to(_UpperCamelCase ) model.eval() _UpperCAmelCase = model( _UpperCamelCase , bbox=_UpperCamelCase , attention_mask=_UpperCamelCase , token_type_ids=_UpperCamelCase , labels=_UpperCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def UpperCamelCase( self , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , ): _UpperCAmelCase = LiltForQuestionAnswering(config=_UpperCamelCase ) model.to(_UpperCamelCase ) model.eval() _UpperCAmelCase = model( _UpperCamelCase , bbox=_UpperCamelCase , attention_mask=_UpperCamelCase , token_type_ids=_UpperCamelCase , start_positions=_UpperCamelCase , end_positions=_UpperCamelCase , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def UpperCamelCase( self ): _UpperCAmelCase = self.prepare_config_and_inputs() ( ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ) = config_and_inputs _UpperCAmelCase = { '''input_ids''': input_ids, '''bbox''': bbox, '''token_type_ids''': token_type_ids, '''attention_mask''': input_mask, } return config, inputs_dict @require_torch class __UpperCamelCase ( A__ , A__ , A__ , unittest.TestCase ): __A : Dict = ( ( LiltModel, LiltForSequenceClassification, LiltForTokenClassification, LiltForQuestionAnswering, ) if is_torch_available() else () ) __A : Optional[Any] = ( { """feature-extraction""": LiltModel, """question-answering""": LiltForQuestionAnswering, """text-classification""": LiltForSequenceClassification, """token-classification""": LiltForTokenClassification, """zero-shot""": LiltForSequenceClassification, } if is_torch_available() else {} ) __A : List[Any] = False __A : Optional[int] = False def UpperCamelCase( self , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ): return True def UpperCamelCase( self ): _UpperCAmelCase = LiltModelTester(self ) _UpperCAmelCase = ConfigTester(self , config_class=_UpperCamelCase , hidden_size=37 ) def UpperCamelCase( self ): self.config_tester.run_common_tests() def UpperCamelCase( self ): _UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_UpperCamelCase ) def UpperCamelCase( self ): _UpperCAmelCase = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: _UpperCAmelCase = type self.model_tester.create_and_check_model(*_UpperCamelCase ) def UpperCamelCase( self ): _UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*_UpperCamelCase ) def UpperCamelCase( self ): _UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*_UpperCamelCase ) @slow def UpperCamelCase( self ): for model_name in LILT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _UpperCAmelCase = LiltModel.from_pretrained(_UpperCamelCase ) self.assertIsNotNone(_UpperCamelCase ) @require_torch @slow class __UpperCamelCase ( unittest.TestCase ): def UpperCamelCase( self ): _UpperCAmelCase = LiltModel.from_pretrained('''SCUT-DLVCLab/lilt-roberta-en-base''' ).to(_UpperCamelCase ) _UpperCAmelCase = torch.tensor([[1, 2]] , device=_UpperCamelCase ) _UpperCAmelCase = torch.tensor([[[1, 2, 3, 4], [5, 6, 7, 8]]] , device=_UpperCamelCase ) # forward pass with torch.no_grad(): _UpperCAmelCase = model(input_ids=_UpperCamelCase , bbox=_UpperCamelCase ) _UpperCAmelCase = torch.Size([1, 2, 768] ) _UpperCAmelCase = torch.tensor( [[-0.0653, 0.0950, -0.0061], [-0.0545, 0.0926, -0.0324]] , device=_UpperCamelCase , ) self.assertTrue(outputs.last_hidden_state.shape , _UpperCamelCase ) self.assertTrue(torch.allclose(outputs.last_hidden_state[0, :, :3] , _UpperCamelCase , atol=1e-3 ) )
32
0
"""simple docstring""" _UpperCamelCase = [ (1000, """M"""), (900, """CM"""), (500, """D"""), (400, """CD"""), (100, """C"""), (90, """XC"""), (50, """L"""), (40, """XL"""), (10, """X"""), (9, """IX"""), (5, """V"""), (4, """IV"""), (1, """I"""), ] def _a ( _snake_case ): """simple docstring""" UpperCAmelCase = {"""I""": 1, """V""": 5, """X""": 10, """L""": 50, """C""": 100, """D""": 500, """M""": 1000} UpperCAmelCase = 0 UpperCAmelCase = 0 while place < len(SCREAMING_SNAKE_CASE_ ): if (place + 1 < len(SCREAMING_SNAKE_CASE_ )) and (vals[roman[place]] < vals[roman[place + 1]]): total += vals[roman[place + 1]] - vals[roman[place]] place += 2 else: total += vals[roman[place]] place += 1 return total def _a ( _snake_case ): """simple docstring""" UpperCAmelCase = [] for arabic, roman in ROMAN: ((UpperCAmelCase) , (UpperCAmelCase)) = divmod(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) result.append(roman * factor ) if number == 0: break return "".join(SCREAMING_SNAKE_CASE_ ) if __name__ == "__main__": import doctest doctest.testmod()
341
from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCAmelCase_ = logging.get_logger(__name__) UpperCAmelCase_ = { "RWKV/rwkv-4-169m-pile": "https://huggingface.co/RWKV/rwkv-4-169m-pile/resolve/main/config.json", "RWKV/rwkv-4-430m-pile": "https://huggingface.co/RWKV/rwkv-4-430m-pile/resolve/main/config.json", "RWKV/rwkv-4-1b5-pile": "https://huggingface.co/RWKV/rwkv-4-1b5-pile/resolve/main/config.json", "RWKV/rwkv-4-3b-pile": "https://huggingface.co/RWKV/rwkv-4-3b-pile/resolve/main/config.json", "RWKV/rwkv-4-7b-pile": "https://huggingface.co/RWKV/rwkv-4-7b-pile/resolve/main/config.json", "RWKV/rwkv-4-14b-pile": "https://huggingface.co/RWKV/rwkv-4-14b-pile/resolve/main/config.json", "RWKV/rwkv-raven-1b5": "https://huggingface.co/RWKV/rwkv-raven-1b5/resolve/main/config.json", "RWKV/rwkv-raven-3b": "https://huggingface.co/RWKV/rwkv-raven-3b/resolve/main/config.json", "RWKV/rwkv-raven-7b": "https://huggingface.co/RWKV/rwkv-raven-7b/resolve/main/config.json", "RWKV/rwkv-raven-14b": "https://huggingface.co/RWKV/rwkv-raven-14b/resolve/main/config.json", } class __UpperCamelCase ( A__ ): __A : Tuple = """rwkv""" __A : Any = {"""max_position_embeddings""": """context_length"""} def __init__( self , _UpperCamelCase=50277 , _UpperCamelCase=1024 , _UpperCamelCase=4096 , _UpperCamelCase=32 , _UpperCamelCase=None , _UpperCamelCase=None , _UpperCamelCase=1e-5 , _UpperCamelCase=0 , _UpperCamelCase=0 , _UpperCamelCase=6 , _UpperCamelCase=False , _UpperCamelCase=True , **_UpperCamelCase , ): _UpperCAmelCase = vocab_size _UpperCAmelCase = context_length _UpperCAmelCase = hidden_size _UpperCAmelCase = num_hidden_layers _UpperCAmelCase = attention_hidden_size if attention_hidden_size is not None else hidden_size _UpperCAmelCase = intermediate_size if intermediate_size is not None else 4 * hidden_size _UpperCAmelCase = layer_norm_epsilon _UpperCAmelCase = rescale_every _UpperCAmelCase = use_cache _UpperCAmelCase = bos_token_id _UpperCAmelCase = eos_token_id super().__init__( tie_word_embeddings=_UpperCamelCase , bos_token_id=_UpperCamelCase , eos_token_id=_UpperCamelCase , **_UpperCamelCase )
32
0